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The Opioid System 
in Circulatory Control 
Anna-Leena Siren and Giora Feuerstein 

Opioid peptidesandmultiple opioid receptors are found in brain 
cardiovascular nuclei, autonomic ganglia, the heart, and blood vessels, 
and opioids induce potent cardiovascular changes. The role of 
endogenaus opioids in normal cardiovascular homeostasis is unclear; 
however, current data suggest opioid involvement in stress. 

Introduction 

The endogenaus opioid system 
consists of a large family of opiate
like peptides: the enkephalins de
rived from preproenkephalin A, the 
endorphins derived from preproopi
omelanocortin, and dynorphins de
rived from preproenkephalin B (8). 
The presence of several classes of 
opiate receptors, /l (morphine), o 
([Met5

]- and [Leu5]enkephalin), K 

(ketocyclazocine), l (ß-endorphin), 
and (J (SKF-10,047) has been weil 
established, and the existence of 
multiple receptor subtypes has been 
proposed for !l-and K-receptors based 
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on pharmacological and biochemical 
studies (8, 10, 12). 

The type and main pharmacologi
cal effects of multiple opioid recep
tor classes are summarized in Table 
1. In brief, these opioid receptors 
have been implicated in extremely 
diverse biological actions of which 
modulation of pain perception is 
most extensively studied. However, 
the opioid system has been shown to 
be involved in food consumption, 
body temperature, pituitary hor
mone release, respiration, behavior, 
and cardiovascular regulation (7, 8, 
10). For the purposes of this review, 
only the cardiovascular effects me
diated through opioid receptors are 
analyzed. 

Distribution of opioid peptides 
and opioid receptors in 
cardiovascular structures 

The regional distribution of opioid 
peptides and the variety of opioid 
receptors in the brain have been ex-
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tensively investigated (8), and opiate 
receptors have been shown in vir
tually every cardiovascular nucleus 
(10, 11). Most notable are hypotha
lamic cardiovascular centerssuch as 
the preoptic nucleus, paraventricu
lar nucleus, lateral hypothalamic 
nucleus, the central nucleus of 
amygdala, hippocampus, the peri
aqueductal gray, the dorsal raphe 
nucleus, the parabrachial nucleus, 
and the nucleus reticularis paragi
gantocellularis. They occur in par
ticularly high densities in the caudal 
part of the nucleus tractus solitarii 
(10). 

Opioid receptors have also been 
identified in the spinal cord, where 
they appear to be primarily associ
ated with laminae II and 111 of the 
dorsal horn at least in the rat, guinea 
pig, and human spinal cord (10). 
Dense areas of K-opioid binding are 
detected in the posterior pituitary 
and median eminence (10). 

Opioid peptides and opioid recep
tors arealso found in peripheral car
diovascular argans such as the heart, 
blood vessels, kidneys, and the ad
renal medulla. Furthermore, cardi
ovascular argans might be influ
enced by blood-borne opioid pep
tides, which are markedly elevated 
during cardiovascular stress situa
tions such as bleeding-induced hy
povolemic hypotension (4, 7). 

Cardiovascular effects 
of opioid peptides 

The vast majority of reports that 
suggested a role for opioids in cardi-



Table 1. Agonists, antagonists, and proposed functions of multiple opioid receptor subtypes 

Receptor 

Jll 

Kz 

Agonist 

DADL 
DAMGO 
Dermorphin 
TAPS* 
ß-End=Enk>DynA 
Morphine 
DAMGO 
Dermorphin 
ß-End>DynA>Enk 
DPDPE* 
DADL 
Enk=ß-End>DynA 
U69593* 
U50488* 
EKC 
DynA>>ß-End>>Enk 
DynA* 
Bremazocine* 
EKC 
ß-End 
Cyclazocine 
SKF-10,047 
Phencyclidine 

Antagonist 

Naloxonazine* 
Naloxazone* 
Naloxone 
ß-FNA 

ß-FNA 
Naloxone 
TAPS? 

ICI17864* 
Naltrindole* 

Nor-BNI* 
Naloxone 
(high doses) 

Haloperidol 

Function 

Supraspinal analgesia, euphoria, respiratory stimulation, 
tachycardia, sympathetic stimulation, hypertension?, 
cerebral blood flow regulation 

Spinal analgesia, respiratory depression, bradycardia 

Reward, spinal analgesia, tachycardia 

Analgesia, sedation, regulation of Vasopressin release, 
hypotension, bradycardia, diuresis, inhibition of NE 
release, dysphoria, psychotomimetic effects 

Ibid? 

Psychotomimetic effects 

DADL, [o-Ala2,o-Leu5]enkephalin; DAMGO, (Tyr-o-Ala2-Gly-NMePhe4-oJ5]enkephalin; DPDPE, [n-Pen2 ,o-Pen5]enkephalin; DynA, dynorphin 
A; EKC ethylketocyclazocine; ß-End, ß-endorphin; Enk, enkephalin; ß-FNA, ß-funaltrexamine; Nor-BNI. nor-binaltorphimine; TAPS, Tyr-n
Arg2-Phe-(NMe)Gly4. * Selective agonists and antagonists. 

ovascular regulation have been 
pharmacological studies in which 
opiates and opioid peptides were ad
ministered to anesthetized or con
scious animals. Peripherally in
jected opiates such as morphine to 
normal animals consistently pro
duce hypotension (7). However, cen
trally injccted opiates or opioid pep
tides produce depressor or pressor 
responses; this highly productive 
and controversial field is the result 
of several inconsistencies that in
clude 1) species; 2) anesthetized ver
sus conscious subjects; 3) the type of 
opiate/opioid peptide administered; 
4) the size of administration; 5) 
the experimental condition, e.g., 
stressed versus resting animals; and 
6) the selectivity toward specific opi
ate receptors (4). Furthermore, it is 
still unclear whether endogenaus 
opioids play a crucial role in cardio
vascular physiology. 

Effective blockade of opioid recep
tors by naloxone in normal humans 
or animals does not significantly al
ter cardiovascular variables such as 
systemic blood pressure or heart 
rate. This Iack of effect of naloxone 
might be due to instantaneous ad
justments in the hemodynamic bal
ance resulting from the multiple sys
tems activated. If this were the case, 

an early change in some variables 
should be detected. The Iack of even 
short-term changes therefore sug
gests that the involvement of the 
opioid system in cardiovascular con
trol is more of an adaptive and reg
ulatory system in physical and stress 
situations. 

Cardiovascular effects 
of #L-selective opioids 

In general, JL-selective opiates 
when administered centrally in the 
rat induce a dose-related pressor re
sponse that is accompanied by a bi
phasic heart rate response (4, 5, 13, 
14). It is our view that in the central 
nervaus system selective activation 
of the JL-Opioid receptor produces 
cardiovascular responses in con
scious animals through activation of 
the sympathoadrenomedullary axis. 
This claim is based solely on studies 
with highly selective JL-opioid ago
nists such as the [o-Ala2-MePhe4

-

Gly5-ol]enkephalin (DAMGO) or the 
heptapeptide dermorphin; such 
highly specific and potent JL-agonists 
produce pressor and cardiac-accel
erating effects at picomolar doses. 

The role of the sympathoadreno
medullary system in mediation of 
the pressor and cardiac-accelerating 

effect of highly selective JL-opioid 
agonists in the brain was established 
by 1) direct assay of plasma norepi
nephrine and epinephrine (13), 2) 
direct monitaring of sympa thetic 
outflow in peripheral postganglionic 
sympathetic nerves (3, 14), and 3) 
blockade of the pressor effects by 
adrenergic blocking agents (13, 14). 
The biphasic pattern of cardiovas
cular responses to JL-Opioid agonists 
might also concur with the hypoth
esis that JL-opioid effects are me
diated by two subclasses of opioid 
receptors, J..L1-receptors mediating 
stimulatory responses and JL 2-recep
tors mediating depressant responses 
(12). In our recent studies the stim
ulatory effects on the cardiorespira
tory system have been shown in re
sponse to central administration of 
the dermorphin analogue TAPS 
[Tyr-n-Arg2 -Phe-(NMe)Gly 4

], a 
highly potent JL1-agonist/ J..L2-antago
nist (Paakkari, Feuerstein, and Si
ren, Soc. Neurosci. Abstr. 559, 1 990). 

Interestingly, striking similarities 
exist between the reflex response of 
systemic hemodynamic variables 
and blood flow redistribution (the 
classical defense response) produced 
by environmental stressors such as 
cold water or immobilization and 
those elicited by central administra-
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tion of selective JI-opioid agonists (5, 
14). This complex pattern of cardio
vascular adaptation includes, in 
both cases. an abrupt increase in 
blood pressure and cardiac output, 
increase in muscle blood flow (due 
to vasodilation) with concomitant 
reduction in splanchnic organ blood 
flow (due to vasoconstriction), and 
increases in sympathetic nerve ac
tivity and circulating Ievels of catc
cholamines. 

1-L-Opioid interaction 
with the baroflex system 

The continuous flow of informa
tion from the peripheral barorecep
tors is processed in the nucleus trac
tus solitarii (NTS), dorsal motor nu
cleus of the vagus, and ventrolateral 
medullary nuclei. which are rich in 
opioid peptides and receptors (8, 10). 
The baroreceptor reflex is highly 
sensitive to modulation by selective 
1-L-opioid agonists such as DAMGO 
(6). More specifically, JI-opioid 
receptors localized in the NTS seem 
to inhibit peripheral baroreceptor 
input in the NTS and thereby pro
duce pressor responses as evidenced 
by the effect of DAMGO microin
jected into this region (4, 5). 

Indirect studies aimed at explor
ing the effect of opioid peptides on 
reflex changes of heart rate in re
sponse to pressure changes (tradi
tionally elicited by systemic pressor 
or depressor events) have shown 
that opioids reduce the responsive
ness of heart rate to acute blood pres
sure changes (4, 5, 7). However, such 
studies may not weil represent bar
oregulation of the sympathetic nerv
aus system. 

More direct evidence of opioid ef
fects on the baroreflex mechanism 
were obtained by direct stimulation 
of the baroreceptor afferents, whereas 
sympathetic activity and systemic 
hemodynamic variables were moni
tared directly (6). Such studies 
clearly revealed reflex reduction in 
arterial pressure, heart rate, and 
sympathetic nerve activity by the 
selective JI-opioid agonist DAMGO. 
However, it is important to note that 
no evidence was produced in favor 
of a tonic modulatory role of the 
endogenaus opioid system, since in 
normal resting conditions adminis
tration of naloxone, a potent opiate/ 
opioid peptide antagonist, failed to 
modify the baroreflexes (6). 
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Cardiovascular effects 
of o-selective opioids 

The cardiovascular effects result
ing from Stimulation of o-opioid 
receptors have been difficult to eval
uate because of the Iack of highly 
selective agonists. The relative o
selective enkephalin analogue [o
Ala2-, n-Leu5]enkephalin (DADL) in
duced similar cardiovascular re
sponses as the JI-selective peptides 
but was -10 times less potent that 
the selective Jl-agonist DAMGO (7, 
13). Since DADL exhibits high affin
ity to JirOpioid binding sites (12), the 
pressor and tachycardic responses 
elicited by DADL may be mediated 
primarily by Jll- rather than o-sites. 

This view is further supported by 
the finding that the selective o-ago
nist dimeric tetrapeptide enkephalin 
had no cardiovascular effects in the 
rat (13). In a recent study, however, 
the intracerebroventricular admin
istration of the selective b-agonist 
[n-Pen2 ,o-Pen5]enkephalin (DPDPE), 
which Iacks affinity to J.LrSites (12), 
was associated with increases in 
blood pressure and heart rate (11) in 
conscious rabbits. Unlike the effects 
of the selective wagonist DAMGO, 
the cardiovascular effects of the o
agonist were not accompanied by in
creases in plasma catecholamines 
(11). Furthermore, the o-agonist was 
>10 times less potent than the J.L
agonist in increasing blood pressure 
(11 ). 

Cardiovascular effects 
of K-selective opioids 

In general, K-opioid peptides de
crease blood pressure and heart rate 
in anesthetized animals aftcr both 
central and peripheral routes of ad
ministration (4, 5, 7). Since the K

opioid receptors have been identi
fied in peripheral tissues such as the 
heart, blood vessels, and adrenal me
dulla and K-agonist have been shown 
to inhibit norepinephrine release at 
a presynaptic site in various in vitro 
preparations, the cardiovascular ef
fects of K-agonists after systemic ad
ministration have been suggested to 
be mediated by peripheral receptor 
sites (15). 

The functional importance of this 
K-opioid receptor-mediated modula
tion of norepinephrine release and 
the role of peripheral K-receptors in 
the cardiovascular effects of intra
venous opiatesarestill controversial 

(5, 15). Thus, in the pithed rat in 
which the complete central nervaus 
system and spinal reflexes are de
stroyed, the opioid peptides have 
negligible effects on the cardiovas
cular system (5). 

The effects of K-opioid peptides on 
cardiovascular variables in con
scious animals differ dramatically 
from those reported in anesthetized 
animals. In the conscious rat, dynor
phin A(1-13) induced transient 
pressor responses along with brady
cardia and/or delayed tachycardia 
after both systemic and central ad
ministration (13). In the conscious 
rabbit, the highly selective K-ago
nists dynorphin A(1-13) and 
U69593 had no effect on blood pres
sure or heart rate after intracerebro
ventricular administration (11). 

K-Opioid interactions 
with vasopressin 

The Vasopressin system seems to 
be important for many K-opioid re
sponses. K-Agonists ind uce di uresis 
that is mediated by suppression of 
vasopressin release (9). This inter
action, i.e., suppression of vasopres
sin release, suggests that K-opioids 
may play a pivotal role in the regu
lation of hypothalamoneurohypo
physial hormone excretion. This as
sumption is further supported by 
studies showing that dynorphin and 
vasopressin are colocalized in the 
magnocellular neurons of the hy
pothalamic paraventricular and su
praoptic nuclei and in the neural 
lobe of the pituitary (8). 

The pressor and bradycardic re
sponses to K-agonists in conscious 
animals may, on the other hand, be 
related to stimulation of Vasopressin 
release. Carter and Lightman (2) in
jected the K-agonist U50488 into thc 
NTS of Sprague-Dawley, Long-Ev
ans, and vasopressin-deficient Brat
tleboro rats. In the Sprague-Dawley 
rats, U50488 elicited a pressor re
sponse in the NTS that was blocked 
by a K-antagonist (MR2266) and a 
vasopressin V1 antagonist.ln the va
sopressin-deficient Brattleboro rats, 
U50488 had no effect on blood pres
sure or plasma Vasopressin, whereas 
in the parent strain Long-Evans rats 
it ind uced a significan t pressor re
sponse associated with an increase 
in the circulating Ievels of vasopres
sin (2). 

The antagonism by the Vasopres
sin antagonist was selective for K-



agonists; the Vasopressin antagonist 
did not modify the effects of a o
agonist, whereas the a-adrenoceptor 
blocker phenoxybenzamine selec
tively blocked the pressor response 
to the o-agonist but not that elicited 
by the K-agonist (2). Lesions of the 
afferent noradrenergic pathways 
from brain stem to hypothalamic 
paraventricular and supraoptic nu
clei, which may exert a facilitatory 
effect on vasopressin release in the 
magnocellular neurons, abolished 
the pressor but not the bradycardic 
response to U50488 microinjected 
into the NTS (2), further suggesting 
an interaction between Vasopressin 
release and some of the cardiovas
cular effects of K-opioids. 

Opioids in hypertension 

A role of opioid peptides in hyper
tension has been supported by stud
ies demonstrating 1) changes in pep
tide and receptor Ievels in hyperten
sive animals, 2) demonstration of 
increased pain threshold in sponta
neously hypertensive rats (SHR) and 
human hypertension, and 3) en
hanced pressor and vasoconstrictor 
responses to opioid peptides in h y
pertensive animals compared with 
normotensive animals (1, 5). Thus K

receptor densities in the hypothala
mus and cortex of SHR were in
creased compared with their nor
motensive controls (Wistar-Kyoto 
strain, WKY), whereas 11- and o
opioid receptors did not exhibit a 
similar difference (1). This differ
ence was shown to likely bear func
Uanal relevance, since SHR exhib
ited a higher analgetic and diuretic 
response to K-agonists (1). 

The vasoconstrictor and pressor 
effect of the 11-agonist DAMGO was 
also shown to be higher in SHR than 
WKY rats (5). The Ievels of endoge
naus opioid ligands [Leu5]enkepha
lin, dynorphin A(1-16), and dynor
phin A(1-8) were lower in the 
hypothalamic suprachiasmatic nu
cleus of SHR compared with WKY. 

Reduced Ievels of dynorphin 
A(1-8) were also found in the hy
pothalamic paraventricular nucleus 
and central nucleus of the amygdala 
of SHR compared with WKY rats, 
whereas the Ievels of dynorphin 
A(1-13) in the substantia nigra 
were higher in SHR than WKY rats. 
The Ievels of ß-endorphin in the 
plasma and posterior pituitary were 
also higher in SHR than normoten-

sive WKY rats. These results suggest 
that opioids may be involved in the 
pathogenetic mechanisms of arterial 
hypertension. Whether the observed 
changes in receptor densities are 
secondarily due to the elevated 
blood pressure or constitute a ge
netic difference between these rat 
strains has yet to be determined. 

Opioids in shock 

The endogenaus opioid system 
was suggested to play a role in the 
pathophysiology of cardiovascular 
shock, since the opioid antagonist 
naloxone improved cardiovascular 
function and survival in some ex
perimental shock models (4, 7). In
creased Ievels of opioid peptides are 
also found in plasma and cerebraspi
nal fluid of animals exposed to hem
orrhage (4, 7). Changes in opioid pep
tides and receptors in brain nuclei 
and heart of rats have been reported 
after hemorrhagic shock. Thus K

and o-opioid binding decreased by 
45-60% in the right atria and ventri
cle of hearts removed from rats 2 h 
after hemorrhage, whereas binding 
in the brain stem was increased. The 
Ievels of dynorphin A and Vasopres
sin in the neurointermediate lobe of 
the pituitary were decreased 24 h 
after hemorrhage in this model of 
hemorrhagic shock in rats (4). 

Summary: role of the opioid 
system in cardiovascular control 

This brief review provides circum
stantial evidence originating primar
ily from pharmacological and bio
chemical experiments in vivo. It is 
clear that several classes of opioid 
peptides and receptors are involved 
in multiple anatomic circuits con
traHing blood pressure and heart 
rate in the central nervaus system, 
whereas opioids in peripheral car
diovascular argans may play little if 
any significant role. A second gen
eralization that can be made at the 
present time concerns the state of 
the cardiovascular system; it is quite 
clear that in the normal, conscious 
resting state it is extremely hard to 
demonstrate cardiovascular re
sponses to a potent opioid antagonist 
such as naloxone, in either humans 
or animals. The same opioid antag
onist displays marked hemodynamic 
responses, however, when adminis
tered in cardiovascular stress situa
tionssuch as hemorrhagic, septic, or 
traumatic shock (7). 

In fact, the most compelling evi
dence on the role the opioid system 
might play in host adaptation to in
jury is derived from demonstrations 
showing that naloxone improves 
metabolic, endocrine, and cardio
vascular indexes in animal modo,ls 
of tissue injury, including neuro
trauma, endotoxemia, and hemor
rhage; in several studies opioid an
tagonists have been shown to im
prove survival in lethal shock 
paradigm (4, 7). 

It is also important to keep in mind 
that, at the present time, none of the 
available opioid antagonists has 
been shown to convey therapeutic 
effects in any clinical situation. The 
most intriguing new area that could 
significantly bear on cardiovascular 
disorders concerns recent data (5, 14) 
linking the fundamental stress re
sponses to the 11-opioids and their 
receptors. These new data suggest 
that mental stress, aggressive re
sponses, fear, and apprehension ac
tivate the sympathetic system via a 
selected opioid peptide and receptor. 
Since stress has been associated with 
many cardiovascular disorders, the 
potential exists that in the future the 
selective 11-opioid antagonist could 
be useful in alleviating cardiovas
cular disorders associated with ex
cessive stress. 
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Area Postrema: A 
Unique Regulator of 
Cardiovascular Function 
John L. Williams, Karen L. Barnes, 
K. Bridget Brosnihan, and Carlos M. Ferrorio 

The area postrema, which does not have a blood-brain barrier, can 
sense changes in levels ot blood-borne hormones. This circumventricular 
organ plays an important role in animal models of hypertension, 
recovery trom hemorrhage, control ot baroretlexes, and 
homeostasis ot water and ions. 

The area postrema has lang been 
recognized as an important compo
nent in the vomiting reflex, serving 
as a chemosensor of noxious blood
borne substances for the central 
nervaus system. Experimental find
ings during the last two decades in
dicate that this unusual region of the 
brain also plays a prominent role in 
cardiovascular functions. 

The area postrema detects 
changes both in levels of circulating 
hormones, including angiotensin li 
and vasopressin, and in afferent 
neural activity from other cardiovas
cular centers in the central nervaus 
system and modulates the output of 
other major cardiovascular centers, 
including medullary regions that 
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regulate tonic and reflex vasomotor 
activity. 

Recent experiments indicate that 
this circumventricular organ partic
ipates in recovery from hemorrhage, 
control of baroreflexes, and regula
tion of systemic water and ions. In 
animal models, development or 
maintenance of chronic hyperten
sion apparently requires · the area 
postrema, because removal of the 
area postrema prevents or attenuates 
increases in arterial pressure. 

A chemical transducer 
with important connections 

With few exceptions, neurons of 
the central nervaus system are pro
tected from exposure to most blood
borne agents by the blood-brain bar
rier. The blood-brain barrier is a key 
component in maintenance of a rel
atively stable environment for neu
ronal functions despite large fluctua
tions in blood chemistry. As a con
sequence of this protection, neurons 
in most regions of the brain that are 
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involved in cardiovascular and en
docrine regulation do not monitor 
blood concentrations of hormones 
directly. In contrast, capillaries in 
the area postrema and other circum
ventricular argans lack a blood
brain barrier. In these regions, cir
culating substances extravasale 
from the capillaries into the sur
rounding neuropil and thus can alter 
activities of neurons and glia di
rectly. 

Unique morphological character
istics support the concept that the 
area postrema serves as an important 
integrator of neural, endocrine, and 
cardiovascular functions (Fig. 1). 
The area postrema is characterized 
by numerous sinusoidal and fenes
trated capillaries that are sur
rounded by a perivascular space (7, 
12). Although large molecules such 
as albumin are confined to vessels of 
the area postrema, peptides and 
amines are much smaller and extra
vasate into both the perivascular 
space and surrounding neuropil. The 
area postrema has high densities of 
receptors for angiotensin II, Vaso
pressin, catecholamines, acetylcho
line, atrial natriuretic peptide, cho
lecystokinin, and opiates (4, 7), 
which may affect activities of neu
rons and glial cells in this region. 

In addition, the area postrema has 
connections with other important 
cardiovascular centers of the central 
nervaus system (7, 10). The area pos
trema receives inputs primarily from 
the paraventricular and dorsomedial 
nuclei of the hypothalamus and the 
carotid sinus and vagus nerves. Neu
rons of the area postrema project to 
the nucleus of the solitary tract, lat
eral parabrachial nucleus, dorsal 

0886-1714/92 52.00 © 1992 Int. Union Physiol. Sci.fAm. Physiol. Soc 




