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OPN1LW       opsin 1 (cone pigments), long-wave-sensitive  
OPN1MW      opsin 1 (cone pigments), medium-wave-sensitive  
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OPN1SW       opsin 1 (cone pigments), short-wave-sensitive  
PCR Polymerase chain reaction  
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RGR              retinal G protein coupled receptor 
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RHOK              rhodopsin kinase         
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ROM1               retinal outer segment membrane protein 1         
ROS reactive oxygen species 
RP retinitis pigmentosa 
RP1                   retinitis pigmentosa 1 (autosomal dominant)      
RP2                retinitis pigmentosa 2       
RP9               retinitis pigmentosa 9 
RPA retinitis punctata albescens 
RPE retinal pigment epithelium 
RPE65           retinal pigment epithelium-specific protein  
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RT room temperature 
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ZUSAMMENFASSUNG 

Die altersabhängige Makuladegeneration (AMD) ist die häufigste Ursache von gravierenden 

Einschränkungen des Sehvermögens im fortgeschrittenen Lebensalter.  In den Industriestaaten 

ist die AMD zudem die Hauptursache für Altersblindheit. Die molekularen Mechanismen, die 

zur Entstehung der AMD führen, sind bisher nur unzureichend bekannt. In den letzten Jahren 

hat es sich jedoch herausgestellt, dass das retinale Pigmentepithel (RPE) eine primäre Rolle in 

der Pathogenese der AMD spielt.  

Ziel dieser Arbeit war die systematische Analyse von Genen, welche im RPE differentiell 

exprimiert werden. Entsprechende Kandidatengene sollten auf deren mögliche Beteiligung an 

der Entstehung von Erkrankungen der Retina, insbesondere der AMD, untersucht werden. 

Zunächst wurden 2379 ESTs aus einer innerhalb der Arbeitsgruppe generierten RPE cDNA 

Bibliothek definiert. Die dazu verwendete cDNA Bibliothek wurde durch die Suppressions-

Subtraktions Hybridisierungs-Technik (SSH) konstruiert. Diese Technik gestattet eine 

Normalisierung  gegenüber redundanten Sequenzen und begünstigt gleichzeitig die 

Anreicherung von seltenen Transkripten. In einer ersten Phase wurden 1002 ESTs sequenziert 

und einer umfassenden bioinformatischen Analyse mit Hilfe der verfügbaren DNA- und 

Protein Datenbanken unterzogen. Der Vergleich der 1002 ESTs mit der Draft Sequenz des 

menschlichen Genoms ergab den  Hinweis auf 168 bereits bekannte Gene, 51 mögliche Gene, 

15 völlig unbekannte Transkripte und 41 nicht weiter zuordenbare cDNA Klone. 318 EST 

Cluster wurden einer reversen Northen-Blot Analyse unterzogen um hochexprimierte Gene zu 

identifizieren und damit Prioritäten für die weiteren Analysen zu setzen. 

Im Rahmen der Northern-Analyse wurden repräsentative Klone von 107 EST-Klustern mit 

cDNA Sonden  der ursprünglichen cDNA-Bibliothek hybridisiert. Als Ergebnis dieser 

Analyse fanden sich 7 RPE-spezifische, 3 Retina-spezifische, 7 sowohl RPE- als auch Retina-

spezifische sowie 7 auf einzelne Gewebe limitierte Transkripte. 29 EST Cluster erwiesen sich 

als ubiquitär exprimiert, und 54 Kluster konnten nicht näher zugeordnet werden. Von den 24 

Transkripten mit spezifischer oder zumindest  begrenzter Expression wurden 16 Klone zur 

weiteren Charakterisierung ausgewählt.  

Aus diesen Material wurden im Rahmen dieser Arbeit das Kandidatengen MGC2477 sowie 2 

neue Isoformen des menschlichen TRPM3-Gens kloniert und näher charakterisiert. Weiterhin 

wurden polymorphe Varianten dieser beiden Isoformen und des menschlichen MT-

Protocadherin-Gens definiert. Im Gen MGC2477 wurden 15 SNPs identifiziert, wovon die 

Allelhäufigkeit des selteneren Allels bei 13 der SNPs über 20% lag.  Für 10 der insgesamt 15 
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SNPs dieses Gens fanden sich bisher keine Einträge in den entprechenden Datenbanken. Die 

SNP-Suche wurde auch für das TRPM3-Gen durchgeführt und ergab 35 SNPs, wovon 30 

(85,7%) als hochfrequent eingestuft werden konnten. 14 dieser 35 SNPs waren bisher nicht in 

den Datenbanken verzeichnet. Beim MT-Protocadherin-Gen fanden sich ebenfalls 35 SNPs, 

wobei 80% eine hohe Frequenz des selteneren Allels aufwiesen. In diesem Fall handelte es 

sich bei 23 der insgesamt 35 SNPs um bisher unbekannte Allele. Diese SNPs bilden den 

Ausgangspunkt zur Konstruktion der häufigsten Haplotypen der genannten Gene.  

Mit der Charakterisierung der Einzel-Nukleotid Polymorphismen der Kandidatengene wurde 

die Grundlage zur Durchführung von Fall/Kontrollstudien gelegt, in deren Rahmen die 

Bedeutung der jeweiligen Kandidatengene in der Pathogense der AMD untersucht werden 

kann.   
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SUMMARY 

Age related macular degeneration (AMD) is the leading cause of visual impairment in 

the elderly and the major cause of blindness in the developed world. To date, the 

molecular mechanisms underlying the disease are not well understood although in 

recent years a primary involvement of the retinal pigment epithelium (RPE) has 

become evident. 

The aim of the present study is to systematically analyse genes which are 

differentially expressed in the RPE, and to assess their possible association with 

mechanisms and pathways likely to be related to retinal disease, in particular AMD. 

Towards this goal, 2379 expressed sequence tags (ESTs) were established from an in-

house generated RPE cDNA library. This library was constructed by using the 

suppression subtraction hybridization (SSH) technique which normalises redundant 

sequences and ensures enrichment of rare transcripts. In a first phase, 1002 ESTs were 

sequenced and subjected to comprehensive alignment with public nucleotide and 

protein databases. A search of the 1002 ESTs against the human genome draft 

sequence yielded 168 known genes, 51 predicted genes, 15 unknown transcripts and 

41 clones with no significant similarity. 

Reverse Northern blot hybridization was performed for 318 EST clusters to identify 

abundantly expressed genes in the RPE and to prioritize subsequent analyses. 

Representative clones were spotted onto a nylon membrane and hybridized with 

cDNA probes of driver (heart and liver) and tester (RPE) used in the cDNA library 

construction. 

Subsequently, 107 EST clusters were subjected to Northern blot hybridizations. These 

analyses identified 7 RPE-specific, 3 retina-specific, 7 RPE/retina-specific, and 7 

tissue restricted transcripts, while 29 EST clusters were ubiquitously expressed, and 

evaluation was not possible for another 54 EST clusters. Of the 24 transcripts with 

specific or restricted expression, 16 clones were selected for further characterization. 

 The predicted gene MGC2477 and 2 novel isoforms of the human transient receptor 

potential cation channel, subfamily M, member 3 (TRPM3) were cloned and further 

described in detail. In addition, polymorphic variations for these 2 genes as well as for 

the human MT-Protocadherin gene were determined. For MGC2477, 15 single 

nucleotide polymorphisms (SNPs) were identified, with 13 having a frequency of the 
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minor allele greater than 20%. 10 of the 15 SNPs have not been reported in so far in 

public SNP repertoires. Partial assessment of the TRPM3 gene yielded 35 SNPs. Of 

these, 30 (85.7%) were highly frequent (0.17-0.5%), and 14 (40%) were novel. The 

MT-Protocadherin gene revealed 35 SNPs, including 28 (80%) with high frequency of 

the minor allele. 23 (65.7%) were novel SNPs. 

 These SNPs will be used to construct the most common haplotypes. These will be 

used in case/control association studies in 400 AMD patients and 200 ethnically and 

aged matched controls to assess a possible contribution of these genes in the etiology 

of AMD. 
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1. INTRODUCTION 

1.1 Retina and retinal pigment epithelium 

The retina is the inner layer of the eye and contains several cell types. The retina 

can be divided into two main parts. The neural retina or the inner part, and the 

retinal pigment epithelium or the outer layer (Figure 1). The neural retina is 

composed of 9 layers: i) cone and rod photoreceptor cells, including the inner 

segment where metabolic processes take place and the outer segment which is 

filled with flattened membrane sacs called discs. Rods represent 95% of human 

photoreceptor cells and mediate dim light. Cones represent only 5 % of human 

photoreceptor sells (Rattner et al., 1999) and they are of three types, short-wave or 

blue, middle-wave or green and long-wave or red. Cones mediate bright light and 

colour vision, they are concentrated in the macula (Figure 1) which is the central 

portion of the retina, enabling the most distinct vision. The fovea centralis is the 

very centre of the macula and contains only cone photoreceptors, ii) external 

(outer) limiting membrane, iii) outer nuclear layer contains the cell bodies and 

nuclei of photoreceptors, iv) outer plexiform layer includes the cone and rod 

axons, bipolar cell dendrites and the horizontal cell dendrites, v) inner nuclear 

layer is the area where nuclei of the horizontal cells, amacrine cells, bipolar cells 

and Müller cells reside, vi) inner plexiform layer contains the axons of amacrine 

cells and bipolar cells, and dendrites of ganglion cells, vii) ganglion cell layer 

includes the nuclei of ganglion cells and displaced amacrine cells, viii) nerve fibre 

layer contains the axons of the ganglion cells which exit the eye at the optic disc 

forming the optic nerve which convey the photoreceptor signal response to the 

brain, ix) internal limiting membrane which separate the retina from the vitreous. 

The outer layer or the retinal pigment epithelium is a single hexagonal cell layer 

located between the photoreceptor cells of the neural retina and the choroidal 

capillaries (Zinn and Marmor, 1979). The apical surface of the cells is loosely 

associated with the photoreceptor outer segment through microvilli processes, 

whereas the basement membrane is firmly attached to form part of Bruch’s 

membrane. Laterally, RPE cells are attached to each other by tight junctions, 

which form a network of strands encircling cells and play part in the blood–retinal 

barrier. The retinal pigment epithelium is an important component of the retina  
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and has many functions. RPE cells play an important role in the transport of ions and 

water in an apical to basal direction preserving the neural retina in a reasonable state 

of dehydration and optical clarity (Bok, 1993). Also, the directional net flow of fluid 

maintains close apposition of the retina to the RPE (Marmor, 1990). Among other 

functions of the RPE are retinol storage and transport (Bok, 1993), melanin absorption 

which prevents light scattering within the eye and may protect against oxidative stress 

(Beatty et al., 1999), development and survival of photoreceptors through the 

secretion of cell growth factors such as pigment epithelium-derived factor (Jablonski 

et al., 2000) and most importantly, phagocytosis of shed distal portions of 

photoreceptors outer segments (Bok, 1985 and 1993). 

Figure 1: Schematic diagram of the Human eye showing the macula, and major cell types and layers in 
the retina A/. The macula is a light-sensitive area in the centre of the retina, at the back of the eye. The 
macula subserves high resolution central and colour vision. The centre of the macula is the foveola 
centralis which contain only cones and is free of rods. The parafovea are is rich in rods. In age related 
macular degeneration (AMD) the macula area is affected and rods in the perifoveal area are the first to 
degenerate. Adopted from the National Eye Institute (NEI), (www.nei.nih.gov/health/maculardegen/
armd%5Frisk.htm). B/ Retinal layers include; retinal pigment epithelium (RPE), cones (C), and rods (R) 
photoreceptors, external limiting membrane (ELM), outer nuclear layer (ONL), outer plexiform layer 
(OPL), inner nuclear layer (INL), Inner plexiform layer (IPL), ganglion cell layer (GCL), Nerve fibre 
layer (NFL) and the inner limiting membrane (ILM).Neural signals generated in the photoreceptors are 
conveyed to the brain via synaptic contacts with bipolar cell (B) which themselves are in contact with 
the ganglion cells (G). Amacrine cells (AM), and horizontal (H) cells secure the lateral connections. 
Muller cells subserve many functions such as stabilization of synapses, retinal architectures, and may 
play role in neural signalling. (Modified from Dowling and Boycott, 1966) 
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1.2 Single gene retinopathies 

Hereditary retinal dystrophies are a heterogeneous group of eye diseases involving 

mainly the cone-rich area of the central retina (Weber, 1998). Disorders involving 

the rods manifest primarily with night blindness and may cause loss of peripheral 

vision, whereas the presenting feature of cone disorders is loss of central visual 

acuity (Bessant et al., 2001). To date, more than 50 genes causing monogenic 

nonsyndromic retinal dystrophies have been mapped and cloned (Table 1). 

Previous categorization classified the disorders according to the age of onset, site 

of pathological features and mode of inheritance (young, 1987, Merin, 1991, 

Noble, 1986). However with the recent advances in molecular genetics, this 

classification has been questioned. First, many new disease causing genes were 

identified with overlapping phenotypes and some of these phenotypes may be 

identical (Zhang et al., 1996). Second, several mutations in the same gene can 

manifest the same phenotype (allelic heterogeneity) such as seen in the 

retinoschisis gene (XLRS1). To date, 82 different mutations were identified in 234 

familial and sporadic retinoschisis cases (Retinoschisis Consortium, 1998). Third, 

genetic heterogeneity as seen in retinitis pigmentosa (RP), people suffering from 

RP could inherit the disease as dominant, X-linked or recessive (Inglhearn, 1998). 

Fourth, locus heterogeneity also complicates classification where mutation in 

different genes can cause the same disease phenotype. Mutations in rhodopsin 

(chromosome 3q) (Dryja et al., 1990) or the RDS peripherin gene (chromosome 

6p) (Kajiwara et al., 1991) can manifest an autosomal dominant RP. Finally, 

mutations in the same gene can present different phenotypes, as in the 

Peripherin/RDS gene where a 3- base pair mutation deletion of codon 153 or 154 

resulted in 3 distinct phenotypes, pattern macular dystrophy, fundus 

flavimaculatus and an adult RP within the same family (Weleber, et al 1993). A 

broad categorization is based on the clinical symptoms of patients with retinal 

dystrophies being central or peripheral. Peripheral vision is affected in patients 

with RP, who presents with narrowing of the visual field and night blindness, in 

contrast to another group of patients with the disease affecting the macula who 

lose central vision first. A third group is distinct from the central/peripheral 

categories, and includes phenotypes such as the chorio-retinal atrophy, or the 

gyrate atrophy and the oculo-cutaneous albinism (OCA) (Inglehearn, 1998). 
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  Table 1: Monogenic nonsyndromic mapped and cloned retinal dystrophy genes.

Adapted from RetNet (http://www.sph.uth.tmc.edu/Retnet/disease.htm) and Harvard University 
(http://eyegene.meei.harvard.edu/OMGI/HMG-review/html.html). For gene symbol and disease 
see abbreviations 

RIMS1 AD.COCRD Transport Ret/Brain 
RS1 XL.Retinoschisis Cell to Cell interactions Retina specific 
CNGA3 AR.Achromatopsia Phototransduction Retina specific 
CNGB3 AR.Achromatopsia Phototransduction Retina specific 
CNGA1 AR.RP Phototransduction Retina specific 
CNGB1 AR.RP Phototransduction Retina specific 
FSCN2 AD.RP Structural Retina specific 
TULP1 AR.RP Vision Retina specific 
RP1 AD.RP Vision Retina specific 
RPGRIP1 AR.LCA Unknown Retina specific 
AIPL1 AD.COCRD, AR.LCA Transport Retina specific 
OPN1LW XL.Deuteranopia Phototransduction Retina specific 
GUCA1A AD.COCRD Phototransduction Retina specific 
UNC119 AD.COCRD Phototransduction Retina specific 
CACNA1F XL.CSNB Phototransduction Retina specific 
NR2E3 AR.RP Transcription factor Retina specific 
CRX AD.COCRD, LCA, RP, AR.LCA, Transcription factor Retina specific 
NRL AD.RP Transcription factor Retina specific 
RHO AD.CSNB, RP, AR.RP Phototransduction Retina specific 
RHOK AR.CSNB Phototransduction Retina specific 
CRB1 AR.LCA, RP Cell to Cell interactions Retina specific 
PDE6A AR.RP Phototransduction Retina specific 
PDE6B AD.CSNB, AR.RP Phototransduction Retina specific 
SAG AR.RP Phototransduction Retina specific 
GUCY2D AD.COCRD, AR.LCA Phototransduction Retina specific 
RDS AD.MD, RP Structural Retina specific 
ABCA4 AR.COCRD, MD, RP Vitamin A cycle Retina specific 
OPN1MW XL.Protanopia Phototransduction Retina specific 
OPN1SW AD.Tritanopia Phototransduction Retina specific 
GNAT1 AD.CSNB Phototransduction Retina specific 
RLBP1 AR.RP, RCD, RPA, BD Vitamin A cycle Retina specific 
GNAT2 AR.Achromatopsia Phototransduction Retina specific 
ROM1 AD.RP Structural Retina specific 
LRAT AR.RP Vitamin A cycle RPE specific 
RGR CRAOD, AR.RP Vitamin A cycle RPE specific 
RPE65 AR.LCA, AR.RP Vitamin A cycle RPE specific 
RDH5 AR.COCRD,CSNB Vitamin A cycle Ubiquitous 
OAT AR.Gyrate atrophy Metabolism Ubiquitous 
PRPF31 AD.RP RNA processing Ubiquitous 
NYX XL.CSNB Vision Ubiquitous 
HPRP3P AD.RP mRNA processing Ubiquitous 
CHM XL. Choroidermai Metabolism Ubiquitous 
EFEMP1 AD.MD Structural Ubiquitous 
MERTK AR.RP phagocytosis Ubiquitous 
PROM1 AR.Retinal degeneration Vision Ubiquitous 
IMPDH1 AD.RP Metabolism Ubiquitous 
RP9 AD.RP Unknown Ubiquitous 
VMD2 AD.MD Transport Ubiquitous 
RPGR XL.COCRD, CSNB, MD, RP Transport Ubiquitous 
TIMP3 AD.MD Structural Ubiquitous 
RP2 XL.RP Vision Ubiquitous 
ELOVL4 AD.MD Metabolism Ubiquitous 
PRPF8 AD.RP mRNA processing Ubiquitous

 Gene symbol     Disease                                            Function                           Expression                  
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1.2.1 Peripheral retinal dystrophies 

1.2.1 1 Retinitis pigmentosa 

Typical retinitis pigmentosa is characterised by atrophic changes involving the 

retina and RPE, leading to pigmentary changes due to the release of pigment by 

degenerating cells (Figure 2A). The manifestation of the disease includes 

narrowing or loss of the visual field as well as early night blindness and a decrease 

in central visual acuity. Variations may be observed in cases of atypical RP. There 

are 19 known RP genes and at least 17 predicted to exist by genetic mapping data 

(Phelan and Bok, 2000). Genes causing RP fall in different functional categories 

such as phototransduction, transcription factors, vitamin A cycle, metabolism and 

RNA processing (Table 1). 

1.2.2 Central retinal dystrophies 

Primary involvement of the central retina is the common feature shared among 

this group of retinopathies which include among other phenotypes, Best 

vitelliform macular dystrophy, central areolar choroidal dystrophy, Stargardt’s 

disease, cone and cone–rod dystrophy, dominant drusen, Sorby’s fundus 

dystrophy, North Carolina macular dystrophy, and pattern dystrophy (Inglhearn, 

1998). 

1.2.2.1 Vitelliform macular dystrophy (Best’s disease) 

Best disease is an autosomal dominant disorder with onset at young age (Blodi 

and stone, 1990). The disease is characterized by deposits of lipofuscin 

resembling an egg yolk within and under the retinal pigment epithelium (Bakall et 

al., 1999) (Figure 2B). Over time, the yellowish material disintegrates 

progressively (Marquardt et al., 1998). The disease may progress to cause loss of 

visual acuity due to macular atrophic changes or choroidal neovascularization 

(Krämer et al., 2000). The VMD2 gene localized to chromosome 11q13 and was 

recently shown to be mutated in Best disease patients (Marquardt et al., 1998, 

Petrukhin et al., 1998). 
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the number of informative meioses. Subsequently all transcripts in the region are 

then analysed and confirmation of a gene as disease causing can be achieved 

through demonstration of a mutation (Collins, 1992). 

1.3.3 Positional candidate gene approach 

Known genes identified by linkage studies are analysed for cosegregation with the 

disease phenotype. Subsequent analysis including cloning and mutation screening 

are carried out for those genes which are linked to the disease phenotype (Zhang 

et al., 1996). Other information which can be useful for selection of a candidate 

gene include tissue expression, relevant function of the protein, and homology to a 

human gene causing similar disease.(Strachan and Read, 1999). 

1.4 Gene oriented molecular genetic approach 

In this approach the gene is identified first and a second step is to find out which 

phenotype is associated with mutation in that gene (Dryja, 1997). Gene expression 

can be used to narrow down the number of genes when aiming at particular 

phenotype known to have manifestations in a specific tissue type (Dryja, 1997). 

Several strategies were devised to study tissue or cell specific gene expression; 

these include beside others suppression subtractive hybridization (Diatchenko et 

al., 1996; Den Hollander et al., 1999), serial analysis of gene expression (Sharon 

et al., 2001) and differential display (Gorin et al., 1999). 

1.5 Age related macular degeneration 

Age related macular degeneration (AMD) is the most common cause of visual 

impairment in the elderly population and a major cause of vision loss in the 

western world. (Yates and Moore, 2000) The prevalence of AMD is increasing as 

life span is increasing. The disease is affecting the life of elderly people by 

decreasing the quality of life and increasing the dependency on others for care and 

help (Campochiaro, 1999). Several environmental factors such as smoking, 

hypertension, light exposure, and dietary habits have been proposed to play a role 

in AMD development; however, the most important risk factor appears to be the 

underlying genetic risks (Klaver et al., 1998). 
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1.5.1 Disease phenotype 

Although the disease has been known for more than 100 years, classification of 

AMD has been difficult. This is mainly due to the partial overlapping of the 

clinical features between the disorders of the AMD group and secondly between 

the AMD and other early onset Mendelian macular dystrophies and even with 

other central retinopathies such as histoplasmosis (Bird et al., 1995). The 

classification was also complicated by the differences in the size, location, number 

and types of the pathological features associated with different stages of the 

disease (Yates and Moore, 2000). The international age – related maculopathy 

epidemiological study group (Bird et al., 1995) classified the disease as early age 

related maculopathy (ARM), if the associated lesions are either the soft drusen 

(whitish yellow spot), RPE atrophic changes, or there is an area of increased 

pigmentation. The term late ARM or AMD refer to the advanced form of the 

disease which is associated with visual morbidity. Presentations of the advanced 

form or the AMD include the geographic atrophy (GA) and choroidal 

neovascularization (CNV). Atrophic changes affecting the retinal pigment 

epithelium is the characteristic feature of the GA which is also known as dry, 

non–exudative, or atrophic AMD. CNV is characterized by the formation of new 

blood vessels which can be complicated by bleeding and scar formation ultimately 

leading to severe visual impairment or blindness. 

1.5.2 Pathogenesis  

1.5.2.1 Drusen 

Drusen are abnormal yellowish material (Figure 3), which accumulate in the 

extracellular matrix between the basement membrane of the RPE and the inner 

collagenous layer of Bruch’s membrane. Several classification systems have been 

used with considerable variation due to the different methodology employed to 

describe the lesions, such as electron microscopy, fluorescein angiography, 

histology and histochemistry. The Wisconsin grading system (Klein et al, 1991), 

apply the term hard drusen to describe lesions ranging from 1-63µm in diameter. 

The term soft drusen was reserved for those lesions ranging from 63-125µm or 

larger than 125µm. Soft drusen can show homogenous density with clear margins 

or appear as graded density without clear margins (Hageman and Mullins, 1999). 
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Hard drusen can be found in many older people without symptoms (Leu et al., 

2002), specially in the retinal periphery. The existence of multiple, or confluent 

soft drusen, in the macula increases the chances of developing AMD (Crabb et al., 

2002). Various studies were conducted to understand the composition of drusen, 

but they showed discrepancies due to different drusen classification and different 

tissue preparation techniques (Hageman and Mullins, 1999). Nevertheless, using 

immunoreactivity, a partial profile of drusen composition was reported to contain 

immunoglobulin light chain, serum amyloid P, apolipoprotein E, complement 

C5Aand c5b-9 complex, and factor x (Mullins et al., 2000). 

 

 

 

 

 

 

 

 

Figure 3: Drusen; abnormal yellowish material 
which accumulates in the extracellular matrix 
between the RPE basement membrane and the 
inner collagenous layer of Bruch’s membrane. In 
the early stages of ARM there could be hard 
distinct drusen. With the advancement of the 
disease to the late ARM (AMD), the drusen 
becomes larger, confluent and indistinct with 
hazy margins. It contains undigested materials 
such as rod outer segments and cell debris 
(Adopted from van Leeuwen et al., 2003). 

1.5.2.2 Geographic atrophy 

This advance form of AMD is characterised by atrophy of the retinal pigment 

epithelium (Figure 4) as well as the overlying photoreceptors (Sunness, 1999). 

The retinal pigment epithelium may show hypo- or hyperpigmentation (Bird, 

1995). In the early stages the atrophy involves the area around the fovea (Sarks et 

al., 1988) and during the course of the disease, areas of atrophy increase and 

coalesce forming a larger area encircling the fovea. In the final stages, the fovea 

manifests atrophic changes. Patients with geographic atrophy suffer from central 

scotoma (Sunness et al., 1995) and dark adaptation abnormality progressing to 

gradual loss of vision (Sunness, 1999). Geographic atrophy may become apparent 

after flattening of RPE detachment or following fading of drusen (Schatz and 

McDonald, 1989). Pigmentary changes and large drusen tend to be risk factors for 

developing geographic atrophy as well as CNV. Geographic atrophy accounts for 

20% of legal blindness caused by AMD (Ferris et al., 1984). 
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Figure 4: Geographic atrophy seen as 
an atrophic area involving the retinal 
pigment epithelium and the overlying 
photoreceptor cells in the macular 
area. The atrophic area is surrounded 
by an area of hyperpigmentation due 
to the displacement of the retinal 
pigment epithelium. Geographic 
atrophy can evolve as a small region 
of atrophy, near the fovea which 
enlarges gradually but sparing the 
fovea until late. The atrophic regions 
coalesce forming a large area of 
atrophy, and may involve centre of the 
fovea in the later stages. (Adopted 
Stone et al., 2001) 

Figure 5: choroidal neovascularization
complicated by haemorrhage. New
blood vessels sprout in the choroid and
invade the subretinal pigment
epithelium spaced through the Bruch’s
membrane. This could result in
leakage of serum or blood beneath the
RPE, leading to RPE detachment or
tears. CNV could also lead to
disciform scaring. (Adopted from van
Leeuwen et al., 2003) 
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1.5.3 Suspected pathological pathways 

The pathogenesis of ARM/AMD is not known. Several questions remain such as 

what is the susceptibility factor which governs the disease and why do some 

patients develop GA, CNV, or RPE detachment. Sir Alan Bird suggested several 

sequential mechanisms through which genetic and other factors exert their effect; 

outer segment turnover increased, reduction of the catalytic activity of RPE 

degradative enzymes, toxic damage to the substrate of degradation, and Bruch’s 

membrane abnormality leading to reduction in its capability of clearing toxic 

waste (quoted in Yates and Moore, 2000). Stone et al., (2001) suggested that the 

pathology and mechanisms of AMD may involve abnormal function of the 

choriocapillaris, Bruch’s membrane, RPE, mitochondria, or the neurosensory 

retina. Other suspected mechanisms may include increased scleral rigidity, 

activation of the immune system, and toxic effects of light and nutritional 

deficiencies (Stone et al., 2001). 

1.5.3.1 Oxidative stress 

Oxidative stress has been suggested to be a causative factor or to participate in the 

pathogenesis of many diseases such as neurodegenerative diseases, heart disease 

and AMD (Winkler et al., 1999). Noell et al (1966) have shown that rats exposed 

continuously to light developed rod photoreceptor degeneration. Chronic sunlight 

exposures may play an important role in the development of AMD (Young, 1988). 

The location of the RPE in close proximity to the neurosensory retina and the 

choriocapillaris creates a favourable environment for chronic oxidative stress due 

to the high oxygen tension from the adjacent choriocapillaris (Liang and Godley, 

2003). Furthermore, there is chronic sun light exposure and the photoreceptors 

contain high quantities of polyunsaturated fatty acids (PUFAs) mainly in the outer 

segments (Winkler et al., 1999). Photosensitization reactions involving these 

precursors may result in generation of reactive oxygen species such as singlet 

oxygen, hydrogen peroxide and superoxide ((Winkler et al., 1999). The generated 

reactive oxygen species can damage the cell components such as proteins, 

membrane lipids, carbohydrates and nucleic acids (Davis, 1991, Halliwell, 1991). 

The accumulation of lesions may act as a triggering factor for the injured RPE cell 

to undergo apoptosis (Cai et al., 2000). 
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1.5.3.2 Lysosomal enzymes dysfunction 

The RPE plays an important role in phagocytosis and renewal of the photoreceptor 

outer segments (Bok, 1993). In rats it has been estimated that 10-15% of the rod 

outer segment are shed and phagocytosed daily (Young, 1976). RPE cells are 

equipped with a highly efficient lysosomal system, which is considered to be more 

effective in comparison to the liver lysosomal system (Zimmerman et al., 1983). 

The lipofuscin accumulation in the AMD patients is thought to result from the 

partially digested rod outer segments. Thus, abnormalities or malfunction of the 

lysosomal system in the rod outer segments may play a role in the pathogenesis of 

AMD (Verdugo and Ray, 1997). Several ways exist for internalization of 

materials into the lysosomal compartment. Large particles form autophagosomes 

which fuse with the lysosome (Klionsky and Emr, 2000). Minor particles can 

enter through a chaperone-mediated transport (Dice, 2000), or trough 

invaginations of the lysosomal membrane (Marzella et al., 1981). The lysosomes 

contains wide variety of hydrolytic degradative enzymes (Rakoczy et al., 1999), 

among these, α-mannosidase (α-Mann), β- glucuronidase (GUSB), arylsulfatse B 

(ASB) (Verdugo et al, 1996) and the cathepsin D (CatD) which is the most 

important among these and involved in opsin proteolysis (Hjelmeland et al., 

1999). Boulton et al (1994) reported an increase in CatD and acid phosphates with 

age. Conversely, Cingle et al (1996) reported a decrease in α-Mann activity. 

Comparison of many studies from different labs proved to be difficult. This could 

be due to differences in tissues or species analysed or different methodologies 

used in measuring enzyme activity (Verdugo and Ray, 1997). It was hypothesized 

that the age related decrease in the lysosomal enzyme activity would lead to 

accumulation of lipofuscin (Ivy et al., 1989). However, Brunk and Terman, (2002) 

argued that the accumulation of lipofuscin may decrease the lysosomal enzyme 

activity. Recently it has been shown that N-retinylidene-N-retinylethanolamine 

(A2-E) which is an important component of the RPE lipofuscin is a strong 

inhibitor of the major lysosomal catabolic systems (Holz et al., 1999, Schutt et al., 

2002, Bermann et al., 2001). 
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1.5.3.3 Immune complex and inflammation pathogenesis  

Drusen are known to be associated with AMD. Several drusen constituents were 

identified by independent research groups (Mullins and Hageman, 1997, Klaver et 

al., 1998, Hageman et al., 1999, Mullins et al., 2000). Complement C5, α-

antitrypsin and amyloid P are known to be members of the acute phase reactant 

with increased expression following inflammation, whereas apolipoprotein E, 

vitronectin and complement C play a role in mediated immune responses (Johnson 

et al., 2000). 

Johnson et al., (2000), have suggested an immune complex involvement in the 

pathogenesis of AMD. Following genetic abnormality, oxidative stress or physical 

insult, new antigens expressed by RPE cells or autoantigens might be exposed to 

antibodies. Subsequently, immune complexes accumulate as a result of antibody-

mediated complement attack on RPE cells which degenerate and contribute to 

drusen biogenesis. 

Hageman et al., (2001) proposed an integrated hypothesis which implicates the 

local inflammatory and immune–mediated processes in the pathogenesis of drusen 

and AMD. This hypothesis speculates that injured RPE cells release cytokines or 

RPE debris into Bruch's membrane and may diffuse into the choroid. 

Neighbouring RPE cells form a seal covering the RPE debris and synthesize a 

new basal lamina. Molecules secreted by damaged RPE cells may act as 

chemoattractants for blood-born or choroidal monocytes, which migrate, and 

extend their terminations processes forming the drusen core into the RPE space. 

Molecules secreted by the RPE to antagonize dendritic cells effect, may enlarge 

the drusen. After maturation, the choroidal dendritic cells retract its processes and 

migrate, leaving behind the core drusen which may diffuse following growth and 

softening. 

Anderson et al., (2002) suggested an involvement of local inflammation in drusen 

biogenesis. The entrapped cellular debris between the RPE and Bruch’s 

membrane serve as a starting point for a myriad of inflammatory reactions and 

other processes including cytokine production, upregulation of acute phase 

proteins, complement cascade activation, dendritic cells attraction, and bystander 

cell lysis affecting the neighbouring RPE cells. The enlargement of drusen is 
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thought to occur as a result of encapsulation of the cell debris by proteins and 

lipids taking part in the inflammatory process. 

This inflammation model is in context with spontaneous regression of drusen in 

some individuals and in particular those who have undergone laser 

photocoagulation treatment (Gass, 1972, Bressler et al., 1995), as it could act as 

pro-inflammatory stimuli. 

1.5.4 Risk factors 

1.5.4.1 Age 

Several epidemiological studies were conducted to investigate the incidence and 

prevalence of ARM and AMD. Framingham eye study was the first major 

epidemiological study. In a total number of 2675 participants, the study showed an 

increase of prevalence with the advancement of age, for those aged 65-74 the 

ARM prevalence was 11% and for those aged 75-85 the prevalence was 28%. The 

age range of all the participants was between 52-85 years and the total ARM 

prevalence was 8.8% (Kahn, 1977). 

Similarly other studies showed an increase in prevalence with age. The Beaver 

Dam study included 4962 participants with an age range between 43–86 years. 

Participants were categorized into 2 groups, those 75 years or older compared to 

those 43-54 years old. Several features were examined including large drusen 

which showed prevalence of 24% in the older group compared to 1.9% in the 

younger group, soft drusen (23% versus 2.1%), geographic atrophy (2% versus 

0%), abnormalities of the RPE (26.6% versus 7.3%), and wet macular 

degeneration which showed 5.2% in the first group compared to 0.1% in the 

younger group. The authors concluded that features of ARM are common among 

those who are 75 years or older (Klein et al., 1992). 

In another study conducted in Australia with 4345 participants, the ARM 

prevalence was indicated to be 15.1%. The study evaluated the presence of large 

drusen, soft distinct drusen, soft indistinct drusen and abnormalities of the RPE. 

The lesions showed prevalence rates of 6.3%, 7.5%, 4.3%, and 8.2% respectively. 

The study indicated that the prevalence rates of ARM and AMD increased sharply 

between the ages of 70 and 80 years, respectively (Mylan et al., 2000). 
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In an epidemiological study in Iceland, 1021 participants were evaluated for 

features including early ARM, geographic atrophy and exudative macular 

degeneration. With regard to early ARM, the prevalence of hard drusen with size 

below 63µm was found to be 85.3% for those 50-59 years old and 38.6% for those 

80 years or old. When pigmentary abnormality and drusen of 63µm or grater were 

examined, the prevalence was 8.9% and 37.1% for the 2 groups respectively. 

Geographic atrophy was prevalent in ages of 52-87 years. Participants falling 

within this age range were categorized into four age groups, 50-59, 60-69, 70-79, 

and 80 years and older and the prevalence was 0.3%, 1.2%, 5.5%, and 25% 

respectively. Exudative macular degeneration was prevalent in those who are 

between 77-88 years and the prevalence was 2.3% for those 70 years and older 

and 9.8% for those 80 years and older (Jonasson et al., 2003). These studies 

showed strong correlation between ARM/AMD and age. 

1.5.4.2 Genetic predisposition 

The role of genetic factors in the pathogenesis of age related macular degeneration 

has been a controversial issue for many years. Several studies presented 

compelling arguments for the role of a genetic component in the pathogenesis of 

AMD. Klein et al., (1994) have reported the analysis of nine pairs of monozygotic 

twins with at least one member of the pair showing an advanced AMD feature. 

Laboratory tests were performed for Monozygosity confirmation. The ages of the 

twin’s were in the range of 62 to 88 years, and environmental factors were similar 

for each twin pair. In eight twin pairs, there was concordance in the degree of 

visual impairment and fundus appearance. In the ninth pair, one twin showed wet 

AMD and blindness in one eye, while the other showed large drusen with no signs 

of visual impairment in both eyes. The authors concluded that a substantial 

genetic component may play a role in AMD pathogenesis for a large proportion of 

patients. 

In a separate study, 36 AMD cases, 81 siblings of affected patients and 78 siblings 

as a control were assigned into a clinical study. Results confirmed that AMD 

features were present in 20 of the 81 siblings of affected patients. From the 78 

control siblings only one was found to present AMD features. The result was 

considered to be statistically significant (Silvestri et al., 1994). 
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In another study, 134 twin pairs and two triplet sets were examined for signs of 

AMD. Results showed 100% concordance of AMD features in 25 monozygotic 

twins and 42% concordance in 12 dizygotic twins. The other participants did not 

show any features or signs of AMD. The authors concluded that the higher 

concordance in monozygotic compared to the relatively low concordance in 

dizygotic twins is statistically significant and is an indication for a strong 

relevance of genetic and nongenetic factors in AMD (Meyers et al., 1995). 

Gottfredsdottir et al. (1999), examined 50 twin pairs and 47 spouses for signs of 

AMD. Zygosity was confirmed experimentally, and the environmental and other 

factors were similar, particularly for the twin pairs. 90% concordance of AMD 

features was reported in monozygotic twin pairs and 70% for the twin/spouse 

pairs. The result was considered statistically significant and strengthens the 

influence of genetic factors in AMD pathology. These analyses support the 

arguments that AMD might be influenced by genetic factors.  

1.5.4.3 Cigarette smoking  

Cigarette smoking has been well documented to be an influential factor in many 

types of cancer and in diseases of the cardiovascular system. Tobacco smoke 

contains several substances such as carbon monoxide, hydrogen cyanide, and 

nicotine (Evans, 2001). It has been suggested that, nicotine could increase the risk 

for developing AMD through two mechanisms. Firstly, it may reduce the 

antioxidant plasma levels, increasing the detrimental effects of oxidative stress. 

Secondly it could increase the choriocapillaris pressure through direct effect 

(Evans, 2001). 

Also, cigarette smoking has been linked to reduction in macular pigment density 

(Hammond et al., 1996). Macular pigment is thought to protect the retina and 

enhance vision through the absorption of the short wavelength light (Wooten and 

Hammond, 2002), and through its antioxidant properties (Beatty et al., 1999).  

Delcourt et al. (1998) conducted a population based study to asses smoking effect 

on AMD morbidity. Examining 2196 participants, the authors concluded that both 

smokers and former smokers are at high risk for developing signs of late age 

related macular degeneration. Early signs of AMD were found not to be 

associated with smoking in this study.  
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Several other studies presented strong evidence of association between smoking 

and the increased risk of developing AMD (Vinding et al., 1992, Smith et al., 

1996, Christen et al., 1996, Seddon et al., 1996, Klein et al., 1998, Tamakoshi et 

al., 1998, Hyman et al., 1983).  

1.5.4.4 Other suspected risk factors 

Other risk factors such as social class, alcohol, and oestrogen were suspected to 

play a role in AMD development. However, evidence is inconclusive and 

conflicting (Evans, 2001, Gibson et al., 1986). 
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2. AIMS OF THE PRESENT STUDY 

A long term RPE project was initiated to systematically analyse genes which are 

expressed in the RPE, and to asses their possible association with age related macular 

degeneration. Towards this goal a systematic approach was designed and the present 

study has four aims.  

First, to establish a catalogue of differentially expressed ESTs from a bovine RPE 

cDNA library constructed in house using the suppression subtractive hybridization 

technique. 

Second, to conduct extensive expression analyses for the bovine ESTs through the use 

of reverse Northern blot analyses and Northern blot hybridizations. 

Third, to clone and characterize full length cDNA for 1-2 transcripts exclusively or 

preferentially expressed in the RPE and to determine their genomic structure and 

organization (human orthologous genes).  

Finally, to identify highly frequent SNPs in the coding and non-coding genomic 

sequences of candidate genes for genetic susceptibility to age related macular 

degeneration (MGC2477, MT-Protocadherin and TRPM3 genes). 

With the availability of appropriate SNPs and the respective haplotype frequencies, 

association studies can be undertaken in large cohorts of AMD patients and ethnically 

and age matched controls. 
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3. MATERIALS AND METHODS 

3.1 Bovine RPE subtracted cDNA library construction  

3.1.1 Isolation of poly (A)+ RNA and cDNA synthesis 

A subtracted bovine RPE cDNA library was constructed in house by A. Gehrig. 

Briefly, RPE poly (A)+ RNA (50 ng) was isolated (oligotex mRNA kit, Qiagen) from 

total RNA and used for tester cDNA synthesis. Heart and liver poly (A)+ RNA (150 

ng each) was isolated from total RNA and used to synthesize the driver cDNA. cDNA 

synthesis was performed following a modified SMART cDNA synthesis kit 

(Clontech, California). The first strand synthesis was primed with a modified random 

SMART CDS primer II (5′-AGCAGTGGTAACAACGCAGAGTACNNNNNNTGT 

GG-3′). As the reverse-transcriptase has a tendency to add extra deoxycytidine 

nucleotides at the 5′, a second primer, SMART II (5′-AAGCAGTGGTATCAACGC 

AGAGTACGCGGG-3′), rich in oligo (G) sequences was added to anneal to the 

deoxycytidine (C) nucleotides to create an extended template with universal priming 

site. A full length double stranded cDNA was obtained by long distance PCR using a 

5′ PCR primer II A (5′-AAGCAGTGGTATCAACGCAGAGT-3′), anchoring to the 

universal priming site. 

3.1.2 Suppression subtraction hybridization (SSH) 

According to the PCR-Select cDNA Subtraction kit (Clontech, California.), driver and 

tester cDNAs were digested with RsaI. The tester was separated into two portions; 

one sample was ligated to adaptor 1 (5′-CTAATACGACTCACTATAGGGCTCGAG 

CGGCCGCCCGGGCAGGT-3′) and the other was ligated to adaptor 2R (5′-CTAAT 

ACGACTCACTATAGGGCAGCGTGGTCGCGGCCGAGGT-3′), both samples 

were then hybridized separately with excess driver cDNA followed by a second round 

of hybridization where all samples were mixed together in excess of the driver. Two 

rounds of PCR reactions were performed and PCR products were inserted into a T/A 

cloning vector pCRII (Invitrogen, California). 

3.2 Heat shock transformation 

Agar-LB medium culture plates were prepared (30-50 ml medium each including 100 

µg/ml ampicillin) and left to solidify. Culture plates were incubated at 37°C for 1 

hour. Under sterile conditions, 100 µl X-Gal (20 mg/ml in Dimethylformamid) and 10 
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µl IPTG (200 mg/ml) were spread on each plate for colour selection of recombinant 

colonies. Plates were left under the hood for 30 minutes. Ligation reactions and 

competent cells TOP10F (Invitrogen, Karlsruhe) were thawed on ice and 2 µl of 

ligation reaction were mixed gently with competent cells. The vial was incubated on 

ice for 30 minutes. DNA uptake was induced by heat shock for exactly 30 seconds in 

42°C water bath and the vial was again placed on ice. SOC medium (250 µl) was 

added and the vial was placed on a shaking incubator at 37°C for 20 minutes. Under 

sterile conditions, 70 µl from the transformation reaction were spread on an agar-LB 

medium culture plate, and plates were labelled and incubated at 37°C overnight. 

SOC medium (100ml)                         Agar-LB medium (per liter) 
2g Bacto®-Tryptone                                10g Bacto®-Tryptone 
0.5g Bacto®-Yeast Extract                           5g Bacto®-Yeast Extract 
1ml NaCl                                                      5g NaCl 
0.25ml 1M KCl                                                15g Bacto-agar 
1ml 2M Mg2+ stock, filter sterilized 
1ml 2M glucose, filter sterilized 

3.3 Colony picking and mini-culture preparation 

Sterile 96 well Nuclon miniculture plates (Nunc, Wiesbaden, Germany) were 

prepared. Each well was filled with a 100 µl LB medium mixed with ampicillin 

(100µg/ml) and inoculated with a single recombinant (white colour) colony from the 

transformation plates. Miniculture plates were then incubated at 37°C overnight. 

LB medium (per liter) 
10g Bacto®-Tryptone 
5g Bacto®-Yeast Extract 
5g NaCl 
The pH was adjusted to 7.0 with NaOH 

3.4 Replica plating  

Nuclon 96-well replica plates were prepared with each well containing a 100 µl LB 

medium mixed with ampicillin (100 µg/ml). Corresponding wells were inoculated 

with 5 µl from the previous miniculture and plates were incubated at 37°C overnight. 

45 µl of glycerol (15%) were then mixed with the content of each well and plates 

were stored at -80.  

3.5 Generation of expressed sequence tags (ESTs)  

3.5.1 Direct isolation of PCR inserts from pCRII vector 

Plasmid DNA from the miniculture plates served as template for PCR amplification 

with M13 sense primer (5′-CGCCAGGGTTTTCCCAGTCACGAC-3′) and M13 
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antisense primer (5′-AGCGGATAACAATTTCACACAGGA-3′). PCR reactions 

were carried out in 25 µl volume containing 2 µl plasmid DNA (10-100 ng), 1.25 mM 

dNTPs, 10 pmol each M13 sense and antisense primer, 1X PCR buffer, 1.0 mM 

MgCl2, and 1 unit Taq DNA polymerase. Thermal cycling was as follows: initial 

denaturation incubation at 94°C/5 min, followed by 29 cycles of 94°C/30 sec, 65° 

C/30 sec, 72°C/1 min. and a final extension cycle at 72°C/5 min. 

3.5.2 Agarose gel electrophoresis 

PCR fragments were separated by electrophoresis on a 1% agarose gel cast (1 g 

agarose in 100 ml 1x TBE buffer). After the agarose was completely dissolved, 1µl of 

ethidium bromide (200 ng / ml) was added. Wells were loaded with a mixture of 5 µl 

of the DNA sample and 3 µl of the loading buffer. The gel cast was run at 100 - 120 V 

in an electrophoresis chamber containing 1X TBE buffer. The bands were visualized 

on a transilluminator emitting ultraviolet (UV) light with wavelength range 250-

400nm. 

10x TBE buffer 
89mM  Tris base 
89mM    boric acid 
20mM   Na2EDTA, pH 8.3 

3.5.3 Purification of PCR products 

3.5.3.1 Exonuclease 1/Shrimp alkaline phosphatase (SAP) treatment 

The advantages of this method are cost effectiveness, easy use and high sample 

throughput. At 37°C, both enzymes are active and residuals of PCR primers and 

nucleotides will be removed by the Exonuclease 1 and SAP treatment. At 80°C the 

enzymes are then inactivated and the PCR product used for subsequent reactions. 

Purification reactions were carried out in 10 µl volume containing, 2 µl of PCR 

product, 0.2 µl of exonuclease 1 (1 U/µl), 0.5 µl of SAP (1 U/µl), and 7.3 µl HPLC 

water. Reactions were incubated in a thermal cycling machine at 37°C for 15 minutes 

followed by 15 minutes at 80°C. 

3.5.4 Cycle sequencing reaction 

The pCRII vector nested primers were used for sequencing, either pCRII sense (5′-

CTCGGATCCACTAGTAACGG-3′) or pCRII antisense primer (5′GCCGCCAGTG 



                                                                                              Materials and methods      22

TGATGGATAT-3′) and the sequencing reactions were performed following the ABI 

Prism Ready Reaction Sequencing Kit. Typically a 10 µl reaction volume contains 5 

µl of the purified PCR product, 10 pmol of either forward or reverse primer, 2 µl 

HPLC water, and 2 µl of the Big dye master mix. Reactions were run in a thermal 

cycling machine as follows: initial denaturation incubation at 96°C/10 sec, followed 

by 24 cycles at 96°C/10 sec, 60°C/5 sec and 60°C for 4 minutes. 

3.5.5 Ethanol (EtOH) DNA precipitation 

The DNA resulting from the cycle sequencing reaction was precipitated according to 

the following protocol:  0.1 vol. 3M sodium acetate (Na OAc), 0.8 vol. HPLC water 

and 2.5 vol. of EtOH (95%) were added to 10 µl of DNA from the sequencing 

reaction. Thereafter the tubes were centrifuged for 15 minutes at full speed (14000 

rpm). The DNA was precipitated and the pellet was then washed with 3 vol. EtOH 

(75%) before they were air dried (15-30 minutes). The pellets were then resuspended 

in 20-30 µl HPLC water and were analysed on an ABI 310 automated sequencer 

(Perkin-Elmer, Norwalk, USA). 

3.6 Bioinformatics 

Sequence search was performed using BlastN against databases, non redundant (nr), 

high throughput genomic sequences (htgs), and expressed sequence tag databases 

(dbEST) at the (http://searchlauncher.bcm.tmc.edu/seq-search/nucleic_acid-

search.html) and against the human genome draft sequence (http://www.ncbi.nlm 

http://www.ncbi.nlm.nih.gov/BLAST/). The sequences were clustered into contigs, 

using the contig assembly program CAP 3 (http://genome.cs.mtu.edu/sas.html). 

Reverse Northern blot analyses was performed using Aida (Raytest GmbH) and 

GeneSpring (Silicon Genetics) softwares.  

3.7 Expression analysis of ESTs 

3.7.1 Reverse Northern blot analysis 

Reverse Northern blot is a high throughput technique where many clones can be 

analysed simultaneously. Representative clones from the established EST clusters, 

were spotted onto a nylon membrane and hybridized with probes from cDNA of tester 

(RPE) and driver (heart and liver). 
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3.7.1.1 Nylon membrane transfer of cDNA  

cDNA transfer analysis was carried out following Nucleic Acid Dot/Blot standard 

protocol (Schleicher & Schuell) with some minor modifications. Briefly, 3 µl (300-

500 ng) of target cDNA was suspended in 50 µl TE buffer (pH 8.0) and denatured at 

100 °C for 5 minutes and put on ice. Membrane was washed with deionised water 

then soaked in 6X SSC prior to use. 2 sheets of 3MM Whatman paper, prewet in 6X 

SSC were placed on the filter support of the Minifold ІІ slot-blot apparatus 

(Schleicher&Schuell). Then, the membrane was placed on top of the filter paper and 

the apparatus was clamped. The diluted cDNA target was loaded on each well and the 

volume was adjusted to 400 µl per well by topping with 6X SSC. Low vacuum was 

applied (~ 1 ml/min). Then membrane was removed, labelled and target cDNA was 

immobilized by UV cross linking. 

TE buffer, pH 8.0                             20 X SSC 100 ml, pH7.0  
10mM   Tris-Cl, pH 8.0                                17.53 g NaCl 
1mM EDTA, pH8.0                                    8.82 g sodium citrate   

3.7.1.2 Probes synthesis and radioactive labelling 

First strand cDNA was synthesized from RPE, heart and liver and labelled 

radioactively. Thermoscript TM RT increases the yield of cDNA product by allowing 

the use of high reaction temperatures which help prevent RNA secondary structures. 

Similarly, RNase inhibitor increases cDNA availability by degrading the RNA strand 

in RNA:DNA hybrids. For the RPE probe, 10 µl of total RNA were mixed with 2 µl 

of oligo-(dt) adaptor primer (1 µg / µl) and 2 µl DEPC treated H2O, and for the heart 

and liver probe, 3 µl of total liver RNA (8 µg / µl) were mixed with 6 µl of total heart 

RNA (4 µg / µl) and from this mixture, 1.5 µl total RNA was adjusted to 14 µl 

volume, adding 2 µl oligo-(dt) adaptor primer (1 µg / µl) and 10.5 DEPC treated H2O. 

Both probes were incubated at 72°C for 2 minutes and were put on ice before adding 

the following reagents for each reaction: 6 µl first strand buffer, 1µl DTT (0.1 M), 1.5 

µl dNTP (20 mM dATP, dGTP, dTTP), 1 µl RNAse inhibitor, 5 µl P33-dCTP and 1.5 

µl Thermoscript TM RT. Reactions were incubated at 55°C for 90 min. 

3.7.1.3 Prehybridization and hybridization 

Filters were prehybridized in MicrohybTM buffer (Research Genetics) for 2 hours at 

42°C. Prior to hybridization, probes were purified by centrifugation through a 
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Sephadex (G-25) column and denatured at 95°C for 3 min, and then filters were 

hybridized with probes at 42°C overnight. 

Sephadex G-25 
12 g      sephadex 
180 ml       TE buffer 

3.7.1.4 Washing and exposure of filters on phosphor imaging screens 

Filters were washed in 2X SSC/1% SDS/50°C/15 min, 1X SSC/1% SDS/50°C/15 min 

followed by 0.5X SSC/1% SDS/50°C/15 min, before exposure on phosphor imaging 

screens (Pharmacology labs) overnight. 

10% SDS 
10 g  SDS 
ddH2O to 100 ml 

3.7.2 Northern blot hybridizations 

Northern blot hybridization reactions depend on the specificity of the probe, that it 

can only bind to targets with complementary sequence, and this in turn require the 

RNA to be physically separated by molecular weight on agarose gel, and transferred 

to a solid support such as nylon or nitrocellulose membranes. The RNA molecules 

must then be immobilized on the membrane to ensure that they can withstand the 

procedures of probing and washing. After the non-specifically bound probe is washed 

away, the probe–target complex can be identified, presumably the probe was already 

radioactively labelled or other tagging procedure was used. The complex location will 

help provide information about the target molecule. 

3.7.2.1 RNA size fractionation in formaldehyde-agarose gels  

Despite the fact that RNA is single–stranded, secondary structures can be formed in 

small regions of the RNA molecule. To prevent this, formaldehyde is included to the 

RNA loading buffer and the agarose gel cast. 

Formaldehyde agarose gel includes 1.2 g agarose, 87 ml DEPC treated water, 10 ml 

of 10 X MOPS, and 3 ml formaldehyde (added after cooling below 60°C). Mini-

Northern blot hybridizations were performed with RNA from 6 bovine tissues 

including, heart, liver, brain, retina, RPE, kidney and lung. Total RNA was isolated 

from frozen bovine tissues (oligotex mRNA kit, Qiagen) and 7 µg from each tissue 

were mixed with 12 µl loading buffer, denatured for 10 minutes at 65°C before loaded 

onto the gel and ran at 55-75 V in 1X MOPS buffer. The gel was photographed under 
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the UV light with a ruler beside it and then washed thoroughly for 5 min/DEPC 

treated water, 15 min/0.05 NaOH, 5 min/DEPC treated water and 10 min/20X SSC 

before RNA transfer. 

RNA loading buffer, 1 ml                         10× MOPS-Puffer 
 100µl 10x MOPS                                                  0,2 M MOPS 
 500µl Formamide                                                 50 mM NaOAc 
 185µl Formaldehyde                                            10 mM Na2 EDTA 
 40mg Fico400׀׀ 
 215µl H2O 
 0.04% Bromphenolblue 

3.7.2.2 Capillary transfer of RNA onto nylon membrane 

In capillary blotting, RNA molecules are transferred in a flow of buffer from wet 

stack of filter paper to the dry layers of the filter paper. Membrane is placed adjacent 

to the gel in the middle of tissue layers. RNA molecules will bind to the membrane 

surface, impeded from further transfer by the small pore size of the membrane. 

Orientation of the transfer could be either way, upwards or downwards. A typical 

upward capillary blot was prepared with layers from bottom including glass support, 

bridge (15 cm x full length GB003 paper) (Schleicher & Schuell) immersed in 20X 

SSC at both sides, gel, membrane (15 x 11 cm), 3 x 3MM Whatman wet papers (15 x 

12cm), 3 x GB003 dry papers (15 x 12cm), 5 folded tissues, glass support and weight. 

The blotting procedure was left over night. Afterwards, layers were removed and 

wells and date were marked followed by membrane washing in 2X SSC (5-30 min). 

RNA was immobilized by microwave cross linking and membrane was stored in –20. 

3.7.2.3 Vacuum transfer of RNA onto nylon membrane 

A vacuum transfer apparatus (VacugeneTM, Pharmacia) was used to transfer RNA 

onto the nylon membrane. The advantages of using the apparatus are ease of use, 

efficient RNA transfer, and saving of time. The sponge sheet of the apparatus was 

washed with DEPC water before being laid on the apparatus with the smooth side 

facing upwards. Membrane (14 x 11cm) was soaked in 2 x SSC and put on top of the 

sponge sheet. A plastic sheet was placed on top leaving only the membrane 

uncovered. The gel was washed in 2X SSC before being laid on top of membrane and 

a continuous dripping of 20X SSC on top of gel was arranged. The vacuum transfer 

was allowed for 3-4 hours at -60 mbar. Afterwards, lanes were marked, RNA cross 

linked, and membrane was stored at -20. 
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3.7.2.4 Probe labelling with random priming 

Random primer oligolabelling is based on the method first described by Feinberg and 

Vogelstein (1983). PCR products of bovine ESTs were used as probes and were 

labelled as follows; 3µl of the probe were added to 8 µl aqua dest. and the tube was 

incubated for 5 min at 100°C. The tube was centrifuged for a short time at high speed 

and was put immediately on ice. Afterwards, the following reagents were added, 4 µl 

oligolabelling buffer (OLB), 1µl bovine serum albumin (BSA), 1µl Klenow fragment 

and 3 µl [α32P]-dCTP (3.000 Ci/mmol). Finally the reaction was incubated in a lead 

box for 3 hour at 37°C water bath or overnight at room temperature. 

5X OLB-buffer 
250 Mm  Tris-HCl, pH 8,0 
25 mM  MgCl2 
50 mM  b-Mercaptoethanol 
je 96 µM dATP, dGTP, dTTP 
1 M  Hepes, pH 6,6 
50 U (A260) pd(N)6 

3.7.2.5 Membrane prehybridization preparation 

Membrane was soaked in Church buffer (20-30 ml in a tray) after it was warmed at 

55°C in water bath. Prehybridization was carried out in 50 ml falcon tubes in which 

membrane was spread with RNA side turned inside of the tube and 5 ml of Church 

buffer were added. The tube was placed in a rotating oven at 60°C for 3 hours. 

Church-Puffer 
0,5M Na3 PO4, pH 7.2 
1 mM Na2 EDTA, pH 8.0 
    7% SDS 

3.7.2.6 Probe preparation 

For probe purification a Sephadex G-25 column was prepared. Typically, a small 

amount of glass wool was placed at the bottom of a 1 ml syringe. Sephadex G-25 was 

loaded and the mini-column was packed by spinning the 1 ml syringe in a 15 ml 

conical tube for 3 min at 2000 rpm. The Sephadex column was calibrated with 100 µl 

TE buffer and centrifuged for 3 min at 2000 rpm. The labelled probe was removed 

from water bath and filled up to 100 µl with TE buffer and loaded onto the Sephadex 

column to be centrifuged for 3 min at 2000 rpm. The radioactivity of the recovered 

probe was measured, and then the probe was denatured for 5min at 100°C, 

centrifuged for a short pulse and put on ice. 
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3.7.2.7 Hybridization 

The prehybridization solution was replaced by fresh preheated (55°C) Church buffer. 

Afterwards the probe was added and the hybridization was carried out overnight at 

65°C. 

3.7.2.8 Membrane washings, film exposure and development 

As washing stringency depends on the probe, radioactivity was monitored throughout 

washings and stringency conditions were decreased accordingly. Following the 

standard protocols, blots were washed in 2X SSC/0.1% SDS/60°C/15 min, 1X 

SSC/0.1% SDS/60°C/15 min, and 0.5X SSC/0.1% SDS/60°C/15 min. Afterwards, 

membrane was dried and covered with Saran wrap and exposed to film for 3-7 days in 

-80. 

3.7.3 Reverse Transcriptase (RT)-PCR analysis 

Total RNA was isolated from 6 frozen human tissues including brain, heart, lung, 

retina, RPE and placenta using the RNA Clean system (Hybaid, Heidelberg, 

Germany). 

3.7.3.1 RNA purification 

DNase 1 was used to remove DNA contamination. According to the following 

protocol (Ambion): 1µl of DNase 1 (2 units) and 0.1 volume of 10X DNase 1 buffer 

were added to 1 µg of total RNA. The reaction was adjusted to 10 µl with DEPC 

treated water and incubated at 37°C / 20 min. 1 µl of inactivation reagent was added 

and the tube was incubated at room temperature / 2min. Then centrifuged at 10.000 g 

/1 min and RNA was removed and stored at –80. 

3.7.3.2 First strand cDNA syntheses 

Total RNA was used to generate first strand cDNAs using the Superscript TM 

preamplification system according to the manufacturer instructions (Life 

Technologies, Karlsruhe, Germany). Typically, 1 µl of oligo-(dt)12-18 (0.5 µg/µl) and 

1 µl dNTPs (10mM) were added to 1 µg total RNA. The reaction volume was 

adjusted to 13 µl with DEPC treated water and incubated at 70°C/3 min. Then the 

reaction was put on ice for 5 minutes. Afterwards the following reagents were added: 
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4 µl of 5X first strand buffer, 2 µl 0.1 M DTT and 1 µl Superscript TM. Finally the 

reaction was incubated in thermal cycling machine at 42°C/52 min followed by 

70°C/15 min. 

3.7.3.3 cDNA quality check and normalization  

cDNA quality check was performed using the ubiquitously expressed β-

Glucuronidase gene (GUSB). Primers from exon 3 and 4 were amplified to test for 

full length cDNA synthesis. Primers from exon 6 and 7 were used to insure cDNA 

integrity (Table 2). The cDNAs were normalized across tissues to contain an equal 

concentration of GUSB transcripts. 

F / R* 
Ex 3              GUSB 3            ACTATCGCCATC                                       F 
Ex 4              GUSB 5            GTGACGGTGATG                                      R 
Ex 6              GUSB 6            GATCCACCTCTG                                       F 
Ex 7  GUSB 7 CCTTTAGTGTTC  R                                                           

Table 2: primers of the GUSB gene

SequenceName  Position

* F / R = indicate forward or reverse

 

 

 

 

3.8 Cloning and characterization of AMD candidate genes 

3.8.1. Bioinformatics 

To identify the human orthologous of candidate clones, BlastN search was used 

against the human genome draft sequence. Protein homology searches and conserved 

domains were analysed by Psi-Blast (http://www.ncbi.nlm.nih.gov/BLAST/). 

Functional motifs, domains and possible protein family consensuses were analysed by 

PROSITE (http://www.expasy.org/prosite/), Blocks (http://blocks.fhcrc.org/blocks/blocks/ 

_search.html), and PRINTS (http://www.bioinf.man.ac.uk/dbbrowser/PRINTS/). 

Primers were designed (Table 3 & 4) on the bases of the available sequences of 

MGC2477 (NM-024099).and the FLJ11726 (recently TRPM3 gene) predicted genes 

using oligo version 2 (NAR program) (Rychlik and Rhoads, 1989) local software and 

the Primer3 input web site at (http://www-genome.wi.mit.edu/cgi-bin/primer/primer3 

_www.cgi/), the following primers were designed: 

F / R* 

Ex 1              3-E5F1      CCACTAAAAGGCTGGATTCG                        F 
Ex 2              3-E5F2      AAAAGTCCCATCTGCCGTC                           F 
Ex 6              3-E5F3      CCAGGATGTAGAAATGAAGGAC                 F 
Ex 3              3-E5R2     GACAGTGGTTGGTGGCTTCC                         R 
3′UTR           3-E5R       AAATGACTGCTAGAGAGGCC                       R 

Table 3: primers of the MGC2477 predicted gene

SequenceName  Position 

* F / R = indicate forward or reverse
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3.8.2 Cloning of the MGC2477 predicted gene and 2 novel isoforms of the 

TRPM3 gene 

3.8.2.1 Preparation of competent cells  

ElectroMAX DH10B strain of E.coli (Gibco-BRL) was used to prepare competent 

cells. These cells are suitable for cloning of DNA which contains methyladenine and 

metylcytosine and could be efficiently used to clone prokaryotic and eukaryotic DNA. 

Transformation of these cells can only be achieved by electroporation. 

A single 2-3 mm colony was dispersed into 5 ml LB medium and incubated at 37°C 

for overnight. Then 400 ml autoclaved LB medium was inoculated with 5 ml from the 

previous culture and incubated at 37°C on a shaker until optic density of 0.75 was 

achieved. Afterwards the culture was centrifuged at 5300 rpm for 10 minutes and 

pellets were recovered and resuspended in 100 ml 10% glycerol, followed by 

centrifugation at 5300 rpm for 10 minutes. The last step was repeated and thereafter 

cells were resuspended in 50 ml 10% glycerol and centrifuged at 5300 rpm for 10 

min. Finally cells were dissolved in 1-2 ml 10 % glycerol and aliquots of 50 µl were 

frozen in a dry ice / EtOH bath and stored at -80. 

3.8.2.2 Ligation  

A molar ratio of 3:1 insert: vector was used in the ligation reaction. For the 

determination of the quantity of insert needed, the following equation was used: 

* F/R = indicate forward or reverse 

Ex 1            TR-F1              CTCCGGGGACTGCTTTTG                              F 
Ex 2            TR-F2              CATCATACCCAGCACCAAAG                       F 
Ex 4            TR-F4              CCAGCCAAAACTCAAGCAAG                      F 
Ex 6            TR-R1              CCCGTTGTCAGCCAGAATG                         R 
Ex 7+          TR-R3              GATTTGAGGTCTTGGTTGAGC                    R 
Ex8+ TR-R4 AGACAAGTGGGAGGTTAGGAC R

Table 4: primers of the TRPM3 gene

SequenceName  Position F / R* 

 
ng vector x kb insert / kb vector x insert : vector molar ratio = ng insert 

 

 

The ligation reaction was carried out in 10 µl volume including, 5µl 2X Rapid 

Ligation Buffer, 1µl pGEM®-T Easy Vector (50ng), x µl PCR product and 1 µl T4 

DNA Ligase (3 Weiss units/µl). The reaction volume was adjusted with deionised 

water. 
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3.8.2.3 Electroporation transformation  

Aliquot of DH10B Electrocompetent cells (50µl) were thawed and mixed with 1 µl of 

ligated DNA. The mixture was carefully pipetted into a cuvette and placed into the 

electroporation chamber of the GenePulser® (BioRAD) apparatus. Then an electrical 

shock was applied (2.5 kv) and 500 µl of SOC medium was added. Afterwards the 

content was placed into a 1.5 ml tube and put on ice. Prior to that 10 µl of X-gal and 

100 µl IPTG were spread on LB-ampicillin plates and allowed to absorb for 30 min. 

Finally 100 µl of the transformation products were spread on Amp/IPTG/X-gal plates, 

and the plates were incubated at 37°C overnight. 

3.8.3 Standard polymerase chain reaction (PCR) amplification 

PCR is an in vitro technique to synthesize a specific DNA fragment enzymatically. 

The reaction requires two oligonucleotide primers which anneal to the opposite 

strands, flanking the area needed for amplification. The reaction is catalysed by a 

thermostable DNA polymerase enzyme such as Taq-polymerase (Thermus aquaticus) 

or Pfu-polymerase (Pyrococcus furiosus). The DNA amplification is achieved by 

repetitive cycles of template denaturation, annealing of the primers and extension.  

In most PCR reactions the following concentrations give satisfactory results: DNA 

template (~ 100ng), 200 µM each dNTP, 10-15pmol each primer, 1 mM MgCl, and 

0.2 U of Taq-polymerase. However, in some cases the PCR reaction needs to be 

optimised by varying the parameters used. Most important is the Mg++ which 

stabilizes the oligo-template interaction. Higher concentrations give more PCR 

product but decrease the PCR specificity, whereas low concentrations produce less 

PCR product but increase the specificity. Satisfactory results can be achieved using 

concentrations of 1–2.5 mM. Similarly, varying thermal cycle conditions could alter 

the outcome, high GC content regions of DNA may require an increased time of 

denaturation, and primers rich in GC content require high annealing temperatures, 

whereas longer PCR products need an extended extension time. Also additives such 

as glycerol (5-10%), formamide (1-5%), or DMSO (2-10%) could enhance the 

outcome of the PCR reaction. 

3.8.4 Nested PCR 

Two sets of primers were used in two rounds of PCR reaction. In a first PCR reaction 

an outer set of primers was used to amplify the target DNA, followed by the second 
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round of amplification using as a template the product of the first reaction to be 

amplified by a nested set of primers (Figure 6). The advantage of this method is an 

increased sensitivity of the assay. 

 
Target DNA

Nested primer

Outer primer 

Specific target amplification

First amplicon 

Figure 6: Nested PCR; red area= target DNA, first PCR performed with outer 
primers, whereas second PCR performed with nested primers. 

 

 

 
 
 
 
 
 
 
 

3.8.5 Touch-down PCR 

The advantage of this method is to reduce non specific PCR products. Amplification 

starts with cycles at higher annealing temperatures, followed by a decrease in the 

annealing temperature over the subsequent cycles. Temperatures frequently used are 3 

cycles at 64°C as annealing temperature, followed by 3 cycles at 61°C, and finally 27 

cycles at 58°C. 

3.8.6 PCR library screening  

This protocol was used to identify and sequence the 5′ and 3′ ends of inserts cloned 

into undirectional libraries. The protocol requires the use of two vector primers, 

flanking the cloning site and four gene specific primers: As the exact position of each 

vector primer is not known, 4 primary PCR reactions were set, followed by secondary 

PCR reactions using the nested gene specific primers to increase the specificity 

(Figure 7). 
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Primer combinations
ure 7: PCR library screening, primers 1 & 6 = vector primers, 2, 3, 4, & 5 = gene 
cific primers. First PCR round includes 4 reactions; 3/1, 3/6, 4/1, and 4/6. If 3/1 and 
 (boxed in red) were positive in first round PCR, then 2/1 and 5/6 would be positive 
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3.8.7. DNA extraction from agarose gel 

DNA was extracted from agarose gel for different purposes using the NucleoSpin® 

Extract protocol (Machery-Nagel, Düren, Germany). Typically, the gel piece 

containing the DNA fragment of interest was excised using a clean scalpel. 300 µl of 

buffer NT1 were added for each 100 mg of the gel fragment. Samples were incubated 

at 50°C until the gel piece was completely dissolved. Then, the samples were loaded 

into a NucleoSpin extract column and centrifuged at 10000 rpm/1 min. To optimise 

removal of inhibitors and contaminations a second washing was performed by adding 

500 µl buffer NT2 and centrifuged at 14000 rpm/1 min. Afterwards 600 µl of buffer 

NT3 were added and samples were centrifuged at full speed/1 min, followed by a 

final wash with 200 µl NT3 and centrifuged at full speed/2 min to remove residual 

EtOH of the buffer. Finally, the column was placed into a clean 1.5 ml tube and 20-50 

µl elution buffer NE were added. Then samples were left at room temperature for 1 

min prior to centrifugation at full speed and recovery of DNA fragment. 

3.9 Identification of single nucleotide polymorphism  

3.9.1 Bioinformatics 

Repeat masker (http://repeat masker.genome.washington.edu/) was used to filter 

repetitive elements in the genomic sequence of genes of interest. Genes were searched 

against GeneCards (http://bioinformatics.weizmann.ac.il/cards/) and against Blat 

(http://genome.ucsc.edu/cgi-bin/hgBlat?command=start). SNPs in these databases 

were identified and marked. In order to verify these SNPs and to identify novel ones, 

all of the coding regions and 3-5 kb of up and downstream sequences of each gene 

were sequenced in 8 or 16 individuals (Johnson et al., 2001). In cases where these 

regions account for less than 30 fragments, intervening sequences were considered. 

Primers were designed and used in amplification of genomic DNA to yield a PCR 

product of approximately 500-600 bp. For primer sequences see appendix (Table 1, 2 

and 3). Sequence analysis was performed using the software SeqMan™ ΙΙ 

(DNASTAR Inc. 1989-2002) where sequencing traces were aligned and SNPs were 

identified as they were marked by the sequencer program at mismatch bases. 

3.9.2 Identification of high frequency SNPs and determination of allele frequency 

In order to identify SNPs with frequencies of the minor allele grater than 17-20%, 

PCR reactions were carried out for all fragments of each gene using genomic DNA 
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from either 8 or 16 randomly chosen controls. Reactions were performed as a touch 

down PCR for 33 cycles using 1.0 or 1.5 mM MgCl2 buffer with or without 4 % 

formamide. For specific conditions for each fragment see appendix (MT-

Protocadherin Table 1, TRPM3 Table 2, and MGC2477 Table 3). For the MT-

protocadherin gene SNP markers were genotyped in a set of 24 core Caucasian 

families (at least 2 members of each family, mainly father and mother) to help 

identify redundant SNPs. 

3.9.3 Ready to use gel electrophoresis 

Amplified PCR fragments were ran into ready to use agarose precast gels. The 

advantages of using these gels are ease of use and saving of time. 3 µl of the PCR 

product (from the 8 controls for MGC2477 and TRPM3 genes and 48 family controls 

for the MT-Protocadherin gene) were mixed with 7 µl of 1X TBE buffer into a 96 

well plate. 8 µl of the mixture were loaded into the 96 well precast gel (1% agarose 

with ethidium bromide) using a multichannel pipette and ran in the ready to run 

electrophoreses system (Amersham) at 90 volts for 5min. DNA bands were visualised 

under UV light. 

3.9.4 Denaturing high performance liquid chromatography (dHPLC) 

Some fragments of the MT-protocadherin gene, including 5UTR2, 5UTR3, 5UTR4, 

5UTR6, exon 2, exon 3, exon 10, exon 11, exon 13, exon 14, exon 16, 3UTR4, 

3UTR5, 3UTR6 and 3UTR 11 were resolved with the WAVE DNA Fragment 

Analysis System (Transgenomic Inc., La Jolla, California). PCR products (5-8 µl) 

were eluted with a linear acetonitrile gradient including buffer A (0.1M 

triethylammonium acetate; TEAA, 0.1mM EDTA) and buffer B (0.1 M TEAA, 0.1 

mM EDTA, 25% acetonitrile) at a flow rate of 0.9 ml/min. Optimal temperature 

required for the resolution of heteroduplex and homoduplex was determined by 

running the PCR product at increasing temperatures until a decrease in retention time 

was achieved. 

3.9.5 DNA sequencing 

The fragments of the TRPM3 and MGC2477 genes and the remaining fragments of 

the MT-protocadherin gene were sequenced. PCR products (25 µl) were diluted with 

25 µl HPLC H2O and 5-8 µl of the diluted product were purified by Exonuclease 
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1/Shrimp alkaline phosphatsase. Purified PCR products were dried under the hood (~ 

16-24 hours) and sent for commercial sequencing (MWG, Ebersberg). 
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4. RESULTS 
4.1 Generation of ESTs derived from the bovine RPE cDNA library 

A total number of 26 plates (96 wells) were randomly picked from the bovine RPE 

cDNA subtracted library. All plates were designated RPE as the library name and 

numbered from 1-26. Subsequently, 26 replica plates were generated and stored at -

80°C. Clones were identified by their coordinates in the 96 well plates, so that the 

clone name consists of the library name, followed by the number of the plate and the 

clone position in the plate, i.e. RPE3-E5. 16 plates were amplified by PCR reactions 

using M13 forward and reverse primers (Table 5). Rest of the plates were stored at -

80°C. 

 Table 5: Plates amplified and sequenced 

Plate Plate
         RPE 1                        RPE 16 
         RPE 2                        RPE 20 
         RPE 3                        RPE 21 
         RPE 6                        RPE 22 
         RPE 7                        RPE 23 
         RPE 8                        RPE 24 
         RPE 10                      RPE 25 
         RPE 12                      RPE 26

 
 
 
 
 
 
 
 
 
 
 
Sizes of the PCR products ranged from 300-1200 bp with an average size of 600 bp. 

Clones with size equal or below 300 bp were not considered for further sequence 

analysis. In a first phase a total number of 1002 differentially expressed bovine RPE 

cDNA clones were sequenced as described (see materials and methods). In a second 

phase, a total number of 1377 bovine ESTs were generated and sequenced in 

collaboration with LYNKEUS BioTech, Wuerzburg. 

4.2 Bioinformatics  

Before the completion of the Human genome Draft, our high quality sequence data 

were normalised and clustered using CAP3 (http://genome.cs.mtu.edu/sas.html) and 

were searched using Blast N against the non-redundant (nr), high throughput genomic 

sequences (htgs) and ESTs databases (dbEST) of the GenBank. The normalised 

results revealed 3 groups of sequences, group 1 with identity to known genes, group 2 

with matches to unknown sequences such as ESTs or unfinished genomic sequences. 

Group 2 was subcategorized into predicted genes, unknown transcripts, and those 
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with no significant similarity or homology to known sequences. Group 3 matched to 

mitochondrial genes (Table 6). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Afterwards, 376 EST clusters (correspond to 120 known genes and 256 unknown 

transcripts in Table 6) were blasted against the human genome draft sequence yielding 

168 known human genes, 51 predicted human genes, 15 matches to unknown 

sequences and 41 ESTs with no homology (Table7). Bioinformatics analysis data 

were provided by Faisal Fadl El Mola (personal communication, 2003). 

Bovines ESTs searches against the human genome draft 
sequence. 

In this search, 1002 bovine ESTs were normalised using the contig 
assembly program CAP3 and searched using Blast N against nr, htgs and 
dbEST databases of the GenBank. 

Table 6: Summary of first blast analysis (05 2001)

Total   120                          256                                                3

          120                        7 predicted genes                 3 
                                           163 Unknown traces 
                                             86 No homology 

      Known genes              Unknown transcripts       Mitochondria genes 

           Group 1                            Group 2                          Group 3

Table 7: Summary of the final blast analysis (03-2003) 

Total            168                    107                           

                168                  51 predicted genes     
                                               15 Unknown traces 
                                               41 No homology 

       Known human genes      Unknown transcripts     

                 Group 1                          Group 2        

 

 

 

 
 
 
 
 
 
 

4.3 Expression analysis 

4.3.1 Reverse Northern blot analysis 

Reverse Northern blot analysis was performed to differentially screen the subtracted 

bovine cDNA library and to organize and prioritize subsequent work. Of the 376 EST 

clusters, 318 unique ESTs were spotted onto duplicate nylon membranes. Known 

genes such as Actin, glyceraldehyde-3-phosphate dehydrogenase GAPD and RPE-1 

were spotted more than once (Table 8) to serve as controls. Five filters were 

generated, each filter with four copies, A, B, C, and D. Copies A and C from each 

filter were hybridized with bovine RPE cDNA (RPE 1, RPE 2 respectively). 
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 1            2 3 4 5 6 7 8 9 10 11 12

A Empty 
 

Actin          Actin Actin GAPD GAPD RPE-1 20-E4 10-C9 24-E4 24-F2 8-E8

B             8-H5 10-B4 20-G4 10-E7 6-H1 3-B6 20-D2 12-G3 6-C7 20-F5 23-D5 25-A6

C        23-D11 Empty 
 

21-C7 Empty 
 

25-D3 Empty 
 

23-H10 21-B5 26-A11 1-A5 8-F1 16-A9

D 23-F8            12-B10 22-D3 7-G8 12-E4 25-F8 7-A12 21-D7 3-H9 21-F7 16-F1 26-G2

E        6-F8 Empty 
 

6-F11 Empty 
 

23-D2 Empty 
 

25-G6 16-F8 3-D5 1-F12 26-A9 12-G5

F 10-D8           6-F6 24-C11 6-D11 23-G6 22-H5 22-E6 26-G10 16-D9 26-B3 23-E5 8-D12

G        23-C4 Empty 
 

12-B1 Empty 
 

3-E11 Empty 
 

16-G10 16-H9 25-C5 6-H4 20-H6 22-E10

H         3-H11 16-E11 16-F3 24-C8 22-A2 3-F12 Actin GAPD GAPD RPE-1 RPE-1 RPE-1 

 Table 8: Reverse Northern blot filter layout. Filter 1 of the reverse Northern blot as an example of filter layout design. 
The design shows a 96 well in which 74 bovine EST cDNAs were spotted randomly. The design also shows 22 controls 
including the water negative control (which is marked as empty) and the positive control where three known genes were 
spotted more than once; Actin (pink colour), glyceraldehyde-3-phosphate dehydrogenase (GAPD, red colour), and RPE1 
(dull green colour). 
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Copies B and D were hybridized with bovine heart / liver cDNA (heart/liver 1, 

heart/liver 2 respectively). 

Quantitative evaluation was performed using the Aida and GeneSpring software 

packages, three patterns of hybridization signals were identified and categorized in 

three groups: group І (equally strong signals on filters hybridized with RPE and 

heart/liver cDNA), group ΙΙ (equally weak signals on filters hybridized with RPE and 

heart/liver cDNA) and group ІІІ (differential expression on filters hybridized with 

RPE) (Figure 8). In group Ι, 31 EST clusters were identified. Of these, 21 with 

identity to known genes, 3 predicted genes, 1 unknown transcript, 1 with multiple 

chromosome location and 5 from the no-significant similarity subcategory (Table 9). 

In group II (260 transcripts), 151 known genes and 109 unknown clones were 

included (Appendix, Table 4). Group ΙΙΙ contains 27 clones including 14 clones with 

identity to known genes, 1 unknown transcript, 3 clones with no-significant similarity 

and 9 clones with multiple chromosomal locations (Table 10). Summary of group 1, ІІ 

and ΙΙΙ of the reverse Northern blot analysis is shown in Figure 9. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

              Duplicate filter 3 B 
       Heart/liver-cDNA probe  

            Duplicate filter 3 A 
             RPE- cDNA probe   

Figure 8: Reverse Northern blot quantitative evaluation of signal intensity in identical duplicate filters (3A, 3B)
hybridized with different probes (RPE-cDNA probe, and Heart/liver-cDNA probe respectively).Blue arrow = group I, 
Green (shining) arrow = group ΙΙ and Yellow arrow = group ІІІ. 
Controls: Black arrow = empty spot, Pink arrow = Actin, red arrow = GA3PDH, green (Dull) = RPE1  
Aida and GeneSpring software analysis was provided by Andrea Gehrig. 
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 Filter   Label                 Plate       Clone                     Gene Name/subcategory 
       

1 D 08  RPE21 D07F H. s. similar to ferritin heavy chain (ferritin H 
subunit) (LOC91738),  

1 E 05  RPE23 D02F M. c 
1 G 03  RPE12 B01F H. s. hydroxysteroid (17-beta) dehydrogenase 8 
2 B 01  RPE01 G05R H. s. ubiquinol cytochrome c reductase complex 
2 C 10  RPE25 F04R H. s. skip for skeletal muscel and kidney enriched 

inositol phosphatase 
2 D 02  RPE22 H01F H. s. retinaldehyde-binding protein 1 (RLBP1) 
2 D 05  RPE24 E10F H. s. low density lipoprotein-related protein 1B 
2 D 08  RPE25 E08F H. s. spectrin, alpha, non-erythrocytic 
2 D 01  RPE21 A05F H. s. pleckstrin homology domain containing, family 

B 
2 E 09  RPE26 G01F H. s. unc119 homolog 
2 G 10  RPE08 H07F No significant Similarity 
2 H 01  RPE01 C01F No significant Similarity 
3 B 06  RPE08 H06F H. s. protease, serine, 11 (IGF binding) (PRSS11), 

mRNA Length 2034 
3 D 01  RPE07 C03F H. s. retinaldehyde-binding protein 1 (RLBP1), 

mRNA, 1651 bp 
3 E 10  RPE02 D12F H. s. testis enhanced gene transcript (BAX inhibitor 

1)(TEGT) 
3 F 01  RPE01 F06R Predicted gene 
3 F 04  RPE24 D05F Predicted gene 
3 F 11  RPE02 A04F No significant similarity 
3 H 06  RPE20A G08F No significant similarity 
4 C 09  RPE06 B06F H. s. similar to ATP synthase, H+ transporting, 

mitochondrial F1F0, subunit g (LOC63334),  
4 B 04  RPE16 A04F H. s. BCL2-like 1 (BCL2L1), mRNA, 735 bp 
4 B 10  RPE20A E10F H. s. similar to active BCR-related gene (H. sapiens) 

(LOC91794), mRNA, 1234 bp 
4 D 10  RPE12 A06F H. s. ATX1 (antioxidant protein 1, yeast) homolog 1 

(ATOX1), p 
4 F 12  RPE20A G05F Human unknown (without exon-intron boundaries) 
5 B 11  RPE03 F04F H. s. retinol-binding protein 1, cellular (RBP1),  
5 C 09  RPE24 B08F H. s. component of oligomeric golgi complex 5 

(COG5) 
5 C 11  RPE23 C09F H. s. defender against cell death 1 (DAD1),  
5 B 01  RPE16 G03F H. s. succinate dehydrogenase, subunit A (SDHA) 
5 D 06  RPE02 E04F H. s siver (mouse homolog) like (SILV), mRNA 
5 F 01  RPE06 B08F No significant similarity 
5 E 10  RPE21 E05F Predicted gene 

H. s. = Homo sapiens, M. c = multiple chromosomal location, label = refer to Aida and 
GeneSpring software labelling. 

Table 9: Dot blot result; Group I (RPE versus Heart/Liver) 
Equally strong signals on filters hybridized with RPE and heart/liver cDNA  
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1 G 09  RPE25 C05F H. s. retinal G protein coupled receptor (RGR),  

mRNA 1414 bp  
1 E 11  RPE26 A09F H. s. lecithin retinol acyltransferase (phosphatd-

ycholine - retinol O-acyltransferase) (LRAT). 
1 G 10  RPE06 H04F H. s. guanine nucleotide binding protein (G protein), 

gamma transducing activity polypeptide 1 (GNGT1), 
mRNA, 388 bp 

1 G 11  RPE20A H06F H. s. guanine nucleotide binding protein (G protein), 
gamma transducing activity polypeptide 1 (GNGT1) 
mRNA, 388 bp 

1 F 02  RPE06 F06F M. c 
1 B 10  RPE20A F05F Human unknown (without exon-intron boundaries) 
1 F 11  RPE23 E05F H. s retinal degeneration, slow (retinitis pigmentosa 7) 

(RDS) 
1 A 10  RPE24 E04F M. c. 
2 B 12  RPE12 E01F H .s. retinal G protein coupled receptor (RGR),  

mRNA, 
2 F 04  RPE06 E07F M. c. 
2 F 10  RPE25 A01F M. c. 
2 E 08  RPE23 D06F M. c. 
2 E 05  RPE26 D06F H. s. sex comb on midleg homolog 1 (SCMH1),  

1937bp mRNA 
3 D 12  RPE07 F04F H. s. retinal pigment epithelium-specific protein  

(65kD) (RPE65) 
3 C 03  RPE08 B02F H. s. vitelliform macular dystrophy (Best disease, 

bestrophin) (VMD2) 
3 F 05  RPE26 G04F M. c. 
3 H 01  RPE22 F08F M. c. 
3 G 03  RPE20A B12F No significant similarity 
4 C 01  RPE22 B03F H. s. rhodopsin (opsin 2, rod pigment) (retinitis 

pigmentosa 4, autosomal dominant) (RHO) 
4 F 06  RPE08 A09F No significant similarity 
4 B 05  RPE03 D08F H. s. membrane frizzled-related protein (MFRP). 
4 E 07  RPE08 E10F M. c. 
4 D 02  RPE22 G01F H. s. active BCR-related gene (ABR), mRNA 
4 H 06  RPE20A E12F No significant similarity 
5 B 08  RPE01 B02F H. s. retinol dehydrogenase 5 (11-cis and 9-cis) 

(RDH5), Mrna, 1229 bp  
5 B 06  RPE01 G12F H. s. lecithin retinol acyltransferase (phosphatdyl- 

choline -retinol O-acyltransferase) (LRAT)  
5 E 05  RPE23 A06F M.c  

Table 10: Dot blot result; Group ΙΙI (RPE versus heart/liver) 
Differential expression on filters hybridized with RPE 

H. s. = Homo sapiens, M. c. = multiple chromosomal location, label = refer to Aida and 
GeneSpring software labelling. 

Filter   Label                   Plate        Clone                     Gene Name/subcategory 
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Figure 9: Summary of Reverse Northern blot results; Group 1; strong 
signals in filters hybridized with RPE and heart/liver, group II; low 
signals in filters hybridized with RPE and heart/liver, group ΙΙΙ; 
differential expression of RPE transcripts. 

 Northern blot hybridizations 

tal number of 107 normalized predicted genes and unknown clones (Table 7) 

 group I, II, and III (reverse Northern blot analysis) were further analysed by 

hern blot hybridization to a nylon membrane containing total RNA derived from 

ne heart, liver, brain, retina, RPE, kidney, and lung. 

 expression patterns were observed including RPE-specific, retina-specific, tissue 

icted (with RPE or retina, or both being included), and ubiquitous expression 

re 10). 

 Northern blot analyses of the 107 clones revealed 53 clones with detectable 

ls. Of these, 7 were RPE-specific, 3 retina-specific, and 14 tissue restricted 

cripts, while 29 EST clusters were ubiquitously expressed (Table 11). Evaluation 

not possible for 54 EST clusters due to lack of signal, unclear signals or reduced 

ity of the hybridization (Table 12). 
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PE specific                                                 7 
etina specific                                              3 
issue restricted 

          RPE / retina                                       7 
Brain/retina/RPE                               3 
Brain/retina/RPE/kidney                   1 
Retina/RPE/kidney                            1 
RPE/kidney                                       1 
RPE/liver                                           1 

biquitous                                                    29 

rn of expression                        Number of clones  

    Total                                                        53
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090 RPE01   F06R  nep  nep  nep  nep nep   nep nep Unclear signal 
091 RPE01   C01F  nep  nep  nep  nep nep   nep nep Unclear signal 
092 RPE01   A05F  nep  nep  nep  nep nep   nep nep Unclear signal 
093 RPE01   D02F  -----  -----  -----   + +  +  ----- -----  
094 RPE01   C07F  nep  nep  nep  nep nep   nep nep Unclear signal 
095 RPE01   C09F  nep  nep  nep  nep nep   nep nep Reduced quality 
088 RPE02   D09F  nep  nep  nep  nep nep   nep nep Unclear signal 
089 RPE02   D07F nep  nep nep   nep nep   nep nep Unclear signal 
107 RPE02   B07R -----   + ----- ----- + ------ -----  
108 RPE02   D08R +   +   +    + +    + +  
111 RPE02   A01F ----- -----   +    + + ------ -----  
086 RPE03   E05F ----- ----- -----   ++ + ------ -----  
087 RPE03   B06F nep  nep  nep   nep nep   nep nep Unclear signal 
112 RPE03   D03F +   +   +   + ++    + +  
184 RPE03   D12R ----- ----- ----- ----- ----   ----- ----- No signal 
074 RPE06   B08F nep  nep  nep   nep nep   nep nep Unclear signal 
075 RPE06   E07F  nep  nep  nep  nep nep   nep nep Reduced quality 
082 RPE06   F05F  nep  nep  nep  nep nep   nep nep Reduced quality 
083 RPE06   C08F + + +   ++  +    + +  
084 RPE06   C07F  nep  nep  nep  nep nep   nep nep Reduced quality 
106 RPE06   F02F nep nep nep nep nep   nep nep Unclear signal 
115 RPE06   C10F ----- ----- ----- + ++   ----- -----  
150 RPE06   C04F + + + +  +    + +  
081 RPE07   F11F ----- ----- + ++  +   ----- -----  
105 RPE07   H02F  nep  nep  nep  nep nep   nep nep Reduced quality 
118 RPE07   D02F nep nep nep nep nep   nep nep Unclear signal 
176 RPE07   G08F ----- ----- ----- ----- ----   ----- ----- No signal 
186 RPE07   B09R ----- ----- -----    + ----   ----- -----  
016 RPE08   F02F  nep  nep  nep  nep nep   nep nep Unclear signal 
032 RPE08   A09F ---- ----- -----    + + +   ----- -----  
033 RPE08   E10F +   +   +    +  +    + +  
077 RPE08   F01F  nep  nep nep   nep nep   nep nep Unclear signal 
078 RPE08   E04F  nep  nep  nep  nep nep   nep nep Unclear signal 
079 RPE08   H05F  nep  nep  nep  nep nep   nep nep Unclear signal 
119 RPE08   C05F    +   +   +    +  +    + +  
120 RPE08   E05F  nep  nep  nep  nep nep   nep nep Reduced quality 
121 RPE08   F10R  nep  nep  nep  nep nep   nep nep Reduced quality 
064 RPE10   F07R  nep  nep  nep  nep nep   nep nep Unclear signal 
066 RPE10   B10F  -----  ----- -----    +  +   ------ -----  
068 RPE10   G09R  nep  nep  nep  nep nep   nep nep Unclear signal 

Table 12: Northern blot result of 107 bovine cDNAs

Blot ID  plate ID  clone ID  Heart Liver Brain Retina RPE Kidney Lung  comments 
+ = 1 fold, +E = > 1 fold, +,- = < 1 fold, , ------ = no signal, nep = no evaluation
possible. 
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069 RPE10    E07R    +   +     +     +  +      +    +  
122 RPE10    B11F    +   +     +     +  +      +    +  
124 RPE10    H01R   nep nep   nep   nep nep    nep  nep Unclear signal 
174 RPE10    A10F   ---- ------   ----  ------  +   ------  -----  
062 RPE12    H06F    +   +     +    +  +      +   +  
125 RPE12    A09F  ----- -----   ----   ++  +   ------  -----  
171 RPE12    B10F  ----- -----   ---- ------  ++   ------  -----  
172 RPE12    E04F  ----- -----   ---- ----- ----    ----- ----- No signal 
173 RPE12    G03F   nep nep   nep   nep nep    nep  nep Reduced quality 
126 RPE16    G08F ------ ------   ----  ------  +   ------ ------  
127 RPE16    G12R   nep nep   nep   nep nep    nep  nep Unclear signal 
167 RPE16    C07F ----- -----    ---- ----- ----   ----- ----- No signal 
068 RPE16    F09F  nep nep   nep nep nep   nep  nep Unclear signal 
169 RPE16    D01F   + +    + ++  +      +   +  
178 RPE16    H08F ----- ----- ----- ----- ----     ----- ----- No signal 
183 RPE16    H08F ----- ----- ----- ----- ----     ----- ----- No signal 
020 RPE20A    B12F  + ,- + , -    + + ,- + +    +, -   +  
042 RPE20A    E04F   + +    + + +      +   +  
044 RPE20A    G04F ------ ------   ---- + ----    -----  -----  
098 RPE20A    A07R   + +    + ++ +      +   +  
103 RPE20A    H02F  nep nep   nep nep nep    nep  nep Unclear signal 
156 RPE20A    E12F  nep nep   nep nep nep    nep  nep Unclear signal 
157 RPE20A    F05F ----- -----   ----  ----- ----    ----- ----- No signal 
160 RPE20A    D02F   + +    + + E +      +   +  
161 RPE20A    H04F   + +    + + +      +   +  
162 RPE20A    E03F   + +    + + +      +   +  
163 RPE20A    D12F ------ ----- ------ ----- ----    -----  ----- No signal 
182 RPE20A    E05F ----- ----- ----- ----- ----    ----- ----- No signal 
101 RPE21    A09F   nep nep   nep   nep nep    nep  nep Reduced quality 
148 RPE21    E05F  ----- ------ ------ + ++      + -----  
036 RPE22    F08F   + +    + + +      +   +  
153 RPE22    D06F ----- -----  ----- ----- ----     ----- ----- No signal 
189 RPE22    A03F ----- -----  ----- ----- ----     ----- ----- No signal 
190 RPE22    D03F ----- ----- ----- ----- ----     ----- ----- No signal 
052 RPE23    F08F   nep nep   nep   nep nep    nep  nep Unclear signal 
053 RPE23    H07F   + +    + + +      +   +  
055 RPE23    D05F   + +    + + + +      +  +  
097 RPE23    F01F  ----- -----  ----- ----- +    ----- -----  
136 RPE23    A10R   nep nep   nep   nep nep    nep  nep Reduced quality 
152 RPE23    D11F   ----- ----- ----- ----- ----   ----- ----- No signal 

Continue table 12: Northern blot result of 107 bovine cDNAs

Blot ID  plate ID     clone ID Heart Liver Brain Retina RPE Kidney Lung  comments 
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165 RPE23 E08F ----- ---- ---- ----- ----   ---- ---- No signal                    
166 RPE23 D12F   + + + + ++     +    +  
180 RPE23 B05F ----- ---- ---- ----- ----   ---- ---- No signal 
181 RPE23 G11F ----- ---- ---- ----- ----   ---- ---- No signal 
191 RPE23 A02F ----- ---- ---- ----- ----   ---- ---- No signal 
192 RPE23 F09F ----- ---- ---- ----- ----   ---- ---- No signal 
022 RPE24 H07F ----- ---- + + +   ----  ---  
037 RPE24 E04F + + + + +     +    +  
071 RPE24 A09F + + + + +     +    +  
138 RPE24 D11F ----- ---- ---- ----- +   ----  ---  
147 RPE24 D05F + + + + + +     +    +  
158 RPE24 B10F ----- ---- ---- ----- ----   ---- ---- No signal 
159 RPE24 F02F ----- ---- + + +     + ----  
024 RPE25 A06F ----- ---- ---- ----- +   ---- ----  
038 RPE25 A01F + + + + +     +    +  
128 RPE25 E01F   nep nep   nep   nep nep    nep  nep Reduced quality 
140 RPE25 F11F + + + + +     +    +  
141 RPE25 G09R ----- ---- ---- ----- +    ++ ----  
142 RPE25 H05F ----- ---- ---- + ++     + ----  
164 RPE25 D03F + + + + +     +    +  
187 RPE25 F08F ----- ---- ---- + ----   ---- ----  
013 RPE26 C06F + ---- + ++ + E     +    +  
039 RPE26 G04F + + + + +     +    +  
050 RPE26 A03F ----- ---- ---- ----- +   ---- ----  
129 RPE26 A11F   nep nep   nep   nep nep    nep  nep Reduced quality 
144 RPE26 D03F + + + + +     +   +  
145 RPE26 F08F ----- ---- ---- + ++   ---- ----  
193 RPE26 C08F ----- ----- ----- ----- ----  ----- ------ No signal 

Continue table 12: Northern blot result of 107 bovine cDNAs

Blot ID  plate ID clone ID  Heart  Liver Brain Retina  RPE Kidney Lung  comments 

T

i

1

p

o

(

 

+ = 1 fold, +E = > 1 fold, +,- = < 1 fold, , ------ = no signal, nep = no evaluation
possible. 
he 53 transcripts for which a signal was detected (Figure 11) were subcategorized 

nto three categories; 22 human unknown transcripts, 20 human predicted genes and 

1 clones with no significant similarity (Table 13). Three transcripts from the 

redicted gene subcategory were later isolated and characterized by other groups and 

ne clone (RPE16-G8) became known gene by showing similarity to SLC4A5 gene 

Table 13). 
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01 RPE20A G04F Retina Human unknown 
02 RPE07 B09R Retina Human unknown 
03 RPE23 F01F RPE Human unknown 
04 RPE25 A06F RPE Human unknown 
05 RPE25 G09R RPE/Kidney Human unknown 
06 RPE08 A09F RPE/Ret Human unknown 
07 RPE06 C10F RPE/Ret Human unknown 
08 RPE24 F02F RPE/Ret/Brain/Kidney Human unknown 
09 RPE22 F08F Ubiquitous Human unknown 
10 RPE24 E04F Ubiquitous Human unknown 
11 RPE25 A01F Ubiquitous Human unknown 
12 RPE20A E04F Ubiquitous Human unknown 
13 RPE23 D05F Ubiquitous Human unknown 
14 RPE12 H06F Ubiquitous Human unknown 
15 RPE20A A07R Ubiquitous Human unknown 
16 RPE03 D03F Ubiquitous Human unknown 
17 RPE08 C05F Ubiquitous Human unknown 
18 RPE26 D03F Ubiquitous Human unknown 
19 RPE20A D02F Ubiquitous Human unknown 
20 RPE23 D12F Ubiquitous Human unknown 
21 RPE16 D01F Ubiquitous Human unknown 
22 RPE10 E07R Ubiquitous Human unknown 
23 RPE16 G08F RPE Predicted gene →kg 
24 RPE24 D11F RPE Predicted gene 
25 RPE01 D02F RPE/Ret Predicted gene →kg 
26 RPE10 B10F RPE/Ret Predicted gene →kg 
27 RPE03 E05F RPE/Ret Predicted gene 
28 RPE26 F08F RPE/Ret Predicted gene →kg 
29 RPE07 F11F RPE/Ret/Brain Predicted gene 
30 RPE24 H07F RPE/Ret/Brain Predicted gene 
31 RPE02 A01F RPE/Ret/Brain Predicted gene 
32 RPE21 E05F RPE/Ret/Kidney Predicted gene 
33 RPE24 D05F Ubiquitous Predicted gene 
34 RPE10 B11F Ubiquitous Predicted gene 
35 RPE25 D03F Ubiquitous Predicted gene 
36 RPE06 C04F Ubiquitous Predicted gene 
37 RPE26 C06F Ubiquitous Predicted gene 
38 RPE24 A09F Ubiquitous Predicted gene 
39 RPE20A H04F Ubiquitous Predicted gene 
40 RPE23 H07F Ubiquitous Predicted gene 
41 RPE26 G04F Ubiquitous Predicted gene 
42 RPE08 E10F Ubiquitous Predicted gene 
43 RPE25 F08F Retina No significant similarity 
44 RPE10 A10F RPE No significant similarity 
45 RPE12 B10F RPE No significant similarity 
46 RPE26 A03F RPE No significant similarity 
47 RPE02 B07R RPE/Liver No significant similarity 
48 RPE12 A09F RPE/Ret No significant similarity 
49 RPE20A E03F Ubiquitous No significant similarity 
50 RPE25 F11F Ubiquitous No significant similarity 
51 RPE02 D08R Ubiquitous No significant similarity 
52 RPE06 C08F Ubiquitous No significant similarity 
53 RPE20A B12F Ubiquitous No significant similarity

Table 13: Expression and subcategorization of the 53 transcripts with identifiable signal 

No      Plate ID            Clone ID           Expression                         Subcategory      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ret = retina, kg = known gene, No = correspond to the number of Northern blot analyses in
Figure 11. 
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4.4 AMD candidate clones 

Following the Northern blot analysis, 24 clones showed exclusive or preferential 

expression in the RPE or retina (Table 13, Figure 11). Of these, 16 transcripts were 

chosen as priority AMD candidate clones on the bases of the expression pattern and 

for some genes the function was considered. According to our classification, the result 

of the blast search against the human genome draft sequence for these clones 

identified 7 predicted genes, 5 human unknown transcripts, and 4 clones with no 

significant similarity in the database (Table 14). The results of Northern blot 

hybridization and RT-PCR analysis showed that 15 (93.8%) of the AMD candidates 

were expressed in the RPE, either exclusively (6 clones) or preferentially in a tissue 

restricted pattern (9 clones). Only one clone was exclusively expressed in the retina 

(Table 13 & 14, Figure 11). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 14: AMD candidate genes 

  
0 093 RPE01 D02 Predicted gene RPE/Retina  kg (RDH12) 

 107 RPE02 B07 No significant sim RPE/LIVER   
0 086 RPE03 E05 Predicted gene Retina/RPE A/ Ret  

 115 RPE06 C10 Human unknown RPE/Retina   
 186 RPE07 B09 Human unknown Retina   

0 032 RPE08 A09 Human unknown RPE/Retina   
0 066 RPE10 B10 Predicted gene RPE/Retina  kg (MT-Protocadherin) 

 171 RPE12 B10 No significant sim RPE   
 125 RPE12 A09 No significant sim Retina/RPE  Retina abundant 
 126 RPE16 G08 Predicted gene RPE  kg (SLC4A5) 

0 097 RPE23 F01 Human unknown RPE   
 138 RPE24 D11 Predicted gene RPE   

0 024 RPE25 A06 Human unknown RPE   
 141 RPE25 G09 Predicted gene RPE/Kidney  Kidney abundant 
 194 RPE10 D08 Predicted gene  RPE/Ret kg with 2 novel isoforms

0 050 RPE26 A03 No significant sim RPE 

Blot ID Plate ID Clone ID   Subcategory         Northern Blot   RT-PCR   Comment 

Blot ID = represent the unique number given to each blot, plate ID and clone ID = indicate the unique 
bovine cDNA EST, subcategory = represent the orthologous human sequence, kg = known gene, A = 
abundant, Ret = retina, sim = similarity, during the coarse of the project some of the predicted genes 
were isolated and characterized by other groups such as the RPE1-D2 became known as RDH12 gene, 
RPE10-B10 became known as the MT-Protocadherin gene, and the human orthologous gene of the 
bovine RPE10-D8 EST was recently fully characterized as the TRPM3 gene. RPE 16-G08 showed 
similarity to the SLC4A5 gene.  
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4.4.1 Analysis of 2 novel isoforms of the transient receptor potential cation 

channel, subfamily M, member 3 (TRPM3) 

4.4.1.1 Cloning of the 2 novel isoforms of the TRPM3 gene 

3 EST clones; RPE10-D8, E10-RPE19, and H7-RPE19, from the subtracted RPE 

cDNA library showed restricted expression in the retinal pigment epithelium. 

Alignment of the 3 ESTs showed ~95% homology to the 5′ region of the genomic 

sequence of the TRPM3 gene (NM_020952 and NM_024971) (previously melastatin 

2, and FLJ11726). Other 3 cDNAs from the public databases, AU119249, BM706003, 

and BU731076 were found to have identity to the same region. Alignment of all 6 

cDNAs, (RPE10-D8, E10-RPE19, H7-RPE19, AU119249, BM706003 and 

BU731076) with the genomic sequence revealed 7 exons spanning 90 kb of genomic 

sequences. In order to connect the exons, primers were designed on the bases of the 

available cDNA (Figure 12). Primer combinations TR-F1/R1, TR-F2/R1 and TR-

F4/R3 were used to PCR amplify RPE cDNA. The PCRs revealed 3 overlapping 

fragments of 757 bp, 660 bp, and 665 bp respectively (Figure 12). The consensus 

sequence of the 3 fragments was assembled into 1114-bp cDNA transcript designated 

isoform 1, encompassing an open reading frame (ORF) of 690 bp which code for a 

230 amino acid protein with a calculated molecular mass of 25.2 kDa. PCR 

amplification of RPE cDNA using TR-F4/R4 primers yielded a 980 bp (Figure 12). 

Assembly of TR-F4/R4 with the overlapping TR-F1/R1 fragment identified a 1391 

cDNA transcript designated isoform 2. The cluster sequence contains an open reading 

frame of 936 bp, coding for a polypeptide of 264 amino acids with molecular weight 

of 29.2 kDa. The putative open reading frame of isoform 2 is encoded in 8 exons. 

4.4.1.2 Genomic structure  

The chromosomal localization of the recently identified full length TRPM3 is 9q21.12 

and is located between the genomic markers D9S1874 and D9S1807 (Lee et al., 2003, 

Grimm et al., 2003). The gene is comprised of 24 exons spanning 311 kb (Figure 12). 

Alignment of the 2 novel isoforms to the genomic sequence of the 7 isoforms (a, b, c, 

d, e, f, and g, Figure 12) showed that isoform 1 shares exon 1, 2, 3, and 5 skipping 

exon 4 of isoform f. The ORF ends in exon 6 with the stop codon (TAG) starting with 

the T nucleotide of the splice donor site of the other isoforms (a-g) which continue up  
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until exon 24 (Figure 12). Isoform 2 comprises exon 1, 2, 3, 5 and 6, skipping exon 4 

of isoform f and the ORF ends with a stop codon in the novel exon 6a. Both isoforms 

show additional 2 non-coding exons in the 5′ region of the transcript, with the second 

exon corresponding to the second exon of isoform g of the TRPM3 (Figure 12). The 

first in-frame translation starting codon, ATG is in exon 1, located 346 bp 

downstream of the 5′ end of the transcript, and an inframe stop codon (TGA) is 

located in the first non coding exon of the 5′ region at 339 bp upstream of the putative 

start codon. The exon-intron splice junctions of both isoforms follow the consensus 

splice junction of the GT/AG rule (Burset et al., 2000) (Table 15). 
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Table 15 
Exon–intron boundaries of alternatively spliced TRPM3-isoforms
Isoform 1 terminates at exon 7. Isoform 2 terminates at exon 8. 

Exon       size bp               3′ splice acceptor                   5′ splice donor            intron size (kb) 

Exon 1       63                                                                   TGCTCAGgtaaaat 
Exon 2       80                  ttttcagGCTCAGA                  CCCATAGgtaatct                 1.3 
Exon 3     205                 gttatagGTGTTGC                  AGCCATGgtaatca               16.3 
Exon 4     214                 cttccagTATGTGC                  AACACAGgtaattg                 3.2 
Exon 5     125                   tttttagGTGTTAT                  AAGAGATgtaagtc              14.9 
Exon 6     172                 cctgcagGTTGTCC                 AACACAAgtaagta               43.5 
Exon 7     176                 aatgcagGAATCGG 
Exon 7     175                 aatgcagGAATCGG                 AAGGCGGgtaggta                7.4 
Exon 8     247                 cccacagCTGTACT 

.4.1.3 Protein analysis 

soform 1 is 230 amino acids (aa) long and shows 100 % identity to TRPM3 in Psi-

last search and protein alignment. Isoform 2 is 264 aa and also shows 100% identity 

o TRPM3 over the first 230 aa. The last 34 aa encoded by the novel exon, reveal no 

ignificant similarity to any protein in public databases. Also the search in protein 

otifs and domain databases (Blocks, Pfam, ProDom) fails to identify similarity to 

nown domains or motifs. However, a search against Prosite identified a protein 

inase C phosphorylation site (PKC). The two isoforms are devoid of the 

ransmembrane domains normally found in most members of the TRPM subfamily 

nd lack the TRP signature motif (XWKFXR) (Figure 13). 
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TRPM3a     1 MYVRVSFDTKPDLLLHLMTKEWQLELPKLLISVHGGLQNFELQPKLKQVFGKGLIKAAMT 60 
Isofrm 2     MYVRVSFDTKPDLLLHLMTKEWQLELPKLLISVHGGLQNFELQPKLKQVFGKGLIKAAMT 
             ************************************************************ 
Prim.cons.   MYVRVSFDTKPDLLLHLMTKEWQLELPKLLISVHGGLQNFELQPKLKQVFGKGLIKAAMT 
     
TRPM3a    61 TGAWIFTGGVNTGVIRHVGDALKDHASKSRGKICTIGIAPWGIVENQEDLIGRDVVRPYQ 120 
Isofrm 2     TGAWIFTGGVNTGVIRHVGDALKDHASKSRGKICTIGIAPWGIVENQEDLIGRDVVRPYQ 
             ************************************************************ 
Prim.cons.   TGAWIFTGGVNTGVIRHVGDALKDHASKSRGKICTIGIAPWGIVENQEDLIGRDVVRPYQ 
                     
TRPM3a   121 TMSNPMSKLTVLNSMHSHFILADNGTTGKYGAEVKLRRQLEKHISLQKINTRIGQGVPVV 180 
Isofrm 2     TMSNPMSKLTVLNSMHSHFILADNGTTGKYGAEVKLRRQLEKHISLQKINTRIGQGVPVV 
             ************************************************************ 
Prim.cons.   TMSNPMSKLTVLNSMHSHFILADNGTTGKYGAEVKLRRQLEKHISLQKINTRIGQGVPVV 
                                                             230  
TRPM3a   181 ALIVEGGPNVISIVLEYLRDTPPVPVVVCDGSGRASDILAFGHKYSEEGGLINESLRDQL 240 
Isofrm 2     ALIVEGGPNVISIVLEYLRDTPPVPVVVCDGSGRASDILAFGHKYSEEGG---------- 
             **************************************************           
Prim.cons.   ALIVEGGPNVISIVLEYLRDTPPVPVVVCDGSGRASDILAFGHKYSEEGGLINESLRDQL 
                     
TRPM3a   241 LVTIQKTFTYTRTQAQHLFIILMECMKKKELITVFRMGSEGHQDIDLAILTALLKGANAS 300 
Isofrm 2     -------------------------------CTLFQTS------IRLEHSS--LKSK--- 
                                                 
Prim.cons.   LVTIQKTFTYTRTQAQHLFIILMECMKKKEL2T2F222SEGHQDI2L2222ALLK22NAS 
                     
TRPM3a   301 APDQLSLALAWNRVDIARSQIFIYGQQWPVGSLEQAMLDALVLDRVDFVKLLIENGVSMH 360 
Isofrm 2     --------LCHKNTHFDRTDRFIA------------------------------------ 
         361 RFLTISRLEELYNTRHGPSNTLYHLVRDVKKGNLPPDYRISLIDIGLVIEYLMGGAYRCN 420  
         421 YTRKRFRTLYHNLFGPKRPKALKLLGMEDDIPLRRGRKTTKKREEEVDIDLDDPEINHFP 480  
         481 FPFHELMVWAVLMKRQKMALFFWQHGEEAMAKALVACKLCKAMAHEASENDMVDDISQEL 540  
         541 NHNSRDFGQLAVELLDQSYKQDEQLAMKLLTYELKNWSNATCLQLAVAAKHRDFIAHTCS 600  
         601 QMLLTDMWMGRLRMRKNSGLKVILGILLPPSILSLEFKNKDDMPYMSQAQEIHLQEKEAE 660  
         661 EPEKPTKEKEEEDMELTAMLGRNNGESSRKKDEEEVQSKHRLIPLGRKIYEFYNAPIVKF 720  
         721 WFYTLAYIGYLMLFNYIVLVKMERWPSTQEWIVISYIFTLGIEKMREILMSEPGKLLQKV 780  
         781 KVWLQEYWNVTDLIAILLFSVGMILRLQDQPFRSDGRVIYCVNIIYWYIRLLDIFGVNKY 840  
         841 LGPYVMMIGKMMIDMMYFVIIMLVVLMSFGVARQAILFPNEEPSWKLAKNIFYMPYWMIY 900  
         901 GEVFADQIDPPCGQNETREDGKIIQLPPCKTGAWIVPAIMACYLLVANILLVNLLIAVFN 960  
         961 NTFFEVKSISNQVWKFQRYQLIMTFHERPVLPPPLIIFSHMTMIFQHLCCRWRKHESDPD 1020 
        1021 ERDYGLKLFITDDELKKVHDFEEQCIEEYFREKDDRFNSSNDERIRVTSERVENMSMRLE 1080 
        1081 EVNEREHSMKASLQTVDIRLAQLEDLIGRMATALERLTGLERAESNKIRSRTSSDCTDAA 1140 
        1141 YIVRQSSFNSQEGNTFKLQESIDPAGEETMSPTSPTLMPRMRSHSFYSVNMKDKGGIEKL 1200 
        1201 ESIFKERSLSLHRATSSHSVAKEPKAPAAPANTLAIVPDSRRPSSCIDIYVSAMDELHCD 1260 
        1261 IDPLDNSVNILGLGEPSFSTPVPSTAPSSSAYATLAPTDRPPSRSIDFEDITSMDTRSFS 1320 
        1321 SDYTHLPECQNPWDSEPPMYHTIERSKSSRYLATTPFLLEEAPIVKSHSFMFSPSRSYYA 1380 
        1381 NFGVPVKTAEYTSITDCIDTRCVNAPQAIADRAAFPGGLGDKVEDLTCCHPEREAELSHP 1440 
        1441 SSDSEENEAKGRRATIAISSQEGDNSERTLSNNITVPKIERANSYSAEEPSAPYAHTRKS 1500 
        1501 FSISDKLDRQRNTASLQNPFQRSKSSKPEGRGDSLSMRRL                     1540
 

 
 
 
 
 

Figure 13: 
Alignment of the amino acid sequences of the human TRPM3 and isoform 2, the alignment shows 
100% similarity up until amino acid 230, the last 34 aa did not show significant similarity. Grey 
background representing transmembrane domains, green background = TRP signature motif 
(XWKFXR), blue background = coiled-coil domain. 
4.4.1.4 Expression analysis (RT-PCR) 

To determine the expression of isoform 1 and 2, RT-PCR was employed. Total RNA 

from 6 human tissues including brain, heart, lung, retina, RPE and placenta was 

isolated and used to generate first strand cDNAs. Primers used for PCR include TR-

F4 in exon 2 and isoform 1 specific primer TR-R3 located downstream of exon 6 (665 
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bp). For isoform 2, the specific primer TR-R4 downstream of exon 6a was coupled 

with TR-F4 (980 bp) (Figure 12). 

RT-PCR analysis revealed that isoform 2 (TR-F4/R4) is exclusively expressed in the 

RPE, whereas isoform 1 (TR-F4/R3) is transcribed at a higher level in the RPE and at 

a lower level in the retina (Figure 14). 
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Figure 14: RT-PCR expression analysis of the 2 novel isoforms of TRPM3. Top: 
Isoform 2 with primer pair TR-F4/R4. Middle: isoform 1 with primer pair TR-F4/R3 
(Figure 12). GUSB served as a control for cDNA integrity. 

 

4.4.2 Analysis of MGC2477 gene 

4.4.2.1 Isolation and characterization of the MGC2477 gene 

RPE3-E5, the EST from our subtracted bovine cDNA was found to show a restricted 

expression in the retina and RPE. RPE3-E5 showed homology to the predicted gene 

MGC2477 which is localized on chromosome 11q12.3 (NM_024099). Other cDNAs 

from the public databases, AW603671, and BF028466 showed homology to the same 

predicted gene. Alignment of the 3 ESTs to genomic sequences showed overlapping 

fragments with high homology to the coding region of the predicted gene spanning 

exon 2-6, interrupted by genomic sequences indicating a partial cDNA from a single 

gene.(Figure 15 A,B). 9 retina libraries including, DKFZ1, DKFZ2, DKFZ3, DKFZ4, 

CIF1, CIF2, CIF3, HRλGT10V, HRλTEx2V and one foetal brain library 

(HFBλGT10) (Appendix, Table 6) were PCR screened using primer pair 3-E5F2/R.   
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Positive signals were detected in DKFZ3 and HRλGT10V libraries (Figure 16). 

DKFZ3 library was screened using 4 gene specific primers 3-E5F2, F3, R, R2 and 2 

library specific primers including the Lambda triple 5′ (LT, 5′) and the Lambda triple 

3′ (LT, ′3 ) (Figure 15).(For LT, 5′ and LT, 3′ sequence see Appendix Table 7). 
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Nested primers 3-E5F2/R were used to PCR amplify the PCR product of library 

screening (3-E5R/LT, 5′ and 3-E5F2/LT, 3′) (Figure 17). The resulting fragment of 

876 bp was directly sequenced (Figure 15, C). 

 

32 1kb   1      BP

876

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17: PCR amplification using 3-E5F2/R primers (Figure 15). Lane 1: 
template 3-E5R/LT, ′5 (dilution 1:30). Lane 2: template3-E5 F2/LT, 3′ (dilution 
1:30). Lane 3: template retina cDNA as control. 1 Kb = I kilo base ladder. 

 
 
 
To extend the transcript in the 5′ and 3′ direction 2 pairs of nested primers LT, 5′/3-

E5R2 and 3-E5F3-LT, 3′ were used to PCR amplify the DKFZ3 retina library. The 

PCRs added 23 bp in the 5′ UTR and 57 bp in the 3′UTR respectively. To further 

extend the cDNA fragment, 3-E5F1 primer was designed in exon 1 and the fragment 

3-E5F1/R2 was PCR amplified from retina cDNA yielding an overlapping fragment 

of 920 bp. The assembly of all fragments resulted in a cDNA fragment of 1619 bp 

with 2 ORFs. 

4.4.2.2 Genomic structure  

Alignment of the 1619 bp transcript to genomic DNA identified 6 exons, with exon-

intron splice boundaries following the consensus GT/AG rule (Table 16). Two ORFs 

were identified by the ExPASy translation tool. ORF 1 with a putative translation start 

codon ATG located in exon 1, at 516 bp downstream of the 5′ end of the transcript 

and lies in a sequence context in accordance with the Kozak rule (Kozak, 1996). An 

in-frame stop codon TGA is located 36 bp upstream from the transcription initiation 

start codon ATG and a termination stop codon TAG is located in exon 6 followed by 

312 bp of 3′ UTR. A putative polyadenylation signal (AAUAAA) is located at 291 bp 
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from the stop codon (TAG). The second ORF has a transcription initiation start codon 

ATG in exon 3 at 907 bp downstream from the 5′ end of the transcript. An in-frame 

stop codon TAA is located 42 bp from the start codon and a termination stop codon 

TAA lies in exon 6 followed by 233 bp of 3′ UTR. The putative polyadenylation 

signal (AAUAAA) lies at 212 bp from the stop codon (TAA). 

 
 
 
 
 
 
 
 
 
 
 
 
 

a size of the exon with reference to 3-E5F1/R2 PCR analysis and includes a 5′UTR of 571 bp. 
b size of the last exon with reference to the polyadenylation signal AATAAA, and includes a 
3′UTR OF 297 bp. 

Exon 1            721a                                                  CATTCAGgttagta                     78    
Exon 2            163         tattcagGATTTCT                GAGCCAGgtgaggg               1893   
Exon 3            225        atcccagGCTGGGC                TTTGAGGgtaagta                  2549  
Exon 4            125       ccggcagGAGCTGA               AGCGGGCgtaagta                1513   
Exon 5              98        ccatcagGTCCAGT                ATGGAAGgtgaggc                     76   
Exon 6  328                b tactcagTGGAAGC         

Exon  size b         p  3′ s   plice acceptor 5′ s               plice donor  intron size             (kb) 

Table 16: Exon –intron structure of MGC2477 

4.4.2.3 Protein analysis 

ORF 1 is translated into 263 amino-acids with a molecular weight of 28.8 kDa and 

ORF 2 is translated into a 159 amino-acid peptide with a molecular weight of 18.4 

kDa. Searches in protein and motif databases revealed no significant homology or 

similarity with known proteins or motifs, for both ORFs. 

4.4.2.4 Expression analysis 

Northern blot analysis for the bovine RPE3-E5 EST was performed. The results show 

expression of the transcript in retina and RPE (Figure 18) but not in heart, liver, brain, 

kidney and lung. 
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Figure 18: Northern blot for the MGC2477 gene. RPE3-E5 bovine EST (Figure 15, spanning exon 3, 4, 
and 5) was hybridized with a membrane containing mRNA from bovine heart, liver, brain, retina, RPE, 
kidney and lung. RNA integrity was checked with GAPD. 
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RT-PCR was performed using total RNA from 6 human tissues including brain, heart, 

lung, retina, RPE and placenta to generate first strand cDNAs. 3-E5F2/R primers were 

used for PCR across the cDNA panel. Abundant expression was found in retina as 

well as low signal intensity in brain and the other tissues tested (Figure 19). 
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Figure 19: RT-PCR analysis of the MGC2477: RT-PCR analysis was performed 
using 3-E5F2/R human primers (Figure 15) to amplify PCR product across a panel of 
human cDNA derived from brain, heart, lung, retina, RPE and placenta. The result showed 
abundant expression in retina and low signal in brain and the other tissues tested. 
cDNA integrity was checked with GUSB human primers. 

4.4.3 SNPs identification in the MT-protocadherin gene 

RPE10-B10, the bovine EST from our RPE subtracted cDNA library had a restricted 

expression in RPE and retina (Figure 11, Table 13). The EST showed homology to the 

MT-Protocadherin gene which was assigned to chromosome 10-q22.1-q22.3 

(NT_030059, NM_033100). The gene is comprised of 17 exons spanning 24.9 kb of 

genomic sequence and encoding an mRNA transcript of 5337 bp. SNPs were 

identified by screening all of the exons and exon–intron boundaries of the gene, plus 5 

kb upstream and downstream of the start and stop codon of the gene (for primers and 

conditions see appendix table 1). In total 35 SNPs were identified (Table 17), 3 SNPs 

in the 5′ UTR, 13 in the intervening sequences, 2 synonymous SNPs in exon 6 

(A477G, Ala159Ala), and exon 17 (T2439C, Thr813Thr), and 17 SNPs in the 3′UTR. 

Of the 35 SNPs, 28 SNPs are highly frequent, with frequencies of the minor allele 

ranging from 0.17-0.5%. 5 SNPs were in linkage disequilibrium (blue background 

Table 17). 
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SNPs from the public databases were compared to SNPs identified in this study 

(Table 18). 28 SNPs were found in the public databases, of these 28 SNPs, one was 

validated by frequency, one validated by submitter and 26 have no information. The 

SNP validated by frequency was confirmed in this study. The SNP validated by 

submitter was not validated in this study and of the 26 SNPs with no information, 11 

were validated by frequency in this study and 15 were found not to be polymorphic. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5UTR 5UTR1 -4111T>C 33/90 0.37   
5UTR 5UTR5 -2195T>C 1/8 0.13   
5UTR 5UTR8 -297T>C 6/16 0.38   
Intron Exon2  IVS2+95C>T 2/16 0.13   
Intron Exon4  IVS3-86A>G 3/16 0.19   
Intron Exon4  IVS4+89C>A 26/94 0.28   
Intron Exon6  IVS5-61T>C 44/96 0.46   
Intron Exon6  IVS5-83T>C 42/96 0.44   
Exon  Exon6  A477G(A159A) 44/96 0.46 rs4933975 
Intron Exon6  IVS6+129A>G 2/16 0.13   
Intron Exon6  IVS6+225A>G 44/96 0.46 rs4933976 
Intron Exon7  IVS7+82A>G 6/16 0.38   
Intron Exon8  IVS7-86T>G 44/96 0.46   
Intron Exon8  IVS7-97A>G 1/86 0.01   
Intron Exon9 IVS8-153C>T 2/12 0.17   
Intron Exon14 IVS14+6T>C 1/14 0.07   
Intron Exon14 IVS13+426G>A 28/96 0.29 rs4933978 
Exon17 Exon17 T2439C(T813T) 43/94 0.46 rs3814213 
3UTR 3UTR1 +173A>C 5/16 0.31   
3UTR 3UTR2 +869G>T 30/66 0.45  
3UTR 3UTR3 +907A>G 25/96 0.26  
3UTR 3UTR3 +1270G>A 2/76   0.026   
3UTR 3UTR7 +2588C>A 41/92 0.45 rs1059341 
3UTR 3UTR7 '+2589G>A 11/90 0.12   
3UTR 3UTR7 +2643A>T 23/84 0.27 rs1059342 
3UTR 3UTR7 +2798A>G 44/96 0.46   
3UTR 3UTR7 +3020G>A 14/80 0.18   
3UTR 3UTR9 +3768G>C 7/14 0.50 rs2279229 
3UTR 3UTR10 +4199G>C 44/96 0.46 rs4424615 
3UTR 3UTR10 +4346T>A 15/84 0.18 rs4562751 
3UTR 3UTR10 +4432 38/78 0.49 rs4562752 
3UTR 3UTR10 +4562G>A 37/78 0.47 rs4244947 
3UTR 3UTR10 +4614C>T 21/78 0.27  
3UTR 3UTR11 +4614C>T 20/96 0.21  
3UTR 3UTR11 +4855T>A 36/82 0.44 rs4933980 

    Location      Name of            Position and                Frequency       Frequency of        SNP ID      
                        PCR fragment   nucleotide change         (alleles)          minor allele            

Table 17: SNP card of the MT-protocadherin gene 

Blue background = SNPs in linkage disequilibrium. 
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Blue background = indicate these SNPs are in linkage disequilibrium 

SNP ID            lab               5' flanking               3' flanking                Validation  DNA   Validation  Frequency    
                        name            sequence                 sequence                  (P.D.B)*     change  in lab        of minor      
                                                                                                                                    allele    

rs730442       2256 GCACCATCCG ATTGAGTGGC No-info C/G        - 
rs1059341     +2588 GCTGTCTGCT GGTCCCAGTA No-info C/A By-freq    (0.45%) 
rs1059342     +2643 GCCTCCAGGG AAGAGCTGGG No-info A/T By-freq    (0.27%)     
rs960731 IVS10+475 CTAGAGCCGG CATGTGACCT No-info  T/G        -  
rs3814213     2439 CCGTGCCTAC GTCTCTGGCT No-info T>C By-freq    (0.46%) 
rs3814212    +4 CTTCTAGTGT TGCCCTATGA By-sub A/C       - 
rs2279229 +3768G>C CCTGAATGAG TTCGGTTATT By-freq. C/G By-freq    (0.5%) 
rs4933975  A477G AGGTCCATGC GTGGACAGGG No-info  A/G By-freq    (0.46%) 
s4399278   +760 AGAGGTAGCC TAAAGGCAAC No-info C/T       - 
rs4933979   +1467 TACAAATAGG TGTGCCCTGC No-info A/T       - 
rs4933313 IVS13+188 CTCACAGGAC GTAATGAGGA No-info A/T       - 
rs4606427 IVS9+136 AAGGGCTGTG CCAAGACAAG No-info A/G       - 
rs4606431 IVS6-324 AGATTACTCC CAGACATTGC No-info A/G       - 
rs4933972 IVS2-278 CTACAGTTAG CACGGCAGAC No-info A/G       - 
rs4933973 IVS5+376 ACATATGCTT CTATATCCTA No-info C/T       - 
rs4933974 IVS5+488 GGTAACTATC TTTTAATAGC No-info A/G       - 
rs4933976 IVS6+225 TCCCTCTTCC ACGTCCCCAG No-info A/G By-freq    (0.46%) 
rs4933977 IVS9-9 GGTGCATCTC CTTGACAGGG No-info C/T       - 
rs4933978 IVS13+426 GGGCATGGGA CTGCCAACAT No-info A/G By-freq    (0.29%) 
rs4528260 IVS3-294 TCGACATCTC CCTCACTGTG No-info A/G       -  
rs4244946 IVS16+161 CTTTGGAAGC GGTTGAGTTT No-info A/G       - 
rs4562751 +4346 ACTTTGTATG TAAAAAAAAA No-info A/T By-freq    (0.18%) 
rs4562752 +4432 AGAACACTAA   GTACTATTAT No-info G/T    By-freq    (0.49%) 
rs4593957 +5303 CATATCAATC CCCTTGATGC No-info C/T        - 
rs4424615 +4199 TTAATAAGAT TGATATTCCA No-info C/G By-freq    (0.46%) 
rs4933980 +4855 TTTGCTTGGC TGAAGGTCTG No-info A/T By-freq    (0.44%) 
rs4933981 +5142 AAAACCATCA ATCTTTTGAG No-info A/G         - 
rs4244947 +4562 GCCAGGGTCT TTCTTGCATC No-info A/G By-freq    (0.47%) 

Table 18: Validation comparison of SNPs in public databases versus SNPs in the present study in 
the MT-Protocadherin gene 

 * = public databases, - = found not to be polymorphic. 

4.4.4 SNPs identification in the TRPM3 gene 

The chromosomal localization of TRPM3 is 9q21.12 and comprised 24 exons 

spanning 311 kb. The long isoform isolated in this study contains 8 exons spanning 

92.6 kb. All of the 8 exons, exon–intron junctions, plus 5 kb upstream of exon 1 and 5 

kb downstream of the stop codon in exon 8 were screened for SNPs. In total, 35 SNPs 

were identified. Of these, 30 were highly frequent (0.17-0.5%), and 14 were novel. 

The localization of the SNPs is as follows; 3 in the 5′ UTR, 3 in the exons, 27 in the 

intervening sequences, and 2 in the 3′ UTR (Table 19). 

In the public databases 114 SNPs were found in TRPM3 gene, only 40 SNPs were 

included in this study. Of these 40, 5 SNPs were validated by frequency and 35 SNPs 

have no information in public databases. In the current study, the 5 validated by 
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frequency were confirmed by frequency. Of the 35 SNPs with no information, 16 

were validated by frequency, and 19 were shown not to be polymorphic (Table 20). 

 
 
 

Table19: SNP card of the TRPM3 gene 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5UTR TR-5UTR2 -6987A>T 3/16 0.19  
5UTR TR-Exon1 -6095C>T 6/16 0.38 rs2993010 
5UTR TR-Exon1 -5768C>A 5/16 0.31 rs3812532 
Intron2 TR-IVS2.1 IVS2+515C>T 4/16 0.25  
Intron2 TR-IVS2.1 IVS2+532C>T 4/16 0.25  
Intron2 TR-IVS2.1 IVS2+793G>A 2/16 0.13 rs2152757 
Exon4 TR-Exon4 A171T 6/16 0.38   
Intron4 TR-IVS4.1 IVS4+775G>A 6/16 0.38   
Intron4 TR-IVS4.1 IVS4+1127C>T 6/16 0.38 rs1337027 
Intron4 TR-IVS4.2 IVS4+1333T>C 2/16 0.13 rs1337029 
Intron4 TR-IVS4.2 IVS4+1596G>A 6/16 0.38   
Intron4 TR-IVS4.2 IVS4+1659T>A 6/16 0.38   
Intron5 TR-Exon5 TR-IVS5+58T>C 6/16 0.38 rs1337030 
Intron5 TR-Exon5 TR-IVS5+87C>T 6/16 0.38 rs1337031 
Intron5 TR-IVS5.2 IVS5+3623G>T 6/16 0.38 rs1415228 
Intron5 TR-IVS5.2 IVS5+3636A>G 4/12 0.33 rs1415229 
Intron5 TR-IVS5.2 IVS5+3689T>C 7/16 0.44 rs1415230 
Intron5 TR-IVS5.2 IVS5+3955T>A 2/16 0.13  
Intron5 TR-IVS5.3 IVS5+9784A>G 2/16 0.13  
Intron5 TR-IVS5.3 IVS5+9864G>A 6/16 0.38 rs2275242 
Intron6 TR-Exon6 IVS6+39A>G 4/10 0.4 rs1034533 
Intron6 TR-Exon6 IVS6+128C>T 3/10 0.3 rs1034539 
Intron6 TR-IVS6.2 IVS6+865A>G 5/16 0.31 rs1034543 
Intron6 TR-IVS6.3 IVS6+4752G>A 8/16 0.5 rs579587 
Intron6 TR-IVS6.3 IVS6+4939C>T 3/16 0.19  
Intron6 TR-IVS6.4 IVS6+6300A>G 4/16 0.25 rs505107 
Intron6 TR-IVS6.4 IVS6+6407A>T 4/16 0.25 rs506067 
Intron6 TR-IVS6.5 IVS6+7842C>T 3/14 0.21 rs561022 
Intron6 TR-IVS6.5 IVS6+8178G>A 4/16 0.25 rs564929 
Intron7 TR-IVS7.2 IVS7+756C>T 5/16 0.31   
Intron7 TR-IVS7.4 IVS7+6038A>G 7/16 0,44 rs1328148 
 Exon8 TR-Exon8 A910G 2/12 0.17  
 Exon8 TR-Exon8 T698G 1/16 0.06  
 3UTR TR-3UTR1 +356A>G 4/16 0.25   
 3UTR TR-3UTR3 +1406C>T 6/16 0.38 rs879857 

    Location      Name of            Position and               Frequency       Frequency of        SNP ID      
                        PCR fragment   nucleotide change         (alleles)          minor allele            
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* = public databases. 

SNP ID            lab               5' flanking               3' flanking                Validation  DNA   Validation  Frequency    
                        name            sequence                 sequence                  (P.D.B)*     change  in lab        of minor       
                                                                                                                                    allele    

rs1034543 IVS6+865 GAAAGGTAGC TCATCAAAAC     By-freq. A/G By-freq.   (0.31%) 
rs1337031  IVS5+87 AAAATGTGCA ATTATAGTAT  By-freq. C/T By-freq    (0.38%) 
rs2152757 IVS2+793 TCATTGTTTC TCAAGAACAC  By-freq. G/A By-freq    (0.13%) 
rs2275242 IVS5+9864 ACTATTCTGC TTAACTTGAA  By-freq. G/A By-freq    (0.38%) 
rs505107 IVS6+6300 ATATAAGTTC  ACCAACTTAA  By-freq.  A/G By-freq    (0.25%) 
rs2011851 IVS6+350 CTTTTTGGTG CTAAACAGAA  No-info. A/G         - 
rs2011853 Ivs6+311 CATGGTACTC AGGAGAAAA  No-info C/T        - 
rs1034533 Ivs6+39 GCTCGTAGGA GTATGCTGAA  No-info A/G By-freq    (0.4%) 
rs1034539 IVS6+128 TTATTTCTAC GGGCCAGAGC  No-info C/T  By-freq    (0.3%) 
rs1034542 IVS6+406 CTGGCTGTGC AAGGCATTTC  No-info A/G        - 
rs1410372 IVS6+804 TCTTAAGCGC TAGGAATCTC  No-info A/G        - 
rs1415227 IVS5+3133 AAAAAATAAA CTTTTAGCAT  No-info A/C         - 
rs1415228 IVS5+3623 ACTTGTCCTT AGTGTGCTTC  No-info G/T By-freq     (0.38%) 
rs1415229 IVS5+3636 TGTGCTTCTA ATCTTCTGAA  No-info A/G By-freq     (0.33%) 
rs1415230 IVS5+3689 CTGGGCTTCA GTTACTTAAG  No-info C/T By-freq     (0.44%) 
rs1337027 IVS4+1128 TCTCAAAAAA AAAAATAACA  No-info C/T By-freq     (0.38%) 
rs1337028 IVS4+1202 AGACCTACAC GAGAATTCTC  No-info C/T         - 
rs1337029 IVS4+1342 GCCCATACAC GACATGATCT  No-info C/T By-freq     (0.13%)   
rs1337030 IVS5+58 ATCAGAAAAG ATAATAAAAT  No-info C/T By-freq     (0.38%) 
rs1337032 IVS5+3097 CATTTTATAT ATAAAAATCA  No-info A/G         - 
rs3750404 IVS5-101 GTACCACAGA CTGATGTTCT  No-info A/T         - 
rs561022 IVS6+7842 GAGACTATAT TTGAAATATT  No-info C/T By-freq     (0.21%) 
rs879857  +1406 ATGTTGGTCA GGACCACAGG  No-info C/T By-freq     (0.38%) 
rs2993009 IVS1+252 CCTTTTTCCT AGTTAGTGGA  No-info G/A         - 
rs1983943 IVS7+6591 AGTAGCTCCA GTATTTAAGA  No-info C/T         - 
rs2993010  -6095 ACCCAGAATC CTTTTGCCAG  No-info A/G By-freq     (0.38%) 
rs3812530  -7222 CAGAGGATTA GGAAAAATGA  No-info T/C         - 
rs3812532  -5768 TGTTAAGCTG CCTGCTGAAG  No-info A/C By-freq      (0.31%) 
rs564929 IVS6+8178 GACCTTACAG TATACCTATT  No-info A/G By-freq      (0.25%) 
rs560819 IVS6+7769 ATAAATGGCA TAGGATTTTT  No-info T/C         - 
rs505221 IVS6+6338 AGTAGCTGCT AATAAACATG  No-info C/T         - 
rs1831144 +1299 GCTAGGGATA AGTGGATTAA  No-info C/T         - 
rs506067 IVS6+6407 CTATGTATCC GATAAGAATT  No-info A/T By-freq      (0.25%) 
rs579587 IVS6+4752 GAGGCTCATG GCAGCAGCCT  No-info A/G By-freq      (0.5%) 
rs1328142 IVS7+607 ACAGCCCAAA CCCCCAACCC  No-info G/T         - 
rs1328146 IVS7+5703 GAATAAGGCA GGCCCTAGCT  No-info C/G          - 
rs1328147 IVS7+5720 AGCTATCAAG ACTTTATAAT  No-info A/T         - 
rs1328148 IVS7+6038 TCTAAATAAG TTGAAGAAAA  No-info A/G By-freq      (0.44%) 
rs1328149 IVS7+6113 GTGTGTGTGT TGTGTCTGTT  No-info C/G         - 
rs1328150 IVS7+6223 TGTGTGTATA ATATGCTTAA No-info A/T         - 

Table 20: Validation comparison of SNPs in public databases versus SNPs in the present study in 
the TRPM3 gene  

4.4.5 SNP identification in the MGC2477 gene 

The predicted gene is comprised of 6 exons spanning 13.7kb of genomic sequence. 

All exons, exon-intron junctions, intronic sequences and 5 kb of up and downstream 

of the gene were screened for SNPs. 15 SNPs were identified, 8 in the 5′UTR region, 
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3 in the intervening sequences, and 4 in the 3′ UTR. Of the 15 identified SNPs, 13 

were highly frequent (0.25-0.44%) and 10 were novel (Table 21). 

Comparison of 18 SNPs from the public databases with SNPs identified in this study 

(Table 22) revealed that 2 SNPs validated by frequency in the public database 

(rs7386, s13941) were confirmed by frequency in this study. Of the remaining 16 

SNPs with no information, 4 were validated by frequency (rs489778, rs693698, 

rs597259, rs3809079) and 12 were found not to be polymorphic. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    Location           Name of                          Position and          Frequency  Frequency of     SNP ID        
                             PCR fragment                 nucleotide change  (alleles)     minor allele            

5UTR MGC-5utr1 -2066C>T 7/16 0.44  s13941 

5UTR MGC-5utr2 '-1392C>T 1/96 0.01   

5UTR MGC-5utr2 -1343C>T 27/96 0.28  

5UTR MGC-5utr2 -1316A>C 27/96 0.28  rs693698 

5UTR MGC-5utr2 -1247 A>G 26/96 0.27  

5UTR MGC-5utr3 -995C>A 7/16 0.44   

5UTR MGC-EXON1 -144C>G 7/16 0.44  rs489778 

5UTR MGC-EXON1 -84G>C 1/16 0.06  

Intron2 MGC-EXON2 IVS2+113G>A 7/16 0.44   

Intron3 MGC-IVS3.1 IVS3+822C>T 5/16 0.31  

Intron5 MGC-EXON5-6 IVS5+49T>A 7/16 0.44  rs597259 

3UTR MGC-EXON5-6 +266C>T 6/16 0.38  rs7386 

3UTR MGC-3UTR1 +676C>T 4/16 0.25   

3UTR MGC-3UTR2 +1020A>T 7/16 0.44   

3UTR MGC-3UTR2 +1038A>T 7/16 0.44   

Table 21: SNP card of the MGC 2477 gene 

 
 
 
 
 
 
 
 
 
 



                                                                                                                      Results      63

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

rs7386 +266 TGGAGAAGGG CTCTCTAGCA by-freq. C/T  By- freq.  (0.385) 
s13941 -2066 GACCTCCCGC GGCGCCGCCT by-freq. G/A   By- freq.  (0.44%) 
rs494164 194 GTGGAATCCA TGAGGTGAAT No-info G/C         - 
rs489778 -144 ATTTTCCCCT CCCTGAAAGC No-info G/C   By- freq. (0.44%) 
rs693698 -1316 GTCACCCGCG GTTTTCAACA No-info  G/T   By- freq. (0.28%) 
rs694082 IVS3+1159 GTCACTTGGT TATGTCGCCA No-info A/G        - 
rs597259 IVS5+49 TTTATTTGGG TAATACTTCC No-info A/T   By- freq. (0.44%) 
rs567069 +483 GCTCACGCCT TAATGCCAGC No-info  A/C           - 
rs483343 +1109 GGCATAATCT GGCTCACTGC No-info G/T           - 
rs3809078 -1327 GTCACCCGCG GTTTCCTGC No-info G/T           - 
rs3809079 -1343 CCGAGCTGTG TCTGTGGTTT No-info A/G  By- freq   (0.28%) 
rs669760 -908 TATTGCTTTT GTTTTGCTTC No-info G/T           - 
rs2956136 IVS4+481 AGCCTGGGCC CAGAGTGAGA No-info G/T           - 
rs4489748 IVS3-370 TACAGCTAAA CCACACTTAC No-info C/T           - 
rs2467644 +1902 TGATCTGCCC CCTCAGCCTC No-info C/T           - 
rs4963305 +4405 AAAAAACAAA AAAAAAAACG No-info G/T           - 
rs588121 +2835 AGTGGTTTTT     TTTGTTTTCT No-info G/T           - 
rs2730029 +4774 CAGGAGAATG CGTGAATCCG No-info A/C           - 

* = public databases. 

SNP ID            lab               5' flanking               3' flanking                Validation  DNA   Validation  Frequency    
                        name            sequence                 sequence                  (P.D.B)*     change  in lab        of minor       
                                                                                                                                    allele    

Table 22: Validation comparison of SNPs in public databases versus SNPs in the present study in 
the MGC2477 gene 
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5. DISCUSSION 

Age related macular degeneration is the leading cause of visual impairment and legal 

blindness in elderly people over 65 years of age in the Western Europe, Australia, 

Japan, and the United States of America (Ambati et al., 2003). The aetiology of the 

disease is still poorly understood (Souied et al., 1999). 

The current AMD treatment modalities do not cure the manifestations nor do they 

alter the progress and prognosis of the disease. Drusen regression and resorption has 

been observed following argon laser photocoagulation (Figueroa et al., 1994). 

However, the incidence of choroidal neovascularization development is increasing in 

those who receive laser treatment (Choroidal Neovascularization Prevention Trial 

Group 1998). To date, the value of prophylactic laser therapy is not conclusive and 

further studies are in progress in many centres (Algvere and Seregard, 2002). 

Other treatment modalities are directed towards choroidal neovascularization in an 

attempt to alter the formation of the new blood vessels which are responsible for 80% 

of AMD blindness. Radiation therapy is based on the fact that ionising radiation 

affects new blood vessels more than mature vessels (Archer et al., 1991). 

Consequently, the highly sensitive new capillaries are regressing without damaging 

the surrounding tissues (Chong and Bird, 1998). However, many of the radiation 

therapy studies conducted thus far are small, non-randomized, and have no control 

cohorts (Ciulla et al., 1998). Also some of those who received radiation therapy 

suffered more decrease in visual acuity than patients receiving other treatment 

modalities (Spaide et al., 1998). Photodynamic therapy (PDT) is based on the 

interaction between the systemically administered photosensitizing dye, oxygen 

molecules and the laser radiations. The reaction lead to the release of the free radical 

singlet oxygen which in turn activate a succession of physiological and chemical 

processes leading ultimately to permanent or temporary neovascular occlusion (Lange 

et al., 2001). Photodynamic therapy is only beneficial for a small percentage of 

patients with choroidal neovascularization, particularly those with small lesions. 

Furthermore, patients treated with photodynamic therapy complain of increased 

sensitivity for bright light, and they have to wear special clothing and protective 

sunglasses (Algvere and Seregard, 2002). Several surgical interventions have been 

developed. The retinal relocation procedure involve a complete retinal detachment by 

applying subretinal infusion, followed by moving and relocating the fovea to a place 
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with less degenerate retinal pigment epithelium. However, there are no clear 

improvements, and the outcome is unpredictable. Furthermore, some patients even 

have developed vitreoretinopathy (Ambati et al., 2003). Several drug therapy 

modalities have been proposed. Interferon α is known to have inhibitory effects on the 

proliferation and migration of vascular endothelial cells, which are essential for 

neovascularization. Upon administration to non-human primates with induced 

angiogenesis, a reduction of iris neovascularization was observed (Miller et al., 1993). 

Double-blind multicenter trials, were conducted to analyse the effects of interferon α 

on human AMD patients with CNV, but without benefit or improvement 

(Pharmacological therapy for macular degeneration study group, 1997). Similarly, in 

vitro experiments have shown that thalidomide inhibits RPE cell proliferation induced 

by platelet-derived growth factor (PDGF), basic fibroblast growth factor (bFGF), and 

vascular endothelial growth factor (VEGF) (Kaven et al., 2001), but no reduction or 

decrease in angiogenesis was reported in AMD patients (Maguire et al., 2001). There 

is very limited success for the treatment of the exudative form. Patients with the wet 

form are the minority group, and within this minority half of those who are eligible 

for treatment suffered persistent or recurrent CNV during 3 years of follow up 

(Macular Photocoagulation Study Group, 1994). Those who present with subretinal 

haemorrhage or retinal pigment epithelium detachment are not eligible for such 

treatments (Freund et al., 1993). 

The dry form of the disease is more prevalent than the wet form. Unfortunately, there 

is no satisfactory treatment for all of its presentation modalities including hard drusen, 

soft drusen and geographic atrophy. There are clear limitations in all forms of the 

current treatment modalities. 

As life span is increasing, it is expected that AMD will represent a major health 

problem. In addition, AMD patients with vision loss in one or both eyes are 

emotionally distressed as their quality of life is reduced and they need help for their 

daily life activities (Williams et al., 1998). Thus, it is extremely important to identify 

factors that influence the development and progression of AMD. Once such factors 

are identified, they could be modified such as changing the life style or rectified 

through medical interventions to reduce the risk or alter the course of AMD 

development and progression (Hawkins et al., 1999). There is strong need to 

understand the pathogenesis and mechanisms which are underlying the various AMD 
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manifestations such as geographic, CNV, disciform scaring, and photoreceptor 

apoptosis. 

Unravelling the secrets of these processes would pave the way for novel therapeutic 

modalities (Ambati et al., 2003). As a first step, understanding the genetic component 

of AMD would be of paramount importance in elucidating the pathogenesis and the 

mechanism of the disease. In this regard the accumulating knowledge about 

monogenic retinal dystrophies and the approaches undertaken to unravel these 

diseases, could be used to complement and highlight the areas and directions where 

the efforts should concentrate. In recent years, more than 50 monogenic non-

syndromic retinal dystrophy genes have been mapped and cloned (Table 1). Several 

genes were identified using the positional cloning/positional candidate gene approach 

such as the VMD2 gene responsible for Best disease (Marquardt et al., 1998, 

Petrukhin et al., 1998), the tissue inhibitor of metalloprteinases-3 (TIMP3) gene 

associated with Sorsby fundus dystrophy (Weber et al., 1994), the RS1 gene leading 

to X-linked juvenile retinoschisis (Sauer et al., 1997) and the rhodopsin gene causing 

autosomal dominant retinitis pigmentosa, autosomal recessive retinitis pigmentosa 

and autosomal dominant congenital stationary night blindness.( Dryja et al., 1990, and 

1993, Rosenfeld et al.1992,). Application of classical molecular genetic approaches to 

AMD is hampered by several factors. Firstly, AMD is a late onset disease, the fact 

which makes linkage analysis difficult due to limitations in availability of enough 

family members (Zhang et al., 1996). Secondly, there appear to be strong 

environmental influences (Zack et al., 1999). Finally, the complex genetics of the 

disease and the possibility of genetic heterogeneity in which any given gene might be 

responsible for less than 5-10 % to AMD susceptibility. Genome–wide scans did not 

find significant evidence for linkage at a single locus (Gorin et al., 1999). 

There is a need for a more systematic approach. One such approach is a thorough and 

meticulous examination of ocular tissues known to harbour pathological features of 

age related macular degeneration. Typically, this could be achieved by looking at 

genes which are exclusively or preferentially expressed in those tissues. The 

assumption is that those genes play a vital and indispensable role in normal cell 

function in these tissues, and therefore any alteration in those genes may lead to 

malfunction and the appearance of pathological features. This fact is strengthened by 

the observation that most of the mapped and cloned monogenic nonsyndromic retinal 
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dystrophy genes are either specific or restricted in the retina or RPE (den Hollander et 

al., 1999) (Table 1). Part of the single-gene retinopathies is caused by ubiquitously 

expressed genes. This does not answer the question why the phenotype is localised 

exclusively to the retina and does not include other tissues. A reasonable answer could 

include the existance of as yet unidentified retina-specific modifier genes. The retina 

has been extensively studied, while thus far little attention has been given to the 

retinal pigment epithelium. Nevertheless mutations in genes which are exclusively or 

preferentially expressed in the RPE are thought to contribute to retinal disorders. 

Indeed, RPE 65 is expressed specifically in the RPE (Gu et al., 1997) and was shown 

to cause autosomal recessive Leber congenital amaurosis, and autosomal recessive 

retinitis pigmentosa. Other RPE disease genes include the retinalaldehyde binding 

protein 1 (RLBP1) associated with autosomal recessive retinitis pigmentosa (Maw et 

al.,1997), as well as other rare retinal dystrophies (Burstedt et al., 1999, Eichers et al., 

2002) and the rhodopsin homolog gene (RGR) leading to autosomal recessive retinitis 

pigmentosa (Morimura et al., 1999). 

Functional genomic approaches are powerful tools to study and evaluate for example 

variations in transcript expression. ESTs derived from a specific cell or tissue can 

provide useful information about differential expression of genes and the 

transcriptome of that cell or tissue (Bortoluzzi et al., 1998). There are several methods 

used to identify and isolate differentially expressed genes, among these enzymatic 

degradation subtraction (Zeng et al., 1994), representational difference analysis 

(RDA) (Lisitsyn, 1995) and differential display (Liang and Pardee, 1992). However, 

they all reveal limitations. As an example, analysis in the differential display method 

is mainly focused in differences at the 3′ region, leaving differences at the 5′ region 

undetected. Also, throughout the subtraction process the concentration of the 

differentially expressed genes remain disproportional, the fact which increases the 

difficulty in isolating rare transcripts. Similarly, RDA is also limited in resolving the 

problem of differences in the abundance of transcripts, so multiple rounds of 

subtractions are needed (Von Stein et al., 1997). 

The suppression subtractive hybridization is a promising new tool. With this method 

redundant sequences are normalised through the hybridization step. Also, the 

technique enriches for the rare transcripts (Diatchenko et al., 1996). Transcripts which 

may exist in single copy in the cell are enriched and can be identified. Thus, there is 
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potential for novel gene or splice variant discovery. Interest has increased in 

alternative transcripts and alternative splicing as a major source of diversity (Wistow 

et al., 2002). Splice variants could have an important biological function. It has been 

speculated that in postmitotic cells such as the RPE, mis-splicing or splicing errors 

could result in accumulation of aberrant transcripts or proteins in the cell, leading 

ultimately to detrimental effects on cell function. Besides the novel genes and novel 

splice variants, analysis of the RPE cDNA subtracted library could help in 

cataloguing the normal collection of genes which are functionally active in the retinal 

pigment epithelium (Wistow, 2002). This could help understand the mechanisms and 

pathways involved in the physiology of RPE and retina. Furthermore, some of these 

genes could qualify as AMD candidate genes.  

In order to construct an RPE cDNA library of high quality, large quantities of RPE 

cells are needed, with excellent quality and not contaminated with the adjacent tissues 

such as the choriocapillaris and the retina. As these conditions can not be achieved 

with RPE from human eyes, bovine eyes were used for the present project. RPE cells 

from bovine eyes were recovered by gently brushing the tissue without disturbing the 

underlying choroid. Using bovine RPE-specific poly (A)+ RNA and bovine heart and 

liver poly (A)+ RNA, a normalised and enriched bovine RPE-specific cDNA library 

was constructed as described. From this library, a total number of 2379 differentially 

expressed bovine ESTs were generated. Pathway analysis of 341 known genes 

including 168 from the first phase and 173 from the second phase showed that they 

fall into different functional categories including cell structure/growth/maintenance, 

apoptosis, cell adhesion, cell signalling, energy/metabolism, lysosomal enzyme, 

phagocytosis, phototransduction, signal transduction, transcription/translation factors, 

ubiquitin pathway, RNA/DNA binding, chaperones, vitamin A cycle, oxidative stress, 

transport, unknown/unclassified group and a miscellaneous group containing several 

functional groups represented by a single or few clones each. The distribution of the 

functional pattern reflect the role of the RPE in remodelling of extracellular 

membrane (ECM), syntheses of various growth factors, pigments and enzymes, and 

its involvement in transport of nutrients, ions and retinoids. Pathway analysis of the 

mapped and cloned monogenic nonsyndromic retinal dystrophy genes (Table 1) 

showed that they fall into different functional categories such as phototransduction, 

cell to cell interaction, metabolism, RNA processing, phagocytosis, structure, 
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transport, vision, vitamin A cycle, and transcription factors. The functional profile of 

the known genes in this study is similar to the functional distribution of the 

monogenic nonsyndromic retinal dystrophy genes. The close similarity between the 

functional profiles gives a strong support that disease causing genes might exist 

within the collection of genes identified in this study. 

In order to conduct the differential screening, expression analysis was performed 

using reverse Northern blot hybridizations, as it’s a high throughput method where 

many genes can be analysed simultaneously. To insure high sensitivity for the 

experiment, the 186 known genes were included as controls, the 2 sets of membranes 

were duplicated, and genes such as Actin, GAPD and RPE-1 were sampled on the 

filter membranes more than once as controls. The finding of relatively low number of 

known genes (21) and unknown clones (10) in group I of the reverse Northern blot 

analysis is not surprising, because the library was normalised to limit the appearance 

of housekeeping genes. The appearance in this group of RLBP1 gene which is known 

to be expressed preferentially in the RPE (Kennedy et al., 1998) was unexpected. One 

explanation could be the signal intensity threshold applied by the software to separate 

the groups is so close, that the slightest decrease or increase may lead to a change in 

the group. Group II contains 260 clones (Appendix Table 4). Of these, 151 clones 

exhibited identity to known genes, while 109 were unknown transcripts. Among the 

known genes in this group is clone RPE23-C10 with identity to the tissue inhibitor of 

metalloproteinase 3 (TIMP3) associated with Sorsby fundus dystrophy, and clone 

RPE20A-E09 with identity to the optic atrophy 3 gene (autosomal recessive, with 

chorea and spastic paraplegia, OPA3) responsible for optic atrophy syndrome. The 

inclusion of these 2 genes in this group is expected as they are expressed in several 

tissues. The presence of 260 genes in this group may indicate that a sizable fraction of 

genes in the RPE are expressed at low levels, and this is consistent with the fact that 

the library was enriched for rare transcripts. Group III contains 27 clones with 14 

transcripts showing identity to known genes (Table 10), and some of these genes are 

known to be preferentially expressed in the RPE such as the retinal G protein coupled 

receptor (RGR), lecithin retinol acyltransferase (LRAT), and retinal pigment 

epithelium-specific protein-65 (RPE65) (Table 1). Furthermore, the above mentioned 

genes are associated with different retinal dytrophies (Table 1). Also, the membrane 

frizzled-related protein (MFRP) resides in this group. The MFRP is abundantly 
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expressed in the RPE and mutations in the MFRP mouse homolog gene cause 

autosomal recessive retinal degeneration-6 (rd6) (Kameya et al., 2002). The presence 

of known retinal dysrophy genes confirmes the validity of the library construction. 

Moreover, the existence of these genes in this particular group, is in accordance with 

the goals of the library construction as it was subtracted to allow for those genes 

which are  abundantly expressed in the RPE. A few retina specific genes were 

included in the 3 groups. The unc-119 homolog gene (unc119) appeared in group I 

and is known to be associated with dominant cone-rod dystrophy. In group II, three 

retina specif genes, associated with monogenic retinal dystrophies (Table 1) were 

present; clone RPE1-B06 with identity to ATP-binding cassette, sub-family A 

(ABCA4), clone RPE12-G07 with identity to guanine nucleotide binding protein, 

alpha transducing activity polypeptide-1 (GNAT1), and RPE10-D03 representing 

arrestin (SAG). In group III, the retinal degeneration slow (RDS) and rhodopsin 

(RHO) which both are monogenic retinal dystrophy genes (Table 1) were included 

(Table 10). The presence of retina-specific genes in an RPE subtracted library is not 

uncommon, as it is difficult to separate the retina from the RPE due to the tight 

adherence between them. (Den Hollander et al., 1999, Sharma et al., 2002).  

The results of the reverse Northern blot analyses facilitated the prioritization of the 

subsequent functional analyses of the RPE genes. Northern blot hybridizations were 

perfomed as a second step in expression analyses as it is more sensitive than the 

reverse Northern blot analyses, and at the same time deliver less false positives in 

comparison with the RT-PCR. After the final normalisation, 107 unique unknown 

transcripts were chosen for Northern blot analyisis. Total RNA used included RPE 

and retina to differentiate pricisely between these two tissues, heart and liver, as they 

were used in the subtraction process, and brain, kidney and lung as non–ocular 

tissues. Signals were detected for a total number of 53 (49.5%) clones (Figure 11). 

For 54 (50.5%) transcripts, evaluation was not possible due to absence or reduced 

quality of signals (Table 12). Out of the 53 transcripts, for which signals were 

detected on Northern blot hybrizations, 50 (94.3%) transcripts showed expression in 

RPE. Of these, 7 were identified as having specific RPE expression, 7 transcripts 

showed RPE and retina expression, 7 transcripts were considered to have a tissue 

restriced expession in RPE and one or more other tissues, and 29 clones with 
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ubiquitous expression. Only three transcripts have no RPE expression and these are 

the retina specifc clones (Table 13).  

This result confirms the findings of the reverse Northern blot analyses that sizable 

number of genes in the RPE are found at low level, and at the same time it proved the 

usefulness of the subtractive hybridization approach as a powerful tool for gene 

enrichment. Three clones (RPE1-D02, RPE10-B10, RPE10-D08) which showed 

restrcted expression in RPE and retina (Table 14) have been cloned and characterised 

by other groups during the course of this project. The cloning and characterisation of 

these three genes is a strong confirmation of the success of this project and a strong 

indication that other important genes could be identified. Furthermore, the RPE 10-

B10 which is known as the MT-Protocadherin has been identified as a retinal disease 

candidate gene (Sharon et al., 2002). Predicted genes and unknown human transcripts 

which showed exclusive or preferential expression in RPE (Table 13) may have 

specialised physiological role in the RPE. Some clones with detectable signals in 

Northern blot hybridizations showed no significant similarity in public databases 

(Table 13). The reason could be that these transcripts may have originated from the 

3′-untranslated region of the bovine gene, which is more likely to be less conserved in 

the orthologous human gene. The ubiquitously expressed genes are important similar 

to those which are specific or restricted to RPE, These genes could be splice variants 

of ubiquitously expressed genes and the probe taken for the Northern blot analyses 

happened to be from the conserved region between the isoforms. It is of interest that 3 

clones showed restricted expression in RPE/kidney and one clone is expressed only in 

RPE and liver. It is intriguing to know the physiological correlation between 

RPE/kidney and RPE/liver. It could be speculated that a gene specifically expressed 

in RPE and kidney would play a role in epithelial cell physiology as both tissues 

contain these cell types. On the other hand a gene restricted to RPE and liver might be 

important for metabolism such as lysosomal enzymes. The wide expressional picture 

in this bovine subtracted library reflects the diversity of genes which are present in the 

RPE and at the same time it shows the complexity of the mechanisms governing the 

physiological function of the tissue and the retina in general. Understanding the role 

and regulatory mechanisms of each of these genes will help us understand the 

physiology and pathology of the retina and retinal diseases. 
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Using functional genomic methods, like the one used in this study is a direct approach 

to identify candidate genes for complex genetic diseases. The hypothesis in this study 

is based on the suggestion that genes which are expressed in the RPE might play a 

role in the pathogenesis of AMD. The suggestion built on the fact that part of the 

AMD pathological features are manifested in RPE. To narrow down the number of 

candidate genes, a first step would be to eliminate genes which are not expressed in 

this mono-cellular layer. Implementing this step still leaves a considerable number of 

candidate genes. Functional information such as the expressional pattern could be 

used to prioritise genes for further screening. Typically, in this study genes which are 

exclusively or preferentially expressed in the RPE were selected as priority AMD 

candidate genes (Table 14). This does not preclude the widely expressed genes from 

being considered as potential candidate genes, as many of these genes are important in 

RPE or retinal physiology and function. Furthermore, some of the ubiquitously 

expressed genes were shown to cause retinal dystrophies (Table 1) such as the c-mer 

proto-oncogene tyrosine kinase gene (MERTK) associated with autosomal recessive 

retinitis pigmentosa (Gal et al., 2000), and prominin-1 gene (PROM1) responsible for 

autosomal recessive retinal degeneration (Maw et al., 2000). Further prioritization of 

candidate genes could be achieved by looking at the function of genes, as many 

retinal dystrophies are caused by mutations in genes falling into certain functional 

categories, such as phototransduction, transport, cell maintenance and structure, 

vitamin A cycle, transcription factors, and metabolism (Table 1). Other functional 

categories not previously shown to be associated with retinal disease have been 

suggested to play a role in retinal pathogenesis. These include oxidative stress, 

lysosomal enzymes, heat shock proteins (molecular chaperones), apoptotic and anti-

apoptotic molecules, and ubiquitin pathways (Appendix, Table 5). The RPE has 

several antioxidants defence mechanisms through which it can counteract the effects 

of the oxidative stress. Among these, the DNA repair mechanism through the DNA 

polymerase and ligase, antioxidant enzymes such as catalase, glutathione peroxidase, 

and superoxide dismutase, and antioxidant vitamins such as vitamin A, C and 

carotenoids (Winkler et al., 1999, Beatty et al., 2000). Kimura et al., (2000) reported a 

possible association between the exudative age-related macular degeneration and 

mutation in the manganese superoxide dismutase. However, the authors concluded 

that a larger and well controlled association study is needed to confirm their results. In 

this study several known genes with a possible role in the oxidative stress pathways 
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were identified, among these peroxiredoxin 1 (PRDX1) (RPE8-C5), microsomal 

glutathione S-transferase 1 (MGST1) (RPE24-B6), monoamine oxidase B (MAOB) 

(RPE3-D9), glutathione S-transferase M5 (GSTM5) (RPE23-E4), glutathione 

peroxidase 4 (GPX4) (RPE26-E8), ATX1 antioxidant protein 1 (ATOX1) (RPE12-

A6), and glutathione S-transferase M1 (GSTM1) (RPE8-H5). Molecular chaperones 

like the heat shock 90 KD (HSPCB) (RPE16-F3) identified in this study as well as 

others such as heat shock protein 70 KD (HSP70), heat shock protein 60 KD and 

(HSP60), and heat shock protein 27 KD (HSP27), are also known to participating in 

cell survival under stress conditions. Heat shock proteins help protein production 

through folding of the protein, then through transport and translocation to the final 

end stage of degradation for those proteins which are disrupted (Bukau and Horwich, 

1998). Many neurodegenerative diseases are caused by deposition of abnormal 

proteins in the brain (Sherman and Goldberg, 2001). Thus, heat shock proteins play an 

important role in cell survival (Parcellier et al., 2003). Bernstein et al., (2000) reported 

a decrease in mRNA level of HSP70 in the primate retina with aging. The authors 

stated that a decline in HSP70 levels renders the retina more susceptible to age–

acquired retinal disease. Similarly, Strunnikova et al. (2001) showed that HSP27 was 

expressed at high levels in ARPE-19 cells which were subjected to oxidant-mediated 

injury by hydrogen peroxide and myeloperoxidase. The study highlighted the 

importance of HSP27 in RPE protection from death and the authors suggested that 

HSP27 levels may play role in retinal diseases such as AMD. Recently it has been 

shown that the small heat shock protein α B-crystallin protects the RPE against 

oxidative stress by preventing the apoptotic cell death (Alge et al., 2002). Ubiquitin 

molecules are essential in various cellular processes such as transcriptional regulation, 

signal transduction and apoptosis (Hershko et al., 1998). In this study ubiquitin-

activating enzyme E1 (UBE1) (RPE-25-C3) has been identified. As Ubiquitin-

mediated proteolysis pathway has been implicated in down regulation of rhodopsin, it 

has been suggested that selective inhibitors of the system may be helpful in improving 

visual sensitivity in patients with retinitis pigmentosa and macular degeneration, 

particularly in their early stages. Furthermore, enrichment of molecules of the 

ubiquitin system has also been identified in retina libraries (Blackshaw et al., 2001). 

Likewise, apoptosis has also been associated with retinal diseases. Apoptosis seems to 

be a common pathway of photoreceptor death for different retinal disease phenotypes. 

Chang et al., (1993) have shown that DNA fragmentation was present in eyes of mice 
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with mutations in retinal degeneration, retinal degeneration slow/peripherin and 

rhodopsin. As DNA fragmentation is a major feature of the programmed cell death, 

the authors concluded that apoptosis was the common end stage of all three mutant 

genes. It has been suggested that the use of anti-apoptotic agonists might be effective 

in preventing photoreceptor degeneration (Blackshaw et al., 2001). In this study, 

several members from the programmed cell death genes were identified including 

testis enhanced gene transcript (BAX inhibitor-1) (TEGT) (RPE2-D12), BCL2-like 1 

(BCL2L1) (RPE3-F3), and the defender against cell death-1 gene (DAD1) (RPE23-

C9). A decrease in lysosomal enzymes is thought to result in accumulation of cell 

debris and undigested materials in the RPE leading to drusen formation. Thus, 

enzymes such as the cathepsin K (CTSK) (RPE24-E2) identified in this study should 

be evaluated and its role in RPE physiology and function analysed. Taking into 

account the expressional pattern as well as the functional analysis, the number of 

genes for assessment could be increased to include other unknown genes as well as 

known genes with potential role in RPE and retina physiology. 

RPE10-D08 (TRPM3) is an AMD candidate clone (Table 14). Two novel isoforms of 

the TRPM3 gene have been isolated and characterized in this study. Recently, in May 

2003, the full length cDNA of the transient receptor potential cation channel 

subfamily M, member 3 (TRPM3) has been published (Lee et al., 2003, Grimm et al. 

2003). The TRPM3 gene is localized in chromosome 9q21.12 spanning 311 kb 

between the genomic markers D9S1874 and D9S1807 ((Lee et al., 2003). TRPM3 is a 

member of the transient receptor potential subfamily M (TRPM). TRPM is one of 6 

subfamilies and belong to the transient receptor potential (TRP) superfamily of Ca2+-

permeable cation channels (Montell, 2001). TRP members share structural similarities 

and are characterized by a core of six transmembrane domains at the N-terminus of 

the protein. The existence of the transmembrane domains indicates that the TRP may 

play a role as a channel (Philips et al., 1992). Additional structural features include 

the ankyrin repeats, a stretch of 33 amino acid residue at the NH2 terminal which is 

involved in protein-protein interactions and linking membrane proteins to the 

cytoskeleton (Michaely and Bennett, 1993). The group is also characterized by the 

TRP domain, situated at the COOH terminal and encompasses 25 amino acids 

(Montell, 2001). The domain function is still not known. The TRPM subfamily 

exhibits ~20% amino acid identity to Drosophila TRP, over an area which covers the 



                                                                                                                Discussion      75

TRP domain and the transmembrane regions S2-S6 (Minke and Cook, 2002). The 

TRPM members do not have ankyrin repeats (Montell, 2001). The founding member 

of this subfamily is melastatin-1 a putative tumour suppressor gene. Although other 

TRP family members have been extensively studied such as TRP-classic (TRPC), and 

TRP-vanilloid (TRPV), little is known about the expression and function of the 

TRPM subfamily (Xu, et al 2001). In Drosophila the TRP has been shown to play an 

important role in phototransduction, (Hardie and Minke, 1992), and mutation in this 

gene leading to a single amino acid change (phe550Ile) in the fifth transmembrane 

segment, was identified as the cause of photoreceptor degenerations (Hong et al., 

2002). The two isoforms isolated and characterized in this study are relatively short 

and are devoid of the transmembrane domains normally found in most members of 

the TRPM subfamily. Thus, the two isoforms cannot function as channels. 

Interestingly, melastatin 1 (MLSN1) is also alternatively spliced into a short transcript 

(MLSN-S) (Fang and Setaluri 2000) that lacks the transmembrane segments and a 

longer transcript (MLSN-L) (Hunter et al., 1998). It has been shown that expression 

of MLSN-L induces Ca2+ influx, in contrast to MLSN-S when introduced in HEK293 

cells. Subsequently, coexpression of both isoforms in HEK293 cells, lead to a 

significant suppression of MLSN-L dependent Ca2+ activity indicating that MLSN-S 

has an inhibitory effect on MLSN-L (Xu et al., 2001). Similarly, MTR1 gene 

(MLSN1- and TRP-related gene-1) is alternatively spliced (Prawitt et al., 2000). The 

short variant of MTR1 gene may be a regulatory element (Xu et al., 2001). 

Comparisons of MLSN1, MLSN2, and other related transcripts in Unigene and 

GenBank suggest that alternative splicing is very common among TRPM family 

members (Wistow et al., 2002). This allows us to speculate that the two novel 

isoforms isolated in the current study may interact and regulate the TRPM3 transcript 

in the retinal pigment epithelium.  

The second candidate clone is the RPE3-E5. This bovine RPE3-E5 EST showed 

homology to the human MGC2477 predicted gene. Northern blot analysis of bovine 

EST indicated an abundant expression in the retina and low level of expression in the 

RPE (Figure 18). This result was confirmed by RT-PCR expression analysis, which 

was performed using human mRNA and showed abundant expression in the retina 

and low expression in all other tissues tested (Figure 19). Two putative open reading 

frames were identified, but the translated proteins did not show any homology in 
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protein and motif public databases. The pattern of expression seems to indicate an 

important role for this gene in the physiology and function of the RPE and retina. 

Furthermore, the gene was identified to be expressed in several cDNA libraries of the 

National Eye Institute (NEI) including retina cDNA unnormalized library, lens cDNA 

normalized library, EST data base (dbEST) human retina, dbEST human eye anterior 

segment, dbEST human optic nerve cDNA library, and dbEST human RPE and 

choroid cDNA library. The gene has not been identified in the unnormalized cDNA 

libraries of the cornea, fovea, iris and the trabecular meshwork, as well as dbEST of 

human ciliary body cDNA, and dbEST of the trabecular meshwork cDNA. 

The third candidate clone is RPE10-B10 (MT-Protocadherin). Nakajima et al., (2001) 

identified a non-classical cadherin designated KIAA1775 which later became known 

as MT-Protocadherin. The cadherin superfamily is classified into classical cadherins 

and non-classical cadherins (Uemura, 1998). Classical cadherins shares conserved 

domains among all members including a single transmembrane domain, large 

extracellular domain, and a conserved cytoplasmic domain (Faulkner-Jones et al., 

1999). The extracellular domain contains the DXNDNAPXF, DRE, and the DXD 

motifs which play an active role in Ca2+ binding (Takeichi, 1990). The extracellular 

domain of the protocadherins contains five or six tandem repeats like the classical 

cadherins, but the cytoplasmic domain does not resemble those of the classical 

cadherins (Yagi, 2000). Based on experimental expressional data using NF-

protocadherin (NFPC) gene in Xenopus embryos, Bradley et al., (1998) indicated that 

NFPC might function as adhesion molecule during early stages of development. They 

added that the mechanism of action might be different from that of the classical 

cadherins. In a similar study, using paraxial protocadherin (PAPC) in Xenopus, Kim 

et al., (1998) demonstrated that PAPC is functioning as an adhesion molecule. 

Adhesion molecules are thought to be involved in the pathogenesis of AMD (Penfold 

et al., 2001).  

Collectively, from the functional analysis of the MT-protocadherin, and the 

expressional data of RPE10-B10 bovine orthologous EST which exhibited abundant 

expression in retina and relatively low expression in RPE, the gene was included in 

the priority list for SNP identification and assessment in the AMD case control 

association study.  
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After the completion of the human genome sequence project, much attention was 

given to the single nucleotide polymorphism (SNP), the most prevalent among many 

types of polymorphic variations. It has been estimated that the human genome may 

contain over ten million SNPs scattered at about one SNP every thousand base pairs 

or less. Due to the fact that SNPs are common and distributed throughout the human 

genome, they are considered to be more superior to other genetic markers such as the 

restriction fragment length polymorphisms (RFLP), minisatellites and microsatellites. 

There are many ways in which they could be used such as identification of disease 

related loci or the very exciting possibility of establishing individualised medicine in 

which the acceptability and usefulness of a pharmacological component is dependent 

upon the individual polymorphic variation, and last but not least SNPs could be used 

as a diagnostic tool (Weiner and Hudson, 2002). Current assays commonly used to 

identify SNPs include denaturing high-performance liquid chromatography (dHPLC) 

(Wolford et al., 2000), single strand conformation polymorphisms (SSCPs) (Orita et 

al., 1989), variant detector arrays (VDAs) (Wang et al., 1998), and direct DNA 

sequencing. Denaturing high-performance liquid chromatography is used to detect 

heteroduplexes formed during reannealing of the denatured strands of a DNA 

fragment from a heterozygous person. For SSCP, the amplified PCR product 

containing the SNP is denatured and run on non-denaturing polyacrylamide gels. The 

band containing the SNP will be detected by its abnormal migration pattern (Gray et 

al., 2000). For the VDA, the PCR product expected to contain the SNP is hybridized 

to a glass chip containing array of oligonucleotides. The difference in hybridization 

signals indicates the presence of an SNP (Wang et al., 1998). The SSCP requires 

intensive work. The HPLC technology is cost effective. Despite the fact that the VDA 

is a high throughput method which could be compared to sequencing, still DNA 

sequencing is the favourite approach. On the other hand, SNP could be identified in 

silico as several computer programmes are available. However, there are several 

disadvantages associated with this approach. The sample size is small when using in 

silico searches, as there would be few mRNA sequences and ESTs per gene, 

compared to the number of chromosomes which could be included in a laboratory 

based test. Most ESTs are clustered around the 3′ end of genes and this would leave 

out the more important SNPs which could affect the protein. The approach taken in 

this study is mainly a laboratory based assays, but the SNPs from public databases 
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which are relevant to candidate genes were included in the study and verified. HPLC 

and direct sequencing were used for SNP identification in this project.  

The number of novel SNPs identified in this study clearly shows the importance of 

laboratory based assays in discovering SNPs. The study also shows that SNPs 

deposited in public databases need to be revised and validated via laboratory based 

assays. 

SNPs can be used to construct the common haplotypes. Redundant SNPs will be 

excluded and only essential SNPs which capture the common haplotypes are 

considered. The use of common haplotypes can reduce the efforts of genotyping in 

association studies (Johnson et al., 2001). 

Croucher et al., (2003), reported positive association of three haplotypes to Crohn’s 

disease. Haplotypes were constructed from 23 SNPs spanning 290 kb of genomic 

sequences. The area included all exons and exon-intron junctions of the caspase 

recruitment domain family, member-15 gene (CARD15) gene plus 1 kb at 3′ and 5′ 

ends of the gene at 50, 100, 150, and 200 kb. The study was conducted in two 

ethnically divergent population Koreans and Europeans including 47 patients from 

each. Two sets of haplotypes were identified. Set 1 includes SNPs found in both 

population and set 2 representing SNPs only found in Europeans. Three haplotypes 

from set 2 were reported to have statistically significant association to Crohn’s 

disease. No association was found in SNPs from set 1. 

In a similar study, Stern et al., (2003) reported a statistically significant association of 

erosive hand osteoarthritis with an SNP (IL5810AA) in the interleukin-1 beta gene. 

Their study included seven SNPs in interleukin 1, alpha (IL1A), interleukin 1, beta 

(IL1B), and interleukin 1 receptor antagonist (ILRN) genes. The study also included 

an IL1RN variable number of tandem repeat and six microsatellite markers from other 

chromosomes. Sample size included 68 Caucasian Americans cases and 51 Caucasian 

Americans controls. 

Crohn’s disease and the heritable osteoarthritis are genetically complex diseases as 

AMD. The application of exactly the same approach in our study can result in 

identification of AMD association with an SNP or a haplotype. Such association can 

help identify the AMD disease susceptibility gene. 
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6. CONCLUSION AND FUTURE PERSPECTIVES 

ESTs analyses are powerful tools for identification and cataloguing of genes 

expressed in a specific tissue or cell type. The suppression subtraction hybridization 

(SSH) approach was used to generate a bovine cDNA library highly enriched for rare 

RPE transcripts. The data obtained from the expression analyses demonstrates the 

efficacy of the SSH approach and facilitated selection of candidate clones for further 

analysis. Computer homology searches were used in this study to identify human 

orthologous genes. 

The present study added valuable data on the generation of a catalogue of known 

human genes that are actively expressed in the RPE. In addition, the analyses 

identified unknown human transcripts as well as novel human splice variants. In the 

near future, the work will continue in construction of the common haplotypes for the 

selected AMD susceptibility candidate genes, followed by association studies in  large 

cohorts of AMD patients and ethnically and age matched controls. 

Unravelling the RPE expression profile will give a better understanding of the 

biological processes and pathways which could be involved in the physiology and 

pathogeneses of retina. Identification of RPE and retinal disease susceptibility genes 

can be useful in many ways. First, diagnostic and prognostic information will be 

available for patients. Second, DNA microarrays can be generated and used to 

identify differential expression in disease and during development. Third, animal 

models can be created to help understand the pathogenesis of retinal diseases. Fourth, 

drug discovery targets can be identified and screened. Finally, understanding the 

genetic basis of AMD can herald the way for gene therapy approaches such as the 

replacement of a defective gene or the introduction of a new gene through viral or 

nonviral vectors. 

These novel preventive and treatment modalities will help improve the health and 

quality of life for those who suffer from AMD. 
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8. APPENDIX 
Table 1: Oligonucleotides primers and conditions (MT-Protocadherin gene) 
Primer name   primer sequence     Annealing temp. MgCl2
10B10-5′UTR-F1       TCCTTTGATGTGTTCCTCTAC  58 1.0- 
10B10-5′UTR-R1     GAATAGGGTCAGGGGATCTG- 58 1.0- 
10B10-5′UTR-F2       TGGACTGGGACAGTACCTGA           58 1.0- 
10B10-5′UTR-R2       TCTACCTGAGTGTGCCAACC  58 1.0- 
10B10-5′UTR-F3       TATGTTTGTGAGCAGCTGTGTG 58 1.0- 
10B10-5′UTR-R3      CCTGTCCTCAAATCACCTAAG 58 1.0- 
10B10-5′UTR-F4      CCAGAAGAAGAGCTGTCAGAAG  54 1.0+ 
10B10-5′UTR-R4       CTGATGTAGAAGGGTCTGAGAA    54 1.0+ 
10B10-5′UTR-F5       CAGCAGGAGTTGGAGTGG        58 1.0- 
10B10-5′UTR-R5       GATTCACATACAGTTTGGGTTG    58 1.0- 
10B10-5′UTR-F6       GAGTTTGAACCTTCTTTGGAG                 58 1.0- 
10B10-5′UTR-R6       TGGTTTTAGAATGTGCAGCAG                58 1.0- 
10B10-5′UTR-F7      GCAAAAGAGCCAAGCCTAAG            54 1.0+ 
10B10-5′UTR-R7       CAGTCTGGGACCATGAAGG                54 1.0+ 
10B10-5′UTR-F8       GGCCCTTCACTCTTCCTTG                  58 1.0- 
10B10-5′UTR-R8       CGCCTGACGAGACCAATTA                58 1.0- 
10B10-EX1F              GGGGAGTCCTCTTGTCACG                54 1.0+ 
10B10-EX1R              TGCCACCAAGCCTACAGC                  54 1.0+ 
10B10-EX2F              GAAGGAGGGGTTGGATTGC              55 1.0+ 
10B10-EX2R              CATGGCAGCAATGACCTTC               55 1.0+ 
10B10-EX3F-             AAACATACAAAGAGGGAAGCAG    58 1.0- 
10B10-EX3R             GGAGGAGCATGAAAGTAAAGC       58 1.0- 
10B10-EX4F              AAGAACCCCGGACACAAAAG          58 1.0- 
10B10-EX4R            GCTGTGGAATGTGGGTTAGAC        58 1.0- 
10B10-EX5F              ACCACAGCCCAGGAACTC               58 1.0- 
10B10-EX5R             TTGGAATAAAAGCGAATGTTG       58 1.0- 
10B10-EX6F              TTCCCTTTCCCTCTTTCCTG             58 1.0- 
10B10-EX6R             TCTGCTTCTTTTGAGTGTTGTC       58 1.0- 
10B10-EX7F              AGCTGAGCAGGAGGAAAAAC       58 1.0- 
10B10-EX7R             CTTACCTGGGGGATCCTG               58 1.0- 
10B10-EX8F              GAGAGAACTAACCCCACTTGC      58 1.0- 
10B10-EX8R             CTGAGGCTGGGTGAGTCC              58 1.0- 
10B10-EX9F             AGGGCTGAGTGTGGTGTG             55 1.0- 
10B10-EX9R             CCTCCGTGTTGCTCTCAG              55 1.0- 
10B10-EX10F            GCATAAGAAAAGGGACACAG     56 1.0- 
10B10-EX10R           ATCAGTTCTCTCCCCTCCAG        56 1.0- 
10B10-EX11F            CTGCAGGGGAGGTAGGAG            55 1.0- 
10B10-EX11R           GAGAGTGGAAACAAGGAAGATG 55 1.0- 
10B10-EX12F            ATCAACCTGCTCTGCGTATG         - - 
10B10-EX12R           ATCCCACACCACCACCTG              - - 
10B10-EX13F            ACGGGGTAGGGGAAGATG            55 1.0- 
10B10-EX13R           ATAAATGAGGAAGAGGGGATG   55 1.0- 
10B10-EX14F            ACCCATCCCCTCTTCCTC               58 1.0- 
10B10-EX14R           CTCACCCATCTATCACTATCCAG 58 1.0- 
10B10-EX15F GGCCATAGGAAGAGAGAAAGAC    58 1.0- 

-/+ = indicate with or without formamide 
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Primer name   primer sequence     Annealing temp MgCl2
10B10-EX15R    TTCTTATGCCTCAGTATCTCTTGG 58 1.0- 
0B10-EX16F   TCCTTTCCCAACTCAATCCTC     58 1.0- 
10B10-EX16R   GGAAGCCTGGAGATGGTC 58 1.0- 
10B10-EX17F GGCTTAAGGAAGCACATACCTAC 58 1.0- 
10B10-EX17R TTGACTGGACGGGGCTTC 58 1.0- 
10B10-3′UTR-F1 CCGTGCCTACTGTCTCTGG 58 1.0- 
10B10-3′UTR-R1 CCTCCTTTTCCTGCTCCTG 58 1.0- 
10B10-3′UTR-F2 CACGTGGAGCAACACTGAC 58 1.0- 
10B10-3′UTR-R2 GCCCTCATCACCACTATTTTC 58 1.0- 
10B10-3′UTR-F3 CAATTCAGGGCAGTTGATG 58 1.0- 
10B10-3′UTR-R3 AACCCCAGAGGCCTTGTA 58 1.0- 
10B10-3′UTR-F4 TGTTCTTCCCTCACTCCATC 58 1.0- 
10B10-3′UTR-R4 TGTGGAGGGCAAGCATGA 58 1.0- 
10B10-3′UTR-F5 GTCCCCAACGTGAACAGTAT 58 1.0- 
10B10-3′UTR-R5 GCTTCCAGCCTAGAGGTCTT 58 1.0- 
10B10-3′UTR-F6 TCTTGAACAGCAGGACATTTG 58 1.0- 
10B10-3′UTR-R6 CATTCGTAACACAGGGACTTG 58 1.0- 
10B10-3′UTR-F7 ACCGGCAAGTGTTGTCAG 58 1.0- 
10B10-3′UTR-R7 CAGGTGGGTGGAAACATC 58 1.0- 
10B10-3′UTR-F8 CACCATGTCCTGAAAGAGAG - - 
10B10-3′UTR-R8 TTTCCTAAGGGGTCCTCCAT - - 
10B10-3′UTR-F9 TGAGGAATGAGGCAGGAGAC 58 1.0- 
10B10-3′UTR-R9 GGGCTAATATCCTTCACATGTTC 58 1.0- 
10B10-3′UTR-F10 CTTCTCAAGGGCATGACAACT 58 1.0- 
10B10-3′UTR-R10 GCTGCCCCTTGAAAAACTCT 58 1.0- 
10B10-3′UTR-F11 CCACTGCGAAATTGCCTTAT 58 1.0- 
10B10-3′UTR-R11 GGGCTACCATGAAGGTGAGA 58 1.0- 
 
Table 2: oligonucleotide primers and conditions (TRPM3 gene) 
Primer name   primer sequence     Annealing emp MgCl2
TR-5′U1F                   TGTTTCCTACCTATCACCTCTG              58 1.0- 
TR-5′U1R                  GCTCTTTCCAGGGTCAATCT                   58 1.0- 
TR-5′U2F                 AGATTGACCCTGGAAAGAGC                 58 1.0- 
TR-5′U2R                  TCTTATCCTGCTGCCCCTCT                   58 1.0- 
TR-5′U3F                  AGAGGGGCAGCAGGATAAGA                58 1.0- 
TR-5′U3R                 ATGAACTTGGGCAGATTAGC                 58 1.0- 
TR-EX1F                   GCTAATCTGCCCAAGTTCAT                  58 1.0- 
TR-EX1R                  CAGGCAGGAAGATTTACAAG                 58 1.0- 
TR-EX2F                   TAGCATTGTCTTTCTGTTCTGA              58 1.0- 
TR-EX2F                  GTTTTTCTTTATCGGCTCTT                      58 1.0- 
TR-IVS2F1               AGCACCCTACTTACCTTCCTTA               58 1.0- 
TR-IVS2R1               ATCAAAGCACGAAGGTCTCTG              58 1.0- 
TR-EX3F                  CAGAGACCTTCGTGCTTTGAT                 58 1.0- 
TR-EX3R                  TGAGATAGCATTTGGGAGCA                  58 1.0- 
TR-EX4F                   AGTCCTGCCTTGTCTCCCTA                    58 1.0- 
TR-EX4R                  GACAGAGGTAGGGCTTCCAAT               58 1.0- 
TR-IVS4F1                ATGGAATGGATGCCTGTAAAT               58 1.0- 
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Primer name   primer sequence     Annealing temp MgCl2
TR-IVS4R1               CAAACAGCATCCAAACTACGA              58 1.0- 
TR-IVS4F2               TCGTAGTTTGGATGCTGTTTG          58 1.0- 
TR-IVS4R2                CACTTTGGGTATTGGATTGAAC       58 1.0- 
TR-EX5F                    CGGGAGAAACCATTACCACAG        58 1.0- 
TR-EX5R                  CAGAGAGGGGGTAGGTGGTAA        58 1.0- 
TR-IVS5F1                CTGCCATCTGTCCTTTTTCTTC          58 1.0- 
TR-IVS5R1                GCCAGCCCCACAAAAATAAC            58 1.0- 
TR-IVS5F2                TTTGTGGGGCTGGCTCTC                    58 1.0- 
TR-IVS5R2                TCCCTCACCTTCCACCTTC                   58 1.0- 
TR-IVS5F3                 CCACTACCCTGCCTCTTGTCT              58 1.0- 
TR-IVS5R3                 CTGCTGGCTTGAAGAGACAT               58 1.0- 
TR-EX6F                   TTGCCATAAATCTTGCCTCT                 58 1.0- 
TR-EX6R                   ATTACTTCTTACGCCTCCAA                 58 1.0- 
TR-IVS6F1                 ATTGGAGGCGTAAGAAGTAA               - - 
TR-IVS6R1                 GTTTCACATGATGCTTTAGCTTAG       - - 
TR-IVS6F2               CTAAGCTAAAGCATCATGTGAAAC     58 1.0- 
TR-IVS6R2                 AGAGAGTGTAGGAAGGAGAAGC         58 1.0- 
TR-IVS6F3                 CCAAGACTGGATCTGGGACA              58 1.0- 
TR-IVS6R3                GTAAGTCCCCTGGTATTTGG                  58 1.0- 
TR-IVS6F4               CCATCAGTGTCTATGAATGAAAAA      58 1.0- 
TR-IVS6R4                GCCATGATGCTGCTACTGAG                 58 1.0- 
TR-IVS6F5                TAGTTGTCCCTCCTGCCTCA                  58 1.0- 
TR-IVS6R5                AGCAAAAGCACTGGTTATGGAA         58 1.0- 
TR-EX7F                   TGAGAGTTGAGGGGAGAGG                  58 1.0- 
TR-EX7R                   GATTTGAGGTCTTGGTTGAGC             58 1.0- 
TR-IVS7F1                GCTCAACCAAGACCTCAAATC               - - 
TR-IVS7R1                AGTTGGATTGGAGGGGAGTG               - - 
TR-IVS7F2                CACTCCCCTCCAATCCAACT                   58 1.0- 
TR-IVS7R2                TGCCTCTTGTTATTCCTCATTT            58 1.0- 
TR-IVS7F3.               TCTCTATAAGACCTGCCAAAAG           - - 
TR-IVS7R3                GATGGAAAAGGGGAAGAGGAA           - - 
TR-IVS7F4                TTCCTCTTCCCCTTTTCCATC                 58 1.0- 
TR-IVS7R4                ACTGCCGTGGTATTTTCTCC                 58 1.0- 
TR-IVS7F5                GGAGAAAATACCACGGCAGT              58 1.0- 
TR-IVS7R5                GCTAAGGAAATCTCAGAGGAA            58 1.0- 
TR-EX8F                    CCTCACCTGCATTCTCCTC                   58 1.0- 
TR-EX8F                    GACAAGTGGGAGGTTAGGAC              58 1.0- 
TR-3U1F                    CAGACAAGGTGCGGGTTTAC               58 1.0- 
TR-3U1R                    CTTTGTAGGTGAGAGCCAGG            58 1.0- 
TR-3U2F                    CCTGGCTCTCACCTACAAAG            58 1.0- 
TR-3U2R                    AAAGGAAAGGAATGAAACACCAG    58 1.0- 
 TR-3U3F                   CTGGTGTTTCATTCCTTTCCTTT          58 1.0- 
TR-3U3R                    GGCAAAAACCAAGGAGATGA            58 1.0- 
 
 
 
 



                                                                                                                  Appendix      98

Table 3: Oligonucleotide primers and conditions (MGC2477 gene) 
Primer name   primer sequence     Annealing temp MgCl2
MG-5′UF1   AGGGCTCATTCTGGGTGGA 58 1.0+ 
MG-5′UR1     TGGTAGTCCCGAGGAAGG 58 1.0+ 
MG-5′UF2     GAGGTGTCCAAGAAGTGCTG 58 1.0+ 
MG-5′UR2     CACGCCCACACACTAACAAC 58 1.0+ 
MG-5′UF3                AACAACCTATTCCTTTTCTCGTC       58 1.0+ 
MG-5′UR3                  GTTACACGAATCCAGCCTTTTAG   58 1.0+ 
MG-EX1F                AGGTTGGGAAAAATCAGTAAGC             58 1.0+ 
MG-EX1R                AGGGACAGCAGGGAGGTTG                     58 1.0+ 
MG-EX2F                GGCTTACCCTCCAGTTTG                          58 1.0+ 
MG-EX2R                GGCACCCATTCTGATACC                          58 1.0+ 
MG-EX3F                TTTTGTCCCCTCTCTTCCTC                       58 1.0+ 
 MG-EX3R               GGAGTTACGGAGATTACATACAA           58 1.0+ 
MG-IVS3F1              GTATGTAATCTCCGTAACTCCAA             58 1.0+ 
MG-IVS3R1             CTGGGGGTGGACTTTTCTC                        58 1.0+ 
MG-IVS3F2              GCAGCAATGGCAGTAGGAG                    58 1.0+ 
MG-IVS3R2             GAGTGGGGAGGGTAAGGTG                    58 1.0+ 
MG-IVS3F3              CACCTTACCCTCCCCACTC                      - - 
MG-IVS3R3             CGGAGGAAGAGGGAAAGG                      - - 
MG-EX4F                GTTTCCTCAAGCGTTCCTG                     58 1.0+ 
MG-EX4R                GAATCCAAAACCCAAAGAAAGG          58 1.0+ 
MG-EX5-6F             AGCCAGAACTATTTGTGTGACC           58 1.0+ 
MG-EX5-6R             ACCCATCCCCATTCCTACAT                   58 1.0+ 
MG-3′UF1                ATGAAAAGATTGGGGAGTATGG        58 1.0+ 
MG-3′UR1               CCTTTACCTCTGCTATCCCTAC            58 1.0+ 
MG-3′UF2                TGTAGGGATAGCAGAGGTAAAG       58 1.0+ 
MG-3′UR2                CCAGGGCTCATTTTACTAATC           58 1.0+ 
 
Table 4: Group II of reverse Northern blot analyses 
Equally weak signals on filters hybridized with RPE and heart/liver cDNA probes 
No        Plate ID Clone ID Subcategory 
1 RPE01 D02 Known human gene 
2 RPE01 A11 No significant similarity 
3 RPE01 D04 Known human gene 
4 RPE01 F11 human Unknown 
5 RPE01 G02 Known human gene 
6 RPE01 C09 Predicted gene 
7 RPE01 A05 No significant similarity 
8 RPE01 D06 Predicted gene 
9 RPE01 C07 human Unknown 
10 RPE01 G08 Known human gene 
11 RPE01 G04 Known human gene 
12 RPE01 B06 Known human gene 
13 RPE01 E11 Known human gene 
14 RPE01 F12 Known human gene 
15 RPE02 B05 Ribosomal RNA 
16 RPE02 D09 Predicted gene 
17 RPE02 D07 human Unknown 
18 RPE02 B01 Known human gene 
19 RPE02 B07 No significant similarity 
20 RPE02 A10 Predicted gene 
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No        Plate ID Clone ID Subcategory 
21 RPE02 D11 Known human gene 
22 RPE02 E01 Known human gene 
23 RPE02 F02 Known human gene 
24 RPE02 A03 Known human gene 
25 RPE02 A01 Predicted gene 
26 RPE03 G05 Known human gene 
27 RPE03 E05 Predicted gene 
28 RPE03 B03 Known human gene 
29 RPE03 F12 Known human gene 
30 RPE03 H09 Known human gene 
31 RPE03 F03 Known human gene 
32 RPE03 H11 Known human gene 
33 RPE03 B12 Predicted gene 
34 RPE03 D12 Predicted gene 
35 RPE03 B06 human Unknown 
36 RPE03 B01 No significant similarity 
37 RPE03 D03 human Unknown 
38 RPE03 D09 Known human gene 
39 RPE06 H11 Known human gene 
40 RPE06 C07F Predicted gene 
41 RPE06 A03 Known human gene 
42 RPE06 F04 Known human gene 
43 RPE06 F09 Known human gene 
44 RPE06 D11F Known human gene 
45 RPE06 A08 Known human gene 
46 RPE06 F08 Known human gene 
47 RPE06 H01 Known human gene 
48 RPE06 D10F Known human gene 
49 RPE06 A01 No significant similarity 
50 RPE06 F05 No significant similarity 
51 RPE06 E05F Known human gene 
52 RPE06 C02F Known human gene 
53 RPE06 F02F No significant similarity 
54 RPE06 C10F Predicted gene 
55 RPE06 B01 Known human gene 
56 RPE06 F11 Predicted gene 
57 RPE06 C09F Predicted gene 
58 RPE06 C08F No significant similarity 
59 RPE07 F11 Predicted gene 
60 RPE07 E12 Known human gene 
61 RPE07 G08 No significant similarity 
62 RPE07 H10 Known human gene 
63 RPE07 D02 No significant similarity 
64 RPE07 H11 Known human gene 
65 RPE07 A12 Known human gene 
66 RPE07 B09 human Unknown 
67 RPE08 H10 Known human gene 
68 RPE08 F02 No significant similarity 
69 RPE08 B01 Known human gene 
70 RPE08 G01 Predicted gene 
71 RPE08 H05 Known human gene 
72 RPE08 H11 No significant similarity 
73 RPE08 E05 No significant similarity 
74 RPE08 D10 Known human gene 
75 RPE08 B03 Known human gene 
76 RPE08 H09 Known human gene 
77 RPE08 F01 No significant similarity 
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No        Plate ID Clone ID Subcategory 
78 RPE08 F06 Known human gene 
79 RPE08 E11 Known human gene 
80 RPE08 E04 Known human gene 
81 RPE08 F10 No significant similarity 
82 RPE08 B05 Predicted gene 
83 RPE08 B12 Known human gene 
84 RPE08 C05 Known human gene 
85 RPE08 D12 Known human gene 
86 RPE08 D03 Known human gene 
87 RPE10 E10 Predicted gene 
88 RPE10 D08 Predicted gene 
89 RPE10 F08 Known human gene 
90 RPE10 D01 Known human gene 
91 RPE10 D03 Known human gene 
92 RPE10 F01 Predicted gene 
93 RPE10 C09 Human Unknown 
94 RPE10 D06 Human Unknown 
95 RPE10 G10 Known human gene 
96 RPE10 B11 No significant similarity 
97 RPE10 H08 Known human gene 
98 RPE10 E01 Known human gene 
99 RPE10 A10 No significant similarity 
100 RPE10 B10 Predicted gene 
101 RPE10 C06 Known human gene 
102 RPE10 D10 Known human gene 
103 RPE10 C04 Known human gene 
104 RPE10 E08 Known human gene 
105 RPE10 H06 Known human gene 
106 RPE10 H01 No significant similarity 
107 RPE10 A01 Known human gene 
108 RPE10 E07 Predicted gene 
109 RPE10 B04 Known human gene 
110 RPE10 F07 No significant similarity 
111 RPE10 B09 No significant similarity 
112 RPE12 B10 No significant similarity 
113 RPE12 G03 Human Unknown 
114 RPE12 A09 No significant similarity 
115 RPE12 H06 Predicted gene 
116 RPE12 G07 Known human gene 
117 RPE12 C03 Known human gene 
118 RPE12 G05 Known human gene 
119 RPE12 H03 Known human gene 
120 RPE12 E06 No significant similarity 
121 RPE12 D09 Known human gene 
122 RPE12 B11 Known human gene 
123 RPE12 E04 No significant similarity 
124 RPE12 A10 Known human gene 
125 RPE16 E11 Known human gene 
126 RPE16 E05 Known human gene 
127 RPE16 H09 Known human gene 
128 RPE16 F09 No significant similarity 
129 RPE16 E10 Known human gene 
130 RPE16 C07 No significant similarity 
131 RPE16 D01 human Unknown 
132 RPE16 B02 No significant similarity 
133 RPE16 H08 No significant similarity 
134 RPE16 C02 Known human gene 
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No        Plate ID Clone ID Subcategory 
135 RPE16 D10 Known human gene 
136 RPE16 H01 Known human gene 
137 RPE16 H05 Known human gene 
138 RPE16 F08 Known human gene 
139 RPE16 D09 Known human gene 
140 RPE16 G08 Known human gene 
141 RPE16 B11 Known human gene 
142 RPE16 B06 Known human gene 
143 RPE16 G12 Predicted gene 
144 RPE16 F03 Known human gene 
145 RPE20A H11 No significant similarity 
146 RPE20A E09 Known human gene 
147 RPE20A H04 Predicted gene 
148 RPE20A G04 Known human gene 
149 RPE20A D04 Known human gene 
150 RPE20A F02 Human Unknown 
151 RPE20A E04 Predicted gene 
152 RPE20A E03 No significant similarity 
153 RPE20A A07 Predicted gene 
154 RPE20A F12 Known human gene 
155 RPE20A D12 No significant similarity 
156 RPE20A F08 mc 
157 RPE20A G03 Known human gene 
158 RPE20A D02 Known human gene 
159 RPE20A E05F Human Unknown 
160 RPE21 B08 Known human gene 
161 RPE21 A09 No significant similarity 
162 RPE21 C03 Known human gene 
163 RPE21 A03 Known human gene 
164 RPE21 C07 Predicted gene 
165 RPE21 G11 Known human gene 
166 RPE21 B05 Known human gene 
167 RPE21 F07 Known human gene 
168 RPE21 B04 Known human gene 
169 RPE21 E06 Known human gene 
170 RPE22 E06 Known human gene 
171 RPE22 C07 Hypothetical protein 
172 RPE22 D08 Known human gene 
173 RPE22 A02 Known human gene 
174 RPE22 A11 Known human gene 
175 RPE22 D03 No significant similarity 
176 RPE22 F04 Known human gene 
177 RPE22 H05 Known human gene 
178 RPE22 A03 No significant similarity 
179 RPE22 F03 Known human gene 
180 RPE22 D07 Known human gene 
181 RPE22 C09 Known human gene 
182 RPE22 D06 Predicted gene 
183 RPE23 G11 No significant similarity 
184 RPE23 B02 Known human gene 
185 RPE23 D05 Known human gene 
186 RPE23 A09 Known human gene 
187 RPE23 A03 Known human gene 
188 RPE23 H10 Predicted gene 
189 RPE23 A02 Predicted gene 
190 RPE23 D11 Predicted gene 
191 RPE23 D12 Known human gene 
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No        Plate ID Clone ID Subcategory 
192 RPE23 H08 Known human gene 
193 RPE23 C07 Predicted gene 
194 RPE23 C10 Known human gene 
195 RPE23 C12 Predicted gene 
196 RPE23 A10 No significant similarity 
197 RPE23 G06 Known human gene 
198 RPE23 H07 Predicted gene 
199 RPE23 D08 Known human gene 
200 RPE23 E09 Known human gene 
201 RPE23 H11 Known human gene 
202 RPE23 H12 Known human gene 
203 RPE23 C05 Known human gene 
204 RPE23 F09 Predicted gene 
205 RPE23 B05 Human Unknown 
206 RPE23 F08 No significant similarity 
207 RPE23 G04 Predicted gene 
208 RPE23 E08 No significant similarity 
209 RPE23 F01 human Unknown 
210 RPE23 C04 Known human gene 
211 RPE24 C08 Known human gene 
212 RPE24 D02 Known human gene 
213 RPE24 B10 Known human gene 
214 RPE24 B06 Known human gene 
215 RPE24 C09 Known human gene 
216 RPE24 H09 Known human gene 
217 RPE24 B04 mc 
218 RPE24 C11 Known human gene 
219 RPE24 A10 Predicted gene 
220 RPE24 H07 Predicted gene 
221 RPE24 F02 Predicted gene 
222 RPE24 A09 Known human gene 
223 RPE24 A11 Known human gene 
224 RPE24 D11 No significant similarity 
225 RPE24 E05 Human Unknown 
226 RPE24 G06 Known human gene 
227 RPE24 E02 Known human gene 
228 RPE25 D01 Known human gene 
229 RPE25 G12 Predicted gene 
230 RPE25 F12 Known human gene 
231 RPE25 D12 Known human gene 
232 RPE25 C07 Known human gene 
233 RPE25 E12 Predicted gene 
234 RPE25 G04 Known human gene 
235 RPE25 C06 Known human gene 
236 RPE25 C03 Known human gene 
237 RPE25 H06 Known human gene 
238 RPE25 D03 No significant similarity 
239 RPE25 A02 Known human gene 
240 RPE25 C11 Known human gene 
241 RPE25 F08 No significant similarity 
242 RPE25 H05 Known human gene 
243 RPE25 G06 Known human gene 
244 RPE25 E01 Predicted gene 
245 RPE25 A06 Human Unknown 
246 RPE25 H12 Known human gene 
247 RPE26 G10 Known human gene 
248 RPE26 E11 Known human gene 
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No        Plate ID Clone ID Subcategory 
249 RPE26 B10 Known human gene 
250 RPE26 C06 Predicted gene 
251 RPE26 C11 Human Unknown 
252 RPE26 A03 No significant similarity 
253 RPE26 C08 No significant similarity 
254 RPE26 C01 Known human gene 
255 RPE26 A06 Known human gene 
256 RPE26 B03 Known human gene 
257 RPE26 D03 mc 
258 RPE26 H11 Known human gene 
259 RPE26 F08 Predicted gene 
260 RPE26 A11 No significant similarity 

 
 mc = multiple chromosomal location

Table 5: Genes from pathways suspected to be involved in AMD pathogenesis 
Apoptosis related genes 
TEGT                              testis enhanced gene transcript (BAX inhibitor 1) 
BCL2                              B-cell CLL/lymphoma 2 
DAD1                             defender against cell death 1 
Oxidative stress related genes 
PRDX1                           peroxiredoxin 1 
MGST1                          microsomal glutathione S-transferase 1  
MAOB                            monoamine oxidase B 
GSTM5                           glutathione S-transferase M5 
GPX4                              glutathione peroxidase 4 (phospholipid hydroperoxidase)   
ATOX1                           ATX1 antioxidant protein 1 homolog (yeast) 
GSTM1                           glutathione S-transferase M1 
Heat shock protein 
HSPCB                            heat shock 90kDa protein 1, beta 
Ubiquitin  pathway 
UBE1                       ubiquitin-activating enzyme E1 
Lysosomal enzymes 
CTSK                              cathepsin K (pycnodysostosis) 
 
Table 6: cDNA libraries used in isolation of MGC2477 gene  
DKFZ1                 human retina cDNA in lambda Triple Ex vector 
DKFZ2                 human retina cDNA in lambda Triple Ex vector 
DKFZ3                 human retina cDNA in lambda Triple Ex vector 
DKFZ4                 human retina cDNA in lambda Triple Ex vector  
CIF1                     human retina cDNA in lambda Triple Ex vector 
CIF2                     human retina cDNA in lambda Triple Ex vector 
CIF3                     human retina cDNA in lambda Triple Ex vector 
HRλGT10V         human retina cDNA in lambda GT10 vector  
HRλTEx2V          human retina cDNA in lambda Triple Ex 2 vector 
HFBλGT10          human foetal brain cDNA in lambda GT10 vector  
 
Table 7: Sequence of the Lambda Triple Ex vector specific primers 
LT, 5 prime      AAGCAGTGGTATCAACGCAGAGT 
LT, 3 prime      ATTCTAGAGGCCGAGGCGGCCGACATG-D (T)30 N-1N 
N-1 = A, G or C 
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