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"People remain what they are even if their faces fall apart." 
 

Bertolt Brecht 
 
 
 

"It has been said that a pretty face is a passport. But it's not, it's a visa, 
and it runs out fast." 

 
Julie Burchill 

 
 
 

"Youth has no age." 
 

Pablo Picasso 
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II. Summary 

Although age is one of the most salient and fundamental aspects of human faces, its 

processing in the brain has not yet been studied by any neuroimaging experiment. 

Automatic assessment of temporal changes across faces is a prerequisite to identifying 

persons over their life-span, and age per se is of biological and social relevance. Using a 

combination of evocative face morphs controlled for global optical flow and functional 

magnetic resonance imaging (fMRI), we segregate two areas that process changes of 

facial age in both hemispheres. These areas extend beyond the previously established 

face-sensitive network and are centered on the posterior inferior temporal sulcus 

(pITS) and the posterior angular gyrus (pANG), an evolutionarily new formation of the 

human brain. Using probabilistic tractography and by calculating spatial cross-

correlations as well as creating minimum intersection maps between activation and 

connectivity patterns we demonstrate a hitherto unrecognized link between structure 

and function in the human brain on the basis of cognitive age processing. 

 

According to our results, implicit age processing involves the inferior temporal sulci 

and is, at the same time, closely tied to quantity decoding by the presumed neural 

systems devoted to magnitudes in the human parietal lobes. The ventral portion of 

Wernicke’s largely forgotten perpendicular association fasciculus is shown not only to 

interconnect these two areas but to relate to their activations, i.e. to transmit age-

relevant information. In particular, post-hoc age-rating competence is shown to be 

associated with high response levels in the left angular gyrus. Cortical activation 
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patterns related to changes of facial age differ from those previously elicited by other 

fixed as well as changeable face aspects such as gender (used for comparison), 

ethnicity and identity as well as eye gaze or facial expressions. We argue that this may 

be due to the fact that individual changes of facial age occur ontogenetically, unlike 

the instant changes of gaze direction or expressive content in faces that can be 

“mirrored” and require constant cognitive monitoring to follow.  

 

Discussing the ample evidence for distinct representations of quantitative age as 

opposed to categorical gender varied over continuous androgyny levels, we suggest 

that particular face-sensitive regions interact with additional object-unselective 

quantification modules to obtain individual estimates of facial age. 
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III. Zusammenfassung 

Obwohl das Alter eines der markantesten und grundlegendsten Aspekte menschlicher 

Gesichter darstellt, hat man die Verarbeitung im Gehirn noch nicht durch ein 

funktionell bildgebendes Verfahren untersucht und mit strukturellen Leitungsbahnen 

in Verbindung gebracht. Die automatische Bewertung der altersbedingten 

Veränderungen in Gesichtern ist eine Voraussetzung für die Identifizierung von 

Personen über ihre gesamte Lebenszeit, und das Lebensalter an sich ist von 

biologischer und sozialer Relevanz. In dieser Dissertation wird die funktionelle 

Kernspintomographie (fMRI) mit eindrucksvollen Gesichtsmorphs kombiniert, welche 

auf sichtbare Bewegung im gesamten Bild kontrolliert wurden. Hierdurch werden zwei 

Bereiche auf beiden Hemisphären isoliert, welche die Veränderungen des Alters von 

Gesichtern gemeinsam und automatisch verarbeiten. Diese Areale reichen über das 

zuvor etablierte gesichtssensible Netzwerk hinaus und zentrieren sich auf den hinteren 

inferio-temporalen Sulcus (pITS) und den hinteren angulären Gyrus (pANG), eine 

evolutionäre Neubildung des menschlichen Gehirns. Mit Hilfe der probabilistischen 

Traktographie diffusiongewichteter MRT-Daten und der Berechnung räumlicher 

Kreuzkorrelationen sowie der Erstellung von Minimum Intersection Maps zwischen 

Aktivierungs- und Konnektivitätsmustern wird ein bisher unerkannter Zusammenhang 

zwischen Struktur und Funktion des menschlichen Gehirns anhand der kognitiven 

Altersverarbeitung aufgezeigt. 

 
Unseren Ergebnissen zufolge wird der inferiore temporale Sulcus in die implizite 

Altersverarbeitung einbezogen und gleichzeitig eng mit der Mengendekodierung 
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verknüpft, welche in den vermutlich Größenabschätzungen gewidmeten neuronalen 

Systemen im Scheitellappen des menschlichen Gehirns erfolgt. Es wird dargelegt, dass 

der ventrale Teil von Wernickes weitgehend vergessenem senkrecht verlaufendem 

Assoziationsbündels nicht nur diese beiden Bereiche miteinander verbindet, sondern 

auch mit ihren Aktivierungen in Beziehung steht, was die These stützt, dass 

altersrelevante Informationen tatsächlich über ihn übertragen werden. Bei der 

nachträglichen Alterseinschätzung der Gesichter zeigt sich, dass gutes Abschneiden der 

Versuchspersonen mit stärkeren Aktivierungen im linken angulären Gyrus einhergeht. 

Die kortikalen Aktivierungsmuster auf Änderungen des Gesichtsalters unterscheiden 

sich von jenen, die mit anderen wechselnden Gesichtsmerkmalen in Zusammenhang 

gebracht wurden, welche das Geschlecht (das zum Vergleich und zur Kontrolle 

herangezogen wurde), die Ethnizität und die personelle Identität sowie Blickrichtungen 

und Mimik betreffen. Es wird argumentiert, dass dies möglicherweise auf die Tatsache 

zurückzuführen ist, dass individuelle Änderungen des Gesichtsalters ontogenetisch 

auftreten, anders als beispielsweise die flüchtigen Wechsel von Blickrichtungen oder 

im Ausdruck in Gesichtern, welche vom Betrachter "gespiegelt" werden können und 

ständige Beobachtung erfordern, um kognitiv nachvollzogen werden zu können. 

 
Damit wird erstmals die eigene Art der Wahrnehmung und Verarbeitung des 

quantitativen Alters im direkten Gegensatz zu kategorischem Geschlecht belegt, 

welches über kontinuierliche Androgyniegrade variiert: Bestimmte gesichtssensible 

Regionen interagieren offenbar mit zusätzlichen nicht objekt-selektiven 

Quantifizierungsmodulen, um das Alter eines Gesichts individuell abzuschätzen. 
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1. Introduction 

1.1. Face processing 

Identifying the neural correlates of apperceptive and associative object classification 

remains a fundamental challenge in cognitive neuropsychology. Investigations into the 

cerebral representation of different object categories are central to our current 

models of the ventral visual stream [1-3]. Face processing within the ventral visual 

stream is linked to distinct brain regions whose degree of specificity and selectiveness 

continues to be a matter of controversy and ongoing research [4-15]. Several studies 

have addressed differences and similarities in where and how faces are processed as 

compared to other objects [5, 11-24], including the non-face entity and various 

portions of the human body as well as face parts [25-27]. 

 

From these insights the fusiform face area (FFA), named after its common functional 

localization within the fusiform gyrus (FFG), has emerged as the most well-known face-

sensitive region specialized to represent invariant visual attributes mediating identity 

recognition. Consequently, categorical perception of generally unchangeable facial 

gender has recently been associated with FFG/FFA activations during graded but static 

face encodings of linear sexual transitions [28]. However, the core system of the face-

sensitive network proposed to respond also to variable face aspects reveals a broader 

cortical distribution, especially supported by the superior temporal sulcus, and task-

dependent activations [29-32].  
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1.2. Age processing in neuroimaging 

Processing the age of faces is a crucial cognitive skill. Age recognition is essential in 

various social contexts and to identify minors, seniors, peers, missing persons as well 

as suspects. Profound changes of facial age may challenge or even prevent identity 

recognition which otherwise is, within certain limits, age-invariant [33]. After initial 

categorical distinction between faces and other kinds of objects [34], the search for 

fixed visual attributes mediating identity recognition continues to engage the fusiform 

face area (FFA) [15, 20, 24, 35], particularly within the right fusiform gyrus (FFG) [36]. 

Gender categorization of faces has been linked to graded FFA and lateral FFG 

activations [28] but adaptation suggests more widely distributed responses to 

invariant cues of gender, ethnicity and identity [37] involving the FFG yet outside FFA 

as traditionally defined by face/non-face stimuli [16]. Changeable aspects of faces, i.e. 

eye gaze, lip movements and facial expression, and the face parts associated with 

them revealed selective cortical responses in the superior temporal sulcus (STS) [29, 

30, 32, 38-41]. Amazingly, the processing of facial age, one of the most salient 

changeable face aspects, has not yet been investigated by any functional or structural 

neuroimaging study. 

 

Across individuals, the age of a face is independent from its gender or ethnicity, and 

different identities can obviously be of the same age. Within individuals, facial aging 

occurs inevitably, regardless of personal gender or identity, and involves complex 

changes of face configuration, head shape, textural and other features [42]. Because 

judgments of age and gender need not be affected in prosopagnosia [43, 44], spatial 
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representations of facial identity, gender and age should, at some level, dissociate. 

However, irrespective of face identity or familiarity recognition, cases selectively 

agnostic for face gender but not age or vice versa have not been reported in the 

literature. Even though age is a quantitative and relative classifier whereas gender is 

primarily categorical, the latter also varies across different androgyny levels, and 

gender differentiation changes with age. Eye, mouth and expressive face movements, 

on the other hand, are volatile compared to gender and age. Therefore, we designed 

our study to specifically compare the processing of facial age and gender in a group of 

healthy individuals. 

 

1.3. Morphing of faces 

Age is extremely salient in faces but, at least for children, less than gender and 

ethnicity [45]. In order to further augment its processing, we utilize face morph 

animations which provide useful modulations of the age parameter: Attracting visual 

attention to the optical flow of such changes can be expected to enhance physiological 

neural responses to every attribute of the morphed object [46]. Possibly due to such 

effects, dynamic morphing has increasingly been adopted in arts and entertainment 

(see motion pictures such as “Terminator 2” [47], “The Devil's Advocate” [48] and 

“The Matrix” [49] or music videos such as “Black or White” [50] for striking 

realizations). For the same reason, continuous morphing seems also suited to minimize 

adaptation and to facilitate implicit processing without particular cognitive efforts. 

Static images from graded morph transitions have already been used to investigate 

face processing [12, 28, 36, 37, 39, 51] but age has either not been varied or explicitly 
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controlled for. Animations of continuous morphing have not yet been applied in 

functional neuroimaging experiments. For this study, we generate continuous face 

morphs introducing both age as well as gender changes (see Figure 2.2, Materials and 

Methods and Appendix) controlled for global optical flow (also see Materials and 

Methods, Figures 2.6 and 2.7). We use functional (fMRI) and diffusion-weighted (DWI) 

magnetic resonance imaging (see below) to localize and characterize the neural basis 

for processing the age of faces compared to their gender in the human brain. 

 

1.4. MRI modalities 

By inducing spatial gradients in a strong static magnetic field and radio frequency 

pulses, the spin characteristics of protons, ubiquitous in water molecules, are 

determined to visualize structural and functional information of organic tissue. Since 

the very first magnetic resonance images have been recorded [52, 53], the main 

advantages of MRI over other imaging methods, i.e. high spatial resolution and 

noninvasiveness, inspired researchers and vendors to improve the technology as far as 

making it possible to acquire complete 3D datasets of the whole brain (see  

Figure 1.1A) in a remarkably short period of time. FMRI, as a spin-off of MRI, enables 

us to map blood oxygenation level-dependent (BOLD) signal changes accompanying 

neuronal activations mainly in gray matter [54-56]. Given that it is necessary to record 

as many volumes as possible during paradigm presentation, spatial resolution has to 

be reduced considerably (see Figure 1.1B). DWI, on the other hand, is used to reveal 

microstructural features such as axonal fiber orientation, organization and trajectories 

in white matter [57]. By measuring directional dependence of proton motion, DWI is 
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sensitive to local hindrance of water diffusion [58]. Such a boundary is most effective 

perpendicular to myelinated axonal fiber tracts. Bayesian estimation of diffusion 

parameters is applied to compute principle diffusion directions at each voxel (see 

Figure 1.1C and Materials and Methods). Probabilistic tractography of DWI data 

utilizes this property to enable quantitative analyses of connectivity between gray 

matter areas [59]. 

 

 

Figure 1.1: Comparison of structural, functional and microstructural MRI 

(A) Axial view of skull stripped T1-weighted (MP-RAGE) anatomical data. (B) Functional 

(T2*-weighted BOLD) slice showing the same subject at lower resolution. (C) Lines at each 

voxel representing the principle diffusion direction overlaid on processed DWI data 

revealing fiber pathways by merged samples from the distribution on anisotropic volume 

fraction. (Also see Materials and Methods for technical details.) 

 

1.5. Segmentation and surface reconstruction of the human brain 

The human cerebral cortex is highly folded. It is challenging to visualize individual 

brains, to view functional activations in an optimal way as well as to achieve precise 

inter-subject transformations. The reconstruction of the cortical surface is 

accomplished by a complex procedure [60] and requires a lot of computing power 
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which has not been available to the scientific community until a few years ago. 

Accurate segmentation of white and gray matter (see Figure 1.2A) is essential to 

properly inflate, cut and flatten each hemisphere, or merely render the highly folded 

geometry in 3D (see Figure 1.2B). 

 

 

Figure 1.2: Segmented and rendered anatomical volume 

(A) Accurate segmentation of the cerebrum into the white surface (blue line, white / gray 

matter boundary) and the pial surface (yellow line). (B) The highly folded geometry of the 

cortex is specified as a mesh of vertices (zoom to enlarge if possible) that can be 

visualized as a colored wire-frame representing the original curvature of the gyri (green) 

and sulci (red). 

 

The cortical map can be transformed into a more simple but better parameterizable 

surface such as a sphere [61] in order to build a surface-based coordinate system that 

provides the basis for accurate subject-to-subject and subject-to-average space 

transformations (see Figure 1.3 and Materials and Methods). Transformation from 

individual subject space to a common average space is indispensable for group analysis 

on higher level where the contrasts of parameter estimates (COPEs) and their 

associated variance (both based on first level general linear modeling of time series) 
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are concatenated and statistically merged to a valid spatial distribution of activation 

and deactivation probabilities (also see Materials and Methods).  

 

Figure 1.3: Inflation and transformation of the cortical surface 

(A) The parameterized pial surface of the subject is inflated to a hemisphere uncovering 

the otherwise hidden infoldings, such as the insular cortex and the deep sulci. By utilizing 

a spherical surface-based coordinate system that is adapted to the folding pattern of each 

individual subject, the vertices are non-rigidly aligned to the average space. (B) The gyri 

(green) of the average surface appear smoother, the sulci (red) are significantly wider 

than of any native human cerebral surface. (Also see Materials and Methods.)  

 

1.6. Primary objectives of the study 

Here we combine BOLD fMRI and probabilistic tractography in a unique analysis to 

investigate the following: (I) Do facial age and gender transitions during morph 

sequences (see Figure 2.2 and Materials and Methods) engage separate functional 

networks? (II) Are significant age-related activations evoked beyond the previously 

established face-sensitive network encoding fixed and changeable aspects of faces, 
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such as identity and eye gaze direction or emotional expression [29-32], i.e. in areas 

not traditionally linked to face processing? (III) Which of the age-responsive areas are 

associated with high age-rating competence? (IV) If two or more areas process 

changes of facial age, are these interconnected by association and / or commissural 

pathways? Such a structural connection between areas within and beyond the known 

face-sensitive network, for example, would suggest the capacity of face-responsive 

brain regions to recruit additional neuronal modules for age processing. However, the 

mere presence of such a connection is necessary but by no means sufficient to imply 

its functional involvement. In order to establish if age-responsive areas interact with 

each other directly via association and / or commissural connections, we therefore 

investigate the additional question: (V) Is the pattern of functional activations within 

age-responsive areas related to the structural connectivity between them? Utilizing 

surface-based minimum intersection maps (see Materials and Methods and Results) 

and spatial cross-correlations between functional activation probabilities and 

structural connectivities not hitherto reported, we examine if the activation pattern of 

one area is predicted by its intrinsic connectivity with another, i.e. evidence for two 

selected areas directly interacting with each other as connections to the latter 

determine activation of the former and vice versa. Gender is again used for within- and 

across-condition comparison. These methodological advances (minimum intersection 

maps, spatial cross-correlations between activation probabilities and fiber 

connectivities) are crucial to assess the potential impact of extracted connections on 

activation patterns. Thereby, we seek to further substantiate which fiber pathways are 

transmitting age-relevant face information. 
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2. Materials and Methods 

2.1. Subjects 

We obtained BOLD fMRI and DWI scans of 24 right-handed, healthy, white Caucasian 

volunteers (age range 23 to 34, mean age 26, standard deviation 3 years; 12 females) 

who gave written informed consent and participated in this study. The Ethics 

Committee of the University of Würzburg (Faculty of Medicine) approved the survey. 

Handedness was assessed by a variant of the Edinburgh Handedness Inventory [62], 

expanded by one eye and foot preference item [63]. Females were scanned between 

day 5 to 15 of their menstrual cycle and off any oral contraceptives. 

 
For external validation of the tractography results, diffusion-weighted imaging (DWI) 

data of additional 46 right-handed healthy volunteers (age range 19 to 63, mean age 

30, standard deviation 9 years; 25 females) from the Oxford Centre for Functional MRI 

of the Brain (FMRIB, University of Oxford) database were analyzed. 

 

2.2. Experimental Paradigm design 

Full-front photographs of 121 unfamiliar, unambiguously gendered faces of white 

Caucasians (age range 2 to 81, mean age 33, standard deviation 15 years; 60 females 

age-matched to the males; all unrouged and beardless, with eye gaze directed at the 

viewer, wearing no jewelry or piercings, without tattoos; rated as neutral in their 

expression on a 6-point visual analogue scale by all participants) were parameterized 

by a computerized algorithm [64] to a morphable three dimensional (3D) model (see 
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Figure 2.1) consisting of a surface mesh of editable polygons and texture materials 

using FaceGen Modeller [65] and 3ds Max [66]. 

 

Figure 2.1: Construction of the 3D face model. 

(A) surface mesh consisting of editable polygons, only eyes shown with texture overlay, 

(B) illuminated texture-free surface model, (C) flattened bitmap overlay with fiducial 

points to enhance texture morph consistency based on anthropological landmarks and 

respecting individual skin characteristics, (D) merged final 3D face model. 

 

From these models (n = 120) 3D face morphs were rendered, half of them containing 

gender transitions further refined compared to static images applied previously [28, 
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37] (see Figure 2.2). To avoid rendering artifacts, landmark-based morphing by 

MorphMan 2000 [67] was chosen aligning fiducial markers arranged in 13 groups of 

168 nodes to enhance texture morph consistency with respect to anthropological 

markers as well as individual skin characteristics (see Figure 2.1C). Since all face stimuli 

were generated by the fully morphable 3D model, intermediate virtual faces were 

constrained to appear as realistic as the true endpoints. Face stimuli were presented in 

a frontal, slightly cropped view, with ears, neck, upper parts of the forehead and hair 

removed (see Figures 2.1D and 2.2). 

 

Morphing transitions between two faces lasted 6 seconds (see Figure 2.2 and 

Appendix), with an additional one-second still in-between to facilitate cognitive 

“segmentation” into morph pairs and to better maintain attention for the 14 minutes 

of paradigm presentation. Face morphs with and without gender transitions were 

arranged in random order. Facial age of the stimuli was continuously modulated, 

except for the one-second stills, with age changes being pseudo-randomized according 

to 10-year intervals. These morphing videos of unfamiliar faces were presented to the 

(n = 24) subjects. Age changes during morphing were orthogonal to gender transitions. 

Psychophysical changes of age and gender were modeled according to Steven’s power 

law (see below, Figures 2.3, 2.4 and 2.5). Optical flow was extracted by the Horn-

Schunck method and integrated as a global confound (see below; also see Figures 2.6 

and 2.7A). Our functional probe and modeling simultaneously engages configural and 

textural processing (see also Introduction, Results and Discussion as well as the 

Appendix), both known to be involved in categorical face processing [7]. 
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Figure 2.2: Exemplary morph video 

(A) Key frames of a video sequence (also see Appendix) morphing a 20 year-old female 

into a 60 year-old male. Both gradual age as well as gender change is illustrated at 

intervals of 1 second. (B) Color balance of the displayed paradigm was effectively kept 

constant (here for every of the 144 frames of the 6 second exemplary morphing 

sequence) as illustrated by the average frame color boxes below the faces (with overlaid 

frame numbers for the first second; also see Appendix for technical details). Note that 

differences between the successive frames are subliminal when rendered at 24 fps, i.e. 

the morphing proceeds continuously.  
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2.3. Paradigm presentation and feedback 

The morphing video clip was presented at 24 frames per second (fps) using a fMRI-

compatible LCD screen. At the display, global luminance was controlled for and 

constant color channel ratios were maintained (see Figure 2.2 and Appendix). 

Temporal synchronization between video presentation and the scanning was 

achieved by triggering the start of each fMRI volume externally at a minimum precision 

of 50 µs using MATLAB [68] .To sustain attention and to monitor compliance of the 

participating volunteers by their feedback, subjects were instructed to press a key with 

their right index finger whenever the target face appearance of the morphing 

sequence was anticipated. Speed and accuracy were not emphasized for the purpose. 

Key-press feedbacks to the video display were recorded by a fMRI-compatible 

keyboard and logged by Cogent 2000 [69].  

 

2.4. MRI data acquisition 

Functional and T1-weighted structural MRI data were acquired on a 3 Tesla TimTrio 

scanner (Siemens, Erlangen, Germany) using a 12-channel head coil. Whole brain 

T2*-weighted BOLD images were recorded by a single-shot gradient-echo 2D echo-

planar imaging (EPI) sequence with interleaved slice acquisition (volume repetition 

time TR = 2400 ms; echo time TE = 30 ms; resolution 3x3x4 mm3; 25 % interslice gap; 

30 sagittal slices; flip angle FA = 90°). After discarding the four initial scans to reach 

global steady-state, 350 volumes acquired during visual paradigm presentation were 

analyzed. In order to unwarp geometric distortions of BOLD EPIs, we used gradient-

echo fieldmaps (TR = 500 ms; TE1 = 4.30 ms; ΔTE = 2.46 ms; FA = 55°). In addition, 
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a T1-weighted 3D anatomical image using a MPRAGE sequence (TR = 1560 ms; 

TE = 2.26 ms; FA = 90°, resolution 1×1×1 mm3) optimized for segmentation and surface 

reconstructions and, for neuroradiological screening, a T2-weighted 2D axial FLAIR 

sequence, both covering the entire brain, were acquired. 

 

In order to avoid potential DWI signal-loss artefacts [70], we recorded whole-brain 

diffusion-weighted EPI volumes (60 diffusion directions isotropically distributed on a 

sphere at b = 1000 s/mm2; TR = 9000 ms; TE = 97 ms ; 60 axial slices; resolution 

2×2×2.5 mm3, 20 % interslice gap) plus five volumes without diffusion weighting on a 

1.5 Tesla Quantum Vision scanner (Siemens, Erlangen, Germany). For unwarping their 

geometric distortions, gradient-echo fieldmaps matching the DWI protocol were used 

(TR = 325 ms; TE1 = 4.30 ms; ΔTE = 4.76 ms). 

 

DWI data of the independent database were acquired on a 1.5 Tesla Sonata scanner 

(Siemens, Erlangen, Germany) with similar sequence parameters at slightly lower slice 

thickness (72 slices; resolution 2×2×2 mm3). Three sets of DWI data were recorded for 

subsequent averaging to improve the signal-to-noise ratio (total scan time 45 minutes). 

 

2.5. Behavioral data acquisition 

We acquired fMRI time-series and T1-weighted anatomical images in one session, 

whole brain DWI-data and explicit behavioral post-hoc ratings in a second scanning 

session within two weeks. To assess the impact of high post-hoc rating accuracy on age 

change-related activations at the second level (see Results, Figure 3.4), age-rating 
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performance (see Results, Table 3.2) was used to discriminate most accurate (n = 5) 

from average (n = 14) age-raters. Based on the actual distribution of rating errors 

accumulated over all stills, the lower quintile of below-average raters (P20, n = 5) was 

excluded (see Results, Table 3.2).  

 

2.6. Preprocessing and first level statistical analysis 

All MRI data were processed using FSL [71] and FreeSurfer [72]. First-level fMRI and 

DWI data were unwarped (using PRELUDE / FUGUE), motion- and eddy current-

corrected (using MCFLIRT [73] and eddy_correct, respectively), and brain-extracted 

(using BET [74]; all part of FSL). First-level fMRI analysis was carried out by applying the 

General Linear Model (GLM) within FEAT using FILM [75] prewhitening, with motion 

outliers (detected by fsl_motion_outliers) being added as nuisance regressors. GLM is 

based on the use of convolution models [76] which assume a linear time-invariant 

system that has been introduced to allow forward modeling of the BOLD response 

enabling to detect areas of brain activity in fMRI. 

 
High-pass temporal filtering of the data and the model was set to 100 seconds based 

on the power spectra of the design matrices (estimated by cutoffcalc; all part of FSL). 

Regressors were included as explanatory variables in FEAT’s three-column format 

defining onset, duration and strength of the stimuli. Parametric intensity modulation 

of graded stimulus strength for the different explanatory variables is described below. 

To capture slight deviations from the model, temporal derivatives of all explanatory 

variables convolved with FEAT’s gamma hemodynamic response function (HRF) 

were included. 
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2.7. Surface based registration and higher level analysis 

In order to take advantage of surface-based registrations and statistical analyses, 

FreeSurfer was used for segmentation and surface reconstructions of the structural 

T1-weighted MRIs. Employing boundary-based registration (bbregister [77], part of 

FreeSurfer), robust and accurate within-subject cross-modal alignment of functional 

and anatomical space was achieved and used for intra- and surface-based spherical 

averaging in the final inter-subject registration of anatomical, fMRI and DWI space. 

Concatenating the functional-to-anatomical transformation of each subject with the 

surface-based registration to FreeSurfer’s spherical average [78], FEAT’s first-level 

contrast-of-parameter estimates (COPEs) and their variances (VARCOPEs) were 

resampled to the common fsaverage surface. Surface-based spatial smoothing of 5 

mm FWHM was applied. At the group-level, a mixed-effects (ME) GLM analysis [79] 

was performed (using mri_glmfit, part of FreeSurfer) identifying vertices in which brain 

(de-)activation was correlated with, age, gender and global optical flow processing. 

At the second level, thresholding was performed by non-parametric permutation-

based cluster mass inference [80-84] and included within-contrast correction for 

multiple comparisons across all vertices of the fsaverage surface. Across the contrasts 

tested, Bonferroni’s correction was applied. Interactions between the explanatory 

variables of interest (gender and age change, global optical flow) were modeled at the 

first and assessed at the second level. The volunteers’ gender was explicitly modeled at 

the second level to test for between-gender differences. Only results with family-wise 

error rate (FWER) corrected p-values < 0.05 are reported, coordinates are given in 

MNI305 space. 
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2.8. Modeling changes of age, gender and optical flow 

Since face stimuli underwent continuous temporal changes during morphing, all 

explanatory variables were modeled according to their change over time. For age and 

gender (see Figure 2.5), this was achieved by time-binning at the video frame rate 

(24 fps). Effectively, this comes close to binning at infinitesimal small steps which is 

equivalent to the first derivative of the stimulus-over-time function itself (see below). 

Scaling of each regressor was set to a relative maximum of 1. In order to determine 

accurate stimulus response functions, especially for age and gender, we extensively 

evaluated our paradigm and the stimuli employed by various post-hoc ratings 

performed between seven days and two weeks after the functional runs. Thereby, we 

empirically identified unbiased stimulus response functions for age and gender, later 

used for modeling in the fMRI analysis (see below). 

 

2.8.1. Modeling Age 

First, we instructed our volunteers to rate their subjective impression of how much 

facial age actually changed across morph sequences spanning an age spectrum similar 

to the original paradigm (Figure 2.3A). To minimize potential rating biases, the 

(n = 121) face stimuli were morphed to another average-aged male face of 33 years 

not contained in the original set. I.e., the subjects were familiar with the faces (except 

for the averaged-age male) but not with the particular morphs displayed. Single start-

to-target morphs were randomly played forwards or backwards for the rating. In a 

second experiment, the task was to estimate the age of (n = 201) face stills in years  

(see Figure 2.3B).  
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Figure 2.3: Psychometrics of facial age changes 

(A) Subjective facial age-gradient assessment (rated on a 6-point visual analogue scale, 

maximum scaled to 3.0 arbitrary units [a.u.]) followed Stevens’ (^0.3) better than Weber-

Fechner’s law (log10) or a natural logarithmic transformation (ln). All face stimuli 

(n = 121) were morphed to an average-aged male face of 33 years, the morphing 

sequence was randomly played forwards or backwards for the rating (circles with error 

bars; n = 24 subjects). (B) Facial aging (x-axis; objective age in [years]) increased the 

variability of subjective age ratings (y-axis; SD, standard deviation of estimated age in 
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[years] across n = 24 subjects). Rating accuracy of factual (n = 121 stimuli of real faces) 

and interpolated age (n = 80 intermediate face stimuli from the morphing algorithm; one 

randomly selected for each annual increment between 2 and 81 years of age) did not 

differ significantly (p = 0.97). 

 

For this purpose, stills of all (n = 121) real faces and of (n = 80) interpolated age models 

were displayed randomly. In both of these stimulus samples, real and interpolated age 

models, facial aging increased subjective age rating variability across our (n = 24) 

subjects similar to the group-ratings of young and old faces reported by Ebner [85].  

No significant difference between real and interpolated faces was detected and 

exponential fitting revealed congruent curves. 

 

On a 6-point visual analogue scale, subjective age-gradient ratings for the (n = 121) 

separate face morphs (Figure 2.3A) were best encoded according to Stevens’ law of 

psychophysics [86], a refinement of Weber-Fechner’s law which, according to 

Ziehen [87], had already been proposed by Plateau in 1873:  

( )       ( )aI k Iψ = × E1  

where ψ(I) is the psychophysical stimulus response function relating the subjective 

magnitude of sensations / perceptions to the evoking stimulus (I), k is a proportionality 

constant and a is a variable exponent that depends on the actual type of sensory 

stimulation. Here, the subjective magnitude of age gradients spanned by morphing 

was related to the difference between start and target age, both transformed by a 

power exponent of 0.3 (see Figure 2.3A). According to these data, psychophysical age 

processing is approximately described by: 
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( ) 0.3        ( )y x k x= × E2  

where x corresponds to objective absolute age (at k = 1). Since age change refers to 

the difference between two time-points, the function for discrete time-binnings 

becomes equal to: 

( ) 0.3 0.3      ( )aa b by t x x→ = − E3  

where a / b set the time interval (tab; e.g., from the beginning of the morph to its 

end, when the target face is reached) and xa/b are the corresponding age values (e.g., 

start and target age; range [2 to 81 years]). Given that age changed continuously with 

every frame of the morphing video, with interpolated frames being as realistic as the 

true endpoints (see also Figure 2.3B), xa<i<b is exactly determined by the time elapsed. 

For infinitesimal small bins, psychophysical age change then corresponds to the first 

derivative of (E2): 

( ) ( )'
7
10

3 1        ( )
10a

i

f x y t
x

= = − × E4  

where xi is the actual encoded age which changes from frame to frame during the 

morphing sequence. Given that it remains unclear to what extent facial age estimates 

are based on local feature, internal configuration, texture and global shape processing 

[42, 88-90], this was considered the optimal approach to implement and model 

continuous changes of facial age. Deviation from linear transition values reflects the 

fact that subjective facial aging is relatively up-weighted during initial morphing 

periods and younger absolute ages (see Figure 2.5A). Applied to age changes within 

individuals, for which only limited data of unstandardized and scarcely suitable images 
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are available [42], this would reflect a modeling bias towards the earlier development 

of face shape that prevails over textural changes such as wrinkle formation during later 

aging [42] or their disappearance upon cosmetic rejuvenation. Across individuals and 

their shape differences, however, configural was not forced into any overt advantage 

over featural processing (see also the flow magnitude lines in Figure 2.7A) which can 

be considered another advantage of our paradigm. 

 

2.8.2. Modeling gender 

To investigate the psychophysical processing of gender, especially at intermediate 

ambiguous stages, (n = 119) sample faces along temporal morph continua across 

gender (n = 60 morphing sequences) were rated by the volunteers on a 6-point visual 

analogue scale according to their subjective impression of facial gender or androgyny 

levels (Figure 2.4). 

 

In accordance with previous reports [28], subjective gender levels were augmented 

above linear transition values reflecting the tendency to apperceptive categorization. 

Gender-level ratings of the faces followed Stevens’ power law just as age but were 

best fitted by a power exponent of 3 along the temporal morph continuum (see 

Figure 2.4), which is also in good agreement with recent data [28].  

In accordance with the face gender ratings (see Figure 2.4), psychophysical gender 

processing is approximately described by: 

3( )         ( )y x k x= × E5  

where x corresponds to the objective absolute androgyny level (at k = 1). 
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Figure 2.4: Psychometrics of facial gender changes 

Face gender ratings (on a 6-point visual analogue scale, maximum scaled to 1.0 arbitrary 

units [a.u.]) along temporal morph continua (n = 60) across faces of clearly different sex. 

Subjective ratings by (n = 24) subjects (boxes with error bars, blue line) are augmented 

above linear transition values (dashed line with black dots), reflecting the tendency to 

apperceptive gender categorization. 

 

Perceived gender change while morphing a clearly gendered face towards mid-

androgyny then simply depends on the difference of androgyny levels between time-

points, so the function for discrete time-binnings equals: 

3 3( )     ( )aa b by t x x→ = − E6  

where a / b set the time interval (tab; e.g., from the beginning of the morph to no 

more than the point when maximum androgyny is reached) and xa/b are corresponding 

gender levels ([0 to 1]). 

Again, these changed with every frame of the morphing video and are exactly 

determined by the time (t) elapsed. For infinitesimal small bins, gender change is then 

described by: 
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( ) ( )' 2 3       ( )af x y t x= = − × E7  

where x is the actual encoded gender value of the face, which changes from frame to 

frame during the morphing sequence, so that the unsigned first derivative of (E5) was 

used to encode facial gender change (Figure 2.5B). Contrary to previous modeling [28], 

peak androgyny was defined as the effective stimulus-of-interest because the 

cognition of face gender transitions is particularly emphasized at the center of the 

morph (see Figures 2.2 and 2.5B). Slight deviations from the center peak were 

captured by including the temporal derivative. Since prepuberal faces generally appear 

less gendered, the androgyny peak of a given morphing sequence tends to be shifted 

to very young faces. Modeling a temporal derivative accounted for this effect and 

avoided a secondary bias in testing age-by-gender interactions. 

 

Actual time-binning of both regressors, age and gender, was matched to the frame 

rate of 24 frames per second (fps), aliasing the stimulus-response function only 

slightly, with no relevant impact on the subsequent fMRI analysis. Notably, gender 

change of our unambiguous faces was identically encoded for all morph episodes 

including gender transitions (n = 60) whereas age change (see above, section 2.8.1.) 

obviously depended on the absolute age difference over the morph episode:  

Since morph duration was kept constant (6 secs), the slope of age changes over time 

according to (E4) was modulated by the age difference between the first and last face 

of the morph whereas the slope of gender change according to (E7) was identical 

across the morphs containing gender transitions. 
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Figure 2.5: Modeling changes of age and gender during face morphing. 

(A) Differential age change encoded according to Stevens’ law of psychophysics (using a 

power exponent of 0.3; see Figure 2.3A). Note that relative facial aging was up-weighted 

to initial periods of the example morph (see Figure 2.2; here: solid red line) and, for 

identical age differences, to younger absolute ages, i.e. aging from 10 to 26 was assumed 

to provide a stronger stimulus with more visual cues than aging from 64 to 80 years 

(dashed vs. double-dotted/dashed line). (B) Differential gender change expressed by the 

first derivative of the function plotted in Figure 2.4. Note that peak androgyny was 

defined as the effective stimulus-of-interest, i.e. the transition of facial gender was 

emphasized at the center of the morph (see Figure 2.2 and Appendix). 
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Both models, age as well as gender, were time-binned at the video frame rate (24 fps) 

and scaled to maxima of 1.0 arbitrary units [a.u.] (see also Figure 2.5). 

 

2.8.3. Modeling optical flow 

Optical flow [91] across time, representing the total amount of motion between 

successive key frames of the paradigm, was separately modeled to reduce the amount 

of unexplained variance which would confound the analysis if all morphing transitions 

were treated the same. On top of age and gender, optical flow during morphing differs 

between different pairs of start and target faces. Due to the complex concomitant 

factors determining the shape of the faces as well as the high-contrast edges that 

result from individually cropping neck, ears and the top of the head, it is impossible to 

mathematically estimate motion /optical flow prior to rendering. Therefore, the full set 

of visual stimuli containing the (n = 120) continuous morph sequences displayed in the 

fMRI paradigm was fed into a customized Simulink [92] model estimating optical flow 

between successive video frames by a Horn-Schunck [93] algorithm using MATLAB’s 

video and image processing blockset (Figures 2.6, 2.7A). Optical flow (F) was estimated 

by the Horn-Schunck method with 30 iterations per key frame pair according to: 

( )2 2 22       ( )x y tI u I v IF u v dxdyα  
    

+ + + ∇ + ∇= ∫∫ E8  

where Ix, Iy and It are the derivatives of the image intensity values along the x-, y- and 

time-dimension, respectively, α is a regularization constant and 
2 2,u v∇ ∇ are 

components of the optical flow vector. First, a vector field representing the inter-key 

frame motion was estimated, illustrated by flow magnitude lines (Figure 2.7A). 
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Figure 2.6: Optical flow detection flowchart 

Matlab’s Simulink model of digital image processing applied to extract motion / optical 

flow between successive video frames. Speed and direction of motion (see line 

magnitude images of flow velocities in Figure 2.7A) were estimated for the morph 

sequences using the Horn-Schunck method with 30 iterations per frame pair. 

 

Then, the vector field was converted to a binary mask (see 3rd row in Figure 2.7A). 
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Figure 2.7: Motion / optical flow and associated functional (hMT+) activations 

(A) Exemplary face morph (top row, also see Appendix), line magnitude (2nd row; zoom to 

enlarge if possible) and binary mask (3rd row) images of optical flow velocities computed 

by a Horn-Schunck algorithm (see Figure 2.6). Overall motion / optical flow was 

quantified as a surrogate parameter by the sum of flow magnitudes within the 

corresponding mask between successive key frames. (B) Motion-/flow-related activation 

derived from the group-level analyses (n = 24 subjects, FWER-corrected p < 0.05, 

[-log10(p)] color bar) on posterior cortical flat maps of both hemispheres. Additionally, 

ventral (v) and dorsal (d) visuotopic labels (V1-8, Vp, LO, hMT+) of the SuMS [94] 

database, transformed from Caret’s PALS atlas [95] into FreeSurfer’s average surface 

space, are displayed. To generate flat maps without curvatures the surfaces were cut 

open along the same anatomical markers on both hemispheres. 
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The sum of unsigned flow values within that mask M described the total amount of 

motion between successive key frames of the paradigm and was robustly estimated as 

a surrogate parameter of global flow intensity R at one-second intervals according to: 

,

  1    1 
        ( )

n n
x y

y x
R M

= =

 
  
 

=∑ ∑ E9  

Given that all pixels exhibiting optical flow could not be entered as separate 

explanatory variables to preserve sufficient degrees-of-freedom for the analysis, and 

considering that the expansions and contractions involved in our face morphing were 

quite smooth, i.e. cross-correlated, it seemed both practical and sensible to integrate 

global optical flow as a confound regressor into our paradigm. Note that optical flow 

detection on a frame-by-frame basis becomes less robust, i.e. time-binning above 1 fps 

does not improve the results. 

 

Functional activations associated with global optical flow are shown on bilateral flat 

maps with additional visuotopic labels [96-100] of the SuMS [94, 95, 101] database, 

http://sumsdb.wustl.edu/, to facilitate orientation and to illustrate the spatial 

correspondence of our clusters with the hMT+ atlas labels (see Figure 2.7B). 

 

2.9. Quantifying relative response magnitudes 

Relative response magnitudes were quantified based on mean within-cluster 

contrast-of-parameter estimates (COPEs) normalized to the respective minimum (in 

Results; Figures 3.2 and 3.4B). Scaled to the peak-to-peak height of the effective 

regressor and divided by the mean-over-time of the preprocessed (i.e. filtered) EPI 

http://sumsdb.wustl.edu/�
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time-series from lower-level GLM analyses, mean COPE values are equivalent to mean 

percentage BOLD signal changes. Given the constant scaling for a particular contrast 

fitted, normalized COPEs translate directly into estimated ratios of the associated 

signal changes within (Figures 3.2 and 3.4B) but not across contrasts. First-level COPEs 

from each cluster of the 12 participating males and females were tested for 

hemisphere and gender effects (n = 24; ANOVA, factorial within-/across-subjects 

design). In order to obtain interpolated model fits for illustration at individual peak 

activations within the age-responsive clusters, age-gradients were trichotomized into 

equal intervals according to formula (E3) (see before) in a separate first-level analysis. 

Here, average signal changes over time were reconstructed according to the GLM 

using the temporal mean of the filtered time-series, the basis functions and their 

corresponding parameter estimates (see Results and Figure 3.3).  

 

2.10. Probabilistic tracking and modeling 

DWI data were processed using FMRIB’s Diffusion Toolbox (FDT, part of FSL 4.1). Up to 

two fiber orientations were modeled and the corresponding probabilistic distributions 

of diffusion parameters were built up at each voxel (using bedpostx, part of FDT). 

Probabilistic tracking and modeling multiple fiber orientations [102] was essential 

because of the high number of crossing fibers in the areas under examination. 

Subsequently, probabilistic tractography was performed by probtrackx (part of FDT) on 

the same (n = 24) subjects from which the functional data were recorded, as well as on 

the independent database of (n = 46) different subjects included for validation, to 

investigate the structural connectivity between the cortical regions related to either 
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age or gender processing at the individual gray / white matter boundary surface. After 

transforming functional clusters obtained at the second level back to individual surface 

space of the anatomical scans, each cluster mask was defined as a seed with all the 

others serving as potential targets. A total of 104 samples was sent out from each 

tracking point. Stop and waypoint masking was used to exclude indirect routes. Upon 

slight spatial smoothing (2 mm FWHM), probabilistic seed-to-target connectivities 

were then averaged on FreeSurfer’s common fsaverage surface (see Figure 2.3). 

Probabilistic pathways were transformed to, added and thresholded in MNI space for 

visualization (using FSL’s nonlinear 1 mm MNI template as target space; see 3D-tract 

volume rendering, thresholded at ≥ 100 connecting samples passing through each 

voxel, displayed on sagittal [x = -36 mm] and coronal [y = -54 mm] projection view 

planes in Results, Figure 3.5). 

 

2.11. Cross-correlations and minimum intersection maps 

Minimum intersection maps and vertex-wise spatial cross-correlations between fMRI 

activation probability values and tractography-based connectivity scores were 

calculated to assess spatial correspondence between functional activation and 

structural connectivity patterns (Figures 2.8, 3.6 and 3.7). Thereby, we tested for 

similarities between the spatial distribution of activation probabilities on the one hand 

and connection probabilities on the other. The rationale behind this analysis was that if 

the spatial profile of a connection between A and B predicts the activation profile in A, 

then this suggests that the connection between A and B is involved in the brain 

processes required to produce the activation in A. We analyzed the similarities 
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between these structural and functional profiles using two approaches: First, we 

calculated minimum intersection maps (see Figure 2.8 for further explanation) 

between functional activation probability and structural connection probability maps. 

Minimum intersections, both spatial and histogram-based [103], are established 

methods to assess image similarities.  

 

 

Figure 2.8: Schematic illustration of minimum intersection maps 

Minimum intersection maps are generated between different profiles of functional 

activation (red) and structural connectivity (blue). The profiles are normalized, i.e. scaled 

to the same min/max range. To build the minimum intersection (dotted), the minimum 

(MIN) of the two is considered at each point along the profile. Minimum intersection 

peaks indicate different degrees of spatial correspondence between high structural 

connectivity (S) and functional probability (F) values: Minimum intersection maps 

resembling F signify concordant presence of F- and S-peaks (left and upper right minimum 

intersects). Note that when F and S are too dissimilar, the minimum intersection is flat 

(middle). A non-flat minimum intersect with a sharp peak and displaced compared to F 

indicates a close but out-of-center overlap of F- and S-peaks (bottom right). 

 

The idea behind using minimum intersection maps in this context was that peaks in the 

structural connectivity profile should predict peaks in the functional activation profile, 

but not vice versa, since parts of the structural connections do not necessarily have to 
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be involved in the task. Minimum intersection maps are appropriate for this kind of 

analysis, as depicted in Figure 2.8. To generate vertex-wise minimum intersection 

maps (see Figure 3.6), the distributions of activation probabilities and average 

connectivity scores were shifted to zero minima and normalized to their robust 

maximum values (i.e. the 95th percentile). 

 

Second, we calculated vertex-wise spatial cross-correlations between functional and 

structural profiles. Cross-correlations were estimated non-parametrically using 

Spearman’s rank correlation coefficient (ρ), all p-values were Bonferroni-corrected 

for the total number of tests performed (see Figure 3.7). Since lower false-positive 

activation error probabilities reflect higher activation likelihoods, absolute 

log(p)-values were used for correlation. Insignificant and unidirectional correlations 

(dotted lines in Figure 3.7), i.e. associations of activation probability and connectivity 

from one cluster to the other but not vice versa, were not considered interpretable. 
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3. Results 

3.1. Functional activations associated with facial age 

Functional analysis revealed age change-related activations centered on the posterior 

inferior temporal sulcus (pITS) lateral to FFG and the posterior angular gyrus area 

(pANG) of both hemispheres (Figure 3.1, Tables 3.1 and 3.3). Age change, but not the 

gender condition, was found to be associated with higher mean left-hemispheric 

activations (p = 0.04, ANOVA; Figure 3.2).  

 

3.2. Functional activations associated with facial gender 

Gender change-related activations were detected within FFG bilaterally (Figure 3.1, 

Tables 3.1 and 3.3), amplifying previous evidence for gender-selective FFG  

responses [28, 37]. Notably, increased face androgyny during across-sex morph 

transitions activated above the more differentiated gender levels (see Figure 2.5B and 

Materials and Methods), and not vice versa as for static stimuli [28], illustrating the 

context dependency of the functional activations. In addition, the right lateral 

occipitotemporal area (LOT), already implicated by an early PET study [104], and the 

left dorsolateral prefrontal cortex (DLPFC) were involved (Figure 3.1, Tables 3.1, 3.3). 

 

3.3. Functional activations associated with global optical flow 

Global optical flow was associated with functional activations in the motion-sensitive 

cortex (hMT+) (see Figure 2.7B; Tables 3.1 and 3.3), known to respond stronger than 
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any other area to radial motion, 2D expansions and contractions as well as 3D motion 

[105-108] but which is also important for stereoscopic depth perception [109]. In 

accordance with previous results [96], hMT+ activations evoked by attention to all 

quadrants of the visual field were more extensive on the right hemisphere. 

 

 

Figure 3.1: Functional activations associated with changes of facial age and gender 

Group-level (n = 24) functional activations1 related to age and gender change, 

respectively. 
1Significant activations (FWER-corrected p < 0.05) displayed on FreeSurfer’s average 

inflated surface (color bars depict uncorrected activation probabilities [-log10(p)]; also 

see Introduction and Figures 1.2 and 1.3 about surface reconstruction and inflation of the 

human brain.) 

pANG, posterior angular gyrus area; pITS, posterior inferior temporal sulcus; DLPFC, 

dorsolateral prefrontal cortex; LOT, lateral occipito-temporal area; FFG, fusiform gyrus 
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3.4. Group differences and interactions 

No significant differences between male and female volunteers and no significant 

positive or negative interactions between the variables of interest age, gender and 

optical flow or their relative response magnitudes, i.e. normalized effect size values, 

were detected. Only age change, as mentioned above, was found to be associated with 

higher mean left-hemispheric activations (see Figure 3.2). 

 

Figure 3.2: Comparison of response magnitudes of functional activations 

Quantification and between-cluster/-hemisphere comparisons of effect sizes evoked by 

facial age and gender changes across (n = 24) subjects. Values of each cluster’s mean 

activation (± error bars) were normalized to the lowest average of corresponding 

response magnitudes (see also Figure 3.3). 

pANG, posterior angular gyrus area; pITS, posterior inferior temporal sulcus; DLPFC, 

dorsolateral prefrontal cortex; LOT, lateral occipito-temporal area; FFG, fusiform gyrus 

 

3.5. Interpolated model fits of individual peak activations 

Increasing age-gradients evoked higher signal changes, which were more pronounced 

for the left than the right hemisphere (also see Figure 3.2) and peaked slightly earlier 

in pITS than pANG (p ≤ 0.05, ANOVA). Although slightly earlier peaks of pITS activations 
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compared to pANG may indicate that it is in fact pITS that recruits pANG, full model fits 

obtained from COPE values are certainly not optimized to detect variable temporal 

delays in activation onsets or peaks (see Figure 3.3). 

 

Figure 3.3: Trichotomized intervals of age change 

Estimated hemodynamic responses within pITS and pANG in response to low [blue], 

medium [green] and high [red] age-gradients, reconstructed at individual peak activations 

within age-responsive clusters using fitted parameter estimates from a separate first-level 

analysis1. Age-gradients were trichotomized into equal intervals according to formula 

(E3); ‘low’ representing changes from 10 to 20, ‘medium’ from 10 to 40 and ‘high’ from 

10 to 65 years of age, for example 
1Signal change ([%]) over peristimulus periods of 25 secs, averaged across (n = 24) 

subjects. pANG, posterior angular gyrus area; pITS, posterior inferior temporal sulcus 
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  hemi  cluster  size  Max  CWP  VtxMax 

age  left  pANG  2309  8.739  0.0001  142332 

    pITS  526  7.307  0.0001  40331 

  right  pANG  1177  8.465  0.0001  117820 

    pITS  367  6.025  0.0004  5665 

rating*  left  pANG*  32  5.045  0.0133  146872 

gender  left  DLPFC  370  5.948  0.0005  29235 

    FFG  228  5.437  0.0020  92500 

  right  LOT  862  5.988  0.0001  35952 

    FFG  202  5.107  0.0021  28527 

motion  left  hMT+  605  8.816  0.0001  551 

  right  hMT+  1204  8.554  0.0001  91197 

 

Table 3.1: Size and probability of significantly activated clusters 

Clusters significantly activated by changing facial age, gender and motion / optical flow, 

respectively (FWER‐corrected p < 0.05 for n = 24 subjects)1 

1hemi, hemisphere; size  in  [mm²], CWP, cluster‐wise probability  (non‐parametric cluster 

mass  inference  over  the  entire  surface);  Max,  maximum  uncorrected  p‐value  (peak 

activation probability); VtxMax, vertex of Max on Freesurfer’s average surface; 

pANG, posterior angular gyrus area (*cluster related to high age‐rating competence, see 

below);  pITS,  posterior  inferior  temporal  sulcus; DLPFC,  dorsolateral  prefrontal  cortex; 

LOT,  lateral occipitotemporal area; FFG,  fusiform gyrus; hMT+, human motion‐sensitive 

MT+ (V5 or MT/MST) area 

 

3.6. Post‐hoc age rating performance 

Confirmed  by  own  verbal  feedback  report,  their  compliance  and  motivation  was 

limited  so  that  age‐rating  performance  of  these  subjects  at  the  second  session  did 

obviously  not  correspond  to  their  actual  capacities.  This  was  reflected  in  the 

disproportionally  higher  rating  errors  (see  Table  3.2)  and  the  more  pronounced 

variability  of  relative  response  magnitudes  (shown  by  increased  error  bars;  see 
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Figure 3.4B) which prompted  the exclusion of  the  lower quintile  raters. Considering 

that implicit age‐change processing is rather unlikely to strongly correlate with explicit 

age‐rating accuracy in post‐hoc assessments of a limited sample size, a more rigorous 

attempt of  linear modeling the relation between the  initial fMRI activations and  later 

rating performance was not conducted. 

 

  age rating error*     

rating  accumulated  averaged1  quintile  group size 

low accuracy  1099 ± 97  9.1 ± 0.8  ≤P20  5 

average accuracy  856 ± 56  7.1 ± 0.5  >P20/<P80  14 

high accuracy  694 ± 58  5.7 ± 0.5  ≥P80  5 

 

Table 3.2: Grouped age rating performance 

Classification of  the  subjects  into  three groups  (low, average and high  rating accuracy) 

based  on  performance  distribution.  *age  rating  error  in  years  (±  SD),  1rating  error 

averaged over trials 

 

3.7. Age‐responsive areas associated with high age‐rating competence 

Within  left  pANG,  a  cluster  above  the  superior  temporal  sulcus  discriminated  the 

upper  quintile  (P80,  n  =  5)  of  best  explicit  age  raters  from  average  performers 

(P20‐80, n = 14, also see Table 3.2) by higher activations  (see Figure 3.4A as well as 

Tables 3.1 and 3.3). 

 

Here, superior explicit age‐rating competence of upper quintile performers enhanced 

the mean response magnitude in their activation levels associated with facial age more 

than fourfold relative to average raters (Figure 3.4B). 
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Figure 3.4: Functional activations associated with high age rating competence 

(A) Increased age-related activation1 of the most accurate (n = 5) above average age-

raters (n = 14). (B) Relative to average post-hoc raters (avg, n = 14), high explicit age-

rating accuracy (upper quintile P80, n = 5) was accompanied by almost five times the 

response magnitude (p < 0.001) within the left pANG subcluster (see Figure 3.4A) during 

implicit age-change processing. 
1Significant activations (FWER-corrected p < 0.05) displayed on FreeSurfer’s average 

inflated surface (color bars depict uncorrected activation probabilities [-log10(p)]). pANG, 

posterior angular gyrus area; pITS, posterior inferior temporal sulcus; DLPFC, dorsolateral 

prefrontal cortex; STS, superior temporal sulcus 

 

3.8. Structural connections between age- and gender-related clusters 

For each subject, probabilistic tractography was run between all age and gender 

change-related clusters on individual brain surface reconstructions. An association 

tract, the ventral portion of Wernicke’s perpendicular fasciculus [110], was found to 

interconnect pANG and pITS (Figure 3.5). Its almost vertically running fibers connect 

the posterior inferior parietal lobule, namely the angular gyrus (‘pli courbe’), and the 

parieto-occipital transition, namely the second parieto-occipital ‘pli de passage’ of 

Gratiolet [111] or gyrus parietalis inferior posterior [112], with the inferior temporal 

area [113]. 
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Figure 3.5: Association pathways subserving facial age processing 

Ventral portion of Wernicke’s perpendicular fasciculus (WpF) connecting pANG and pITS 

(average probabilistic path distribution connecting the functional clusters of n = 24 

subjects, using FSL’s nonlinear 1 mm MNI template as target space; thresholded at ≥ 100 

connecting samples passing through each voxel, displayed on sagittal [x = -36 mm] and 

coronal [y = -54 mm] projection view planes; see Materials and Methods) 

pANG, posterior angular gyrus area; pITS, posterior inferior temporal sulcus 

 

Other cortico-cortical pathways, such as fibers of the superior longitudinal and fronto-

occipital fasciculi connecting FFG, pANG and DLPFC (schematically displayed in 

Figures 3.8 and 4.1), are not rendered for display and revealed lower connectivities, 
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except  for  some  clusters  located  very  close  to  each  other  (e.g.,  FFG  and  LOT;  see 

Discussion, log‐transformed connectivity scores in Figure 3.7). 

 

Commissure  connectivities  between  clusters  related  to  age  or  gender  processing 

(n = 32) remained negligible, i.e. less than 0.1 ‰ of the total number of samples sent 

out from all cluster vertices reached the target. 

 

  hemi  cluster  MNI305 X, Y, Z  vE  BA  annotation 

age  left  pANG  ‐41.0 ‐74.5 27.0 PG  39  inferior parietal 

    pITS  ‐54.1 ‐55.8 ‐8.5 PH  37  inferior temporal 

  right  pANG  46.7 ‐59.3 19.5 PG  39  inferior parietal 

    pITS  54.2 ‐53.5 ‐9.4 PH  37  inferior temporal 

rating*  left  pANG*  ‐42.4 ‐56.6 25.5 PG  39  inferior parietal 

gender  left  DLPFC  ‐36.9 19.5 22.1 FD  46  inf. front. sulcus 

    FFG  ‐39.1 ‐67.9 ‐17.2 PH  37  fusiform 

  right  LOT  42.4 ‐77.3 ‐5.4 OA  19  lateral occipital 

    FFG  36.4 ‐56.0 ‐16.4 PH  37  fusiform 

motion  left  hMT+  ‐42.6 ‐79.6 0.1 OA  19  middle occipital 

  right  hMT+  46.7 ‐58.9 0.4 PHO  19  middle temporal 

 

Table 3.3: Location of significantly activated clusters 

Clusters significantly activated by changing facial age, gender and motion / optical flow, 

respectively (FWER‐corrected p < 0.05 for n = 24 subjects)1. Note that although PH (area 

basalis parietalis)  largely  corresponds  to BA 37  (area occipitotemporalis), von Economo 

considered it to belong to the parietal instead of the temporal lobe [114]. 
1hemi,  hemisphere; MNI305,  coordinates  in MNI305  standard  space  [mm];  vE/BA,  von 

Economo  [114]  / Brodmann  [115] area; annotation, anatomical  labels; pANG, posterior 

angular  gyrus  area  (*cluster  related  to  high  age‐rating  competence);  pITS,  posterior 

inferior  temporal  sulcus;  DLPFC,  dorsolateral  prefrontal  cortex;  LOT,  lateral 

occipitotemporal area; FFG,  fusiform gyrus; hMT+, human motion‐sensitive MT+  (V5 or 

MT/MST) area 
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3.9. Linking connectivity and activation patterns 

In order to characterize the extent to which different structural seed-to-target 

connectivities drive activation patterns, we generated minimum intersection maps 

(Figure 3.6, also see Materials and Methods, Figure 2.8) and examined spatial cross-

correlations between surface connectivity scores and activation probabilities (see 

Materials and Methods, Figure 3.7 as well as Discussion). 

 

Figure 3.6: Minimum intersection maps of age change related clusters 

Activation probabilities (left) and minimum intersection maps (right; illustrating scaled 

spatial cross-correspondence, see also Materials and Methods, Figure 2.8 for a schematic 

explanation) with normalized surface connectivity scores [cs] to ipsilateral pITS, FFG, left 

DLPFC and right LOT clusters (n = 24).  

pANG activations are, on average, associated with close intrinsic connectivity to pITS and 

some posterior connections to FFG (see Figure 3.7, for cross-correlation plots of the 

n = 24 and n = 46 independent subjects). 

pANG, posterior angular gyrus area; pITS, posterior inferior temporal sulcus; DLPFC, 

dorsolateral prefrontal cortex; LOT, lateral occipitotemporal area; FFG, fusiform gyrus; 

Orientation labels: L, left; R, right; a, anterior; p, posterior; s, superior; i, inferior 
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Figure 3.7: Functional and structural spatial cross-correlation plots 

Vertex-wise spatial cross-correlation plots (± SEM)1 between activation probabilities 

([-log10(p)]) and structural connectivities ([log10(cs/ns)], with [(cs/ns)] reflecting the ratio 

of connecting to the number of samples sent out from each vertex) for clusters related to 
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age and gender change (see Figure 3.1), based on two samples: (n = 24) paired with 

functional data [red] and (n = 46) independent subjects [blue].  
1SEM, standard error of the mean; */**/***: FWER-corrected p < 0.05/0.01/0.001; 

n.s., not significant, with Spearman’s ρ displayed for the paired / independent sample 

when significant 

pANG, posterior angular gyrus area; pITS, posterior inferior temporal sulcus; DLPFC, 

dorsolateral prefrontal cortex; LOT, lateral occipitotemporal area; FFG, fusiform gyrus; 

STS, superior temporal sulcus; orientation labels: L, left; R, right 

 

The minimum intersection maps and the spatial cross-correlation plots (see Figures 3.6 

and 3.7) are based on the hypothesis that if there is a straight structural connection 

between a pair of functional regions, where this connection itself is directly involved in 

the cerebral processing, then the most confident location of high fMRI activation 

within the regions should be close to the loci of strongest structural connectivity 

between them, i.e. the patterns of functional activations and anatomical connectivity 

should be positively correlated. We tested this hypothesis on all clusters responsive to 

age and gender change. 

 

3.9.1. Minimum intersection maps 

Minimum intersection maps revealed that for pANG, lowest type I activation error 

probabilities were in proximity to high pITS connectivity (Figure 3.6), indicating pITS’ 

ability to directly recruit pANG for age processing and vice versa. We show this for the 

larger age-responsive cluster, pANG, as it is more informative than for the smaller pITS. 

Dorsal pANG activations demonstrated additional potentially relevant connections to 

FFG, especially on the left (Figure 3.6), but just on this tractography seeding end (i.e. 

FFG activations were not consistently related to their pANG connectivity; see 
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Figure 3.7), and pANG’s overall connectivity to the FFG cluster remained comparatively 

low. These connections, which were originally discovered by Wernicke [116] based on 

anatomical examination of monkey brains [117], correspond to fibers of Wernicke’s 

perpendicular fasciculus between the angular and fusiform gyri [118]. 

 

3.9.2. Spatial cross-correlation plots 

The by far most consistent spatial cross-correlations between activation probabilities 

and average connectivity scores were detected for pANG and pITS at the group level 

(see Figure 3.7; results exclusively shown for association tracts). Commissure 

connectivities were also tested but revealed no significant vertex-wise spatial cross-

correlations with corresponding activation probabilities. Note that cross-correlations 

were most consistent for pANG and pITS (upper row of Figure 3.7) but connectivity 

ratios tend to get bound earlier at maximum values than corresponding activation 

probabilities. In general, positive correlations were slightly stronger for the sample 

with paired fMRI and DWI data (n = 24) compared to the independent sample from the 

DWI database (n = 46). However, the latter largely replicate and confirm 

generalizability of the results. 

 

3.10. Functional brain network for age processing 

The activations elicited by age and gender change, i.e. continuously alternating facial 

age and androgyny levels, the existing fiber connections between age- and gender-

change related clusters and the extent to which the spatial distribution of the highest 

activation probabilities correlate to the highest structural connectivity enables us to 
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derive a model (Figures 3.8 and 4.1 further commented in the Discussion) illustrating 

how the ventral stream, pITS in particular, interacts via Wernicke’s perpendicular 

fasciculus (WpF) with the posterior magnitude-encoding and approximate number 

system [119, 120], pANG in particular, to quantify the varying age of faces.  

 

 

Figure 3.8: 3D model illustrating the age processing network 

Left-hemispheric model on the rendered average surface showing functional clusters 

detected in response to age- (pITS and pANG), gender (FFG and DLPFC) and optical flow 

(hMT+) and their proposed main interaction of interest in relation to the visual and the 

dorsal stream. 

pANG, posterior angular gyrus area; pITS, posterior inferior temporal sulcus; DLPFC, 

dorsolateral prefrontal cortex; LOT, lateral occipitotemporal area; FFG, fusiform gyrus; 

17-19, Brodmann’s areas forming three visual tiers; hMT+, human motion-sensitive 

temporal cortex; ITG/MTG/STG, inferior/middle/superior temporal gyrus; ITS/STS, 

inferior/superior temporal sulcus 
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4. Discussion 

4.1. A distinct functional brain network for processing facial age 

Our investigation provides the original description of a distinct functional brain 

network processing the age of faces and its underlying structural connectivity. 

Although facial age is of high social relevance and has been shown to influence medial 

prefrontal activations when presumed personality characteristics of individual faces 

are rated [121], the neural basis of facial age processing itself had not yet been 

identified before. According to our data, its primary cortical components – the areas 

around the posterior inferior temporal sulcus (pITS) and angular gyrus (pANG) – are 

separate from those processing categorical gender as a rather fixed face attribute that 

nonetheless varies across different androgyny levels (Figures 3.1, 3.8 and 4.1). 

Notably, the age-processing network also expands beyond the proposed face-sensitive 

core system representing additional changeable aspects and the previously known 

extended system [30, 31] mediating spatially directed attention and imagery [122], 

match decisions based on working memory [123], emotional responses [124], and 

even the reward of beauty [125] and moral judgments [126].  

 

4.2. Linking structure and function 

Furthermore, a unique combination of fMRI and diffusion tractography measurements 

enabled us not only to track anatomical connections between peak activations but to 

uncover significant vertex-wise spatial cross-correlations between functional BOLD 
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activations on the one hand and structural connectivity probabilities on the other 

(Figures 3.6, 3.7 as well as Materials and Methods, Figure 2.8). Such probabilistic 

association of function and structure substantiates evidence for fiber tracts not just 

connecting activated areas of interest but being directly involved in transmitting 

condition-relevant information. In this case, we conclude that age-relevant 

information is directly transmitted between pITS and pANG by the anterior division of 

Wernicke’s perpendicular fasciculus to which no unambiguous function had been 

attributed yet. There was no evidence for homo- (e.g. right ↔ left pITS) or heterotopic 

(e.g. right pANG ↔ left pITS) commissural connections to be involved. 

 

4.3. The ventral visual stream interacts with the angular gyrus 

Our results allow us to propose the first coherent model for how the ventral visual 

stream (vVS) may interact with the angular gyrus area to process different facial ages 

(Figures 3.8 and 4.1). Changing within as well as across individuals, age is automatically 

quantified and attributed particularly to faces, i.e. more precisely than for any other 

object. We suggest that processing this quantitative feature, the neural classifier 

operates on accumulation principles that represent facial age in terms of growing 

quantities and contrastable numerical magnitudes. By utilizing the ventral part of 

Wernicke’s perpendicular fasciculus, a largely forgotten association tract, age-

responsive pITS gains access to pANG, posterior temporal processing core of a 

common quantification network outlined in a theory of magnitude (ATOM) [119] and 

part of an approximate number system (ANS) [120]. Evolutionarily, the object-

unselective association area of the angular gyrus constitutes a new formation of 
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human phylogenesis [114, 115] that myelinates late during ontogenetic 

development [127]. Considering the extraordinary relevance of age assessments for 

the interpersonal domain, e.g. to establish peer communication, attractiveness and 

even empathy, the cognitive processing of facial age and aging reflects an intrinsic core 

capacity of the human “social brain”. 

 

Sparse data from brain-lesioned patients [128] indicate that the posterior right brain 

may be crucial for the (ap-)perceptive component of age processing. For pANG, such 

lesions fall into the territory of the middle cerebral artery whereas pITS can also be 

affected within the border zone to the posterior cerebral artery [111]. As yet, we are 

not aware of any reported cases of pure age and / or gender agnosia which may also 

indicate their bilateral representation. Increased left-hemispheric responses (see 

Figures 3.1, 3.2 and 3.3) and higher activations of more accurate raters above the 

superior temporal sulcus within left pANG only (Figure 3.4) correspond with a known 

importance of the left angular gyrus for abstract number representations, quantized 

discrete decoding, numerical comparisons and operations [129, 130] as well as high 

mental calculation abilities [131]. Given the intrinsic complexities of such 

representations and their interactions [132], future investigations and lesion studies 

are clearly needed to elucidate cognitive age processing. For example, our analysis 

may be broadened by other approaches further examining distributed patterns of 

neural age-encoding in their selectiveness and specificity [14, 133, 134] but this would 

have been beyond the scope of our pilot study. More elaborate insights can be 

anticipated investigating age discrimination upon face inversion, processing the age of 

non-face objects, adaptation to age, own- vs. other-age effects including the 
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associated visual processing strategies and their potential center-periphery bias at 

simultaneous presentation, cross-modal integration of age-information, age processing 

in the blind, dissociation of non-abstract and numerical age representations, and the 

development of age recognition expertise, for instance. 

 

 

Figure 4.1: Schematic illustration of the age-processing network 

Based on a famous sketch of the left hemisphere of the human brain [135]  

age-, gender- and motion-related activations are depicted along with von Economo [114] 

areas to demonstrate the fact that von Economo considered PH (area basalis parietalis) to 

belong to the parietal instead of the temporal lobe. FFG exhibits some connectivity to 

pANG but is primarily engaged in processing fixed face attributes such as categorical 

gender (even if continuously changed over different androgyny levels like in Figure 2.2). 

pANG, posterior angular gyrus area; pITS, posterior inferior temporal sulcus; DLPFC, 

dorsolateral prefrontal cortex; LOT, lateral occipitotemporal area; FFG, fusiform gyrus; 

17-19, Brodmann’s areas forming three visual tiers; hMT+, human motion-sensitive 

temporal cortex; ITG/MTG/STG, inferior/middle/superior temporal gyrus; ITS/STS, 

inferior/superior temporal sulcus; FD, PG, PH, PHO and OA von Economo’s areas 

(Also see Results, Figure 3.8 for a 3D model of the network.) 
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The notion of a distributed neural core system processing fixed attributes vs. 

changeable aspects of faces [30, 31] parallels the traditional logic of distinguishing 

essential vs. nonessential object properties which goes back to traditional philosophy. 

In that regards, facial age may be considered auxiliary appearance, conveying non-

symbolic, abstract as well as social information. Like gender and identity, however, age 

must not constantly be ascertained in another’s face and is not reproduced or 

“mirrored“ by the perceiver. Therefore, its regular processing presumably relies less on 

the constant monitoring mechanisms required to follow eye gaze, lip speech or facial 

expressions, for example [31]. Thus, our results can be interpreted to discover a 

genuine set in the face processing ensemble that is occupied with age, the posterior 

inferior sulcus and angular gyrus area. Additionally, the novel demonstration of a 

particular association between functional and probabilistic connectivity measures and 

our proposed approach to its assessment may extend the present understanding of 

relations between fMRI activations and cerebral connectivity. 

 

4.4. Limitations 

In addition to pANG and pITS within the age-change condition of both hemispheres, 

significant positive but relatively low vertex-wise spatial cross-correlations of 

activation probabilities and connectivity values were only found in the right 

hemisphere for the pANG and LOT clusters on both tractography seeding ends and for 

both samples (Figure 3.7). This relatively weak but significant association of activation 

probabilities and probabilistic connectivities across the age and gender condition for 

right pANG and LOT is confounded by the fact that LOT is located close to pITS. Due to 
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the inherent smoothness of fMRI data, which is pronounced on the average surface, 

and because connectivity tends to increase the closer seed and target are located, 

results for short association fibers and cortical regions located so near to each other 

may be biased. In fact, uncorrected for multiple comparisons the right age-related pITS 

activation extends into the ipsilateral gender-related LOT cluster which may suggest 

that right LOT, to some extent, participates in age processing. 

 

Among other potential reasons, this could explain why, to the best of our knowledge, 

no cases of dissociated impairments in facial age and gender judgments have been 

reported so far. Nonetheless, such dissociation seems conceivable and should be 

systematically tested for in brain-lesioned patients even without prosopagnosia, i.e. 

identification failure of familiar faces. Similarly, connectivity of gender-responsive FFG 

to nearby pITS and to dorsal pANG may also be relevant for facial age processing 

(Figures 3.6 and 3.7) and support putative but not yet proven age-by-gender 

interactions if instantiated at the functional level (see further discussion below). 

 

4.4.1. Group-level vs. individual region-of-interest approach 

In general, the activations shown are certainly not claimed to be condition-specific and 

our analysis is a priori limited to functional activations and connectivities of sufficient 

inter-individual consistency with regards to their anatomical location on the average 

surface. A range of related problems potentially arising in group studies has been 

exemplified [136] but FreeSurfer’s recent boundary- and surface-based intra- [77] and 

inter-individual [78] registrations and the reconstruction of individual gray / white 
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matter boundary surfaces (see Introduction, Figure 1.3 and Materials and Methods) 

may attenuate at least some of these issues. Given that age-responsive functional 

regions-of-interest (ROI) had not yet been identified before and to enhance the 

sensitivity and unbiased generalizability of our analysis beyond the single-subject level, 

we decided not to restrict our analysis to certain areas. 

 

In particular, we did not attempt to illustrate the range of inter-individual and spatial 

variability in age encoding but the consistency of processing the age of faces in the 

human brain (Figures 3.1 and 3.2), including the association of supreme age-rating 

competence and age-related activations (Table 3.2 and Figure 3.4). Instead, we tested 

at the group level on FreeSurfer’s average surface for the effects studied. This may, 

admittedly, uncover only parts of the picture. 

 

4.4.2. Androgyny levels and gender transitions 

Additionally, we do recognize that prepuberal faces tend to appear less gendered the 

younger they are and that very old faces, especially when seen without hairstyle, may 

be liable to a male classification bias. Therefore, faces of an unambiguous gender were 

chosen, even for the prepuberal cases that preserved juvenile facial features despite 

low androgyny levels. The fact that we did not detect a gender-by-age interaction may 

therefore be related to our specific modeling approach (see Materials and Methods, 

especially Figure 2.5) and our stimulus set of clearly gendered faces. The latter limited 

high androgyny levels to morphs with gender transitions and thereby the power to 

detect such interaction. 
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4.4.3. Description and tracking of Wernicke’s perpendicular fasciculus 

Wernicke’s perpendicular fasciculus, whose ventral portion is, according to our results, 

associated with age processing, has anatomically been recognized as a separate 

cerebral association tract [137, 138]. Because it is embedded into dense white matter 

pathways of close proximity and crossing fibers, a fact that has been pointed out early 

for this tract [139, 140], Wernicke’s perpendicular fasciculus seems to have so far 

largely escaped further description and attention. Only its more posterior occipital 

portion has been implied as part of a disconnection syndrome potentially underlying 

some cases of pure alexia [141]. Even though discernible in his excellent sectional brain 

atlas [142], Wernicke’s perpendicular fasciculus is not delineated by most of the 

current references [143-145] which is in part due to its superficial but yet poorly 

defined extension and the cortical variability of the areas connected by its fibers [146], 

including the lower parietal and posterior temporal lobe as well as the FFG [112]. 

 

In fact, modeling multiple fiber orientations (as performed here by bedpostx / 

probtrackx; see Materials and Methods) and seeding from gray / white matter surface 

labels obtained from spherical averaging (using FreeSurfer; see Introduction, Materials 

and Methods) was instrumental to its successful tracking. Compared to other 

association tracts, it runs in a peculiar vertical (instead of horizontal, posterior-

anteriorly oriented) course. Especially if pITS and FFG of the occipitotemporal 

transition are ascribed to the parietal lobe, like von Economo insisted (see legend to 

Table 3.3 and Figure 4.1), Wernicke’s perpendicular fasciculus also exemplifies the 

debated presence of vertical intralobar autochthonous pathways argued to be of yet 
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underestimated significance as these connect ventral and more dorsal areas and the 

corresponding parallel processing pathways [147] (see also Figures 3.8 and 4.1). Of 

course, our data cannot exhaustively resolve these issues and remain largely 

descriptive at this point. 

 

4.4.4. Direction of information processing 

Given that tractography itself does not reveal the direction of information processing, 

our data do not ensure that it is in fact pITS that recruits pANG and not vice versa.  

The continuous nature of our morphing paradigm, despite its strength of presumably 

augmenting change-sensitive neural responses and supporting our explicit 

psychophysiological model, precludes demonstration of temporal delay differences 

between pITS and pANG without further problematic or clearly violated assumptions. 

Thus, we acknowledge that the clusters may influence each other reciprocally (as 

schematically indicated in Figures 3.8 and 4.1) – a fact that is generally assumed for 

most cortical areas connected by association tracts. Actually, unidirectional spatial 

cross-correlations, i.e. associations of activation probability and connectivity from one 

cluster to the other but not vice versa, are not straightforward to interpret but 

minimum intersection maps may reveal focal areas of high connectivity coinciding with 

activation peaks (as for left posterior pANG activations and connectivity to left FFG; 

see Figure 3.6). 
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IV. Abbreviations 

2D   two dimensional 

3D   three dimensional 

a (label)  anterior 

a.u.   arbitrary units 

avg   average 

ANOVA  analysis of variance 

ANS   Approximate Number System 

ATOM   A Theory Of Magnitude 

b   b-value (diffusion weighting) 

BA   Brodmann area 

BET   Brain Extraction Tool 

BOLD   blood oxygenation level dependent 

COPE   contrast of parameter estimate 

cs   connecting samples 

CWP   cluster-wise probability 

DLPFC   dorsolateral prefrontal cortex 

DWI   diffusion weighted imaging 

EPI   echo planar imaging 

FA   flip angel 

FDT   FMRIB's Diffusion Toolbox 

FEAT   FMRI Expert Analysis Tool 

FFA   fusiform face area 

FFG   fusiform gyrus 

FILM   FMRIB's Improved Linear Model 

FLAIR   fluid-attenuated inversion-recovery 

fMRI / FMRI  functional magnetic resonance imaging 

FMRIB   Oxford Centre for Functional MRI of the Brain 

fps   frames per second 
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FSL   FMRIB Software Library 

FUGUE   FMRIB's Utility for Geometrically Unwarping EPIs 

FWER   family-wise error rate 

FWHM   full-width-half-maximum 

GLM   General Linear Model 

hemi   hemisphere 

hMT+   human motion sensitive temporal cortex 

i (label)  inferior 

ITS   inferior temporal sulcus 

ITG   inferior temporal gyrus 

L / l (label)  left 

LOT   lateral occipitotemporal area 

MCFLIRT  Motion Correction using FMRIB's Linear Image Registration Tool 

ME   mixed effects 

mm   millimeter 

MNI Montreal Neurological Institute 

(average brain template MNI305) 

MPRAGE Magnetization Prepared Rapid Acquisition GRE 

(Gradient Recalled Echo) 

MRI   magnetic resonance imaging 

ms   millisecond 

MTG   middle temporal gyrus 

µs   microsecond 

n   sample group size 

ns   number of samples 

p   probability value 

p (label)  posterior 

pANG   posterior angular gyrus area 

PET   positron emission tomography 

pITS   posterior inferior temporal sulcus 
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PRELUDE Phase Region Expanding Labeller for Unwrapping 

Discrete Estimates 

R / r (label)  right 

s (label)  superior 

SD   standard deviation 

sec   second 

SEM   standard error of the mean 

STG   superior temporal gyrus 

STS   superior temporal sulcus 

T1-weighted  longitudinal magnetization recovery time weighted 

T2*-weighted transverse decay time (including magnetic field 

inhomogeneity effects) weighted 

TE   time to echo 

TR   time for repetition 

VARCOPE  variance of contrast of parameter estimate 

vE   von Economo  area 

Vtx   Vertex 

vVS   ventral visual stream 

WpF   Wernicke’s perpendicular fasciculus 
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VI. Appendix 

VI.I. Maintaining color balance 

The following iterative Matlab script was used to keep the color balance of the 
displayed paradigm constant. This involved adapting of color, luminance, gamma and 
contrast levels of every frame. (The script here is customized for the example 
morphing sequence with black background and the characteristics of the presentation 
display): 
 
 
% Adjust Color Channel Contrast & Luminance % 
 function [msg] = CoLumCorvL3 (filename, outname) 
  
for loopframes = 1:24:145 % Loop Keyframe Filename 
  
filenumber = loopframes - 1; 
filenamenum = num2str(filenumber); 
filename1 = ([filename ,'0', filenamenum, '.png']); 
if filenumber < 100 
   filename1 = ([filename ,'00', filenamenum, '.png']); 
end 
if filenumber < 10 
   filename1 = ([filename ,'000', filenamenum, '.png']); 
end 
  
Frame = imread(filename1); 
  
factori = 0.0001; 
factorg = 0.0001; 
  
% for cycle = 1:3 <- unnecessary extra iteration for precise adjustment 
 
cycle = 1; 
 
% change Color Channels 
replow = 0; 
rephi = 0; 
lowin = 0; 
hiwin = 1; 
gammaG = 1; 
colorRGB = squeeze(mean(mean(Frame))); 
colorRGB2 = colorRGB; 
FrameC = Frame; 
  
if colorRGB(1,1) < 75.0  
while colorRGB2(1,1) < 75.0 && colorRGB2(1,1) ~= 75.0 
    gammaG = gammaG-factorg;  
    rephi = rephi+1; 
    hiwin = hiwin-factori; 
    FrameC(:,:,1) = imadjust(Frame(:,:,1), [0; hiwin], [0; 1],gammaG); 
    colorRGB2 = squeeze(mean(mean(FrameC))); 
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end 
else 
while colorRGB2(1,1) > 75.0 && colorRGB2(1,1) ~= 75.0 
    gammaG = gammaG+factorg;  
    replow = replow-1; 
    lowin = lowin+factori; 
    FrameC(:,:,1) = imadjust(Frame(:,:,1), [lowin; 1], [0; 1],gammaG); 
    colorRGB2 = squeeze(mean(mean(FrameC))); 
end 
end 
  
Frame = FrameC; 
chtable(cycle,1,loopframes) = lowin; 
chtable(cycle,2,loopframes) = hiwin; 
chtable(cycle,3,loopframes) = gammaG; 
  
replow = 0; 
rephi = 0; 
lowin = 0; 
hiwin = 1; 
gammaG = 1; 
  
if colorRGB(2,1) < 59.0  
while colorRGB2(2,1) < 59.0 && colorRGB2(2,1) ~= 59.0 
    gammaG = gammaG-factorg;  
    rephi = rephi+1; 
    hiwin = hiwin-factori; 
    FrameC(:,:,2) = imadjust(Frame(:,:,2), [0; hiwin], [0; 1],gammaG); 
    colorRGB2 = squeeze(mean(mean(FrameC))); 
end 
else 
while colorRGB2(2,1) > 59.0 && colorRGB2(2,1) ~= 59.0 
    gammaG = gammaG+factorg;  
    replow = replow-1; 
    lowin = lowin+factori; 
    FrameC(:,:,2) = imadjust(Frame(:,:,2), [lowin; 1], [0; 1],gammaG);  
    colorRGB2 = squeeze(mean(mean(FrameC))); 
end 
end 
  
Frame = FrameC; 
chtable(cycle,4,loopframes) = lowin; 
chtable(cycle,5,loopframes) = hiwin; 
chtable(cycle,6,loopframes) = gammaG; 
  
replow = 0; 
rephi = 0; 
lowin = 0; 
hiwin = 1; 
gammaG = 1; 
  
if colorRGB(3,1) < 50.0  
while colorRGB2(3,1) < 50.0 && colorRGB2(3,1) ~= 50.0 
    gammaG = gammaG-factorg;  
    rephi = rephi+1; 
    hiwin = hiwin-factori; 
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    FrameC(:,:,3) = imadjust(Frame(:,:,3), [0; hiwin], [0; 1],gammaG); 
    colorRGB2 = squeeze(mean(mean(FrameC))); 
end 
else 
while colorRGB2(3,1) > 50.0 && colorRGB2(3,1) ~= 50.0 
    gammaG = gammaG+factorg;  
    replow = replow-1; 
    lowin = lowin+factori; 
    FrameC(:,:,3) = imadjust(Frame(:,:,3), [lowin; 1], [0; 1],gammaG);  
    colorRGB2 = squeeze(mean(mean(FrameC))); 
end 
end 
  
Frame = FrameC; 
chtable(cycle,7,loopframes) = lowin; 
chtable(cycle,8,loopframes) = hiwin; 
chtable(cycle,9,loopframes) = gammaG; 
  
% change Contrast 
FrameX = changem(Frame, [255 255], [0 1]); 
LH1 = stretchlim(FrameX, [0.005 0.995]); 
LH2 = stretchlim(Frame, [0.005 0.995]); 
minLH = min(min(LH1)); 
maxLH = max(max(LH2)); 
  
Frame = imadjust(Frame, [minLH minLH minLH; maxLH maxLH maxLH], [0 0 0; 1 1 1],1); 
  
chtable(cycle,10,loopframes) = minLH; 
chtable(cycle,11,loopframes) = maxLH; 
  
% correct distribution 
f1 = 75.0/59.0; 
f2 = 50.0/59.0; 
  
cycle = 2; 
  
replow = 0; 
rephi = 0; 
lowin = 0; 
lowin2 = lowin; 
factorii = factori; 
hiwin = 1; 
hiwin2 = hiwin; 
gammaG = 1; 
colorRGB = squeeze(mean(mean(Frame))); 
colorRGB2 = colorRGB; 
FrameC = Frame; 
  
if colorRGB(1,1) < colorRGB(2,1)*f1  
while colorRGB2(1,1) < colorRGB(2,1)*f1 && colorRGB2(1,1) ~= colorRGB(2,1)*f1 
    gammaG = gammaG-factorg;  
    rephi = rephi+1; 
    factorii = factorii+factori; 
    hiwin2 = hiwin-factorii; 
    FrameC(:,:,1) = imadjust(Frame(:,:,1), [0; hiwin2], [0; 1],gammaG); 
    colorRGB2 = squeeze(mean(mean(FrameC))); 
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end 
    hiwin2 = hiwin-(factorii/2); 
    FrameC(:,:,1) = imadjust(Frame(:,:,1), [0; hiwin2], [0; 1],gammaG); 
else 
while colorRGB2(1,1) > colorRGB(2,1)*f1 && colorRGB2(1,1) ~= colorRGB(2,1)*f1 
    gammaG = gammaG+factorg;  
    replow = replow-1; 
    factorii = factorii+factori; 
    lowin2 = lowin+factorii; 
    FrameC(:,:,1) = imadjust(Frame(:,:,1), [lowin2; 1], [0; 1],gammaG); 
    colorRGB2 = squeeze(mean(mean(FrameC))); 
end 
    lowin2 = lowin+(factorii/2); 
    FrameC(:,:,1) = imadjust(Frame(:,:,1), [lowin2; 1], [0; 1],gammaG); 
end 
  
Frame = FrameC; 
chtable(cycle,1,loopframes) = lowin2; 
chtable(cycle,2,loopframes) = hiwin2; 
chtable(cycle,3,loopframes) = gammaG; 
  
replow = 0; 
rephi = 0; 
factorii = factori; 
lowin = 0; 
lowin2 = lowin; 
hiwin = 1; 
hiwin2 = hiwin; 
gammaG = 1; 
  
if colorRGB(3,1) < colorRGB(2,1)*f2  
while colorRGB2(3,1) < colorRGB(2,1)*f2 && colorRGB2(3,1) ~= colorRGB(2,1)*f2 
    gammaG = gammaG-factorg;  
    rephi = rephi+1; 
    factorii = factorii+factori; 
    hiwin2 = hiwin-factorii; 
    FrameC(:,:,3) = imadjust(Frame(:,:,3), [0; hiwin2], [0; 1],gammaG); 
    colorRGB2 = squeeze(mean(mean(FrameC))); 
end 
    hiwin2 = hiwin-(factorii/2); 
    FrameC(:,:,3) = imadjust(Frame(:,:,3), [0; hiwin2], [0; 1],gammaG); 
else 
while colorRGB2(3,1) > colorRGB(2,1)*f2 && colorRGB2(3,1) ~= colorRGB(2,1)*f2 
    gammaG = gammaG+factorg;  
    replow = replow-1; 
    factorii = factorii+factori; 
    lowin2 = lowin+factorii; 
    FrameC(:,:,3) = imadjust(Frame(:,:,3), [lowin2; 1], [0; 1],gammaG);  
    colorRGB2 = squeeze(mean(mean(FrameC))); 
end 
    lowin2 = lowin+(factorii/2); 
    FrameC(:,:,3) = imadjust(Frame(:,:,3), [lowin2; 1], [0; 1],gammaG); 
end 
  
Frame = FrameC; 
chtable(cycle,4,loopframes) = lowin2; 
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chtable(cycle,5,loopframes) = hiwin2; 
chtable(cycle,6,loopframes) = gammaG; 
chtable(:,:,loopframes)    % Display output 
  
% write image 
outname1 = ([outname ,'0', filenamenum, '.png']); 
if filenumber < 100 
   outname1 = ([outname ,'00', filenamenum, '.png']); 
end 
if filenumber < 10 
   outname1 = ([outname ,'000', filenamenum, '.png']); 
end 
imwrite(Frame,outname1); 
  
loopframes    % Display output 
  
end 
  
% linear interpolation of keyframe correction to reduce computing time and eliminate color jitter % 
  
for loopframes = 2:144 % Loop Keyframe Filename 
  
if loopframes == 25 || loopframes == 49 || loopframes == 73 || loopframes == 97 || loopframes == 121  
    continue 
end 
  
filenumber = loopframes - 1; 
  
filenamenum = num2str(filenumber); 
  
filename1 = ([filename ,'0', filenamenum, '.png']); 
if filenumber < 100 
   filename1 = ([filename ,'00', filenamenum, '.png']); 
end 
if filenumber < 10 
   filename1 = ([filename ,'000', filenamenum, '.png']); 
end 
  
Frame = imread(filename1); 
  
if loopframes >= 2 && loopframes < 25 
    loloop = 1; 
    hiloop = 25; 
end 
  
if loopframes >= 26 && loopframes < 49 
    loloop = 25; 
    hiloop = 49; 
end 
  
if loopframes >= 50 && loopframes < 73 
    loloop = 49; 
    hiloop = 73; 
end 
  
if loopframes >= 74 && loopframes < 97 
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    loloop = 73; 
    hiloop = 97; 
end 
  
if loopframes >= 98 && loopframes < 121 
    loloop = 97; 
    hiloop = 121; 
end 
  
if loopframes >= 122 && loopframes < 145 
    loloop = 121; 
    hiloop = 145; 
end 
  
chtable(:,:,loopframes) = chtable(:,:,loloop) - ((chtable(:,:,loloop)-chtable(:,:,hiloop)) \  
.*((loopframes-loloop)/24)); 
  
% change Color Channels 
Frame(:,:,1) = imadjust(Frame(:,:,1), [chtable(1,1,loopframes) ; chtable(1,2,loopframes)], [0; 1], \ 
chtable(1,3,loopframes)); 
Frame(:,:,2) = imadjust(Frame(:,:,2), [chtable(1,4,loopframes) ; chtable(1,5,loopframes)], [0; 1], \ 
chtable(1,6,loopframes)); 
Frame(:,:,3) = imadjust(Frame(:,:,3), [chtable(1,7,loopframes) ; chtable(1,8,loopframes)], [0; 1], \ 
chtable(1,9,loopframes)); 
  
% change Contrast 
Frame = imadjust(Frame, [chtable(1,10,loopframes) chtable(1,10,loopframes) \ 
chtable(1,10,loopframes); chtable(1,11,loopframes) chtable(1,11,loopframes) \ 
chtable(1,11,loopframes)], [0 0 0; 1 1 1],1); 
  
% correct distribution 
Frame(:,:,1) = imadjust(Frame(:,:,1), [chtable(2,1,loopframes) ; chtable(2,2,loopframes)], \  
[0; 1],chtable(2,3,loopframes)); 
Frame(:,:,3) = imadjust(Frame(:,:,3), [chtable(2,4,loopframes) ; chtable(2,5,loopframes)], \  
[0; 1],chtable(2,6,loopframes)); 
chtable(:,:,loopframes)    % Display output 
  
% write image 
outname1 = ([outname ,'0', filenamenum, '.png']); 
if filenumber < 100 
   outname1 = ([outname ,'00', filenamenum, '.png']); 
end 
if filenumber < 10 
   outname1 = ([outname ,'000', filenamenum, '.png']); 
end 
imwrite(Frame,outname1); 
  
loopframes    % Display output 
  
end 
  
msg = 'ok'; 
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VI.II. Exemplary morph sequence 

 
The exemplary morph video (ExpFaceMorph) is available in Windows AVI and Apple 

QuickTime format for download here: 

http://www.neuroradiologie.uni-wuerzburg.de/HomolaDiss/ 
 

  

http://www.neuroradiologie.uni-wuerzburg.de/HomolaDiss/�
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