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1 Introduction

One of the main interests in physics has always been to magnify and visualize spatial
regions so small that they cannot be explored by the bare eye. Starting with single
lenses in the early days of physics, the history of optical microscopy was initiated. Using
a combination of different lenses, the magnification was increased and applications of
these microscopes yielded, e.g., a first observation and description of single-celled organ-
isms [1]. However, by further improvements of optical microscopes it was discovered by
Abbe more than a hundred years ago that their resolution is limited by diffraction [2]. He
found out that the maximum resolution is given by approximately half of the wavelength
of the light that is used for investigation. Therefore, sophisticated methods have been
introduced in the last decades to overcome this limit. A promising method that has been
developed employs optical near fields. These near fields are solutions of Maxwell’s equa-
tions for metal–dielectric interfaces and yield strong spatial confinement of optical waves.
Near-field scanning optical microscopy enables resolution down to a few nanometers and
has been used to, e.g., visualize nanostructured samples [3].

In other applications, light has been used to investigate the spectral properties of mat-
ter. In the beginning, optical spectroscopy has been used to investigate static properties
but has nowadays been advanced to the investigation of dynamic processes. Using time-
resolved optical spectroscopy, which is one of the main topics of our research group, time
dependent interaction of light with matter is studied. In such experiments a quantum
system is excited with a first “pump” pulse from thermal equilibrium and the dynamics
of the excited system are then mapped using a variable time-delayed “probe” pulse.
Pulses with durations on the order of femtoseconds have become commonly accessible
in the last decades, and pump–probe measurements enabled mapping of chemical reac-
tions and revealed information of molecular dynamics [4]. Femtosecond pulse shaping
methods, which have been developed in the optical regime, even enabled control of such
chemical reactions [5]. Depending on the investigated system and on the requested
information, different spectroscopic techniques, such as transient absorption [4] or fluo-
rescence spectroscopy [6], have been applied. To obtain further insight into coherences of
quantum mechanical states, coherent two-dimensional (2D) spectroscopy [7] has turned
out to be a powerful tool in recent years. Using this technique, overlapping contri-
butions of congested linear spectra can be separated, since this information is spread
out along a second spectral dimension. Vibrational as well as electronic couplings in
quantum systems can be revealed by evaluating the off-diagonal peaks [8]. Additionally,
homogeneous and inhomogeneous broadening can be distinguished by analysis of the 2D
lineshapes [7].

However, in all these implementations of optical spectroscopy the spatial resolution
that determines the interaction volume with the sample has the same lower bound that
was found for optical microscopy. The diffraction limit of the optical waves is on the
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2 Introduction

order of several hundreds of nanometers and this causes averaging over an ensemble
of quantum systems present in the interaction volume. Although single molecule ex-
periments have been performed by using low emitter density in combination with tight
focusing [9, 10], their spatial resolution is still diffraction limited, and investigation of
single molecules in, e.g., molecular aggregates, has not been achieved. Thus, we are
at a point, where quantum mechanical processes can be understood and mapped using
sophisticated spectroscopical methods. However, spectroscopy that can reveal informa-
tion about single quantum systems within their natural surrounding is still missing.
Therefore, new spectroscopic methods have to be developed to overcome the optical
diffraction limit and to directly disclose spatial coupling and transfer processes. In this
thesis, a route to optical spectroscopy on the nanoscale is given by utilizing two different
approaches. The first approach picks up the same idea that was already used to over-
come the diffraction limit in microscopy and employs optical near fields. The second
approach combines optical excitation with a non-optical detection that yields a high
spatial resolution.

The utilization of optical near fields for spectroscopic applications is especially in-
teresting since advanced methods have been developed in the last decades to produce
appropriate nanostructured samples. Illumination of these nanostructures with fem-
tosecond laser pulses enable strong spatial and temporal confinements of optical fields
in their vicinity. Due to constructive and destructive interference of different near-field
modes that are caused by two independent far-field polarizations, the technique of fem-
tosecond polarization pulse shaping enables control of these confinements. Using this
control, optimal far-field polarization-shaped pulses were presented that by illumination
of a suitable nanostructure enable near-field excitation schemes for spectroscopic appli-
cations [11]. In these excitations schemes, pump–probe pulses are not only separated
temporally on a femtosecond scale—as in conventional time-resolved spectroscopy—but
they are also separated in space on the nanometer scale. A promising application is the
excitation of a quantum system with a near-field pulse at one position at a certain time
and probing of the quantum system at a different position at a later time. So far, the
polarization-shaped laser pulses that provide these near-field excitation schemes were
found in an adaptive fashion without using information about the involved near-field
control mechanisms [11–14]. Thus, parameters that are scanned in optical spectroscopy,
such as the temporal delay or the relative phase between two pulses, cannot be accessed
easily. The optimal polarization-shaped laser pulses would have to be found for each
near-field scanning step in a separate time-consuming adaptive optimization. Hence, for
broad spectroscopic implementations, the near-field control mechanisms have to be used
to find these optimal pulses in a deterministic fashion.

After describing the basic theoretical and experimental concepts in Chapter 2 as well
as introducing the properties of near fields in Chapter 3, general analytic solutions
are derived for that purpose in Chapter 4. These solutions enable deterministic near-
field control in arbitrary nanostructures by calculating the optimal polarization-shaped
laser pulses. The main idea of the analytic approach is to disentangle the mechanisms
for spatial and temporal control by using two independent steps. The solutions are
then employed in simulations to guide electromagnetic energy in a branching T-chain of
nanospheres. Simple deterministic rules are found to switch the near-field intensity in
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the vicinity of a nanostructure from one position to another. The benefit of the analytic
rules to optical spectroscopy is presented by calculating polarization-shaped laser pulses
that generate a near-field double pulse with a spatial distance between the two pulses
that is determined by the nanostructure and a temporal separation that can be adjusted
in an arbitrary manner. In Chapter 5, an experimental realization of the analytic rules
is shown for gold nanoprisms. In this experiment, the near-field intensity is switched
from one corner of the prisms to another corner in a deterministic fashion. Verification
of the obtained results for theoretical and experimental deterministic control is achieved
by comparison to adaptive optimizations.
Additionally, possible applications of near-field control to surface-enhanced Raman

spectroscopy are investigated in Chapter 6. In these experiments, optimal polarization
shaped laser pulses are found in an adaptive fashion to spatially control the near-field
intensity on a corrugated silver surface. Interesting behavior of the optimal pulse shapes
are observed indicating unexpected coherences on the silver surface.
In the second approach to overcome the optical diffraction limit in spectroscopic ap-

plications, a combination of optical excitation with photoemission electron microscopy
(PEEM) is used. In this microscope, the sample is excited with weakly focussed optical
waves and the photoelectrons that are emitted from the sample are detected. Hence,
the area that is excited with the laser pulses is on the order of several micrometers.
However, due to the smaller wavelength of the detected electrons, the diffraction limit
of these electrons is about three orders of magnitude smaller than that of visible light.
This avoids spatial averaging since a resolution down to a few nanometers is achieved.
Although time-resolved PEEM experiments have been realized already in terms of two-
pulse correlation measurements [15], they—in general—do not reveal coherences directly
that are essential to determine couplings in quantum systems.
Therefore, a new technique, termed “coherent 2D nanoscopy”, that enables direct

observation of coherences is developed in Chapter 7. This technique combines “conven-
tional” coherent 2D spectroscopy, as it was performed so far, with the spatial resolution
of PEEM. The sample is excited with quadruple-pulse sequences and the electrons that
are emitted from the sample carry information about the quantum mechanical processes.
The technique enables mapping of these processes with a nanometer spatial and fem-
tosecond temporal resolution. In a first implementation of 2D nanoscopy, the corrugated
silver surface that showed indications for unexpected coherences is investigated, and the
measured data is explained by a model of coupled near-field modes that vary on the
nanoscale.
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2 Basic Theoretical and Experimental
Concepts

In this chapter, the basic theoretical and experimental concepts of polarization-shaped
femtosecond laser pulses and photoelectron-emission microscopy are introduced. First
femtosecond pulses are described in terms of their general linear (Section 2.1) and vec-
torial properties (Sections 2.2). Then femtosecond laser pulse shaping that is used for
control of near-field control and to generate pulse sequences is introduced (Section 2.3).
To identify near-field control mechanisms, the pulse shapes that will be found in a de-
terministic fashion have to be characterized carefully (Section 2.4) and are compared to
pulse shapes found by an evolutionary algorithm (Section 2.5). The spatial resolution
that is needed on the one hand to experimentally investigate the optical near fields and
on the other hand for spectroscopic application is provided by a photoemission electron
microscope (Section 2.6).

2.1 Mathematical Description of Femtosecond Laser
Pulses

Before discussing the vectorial character of femtosecond laser pulses in terms of po-
larization this section gives an introduction to the general behavior of linearly polar-
ized femtosecond laser pulses. The description is based on the literature of Diels and
Rudolph [16], Brixner [17], and Wollenhaupt et al. [18].

2.1.1 Temporal and Spectral Description

A linearly polarized femtosecond laser pulse at a fixed point in space is described as a
scalar real-valued function of time t

E(t) = 2A(t) cos[ϕ(t)], (2.1)

where A(t) is half of the temporal amplitude or envelope and ϕ(t) is the temporal varying
phase. The phase term ϕ(t) includes a linear term which results in fast oscillations due
to the carrier frequency ω0 of visible light. Separation of this term yields

ϕ(t) = ω0t+ φ(t), (2.2)

where φ(t) includes all higher order terms as well as a constant term. For a better
understanding of the temporal phase ϕ(t) it is advantageous to expand it in a Taylor
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Figure 2.1: Laser pulse examples. Both laser pulses have the same amplitudes A(t) and the
same carrier frequency ω0 = 1.17 rad/fs. The envelope of the laser pulses [2A(t)] is indicated by
the solid lines. (a) The effect of the absolute phase a0. The solid line describes the electric field
of a laser pulse with a0 = 0 rad, whereas the absolute phase is shifted by a0 = −π/2 rad for the
electric field indicated with the dashed line. (b) The effect of a linear upchirp a2 = 0.06 rad/fs2.
The oscillation period of the electric field changes from large to small values. The green curve
shows the phase φ(t) = 0.03 rad/fs2 · t2.

series

ϕ(t) =
∞∑
j=0

aj
j!

(t− t0)
j with aj =

djϕ(t)

dtj

∣∣∣∣
t=t0

. (2.3)

Without loss of generality, the laser pulse can be assumed to be centered around t0 = 0.
The zeroth order coefficient a0 is the absolute phase of the laser pulse. It describes the
shift of the fast oscillations with respect to the envelope’s center A(t0). For a0 = 0 the
electric field E(t) reaches the maximum amplitude 2A(t0) (solid line Fig. 2.1a), whereas
for different values a0 ̸= 0 the oscillations are shifted and the electric field E(t) does not
reach the maximum amplitude 2A(t0) (dashed line Fig. 2.1a). For pulse durations τ much
longer than the oscillation period of light T = 2π/ω0, as will be used for all experiments
in this thesis, the absolute phase is negligible for linear polarized light. However, for
the vectorial description of laser pulses (Section 2.2) it is of high importance. As can be
inferred from Eq. (2.2) the first order coefficient a1 is equal to the carrier frequency ω0.
The physical meaning of the higher order terms of the temporal phase ϕ(t) becomes

clearer by considering the momentary frequency

ω(t) =
dϕ(t)

dt
= ω0 +

dφ(t)

dt
. (2.4)

It reflects that the higher order terms which are absorbed into φ(t) result in a change
of the momentary frequency. If dφ(t)/dt = 0, i.e. aj = 0 for all j ≥ 2, the momentary
frequency ω(t) is ω0 and does not change over the period of the pulse. In this case
the pulse is called unchirped. One speaks of a chirped pulse if d2φ(t)/dt2 ̸= 0, i.e.,
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2.1 Mathematical Description of Femtosecond Laser Pulses 7

the momentary frequency changes with time. If the momentary frequency increases
[decreases] with time because d2φ(t)/dt2 > 0 [d2φ(t)/dt2 < 0] the pulse is said to be
upchirped [downchirped]. An example of an upchirped pulse is shown in Fig. 2.1b, where
in this special case the momentary frequency changes linearly (i.e., a2 ̸= 0 and aj = 0
for all j ≥ 3) and therefore one speaks of a linear chirp.
In general, the electric field can either be described in time- or in frequency-domain,

where both representations yield the same information. An equivalent spectral-domain
representation of Eq. (2.1) is obtained by the complex-valued Fourier transform

E(ω) =
1√
2π

∞∫
−∞

E(t) e−iωt dt. (2.5)

The original temporal electric field can be recovered by the inverse Fourier transform

E(t) =
1√
2π

∞∫
−∞

E(ω) eiωt dω, (2.6)

which corresponds to the decomposition of E(t) into monochromatic waves. Although
the temporal electric field E(t) is real-valued, a complex-valued representation is ad-
vantageous for mathematical reasons. To express the temporal field E(t) as a complex
function we first have to consider the spectral electric field which is Hermitian, and
therefore follows the condition:

E(ω) = E∗(−ω), (2.7)

where the star denotes complex conjugation. Hence, the electric field of the positive
frequencies already gives an unambiguous description and we can define a complex-
valued temporal electric field [16]:

E+(t) =
1√
2π

∞∫
0

E(ω) eiωt dω. (2.8)

Analogously, we can also define E−(t) which contains just the information of the negative
frequencies. By virtue of Eq. (2.7) the temporal function E−(t) is the complex conjugate
of E+(t) and the real-valued temporal electric field can be written as

E(t) = E+(t) + E−(t) = 2Re
{
E+(t)

}
. (2.9)

The complex-valued function E+(t) can be separated into

E+(t) = A(t) eiϕ(t) = Â(t) eiω0t, (2.10)

where the amplitude A(t) and the temporal phase term ϕ(t) are the same quantities as
introduced in Eq. (2.1). The last identity is obtained by plugging in Eq. (2.2), where
the phase φ(t) is absorbed into the complex envelope function Â(t).
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According to Eq. (2.8) we can define a spectral electric field, which includes only
positive frequencies

E+(ω) =

{
E(ω) if ω ≥ 0,

0 if ω < 0.
(2.11)

Hence, the two quantities

E+(ω) =
1√
2π

∞∫
−∞

E+(t) e−iωt dt (2.12)

and

E+(t) =
1√
2π

∞∫
−∞

E+(ω) eiωt dω (2.13)

then constitute a complex-valued Fourier pair containing the full information of the
electric field. The complete spectral electric field is maintained by

E(ω) = E+(ω) + E−(ω), (2.14)

where E−(ω) and E−(t) again constitute a complex-valued Fourier pair. The mathemat-
ically constructed function E+(ω) can explicitly be written as a product of a real-valued
amplitude and a complex-valued phase

E+(ω) = A(ω) e−iφ(ω) . (2.15)

As will be described in Section 2.3, using a pulse shaper it is possible to manipulate the
two quantities amplitude A(ω) and phase φ(ω) which enables tailoring of the temporal
shape of the femtosecond laser pulse. The spectral phase is often expanded in a Taylor
series

φ(ω) =
∞∑
j=0

bj
j!

(ω − ω0)
j with bj =

djφ(ω)

dωj

∣∣∣∣
ω=ω0

(2.16)

around the carrier frequency ω0, which is normally defined as the center of spectral
amplitude and therefore is often called center frequency. It is not possible to directly
relate the coefficients bj to changes of the temporal profile of the laser pulse. However,
it is easy to show that the zeroth order term b0 is identical with the zeroth coefficient a0
of the temporal phase. Due to the Fourier transform shift theorem, the first order term
b1 shifts the temporal profile which is centered around t0 by its amount to t0 + b1. The
temporal pulse envelope does not change as long as bj = 0 for all j ≥ 2. In all other
cases the temporal pulse envelope changes.
The temporal intensity of a femtosecond laser pulse is defined proportional to the

temporal average of the squared electric field E2(t)

I(t) = ϵ0cn⟨E2(t)⟩ = ϵ0cn
1

T

t+T/2∫
t−T/2

E2(t′)dt′ (2.17)
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2.1 Mathematical Description of Femtosecond Laser Pulses 9

with the vacuum dielectric constant ϵ0, the vacuum velocity of light c, and the index
of refraction n of the medium in which the intensity is measured. The averaging is
performed over the oscillation period T = 2π/ω(t). Assuming that the pulse envelope
varies slowly compared to the fast oscillating optical field (|dA(t)/dt| ≪ |ω0A(t)|), i.e.,
the slowly varying envelope approximation [16] applies, Eq. (2.17) simplifies to

I(t) = 2ϵ0cnA
2(t). (2.18)

In analogy the spectral intensity is defined as

I(ω) = 2ϵ0cnA
2(ω). (2.19)

Due to Parseval’s theorem [19] the total linear flux

F =

∞∫
−∞

I(t)dt =

∞∫
−∞

I(ω)dω (2.20)

has to be the same in time and frequency domain. This identity will be used in Chapter 4
to find an analytic control rule for the linear flux in nanostructures.
Although the Fourier transform relates the time and frequency domain, in the labora-

tory laser spectra are usually measured as a function of wavelength λ. To transform the
measured spectra we can also use the identity of the linear flux for both representations:

∞∫
−∞

Iω(ω)dω =

∞∫
−∞

Iλ(λ)dλ. (2.21)

Using λ = 2πc/ω and dλ/dω = −2πc/ω2 we can rewrite Iω(ω) in terms of a Jacobi
transformation [18]:

Iω(ω) = (−)Iλ

(
2πc

ω

)
2πc

ω2
(2.22)

where the minus sign indicates a change in the direction of the axis. Equation (2.22) re-
veals the proportionality of ω−2 which must be taken into account to relate the measured
intensity Iλ and the intensity Iω as a function of ω.
The pulse duration and the spectral width are associated with the temporal and

spectral intensity, respectively. Different definitions can be chosen to assign the two
quantities [16]. The most customary and the definitions used in this thesis are assigned
using the full width at half maximum (FWHM) of the temporal intensity I(t) and of
the spectral intensity I(ω)

τp = FWHM{I(t)} (2.23)

and

∆ω = FWHM{I(ω)}. (2.24)

Note that these definitions only make sense for simple pulses. For more complex pulses
a definition via the second order moment [17] should be considered. Due to the Fourier
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relation of the temporal and spectral electric field the two quantities are not independent.
The two quantities are related via a time-bandwidth product

τp∆ω ≥ cB. (2.25)

Hence, the shorter the pulse duration the broader the spectrum and the narrower the
spectrum the longer is the pulse duration. The time-bandwidth product constant cB
depends on the definition of the pulse duration, the spectral width and on the actual
pulse shape. Using Eqs. (2.23) and (2.24) and assuming a gaussian laser pulse it results
in cB = 4 ln 2.

2.1.2 Spatial Propagation

In general, the temporal and spatial properties of electric fields are described by Maxwell
equations. Using these equations the inhomogeneous wave equation can be derived that
describes the interaction of the electric field E⃗(r⃗, t) with non-magnetic matter

∇2E⃗(r⃗, t)− 1

c2
∂2

∂t2
E⃗(r⃗, t) = µ0

∂2

∂t2
P⃗ (r⃗, t), (2.26)

where c denotes the velocity of light in vacuum and µ0 is the permeability of the vacuum.
The polarization P⃗ (r⃗, t) describes the response of a medium in the presence of an electric
field and also includes any influence of the medium on the electric field. It can be
expanded into orders of the electric field such that

P⃗ (r⃗, t) =
∑
n

P⃗ (n)(r⃗, t). (2.27)

A detailed description and discussion of the polarization is given in Chapter 7. The
polarization P⃗ (r⃗, t) can be expanded in frequency domain analogously to the Fourier
relation (2.6)

P⃗ (r⃗, t) =
1√
2π

∞∫
−∞

P⃗ (r⃗, ω) eiωt dω. (2.28)

Plugging in this description of the polarization and the corresponding description of the
electric field [Eq. (2.6)] the wave equation (2.26) can be transformed to the frequency
domain

∇2E⃗(r⃗, ω) +
ω2

c2
E⃗(r⃗, ω) = µ0ω

2P⃗ (r⃗, ω). (2.29)

A solution of this equation assuming only linear polarization (i.e., P⃗ (n)(r⃗, t) = 0 for
n > 1) yield optical near fields in the vicinity of nanostructures (Chapter 3). The

solution for the wave equation in vacuum, i.e., P⃗ (r⃗, ω) = 0, is straight forward and
yields a propagating wave described by

E⃗(r⃗, ω) = E⃗(r⃗0, ω) e
i⃗kr⃗ (2.30)

Herein, the wavevector is given by

k⃗ =
ω

c
s⃗, (2.31)
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2.2 Description and Representation of Polarization-Shaped Laser Pulses 11

where s⃗ is a unit vector that describes the direction of propagation. Solutions of
Eq. (2.29) including higher order polarization terms (i.e., P⃗ (n)(r⃗, t) ̸= 0 for n > 1)
can be found elsewhere [16, 20].

2.2 Description and Representation of
Polarization-Shaped Laser Pulses

Supported by the definitions for the scalar description of femtosecond laser pulses in
the last section we will now discuss the vectorial behavior of electric fields based on
the derivations of Brixner [17]. In this thesis laser pulses that have vectorial properties,
i.e., they cannot be described by scalar fields, are called polarization-shaped laser pulses.
However, the explicit mechanisms of pulse shaping will be introduced in the next section.
Considering light as a transverse wave, two linear independent vector components are

sufficient to describe any state of polarization. In analogy to Eq. (2.1) the vectorial
electric field is written as

E⃗(t) =

(
E1(t)
E2(t)

)
=

(
A1(t) cos [ω0t+ φ1(t)]
A2(t) cos [ω0t+ φ2(t)]

)
(2.32)

where the subscripts 1 and 2 describe the two linearly independent polarization compo-
nents and the factor 2 of Eq. (2.1) has been absorbed into the amplitudes for the sake
of simplicity. Although Eq. (2.32) already gives a complete mathematical description of
the electric field, it is advantageous to define more intuitive quantities which reveal the
polarization state of the laser pulse. Due to the coherent superposition of the two polar-
ization components, the polarization state can be expressed in the so called “elliptical
representation” [17, 21].

2.2.1 Elliptical Representation

In the slowly varying envelope approximation, the temporal oscillation period around
time t of the electric field vector E⃗(t) is described as an ellipse with the two characteristic
quantities ε(t) and θ(t), being the angle of ellipticity and the orientation angle of the
ellipse, respectively. The principal axes of the ellipse Ẽ1 and Ẽ2, shown in Fig. 2.2, which
in general differ from the laboratory frame axes E1 and E2 can be obtained by principal
axes transformation. Given that the principal axes can vary in time the time-dependent
angle of ellipticity is determined by

tan[ε(t)] =
Ã2(t)

Ã1(t)
, (2.33)

where Ã1(t) and Ã2(t) are defined along the axis Ẽ1 and Ẽ2, respectively (Fig. 2.2).
Furthermore, the orientation angle θ is defined as the angle between the principle axis
Ẽ1 and the laboratory axis E1. In order to calculate ε and θ, the auxiliar angle χ is
defined as

χ(t) = arctan

[
A2(t)

A1(t)

]
∈ [0, π/2], (2.34)
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Figure 2.2: Definition of the elliptical pulse parameter. The time-dependent polarization
ellipse is given by the amplitudes Ã1, defined on the major principal axis Ẽ1, and Ã2, defined
on the minor principal axis Ẽ2. These two amplitudes specify the angle of ellipticity ε. The
orientation angle θ defines the rotation of the ellipse-inherent coordinate system Ẽ1-Ẽ2 with
respect to the laboratory frame coordinate system E1-E2. The time arguments are omitted
here for the sake of simplicity. Taken from Brixner [17].

depending on the ratio of the laboratory-frame temporal amplitude components, and to
simplify the following equations we also define the difference

δ(t) = φ2(t)− φ1(t) ∈ [−π, π], (2.35)

of the temporal phase modulations. In these and the following equations, the definition
intervals are indicated as square brackets. Using the two previous definitions it can be
shown [17] that

θ(t) =


θ̃(t) ∈ [−π/4, π/4] if χ(t) ≤ π/4,

θ̃(t) + π/2 ∈ [π/4, π/2] if χ(t) > π/4 ∧ θ̃(t) < 0,

θ̃(t)− π/2 ∈ [−π/2,−π/4] if χ(t) > π/4 ∧ θ̃(t) ≥ 0,

(2.36)

with

θ̃(t) =
1

2
arctan {tan [2χ(t)] cos δ(t)} ∈ [−π/4, π/4], (2.37)

where the orientation angle θ(t) is defined in the first or fourth quadrant.
In addition the angle of ellipticity can be expressed as [17]

ε(t) =
1

2
arcsin {sin [2χ(t)] sin δ(t)} ∈ [−π/4, π/4], (2.38)

where ε(t) is always defined as the ratio of amplitude along the minor divided by the
amplitude along major principle axis of the ellipse. Positive values of ε(t) indicate
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2.2 Description and Representation of Polarization-Shaped Laser Pulses 13

a momentary left, and negative values of ε(t) a momentary right elliptical state of
polarization. Here, the helicity, i.e., the sense of rotation of the electric field vector,
is defined with respect to the axis given by the negative propagation direction.
With the angles ε(t) and θ(t) it is possible to describe the momentary state of polar-

ization of the electric field, i.e., the shape and orientation of the ellipse. Note that the
state of polarization just depends on the relative amplitude and the relative phase of
the two polarizations, which can also be expressed as the ratio of the complex-valued
temporal field [Eq. (2.10)]

E+
2 (t)

E+
1 (t)

=
A2(t) e

iϕ2(t)

A1(t) eiϕ1(t)
= tanχ(t) eiδ(t) . (2.39)

As will be shown in Section 3.2, it is exactly this ratio which has to be adjusted to
control the spatial distribution of optical near-fields in nanostructures.
In addition to the relative values ε(t) and θ(t), which define the shape and orientation

of the electric field ellipse, we also need to define the ellipse’s momentary size. This can
be done by considering the total momentary intensity

I(t) = Ĩ1(t) + Ĩ2(t) = I1(t) + I2(t), (2.40)

where the individual intensity components are proportional to the squares of the corre-
sponding amplitudes. The rightmost identity of Eq. (2.40) is due to the fact that the
total momentary intensity has to be independent of the choice of the coordinate system.
The last elliptical pulse characterization parameter is the total phase φ(t). It is defined

similar to the phase ϕ(t) of the scalar description of E(t) [Eq. (2.1)], where the reference
point of zero phase is always passed if the electric field has reached its amplitude, i.e.,
E(t) = 2A(t). For polarization shaped pulses the total phase φ(t) has its reference point,
i.e., zero phase, at the point where the total electric field has reached its maximum
amplitude, given by the major principle amplitude Ã1(t). Using this requirement it can
be shown [17] that the total phase is defined as

φ(t) = φ1(t) + sign {θ(t)ε(t)} arccos

[√
I(t)

I1(t)
cos θ(t) cos ε(t)

]
, (2.41)

where phase jumps of ±π have to be removed afterwards to assure a continuous function
of time. Equation (2.41) includes the intuitive behavior of total phase of following the
phase of the stronger component if the other component is small. Just as ε(t) and
I(t), the total phase φ(t) is defined independent of the choice of the coordinate system,
whereas θ(t) defines the rotation angle of the inherent ellipse frame to the laboratory
frame. The corresponding total momentary frequency of the elliptic laser pulse can be
obtained in analogy to Eq. (2.4) by taking the derivative of the total phase with respect
to time

ω(t) = ω0 +
dφ(t)

dt
, (2.42)

where ω0 is the carrier frequency of the pulse [Eq. (2.2)].
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Figure 2.3: Three identical representations of a simulated polarization-shaped laser pulse.
Both polarization components of the pulse are shown in the frequency- (a) and time-domain
(b), with intensities in the upper part and phases in the lower part. The dashed (solid)
line indicates polarization component E1 (E2) and the phase is only plotted for nonvanishing
intensities. The time-domain elliptical parameters (c) contain the total intensity (solid line,
upper panel) and total phase (dashed line, upper panel), as well as the temporal evolution of
the angle of ellipticity ε (solid line, lower panel) and the orientation angle θ (dashed line, lower
panel).

2.2.2 Representation of Polarization-Shaped Laser Pulses

Considering the definitions of the previous subsection, it is now helpful to discuss differ-
ent kinds of representations by means of an example of a polarization-shaped laser pulse
(Fig. 2.3). Three mathematically equivalent representations of this laser pulse are shown
for this simulation, using frequency domain linear parameters {I1(ω), I2(ω), φ1(ω), φ2(ω)}
in Fig. 2.3a, time domain linear parameters {I1(t), I2(t), φ1(t), φ2(t)} in Fig. 2.3b, and
time domain elliptical parameters {I(t), φ(t), θ(t), ε(t)} in Fig. 2.3c.

The simulated polarization-shaped laser pulse has identical gaussian spectral inten-
sities (Fig. 2.3a upper panel) for both polarization components I1(ω) and I2(ω), where
the spectral width supports bandwidth-limited laser pulses of 30 fs. The spectral phases
(Fig. 2.3a lower panel) are modulated in terms of their Taylor coefficients [Eq. (2.3)].
A quadratic phase b2 = 2500 fs2/rad is applied for φ1(ω) (dashed line). A linear phase
b1 = 100 fs and a negative quadratic phase b2 = −800 fs2/rad is applied for φ2(ω) (solid
line). According to these spectral phases the temporal intensities (Fig. 2.3b upper panel)
as well as the temporal phases (Fig. 2.3b lower panel) change in contrast to constant
spectral phases that would yield Gaussian shaped temporal intensities and constant
temporal phases.

Figure 2.3b displays the temporal evolution of the two polarizations independently.
However, to represent the evolution of the polarization state we have to consider the
elliptical representation (Fig. 2.3c). The total intensity I(t) (solid line, upper panel)
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2.2 Description and Representation of Polarization-Shaped Laser Pulses 15

shows the double-pulse structure of the combined individual intensities I1(t) and I2(t).
The total phase φ(t) (dashed line, upper panel) follows the phase of the component
with the dominating momentary intensity and therefore, contains information of both
individual phases φ1(t) and φ2(t). In the beginning and in the end, i.e., in the temporal
region where I2(t) is vanishing, the total phase follows the shape of φ1(t), i.e., a positive
quadratic phase. In the temporal region around t = 100 fs, the intensity I2(t) is much
higher than I1(t) and therefore the total phase is dominated by the negative quadratic
phase of φ2(t). Additional information about the momentary polarization state is rep-
resented in the bottom part of Fig. 2.3c. Similar to the total phase φ(t) the elliptical
parameters depend on the ratio of the two individual intensities. In the region of small
I2(t), the orientation angle θ(t) and the ellipticity ε(t) are zero, indicating linearly po-
larized light oriented along the laboratory-frame coordinate axis E1. This observation is
not surprising considering the fact that only I1(t) is present in these regions. For regions
where both intensities I1(t) and I2(t) are present, superposition results in a oscillation
of the ellipticity ε(t) around ε = 0 and the orientation angle θ(t) increases to values of
about θ = π/2.

To represent the general properties of these variations in more detail we will now
consider two additional illustrations. First, an intuitive representation of the evolution
of the polarization state is introduced by means of movement on the Poincaré surface.
Second, a quasi three-dimensional representation of the polarization-shaped laser pulse
is introduced, including the evolution of the polarization state and the total phase.

Any possible polarization state is defined as a set of angles {θ, ε} and can be repre-
sented on the so called Poincaré surface [22], which is shown in Fig. 2.4. This surface
is spanned by the axis −π/2 ≤ θ ≤ π/2 and −π/4 ≤ ε ≤ π/4 given by the definition
intervals of θ(t) and ε(t), respectively. The linear polarizations, i.e., ε = 0, are repre-
sented along the horizontal axis, where the orientation varies with θ. With increasing
distance from this horizontal axis, the ellipticity rises and for |ε| = π/4 the electric field
is circularly polarized for all θ. The upper half of the plane represents left elliptically
polarized light and the lower part represents right elliptically polarized light.

The temporal evolution of the polarization state of a polarization shaped laser pulse
is given by the Poincaré curve {θ(t), ε(t)}, with the time parameter t. The Poincaré
curve of the simulated laser pulse of Fig. 2.3 is shown in Fig. 2.4. Herein, the color
saturation of the circles is weighted with the corresponding momentary total intensity.
White and red indicate zero and maximum intensity, respectively. The Poincaré curve
starts and ends at the origin of the Poincaré surface, i.e., {θ = 0, ε = 0}, indicating the
linear polarization along the laboratory-frame coordinate axis E1, due to the vanishing
I2. During superposition of the two polarizations, the orientation of the ellipse first
evolves to the left and then changes direction and evolves to the right, corresponding
to a clockwise and counter-clockwise rotation of the ellipse, respectively. The degree
of ellipticity ε changes simultaneously with the orientation angle and takes values close
to |ε| = π/4, corresponding to circular polarization. Additionally, crossings at the axis
at ε = 0 (only linear polarization) are observed indicating a change in helicity. For
the boundary crossings of the planar Poincaré surface it is important to note that the
Poincaré surface is conventionally treated as a surface of a sphere and is topologically
closed. Therefore, the Poincaré curve, described on a planar projection of the Poincaré
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Figure 2.4: Polarization-shaped laser pulse of Fig. 2.3 represented on the Poincaré surface.
The evolution of the polarization state is shown as a parametric function from −350 fs to
350 fs. Each circle displays the momentary polarization state of the pulse, where the time
interval between two circle is ∆t = 2.40 fs. The direction of evolution is indicated by the
arrowheads. The color saturation of the circles is scaled with the momentary total intensity.
White and red color indicates zero and maximum intensity, respectively.

surface, is discontinuous when it passes θ = ±π/2 or ε = ±π/4. As can be observed in
Fig. 2.4, crossing of the Poincaré curve at θ = ±π/2 results in continuation at θ = ∓π/2
without change of the slope of the Poincaré curve dε/dθ. Although a crossing of the
Poincaré curve at ε = ±π/4 is not observed in the present example, it can be obtained
by considering the origin of the Poincaré surface to be the surface of a sphere with the
poles at ε = ±π/4. Hence, it is obvious that a Poincaré curve that passes the upper
boundary ε = π/4 (lower boundary ε = −π/4) evolves downwards (upwards) with the
inverted slope at a orientation angle that is shifted by θ′ = θ − π/2.

The increasing color saturation indicates an increase of the total intensity. As ex-
pected, the maximum intensity is reached near the boundary θ = π/2, i.e., linear po-
larization along the laboratory-frame coordinate axis E2. Here, the curve crosses the
boundary and continues at θ = −π/2. Although the representation on the Poincaré sur-
face includes all parameters to define the momentary polarization state {I(t), θ(t), ε(t)},
it lacks to indicate the total phase φ(t).

To display the complete information, including the total phase φ(t), in a single and
intuitive graph, the quasi three-dimensional electric field representation is introduced.
As a basis for this representation the polarization states are taken during movement
through the Poincaré surface for each evaluated point in time. Here, the momentary
light ellipse is given by the set of angles {θ, ε} and the size of the ellipse is proportional
to the total amplitude [i.e. the square root of the total intensity (Eq. 2.40)]. Stacking of
these temporal snapshots of the momentary polarization state results in a quasi-three-
dimensional electric field representation. The time evolves from left to right and the
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Figure 2.5: Quasi-three-dimensional electric field representation of the simulated pulse shown
in Fig. 2.3. The time axis t is plotted from −350 to 350 fs and the time evolves from left to right.
The lower and upper shadow represents the electric field amplitude of E1 and E2, respectively.
The color of the ellipses indicates the total momentary frequency (Eq. 2.42), where green color
indicates center frequency ω0. Lower and higher total momentary frequencies are indicated
with reddish and blueish colors, respectively.

lower (upper) shadow represents the electric fields amplitude A1 (A2) in the direction
of E1 (E2). Note that the period of adjacent ellipses does not necessarily display the
oscillation period of the electric field but depends only on the evaluation points in time.
Figure 2.5 represents the simulated polarization-shaped laser pulse of Fig. 2.3. The
pulse is again shown from −350 fs (left end of the time axis t) to 350 fs (right end of
the time axis t). The momentary polarization state, as inferred from the shape of the
individual ellipses, starts and ends with the same polarization along the laboratory-frame
coordinate axis E1. Caused by the superposition with the second polarization component
A2, which is centered around t = 100 fs, the momentary polarization state varies in this
region. Additionally to the momentary polarization state, already represented by the
Poincaré curve, here the momentary total phase [Eq. (2.41)] by means of the momentary
frequency is encoded in the color of the ellipses. A momentary frequency close to the
carrier frequency ω0 is indicated in green color. Red (blue) color indicates momentary
frequencies which are lower (higher) then the center frequency ω0. Therefore, the ellipses
are reddish at the beginning and bluish at the end of the pulse, indicating negative and
positive slope of the total phase (dashed line, Fig. 2.3c upper panel), respectively. In
regions of constant total phase, the ellipses are greenish, corresponding to momentary
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frequencies close to the center frequency ω0.

2.2.3 Jones-Matrix Formalism

After introducing the vectorial character of the electric field in Eq. (2.32), it is important
to mathematically describe the influence of optical elements without nonlinear proper-
ties, e.g. mirrors, lenses, or polarizers. Since, the description here is linear and the
response is instantaneous, the frequencies can be treated separately. The influence of a
certain optical element to the incoming electric field E⃗+

in(ω) is described mathematically
by multiplying it with a two-by-two complex-valued frequency-dependent matrix J(ω)
[23] from the left side

E⃗+
out(ω) = J(ω)E⃗+

in(ω). (2.43)

The transfer matrix J(ω) is called Jones-matrix [24] of the optical element and contains
the corresponding linear properties. In index notation, this equation is expressed as(

E+
1,out(ω)

E+
2,out(ω)

)
=

(
J11(ω) J12(ω)
J21(ω) J22(ω)

)(
E+

1,in(ω)
E+

2,in(ω)

)
. (2.44)

This description can be expressed in any coordinate system, whereas transformation
between different coordinate systems has to be done by the corresponding transformation
matrix. As an example, the influence of a quarter wave plate with fast axis at 45◦ with
respect to component 1 is defined as(

E+
1,out(ω)

E+
2,out(ω)

)
= R(45◦)

(
1 0
0 i

)
R−1(45◦)

(
E+

1,in(ω)
E+

2,in(ω)

)
=

1√
2

(
eiπ/4 e−iπ/4

e−iπ/4 eiπ/4

)(
E+

1,in(ω)
E+

2,in(ω)

)
=

1√
2

(
E+

1,in(ω) e
iπ/4 +E+

2,in(ω) e
−iπ/4

E+
1,in(ω) e

−iπ/4+E+
2,in(ω) e

iπ/4

)
, (2.45)

where R(45◦) and R−1(45◦) are the rotation matrix for an angle of 45◦ and its inverse
matrix, respectively. Here, the Jones-matrix is complex valued which introduces a phase
retardation to the incoming electric field. The mixing of the x and y component is due
to the angle of the quarter wave plate’s fast axis with respect to the ordinary coordinate
system.
Considering n different optical components the total Jones matrix J(ω) is given by a

multiplication of the individual Jones matrices J (i)(ω):

J(ω) = J (n)(ω)J (n−1)(ω)...J (1)(ω). (2.46)

Due to the noncommutativity of matrix multiplication, the matrix of the first optical
element J (1)(ω) is located on the right side and the matrix of the last element J (n)(ω)
on the left. Consequently, every experimental setup can be described by a Jones matrix.
Since the knowledge of the Jones matrix enables easy identification of the outcoming
field, the Jones matrix formalism is of particular interest for the characterization of
polarization shaped laser pulses, as will be introduced in Section 2.4.3.

Philip Tuchscherer: A Route to Optical Spectroscopy on the Nanoscale (Diss. Univ. Würzburg, 2012)



2.3 Femtosecond Laser Pulse Shaping 19
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Figure 2.6: Schematic 4f zero-dispersion setup including a spatial light modulator (SLM)
in the Fourier plane. The incoming beam is spatially dispersed (indicated by red and blue
color) by a grating (G1) and focused by a plano-cylindrical lens (L1 with focal length f) to the
Fourier plane, where a SLM is used to modulate the electric field. Another lens-grating-pair
(L2 and G2) recollimates the beam, completing the 4f setup. Modified from Brixner [17].

2.3 Femtosecond Laser Pulse Shaping

The results presented in this thesis deal with the control and the investigation of optical
excitations in nanostructures by modulation of the exciting electric field. Since there are
no electric devices that would allow modulation of the electric field with a femtosecond
resolution, the variation is done in the frequency domain. As introduced in the last
section such a modulation in the frequency domain can be introduced by optical elements
and can be described by a transfer matrix, called Jones matrix. The optical element
which allows almost arbitrary modulation of the electric field, i.e., automated variation
of the Jones matrix, is a pulse shaper. First experimental realizations using fixed shaping
masks in the picosecond and the femtosecond regime were shown by Heritage et al. [25]
and Weiner et al. [26], respectively. Further improvement was done by using electronic
devices for automated adjustment of the phase masks [27]. The basic concept of these
pulse shapers as well as complex polarization pulse shaping is described in this section.

2.3.1 Basic Concept

The basic concept of the used pulse shaper is a spatial light modulator (SLM) which is
placed in the center of a 4f zero-dispersion compressor (Fig. 2.6).
The incoming beam is spatially dispersed in the x direction using a grating (G1). A

plano-cylindrical lens (L1) is positioned at one focal length f with respect to the grating
(a lens is used here for schematic reasons, whereas in the experiment a curved mirror is
used). Since the lens is positioned at the distance of one focal length, the subsequent
propagation of the separated spectral components is parallel to the z-axis and due to the
finite size of the incoming beam the individual components are focused to a vertical line
along the y axis at another focal length. Further, the x-y plane at this z position (2f
with respect to G1) is called Fourier plane yielding the highest frequency resolution and
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Figure 2.7: Polarization pulse shaper setup. The beam, which is coupled out of the laser, is
adjusted in its beam diameter using a telescope (T). The glass wedges serving as beam splitters
(BS1 and BS2) combined with the delay stage (DS) and the automatic shutters (AS1 and AS2)
provide a reference pulse for spectral interferometry (Section 2.4.2), which is measured with a
spectrometer (OSA) via mirror M2. The adjustable polarizer (P) in front of the spectrometer
enables independent characterization of the two polarizations. Additionally, the shaped pulse
can be characterized with a FROG (Section 2.4.1) via mirror M1. In the experiment both
mirrors are removed. In the all-reflective 4f setup the beam is dispersed and recollimated
with two identical gratings (G1 and G2) and curved mirrors (CM1 and CM2). The folding
mirrors (FM1 and FM2) ensure on-axis reflection of the curved mirrors. In front of the two-
layer liquid crystal display (LCD) a polarizer (P1) cleans up the polarization of the incoming
beam. The polarizer (P2) is only used in amplitude and phase shaping mode, i.e., is removed
for polarization pulse shaping.

each frequency component of the laser pulse spectrum is focused at a certain position
x. For the modification of the spectral phase a SLM is positioned in this plane which
changes the spectral phase by introducing individual optical pathways to the spectral
components. After passing the SLM the beam is recollimated by another lens (L2) and
grating (G2) resulting in the 4f setup.

2.3.2 Polarization Pulse Shaping

The experimental setup of the polarization pulse shaper which is used for adaptive and
deterministic control of near-fields (Chapters 5 and 6) is shown in Fig. 2.7. As can be
inferred the setup follows the introduced basic concept (Fig. 2.6). Before entering the 4f
setup the beam diameter has to be adjusted to 2mm (the pixel height) using a telescope
(T). Then part of the pulse is sidelined using a pair of beam splitters (BS1 and BS2)
for pulse characterization via spectral interferometry as is explained in section 2.4.2.
Here, the beam splitters are a pair of glass wedges to avoid multiple reflections within
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parameter value

focal length 80mm
grating line density 1800mm−1

minimum wavelength 770 nm
maximum wavelength 828 nm
focal spot width 60µm
frequency range per pixel 0.00135 fs−1

number of LCD pixels 2× 128
LCD pixel width xp 97µm
LCD interpixel gap 3µm
LCD pixel height yp 2mm
LCD response time 150ms

Figure 2.8: LCD setup and table of properties of the polarization pulse shaper. The LCD
consists of two glass plates (a), coated on the inside with a layer of transparent and electrically
conducting indium-tin oxide (ITO). The layer contains 128 pixels along the x-direction and the
incoming light propagates in z direction. The liquid crystal molecules inside the glass plates
(b) are oriented along their preferential axis in y direction for zero voltage applied. If a voltage
is applied the molecules are tilted in the y-z plane, yielding a voltage dependent change of the
refractive index ny(ω) (c). The characteristic properties of the used polarization pulse shaper
are specified in the table. Taken from Fechner [28].

the beam splitter. In the all-reflective 4f setup, which is used to suppress chromatic
aberrations and material dispersion, the beam is dispersed and recollimated by a pair
of holographic gratings (G1 and G2) with 1800 lines/mm and a pair of curved mirrors
(CM1 and CM2) with focal length of 80mm. The folding mirrors (FM1 and FM2)
ensure on-axis reflection of the curved mirrors, leading to a reduction of higher-order
aberrations. After passing the pulse-shaper setup the beam can either be guided to
diagnostic tools via mirror M1 and M2 (Section 2.4) or to the experiment.

To spatially modulate the light in the Fourier plane of the 4f setup a two layer liquid
crystal display (LCD) (SLM-256-NIR from Cambridge Research & Instrumentation) is
used. A single layer of the LCD and the operation mode of a single pixel is illustrated in
Fig. 2.8. Each layer, composed of 128 pixels, is arranged along the x axis and consists
of two parallel glass plates at a distance d (Fig. 2.8a). The inside of the glass plates
is coated by a layer of transparent and electrically conducting indium-tin oxide (ITO)
and the space between the glass plates is filled with liquid crystal molecules [29] in the
nematic phase (Fig. 2.8b). The preferential orientation axis of the molecules, i.e., the
orientation of the molecules with no voltage applied, is along the y axis (Fig. 2.8b), given
by a special coating of the glass plates. If a voltage U (with 0V ≤ U < 10V) is applied to
the electrodes in z-direction, the molecules are tilted in the y-z plane (Fig. 2.8c). The tilt
of the molecules along the direction of the electric field lines depends on the magnitude
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of the applied voltage. The resulting change of the projection of the dipole moment on
the y axis induces a change of the refractive index component ny(ω). Consequently, the
optical path length for light with frequency ω, which is polarized along the y direction,
can be controlled by the applied voltage U . The corresponding phase retardation is

∆ϕ(U, ω) =
ωd

c
[ny(U, ω)− ny(U = 0, ω)] , (2.47)

with ny(U = 0, ω) being the voltage-free refractive index. Since the LCD is positioned
in the Fourier plane each pixel corresponds to a certain frequency component of the
incoming laser pulse and can be controlled independently with a suitable controller
(SLM-ELT-256 from Cambridge Research & Instrumentation). Since the relation of the
applied voltage U and the introduced phase retardation ∆ϕ is not linear, an appropriate
calibration of the LCD has to be performed before the experiment, yielding a maximum
phase range of 6π [30]. An additional calibration has to be performed to assign each
pixel to the corresponding frequency of the laser pulse. The technical parameters of the
used pulse shaper are summarized in the table of Fig. 2.8.

For polarization pulse shaping as introduced here a two-layer LCD is needed, since
two parameters have to be adjusted. One parameter is the polarization state of the laser
pulse, which is adjusted by the relative phase between both layers. The other parameter
is the spectral phase, which is modulated by an offset that is added to both layers and
enables adjustment of the relative phase between different frequencies. Therefore, the
preferential orientation axes of the molecules, i.e., the modulation axes, of the two layers
have to be perpendicular to each other. Figure 2.9 illustrates the effect of the SLM to a
single frequency, where the incoming light is polarized along the x axis. Layer 1 (red) and
layer 2 (green) are tilted by 45◦ and −45◦ with respect to the polarization of the incoming
light, respectively. Hence, the incoming light has equal amplitude in both directions.
The liquid-crystal molecules are tilted in the 1-z and in the 2-z plane, accordingly. In the
example of Fig. 2.9 a voltage is applied only to layer 1 and the refractive index ny(U, ω)
decreases with respect to the voltage-free refractive index ny(U = 0, ω). Consequently,
the optical path length of the component along layer 1 of the incoming light is reduced
and therefore the output polarization is elliptically. According to the Jones matrix
formalism (Section 2.2.3) this is described in the x-y coordinate system by

E⃗+
out = R(−45◦)

(
e−i∆ϕ1 0

0 1

)
R−1(−45◦)

(
E+

x,in

0

)
= e−i

∆ϕ1
2

(
cos
(
∆ϕ1

2

)
−i sin

(
∆ϕ1

2

)
−i sin

(
∆ϕ1

2

)
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(
∆ϕ1

2

) )(E+
x,in

0

)
= e−i

∆ϕ1
2

(
E+

x,in cos
(
∆ϕ1

2

)
−iE+

x,in sin
(
∆ϕ1

2

)) , (2.48)

where the rotation matrix R is used to relate the coordinate system of the LCD layer
to the x-y coordinate system. As can be inferred from Eq. (2.48) it is also possible to
adjust the polarization state by a single layer LCD. However, to additionally adjust the
spectral phase, a second layer is needed. To describe the effect of both layers Eq. (2.48)
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Figure 2.9: Polarization pulse shaping. The incoming light is x-polarized and can be decom-
posed in the two components 1 and 2, which are the modulations axes of the LCD. If one of
the components is modulated with respect to the other one, the two components propagate
with different optical path lengths and the resulting polarization state after passing the LCD
is changed to an elliptical state. Modified from Brixner [17].

has to be modified to

E⃗+
out = R(−45◦)
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)) (2.49)

Thus, the modification of the spectral phase is given by the sum of the phase retardations
∆ϕ1 +∆ϕ2, whereas the modification of the polarization state is given by the difference
of the phase retardations ∆ϕ1 −∆ϕ2.

2.3.3 Amplitude and Phase Shaping

In Chapter 7 a new spectroscopic technique is introduced which requires adjustable pulse
sequences in a collinear configuration with a high phase stability. A perfect tool to pro-
duce these pulse sequences is a pulse shaper since inherent phase stability is guaranteed.
However, to produce pulse sequences with a pulse shaper, the spectral amplitude and
phase has to be manipulated. Therefore, the setup used for polarization shaping has
to be modified with an additional polarizer behind the second layer of the LCD (P2 in
Fig. 2.7). The polarizer is oriented to filter out components along the y direction, i.e.,
only light that is polarized along the input polarization is transmitted. Thus unwanted
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Figure 2.10: Vector field synthesizer setup as implemented by Ninck et al. [31]. A Wollaston
prism (WP) acts as a polarization beam splitter and a telescope (L1 and L2) adjusts the angles
of incidence of the two polarizations to the grating. The folded (FM) 4f setup consists of a
grating (G) and a cylindrical lens (CL), and the light is modulated by a two-layer LCD.

spectral components are modulated with the two layer LCD to be polarized along the y
direction and then are filtered out. Accordingly Eq. (2.49) has to be modified to

E+
out = e−i

∆ϕ1+∆ϕ2
2 cos

(
∆ϕ1 −∆ϕ2

2

)
E+

in, (2.50)

where the scalar function indicates that linearly polarized light is modulated. The spec-
tral phase of the output field is again modulated by the sum of the phase retardations
∆ϕ1 +∆ϕ2, whereas the amplitude is modulated by the difference of the phase retarda-
tions ∆ϕ1 −∆ϕ2.

2.3.4 Full Vector Field Synthesizer

Polarization pulse shaping as described above gives the ability to design pulse shapes by
independently manipulating the spectral phase of the two components 1 and 2. However,
this means that the possible pulse shapes of the polarization pulse shaper used here
are constrained since it is not possible to manipulate the spectral amplitude of any
component. To fully synthesize the electrical field vector, as is desired for the theoretic
near-field control described in Chapter 4, a different setup (Fig. 2.10) was implemented
by Ninck et al. [31]. The concept is very similar to the setup described in Fig. 2.6. The
beam is dispersed and recollimated in a 4f setup by a grating (G) and a cylindrical lens
(CL). For stability reasons, the symmetric 4f setup is folded by a folding mirror (FM).
A Wollaston prism is used to split incoming light into two perpendicular polarization
components and a telescope (L1 and L2) is then used to adjust the angle of incidence
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on the grating such that the two polarizations are shaped in separated regions of the
display. Spectral amplitude and phase is shaped independently for each component by
first adjusting the phase and polarization state with the two-layer LCD, as described
above, and then the Wollaston prism is used to filter out the undesired component.
This is very similar to the amplitude and phase-shaping setup where the undesired
components are filtered out by a polarizer.
The main importance of the setup of the full vector field synthesizer introduced by

Ninck et al. is the common path of the two components which assures inherent phase
stability. In this configuration it is possible to adjust four independent parameters, i.e.,
the spectral phase and amplitude for each polarization component. Hence, full vector
field synthesizing of the electrical field of a femtosecond laser pulse can be realized.

2.4 Laser Pulse Characterization

The goal of the experiments presented in Chapter 5 is to get a deeper understanding of
the involved mechanisms for near-field control. To assign certain pulse shape properties
to the control mechanisms a careful analysis of the complex shaped femtosecond laser
pulses which excite the nanostructure is required. To characterize the pulses, i.e., extract
the amplitude and phase of the laser pulses, two experimental techniques are described
in this section. First, frequency-resolved optical gating (FROG) is introduced, which
enables the characterization by using a pulse replica and second-harmonic signal gener-
ation. Second, dual-channel spectral interferometry (SI) is explained, which is a linear
technique and enables characterization of polarization shaped laser pulses via a known
reference pulse. The Jones-Matrix formalism serves as an additional characterization
tool. Although it is not a pulse characterization measurement itself it uses the Jones-
Matrix of all optical elements including the pulse shaper to assign a transfer function
depending on the applied phases and enabling the calculation of the shaped pulse.

2.4.1 Second-Harmonic-Generation Frequency-Resolved Optical
Gating

A commonly used tool for complex laser pulse characterization is frequency-resolved
optical gating (FROG). This technique was first introduced by Kane and Trebino [32–
34] and is realizable in different geometries [35]. The type of FROG introduced here and
also used throughout the thesis is a second-harmonic generation (SHG) FROG [36, 37].
A schematic of the setup is displayed in Fig. 2.11. It consists of an interferometer,
where a beam splitter (BS) splits the incoming pulse into two replicas. One of the two
arms of the interferometer can be varied with a delay stage (DS), introducing a delay
τ between the two replicas. The unchanged arm contains a compensation plate (CP)
to compensate for the different pathways through glass. The two replicas are focused
and spatially overlapped on a SHG-crystal (Beta-Bariumborat crystal, BBO) with a
lens (L). The lens is used here to symbolize the focussing. However, in the experiment
a focussing mirror is used to avoid additional dispersion which would be introduced by
the lens. Due to the conservation of momentum the SHG signal, which is generated in
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Figure 2.11: Setup for second-
harmonic frequency resolved optical
gating (SHG-FROG). The beam is sent
through an Michelson interferometer
where one arm can be adjusted by a de-
lay stage (DS). The other arm contains a
compensation plate (CP) to compensate
for the dispersion of the beam splitter.
The two beams are adjusted parallel
to each other and are focused to a
SHG-crystal (Beta-Bariumborat crystal,
BBO) with a lens (L). The SHG-signal,
generated by the combined electric field,
is detected with a spectrometer (OSA).
Adapted from Fechner [28].

the crystal and has the double carrier frequency, is directed along

k⃗SHG = k⃗1 + k⃗2, (2.51)

where k⃗1 and k⃗2 describe the momentum of the two replica pulses and k⃗SHG is the
momentum of the SHG signal. Consequently, the SHG signal is emitted along the
bisecting line of the angle which is defined by the directions of the two replicas. This
geometry and an additional aperture (A) ensures the blocking of the fundamental signal
as well as SHG signal which is generated from just one of the two pulse replicas.
The spectrum of the SHG signal is recorded with an optical signal analyzer (OSA)

and by continuous variation of the delay τ a so-called FROG trace is recorded. The
measured signal can be written as

IFROG(τ, ω) ∝

∣∣∣∣∣∣
∞∫

−∞

E+(t)E+(t− τ) e−iωt dt

∣∣∣∣∣∣
2

. (2.52)

Although it is not possible to derive the electric field directly from this trace, iterative
algorithms can reconstruct the amplitude and phase. This is done by calculating FROG
traces from guessed electric fields. The calculated FROG traces are then iteratively
fitted to the measured FROG trace by minimizing the deviation, i.e., the FROG error
[38, 39]. The used algorithm (FROG 3.2 from Femtosoft) is very robust and reliably
finds very similar electric fields for consecutive evaluations of the same FROG trace.
The limitation of the phase retrieval is due to the inherent time symmetry of the

measured signal
IFROG(τ, ω) = IFROG(−τ, ω). (2.53)
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Therefore, the sign of the phase cannot be retrieved with the algorithm directly, but has
to be determined by inserting an additional dispersive element of known thickness and
dispersion.
However, characterization of polarization shaped laser pulses using FROG is a time-

consuming task. Although two polarizations can be characterized independently by
measuring each polarization in a separate step, the determination of the relative phase
and the relative time delay between both polarizations demands a third FROG measure-
ment [40]. Hence, three FROG measurements have to be performed for the evaluation
of a single polarization shaped laser pulses. An additional problem, which has to be con-
sidered for the characterization of pulse sequences as needed in Chapter 7, is the π-phase
ambiguity which arises for the determination of the relative phase between temporally
isolated subpulses [41]. Nevertheless, since SHG-FROG is a self-referencing method, it is
used to characterize the reference pulses for spectral interferometry, which is introduced
in the next section.

2.4.2 Dual-Channel Spectral Interferometry

A technique that overcomes the disadvantages of FROG, i.e., the complex procedure to
measure polarization shaped laser pulses as well as the relative phase between tempo-
rally isolated subpulses, is dual-channel spectral interferometry. Dual-channel spectral
interferometry is based on spectral interferometry [42], but enables characterization of
polarization shaped laser pulses by measuring two independent polarizations. It is a
linear technique, offering high sensitivity and allowing for non-iterative evaluation of the
characterized pulse shape. However, it is a cross-referencing technique, which has the
disadvantage that information about the reference pulse has to be obtained in advance.
In the experiments described in this thesis, this is done by a SHG-FROG (Section 2.4.1)
and the combination of the two techniques is called POLLIWOG (POLarized Light In-
terference versus Wavelength of Only a Glint) [43]. Although the dual-channel spectral
interferometry setup as used in the experiments was already introduced in Fig. 2.3 a
schematic setup is depicted in Fig. 2.12a that omits all optics which are not relevant for
the characterization discussed here. The schematic is very similar to the SHG-FROG
setup. However, in contrast to the SHG-FROG setup, the pulse shaper (PS) is placed in
one of the arms, whereas it is in front of the first beam splitter (BS1) in the SHG-FROG
setup (not shown in Fig. 2.11). After passing the interferometric setup, i.e., after the
second beam splitter (BS2), the two beams are recombined and the resulting electric

field is a superposition of the reference pulse E⃗0(t) and the shaped pulse E⃗(t). For the
characterization measurement, the projection on the polarizations 1 and 2 of the super-
position of both electric fields is spectrally resolved. Therefore, the time delay τ is set
to a fixed value and the spectrometer has to be calibrated carefully [44].
To realize the dual-channel measurement a polarizer (P) is placed in front of the

spectrometer and two perpendicular polarization components which are rotated by 45◦

and −45◦ with respect to the reference pulse are measured independently. An illustration
of the measured polarization components [1 (dashed arrow) and 2 (solid arrow)] together
with the momentary reference pulse E0(t) (red dotted line) and the momentary shaped
pulse E(t) (red solid line) is displayed in Fig. 2.12b.
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Figure 2.12: Spectral interferometry for polarization shaped laser pulses. (a) The schematic
setup of spectral interferometry which corresponds to the experimental setup depicted in
Fig. 2.7. Adapted from Fechner [28]. (b) The polarization-shaped laser pulse E(t) (red solid
line) displayed as an ellipse together with the reference pulse E0(t) (red dotted line), which
is oriented along the x axis. The orientation of the measured polarizations, which are chosen
by a polarizer (P) in front of the spectrometer. (c) The interferometric signal I1,SI (dashed
line) and I2,SI (solid line) of the polarizations 1 and 2 of the polarization shaped laser pulse of
Fig. 2.3.

The interference patterns I1,SI(ω) (dashed line) and I2,SI(ω) (solid line) for the polar-
ization components 1 and 2 of the polarization shaped laser pulse of Fig. 2.3 are plotted
in Fig. 2.12c for a time delay τ = 350 fs. The fringes appear at an approximate period
of 2π/τ , where deviations are due to an introduced phase by the pulse shaper. An de-
creasing fringe spacing with respect to ω is observed for the upchirped (b2 = 2500 fs2)
component 1 (dashed line). The fringe spacing for component 2 (solid line) is increas-
ing due to the introduced downchirp (b2 = −800 fs2). Additionally, a decreased fringe
spacing is observed at 2π/(τ + b1) due to the introduced linear phase b1 = 100 fs. In the
following description of the analysis procedure only one component is considered. The
complete polarization shaped laser pulse can be retrieved by a coherent superposition of
the two polarizations.
The interferometric signal detected by a spectrometer (OSA) is proportional to

ISI(ω) =
∣∣E+

0 (ω) + E+(ω) e−iωτ
∣∣2 , (2.54)

where the additional phase ωτ is due to the temporal delay τ of the shaped pulse
E+(ω) = A(ω) e−iφ(ω) with respect to the reference pulse E+

0 (ω) = A0(ω) e
−iφ0(ω). The
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proportionality factors of Eq. (2.19) are omitted for the sake of simplicity. Additionally
the spectral intensity of the two arms, i.e., the spectral intensity of the reference and the
shaped pulse, can be measured independently by automatic shutters (AS1 and AS2).
To quantitatively analyze the spectral interferometry data described in Eq. (2.54) a

Fourier-transform method [42] is carried out. In the first step the spectral intensities of
the two arms, i.e., I(ω) = A2(ω) and I0(ω) = A2

0(ω), are measured independently and
are subtracted from ISI(ω). The resulting interference term

S(ω) = ISI(ω)− I(ω)− I0(ω)

=
[
E+

0 (ω)
]∗
E+(ω) e−iωτ +E+

0 (ω)
[
E+(ω)

]∗
eiωτ (2.55)

= 2
√
I0(ω)I(ω) cos [φ0(ω)− φ(ω)− ωτ ] (2.56)

contains the desired phase φ(ω). Since, the direct evaluation via the arccosine function
can lead to large phase errors in spectral regions where the cosine approaches unity [42],
a Fourier transform filtering method is used. Therefore, the interference term [Eq. (2.55)]
is inversely Fourier transformed

S(t) =
1√
2π

∞∫
−∞

S(ω) eiωt dω

=
1√
2π

∞∫
−∞

[
E+

0 (ω)
]∗
E+(ω) eiω(t−τ) dω

+

 1√
2π

∞∫
−∞

[
E+

0 (ω)
]∗
E+(ω) eiω(−t−τ) dω


∗

= S̃(t− τ) + S̃∗(−t− τ), (2.57)

with

S̃(t) =
1√
2π

∞∫
−∞

[
E+

0 (ω)
]∗
E+(ω) eiωt dω. (2.58)

Since the spectral interference term S(ω) is a real-valued physical observable, the tem-
poral counterpart is Hermitian [S(t) = S(−t)∗], and therefore, the full information is
contained in the positive temporal part of S(t), which can be extracted by filtering.
Similar to the spectral electric field definition of Eq. (2.11) we can define

S+(t) = S̃(t− τ). (2.59)

Hence, the spectral analogue S+(ω) can be calculated by a Fourier-transform

S+(ω) =
1√
2π

∞∫
−∞

S̃(t− τ) e−iωt dt

=
[
E+

0 (ω)
]∗
E+(ω) e−iωτ

=
√
I0(ω)I(ω) e

i[φ0(ω)−φ(ω)−ωτ ], (2.60)
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and the undesirable cosine function of Eq. (2.56) has been transformed into a complex-
valued relation, which is much less sensitive to noise. Consequently, the desired phase
φ(ω) of the shaped laser pulse is given by

φ(ω) + ωτ = φ0(ω)− arg
{
S+(ω)

}
. (2.61)

As already mentioned at the beginning of this section, the phase of the reference pulse
φ0(ω) has to be measured additionally with a self-referencing technique, which was
chosen to be SHG-FROG in the presented experiments.
In a last step the remaining phase term ωτ has to be removed. It can be removed

by a linear fit if the absolute point in time of the laser pulse is not important for the
experiment (Sections 6.3 and 6.4 and Chapter 7). For experiments where the absolute
point in time is relevant, the delay time τ has to be measured for an unshaped pulse,
i.e., zero phase applied to both layers. The phase term ωτ can then be subtracted for
adaptively optimized pulses with the predetermined time delay τ (Section 5.4).
The total electric field E+(ω) =

√
I(ω) e−iφ(ω) is calculated by using the measured

spectral intensity I(ω).
Coming back to polarization shaped laser pulses, one receives the two polarizations

independently, where the same time delay τ has to be chosen for the evaluation of both
electric fields E+

1 (ω) and E
+
2 (ω). In addition it is very important that the measurements

of the two interferometric signals I1,SI and I2,SI are measured under interferometric stable
conditions. A small deviation of the time delay τ can lead to a wrong relative phase
φ2(ω)−φ1(ω) and hence to a wrong polarization state. To assure interferometric stable
conditions the setup is covered with a box and the two interferometric signals ISI 1 and
ISI 2 are measured within a few seconds. The electric field of the polarization shaped
laser pulse is then obtained as a coherent superposition

E⃗+(ω) =

(
E+

1 (ω)
E+

2 (ω)

)
=

(√
I1(ω) e

−iφ1(ω)√
I2(ω) e

−iφ2(ω)

)
, (2.62)

where Ii(ω) is the measured spectral intensity of the polarization component i. An ex-
perimental setup to circumvent the need of interferometric stable measurement is to use
a polarizing beam-splitter cube and measure both polarization components simultane-
ously using a two-dimensional detector in the spectrometer. Nevertheless, here the two
polarization components had to be measured consecutively since the used spectrometer
has a single-line detector.
For the experiments it is very crucial to choose an appropriate value for the fixed time

delay τ . On the one hand, since the signal is Fourier-filtered in time domain [Eq. (2.59)]
it is very important to choose τ large enough, such that the signal S̃(t − τ) is clearly
separated from time zero. This is of special interest for adaptive optimizations where
pulse durations of several picoseconds can be obtained. On the other hand larger values
of τ result in a smaller fringe spacing and hence in a reduced fringe contrast that is due
to the finite spectral resolution of the used spectrometer (approximately 0.06 nm) [45].
As a compromise a time delay of τ ≈ 2.5 ps was chosen for the experiments.
Although the analysis of spectral interferometry is derived in ω-space, the measured

signal is obtained with a spectrometer which yields approximate equally spaced values
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with respect to wavelength λ for the characterized wavelengths region, i.e., from 750 to
850 nm. However, to perform the Fourier-filtering equally spaced values with respect
to frequency ω are required. To avoid errors introduced by an interpolation of the
interference pattern the interference term [Eq. (2.55)] can also be filtered in the reciprocal
λ-domain [46]. The phase is then first extracted in λ-space and interpolated afterward
to equally spaced frequencies, whereas the intensity with equally spaced frequencies has
to be calculated using the Jacobian relation of Eq. (2.22).

2.4.3 Experimental Jones-Matrix Determination

As already mentioned Section 2.2.3, the Jones-matrix formalism can also be used to
characterize polarization shaped laser pulses. Therefore the transfer function of the ex-
perimental setup was measured with respect to the phase retardations φ1 and φ2 applied
by the corresponding pulse shaper layers 1 and 2. For the following argumentation the
coordinate system of the layers is chosen (indicated by 1 and 2 for the corresponding
axes of Fig. 2.9) and the frequency dependence is omitted for the sake of simplicity.
The Jones-matrices of the experimental setup displayed in Fig. 2.7 was measured with

spectral interferometry. Consequently, the Jones-matrix can be written as(
E+

1,out

E+
2,out

)
=

(
J
(2)
11 J

(2)
12

J
(2)
21 J

(2)
22

)(
e−iφ1 0
0 e−iφ2

)(
J
(1)
11 J

(1)
12

J
(1)
21 J

(1)
22

)(
E+

1,in

E+
2,in

)
, (2.63)

where J (1) describes the influence of all optical elements from the first beam splitter
(BS1) to the LCD, the diagonal matrix with the phase retardations φ1 and φ2 describes
effect of the corresponding LCD layers, and J (2) describes the effect of all optical com-
ponents between the LCD and the experiment. Since misalignment, i.e., a relative angle
between optical elements in the experimental setup, can be expressed as additional ma-
trices, the measured Jones-matrix includes such experimental inaccuracies.
In order to get an expression for the Jones-matrix of the setup that just depends on

the phase retardations of the LCD layers it is advantageous to rewrite Eq. (2.63) by
carrying out the matrix multiplication such that(

E+
1,out

E+
2,out

)
=

(
J
(2)
11 (J

(1)
11 E

+
1,in + J

(1)
12 E

+
2,in) J

(2)
12 (J

(1)
21 E

+
1,in + J

(1)
22 E

+
2,in)

J
(2)
21 (J

(1)
11 E

+
1,in + J

(1)
12 E

+
2,in) J

(2)
22 (J

(1)
21 E

+
1,in + J

(1)
22 E

+
2,in)

)(
e−iφ1

e−iφ2

)
=

(
A11 A12

A21 A22

)(
e−iφ1

e−iφ2

)
. (2.64)

This simplification separates the influence of “passive” optical elements including the
incoming electric field, combined in the two-by-two matrix A, from the influence of the
“active” LCD, written as a two-dimensional vector.
Assuming that the “passive” optical elements as well as the incoming electric field,

i.e., the laser light, are stable during the experiment, the matrix A of Eq. (2.64) is
constant for all pulse shapes produced by the polarization pulse shaper. Consequently,
the knowledge of this matrix leads to the characterization of the polarization shaped
laser pulse E+

out that impinges at the experiment.
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Figure 2.13: The measured matrix A of Eq. (2.64). The matrix elements A11 (blue squares),
A12 (green downward-pointing triangles), A21 (red upward-pointing triangles), and A22 (cyan
dots) are shown for each frequency, separated in the absolute magnitudes (a) and the phases
(b).

To extract the matrix A of Eq. (2.64), a certain number of pulse shapes was measured
with POLLIWOG, i.e. dual-channel spectral interferometry in combination with FROG,
for a set of known phases. For the characterization of the different pulses it is important
that the pulses were measured under interferometric stable conditions as described in
Section 2.4.2. The matrix for each frequency can then be retrieved independently in
a least-square sense [17]. In principle, this is already possible using two pulse shapes.
However, to reduce the experimental uncertainties eight pulse were measured with a
constant phase for layer one φ1 = 0 rad and eight different phases for layer two φ2 =
{−3

2
π,−π,−1

2
π, 0, 1

2
π, π, 3

2
π, 2π} rad.

The absolute values and the argument values of the measured matrix A are displayed in
Fig. 2.13a and Fig. 2.13b, respectively. The absolute magnitude of the diagonal elements
A11 (blue squares) and A22 (cyan dots) are about five times larger than the off-diagonal
elements A12 (green downward-pointing triangles) and A21 (red upward-pointing trian-
gles). The gaussian shape of the absolute magnitude of all elements indicate the included
incoming electric field E+

in. The phases for the diagonal elements are almost constant
at 0 rad whereas the off-diagonal elements have values around 0.4π rad. The marginal
downchirp indicates a small misalignment of the zero dispersion compressor of the polar-
ization pulse shaper. Since the deviations from a perfectly aligned pulse shaper, which
would have equal real-valued diagonal elements and off-diagonal elements with magni-
tude zero, are small, the alignment of the pulse shaper can assumed to be sufficiently
good.

2.5 Evolutionary Algorithm

Femtosecond pulse shaping was successfully used for optimal control of optical excita-
tions in nanostructures [11, 13, 47, 48]. To find the optimal laser pulse shapes two differ-
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ent approaches are applied. Open loop optimizations are used if the response function
of the nanostructure is known and an appropriate approach can be found to determine
the optimal pulse shape [48–50]. While one kind of such an optimization scheme will
be developed and described in Chapter 4, a second approach has to be considered if the
response function is unknown. In this case an extremely large parameter space has to be
explored and learning algorithms have to be used in terms of closed loop optimizations
[11, 13]. For closed loop optimizations, described in this thesis, an evolutionary algo-
rithm [51, 52] is used. Such an algorithm finds the optimal pulse shape in an adaptive
fashion based on biological evolution.

The fundamental principles of biological evolution are replication, selection, and muta-
tion [53]. Evolution requires populations of reproducing individuals, where the genomic
material is replicated and passed on to the offspring. Selection results via a fitness that
rates certain individuals better than others and hence prefer reproduction of these indi-
viduals. Mutation is the result of imperfect reproduction and generates different types
of individuals. Due to the fitness of the different individuals, selection will choose some
innovations and dismiss others.

A diagram of the evolutionary algorithm for polarization pulse shaping that is used in
this work is depicted in Fig. 2.14. Each pulse shape is encoded into genes, represented
as the voltages of the LCD and a corresponding fitness is defined by a feedback from the
experiment or simulation, respectively. In the pool of individuals all individuals of one
generation are rated and selected by means of the assigned fitness. Selection chooses the
fittest individuals to produce the next generation. Mutation randomly changes the genes
of the fittest individuals. Cloning choses the fittest individuals to survive and passes
them to the next generation. Crossover produces new individuals possessing genes from
two of the fittest individuals. The unused individuals, i.e., the individuals that are
neither used for mutation, cloning, nor crossover, are dumped. After the assembling of
the individuals for the next generation, the next iteration is started and the algorithm
is run until convergence.

For the experiments and simulations the number of individuals was 40. Each optimiza-
tion was started with individuals which are sampled randomly in the parameter space.
The encoding of the pulse shape into genes was done in two different bases depending
on the type of experiment. For the simulations in Chapter 4 a basis was used, where
the amplitudes and phases for each polarization (2× 2× 128 parameter) can be chosen
independently for each frequency. To reduce the number of genes the genes were cho-
sen as nodes, where the interjacent values were spline interpolated. In the experiments
described in Chapters 5 and 6, only the phase of each polarization was shaped and the
number of genes was further decreased by defining a dispersion basis. In the dispersion
basis the phases applied on each layer are expanded into Taylor coefficients around the
center frequency [Eq. (2.16)] and the genes define the coefficients.

In Chapters 4 and 5 the results of closed looped optimizations with an evolutionary
algorithm are used to confirm the results that are gained with an open loop approach.
Since the agreement in both cases is very good and due to the reproducibility of opti-
mizations, as will be shown in Chapter 6, the evolutionary algorithm seems to be an
appropriate tool for optimal control of optical excitations in nanostructures.
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Figure 2.14: Evolutionary algorithm used for adaptive optimizations with the pulseshaper.
The individuals of one generation are presented by a pool and are sorted according to their
assigned fitness. Each individual represents one pulse shape that is encoded into genes, defining
the applied voltages. The fittest individuals are reproduced in terms of mutation, cloning and
crossover and are pooled together to form the next generation. Taken from Brixner [17].

2.6 Photoemission Electron Microscope

Optical excitations in metallic nanostructures are confined to the nanometer scale on
the surface of the nanostructure. The measurement of these electric fields is challenging
[54, 55] and the optical diffraction limit avoids direct measurement with conventional
confocal microscopes [56, 57]. The device, chosen for the presented experiments, is
a photoemission electron microscope (PEEM). Due to the fact that the emission of
electrons depends on the photon flux, the measurement of the photoemission enables a
measurement of the electric field strength. This is of special interest for the mapping of
local electric fields confined on the nanometer scale since the emitted electrons can be
spatially resolved below the diffraction limit of the exciting optical fields.

2.6.1 Photoemission

The underlying physics of the PEEM technique is the photoemission of electrons [58].
Photoemission is a light-matter interaction where the absorption of photons leads to
emission of electrons from matter. Although matter in general also includes non-metals,
liquids and gases, here matter equates with solid metals. The process of photoemission
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Figure 2.15: Schematic of photoelectron emission. The electrons in the solid are bounded
with an energy EB below the the Fermi energy EF and are excited with light. The vacuum
energy Evac is defined via the material dependent work function Φm. (a) One photon photo-
emission (1PPE) occurs if the energy of a single photon is sufficient to excite the electron above
the vacuum energy Evac. Hence, the electron is emitted with the remaining energy Ekin. (b,c)
Two photon photoemission (2PPE) occurs if two photons are necessary to excite the electron
above the vacuum energy Evac. In this case one photon excites the electron to an interme-
diate state. This state can be either a real electronic state with a lifetime τ (b) or a virtual
intermediate state (c), i.e., the lifetime is zero. Taken from Kramer [62].

is a quantum electrical effect, which was first observed by Hertz [59] and Hallwachs [60].
A first quantitative analysis of the effect was done by Einstein [61], who found the energy
of an emitted electron as

Emax,kin =
N∑

n=1

hνn − P, (2.65)

where the sum describes the quantized energy of N absorbed photons with their in-
dividual energies νn and h being Planck’s constant. Hence, the energy of the emitted
electron is reduced by P with respect to the energy of the absorbed photons. For elec-
trons populated at the Fermi energy the reduction P is identical with the work function
Φm, which is a material dependent quantity. If the emitted electron is bounded within
the solid the corresponding energy is below the Fermi level and an additional bounding
energy EB has to be taken into account. Hence, Eq. (2.65) can be rewritten as

Ekin =
N∑

n=1

hνn − Φm − EB. (2.66)

Figure 2.15 shows a schematic of one [N = 1, 1PPE, (a)] and two photon photoemission
[N = 2, 2PPE, (b) and (c)]. The work function Φm is the energy between the Fermi level
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EF and the vacuum level Evac, whereas the bounding energy EB reflects the reduction
of energy for electrons that are emitted from below the Fermi level.

In case of 1PPE the energy of the absorbed photon has to exceed the reduction P
to excite the electron above the vacuum energy. However, as can be inferred from
Figs. 2.15b and c, if the energy of a single photon is smaller than P , high photon flux
can lead to multiphoton photoemission. In case of multiphoton photoemission at least
one intermediate state has to be present. In the example of Fig. 2.15 2PPE is considered
to be initiated by two photons with the same energy. The emission of the electron occurs
in two steps. First, one photon is absorbed and the electron is excited to an intermediate
state. This intermediate state is above the Fermi energy but below the vacuum energy
and has to be in the energy range that is accessible with the absorbed photon. Second,
another photon is absorbed and the electron is lifted from the intermediate state above
the vacuum energy. Consequently, the electron is emitted from the metal and the kinetic
energy can be calculated via Eq. (2.66). The intermediate state can have two different
origins. The 2PPE can occur via virtual states that have a vanishing lifetime τ = 0
(Fig. 2.15c). The other possibility is a real intermediate state which has a finite lifetime
τ (Fig. 2.15b). The lifetime of such a real state is in the range of a few femtoseconds due
to electron-electron scattering processes in the solid [63] and can be measured in terms
of time-resolved 2PPE measurements [64, 65].

2.6.2 Experimental Setup

The photoemission electron microscope (PEEM) provides a tool to detect the electrons
which are emitted from a sample with a high spatial resolution. Therefore, an electro-
static lens system maps the emitted electrons onto an amplifying imaging system. The
theoretical spatial resolution of the emitted electrons’ location is limited by diffraction
and hence, is given by the de Broglie wavelength λ0 of the emitted electron with mass
me and a kinetic energy Ekin

λ0 =
h√

2meEkin

. (2.67)

Assuming a realistic kinetic energy of Ekin = 1 eV the highest theoretic resolution is in the
order of the corresponding de Broglie wavelength λ0 = 1.2 nm [66]. Recent improvement
of PEEM instrumentations report a resolution in this range with 2 nm [67]. However, to
realize such a resolution an aberration-corrected device is necessary, which is not present
for the experiments described in this thesis. Here, a commercial Focus IS-PEEM1 is
used and spherical as well as chromatic aberration of the electrostatic lenses and of the
acceleration field have to be taken into account [68]. The highest resolution reached with
this type of PEEM is reduced to about 25 nm [69]. However, the maximum resolution of
the PEEM used for the presented experiments is 40 nm and depends on the used sample
as will be discussed in more detail in Chapter 7.

The principle setup of the Focus IS-PEEM [66, 68] is depicted in Fig. 2.16. It consists
of three lenses: The tetrode objective lens, the intermediate lens and the projection

1Integrated Sample (IS) describes that the sample holder is installed at the column, which reduces
vibrations of the sample with respect to the detector and therefore increases the resolution.
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Figure 2.16: Schematic PEEM setup. A electrostatic lens system magnifies the spatially
resolved photoemitted electrons and maps them on a CCD camera using a fluorescent screen.
The first lens, a tetrode objective lens, also includes the sample. A high voltage between
the sample and the extractor detracts the emitted electrons and sends them through the lens
system. The first image is magnified with the intermediate and the projective lens to increase
the resolution and to compensate for distortions. The contrast aperture and the stigmator
reduce aberration. Modified from Schneider [70].
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lens. The tetrode objective lens contains the sample, which serves as the cathode, and
the extractor, the focus, and the column electrode. A high voltage is applied between
the sample and the extractor to extract the emitted electrons from the sample and
map them on the first image plane. In the Fourier plane (backfocal plane) a contrast
aperture blocks electrons with higher spatial frequencies. The spatial frequencies contain
the angle information of the emitted electrons. Small spatial frequencies correspond
to electrons which are emitted close to the optical axis (blue dashed line), whereas
high spatial frequencies correspond to electrons emitted far away from the optical axis.
Hence, the contrast aperture in the backfocal plane can be adjusted to decreases angle
dependent aberrations. The aberrations caused by the electro static lenses are minimized
by an octopole stigmator. The first image is magnified by the intermediate lens and the
projective lens. Here, a two lens system is used to reduce distortions of the image.
The imaging unit consists of a multichannel plate, a fluorescent screen and a CCD

camera. The multichannel plate amplifies the electrons and the optical image produced
by the fluorescent screen is recorded by a Peltier-cooled CCD camera (LaVision Imager
3LS).
The image contrast of PEEM is defined as

K =
Imax − Imin

Imax + Imin

, (2.68)

where Imax and Imin are the maximum and minimum intensities of the emitted electrons.
To analyze the PEEM images three main contrast mechanisms have to be considered
[68]. First, the contrast strongly depends on the material. Different work functions Φm

lead to different probabilities for photoemission. The best material contrast is reached
if the photon energy hν is between the work functions of two different materials, i.e.,
ϕm,1 < hν < ϕm,2. In this case, only 1PPE will be present for the material with ϕm,1,
whereas electrons can only be emitted in a 2PPE process from the material with ϕm,2

and for low light intensity these electrons can be neglected. Second, the probability of
photoemission depends on the topography of the investigated sample. The electronic
flux is perpendicular to conductive surfaces and therefore inhomogeneous for bended
surfaces. In such regions the emitted electrons are diffracted in different directions de-
pending on the inhomogeneous electronic flux and the image contrast can vary although
the photoemission is homogeneous with respect to the surface [68]. Third and most
important for this thesis, the photoemission depends on the electric field strength on
the surface of the investigated sample. This leads to enhanced photoemission for regions
with resonant near-field enhancement (Chapter 3) [71].
As can be inferred from Fig. 2.16, the sample cannot be excited under normal incidence

due to the tetrode objective lens. The illumination condition of the sample is depicted
in Fig. 2.17. The incident beam is irradiated under an angle of 65◦ with respect to
the normal vector z⃗ of the sample. Consequently, the polarization components (red)
are tilted with respect to the sample-inherent coordinate system (green). The vertically
oriented polarization component (s) is parallel to the surface of the sample, i.e, parallel
to the y direction. The component that is oriented in the plane spanned by the incoming
laser beam and the normal vector z⃗ is called p component and has a projection onto
that normal vector z⃗. The strong electric field component perpendicular to the surface
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Figure 2.17: Angle of incidence of the incoming laser beam with respect to the sample. Due
to the incident angle of 25◦ with respect to the sample plane the p component of the incoming
laser beam has a component in the direction of the normal vector z⃗. Taken from Strüber [72].

leads to an enhanced multiphoton photoemission probability of this component [72].

2.6.3 Drift Correction

The experiments described in this thesis need a huge number of PEEM images. Espe-
cially, for the 2D nanoscopy measurements (Chapter 7) more than 20000 images had
to be taken and hence a measurement sequence took about twelve hours. A problem
that comes with these long measurement times is the thermal drift of the sample holder
with respect to the contrast aperture and the imaging system. For the data analysis it
is important that the evaluated regions are defined with respect to the sample and not
with respect to the image. Since the drift is in the order of 50 nm/h, it can be neglected
for single images which are exposed for not more than 10 s. However, for experiments in
the order of several hours the evaluation has to be adjusted to correct for drift effects.
These effects would result in systematic errors and the resolution would be reduced dras-
tically. The drift correction is of special importance if the PEEM is used with maximum
magnification, i.e., with maximum resolution of about 40 nm. Hence, to account for the
thermal drift and to avoid systematic errors, the drift has to be detected and corrected
for each image of the experiment.

Therefore, an image processing routine [72] is used (Fig. 2.18). To detect the drift
of the sample holder reference images Ri are taken sequently during the measurement
imagesMi (a). EachMi does not necessarily indicate a single image, but can also indicate
several measurement images which would than be corrected using the same reference
image Ri. The reference images have to be taken under identical conditions, i.e., with
identical pulse shaper settings, to directly attribute the drift to the sample holder. Using
the reference images the drift is then detected with respect to the first reference image in
terms of a two dimensional cross-correlation (b). The cross-correlation simply shifts each
reference image Ri over the first reference image R1 in both directions and calculates the
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Figure 2.18: Image processing of PEEM data. (a) Reference images Ri are taken sequently
during the measurement imagesMi. (b) The reference images Ri are used to detect the drift via
a cross-correlation. (c) The drift in both dimensions is recorded for each reference image and
then (d) used to correct the corresponding measurement images Mi. Modified from Strüber
[72].

correlation by a scalar product of the two images for each shift position. The highest
scalar product then reveals the best overlap and the corresponding drift. To exclude
regions of the image which are due to imaging defects of the imaging system and hence
do not drift, a drift mask is defined in advance. Therefore, only a certain part of the
image is used for the cross-correlation. The remaining part of the image is filled with
noise. The drift is recorded for each reference image in both dimensions (c) with a
resolution of 1 pixel of the CCD camera. In the last step the measured data images are
corrected with the assigned drift (d).
Two different types of drift correction have to be considered. First, for measurements

which are done in scanning mode the drift detection and correction can be done as a
part of the data analysis, i.e., the detection and correction is done after finishing the
experiment. Second, for adaptive optimizations of the photoemission yield (Chapters 5
and 6) the drift has to be detected and corrected on-the-fly. This is important since the
optimizations require pre-defined regions to calculate the feedback for the optimization.
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One of the main subjects that is treated in this thesis is the control of optical near fields.
The properties of near fields (Section 3.1) enable to circumvent the optical diffraction
limit and provide a high number of possible applications as will be discussed throughout
the thesis. Especially interesting is the control of near fields that is gained by excitation
of nanostructures with polarization shaped laser pulses (Section 3.2). Since optical near
fields can be calculated by self consistently solving Maxwells equations, computer based
simulations provide an easy and reliable access to these fields (Section 3.3).

3.1 Principles of Nanooptic

Before describing the properties of optical fields localized below the diffraction limit, we
first have to understand how it is possible to beat the diffraction limit. This is done
using the basic concept of focusing [54].

Considering an unfocused beam propagating in z direction, the wavevector k⃗ of this
propagating wave is given by kz = |⃗k| and kx = ky = 0. However, in case of focusing, the
components kx and ky have nonvanishing contributions. As can be inferred from Fig. 3.1
the focusing is an interference effect caused by the superposition of planar waves. These
waves propagate under different angles θ with respect to the beam direction and hence
possess different wavevectors, where only a two-dimensional space is considered here.
The more propagating waves with different angles θ, i.e., kx components, are present
the more waves can interfere to increase the localization on the x axis. This effect can
easily be explained in terms of Fourier transform theory: A high localization in position
space ∆x, requires a broad spectrum of spatial frequencies ∆kx. Analogously to the
time-bandwidth product of Eq. (2.25) the product of spatial localization and spatial
frequency spread has a lower limit given by

∆x∆kx ≥ ck, (3.1)

where ck is a constant on the order of one, which depends on the focusing conditions.
In general, the absolute value of the wavevector is given by

|⃗k| =
√
k2x + k2y + k2z =

2π

λ
(3.2)

and is inversely proportional to the wavelength λ. Hence, the broadest theoretical spec-
trum of spatial frequencies of the component kx is the total length of the free-space
wavevector |⃗k|, i.e., θ = π/2 and kz = 0. Using the definition of the total length of the

free-space wavevector |⃗k| [Eq. (3.2)] as the spread in spatial frequencies, Eq. (3.1) can
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intensity Figure 3.1: Schematic of focusing. The
superposition of multiple plane waves,
arriving from different directions defined
by the angle θ with respect to the z axis,
result in constructive and destructive in-
terference in the focal plane. The ob-
served intensity distribution yields high
intensity in the focus with concentric
bright rings around it and is known as
Airy pattern. Taken from Rewitz [73].

be rewritten as

∆x ≥ λ

ck2π
. (3.3)

Consequently, the spatial confinement is limited by the spread of wavevector components
in the respective direction. This limit also leads to the expression of the Abbe diffraction
limit and restricts the spatial resolution of optical microscopy. However, it is only
restricted by the spread of the wavevector components in a given direction. One way
to mathematically overcome this restriction for the two-dimensional space chosen here
is to assign a purely imaginary kz. As can be inferred from Eq. (3.2), this can lead to
increased values of the wavevector component kx, such that

kx > |⃗k| (3.4)

and ∆x can be smaller than the diffraction limit. Plugging in the purely imaginary
wavevector component kz into the definition of a spatially propagating field [Eq. (2.30)]
reveals the physical meaning of the mathematical trick. The electric field in z direction
is then exponentially decaying

Ez(z, ω) = Ez(0, ω) e
ikzz = Ez(0, ω) e

−|kz |z . (3.5)

On the one hand this would lead to decaying electric fields for z > 0, on the other hand
the electric field increases exponentially for values z < 0, which does not make physical
sense. Therefore, Eq. (3.3) is always valid in free space, but as will be explained in Sec-
tion 3.1.1, for two half-spaces with different refractive indices, exponentially decreasing
electric fields can exist and a localization of the electric field below the diffraction limit
[Eq. (3.3)] is possible. Since the resulting electric fields are bound to the surface because
of their exponential decay, they are also called near fields. Apart from near fields that
are bound to planar interfaces, in Section 3.1.2 near-field properties of particles with
dimensions much smaller than the wavelength are discussed. The interparticle coupling
of such near fields is explained in Section 3.1.3.

3.1.1 Propagating Surface Plasmon Polaritons

Picking up the reasoning above, we will now take a look at surface plasmon polaritons
(SPPs) excited at an interface, i.e., two half-spaces with different dielectric functions.
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Figure 3.2: Surface plasmon polaritons (SPPs) propagating along the x axis. (a) The electric
field (red arrows) of an propagating SPP bounded to a metal-dielectric interface resulting from
collective oscillations of the free electron gas density in the metal (indicated with + and −).
The magnetic field is indicated with Hy and is polarized parallel to the surface. The bounding
of the fields is indicated in (b). The penetration depths of the z component of the electric field
are indicated with δd and δm for z > 0 (dielectric) and z < 0 (metal), respectively. (c) The
dispersion relation of SPPs and that of light in vacuum, i.e., ω = kxc, are indicated with solid
and dashed lines, respectively. Since the dispersion relation of SPPs is below the light line, the
condition kSPP > k0 holds for all frequencies. Taken from Barnes et al. [74]. Copyright (2003)
by Macmillan Publishers Ltd.

Surface plasmon polaritons are collective excitations of electrons in the conduction band
of a metal. They describe the interaction of electromagnetic waves with the electron
plasma and are solutions to Maxwell’s equations on a metal-insulator interface. Fig-
ure 3.2 shows the main properties of propagating plasmon polaritons. As can be inferred
from Fig. 3.2a, the electric field (red arrows) is bounded to the surface and is coupled
to the collective oscillations of the free electron gas in the metal (+ and − signs). The
magnetic field, indicated with Hy, just has a component in y direction, i.e., is parallel to
the interface. This is a main property of SPPs and it can be shown by solving Maxwells
equations that SPPs only exist for transverse magnetic (TM) polarization [55]. The z
component of the electric field is exponentially decreasing and the penetration depth δd
in the dielectric is longer than the depth δm in the metal (Fig. 3.2b). Consequently, the
electric field, bound to the interface is called near field. Using appropriate boundary
conditions, the dispersion relation of a propagating plasmon at an interface located in
the x-y plane at z = 0 is

kx(ω) =
ω

c

√
εm(ω)εd(ω)

εm(ω) + εd(ω)
, (3.6)

where εm(ω) and εd(ω) are the dielectric functions of the metal and the dielectric ma-
terial, respectively. The real part of kx(ω) defines the SPP wavelength, whereas the
imaginary part defines the propagation length along the interface. The propagation dis-
tances are typically on the order of several tens of micrometers. As can be inferred from
Fig. 3.2c the dispersion relation of SPPs [Eq. (3.6)] does not cross the dispersion relation
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of light in vacuum (ω = ckx). For any frequency ω the momentum, i.e., the absolute
value of the k vector, of the SPP is larger than that of a photon, i.e., kSPP > k0. This
is a very critical property that, on the one hand, avoids a direct excitation of SPPs on
a dielectric-metal interface with far-field illumination. On the other hand, scattering of
SPPs to the far-field is suppressed, which results in the long propagation length.

However, to match the momenta of SPPs and photons different concepts are applied. It
is possible to excite SPPs using evanescent waves that arise from total internal reflection,
e.g., at a glass air interface. This can be understood by a decrease of the slope of the light
line ω = ckx/n by using a dielectric with a diffraction index n > 1 [54]. This leads to an
intersection of the two dispersion relations and excitation of SPPs is achieved. For the
first time this was realized by Otto [75] and Kretschmann [76] by means of evanescent
waves created by a glass prism. A different approach to excite SPPs is to adjust the
dispersion relation of the SPPs to match the light line. This can be done by writing a
grating into the metal surface [77]. The lack of momentum of the light is then provided
by the grating.

3.1.2 Resonant Plasmonic Modes

For a particle that is much smaller than the wavelength of the exciting field, e.g., a
sphere with diameter d = 2a ≪ λ, the phase of the field can be considered constant
over the complete volume of the particle. Therefore, the local field can be calculated in
a quasi static approximation. After gaining the solutions for the static electric field the
time dependent oscillations of the local field can be multiplied.

As an example the local field is calculated for a homogeneous isotropic sphere with
radius a and dielectric function εm(ω) in the static electric field E⃗0 = E0e⃗z (Fig. 3.3)
[55]. The surrounding material is isotropic and non-absorbing, with real-valued dielectric
constant εd(ω). Since we consider an electrostatic approach, we have to solve the Laplace
equation for the potential ∇2Φ(ω) = 0. Note that Φ(ω) does not describe a phase here,

but the electric potential. The electric field can then be calculated by E⃗(ω) = −∇Φ(ω).
Using the azimuthal symmetry of the problem, the solution is expressed in terms of
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Legendre Polynomials Pl(cos θ) [20]

Φ(r, θ) =
∞∑
l=0

[
Blr

l + Clr
−(l+1)

]
Pl(cos θ), (3.7)

where l is the polynomial order. The dependence on the position vector r⃗ is taken into
account with the angle θ which is defined between the vector itself and the z axis and
the distance from the origin of the sphere r = |r⃗|. Two different solutions are found: Φin

inside and Φout outside the sphere. The requirement of a finite field in the origin of the
sphere leads to [55]

Φin(r⃗) =
∞∑
l=0

Blr
lPl(cos θ) (3.8)

Φout(r⃗) =
∞∑
l=0

[
Clr

l +Dlr
−(l+1)

]
Pl(cos θ). (3.9)

Using the boundary conditions Φout(r⃗) → −E0r cos θ at r → ∞ and the continuity of
the tangential components of the electric field as well as the continuity of the normal
component of the displacement field at r = a, the coefficients Bl, Cl and Dl can be
determined. The potentials can then be written as [20]

Φin(r⃗, ω) = − 3εd(ω)

εm(ω) + 2εd(ω)
E0r cos θ (3.10)

Φout(r⃗, ω) = −E0r cos θ +
εm(ω)− εd(ω)

εm(ω) + 2εd(ω)
E0a

3 cos θ

r2
. (3.11)

Here, the frequency dependent dielectric functions are included and hence, the potential
also depends on the frequency. Furthermore, Eq. (3.11) can be rewritten by defining a
dipole moment p⃗(ω) such that

Φout(r⃗, ω) = −E0r cos θ +
p⃗(ω) · r⃗
4πε0εdr3

, (3.12)

with

p⃗(ω) = 4πε0εd(ω)a
3 εm(ω)− εd(ω)

εm(ω) + 2εd(ω)
E⃗0. (3.13)

As can be inferred from Eq. (3.13) the applied electric field induces a dipole moment,

which is proportional to E⃗0. Using the dipole moment defined in Eq. (3.13) and the

identity p⃗(ω) = ε0εd(ω)α(ω)E⃗0, the polarizability α(ω) can be introduced:

α(ω) = 4πa3
εm(ω)− εd(ω)

εm(ω) + 2εd(ω)
. (3.14)

The polarizability of a silver sphere is shown in Fig. 3.4, where the dielectric function
of silver is taken from Palik [78]. The surrounding material is vacuum, i.e., εd(ω) = 1.
A resonant enhancement of the polarizability is observed around the frequency ω =
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5.4 rad/fs, corresponding to the minimum of |εm(ω) + 2εd(ω)|, i.e., the absolute value
of the denominator of Eq. (3.14). Mathematically, the magnitude of the polarizability
could be infinity, if εm(ω) = −2εd(ω). However, due to the real-valued dielectric function
of the surrounding material it is limited by the imaginary part of εm(ω). If the imaginary
part of εm(ω) is almost constant around the resonance, the resonance condition for the
maximum simplifies to the so-called Fröhlich relation condition

Re {εm(ω)} = −2εd(ω). (3.15)

The mode of the local field that is observed for an electric field at the resonance frequency
is called the dipole surface plasmon. As can be concluded from Eq. (3.14) the surrounding
material strongly affects the resonance frequency. A red-shift is observed for an increase
of ϵd(ω).
Using the calculated potentials Φin(r⃗, ω) and Φout(r⃗, ω), the position dependent electric

field is gained via E⃗(r⃗, ω) = −∇Φ(r⃗, ω)

E⃗in(r⃗, ω) =
3εd(ω)

εm(ω) + 2εd(ω)
E⃗0 (3.16)

E⃗out(r⃗, ω) = E⃗0 +
3n⃗(n⃗ · p⃗(ω))− p⃗(ω)

4πε0εd(ω)

1

r3
. (3.17)

Here, n⃗ describes the unit vector in the direction of r⃗. Two dimensional cuts of the
spatial distribution of the electric field are depicted in Fig. 3.5 for two different charac-
teristic excitation frequencies. Due to the azimuthal symmetry only one half space is
plotted, containing all the information. As can be inferred from Eqs. (3.16) and (3.17)
the resonance condition of the polarizability α(ω) also holds for the local electric field
inside and outside the sphere. Hence, a field enhancement of about five is observed by
comparing the amplitude of the electric field for the resonance frequency (ω = 5.4 rad/fs)
and for an off-resonant frequency (ω = 1.5 rad/fs) in Figs. 3.5a and 3.5b, respectively.
Additionally to spherical objects, similar solutions can be derived for ellipsoids [55].
Many applications of plasmonic excitations, such as optical devices [79], optical nonlin-

earities [80] and sensors [81, 82], rely on this field enhancement. Additional applications
are found in spectroscopy such as surface enhanced Raman scattering (SERS) [83] and
coherent control on single molecules [9]. The highest field enhancements can be reached
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Figure 3.5: Half spaces of the local
electric field distribution of a silver
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with so-called optical nanoantennas [84, 85], leading to a resonant enhancement factor
of more than 1000 [85].
As already mentioned above the solution for the local electric field was found in a quasi

static approximation, i.e., a constant electric field E⃗0. To recover the time dependent
dipole moment as well as the local field, the solutions of Eqs. (3.13), (3.16) and (3.17)

have to be extended with the oscillating term e−iωt such that E⃗0(t) = E⃗0 e
−iωt. The

local field is then determined for a monochromatic incident field with frequency ω and
plane-wave illumination.
In Eq. (3.12) the dipole character of the induced local field is introduced. Using the

general description of the quasi-static total electric field induced by an oscillating dipole
with frequency ω [20]

E⃗(r⃗, ω) =
1

4πε0εd(ω)

{
k2 [n⃗× p⃗(ω)]× n⃗

eikr

r
+ {3n⃗ [n⃗ · p⃗(ω)]− p⃗(ω)}

(
1

r3
− ik

r2

)
eikr
}
,

(3.18)
the far (kr ≫ 1, 1/r dependence), intermediate (kr ≈ 1, 1/r2 dependence) and near
zone (kr ≪ 1, 1/r3 dependence) can be defined, where the electric field in the near zone
is also called near-field and equates with the local field outside of the sphere derived
above [Eq. (3.17)]. Again, the time dependence of the total electric field is obtained by
multiplication of the quasi-static total electric field [Eq. (3.18)] with the oscillating term
e−iωt.
Factoring out the scalar description of the exciting electric field in Eq. (3.17) and

introducing a frequency dependent E0(ω) yields

E⃗out(ω, r⃗) =

[
e⃗z + α(ω)

3n⃗(n⃗ · e⃗z)− e⃗z
4π

1

r3

]
︸ ︷︷ ︸

A⃗(r⃗,ω)

E0(ω), (3.19)

where A⃗(r⃗, ω) is defined as the optical response function of the sphere to a certain po-
larization component, here the z component. Although, this is the solution for a certain
structure found by a simplified approach, due to the linearity of Maxwell’s equations
it is always possible to write the local field in frequency space at a certain point r⃗ as
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a product of the response function A⃗(r⃗, ω) and the exciting electric field E0(ω) with a
certain polarization component. Note that two important physical properties come with
this notation: First, it is possible to shape the local field, i.e., the optical near-field, of
nanostructures via shaping the far-field excitation, i.e., introducing a complex-valued
E0(ω). Second, due to the vector character of the response A⃗(r⃗, ω) the local electric

field vector E⃗out(ω, r⃗) does not have to have the same direction as the excitation field

E⃗0. These two properties will be used in Section 3.2 to explain the control of near fields
in nanostructures.

Although the quasi-static approximation gives good agreement for particles much
smaller than the wavelength it does not predict a size dependent resonance condition as
it is observed for particles on the order of the wavelength [86]. To explain the scattering
colors of colloidal gold particles and to derive equations that can be used independent
of the size of the particle, Mie developed a complete theory. This theory expands the
internal and the scattered field into normal modes described by vector harmonics [87].
Since the detailed expression for the higher terms is not of interest for the scope of this
thesis and is discussed elsewhere, it is just important to point out that the denomina-
tor of the polarizability [Eq. (3.14)] includes a size dependent parameter x = πa/λ0
which relates the radius a of a sphere to the excitation free-space wavelength λ0. This
parameter shifts the resonance to smaller frequencies as the radius a increases.

So far, only single frequency excitation was considered. However, since in this thesis
excitation of nanostructures with femtosecond laser pulses are described—corresponding
to a finite width of the exciting spectrum—we have to take dynamic damping processes
caused by the nanostructure into account. The dominating damping processes of reso-
nant modes in noble metal nanoparticles are shown in Fig. 3.6. Since electromagnetic
fields, i.e., photons, couple strongly to the resonant plasmonic modes, inversion of this
coupling results in radiation damping of the plasmonic modes caused by transfer of
the coherent electron oscillation, i.e., plasmons, into photons (left) [88]. This damping
process increases for increasing particle size [89]. Apart from radiative there is also non-
radiative damping, which is due to the excitation of electron–hole pairs in the metal
(right). The electron-hole pairs can either be excited via intraband excitations within
the sp conduction band or via interband excitations from d-bands to the sp conduction
band. The electron–hole pairs excited by the strong field enhancement due to resonant
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Figure 3.7: Dephasing times of particle plasmons measured by Sönnichsen et al. [92]. The
resonance linewidth and corresponding dephasing time versus the resonance energy of silver (a)
and gold (b) nanospheres with different diameters are measured using dark-field microscopy.

modes can lead to broadband photoluminescence [90, 91].

Both of these damping processes, i.e., radiative and non-radiative decay, result in a
population relaxation and are expressed in terms of the decay time T1. An additional
process not considered above and in the decay time T1 is the so called pure dephasing
time T ∗

2 resulting from elastic collisions of the electrons leading to a dephasing of the
collective motion of the electrons within the metal. Combination of these two processes
yield the dephasing time

1

T2
=

1

2T1
+

1

T ∗
2

. (3.20)

Even though both times T1 and T ∗
2 contribute to the dephasing time T2, it was shown

that in general T ∗
2 ≫ T1 [89]. Hence, the dephasing time is mainly governed by the

decay time, such that T2 = 2T1. Sönnichsen et al. [92] showed that for gold and sil-
ver particles that are smaller than 100 nm, the dephasing time T2 is smaller than 10 fs
(Fig. 3.7). They measured the homogeneous linewidth, which is inversely proportional
to the dephasing time, of (a) silver and (b) gold nanospheres with different sizes using
dark field microscopy. They observed a strong size dependence on the dephasing time
that results from increasing radiative decay with increasing particle size. Additionally,
the redshift for increasing particles size as mentioned above is observed and a mate-
rial dependent shift is observed by comparing, e.g., particles of size 20 nm, yielding a
resonance at around 2.9 eV for silver and around 2.25 eV for gold.

It is important to point out that the optical response function A⃗(ω), which will be
used in the following to describe optical near-fields, includes these damping processes
via the measured dielectric functions.

3.1.3 Coupling of Localized Plasmons

Above, single particles are discussed in terms of their response to optical excitations
and a single optical resonance frequency ωR is found. However, in Chapter 4 a one
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Figure 3.8: Schematic of the near-field coupling in chains of nanoparticles excited with light
polarized along the z direction. The field lines of the near-field are indicated with grey arrows
for (a) the longitudinal mode and (b) the transversal mode. White arrows in the spheres
indicate the direction of the induced dipoles. Adapted from Maier [55].

dimensional chain of silver spheres is excited. Therefore, we want to discuss the change
of optical properties that come with multiple coupled particles in the following.

If the interparticle distance d is much smaller than the wavelength λ the coupling is
dominated by near-field interactions. In this case the particle array can be assumed to
consist of an array of point dipoles interacting via their near fields and the electric field
is strongly localized in the nano-sized gap. The field localization reflects the excitation
of plasmon modes that suppresses scattering to the far field [93].

As an example Fig. 3.8 shows a chain of three coupled spheres. The dipolar character
of the spheres is indicated with white arrows in the spheres pointing in the corresponding
direction. If the interparticle distance is small, the electric field induced by the dipole,
indicated with the gray arrows, couples to neighboring spheres. As can be inferred
by the charge distribution, indicated with plus and minus signs, the coupling leads to
Coulomb forces between the particles. Two different modes have to be distinguished
for in-phase excitation, i.e., all dipoles in the chain point in the same direction [55].
The longitudinal mode (Fig. 3.8a) is excited if the dipoles point in the direction of the
chain’s main axis, i.e., the polarization of the exciting light and the chain’s main axis
point in z direction. In this case the restoring force acting on the oscillating electrons is
decreased, with respect to a single sphere, by the charge distribution of the neighboring
particles, i.e., plus signs are adjacent to minus signs. Hence, the resonance is shifted to
frequencies ω < ωR, where ωR is the resonance of a single sphere. The transverse mode
(Fig. 3.8b) is excited if the dipoles point in the direction perpendicular to the chain’s
main axis, i.e., the polarization of the exciting light points in z direction whereas the
chain’s main axis points in x direction. Consequently, the resonance is shifted to higher
frequencies (ω > ωR) due to the increased restoring force, i.e., plus signs are adjacent
to plus signs. As already mentioned above, the dipolar coupling is a near-field property
that strongly depends on the interparticle distance. Hence, the resonance shifts of the
two modes scale with d−3 and converge to the resonance of a single sphere ωR for d→ ∞
[94]. An additional dependence on the chain length, i.e., the number of spheres in the
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chain, is observed [95].

As a very intuitive consequence of the strong coupling, particle chains are suitable
to guide electromagnetic energy. The investigation of this property needs a localized
excitation scheme. Theoretically, it is possible to place a dipole source next to a chain.
Using this approach two different speeds can be assigned to the two different travelling
modes (transverse and longitudinal mode) [96]. In an experiment, the local excitation
has been realized by a near-field microscope tip [97].

3.2 Control Mechanisms

One of the main topics of this thesis is the control of optical near fields to provide
ultrafast optical excitations localized below the optical diffraction limit. In this section
the mechanisms are introduced that allow for the control of near fields in terms of
constructive and destructive interference as well as temporal compression [12]. The latter
is explicitly needed to provide femtosecond resolution in, e.g., spectroscopic applications.

As already introduced in Section 3.1.2 the optical response function to the excitation
polarization component i can be expressed in frequency domain by

A⃗(i)(r⃗, ω) =

 A
(i)
x (r⃗, ω)

A
(i)
y (r⃗, ω)

A
(i)
z (r⃗, ω)

 . (3.21)

Physically, this can be understood as different optical modes A⃗(i)(r⃗, ω) that are excited
with polarization component i in nanostructures, e.g., as described in Fig. 3.8. The
amplitudes |A(i)

α (r⃗, ω)| with α = x, y, z describe the extent to which the far-field polar-
ization component i couples to the optical near-field components, whereas the phases
θ
(i)
α (r⃗, ω) = arg{A(i)

α (r⃗, ω)} determine their vectorial superposition and dispersion prop-
erties. These quantities are characteristics of the nanostructure and depend on the
focusing conditions. However, the response is independent of the applied pulse shape
that will be considered below.

As already introduced in Chapter 2 the incident polarization-shaped laser pulse, prop-
agating in z direction, can be expressed in frequency domain by two orthogonal polar-
ization components: Ein

1 (ω), oriented along the x axis, and Ein
2 (ω), oriented along the y

axis, consisting of spectral amplitudes
√
Ii(ω) and phases φi(ω) which can all be varied

independently using a full vector-field synthesizer (Section 2.3.4):

Ein
i (ω) =

√
Ii(ω) e

−iφi(ω) . (3.22)

Note, that this description equates with the expression of E+(ω) introduced in Chapter 2
[i.e., Eq. (2.15)]. However, the spectral amplitude is expressed here as the square root
of the intensity.

Due to the linearity of Maxwell’s equations, the total local near-field E⃗(r⃗, ω) is ob-
tained by calculating the near field for each far-field polarization separately and taking
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the linear superposition [11]:

E⃗(r⃗, ω) =

 A
(1)
x (r⃗, ω)

A
(1)
y (r⃗, ω)

A
(1)
z (r⃗, ω)

√I1(ω) e
−iφ1(ω) +

 A
(2)
x (r⃗, ω)

A
(2)
y (r⃗, ω)

A
(2)
z (r⃗, ω)

√I2(ω) e
−iφ2(ω) . (3.23)

Since Eq. (3.23) gives a complete picture, i.e., the amplitude and phase of the local

electric field in the frequency domain, the local electric field in the time domain E⃗(r⃗, t)

can be obtained by inverse Fourier transforming E⃗(r⃗, ω) for each vector component
separately.
In the following subsections it is shown that the independent external far-field pa-

rameters that determine the local fields are better expressed in the following equation:

E⃗(r⃗, ω) =


 A

(1)
x (r⃗, ω)

A
(1)
y (r⃗, ω)

A
(1)
z (r⃗, ω)

√I1(ω) +

 A
(2)
x (r⃗, ω)

A
(2)
y (r⃗, ω)

A
(2)
z (r⃗, ω)

√I2(ω) e
−iΦ(ω)

 e−iφ1(ω), (3.24)

where the phase difference of the two external polarization components is defined anal-
ogously to Eq. (2.35), such that

Φ(ω) = φ2(ω)− φ1(ω). (3.25)

Below, it will be shown that the phase difference Φ(ω) and the spectral amplitudes√
I1(ω) and

√
I2(ω) of the incident polarization components determine the local linear

flux (Section 3.2.1) whereas the phase offset φ1(ω) provides a handle to manipulate the
temporal evolution of the local fields (Section 3.2.2).

3.2.1 Spatial Control

For the control of the spatial distribution of the optical near field E⃗(r⃗, ω) the interfer-
ence of two near-field modes excited with two different far-field polarizations are utilized.
Figure 3.9 illustrates the main concept of the interference in two dimensions for a sin-
gle frequency in a quasi-static approximation. Without loss of generality, the electric
far-field, i.e., electric field that propagates in space, can be described by two orthogonal
polarizations (left panel). No interference is observed for the two components in the
far-field. However, the superposition of these two polarizations can describe any state
of polarization as will be needed for polarization-shaped laser pulses. Each far-field
polarization component Ein

i induces an optical near-field described by the optical re-

sponse function A⃗(i) (right panel). Since A⃗(1) and A⃗(2) do not have to be perpendicular,
they can interfere with each other. Hence, by adjusting the relative phase Φ(ω) and
the amplitudes

√
I1(ω) and

√
I2(ω) of the far-field polarizations the two modes can be

chosen to interfere constructively or destructively at a certain position. As an example
the optical near field is depicted for two different excitation pulse shapes. The solid red
arrow indicates the optical near field E⃗un of an unshaped pulse, i.e., Φ = 0, resulting
from the superposition of the response functions A⃗(1) and A⃗(2). The dashed red arrow
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Figure 3.9: Schematic for spatial optical near-field control. Left panel: The electric far-field
can in general be described by two perpendicular polarizations E⃗in

1 and E⃗in
2 , which do not

interfere. An applied phase of π to polarization component 1 results in E⃗in
1 eiπ (dashed blue

arrow). Right panel: Each of these far-field polarizations excite position dependent optical
near-field modes expressed via their optical response functions A⃗1(r⃗) and A⃗2(r⃗). Since these
modes have optical near-field properties they do not have to be perpendicular and can interfere
constructively or destructively. By manipulation of the far-field polarization components the
optical near-field E⃗ can be controlled. Two different examples are depicted: The solid red
arrows show the optical near field E⃗un for an unshaped pulse. The dashed red arrows show
the optical near-field E⃗sh for an applied phase of π to the far-field polarization component E⃗in

1 .
Adapted from Brixner et al. [12].

indicates the near field E⃗sh of a shaped pulse that is obtained for applying a phase of π
to the far-field polarization component E⃗in

1 , i.e., Φ = −π. Accordingly, the near field is

the superposition of A⃗(1) eiπ and A⃗(2). As can be inferred the two different far-field pulse
shapes do not only change the direction of the resulting near field but also change the
amplitude, i.e., the length, of the near-field vector. Hence, constructive and destructive
interference is observed for unshaped and shaped pulse, respectively, i.e., |E⃗un| > |E⃗sh|
in this example.

Since the optical response functions can differ for positions that are separated less
than the diffraction limit, the optical near field distribution can be adjusted with a
resolution below the optical diffraction limit by far-field polarization pulse shaping. First
theoretical and experimental applications of this mechanisms where shown by Brixner
et al. [11–13]. However, in these applications the optimal excitation pulse shapes were
found adaptively using an evolutionary algorithm. In Chapter 4 the understanding of
the spatial near-field control mechanism is used to define deterministic rules that enable
analytic calculation of the optimal parameters Φ(ω),

√
I1(ω) and

√
I2(ω).
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Figure 3.10: Schematic of optical near-field pulse compression. Middle panel: the phase

θ
(1)
x (r⃗1) of the x component of the optical response function A

(1)
x (r⃗) is shown for two different

locations r⃗1 and r⃗2. Left panel: The negative optical near-field phase of position r⃗1 is applied to

far-field excitation, i.e., φ1 = −θ(1)x (r⃗1). Right panel: The applied phase results in a temporally
compressed optical near-field intensity at position r⃗1 whereas no compression is achieved for
position r⃗2. Adapted from Brixner et al. [12].

3.2.2 Temporal Control

Equation (3.24) yields four independent parameter that determine the local electric field,
i.e., the amplitudes

√
I1(ω) and

√
I2(ω), the phase difference Φ(ω) and the phase φ1(ω).

Three of them are already used to control the spatial distribution of the optical near
field. In this section, the remaining parameter φ1(ω) is used to compress the optical
near field in time. The basic principle of near-field compression works analogously to
automated laser pulse compression in the case of conventional far-field optics that has
been addressed more than 10 years ago [98, 99]. The basic idea is that in order to
achieve the shortest possible laser pulse, a linear spectral phase is required according to
the Fourier relation between frequency and time domain. In the experimental implemen-
tation, learning algorithms were used to modify the spectral phase such that a nonlinear
signal (second-harmonic generation in a nonlinear crystal) was maximized. Thus, the
material dispersion in optical components can be compensated in order to reach highest
peak intensities at the position of the experiments.

Figure 3.10 illustrates the pulse compression scheme transferred to the optical near
field. Assuming only one component (e.g., the x component) of the near field, the

spectral near-field phase θ
(1)
x (r⃗1) for excitation with an unshaped pulse polarized along

polarization component 1 is displayed in the upper middle panel. By applying exactly
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the negative spectral phase to the exciting laser pulse φ1 = −θ(1)x (r⃗1) (left panel) the
resulting near field phase is zero over the complete spectrum and the local intensity is
optimally compressed in time (upper right panel). However, at a different position r⃗2
the phase θ

(1)
x (r⃗2) can differ (lower middle panel) and no compression is achieved for this

position (lower right panel). Hence, a nonlinear signal, e.g., SHG, excited with the local
electric field at position r⃗1 would have large values whereas the nonlinear signal would
be small at position r⃗2. Of course, by varying the far-field phase φ1 to be the inverse of
the near-field phase θ

(1)
x (r⃗2) it is possible to compress the near-field intensity at position

r⃗2 and to switch the maximum nonlinear signal.
However, this approach is limited because only one excitation polarization is con-

sidered (component 1) and only one local electric field component (x component) can
be compressed. A detailed discussion of the near-field compression including all three
components of the near field is found in Section 4.4.2. The near-field compression in
combination with the spatial control mechanism introduced in the last section will be
used to guide and compress the optical near field in a T-chain nanostructure (Chapter 4).
As an example of optical near-field compression in nanostructures, a simple wave-

guide structure composed of a nanoantenna and a two-wire transmission line (left panel
Fig. 3.11) was investigated in a collaboration with the group of Bert Hecht1. The op-
tical near fields were calculated using the commercial Finite Difference Time Domain
(FDTD) Method of Lumerical Solutions. The structure was excited with a 10 fs pulse
(FWHM) at 800 nm center wavelength focused down to the diffraction limit on Point
A (red dashed circle). Upon illumination of the dipole antenna with polarization along
the antenna arms (red dashed line), the optical near field is first spatially confined and
enhanced in the feed gap of the antenna and then travels as a strongly confined mode
between the two wires of the transmission line. As shown in Fig. 3.11a, the temporal
responses obtained at different positions along the transmission line show broadening,
which is increasing with the distance traveled (point A–D) due to dispersion. By apply-
ing a phase-shaped pulse (Fig. 3.11b, black dashed lines: unshaped pulse; red dashed
line: shaped pulse) to the incoupling antenna using the method outlined above, the
optical near-field intensity was recompressed at point D and the maximum optical near-
field intensity was improved by a factor of 1.5 as shown in Fig. 3.11b (red solid line as
compared to black solid line). Hence, the dispersion was pre-compensated by applying
a longer pulse at the input (Fig. 3.11b left) that resulted in a compressed pulse at the
target position (Fig. 3.11b right).

3.3 Multiple Elastic Scattering of Multipole Expansions

In Section 3.1.2 a simplified approach was used to calculate the local field in the vicinity
of a small sphere. This approach is very limited since it only works in the quasi-static
regime and the response of more complex structures would have to be calculated using
Mie theory. Here, a different but very general approach to calculate the complex-valued
linear optical response of the nanostructure in the frequency domain is introduced. The

1Nano-Optics and Biophotonics Group, Experimentelle Physik 5, Universität Würzburg, Am Hubland,
97074 Würzburg, Germany
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Figure 3.11: Near-field pulse compression in a wave guide. Left panel: sketch of the transmis-
sion line and the observation points. Two long gold nanowires with 20× 20 nm2 cross section
and 10 nm separation are attached to two arms of a 20×20×190 nm3 antenna. The red dashed
circle denotes the excitation focus. Observation: point A is located at the feed gap center,
while points B–D are shifted in the positive y direction from point A by 1000 nm, 2000 nm,
and 3000 nm, respectively. Right panel: (a) normalized temporal intensity profiles recorded at
points A (red), B (blue), C (green), and D (pink) obtained with the default source (black); (b)
normalized original (black line) and shaped (red line) temporal intensity profiles of the source
(dashed) and the response at point D (solid). Taken from Huang et al. [100]. Copyright (2009)
by The American Physical Society.

method relys on a multiple scattering approach realized in the multiple elastic scattering
of multipole expansions (MESME) code [101, 102]. The code was introduced by Garćıa
de Abajo and is based on the formalism of cluster models for the simulation of electron
diffraction in solids [103, 104]. It is a fast, accurate, and general technique, which can be
used to obtain the linear optical response of clusters of distributed scatterers of arbitrary
shapes and dimensions in the frequency domain. Additional features of MESME are the
calculation of radiation cross sections and electron energy losses. However, in the scope
of this thesis it is used to calculate the optical response of a T-chain nanostructure
excited with tight focused optical far-field illumination (Chapter 4).

The following discussion is based on the description of Garćıa de Abajo [101, 102]
and Tutsch [105]. Here, the frequency dependence is omitted for the sake of simplicity
and the description is reduced to the electric field whereas the magnetic field can be
calculated in analogy. First, scalar functions are introduced to describe the electric field
(Section 3.3.1). These scalar functions are then used to calculate the direct scattered
field of a single object (Section 3.3.2). The remaining contribution to the scattered
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field is calculated via the self-consistent induced field coming from different objects in
the cluster (Section 3.3.3). Finally, the implementation as incorporated in the code is
presented (Section 3.3.4).

3.3.1 Expansion of External Field into Multipoles

The electromagnetic field in a homogeneous region of space, which is free of charges
and currents, can be expressed in terms of multipole expansions with respect to a given
origin rα. Since the electric field is transversal in that region it can be written as

E⃗ = L⃗αψ
M
α − i

k
∇× L⃗αψ

E
α , (3.26)

where k is the amplitude of the wavevector and ψM
α and ψE

α are magnetic and electric

scalar functions depending on the three spatial coordinates, respectively. L⃗α = −i(r⃗ −
r⃗α)×∇ is the orbital angular momentum and is defined with respect to the position r⃗α.
Assuming that the frequency dependent dielectric function εj and magnetic permeability

µj describe the region under consideration the scalar functions are obtained from E⃗ by

ψM
α =

1

L2
α

L⃗α · E⃗, (3.27)

and

ψE
α =

i

kεjµj

1

L2
α

(
L⃗α ×∇

)
· E⃗. (3.28)

The scalar functions can be expanded in terms of spherical harmonics YL such that

ψext
α (r⃗) =

∑
L

jL [k (r⃗ − r⃗α)]ψ
ext
α,L, (3.29)

where L = (l,m) defines the momentum orders. The spherical harmonics YL are con-
tained in jL(u⃗) = iljl(|u⃗|)YL(u⃗) and jl are spherical Bessel functions. Equation (3.29)
reflects the advantage of using scalar functions for the calculation since they can be
expanded into multipoles. Hence, MESME evaluates all calculations with these scalar
functions and recovers the electric field in the end by using Eq. (3.26).

3.3.2 Single Object Scattering

After defining the electric field in terms of a multipole expansion, we now consider a single
object α serving as a scatterer. The external field E⃗ext induces charges and currents in
the object depending on the material and the shape of the object. Consequently, an
electric field E⃗ind is induced and as already mentioned in Section 3.1.2, the total electric
field is a superposition of the external and the induced electric field given by

E⃗ = E⃗ext + E⃗ind. (3.30)
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Figure 3.12: Schematic representation of MESME. The electromagnetic field is expressed as
scalar functions ψα, made up of multipoles relative to the position r⃗α of scatterer α [Eq. (3.29)].
Upper panel: The external field acting on scatterer α is a superposition of spherical plane waves
[Eq. (3.31)]. The scattering process is expressed in terms of a scattering matrix tα. Additional
scattered fields coming from each other scatterer β ̸= α are calculated in four steps (lower
panel): First, the system is rotated with the rotation matrix Rαβ to match the bond vector
r⃗α− r⃗β with the positive x axis. Second, the outgoing waves centered at r⃗β are translated along
the z axis to center them at r⃗α using the operator Gz

αβ . Third, to overcome the invariance of
multipoles under translations an additional operator T z

αβ is needed. Fourth, the result is then

rotated back using inverse rotation matrix R−1
αβ . The combination of these four operations

is expressed as Hαβ [Eq. (3.32)]. Finally, all scattered fields are added up to define the self-
consistent field induced by object α as ψind

α [Eq. (3.34)]. Modified from Garćıa de Abajo
[102].

Assuming a field amplitude that is sufficiently small, nonlinear effects can be omitted and
the linear-response approximation holds. Hence, the induced electric field is proportional
to the external field and the corresponding scalar functions can be written as

ψss
α,L =

∑
L′

tα,L,L′ψext
α,L′ , (3.31)

where tα,L,L′ is the so-called scattering matrix and the superscript ss indicates that this is
the result of scattering on a single object. A schematic of the mathematical description
is shown in the upper part of Fig. 3.12. Here, the external electric field acting on the
scatterer α is represented by a double-arrow line and the induced electric field, which is
calculated using the scattering matrix tα ≡ tα,L,L′ , is represented as outgoing arrows.
The scattering matrix tα is composed of Hankel functions that describe outgoing

spherical waves. It depends on the size, shape and material properties of the scattering
object α and can be obtained for every position in space by solving Maxwell’s equations
under certain boundary conditions [102]. Due to the high symmetry, analytic terms of
tα can be found for spheres, recovering expressions that are similar to Mie’s scattering
theory. In this case the scalar functions can be calculated at any point in space, explicitly
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within the sphere. However, for arbitrary shaped scattering objects the calculation of
the scattering matrix can be time consuming and scalar functions can only be calculated
outside a sphere that contains the scattering object completely.

3.3.3 Multiple Scattering

So far, only scattering of a single scatterer α was discussed. Here, we want to consider
scattering from another object, e.g., β. The scalar function ψind

β then describes the
electric field that was scattered by β. Since the scatterer α is still in the vicinity, the
scattered electric field described by ψind

β will induce charges and currents in α that cause
another scattering process (first schematic, lower part of Fig. 3.12). This scattering
process is calculated in four steps:

1. The difference vector d⃗αβ = r⃗α − r⃗β is rotated using the rotation matrix Rαβ to
match the quantization axis, here the z axis.

2. The rotated scalar functions Rαβψ
ind
β that describe the spherical planar waves have

to be translated from r⃗β to r⃗α. This is done by means of the propagation operator

Gz
αβ that propagates the spherical plane waves along the distance |d⃗αβ|.

3. Due to the fact that the scalar functions are not invariant under translations of
the origin coordinates, an additional transformation matrix T z

αβ has to be used to
translate the origin of the multipoles accordingly.

4. The z axis has to be rotated back onto d⃗αβ using the inverse rotation matrix R−1
αβ .

The lower part of Fig. 3.12 shows a schematic of the four steps and the combination of
all steps yields the mathematical description:

Hαβ = R−1
αβT

z
αβG

z
αβRαβ. (3.32)

Going one step further, we introduce a cluster of different objects α at positions
r⃗α. The resulting scalar function is then found by the superposition of each individual
scattered electric field:

ψind(r⃗) =
∑
α

ψind
α (r⃗). (3.33)

Here, the individual scalar functions ψind
α (r⃗) are calculated by

ψ̃ind
α = ψ̃ss

α + tα
∑
β ̸=α

Hαβψ̃
ind
β , (3.34)

where ψ̃ind
α is the vector formed by the coefficients ψind

α,L of the multipole expansion of

ψind
α . ψ̃ss

α describes the scattered field of the single-scattering approach [Eq. (3.31)], i.e.,
the scattered field directly coming from α. The second term denotes the self-consistently
scattered field coming from every other object β ̸= α to α and the subsequent scattering
of this field.
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3.3.4 Iterative Implementation

To obtain the electric field at a certain point r⃗, the set of equations of Eq. (3.34) have to
be solved for each object α first. Herein, the operators involved in Hαβ [Eq. (3.32)] are
represented by square matrices of dimension [(lmax + 1)]2, where lmax is the maximum
order of angular momentum that is considered in the calculation (convergence is achieved
for lmax = 12 in most cases).
Since direct inversion of Eq. (3.34) needs enormous calculation effort for large clusters,

an iterative method is advantageous. This is done by starting the calculation with a
single scattered wave ψ̃ind,1

α = ψ̃ss
α and solving Eq. (3.34) iteratively:

ψ̃ind,n
α = ψ̃ss

α + tα
∑
β ̸=α

Hαβψ̃
ind,n−1
β . (3.35)

If the scalar function converges such that ψ̃ind
α = ψ̃ind,n

α it is a convenient and fast
procedure. However, for a cluster of strong scattering objects positioned in close vicinity
the iterative method can lead to divergence and convergence is reinforced using the
highly-convergent Lanczos method. After solving the set of equations of Eq. (3.34) for
each object the total scalar function is calculated using Eq. (3.33), where ψind

α (r⃗) is found
using the multipole expansion of Eq. (3.29).
The complete calculation is done using the stand-alone code MESME and for the

iterative method the computation time is proportional to

Titer ∝ N2 (lmax + 1)3 , (3.36)

where N is the number of particles in the cluster.
Before starting MESME the cluster has to be defined via the location, the shape and

the material properties, i.e., the dielectric function and the magnetic permeability, of
each scatterer as well as the dielectric function and the magnetic permeability of the
cluster’s host material. Additionally, the calculation parameter lmax, i.e., the maximum
order of angular momentum and the maximum order n of iterations have to be given.
As a result, the complex optical response function [Eq. (3.19)] is obtained as a function

of spatial coordinates:

A⃗(r⃗, ω) =

 Ax(r⃗, ω)
Ay(r⃗, ω)
Az(r⃗, ω)

 . (3.37)
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4 Analytic Control of Near Fields

In this chapter, general mathematical formulas are derived for the analytic control of near
fields in nanostructures using polarization pulse shaping. Exemplarily, the derived rules
are used for the control of propagating fields in a branching chain of nanospheres. The
main idea of the presented approach (Section 4.2) is to disentangle the two mechanisms
for near-field control of spatial (Section 4.3) and temporal (Section 4.4) control that were
introduced in the last chapter. The analytically obtained pulse shapes are compared to
pulse shapes that are found in an adaptive fashion. The derived formulas also allow for
analytic space–time control (Section 4.6) enabling a new type of near-field supported
spectroscopy, in which pump and probe interactions are separated both spatially and
temporally.
The work that is presented in this chapter resulted from a collaboration of our work

group with Javier Garćıa de Abajo1 and Walter Pfeiffer2. Javier Garćıa de Abajo pro-
vided his expertise of the calculation of near fields in terms of the used Maxwell equation
solver. Walter Pfeiffer was involved in the discussion and interpretation of the obtained
results.

4.1 Introduction

The emerging field of ultrafast nanooptics is a combination of femtosecond laser technol-
ogy and nano-optical methods [106]. This offers unique perspectives for the confinement
of light on a subwavelength spatial scale [54, 55] as well as an ultrafast time scale [11, 14].
On the one hand application of these confinements yields miniaturized photonic cir-

cuits [107, 108], in which one would need an efficient coupling of the far field to the near
field [54], which would then propagate and be processed by logical elements. In this con-
text, especially propagating optical near fields [74, 97, 109–112] are interesting. A route
to logical processing elements are nanostructures excited with ultrashort shaped laser
pulses. Plasmonic nanoantennas can be used for the efficient coupling of the laser pulses
to the nanoplasmonic circuits [84, 108, 113]. Waveguides of nanoparticles [109, 114],
single stripes [74, 107, 112, 115], and nano transmission lines [100, 108] can be used for
plasmon propagation.
On the other hand, the spatial–temporal confinement exactly meets the demands of

spectroscopic applications—as it is the scope of this thesis. First spectroscopic appli-
cations using these two confinements have been demonstrated very recently by Brinks
et al. [9]. In this experiment a nanoantenna was used to enhance a single molecule signal.
Since single molecule investigation was achieved there by low emitter density, it was not

1Instituto de Óptica, CSIC, Serrano 121, 28006 Madrid, Spain
2Fakultät für Physik, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany
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the strong spatial confinement that was used but the field enhancement induced by the
nanoantenna (Section 3.1.2). In a different—more general—scheme, nanoscopic ultrafast
space–time-resolved spectroscopy could be performed by providing optical excitations in
which pump and probe interactions are separated both spatially and temporally [11]. To
realize such excitation schemes, pulse shaping in combination with proper nanostructures
turned out to be the perfect tool. The excitation scheme is then provided via the time-
dependent near-field distribution in the vicinity of the nanostructure. In a pioneering
work Stockman et al. demonstrated theoretically that coherent control of nanosystems is
possible with chirped laser pulses [47]. In the following, many-parameter adaptive con-
trol of optical near-fields using polarization-shaped laser pulses was reported [11]. Thus,
it is possible to manipulate electric fields spatially and temporally on a nanometer and
femtosecond scale [11, 12, 47, 48, 116, 117]. Experimental results to tailor the optical
near-field using polarization-shaped laser pulses have been demonstrated by Aeschliman
et al. [13], and coherent pulse sequences for excitation control were employed by several
groups [118, 119]. Recently, simultaneous control over spatial and temporal field prop-
erties was achieved experimentally [14]. In all these examples the optimal pulse shapes
that have to be determined in a multiparameter space were found in a non-deterministic
fashion. However, in a pump–probe experiment each polarization shaped pulse that
would provide a certain temporal separation of pump and probe pulse would have to be
found in a extra step. Therefore, it is essential for broad application of ultrafast space–
time-resolved spectroscopy to develop a basic understanding of the control mechanisms
and devise predefined rules to control local excitations. Hence, the optimal pulse shapes
that provide the required near-field distribution have to be found in an analytic fash-
ion, which enables a straightforward experimental procedure and simplifies the design
of appropriate nanostructures.
In the following, exactly these aspects are addressed and general analytic solutions

to near-field control on the example of plasmon propagation in a branching waveguide
nanostructure are presented. Using the gained insight into control mechanisms, a pump–
probe scheme enabling spectroscopy on the nanoscale with a femtosecond resolution is
presented. In the future, these advances will enable sophisticated nonlinear spectroscopy
involving multipulse sequences confined on the nanoscale provided by near fields.

4.2 Methods

4.2.1 Basic Idea

As explained in Section 3.2 two mechanisms are responsible for optical near-field control.
The first mechanism is a local interference of near-field modes excited by two externally
applied laser pulse polarization components (Section 3.2.1). Each far-field polariza-
tion component induces a local near-field mode that will interfere with the second local
near-field mode excited by the other far-field component. Controlling constructive and
destructive interference can then be employed to enhance or suppress the near field, re-
spectively, at certain positions in the vicinity of the nanostructure. The second control
mechanism is a temporal manipulation of the local near-fields to compress the elec-
tromagnetic energy in time at a desired spatial location, thereby enhancing nonlinear

Philip Tuchscherer: A Route to Optical Spectroscopy on the Nanoscale (Diss. Univ. Würzburg, 2012)



4.2 Methods 63

signals (Section 3.2.2).

In general, ultrashort laser pulses provide a large space of control parameters for
guiding the plasmonic energy and focusing it on the nano–femto scale. In this chapter,
the full shaping capabilities are used, where amplitude, phase, ellipticity, and orientation
angle may arbitrarily be manipulated at each frequency of the laser pulses [31]. The
idea is to use an analytic approach that is based on the separation of the two control
mechanisms described above. Derived spectral phases and amplitudes of each laser
pulse polarization component will then be compared to adaptive optimizations. Thus,
the control objective is reached in a deterministic and reproducible approach that can
be understood easily.

As an example, a nanostructure consisting of a branching chain of nanospheres excited
with shaped laser pulses under the conditions of tight focusing is considered (Fig. 4.1).
The choice of this nanostructure is motivated by the experimentally observed propa-
gation of plasmonic excitations along such chains [97] and the recent demonstration of
coherent propagation control in a T-shaped nanoparticle arrangement [114, 120]. It
consists of a long chain of 17 Ag spheres along the x axis, and a short arm of seven
Ag spheres along the y axis. The y arm is coupled to the long chain in the middle be-
tween the tenth and the eleventh sphere. The spheres have a diameter of 50 nm and are
separated by a 10 nm gap, which corresponds to a 60 nm unit cell. The nanostructure
is excited at the beginning of the long chain with a tightly-focused shaped laser pulse
(focal Gaussian beam diameter of about 200 nm intensity FWHM) propagating along
the z axis perpendicular to the chain with the beam center located at the center of the
first sphere. Two excitation polarizations are chosen: polarization 1 along the x axis
and polarization 2 along the y axis. After coupling to the nanostructure, the pulse en-
ergy is guided by plasmons away from the focus to remote spatial positions on the two
branches, e.g., r⃗1 and r⃗2. The inset of Fig. 4.1 shows the total scattering cross sections of
this nanostructure excited by plane waves with polarization components 1 and 2 (black
solid and red dashed curves, respectively). Clearly, two resonances are observed: the
resonance of the long chain along the x direction at ω ∼ 4.3 rad/fs and the resonance
of the short chain along the y direction at ω ∼ 5.4 rad/fs which are mostly excited by
polarizations 1 and 2, respectively.

In a similar structure, however, with a different symmetry of the overall arrangement
of the nanoparticles, Sukharev et al. theoretically showed the control of propagation
direction after a junction by scanning the ellipticity of the excitation light using a two-
dimensional parameter space [114, 120]. Here, their work is taken as a motivation
extending it in several respects: first, a multidimensional parameter space is introduced
using complete vector-shaped laser pulses [31]; second, the excitation field focusing con-
ditions are taken into account; and third and most importantly, analytic control both
of the linear and the nonlinear flux in nanosystems is obtained. Using this systematic
approach, the interplay between the two control mechanisms described above is decou-
pled by first guiding the linear flux to the desired target position with shaping of the
amplitudes of both polarization components as well as the phase difference between the
two components. For linear flux the relative spectral phase is irrelevant within the pulse,
since different frequency components do not interfere. For nonlinear flux, however, the
different frequency components do interfere and the remaining relative spectral phase
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Figure 4.1: Nanoplasmonic branching waveguide consisting of 50 nm diameter spheres. The
target points for coherent control [r⃗1 = (930, 0, 10) nm and r⃗2 = (570, 380, 10) nm] are chosen
between the last two spheres of each arm and 10 nm above the z = 0 symmetry plane. The
structure is excited with a tightly-focused Gaussian beam (indicated in red) at the beginning
of the chain using the two polarizations 1 and 2 along the x and y direction, respectively
(indicated with 1 and 2 in the focus). Inset: total scattering cross sections obtained for plane
wave illumination with polarization 1 (black solid) and 2 (red dashed). Taken from Tuchscherer
et al. [49]. Copyright (2009) by The Optical Society.

is used to enhance the nonlinear flux by compressing the local near-field at the desired
target position.

4.2.2 Field Calculation

The complex-valued linear optical response function A⃗(i)(r⃗, ω) for polarization i = 1, 2
of the nanostructure in the frequency domain was calculated as a function of the spa-
tial coordinate r⃗ by self-consistently solving Maxwell’s equations. The MESME code
introduced in Section 3.3 was used here. Since the nanostructure is composed of silver
spheres and the scattering matrix of spheres can be calculated analytically, accurate
results were obtained and opposed to Finite-Different Time Domain methods [121] no
staircasing of round nanostructures was needed.
The measured bulk dielectric function of silver [78], including dispersion and damping

effects, was incorporated in the calculations of the response. Simulations were performed
for 128 equally-spaced frequencies, corresponding to 128 pixels of a common laser pulse
shaper. The spectral range was chosen such that it included the plasmonic resonance

Philip Tuchscherer: A Route to Optical Spectroscopy on the Nanoscale (Diss. Univ. Würzburg, 2012)



4.2 Methods 65

of the long chain of the structure [i.e., 3.9–5.3 rad/fs (corresponding to 483–355 nm)].
The Gaussian laser pulse spectrum was centered in the middle of the calculated spectral
range at ω0 = 4.6 rad/fs (409 nm) with a FWHM of 0.35 rad/fs corresponding to ∼10 fs
pulse duration. The field distribution in a tight focus was represented as a superposition
of plane waves. For realistic simulations a Gaussian focus was used that is achieved by
a high numerical aperture. The focal spot size (∼200 nm) was close to the diffraction
limit, obtained by a coherent superposition of 1245 partial waves.
It is important to point out that plasmon excitation and propagation along the nano-

structure chain is already implicitly included in A⃗(i)(r⃗, ω), as can be verified by inverse
Fourier transformation to the time domain. As introduced in Section 3.1.3 the two ex-
ited modes propagating through the nanostructure can be understood as excitation of a
longitudinal and a transverse mode.
In order to exemplify coherent propagation control, two spatial positions, r⃗1 and r⃗2,

were considered as marked in Fig. 4.1, which were reached after plasmon propagation
along the x arm or y arm, of the structure, respectively. The goal would then be
to control linear and nonlinear signals at these two positions, especially contrast and
pulse compression, even though the illumination region is spatially separated. In fact,
this corresponds to control over direction (“spatial focusing”, Section 4.3) and time
(“temporal focusing”, Section 4.4).
As already introduced in the discussion of near-field control mechanisms (Section 3.2),

the incident laser pulse is expressed in frequency domain by two orthogonal polarization
components: Ein

1 (ω), oriented along the x axis, and Ein
2 (ω), oriented along the y axis,

consisting of spectral amplitudes
√
Ii(ω) and phases φi(ω), which could all be varied

independently. Hence, the total optical near-field E⃗(r⃗, ω) was obtained by calculating
the near field for each far-field polarization separately and taking the linear superposition
[same as Eq. (3.24)]

E⃗(r⃗, ω) =


 A

(1)
x (r⃗, ω)

A
(1)
y (r⃗, ω)

A
(1)
z (r⃗, ω)

√I1(ω) +

 A
(2)
x (r⃗, ω)

A
(2)
y (r⃗, ω)

A
(2)
z (r⃗, ω)

√I2(ω) e
−iΦ(ω)

 e−iφ1(ω) . (4.1)

Here, the phases of the two far-field polarizations are adjusted to control the phases of
the near-field modes. The constructive or destructive interference of the optical near-
fields are controlled by adjusting the phase difference Φ(ω) [Eq. (3.25)] and the spectral
amplitudes of the incident laser, whereas the remaining offset phase φ1(ω) [Eq. (4.1)] is
used to adjust the temporal evolution of the optical near-fields.

4.2.3 Definition of Signals

Using MESME and Eq. (4.1), the local optical near-field E⃗(r⃗, ω) is calculated at any
position r⃗ induced by a vector-field-shaped laser pulse (Section 2.3.4). This quantity
is then used to define different signals in analogy with far-field optics: local spectral
intensity is defined as

S(r⃗, ω) =
∑

α=x,y,z

bα |Eα(r⃗, ω)|2 =
∑

α=x,y,z

bα |F {Eα(r⃗, t)}|2 , (4.2)

Philip Tuchscherer: A Route to Optical Spectroscopy on the Nanoscale (Diss. Univ. Würzburg, 2012)



66 Analytic Control of Near Fields

where F indicates Fourier transformation and the parameters bα describe which local
polarization components are included in the signals. Setting bx = 1 and by = bz = 0,
for example, describes field-matter interactions with transition dipoles oriented along
the x axis. In the following calculations, bx = by = bz = 1 is used, corresponding to an
isotropic distribution of dipole moments, unless mentioned otherwise. Local linear flux
is defined using Parseval’s theorem:

Flin(r⃗) =

∞∫
−∞

∑
α=x,y,z

bαE
2
α(r⃗, t)dt =

1

2π

ωmax∫
ωmin

S(r⃗, ω)dω. (4.3)

Assuming a Gaussian laser spectrum with a center frequency ω0 frequencies where the
intensity is sufficiently small are neglected. Hence, integration is carried out over an
appropriate interval ωmin = ω0 −∆ω to ωmax = ω0 +∆ω, where ∆ω is a suitable width,
e.g., ∆ω = 0.7 rad/fs.

Since a finite and discrete grid of frequencies (i.e. pulse-shaper pixels) separated by
δω is considered, the frequency integral in Eq. (4.3) can be replaced by a sum over all
frequencies of the local spectrum defined in Eq. (4.2):

Flin(r⃗) =
δω

2π

ωmax∑
ω=ωmin

∑
α=x,y,z

bαEα(r⃗, ω)E
∗
α(r⃗, ω), (4.4)

where the star denotes complex conjugation. In the following derivations δω/2π is
omitted for simplicity as the same grid is employed for all comparisons. By inserting
the definition of the optical near-field of Eq. (4.1) into Eq. (4.2), the local spectrum as
a function of external laser intensities Ii(ω) and phases φi(ω) is obtained:

S(r⃗, ω) = I1(ω)
∑

α=x,y,z

bα|A(1)
α (r⃗, ω)|2 + I2(ω)

∑
α=x,y,z

bα|A(2)
α (r⃗, ω)|2

+ 2
√
I1(ω)I2(ω) Re

{
Amix(r⃗, ω) e

iΦ(ω)
}
, (4.5)

with

Amix(r⃗, ω) =
∑

α=x,y,z

bαA
(1)
α (r⃗, ω)A(2)∗

α (r⃗, ω) = |Amix(r⃗, ω)| eiθmix(r⃗,ω), (4.6)

where the phase difference Φ(ω) is defined in Eq. (3.25) and Re denotes the real part.
Amix(r⃗, ω) is the complex scalar product with amplitude |Amix(r⃗, ω)| and phase θmix(r⃗, ω)

describing the mixing of the two near-field modes A⃗(1)(r⃗, ω) and A⃗(2)(r⃗, ω), which can
be calculated independently of the external field once the MESME calculation is done.

Analogously, local nonlinear (second-order) flux is defined as

Fnl(r⃗) =

∞∫
−∞

[ ∑
α=x,y,z

bαE
2
α(r⃗, t)

]2
dt. (4.7)
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4.2.4 Adaptive Optimizations

While the analytic control approach is the main topic of this chapter as developed in
the following sections, adaptive control with an evolutionary algorithm (Section 2.5)
was carried out for comparison. For each shaping degree of freedom, i.e., φ1(ω), φ2(ω),√
I1(ω), and

√
I2(ω), 32 genes encoded the information to interpolate (spline interpola-

tion) 128 parameters (pulse shaper pixels). The algorithm ran until convergence, which
was usually achieved within 50 to 500 generations depending on the size of the search
space. The population was chosen to contain 40 individuals, where 50% of the best
individuals of the last generation were used to produce the new 40 individuals for the
next generation. 70% of these best individuals were gained from crossover, 20% from
mutation and 10% from cloning. For the optimization of linear and nonlinear flux, Flin(r⃗)
and Fnl(r⃗) were chosen as input for the fitness function, respectively. Contrast control
was achieved by the flux differences between different spatial positions as explained be-
low. For a better identification of the lines in the figures, where the results of adaptive
optimizations are compared to the analytic solutions, only every second data point of
the adaptively optimized phases or amplitudes is plotted in the following amplitude and
phase plots.

4.3 Spatial Focusing of Propagating Near Fields

4.3.1 Optimization of Linear Flux at One Position

The first control objective considered here is the maximization or minimization of local
linear flux Flin(r⃗) at one specified location. In the examples below, this location will be
chosen at either r⃗1 or r⃗2 as marked in Fig. 4.1. Equation (4.5) provides insight into the
near-field control mechanisms. To optimize linear flux, the two laser phases φ1(ω) and
φ2(ω) can be adjusted independently from the amplitudes

√
I1(ω) and

√
I2(ω) either

to maximize or to minimize the last term in Eq. (4.5).
The amplitude of the mixed scalar product, |Amix(r⃗, ω)|, is a measure of how much

the near-field modes project onto each other and determines the controllability at this
point. For example, if the two near-field modes do not project onto each other, i.e., if the
modes are perpendicular, they do not interfere and it is not possible to control the local
linear flux with the laser pulse phases because Amix(r⃗, ω) = 0. Maximum controllability
is obtained for parallel near-field modes, i.e., having a maximum projection.
The phase of the scalar product, θmix(r⃗, ω), determines how the phase difference be-

tween the two external laser polarization components, Φ(ω), should be chosen in order
to make the interference term of Eq. (4.5) positive or negative. Constraints for the
constructive [Φmax(ω)] and destructive [Φmin(ω)] interference are

Φmax(ω) = −θmix(r⃗, ω) and (4.8)

Φmin(ω) = −θmix(r⃗, ω)− π, (4.9)

respectively. The dependence of linear flux on the phase difference Φ(ω) only is due to
the interference of the two near-field modes as the single control mechanism responsible
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Figure 4.2: The phase differences for analytic maximization (solid blue line) and minimization
(dashed red line) of the linear flux Flin(r⃗) at positions r⃗1 (a) and r⃗2 (b) compared to the results
obtained by an adaptive optimization for maximization (blue circles) and minimization (red
squares). The laser spectrum is indicated by a gray dotted line. Taken from Tuchscherer
et al. [49]. Copyright (2009) by The Optical Society.

for the linear signal. In other words, the local field is determined by the polarization
state of the incident light and Amix(r⃗, ω) is a measure of the controllability that can be
achieved by polarization shaping (i.e., adjusting the phases of the two far-field polariza-
tion components). Setting, for example, bx = 1 and by = bz = 0 one can get a good

understanding of this effect, since the phase difference θmix(r⃗, ω) = θ
(1)
x (r⃗, ω)− θ

(2)
x (r⃗, ω)

of the two near-field modes induced by the nanostructure is then just compensated ex-
actly, leading to optimal constructive or destructive interference for given amplitudes.
Including more than one component, e.g. bx = by = bz = 1, the sum in Eq. (4.6) performs
a weighting of the phases of each component by their amplitudes. If the near-field modes
are not parallel, some part of the field will still remain even for destructive interference.
The required phase difference for linear flux control is thus available directly from

either Eq. (4.8) or Eq. (4.9) and is plotted in Fig. 4.2 for two different examples, namely
the location r⃗1 [Fig. 4.2a] and r⃗2 [Fig. 4.2b] as solid blue lines (maximum flux) and
dashed red lines (minimum flux). The plots can be understood as follows: for example,
as shown in Fig. 4.2a, linearly polarized light at ω ∼ 4.65 rad/fs oriented along the (1,1,0)
direction (Φ = 0) minimizes the local flux at r⃗1, whereas linearly polarized light oriented
along the (-1,1,0) direction (Φ = π) maximizes the local flux at r⃗1. In contrast right
(Φ = −π/2) and left (Φ = π/2) circularly polarized light at ω ∼ 4.25 rad/fs generates the
maximum and minimum local flux at r⃗1, respectively. The control at other frequencies
is achieved similarly using elliptically polarized light.
In order to confirm the analytic solutions, adaptive optimizations of Flin(r⃗) were per-

formed using an evolutionary algorithm, and the resulting optimal spectral phases are
plotted as blue circles (maximization) and red squares (minimization) in Fig. 4.2. An-
alytic and adaptive results are in excellent agreement in the region of relevant laser
spectral intensity (gray dotted line). The predicted difference of π between the phase
differences [see Eqs. (4.8) and (4.9)] can be seen as an offset between the red and blue
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Figure 4.3: The local response intensi-
ties R(r⃗, ω) plotted logarithmically for
the position r⃗1 for the maximum (blue
dashed) and minimum (blue solid) lo-
cal linear flux, and for the position r⃗2
(red dash-dotted and red dotted lines for
the maximum and the minimum local
linear flux, respectively). The optimal
phase differences for the linear flux as
obtained from Eq. (4.8) and (4.9) are
shown in Fig. 4.2. Taken from Tuch-
scherer et al. [49]. Copyright (2009) by
The Optical Society.

curves, and the shape of the curves reflects the spectral response properties of the nano-
structure as contained in the scalar product of Eq. (4.6). Parseval’s theorem guarantees
that the control can be done separately for each frequency component, as shown above
using analytical methods. The adaptive optimization is however performed here for the
entire pulse simultaneously, and therefore the agreement with the analytic model is a
non-trivial cross validation of the results.
For a better interpretation of the actual near-field responses over a broad spectral

range, the local response intensities are defined, i.e., the local spectrum [Eq. (4.5)] divided
by the incident Gaussian laser spectrum IG(ω):

R(r⃗, ω) =
S(r⃗, ω)

IG(ω)
. (4.10)

The local response intensities at the positions r⃗1 (blue lines) and r⃗2 (red lines) are shown
on a logarithmic scale in Fig. 4.3 for the optimal incident laser phase differences from
Fig. 4.2. The maximum and minimum local linear flux phase differences were used to
generate the maximum and minimum local response intensities, respectively. As can be
seen in Fig. 4.3, the control of the near-fields is achieved over the whole spectral range,
i.e., the blue dashed line is higher than the blue solid line, and the red dash-dotted line
is higher than the red dotted line. In addition, it can be seen that the local response
intensity at r⃗2 (red) exceeds the local response intensity at r⃗1 (blue) over a large part
of the spectral range, which is due to better coupling of the two excited modes to the y
arm. However, the minimized response at position r⃗2 is smaller than the responses at
position r⃗1 in the region of ω ∼ 4.7 rad/fs, which will be relevant for the discussion of
amplitude shaping.
The linear flux values [Eq. (4.4)] obtained with the excitation pulse phases from

Fig. 4.2 are summarized in Table 4.1 in Section 4.3.2 and will be discussed there in
comparison with other control objectives.
Now, polarization shaping with additional modulation of the external intensities I1(ω)

and I2(ω) is considered, first without choosing the optimal laser pulse phases φ1(ω) and
φ2(ω). In that case, the solutions for linear flux control at one spatial position are trivial
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as can be inferred from Eq. (4.5). Given that amplitude shaping can only decrease the
intensity of light at a particular frequency, the optimal solution for maximum linear flux
is full pulse-shaper transmission, i.e., making use of the full available intensity over the
complete laser pulse spectrum. Likewise, the solution for minimum local flux is given
for zero transmission, i.e., for both Ii(ω) = 0.
However, if complete vector shaping (all phases and amplitudes) is considered, there is

also a nontrivial solution for total cancellation of flux at point r⃗. According to Eqs. (4.5)

and (4.6), the destructive interference described above can be made perfect if A⃗(1)(r⃗, ω) =

β(ω)A⃗(2)(r, ω), i.e., if the local responses excited by the two laser pulse polarizations
are parallel to each other, with any ratio β(ω) ∈ C. For such a case, the external
laser intensities should be chosen such that their ratio fulfills I1(ω)/I2(ω) = |β(ω)|2.
In that case, selection of the phase difference Φ(ω) according to Eq. (4.9) resulting
in Φ(ω) = − arg{β(ω)} − π leads to the desired zero flux due to perfect destructive

interference. If A⃗(1)(r⃗, ω) and A⃗(2)(r⃗, ω) are not parallel, the same procedure can be
used to cancel out just one component Eα(r⃗, ω). This will be used in Section 4.6 to
create a double pulse sequence, where the first pulse excites only position r⃗1 and the
second pulse only position r⃗2, i.e., space–time control.

4.3.2 Controlling the Direction of Propagation

Using the results from Section 4.3.1, the procedure is now extended to consider the
more interesting case of propagation-direction control. The objective will be to steer
the plasmon along either the x arm or the y arm of the nanostructure (Fig. 4.1). In
contrast to Section 4.3.1 the optimization goal is now determined simultaneously by the
local response at two different locations, whereas in Section 4.3.1 both locations were
treated independently. A suitable observable that characterizes this goal is the difference
of linear local flux at the two spatial points r⃗1 and r⃗2,

flin [φ1(ω), φ2(ω), I1(ω), I2(ω)] = Flin(r⃗1)− Flin(r⃗2), (4.11)

which can be expressed using Eqs. (4.4) and (4.5) as

flin =
ωmax∑

ω=ωmin

∑
α=x,y,z

bα |Eα(r⃗1, ω)|2 −
ωmax∑

ω=ωmin

∑
α=x,y,z

bα |Eα(r⃗2, ω)|2

=
ωmax∑

ω=ωmin

(
I1(ω)C1(ω) + I2(ω)C2(ω) +

2
√
I1(ω)I2(ω)

{
|Amix(r⃗1, ω)| cos[θmix(r⃗1, ω) + Φ(ω)]−

|Amix(r⃗2, ω)| cos[θmix(r⃗2, ω) + Φ(ω)]
})
, (4.12)

where
Ci(ω) =

∑
α=x,y,z

bα

[∣∣A(i)
α (r⃗1, ω)

∣∣2 − ∣∣A(i)
α (r⃗2, ω)

∣∣2] , i = 1, 2, (4.13)

are again functions that are determined completely by the response of the nanostructure
and do not depend on the phases and amplitudes of the incident laser pulse. By finding
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the extrema of Eq. (4.12), the flux can be guided in the best possible way to either
position r⃗1 (flin maximum) or r⃗2 (flin minimum). These extrema will be found by
calculating first the correct phases and then the optimal amplitudes.

The optimal phases can be calculated by considering the functional derivative of
Eq. (4.12) with respect to the external phase difference,

δ

δΦ(ω)
flin =

ωmax∑
ω=ωmin

glin(ω), (4.14)

with

glin(ω) = 2
√
I1(ω)I2(ω)

{
− |Amix(r⃗1, ω)| sin [θmix(r⃗1, ω) + Φ(ω)]

+ |Amix(r⃗2, ω)| sin [θmix(r⃗2, ω) + Φ(ω)]
}
. (4.15)

Since we are interested in the global extremum and flin is a linear sum over the
individual frequency components, each frequency can be considered separately. Thus,
the extrema of flin are found for glin(ω) = 0. Assuming I1(ω) ̸= 0 and I2(ω) ̸= 0 [if
one or both of the intensities are zero in any frequency interval, the phases φ1(ω) and
φ2(ω) are irrelevant for linear control targets and can be chosen arbitrarily], the optimal
spectral phase difference is then

Φ(ω) = arctan

{
|Amix(r⃗2, ω)| sin[θmix(r⃗2, ω)]− |Amix(r⃗1, ω)| sin[θmix(r⃗1, ω)]

|Amix(r⃗1, ω)| cos[θmix(r⃗1, ω)]− |Amix(r⃗2, ω)| cos[θmix(r⃗2, ω)]

}
+ kπ,

(4.16)
where k = 0, 1, 2 is chosen such that Φ(ω) ∈ [−π, π]. This results in two solutions that
can be assigned to the global maximum or minimum by evaluation of Eq. (4.12) or by
investigating the second derivative. For the special case of a vanishing denominator in
Eq. (4.16), the solutions are Φ(ω) = π/2 and Φ(ω) = −π/2, which correspond to left
and right circular polarization, respectively.

Just as for the optimization of linear flux at one location (Section 4.3.1), the flux differ-
ence of Eq. (4.11) depends only on the phase difference Φ(ω) of the external polarization
components and the maximum and minimum solutions differ by π. The analytically
determined optimal phase difference does not depend on the pulse intensities I1(ω) and
I2(ω). However, as is shown below, shaping the amplitudes additionally results in im-
proved contrast.
The optimal analytic phases for maximization and minimization of the linear flux

difference Flin(r⃗1)−Flin(r⃗2) for the points r⃗1 and r⃗2 of the chosen nanostructure are shown
in Fig. 4.4 (lines) and are again compared to the results of an adaptive optimization
(symbols). For directional control along the x arm toward r⃗1 (red) as well as along the y
arm toward r⃗2 (blue), both approaches agree well, and the phase difference of π between
maximization and minimization of the difference signal is also confirmed.

It is noticeable that the general shape depicted in Fig. 4.4 is similar to the shape
from the optimization at point r⃗2 only [Fig. 4.2b]. In this particular example, the point
r⃗2 has more influence on the optimal phase because the absolute value of the optimal
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Figure 4.4: Phase difference for ana-
lytic maximization (red dashed line) and
minimization (blue solid line) of the lin-
ear flux difference Flin(r⃗1)−Flin(r⃗2) and
its comparison to the adaptively opti-
mized phases (red squares and blue cir-
cles, respectively). The laser spectrum is
indicated by a gray dotted line. Taken
from Tuchscherer et al. [49]. Copyright
(2009) by The Optical Society.

Table 4.1: Analytic and adaptive linear flux control with phase-only shaping of the two po-
larization components. Flux values are given in the different columns for unshaped pulses
corresponding to linear polarization at 45◦ orientation with respect to the x-y coordinates and
for analytic as well as adaptive flux optimization. The different rows indicate maximization and
minimization of flux at the locations r⃗1, r⃗2, and of the flux difference. The first and the second
row correspond to control at one position from Section 4.3.1 and the third row describes the
contrast control from Section 4.3.2. In all cases, the Gaussian spectrum was employed without
amplitude shaping. All values are normalized to the sum of the linear flux Flin(r⃗1) + Flin(r⃗2)
excited with an unshaped pulse, i.e., the first two values in the first column sum up to unity.

φ1 = φ2 = 0 φ2 − φ1 = Φmax φ2 − φ1 = Φmin

analytic adaptive analytic adaptive

Flin(r⃗1) 0.415 0.599 0.599 0.401 0.401

Flin(r⃗2) 0.585 0.984 0.984 0.410 0.410

Flin(r⃗1)− Flin(r⃗2) -0.170 0.088 0.088 -0.483 -0.483

local response intensity R(r⃗, ω) is larger at r⃗2 than at r⃗1 over most of the spectral region
(cf. Fig. 4.3).

Therefore, the maximization (minimization) of the linear flux difference [Eq. (4.11)]
results to a large extent from the minimization (maximization) of Flin(r⃗2) for the chosen
nanostructure. If one chose to control flux contrast between such positions where the
individual fluxes were of more similar magnitude then the optimal phase would deviate
more strongly from the optimizations of both of the separate fluxes. However, with the
analytic approach one has the guarantee to nevertheless find the global optimum.

The normalized actual flux values reached in the analytic and adaptive control strate-
gies are summarized in Table 4.1. It is seen that for all cases the flux values reached in
adaptive control agree extremely well with the analytic results. This points at the good
convergence of the evolutionary algorithm and is another measure for the excellent agree-
ment of the phases, already seen in Figs. 4.2 and 4.4. The difference of the linear fluxes
obtained by maximizing at r⃗1 and minimizing at r⃗2 separately is (0.599−0.410 = 0.189),
while maximizing the difference directly leads to 0.088. The difference between mini-
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mization at r⃗1 and maximization at r⃗2 is (0.401− 0.984 = −0.583), and direct contrast
control yields −0.483. The optimal solution for the difference signal provides a good
compromise between control at the individual points r⃗1 and r⃗2 for this nanostructure.
It can also be seen in Table 4.1 that for all control objectives the obtained maxima of

the observables are higher than for unshaped pulses and the minima are lower, which is
of course expected. The positive versus negative values in the bottom row indicate that
“switching” of the propagation direction is achieved such that the plasmon propagates
predominantly either along the x arm or the y arm of the structure. In the following,
additional amplitude shaping will even improve the control performance. It is important
to point out that the results—described so far—for the optimal phases are valid without
dependence on the particular intensities I1(ω) and I2(ω) of the two external polarization
components. Thus the optimal amplitudes can be found in a separate step.
Amplitude shaping is described by multiplying the Gaussian input pulse amplitude√
IG(ω), which is the same for both polarizations i, by weighting amplitude coefficients

γi(ω) varying from 0 to 1: √
Ii(ω) = γi(ω)

√
IG(ω). (4.17)

Inserting this definition into Eq. (4.12), we obtain a two-variable quadratic function
for each frequency ω:

flin [γ1(ω), γ2(ω)] = IG(ω)
[
C1(ω)γ

2
1(ω) + C2(ω)γ

2
2(ω) + 2Cmix(ω)γ1(ω)γ2(ω)

]
, (4.18)

where

Cmix(ω) = |Amix(r⃗1, ω)| cos [θmix(r⃗1, ω) + Φ(ω)]− |Amix(r⃗2, ω)| cos [θmix(r⃗2, ω) + Φ(ω)] .
(4.19)

Here, the parameters |Amix(r⃗, ω)|, θmix(r⃗, ω), Ci(ω), and Φ(ω) are known from Eqs. (4.6),
(4.13), and (4.16), respectively, and the weighting amplitude coefficients for both polar-
ization components γ1(ω) and γ2(ω) are unknown.
The two-variable extremum analysis of the function in Eq. (4.18) under the constraints

0 ≤ γ1(ω) ≤ 1 and 0 ≤ γ2(ω) ≤ 1 yields the solutions

[γ1(ω), γ2(ω)] ∈ {[0, 0] , [1,−Cmix(ω)/C2(ω)] , [−Cmix(ω)/C1(ω), 1] , [1, 1]} . (4.20)

The assignment of which of these constitute minima or maxima depends on the values of
C1(ω), C2(ω), and Cmix(ω), and is found by substitution into Eq. (4.18). By locating the
desired minimum or maximum in this fashion separately for each frequency, the optimal
amplitude shape for each laser polarization component can be obtained. These solutions
provide the optimal amplitudes, which in turn depend on the chosen phases φ1(ω) and
φ2(ω) through the parameter Cmix(ω).
For illustration, this procedure was carried out for maximization (Fig. 4.5a) as well

as minimization (Fig. 4.5b) of the linear flux difference Flin(r1) − Flin(r2) while using
the optimal phases obtained above using Eq. 4.16. Again, an evolutionary algorithm
was employed for comparison, in which the phase difference as well as the amplitude
weighting coefficients were optimized. In Fig. 4.5, analytic (lines) and adaptive results
(symbols) for both polarizations are compared. Similar to the adaptive optimizations
for the case of phase-only shaping (Figs. 4.2 and 4.4), the analytic and adaptive results
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Figure 4.5: Amplitude weighting coefficients for polarization components 1 (green) and 2
(purple) for controlling the linear flux difference Flin(r⃗1)−Flin(r⃗2). The analytic results (solid
and dashed lines) are compared with those from adaptive optimization (diamond and triangle
symbols, respectively). The maximization or minimization of the flux difference correspond
to energy guidance to positions r⃗1 (a) or r⃗2 (b), respectively. Pulse amplitudes are obtained
by multiplying these weighting coefficients with Gaussian profiles using Eq. (4.17). The laser
spectral intensity is indicated by a gray dotted line. Taken from Tuchscherer et al. [49].
Copyright (2009) by The Optical Society.

for amplitude shaping agree well. The deviation of the amplitude coefficients from the
adaptive optimizations appearing in the regions of low laser pulse intensities do not have
any physical significance.

In the case of maximization (Fig. 4.5a), significant spectral shaping is required for
polarization component 1 (green) and the linear flux difference is enhanced to Flin(r⃗1)−
Flin(r⃗2) = 0.201. This value should be compared to the phase-only shaping result of 0.088
(cf. Table 4.1). Thus, the maximum of the linear flux difference is increased significantly.
However, in the case of minimization (Fig. 4.5b), the optimal amplitudes are at their
maxima over most of the spectrum (both weighting coefficients equal 1). This is because
amplitude shaping cannot further decrease the linear flux difference of -0.483 (cf. Table
4.1). For interpretation of these results, the local response intensity R(r⃗, ω) shown in
Fig. 4.3 for the two points r⃗1 and r⃗2 is used.

The small spectral region around ω ∼ 4.7 rad/fs where the two responses at position r⃗1
exceed the minimized response at position r⃗2 is also imprinted in the weighting coefficient
γ1(ω) in Fig. 4.5a (green). The incident polarization component 1 is reduced in that
spectral part where the local response intensity R(r⃗2, ω) (Fig. 4.3) exceeds R(r⃗1, ω).
In the small part around ω = 4.7 rad/fs, where R(r⃗1, ω) dominates, both weighting
coefficients equal 1 to ensure maximum contribution from the desired components.

The evolutionary algorithm confirms our predictions and successfully finds the steep
slopes of amplitude coefficient γ1(ω) predicted by the analytic theory.
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Figure 4.6: (a) The local spectrum [Eq. (4.2)] for the optimization where the “red” and “blue”
halves of the spectrum are guided to positions r⃗1 (dashed blue) and r⃗2 (solid red), respectively.
(b) The local spectrum normalized to the sum of the local spectra at positions r⃗1 and r⃗2. Taken
from Tuchscherer et al. [49]. Copyright (2009) by The Optical Society.

4.3.3 Controlling the Local Spectral Intensity

In addition to maximizing or minimizing the local linear flux as an integral over the
complete spectrum, it is also possible to control the local spectral intensity [Eq. (4.2)] in a
more general way, for example to maximize one part of the spectrum and simultaneously
to minimize the other part. Thus, one can guide the propagation of one part of the
spectrum to position r⃗1 and of the other part to r⃗2. For illustration, the “red” half of
the spectrum (3.9–4.6 rad/fs) was chosen to be guided to position r⃗1, whereas the “blue”
half (4.6–5.3 rad/fs) was guided to r⃗2. The analytic results for the required optimal
phases and amplitudes of the external control field were hence obtained in complete
analogy to Section 4.3.2, with the difference that the results from maximization [Fig. 4.4
(red) and Fig. 4.5a] were applied in the “red” half of the spectrum and the results
from minimization [Fig. 4.4 (blue) and Fig. 4.5b] in the “blue” half. The resulting local
spectrum for this control target is plotted in Fig. 4.6a. The sharp peaks observed in
the center of the spectrum are due to the steep slope of the amplitude coefficient γ1(ω)
(Fig. 4.5a) in the applied laser pulse shape, which resulted from the spectral part in
the local response where R(r⃗1, ω) exceeds the minimized local response R(r⃗2, ω) shown
in Fig. 4.3. In addition, the local spectrum normalized to the sum of the local spectra
at positions r⃗1 and r⃗2 is shown in Fig. 4.6b. Note that the switching efficiency varies
significantly with frequency. For some spectral components the switching efficiency is
negligible (e.g., 4.5 rad/fs) whereas it is almost 100% in other regions (e.g., 4.8 rad/fs).
This reflects the fact that each frequency component interferes with itself and thus the
local switching efficiency is controlled by the local spectral response for each wavelength
independently [12].

Hence, the desired optimization goal was achieved successfully: the spectrum was split
into two parts and independent switching was obtained, i.e., for the lower frequencies
the spectral intensity is higher at r⃗1 (dashed blue) than at r⃗2 (solid red), and for the
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higher frequencies it is higher at r⃗2 than at r⃗1.

4.4 Temporal Near-Field Compression

In Section 4.3 it was discussed how plasmon propagation can be guided to steer local
linear flux spatially. In the present section, additional control of nonlinear signals is con-
sidered. The analytic solution to temporal “focusing”, i.e., the optimization of nonlinear
flux, is not as straightforward as the control of linear flux. This is because the nonlinear
flux defined in Eq. (4.7) cannot be expressed as a linear combination of single-frequency
terms in the frequency domain, as is the case for the linear quantity.
The crucial point of the presented approach is that in Section 4.3 the optimal values

are obtained for only three out of the four available degrees of freedom of the excitation
laser pulse shape, and one phase can still be assigned independently, because it does not
affect the linear intensity. In particular, Eqs. (4.8), (4.9) or (4.16) were used to assign
the phase difference Φ(ω) = φ2(ω)−φ1(ω) between the two excitation laser polarization
components, and the prescription of Section 4.3.1 or Eq. (4.20) to find both intensities
I1(ω) and I2(ω). Since the linear signals depend only on the phase difference Φ(ω),
Eq. (4.1), which was already introduced in the last Chapter (Section 3.2), can be used
to vary the offset phase φ1(ω) under the constraint for linear flux control, i.e., given all
quantities in the curly brackets. The remaining control parameter φ1(ω) can then be
used to control the time evolution at a certain position, in particular to compress the
near-field temporally (Section 3.2.2). Thus, for example, the nonlinear flux defined in
Eq. (4.7) at that position where the linear flux was guided to can be optimized.

4.4.1 One Field Component

First, the simplest case is considered, in which just one polarization component of the
local field contributes to the nonlinear flux by setting bα = 1 and bβ = bγ = 0 with
{α, β, γ} ∈ {x, y, z} in Eq. (4.7). The control target is set to optimize the x component
of the near-field, i.e., bx = 1 and by = bz = 0. As already explained in Section 3.2.2 the
temporal near-field compression is carried out in analogy to the laser pulse compression
in the case of conventional far-field optics, i.e., a linear spectral phase is required to
achieve the shortest possible laser pulse due to the Fourier relation of frequency and
time domain. As can be inferred from Fig. 3.10 the same principle can be used in the
context of nano-optics to compensate for the phase response that is introduced by the
presence of nanostructures or electromagnetic propagation through them.
Hence, also in the work presented here, a phase is introduced by the pulse shaper

such that the spectral phase of the local electric field at the target position of the
nanostructure is flat. In the case of only one contributing local polarization component
(bα = 1) the required phase φα

1 (ω) is obtained in a straightforward manner via Eq. (4.1)
by requiring the phase of the local field to be uniformly zero, i.e., arg {Eα(r⃗, ω)} ≡ 0.
Using Eq. 4.1 the offset phase is obtained as

φα
1 (ω) = − arg

{
A(1)

α (r⃗, ω)
√
I1(ω) + A(2)

α (r⃗, ω)
√
I2(ω) exp [−iΦ(ω)]

}
(4.21)
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Figure 4.7: Analytic (lines) phases (a,b) φ1 (blue) and φ2 (red) and amplitudes (c,d) γ1(ω)
(green) and γ2(ω) (purple) for the nonlinear guidance of the x component of the near-field by
the decoupled process of first maximizing or minimizing the linear flux difference Flin(r⃗1) −
Flin(r⃗2) and then compressing the signal at the positions r⃗1 (a,c) and r⃗2 (b,d), compared to the
adaptively optimized (symbols) phases and amplitudes using the difference of the nonlinear
signal Fnl(r⃗1)−Fnl(r⃗2) [Eq. (4.22)] as the fitness function. The laser spectrum is indicated by
a gray dotted line. The adaptively optimized phases were adjusted with a linear phase and a
phase offset to fit to the analytically calculated data since the evolutionary algorithm is not
sensitive to these parameters. Taken from Tuchscherer et al. [49]. Copyright (2009) by The
Optical Society.

for a given location r and component α.

For illustration, the example of directional control from Section 4.3.2 (with bx =
1 and by = bz = 0) was chosen as a basis and the parameters for maximum flin =
Flin(r⃗1) − Flin(r⃗2) were used as constraints in Eq. (4.21). In addition to switching the
plasmon propagation along the x arm, temporal compression at the target point r⃗1 was
requested. The resulting analytic phases and amplitudes are shown in Figs. 4.7a and
4.7c (lines), respectively, and are again compared to those found by the evolutionary
algorithm (symbols). In this example, however, the fitness function for the adaptive
optimization was chosen directly as the difference of the nonlinear flux [Eq. (4.7)] at the
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two points r⃗1 and r⃗2:

fnl

[
φ1(ω), φ2(ω),

√
I1(ω),

√
I2(ω)

]
= Fnl(r⃗1)− Fnl(r⃗2). (4.22)

The agreement of the analytic phases [Fig. 4.7a] and amplitudes [Fig. 4.7c] with the
ones found by the evolutionary algorithm is impressive, since two different observables
are compared: for the analytic result, the process of first guiding the linear flux to
a desired point and then temporally compressing the field at that position using the
remaining degree of freedom was used, whereas with the evolutionary algorithm, the
nonlinear flux was guided directly by optimizing the difference given in Eq. (4.22). The
reason for this different choice of signals was that the direct nonlinear control is the
procedure usually employed in experiments with suitable feedback signals and adaptive
optimization. On the other hand, the several-step analytic procedure allows determinis-
tic derivation of the optimal pulse shape. The agreement between lines and symbols in
Figs. 4.7a and 4.7c is very good and is also reflected in the magnitude of the non-linear
flux difference [Eq. (4.22)] yielding 0.0127 for the analytic and 0.0126 for the adaptive
approach. This shows that our analytic approach is valid even if it does not directly
model the fitness function of Eq. (4.22).
The same procedure can also be applied for switching the propagation along the y

arm using the minimum Flin(r⃗1) − Flin(r⃗2) from Section 4.3.2 (with bx = 1 and by =
bz = 0) as a basis and compressing the pulse temporally at position r⃗2. The optimal
phases and amplitudes are compared with adaptive optimizations in Figs. 4.7b and 4.7d,
respectively. Here, some variations between the two approaches can be seen. However,
the amplitude coefficients [Fig. 4.7d] agree reasonably well and some of the relevant
features in the phases [Fig. 4.7b] are also reproduced, such as the separation between
the red and the blue curves in the region above ω ∼ 4.8 rad/fs. Below ω ∼ 4.6 rad/fs, the
intensities in the incident fields is reduced [Fig. 4.7d], which partly explains the deviation
of the phases between the two approaches. Comparing the non-linear flux difference
obtained with the analytic optimization (−1.208 · 10−9) to the results obtained with an
adaptive optimization (−0.377 · 10−9) shows again the validity of the presented analytic
approach, i.e., in this case the analytic approach performs better.
All spectral phases in Fig. 4.7a and 4.7b show a predominant negative slope with ad-

ditional curvatures. This is because the spectral near-field phase was chosen to be equal
to zero for reaching pulse compression at the target location. Since the target points
r⃗1 and r⃗2 are spatially separated from the excitation spot in the chosen nanostructure,
plasmon propagation as a function of time is relevant. The propagation time corresponds
to a linear spectral phase with a positive slope such that the dominant negative slopes
of Fig. 4.7 lead to an arrival time of t = 0. By adding any linear phase this timing can
be modified. Only the nonlinear part of the phase is responsible for compression.

4.4.2 Three Field Components

The solutions for nonlinear flux control become more complicated if more than one local
field component is considered. The problem is then to assign a unique spectral phase
that should in turn be compensated for pulse compression. From Eq. (4.1) it is clear
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Table 4.2: F opt
lin,α(r⃗). For comparison, all values are normalized to the sum of the linear flux

Flin(r⃗1) + Flin(r⃗2) excited with an unshaped pulse (cf. Table 4.1).

α = x α = y α = z

F opt
lin,α(r⃗1) 0.377 0.000 0.000

F opt
lin,α(r⃗2) 0.001 0.910 0.025

that—in general—the local spectral electric field is a three-component complex-valued
vector, and each polarization component has a separate spectral phase. Thus, with φ1(ω)
as one (scalar) degree of freedom it is not possible to compensate for all three phases
simultaneously. Therefore, different approximate solutions are considered here that find
a suitable compromise between compensation of the different components. However,
due to the geometry of the chosen nanostructure, the longitudinal components, i.e., the
x component in the x arm and the y component in the y arm, are dominant and are
compressed in roughly the same way using both approaches.
First, the phase of only the component that makes the biggest contribution to the

linear flux [Eq. (4.4)] is compensated, which is found by evaluating

F opt
lin,α(r⃗) ≥ F opt

lin,β,γ(r⃗) (4.23)

with {α, β, γ} ∈ {x, y, z} and

F opt
lin,χ(r⃗) = bχ

ωmax∑
ω=ωmin

∣∣Eopt
χ (r⃗, ω)

∣∣2 . (4.24)

The optimized near-field Eopt(r⃗, ω) is calculated using the optimal phase difference
(Fig. 4.4) and amplitudes (Fig. 4.5) of Section 4.3.2 that guide the linear flux to position
r⃗. The offset phase φmax α

1 (ω) for component α, i.e., the component with the biggest
contribution to the linear flux, is then obtained as in Eq. (4.21).
In the second approach, the phase of the sum of all components is compensated

weighted by their amplitude contributions to the linear signal:

φΣ
1 (ω) = − arg

{ ∑
α=x,y,z

A(1)
α (r⃗1, ω)

√
I1(ω) +

∑
α=x,y,z

A(2)
α (r⃗1, ω)

√
I2(ω) exp [−iϕ(ω)]

}
.

(4.25)
The idea of Eq. (4.25) is that for maximum nonlinear flux the dominating electric-field
polarization component should be compressed best.
To analyze both approaches the contribution of each component to the linear flux

[Eq. (4.24)] at positions r⃗1 and r⃗2 are summarized in Table 4.2. As can be inferred,
for the particular structure and target positions of the example chosen here, the x
component has the strongest contribution to the linear flux at position r⃗1, whereas the y
component has the strongest contribution at position r⃗2. This can easily be understood
by recalling the electric field distributions of the two modes that can be excited in
particle chain nanostructures, i.e., the longitudinal and the transversal mode (Section
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Figure 4.8: The phases φmax α
1 (ω)

(solid lines) and φΣ
1 (ω) (dotted lines)

for analytic near-field compression at
positions r⃗1 (red) and r⃗2 (blue) in-
cluding all three near-field components
calculated using either Eq. (4.21) for
the strongest component, i.e., x at
position r⃗1 and y at position r⃗2, or
Eq. (4.25) are compared to adaptive
optimizations using the fitness function
of Eq. (4.22) (symbols). The laser spec-
trum is indicated by a gray dotted line.
The adaptively optimized phases were
adjusted as described in the caption of
Fig 4.7.

3.1.3). Since the chosen control positions r⃗1 and r⃗2 are located in regions between the
spheres (cf. Fig. 4.1), the longitudinal mode has the strongest amplitude and contributes
strongest to the linear flux. Hence, the electric field is mostly directed along the main
axis of the chain of particles (Fig. 3.8), i.e., in x and y direction at points r⃗1 and r⃗2,
respectively.

Both approaches were carried out using the optimal phase differences (Fig. 4.4) and
amplitudes (Fig. 4.5) of Section 4.3.2. The resulting phases φmax α

1 (ω) and φΣ
1 (ω) are

plotted in Fig. 4.8 for positions r⃗1 and r⃗2 as red and blue lines, respectively. Due to
dominating components x at r⃗1 and y at r⃗2 (cf. Table 4.2), there is not a big differ-
ence between the combined usage of Eqs. (4.23) and (4.21) (solid lines) or the usage of
Eq. (4.25) (dotted lines). The analytic results (lines, Fig. 4.8) were confirmed with adap-
tive optimizations using the fitness function of Eq. (4.22) (symbols, Fig. 4.8). Again, a
striking agreement is observed supporting the validity of our approach of first guiding
the linear flux to a position and then temporally compress the signal at that position.

In general, nanostructures can exhibit an optical response with comparable amplitudes
for the three polarization components. In these cases, both approaches of defining the
optimal local phase that has to be compensated will differ more strongly. Therefore,
depending on the specific nanostructure–target combination the approaches presented
in this section or similar ones have to be tested using the fitness function of Eq. (4.22)
to find a suitable compromise.

The optimal shaped laser pulses for guiding to position r⃗1 and r⃗2 represented on the
Poincaré surface (Section 2.2.2) are shown in Fig. 4.9 as red and blue curves, respec-
tively. The pulse shape parameters, i.e., the amplitudes and phases of both polarization
components, were obtained using the optimal phase differences (Fig. 4.4) and ampli-
tudes (Fig. 4.5) of Section 4.3.2 combined with the phase φ1(ω) for compression of the
largest local near-field component (solid lines Fig. 4.8). It can be noticed that both
optimal pulses are mostly circularly polarized in regions of high intensity, i.e., dots with
saturated color. However, they differ in helicity such that guiding to position r⃗1 is ob-
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Figure 4.9: Poincaré curves of the optimally shaped excitation pulses. The optimal pulses
are calculated using the optimal phase differences and amplitudes of Section 4.3.2 combined
with the phase φmax α

1 (ω) for compression of the largest local near-field component α (solid
lines Fig. 4.8). The curves are shown from −30.64 fs to 2.79 fs for guiding to r⃗1 (red) and from
−18.39 fs to 6.69 fs for guiding to r⃗2 (blue) including intensities down to 1% of the maximum
intensity. The time interval between two circles is ∆t = 0.56 fs.

tained for right circular polarized light whereas left circular polarized light guides the
local near-field to position r⃗2. This can be explained by considering the optimal phase
differences (Fig. 4.4) described in Section 4.3: the optimal phase differences for guiding
to r⃗1 and r⃗2 are approximately −π/2 and π/2, respectively.

4.5 Interpretation of Optimized Fields in the Time
Domain

The formulation of the control problem in frequency space facilitates an analytic solution
as discussed in Sections 4.3 and 4.4. By virtue of Fourier transformation, this picture
already contains all information on the temporal evolution of the different quantities.
Nevertheless, it is instructive to monitor the plasmon propagation directly as a function
of time, which will be done here for the analytically derived optimal excitation pulses.
Figure 4.10a shows the temporal near-field intensities obtained with the excitation

pulses of Section 4.3.2, i.e., the phase difference from Fig. 4.4 and amplitude coefficients
from Fig. 4.5, combined with the phase φ1(ω) for compression of the largest local near-
field component (solid lines Fig. 4.8), and the temporal near-fields intensities obtained
with an unshaped pulse. The switching of the local near-field intensity is visible by
comparing the optimization of nonlinear flux guiding to r⃗1 (red lines) with guiding to
r⃗2 (blue lines). The temporal near-fields at r⃗1 and r⃗2 are shown with solid and dashed-
dotted lines, respectively. Clearly, the red solid line is higher than the red dashed line
and the dashed blue line is higher than the solid blue line, thus confirming the successful
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Figure 4.10: (a) Temporal near-field intensity |E⃗(r⃗, t)|2 at two locations r⃗1 (solid) and r⃗2
(dashed dotted). The near-field intensity for the unshaped pulse (black) is compared to the
near-field intensities excited by optimal pulses, to guide the nonlinear flux to r⃗1 (red) or r⃗2
(blue). (b,c) To show near-field compression the near-field intensities are plotted for the case
of guiding the linear flux and choosing φ1(ω) ≡ 0 (green) and are compared with the near-
field intensities for optimal φ1(ω) for r⃗1 [(b), red] and r⃗2 [(c), blue]. The curves in (a) have
been shifted in time and normalized for r⃗1 (b) and r⃗2 (c). Taken from Tuchscherer et al. [49].
Copyright (2009) by The Optical Society.

linear flux control.

Using the nonlinear flux control, both guiding of linear flux and field compression
under the constraint of an amplitude-shaped spectrum was achieved. Since the effective
spectral width was reduced for the linear flux control [cf. Fig. 4.5a, green curve], the
bandwidth-limited pulse duration increased correspondingly. Hence, the red solid line in
Fig. 4.10a has a broader width than the black solid line. The effect of dispersion com-
pensation at r⃗1 and r⃗2 can better be seen in Figs. 4.10b and 4.10c, respectively. Here, the
normalized and time-shifted temporal intensity under the constraint of guiding the lin-
ear flux, but choosing φ1(ω) ≡ 0 (green lines) are compared to the normalized temporal
intensity when additionally choosing the optimal φ1(ω) for pulse compression (red and
blue lines in Fig. 4.10b and 4.10c, respectively). The compression is small in Fig. 4.10b.
However, for guiding to r⃗2 [Fig. 4.10c] the dispersion is larger and the compression is
more pronounced, i.e., the optimally compressed temporal near-field (dash-dotted blue)
is shorter than the near-field for pulses with φ1(ω) ≡ 0 (dash-dotted green).

To illustrate the spatial and temporal evolution of the propagating plasmons, movies
that show the amplitude of the x component of the propagating near-fields excited
by optimally shaped ultrashort laser pulses were created. Two snapshots from these
movies are shown in Fig. 4.11, where in addition to the projections of the two laser
polarization components also the full quasi-3D profile (Section 2.2.2) of the vector-field
shaped optimal pulses are shown.

Figure 4.11a3 shows guiding of the linear and nonlinear flux to r⃗1 with the excitation

3The corresponding movie is provided by Optics Express:
http://www.opticsexpress.org/viewmedia.cfm?URI=oe-17-16-14235-1
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Figure 4.11: Snapshots of the movies of plasmon propagation at t = 0 for the nonlinear flux
guidance of the x component to r⃗1 (a) and r⃗2 (b) (links to the media files are given in the
footnote of the running text) . The amplitude of the x component of the near-field in the
z = 10nm plane is plotted logarithmically, where the excitation pulses are obtained by setting
bx = 1 and by = bz = 0, and using the analytic approach of Sections 4.3.2 and 4.4. The insets
show quasi-three-dimensional representations of the optimal laser pulses. The white arrows
indicate the optimized locations. Taken from Tuchscherer et al. [49]. Copyright (2009) by The
Optical Society.

phases and amplitudes of Figs. 4.7a and 4.7c, respectively, and Fig. 4.11b4 shows guid-
ance to r⃗2 with the optimal field shapes from Figs. 4.7b and 4.7d. Both of the snapshots
are taken at t = 0, since the phase φ1(ω) was chosen as in Eq. (4.21), which includes
the linear spectral phase of the propagated near-field. Therefore, the excitation pulse
appears at times t < 0 and the propagating mode arrives at the target location at t = 0.
It can be clearly seen that after propagation from the excitation position, the field mode
“switches ” into the desired arm after the junction and is guided to and compressed at
either r⃗1 (Fig. 4.11a) or r⃗2 (Fig. 4.11b).

4The corresponding movie is provided by Optics Express:
http://www.opticsexpress.org/viewmedia.cfm?URI=oe-17-16-14235-2
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4.6 Space–Time Control

In a previous work Brixner et al. [11] suggested to use ultrafast coherent control over
nano-optical fields for a new type of space–time-resolved spectroscopy below the diffrac-
tion limit. The idea was to create pump–probe-like fields in the vicinity of a nano-
structure with such properties that the pump and probe interactions are not only sep-
arated in time—as usual—but also occur at different spatial positions. Thus, it should
be possible to develop a direct spectroscopy for transport phenomena, in which the
propagation of some excitation created by the pump pulse can be probed spatially and
temporally separated. In the earlier work [11, 12], an evolutionary algorithm was used
to find the optimal polarization-shaped excitation pulse. While that works for the sug-
gested purpose, the question remained if a direct “inversion” of the problem could lead
to the optimal excitation field analytically. Such a analytic derivation of the optimal
excitation fields enables easy access to the pump–probe delay that would have to be
scanned in experiment. This is of great importance, since using adaptive optimizations
the finding of each pump–probe pulse configuration itself is a complex task and might
not be possible. This is even more important by considering more complex nonlinear
spectroscopy, e.g., two dimensional spectroscopy [7], on the nanoscale, where more than
one parameter have to be scanned.
In this section, the concepts from Sections 4.3, 4.4, and 4.5 are extended to provide

such a prescription, and illustrate results again for the example of the nanostructure
array of Fig. 4.1 and propagating plasmons. However, it should be emphasized that the
method itself can be applied to arbitrary structures and does not require propagating
modes.
In Section 4.3.1 the optimal phase difference and amplitude coefficients were deter-

mined to cancel out one component of the near field at one spatial location r⃗. However,
the near-field response at other locations is different, and therefore does not have to
vanish. This can be used to achieve space–time control by splitting the spectrum into
two parts and determining optimal pulse shapes for each of the parts independently.
The temporal shape of the near-field can be optimized using the remaining free laser
pulse shaping parameter φ1(ω):

Eα(r⃗, ω) =
{
A(1)

α (r⃗, ω)
√
I1(ω) + A(2)

α (r⃗, ω)
√
I2(ω) e

−iΦ(ω)
}
e−iφ1(ω), (4.26)

with α = x, y, z.
This is illustrated with an example, where the “red” half of the spectrum is used

to cancel out the x component of the near-field at r⃗1, while the “blue” half is used to
cancel out the y component at r⃗2. This gives the possibility to shape the largest local
component of the signal appearing in one arm of the nanostructure independently from
the signal in the other arm.
Using Eq. (4.21), the signal is compressed at t = 0, but here a time delay of τ = 90 fs

was introduced by requesting additional linear spectral phases with different slopes in the
two spectral regions. The spectral amplitudes for the largest near-field components, i.e.,
the x component at r⃗1 and the y component at r⃗2, are plotted in Fig. 4.12a. However,
in Fig. 4.12b the temporal intensities, which include all three components, are shown
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Figure 4.12: (a) Spectral amplitudes (blue) and phases (green) of the largest local component
of the shaped near-fields at two positions r⃗1 (solid, x component) and r⃗2 (dashed, y compo-
nent) with the linear spectral phase corresponding to a 90 fs delay between the corresponding
temporal intensities, which include all three near-field components, shown in (b). Taken from
Tuchscherer et al. [49]. Copyright (2009) by The Optical Society.

for the same polarization-shaped excitation pulse, and it can be seen that the desired
spatial–temporal sequence can be reached with extremely good contrast. The pump and
probe pulses peaking at τ = −45 fs and τ = +45 fs are limited exclusively to positions
r⃗2 (dashed) and r⃗1 (solid), respectively.

While a particular example is discussed here, this method is not restricted to any
specific time delay or temporal shape because the two parts of the spectrum can be
shaped with complete independence. Therefore, this provides an approach to perform
simultaneous spatial and temporal control analytically in a very general manner.

4.7 Conclusion and Outlook

In this chapter, general analytic solutions were derived for the control of nanoplasmonic
energy propagation on a femtosecond time scale. In a first step, the direction of propa-
gation at a branching point of a complex plasmonic nanostructure was controlled. Local
linear flux could be switched between different target points by adjusting the inter-
ference of different near-field modes induced by the two perpendicular components of a
polarization-shaped ultrashort laser pulse. In the second step, the remaining pulse shape
parameter yielded a handle independent from the results obtained in the first part, to ad-
ditionally manipulate the temporal evolution of the near fields. Specifically, the variation
of all four degrees of freedom (amplitude and phase for each polarization component)
that are available with recent pulse-shaping technology were considered. The analytic
results were confirmed by an evolutionary algorithm. This proves the effectiveness of
the analytic approach for controlling (propagating) optical near fields.

As already expected from the discussion of the near-field control mechanisms (Section
3.2.1) the results for controlling linear flux do not depend on the individual phases of both
laser pulse polarization components but only on their difference, i.e., the polarization
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state. This has implications for the experimental implementation, as only the phase
difference is a relevant parameter. Also, this enables usage of the remaining phase
parameter for temporal control, e.g., temporal compression in order to achieve high
nonlinear signals. Another interesting point is that the phases of the maximum and
the minimum signals are related to each other and differ by π. Consequently, once one
optimal phase is found analytically or adaptively, the other phase can be calculated
immediately. It is precisely this relation that will be used for the experiment described
in Chapter 5 to simplify the experiment on the one hand and to identify interference as
the main control mechanism on the other hand.

The best contrast for linear flux switching between point r⃗1 and point r⃗2 can be ob-
tained if the mixed scalar products Amix(r⃗1, ω) and Amix(r⃗2, ω) as defined in Eq. (4.6)
have a phase difference of θmix(r⃗1, ω)− θmix(r⃗2, ω) = π, such that the signal at r⃗1 is max-
imized and at r⃗2 minimized for the same phase difference Φ(ω) = φ2(ω)−φ1(ω) between
the two external polarization components. Considering this relation, the responses of the
symmetric T-structure investigated by Sukharev and Seideman [120] can be analyzed
observing exactly this behavior. This is the reason why the switching control in their
structure works with good contrast. In general, this insight can also be used to design
other nanostructures with the desired switching properties.

Apart from using the phases of the excitation laser pulse as control parameters, mod-
ifying the amplitudes as well can improve the control performance. With the analytic
approach, this process can be performed separately from the phase determination. As a
consequence, this insight also simplifies experiments using adaptive control because the
phases and amplitudes can be determined in separate runs of the evolutionary algorithm.
Thus, the size of the search space is reduced dramatically, and convergence rates could
improve.

Although only single spatial points were considered in the nanostructure investigated
here, as shown in Appendix A.1, solutions for the control of linear flux defined via regions
can be found completely analogously. This might have applications in optimization of
near-field confinement. In such an application a small region would have to be defined
that is surrounded by a larger region. The confinement is then reached by maximizing
the contrast such that strong linear flux is obtained in the small region and at the
same time suppression of the linear flux in the surrounding region is achieved. However,
different nanostructures would have to be chosen because in the quasi-one-dimensional
nanostructure chosen here the field is already confined along the chains of particles.

Once the linear flux was guided to the desired location, the remaining phase parameter
was used in an analytic approach to optimize the nonlinear flux difference. This is in
principle different from the direct guiding of the nonlinear signal to the desired location.
However, the results from the analytic two-step method were in good agreement with
direct nonlinear guiding using the evolutionary algorithm. A complication arises if all
local polarization components contribute to the nonlinear signal. In that case, it is
not obvious how a function of the spectral phase should be defined, and two different
possibilities have been discussed. For practical applications, the best choice depends
on the precise nature of the nonlinear signal that is investigated. The definition can
be adjusted to the particular system, while the general analytic approach remains the
same.
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In addition to spatial and temporal “focusing”, it is also possible to manipulate dif-
ferent parts of the laser spectrum individually and independently. Thus, a degree of
analytic spectral control can be added to the control over spatial–temporal character-
istics. As one particular example, the previously suggested [11] pump–probe pulse can
now be prepared analytically such that pump and probe interactions occur not only
at different times but also at different positions (with different spectral content). This
also enables an easy handle to the parameters that would be scanned in a pump–probe
experiment, such as the separation time.

The analytic scheme discussed here can be used to guide the propagation of electro-
magnetic energy in a variety of complex nanostructures for nanoscale optical characteri-
zation, manipulation, information processing, and other applications. It is important to
point out that the method is valid quite generally. Only one particular realization of a
T-junction array have been chosen for illustration purposes, but the analytic approach
is not limited to a certain nanostructure, number of frequencies, illumination conditions,
or spectral range. The only requirement is a Maxwell’s equations solver which calculates
the responses A⃗(i)(r⃗, ω) as a function of spatial position and frequency for two perpen-
dicular incident light polarizations. It is not even necessary to calculate the response in
the frequency domain, but it can also be calculated using time-domain methods, such as
Finite-Difference Time Domain (FDTD), and then Fourier-transformed [100]. Addition-
ally to theoretically obtained optical response functions, they can also be determined
experimentally [122–124], e.g., as described in Chapter 7. Then these results can be
used for the analytic calculations of the control fields.

The analytic results are not only of interest for understanding the mechanisms of
optical coherent control in nanostructures, but they also provide insights for simplifica-
tions and improvements of experiments. Applications can be found in logical processing
elements in nanoplasmonic circuits as well as in nonlinear spatially and temporally re-
solved “nano–femto” spectroscopy. This is of special interest in the scope of this thesis.
In Chapter 7 a new method will be introduced that allows detection of spectroscopic
features below the diffraction limit. However, the method as described there relies on far-
field illumination to excite the sample. Using appropriate nanostructures the method
could be further improved by introducing a near-field pump–probe excitation scheme
that allows excitation at different points separated below the optical diffraction limit.
Further, an appropriate nanostructure can be designed by using the criteria for perfect
constructive and destructive interference, i.e., θmix(r⃗1, ω)− θmix(r⃗2, ω) = π.

Adaptive learning loops have become a very successful technique for achieving coherent
control in many different systems such as molecules or, more recently, nanostructures.
However, very often the interpretation of control mechanisms is quite difficult. While
here a particular nanostructure has been explicitly considered and the optimal control of
plasmon propagation has been determined analytically, the approach may also be useful
for even more general control scenarios, namely in molecular systems, as it can also be
described in terms of optical response functions [7].

The results of this chapter provide a direct link between the Brumer–Shapiro frequency-
space interference scheme for coherent control on the one hand [125], and many-parameter
Tannor-Rice/Rabitz time-domain optimal control with shaped laser pulses on the other
hand [126, 127]. The two schemes do not constitute competing approaches; it is rather

Philip Tuchscherer: A Route to Optical Spectroscopy on the Nanoscale (Diss. Univ. Würzburg, 2012)



88 Analytic Control of Near Fields

a combination of the “best of both worlds”. While it turns out that the optimal control
solution found by a learning algorithm indeed requires a complex laser pulse shape and
not just a single “control knob”, that precise pulse shape can be constructed analytically
by exploiting the fundamental principles of coherent two-pathway interference.
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5 Experimental Deterministic Control
of Near Fields

In the last chapter, it was shown theoretically that it is possible to analytically control the
spatial and temporal profile of plasmonic excitation in nanostructures. It turned out that
if the response function of the nanostructure is known, the optimal pulse shapes can be
calculated in an analytic fashion. If however, the response function of the nanostructure
is unknown it was found that it is still possible to simplify the experiment. In case of
adaptive optimization of a certain optimization goal, e.g., maximization of the linear
flux at position r⃗1 and minimization at another position r⃗2, the opposite optimization
goal, e.g., maximization of the linear flux is at position r⃗2 and minimization at position
r⃗1, is obtained by applying a π phase to the optimal phase difference Φ = φ2 − φ1

between both layers of the polarization pulse shaper. In this chapter, this deterministic
rule is realized experimentally by switching the optical near field from one corner of a
bow-tie antenna to another corner. Therefore, optimal puls shapes are found adaptively
(Section 5.3) first and then these pulse shapes are used to find the optimal pulse shapes
of the opposite optimization goal in a deterministic fashion (Section 5.4). The results
display experimental deterministic switching and are discussed in terms of the optimal
pulse shapes of adaptive and deterministic control (Section 5.5).
The work that is presented in this chapter resulted from a collaboration of our work

group with the work groups of Martin Aeschlimann1 and Walter Pfeiffer2. The mea-
surements were performed at the Technische Universität Kaiserslautern in the group of
Martin Aeschlimann. His group was responsible for the sample fabrication and provided
their profound know-how of operating the photoemission electron microscope. The group
of Walter Pfeiffer contributed in the measurement process as well as in the analysis and
interpretation of the measured data.

5.1 Introduction

Ultrafast control of plasmonic excitations in nanostructures offers routes towards spec-
troscopic applications below the optical diffraction limit. As already used in surface
enhanced Raman spectroscopy (SERS) [83], plasmonic excitations enable strong en-
hancement of the local electric fields on nanostructured metallic surfaces and single-
molecule Raman spectra can be detected. However, random nanostructures are used for
SERS and design of complex shaped electric fields to apply nonlinear spectroscopy is

1Fachbereich Physik and Research CenterOPTIMAS, Technische Universität Kaiserslautern, Erwin-
Schrödinger-Str. 46, 67663 Kaiserslautern, Germany

2Fakultät für Physik, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany
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not possible in a deterministic fashion since the response function of the nanostuctures
excited on the surface can have a huge influence on the local electric fields. Therefore,
simple structures such as nanoantennas have recently been used to observe and manipu-
late wave-packets of single molecules [9]. As already discussed in the last chapter, more
sophisticated spectroscopy on nanometer spatial and femtosecond temporal scale can
be achieved by manipulation of the near field via polarization pulse shaping. Since all
degrees of freedom of the incident light affect the local excitations, they offer possibil-
ities to control plasmonic excitations both in space and time [11, 14]. With increasing
complexity of the nanostructure it becomes, however, less obvious how a particular spa-
tiotemporal excitation can be achieved using suitably shaped incident light. Although
two-pulse correlation measurements [118], parameter scans [114], time-reversal concepts
[48, 117], and adaptive optimization methods [11, 13] provided successful demonstrations
of nanoplasmonic control, it is essential to develop a basic understanding of the control
mechanisms and devise predefined rules to control local excitations. A particularly im-
portant issue is the question how optimal control can be achieved, i.e., how the global
optimum can be found. In the last chapter analytic formulas were derived which enable
calculation of the optimal far field pulses for a structure with a known response function.
Optimal switching between the local linear flux in a nanostructure is achieved if the dif-
ference of the spectral phases of the two incident laser pulse polarization components is
changed by π. Irrespective of the nanostructure shape, interference of different excited
modes is the underlying control mechanism.

In this chapter this concept of an analytically derived predefined control rule is realized
in an experiment by optimal switching of the excitation between two corners of a bow-
tie antenna. Therefore, adaptive optimizations are performed first and deterministic
control is then achieved by changing the relative phase of the two incident polarizations.
Although the utilized nanostructure is a bow-tie antenna, the underlying physics are
described by nanotriangles, since the interparticle distance is large such that coupling
between both triangles can be neglected. Nevertheless, these nanotriangles are highly
attractive for control experiments because they have a complex response with several
modes [128–130].

Additionally to spectroscopic applications as discussed above, plasmonic excitations
are also interesting for future applications in chip technology [131]. For these plasmonic
devices the coupling between the far field and the nanoscale excitations is essential and
optical resonant nanoantennas are developed to efficiently couple light to plasmonic
nanostructures [54, 84, 85]. Nanoantennas are promising candidates for single-molecule
applications [132, 133], high-harmonic generation radiation sources in the extreme ul-
traviolet [80], and nanophotonic circuitry [84, 108, 134].

5.2 Experimental Setup and Sample Characteristics

A schematic of the setup that was used for the presented experiment is depicted in
Fig. 5.1. Light pulses (p polarized) were generated by a Ti:Sapphire oscillator (New-
port Spectra-Physics Tsunami, 80MHz, 795 nm, 30 fs FWHM, 9 nJ) and were actively
stabilized with respect to beam pointing (TEM Messtechnik Beamlok 4D). One part
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Figure 5.1: Schematic of the experimental setup for deterministic control. The laser pulses
(Ti:Sapphire oscillator, 80MHz, 795 nm, 30 fs FWHM) are beam stabilized and then split. One
part of the pulses is sent through a polarization pulse shaper to act as the pump beam and
either excite the sample that is placed in UHV chamber of the PEEM or are sent to diagnostic
tools for pulse characterization. The second part is frequency-doubled in a BBO crystal and
then overlapped with the probe beam under an angle of about 1◦ to serve as the probe beam.
The photoemission pattern emitted from the sample is recorded with a CCD detector and
provides the feedback for adaptive optimizations. By courtesy of C. Strüber.

(probe) was frequency-doubled by second-harmonic generation in a 300µm BBO crys-
tal yielding s-polarized laser pulses. The laser pulses with 398 nm center wavelength
(corresponding to a photon energy of 3.1 eV) were compressed to 30 fs (FWHM) using a
prism compressor (not shown) and were then directed onto the sample. The other part
(pump) was polarization-shaped (Section 2.3.2) and was spatially overlapped under a
small angle (∼1◦) with the probe beam on the sample at 65◦ angle of incidence (see also
Fig. 2.17). Both beams were focused very weakly on the sample using the same lens with
a focal length of 30 cm resulting in about 70µm diameter spot size on the sample. The
temporal position of the probe pulse was set to coincide with the unshaped pump pulse
using the delay stage. The polarization-shaped pulses (center wavelength 795 nm) were
characterized using dual-channel spectral interferometry with reference pulses measured
via FROG (Section 2.4). Since the sample was positioned in the PEEM (i.e., in a UHV
chamber), it was not possible to characterize the laser pulses at the position of the sam-
ple. However, as can be observed from the schematic of the setup, only two additional
mirrors were used to direct the shaped laser pulses to the characterization tools. Hence,
the deviations of the pulses at the position of characterization with respect to the pulses
at the position of the sample can assumed to be small. Characterization of unshaped
pulses (i.e., transform-limited) revealed elongated pulses of 50 fs (FWHM) due to re-
duction of the spectral width induced by optical elements, i.e., the Jones matrix, of the
polarization pulse shaper. The photoemission pattern of the sample was recorded with
a PEEM (Section 2.6) and was used to define the feedback for adaptive optimizations.
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Figure 5.2: Bow-Tie antenna PEEM images with outlines. (a) One-photon UV PEEM image
shows uniformly distributed photoemission. (b) Two-photon image for excitation with an
unshaped p-polarized pump pulse and an s-polarized probe pulse. The projections of the
polarization directions and the k vector are indicated with white arrows. The regions of
interest (ROI) used for adaptive optimizations are indicated with red dashed squares. By
courtesy of C. Strüber.

For the adaptive optimizations an evolutionary algorithm was used (Section 2.5).
The optimizations were performed using independent spectral phase shaping of each
polarization component. The spectral phases φi(ω) were parameterized independently
in the dispersion basis using a sixth-order Taylor expansion with the absolute phase of
one polarization component set constant. Thus, eleven independent parameter genes
were varied and optimized in the adaptive learning loop. Forty individuals were used
per generation, and convergence was usually reached after 20–40 generations. Even
though only spectral phases were modulated with the LCD of the pulse shaper, the
amplitudes of both polarizations were also modulated due to the Jones matrix of the
setup (Section 2.4.3). A discussion of the influence of the Jones matrix is given in
Section 5.5.

The investigated sample was an array of twelve bow-tie antennas (BTA) made of gold
on an ITO/glass substrate. Note that due to the large spot size of 70µm, the complete
array is illuminated with pump and probe beam. The sample was covered with a thin
layer of Cs to adjust the work function of photoelectrons for two-photon pump–probe
excitation. The BTAs were compound of two equilateral nanoprisms with a side length
of 400 nm, a height of 40 nm and a varying gap size of 100, 200 and 300 nm. Exemplary
PEEM images of a BTA with 300 nm gap size are shown in Fig. 5.2. The high energy
Hg lamp excitation provided a one-photon UV PEEM image (Fig. 5.2a), which shows
the nanoantenna outlines with the photoelectron yield uniformly distributed over the
nanostructure surface. Upon excitation with a femtosecond unshaped p-polarized pump
pulse and the frequency-doubled s-polarized probe pulse the photoemission signals local-
ized at various subwavelength distributed spatial positions (Fig. 5.2b). The polarization
directions and the projection of the k-vector of incident laser pulses onto the sample are
indicated with white arrows. Note, that the small tilt of the BTA was due to a tilt of the
PEEM camera and not due to a tilt of the sample with respect to incident light, i.e., the
projection of the k-vector onto the plane of the sample was directed along the main axis
of the antenna. As can be observed, p-polarization of the incident light has a projection
along the main axis of the antenna. Due to the 65◦ incident angle, the p-polarization has
an additional component pointing into the plane of the antenna. This unsymmetrical
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illumination condition is also reflected in the PEEM pattern, i.e., the photoemission
pattern of the left nanoprism differs from the pattern of the right nanoprism.
Since the gap size of the BTA is on the order of the wavelength, the coupling of the

two nanoprisms can be neglected here and the PEEM pattern corresponds to excitation
of two isolated nanoprisms. No strong field enhancement is observed in the center of
the BTA. However, field enhancement was observed at the corners of the left nanoprism
and at the left corner on the right nanoprism. This behavior indicates excitation of
resonant plasmonic modes depending on the orientation of the incident k-vector with
respect to the nanoprisms. To demonstrate adaptive and deterministic switching, the left
nanoprism is discussed in the following and the right nanoprism is shown for comparison
only. For the adaptive optimization described in the next section the regions of interest
(ROI) are defined as indicated with the red dashed squares. The difference of the
photoemission yield of both ROIs that is observed in Fig. 5.2b, i.e., higher yield for ROI-
1 than for ROI-2, is due to imperfect fabrication of the BTA. For a perfectly fabricated
BTA the photoemission yield of both ROIs should be the same.
The PEEM pattern generated by the s-polarized probe-pulse-induced two-photon

photoemission (2×3.1 eV) alone revealed a homogeneous emission from the nanoantenna
surface (not shown) proving that the whole nanostructure area is uniformly probed.
Hence, off-resonant excitation can be assumed for the probe pulse excitation. However,
in the control experiments that are presented in the following, the sample was excited
with a polarization-shaped pump laser pulse in temporal overlap with the transform-
limited probe pulse and the photoemission signals localized at particular spatial regions
on the nanoantenna. Under these conditions, the two-photon PEEM pattern reveals the
joined excitation probability of pump and probe. Due to the temporal overlap of the
pump and probe pulse two possibilities have to be considered: Either the polarization-
shaped pump pulse generates—via linear absorption—a distribution of excited electrons
that is then homogeneously probed, or the probe pulse generates a homogeneous ex-
citation, which is then locally promoted into the electron continuum. In both cases
the observed emission pattern reveals the local one-photon pump interaction. Thus, al-
though a nonlinear method is used, the linear response of the nanoantenna at the pump
wavelength is investigated. Additionally, the intermediate state that is needed for the
two-photon process is assumed to be a virtual state with a vanishing lifetime (Section
2.6). Hence, only the temporal region of polarization-shaped pump pulse that is in tem-
poral overlap with the probe pulse has a contribution to the two-photon photoemission
yield.

5.3 Adaptive Switching of Photoemission

Before demonstrating optimal deterministic nanoplasmonic excitation control in an ex-
periment as described in the next section, adaptive optimizations of the photoemission
pattern of the BTAs were performed first. As an optimization goal, the emission ratio
from the two corners of the left nanoprism (ROI-1 and ROI-2 in Fig. 5.2b) was defined
as

f [φ1(ω), φ2(ω)] =
FROI-1

FROI-2

, (5.1)
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Figure 5.3: Adaptative control demonstrated for an array of BTAs with varying gap size of
100 (C), 200 (B) and 300 nm (A). The four nanostructures of each row are identical to the
extend of fabrication. (a) One-photon PEEM image obtained with a Hg lamp UV excitation.
(b) Two-photon pump–probe PEEM image obtained with an unshaped p-polarized pump pulse.
Two-photon pump–probe PEEM images obtained with an optimally shaped pump laser pulse
found by adaptive (c) maximization and (d) minimization of Eq. (5.1). The ROIs are defined
on the BTA A2 (cf. Fig. 5.2b) and maximization and minimization corresponds to localization
at the upper and lower corners of the left nanoprism. By courtesy of C. Strüber.

where F is the two-photon photoemission yield (i.e., excitation with polarization-shaped
pump and transform-limited probe pulse in temporal overlap) averaged over the ROIs
and φ1(ω) and φ2(ω) are the spectral phases applied to layer 1 and 2 of the pulse shaper,
respectively. Maximization and minimization of Eq. (5.1) corresponds to localization of
the photoemission at the upper and lower corner of the left nanoprism, respectively.

Figure 5.3 shows PEEM images of the complete array of the twelve investigated BTAs.
The photoemission yield of the one-photon UV PEEM image is shown in Fig. 5.3a. A
uniform distribution over the nanostructures’ surfaces is observed. Rows A, B, and C
indicate the three different BTA gap sizes of 300, 200, and 100 nm, respectively. Each
row contains four BTAs (1–4) that are identical to the extend of fabrication. Their two-
photon PEEM images obtained for excitation with an unshaped pump together with a
transform-limited probe pulse are shown in Fig. 5.3b. Similarities as well as observable
differences are revealed. For example, the nanoantennas A1 and A3 show stronger hot
spots localized in the upper and lower corners of the left triangle, respectively. A2, on the
other hand, shows detectable signal yield from both spots. Additionally, no resonant
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effect of the coupling of the nanoprisms acting as a BTA is observed. For resonant
excitation of the BTAs, the field enhancement should increase with decreasing gap size.
However, the opposite trend is observed, BTAs with a gap size of 100 nm, i.e., row C,
show small photoemission, whereas the BTAs with larger gap sizes, i.e., rows A and B,
show spots with high photoemission. Hence, the excitation frequency of the pump pulse
is assumed to be resonant with a single nanoprism but not resonant with the coupled
BTA.
To define the feedback for the adaptive optimizations, the nanoantenna A2, also shown

as an example in Fig. 5.2, was chosen. The regions of interest were defined as indicated
in Fig. 5.2b and the fitness function of Eq. (5.1) was optimized using the evolutionary
algorithm.
The two-photon PEEM image that was obtained for excitation with a shaped pump

pulse that maximizes the fitness function defined in Eq. (5.1) (i.e., localization of photo-
emission at the upper corner of A2) together with a transform-limited probe pulse is
displayed in Fig. 5.3c. As can be observed, compared to Fig. 5.3b the optimization re-
sults in a localization of the photoemission at the upper corner of the left nanoprism of
BTA A2 (a zoomed-in image is shown and discussed in the next section). Other BTAs,
such as A1, A3, B4 and C1, follow the same trend. However, due to imperfect fabrica-
tion, there are also BTAs that do not show localization in the upper corner of the left
nanoprism as intended by the optimization. Interestingly, almost all BTAs show higher
photoemission at the left nanoprisms than at the right nanoprisms, which is not the case
for excitation with an unshaped pump pulse (Fig. 5.3b). The two-photon image obtained
for minimizing the fitness function of Eq. (5.1), i.e., localization of photoemission at the
lower corner of A2, is shown in Fig. 5.3d. Compared to maximization (cf. Fig. 5.3c), a
switching of the photoemission to the lower corner is observed for BTA A2. Although
the localization at the lower corner is not as pronounced for BTA A2, the other BTAs
show a more pronounced photoemission localization at the desired corner.
Hence, the adaptive closed-loop control, presented here, allows switching of photo-

emission separated by 400 nm, i.e., on the order of the diffraction limit. The optimal
pump-pulse shapes corresponding to maximization and minimization are shown and
discussed together with the pulses obtained for deterministic control in Section 5.5.

5.4 Deterministic Switching of Photoemission

In Chapter 4 the knowledge of the control mechanism for spatial near-field control (Sec-
tion 3.2.1) was used to develop analytic formulas to calculate the optimal phase for
guiding the linear flux in nanostructures. Using the fact that the linear flux for phase-
only shaping just depends on the phase difference

Φ(ω) = φ2(ω)− φ1(ω), (5.2)

of the two polarization components according to the layers 2 and 1 of the pulse shaper,
respectively, it was found that the optimal phase differences of two contrary optimiza-
tions, e.g., maximization [Φmax(ω)] and minimization [Φmin(ω)] of the fitness function
[Eq. (5.1)], is

∆Φ(ω) = Φmax(ω)− Φmin(ω) = π. (5.3)
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Figure 5.4: Demonstration of deterministic photoemission switching at the two left nanoprism
corners of the A2 nanoantenna indicated in Fig. 5.3. The two-photon PEEM images of deter-
ministically (b) minimizing, i.e, localization at the lower corner, and (d) maximizing Eq. (5.1),
i.e., localization at the upper corner. The optimal deterministic pulse shapes were calculated
from the optimal adaptive pulse shapes inducing the photoemission shown in (a) and (c),
respectively, according to the deterministic rule [Eq. (5.3)]. By courtesy of C. Strüber.

Caused by the introduced π spectral phase, the interference of the near-field modes at
the corresponding ROIs switches from constructive to destructive interference and vice
versa. This results in a switching of the optimization goal, e.g., from maximization
to minimization. Hence, by using the adaptively found optimal phase difference of,
e.g., maximization of the fitness function, it is possible to calculate the optimal phase
difference for the opposite goal, i.e., minimization.

Following this analytic approach, the optimal deterministic pulses were calculated by
adding a constant π rad spectral phase to the spectral phase φ2(ω) of the pulses ob-
tained for the respective opposite adaptive optimizations described in the last section.
The resulting two-photon PEEM images of BTA A2 are compared to the images of the
adaptive closed-loop optimization in Fig. 5.4. Note that only PEEM images of BTA A2
(cf. Fig. 5.3) are shown and discussed in the following for the sake of clarity. However, as
can be inferred from Fig. 5.3, similar results would be obtained by considering a different
structure of the array. The two-photon PEEM images of deterministic optimizations for
minimizing and maximizing the fitness function of Eq. (5.1) are displayed in Fig. 5.4b
and 5.4d, respectively. Comparing them to the two-photon PEEM images obtained for
adaptive maximization (Fig. 5.4a) and minimization (Fig. 5.4b), remarkable switching is
observed, i.e., from Fig. 5.4a to Fig. 5.4b and from Fig. 5.4c to Fig. 5.4d. Additionally,
comparing the two-photon PEEM images of the same optimization goal, i.e., Fig. 5.4a
to Fig. 5.4d and Fig. 5.4b to Fig. 5.4c, very similar two-photon PEEM patterns were ob-
tained. This indicates that the two different approaches, i.e., deterministic and adaptive
optimization, yield the same excitation pump pulses.

The optimal fitness values for adaptive and deterministic optimizations are summa-
rized in Table 5.1. The values are calculated using the two-photon PEEM patterns
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Table 5.1: Averaged photoemission yield over ROI-1 and ROI-2 (first and second column) and
the fitness values calculated via Eq. (5.1) (third column) of adaptive (second and fourth row)
and deterministic control (third and fifth row). For comparison the values are also given for
an unshaped reference pulse (first row). Additionally, the inverse of the fitness values obtained
for minimization are given in the last column.

FROI-1 FROI-2 f [φ1(ω), φ2(ω)] f [φ1(ω), φ2(ω)]
−1

Reference 788.48 546.08 1.444 -

adaptive maximization 758.80 133.66 5.677 -

deterministic maximization 716.92 201.00 3.567 -

adaptive minimization 305.64 389.04 0.786 1.272

deterministic minimization 294.36 390.16 0.754 1.326

shown in Figs. 5.2b and 5.4. Compared to the reference value (unshaped pump-pulse
excitation) all values clearly show the control, i.e., f [φ1(ω), φ2(ω)] > 1.444 for maximiza-
tion and f [φ1(ω), φ2(ω)] < 1.444 minimization. Although the photoemission patterns
for maximization (Figs. 5.4a and Figs. 5.4d) are very similar, the maximization was
better achieved for the adaptive optimization {f [φ1(ω), φ2(ω)] = 5.677} than for the
deterministic control {f [φ1(ω), φ2(ω)] = 3.567}. Interestingly, the opposite behavior
is observed for minimization: The performance of the adaptive minimization is not as
good as the deterministic minimization, i.e., the fitness value of the deterministic op-
timization f [φ1(ω), φ2(ω)] = 0.754 is smaller than the value for adaptive optimization
f [φ1(ω), φ2(ω)] = 0.786. This characteristic can be understood by recalling the approach
that was used for the deterministic optimization: To obtain the optimal phases for the
deterministic minimization the optimal phases of the adaptive maximization were used
and vice versa. Hence, the adaptive minimization seems to have a poorer performance
than the adaptive maximization since the deterministic minimization that is gained from
the adaptive maximization has a smaller fitness value than the adaptive minimization.
Contrary, the adaptive maximization has a larger fitness value than the deterministic
maximization. This observation reveals the advantage of the deterministic approach: If
a certain adaptive optimization, e.g., minimization, leads to a poor result, the opposite
adaptive optimization, i.e., maximization, might be used to enhance the performance of
the original optimization, i.e., minimization.

Comparing the inverse of the fitness values of minimizations, i.e., the last column in
Table 5.1, to the fitness values of the maximizations, reflects that it was not possible
the achieve the same degree of localization for the two contrary optimizations. This can
be explained by two different effects. On the one hand, the imperfection of fabrication
already leads to unequal photoemission yield in the two ROIS for the unshaped reference
pulse (cf. Fig. 5.2b) and this can also influence the degree of localization for the optimized
pulses. On the other hand, due to the limited number of pulse shapes that can be
produced with the used pulse shaper, it might not be possible to find a pulse shape that
localizes the photoemission yield for minimization as good as for maximization.
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The observed results of deterministic control confirm the assumption that two differ-
ent near-field modes are excited with the two polarization components of the laser pulse.
Using the deterministic rule [Eq. (5.3)] the near-field modes are adjusted to either in-
terfere constructively or destructively at the ROIs. The properties of the corresponding
optimal pump pulses are shown and discussed in the next section.

5.5 Comparison of Adaptively and Deterministically
Obtained Pulse Shapes

In this section three different representations are chosen to compare and discuss the
obtained pulse shapes for deterministic and adaptive control.
The quasi-3D representations (Section 2.2.2) of the optimal pulse shapes corresponding

to the control targets of Figs. 5.4a–5.4d are shown from −100 fs to 100 fs in Figs. 5.5a–
5.5d, respectively. The time limits are chosen to include the frequency-doubled probe
pulse (30 fs FWHM), which arrives at 0 fs on this scale, i.e., at the position of the
axes. E1 and E2 are the temporal profiles of the two polarization components of the
electric field corresponding to p and s polarization indicated in Fig. 5.2, respectively.
The direction of the layers 1 and 2 of the pulse shaper correspond to −45◦ and 45◦,
respectively. As explained in the last section, the deterministically optimized pulses are
derived by adding a spectral phase of π rad to the phase φ2(ω) of the optimal pulses
found by adaptive optimization. Hence, the relative phase of the adaptive pulse shape
in Fig. 5.5a was shifted by π and the resulting deterministic pulse shape is shown in
Fig. 5.5b. As can be observed the temporal profile of the total intensity is very similar.
However, the polarization state is changed from approximately circular polarization in
the overlap with the probe pulse to linear polarization oriented along −45◦ with respect
to the E1 and E2-axis. The shifted deterministic pulse shape of Fig. 5.5c is shown
in Fig. 5.5d. Here, the pulse switches from elliptical polarization to approximately
circular polarization. Comparing the optimal pump pulse shapes of deterministic and
adaptive maximization, i.e., Figs. 5.5d and 5.5a, respectively, reveal similar circular
polarization of both pulses in the overlap with the probe pulse. However, for the pulse
shapes of deterministic (Fig. 5.5b) and adaptive minimization (Fig. 5.5c) differences in
terms of their polarization state are observed, i.e., elliptical versus linear polarization,
respectively.
For a better understanding of the polarization state evolution, the pulses are also

plotted on the Poincaré surface (Section 2.2.2) in Fig. 5.6. In this representation the
center of the Poincaré surface, i.e., point (0, 0), indicates linear p polarization and the
points (−π/4, 0) and (π/4, 0) correspond to the polarization directions along layer 1 and
2 of the pulse shaper, respectively.
The adaptively and deterministically optimized pulses are depicted as red and blue

symbols, respectively. Circles indicate maximization of the fitness function, whereas
diamonds indicate minimization. The pulses are shown for a temporal region from −30
to 30 fs, which corresponds to the region of significant overlap with the frequency-doubled
probe pulse (30 fs FWHM) that provides the largest contribution to the time-averaged
photoemission signals. Incidentally, this also corresponds to the region of high intensity
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(a) (b)

(c) (d)

Figure 5.5: Quasi-3D representation of the optimal pump pulses as obtained for optimizations
described in Sections 5.3 and 5.4. The optimal pulses displayed in (a)–(d) are used to excite the
photoemission patterns of BTA A2 shown in Figs. 5.4a–5.4d, respectively. (a) and (c) Optimal
pump pulses obtained for adaptive minimization and maximization, respectively. (b) and (d)
Optimal pump pulses obtained for deterministic minimization and maximization, respectively.
The time axes are plotted from −100 fs to 100 fs, where 0 fs corresponds to the arrival time of
the probe pulse. The temporal separation of two adjacent ellipses is 3.47 fs. Polarizations E1

and E2 correspond to p and s polarizations, respectively.

of the shaped pump pulses. This is an indication of the correct scheme of two-photon
photoemission and good convergence of the evolutionary algorithm.
The agreement of the optimal pulses for adaptive closed-loop (Fig. 5.5a) and deter-

ministic open-loop maximization (Fig. 5.5d) observed in the quasi-3D representation is
confirmed by the overlap of their Poincaré curves (circles) in regions of maximum inten-
sity, i.e., in regions of saturated color. Although the polarization state is expected to
be mostly circular from the quasi-3D representations, elliptical light is observed on the
Poincaré surface, i.e., ε ≈ π/8. However, in contrast to the quasi-3D representations
of the optimal pulses of adaptive (Fig. 5.5c) and deterministic minimization (Fig 5.5b),
showing differences of the polarization state in terms of elliptical and linear polarization,
respectively, the Poincaré curves (diamonds) reveal a good agreement at approximately
linear polarization. Again, both curves overlap in regions of maximum intensity. It is
important to point out that two different approaches of optimization, i.e., deterministic
and adaptive control, are compared and therefore the observed agreement is remarkable.
Neglecting effects of the Jones matrix, application of a π phase shift would result in

Philip Tuchscherer: A Route to Optical Spectroscopy on the Nanoscale (Diss. Univ. Würzburg, 2012)



100 Experimental Deterministic Control of Near Fields

ε

θ

π/2

π/4

−π/2

−π/4
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Figure 5.6: Optimal pump pulses derived either by deterministic open-loop (blue symbols) or
adaptive closed-loop control (red symbols) represented in the Poincaré plane. Maximizations
and minimizations are indicated with circles and diamonds, respectively. As described in
Section 5.4 the pulse shapes for deterministic open-loop maximization (blue circles, Fig. 5.5d)
and minimization (blue diamonds, Fig. 5.5b) are calculated from the pulse shapes of adaptive
closed-loop minimization (red diamonds, Fig. 5.5c) and maximization (red circles, Fig. 5.5a),
respectively. The curves cover a time range from -30 to 30 fs, corresponding to the complete
temporal overlap with the probe pulse arriving at 0 fs. The temporal separation between
adjacent symbols in 3.47 fs and the color saturation reflects the normalized total intensity. The
center of the Poincaré surface (0,0) corresponds to p polarization.

an inversion of the pulse with respect to the position of linear polarization along layer
1 of the pulse shaper, i.e., here (−π/4, 0), on the Poincaré surface. However, due to
the Jones matrix of the used experimental setup (Section 2.4.3) the inversion is not
reached. This might also contribute to the better performance of the maximizations
with respect to the minimizations. Since the Jones matrix affects the adaptively as
well as the deterministically shaped pulses the imperfect inversion does not lesson the
obtained results. For further investigation of the phase shift yielding the switching of
the photoemission distribution, the polarization state difference (∆Φ) of optimal pump
pulses controlling the switching between maximization and minimization are shown in
Fig. 5.7. The polarization state difference is calculated using the optimal pulse shapes of
deterministic switching (blue squares) shown in Figs. 5.5a and Fig. 5.5b and of adaptive
switching (red circles) shown in Figs. 5.5a and Fig. 5.5c. As expected from Eq. (5.3),
the deterministic switching results in a constant polarization state difference at approx-
imately π. Hence, although the correct polarization state difference was measured the
corresponding Poincaré curves do not show an inversion with respect to (−π/4, 0). This
implies that the imperfect inversion is due to modification of the relative amplitude of
the two polarization components introduced by the Jones matrix of the experimental
setup. Although the polarization state difference of the adaptive switching does not
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Figure 5.7: Polarization state differ-
ence (∆Φ) of optimal pump pulses con-
trolling the switching between maxi-
mization and minimization. Adaptively
optimized switching (red circles) (po-
larization state difference of the pulses
shown in Figs. 5.5a and 5.5c) is com-
pared to deterministically optimized
switching (blue squares) (polarization
state difference of the pulses shown in
Figs. 5.5a and 5.5b). The normalized
laser pulse spectrum is indicated with a
dashed line.

show a perfect constant spectral π phase, the trend is observed in the spectral region of
high intensity. This is another validation of the deterministic rule developed in Chapter
4, predicting a polarization state difference of π.

5.6 Conclusion and Outlook

In this chapter the experimental implementation of the deterministic rule, of obtaining
the opposite optimization goal by adding π to the phase difference of the two inci-
dent polarizations, introduced in Chapter 4, was shown. This resulted in experimental
demonstration of optimal deterministic control of nanooptical excitations.

First, adaptive optimizations of the photoemission pattern of a BTA were performed
and the spatial switching of photoemission hot spots between the upper and lower tri-
angle corners was achieved. Following the analytic expectations the switching was then
achieved as well by applying the π phase shift to one polarization component. Compar-
ison of the adaptive and deterministic pulse shapes revealed a good agreement, i.e., the
pairs of pulses corresponding to the optimizations of the same control targets using two
different approaches showed similar states of polarization. It is notable that the optimal
pulse for the signal localization in the upper corner tended to be elliptically polarized,
while that for the lower part was more linearly polarized. Applying the π phase shift
was expected to yield an inversion on the Poincaré surface which was not perfect in the
present example. The linear polarization may thus be due to the Jones matrix limita-
tions of the current pulse shaper setup and could be overcome using a full vector field
synthesizer (Section 2.3.4) which is capable of shaping all degrees of freedom such as
phase, amplitude and polarization state of laser pulses simultaneously. In spite of these
imperfections, however, the evolutionary algorithm still found both optimal pulses which
provide a good degree of control, and whose polarization states differ approximately by
π.

Although the deterministic control was applied here to achieve near-field switching in a
gold BTA, the method is general and is not restricted to that particular geometry. If the
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optical response function of a plasmonic nanostructure is not known, the deterministic
approach may be used together with an adaptive optimization to achieve near-field
control and switching. However, as for the deterministic maximization achieved here, the
result can only be as good as the adaptive optimization. If the complete spectral response
is known, the first adaptive optimization step is not necessary and direct application of
the analytically derived formulas of Chapter 4 yield optimal control. In addition, the
achieved nanoscale switching demonstrates experimentally the proposed optical near-
field control via the local interference of different near-field modes driven by the two
independent incident polarization components. These modes can be propagating as well
as localized modes.
Near-field control by deterministic pulse shaping is expected to improve the controlla-

bility of ultrafast nanooptical light–matter interactions and—fitting to the tenor of the
thesis—will enable subdiffraction excitation schemes that might be used in the future
for spectroscopic applications. Additionally, it will help to design novel nanoplasmonic
devices that can improve the excitation schemes in nanoscopic ultrafast space–time-
resolved spectroscopy. Also, it can improve active control of plasmonic nanocircuits and
development of single-molecule and nanoplasmonic biosensors. High degree of near-field
control in plasmonic nanostructures such as antennas, waveguides, and metamaterials
might be achieved. The deterministic scheme may also be useful for other scenarios,
such as coherent control of molecules, when suitable response functions are available
either through calculation or from (nonlinear) spectroscopic experiments.
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6 Coherent Control of Near Fields on
a Rough Silver Surface

In this chapter, polarization pulse shaping is used to control the near fields on a cor-
rugated silver surface and thereby investigate the plasmonic properties of the random
surface. Adaptive optimizations are performed to control and switch the near field distri-
bution for spatial regions that are separated above and below the diffraction limit (Sec-
tion 6.3). To gain further insight into underlying control mechanisms a two-parameter
scan is carried out (Section 6.4). Interesting and unexpected effects are observed in
terms of the temporal profile of the optimal pulse shapes.

The work that is presented in this chapter resulted from the same collaboration that
was described in Chapter 5.

6.1 Introduction

Applications of the well-established methods of coherent control [135, 136] to the grow-
ing field of ultrafast nanooptics [106] resulted in a number of successful theoretical
[11, 47, 114] and experimental [13, 14] achievements. These methods that were origi-
nally developed for controlling atoms and molecules can now be applied to plasmonic
nanostructures such as resonant optical nanoantennas [84, 134] and nanophotonic cir-
cuitry [108, 137], nanoplasmonic waveguides and surfaces, and even artificial plasmonic
“atoms” and “molecules” [138]. Near-field enhancement due to light concentration by
these nanostructures has been thoroughly investigated offering a large variety of novel
applications in nanophotonics, single-molecule applications [133, 139], and manipulation
of light-matter interactions simultaneously on the ultrafast temporal and subwavelength
spatial scale [11, 14, 47]. An interesting question is how well the currently developed con-
cepts in the field of coherent control can be transferred to nanoplasmonics, and, on the
other hand, if any new insights about control itself may be obtained from these investiga-
tions. For example, the questions of optimal pulse-shape interpretation and topological
structure of the control landscapes are still open areas of active research [140]. Quan-
tum control of complex atomic and molecular systems in condensed phase often yields
optimal laser pulse shapes that are too complicated for unambiguous interpretation. On
the other hand, as has been shown in Chapters 4 and 5, in nanoplasmonics the interpre-
tation of optimal laser pulse shapes in terms of plasmonic nanostructure responses [48]
and their analytic determination can be theoretically described. This analytic approach
was then used to simulate the switching of plasmon propagation directions in a branched
plasmonic nanoparticle chain waveguide. In this chapter, however, it is not possible to
directly apply these concepts and interpret pulse shapes due to the absence of direct
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information about the spectral response of the random silver surface investigated here.
Alternative approaches, such as predetermined few-parameter scans, have to be used to
obtain some insight into the pulse shapes and underlying control mechanisms.

Hot spots on deterministic and randomly structured metal surfaces were found re-
sponsible for the increase of the optical signals by many orders of magnitude in the field
of ultrasensitive optical spectroscopy. For example, Raman spectroscopic signals from
molecules placed on silver surfaces may be enhanced dramatically and single-molecule
sensitivity is reached [54, 83, 141, 142]. The highest surface-enhanced Raman signal
enhancements have been obtained using randomly structured silver surfaces. However,
the drawbacks are the unpredictability of hot spot locations, difficulties in reproducible
sample fabrication, and control of the resulting hot spots. One of the mechanisms ex-
plaining their high optical signal enhancement is due to the strongly enhanced near fields
from the superposition of multiple surface plasmon resonances that can exist in random
silver surfaces [54].

The possibility to control the photoemission hot spots in deterministic silver nano-
structures by laser pulse shaping was demonstrated [13]. There, it was possible to control
the ratio of the two-photon photoemission signals from different spatial locations. Here,
these investigations are extended to a more complex structure, a randomly structured
corrugated silver surface, and controllability of hot spots separated above and below the
diffraction limit is demonstrated. In the case of a small distance separation it may be
advantageous to gain control that allows switching hot spots or shaping and focusing
the local field enhancement. As already described in Chapters 4 and 5, it might be
useful to have two hot spots as close as possible to each other and have a control of their
ratio with an ultrafast temporal resolution in order to perform a nanoscopic ultrafast
space–time-resolved pump–probe spectroscopy.

Prior to application of local field control several questions have to be addressed. In
addition to the controllability the underlying control mechanism, the degrees of freedom
in the control and the reproducibility of adaptive control schemes need investigation.
Relevant questions that arise are the number of global and local optima in the control
landscape, size of available control parameter space, and convergence and reproducibility
of sequential identical optimizations. Answering these questions may give insight into
the significance of various features of optimal pulses, on limitations of pulse shaping
apparatus and controllability of specific nanostructures, and will play a decisive role in
developing future applications. These questions are addressed here by using a corrugated
silver surface providing a “random” nanostructure.

6.2 Experimental Setup and Sample Characteristics

The investigation of enhancement of optical near fields in a spatially resolved manner
was done by employing photoemission electron microscopy (PEEM) where the sample
was illuminated with polarization-shaped femtosecond laser pulses. A schematic of the
experimental setup is shown in Fig. 6.1. The setup is similar to the setup described in
Chapter 5 with the difference that no frequency-doubled probe pulse was used. Light
pulses were generated by a Ti:Sapphire oscillator (80MHz, 795 nm, 30 fs FWHM), beam-
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Figure 6.1: Photoemission power dependence of the corrugated silver surface. (a) Con-
tour plot of the photoelectron emission distribution illuminated with an unshaped laser pulse
(52.8mW). (b) The average photoelectron emission yield of the three regions of interest (ROI)
indicated with blue circles (ROI-A), green squares (ROI-B) and red triangles (ROI-C) is plot-
ted versus the intensity of the exciting unshaped laser pulse. For comparison a third order
power dependence is indicated with a solid black line. Taken from Aeschlimann et al. [143].
Copyright (2011) by IEEE.

pointing stabilized, and sent through a polarization pulse shaper (Section 2.3.2). Due to
the Jones-matrix of the pulse shaper the transform limited pulse after the pulse shaper
had a duration of 50 fs. The polarization-shaped pulses interact with the silver sur-
face at 65◦ angle of incidence inside the UHV chamber of the PEEM. The adaptive
optimized pulses shown in Section 6.3 were characterized using dual-channel spectral
interferometry (Section 2.4.2) with reference pulses measured via FROG (Section 2.4.1).
As can be observed from Fig. 6.1, the pulses were characterized outside the UHV cham-
ber. Characterization at the position of the sample was not possible since the required
characterization tools could not be placed into the chamber. However, since only two
additional mirrors were used to guide the beam to the position of characterization, the
deviations of the measured pulses are assumed to be small as compared to the pulses im-
pinging on the sample. The optimal pulses of the two-parameter scan shown in Section
6.4 were calculated using the measured Jones-matrix of the experimental setup (Section
2.4.3).

The sample in the presented experiment was a corrugated silver surface prepared
by repeated Ar+ sputtering to eliminate surface contamination. A scanning electron
microscope image of an exemplary region of the silver surface is shown in Fig. 6.2, where
the brightness of the image reflects the topography of the surface. Structures from
several µm down to sizes below 1µm are observed.

As for the adaptive optimizations described in Chapter 5 an evolutionary algorithm
was used here (Section 2.5). Adaptive optimizations were performed using a feedback
that is defined via the measured PEEM patterns. Again, independent spectral phase
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100 µm

Figure 6.2: Scanning electron micro-
scope image of the corrugated silver sur-
face prepared by repeated Ar+ sputter-
ing and heating cycles. The bright-
ness of the image indicates the topogra-
phy of the surface, where locations with
white color reflect regions of higher to-
pography and black color indicates lower
topography. Taken from Aeschlimann
et al. [143]. Copyright (2011) by IEEE.
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Figure 6.3: Photoemission power dependence of the corrugated silver surface. (a) Contour
plot of the photoelectron emission distribution illuminated with an unshaped laser pulse
(52.8mW). Three regions of interest (ROI) are indicated with white rectangles. (b) The
average photoelectron emission yield of these ROIs indicated with blue circles (ROI-A), green
squares (ROI-B) and red triangles (ROI-C) is plotted versus the power of the exciting unshaped
(i.e., transform-limited) laser pulse. Fitting of the data points (dashed lines) results in power
dependence orders of 3.39, 3.07 and 3.25 for ROI-A, ROI-B and ROI-C, respectively. Note
that both axis are plotted logarithmically.

shaping of each polarization component was performed, i.e., spectral amplitude modula-
tion was only introduced by the Jones matrix of the setup (Section 2.4.3). The spectral
phases φi(ω) were parameterized independently in the dispersion basis using eleven in-
dependent parameter genes. Using forty individuals per generation, convergence was
reached after 20–40 generations.
The photoelectron emission distribution of a small region of the sample is depicted

in Fig. 6.3a. Here, the silver surface was excited with transform-limited laser pulses
with a power of 52.8mW. Several hot spots, i.e., regions with enhanced photoelectron
emission, are observed. This behavior can be explained by strong enhancement of the
optical near field in the corresponding regions resulting from resonant structures on the
surface (Section 3.1.2). Since the sample was a rough silver surface, a direct assignment
of the topology of the surface to the resonant structures is not possible, i.e., it is not
possible to assign the hot spots of Fig. 6.3a to regions in the scanning electron microscope
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image Fig. 6.2. Although the dimensions of the resonant structure could not be measured
directly, due to the effective wavelength scaling in silver nanostructures [113] they are
expected to be smaller than half the wavelength of the exciting field.
To investigate the power dependence of the photoelectron emission, i.e., how many

photons are needed to emit an electron from the sample (Section 2.6.1), the photoelec-
tron emission of three exemplary hot spots (ROI-A, ROI-B and ROI-C in Fig. 6.3a)
was measured as a function of laser power. Figure 6.3b shows the average photoelectron
emission yield of the regions, i.e., blue circles, green squares and red triangles corre-
sponding to ROI-A, ROI-B and ROI-C, respectively, plotted versus the power of the
excitation laser. Note that both axes are plotted logarithmically. The order of the
power dependence is determined by linear fits (dashed lines in Fig. 6.3b) through the
logarithmically scaled data points. This results in power dependence orders of 3.39
(ROI-A), 3.07 (ROI-B) and 3.25 (ROI-C). Although the values show small deviations a
third-order power dependence can be assumed for all hot spots, i.e., three photons are
needed to emit an electron. Due to the nonlinearity of the photoemission serving as the
feedback signal for the optimizations, deterministic control as it was utilized in Chapter
5 cannot be conducted here. Contrary, both mechanisms for the near-field control have
to be considered (Section 3.2), i.e., spatial control via the relative phase between both
incident field polarization components and temporal control via the remaining spectral
phase offset of the laser pulse.

6.3 Adaptive Near-Field Control

6.3.1 Near-Field Superenhancement

The PEEM image for a detailed area of the corrugated silver surface is shown in Fig. 6.4a
as obtained with unshaped transform-limited femtosecond laser pulse excitation. As
in Fig. 6.3a the PEEM images reveal several hot spots, where stronger optical fields
initiate larger photoemission signals whose distribution patterns are mapped with a
resolution below 50 nm. An area with several hot spots in relative vicinity was chosen
here and adaptive pulse shaping was then applied in order to manipulate the ratio of
the photoemission intensities from these hot spots. The optimized regions of interest
ROI-1 and ROI-2 are shown as red solid and yellow dashed rectangles, respectively, and
are separated by about 500 nm.
To demonstrate near-field localization and enhancement of a specific hot spot, the

multiphoton photoemission was adaptively optimized in ROI-1 and suppressed in ROI-2
(Fig. 6.4c). As a particular optimization goal the photoemission ratio from ROI-1 and
ROI-2 in Fig. 6.4a was selected. The corresponding fitness function was defined as

f [φ1(ω), φ2(ω)] =
FROI-1

FROI-2

, (6.1)

where F is the time-integrated average photoemission yield of the respective regions of
interest.
Figure 6.4c and 6.4e show the results of adaptive maximization and minimization,

respectively, of the fitness function defined in Eq. (6.1). Clear switching of the spatial
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Figure 6.4: Near-field control. (a,c,e) The photoelectron emission distributions are shown as
obtained with (a) an unshaped transform-limited pulse and adaptively optimized pulses (c)
maximizing and (e) minimizing the ratio of the ROIs [Eq. (6.1)]. The red solid and yellow
dashed rectangles represent ROI-1 and ROI-2, respectively. All three images show the same
spatial region with the same color map indicated on the left. (b,d,f) Quasi-3D representation
(Section 2.2.2) of the laser pulses obtained for optimization of Eq. (6.1) indicated with the
time axis ranging from −1800 fs to 300 fs and a temporal separation of the ellipses of 8.7 fs. All
pulses are normalized to their individual maximum. (b) Unshaped transform-limited reference
pulse is linearly polarized. (d) Optimal polarization-shaped pulse for the maximization and (f)
optimal pulse for minimization of Eq. (6.1). Taken from Aeschlimann et al. [143]. Copyright
(2011) by IEEE.

local field distributions between the selected locations is observed, i.e., in Fig. 6.4c the
yield from ROI-1 is higher than from ROI-2 and vice versa in Fig. 6.4e. Surprisingly, in
addition to this relative control, the total nonlinear photoemission yield is increased for
the target location with respect to the unshaped reference, i.e., ROI-1 has higher yield
in Fig. 6.4c than in Fig. 6.4a, and ROI-2 has higher yield in Fig. 6.4e than in Fig. 6.4a.
Note that the color scale is identical for all three plots. Even though the pulse shapes are
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tailored to optimize the ratio of two hot spots an increased total yield from both spots
is obtained. In addition to the optimized regions also the yield of other hot spots in
the vicinity was increased. Hence, the optimizations result in a collective enhancement
of several hot spots. The enhancement factor of the total yield of up to three is an
intriguing phenomenon because often in coherent control the improvement of contrast
between two channels, i.e., here the two regions of interest, is obtained at the expense of
total efficiency. For example, in the case of purely nonresonant three-photon excitation,
the maximum total yield would always be achieved with a bandwidth-limited laser pulse.
Here, however, complex-shaped pulses are superior. It has already been shown for control
of multiphoton excitation in atoms that intermediate resonances cause transform-limited
pulses not to be optimal for excitation, and shaped pulses to increase total yield [144].
In the present case, therefore, it might be possible to obtain insight into these coherences
by analyzing the shapes of the optimal pulses.

In accordance with the definition of the term “superradiance” that is related to col-
lective phenomena of the surrounding medium in the process of radiation emission in
the following the term “superenhancement” is used for the observed phenomenon. This
shall convey the experimental observation of an unexpected strong multiphoton photo-
emission enhancement, for which the neighboring areas and hot spots of an individual
hot spot seem to be crucial.

The polarization-shaped laser pulses of the optimizations discussed above are shown in
quasi-3D representations (Section 2.2.2) in Fig. 6.4d and 6.4f. The temporal pulse shapes
are given by a sequence of ellipses for different moments in time (separated by 8.7 fs) in a
slowly varying envelope approximation. The two perpendicular polarization components
E1 and E2 correspond to p and s-polarization in the laboratory frame (as indicated in
Fig. 2.17), respectively, and are shown as projection shadows. The momentary frequency
is indicated by color. The plots share the same time axis from −1800 fs to 300 fs, but
are normalized according to their individual peak intensities.

The unshaped reference pulse (Fig. 6.4b) that caused the PEEM signal of Fig. 6.4a has
a duration of 50 fs. By contrast, both of the optimal pulses for maximization (Fig. 6.4c)
and minimization (Fig. 6.4e) of Eq. (6.1) result in rather complex pulse shapes extend-
ing over much longer times. Both optimal pulses in Fig. 6.4d and 6.4f reveal a strong
negative third-order dispersion (TOD) leading to a train of prepulses. However, the de-
tails are different and they show different complex evolutions of the polarization state.
These results are unexpected due to the ultrashort coherence times of localized nanoplas-
monic excitations reported in literature [92, 145–148]. Experiments to control nonlinear
phenomena in random or disordered metal nanostructures reveal coherences with life-
times of less than 20 fs [118, 149]. In addition, the stretching of the pulse over several
hundred femtoseconds reduces the maximum field intensity and should therefore dramat-
ically decrease the multiphoton photoemission efficiency. On the other hand, if different
subpulses of the train are expected to contribute coherently to the optimizations, the
coherence has to survive long enough such that the resonant intermediate states can
contribute [144]. The pulse durations observed here are on the order of several hundred
femtoseconds. According to the knowledge about the short lifetime of localized surface
plasmon modes [92, 145–148] these modes can definitely not account for the observed
hot spot control and superenhancement.
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Although the TOD obviously has the main impact on the strong photoemission the
effect of the polarization of the laser pulse cannot be neglected and might also contribute
to the photoemission. However, due to the limitations of the closed-loop experiment de-
scribed here, the two contributions can not be distinguished and further investigation of
this phenomenon is performed using two-parameter spectral phase scans in Section 6.4.
Other nontrivial contributions to the complex pulse shapes may arise from the random-
ness of the rough silver surface geometry and dynamics associated with interference of
near-field modes that are excited at different spatial positions.

6.3.2 Near-Field Control Below the Diffraction Limit

Next, subwavelength near-field control on the nanoscale was considered. For this pur-
pose, a single hot spot with a photoemission pattern that was spread over a region
of ∼(200 nm)2 was investigated (Fig. 6.5a). Two ROIs within this hot spot, i.e., ROI-3
(red solid rectangle) and ROI-4 (black dashed rectangle), that are separated by ∼150 nm
were chosen. The optimization goal was to localize the photoemission either in ROI-3
or ROI-4 and the fitness function was defined as the ratio of the time-integrated average
photoemission yield of the two ROIs:

f [φ1(ω), φ2(ω)] =
FROI-3

FROI-4

. (6.2)

Then the same adaptive optimization strategy as aforementioned to control the ratios of
photoemission from ROI-1 and ROI-2 was performed, only now spatially separated on
a subwavelength scale. The photoemission patterns for maximization (i.e., localization
at ROI-3) and minimization (i.e., localization at ROI-4) are shown in Figs. 6.5b and
6.5c, respectively. As can be observed, the ROIs were adjusted for each optimization
goal separately. In case of maximization, ROI-4 was enlarged to the left and in case
of minimization, ROI-3 was enlarged to the top. However, in both optimizations the
bottom side of ROI-3 and right side of ROI-4 were identical. It is important to point
out that the adaption of the ROIs did not change the optimization goal, but it turned
out to be useful to ensure convergence of the evolutionary algorithm. As can be inferred
from Figs. 6.5a and 6.5b, successful optimizations were achieved. For the maximization
of Eq. (6.2) the photoemission pattern is strongly confined and the maximum yield is
located within ROI-3. For the minimization the photoemission pattern is spread over a
larger region but the maximum is again located in the requested ROI. Since the spatial
spread of the photoemission pattern is very different for the two optimizations, the
single hot spot seems to contain at least two different resonators that were addressed
with different pulse shapes. This is an interesting effect that will be investigated in more
detail in Chapter 7.
The overall photoemission yield of the maximization is smaller than that of the un-

shaped pulse and smaller than that of minimization. The overall photoemission yield
for minimization is even higher than that of the unshaped pulse. However, in contrast
to the optimizations described in Section 6.3.1, where the yield of both optimizations is
enhanced drastically with respect to the yield of the unshaped pulse, the enhancement
is small.
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Figure 6.5: Subdiffraction control of the photoemission pattern. (a) The Photoemission yield
is shown for an unshaped pulse and ROI-3 and ROI-4 are indicated with red and dashed black
rectangles, respectively. The two ROIs are separated by ∼150 nm. (b) Photoemission yield
for localization at ROI-3, i.e., maximization of Eq. (6.2), where ROI-4 is enlarged to the left.
(c) Photoemission yield for localization at ROI-4, i.e., minimization of Eq. (6.2), the ROI-
3 is enlarged to the top. The ROIs are adjusted to ensure convergence of the evolutionary
algorithm. All three images show the same spatial region.

6.3.3 Reproducibility of Adaptive Optimizations

The results for maximization obtained in Section 6.3.2 were verified by performing two
adaptive optimizations with the identical fitness function and control target. The result-
ing PEEM images are shown in Fig. 6.6a (same as Fig. 6.5b) and 6.6c. The photoelectron
emission distributions are almost identical, and the corresponding optimal laser pulse
shapes in Fig. 6.6b and 6.6d are also very similar. Long pulses on the order of hundreds
of femtoseconds are again observed as in the case of the optimization of well-separated
hot spots shown in Fig. 6.4. Many of the optimal pulse features survive, despite their
high complexity. This implies that even weak subpulses potentially provide a significant
contribution to the control mechanism. Additionally, the similarity of photoelectron
emission as well as the pulse shapes indicate convergence to the same optimum on the
control landscape.

For further comparison of the two optimized pulses the evolution of polarization states
on the Poincaré surface is depicted in Fig. 6.7. As explained in Section 2.2.2 the Poincaré
surface contains all possible polarization states of light as defined by the two parame-
ters orientation θ and ellipticity ε. The temporal evolution of the polarization state is
represented by points on the Poincaré surface separated by 8.7 fs and runs from −500 fs
to 300 fs where the arrowheads indicate the direction of evolution. The total intensity of
the pulse shape is indicated by the color saturation. Adaptively optimized pulses from
the two subsequent runs (red circles for Fig. 6.6b and blue circles for Fig. 6.6d) overlap
in the same regions of the Poincaré plot and, therefore, confirm a good reproducibility.
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Figure 6.6: Reproducibility of subwavelength near-field coherent control of a hot spot shape.
(a) and (c) Adaptively optimized photoemission for two identical repeated optimizations maxi-
mizing the fitness function defined in Eq. (6.2). Both images show the same spatial region. (d)
and (f) Corresponding optimal laser pulse shapes in a quasi-3D representation are shown for
the two subsequent optimizations. Time axes of both pulses run from −500 fs to 300 fs. The
temporal separation between two adjacent ellipses is 8.7 fs and the amplitudes of both pulses
are normalized to their individual maximum. Taken from Aeschlimann et al. [143]. Copyright
(2011) by IEEE.

6.4 Two-Parameter Scan

As shown in Section 6.3, adaptive optimizations resulted in complex pulse shapes that
are difficult to interpret. The pulse appearance with the prepulse train suggests that
third-order dispersion (TOD) might be a dominant control parameter. Therefore, a two-
parameter scan was performed to obtain insight into the mechanisms of near-field control
on a random surface. One parameter that was scanned is the TOD. This parameter was
scanned identically for both polarization layers of the pulse shaper. The other parameter
that was scanned is the relative phase Φ = φ2 − φ1 between both pulse shaper layers.
The dependences of the multiphoton photoemission for three different ROIs on both
parameters are shown in Fig. 6.8.
Again, excitation with an unshaped transform-limited laser pulse leads to field lo-

calization and formation of hot spots (Fig. 6.8a). While scanning both parameters of
the spectral phase the photoemission yield of all hot spots were recorded simultane-
ously. The photoemission yields are shown in Figs. 6.8b, 6.8c, and 6.8d for the three
hot spots as indicated in Fig. 6.8a by ROI-5, ROI-6, and ROI-7, respectively. Within
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Figure 6.7: Poincaré plot of the pulses of two identical optimizations. The Poincaré curves
for the pulses optimizing the fitness function defined in Eq. (6.2) corresponding to the pulses
depicted in Figs. 6.6b and 6.6d are plotted as red and blue circles, respectively. As for the quasi-
3D representation the Poincaré curves are plotted from −500 fs to 300 fs with the arrowheads
indicating the direction of temporal evolution. The temporal separation between adjacent
symbols within one curve is 8.7 fs and the color saturation indicates the normalized total
intensity of the field at the temporal step. Taken from Aeschlimann et al. [143]. Copyright
(2011) by IEEE.

these illustrations it is possible to find optimal pulse parameters and compare them for
different hot spots. As can be inferred different hot spots show different behavior, i.e.,
the maximum photoemission yield (blue color in Figs. 6.8b–6.8d) is reached for different
parameter values.

The corresponding optimal pulse shapes for each ROI are shown in Figs. 6.9b–6.9d and
are compared to an unshaped pulse (Fig. 6.9a). The pulse shapes were calculated using
the measured Jones-matrix of the experimental setup (Section 2.4.3) and the temporal
separation between two adjacent ellipses is 5.8 fs. While for the hot spot investigated in
Fig. 6.8b (ROI-5) maximum emission is reached for an almost bandwidth-limited pulse
(Fig. 6.9b), i.e., TOD = 3.0 × 103 fs3/rad2, the behavior of the photoemission of the
hot spots in Fig. 6.8c (ROI-6) and Fig. 6.8d (ROI-7) differs significantly. The optimal
pulse shape of the hot spot in ROI-6 (Fig. 6.9c) shows a maximum at a large negative
value of TOD = −14.2× 103 fs3/rad2 and this leads to a train of prepulses. Contrary, in
the case of ROI-7 (Fig. 6.8d), the corresponding optimal pulse shape (Fig. 6.9d) shows
a large positive value of TOD = 17.2 × 103 fs3/rad2 resulting in a train of postpulses.
The observation that even the sign of TOD is relevant, reflects the large variability of
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Figure 6.8: Two-parameter scan of third-order dispersion (TOD) and the relative phase Φ of
the excitation pulse. (a) The analyzed hot spots are indicated as ROI-5 (red), ROI-6 (white)
and ROI-7 (yellow) in the PEEM image observed for excitation with an unshaped pulse.
(b)–(d) Average multiphoton photoemission (false colors) of the corresponding ROI plotted
against TOD (horizontal axis) and the relative phase Φ (vertical axis). The TOD is scanned
from −18.7 fs3/rad2 to 17.2 fs3/rad2 and the relative phase Φ is scanned from −π rad to π rad.
Taken from Aeschlimann et al. [143]. Copyright (2011) by IEEE.

response functions that are present on the random silver surface.

Furthermore, the optimal value for the phase difference Φ (vertical axis) is different for
the three hot spots. As introduced in Section 2.2.2, this parameter mainly determines
the polarization state, and its variance for the different ROIs indicates the vectorial
dependence of the local response functions of the excited near-field modes. This is
typical for a rough metallic surface and can be used in near-field control to achieve
switching, for example, between the different hot spots by choosing the appropriate
value of Φ. It also generates field enhancement with respect to an unshaped pulse that
is p polarized.

However, the two-parameter scans in Fig. 6.8 already indicate clearly that a simple
modification of polarization of a transform-limited pulse is not sufficient for optimal
field enhancement. If simple polarization variation were enough, the maxima should be
found along the TOD = 0 axis or at least at the identical TOD value for the plots shown
in Figs. 6.8b–6.8d. Here, rather a specific extended temporal structure was required
for the ROI-6 and ROI-7 that lead to increased local fields with respect to unshaped
pulses. This indicates that the local optical response on the corrugated silver surface
exhibits a coherence memory with respect to the optical excitation on a time scale that
is comparable to the stretching of the laser pulses for the optimum TOD values.
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(a) (b)
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Figure 6.9: Optimal pulses for three different ROIs obtained from the two-parameter scan
(Fig. 6.8). The pulses are shown in the quasi 3-D-representation and are plotted from −300 fs
to 300 fs where the ellipses have a temporal separation of 5.8 fs. (a) For comparison an unshaped
pulse with a pulse duration of 50 fs is plotted. (b) Polarization shaped laser pulse obtained
for optimal pulse parameters of the maximum photoemission of ROI-5 (Fig. 6.8b). Optimal
parameters: TOD = 3.0 × 103 fs3/rad2, Φ = −0.31 rad. (c) Polarization shaped laser pulse
obtained for optimal pulse parameters of the maximum photoemission of ROI-6 (Fig. 6.8c).
Optimal parameters: TOD = −14.2 × 103 fs3/rad2, Φ = 2.20 rad. (d) Polarization shaped
laser pulse obtained for optimal pulse parameters of the maximum photoemission of ROI-7
(Fig. 6.8d). Optimal parameters: TOD = 17.2× 103 fs3/rad2, Φ = 1.26 rad.

6.5 Conclusion

In this chapter experimental demonstration of the multiparameter adaptive coherent
control of ultrafast nanoscale energy localization on a corrugated silver surface was
provided. The achieved control and enhancement was attributed to the presence of
resonant electromagnetic modes on the corrugated surface that exhibited long plasmonic
dephasing times. These resonant modes were excited by the complex shaped laser pulses
and were responsible for the locally enhanced multiphoton photoemission.

Multiparameter adaptive optimizations led to enhancement of multiphoton photo-
emission signals due to a higher-order spectral-phase modulation of incident laser pulses.
The manipulation of photoemission patterns on a corrugated silver surface was shown for
regions separated on the order of the diffraction limit (∼500 nm) and for regions within
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an individual hot separated below the diffraction limit (∼150 nm). In both cases switch-
ing of the photoemission pattern was observed. Surprisingly, the adaptively optimized
best pulses exhibited rather long duration indicating that long-lived coherences played
an important role for this coherent control of nanoscale energy localization in a random
nanostructure. In the case of near-field control on the subdiffraction scale, the hot spot
seemed to have a complex behavior involving different plasmonic modes. The switching
can then be attributed to the different modes that were addressed depending on the cor-
responding pulse shape. This is an interesting result for such a small region and suggests
near-field control on random silver surfaces to selectively excite molecules on the surface
with a spatial resolution below the diffraction limit for spectroscopic applications such
as surface enhanced Raman spectroscopy. Unfortunately, a direct identification of the
involved plasmonic modes was not possible, since a random structure was used here.
A two-parameter [difference phase Φ and third-order dispersion (TOD)] scan on the

same sample demonstrated that the optimal spectral phase leading to maximum local
multiphoton photoemission differs significantly for various hot spots. The scan showed
maximum photoemission of different ROIs for strong negative, strong positive or zero
TOD. Again, this implied long-lived coherences on the surface to play an important
role for the coherent control. Since such long-lived coherences can not be explained by
localized surface plasmon modes, more complex optical response functions are expected
involving delocalized optical modes originating from the close surrounding of the hot
spot. Such modes have never been observed on regular planar metal-vacuum interfaces
and hence the “randomness” of the surface seems to play an important role. However,
the underlying physical mechanism for the observed long-lived coherent modes cannot
be unambiguously identified from the available experimental evidence.
The results presented in this chapter are based on the time-averaged photoemission

signals and do not yet provide direct information about the dynamics of plasmonic
excitations. To obtain more detailed information on the local dynamics, the corrugated
silver surface is investigated with 2D nanoscopy in Chapter 7 revealing the complete
optical response function of certain hot spots and confirms the existence of delocalized
optical modes on the corrugated silver surface.
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Nanoscopy

In this chapter coherent two-dimensional nanoscopy is presented. The new technique
combines two-dimensional spectroscopy with a spatial resolution of a photoelectron emis-
sion microscope and hence enables optical spectroscopy below the diffraction limit. It
is based on “conventional” two-dimensional spectroscopy (Section 7.2) and similarities
as well as differences are described and discussed (Section 7.3). In a first experimental
realization, the corrugated silver film that was already investigated in the last chapter
is measured with this technique (Section 7.4) and an appropriate model is used (Section
7.5) to assign the response function of the hot spot under investigation.

The work that is presented in this chapter resulted from the same collaboration that
was described in Chapter 5.

7.1 Introduction

The phenomenon of coherence lies at the heart of quantum mechanics. Thus coherence-
sensitive nonlinear spectroscopies have provided unprecedented insight into the intrica-
cies of complex systems. Recently, long-lasting electronic coherence has been observed in
natural light harvesting [150, 151], and hence the reasons for and relevance of such “co-
herent quantum effects” in biology, chemistry and physics are currently much debated.
Extremely powerful in this context is the technique of coherent optical two-dimensional
(2D) spectroscopy [7, 8, 152, 153]. Analogous to 2D nuclear magnetic resonance (NMR),
the information of congested linear spectra is spread out along a second spectral di-
mension, and overlapping contributions can be separated. Couplings are revealed as
off-diagonal peaks, and analysis of 2D lineshapes furthermore separates the effects of
homogeneous versus inhomogeneous broadening. Since the early demonstrations look-
ing at optical nonlinearities [154], vibrational [155] or electronic [156] excitations, a large
number of different systems have been studied in the infrared and the visible spectral
domains. An exemplary but incomplete list of experiments includes the 2D spectroscopy
of atoms [157, 158] single chromophores in a bath [156], coupled vibrational oscillators
[159], multichromophore aggregates [150, 151, 160], carotenoids [161], peptides [155, 162],
hydrogen-bond networks [163, 164], chemical-exchange systems [165], quantum wells
[10, 166], materials [167], and many others. These successes also rely on sophisticated
theoretical concepts and modeling [7, 8, 153].

In all implementations of optical spectroscopy the spatial interaction volume has a
lower bound as determined by the diffraction limit of light. The laser focus diameter is
always larger than roughly half the optical excitation wavelength. This automatically
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leads to averaging over a distribution of quantum systems present within the interaction
volume. Single-emitter experiments are possible when one quantum system only con-
tributes to the measurement signal, achievable in a combination of tight focusing and
low emitter density. This avoids ensemble averaging, and femtosecond experiments have
been realized recently [9, 10]. However, the spatial resolution is still diffraction-limited.
Subdiffraction imaging resolution can be obtained via reversible fluorophore saturation
such that only one emitter is active within the focal spot [168]. This works well for
imaging but makes ultrafast spectroscopy challenging because the transitions need to
be saturated. As shown in the last chapters, near-field methods provide another way to
achieve subdiffraction resolution, and ultrafast experiments have been performed [169].
For this one needs to implement raster-scanning of the sample to obtain spatial-spectral
information sequentially for each spot, and near-field 2D spectroscopy has not yet been
reported.

In this chapter “Coherent two-dimensional (2D) nanoscopy” is introduced allowing co-
herent 2D measurements on the nanoscale. “Nanoscopy” is defined in the present context
as a technique that measures optical response functions with a spatial resolution below
the optical diffraction limit. In contrast to potential near-field implementations, wide-
field illumination is used and thus 2D spectral information is captured simultaneously for
≈ 106 different sub-diffraction spatial locations via parallel detection. In conventional 2D
spectroscopy, the “input” to a four-wave mixing scheme consists of three incident waves
that create a transient coherence (i.e., third-order polarization) which is then radiated
off as the “output”, converting the coherence to a population. In coherent 2D nanoscopy,
by contrast, all four waves will be provided as input fields, and the output corresponds
to the remaining electronic population. It has already been shown that (incoherent) flu-
orescence detection of population can be used for coherent 2D spectroscopy [157, 158].
Also, multidimensional electron spectroscopy has been suggested in the context of X-ray
attosecond science [170]. The new key concept in the presented scheme is that upon
choosing a non-optical detection signal, spatial resolution is not limited by diffraction
of optical waves. Here, locally generated photoelectrons are detected. The theoretical
limit of spatial resolution is given by the de-Broglie wavelength of the electron which is
1000 times smaller than the optical wavelength at the same energy of E = 1 eV. Thus, it
becomes possible to carry out 2D spectroscopy on a nanometer length and femtosecond
time scale.

The first experimental implementation of coherent 2D nanoscopy is realized for the
corrugated silver surface that was investigated in the last chapter, where strong indica-
tion for long-lived coherences were found. In contrast to natural light-harvesting systems
[150, 151], no surrounding protein could shield off environmental influences thus leading
to long coherence times and hence plasmonic collective excitations at metaldielectric
interfaces are believed to exhibit longer phase memory. However, for localized surface
plasmons investigated in nanostructured Ag samples [92, 146, 147] dephasing times of
T2 < 10 fs were reported. It has also been shown in the last chapter that the photo-
emission within a single hot spot, i.e., on subdiffraction length scale, can be modulated
and hence a local response function that strongly depends on the spatial position is
suspected. Since 2D nanoscopy is particularly sensitive to phase coherences and addi-
tionally enables investigation of these coherences on a nanometer scale it is the perfect
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technique to reveal the response function of the corrugated silver surface.

7.2 Principles of Conventional Coherent
Two-Dimensional Spectroscopy

Before introducing the main idea of the new coherent two-dimensional (2D) nanoscopy
in the next section, an overview of the principles of “conventional” coherent 2D spec-
troscopy is given. The description is based on the literature of Mukamel [7] and Brixner
et al. [171].

7.2.1 Density Matrix

In quantum mechanics, a quantum system is described by a pure state |ψ(t)⟩ given
by the solution of Schrödinger’s equation. However, if the quantum system consists of
an ensemble of molecules that might even be coupled to external degrees of freedom,
a solution of the Schrödinger equation cannot be found easily and description of the
quantum system might not be possible in terms of a pure state. In this case, it is
advantageous to describe the quantum system via mixed states. Such mixed states are
characterized by the probability pk to be in a pure state |ψk(t)⟩ and are described by
the density matrix:

ρ(t) =
∑
k

pk|ψk(t)⟩⟨ψk(t)|, (7.1)

where each element of the density matrix is given by

ρ(t)nm =
∑
k

pk⟨n|ψk(t)⟩⟨ψk(t)|m⟩. (7.2)

The diagonal elements ρnn(t), i.e., n = m, are positive real-valued quantities that give
the probability of the quantum system to occupy the pure state |n⟩ and are called “pop-
ulations”. The other elements, i.e., the off-diagonal elements with n ̸= m, are generally
complex-valued quantities and describe “coherences” of the system. The density matrix
is Hermitian

ρ∗nm(t) = ρmn(t) (7.3)

and the trace (Tr) is normalized:

Tr [ρ(t)] = 1. (7.4)

This normalization is identical with the statement that the probability of the system to
be in any possible state is one, i.e.,

∑
k pk = 1.

A measurement of a quantum mechanical quantity, represented by an operator A, is
calculated via the expectation value. Using the density matrix the expectation value
⟨A(t)⟩ of the operator A is

⟨A(t)⟩ = Tr [Aρ(t)] , (7.5)
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where Tr denotes the trace of the matrix. Equation (7.5) can then be used to calculate
the expectation value of the polarization P (r⃗, t)

⟨P (r⃗, t)⟩ = Tr [P (r⃗)ρ(t)] (7.6)

The time evolution of the density matrix can easily be derived by using the Schrödinger
equation and results in the Liouville-Von Neumann equation

∂ρ

∂t
= − i

~
[H, ρ] , (7.7)

where H is the Hamiltonian of the quantum system and the square brackets define the
commutator. The single elements of the density matrix are calculated by

∂ρnm
∂t

= − i

~
[(Hρ)nm − (ρH)nm] . (7.8)

Choosing a simple example, the Hamiltonian of a coupled two-level system is described
by

H =

(
E1 V12
V21 E2

)
, (7.9)

where E1 and E2 denote the energy levels and V12 and V21 their coupling. Substituting
this Hamiltonian in Eq. (7.8) reveals that a transition, e.g., from ρ11 to ρ22, can only
occur via the off-diagonal elements ρ12 and ρ21. Hence, in an optically excited transition,
a coherence is created in a first interaction with the electric field and a second interaction
is necessary to transfer the coherence into a population. Further properties of optical
transitions in quantum systems are discussed via their Liouville pathways in Section
7.2.3.

7.2.2 Response Function Formalism in Liouville Space

For the following derivations, it is useful to replace the description in Hilbert space—
which was used so far—by the description in Liouville space. In Liouville space, the
density matrix is represented as a vector and can be treated identical to the description
of the wave function in Hilbert space. Consequently, the dynamic of the density function
is described analogously to Schrödinger’s equation in Hilbert space:

∂|ρ⟩⟩
∂t

= − i

~
L|ρ⟩⟩. (7.10)

Note that this description is identical with the Liouville-von-Neumann equation defined
in Eq. (7.7). According to the Bra-Ket notation in Hilbert space the vectorial character
of the density matrix is described as |ρ⟩⟩. As can be inferred from Eq. (7.7) the Liouville
operator L introduced in Eq. (7.10) is defined as L|ρ⟩⟩ = [H, ρ].
In perturbation theory, the Hamiltonian for an interaction of a quantum system with

an external electric field is described as

H(t) = H0 − V E(t), (7.11)
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with H0 being the unperturbed Hamiltonian. The perturbation is given by the inter-
action with the electric field via the time independent dipole operator V . Note that
vectorial properties are neglected here for the sake of simplicity. The density operator
can then be expanded in powers of the electric field

|ρ(t)⟩⟩ = |ρ(0)(t)⟩⟩+ |ρ(1)(t)⟩⟩+ |ρ(2)(t)⟩⟩+ ..., (7.12)

where |ρ(n)⟩⟩ denotes the nth order contribution in the electric field with

|ρ(n)(t)⟩⟩ =
(
− i

~

)n
t∫

t0

dτn

τn∫
t0

dτn−1...

τ2∫
t0

dτ1G(t− τn)Lint(τn)G(τn − τn−1)Lint(τn−1)...

...G(τ2 − τ1)Lint(τ1)G(τ1 − t0)|ρ(t0)⟩⟩.
(7.13)

The subscript n describes the number of interactions with the electric field. Speaking
on a time scale, the equations starts on the right hand side with the density matrix
|ρ(t0)⟩ being in thermal equilibrium. The times τn of interaction with the electric field
are numbered chronologically such that: t ≥ τn ≥ τn−1 ≥ ... ≥ τ1 ≥ t0. The interactions
with the electric field are denoted by the Liouville operator

Lint(t) = −VE(t) (7.14)

and results from the perturbation term of the Hamiltonian [Eq. (7.11)]. Here, V is the
time independent dipole operator in Liouville space. In the absence of the electric field,
the temporal evolution of the quantum system is described by the Liouville space Green
function G(τ). It is defined as

G(τ) ≡ Θ(τ) e−
i
~Lτ , (7.15)

where L is the Liouville operator of the unperturbed Hamiltonian H0 and Θ(τ) the
Heavyside step function.
By changing the time variables

t1 ≡ τ2 − τ1, t2 ≡ τ3 − τ2, ... tn ≡ t− τn,

setting t0 → −∞ and using the definitions of Eqs. (7.14) and (7.15), Eq. (7.13) can be
rewritten:

|ρ(n)(t)⟩⟩ =
(
i

~

)n
∞∫
0

dtn

∞∫
0

dtn−1...

∞∫
0

dt1G(tn)VG(tn−1)V ...G(t1)V|ρ(−∞)⟩⟩

E(r⃗, t− tn)E(r⃗, t− tn − tn−1)...E(r⃗, t− tn − tn−1...− t1). (7.16)

The polarization of the quantum system results from the expectation value of the dipole
operator and is given by

P (r⃗, t) = Tr [V ρ(t)] = ⟨⟨V |ρ(t)⟩⟩, (7.17)

Philip Tuchscherer: A Route to Optical Spectroscopy on the Nanoscale (Diss. Univ. Würzburg, 2012)



122 Coherent Two-Dimensional Nanoscopy

where the last definition is in Liouville space [cf. Eq. (7.10)]. Analogously to the de-
scription of the density matrix the polarization can also be written as an expansion in
powers of the electric field

P (n)(r⃗, t) ≡⟨⟨V |ρ(n)(t)⟩⟩

=

∞∫
0

dtn

∞∫
0

dtn−1...

∞∫
0

dt1S
(n)(tn, tn−1, ..., t1)

E(r⃗, t− tn)E(r⃗, t− tn − tn−1)...E(r⃗, t− tn − tn−1...− t1), (7.18)

where the nth order nonlinear response function is defined as

S(n)(tn, tn−1, ..., t1) ≡
(
i

~

)n

⟨⟨V |G(tn)VG(tn−1)V ...G(t1)V|ρ(−∞)⟩⟩. (7.19)

Note that the polarization described here is identical with the polarization that was in-
troduced in the inhomogeneous wave equation (2.26). Since P (n) is a physical observable
it is a real-valued quantity that assumes n interactions at the corresponding points in
time (tn + tn−1... + t1), (tn−1 + ... + t1), ..., t1. It carries the complete information that
is necessary to calculate optical measurements and is the quantity that is determined in
“conventional” 2D spectroscopy.

7.2.3 Liouville Pathways

Two-dimensional spectroscopy as discussed here, is based on the third order polarization.
Hence, the corresponding response function is obtained by setting n = 3 in Eq. (7.19):

S(3)(t3, t2, t1) =

(
i

~

)3

⟨⟨V |G(t3)VG(t2)VG(t1)V|ρ(−∞)⟩⟩. (7.20)

In Hilbert space this reads as

S(3)(t3, t2, t1) =

(
i

~

)3

Θ(t1)Θ(t2)Θ(t3)

⟨[[[V (t3 + t2 + t1), V (t2 + t1)] , V (t1)] , V (0)] ρ(−∞)⟩

=

(
i

~

)3

Θ(t1)Θ(t2)Θ(t3)
4∑

α=1

[Rα(t3, t2, t1)−R∗
α(t3, t2, t1)] , (7.21)

where the star denotes complex conjugated and the following definitions are assumed:

R1(t3, t2, t1) ≡⟨V (t1)V (t1 + t2)V (t1 + t2 + t3)V (0)ρ(−∞)⟩
R2(t3, t2, t1) ≡⟨V (0)V (t1 + t2)V (t1 + t2 + t3)V (t1)ρ(−∞)⟩
R3(t3, t2, t1) ≡⟨V (0)V (t1)V (t1 + t2 + t3)V (t1 + t2)ρ(−∞)⟩
R4(t3, t2, t1) ≡⟨V (t1 + t2 + t3)V (t1 + t2)V (t1)V (0)ρ(−∞)⟩ .

(7.22)
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Figure 7.1: Liouville pathways for a coupled two-level system. The 2 × 2 density matrix is
given by the ground state |g⟩ and excited state |e⟩. The diagonal elements |g⟩⟨g| and |e⟩⟨e|
describe population of the corresponding states, whereas |g⟩⟨e| and |e⟩⟨g| describe coherences.
Four interactions of the quantum system with the electric field are indicated with four different
arrows. The first (black), second (red) and third (green) interaction are interactions with ingo-
ing waves. The remaining fourth interaction that induces an outgoing wave is indicated with a
yellow arrow. Four different pathways are considered, where the remaining four pathways can
be obtained by an inversion with respect to the diagonal axes.

These terms Rα together with their complex conjugates R∗
α denote eight Liouville path-

ways. The pathways give a description of the temporal evolution of the density matrix.
For each pathway the quantum system interacts four times with electric fields, three of
which are ingoing waves and the fourth wave is an outgoing wave due to the induced
polarization. Therefore, processes described with the third order polarization are also
called four-wave mixing (FWM) processes.

A visualization of the Liouville pathways in a coupled two-level system is given in
Fig. 7.1. The two levels are a ground state |g⟩ and an excited state |e⟩. Only four
possibilities (R1–R4) are exemplified since the remaining complex conjugated pathways
(R∗

1–R
∗
4) can be easily obtained by an inversion on the diagonal of the density ma-

trix. Hence, starting from the ground state population ρ(−∞) = |g⟩⟨g|, the first arrow
(black)—indicating the first interaction with the electric field—always point to the right.
The second, third and fourth interaction are illustrated as red, green and yellow arrows,
respectively. Note that the first three arrows (black, red, green) indicate interaction with
ingoing electric fields, whereas the yellow arrow indicates an outgoing electric field in-
duced by the polarization. This outgoing electric field carries the complete information of
the third order nonlinear response function and is therefore measured in “conventional”
2D spectroscopy.

7.2.4 Experimental Background

Coherent 2D spectroscopy is a nonlinear time-resolved method that enables measurement
of the third order response function of a quantum system. The quantity that reveals
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Figure 7.2: Excitation scheme in coherent 2D spectroscopy. (a) A sequence of three fem-
tosecond laser pulses (pulses 1–3 given by t̃1, t̃2 and t̃3, respectively) with variable temporal
separations τ , T is used for excitation. Without loss of generality the center of pulse 3 is
chosen to be zero. The signal at time t (yellow dashed line) that contains the information of
the nonlinear third order response function is induced by interaction of the pulse sequence at
times t− t1 − t2 − t3, t− t1 − t2 and t− t1. An additional pulse (LO), which is attenuated to
avoid interaction with the sample, is used for characterization of that signal. (b) The sample
is excited in a noncollinear box geometry. Therefore, the three pulses propagate in different
direction given by k⃗1, k⃗2 and k⃗3. Due to the phase matching condition the signal is emitted in
direction k⃗s = −k⃗1 + k⃗2 + k⃗3 and is overlapped with the LO for characterization via spectral
interferometry.

this third order response function is the third order polarization

P (3)(r⃗, t) =

∞∫
0

dt3

∞∫
0

dt2

∞∫
0

dt1S
(3)(t3, t2, t1)E(r⃗, t−t3)E(r⃗, t−t3−t2)E(r⃗, t−t3−t2−t1),

(7.23)
which is obtained by setting n = 3 in Eq. (7.18). Herein, (t − t3), (t − t3 − t2) and
(t− t3− t2− t1) denote the times of interaction with the external excitation. To measure
the temporal dependence of P (3) these times have to be varied systematically. Experi-
mentally, this is achieved using three different laser pulses whose temporal separations
can be adjusted independently. Mathematically, the electric field E(t) of the excitation
pulses is described by

E(r⃗, t) = Â(t− t̃1) e
i[ω0(t−t̃1)+k⃗1r⃗] +Â(t− t̃2) e

i[ω0(t−t̃2)+k⃗2r⃗] +Â(t− t̃3) e
i[ω0(t−t̃3)+k⃗3r⃗] +c.c.,

(7.24)
where each pulse is defined according to Section 2.1 by its complex envelope amplitude
Â(t), carrier frequency ω0 and propagation direction k⃗. Since the laser pulses have a
finite duration (typically on the order of several tenth of femtoseconds), the interaction
times are in general different from the center of the pulses t̃i (i = 1, 2, 3). The excita-
tion pulse sequence scheme and the interaction times are illustrated in Fig. 7.2a. The
temporal separation between the first (black) and the second pulse (red), i.e., t̃2 − t̃1,
is called “coherence time” τ and the temporal separation between the second and the
third pulse (green), i.e., t̃3 − t̃2, is called “population time” T . These descriptions are
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chosen according to the corresponding density matrix elements (cf. Fig. 7.1). The first
interaction with the external field transfers the quantum state from the ground state
into a coherence and the system remains in this coherence during the coherence time τ .
Then the second interaction transfers the system from the coherence into a population,
where the system remains during the population time T . After the third interaction
the quantum system remains in a coherence which is converted into a population by
generation of a fourth pulse (yellow). This fourth pulse is the signal that is measured.
By plugging in the mathematical description of excitation pulse sequence [Eq. (7.24)]

into Eq. (7.23), six summands are obtained for each electric field. Hence, the third
order polarization contains 6× 6× 6 = 216 summands and each of them is described by
three pulses, e.g., three complex envelope functions and their corresponding exponential
functions that contain the frequency and direction of propagation of the corresponding
pulses.
Due to the fact that 2D spectroscopy is an optical method, its spatial resolution, i.e.,

the optical focusing, is limited by diffraction. Consequently, the measured signal results
from an ensemble of quantum systems within the focal spot. The signal emitted from the
sample is then given by a coherent superposition of emitted signals from the individual
quantum systems and obeys the phase matching condition [172]. In 2D spectroscopy
this phase matching condition is used to reduce the number of summands in the third
order polarization. Therefore, the so-called box geometry (Fig. 7.2b) is employed and
only signals are measured that possess the propagation direction along

k⃗s = −k⃗1 + k⃗2 + k⃗3, (7.25)

where k⃗i with i = 1, 2, 3 describe the propagation direction of the corresponding pulses
(Fig. 7.2a). Since only six summands have a propagation direction in this direction,

i.e., possess the term ei(−k⃗1+k⃗2+k⃗3)r⃗, the number of summands in Eq. (7.23) is reduced
from 216 to six. The third order polarization [Eq. (7.23)] can further be simplified
by considering the rotating wave approximation (RWA). In this approximation all fast
oscillating terms, wich oscillate at optical frequencies are neglected, i.e., only slowly
varying terms are selected, in which the optical frequency is cancelled out by the material
frequency of opposite sign. Using this simplification, each of the six summands contain
the phase factor

e−iω0(t−t̃1+t̃2+t̃3) = e−iω0(t−τ) (7.26)

and one of the three phase factors

eiω0(t3−t1)

eiω0(t3+t1)

eiω0(t1+2t2+t3),

(7.27)

where always two summands contain the same one. According to the phase factors
defined in Eq. (7.27), the third order response function S(3) is classified into S

(3)
R , S

(3)
NR

and S
(3)
DC representing the sum of the corresponding Liouville pathways. However, they

should not be confused with the Rα terms of Eq. (7.22) and their Liouville pathways
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(Fig. 7.1). The rephasing (R) term S
(3)
R assigned by the phase factor eiω0(t3−t1) induces

a photon echo after the third interaction at t = τ corresponding to the constant term
at t3 = t1. In density matrix representation: The quantum system evolves in complex
conjugate coherences during the coherence time (between first and second interaction)
and after the third interaction. Hence, the Liouville pathways R2 and R3 in Fig. 7.1
describe rephasing, i.e., the coherence |g⟩⟨e| is the complex conjugate of |e⟩⟨g| denoting
the density matrix after the first (black arrow) and the third interaction (green arrow),

respectively. The terms S
(3)
NR and S

(3)
DC are assigned by the phase factors eiω0(t3+t1) and

eiω0(t1+2t2+t3), respectively. These terms do not induce a photon echo but a free induction
decay with the third interaction. Therefore, the subscript NR defines the non-rephasing
term. The last term S

(3)
DC is only relevant in quantum systems with more than two

energy levels. In such systems it describes pathways that do not arrive in a population
but in an additional coherence after the second interaction. Therefore, these terms and
the corresponding Liouville pathways describe a double coherence (DC). Using these
definitions the Liouville pathways R1 and R4 in Fig. 7.1 can be assigned as non-rephasing.
So far, the polarization of the investigated sample is considered. However, as already

mentioned above, in a 2D spectroscopy experiment it is not the polarization itself that is
measured but the electric field Es (signal, yellow in Fig. 7.2) induced by the polarization.
This electric field is measured with a spectrometer (OSA) as a function of the coherence
time τ and of the population time T and is related to the polarization via

Es(τ, T, ωt) ∝
iωt

n(ωt)
P (3)(τ, T, ωt), (7.28)

where n(ω) is the refractive index of the sample. The full characterization, i.e., spec-
tral amplitude and phase, of Es(τ, T, ωt) is achieved by spectral interferometry (Section
2.4.2). For this purpose, the local oscillator (LO) (blue Fig. 7.2), which is attenuated to
avoid interaction with the sample, is overlapped collinearly with the signal.
The measured data is represented as two-dimensional spectra as a function of ωτ and

ωt. This representation is preferred since it is more intuitive than a representation in time
domain, which would yield the same information content. To obtain the 2D spectrum
the measured electric field Es is Fourier transformed, transforming the coherence time
τ into frequency ωτ :

S2D(ωτ , T, ωt) =

∞∫
−∞

dτ iP (3)(τ, T, ωt) e
iωτ

∝
∞∫

−∞

dτ
Es(τ, T, ωt)n(ωt)

ωt

eiωτ τ . (7.29)

Herein, only τ has to be Fourier transformed because the transformation of t is already
employed by measuring the signal Es as a function of frequency ωt [Eq. (7.28)]. The
spectrum S2D(ωτ , T, ωt) is complex valued and is either displayed as amplitude and phase
or as real and imaginary part. The absolute phase has to be determined in a so-called
“phasing” procedure by comparison of pump–probe measurements with the 2D spectra
in an additional step [152, 171].
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Figure 7.3: Schematic of a 2D spec-
trum. The spectrum is plotted as a
function of ωτ and ωt that are related
to frequency component of pump and
probe excitation, respectively. The two
dimensional representation enables sep-
aration of contributions that would over-
lap in a linear spectrum. Coupling and
population transfer can be identified as
off-diagonal peaks and homogeneous and
inhomogeneous linewidth can be deter-
mined via the length and width of the
diagonal peaks, respectively.

The advantage of 2D spectroscopy is the measurement of the spectral information
in two dimensions. Hence, contributions that would overlap in a linear spectrum are
separated in a two-dimensional representation and can be assigned. A schematic 2D
spectrum is shown in Fig. 7.3. The spectrum can be understood as follows: the quantum
system is pumped with a frequency ωτ indicated on the horizontal axis and is probed
with a frequency ωt indicated on the vertical axis. Hence, the off-diagonal elements
reveal coupling and transfer of population. For example, the system that is pumped
with a certain frequency ωτ leads to a signal at a probe frequency at ωt ̸= ωτ due to a
transfer of population from level E = ~ωτ to the level E = ~ωt. Additionally, the shape
of the diagonal peaks is determined by homogeneous and inhomogeneous linewidth.

7.3 Principles of Two-Dimensional Nanoscopy

As explained in Section 7.2, in “conventional” 2D spectroscopy three ingoing optical
waves induce a third order nonlinear polarization that leads to one outgoing wave. This
outgoing wave is measured in terms of its amplitude and phase and carries the infor-
mation of the third order nonlinear response function of the system. Since the spatial
resolution of outgoing optical wave that is determined by the wavelength of the optical
wave, it is not possible to measure “conventional” 2D spectra with a resolution below the
optical diffraction limit. Considering an energy E = 1 eV the corresponding wavelength
is

λopt =
hc

E
≈ 1000 nm. (7.30)

In the newly developed technique 2D nanoscopy that is presented here, the detected
signal is measured using PEEM. Four ingoing waves are used in this technique to excite
the sample and electrons are detected that are non-optical and therefore do not obey
the optical diffraction limit. The theoretical limit for the spatial resolution is then given
by the de Broglie wavelength of the emitted electrons. For the same energy E = 1 eV
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Figure 7.4: Excitation of a quantum 3-
level system in 2D nanoscopy. The elec-
tric field E2D (red arrows) induces tran-
sitions between different energy levels
Estate = {Eg ≡ 0, Ee, Ef}. The re-
maining quantum state |g⟩, |e⟩ or |f⟩,
additionally excited with an ionization
laser of energy Eion (blue arrow), leads to
emission of photoelectrons with kinetic
energies Ekin,g, Ekin,e or Ekin,f (green ar-
rows), respectively. Taken from Aeschli-
mann et al. [173]. Copyright (2011) by
AAAS.

the wavelength is

λe =
h√

2meE
≈ 1 nm. (7.31)

This is three orders of magnitude smaller than that of optical waves. This illustrates the
power of the new technique since information of the investigated system can be obtained
with a spatial resolution that is thousand times smaller than that of “conventional” 2D
spectroscopy.
In the following the main idea of 2D nanoscopy is presented and similarities and

differences between “conventional” 2D spectroscopy and 2D nanoscopy are discussed in
terms of their underlying theory. Additionally the generation of pulse sequences with a
pulse shaper as they are needed for the experimental realization is explained.

7.3.1 Main Idea

The principle of the optical excitation in coherent 2D nanoscopy is illustrated in Fig. 7.4.
Considered is a quantum three-level system consisting of ground state, |g⟩, first elec-
tronically excited state, |e⟩, and second excited state, |f⟩. Transitions between the
different levels are induced with an electric field E2D consisting of four femtosecond
pulses. As will be discussed in more detail in Section 7.3.4, this four-wave interaction
leaves the system in one of the population states |g⟩⟨g|, |e⟩⟨e|, or |f⟩⟨f | that is probed
via photoelectron emission and is measured using PEEM (Section 2.6). In general,
Estate = {Eg ≡ 0, Ee, Ef}, might not exceed the work function, and additional energy
can be supplied by an ionization laser of energy Eion. For photoelectrons emitted from
an initial state at the Fermi level, EFermi, the kinetic energy above vacuum level Evac is
given by

Ekin = EFermi + Eion + Estate − Evac. (7.32)

The horizontal dashed lines therefore correspond to the maximum kinetic energy of the
photoelectrons for given Eion and Estate. The general excitations can correspond either
to states of collective nature, such as, e.g., plasmon polaritons in metallic systems or
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Figure 7.5: Excitation scheme in 2D nanoscopy. A sequence of four femtosecond laser pulses
with variable temporal separations τ , T and t and phases φi (i = 1, ..., 4) is used for excitation.
The optical spot on the sample is larger than λ/2 (diffraction limit), but the final electronic
population is measured via PEEM with a resolution below 50 nm. Taken from Aeschlimann
et al. [173]. Copyright (2011) by AAAS.

excitons in molecular aggregates, or to single-particle states, such as distinct transitions
in the electronic band structure. However, the probe process occurs via a single-particle
state, i.e., the photoemission state. Since collective states cannot be represented on a
single-particle energy scale, the quantum-state preparation via the interaction with E2D

and the probe process are separated in Fig. 7.4.

The excitation scheme of 2D nanoscopy is illustrated in Fig. 7.5. The temporal sepa-
rations of the four-pulse sequence E2D—inducing the transitions between different levels
as explained above—can be varied and are labeled τ , T and t, in analogy with 2D spec-
troscopy (Fig. 7.2). In addition, the phases of the four subpulses, φi (i = 1, ..., 4), can
be specified, where the actual variation of these phases is described in Section 7.3.3.
As can be seen, the four-pulse sequence E2D excites the sample with a spot size that
is diffraction limited, e.g., > 400 nm for 800 nm excitation wavelength. However, since
the final electronic population is measured here via PEEM, 2D spectra can be measured
with the resolution of the PEEM, i.e., < 50 nm (Section 2.6). Hence, the local nonlinear
response function, rather than an averaged quantity, can be measured as a function of
position r⃗. Because no outgoing optical fields are detected, the loss of four-wave-mixing
phase matching is irrelevant. The simplest illumination geometry is then fully collinear
and allows the required pulse sequences to be created with a femtosecond pulse shaper
in amplitude–phase shaping mode. As explained in Section 2.3.3 this insures inher-
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ent phase-stable pulse sequences and a separate “phasing” procedure via projection of
S(ωτ , ωt) onto independently obtained pump-probe data [152, 171], as done in “con-
ventional” 2D spectroscopy, is not required to determine the separation into real and
imaginary part [162].
An explicit theoretical description of the obtained signals will be given in Section

7.3.2 and the direct relation between the signal that is measured in “conventional”
2D spectroscopy and the signal that is measured in 2D nanoscopy will be derived. In
Section 7.3.4 the Liouville-space pathways of 2D nanoscopy and 2D spectroscopy will
be compared and although different linear combinations of them contribute to the final
signal, they are found to be completely analogously. Hence, despite the incoherent
detection of electrons, electronic coherences are also measured in 2D nanoscopy and can
be analyzed with a response-function treatment. The additional feature in 2D nanoscopy
is that access to the general spatial-temporal response function [7] is gained.

7.3.2 Theoretical Description

The signal that is measured in 2D nanoscopy using an energy resolved PEEM is the local
time-averaged photoemission yield YPE,m(r⃗) corresponding to the kinetic energy Ekin,m

of the emitted photoelectrons (cf. Fig. 7.4). The time-averaged photoemission yield is
calculated by temporal integration over the local momentary multiphoton photoemission
probability

YPE,m =

∞∫
−∞

PPE,m(r⃗, t)dt, (7.33)

where the local momentary multiphoton photoemission probability maps the local mo-
mentary population of the states of the investigated system. Note that only a mapping
of the population of states is considered here, i.e., the photoemission process is assumed
to be initiated by the ionization laser that is not included in the following argumenta-
tion. Hence, the local momentary multiphoton photoemission probability PPE,m(r⃗, t) of
electrons with the kinetic energy Ekin,m is given by the population of the state |m⟩. Con-
sidering n interactions with the electric field, this population is calculated in Liouville
space by a scalar product of the corresponding basis vector |mm⟩⟩ with the n-th order
density matrix [Eq. (7.13)]

PPE,m(r⃗, t) = ⟨⟨mm|ρ(n)(r⃗, t)⟩⟩. (7.34)

Since the spatial resolution 2D nanoscopy can not be neglected anymore the density
matrix depends explicitly on the spatial coordinate r⃗. Using the definition of the density
matrix given in Eq. (7.19), the local momentary multiphoton photoemission probability
is written as

PPE,m(r⃗, t) =

(
i

~

)n
∞∫
0

dtn

∞∫
0

dtn−1...

∞∫
0

dt1R(n)
m (r⃗, tn, tn−1, ..., t1)

E(r⃗, t− tn)E(r⃗, t− tn − tn−1)...E(r⃗, t− tn − tn−1...− t1). (7.35)
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Note that the n-th order photoemission response function R(n) relates the incident elec-
tric fields with the population of the final state and hence should not be confused with
the n-th order nonlinear response function S(n) that relates the incident electric fields
with the polarization [Eq. (7.18)]. The photoemission response function rather describes
an analog to the nonlinear response function and is defined by

R(n)
m (r⃗, tn, tn−1, ..., t1) =

(
i

~

)n

⟨⟨mm|G(r⃗, tn)V(r⃗)G(r⃗, tn−1)V(r⃗)...G(r⃗, t1)V(r⃗)|ρ(−∞)⟩⟩

(7.36)
Herein, the time-independent dipole coupling V as well as the Greens function G(t)
[Eq. (7.15)] is assumed to be position dependent.
By introducing the time dependent operator

V(r⃗, τ) ≡ exp

(
i

~
L(r⃗)τ

)
V(r⃗) exp

(
− i

~
L(r⃗)τ

)
(7.37)

defined in the interaction picture, Eq. (7.36) can be rearranged to

R(n)
m (r⃗, tn, tn−1, ..., t1) =

(
i

~

)n

Θ(t1)Θ(t2)...Θ(tn)

⟨⟨mm|G(r⃗, tn + tn−1 + ...+ t1)V(r⃗, tn−1 + ...+ t1)

V(r⃗, tn−2 + ...+ t1)...V(r⃗, t1)V(r⃗, 0)|ρ(−∞)⟩⟩. (7.38)

Further, the basis diagonal elements {|m⟩} of the density matrix that describe population
are time independent such that

⟨⟨mm| exp
(
− i

~
L(r⃗)τ

)
= ⟨⟨mm|. (7.39)

Hence, the n-th order photoemission response function is expressed as

R(n)
m (r⃗, tn, tn−1, ..., t1) =

(
i

~

)n

Θ(t1)Θ(t2)...Θ(tn)⟨⟨mm|V(r⃗, tn−1 + ...+ t1)

V(r⃗, tn−2 + ...+ t1)...V(r⃗, t1)V(r⃗, 0)|ρ(−∞)⟩⟩. (7.40)

Considering the special case of 2D nanoscopy described in Section 7.3.1, four interac-
tions are assumed, i.e., one interaction for each pulse, and then the corresponding fourth
order photoemission response function is described by

R(4)
m (r⃗, t4, t3, t2, t1) =

(
i

~

)4

Θ(t1)Θ(t2)Θ(t3)Θ(t4)⟨⟨mm|V(r⃗, t3 + t2 + t1)

V(r⃗, t2 + t1)V(r⃗, t1)V(r⃗, 0)|ρ(−∞)⟩⟩. (7.41)

In Hilbert space this results in

R(4)
m (r⃗, t4, t3, t2, t1) =

(
i

~

)4

Θ(t1)Θ(t2)Θ(t3)Θ(t4)

⟨m|[V (r⃗, t3 + t2 + t1), [V (r⃗, t2 + t1), [V (r⃗, t1), [V (r⃗, 0), ρ(−∞)]]]]|m⟩.
(7.42)
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Note that opposed to the measurement of “conventional” 2D spectroscopy, different
photoemission response functions are measured depending on the measured kinetic en-
ergy Ekin,m. Nevertheless, an expression for the fourth order photoemission response

function R(4)
m (r⃗, t4, t3, t2, t1) is found that is described by four dipole couplings V (r⃗, τ).

This is also reflected in the time dependences. The dependence on the fourth inter-
action is only due to the Heaviside step function which assures that the fourth pulse
arrives after the third pulse, i.e., t4 > 0. In all other cases the response function is zero.
Hence, the measured fourth order photoemission response function R(4)

m (r⃗, t4, t3, t2, t1)
is very similar to the third order nonlinear response function S(3)(t3, t2, t1) [Eq. (7.20)]
measured in “conventional” 2D spectroscopy. This indicates that although a fourth or-
der photoemission response function is considered here, the information content is the
same as that of the third order nonlinear response function. Therefore, the incoherent
electrons that are detected in 2D nanoscopy reveal electronic coherences as observed in
“conventional” 2D spectroscopy. The similarity between the two methods also results
in very similar Liouville pathways as will be discussed in Section 7.3.4.
Note that in the theoretical description presented here, relaxation terms due to, e.g,

inelastic electron–electron scattering or spontaneous transitions from one state ⟨m| to
another state ⟨n| are neglected. However, incorporation of such terms can be done by
adding a corresponding functional in the Liouville-von-Neumann equation [174].

7.3.3 Phase Cycling

To explain phase cycling, first the signal that is measured in 2D nanoscopy is considered.
The local photoemission yield is calculated using Eqs. (7.33) and (7.35) and results in

YPE,m(r⃗) =

(
i

~

)4
∞∫

−∞

dt′
∞∫
0

dt4

∞∫
0

dt3

∞∫
0

dt2

∞∫
0

dt1 S̃
(4)
m (r⃗, t4, t3, t2, t1)E(r⃗, t

′ − t4)

E(r⃗, t′ − t4 − t3)E(r⃗, t
′ − t4 − t3 − t2)E(r⃗, t

′ − t4 − t3 − t2 − t1). (7.43)

The electric field that induces the transitions in 2D nanoscopy is a quadruple-pulse
sequence which is described by

E(r⃗, t′) =Â(t′ − τ − T ) ei(ω0t′−φτ−φT+k⃗r⃗) +Â(t′ − T ) ei(ω0t′−φT+k⃗r⃗) +

Â(t′) ei(ω0t′+k⃗r⃗) +Â(t′ + t) ei(ω0t′+φt+k⃗r⃗) +c.c. . (7.44)

Herein, the relative times are defined according to the illustration in Fig. 7.5 as

τ ≡ t̃2 − t̃1, T ≡ t̃3 − t̃2, t ≡ t̃4 − t̃3 (7.45)

where t̃3 ≡ 0 is chosen here as it is customary in “conventional” 2D spectroscopy. The
relative phases are introduced according to the relative times

φτ ≡ φ2 − φ1, φT ≡ φ3 − φ2, φt ≡ φ4 − φ3, (7.46)

where the third pulse is again defined as reference, such that φ3 ≡ 0.
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The definition of the electric field E(r⃗, t′) results in 8×8×8×8 = 4096 summands that
contribute to 2D nanoscopy signal in terms of the local photoemission yield [Eq. (7.43)].
However, only contributions are requested that occur from interactions with all four
pulses, e.g., contributions that occur from two interactions with the same pulse should
be eliminated.
Opposed to “conventional” 2D spectroscopy, the signal measured in 2D nanoscopy

is not an optical signal and phase matching is obsolete, which also enables a collinear
illumination, i.e., all pulses in the sequence possess the same k⃗. Hence, a reduction of
the terms is not possible in terms of their k vectors. However, each of the summands
Eq. (7.43) has a distinct dependence on the relative phases. The number of summands
can therefore be reduced by varying the relative phases φτ , φT , and φt, and calculating
suitable linear combinations of the signals. This process is called phase cycling and
was introduced by Warren et al. [157, 175]. In the experiment phase cycling is realized
by measuring the signal for different combinations of the relative phases. The simplest
possible phase cycling is a two-step phase cycling, where the signal is measured for two
different combinations, e.g., for the combinations

(φτ , φT , φt) = {(0, 0, 0), (0, 0, π)} . (7.47)

The corresponding phase cycled signal YPE,m(r⃗) is then found by the difference of the
signal that is measured for the two combinations.

YPE,m(r⃗) = Y
(0,0,0)
PE,m (r⃗)− Y

(0,0,π)
PE,m (r⃗) (7.48)

Since only the phase of the last pulse is modified in this example all contributions that
do not depend on the last pulse are eliminated with this phase cycling, whereas all other
contributions are doubled. Correspondingly, to eliminate the contributions that do not
depend on a different pulse, different two-step phase-cycling combinations have to be
applied.
To eliminate signals that are independent of two pulses, e.g., the first and the last

pulse, a four-step phase cycling has to be employed with four different combinations of
the relative phase, e.g.

(φτ , φT , φt) = {(0, 0, 0), (π, 0, π), (0, 0, π), (π, 0, 0)} . (7.49)

The corresponding phase-cycled signal YPE,m(r⃗) is the sum over all individual signals

Y
(φτ ,φT ,φt)
PE,m (r⃗) with prefactors according to ei(φτ+φT+φt) such that

YPE,m(r⃗) = ei0 Y
(0,0,0)
PE,m (r⃗) + ei2π Y

(π,0,π)
PE,m (r⃗) + eiπ Y

(0,0,π)
PE,m (r⃗) + eiπ Y

(π,0,0)
PE,m (r⃗)

=Y
(0,0,0)
PE,m (r⃗) + Y

(π,0,π)
PE,m (r⃗)− Y

(0,0,π)
PE,m (r⃗)− Y

(π,0,0)
PE,m (r⃗) (7.50)

For further eliminations of the contributing summands in Eq. (7.43), higher-step
phase-cycling combinations, e.g., 16-step phase-cycling combinations, can be achieved
accordingly. In these higher-step phase-cycling combinations imaginary prefactors can
appear since relative phases of π/2 have to be applied. Hence, imaginary phase-cycled
signals YPE,m(r⃗) can appear. The exact definition of the required combination has to be
chosen according to the desired information content of the 2D nanospectra.
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Figure 7.6: Four-wave mixing (FWM) for coherent 2D spectroscopy (left) and 2D nanoscopy
(right). (a) In conventional four-wave mixing (FWM), three ingoing optical waves E1, E2 and
E3 are converted to one outgoing optical wave Es via interaction with a three level quantum
system. The subscripted numbers indicate time ordering. (b) In 2D nanoscopy, the input
consists of four ingoing optical waves Ei (i = 1, ..., 4), and the non-optical output is the
resulting electronic population. Taken from Aeschlimann et al. [173]. Copyright (2011) by
AAAS.

In the example of 2D nanoscopy described in Section 7.4.4 a four-step phase cycling
was applied with φT = 0, which was found to be a good compromise between information
content and measurement time.

7.3.4 Liouville Pathways

The analogy of 2D spectroscopy and 2D nanoscopy is discussed here by comparing the
contributing Liouville-space pathways for a three-level system. For 2D spectroscopy
(Fig. 7.6a), electric-field interactions E1, E2, and E3 with the system (“input”) create a
polarization that is radiated off by the signal field Es (“output”). This process is also
called four-wave mixing (FWM) and is described by considering a linear combination
of the response-function contributions (Fig. 7.7a) for a two-level system, R1, R2, R3,
R4 (Fig. 7.1) and additional contributions involving the third level |f⟩, R1f , R2f , R3f ,
R4f [171] as well as their complex conjugates for which the first interaction arrow would
point downward instead of to the right side.
For 2D nanoscopy (Fig. 7.6b), all four interactions E1, E2, E3, and E4 are on the “in-

put” side, and the final electronic population is the “output”. As explained in Section
7.3.3, phase cycling can then be used to assign these interactions to the respective four
pulses of E2D from Fig. 7.5. Due to different theoretical descriptions (Section 7.3.2),
three cases depending on the kinetic energy of the photoelectrons (Fig.7.4) have to be
discriminated. For Ekin,g, five pathways contribute (Fig. 7.7b). These are analogous to
the corresponding ones from 2D spectroscopy (Fig. 7.7a), noting that for 2D nanoscopy
the direction of the final interaction arrow (blue) matters, whereas in 2D spectroscopy
the final direction (orange) is arbitrary as long as it leads to a population (here displayed
vertically always) because the final state of the quantum system is not measured. In
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Figure 7.7: Liouville-space pathways for coherent 2D spectroscopy (left) and 2D nanoscopy
(right). (a) The pathways contributing in third-order perturbation theory to the detected
signal are shown graphically using arrows that connect elements within a reduced density
matrix ρ. The colors correspond to the interactions of Fig. 7.6a, the labels Ri and Rif

(i = 1, ..., 4) are taken from the literature [7, 171], and the blue labels indicate rephasing
(R), non-rephasing (NR), and double-coherence (DC) contributions. (b)–(d) Contributing
pathways in 2D nanoscopy are shown side with their analogous Liouville pathways for different
photoelectron kinetic energies (Fig. 7.4): (b) Ekin,g, (c) Ekin,e, and (d) Ekin,f . Taken from
Aeschlimann et al. [173]. Copyright (2011) by AAAS.
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the case of Ekin,e all eight Liouville pathways are relevant (Fig. 7.7c), and for Ekin,f only
three pathways have to be considered (Fig. 7.7d). Thus, in contrast to 2D spectroscopy
where all pathways are always relevant, in 2D nanoscopy some of the individual contri-
butions can be disentangled, possibly even by considering different linear combinations
of the results for Ekin,g, Ekin,e, and Ekin,f . Note that the pathways depicted in Fig. 7.7
correspond to transitions in a reduced density matrix ρ. In general, the levels labeled
|g⟩, |e⟩ and |f⟩ may correspond to collective excitations such as excitonic or plasmonic
bands and as such display a substructure. Hence, in the full energy-eigenstate represen-
tation, one would have to discriminate between different levels |e1⟩ and |e2⟩, say, of the
excitonic band |e⟩, that can be reached during the four-pulse electric-field interaction.
Indeed, coherence and population transfer processes between such levels (i.e., intraband
transitions) are relevant and will show their signature in the resulting 2D nanospectra. In
Fig. 7.7, no distinction has been made between processes pertaining to the involvement
of different intraband levels.
Nonlinear spectroscopic techniques are often labeled according to the order n of the

nonlinear response S(n) that connects incident electric field and resulting polarization.
As is shown in Section 7.3.2, 2D nanoscopy cannot be called a S(n) technique, because
the final state is a population rather than a polarization/coherence. However, the in-
formation content turned out to be analogous to that of a “regular” S(3) spectroscopy
(i.e., four-wave mixing) because the Liouville pathways correspond. In this sense, the
methods are equivalent though not identical. Different Liouville diagrams enter into the
linear combinations that create the signals for either conventional phase-matched 2D
spectroscopy or 2D spectroscopy using fluorescence detection or 2D nanoscopy, resulting
in slightly different lineshapes for the different methods. As already mentioned in Sec-
tion 7.3.3, the lineshapes also depend on the extent of phase cycling. With a sufficient
amount of phase cycles, the signal corresponding to a phase-matched photon echo can
be extracted also in 2D nanoscopy. For reduced phase cycles, one still obtains useful
2D spectroscopic information that however has to fulfill certain symmetry requirements.
The main reason for 2D nanoscopy, of course, is not simply to copy the information
content of conventional 2D spectroscopy, but to provide genuine subdiffraction spatial
resolution.

7.3.5 Generation of a Pulse Sequence with a Pulse Shaper

The method of 2D nansocopy, introduced in Section 7.3.1, uses pulse sequences with
variable delays between the pulses and variable offset phases of each pulse to excite the
sample. Due to the phase stability that is needed in the experiment, the pulse sequences
are generated with a pulse shaper in amplitude and phase-shaping configuration offer-
ing inherent phase stability. To calculate the corresponding pulse shaper mask (i.e.,
the settings of each LCD pixel) the corresponding spectral electric field have to be de-
rived mathematically. Since the adjustable parameters are defined in time domain, the
derivation is started with temporal electric fields.
Generating a pulse sequence of N pulses the j-th pulse can be described analogously

to Eq. 2.10

E+
j (t) = A(t− tj) ei[ϕ(t−tj)+ϕc

j], (7.51)
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where tj is the delay of the pulse and ϕc
j is the offset phase of the pulse, which both are

varied in the experiment. The amplitude A(t) and the phase ϕ(t) are the same for each
pulse of the sequence and can additionally be defined using the pulse shaper. Assuming
the absolute phase to be identical for all pulses, i.e., no shift of the phase is introduced
by a temporal shift, the temporal electric field can be written as

E+
j (t) =A(t− tj) ei[φ(t−tj)+ω0t+ϕc

j]

=Â(t− tj) ei(ω0t+ϕc
j) (7.52)

where φ(t−tj) is defined according to Eq. (2.2) and is absorbed into the complex envelope

function Â(t − tj) in the last step. The complete electric field is then a sequence of N
pulses and is described by the sum over all pulses

E+(t) =
1

N

N∑
j=1

E+
j (t), (7.53)

where the pre-factor is the normalization, i.e., the original pulse is recovered by setting
tj = 0 and ϕc

j = 0 for all j.
The spectral electric field is obtained by performing a complex-valued Fourier trans-

formation

E+(ω) = F
{
E+(t)

}
=

1

N

N∑
j=1

F
{
E+

j (t)
}
, (7.54)

where the linearity of the Fourier transformation was used in the last step. Hence, the
spectral electric field of a single pulse j can be written as

E+
j (ω) = F

{
E+

j (t)
}
=

1√
2π

∞∫
−∞

A(t− tj) ei[φ(t−tj)+ω0t+ϕc
j] e−iωt dt. (7.55)

The expression can be simplified by setting t′ = t− tj and additional rearrangement of
the ω and ω0 terms yield

E+
j (ω) =

1√
2π

∞∫
−∞

A(t′) ei[φ(t
′)−(ω−ω0)tj+ϕc

j] e−i(ω−ω0)t′ dt′, (7.56)

where the lower and upper limit do not change, since it is still integrated over all times
and the new variable of integration is dt′. Carrying out the Fourier transformation with
the new transform variable ω − ω0 results in

E+
j (ω) = A(ω − ω0) e−i[φ(ω−ω0)+(ω−ω0)tj−ϕc

j], (7.57)

which is the spectral description of a single pulse in the sequence. Combination of
the amplitude A(ω − ω0) and the spectral phase φ(ω − ω0) reveals the complex-valued
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E0(ω−ω0), which is the full spectral description of Â(t) [Eq. (7.52)] shifted to be centered
around zero frequency. Hence, Eq. (7.57) rewrites as

E+
j (ω) = E0(ω − ω0) e−i[(ω−ω0)tj−ϕc

j] . (7.58)

The spectral field of the complete pulse sequence is then obtained by summing up over
all N pulses

E(N)+(ω) =
1

N

N∑
j=1

E+
j (ω) =

E0(ω − ω0)

N

N∑
j=1

e−i[(ω−ω0)tj−ϕc
j] . (7.59)

Herein, E0(ω−ω0) can be factored out since it is the same for all pulses of the sequence.
The calculated spectral electric field contains constructive and destructive interference
for the single frequencies, e.g., for a two-pulse sequence a fringe pattern similar to that
of spectral interferometry (Section 2.4.2) is observed.
The complex-valued LCD mask transfer function

M
(N)
LCD(ω) =

E(N)+(ω)

E0(ω)
=

1

N

N∑
j=1

e−i[(ω−ω0)tj−ϕc
j] (7.60)

then describes how the amplitude, |MLCD|, and phase, arg {MLCD}, for each frequency
component have to be modified to create the desired pulse sequence from an unshaped
input pulse.
To realize the experiment, pulse sequences of two and four pulses are generated. Char-

acterizations of such pulse sequences are shown and discussed in Section 7.4.2.

7.4 Experimental Realization

In this section the experimental realization of 2D nanoscopy in terms of two different
implementations is described and the recorded data is discussed qualitatively. A quan-
titative analyzes of the recorded data is done using appropriate models in Section 7.5.

7.4.1 Experimental Setup and Choice of Sample

The experimental setup that was used to realize 2D nanoscopy is identical with the
setup described in Chapter 6 for coherent control on a rough silver surface (Section
6.2). A Ti:Sapphire oscillator provided femtosecond laser pulses (80MHz, 795 nm, 30 fs
FWHM, 9 nJ) that were beam pointing stabilized. Using a pulse shaper, the light pulses
were then modulated in amplitude and phase to generate the required pulse sequences.
Hence, opposed to the experiments presented in Chapter 6, the pulse shaper was used
in amplitude and phase-shaping mode, i.e., the pulse sequences that excited the sample
were purely p polarized (cf. Fig. 2.17). The pulses were again characterized outside
the UHV chamber since direct characterization at the position of the sample was not
possible. To account for dispersion introduced by the window of the UHV chamber a
glass plate was inserted into the beam in front of the characterization tool. The pulses
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Figure 7.8: The spectral intensity and
phase of the transform-limited laser
pulse. The pulse was characterized us-
ing spectral interferometry (Section 2.4)
in the setup shown in Fig. 6.2. This pulse
is defined as the unshaped pulse for the
experiment described in the following.
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Figure 7.9: Photoemission yield of the
sample excited with a pulse shown in
Fig. 7.8. The regions that are investi-
gated in more detail are indicated with
white rectangles and labeled with ROI-A
and ROI-B.

were compressed with the pulse shaper by applying the inverse phase of an unshaped
pulse that was measured with FROG. Due to the reduction of the spectral width induced
by optical elements within the pulse shaper the transform-limited pulse after the pulse
shaper was determined to have a duration of 51 fs. The spectral intensity and phase of the
transform-limited pulse is shown in Fig. 7.8 yielding a flat spectral phase and a spectrum
that is distorted by the 4f setup of the pulse shaper with respect to the gaussian laser
spectrum generated with the oscillator. Correspondingly, the center wavelength shifts
to about 798 nm. The shown pulse is also used for the quantitative analyzes in Section
7.5. The incidence angle of the excitation pulses were 65◦ with respect to the sample
(Fig. 2.17) and the pulses are focused very weakly on the sample using a lens with a
focal length of 30 cm. Accordingly, the spot size on the sample was approximately 70µm
in diameter. The sample that is investigated in this chapter is the same corrugated
silver surface that was used for coherent control in the last chapter. The sample was
chosen because in the experiments of Chapter 6 unexpected high photoelectron yield
was obtained for pulse durations of several hundred femtoseconds. This indicates that
long-lived coherences might exist on the random silver surface. Additionally, strong
variations on spatial regions that are separated below the diffraction limit were observed
and suggests to investigate the temporal dynamics using 2D nanoscopy. A PEEM image
of a small region of the investigated sample is shown in Fig. 7.9. Two regions of interest
are indicated: the hot spot of ROI-A serves as a reference hot spot and the hot spot
of ROI-B is investigated in more detail. Opposed to the order of three determined in
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Chapter 6 for the corrugated silver surface, the order of nonlinearity is determined to
be four for the presented experiment. This increase of the order of nonlinearity can be
explained by the reduction of Cs on the surface resulting in an increase of the vacuum
energy.
Although for the most general implementation of 2D nanoscopy introduced in Section

7.3 the usage of a separate ionization laser is suggested, in this first experimental demon-
stration presented in this Section no extra beam is used, and photoemission is rather
induced by the four-pulse sequence itself via four-photon ionization. In conjunction with
that, the kinetic energy of the photoelectrons is not measured. However, note that po-
sition and energy-resolved (time-of-flight) detectors are available and can be employed
for future implementations.

7.4.2 Pulse Sequences

In the experiments described below two different scans were performed. A quadruple
pulse sequence scan used for the 2D nanoscopy measurement as described above and a
double pulse sequence to obtain further insight into the dynamics as will be shown below.
The corresponding LCD masks that were applied to the pulse shaper are obtained by
settingN = 4 andN = 2 in Eq. (7.60). Additionally, the absolute times and offset phases
are substituted by relative values, since the absolute values of the pulse sequence used
in the experiment is irrelevant. Hence, the times t̃j of the pulse centers are substituted
by the relative times defined in Eq. (7.45) according to Fig. 7.5 and the corresponding
relative phases are defined in Eq. (7.46). As it is customary in “conventional” 2D
spectroscopy (Fig. 7.2a), the time of the third pulse is set to zero, i.e., t̃3 = 0. Using
these substitutions [Eqs. (7.45) and (7.46)], Eq. (7.60) can be recast

M
(4)
LCD (ω, τ, T, t, φτ , φt) =

1

4

{
ei[(ω−ω0)(τ+T )−φτ−φT ] +ei[(ω−ω0)T−φT ]+1 + e−i[(ω−ω0)(−t)+φt]

}
(7.61)

for the quadruple-pulse sequence. For the double pulse sequence, the separation times
and the relative offset phases between the first and the second and between the third
and fourth pulse are set to zero, i.e., τ = t = 0 and φτ = φt = 0. This results in

M
(2)
LCD (ω, T, φT ) =

1

2

{
ei[(ω−ω0)T−φT ]+1

}
. (7.62)

Note that the complex-valued phase masks were applied additionally to the phase
that was applied for compression as described in Section 7.4.1. Hence, each pulse of the
sequence is compressed, i.e., transform-limited.
To check the pulse sequences generated by the pulse shaper using complex-valued

LCD masks derived for double [Eq. (7.62)] and quadrupole-pulse sequences [Eq. (7.61)],
several pulse sequences were characterized using dual-channel spectral interferometry
(Section 2.4.2) with reference pulses measured via FROG (Section 2.4.1). The temporal
evolution of four double-pulse and two quadrupole-pulse sequences, which were also used
in the measurements, are shown in Fig. 7.10. The normalized intensities (blue lines) and
the phases (red lines) are plotted for each sequence. Above each plot the corresponding
pulse separations and relative offset phases are denoted. As can be inferred, the desired
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Figure 7.10: 2D nanoscopy pulse sequences. The double (upper panel) and quadruple-pulse
sequences (lower panel) are generated with a pulse shaper using the LCD mask transfer function
given in Eqs. (7.62) and (7.61), respectively. All pulse sequences are measured using spectral
interferometry (Section 2.4.2). Normalized intensities and phases are displayed as blue and
red lines, respectively. The corresponding parameters of the relative times and phase offsets
between the subpulses are denoted above the plots.
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pulse separations as well as the relative phases were achieved in an excellent manner.
For example in Fig. 7.10b, the double-pulse sequence with a temporal separation of
T = 150 fs and a relative phase φT = π rad shows two pulses centered around −150 fs and
0 fs with phases π rad and 0 rad, respectively. In case of pulse overlap (e.g., Figs. 7.10c
and 7.10d), observed for temporal separations between the pulses in the order of the pulse
duration (50 fs FWHM), the pulse amplitudes depend on the relative phase. For zero
relative phase (Fig. 7.10c), a broadening due to the interference of the overlapping parts
is observed. Differently, destructive interference appears in the region of overlap for a
relative phase that is π (Fig. 7.10d). The same accordance of the requested parameters
is observed in Figs. 7.10e and 7.10f for the quadruple-pulse sequences. Although the
required pulse parameters are in perfect agreement with the observed separations and
relative phases, the relative intensities within the pulse sequences show small deviations
from the expected ones. For example, the double pulses in Figs. 7.10a and 7.10b should
have the same maximum intensity. Similarly, the first and the last pulse of the quadruple-
pulse sequence in Fig. 7.10e should have the same maximum intensities. These deviations
can have multiple sources. On the one hand, there are intrinsic limitations of the pulse
shaper due to the finite pixelation of the LCD. This finite pixelation results in decreasing
intensities of the electric fields with increasing separation from t = 0 fs (i.e., the center of
an unshaped pulse) and allows a maximum available time window of 4.7 ps [30]. However,
in the experiments presented in this chapter, the maximum delay introduced between
the first and the last pulse in the train is (τ + T + t)max = (280 + 0 + 280) fs = 560 fs
and influences from pulse-shaping artifacts due to the pixellated nature of the LCD are
assumed to be small. The intrinsic limitations also contain the small gaps between the
pixels that cannot be modulated with the LCD (cf. Fig. 2.8) and, therefore, appear at
t = 0 fs. On the other hand, the deviations can have their origin in a wrong pulse shaper
calibration. However, since the required pulse separations as well as their relative phases
are found to be correct, the effect of a wrong pulse shaper calibration can be neglected
here.

In summary, the obtained pulse shapes seem to fulfill the requirement for 2D nanoscopy
and were used for the measurements described in the following.

7.4.3 Spatial Resolution

In this section the spatial resolution of 2D nanoscopy is discussed. The “conventional”
imaging resolution of PEEM is usually determined using a continuous-wave ultraviolet
lamp because that provides a uniform one-photon linear response excitation and most
clearly reflects the spatial resolution. To prove the resolution for the 2D nanoscopy
experiment as described in this chapter, such a measurement was carried out on a
nanostructured gold sample prepared by focused ion-beam (FIB) milling to obtain a
sharp edge. The obtained PEEM image (Fig. 7.11a) was analyzed perpendicular to the
edge (Fig. 7.11b) providing an imaging resolution of 57.6 nm using the customary 16–84
criterion.

The spatial resolution in the 2D nanoscopy scheme is expected to be of the same order
as in “conventional” PEEM because the photoelectron imaging apparatus is identical.
Complications in measuring spatial resolution for nonlinear spectroscopic signals may
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Figure 7.11: Spatial resolution of 2D nanoscopy. The resolution on the edge of a gold nano-
structure prepared by focused ion-beam milling is determined. (a) The “conventional” PEEM
imaging resolution is obtained with ultraviolet continuous-wave excitation and analyzed with
a cut along the red line, providing (b) the data points (squares) and fit (red) that determine
spatial resolution with the customary 16–84 criterion. (c) The resolution in 2D nanoscopy is
determined with multiphoton photoemission upon femtosecond illumination of the same nano-
structure with a single 798 nm pulse, corresponding to τ = T = t = 0 from 2D nanoscopy.
The PEEM image is again cut along the red line, providing (d) the data points (squares) and
fit (red). The 16–84 criterion provides an upper bound for spatial resolution of 2D nanoscopy
that is in agreement with the pure imaging resolution from (b). Taken from Aeschlimann
et al. [173]. Copyright (2011) by AAAS.

arise, however, when spatially delocalized intermediate states are involved, such as in the
case of the corrugated silver surface investigated here. For such samples one measures a
convolution of the wavefunctions of the delocalized plasmons and the imaging resolution
of the PEEM. Hence, in order to determine the spatial resolution for 2D nanoscopy,
the same nanostructured gold sample was used as in the determination of conventional
imaging resolution. Gold was used to reduce the effect of resonantly excited delocalized
states that would complicate the analysis. Then a multiphoton photoemission image was
observed upon illumination with single femtosecond laser pulses at 798 nm (Fig. 7.11c).
This corresponds to time settings of τ = T = t = 0 in 2D nanoscopy which were
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Figure 7.12: A zoomed-in image of hot spot ROI-B indicated in Fig. 7.9. The small ROIs
1–4 that are investigated in more detail are indicated with white rectangles.

chosen because then the signal is maximum and the contrast is best. Evaluation of the
cut perpendicular to the edge (Fig. 7.11d) reveals a similar width of ∼50 nm (within the
experimental uncertainty) as it was already obtained for “conventional” PEEM imaging.
From the comparison shown in Fig. 7.11 it can clearly be concluded that the well-

known and accepted PEEM resolution is also obtained in the 2D nanoscopy scheme
within multiphoton processes. Hence 2D nanoscopy indeed provides subdiffraction spa-
tial resolution. In the presented experiments an upper bound of 50 nm was achieved
without striving for maximum resolution, but it is possible to obtain ∼25 nm with the
same device [69], and 2D nanoscopy has the potential to reach 2 nm resolution with
other commercial PEEM devices [67].
The gold sample in Fig. 7.11 was useful for determining the spatial resolution of

the method. As indicated above, it was chosen to avoid “hot spot” resonances with
complex physics of coupled and partially delocalized oscillators. With the corrugated
silver surface used in the main experiment presented here, on the other hand, a sample
was chosen for which interesting physics are expected.

7.4.4 2D Nanoscopy Scan

To perform 2D nanoscopy measurements the ROI-B from Fig. 7.9 was investigated in
more detail. During the measurements PEEM images were taken of a region with a
diameter of ∼18µm including the hot spot of ROI-B. This corresponds to a pixel size
of (18 nm)2. A zoomed-in PEEM image of the hot spot under investigation (ROI-B)
for single pulse illumination (i.e., τ = T = t = 0 and φτ = φT = φt = 0) is depicted
in Fig. 7.12. As can be observed, additionally to a hot spot with high photoemission a
hot spot with smaller photoemission leads to a combined photoemission pattern that is
elongated in the horizontal direction.
The 2D nanospectra were measured with time delays τ and t varying from 0 to 280 fs
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Figure 7.13: Reference signal during
the 2D nanoscopy scan. The averaged
photoemission yield of ROI-B (Fig. 7.9)
that is observed from the reference im-
ages taken for the drift correction, i.e.,
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in steps of 4 fs for a setting of population time T = 0. A fourfold phase cycling was
implemented by taking four images for each time step. The images were taken according
to Eq. 7.49 for the phase combinations

(φτ , φt) = {(0, 0), (π, π), (0, π), (π, 0)}, (7.63)

where the relative phase φT was set to 0 rad. Additionally, a reference image with
τ = T = t = 0 and φτ = φT = φt = 0 was taken for drift correction (Section 2.6.3).
Hence, five images were taken for each time step and multiplication with 71×71 = 5041
time step combinations results in 25205 images per scan. Each PEEM image was taken
with temporal averaging at 250ms CCD integration time, chosen to fit the full dynamic
range of the camera.
Additionally, to the pure measurement time originating from the integration time of

25205 images taken for a 2D nanoscopy scan (smaller than two hours), the additional
reaction time of the pulse shaper and the time that is needed to save the huge amount of
data increased the total measurement time to about twelve hours. Hence, fluctuations
of the signal during the scanning time had to be considered. The fluctuations of the
signal were determined with the reference images. Therefore, the photoemission yield
was averaged over the complete hot spot (i.e., approximately the region that is shown in
Fig. 7.12) and the noise level (48 counts per pixel) was substracted. Then, the reference
was smoothed to avoid higher weighting of short-term fluctuations in regions of small
reference. Smoothing was done by averaging over 51 adjacent measurement points, i.e.,
for step j the reference is averaged from step j − 25 to j + 25. In addition, the signal
was normalized to the average of the first 25 steps. The reference Y ref

PE as a function of t
and τ steps is depicted in Fig. 7.13. While scanning, all t steps were measured first for
one τ and then τ was changed to the next value starting from (τ, t) = (0, 0). As can be
inferred, strong variations of the reference signal were measured. The signal decreased
to about 20% of the initial signal in the middle of the scan and recovered at the end
of the scan to values that even exceeded the initial signal. This variation of the signal
can be explained by day–night intervals of the 12 hour scan. The scan was started in
the evening at daytime then the signal decreased and stayed roughly constant during
the night. The scan ended in the morning during daytime and the signal increased to
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about 110% of the initial value meanwhile. Note that the measured modulation in signal
strength were independent of the region of investigation and was found to be the same
for each position on the sample. To account for the fluctuations, they are considered in
the calculation of the 2D spectra as explained below.
For the data evaluation, the photoemission of each pixel r⃗ of the images of the four

phase combinations described in Eq. (7.63) are combined according to the phase cycling
process (Section 7.3.3) and divided by the reference signal Y ref

PE(τ, T, t) (Fig. 7.13) to
reveal the phase cycled time dependent photoemission yield

YPE(r⃗, τ, T, t) =
Y 00
PE(r⃗, τ, T, t) + Y ππ

PE (r⃗, τ, T, t)− Y 0π
PE(r⃗, τ, T, t)− Y π0

PE(r⃗, τ, T, t)

Y ref
PE(τ, T, t)

. (7.64)

A 2D Fourier transformation of the real-valued time domain data then delivers complex-
valued 2D spectra:

YPE(r⃗, ωτ , T, ωt) =

∞∫
−∞

∞∫
−∞

YPE(r⃗, τ, T, t) e
−iωτ τ e−iωtt dτ dt (7.65)

Although a continuous Fourier transformation is described here for the sake of simplicity,
the 2D spectrum is calculated using a discrete Fourier transformation.
As an example, the 2D nanospectra of ROI-1 and ROI-2 indicated in Fig. 7.12 mea-

sured at T = 0 fs are shown in Fig. 7.14 in terms of real part (left panels) and imaginary
part (right panels). Each ROI contains 2× 2 = 4 pixels yielding a spatial resolution of
(36 nm)2 and the corresponding nanospectra were obtained by averaging over these 4 pix-
els. Additionally, the spectra were normalized to the absolute value at (ωτ , ωt) = (0, 0).
The scanned time steps provide a spectral resolution of 0.022 rad/fs and a maximum
detectable frequency shift with respect to the center frequency ω0 = 2.360 rad/fs of
±0.774 rad/fs. The nanospectra are shown from −0.188 to 0.188 rad/fs including the
complete spectrum of the excitation pulses (cf. Fig. 7.8).
A resonance at (ωτ , ωt) = (ω0, ω0) is observed in the 2D spectra shown in Fig. 7.14.

This reflects that the investigated hot spot acts as a nanoantenna for the incident light
and has a resonance around center frequency ω0 of the excitation pulses. This resonant
excitation is expected, due to the strong photoemission of the hot spot. However, for the
interpretation of the 2D spectra it is important to point out that the response function
of the investigated system is weighted with the laser spectrum such that the center
of the spectra are more emphasized then the outer parts. In addition, the symmetry
argumentation of the 2D spectra that will be discussed below has to be incorporated in
the interpretation.
Different 2D lineshapes would be observed if the investigated resonance were sharp

enough and located far enough away from the center frequency of the laser pulse. How-
ever, for the present sample this is not the case because the excited plasmonic bands
are relatively broad as compared to the available laser spectrum, in contrast to, e.g.,
atomic transitions [157]. Due to the ultrahigh spatial resolution of the presented 2D
nanospectra, line shapes that correspond to a single or very few contributing Lorentzian
oscillators are observed in Fig. 7.14. Hence, the inhomogeneous distribution of reso-
nances that would be detected in diffraction-limited spectroscopy and that would lead
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Figure 7.14: 2D nanospectra at T = 0 fs. The (a) 2D real and (b) imaginary part is shown for
position ROI-1 and ROI-2 (c,d) that is 228 nm away within the same hot spot (Fig. 7.12), as a
function of detuning from the center frequency ω0 of the laser spectrum (Fig. 7.8). The axis ωτ

and ωt are shown from −0.188 to 0.188 rad/fs and correspond to the frequencies related to the
pulse delays τ and t, respectively. (a) and (c) taken from Aeschlimann et al. [173]. Copyright
(2011) by AAAS.

to elongation of the 2D peak along the diagonal is eliminated to a large extent. Com-
paring the nanospectra for the two ROIs, i.e., upper versus lower panel, a difference in
the linewidth is observed. The linewidth of the nanospectrum of ROI-1 is broader than
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that of ROI-2. This is remarkable since the regions are separated by only 228 nm, i.e.,
below the diffraction limit. Hence, although only a single oscillator would be expected
for a single hot spot this indicates contribution of different oscillators. This illustrates
the power of the presented 2D nanoscopy since line shape difference for regions that are
separated below the diffraction limit can be determined. A quantitive analysis of the
2D spectra in Fig. 7.14 in terms of Lorentz fits is carried out in Section 7.5.1.
As can be inferred from Fig. 7.14, four-step phase cycling creates the result from a

real-valued linear combination of real-valued time-domain data. Hence, the 2D traces
are point-symmetric in the present demonstration, more precisely they fulfill

YPE(ωτ , T,−ωt) = Y ∗
PE(−ωτ , T, ωt), (7.66)

with the star denoting complex conjugation. For a 2D spectrum of sharp resonance
located not at the center frequency of the laser, a copy of the resonance would occur in
opposing quadrants of YPE(ωτ , ωt). Note, however, that this is no principle restriction
of the 2D nanoscopy technique. A general possibility to retrieve the unconstrained 2D
lineshape is to employ a 16-step phase cycle (Section 7.3.3) because there, in the linear
combination constructing the signal, some of the measured (real-valued) contributions
enter with a prefactor i and thus the complex nature of the signal is recovered. However,
16-step phase cycling would result in an increase of the measurement time by a factor
of four, which was not realized due the issue of signal stability as described above.

7.4.5 Delay–Phase Scan

To support 2D-nanoscopy measurements using four pulses, i.e., three separation times τ ,
T and t, a two-pulse 2D nanoscopy scheme was conducted. In this scheme the population
time T is varied and for each delay step the corresponding interpulse relative phase φT

is scanned over the complete interval [−π, π]. Qualitatively, phase memory is apparent
for those delays T for which the signal varied with φT , i.e., the signal depends on the
“probe” phase with respect to the phase imprinted on the (quantum) system during
excitation with the first pulse.
For the present sample, the delay T was varied in steps of 5 fs and the phase φT

covers the range [−π, π] in 41 steps. Figures 7.15a and 7.15b show the results for two
closely spaced regions of interest within the hot spot, i.e., ROI-3 and ROI-4 in Fig. 7.12,
respectively. The data is normalized to the photoemission measured at T = 0 fs and
φT = 0 rad and is plotted on a color scale ranging from 0 to 0.1. Both plots show peak
structures centered at T = 0 fs, φT = 0 rad that extend to delays T greater than 200 fs.
Without phase memory, the phase-dependent modulation of the photoemission signal
would have vanished for a pulse separation greater than the pulse duration (50 fs). A
tilt of the extended signal with respect to the vertical axis at φT = 0 indicates that the
resonance of the investigated system is shifted with respect to the center frequency of
the excitation pulses. In Fig. 7.15 a tilt to the left (right) indicates a shift to smaller
(larger) frequencies. Note that the plots are periodic along the phase axis (horizontal
axis), i.e., the points (φT = −π rad, T ) and (φT = π rad, T ) are identical.
The signals for the investigated ROIs exhibit strikingly different phase dependences.

Most of the signal from ROI-3 (Fig. 7.15a) shows a tilt to the left that reveals a narrow
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Figure 7.15: Delay–phase scans for ROI-3 (a) and ROI-4 (b) (cf. Fig. 7.12). The shown data
is normalized with respect to the emission at T = 0 fs and φT = 0 rad and then plotted on
a color scale ranging from 0 to 0.1. The vertical dashed lines indicate cuts shown in (c). (c)
Comparison of signals for φT = 0 rad from ROI-3 (blue circles) and ROI-4 (red circles) with
hot spot of ROI-A (Fig. 7.9) on the surface (black squares). The dashed black line indicates
an exponential decay of ∼87 fs fitted to the data of ROI-3 (blue circles) for T > 60 fs. Taken
from Aeschlimann et al. [173]. Copyright (2011) by AAAS.

spread in the phase direction (horizontal axis). However, a small part is extended to
the right and crosses the boundary φT = π at about 75 fs. Destructive interference with
the signal part that extended to the left is observed in the region of (1.75 rad, 100 fs).
Considering the signal from ROI-4 (Fig. 7.15b), no clear tilt is observed. However,
the signal seems to be broadened in the phase direction and again a beating pattern
induced by interference of individual signal parts is observed. This can better be seen
in cuts along the delay at φT = 0 rad (blue and red dashed lines in Figs. 7.15a and
7.15b, respectively). The signals for ROI-3 and ROI-4 are plotted in Fig. 7.15c as
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blue and red circles, respectively, and the signal of the reference hot spot (ROI-B in
Fig. 7.9) is plotted as black squares for comparison. Herein, the signal of ROI-3 decreased
continuously. The first part between 0 and 50 fs of the signal is dominated by the pulse
overlap and a steep slope is observed. However, outside of the pulse-overlap region,
the slope is smaller and a dephasing time of T2 = 87 fs can be fitted to an exponential
decay (dashed black line). The destructive interference that is observed in Fig. 7.15a is
not reflected here since it appears at the vertical cut of φT = −2 rad. For ROI-4 (red
circles) a nonmonotonic behavior of the signal is observed, reflecting the constructive
and destructive interference of different signal parts. The differences between ROI-3
and ROI-4 again demonstrate that spectral features can be resolved that are separated
spatially by less than the wavelength (i.e., from within an individual hot spot). The
coherent beats, i.e., constructive and destructive interference of different signal parts
indicate a local collective response that cannot be modeled by a single resonance and
supports the finding of the four-pulse 2D nanoscopy measurements. Therefore, a model
of different resonant modes is employed in the next section to quantitatively analyze the
delay–phase scans.

7.5 Data Modelling

In this section the modeling procedure used for the simulation and fitting of the 2D
nanoscopy data (Sections 7.4.4 and 7.4.5) is described. Since the investigated photo-
emission of the corrugated silver surface resulting in the observed hot spots was caused
by plasmonic modes the model for plasmon-assisted multiphoton photoemission devel-
oped by Merschdorf et al. [176] is adopted. In this approximation the momentary local
multiphoton photoemission probability PPE(r⃗, t) is proportional to the n-th power of the
local field intensity, i.e., the squared local electric field Eloc(r⃗, t),

PPE(r⃗, t) ∝ [Eloc(r⃗, t)]
2n , (7.67)

with n being the order of nonlinearity of the multiphoton photoemission process. A
description in Liouville space using the density matrix that leads to the same momentary
local multiphoton photoemission probability is given in the Appendix A.2. The local
electric field Eloc(r⃗, t) is given by the convolution of the temporal incident field and the
temporal local response function caused by the plasmonic mode. In frequency space, this
corresponds to a multiplication of the incident electric field Eexc(ω) with the response
function A(r⃗, ω) (Section 3.1.2). Hence, the local electric field can be written as

Eloc(r⃗, t) = F−1 {A(r⃗, ω)Eexc(ω)} . (7.68)

The local photoemission yield YPE(r⃗) is then proportional to the time integral over
the momentary local multiphoton photoemission probability PPE(r⃗, t

′) and is calculated
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Figure 7.16: Schematic of photoemission induced by local optical near fields. The far-field
excitation pulse Eexc(t) excites a metallic nanostructure. The plasmonic excitation leads to
field enhancement as well as a modified temporal evolution of the local optical near field.
Mathematically, the local optical near field Eloc(r⃗, t) is described by a convolution of the
excitation electric field Eexc(t) with the temporal response function A(r⃗, t). The two-photon
photoemission that is considered here from the metallic nanostructure is then induced by the
local optical near field. Since only virtual states with lifetime τ = 0 fs are considered in
the photoemission process, the local field that induce the photoemission have to excite the
nanostructure at the same time. Adapted from Bayer et al. [177].

using Eq. (7.67)

YPE(r⃗) ∝
∞∫

−∞

PPE(r⃗, t)dt

∝
∞∫

−∞

[
F−1 {A(r⃗, ω)Eexc(ω)}

]2n
dt. (7.69)

Since only one polarization is used for excitation, the vectorial properties of the local
response and the electric fields are neglected here for the sake of simplicity. However, it
is straightforward to include these by representing incident field and local response as
vector and tensor, respectively (Section 3.2).
Apart from the mathematical description the local photoemission yield induced by

local near fields is also illustrated in Fig. 7.16. The far-field excitation pulse excites
plasmons in a nanostructure. The local near field is modified with respect to the far-
field excitation due to the linear response function of the nanostructure [Eq. (7.68)].
The local near field then induces electronic transitions which result in photoemission
[Eq. (7.69)]. In Fig. 7.16, two-photon photoemission is indicated assuming a virtual in-
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termediate electronic state. This reflects that the considered model [Eqs. (7.67)–(7.69)]
neglects any details of the multiphoton photoemission process, such as the anisotropic
transition dipoles for photoexcitation in the substrate, the effects of lifetimes of interme-
diate states in the sequential excitation process, and the finite penetration of the incident
light into the substrate. However, since local coherences that are associated with the
local collective response are considered to have the main impact on the observed signal,
Eq. (7.71) captures the essential physics.
In the following a single Lorentzian response function is considered to simulate and

fit the 2D nanoscopy measurements described in Section 7.4.4. In case of the delay–
phase scans (Section 7.4.5) a more sophisticated response function is needed to model
the observed beating pattern.

7.5.1 2D Nanoscopy Scans

The 2D spectra obtained for the scan described in Section 7.4.4 are simulated by using the
excitation field Eexc

QS of the quadruple pulse sequence that can be derived from Eq. (7.61)
as

Eexc
QS (ω, τ, T, t, φτ , φt) = E0(ω)M

(4)
LCD (ω, τ, T, t, φτ , φT = 0, φt) . (7.70)

Herein, E0(ω) is the measured complex-valued spectral electric field shown in Fig. 7.8.
Using the electric field defined in Eq. (7.70), the local photoemission yield is expressed
by

YPE (r⃗, τ, T, t, φτ , φt) ∝
∞∫

−∞

[
F−1

{
A(r⃗, ω)Eexc

QS (ω, τ, T, t, φτ , φt)
}]2n

dt′, (7.71)

where the inverse Fourier transformation F−1 transforms ω into t′.
Since in the 2D nanospectra obtained in Section 7.4.4 a single resonance is observed

that is assumed to be caused by corrugations on the silver surface acting as resonant
nanoantennas, a single Lorentzian oscillator is used to simulate the measured 2D spectra.
Hence, the local response function is described by

A(r, ω) =
1

ω2
L − ω2 + i2γL(r)ω

, (7.72)

where ωL represents the resonance frequency, and γL the corresponding damping pa-
rameter that is related to the dephasing time T2 = 1/γL introduced in Section 3.1.2. To
calculate two dimensional spectra the simulated local photoemission yield [Eq. (7.71)] is
Fourier transformed with respect to τ and t

YPE (r, ωτ , T, ωt) = F {F {YPE(r, τ, T, t)}} . (7.73)

Herein, YPE(r, τ, T, t) represents the four-step phase-cycled time-dependent photoemission
yield [Eq. (7.50)].
Analysis of the measured two-dimensional spectra is carried out by minimizing the

deviations of the simulated 2D spectra [Eq. (7.73)] with respect to the measured 2D
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spectra in terms of a least square fit. Therefore, the resonance frequency ωL is set
to the center frequency ω0 = 2.36 rad/fs of the exciting laser spectrum. The order of
nonlinearity is set n = 4. All parameters of the excitation field [Eq. (7.70)] are scanned
according to the measured data: the delays τ and t cover the range [0 fs, 280 fs] in steps
of 4 fs, the phases φτ and φt are modulated according to Eq. 7.63 for the phase cycling
process, and the delay T and the corresponding phase φT are kept constant at 0 fs and
0 rad, respectively. The position dependent damping parameter γL(r⃗) is then fitted for
each location separately.

As an example, the 2D spectra of the reference hot spot ROI-A in Fig. 7.9 is fitted. The
result is displayed in Fig. 7.17. The 2D nanospectrum for the reference hot spot was
measured analogously to the measurement described in Section 7.4.4 and is averaged
over the complete hot spot ROI-A. As can be observed from Figs. 7.17a and 7.17b,
the measured 2D nanospectrum is much broader than the 2D nanospectra of ROI-B
(Fig. 7.14). As can be inferred by comparing the measured and simulated spectrum, a
good agreement is achieved. However, small deviations are observed in the antidiagonal
width (i.e., from left upper to the right lower corner): the measured data is broader than
the simulated data. The fit yields a damping parameter of γ(ROI-A) = 1.258 rad/fs,
which corresponds to a dephasing time T2 < 1 fs. However, this short lifetime is only
approximate due to the 50 fs laser pulse duration, and is provided mainly for comparison.

Fitting of the 2D nanospectra of ROI-1 and ROI-2 shown in Fig. 7.14 results in damp-
ing parameters of γ(ROI-1) = 0.023± 0.003 rad/fs and γ(ROI-2) = 0.012± 0.001 rad/fs,
corresponding to coherence lifetimes of 43 fs and 84 fs, respectively. The errors for γL(r⃗)
are the confidence intervals obtained using the Jacobian of the fit function. Hence, a
significant difference of the lifetimes of a factor of two between the two ROIs that are
separated by only 228 nm can be determined with the presented technique.

For a further comparison of the measured and fitted data the diagonal and antidiagonal
cuts of the measured and simulated real-part 2D spectra are shown in Fig. 7.18a and
Fig. 7.18b, respectively. Diagonal cut is the data of the 2D spectrum, e.g., as shown in
Fig. 7.17a, along the cut from the lower left to the upper right corner. The red crosses and
blue circles indicate the cuts along the data shown in Figs. 7.14a and 7.14c, respectively.
The lines show cuts through the associated simulated data. Good agreement is observed,
where the antidiagonal cuts show small deviations again. Hence, the model of a single
damped oscillator seems to explain the observed 2D spectra. The small deviations
that are observed might be due to two different effects. On the one hand, details of
the multiphoton photoemission process such as the lifetime of intermediate states are
neglected in the applied model. On the other hand, the plasmonic excitation is described
here by a single damped oscillator model that excludes coupling to other plasmonic
modes. Such a coupling would result in more complex response functions including
additional damping parameters.

Apart from these two exemplary locations within the hot spot ROI-B, 2D spectra
are calculated and fitted for each simultaneously recorded spatial location separately.
For this purpose, always four pixels of the hot spot shown in Fig. 7.12 are binned to
reduce the calculation time, yielding a resolution of (36 nm)2. The resulting spatial map
is displayed in Fig. 7.19 and indicates the local dephasing times T2 for the complete
hot-spot region. The contour lines reflect the photoemission yield for a single pulse
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Figure 7.17: Comparison of measured (upper panels) and simulated (lower panels) 2D spectra
at T = 0 fs. According to the illustrations of Fig. 7.14 the spectra are shown as a function of
detuning from the center frequency ω0 of the laser spectrum (Fig. 7.8) and the axis ωτ and
ωt are plotted from −0.188 to 0.188 rad/fs. Taken from Aeschlimann et al. [173]. Copyright
(2011) by AAAS.

(Fig. 7.12) and are given for comparison. Note that areas with particularly long local
coherence lifetimes do not exactly coincide with the highest photoemission yield, i.e.,
the contour-plot maximum. A separation of ∼100 nm between the point of highest
emission and the longest lifetimes in its vicinity was determined. Note that all spatial
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Figure 7.18: Diagonal (a) and antidiagonal cut (b) of the 2D real parts of ROI-1 (red) and
ROI-2 (blue) illustrated in Figs. 7.14a and 7.14b, respectively. The measured data (symbols)
is compared to the simulated data (lines) calculated with the fitted damping parameters of
γ(ROI-1) = 0.023 rad/fs and γ(ROI-2) = 0.012 rad/fs. Taken from Aeschlimann et al. [173].
Copyright (2011) by AAAS.

positions were recorded simultaneously under identical experimental conditions, so that
line shape comparisons reflect true differences in sample response. The ROIs 1–3 are
indicated for comparison. The strong difference between ROI-1 and ROI-2 can again be
observed by the blue and red color, respectively. The dephasing time of ROI-3 is found
by averaging the dephasing times of the corresponding pixels and results in a dephasing
time of T2 = 80 fs. This number is in quantitative agreement with the dephasing time
of T2 = 87 fs that was fitted to the φT = 0 rad cut of the delay–phase scan shown in
Fig. 7.15c.

The 50 nm resolution that was proposed in Section 7.4.3 is confirmed by the variations
of 2D-nanoscopy-derived dephasing times, i.e., the dephasing time varies on a length
scale of a few tens of nanometers. Hence, the subdiffraction “resolution” is visible
qualitatively also for the corrugated silver surface. However, “resolution” in the context
of such derived quantities is not and should not be defined quantitatively because the
contrast mechanisms are complicated and reflect the physics of the system convoluted
with the resolution of the method, rather than the resolution of the method alone.

A line cut along the dashed line in Fig. 7.19 is displayed as a blue line in Fig. 7.20.
Strong variations of the dephasing time are observed in the region from 100 nm to 300 nm
in this plot. In the other parts, smaller variations are observed showing values from about
50 fs to 90 fs. For comparison the dephasing time that is determined for the hot spot of
ROI-A (green line) and the dephasing times for resonant localized plasmons from the
literature [92, 146, 147] (red shaded) are indicated. Hence, the detected dephasing times
are up to 10 times the dephasing times expected for resonant localized plasmonic modes.
To explain these long dephasing times a model of coupled oscillators is used below to
simulate the beating pattern observed for the delay–phase scan (Section 7.4.5).
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Figure 7.19: Dephasing-time map of the hot spot shown in Fig. 7.12. The map indicates the
dephasing times T2(r⃗) = 1/γ(r⃗) (false colors) for the complete hot spot (photoemission yield
in black contour lines). Each pixel that is shown in the dephasing-time map contains a spatial
region of (36 nm)2, i.e., always four of the pixels shown in Fig. 7.12 are binned. The white and
black rectangles mark the locations of ROIs 1–3 and the dashed line indicates the cut shown
in Fig. 7.20. Taken from Aeschlimann et al. [173]. Copyright (2011) by AAAS.
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Copyright (2011) by AAAS.

7.5.2 Delay–Phase Scans

The modeling procedure used for the two-pulse 2D nanoscopy scans shown in Section
7.4.5 is described here. For this purpose, the delay times τ and t as well as the phases
φτ and φt of the general scheme are set to zero. Thus only two pulses with variable
delay T and phase difference φT interact with the surface. The resulting double-pulse
excitation field Eexc

DS is derived from Eq. (7.60) as

Eexc
DS (ω, T, φT ) = |E0(ω)|

1

2

{
1 + ei[(ω−ω0)T−φT ]

}
, (7.74)
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where E0(ω) is the spectral amplitude of the used laser pulse (Fig. 7.8). To model the
delay–phase scans the delay T and the phase φT are varied according to the experiments
described in Section 7.4.5, i.e., T is varied in steps of 5 fs and φT covers the range [−π, π]
in 41 steps. The local photoemission yield is then calculated analogously to Section 7.5.1

YPE(r⃗, T, φT ) ∝
∞∫

−∞

[
F−1 {A(r⃗, ω)Eexc

DS (ω, T, φT )}
]2n

dt′, (7.75)

where the inverse Fourier transform F−1 again transforms ω into t′.
To account for the long dephasing times determined in the modelling of the 2D

nanospectra (Section 7.5.1) and observed in the delay–phase scan (Section 7.4.5) a cou-
pling of strongly damped localized plasmonic modes to dark modes is assumed in the
following. The strongly damped plasmonic modes arise from corrugations on the silver
surface acting as resonant nanoantennas. These modes couple strongly to the incident
light, i.e., they act as a bright mode, and exhibit a large spatial overlap with the bulk
material. Both effects lead to a strong damping and result in typical dephasing times
on the order of ∼10 fs [92, 146, 147]. Hence, these modes alone cannot account for the
long coherence lifetime and its spatial variation (Figs. 7.19 and 7.15). In contrast to
short-lived localized plasmon modes, the surface plasmon polariton mode on a planar
silver surface exhibits a coherence lifetime of ∼200 fs for an 800 nm excitation wave-
length, as estimated from the dielectric function of silver [178] and the surface plasmon
polariton resonance condition [77]. Surface plasmon polaritons neither couple directly
to the far field nor have large overlap with bulk electronic states (Section 3.1.1), hence
they have a rather long dephasing time. However, because of the vanishing interaction
with transverse radiation fields (i.e., incident light), it is denoted as a dark mode and
thus, on its own, cannot explain the observations of Figs. 7.19 and 7.15.
The properties of the fitting model are illustrated as a schematic in Fig. 7.21. The

exciting electric field Eexc (orange) couples strongly to two bright modes (blue and
red) that exhibit a large spatial overlap with the silver surface (gray). In the fitting
process these two bright modes will be associated with ROI-3 and ROI-4. The bright
modes are strongly localized and do not couple to each other. However, each bright
mode couples to the dark mode (green) due to their spatial overlap. The dark mode
has a large spatial spread, i.e., is delocalized, and has a small overlap with the silver
surface. Hence, both bright modes couple to the same dark mode. Since the strength
of the photoemission (green dashed arrows) is mainly determined by the spatial overlap
of the electric field with the metal, the photoemission is dominated by the two bright
modes. However, hybridization causes the response function of the bright mode to adopt
characteristics of the dark mode—it strongly interacts with the incident radiation, and
electronic excitations in the metal will exhibit spectral features that correspond to a
much longer coherence lifetime, as would be expected for an uncoupled bright mode.
Hence, by fitting the photoemission the characteristics of bright and dark mode are
determined.
The local response function A(r⃗, ω) is then obtained from a model of two coupled

oscillators. As motivated above, one of the oscillators interacts strongly with the incident
radiation and is in the following denoted as a bright mode (BM), whereas the other
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Figure 7.21: Excitation scheme of the corrugated silver surface. The incident wave E⃗exc(r⃗, t)
(orange) excites localized surface plasmon modes E⃗BM

1 (r⃗, ω) (blue) and E⃗BM
2 (r⃗, ω) (red) that

are coupled to a weakly damped delocalized dark mode E⃗DM(r⃗, ω) (green). Due to the larger
overlap of the bright modes and the metallic surface with respect to the overlap of the dark
mode and the metal, the local photoemission yield YPE(r⃗) is dominated by the bright modes.
Taken from Aeschlimann et al. [173]. Copyright (2011) by AAAS.

oscillator couples only weakly to the far-field radiation and is therefore denoted as a
dark mode (DM). A mathematical expression for the local response function is derived
following the procedure outlined by Zhang et al. [179]. The dynamics of the coupled
oscillators is described by the differential equations

∂2EBM(r⃗, t)

∂t2
+ 2γBM∂E

BM(r⃗, t)

∂t
+ ω2

0,BME
BM(r⃗, t)− κ

[
EBM(r⃗, t)− EDM(r⃗, t)

]
= gE0(t)

∂2EDM(r⃗, t)

∂t2
+ 2γDM∂E

DM(r⃗, t)

∂t
+ ω2

0,DME
DM(r⃗, t)− κ

[
EDM(r⃗, t)− EBM(r⃗, t)

]
= 0,

(7.76)

where ω2
0,i (i = BM,DM, for dark and bright mode, respectively) represents the local

restoring force and γi the corresponding damping parameter that is related to the de-
phasing time T2 = 1/γ. The parameter κ determines the effective coupling strength of
the two modes and g is the coupling constant of the incoming light with the bright mode.
Thus, the fields of the localized surface plasmon mode EBM(r⃗, t) and the delocalized dark
mode EDM(r⃗, t) are coupled linearly via κ. The present qualitative model neglects effects
arising from different “masses” of the two oscillators, i.e., the model assumes that the
“forces” exerted by one mode on the other mode leads in both coupling directions to
the same field “displacements”. Hence, on the present level of modeling the coupling of
two bright modes via the dark mode is neglected. As is derived in Appendix A.3, the
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local response functions for dark and bright modes are given by

ABM(r⃗, ω) =
−ω2 + i2ωγDM + ω2

0,DM − κ(
ω2
0,BM − ω2 + i2ωγBM − κ

) (
ω2
0,DM − ω2 + i2ωγDM − κ

)
− κ2

(7.77)

ADM(r⃗, ω) =
−κ(

ω2
0,BM − ω2 + i2ωγBM − κ

) (
ω2
0,DM − ω2 + i2ωγDM − κ

)
− κ2

(7.78)

Note that these response functions are already hybridized modes that describe the cou-
pled system, i.e., each response function contains parameters of bright and dark mode.
As can be inferred, the properties of the response functions are mainly affected by the
center frequencies ω0 of the two modes, as well as the damping factors γ and the coupling
constant κ. The coupling strength g between the light and localized plasmons effectively
changes the oscillator strength but does not influence the shape of the spectral intensity
or the phase and hence is not considered in the fitting process. For the calculation of
local photoemission yield, the response function of the hybridized bright mode ABM(r⃗, ω)
is then inserted into Eq. (7.75).

The fit parameters for the delay–phase scans are obtained by simultaneously fitting
the signals from both ROIs in an iterative scheme. Since the interesting effects of the
delay–phase scans, i.e., long-lived coherences, were observed for times T ≥ 60 fs the fits
are performed in a least-square sense including only photoemission signals for T ≥ 60 fs.
The bright modes EBM(ROI-3, t) and EBM(ROI-4, t) are fitted to the photoemission pat-
terns observed for ROI-3 (Fig. 7.15a) and ROI-4 (Fig. 7.15b), respectively. Although
the bright modes are independent from each other, i.e., they do not couple to each other,
both bright modes couple to the same dark mode EDM(r⃗, t). Hence, first the response
function of the bright mode ABM(ROI-3, ω) is fitted to the delay–phase scan observed
for ROI-3 (Fig. 7.15a). This response function also contains the parameter of the dark
mode. In the next step the response function of the bright mode ABM(ROI-4, ω) is fit-
ted to ROI-4 starting with the dark mode parameters determined via ABM(ROI-3, ω) in
the first step. Then again, ABM(ROI-3, ω) is fitted, starting with the newly determined
dark mode parameters that were obtained via EBM

2 (ROI-4, t). This iterative fitting
process is performed until convergence. A good convergence of the fit procedure is ob-
tained for dark modes characterized by ω0,DM = 2.38 rad/fs, γDM = 0.0043 rad/fs. The
corresponding bright-mode parameters for ROI-3 and ROI-4 are ω0,BM1 = 2.28 rad/fs,
γBM1 = 0.02 rad/fs and ω0,BM2 = 2.41 rad/fs, γBM2 = 0.01 rad/fs, respectively. The cou-
pling parameter κ for the two modes dominating the emission from ROI-3 and ROI-4
is 0.11 rad/fs and 0.06 rad/fs, respectively. The resulting simulated delay–phase scans
are shown in Figs. 7.22a and 7.22b. Good agreement between measured (Figs. 7.15a
and 7.15b) and simulated data (Figs. 7.22a and 7.22b) is achieved. The tail with strong
photoemission tilted to the left that is observed in Fig. 7.15a is nicely reproduced in the
simulated data shown in Fig. 7.22a. Also, a small part of the signal evolves to the right.
However, no beating pattern in terms of constructive and destructive is obtained here.
The simulated data for ROI-4 (Fig. 7.22b) shows a strong beating that is also present in
the measured data, but not as pronounced. The corresponding hybridized response func-
tions ABM(ROI-3, ω) (blue) and ABM(ROI-4, ω) (red) are displayed in Fig. 7.22c. Hence,
the hot spot (Fig. 7.12) actually consisted of two bright modes EBM

1 and EBM
2 that were
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Figure 7.22: Simulated photoemission yield (a) fitted to the measured data shown in
Figs. 7.15a and (b) 7.15b. The data is simulated using the bright-mode response function
defined in Eq. 7.77. (c) The derived response functions of the two hybridized modes E⃗BM

1 (r⃗, ω)
(blue) and E⃗BM

2 (r⃗, ω) (red) are shown together with vertical shaded bars indicating the spec-
tral positions of the uncoupled oscillators and the dark mode (gray bar). The excitation laser
spectrum is indicated as shaded area. Taken from Aeschlimann et al. [173]. Copyright (2011)
by AAAS.

slightly detuned from the dark mode EDM to higher and lower frequencies, respectively.
The qualitative trend for the linewidth contrast between dark and bright mode is well
reflected in the optimized model parameters. The somewhat smaller contrast in com-
parison to the contrast expected for localized surface plasmon modes interacting with a
surface plasmon polariton is attributed to the fact that the actual resonance position of
the bright modes is in the wings of the driving laser spectrum and thus their spectral
position and linewidth can only be determined with large uncertainties.
It is important to point out that similar good agreement between measurements and
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simulated spectra is achieved either for two independent dark modes coupling to the
different bright modes or one individual dark mode interacting with both bright modes
simultaneously. However, the latter model reduces the number of free parameters and
thus represents a better test for the applied model.

These results indicate that the observed long-lived coherence in hot-spot multiphoton
photoemission can indeed be attributed to the coupling between bright localized plasmon
modes and a dark surface plasmon polariton mode. Interestingly, the coupling between
bright and dark modes led to Fano-like resonances in the vicinity of the resonance of
the dark mode. The mirror-like behavior of this spectral feature for one versus the
other bright mode was responsible for the striking differences in the signals shown in
Figs. 7.15a and 7.15b, and the variations in Fig. 7.19. Subtleties of the overlap of these
spectral features with the excitation spectrum, such as the exact spectral position and
the “sharpness” of the Fano-like resonance, determined the observed beating behavior.
This sensitivity of the model parameters for the two ROIs showed that the local response
significantly varies on a 100 nm length scale, as is also seen for the dephasing time
measured by 2D nanoscopy.

7.6 Conclusion and Outlook

In this chapter, coherent two-dimensional (2D) nanoscopy was developed as a combina-
tion of 2D spectroscopy and photoelectron emission microscopy. This technique carries
the principle of nonlinear techniques from an ensemble measurement to the nanome-
ter length scale and spatially localized few emitters. Thus one can map out nonlinear
response functions in time/frequency as well as real space. 2D nanoscopy can also be
considered a generalization of time-resolved two-photon photoemission and it may be
of similar beneficial value for the field of photoemission research as it has proven to
be for optical spectroscopy and NMR. Measurement of local decoherence is relevant
for applications and devices for which keeping phase coherence is essential, and the
method can be used to study the suitability of potential materials. Applications are also
envisaged for nonlinear spectroscopy of nanostructures or “artificial molecules” on sur-
faces, nanophotonic circuits, photovoltaic devices, coupled quantum wells, and others.
Sample preparation requirements (ultra-high vacuum) are analogous to those of conven-
tional photoemission suggesting broad applicability. It should hence also be possible,
for example, to study coherences with spatial resolution in self-organized molecular ag-
gregates on surfaces. In general any spatially inhomogeneous or nanostructured system
offers an interesting playground to observe processes of spatialtemporal correlations of
electronic coherences and populations. It should thus become possible in the future to
study a broad range of fascinating quantum phenomena not accessible otherwise, such
as nanoscopic coherences, transport and entanglement with direct space-time resolution,
nonlocal phase correlations, and others.

First experimental realization of the developed technique was provided with a corru-
gated silver surface. In Chapter 6 the same sample was investigated in terms of near-field
control using polarization shaped pulses. Due to the long duration of the optimal pulses,
long-lived coherence were expected to be present on the silver surface. In this chapter,
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these long-lived coherences could be attributed to coupled plasmonic modes. Short-lived
local resonant modes that strongly overlap with the metal and hence are responsible for
photoemission were found to be coupled to dark propagating plasmon polariton modes
with dephasing times on the order of several hundreds of femtoseconds. The coupling
between bright and dark modes led to sharp Fano-like resonances. Due to the high
spatial resolution of the presented technique, different bright modes within the same hot
spot could be distinguished.
2D nanoscopy may be generalized in different ways. Using polarization pulse shaping

(Section 2.3), one could map out the tensor character of the nonlinear response by
selecting the appropriate polarization directions of the excitation subpulses. Indeed, the
pulse shapes themselves could be varied, allowing combination of 2D nanoscopy with
coherent control techniques. Higher-order processes and N>3-level systems could be
investigated with pulse trains consisting of more than four pulses. Extension to short
wavelengths [170, 180] should be possible. 2D nanoscopy as presented here is still limited
by diffraction in its excitation. Hence, a combination of the technique with ultrashort
nanoscopic excitation schemes using near-field control as described in Chapters 4 and
5, might enable coherent control on the nanoscale in complex quantum systems and
provide insight in energy transfer in, e.g., light-harvesting systems.
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Time-resolved optical spectroscopy has become an important tool to investigate the
dynamics of quantum mechanical processes in matter. In typical applications, a first
“pump” pulse excites the system under investigation from the thermal equilibrium to an
excited state, and a second variable time-delayed “probe” pulse then maps the dynam-
ics of the excited system. The characteristic dynamics of excited systems, e.g., nuclear
motion in molecules or relaxation of charge carriers in solids, occur on the order of
femtoseconds. Experiments that investigate such processes require laser pulses with du-
rations on this timescale, which have become commonly accessible in the last decades.
Although advanced nonlinear techniques have been developed to investigate, e.g., co-
herent quantum effects, all of these techniques are limited in their spatial resolution.
The laser focus diameter has a lower bound given by Abbe’s diffraction limit, which is
roughly half the optical excitation wavelength—corresponding to about 400 nm in the
presented experiments. In the time-resolved experiments that have been suggested so
far, averaging over the sample volume within this focus cannot be avoided. Even though
single molecule experiments have been realized by combination of tight focusing and low
molecule density, the spatial resolution in these experiments is still diffraction limited.

In this thesis, two approaches were developed to overcome the diffraction limit in opti-
cal spectroscopy and to enable the investigation of coherent processes on the nanoscale.
In the first approach, analytic solutions were found to calculate optimal polarization-
shaped laser pulses that provide optical near-field pump–probe pulse sequences in the
vicinity of a nanostructure. These near-field pulse sequences were designed to allow
excitation of a quantum system at one specific position at a certain time and probing
at a different position at a later time. In the second approach, the concept of coherent
two-dimensional (2D) spectroscopy, which has had great impact on the investigation
of coherent quantum effects in recent years, was combined with photoemission electron
microscopy, which yields a spatial resolution well below the optical diffraction limit.

Using the analytic solutions, optical near fields were investigated in terms of spectro-
scopic applications. Near fields that are excited with polarization-shaped femtosecond
laser pulses in the vicinity of appropriate nanostructures feature two properties that are
especially interesting in the view of spectroscopic applications: On the one hand, control
of the spatial distribution of the optical fields is achieved on the order of nanometers.
On the other hand, the temporal evolution of these fields can be adjusted on the order of
femtoseconds. In this thesis, solutions were found to calculate the optimal polarization-
shaped laser pulses that control the near field in a general manner. The main idea to
achieve this deterministic control was to disentangle the spatial and temporal near-field
control. First, the spatial distribution of the optical near field was controlled by assigning
the correct state of polarization for each frequency within the polarization-shaped laser
pulse independently. The control mechanism for the spatial near-field distribution is the

Philip Tuchscherer: A Route to Optical Spectroscopy on the Nanoscale (Diss. Univ. Würzburg, 2012)



164 Summary and Outlook

constructive or destructive interference of two near-field modes that are excited with
the two independent far-field polarization components. Therefore, the relative phases
between the polarization components found for two optimizations with opposite goals,
e.g., maximization and minimization of the near field intensity at a certain position,
differed by π. The remaining total phase—not employed for spatial control—was then
used for temporal near-field compression, which, in experimental applications, would
lead to an enhancement of the nonlinear signal at the respective location.

In a collaboration with Javier Garćıa de Abajo and Walter Pfeiffer the analytic solu-
tions were used in simulations to guide electromagnetic energy in a branching T-chain of
nanospheres. Switching of the propagating near fields was achieved by either maximiz-
ing or minimizing the difference between the linear signals at the ends of the two arms.
The temporal compression at the desired positions was then gained by compensating the
dispersion of the T-chain. The obtained optimal polarization-shaped laser pulses were
compared to adaptive optimizations and the agreement of the analytic solutions with the
ones found adaptively was impressive, since two different observables were compared:
The analytic results were obtained by first guiding the linear flux to a desired position
and then compressing the temporal evolution of the near-field at that position using the
remaining degree of freedom. The adaptive results were found by directly optimizing
the difference of the nonlinear signals. Possible applications of the analytic results in
the branching T-chain are the control in logic elements used in plasmonic circuits. On
top of that, the derived rules enable optimal design of nanostructures for spectroscopic
or plasmonic applications.

The importance of the analytic solutions in terms of spectroscopic applications was
then illustrated by generating near-field pump–probe pulse sequences that enable space–
time resolved excitation on nanometer and femtosecond scale, respectively. The advan-
tage with respect to pulse sequences found by adaptive optimizations is that the ana-
lytically derived formulas provide a direct handle to pulse sequence parameters, such as
delays or relative phases, which are scanned in spectroscopic applications. Contrarily,
without using the analytic solutions, the pulse shapes would have to be found for each
parameter step in a separate time-consuming adaptive optimization. Hence, the derived
solutions simplify and expedite the realization of future spectroscopic applications using
optical near fields.

Experimental implementation of the analytic rules for the spatial control of near fields
was achieved in a collaboration with the groups of Martin Aeschlimann and Walter Pfeif-
fer. The near-field distribution in gold nanoprisms was investigated with a photoemission
electron microscope. Near-field control was first achieved adaptively by localization of
the near-field at one corner of a nanosprism with respect to another corner. Then,
the analytic rule for switching was employed by adding a π phase to one polarization
component of the adaptively optimized laser pulse. This resulted in a change of the ex-
citation polarization and deterministic near-field switching from one corner to the other
was achieved. As in the simulations, the deterministic optimal pulses were compared
to adaptively optimized pulses and good agreement was found. The results confirm the
theoretically derived optimal solutions and verify the interference of different near-field
modes as the control mechanism in gold nanoprisms.

In contrast to the use of optical near fields, where pump–probe sequences themselves
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are localized below the diffraction limit and the detection does not have to provide the
spatial resolution, a different approach was suggested in this thesis to gain spectroscopic
information on the nanoscale. The new method was termed “Coherent two-dimensional
(2D) nanoscopy” and transfers the concept of “conventional” coherent 2D spectroscopy
to photoemission electron microscopy. The pulse sequences used for the investigation
of quantum systems in this method are still limited by diffraction. However, the new
key concept is to detect locally generated photoelectrons instead of optical signals. This
yields a spatial resolution that is well below the optical diffraction limit. In “conven-
tional” 2D spectroscopy a triple-pulse sequence initiates a four wave mixing process that
creates a coherence. In a quantum mechanical process, this coherence is converted into a
population by emission of an electric field, which is measured in the experiment. Contrar-
ily, in the developed 2D nanoscopy, four-wave mixing is initiated by a quadruple-pulse
sequence, which leaves the quantum system in an electronic population. This electronic
population carries coherent information about the investigated quantum system and can
be mapped with a spatial resolution down to a few nanometers given by the spatial reso-
lution of the photoemission electron microscope. Hence, 2D nanoscopy can be considered
a generalization of time-resolved photoemission experiments. In the future, it may be
of similar beneficial value for the field of photoemission research as “conventional” 2D
spectroscopy has proven to be for optical spectroscopy and nuclear magnetic resonance
experiments.

First experimental implementation of coherent 2D nanoscopy was realized in a collabo-
ration with the groups of Martin Aeschlimann and Walter Pfeiffer. In these experiments,
coherent processes on a corrugated silver surface were measured. In a preceding coherent
control experiment, which was also presented in this thesis, the application of near-field
control to surface-enhanced Raman spectroscopy was investigated. For that purpose, the
electron yield from several photoemission hot spots, i.e., locations with enhanced photo-
emission, were adaptively optimized and durations of several hundreds of femtoseconds
were found for the optimal laser pulses. These pulse durations strongly indicated un-
expected long-lived coherences on the surface. Using 2D nanoscopy, these observations
were further analyzed and 2D nanospectra were recorded with a spatial resolution of
about 50 nm. The 2D nanospectra were then modelled by using single Lorentzian os-
cillators and dephasing times between 40 fs and 100 fs were fitted for a region of about
1µm2. Interestingly, dephasing times were observed that differed by a factor of two for
spatial regions separated by only 230 nm. By performing a special case of 2D nanoscopy,
where the temporal separation as well as the relative phase between two pulses was
scanned, the unexpected long-lived coherences could be attributed to two different lo-
calized plasmonic modes that were coupled to the same propagating plasmon polariton
mode. In the example presented here, the coherent effects observed on the corrugated
silver surface were discussed in terms of a classical model. However, 2D nanoscopy
should also enable the investigation of a broad range of fascinating quantum phenomena
not accessible otherwise. In the future, the technique might be generalized by employing
pulse sequences featuring different polarizations to map out tensor characteristics of the
investigated sample.

The presented approaches transfer the principle of time-resolved spectroscopic tech-
niques from an ensemble measurement to the nanometer length scale and spatially local-
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ized few emitters. In the future, these advances can enable a wide range of space–time
resolved spectroscopy. Applications might be nonlinear spectroscopy of arbitrary nanos-
tructured samples, such as nanophotonic circuits, photovoltaic devices, coupled quantum
wells or molecular aggregates. In such experiments, direct mapping of spatial coupling
and transfer would be possible. New insights of the energy transfer in light harvest-
ing complexes might be obtained that can improve the efficiency of solar cells. Even
though the two approaches discussed in this thesis are very powerful in themselves, a
combination of near-field excitation with coherent 2D nanoscopy can facilitate not only
investigation of coherent quantum processes but also control of such processes on the
nanoscale.
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Zusammenfassung und Ausblick

Zur Untersuchung von Dynamiken quantenmechanischer Prozesse in Materie hat sich
die zeitaufgelöste optische Spektroskopie zu einem zentralen Werkzeug entwickelt. Eine
Standardmethode ist hierbei die Anrege-Abfrage-Spektroskopie. Bei solch einem Ex-
periment wird das zu untersuchende System zunächst mit einem Anregepuls aus dem
thermischen Gleichgewicht in einen höheren Zustand angeregt. Anschließend untersucht
man mit einem zweiten zeitverzögerten Abfragepuls die Dynamik des angeregten Sy-
stems. Bei der Untersuchung von z.B. Kernbewegungen in Molekülen oder Relaxation
von Ladungsträgern in Festkörpern ereignen sich solche Dynamiken auf der Femtosekun-
den Zeitskala. Die Untersuchung solcher Prozesse erfordert dementsprechend auch Laser-
pulsdauern auf dieser Zeitskala, welche in den letzten Jahrzehnten allgemein zugänglich
geworden sind. Obwohl fortgeschrittene experimentelle Methoden entwickelt wurden um
kohärente Quanteneffekte zu untersuchen, sind all diese Experimente nach wie vor in
ihrer räumlichen Auflösung begrenzt. Aufgrund von Beugung ist der Fokus eines Laser-
strahls limitiert. Diese untere Grenze ist durch Abbe’s Auflösungsgrenze gegeben und
entspricht etwa der Hälfte der optischen Anregungswellenlänge, d.h. etwa 400 nm in
den hier vorgestellten Experimenten. Daher kann eine Mittelung über das Probenvo-
lumen, gegeben durch die Fokusgröße, in den bisher vorgestellten Experimenten nicht
vermieden werden. Obwohl Untersuchungen von Einzelmolekülen durch Kombination
von harter Fokussierung und geringer Moleküldichte realisiert werden konnten, ist die
räumliche Auflösung in diesen Experimenten immer noch beugungsbegrenzt.

In dieser Arbeit wurden zwei Ansätze verfolgt, um die Beugungsgrenze in der opti-
schen Spektroskopie zu überwinden und die Untersuchung von kohärenten Prozessen auf
der Nanometerskala zu ermöglichen. Im ersten Ansatz wurden analytische Lösungen ge-
funden, um optimal polarisationsgeformte Laserpulse zu berechnen, die optische Anrege-
Abfrage-Nahfeld-Pulsfolgen in der Nähe einer Nanostruktur ermöglichen. Diese Nahfeld-
Pulsfolgen wurden entwickelt, um ein quantenmechanisches System an einer bestimm-
ten Position zu einem bestimmten Zeitpunkt anzuregen und an einer anderen Position
zu einem späteren Zeitpunkt abzufragen. Im zweiten Ansatz wurde das Konzept der
kohärenten zweidimensionalen (2D) Spektroskopie, die in den letzten Jahren großen Ein-
fluss auf die Untersuchung von kohärenten Quanteneffekten gehabt hat, mit Photoelek-
tronenmikroskopie kombiniert. Letztere ermöglicht eine räumliche Auflösung deutlich
unter der optischen Auflösungsgrenze.

Mit Hilfe der analytischen Lösungen wurden optische Nahfelder in Bezug auf spek-
troskopische Anwendungen untersucht. Nahfelder, die mit polarisationsgeformten Fem-
tosekunden-Laserpulsen in der Nähe von entsprechenden Nanostrukturen angeregt wer-
den, verfügen über zwei Eigenschaften, die besonders interessant für spektroskopische
Anwendungen sind: Zum einen kann die räumliche Verteilung der optischen Felder auf
der Größenordnung von Nanometern kontrolliert werden. Zum anderen kann die zeit-
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liche Entwicklung dieser Felder in der Größenordnung von Femtosekunden manipuliert
werden. In dieser Arbeit wurden Lösungen gefunden, um optimale polarisationsgeform-
te Laserpulse zu berechnen, die diese Nahfeld-Steuerung in einer allgemeinen Art und
Weise erlauben. Die Hauptidee, um diese deterministische Steuerung zu erreichen, war
die räumliche und zeitliche Nahfeld-Kontrolle zu entkoppeln. Zuerst wurde dafür die
räumliche Verteilung der optischen Nahfelder durch die Zuordnung des korrekten Pola-
risationszustandes für jede Frequenz, innerhalb des polarisationsgeformten Laserpulses,
unabhängig gesteuert. Der Kontrollmechanismus für die räumliche Nahfeld-Verteilung
ist die konstruktive bzw. destruktive Interferenz von zwei Nahfeldmoden, die mit den
zwei unabhängigen Fernfeld-Polarisationskomponenten angeregt werden. Daher wurde
herausgefunden, dass sich die relativen Phasen zwischen den beiden Polarisationskom-
ponenten für zwei Optimierungen mit gegenteiligen Zielen, z.B. Maximierung und Mi-
nimierung der Nahfeld-Intensität an einer bestimmten Position, um π unterscheiden.
Die verbleibende totale Phase, die nicht für die räumliche Kontrolle benötigt wird, wur-
de dann verwendet um den nichtlinearen Fluss an den gewünschten Positionen durch
zeitliche Nahfeldkomprimierung zu erhöhen.

In Zusammenarbeit mit Javier Garćıa de Abajo und Walter Pfeiffer wurden die ana-
lytischen Lösungen in Simulationen verwendet, um die Ausbreitung von Nahfeldern in
einer verzweigten T-Kette bestehend aus Nanokugeln zu steuern. Durch entweder Maxi-
mierung oder Minimierung der Differenz der linearen Signale an den Enden der beiden
Arme wurde Schalten der sich ausbreitenden Nahfelder erzielt. Die zeitliche Kompri-
mierung an den gewünschten Positionen wurde dann durch die Kompensation der Di-
spersion der T-Kette erzielt. Die so gefundenen polarisationsgeformten Laserpulse wur-
den dann mit adaptiven Optimierungen verglichen. Die Übereinstimmung der analyti-
schen Lösungen mit den adaptiv gefundenen war bemerkenswert, da zwei unterschiedli-
che Messgrößen optimiert wurden. Die analytischen Ergebnisse wurden erhalten, indem
zuerst der lineare Fluss zu der gewünschten Position geführt und dann mit dem verblei-
benden Freiheitsgrad das Feld an dieser Stelle zeitlich komprimiert wurde. Die adaptiven
Ergebnisse wurden durch die direkte Optimierung der Differenz der nichtlinearen Signa-
le gefunden. Eine mögliche Anwendung der analytischen Ergebnisse, der verzweigten
T-Kette, ist die Verwendung zur Kontrolle von logischen Elementen in plasmonischen
Schaltkreisen. Darüber hinaus ermöglichen die hergeleiteten Regeln ein optimales Design
von Nanostrukturen für sowohl spektroskopische als auch plasmonische Anwendungen.

Die Bedeutung der analytischen Lösungen für spektroskopische Anwendungen wurde
dann durch die Erzeugung von Anrege-Abfrage-Nahfeld-Pulsfolgen verdeutlicht. Diese
Pulsfolgen ermöglichen eine gleichzeitige raum- und zeitaufgelöste Anregung auf einer
Nanometer- und Femtosekundenskala. Der Vorteil gegenüber Pulsfolgen, die durch ad-
aptive Optimierungen erzeugt werden, ist, dass die analytischen Lösungen eine direkte
Modulation der Parameter ermöglichen, die in spektroskopischen Anwendungen variiert
werden. Diese Parameter sind z.B. die Verzögerung oder die relative Phase zwischen
den Pulsen. Ohne analytische Lösungen müsste für jeden Parameterschritt der entspre-
chende polarisationsgeformte Laserpuls durch eine langwierige adaptive Optimierung ge-
funden werden. Dementsprechend vereinfachen die hergeleiteten analytischen Lösungen
experimentelle Realisierungen und eine zukünftige Anrege-Abfrage-Spektroskopie mit
Nahfeldern.
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Diese analytischen Regeln für die räumliche Steuerung der Nahfelder wurden in Zu-
sammenarbeit mit den Arbeitsgruppen von Martin Aeschlimann und Walter Pfeiffer
experimentell angewendet. Dabei wurde die Nahfeldverteilung in goldenen Nanoprismen
mit einem Photoemissionselektronenmikroskop untersucht. Zunächst wurde adaptiv das
Intensitätsverhältnis der Nahfelder zweier Prismenecken optimiert und somit Lokalisie-
rung der Nahfelder erreicht. Aufgrund der analytischen Regel zum Schalten wurde dann
eine π-Phase zu einer der Polarisationskomponenten des adaptiv optimierten Laserpulses
addiert. Dies führte zu einer Änderung des Anregepolarisationszustands und zu deter-
ministischem Schalten der Intensität von der einen zu der anderen Ecke. Wie bei den
Simulationen wurde dabei festgestellt, dass die deterministisch gefundenen Pulse mit den
adaptiv optimierten Pulsen gut übereinstimmen. Somit bestätigen die experimentellen
Ergebnisse die theoretisch hergeleiteten Lösungen und zeigen, dass die Interferenz von
unterschiedlichen Nahfeldmoden der Kontrollmechanismus in goldenen Nanoprismen ist.

Im Gegensatz zur Verwendung von optischen Nahfeldern, in der die Anrege-Abfrage-
Nahfeld-Pulsfolgen selbst unter dem Beugungslimit lokalisiert sind und die Detektion
nicht räumlich aufgelöst sein muss, wurde in dieser Arbeit noch ein anderer Ansatz
vorgeschlagen, um spektroskopische Informationen auf der Nanometerskala zu erhalten.
Die neue Methode wurde als

”
kohärente zweidimensionale (2D) Nanoskopie“ beschrie-

ben und überträgt das Konzept der
”
herkömmlichen“ kohärenten 2D Spektroskopie auf

die Photoemissionselektronenmikroskopie. In dieser neuen Methode ist die räumliche
Auflösung der zur Untersuchung des quantenmechanischen Sytems erforderlichen Puls-
sequenzen zwar durch Beugung begrenzt. Die wesentliche Neuerung ist allerdings, lo-
kal erzeugte Photoelektronen anstelle von optischen Signalen zu messen. Daraus ergibt
sich eine räumliche Auflösung, die weit unterhalb der optischen Beugungsgrenze liegt.
In der

”
herkömmlichen“ kohärenten 2D Spektroskopie initiiert eine Dreifach-Pulsfolge

einen Vier-Wellen-Mischprozess, der eine Kohärenz erzeugt. Diese Kohärenz wird in ei-
nem quantenmechanischen Prozess in eine Population überführt und dabei kommt es
zur Abstrahlung eines elektromagnetischen Feldes, dass im Experiment gemessen wird.
Im Gegensatz dazu wird in der in dieser Arbeit entwickelten 2D Nanoskopie die Vier-
Wellen-Mischung durch eine Vierfach-Pulsfolge erzeugt, die das quatenmechanische Sy-
stem direkt in eine elektronische Population überführt. Diese elektronische Population
trägt dann kohärente Information über das untersuchte System und kann mit einer
räumlichen Auflösung von wenigen Nanometern abgebildet werden. Die Auflösung ist
dabei durch das verwendete Photoemissionsmikroskop vorgegeben. Demzufolge kann 2D
Nanoskopie als eine Verallgemeinerung der zeitaufgelösten Photoemissionsexperimente
gesehen werden. Sie könnte von gleichem Nutzen für das Feld der Photoemissionsexpe-
rimente sein, wie es die

”
herkömmliche“ 2D Spektroskopie für sowohl optische als auch

Kernspinresonanz Experimente ist.

Eine erste experimentelle Umsetzung der kohärenten 2D Nanoskopie wurde in Zusam-
menarbeit mit den Arbeitsgruppen von Martin Aeschlimann und Walter Pfeiffer reali-
siert. In diesen Experimenten wurden kohärente Prozesse auf einer rauhen Silberober-
fläche gemessen. In einem vorangegangenen kohärenten Kontrollexperiment, dass auch
in dieser Arbeit präsentiert wurde, wurde die Anwendung der Nahfeldsteuerung für die
oberflächenverstärkte Raman-Streuung untersucht. Zu diesem Zweck wurde die Elektro-
nenausbeute aus mehreren

”
Hot-Spots“, d.h. Positionen mit erhöhter Photoemission, ad-
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aptiv optimiert und Dauern von mehreren hundert Femtosekunden für die optimalen La-
serpulse gefunden. Diese Pulsdauern wiesen stark auf unerwartet langlebige Kohärenzen
auf der rauhen Silberoberfläche hin. Mit der 2D Nanoskopie wurden diese Beobachtungen
weiter untersucht und 2D Nanospektren mit einer räumlichen Auflösung von etwa 50 nm
aufgenommen. Die 2D Nanospektren wurden dann mit einzelnen Lorentz-Oszillatoren
modelliert und Dephasierungszeiten zwischen 40 fs und 100 fs für eine Region von et-
wa 1µm2 bestimmt. Interessanterweise wurden Dephasierungszeiten ermittelt, die sich,
für Regionen die nur 230 nm voneinander entfernt waren, um einen Faktor von zwei
unterschieden. Diese langlebigen Kohärenzen wurden mit einer speziellen Art der 2D
Nanoskopie untersucht. In diesem Experiment wurde sowohl der zeitliche Abstand als
auch die relative Phase zwischen zwei Pulsen variiert. Es wurde festgestellt, dass sich die
lange Lebenszeit durch zwei verschiedene lokalisierte Plasmonenmoden ergibt, die an die
gleiche sich ausbreitende Oberflächenplasmonenmode gekoppelt sind. In dem hier vor-
gestellten Beispiel konnten die kohärenten Effekte, die auf der rauhen Silberoberfläche
beobachtet wurden, mit Hilfe eines klassischen Modells beschrieben werden. Dennoch
sollte es mit Hilfe der 2D Nanoskopie auch möglich sein, ein breites Spektrum an fas-
zinierenden Quantenphänomenen zu beobachten, die sonst nicht zugänglich wären. In
Zukunft könnte die Technik durch den Einsatz von Pulsfolgen mit unterschiedlichen
Polarisationen verallgemeinert werden, um Tensoreigenschaften der untersuchten Probe
aufzuzeichnen.
Die vorgestellten Ansätze übertragen das Prinzip der zeitaufgelösten spektroskopi-

schen Techniken von einer Ensemblemessung auf die Nanometerlängenskala und wenige
räumlich lokalisierte Emitter. In Zukunft können diese Fortschritte eine breite Palet-
te von raumzeitaufgelöster Spektroskopiemethoden ermöglichen. Anwendungen könnten
die nichtlineare Spektroskopie willkürlich nanostrukturierter Proben sein, wie z.B. na-
nophotonische Schaltungen, photovoltaische Elemente, gekoppelte Quantentöpfe oder
molekulare Aggregate. In solchen Experimenten wäre eine direkte Zuordnung der räum-
lichen Kopplungen und Übertragungen möglich. In einer direkten Anwendung auf Licht-
sammelkomplexe könnten neue Erkentnisse des Energietransfers zur Verbesserung der
Effizienz von Solarzellen beitragen. Auch wenn die beiden in dieser Arbeit diskutierten
Ansätze schon in sich selbst sehr vielseitig sind, könnte eine Kombination von Nahfeld-
anregung mit 2D Nanoskopie nicht nur die Untersuchung von kohärenten Quantenpro-
zessen erleichtern, sondern auch Kontrolle über diese Prozesse auf der Nanometerskala
ermöglichen.
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A Mathematical Supplements

A.1 Spatial Analytic Control for a Region

Based on the analytic solutions for near-field control in nanostructures for single points
r⃗1 and r⃗2 found in Section 4.3, here the solutions are extend to describe the near-field
control with feedback functions defined for volumes V . The local spectrum of volume V
is then defined as the sum over all local spectra within the volume V :

S(V, ω) =
∑
r⃗

w(r⃗)S(r⃗, ω)

= I1(ω)
∑

α=x,y,z

bα

[∑
r⃗

w(r⃗)|A(1)
α (r⃗, ω)|2

]
+ I2(ω)

∑
α=x,y,z

bα

[∑
r⃗

w(r⃗)|A(2)
α (r⃗, ω)|2

]

+2
√
I1(ω)I2(ω) Re

{[∑
r⃗

w(r⃗)Amix(r⃗, ω)

]
eiΦ(ω)

}
, (A.1)

where w(r⃗) is a real-valued weighting function that reflects a spatial dependent contri-
bution of the local spectrum S(r⃗, ω) of a certain position r⃗ to the local spectrum S(V, ω)
of the volume V [e.g., if w(r⃗) = 1 all local spectra S(r⃗, ω) contribute equally to S(V, ω)].
By defining:

B(i)
α (V, ω) =

∑
r⃗

w(r⃗)|A(i)
α (r⃗, ω)|2, i = 1, 2, (A.2)

and
Bmix(V, ω) =

∑
r⃗

w(r⃗)Amix(r⃗, ω) = |Bmix(V, ω)| eiχmix(V,ω), (A.3)

Eq. (A.1) can be rewritten to have the same form as Eq. (4.5):

S(V, ω) = I1(ω)
∑

α=x,y,z

bαB
(1)
α (V, ω) + I2(ω)

∑
r⃗

∑
α=x,y,z

bαB
(2)
α (V, ω)

+ 2
√
I1(ω)I2(ω) Re

{
Bmix(V, ω) e

iΦ(ω)
}
. (A.4)

Consequently, the linear flux of volume V reads as

Flin(V ) =
δω

2π

ωmax∑
ω=ωmin

S(V, ω) (A.5)

and the optimal phase differences for the optimization of the linear flux at one position
is found analogously to Eq. (4.8)

Φmax(ω) = −χmix(V, ω) and (A.6)

Φmin(ω) = −χmix(V, ω)− π. (A.7)
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Using the definition of the linear flux the difference of linear flux at two spatial regions
V1 and V2 is given by

flin [φ1(ω), φ2(ω), I1(ω), I2(ω)] = Flin(V1)− Flin(V2). (A.8)

By plugging in the corresponding definitions of the linear flux the difference recasts to

flin =
ωmax∑

ω=ωmin

S(V1, ω)−
ωmax∑

ω=ωmin

S(V2, ω)

=
ωmax∑

ω=ωmin

(
I1(ω)D1(V1, V2, ω) + I2(ω)D2(V1, V2, ω) +

2
√
I1(ω)I2(ω)

{
|Bmix(V1, ω)| cos[χmix(V1, ω) + Φ(ω)]−

|Bmix(V2, ω)| cos[χmix(V2, ω) + Φ(ω)]
})
, (A.9)

where

Di(ω) =
∑

α=x,y,z

bα
[
B(i)

α (V1, ω)−B(i)
α (V2, ω)

]
, i = 1, 2. (A.10)

The optimal phase difference that maximizes or minimizes Eq. (A.9) is obtained accord-
ing to Section 4.3.2

Φ(ω) = arctan

{
|Bmix(V2, ω)| sin[χmix(V2, ω)]− |Bmix(V1, ω)| sin[χmix(V1, ω)]

|Bmix(V1, ω)| cos[χmix(V1, ω)]− |Bmix(V2, ω)| cos[χmix(V2, ω)]

}
+ kπ,

(A.11)
After calculation of the optimal phase difference the optimal amplitudes can be calcu-
lated by rewriting Eq. (A.9) such that

flin [γ1(ω), γ2(ω)] = IG(ω)
[
D1(ω)γ

2
1(ω) +D2(ω)γ

2
2(ω) + 2Dmix(ω)γ1(ω)γ2(ω)

]
, (A.12)

with

Dmix(ω) = |Bmix(V1, ω)| cos [χmix(V1, ω) + Φ(ω)]− |Bmix(V2, ω)| cos [χmix(V2, ω) + Φ(ω)] .
(A.13)

Hence, the optimal amplitudes can be found analogously to Eq. (4.20) by two-variable
extremum analysis of the function in Eq. (A.12) under the constraints 0 ≤ γ1(ω) ≤ 1
and 0 ≤ γ2(ω) ≤ 1 such that

[γ1(ω), γ2(ω)] ∈ {[0, 0] , [1,−Dmix(ω)/D2(ω)] , [−Dmix(ω)/D1(ω), 1] , [1, 1]} . (A.14)

It has been shown that the analytic solutions to spatial control defined by regions are
found completely analogously to the solutions described in Section 4.3.
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A.2 Momentary Local Multiphoton Photoemission
Probability

The momentary local multiphoton photoemission probability defined in Section 7.5 can
be calculated using the expression of Eq. 7.16 for the density matrix in Liouville space:

|ρ(2n)(t)⟩⟩ =
(
i

~

)2n
∞∫
0

dt2n

∞∫
0

dt2n−1...

∞∫
0

dt1G(t2n)VG(t2n−1)V...G(t1)|ρ(t0)⟩⟩

E(r⃗, t− t2n)E(r⃗, t− t2n − t2n−1)...E(r⃗, t− t2n − t2n−1...− t1). (A.15)

Herein, a power dependence of n is assumed for the photoemission, i.e., n photons are
needed to emit an electron. This corresponds to 2n interactions with the electric field.
To model the data that was obtained in the 2D nanoscopy measurements described in

Sections 7.4.4 and 7.4.5, the photoemission is assumed to occur via virtual states (Section
2.6.1). This results in vanishing lifetime of the corresponding states and the Liouville
Greens function for the material system in the absence of electric field [Eq. (7.15)] is
described by a Dirac delta function:

G(τ) ≡ δ(τ). (A.16)

Plugging in the Dirac delta function in Eq. (A.15) yields

|ρ(2n)(t)⟩⟩ =
(
i

~

)2n
∞∫
0

dt2n

∞∫
0

dt2n−1...

∞∫
0

dt1δ(t2n)Vδ(t2n−1)V ...δ(t1)|ρ(−∞)⟩⟩

E(r⃗, t− t2n)E(r⃗, t− t2n − t2n−1)...E(r⃗, t− t2n − t2n−1...− t1), (A.17)

where tn ≥ 0 represent the time intervals between successive interactions. By carrying
out the integrals, this expression simplifies to

|ρ(2n)(t)⟩⟩ =
(
i

~

)2n

V2n|ρ(−∞)⟩⟩ [E(r⃗, t)]2n , (A.18)

where the products of V with the density matrix are described by commutators in Hilbert
space.
As described in Section 7.3.2, the momentary local multiphoton photoemission prob-

ability is then proportional to the population of the corresponding electronically excited
state. Since a power dependence of n is assumed above, an electron is emitted if the n-th
excited state |n⟩ is populated. Hence, the momentary local multiphoton photoemission
probability is determined by calculating the momentary population of the n-excited state

PPE(r⃗, t) = ⟨⟨nn|ρ(2n)(t)⟩⟩

=

(
i

~

)2n

⟨⟨nn|V2n|ρ(−∞)⟩⟩ [E(r⃗, t)]2n . (A.19)

Since the effect of anisotropic transition dipoles and the finite penetration depth is
neglected here, the dipole-coupling operator V can assumed to be independent of the
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spatial position r⃗. Hence, the first part of Eq. A.19 is constant in time and spatial
position and the momentary local multiphoton photoemission probability is proportional
to the 2n-th power of the local electric field

PPE(r⃗, t) ∝ [Eloc(r⃗, t)]
2n . (A.20)

A.3 Derivation of the Response Function of Two
Coupled Modes

The response function for two coupled electric field modes is derived by first considering
the corresponding differential equations [Eq. (7.76)].

∂2EBM(r⃗, t)

∂t2
+ 2γBM∂E

BM(r⃗, t)

∂t
+ ω2

0,BME
BM(r⃗, t)− κ

[
EBM(r⃗, t)− EDM(r⃗, t)

]
= gE0(t)

∂2EDM(r⃗, t)

∂t2
+ 2γDM∂E

DM(r⃗, t)

∂t
+ ω2

0,DME
DM(r⃗, t)− κ

[
EDM(r⃗, t)− EBM(r⃗, t)

]
= 0,

(A.21)

These equations describe the dynamics of a bright mode (BM) and a dark mode (DM)
that are coupled via the effective coupling strength κ. Additionally, the bright mode
is driven by an external electric field E0(t). Using the Fourier relation of Eq. (2.6) the
electric field can be decomposed into monochromatic waves such that

E(r⃗, t) =
1√
2π

∞∫
−∞

E(r⃗, ω) eiωt dω. (A.22)

and the differential equations (A.21) can be written in frequency space as

−ω2EBM(r⃗, ω) + i2ωγBMEBM(r⃗, ω) + ω2
0,BME

BM(r⃗, ω)

− κ
[
EBM(r⃗, ω)− EDM(r⃗, ω)

]
= gE0(ω)

−ω2EDM(r⃗, ω) + i2ωγDMEDM(r⃗, ω) + ω2
0,DME

DM(r⃗, ω)

− κ
[
EDM(r⃗, ω)− EBM(r⃗, ω)

]
= 0,

(A.23)

In vector notation this recasts to(
−ω2 + i2ωγBM + ω2

0,BM − κ κ
κ −ω2 + i2ωγDM + ω2

0,DM − κ

)
︸ ︷︷ ︸

Â−1

(
EBM(r⃗, ω)
EDM(r⃗, ω)

)
=

(
gE0(ω)

0

)
.

(A.24)
To solve the set of differential equations the inverse of the matrix Â−1 on the left hand

side have to be multiplied from the left such that(
EBM(r⃗, ω)
EDM(r⃗, ω)

)
= Â

(
gE0(ω)

0

)
, (A.25)
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with

Â = C

(
−ω2 + i2ωγDM + ω2

0,DM − κ −κ
−κ −ω2 + i2ωγBM + ω2

0,BM − κ

)
(A.26)

and

C =
1(

−ω2 + i2ωγBM + ω2
0,BM − κ

)
(−ω2 + i2ωγDM + ω0,DM − κ)− κ2

. (A.27)

The electric field of bright and dark mode is then described in frequency space by(
EBM(r⃗, ω)
EDM(r⃗, ω)

)
=

(
ABM(r⃗, ω)
ADM(r⃗, ω)

)
gE0(ω) (A.28)

and according to the definition of the optical response function (Section 3.1.2), the
response functions of bright and dark mode are given by

ABM(r⃗, ω) =
−ω2 + i2ωγDM + ω2

0,DM − κ(
ω2
0,BM − ω2 + i2ωγBM − κ

) (
ω2
0,DM − ω2 + i2ωγDM − κ

)
− κ2

ADM(r⃗, ω) =
−κ(

ω2
0,BM − ω2 + i2ωγBM − κ

) (
ω2
0,DM − ω2 + i2ωγDM − κ

)
− κ2

,

(A.29)

where the coupling of the driving field g is neglected here since it just results in a scaling
of both response functions.
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Analytische und adaptive kohärente Kontrolle optischer Nahfelder durch Formung ultrakurzer

Laserpulse.
Diploma thesis, Universität Würzburg (April 2009).

[74] W. L. Barnes, A. Dereux, and T. W. Ebbesen.
Surface plasmon subwavelength optics.
Nature 424, 824–830 (August 2003).

[75] A. Otto.
Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflec-

tion.
Zeitschrift für Physik 216, 398–410 (July 1968).

[76] E. Kretschmann.
Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplas-
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Santos, L. M. Liz-Marzán, and C. Colliex.

Two-Dimensional Quasistatic Stationary Short Range Surface Plasmons in Flat Nanoprisms.
Nano Letters 10, 902–907 (February 2010).

Philip Tuchscherer: A Route to Optical Spectroscopy on the Nanoscale (Diss. Univ. Würzburg, 2012)



Bibliography 187

[131] R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma.
Plasmonics: the next chip-scale technology.
Materials Today 9, 20–27 (January 2006).

[132] T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst.
Optical antennas direct single-molecule emission.
Nature Photonics 2, 234–237 (April 2008).

[133] A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner.
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