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Abstract

Understanding a complex network’s structure holds the key to understanding its function. The physics community has
contributed a multitude of methods and analyses to this cross-disciplinary endeavor. Structural features exist on both the
microscopic level, resulting from differences between single node properties, and the mesoscopic level resulting from
properties shared by groups of nodes. Disentangling the determinants of network structure on these different scales has
remained a major, and so far unsolved, challenge. Here we show how multiscale generative probabilistic exponential
random graph models combined with efficient, distributive message-passing inference techniques can be used to achieve
this separation of scales, leading to improved detection accuracy of latent classes as demonstrated on benchmark problems.
It sheds new light on the statistical significance of motif-distributions in neural networks and improves the link-prediction
accuracy as exemplified for gene-disease associations in the highly consequential Online Mendelian Inheritance in Man
database.
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Introduction

Networks are fascinating objects. Charting the interactions

between system constituents, abstracted as edges and nodes, has

allowed us to marvel the interconnectedness of systems and

appreciate their complexity. Whether in foodwebs [1], social

communities [2], protein-interaction [3], metabolism [4], neural

networks [5] or communication [6], the network-metaphor has

been highly successful in advancing our understanding of complex

systems. Many insights were obtained through rigorous analysis

and modeling of network structure. In fact, a primary goal of

network research is to infer unobserved, or latent, node properties

through structural analysis.

One hallmark of complex systems is that they exhibit structure

at many scales. In particular, real-world complex networks will

generally combine microscopic structural features resulting from

single node properties with mesoscopic structural features due to

group properties. Separating the two is essential for both correctly

discovering mesoscopic structures as for inferring single-node

behavior. Especially as node characteristics and functions may

differ radically among individual nodes sharing the same group

properties. To solve this problem, we advocate the use of

generative probabilistic modeling and physically motivated

inference techniques.

Though the statistical physics community has played a leading

role in the cross-disciplinary effort to understand complex network

structure [7], most analyses have avoided the problem of

disentangling the microscopic from the mesoscopic scale. Rather,

they focus on either of the two, explaining network structure from

either the microscopic or the mesoscopic viewpoint. For example,

when modeling degree distributions [6,8], analyzing the distribu-

tions of centrality indices [9] or the distributions of small

subgraphs, so-called motifs [10], group effects are rarely taken

into account. Conversely, individual node properties are generally

neglected in inferring latent node classes from network structure

via block structure [11] or community detection algorithms [12].

As a result, one inevitably attributes individual node statistics to

the inferred group properties and vice versa, leading to

misinterpretation of individual node statistics and their significance

on the one hand and inaccuracies in latent class identification on

the other.

Here we present a consistent and principled probabilistic

approach to the inference of latent node characteristics that

allows one to separate the effects on the level of groups of nodes

from the level of individual nodes. Specifically, we present a

generative probabilistic model for the inference of latent node

classes that includes node specific features. The model gives rise to

a realistic ensemble of statistically weighted networks matched to

an observed dataset, and facilitates the derivation of parameter

expectation values and corresponding confidence intervals as well

as the differentiation between more and less important structural

features. We will show that the combination of node specific and

group specific effects in the model allows for a much improved

accuracy in the inference of latent classes of nodes. It can shed new

light on the assessment of statistical significance of motif

distributions in networks and finally, it leads to dramatically
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improved accuracy in predicting unobserved links as shown using

a network of gene-disease associations from the Online Mendelian

Inheritance in Man database.

Exponential random graphs
The probabilistic framework used is that of exponential random

graph models (ERGMs) [13,14] as they exhibit several desired

properties: ERGMs are mean unbiased and make the observed

data maximally likely; they are maximum entropy models thus

ensuring the generated networks are maximally random in all

aspects other than those modeled explicitly. In other words, they

parameterize the largest ensemble of networks compatible with

our observations, while making the observed network typical for

the ensemble. Additionally, they have a clear mapping onto the

statistical physics framework of spin models and facilitate the

combination of node and group specific properties using

parameters that have a very intuitive interpretation.

Consider a given, bipartite network specified by an N|M
adjacency matrix A, representing for instance the attendance of N
actors in M events. If actor i has attended event m, then Aim~1
and otherwise Aim~0. Equally, A could represent the association

of N diseases with M different genes or the choices of N
consumers from a list of M products. The possibilities are many

and we will use the actor-event picture, presented pictorially in

figure 1, but without limiting the applicability of the model to this

case alone.

We restrict ourselves to dyadic models, i.e. we assume the entries

of the adjacency matrix Aim to be modeled by the conditionally

independent random variables Dim[ 0,1f g. A simple ERGM that

captures both individual (actor- and event-specific) and group-

specific properties is given in terms of the odds ratio of actor i
attending event m:

P Dim~1j~hh
� �

P Dim~0j~hh
� �~

ai

1{aið Þ
bm

1{bm

� � BsiT m

1{BsiT m

� � : ð1Þ

The shorthand ~hh in (1) denotes the set of all model parameters
~hh: a1,::,aN ,b1,::,bM ,s1,::,sN ,T 1,::,T M ,Bð Þ. Note how the model

assumes a physically interpretable exponential form by rewriting

the product of parameters in (1) as exp aizbmzCsiT m

� �
where

ai~ ln
ai

1{ai

, bm~ ln
bm

1{bm

, and CsiT m
~ ln

BsiT m

1{BsiT m

. Interpret-

ing the variables of the model matrix D as Ising spin-like variables,

the log of the likelihood P Dj~hh
� �

then corresponds to the energy of

an Ising spin-like system under the action of external fields

a1,::,aN , b1,::,bM and C. In this parlance, parameter estimation

corresponds to determining the external fields that best match D to

the observed data A.

Of all parameters ~hh only a small subset is relevant for an

individual dyad Dim in (1). The parameter ai[ 0,1ð Þ denotes the

global activity of actor i, higher ai means higher odds of attending

any event. Correspondingly, bm[ 0,1ð Þ denotes the global popularity

of event m. Furthermore, every actor i and every event m carry a

class index si and T m, respectively. The number of classes is

determined a priori here; it represents a free parameter that

defines the coarseness or resolution of the grouping sought. The

matrix Brs[ 0,1ð ÞV r,s, models the data at a coarser, group specific

level, denoting the tendency or preference of an actor of class r to

attend an event of class s. Higher entries mean higher odds for the

attendance of any actor of class r to any event of class s. The

matrix Brs is also called a block model of the data.

The rich literature on ERGMs [15] has generally assumed prior

knowledge of the class labels si and T m in (1), or other covariates

[16–19]. Then, learning the parameters of (1) practically reduces

to a simple logistic regression. However, the learning task is

considerably more complicated if the latent class labels si and T m

are unknown and need to be inferred. On the other hand, a

growing body of work is dedicated to the development of efficient

algorithms for learning general stochastic block models [20–24]

including the hidden assignment of nodes into classes, but without the

incorporation of node specific effects, i.e. a model specified by

P Dim~1j~hh
� �

P Dim~0j~hh
� �~

BsiT m

1{BsiT m

: ð2Þ

This model is also referred to, with slight variations, as infinite

relational model [25] or mixed membership stochastic block

model [26]. Attempts to include the estimation of node specific

effects have resulted in biased models [27–29]. Within the

framework of ERGMs, node and group specific properties have

been combined in so called latent space models [30,31] where

nodes are assigned a position in an abstract space and links form as

a function of their distance. Such models are well motivated for

social networks, where homophily is a central mechanism of link

formation and proximity in the latent space may be interpreted as

similarity. Yet they are less general than stochastic block models

Figure 1. An actor-event network and its adjacency matrix. a, In the network, actors are represented as circles, events as diamonds. Links
indicate the participation of an actor in an event. In the adjacency matrix, actors are represented by rows and events by columns. A non-zero (non-
white) entry in row i, column m indicates participation of actor i in event m. As an example, the edge between event 4 and actor g is highlighted in all
network representations. Without the knowledge of latent classes for either actors or events, both representations appear unstructured. b, The same
network as in a, but rows and columns of the adjacency matrix have been reordered, such that blocks in the adjacency matrix become apparent
indicating the presence of latent classes of actors and events. We address the challenge of inferring such latent classes through statistical modeling,
which leads to assertions of node properties or can generate improved network layouts.
doi:10.1371/journal.pone.0021282.g001

What Determines a Network’s Structure?
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being caught in the predicament of placing groups of nodes with

similar interaction partners in close proximity while at the same

time having to place them further apart if the nodes are not

densely connected.

Our approach facilitates parameter estimates and latent class

inference in a principled model (1) which combines node specific

effects with the more general stochastic block models for group

structure. To estimate model parameters efficiently, we employ

distributive message-passing techniques, with computational com-

plexity scaling linearly with the problem size. Generalizing the

probabilistic model (1), algorithm and update equations to directed

and undirected uni-partite networks is straightforward with some

modifications. Most notably, in directed uni-partite networks,

represented by an N|N adjacency matrix A, dyads are

represented by 4-state variables Dij to account for all possible

directed connections between nodes i and j. Further, directed

networks necessitate the introduction of a reciprocity parameter that

explicitly models the co-occurrence of a link from i to j and j to i. In

the analysis presented here, we have allowed for reciprocities to vary

depending on the latent classes of nodes. Details of the inference

method used can be found in the Methods section and Material S1.

Results

Using three dedicated examples, we compare the effects of

combining microscopic (node specific) with mesoscopic (group

specific) effects as in model (1) versus including only one of the two

scales.

Southern Women
First, we demonstrate the impact of including microscopic (node

specific) effects on inferred mesoscopic latent class structure. To

this end we compare model (1) with the less expressive standard

stochastic block model (2) using a dataset from sociology. This

classic bipartite data set is due to ethnographers Davis, Gardner

and Gardner [32]. A 18|14 matrix records the attendance of 18

women in southern Alabama to 14 informal social events over the

course of a nine month period in the 1930s. The authors’ aim was

to study how an individual’s social class influences her pattern of

informal social interaction. Based on intuition and experience in

the field, but without formal analysis, the authors suggested the

existence of two latent classes of 9 women each, with only little

overlap in the attendance at events. Over the years, the data has

become a standard test case of network analysis algorithms, a

meta-analysis of which can be found in [33]. We are interested in

whether an inference based approach can assert the presence of

latent social classes and whether the class assignments found

correspond to those suggested by the experts.

If the network’s structure could be explained entirely due to a

latent (social) classes, the standard stochastic block model (2)

should be able to capture it. Allowing for two classes of actors and

events, as suggested by the original authors, we learn the standard

stochastic block model and estimate class membership si, T m and

preference matrix Brs. Figure 2a shows the data, with rows and

columns of the attendance matrix reordered such that events/

actors predominantly assigned to the same class are adjacent. The

resulting block model is in stark contrast to findings of the original

authors [32]. Events seem divided according to the number of

participants (popularity) while actors seem divided according to

the number of events participated in (activity). The expert

classification due to social class is not correctly captured when

trying to model the network through group effects alone. The

reason is that under model (2), the degree distribution for members

of the same latent class is assumed to be Poissonian. The expected

degree is the same for each member of a given class. The inset in

figure 2a shows that this assumption cannot capture the observed

degree distribution. Since the standard stochastic block model does

not model node degree independently of class preference; variance

in degree distributions of both actors and events confuses the

inference of group membership.

In contrast, the inset in figure 2b shows the expected degree vs.

the observed degree when activity and popularity parameters are

included in the model (1) and allowing for two classes. Now, the

observed degree distribution can be accounted for. The introduc-

tion of activity and popularity parameters has also dramatic effects

on the latent classes inferred. Figure 2b shows the attendance

matrix, where rows and columns are ordered as given in [32] and

the authors’ assignment to social class is indicated by dashed

boxes. The experts’ classification matches almost perfectly that

inferred using model (1). We can see that events such as 8 and 9
which are attended by most actors receive high b values and thus

have very little discriminative power. Also, actors who are very

active and occasionally participate in events predominantly

frequented by actors from the other group, such as Mrs. N. F.,

can still be assigned with high probability to a class, despite

conflicting evidence in their participation record. Using model (1)

effectively allows one to decouple the preference effects of a group

of actors for a group of events from global effects that contribute to

the variance in node connectivity.

Caenorhabditis elegans
Second, we examine the importance of including mesoscopic

group effects in the interpretation of microscopic structural

features. To this end, we study to which extent a dyadic model

may explain the distribution of small sub-graphs (motifs) in the

neural network of the nematode C. elegans.

Motifs have received considerable attention as possible entities

of network formation, i.e. building blocks larger than single edges.

Their distribution relative to random null models has been

suggested to characterize entire classes of networks [10]. The

over/under-representation of certain motifs with respect to

random null models is often attributed to possible evolutionary

pressures due to a motif’s potential influence on the performance

of the network’s function [34,35].

We study the distribution of all 16 possible 3-node motifs in the

279 neuron chemical synapse network of C. elegans [36]. Figure 3a

shows the corresponding adjacency matrix. The null model

commonly used to assess whether a particular motif is under- or

over-represented in a network is generated by randomizing the

original network conserving only microscopic structural features,

i.e. the number of incoming, outgoing and reciprocated links at

each node is preserved. All other structural features and

correlations are removed by the randomization. Figure 3b shows

one typical adjacency matrix and box-plots for motif counts in

1000 such random networks compared to the actual count of the

16 motifs in the chemical synapse network of C. elegans. Counts are

normalized to the mean count found in the set of null models. We

can see that using such a link randomized null model, 11 of the 16

motifs are strongly over/under-represented and hence would

qualify as possible starting points for further research on putative

functional relevance.

However, the standard null model also removes all mesoscopic

structures, in particular structure due to groups of more than three

nodes. The dyadic model which corresponds to (1) lacks any

parameter for three-node motifs but can generate an ensemble of

null models that matches the observed network in terms of the

observed node specific degrees as well as with respect to

mesoscopic structural features. Such mesoscopic structure inevi-

What Determines a Network’s Structure?
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tably exists as neurons are located in different somatic regions and

synaptic connections between closely located neurons are more

likely than between distant ones [37]. Neurons are also aggregated

in different ganglia making intra-ganglia connections more likely

than inter-ganglia synapses. Furthermore, they serve different

functions that influence their connectivity. For example, stimuli

may be processed in a sensory neuron - interneuron - motor

neuron cascade. The latent classes we infer from the data using the

parallel model to (1) can be explained using a combination of these

factors (see Material S1 and Dataset S1). More important than the

interpretation of these classes is whether a dyadic model, which

assumes all pairs of nodes as conditionally independent, can

account for the observed three node motif-counts in the network.

Figure 3c shows the box-plots of motif counts in 1000 networks

generated from a model similar to (1) allowing for 15 different

classes of neurons and using the parameters estimated from the

original network, again normalized to the mean count. The

comparison with the motif-count in the C. elegans network now

shows that only 3 out of 16 motifs cannot be explained by the null

model and deviations from random expectations are much

smaller. This result is remarkable as it underscores the importance

of group specific effects in modeling complex networks. The fact

that a simple dyadic model can explain a large portion of the

three-node statistics in the observed data is a strong corroboration

for our claim that latent classes of nodes are important

determinants of network structure. Furthermore, it offers a very

parsimonious explanation of motif statistics in this network and a

more conservative estimation of their statistical significance.

Online Mendelian Inheritance in Man
Third, we determine the predictive ability and classification

accuracy of model (1), which accounts for both node and group

Figure 2. Attendance record of 18 women (rows) to 14 informal social events (columns), black squares indicate attendance. a)
Attendance matrix with posterior probability of class assignment for actors P sð Þ and events P Tð Þ as found by learning a standard stochastic block
model (2). Classification inferred divides events according to number of attendants and actors according to the number of events participated in. The
Inset shows the observed numbers of attendances do not agree well with the expectations due to model (2). b) The same attendance matrix as in a)
but reordered due to the classification given in the original study indicated by dashed boxes [32]. Posterior probability of class assignments inferred
using model (1) is almost perfectly compatible with the expert’s classification. Including node specific popularity and activity parameters b and a
allows to match observed numbers of attendances vs. expectations from model (1) as shown in inset.
doi:10.1371/journal.pone.0021282.g002

Figure 3. Motif counts in the synapse network of C. elegans compared to two random null models. a) Adjacency matrix of the observed
neural network [36]. b) Adjacency matrix of a typical realization of a link randomized version of the original data and resulting Z-score statistics of
motif counts. Counts in the original data (red x) are compared to box plots of counts in 1000 link randomized null models. Strong deviations are
found at 11 of the 16 motifs. Since the link randomized null models retain only node specific features, i.e. the numbers of incoming, outgoing and
reciprocated links at each node, the cannot capture the apparent mesoscopic structure in the original network and hence may over-estimate the
statistical significance of some motifs. c) Adjacency matrix of a typical network generated from a model similar (1) with both node specific as well as
class specific parameters estimated from the original network. 15 classes were used in this example. Using 1000 networks generated from this model
as a reference ensemble, the Z-score statistics show mild deviations only at 3 of the 16 motifs. This indicates that class structure may offer a more
parsimonious explanation for the observed motif distribution.
doi:10.1371/journal.pone.0021282.g003

What Determines a Network’s Structure?
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specific effects, compared to both less and more expressive models.

To this end, we study the network of gene-disease associations

from the Online Mendelian Inheritance in Man (OMIM)

database.

This bi-partite network known as the human ‘‘Diseasosome-

Network’’ [38] represents known associations between genes and

diseases recorded in the OMIM database [39]. The network was

first published in 2005 and we focus on the analysis of the largest

connected component involving 516 different diseases and 903
different genes connected by 1550 different associations known in

2005 [38] (cf. Dataset S2). The original publication provided an

expert classification of the diseases into 22 types. The type of

disease is predominantly based on the tissues and organs involved

(such as bone, connective tissue, muscular, dermatological,

hematological, renal, etc.) or based on the affected system (such

as skeletal, cardiovascular, immonological, metabolic or endochr-

inal, etc.).

To what extent does such a classification overlap with one

inferred from a network of common genetic causes? We compare

model (1) with the less expressive standard stochastic block model (2)

and a more expressive model due to Newman and Leicht (NL) [28].

The latter includes both individual and group effects as in (1), but

instead of a single parameter for the overall activity or popularity of

a node, it features one such parameter per latent class.

We compare the overlap between the expert classification of

diseases and the one found algorithmically, based on the gene-

disease association network alone. We restricted ourselves to using

the same number of classes for both genes and diseases. The

comparison of models (1), NL and the standard stochastic block

model (2) is shown in figure 4a. As expected, neglecting individual

node effects as in model (2) reduces the overlap with an expert

classification compared to model (1). But, interestingly, the same

applies when including gene-specific effects for every class of

diseases and disease-specific effects for every class of genes as in the

NL model. Too many explanatory variables per individual node

seem to reduce the detection quality of latent classes.

Since 2005, the OMIM database has been steadily growing and

292 new associations between those 516 genes and 903 diseases

had been added until June 2010. Using the data from 2005 as a

training set and these new additions as a test set, we compare the

predictive power of the different models for future associations.

New entries to OMIM comprise both new variants of already

known gene-disease associations (repeated associations) as well as

genuine new associations of genes with diseases that were not

linked previously. Hence, the data offers the opportunity to

differentiate predictive power with respect to these two types of

entries (cf. Dataset S3). Using the parameters estimated from the

2005 data set for each model (1), NL and (2), we calculate the

probability for association of each gene i with each disease m as

P Dimj~hh
� �

. Then we sort these probabilities in descending order

and hence obtain a candidate list for new or repeated associations.

For instance, in the case of models with 16 classes (cf. Dataset S4),

figure 4b shows how far one has to go down the candidate list to

find a certain fraction of the associations that were added to the

database over the course of 4 1=2 years.

Variants of already known associations seem to be added

approximately randomly to the database as models (1), NL and (2)

all perform close the random expectation for repeated associations.

For the genuinely new associations, however, we observe that all

models strongly deviate from the random expectations. In

particular (1) outperforms both NL and (2), with the latter two

performing similarly.

Figures 4a and 4b show that the generative probabilistic model

(1) captures the biologically relevant network structure, offering

high classification accuracy and a parsimonious inclusion of node-

specific effects, which leads to a superior predictive ability.

Discussion

We have presented an efficient, distributive algorithm that

successfully estimates the parameters and latent group assignments

of an exponential random graph model including both node specific

and group specific properties. We have shown that including node

specific effects in the estimation of latent classes leads to improved

recovery of class assignments by domain experts. Additionally, we

have shown that including group specific effects in a random null

model used to assess the statistical significance of microscopic

network motifs may already suffice to explain a large part of the

observed motif statistics. This finding sheds new light on the

discussion of motif distributions in complex networks and we expect

our results to stimulate a discussion on the use of appropriate null

models in the analysis of sub-graph distributions and their

universality for certain classes of networks. Finally, we have

explored the predictive power of the model to identify new gene-

disease associations, using the OMIM database. Through these

specific examples, we have demonstrated that node specific and

group specific properties should be both incorporated when

inferring and modeling structural features in complex networks.

Methods

To describe the probabilistic inference algorithm used for

estimating the parameters~hh, we first write the likelihood of the entire

observed network adjacency matrix A in terms of our model (1):

L ~hh
� �

:P Aj~hh
� �

~P
im
P Dim~Aimj~hh
� �

ð3Þ

For a dyadic model, the likelihood factorizes into terms that

involve parameters associated with only two nodes.

Commonly used methods to estimate the parameters and

hidden variables in such a model are to employ maximum

likelihood (ML) techniques in the form of an expectation-

maximization type algorithm or Monte Carlo sampling [40]. We

prefer a Bayesian approach, based on Maximum A Posteriori

(MAP) estimates that does not incur the computational cost of

Monte Carlo sampling while being less sensitive to initial

conditions and more stable numerically than ML, especially as

the parameters which maximize (3) may lie on the the borders of

the admissible interval 0,1ð Þ. Furthermore, the MAP approach

provides a natural Occam’s razor as the posterior distributions of

parameter estimates can only reduce in variance with the

provision of more data, while the ML approach assumes point

estimates or d{functions for the posterior from the start. This is

an important feature of the Bayesian approach as it provides a

natural limit for the number of inferred classes and confidence

levels in the assignments. Classes cannot be arbitrarily small if the

posterior for the inter-class link preference B is to be localized. In

contrast, under an ML approach the likelihood increases

monotonically when more and hence smaller classes are used

and model selection criteria, as in [19], are needed. Finally,

Bayesian techniques offer a principled way to incorporate prior

domain knowledge for obtaining a more accurate approximate

marginal posterior distribution P hkjAð Þ, where hk represents one

of the parameters ai,si,bm,T m or Brs.

A message passing or belief propagation algorithm provides a

principled way to calculate approximate posterior marginal

distributions [41,42]. The starting point for this algorithm is a

What Determines a Network’s Structure?
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so-called factor- or dependency-graph, a graphical representation of the

probabilistic dependencies between the variables (model param-

eters) we wish to infer from the data, and the individual factors

that constitute the likelihood (3). Figure 5A shows this for the case

of a bi-partite network, likelihood (3) and model (1).

The algorithm proceeds by exchanging messages, conditional

probabilities, between factors and variables connected in the

dependency graph until convergence. Using the definitions:

Rim(hk):P Dim~Aimjhk,A\Aim

� �
and

Qim(hk):P hkjA\Aim

� �
,

ð4Þ

one can interpret Rim hkð Þ (R-Message) as the likelihood of a single

observed matrix entry Aim given only the parameter hk and all the

data matrix except for entry Aim. Equally, Qim hkð Þ (Q-Message) is

interpreted as the posterior probability distribution of parameter

hk given the entire data matrix except for entry Aim. For the sake

of notational economy, we have adopted to identify functions by

their argument. It is to be understood that Rim aið Þ is a different

function than Rim bm

� �
and not the same function Rim xð Þ evaluated

at the points ai and bm as should be clear from the definitions (4).

Formally, we obtain the R-Message from Aim to hk, by

integrating out all parameters except hk from a likelihood function

Rim(hk)~
Xð
P Dim~Aimj~hh,A\Aim

� �
P ~hh\hkjhk,A\Aim

� �
d~hh\hk ð5Þ

Using the independence of given data entries Aim we can readily

identify P Aimj~hh,A\Aim

� �
with the P Aimj~hh

� �
of (1). Assuming the

Figure 4. Classification accuracy and predictive power of network models (1), (2) and that by Newman/Leicht (NL) [28]. a) Overlap of an
expert classification of diseases in the Diseasosome-Network [38] and that inferred using models and the data of known gene-disease associations recorded
in the Online Mendelian Inheritance in Man (OMIM) database by Dec. 2005. Measure of overlap is normalized mutual information (NMI) [43]. b) Prediction
accuracy at 16 classes for confirmed associations added to the OMIM database between Dec. 2005 and Jun. 2010. For each model, a candidate list of
associations is obtained by sorting all possible associations in descending order according to their probability under that model with parameters estimated
from the Dec. 2005 data. We plot which fraction of actually confirmed associations is found in the corresponding top fraction of the candidate list. Entries
due to new variants of a previously recorded association are listed as ‘‘repeated associations’’ while genuine new associations are reported as ‘‘new
associations’’. For example: In the top 1% of any candidate list, we expect to find 1% of new associations due to chance alone. We do find 15% of all
confirmed new associations if the list was due to model (2), 20% if the list was due to the NL model and 30% if the list due to model (1). See text for details.
doi:10.1371/journal.pone.0021282.g004

Figure 5. Factor graphs and an example of an elementary message passing update. Factors of the likelihood function are represented as
squares, variables of the generative model as circles. Connections indicate which variables enter the calculation of which factor. a) For a bipartite
actor-event networks represented by an N|M adjacency matrix Aim, class label si and activity ai of actor i enter in the calculation of all factors in
row i. Equivalently, class label T m and popularity bm of event m enter in the calculation of all factors in column m. The variables Brs denoting
preference of actors in class r for events in class s enter in every factor. Note that while each factor depends on only O 1ð Þ variables, the s and a
variables enter in the calculation of O Nð Þ, the T and b variables in O Mð Þ and the Brs variables in O NMð Þ factors. b) Pictorial representation of the
messages involved in calculating Rim sið Þ sent from factor Aim to variable si according to equation (9). c) For directed networks represented by non-
symmetric N|N adjacency matrices, the factors correspond to dyads Dij~ Aij ,Aji

� �
. Additional to the interclass preference matrix, a symmetric

matrix of reciprocities rrs is included in the model. Every node i carries a single class label si , activity ai and attractiveness parameter bi . The variables
associated with node i enter in the calculation of factors in both row i and column i.
doi:10.1371/journal.pone.0021282.g005
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joint distribution P ~hhjA\Aim

� �
factorizes with respect to every

single hk, one obtains the following closed set of equations:

Rim hk~xð Þ ~
Xð

P Dim~Aimj~hh
� �

P
‘=k

Qim h‘ð Þdh‘ and

Qim hk~xð Þ ! P hkð Þ P
jn=im

Rjn hk~xð Þ:
ð6Þ

Although the factorization assumption may seem strong, it merely

means that the Q-Messages P hkjA\Aim

� �
for any two variables hk

and h‘ with k=‘ are assumed independent. Given that these

distributions are conditioned on the entire data matrix except for

one entry, the error we make using this assumption is considered

negligible for large systems. The form of calculating Qim hk~xð Þ in

(6) follows directly from Bayes’ theorem and P hkð Þ is the

distribution we use to include prior information. These equations

can be iterated until convergence after which we finally obtain the

desired approximate marginal posterior distribution, for every

single parameter, as:

P hkjAð Þ!P hkð ÞP
im

Rim hkð Þ: ð7Þ

To illustrate these ideas, explicit update equations for the

inference of the hidden class index si of node i appear below.

Expressions for other parameters are reported in Material S1.

With

X im
rs :

ð
P Dim~Aimjai,bm,si~r,T m~s,Brs

� �
|

Qim aið ÞQim bm

� �
Qim Brsð ÞdaidbmdBrs,

ð8Þ

we can write for the R- and Q-Messages between Aim and si:

Rim si~rð Þ~
X

s

X im
rs Qim T m~s

� �
and

Qim si~rð Þ!P si~rð ÞP
n=m

Rin si~rð Þ:
ð9Þ

The dependency graph greatly facilitates setting-up these

update equations. Following the rules that R-Messages are always

sent from factors to variables and Q-Messages from variables to

factors; and that in R-Messages, we sum or integrate over the

incoming Q-messages, while Q-Messages are proportional to the

product of incoming R-Messages, we can write the equations

based on the dependency graph. Figure 5B shows a detail of 5A

focussing on factor Aim to illustrate the messages involved in the

calculation of Rim sið Þ sent to variable si as in (9). Figure 5C

illustrate the update equations in the case of directed uni-partite

networks (cf. Material S1).

Supporting Information

Material S1 The complete update equations for learn-
ing model (1) for bi-partite networks, undirected uni-
partite networks and directed uni-partite networks.
Further, it shows an example application of our method to an

undirected uni-partite network, paralleling our Southern Women

example in figure 2, plots of the adjacency matrix of the neural

network of c. elegans and the model parameters estimated and used

to generate the ensemble of random null models necessary for the

motif analysis shown in figure 3; a description of the Newman-

Leicht method [28] used in our OMIM example and matrix plots

of the diseasosome network with parameter estimates as used for

the generation of figure 4b.

(PDF)

Dataset S1 The parameters estimated and the latent
class assignments for the nodes of the chemical synapse
network of c. elegans as used to generate figure 3.

(TXT)

Dataset S2 The gene disease associations from the
OMIM database as of Dec. 2005.

(TXT)

Dataset S3 The gene disease associations added to the
OMIM database after Dec. 2005.

(TXT)

Dataset S4 An example of parameter estimates and the
assignments into 16 latent classes using model (1) of
diseases from the OMIM database as used in figure 4b.

(TXT)
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