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Introduction

The nature of many dynamical systems is the interaction of various com-
ponents each of which is governed by dynamics admitting inputs from or
producing output for other components. The possible interaction is de-
scribed by a topological structure, which can be interpreted in a natural
way as a graph or network. This is in essence what is called a complex
system, although there is no rigorous definition [18]. In a kind of minimal
definition a system is called complex if

(i) it exhibits complications and heterogeneity that extend virtually on
all scales allowed by physical size of the system,

(ii) these features are spontaneous outcome of the interactions among
the many units of the system.

In recent years the complexity of logistics systems, such as manufacturing
or production networks as well as globally distributed supply chains, has
increased enormously.

The network approach to the analysis of supply chains has recently
attracted considerable attention, cf. [83].

Typical processes taking place in logistics networks are production, stor-
age and shipment of different commodities. Material, information and
monetary flows connect the facilities of a logistics network. The structure
of a logistics network is given by the connections between the individual
facilities. The performance analysis of logistics networks has been an ac-
tive research area with respect to different aspects in logistics networks.
There are different approaches in the literature to model such networks.
In general, the incorporation of the interconnection structure of the net-
work leads to coupled systems of equations describing the behavior of the
whole network. Often do these equations represent some kind of balance
equations.
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2 Introduction

Some modeling approaches are based on conservation laws by means of
partial differential equations [1, 2]. Another modeling approach, inspired
by physics of interconnected oscillators, has been investigated in [50, 65,
64]. There, a supply chain is described as a physical transport problem,
where the flows of products are considered. But then, in logistics systems
especially stochastic influences have an important effect on the systems
behavior. For instance, the demand for products and the manufacturing
process are subject to randomize variations. Thus, to embrace such kind
of phenomenon one must count on stochastic processing networks.

Multiclass queueing networks

Multiclass queueing networks are an effective tool for modeling complex
manufacturing networks [58] as they reproduce two main features of such
systems. On the one hand, multiple product lines as well as highly reen-
trant routes through which products visit the machines can be modeled,
which is very important, for instance in the wafer-fabrication. On the other
hand, enable multiclass queueing networks to directly implement various
production policies. Popular examples are ’first-in-first out’, ’processor
sharing’ and ’priority’ disciplines.

A multiclass queueing networks consists of J stations that serve K
different classes of jobs or customers. The dynamics of the network can
be described by the following stochastic processes. The process Ek(t) de-
scribes the number of external arrivals in the time period [0, t]. The service
process Sk(t) reflects the number of possibly finished jobs of class k during
the first t time units. For convenience we assume that each job class is
served exclusively at one station. The mapping c from classes to stations
determines which job class is served at which station. The set of job classes
that are served at station j is denoted by C(j). After being served, the
jobs randomly either change their class or leave the network. The routing
process Rlk(n) denotes the number of class l jobs among the first n class
l jobs that become jobs of class k after service completion. As each sta-
tion can serve various classes a policy determines in which order the jobs
are served. The mean values of the counting processes Ek, Sk and Rkl are
denoted by αk, µk and Plk, respectively, and all of them are supposed to
be finite. The allocation process Tk(t) denotes the total amount of time
that station c(k) has devoted on serving class k jobs. The initial amount
of class k jobs is Qk(0). So the evolution of the amount of class k jobs,



Introduction 3

denoted by Qk(·), is given by the following balance equation

Qk(t) = Qk(0) + Ek(t) +

K∑
l=1

Rlk(Sl(Tl(t)))− Sk(Tk(t)).

To obtain a complete description of the network dynamics further condi-
tions on Q and T that depend on the service discipline have to be taken
into account.

Despite all that possibilities to map reality in an appropriate fashion
a multiclass queueing network remains an approximation of a real system.
Hence, to be able to give insights for the real system, the crudest property
a model should have is to be stable. The capability to catch the random
changes bears the tough challenge of analyzing the stability of stochastic
processes. Roughly speaking, a multiclass queueing network is stable if its
long-run input rate equals its long-run output rate. In this context the
nominal workload ρj (also called traffic intensity) of each station j is of
interest. To define the nominal workload we first describe the effective
arrival rate λk of class k jobs defined as the solution of

λk = αk +

K∑
l=1

Plkλl,

where the spectral radius of the transition matrix P is assumed to be
strictly less than one. The nominal workload ρj of station j is then given
by the sum of the quotients of the effective arrival rates λk and the service
rates µk over all job classes present at the station, i.e.

ρj =
∑

k∈C(j)

λk
µk
.

For a long period a common belief was that a sufficient condition for sta-
bility is that the nominal workload of every station is strictly less then
one. However, in 1990 Kumar and Seidman [56] presented a network with
two stations processing four classes of jobs which is unstable although the
nominal workload at each station is less than one. This example inspired
a number of examples with different service disciplines, like first-in-first-
out (FIFO) and priority, that have surprising properties. In the literature
they are known as the Lu-Kumar network, the Rybko-Stolyar network or
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the Bramson network, see e.g. [13], [17], [34] and [71], respectively. In re-
cent years further disciplines like maximum pressure and join-the-shortest-
queue have been investigated [33], [36].

Rybko and Stolyar [71], Stolyar [81], and Dai [28] pursued the strat-
egy of rescaling the stochastic processes that describe the dynamics of a
multiclass queueing network and considered the limit of the scaling. More
precisely, a fluid limit model is obtained through replacing the stochastic
processes by their mean values, i.e. as t→∞ almost surely we have that

1

t
Ek(t)→ αk,

1

t
Sk(t)→ µk,

1

t
Rlk(t)→ Plk.

The corresponding balance equation for the limit takes the form

Qk(t) = Qk(0) + αkt+

K∑
l=1

PlkµlTl(t)− µkTk(t).

Again there are additional conditions on Q and T that are specific to
the service discipline. This limit is called the fluid limit model for the
queueing network. Moreover, a totally deterministic model is given by the
set of solutions to the latter balance equation and the additional equations
related to the discipline. Of course, deterministic models are much easier
to investigate. The great benefit of this approach is, that the stability of
the corresponding deterministic fluid model is sufficient for the stability of
a multiclass queueing network [28, 81]. In addition, there are conditions
for instability of queueing networks in terms of their fluid limit model
[30, 60, 67]. A discussion of the relationship between queueing networks
and fluid models can be found in [17].

Due to this fact the question arises, under which conditions the deter-
ministic fluid networks are stable. A fluid model is called stable if the fluid
level process Q(·) with unit initial level is drained to zero in a uniform fi-
nite time τ and remains zero beyond τ . Explicite stability conditions may
clearly depend on the particular discipline of the network.

The main focus of this thesis is on the Lyapunov theory for fluid net-
works. In addition, we always draw a comparison to the well established
Lyapunov theory for dynamical systems modeled by ordinary differential
equations.

Moreover, in any case it is of fundamental importance to keep in mind
that the multiclass queueing network and the fluid network are simply a
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model for a real system. Consequently, the behavior of the real system
might be quite different from the behavior of the model. There are many
reasons for possible discrepancies and in the systems theory literature they
are collectively referred to as model uncertainties. For instance, by observ-
ing a real manufacturing system over a certain time period one must be
quite lucky or experienced to determine the mean values of e.g. the service
times precisely. This means the mean value of the random variables might
be uncertain. The model which is chosen on the basis of a ”best guess” will
be referred to as the nominal model. To handle the uncertainty a set of
parameterized systems is considered where the parameter vectors lie in a
given neighborhood around the parameters of the nominal model.

In this thesis we will also consider the robust stability issue for fluid
networks. In doing so, we seize up the consideration of the stability re-
gion of a fluid network defined by Dai [29]. Precisely, we will focus on a
quantitative theory for robust stability. That is, we aim to derive bounds
and quantitative information about shifts in the parameters of the fluid
network that lead to an unstable network. Following the catalog of Meyn
[58] our robustness analysis is based on perturbations of the arrival and
service times parameters. Since shifts of the routing parameters concerns
the flexibility of the network.

Existing results

In the stability analysis of fluid networks researchers have been able to
develop fairly sophisticated tools, such as Lyapunov functions, to analyze
the stability of fluid networks under various disciplines. Chen states neces-
sary and sufficient conditions for stability of general work-conserving fluid
networks [19]. Stability conditions for fluid networks under FIFO and pri-
ority discipline have been derived by Chen and Zhang, cf. [23] and [24],
respectively. Often the strategy to prove such conditions is to use Lya-
punov functions. In this context a locally Lipschitz function V : RK+ → R+

such that V (x) = 0 if and only if x = 0 is called a Lyapunov function if
there exists a constant ε > 0 such that for each fluid level process Q(·) it
holds that

d
dt V (Q(t)) ≤ −ε

whenever Q(t) 6= 0 and the derivative of V (Q(t)) exists at time t. Within
this framework linear Lyapunov functions of the form

V (x) = hTx, x ∈ Rn+,
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where h is some positive vector in RK+ are used to establish a sufficient
condition for the stability of fluid network models under a priority discipline
[24]. The special case h = (1 ... 1)T is used to show that a fluid model of
a re-entrant line operating under last-buffer-first-served (LBFS) discipline
is stable if the usual traffic condition ρj < 1 is satisfied for all stations
j [31]. The special case h = (1 ... 1)T is also used to prove a stability
condition for fluid networks under the join-the-shortest-queue discipline
[33]. Ye and Chen investigated fluid networks under priority disciplines by
using piecewise linear Lyapunov functions of the form

V (x) = max
1≤j≤N

hTj x

for some nonnegative vectors h1, ..., hN , for details see [22]. This approach
yields a sharper stability condition for fluid networks under priority disci-
pline than in [24]. Furthermore, in the verification of a stability condition
for fluid networks under general work-conserving disciplines a quadratic
Lyapunov function

V (x) = xTAx

is used, where A is a strictly copositive matrix [19]. All this results have
in common that the existence of Lyapunov functions is used to establish
sufficiency of the proposed criteria.

In order to obtain a commonly known converse Lyapunov theorem for
fluid networks Ye and Chen followed a different, more general approach
[86]. They collected characteristic properties of fluid networks and defined
a generic fluid network (GFN) model Φ as a set of functions Q : R+ → RK+
that are Lipschitz continuous and satisfy a scaling and shift property. In
addition, if the set of functions Φ is closed with respect to the topology of
uniform convergence on compact sets, Φ is called a closed GFN model. In
the work mentioned above, Ye and Chen proved that stability of a GFN
model is equivalent to the property that for every function Q(·) ∈ Φ a
functional v : R+ → R+ is decaying along Q(·). In particular, v can be
chosen as

v(t) =

∫ ∞
t

‖Q(s)‖ ds.

This result falls short of a converse Lyapunov theorem in that no state
dependent Lyapunov function is constructed. Rather in principle the whole
solution set has to be known in order to even define a Lyapunov functional.
The strength and basis of applicability of the classic second method of
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Lyapunov, however, is that it can be checked without the knowledge of
solutions, whether a given state-dependent function is indeed a Lyapunov
function.

Robust stability analysis has received a lot of attraction in mathemati-
cal systems theory over the last 15 years. The interested reader is referred
to the book Hinrichsen and Pritchard [53], and the references therein. The
fundamental idea of the quantitative approach to robust stability is based
on the introduction of a measure for the perturbations that is indicated by
a single real number, which is called the stability radius. More precisely,
given a nominal system and set of feasible perturbations the stability ra-
dius represents the smallest magnitude of a perturbation for which the
perturbed system is no longer stable. This is a sort of worst case measure
in the sense that there might be perturbations larger in magnitude than
the stability radius for which the perturbed system is stable. However, the
crucial point is that for any perturbation strictly smaller in magnitude the
system is definitely stable.

Contribution of the thesis

The contribution of this thesis consists mainly of deriving a reasonable
Lyapunov theory for GFN models. Further, we show that this result also
applies to fluid networks under general work-conserving, priority, and head-
of-the-line proportional processor sharing disciplines.

We define state-dependent Lyapunov functions for GFN models and
consider the following Lyapunov function candidate V : RK+ → R+ defined
by

V (x) = sup

{∫ ∞
0

‖Q(s)‖ ds : Q(·) ∈ Φ, Q(0) = x

}
.

Using counterexamples we emphasize that the class of (closed) GFN mod-
els is too general to provide a converse Lyapunov theorem with state-
dependent Lyapunov functions.

To resolve this gap we introduce the class of strict GFN models by
forcing the closed GFN models to satisfy additionally

(i) a concatenation property : If Q1(·), Q2(·) are trajectories of Φ such
that Q1(t∗) = Q2(t∗) for some t∗ ≥ 0, then Q1 �t∗ Q2(·) ∈ Φ, where

Q1 �t∗ Q2(t) :=

{
Q1(t) t ≤ t∗,
Q2(t) t ≥ t∗.
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(ii) a lower semicontinuity property : For every initial fluid level x ∈ RK+
it holds that the set-valued map x {Q(·) ∈ Φ : Q(0) = x} is lower
semicontinuous.

Within this framework we show that the stability of a strict GFN model is
equivalently characterized by the existence of a state-dependent continuous
Lyapunov function. It will turn that the concatenation property is essential
for the existence of state-dependent Lyapunov functions, whereas the lower
semicontinuity gives the additional benefit of continuity of the Lyapunov
function.

Furthermore, inspired by results concerning smooth converse Lyapunov
theorems for differential inclusions, cf. [26, 82], we will adapt the technique
of convoluting a continuous Lyapunov function with mollifiers to obtain
conditions on the strict GFN model that allow for a smooth converse Lya-
punov theorem.

Moreover, we use results from differential inclusions to show that gen-
eral work-conserving, priority, head-of-the-line proportional processor shar-
ing fluid networks define strict GFN models. In addition, we show that the
Lyapunov theory for fluid networks under the aforenamed disciplines allows
for an alternative proof that if the fluid network associated with a multi-
class queueing networks is stable and defines a strict GFN model then the
multiclass queueing network is stable. Also, we will explain why the ap-
proach of strict GFN models is not immediately applicable to FIFO fluid
networks. Moreover, we discuss the relation of fluid limit models to GFN
models.

Apart from the Lyapunov theory we adapt the framework of robust
stability analysis provided in [53] to the framework of fluid networks. Pre-
cisely, we aim to obtain bounds on the shifts of the mean values of the
interarrival and service times such that the stability of the associated fluid
network and, thus, of the multiclass queueing network is preserved.
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1 Preliminaries

In this thesis we are concerned with the stability theory of multiclass queue-
ing networks. In recent decades much effort has been devoted on this
starting from Jackson networks, Kelly networks and multiclass queueing
networks, see [17] and [21]. An extention to multiclass queueing networks
where setup times are incorporated has been obtained in [35]. However,
this is beyond the scope of this work. We stick to multiclass queueing
networks.

In this chapter we present the basic notations and results from proba-
bility theory that form the basis for the investigation of multiclass queueing
networks. In the first Section 1.1 we recall some fundamental vocabulary
and introduce the concept of stochastic processes and Markov processes,
respectively. Further, we provide a procedure to define a family of Markov
processes on a canonical space, namely the Skorokhod space of càdlàg
functions. In Section 1.3 we will introduce briefly piecewise deterministic
processes and Borel right processes. The final Section 1.4 is devoted to the
theoretical framework of recurrence theory for Markov processes that forms
the foundation for the stability analysis of multiclass queueing networks.

1.1 Probability Theory

In this section we provide a sketch of the basic notations and some results
from probability theory which will be used in this thesis.

Let Ω be a set, called the basic space, that contains points ω repre-
senting the possible realizations of some random phenomenon; events are
subsets of Ω.

We denote an σ-algebra in Ω by F and a measurable space is a pair
(Ω,F). A probability measure on (Ω,F) is denoted by P. The triple

11



12 Chapter 1 Preliminaries

(Ω,F ,P) is called a probability space. Further, a probability space (Ω,F ,P)
is called complete if A ⊂ B ∈ F and P[B] = 0 imply that A ∈ F and thus,
P[A] = 0. Two events A and B contained in the σ-algebra F are called
independent if P[A ∩ B] = P[A] · P[B]. The sub σ-algebras G,G′ ⊂ F are
called independent if G,G′ are independent for all G ∈ G and G′ ∈ G′.

For the Euclidean space (RN , ‖ ·‖) the σ-algebra generated by the open
sets is called the Borel σ-algebra and is denoted by B. A random variable
X with values in RN is a measureable function X : (Ω,F) → (RN ,B).
The expectation of X is denoted by E[X]. For G ⊂ F the conditional
expectation of X given G is denoted by E[X | G ]. In the following, when-
ever a random variable with values in RN is considered, we simply call it
a random variable. The random variables X1, X2 are called independent
if G1 and G2 are independent, where Gi = X−1

i (B) for i = 1, 2. A se-
quence (Xn)n∈N of real valued random variables is called independent and
identically distributed (i.i.d.) if the elements are independent and have a
common distribution. We say a property holds almost surely (a.s.) on a
probability space (Ω,F ,P) if it holds for every ω ∈ Ω \A, where A is a set
with probability zero, i.e. P[A] = 0. The following statement is called the
strong law of large numbers (SLLN).

Theorem 1.1.1 Let (Xn)n∈N be an i.i.d. sequence of random variables
such that X1 is integrable. Then, a.s.

lim
n→∞

1

n

n∑
k=1

Xk = E[X1] .

Proof. See [25] Theorem 5.4.2. �

Moreover, a sequence (Xn)n∈N of random variables is said to converge
a.s. to a random variable X if

lim
n→∞

P[ ‖Xn −X‖ = 0 ] = 1.

Besides, (Xn)n∈N is said to converge in distribution to X if for every
bounded continuous function f : RN → R it holds that

lim
n→∞

E[f(Xn)] = E[f(X)].

The subsequent statement contains conditions for the convergence of the
expectation of the random variables.
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Theorem 1.1.2 Suppose that (Xn)n∈N and (Yn)n∈N are sequences of ran-
dom variables with values in R such that (Xn)n∈N and (Yn)n∈N converge
in distribution to X and Y , respectively, |Xn| ≤ Yn for all n ∈ N, and
limn→∞ E[Yn] = E[Y ]. Then,

lim
n→∞

E[Xn] = E[X] .

Proof. See [43] Appendixes Theorem 1.2. �

A collection of real-valued random variables {Xi, i ∈ I} is said to be
uniformly integrable if

lim
c→∞

sup
i∈I

E[|Xi|1{|Xi|>c} ] = 0.

Here, 1{A} denotes the indicator function of the set A. The following state-
ment considers the expectations corresponding to a uniformly integrable
sequence of random variables.

Proposition 1.1.3 Let (Xn)n∈N be an uniformly integrable sequence of
random variables converging to X in distribution, then limn→∞ E[Xn] =
E[X]. Conversely, if the Xn are integrable, converge to X in distribution,
and it holds that limn→∞ E[|Xn|] = E[|X|], then the sequence (Xn)n∈N is
uniformly integrable.

Proof. See [43] Appendixes Proposition 2.3. �

1.2 Markov processes

The description and analysis of multiclass queueing networks relies essen-
tially on the theory of Markov processes. This section is devoted to lay
the foundation. To this end, the material in this section is presented more
detailed.

Let (E, d) denote a complete separable metric space. Recall that a
metric space is called separable if it contains a countable dense set, i.e.
there is a sequence (xn)n∈N such that for every x ∈ X and for every ε > 0
there is a m ∈ N such that d(x, xm) < ε. The σ-algebra generated by the
open sets with respect to the metric d is denoted by B(E). Also, we denote
by P(E) the set of probability measures defined on E.
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Definition 1.2.1 A stochastic process X with index set I ⊂ R and state
space (E,B(E)) defined on a probability space (Ω,F ,P) is a function defined
on I × Ω with values in E such that X(t, ·) : Ω→ E is a random variable
for all t ∈ I.

That is, {ω : X(t, ω) ∈ A} ∈ F for every A ∈ B(E). For any fixed
ω ∈ Ω, a function t 7→ X(t, ω) is called a sample path or realization of the
stochastic process. In this thesis, we mostly consider stochastic processes
where the index set is given by I = R+ := {t ∈ R : t ≥ 0}.

A collection {Ft} := {Ft, t ∈ R+} of σ-algebras of sets in F is called a
filtration if for s, t ∈ R+ it holds that Ft ⊂ Ft+s. A filtration is said to be
right continuous if Ft =

⋂
ε>0 Ft+ε. Further, a filtration is called complete

if (Ω,F ,P) is complete and {A ∈ F : P[A] = 0} ⊂ F0.
Given a stochastic process X, the natural filtration FXt := σ(X(s), s ∈

[0, t]) describes the information that is available to an observer of the
stochastic process up to time t. In addition, FXt is the smallest σ-algebra
in F with respect to which the random variables {X(s), s ∈ [0, t]} are
measureable. By definition it follows that

s ≤ t⇒ FXs ⊂ FXt .

So, (Ω,FXt ,P) defines for each t ∈ R+ a probability space that can be
completed by adjoining to FXt all subsets of null sets.

A tuple (Ω,F , {Ft},P) is called a filtered probability space if (Ω,F ,P)
is a probability space and {Ft} is a filtration. A stochastic process X
is said to be adapted to a filtration {Ft} if X(t) is an {Ft}-measurable
random variable for each t ∈ R+. Moreover, a stochastic process is called
{Ft}-progressive if for each t ∈ R+ the restriction of X to [0, t] × Ω is
measurable with respect to B([0, t])×Ft.

Next, we look at a notion of equivalence for stochastic processes. To
this end, for 0 ≤ t1 ≤ . . . ≤ tm consider the probability measure Pm on
B(E)× . . .× B(E) defined by

Pm[A] := P[(X(t1), . . . , X(tm) ) ∈ A],

where A ∈ B(E)× . . .× B(E). Then,

{Pm : m ≥ 1 , 0 ≤ t1 ≤ . . . ≤ tm } (1.1)

are called the finite-dimensional distributions of the stochastic process X.
For two stochastic processes X and Y , not necessarily defined on the same
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probability space, we say that Y is a version of X, or X and Y are equal
in distribution, if they have the same finite-dimensional distributions.

A stochastic process X with index set R+ and values in R which is
adapted to a filtration {Ft} such that E[ |X(t)| ] <∞ for all t ≥ 0 is called

(i) an {Ft}-martingale if for all s, t ≥ 0 we have that

E[X(t+ s) | Ft] = X(t),

(ii) an {Ft}-submartingale if for all s, t ≥ 0 we have that

E[X(t+ s) | Ft] ≥ X(t),

(iii) an {Ft}-supermartingale if for all s, t ≥ 0 we have that

E[X(t+ s) | Ft] ≤ X(t).

A stopping time T on a filtered probability space is a random variable
taking values in R+ ∪ {∞} such that {T ≤ t} := {ω ∈ Ω : T (ω) ≤ t} ∈ Ft
for all t ∈ R+. Thus, given Ft it is known whether T has happend by time
t or not. The following result is called optional sampling theorem.

Theorem 1.2.2 Let X be a right-continuous supermartingale of a filtra-
tion {Ft} and suppose there exists an integrable random variable Y such
that X(t) ≥ E[Y | Ft ] for all t ≥ 0. Let S, T be {Ft}-stopping times such
that S ≤ T a.s. and define X(T ) = Y when T = ∞, X(S) = Y when
S = ∞. Then, the random variables X(S), X(T ) are integrable, and a.s.
we have

E[X(T ) | FS ] ≤ X(S).

Proof. See [43] Chapter 2, Theorem 2.13. �

Now we turn the attention to Markov processes.

Definition 1.2.3 A stochastic process X is called a Markov process if

P[X(t+ s) ∈ A | FXt ] = P[X(t+ s) ∈ A |X(t)] (1.2)

for all s, t ≥ 0 and A ∈ B(E).
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In the sequel, we consider the relation of Markov processes to tran-
sition functions. It will be shown that a transition function and an ini-
tial distribution uniquely determine a Markov process. A function P :
R+ × E × B(E) → [0, 1] is called a time homogeneous transition function
if it satisfies the following conditions.

(i) For fixed t, x the function A 7→ P (t, x,A) is a probability measure on
(E,B(E)).

(ii) For fixed t, A the function x 7→ P (t, x,A) is E-measureable.

(iii) For all x,A it holds that P (0, x, A) = 1A(x).

(iv) For all s, t ≥ 0, x ∈ E and A ∈ B(E) it holds that

P (s+ t, x,A) =

∫
A

P (s, y, A)P (t, x,dy).

Furthermore, P is called a transition function for a time homogeneous
Markov process X if

P[X(t+ s) ∈ A | FXt ] = P (s,X(t), A). (1.3)

Given a Markov process X, a probability measure P0 ∈ P(E) is called an
initial distribution of X if P0[A] = P[X(0) ∈ A] for all A ∈ B(E).

To examine the uniqueness issue, we consider the finite-dimensional
distributions of X. Given a transition function P and an initial distri-
bution P0, the finite-dimensional distributions of the Markov process are
determined by

P[X(0) ∈ A0, X(t1) ∈ A1, . . . , X(tn) ∈ An] :=∫
A0

∫
A1

. . .

∫
An−1

P (tn − tn−1, xn−1, An)P (tn−1 − tn−2, xn−2,dxn−1) · · ·

·P (t1, x0, dx1) dP0(x0).

(1.4)

The subsequent theorem states that for any transition function P and
initial distribution P0 there is a uniquely determined Markov process (up
to versions of it).
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Theorem 1.2.4 Let P be a time-homogeneous transition function and let
P0 be a measure on E. Then there exists a Markov process X in E whose
finite-dimensional distributions are uniquely determined by (1.4).

Proof. See [43] Chapter 4, Theorem 1.1. �

In particular, using the Dirac measure δx, defined for x ∈ E by

δx(A) :=

{
1 for x ∈ A ∈ B(E)

0 for x 6∈ A ∈ B(E),
(1.5)

it is possible to construct a Markov process X = {X(t), t ≥ 0} with tran-
sition function P satisfying P[X(0) = x] = 1. In this context, a Markov
family is a collection

( Ω, F , {Ft}, {X(t), t ≥ 0}, {Px, x ∈ E} ) , (1.6)

where (Ω,F) is a measurable space, {Ft} a filtration, and {X(t), t ∈ R+}
is a family of random variables with values in E satisfying the following
conditions:

(i) For each t the random variable X(t) is {Ft}-measurable.

(ii) For each x ∈ E the triple (Ω,F ,Px) is a probability space such that
{X(t), t ∈ R+} is a Markov process on (Ω,F ,Px) with transition
function P satisfying Px[X(0) = x] = 1.

The probability measures {Px, x ∈ E} and the transition function P are
related as follows. For all (t, x,A) ∈ R+ × E × B(E) it holds that

Px[X(t) ∈ A] = P (t, x,A).

Further, in a Markov family only the probability measure Px depends on
the initial point x ∈ E. Hence, the Markov property can also be expressed
by

Px[X(t+ s) ∈ A | Fs] = Pz[X(t) ∈ A ]|z=X(s) .

A Markov family (Ω,F , {Ft}, {X(t), t ≥ 0}, {Px, x ∈ E}) is called strong
Markov if the Markov property (1.2) holds for every stopping time of the
σ-algebra. That is, the collection (1.6) is called a strong Markov family if
X(t) is {Ft}-progressive and

Px[X(t+ T ) ∈ A | FT ] = P (t,X(T ), A).

for all x ∈ E, A ∈ B(E), {Ft}-stopping times T , and t ≥ 0.
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The Skorokhod Space D(R+, E)

In the following we show that it is possible to realize a Markov process
on a canonical space. To this end, we consider right continuous functions
having left limits. Based on the French translation “continue à droite,
limites à gauche” we refer to these functions as càdlàg functions. A function
x : R+ → E is called càdlàg if for h > 0 it holds that

x(t+) := lim
h→0

x(t+ h) = x(t) and x(t−) := lim
h→0

x(t− h) exists.

The set of càdlàg functions x : R+ → E is denoted by D(R+, E). The
set of càdlàg functions D(R+, E) can be equipped with a metric d such
that it becomes a separable complete metric space provided that (E, d) is
complete and separable, see [43, Chapter 3, Proposition 5.6]. Here, we will
not introduce the metric explicitly that induces the so called Skorokhod
topology. As we are mostly concerned with convergence issues we define the
Skorokhod topology via their convergence characteristics. For this reason,
let K∞ denote the set of continuous strictly increasing functions λ : R+ →
R+ satisfying λ(0) = 0 and limt→∞ λ(t) = ∞. The following definition of
the Skorokhod topology is based on Proposition 5.3 in Section 3.5 in [43].

Definition 1.2.5 A sequence (xn)n∈N in D(R+, E) is said to converge in
the Skorokhod topology to x ∈ D(R+, E), denoted by xn →s x, if for each
T > 0 there is a sequence (λn)n∈N in K∞ such that

lim
n→∞

sup
t∈[0,T ]

|λn(t)− t| = 0 and lim
n→∞

sup
t∈[0,T ]

d(xn(λn(t)), x(t)) = 0.

Proposition 1.2.6 If a sequence (xn)n∈N in D(R+, E) converges to x ∈
D(R+, E) in the Skorokhod topology, it holds that

lim
n→∞

xn(t) = lim
n→∞

xn(t−) = x(t)

for all points of continuity of x.

Proof. See [43] Chapter 3, Proposition 5.2. �

In the analysis of multiclass queueing networks the uniform convergence
on compact subsets (u.o.c.) plays an important role. In addition, for most
of the purposes it is sufficient to consider E = RN .
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Definition 1.2.7 A sequence (xn)n∈N in D(R+,RN ) is said to converge
uniformly on compact sets (u.o.c.) to x ∈ D(R+,RN ) if for each T > 0 it
holds that

lim
n→∞

sup
t∈[0,T ]

‖xn(t)− x(t)‖ = 0.

Here, we note that if a sequence (xn)n∈N in D(R+,RN ) converges u.o.c.
it also converges in the Skorokhod topology. However, the converse is false
in general.

In the following we provide the background for the limit theorems that
are used in Chapter 2 and Chapter 5. Let (Ω,F ,P) and (Ωn,Fn,Pn) be
probability spaces and let X and Xn be stochastic processes with values
in D(R+,RN ) defined on (Ω,F ,P) and (Ω,Fn,Pn), respectively. We say
that Xn converges to X in distribution if for every bounded continuous
function f : D(R+,RN )→ R it holds that

lim
n→∞

En[f(Xn)] = E[f(X)],

where En and E denote the expectation with respect to Pn and P, respec-
tively.

Theorem 1.2.8 Let X be a stochastic process and (Xn)n∈N be a sequence
of stochastic processes with values in D(R+,RN ). Suppose that Xn con-
verges to X in distribution. Then, there exists a probability space (Ω′,F ′,P′)
on which versions of (Xn)n∈N and X, denoted by (X ′n)n∈N and X ′, re-
spectively, are defined such that X ′n converges almost surely to X ′ in the
Skorokhod topology, i.e. P′[Xn →s X] = 1.

Proof. See [43] Chapter 3 Theorem 1.8. �

At the end of this section we consider two fundamental processes that
will be very useful for the examination of multiclass queueing networks. Let
(an)n∈N be an i.i.d. sequence of nonnegative real-valued random variables.
For t ∈ R+ let btc denote the largest integer less than or equal to t. Further,
let

X(t) :=

btc∑
n=1

an for t ≥ 1,
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and X(t) = 0 for all t ∈ [0, 1). Moreover, we consider the associated
counting process

Y (t) = sup{s ≥ 0 : X(s) ≤ t}.

The following convergence result is commonly known as the functional
strong law of large numbers (FSLLN).

Theorem 1.2.9 Suppose that (an)n∈N is an i.i.d. sequence of nonnegative
real-valued random variables with finite mean m > 0. Then, as n → ∞
almost surely,

1
nX(n t)→ mt u.o.c. and 1

nY (n t)→ 1
m t u.o.c.

Proof. See [21] Theorem 5.10. �

1.3 Piecewise Deterministic Processes

The essence of a piecewise deterministic process (PDP) is that its evolution
is deterministic despite of jumps occurring at random times. In this section
we provide a description for PDPs, which is taken from [38].

As an initial step let K be a countable set that indexes the jumps in
the state of the process and let n : K → N be a mapping that assigns the
dimensions of the corresponding state space of the deterministic evolution
between the jumps. Precisely, the deterministic motion of the process
under consideration is described by flows ϕv(t, ξ) with related state space
E0
v , where v ∈ K, t ∈ R expresses time, and ξ ∈ E0

v . We suppose that the
state space E0

v of the flow ϕv(·, ξ) is a subset of Rn(v). The union of all
spaces for the flows is denoted by

E0 = {x = (v, ξ) : v ∈ K, ξ ∈ E0
v}.

Further, for x = (v, ξ) ∈ E0 we define the boundary hitting time

t∗(x) :=

{
inf{t > 0 : ϕv(t, ξ) ∈ ∂E0

v}
∞ if no such time exists.

For x = (v, ξ) ∈ E0 let t∞(x) denote the life span of the flow ϕv(·, ξ). To
avoid a finite life span we assume that t∞(x) =∞ if t∗(x) =∞. To outline
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the state space we use the boundaries ∂E0
v := E

0

v \ E0
v of the spaces on

which the flows exist. We denote the subset of boundary points that are
attained by the flows by

∂±E0
v = {z ∈ ∂E0

v : z = ϕv(±t, ξ) for some ξ ∈ E0
v , t > 0},

∂1E
0
v = ∂−E0

v \ ∂+E0
v ,

Γ∗ =
⋃
v∈K

∂+E0
v .

The state space E is defined by

E :=
⋃
v∈K

E0
v ∪ ∂1E

0
v .

Let Av be a Borel subset of E0
v ∪ ∂1E

0
v , which exists since E0

v ∪ ∂1E
0
v is

a subset of the Euclidean space Rn(v), then the sets A =
⋃
v Av generate

a σ-algebra on E which will be denoted by E. It is possible to endow E
with a metric d such that the Borel sets generated by d coincide with E

and (E,E) is a Borel subset of complete separable metric space. The jump
mechanism is described by the jump rate λ and the transition measure Q.
The jump rate is defined by a measurable mapping λ : E → R+ with the
following properties: For each x = (v, ξ) ∈ E there exists an ε(x) > 0 such
that t 7→ λ(v, ϕv(t, ξ)) is integrable on [0, ε(x)). Moreover, let P(E) denote
the set of all probability measures on (E,E). A function Q : E∪Γ∗ → P(E)
is called a transition measure if it satisfies

Q({x}, x) = 0 for each x ∈ E,
x 7→ Q(A, x) is measurable for all A ∈ E.

A collection of the latter yields the following definition of a piecewise de-
terministic process.

Definition 1.3.1 A process X defined on E is called a piecewise deter-
ministic process (PDP) if the following conditions are satisfied.

(i) For each v ∈ K, ϕv(t, ξ) is a continuous flow. The life span t∞(ξ) =
+∞ whenever t∗(x) =∞.

(ii) The jump rate λ : E → R+ is a measurable function such that t 7→
λ(v, ϕv(t, ξ)) is integrable on [0, ε(x)) for some ε(x) > 0, for each
x ∈ E.
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(iii) The transition measure Q : E ∪ Γ→ P(E) is a measurable function
such that Q({x}, x) = 0 for each x ∈ E.

(iv) Ex[Nt] <∞ for each (t, x) ∈ R+ × E.

The content of the following result concerns the relation of PDPs and
Markov processes.

Theorem 1.3.2 Let X = {X(t), t ≥ 0} be a PDP, then X is a homoge-
neous strong Markov process.

Proof. See [38] Theorem 25.5. �

Another common class of stochastic processes are Borel right processes.
The state space is a Lusin space, that is, a topological space which is
homeomorphic to a Borel subset of a compact metric space.

Definition 1.3.3 A stochastic process X = {X(t), t ≥ 0} is called a Borel
right process if

(i) the state space E is a Lusin space,

(ii) the transition function P (t, ·, ·) maps bounded measurable functions
to bounded measureable functions,

(iii) the sample paths X(·, ω) are right continuous,

(iv) the process is strong Markov.

Here, we note that a locally compact Hausdorff space with countable
base is a Lusin space, cf. [78, p. 370]. Finally, the last statement of this
section relates PDPs to Borel right processes.

Theorem 1.3.4 Let X = {X(t), t ≥ 0} be a PDP then X is a Borel right
process.

Proof. See [38] Theorem 27.8. �
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1.4 Harris Recurrence

In this section we present the foundation for the stability analysis of multi-
class queueing networks. To this end, we consider a strong Markov process
X with values in a separable and locally compact metric space E. The
Borel σ-algebra induced by the metric is denoted by B(E). Furthermore,
let P be the transition function associated with X such that for A ∈ B(E)
we have that P (t, x,A) = Px[X(t) ∈ A], where x denotes the initial value.

A measure ν on (E,B(E)) is called invariant for X if it is σ-finite and
it holds that

ν(A) =

∫
E

P (t, x,A)ν(dx)

for all A ∈ B(E) and t ≥ 0. For a set A ∈ B(E) let

τA := inf{t ≥ 0 : X(t) ∈ A}

denote the first entrance time, and for δ > 0 the first entrance time past
δ is given by τA(δ) := inf{t ≥ δ : X(t) ∈ A}. By the Début Theorem,
cf. [78, Theorem A 5.1], the first entrance time defines a stopping time.
Furthermore, for A ∈ B(E) we consider the occupation time ηA, describing
the number of visits by X to A, given by

ηA :=

∫ ∞
0

1{X(t)∈A} dt.

A Markov process X is called Harris recurrent if there exists a nontrivial
σ-finite measure ν such that whenever ν(A) > 0 and A ∈ B(E) it holds
that

Px [ηA =∞] = 1

for all x ∈ E. Based on this characterization an interpretation of Harris
recurrence is that sets with positive measure are visited infinitely often.
Getoor has shown that for Harris recurrent processes there is an unique
invariant measure (up to a constant multiple), see [47]. If the unique
invariant measure can be normalized to a probability measure, the Markov
process X is called positive Harris recurrent .

Next, we state a characterization of positive Harris recurrence that
is easier to apply. Suppose that a is probability measure on (0,∞) and
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consider the Markov process Xa with transition function

Ta(x,A) =

∫ ∞
0

P (t, x,A)a(dt),

where x ∈ E and A ∈ B(E). A probabilistic interpretation of Xa is the
following: Xa is the Markov process X sampled at time points drawn
successively according to the distribution a, or more precisely, at time
points of an independent renewal process with increment distribution a,
cf. [59]. Let µ be some nontrivial measure on (E,B(E)). A nonempty set
A ∈ B(E) is called petite if there is a nontrivial measure µ on (E,B(E))
and a probability measure a on (0,∞) such that the transition function
Ta(x,B) of the sample process satisfies

Ta(x,B) ≥ µ(B)

for all x ∈ A and for all B ∈ B(E). A petite set A has the property that
each set B ∈ B(E) is equally accessible from all points x ∈ A with respect
to the measure µ. The following result contains conditions that will be very
useful for the Harris recurrence analysis of multiclass queueing networks.

Theorem 1.4.1 Let X be a Markov process.

(1) X is Harris recurrent if and only if there exists a closed petite set A
such that for all x ∈ E it holds that

Px[τA <∞] = 1.

(2) If x is Harris recurrent. Then, X is positive Harris recurrent if and
only if there is a closed petite set A such that for some δ > 0,

sup
x∈A

Ex[τA(δ)] <∞. (1.7)

Proof. See [17] Section 4.5. �
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1.5 Notes and References

A detailed presentation of the first Section 1.1 can be found in many places.
For instance [10, 25] are good textbooks, just to mention two.

The main reference for the outline of stochastic processes and Markov
processes in Section 1.2 is the book of Ethier and Kurtz [43]. This reference
is a comprehensive collection of material related to Markov processes. But,
the version of the optional sampling theorem 1.2.2 stated here is due to [38].
This formulation of the optional sampling theorem for supermartingales is
appropriate for our purpose, see Section 5.3. In addition, a full description
of the Skorokhod space and its topology can be found in the books [11, 43].
Another acronym for càdlàg functions is RCLL which is short for right
continuous left limits. The definition of uniform convergence on compact
sets used in this section is derived from [31]. Moreover, the formulation
of Skorokhod’s representation theorem as well as the short display of the
fundamental processes, including the functional law of large numbers, can
be found in the text book [21]. Also, we note that the notation K∞ for
the set of strictly increasing unbounded continuous functions differs from
[43]. In probability literature the set K∞ is usually denoted by Λ. We use
K∞ for two reasons. On the hand, the letter Λ will be used in Chapter 3
with a different meaning. On the other hand, the notion K∞ is standard
in dynamical systems literature and we will use the similar notion K to
denote the set of functions with the same properties despite of the fact
that they are not necessarily unbounded.

The standard reference for piecewise deterministic processes is the text
book [38]. A comprehensive discussion of Borel right processes can be
found in Section 20 of [78]. The definition of a Borel right process here
differs from the one in [78]. It is taken from [17] and is based on Theorem
9.4 (i) in [47].

The short outline of Harris recurrence in Section 1.4 follows a collec-
tion given by Bramson in [17]. Harris recurrence has been introduced by
Harris for discrete time Markov chains [49]. Later, Harris recurrence for
continuous time Markov processes was first considered by Azéma, Kaplan-
Dulfo and Revuz [6]. A full description of (positive) Harris recurrence for
Markov chains can be found in [59, 61]. The papers [62, 63] extended the
results to Markov processes and contain so called Foster-Lyapunov criteria
for positive Harris recurrence. We present a Foster-Lyapunov theorem in
Setion 5.3. Another useful sufficient condition for a Markov process being
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positive Harris recurrent was given by Dai in [28]. In the following chap-
ter we present a special type of stochastic processing networks, namely we
investigate multiclass queueing networks. In particular, we turn our atten-
tion to a technique, called fluid approximation, to obtain a deterministic
criterion to conclude that a multiclass queueing network is positive Harris
recurrent.



2 Multiclass Queueing Networks

In this chapter we lay the conceptual foundation for the remainder of this
thesis. The main topic in this thesis is the stability analysis of fluid net-
works. In this chapter we recapitulate that, based on the remarkable results
developed by Rybko, Stolyar and Dai, see [71, 81] and [28], respectively, the
stability analysis of fluid networks is a powerful tool for the investigation
of positive Harris recurrence of multiclass queueing networks.

To this end, we provide a description of multiclass queueing networks,
the underlying Markov process, and the dynamic equations of multiclass
queueing networks which stems from [17] and [28]. Moreover, we discuss an
approach to reduce the stability problem of a multiclass queueing networks
to the examination of the stability of a purely deterministic network, called
the associated fluid network. In addition, we collect known properties of
the associated fluid network that will play an important role throughout
this thesis.

Section 2.1 starts with the basic notation of multiclass queueing net-
works and the standing assumptions are stated. Afterwards, the state
space and several queueing disciplines are described, e.g. first-in-first-out
(FIFO), priority, and processor sharing disciplines. The state space is a
separable and locally compact metric space. That is, the Harris recurrence
theory from Section 1.4 applies.

In Section 2.2 we present the underlying Markov process that is de-
fined by a multiclass queueing network. Furthermore, it is outlined that
the Markov process defines a piecewisewise deterministic process. In par-
ticular, the process is a Borel right process and satisfies the strong Markov
property.

In Section 2.3 we turn our attention to a description of the evolution
of multiclass queueing networks which is based on a set of equations, com-
monly known as the basic queueing network equations. For instance, the

27
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evolution of the queue length can be modelled by a balance equation that
depends on counting processes and a process which describes the particular
service discipline. It turns out that the basic queueing network equations
embrace four equations which are complemented by further conditions spe-
cific to the discipline.

The final Section 2.4 is dedicated to the characteristics of the processes
that appear in the basic queueing network equations. In particular, we
regard the behavior of the primitive cumulatives under taking limits of a
sequence of rescaled versions of it. Moreover, the relation of the obtained
limits and the basic queueing network equations is considered. The great
benefit of this technique is that it enables us to conclude stability of the
stochastic multiclass queueing network by investigating an associated fluid
network, which is a continuous and deterministic model.

2.1 Model Description

Typically a multiclass queueing network consists of objects, for instance
jobs or customers, that are waiting for service in buffers in front of diverse
stations. After service completion, a served job either moves to another
buffer at some further station or leaves the network.

A multiclass queueing network consists of J service stations and K
classes of customers. The interarrival times for customers of class k ∈
{1, ...K} are given by positive random variables ak(n), with n = 1, 2, 3, ... ,
and the service times of class k customers are given by positive random
variables sk(n), with n = 1, 2, 3... . Each customer class is exclusively
served at a certain station. The many-to-one mapping c : {1, ...,K} →
{1, ..., J} determines which customer class is served at which station. The
corresponding J ×K matrix C, called the constituency matrix , is defined
by

Cjk :=

{
1 if c(k) = j,

0 else.

For station j ∈ {1, ..., J}, the set

C(j) := {k ∈ {1, ...,K} : c(k) = j}

is the collection of all customer classes that are served at the station j.
After a class k customer received service at the station c(k) its routing

is given by a K dimensional Bernoulli random variable φk. To be precise,
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each component of φk(n) is either 0 or 1, but the entry 1 appears at most
once. Let ek denote the kth standard basis vector for RK . Then, the nth
served class k customer at station c(k) becomes a class l customer after
service completion if φk(n) = el, and the customer leaves the network if
φk(n) = 0.

Remark 2.1.1 For some customer class k the interarrival time may be
ak(n) = ∞ for all n. Then, the exogenous arrival process is null. The
corresponding notation is the following

E := {k ∈ {1, ...,K} : ak(n) <∞, n ≥ 1}.

Further, the buffer at each station is assumed to have infinite capacity.

Throughout this thesis we pose the following general assumptions on
the interarrival and the service times. To this end, a distribution ν of the
interarrival times is called unbounded if for each class k ∈ E and for all
t ≥ 0 it holds that

Pν [ak(1) ≥ t] :=

∫ ∞
t

ak(1)ν(ds) > 0.

Unboundedness expresses that arbitrarily large interarrival times appear
with positive probability. Moreover, the distribution of the interarrival
times of customer class k ∈ E is said to spread out if there exists some
lk ∈ {1, 2, 3, ...} and some nonnegative function qk : R+ → R+ with∫∞

0
qk(s) ds > 0 such that for all 0 ≤ a < b,

Pν

[
lk∑
i=1

ak(i) ∈ [a, b]

]
≥
∫ b

a

qk(s) ds.

Before summarizing the standing assumptions, we recall that the spectral
radius of a matrix M ∈ RK×K is defined by %(M) := sup{|λ| | ∃x ∈ RK :
Ax = λx}.

Assumptions 2.1.2

(1) The sequences a1, ..., aK , s1, ..., sK and φ1, ..., φK are identically and
independently distributed and mutually independent.
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(2) The first moments satisfy

αk := E[ ak(1) ]−1 <∞, for k ∈ E ,
µk := E[ sk(1) ]−1 <∞, for k ∈ {1, ...,K},
Pk := E[φk(1) ] ≥ 0, for k ∈ {1, ...,K},

and the spectral radius of the matrix P = (P1 ... PK) is strictly less
than one.

(3) The distributions of the interarrival times are unbounded and spread
out.

Throughout the thesis we refer to the triple (a, s, φ) as the primitive
increments of the multiclass queueing network. The lth component of the
parameter Pk of the Bernoulli routing φk reflects the probability that a
class k customer becomes a class l customer. Hence,

1−
K∑
l=1

Pkl

represents the probability that a class k customer is leaving the network
after service completion. Since the transition matrix P = (Pkl) is assumed
to have spectral radius strictly less than one the Neumann series converges,
i.e.

(I + P + P 2 + ...)T = (I − PT)−1

exists. As a consequence, almost surely every customer visits only finitely
many stations before leaving the network. In open multiclass queueing
networks the effective arrival rate λk of class k customers is given by

λk = αk +

K∑
l=1

Plk λl.

Since the spectral radius of P is strictly less than one, the vector form of
the effective arrival rate is

λ = (I − PT)−1α.

Further, usingM = diag (µ1, ..., µK), the nominal workload of the stations
per time unit is represented by the J-dimensional vector

ρ = CM−1λ. (2.1)
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State Space

In this thesis we restrict ourselves to head-of-the-line (HL) queueing net-
works. The term HL indicates that within each class the customers are
served in First-In-First-Out (FIFO) order. The evolution of the HL mul-
ticlass queueing network will be described by a stochastic process " =
{"(t), t ≥ 0} and its corresponding state space is denoted by (X ,B(X )),
where

X = {x : x = (y, z) = (((k,w), u, v), z) ∈ (Z× R)∞ × R|E| × RK × RK}
(2.2)

and X is endowed a metric d. Here (Z × R)∞ denotes the set of finitely
terminated sequences taking values in Z× R, and B(X ) denotes the stan-
dard Borel σ-algebra of X induced by the metric d. Before introducing the
metric, we consider the state space X itsself. The meaning of each of its
components are the following.

(k,w) ∈ (Z× R)∞ : The global order of the customers in the network is
given by the pair of sequences (k,w) = ((k1, w1), (k2, w2), ..., (kl, wl)).
The first entry ki ∈ {1, ...,K} denotes the current class of the ith cus-
tomer and the second entry wi ≥ 0 reflects the elapsed time since the
customer i entered the class ki. The order of elements (ki, wi) in the
sequence (k,w) is defined by the property that it is descending in wi.
That is, within each class the customer with largest second compo-
nent represents the oldest one and so appears first in the sequence
(k,w). In the case two or more customers have an identical second co-
ordinate, the ordering is ascending with respect to the customer class.
The number of customers of each class is denoted by q = (q1, . . . , qK)

and ‖q‖1 =
∑K
k=1 qk is the total number of customers in the state.

u ∈ R|E| : This component denotes the residual interarrival time. That
is, the coordinate uk > 0 denotes the remaining time before the next
arrival of a class k ∈ E customer from outside the network.

v ∈ RK : This component represents the residual service time, i.e. the
coordinate vk denotes the remaining service time for the oldest class
k customer, where vk ≥ 0 and vk = 0 only if qk = 0.

z ∈ [0, 1]
K : The component zk denotes the proportion of the service effort

of station c(k) that the oldest class k customer receives, while other
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class k customers do not receive any service. This represents the HL
property. For each station j we have that if

∑
k∈C(j) qk > 0, it holds

that
∑
k∈C(j) zk = 1, where zk = 0 if qk = 0. If station j is empty,

i.e.
∑
k∈C(j) qk = 0, then

∑
k∈C(j) zk = 0.

Now we introduce a metric d on X that sums the difference of each com-
ponent. That is, for x, x′ ∈ X we define

d(x, x′) :=

∞∑
i=1

min{|ki − k′i|+ |wi − w′i|+ |zi − z′i|, 1}

+
∑
k∈E

|uk − u′k|+
K∑
k=1

|vk − v′k|.

The metric space (X , d) has the following properties.

Proposition 2.1.3 The metric space (X , d) is separable and locally com-
pact. In particular, X is a Lusin space.

Proof. See [17] Section 4.1. �

Remark 2.1.4 The metric space (X , d) is not complete. A complete met-
ric can be obtained by adding an appropriate term in each of the second
and third sum in d, cf. [17, Section 4.1].

So, the state space (X ,B) is measurable. For most of the issues in this
thesis we do not require the full metric d. With a slight abuse of notation
we call

|x| := ‖q‖+ ‖u‖+ ‖v‖

a norm on X . Further, let X be equipped with the natural induced topology
then {x ∈ X : |x| ≤ κ} is a compact subset of X for every κ > 0.

Various Queueing Disciplines

In the following we focus on some popular HL disciplines and consider the
resulting state space X . We will see that the state space of specific HL
queueing networks can be simplified by removing redundant information.
Furthermore, a restriction to exponential interarrival and service times
allows to drop the coordinates u and v from the state [17].
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FIFO disciplines

In first-in-first-out (FIFO) queueing networks the customers are served
according to the time spent in the queue, where the oldest customers are
served first. Let Nj(t) =

∑
k∈C(j)Qk(t) denote the queue length at time t

present at station j. The customers at station j are ordered according to
their age, i.e. for Nj(t) > 0 we consider the list

kj(t) := (kj,1, kj,2, ..., kj,Nj(t)),

where kj,i denotes the number of the ith customer at station j. If Nj(t) = 0
the list is set to be the empty list. Consequently, the customers age can
be removed from the state space description. Moreover, since the queueing
network is HL, the coordinate z in (2.2) can also be removed and the
evolution of the Markov process can be described by

"(t) = ( (k1(t), ..., kJ(t)), U(t), (Vkj,1(t)(t), j = 1, . . . , J) ).

Thus, the state space satisfies

X ⊂ (Z∞K )J × R|E|+J+ ,

where Z∞K denotes the set of terminating sequences taking values in ZK :=
{1, 2, ...,K}.

Priority disciplines

Under priority disciplines each station ranks the customer classes and
serves them accordingly. That is, for each station j there is a one-to-one
mapping

πj : C(j)→ {1, . . . , |C(j)|}

and the class k′ with πj(k
′) = 1 is said to be of highest priority. If the

station has completed a customer, it picks the oldest customer of the class
with the highest priority from the queue. So, within each class the cus-
tomers are served in FIFO order. If the queue is empty, the station idles.
The priority service disciplines can be distinguished in two subdisciplines.

Preemptive priority disciplines

Here, if during the time a customer receives service a customer of a class
with higher priority enters the queue, the service is stopped immediately,
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and the customer with the higher priority is served. The service does not
continue until there is no further customer with higher priority present in
the queue. Following the same arguments as in the FIFO case the Markov
process can be described by

"(t) = ( (Q1(t), . . . , QK(t)), U(t), V (t) ) ,

and the state space can be taken as

X ⊂ ZK+ × R|E|+K+ .

Nonpreemptive priority disciplines

In this case, even if there arrives a customer of a class with higher priority,
the station has to finish the service of the current customer. Hence, at each
station j there is at most one customer being served at time t. So, let kj(t)
denote the customer class that is served at time t, then the development
of the Markov process can be described by

"(t) =
(

(Q1(t), . . . , QK(t)), U(t), kj(t), Vkj,1(t)(t), j = 1, ..., J
)
.

If there are no customers present at station j at time t, then kj(t) is set
to zero and Vkj(t)(t) = 0. Consequently, the Markov process is completely
described by elements of the state space

X ⊂ ZK+ × R|E|+K+ × ZJK .

HL processor sharing disciplines

The essence of HL processor sharing (HLPS) disciplines is that the oldest
customers of each class receive service simultaneously at the station defined
by the constituency matrix. Within each class the customers are served in
FIFO order. The state is then described by

"(t) = (Q(t), U(t), V (t)) ,

and the state space is

X ⊂ ZK+ × R|E|+K+ .
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2.2 The Underlying Markov Process

In this section we outline the stochastic process which describes the evo-
lution of a multiclass queueing network. First, we describe the evolution
of the process " = {"(t) = (Y (t), Z(t)) ∈ X ; t ≥ 0} in between arrivals
and departures of customers, where the process develops according to the
piecewise constant service rates Z(t). Note that, based on the service dis-
cipline, the relation of Z(t) and Y (t) can be described by a measurable
function.

Second, to describe the progress of the Markov process, when an arrival
or a departure took place somewhere in the network, we consider the prim-
itive increments {ak(n), sk(n), φk(n) : k ∈ {1, ...,K}, n ≥ 1} to construct
the evolution of " inductively.

For time t in between arrivals and departures, the decrease rate of
residual service times V (t) = v is given by Z(t). There are two possibilities
that are allowed to happen:

(i) Service completion: Here Vk(t−) = 0 for some k ∈ {1, ...,K}. The
transition of the oldest class k customer is then given by φk. Hence,
we set Vk(t) = sk(i) or Vk(t) = 0 if qk(t−) > 0 or qk(t−) = 0,
respectively. Not before a customer either leaves the network or
transits to another class, its age Wi(t) = wi increases with rate 1.
Also, the components of the residual arrival rates U(t) = u decrease
at rate 1 until hitting 0.

(ii) New arrival : Here Uk(t−) = 0 for some k ∈ E . In this case, a pair
(k, 0) is added to the state Y (t) and the residual interarrival time
is set to Uk(t) = ak(i), where i represents the number of the next
unused class k customer up to time t. If the customer of class k
arrives at an empty queue, i.e. qk(t−) = 0, it holds that Vk(t−) = 0.
Then, we set Vk(t) = sk(i′), where i′ is the index of the first unused
service time at time t.

Moreover, the underlying stochastic process " has the following properties.

Theorem 2.2.1 ([28]) The stochastic process " is piecewise deterministic
with state space X . In particular, " is a Borel right process and satisfies
the strong Markov property.

We will not prove this statement. The interested reader is referred to
[17] Section 4.1. Based on the last statement the process is equipped with
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the basic ingredients defining a strong Markov process. So, the process "
is Borel right and is defined on a measurable space (Ω,F) with values in
the measurable space (X ,B(X )). Furthermore, the process is adapted to
a filtration {Ft} and {Px, x ∈ X} are probability measures on (Ω,F) such
that for every x ∈ X we have Px["(0) = x] = 1. As outlined in Section 1.2
the collection

(Ω,F , {Ft}, {X(t), t ≥ 0}, {Px, x ∈ X})

defines a strong Markov family with transition function defined by

P (t, x,A) = Px[X(t) ∈ A]

for all t ≥ 0, x ∈ X , and A ∈ B(X ).

2.3 Dynamic Equations of Queueing Networks

In this section we introduce dynamic equations that describe the evolution
of the performance processes of multiclass queueing networks. Based on the
primitive increments (a, s, φ) we define the primitive cumulatives (E,S,R)
of the queueing network. By convention, we assume that E(0) = S(0) =
R(0) = 0. The process E(t) is called external arrival process. The arrival
time of the nth customer of class k is given by ak(1) + ... + ak(n). The
process Ek(t) counts the arrivals of class k customers from outside up to
time t. That is, Ek(t) is defined by

Ek(t) := max{n ∈ Z+ : ak(1) + ...+ ak(n) ≤ t}.

The process S(t) is called the cumulative service process. The component
Sk(t) counts the service completions of class k customers in the time period
[0, t] in the case the station allocated its entire capacity to that customer
class, i.e.

Sk(t) = max{n ∈ Z+ : sk(1) + ...+ sk(n) ≤ t}.

The process R(n) is called the routing process. For each n ∈ Z+ and for
each customer class k ∈ {1, ...,K} the routing process is defined by

Rk(n) :=

n∑
i=1

φk(i).
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Certainly, the processes E, S and R are càdlàg. Before we are able
to state the dynamic equations that describe the evolution of the queue-
ing network, we have to introduce the allocation process, denoted by T :=
{T (t), t ≥ 0}. This process contains the information how much time a
station has devoted to serve the customer classes present at this station.
To be precise, Tk(t) denotes the cumulative amount of time that station
c(k) has spent on serving class k customers in the time period [0, t]. The
allocation process is determined by the service discipline. From the defini-
tion it follows that T (·) is nondecreasing. At the end of this section we will
specify T for the particular service disciplines that have been introduced
in Section 2.1.

Given the allocation process T , the number of service completions of
class k customers up to time t is given by Sk(Tk(t)). Further, the number
of class l customers that have routed from to class l to class k in the time
period from [0, t] is given by Rlk(Sl(Tl(t))). Thus, the queue length of class
k customers at time t can be described by the following balance equation

Qk(t) = Qk(0) + Ek(t) +

K∑
l=1

Rlk(Sl(Tl(t)))− Sk(Tk(t)),

where Qk(0) denotes the number of customers that are already in the queue
at time zero. Denoting the total arrivals of class k customers up to time t
by

Ak(t) := Ek(t) +

K∑
l=1

Rlk(Sl(Tl(t)))

and the departures in [0, t] by

Dk(t) := Sk(Tk(t)),

the above balance equation can be written in the following simple form

Qk(t) = Qk(0) +Ak(t)−Dk(t).

Moreover, there are additional processes that are used to describe the evo-
lution of the multiclass queueing network. The processW := {W (t), t ≥ 0}
is called the immediate workload process. The component Wj(t) reflects
the residual time that is needed to serve all customers that are currently
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waiting to be served at station j. Further, for n =
(
n1 ... nK

)T let
Γ(n) =

(
Γ1(n1) ... ΓK(nK)

)T denote the cumulative service defined by

Γk(nk) :=

nk∑
i=1

sk(i).

Thus, the immediate workload can be characterized by

W (t) = C Γ (Q(0) +A(t))− C T (t),

where C denotes the constituency matrix. Moreover, the J dimensional
process I := {I(t), t ≥ 0}, called the idle time process, denotes the total
time that the stations were not working in the time period [0, t]. The idle
process can be described by the following condition

I(t) = et− C T (t),

where e = (1, ..., 1)T. Since T (·) is nondecreasing, it follows that I(·) is
also nondecreasing. Based on these processes another essential property
of multiclass queueing networks which are considered in this thesis can be
stated. This property is called the non-idling property , which is also called
the work-conserving property . This means that a station can idle at time t
only if currently there are no customers in the queue. That is, if for station
j it holds that Ij(t2) > Ij(t1) for t1 < t2, then there exists a t ∈ [t1, t2]
such that Wj(t) = 0. As I(·) is continuous, the non-idling property can
also be written as

∫ ∞
0

Wj(t) dIj(t) = 0.

Finally, before we put the dynamic equations in a nutshell, we note that
the HL property of a queueing network can be expressed in the following
condition Γ(D(t)) ≤ T (t) < Γ(D(t) + e), where the inequalities have to
be understood componentwise. In vector form the dynamic equations of a



2.3 Dynamic Equations of Queueing Networks 39

multiclass queueing network can be summarized by

Q(t) = Q(0) +A(t)−D(t) ≥ 0, (2.3)
T (·) is nondecreasing, with T (0) = 0, (2.4)
W (t) = C Γ(Q(0) +A(t))− C T (t), (2.5)
I(t) = et− CT (t), I(·) is nondecreasing, (2.6)
Ij(t) can only increase when Wj(t) = 0, j ∈ {1, ..., J}, (2.7)

additional conditions on (Q(·), T (·)), specific to the discipline. (2.8)

In the following we refer to (2.3)-(2.8) as the queueing network equations.
The processes defining the basic queueing network equation determine evo-
lution of the queueing network. Due to this we simply call

"(t) = (A(t), D(t), T (t),W (t), I(t), Q(t))

the queueing network process. In the reminder of the section we state the
additional conditions (2.8) for the services discipline introduced in Sec-
tion 2.1.

FIFO disciplines

In FIFO queueing networks the customers are served in the order of their
arrivals. So, the allocation process is determined by

Dk(t+Wj(t)) = Qk(0) +Ak(t), j = c(k).

for all t ≥ 0. The role of the initial data is served by Q(0) and

{Dk(s) for s ≤Wj(0), j = c(k), k ∈ {1, ...,K}}.

Priority disciplines

Let the priority ordering be defined by the permutation π. For each cus-
tomer class k let

Πk := {k′ ∈ {1, ...,K} : c(k′) = c(k), π(k′) ≤ π(k)}

denote the set of customer classes that are served at the some station
j = c(k) and have priority at least as k. Correspondingly, we define

T+
k (t) :=

∑
l∈Πk

Tl(t).
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Preemptive priority disciplines

For priority queueing networks with preemption the additional condition
is then

t− T+
k (t) can only increase if Q+

k :=
∑
l∈Hk

Ql(t) = 0, k ∈ {1, ...,K}

for all t ≥ 0. This can be rewritten as∫ ∞
0

Q+
k (t) d(t− T+

k (t)) = 0, k ∈ {1, ...,K}.

The role of the initial data is served by Q(0).

Nonpreemptive priority disciplines

In what follows, we state the allocation process for the case that the priority
discipline is without preemption. For a jump function f : R→ Z+ the time
instant of the last jump can be characterized by

l(t; f) := sup{s ≤ t : |f(s−)− f(s)| ≥ 1}.

Let nj denote the number of customer classes that are served at station
j ∈ {1, ..., J} and let C(j) = {kj1, . . . , kjnj

} denote the set of customer
classes that are served at station j, the ordering is decreasing with respect
to the priorities, i.e. kjl has priority over kj,l+1. The indicator set for
station j and customer class kjl is

Ĩkjl(t) = {∃u | l (t;Qkjl) ≤ u ≤ t : Qkjl′ (u) = 0, l′ < l, Qkjl(u) > 0},

where l = 1, . . . , nj . Further, using the superscript c to denote the com-
plement, we define the sets

Ikjnj
(t) := Ĩkjnj

(t)

Ikjl(t) := Ĩkjl(t) ∩ (Ikj,l+1
(t))c, l = nj − 1, . . . , 1.

Then, the allocation process can then be defined by

Tkjl(t) =

∫ t

0

1{Ikjl
(s)} ds

for j ∈ {1, ..., J} and l = 1, ..., nj . The initial data is given by Q(0).
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HLPS disciplines

Under the HL processor sharing discipline the oldest customers of each
nonempty class are served simultaneously and the amount of service is
shared equally among them. That is, the allocation of class k customers
up to time t is given by

Tk(t) :=

∫ t

0

1{Qk(s)>0}∑
l∈C(c(k)) 1{Ql(s)>0}

ds.

It can be checked that the evolution of the process "(t) is completely de-
termined by the primitive cumulatives and the initial queue length. So, in
this case the initial data is given by Q(0).

HLPPS disciplines

In HL proportional processor sharing disciplines a station serves the oldest
customers of each nonempty class simultaneously, where the service effort
is not shared equally, but proportional the queue length. That is, the
allocation in the time period [0, t] that class k customers received from
station j = c(k) is given by

Tk(t) :=

∫ t

0

Qk(s)∑
l∈C(c(k))Ql(s)

ds.

The primitive cumulatives as well as the initial queue length determine
evolution of the process "(t) for all t ≥ 0.

2.4 Fluid Approximation and Stability

In this section we provide an approach that was first considered by Rybko
and Stolyar in 1992 [71] and was further developed by Stolyar [81] and
Dai [28]. The idea is to investigate scaled versions of the Markov process.
To this end, let (rn, xn)n∈N be a sequence of pairs, where rn ∈ R+ and
xn ∈ X is a sequence of initial states. We assume that the sequence of
pairs satisfies the following conditions

lim
n→∞

rn =∞, lim sup
n→∞

‖qn‖
rn

<∞, lim
n→∞

‖un‖
rn

= lim
n→∞

‖vn‖
rn

= 0, (2.9)
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where qn, un and vn denote the queue length, the residual interarrival time,
and the residual service time, respectively. In the sequel, we consider the
family "′ := {"n(t) : t ≥ 0, n ∈ N} of Markov processes defined by

"n(t) := 1
rn

"xn (rn t),

where the superscript xn expresses the dependence on the initial state xn ∈
X . In order to investigate the family "′ we start to focus on the primitive
cumulatives (E,S,R). In the next lemma we recall the convergence results
of the scaled versions of the primitive cumulatives.

Lemma 2.4.1 ([28]) Assume that the sequence of pairs (rn, xn)n∈N sat-
isfies (2.9). Then, as n→∞, almost surely

1
rn
Exn

k ( rn t ) −→ αkt u.o.c.,

1
rn
Sxn

k ( rn t ) −→ µkt u.o.c.,

1
rn
Rk( [rn t] ) −→ Pk t u.o.c.,

(2.10)

where [a] denotes the integer part of a ∈ R.

Proof. By Assumptions 2.1.2 (1) and (2), the primitive increments satisfy
the strong law of large numbers, i.e. as n → ∞ almost surely it holds for
each k ∈ {1, ...,K} that

1
n

n∑
i=1

ak(i) −→ 1
αk
, 1

n

n∑
i=1

sk(i) −→ 1
µk
, 1

n

n∑
i=1

φk(i) −→ Pk. (2.11)

The assertion then follows from Theorem 1.2.9. �

We denote by G the set of all sample paths satisfying (2.11) and use G
as the set on which we will take fluid limits. Note that P[G] = 1 and that
the fluid limits can be taken on any set G′ with P[G′] = 1 such that (2.11)
is satisfied.

Theorem 2.4.2 ([28]) For each HL queueing network, (rn, xn)n∈N satis-
fying (2.9), and ω ∈ G, there is a subsequence of pairs (rni

, xni
)i∈N such

that

lim
i→∞

1
rni

"xni (rni
t, ω) = "(t, ω) u.o.c. (2.12)
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Proof. Let ω ∈ G be a fixed sample path. For (xn, rn) and k ∈ {1, ...,K},
as 1

rn
Ixn

k (rn·, ω) is nondecreasing, it follows from (2.6) that

1

rn
T xn

k (rnt, ω)− 1

rn
T xn

k (rns, ω) ≤ t− s

for all 0 ≤ s ≤ t. That is, the family { 1
rn
T xn(rnt, ω), n ∈ N} is equicontin-

uous. Hence, by the Arzelà-Ascoli Theorem A.1 and a diagonal argument
there is a subsequence of pairs (rni , xni)i∈N such that

lim
i→∞

1

rni

T
xni

k (rni
t, ω) = T k(t, ω) u.o.c.

for some process T k(t, ω). Applying (2.6) again yields that

lim
i→∞

1

rni

I
xni

k (rni
t, ω) = Ik(t, ω) u.o.c.

and with Lemma 2.4.1 we conclude that

lim
i→∞

1

rni

A
xni

k (rni
t, ω) = Ak(t) u.o.c. ,

lim
i→∞

1

rni

D
xni

k (rnit, ω) = Dk(t) u.o.c.

Moreover, it follows from Lemma 2.4.1 and the balance equation (2.3) that

lim
i→∞

1

rni

Q
xni

k (rni
t, ω) = Qk(t, ω) u.o.c.

Finally, the convergence of the workload follows from (2.5). �

Any limit "(·) = (A(·), D(·), T (·),W (·), I(·), Q(·) obtained from a scal-
ing (2.12) is a called a fluid limit of the discipline. The set of all fluid limits
associated with the sample path ω is denoted by FL(ω). So, whenever a
fluid limit is considered it is always assumed that "(·) ∈ FL(ω) for some
ω = {a(n), s(n), φ(n), n ∈ N}. Hence, after taking limits some randomness
may remain.

Definition 2.4.3 The collection of all fluid limits for all sample paths ω
is called the fluid limit model, i.e. FLM = {"(ω) : ω ∈ G}.
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Next, we show that any fluid limit satisfies a set of dynamic equations
which is analog to the queueing network equations (2.3)-(2.8), which are
obtained by replacing the primitive cumulatives by their limits of the scal-
ing. That is, using M = diag(µ),

A(t) = αt+ PTMT (t), (2.13)

Q(t) = Q(0) +A(t)−MT (t) ≥ 0, (2.14)

T (0) = 0 and T (·) is nondecreasing, (2.15)

W (t) = CM−1 (Q(0) +A(t))− C T (t), (2.16)

I(t) = et− C T (t) and I(·) is nondecreasing, (2.17)

Ij(t) can only increase when W j(t) = 0, j ∈ {1, ..., J}, (2.18)

additional conditions on (Q(·), T (·)), specific to the discipline. (2.19)

For convenience, we refer to this set of equations in the following as the
fluid equations.

Definition 2.4.4 A pair (Q(·), T (·)) is called a fluid solution if it satisfies
the fluid equations. In addition, the set of all fluid solutions to the equations
(2.13)-(2.19) is called the associated fluid network, denoted by FN .

The associated fluid network is a purely deterministic network which
is based on the mean values of the primitive increments of the stochastic
queueing network.

Theorem 2.4.5 ([28]) Let "(·) be a fluid limit. Then, (Q(·), T (·)) is a
fluid solution.

Proof. The equations (2.13)-(2.17) follow immediately from the proof of
Theorem 2.4.2. To prove (2.18) we assume that for some j ∈ {1, ..., J}
there is an interval [r, s] such that W j(t) > 0 for all t ∈ [r, s]. Since
W j(·) is continuous and the workload process 1

rni
W

xni
j (rni

t) converges

u.o.c. to W j(t), for i sufficiently large it holds that 1
rni
W

xni
j (rnit) > 0 for

all t ∈ [r, s]. Then, by equation (2.7) it holds that

1

rni

I
xni
j (rni

r) =
1

rni

I
xni
j (rni

s).

The assertion then follows since the limit i→∞ preserves the equality. �

An immediate consequence of the above theorem is that FLM ⊂ FN .
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Remark 2.4.6 A counterexample in [31, Section 2.7] shows that, in gen-
eral, the inclusion FLM ⊂ FN is strict. Furthermore, the fluid solutions
are not unique in general. A related counterexample can be found in [17]
Example 1 in Section 4.3.

In the following we address a fundamental question in queueing theory,
namely to derive, for a given queueing network, conditions that characterize
the fact that the network has an unique equilibrium in the sense that there
is an attractive invariant probability measure. The following definition
gives a precise statement when a queueing network is called stable.

Definition 2.4.7 A multiclass queueing network is called stable if the un-
derlying Markov process " is positive Harris recurrent.

Based on the definition of positive Harris recurrence and its equivalent
characterization in Theorem 1.4.1, the first step towards a sufficient con-
dition of the stability of a multiclass queueing network is to investigate
closed petite sets. The following lemma shows that the Assumptions 2.1.2
provide a closed petite set.

Lemma 2.4.8 ([28]) If the interarrival times satisfy the Assumptions 2.1.2,
then for all κ > 0 the set

A = {x ∈ X : |x| ≤ κ} (2.20)

is closed and petite.

Proof. See [17] Section 4.2. �

In what follows, we state the main result of this section, namely a
sufficient criterion for the stability of a multiclass queueing network in
terms of the fluid limit model. To this end, we have to introduce the
concept of stability for the fluid limit model. This is done in the following
definition.

Definition 2.4.9 A fluid limit model of a queueing discipline is said to be
stable if there is a τ > 0 such that for any fluid limit "(·) ∈ FLM the Q(·)
component satisfies Q(t) = 0 for all t ≥ τ‖Q(0)‖.

Now, we state the main theorem of this chapter.
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Theorem 2.4.10 ([28]) Let a queueing discipline be fixed. Assume that
Assumptions 2.1.2 are satisfied. If the fluid limit model is stable, then the
queueing network is stable. In particular, if the associated fluid network is
stable, then the queueing network is stable.

In general, it is not easy to work with fluid limits. Due to the fact that
the associated fluid network is a deterministic model, we will work with
the associated fluid network.

Remark 2.4.11 Lemma 2.4.8 is the only place where Assumption 2.1.2 (3)
appears explicitly. These conditions put proper restrictions on the distribu-
tions of the interarrival times. To this end, one can allow for general dis-
tributions of the interarrival times and show directly that condition (2.20)
is satisfied for the particular situation.

The relation of multiclass queueing networks to its fluid limit models
and the associated fluid networks is the content of the following remark.

Remarks 2.4.12

(a) A partial converse to Theorem 2.4.10 due to [30] is the following. If
the fluid limit model (resp. the associated fluid network) is weakly
unstable, i.e. for each sample path ω ∈ G there is a δ > 0 that may
depend on ω such that Q(δ) 6= 0 for each Q(·) ∈ FL(ω) (respectively
Q(·) ∈ FN ) with Q(0) = 0, then the queueing network is unstable in
the sense that a.s. we have that

lim
t→∞

‖Q(t)‖ =∞.

(b) Bramson has shown by a counterexample that there are stable multi-
class queueing networks where the associated fluid network is unsta-
ble. That is, a converse to the second statement in Theorem 2.4.10
may not hold, see [17].

(c) In addition, a counterexample by Dai, Hasenbein, Vande Vate shows
that the stability of a multiclass queueing network may depend on the
distributions of the primitive increments, see [34] . As a matter of
fact, knowing the mean values of the primitive increments may not
be sufficient to conclude stability. Hence, in general the associated
fluid network is not able to completely describe the stability of the
queueing network.
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(d) Further partial converse results can be found in [60], [67].

The remainder of this chapter is devoted to the properties of the class of
fluid networks associated to work-conserving queueing networks. To this
end, we consider the set of solutions to the basic fluid equations (2.13)-
(2.18). So, for simplicity we omit the overline symbol in the following.

Proposition 2.4.13 ([19] Lipschitz continuity)
The fluid solutions (Q(·), T (·)) are Lipschitz continuous with a global Lip-
schitz constant. In particular, the pair is differential almost everywhere
with respect to the Lebesgue measure on [0,∞).

Proof. Let (Q(·), T (·)) be a fluid solution. By (2.17) the idle process I(·) is
nondecreasing. Hence, by (2.15) for any k ∈ {1, ...,K} and for all 0 ≤ s ≤ t,

Tk(t)− Tk(s) ≤
∑
l∈C(j)

Tl(t)− Tl(s) = t− s− (Ij(t)− Ij(s)) ≤ t− s.

Thus, T (·) is Lipschitz continuous with constant L = 1. Further, the
balance equation (2.14) shows that the fluid level process Q(·) is Lips-
chitz continuous and that there is a global Lipschitz constant. Further, by
Rademacher’s Theorem the processes are differential almost everywhere cf.
[44, Theorem 5.8.6]. �

In order to state further properties we introduce a scaling and a shift
operator. Given a function f : R+ → RK+ , for r > 0 the scaling operator
σr is defined by

σr f (t) := 1
rf(r t), (2.21)

and for s ≥ 0 the shift operator δs is defined by

δs f (t) := f(t+ s). (2.22)

The subsequent statement is a scaling and shift property of the fluid solu-
tions.

Proposition 2.4.14 ([19] Scaling and shift property)
Let (Q(·), T (·)) be a fluid solution with initial fluid level Q(0).

(1) For each r > 0 the pair (σr Q(·), σr T (·)) is a fluid solution with
initial fluid level σrQ(0).
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(2) For each s ≥ 0 the pair (δsQ(·), δsT (·) − δsT (0)) is a fluid solution
with initial fluid level δsQ(0).

Proof. The assertion follows directly from the basic fluid equations. �

The next property is about the convergence of the fluid level processes.
We note that for fluid limits the shift property and the convergence is not
immediately clear, see Section 5.2.

Proposition 2.4.15 ([86] Closedness in the uniform topology)
Let (Qn(·), Tn(·))n∈N be a sequence of fluid solutions with initial fluid level
Qn(0). Suppose (Qn(·), Tn(·))n∈N converges u.o.c. to (Q∗(·), T∗(·)) as n→
∞. Then, (Q∗(·), T∗(·)) is a fluid solution with initial fluid level Q∗(0).

Proof. To avoid any double subscripts we use superscripts to denote the
sequences. Suppose that (Qn(·), Tn(·))n∈N is a sequence of fluid solutions
that converges u.o.c. to some (Q∗(·), T ∗(·)) as n → ∞. Then, it follows
directly that the limit (Q∗(·), T ∗(·)) satisfies the equations (2.13)-(2.17).
To verify (2.18) it suffices to show that if

∑
k∈C(j)Q

∗
k(·) > 0 on some

interval implies this implies that I∗j (·) is constant on this interval. So,
consider a station j ∈ {1, ..., J} such that

∑
k∈C(j)Q

∗
k(t) > 0. Hence,

there are ε, δ > 0 such that for all s ∈ [t− δ, t+ δ],∑
k∈C(j)

Q∗k(s) ≥ 2ε. (2.23)

By the convergence hypothesis it holds that
∑
k∈C(j)Q

n
k (t) converges u.o.c.

to
∑
k∈C(j)Q

∗
k(t). and, thus, n sufficiently large we have

|
∑

k∈C(j)

Qnk (s)−
∑

k∈C(j)

Q∗k(s)| ≤ ε

for all s ∈ [t− δ, t+ δ]. Further, by (2.23) and the triangular inequality it
holds that ∑

k∈C(j)

Qnk (s) ≥
∑

k∈C(j)

Q∗k(s)− ε ≥ ε > 0.

Then, by (2.18), for all s ∈ [t − δ, t + δ] we have that Inj (s) = Inj (t − δ).
Hence, for n→∞ this yields for all s ∈ [t− δ, t+ δ] that

I∗j (s) = I∗j (t− δ)

and so İ∗j (t) = 0. This shows the assertion. �
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2.5 Notes and References

This chapter introduces multiclass queueing networks and collects results
from the literature which will be useful in the remainder of this thesis.
The intention of this summary embraces mainly two issues. First, it moti-
vates why the stability analysis of fluid networks is an interesting topic. To
this end, it is recalled how fluid networks emerge in the stability analysis
of multiclass queueing networks. In addition, this chapter displays that
the basic fluid network equations have their origin in the dynamic equa-
tions describing the evolution of the performance processes of a multiclass
queueing network. Second, the degree of accuracy results, on the one hand,
from the fact that the properties of the fluid network stated in the Propo-
sitions 2.4.13, 2.4.14 and 2.4.15 play a fundamental role in the derivation
of a Lyapunov theory for fluid networks in Chapter 4. On the other hand,
in Chapter 5 we provide an alternative proof of Theorem 2.4.10 in terms
of the Lyapunov theory that we will develop in Chapter 4.

The model description given in Section 2.1 is taken from [17] and [28].
The Assumptions 2.1.2, which are appropriate to enable a stability analysis
of multiclass queueing networks by means of the associated fluid network,
stem from [28]. Also, the state space description for the disciplines consid-
ered in this chapter come from [28]. Whereas, the outline of the general
state space has its origin in [17]. Further, the comprehensive depiction of
the underlying Markov process describing the evolution of the HL queueing
network can also be found in [17]. The fact that the underlying process "
defines a PDP, and hence a Borel right process, has also been addressed in
[17, 28, 54].

The basic dynamic equations characterizing the evolution of the queue-
ing network under certain disciplines can be found in many places, see for
instance [16, 17, 19, 23, 24, 28, 31, 33].

The development of the fluid approximation is related to [17]. Applying
a SLLN scaling of the stochastic processes, as presented in Section 2.4,
avoids dealing with a delayed fluid model, as does the approach in [28]. By
Theorem 5.3 in [19] this is no restriction since the stability of the undelayed
fluid model implies the stability of the delayed fluid model.

Finally, these results provide the origin for the fluid limit approach to
tackle the stability issue. This framework was first introduced by Rybko
and Stolyar in 1992 to investigate the stability of a two station queueing
network, cf. [71]. In 1995 Dai generalized this to multiclass queueing
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networks, see [28].
The derivation of the properties of the fluid networks associated to HL

queueing networks are taken from [19, 81, 86]. In the subsequent chapter
we turn our attention to the derivation of stability conditions for associated
fluid networks under the disciplines introduced in this chapter. In doing
so, it will turn out that the use of Lyapunov theory is a powerful tool.



3 Stability of Fluid Networks

The fluid approximation method for the stability analysis of multiclass
queueing networks leads to the objective of deriving stability conditions for
fluid networks. Hence, in this chapter we focus on stability conditions for
fluid networks operating under the disciplines introduced in the previous
chapter. It will be shown that for each individual discipline there are
separate sufficient stability criteria.

In a first step, we will consider fluid networks under general work-
conserving disciplines. The only specification for this class is the non-idling
property, i.e. a station can only idle if there are no customers waiting to
be served, see condition (2.18). It will be shown that a necessary stability
condition is that the nominal workload at each station is strictly less than
one. As this class is a superset for all the disciplines considered in this thesis
the nominal workload condition is also necessary for all other disciplines.

Furthermore, in this chapter we run through the sufficient stability con-
ditions for each discipline that are available in the literature. As the focus
of this thesis is to see the stability analysis from a Lyapunov perspective,
we recall those proofs from the literature that are based on Lyapunov ar-
guments.

In the first section we recall the definition of stability for fluid networks.
Further, the section contains an equivalent characterization for stability,
which is apparently weaker. In addition, Section 3.1 contains the Lya-
punov framework that lays the foundation for the stability analysis of the
individual disciplines. In the subsequent sections the fluid networks un-
der the particular disciplines are examined in detail. The final section of
this chapter provides a comparison to the stability theory for dynamical
systems based on differential equations.

51
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3.1 Generalities on Stability for Fluid Networks

A fluid network, as introduced in Section 2.4, is a continuous deterministic
analog to a multiclass queueing network. For this reason, the variables de-
scribing fluid networks are used accordingly. However, the interpretation
is different. A fluid network consists of J stations that serve K different
classes of fluids. For each fluid class k the variable αk is interpreted as
the rate at which fluids flow into the network. The corresponding vector
α ∈ RK+ is called the exogenous inflow rate. Likewise, the variable µk ∈ R+

is interpreted as the potential outflow rate of class k fluids and the sub-
stochastic matrix P ∈ [0, 1]K×K is considered as the flow transfer matrix.
Also, it is assumed that %(P ) < 1. However, to keep the analogy and for
simplicity we refer to α, µ and P as the arrival rate, service capacity, and
routing matrix, respectively.

The many-to-one map c from classes to stations and the corresponding
constituency matrix C are completely analog to the queueing network case.
The initial fluid level of the network and the fluid level process are denoted
by Q(0) ∈ RK+ and Q := {Q(t) ∈ RK+ , t ≥ 0}, respectively. Given the
parameters α and µ, the structure P and C, and the initial fluid level
Q(0), the evolution of the fluid network is determined by the discipline.
On the analogy of queueing network the allocation process, denoted by
T = {T (t) ∈ RK+ , t ≥ 0}, represents the discipline, where Tk(t) denotes the
cumulative amount of time in the time period [0, t] that station c(k) has
allocated to serving fluids of class k. Hence, the quantity µkTk(t) reflects
the cumulative outflow of class k fluids up to time t.

Recall that the processes are Lipschitz and so differential almost ev-
erywhere. Further, the set of equations, called the basic fluid equations,
describing a fluid network is the following

Q(t) = Q(0) + α t− (I − PT)MT (t) ≥ 0, (3.1)
T (·) is nondecreasing, with T (0) = 0, (3.2)
I(t) = et− CT (t), I(·) is nondecreasing, (3.3)

0 = (C Q(t))T İ(t) for almost all t ≥ 0, (3.4)

whereM = diag(µ) and I = {I(t), t ≥ 0} is the cumulative idle process. To
specify the network for a particular discipline you have to add at least one
more equation describing the discipline. Since a fluid network is defined by
the parameters α, µ, P,C and the discipline π we denote a fluid network
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by (α, µ, P,C, π). Recall that the formal definition of stability of fluid
networks is the following.

Definition 3.1.1 A fluid network (α, µ, P,C, π) is said to be stable if there
exists a τ > 0 such that Q(t) ≡ 0 for all t ≥ τ‖Q(0)‖ and for all fluid level
processes Q(·).

The following result contains an apparently weaker condition for sta-
bility of fluid networks. It turns out that the subsequent characterization
of stability is useful to provide a comparison to Lyapunov stability for dy-
namical systems. For simplicity we denote by Φ(1) the set of fluid level
processes with total initial level one, i.e. ‖Q(0)‖ = 1.

Theorem 3.1.2 ([81]) A fluid network is stable if and only if for any
fluid level process Q(·) ∈ Φ(1) it holds that

inf
t≥0
‖Q(t)‖ < ‖Q(0)‖ = 1. (3.5)

Proof. It suffices to show that (3.5) implies Definition 3.1.1. In a first step
we show that there is a r ∈ [0, 1) such that for all fluid level processes
Q(·) ∈ Φ(1) it holds that

inf
t≥0
‖Q(t)‖ < r. (3.6)

Suppose that such an r does not exist. Then, there is a sequence (rn)n∈N
with limn→∞ rn = 1 and a sequence (Qn(·))n∈N with Qn(·) ∈ Φ(1) such
that

inf
t≥0
‖Qn(t)‖ ≥ rn.

Since the family (Qn(·))n∈N is equicontinuous and by a diagonal argument,
there is a convergent subsequence (Qnl

(·))l∈N that satisfies liml→∞Qnl
(·) =

Q(·) ∈ Φ(1) and inft≥0 ‖Q(t)‖ = 1, which contradicts (3.5).
Let r ∈ [0, 1) be fixed such that (3.6) holds. Then, given any Q(·) ∈

Φ(1) there exists a t1 > 0 such that

t1 = min{t ≥ 0 : ||Q(t)|| = r} <∞. (3.7)
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The latter, the scaling, and the shift property imply that there are times
tk ∈ R+ such that for k = 1, 2, ... we have that

tk = min{t ≥ 0 : ||Q(t)|| = rk} <∞ . (3.8)

Hence, for every Q(·) ∈ Φ(1) it holds that

inf
t≥0
‖Q(t)‖ = 0. (3.9)

Moreover, for any r ∈ (0, 1) there is a Tr ∈ R+ such that

sup
Q(·)∈Φ(1)

min{t ≥ 0 : ||Q(t)|| = r} ≤ Tr <∞. (3.10)

To see this, suppose that this is not true. Then, there is a fluid level process
Q(·) ∈ Φ(1) such that

inf
t≥0
‖Q(t)‖ ≥ r,

which provides a contradiction to (3.9).
Let r be constant as given in (3.7). In the sequel, we construct for

any given Q(·) ∈ Φ(1) a sequence 0 = τ0 < τ1 < τ2 < ... such that for
k = 1, 2, ... we have

||Q(τk)|| = rk .

Initially, we take τ1 = t1 defined by (3.7). Then, by the scaling and shift
property we have 1

rQ(rt + t1) ∈ Φ(1) and, hence, there is a t2 < ∞ such
that

t2 = min{t ≥ 0 : Q(rt+ t1) = r2}.

Then, defining

τk := rk−1tk + rk−2tk−1 + ...+ t1

yields that ||Q(τk)|| = rk. Further, the sequence (τk)k∈N is Cauchy since

τk − τk−1 = rk−1 tk ≤ rk−1 Tr for k = 1, 2, ... .
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Moreover, (3.10) implies that

lim
k→∞

τk = lim
k→∞

k∑
i=1

ri−1 ti ≤ Tr
∞∑
i=1

ri−1 =
Tr

1− r
<∞.

Thus, the sequence (τk)k∈N has a finite limit, denoted by τ∗, that satisfies
τ∗ ≤ Tr

1−r . In addition, the continuity of Q(·) and the norm implies that

||Q(τ∗)|| = ||Q( lim
k→∞

τk)|| = lim
k→∞

||Q(τk)|| = lim
k→∞

rk = 0.

Consequently, there is a τ > 0 such that

sup
Q(·)∈Φ(1)

min{t ≥ 0 : ||Q(t)|| = 0} ≤ τ <∞. (3.11)

Thus, it remains to show that Q(·) stays zero for all t ≥ τ∗. Suppose there
is a t∗ > τ∗ such that ‖Q(t∗)‖ > 0. Then, by the continuity of ‖Q(·)‖
there are t′, t′′ with t′ < t′′ such that ‖Q(t′)‖ = 0 and ‖Q(s)‖ > 0 for all
s ∈ (t′, t′′]. For any ε > 0 such that ε < max{ ‖Q(s)‖ : s ∈ [t′, t′′] } we
consider tε := min{ s ≥ t′ : ‖Q(s)‖ = ε }. Moreover, let t := min{ s ≥
tε : ‖Q(s)‖ = 0 }, which clearly satisfies t > t′′. By the scaling and shift
property we have 1

εQ(ε ·+tε) ∈ Φ(1). Thus, by (3.11) we have t ≤ tε + ετ .
Now, for ε→ 0 it follows by definition that tε → t′ and t→ t′, which yields
a contradiction to t1 < t2. This shows the assertion. �

Before presenting a Lyapunov method for fluid networks we consider
the following auxiliary lemma.

Lemma 3.1.3 ([31]) Let f : R+ → R+ be absolutely continuous and let
ε > 0 be fixed. Suppose that if f(t) > 0 and f is differentiable at t, it holds
that ḟ(t) ≤ −ε. Then, f(t) = 0 for all t ≥ ε−1 f(0).

Proof. Let t∗ := inf{ t > 0 : f(t) = 0 }. Suppose that there is a t′ > t∗

such that f(t′) > 0. Then, by the continuity of f there exists a δ > 0 such
that f(t′ − δ) = 0 and f(s) > 0 for all s ∈ (t′ − δ, t′]. Since f is absolutely
continuous it holds that

f(t′) = f(t′)− f(t′ − δ) =

∫ t′

t′−δ
ḟ(s) ds ≤ −ε · δ,
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which is a contradiction to the choice of t′. Therefore, such a t′ cannot
exist. In particular, the function f is nonincreasing and if f(t) = 0 and
f is differentiable at t it holds that ḟ(t) = 0. If f(0) > 0, then as f is
absolutely continuous we have for all t ∈ [0, t∗) that

f(t)− f(0) =

∫ t

0

ḟ(s) ds ≤ −ε t

and hence f(t) ≤ f(0) − ε t. Let t0 := f(0)
ε , then we have t∗ ≤ t0. Since

f is nonincreasing, t0 is the time when f will definitely become zero and
stay zero afterwards. �

Based on the latter result, we recall a Lyapunov criterion for the sta-
bility of fluid networks. It will turn out in the subsequent sections that
this condition is an effective tool for establishing stability conditions for
individual disciplines.

Theorem 3.1.4 ([31]) Consider a fluid network (α, µ, P,C, π). Let V :
RK+ → R+ be locally Lipschitz such that V (x) = 0 if and only if x = 0 and
let ε > 0. Assume that for each fluid level process Q(·) it holds that

V̇ (Q(t)) := d
dt [V (Q(t))] ≤ −ε, (3.12)

whenever Q(t) 6= 0 and t is regular for the map s 7→ V (Q(s)). Then, the
fluid network is stable.

Proof. According to the scaling and shift property it suffices to consider
fluid level processes Q(·) ∈ Φ(1). Since the fluid level processes Q(·) are
Lipschitz and V is locally Lipschitz it follows that the function t 7→ V (Q(t))
is locally Lipschitz and hence differentiable almost everywhere. Then,
as V (Q(t)) = 0 if and only if Q(t) = 0 and by Lemma 3.1.3, we have
V (Q(t)) = 0, and thus Q(t) = 0 for all t ≥ ε−1V (Q(0)). For

δ := max{V (x) : x ∈ RK+ , ‖x‖ = 1}

we have V (Q(0)) ≤ δ and so Q(t) = 0 for all t ≥ ε−1 δ. This shows the
assertion. �

The properties of the function V , namely the positive definiteness and
the decrease along each fluid level process with uniform rate, resemble the
characteristics of a Lyapunov function for an ordinary differential equation.
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For this reason, we refer to V as a Lyapunov function. A precise defini-
tion and a discussion of the relation to the theory of ordinary differential
equations is provided at the end of this chapter.

In the subsequent sections we investigate necessary and sufficient con-
ditions for the stability of fluid networks under the disciplines introduced
in Chapter 2. The strategy to evaluate sufficient stability conditions will
be to find appropriate Lyapunov functions and apply Theorem 3.1.4.

3.2 General Work-Conserving Fluid Networks

In the first place we consider stability properties of fluid networks defined
by the basic fluid equations. As the only put proper restriction is the non-
idling condition (3.4), these networks are called general work-conserving
fluid networks. Following Proposition 2.4.13 the processes are differential
almost everywhere. Hence, the work-conserving property in its differenti-
ation reads as∑

k∈C(j)

Qk(t) · İj(t) =
( ∑
k∈C(j)

Qk(t)
)
·
(

1−
∑

k∈C(j)

Ṫk(t)
)

= 0.

Every pair (Q(·), T (·)) satisfying the basic fluid equations (3.1)-(3.4) is
called a work-conserving pair. The following theorem guarantees the exis-
tence of a work-conserving pair, given the parameters (α, µ, P,C) and the
initial fluid level Q(0). This statement was shown by Chen, cf. appendix
in [19]. We provide a new and elegant proof using the theory of differential
inclusions in Section 5.2.

Theorem 3.2.1 ([19]) For any (α, µ, P,C) and Q(0) there exists at least
one work-conserving allocation process T (·).

Next, we show that the validity of the nominal workload condition ρ < e
is necessary for stability, where ρ = CM−1(I − PT)−1α.

Theorem 3.2.2 ([19]) Suppose that the general work-conserving fluid net-
work (α, µ, P,C) is stable, then the nominal workload condition ρ < e holds.

Proof. As the fluid network is stable there is a τ > 0 such that Q(τ+ ·) ≡ 0
for every fluid level process with initial level ‖Q(0)‖ = 1. Multiplying the
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flow balance equation (3.1) by CM−1 (I − PT)−1 yields for t = τ that

0 = CM−1(I − PT)−1Q(τ) = CM−1(I − PT)−1Q(0) + ρ τ − CT (τ)

= CM−1(I − PT)−1Q(0) + (ρ− e) τ + I(τ)

≥ CM−1(I − PT)−1Q(0) + (ρ− e) τ > (ρ− e)τ,

where the strict inequality follows by choosing Q(0) = 1
K e and the fact

that CM−1(I −PT)−1 is nonnegative and in each row there is at least one
positive entry. �

Here we note that the converse of the latter theorem is valid if J = 1
or K = J . In order to formulate a sufficient condition for the stability
of a fluid network under general work-conserving disciplines, we have to
introduce strictly copositive matrices. A symmetric matrix A ∈ RK×K is
called strictly copositive if for every x ∈ RK+ it holds that xTAx ≥ 0 and
xTAx = 0 if and only if x = 0. Moreover, for c ∈ R we make use of the
notation c− := min{c, 0} and c+ := max{c, 0}.

Theorem 3.2.3 ([19]) Consider a work-conserving fluid network. Sup-
pose there exists a K×K symmetric strictly copositive matrix A such that
for k = 1, ...,K it holds that

θk := −

(
K∑
i=1

αiaik − min
i∈C(c(k))

hik −
J∑
j=1

j 6=c(k)

(
min
i∈C(j)

hik

)−)
> 0,

where H = M(I − P )A. Then, the network is stable.

Proof. Let Q(·) be a fluid level process of the work-conserving fluid network
such that ‖Q(0)‖ = 1. Consider the Lyapunov function V : RK+ → R
defined by

V (x) = xTAx.

Clearly, V is locally Lipschitz, satisfies V (·) ≥ 0, and V (x) = 0 if and only
if x = 0. Then, we consider the derivate of V along a fluid level process
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Q(·). That is,

1
2 V̇ (Q(t)) =

(
αT − Ṫ (t)TM (I − P )

)
AQ(t)

= αTAQ(t)−
K∑
k=1

K∑
i=1

Ṫi(t)hikQk(t)

= αTAQ(t)−
K∑
k=1

J∑
j=1

∑
i∈C(j)

hikQk(t) Ṫi(t). (3.13)

To conclude the decrease condition, we consider the very last term in (3.13)
individually. Using condition (3.3) it holds that

∑
i∈C(j)

hikQk(t) Ṫi(t) ≥ min
i∈C(j)

hik
∑
i∈C(j)

Qk(t) Ṫi(t)

= min
i∈C(j)

hikQk(t) · (1− İj(t)).

Further, by the work-conserving property (3.4) we have that

J∑
j=1

min
i∈C(j)

hikQk(t) · İj(t) =

J∑
j=1
j 6=c(k)

min
i∈C(j)

hikQk(t) · İj(t)

≤
J∑
j=1
j 6=c(k)

(
min
i∈C(j)

hik

)+

Qk(t).

Hence, we obtain the following estimate for the very last term in (3.13)

K∑
k=1

J∑
j=1

min
i∈C(j)

hikQk(t) · (1− İj(t))

≥
K∑
k=1

[
min

i∈C(c(k))
hik +

J∑
j=1
j 6=c(k)

(
min
i∈C(j)

hik

)−]
Qk(t).
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Consequently, this yields

1
2 V̇ (Q(t)) ≤

K∑
k=1

(
K∑
i=1

αi aik− min
i∈C(c(k))

hik−
J∑
j=1
j 6=c(k)

(
min
i∈C(j)

hik

)−)
Qk(t).

Using the introduced notation this reads as

V̇ (Q(t)) ≤ − 2 θTQ(t) ≤ 0.

Further, we define

2 γ := inf
x≥0,
x6=0

θT x√
xTAx

= inf
x≥0,
‖x‖=1

θT x√
xTAx

and note that γ > 0. Moreover, using W (x) :=
√
V (x) it follows that

Ẇ (Q(t)) =
V̇ (Q(t))

2
√
QT(t)AQ(t)

≤ −θTQ(t)√
QT(t)AQ(t)

≤ −γ,

whenever ‖Q(t)‖ > 0. Hence, an application of Lemma 3.1.3 yields that
Q(t) = 0 for all t ≥ γ−1W (Q(0)). �

The class of general work-conserving fluid networks contains all non-
idling fluid networks since the dynamic equations for a fluid network un-
der a certain work-conserving discipline are a specification of the dynamic
equations (3.1)-(3.4). So, if the general work-conserving fluid network is
stable the network is stable under every work-conserving discipline. For
this reason, the stability of general work-conserving fluid networks is also
called global stability.

3.3 Priority Fluid Networks

In a priority regime the various fluid classes are served at the stations
according to a predefined priority ordering. The priority is determined by a
permutation π : {1, ...,K} → {1, ...,K}. Given fluid classes l, k ∈ {1, ...,K}
served at the same station c(l) = c(k), fluids of class l are said to have a
higher priority than fluids of class k if π(l) < π(k). So, fluids of class k are
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not served as long as the fluid level of class l is greater than zero. For each
fluid class k ∈ {1, ...,K} the set

Πk := {l : l ∈ C(c(k)), π(l) ≤ π(k)}

contains all fluid classes which are served at the same station c(k) and have
a higher priority than fluids of class k. In the following the symbol Π is
used to express the priority discipline. To describe the dynamic equations
of a priority fluid network (α, µ, P,C,Π), we introduce the unused capacity
process Y (t), where Yk(t) denotes the cumulative remaining capacity of
station c(k) for serving fluids of classes that have a lower priority than
class k fluids. The dynamic equations can be summarized as follows

Q(t) = Q(0) + α t− (I − PT)MT (t) ≥ 0, (3.14)
T (·) is nondecreasing, with T (0) = 0, (3.15)

Yk(t) = t−
∑
l∈Πk

Tl(t) and Y (·) is nondecreasing, (3.16)

0 = Qk(t) Ẏk(t) for almost all t ≥ 0, k ∈ {1, ...,K}. (3.17)

This representation is close to the dynamic equations of a general work-
conserving fluid network. In the following we want to derive conditions such
that the fluid network (α, µ, P,C,Π) is stable. To this end, we present an
alternative description of the dynamic equations that will be more appro-
priate for the stability analysis.

Let Π+
k := Πk\{k} and for the case that k is not the fluid class with

highest priority at station c(k), let h(k) denote the fluid class that has next
higher priority, which is also served at station c(k). That is,

h(k) := arg max{π(l) : l ∈ Π+
k }

and h(k) := 0 if Π+
k = ∅. Also, consider the matrix B ∈ RK×K defined

by blk = 1 if h(k) = l and blk = 0 else. Let eΠ be defined by eΠ
k = 1 if

Π+
k = ∅ and eΠ

k = 0 else. With this notation the allocation process T (·)
can be expressed by

T (t) = −(I −B)Y (t) + eΠ t.

In addition, using θ = α− (I −PT)M eΠ and R = (I −PT)M (I −B) the
flow balance equation (3.14) reads as

Q(t) = Q(0) + θ t+RY (t) ≥ 0. (3.18)
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Further, the priority regime can also be expressed by the following condi-
tion

∀ l, k ∈ {1, ...,K},∀ t ≥ 0 regular :

c(l) = c(k), π(l) < π(k) ⇒ Ẏl(t) ≥ Ẏk(t). (3.19)

To get further insight into the priority regime we consider partitions (a, b) of
set of fluid classes {1, ...,K} that takes the priority discipline into account
in the sense that if fluid class l is in a and k is a fluid class that is also
served at the station c(l) and has higher priority than l, then it is also
contained in a. More formally, we define the following.

Definition 3.3.1 A partition (a, b) of {1, ...,K} is said to be hierarchical
with respect to π, if l ∈ a and k ∈ Π+

l , then k ∈ a. The set of all hierarchical
partitions of {1, ...,K} is denoted by H.

Let (a, b) ∈ H be a hierarchical partition, then the flow balance equation
(3.18) in block form reads as(

Qa(t)
Qb(t)

)
=

(
Qa(0)
Qb(0)

)
+

(
θa
θb

)
t+

(
Ra Rab
Rba Rb

) (
Ya(t)
Yb(t)

)
. (3.20)

In addition, for (a, b) ∈ H with b 6= ∅ we define

S(b) := {u ≥ 0 : θb +Rbu = 0 and u ≤ e}.

Theorem 3.3.2 ([24]) Consider the fluid network (α, µ, P,C,Π). As-
sume ρ < e and that there is an ε > 0 and a vector h ∈ RK>0 such that for
each partition (a, b) ∈ H the condition

hTa (θa +Rabxb) < −ε (3.21)

holds for xb ∈ S(b) if b 6= ∅, and for xb = 0 if b = ∅. In addition, if
S(b) = ∅, then condition (3.21) is also assumed to hold. Then, the fluid
network is stable.

Proof. Let (Q(·), Y (·)) be a pair that satisfies the dynamic equations.
Since both are Lipschitz, their derivative exists almost everywhere. Let
the Lyapunov function be defined by

V (x) := hTx.
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Clearly, V is locally Lipschitz, satisfies V (·) ≥ 0, and V (x) = 0 if and only
if x = 0. Following Lemma 3.1.3 it suffices to prove that for all regular t
and Q(t) 6= 0 it holds that V̇ (Q(t)) ≤ −ε. So, let t be a regular point and
let the partition (a, b) be defined by

a = {k ∈ {1, ...,K} : Ẏk(t) = 0} and b = {k ∈ {1, ...,K} : Ẏk(t) > 0}.

By condition (3.19) it follows that (a, b) ∈ H. Suppose that b 6= ∅. Then,
taking derivatives and using that Ẏa(t) = 0 the balance equation (3.20)
yields

Q̇a(t) = θa +RabẎb(t)

Q̇b(t) = θb +RbẎb(t).

By the definition of b, for any k ∈ b it holds that Ẏk(t) > 0. Then, by
(3.17) it follows that Qk(t) = 0. In addition, on the one hand it holds that
Q̇k(t−) ≤ 0 and, since the fluid levels are nonnegative, on the other hand
we have that Q̇k(t+) ≥ 0. Thus, it follows that Q̇k(t) = 0. That is, we
have that Q̇b(t) = 0 and this in turn implies that

V̇ (Q(t)) = hTa Q̇a(t) = hTa (θa +RabẎb(t)).

Since Ẏb(·) ≥ 0 and Yb(t) − Yb(s) ≤ e(t − s) it follows that 0 ≤ Ẏb(t) ≤ e
and Ẏb(t) ∈ S(b). Consequently, by (3.21) it follows that V̇ (Q(t)) < −ε.
Also, if b = ∅ it holds that Q̇(t) = θ and since condition (3.21) holds for
x = 0 we have that V̇ (Q(t)) = hT θ < −ε. This shows the assertion. �

The sufficient condition of the previous theorem can be weakend, as the
following shows. To describe the more general sufficient condition some
notations are in order. For b ⊆ {1, ...,K} the set

Π(b) := {k ∈ {1, ...,K} : l ∈ b and c(k) = c(l)⇒ π(k) < π(l)}

defines the set of highest priority fluid classes in each station that serves
at least one fluid class in b. For each partition (a, b) ∈ H the set

S(a, b) := {q ∈ RK : q ≥ 0, qa = 0 and qΠ(b) > 0}

defines the fluid state. Furthermore, we consider the condition

0 ≤ x ≤ e and θa +Rax = 0, (3.22)
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and define the set of regular flow rates by

F (a, b) := {d = (0 db)
T ∈ RK : db = θb +Rbaya where ya satisfies (3.22)}.

That is, the dynamic equations imply for every partition (a, b) ∈ H that if
t is a regular point and Q(t) ∈ S(a, b), then we have that Q̇(t) ∈ F (a, b).
In fact, F (a, b) is exactly the set of all such derivatives.

Theorem 3.3.3 ([22]) Suppose there is an ε > 0, an integer N ≥ 1, and
N nonnegative K dimensional vectors h1, . . . , hN , such that the following
conditions hold.

(a) Associated to each partition (a, b) ∈ H with b 6= ∅ and F (a, b) 6= ∅,
there is an Index set I(a, b) ⊆ {1, . . . , N} such that for all i ∈ I(a, b)

sup
d∈F (a,b)

hTi d ≤ −ε. (3.23)

b) For any partion (a, b) ∈ H with b 6= ∅ and F (a, b) 6= ∅, and any
j 6∈ I(a, b), there is an i ∈ I(a, b) such that

(hj)b ≤ (hi)b. (3.24)

Then, V (x) := max
1≤i≤N

hTi x is a piecewise linear Lyapunov function. In

particular, the fluid network (α, µ, P,C,Π) is stable.

Proof. See [22] Theorem 3.1. �

3.4 HLPPS Fluid Networks

In fluid networks under the Head-of-the-Line Proportional Processor Shar-
ing discipline (HLPPS) all nonempty fluid classes present at a station are
served simultaneously proportional to their current fluid level. The total
fluid level at station j = c(k) at time t is given by

QΣ
j (t) := ej

TC Q(t) =
∑
l∈C(j)

Ql(t).
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If the overall fluid level at station j is positive, the allocation rate Ṫk(t) of
class k fluids served at station j = c(k) is defined by

Ṫk(t) =
Qk(t)

QΣ
c(k)(t)

. (3.25)

Note that even if QΣ
j (t) = 0 the allocation rate Ṫk(t) for k ∈ C(j) may

still be positive to keep the total fluid level at station j zero. The idle time
process is denoted by I = {I(t) : t ≥ 0}, where Ij(t) denotes the cumulative
time that station j = c(k) idles in the interval [0, t]. The dynamic equations
of the fluid network under HLPPS discipline can be summarized as follows

Q(t) = Q(0) + α t− (I − PT)MT (t) ≥ 0, (3.26)

W (t) = CM−1Q(t), (3.27)
I(t) = et− C T (t), (3.28)

Ṫk(t) =
Qk(t)

QΣ
c(k)(t)

, if QΣ
c(k)(t) > 0. (3.29)

Ij(t) can only increase if Wj(t) = 0, j ∈ {1, ..., J}, (3.30)

Before addressing stability, we consider the behavior of HLPPS fluid level
processes present at the same station.

Lemma 3.4.1 Given a HLPPS fluid network, suppose that at station j
there is at least one initial fluid level nonempty, i.e. QΣ

j (0) > 0. Further,
let t0 be defined by

t0 := inf{ t > 0 | ∃ k ∈ C(j) : Qk(t) = 0 }.

Then, it holds that t0 > 0 and if t0 <∞ we have that QΣ
j (t0) = 0.

Proof. If Qk(0) > 0 for all k ∈ C(j) there is nothing to show. Suppose
there is a fluid class l ∈ C(j) with Ql(0) = 0. To prove that t0 > 0 we note
that, since QΣ

j (0) > 0, it holds that

Q̇l(0) = αl +
∑

k∈C(j),
k 6=l

pkl µk
Qk(0)

QΣ
j (0)

+
∑

k 6∈C(j)

pkl µk Ṫk(0) > 0. (3.31)
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Hence, for l ∈ C(j) the fluid level process Ql(·) is strictly increasing at
time zero. Furthermore, as Q(·) is Lipschitz there is a T > 0 such that
Ql(t) > 0 for all t ∈ (0, T ]. Thus, it follows that t0 > 0.

To show the second claim, suppose that t0 < ∞. Let Q(·) be a fluid
level process. By assumption, its initial level Q(0) satisfies QΣ

j (0) > 0.
Without loss of generality let the fluid classes and stations be numbered
such that j = 1, Qk(0) > 0 for all k ∈ C(1), and Q1(t0) = 0. To show the
assertion, we assume contrary that the claim does not hold, i.e.

∃ ε > 0, l ∈ C(1) such that Ql(t) ≥ ε > 0 ∀ t ∈ [0, t0]. (3.32)

Then, for fluid class 1 it holds for all t ∈ [0, t0] that

Q̇1(t) = α1 − (µ1 − p11) · Q1(t)

QΣ
1 (t)

+

K∑
k=2

pk1 µk Ṫk(t),

where Ṫ (·) is a feasible allocation rate corresponding to the fluid level
process Q(·). On one hand, it holds that α1 +

∑K
k=2 pk1 µk Ṫk(t) ≥ 0. On

other hand, since QΣ
1 (t) ≥ Ql(t) ≥ ε for all t ∈ [0, t0], we have

(µ1 − p11)
Q1(t)

QΣ
1 (t)

≤ µ1

ε
Q1(t)

for all t ∈ [0, t0]. Hence, it holds that

Q̇1(t) ≥ −µl

ε Q1(t). (3.33)

Any solution to ẋ(t) = −c x(t), with c > 0 and x(0) > 0 satisfies x(t) =
x(0) e−ct > 0. Thus, we have that Q1(t) > 0 for all t ≥ 0, which is a
contradiction to (3.32). �

HLPPS fluid networks have the nice property that the nominal work-
load condition ρ < e is also sufficient for stability, cf. [16]. We discuss
Bramson’s stability condition for HLPPS fluid network from a Lyapunov
perspective in terms of Theorem 3.1.4.

Theorem 3.4.2 A HLPPS fluid network is stable if and only if ρ < e.

The necessity of the nominal workload condition follows from Theorem 3.2.2.
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To investigate the reverse implication we consider the Lyapunov func-
tion V defined by

V (x) = eTCM−1(I − PT)−1x.

Then, V is locally Lipschitz and, since the spectral radius of P is strictly
less than one, we also have that V (x) = 0 if and only if x = 0. To show that
the decrease condition (3.12) is satisfied, we define ε := minj=1,...,J 1− ρj .
Let Q(t) 6= 0 and let t be regular for V (Q(·)). The derivative of V along
each fluid level processes is given by

V̇ (Q(t)) = eTCM−1(I − PT)−1Q̇(t) = eTρ− eTC Ṫ (t).

If the total fluid level at every station is positive, i.e. QΣ
j (t) > 0 for

every j = 1, ..., J , it follows from (3.29) that C Ṫ (t) = e. Hence, we have
that

V̇ (Q(t)) = eT(ρ− e) ≤ −ε.

Suppose there is a station i that is empty, i.e. QΣ
i (t) = 0, while QΣ

j (t) >
0 for all j 6= i. Without loss of generality let i = 1. In this case the
allocation rates for classes k ∈ C(1) are not determined by (3.29). However,
the allocation rates are still positive to keep the fluid level equally zero,
which is possible since ρ1 < 1. Let a := C(1) and b := {1, ...,K} \ a. Then,
the flow balance equation in its differential form reads as

0 = αa + PT
aMaṪa(t) + PT

abMbṪb(t)−MaṪa(t)

Q̇b(t) = αb + PT
baMaṪa(t) + PT

b MbṪb(t)−MbṪb(t).

On one hand the allocation rates for the fluid classes in b are determined
by (3.29). On other hand, as the spectral radius %(P ) < 1 the Neuman
series converges

∑∞
n=0(PT

a )n converges. Thus, the allocation rates for the
fluid classes in a are given

Ṫa(t) = Ma
−1(Ia − PT

a )−1 (αa + PT
abMb Ṫb(t) ), (3.34)

which yield that QΣ
1 (t+ ·) = 0. In order to investigate the allocation rates

for fluid classes a further, we consider the according partition the traffic
equation. That is,

λa = αa + PT
a λa + PT

abλb

λb = αb + PT
baλa + PT

b λb
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and therefore we have

(Ia − PT
a )−1αa = λa − (Ia − PT

a )−1PT
abλb.

Hence, the allocation rates for fluid classes a are given by

Ṫa(t) = Ma
−1
(
λa − PT

ab λb + (Ia − PT
a )−1PT

abMbṪb(t)
)
. (3.35)

Thus, using eTa := (1, ..., 1)T ∈ R|a| and if QΣ
1 (t) = 0 we have

ρ1 −
∑
l∈C(1)

Ṫl(t) = eTaMa
−1
(
PT
ab λb − (Ia − PT

a )−1PT
abMbṪb(t)

)
.

Hence, in this case the derivative of V along Q(·) equals

V̇ (Q(t)) = eT(ρ− C Ṫ (t)) = ρ1 −
∑
l∈C(1)

Ṫl(t) +

J∑
j=2

ρj − 1

= eTaMa
−1
(
PT
ab λb − (Ia − PT

a )−1PT
abMbṪb(t)

)
+

J∑
j=2

ρj − 1.

(3.36)

The following example, however, shows that this expression is nonnegative
in general.

Example 3.4.3 We consider a two station network serving three classes.
Let the arrival rates be given by α =

(
1 1 0

)T and let the service capacities
be given by µ =

(
4 4 1 + ε

)T with ε > 0. The routing of the network is
defined in Figure 3.1. The effective arrival rates are λ =

(
1 1 1

)T and the
nominal workload is ρ =

(
1
2

1
1+ε

)T. Further, it holds that

M−1(I − PT)−1 =

 1
4 0 0
0 1

4 0
0 1

1+ε
1

1+ε

 .

Let the initial fluid level Q(0) =
(
Q1 Q2 Q3

)T be such that Q1 >> Q2 > 0
and Q3 = 0. Then, for small t to keep the fluid level at station 2 equal to



3.5 FIFO Fluid Networks 69

µ1 = 4

µ2 = 4 µ3 = 1 + ε

α1 = 1

α2 = 1

Figure 3.1: A two station network serving three fluid classes.

zero the allocation rate of fluid class 3 is

Ṫ3(t) = 4
1+ε Ṫ2(t) = 4

1+ε
Q2(t)

QΣ
1 (t)

.

Hence, for small t ≥ 0 equation (3.36) reads as

V̇ (Q(t)) = 1
2 − 1 + 1

1+ε − Ṫ3(t) = − 1
2 + 1

1+ε −
4

1+ε
Q2(t)

QΣ
1 (t)

.

Since Q1 >> Q2 > 0 we have for ε and Q2 sufficiently small that

V̇ (Q(t)) = − 1
2 + 1

1+ε −
4

1+ε
Q2(t)

QΣ
1 (t)

> 0.

The significance of the previous example is that the Lyapunov function
candidate V (x) = eTCM−1(I − PT)−1x yields the desired decrease con-
dition as long as all stations are nonempty. Unfortunately, once there is
some empty station in the network the decrease of V along Q(·) can no
longer be concluded.

3.5 FIFO Fluid Networks

For fluid networks under FIFO disciplines the fluids are served in the order
of their arrivals. To describe the evolution of class k fluids we have to
consider the immediate workload given byW (t) = CM−1Q(t). Any fluids
that arrive after time t will have a lower priority in the FIFO discipline.
So, fluids that arrive at time t are served at time t + Wj(t), where Wj(t)
denotes the workload of the station j = c(k). The total arrivals up to time
t are given by

A(t) = αt+ PTM T (t).
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For each class k ∈ {1, ...,K} the FIFO regime can be represented by the
relation

Tk(t+Wj(t)) = mk(Qk(0) +Ak(t)), (3.37)

where mk = µ−1
k . So, the dynamic equations describing a FIFO fluid

network may be summarized as follows

Q(t) = Q(0) + α t− (I − PT)MT (t) ≥ 0, (3.38)
T (·) is nondecreasing, with T (0) = 0, (3.39)
I(t) = et− CT (t), I(·) is nondecreasing, (3.40)

0 = (C Q(t))T İ(t) for almost all t ≥ 0, (3.41)
Tk(t+Wj(t)) = mk(Qk(0) +Ak(t)), ∀ k ∈ {1, ...,K}. (3.42)

We note that a FIFO fluid network is not completely determined by the
initial fluid level Q(0). This is because it has to be specified how the
initial fluid level is served in [0,Wj(0)]. So, the initial data for each class
k ∈ {1, ...,K} is given by Q(0) and

{Tk(s) : s ∈ [0,Wj(0)] }. (3.43)

Remark 3.5.1 Bramson and Seidman have shown the surprising result
that FIFO fluid networks satisfying the nominal workload condition are
not stable in general, see [13] and [77]. Moreover, Bramson has also shown
that FIFO fluid networks of Kelly type, i.e. the service capacities of those
classes present at the same station are equal, are stable if and only if the
nominal workload condition is satisfied, see [15, Theorem 1].

To state sufficient stability conditions, derived by Chen and Zhang,
recall that the vector of effective arrival rates is given by λ = (I −PT)−1α
and that the spectral radius is denoted by %. Further, let Λ = diag(λ).

Theorem 3.5.2 ([23]) Suppose the FIFO fluid network satisfies ρ < e
and one of the following conditions

(i) %(PT + (I − PT) ΛCTCM ) < 1,

(ii) %(CMPT(I − PT)ΛCT ) < 1.

Then, the FIFO fluid network is stable.
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We do not the recall the proof for this statement since it does not rely
on Lyapunov arguments. The interested reader is referred to [23]. Besides,
this indicates that the FIFO discipline is special among the disciplines
considered in this thesis. We will establish this in Section 5.2.

3.6 Stability Theory of Differential Equations

The notion of stability introduced in Definition 3.1.1 may also be inter-
preted as the zero fluid level process Q0(·) ≡ 0 being the unique stable
and attractive fixed point of the shift operator δτQ(·) := Q(τ + ·) defined
on the set fluid level processes. To see this, suppose that Q∗(·) is another
fixed point. Then, for all t ≥ 0 it holds that

Q∗(t)−Q0(t) = δτQ∗(t) = 0,

where the last equality is valid since the network is stable.
Next, we recall briefly the definition of stability and Lyapunov functions

from the theory of dynamical systems. For a detailed description the reader
is referred e.g. to [7], [53]. Consider an ordinary differential equation

ẋ(t) = f(x(t)), x ∈ Rn, t ∈ [0,∞) (3.44)

with initial condition x(0) = x0 and continuous f , where the origin is an
equilibrium, i.e. f(0) = 0. The origin is said to be globally asymptotically
stable in the sense of Lyapunov provided that

Stability : For every ε > 0 there is a δ > 0 such that ‖x0‖ < δ implies
that ‖x(t)‖ < ε for all t ≥ 0 and for all x(·) with x(0) = x0.

Attractivity : There is an η > 0 such that for all ‖x0‖ < η it holds for all
x(·) with x(0) = x0 that limt→∞ ‖x(t)‖ = 0 and η can be taken as
large as desired.

Another way to describe stability is by means of a Lyapunov function
and comparison functions. A function f : R+ → R+ is of class K if f is
continuous, strictly increasing, and satisfies f(0) = 0. A real-valued map
V : Rn → R is called a global strict Lyapunov function for (3.44) if

(i) it is positive definite and proper1, i.e. there exist class K functions
1Properness can also be defined by the fact that the sublevel sets {x ∈ Rn : V (x) ≤ c}

are bounded for all c > 0 [26].
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a, b such that for all x ∈ Rn we have that

a(‖x‖) ≤ V (x) ≤ b(‖x‖), (3.45)

(ii) there exists a class K function w such that for every solution x(·) and
each interval I ⊂ [0,∞) we have that

V (x(t))− V (x(s)) ≤ −
∫ t

s

w(‖x(r)‖) dr (3.46)

for each s < t ∈ I provided that x(·) is defined on I.

Remark 3.6.1 It is well known that the origin is globally asymptotically
stable if and only if there is a global strict Lyapunov function [7].

From that perspective the definition of stability for fluid networks seems
to deviate from the asymptotic stability in the Lyapunov sense. The fol-
lowing lemma, however, shows that the definitions of stability are in fact
equivalent.

Lemma 3.6.2 A fluid network is stable if and only if the zero fluid level
process is globally asymptotically stable in the sense of Lyapunov.

Proof. Suppose that the fluid network is stable. Then there is a τ < ∞
such that Q(t) = 0 for all t ≥ τ‖Q(0)‖ and for all fluid level processes
Q(·). This implies limt→∞ ‖Q(t)‖ = 0 and attractivity holds true. To
conclude stability let ε > 0 and δ := ε

Lτ . Let Q(·) be a fluid level process
with ‖Q(0)‖ < δ. Then, by assumption it holds that Q(t) = 0 for all
t ≥ τ ‖Q(0)‖. Further, by the Lipschitz continuity of Q(·) we have that

‖Q(t)‖ = ‖Q(τ‖Q(0)‖)−Q(t)‖ ≤ L|τ‖Q(0)‖ − t| ≤ Lτ‖Q(0)‖

for all t ∈ [0, τ‖Q(0)‖]. Moreover, as Q(τ‖Q(0)‖+·) ≡ 0 the latter estimate
holds for all t ≥ 0. Thus, we have ‖Q(t)‖ ≤ Lτ‖Q(0)‖ < ε.

Conversely, let Q(·) ≡ 0 be asymptotically stable in the sense of Lya-
punov. Due to the scaling property it suffices to consider a fluid level pro-
cess Q(·) with ‖Q(0)‖ = 1. Then, by attractivity it holds that ‖Q(t)‖ → 0
as t → ∞ for any fluid level process Q(·). Hence, inf{‖Q(t)‖ : t ≥ 0} = 0
for any Q(·) with ‖Q(0)‖ = 1. The assertion then follows from the proof
of Theorem 3.1.2 starting with (3.9). �
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In view of Theorem 3.1.4 and the definition of Lyapunov functions
in dynamical systems theory we now provide a precise definition for a
Lyapunov function for the class of fluid networks.

Definition 3.6.3 Given a fluid network, a positive definite and proper
function V : RK+ → R is called a Lyapunov function if there is a function
w ∈ K such that

V (Q(t))− V (Q(s)) ≤ −
∫ t

s

w(||Q(r)||) dr (3.47)

for all 0 ≤ s ≤ t and all fluid level processes Q(·).

The function V considered in Theorem 3.1.4 is assumed to be locally
Lipschitz, positive definite, and to satisfy the uniform decrease condition

V̇ (Q(t)) ≤ −ε (3.48)

if Q(t) 6= 0 and t regular for s 7→ V (Q(s)). We note that if V is locally
Lipschitz the decrease condition in Definition 3.6.3 also reads as

V̇ (Q(t)) ≤ −w(‖Q(t)‖), (3.49)

where the decrease depends on the fluid level at the current time instant,
rather than being uniform. In any case the Lyapunov function V in Theo-
rem 3.1.4 is not forced to be proper. In the Lyapunov theory for dynamical
systems this condition is essential for an equilibrium to be stable as this
enforces the boundedness of the sublevel sets of the Lyapunov function.
This in turn guarantees that the trajectories, along which the Lyapunov
function decreases, will converge towards the equilibrium and not diverge.
However, due to the scaling property this behavior is ruled out for fluid
networks by the request that the decrease of the Lyapunov function V is
uniform as described in Theorem 3.1.4.

3.7 Notes and References

Based on the fact that the stability of a multiclass queueing network is
implied by the stability of the associated fluid network, starting from 1995,
much effort has been spent to derive conditions that guarantee stability of
fluid networks under various disciplines.
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General-work-conserving fluid networks were investigated in [19]. The
stability conditions for priority fluid networks are taken from [24] and [22].
The fact that HLPPS fluid networks are stable if and only if ρ < e was
shown by Bramson [16]. His proof does not rely on a state dependent
Lyapunov function. Instead, an entropy type functional was used that
depends on the trajectories of the departure processM T (·) and the imme-
diate workload process W (·). Here we provide a investigation of the result
from a Lyapunov perspective. It turns out that as long as all stations in
the network have positive total fluid level the decrease condition (3.12) is
satisfied. Unfortunately, the case, where at least one station has total fluid
level equal to zero has shown some resilience towards attempts of proof.
Moreover, a related result to Lemma 3.4.1 has been shown by Bramson,
cf. [16, Lemma 4.2 (b)]. The stability conditions for FIFO fluid networks
are stated without providing a proof, since the proof is not based on Lya-
punov arguments. The interested reader is referred to [23]. We will show
in Chapter 5 that FIFO fluid networks take a special position among the
fluid networks considered in this thesis.

The equivalence of condition (3.5) and the stability of fluid networks
was obtained by Stolyar, see [81]. In practice this characterization is not
easy to check for particular fluid networks. However, from a theoretical
point of view condition (3.5) is very useful to see that the stability notions
of fluid networks and asymptotic stability in the sense of Lyapunov are in
fact equivalent.

Moreover, this reinforces the pursuit of the development of a Lyapunov
theory for fluid networks. In addition, this is strengthened by the efficiency
of the stability condition stated in Theorem 3.1.4. At this point we note
that, to the best of the author’s knowledge, Lyapunov arguments based on
Theorem 3.1.4 have only been used to verify proposed stability conditions.

In the theory of dynamical systems a lot of effort has been spent to
conclude that the converse also holds true. The content of the subsequent
chapters is to consider the question whether a converse of Theorem 3.1.4 in
terms of Definition 3.6.3 is valid. That is, the fundamental question of the
next chapter is: Does a stable fluid network necessarily admit a Lyapunov
function?



4 Converse Lyapunov Theorems for
Fluid Networks

This chapter is devoted to the question whether the existence of a Lyapunov
function is also necessary for the stability of a fluid network. The approach
to conclude a commonly known converse Lyapunov theorem differs from
Chapter 3. There we used piecewise linear or quadratic Lyapunov functions
to prove stability of fluid networks under a particular discipline. This
chapter is based on the characteristic properties of fluid networks discussed
at the end of Chapter 2, namely the scaling and shift property, the Lipschitz
continuity of the processes, and the fact the set of fluid level processes is
closed under the topology of uniform convergence on compact sets. We
will define a generic fluid model as a set of processes having exactly these
properties. This approach captures in essence the behavioral approach to
mathematical systems theory proposed by J. C. Willems, see [84].

The first work in this direction was done by Ye and Chen, who in-
troduced the notion generic fluid network (GFN) model. The class of
generic fluid networks models covers a wide variety of fluid network mod-
els. Within this framework Ye and Chen propose a Lyapunov method for
stability. In [86] they proved that stability of a GFN model is equivalent
to the existence of a functional on the set of trajectories that is decaying
along trajectories. This result falls short of a converse Lyapunov theorem
in that no state dependent Lyapunov function is constructed. Rather in
principle the whole solution set has to be known in order to even define a
Lyapunov functional. The strength and basis of applicability of the classic
second method of Lyapunov, however, is that it can be checked without
the knowledge of solutions, whether a given state-dependent function is
indeed a Lyapunov function.

In this chapter we construct state-dependent Lyapunov functions in

75
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contrast to trajectory-wise functionals. We first show by counterexamples
that closed GFN models do not provide sufficient information that allow
for a converse Lyapunov theorem. In this sense the class of GFN models
is too wide. To resolve this problem we introduce the class of strict GFN
models by forcing the closed GFN model to satisfy a concatenation and a
semicontinuity condition. We show that for the class of strict GFNmodels a
converse Lyapunov theorem holds. As in other converse theorems the proof
is not constructive, so that the question of finding a Lyapunov function for
a particular case is not solved by this result.

Section 4.3 is devoted to the construction of smooth Lyapunov func-
tions. That is, we start from a stable strict GFN model and, thus, there
exists a continuous Lyapunov function, denoted by V . To obtain a smooth
Lyapunov function we consider the Lyapunov function V and its convolu-
tion with mollifiers. Our approach to obtain a smooth Lyapunov function
is based on the derivation of smooth Lyapunov functions in the dynami-
cal systems literature. However, the absence of a differential equation or
a differential inclusion brings along the disadvantage that a Gronwall-like
argument is not available that provides an estimate for the evolution of the
difference of two trajectories. To overcome this problem we will present a
condition, in terms of strict GFN models, which assures that the construc-
tions works.

4.1 Generic Fluid Models

In this section we start to change our perspective in the investigation of
fluid networks to a more abstract point of view. In doing so, we aim to ana-
lyze the stability independently of the service discipline. We recall from the
very last section of Chapter 2 that fluid networks share certain properties
regardless of the particular discipline, see Propositions 2.4.13, 2.4.14, 2.4.15.
We will define generic fluid network (GFN) models as a set of trajectories
having exactly this properties. Further, we exhibit the idea of the behav-
ioral approach to look at dynamical systems.

Moreover, we will present a Lyapunov method for characterizing the
stability of GFN models. By counterexamples we will explain why GFN
models are too general to provide a state-dependent Lyapunov theory. To
define GFNmodels recall that the scaling operator σr and the shift operator
δs are defined by σr Q(t) = 1

rQ(rt) and δsQ(t) = Q(t+ s), respectively.
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Definition 4.1.1 A nonempty set Φ of functions Q : R+ → RK+ is said to
be a GFN model, if

(a) there is a L > 0, such that for any Q ∈ Φ and t, s ∈ R+ it holds that

‖Q(t)−Q(s)‖ ≤ L |t− s|.

(b) Q ∈ Φ implies σr Q ∈ Φ for all r > 0.

(c) Q ∈ Φ implies δsQ ∈ Φ for all s ≥ 0.

If the following condition holds in addition, then we call Φ a closed GFN
model

(d) if a sequence (Qn)n∈N in Φ converges to Q∗ u.o.c., then Q∗ ∈ Φ.

The conditions defining a closed GFN model are in line with the Propo-
sitions 2.4.13, 2.4.14, and 2.4.15. At this point we note that this approach
captures the essence of the behavioral approach to dynamical systems pro-
posed by J. C. Willems, where a dynamical system is thought of as a triple
Σ = (T,W,B) such that

(i) T denotes the time axis, e.g. ∅ 6= T ⊂ R

(ii) W denotes the space of signal values, e.g. ∅ 6= W ⊂ Rn

(iii) B = {w : T → W} denotes the behavior consisting of the set of
trajectories w(·) that are feasible to describe the evolution of the
system.

Interpreting the time axis is T = R+, the set of possible outcomes W = RK+
as the set of all possible fluid levels, and the behavior B = Φ, we see that
the class of GFN models falls into this framework. In particular, the shift
property is in one to one correspondence to the notion of time-invariance
of a dynamical system Σ = (T,W,B) which is defined by the property
that if w(·) ∈ B and s ∈ T, then the shift δsw (·) = w(s + ·) ∈ B, cf. [84,
Definition II.3]. Since the focus of this chapter is on stability we quote from
[85, Definition 11] the concept of stability in the behavioral framework.

Definition 4.1.2 A dynamical system Σ = (R,W,B) is called stable, if
for any w(·) ∈ B it holds that limt→∞ w(t) = 0.
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Hence, a fluid network can be written as a system Σ = (R+,RK+ ,Φ).
However, we will stick to the notation Φ for simplicity. Moreover, for
future use we also introduce some notation. Any element Q ∈ Φ is called
a trajectory (of Φ) and the set of trajectories with total initial level one
is denoted by Φ(1) := {Q ∈ Φ : ‖Q(0)‖ = 1}. For x ∈ RK+ the set of
trajectories starting in x is denoted by Φx := {Q ∈ Φ : Q(0) = x}. The
definition of stability for GFN models is analog to the definition of stability
for fluid networks except that, due to scaling property, it is sufficient to
consider trajectories whose initial values have norm one.

Definition 4.1.3 A GFN model Φ is said to be stable if there exists a
τ > 0 such that δτQ ≡ 0 for all trajectories Q ∈ Φ(1).

The notion of stability of a GFN may also be expressed by saying that
the zero fluid level process Q0 ≡ 0 is the unique stable and attractive fixed
point of the shift operator δτQ (·) = Q(· + τ) defined on Φ. Following
the proof of Lemma 3.6.2 it can be seen that the notion of stability for
a GFN model Φ is equivalent to the notion of stability for a system Σ =
(R+,RK+ ,Φ).

Remark 4.1.4 For a stable GFN model Φ with Lipschitz constant L and
τ > 0 it holds that Lτ ≥ 1, as for any Q ∈ Φ(1) we have that

1 = ‖Q(0)‖ = ‖Q(τ)−Q(0)‖ ≤ Lτ.

To begin with the stability analysis of GFN models from a Lyapunov
perspective we recall the known results from the literature. Ye and Chen
presented a Lyapunov method to characterize stability of closed GFN mod-
els, where the L-condition plays a key role, which is defined as follows.

Definition 4.1.5 A GFN model Φ is said to satisfy the L-condition if there
exist class K functions wi, i = 1, 2, 3, such that for any trajectory Q ∈ Φ
there exists an absolutely continuous function v : R+ → R+ satisfying

w1(‖Q(t)‖) ≤ v(t) ≤ w2(‖Q(t)‖), (4.1)
v̇(t) ≤ −w3(‖Q(t)‖) (4.2)

for almost all t ≥ 0.
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The content of the subsequent statement is that the L-condition is
equivalent to the stability of a GFN model. This result was derived by
Ye and Chen. We do not recall its proof here. The interested reader is
referred to [86].

Theorem 4.1.6 ([86]) A GFN model Φ is stable if and only if the L-
condition is satisfied. In particular, given Q ∈ Φ the function v can be
chosen as

v(t) :=

∫ ∞
t

‖Q(s)‖ ds. (4.3)

Given a trajectory Q of a stable closed GFN model, v(t) may be inter-
preted as the total remaining fluid mass of Q from time t on. We note that
an equivalent way of interpreting v is as a functional v̄ : Φ → R+ on the
GFN model with the following properties. There are comparison function
such that for each trajectory Q ∈ Φ its value under the functional v̄ can
be estimated from below and above by its initial value. That is, for any
Q ∈ Φ it holds that

w1(‖Q(0)‖) ≤ v̄(Q) ≤ w2(‖Q(0)‖).

Furthermore, the evolution of v̄(Q) can also be estimated in terms of a
comparison function. Precisely, the mapping t 7→ v̄(Q)(t+ ·) satisfies

d

dt
v̄(Q)(t+ ·) ≤ −w3(‖Q(t)‖).

For this reason we refer to v, interpreted as v(0) =: v̄(Q), as a Lyapunov
functional on the set of trajectories. It can be seen that this approach
differs from the one taken in the theory of dynamical systems in which
Lyapunov functions are state-dependent. The dependence on solutions
is undesirable, because the benefit of Lyapunov’s second method is that
trajectories need not be known to be able to determine stability, whereas
the Theorem 4.1.6 requires the knowledge of all solutions. In the following
we present a way to overcome this drawback. To this end, we define a
Lyapunov function that does not depend on the trajectory of the closed
GFN model, which is in line with Definition 3.6.3.

Definition 4.1.7 Given a GFN model Φ, a function V : RK+ → R+ is said
to be a Lyapunov function if there exist class K functions wi, i = 1, 2, 3



80 Chapter 4 Converse Lyapunov Theorems for Fluid Networks

such that

w1(‖x‖) ≤ V (x) ≤ w2(‖x‖), (4.4)

V (Q(t))− V (Q(s)) ≤ −
∫ t

s

w3(‖Q(r)‖) dr (4.5)

for all 0 ≤ s ≤ t ∈ R+ and all trajectories Q ∈ Φ.

We denote by A(Φ) = {x ∈ RK+ : ∃Q ∈ Φ, Q(0) = x} and consider for
our purpose the following candidate V : A(Φ)→ R+ ∪ {∞} defined by

V (x) = sup
Q∈Φx

∫ ∞
0

‖Q(s)‖ds. (4.6)

In the sequel, we assume that A(Φ) = RK+ . The function V can be inter-
preted as a measurement of the state x in the sense that V (x) represents
the total possible fluid mass that the network has to deal with being in
state x.

Remark 4.1.8 The Lyapunov function candidate has the following radial
property: For any scalar r > 0 it holds that

V (rx) = r2 V (x).

To see this, let r > 0 be a scalar. Then, the scaling property implies that

V (rx) = sup
Q∈Qrx

∫ ∞
0

‖Q(s)‖ ds = sup
Q∈Qx

∫ ∞
0

‖ r Q(r−1 s)‖ ds

= r sup
Q∈Qx

∫ ∞
0

‖Q(u)‖ r du = r2 sup
Q∈Qx

∫ ∞
0

‖Q(u)‖ du = r2 V (x).

An interesting question concerns the regularity of V . Of course, we aim
for continuous dependence on the state, as this would entail robustness of
stability, see [55], [82]. Note that for stable closed GFN models the supre-
mum in (4.6) is actually attained because of the closedness condition (d)
in Definition 4.1.1. We say that a function g : RK+ → R is upper semicon-
tinuous in a ∈ RK+ if g(a) ≥ lim supx→a g(x). Certainly, g is called upper
semicontinuous if it is upper semicontinuous for every a ∈ RK+ . Further, a
function g : RK+ → R+ is lower semicontinuous at a ∈ RK+ if −g is upper
semicontinuous in a ∈ RK+ and g is called lower semicontinuous if g is lower
semicontinuous in every point.
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Proposition 4.1.9 If Φ is a stable closed GFN model, then V given by
(4.6) is well defined and upper semicontinuous.

Proof. It is an easy consequence of the Lipschitz continuity and stability
that V as defined in (4.6) is finite. Let x ∈ RK+ and (xn)n∈N be a sequence
in RK+ which converges to x. As Φ is stable the set {V (xn) : n ∈ N}
is bounded. Hence, there exists a subsequence (xnl

)l∈N and a sequence
(Qnl

)l∈N with Qnl
∈ Φxnl

such that

lim sup
n→∞

V (xn) = lim
l→∞

V (xnl
) = lim

l→∞

∫ ∞
0

‖Qnl
(s)‖ ds.

Now we consider the family {Qnl
(·) : l ∈ N }. Since Φ is stable the family

{Qnl
(·) : l ∈ N } is bounded. By the Lipschitz condition (a) in Defini-

tion 4.1.1 there is a single Lipschitz constant for any trajectory Qnl
(·) of

the family {Qnl
(·) : l ∈ N } and so the family is equicontinuous. By the

theorem of Arzelà-Ascoli there exists a subsequence which converges u.o.c.
to some Q∗ with Q∗(0) = x. Since the model is closed it follows that
Q∗ ∈ Φ. Thus, by the definition of V it holds that

lim sup
n→∞

V (xn) = lim
l→∞

∫ ∞
0

‖Qnl
(s)‖ds =

∫ ∞
0

‖Q∗(s)‖ ds ≤ V (x).

This shows the assertion. �

As we are interested in the continuity of V the question remains whether
V is also lower semicontinuous. The subsequent example indicates that in
general this is not the case.

Example 4.1.10 Let K = 2 and consider the GFN model Φ defined by

Φ =

{(
(x1 − t)+

(x2 − t)+

)
,

(
(c− 1

2 t)
+

(c− 1
2 t)

+

)
: x1, x2, c ∈ R+

}
.

It is easy to check that Φ is a stable closed GFN model. We consider
x0 = (1 1)T and xn = (1 + 1

n 1− 1
n )T. It holds that

lim
n→∞

V (xn) = lim
n→∞

∫ ∞
0

(1 + 1
n − t)

+ + (1− 1
n − t)

+dt

= lim
n→∞

1
2

(
(1 + 1

n )2 + (1− 1
n )2
)

= 1

< 2 =

∫ 2

0

2(1− 1
2 t) dt = V (x0).
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So, V defined by (4.6) is not necessarily lower semicontinuous for stable
closed GFN models.

Remark 4.1.11 The example shows that in the frame of Definition 4.1.1
our candidate V is not continuous in general. The problem with this ex-
ample is that along the diagonal a particular trajectory exists which is not
approximated by solutions starting close to but not on the diagonal.

The key property of a Lyapunov function V for a dynamical system is
that it is decreasing along trajectories. The next example addresses this
issue for closed GFN models.

Example 4.1.12 Let K = 2 and define for given x1, x2 ∈ R+ the trajec-
tories

Q1(t) =



(
x1 − t

x2 + t

)
if t ≤ x1,(

0

2x1 + x2 − t

)+

else,

and

Q2(t) =



(
x1 + t

x2 − t

)
if t ≤ x2,(

x1 + 2x2 − t

0

)+

else.

Then, we consider the closed GFN model Φ defined by

Φ = {Q1(·), Q2(·) : x1, x2 ∈ R+} .

Clearly, Φ is stable. In Figure 4.1 a schematic illustration of the feasible
trajectories is provided. In this GFN model it is obvious that trajecto-
ries cannot be concatenated. However, let us assume that there is a state-
dependent Lyapunov function V which is decaying along trajectories. The
closed GFN model Φ has the following property. For every state z = (z1, z2)
there is a state y = (y1, y2) such that there are two trajectories that go to
zero, where one trajectory starts in z and passes y and the other trajectory
starts in y and passes z, see Figure 4.1. As V is decaying along trajectories
it follows that V (z) < V (y) and V (y) < V (z), which is a contradiction.
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x2

x1

z

y

Q1(· ; y)

Q2(· ; y)

x2

x1

z

y

Q1(· ; z)

Q2(· ; z)

Figure 4.1: This figure illustrates the trajectories Qi(· ; z) and Qi(· ; y),
i = 1, 2 of the GFN model Φ for the initial values y ∈ R2

+ and z ∈ R2
+,

respectively. The components of the initial values y and z satisfy yk > 0
and zk > 0, respectively.

Remark 4.1.13 The vital issue of Example 4.1.12 is that for (closed)
GFN models a Lyapunov function in the sense of Definition 4.1.1 can-
not exist. Moreover, the crucial aspect of the previous examples resembles
a known phenomenon of fluid networks under FIFO disciplines: To de-
termine the evolution a FIFO trajectory after a starting point Q(0) it is
necessary to fix additionally the initial direction in terms of the initial al-
location {T (s) : s ∈ [0,W (0] }, see also (3.43) and Example 5.2.15.

4.2 Strict Generic Fluid Models

In this section we present a way out of the dilemma. We specify the class
of closed GFN models by adding two conditions, namely a concatenation
property and a lower semicontinuity property and denote them strict GFN
models. The concatenation of trajectories is defined as follows.

Definition 4.2.1 Let Φ be a closed GFN model. Suppose that Q1 and Q2

are trajectories of Φ such that Q1(t∗) = Q2(0) for some t∗ ≥ 0. Then,
Q1 �t∗ Q2 is called the concatenation of Q1 and Q2 at t∗, which is defined
by

Q1 �t∗ Q2(t) :=

{
Q1(t) t ≤ t∗,
Q2(t− t∗) t ≥ t∗.
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In the behavioral approach to dynamical systems the concatenation of
trajectories plays a key role for the understanding of state. Transferred to
the present setting a GFN model Φ has the property of state if and only if
it satisfies the concatenation property. That is, all the information that is
needed to decide if two trajectories Q1, Q2 ∈ Φ can be concatenated within
Φ at time t is the knowledge whether Q1(t) and Q2(t) coincide or not, see
e.g. [66, Definition 4.3.3 and Remark 4.3.4]. Similar to GFN models we
denote Q(1) := {Q ∈ Q : ‖Q(0)‖ = 1}. Moreover, let Qx := {Q ∈ Q :
Q(0) = x} denote the set of trajectories in Q starting in x ∈ Rn+.

To overcome the difficulties from the previous section, we consider the
closed GFN models with additional properties, which are defined as follows.

Definition 4.2.2 A subset Q ⊂ Φ is said to be a strict GFN model if

(e) it satisfies the concatenation property,

(f) there is a T > 0 such that the set-valued map x  Qx
∣∣
[0,T ]

is lower
semicontinuous.

A definition of lower semicontinuous set-valued maps is given in Ap-
pendix B. It is possible that a closed GFN model satisfies (e) and not (f).
We do not introduce yet another name for such GFN models but simply
speak of a closed GFN model satisfying (e).

Remark 4.2.3 Given a closed GFN model, the uniform Lipschitz con-
tinuity condition (a) implies that if a sequence (Qn)n∈N in Q converges
uniformly on [0, T ) with T <∞ then it converges uniformly on the closed
interval [0, T ].

We note for further reference, that for closed GFN models satisfying
(e) the semicontinuity condition can be stated the following.

Proposition 4.2.4 Given a closed GFN model satisfying (e), then the
semicontinuity condition (f) holds if and only if

(f ′) for each x0 so that Qx0 6= ∅ there exists a T (x0) > 0 such that the
set-valued map x Qx

∣∣
[0,T (x0)]

is lower semicontinuous at x0.

Proof. It is clear that (f) implies (f ′). Conversely, fix any T > 0, x0

and a T0 := T (x0) such that (f ′) holds. Choose Q ∈ Qx0 and a sequence
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xn → x0. We have to construct a sequence (Qn)n∈N with Qn ∈ Qxn
so

that Qn(·) → Q(·) uniformly on [0, T ]. We may assume that T0 < T as
otherwise there is nothing to show.

By assumption (f ′) there exist Q0
n ∈ Qxn

such that Q0
n(·) → Q(·)

uniformly on [0, T0]. In particular, Q0
n(T0)→ Q(T0). By the shift property

it holds that δT0
Q ∈ QQ(T0) and so for T1 := T (Q(T0)) we may by (f ′)

choose a sequence Q1
n ∈ QQ0

n(T0) such that Q1
n(·) → δT0

Q(·) uniformly
on [0, T1]. Now define the concatenation Q̄1

n := Q0
n �T0

Q1
n and note that

Q̄1
n(·)→ Q(·) uniformly on [0, T0 + T1].
Repeating this step countably often, we can construct an open interval

[0, T̄ ) such that there exist Q̄n ∈ Qxn satisfying Q̄n(·) → Q(·) u.o.c. on
[0, T̄ ). Assume that T̄ < ∞ is chosen as the maximal real for which this
u.o.c. convergence is possible.

Then, by Remark 4.2.3 it follows that Q̄n(·)→ Q(·) uniformly on [0, T̄ ].
Hence, we can repeat the argument and extend the uniform convergence to
the interval [0, T̄ + T (Q(T̄ ))]. This contradicts the assumption that T̄ was
chosen to be maximal. This shows the equivalence, as T̄ can be arbitrarily
large and so chosen to be bigger than T . �

Moreover, the following proposition is also a consequence of the condi-
tions (e) and (f).

Proposition 4.2.5 The trajectories of a strict GFN model depend lower
semicontinuously on the initial value, i.e.

(g) for each x, Q ∈ Qx and (xn)n∈N converging to x, there is a sequence
of trajectories (Qn)n∈N with Qn ∈ Qxn which converges to Q u.o.c.

Proof. Let x ∈ RK+ , Q ∈ Qx and (xn)n be a sequence converging to
x. By condition (f) in Definition 4.2.2 there exists a T > 0 and a se-
quence (Qn)n∈N with Qn ∈ Qxn

that converges to Q ∈ Q uniformly on
[0, T ]. In particular, we have Qn(T ) converges to Q(T ) as n→∞. More-
over, for Q1 ∈ QQ(T ) such that Q1(·)|[0,T ] = Q(·)|[T,2T ] condition (f) im-
plies the existence of a sequence Q1

n ∈ QQn(T ) satisfying limn→∞Q1
n =

Q1 uniformly on [0, T ].
By the concatenation property (e) we have a sequence (Qn)n∈N with

Qn ∈ Qxn that converges uniformly to Q ∈ Qx on [0, 2T ]. A successive
continuation in this manner yields the existence of a sequence (Qn)n∈N
with Qn ∈ Qxn

converging uniformly on compact sets to Q∗ ∈ Qx∗ . �
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Next, we show that condition (f) is the appropriate condition for conti-
nuity of our candidate V . To be precise, condition (g) closes the gap from
upper semicontinuity to continuity.

Proposition 4.2.6 If Q is a stable strict GFN model, then V defined in
(4.6) is continuous.

Proof. We show that V is lower semicontinuous as the continuity of V then
follows together with Proposition 4.1.9. Let x ∈ RK+ and Q ∈ Qx be such
that

V (x) =

∫ ∞
0

‖Q(s)‖ds.

Further, let (xn)n be a sequence converging to x. As Q is stable and using
the same arguments as in the proof of Proposition 4.1.9,

V (x) =

∫ ∞
0

‖Q(s)‖ ds = lim
n→∞

∫ ∞
0

‖Qn(s)‖ ds ≤ lim inf
n→∞

V (xn).

That is, V is lower semicontinuous. �

Next, we show that for the class of strict GFNmodels, in fact, a converse
Lyapunov theorem holds.

Theorem 4.2.7 A strict GFN model Q is stable if and only if it admits
a Lyapunov function. In particular, V can be chosen as

V (x) = sup
Q∈Qx

∫ ∞
0

‖Q(s)‖ ds

and V is continuous.

Proof. First, we show that the existence of a Lyapunov function is sufficient
for stability. Let V be a Lyapunov function for Q. From (4.4) it follows
that V (Q(t)) ≥ 0 and inequality (4.5) implies that

V (Q(t2))− V (Q(t1)) ≤ 0

for all t1 ≤ t2 ∈ R+. So, V (Q(·)) is monotone decreasing and bounded. In
order to show that V (Q(t)) tends to zero as t goes to infinity assume that

lim
t→∞

V (Q(t)) =: c > 0.
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Then, for all t ≥ 0 it holds that

0 < c ≤ V (Q(t)) ≤ w2(‖Q(t)‖) (4.7)

and further 0 < w−1
2 (c) ≤ ‖Q(t)‖. It also holds that

0 < w3(w−1
2 (c)) ≤ w3(‖Q(t)‖).

Now observe that from (4.5) it follows that

V (Q(t))− V (Q(0)) ≤ −
∫ t

0

w3(‖Q(s)‖) ds ≤ −
∫ t

0

w3(w−1
2 (c)) ds

≤ −w3(w−1
2 (c)) t

and, hence, limt→∞ V (Q(t)) = −∞, which is a contradiction to (4.7). So,

lim
t→∞

V (Q(t)) = 0. (4.8)

By (4.4) it follows that

lim
t→∞

‖Q(t)‖ = 0.

Consequently, the origin is asymptotically stable and by Lemma 3.6.2 this
implies the stability of the strict GFN model Q.

Conversely, suppose that Q is stable. Then, there is a τ > 0 such that
δτQ ≡ 0 for all trajectories Q ∈ Q(1). We define the following comparison
functions

w1(r) := r2

2L , w2(r) := r2 (1 + Lτ) τ, w3(r) := r

and show that our candidate

V (x) = sup
Q∈Qx

∫ ∞
0

‖Q(s)‖ ds

is a Lyapunov function. As Q satisfies the Lipschitz condition (a) it follows
that

‖Q(s)‖ ≥ ‖Q(t)‖ − L(s− t) (4.9)

for all Q ∈ Q and s ≥ t. In particular, for t = 0 this implies

‖Q(s)‖ ≥ ‖Q(0)‖ − Ls. (4.10)
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Using the last inequality we get the following estimate from below

V (x) = sup
Q∈Qx

∫ ∞
0

‖Q(s)‖ ds ≥ sup
Q∈Qx

∫ ‖x‖
L

0

‖Q(s)‖ ds

≥ sup
Q∈Qx

∫ ‖x‖
L

0

(‖x‖ − Ls ) ds

= sup
Q∈Qx

{
‖x‖‖x‖L −

‖x‖2
2L

}
= ‖x‖2

2L = w1(‖x‖).

To obtain an estimate from above consider Q ∈ Qx. Note that by the
scaling property it follows that σ‖x‖Q ∈ Q(1) and further the stability of
Q implies that

Q(t) = 0 ∀ t ≥ ‖x‖τ. (4.11)

The triangle inequality together with the Lipschitz condition imply that
for all t ∈ [0, ‖x‖τ ] it holds that

‖Q(t)‖ ≤ ‖Q(0)‖ + Lt ≤ ‖x‖ (1 + Lτ). (4.12)

With (4.11) and (4.12) an estimate from above is derived as follows

V (x) = sup
Q∈Qx

∫ ‖x‖τ
0

‖Q(s)‖ ds ≤ sup
Q∈Qx

∫ ‖x‖τ
0

‖x‖ (1 + Lτ) ds

= ‖x‖2 (1 + Lτ) τ = w2(‖x‖).

Now consider the decrease condition

V (Q(t2))− V (Q(t1)) = sup
Q∈QQ(t2)

∫ ∞
0

‖Q(s)‖ ds− sup
Q∈QQ(t1)

∫ ∞
0

‖Q(s)‖ ds.

From condition (e) it follows that

V (Q(t1)) = sup
Q∈QQ(t1)

∫ ∞
0

‖Q(s)‖ ds

≥
∫ t2

t1

‖Q(s)‖ ds+ sup
Q∈QQ(t2)

∫ ∞
0

‖Q(s)‖ ds

=

∫ t2

t1

‖Q(s)‖ ds+ V (Q(t2)).
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and, hence,

V (Q(t2))− V (Q(t1)) ≤ −
∫ t2

t1

‖Q(s)‖ ds = −
∫ t2

t1

w3(‖Q(s)‖) ds.

Thus, together with Proposition 4.2.6 we see that V is a continuous Lya-
punov function. �

From the proof of the previous theorem we see that the semicontinuity
property (f) is only needed to conclude continuity of V . Thus, we have
also proved the following.

Corollary 4.2.8 A closed GFN model Φ satisfying the concatenation prop-
erty (e) is stable if and only if it admits a Lyapunov function. In particular,
V can be chosen as in (4.6) and V is upper semicontinuous.

In addition, the proof of Theorem 4.2.7 shows the following equivalence.

Corollary 4.2.9 A strict GFN model Q is stable if and only if it admits
a continuous Lyapunov function and the comparison functions are of class
K∞.

Remark 4.2.10 Continuity of Lyapunov functions is of interest because
this would ensure robustness properties of the network subject to unknown
parameters or external perturbations. Since upper semicontinuous Lya-
punov function do not imply robustness statements the benefit of Lyapunov
functions that are upper semicontinuous is restricted compared to continu-
ous Lyapunov functions, see [55], [82].

4.3 Construction of Smooth Lyapunov Functions

Another essential point in the Lyapunov theory for dynamical systems is
the construction of smooth Lyapunov functions. In this section we regard
this issue in the context of strict GFN models. To this end, we consider
a strict GFN models Q which is supposed to be stable. According to
Theorem 4.2.7 there is a continuous Lyapunov function V defined by

V (x) = sup
Q∈Qx

∫ ∞
0

‖Q(s)‖ ds
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and a comparison function w such that the decrease condition

V (Q(t))− V (Q(s)) ≤ −
∫ t

s

w(‖Q(r)‖) dr (4.13)

is satisfied. The key issue of this section is the following. Given a stable
strict GFN model, we aim to construct a C∞-smooth Lyapunov function
Vs and a C∞-smooth comparison function ws such that for all Q ∈ Q we
have

V̇s(Q(t)) := lim
h→0

Vs(Q(t+ h))− Vs(Q(t))

h
≤ −ws(‖Q(t)‖). (4.14)

Our construction will be based on C∞-smooth mollifiers and their convo-
lution with the Lyapunov function V admitted by the stable strict GFN
model. This technique is well-known in the theory of partial differential
equations and for the construction of smooth Lyapunov functions for ordi-
nary differential equations and differential inclusions, see [44] and [26, 82],
respectively, and the references therein.

For r > 0 and x ∈ Rn let B(x, r) := {y ∈ Rn : ‖x−y‖ ≤ r}. A function
k ∈ C∞(RK ,R+) is called a mollifier if supp k = B(0, 1) and∫

RK

k(x) dx = 1.

Furthermore, the support of a mollifier can be scaled in the following way.
For r > 0 consider

kr(x) := 1
rn k(r−1x).

Then, it follows that kr ∈ C∞(RK ,R+), supp kr = B(0, r), and∫
RK

kr(x) dx = 1.

Moreover, to consider the convolution of a function f ∈ C(Rn,R) and
a mollifier kr, let U be an open subset of RK and Ur = {x ∈ U :
dist(x, ∂U) > r}, where dist(x,A) = inf{‖x − a‖ : a ∈ A}. Then, the
convolution, denoted by fr : Ur → R, is defined by

x 7→ fr(x) := f ∗ kr (x) =

∫
B(0,r)

f(x− y) kr(y) dy.
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By standard convolution results it follows that fr ∈ C∞(Ur,R+), see for
instance [44, Theorem 6 Appendix C.4]. Furthermore, if f is continuous in
U , it holds that fr → f uniformly on compact subsets of U as r → 0.

In order to construct a C∞-smooth Lyapunov function and a C∞-
smooth comparison function we extend V and w to RK as an initial step.
To this end, let | · |vec denote the map that takes componentwise absolute
values, i.e.

|x|vec := (|x1|, ..., |xK |)T.

The extention V e, defined by the composition

V e(x) := V (|x|vec)

of the continuous functions V and | · |vec, is also continuous. Applying the
latter to the comparison function yields

we(x) := w(‖|x|vec‖).

Before starting the construction of a C∞-smooth Lyapunov function we
make the following standing assumption for this section. In the following
we often denote trajectories by Q(·;x) to emphasize the starting point x.

Assumption 4.3.1 For any x ∈ RK , Q ∈ Q|x|vec , ε > 0, and T > 0
there is a constant c > 0 such that if ‖x− y‖ < ε, there exists a trajectory
R ∈ Q|x−y|vec such that for all t ∈ [0, T ] it holds that

‖Q(t; |x|vec)− y −R(t; |x− y|vec) ‖ ≤ c ‖y‖ t.

As a first consequence of the Assumption 4.3.1 we shall show that V e
is locally Lipschitz. To this end, we consider the Dini subderivative. Let U
be an open subset of Rn. The Dini subderivative of a function f : U → R
at a point x ∈ U in the direction v ∈ Rn is defined by

Df(x; v) := lim inf
ε→0,w→v

f(x+ εw)− f(x)

ε
.

Based on the Dini subderivative the following result is useful to establish
the local Lipschitz continuity of V e. For further details the interested
reader is referred to [27].
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Lemma 4.3.2 ([27]) Suppose that the function f : U → (−∞,∞] is lower
semicontinuous. Let U ′ ⊂ U be open and convex. Then f is Lipschitz with
constant M on U ′ if and only if for all x ∈ U ′ and for all v ∈ Rn it holds
that

Df(x; v) ≤M‖v‖.

Based on this result we will conclude that under the Assumption 4.3.1
the extended Lyapunov function V e is locally Lipschitz.

Lemma 4.3.3 Let Q be a stable strict GFN model. Suppose that Q satis-
fies Assumption 4.3.1, then V e is locally Lipschitz on RK .

Proof. Let B ⊂ RK be open, convex, and bounded and let x ∈ B. Further,
let Q ∈ Q|x|vec be a trajectory of the strict GFN model satisfying

V e(x) =

∫ ∞
0

‖Q(s; |x|vec)‖ds.

Given any w ∈ RK we consider a sequence (εk)k∈N of positive real numbers
which converges towards 0 so that x+ εkw → x as k →∞. The continuity
of | · |vec implies that |x+ εkw|vec → |x|vec as k →∞. So, for every ε > 0
there exists an N ∈ N such that ‖x − (x + εkw)‖ = εk‖w‖ < ε for all
k ≥ N . Furthermore, for N and T := sup{‖x‖ τ, supk≥N ‖x+ εkw‖ τ}, by
Assumption 4.3.1, there exists a c > 0 and trajectories R(· ; |x + εkw|vec),
with k ≥ N , such that for all t ∈ [0, T ],

‖Q(t; |x|vec)‖ − εk‖w‖ − ‖R(t; |x+ εkw|vec) ‖
≤ ‖Q(t; |x|vec) + εkw −R(t; |x+ εkw|vec) ‖ ≤ c εk ‖w‖ t,

where the first inequality follows from the triangular inequality. This also
reads as

‖Q(t; |x|vec) ‖ − ‖R(t; |x+ εkw|vec) ‖ ≤ εk ‖w‖ (1 + c t) (4.15)

for all t ∈ [0, T ]. Besides, by the definition of V e and the stability of Q it
holds that

V e(x+ εkw) ≥
∫ ∞

0

‖R(s; |x+ εkw|vec) ‖ ds

=

∫ ‖x+εkw‖τ

0

‖R(s; |x+ εkw|vec) ‖ ds.
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Also, the stability of Q implies that

V e(x) =

∫ ∞
0

‖Q(s; |x|vec)‖ ds =

∫ ‖x‖τ
0

‖Q(s; |x|vec)‖ds.

Moreover, on one hand if ‖x‖ ≤ ‖x+ εkw‖ it holds that

V e(x)− V e(x+ εkw) ≤
∫ ‖x‖τ

0

‖Q(s; |x|vec) ‖ds

−
∫ ‖x+εkw‖τ

0

‖R(s; |x+ εkw|vec) ‖ ds

≤
∫ ‖x‖τ

0

‖Q(s; |x|vec)‖ − ‖R(s; |x+ εkw|vec) ‖ds

≤
∫ ‖x‖τ

0

εk ‖w‖ (1 + c s) ds = εk ‖w‖ ‖x‖ τ (1 + c
2‖x‖τ).

On other hand, if ‖x‖ > ‖x+ εkw‖ we have that

V e(x)− V e(x+ εkw) ≤
∫ ‖x‖τ

0

‖Q(s; |x|vec) ‖ ds

−
∫ ‖x+εkw‖τ

0

‖R(s; |x+ εkw|vec) ‖ ds

≤
∫ ‖x+εkw‖τ

0

‖Q(s; |x|vec)‖ − ‖R(s; |x+ εkw|vec) ‖ ds

+

∫ ‖x‖τ
‖x+εkw‖τ

‖Q(s; |x|vec) ‖ds

≤
∫ ‖x+εkw‖τ

0

εk ‖w‖ (1 + c s) ds

+ τ( ‖x‖ − ‖x+ εkw‖ ) · sup
s∈[‖x+εkw‖τ,‖x‖τ ]

‖Q(s; |x|vec) ‖

≤ εk ‖w‖ ‖x+ εkw‖ τ (1 + c
2‖x+ εkw‖τ) + τ εk ‖w‖ ‖x‖ (1 + Lτ).

The last inequality but one follows from (4.15) and the last inequality
follows from (4.12) and the triangular inequality. Consequently, taking
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limits implies

D(−V e)(x; v) = lim inf
k→∞,w→v

V e(x)− V e(x+ εkw)

εk

≤ τ
(
2 + ( c2‖x‖+ L)τ

)
‖x‖ · ‖v‖.

Since −V e is lower semicontinuous and ‖x‖ is bounded the assertion follows
from Lemma 4.3.2. �

In the sequel, we proceed with the construction of a smooth Lyapunov
function and a smooth comparison function. Let U be an open subset of
RK and consider the convolution of V e and the mollifier kr defined by

V er (x) := V e∗kr (x) =

∫
RK

V e(x−y) kr(y) dy =

∫
RK

V (|x−y|vec) kr(y) dy.

Also, we consider the convolution of the extended comparison function
we(x) given by

wer(x) := we ∗ kr (x) =

∫
RK

we(x− y) kr(y) dy.

By standard convolution results it follows that V er ∈ C∞(U,R+) and wer ∈
C∞(U,R+). Furthermore, since V e is continuous in U it holds that V er →
V e uniform on compact subsets of U as r → 0. Consequently, for every
ε > 0 there is an r0 such that for all r ∈ (0, r0) we have that V er and wr
are smooth on U and

|V er (x)− V e(x)| ≤ ε and |wer(x)− we(x)| ≤ ε
2 (4.16)

for all x ∈ U . The subsequent statement addresses the decrease condition
of the convolution along trajectories of the strict GFN model Q.

Lemma 4.3.4 Let U ⊂ RK+ be compact, V e and w ∈ K be such that (4.13)
holds. Suppose that Assumption 4.3.1 is valid. Then, for every ε > 0 there
exists a r0 > 0 such that for all r ∈ (0, r0) we have

V̇ er (Q(t)) ≤ −we(Q(t)) + ε (4.17)

for all Q ∈ Q and t ∈ [0, T ] with Q(·)|[0,T ] ⊂ U .
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Proof. Due to the shift property it suffice to consider the case t = 0. So,
let x ∈ U and let Q ∈ Qx. Then,

V er (Q(t;x))− V er (x) =

∫
RK

(
V e(Q(t;x)− y)− V e(x− y)

)
kr(y) dy

≤
∫
RK

∣∣∣V e(Q(t;x)− y) − V e(R(t; |x− y|vec))
∣∣∣ kr(y) dy

+

∫
RK

(
V (R(t; |x− y|vec) )− V (|x− y|vec)

)
kr(y) dy, (4.18)

where R(·; |x − y|vec) is a trajectory corresponding to Assumption 4.3.1.
By the local Lipschitz continuity of V with constant LU and by Assump-
tion 4.3.1, the first term on the right hand side in the above inequality can
be estimated as follows∫

RK

∣∣∣V e(Q(t;x)− y) − V e(R(t; |x− y|vec))
∣∣∣ kr(y) dy

≤
∫
RK

LU
∥∥Q(t;x)− y − R(t; |x− y|vec)

∥∥ kr(y) dy

≤ t c LU
∫
RK

‖y‖ · kr(y) dy.

Further, it holds that
∫
‖y‖ kr(y) dy ≤

∫
r kr(y) dy = r and for r0 := ε

2 c LU

it follows that∫
RK

∣∣V e(Q(t;x)− y) − V e(R(t; |x− y|vec))
∣∣ · kr(y) dy ≤ t ε2 .

The stability of the strict GFN model Q implies that the very last term
in (4.18) can be estimated by means of the convolution of the comparison
function w ∈ K and the mollifier,∫

RK

(
V (R(t; |x− y|vec))− V (|x− y|vec)

)
· kr(y) dy

≤
∫
RK

(
−
∫ t

0

w
(
‖R(s; |x− y|vec)‖

)
ds

)
· kr(y) dy

= −
∫ t

0

(∫
RK

w
(
‖R(s; |x− y|vec)‖

)
· kr(y) dy

)
ds.
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Next, we show that the function

s 7→
∫
RK

w
(
‖R(s; |x− y|vec) ‖

)
kr(y) dy

is continuous in [0, t].
To see this, consider the modulus of continuity of the function

s 7→ w
(
‖R(s; |x− y|vec) ‖

)
,

defined for δ ∈ [0, t] by

m
(
δ, w

(
‖R(·; |x− y|vec) ‖

))
:=

sup
|s−s′|≤δ

∣∣∣w(‖R(s; |x− y|vec) ‖
)
− w

(
‖R(s′; |x− y|vec)‖

)∣∣∣.
Then, for s, s′ ∈ [0, t] it holds that

w
(
‖R(s; |x− y|vec) ‖

)
− w

(
‖R(s′; |x− y|vec) ‖

)
≤

m
(
t, w
(
‖R(·; |x− y|vec) ‖

))
.

The stability of the strict GFN model Q yields that ‖R(·; |x − y|vec)‖ is
bounded and, hence, w(‖R(·; |x− y|vec) ‖) is uniformly continuous. Thus,
we have

lim
t→0

m
(
t, w
(
‖R(·; |x− y|vec)‖

))
= 0.

That is, for every ε′ > 0 there is a δε′ > 0 such that for all t ≤ δε′ it holds
that m(t, w(‖R(·; |x − y|vec) ‖)) ≤ ε′. Now, for ε′ > 0 choose δ > 0 such
that |s− s′| < δ < δε′ . Then,∫

RK

(
w
(
‖R(s; |x− y|vec) ‖

)
− w

(
‖R(s′; |x− y|vec) ‖

))
kr(y) dy

≤
∫
RK

m
(
δ, w

(
‖R(·; |x− y|vec) ‖

))
kr(y) dy

≤
∫
RK

ε′ kr(y) dy = ε′.
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Besides, by conditions (4.16) we have that −wer(x) + ε
2 ≤ −w

e(x) + ε.
Finally, applying Assumption 4.3.1 and collecting the above relations yields

V̇ er (Q(0;x)) = lim
t→0

V er (Q(t;x))− V er (x)

t

≤ ε
2 − lim

t→0

1

t

∫
RK

(∫ t

0

w(‖R(s; |x− y|vec)‖) kr(y) dy

)
ds

≤ − lim
t→0

1

t

∫ t

0

(∫
RK

w
(
‖R(s; |x− y|vec)‖

)
kr(y) dy

)
ds+ ε

2

= −
∫
RK

w
(
‖R(0; |x− y|vec)‖

)
kr(y) dy + ε

2

= −
∫
RK

we(x− y) kr(y) dy + ε
2

= −wer(Q(0;x)) + ε
2 ≤ −w

e(Q(0;x)) + ε.

This shows the assertion. �

Now, let U = {Ui}∞i=1 be a locally finite open cover of Rn such that for
every i the closure Ūi is compact. Further, let {ϕi}∞i=1 be a smooth parti-
tion of unity that is subordinate to U . Details are provided in Appendix A.
Define

εi = 1
4 min{min

x∈Ūi

V e(x), min
x∈Ūi

we(x)} and qi = max
x∈Ūi

‖∇ϕi(x)‖.

(4.19)

Then, by Lemma 4.3.4 for every i there are C∞-functions V ei and wei such
that for every x ∈ Ui,

|V e(x)− V ei (x)| < εi
2i+1(1 + qi)

and |we(x)− wei (x)| < εi. (4.20)

Moreover, by the conditions (4.17) and (4.19) we have that

V̇ ei (Q(t;x)) ≤ −we(Q(t;x)) + 2 εi ≤ − 1
2w

e(Q(t;x)). (4.21)

Next, we define

V es (x) :=

∞∑
i=1

ϕi(x)V ei (x).
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To see that V es is proper and positive definite we note that the following
estimate holds true

|V es (x)− V e(x)| ≤
∞∑
i=1

ϕi(x)
∣∣V ei (x)− V e(x)

∣∣
≤ V e(x)

4

∞∑
i=1

ϕi(x)

2i+1(1 + qi)
≤ 1

8V
e(x).

The next step is to derive that V es is decaying along trajectories of Q. To
this end, we consider

d
dt [V

e
s (Q(t))] = d

dt [V e(Q(t)) + V es (Q(t))− V e(Q(t))]

= d
dt [V

e(Q(t))] + d
dt

[ ∞∑
i=1

ϕi(Q(t))
(
V ei (Q(t))− V e(Q(t))

)]

= V̇ e(Q(t)) +

∞∑
i=1

ϕi(Q(t))
(
V̇ ei (Q(t))− V̇ e(Q(t))

)
+

∞∑
i=1

ϕ̇i(Q(t))
(
V ei (Q(t))− V e(Q(t))

)

≤
∞∑
i=1

ϕi(Q(t))

V̇ ei (Q(t)) +

∞∑
j=1

ϕ̇j(Q(t))
∣∣∣V ej (Q(t))− V e(Q(t))

∣∣∣
 .

Using the conditions (4.20) and (4.21) we get the following estimate

V̇ es (Q(t)) ≤
∞∑
i=1

ϕi(Q(t))

− 1
2 w

e(Q(t)) +

∞∑
j=1

qjεj
2j+1(1 + qj)

 .

Defining ε̃i := max{εj : x ∈ Ui ∩ Uj 6= ∅} we have that

V̇ es (Q(t)) ≤
∞∑
i=1

ϕi(Q(t))

− 1
2 w

e(Q(t)) + ε̃i

∞∑
j=1

1
2j+1


=

∞∑
i=1

ϕi(Q(t))
(
− 1

2w
e(Q(t)) + ε̃i

)
.
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Using (4.19) and the triangular inequality applied to the second inequality
in (4.20), it holds that

− 1
2w

e(Q(t)) + ε̃i ≤ − 1
4w

e(Q(t)) ≤ − 1
5w

e
i (Q(t)).

Finally, we have that

V̇ es (Q(t)) ≤ − 1
5

∞∑
i=1

ϕi(Q(t))wei (Q(t)) =: −wes(Q(t)).

The collection of the material in this section and the converse Lyapunov
Theorem 4.2.7 yields the following smooth converse Lyapunov theorem.

Theorem 4.3.5 Suppose the strict GFN model Q satisfies Assumption 4.3.1.
Then, Q is stable if and only if there is a C∞-smooth Lyapunov function
V and a C∞-smooth comparison function w such that

V̇ (Q(t)) ≤ −w(‖Q(t)‖)

for every trajectory Q ∈ Q.

4.4 Notes and References

Much of the material presented in Sections 4.1 and 4.2 has already been
published in [75], [76]. The notion of GFN models has been introduced
by Ye and Chen, see [86]. The conditions defining GFN models have been
shown for fluid limit models by Stolyar in [81]. Furthermore, in [19] these
properties have been stated as remarks for work-conserving fluid networks.

An introduction to the behavioral approach to mathematical systems
theory can be found in the text book [66]. However, the stability analysis
therein is restricted to systems which are described by differential equations
and a so-called kernel representation. The Definition 4.1.2 for stability in
the behavioral framework is taken from [85].

A stability analysis of GFN models based on Lyapunov arguments was
previously only considered by Ye and Chen. Their converse result, in terms
of the L-condition, falls short of a converse Lyapunov theorem as stated in
Theorem 4.2.7. The proof of this result is not recalled as all its steps are
contained in this thesis, although they are distributed across the Chapters 3
and 4, cf. [86].
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In the dynamical systems and control literature converse Lyapunov
theorems have been widely studied since the 1950s. In particular, the
construction of smooth Lyapunov functions has been an active field for
a long time. During the last 15 years smooth Lyapunov functions have
also been constructed for differential inclusions with appropriate right-hand
sides, cf. [26, 82]. Especially, Teel and Praly provide a good historical
overview. In 2007 a metric approach to construct smooth Lyapunov was
published by Siconolfi and Terrone [79].

In the queueing literature the smoothing technique based on mollifiers
was considered by Dupuis and Williams [41] and Down and Meyn [39].

The presented strategy to gain a smooth converse Lyapunov theorem
is based on the approach of Clarke, Ledyaev and Stern [26]. For strict
GFN models a major difference is, however, that in the abstract setting
a strict GFN model is not given as the set of solutions of a differential
inclusion. In particular, the conditions (a)-(f) in Definition 4.2.2 do not
provide Gronwall lemma-like estimates for the evolution of the difference
of two trajectories with different initial points. This exactly is the con-
tent of Assumption 4.3.1, which is appropriate that the technique works.
For additional comments on Assumption 4.3.1 and situations in which it is
satisfied, we refer to the notes and references at the end of the subsequent
chapter. Moreover, the domain of the Lyapunov function V , defined in
(4.6), is RK+ as a strict GFN model contains only nonnegative trajectories.
This causes the problem of defining the convolution of the continuous Lya-
punov function V and a mollifier for all points on the boundary ∂RK+ of
the nonnegative orthant. To overcome the difficulty we extend V to RK
by taking componentwise absolute values. In [41] Dupuis and Williams
this problem is solved by a shift of the nonnegative orthant through some
constant.

In order to conclude converse Lyapunov theorems for fluid networks
under the disciplines introduced in Chapter 3 the question remains whether
the results obtained in this chapter are applicable to the individual fluid
networks discussed in Chapter 3. This will be the content of the subsequent
chapter.



5 Applications of the Converse
Theorems

In this Chapter we focus again on fluid networks under the disciplines
considered in Chapter 3. There, by means of a Lyapunov function, we
established sufficient stability conditions for fluid networks under general
work-conserving, priority, and HLPPS disciplines. One aim of this chap-
ter is to show that for fluid networks under these disciplines a converse
Lyapunov theorem indeed holds. That is, we will show that a stable fluid
network admits a Lyapunov function. The strategy to obtain the desired
results will be to verify that the fluid network under consideration defines
a strict GFN model and apply the converse Lyapunov Theorem 4.2.7.

At the end of Chapter 2 it is demonstrated that general work-conserving
fluid networks define closed GFN models. Hence, what is left to show is the
concatenation property and the lower semicontinuous dependency on the
initial value. For this reason, since the involved fluid processes are Lipschitz
continuous, we will outline that a fluid network can be considered in terms
of a differential inclusion. A precise description will be given in Section 5.1.

In Section 5.2 we will establish that general work-conserving, priority,
and HLPPS fluid networks define strict GFN models. In particular, in the
framework of differential inclusions we give a new proof of the existence
Theorem 3.2.1 of an allocation process. Moreover, we also discuss the
relation of strict GFN models to FIFO fluid networks and the fluid limit
model of a HL queueing network.

In Section 5.3 we point out the impact of the converse Lyapunov theo-
rem for the stability of HL queueing networks. Based on a Foster-Lyapunov
criterion for positive Harris recurrence, we provide an alternative proof of
Theorem 2.4.10 in the case that the associated fluid network defines a
strict GFN model. We will use the continuous Lyapunov function of the
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fluid network to construct a Foster-Lyapunov function for the multiclass
queueing network.

Besides, the fluid approximation of a HL queueing network, which is
based on scaling associated to the strong law of large numbers, the diffusion
approximation of an HL queueing network is also of interest. This approx-
imation is based on the functional central limit theorem. Especially for the
analysis of heavily loaded queueing networks the diffusion approximation
is a powerful tool. Within this context the linear Skorokhod problem is
of the same significance as fluid networks. In fact, the fluid limit model
approach of Dai was inspired by the work of Dupuis and Williams [41]. In
Section 5.4 we show that the set of solutions to the linear Skorokhod prob-
lem defines a closed GFN model which satisfies the concatenation property.
Thus, for linear Skorokhod problems a converse Lyapunov theorem holds
true. Precisely, we will show that a linear Skorokhod problem is stable if
and only if it admits an upper semicontinuous Lyapunov function.

5.1 Fluid Networks as Differential Inclusions

To apply the converse Lyapunov Theorem 4.2.7 to fluid network models
that work under one of the disciplines introduced in Chapter 3, we need
to show that it defines a strict GFN model. Hence, we have to demon-
strate that the concatenation property (e) and the lower semicontinuity
property (f) in the Definition 4.2.2 are satisfied in each case. In order to
obtain the concatenation property we make use of concepts from the the-
ory of differential inclusions. In this section we describe that differential
inclusions provide a natural framework for the analysis of fluid networks.
Clearly, a detailed description of the dynamics of a fluid network depends
on the specific discipline that is used. But one part of the dynamics of
fluid network models that all service disciplines have in common is the
flow balance relation

Q(t) = Q(0) + αt− (I − PT)MT (t), (5.1)

where the precise description depends on the allocation process T (·), and
hence, on the service discipline. According to Proposition 2.4.13 the pro-
cesses are Lipschitz continuous and by Rademacher’s Theorem differen-
tiable almost everywhere. Hence, for almost all t ∈ R+ the flow balance



5.1 Fluid Networks as Differential Inclusions 103

relation (5.1) can also be written as

Q̇(t) = α− (I − PT)MṪ (t), Q(0) = Q0. (5.2)

Now we consider the derivative of the allocation process as variable, i.e.
we define u(t) = Ṫ (t) almost everywhere and note that u is measurable.
The corresponding differential equation can be written as

Q̇(t) = f(Q(t), u(t)) := α− (I − PT)Mu(t). (5.3)

The allocation rate u(·) is determined through the service discipline. So,
each service discipline has a set of admissible values U(Q), where u ∈ U(Q)
if and only if u ∈ RK+ satisfies some allocation conditions that are specific
to the discipline. As mentioned in Remark 2.4.6 the solutions to the fluid
network equations are not unique and, thus, the allocation process need not
be unique as well. Hence, for every Q ∈ RK+ there are different choices of
u possible, where the admissible values u depend on the fluid level process
Q(t) through the allocation conditions. Thus, the flow balance relation
(5.2) can also be expressed by a differential inclusion of the form

Q̇(t) ∈ {f(Q(t), u(t)) : u(t) ∈ U(Q(t))}, Q(0) = Q0. (5.4)

Sometimes the set-valued map U : Q  u is referred to as the feedback
map. Defining

F (Q(t)) := {α− (I − PT)Mu(t) : u(t) ∈ U(Q(t))}, (5.5)

we rewrite (5.4) as a closed loop differential inclusion

Q̇(t) ∈ F (Q(t)), Q(0) = Q0. (5.6)

In the following section we will investigate the differential inclusions and
the set-valued map U for the particular service disciplines introduced in
the Chapters 2 and 3. For this reason, our analysis is based on general
results from the theory of differential inclusions. These are summarized in
Appendix B. However, the so called Filippov Lemma is stated here, since
it fits to the special structure of the differential inclusion defined by (5.5).

Lemma 5.1.1 ([45]) Let f(t, u) be continuous and let the set-valued map
t  U(t) be upper semicontinuous with closed convex values. Let y(·) be
a measurable function such that y(t) ∈ f(t, U(t)) for almost all t. Then,
there is a measurable function u(·) such that y(t) = f(t, u(t)) for almost
all t.

Proof. See [45] pp.78/79. �
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5.2 Applications to Some Fluid Networks

In this section we discuss the differential inclusions that arise from the
consideration of the particular disciplines. We will start our analysis for
general work-conserving fluid networks. Subsequently, we examine fluid
networks under priority and HLPPS disciplines. In addition, we contem-
plate the relation of fluid limit models to strict GFN models and point out
why FIFO fluid networks do not fall immediately into the framework of
differential inclusions.

General Work-Conserving Fluid Networks

First, we recall the dynamic equations for fluid networks under a general
work-conserving service discipline. That is,

Q(t) = Q(0) + α t− (I − PT)MT (t) ≥ 0, (5.7)

T (0) = 0 and Ṫ (·) ≥ 0 (5.8)

I(t) = et− C T (t) and İ(·) ≥ 0 (5.9)

0 = (C Q(t))T İ(t), for almost all t ≥ 0. (5.10)

Second, we bring the conditions (5.8)-(5.10) into the context of the differen-
tial inclusions (5.6). So, for Q ∈ RK+ the conditions defining the admissible
values for u are

u ≥ 0, e− Cu ≥ 0, (CQ)T · (e− Cu) = 0. (5.11)

The conditions in (5.11) are immediate consequences of (5.8), (5.9) and
(5.10) in their differentiation. Hence, the set of admissible values of u is
given by

UC(Q) :=
{
u ∈ RK+ : (5.11) is satisfied

}
.

The set of allocation rates u that satisfy u ≥ 0 and e−Cu ≥ 0 is a compact
and convex subset of RK+ . In addition, the condition (CQ)T · (e−Cu) = 0
defines a hyperplane. Hence, the set UC(Q), given by the intersection of a
compact and convex set and a hyperplane, is compact and convex. That
is, the set of all feasible directions being in the state Q ∈ RK is given by

F (Q) =
{
α− (I − PT)Mu : u ∈ UC(Q)

}
. (5.12)
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So, we consider the differential inclusion defined by

Q̇(t) ∈ F (Q(t)) (5.13)

and the initial condition Q(0) = Q0. Note that the fluid level processes
defined by (5.7)-(5.10) are forced to be nonnegative. However, for fluid
levels on the boundary of the nonnegative orthant the conditions in (5.11)
do not provide the nonnegativity of the fluid level. Hence, for fluid levels on
the boundary of the nonnegative orthant we have to rule out the directions
that would cause an abandonment of the nonnegative orthant. For this
reason, according to Theorem B.3 in Appendix B, for every Q ∈ R+ we
have to consider intersection of F (Q) in (5.12) and the contingent cone
TRK

+
(Q) to the nonnegative orthant. The existence of solutions that remain

in the nonnegative orthant is the content of the next result, which is an
elegant method to prove Theorem 2.1 in [19].

Theorem 5.2.1 For any work-conserving fluid network (α, µ, P,C) with
an initial level Q0 there exists a work-conserving allocation T .

Proof. From the conditions (5.11) it follows that the set UC(Q) is compact
and convex and UC is upper semicontinuous. Further, the map (Q, u) 7→
α− (I − PT)M u is continuous. Hence, by Proposition B.1 the set-valued
map F is upper semicontinuous. Moreover, F has closed convex values that
are contained in some ball with radius b > 0. Also the conditions (5.11)
imply that F (Q) ∩ TRK

+
(Q) 6= ∅ for all Q ∈ RK+ . Then, by Theorem B.3

there exists a solution Q(·) to (5.6) such that Q(t) ∈ RK+ for all t ≥ 0.
Furthermore, let Q(·) be a solution that remains in the nonnegative

orthant. Note that f(Q, u) is continuous in u and that U(t) := {u ∈ RK+ :
e−Cu ≥ 0, (CQ(t))T(e−Cu) = 0} is closed and bounded. Also, t U(t)
is upper semicontinuous. Then, by the Filippov Lemma 5.1.1, there is a
measurable selection u(·) of t 7→ UC(Q(t)) such that u(t) ∈ UC(Q(t)) for
almost all t ≥ 0 and

Q̇(t) = α− (I − PT)M u(t) for almost all t ≥ 0.

Thus, integrating the latter yields that given Q0 the pair (Q(·), T (·)) with
T (t) :=

∫ t
0
u(s) ds is a fluid solution. �

Remark 5.2.2 In general, the set-valued map Q F (Q)∩TRK
+

(Q) is not
upper semicontinuous as the following example shows.
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µ1

µ2

α1

α2

Figure 5.1: A two station network serving two fluid classes.

Example 5.2.3 We consider a two station fluid network serving two fluid
classes as depicted in Figure 5.1. Let ε > 0 and let the service capacities
be µi = αi + ε, i = 1, 2. Further, we consider the initial fluid level Q0 = 0
and the sequence Qn =

(
0 1
n )T of initial levels. Then, for all n ∈ N and

for small t ≥ 0, the allocation rates are given by Ṫn(t) =
(

α1

α1+ε 1
)T. So,

for the set-valued map F defining the right-hand side of the differential
inclusion we have F (Qn) =

(
0 − ε

)T and, thus,

F (Qn) ∩ TR2
+

(Qn) =

(
0
−ε

)
.

Now we pick the sequence
(
Qn, (0 − ε)T

)
on the graph of F ∩ TR2

+
which

converges to
(
0, (0 − ε

)T) 6∈ graph(F ∩ TR2
+

). Hence, the graph is not
closed and by Proposition B.2 the set-valued map F ∩ TR2

+
is not upper

semicontinuous.

We use AC(R+,RK+ ) to denote the set of absolutely continuous func-
tions x : R+ → RK+ . Let S : RK+  AC(R+,RK+ ) denote the solution map
of the differential inclusion

Q̇(t) ∈ F (Q(t)) ∩ TRK
+

(Q(t))

describing general work-conserving fluid networks. We omit any sub- and
superscripts since it will be clear from the context to which service disci-
pline and differential inclusion the solution map refers to. Thus, we can
represent the set of work-conserving fluid level processes by

QC = {Q(·) : Q(·) ∈ S(Q0), Q0 ∈ RK+ }.
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Following the Propositions 2.4.13, 2.4.14, and 2.4.15 it holds that QC de-
fines a closed GFN model. So, we only have to prove that the concatenation
and the lower semicontinuity property are satisfied.

Proposition 5.2.4 The set of fluid level processes QC satisfies the con-
catenation property (e) in Definition 4.2.2.

Proof. Since solutions of differential inclusions are by definition abso-
lutely continuous functions, and concatenation preserves absolute conti-
nuity. This shows the assertion. �

The next statement shows that the solution map depends lower semi-
continuously on the initial condition.

Proposition 5.2.5 The set of fluid level processes QC satisfies the lower
semicontinuity property (f) in Definition 4.2.2.

Proof. To show condition (f) we have to verify the existence of a T > 0 such
that Q0  S(Q0)|[0,T ] is lower semicontinuous. In view of Proposition 4.2.4
and Proposition 5.2.4 it is sufficient to construct for each Q0 a T (Q0) > 0
such that (f ′) holds. To this end, let Q0 ∈ RK+ be fixed, Q(·) ∈ S(Q0).
Then, by the proof of Theorem 3.2.1 there exists a function u(·) ∈ U(Q(·))
such that

Q(t) = Q0 + α t− (I − PT)M

∫ t

0

u(s) ds. (5.14)

We distinguish the following situations.
First, suppose that Q0 ∈ RK+ is such that all stations have some

nonempty queues, i.e. CQ0 > 0. Hence, there is a T (Q0) > 0 such that
CQ(t) > 0 for all t ∈ [0, T (Q0)]. We note that (CQ)T · (e− Cu) = 0 from
(5.11) also reads as

J∑
j=1

 ∑
l∈C(j)

Ql ·

1−
∑
l∈C(j)

ul

 = 0.

Since both factors are nonnegative and, in fact, CQ(t) > 0 for t ∈ [0, T (Q0)],
it holds that

1 =
∑
l∈C(j)

ul(·)|[0,T (Q0)] =: eTj Cu(·)|[0,T (Q0)] (5.15)
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for all j = 1, ..., J . Let (Qn0 )n∈N be a sequence of initial values converging
to Q0. Consider the functions

Qn(t) := Qn0 + α t− (I − PT)M

∫ t

0

u(s) ds = Q(t) + (Qn0 −Q0) . (5.16)

The selection u clearly satisfies the constraint (5.11), so ifQn is nonnegative
on [0, T (Q0)], it defines a fluid solution on that interval. We claim that
this is the case for n large enough. Indeed (5.16) shows for the indices
k for which Q0,k = 0 that Qnk (t) ≥ Qk(t) ≥ 0, while if Q0,k > 0, then
by the choice of T (Q0) we have Qk(t) > 0 on [0, T (Q0)]. And so for n
sufficiently large Qn(t) > 0. As Qn → Q uniformly on [0, T (Q0)] we obtain
that Q SF (Q)|[0,T (Q0)] is lower semicontinuous at Q0.

Second, suppose that the initial fluid level at some stations is zero. We
first treat the case of a single station with empty queues. Without loss of
generality let this station be j = 1 and let a denote the set of classes which
are served at station 1. Then, the last constraint in (5.11) is not active for
station 1 and therefore the constraints for fluid classes k ∈ a are given by

uk ≥ 0, 1−
∑
l∈a

ul ≥ 0. (5.17)

However, since Q(·) is a solution to the differential inclusion (5.6) poten-
tially only a proper subset of (5.17) is feasible. If this condition enforces
equality in the second constraint in (5.17), then we can argue as in (5.15) on
a sufficiently small time interval and the previous argument applies again.
The interesting case is when there is idle capacity at station j = 1. Here
uk(·) ≥ 0 are such that

∑
l∈a ul(·) < 1 and that the fluid levels of classes

k ∈ a remain nonnegative. Using b := {1, ...,K}\a the differential form of
the flow balance equation (5.7) can be expressed in block form by

Q̇a(t) = αa + PT
a Ma ua(t) + PT

abMb ub(t)−Ma ua(t)

Q̇b(t) = αb + PT
baMa ua(t) + PT

b Mb ub(t)−Mb ub(t).

The nonnegativity of the fluid levels for classes l ∈ a yields the following
condition

0 ≤ αa + PT
abMb ub(·)− (Ia − PT

a )Ma ua(·),

which also reads as

ua(·) ≤M−1
a (Ia − PT

a )−1 (αa + PT
abMb ub(·)).
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As eTj CQ0 > 0 for j 6= 1 then, arguing as in (5.15) there is a T (Q0) > 0
such that the allocation rates corresponding to fluid classes present at the
stations j 6= 1 satisfy

∑
l∈C(j) ul(·)|[0,T (Q0)] = 1. Let ε > 0 be fixed, so

that if ‖Q0−Q‖ < ε then Qk > 0 when Q0,k > 0. Now, for another initial
value Q1

0 with ‖Q0 − Q1
0‖ < ε we consider u1(·) := (ua(·) + v(·) , ub(·))T,

where v(·) takes values in R|a| such that∑
l∈a

ul(t) + vl(t) = 1 if eT1 CQ
1(t) > 0, (5.18)

and v(t) = 0 otherwise. Then, we consider the solution Q1(·) associated
with u1(·) and Q1

0, i.e.

Q1(t) = Q1
0 + α t− (I − PT)M

∫ t

0

(
ua(s) + v(s)

ub(s)

)
ds

= Q1
0 −Q0 +Q(t)− (I − PT)M

∫ t

0

(
v(s)

0

)
ds.

So, the difference between the solutions Q(·) and Q1(·) is given by

Q1(t)−Q(t) = Q1
0 −Q0 +

∫ t

0

(
PT
aMav(s)

PT
baMav(s)

)
−
(
Mav(s)

0

)
ds

In particular, as Q0,a = 0 we have that

Q1
a(t)−Qa(t) = Q1

0,a − (I − PT
a )Ma

∫ t

0

v(s) ds.

Hence, if Q1
0,a > 0 the nonnegativity of (I − PT

a )Ma and v(·) imply that
there is a r ≥ 0 such that

Q1
0,a − (I − PT

a )Ma

∫ r

0

v(s) ds = 0. (5.19)

We will assume that v(·) is chosen so that the time in which (5.19) is
achieved is minimal.

Thus, given a sequence of initial values (Qn0 )n∈N converging to Q0 and
in particular Qn0,a converging to zero, we define

rn := min{r ≥ 0 : vn(·) satisfies (5.18) and (5.19)}
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and

un(t) :=

{
(ua(t) + vn(t) , ub(t) )T for 0 ≤ t ≤ rn,
(ua(t) , ub(t) )T for t > rn.

Further, we note that (5.19) implies that if Qn0,a converges to Q0,a = 0 it
holds that rn converges to zero as well. Hence, we have that un(·) converges
to u(·) and consequently Qn(·) converges uniformly to Q(·) on [0, T (Q0)],
i.e. Q(·)|[0,T (Q0)] depends lower semicontinuously on Q0.

The cases where more than one stations have empty queues follows the
same line of reasoning. The assertion follows from Proposition 4.2.4. �

In a nutshell, the latter results yield the desired converse Lyapunov
theorem for general work-conserving fluid networks.

Theorem 5.2.6 A general work-conserving fluid network defines a strict
GFN model. In particular, it is stable if and only if it admits a continuous
Lyapunov function.

Priority Fluid Networks

For convenience we recall the basic notations for priority fluid networks.
A priority discipline is determined by a permutation

π : {1, ...,K} → {1, ...,K},

where for fluid classes l, k present at the same station j = c(k) = c(l) fluids
of class l have priority over fluids of class k if and only if π(l) < π(k). For
k ∈ {1, ...,K} the set of all fluid classes served at the same station j = c(k)
that have priority over k is denoted by

Πk := {l : l ∈ C(c(k)), π(l) ≤ π(k)}.

The dynamic equations describing the evolution are given by

Q(t) = Q(0) + α t− (I − PT)MT (t) ≥ 0, (5.20)

T (0) = 0 and Ṫ (·) ≥ 0, (5.21)

Yk(t) = t−
∑
l∈Πk

Tl(t) and Ẏ (·) ≥ 0, k ∈ {1, ...,K} (5.22)

0 = Qk(t) Ẏk(t) for almost all t ≥ 0, k ∈ {1, ...,K}. (5.23)

The subsequent statement follows similar to the Propositions 2.4.13, 2.4.14,
and 2.4.15 directly from the dynamic equations.
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Lemma 5.2.7 ([86]) A priority fluid network defines a closed GFN model.

To show that priority fluid networks also define strict GFN models
we rewrite the dynamic equations in the context of differential inclusions
by setting Ṫ = u. To determine the set of feasible allocation rates u
we consider the conditions (5.21)-(5.23) in their differentiation, i.e. for
k ∈ {1, ...,K},

uk ≥ 0, 1−
∑
l∈Πk

ul ≥ 0, Qk · (1−
∑
l∈Πk

ul) = 0. (5.24)

Likewise, for a given fluid level Q ∈ RK+ we define

UΠ(Q) :=
{
u ∈ RK+ : (5.24) is satisfied for all k ∈ {1, ...,K}

}
.

The constraints (5.24) show that UΠ(Q) is compact. To see that UΠ(Q) is
also convex, let u and v be in UΠ(Q) and let λ ∈ (0, 1). Then, it follows
immediately that λu+ (1− λ)v ≥ 0. Further, we have that∑

l∈Πk

λul + (1− λ)vl = λ
∑
l∈Πk

ul + (1− λ)
∑
l∈Πk

vl ≤ 1

and the second constraint in (5.24) is also satisfied. To verify the third
condition, it suffices to regard the case when Qk > 0 since otherwise the
condition is already included in the other constraints. Note that in this
case we have that

∑
l∈Πk

ul =
∑
l∈Πk

vl = 1. Consequently, it holds that

Qk ·
(

1−
∑
l∈Πk

λul + (1− λ)vl

)
= Qk ·

(
1− (λ

∑
l∈Πk

ul + (1− λ)
∑
l∈Πk

vl)
)

= Qk · (1− (λ+ (1− λ)) ) = 0.

In addition, the set-valued map UΠ : Q UΠ(Q) is upper semicontinuous.
Thus, a priority fluid network is described by the set of solutions to the

following differential inclusion

Q̇(t) ∈ F (Q(t)) := {α− (I − PT)Mu : u ∈ UΠ(Q(t)) }.

The set-valued map F has nonempty compact and convex values and, by
Proposition B.1, it is upper semicontinuous. Since F (Q)∩ TRK

+
(Q) 6= ∅ for

all Q ∈ RK+ , the same line of arguments as for general work-conserving fluid
networks implies the subsequent converse Lyapunov theorem for priority
networks.
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Theorem 5.2.8 A priority fluid network defines a strict GFN model. In
particular, it is stable if and only if it admits a continuous Lyapunov func-
tion.

HLPPS Fluid Networks

We recall briefly the description for HLPPS fluid networks. At stations
with positive total fluid level, the fluid classes present at a station are
served simultaneously proportional to their current fluid level. The total
fluid level at station j at time t is given by

QΣ
j (t) := eTj C Q(t) :=

∑
l∈C(j)

Ql(t).

The dynamic equations of fluid networks under HLPPS disciplines can be
summarized as follows

Q(t) = Q(0) + α t− (I − PT)MT (t) ≥ 0, (5.25)

W (t) = CM−1Q(t), (5.26)

I(t) = et− C T (t), İ(·) ≥ 0, (5.27)

0 = İj(t)Wj(t) for almost all t ≥ 0, ∀ j = 1, ..., J, (5.28)

Ṫk(t) =
Qk(t)

QΣ
c(k)(t)

if QΣ
c(k)(t) > 0. (5.29)

The subsequent statement follows similar to the Propositions 2.4.13, 2.4.14,
and 2.4.15 directly from the dynamic equations. Thus, we obtain the fol-
lowing result.

Lemma 5.2.9 A HLPPS fluid network defines a closed GFN model.

To conclude that HLPPS fluid networks satisfy the concatenation and
the lower semicontinuity property, we define Ṫ (t) =: u(t) and transfer the
conditions (5.26)-(5.29) to the context of differential inclusions. Further,
we regard the conditions that determine the allocation rates and, hence,
the set-valued map UPPS mapping to each fluid level the set of feasible
allocation rates. If QΣ

j (t) > 0, the allocation rate uk of fluid class k ∈ C(j)
is given by

uk(t) =
Qk(t)

QΣ
c(k)(t)

. (5.30)
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If QΣ
j (t) = 0 for some j ∈ {1, ..., J}, according to the basic fluid network

equation (5.27) the allocation rates uk for k ∈ C(j) have to satisfy

uk ≥ 0, 1− eTj C u ≥ 0. (5.31)

Hence, for Q ∈ RK+ the set of feasible allocation rates is given by

UPPS(Q) :=
{
u ∈ RK+ : (5.30) or (5.31) is satisfied

}
.

To see that, given Q ∈ RK+ , the set of feasible allocation rates is convex
observe that if the total fluid level of a station is positive, the set of feasible
allocation rates is a singleton. Otherwise, let eTj CQ = 0 for some j ∈
{1, ..., J} and let u and v be feasible allocation rates. Then,

eTj C (λu+ (1− λ)v) = λeTj Cu+ (1− λ)eTj Cv ≤ λ+ (1− λ) = 1.

We consider the differential inclusion

Q̇(t) ∈ F (Q(t)) :=
{
α− (I − PT)Mu : u ∈ UPPS(Q(t))

}
, (5.32)

with initial condition Q(0) = Q0. The right-hand side F is upper semicon-
tinuous and has nonempty, compact and convex values. In addition, we
have that F (Q) ∩ TRK

+
(Q) 6= ∅ for all Q ∈ RK+ . Consequently, we obtain

the desired result.

Theorem 5.2.10 A HLPPS fluid network defines a strict GFN model. It
is stable if and only if it admits a continuous Lyapunov function.

Fluid Limit Models

A further class of interest are fluid limit models of queueing networks.
Queueing networks are discussed in Chapter 2. We assume that the As-
sumptions 2.1.2 are satisfied. Furthermore, the evolution of the queueing
network is described by the tuple "(t) = (A(t), D(t), T (t),W (t), I(t), Q(t))
which contains the queue length process Q(t). As in Chapter 2, G denotes
the set on which the strong law of large numbers holds for the interar-
rival times, the service times, and the routing. Furthermore, we consider
sequences of pairs (rn, xn)n∈N that satisfy condition (2.9), where xn are
initial states and rn ∈ R+. By Theorem 2.4.2 for every ω ∈ G and for
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every sequence of pairs (rn, xn)n∈N satisfying condition (2.9), there exist a
subsequence such that

1

rnj

"xnj (rnj
t) −→ "(t) u.o.c. as j →∞.

In the following, we focus on the set of fluid level limits Q, which is denoted
by QL. That is, whenever a fluid limit Q(·) is considered there is a sample
path ω ∈ G and a sequence of pairs satisfying (2.9) such that

1

rn
Qxn(rnt, ω) −→ Q(t) u.o.c. as n→∞. (5.33)

Next, we investigate the Lipschitz, the scaling, and shift property. The
subsequent statement was derived by Ye and Chen. However, in the proof
provided in [86] there is a gap in the verification of the shift property. We
will fill this gap in the following proof.

Proposition 5.2.11 ([86]) The fluid limit model QL defines a GFN model.

Proof. Let Q ∈ QL be a fluid limit. The Lipschitz continuity of the
fluid limit processes follows immediately from Theorem 2.4.5 and Proposi-
tion 2.4.13.

To see that QL satisfies the scaling property let ω be a sample path that
satisfies the strong law of large numbers and (rn, xn)n∈N be a sequence of
pairs satisfying (2.9). For r > 0 and the sequence of pairs (r · rn, xn)n∈N it
holds that

1

r · rn
Qxn((r · rn)t, ω) =

1

r

1

rn
Qxn(rn · (r t), ω) −→ 1

r
Q(r t) u.o.c.

as n→∞. Hence, the scaling property is valid.
To show the shift property, we follow an idea that is due to Robert, see

[68]. Let Q ∈ QL be so that Q(0) = q and let FL(q) denote the set of fluid
limits with initial level q, i.e.

FL (q) := {Q : R+ → RK+ : Q(t) = lim
n→∞

1

rn
Qxn(rn t) , Q(0) = q }.

Fix a sequence of pairs (rn, xn)n∈N satisfying (2.9) so that limn→∞
xn

rn
=

(q, 0, 0). Then, by the Skorokhod’s Representation Theorem 1.2.8 we have
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along a subsequence

lim
k→∞

1

rnk

Qxnk (rnk
t) = Q

nk
(t, q) ∈ FL(q)

a.s. in the Skorokhod topology. The superscript to the fluid limit expresses
the dependence on the particular sequence. Moreover, for any s ≥ 0 by
the Markov property we have the following equality in distribution

Qxnk (rnk
(t+ s))

d
= QQ

xnk (rnk
s)(rnk

t). (5.34)

Also, by Proposition 1.2.6 and since t 7→ Q
nk

(t, q) is continuous, it holds
that

lim
k→∞

1

rnk

Qxnk (rnk
s) = Q

nk
(s, q) a.s.

Consequently, dividing (5.34) by rnk
and taking limits yields that

Q
nk

(t+ s, q)
d
= Q

nk
(t, Q

nk
(s))

and, hence, we have

Q
nk

(·+ s, q) ∈ FL (Q
nk

(s, q) ) .

This shows the assertion. �

For this class the open question remained whether they define closed
GFN models [86]. As we will see, taking the closure with respect to uni-
form convergence on compact sets does not change the stability properties.
In this way, we obtain from fluid limit models closed GFN models. We
define the fluid limit model as the closure of QL with respect to uniform
convergence on compact intervals, and denote it by QL.

Lemma 5.2.12 The fluid limit model QL is stable if and only if QL is
stable.

Proof. Obviously, if QL is stable, then QL is stable. Conversely, assume
that QL is stable. Let Q∗ ∈ QL \QL and Qn ∈ QL a sequence such that
Qn(·) → Q∗(·) u.o.c. as n → ∞. Since QL is stable there is a uniform



116 Chapter 5 Applications of the Converse Theorems

τ > 0 such that Qn(τ + ·) ≡ 0 for all n ∈ N. By the Lipschitz continuity
property it follows for all t ≥ τ that

Q∗(t) = lim
n→∞

Qn(t) = 0

and the proof is completed. �

In the following we consider queueing networks under disciplines that
are memoryless in the sense that the allocation process T of the fluid limit
model at a time t does only depend on the queue length at that time t.
In particular, it does not require information of the past. In terms of the
fluid limit models described in [28] this means that only the fluid level at
a given time is needed to describe the evolution of the fluid level process.
Note that this explicitly excludes a number of disciplines as e.g. FIFO net-
works. We will comment on FIFO fluid networks later in this section. We
also note that the problem of concatenating fluid limits was also addressed
by Stolyar [81] and Robert [68, Section 9.2.3]. In [81] it is shown that if
the queueing disciplines in every station satisfy a certain ’uniqueness condi-
tion’ on the disciplines of the individual servers the concatenation property
holds. However, there the definition of state is different, because the state
as used in [81] includes the past trajectory of the queue. Furthermore,
in [68] concatenation is possible if the fluid limits going through a certain
queue level Q are unique.

Remark 5.2.13 Consider a queueing network with a memoryless disci-
pline. We conjecture that in this case the fluid limit model QL satisfies
the concatenation property. Unfortunately, this claim has shown some re-
silience towards attempts of proof.

Due to fact thatQL is closed by definition we would obtain the following
result.

Conjecture The fluid limit model of a ”memoryless” discipline defines a
GFN model satisfying (e). It is stable if and only if it admits an upper
semicontinuous Lyapunov function.

The conjecture holds true for the systems considered in [68], but unfor-
tunately, the interesting fluid limits do not have unique trajectories. As to
the question of under which conditions fluid limit models satisfy condition
(f) we dare not venture a conjecture.
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FIFO Fluid Networks

Recall that in FIFO fluid networks the fluids are served in the order of their
arrivals. To describe the evolution of class k fluids we have to consider the
immediate workload W (t) = CM−1Q(t) of the stations. For any time t
all jobs that arrive later than t have lower priority in the FIFO discipline.
Hence, fluids arriving at time t are served at time t + Wj(t). The total
arrivals up to time t are given by

A(t) = αt+ PTM T (t).

The characteristic equation of FIFO fluid networks can be represented for
each class k ∈ {1, ...,K} by the following relation of the allocation process
and the immediate workload process

Tk(t+Wj(t)) = mk(Qk(0) +Ak(t)), (5.35)

where j = c(k) and mk = µ−1
k . Note that the fluid network is not com-

pletely determined by the initial fluid level Q(0) as it has to be specified
in which order the initial fluid level is served in the time period [0,Wj(0)].
So, the initial data for each class k ∈ {1, ...,K} is given by Q(0) and

{Tk(s) : s ∈ [0,Wj(0)] }.

The dynamic equations describing FIFO fluid networks are given by

Q(t) = Q(0) + α t− (I − PT)MT (t) ≥ 0, (5.36)

T (0) = 0 and Ṫ (·) ≥ 0, (5.37)

I(t) = et− C T (t) and İ(·) ≥ 0, (5.38)

0 = (C Q(t))T İ(t), for almost all t ≥ 0, (5.39)
Tk(t+Wc(k)(t)) = mk(Qk(0) +Ak(t)), ∀ t ≥ 0, k = 1, ...,K. (5.40)

In the following we will investigate whether the results of Chapter 4 are
applicable to FIFO fluid networks. For this reason, in a first step we
recapitulate that FIFO fluid network define closed GFN models.

Proposition 5.2.14 ([86]) A FIFO fluid network defines a closed GFN
model.
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Proof. The Lipschitz property, the scaling and shift property also holds true
for (5.40) follow immediately. Thus, what is left to show is the closedness
property. To avoid double subscripts we denote the sequence by super-
scripts.

Let (Qn(·), Tn(·))n∈N be a sequence of fluid solutions to (5.36)-(5.40)
that converges u.o.c. to (Q∗(·), T ∗(·)). Then, since all processes are con-
tinuous we have for all t ≥ 0 that

lim
n→∞

Tnk (t+Wn
j (t)) = T ∗k (t+W ∗j (t))

as well as

lim
n→∞

An(t) = lim
n→∞

αt+ PTM Tn(t) = αt+ PTM T ∗(t) = A∗(t)

and the limits satisfy (5.40). �

However, the fluid networks under FIFO discipline differ from the pre-
vious fluid models. One reason for this is the following. Consider the flow
balance equation in its differential form,

Q̇(t) = α− (I − PT)MṪ (t).

The corresponding differential version of the FIFO equation (5.40) is given
by

Ṫk(t+Wj(t)) (1 + Ẇj(t)) = mkαk −mk

K∑
l=1

plkµlṪl(t).

That is, allocation process has to satisfy a functional differential equation
of neutral type [48]. Consequently, FIFO fluid networks do not fit into
the framework of differential inclusions. In fact, functional differential
inclusions are appropriate for FIFO fluid networks.

Example 5.2.15 We consider a single station network serving two classes.
The arrival rates α, the service capacities µ and the routing are defined in
Figure 5.2. The flow balance equation in this case is given by

Q(t) = Q(0) +

(
1
2
0

)
t−
(

1 0
−1 2

)
T (t),
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α1 = 1
2

µ1 = 1

µ2 = 2

Figure 5.2: A single station network serving two fluid classes.

and the immediate workload is W (t) = Q1(t) + 1
2 Q2(t). Let the initial

fluid level be Q(0) =
(
1 0

)T. Then, the initial immediate workload is
W (0) = 1. To describe the dynamic behavior we need to determine the
allocation process on the interval [0,W (0)] = [0, 1]. For instance, let the
initial allocation be given by

T (t) =

(
1
0

)
t, t ∈ [0, 1].

Then, the fluid level process is on the interval [0, 1] given by

Q(t) =

(
1
0

)
+

(
1
2
0

)
t−
(

1 0
−1 2

) (
t
0

)
=

(
1− 1

2 t
t

)
,

and at time t = 1 we have Q(1) =
(

1
2 1

)T.
Moreover, we consider another initial fluid level Q′(0) = 1

2

(
1 3

)T.
The corresponding initial immediate workload is W ′(0) = 5

4 . In this case
let the initial allocation process be given by

T ′(t) = 1
2

(
1
1

)
t, t ∈ [0, 5

4 ].

Hence, the fluid level process on the interval [0, 5
4 ] is given by

Q′(t) = 1
2

(
1
3

)
+

(
1
2
0

)
t−
(

1 0
−1 2

)
1
2

(
t
t

)
= 1

2

(
1

3− t

)
,



120 Chapter 5 Applications of the Converse Theorems

and at time t = 1 we have that Q′(1) =
(

1
2 1

)T. However, despite the
fact Q(·) and Q′(·) coincide at t = 1, they have different history. Thus, a
concatenation of the trajectories Q(·) and Q′(·) at t = 1 is not possible.

This example shows that for FIFO fluid networks the concatenation is
not immediately possible. In this context the initial data {Tk(s) : s ∈
[0,Wj(0)] } plays a key role, see also Example 4.1.12.

5.3 Stability of Queueing Networks Revisited

In this section we exhibit how the converse Lyapunov Theorem 4.2.7 can be
used to give a new proof of Theorem 2.4.10 if the associated fluid network
defines a strict GFN model. The road map is as follows. In this section
we consider HL queueing networks whose associated fluid network defines
a strict GFN model. Then, if the associated fluid network is stable it
admits a continuous Lyapunov function. Based on the Lyapunov function
of the associated fluid network we define a Foster-Lyapunov function for the
underlying Markov process of the HL queueing network. Finally, we apply a
version of the Foster-Lyapunov criterion and conclude that the underlying
Markov process is positive Harris recurrent. But before beginning, we
recall some properties of the components for the scaled versions of the
strong Markov process "(·).

Lemma 5.3.1 ([28]) Given a HL queueing network whose fluid limit model
is stable, then it holds that

lim
n→∞

1
rn
‖Uxn(rnτ)‖ = lim

n→∞
1
rn
‖V xn(rnτ)‖ = 0

and the following families{
1
rn
Qxn(rnτ), n ∈ N

}
,
{

1
rn
Uxn

k (rnτ), n ∈ N
}
,
{

1
rn
V xn

k (rnτ), n ∈ N
}

are uniformly integrable.

Proof. See [17] Section 4.4. �

We will use the subsequent formulation of the Foster-Lyapunov criterion
for positive Harris recurrence, which is close to Proposition 4.5 in [17].
Here, we consider the decrease condition for the expectation evaluated at
W (X(cW (x))), rather than the expectation of the norm of X(W (x)). The
proof is almost along the lines of the one for Proposition 4.5 in [17].
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Theorem 5.3.2 Suppose that X is continuous time Markov process, such
that there exist ε > 0, κ > 0, c > 0, and measurable function W : X → R
with W (x) ≥ δ > 0 and

Ex[W (X(cW (x))) ] ≤ max{W (x), κ} − εW (x) (5.41)

for all x ∈ X . Then, for all x,

Ex[ τB(δ) ] ≤ 1
ε max{W (x), κ},

where B := {x ∈ X : W (x) ≤ κ}. In particular, if B is a closed petite set,
X is positive Harris recurrent.

Proof. Let κ > 0, ε > 0 and c > 0 and let (Tn)n∈N denote a sequence of
stopping times defined by T0 := 0 and

Tn+1 := Tn + cW (X(Tn)). (5.42)

We abbreviately denote by Fn := FTn
the σ-algebra corresponding to the

stopping time Tn. The strong Markov property and condition (5.41) imply
that

Ex[W (X(Tn)) | Fn−1] = Ex[W (X(Tn−1 + cW (X(Tn−1) ) ) )| Fn−1]

= EX(Tn−1)[W (X( cW (X(Tn−1) ) ) )]

≤ max{W (X(Tn−1)), κ} − εW (X(Tn−1)). (5.43)

Further, let M(0) := max{W (x), κ} and for n ≥ 1 we define

M(n) := cW (X(Tn)) + εTn. (5.44)

Also, we note that Tn ∈ Fn−1.
Next, we show that for N = inf{n ∈ N : M(n) ∈ B} and for all n ≤ N

we have

Ex[M(n) | Fn−1 ] ≤M(n− 1).

To see this, first note that for n ≤ N it holds that max{W (X(Tn−1)), κ} =
W (X(Tn−1)) as well as Tn ∈ Fn−1. Moreover, using (5.42) and (5.43) it
holds that

Ex[M(n) | Fn−1 ] = Ex[ cW (X(Tn)) + εTn | Fn−1 ]

= cEx[W (X(Tn)) | Fn−1 ] + εEx[Tn | Fn−1 ]

≤ cmax{W (X(Tn−1)), κ} − εW (X(Tn−1)) + εEx[Tn | Fn−1 ]

= cW (X(Tn−1))− ε(Tn − Tn−1) + εEx[Tn | Fn−1 ] = M(n− 1).
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The validity of the last equality follows from the basic properties of stop-
ping times and expectations. Hence, M(min{n,N}) is a supermartingale
on Fn. Moreover, by the Optional Sampling Theorem 1.2.2 we have that

Ex[M(N) ] ≤ Ex[M(0) ] = max{W (x), κ}. (5.45)

Besides, since W (X(Tn)) ≤ M(n) it also holds that τB(δ) ≤ TN and
together with (5.44), (5.45) it follows that for all x ∈ X we have

εEx[ τB(δ) ] ≤ Ex[M(N) ] ≤ max{W (x), κ}

and, hence, we have Px[τB <∞] = 1 for all x ∈ X and

sup
x∈B

Ex[ τB(δ) ] ≤ κ
ε .

The assertion then follows from Theorem 1.4.1. �

In the sequel, we give a new proof of the fact that the stability of the
associated fluid network is sufficient for the positive Harris recurrence of
the multiclass queueing network, which is the content of the second part
in Theorem 2.4.10. The main tools for the verification are the Lyapunov
function admitted by the stable fluid network and the Foster-Lyapunov
theorem stated above. The line of reasoning is similar to [46].

Theorem 5.3.3 Let a queueing discipline be fixed such that the associ-
ated fluid network defines a strict GFN model. Assume that the Assump-
tions 2.1.2 hold. If the associated fluid network is stable, then the queueing
network is stable.

Proof. Since FLM ⊂ FN and the associated fluid network is stable, there
is a τ > 0 such that for all Q ∈ FLM it holds that Q(t) = 0 for all
t ≥ τ‖Q(0)‖. Also, from Corollary 4.2.9 there is a continuous Lyapunov
function VL and class K∞ functions wi, i = 1, 2, 3 such that for q ∈ RK+ we
have that

w1(‖q‖) ≤ VL(q) ≤ w2(‖q‖)
V̇L(Q(t)) ≤ −w3(‖Q(t)‖).

Further, let (rn, xn)n∈N be a sequence of pairs satisfying (2.9). Then, along
a subsequence, which is also indexed by n, it holds that

1
rn
Qxn(rnt)→ Q(t) u.o.c.
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as n→∞. In particular, the stability of the fluid limit model implies that
1
rn
Qxn(rnτ)→ 0.

That is, for any ε̃ ∈ (0, 1) there is a N ∈ N such that for all n > N we have
1
rn
w−1

2 (VL(Qxn(rnτ))) ≤ ε̃.

Moreover, since w−1
2 (VL(Qxn(rnt))) ≤ ‖Qxn(rnt)‖ and by Lemma 5.3.1 we

have that {
1
rn
w−1

2 (VL(Qxn(rnτ))), n ∈ N
}

is uniformly integrable. In addition, it also holds that

lim
n→∞

1
rn
‖Uxn(rnτ)‖ = lim

n→∞
1
rn
‖V xn(rnτ)‖ = 0.

The families
{

1
rn
Uxn

k (rnτ), n ∈ N
}
and

{
1
rn
V xn

k (rnτ), n ∈ N
}
are for each

k ∈ {1, ...,K} uniformly integrable by Lemma 5.3.1. Hence, we have

lim sup
n→∞

1
rn
E
[
w−1

2 (VL(Qxn(rnτ))) + ‖Uxn

k (rnτ)‖ + ‖V xn

k (rnτ)‖
]
≤ ε̃.

Thus, there is a κ > 0 such that for all rn > κ we have

E
[
w−1

2 (VL(Qxn(rnτ) )) + ‖Uxn(rnτ) ‖+ ‖V xn(rnτ) ‖
]
≤ rn ε̃.

We define the Foster-Lyapunov function W : X → R+ by

W (x) := w−1
2 (VL(q)) + ‖u‖+ ‖v‖.

Then, for all x with W (x) > κ it follows that

Ex [W ("(W (x) τ) ) ] ≤ ε̃W (x)

and consequently,

Ex [W ("(τ W (x)) ) ] ≤ max{W (x), κ} − εW (x).

Finally, we have to show that B = {x : W (x) ≤ κ} is closed and petite.
To see that B is petite, note that by Lemma 2.4.8 the set A = {x ∈ X :
|x| ≤ κ} is closed and petite. Furthermore, since w−1

2 (VL(q)) ≤ ‖q‖ it
holds that B ⊂ A. In addition, the continuity of w−1

2 and VL imply that
B is closed. As subsets of petite sets are petite, the assertion then follows
from Theorem 5.3.2. �
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5.4 The Linear Skorokhod Problem

Another approximation of a multiclass queueing network is the so called
diffusion limit. This limit can be regarded as a semi-martingale reflected
Brownian motion (SRBM). Similar to the fluid limit, a sufficient condition
for the stability of the SRBM is the stability of the linear Skorokhod problem
(LSP) [41]. The following description of the linear Skorokhod problem is
taken from [20] and [86]. Let R be a J × J matrix, θ ∈ RJ and Z0 ∈ RJ+.
The pair (Z, Y ) ∈ C(R+,RJ+)× C(R+,RJ+) is said to solve the LSP (θ,R)
with initial state Z0 if they jointly satisfy

Z(t) = Z0 + θt+RY (t) ≥ 0, (5.46)
Y (0) = 0 and Y (·) is nondecreasing, (5.47)

0 =

∫ ∞
0

Zj(t) dYj(t), j = 1, ..., J. (5.48)

The first question that arises is, which conditions guarantee the existence
of a solution of the LSP(θ,R). In order to state such a condition recall that
a J × J matrix R is said to be an S-matrix if there exists an x ≥ 0 such
that Rx > 0. Further, R is said to be completely-S if all of its principal
submatrices are S-matrices.

Theorem 5.4.1 ([8]) The LSP(θ,R) has a solution (Z(·), Y (·)) if and
only if the matrix R is completely-S.

Proof. See [8] Theorem 1. �

We define

QLSP := {Z(·) : ∃Y (·) such that (Z(·), Y (·)) satisfy (5.46)− (5.48)}.

Note that Theorem 5.4.1 states only the existence of a solution. In general,
the solutions to the LSP(θ,R) need not to be unique, for a counterexample
see e.g. [8].

Definition 5.4.2 A solution Z ∈ C(R+,RJ+) is said to be attracted to the
origin if for any ε > 0 there is a T <∞ such that t ≥ T implies ‖Z(t)‖ < ε.
A LSP(θ,R) is said to be stable if for each Z0 ∈ RJ+ any solution Z(·) with
Z(0) = Z0 is attracted to the origin.
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To ensure that QLSP is nonempty, Theorem 5.4.1 states that R has
to be completely-S. In [86, Theorem 5.2] it is shown that in this case
Definition 5.4.2 is equivalent to Definition 4.1.3. To derive a necessary and
sufficient condition for stability of the linear Skorokhod problem we have
to show that QLSP defines a strict GFN model. The next lemma states
that QLSP defines a closed GFN model.

Lemma 5.4.3 ([8]) If the matrix R is completely-S, then QLSP defines
a closed GFN model.

Proof. A proof of the Lipschitz property can be found in [8] Lemma 1.
The scaling and shift property is shown in [42] Section 2. The closedness
is shown in Proposition 1 in [8]. �

Hence, in order to conclude a converse Lyapunov theorem it remains to
investigate whether QLSP satisfies the concatenation and the lower semi-
continuity property. Again, we bring the linear Skorokhod problem into
the context of differential inclusions. That is, let Ẏ (t) = u and

F (Z) = {θ +Ru : u ∈ ULSP (Z)} , (5.49)

where the set ULSP of admissible values of u ∈ RJ is determined by the
conditions

u ≥ 0, ZT u = 0. (5.50)

While it is clear that the set described by (5.50) is unbounded on the
boundary of the positive orthant, Lemma 5.4.3 may be used to see that
the effective set of values is bounded. Indeed from the Lipschitz continuity
of solutions, only values of u below a certain bound need to be considered
in (5.49). The corresponding differential inclusion is of the form

Ż(t) ∈ F (Z(t)), Z(0) = Z0. (5.51)

It can be seen that the right-hand side is upper semicontinuous and the
set F (Z) is nonempty, convex and compact. The latter is a consequence
of the Lipschitz continuity of the solutions of linear Skorokhod problem.
In addition, it holds that F (Z) ∩ TRJ

+
(Z) 6= ∅ for all Z ∈ RJ+. Again

arguments from the theory of differential inclusions show the validity of
the concatenation property. Hence, Corollary 4.2.8 is applicable for the
linear Skorokhod problem.
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Theorem 5.4.4 The LSP(θ,R) defines a closed GFN model satisfying the
concatenation property. It is stable if and only if it admits an upper semi-
continuous Lyapunov function.

We note that it is not obvious whether the right-hand side is also lower
semicontinuous.

Remark 5.4.5 The consequence of the above theorem is, that the main
theorem is applicable for the linear Skorokhod problem. However, for the
provided Lyapunov function we can only show upper semicontinuity.

5.5 Notes and References

The transfer of fluid networks to the framework of differential inclusions is
very natural. Standard references for differential inclusions and set-valued
analysis are, for instance, [3, 4, 5] and [80]. On one hand the consideration
fluid networks as differential inclusions allows to give a new and elegant
proof for the existence of a work-conserving allocation process, given the
parameters (α, µ, P,C) of the network and the initial condition Q(0). In
addition, the validity of the concatenation property follows immediately
by using known results from differential inclusions. On other hand, the
lower semicontinuity property needs to be established directly from the
definition.

In the case that a fluid network under a certain discipline can be mod-
elled in terms of a differential inclusion such that Q  F (Q) ∩ TRK

+
(Q) is

upper semicontinuous and has nonempty, compact and convex values, we
can apply the smooth converse Lyapunov theorem B.4 to conclude that in
this case a smooth converse Lyapunov theorem holds. However, as stated
in Remark 5.2.2 the set-valued map Q  F (Q) ∩ TRK

+
(Q) is not upper

semicontinuous in general.
Despite all that, there is an interesting relation to the construction of

smooth Lyapunov functions we presented in Section 4.3. That is, we have
to suppose that the strict GFN model satisfies Assumption 4.3.1 to under-
take that the construction will work. The content of Assumption 4.3.1 is
that for any trajectory Q(·) ∈ Q with initial value Q(0) = x ∈ RK+ and
any y ∈ RK there is a trajectory R(·) ∈ Q with initial value |x− y|vec such
that the difference ‖Q(t) − y − R(t)‖ of the trajectories grows locally at
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most linear in ‖y‖. This resembles the content of the well known Gronwall
inequality.

To prove the smooth converse Lyapunov Theorem B.4 for differential
inclusions Clarke, Ledyaev and Stern constructed, for a given right-hand
side F , a locally Lipschitz set-valued map FL that keeps the asymptotic
stability and satisfies F (x) ⊂ FL(x) for all x. The smooth Lyapunov func-
tion is then constructed for FL. In doing so, for the set-valued map FL,
based on a Gronwall argument, an estimate for the difference between tra-
jectories is available. The desired decrease condition and finally the smooth
converse Lyapunov Theorem B.4 for differential inclusions is then obtained
from this estimate. In particular, it follows from [26] that if for fluid net-
work the right-hand side Q  F (Q) ∩ TRK

+
(Q) is upper semicontinuous,

then Assumption 4.3.1 is satisfied.
Besides that, the differential inclusions approach strengthens the spe-

cial role of FIFO fluid networks among the disciplines considered in this
thesis. As stated in Section 5.2 the appropriate differential framework for
FIFO fluid networks are functional differential inclusions, cf. [3]. Already
for functional differential equations it is general not possible to define Lya-
punov functions as in Definition 3.6.3.

In the literature there are various formulations of Foster-Lyapunov cri-
teria, see e.g. [17, 46, 61, 62, 63] and the references therein. This list is
far from being complete. The Foster-Lyapunov theorem 5.3.2 is a slightly
modified version of Proposition 4.5 in [17]. This adaptation is appropriate
to provide a different proof for the second part of Theorem 2.4.10 in terms
of the Lyapunov function admitted by the stable associated fluid network.
The line of argument is similar to the one for Theorem 2 in [46].

Parts of this chapter have already been published in [75] and [76].





6 Robust Stability of Fluid Networks

In this chapter we will stress the fact that if a real system is considered,
the distributions and their mean values may not be known precisely. The
model for the real system obtained from a best guess of the parameters is
called the nominal network. The analysis of the nominal associated fluid
network is based on the mean values of the primitive increments of the
multiclass queueing network. So, the basic question of this chapter is, how
perturbations in the mean values representing the arrival rates and service
capacities influence the stability of the network. Throughout this chapter
we make the standing assumption that the topology of the nominal network
is known precisely, i.e. the constituency matrix C and the routing matrix
P are fixed.

In Chapter 3 we discussed stability conditions for fluid networks under
general work-conserving, priority, HLPPS and FIFO disciplines. Given a
certain discipline π the set of arrival rates and service capacities that lead
to a stable fluid network is denoted by

Dπ := { (α, µ) ∈ RK+ × RK>0 : the fluid network (α, µ, P,C, π) is stable }.

In the following, we call Dπ the stability region of a fluid network with
topology (P,C) under the discipline π. According to Theorem 3.2.2 we
call

D0 := { (α, µ) ∈ RK+ × RK>0 : ρ < e }

the nominal stability region. Moreover, for general work-conserving fluid
networks we call D∞ the global stability region. The stability results in
Chapter 3 show that the stability regions of the disciplines considered in
this thesis are related as follows.

D∞ ⊂ Dπ ( Dπ′ = D0, (6.1)

129
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where π = {FIFO, priority} and π′ = {HLPPS, FIFO of Kelly type}.
In the present chapter we will derive a quantitative approach to robust

stability. To this end, we introduce a measure for the perturbations that is
indicated by a single real number. This number will be called the stability
radius. More precisely, given a nominal fluid network (α, µ, P,C) and a set
of feasible perturbations, the stability radius represents the magnitude of
the smallest shift of the arrival rates and/or service capacities so that the
fluid network looses the property of stability. A formal definition is given
in Section 6.1. In addition, the first section contains some results from
convex analysis that will be used in this chapter.

In Section 6.2 we consider fluid networks where the arrival rates are
subject to perturbations. The third section is devoted to the investigation
of the situation where the service capacities are disturbed. In the sub-
sequent section we combine the latter cases. That is, we consider fluid
networks that are subject to perturbations of the arrival rates and the
service capacities.

6.1 First Steps

To analyze the robustness of a fluid network (α, µ, P,C) under a discipline
π we consider a perturbed fluid network (α, µ, P,C, π,∆), where ∆ ∈ Rn+
denotes a feasible perturbation. At this point we do not yet specify the
perturbation. In order to define a measure for the perturbation we define
for γ ∈ RK>0 the γ-weighted norm by ‖x‖γ :=

∑K
k=1 |γk xk|. Here RK>0

denotes the positive orthant, i.e. RK>0 = {x ∈ RK+ : xi > 0 ∀ i = 1, ...,K }.
For the special case γ = e we simply write ‖ · ‖.

Definition 6.1.1 Let γ ∈ RK>0 be fixed. The γ-weighted stability radius of
the fluid network (α, µ, P,C, π) is defined by

rγ(α, µ, P,C, π) := inf{‖∆‖γ : ∆ is feasible, (α, µ, P,C, π,∆) is unstable}.

Here we note that specifying the stability region is challenging. Fur-
thermore, in many cases analytic descriptions of the stability region are
not available. Therefore, a calculation of the stability radius for such dis-
ciplines is not possible. Nevertheless, for some disciplines and networks of
special structure there are conditions at hand which determine the stability
region precisely. For instance, the nominal workload condition constitutes
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the stability region of fluid networks under HLPPS and FIFO of Kelly type
disciplines, see Theorem 3.4.2 and the subsequent remark.

In the queueing literature the analysis of the global stability region has
received considerable attraction over the last 15 years. Chen showed that
the global stability region is monotone with respect to the arrival rates, cf.
[19, Theorem 3.6]. This means that if the fluid network (α, µ, P,C) is glob-
ally stable, then the fluid network (α′, µ, P, C) is globally stable provided
that α′ ≤ α. For two station fluid networks the global stability region is
monotone with respect to the arrival rates and service capacities, see [37,
Corollary 1]. However, counterexamples given by Dumas and Bramson
show that, in general, the stability region is neither convex nor monotone
with respect to the service rates, see [40] and [14], respectively.

Apart from that, for HLPPS fluid networks, FIFO fluid networks of
Kelly type stability can be equivalently characterized by the nominal work-
load condition

ρ < e. (6.2)

Thus, in the remainder of this chapter we concentrate on the stability
region D0 determined by the nominal workload condition (6.2). As stated
in Theorem 3.2.2 the latter provides a necessary condition for stability
for all work-conserving disciplines. Thus, the nominal workload condition
allows for a derivation of an upper bound of the stability radius that is valid
for any work-conserving discipline. In particular, this bound is tight for
disciplines, in which condition (6.2) is also sufficient for stability. Referring
to the nominal stability region D0 we will denote the upper bound by
r0
γ(α, µ, P,C) and call it the nominal stability radius.

As the nominal stability radius is not affected by the particular disci-
pline, we omit the letter π whenever the nominal stability radius is con-
sidered. In terms of the nominal workload condition (6.2) the nominal
stability radius is given by

r0
γ(α, µ, P,C) = inf { ‖∆‖γ : ∆ is feasible and ρ(∆) 6< e } , (6.3)

where ρ(∆) denotes the nominal workload of the fluid network (α, µ, P,C,∆)
that is subject to a perturbation ∆. Moreover, for x, y ∈ RK+ the notion
x 6< y means that xi ≥ yi for at least one component i ∈ {1, ...,K}. This
reflects the fact that for some station j ∈ {1, ..., J} the nominal workload
is at least one and, thus, the network is unstable.
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Before we will present a scheme for the calculation of the nominal stabil-
ity radius r0

γ , we have to collect some notations and preliminary results con-
cerning convex analysis. A set A ⊂ Rn is called convex if (1− c)x+ cy ∈ A
whenever x, y ∈ A and c ∈ (0, 1). A point z of a convex set A is called
an extreme point if there is no way to express z as a convex combination
(1 − c)x + cy such that x, y ∈ A are distinct and c ∈ (0, 1). The set of
all extreme points of A is denoted by ext(A). The convex hull of a set
A, denoted by conv(A), is the smallest convex set that contains A. The
boundary of a set A is denoted by ∂A. The interior of a set A is denoted
by int(A) = A \ ∂A.

The subsequent result provides a relation of convex compact sets and
their extreme points.

Theorem 6.1.2 Any compact convex set C ⊂ Rn is the convex hull of its
extreme points.

This result is called Minkowski’s Theorem in finite dimensions, cf. [12,
Theorem 4.1.8]. We will use Minkowski’s Theorem to show the following
auxiliary result.

Proposition 6.1.3 Given a closed and convex set B ⊂ Rn and let A ⊂ B
be convex and compact such that ∂A ∩ ∂B 6= ∅. Then ext(A) ∩ ∂B 6= ∅.

Proof. The assertion is shown by contradiction. So assume that ext(A) ∩
∂B = ∅. This implies that ext(A) ⊂ int(B). Further, by Theorem 6.1.2
it holds that A = conv(ext(A)) ⊂ int(B), which is a contradiction to
∂A ∩ ∂B 6= ∅. �

Let C be a convex set in Rn. A function f : C → (−∞,∞] is convex if
and only if for every x and y in C and λ ∈ (0, 1) it holds that

f(λx+ (1− λ)y ) ≤ λf(x) + (1− λ)f(y).

The subsequent results can be useful for establishing convexity of certain
sets of interest, see [69, Theorem 4.6].

Theorem 6.1.4 For any convex function f and any c ∈ [−∞,∞], the
level sets {x : f(x) < c} and {x : f(x) ≤ c} are convex.

Throughout the chapter, we consider an academic example consisting
of three fluid classes, which are served at two stations.
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Figure 6.1: Fluid level processes of the HLPPS fluid network with param-
eters defined in Example 6.1.5. The initial level is Q(0) = (2 3 5)T.

Example 6.1.5 We consider a two station fluid network that serves three
fluid classes, where fluid class 1 is served at station 1 and station 2 serves
the fluid classes 2 and 3. The parameters for the example network are
the following. The arrival rates and the service capacities are given by
α = ( 0.15 0.15 0.10 )T and µ = ( 0.6 0.9 0.5 )T, respectively. The structure
of the network is given by the constituency matrix C and the routing matrix
P ,

C =

(
1 0 0
0 1 1

)
, P =

0.25 0.15 0.20
0.05 0.25 0.15
0.20 0.25 0.10

 .

The nominal workload of the network (α, µ, P,C) is ρ = ( 0.472 0.829 )T.
According to Theorem 3.4.2 the network is stable under the HLPPS dis-
cipline. Figure 6.1 shows the fluid level processes to the fluid network
(α, µ, P,C,HLPPS), where the initial levels are Q(0) = (2 3 5)T. Moreover,
Figure 6.1 also illustrates the property that the fluid level processes of
classes 2 and 3 empty at the same time, which is in line with Lemma 3.4.1.
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6.2 Perturbations of Arrival Rates

In this section we focus on the situation where the service capacities µ,
the routing matrix P and the constituency matrix C are fixed, while the
arrival rates α are subject to perturbations of the form ∆ ∈ RK+ . So, we
investigate the stability of the fluid network (α+∆, µ, P, C) in terms of the
perturbation ∆. We will derive estimates on the size of ∆ that characterize
the nominal stability region of the fluid network (α + ∆, µ, P, C). The
nominal workload of the fluid network (α+ ∆, µ, P, C) is given by

ρ(∆) = CM−1 (I − PT)−1 (α+ ∆).

By Theorem 3.2.2, the nominal stability radius can be expressed by

r0
γ(α, µ, P,C) = min

{
‖∆‖γ : ∆ ∈ RK+ and ρ(∆) 6< e

}
. (6.4)

To describe the geometric perspective of the nominal stability radius con-
sider a stable single station fluid network (α, µ, P,C) that serves two classes
of fluid. According to Theorem 3.2.2 and the subsequent remark the nom-
inal workload is strictly less than one. In Figure 6.2 the light grey domain
represents the nominal stability region D0. Let Bγ(x, r) = {z ∈ RK :
‖x − z‖γ ≤ r}. Geometrically the nominal stability radius can be illus-
trated as the largest neighborhood Bγ(α, r) around α that is completely
contained in the nominal stability region D0, where the size of the neighbor-
hood is measured by the γ-weighted norm ‖ · ‖γ . Precisely, for arrival rates
α′ in the interior of Bγ(α, r) the fluid network (α′, µ, P, C) might be stable,
depending on the discipline, while for arrival rates α′ ∈ ∂Bγ(α, r)∩∂D0 the
fluid network (α′, µ, P, C) is definitely unstable no matter which discipline
is considered.

In the following, we will derive a scheme for the calculation of the nom-
inal stability radius. Based on the geometric interpretation our approach
to calculate (6.4) is by means of an optimization problem. For this reason,
one constraint on the perturbation ∆ ∈ RK+ is that for at least one station
j ∈ {1, ..., J} of the fluid network the nominal workload ρj(∆) is at least
one. In terms of the fluid network (α+ ∆, µ, P, C) this can be expressed as

max
j=1,...,J

ρj(∆) = 1. (6.5)

Consequently, the nominal stability radius can be calculated by an opti-
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Figure 6.2: Illustration of the nominal stability radius for a single station
fluid network serving two classes of fluids.

mization problem of the form

r0
γ(α, µ, P,C) = min

K∑
k=1

γk∆k

subject to max
j=1,...,J

ρj(∆) = 1,

∆ ≥ 0.

(6.6)

The following statement characterizes the solutions of the optimization
problem.

Theorem 6.2.1 If r0
γ = ‖∆∗‖γ > 0 is a solution to (6.6), then ∆∗ can

be chosen such that at most one component is strictly positive. That is,
∆∗ = r0

γγk
−1 ek for some k ∈ {1, ...,K}.

Proof. For brevity, we denote N := CM−1(I−PT)−1. Then, the workload
condition ρ(∆) 6< e can be written asN∆ 6< e−ρ. Since the J×K matrixN
contains only nonnegative entries the left hand side of the above condition
is a weighted sum in ∆ with positive weights. Hence, a perturbation with
minimal γ-norm is of the form ∆∗ = r0

γγk
−1 ek for some k ∈ {1, ...,K}. �

Using N(µ) := CM(µ)−1(I − PT)−1 and the fact that a destabilizing
perturbation is of the form ∆∗ = r0

γγk
−1 ek for some k ∈ {1, ...,K}, it
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Figure 6.3: The figure on the left shows the fluid level processes to the fluid
network (α + ∆, µ, P, C) under HLPPS discipline where the parameters
(α, µ, P,C) and the perturbation are chosen as in Example 6.1.5 and ∆ =
(0 0 0.54)T, respectively. On the right the transient behavior of the fluid
level processes is shown.

holds for some j ∈ {1, ..., J} that

r0
γ γk

−1 · eTj N(µ) ek = 1− (N(µ)α)j .

Thus, a representation of the nominal stability radius that expresses the
dependency on µ is given by

r0
γ(µ) = min

j=1,...,J

 1− (N(µ)α)j

max
k=1,...,K

N(µ)jk
γk

 . (6.7)

Example 6.2.2 We consider the fluid network given in Example 6.1.5.
Using γ = e, a calculation based on fmincon in MATLAB yields the nomi-
nal stability radius r0(α, µ, P,C) = 0.05478. For HLPPS fluid networks the
nominal stability radius coincides with the stability radius. This situation
is illustrated in Figure 6.3 for a perturbation of the form ∆ = (0 0 0.054)T.
Figure 6.3 shows that the fluid levels of classes 2 and 3 are increasing until
the fluid level of class 1 is positive. Not before the fluid level of class 1 has
reached zero, the fluid levels of class 2 and 3 are decreasing. Moreover, it
can be seen, related to Lemma 3.4.1, that the fluid levels of classes 2 and
3 empty at the same time.
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Since r0(α, µ, P,C) = 0.05478 is the nominal stability radius the ques-
tion raises what measure of quality it yields. The next example considers
the global stability region for the Example 6.1.5.

Example 6.2.3 Consider the fluid network given in Example 6.1.5. For
the perturbation ∆′ = ( 0 0 0.05428 )T the matrix

A =

 10 0.374 0.53
0.374 0.645 0.916
0.53 0.916 1.3


satisfies the sufficient condition of Theorem 3.2.3. Consequently, the fluid
network (α+ ∆′, µ, P, C) is globally stable.

6.3 Perturbations of Service Capacities

In this section, we will measure the robustness of a fluid network (α, µ, P,C)
with respect to perturbations δ ∈ RK+ of the service capacities of the form
0 ≤ δ < µ. The inequalities have to be understood componentwise. For
the perturbed fluid network (α, µ− δ, P, C) the matrix of service capacities
and the nominal workload are denoted by M(δ) = diag(µ− δ) and ρ(δ) =
CM(δ)−1 (I − PT)−1 α, respectively. Then, the nominal stability radius
can be expressed as

r0
γ(α, µ, P,C) = min{ ‖δ‖γ : 0 ≤ δ < µ and max

j=1,...,J
ρj(δ) = 1 }. (6.8)

To come up with a geometric illustration for this scenario we consider once
again a single station fluid network serving two classes of fluids. Given
the arrival rates α and routing matrix P the effective arrival rates λ are
determined. The light grey domain in Figure 6.4 represents the nominal
stability region D0 for fixed arrival rates. By Theorem 3.2.2 service capac-
ities in the interior of the nominal stability region might provide a stable
network. Contrary, for service capacities on the boundary ∂D0 of the nomi-
nal stability region the corresponding fluid network will be unstable. Using
Bγ(µ, r) = {µ̄ ∈ R2

>0 : ‖µ̄ − µ‖γ ≤ r} the nominal stability radius can be
described as the radius of the largest neighborhood Bγ(µ, r) around µ that
is completely contained in the nominal stability region D0 such that at
least one edge of ∂Bγ(µ, r) intersects the boundary ∂D0 of the nominal
stability region. In Figure 6.4 the neighborhood Bγ(µ, r) is illustrated by
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Bγ(µ, r)

D0

µ

r0
γ

µ1

µ2

Figure 6.4: Illustration of the nominal stability radius of a single station
fluid network with two classes.

the dark grey domain. The nominal stability radius can be calculated by
the following optimization problem

r0
γ(α, µ, P,C) = min

K∑
k=1

γk δk

subject to max
j=1,...,J

ρj(δ) = 1,

0 ≤ δ < µ.

(6.9)

To calculate the nominal stability radius we split the problem into J sub-
problems as follows. We consider the optimization problem (6.9) for each
location j ∈ {1, ..., J} individually. The corresponding solution is denoted
by rj . The smallest solution in magnitude represents the solution to (6.9).
In the sequel, we describe how to solve the optimization problem for a
single location j ∈ {1, ..., J}. That is, for each j the task is of the form

rj := min
∑

k∈C(j)

γk δk

subject to
∑

k∈C(j)

λk
µk − δk

= 1,

0 ≤ δk < µk, k ∈ C(j).

(6.10)
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Consequently, the nominal stability radius of the fluid network (α, µ, P,C)
is given by

r0
γ(α, µ, P,C) = min

j=1,...,J
rj . (6.11)

For some c > 0 the general form of the optimization problem (6.10) for a
single location is

rγ = min γ1 δ1 + . . .+ γn δn

subject to
λ1

x1 − δ1
+ . . .+

λn
xn − δn

= c,

0 ≤ δk < xk, k = 1, 2, . . . , n.

(6.12)

The subsequent statement characterizes the structure of the solutions of
the optimization problem (6.12).

Theorem 6.3.1 If rγ = ‖δ∗‖γ > 0 is a solution to (6.12), then δ∗ can
be chosen such that at most one component is strictly positive. That is,
δ∗ = rγ γ

−1
k ek for some k ∈ {1, 2, . . . , n}.

Proof. Assume that δ = (δ1 δ2 . . . δn)T is a solution to (6.12), i.e. rγ = ‖δ‖γ
and

λ1

x1 − δ1
+

λ2

x2 − δ2
+ . . .+

λn
xn − δn

= c.

The statement is shown by induction. For n = 2 consider the optimization
problem

min γ1 δ1 + γ2 δ2

subject to
λ1

x1 − δ1
+

λ2

x2 − δ2
= c,

0 ≤ δk < xk, k = 1, 2.

(6.13)

For given λ1, λ2 and c > 0 the set

M = {y = (y1, y2) ∈ R2
>0 :

λ1

y1
+
λ2

y2
≤ c}
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is closed, convex and the boundary ∂M equals the set of extreme points
ext(M). The minimal distance rγ from x = (x1, x2) ∈M to the boundary
∂M can be described by

rγ = max{r : Bγ(x, r) ⊂M}.

Further, for every ε > 0 it holds that Bγ(x, rγ + ε) 6⊂ M and this implies
that ∂M∩ ∂Bγ(x, rγ) 6= ∅. By Proposition 6.1.3 we have that

∂M∩ ext (Bγ(x, rγ)) 6= ∅.

Hence, δ can be chosen as δ = rγ γ
−1
k ek for some k ∈ {1, 2}.

In the inductive step we assume that the claim is valid for n and consider
the case n+ 1. So, consider the condition

λ1

x1 − δ1
+

λ2

x2 − δ2
+ . . .+

λn
xn − δn

= c− λn+1

xn+1 − δn+1
.

By hypothesis it holds that rγ = γi δi for some i = 1, 2, ..., n. Without loss
of generality, let γ1 δ1 = rγ . Hence,

λ1

x1 − δ1
+

λn+1

xn+1 − δn+1
= c− λ2

x2
− . . .− λn

xn
.

Thus, by induction hypothesis, it follows that γ1 δ1 = rγ or γn+1 δn+1 = rγ ,
which shows the assertion. �

Example 6.3.2 We consider again the fluid network given in Example 6.1.5.
For γ = e a calculation based on fmincon in MATLAB yields the nomi-
nal stability radius r0(α, µ, P,C) = 0.13534. In Figure 6.5 the fluid level
processes of the fluid network (α, µ − δ, P, C) under HLPPS discipline is
illustrated for the perturbation δ = (0 0 0.1325)T. Furthermore, Figure 6.5
shows that the fluid level processes of classes 2 and 3 are increasing in the
beginning. They start to decrease not before station 1 has reduced its fluid
level to zero. The behavior looks like that of Example 6.2.2 except that the
fluid levels empty earlier.

Since r0(α, µ, P,C) = 0.13534 is the nominal stability radius the ques-
tion raises what measure of quality does it yields. The next example con-
siders the global stability region for the Example 6.1.5.
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Figure 6.5: The figure on the left shows the fluid level processes to the
fluid network (α, µ−δ, P, C) under HLPPS discipline where the parameters
(α, µ, P,C) and the perturbation are chosen as in Example 6.1.5 and δ =
(0 0 0.1325)T, respectively. On the right the transient behavior of the fluid
level processes is shown.

Example 6.3.3 Consider the fluid network given in Example 6.1.5. For
the perturbation δ′ = ( 0 0 0.1325 )T the matrix

A =

 10 0.3893 0.655
0.3893 0.599 1.01
0.655 1.01 1.703


satisfies the sufficient condition of Theorem 3.2.3. Consequently, the fluid
network (α, µ− δ′, P, C) is globally stable.

6.4 Perturbations of Arrival Rates and
Service Capacities

In this section we will consider fluid networks that are subject to perturba-
tions of the arrival rates as well as perturbations of the service capacities.
That is, given a nominal fluid network (α, µ, P,C) we consider fluid net-
works (α + ∆, µ − δ, P, C). The disturbances ∆ and δ are of the form
∆ ∈ RK+ and 0 ≤ δ < µ, respectively. The nominal workload of the per-
turbed fluid network is given by

ρ(∆, δ) = CM(δ)−1 (I − PT)−1(α+ ∆).
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Following the approach of the previous sections we consider the nominal
stability radius that corresponds to the nominal stability region, i.e.

r0
γ(α, µ, P,C) = min

j=1,...,J
min{‖∆‖γ + ‖δ‖γ : ρj(∆, δ) = 1}.

So, the nominal stability radius can be calculated by an optimization prob-
lem of the following from. For brevity, let A := (I − PT)−1 and consider

r0
γ(α, µ, P,C) = min

j∈{1,...,J}
rj ,

where rj is a solution to

rj = min

K∑
k=1

γk(δk + ∆k)

subject to
∑

k∈C(j)

λk +
∑K
l=1 akl ∆l

µk − δk
= 1,

0 ≤ ∆,

0 ≤ δk < µk, k ∈ C(j).

(6.14)

For each station j ∈ {1, ..., J} the general form of the latter setting is of
the following form

rj = min

K∑
k=1

γk(δk + ∆k)

subject to
∑

k∈C(j)

λk +
∑K
l=1 akl ∆l

µk − δk
= c,

0 ≤ ∆,

0 ≤ δk < µk, k ∈ C(j).

(6.15)

In the sequel, we will characterize the perturbations δ∗,∆∗ that provide
solutions to (6.15). This is the content of the following theorem.

Theorem 6.4.1 If rγ = ‖∆∗‖γ + ‖δ∗‖γ > 0 is a solution to (6.15), then
a destabilizing perturbation of minimal γ-norm can be chosen such that
either for ∆∗ or δ∗ at most one component is strictly positive. That is,
either ∆∗ = rγ γ

−1
k ek and δ∗ = 0 or ∆∗ = 0 and δ∗ = rγ γ

−1
k ek for some

k ∈ {1, ...,K}.
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Proof. Suppose that the perturbations (∆∗, δ∗) are a solution to (6.15).
Then, by Theorem 6.2.1 and 6.3.1, it follows that ∆∗ = ∆m em for some
m ∈ {1, ...,K} and δ∗ = δn en for some n ∈ {1, ...,K}. If n 6= m, the
optimization problem is given by

min γm ∆m + γn δn

subject to
∑

k∈C(j),
k 6=n

λk
µk

+
λn

µn − δn
+

∑
k∈C(j),
k 6=n

akm ∆m

µk
+
anm ∆m

µn − δn
= c,

0 ≤ δn < µn,

0 ≤ ∆m.

(6.16)

In the following, we consider the first constraint in (6.16), which can be
written as

λn
µn − δn

+ ∆m

∑
k∈C(j),
k 6=n

akm
µk

+
anm ∆m

µn − δn
= c−

∑
k∈C(j),
k 6=n

λk
µk
. (6.17)

Since µn − δn > 0 and using for brevity q :=
∑
k∈C(j), k 6=n

akm

µk
and c̄ :=

c−
∑
k∈C(j), k 6=n

λk

µk
, equation (6.17) reads as

c̄ δn + (anm + qµn) ∆m − q∆m δn = c̄µn − λn. (6.18)

Moreover, using d̄ := anm + qµn and p := c̄µn−λn condition (6.18) can be
written in compact form as

f(∆m, δn) := c̄ δn + d̄∆m − q δn ∆m − p = 0. (6.19)

By the definition of d̄, q it follows that d̄
q > µn > δn. So, (6.19) can be

written as

∆m = h(δn) :=
p− c̄ δn
d̄− q δn

=
c̄

q
·
p
c̄ − δn
d̄
q − δn

, δn ∈ [0, µn).

The following instances may occur.
Suppose that p q > c̄ d̄. Then, it holds that dh

dδ (δ) = p q−c̄ d̄
(d̄−qδ)2 > 0.

Rewritting the problem (6.16) as

min m(δn) := γm h(δn) + γn δn

subject to 0 ≤ δn < µn
(6.20)
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and using that dm
dδ (δ) = γm

dh
dδ (δ) + γn > 0, the minimum of m is attained

for δn = 0. Thus, the minimum of (6.16) is attained for (∆m, δn) = (p
d̄
, 0).

If c̄q = p
d̄
, it holds that

∆m = h(δn) =
c̄

q
·
p
c̄ − δn
d̄
q − δn

≡ c̄

q
=
p

d̄
, δn ∈ [0, µn).

So, the solution to

min m(δn) := γm
c̄
q + γn δn

subject to 0 ≤ δn < µn
(6.21)

is (∆m, δn) = (p
d̄
, 0).

Finally, suppose that pq < c̄ d̄ or equivalently p
c̄ <

d̄
q . Then, the con-

straint set is given by

{(∆m, δn) : ∆m = h(δm), δm ∈ [0, pc̄ ] }.

Further, γm∆m + γnδn = rγ defines a straight line, where (∆m, δn) also
satisfy ∆m = h(δn). So, δn ∈ [0, pc̄ ] and ∆m ∈ [0, p

d̄
]. Hence, we have that

either ∆m = p
d̄
and δn = 0 or ∆m = 0 and δn = p

c̄ .
The case n = m follows the same line of reasoning. This shows the

assertion. �

Remark 6.4.2 The significance of the Theorems 6.2.1, 6.3.1 and 6.4.1 is
that they allow for a calculation of the nominal stability radius as follows:

1. Consider each station j ∈ {1, ..., J} separately.

2. Perturb either the arrival rate or service capacity of one fluid class
and solve for each k ∈ {1, ...,K} the optimization problem:

rχj,k = min γkχk

subject to ρj(χk) = 1.

3. Take the minimum of all obtained results, i.e.

r0
γ(α, µ, P,C) = min

{
rχj,k : j = 1, ..., J , k = 1, ...,K , χ ∈ {∆, δ}

}
.
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6.5 Notes and References

In this chapter we derived bounds on possible shifts of the arrival rates
and service capacities such that the property of stability is preserved. The
terminology stability region of a discipline and global stability region has
been introduced by Dai, cf. [29]. The monotonicity of the global stability
region with respect to arrival rates follows from Theorem 3.6 in [19]. Later
on Dai, Hasenbein and Vande Vate considered, for fixed arrival rates α the
monotone global stability regionM∞ with respect to the service capacities,
defined by the largest monotone subset of the stability region, see [32]. In
this work it is also shown that, in general, M∞ 6= D∞. For the coun-
terexamples mentioned in Section 6.1 the interested reader is referred to
[17, 32, 40] and the references therein. However, Dai and Vande Vate have
shown that for two station networks the global stability region is mono-
tone with respect to service rates, see [37]. This work is based on virtual
stations and push starts and extends a linear programming approach to
characterize the global stability region for two stations networks given in
[9]. A comprehensive discussion of the global stability region is provided
in Section 5.4 in [17].

The notion stability radius originates from the dynamical systems liter-
ature and was introduced by Hinrichsen and Pritchard in 1986, cf. [51, 52].
A comprehensive exposition to that can be found in [53]. The weighted
stability radius for fluid networks as introduced in Definition 6.1.1 is an
adaptation of the conceptual idea in [51], to measure the distance to in-
stability, to the setting of fluid networks. The notations and results about
convex analysis are taken from [69]. Therein, Theorem 6.1.2 is also stated,
see Corollary 18.5.1, but it is not called Minkowski’s Theorem.

In this chapter we concentrate on the nominal stability radius since for
most disciplines, in general, analytic stability conditions are not available.
For this reason, given a stable fluid network under a discipline π, defined
by the parameters α, µ and P , and the constituency matrix C, the nominal
stability radius provides an upper bound on the distance of (α, µ) to the
boundary of the stability region Dπ. That is, we have that

B( (α, µ) , rγ(α, µ, P,C, π) ) ⊂ B( (α, µ) , r0
γ(α, µ, P,C) ).

Consequently, the insights of the results obtained in this chapter may be
interpreted as follows. If a fluid network (α, µ, P,C, π) is subject to a
disturbance ∆ and it holds ‖∆‖ < r0(α, µ, P,C, π), the network might be
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stable and the stability analysis needs to be done in terms of the particular
discipline. Parts of this Chapter have already been published in [72, 73, 74].

Finally, we note that the Lyapunov theory we developed in Chapter 4
and Chapter 5 is supposed to be an appropriate tool for future research,
since the converse Lyapunov theorems if a Lyapunov function is available,
provide necessary and sufficient stability conditions.



A Some Analysis

In this chapter we recall some definitions and results from analysis that
are used throughout this thesis. The Banach space of continuous functions
x : [0, T ] → Rn with the norm ‖x‖C := maxt∈[0,T ] ‖x(t)‖is denoted by
C([0, T ],Rn). A set X ⊂ C([0, T ],Rn) is called equicontinuous if for every
ε > 0 there is a δ > 0 such that for each x ∈ X and s, t ∈ [0, T ] such that
|t − s| < δ it holds that ‖x(t) − x(s)‖ < ε. The content of the Theorem
of Arzelà-Ascoli is that the compact sets in C([0, T ],Rn) are exactly those
that are closed, bounded and equicontinuous.

Theorem A.1 (Arzelà-Ascoli) A set X ⊂ C([0, T ],Rn) is relatively
compact if and only if it is bounded and equicontinuous.

A proof can be found in [70] Section 9.8. In particular, this implies
that every bounded and equicontinuous sequence (xn)n∈N in C([0, T ],Rn)
contains a convergent subsequence. Further, a function x : R → Rn is
called absolutely continuous if for every finite interval [a, b] and ε > 0 there
is a δ > 0 such that for any disjoint intervals ]ai, bi[⊂ [a, b], i = 1, 2, ..., n
with

∑n
i=1(bi − ai) < δ it holds that

n∑
i=1

‖x(bi)− x(ai)‖ < ε.

The following property of absolutely continuous functions is well known, a
proof can be found in [70] Section 5.4.

Theorem A.2 Suppose that x is absolutely continuous, then x is differ-
ential almost everywhere.

147
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A very useful property of absolutely continuous functions is that its
derivative is Lebesgue integrable. That is, for all s < t,

x(t)− x(s) =

∫ t

s

ẋ(r) dr.

Consequently, the space AC([0, T ],Rn) of absolutely continuous functions
x : [0, T ]→ Rn, equipped with the norm ‖ · ‖AC defined by

‖x‖AC := ‖x(0)‖+

∫ T

0

‖ẋ(t)‖ dt,

is a Banach space. A function f : Rm → Rn is called locally Lipschitz if
for any bounded set B ⊂ Rm there is a LB > 0 such that for all x, y ∈ B
we have that ‖f(x)− f(y)‖ ≤ LB‖x− y‖. Further, f is called Lipschitz if
the last condition holds for B = Rm.

Partition of Unity

Let M ⊂ Rn, a family U = {Uα}α∈A of open set is called an open cover
of M ⊂ Rn if each x ∈ M is in some Uα ∈ U . That is, M ⊂

⋃
α∈A Uα.

An open cover is called locally finite if for every α ∈ A the set {α′ ∈ A :
Uα ∩ Uα′ 6= ∅} is finite.

Definition A.3 A family Ψ = {ϕα}α∈A of C∞ functions ϕα : M → R is
called a smooth partition of unity subordinate to U if

(1) 0 ≤ ϕα(x) ≤ 1 for all x ∈M and for all α ∈ A,

(2) supp ϕα ⊂ Uα,

(3) the set of supports {supp ϕα}α is locally finite,

(4) for all x ∈M it holds that
∑
α∈A

ϕα(x) = 1.

An important consequence of condition (3) in Definition A.3 is that the
sum in condition (4) has actually only finitely many nonzero terms in a
neighborhood of each point. So, there is no issue of convergence.

Theorem A.4 Let M ⊂ Rn and U be an open cover of M . Then, there
is a smooth partition of unity subordinate to U .

Proof. See [57] Theorem 2.25. �



B Differential Inclusions

Let X and Y denote metric spaces. A set-valued map F : X  Y is a
mapping that maps every x ∈ X into a set F (x) called the value of F at x.
The domain of a set-valued map F : X  Y is the subset of elements x ∈ X
such that the values F (x) are non empty, i.e. dom(F ) = {x ∈ X : F (x) 6=
∅}. The image of F is the union of all values F (x) for all x ∈ X. The graph
of a set-valued map F is graph(F ) := {(x, y) ∈ X × Y : y ∈ F (x)}. A
set-valued map F is said to be closed-valued if the values of F are closed,
i.e. for every x ∈ X the set F (x) is closed. Accordingly, F is said to be
convex if the images are convex. Moreover, a set-valued map F : X  Y
is called lower semicontinuous at x ∈ dom(F ) if for any y ∈ F (x) and
for any sequence of elements (xn)n∈N ∈ dom(F ) converging to x, there
exists a sequence (yn)n∈N with yn ∈ F (xn) converging to y. F is said
to be lower semicontinuous if it is lower semicontinuous at every point
x ∈ dom(F ). In addition, F is called upper semicontinuous at x ∈ dom(F ),
if for any open neighborhood U ⊃ F (x) there is an ε > 0 such that for all
x′ ∈ B(x, ε)∩dom(F ) it holds that F (x′) ⊂ U . Again F is said to be upper
semicontinuous if it is upper semicontinuous at every point x ∈ dom(F ).

A useful criterion to conclude upper semicontinuity of a parameterized
set-valued map is the following.

Proposition B.1 Let X,Y and Z be metric spaces and U : X  Z be
a set-valued map. Assume that f : graph(U) → Y is continuous. If U is
upper semicontinuous with compact values, then F : X  Y defined by

F (x) := {f(x, u) : u ∈ U(x)}.

is upper semicontinuous.

Proof. See [5] Proposition 1.4.14. �
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Proposition B.2 The graph of an upper semicontinuous set-valued map
F : X  Y with closed values is closed.

Proof. See [4] Section 1.1 Proposition 2. �

Let K ⊂ Rn and consider the differential inclusion

ẋ(t) ∈ F (x(t)), x(0) = x0. (B.1)

A solution to (B.1) is an absolutely continuous function x ∈ AC(R+,Rn)
with x(0) = x0 such that (B.1) is satisfied almost everywhere. The set of
solutions to (B.1) starting at x0 ∈ K is denoted by SF (x0). The existence
theorem is as follows.

Theorem B.3 Let K ⊂ Rn be a closed set. Assume that the set-valued
map F : K  Rn with closed convex values contained in a ball of radius b >
0 is upper semicontinuous. Then, the following conditions are equivalent.

(1) For any x0 ∈ K there is a solution x(·) ∈ SF (x0) satisfying x(t) ∈ K
for all t ≥ 0.

(2) For any x ∈ K it holds that F (x) ∩ TK(x) 6= ∅.

Proof. See [80] Theorem 5.2. �

Here, TK(x) denotes the contingent cone to K ⊂ Rn at x, which is
defined as the set of v ∈ Rn such that there is a sequence (hn)n∈N ⊂ int(R+)
converging to 0 and a sequence (vn)n∈N ⊂ Rn converging to v such that
for all n ∈ N it holds that x+ hn vn ∈ K.

A differential inclusion (B.1) is called strongly asymptotically stable if
no solution exhibits finite time blow-up, and

Lyapunov Stability : For any ε > 0 there is a δ > 0 such that any solution
x(·) with ‖x0‖ < δ satisfies ‖x(t)‖ < ε for all t ≥ 0.

Attractiveness: For each individual solution x(·) one has x(t) converges
to 0 as t→∞.

The following statement is a smooth converse Lyapunov theorem for dif-
ferential inclusions.
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Theorem B.4 Let F : Rn  Rn be an upper semicontinuous set-valued
map with nonempty, compact and convex values. Then, the differential
inclusion (B.1) is strongly asymptotically stable if and only if there is a
positive definite and proper function V ∈ C∞(Rn,R) and positive definite
functionW ∈ C∞(Rn\{0},R) such that for all x 6= 0 the following decrease
condition is satisfied

max
v∈F (x)

〈∇V (x), v〉 ≤ −W (x). (B.2)

Proof. See [26]. �

The content of the next statement is about the limit of a convergent of
sequence of solutions.

Theorem B.5 Assume that the set-valued map F : Rn  Rn is upper
semicontinuous with closed convex values contained in a ball of radius b >
0. If (xk(·))k∈N is a sequence of solutions with xk(·) ∈ SF that converges
u.o.c. to a function x(·), then x(·) ∈ SF .

Proof. See [80] Theorem 4.6. �

A set-valued map F : Rn  Rn is called locally Lipschitz on Rn\{0}
provided that for every compact set U ∈ Rn\{0} there corresponds L > 0
such that

F (x1) ⊂ F (x2) + L ‖x1 − x2‖B(0, 1)

for all x1, x2 ∈ U , where B(0, 1) = {x ∈ Rn : ‖x‖ ≤ 1}. The follow-
ing statement from [26] will be very useful to prove a smooth converse
Lyapunov theorem for differential inclusions.

Theorem B.6 Let F : Rn  Rn be an upper semicontinuous set-valued
map with nonempty, compact and convex values. Suppose that F is strongly
asymptotically stable. Then, there exists an upper semicontinuous set-
valued map FL with nonempty, compact and convex values which is locally
Lipschitz on Rn\{0}, strongly asymptotically stable, and satisfies F (x) ⊂
FL(x).

Proof. See [26]. �
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Theorem B.7 Assume that F : X  X is Lipschitz with constant λ and
has closed values on the interior of its domain. Let y(·) ∈ SF (y0) be a
given absolutely continuous function. Then, for all t ≥ 0 it holds that

d(y(t),SF (x0)(t)) ≤ ||x0 − y0|| eλt,

so that the solution map SF is lower semicontinuous.

Proof. See [3] Section 5.3. �
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