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Zusammenfassung

Mit dem Ende des Jahres 2011 haben die beiden LHC-Experimente ATLAS und
CMS jeweils ungefähr 5 inverse Femtobarn an Daten bei einer Energie von 7 TeV
aufgenommen. Die bisher analysierten Daten geben nur sehr vage Hinweise auf
neue Physik an der TeV-Skala. Trotzdem erwartet man, dass sich an dieser Skala
neue Physik zeigt, die bekannte Probleme des Standardmodells behebt. In den
letzten Jahrzehnten wurden viele Erweiterungen des Standardmodells der Teil-
chenphysik und ihre Phänomenologie dazu ausgearbeitet. Sobald sich neue Physik
zeigt, stellt sich die Aufgabe, ihre Beschaffenheit und das zugrunde liegende Mo-
dell zu finden. Erste Hinweise können natürlich schon das Massenspektrum und
die Quantenzahlen wie z.B. die elektrische und die Farbladung der neuen Teilchen
liefern.
In zwei sehr bekannten und gut untersuchten Modellklassen, Supersymmetrie
und Extradimensionen, haben neue Teilchen allerdings sehr ähnliche Eigenschaf-
ten an der erreichbaren Energieskala. Beide Modelle führen Partnerteilchen zu
den bekannten Standardmodell-Teilchen ein, die, abgesehen von der Masse, sehr
ähnliche Eigenschaften besitzen. Aus diesem Grund ist es nötig, weitere Kriterien
zu ihrer Unterscheidung einzusetzen.
Ein hilfreicher Unterschied ergibt sich aus der Konstruktion beider Modelle:
Während in Modellen mit Extradimensionen die Partnerteilchen gleichen Spin
wie die Standardmodell-Teichen haben, ist der Spin der Partnerteilchen in super-
symmetrischen Modellen um 1/2 verschieden. Dieser Unterschied hat nun inter-
essante Auswirkungen auf die jeweilige Phänomenologie der Modelle.
Zum Beispiel kann man ausnutzen, dass die unterschiedlichen Spins die absoluten
Wirkungsquerschnitte beeinflussen. Diese Methode setzt allerdings voraus, dass
man die Massen und Kopplungsstärken sehr genau kennt. Eine weitere Heran-
gehensweise nutzt aus, dass Winkelverteilungen vom Spin der involvierten Teil-
chen abhängen können. Eine wichtige darauf basierende Methode stellt einen
Zusammenhang zwischen der invariante-Masse-Verteilung dΓ/dsff zweier Zer-
fallsprodukte und dem Spin des intermediären Teilchens, über welches der Zerfall
abläuft, her.
In dieser Arbeit untersuchen wir als erstes den Einfluss von Operatoren höherer
Ordnung auf die Spinbestimmung in Zerfallsketten. Wir klassifizieren als erstes
die relevanten Operatoren der Dimension 5 und 6. Wir berechnen die neuen Bei-
träge und diskutieren ihre Auswirkungen auf die Bestimmung von Kopplungen
und Spin in diesen Zerfällen.
Im weiteren betrachten wir zwei Szenarien, die nicht die üblichen Zerfallsketten
beinhalten:



In Dreikörperzerfällen kann die oben erwähnte Methode nicht angewendet wer-
den, da das intermediäre Teilchen nicht auf die Massenschale gehen kann. Sol-
che “off-shell” Zerfälle können in Szenarien wie split-Supersymmetrie oder split-
“Universal Extra Dimensions” wichtig sein. Man kann hier die sogenannte “Nar-
row width approximation” nicht anwenden, welche eine notwendige Vorausset-
zung für einen einfachen Zusammenhang zwischen Spin und der invariante-Masse-
Verteilung ist. Wir arbeiten eine Strategie für diese Dreikörperzerfälle aus, mittels
derer man zwischen den unterschiedlichen Spinszenarien unterscheiden kann. Die-
se Strategie beruht darauf, dass man hier die differentielle Zerfallsbreite als globa-
len Phasenraumfaktor mal einem Polynom in der invarianten Masse sff schreiben
kann. Die hierbei auftretenden Koeffizienten sind nur Funktionen der involvierten
Massen und Kopplungen, und wir zeigen, wie beispielsweise ihre Wertebereiche
und Vorzeichen dazu benutzt werden können, um den zugrunde liegenden Zerfall
zu bestimmen. Am Ende testen wir diese Strategie in einer Reihe von Monte
Carlo-Simulationen, und diskutieren auch den Einfluss des “off-shell” Teilchens.
Im letzten Teil betrachten wir eine Topologie mit sehr kurzen Zefallsketten, in der
man den oben genannten Zusammenhang zwischen Spin und invarianter Masse
ebenfalls nicht anwenden kann. Wir untersuchen eine bestimmte Variable, die
zur Unterscheidung von Supersymmetrie und “Universal Extra Dimensions” ein-
geführt wurde. Dabei nutzt man aus, dass sich das Problem im Hochenergielimes
auf die zugrunde liegenden Produktionsprozesse reduziert. Wir diskutieren, wie
man diese Variable auch in Szenarien anwenden kann, in denen dieser Limes keine
gute Näherung darstellt. Dazu betrachten wir die möglichen Spinszenarien mit re-
normierbaren Kopplungen und untersuchen im Detail, wie gut diese Variable zwi-
schen verschiedenen Spin-, Massen- und Kopplungsszenarien unterscheiden kann.
Wir finden beispielsweise, dass das Spinszenario, welches den supersymmetrischen
Fall beinhaltet, von den meisten anderen Spinszenarien gut unterscheidbar ist.



Abstract

By the end of the year 2011, both the CMS and ATLAS experiments at the Large
Hadron Collider have recorded around 5 inverse femtobarns of data at an energy
of 7 TeV. There are only vague hints from the already analysed data towards new
physics at the TeV scale. However, one knows that around this scale, new physics
should show up so that theoretical issues of the standard model of particle physics
can be cured. During the last decades, extensions to the standard model that
are supposed to solve its problems have been constructed, and the corresponding
phenomenology has been worked out. As soon as new physics is discovered, one
has to deal with the problem of determining the nature of the underlying model.
A first hint is of course given by the mass spectrum and quantum numbers such as
electric and colour charges of the new particles. However, there are two popular
model classes, supersymmetric models and extradimensional models, which can
exhibit almost equal properties at the accessible energy range. Both introduce
partners to the standard model particles with the same charges and thus one needs
an extended discrimination method. From the origin of these partners arises a
relevant difference: The partners constructed in extradimensional models have
the same spin as their standard model partners while in Supersymmetry they
differ by spin 1/2.
These different spins have an impact on the phenomenology of the two models.
For example, one can exploit the fact that the total cross sections are affected,
but this requires a very good knowledge of the couplings and masses involved.
Another approach uses angular distributions depending on the particle spins. A
prevailing method based on this idea uses the invariant mass distribution of the
visible particles in decay chains. One can relate these distributions to the spin
of the particle mediating the decay since it reflects itself in the highest power of
the invariant mass sff of the adjacent particles.
In this thesis we first study the influence of higher than dimension 4 operators on
spin determination in such decay chains. We write down the relevant dimension
5 and 6 operators and calculate their contributions to the invariant mass distri-
bution. We discuss how they affect the determination of spin and couplings.
We then address two scenarios which do not involve decay chains in the usual
sense.
In three body decays, the method pointed out above cannot be applied since
it can only be used if the mediating particle is produced on-shell. For off-shell
decays, which are important e.g. in split-Supersymmetry or split-Universal Extra
Dimensions, the narrow width approximation cannot be made which previously
led to the simple relation between spin and the highest power of sff . We work out
a strategy for these three body decays that can distinguish between the different
spin scenarios. The method relies on the fact that the differential decay width
dΓ/dsff can be rewritten in this limit as a global phase space function and a
polynomial in sff . The coefficients in this polynomial are functions of masses



and couplings and we show that they have distinct signs or ratios depending on
the spins involved in the decay. We test the strategy in a series of Monte Carlo
studies and discuss the influence of the intermediate particle’s mass.
In the last part we consider a topology with very short decay chains. Again
one cannot use the relation between spin and invariant mass. We investigate
one variable that has been invented for the discrimination of Supersymmetry and
Universal Extra Dimensions in the high energy limit which reduces the problem to
the underlying production process. We show how this variable can also be used in
new physics scenarios where the high energy limit is not a viable approximation.
We include all possible spin scenarios with renormalizable interactions and study
in detail the influence of the involved masses and couplings on the discrimination
power of this variable. We find for example that the scenario containing the
supersymmetric case is well distinguishable from most other spin scenarios.
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ŝ . . . . . . . . . . . . . . . 92

5.3.2 How does the phase space depend on
√
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Chapter 1

Introduction

Although it is a very successful and validated theory, one ingredient of the stan-
dard model (SM) of particle physics has not been confirmed so far, namely the
nature of electroweak symmetry breaking. The most popular and so far the sim-
plest mechanism to break electroweak symmetry is the Higgs Mechanism. It is
one of the main objectives of the Large Hadron Collider (LHC) to clarify which
mechanism is realized in nature.
Apart from this last ingredient of the SM, there are many important issues beyond
the SM (BSM) that are supposed to be answered with the LHC. For example, the
existence and nature of dark matter, possible solutions to the hierarchy problem,
hints towards a unification of gauge couplings, existence of additional spacelike
dimensions, additional gauge bosons or alternative solutions to the unitarity prob-
lem in vector boson scattering, just to mention a few. In the past decades, many
models and their corresponding collider phenomenology have been worked out in
detail to find solutions to these current issues beyond the SM.
There are compelling theoretical hints that new physics should show up at ener-
gies beyond 1 TeV, which is well within the reach of the LHC. As soon as new
physics is detected, the underlying theory that describes the data correctly has
to be understood in detail. Consequently one has to determine the mass spec-
trum and the quantum numbers of new particles as well as their couplings to the
already known particles and among each other.
In BSM models, new particles are often organized as partners of the already
known SM particles with the same gauge quantum numbers. Typically, one
has the superpartners of Supersymmetry (Susy) in mind, which comprise slep-
tons, squarks, gauginos and so on as partners of the SM leptons, quarks and
gauge bosons. However, in extradimensional models such as e.g. Universal Extra
Dimensions (UED), the new particles are also arranged as partners of the SM
particles. They are called Kaluza-Klein-leptons (KK), KK-quarks and KK-gauge
bosons. The particle sets of the two models differ by their spin relative to the
SM particles. While the supersymmetric partners differ by spin 1/2 (often called
the “opposite spin” scenario in the literature), the UED partners have the same
spin as the SM particles (“same spin” scenario).
Since one also wants to have a dark matter (DM) candidate, preferably a cold
one, to explain current astrophysical observations, one often incorporates a parity
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2 Chapter 1. Introduction

in the theory, implying a lightest neutral stable particle. In Susy and UED this
would be R-parity and KK-parity respectively and the corresponding particle is
called the lightest supersymmetric particle (LSP) and the lightest KK particle
(LKP). This implies that new particles that are odd under such a parity are only
produced in pairs at colliders. It also implies that the lightest stable particle is
always at the end of decay chains involving new particles. Due to its properties,
this LSP/LKP is supposed to leave the detector unrecorded and manifests itself
as missing energy.
Consequently, the two models can have similar signatures at hadron colliders.
If realized in nature, we will only be able to detect the first KK excitation and
maybe some of the lighter particles of the second KK excitation within the acces-
sible energy range of the LHC. This means that the particle spectrum is almost
the same as for the minimal supersymmetric standard model, the MSSM, and
both will look like a copy of the SM particles. Consequently, similar scattering
and decay processes can appear.
As we have explained above, there is one crucial difference between these two
scenarios: the Susy partners have opposite spin, while the KK partners have the
same spin as the SM particles. This means that it is not sufficient to merely
detect a new set of particles which looks like a copy of the SM particles and as-
sign the most popular model to it, but one needs to determine the spin of newly
discovered particles to be able to pin down the correct underlying model.
We thus concentrate on the important issue of model discrimination by spin
determination in processes with missing energy at hadron colliders. There are
mainly two methods for doing so: Firstly, via the total cross section. This method
depends crucially on the masses and coupling strengths and is hence very model
dependent, but in the context of specific models (fixing the couplings) it can give
an early idea about the involved spin. Here, one profits from the fact that due
to angular momentum conservation and different numbers of degrees of freedom,
particles with different spin have distinct decay rates and cross sections. Gener-
ally, the cross section for pair production of spin-0 particles is smaller compared
to spin-1/2 which is again smaller than that of spin-1 [1]. However, one needs
at least a complementary method which we find by looking at distributions of
certain variables constructed from the momenta of the visible particles.
Usually, this is done for long decay chains of new particles with (at least) one
invisible particle where one fixes the spin of the SM particles involved and stud-
ies the invariant mass distributions of the visible particles which depend, among
other things, on the spin of the invisible particles. Consider a decay chain where
one heavy particle decays into an SM particle and a lighter successor. The latter
is produced on-shell and decays into another SM particle and an invisible one,
e.g. the DM candidate. The invariant mass distribution of the two SM particles is
directly related to the spin of the intermediate particle and hence to some extent
also to the spins of the invisible and the initially decaying particle.
In this thesis we address open questions which arise if one relaxes the assump-
tions made for the spin determination in this approach. Firstly, we want to clarify
how higher dimensional operators affect the relevant distributions. Secondly, the
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derivation for this relation between spin and differential decay width requires a
subsequent decay of heavy particles into lighter ones. However, the condition that
all intermediate particles can go on-shell, is not fulfilled in all mass scenarios. For
example, quantum number conservation can forbid such a subsequent decay so
that the particle can only undergo a phase space suppressed three body decay.
Furthermore, the invariant mass is always derived from two SM particles which
are part of one decay chain. If one has very short decay chains, this is not always
possible.
Hence, we pursue the following questions:

1. What is the influence of new momentum dependent operators on spin anal-
ysis?

2. How can one determine the spin of particles if only three body decays
are available and one cannot exploit the commonly used relation between
invariant mass distribution and spins?

3. What can be done if the decay chain consists only of a single two body
decay containing just one visible particle?

This thesis is organized as follows: In Chapter 2, we first give an overview of
three important models beyond the SM which we refer to later in this thesis. We
give an introduction to spin determination and a pedagogical example how spin
affects distributions. The relation between invariant masses and the spin of the
intermediate particle in a simple decay chain is given at the end of this chapter.
In Chapter 3, we address our first question and investigate the influence of such
higher dimensional operators on the distributions. We write down the important
dimension 5 and 6 operators which carry momentum dependence and point out
with a simple power-counting argument, how they can in principle distort spin
analysis. We then calculate the new contributions in terms of masses and generic
couplings and discuss their size and the influence relative to the dimension 4
contributions. These new terms are important to consider for measurement1 of
couplings if one cannot otherwise exclude higher dimensional operators. Further-
more we calculate in detail why these contributions do not introduce any terms
endangering spin determination.
In Chapter 4 we address the second question and work out a new strategy for
discriminating different spin scenarios in the context of three body decays. We
consider all contributing topologies for these decays and discuss the leading con-
tributions of each. At the end of this chapter, we show the influence of mass
choices on our strategy and test it in a series of Monte Carlo studies.
Chapter 5 is dedicated to a specific topology with very short decay chains. This
topology is challenging since one cannot have an invariant mass distribution from
a single chain, and thus the standard approach for spin determination in decay
chains is not applicable. We use a variable proposed in 2005 [2] for measuring
spins in this topology. We include all possible spin scenarios with renormalizable

1By “measurement of couplings” we mean the ratio of left and right handed coupling con-
stants, not their absolute value.
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interactions and study the influence of the masses and couplings on the discrim-
ination power of this variable. In order to apply our results to hadron colliders,
we discuss a simple scheme that can be used to disentangle PDF and spin effects.
We conclude in Chapter 6. Selected analytic results, details on the implemen-
tation into Monte Carlo generators as well as additional figures are given in the
Appendix.



Chapter 2

Overview of Selected BSM Models and
Spin Determination

This year’s model dims and fades
Last year’s model is erased

(Fear Factory, “Corporate Cloning”)

In this chapter, we will give a short overview of three models which we will often
refer to in the following chapters. We choose Supersymmetry, Universal Extra
Dimensions and additional gauge bosons. We want to put the main emphasis on
the nature of the spin of the new particles. In the second part we will give a
pedagogical example on how a spin affects distributions of certain variables and
how spin is in principle determined in decays being present in the models above.

2.1 Spin in BSM models

2.1.1 Supersymmetry

We found [3–6] on Supersymmetry very helpful and follow their approach.

Relativistic quantum field theory (QFT) combines quantum theory and special
relativity and thus invariance under Poincare symmetry plays a central role. The
Poincare-algebra is a Lie-algebra and the generators of the translations Pµ and
Lorentz transformations Mµν satisfy

[Pµ, Pν ] = 0

[Pµ,Mρσ] = i (gµρPσ − gµσPρ)
[Mµν ,Mρσ] = i (gνρMµσ − gµρMνσ + gµσMνρ − gνσMµρ) .

One could now ask whether it is possible to embed the Poincare-algebra in a
larger algebra. This question was answered by Coleman and Mandula in 1967 [7]
with a theorem named after them, which states that, in viable QFT’s, there is no

5



6 Chapter 2. BSM Models and Spin Determination

extension of the Poincare-algebra except trivial ones with generators commuting
with the Mµν and Pµ.
However, if one relaxes one of the conditions of the Coleman-Mandula theorem
by including not only commutators but also anticommutators, such an exten-
sion becomes possible. Algebras which include both commuting and anticom-
muting objects are called graded Lie-algebras. The corresponding generators
are the so-called Supersymmetry generators Qa and the Lie-algebra is then a
Supersymmetry-algebra

[
Qα, Q

†
β̇

]
+

= −2 (σµ)αβ̇ Pµ; (2.1a)

[Qα, Pµ] =
[
Q†α̇, Pµ

]
= 0; [Qα, Qβ]+ =

[
Q†α̇, Q

†
β̇

]
+

= 0. (2.1b)

This is a symmetry between fermions and bosons. In the superspace formalism,
one chooses a representation of the supercharges with

Qα = −i
(
∂α + iσµ

αβ̇
θ
β̇
∂µ

)
; Q

α̇
= i
(
∂α̇ + iσµα̇βθβ∂µ

)
(2.2)

where θ, θ are Grassman-valued coordinates and transform as Weyl spinors. With
these, one extends the spacetime to the so-called supercoordinates (xµ, θa, θȧ).
They anticommute with themselves and commute with xµ

{
θa, θb

}
=
{
θȧ, θḃ

}
=
{
θa, θȧ

}
= 0; [xµ, θa] =

[
xµ, θȧ

]
= 0.

The fields in superspace now depend on the space-time coordinates xµ and θ, θ:

F = f(x, θ, θ).

Since θ are Grassman variables, all powers of θ higher than θαθ
α vanish due to

{θα, θα̇} = 0 and fields are always polynomials in the superspace coordinates

F(x, θ, θ) = f(x) + θη(x) + θξ + θθm(x) + θθn(x) +

+θσµθvµ(x) + θθθλ(x) + θθθψ(x) + θθθθd(x).

We want to emphasize here that the variables f,m . . . have so far no physical
meaning. However, they have a definite transformation behaviour: f,m, n, d
transform like scalars, ξ, λ, ψ, η like (left handed) Weyl spinors and vµ like a
vector field. F(x, θ, θ) is reducible with respect to the representation given in
equation 2.2 and it is possible to eliminate fields by introducing one of the two
constraints

Chiral: DF = 0 Vector: F† = F . (2.3)

In the first case, one commonly renames F = Φ, in the second case F = V . One
can solve these constraints and, for the first case, obtains the chiral superfield
(after formally shifting xµ → yµ = xµ − iθσµθ)

DΦ = 0→ Φ(y, θ) = φ(y) +
√

2θξ(y) + θθF (y) (2.4)
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where F is a complex auxiliary component with energy dimension 2 and thus
does not have a kinetic term, leaving the complex scalar φ and the Weyl spinor ξ
as the only dynamical fields. Solving for the second constraint given in equation
2.3, one obtains a vector superfield which, in Wess-Zumino gauge, can be written
as

V † = V → VWZ(x, θ) = θσµθAµ(x) + θθ θλ(x) + θθ θλ(x) +
1

2
θθ θθD(x) (2.5)

containing a vector field Aµ(x), a spinor λ and a real auxiliary field D(x). Using
the chiral covariant derivatives

Dα ≡ ∂α − iσµαβ̇θ
β̇
∂µ; Dα̇ = ∂

α̇ − iσµα̇βθβ∂µ (2.6)

we can define the supersymmetric field strength [5]

Wα = −1

4
DDe−VDαeV . (2.7)

Then the general supersymmetric renormalizable Lagrangian density for one non-
abelian gauge group can be written as

L =
1

16g2k
Tr
[(
WαWα

)
θθ

+ h.c.
]

+
[
Φ†i
(
eV
)
ij

Φj

]
θθθθ

+
([
W(Φi)

]
θθ

+ h.c.
)

(2.8a)

W(φi) = hiΦi +
1

2
mijΦiΦj +

1

3!
fijkΦiΦjΦk (2.8b)

whereW is the so-called superpotential. The group generators T a are normalized
as Tr

[
T aT b

]
= δabk.

In the Susy algebra, there is a global U(1) R-symmetry. From observation and
theoretical considerations it turns out that this U(1)R cannot be a continuous
symmetry in nature, but a discrete symmetry can be retained which gives a
discrete Z2. Under this symmetry, one can choose the transformations as

θ → −θ; Φ→ (−1)3(B−L)Φ (2.9)

for the coordinates and chiral superfields. This results in the so-called R parity

PR = (−1)3(B−L)+2S (2.10)

which forbids certain interactions in the superpotential which would otherwise
effect proton decay. If this parity is conserved, the phenomenology of supersym-
metric models is affected fundamentally. Only pair production of supersymmetric
particles is possible and if those particles decay again, the decay chain has to end
in a stable particle with PR = −1. The lightest particle with PR = −1 is stable
and thus can act as a Dark Matter candidate.
Since no supersymmetric partner of a SM particle has been found so far, Susy
must to be broken. To generate a realistic supersymmetric model like the minimal
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supersymmetric SM (MSSM), one can add soft-Susy breaking terms. A concrete
implementation that produces such soft-breaking terms is a hidden Susy breaking
sector which is only weakly coupled to the visible sector (MSSM) and thus can
avoid the problems of a direct breaking in the visible sector. There are two
popular “mediation” mechanisms which connect the two sectors: (i) Gravitational
mediation of Susy breaking where the two sectors are connected by gravity and
(ii) Gauge mediated Susy breaking where the mediation takes place via additional
chiral supermultiplets which couple on the one hand to a Susy breaking Vev and
are on the other hand also charged under the SM gauge groups. These new
particles are then the so-called messengers and induce soft breaking terms via
loop contributions.

The simplest Susy extension of the SM, the minimal supersymmetric SM has a
N = 1 Supersymmetry with soft breaking terms. In this model, every SM particle
state gets its own Susy partner and they are together in one supermultiplet.
The matter fermions are in the chiral supermultiplets LI , eI , QαI , U I , DI where
I is the generation index. The SM fermions therefore have scalar partners (so-
called sfermions: squarks and sleptons), the SM vectors are in vectormultiplets
and get fermion partners, the gauginos. The Higgs sector is represented by the
chiral superfields H and H which include two Higgs doublets and their Susy
partners, the higgsinos. A complex conjugated chiral multiplet is forbidden in
the superpotential, and so one needs to introduce one Higgs field for the up type
and one for the down type quark masses.

The superpotential (equation 2.8b) for the MSSM is

W = −yeIJHLIEJ − yQIJHQαID
α
J − yUIJHQαIU

α
J − µHH. (2.11)

Since Supersymmetry is not an exact symmetry in nature, there are additional
soft breaking terms. Those terms have always dimensionful couplings: Bilinear
terms (gaugino mass terms, scalar mass terms) and trilinear terms (sfermions to
Higgs interactions). We have summarized the particle content of the MSSM in
table 2.1 where we again want to emphasize that as a consequence of being in
one supermultiplet, the SM particles and their Susy partners differ by spin 1/2.
If the SM particle is a boson, its Susy partner is a fermion and vice versa.

2.1.2 Universal Extra Dimensions

As an introduction to this class of models we found [8–12] useful and follow
their approach. In this section we are interested in a subset of extra dimensional
models with one flat extra dimension of the size R−1 ∼ 1 TeV [13,14] compactified
on a S1/Z2 orbifold where all SM particles can propagate into this single extra
dimension. This propagation formally leads to a infinite number of particles, the
Kaluza-Klein tower of excitations, with the same quantum numbers as the original
SM fields, which is the key feature of this model. One usually denotes the 3+1
coordinates with xµ and indices µ, ν ∈ 0, 1, 2, 3 and y as the extra coordinate and
the indices M,N ∈ 0, 1, 2, 3, 5. Each of the 5D fields can be Fourier expanded in
terms of this compactified dimension y. Since we need chiral SM model particles
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SM particles Susy partners

Fermions Scalar bosons

Lepton sector e, µ, τ, νe, νµ, ντ ẽ1/2, µ̃1/2, τ̃1/2

Quark sector u, d, c, s, t, b ũ1/2, d̃1/2, c̃1/2, s̃1/2, t̃1/2, b̃1/2

Gauge bosons Gauginos/Higgsinos (fermions)

Gauge sector W±, Z, γ; ga

Higgs sector H0, A, h0, h
±

}
χ̃±1 , χ̃

±
2 , χ̃

0
4, χ̃

0
3, χ̃

0
2, χ̃

0
1; g̃a

Table 2.1: Particle content of the MSSM.

in the zero mode of the KK tower, but chirality does not exist in 5D, one chooses
the compactification with the orbifold parity P5 : y → −y which eliminates extra
degrees of freedom at the zero KK level. This is equivalent to choosing boundary
conditions in the 5th dimension for the component fields as e.g. for the boson
field φ

φ+(x, y) :

(
∂ φ(x, y)

∂ y

)∣∣∣∣
y=0,πR

= 0 Neuman boundary cond. (2.12a)

φ−(x, y) : φ(x, 0) = φ(x, πR) = 0 Dirichlet boundary cond. (2.12b)

The two fields φ+/φ− are even/odd under this parity. The fourier expansion for
a scalar field φ(x, y) is

φ(x, y) =
1√
2πR

(
φ0(x) +

√
2

∞∑

n=1

(
φ+
n (x) cos

(ny
R

)
+ φ−n (x) sin

(ny
R

)))
.

Here, φ±n (x), φ0(x) are 4D fields and the latter one is identified with a (possible)
SM scalar. The components for n > 0 are the KK excitations. Depending on
the choice of boundary conditions, the field φ is then either odd or even so that
either (φ0 and φ+) or (φ−) exist. For a vector field AM (x, y) in 5D one can also
assign this parity P5 such that the Aµ, µ = 0, 1, 2, 3 components are the even
gauge fields and the A5 component is odd. The KK expansion is

Aµ(x, y) =
1√
πR

(
A0
µ(x) +

√
2

∞∑

n=1

(
Anµ(x) cos

(ny
R

)))
(2.13a)

A5(x, y) =

√
2√
πR

∞∑

n=1

(
A5(x) sin

(ny
R

))
. (2.13b)
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The fields Aµ and A5 obey the Neuman and Dirichlet boundary conditions re-
spectively as in equation 2.12. In the case of fermions we need to have chiral
SM fermions at the n=0 level. That leads to some complications in 5D since
here chirality does not exist due to a missing 5D equivalent of the γ5 matrix as
already mentioned. Consequently, one cannot construct 5D left and right handed
components coupling differently to gauge fields. Therefore one introduces two
5D fermion fields with opposite orbifold parity ψL,R, where the zero mode is the
SM ψSML,R component. In 4D, one can then set ψSM = PLΨ0

L + PRψ
0
R with the

ordinary projection operators PL/R = (1 ∓ γ5)/2. The decomposition for the
fermion fields is then

ψR = PRψ
+
R + PLψ

−
R : (2.14a)

ψ+
R =

1√
2πR

(
ψ0
R(x) +

√
2

∞∑

n=1

ψnR(x) cos
(ny
R

))
;

ψ−R =
1√
πR

( ∞∑

n=1

ψnR(x) sin
(ny
R

))
;

ΨL = PLΨ+
L + PRΨ−L : (2.14b)

Ψ+
L =

1√
2πR

(
Ψ0
L(x) +

√
2
∞∑

n=1

Ψn
L(x) cos

(ny
R

))
;

Ψ−L =
1√
πR

( ∞∑

n=1

Ψn
L(x) sin

(ny
R

))
.

The left handed component ψ+
R/Ψ

+
L is even and the right handed component

ψ−R/Ψ
−
L is odd under the orbifold symmetry P5 : ψ → ±γ5ψ. The KK excitations

of the right-handed SM fermion are denoted with lower case letters ψ, while those
of the left-handed SM fermions are denoted with capital letters Ψ. We show the
fermionic particle content of minimal UED (MUED) model in table 2.2. Since it
is not for interest in this discussion, we want to refer to [9] for the full Lagrangian.
We want to make a note on the mass spectra in this model. At tree level, the mass
Mn of the n-th KK excitation just depends on the size of the extra dimension R
and the zero KK mode mass M0, which is the SM particle mass,

Mn =

√
n2

R2
+M2

0 (2.15)

which leaves us with highly degenerate masses in the first KK excitation basically
forbidding decays. In [15], radiative corrections to the KK masses are calculated.
The enhancement of the KK masses for the first mode for R−1 = 500 and ΛR = 20
is around 20% for the KK quark and gluon masses. These corrections originate
from the bulk compactification violating 5D Lorentz invariance and from the
discrete symmetry P5 which is also not 5D Lorentz invariant. In a non-minimal
UED model, one would also allow for boundary terms at the cut-off scale Λ that
affects the mass scenarios.
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Let us at last say something about the KK-parity which provides a similar mech-
anism as in Susy for having a stable KK particle, the LKP. If one demands an
additional symmetry y → πR − y for the Lagrangian, one has a general conser-
vation of KK number so that a single KK mode cannot couple to two SM fields.
This KK parity forces the sum of the three KK mode numbers in an interaction
to be even

(−1)(k+l+m) = 1.

In a three particle vertex with one SM particle with KK number 0, the other
two particles in the interaction have to have the same KK number (l=m) and no
single KK mode can couple to two SM particles. This KK number conservation
is in UED satisfied at every vertex but is broken at loop level, so that higher KK
modes can always decay into lower (lighter) ones, but the lightest particle of the
lowest KK mode is stable and cannot decay further. We depict the two parities of
UED in figure 2.1. Phenomenologically this is a nice feature since the lightest KK

y = −πR y = 0 y = πR

KK Parity

P5 Parity

Figure 2.1: Orbifold partity P5 and KK parity of the extra dimension y. The
orbifold parity associates the points of the complete extra dimension via y → −y,
the KK parity transforms the points in one half of the interval with y → πR−y. The
KK parity remains as a symmetry of the model while the orbifold parity is modded
out in the compactification.

mode can serve as a Dark Matter candidate. After taking radiative corrections
into account which rescind the mass degeneracy of the n = 1 mode, the lightest
KK mode is the gauge boson B′. This particle is stable, electrically neutral and
not colored and thus can serve as a DM candidate. The current preferred Dark
Matter scale is around R−1 = 1.3 TeV [16] which is noticeably affected by decay
channels of KK particles from the 2nd mode. A mass below 1 TeV is so far only
accessible in a non-minimal model. In the following years, the LHC should be
able to test for KK excitations up to a R−1 ≈ 1.5 TeV [14,17].

2.1.3 Additional gauge bosons: W ′ and Z ′

In the models described so far, new particles would be revealed by missing energy.
Due to some parity they decay into lighter ones including at least one invisible
particle.
In the following we consider new vector bosons which would unveil themselves
as a resonance in scattering amplitudes of two protons to W,Z pairs, leptons or
jets. These new bosons are generically named W ′ or Z ′ bosons and are colour-
neutral and electrically charged/neutral respectively. They are usually assumed
to be gauge bosons which can come out of various BSM-models such as additional
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n Leptons Quarks
...

1 LnL =

(
νnL
EnL

)
;LnR =

(
νnR
EnR

)
; enR, enL QnL =

(
UnL
DnL

)
;QnR =

(
UnR
DnR

)
; unR, unL; dnR, dnL

0 L0
L =

(
νL
EL

)
e0R Q0

L =

(
UL
DL

)
; u0R d0R

SU(2)W × U(1) U(1) SU(2)W × U(1) U(1)

Table 2.2: Fermionic particle content for MUED. We take the notation from [9],
where all right-handed SM fermions are denoted with lower case letters, and the
left-handed SM fermions are denoted with capital letters.

U(1) gauge groups or GUT models with exceptional groups (E6/E8). Little Higgs
models provide a Higgs as a pseudo-Nambu-Goldstone boson of a broken global
symmetry which can also come with new gauge bosons. Additionally, in KK-
models as above, the KK-excitations of the SM Z and W bosons are also called
W ′, Z ′ bosons and have similar characteristics as extra gauge bosons. However,
they tend not to couple strongly to pairs of light modes in KK models.
For all of those models, one can describe their interaction with the SM fermions
with a generic Lagrangian [17]

Z ′ :
∑

gen.

i Z ′µ

(
g
′L
e eLγ

µeL + g
′R
e eRγ

µeR + g
′L
ν νLγ

µνL

+g
′L
u uLγ

µuL + g
′R
u uRγ

µuR + g
′L
d dLγ

µdL + g
′R
d dRγ

µdR

)

W ′ :
∑

gen.

i W ′µ

(
uiγ

µ
(
g
′R
q(i,j)PR + g

′L
q(i,j)PL

)
dj + νiγ

µ
(
g
′R
l(i,j)PR + g

′L
l(i,j)PL

)
ej

)

+ h.c.

where u, d, e, ν are the left/right handed SM particles and the couplings g′ are
either free parameters or fixed by the specific models. If the bosons are sensitive
to the generation, then the couplings g′ depend on the generation. For the W ′

boson, the indices i, j label the fermion generations. Note that we have here
included a right handed neutrino, which can be left out by setting the corre-
sponding coupling g

′R
l(i,j) to zero. Furthermore, additional gauge bosons cannot

be introduced randomly, but have to be anomaly-free, and amplitudes with mas-
sive spin-1 particles are only unitary at high energies if they are remnants of a
spontaneously broken gauge symmetry. The quantum numbers of those gauge
bosons have to be chosen such that they do not violate gauge-invariance for the
SM particles.
These particles were and are mainly searched for at LEP, Tevatron and the LHC
as resonances in scattering amplitudes and single production such as pp/pp/ee→
Z ′X → l+l−X or pp/pp/ee → Z ′X → W+W−X where X denotes missing
energy. The invariant mass distributions and angular distributions of the vis-
ible particles are used to search for the resonances and, if they are found, to
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determine their spin. The best current limits for sequential SM couplings are
mW ′ > 2.15 TeV for the W ′ [18] and mZ′ > 1.83 TeV for Z ′ [19]. Depending on
the specific model, these limits can change drastically.

2.2 Spin determination at hadron colliders

In the second part of this chapter we turn our interest to the question how the
spin of the particles involved in the decay affects distributions.
In the following we will look at a pedagogical example of a particle decaying into
two fermions and a third particle, and see how the spin and the helicity affect the
angular distribution of the visible particles, in our case the two fermions. Since
angles are frame-dependent, we choose as the observable the invariant mass of
the two fermions. We will sometimes refer to the angle θ which is then the angle
between the two fermions in the rest frame of the decaying particle.

2.2.1 How does spin affect decays: a simple example

Let us look at decays of the form

X(pX ,mX)→ f(pf ,mf ) f(pf ,mf ) Y (pY ,mY ) with X,Y ∈ S, V. (2.16)

were S, V stand for scalar and vector respectively. We investigate the differential
decay rate as a function of the invariant mass sff = (pf + pf )2 . To simplify
the discussion, we take the fermions as massless and the intermediate particle
as heavy so that we can neglect the momentum dependent part of the fermion
propagator. In the rest frame of the decaying particle, sff (for massless fermions)
is a function of the angle between the two fermions: sff = E1E2 · (1 − cos θff ).
Thus, for sff = 0 the angle between the two fermions is θff = 0◦, and sff = smax
corresponds to the maximal angle between the two fermions, θff = 180◦. In the
first case, both fermions move in the same direction, while in the second case, they
are back to back in the centre of mass frame. Let us understand the individual
cases in the following.
• S → ffS: In this case, we have a decaying spin 0 particle and a spin 0 daughter
particle. From spin conservation we only have one possible helicity assignment
for the fermions if they are collinear, i.e. parallel or back to back. They have to
have a spin projected onto the quantization axis of +1/2 and −1/2 respectively
to give a total spin of 0 along this axis. One can see this from the matrix element
Mfi which for this decay reads

Mfi = uf (grPR + glPL)SI(n
∗
l PL + n∗rPR)vf '

1

MI
uf (grn

∗
l PR + gln

∗
rPL)vf

since in the limit of a very heavy intermediate particle the corresponding prop-
agator reduces to SI = 1/(/p −MI) ' 1/MI . We can now consider the extreme
cases sketched in figures 2.2 and 2.3. In the first one, the spin projected onto the
quantization axis has the same value for both fermions. The configuration on the
right hand side of figure 2.2 vanishes due to the helicity structure in the matrix
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element (PLPR) while the process on the left hand side is in principle allowed.
However, since we have a scalar decaying into massless fermions and a scalar,
the squared matrix element is proportional to sff , and nevertheless vanishes for
sff = 0. In the case of figure 2.3 we have two fermions with opposite spins with
respect to the quantization axis. The right side in this figure shows the allowed
helicities for sff = smax. Since the squared matrix element is again proportional
to sff , we have a contribution on this side. For sff = 0 the amplitude vanishes
already on matrix element level. The resulting distribution is shown in figure 2.4
(green/large dashed).

Y XY
f1
f2

S: +1/2 H: +1/2

S: +1/2 H: +1/2√
f1 X

Y

f2

S: +1/2 +1/2

H: -1/2 +1/2

×
Figure 2.2: Forbidden process for scalar decay. Due to spin conservation, this
process is forbidden. For sff = smax the amplitude is 0 due to the helicities of the
fermions. For sff = 0 the amplitude, which is proportional to sff , is also zero.

Y XY
f1
f2

S: +1/2 H: +1/2

S: -1/2 H: -1/2

×
f1 X

Y

f2

S: -1/2 +1/2

H: +1/2 +1/2√

Figure 2.3: Allowed scalar decay for sff = 0 (left side) and sff = smax. The
distribution is shown in figure 2.4 (green/large dashed).

• S → ffV : Since the vector can have polarization ±1, 0, this process has a
more involved structure. However, one can at least explain the trend. The
matrix element reads:

Mfi = uf (grPR + glPL)SIγµ(n∗l PL + n∗rPR)vf ε
µ
Y

' 1

MI
uf γµ(grn

∗
rPL + gln

∗
l PR)vf ε

µ
Y .

We can thus either have the two fermions back to back, in which case they have
to have the same spin projected on the quantization axis, or they are in the same
direction, in which case they have to have opposite spin. This corresponds to
a polarization for the vector of either ±1 which gives a transversal vector (for
s = smax), or polarization = 0 which is the longitudinal polarization. Thus,
for both sff = 0 and sff = smax we have a contribution, and in the limit
sff → 0 and sff → smax the amplitudes are proportional to ((mX/mY )2 − 1)
and (m2

X −m2
Y ). The first one is larger and diverges as mY → 0 which reflects

the massive polarization sum which was taken for this vector. This can be nicely
seen in the blue/small dashed distribution in figure 2.4.
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• V → ffS: In this case, we start with a spin 1 boson. We can follow a similar
reasoning as above but end up with the opposite result, namely that there is a
maximal contribution sff = smax. This distribution we can see in the pink/small
dashed line in figure 2.4.
• V → ffV : There are several limiting cases to be considered for this decay. The
matrix element is given by

Mfi = uf γµ(grPR + glPL)SIγν(n∗l PL + n∗rPR)vf ε
µ
Y ε

µ∗
X

' 1

MI
uf γµγν(grn

∗
l PL + gln

∗
rPR)vf ε

ν
Y ε

µ∗
X . (2.17)

In this decay we have several combinations of fermion helicities and their orienta-
tion with respect to the decaying vector. Consequently, on can now in principle
get a non-vanishing matrix element squared for all sff in contrast to S → ffS,
which has an equivalent chirality structure. For the special combination of cou-
plings gR = gL = nL = nR as shown in figure 2.4 (cyan/dot-dashed) one has the
specific case where the matrix element vanishes for sff = 0.
Obviously, these simple results change if one considers fermion masses and a
massive propagator.

PS
(S,S)
(S,V)
(V,S)
(V,V)
(F,F)s

d
Γ

d
s f
f

:
P
S

0 smaxsff

Figure 2.4: Invariant mass distribution for the decays X → ffY , with X,Y ∈ S, V
from equation 2.16. The letters in parentheses denote the decays with particles
(X,Y ). We have chosen mf = 0 and mX/mY = 0.1. In order to disentangle spin
effects from phase space contributions, the differential decay rate is divided by the
global phase space factor.

2.2.2 Spin determination in decay chains

Let us now look at expected signatures from the decays of BSM particles at a
hadron collider. As we have seen, both (M)UED and Susy can have a parity
that predicts pair production of some BSM particles and a stable, probably un-
detectable particle. We have also seen that the partner particles in Susy are
organized as opposite spin partners, and in UED as same spin partners to the
SM, which is due their respective origin from supermultiplets or KK-towers.
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A decay in these models thus looks similar: a new unstable heavy particle X is
produced at a hadron collider which will subsequently decay into lighter particles
A,B, . . . ,K, L and a bunch of SM particles or jets, and a stable, undetectable
particle Y which is usually the Dark Matter candidate of the respective model.
Such a decay chain is sketched in figure 2.5 where SMi, i = 1, 2, 3, 4 should denote
the SM particles/jets and X,A,B . . . are the new particles.

X

SM1 SM2 SM3 SM4

A B . . . K L Y

Figure 2.5: Example of a decay chain of a heavy particle X into SM particles and
BSM particles A,B . . . and a stable BSM particle Y which remains undetected.

To contrast Susy and UED in such a decay chain, let us look at a simple example
with a short chain of subsequent decays

X(p)→f(q1)I(pI)→ f(q2)Y (q3). (2.18)

In UED, the decaying particle can be a KK-excitation of a gluon (vector) whereas
in Susy, the corresponding particle would be a Majorana gluino, both depicted
in figure 2.6. Both particles decay, assuming the squarks/ KK-quarks are lighter
than the gluino, into squarks/ KK-quarks and finally in a neutralino/B’. The
visible particles are SM model fermions f, f from which we reconstruct the in-
variant mass distribution sff = (q1 + q2)2. Since we want to know which is the
model realized in nature, we have to determine the spins of the particles A,B . . .
in figure 2.5, which in our example corresponds to the bosonic/fermionic nature
of squarks/quark’ in figure 2.6.

χ̃

tt̃

g̃
t

B′

t′

t
g′

t

Figure 2.6: Decays with the same signature (two SM-fermions and missing energy)
in Susy (left) and UED (right) scenario. The spin of the BSM particles is different:
The decaying and the invisible particles in Susy are Majorana fermions while they
are vector particles in UED.

For decay chains involving more than or at least two visible decay products one
can build one or more invariant mass distributions of different visible particles.
From reconstructing these, we can investigate two properties of the underlying
model:
The endpoints of these distributions depend on the masses of the involved par-
ticles and these “kinematic edges” can be used to reconstruct the masses even
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of the invisible particles. For a detailed review on this topic investigating dif-
ferent models see [20] with references therein, for new studies concentrating on
parameter determination in Susy models see e.g. [21].
While these endpoints are fixed by kinematics, the shape of the differential dis-
tribution is sensitive to the spin of the decay products. Each spin and coupling
scenario has its specific signature as we have illustrated in the simple example
in Section 2.2.1 for off-shell decays. In the case of subsequent decays, this prop-
erty has been studied widely and discussed for various decay chains [2,20,22–37]
where in many cases model dependent assumptions have been made. In [38–42]
s-channel resonances have been investigated. One can also get information on
the spin from cross section measurements [1].
Complications of these methods are among other things that one needs to know
or guess which particles belong to which decay chain (if there are two-sided decay
chains, as can be present in Susy/UED with a parity), and also the assignment of
near and far lepton or quark in a decay chain with at least three particles. This
alters the distribution and washes out the effects.

We are interested in the invariant mass of two SM particles which come out of
a decay chain as above. Here one can get the spin of the intermediate particle
as in figure 2.6 via the specific dependence of the differential decay rate on the
invariant mass.
In subsequent decays, this method relies on plane wave decomposition of a matrix
element depending on the energy s and two angles θ, φ into a reduced matrix
element and spherical harmonics [43],

M(s, θ, φ) =

∞∑

l=0

l∑

m=−l
M(s)l,mYl,m(θ, φ).

The spherical harmonics can be expressed with the Wigner-d/D rotation matrices
or the reduced Wigner rotation matrix d [43, 44]

Yl,m(θ, φ) =

√
2l + 1

4π
Dl∗
m0(φ, θ,−φ); Dj

m,m′(θ, φ, γ) = e−im
′θdjm′m(θ)e−imγ

where φ, θ, γ are the three Euler angles. One can now make use of this expansion
and thus the helicity amplitude for the decay of an unstable particle with orbital
momentum J , and its projection on the z-axis M , (J,M) → (j1, λ1), (j2, λ2) is
given by

M(J,M)
(j1,λ1),(j2,λ2) =

√
2J + 1

4π
DJ∗
M,λ(φ, θ,−φ)MJ

λ1,λ2

=

√
2J + 1

4π
ei(M−λ)φdJM,λ(θ)MJ

λ1,λ2

with λ = λ1 − λ2. If we go to the rest frame of this decaying particle, we can
replace J = S since all orbital momentum vanishes and we have

M(S,M)
(j1,λ1),(j2,λ2) =

√
2S + 1

4π
DS∗
M,λ(φ, θ,−φ)MS

λ1,λ2
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=

√
2S + 1

4π
ei(M−λ)φdSM,λ(θ)MS

λ1,λ2 .

The angle θ is now the angle of one of the decay products with respect to some
quantization axis e.g. of the initial particle’s spin, and φ is the azimuthal angle
around this axis. The spin information of the initial particle S is now purely
contained in the rotation matrices dSM,λ which can be expressed as [45,46]

dJM,λ(θ) =
∑

k

(−1)k

[ √
(J + λ)!(J − λ)!(J +M)!(J −M)!

k!(J − λ− k)!(J +M − k)!(k + λ−M)!

]

×
(

cos
θ

2

)2(J−k)+M−λ (
sin

θ

2

)(2k+λ−M)

(2.19)

where one sums over all k guaranteeing positive factorials. In the rest frame of
the decaying particle, J = S, and the differential decay rate is

dΓ

dΩ
=

pf
32π2m2

∣∣∣M(S,M)
λ1λ2

∣∣∣
2
,

and is hence quadratic in dSM,λ, leading to a polynomial in cos θ with maximal
degree 2S according to equation 2.19.
For an amplitude of a scattering process a(λa)+ b(λb)→ i(J,M)→ c(λc)+d(λd)
the helicity amplitude in the rest frame of the particle i reads [43]

Mλaλb
λcλd

(S, θbc, φ) = (2S + 1)dSλi,λf (θbc)e
iφ(λi−λf )MS

λi,λf
(2.20)

where θbc is the scattering angle of the process. Note that MS
λiλf

is the reduced
matrix element and thus does not depend on the angles θ, φ. Using crossing
symmetries, this can be rewritten as the decay a(λa)→ b(λb) + c(λc) +d(λd) [47]

Mλa
λbλcλd

(S, θbc, φ) = (2S + 1) dSλi,λf (θbc)e
i(λi−λf )φMS

λiλf

with λi = (λa−λb), λf = (λc−λd) and the scattering angle of two of the products
θbc. The Wigner-d/D rotation matrices dSM,λ are a polynomial in cos θbc/2 of
degree 2S (as given in equation 2.19). After squaring, this leads to a polynomial
in cos θbc of degree 2S

∑

pols.

|M|2 = a0 + . . .+ a2S−1 cosbc θ
(2S−1) + a2S cosbc θ

2S

=

2S∑

i

ai cos(θbc)
i. (2.21)

Since we want to study frame-independent variables, we rewrite equation 2.21 in
terms of the invariant mass sff = (q1 + q2)2 of two of the decay products, and
the cos θbc dependence of the squared matrix element translates into 1

d Γ(X → ffY ) = dsff

2S∑

i

bi s
i
ff . (2.22)

1sff ∝ E1E2 − ||~q1||~q2| cos θbc with q1, q2, E1, E2 being momenta and energies of the decay
products.
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The differential decay rate for the amplitude of equation 2.18 has now maximal
degree 2S where S is the spin of the intermediate particle I and bi are the coeffi-
cients of the polynomial which are only functions of the masses and the coupling
strengths.
From this distribution, one can hence reconstruct the polynomial that is needed
to explain the data and to find via the highest power 2S, the spin S of the inter-
mediate particle. Depending on whether the visible SM particles SM1, SM2, . . .
in figure 2.5 are fermions or bosons, one can also determine the fermion line(s).
For a detailed study see e.g. [35, 43].
In figure 2.7 we show such distributions for decays where the intermediate par-
ticle is a scalar (black dashed), a vector particle (grey dotted) and a fermion
(black solid). The distribution for an intermediate scalar is just a constant as
expected from equation 2.22, the one for fermion is of order s1

ff and the scalar

has a parabolic distribution of order s2
ff . In the literature, most of these dis-

tributions are shown for mff with m2
ff = sff which gives a Jacobian factor.

Although the kinematical edges for mass determination are more obvious using
this variable, we find that for spin determination the shape is better reflected for
the distribution over sff .
These properties are widely investigated and will be used to discriminate various
spin scenarios as soon as there are data of such decay chains with missing energy.
As we have already pointed out in the introduction on page 3, there are some in-
teresting cases where the simple relation given in equation 2.22 cannot be applied.
The next three chapters are dedicated to these problems and their discussion and
solution.
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Figure 2.7: Invariant mass distribution of two fermions in a decay X → ffY
with SM particles f, f for intermediate fermion, scalar and vector. The events
are arbitrarily normalized. For intermediate scalar, the distribution is ∝ s0ff , for

fermion ∝ s1ff and for intermediate vector ∝ s2ff according to equation 2.22. The

kinematic edges are usually displayed as dΓ/dmff with m2
ff = sff which gives a

better impression for mass studies. The influence of the spin is however more obvious
to see in the terms of sff .



Chapter 3

Anomalous Couplings in Spin Deter-
mination

In this chapter we investigate the influence of non-renormalizable momentum
dependent operators on decay chains. We calculate the contributions of these op-
erators to the differential decay width and give the results for generic couplings.
Their influence is important with regard to two aspects: Firstly, from a simple
power counting argument, these higher dimension operators can in principle con-
tribute a higher order in sff in equation 2.22 and distort spin analysis with this
method. Secondly, these operators can have an effect on the measurement of the
couplings 1 and one has to take their contributions into account in addition to the
dimension 4 operators which are discussed in [33]. In this chapter, we first sum-
marize the set-up and give the power counting argument why new operators can
in principle distort spin determination. We derive the corresponding decays with
momentum dependent dimension 5 operators and give the modified coefficients
bi appearing in equation 2.22 as functions of the original and the new couplings
and the masses involved. We discuss explicitly how contributions of momentum
dependent operators to misleading powers of sff vanish.

3.1 Setup and kinematics

We investigate the decay chain

X(p,mX)→ f(q1,mf )f(q2,mf )Y (q3,mY ) (3.1)

where X,Y can be scalars, vectors or spin 1/2 fermions. We summarize the
notation in figure 3.1. We define the Mandelstam variables as

sff := s = (q1 + q2)2 = (p− q3)2; u = (q1 + q3)2 = (p− q2)2; (3.2a)

t = (q2 + q3)2 = (p− q1)2 (3.2b)

where sff is the invariant mass of the two visible SM fermions and the variable
we are interested in. For the calculation of the differential decay rate dΓ/dsff

1By “measurement of couplings” we mean the ratio of left and right handed coupling con-
stants, not their absolute value.

20
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p,mX

q2,mf

pI ,mI

q1,mf

q3,mY
X Y

f f̄

1 2

Figure 3.1: Notation for decay in equation 3.1. The double lines denote the
particles with unknown spin and the boxes stand for dim. 4 and dim. 5 couplings.
In the following we refer to the vertex with “1” as the first and the vertex with “2”
as the second vertex and we denote the corresponding coupling Γ1S,V .

one usually replaces one of the variables, e.g. u, via Mandelstam’s relation

u = 2 m2
f +m2

X +m2
Y − t− sff (3.3)

and integrates out the remaining invisible invariant mass, (in this case t) for
which the upper and lower bounds are

t± =
(
m2
f +m2

X +m2
Y − sff

)

±

√
sff

(
−4m2

f + sff

)(
m4
X +

(
m2
Y − sff

)2 − 2m2
X

(
m2
Y + sff

))

2sff
.

The other remaining visible invariant mass sff has then the kinematical bounds2

sff− = (2mf )2; sff+ = (mX −mY )2. (3.4)

For the sake of completeness we also give the propagators and polarization sum
used (here without NWA). The fermion propagator, the scalar propagator and
the vector propagator (unitary gauge) are respectively

/F pI =
i
(
/pI +mI

)

p2
I −m2

I + imIΓ
; (3.5a)

WpI ,s =
i

p2
I −m2

I + imIΓ
; WpI ,v =

−i
(
gµν − pµI pνI/m2

I

)

p2
I −m2

I + imIΓ
(3.5b)

and the polarization sums for external vector bosons are

∑

s

ε(k)sµ · ε(k)sν∗ =
kµkν

k2
− gµν ; (3.6a)

∑

s

us(k)ūs(k) = k/+m;
∑

s

vs(k)v̄s(k) = k/−m. (3.6b)

2From sff = (q1 + q2)2 = (m2
1 + m2

2 + 2(E1 ·E2 − cos θ|~p1||~p2|)) = (m2
1 + m2

2)2, with the
condition for the lower bound (fermion 1 and 2 get minimal energy) E1 = E2 = 0, cos θ = 0
and hence |qi| = mi, analogous for the upper bound where the fermion 1 and 2 get maximal
energy and hence the other two particles minimal energy (Ex = Ey = 0): sff = (p − q3)2 =
(m2

X +m2
Y + 2(ExEy − cos θ|~p||~q3|))2 = (mX −mY )2.
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If we want to make use of the spin-argument in Section 2.2, we need to have the
mass hierarchy mX > mI > mY so that the intermediate particle I is on-shell
and the decay is then

X(p,mX)→ f(q1,mf ) + I(pI ,mI)→ f(q1,mf ) + f(q2,mf ) + Y (q3,mY ) (3.7)

where we have explicitly introduced the intermediate particle I with momentum
pI and mass mI . This decay will normally take place if the subsequent decay is
possible from conservation of quantum numbers or colour flows since the produced
particles only decay into lighter ones. Three body decays as considered in the
next chapter are always suppressed by phase space and the mass of the mediating
particle.
One usually makes in this case the narrow width approximation (NWA) where
one assumes that the width of the particle ΓI is small compared to its mass (see
e.g. [43] or [48]).
We use NWA to calculate the (differential) decay width and replace the propa-
gator of the intermediate particle with its width and a delta function that fixes
the invariant mass to the on-shell mass of the particle

1

(sff −m2
I)

2 +m2
IΓ

2
I

≈ π

mIΓI
δ(sff −m2

I). (3.8)

In this approach, one usually calculates the separate decays for this process and
multiplies them together with this factor instead of using the full propagator.
The complete decay rate is then given by

Γ2→n = Γ2→n−1
Γ1→2

Γtotal
(3.9)

where Γtotal is the total width of this particle. Since the NWA approach treats the
spin of the particles by averaging over the initial polarizations and summing over
the final particles’ polarizations, one does not keep helicity and spin information
properly. Since we are explicitly interested in the spin information, we need
to include these effects. There are two possibilities: one can either use helicity
density matrix methods or calculate the full process and afterwards take the limit.
Since this decay with the full propagator has a clear and simple structure, we
will use the second method. However, for the first method we refer the reader to
Section 5.1.2 where we derive the cross section for a more involved topology by
using helicity density matrix methods.
The decay width is given by

dΓ =
1

(2π)3

1

32m3
X

∑

pol.

|M|2(X,Y ) ds dt (3.10)

where we sum over the initial and average over the final polarizations. We first
replace all Mandelstam-u-parameters with the Mandelstam relation from equa-
tion 3.3 and then set the intermediate particle on-shell with t = (q2 + q3)2 = m2

I
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so that we effectively integrate out t. The Mandelstam variables become in this
limit

t = (p− q1)2 = (q2 + q3)2 = m2
I (3.11a)

u = (q1 + q3)2 = (p− q2)2 = 2m2
f +m2

X +m2
Y − sff −m2

I . (3.11b)

After using NWA, the endpoints of the invariant mass distribution sff differ from
equation 3.4 due to the kinematics altered, and are given by [17]

sff− = (2mf )2 sff+ =
(m2

X −m2
I)(m

2
I −m2

Y )

m2
I

. (3.12)

In this approach, we do not need to worry about the wrong treatment of the
polarizations of the intermediate particle since we automatically include all spin
effects by using the full propagator for the intermediate particle.

3.2 Operators

The basic operator structures are given in [49] which, however, involves only
the SM fields as external particles. In our examples new particles are allowed
including additional gauge interactions with covariant derivatives Dµ = ∂µ− iAµ
and field strengths Fµν = (∂µAν − ∂νAµ + . . .). We assume that these additional
gauge groups are broken at a scale as a new scalar φ gets a vacuum expectation
value (VeV) vφ inducing a dim. 5 and dim. 6 operator via

φ

Λ2
→ vφ

Λ2
=

1

Λeff
. (3.13)

We get two classes of momentum dependent operators: fermion-fermion-vector
(f-f-V) interactions and fermion-fermion-scalar (f-f-S). For the (f-f-V) interactions
we have

LgD4 =(Aµψ1γ
µ (glPL + grPR)ψ2 + h.c.) (3.14a)

LaD5 =
1

Λa

(
ψ1σ

µν (alPL + arPR)ψ2Fµν + h.c.
)

(3.14b)

LD6 =
1

Λ2

(
(Dµψ1) (blPL + brPR)ψ2D

µφ+ h.c.
)

→ LbD5 =
1

Λb

(
(∂µψ1) (blPL + brPR)ψ2(−iAµ) + h.c.

)
(3.14c)

LD6 =
1

Λ2

(
ψ1 (clPL + crPR)Dµψ2D

µφ+ h.c.
)

→ LcD5 =
1

Λc

(
ψ1 (clPL + crPR) ∂µψ2(−iAµ) + h.c.

)
(3.14d)

and for (f-f-S) interactions

LnD4 =
(
φψ1 (nlPL + nrPR)ψ2 + h.c.

)
(3.15a)
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LxD5 =
1

Λx

(
ψ1γ

µ (xlPL + xrPR)ψ2D
µφ+ h.c.

)
(3.15b)

LyD5 =
1

Λy

(
(Dµψ1)γµ (ylPL + yrPR)ψ2φ+ h.c.

)
(3.15c)

LzD5 =
1

Λz

(
ψ1γ

µ (zlPL + zrPR) (Dµψ2)φ+ h.c.
)
. (3.15d)

We can see that for both (f-f-V) and (f-f-S) interactions there is a new covariant
derivative acting on each of the fields in one interaction which then gives the
momentum dependence. Obviously, not all are independent, e.g. by partial
integration one can transfer one of the derivatives to the other two fields. In
principle one could also consider dim. 6 operators for the (f-f-S) case but as we
will discuss below, no new features will arise in such a case.

3.3 Influence of the dimension 5 operators

In the following we give a simple power counting argument why the interactions
considered here can in principle give a new contribution. Then we have a look at
the relevant decays and give further examples.

3.3.1 Naive expectation

Let us investigate a simple example: In the case of X,Y being fermions and an
intermediate scalar I, the matrix element for dim. 4 vertices reads

MD4,D5 ∝ (u(f)(1 + λ1 /k1)u(X))
(
u(Y )(1 + λ2 /k2)v(f̄)

)

|M|2D4,D5 ∝ Tr
[
/q1(1 + λ1 /k1)/p(1 + λ1 /k1)

]
× Tr

[
/q3(1 + λ2 /k2) /q2(1 + λ2 /k2)

]
.

For showing what happens, we have restricted ourselves to pure scalar couplings
and set the axial couplings to zero in this discussion. Furthermore we have
introduced λi which is just the (mass dependent) ratio of the dim. 4 to the
dim. 5 coupling strength. The momenta p, q1 . . . are chosen as introduced in
equation 3.1. The part of the coupling with “1” is the normal dim. 4 coupling,
the term with λi /ki is the anomalous part with a momentum dependence ki. The
momentum ki is a momentum or a combination of momenta which can appear
in the interactions given in equation 3.15 and is not specified further here since
it is not important for our example.

The first Dirac trace for the dim. 4 interaction in NWA is just ∝ p · q1 = t +
const. = m2

I + const., the second one is ∝ q2 · q3 = t+ const. = m2
I + const. and

both are independent of sff . In the case of an intermediate scalar I, the decay
rate is therefore constant and does not depend on sff .

However we see that for the λi/ki terms, the trace is affected and new scalar
products and hence new momentum combinations show up which could give a
new dependence on sff depending on the specific form of ki. This could then
distort the spin analysis with the approach given in equation 2.22.
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3.3.2 Relevant decays

We have to consider only those processes where the two external SM fermion
are connected via the intermediate particle I. The topology, where the two SM
fermions couple directly to the mediating one at one single vertex gives just a
mass peak in the invariant mass distribution at the intermediate particle’s mass
mI .

For all six decays we find that after calculating the complete decays and taking
the NWA as described in Section 3.1, none of the anomalous couplings give a
contribution to a new power in sff and thus equation 2.22 holds also in the
presence of anomalous couplings. The specific form of the coefficients in this
equation however changes but this is at least suppressed with the scale 1/Λi of
the corresponding operator.

For intermediate fermions, we have the following processes which we denote with
the short forms in the parentheses

S → ff̄S (S, S); S → ff̄V (S, V ); V → ff̄S (V, S); V → ff̄V (V, V )

and we calculate the differential decay rate

d Γ

dsff
= A · s0

ff +B · s1
ff (3.16)

where A,B are the coefficients of the polynomial and just depend on the masses
and coupling strengths involved. The Feynman graphs for the corresponding
decays are the first four in figure 3.2. The explicit analytic results are shown in
the Appendix B.1. We give the full result for (S,S), whereas for readability we
reduce the analytic results for (S,V), (V,S), (V,V) to the case with an overall
scale Λx = Λy = . . . = Λ and show it only up to order 1/Λ2. Note here, that the
lowest order interference terms of an anomalous coupling and the dimension 4
interaction always vanish and the leading contribution is already of order 1/Λ2.
Consequently, the contribution of the dimension 5 operators is highly suppressed.
The higher order contributions such as 1/Λ3, 1/Λ4 . . . are interference terms of
two anomalous couplings.

Figure 3.2: Feynman diagrams for the decays involving intermediate fermions and
a scalar/vector boson. The boxes denote the dim. 5 couplings. In comparison to the
diagram in figure 3.1, the diagrams are rotated clockwise for π/2 so that the upper
line denotes the decaying particle X.
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The relevant decays with intermediate bosons are

(F, F )S F
S−→ ff̄F

d Γ

dsff
= A · s0

ff (3.17a)

(F, F )V F
V−→ ff̄F

d Γ

dsff
= A · s0

ff +B · s1
ff + C · s2

ff . (3.17b)

A,B,C are again functions of the couplings and the masses involved. The Feyn-
man graphs for these decays are the last two in figure 3.2. In Appendix B.1 we
give the explicit results simplified with Λx = Λy = . . . = Λ as above. We see that
the lowest order interference terms again vanish and the leading contribution is
of order 1/Λ2. Since the differential decay width (F, F )S is a constant in sff , we
do not show it separately.

To illustrate how these contributions of the dim. 5 operators affect the differen-
tial decay rates, we show the differential decay distributions for all six decays in
figure 3.3. The masses and the couplings are chosen as

mX = 1 TeV mY = 0.15 TeV mf = mf̄ = 0 TeV (3.18a)

mI = 0.4 TeV λ = 3 TeV (3.18b)

nl = 1, nr = 0.1; gl = 1, gr = 0.1; (3.18c)

al = 1, ar = 0.3; bl = 0.4, br = 0.5; cl = 0.8, cr = 0.7; (3.18d)

xl = 0.4, xr = 0.3; yl = 0.5, yr = 0.3; zl = 1, zr = 0.1; (3.18e)

where the couplings are given in equations 3.14 and 3.15 with values chosen
randomly between [0,1].
We show the complete dim. 4 (black dashed) and dim. 5 distribution (red solid) for
each decay and just for comparison include the NWA (dim. 4, NWA: black dotted;
dim. 5, NWA: grey solid) result. For all decays, the NWA result is a very good
approximation to the complete decays including the full propagator. The only
difference is at the kinematic edges where the approximation does not take the
possible off-shellness of the intermediate particle into account. The NWA result
obviously yields only a line/parabola and not the smooth edges of the complete
result. The influence of the dim. 5 operators in this mass/coupling scenario is
the largest in the (F, F )V followed by the (V, S) decay. The first one is clear
since here, the polynomial for this decay in equation 2.22 is the longest and thus
there are 3 coefficients (minus the relative normalization) which can be influenced
while in the decays via fermions, the polynomial has only two coefficients (minus
the relative normalization). In the (F, F )S decay, the influence of the anomalous
coupling is not present since the decay rate is constant in NWA. There is also
a tiny effect for the other decays including vector particle (V, V ), (S, V ), (V, S)
since here one gets a stronger mass dependent relative shift of the coefficients via
the vector polarization sum(s) in comparison to the decay (S, S).
In reasonable scenarios, the mass of the decaying particle, which is the highest
scale in the decay, satisfies mX < Λ. Due to the fact that the leading term is
already of order 1/Λ2, the contribution from the anomalous interactions is of
order (mX/Λ)2 and thus tiny.
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Figure 3.3: Differential decay rate over the invariant mass sff for the dim. 4
(black) and the dim. 5 (red/grey) couplings for intermediate fermions/bosons (first
two row/last row). We show the exact results (solid/dashed) and NWA results
(solid/dotted). The masses and couplings are chosen as in equation 3.18. The
effects of the anomalous coupling are very weak and are stronger when there is a
vector particle due to the momentum dependence of the polarization sum and the
vector propagator.
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3.4 Discussion

In the beginning of Section 3.3 we have given a simple power counting argu-
ment, why higher dimension operators are in principle capable of introducing
new powers of sff to equation 2.22. In the following we discuss in detail how
these additional terms cancel.
We concentrate here on the following four decays since for (S,V) and (V,S) the
same arguments apply as for (V,V) or (S,S). The amplitudes for these decays
include dim. 4 and dim. 5 interactions given in equations 3.14 and 3.15

M(S,S) = u(q1)
(
ΓD4

1 S + ΓD5
1 S

)(/p− /q1 +mI

(p2
I −m2

I)

)(
ΓD4∗

2 S + ΓD5∗
2 S

)
v(q2) (3.19a)

M(V,V ) = εµ(p)εν∗(q3)u(q1)
(
ΓD4

1 S + ΓD5
1 S

)
µ

(
/p− /q1 +mI

(p2
I −m2

I)

)

×
(
ΓD4∗

2 S + ΓD5∗
2 S

)
ν
v(q2) (3.19b)

M(F,F )S =
(
u(q1)

(
ΓD4

1S + ΓD5
1S

)
u(p)

)
·
(
u(q3)

(
ΓD4

2S + ΓD5
2S

)
v(q2)

)
(3.19c)

M(F,F )V =
(
u(q1)

(
ΓD4

1V + ΓD5
1V

)
µ
u(p)

)
·
(
u(q3)

(
ΓD4

2V + ΓD5
2V

)
ν
v(q2)

)

×
(
gµν − pµI pνI/m2

I

p2
I −m2

I

)
. (3.19d)

We denote which couplings carry Lorentz indices by writing down the couplings
with

(
ΓD4

1V + ΓD5
1V

)
µ

to emphasize the contractions. The indices “1,2” in the cou-
plings denote the first or the second vertex of the decay.

3.4.1 Dimension 4 operators

Let us first investigate decay 3.19a with renormalizable dim. 4 couplings ΓD4
1 S

(ΓD5
1 S = 0) to see how the highest power of sff arises. These term must come

from the part in the propagator which is momentum dependent since the massive
part mI just gives a constant (=massive) contribution. The same is the case for
the polarization sum u(p)sū(p)s =

∑
s /p + m after squaring the matrix element

and summing over all polarizations. Thus we neglect the massive/constant part
of the amplitude in the following. Furthermore we suppress the left/right handed
projectors since they are irrelevant for the general discussion (in this decay, we
will just leave out the couplings Γ1S,2S since they do not carry Lorentz nor spinor
indices). Whenever we make such a simplification, we use the symbol ’∼’ to
emphasize that in this step in the calculation all unimportant non-leading orders
(masses etc.) are dropped and we concentrate only on the maximal contribution
of the momenta. The matrix element is then given by

∑

pols

|M(S,S),D4| ∼
∑

pols

(
u(q1) /pIv(q2)

) (
v(q2) /pIu(q1)

)
∼ Tr

[
/q1 /pI /q2 /pI

]

∼


8 (p · q1 − q2

1)︸ ︷︷ ︸
(1)

p · q2 + 4 (q2
1 − p2)︸ ︷︷ ︸

(2)

q1 · q2


 . (3.20)
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From the Mandelstam variables in the NWA limit given in equation 3.11 we only
get a sff term from the scalar products

p · q2 → sff + const.; q1 · q3 → sff + const. (3.21a)

q1 · q2 → sff + const. p · q3 → sff + const. (3.21b)

while the remaining scalar products just give a mass and hence a constant con-
tribution

p · q1 → const.; q2 · q3 → const. (3.22)

Consequently, the first bracket (1) in equation 3.20 gives just a mass term times
(p · q2), which can only contribute with one power of sff according to equation
3.21. The second bracket (2) gives again a mass term, while (q1 · q2) is again only
one power of sff . This means that the whole expression has the maximal order
of O(s1

ff ):

∑

pols

|M|2(S,S) ∼ O(sff
1) ∼ O(sff

2 · 1/2) (3.23)

which is exactly what we would expect from the discussion in Section 2.2 for an
intermediate fermion.
For the decay with two external vector bosons in equation 3.19b we derive the
squared amplitude

∑

pols

|M(V,V ),D4|2 ∼
∑

pols

(
u(q1)γµ /pIγνv(q2)

) (
vγν′(q2) /pIγµ′u(q1)

)
· εµ(p)εν∗(q3)

∼ Tr
[
/q1γµ /pIγν /q2γν′ /pIγµ′

]
· p

µpµ
′

m2
X

· q
ν
3q
ν′
3

m2
Y

∼ 4
(
2p · q1 −m2

X

)2
(2p · q1 p · q2 −m2

Xq1 · q2). (3.24)

The scalar product (p · q1) is just a mass term, while the scalar products in the
second bracket give a contribution to O(s1

ff ), but no higher terms according to
equation 3.11.
We now turn to the decays with intermediate bosons, starting with equation 3.19c
where we expect a constant matrix element squared. In contrast to the decays
above, we have two fermion lines here

∑

pols

|M(F,F )S ,D4|2 ∼
∑

pols

(u(q1)u(p)u(p)u(q1)) (u(q3)v(q2)v(q2)u(q3))

∼ Tr
[
/q1/p
]
Tr
[
/q2 /q3

]
∼ (q1 · p) (q2 · q3) (3.25)

which in NWA give just the mass of the intermediate particle and no sff contri-
bution which is intuitively clear since the numerator of the scalar propagator is
independent of a momentum. Hence there is no connection between the fermions
with momentum q2 and q3 which could give and sff dependence.
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In the case of the intermediate vector boson, we have
∑

pols

|M(F,F )V ,D4|2 ∼
∑

pols

(u(q1)γµu(p)u(p)γνu(q1))
(
u(q3)γν′v(q2)v(q2)γµ′u(q3)

)

× (gµν − pµI p
ν
I

m2
I

)(gµ
′ν′ − pµ

′

I p
ν′
I

m2
I

)

∼ Tr
[
/q1γµ/pγν

]
Tr
[
/q2γν′ /q3γµ′

]
· (gµν − pµI p

ν
I

m2
I

)(gµ
′ν′ − pµ

′

I p
ν′
I

m2
I

)

∼ 16(−gµµ′p · q1 + pµqµ
′

1 + pµqµ
′

1 )(−gνν′q2 · q3 + qν2q
ν′
3 + qν2q

ν′
3 )

× (gµν − pµI p
ν
I

m2
I

)(gµ
′ν′ − pµ

′

I p
ν′
I

m2
I

). (3.26)

In comparison to equation 3.25, we have the additional contributions of pµqµ
′

1 . . .
which can then be contracted with the momenta of the trace of the second fermion
line. These contractions give new momentum combinations and one can see that
terms of the form (q1 · q2) (p · q3) arise which according to equation 3.21 give a
O(s2

ff ) contribution characteristic for intermediate vector bosons.

3.4.2 Dimension 5 operators

Now we generalize the discussion to dimension 5 operators. We focus here on the
leading powers of sff and thus of the momenta, and show explicitly why they
vanish. Analogous to above, we will therefore only investigate the kµkν

m2 term of
the propagator or polarization sum for vector bosons, and only the /k part in
fermionic propagators. As before, we denote these steps in the calculation with
“∼”. Recall that only the specific momentum combinations in equation 3.21
can give a term proportional to sff , all others give just a massive (constant)
contribution.
We start with the decay (F, F )S from equation 3.19c including the anomalous
dim. 5 couplings ΓD5

S . To see what happens, we abbreviate the dim. 5 couplings
for the first and the second vertex with

ΓD5
1S = A1 · /p+B1 · /q1 + C1 · pI ; ΓD5

2S = A2 · /q2 +B2 · /q3 + C2 · pI (3.27)

where Ai, Bi, Ci include the chiral couplings for the first and the second ver-
tex which are not relevant for the following arguments and have therefore been
abbreviated for better legibility. The amplitude for the dim. 5 couplings then is

M(F,F )S ,D5 ∼
{
u(q1)

(
A · /p+B · /q1 + C · pI)

)
u(p)

}

×
{
u(q3)

(
A2 · /q2 +B2 · /q3 + C2 · pI

)
u(p)

}
. (3.28)

By using the Dirac equation

/pu(p) = mp u(p); u(p)/p = u(p) mp (3.29)

for all parts with momenta given in equation 3.28, we see that all these contribu-
tions are proportional to mX ,mY ,mf

3. Nevertheless, the coefficients in equation

3Since pI = (p− q1) = (q2 + q3).



3.4. Discussion 31

2.22 are changed due to these new terms, but no new power of sff appears.

In the case of the decay (F, F )V give in equation 3.19d we have the following
anomalous coupling

ΓD5µ
1V = A1 ·σµαpI α +B1 q

µ
1 + C1 · pµ; (3.30a)

ΓD5µ
2V = A2 ·σµαpI α +B2 q

µ
2 + C2 · qµ3 . (3.30b)

and with the matrix element in equation 3.19d we see that the index µ is always
contracted with the momentum pµI = (p− q1)µ = (q2 + q3)µ from the propagator.
This leads to the contractions

σµαpI αpI µ; (p− q1)µq1 µ; (p− q1)µpµ (3.31a)

at the first vertex and

σµαpI αpI µ; (q2 + q3)µq2 µ; (q2 + q3)µq3 µ (3.31b)

at the second vertex. The contractions with the antisymmetric σµα matrix give
zero, the other terms give a mass dependence and either a scalar product (p · q1)
or (q2 · q3). In NWA these are just proportional to the mass of the intermediate
particle mI and do not give a new sff dependence according to equation 3.22. All
other contractions are of the same order of sff as the terms arising from dim. 4
couplings.

Let us now consider the decays with intermediate fermions, starting with the
decay (V, V ) of equation 3.19b. We shorten the couplings analogous to above
with

ΓD5µ
1V = A1σ

µαpα +B1p
µ
I + C1q

µ
1 ; ΓD5µ

2V = A2σ
ναq3 α +B1p

ν
I + C1q

ν
2 (3.32)

where we have again summarized the chiral parts of the couplings in the coeffi-
cients Ai, Bi, Ci with i = 1, 2 for the first and the second vertex. The momenta
of the anomalous couplings are contracted with the polarization vectors of the
external vector bosons. The squared matrix element is given by

∑

pols

|MV V D5|2 ∼

∼
(
u(q1)(A1σ

µαpα +B1p
µ
I + C1q

µ
1 ) /pI(A2σ

ναq3 α +B1p
ν
I + C1q

ν
2 )v(q2)

)

×
(
u(q1)(A1σ

µ′αpα +B1p
µ′

I + C1q
µ′

1 ) /pI(A2σ
µ′αq3 α +B1p

µ′

I + C1q
µ′

2 )v(q2)
)†

· εµ(p)εµ′(p)
∗εν(q3)εν′(q3)∗︸ ︷︷ ︸

(pµpµ
′
)

m2
X

(qν3 q
ν′
3 )

m2
Y

. (3.33)

We know from the transversality condition that

ε(k) · k = 0 (3.34)



32 Chapter 3. Anomalous Couplings in Spin Determination

so that the parts of equation 3.33 where pµI = (p−q1)µ = (q2+q3)µ is contracted to
the polarization vector are zero. From these we only have the remaining momenta
q1 and q2 from the first and the second vertex respectively. They are now in the
polarization sum contracted to either p (for the first vertex) or q3 (for the second
vertex) which is again in NWA proportional to m2

I and gives no sff contribution.
The remaining part is the term with the antisymmetric σ matrices which give 0
since they always contract the same vector’s momentum.

The last decay we have to investigate is the one of equation 3.19a. We again
abbreviate the couplings with

ΓD5
1S = A1/p+B1 /q1 + C1 /pI ; ΓD5

2S = A2 /q2 +B2 /q3 + C2 /pI

and the matrix element reads

MSS D5 ∼
(
u(q1)(A1/p+B1 /q1 + C1 /pI)( /pI +mI)(A2 /q2 +B2 /q3 + C2 /pI)v(q2)

)
.

We can again use the Dirac equation given in equation 3.29 and get rid of the
parts with /q1 and /q2. Since we use NWA we can replace the propagator backwards
by the spinor sum

∑
pols u(pI)u(pI) = ( /pI + mI) so that we can also reduce

pIu(pI) = mIu(pI) and hence get rid of the remaining momenta. The complete
amplitude then has no remaining momenta and gives a constant like the dim. 4
amplitude.

Since one can apply the same arguments for the remaining decays (S, V ) and
(V, S) we will not go through the explicit argumentation for these decays.

The main reasons why higher dimension operators do not change the overall
lepton and quark invariant mass spectra of the decays can be summarized as
follows

1. Additional sff dependence, which is equivalent to additional cos θ depen-
dence, can only arise through the following products (which are not inde-
pendent!): (q1 · q3), (p · q2), (p · q3), (q1 · q2). All other ((p · q1) and (q2 · q3))
give in NWA sums of masses squared, see e.g. equation 3.22.

2. The antisymmetric part, e.g. the σµν part, of the (f-f-V) interaction gets
always contracted with the same momentum of the vector boson due to the
polarization sum/propagator and hence gives zero.

3. The momentum dependent parts in the (f-f-V) coupling kµ relate only mo-
menta within a given vertex. In NWA the momentum conservation at a
given vertex implies that all scalar products of momenta can be expressed
either as masses squared or as t = m2

I .

4. Momenta contracted with γ matrices yield only masses after using the Dirac
equation.

5. Transversality condition for the (f-f-V) vertex with external vector bosons.
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We have checked that the same reasoning also applies for dim. 6 operators.
Higher than dim. 6 operators should play no role as at this stage higher order
corrections due to emission of gluons and photons become important.
It should be emphasized here that these arguments are also true not only for (eff.)
dim. 5 operators as written down in the Section 3.2 but also for all higher order
operators. Their structure is again a linear combination of the three (or two)
momenta appearing in the vertex and the arguments are again valid in NWA.

In conclusion, new dimension 5 operators alone have no effect on spin determina-
tion in decay chains. However, they distort measurements of the couplings as e.g.
proposed in [33] where only dimension 4 operators are assumed. Nevertheless,
those contributions are suppressed by a factor of 1/Λ2 and are, as we have also
seen in a numerical example, very small and most likely smaller than the sta-
tistical uncertainty. These results show, how anomalous interactions in principle
influence spin analysis. Based on the analytic expressions given in this chapter,
detailed studies of the impact on measurements of couplings are possible and an
interesting subject for future research.



Chapter 4

Spin Discrimination in Three Body De-
cays

In the 1950’s, C. Bouchiat and L. Michel [50] [51] were able to pin down the
electroweak (V −A) interaction of the W boson with leptons and neutrinos with
the help of the muon decay. The calculations back then were done without prior
knowledge of the existence of the W boson and the decay was treated in this
Fermi theory as an effective four fermion interaction. This type of decay where
the mediating particle is rather heavy compared to the other particles involved
is called three body decay.
In this chapter we will have a closer look at three body decays in the context of
model discrimination with particle decays at the LHC. Little attention is paid to
this topic in the literature, since the effects of those decays are suppressed with
the mass of the heavy intermediate particle. However, if the subsequent two body
decay is forbidden kinematically and is only possible via a heavier particle than
the mother particle (as in the muon decay), one has to pay attention to these
important decays. The spin of the mediating particle cannot be determined with
equation 2.22 any more, since it is not valid in the context of a three body decay
as we have elaborated in Section 2.2.
In contrast to model dependent approaches [34, 52], we develop a bottom-up
approach which can be used for all models with heavy intermediate particles and
renormalizable operators.
We organize this chapter as follows: We first formulate the problem and sketch the
objective. Then we introduce our notation, the relevant topologies and vertices
and show afterwards, that the invariant mass contains enough spin information
to extract the spins of the unknown particles in such a decay scenario. We
will present the strategy including a discussion of the impact of different decay
topologies, discuss the influence of the mass of the off-shell particle and conclude
with a test of our strategy in a series of Monte Carlo examples.

34
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4.1 Objective

We investigate decays of a directly produced particle X decaying via a three body
decay

X(p,mX)→ f(q1,mf )f̄(q2,mf )Y (q3,mY ) (4.1)

into two SM-fermions f, f̄ and a new invisible particle Y , which escapes detection.
The p, qi, i = 1, 2, 3 are the four momenta of our particles, and mi, i = X, f, Y
are the masses. The particles X and Y can either be scalars (S) (spin-0), vectors
(V ) (spin-1) or Majorana/Dirac fermions (F ) (spin-1/2)1 and we abbreviate the
decays with S → ff̄S, S → ff̄V , V → ff̄S, V → ff̄V , F → ff̄F by (S, S),
(S, V ), (V, S), (V, V ), (F, F ) respectively. We assume that Y is a colour singlet
as it should serve as a potential dark matter candidate.
We assume that all 2-body decays of X are either kinematically forbidden or
at least loop-suppressed compared to this tree level three body decay. In these
decays, all particles mediating them, which are collectively denoted by I with
mass mI , are very heavy compared to the decaying one, X, so mI � mX . An
example is e.g. split-Susy [53] where the squarks are heavier than the gluino; or
split-UED [54]. Usually, the masses in one KK level are degenerate at tree level
due to equation 2.15, but with the introduction of specific boundary terms, one
can split the degeneration such that the KK partner to the gluon is lighter then
the KK partners to the quarks. Both scenarios are a very good example for the
similarity of mass spectra of Susy and UED at the TeV range. Also, in higgsless
supersymmetric models, such three body decays can be present [55].
Since we want to treat the spin information of equation 4.1 as general as possible,
we take the most generic Lagrangian with arbitrary couplings of the same order
O(1) and dimension 4 operators in contrast to the last chapter. From this we
calculate the widths for the decays of X assigning different spins to X and Y ,
respectively.
We integrate over the momentum of the escaping particle Y so that we are left
with the invariant mass distribution s of the two observable fermions. In the case
of a mediating on-shell particle one derives the decay in NWA and ends up with
the simple relation in equation 2.22 for the discrimination of spins.
Since our mediating particle is off-shell, we can obviously not take this approach
and hence cannot use this relation so that we have no indications of the medi-
ating particle’s spin. The question arises, whether one can find a similar, model
independent argumentation for the distinction of different spin scenarios.
We discuss in this chapter, that there is enough spin information in three body
decays with one invisible particle, but the correlation between the degree of the
polynomial and the spin of the mediating particle is not as simple as in equation
2.22. Instead, we give the resulting expressions as a phase space factor times a
Laurent series (actually polynomials in most cases) of a dimensionless variable ŝ

1In the following we denote with “fermions” only spin-1/2 particles, although in general,
fermions are of course all particles with half-integer spin. Since we consider only renormalizable
interactions, we restrict ourselves to spin-1/2 fermions.
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which is derived from the invariant mass sff = (q1 + q2)2 where q1 and q2 are
the four momenta of the SM-fermions. Our approach for the distinction of the
various spin scenarios does not rely on the degree of sff (because there is no
unique correlation) but on the coefficients of this Laurent series. They depend
only on the couplings and masses of the particles involved and the question arises,
if and how one gets information on the spins without knowing these quantities
explicitly. As it turns out, we have to assume in our approach that the mass of
Y and the mass difference (mX −mY ) are known within a given uncertainty but
in general we do not need any information about the underlying couplings.
So the basic idea is that different spin assignments lead to different relations be-
tween these coefficients which can be exploited to discriminate between the spin
scenarios unambiguously. There is however one obstacle: one cannot exclude on
logical grounds that there is a ’conspiracy’ between the couplings suppressing the
dominant terms in the expansion. This complicates life somewhat but even in
that case relations between the coefficients are maintained as discussed below.
In the first discussion, we will consider the decays of a particle X charged under
SU(3)C into two massless quarks and Y which is a colour singlet. Considering
coloured particles in the first place is motivated by the fact that they in general
have sizeable cross sections at the LHC. Moreover, due to gauge invariance only a
subset of all topologies are allowed which simplifies the obtained expressions con-
siderably. The additional features of either taking X as an SU(3) singlet and/or
the case that the SM-fermions are massive (i.e. top quarks) will be discussed
afterwards.
In general the new particle X will be pair-produced in the production process
and one has to worry about how to distinguish the products of the two decaying
particles for each side of the two branches of such a symmetric production. In
practice one can avoid this problems as in general several decay channels will be
open, e.g. a supersymmetric gluino can either decay according to g̃ → q̄qχ̃0

1 with
q being a light quark of the first two generations or g̃ → b̄bχ̃0

1. Therefore, one has
to take events where two different final states can be observed. Although this
will reduce the statistics to some extent, it will also allow to use the techniques
proposed below on several final states and thus cross-checks of the results are
possible.

4.2 Notation, setup and kinematics

4.2.1 Kinematics

We have already introduced the notation for the masses and the momenta of the
particles involved in this decay in equation 4.1. In contrast to a NWA approach
where the mediating particle is on-shell, one has to consider here also interference
terms of all possible topologies leading to three final state particles. There are
three topologies in this case and their Feynman graphs are shown in figure 4.1.
We will later discuss the contribution of each one which explicitly depends on the
propagator of the mediating particle.
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We use the Mandelstam variables

sff = (p− q3)2 = (q1 + q2)2 ; t = (p− q2)2 = (q1 + q3)2

and u = (p− q1)2 = (q2 + q3)2 = −s− t+m2
X +m2

Y + 2m2
f

and we introduce the dimensionless parameters τi and ŝ

ŝ =

(
4τ2
f + (τY − 1)2

)
− 2sff

m2
X(

4τ2
f − (τY − 1)2

) ; τY =
mY

mX
; τf =

mf

mX
; τC =

MC

mX
(4.2)

where MC denotes dimensionful couplings, e.g. as they appear in the ZZH vertex
or the trilinear soft Susy breaking parameters Ai. The invariant mass ŝ is chosen
such that ŝmin = −1 and ŝmax = 1 which turns out to be useful in the context of
the fitting procedure later on.

Y

X

N∗
i

Gi

Y

X
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G∗
i Y
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Figure 4.1: Topologies for three body decay.

Instead of the on-shell limit for the mediating particle, we take the limit on the
far side of the mass range, where mI � mX . We therefore expand the matrix
elements squared in powers of

ε =
mX

mI
. (4.3)

Now, we can perform the integration over t so that we integrate over the momen-
tum of the unobserved particle Y . For the t-integration we have the bounds in
terms of the variables defined in equation 4.2

t± =
1

4
m2
X

(
(τY + 1)2 + ŝ

(
4τ2
f − (τY − 1)2

)

±
(
(τY − 1)2 − 4τ2

f

)
×

√√√√√
(1− ŝ2)

(
(1− ŝ)((τY − 1)2 − 4τ2

f ) + 8τY

)

4τ2
f + (τY − 1)2 + ŝ

(
(τY − 1)2 − 4τ2

f

)


 (4.4a)

and we define the variable

PS =

∫ t+

t−

dt

=
(
(τY − 1)2 − 4τ2

f

) m2
X

2

√√√√√
(1− ŝ2)

(
(1− ŝ)((τY − 1)2 − 4τ2

f ) + 8τY

)

4τ2
f + (τY − 1)2 + ŝ

(
(τY − 1)2 − 4τ2

f

)

(4.4b)
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and will refer to this function as the “phase space” PS. As we can see here, this
function is the integral of 1 dt and shows up globally for all decays. Since we
exemplify the main features for massless SM-fermions, we display equation 4.4
for this massless case:

t± =
1

4
m2
X

(
(τY + 1)2 − ŝ(τY − 1)2

±(1− τY )
√

(1− ŝ) ((1− ŝ)(τY − 1)2 + 8τY )
)

(4.5a)

PS =
1

2
m2
X(1− τY )

√
(1− ŝ) ((1− ŝ)(τY − 1)2 + 8τY ). (4.5b)

After expanding in ε given in equation 4.3, the differential decay rate can now be
expressed as

dΓ

dŝ
=

PS

(2π)3 256 mX

(
Z

(aŝ+ b)2
+

A

aŝ+ b
+B + C · ŝ+D · ŝ2 + E · ŝ3 + F · ŝ4

)

(4.6)

where a =
(

(τY − 1)2 − 4τ2
f

)
and b =

(
(τY − 1)2 + 4τ2

f

)
. The prefactors Z,A,

. . . , F are functions of ε, the τi and the couplings. Note that Z and F only appear
in the case of the decay (V, V ).

4.2.2 Topologies and vertices

We want to be as general as possible and use a bottom up approach. There are
22 possibilities to assign different spins to the three topologies in figure 4.1. We
show them in table 4.1, grouped by the underlying topology and hence sorted
by the propagator. For the underlying interactions, we write down the most
general renormalizable Lagrangian leading to the corresponding couplings. We
use an unconventional style of writing, where we denote the fields of the particles
with their names, e.g. XS for a scalar field, if X is a scalar or f, f̄ for the SM
fermions. The couplings are denoted by “G̃i/Ñi/T̃i” and the index i is then
either scalar (S) or vector (V ). If possible, we keep generic left and right handed
couplings denoted with g(r/l, s/v) or n(r/l, s/v) for scalar/vector-like couplings.
The coupling notation g is for the first vertex coupling X to the intermediate
particle, and n is for the Y particle coupling as shown in figure 4.1. In the
case of a three boson interaction, we can have various couplings which are either
momentum dependent or dimensionful via a mass scale MC .

Bosonic decays

The effective Lagrangian density which we need for the bosonic decays is

Li,j,k = XiIf G̃if + YiIf Ñif + IifT̃if + IiXjYkΓ̃ijk + h.c. (4.7)

where i, j, k = s, v and Ii is the intermediate off-shell particle which is either
bosonic (3rd topology) or fermionic (top. 1+2). The first two terms give the
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interactions for the topology 1+2, the latter two for the interactions of topology
3, where the two SM fermions are directly coupled. The generic couplings are
given by

G̃i : Gs = (g(r, s)PR + g(l, s)PL) ; Gv = γµ (g(r, v)PR + g(l, v)PL)

Ñi : Ns = (n(r, s)PR + n(l, s)PL) ; Nv = γµ (n(r, v)PR + n(l, v)PL)

T̃i : Ts = (s(r)PR + s(l)PL) ; Tv = γµ (v(r)PR + v(l)PL)

(4.8)

and for Γ̃ijk

Γsss = c(s)MC ;
Γvvs = Γvsv = Γ(vµ, vν , s) = c(v)MCg

µν

Γsvv = Γ(s, vµ, vν) = c(s)MCg
µν ;

Γvs1s2 = Γ(vµ, s1, s2) = c(v)(ps2 − ps1)µ

Γs1s2v = Γs1vs2 = Γ(s1, s2, v
µ) = c(s)(ps2 − ps1)µ

Γv1v2v3 = Γ(vν1 , v
ρ
2 , v

µ
3 ) = c(v) ((pv1 − pv2)µgνρ + (pv2 − pv3)νgµρ

+ (pv3 − pv1)ρgµν)

(4.9)

where the indices of the vertex expressions Γijk correspond to those of the La-
grangian in equation 4.7. PL/R are the left/right handed projectors PL/R =
(1∓ γ5). Since we use the same definition as in O’Mega/WHIZARD [56,57], we
drop the ordinary factor of 1/2 in this definition.

Fermionic decays

In the case of fermionic decays, the generic Lagrangian is given by

Li = IifGiMx + IifNiMy + IiMyΓiMx + IifTif + h.c. (4.10)

where Mx,y denote the spinors of the new fermions and i = s, v denotes whether
the exchanged particle is a scalar or a vector boson. The couplings are the same
as in equation 4.8 and 4.9 and we have additionally

i = s : Γs = (d(s, r)PR + d(s, l)PL)
i = v : Γv = γµ (d(v, r)PR + d(v, l)PL) .

(4.11)

Topologies

Depending on which colour structure and which topologies we allow, the results
and thus the strategy for spin determination simplifies pretty much. In the first
considerations, we take only the decays of a coloured particle X into two SM
quarks and a colour singlet Y into account, which come with topology 1+2 and
are motivated by the comparison of Susy or UED. However, we want to look
at the spin determination for these decays without prejudice, so we include also
topology 3 in a follow-up discussion. Due to gauge invariance reasons, one cannot
write down interactions for all of the decays in table 4.1. Thus, in a third step
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Decay Top. 1 Top. 2 Top. 3(s/v)

(S, S)

n∗(j, s)

g(i, s)

n(j, s)

g∗(i, s)

s∗(i)

c(s)Mc

v∗(i)

c(v)

(S, V )

n∗(j, v)

g(i, s)

n(j, v)

g∗(i, s)

s∗(i)

c(s)

v∗(i)

c(v),Mc

(V, S)

n∗(j, s)

g(i, v)

n(j, s)

g∗(i, v)

s∗(i)

c(s)

v∗(i)

c(v),Mc

(V, V )

n∗(j, v)

g(i, v)

n(j, v)

g∗(i, v)

s∗(i)

c(s),Mc

v∗(i)

c(v)

Top. 1 (s) Top. 2 (s) Top. 3 (s) Top. 1 (v) Top. 2 (v) Top. 3 (v)

n∗(j, s)

g(i, s)

n(j, s)

g∗(i, s)

T ∗(j, s)

d(i, s)

n∗(j, v)

g(i, v)

n(j, v)

g∗(i, v)

T ∗(j, v)

d(i, v)

Table 4.1: Topologies for the decays of bosons X → ffY (top) and fermions (F,F)
(bottom) with i, j ∈ {l, r} (see also equation 4.8, 4.9 and 4.11).
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we add the third scenario where we allow all three topologies, which corresponds
to the case that the particle X is uncoloured.
Thus, we can divide our investigations into three cases:

(I) Most common: all particles uncoloured

(II) Top. 1+2+3: all coloured

(III) Top. 1+2 only: all coloured.

Let us first have a look at the three-boson vertices of table 4.1 that can occur.
The only terms in agreement with gauge theories are

L = φa1φ2,a, φ3φ4; φ4 aquires a VeV (4.12a)

L = F aµνF
µν
a ; F aµν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν (4.12b)

L = (Dµφ)†a (Dµφ)a ; (Dµφ)a = ∂µφa − igfabcAµ,bφc. (4.12c)

All interactions for the topology 3 in table 4.1 are calculated from these La-
grangian densities. We mark the particles in the Feynman graphs in the following
with ’8’ or ’0’ for colour octet or singlet. The first vertex from topology 3 of table
4.1 is

8

8
0

(4.13)

and the corresponding Feynman interaction is derived from the Lagrangian den-
sity with the colour contractions

L = (φa1 φ2,a) (φ3φ4)

where a = 1 . . . 8 is the colour index which connects the intermediate particle,
e.g. φ2 and the decaying particle φ1, whereas the colour singlet φ4 has a VeV
and therefore allows the three scalar vertex 4.13.
The second vertex for the decay (S, S) is

8

8
0

(4.14)

which can only arise from a term (Dµφ)a =
(
∂µφ

a − igfabcAµ,bφc
)

which has an
open colour index a. However, there is no possibility to contract this term with
a colour singlet φ, so this operator is not considered in the coloured decays, as
well as

8

8
0

(4.15)
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which faces the same problem. For one of the interactions present in the (S, V )
decay,

8

8
0

(4.16)

one can derive the interaction from

L = (Dµφa)
† (Dµφa) (4.17)

with the covariant derivativeDµ = ∂µ−igAµ+. . . where “. . .” means that here one
can have additional gauge bosons which do not play a role in this consideration.
This operator is therefore considered in the following.
In the two vertices including two vectors and one colour octet scalar which are
needed for (V, S) and (V, V ), we have

8

8
0

8

8
0

(4.18)

and we have in principle the possibility to write down the corresponding operator(
∂µφ

a − igfabcAµ bφc
)† (

∂µφa − igfadeAµdφe
)
. Nevertheless, the only possibility

to have two vector fields and one scalar is to give a VeV to the other scalar which
would break the colour gauge symmetry. For the same reasoning

8

8
0

(4.19)

is not considered in the following. The remaining vertex is the three vector vertex
of the (V, V ) decay,

8

8
0

(4.20)

which can only have its origin in F aµνF
µν
a with all three/four vectors being charged

under colour and is therefore not considered in the following.
Thus, the only considered operators in addition to the first two topologies in the
case of a coloured decay are those of vertices 4.13 and 4.16 for the third topology.



4.2. Notation, setup and kinematics 43

4.2.3 Polarization vectors, propagators and generic amplitudes

We define ’polarization’ vectors in such a way that we are able to write down a
general bosonic decay

εs = 11; εv = ε̃µ

and we use the fermion and boson propagators as in equation 3.5 where we neglect
the width Γ.
These three propagators affect the decay rate differently. As we have mentioned
in Section 4.2.1, equation 4.3, we expand the amplitudes in the dimensionless
parameter ε = mX/mI to derive the off-shell limit. As is clear from the propa-
gator structure in the equation 3.5b, the leading degree of ε is different for the
topologies 1+2 vs. 3, and the leading order in ε of the decay width is distinct

Fermionic propagator:
dΓ

ds
∼ ε2 +O(ε3) (4.21a)

Bosonic propagator:
dΓ

ds
∼ ε4 +O(ε5) (4.21b)

so that, taking all three topologies into account, the interference terms are of
order ε3 and higher. We take all contributions up to the order of ε4 into account
and will come back later to this expansion for cases, where either the leading
order, ε2, vanishes, and only the ε4 order shows up, or alternatively where the ε4

order can “fake” the leading order by carrying a dimensionful coupling as in the
vertex of 4.13.

Matrix elements for bosonic and fermionic decays

We are now ready to write down generic matrix elements for those decays. The
bosonic decays are calculated with

Mi,j = u(q1,mf )GiFp/ γ0N †j γ
0 v(q2,mf )εi(p)εj(q3)

+u(q1,mf )NjFp/ γ0G†iγ
0 v(q2,mf )εi(p)εj(q3)

+
∑

k=s,v

ΓkijWP,iu(q1,mf )γ0T †kγ
0v(q2,mf )

(4.22)

and the matrix elements for fermionic decays are

Mi =
[
u(q1,mf )Giu(p,mX)

]
Wp,i

[
u(q3,mY )γ0N †i γ

0v(q2,mf )
]

+
[
u(q1,mf )Niv(q3,mY )

]
Wp,i

[
v(p,mX)γ0G†iγ

0v(q2,mf )
]

+
[
u(q3,mY )Γiu(p,mX)

]
Wp,i

[
u(q1,mf )γ0T †i γ

0v(q2,mf )
]
.

(4.23)

For the fermionic decays we use generalized Fierz identities [58] to derive all
spinor chains in equation 4.23.
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Our main focus here lies on the case of massless fermions as this is already
sufficient to get the required information as we will see in the next chapter.
Hence we discuss the massless case first in the next chapter. Besides the specific
form of the terms, our strategy works as well in the massive case with minor
changes to specific values used in the strategy. To illustrate our results we give
the differential decay width for the massless case up to order ε2 in the Appendix
B.2.

4.3 Strategy for spin identification

With the explicit results in the Appendix B.2 for the boson and fermion decays,
we can now work out a strategy for discriminating the spins assigned to the
particles X and Y in these various decay scenarios.

In the case where we assume the SM fermions to be massless, the differential
decay rate from equation 4.6 immediately simplifies since some of the coefficients
for the differential width are zero, and we obtain

dΓ

dŝ
=

PS

(2π)3 256 mX

(
B + Cŝ+Dŝ2 + Eŝ3 + F ŝ4

)
. (4.24)

The main procedure is to find suitable relations or to determine the signs of
the different coefficients Z,A, . . . , F without prior knowledge of the couplings.
We will show this with one example here and refer to the next section for the
remaining decays.

4.3.1 Example: (S, V )

We pick the decay (S, V ). According to Section B.2, equation B.7, some coeffi-
cients of the polynomial of the decay rate,

dΓ

dŝ
=

PS

(2π)3 256 mX

(
Z

(aŝ+ b)2
+

A

aŝ+ b
+B + C · ŝ+D · ŝ2 + E · ŝ3 + F · ŝ4

)

vanish, in particular Z,A,E, F = 0. The remaining coefficients, in the leading
order of ε2, are

B =
64

3τ2
Y

(
g(r, s)2n(l, v)2 + g(l, s)2n(r, v)2

)
(τY − 1)2

(
25τ2

Y + 6τY + 1
)

(4.25a)

C =
128

3τ2
Y

(
g(r, s)2n(l, v)2 + g(l, s)2n(r, v)2

)
(τY − 1)2

(
11τ2

Y − 2τY − 1
)

(4.25b)

D =
64

3τ2
Y

(
g(r, s)2n(l, v)2 + g(l, s)2n(r, v)2

)
(τY − 1)4. (4.25c)

Remember that the coefficient τY is the mass ratio of mY /mX and due to energy
conservation can only be in the interval [0,1]. One can immediately see, that the B
and D coefficients are both positive, completely independent from this mass ratio
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0.0 0.2 0.4 0.6 0.8 1.0
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Τy
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Figure 4.2: Sign flip for the mass-dependent function fm of equation 4.25b. In the
red shaded area (left), fm is negative and thus, C of equation 4.25b is negative. In
the blue (right) shaded area, fm has the opposite sign, and the coefficient C also
flips sign.

or the specific couplings strengths g(r/l) and n(r/l). For the C coefficient in equa-
tion 4.25b, we are less lucky: In this case, the mass factor fm =

(
11τ2

Y − 2τY − 1
)

can flip sign (as shown in figure 4.2) for values τy ≶ (1− 2
√

3)/11).
However, we also see that the dependence on the couplings is the same for each
coefficient, which is only the case in some decays. But here, we can derive the
possible ratios of the coefficients C/D,C/B,D/B and vary the mass ratio τY in
its valid interval [0,1]. The ratios of the coefficients are limited to specific ranges
originating from the mass-dependent function fm. As it turns out, for most of
the decays, it is sufficient to determine the degree of the polynomial and the sign
of the coefficients, but for the two spin assignments (S, V ) and (V, S) it is not
enough and one has to pin down these ranges for the coefficient ratios. We have
plotted the ratios in figure 4.3 for those two decays, and will later come back to
them. So far, we only want to draw attention to the blue/solid line, which gives
characteristic regions for all three possible ratios of (S, V ).

4.3.2 Signs of the coefficients

In the same manner as before, we can now classify all 5 decays. We start by
summarizing the signs of the different coefficients sorted by the underlying decay,
the order in ε and the three cases of page 41, I-III.
We collect the signs of the different coefficients for all decays of bosons in table 4.2
where we have expanded the coefficients in powers of ε, e.g.

B =

4∑

k=2

Bkε
k (4.26)

Most of the signs in table 4.2 are obtained analytically but several (for the (F, F )
decays below) are obtained numerically by scanning and inserting random cou-
plings in the range [−1, 1] since the analytic function is to involved and one cannot
disentangle in a simple way the mass and the coupling dependence, as e.g. in
equation 4.25.
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There are some coefficients where the sign cannot be determined without prior
knowledge of the mass ratios or the couplings which are marked by ”±”, as e.g.
the C coefficient of equation 4.25b. If the coefficient in question vanishes, we
have put a 0.

The signs in table 4.2 for the boson decays are sorted as in the cases of page 41
from the most general to the most restricted one

(I) Column “s”: X is an SU(3) singlet, where all topologies of table 4.1 con-
tribute.

(II) Column “c”: X is an SU(3) colour octet and all allowed contributions are
taken into account.

(III) Column “1+2”: X is an SU(3) colour octet and only topologies 1+2 con-
tribute.

In the case of fermion decays (F, F ), it turns out that the result does neither
depend on the spin of the exchanged particle nor on the topology, e.g. it does not
matter if all topologies are taken or only a subset. Since we have only bosonic
propagators there are only the O(ε4) contributions and we find:

sign(B4) = + ; sign(C4) = ± ; sign(D4) = − ; sign(E4) = 0 . (4.27)

In the subsequent sections, we discuss these cases in reverse order, starting with
the simplest case which is motivated by scenarios such as UED and Susy. We
will primarily focus on the terms of order ε2, however, we will also discuss scenar-
ios, where this leading order is zero which is the case for some special coupling
arrangements discussed in section 4.3.5.

4.3.3 Decays into massless SM-fermions in case of topologies 1+2

Let us assume that we have measured the differential decay width of a new
particle and determined the coefficients introduced above accurately in a fit. A
realistic fit is naturally affected by finite statistic, but we assume for now, that the
coefficients could be determined perfectly. The next section, 4.4, will be dedicated
to the application of the following strategy in a “realistic” world by discussing
various Monte Carlo studies at parton level where we also review the obtainable
accuracy. We want to point out that such problems obviously also arise in the
on-shell case, e.g. that finite statistics can also render the determination of the
highest degree in s difficult.

However, the strategy elaborated in the following can be used to determine the
spins of the new particles or at least to exclude certain possibilities. The main
strategy is summarised in figure 4.4 and explained in some more detail below.

Let’s start with the E term which is only non-zero in the (V, V ) case. This imme-
diately implies that (V, V ) is preferred once the ’measured’ E term is significantly
larger than 0. For consistency we check that B > 0. The next step is to look
at the D term as for D 6= 0 and E = 0 the sign of D determines whether one is
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(S, S) (S, V ) (V, S) (V, V )

ε2 s c 1+2 s c/1+2 s c/1+2 s c/1+2

B2 + + + + + + + ± ±
C2 + + + ± ± + + ± ±
D2 0 0 0 + + + + ± ±
E2 0 0 0 0 0 0 0 + +

ε3

B3 ± ± 0 ± 0 ± 0 ± 0
C3 ± ± 0 ± 0 ± 0 ± 0
D3 0 0 0 ± 0 ± 0 ± 0
E3 0 0 0 0 0 0 0 ± 0

ε4

B4 + + + + + + + + +
C4 ± + + ± ± ± ± ± ±
D4 ± − − ± ± ± ± ± ±
E4 0 0 0 ± ± ± ± ± ±
F4 0 0 0 0 0 0 0 ± ±

Table 4.2: Signs of the coefficients for the case of a boson decaying into another
boson and massless SM-fermions in the final state. The rows correspond to the
following cases: (case (III) of page 46, s): X is an SU(3) singlet, (case (II) of
page 46, c:) X is charged under SU(3) taking all possible topologies into account
and (case (I) of page 46, 1 + 2:) X is charged under SU(3) taking topologies 1+2
into account. The ± marks the cases where the sign cannot be determined without
knowing the masses/couplings and 0 marks the cases with a vanishing coefficient.

dealing with fermions (D < 0) or bosons (D ≥ 0) where the latter case includes
(S, S), (S, V ) and (V, S). In case of D = 0 only the case (S, S) remains.

The discrimination between (S, V ) and (V, S) needs to be worked out via the
ratios of coefficients, since in these cases, the couplings can cancel out (see Ap-
pendix, equation B.7 and B.8). We can build three different ratios for each of the
decays, namely

(S, V ) : D/C =
(τY − 1)2

22τ2
Y − 4τY − 2

∈ [−∞,−1

3
] ∪ [0,∞] (4.28a)

(V, S) : D/C = − (τY − 1)2

2(τY (τY + 2)− 11)
∈ [0,

1

22
] (4.28b)

(S, V ) : C/B =
22τ2

Y − 4τY − 2

τY (25τY + 6) + 1
∈ [−2,

1

2
] (4.28c)

(V, S) : C/B =
8(τY + 9)

τY (τY + 6) + 25
− 2 ∈ [

1

2
,
22

25
] (4.28d)

(S, V ) : D/B =
(τY − 1)2

τY (25τY + 6) + 1
∈ [0, 1] (4.28e)
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(V, S) : D/B =
(τY − 1)2

τY (τY + 6) + 25
∈ [0,

1

25
] (4.28f)

We show these ratios in figure 4.3 and mark the important regions by shading.
In the left figure of 4.3, we show the ratio D/C. The dotted red line is the ratio
for (S, V ). The range of this ratio excludes the green shaded region. The blue
solid line is the ratio of the same coefficients for (V, S) and is limited to a small
but overlapping area from eq. 4.28a and 4.28b. However, if the value determined
from the fit is in the red area, it must be (V, S). If it is in the green area, it is
neither one of both, which will be important for the fitting strategy in the next
chapter.

The figure in the centre shows the ratio C/B, and again, the blue/solid line is
the (V, S) result, and the red/dashed line is the (S, V ) result. The corresponding
values for the ratios are shaded in blue/red respectively and we see that the areas
have no overlap and hence this is the best suited ratio to distinguish between
(S, V ) and (V, S).

The figure on the right side shows the ratio for D/B with the same colour code
as above, but we see that there is an overlap of the two spin scenarios. However,
the region of the shaded red area belongs entirely to (S, V ) since these values
cannot be reached from (V, S).

So, the D/B and D/C ratios seem to be less useful since the intervals overlap,
but except for τY = 1 but they are never equal. In the range where τY is close
to one, the SM-fermions become very soft and this part will be excluded because
a lower cut on their energies is put in practice.

However, we can still make use of the regions for the exclusion of one of the two
scenarios.
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Figure 4.3: Ratios of coefficients over the range of τy. The solid/blue line shows
the result for the decay (V, S), the dashed/red line is the ratio for (S, V ). The green
(upper) shaded area in the left plot shows the region that is forbidden in both decays
(S, V ) and (V, S). The red (lower) shaded region is only allowed by (S, V ). In the
middle plot, the allowed regions are completely distinct, the red region contains the
values for (S, V ), the blue the values for (V, S). In the right plot, only the red shaded
area from [1/25,1] is solely allowed for (S, V ).

Last but not least we note, that the decay (S, S) can be further checked by the
requirement that B/C = 1 as can be seen from equation B.4. This will later on
again play an important role for the exclusion of this scenario.

Colloquial, we can state, that independently of the mass ratios or the specific
values of the couplings, all those five cases can be discriminated from each other.
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We depict this strategy for a perfect fit in the flow chart in figure 4.4 where
one can see, that each one of the decays can be uniquely determined using the
characteristics worked out here.

E ≤ 0S → ffS

S → ffV

V → ffS

F → ffF

V → ffV

S → ffV, ǫ4

V → ffS, ǫ4

V → ffV

D ≥ 0 F → ffF

S → ffV, V → ffS, S → ffS

D = 0
S → ffV

V → ffS
S → ffS

√

×

×

×

√

√

Ratios:
D/C
C/B
D/B

S → ffV

V → ffS
?

?

Figure 4.4: Flowchart for the strategy to discriminate different spin assignments
for mf = 0 using the signs of the coefficients given in section 4.3.2. Green (solid
frame) boxes are for the case of taking only the leading order into account. Impact
or dominance of higher order terms is given by the yellow (dashed frame) boxes, see
text for details.

4.3.4 Impact of the third topology

In the cases (II) and (III), we also take the third topology into account. The
dominant contributions stem from topologies 1 and 2 of table 4.1 in the case
of decays of bosons. This is due to the fact that the third topology generally
contributes at O(ε4) as we have seen on page 43. Note, that in case of new
fermions, higher orders in ε have no impact and, thus, we restrict the discussion
here to decays of bosons.

One might ask if one of the dimensionful couplings of the three-boson vertices
in the diagrams of the third topology can become so large to disturb the above
strategy, e.g. the VeV in the coupling 4.13 on page 41.

Let us first consider the case that X is in a non-trivial SU(3) representation. Here
only (S, S) can have a potentially dangerous contribution because the trilinear
scalar coupling can in principle be of order mI and thus can change the order of
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ε4 to ε2.

However, from the specific term in the Appendix, equation B.4, we see that only
the equality B = C gets broken, and the D-term will only get a tiny contribution,
and thus the general strategy should still work.

In case of the scalar exchange in the third topology of the (S, V ) case with the
coupling in equation 4.16, the coupling is momentum dependent and is of order
mX and one is safe again.

In the case where X is a colour singlet, all diagrams for the third topology in
table 4.1 contribute in principle. Here one has to distinguish two cases: (i) there
are no new vector bosons or the new vector bosons do not belong to a new gauge
group. In this case a detailed inspection of the diagrams shows that one arrives
at the same conclusions as above, because all dimensionful couplings, which had
not been considered before, have to be of the order mX due to SU(2)L gauge
invariance. (ii) There is a new gauge group at higher energies to which the
intermediate vector bosons belong. In this case the SVV coupling as well as the
masses of the vector boson will be of the same order of magnitude and thus our
assumption that the intermediate particle is much heavier than the decaying one
does not hold in this case.

To conclude, we find that one is on the safe side for both of these cases.

4.3.5 Special combinations of couplings

Up to now we have considered only the leading terms in case of decays of new
bosons. However, it can happen that for special helicity assignments, the lead-
ing order ε2 becomes zero. An example is the (S, S) case as can be seen in
equation B.4 and B.5 where the leading order is proportional to (g(r, s)n(l, s) +
g(l, s)n(r, s))2 which is 0 in the case of e.g. g(l, s) = n(r, s) = 0. In such cases
the momentum dependent part of the fermion propagator, /p/m2

I , becomes im-
portant which contributes only at O(ε4). The question arises now if these terms
can distort our strategy from Section 4.3.3 such that we arrive at the wrong
conclusion.

Therefore we choose the specific coefficients were the order ε2 contribution van-
ishes and derive the new coefficients of order ε4. Note that if order ε2 vanishes,
also order ε3 is zero and the leading order is ε4. We summarize again the sign
of the coefficients, but of the order ε4 and collect them in table 4.3. We need to
compare those now with the order ε2 coefficients of table 4.2 to see whether they
can lead to wrong conclusions.

We start with the case where X is charged under SU(3), so only topology 1+2
are contributing. One immediately sees that the cases (S, S) and (V, V ) are not
affected since the signs are the same. The problematic ones are (S, V ) and (V, S)
which now get a positive E as is the case of (V, V ) in the leading order of table
4.1. Unfortunately, ratios of the other coefficients do not help if one has no
further information about couplings and/or masses of the intermediate particles.
We have marked this possibility in figure 4.4 with the yellow boxes surrounded
by red dashed lines. However, we want to stress that this requires fine-tuning
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(S, S) (S, V ) (V, S) (V, V )

ε4 s c 1+2 s c/ 1+2 s c/1+2 s c/1+2

B4 + + 0 + + + + + +
C4 ± + 0 ± ± ± − ± ±
D4 + 0 0 ± − ± ± − −
E4 0 0 0 + + + + + +
F4 0 0 0 0 0 0 0 + +

Table 4.3: ε4 coefficients for the case that ε2, and thus also ε3, are fine-tuned to
vanish; mf = 0.

between different couplings which, although being unlikely, cannot be excluded
on logical grounds.
In the case that X is an SU(3) singlet the situation gets even a little bit more
complicated because now the D coefficient is non-zero also in case for (S, S).
However, it is still positive and thus it can for sure not be confused with the
case of a new fermion decaying. In the (V, V ) case on the other hand we get in
principle even more information as now also the F is non-zero which immediately
tells us that there is a special combination of couplings.

4.3.6 Final states containing massive SM-fermions

So far, our investigations are only for the massless SM-fermions. For complete-
ness, we want to work out a strategy, for the case of massive SM-fermions, which
in practice only is important for top-quarks. It turns out that the strategy hardly
changes besides for the fact that one has to determine more coefficients by fitting,
since we now have to take the full polynomial into account

dΓ

dŝ
=

PS

(2π)3 256 mX

(
Z

(aŝ+ b)2
+

A

aŝ+ b
+B + C · ŝ+D · ŝ2 + E · ŝ3 + F · ŝ4

)
.

We again summarize the coefficients for the specific decays for the order of ε2, ε3

and ε4 in table 4.4 with the same notation and naming as before, e.g. on page
47.
Comparing tables 4.2 and 4.4, we see that we can use the same strategy in prin-
ciple. However, for distinguishing between the (S, V ) and (V, S) cases the ranges
for the ratios of the coefficients change. As it turns out, the coefficients do not
disentangle into coupling strength parts and mass-depending functions as well as
in the massless example. In difference to e.g. the case of the coefficients in equa-
tion B.7 they now have a more involved structure. This implies that the ratios of
coefficients do not necessarily have to be independent of the coupling strengths
as in the massless case. It turns out, that only the ratio D/C is independent of
the coupling strengths and we find

(S, V ) : D/C =
(τY − 1)2 − 4τ2

f

12τ2
f + 22τ2

Y − 4τY − 2
∈ [−∞,−1

3
] ∪ [0,∞] (4.29a)
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(S, S) (S, V ) (V, S) (V, V )

ε2 s c/1+2 s c/ 1+2 s c/1+2 s c/1+2

A2 0 0 + + + + + +
B2 ± ± ± ± ± ± ± ±
C2 ± ± ± ± + + ± ±
D2 0 0 ± ± + + ± ±
E2 0 0 0 0 0 0 + +

ε3

A3 0 0 ± ± ± ± ± ±
B3 ± ± ± ± ± ± ± ±
C3 ± ± ± ± ± ± ± ±
D3 0 0 ± ± ± ± ± ±
E3 0 0 0 0 0 0 ± ±
ε4

Z4 0 0 0 0 0 0 − −
A4 + 0 + + + + + +
B4 ± + ± ± ± ± ± ±
C4 ± + ± ± ± ± ± ±
D4 ± − ± ± ± ± ± ±
E4 0 0 ± ± ± ± ± ±
F4 0 0 0 0 0 0 ± ±

Table 4.4: Same as table 4.2 but for massive SM-fermions.

(V, S) : D/C =
(τY − 1)2 − 4τ2

f

2
(
6τ f2 − τY (τY + 2) + 11

) ∈ [0,
1

22
]. (4.29b)

For the intervals, we have used that the mass ratios τy and τf are limited due to
energy and momentum conservation by

1 ≥ τY + 2τf . (4.30)

As in the case of massless SM-fermions, the overlap region of the two intervals is
only for the case τY → 1− 2τf , e.g. the kinematical limit, where all particles are
practically at rest in the centre of mass system of X.

In general, for the (S, V ) decay the ratio D/C will be either negative or much
larger than 1/2. Note that we have A = 0 for the (S, S) case which can be used
as a criterion to confirm this scenario. Also in case of a new fermion we arrive at
the same conclusions because

sign(A4) = +; sign(B4) = ±; sign(C4) = ±;

sign(D4) = −; sign(E4) = 0. (4.31)

The only exception is where this decay is mediated solely by scalars in the third
topology as in this case A4 = 0.



4.3. Strategy for spin identification 53

(S, S) (S, V ) (V, S) (V, V )

ε4 s c 1+2 s c/1+2 s c/1+2 s c/1+2

Z4 0 0 0 0 0 0 0 − −
A4 + 0 0 + + + + + +
B4 ± + + ± ± ± + ± ±
C4 ± + + ± ± ± − ± ±
D4 + 0 0 ± ± ± ± ± ±
E4 0 0 0 ± + + + ± +
F4 0 0 0 0 0 0 0 + +

Table 4.5: Same as table 4.3 but mf 6= 0.

For completeness, we also give in table 4.5 the results for the case that the leading
orders vanish in decays of bosons. It turns out that this case is almost the same as
for the case of massless SM-fermions discussed above except that now in general
also A will be non-zero.

4.3.7 Influences of the mass of the intermediate particle(s)

We now address the question to what extent the expansion in ε works and how
the neglected terms from the propagator influence the values of the coefficients.
Therefore we choose two different scenarios and look at the deviation of the
differential distribution for the correct result and the expanded result depending
on the mediating particle’s mass mI . In a second part, we investigate the values
of the fitted coefficients depending on the mass range of mI .

We choose for these considerations two coupling scenarios

(I) g(r) = g(l) = n(r) = n(l) = 1 : leading order dominates

(II) g(l) = n(l) = 0 : leading order vanishes in case of bosonic decays

where in the second scenario, the sub-leading terms become dominant. Note that
in case of new fermions we did not find a combination where the leading order
vanishes.

In all cases we have taken mX = 1 TeV , mY = 100 GeV and mf = 0. We
have checked that our results do not depend crucially on these values except for
the cases where mY gets close to mX which would imply soft SM fermions and
experimental difficulties to observe the decay.

Relative deviation of mI →∞ and fixed ε

First we derive the relative deviation from the differential width Γε for a given ε
in the limit where mI →∞

R =
dΓε − dΓH

dΓH
with dΓi =

1

Γi

dΓi
d ŝ

. (4.32)
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Figure 4.5: Ratio R for the processes X → ff̄Y for scenario (I) taking mX =
1 TeV , mf = 0, mY = 0.1 TeV . We have calculated the decay width for the
following masses of the intermediate particle: mI = 2, 3, 5, 7, 10, 15, 30 TeV .
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We show this relative deviation in figures 4.5 and 4.6. The smaller this deviation
is, the less is the differential distribution affected by the expansion.

We find that for a decaying scalar and for a decaying fermion the deviation is
always below 20%. In case of a decaying vector particle the situation is more
difficult and only for ε ≤ 1/5 we get R . 0.2 for all values of ŝ. The reason
for these large deviations for |ŝ| close to one is, that here the differential widths
becomes zero and the rise/fall at the ends of the interval gets steeper the smaller
ε is. This also implies, that in the corresponding intervals for ŝ one will observe
only a few events. The situation improves for the decay of a vector boson if the
sub-leading terms become dominant as in figure 4.6.

Dependence of coefficients on the mediating particle’s mass

Moreover, we show the dependence of the coefficients on the intermediate mass
in figure 4.7 to investigate the quality on our conditions needed for the decision-
making. For this we have fitted the decay rates for different intermediate masses
mI to the polynomial in equation 4.24 and normalized them with respect to
B = 1. Note that we have always this freedom as this amounts to a rescaling of
the unknown couplings.
We see that all our statements in equation 4.28 and in the strategy flowchart
of figure 4.4 are fulfilled within the above claimed range of validity. Note that
the only potential problem, namely D < 0 in case of (V, S), only occurs for
mI . 2.5 TeV or equivalently ε > 0.4 and thus outside the range of validity for
vector bosons.
We can sum our observations up by stating that our strategy should work well for
all decays if the mass ratio ε = mX/mI is below 1/5, in cases of scalar particles
or spin 1/2 fermion ε = 1/2 is already a reasonable value. This is for example a
natural value for gluino decays in supersymmetric models.

4.4 Testing our strategy with Monte Carlo simula-
tions

Now we want to test our strategy from figure 4.4 with Monte Carlo simulations
at parton level. We want to be independent of already implemented models,
also because sometimes they cannot support all spin assignments or coupling
structures we want to discriminate. This is why we chose to write a generic
model file for O’Mega/WHIZARD [56, 57] which is explained in the appendix,
Section A.1. We give an overview of the supported particles, couplings, the
implementation and usage. This model file allows us to consider every decay
with arbitrary (renormalizable) couplings.

With the help of this, we have created data sets and tried in a “blinded test” to
find out the spin-assignments without any prior knowledge but mY and (mX −
mY ) and their uncertainties. We presume that the first mass of the invisible
particle Y is given by an independent source with a precision of 10% and the
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Figure 4.6: Relative deviation for differential decay width the processes X → ff̄Y
with couplings (II).
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Figure 4.7: Normalized fitted coefficients, e.g. C/B, D/B and E/B, for different
masses mI and mass scen. (I).

second one with a precision of 3%, see e.g. [59–61] and references therein2.

For definiteness we have taken mX = 1 TeV , mY = 100 GeV and mf = 0. In the
following we will denote by (B,C), (B,C,D), (B,C,D,E) and (B,C,D,E, F )
the differential width in equation 4.24 where all but the given coefficients are
zero.

We first frame our fitting procedure, and then explain the strategy for specific
decays. After that we perform a large sample test.

4.4.1 Fitting procedure

In practice one will not have dΓ
dŝ (ŝ) but one will have the total number of events

for a given intervall [ŝi, ŝi + ∆ŝ]. For this reason we actually fit “distributions”
of the form

n∑

i=1

∫ −1+i∆ŝ

−1+(i−1)∆ŝ

dΓ

dŝ
dŝ (4.33)

where ∆ŝ = 2/n, n is the number of bins considered and dΓ
dŝ is given in equation

4.24. For the creation of the “data” we have used our O’Mega/WHIZARD model
file A.1 for generic particles and couplings. For fitting we hence use a linear
least squares approach as described e.g. in [62] and references therein. We will
exemplify this for the case of the polynomial with coefficients (B,C,D):




x1 x2
1 x3

1

x2 x2
2 x3

2
...

xn x2
n x3

n


 ·




B
C
D


 = X̂ ·




B
C
D


 =




data1

data2
...

datan


 (4.34)

where the first 3× n matrix represents the powers of xi for each bin, (B,C,D)T

are the coefficients which we want to know, and the last n -dimensional vector
contains the data entries of n bins. For arbitrary coefficients, this equation reads
X̂ ·~c = ~d where X̂ is the matrix containing the powers of xi in equation 4.34, ~c
is the coefficient vector, and ~d contains the “measured” data of the differential

2In case of supersymmetric models the uncertainty on the mass on the lightest neutralino
can be smaller, e.g. 5%.
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width integrated over intervals of length ∆ŝ. This equation can not be solved in
general. Therefore one solves for

(X̂)T X̂ ·~c = (X̂)T ~d (4.35)

which optimizes ||X̂ ·~c − ~d||. There are various methods to solve equation 4.35,
e.g. QR-decomposition. It can be shown that one obtains a viable fit if the
matrix X̂ is well-conditioned, so that the eigenvalues of (X̂)T X̂ are of comparable
magnitude. This is the reason for shifting the variable s to ŝ in equation 4.2 on
page 37. As it turned out, for the unshifted s values, those eigenvalues differ by 15
orders of magnitude while after shifting the s variable to the interval [−1, 1], the
eigenvalues differ only by a factor of O(102). This manifests itself in the quality
of the fitted coefficients which greatly improved compared to the unshifted fit.
So for higher powers of s, they become very small and hard to determine in the
fit, although one had very clean data or just smooth test functions. The reason
for this is that in the first place, we consider dimensionful coefficients, which
became naturally very small for higher degrees of s. After shifting, both ŝ and
the coefficients are dimensionless so that they still have a hierarchy, but not as
strong as before and not depending on the mass.

We solve the equation 4.35 and calculate the corresponding χ2 with

χ2 =
1

n− j
∑

i

(Expectedi −Observedi)
2

(
Expectedi + ε4 ·Expected2

i

) (4.36)

where n is the number of bins (= number of data points) and j the degrees of
freedom (in this case the number of coefficients) of the fit function. Noisy data
are always represented better by a polynomial with higher degree which thus will
lead to a better χ2 for larger polynomials. Since we want to reduce this effect, we
punish the χ2 value by multiplying the factor 1/(n − j) which is small for large
number of j (degrees of freedom) and vice versa.

The theoretical uncertainty from the expansion in ε can be estimated in the
following way: we have seen in the previous section that in the case of decays
of a boson, one obtains qualitative new features only in the 4th order of the ε
expansion leading to a relative uncertainty of ε2. This in turn leads to a total
uncertainty of ε2N where N is the number of events. We estimate the error
for the coefficients by adding a Poisson noise to the data and determine the
corresponding confidence interval after fitting.

In the next subsection, we investigate simulated decays for 10k, 100k and 1M
events and investigate the influence of the binning size on the fit in order to get
a feeling for the best set-up.

4.4.2 Variations of the fitted parameters for 10 simulations

For all decays we use generic particles with masses: mX = 1 TeV, mY = 0.1 TeV,
mf = 0 which corresponds to the massless cases. The couplings are randomly
chosen between -1 and 1 and are displayed in table 4.6. Since we only want to test
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our method, these masses and also the couplings do not correspond to a realistic
or existing model3.

(S,S) g(l,s) = 0.4 g(r,s) = -0.6 n(l,s) = 0.8, n(r,s) = 0.7
(S,V) g(l,s) = 0.93 g(r,s) = -0.16 n(l,v) = -0.05 n(r,v) = 0.75
(V,S) g(l,v) = 0.3 g(r,v) = -0.8 n(l,s) = -0.1 n(r,s) = 0.5
(V,V) g(l,v) = 0.5 g(r,v) = -0.2, n(l,v)= -0.1 n(r,v) = 0.9

Table 4.6: Random couplings used in this section.

We have simulated the generic decay (S, V ) 10 times with a different number of
events (each 2× of 10k, 100k, 1M) and than fitted our four possible polynomials
(BC),(BCD), (BCDE) and (BCDEF ) to the data using a different amount of
bins (10 and 50 bins). We have averaged over the 10 simulations to obtain a
mean χ2 displayed in table 4.7 where the scenarios are listed.

#bins 10 50
#events 10k 100k 1M 10k 100k 1M

Scen. 1 2 3 4 5 6

(BC) 44.498 207.047 2082.186 30.899 23.020 237.426
(BCD) 1.282 1.628 1.173 1.115 1.1083 0.934

(BCDE) 2.991 1.766 0.965 1.845 1.1288 0.892
(BCDEF) 1.650 1.333 1.0749 1.249 1.0547 0.9005

Table 4.7: Mean χ2 for different bin sizes and events for 10 simulations of (S,V)
decay after fitting them to polynomials with coefficients (BC),. . . (BCDEF). We
have used here the common definition of χ2 with ε=0 since the influence of the mass
mI is here negligible.

Furthermore we calculate the ratios of fitted values for (BCD) in table 4.8 in
comparison to the analytic ones. In figure 4.8 we show the deviation

Dev. =
Canaly. − Cfit

Canaly.
(4.37)

and the analogous value for the D coefficient. For all scenarios #1-10, the devi-
ation from the analytic value is smaller the 25% which means in particular that
even if the fitted values are not that good, their deviation from the analytic values
is much smaller then 100% so that it is unlikely that they change their sign. This
is sufficient since we are not interested in the specific value of the coefficients, but
only in their existence and their sign.
As one can see, almost every χ2 for all scenarios is best for the (BCD) fit, which
is the polynomial of the underlying process. However, for scenario 3 and 6 the
algorithm would prefer the (BCDE) fit, although the χ2 are very close. The scen.

3Except for the (F, F ) result where we have taken the SPS 2 [63] masses MX = 809 GeV,
MX = 121 GeV, mf = mu = 0 and MI = mũ1 = 3026 GeV and the corresponding MSSM
couplings.
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Scen. 1 2 3 4 5 6 Analytic

D/C -0.373 -0.370 -0.375 -0.374 -0.367 -0.374 -0.372
C/B -1.177 -1.181 -1.181 -1.175 -1.182 -1.181 -1.178
D/B 0.439 0.437 0.443 0.440 0.433 0.442 0.438

Table 4.8: Ratios for different bin sizes and events for the (BCD) fit for (S, V ).

6 case can be understood by looking at the calculation of the χ2. Obviously, a
function with a higher order polynomial will always fit better to data with noise.
As already discussed on page 58 we try to control this effect by introducing the
additional factor j in equation 4.36. The impact of this factor j depends however
on the total number of data points (=number of bins) since we divide by (n− j).
Thus for a higher number of bins (here: 50), j has a smaller impact and so higher
polynomials are not as strongly disfavoured as for a small number of bins.
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Figure 4.8: Deviation for the C (left) and D (right) coefficient from their analytic
value for 10 different MC simulations (on the x axis) and scenarios 1-6 with different
number of bins and events. As one can see, the relative deviations are under 25 %
for each simulation for each of our secenario which implies that even if the fit is not
that good, the coefficient will not change sign.

The question is in the a case, where two orders have a χ2 around 1, if it is not
compelling to always choose the smaller polynomial if it is not in conflict with
the analytic constraints on signs and ratios.

For the following discussion we therefore take 10 and 50 bins with 10 k events. We
want to demonstrate this way that our method also works with a low production
rate of a very massive X particle.

4.4.3 Examples

Here we will show with five examples how our strategy works. We will do the
analysis for (S, S), (S, V ), (V, S), (V, V ) and a “realistic” (F, F )-Susy (SPS2)
example. We fit (BC), (BCD), (BCDE) and (BCDEF ) to a corresponding
MC data set with 10 k (in the (F, F ) case also for 2k events) events for 10 and
50 bins and look at the best χ2. If not denoted otherwise, we use the masses
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mX = 1000 ± 150 GeV, mY = 100 ± 15 GeV and mI=15 TeV. The standard
deviation is 3σ = 99.7%.

• (S, S) Decay
The fit results are shown in table 4.9, top. The χ2 for all four model fits are
very close together. For 10 bins, the χ2 favours the (BCD), for 50 bins, the
(BC) model is favoured. In comparison to some other χ2, those values are all
very good, so we have to have a closer look at the coefficients according to our
strategy. In this case one can definitely decide that for both number of bins, the
(BC) model is favoured since the fitted value for B and C is the same within the
error bars and exactly corresponds to what we found as an analytic constraint for
the (BC) model. The error bars of the E and F coefficients of model (BCDE) and
(BCDEF ) let us assume that those coefficients are zero. So for both bin numbers,
(BC) and so (S, S) is compelling which was the original process simulated in
O’Mega/WHIZARD.

Model Coef χ2 (S,S)10 χ2 (S,S)50 (S,S)an
(BC) C 0.91 1.004± 0.0277 0.85 1.004± 0.027 1

(BCD) C 0.87 0.991± 0.093 0.89 0.986± 0.090
D −0.020± 0.110 −0.026± 0.110

(BCDE) C 0.98 0.994± 0.099 0.87 0.989± 0.086
D −0.027± 0.180 −0.032± 0.182
E −0.013± 0.182 −0.010± 0.186

(BCDEF) C 0.85 1.036± 0.148 5.43 1.020± 0.149
D 0.076± 0.298 0.037± 0.285
E −0.100± 0.260 −0.077± 0.284
F −0.169± 0.384 −0.116± 0.362

Model Coef χ2 (S,V)10 χ2 (S,V)50 (S,V)an
(BC) C 69.3 −1.308± 0.120 24.48 −1.306± 0.126

(BCD) C 1.16 −1.173± 0.101 0.99 −1.173± 0.100 -1.178
D 0.424± 0.237 0.406± 0.227 0.438

(BCDE) C 1.76 −1.249± 0.227 1.06 −1.262± 0.237
D 0.514± 0.200 0.517± 0.198
E 0.157± 0.388 0.186± 0.393

(BCDEF) C 6.19 −1.137± 0.206 2.11 −1.143± 0.195
D 0.940± 0.746 0.893± 0.608
E −0.188± 0.394 −0.164± 0.413
F −0.678± 0.933 −0.616± 0.829

Table 4.9: Fit results for spin scenarios (S,S) (top) and (S,V) (bottom).

• (S, V ) Decay
The fit results are shown in table 4.9, bottom. Here the χ2 and the ratio of B/C
definitely exclude the (S, S) model. The smallest χ2 is (BCD). The large error
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bars of the E and F coefficients include the 0. The ratios for (BCD) model are
D/C = −0.361, C/B = −1.173, D/B = 0.424 and suggest (S, V ) with equation
4.28.
• (V, S) Decay
The fit results are shown in table 4.10, top. For this data set, the χ2 is again not
very significant since all χ2 values are very good. The values F = 0 and E = 0
are again compatible with the error bars. The (S, S) model is not supported,
since B 6= C in the range of the error bar. The D coefficient from the (BCD)
model is in the range of the error bars also 0, but the value is already analytically
very small. The ratios for (BCD) are D/C = 0.042, C/B = 0.851, D/B = 0.036
and suggest (V, S) with equation 4.28.
• (V, V ) Decay
The fit results are shown in table 4.10, bottom. Here the χ2 is significant for
the 10 bin case which obviously favours the (V, V ) case, while the 50 bin results
are less characteristic. But a closer look at the fitted coefficients unveils the
underlying result. The (BC) fit is impossible since the C term is negative and
not the same as B. The χ2 for the (BCD) model is extremely large for 10 bins.
(V, S) can be excluded due to the wrong interval for C/B. Furthermore F = 0
for the (BCDEF ) model in the range of the error bars and (BCDEF ) has quite
a large χ2. The remaining process is (BCDE), although the values for D and E
could also be zero (within the error bars).

A supersymmetric example: (F, F ) decay

As a “realistic” test we choose a supersymmetric example and study a focus
point scenario which is inspired by SPS2 [63]: m0 = 3 · 103 GeV, m1/2 = 3 · 102,
A0 = 0, tanβ = 10 and sign(µ) > 0. We simulate for the gluino decay 2k
and 10k events and also study the effect of different binning sizes, namely 10
and 50 bins. Afterwards we fit the resulting distribution to all possible cases.
Here we have assumed that the following information on the masses is given:
(mX −mY ) = 688± 23 GeV , mY = 121± 12 GeV with a Gaussian distribution.
The results are summarised in table 4.11. As one knows neither the absolute
values of the couplings nor the intermediate masses, one has the freedom to
normalise B to 1 and, thus, only the other coefficients and their uncertainties
are given. The χ2 slightly favours the (B,C,D) polynomial for both 10 and 50
bins. However, if higher powers in ŝ are included, one still obtains a good fit and
the χ2 will not be sufficient to discriminate between the different possibilities.
This is a quite generic feature because usually there is a hierarchy between the
non-zero coefficients: |B|, |C| � |E|, |F |. The (B,C) case can be ruled out since
B = C is not compatible with the range of the error bars. The smallness of the
parameters and the large errors in the E and F coefficients of the (B,C,D,E) and
(B,C,D,E, F ) models suggest that those values are zero. The remaining model
is (B,C,D) with negative D which suggests (F, F ). We find it encouraging that
already for 2000 events one gets first information, including that the (S, S) case
can be excluded.
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Model Coef χ2 (V,S)10 χ2 (V,S)50 (V,S)an
(BC) C 0.34 0.828± 0.038 0.82 0.827± 0.037 1

(BCD) C 0.27 0.851± 0.090 0.82 0.852± 0.094 0.843
D 0.036± 0.116 0.038± 0.110 0.032

(BCDE) C 0.29 0.856± 0.108 0.84 0.852± 0.110
D 0.0264± 0.159 0.037± 0.167
E −0.017± 0.210 −0.003± 0.182

(BCDEF) C 0.24 0.881± 0.172 0.83 0.883± 0.163
D 0.090± 0.3452 0.105± 0.304
E −0.071± 0.323 −0.069± 0.286
F −0.104± 0.465 −0.115± 0.394

Model Coef χ2 (V,V)10 χ2 (V,V)50 (V,V)an
(BC) C 2.48 −0.844± 0.116 1.04 −0.850± 0.112 1

(BCD) C 7.11 −0.882± 0.089 1.91 −0.886± 0.0911
D −0.096± 0.177 −0.091± 0.117

(BCDE) C 1.93 −0.986± 0.214 0.92 −0.982± 0.231 -0.917
D 0.022± 0.182 0.025± 0.176 0.026
E 0.227± 0.353 0.212± 0.351 0.139

(BCDEF) C 2.48 −0.974± 0.179 0.95 −0.973± 0.196
D 0.061± 0.527 0.052± 0.509
E 0.195± 0.318 0.187± 0.361
F −0.063± 0.690 −0.045± 0.641

Table 4.10: Fit results for spin scenarios (V,S) (top) and (V,V) (bottom).

Coef. χ2 (F,F)10 χ2 (F,F)50 χ2 (F,F)10,2k

C 1.37 0.210± 0.061 0.81 0.208± 0.071 0.79 0.208± 0.126

C 0.08 0.089± 0.077 0.30 0.089± 0.076 0.76 0.089± 0.155
D −0.232± 0.106 −0.227± 0.110 −0.227± 0.252

C 0.09 0.079± 0.141 0.31 0.067± 0.128 0.97 0.067± 0.300
D −0.218± 0.150 −0.197± 0.139 −0.197± 0.322
E 0.028± 0.227 0.060± 0.228 0.060± 0.536

C 0.11 0.080± 0.149 0.31 0.077± 0.160 0.55 0.077± 0.401
D −0.215± 0.456 −0.169± 0.340 −0.169± 1.108
E 0.025± 0.260 0.035± 0.311 0.035± 0.738
F −0.006± 0.516 −0.046± 0.443 −0.046± 1.315

Table 4.11: Testing of the Susy focus point taking 10 bins in case of 2k events and
10 and 50 bins for 10k events. Input for the fit is: (mX −mY ) = 688 ± 23 GeV,
mY = 121 ± 12 GeV with gaussian distribution, mI = 3026 GeV. The coefficients
are normalised such that B = 1 and the uncertainties are at 3σ. The analytic values
for the coefficients are B = 1, C = 0.123, D = −0.188.
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We have also checked how things change if the errors on the mX −mY and mY

are increased. As a first step we have doubled the mass uncertainties and we
find that the central values remain stable. The uncertainty on C (D) in case of
(B,C) and (B,C,D) fits increases by about 50 (few) per cent. In case higher
polynomials are included the uncertainty of C increases by about 30 per cent
whereas the uncertainties of the other parameters change again only in the few
per cent range. This is roughly speaking the border-line where one can make
reliable statements in this case. We have also increased the mass uncertainties
by a factor three and find that the uncertainties of the coefficients C and D are
close to 100 per cent and thus that no reliable statement can be made.

The (S, S) and (F, F ) processes with all possible fits for 50 bins are shown in
figure 4.9 where one can see the analytic results and the data for 10k events. For
the (S,S) result, the data points can apparently also be fitted well with higher
polynomials, and the resulting curves coincide. With the (F,F) result, we can see
that for the (BC) model the fit and the analytic result differ a lot for small ŝ.
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Figure 4.9: Comparison of different fits with the analytic result and the MC data.
Left: (S,S), right: (F,F). The normalization of the y-axes is arbitrary.

4.4.4 Large sample tests

In the second step we have tested our strategy for a large set of random couplings,
fixing however the kinematics to mX = 1 TeV, mY = 100 GeV and all mI =
5 TeV. The latter number is not crucial as long as it is above 5 TeV (2 TeV) in
case of decaying vector bosons (decaying scalars and fermions). In an ideal world
one could use the strategy depicted in figure 4.4 without any problems, since each
path is unique in this flowchart. In reality there will be some smearing of the
data from the measurement itself as well as from the background subtraction and
we have to adjust our strategy to that. This is why one may not end up with on
specific spin assignment to a data set, but only with an exclusion list and two or
three possible underlying spin scenarios.
Let us initially discuss an important feature for the decision making process which
we stumbled upon when performing the first large sample tests.
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Initially, we wanted to fit the data to the largest polynomial possible (B,C,D,E, F )
and expected to get e.g. E and F close to zero for data sets from generated sce-
narios, e.g. (S, V ), where the true value is zero. However, after taking noisy data
into account, we realized that noisy data would always prefer a larger polynomial,
and that all coefficients get values independent from their true values.
However, by taking a χ2 test into account which punishes larger polynomials as
in equation 4.36, a distortion of the decision by this effect could be avoided. But
those ill-fitted coefficients, e.g. E to a small value, of course also have an impact
on the fitted values for the other actually non vanishing coefficients. We thus
might not be able to apply the part of our strategy in which we take the specific
values, e.g. ratios of coefficients, into account. This is why we choose to vary the
decision-making in the following way

1. Fit data to all possible polynomials (B,C), (B,C,D), (B,C,D,E),
(B,C,D,E, F ) 4 (by solving the equation 4.35)

2. Calculate χ2 from equation 4.36

3. Go through necessary requirements for each spin assignment (listed below)
which are derived from the decision tree shown in figure 4.4

4. In the case of disagreement, throw out the corresponding decay in the model
list in equation 4.38 (shown below) which includes all possible decay sce-
narios.

In this approach, we are as sure as possible not to falsely exclude the correct
model. We apply steps 1-4 to the model list

{(S, S), (S, V ), (V, S), (F, F ), (V, V ), (V, V )4} (4.38)

and the corresponding differential widths. (V, V )4 denotes the case where only the
4th order in ε of (V,V) remains which is a polynomial with coefficients (BCDEF ).
The criteria which we worked out in the strategy are summarized in the following
list

1. B 6= C → remove (S, S)

2. D > 0 → remove (F, F ); D < 0 → remove (S, V ), (V, S)

3. C/B in (S,V) interval → if not, remove (S, V )

4. C/B in (V,S) interval → if not, remove (V, S)

5. D/B in (S,V) interval → if not, remove (S, V )

6. D/B in (V,S) interval → if not, remove (V, S)

7. D/C in (S,V) interval → if not, remove (S, V )

4We choose here not only to include the three polynomials for the leading order of ε2 but
also a fourth polynomial which can show up in the case where the leading terms are zero.
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8. D/C in (V,S) interval → if not, remove (V, S)

9. if E < 0 in (V, V )/(V, V )4, → remove (V, V )/(V, V )4

10. if F < 0 in (V, V )4, → remove (V, V )4

11. Optional: Remove all models with χ2 > 3 (here: ε = 1/5)

12. Optional: Remove (V, V )/(V, V )4 if E, F < 0.001 respectively.

The last two criteria are only optional, which means that we will first discuss the
basic criteria 1 to 10 and in a second step, we also include the last two criteria
separately. They are distinct from the others because the values needed for these
criteria are subjective.

Basic criteria

We have generated 100 different data sets with random couplings for each of the
decays (S, S), (S, V ), (V, S), (V, V ) and (F, F ) with 104, 105 and 106 events for
each set of couplings. Now we apply steps 1-4 of page 65 to it and every time one
criterion could be applied and not fulfilled within the range of the error bars, the
corresponding model was cancelled from the list in equation 4.38 at page 65.
The results for all the different Monte Carlo data sets are summarized in table
4.12 after going through the criteria. The table is structured as follows: The
first row lists the tested models, while the first column lists the true underlying
decays. For example, the numbers in the first row were obtained as follows: We
started with 100 different data sets for the (S, S) decay, apply our criteria 1 to
8, and after that, 97 (S, S) models remain, 0 of (S, V ), 24 of (V, S), 99 of (F, F )
and so on. This means that the test could correctly exclude 100% of the (S, V )
decays, more than 3/4 of the (V, S) decays and so on. Note that there were no
data sets were all models were excluded except one single wrong one.
From these numbers, we can draw the following conclusion:

1. It is easier to fit data originating from a polynomial which has low powers
of ŝ by a higher order polynomial if there is smearing than vice versa.

2. The number of criteria depends on the decay mode, e.g. it is easier to
exclude (S, V ) where 3 criteria are at hand than (V, V ) where only one
exists. Additionally, some criteria (like B=C) are strong while others are
weaker (e.g. E > 0) which affects the number of excluded (S, S) underlying
models (ideally always 100%).

3. The modulus of the coefficients E and F is usually up to two orders of
magnitude smaller than the modulus of the other coefficients but the abso-
lute uncertainty is roughly the same for all coefficients. Although the error
bars always include the 0, the models can not be cancelled out using this
argument, since in the correct (V, V ) models, the error bars also include
the 0 (as can be seen in table 4.10 e.g.; however, the absolute value of the
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(S,S) (S,V) (V,S) (F,F) (V,V) (V,V4)

104 events:

(S,S): 97 0 24 99 100 100
(S,V): 0 100 0 3 100 100
(V,S): 0 0 100 100 99 100
(F,F): 0 1 0 100 100 100
(V,V): 0 67 0 78 100 100

105 events:

(S,S): 99 0 0 100 100 100
(S,V): 0 95 0 3 100 100
(V,S): 0 1 99 100 100 100
(F,F): 0 0 0 100 100 100
(V,V): 0 17 0 60 100 100

106 events:

(S,S): 96 0 0 100 100 100
(S,V): 0 87 0 6 100 100
(V,S): 0 1 99 100 100 100
(F,F): 0 0 0 100 100 99
(V,V): 0 2 0 57 100 99

Table 4.12: The number of remaining models for 100 input models each where the
various criteria are applied using 3σ uncertainties on the coefficients. The masses are
chosen as mY = 100±10 GeV and the mass difference (mX −mY ) = 900±30 GeV .
The bold numbers are the correct model fits.
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correctly-fitted E value is much larger than the ill-fitted value for the wrong
model).

4. A higher number of wrongly excluded models for 106 events (e.g. for the
(S, V ) model (87)) is due to the high statistics which make the influence of
the expansion visible.

In particular the third item implies that it will be rather difficult to exclude a
positive E and F in practice if only one decay channel is considered! However, one
should keep in mind, that these criteria are for generic decays, and no restrictions
have been made for the coupling structure or the masses. If one has a hint towards
some specific model, one can then work out more model-specific criteria and those
can be used to check if the data still fulfil those.

Additional criteria

So far, we have not used our knowledge about the χ2. One can of course always
remove the models with the largest χ2. However, this is not a strict criterion and
thus we applied such test such as criterion 11.

From the test-fits in Chapter 4.4.3, we could see that in the cases where (V, V )
is not the underlying model and the decay can be described with a polynomial
like (BC) or (BCD), the values for coefficients E and F are very tiny. Although
this is a common feature in this type of decays (which we saw also in the large
sample tests above), we do not make use of it in the criteria 1 to 8. The point is
that the errors are large and include of course the 0 as expected, but the same
happens in the case of the true (V, V ) decay. Here, the E coefficient in table 4.10
has a much larger value compared to e.g. the E coefficient for the (S, V ) decay
in table 4.9. So both error bars include the 0 and if that would be the criterion,
it would remove the wrong as well as the correct model.
This is why we have introduced the optional criteria 11 and 12 separately, the
first includes the χ2 of the fit, the second one gets rid of very tiny coefficients and
thus the wrong model. Since the value for these criteria is not straightforward,
we have tested different values to see which one throws out most models correctly
but none or only few of the correct models. We give the resulting numbers in
table 4.13 which is organized as table 4.12 but with two numbers, the first one
taking only criteria 1 to 8 and 11 into account, the second one also applying 12:

The first number of 99/100 (as e.g. in the (S, S) case) denotes the number
remaining after applying the χ2 criterion, the second number the same with the
small E, F criterion. The results are

1. the χ2 > 3 criterion is most useful if the underlying decay is (V, V )/(V, V )4,
since the polynomials with a lower order have a large χ2. This is e.g.
reflected in the (V, V ) decay with 10k events, and the fitted (S, V ) and
(F, F ) polynomials. Here the number of remaining processes is reduced by
applying the χ2 test from 67 ((S, V ), table 4.12) to 56 (table 4.13) and for
(F, F ) from 78 to 48.
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(S,S) (S,V) (V,S) (F,F) (V,V) (V,V4)

104 events:

(S,S): 97/97 0/0 24/24 99/99 99/82 99/84
(S,V): 0/0 96/100 0/0 1/3 95/94 97/87
(V,S): 0/0 0/0 100/100 100/100 99/94 100/87
(F,F): 0/0 1/1 0/0 100/100 99/97 100/87
(V,V): 0/0 56/67 0/0 48/78 98/96 99/95

105 events:

(S,S): 99/99 0/0 0/0 100/100 100/60 100/68
(S,V): 0/0 94/95 0/0 0/3 100/88 99/70
(V,S): 0/0 1/1 99/99 100/100 100/56 100/73
(F,F): 0/0 0/0 0/0 100/100 100/72 100/70
(V,V): 0/0 2/17 0/0 1/60 99/97 97/87

106 events:

(S,S): 96/96 0/0 0/0 100/100 100/13 100/20
(S,V): 0/0 87/87 0/0 0/6 100/54 100/42
(V,S): 0/0 1/1 99/99 100/100 100/17 100/30
(F,F): 0/0 0/0 0/0 100/100 100/31 100/27
(V,V): 0/0 0/2 0/0 0/57 100/100 99/66

Table 4.13: Same as table 4.12 but taking into account either the optional criterion
11 ( exclude χ2 > 3) or criterion 12 (small E,F ) corresponding to the first/second
number in each entry.
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2. The criterion for small E, F works very well for high statistics since the fit
gives values that are close to 0. This is reflected in the last row of table 4.13,
where the underlying process is (F, F ). After application of the common
criteria, 100 of (V, V ) and 99 of (V, V )4 models remain (see table 4.12).
However, after additionally applying the criterion 12 this number is reduced
to 31 (V, V ) and 27 (V, V )4.

However, the same argument does not remove any of the (V, V ) models, if (V, V )
is the underlying process. For a smaller number of events, there are only a few
coefficients E, F smaller then 0.001 so only a smaller number of models are
removed as e.g. in table 4.13 for 10k events, 94/87 remaining (V, V )/(V, V )4

models for the underlying (V, S) process.
As in the case of the supersymmetric example in Section 4.4.3 we have also used
larger uncertainties on mY and mX −mY and come to the same conclusions.

4.5 Summary

We have worked out a detailed strategy for spin determination in three body
decays where ordinary spin determination via the degree of the polynomial for
the differential decay width cannot be applied.
Our approach is based on the fact that the differential decay width can be written
as a polynomial times a global function after we take the off-shell limit and expand
in ε = mX/mI . In contrast to the on-shell spin determination approach, knowing
the degrees of polynomials is not enough to be able to distinguish between the
different intermediate particles5. We found that all five different spin assignments
can be discriminated uniquely from each other, and that in a perfect fit the
underlying spin assignment can be perfectly reconstructed. However, in data
suffering from statistical fluctuations, we saw by investigating large Monte Carlo
data samples, that some criteria can better be applied than others and that for
some models there are more criteria then for others making the former easier to
exclude.
In summary one can say that the strategy yields unique results from its construc-
tion but suffers, as do all other methods, from low statistics. In our approach this
leads to a strategy that excludes models if the data do not fulfil the characteristic
criteria of a certain decay. This has the consequence that one might be left with
more then one model after applying our decision-making strategy, while reducing
the risk of falsely excluding the correct underlying model.

5It should be mentioned that for on-shell decays, the degree of the polynomial also only gives
information about the mediating particle’s spin, not that of the external particles, which we are
also able to analyse with this strategy.



Chapter 5

Spin in an s-Channel Diagram With
Very Short Decay Chains

We dedicate this chapter to spin determination in the case of very short decay
chains. We investigate the s-channel diagram where two intermediate particles
decay into four final state particles, including two invisible ones. We take all
possible spin scenarios with renormalizable interactions into account and study
the influence of the masses and couplings on the discrimination power of a specific
variable that has been proposed in the literature. In order to apply our results
to hadron colliders, we discuss a simple scheme that can be used to disentangle
PDF and spin effects.

5.1 Introduction, notation and calculation

In this chapter we investigate a scattering process with a certain topology denoted
in [64] as the antler topology, with

p, p→ B,B → CC, ll (5.1)

where C,C are invisible particles and l, l are SM leptons. The “antler” can be seen
in figure 5.1, if one rotates the Feynman diagram counter clockwise by π/2. There
is one invisible particle on each branch, and only the invariant mass distribution
which can be build from the visible leptons is observable. The methods discussed
in the chapters before can therefore not be used because the decay chains are
too short in this scattering process. This topology was discussed in the literature
(see, e.g. [14, 65–69]). It is very interesting since it appears in many models of
new physics and, due to the shortness of the decay chains, can be treated in
a model independent way. Unfortunately, this antler topology introduces a lot
of problems. The cross section of uncoloured processes are significantly smaller
than coloured ones. This lowers the number of events in the process in question
and reduces the statistics. Furthermore, more thought has to be given to mass
measurement since the endpoint of the invariant mass distribution of the two
leptons depends on the total energy. There are several techniques available for
mass measurement, such as [64] where the masses can be determined from cusps
in the invariant mass distribution if the particle A in figure 5.1 is resonant. In

71
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[70], the “Cambridge Variable” MT2 was introduced that works by a minimizing-
maximizing event-by-event analysis of the missing transverse energy. In [71], the
“contransverse mass” MCT was introduced while [72] investigates the projected
contransverse mass MCTx.

A

B

B

l+

C

C

l−

α β

γ

γ

Figure 5.1: Notation for the antler diagram. The undetectable particles are C,
while l± are SM leptons (massless). The couplings are denoted here generically by
α, β, γ. They are specified for each process in table 5.2. The double lines mark the
particles with unknown spin.

Besides uncertainties in the mass determination, one can also have t-channel con-
tributions. Since we restrict ourselves only to leptons in the final states and not
jets, this topolgy would however imply leptoquarks, and we leave this subject for
later study.
Since we are considering processes for a hadron collider, we are only interested in
observables that are boost invariant along the beam axis (z-axis). We have inves-
tigated different observables which are z-boost invariant, including the invariant
mass of the two visible leptons, the contransverse mass of the two leptons MCT ,
the projected contransverse mass MCTx and the difference of the pseudorapidities
of the two visible leptons which we denote in the following with CB. Most of them
have their origin in mass measurement as mentioned above.
Since the last variable showed the most spin dependence in our investigations,
we study this variable in the following and see how suitable it is for spin deter-
mination. It is related to the angle of the particles B in figure 5.1 in the centre
of mass (CoM)1 frame and is hence sensitive to the spin of the particles in the
production process. It has been of much interest (see e.g. [73] [74] [69]) in the
recent years for the discrimination of Susy and UED. We investigate if and how
this discrimination power depends on the couplings, mass and spin scenarios.
Let us first have a look at the appealing properties of this variable. Therefore we
only consider the production level of the process in figure 5.1 which corresponds
to slepton production in Susy and KK-lepton production in UED. The depen-
dence of the cross section on the production angle cos θ∗ (the angle between one
of the B particles and the beam axis) is crucially different for Susy and UED in
the CoM frame

SUSY :
dσ

d cos θ∗
∝ 1− cos2 θ∗ (5.2a)

1In order to avoid confusion with the LHC experiment CMS, we use the short form “CoM”
for centre of mass.
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UED :
dσ

d cos θ∗
∝ 1 +

1− x
1 + x

cos2 θ∗ (5.2b)

where x = (2MB)2/ŝ and ŝ = (pB + pB)2 is the CoM energy2. The distributions
are shown in the left plot of figure 5.2. If one turns on PDFs, this effect gets
washed out, since the cos θ∗ angle is no longer measured in the CoM frame, but
in the Lab frame. If we could measure the sleptons/ KK-leptons directly, we
could reconstruct the CoM distribution and determine the underlying spins of
the particles involved. Since sleptons or KK-leptons are assumed to decay into a
lepton and an invisible particle, we do not have the necessary information about
the z-boost to go back into the CoM frame from the Lab frame.
The variable CB is z-boost invariant and is related to cos θ∗ such that for high
energies it approaches the cos θ∗ distribution of the parents B in the CoM frame.
This is due to the fact that in this high energy (HE) limit, the C particles are
boosted in the direction of the parents.

-1 -0.5  0  0.5  1

1
/σ

 d
σ

/d
C

o
s
 θ

*

Cosθ
*

UED

SUSY

-1 -0.5  0  0.5  1

1
/σ

 d
σ

/d
C

o
s
 θ

*

Cosθ
*

UED

SUSY

Figure 5.2: In the left plot, we see the cos θ∗ distribution in the CoM frame for
Susy and UED which shows a significant difference between the two models Susy and
UED. If one includes PDFs as done in the right plot, the B particles, here sleptons
or lepton’, are boosted along the z direction and hence the effect is washed out.

We turn our attention here to the threshold (TH) limit where the particles B
are produced almost at rest. In this limit one cannot apply equation 5.2. This is
the case for heavy particles B where the HE limit is not a good approximation
since the boost of the C particle is smaller. In the following we will investigate,
whether there is a comparably simple dependence as in equation 5.2 in this case
as well.
In the HE limit, the cos θ∗ distribution “loses” all information about the spin or
the mass of the C particle. However, in the TH limit, the spin, mass and chiral
couplings of particles C, which are e.g. neutralinos or B’, play an important role
so that the dependence is not as simple as that of equations 5.2 but crucially
depends on these values.
We therefore organize this chapter as follows: We will first specify our notation,
and make some remarks about the calculation. Then we will define the variable

2Note here, that we use ŝ in this chapter differently from the one in the last chapter. Since
the investigated topologies are different, there is no danger of confusion.
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of interest, CB. In Section 5.2 we give the analytic results for the full matrix
elements squared of all investigated processes as well as the TH results.
In Section 5.3 we explain our fixed

√
ŝ approach which helps us disentangle spin ef-

fects from smearing of the energy due to the parton distribution functions (PDFs).
In Section 5.4 we go through the possible spin scenarios and investigate for which
coupling set or mass range the discrimination of two scenarios is possible and in
which cases one has to be careful not to misidentify or mix up spin scenarios.

5.1.1 Notation

We investigate the scattering process in equation 5.1 depicted in figure 5.1. We
assume that the C particles are invisible so that they can serve as a dark matter
candidate in the models of interest. The two visible SM particles are leptons l, l.
The masses are denoted with MA, MB, MC for the particles A,B,C respectively.
The double lines in figure 5.1 denote the (BSM) particles which have unknown
spin. If we assign all possible spins up to spin 1, we end up with 8 different spin
assignments

(ABC) = (SSF ); (SV F ); (V SF ); (V V F ); (SFS); (V FS); (SFV ); (V FV );
(5.3)

where (ABC) denote the particles as shown in figure 5.1. As in the previous
chapters, S, V, F stands for scalar, vector or spin-1/2 fermion. The production
processes p, p→ B,B are denoted in the same manner with

(AB) = (SS); (SV ); (V S); (V V ); (SF ); (V F ). (5.4)

We give all 8 spin assignments for this topology in table 5.1, and the generic
interactions we consider in the following are summarized in table 5.2. For chiral
couplings, we use the notation

τc =

(
MC

MB

)2

; x =
(2MB)2

ŝ
; (5.5a)

α =
a2
l − a2

r

a2
l + a2

r

; β =
b2l − b2r
b2l + b2r

; γ =
c2
l − c2

r

c2
l + c2

r

(5.5b)

and for as, bs, cs, c̃s, c̃ accordingly.
We choose to derive the components of the amplitudes in three different reference
frames. The decay parts are calculated in the CoM frame of the decaying particles
B respectively. On the one hand this simplifies the decay calculations since we
can express the momenta of the particles of each decay in the reference frame
of the decaying particle, while on the other it introduces Jacobian factors to the
phase space integral when we rewrite it in terms of CB. We use the following
notation

Production: p, p→ B,B (5.6a)

Decay 1: B(p1,MB)→ l(p2, 0), C(p3,MC) (5.6b)
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B/A S V

S Hχ̃0
2χ̃

0
2 Susy; Z’+Susy

V Higgs+WW

F, C=S LHT [75]

F, C=V LHT UED

Table 5.1: All 8 different spin assignments for qq → ll, CC and examples of different
theoretical models corresponding to some of them.

Pos. Vertex/Lagrangian
α :

q

q̄ A

ψq
(
aslPL + asrPR

)
ψq ψqγ

µ (alPL + arPR)ψqA
µ
A

β : ψBγ
µ (blPL + brPR)ψBA

µ
A ψq

(
bslPL + bsrPR

)
ψq

b1 · fabcAaµ∂µAbνAν c b2 · (DµφB)†(DµφB)

A, q, ρ B̄, k, ν

B, p, µ

b3 ·AµBAµ,BφA b4 ·φBφ†BφA

γ : ψlγ
µ (clPL + crPR)ψBA

µ
C + hc. ψl

(
cslPL + csrPR

)
ψBφC + hc.

B

C

l

ψlγ
µ (c̃lPL + c̃rPR)ψCA

µ
B + hc. ψl

(
c̃slPL + c̃srPR

)
ψCφC + hc.

Table 5.2: Summary of the vertices and Lagrangians for generic interactions used
in this chapter.
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Decay 2: B(p′1,MB)→ l(p′2, 0), C(p′3,MC). (5.6c)

The phase space integrals are

dΩ = d cos θ∗dφ∗ dΩ1 = d cos θ1dφ1 dΩ2 = d cos θ2dφ2 (5.7)

where θi, θ
∗ are in the CoM frame of the decaying particles and the production

CoM frame respectively.

5.1.2 Details on the calculation

In the calculation we use narrow width approximation (NWA) for the particle
B. Since we are particularly interested in the influence of the particles’ spin in
the process, we use an extended version of common NWA called helicity method
which we illustrate in the following. We found [43] and [76] very useful in this
topic and follow their approach.

Helicity method

Common NWA is used to calculate typical high energy processes in which two
particles collide, producing other particles which then decay in various decay
chains. Working in NWA means assuming that the width of the unstable particle
is small compared to its mass m so that its propagator can be approximated by
a delta function

1

(s−m2)2 +m2Γ2
≈ π

mΓ
δ(s−m2).

The total cross section for 2→ n can then be calculated from

σ2→n ≈ σ2→k
Γ1→m

Γ
; n = k +m− 1

where Γ is the total width of the decaying particle, and Γ1→m the remaining
1 → m process. If the initial particles are unpolarized, one would average over
the initial particle helicities and sum over the final state ones for each total cross
section. This treatment does not take into account possible helicity correlation
effects between the production and the decay processes. If the decaying particles
have non-zero spin, we have interference effects which are commonly calculated by
using density matrices. In our case we have the production and decay processes as
in equation 5.6. We denote the matrix element of the production withMλ(B),µ(B)

with the particles B,B and their helicities λ(B), µ(B) and the matrix elements
of the corresponding decays with Nλ(B), Nµ(B).
The density matrix for the production and decay is then calculated in the fol-
lowing way. We keep the helicity of the particle B as λ, λ′ and calculate the
production and decay density matrix by averaging/summing over the the ini-
tial/final state particles:

ρprodλλ′,µµ′ =
∑

init. pols.

MλµM∗λ′µ′ ;
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ρdecay Bλλ′ =
∑

fin. pols.

NλN ∗λ′ ; ρdecay Bµµ′ =
∑

fin. pols.

NµN ∗µ′

where we denote the helicity of B with λ, λ′ and the helicity of B with µ, µ′. The
total cross section is then calculated from

∑

ext. pols.

|M|2total =
∑

λ,µ,λ′,µ′.

ρprodλλ′,µµ′ρ
decay B
λ′λ ρdecay Bµ′µ .

In short, this means that in our process with two decays we have to sum over all
possible helicities of the intermediate particles, then square the amplitudes and
sum/average over the final/initial particles’ helicities:

∑

ext. pols.

|M|2
qq→lX lX

= δ
(
slX −M2

B

)
δ
(
slX −M2

B

)
·
(

π

MBΓB

)2

×
∑

λ(q,q,l,l,X,X)

∣∣∣∣∣∣∣

∑

λ(B),µ(B)

Mqq→BB NB→lXNB→lX

∣∣∣∣∣∣∣

2

(5.8)

where λ (. . .) denote the helicities of the particular particle we sum over. Here
one can see that interference terms are entering the calculation, giving us the
correct treatment of polarization effects.

Calculation with explicit helicity spinors

For the calculation of the production and decays we use explicit helicity spinors
and we follow the notations and definitions in [43,76,77] for our calculation which
we summarize in appendix C.1. As a representative example, we will show the
calculation and the corresponding density matrices for the example (SFS). Let us
start with the production process (SF). The scalar coupling implies that we only
have the possibility for the initial quarks to be both either left (ll) or right (rr)
handed. The (lr) or (rl) combinations vanish3. We have the matrix elements

Mll,λ(B)µ(B) = 2iAl

(
B− −B+

√
1− x 0

0 B− +B+
√

1− x

)
(5.9a)

Mrr,λ(B)µ(B) = −2iAr

(
B− −B+

√
1− x 0

0 B− +B+
√

1− x

)
(5.9b)

Mlr = 0; Mrl = 0; (5.9c)

where we use B− = (bl − br) and B+ = (bl + br). The decays are

N (B → l−S)(λ(B),λ(l−)) = r ·


 cos

(
θ1
2

)
cl
cr

sin
(
θ1
2

)

−eiφ1 sin
(
θ1
2

)
cl
cr
eiφ1 cos

(
θ1
2

)

 (5.10)

3In the (VF) process, it is the other way around, since here we do not have a sign flip of the
hermitian conjugated process due to the vector-like coupling.
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N (B → l+S)(µ(B),λ(l+)) = r ·


 −e

iφ2 cos
(
θ2
2

)
− cl
cr
eiφ2 sin

(
θ2
2

)

sin
(
θ2
2

)
− cl
cr

cos
(
θ2
2

)

 (5.11)

with r = cre
− iφ1

2 MB
√

1− y. The entries for both are
(
BL lL BL lR
BR lL BR lR

)
. (5.12)

Now we have to first sum over the B particles’ polarization, as in equation 5.8
and after squaring, one can also sum over the external polarizations. In this case,
we have only (ll) and (rr) for the quark helicities, but in general one has also to
sum over the C particles’ polarization.
Depending on which particle is the intermediate one, the dimension of the matrix
in equation 5.9 is either 1× 1 (scalar), 2× 2 (fermion) or 3× 3 (massive vector).
The density matrix for the two decaying fermions involved has 2 × 2 entries for
each decay, while for the vector boson we have 3×3 possibilities. We show the
full summed and squared result for (SFS) together with the other spin scenarios
in Section 5.2.

5.1.3 Definition of CB
A. Barr’s variable CB is defined as [2]

CB := tanh

(
η1 − η2

2

)
(5.13)

where ηi are the pseudorapidities of the two leptons in the Lab frame. Since we
take the difference of these two rapidities, CB in this definition is z-boost invariant
since ηi → ηi + ηz and the two ηz cancel in the sum. In the rest frame of particle
B, the pseudorapidites of C are defined as

ηi =
1

2
log

(
Ei + piz
Ei − piz

)
=

1

2
log

(
1 + cos θi
1− cos θi

)
. (5.14)

After boosting and rotating them into the Lab frame they are

η1 =
1

2

× log

(
sinhλ(cos θ1 + cos θ∗) + coshλ(1 + cos θ1 cos θ∗)− sin θ1 sin θ∗ cosϕ1

sinhλ(cos θ1 − cos θ∗) + coshλ(1− cos θ1 cos θ∗) + sin θ1 sin θ∗ cosϕ1

)

η2 =
1

2

× log

(
sinhλ(cos θ2 + cos θ∗)− coshλ(cos θ2 cos θ∗ + 1) + sin θ2 sin θ∗ cosϕ2

sinhλ(cos θ2 − cos θ∗) + coshλ(cos θ2 cos θ∗ − 1)− sin θ2 sin θ∗ cosϕ2

)

where we express the variable in terms of θi, φi, θ
∗ and φ∗ as they are defined in

equation 5.7 and coshλ is the boost of the particle B

coshλ =

√
ŝ

2MB
. (5.15)
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We denote the energy squared of the incoming partons with ŝ whereas the total
hadronic energy squared is s. In the specific frames of equation 5.7, the variable
becomes

CB =

√
f2 − 1−√f1 − 1√
f2 − 1 +

√
f1 − 1

(5.16a)

f1 =
2 cosh(η2 − λ)

cosh(η2 − λ) + cosφ2 sin θ∗ − cos θ∗ sinh(η2 − λ)
(5.16b)

f2 =
2 cosh(η1 + λ)

cosh(η1 + λ) + cosφ1 sin θ∗ − cos θ∗ sinh(η1 + λ)
. (5.16c)

In the case where the boost coshλ = 1, and
√
ŝ = 2MB, the particles B are

produced at TH and CB simplifies to

CTHB = tanh

(
ηTH1 − ηTH2

2

)
. (5.17)

where the rapidities are

ηTHi =
1

2
log

[
cot2

(
θi
2

)]
; i = 1, 2 (5.18)

and where we have used that the definition of CB is independent of θ∗ at TH.
In the high energy limit however, the expression in equation 5.13 becomes the
angle of the parents in the CoM frame

CHEB → cos θ∗. (5.19)

This property can be used to distinguish Susy and UED at the LHC if the energy√
ŝ is high enough in comparison to the involved particles’ masses [2,73] in which

case we recover the shapes as in equation 5.2, depicted in the left side of figure
5.2.
We are instead interested in the case where the B particles are not sufficiently
light so that s= 7...14 TeV does not play the role of the high energy limit where the
CB distribution approaches cos θ∗ as in equation 5.19. We discuss the correlation
of CB and cos θ∗ for the simple phase space (PS) distribution where the matrix
element is just 1 (so no spin effects) in order to study the transition from the TH
limit to the high energy limit.
In figure 5.3 we show this correlation for four different parton energies

√
ŝ and

a particle mass MB = 150 GeV. The highest correlation is achieved when all
events are on the bisector. The first plot shows the correlation at

√
ŝ = 1 TeV,

where there is already a good correlation present between cos θ∗ and CB. For
slightly higher energies, the correlation becomes even better which is visible by
the shrinking of the blue oval region. At

√
ŝ → ∞ case, all events are on the

bisector.
In figure 5.4 we show this correlation for a particle with higher mass MB = 500
GeV. The first plot shows again the correlation at

√
ŝ = 1 TeV which is in this
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case the TH limit. Here there is no correlation present between cos θ∗ and CB.
For slightly higher energies, the correlation becomes a little better which is visible
by the shrinking of the blue region to an oval. However, only at

√
ŝ > 5 TeV,

a good correlation is achieved and for the
√
ŝ → ∞ case, all events are on the

bisector.
We see that the correlation at reasonable energies is much better for small masses
since the energy/mass ratio is larger. Only at a partonic energy of

√
ŝ > 5 TeV

in the case of MB = 500 GeV, the correlation is comparable to the correlation for
the low mass MB at 1 TeV. We therefore want to emphasize that the energy/mass
ratio determines the correlation and that for higher masses, one cannot simply
anticipate the HE result as in equation 5.2.
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Figure 5.3: Correlation between cos θ∗ and CB for different parton energies
√
ŝ. We

choose
√
ŝ = 1, 1.2, 1.5 TeV and

√
ŝ→∞. These plots are done for MB = 0.15 TeV

with 50000 events for pure phase space without spin effects. The highest correlation
is achieved when all events are on the bisector.

Changing integration variables

For completeness we will give our notation for rewriting the full phase space inte-
gral in terms of CB. We therefore introduce a 1 =

∫
dCB δ(CB −CB[θ∗, φ∗, θi, φi])

in the phase space integral where CB[. . .] stands for the definition of the CB in
equation 5.16 with rapidities expressed in angles. By integrating out the angular
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Figure 5.4: Correlation between cos θ∗ and CB for different parton energies
√
ŝ.

We choose the TH limit (
√
ŝ = 2 ·MB), at the energy defined at the peak mass (1.2

TeV), at intermediate energy (
√
ŝ = 5 TeV) and at

√
ŝ→∞. These plots are done

for MB = 0.5 TeV with 50000 events for pure phase space without spin effects.

components we can express the phase space integral in terms of the CB

dΓ =

∫
dΩ1 dΩ2 dΩ

︸ ︷︷ ︸
:=dΩc

∫
dCB δ(CB − CB[θ∗, φ∗, θi, φi])

∑

i

Ci ·Ai

=

∫
dCB Ci · Ji (5.20)

Here we have split each term of the squared matrix element into a part Ai de-
pending solely on angles, and a part Ci solely depending on masses and couplings.
Integrating out all remaining angles and rewriting the angular distributions in
terms of CB leads us to characteristic Jacobian factors Ji.

CB at high energies

We will show here that the cos θ∗ distribution of the parent particles B can be
recovered by CB at high energies

√
s→∞. Let us rewrite CB of equation 5.16 in

terms of the angles θi

CB(λ) = tanh

{
1

4
×

×
(

log

[
(1 + cos θ1 cos θ∗) coshλ+ cosϕ1 sin θ1 sin θ∗ − (cos θ1 + cos θ∗) sinhλ

(cos θ1 cos θ∗ − 1) coshλ− cosϕ1 sin θ1 sin θ∗ + (cos θ∗ − cos θ1) sinhλ

]
−
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− log

[
(1 + cos θ2 cos θ∗) coshλ− cosϕ2 sin θ2 sin θ∗ − (cos θ2 + cos θ∗) sinhλ

(cos θ2 cos θ∗ − 1) coshλ+ cosϕ2 sin θ2 sin θ∗ − (cos θ2 − cos θ∗) sinhλ

])}
.

We set coshλ =
√
ŝ/(2MB) and since ŝ� (2MB)2, we estimate coshλ = sinhλ =

1/ε with ε→ 0 when
√
ŝ→∞. The definition of CB then simplifies to

CB(ε) = tanh

{
1

4

(
log

[
−1− 2(1 + cos θ1)

(1 + cos θ1)(−1 + cos θ∗)− ε cosϕ1 sin θ1 sin θ∗

]

− log

[
−1 +

2(cos θ2 − 1)

(−1 + cos θ2)(cos θ∗ + 1)− ε cosϕ2 sin θ2 sin θ∗

])}
(5.21)

For ε→ 0, we see that the terms in the denominator vanish and we are left with

CHEB = tanh

{
1

4

(
log

[
1 + cos θ∗

1− cos θ∗

]
− log

[
1− cos θ∗

1 + cos θ∗

])}
= cos θ∗ (5.22)

which is just the angle between one of the parents and the beam axis. This angle
is sensitive to the spin of the particles A and B and hence, in this limit, CB can
in principle be used to determine those particles’ spin.

5.1.4 Further strategy

We saw in figure 5.4, that for a heavy B particle, the correlation of CB and cos θ∗

is not as promising as investigated in the literature and therefore is not as useful
as assumed for distinguishing between Susy and UED. This is why we will pursue
the question whether there is a similar simple dependence as in equations 5.2 of
the differential distributions of CB for lower energies that we find more suitable
for an LHC process. Since we can now calculate the CB distribution for phase
space (PS), we also know that everything which deviates from this form has to
be a spin effect.
Our central questions are

1. Are there spin dependences of the CB distributions for heavier particles B,
in which case we cannot take the limit CB = cos θ∗ (HE limit)?

2. Is there a similar simple dependence for the CB distributions as in the HE
limit in equations 5.2?

3. How do different mass and coupling choices affect the distributions?

4. Can different spin scenarios look alike and fake each other?

To answer these questions we have to split the problem into several sub-problems.
• Fixed

√
ŝ approach

As we saw in the discussion on equation 5.2, the HE limit is simply obtained by
taking s → ∞ so that the results in these equations are just the 2 → 2 results.
In the low energy region, we also have the influence of the final particles l, C.
Since already the PS distribution depends on

√
ŝ, we need to know or at least

estimate the energy at which the process takes place. Since we are dealing with a
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hadron collider, the energy
√
ŝ is solely dictated by the PDFs. We therefore need

to disentangle the PDF and thus the energy dependence of the CB distribution
from the spin effect.

The approximation is motivated by the fact that for heavier B particles in the
case of an off-shell s-channel particle A (e.g. a Z or a Higgs boson), the main
production takes place at energies slightly above TH. Therefore we take a suitable
fixed

√
ŝ as the energy of the main production. This means we mimic the full PDF

result by choosing an appropriate fixed energy. We will dedicate Section 5.3.1 to
this topic. Once we have a good estimate for fixed

√
ŝ, we can investigate the

influences of masses and couplings on the distributions at this particular energy
and how well the CB discriminates between different spin scenarios at this fixed√
ŝ.
• TH limit
As it turns out, it is not possible to derive analytically a full CB distribution
by performing the integration of equation 5.20 viable for all energies

√
ŝ as one

would have hoped. Let us first see what we need to do in order to derive the
integral in equation 5.20. We have the integral

∫
d cos θ∗ dφ∗ d cos θ1 dφ1 d cos θ2 dφ2 δ(CB − CB[φ∗, θ∗, φ1, θ1, φ2, θ2]). (5.23)

We integrate over the angles d cos θ∗dφ∗, d cos θ1dφ1, d cos θ2dφ2 so that we are
left with the integral dCB. This is usually done by rewriting the δ distribution
using

∫ +∞

−∞
dx f(x) δ(g(x)) =

∑

i

∫ +∞

−∞
dxf(x)

δ(x− xi)
|g′(xi)|

=
∑

i

f(xi)

|g′(xi)|
, (5.24)

where g(x) = CB − CB[φ∗, θ∗, φ1, θ1, φ2, θ2]. We have to sum over all zeros xi
of the function g(x). The integration variable x stands for any of the angles
φ∗, θ∗, φ1, θ1, φ2, θ2. One has to solve equation 5.16 for one of the angles in order
to perform the rest of the integrals which could not be done analytically due
to the involved structure of the terms. However, it is possible investigate the
analytic forms in the limit where x = (2MB)2/ŝ ≈ 1, close to threshold (TH)
where we can perform this integration and determine analytically the Jacobian
factors of equation 5.20. Since we are not completely at TH, we will expand the
full results around TH to see how the influence of masses and couplings changes
at higher orders.

In the next section we will summarize our analytic results for

• 2→ 2: production processes

• 2→ 4: full squared matrix elements (only short results)

• 2→ 4: squared matrix elements in the TH limit

• Jacobian factors of the CB at TH
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• 2→ 4 differential distributions in terms of CB at TH

• 2→ 4 differential distributions in terms of CB expanded around TH.

In the penultimate section, 5.4, we compare for the fixed
√
ŝ approach the dif-

ferent spin scenarios in different mass ranges and coupling ranges and test the
discrimination power of CB.
We want to be able to compare the distributions from our calculation fast and
independently with the simulated CalcHep/CompHep [78, 79] results including
PDFs. Therefore we have to calculate the integral in equation 5.20. We do this
via Monte Carlo integration since methods which use an explicit δ-distribution
as one would do for an analytic result are not reliable enough. Since we want
to use the squared matrix elements derived before, we integrate out this δ-
distribution via a Monte Carlo method. We start by randomly choosing values for
φ∗, cos θ∗, φ1, cos θ1, φ2, cos θ2 in their particular ranges and calculate at this point
CB corresponding to these random values. If we are interested in the pure phase
space, we just have to write this “event” in a histogram and repeat the procedure.
For the integration of the squared matrix elements, we weight the events filled
in the histogram with the value of the squared matrix element. Alternatively,
one can enter the event into a histogram with a probability proportional to this
weight.

5.2 Analytic results

We summarize here the analytic results which we will investigate later and which
we have derived as explained in the previous section. First we will show the 2→ 2
squared matrix elements of the production, which are important if one wants to
see what the distribution looks like at high energies. Then we show, if expressible
in a short form, the full 2 → 4 squared matrix elements followed by the 2 → 4
matrix elements at TH. After that we derive the Jacobians from equation 5.20 in
the TH limit and give the corresponding TH results for the 2→ 4 processes.

5.2.1 Squared matrix elements for 2→ 2

We summarize here the squared matrix elements for the 2 → 2 processes which
depend on the cos θ∗. Since we are only interested in the angular dependences,
we leave out global normalization factors:

|M|2(SS) ∝ 1 (5.25a)

|M|2(SV ) ∝ 1 (5.25b)

|M|2(SF ) ∝ 1 (5.25c)

|M|2(V S) ∝ 1− cos2 θ∗ (5.25d)

|M|2(V F ) ∝ 1 + 2αβ

√
1− x

x
√

1− β2 + 1
cos θ∗ +

1− x
x
√

1− β2 + 1
cos2 θ∗ (5.25e)
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|M|2(V V ) ∝ 1 +

(
−1 +

16x

4 + 3x(4 + x)

)
cos2 θ∗ (5.25f)

where x = (2MB)2/ŝ. We see that (VS), which is the Susy case, has its charac-
teristic sin2 θ∗ form while UED (VF) has 1 + const · cos2 θ∗ for fixed ŝ. However,
we also see that the first three distributions are all PS (here: constant) due to
the s-channel scalar and that (VV) also has a 1 + const · cos2 θ∗ distribution for
fixed ŝ. Depending on these constants which are functions of mass, energy and/or
coupling strength, (VV) and (VF) can look alike. This shows, that although the
Susy (VS) and UED (VF) cases have distinct shapes, they could still be mimicked
by the others.

5.2.2 Complete squared matrix elements for 2→ 4

The squared matrix elements for the full 2 → 4 processes (including NWA via
helicity methods) are

|M|2(SFS) ∝ 2− x
(

1 +
√

1− β2
)

+ 2
√

1− xβγ(cos θ1 + cos θ2)

+
(
x− 2

√
1− β2 + x

√
1− β2

)
γ2 cos(φ1 − φ2) sin θ1 sin θ2

−
(
x− 2 + x

√
1− β2

)
γ2 cos θ1 cos θ2 (5.26a)

|M|2(V SF ) ∝ 1− cos2 θ∗ (5.26b)

|M|2(V FS) ∝ 1 + αγ(cos θ1 − cos θ2)− γ2 cos θ1 cos θ2 (5.26c)

|M|2(SV F ) ∝ 128
(
cos2 θ1 + cos2 θ2

)
(1− x)(1− τc)3

− (32(τc − 1)2(4 + x(x− 4 + 2xτc)))

− (32 cos θ2
1 cos θ2

2(x− 2)2(1− τc)4)

+ x264 cos θ1 cos θ2(1− τc)2γ2 − 32 cosφ2
12(1− τc)4 sin2 θ1 sin2 θ2

− x(64 cosφ12(x− 2)(1− τc)2
(
(1− τc)2 cos θ1 cos θ2 − γ2

)
sin θ1 sin θ2)

(5.26d)

|M|2(SSF ) ∝ 1 (5.26e)

|M|2(SFV ) ∝ 32 cos θ1 cos θ2(1− 2τc)
2(1− τc)

(
−2 + x+ x

√
1− β2

)
γ2

+
32(τc − 1)√

1− β
((

2(β − 1)
√

1 + β + x
(√

1− β + (1− β)
√

1 + β
))

×γ2(1− 2τc)
2 cos(φ1 − φ2) sin θ1 sin θ2

)

+ 32(1− τc)(1 + 2τc)
2
(
x− 2 + x

√
1− β2

)

+ 64(cos θ1 + cos θ2)
√

1− x(1− τc)(1− 4τ2
c )βγ (5.26f)

with φ12 = φ1 + φ2. We do not show the results for (VVF) and (VFV) since
their form is long and is not very useful for clarification. Every term that has an
angular dependence is a deviation from PS and thus gives us spin effects. We see
that the impact of these spin effects depends on the masses τc and the couplings
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β, γ from equation 5.5. E.g. for the case of equation 5.26e, there is no spin
structure at all. The (VSF) case in equation 5.26b has already here the cos2θ∗

dependence of equation 5.25d.

5.2.3 TH results for 2→ 4 processes

We summarize here the results for 2→ 4 at TH:

|M|2 TH
(SFS) ∝ 1 + γ2(cos θ1 cos θ2 + cos(φ1 − φ2) sin θ1 sin θ2) (5.27a)

|M|2 TH
(SFV ) ∝ 1 + γ2 (1− 2τc)

2

(1 + 2τc)2
(cos(φ1 − φ2) sin θ1 sin θ2 + cos θ1 cos θ2) (5.27b)

|M|2 TH
(V FS) ∝ 1 + αγ(cos θ1 − cos θ2)− γ2 cos θ1 cos θ2 (5.27c)

|M|2 TH
(V FV ) ∝ 1− cos θ1 cos θ2

(1− 2τc)
2

(1 + 2τc)2
− αγ (cos θ2 − cos θ1)

(1− 2τc)

(1 + 2τc)
(5.27d)

|M|2 TH
(SSF ) ∝ 1 (5.27e)

|M|2 TH
(V SF ) ∝ 1 (5.27f)

|M|2 TH
(SV F ) ∝ 1 +

2γ2

1 + 2τc
(cos θ1 cos θ2 − cos(φ1 + φ2) sin θ1 sin θ2)

+
(1− τc)2

1 + 2τc
(cos θ1 cos θ2 − cos(φ1 + φ2) sin θ1 sin θ2)2 (5.27g)

|M|2 TH
(V V F ) ∝

2(1 + τc)

τc
− (1− τc)(cos2 θ1 + cos2 θ2)

− 2(1− τc)2

τc
cos2 θ1 cos2 θ2

+
2αγ

τc
(cos θ1 + cos θ2) (1− cos θ1 cos θ2(1− τc)) (5.27h)

5.2.4 J factors at TH

From equations 5.27 we see that the investigated matrix elements at TH are only
functions of certain angular combinations,

|M|2 = {C0 + C1 (cos θ1 − cos θ2) + C2 cos θ1 cos θ2

+C3 sin θ1 sin θ2 cos(φ1 − φ2) + C4fθ1θ2φ + C5 cos2 θ1 cos2 θ2

+C6f
2
θ1θ2φ + C7(cos2 θ1 + cos2 θ2)

+C8(cos θ1 + cos θ2)(1− a · cos θ1 cos θ2)} (5.28)

with

fθ1θ2φ = (cos θ1 cos θ2 − cosφ12 sin θ1 sin θ2). (5.29)

The “a” in the last line of equation 5.28 stands for a process dependent prefactor
which is not important at this point since the angular dependence belonging to
C8 vanishes after being rewritten in CB. The prefactors Ci are only functions of
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the masses and the couplings as can be seen in equations 5.27. The coefficients
C4/5 only appear in the context of (SVF) where all other coefficients except for
C0 are 0. We can now rewrite the phase space integral for these single factors
Ai in terms of CB by introducing the delta function δ(CB −CB[θ∗, φ∗, θi, φi]) with
the definition of CB at TH in equation 5.17. By integrating out the angular
components which are not in the TH definition of CB given in equation 5.17 we
can express the phase space integral in terms of CB

σTH =

∫
dΩ1 dΩ2 dΩ

︸ ︷︷ ︸
:=dΩc

dCTHB δ(CTHB − CTHB [θi])
∑

i

CTHi ·ATHi

=

∫
dCTHB CTHi · JTHi . (5.30)

The φi angles can be integrated out independently since the CB in equation 5.17
does not depend explicitely on them. The remaining angles θ1, θ2 are rewritten
in terms of the rapidities η1, η2 (equation 5.14)

dθi sin θi = dηi sech2ηi (5.31)

and are now integrated out so that we can calculate the Jacobian factors JTHi
from equation 5.30. We will show this in the following for some angular functions
and then, starting from those, define normalized Jacobian factors and rewrite the
differential cross section as a function of CB.
Depending on the angular combinations, we get different Jacobian factors JTHi
which we show in the following. We have normalized JN0 with

∫ 1
−1 dCBJN0 = 1.

We will in the following denote with JNi the normalized TH Jacobian factors and
suppress the additional index “TH” for simplicity. Consequently, the coefficients
Ci of equations 5.27 have to be divided by a factor of 4 and the integrals of the
non-vanishing Jacobians are then

∫ 1

−1
dCB JN2 = 0;

∫ 1

−1
dCB JN5 = 4/9;

∫ 1

−1
dCB JN6 = 4/3;

∫ 1

−1
dCB JN7 = 8/3.

We will make some comments on the calculation of particular terms in the fol-
lowing. The J1 term which belongs to (cos θ1 − cos θ2) is

J1 =
(1− C2

B)

4C4
B

(
−12(C3

B + CB) + 2(3C4
B + 2C2

B + 3) · log

(
1 + CB
1− CB

))
.

However, this result is antisymmetric for CB → −CB and thus after symmetrizing,
this contribution vanishes and J1 = 0. This means that, although the matrix
element can have a contribution proportional to (cos θ1 − cos θ2), it does not
contribute in terms of CB. J3 is automatically 0 after integrating out the φi
angles

J3 =

∫
dΩc dCTHB δ(CTHB − CTHB [θi])(cos(φ1 − φ2) sin θ1 sin θ2) = 0.
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For the integration of A4 = fθ1θ2φ we have

J4 =

∫
dΩc dCTHB δ(CTHB − CTHB [θi])(cos θ1 cos θ2 − cosφ12 sin θ1 sin θ2)

=

∫
dΩc dCB δ(CTHB − CTHB [θi])(cos θ1 cos θ2) = J2

since again the φi integration gives 0 and the first term is just the same as J2.
For J6 we also have to rewrite the angular dependence A6 = f2

θ1θ2φ
:

dΩcA6 =

∫
dΩc(cos θ1 cos θ2 − cosφ12 sin θ1 sin θ2)2

=

∫
dΩc cos2 θ1 cos2 θ2 − 2 cos θ1 cos θ2 cos(φ1 − φ2) sin θ1 sin θ2

+ (cosφ12 sin θ1 sin θ2)2

=

∫
dΩc

(
cos2 θ1 cos2 θ2 + (cosφ12 sin θ1 sin θ2)2

)

=

∫
dη1dη2sech2η1sech2η2

(
2 sinh2 η1 sinh2 η2 + cosh2 η2 cosh2 η2

)

JN6 =
1− C2

B

48C7
B

(
−2CB(45C8

B + 22C4
B + 45)

+3(15C10
B − 5C8

B + 6C6
B + 6C4

B − 5C2
B + 15) log

(
1 + CB
1− CB

))
.

We can now summarize all factors which are normalized as discussed above

JN0 =
1− C2

B

4C3
B

(
−2CB + (1 + C2

B) log

(
1 + CB
1− CB

))
(5.32a)

J1 =J3 = J8 = 0 (5.32b)

JN2 =
1− C2

B

4C5
B

(
2CB(3C4

B + 2C2
B + 3)

−(3C6
B + C4

B + C2
B + 3) log

(
1 + CB
1− CB

))
= JN4 (5.32c)

JN5 =
1− C2

B

24C7
B

(
−2CB(15C8

B + 8C6
B + 10C4

B + 8C2
B + 15)

+3(5C10
B + C8

B + 2C6
B + 2C4

B + C2
B + 5) log

(
1 + CB
1− CB

))
(5.32d)

JN6 =
1− C2

B

48C7
B

(
−2CB(45C8

B + 22C4
B + 45)

+3(15C10
B − 5C8

B + 6C6
B + 6C4

B − 5C2
B + 15) log

(
1 + CB
1− CB

))
(5.32e)

JN7 =
1

3C5
B

(
2CB(3C6

B + C4
B − C2

B − 3) + 3(1− C8
B) log

(
1 + CB
1− CB

))
. (5.32f)
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Figure 5.5: Plot of the J functions given in equation 5.32. The red/solid line is
phase space at TH. Except for J2, all functions are positive.

Note that JN4 = JN2 and J1 = J3 = J8 = 0. We plot these functions in figure 5.5.
With the help of the Jacobians, we can now express the results for each process
at TH in terms of the CB

1

σTH
d σ

(V SF )
TH

d CB
= JN0 (5.33a)

1

σTH
d σ

(SFS)
TH

d CB
= JN0 +

γ2

4
JN2 (5.33b)

1

σTH
d σ

(SFV )
TH

d CB
= JN0 +

γ2

4

(
1− 2τc
1 + 2τc

)2

JN2 (5.33c)

1

σTH
d σ

(V FS)
TH

d CB
= JN0 −

γ2

4
JN2 (5.33d)

1

σTH
d σ

(V FV )
TH

d CB
= JN0 −

γ2

4

(
1− 2τc
1 + 2τc

)2

JN2 (5.33e)

1

σTH
d σ

(SSF )
TH

d CB
= JN0 (5.33f)

1

σTH
d σ

(SV F )
TH

d CB
=

3(2τc + 1)

(τc + 2)2

(
JN0 −

γ2

2(1 + 2τc)
JN2 +

(1− τc)2

4(1 + 2τc)
JN6

)
(5.33g)

1

σTH
d σ

(V V F )
TH

d CB
=

9(τc + 1)

2(τc + 2)2

(
JN0 −

τc(1− τc)
8(τc + 1)

JN7 −
(1− τc)2

4(1 + τc)
JN5

)
(5.33h)

where we have chosen the prefactors such that the integrals are normalized to 1.
Note that these results are not depending on the specific form of the couplings
α, β which turn out to be just overall factors. JN0 is the analytic PS distribution
of CB at TH since it stems from the angle independent matrix element 1.
In Section 5.4 we will compare the full distributions with each other and investi-
gate the influences of masses and couplings. As it turns out, we can identify the
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corresponding behaviour of the distributions there to these TH formulas. How-
ever, one might assume that, if one leaves TH and turns on

√
ŝ > (2MB)2, the

distributions might change rapidly. As it turns out, they do not behave like this
and instead, the TH formulas are good enough to give us an impression of the
dependence on the masses and couplings. To see this analytically, we now expand
the full results around δ with

ŝ = (2MB)2(1 + δ2)2. (5.34)

The full expansion up to power δ2 is

8∑

i=0

(CTHi · JNi + CTHi · J̃i + Cδ
2

i · JNi ) +O(δ3) (5.35)

where Cδ
2

i , J̃i mean the δ2 order of the full Ci, Ji. Thus we have a new contri-
bution from the expanded Jacobian factors with the power δ2, J̃i and we have
the expanded coefficients Cδ

2

i . We do not show the results of the J̃i here, since
they have a long and involved structure and are not important for the sake of the
argument. However, the important contribution to which we turn our attention
to, comes from the new Cδ

2

i coefficients. As we can see in the following equa-
tions, they are the same up to prefactors as the leading order CTHi terms in the

equations 5.33. We show here only the order δ2 contribution of the Cδ
2

i · JNi ,

1

σTH
d σ

(V SF )
TH

d CB

∣∣∣∣∣
δ2

= 0 (5.36a)

1

σTH
d σ

(SFS)
TH

d CB

∣∣∣∣∣
δ2

= 2 ·

(
3−

√
1− β2

)

1−
√

1− β2

(
JN0 +

γ2

4
JN2

)
(5.36b)

1

σTH
d σ

(SFV )
TH

d CB

∣∣∣∣∣
δ2

= 2 ·

(
3−

√
1− β2

)

1−
√

1− β2

(
JN0 +

γ2

4

(
1− 2τc
1 + 2τc

)2

JN2

)
(5.36c)

1

σTH
d σ

(V FS)
TH

d CB

∣∣∣∣∣
δ2

= 0 (5.36d)

1

σTH
d σ

(V FV )
TH

d CB

∣∣∣∣∣
δ2

=

(
1

4β2
((1 + β2)− 2

√
1− β2)

)
· JN0

− γ2

2

(
1− 2τc
1 + 2τc

)2
√

1− β2 + 3√
1− β2 + 1

JN2 (5.36e)

1

σTH
d σ

(SSF )
TH

d CB

∣∣∣∣∣
δ2

= 0 (5.36f)

1

σTH
d σ

(SV F )
TH

d CB

∣∣∣∣∣
δ2

=
3(2τc + 1)

(τc + 2)2

(
JN0 ·

(5 + 2τc)

4(1 + 2τc)
− γ2

(1 + 2τc)
JN2
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+

(
(1− τc)2

2(1 + 2τc)

)
JN6 +

2(τc − 1)2

2τc + 1
· JN5 −

2(1− τc)
2τc + 1

· JN7
)

(5.36g)

1

σTH
d σ

(V V F )
TH

d CB

∣∣∣∣∣
δ2

=
9(τc + 1)

4(τc + 2)2

(
JN0 −

3τc(1− τc)
8(τc + 1)

JN7 −
3(1− τc)2

4(1 + τc)
JN5

)
.

(5.36h)

As we can see, we have similar dependences on JN0 , J
N
2 . . ., but no other Jacobian

factors appear. There are two main points we want to stress here. First, the
relative ratios between the JN0 and JN2 can change, e.g. an additional relative
factor of 3 in the case of equation 5.36h in comparison to 5.33h. Furthermore
these higher order contributions come with prefactors as a whole that give an ad-
ditional factor relative to the “leading” order. In addition, in the case of (SVF),
two more Jacobians JN5 , J

N
6 appear, and in the case of (VFV) we have an addi-

tional influence of β.
The question arises, why we do not use the TH formulas to investigate the influ-
ence of the couplings and

√
τc. As we can see in the expansion, the order of δ2 in

the expansion contributes with the same prefactor Cδ
2

i as in the TH formulas, but
there come in additional coefficients which give a different weight induced by the
numerical factors to each of the Jacobians. It turns out that these weights have
a constant impact on the distribution for one spin scenario. We have therefore
decided to use the full result which is Monte Carlo integrated as explained in
Section 5.1.4 for the study on the influences of masses and couplings. The point
we want to stress here is that the mass and coupling dependent prefactors have
a similar influence on the full result as on the TH distributions. If the prefac-
tor Ci vanishes or is maximal, the complete term belonging to Ci vanishes or is
maximal, independent of its specific weight.

5.3 Fixed
√
ŝ approach

As we have seen in the last section, the CB distributions depend on
√
ŝ, the

spin of the particles, masses and couplings. As pointed out before, we want to
disentangle those effects in the following discussion. First, we investigate the pure
phase space function and see how it depends on the energy

√
ŝ.

Since we are considering processes for a hadron collider, we need to include PDF
effects. We want to disentangle the effects from the PDFs, which induce a non
fixed

√
ŝ value, from the spin, coupling and mass effects by choosing a suitable

fixed
√
ŝ which approximates the PDF result.

In the following we estimate this fixed
√
ŝ. First we will have a look at the

underlying production processes q, q̄ → BB̄ and determine which is the dominant
invariant mass region in the total production cross section. This depends on the
underlying spin structure which we will discuss first. Then we will take the full
2→ 4 processes into account, since the nature of the particle C also plays a role
and influences the value of the optimal fixed

√
ŝ.
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5.3.1 Production process with fixed
√
ŝ

We consider the case MA < 2 ·MB. The
√
ŝ distribution of the two particles B in

the production process with PDFs has an initial point which is given by the mass
of the two particles 2MB (TH limit). The distribution has a peak directly after
the initial point at (2 + µProd)×MB where µProd depends on the overall energy,
the particles produced and their couplings and masses. In the fixed

√
ŝ case, we

want to make use of this peak to approximate the PDF effects via setting the
CoM energy

√
ŝ to a value close to which most of the events are produced, i.e.

close to this peak. Since this peak is relatively close to TH, we also want to make
use of the TH functions to make statements about the discrimination power of
CB for the different spin scenarios.

We have to estimate µProd in order to see how close we are in the approximation at
the realistic PDF result. To get a qualitative idea about the size of this deviation,
we investigate (a) the maximum of the produced events (Peak: µP ,

√
ŝ = 2 ·MP )

(b) the mean/average value of the produced events (Mean/Average: µA,
√
ŝ =

2 ·MAv) and (c) the Median which gives the median mass (µM ,
√
ŝ = 2 ·MM )

where half of the events are at smaller energies and half at higher. We derive the
relative deviation from the true mass MB for the peak, mean and median value

µP =
(MP /2−MB)

MB

µA =
(MAv/2−MB)

MB
(5.37)

µM =
MM

2MB
where

1

Ntot

MM∑

0

Evts =
1

2
and

1

Ntot

Ntot∑

MM+1

Evts =
1

2

where MB is the intermediate particles’ mass and MP , MAv, MM is the “peak
mass” and “mean mass/average mass” and “median mass” respectively. Since
we work with binned data, we use a sum over the events instead of an integral.
In figure 5.6 we show the invariant mass

√
ŝ distributions of the two particles B

for
√
s = 7 TeV. Shown are the production processes (SS) and (VV) for different

masses of MB. These two plots are exemplary for an s- and p-wave mediated
process. The vertical lines indicate the peak, average and mean mass. The rise of
the distribution originates in the cross section. However, with increasing energy,
the production gets suppressed due to the decrease of the PDFs and the off-
shellness of the particle A.
We show the corresponding deviations in figure 5.7 for

√
s = 7 and 14 TeV. In

case of (SS) we see that for low energies the values for µM and µA cross each
other. This is an effect that has its origin in the binning of the data. It appears
whenever the distributions are very narrow as e.g. in the left plot of figure 5.6.
As we see, depending on the spin of the intermediate and final particles, the peak
is shifted more or less to higher energies. First, we have a suppression via the
phase space, so beyond ŝ < (2MB)2, there is not enough energy available for an
on-shell production. As soon as ŝ ≥ (2MB)2, the process is kinematically allowed
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and is now only suppressed by a phase space factor of β2
B with

βB =

√
1− (2MB)2

ŝ
(5.38)

and potential additional suppression factors of βB coming from the squared ma-
trix element. For the 6 different spin scenarios we find these suppression factors
in terms of the boost

(SS), (SV ), (V F ) ∝ 1 +O(βB) (5.39a)

(SF ) ∝ 1 +O(βB) if bl 6= br (5.39b)

(V S), (V V ) ∝ β2
B +O(β3

B) (5.39c)

(SF ) ∝ β2
B +O(β3

B) if bl = br (5.39d)

where br/l are the corresponding couplings in this scenario as defined in table 5.2.
The non-suppressed processes can be mediated via s-wave, while the suppressed
ones can only be mediated via p-wave. As we can see in figure 5.7 and as expected,
the mean and median deviations µA, µM for 14 TeV are larger than for the
corresponding 7 TeV deviations since the average energy per parton is higher.
The peak values µP are roughly the same for both energy ranges. The peak
deviation is the smallest for (SS), (VF) and (SV) as expected from equation 5.39a.
The additional suppression factor of β2 induces a broadening of the distributions
of p-wave processes in comparison to the s-wave processes.
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Figure 5.6: Two example plots for s (left) and p (right) wave production pro-
cesses. Shown is the di-lepton invariant mass distribution for masses MB =100,
300, 500, 700, 900 GeV. The orange/blue/green vertical lines indicate the respective
peak/mean/median mass. The number of events is normalized arbitrarily.

Let us assume an exponential decrease of the PDFs with exp(−ŝ/λ) where λ is a
dimensionful parameter that can be fitted from the PDFs. For fixed ŝ, the PDFs
decrease with higher energies ŝ roughly as (ŝ−(2MB)2)e−ŝ/λ where the TH factor
is (ŝ−(2MB)2). The maximum of this function is given for e−ŝ/λ(4M2

B−ŝ+λ) = 0
at ŝ = (2MB)2 + λ so that the maximum of the deviation µ2 = ŝ/(2M2

B) =
λ/(2M2

B)+2. Therefore, µ decreases with higher masses of the produced particle
and therefore we see in figure 5.7 that the relative deviation is larger for smaller
masses.
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Figure 5.7: Relative deviation of peak and mean and average/median mass from
the original mass MB for all 6 spin scenarios. MA=100 GeV, PDF set: CTEQ5M.
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We have seen how the spin influences the peak for the production process with
final on-shell particles. Next, we want to turn our attention to the full 2 → 4
process and see how the PS distribution changes with energy, and which fixed√
ŝ is thus best for estimating the PS with PDFs.

5.3.2 How does the phase space depend on
√
ŝ ?

As before, we call the distribution which carries only kinematic information but
no spin information, the phase space distribution (PS). We will first look at the
PS distribution including PDFs simulated with CalcHep for

√
s = 7 and 14 TeV

and then compare these distributions with a χ2-function with our fixed
√
ŝ for-

mula.
In the following, we will compare CalcHep/CompHep distributions to the ana-
lytical ones. For this purpose, we have implemented a model in CalcHep capable
of simulating generic processes. We have also implemented CB as a variable. We
summarize both in the Appendix A.2.
We define a δ2 in terms of the relative 4 deviation of

√
ŝ from 2MB,

ŝ = (2MB)2(1 + δ2)2. (5.40)

We use the rescaled χ2 between PS and the CalcHep simulation (CH) as

χ2(CH;PS) =

n∑

i

(CH(CB i)− PS(CB i))
2

CH(CB i)
(5.41)

where we normalize the distributions such that the sum of all bins is 1,

n∑

i

CH(CB i) = 1;
n∑

i

PS(CB i) = 1.

Due to this normalization, the absolute value of the χ2 in equation 5.41 is rather
small. For N events we can recover the standard definition of χ2 from χ2 →
N/(n − j) ·χ2 with the number of degrees of freedom j and the number of bins
n. We fit the optimal δ2 value by minimizing the χ2 in equation 5.41.
Since we cannot simulate the pure PS distribution with CalcHep, we test two
different processes where we know that the matrix element is independent of
angles. The first process is the spin scenario (SSF) which we also want to inves-
tigate later. The second process is (SSS) which was additionally implemented for
CalcHep. Here we have substituted the SM-lepton by an additional scalar that
is also massless. We simulate those for both 7 TeV and 14 TeV and for two mass
scenarios which we will refer to as M1 and M2 given by

M1 : MB = 500 GeV, MC = 100 GeV (5.42a)

M2 : MB = 500 GeV, MC = 490 GeV. (5.42b)

4Note here that we choose δ quadratically compared to the peak, mean and medium µ. Their
relationship thus is δ2 ∼ µA, µM , µP .
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We have chosen two extreme mass ratios τc = (MC/MB)2. In the first one, the
C particle is light, while in the second one, the masses are almost degenerate as
e.g. in most UED mass scenarios. We have chosen the mass of MA = 100 GeV.
We have checked that the results do not crucially dependent on this value and
have chosen it such that it is between the Z boson mass and a typical value for a
light Higgs boson mass.

Both spin scenarios yield coinciding results in this χ2 based fit and we find that
the value for δ2 has to be chosen around 0.2. The optimal values for δ2 in both
spin scenarios are of equal size,

14 TeV, M1 : δ2
min = 0.23 14 TeV, M2 : δ2

min = 0.21 (5.43a)

7 TeV, M1 : δ2
min = 0.19 7 TeV, M2 : δ2

min = 0.16 (5.43b)

which is not surprising since both matrix elements squared are constant and
what we actually see is the PS distribution as expected. If we now compare these
numbers to figure 5.7, we see that the δ2 from the full process is comparable to
that of the production process at the average/median mass µA. We also see that
the estimation only considering the production process does of course not take
the mass of the particle C into account. In equation 5.43 we see that this mass
affects the best δ2. Therefore, we will determine in Section 5.3.4 the optimal δ2

for different masses and couplings for each of the 8 processes.

5.3.3 The Susy case: (VSF)

This case is different from the other scenarios, since here, the distribution remains
the same over a large energy range. The PS at TH and the result for (VSF),
(1− cos2 θ∗) (which is also the high energy result) are very similar and thus the
shape does not change drastically.

In figure 5.8 we show the χ2 for (VSF) in comparison to the high energy (HE)
analytic distribution (blue) and to the threshold (TH) distribution (red) depend-
ing on the CoM energy which was varied over a wide range

√
s=7, 14, 7 · 102, 105,

107 TeV where we include for the argument the unrealistic energies > 14 TeV.
We show the χ2 result for the two different mass scenarios M1 (dashed) and M2

(solid) from equation 5.42. We see in this plot that for realistic energies of 7 and
14 TeV, the (VSF) distribution is much closer to the TH distribution than in the
HE case. Only at very high energies, the HE limit formula is good enough to
resemble the actual distribution and the TH limit becomes worse.

To emphasize this point, we show the actual distributions for 7, 14 TeV (black
solid/dashed) and the unrealistic, but high energy case with 107 TeV (blue solid)
for the mass scenario M1 and M2 in figure 5.9 and compare it there to the PS
result at threshold (δ ∼ 0, red solid). Only at very high energies, the (SV)
distribution (HE limit) is reached which goes as (1 − cos2 θ∗), while at realistic
energies, it is basically the PS at TH distribution. Thus, the approximation is
only valid at non-achievable energies but however looks very similar to the HE
result. Nevertheless, this is not a disadvantage, since we now have the PS at TH
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We see that the HE limit is only a good approximation at unrealistic high energies
and the TH limit is the better choice at realistic energies.

formula and know that independently of the mass of the particle C, this formula
is valid even if we have PDFs.
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Figure 5.9: The PS and the HE distribution of (VSF) and the corresponding CH
distributions for the different energies in the two mass scenarios M1 and M2. We
see that the HE result, which approaches the (SV) process, is only achieved at very
high energies which are not relevant at a collider.

5.3.4 Optimal δ2 for different spin scenarios

Now we determine the optimal fixed energy
√
ŝ for the full 2 → 4 process in

terms of δ2 of equation 5.40 which represents best the energy distribution due to
the PDFs. Of course, we will find a similar effect as in the 2→ 2 processes, but
we will now also investigate the influence of the couplings and mass MC of the
particle C.
Therefore we simulate all 8 processes for two CoM energies (7 TeV and 14 TeV)
with each of the two coupling sets C1 and C2 and mass scenarios M1 and M2

from equation 5.42. We have chosen the coupling sets C1 for all scenarios as

al = 1 ar = 1; bl = 1 br = 1; cl = 1 cr = 1 (5.44)
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so that all couplings to fermions are pure vector/scalar like. Since the distribu-
tions are normalized, the results are independent of the size of the three boson
vertex. We choose the second coupling set C2 with chiral couplings for each pro-
cess differently such that the chosen coupling set gives the maximal deviation
from PS for the corresponding spin scenario. We will give the specific couplings
for each process below.
We compare the simulation from CalcHep CH(CB) now with the analytic results
A(CB) from Section 5.2 where we scan ŝ in terms of δ2 by equation 5.40 and
determine for each δ2 a χ2 which we define here with

χ2(CH;A) =
n∑

i

(CH(CB i)−A(CB i))
2

CH(CB i)
(5.45)

and sum over all bins i. We have calculated the CB distribution of the analytic
results A(CB) with the help of the Monte Carlo integration as explained in Section
5.1.4. Note here, that we have normalized both distributions with

n∑

i

CH(CB i) = 1;
n∑

i

A(CB i) = 1 (5.46)

where i is the bin number corresponding to CB ∈ [−1, 1]. Due to this, the absolute
determined values of χ2 are naturally small as already noted on page 95.
By doing this we get the optimal fixed

√
ŝ value for each of the processes and

what we will do later is to choose this specific δ2 to investigate the influences of
the masses and the couplings on the distributions.
We already know that for (VSF), δ2 = 0 gives us the full PDF result for 7 and
14 TeV. For (SSF), we have also the best δ2 already determined for the two mass
scenarios. We show some of our results for the discussed study points in figure
5.10. We show in these figures the χ2 as defined in equation 5.45 as a function
of δ2 for different mass and spin (left: C1 and right: C2) scenarios for different
energies which are given in the respective legends. The optimal values for δ2 for
all spin scenarios depending on the mass and energies are summarized in table
5.3.
We summarize the optimal values for δ2 in table 5.3, and we see there that the
trend discussed in Section 5.3.1 remains the same. The processes being suppressed
by an additional factor of β2 from the matrix element given in equation 5.39 have
a larger optimal δ2 (such as (VVF) and (SFX) for C1) than those without the
additional suppression factor (such as (SSX), (SFX) for C2 and (SVF)). X stands
here for either S or V.
In the following we will have some notes on the distributions of the different spin
scenarios. To get an impression of the various distributions and their different
shapes, we show some interesting cases in figures 5.11 and 5.12. We show the
simulated CalcHep distribution (in solid/red with boxes), the PS distribution in
dashed-dotted/green, the best-δ result in solid/black, the distributions for δ = 0
in dotted/black and the δ = 1 in blue/dotted5.

5For black-and-white printouts, please note that green translates into bright grey and blue
into dark grey.
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Figure 5.10: Selected interesting cases for the δ2 scans. Top: (VFV) case (UED)
for two coupling sets, bottom: (VSF) case (SUSY, left) and (VVF), right.

• (VFV) We show the δ2-scans in figure 5.10 (top) and the corresponding distri-
butions in figure 5.11(a). The coupling set C2 is chosen with al = ar = bl = br =
cr = 1; cl = 0. We can already note that for C1, (VFV) resembles PS while for
C2, the distribution shows a dependence on mass. This is what we would have
expected from the TH formula in equation 5.33e. The mass influence is larger for
M1 since in this case the prefactor of JN2 in equation 5.33e is larger than for M2.

• (VSF) We show the δ2-scans in figure 5.10 (lower left) and the corresponding
distributions in figure 5.11(b). From the δ2-scan in figure 5.10 we see that the
distribution for 7 and 14 TeV look like TH at PS for all energies, so that we
can take δ2 = 0 for all cases. A second coupling set C2 has no influence on the
distribution (as we can see in equation 5.26b) and gives just an overall factor.
Therefore we show only the distribution for C1.

• (SFS) The coupling set C2 is chosen with al = ar = bl = br = cr = 1; cl = 0.
For both scenarios, there is a deviation from PS, which is stronger for C2, and
the results are independent of the mass scenario as one would have assumed from
equation 5.33b. This can be seen in figure 5.11(c) where we have a larger devi-
ation of (SFS) (black/solid) from the PS (green dashed-dotted) for C2 than for
C1.

• (VFS) The coupling set C2 is chosen with al = bl = br = cr = 1; ar = cl = 0.
The distributions using C1 resemble PS while C2 shows spin dependence which
one can again expect from equation 5.33d and which can be seen in the corre-
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sponding distributions in figure 5.11(d).

• (SVF) The coupling set C2 is chosen with cl = 1; cr = 0. For C1 we can explain
the distribution shown in figure 5.12(a) from the TH formula in equation 5.33g.
Here we have γ = 0 and for M1,

√
τ c ≈ 0, the spin-dependent factor of equation

5.33g in front of JN6 is maximal, while for M2 where
√
τc ≈ 1, this factor vanishes

and we see only PS. For C2, both influences are rather small since the influences
of both Jacobian factors JN2 and JN6 approximately cancel due to the different
relative sign as can be seen in in equation 5.33g.

• (VVF) We show the δ2-scans in figure 5.10 (lower right) and distributions for M1

and M2 in figure 5.12(b). The coupling set C2 is chosen with cl = 1; ar = cr = 0.
Here we have the problem, that the result for M1, C2 at 7 TeV does not coincide
for any δ2. We investigated this effect further in CalcHep by fixing the energy
and comparing it directly to our analytic distributions for the same

√
ŝ. We

found that at higher energies
√
ŝ > 800 GeV both distribution are the same and

differ only for smaller energies. We attribute this to the fact that (VV) has a
strong spin suppression as can be seen in figure 5.7 resulting in dominant off-shell
decays of the particles B in the significantly lighter C particles for energies below
the median mass. These off-shell decays have a different CB dependence and can
consequently not be reconstructed with the analytic results. The distributions
for 7 TeV are less affected by this then the distributions at 14 TeV.
We also see that this effect is absent in the distributions with M2. Here the
off-shell process is basically not allowed, since the C particle has approximately
the same mass as the B particle. Consequently, the off-shell decay is absent and
does not disturb the distributions at 7 nor 14 TeV as we can see in figure 5.12(b).
We will however investigate the influence of masses and compare it to the rest of
the distributions since this effect is only present for smaller masses.

• (SFV) We show the corresponding distributions in figure 5.12(c). The coupling
set C2 is chosen with al = ar = bl = cl = 1; br = cr = 0. There are spin and
mass influences whereas the spin influences are stronger for C2 and with the same
reasoning as for (VFV) stronger for M1.

We have determined here the best δ2 for the 8 spin scenarios and found that the
nature of the C particle influences the value of δ2. In the following we will work
with the values given in table 5.3. We use those as fixed

√
ŝ to study how the

distributions change for different mass and coupling scenarios.

5.4 Comparison of the distributions for fixed
√
ŝ

In this section, rather than using PDFs, we fix the
√
ŝ by taking the δ2 as defined

in equation 5.40,
√
ŝ = (2MB)(1+δ2), which we have determined for each process

separately in the last section. We will have a look at the influences of the masses
and the couplings on the distribution at this fixed

√
ŝ. We interpolate the δ2

for the mass scans linearly between the two mass scenarios M1 and M2. We use
again the two coupling sets C1 and C2 as in the section before.
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Figure 5.11: Some interesting distributions. We show the simulated CalcHep
distribution (in solid/red with boxes), the PS distribution in dashed-dotted/green,
the best-δ result in solid/black, the distributions for δ = 0 in dotted/black and the
δ = 1 in dotted/blue.
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Figure 5.12: Same as figure 5.11.

δ2 for C1 (SSF) (VSF) (VFV) (VFS) (SFS) (VVF) (SVF) (SFV)
7 TeV, M1 0.19 0 0.23 0.28 0.35 0.5 0.30 0.40
14 TeV, M1 0.23 0 0.31 0.37 0.42 0.9 0.48 0.48
7 TeV, M2 0.16 0 0.25 0.17 0.48 0.35 0.18 0.48
14 TeV, M2 0.21 0 0.31 0.24 0.59 0.35 0.30 0.59

δ2 for C2 (SSF) (VSF) (VFV) (VFS) (SFS) (VVF) (SVF) (SFV)
7 TeV, M1 0.19 0 0.23 0.20 0.26 (0.79) 0.24 0.59
14 TeV, M1 0.23 0 0.31 0.24 0.48 (1.10) 0.40 0.72
7 TeV, M2 0.16 0 0.23 0.17 0.45 0.66 0.17 0.32
14 TeV, M2 0.21 0 0.29 0.20 0.59 0.59 0.32 0.45

Table 5.3: Optimal values of δ2 for the two mass scenarios M1 and M2 and the
two coupling scenarios C1 and C2 at 7 and 14 TeV. We use these values in the next
section.
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5.4.1 Influence of the masses

We investigate the influence of the mass ratios
√
τ c = (MC/MB) ∈ [0, 1] on the

distributions for a fixed
√
ŝ. To be able to use the same δ2, we just vary MC and

leave MB untouched.
We show two kinds of deviations. The first one is a density plot where, with the
help of a certain measure, we compare each mass point with the other possible
mass points in this particular spin scenario. We will refer to this kind of plot as a
“self-comparison plot”. The second plot shows the deviation from phase space as
a function of

√
τ c at 7 and 14 TeV for both coupling sets. The first kind of plot

tells us how the distribution depends on the chosen mass scenario, the second
one tells us how well the spin information is visible at the mass points and how
large the deviation from PS is.
Since we now compare two distributions with each other in the self-comparison
plot we need a measure that treats both on equal footing. We choose a measure
called the symmetrized Kullback-Leibler distance KL(f, g) [80]

∆(f, g) =
1

2
{KL(f, g) +KL(g, f)} (5.47a)

KL(f, g) =
n∑

i

f(xi) log
f(xi)

g(xi)
(5.47b)

where xi is the corresponding variable and i sums over all bins. The distance mea-
sure KL can be used to disfavour a specific model based on data (or in this case,
Monte Carlo results). It furthermore gives us a tool to estimate the minimum
number of events needed to discriminate between two theoretical models [24,81].
For our purpose we symmetrize the distance as also proposed in [80] and estimate
in Section 5.4.2 the minimum number of events with the equation

1

R
∼ 1

2
{exp[−N ·KL(f, g)] + exp[−N ·KL(g, f)]} . (5.48)

The R factor is the ratio of the likelihoods of two competing models disfavouring
each other. We choose R = 1/1000 to simplify a comparison with the existing
literature [24,69,81]. This corresponds to approximately 97% confidence level.
We show the differences of the PS to the different spin scenarios in figures 5.13.
Note that the bumpy structure is due to Monte Carlo uncertainties. We have
picked

√
τ c that yield the minimal and maximal deviation and show them together

with the PS distribution in the Appendix C.2, figures C.2 and C.3. The values
for
√
τc for minimal and maximal KL distances are collected in table 5.4.

In the following we will discuss each of the scenarios. We will see that we can
trace back the influences to the TH formulas in equation 5.33 similarly to the
discussion about the deviation from PS in the last section. Since the production
energy is close to TH, the expansion in δ2 works very well. We show as an ex-
ample two interesting self-comparison plots in the figure 5.15.

• (VFV) We see in figure 5.13(a) that for the C1 coupling, the ∆ indicates no
deviation from PS. For C2 we see that for small

√
τc the deviation is maximal
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Figure 5.13: Deviation of spin scenarios from PS as a function of the mass ratio√
τ c.
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Scen. C1 7 TeV 14 TeV C2 7 TeV 14 TeV
(VFV) Min 0.48 0.84 0.66 0.73

Max 0.59 0.73 0.10 0.10
(SFV) Min 0.59 0.53 0.59 0.68

Max 0.12 0.10 0.10 0.10
(SFS) Min 0.59 0.50 0.19 0.12

Max 0.12 0.10 0.95 0.94
(VFS) Min 0.48 0.60 0.84 0.91

Max 0.10 0.96 0.15 0.14
(SVF) Min 0.69 0.71 0.93 0.10

Max 0.12 0.12 0.50 0.96
(VVF) Min 0.96 0.96 0.50 0.19

Max 0.89 0.86 0.10 0.93

Table 5.4: Summary for the values of
√
τ c giving the largest and smallest KL-

distance with respect to PS (Min. and Max. deviation). We do not show (VSF)
and (SSF) since the results do not depend on

√
τ c.

and for higher
√
τc > 1/

√
2, the distributions coincides with the PS distribution

at these energies. For C2, the minimal ∆ is at
√
τc = 0.66 for 7 TeV and at√

τc = 0.84 for 14 TeV. This is close to the minimal value for
√
τc =

√
1/2 in the

TH formulas where (1− 2τc)
2(1 + 2τc)

2 = 0 in equation 5.33e. In figure 5.14 we
show the different mass dependences of the TH formulas given in equation 5.33.
The red/solid line shows the functions appearing in the (VFV) case. We see that
the relatively small deviation from 0 for 1/

√
2 ≤ √τc ≤ 1 is the reason for the

deviation in figure 5.13(a). This shows that, although we are not explicitly at TH,
the TH formulas represent the behaviour of the distributions close to TH very
well. (VFV) is independent from

√
τc for the C1 couplings. The self-comparison

plot for C2 in the right side of figure 5.15 reflects the results from figure 5.13(a):
The deviation from PS is larger for small mass ratios while around

√
τc = 1/

√
2,

the distribution is just PS. That means that one can discriminate different mass
scenarios from each other best at small masses and around

√
τc = 1/

√
2 which

corresponds to the blue/dark area in this figure.

• (VSF) We see in figure 5.13(g) that at
√
τc = 0, (VSF) and PS have the

minimal relative deviation. As we have already mentioned, (VSF) is the same as
PS at TH for all energies. The deviation from PS comes just from the energy
dependence of the actual PS distribution and in contrast to this, the nearly con-
stant distribution of (VSF). We can see from equation 5.26b and 5.33a that the
distribution is independent of the choice of couplings and masses, which is why
we do not show the self-comparison plots.

• (SFS) In figure 5.13(c) we see that for both C1 and C2 there is only a very small
dependence on the mass ratio

√
τc. For C1, the distribution is extremely close to

PS, while for C2 we have a deviation from PS which is stronger for 14 TeV than
for 7 TeV. This comes of course from the factor of γ2 in equation 5.33b. However,
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the tiny rise in the deviation with increasing
√
τc is not obvious from the equation

5.33b or 5.26a since both do not depend on this mass ratio explicitly. Since the
deviation from PS doesn’t show this rise for 14 TeV as much as for 7 TeV, we
assume that this deviation comes from an effect not originating in the squared
matrix element and is hence no spin effect which we can control.

• (SSF) As we can see in equation 5.26e and as we have already discussed, this
process is just PS and has only a normalization that depends on the masses and
coupling strength. In contrast to (VSF) in figure 5.13(g) the energy dependence
is hence also the same as that of the PS.

• (VFS) This is an interesting case concerning the coupling structure. For C1, the
distribution is PS. The TH result for the distribution in equation 5.33d depends
only on the γ2 coupling which gives a contribution only for C2. This is reflected by
the mass independent deviation in figure 5.13(b). However, the self-comparison
plots are constant so that we do not show them. The deviation from PS for all
values of

√
τc (in contrast to e.g. (VFV) where the difference vanishes for suitable√

τc) is important for the discrimination for the rest of the spin scenarios.

• (SVF) This scenario shows interesting effects in the deviation from PS in figure
5.13(e). We see that C1 depends strongly on

√
τc. The TH result in equation

5.33g shows that for C1, where γ2 = 0, there is also a dependence on JN6 be-
sides the Jacobian factor for PS, JN0 , which is has a mass-dependent coefficient
(1 − √τc)2/(1 + 2

√
τc). We show this function with the black/long-dashed line

in figure 5.14. For C2, this factor is also there, but relatively smaller due to the
normalization factor in 5.33g. However, in this case, the prefactor of the Jacobian
JN2 gives a contribution with the prefactor 1/(1 + 2

√
τc) which is also shown in

figure 5.14 (blue/long dashed-dotted). This function decreases with increasing√
τc like the previous one. Since there is a relative sign in equation 5.33g, these

two mass dependences approximately cancel so that we get a nearly constant
deviation from PS for C2. This implies also that in the self-comparison plots,
we have a constant ∆ for C2 and a variation for C1 shown in figure 5.15. The
deviation is the smallest for

√
τc → 1 and largest for

√
τc = 0, and thus we see in

figure 5.15 the most deviation in the right lower corner, decreasing to the other
two corners.

• (SFV) In figure 5.13(d) we can see that the distribution for C1 is basically PS.
For C2 we have a slight dependence on

√
τc. However, the dependence of the JN2

coefficient on the mass is shown in figure 5.14 with the red/solid line. Altogether,
the deviation is very tiny. Surprisingly, (VFV) has the same mass-dependent
factor ((1− 2τc)/(1 + 2τc))

2 but with the opposite sign in front. If we look at the
JN2 and JN0 functions in figure 5.5, we see that by subtracting the two functions,
the resulting function as it appears in (VFV) becomes typically broader in con-
trast to (SFV) where the two functions are added. This results in a smaller total
deviation ∆ for (SFV) as for (VFV). Comparing the plots directly, one sees that
5.13(d) shows indeed 1/8 of the total deviation of 5.13(a) for

√
τc → 0.

• (VVF) In this scenario we see a constant deviation from PS. The mass-dependent
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prefactors of equation 5.33h are depicted in figure 5.14 by the pink/short-dashed-
dotted line and by grey/short-dashed line. With the normalization factor for
both, these two dependences approximately cancel and we get a constant devia-
tion from PS that is slightly stronger for C2. Since the deviation is constant over√
τc, we do not see any structure in the comparison plots and thus we do not

show them.

5.4.2 Can one distinguish different spin scenarios?

After the detailed discussion of the individual scenarios, we now want to study
the discrimination power of the variable CB between pairs of scenarios. Therefore,
we show for interesting cases pairwise comparison plots for the 8 spin scenarios.
We summarize the minimal and maximal deviation together with the masses
and an estimated minimal number of events needed to distinguish between both
scenarios in the tables 5.6 and 5.5 at the end of this section. The minimal number
of events is estimated from the Kullback-Leibler distance given in equation 5.47
and 5.48. This number is of course only a lower bound and can be enhanced by
cuts, smearing or detector effects.

We will start with scenario (VFV) and go through all possible pairings with the
other scenarios.

• (VFV) ↔ (SFS) For C1, both (VFV) and (SFS) do not depend strongly on√
τc. Both are close to the PS distribution and therefore, one cannot discrimi-

nate between both scenarios. In the coupling scenario where both show the most
deviation, C2, the situation improves, since here, (SFS) is still rather similar to
PS and deviates little with increasing

√
τc, an effect that is even stronger for

higher energies, while (VFV) deviates very much from PS for
√
τc ≤ 1/

√
2. This

is shown in the comparison plot in figure 5.16 where a darker region means larger
∆. We therefore find two regions with good discrimination power: One is where
(VFV) resembles PS at

√
τc ≥ 1/

√
2 and where (SFS) shows most deviation,

namely at high
√
τc. The situation in the other region is reversed: (VFV) shows

the largest deviation from PS for small
√
τc → 0 and (SFS) resembles PS for

small
√
τc. The effect for the first region is stronger for 14 TeV since here, the

deviation from PS is stronger for higher energies and a little weaker for (VFV)
at small

√
τc ∼ 0 as can be seen in figure 5.13(a) and 5.13(c). In the best case,

the number of events is estimated with ∼ 1595.

• (VFV)↔ (VSF) This is an important and interesting scenario because it repre-
sents the generalization of the comparison between Susy and UED. In the coupling
scenario C1, (VFV) and (VSF) are constant with respect to

√
τc and we have ap-

proximately a constant ∆ measure between 5 . . . 10 · 10−3. The estimated number
of events in the best case is around ∼ 1102 (7 TeV) and ∼ 660 (14 TeV). The
difference here comes from the fact that (VFV) is close to PS and changes with
energy

√
ŝ but (VSF) remains constant. In the scenarios C2, the differences are

best for small
√
τc in the (VFV) scenario which means a large difference between

the masses MB and MC where (VFV) deviates most from PS as shown in figure
5.13. The corresponding comparison plot is shown in figure 5.16. Unfortunately,
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in most UED scenarios, the masses of the lepton’ and the B’ which are masses
MB and MC respectively, are degenerate and only differ via radiative corrections
in the minimal UED model. However, for this model, the assumption is made,
that all boundary terms vanish at a certain scale Λ. This is a rather arbitrary
choice, and in extended models this constraint is loosened and the degeneracy is
lifted. The minimum events are estimated with 283 (7 TeV) and 256 (14 TeV).
One can also see that even in the case of minimal ∆ distance, the number of
events is close to the numbers for largest ∆ which implies that we have a good
discrimination power for all mass scenarios.

• (VFV)↔ (SFV) C1 yields an almost PS-like distribution for both mass scenar-
ios, and ∆ is small. There are two optimal points for discrimination, the first6 one
around

√
τc(SFV ) → 1 and small

√
τc(V FV ) because here, (VFV) has biggest

deviation from PS. The other region is at small
√
τc(SFV ) where (SFV) is most

distinguishable from PS but (VFV) is basically PS. A comparison plot is shown
in figure 5.16 and the maximal deviation is ∆ = 5.1 · 10−3 (7 TeV) and 3.64 · 10−3

(14 TeV) in the first region corresponding to 1358 and 1868 events.

• (VFV) ↔ (VFS) Both distributions are PS for C1, so they show only a tiny
difference. For C2, (VFS) shows a large constant difference from PS and so the
discrimination power from (VFV) is best for

√
τc(V FV ) → 1 where (VFV) re-

sembles PS. A comparison plot is shown in figure 5.16. Since the mass influence
is stronger at lower energies, the discrimination power is stronger for smaller

√
s

with ∼ 705 minimum events.

• (VFV) ↔ (SVF) For the (SVF) scenario with C1 we have a
√
τc(SV F ) depen-

dent distribution as seen in figure 5.13(e). Therefore, we have a large ∆ at small√
τc(SV F ), since here the deviation is maximal from (VFV) which resembles PS

in this coupling scenario. Since the deviation for (SVF) from PS is stronger for
large

√
s, the effect is even stronger for 14 TeV than for 7 TeV and the minimal

number of events is around 2100 for 14 TeV. For C2, both distributions have a
large deviation from PS and also between each other, as we can see in figure 5.16.
For (SVF) we have a constant deviation for all mass scenarios while for (VFV)
the deviation is larger for small

√
τc. Thus we have a very distinct distribution

in this region ranging from ∆ = 23 · 10−3 corresponding to 310 events (7 TeV) to
∆ = 11.8 · 10−3 corresponding to 595 events.

• (VFV) ↔ (VVF) For C1 both scenarios resemble PS and so the ∆ measure is
tiny. For C2, (VVF) shows a constant deviation from PS so that for all ranges of√
τc in both spin scenarios, we have always a non-zero ∆. We can see that also in

the TH formulas in equation 5.33h and 5.33e. Independently of the specific prefac-
tors Ci, the Jacobian factors are distinct for both scenarios (JN7 and JN5 vs. JN2 ),
so that, if they give a contribution, it is distinct. Compare this situation e.g. to
(VFS) in equation 5.33d where the spin dependent part with the Jacobian factors
can give the same contribution as in (VFV), which cannot be the case for (VFV)
and (VVF). The deviation is maximal for small

√
τc(V FV ) with ∆ = 4.37 · 10−3

6√τc(X) denotes the
√
τc of the specific spin scenario X.
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Figure 5.16: Comparison plots for different spin scenarios.
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(corresponding to 1588 events). A comparison plot is shown in 5.16. Note that
the large ∆ values for C1 come from the limit where

√
τc(V V F ) = 1.

• (VSF) ↔ (SFS) The discrimination power here is very good, since for en-
ergies above TH, the (VSF) distribution still has its characteristic PS at TH
form, while the (SFS) distribution deviates very much from this form. Since the
(VSF) remains constant for all masses/couplings, it does not change at all and
we are basically looking at the deviation of (SFS) from the PS at TH distribu-
tion. It becomes more obvious if we directly compare the figures 5.11(c) and
5.11(b). A comparison plot is shown in figure 5.16. The maximal deviation be-
tween the scenarios at 7 TeV is ∆ = 19.4 · 10−3 (C2) but their minimal deviation
∆ = 10.3 · 10−3 is very large as well and we estimate the corresponding minimum
number of events between 348 and 658. At 14 TeV, the minimal number for C2

is even a mere 279 events.

• (VSF) ↔ (SFV) For C1 we have a constant deviation around ∆ ∼ 11 · 10−3.
For C2 we have a large deviation for

√
τc(SFV ) ≤ 1/

√
2. In this region, the JN2

factor comes in and flattens the distribution while the (VSF) has still its origi-
nal shape as in figure 5.11(c). A comparison plot is shown in figure 5.17. The
minimal number of events is between 281 and 665 depending on the scenario and
energy.

• (VSF) ↔ (VFS) For both coupling scenarios we have a large ∆ = 29.8 · 10−3

(33.7 · 10−3) for C2 for 7 (14) TeV and around 6.68 · 10−3 (10.0 · 10−3) for C1.
Since we have constant deviations for all

√
τc regions, we get an approximately

constant deviation in all cases. The constant deviation in the C2 case for (VFS)
has its origin in the JN2 factor which has only a coupling dependent prefactor
that is maximal for C2. The minimum number of events is ∼ 200 for the best
scenario.

• (VSF)↔ (VVF) As in the other cases, the distinction power is again very good
since (VVF) shows either no spin dependence in the C1 case or constant deviation
from PS. The ∆ is around 7.6 . . . 16 · 10−3 corresponding to a minimal number of
493. . .900 events.

• (VSF) ↔ (SVF) Besides the case for C2 at 7 TeV, all distributions have a
∆ that is between ∆ = 3.1 . . . 23.9 · 10−3 for small

√
τc(SV F ) corresponding to

220-283 events. For C2 and 7 TeV, ∆ is extremely small. A direct comparison
of distributions shows that in the (SVF) case, the distribution is steeper than
the PS distribution whereas in most other cases, the spin influence flattens the
distribution e.g through the influence of JN2 . Since both distributions (VSF) and
(SVF) are steeper then PS, they have a small ∆ value. For higher energy, the
distribution flattens again and the PS is above the actual distribution so that ∆
increases. So far, this is the only case where we have agreement of (VSF) with
another scenario besides some ranges in the (VFV) case. A comparison plot is
shown in figure 5.17.

• (SVF)↔ (SFS) For C2, the deviation is the largest for large
√
τc(SFS), namely

up to ∆ = 17.9 · 10−3 (7 TeV) and 9.5 · 10−3 (14 TeV) corresponding to a min-
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imum number of events of 376 and 713 respectively. As we can see in equation
5.33g and 5.33b, we have no dependence on

√
τc in the (SFS) case but the prefac-

tor of JN2 maximizes in this coupling scenario. We see that the same prefactor for
JN2 in equation 5.33g can be achieved if

√
τc(SV F )→ 1/

√
2 so that the only dif-

ference between both distributions comes from the JN6 Jacobian and its prefactor
from (SVF). This is why we see a non-zero deviation also for small

√
τc(SFS).

For C1, (SFS) has only a slight dependence on
√
τc but resembles PS while (SVF)

has still the mass-dependent prefactor of JN6 that influences the comparison in
the C1 plots. However, the discrimination is best for C2 and large

√
τc(SV F )

since here, the JN2 of (SVF) has the most influence. A comparison plot is shown
in figure 5.17.

• (SVF) ↔ (SFV) Here we have a similar scenario as before. For C1, the dif-
ference comes from the JN6 factor of equation 5.33g which is absent in equation
5.33c. For C2, we have two mass-dependent prefactors of JN2 , (1−2τc)

2/(1+2τc)
2

(SFV) and 1/(1 + 2τc) (SVF). They differ by a sign so that the sum of the distri-
butions is maximized with the difference of the corresponding functions, which is
the case for

√
τc = 0. The functions are shown in figure 5.14 with the red/solid

and the blue/long dashed-dotted line. A comparison plot is shown in figure 5.17.

• (SVF) ↔ (VFS) For large
√
τc, the mass prefactor of JN6 of equation 5.33g

vanishes so that for C1, both distributions resemble PS and the discrimination
power is small but increases with decreasing

√
τc. The distributions are more

distinguishable for large
√
τ c of (VFS) and small

√
τc of (SVF). In the coupling

scenario C2 we have a large deviation of around ∆ = (20.8 . . . 27.7) · 10−3 (7 TeV)
and ∆ = (7.48 . . . 15.4) · 10−3 (14 TeV) from the same reasoning as before. (VFS)
has its characteristic flat form and can be discriminated well from (SVF) which
changes only little with

√
τc. Thus the minimum number of events in the best

case is 243.

• (SVF)↔ (VVF) For C1, we see that the maximal difference is at
√
τc(SV F ) ∼ 1

and
√
τc(V V F ) ∼ 0. This is the case where in the TH formulas we have for (VFV)

a maximal contribution from the prefactors of JN7 and JN5 but a vanishing pref-
actor of JN2 and JN6 in (SVF). For C2 we have a large deviation for all

√
τc with

∆ = (7.66 . . . 12.2) · 10−3 (7 TeV) and ∆ = (1.8 . . . 3.8) · 10−3 (14 TeV) translating
to a minimum number of 553 and 1284 events. Since we have four contributing
Jacobians for these processes, we have a non vanishing difference everywhere. A
comparison plot is shown in figure 5.17.

• (SFV)↔ (SFS) The deviation between these two spin scenarios is rather small.
As we can see in figures 5.13(d) and 5.13(c), both scenarios have a small devia-
tion from PS. While these differences are stronger in some other cases, here we
have both depending similarly on JN2 . Since we have chosen a different δ2, the
difference is largest for both

√
τc(SFS) ∼ 0 or

√
τc(SFV ) ∼ 1. The minimum

number of events in the best case is 2456.

• (SFV) ↔ (VFS) The deviation here is minimal at C2 for
√
τc(SFV ) ∼ 0. The

prefactor of JN2 in equation 5.33c is 1 and so both 5.33d and 5.33c have the same
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dependence on JN2 . In the case of C1, we have a small deviation that maximizes
in the case of

√
τc(SFV ) ∼ 1 with ∆ = 7.3 · 10−3 (939 events) for C2, 7 TeV. A

comparison plot is shown in figure 5.17.

• (SFV) ↔ (VVF) In this case, all deviations are rather small. For C1, we have
the largest deviation in the region where both

√
τc ∼ 1, but for C2, it is maximal

for
√
τc(V V F ) ∼ 1 and in the low region for

√
τc(SFV ) ∼ 0. In this region,

(SFV) has the most deviation from PS for C2. The largest ∆ is at C2 for 14 TeV
with ∆ = 2.8 · 10−3 corresponding to 2504 events.

• (VVF) ↔ (SFS) For C1, (SFS) does not show a large
√
τc dependence and also

(VVF) has only small deviation from PS over the range of
√
τc, and thus we find

a rather constant deviation for C1 with ∆ ∼ 1 · 10−3. In the case of C2, we have
a constant deviation from PS for both distributions, which results in a deviation
from each other since three different Jacobian factors JN2 , J

N
5 , J

N
6 contribute. We

get a maximal deviation of ∆ = 2.9 · 10−3 (∼ 2370 events) for C2, 14 TeV and
both

√
τc maximized.

• (VVF) ↔ (VFS) Between these two scenarios we have a larger deviation in
C2. We have the same prefactors and Jacobians contributing as in the last case.
However, the sign of JN2 in (VFS) is flipped which has a stronger effect on the
comparison of these two spin scenarios. The maximum is for large

√
τc(V V F ) ∼ 1

with ∆ = 3.35 · 10−3 (C1) and ∆ = 5.4 · 10−3 (C2) corresponding to 1269 and 994
events respectively.

• (VFS) ↔ (SFS) Two comparison plots are shown in figure 5.17. In the case of
C1, there is good discrimination power for

√
τc ∼ 1 for both energies, with the

maximal deviation of ∆ = 4.5(4.2) · 10−3 (7/14 TeV) corresponding to 1528/1631
events. Here, both spin scenarios show only a slight mass dependence and resem-
ble PS in this coupling scenario. The comparably large ∆ comes from the fact
that the δ2 is very different for both scenarios and the interpolation function even
has a different sign. For C2, we have a constant deviation from PS for (VFS) and
only a slight deviation for (SFS). The maximal ∆ = 5.07/2.17 · 10−3 (7/14 TeV)
(corresponding to 1377/3191 events) is in a region of small

√
τc(SFS).

We summarize the KL distances and the corresponding events in the tables 5.6
and 5.5 for all minimal and maximal deviations.

5.4.3 Examples: Susy and UED

We want to close this chapter by showing the distributions with PDFs for a
complete UED and Susy scenario in comparison to the fixed

√
ŝ distributions. In

both scenarios we discuss di-lepton production in association with two respective
DM candidates.
For the UED example, we choose a study point with ΛR = 20, R−1 = 500 GeV.
The resulting masses for the B′ in MUED are me′R

= 505 GeV, me′L
= 515 GeV

and mB′ = 500 GeV (τc = 0.98). For the analytic distribution with which we
compare the model (VFV), we choose δ2 according to table 5.3 as 0.23 (7 TeV)
and 0.29 (14 TeV). We show the corresponding distributions on the left side of
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Figure 5.17: Comparison plots for different spin scenarios.



5.4. Comparison of the distributions for fixed
√
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(SFS;SVF) (SFV;SVF) (VFS;SVF)
7 TeV

C1 Min. (0.12; 0.33; 0.03; 300k) (0.12; 0.23; 0.05; 150k) (0.73; 0.93; 0.01; 106)
C1 Max. (0.96; 0.95; 4.08; 1670) (0.96; 0.95; 3.97; 1719) (0.93; 0.12; 3.16; 2198)
C2 Min. (0.10; 0.93; 7.5; 902) (0.96; 0.93; 5.23; 1302) (0.84; 0.93; 20.8; 325)
C2 Max. (0.95; 0.5; 17.9; 376) (0.10; 0.50; 17.6; 382) (0.15; 0.50; 27.7; 243)

14 TeV
C1 Min. (0.19; 0.71; 0.01; 106) (0.39; 0.51; 0.06; 122k) (0.39; 0.86; 0.01; 106)
C1 Max. (0.10; 0.12; 2.98; 2367) (0.95; 0.96; 2.37; 2884) (0.96; 0.12; 7.50; 930)
C2 Min. (0.12; 0.12; 3.95; 1712) (0.96; 0.10; 1.5; 4644) (0.91; 0.12; 7.48; 905)
C2 Max. (0.96; 0.96; 9.5; 713) (0.10; 0.96; 9.4; 720) (0.14; 0.96; 15.4; 440)

(VVF;SVF) (SFS;VVF) (VFS;VVF)
7 TeV

C1 Min. (0.41; 0.26; 0.04; 170k) (0.66; 0.96; 0.01; 106) (0.12; 0.89; 0.07; 100k)
C1 Max. (0.96; 0.95; 3.0; 2256) (0.96; 0.89; 1.03; 6679) (0.96; 0.96; 3.35; 2083)
C2 Min. (0.96; 0.93; 7.66; 884) (0.42; 0.19; 0.10; 70k) (0.84; 0.17; 2.5; 2798)
C2 Max. (0.10; 0.50; 12.2; 553) (0.96; 0.96; 1.6; 4285) (0.15; 0.96; 5.4; 1269)

14 TeV
C1 Min. (0.78; 0.77; 0.05; 150k) (0.51; 0.26; 0.02; 500k) (0.14; 0.89; 0.06; 122k)
C1 Max. (0.86; 0.12; 2.90; 2385) (0.93; 0.86; 0.94; 7365) (0.96; 0.96; 3.5; 2003)
C2 Min. (0.93; 0.10; 1.81; 3744) (0.10; 0.19; 0.6; 11k) (0.91; 0.19; 3.0; 2289)
C2 Max. (0.35; 0.96; 3.8; 1784) (0.93; 0.93; 2.9; 2370) (0.14; 0.93; 6.9; 994)

(SFS;SFV) (VFS;SFV) (VVF;SFV)
7 TeV

C1 Min. (0.69; 0.59; 0.00; 106) (0.10; 0.12; 0.39; 17k) (0.15; 0.17; 0.01; 106)
C1 Max. (0.12; 0.95; 0.85; 8153) (0.96; 0.96; 4.3; 1617) (0.89; 0.96; 0.99; 7149)
C2 Min. (0.50; 0.42; 0.01; 106) (0.84; 0.10; 0.58; 11k) (0.50; 0.60; 0.08; 84k)
C2 Max. (0.95; 0.95; 2.79; 2456) (0.15; 0.96; 7.3; 939) (0.96; 0.10; 1.47; 4726)

14 TeV
C1 Min. (0.59; 0.42; 0.01; 106) (0.10; 0.14; 0.22; 32k) (0.96; 0.66; 0.01; 106)
C1 Max. (0.10; 0.95; 1.11; 6263) (0.96; 0.95; 4.4; 1605) (0.89; 0.95; 1.01; 6852)
C2 Min. (0.48; 0.26; 0.01; 106) (0.91; 0.17; 0.4; 17k) (0.75; 0.95; 0.17; 41k)
C2 Max. (0.96; 0.96; 2.06; 3312) (0.14; 0.96; 5.3; 1298) (0.93; 0.10; 2.8; 2504)

(SFS;VFV) (SFV;VFV) (VFS;VFV)
7 TeV

C1 Min. (0.10; 0.59; 0.12; 57k) (0.14; 0.59; 0.5; 13k) (0.24; 0.46; 0.00; 106)
C1 Max. (0.96; 0.48; 2.14; 3195) (0.98; 0.48; 2.1; 3301) (0.98; 0.59; 0.94; 7385)
C2 Min. (0.15; 0.35; 0.01; 106) (0.78; 0.39; 0.0; 106) (0.84; 0.10; 0.02; 300k)
C2 Max. (0.96; 0.66; 4.27; 1595) (0.98; 0.10; 5.1; 1358) (0.15; 0.66; 9.67; 705)

14 TeV
C1 Min. (0.10; 0.11; 0.01; 106) (0.14; 0.73; 0.18; 38k) (0.15; 0.23; 0.01; 106)
C1 Max. (0.98; 0.68; 1.4; 4879) (0.98; 0.67; 1.45; 4700) (0.96; 0.73; 1.25; 5557)
C2 Min. (0.24; 0.26; 0.03; 230k) (0.86; 0.39; 0.02; 300k) (0.98; 0.12; 0.03; 200k)
C2 Max. (0.96; 0.73; 3.72; 1830) (0.10; 0.73; 3.64; 1868) (0.14; 0.73; 7.60; 894)

(VVF;VFV) (VSF;VFV) (SVF;VFV)
7 TeV

C1 Min. (0.89; 0.93; 0.12; 56k ) (0.10; 0.48; 5.32; 1312) (0.60; 0.28; 0.01; 106)
C1 Max. (0.96; 0.48; 1.4; 4874) (0.10; 0.59; 6.34; 1102) (0.12; 0.14; 1.29; 5307)
C2 Min. (0.50; 0.35; 0.14; 48k) (0.10; 0.66; 5.56; 1256) (0.93; 0.66; 3.56; 1961)
C2 Max. (0.96; 0.10; 3.63; 1906) (0.10; 0.10; 25.0; 283) (0.50; 0.10; 23; 310)

14 TeV
C1 Min. (0.73; 0.44; 0.06; 110k) (0.10; 0.84; 9.55; 735) (0.84; 0.24; 0.01; 106)
C1 Max. (0.96; 0.68; 0.91; 7450) (0.10; 0.73; 10.6; 660) (0.12; 0.84; 3.27; 2100)
C2 Min. (0.75; 0.48; 0.21; 32k) (0.10; 0.73; 9.34; 750) (0.10; 0.73; 0.58; 12k)
C2 Max. (0.93; 0.10; 4.37; 1588) (0.10; 0.10; 27.78; 256) (0.98; 0.10; 11.80; 595)

Table 5.5: Maximal and minimal ∆ for various scenarios. The numbers are
(
√
τc(X);

√
τc(Y ); ∆ · 103, #evts) of (X;Y)
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(SFS;VSF) (SFV;VSF) (VFS;VSF)
7 TeV

C1 Min. (0.10; 0.10; 7.99; 852) (0.10; 0.10; 10.2; 665) (0.96; 0.10; 2.75; 2484)
C1 Max. (0.96; 0.10; 14.10; 481) (0.96; 0.10; 13.8; 489) (0.10; 0.10; 6.78; 1006)
C2 Min. (0.10; 0.10; 10.34; 658) (0.96; 0.10; 7.6; 897) (0.84; 0.10; 25.3; 267)
C2 Max. (0.95; 0.10; 19.4; 348) (0.10; 0.10; 18.9; 356) (0.15; 0.10; 29.8; 227)

14 TeV
C1 Min. (0.10; 0.10; 10.1; 672) (0.14; 0.10; 13.01; 521) (0.96; 0.10; 4.63; 1478)
C1 Max. (0.93; 0.10; 17.4; 389) (0.95; 0.10; 17.8; 380) (0.10; 0.10; 10.0; 678)
C2 Min. (0.10; 0.10; 19.25; 351) (0.96; 0.10; 12.3; 551) (0.91; 0.10; 28.2; 239)
C2 Max. (0.87; 0.10; 24.16; 279) (0.10; 0.10; 23.9; 281) (0.14; 0.10; 33.7; 200)

(VVF;VSF) (SVF;VSF) (SFS;VFS)
7 TeV

C1 Min. (0.89; 0.10; 7.6; 900) (0.96; 0.10; 3.1; 2200) (0.10; 0.10; 0.07; 97k)
C1 Max. (0.96; 0.10; 12.1; 562) (0.12; 0.10; 11.7; 581) (0.96; 0.96; 4.5; 1528)
C2 Min. (0.96; 0.10; 10.2; 664) (0.91; 0.10; 0.13; 53k) (0.95; 0.84; 0.48; 14k)
C2 Max. (0.10; 0.10; 13.0; 520) (0.19; 0.10; 0.67; 10330) (0.10; 0.15; 5.07; 1377)

14 TeV
C1 Min. (0.89; 0.10; 10.5; 649) (0.93; 0.10; 7.37; 924) (0.10; 0.14; 0.02; 350k)
C1 Max. (0.96; 0.10; 16.0; 424) (0.12; 0.10; 23.9; 283) (0.93; 0.96; 4.2; 1631)
C2 Min. (0.93; 0.10; 10.5; 642) (0.96; 0.10; 3.7; 1860) (0.82; 0.59; 0.34; 20k)
C2 Max. (0.19; 0.10; 13.7; 493) (0.12; 0.10; 8.2; 839) (0.10; 0.14; 2.17; 3191)

Table 5.6: Same as table 5.5.

figure 5.18. The simulation and the fixed
√
ŝ results coincide very well. The

deviation from PS is, as discussed and expected, very small since τc is close to
1. The Susy example was considered with intermediate ẽR and ẽL and t-channel
squarks. We have chosen a mass point where mχ̃0

= 118 GeV, mẽL = 206 GeV,
mẽR = 119 GeV. We show the distributions on the right side of figure 5.18 and as
in the UED example, the analytic result for fixed

√
ŝ. The simulations coincide

very well despite the many diagrams beyond the simple antler topology that
are included in the CalcHep simulation. Furthermore we see that both shapes
are distinguishable although both spin scenarios basically resemble PS, but at
different energies. For UED, the fixed δ2 approach mimics the

√
ŝ distribution

of the PDFs at the maximal production as assumed. For Susy, the PS at TH
result is also in very good agreement with the CalcHep results. We have used
CTEQ5M PDF sets in all simulations.

5.5 Summary

In this chapter we have studied the antler diagram which is the s-channel 2→ 4
topology with two visible leptons and two invisible particles in the final state.
We have picked a certain variable, a function of the difference of the pseudora-
pidities of the two visible leptons, CB, which is discussed in the literature as a
tool to discriminate between UED and Susy in this topology. We have studied
the phase space distribution of this variable that carries no spin information,
and the corresponding deviations from it for the 8 different spin scenarios which
can be assigned to this topology. We have addressed the question how the mass
and coupling scenario can influence this distribution and hide or reveal the spin
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Figure 5.18: Left: Simulated UED distributions for 7 and 14 TeV and in com-
parison the corresponding distributions for fixed

√
ŝ. The simulation and fixed

√
ŝ

result coincide but both show only little deviation from PS. Right: Simulated Susy
distributions for 7 and 14 TeV. CH denotes the CalcHep simulation with PDFs at
7/14 TeV.

information.

In the limit where the energy is very large in comparison to the intermediate
particles’ mass, one has the high energy relations given in equation 5.2 between
the CB distribution for UED and Susy which can thus be discriminated in this
case. We have investigated the limit where these relations are not valid. In a first
step we have calculated the complete squared matrix elements for the processes
for a fixed energy, and then have taken the limit where the intermediate on-
shell particles are produced at threshold. We have derived the corresponding
differential cross sections in terms of CB. As a result, we have found that they
give simple dependences on the masses and couplings which are however more
involved than the high energy limit.

With protons in the initial state, one has to separate the spin effects coming from
the matrix elements squared and the energy smearing of the PDFs. We have
chosen a fixed

√
ŝ approach which is supposed to disentangle these two effects.

In Section 5.3 we have determined a suitable fixed
√
ŝ with which one can mimic

the peaking
√
ŝ distribution of the PDFs. This can be done in a region close to

the threshold of the two B particles.

In a third step, we investigate for each spin scenario the deviation from phase
space and from the other spin scenarios with the help of the full calculation at this
fixed

√
ŝ. We saw that for specific mass and coupling scenarios, the distributions

resemble phase space and no spin effects are present, while for other scenarios the
distributions are rather distinct from phase space and carry spin information. We
saw that these dependences can be traced back very well to the threshold results
which therefore can be used as a first means to decide for which scenario the
discrimination is at least possible.

In Section 5.4 we have investigated the pairwise difference of distributions belong-
ing to different spin assignments. As a distance measure we use the symmetrized
Kullback-Leibler distance, which also allows to estimate the minimal number of
events needed for the discrimination of two models. We found that for some
scenarios, there is always good discrimination power between the different sce-
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narios, while for others, the distributions resemble phase space and cannot be
discriminated from each other. In summary, we have concluded that:

• (SSF) resembles phase space for all scenarios and hence carries no spin infor-
mation as expected.

• Besides for (VVF) and (SVF), spin effects at threshold only come in via chiral
couplings, where pure left or right handed couplings have the largest impact.
We saw in Section 5.4 that this is also true for the non-threshold distributions.

• (VSF), which includes the Susy scenario, resembles phase space at threshold
for all masses and couplings for a large range of energies. This is due to the fact
that the high energy limit of (VSF) and the threshold limit are very similar and
one has the characteristic 1 − cos2 θ∗ distribution already close to threshold.
Therefore, (VSF) always has a large distance measure to the other scenarios
and there is hence a good discrimination power.

• (VFV), which includes the UED scenario, also has spin dependence only for
chiral couplings. The deviation between (VFV) and (VSF) for the Susy and
UED case comes mainly from the fact that (VFV) resembles phase space, which
changes with increasing energy and thus is distinct from the threshold result for
(VSF). For degenerate masses where

√
τc(V FV ) = 1, the deviation from phase

space is minimal.

• (VFS) and (SFS) only have coupling dependence and no mass dependence.
They show a deviation from phase space for chiral couplings that does not
change with varying mass ratios

√
τc.

The largest discrimination power is that of (VSF) against the other models for
almost all couplings and masses. Also notable is (VFS) with spin scenario C2

which has a constant deviation from phase space and is thus well distinguishable
from all other scenarios.

A particularly strong example is given by (VSF) ↔ (VFS) with ∆ = 33.7 · 10−3

corresponding to a minimal number of 200 events needed for discrimination. This
is followed by (SVF)↔ (SFS), (SFV), (VFS); (VFV)↔ (VFS), (VSF), (SVF);
(VSF) ↔ (SFS), (SFV), (VFS), (VVF), (SVF) for specific mass and coupling
choices. These scenarios lie between a KL distance of ∆ = 33.7 · 10−3 and 5 · 10−3

(200. . . 1350 events). Particularly bad examples include (VFS) ↔ (SFS), (SVF);
(VFV)↔ (SVF), (VVF), (SFS) ; (VVF)↔ (SFS), (SFV); (SFS)↔ (SVF), (SFV);
(VSF)↔ (SVF) where ∆ ≤ 3 · 10−3 (> 2300 events). This is of course only true
in the context of specific coupling and mass choices as discussed in Section 5.4.2.
There are some scenarios where the deviation is rather large and constant for
all mass scenarios. Those are (VSF)↔ (VFV); all (VSF) to the other scenarios
besides (SVF) (C2); (SVF) ↔ (SFS), (VFS) (C2); (SVF) ↔ (VVF).
Of course the deviation between two scenarios can change from e.g. ∆ = 0.01 · 10−3

to ∆ = 7.5 · 10−3 ((VFS)↔ (SVF), corresponding to 106 vs. 930 events) within
one coupling scenario depending on the mass ratios

√
τc.
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There are several issues which we have not covered in this chapter. Since our
studies are model independent, we did not take SM backgrounds into account
which have to be included in a more detailed study. An interesting topic is also
the question to which extend the CB distributions change if one includes initial
state radiation and cuts. As we have seen in the example of Susy and UED, one
can also have t-channel contributions. Simulations have shown that they have
only negligible influence on the distributions. However, it would be interesting
to see, how t-channel diagrams influence the CB distributions and possibly add
another uncertainty to spin determination. Although these problems are impor-
tant and should not be neglected, most of them can only be investigated in the
context of a specific model. This is beyond the scope of this work and is left for
future studies.

We have seen that, although the variable CB works satisfactorily for the dis-
crimination of some models, it is not a variable that can distinguish the spin
scenarios uniquely (which it already does not for the high energy limit, cf. equa-
tion 5.2). By comparing the threshold matrix element formulas in equation 5.27
and the threshold formulas in equation 5.33 we see that due to the symmetry of
the variable CB, additional information that is originally in the matrix element
is sometimes lost after rewriting it as a function of CB. We have also seen that
the spin, mass and coupling dependence can be read off from the threshold for-
mulas we give in equation 5.33. One has to note here, that also some of the full
results for the non-threshold formulas in equation 5.26, e.g. (SSF), never show
any angular distribution that is distinct from phase space. In such a case one
has to take other observables, such as the production cross section, into account.
However, this cannot be done for generic spin scenarios since one has to know
the total coupling strength.



Chapter 6

Conclusion

I have no data yet. It is a capital mistake to theorise before one has
data. Insensibly one begins to twist facts to suit theories, instead of
theories to suit facts.

(Sir Arthur Conan Doyle,
Sherlock Holmes in “The Adventures of Sherlock Holmes”)

A new energy scale has become experimentally accessible for the first time as
both ATLAS and CMS have recorded about 5 inverse femtobarns of data at 7
TeV by the end of 2011. Great expectations lie in the observations that can be
made at these high energies and one hopes that possible discoveries answer some
of the most compelling questions of particle physics. In the last decades a lot
of effort went into the construction and phenomenology of new physics models.
These new models are mostly designed to solve shortcomings of the Standard
Model such as the lack of a Dark Matter candidate and the hierarchy problem,
while being simultaneously compatible with all known experimental constraints.
A challenge that comes with the potential observation of new physics is the de-
termination of its nature. As we have seen, some models can have similar collider
signatures due to their gauge quantum numbers and mass spectra. An impor-
tant consequence of this is that the spin of new particles has to be determined
in order to pin down the correct underlying theory. When considering UED and
Susy for example, the spin of the particles can be the most significant difference
in the accessible energy range and is therefore a powerful but also necessary tool
to distinguish between those two models.
This is primarily done with the help of decay chains which are typical in scenarios
with a conserved parity. It is possible to fix spins of known particles and vary
those of the unknown ones. One then investigates the suitable variables, mostly
the invariant masses, which can be constructed from the visible parts of the decay
chains. Depending on the couplings and masses, one can assign a specific spin to
the particles involved.
However, there are some restrictions to this method which we have investigated
in this thesis.
In Chapter 3 we have studied the influence of non-renormalizable couplings on
spin determination via the invariant mass distribution. We have seen that ef-
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fective dimension 5 operators in principle have no effect on spin determination
in decay chains. If one is however interested in detailed parameter determina-
tion concerning the couplings, their contributions cannot be neglected. We find
that the leading contribution of the anomalous interactions is suppressed by the
square of the scale of the dimension 5 operator. We have derived the analytic
expressions for the modified differential decay widths which can be used as a basis
for further studies of parameter determination.
In Chapter 4 we have turned our interest towards the question what the relation
between the spin of the particles and the invariant mass is in the context of a
decay that is mediated through a heavy off-shell particle instead of an on-shell
subsequent decay. In some scenarios, subsequent two body decays are forbidden
and three body decays show up that are normally suppressed by a phase space
factor. We have worked out a complete strategy that is capable of determining
the spin of the decaying and the invisible particles independently of the couplings
and masses. We have shown in a Monte Carlo study how this strategy works and
where it has problems. We have also investigated the influence of different topolo-
gies and the intermediate particle mass.
In Chapter 5 we have investigated a topology which is called “antler topology”,
that has short decay chains so that a suitable invariant mass can not be build for
use in the conventional approach. We have picked a different variable that can
in principle distinguish between Susy and UED in the limit of high energies. We
have then turned our interest to a different limit that is appropriate for heavier
particles involved. We have derived, analogous to the high energy limit, equa-
tions for the threshold limit and discussed how one can choose an appropriate
energy that can be used to mimic PDF effects. With the help of this fixed

√
ŝ

approach, we have been able to study the influences of masses and couplings.
We have seen that some scenarios resemble the phase space distribution and the
spin information is lost depending on the specific choice of masses and couplings,
while for others the variable works well. We have compared the different spin
assignments for varying masses and couplings and used a distance measure to
estimate the minimal number of events needed to distinguish between these sce-
narios. We found that the (VSF) distributions, which contain the Susy case, have
a characteristic shape for all masses and a wide energy range that makes them
easy to discriminate from the other 7 scenarios. For the other cases, we found
that the discrimination power of the variable in question strongly depends on the
masses and the couplings. Consequently one does not have a unique discrimina-
tion variable, but one that is useful in specific scenarios and regions of parameter
space.

Numerous approaches to spin determination were proposed in the literature which
work well in selected models and mass scenarios. We have pursued a systematic
approach to spin determination that is unbiased and does not restrict itself to
the comparison of two or three particular models. We have seen that, although
possible in an ideal world, it is mostly only reasonable to exclude rather than to
confirm a particular spin assignment if one has to deal with finite statistics. We
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have also seen that the masses and couplings can play an important role in the
discrimination power of variables and that some models can mimic others. This
is a crucial point in spin determination and has to be pursued further.
As soon as new particles are detected at ATLAS and CMS, one has to make sure
that the underlying model is not misidentified due to theoretical prejudice. To
avoid this, it might be important to investigate further, which approaches are
useful for the different topologies, decay channels and kinematical scenarios. It
is therefore important to explore the viability of the different observables, com-
bine them and, if necessary, introduce new ones such that different approaches
complement each other systematically.



Appendix A

Models for Monte Carlo Generators

Slow I go
And the wait seems to be over

(In Flames, “System”)

In this thesis, we have used two different matrix element and Monte Carlo (MC)
generators: WHIZARD/O’Mega [56, 57], CalcHep [78, 79] and Madgraph [82]
in combination with Feynrules [83] and we have implemented a generic model
adapted to the respective problem which we will describe in the following. We
have used Madgraph only for cross checks and will not go into this implementa-
tion.

A.1 Model for O’Mega/WHIZARD

For the validation and investigation of the decay chains in chapter 4, we have
implemented a generic model in O’Mega/WHIZARD which allows to let generic
particles decay with the desired couplings without being bound to a specific
model. The original version of the two models are for O’Mega/WHIZARD 1.x,
but there also exists a later version for WHIZARD 2.x.
WHIZARD is a powerful and multifunctional Monte Carlo generator for arbi-
trary partonic processes in the Standard Model and beyond. The necessary tree
level matrix elements are provided by the Optimized Matrix Element Genera-
tor O’Mega or can be interfaced in different ways. O’Mega/WHIZARD can be
downloaded at

http://projects.hepforge.org/whizard/.

Our generic model file for O’Mega includes generic vector, scalar and fermionic
(both Dirac and Majorana) particles with general left and right handed couplings.
The model files and detailed installation instructions can be found at

http://theorie.physik.uni-wuerzburg.de/~ledelhaeuser/lama/lama.html.

The model file is called LAMA (=Little Arbitrary Model Application) and the
implementation comes with the following files
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1. LAMAnual.pdf

2. modelsLAMA.ml LAMA Model file for O’Mega

3. f90 LAMA.ml

4. parameters.LAMA.omega.f90 LAMA Model/parameter file for WHIZARD

5. readincoupl.pl, LAMAmake, LAMAraw, LAMA.mdl Scripts for changing the
couplings

Generic interactions and implementation

Here we have summarized some parts of the model file and the parameter file. Our
model file provides scalar (generically denoted with S, charged and uncharged),
vector (V , charged and uncharged) and fermion (Majorana (M) and Dirac (F ))
particles in three types of “flavor” i = 1, 2, 3 each,

f±i ,mi, vi, si, s
±
i , v

±
i . (A.1)

This allows for example to have a heavy scalar decaying into two fermions and
a light scalar with a very heavy fermion inbetween. The provided couplings
including fermion particles are (i, j, k = 1, 2, 3)

ViF
±
j F

∓
k ; SiF

±
j F

∓
k ; (A.2a)

MiV
±
j F

∓
k ; MiS

±
j F
∓
k . (A.2b)

The first line contains the vertices which have two charged fermions, in the second
line, there is one uncharged fermion and one charged fermion with charged bosons.
These are all the vertices which are needed for the first two topologies in Chapter
4. One of the charged fermions plays the role of the SM-fermion in the three
body decays. For the third topology, one needs also the following interactions of
either three bosons or two uncharged Majorana particles

ViVjVk SiVjVk ViVjVk SiSjSk (A.3a)

MiSjMk; MiVjMk. (A.3b)

The files which had to be changed are:

• /whizard-1.92/omega-src/bundle/src/models.ml:
module LAMA; Definition of particles:

type flavor =

| PFermion of neuf | PAFermion of neuf

| PVector of neuv

| PVectorPlus of neuvm | PVectorMinus of neuvm

| PMajorana of neum

| PScalar of neus

| PScalarPlus of neusm | PScalarMinus of neusm

The generic particle types, e.g. for f or v, are denoted with neuf or neuv. If the
particle is charged, then it has the additional letter “m” for minus, e.g. neuvm.
The coupling constants are now defined as a type depending on the three flavours
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type constant = | G_vnfpfm of neuf*neuv*neuf | G_snfpfm of neuf*neus*neuf

| G_vmfpm of neum*neuvm*neuf | G_spfmm of neum*neusm*neuf

| G_smfpm of neum*neusm*neuf | G_vpfmm of neum*neuvm*neuf

after defining the conjugate particle, the Lorentz structure and so on which is
quite clear from the context, the vertices have to be defined:

let scalarvertices a n f =

[

(PAFermion a, PScalar n, PFermion f), FBF (1, Psibar, SLR, Psi),G_snfpfm (a,n,f)

]

let vectorvertices a n f =

[

(PAFermion a, PVector n, PFermion f), FBF (1, Psibar, VLR, Psi),G_vnfpfm (a,n,f)

]

let vectorvertices2 n m f =

[

(PMajorana n, PVectorPlus m, PFermion f), FBF (1, Chibar, VLR, Psi), G_vpfmm(n,m,f);

(PAFermion f, PVectorMinus m, PMajorana n), FBF (1, Psibar, VLR, Chi), G_vmfpm (n,m,f)

]

let scalarvertices2 n m f =

[

(PMajorana n, PScalarPlus m, PFermion f), FBF (1, Chibar, SLR, Psi), G_spfmm (n,m,f);

(PAFermion f, PScalarMinus m, PMajorana n), FBF (1, Psibar, SLR, Chi), G_smfpm (n,m,f)

]

let vertices () =

(

List.flatten (Product.list3 scalarvertices [F1;F2;F3] [S1;S2;S3] [F1;F2;F3]) @

List.flatten (Product.list3 vectorvertices [F1;F2;F3] [V1;V2;V3] [F1;F2;F3]) @

List.flatten (Product.list3 vectorvertices2 [M1;M2;M3] [VM1;VM2;VM3] [F1;F2;F3]) @

List.flatten (Product.list3 scalarvertices2 [M1;M2;M3] [SM1;SM2;SM3] [F1;F2;F3])

, [], [])

This defines e.g. the scalarvertices as a function of three arguments a,n,f
which are the flavour types. The entry in the first bracket denotes the types of
particles which are in the corresponding vertex, the second one, which type of
interaction (here: FBF=Fermion-Boson-Fermion) and the last two entries give
the interaction (SLR=Scalar-Left-Right) and the constant which is to be put
there. The particles/antiparticles are chosen in such a way that:

Ψ: incoming fermion, outgoing antifermion
Ψ: outgoing fermion, incoming antifermion

In the end, one has to map the O’Caml symbols to the Fortran symbols via

let constant_symbol = function

| G_vnfpfm (a,n,f) -> "v"^string_of_neuv n^"f"^string_of_neuf a^"pf"^string_of_neuf f^"m"

| G_snfpfm (a,n,f) -> "s"^string_of_neus n^"f"^string_of_neuf a^"pf"^string_of_neuf f^"m"

| G_vpfmm (n,m,f) -> "v"^string_of_neuvm m^"pf"^string_of_neuf f^"mm"^string_of_neum n

| G_vmfpm (n,m,f) -> "v"^string_of_neuvm m^"mf"^string_of_neuf f^"pm"^string_of_neum n

| G_smfpm (n,m,f) -> "s"^string_of_neusm m^"mf"^string_of_neuf f^"pm"^string_of_neum n

| G_spfmm (n,m,f) -> "s"^string_of_neusm m^"pf"^string_of_neuf f^"mm"^string_of_neum n

so that the first letter gives either scalar or vector with its flavour number, if
followed by a “m” (minus) or “p” (plus) the negative particle, the second entry
gives the fermion or antifermion (“fp” or “fm”) and the last one gives the third
fermion (“fm”) or the Majorana particle “m”. The number between the parti-
cle type (“v”) and its charge (“m”) is indicating its type 1 . . . 3. For example,
“s1f1pf2m” is the vertex with an uncharged scalar, an outgoing fermion type 1
and an incoming antifermion. This is a 2-dim. list of entries with the first entry
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being the left handed and the second one being the right handed coupling.

• /whizard-1.92/conf/models/LAMA.mdl
In this file, the parameters and particles are defined. By default the couplings
are all set to zero and the masses to a very large value. In ./readincoupl.pl

one can define the couplings which are needed and run it on LAMAraw which
converts it into LAMA.mdl (which is actually done by the LAMAmake script) and
sets the corresponding couplings to values which have to be written down in
./readincoupl.pl. The particles are defined with their type, name, their quan-
tum numbers, the LATEXcode and its mass name as in this example of a fermion

1046 particle F_LEPTON1 11

1047 spin 1/2, isospin -1/2, charge -1

1048 name f1-, tex:f^-_1

1049 anti omega:f1+, tex:f^+_1

1050 mass mfermi1

which is quite self explaining. In the end of this file there is a list of all possible
couplings e.g. for some of the fermions

# f 1 m

vertex f1+ f1- v1

vertex f1+ f2- v1

vertex f1+ f3- v1

Last, we have the file parameters.LAMA.omega.f90 which has a definition of all
the O’Mega couplings and their corresponding WHIZARD naming. Due to some
rule that the names can only have max. 8 characters, some renaming had to be
done, in a way that the “fp” is called “a” (for antifermion). This means, that a
coupling which looks like this in omega is converted into a WHIZARD name:

v1f1pf3m(2) =par%v1a1f32

which stands for vector (1), antifermion 1, fermion 3 (minus) and here (2) marks
the right-handed component (which gives the last 2).

• Short explanation for readincoupl.pl

readincoupl.pl is a perl script which copies the LAMAraw into LAMA.mdl and
replaces the values of the couplings and masses noted readincoupl.pl :

# "couplings"##############################

# g_LR

#

$zeile=~s/v1a1f21 0.0/v1a1f21 0.5/g;

$zeile=~s/v1a1f22 0.0/v1a1f22 0.5/g;

# complex conjugate

#

$zeile=~s/v1a2f11 0.0/v1a2f11 0.5/g;

$zeile=~s/v1a2f12 0.0/v1a2f12 0.5/g;

# second graph

#"coupling (if vector is uncharged)"

# g*_LR

$zeile=~s/v1a2f31 0.0/v1a2f31 0.5/g;

$zeile=~s/v1a2f32 0.0/v1a2f32 0.5/g;

#

# complex conjugate

$zeile=~s/v1a3f21 0.0/v1a3f21 0.5/g;

$zeile=~s/v1a3f22 0.0/v1a3f22 0.5/g;

This is just the first coupling. This example shows the decay v1 → f1, f2, v3, with
uncharged v1, v3. We have two possible graphs here, and thus four couplings gL/R
and gL/R

∗ and nL/R and nL/R
∗.
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A.2 Model for CalcHep/CompHep

The implementation in CalcHep/CompHep is specifically adapted for the antler
processes in chapter 5.

Implementation of new variables

The variables which are implemented in CalcHep version 3.0 are defined in the
file phys val.c in c source/num/. For our simulations in chapter 5, we need the
invariant mass squared and CB which are implemented with the following code
in phys val.c for use in the antler diagram. The invariant mass is

case ’V’: /* invariant mass squared with two entries */

{

do

{

if(lv[i]>nin_int) for(j=0;j<4;j++) pp[j] += V[4*(lv[i]-1)+j];

else for(j=0;j<4;j++) pp[j] -= V[4*(lv[i]-1)+j];

} while(lv[++i]);

s=pp[0]*pp[0]; for(j=1;j<4;j++) s -=pp[j]*pp[j];

return s;

}

so that one can call it with V(P1,P2) for particle P1 and P2. CB is calculated
with

case ’B’: /* Barr’s Angle with two entries */

{

double barrangle;

double rap3;

double rap4;

double p3[4];

double p4[4];

int k;

for(k=0; k<4; k++)

{

p3[k] = V[4*(lv[0]-1)+k];

p4[k] = V[4*(lv[1]-1)+k];

}

rap3 = 0.5 *log((p3[0]+p3[3])/(p3[0]-p3[3]));

rap4 = 0.5 *log((p4[0]+p4[3])/(p4[0]-p4[3]));

barrangle = tanh(0.5*(rap3-rap4));

return barrangle;

}

and is called by B(P1,P2) in CalcHep.

Particles and their notation

The particle naming is as in figure A.1 and we denote the particles in the s-channel
collectively with index 1, the particles B with index 2 and the particles C with
index 3. They can be either scalar (s), vector (v) or fermion (f). We denoted the
SM-leptons with l3. The masses are then denoted with “m” for mass, then by
the particle type, e.g. “f” and the corresponding number, e.g. 3, so mf3. The
witdh is the same but with w instead of m, e.g. wf3. The model file SM generic

is a generic extension of the SM model file. We have added the particles we
need for the investigations of the antler diagram to the SM particles. They are
generically called scalar (“s”), vector (“v”) or fermion (“f”), each coming with
an index 1, 2, 3 if they are representatives of particles A,B or C respectively. We
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A

B

B

l+

C

C

l−

α β

γ

γ

Figure A.1: Feynman diagramm with notation for CalcHep/CompHep.

decided to implement a generic SM-lepton, which plays the role of the observable
final state particle later, as l3, L3, so that we can be free in choosing the couplings
and mass. The particle definition is in prtcls1.mdl and is shown here. We have
left out the SM particles except for the quarks:

SM generic

Particles

Full name |>A <|>A <| number |2*spin| mass |width |color|aux|>LaTex(A)<|>LaTeX(A+) <|

d-quark |d |D |1 |1 |0 |0 |3 | |d |\bar{d}

u-quark |u |U |2 |1 |0 |0 |3 | |u |\bar{u}

s-quark |s |S |3 |1 |0 |0 |3 | |s |\bar{s}

c-quark |c |C |4 |1 |Mc |0 |3 | |c |\bar{c}

b-quark |b |B |5 |1 |Mb |0 |3 | |b |\bar{b}

t-quark |t |T |6 |1 |Mt |wt |3 | |t |\bar{t}

The particles in the s-channel, here denoted by the index 1, are

vec-1 |v1 |v1 |10001 |2 |mv1 |wv1 |1 | |v_1 |v_1

scal-1 |s1 |s1 |100011 |0 |ms1 |ws1 |1 | |s_1 |s_1

The B-particles, denoted by the index 2 are

fermi-2 |f2 |F2 |10002 |1 |mf2 |wf2 |1 |-3 |f_2 |\bar{f}_2

scal-2 |s2 |S2 |100021 |0 |ms2 |ws2 |1 |-3 |s_2 |\bar{s}_2

vec-2 |v2 |V2 |100022 |2 |mv2 |wv2 |1 |-3 |v_2 |\bar{v}_2

And finally the C-particles, denoted by the index 3 are

scal-3 |s3 |s3 |10003 |0 |ms3 |ws3 |1 | |s_3 |s_3

lepton-3 |l3 |L3 |10004 |1 |ml3 |wl3 |1 | |l_3 |\bar{l}_3

vec-3 |v3 |v3 |100031 |2 |mv3 |wv3 |1 | |v_3 |v_3

fermi-3 |f3 |F3 |100032 |1 |mf3 |wf3 |1 | |f_3 |\bar{f}_3

We have also implemented some more particles which were used for generic decays
and t-channel simulations, but are not relevant for the antler diagram:

I-vec |VI1 |VI1 |100041 |2 |mvi |wvi |1 | | |

X-fermi |x1 |X1 |100042 |1 |mx1 |wv1 |1 | | |

y-fermi |y1 |Y1 |100043 |1 |my1 |wy1 |1 | | |

I-scal |SI1 |SI1 |100044 |0 |msi |wsi |1 | | |

X-scal |XS1 |XS1 |100045 |0 |mxs |wxs |1 | | |

X-vec |XV1 |XV1 |100046 |2 |mxv |wxv |1 | | |

Y-scal |YS1 |YS1 |100047 |0 |mys |wys |1 | | |

Y-vec |YV1 |YV1 |100048 |2 |myv |wyv |1 | | |

F-I |fI1 |FI1 |100049 |1 |mfi |wfi |1 | | |

Lepto-Vec |w1 |W1 |100050 |2 |mw1 |ww1 |3 | |w_1 |

Lepto-scal |h1 |H1 |100051 |0 |mh1 |wh1 |3 | |h_1 |

Lepto-scal |h3 |H3 |100052 |0 |mh3 |wh3 |1 | |h_3 |

Vertices

The implemented generic model is an extension of the SM, based on the SM
model file. We have coupled the s-channel particles A to the quarks so that we
can make use of the PDF implementation. The interactions of the particles are
determined from the file lgrng1.mdl which we show here (without the SM model
part). The interaction of the A particles to the quarks is:



A.2. Model for CalcHep/CompHep 129

SM generic

Vertices

A1 |A2 |A3 |A4 |> Factor <|> Lorentz part <|

v1 |u |U | |1 |G(m1)*(Avl*(1-G5)+Avr*(1+G5))

v1 |d |D | |1 |G(m1)*(Avl*(1-G5)+Avr*(1+G5))

v1 |c |C | |1 |G(m1)*(Avl*(1-G5)+Avr*(1+G5))

v1 |s |S | |1 |G(m1)*(Avl*(1-G5)+Avr*(1+G5))

s1 |u |U | |As |1

s1 |d |D | |As |1

s1 |c |C | |As |1

s1 |s |S | |As |1

The interactions of the A to the B particles is defined here

f2 |F2 |v1 | |1 |G(m3)*(Bvl*(1-G5)+Bvr*(1+G5))

f2 |F2 |s1 | |1 |(Bsl*(1-G5)+Bsr*(1+G5))

s2 |S2 |v1 | |Bvs |m3.(p1-p2)

s2 |S2 |s1 | |Bss |1

v1 |v2 |V2 | |Bvv |m1.m2*(p1-p2).m3+m2.m3*(p2-p3).m1+m3.m1*(p3-p1).m2

s1 |v2 |V2 | |Bsv |m2.m3

and the interactions of the B to the C particles are

f2 |L3 |s3 | |1 |Csl*(1-G5)+Csr*(1+G5)

l3 |F2 |s3 | |1 |Csr*(1-G5)+Csl*(1+G5)

f2 |L3 |v3 | |1 |G(m3)*(Cvl*(1-G5)+Cvr*(1+G5))

l3 |F2 |v3 | |1 |G(m3)*(Cvl*(1-G5)+Cvr*(1+G5))

f3 |L3 |s2 | |1 |SCl*(1-G5)+SCr*(1+G5)

l3 |F3 |S2 | |1 |SCl*(1+G5)+SCr*(1-G5)

f3 |L3 |v2 | |1 |G(m3)*(VCl*(1-G5)+VCr*(1+G5))

l3 |F3 |V2 | |1 |G(m3)*(VCl*(1-G5)+VCr*(1+G5))

For the simulation of generic decays and t-channel diagrams, we have the following
additional vertices, which are not needed for the antler diagram, but are useful
anyway:

l3 |X1 |VI1 | |1 |G(m3)*(VXl*(1-G5)+VXr*(1+G5))+A1*(G(m3)*G(p3)-G(p3)*G(m3))*(IxV+Ix5*G5)

x1 |L3 |VI1 | |1 |G(m3)*(VXl*(1-G5)+VXr*(1+G5))+A1*(G(m3)*G(p3)-G(p3)*G(m3))*(IxV-Ix5*G5)

l3 |Y1 |VI1 | |1 |G(m3)*(VYl*(1-G5)+VYr*(1+G5))+A2*(G(m3)*G(p3)-G(p3)*G(m3))*(IyV+Iy5*G5)

y1 |L3 |VI1 | |1 |G(m3)*(VYl*(1-G5)+VYr*(1+G5))+A2*(G(m3)*G(p3)-G(p3)*G(m3))*(IyV-Iy5*G5)

l3 |X1 |SI1 | |1 |(SXl*(1-G5)+SXr*(1+G5))+A3*G(p3)*(AxSi+AxPi*G5)

x1 |L3 |SI1 | |1 |(SXl*(1+G5)+SXr*(1-G5))+A3*G(p3)*(AxSi+AxPi*G5)

l3 |Y1 |SI1 | |1 |(SYl*(1-G5)+SYr*(1+G5))+A4*G(p3)*(AySi+AyPi*G5)

y1 |L3 |SI1 | |1 |(SYl*(1+G5)+SYr*(1-G5))+A4*G(p3)*(AySi+AyPi*G5)

l3 |FI1 |XS1 | |1 |(Xsl*(1-G5)+Xsr*(1+G5))+A5*i*G(p3)*(AxS+AxP*G5)

fI1 |L3 |XS1 | |1 |(Xsl*(1+G5)+Xsr*(1-G5))+A5*i*G(p3)*(AxS+AxP*G5)

l3 |FI1 |YS1 | |1 |(Ysl*(1-G5)+Ysr*(1+G5))+A6*i*G(p3)*(AyS+AyP*G5)

fI1 |L3 |YS1 | |1 |(Ysl*(1+G5)+Ysr*(1-G5))+A6*i*G(p3)*(AyS+AyP*G5)

l3 |FI1 |XV1 | |1 |G(m3)*(Xvl*(1-G5)+Xvr*(1+G5))+A7*(G(m3)*G(p3)-G(p3)*G(m3))*(AxV+Ax5*G5)

fI1 |L3 |XV1 | |1 |G(m3)*(Xvl*(1-G5)+Xvr*(1+G5))+A7*(G(m3)*G(p3)-G(p3)*G(m3))*(AxV-Ax5*G5)

l3 |FI1 |YV1 | |1 |G(m3)*(Yvl*(1-G5)+Yvr*(1+G5))+A8*(G(m3)*G(p3)-G(p3)*G(m3))*(AyV+Ay5*G5)

fI1 |L3 |YV1 | |1 |G(m3)*(Yvl*(1-G5)+Yvr*(1+G5))+A8*(G(m3)*G(p3)-G(p3)*G(m3))*(AyV-Ay5*G5)

f2 |U |w1 | |1 |G(m3)*(wl*(1-G5)+wr*(1+G5))

u |F2 |W1 | |1 |G(m3)*(wl*(1-G5)+wr*(1+G5))

f2 |U |h1 | |1 |hl*(1-G5)+hr*(1+G5)

u |F2 |H1 | |1 |hr*(1-G5)+hl*(1+G5)

s2 |s3 |H3 | |Ch3 |1

S2 |s3 |h3 | |Ch3 |1

Finally one has to define the values of the coupling strengths, the particle masses
and widths, which is done in vars1.mdl. Since the listing is straightforward, we
will only give a short example:

SM generic

Parameters

>Name <| Value |> Comment

mv1 |100 |Mvec1

wv1 |3 |width vec1

ms1 |100 |Mscal1

ws1 |3 |width scal1

Avl |1 |left handed cpl vec

Avr |1 |right handed cpl vec

Bvl |1 |left handed B-v

Bvr |1 |right handed B-v

Bsl |1 |left handed B-s

Bsr |1 |right handed B-s



Appendix B

Analytic Results

B.1 Appendix to Chapter 3: Anomalous couplings

We give here the analytic results for the decays in chapter 3. We use the following
short forms for the couplings from equation 3.14 and 3.15 and the masses

τI =
mI

mX
; τY =

mY

mX
; 1/Λi = Ri =

R′i
mx

;

gV = gr + gl; gA = gr − gl; nV = nr + nl; nA = nr − nl;

and analogous for al/r, bl/r, cl/r, xl/r, yl/r, zl/r. As a complete example we give
the decay S → ff̄S. The remaining decays are displayed up to the order of
R′2 ∝ 1/Λ2 where we have set R′x = R′y = R′z = R′a = R′b = R′c = R′. The decays
(V,V) is only shown for the couplings xA/V , aA/V since the complete result is very
long. The NWA result in terms of these is separated in

d Γ

d sff
∝(AD4 +AD5) + (BD4 +BD5) · sff + (CD4 + CD5) · s2

ff .

(B.1)

• (S, S):

AD4 =2m2
X

(
1− τ2I

)
(τI − τY )(τI + τY )

(
g2A
(
n2
A + n2

V

)
+ 4gAgV nAnV + g2V

(
n2
A + n2

V

))
BD4 =− 16gA gV nA nV τ2I

AD5 =− 2m2
Xτ

2
I

(
τ2I − 1

)
(τI − τY )(τI + τY )×(

a2AR
′2
a

(
n2
A + n2

V + τ2I

(
R

′2
x

(
x2A + x2V

)
− 2R′xR

′
z(xAzA + xV zV ) +R

′2
z

(
z2A + z2V

)))
+2aAR

′
a

(
τ2I
(
2(aV R

′
a − cV R′c)(R′xxA −R′zzA)(R′xxV −R′zzV )

−cAR′c
(
R

′2
x

(
x2A + x2V

)
− 2R′xR

′
z(xAzA + xV zV ) +R

′2
z

(
z2A + z2V

)))
+2aV nAnV R

′
a −R′c

(
cA
(
n2
A + n2

V

)
+ 2cV nAnV

))
+τ2I

(
a2V R

′2
a

(
R

′2
x

(
x2A + x2V

)
− 2R′xR

′
z(xAzA + xV zV ) +R

′2
z

(
z2A + z2V

))
− 2aV R

′
aR
′
c

(
2cA(R′xxA −R′zzA)(R′xxV −R′zzV )

+cV

(
R

′2
x

(
x2A + x2V

)
− 2R′xR

′
z(xAzA + xV zV ) +R

′2
z

(
z2A + z2V

)))
+R

′2
c

(
c2A

(
R

′2
x

(
x2A + x2V

)
− 2R′xR

′
z(xAzA + xV zV ) +R

′2
z

(
z2A + z2V

))
+ 4cAcV (R′xxA −R′zzA)(R′xxV −R′zzV )
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+c2V

(
R

′2
x

(
x2A + x2V

)
− 2R′xR

′
z(xAzA + xV zV ) +R

′2
z

(
z2A + z2V
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+ a2V n

2
AR

′2
a + a2V n

2
V R
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a − 4aV cAnAnV R

′
aR
′
c − 2aV cV n

2
AR
′
aR
′
c − 2aV cV n

2
V R
′
aR
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c

+ c2An
2
AR
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2
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2
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2
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BD5 =− 16τ4I
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(aAR

′
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+τ2I (R′xxA −R′zzA)(R′xxV −R′zzV )
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)

In the following we show the results for the leading order in R′2.
• (S,S):

AD5 = 2m2
XR
′2τ2I

(
1− τ2I

)
(τI − τY )(τI + τY )×

×
(
n2
A
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• (S,V):
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• (V,S)
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• (V,V): (only terms ∝ aV/A, xV/A)
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g2A
(
τ2I − 1

) (
n2
A + n2

V

)
(τI − τY )(τI + τY )

+4gAgV nAnV τ
4
I + g2V

(
τ2I − 1

) (
n2
A + n2

V

)
(τI − τY )(τI + τY )

)
CD4 = −

16
(
g2A + g2V

) (
n2
A + n2

V

)
m2
X

AD5 = −
m2
XR
′2

τ4I

(
τ2I − 1

)
(τI − τY )(τI + τY )

(
16a2Aτ

4
I

(
τ2Y + 2

) (
n2
A + n2

V

)
− 128aAaV nAnV τ

4
I

+ 16a2V τ
4
I

(
τ2Y + 2

) (
n2
A + n2

V

)
+ 2τ2I τ

2
Y

(
16τ2I

(
x2A
(
g2A + g2V

)
+ x2V

(
g2A + g2V

)
+ 4gAgV xAxV

)
−
(
g2A + g2V

)
((yA − zA)(4xA + yA − zA) + (yV − zV )(4xV + yV − zV ))

)
+ τ4Y

(
g2A + g2V

) (
(yA − zA)2 + (yV − zV )2

)
+ 16g2Ax

2
Aτ

4
I + 8g2AxAyAτ

4
I − 8g2AxAzAτ

4
I + 16g2Ax

2
V τ

4
I

+ 8g2AxV yV τ
4
I − 8g2AxV zV τ

4
I + g2Ay

2
Aτ

4
I − 2g2AyAzAτ

4
I + g2Ay

2
V τ

4
I − 2g2AyV zV τ

4
I

+ g2Az
2
Aτ

4
I + g2Az

2
V τ

4
I + 16g2V x

2
Aτ

4
I + 8g2V xAyAτ

4
I − 8g2V xAzAτ

4
I + 16g2V x

2
V τ

4
I + 8g2V xV yV τ

4
I

−8g2V xV zV τ
4
I + g2V y

2
Aτ

4
I − 2g2V yAzAτ

4
I + g2V y

2
V τ

4
I − 2g2V yV zV τ

4
I + g2V z

2
Aτ

4
I + g2V z

2
V τ

4
I

)
+O(R

′3)
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BD5 =
4R′2

τ2I

(
16a2A

(
τ2I − 1

)
τ2I
(
n2
A + n2

V

)
(τI − τY )(τI + τY ) + 64aAaV nAnV τ

4
I

− 2τ2I τ
2
Y

(
8a2V

(
τ2I − 1

) (
n2
A + n2

V

)
+ g2A

(
τ2I − 1

) (
8x2A + 4xA(yA − zA) + 8x2V

+4xV (yV − zV ) + (yA − zA)2 + (yV − zV )2
)

+ 32gAgV xAxV τ
2
I

+g2V
(
τ2I − 1

) (
8x2A + 4xA(yA − zA) + 8x2V + 4xV (yV − zV ) + (yA − zA)2 + (yV − zV )2

))
+ 16a2V n

2
Aτ

6
I − 16a2V n

2
Aτ

4
I + 16a2V n

2
V τ

6
I − 16a2V n

2
V τ

4
I

+
(
τ2I − 1

)
τ4Y
(
g2A + g2V

) (
(yA − zA)2 + (yV − zV )2

)
+ 16g2Ax

2
Aτ

6
I − 16g2Ax

2
Aτ

4
I + 8g2AxAyAτ

6
I

− 8g2AxAyAτ
4
I − 8g2AxAzAτ

6
I + 8g2AxAzAτ

4
I + 16g2Ax

2
V τ

6
I − 16g2Ax

2
V τ

4
I + 8g2AxV yV τ

6
I − 8g2AxV yV τ

4
I

− 8g2AxV zV τ
6
I + 8g2AxV zV τ

4
I + g2Ay

2
Aτ

6
I − g

2
Ay

2
Aτ

4
I − 2g2AyAzAτ

6
I + 2g2AyAzAτ

4
I + g2Ay

2
V τ

6
I − g

2
Ay

2
V τ

4
I

− 2g2AyV zV τ
6
I + 2g2AyV zV τ

4
I + g2Az

2
Aτ

6
I − g

2
Az

2
Aτ

4
I + g2Az

2
V τ

6
I − g

2
Az

2
V τ

4
I + 16g2V x

2
Aτ

6
I − 16g2V x

2
Aτ

4
I

+ 8g2V xAyAτ
6
I − 8g2V xAyAτ

4
I − 8g2V xAzAτ

6
I + 8g2V xAzAτ

4
I + 16g2V x

2
V τ

6
I − 16g2V x

2
V τ

4
I + 8g2V xV yV τ

6
I

− 8g2V xV yV τ
4
I − 8g2V xV zV τ

6
I + 8g2V xV zV τ

4
I + g2V y

2
Aτ

6
I − g

2
V y

2
Aτ

4
I − 2g2V yAzAτ

6
I + 2g2V yAzAτ

4
I

+g2V y
2
V τ

6
I − g

2
V y

2
V τ

4
I − 2g2V yV zV τ

6
I + 2g2V yV zV τ

4
I + g2V z

2
Aτ

6
I − g

2
V z

2
Aτ

4
I + g2V z

2
V τ

6
I − g

2
V z

2
V τ

4
I

)
+O(R

′3)

CD5 =
4R′2

m2
X

(
16a2Aτ

2
I

(
n2
A + n2

V

)
+ 16a2V τ

2
I

(
n2
A + n2

V

)
+
(
g2A + g2V

) (
τ2I
(
(4xA + yA − zA)2 + (4xV + yV − zV )2

)
− τ2Y

(
(yA − zA)2 + (yV − zV )2

)))
+O(R

′3)

B.2 Appendix to Chapter 4: Three body decays

The coefficients of the differential decay widths are given below. We restrict
ourselves to the case of massless SM-fermions, implying that Z = A = 0 and,
thus, the differential widths read

dΓ

dŝ
=

PS

(2π)3 256 mX

(
B + Cŝ+Dŝ2 + Eŝ3 + F ŝ4

)
. (B.2)

Decays of new bosons

The coefficients are shown with all possible diagrams and vertices in Table 4.1.
For the definition of ε and the various τi see Eq. (4.2). We give the various orders
separately, e.g.

B =

4∑

j=2

Bjε
j . (B.3)

For brevity, we only explicitely write out the higher orders for (S, S).
• S → ffS:

B2 = 128ε2(τY − 1)2(g(r, s)n(l, s) + g(l, s)n(r, s))2

C2 = 128ε2(τY − 1)2(g(r, s)n(l, s) + g(l, s)n(r, s))2

D2 = 0 (B.4)

B3 = 64ε3τC(τY − 1)2c(s)(g(r, s)n(l, s) + g(l, s)n(r, s))(s(l) + s(r))

C3 = 64ε3τC(τY − 1)2c(s)(g(r, s)n(l, s) + g(l, s)n(r, s))(s(l) + s(r))
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D3 = 0 (B.5)

B4 =
16

3
ε4(τY − 1)2

(
12g(r, s)2n(l, s)2(τY + 1)2 + 12g(l, s)2n(r, s)2(τY + 1)2

+24g(l, s)g(r, s)n(l, s)n(r, s)(τY + 1)2 + 3τ2Cc(s)
2s(l)2 + 3τ2Cc(s)

2s(r)2

+τ2Y c(v)2v(l)2 + 6τY c(v)2v(l)2 + c(v)2v(l)2 + τ2Y c(v)2v(r)2

+6τY c(v)2v(r)2 + c(v)2v(r)2
)

C4 = −
16

3
ε4(τY − 1)2

(
−48τY g(r, s)

2n(l, s)2 − 96τY g(l, s)g(r, s)n(r, s)n(l, s)

−48τY g(l, s)
2n(r, s)2 − 3τ2Cc(s)

2s(l)2 − 3τ2Cc(s)
2s(r)2 + 2τ2Y c(v)2v(l)2

+4τY c(v)2v(l)2 + 2c(v)2v(l)2 + 2τ2Y c(v)2v(r)2

+4τY c(v)2v(r)2 + 2c(v)2v(r)2
)

D4 = −
16

3
ε4(τY − 1)4

(
−
(
v(l)2 + v(r)2

)
c(v)2 + 12g(r, s)2n(l, s)2

+12g(l, s)2n(r, s)2 + 24g(l, s)g(r, s)n(l, s)n(r, s)
)

(B.6)

Moreover, we get Ej = 0 in all orders considered.

• S → ffV :

B2 =
64

3τ2Y

(
g(r, s)2n(l, v)2 + g(l, s)2n(r, v)2

)
ε2(τY − 1)2

(
25τ2Y + 6τY + 1

)
C2 =

128

3τ2Y

(
g(r, s)2n(l, v)2 + g(l, s)2n(r, v)2

)
ε2(τY − 1)2

(
11τ2Y − 2τY − 1

)
D2 =

64

3τ2Y

(
g(r, s)2n(l, v)2 + g(l, s)2n(r, v)2

)
ε2(τY − 1)4 (B.7)

• V → ffS:

B2 =
64

3

(
g(r, v)2n(l, s)2 + g(l, v)2n(r, s)2

)
ε2(τY − 1)2

(
τ2Y + 6τY + 25

)
C2 = −

128

3

(
g(r, v)2n(l, s)2 + g(l, v)2n(r, s)2

)
ε2(τY − 1)2

(
τ2Y + 2τY − 11

)
D2 =

64

3

(
g(r, v)2n(l, s)2 + g(l, v)2n(r, s)2

)
ε2(τY − 1)4 (B.8)

• V → ffV :

B2 =
32

3τ2Y
ε2(τY − 1)2

(
g(r, v)2

(
3τ4Y + 16τ3Y + 54τ2Y + 16τY + 3

)
n(l, v)2

−g(l, v)g(r, v)n(r, v)
(
3τ4Y + 20τ3Y − 6τ2Y + 20τY + 3

)
n(l, v)

+g(l, v)2n(r, v)2
(
3τ4Y + 16τ3Y + 54τ2Y + 16τY + 3

))
C2 = −

32

3τ2Y
ε2(τY − 1)2

(
g(r, v)2

(
5τ4Y + 4τ3Y − 46τ2Y + 4τY + 5

)
n(l, v)2

−g(l, v)g(r, v)n(r, v)
(
7τ4Y + 20τ3Y + 34τ2Y + 20τY + 7

)
n(l, v)

+g(l, v)2n(r, v)2
(
5τ4Y + 4τ3Y − 46τ2Y + 4τY + 5

))
D2 =

32

3τ2Y
ε2(τY − 1)4

(
g(r, v)2

(
τ2Y − 6τY + 1

)
n(l, v)2

−g(l, v)g(r, v)n(r, v)
(
5τ2Y + 6τY + 5

)
n(l, v) + g(l, v)2n(r, v)2

(
τ2Y − 6τY + 1

))
E2 =

32

3τ2Y

(
g(r, v)2n(l, v)2 + g(l, v)g(r, v)n(r, v)n(l, v) + g(l, v)2n(r, v)2

)
ε2(τY − 1)6 (B.9)
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Decays of new fermions

As noted before, in this case only the 4th order in ε contributes. We split the
various coefficients according to the different topologies considered, e.g. the scalar
contributions to B4 are

B4 = Bs +B′s +Bs,m

where Bs : top. 1+2 with intermediate scalars

B′s : top. 3 with intermediate scalars

Bs,m : interference term of top. (1+2)+3 with intermediate scalars

For intermediate vector bosons the index v is used. For the interference terms
between scalars and vector bosons the index (sv) is used in case of topologies
1+2, (sv1) for the scalars of topology 1+2 and vector bosons of topology 3, (s1v)
for the scalars of topology 3 and vector bosons of topology 1+2. Moreover we
find that the interference vanishes if both, scalars and vector bosons, stem from
the third topology because we have mf = 0 for the SM-fermions.
• Intermediate scalars:

Bs =
64

3
(τY − 1)2

(
2
(
(τY (τY + 6) + 1)n(l, s)2 + (τY (τY + 3) + 1)n(r, s)2

)
g(l, s)2

−(τY (τY + 6) + 1)g(r, s)n(l, s)n(r, s)g(l, s) + 2g(r, s)2
(
(τY (τY + 3) + 1)n(l, s)2

+(τY (τY + 6) + 1)n(r, s)2
))

Cs = −
64

3
(τY − 1)2

(
−2g(l, s)g(r, s)n(l, s)n(r, s)(τY + 1)2

+g(r, s)2
(
((τY − 4)τY + 1)n(l, s)2 + ((τY − 10)τY + 1)n(r, s)2

)
+g(l, s)2

(
((τY − 10)τY + 1)n(l, s)2 + ((τY − 4)τY + 1)n(r, s)2

))
Ds = −

64

3
(τY − 1)4

((
n(l, s)2 + n(r, s)2

)
g(l, s)2

+g(r, s)n(l, s)n(r, s)g(l, s) + g(r, s)2
(
n(l, s)2 + n(r, s)2

))
(B.10)

B′s = 32(τY − 1)2
(
(τY + 1)2d(l, s)2

+8τY d(r, s)d(l, s) + (τY + 1)2d(r, s)2
) (
s(l)2 + s(r)2

)
C′s = 128(τY − 1)2τY (d(l, s) + d(r, s))2

(
s(l)2 + s(r)2

)
D′s = −32(τY − 1)4

(
d(l, s)2 + d(r, s)2

) (
s(l)2 + s(r)2

)
(B.11)

Bs,m = −32(τY − 1)2(g(r, s)n(l, s) + g(l, s)n(r, s))
(
d(r, s)

(
s(l)(τY + 1)2 + 4τY s(r)

)
+d(l, s)

(
s(r)(τY + 1)2 + 4τY s(l)

))
Cs,m = −128(τY − 1)2τY (g(r, s)n(l, s) + g(l, s)n(r, s))(d(l, s) + d(r, s))(s(l) + s(r))

Ds,m = 32(τY − 1)4(g(r, s)n(l, s) + g(l, s)n(r, s))(d(r, s)s(l) + d(l, s)s(r)) (B.12)

• Intermediate vector bosons:

Bv =
256

3
(τY − 1)2

(
6g(l, v)g(r, v)n(l, v)n(r, v)(τY + 1)2

+g(l, v)2
(
2(τY (τY + 6) + 1)n(l, v)2 + 3(τY + 1)2n(r, v)2

)
+g(r, v)2

(
3(τY + 1)2n(l, v)2 + 2(τY (τY + 6) + 1)n(r, v)2

))
Cv =

256

3
(τY − 1)2

((
12τY n(r, v)2 − ((τY − 10)τY + 1)n(l, v)2

)
g(l, v)2

+24τY g(r, v)n(l, v)n(r, v)g(l, v) + g(r, v)2
(
12τY n(l, v)2 − ((τY − 10)τY + 1)n(r, v)2

))
Dv = −

256

3
(τY − 1)4

((
n(l, v)2 + 3n(r, v)2

)
g(l, v)2
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+6g(r, v)n(l, v)n(r, v)g(l, v) + g(r, v)2
(
3n(l, v)2 + n(r, v)2

))
(B.13)

B′v =
256

3
(τY − 1)2

(
(τY (τY + 3) + 1)d(l, v)2 − 6τY d(r, v)d(l, v)

+(τY (τY + 3) + 1)d(r, v)2
) (
v(l)2 + v(r)2

)
C′v = −

128

3
(τY − 1)2

(
((τY − 4)τY + 1)d(l, v)2

+12τY d(r, v)d(l, v) + ((τY − 4)τY + 1)d(r, v)2
) (
v(l)2 + v(r)2

)
D′v = −

128

3
(τY − 1)4

(
d(l, v)2 + d(r, v)2

) (
v(l)2 + v(r)2

)
(B.14)

Bv,m =
512

3
(τY − 1)2(τY (τY + 6) + 1)(d(l, v)− d(r, v))

(g(l, v)n(l, v)v(l)− g(r, v)n(r, v)v(r))

Cv,m = −
256

3
(τY − 1)2((τY − 10)τY + 1)(d(l, v)− d(r, v))

(g(l, v)n(l, v)v(l)− g(r, v)n(r, v)v(r))

Dv,m = −
256

3
(τY − 1)4(d(l, v)− d(r, v))(g(l, v)n(l, v)v(l)− g(r, v)n(r, v)v(r)) (B.15)

• Interference terms between scalars and vector bosons:

Bsv = −
512

3
(τY − 1)2(n(l, v)(3τY g(l, s)g(r, v)n(r, s) + g(r, s)(3τY g(r, v)n(l, s)

+ (τY (τY + 6) + 1)g(l, v)n(r, s))) + ((τY (τY + 6) + 1)g(l, s)g(r, v)n(l, s)

+ 3τY g(l, v)(g(r, s)n(l, s) + g(l, s)n(r, s)))n(r, v))

Csv =
256

3
(τY − 1)2(n(l, v)(g(r, s)(((τY − 10)τY + 1)g(l, v)n(r, s)

− 6τY g(r, v)n(l, s))− 6τY g(l, s)g(r, v)n(r, s)) + (((τY − 10)τY + 1)g(l, s)g(r, v)n(l, s)

− 6τY g(l, v)(g(r, s)n(l, s) + g(l, s)n(r, s)))n(r, v))

Dsv =
256

3
(τY − 1)4(g(l, v)g(r, s)n(l, v)n(r, s) + g(l, s)g(r, v)n(l, s)n(r, v)) (B.16)

Bsv1 = −
256

3
(τY − 1)2(τY (τY + 6) + 1)(d(l, v)− d(r, v))

(g(r, s)n(r, s)v(l)− g(l, s)n(l, s)v(r))

Csv1 =
128

3
(τY − 1)2((τY − 10)τY + 1)(d(l, v)− d(r, v))

(g(r, s)n(r, s)v(l)− g(l, s)n(l, s)v(r))

Dsv1 =
128

3
(τY − 1)4(d(l, v)− d(r, v))(g(r, s)n(r, s)v(l)− g(l, s)n(l, s)v(r)) (B.17)

Bs1v = 128(τY − 1)2(g(r, v)n(l, v) + g(l, v)n(r, v))
(
d(l, s)

(
s(l)(τY + 1)2 + 4τY s(r)

)
+d(r, s)

(
s(r)(τY + 1)2 + 4τY s(l)

))
Cs1v = 512(τY − 1)2τY (g(r, v)n(l, v) + g(l, v)n(r, v))

(d(l, s) + d(r, s))(s(l) + s(r))

Ds1v = −128(τY − 1)4(g(r, v)n(l, v) + g(l, v)n(r, v))(d(l, s)s(l) + d(r, s)s(r)) (B.18)
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Appendix to Chapter 5

C.1 Explicit helicity spinors

For the calculation of the production and decays we use explicit helicity spinors.
We follow [43] [77] and [76] for the calculation. The wave function solution of a
free particle with momentum p and spin s is

u(p, s) =
√

2m

(
cosh ξ

2 χs
~σ · p̂ sinh ξ

2 χs

)
; (C.1a)

v(p, s) =
√

2m(−1)1/2−s
(
~σ · p̂ sinh ξ

2 χ−s
cosh ξ

2 χ−s

)
(C.1b)

where the antiparticle wave function is v(p, s) = CūT (p) and C is the charge
conjugation matrix. ξ is the rapidity related to energy and three momentum
vector by E = m cosh ξ and p = m sinh ξ. The Dirac helicity spinors for p̂, λ are
now defined by rotating the state with helicity λ into the ẑ direction

χλ(p̂) = e−in̂ ·~σ/2χλ(ẑ) (C.2)

with the vector n̂ = (−sinφ, cosφ, 0) and the unit vector

p̂ = (sin θ cosφ, sin θ sinφ, cos θ)

in the direction of the three momentum ~p of the particle. The resulting helicity
spinor for p, λ is

u(p, λ) = e−in̂ ·~σ/2 u(p, s = λ) =
√

2m

(
cosh ξ

2 χλ(p̂)

~σ · p̂ sinh ξ
2 χλ(p̂)

)
; (C.3a)

v(p, λ) =
√

2m(−1)1/2−λ
(
~σ · p̂ sinh ξ

2 χ−λ
cosh ξ

2 χ−λ

)
. (C.3b)

The chiral representation is more useful to perform explicit calculations, and we
get the chiral spinors by

u(p, λ)chiral =
1√
2

(
1 −1
1 1

)
u(p, λ)Dirac (C.4)
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and inserting equations C.3

u(p) =
1√

2(E +m)

(
((m+ E)− ~p ·~σ)χ
((m+ E) + ~p ·~σ)χ

)

v(p) =
1√

2(E +m)

(
((m+ E) + ~p ·~σ)χ
−((m+ E)− ~p ·~σ)χ

)

and the explicit helicity states

χ (1/2) = e−Iφ/2σ3e−Iθ/2σ2
(

1

0

)
(C.5)

χ (−1/2) = e−Iφ/2σ3e−Iθ/2σ2
(

0

1

)
. (C.6)

Here we have used the definition of the rapidities

cosh
ξ

2
=

√
E +m

2m
sinh

ξ

2
=

√
E −m

2m
. (C.7)

With these explicit spinors in the chiral representation we are able to derive the
decays of the particles for each helicity separately.
In the case of a spin-1 particle, we have three helicity vectors for the massive
vector boson moving in the ~k direction

εµ(1, k) =
1√
2
e−Iγ(0,− cos θ cosφ+ i sinφ, −i cosφ− cos θ sinφ, sin θ);

εµ(−1, k) =
1√
2
eIγ(0, cos θ cosφ+ i sinφ, −i cosφ+ cos θ sinφ,− sin θ);

εµ(0, k) = (

√
E2 −M2

M
,
E

M
sin θ cosφ,

E

M
sin θ sinφ,

E

M
cos θ).

In the case of a massless vector boson, the helicity 0-vector does not exist.
For the decays, we work in the parents’ rest frame (here the particles B) which
means that the momenta are chosen as follows

p1 = (M, 0, 0, 0)

p2 = (E2, E2 sin θ cosφ,E2 sin θ sinφ,E2 cos θ)

p3 = (E3,
√
E2

3 −m2 sin(π − θ) cos(φ+ π),
√
E2

3 −m2 sin(π − θ) sin(φ+ π),
√
E2

3 −m2 cos(π − θ)).

For the sake of brevity and clarity we use here the nomenclature of figure C.1.
The Euler angle γ can be chosen arbitrarily. There are two common conventions,
and we use γ = 0 in our calculations. We furthermore need the relation

εµ(k, λ)∗ = (−1)λεµ(k,−λ)
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p1,MB

p3,MC

p2

Figure C.1: Short nomenclature for the decays. The momenta are given in the
rest frame of the decaying particle. The lepton is massless, the double lines indicate
the unknown spin of the particles.

for the polarization vector of the outgoing vector particle. Since we are in the
parents’ rest frame we can use ~p2 = −~p3, which is obtained from θ → π − θ and
φ→ φ+ π (also in the polarization vectors).
The matrix elements for the different decays involving scalars are

s→ lf̄ N (λf , λl) = ū(λl, p2) (al PL + ar PR) v(λf , p3)

s→ l̄f N (λf , λl̄) = ū(λf , p3) (ar PL + al PR) v(λl̄, p2)

f → sl N (λf , λl) = ū(λl, p2) (al PL + ar PR) u(λf , p1)

f̄ → sl̄ N (λf̄ , λl̄) = v̄(λf̄ , p1) (ar PL + al PR) v(λl̄, p2).

The matrix elements for the decays involving vector bosons are

v → lf̄ N (λf̄ , λl, λV ) = ū(λl, p2)γµ(al PL + ar PR)v(λf , p3)ε(λV , p1)

v̄ → l̄f N (λf , λl̄, λV ) = ū(λf , p3)γµ(al PL + ar PR)u(λl̄, p2)ε(λV , p1)

f → lv N (λf , λl, λV ) = ū(λl, p2)γµ(al PL + ar PR)u(λf , p1) ε∗µ(λV , p3)

f̄ → l̄v N (λf̄ , λl̄, λV ) = v̄(λf̄ , p1)γµ(al PL + ar PR)v(λl̄, p2) ε∗µ(λV , p3).

C.2 Figures to Section 5.4

Distribution plots for different
√
τc

We show here the CB distributions for fixed δ2 for the different spin scenarios
and different mass ratios

√
τc. Each figure shows for C1 (black) or C2 (grey)

the PS distribution and the distribution for smallest (dashed) and largest (solid)
KL distance ∆ and thus the smallest or largest deviation from PS that can be
achieved in the particular spin scenario.
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Figure C.2: Distributions depending on
√
τ c for s-channel scalar
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Figure C.3: Distributions depending on
√
τ c for s-channel vector. (VSF) is TH-PS

and already displayed in figure 5.9.
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nanzierung des Auslandsaufenthalts sowie der Besuch der TASI 2011.

• Allen Mitarbeitern der TP2 und Kollegiaten des Graduiertenkollegs GRK
1147 für die bereichernden Diskussionen und Vorträge, für die nette Atmo-
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	Introduction
	BSM Models and Spin Determination
	Spin in BSM models
	Supersymmetry
	Universal Extra Dimensions
	Additional gauge bosons: W'  and Z'

	Spin determination at hadron colliders
	How does spin affect decays: a simple example
	Spin determination in decay chains


	Anomalous Couplings in Spin Determination
	Setup and kinematics
	Operators
	Influence of the dimension 5 operators
	Naive expectation
	Relevant decays

	Discussion
	Dimension 4 operators
	Dimension 5 operators


	Spin Discrimination in Three Body Decays
	Objective
	Notation, setup and kinematics
	Kinematics
	Topologies and vertices
	Polarization vectors, propagators and generic amplitudes

	Strategy for spin identification
	Example: (S,V)
	Signs of the coefficients
	Decays into massless SM-fermions in case of topologies 1+2
	Impact of the third topology
	Special combinations of couplings
	Final states containing massive SM-fermions
	Influences of the mass of the intermediate particle(s)

	Testing our strategy with Monte Carlo simulations
	Fitting procedure
	Variations of the fitted parameters for 10 simulations
	Examples
	Large sample tests

	Summary

	Spin in the Antler Diagram
	Introduction, notation and calculation
	Notation
	Details on the calculation
	Definition of CB
	Further strategy

	Analytic results
	Squared matrix elements for 22 
	Complete squared matrix elements for 24 
	TH results for 24  processes
	J factors at TH

	Fixed  approach
	Production process with fixed 
	How does the phase space depend on  ?
	The Susy case: (VSF)
	Optimal 2 for different spin scenarios

	Comparison of the distributions for fixed 
	Influence of the masses
	Can one distinguish different spin scenarios?
	Examples: Susy and UED

	Summary

	Conclusion
	Models for Monte Carlo Generators
	Model for O'Mega/WHIZARD
	Model for CalcHep/CompHep

	Analytic Results
	Appendix to Chapter 3: Anomalous couplings
	Appendix to Chapter 4: Three body decays

	Appendix to Chapter 5
	Explicit helicity spinors 
	Figures to Section 5.4

	Bibliography

