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SUMMARY  

Replication-competent oncolytic viral therapies have shown great promise preclinically and 

in clinical trials for the treatment of various cancers, with the possible advantages of stronger 

treatment efficacy compared to conventional therapy due to higher tumor selectivity as well 

as lessening side effects. They are able to preferentially and selectively propagate in cancer 

cells, consequently destroying tumor tissue via cell lysis, while leaving noncancerous tissues 

unharmed.  

 

Oncolytic vaccinia virus (VACV) strains have been of particular interest due to several 

advantages. VACV‘s large 192-kb genome enables a large amount of foreign DNA to be 

incorporated without significantly reducing replication efficiency of the virus. It has fast and 

efficient replication, and cytoplasmic replication of the virus lessens the chance of 

recombination or integration of viral DNA into the genome of host cells. Perhaps most 

importantly, its safety profile after its use as a live vaccine in the World Health Organization‘s 

smallpox vaccination program in over 200 million people makes it particularly attractive as an 

oncolytic agent and vector for the delivery of heterologous proteins. 

 

Currently, biopsy is the gold standard for monitoring of viral tumor colonization and 

oncolysis. This may be feasible in preclinical or early clinical trials; however, a noninvasive 

method facilitating ongoing monitoring of viral therapy is needed for human studies. The 

tracking of viral delivery could give clinicians the ability to assess the biodistribution of 

oncolytic viruses to ensure safety and correlation with treatment efficacy. Furthermore, a 

more sensitive and specific diagnostic technique to detect tumor origin and, more 

importantly, presence of metastases may be possible. 

 

This work centers on the construction and testing of a VACV strain, GLV-1h153, carrying the 

human sodium iodide symporter (hNIS) as a marker gene for non-invasive tracking of virus 

by imaging. This virus strain was derived from GLV-1h68, which has already been shown to 

be a simultaneously diagnostic and therapeutic agent in several human tumor models 

including breast tumors, mesothelioma, pancreatic cancers, anaplastic thyroid cancers, 

melanoma, and squamous cell carcinoma. Further, GLV-1h68 is currently undergoing clinical 

trials. Thus, this project aimed to help develop imaging techniques for use in clinical trials of 

oncolytic viral therapy. Further, the feasibility and effectiveness of virally induced targeted 

radiotherapy as an anti-cancer strategy was also investigated. 
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hNIS is an intrinsic plasma membrane protein which mediates the active transport and 

concentration of iodide in the thyroid gland and some extra-thyroidal tissues. It is also one of 

several human genes currently being used as reporters in preclinical studies and has 

already been used in clinical studies for imaging viral replication in prostate cancer. hNIS 

gene transfer via viral vector may allow infected tumor cells to concentrate several carrier-

free radionuclide probes such as Iodide-124 (124I), Iodide-131 (131I), and 99m-Technecium 

Pertechtenate (99mTcO4), which have long been approved for human use. hNIS also has the 

advantage of being of human origin thus minimizing immunogenicity, and its transporter 

based system allows intracellular signal amplification.   

 

GLV-1h153 was tested in pancreatic adenocarcinoma cell line PANC-1. GLV-1h153 

infected, replicated within, and killed PANC-1 cells in cell culture as efficiently as GLV-1h68 

and provided dose-dependent levels of hNIS transgene expression in infected cells. 

Immunofluorescence detected successful transport of the protein to the cell membrane prior 

to cell lysis, which enhanced dose and time-dependent intracellular uptake of 131I. In vivo, 

GLV-1h153 was as safe and effective as GLV-1h68 in regressing pancreatic cancer 

xenografts. In animal models, biodistribution profiles revealed persistence of virus in tumors 

5 weeks post injection, with the virus mainly cleared from all other major organs. Tumor 

infection by virus was confirmed via optical imaging and histology.  

 

GLV-1h153 further facilitated deep tissue imaging of virus replication in tumors via Iodide-124I 

positron emission tomography (PET) as well as 99mTcO4-mediated gamma scintigraphy. This 

was possible with both intratumoral and intravenous injection of the virus with radiouptake 

retained as long as 24 and 48 hours after radiotracer injection. PET image quantitation of 

radiouptake in tumors was found to correlate well with tissue radiouptake counts. Repeated 

radiotracer injection revealed optimal radiotracer uptake around 1-2 weeks post virus 

treatment, with decreasing signals after around 3 weeks. The decrease in signal correlated 

with tumor growth retardation, eventual regression from initial volume at baseline, and 

necrosis on histologic analysis by 5 weeks post treatment. Autoradiography of GLV-1h153-

infected tumors revealed a need for presence of virus (visualized with green fluorescent 

protein expression), viable tissue, and adequate blood flow to enhance radiouptake in 

tumors. Dosimetric analysis of uptake in infected tumors displayed potential for therapeutic 

doses of radiotherapy to be delivered systemically to tumors. When GLV-1h153 was 

combined with 131I for treatment, a modest additive effect was seen as compared to GLV-

1h153 alone.  
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Therefore, Insertion of the hNIS gene does not hinder replication capability of GLV-1h153 

and induced the functional production and transportation of the hNIS protein to the cell 

membrane. GLV-1h153 was also a safe oncolytic agent against pancreatic cancer with a 

promising biosafety profile. GLV-1h153 facilitated time, dose-dependent and hNIS-specific 

intracellular radiouptake both in cell culture and in vivo, facilitating deep tissue imaging via 

PET and gamma scintigraphy with 124I and 99mTcO4, respectively. Radiouptake required a 

combination of viable tissue, blood flow, and presence of virus, and was adequately retained 

at potentially therapeutic levels. GLV-1h153 is thus a promising new candidate for treating 

pancreatic cancer and noninvasively imaging viral therapy. These findings warrant further 

investigation into possible long term monitoring of viral therapy, as well as synergistic or 

additive effects of radioiodine combined with this novel treatment and imaging modality. 
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ZUSAMMENFASSUNG  

 

Therapien mittels replikations-kompetenter onkolytischer Viren zeigten bereits 

vielversprechende Erfolge in klinischen Studien zur Bekämpfung verschiedener 

Krebserkrankungen, wobei der Vorteil der erhöhten Behandlungseffizienz im Vergleich zu 

konventionellen Therapien in der hohen Tumorselektivität und den damit verbundenen 

verringerten Nebenwirkungen zu suchen ist. Die Viren sind in der Lage, sich präferentiell 

und selektiv in Krebszellen zu vermehren, wodurch das Tumorgewebe durch Zelllyse 

zerstört, das gesunde Gewebe jedoch nicht geschädigt wird. 

 

Onkolytische Vaccinia Virus (VACV) Stämme sind aufgrund einiger besonderer 

Eigenschaften von besonderem Interesse. Das 192-kb große Genom der VACV macht es 

möglich, große Stücke fremder DNA in einzufügen, ohne, die Replikationseffizienz der Viren 

wesentlich zu beeinflussen. Die schnelle und effiziente zytoplasmatische Replikation der 

Viren erniedrigt die Chance der Rekombination oder Integration viraler Erbinformation in die 

DNA der Wirtszellen. Möglicherweise am wichtigsten jedoch, ist das bekannte 

Sicherheitsprofil als Lebend-Impfstoff in der von der WHO (World Health Organization) 

initiierten, erfolgreichen Ausrottung der Pocken, welches die VACV als attraktives 

onkolytisches Agens und Vektor für heterologe Proteine erscheinen lässt. 

 

Biopsien sind zurzeit der Gold-Standard zur Überwachung onkolytischer Virus Therapien. In 

der präklinischen und frühen klinischen Phasen ist dies auch durchführbar, doch für weitere 

Studien am Menschen werden Methoden benötigt, die eine nicht-invasive Überwachung der 

Therapie ermöglichen. Das Nachverfolgen der Viren könnte Klinikern die Möglichkeit geben, 

die Verteilung der Viren im Körper nachzuverfolgen, die Effizienz und therapeutische Effekte 

zu korrelieren bzw. die mögliche virale Toxizität zu überwachen. Weiterhin könnten so 

möglicherweise die Sensitivität und Spezifität erhöht werden, wenn es darum geht den 

Ursprung des Tumors, oder noch wichtiger, das Vorhandensein von Metastasen, zu 

detektieren. 

 

Im Fokus dieser Arbeit stand die Konstruktion und das Austesten des VACV Stamms GLV-

1h153, welches das Gen für den humanen Natrium-Iodid-Symporter (hNIS) kodiert, das als 

Reportergen für nicht-invasive bildgebende Nachverfolgung der Viren diente. Der 

Virusstamm leitete sich aus dem bereits beschriebenen Stamm GLV-1h68 ab, welcher 

bereits in einigen Tumor-Modellen (Brust-, Mesothelioma-, Pankreas-, anaplastischen 

Schilddrüsen-, Melanoma- und Plattenepithelkarzinom-Modellen) erfolgreich sowohl als 
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diagnostisches, wie auch therapeutisches Agens eingesetzt wurde, und sich zur Zeit in 

klinischen Studien befindet. Demzufolge diente das hier vorgestellte Projekt der Entwicklung 

von Bildgebungsverfahren, die in der onkolytischen Virustherapie eingesetzt werden können. 

Weiterhin sollte als weitere Strategie zur Krebsbekämpfung die Möglichkeit untersucht 

werden, mit Unterstützung der Viren eine gezielte Radiotherapie durchzuführen. 

 

Bei dem Natrium-Iodid-Symporter handelt es sich um ein intrinsisches Membranprotein 

welches den aktiven Transport und die Anreicherung von Iodid in Schilddrüsenzellen und 

einigen anderen Geweben vermittelt. Zudem wird das Gen, neben einigen anderen 

humanen Genen, bereits in präklinischen Studien als Reportergen verwendet und wurde in 

klinischen Studien bereits zur Darstellung von Viren in Prostata-Krebspatienten benutzt. Der 

Transfer des hNIS-kodierenden Gens mittels viraler Vektoren könnte es ermöglichen, dass 

infizierte Tumorzellen Träger-freie Radionuklidproben wie z.B. Iodid-124 (124I), Iodid-131 

(131I), und 99m-Technecium Pertechtenate (99mTcO4), anreichern, welche schon lange für die 

Verwendung am Menschen zugelassen sind. Weitere Vorteile bei der Verwendung von hNIS 

als Reportergen humanen Ursprungs sind zum einen seine minimale Immunogenität und 

zum anderen die intrazelluläre Signalamplifikation durch die Transportfunktion des Systems. 

 

Der Stamm GLV1h153 wurde in der Pankreas-Adenokarzinom Zelllinie PANC-1 getestet. 

GLV-1h153 konnte diese Zellen infizieren, sich in ihnen replizieren und sie in Zellkultur 

schließlich ebenso effizient abtöten wie GLV-1h68. Zudem wurde eine Dosis-abhängige 

Expression von hNIS in infizierten Zellen nachgewiesen. Immunfluoreszenzanalysen 

bestätigten den erfolgreichen Transport des Proteins an die Zellmembran bevor die Zelllyse 

stattfand, was die Zeit- und Dosis-abhängigen Aufnahme von 131I verstärkte. In vivo war 

GLV-1h153, ebenso wie GLV-1h68, sicher und führte zu einer effektiven Regression der 

Pankreasxenograft Tumoren. Biodistribitionsstudien 5 Wochen nach Injektion, zeigten ein 

Vorhandensein von Viren in Tumoren. In anderen Organen war kein oder kaum Virus 

nachweisbar. Die Infektion des Tumors wurde weiterhin durch optische Bildgebung und 

histologische Untersuchungen bestätigt.  

 

GLV-1h153 ermöglichte weiterhin die Bildgebung von Viren in Tumoren mittels 124I-

abhängiger Positronen-Emissions-Tomographie (PET) sowie 99m-Technecium Pertechnat-

abhängiger (99mTcO4) Gamma Szintigraphie. Die Darstellung konnte sowohl mit 

intratumoral, wie auch mit intravenös applizierten Viren erfolgen, war quantitativ, und die 

Radiotracer konnten bis zu 24 bzw. sogar 48 h nach deren Injektion nachgewiesen werden. 

Die quantitative Analyse der Radionuklidaufnahme aus PET-Bildgebungsdaten korrelierte 

mit den Daten der Bioverteilungsdaten aus isolierten Gewebn. Wiederholte Injektionen des 
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Radiotracers zeigten, dass 1-2 Wochen nach Virus-Injektion die Aufnahme des Tracers in 

den Tumor am höchsten war. Die Signalintensität begann dann 3 Wochen nach Injektion der 

Viren abzufallen, was mit dem Rückgang des Tumors und der letztendlichen Regression und 

der Nekrose in histologischen Untersuchungen 5 Wochen nach Behandlung korrelierte. 

Autoradiographische Untersuchungen von GLV-1h153 infizierten Tumoren zeigten, dass das 

Vorhandensein von Viren (visualisiert durch die viral vermittelte GFP Expression), lebendes 

Gewebe und ausreichender Blutfluss benötigt werden, um die Aufnahme des Radiotracers in 

den Tumor zu erhöhen. Dosimetrische Analysen infizierter Tumoren zeigten das Potential für 

eine systemisch applizierte Radiotherapie des Tumors auf. So führte eine Kombination aus 

GLV-1h153 mit 131I-Behandlung zu geringfügig besseren therapeutischen Erfolgen, als eine 

alleinige Therapie mit GLV-1h153.  

 

Zusammengefasst, hindert die Insertion von hNIS die Replikation von GLV-1h153 nicht und 

resultiert in der Produktion, dem Transport und dem Einbau funktionellen hNIS in die 

Zellmembran. Zudem konnte gezeigt werden, dass GLV-1h153 ein sicheres onkolytisches 

Agens gegen Pankreaskrebs ist, das eine vielversprechende Bioverteilung aufweist. GLV-

1h153 vermittelte Zeit- und Dosis-abhängige sowie hNIS-spezifische intrazelluläre 

Radiotracer-Aufnahme sowohl in Zellkultur wie auch in vivo, was eine Bildgebung tieferer 

Gewebsschichten mittels PET und Gamma Szintigraphie mit 124I bzw. 99mTcO4 ermöglichte. 

Die Aufnahme der Radioaktivität setzte eine Kombination lebenden Gewebes, Blutfluss und 

dem Vorhandensein von Viren voraus und sie konnte in therapeutsich aktvien Dosen 

zurückgehalten werden. GLV-1h153 ist demnach ein vielversprechender Kandidat zur 

Behandlung von Bauchspeicheldrüsenkrebs und zur nichtinvasiven Bildgebung der viralen 

Therapie. Die Ergebnisse untermauern die Notwendigkeit weiterer Untersuchungen und 

Entwicklungen in der Langzeitverfolgung viraler Therapien sowie synergistischer Effekte 

einer Radioiod-Kombinationstherapie mit dieser neuen therapeutischen und bildgebenden 

Substanzklasse. 
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1.0 ONCOLYTIC VIRAL THERAPY 

 

12 million people worldwide will be diagnosed with cancer this year, and 7 million people will 

die from cancer-related causes1. In the United States alone, the figures are estimated at 

1,479,350 new cases and 562,340 deaths in 20092. In Germany, an estimated 340,000 new 

cancer cases are diagnosed annually, and 210,000 lives are lost to cancer related causes, 

making cancer the second leading cause of death in Germany after diseases associated 

with the circulatory system3. Unless dramatic breakthroughs in treatments are achieved, 

cancer will be leading cause of death in Germany within 15 to 20 years. Adding to the 

overwhelming loss of life and decline in quality of life for both patient and family, the 

economic costs associated with a diagnosis of cancer is an immense burden on society 

estimated at $228.1 billion dollars in 2008 in the United States alone2.  

  

Despite advances in conventional therapy, the formidable challenge of treating cancer, 

especially if progressed, still remains. Even with aggressive chemo- and radiation therapy, 

the commonest forms of cancer have not seen improvements in survival rates4. 

Furthermore, despite a prominent increase in cost, anti-cancer drugs approved in 1995 – 

2000 do not show increased efficacy in providing cures from cancer5.  

 

Pancreatic cancer in particular is the fourth leading cause of cancer death in the United 

States6, and objective response to single agent or combination chemotherapies occurs in 

less than 20% of patients which is never curative7. These results explain the active 

investigation underway seeking novel therapeutic strategies for this disease. Developing 

novel therapies, which may also work synergistically in combination with conventional 

treatment options, is vital. 

 

It is well established that combining several treatment modalities appears to be the strongest 

chance of fighting this disease8. Treatments such as surgery, radiation therapy, and 

chemotherapy are often used together to treat multiple different cancer origins. Oncolytic 

viral therapies have also made their mark on the cancer research world as another novel, 

potential therapeutic option, with the possible advantage of lessening side effects as well as 

higher treatment efficacy due to higher tumor selectivity8, 9. In fact, results have been so 

promising that oncolytic viral treatments have now been approved for clinical trials in several 

countries, and the first oncolytic viral therapy has now been marketed as a treatment for 

head and neck cancers in China 10. 
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1.1 What are Oncolytic Viruses? 

 

Oncolytic viruses (OVs) refer to those that are able to preferentially and selectively 

propagate in cancer cells, and consequently destroy tumor tissue leaving non-cancerous 

tissues unharmed11. For a virus to be truly oncolytic, it must possess these qualities. 

Examples of oncolytic viruses studied to date include Newcastle disease virus, adenovirus, 

herpes simplex virus (HSV), vesicular stomatitis virus (VSV), and vaccinia virus, among 

others. The ultimate goal of replication-competent anti-cancerous viral therapy is to produce 

a safe and effective therapeutic index with minimal toxicity and side effects 12. 

 

This chapter presents a summary of the literature available on replication-competent 

oncolytic viruses and will focus on the development of oncolytic vaccinia virus strains. 

 

1.1.1 History of Oncolytic Viruses.  

 

The idea that viruses may be able to treat cancer was born almost by chance, when in the 

early 20th century patients with malignancies who experienced viral infection or received 

rabies vaccinations were noted to experience transient remissions13, 14. Dock, who was the 

first to describe this phenomenon in 1904 when he reported of a patient who underwent 

significant remission of leukemia after experiencing an influenza infection 15. NG De Pace 

described a case of a woman with uterine cancer experiencing remission after a rabies 

vaccination, presenting his findings in 1910 at the International Congress in Paris 16, 17. 

Levaditi et al. then demonstrated that vaccinia virus inhibited various mouse and rat tumors 

in 1922, and described this phenomenon as ―le tumeur fait function d‘eponge‖18.  

 

These early discoveries led to several viruses being tested in both pre-clinical and clinical 

settings during the late 1940s, 50s and 60s8. In the late 1940s, G.T.Pack inoculated live 

attenuated rabies vaccines into human melanoma tumors and reported the first remissions 

at Memorial Sloan-Kettering Cancer Center19-21. Alice Moore laboratory at Memorial Sloan-

Kettering also became a prominent force in the field of oncolytic virotherapy22-24. Working 

with Russian Far East encephalitis virus, complete regression was achieved in some cases 

of mouse sarcoma 180 – the first animal model to demonstrate full regression through viral 

oncolysis22. Hoster et al. published the first clinical trial assessing the impact of viral 

oncolysis on cancer. Twenty-one volunteers with Hodgkin‘s disease were inoculated with 
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samples of tissue and sera from other patients noted to have developed viral hepatitis. 

Development of viral hepatitis in the volunteers was defined at the time of jaundice onset. 

Although there were obviously many significant side effects, some patients did show clinical 

improvement and decreased tumor size after manifesting classic signs and symptoms of 

viral hepatitis 25. In 1956, the National Cancer Institute (NCI) conducted the first large-scale 

clinical study, administering wild-type adenoviruses to 30 patients with cervical cancer and 

achieving varying degrees of localized tumor necrosis but no significant tumor regressions or 

remissions 26.  

 

While these early studies and trials were considered groundbreaking, interest in viruses as 

potential anti-neoplastic therapies was abandoned due to unimpressive and short-lived 

success, as well as unacceptable side-effects that eventually ended trials17. These viruses 

thus failed to infect only malignant cells, failed to replicate only in cancer cells, and were 

unable to circumvent detection and clearance by the immune system. Limited virology, 

molecular biology, immunology, and genetics knowledge, as well as primitive biotechniques, 

likely contributed to this 8. 

 

It is only recently that the fervor of viruses as a strategy against cancer has been reignited 

with the advancement in scientific knowledge and technology. We now possess tools that 

enable us to develop more targeted and effective viruses12. The adenovirus gene deletion 

mutant ONYX-015, which was deleted for the E1B-55K gene and hypothesized to target 

p53-deficient tumor cells, was the first replication-competent modified virus that displayed 

anti-cancer effects in humans27. China is now the first country in the world to market an 

adenoviral therapy for head and neck cancers10. 

 

1.1.2 Why Oncolytic Viruses? 

 

Oncolytic viruses (OVs) have the potential to fulfill many criteria for the ideal cancer 

therapeutic (modified from Breitbach et al.)28:  

1. Cancer therapeutics should be cytotoxic rather than cytostatic;  

2. The new therapeutic must have novel, multi-pronged mechanisms of action in order 

to decrease the onset of resistance;  

3. Novel therapeutics should target or exploit validated genetic pathways and should 

also possess a broad spectrum of efficacy in order to allow for development for 

various markets;  
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4. Beyond having a cytotoxic effect, anticancer agents should ideally cause acute tumor 

debulking, as this facilitates the evaluation of tumor responses, leading to faster, 

lower-cost development. Acute debulking approaches are also complimentary to 

combination therapy with standard (cytostatic) treatments.  

5. The agent‘s route of administration should be flexible, e.g. both IV and IT 

administration should be feasible in order to facilitate systemic tumor targeting as 

well as local boosts of therapeutic to cause tumor debulking;  

6. Novel therapeutics should be a part of a broad product class, with room for 

development of improved next generation products.  

 

With regards to oncolytic viruses: 

1. OVs can directly infect and lyse cancer cells, thereby acting as cytotoxic agents.  

2. OVs can trigger vascular disruption and loss of tumor perfusion shortly following OV 

therapy. An acute inflammatory response was shown to cause vascular shutdown 

and apoptosis of uninfected tumor cells29. In addition, the association of 

immunostimulatory products and antigens from the virus with tumor antigens within 

the tumor microenvironment may ‗tip the balance‘ to rejection of the tumor by the 

host immune response (reviewed in section 2.5 and 2.6).  

3. Advances in genetic engineering have allowed for improved OV targeting and 

potency; many opportunities exist for the development of next generation products. 

Since OVs currently in development exploit validated genetic pathways known to be 

dysregulated in many cancer types (e.g. EGFR/Ras30), OVs may have a broad 

spectrum of efficacy. 

4. Furthermore, evidence of acute tumor debulking in patients was also reported in 

clinical trials. A reduction of tumor perfusion was observed in patients with advanced 

HCC treated with an oncolytic vaccinia virus (JX-594, Jennerex Inc.) within 6 days of 

therapy31.  

5. OVs are replicating therapeutics with unique pharmacokinetics; they are quickly 

cleared from systemic circulation but can rapidly and selectively amplify within tumors 

and may re-emerge systemically (consistent with waves of replication) 31. Therefore, 

OV therapeutics are amenable to both to IV infusion as well as local IT boosts. 

6. Finally, advances in genetic engineering have allowed for improved OV targeting and 

potency; many opportunities exist for the development of next generation products. 
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1.1.3 An ‘Ideal’ Replication-Competent Oncolytic Virus.  

 

There are several versions in the literature of what characteristics an ideal replication-

competent oncolytic virus should incorporate. These characteristics may be combined and 

summarized as follows 12, 32, 33:  

 

1. Effective, direct, and preferably complete destruction of tumor cells via lysis;  

2. Preferential or exclusive and rapid infection of tumor cells, ideally also in nondividing 

tumor cells;  

3. Initial evasion of immune system in order to effectively infect and distribute to 

neighbouring cancer cells and cause exponential destruction;  

4. Subsequent autologous anti-tumor response elicited;  

5. Normal tissues are unharmed;  

6. Mild, limited, or no side effects caused, especially in immunocompromized patients;  

7. Treatments are known and available if needed to control or cease replication;  

8. No safety concerns for medical personnel, contacts of the infected individual, or 

public safety;  

9. Stable genetic make-up, especially if virus is modified;  

10. No risk of integration of viral genome into the genome in non-cancerous cells. No 

cells with viral genome contents in host cell genome should survive;  

11. Sufficient genomic carrying capacity;  

12. Unlikely recombination with other organisms; and  

13. Able to be manufactured and distributed for widespread clinical use according to 

‗Good Manufacturing Practices‘ (GMP) guidelines.  

 

An ‗ideal‘ virus has yet to be identified. However, the vaccinia appears to be one of the most 

promising. 

 

1.2 Vaccinia Viruses  

 

In order to develop safer and more efficacious vaccinia viral therapies, it is important to 

understand the history, taxonomy, morphology, and replication of the therapy agent. 

Moreover, an understanding on immune responses of oncolytic viral therapies is also 

needed. 
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1.2.1 History of Vaccinia Viruses as Oncolytic Virotherapies. 

 

Levatidi‘s laboratory were the first to discover vaccinia viruses (VACVs) were naturally 

oncolytic34. Cassel and Garrett followed by successfully treated murine ascites carcinoma35. 

At M.D. Anderson, a patient was witnessed to have remission of Chronic Lymphocytic 

Leukemia after being inadvertently vaccinated with vaccinia virus36, and another patient 

although becoming significantly ill from vaccinia vaccination requiring immunoglobulin had 

remission of his CLL for over 3 years37. Another patient with multiple myeloma had a partial 

response after IV administration of vaccinia virus38. In patients with metastatic renal or 

pulmonary carcinomas also experienced partial remissions38, 39. This lead to several clinical 

trials including treating melanoma with a potent vaccinia virus encoding GM-CSF40, 41, the 

use of thymidine kinase deleted JX-594 encoding the granulocyte macrophage colony 

stimulating factor (GM-CSF) for various cancers42, as well as the parent vaccinia virus 

discussed in this thesis43. Ongoing clinical trials are discussed in section 4.0. 

 

 

1.2.2 Taxonomy. 

 

Vaccinia virus is a member of the Poxviridae family44, 45. Viruses of this family are split into 

two subfamilies, Chordopoxvirinae, which infect vertebrates and Entomopoxvirinae which 

infect solely insects. The subfamily of Chordopoxvirinae is subdivided into eight different 

genera, similar in morphology and host tropism. VACV belongs to the genus Orthopoxviridae 

of the Chordopoxvirinae subfamily, whose members are the causative agents of smallpox. 

Following a massive worldwide effort in the 1970s, the World Health Organisation (WHO) 

declared smallpox to be eradicated in 198046. This effort was due in part to the availability of 

a stable and effective vaccine based on vaccinia virus with sufficient antigenic cross 

reactivity to provide protection to other orthopox viruses. The origins of modern vaccinia 

virus are obscure, and although now known to be distinct from the cowpox virus used in 

1798 by Edward Jenner as a vaccine for smallpox47, it is closely related. Historically the two 

are often considered to be one and the same 46.  
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1.2.3 Morphology. 

 

VACV belongs to the group of double-stranded DNA viruses and is one of the largest known 

viruses. Vaccinia virus particles are approximately 300 x 240 x 120 nm in size and possess 

an oval, brick-shaped structure with a lipoprotein shell surrounding a complex core structure 

45. The core structure contains a linear, dsDNA genome of approximately 192kb, encoding 

for some 200, non-overlapping genes. The double-strand DNA is associated with a number 

of virus-encoded proteins necessary for early transcription of RNA polymerase and enzymes 

for RNA capping, methylation and polyadenylation48. Approximately half of the VV genome is 

transcribed before DNA replication (early class viral genes)49, 50. Minimal interaction with host 

proteins allows VACV to replicate in many different cell types and to avoid host defence 

mechanisms. 

 

At least four distinct types of vaccinia virus particles are produced during productive 

infection: mature virus, also referred to as intracellular mature virus (IMV), intracellular 

enveloped virus (IEV), and two forms of extracellular virus, cell-associated enveloped virus 

(CEV) and extracellular enveloped virus (EEV)45, 51. The IMV particle is surrounded by one 

membrane, and the EEV particle comprises an IMV particle enclosed within a second lipid 

membrane containing several viral antigens52.  

 

1.2.4 Replication. 

 

VACV is unique among most DNA viruses in that its replication occurs in the host cell 

cytoplasm for the duration of the infectious cycle. The first step in infection is the fusion of 

enveloped virus and cell membrane or the membrane of an endocytotic vesicle53. The mode 

of entry is dependent on the particle form. CEVs, EEVs and IMVs use different and yet partly 

unsolved mechanisms and receptors for entry 54. 

 

After fusion of the viral and cellular membranes, the viral core is released into the cytoplasm 

and transported further into the cell along microtubules to the cytoplasmic side of the 

endoplasmatic reticulum (ER). Upon entry into the cytoplasm, the core partially uncoats to 

synthesize early viral mRNAs which resemble host cell mRNAs. The cellular translational 

apparatus is recruited for translation of these mRNAs that encode for proteins involved in 

viral DNA synthesis. Other early proteins serve to modify the host cell (recruitment of the 
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transcriptional and translational apparatus) to the advantage of the virus and aid virus 

escape from the host innate immune response52. After DNA replication has begun in so-

called mini-nuclei, which are surrounded by rough ER membranes, immediate genes and 

late genes are transcribed55. Immediate genes serve mostly for the transcription of late 

genes which are involved in packaging of the new viral particles and for essential proteins 

that initiate early gene transcription in a newly infected cell (Figure 1). 

 

 

Figure 1. Poxvirus replication cycle. Poxviruses replicate in the cytoplasm. Two distinct infectious 
virus particles, the intracellular mature virus (IMV) and the extracellular enveloped virus (EEV), can 
initiate infection. The IMV and EEV virions differ in their surface glycoproteins and in the number of 
wrapping membranes. Fully permissive viral replication is characterized by three waves of viral mRNA 
and protein synthesis (early, intermediate and late), which are followed by morphogenesis of 
infectious particles. The initial intracellular mature virus (IMV) is transported via microtubules and is 
wrapped with Golgi-derived membrane, after which it is referred to as an intracellular enveloped virus 
(IEV). The IEV fuses to the cell surface membrane to form cell-associated enveloped virus (CEV; not 
shown), which is either extruded away from the cell by actin-tail polymerization or is released to form 
free EEV. EEV might also form by direct budding of IMV, therefore bypassing the IEV form. McFaden. 
Poxvirus tropism. 2005. 
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After synthesis of all the necessary proteins, assembly of progeny virus particles begins56. 

Assembly starts with the formation of crescent-shaped membranes and spherical immature 

virions (IVs) that appear at the sites of DNA replication around 5 hours post infection. These 

IVs still lack the genome and once they take up DNA, they mature into the brick-shaped IMV, 

the first infectious form of the virus57. IMVs will either be released upon cell lysis or 

alternatively move away from DNA sites by binding to microtubules of the host cell, where 

they can obtain a second double membrane from a trans-Golgi or early endosomal 

compartment to form IEVs56. The IEV particles use microtubules and kinesin to propel 

towards and fuse with the cell membrane forming CEVs. CEVs can then recruit actin from 

the cytoplasm to be transported to adjacent cells or dissociate from the cell membrane to 

become EEVs. The latter form has evolved for rapid systemic spread within the host and for 

evasion of immune-mediated clearance. 

 

1.2.5 Host Immune Response to VACV Infection.  

 

In order to develop strategies to combat cancer with oncolytic viruses, it is important to have 

an understanding of the immune response to viruses and virus-colonized tumors. The 

immune system has the capability to hinder or enhance oncolytic viral therapy and anti-

tumor effects, especially in immunocompetent patients. Furthermore, combining 

immunotherapy and oncolytic viral therapy may result in more potent, effective, and 

successful treatment outcomes. By further understanding the pathways and mechanisms of 

the immune response, we may be able to develop more safe, potent, and efficacious 

treatments. 

 

Mammalian host cells are able to initiate immune responses against viruses in order to limit 

viral replication and clear infection 58. They do this through several processes of viral 

recognition and innate defence signaling, inducing immune responses against the viruses. 

Of particular importance are IFNs, especially the type I IFNs, IFN-α and IFN-β. These 

cytokines, and the genes they stimulate, are essential for immune defences against viruses. 

Innate sensing of viruses and induction of IFNs induce three main innate immune responses 

via activation of: 1) the complement cascade; 2) further mediators of inflammation including 

cytokines; and 3) innate immune effector cells such as macrophages and dendritic cells59. If 

pre-existing immunity is present, viruses can also be directly neutralized by circulating 

antibodies60. The innate immune system then orchestrates the lysis of virions and virus-

infected cells, inducing either necrosis or apoptosis, as well as providing a link to adaptive 
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immunity59. Research into the role of innate defences in dampening the oncolytic effects of 

oncolytic viruses has only recently begun, and the importance of this knowledge lies in 

finding avenues to modulate such initial innate responses, in order to allow for efficient viral 

delivery, replication, dissemination, and increased oncolysis of tumors while minimizing host 

toxicity.  

 

Immediately after VACV invasion, antiviral mechanisms involving induction of innate immune 

system complement and productions of interferons (IFNs) and cytokines, are activated and 

serve as the first-line host defence. Recent studies have revealed that vaccinia activates 

innate immunity through a TLR2/MyD88-dependent pathway, resulting in the production of 

pro-inflammatory cytokines and a TLR-independent pathway, leading to the induction of 

antiviral IFN-β production61, 62. Subsequently, adaptive immune responses that are mediated 

by cytotoxic and helper T cells assume importance in defence63. Several studies have 

demonstrated that both the T helper 1 (Th1) and cell-mediated immune responses play a 

critical role in host defence against VACV infection64-67. In addition, neutralizing antibodies 

could also be involved in preventing subsequent VACV infections.  

 

Furthermore, it was demonstrated that antivirus neutralizing antibodies (Abs) were more 

important in clearing VACV than cytotoxic T-lymphocytes (CTLs) following acute infection, 

while in the absence of Abs, CTLs contribute to protection against VACV infection68. 

However, there is still only limited knowledge about the protective immune responses 

against VACV infection. 

 

A number of studies have established the multiple factors encoded by VACV that actively 

suppress innate immunity and the Th1 immune response. Vaccinia virus immunomodulators 

can act either inside or outside infected cells. Intracellular VACV proteins regulate host gene 

transcription (shut off of DNA, RNA, and protein synthesis of cellular origin), the antiviral 

activity of IFNs, innate immune signalling, and apoptosis, whilst extracellular VACV proteins 

inhibit the action of complement, cytokines, and chemokines [for reviews see 48, 69]. Taken 

together, these viral-encoded proteins allow VACV to infect and replicate with remarkable 

efficiency in its host.  
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1.2.6 Host Immune Responses to Tumors Colonized With VACV. 

 

Several studies have been emerging recently specifically looking at the immune response to 

tumors colonized with oncolytic vaccinia viruses. Patients treated with vaccinia expressing 

GM-CSF delivered directly to cutaneous melanoma, for example, demonstrated regression 

of not only the treated lesions but also metastases. The metastases showed no signs of 

vaccinia infection, but did show T cell infiltration70. Therefore, in these experimental settings 

vaccinia was not only able to induce CTL responses against itself, but also against tumor 

cells. Furthermore, studies in immunocompetent mice found that animals cleared of a tumor 

by vaccinia treatment were subsequently resistant to rechallenge by cells of the same tumor 

type, possibly due to the development of immune memory71.  

 

In addition, transcriptional profiling of regressing GI-101A subcutaneous breast xenografts in 

mice treated with the VACV GLV-1h68 based on a mouse-specific platform also revealed 

gene expression signatures consistent with immune defence activation, inclusive of IFN-

stimulated genes (STAT-1 and IRF-7), cytokines, chemokines, and innate immune effector 

function. These findings, the authors concluded, suggested immune activation may combine 

with viral oncolysis to induce tumor eradication in this model, providing a novel perspective 

for the design of oncolytic viral therapies for human cancers43. This was further validated in 

pancreatic and prostate xenograft models, where profiling of immune proteins revealed a 

significant proinflammatory response and marked activation of innate immunity in virus-

colonized tumors72, 73.  

 

Further transcriptional analysis of responding vs. non-responding xenografts infected with 

GLV-1h68 revealed that tumor rejection was associated in vivo with activation of IFN-

stimulated genes and again innate immune host's effector functions correlating with VACV 

colonization of the xenografts. Interestingly, tumors resistant to VACV showed combined 

activation of Th1 and Th2 with a deviation toward Th2 and humoral immune responses that 

failed to achieve rejection, which is possibly explained by a lack of target antigen. Moreover, 

the tumor tolerance model instead displayed immune suppression pathways through 

activation of regulatory mechanisms that included in particular the overexpression of 

interleukin-10 (IL-10), IL-10 receptor, and suppressor of cytokine signaling SOCS-1 and 

SOCS-374. These immune signatures reproduced those observed in humans during 

immune-mediated tissue-specific destruction that causes tumor or allograft rejection, 

autoimmunity or clearance of pathogens75. The authors suggested that there may be 

common pathways in a universal mechanism associated with tumor rejection 76. 
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1.2.7 Why Vaccinia Viruses as Oncolytic Agents. 

 

The advantages of using vaccinia virus as a vector for oncolytic viral therapy are several. 

Vaccinia‘s large genome enables a large amount of foreign DNA to be incorporated without 

reducing the replication efficiency of the virus, which has been shown to be the case with 

some adenoviruses77. It has fast and efficient replication, unlike, for example adenovirus 

ONYX-015. Cytoplasmic replication of the virus lessens the chance of recombination or 

integration viral DNA into cells. Its DNA-based genome also makes it more stable than RNA-

based viruses. It has been shown to be capable of immune evasion, and capable of infecting 

a wide variety of cells. Perhaps most importantly, its safety profile after its use as a live 

vaccine in the WHO‘s smallpox vaccination makes it particularly attractive as an oncolytic 

agent and gene vector46. In addition, a vaccinia immunoglobulin and antiviral drugs are 

available if needed78.  

 

Mechanisms of vaccinia viral oncogenesis remain speculative and unproven. It has been 

shown that oncolytic viruses target cancers that overexpress proteins such as ribonucleotide 

reductase, DNA repair enzymes, and proteins rendering them resistant to apoptosis, 

characteristics that tend to make tumor cells resistant to chemotherapy and radiation 

therapy79. Recently it was discovered that both R1 and R2 subunits of ribonucleotide 

reductase are needed for vaccinia viruses to replicate 80. Although both subunits are already 

encoded in most VACV strains, it suggests that vaccinia viruses may prefer environments 

high in ribonucleotide reductase which may explain vaccinia‘s natural attraction to cancer 

cells. More investigation is needed to elucidate the exact mechanisms rendering vaccinia 

viruses highly selctive and oncogenic in tumors. 

 

 

1.3 Vaccinia Virus in Oncolytic Tumor Therapy 

 

Due to the advantages of vaccinia viruses, several preclinical trials have been performed in 

a variety of cancer origins. Success of these studies has also lead to several clinical trials 

with novel oncolytic viral strains. 
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1.3.1 Preclinical Data. 

 

The successful use of vaccinia virus as an oncolytic agent has been so far published in 

around 50 tumor models (Table 1). This clearly demonstrates the potential of vaccinia virus 

strains to be applicable as tumoricidal agent in a wide variety of cancers. Moreover, as the 

primary tumor is usually not the cause of death, it is important to note that vaccinia virus 

injection has the potential to reduce metastatic burden when, seen with the aggressive PC-3 

prostate cancer model73 or in rabbits bearing VX2 liver tumors81, 82.  

 

Table 1. Vaccinia virotherapy in tumor models. 

Tumor model origin host VV background References 

Prostate 

PC-3 human mouse LIVP 73, 75 

DU-145 human mouse LIVP 73, 75, 83 

Renal 

786-O human mouse WR 84 

ACHN human mouse WR 84 

769P human mouse WR 84 

Renca mouse mouse WR 84 

Pancreatic 

Mia-Paca2 human mouse LIVP 72, 75, 83, 85 

PANC-1 human mouse LIVP 72, 75, 86 

Suit-2 human mouse LIVP 87 

Lung 

A549 human mouse LIVP 75, 83 

TC-1 mouse mouse Not reported 88 

CMT-64 mouse mouse IHD-J 89 

Breast 

GI-101A human mouse LIVP 43, 75 

ZMTH3 dog mouse LIVP 90 

MTH52c dog mouse LIVP 91 

4T1 mouse mouse WR 92 

JC mouse mouse WR(WI) 81, 89 

Brain 

C6 rat mouse WR(vvDD) 93 
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U87MG human mouse WR(vvDD) 93 

U118 human mouse WR(vvDD) 93 

RG2 rat rat WR(vvDD) 93 

F98 rat rat WR(vvDD) 93 

NXS2 mouse mouse VSC20 94 

Squamous cell carcinoma 

MSKQLL2 human mouse LIVP 95 

Mesothelioma 

MSTO-211H human mouse LIVP 96 

Thyroid 

8505C human mouse LIVP 97 

DRO90-1 human mouse LIVP 97 

Multiple myeloma 

My5 human mouse WR 98 

RPMI8226 human mouse WR 98 

Liver 

VX2 rabbit rabbit Wyeth 82 

VX2 rabbit rabbit WR 81, 99 

spontaneous rat rat Wyeth 82 

TIB-75 mouse mouse WR 81 

Colorectal 

MC38 mouse mouse WR 81, 100-103 

LoVo human mouse Copenhagen 104 

HCT116 human mouse WR 101, 105 

CMT-93 mouse mouse WR 92, 105 

HT29 human mouse WR 81 

Ovarian 

OVCAR-3 human mouse LIVP 75 

UCI-101 human mouse WR 92 

SKOV-3 human mouse WR 92 

A2780 human mouse WR 103, 106 

ES2 human mouse LIVP 107 

MOSEC(-luc) mouse mouse WR, LIVP 103, 106, 108 

Defb29 Vegf-

luc 
mouse mouse LIVP 107 
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Melanoma 

1858-MEL human mouse LIVP 75 

888-MEL human mouse LIVP 75 

B16F10 mouse mouse 
Wyeth 

Not reported 

109 

88 

 

The use of different oncolytic vaccinia virus strains (WR, LIVP, Wyeth, Copenhagen), 

revealed that WR-derived strains were able to colonize tumors in human xenografts in nude 

as well as syngeneic tumors in immunocompetent wild-type animals, and virus strains 

producing higher amounts of EEV were shown to be better suited to colonize distant 

metastasis and result in faster tumor regression89, 110. LIVP-derived strains, on the other 

hand, are not as well suited to colonize murine tumors but showed a better safety profile in a 

study comparing WR- and LIVP-derived tumor selective strains43. In addition, a LIVP-mutant 

which does produce higher amounts of EEV did not show improved therapeutic potential111. 

Therefore, although different vaccinia virus strains are able to show therapeutic effects in a 

number of tumor models, properties of each strain may be better suited in particular patients 

or tumor origins.  

 

1.3.2 Development of New VACV Generations. 

 

Enhanced understanding and advancements in molecular biology has enabled a generation 

of oncolytic viruses engineered for safer and more efficacious treatments. Several strategies 

have been investigated with regards to vaccinia viruses. 

 

 

1.3.2.1 VACVs Armed With Cytokines / Immunostimulatory Molecules. 

 

One of these strategies relates to the combination of viral therapy with cytokines, which may 

harness the host‘s own immunity to assist tumor rejection and destruction.  

 

As mentioned, thymidine kinase(-) vaccinia virus strains encoding human GM-CSF, JX-549 

and JX-963, were developed81, 82. Both viral strains resulted in enhanced antitumor immunity 

due to the expression of the GM-CSF transgene in situ. Direct oncolysis plus GM-CSF 

expression stimulated shutdown of tumor vasculature and antitumoral immunity, significantly 

reducing tumor burden and increasing median survival. Tumor-specific virus replication and 
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gene expression, systemically detectable levels of GM-CSF, and tumor-infiltrating CTLs as 

well as significant increases in neutrophil, monocyte and basophil concentrations in the 

peripheral blood were also demonstrated.  

 

Expression of T-cell costimulatory molecule 4-1BBL by an oncolytic vaccinia virus resulted in 

modest tumor regression in a poorly immunogenic murine melanoma model109. In a setting 

when lymphodepletion was employed, the expression of 4-1BBL resulted in promoted MHC 

class I expression. At the same time the authors showed reduced antiviral antibody titers, 

enhanced viral persistence, and rescued effector memory CD8+ T cells. This significantly 

improved the therapeutic effectiveness of the oncolytic vector. 

 

Vaccinia expressing co-stimulator cytokines has even been shown to help overcome the 

tumor microenvironment‘s immune suppressive characteristics. The melanoma 

microenvironment in particular has been shown to possibly lead to local T cell tolerance in 

part through downregulation of costimulatory molecules, such as B7.1 (CD80). A 2-dose-

escalation phase I clinical trial was conducted with 12 patients using a recombinant vaccinia 

virus expressing B7.1 (rV-B7.1) for monthly IT vaccination of accessible melanoma lesions. 

The approach was well tolerated with only low-grade fever, myalgias, and fatigue reported, 

with 2 patients experiencing vitiligo112. An objective partial response was observed in 1 

patient and disease stabilization in 2 patients, 1 of who was alive without disease 59 months 

following vaccination. All patients demonstrated an increase in post vaccination antibody and 

T cell responses against vaccinia virus. Local and systemic immunity was evaluated in 

patients demonstrated an increased frequency of gp100 and T cells specific to melanoma 

antigen recognized by T cells 1 (MART-1), and tumor regression was associated with 

increased expression of CD8 and IFN-.  

 

Continuing this work, the effects of a vaccinia virus expressing three costimulatory 

molecules, B7.1, ICAM-1, and LFA-3 (rV-TRICOM) was evaluated in patients with metastatic 

melanoma in a dose escalation phase I trial113. Of the twelve patients followed up, there was 

a 30.7% objective clinical response, with one patient achieving a complete response for 

more than 22 months. An inverse association was detected between anti-vaccinia antibody 

and anti-vaccinia T cell responses, and patients who received high dose IL-2 but failed to 

respond to vaccination had a trend toward improved survival. These studies confirm the 

safety profile and feasibility of direct injection of vaccinia virus expressing multiple 

costimulatory cytokines and molecules in patients with established tumors in order to 

stimulate anti-tumor immunity. 
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Cytokines have even been utilized in order to increase tumor selectivity. Kirn et al. 

developed a vaccinia virus strain expressing the cytokine IFN-β, JX-795, which is incapable 

of responding to this cytokine in order to have the dual benefits as a cancer therapeutic with 

increased anticancer effects and enhanced virus inactivation in normal tissues105. The virus 

was based on a vaccinia B18R deletion mutant backbone for IFN-β expression, as the B18R 

gene product neutralizes secreted type-I IFNs. JX-795 had superior tumor selectivity and 

systemic efficacy when compared with the TK-/B18R- control or wild-type vaccinia in 

preclinical models. The authors concluded that by combining IFN-dependent cancer 

selectivity with IFN-β expression to optimize both anticancer effects and normal tissue 

antiviral effects, tumor-specific replication, IFN-β gene expression, and treatment efficacy 

was achieved following systemic delivery in preclinical models. 

 

1.3.2.2 VACV Delivering Anti-Angiogenic Agents. 

 

Further improvement of the oncolytic potential could recently be achieved in three 

independent studies in which the authors tried to inhibit the tumor vasculature by expression 

of an endostatin/angiostatin fusion gene87 or, as in two of the studies, targeting the 

vasculature endothelial growth factor (VEGF)83, 84. VEGF binds to specific receptors on 

epithelial cells and is a major player in tumor angiogenesis. Inhibition of VEGF has been 

extensively studied in several cancer models84, 114-117, with Avastin being one of the most 

successful immunotherapeutic proteins to date. This drug has been approved by the US 

Food and Drug Administration for use in combination with chemotherapy for treatment of 

metastatic colorectal cancer and most forms of metastatic non-small cell lung cancer118, 119. 

Vaccinia-mediated blocking of VEGF was achieved by either fusing the VEGF receptor 1 to 

the Fc tail of human IgG antibody (VEGFR-1-Ig) or by secretion of a single-chain antibody 

(GLAF-1) to VEGF. In both cases, VEGF was bound and thus prevented interaction to its 

natural receptors on endothelial cells resulting in lower blood vessel densities within the 

tumor tissue. The reduced tumor vascularity was accompanied by faster regression of 

tumors, although in one study, this depended on the dose of virus injected84. In the same 

study the VEGFR-1-Ig encoding vaccinia virus strain was found to be more lethal to mice 

than the parental strain. For the GLAF-1 encoding virus strains no changes in toxicity were 

described. 

 

1.3.2.3 Use of VACVs in Gene Directed Enzyme Prodrug Therapy. 

 

Another approach to enhance the oncolytic effects caused by vaccinia virus strains is the so 

called gene directed enzyme prodrug therapy (GDEPT). Here, a relatively non-toxic prodrug 



32 

 

is enzymatically converted to toxic drugs which result in killing of the enzyme producing 

tumor cells. Moreover, the so called bystander effect caused by diffusion of the drug into 

neighboring cells results in killing of cells in close proximity to the enzyme-producing cell 

even if they were not made to express the prodrug converting protein.  

 

The most prominent enzyme type in vaccinia virus-mediated GDEPT certainly is cytosine 

deaminase which is absent in mammalian cells and used in combination with 5-

fluorocytosine104, 106, 120-122. This prodrug is converted to 5-fluorouracil whereby the 

efficiencies depend on the specific cytosine deaminase (e.g. bacterial, fungal) and the 

presence of uracil phosphoribosyltransferase123, 124. When using this system in combination 

with oncolytic vaccinia virus strains, the reported results indicate better therapeutic effects 

when compared to the oncolytic virus alone. However, the therapeutic benefit was expected 

to be higher as recently discussed by Chalikonda et al106. In other studies, similar results 

were found when using a β-galactosidase expressing vaccinia virus strain in combination 

with an inducible prodrug seco-analog of duocarmycin SA125. Several reasons might be 

responsible for these observations: first, the rapid kinetics of oncolytic vaccinia virus 

replication might functionally overlap with the used prodrug system; and second, the 

administration of prodrug may have inhibited the viral replication, thus reducing the 

antitumoral cytotoxicity induced by the oncolytic virus itself. This effect has already been 

reported by McCart et al 126 but was not observed in all prodrug systems 125. Different dosing 

schemes or other GDEPT systems should still be considered and might cause stronger 

synergistic effects between the oncolytic virus strain and prodrug therapy.  

 

1.3.2.4 Combination Therapies with VACVs.  

 

Although the therapeutic effect of vaccinia virus shows promise, combining conventional 

therapies may also be used to enhance oncolytic viral treatment and help circumvent the 

immune system for optimal delivery of viruses to tumors.  

 

Combination of oncolytic vaccinia virus with classical chemotherapeutic agents such as 

gemcitabine and cisplatin led to accelerated tumor size reduction compared to monotherapy 

using VACV alone 72. At the same time each of the chemotherapeutics could only slow down 

tumor growth but did not result in complete tumor regression. Furthermore, 

immunosuppressive chemotherapeutic agents like rapamycin and cyclophosphamide did 

also have beneficial effects in the oncolytic treatment of malignant gliomas in rats93. Injection 

of the immunosuppressive agents resulted in enhanced viral replication and spreading which 

ultimatively led to further prolonged survival of the immunocompetent rats.  
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Combination with other chemotherapeutic agents in future studies will provide useful data as 

to which combination therapies are best suited for each type of cancer.  

 

Radiation therapy has also been explored as a possible strategy against malignancies to be 

used in combination with oncolytic viral therapy127-129. Radiotherapy can either be local in the 

form of external beam radiation therapy (EBRT), or systemically administered. Although 

many oncolytic viral therapies have been combined with radiation therapies including 

adenoviruses, herpes, and vesicular stomatitis viruses (VSV), no studies are present in the 

literautre exploring oncolytic vaccinia viruses in this context. OVs may act as radiosensitizers 

by affecting pathways that render tumors resistant to treatment. Further, the selective 

cytotxicity of viruses to tumors may enable more targeted radiotherapeutic strategies 

especially with systemically administered radiotherapies. This will be discussed in further 

detail in chapter 2. 

 

Further strategies included the use of carrier cells to deliver viruses undetected to tumors. 

An example of such therapy was the development of a cytokine induced killer (CIK) cell that 

expressed non-MHC restricted NKT cell markers and proteins that adhered to abnormal 

vasculature and NKG2D ligands, and which contained vaccinia virus92. The virus was found 

to have a prolonged eclipse period of 48–72 h after infection; and preliminary data indicated 

that virus can be delivered even if faced with an anti-viral immune response. Via whole body 

imaging, the CIK cells was shown to traffick to tumor cells effectively before releasing virus 

throughout the tumor, producing impressive anti-tumor effects. Even previously resistant 

tumors were sensitized to subsequent CIK cell targeting and destruction.  

 

In another innovative strategy complementary oncolytic VSV was combined with oncolytic 

vaccinia virus to improve therapeutic outcome130. The two recombinant viral strains 

synergistically enhanced each other, resulting in a "ping pong" effect which lead to better 

tumor tissue penetration prolonged survival of tumor bearing mice. The synergistic effect 

was on the one hand dependent on the VACV B18R gene product which locally antagonizes 

the innate cellular, antiviral response initiated by type I IFNs131-133 and therefore supports 

VSV growth. On the other hand, recombinant expression of the fusion-associated small-

transmembrane by VSV resulted in enhanced spreading of the VACV.  
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1.4 Vaccinia Viruses in Clinical Trials 

 

Due to the success of vaccinia viruses in preclinical models, there are several ongoing 

clinical phase I and II-studies for human cancer therapy following treatment with oncolytic 

vaccinia virus strains (Table 2). 

 

Table 2. Clinical trials with oncolytic vaccinia viruses. Source: www.clinicaltrials.gov 

Condition Intervention Phase Sponsor 

Advanced Solid 

Organ Cancers 

Biological: Vaccinia virus 

(GL-ONC1) 

Phase 

I 

Genelux 

Corporation 

Solid Cancers 
Biological: Vaccinia virus (vvDD-

CDSR) 

Phase 

I 

University of 

Pittsburgh 

Unspecified Adult 

Solid Tumor 

Biological: recombinant vaccinia-

CEA(6D)-TRICOM vaccine 

Phase 

I 

National Cancer 

Institute (NCI) 

Carcinoma, 

Hepatocellular 

Genetic: JX-594: Recombinant 

vaccinia virus (TK-deletion plus 

GM-CSF) 

Phase 

II 

Jennerex 

Biotherapeutics 

 

For example, seven patients with metastatic melanoma were then recruited for a phase I trial 

utilizing IT injection of JX-59442, 119. Response of both injected tumors (in 5 of 7 patients) and 

response of at least one non-injected tumor (in 4 of 7 patients) was demonstrated, including 

two patients who achieved a partial response (> 6 months) and a complete response (> 4 

months) to JX-594 treatment. Moreover, efficacy and gene expression occurred despite pre-

treatment vaccination and, therefore, pre-existing anti-vaccinia immunity in all patients.  

 

In another phase I trial using JX-594 in patients with hepatic carcinoma, three of ten 

evaluable patients had a partial response and six had stable disease31. Patients received 

one of four doses of IT JX-594 (108 plaque-forming units (PFU), 3x108 PFU, 109 PFU, or 

3x109 PFU) every 3 weeks. The primary goals were to determine the maximum-tolerated 

dose (MTD) and safety of JX-594 treatment. IT injection of JX-594 into primary or metastatic 

liver tumors was generally well-tolerated, with grade I-III flu-like symptoms reported by all 

patients, and four patients experiencing transient grade I-III dose-related thrombocytopenia. 

Grade III hyperbilirubinaemia was dose-limiting in both patients at the highest dose, and thus 

the MTD was calculated at 109 PFU. JX-594 replication-dependent dissemination in blood 

was shown, with resultant infection of non-injected tumor sites. Safety was therefore 

acceptable in the context of JX-594 replication, GM-CSF expression, and systemic 

http://www.clinicaltrials.gov/
http://clinicaltrials.gov/ct2/bye/7QoPWw4lZX-i-iSxuBc5udNzlXNiZiJ.
http://clinicaltrials.gov/ct2/bye/7QoPWw4lZX-i-iSxuBc5udNzlXNiZiJ.
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dissemination, which led to a phase II trial in patients with unresectable primary 

hepatocellular carcinoma, completed in March 2010119.  

 

Therefore, vaccinia viruses have been shown to be safe and promising in these early clinical 

trials. However, in order to monitor virotherapy, efficacy, and potential toxicity, a non-

invasive imaging modality is needed. This will be discussed in chapter 2. 
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2.0 THE HUMAN SODIUM IODIDE SYMPORTER 

 

As outlined in the previous chapter, oncolytic vaccinia virotherapy has shown success in 

preclinical trials and much promise in completed and ongoing human clinical trials. However, 

as discussed in a review by Breitbach et al.28, a rational clinical development plan is key to 

the development of any novel therapeutic. This involves the following factors: (1) identifying 

an unmet need in medical oncology; (2) identifying a clinically important endpoint that can 

be reached in a reasonable time frame; (3) targeting patient populations that can be enrolled 

efficiently, and finally; (4) identifying a genetic marker to predict tumor response. 

 

Oncolytic viral therapy has addressed most of the key points above. However, regarding 

predicting tumor response, biopsy is the current gold standard for monitoring the therapeutic 

effects of viral oncolysis134. This may be feasible in pre-clinical trials, or early clinical trials, 

however, a non-invasive test facilitating ongoing monitoring of therapy is needed for human 

studies8. This will enable assessment of the biodistribution of oncolytic viruses to ensure 

safety and correlation with treatment efficacy, as well as the potential for a more sensitive 

and specific diagnostic technique to detect tumor origin and, more importantly, presence of 

metastases135.  

 

2.1 Imaging Viral Therapy 

 

Therefore, several noninvasive imaging methods have been developed using ‗reporter 

genes‘, including optical methods using fluorescence and bioluminescence, as well as deep 

tissue imaging modalities utilizing instrumentation such as positron-emission-tomography 

(PET) and single photon emission computer tomography (SPECT) alongside cellular 

transporters. 

 

2.1.1 Optical Imaging. 

 

Optical detection methods such as fluorescence and bioluminescence have the advantage 

of short acquisition times (for fluorescence imaging few milliseconds to several seconds, for 

bioluminescence a few seconds to several minutes) and high spatial resolution. The major 

disadvantage of optical imaging is the inability to perform deep tissue imaging due to 
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autofluorescence, light scattering and the opacity of tissues to light below 600 nm due to 

absorbance by hemoglobin. Nevertheless, optical imaging in small animals has been and 

still is a very important tool to follow the distribution of oncolytic vaccinia viruses equipped 

with genes for luciferases 81, 87, 89, 90, 92, 107, 108, 110, 130 or fluorescent proteins such as green 

fluorescent proteins (GFP)43, 72, 73, 90, 92, 93, 96, 98, 110, 130. Moreover, a GFP-encoding vaccinia 

virus strain (GLV-1h68) currently is in clinical phase I trials in which this fluorescent protein 

can be used to monitor the colonization of near-surface tumors and metastases119, 136. 

The discovery of new fluorescent proteins in the near infrared spectrum will probably result 

in the ability to detect oncolytic viruses in somewhat deeper tissues137. In addition, the 

indirect labelling using fluorescent compounds with emission in the near infrared that bind to 

or are activated by virus encoded proteins may also be developed. 

 

2.1.2 Deep Tissue Imaging. 

 

In contrast to optical imaging, deep tissue imaging modalities such as PET and SPECT (also 

referred to as gamma (γ) scinitgraphy) can be used for non-invasive deep tissue imaging 

utlizing radiotracers with differing properties.  

 

2.1.2.1 Introduction to PET, SPECT, and PET-CT.  

 

Radiotracer imaging technologies are able to measure the distribution of radiotracers in the 

human body138. They are widely available and have a wide range of clinical and research 

applications. Two classes of clinical nuclear imaging systems exist, those designed to image 

single gamma–emitting radionuclides such as 99m-Technecium Pertechtenate (99mTcO4) 

and Iodine-131 (131I), and those designed to image positron-emitting radionuclides such as 

fluorine-18, carbon-11, and Iodine-124 (124I). The single gamma-emitting imaging system is 

referred to as single photon imaging or, when performed tomographically, single photon 

emission computed tomography (SPECT). The positron-emitting imaging system is known 

as positron-emission tomography (PET). PET has greater spatial resolution, higher 

sensitivity and is easier to quantify than SPECT, and is why it was primarily chosen to test 

GLV-1h153‘s ability to facilitate deep tissue imaging. 

 

The potential power of using PET reporter genes in animal research, together with 

technological innovations, has led to the development of dedicated animal PET scanners by 
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a number of research centers in the past 5 years, such as the microPET system139. The 

microPET scanner (Figure 2) has a reconstructed image resolution of 1.8 mm in all three 

axes and has been shown to be fully quantitative140. Further, the volumetric resolution is 

more than an order of magnitude better than state-of-the-art clinical PET systems138. 

 

 

 
 
Figure 2. Focus microPet 120. Dedicated small animal PET scanner, Concorde Microsystems Inc, 
Knoxville, TN. 

 
 

The use of PET reporter genes can play critical roles in developing gene therapies by 

allowing researchers to determine the location, duration, and expression level of transgenes 

and, specifically, 1) develop vector modifications to improve delivery, 2) control expression 

levels, and 3) improve treatments to control duration of expression138. The repeatability, 

quantifiability, and high sensitivity of PET reporter gene systems may lead to rapid 

advancements in our understanding of oncolytic virotherapy. 

 

PET is based on the following principle, reviewed by Chatziioannou AF141. A usually 

cyclotron produced isotope, such as 124I, decays with the emission of a positron. This 

positron travels a small distance in tissue depending on both the tissue density and the 

kinetic energy of the emitted positron. After a series of collisions with atomic electrons from 

the tissues, during which the positron loses its energy and slows down, it annihilates with a 

nearby electron and produces two high-energy photons emitted in opposite directions. The 

simultaneous detection of these photons is the basis of PET imaging. For the most 

commonly used positron emitters, this average distance is on the order of 0.5 mm or less. At 

the point of annihilation, two photons with equal energy of 511 keV are emitted traveling at 

opposite directions conserving the total energy and momentum. These photons travel with 

the speed of light toward the detectors positioned around the subject, where they interact 

and are absorbed, producing an electrical signal. The detector signals are further processed 

by specialized coincidence circuitry and, if the difference in the time of arrival of these 

photons is smaller than a predetermined value (typically ~ 10 ns), the two detectors then 
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define a line of response. Stored events and data are subsequently fed into mathematical 

algorithms, which through a process called ―image reconstruction‖, create the spatial 

distribution of the concentration of the positron emitter in the field of view (FOV). 

Consequently, the concentration of the labeled molecule in tissues can be determined in 

absolute units of mCi/cc.  

 

PET reporter genes encode receptors that bind positron-emitting ligand probes or enzymes 

that modify the positron-emitting substrate probes to produce sequestered positron-emitting 

products138. Cells expressing the PET reporter gene will sequester the radiolabel of the PET 

reporter probe 1) as a ligand bound to the PET reporter receptor or 2) as a ―trapped‖ product 

of the enzymatic reaction of the PET reporter enzyme. Ideally, those cells not expressing the 

PET reporter genes will not retain the PET reporter probe. Since positron-emitting 

radionuclides result in the creation of high-energy gamma rays (511 keV) by positron–

electron annihilation as discussed above, the animal is largely transparent to the wavelength 

of the radiation produced, and visualization of radiolabeled probe/ligand accumulation is 

readily obtained in even deep and visually opaque tissues. Emission computed tomography 

then allows quantitative imaging of the accumulation of the PET reporter probe and, in turn, 

the expression levels of the PET reporter gene. Since PET imaging does not require 

obtaining tissue samples from the subject, this system is noninvasive and can be used to 

repetitively measure reporter gene expression in vivo. 

 

One of the most basic considerations is whether the reporter gene is endogenous or 

exogenous for the organism under scrutiny138. Endogenous genes have the advantage of 

not inducing an immune response thus allowing for repeated studies, however, a high 

background or erroneous signal due to its inherent expression may be a complication. 

Exogenous genes have the disadvantage of possibly inciting an immune response that might 

limit their repeated application. An ideal reporter gene for longitudinal studies should 

therefore produce no immune response and not be normally expressed in the organ under 

consideration. 

 

It is also important to note that radionuclide-based methods offer significant advantages over 

optical-based approaches for imaging reporter gene expression142, 143. Radionuclide-based 

methods offer the highest level of sensitivity for imaging relatively low levels of reporter gene 

expression—as low as 10-12 mol/L of radiolabeled substrate144. This high degree of sensitivity 

may allow the use of relatively weak promoters and the imaging of relatively low levels of 

gene expression  
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2.2 Oncolytic Viruses and Deep Tissue Reporter Genes 

 

Advantages of using replication-selective oncolytic viruses for transgene delivery are 

several145. In addition to their oncolytic capabilities, replicating viruses can deliver 

therapeutic transgenes to image and enhance the probability of tumor eradication through 

multiple avenues. Replication-selective viral systems can employ endogenous viral gene 

expression control signals (promoter/enhancer, polyadenylation, and splice signals) for 

transgene expression. Eliminating the need for exogenous promoters often needed in 

replication deficient systems and polyadenylation signals is an economical use of the often 

limited transgene capacity afforded a replicating viral agent. Using endogenous viral 

promoters may also allow more predictable and controlled transgene expression. Further, in 

contrast to foreign or exogenous promoters, the promoters of the replicating agent are 

optimized for expression in the infected cell.  

 

Viral gene expression during the lytic phase of the viral life cycle of vaccinia virus is highly 

regulated and, as discussed in chapter 1, can be broadly classified into three serially 

activated phases: immediate-early (IE), early (E), and late (L)55. Based on the expression of 

endogenous viral genes, it may be possible to predict the expression kinetics (timing and 

expression levels) of the transgene(s) carried by the replicating agent. Furthermore, when 

multiple transgenes are inserted into a single virus, their expression may be orchestrated to 

occur simultaneously or serially, at levels that will maximize their therapeutic benefit. 

Expressing transgenes serially at different times in the viral lytic cycle is of greatest value 

early in treatment when the infection may be more synchronized. As a viral infection spreads 

and encounters a heterogeneous tumor cell mass, it will likely become asynchronous, 

although the relative expression of different transgenes may still be maintained. 

 

Consequently, novel oncolytic vaccinia virus strains have been generated that express 

proteins, such as thymidine kinase (TK), the human serotonin receptor (hSSTR2) or the 

human norepinephrin transporter hNET, which selectively bind radiotracers and therefore 

should also be detectable in deep tissues of humans86, 120. These viruses will not necessarily 

be used as diagnostic tools, but the possibility to track virus-mediated gene expression will 

help to monitor therapeutic effects, such as control of successful tumor colonization, and 

may help to predict therapeutic effects and potential toxicity. The latter may be significantly 

helpful, as time is needed for oncolytic viruses to regress tumor volume and thus will aid in 

identifying non- or poor-responders for additional therapies.  
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2.2.1 Thymidine Kinase (TK). 

 

Thymidine Kinase (TK) has been used for years in cell culture and animal studies to assess 

cell proliferation. One approach has been use of radiolabeled thymidine or thymidine 

analogues, which are rapidly incorporated into newly synthesized DNA146. Herpes simplex 

virus 1 derived TK (HSV1-TK) has relaxed substrate specificity and so phosphorylates 

thymidine analogues (e.g., 5-iodo-29-fluoro-29deoxy-1-b-D-arabino-furanosyl-uracil [FIAU]) 

as well as acycloguanosine analogues such as acyclovir, ganciclovir (GCV), and penciclovir 

(PCV)147. Cellular enzymes then convert acycloguanosine monophosphates and the 

monophosphate of FIAU to di- and triphosphates, which have been shown to kill cells by 

incorporation as chain-terminating derivatives and/or by inhibition of DNA polymerase148. 

The study by Fong and colleagues was the first to show the successful dose- and time-

dependent monitoring of oncolytic HSV-1 replication in colorectal xenografts149. 

 

However, thymidine analogue tracers are investigational drugs and add a level of regulatory 

complexity that has prevented their clinical usage. Furthermore, the non-human origin of 

HSV1-TK also raises concerns over their potential immunogenicity138. 

 

2.2.2 Human Somatostatin Receptor 2 (hSSRT2). 

 

Other groups have attempted the insertion of the human somatostatin receptor type 2 

(SSTR2) into oncolytic vaccinia viruses for non-invasive imaging. The SSTR2 is targeted by 

the high-affinity synthetic peptide pentetreotide, which is commonly used for receptor 

imaging after being radiolabeled with indium-111150. This receptor is normally expressed in 

human kidney cells and neuroendocrine tumors and gene therapy approaches to deliver the 

SSTR2 to tumors has also been attempted using adenoviral vectors 150, 151.  

 

McCart et al. infected cells with an SSTR2-expressing VACV or controls, and incubated 

them with the somatostatin analog 111In-pentetreotide with or without an excess of 

nonradiolabeled pentetreotide. The SSTR2-infected cells bound 111In-pentetreotide sixfold 

more efficiently than control virus-infected cells and this binding was specifically blocked by 

nonradiolabeled pentetreotide. Further, nude mice bearing subcutaneous murine colon CA 

xenografts were injected intraperitoneally with the SSTR2-expressing VACV or control VACV 

and imaged 6 days later with 111In-pentetreotide-mediated SPECT. Tumors infected with the 
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SSTR2-expressing VACV accumulated higher concentrations of radioactivity compared to 

tumors in animals receiving the control virus. Further, SSTR2-infected tumors were visible 

on imaging 6 days after VACV injection and could be visualized for up to 3 weeks post viral 

injection using repeat radiotracer injections120. 

 

More recently, it was shown that the same VACV encoding the gene for SSTR2 combined 

with the radiotherapeutic 111In-DOTATOC was more effective than either alone at decreasing 

the growth rate of human embryonic kidney HEK-293 cells or colorectal MC-38 cells in 

monolayer152. However, 111In- or 177Lu-DOTATOC combined with parental VACV provided 

equivalent growth inhibition of HEK-293 or MC-38 cells as spheroids, suggesting a 

bystander effect from 111In-DOTATOC. 

 

Nevertheless, radiotracers for SSRT2 require prior radiolabelling for accumulation of 

radioprobes. Further, most radiotracers used with this SSRT2 are able to be imaged with 

SPECT, and it is only recently that newer radioprobes are being developed for higher 

resolution PET imaging153, 154. Furthermore, unlike transporters such as the human 

norepinephrin transporter (hNET) and the human sodium iodide symporter (hNIS), SSTR2 is 

a receptor which usually has a 1:1 binding relationship with radiolabeled ligands and is 

therefore not capable of providing significant amplification through transport-mediated 

concentrative intracellular accumulation of substrate. It is therefore not surprising that 

accumulation of radiotracer was only at around 1.5% ID/gm tissue even 6 days post injection 

of the SSTR2 encoding VACV discussed above120. 

 

2.2.3 Human Norepinephrin Transporter (hNET). 

 

Another deep tissue reporter gene investigated in oncolytic viral strains is the human 

norepinephrin transporter (hNET). hNET is a cell surface human protein belonging to a 

family of Na+/Cl-dependent transporters that contain multiple transmembrane domains, 

mediating the transport of norepinephrine, dopamine, and epinephrine across the cell 

membrane. It can be imaged by SPECT or PET using the radiotracer meta-

iodobenzylguanidine (MIBG)155, 156. The use of the hNET-MIBG reporter imaging is attractive 

since it is of human origin and will unlikely induce an immune response, as well as its limited 

expression in the central and peripheral sympathetic nervous systems157. Moreover, MIBG is 

a standard radiopharmaceutical approved by the U.S. Food and Drug Administration. 
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Previously, attempts to image gene transfer therapy by PET using hNET-MIBG reporter 

imaging were successful in transduced cells and xenografts155. The feasibility of using hNET 

for imaging has also been demonstrated in adenoviral vectors158. 

 

Chen et al. was the first to report on an oncolytic vaccinia virus carrying hNET, GLV-1h9986. 

Like GLV-1h153, this virus is also a derivative of VACV GLV-1h68. The hNET protein was 

expressed at high levels on the membranes of cells infected with GLV-1h99, and expression 

of the hNET protein did not negatively affect virus replication in cell culture or in vivo 

virotherapeutic efficacy. GLV-1h99-mediated expression of the hNET protein in infected cells 

resulted in specific uptake of the radiotracer [131I]-MIBG. In mice, GLV-1h99-infected 

pancreatic tumors were readily imaged by [124I]-MIBG-PET. This virus was further 

investigated by Brader et al. for the imaging of an orthotopic mouse model of human 

malignant mesothelioma using both 123I-MIBG mediated SPECT imaging and 124I-MIBG 

mediated PET imaging159.  

 

A limitation of the hNET symporter is MIBG‘s requirement for radiotracer labeling. The 

question then remained: is there a potential deep tissue imaging reporter gene of human 

origin, which facilitates concentrative intracellular uptake of carrier free radioprobes, able to 

be imaged by high resolution PET imaging? This led to the interest in the human sodium 

iodide symporter (hNIS). 

 

2.3 The Human Sodium iodide Symporter (hNIS) Reporter Gene 

 

Limitations of available reporter genes prompted the testing and discovery of other novel 

reporter genes that may overcome them. This lead to the consideration of the human sodium 

iodide symporter (hNIS), an intrinsic plasma membrane protein which mediates the active 

transport and concentration of iodide in the thyroid gland cells and some extra thyroidal 

tissues, in particular, the lactating mammary gland, as well as in the stomach, salivary 

glands, skin, brain, spleen, small intestine, ovaries, prostate, and testes160.  

 

2.3.1 Biology, Physiology, and Tissue Distribution. 

 

In 1896, Baumann was the first to discover that the thyroid gland concentrates iodide by a 

factor of 20–40 times with respect to plasma under physiological conditions161. Discovery 
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and cloning of the rat NIS by Carrasco and colleagues162 and of the human NIS by Jhiang 

and colleagues163 mediating this uptake opened an exciting and extensive new field of 

research, including exploring the pathophysiological implications of NIS in thyroid disease, 

the therapeutic potential of the gene, and its imaging and diagnostic potential.  

 

hNIS is a glycoprotein with a currently proposed secondary structure of 13 transmembrane 

domains and an estimated molecular mass of around 70–90 KiloDalton (kDa) depending on 

the status of glycosylation (Figure 2)164-167. Glycosylation is not necessary for the function of 

NIS, its stability, or its targeting168. It is located on chromosome 19p13 – 13·2, and is 

composed of 643 amino acids, an extracellular amino-terminus, and an intracellular 

carboxyl-terminus. The coding region has 15 exons interrupted by 14 introns, and codes for 

a 3.9 kb mRNA. The symporter belongs to the sodium/solute symporter family (SSF, TC No. 

2.A.21 (according to the Transporter Classification system)) or solute carrier family 5 

(SCL5A, according to the Online Mendelian Inheritance in Man (OMIM) classification, 

www.ncbi.nlm. nih.gov/Omim/). This family includes more than 60 members of both 

prokaryotic and eukaryotic origin, many of which exhibit a high degree of similarity of 

sequence and function166. 

 

 

Figure 3. Proposed structure of the human sodium iodide symporter. hNIS has 13 

transmembrane domains, an intracellular C terminus, and an extracellular N terminus. All three N-

linked glycosylation consensus sequences are indicated: positions 225 (eL-7), 485 and 497 (eL-13). 

Amino acid residues 389–410 form a transmembrane segment X. Abbreviations: Ct, C terminus; eL, 

extracellular loop; iL, intracellular loop; Nt, N-terminus. De La Vieja et al. Molecular analysis of the 

sodium/iodide symporter: Impact on thyroid and extrathyroid pathophysiology. 2000. 

http://www.ncbi.nlm/
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Transcriptional activity of thyroidal NIS is primarily regulated by thyroid stimulating hormone 

(TSH), via the cyclic adenosine monophosphate (cAMP) pathway169. Multiple cAMP 

pathways, both protein kinase A (PKA)-dependent and -independent, may be involved in the 

regulation of NIS expression and function. The phosphatidyl-inositol 3-kinase (PI3-K) and 

TGF-β/Smad pathways have been shown to have an inhibitory effect on NIS transcription170, 

171.  

 

Levy et al. 172 studied the biogenesis and post-transcriptional regulation of NIS. They 

showed that NIS is initially synthesized as a precursor protein that is immediately core 

glycosylated in the endoplasmic reticulum168. Further studies have shown that the precursor 

protein is a 56 kDa polypeptide whose maturation into full length 87 kDa polypeptide is first 

observed at about 1 hour and is completed at 3 hours after initial TSH stimulation173. 

Interestingly, NIS protein has an unusually long half-life and remains detectable 10 days 

after TSH deprivation. For active iodide transport to occur, NIS must be expressed, targeted 

and retained in the appropriate plasma membrane surface in polarized epithelial thyroid 

cells174. 

 

 

 

Figure 4. hNIS physiology in the thyroid. hNIS on the basolateral cell membrane of thyroid follicular 
cells cotransporting two sodium ions and one iodide ion into the cell, driven by a sodium gradient 
maintained by sodium-potassium adenosine triphosphatase (ATPase) providing energy for this 
transfer. Once iodide enters cell, it is transported across the apical membrane into the follicular lumen 
by other anion transporters including pendrin. In the follicular lumen, iodide is attached through the 
action of thyroid peroxidase (TPO) to tyrosyl residues along the thyroglobulin (Tg) backbone. Thyroid 
hormones triiodothyronine (T3) and thyroxine (T4) are synthesized by the coupling of two iodotyrosine 
residues and are then stored within the colloid. When thyroid hormone is needed, Tg enters the 
thyroid follicular cell, and thyroid hormone is released into the bloodstream. Modified from Spitzweg et 
al. The sodium iodide symporter: its pathophysiological and therapeutic implications. 2002 
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Once the hNIS is inserted on the basolateral cell membrane of thyroid follicular cells, it 

cotransports two sodium ions and one iodide ion into the cell, driven by a sodium gradient, 

which provides energy for this transfer and is maintained by an oubain sensitive sodium-

potassium adenosine triphosphatase (ATPase) (Figure 4)175, 176. When iodide enters the 

thyroid cell, it is transported across the apical membrane into the follicular lumen by other 

anion transporters including pendrin, which is a chloride-iodide transporter. In the follicular 

lumen, iodide is attached covalently to tyrosyl residues along the thyroglobulin (Tg) 

backbone through the action of thyroid peroxidase (TPO). Thyroid hormones triiodothyronine 

(T3) and thyroxine (T4) are synthesized by the coupling of two iodotyrosine residues and are 

then stored within the colloid. When thyroid hormone is needed, Tg enters the thyroid 

follicular cell, and thyroid hormone is released into the bloodstream. 

 

Although endogenous NIS is physiologically and functionally expressed in several normal 

tissues, so far only 2 cancers have been shown to express endogenous NIS functionally 

making them amenable to radiotherapy, those 2 being thyroid cancers (mainly papillary and 

follicular), and around 80% of human breast cancers including ductal carcinomas177. 

Furthermore, some thyroid tumors such as medullary and anaplastic cancers have been 

shown to lose hNIS expression making them non-amenable to radiotherapy, and some 

papillary cancers have even been shown to de-differentiate, also losing functional hNIS 

expression178.  

 

2.3.2 Imaging Potential. 

 

hNIS gene transfer via viral vector may allow infected tumor cells to concentrate several 

easily attainable, commercially available, and relatively inexpensive, carrier free 

radioisotopes such as 123I, 124I, 125I, 131I, 99mTcO4, rhenium, and astatine for non-invasive 

imaging of NIS expression, all of which have long been approved for human use. In contrast 

to the study published by McCart et al.120, 152 using the VACV-expressing SSTR2, hNIS is a 

transporter-based reporter gene system. Whereas receptors usually have a 1:1 binding 

relationship with a radiolabeled ligand, transporters provide signal amplification through 

transport-mediated concentrative intracellular accumulation of substrate. hNIS use has also 

been shown to be comparable to the commonly used HSV1-tk reporter gene179 and 

correlated with 99mTcO4
180. This can be very useful for viral distribution with scintigraphy or 

PET scanning during and after viral therapy, and may allow for correlation with efficacy and 
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toxicity during clinical trials, thus offering potential clinical translation of this dual therapy. 

Furthermore, the human origin of hNIS likely renders it less immunogenic than other foreign 

reporter genes such as TK. 

 

2.3.3 Therapeutic Potential With hNIS. 

 

In addition, although self-replicating virotherapy has shown great promise for treating cancer, 

the additive or synergistic effects by combining targeted therapeutic systemic radiotherapy 

such as 131I with oncolytic virus-mediated hNIS transfer may eliminate tumors and virus-

resistant tumors. Oncolytic viruses have been found to have a synergistic antitumor effect 

when combined with ionizing radiation181-183. One mechanism for such synergy appears to be 

radiation-induced upregulation of certain cellular DNA repair genes that result in promoting 

viral replication79, 184.   

 

Furthermore, a bystander effect may be possible as 131I undergoes β-particle decay with a 

path length of 0.2–2.4 mm185. It is important to note that 131I is already approved in patients 

for multiple ailments including thyroid cancers and palliation of bone metastasis, and was 

found to be safe with relatively few side effects186. In addition, 131I is not a gene therapy and 

thus involves less risk and complications as compared to gene therapy of cancer. 

 

If additive or synergistic effect is found, patients may be more safely treated with 

combinations of lower doses of virus and radioiodine. Application of carrier-free radioiodine 

would thus be extended, and the extensive experience with radioiodine in thyroid cancer 

management will undoubtedly be helpful in the treatment of other NIS-transfected tumors.  

 

2.3.3.1 Dosimetry and Targeted Radiotherapy. 

 

Radiation dosimetry determines the amount as well as the spatial and temporal distribution 

of energy deposited in matter by ionizing radiation. Internal targeted radionuclide radiation 

dosimetry specifically deals with the deposition of radiation energy in tissue due to a 

radionuclide within the body187. However, unlike external radiation (XRT) dose which can 

often be measured, internal radiation dose must be calculated. By incorporation of 

appropriate radionuclides in appropriately large amounts into target tissue-avid 

radiopharmaceuticals, a sufficiently high radiation dose may be delivered to produce a 
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therapeutic response in tumor or other tissue. With higher administered activities and 

resulting higher normal-tissue doses, however, serious radiation injury can occur.  

 

The main differences between targeted radiotherapy and XRT are caused by dosimetry, with 

dose-rate effects a secondary factor188. In XRT, a target volume is defined, and overlapping 

radiation fields are arranged to treat this volume as evenly as possible. For targeted 

radiotherapy, the absorbed radiation dose is due to the flux of ionizing particles produced by 

radionuclides distributed within or around the tumor. The distribution of radionuclide depends 

on the biologic properties of the tumor. Factors such as the affinity of targeting molecules for 

the tumor cells and the extent and permeability of the tumor vasculature determine the 

intratumoral distribution of targeting molecules. The main theoretic advantage of targeted 

radionuclide therapy is that radiation can be delivered selectively to subclinical tumors and 

metastases that are too small to be imaged and thereby treated by surgical excision or local 

XRT. In addition, the absorbed doses to tumors achieved by targeting may be higher than 

can be delivered by systemic XRT. For any radiation-based therapy, the likelihood of tumor 

cure depends on three factors188: (1) the radiation dose absorbed in the tumor and its pattern 

of delivery; (2) the number of clonogenic tumor cells present. These all have to be destroyed 

to cure the tumor; and (3) the response of the tumor cells to radiation including their 

radiosensitivity, repair capacity and proliferation rate. 

 

Radiopharmaceuticals may be structurally simple, such as ions, to complex, such as 

antibodies, consisting of or labeled with a radionuclide. They may be in solution or in the 

form of a colloid or suspension and may be administered systemically or regionally. 

Historically, radioiodine therapy of thyroid disease including hyperthyroidism and localized 

and metastatic thyroid cancer, has been the most active and successful area of radionuclide 

therapy. Although radioiodine therapy of thyroid disease remains the most widely used form 

of radionuclide therapy, there are a number of newer and/or less frequently applied 

radionuclide therapies including radioimmunotherapy; radiolabeled peptide octreotide or -

octreotate therapy of carcinoid and other tumors over-expressing cell-surface receptors (eg 

somatostatin receptors); and palliative radionuclide therapy of bone pain secondary to 

skeletal metastases using radiopharmaceuticals such as rhenium-186 (186Re)- or rhenium-

188 (188Re)189-191.  

 

The physical characteristics of these radionuclides impose a further level of variability with 

targeted radiotherapy188, 192. The energy spectrum of the ionizing particles determines the 

range of the energy emission, and the distribution of radiation dose throughout a tumor 

depends on tumor size, the radionuclide in use and its intratumoral distribution. This complex 
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situation results in a heterogeneous distribution of radiation dose, which is relatively high in 

some intratumoral regions, and reduced in others. Even in the case of a uniform distribution 

of radionuclide throughout a tumor volume, when the tumor is large in comparison to the 

range of the ionizing particles, most of the energy is absorbed within the tumor. When tumor 

dimensions are smaller than the range, a large proportion of the energy may escape. In 

practice, besides the dosimetric considerations, the selection of a therapeutic radionuclide 

depends on the availability and cost of the radionuclide and the chemical preparation and 

stability, particularly in vivo, of the radiopharmaceutical. 

 

In a seminal paper by O'Donoghue and colleagues, the choice of how radionuclide therapy 

influences the relationship between tumor curability and tumor size was examined188. They 

used a mathematical model to examine tumor curability and its relationship to tumor size for 

twenty-two β-emitting radionuclides that may have therapeutic potential including 131I. The 

model assumed a uniform distribution of radionuclide throughout. They found that for 

targeted radionuclide therapy, the relationship between tumor curability and tumor size is 

different from that for conventional XRT. With targeted radionuclides, there is an optimal 

tumor size for cure. Tumors smaller than the optimal size are less vulnerable to irradiation 

from radionuclides as a substantial proportion of the disintegration energy escapes and is 

deposited outside the tumor volume. The optimal cure size range for 131I was calculated at 

(2.6 - 5.0mm). This may pose an issue for treating micrometastatic disease due to the 

relatively long path length of the β-particle. Further, they conclude that the energy emitted 

per disintegration may also be used to predict optimal cure size for uniform distributions of 

radionuclide. 

 

In systemic therapy, a therapeutic radionuclide is administered either enterally or 

parenterally (typically IVly) and is thus distributed throughout the body via circulatory, 

secretory, metabolic, and/or excretory processes187. In regional therapy, the therapeutic 

radionuclide is introduced directly into a specific space or region of the body and is thus 

mechanically deposited into or on the target region which increases the specificity of dose 

delivery and the therapeutic index is maximized. Although this is the ideal situation for tumor 

therapy, this may miss regions of micrometastasis, and is technically more challenging. This 

thesis concentrates on the systemic therapy of pancreatic tumor xenografts in nude mice.  

 

Serial measurements of activities in normal organs, tumor, and total body can be performed 

by planar gamma camera imaging, SPECT, or positron emission tomography PET193, 194. 

Three-dimensional imaging modalities such as SPECT and PET provide more accurate 

estimates of activities in situ by eliminating the confounding effect of counts from activity in 
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source regions surrounding the structure of interest195, 196. Moreover, with the introduction of 

SPECT-CT197-199 and PET-CT200-202 devices, activity distributions can be accurately 

correlated with anatomy, and tumor and normal-organ masses can be measured in 

conjunction with activity measurements. To determine these activities, regions-of interest 

(ROIs) may be drawn around areas of uptake of organs and/or tumors to determine their 

respective activities, usually expressed as the percentage injected dose per gram tissue 

(%ID/gm). A simplified approach to calculation of tumor and total-body %ID/gm tissue for the 

purposes of this thesis is explained in the methods sections of this thesis. 

 

Although advances have been made in quantitative SPECT203, conventional SPECT remains 

relatively insensitive and slow, requiring a 20- to-40-minute acquisition per bed position. 

Further, propagation of statistical uncertainty in the image reconstruction process degrades 

the precision of SPECT-based activity measurements. PET, on the other hand, offers better 

spatial resolution, higher sensitivity, and generally more accurate and precise activity 

quantitation than SPECT204 and quantitative whole-body PET scans can be completed in 30 

minutes or less. However, as discussed, a limitation of dosimetry calculation is the non-

uniform dose distributions. Scintigraphic imaging modalities such as planar gamma camera 

imaging, SPECT, and even PET), often do not have sufficient spatial resolution to discern 

the heterogeneity of intra-organ and intra-tumor activity distributions205, and normal tissue 

toxicity and tumor therapeutic response may not correlate with average as also 

demonstrated by O‘Donoghue and colleagues192. Thus, in addition to patient-specific 

dosimetry, the issue of spatial non-uniformity of dose at both the macroscopic205-230 and 

microscopic231-251 levels has become an important consideration. 

 

2.4 Preclinical Data 

 

In order to take advantage of the therapeutic and imaging potential of hNIS, several groups 

have attempted exogenous NIS gene transfer in several human cancers in cell culture and in 

rat and mice models. These cancers include head and neck squamous cell cancers, non-

small cell lung, thyroid, liver, colorectal, and prostate cancer, as well as glioma and multiple 

myeloma. Various gene transfer methods have been used, including direct transfer, as well 

as the use of replication-deficient and replication-competent viral vectors. However, these 

experiments have had ranging levels of success. 
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2.4.1 Stable and Vector-Medicated hNIS Transfections. 

 

Several groups have attempted exogenous transfer of hNIS with the aid of electroporation, 

retoroviruses, and replication-deficient adenoviral and baculoviral vectors with varying levels 

of success166, 252, 253. Examples of selective promoters used to drive hNIS expression include 

CEA254, hTERT255, survivin256, and MDR1257. However, several studies report of the rapid 

efflux of iodide from NIS-transfected cells, including anaplastic thyroid and lung cancer cells, 

with no therapeutic effect seen258, 259. To circumvent this problem, Boland et al. constructed a 

recombinant adenovirus encoding the human thyroperoxidase (TPO) gene under the control 

of the cytomegalovirus early promoter (AdTPO). Infection of non-thyroid tumor cells with this 

virus led to production of an enzymatically active protein, and a significant increase in iodide 

organification could be observed in cells co-infected with both AdNIS and AdTPO in the 

presence of exogenous hydrogen peroxide. However, the levels of iodide organification 

obtained were too low to significantly increase the iodide retention time in the target cell260.  

 

On the other hand, other studies have shown that NIS gene delivery into non-thyroidal, non-

organifying tumor cells are capable of inducing accumulation of therapeutically effective 

radioiodine doses, and this was indeed the case in several tumor models. For example, a 

single therapeutic 131I dose of 3 mCi was shown to elicit a dramatic therapeutic response 

using adenovirus-mediated NIS transfer into prostate cell xenografts with an average volume 

reduction of more than 90%261. Further, an Adenoviral vector expressing hNIS regulated by 

MUC1 promoter (Ad-MUC1-NIS) caused a more than 15-fold increase in iodide uptake  in 

infected pancreatic cancer cells in vivo with 123I scintigraphy and an in vivo therapeutic effect 

with 3mci of 131I of >75% reduction in volume of NIS transduced tumors262.  

 

2.4.2 Oncolytic Viruses and hNIS for Imaging and Therapy. 

 

The oncolytic viruses that have been investigated so far in relation to hNIS are 

adenoviruses, measles virus, and vesicular stomatitis virus. To date, however, no one has 

investigated the potential of an oncolytic vaccinia virus vector. A summary of the following 

section is presented in Table 3. 
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2.4.2.1 Adenovirus. 

 

Adenoviruses have shown some success in preclinical trials, however their efficacy in phase 

I trials is often limited by their replication capacity and ability to spread within tumors, and 

there are few examples of complete tumor eradication. 

 

Therefore, several groups have attempted NIS transfer to cells via oncolytic adenoviral 

vectors to improve adenoviral treatment efficacy. Merron et al. were the first to insert the 

hNIS reporter gene in a wild type replicating oncolytic adenovirus (AdlP1) and in an 

adenovirus in which a promoter from the human telomerase gene (RNA component) drives 

E1 expression (AdAM6). The virus induced functional hNIS expression and replication in cell 

culture and kinetics of spread of the different viruses in colorectal tumor xenografts were 

visualized in vivo after IT injection of 109 PFU of virus using 99mTcO4-mediate SPECT. The 

time required to reach maximal spread was 48 h for AdIP1 and 72 h for AdAM6 suggesting 

that hNIS gene insertion in adenoviruses hindered spread in tumors. Maximum radiouptake 

was 4 days post virus injection, suggesting a delay in peak viral replication and hNIS 

expression. However, no significant signal could be reached by day 5 after IT adenovirus 

injection 263. 

 

To further improve adenoviral selectivity, Trujillo et al. constructed of a MUC-1 promoter 

driven, conditionally replicating adenovirus that expresses the NIS (Ad5AMUCH_RSV-NIS) 

for gene therapy of breast cancer264. In cell culture infection of the MUC-1 positive breast cell 

line T47D resulted in virus replication, cytolysis, and release of infective viral particles. 

Conversely, the MUC-1 negative breast cancer cell line MDA-MB-231 did not support viral 

replication. In vivo, mice were maintained on a low-iodine diet and received T4 

supplementation to maximize iodide uptake by tumors while reducing thyroid gland and 

stomach uptake. T47 xenografts were readily imaged using 123I and γ-camera 2 days after IT 

injection of 1 x 1011 of the hNIS-encoding virus with almost 30% uptake 1 hour after 

radiotracer administration. 

 

Hakkarainen et al. created the adenovirus Ad5/3-Δ24-hNIS, a Rb-p16 pathway selective 

infectivity enhanced oncolytic adenovirus encoding hNIS. Ad5/3-Δ24-hNIS replication 

effectively killed prostate cancer cells in cell culture and in vivo265. After 2 consecutive 

injections of 2x108 virus particles ITly, PC-3MM2 tumors retained around 6% of the injected 

dose visualized via 123I-mediated γ-scintigraphy, and interestingly this uptake plateaued until 

around 13 hours post radiotracer administration showing significant retention. Furthermore, 
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Ad5/3-Δ24-hNIS with radioiodide was significantly more effective than virus alone in mice 

with prostate cancer xenografts. 

 

Peerlinck et al. generated the adenovirus AdIP2 encoding hNIS and capable of selective 

replication in colorectal carcinoma cells266. The selectivity of this virus was verified in cell 

culture and in vivo. Its spread in tumors was monitored in vivo using SPECT/CT imaging 

upon 99mTcO4- injection and confirmed by immunohistochemistry. Like AdIP1, replication of 

AdIP2 seemed to be affected by hNIS gene insertion as compared to wild type. Imaging and 

immunohistochemical data showed limited viral spread with maximal hNIS expression 48 

hours after injection of 109 PFU. Administration of a single therapeutic dose of 131I at this 

time point led to a dramatic reduction in tumor size not observed in hNIS-negative viruses.  

 

Next, Merron et al. investigated the potential of hNIS to affect the therapeutic efficacy of 

parental adenovirus dl922-947 following intraperitoneal (IP) administration, in a mouse 

model of peritoneal ovarian carcinoma. In cell culture infection of ovarian carcinoma IGROV-

1 cells with ADAM7 led to functional expression of NIS. However, the insertion of NIS into 

the viral genome resulted in a loss of efficacy of the virus in terms of replication and 

cytotoxicity. In vivo, imaging of IP ovarian xenografts infected with a single IP dose of 1010 

PFU via 99mTcO4-SPECT/CT was only detectable in the peritoneal cavity of animals bearing 

peritoneal ovarian tumors for up to 5 days after IP administration. The study interestingly 

demonstrated that despite the detrimental effect observed in cell culture, insertion of the 

reporter gene NIS in an oncolytic adenovirus did not affect its therapeutic efficacy in vivo267. 

 

Further, Trujillo et al. constructed another conditionally replicating adenovirus in which the 

E1a gene is driven by the prostate-specific promoter, Probasin Ad5PB_RSV-NIS268. In cell 

culture, infection of the prostate cancer cell line LnCaP resulted in virus replication, cytolysis 

and release of infective viral particles. Conversely, the prostate cancer cell line PC-3 

(androgen receptor negative) and the pancreatic cancer cell line PANC-1 did not support 

viral replication. Radioiodine uptake was readily measurable in infected LnCaP cells infected 

with Ad5PB_ RSV-NIS 24 h post-infection, confirming NIS expression. In vivo, LnCaP tumor 

xenografts in nude-mice injected ITly with 1011 PFU of virus expressed NIS actively as 

evidenced by 99mTcO4-SPECT, with signal sustained up to one month after viral therapy. 

Maximum uptake was 12% ID/gm 1 day post virus administration Moreover, administration 

of therapeutic 131I after virus injection significantly increased survival of mice carrying 

xenografted LnCaP tumors compared with virotherapy alone. 
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Promise in these preclinical trials lead to plans for a phase I gene therapy trial in patients 

with prostate cancer utilizing the Ad5-yCD/mutTKSR39rep-hNIS adenovirus 269. To aid in 

these plans, the dosimetric characteristics of the reporter gene system when coupled with IV 

administration of radioactive 99mTcO4 and was determined in a large animal tumor. The virus 

was injected into the prostate gland of dogs for dosimetry purposes, and into a canine soft 

tissue sarcoma for imaging purposes. Using the highest value observed, absorbed radiation 

dose to critical organs was calculated and found to be below U.S. Food and Drug 

Administration limits for diagnostic imaging. Also, 99mTcO4 uptake was readily detected by 

SPECT and found to persist in vivo for at least 4 days. On the basis of dosimetry 

calculations, the authors concluded that up to five imaging procedures can be safely 

performed in humans after intraprostatic injection of the Ad5-yCD/mutTKSR39rep-hNIS 

adenovirus, and the hNIS reporter gene system can be used to study the dynamics of 

adenoviral gene therapy vectors in large animal tumors. 

 

2.4.2.2 Measles virus. 

 

Several groups have also attempted hNIS transfer via oncolytic measles vectors. Dingli et al. 

were the first to show the imaging and therapy potential of hNIS in an oncolytic measles 

vector270. They demonstrated noninvasively by 123I- γ-scintigraphy the IT spread of measles 

virus encoding for hNIS (MV-NIS) in various multiple myeloma xenografts after IT injection of 

2 x106 TCID50. Tumors retained up to 12% to 17% of the injected dose, and showed iodine 

retention up to 24 hours after xenografts. Further, KAS-6/1 xenografts regressed completely 

after a single IV dose of MV-NIS and 131I. 

 

However, due the unfavorable replication kinetics of measles viruses expressing both CEA 

and NIS, Hasegawa et al. tested MV-NIS in combination with another viral construct, MV-

CEA, to treat ovarian cancer SKOV3ip.1 xenografts271. MV-NIS propagation was again 

mapped by serial radioiodine imaging via gamma scanner by systemic injection of 99mTcO4. 

In cell culture studies showed superior replication kinetics of MV-NIS relative to MV-CEA. 

However, γ-scintigraphy was considerably less sensitive than the plasma CEA marker for 

monitoring virus infection. Further, Liu et al. demonstrated that antitumor activity of MV-NIS 

was evident only in measles naive mice-bearing disseminated myeloma, and not in passively 

immunized mice which may limit clinical application of this virus272. 

 

MV-NIS was also shown to be effective with prostate cancer cells for imaging. Infected cells 

concentrated radioiodide isotopes in cell culture by 125I uptake assays. Virus localization and 
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spread in vivo could again be followed by γ-scintigraphy of 123I uptake. After injection of 1.5 x 

106 TCID50 IT or IV, peak tumor uptake was observed on day 4 in IT- and on day 14 in IV-

treated animals with a maximum uptake of around 13% and 14%, respectively. Absorbed 

dose of radiodiodine in the tumor was calculated at an average of 420 or 540 rads/mci when 

MV-NIS was administered IT or IV, respectively, at the time of maximum observed uptake. 

Combination therapy with 131I further enhanced the antitumor effect of MV-NIS virotherapy 

273. 

 

Blechacz et al. investigated MV-NIS’s oncolytic potential and efficiency in tracking viruses in 

animal models of hepatocellular carcinoma. Quantitative analysis of IT iodine uptake via γ-

scintigraphy showed a median IT 123I uptake of 8.41% on day 3 and 9.13% on day 10 in 

Hep3B xenografts with a single IV dose of 2x106 TCID50 of MV-NIS274. 

 

MV-NIS was further evaluated in pancreatic cancer xenografts275. After injection of 3.5 x 106 

TCID50 of virus directly into BxPC-3 tumors, the maximum average % ID/gm was 

quantitated using 123I-SPECT of tissue and found to be 11.4% on day 2, decreasing 

thereafter at 8.4% on day 3, and 6. 4% on day 5 with wide ranges of uptakes noted. Uptakes 

continued to decrease thereafter. Mice were also maintained on a low-iodine diet and 

received T4 supplementation to maximize iodide uptake by NIS-positive tumors. A significant 

therapeutic effect with virus alone was also seen, and effects of combination therapy in this 

tumor model was then explored276. Dosimetric calculations estimated an absorbed 

intratumoral dose of 1008 rads after IT injection of 3.5 x 106 TCID50. Synergy between MV-

NIS-induced oncolysis and NIS-mediated 131I ablation was not seen; however, a significant 

correlation was observed between NIS-mediated IT iodide localization and peak tumor 

volume reduction with combination MV-NIS and 131I therapy. They concluded that this lack of 

synergy in this model was not due to a lack of radiosensitivity, but rather to a nonuniform IT 

distribution of MV-NIS infection  

 

Due to the large body of promising data with MV-NIS, preparations for clinical trials then 

ensued. Preclinical pharmacology and toxicology studies were conducted in support of the 

clinical protocol for the phase I trial of systemic administration of MV-NIS with or without 

cyclophosphamide in patients with recurrent or refractory multiple myeloma277. On the basis 

of this data, the safe starting dose of MV-NIS for the clinical protocol was set at 106 TCID50 

per patient. Results of this trial are still pending. 
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2.4.2.3 Vesicular Stomatitis Virus (VSV). 

 

In mice with established subcutaneous 5TGM1 myeloma tumors, virus replication and 

spread of a vesicular stomatitis virus, VSV (51)-NIS, was also monitored noninvasively by 

serial gamma camera imaging of 123I biodistribution after IV or IT injection of 5 x 107 

TCID50278. Maximum uptakes were noted at 33.2% and 38.5% ID/gm for the IT and IV 

groups, respectively, 4 days after virus treatment. Dosimetry calculations based on these 

images pointed to the feasibility of combination radiovirotherapy with VSV(51)-NIS plus 131I, 

with a predicted absorbed dose of 1840 and 11.6 rad/mci given IT or IV, respectively, on day 

1 after virus administration. Significant enhancement of tumor regression and survival was 

observed. 

  



57 

 

Table 3. Imaging studies with oncolytic viral vectors encoding hNIS in mouse models. 

 Tumor 

Viral 

dose 

(PFU) / 

route of 

injection 

Radiotracer/ 

imaging 

modality 

Imaging 

time 

points 

Maximum 

uptake 

(%ID/gm) 

/ spread 

Loss 

of 

signal 

T4/low 

iodine 

diet? 

Dosimetry 

(rad/mci) 

Combin

-ation 

Therap

ywith 
131

I? 

Notes 
Refer-

ence 

Adenovirus 

AdlP1 

Colorectal 

HCT-116 

SC  

1 x 10
9
 

single IT 

99m
TCO4/ 

SPECT/CT 
1,2,3,4 dpvi 4 dpvi 5 dpvi No N/A No 

Delay btw max viral 

replication and max 

radiouptake, hNIS 

hindered replication 

263
 

Ad5AMUCH_

RSV-NIS 

Breast 

T47D SC 

1 x 10
11

 

single IT 

123
I / γ-

camera 
2 dpvi 

30% 1 

hpri 
N/A Yes N/A No  

264
 

Ad5/3-Δ24-

hNIS  

Prostate 

PC-3MM2 

SC 

2 x10
8
 IT 

2 x IT   

123
I / γ-

camera 

1 dpvi, 0.5, 

1, 1.5, 2, 4 

/ 13 hpri 

6% 2 hrs 

pri, 

plateaued 

13 hpri 

N/A No N/A Yes 
Uptake plateaued 

up to 13 hrs pri 

265
 

AdIP2 

Colorectal 

HCT-116 

SC 

1 x 10
9
 

single IT 

99m
TCO4 / X-

SPECT/CT 

1,2,3,4,5 

dpvi / 

10mins pri 

N/A 3 dpvi 

Yes 

with 

therapy 

N/A Yes 

Replication 

hindered by hNIS 

insertion 

266
 

ADAM7 

Ovarian 

IGROV-1 

IP 

1 x 10
10

 

single IP 

99m
TCO4 / X-

SPECT/CT 
1-5, 9 dpvi 

~40/mm
3
 

2 dpvi 
5 dpvi No N/A No 

No effect on 

therapeutic efficacy 
267

 

Ad5PB_RSV-

NIS)  

Prostate 

LnCaP    

SC 

1 x 10
11

 

single IT 

99m
TCO4 / X-

SPECT/CT 
1-28 dpvi 

12% 1 

dpvi 
N/A No N/A Yes 

Uptake sustained 

up to 1 month pvi 
268
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Measles Virus 

MV-NIS 

Multiple 

myeloma 

ARH-77, 

KAS-6/1, 

MM1        

SC 

2 x 10
6
 

single IV 

123
I / γ-

camera 

1,3,5,7,15,

24 hpri 

12% - 

17%   1 

hpri 

N/A No 400 
Yes with 

KAS-6/1 

Complete 

eradication of KAS-

6/1 xenografts with 

combination 

therapy 

270
 

MV-NIS 

Ovarian 

SKOV3ip.1          

IP 

1 x 10
6 
 2 

x IP
 

99m
TCO4 / γ-

camera 
1 hpri N/A N/A No N/A No  

271
 

MV-NIS 

Prostate 

LnCaP       

SC 

1.5x 10
6
 

TCID50si

ngle IT/IV 

123
I / γ-

camera 

1,4,5,8,11 

dpvi IT; 

1,4,5,8,11,

14,18 dpvi 

IV 

~ 13% 4 

dpvi IT, 

~14% 14 

dpvi IV 1 

hpri 

N/A No 

420 IT;  

540 IV at 

max uptake 

Yes 
Uptake sustained 

up to 36 dpvi for IV 
273

 

MV-NIS 

Hepatocell

ular      

Hep-3B      

SC 

2 x 10
6 

TCID50 

single IV 

123
I / γ-

camera 

1,3,7,10, 

14 dpvi 

8.41% 3 

dpvi; 

9.13%10 

dpvi;  

N/A No N/A No  
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MV-NIS 

Pancreatic 

BxPC-3    

SC 

3.5x 10
6
 

TCID50si

ngle IT 

123
I / 

SPECT/CT 
2,3,5,8 dpvi 

11.4% 2 

dpvi 
5 dpvi Yes N/A No  
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MV-NIS 

Pancreatic

BxPC-3    

SC 

3.5x 10
6
 

TCID50 

single IT 

123
I / 

SPECT/CT 

2,3,4,6,9 

dpvi 

8% 4 – 6 

dpvi 
9 dpvi Yes 1008 Yes  
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Vesicular Stomatitis Virus 

VSV (51)-NIS 

Multiple 

myeloma 

5TGM1  

5 x 10
7
 

TCID502 

x IT/IV  

123
I and 

X-

SPECT 

1,4 dpvi / 

3 hrs pri 

4.1 IT, 7 IV 1 

dpvi; 33.2 IT, 

38.5 IV 4 dpvi  

N/A  No 

1840 IT; 

1160 IV at 

max uptake 

Yes  
278

 

Abbreviations: dpvi = day post virus injection; hprvi = hours post radiotracer injection; IT = intratumoral; IV = intravenous. 
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2.5 Clinical Trials With hNIS 

 

Preclinical imaging and therapy success with NIS gene delivery has lead to several 

completed and ongoing clinical trials (Table 4.). Clinical application of NIS gene delivery 

followed by radioiodine will require the generation and investigation of safe and efficient 

gene delivery systems, as well as the ability for systemic administration and regulated gene 

expression.  

 

Table 4. Clinical trials with oncolytic viruses carrying hNIS. Source: www.clinicaltrials.gov. 

Condition Intervention Phase Sponsor 

Prostate cancer 
Biological: Adenovirus 

(Ad5-yCD/utTKSR39rep-hNIS) 

Phase 

I 

Henry Ford Health 

System, Michigan 

Prostate cancer 
Biological: Adenovirus 

(Ad5CMV-NIS) 

Phase 

I 

Mayo Clinic, 

Rochester 

Multiple Myeloma 
Biological: Measles virus  

(MV-NIS) 

Phase 

I 

Mayo Clinic, 

Rochester 

 

NIS transfer has already been attempted in clinical trials utilizing the replication-competent 

adenovirus Ad5-yCD/utTKSR39rep-hNIS for the imaging of prostate cancer. Men with 

clinically localized prostate cancer were administered an intraprostatic injection of the 

adenovirus. NIS gene expression was imaged noninvasively by uptake of 99mTcO4 in infected 

cells using SPECT. Therapy was shown to be safe with 98% of the adverse events being 

grade 1 or 2. Enhanced radiouptake was detected in the prostate in seven of nine patients at 

1012 PFU but not at 1011, again highlighting the replication inefficiency of this virus. Further, 

expression was monitored and found to increase to around 18% of the total prostate volume 

following injection of 1012 PFU, peaking at 1–2 days post adenovirus injection and detectable 

in the prostate for up to 7 days. No evidence of extraprostatic dissemination of the 

adenovirus was seen by SPECT imaging. The results demonstrate for the first time in 

humans the noninvasive imaging capability of hNIS utilizing an onolytic viral vector269. 

Another trial is also underway investigating the potential of Ad5CMV-NIS for gene therapy 

and combination with radioactive iodine in treating patients with locally recurrent prostate 

cancer that did not initially respond to XRT280. Patients receive intraprostate Ad5CMV-NIS 

followed by dosimetry oral 123I on day 4 and undergo image studies periodically for around 

24 hours for measurement of radioiodine uptake. Patients then receive therapeutic oral 131I 

on day 5. The main aims of this study were to determine the safety and tolerance of 

http://www.clinicaltrials.gov/
http://clinicaltrials.gov/ct2/bye/7QoPWw4lZX-i-iSxuBc5udNzlXNiZiJ.
http://clinicaltrials.gov/ct2/bye/7QoPWw4lZX-i-iSxuBc5udNzlXNiZiJ.
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Ad5CMV-NIS administered intraprostatically followed by radioiodine treatment in patients 

with locally recurrent adenocarcinoma of the prostate following external beam radiotherapy 

as well as the maximum tolerated dose of Ad5CMV-NIS in these patients.  

Further, a phase I trial has been initiated studying the side effects and best dose of MV-NIS 

when given with or without cyclophosphamide in treating patients with recurrent or refractory 

multiple myeloma280. The time course of viral gene expression and viral elimination, as well 

as the biodistribution of virally infected cells at various time points after treatment with these 

regimens using iodine 123I gamma camera imaging will also be determined. 
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3.0 SPECIFIC AIMS AND HYPOTHESIS 

 

 

This project centers on the construction and testing of a novel oncolytic vaccinia virus 

carrying the human sodium iodide symporter (hNIS) gene on tumor rejection, imaging, and 

targeted radiotherapy in cell culture and mouse models.  

 

 

Hypothesis: The oncolytic vaccinia-hNIS construct, GLV-1h153, will allow killing of tumor by 

direct oncolytic means as well as by additive or synergistically targeted radiotherapy. 

Further, such viral constructs will allow imaging of viral therapy by PET scanning.   

 

 

 

Specific Aim 1: To determine if GLV-1h153 induces the expression of hNIS on the 

cancer cell membranes and assess the effects of gene insertion on viral replication.  

Justification: Since oncolytic viral therapy relies on the replication-competent virus to directly 

kill cancer cells, it is not obvious that a cell surface protein such as hNIS will be expressed 

by a cell infected with virus prior to cell lysis. Based on previous data, parental virus GLV-

1h68 effectively infects, replicates in, and kills many cancer cell types in cell culture. GLV-

1h153 will be compared to parental virus, GLV-1h68, in cell culture in order to determine 

whether insertion of hNIS alters the replication or oncolytic capability of the virus. Further, 

the successful expression and transported of the hNIS to the cell membrane of infected cells 

will be assessed in order to facilitate intracellular radiouptake, as well as the time course and 

dose dependency of hNIS expression and conditions that affect such gene expression. 

 

Specific Aim 2: To establish that GLV-1h153 specifically kills pancreatic cancer cell 

line PANC-1, and is safe when administered in animal models.  

Justification: GLV-1h153 will again be compared to its parental virus, GLV-1h68, in animal 

models in order to determine whether insertion of hNIS alters the cancer - or animal-related 

toxicity. GLV-1h68 is currently in human clinical trials. If GLV-1h153 is found to be effective 

and safe, clinical translation will be possible.   
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Specific Aim 3: To determine if GLV-1h153-induced hNIS expression facilitates 

intracellular uptake of radioiodide, thus enabling imaging of tumor and viral therapy. 

Justification: Successful imaging of hNIS for tracking oncolytic therapy is related to rate of 

infection and internalization of virus, as well as rate of synthesis of hNIS protein and 

localization of protein to the cell surface. Since it is not obvious that a cell surface protein 

such as hNIS will be expressed by a cell infected with virus prior to cell lysis, imaging may 

be negatively affected by rapid cell lysis. This is why the synthetic early (SE) promoter was 

chosen to drive hNIS expression, as protein production under this promoter occurs within 

hours. In this aim, the optimal conditions for imaging will be determined in mouse models. 

The imaging parameters as related route of tracer administration and timing of imaging will 

be investigated. Finding a noninvasive means of tracking viral distribution during and after 

viral therapy allows potential clinical translation for correlation with efficacy and toxicity 

during clinical trials and therapy.   

 

Specific Aim 4: To determine if combination therapy with GLV-1h153 and 131I produces 

additive or synergistic tumor killing.  

Justification: Radioiodine 131I is a standard treatment for cancers that naturally have high 

hNIS expression, such as thyroid cancers. Oncolytic viruses have been found to have a 

synergistic antitumor effect when combined with ionizing radiation. In this specific aim, the 

ability of GLV-1h153-mediated hNIS expression to induce cancers not naturally expressing 

hNIS to concentrate and retain 131I will be investigated. Further, assessment of whether such 

oncolytic viral therapy would be additive or synergistic to treatment by 131I will be examined. 

If additive or synergistic effect is found, patients may be more safely treated with 

combinations of lower doses of virus and radioactive iodine.  
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4.0 MATERIALS AND METHODS  

 

 

4.1 Cell Culture Experiments 

 

4.1.1 Cell Culture. 

 

African green monkey kidney fibroblast CV-1 cells and human pancreatic ductal carcinoma 

PANC-1 cells were purchased from American Type Culture Collection (ATCC) (Manassas, 

VA) and were grown in Dulbecco‘s modified Eagle‘s medium (DMEM) supplemented with 

1% antibiotic-antimycotic solution (Mediatech, Inc., Herndon, VA) and 10% fetal bovine 

serum (FBS) (Mediatech, Inc.) at 37oC under 5% CO2. Rat thyroid PCCL3 cells were a kind 

gift from the lab of Dr. James Fagin at MSKCC and were maintained in Coon‘s modified 

medium (Sigma, St. Louis, MO), 5% calf serum, 2mM glutamine, 1% penicillin/streptomycin, 

10mM NaHCO3, and 6H hormone (1 mU/ml bovine TSH, 10 ug/ml bovine insulin, 10 nM 

hydrocortisone, 5ug/ml transferrin, 10 ng/ml somatostatin, and 2ng/ml L-glycyl-histidyl-lysine) 

at 37oC under 5% CO2.  

 

4.1.2 Construction of hNIS Transfer Vector.  

 

The hNIS cDNA was amplified by polymerase chain reaction (PCR) using human cDNA 

clone TC124097 (SLC5A5) from OriGene as the template with primers hNIS-5 (5′-

GTCGAC(Sal I) CACCATGGAGGCCGTGGAGACCGG-3′) and hNIS-3 (5′-TTAATTAA(Pac 

I) TCAGAGGTTTGTCTCCTGCTGGTCTCGA-3′). The PCR product was gel purified, and 

cloned into the pCR-Blunt II-TOPO vector using Zero Blunt TOPO PCR Cloning Kit (Incell 

culturegen, DeSchelp, Netherlands). The resulting construct pCRII-hNIS-2 was confirmed by 

sequencing to be identical to the source template TC124097. The hNIS binding test 

suggested that the sequence amplified from the cDNA clone TC124097 was not functional. 

A further sequence analysis indicated that the hNIS in the TC124097 contained a 33-bp 

extra sequence in the middle of the coding region when compared to the SLC5A5 sequence 

in GenBank (accession number NM_000453). The following procedure was employed to 

remove this 33-bp segment. The hNIS template in the pCRII-hNIS-2 was amplified 
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separately with the primer pair hNIS-5 and hNIS-a3 (5′-

GAGGCATGTACTGGTCTGGGGCAGAGATGC-3′), and the primer pair hNIS-a5 (5′-

CCCAGACCAGTACATGCCTCTGCTGGTGCTG-3′) and hNIS-3. The PCR products were 

purified from the gel, and mixed as the template for the second PCR with the primers hNIS-5 

and hNIS-3. The second PCR product was then gel purified, and cloned into the pCR-Blunt 

II-TOPO vector. The insert was confirmed by sequencing to be identical to the SLC5A5 

sequence presented in the NM_000453, and designated as hNISa (the 33-bp segment was 

removed). The hNIS cDNA was then released from pCRII-hNIS-2 with Sal I and Pac I, and 

subcloned into HA-SE-RLN-7, HA-SL-RLN-3, and HA-SEL-RLN-2 with the same cuts by 

replacing RLN cDNA. The resulting construct HA-SE-hNIS-1 were confirmed by sequencing 

and used for insertion of PE-hNIS, PL-hNIS, and PEL-hNIS into the HA locus of GLV-1h68.   

 

4.1.3 Generation of hNIS-Expressing VACV.  

 

CV-1 cells were infected with GLV-1h68 at a multiplicity of infection (MOI) of 0.1 for 1 hour, 

then transfected using Fugene (Roche, Indianapolis, IN) with the hNIS transfer vectors. 

GLV-1h68 was derived from VACV LIVP, as described previously43. Two days postinfection, 

infected/transfected cells were harvested and the recombinant viruses selected and plaque 

purified. The genotype of hNIS-expressing VACV GLV-1h153 was verified by PCR and 

sequencing. Also, expression of GFP and β-galactosidase was confirmed by fluorescence 

microscopy and 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal, Stratagene, La 

Jolla, CA), respectively, and lack of expression of gusA was confirmed by 5-bromo-4-chloro-

3-indolyl-β-D-glucuronic acid (X-GlcA, Research Product International Corp., Mt. Prospect, 

IL). 

 

4.1.4 Viral Growth Curves. 

 

PANC-1 cells were seeded onto 24-well plates at 5 × 105 cells per well. After 24 hours in 

culture, cells were infected with either GLV-1h153 or GLV-1h68 at an MOI of 0.01 or 1.0. 

Cells were incubated at 37º C for 1 hour with brief agitation every 30 minutes to allow 

infection to occur. The infection medium was then removed, and cells were incubated in 

fresh growth medium until cell harvest at 1, 24, 48, and 72 hours postinfection. Viral particles 

from infected cells were released by 3 freeze-thaw cycles, and titers determined as medium 

(PFU/mL) in duplicate by plaque assay in CV-1 cell monolayers.  
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4.1.5 Flow Cytometry. 

 

Cells were seeded on 6-well plates at 5 × 105 cells per well. Wells were then infected at 

MOIs of 0, 0.01, and 1.0, and cells then harvested at 6, 12, 24, 48, 72, and 96 hours post 

infection by trypsinizing and washing with phosphate-buffered saline (PBS). GFP expression 

was analyzed via a Becton-Dickinson FACScan Plus cytometer (Becton-Dickinson, San 

Jose, CA). Analysis was performed using CellQuest software (Becton-Dickinson). Cells were 

seeded on 6-well plates at 5 × 105 cells per well. Wells were then infected at MOIs of 0, 0.01, 

0.1, 0.5, 1.0, 2.0, and 5, and were harvested at 24 hours after infection. Cells were 

subsequently trypsinized, washed with phosphate-buffered saline (PBS), and assayed for 

GFP expression on a Becton-Dickinson FACScan Plus cytometer (Becton-Dickinson, San 

Jose, CA). Analysis was performed using CellQuest software (Becton-Dickinson). 

 

4.1.6 Cytotoxicity Assay. 

 

PANC-1 pancreatic cancer cells were plated at 2 × 104 per well in 6-well plates. After 

incubation for 6 hours, cells were infected with GLV-1h153 or GLV-1h68 at MOIs of 1.0, 

0.10, 0.01, and 0 (control wells). Viral cytotoxicity was measured on day 1 and every second 

day thereafter by lactate dehydrogenase (LDH) release assay. Results are expressed as the 

percentage of surviving cells as compared to uninfected control.   

 

4.1.7 hNIS mRNA Analysis Via Microarray. 

 

To evaluate the level of hNIS mRNA production in infected cells, cells were plated at 5 × 105 

cells per well and infected with GLV-1h153 at an MOI of 5.0. Six and 24 hours postinfection, 

3 samples of each MOI were harvested and lysis performed directly using RNeasy mini kit 

protocol (Qiagen Inc., Valencia, CA). The mRNA samples were measured by 

spectrophotometer for proof of purity and hybridized to HG-U133A cDNA microarray chips 

(Affymetrix Inc, Santa Clara, CA) by the genomic core laboratory at Memorial Sloan-

Kettering Cancer Center (MSKCC). The chip images were scanned and processed to CEL 

files using the standard GCOS analysis suite (Affymetrix Inc). The CEL files were then 

normalized and processed to signal intensities using the gcRMA algorithm from the 

Bioconductor library for the R statistical programming system. All subsequent analysis was 
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done on the log (base 2) transformed data. To find differentially expressed genes a 

moderated t-test was used as implemented in the Bioconductor LIMMA package. To control 

for multiple testing the False Discovery Rate (FDR) method was used with a cutoff of 0.05.  

 

4.1.. hNIS Protein Analysis Via Western Blot. 

 

To confirm whether the hNIS protein was being expressed in infected cells, cells were plated 

at 5 × 105 per well and infected with GLV-1h153 at various MOIs of virus, harvested at 24 

hours, and suspended with SDS-page and 0.5-m DDT reagent. After sonication, protein 

samples were loaded on 10% Bis-Tris-HCl buffered polyacrylamide gels using the Bio-rad 

system (Bio-rad laboratories, San Francisco, CA). Following gel electrophoresis for 1 hour, 

proteins were transferred to nitrocellulose membranes using electroblotting. Membranes 

were then preincubated for 1 hour in 5% low fat dried milk in TBS-T (20 mm Tris, 137 mm 

NaCl, and 0.1% Tween-20) to block nonspecific binding sites. Membranes were incubated 

with a purified mouse antibody against hNIS at 1:100 dilution (Abcam Inc., Cambridge, MA) 

and incubated for 12 hour at +4°C. After washing with TBS-T, secondary antibody 

(horseradish peroxidase-conjugated goat antimouse IgG (Santa Cruz, San Diego) was 

applied for 1hour at room temperature at a 1:5,000 dilution. Peroxidase-bound protein bands 

were visualized using enhanced chemiluminescence Western blotting detection reagents 

(Amersham, Arlington Heights, IL) at room temperature for approximately 1 minute and 

using Kodak BIOMAX MR film for exposure. Normal human thyroid lysate was used as a 

positive control, and cells treated with an MOI 1.0 of GLV-1h68 and PBS were used as 

negative controls. 

 

4.1.9 Immunofluorescence. 

 

PANC-1 cells grown in a 12-well plate at 1 × 106 were mock-infected with GLV-1h68 or 

infected with GLV-1h153 at an MOI of 1.0. Twenty-four hours after infection the cells were 

fixed with 3.7% paraformaldehyde, permeabilized with methanol, blocked with PBS 

containing BSA, and incubated with a mouse anti-hNIS monoclonal antibody (Abcam Inc., 

Cambridge, MA) at a dilution of 1:100, followed by incubation with a secondary red 

fluorochrome-conjugated goat antimouse antibody (Incell culturegen) at a dilution of 1:100. 

Pictures were taken using a Nikon inverted fluorescence microscope. 
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4.1.10 Cell Culture Radiouptake Assay. 

 

Radiouptake in cells infected with GLV-1h153 was compared to rat thyroid cell line 

endogenously expressing NIS (PCCL3) and to cells infected with an MOI of 1.0 of parental 

virus GLV-1h68. Cells were plated at 5 × 105 cells per well in 6-well plates. Twenty-four 

hours after infection, cells were treated with 500 uCi of either carrier free 131I or 131I with 1 

mM of sodium perchlorate (NaClO4), a competitive inhibitor of hNIS for a 60-minute 

incubation period. Media was supplemented with 10 uM of sodium iodide. Iodide uptake was 

terminated by removing the medium and washing cells twice with PBS. Finally, cells were 

solubilized in lysis buffer for residual radioactivity, and the cell pellet-to-medium activity ratio 

(cpm/g of pellet vs. cpm/mL of medium) calculated from the radioactivity measurements 

assayed in a Packard γ-counter (Perkin Elmer, Waltham, MA). Results are expressed as 

change in uptake relative to negative uninfected control. All samples were done in triplicate. 

 

4.1.11 Radiopharmaceuticals. 

 

124I, 131I and 99mTcO4 were obtained from MSKCC‘s radiopharmacy. The maximum specific 

activities for the 124I and 131I were ~215-250 uCi/mouse and ~0.5 uCi/well, respectively. 

Activity of 99mTcO4 ranged from 500-900 uCi/mouse. 

 

 

4.2 Mouse Model Experiments 

 

4.2.1 Tumor Therapy Studies and Systemic Toxicity.  

 

All mice were cared for and maintained in accordance with animal welfare regulations under 

an approved protocol by the Institutional Animal Care and Use Committee at Memorial 

Sloan-Kettering Cancer Center, New York and San Diego Science Center, San Diego. 

PANC-1 xenografts were developed in 6- to 8-week-old male nude mice (NCI:Hsd:Athymic 

Nude-Foxn1nu, Harlan) by implanting 2 × 106 PANC-1 cells in PBS subcutaneously in the 

left hindleg. Tumor growth was recorded once a week in 3 dimensions using a digital caliper 

and reported in mm3 using the formula (length × width × [height-5]). When tumors reached 
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100–300mm3, mice were injected Intratumorally (ITly) or Intravnenously (IVly) via the tail 

vein with a single dose of 2 × 106 PFU GLV-1h153 or GLV-1h68 in 100 uL PBS. Animals 

were observed daily for any sign of toxicity, and body weight checked weekly. Animals were 

then euthanized and tumor harvested for viral distribution studies.  

 

4.2.2 In vivo Viral Biodistribution Assays.  

 

Tissue from normal organs (lung, liver, spleen, kidney, brain, testes), as well as from tumor, 

were harvested at 1 and 5 weeks postinjection of virus, weighed, suspended in 500 mL PBS 

containing protease inhibitor, and homogenized for 30 seconds at a speed of 6500 rpm. 

Three to four mice were used per group. After homogenization, samples were subjected to 3 

freeze–thaw cycles. Samples were then centrifuged for 5 minutes at 3000 g at 4°C, 

supernatants collected, and serial dilutions made. Standard plaque assays were performed 

on 24-well plates of confluent CV-1 cells, with all samples assessed in duplicate. The 

remaining mice for each group were followed for 34 days to determine viral effect on tumor 

growth.  

 

4.2.3 Optical Imaging of Pancreatic Tumor Xenografts. 

 

GFP expression of tumors infected with GLV-1h153 was visualized directly using UV light 

fluorescence or utilizing the Maestro 2 system (Cambridge Research and Instrumentation, 

Woburn, MA). For the bioluminescence imaging, animals were analyzed for the presence of 

virus-dependent luciferase activity. For this purpose, mice were injected IV with a 100 uL 

mixture of 5 mL coelenterazine (Sigma; 0.5 mg/mL diluted ethanol solution) and 95 uL of 

luciferase assay buffer (0.5 M NaCl, 1 mM EDTA, and 0.1 M potassium phosphate, pH 7.4). 

The animals were then anesthetized with xyline IP injection and imaged using the ARGUS-

100 (Hamamatsu, Hamamatsu City, Japan). Photons were collected for 1 minute from dorsal 

views of the animals. 
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4.2.4 Histologic Confirmation of GLV-1h153 Infection of Xenografts. 

 

At 1 week post viral injection, animals were sacrificed and the tumors harvested. Tissue 

sections were deparaffinized by serial passages in xylene, then subjected to a graded series 

of ethanol washes before endogenous peroxidase activity was blocked by incubation in a 

50% by volume solution of 3% H2O2/methanol for 10 minutes. Subsequently, slides were be 

pretreated by heating in citrate buffer (10 mm citric acid) for 20 minutes. Following blocking 

of nonspecific binding with blocking serum for 30 minutes, slides were incubated with 

polyclonal antibody produced in rabbits against synthetic peptide AKKIDVQTGRRPYE (the 

C-terminal of A27L vaccinia protein) (custom made by GenScript Corporation, Piscataway, 

NJ) at a dilution of 1:1000 for 30 minutes. Tissue sections were then washed and incubated 

with biotin-conjugated anti-mouse-immunoglobulin for 30 minutes at room temperature, 

followed by incubation with preformed avidin and biotinylated horseradish peroxidase 

macromolecular complex. Diaminobenzidine (DAB) was used as the chromogen, where a 

brownish precipitate would be indicative of VACV immunoreactivity. Slides were 

counterstained with hematoxilyn for 1–5 minutes before mounting.  

 

4.2.5 PET, CT, and γ-Imaging. 

 

All animal studies were performed in compliance with all applicable policies, procedures, and 

regulatory requirements of the MSKCC Institutional Animal Care and Use Committee, the 

MSKCC Research Animal Resource Center. 

 

For the initial IT imaging experiment, 3 groups of 3 animals each, bearing subcutaneous 

PANC-1 xenografts on the left hindleg, were injected ITly with 2 × 107 PFU GLV-1h153, 2 × 

107 PFU GLV-1h68, or PBS. Two days postinjection, ~215 uCi of 124I was administered via 

the tail vein. At hours 1, 2, and 8 after radiotracer administration, 3-dimensional list-mode 

data were acquired using an energy window of 350 to 700 keV, and a coincidence timing 

window of 6 nanoseconds. Imaging was performed using a Focus 120 microPET dedicated 

small-animal PET scanner (Concorde Microsystems Inc, Knoxville, TN). This data was then 

sorted into 2-dimensional histograms by Fourier rebinning. The image data were corrected 

for (a) nonuniformity of scanner response using a uniform cylinder source-based 

normalization, (b) dead time count losses using a single-count rate-based global correction, 

(c) physical decay to the time of injection, and (d) the 124I branching ratio. The count rates in 
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the reconstructed images were converted to activity concentration (%ID/gm) using a system 

calibration factor (MBq/mL per cps/voxel) derived from imaging of a mouse-size phantom 

filled with a uniform aqueous solution of 18F. Image analysis was performed using ASIPro 

(Siemens Pre-clinical Solutions, Knoxville, TN). Four ROIs were manually drawn on each 

tumor and %ID/gm ± SD recorded. The bar (image intensity scale) demonstrates the range 

of uptake intensities, with 100% representing the strongest signal in the image. One mouse 

in the GLV-1h153 group was also imaged with a MicroCAT II MicroCT Scanner (ImTek Inc., 

Knoxville, TN) 8 hours after radiotracer and obtained images fused with those obtained with 

PET that same hour.  

 

For the serial imaging experiment, 2 groups of 2 animals each, bearing subcutaneous 

PANC-1 xenografts on the right hindleg, were injected were injected IVly or ITly with 2 × 106 

PFU of GLV-1h153. Mice were serially imaged at 1 and 4 hours post 124I administration via 

the tail vein at 1, 2, 3, and 5 weeks post viral injection. At week 1 and 2 virus postinjection, 

animals were also imaged 8, 24, 48, and 72hr after radiotracer administration to obtain time-

activity curves. Imaging and data acquisition was done as above. Further, 1 ITly- and 1 IVly- 

injected mouse were also imaged with a MicroCAT II MicroCT Scanner (ImTek Inc., 

Knoxville, TN) 4 hours after radiotracer at week 1 and 2, and obtained images again fused 

with those obtained with PET that same hour. 

 

To investigate if hNIS can also mediate imaging of viral replication with 99mTcO4, 3 groups of 

2 animals each, bearing subcutaneous PANC-1 xenografts on the right hindleg, were 

injected IVly (2 mice) or ITly (2 mice) with 2 × 107 PFU of GLV-1h153, or PBS (2 mice). One 

mouse from each group was imaged with 124I-mediated PET scanning as above, and the 

other imaged with 99mTcO4-mediated γ-scintigraphy 0.5, 1-2, and 3-4 hours after 99mTcO4 

radiotracer administration. Ventral and dorsal planar images of the in vivo distribution of 

99mTcO4 were simultaneously acquired using the dual-detector gamma camera sub-system of 

the XSPECT small-animal SPECT-CT system (Gamma Medica, Northridge, CA). The 

detectors were fitted with low-energy, high-resolution parallel-hole collimators and images 

acquired over 10 minutes using a 140 keV+10% 99mTcO4 photopeak energy window and a 

56x56 image matrix (pixel size: 2.2x2.2 mm). Images were corrected for non-uniformity of 

response using a measured ―sensitivity map‖; no attenuation or scatter correction was 

applied. The resulting images were parameterized in terms of the percent of the %ID/gm, 

corrected for decay to the time of injection, by applying a system calibration factor (counts 

per second (cps)/pixel/Ci 99mTcO4/ml) determined by imaging a mouse-size (25 ml) 

cylindrical phantom filled with an aqueous solution of 99mTcO4 with a precisely measured 

activity concentration and imaged in the same manner as the mice. 
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4.2.6 Tissue Radiouptake Assay. 

 

Following the initial IT imaging experiment, all mice were sacrificed 8 hours post 124I 

radiotracer injection. Organs (heart, lung, liver, spleen, kidney, thyroid, stomach, muscle, 

blood) and tumors were collected, weighed, and their radioactivity determined with a γ-

counter (Perkin Elmer, Waltham, MA). Data was normalized as described above and also 

expressed as %ID/gm. 

 

4.2.7 Autoradiography. 

 

Three mice bearing subcutaneous PANC-1 xenografts on the right hindleg, were injected 

ITly with 2 × 107 PFU of GLV-1h153 (2 mice) or PBS (1 mouse). Two days after injection, 

~900 uCi of 99mTcO4 was administered via the tail vein. Images were obtained with dual-

detector gamma camera sub-system of the XSPECT small-animal SPECT-CT system 

(Gamma Medica, Northridge, CA).0.5hr after radiotracer administration.  

 

Following imaging of mice, the fluorescent dye Hoechst 33342 trihydrochloride (Sigma) (40 

mg/kg; 1 mg in 100 uL physiological saline) was injected IVly through the tail vein. Five 

minutes after dye injection, animals were sacrificed and tumors excised, embedded in 

mounting medium (O.C.T. Compound, Sakura Finetek, Torrance, CA) and frozen on dry ice. 

Sets of contiguous frozen tissue sections were cut at 6 um thicknesses on a Microm HM500 

cryostat microtome (Microm International GmbH, Walldorf, Germany) and collected on glass 

microscope slides. 

 

To facilitate comparison of the spatial distributions of radiotracer and immunohistochemical 

markers at the microscopic level, digital autoradiography (DAR) was performed on tissue 

sections prepared as described above. Sections were placed in a film cassette against a 

phosphor imaging plate (Fujifilm BAS-MS2325, Fuji Photo Film, Japan). Phosphor plates 

were read out at a resolution of 50 × 50 um on a BAS-1800II Bio-Imaging Analyzer (Fujifilm 

Medical Systems, USA)  

 

Digital images of the distributions of GFP and Hoechst 33342 in tumor sections were 

acquired at 100X magnification using a fluorescence microscope (Nikon Diaphot 300) 

equipped with a computer-controlled motorized stage and digital Coolsnap EZ camera 
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(Photometrics, Tuscon AZ) for image capture After acquisition of fluorescence images, tumor 

sections were stained with hematoxylin and eosin (H&E) and imaged by light microscopy. 

Composite images of whole tumor sections were obtained by stitching individual microscopic 

images using Image-Pro software (Image-Pro plus v. 7.0, MediaCybernetics, Bethesda, 

MD). All images were saved in 8-bit format and manually co-registered using Adobe 

Photoshop (Version 7.0, Adobe Systems, San Jose, CA). 

 

4.2.8 Dosimetry Calculations for Combination Therapy With 131I.  

 

For dosimetry calculations of the serial imaging experiment, four ROIs were manually drawn 

on imaged tumors and averaged, with the mean injected value ± SD recorded. The 124I 

image-derived time-activity concentration data were corrected for radioactive decay to the 

time of injection and fit to exponential functions using least-squares regression281, 282. The 131I 

cumulated activity concentrations (in uCi-hr/gm/uCi 131I administered) were then calculated 

using EXCEL (Microsoft Corp, Redmond, WA) by integrating the fitted time-activity functions, 

incorporating the physical decay constant of 131I (0.0036 /hour). Mean tumor absorbed doses 

(rad/uCi 131I administered) were calculated assuming complete local absorption of the 131I β-

rays (equilibrium dose constant for 131I β-rays: 0.405 gm-rad/uCi-hr) and ignoring the small 

contribution of the 131I γ-rays. In order to treat tumors, an average was obtained for the 

systemically virus-treated mice, with the goal of providing a radiation dose of 2000 rads. For 

a more detailed explanation of dosimetry calculations, please refer to the following paper 

and review 153, 187. 

 

Note that cumulated activities from time-activity data were then obtained by integration from 

the time of administration of the radiopharmaceutical (t = 0) to the time of its complete 

elimination or decay (effective clearance constant, which takes into account both the 

physical (radioactive) decay constant of the radionuclide and its biological clearance 

constant). Time-activity data is the % of administered activity versus time post-

administration. Function parameters of the integration from the time of administration of the 

radiopharmaceutical and the effective clearance constant was iteratively adjusted to 

minimize the sum of the squared differences between the measured data and the 

corresponding calculated (i.e. fitted) value. Analytic integration of the time-activity function 

then yielded the cumulated activity in source region.  
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4.2.9 Combination Therapy With 131I.  

 

For the radiotherapeutic experiment, PANC-1 xenografts were established in the right hind 

leg in five groups of mice: GLV-1h153 (4 mice), GLV-1h153 + 131I (3 mice), GLV-1h68 (4 

mice), GLV-1h68 + 131I (3 mice), and PBS control (5 mice). Based on previous imaging and 

dosimetric calculations, 1 week following IV injection of 2 x 106 PFU of GLV-1h153 or control 

virus GLV-1h68, treated groups were administered 5 mCi of 131I by single IV injection in 

order to achieve an IT dose of around 2000 rads, while the untreated group had 100ul of 

PBS administered. Tumors were measured before administration of 131I and weekly 

thereafter. All mice were weighed weekly and followed up to 5 weeks post virus injection.  

 

4.3 Statistical Analysis 

 

P values were generated for cell culture and tissue radiouptake assay comparisons using 

Dunnett's test, and for imaging radiouptake using the Tukey multiple comparisons test283. 

For treatment experiments, the GraphPad Prism 5.0 program (GraphPad Software, San 

Diego, CA) was used for data handling and analysis. The significance between therapy 

groups was determined via two-way ANOVA with Bonferroni correction. P < 0.05 was 

considered significant.   
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5.0 RESULTS BASED ON SPECIFIC AIMS 

 

5.1 Specific Aim 1: To determine if GLV-1h153 induces the expression of hNIS on 

cancer cell membranes and assess the effects of gene insertion on viral replication.  

 

5.1.1 Construction of the hNIS-encoding GLV-1h153.  

 

The GLV-1h153 construct used in this study was derived from GLV-1h68 by replacing the β-

glucuronidase (gusA) expression cassette at the A56R locus with the hNIS expression 

cassette (SE-hNIS) containing the hNIS cDNA under the control of the VACV synthetic early 

promoter, by homologous recombination in infected cells. The genotype of GLV-1h153 

(Figure 5a) was verified by PCR and sequencing, and the lack of β-glucuronidase 

expression was confirmed by X-GLcA staining (Figure 5b).  

 

 

 

Figure 5a. GLV-1h153 construct. GLV-1h153 was derived from GLV-1h68 by replacing the gusA 
expression cassette at the A56R locus with the hNIS expression cassette through in vivo homologous 
recombination. Both viruses contain RUC-GFP and lacZ expression cassettes at the F14.5L and J2R 
loci, respectively. PE, PE/L, P11, and P7.5 are VACV synthetic early, synthetic early/late, 11K, and 
7.5K promoters, respectively. TFR is human transferrin receptor inserted in the reverse orientation 
with respect to the promoter PE/L. 

 

 

 
Figure 5b. Confirmation of GFP, LacZ, and lack of gusA marker gene expression in GLV-1h153 
infected CV-1 cells. While the gusA gene cassette is expressed in cells infected with parent virus 
GLV-1h68, this has been replaced by the hNIS gene cassette in GLV-1h153, leading to loss of gusA 
expression. 
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5.1.2 GLV-1h153 Replicated Efficiently in PANC-1 Cells. 

 

To evaluate the replication efficiency and effect of hNIS protein expression on VACV 

replication, PANC-1 cells were infected with either GLV-1h153 or its parental virus, GLV-

1h68, at MOIs of 0.01 and 1.0, and the infected cells harvested at 1, 24, 48, and 72 hours 

post infection. The viral titers at each time point were determined in CV-1 cells using 

standard plaque assays. Both GLV-1h153 and GLV-1h68 replicated in PANC-1 cells at 

similar levels, indicating that the hNIS protein did not hinder viral replication within cells. 

GLV-1h153 yielded a 4-log, or 10,000-fold, increase of viral load with an MOI of 0.01 only 72 

hours after infection. Within this time, viral load with an MOI of 0.01 reached the same levels 

as infection with an MOI of 1.0, again indicating efficient replication (Figure 6).  

 

 

Figure 6. Viral proliferation assay of GLV-1h153-in PANC-1 cells. PANC-1 cells were grown in 6-
well plates and infected with GLV-1h153 or GLV-1h68 at an MOI of 0.01 and 1.0. Three wells of each 
virus were harvested at 1, 24, 48, and 72 hours postinfection. GLV-1h153 replicated in a similar 
manner to GLV-1h68, with a 4-log increase in viral load at an MOI of 0.01 by 72 hours, reaching 
similar levels as that  in cells infected with an MOI of 1.0 demonstrating efficient replication of GLV-
1h153. 
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5.1.3 GLV-1h153 Replication was Assessed Via Flow Cytometric Detection of GFP. 

 

GFP expression in cells infected with GLV-1h153 was quantified using flow analysis, and 

was shown to be both time- and MOI-dependent. Adjusting for background, GFP expression 

mimicked the viral replication growth curve, with GFP expression in cells infected at an MOI 

of 0.01 reaching similar levels to an MOI of 1.0 by 72 hours (Figure 7a). Further, >70% of 

live cells expressed GFP at an MOI of 5.0 at 24hrs postinfection (Figure 7b).  

 

 

Figure 7a. Flow cytometry of time-dependent GFP expression. GFP was quantified via flow 
cytometry in PANC-1 cells infected with GLV-1h153 at MOIs of 1.0 and 0.01 and was shown to be 
MOI dependent. GFP expression mimicked the viral replication growth curve, with expression in the 
MOI 0.01 infected cells reaching similar levels as the MOI of 1.0 by 72 hours after infection.  
 

 

Figure 7b. Flow cytometry of MOI-dependent GFP expression. GFP expression was quantified via 
flow cytometry in PANC-1 cells infected with an MOI of 0.01, 0.1, 0.5, 1.0 2.0, and 5.0 at 24 hours 
after infection, and was shown to be MOI-dependent. >70% of live cells expressed GFP at an MOI of 
5.0 at 24hrs postinfection. 
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5.1.4 GLV-1h153 successfully expressed hNIS mRNA and Protein in Infected Cells. 

 

To confirm production of hNIS mRNA by GLV-1h153-infected PANC-1 cells, cells were 

infected at an MOI of 5.0 and mRNA isolated for analysis with Affymetrix chips. mRNA in 

cells had an almost 2000-fold increase by only 6 hours after infection, and a >5000-fold 

change by 24 hours (P<0.05) (Figure 8a). To show hNIS protein expression by GLV-1h153, 

PANC-1 cells were mock infected or infected with GLV-1h153 or parental virus GLV-1h68 at 

MOIs of 0.1, 1.0, and 5.0 and harvested 24 hours after infection. Production of the hNIS 

protein was successfully detected by Western blot between 75 and 100 kDa, with an 

increasing concentration of protein at higher MOIs (Figure 8b).  

 

 

Figure 8a. Assessment of hNIS mRNA expression in GLV-1h153-infected PANC-1 cells. 
Microarray analysis of cells infected with an MOI of 5.0 of GLV-1h153 yielded an almost 2000-fold 
increase by 6 hours and an almost 5000-fold increase by 24 hours in hNIS mRNA production as 
compared to noninfected control.  

 

 

Figure 8b. Assessment of hNIS protein expression in GLV-1h153-infected PANC-1 cells PANC-
1 cells were either mock infected or infected with GLV-1h68 at an MOI of 1.0 or infected with GLV-
1h153 at an MOI of 1.0 or 5.0 for 24 hours. The hNIS protein was detected by Western blot analysis 
using monoclonal anti-hNIS antibody. Only GLV-1h153-infected cells expressed the hNIS protein, but 
cells either mock infected or infected with GLV-1h68 did not. The molecular weight marker bands (in 
kDa) are shown on the left.  
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5.1.5 The hNIS Protein was Localized at the Cell Membrane of PANC-1 Cells.  

To determine whether the hNIS protein expressed by GLV-1h153 was successfully 

transported and inserted on the cell membrane, PANC-1 cells were infected with GLV-1h153 

and fixed with 3.7% paraformaldehyde. The hNIS protein was visualized using a monoclonal 

anti-hNIS antibody that recognizes the intracellular domain of the protein. As shown in 

Figure 9, mock- or GLV-1h68-infected cells (as demonstrated by GFP expression) did not 

show hNIS protein expression, whereas the hNIS protein in cells infected with GLV-1h153 

was readily detectable by immunofluorescence microscopy, and appears to be localized at 

the cell membrane. 

 

Figure 9. Immunofluorescence of hNIS protein location in GLV-1h153-infected PANC-1 cells 
PANC-1 cells were mock-infected or infected with GLV-1h68 or GLV-1h153 at a MOI of 1.0 for 24 
hours. The hNIS protein was detected by immunofluorescence microscopy using monoclonal anti-
hNIS antibody. Mock- or GLV-1h68-infected cells (as demonstrated by GFP expression) did not 
express the hNIS protein, whereas the hNIS immunoreactivity was readily detectable on the cell 
membrane of PANC-1 cells infected with GLV-1h153. 

 

5.1.6 GLV-1h153-Infected PANC-1 Cells Showed Enhanced Dose- and Time-Dependent 

Uptake of Carrier-Free Radioiodide. 

 

To establish that the hNIS symporter was functional, cells were mock infected or infected at 

an MOI of 1.0 with GLV-1h153 and GLV-1h68, then treated with 131I at various times after 

infection. GLV-1h68-infected cells were treated at 24 hours postinfection. Normal rat thyroid 

cell line PCCL3 was used as a positive control. PANC-1 cells infected with GLV-1h153 
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showed a >70-fold increased radiouptake compared with negative control at 24 hours post 

infection (P<0.001), compared to 2.67 and 1.01 with MOIs of 0.1 and 0.01, respectively. This 

increased uptake correlated with peak GFP expression (Figure 10, left panel). Moreover, 

when cells were treated with NaClO4, a competitive inhibitor of hNIS, radiouptake decreased 

in GLV-1h153-treated cells, from a 70- to a 1.14-fold difference at an MOI of 1.0, indicating 

hNIS-specific radiouptake. Radiouptake was also shown to be time-dependent, and again 

correlated with GFP expression, with a decrease of both radiouptake and GFP expression 

by 48hrs. (Figure 10, left panel). 

 

                       

                    

Figure 10. Assessment of cell culture 
131

I radiouptake of GLV-1h153-infected PANC-1 cells. 
PANC-1 cells were infected with an MOI of 0, 0.01, 0.1, and 1.0 of GLV-1h153 and MOI of 1.0 of 
GLV-1h68. PCCL3 was used as a positive control. Twenty-four hours after infection, a >70-fold 
enhanced radiouptake was seen at an MOI of 1.0 as compared to an MOI of 0 in GLV-1h153. Uptake 
was MOI-dependent and hNIS-specific (as shown with blocking with competitive inhibitor of hNIS, 
NaClO4). Maximum radiouptake with an MOI of 1.0 24 hrs after infection corresponded to maximum 
GFP expression (left panel). PANC-1 cells were mock infected or infected with an MOI of 1.0 of GLV-
1h153 and MOI of 1.0 of GLV-1h68 (harvested at 24 hours post infection). Radiouptake was time-
dependent and correlated with GFP expression, with a decrease of radiouptake and GFP expression 
by 48hrs (right panel). 
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5.2 Specific Aim 2: To establish that GLV-1h153 specifically kills pancreatic cancer 

cell line PANC-1, and is safe when administered in animal models.  

 

 

5.2.1 Cytotoxicity Assay. 

 

To investigate whether expression of hNIS would affect cytolytic activity of VACV in cell 

cultures, PANC-1 cells were mock-infected or infected with GLV-1h68 or GLV-1h153 at an 

MOI of 0.01 and 1.0. Viral cytotoxicity was measured every other day for 7 days. The 

survival curves for GLV-1h68 and GLV-1h153 were almost identical at both MOIs, indicating 

a similar cytopathic effect of both viruses in a time- and dose-dependent fashion (Figure 

11a). By day 11, More than 60% cell kill was achieved with an MOI of 1.0 as compared to 

control. Cytotoxicity again correlated with GFP expression (Figure 11b). 

 

 

Figure 11a. GLV-1h153 infection and killing in cell culture. a. PANC-1 cells were infected by 
various GLV-1h153at MOIs of 0.01, 0.1, and 1.0. Cell viability was determined via lactate 
dehydrogenase assays, and was set at 100% before infection. GLV-1h153 infected and was cytotoxic 
at various MOIs, with less than 20% survival of cells as compared to control at an MOI of 1.0 by day 
9. The values are the mean of triplicate samples, and bars indicate SD.  
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Figure 11b. Microscopy of GLV-1h153 infection and killing in cell culture. GFP expression, 
shown here at an MOI of 1.0, is time-dependent with abundant GFP expression by day 3. Phase 
overlay pictures shows gradual cell death and thus decline of GFP expression by day 7. Closer 
examination of infected cells reveals loss of normal morphology and cell progressive cell detachment. 

 

5.2.2 Tumor Therapy Studies and Systemic Toxicity.  

 

To establish cytolytic effects of GLV-1h153 in animal models, mice bearing PANC-1 hindleg 

xenografts were infected IT or IV with GLV-1h153 or GLV-1h168, or mock-treated with PBS. 

While the tumors treated with PBS continued to grow, GLV-1h153-treated tumors occurred 

in three distinct phases: growth, inhibition, and regression (Figure 12a). The mean relative 

size of tumors treated with GLV-1h153 was significantly smaller than untreated control 

tumors, with differences beginning as early as day 13 (P < 0.01), and continuing till day 34 

after virus or PBS control administration (P < 0.001). By day 34, there was an over 4-fold 

difference between control and IV tumor volumes, a >6 fold difference in the IT group. 

Furthermore, there were no significant adverse effects seen with regard to body weight, with 

the IT group gaining weight as compared to control with statistically significant results by day 

34 (P < 0.001) (Figure 12b). 
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Figure 12a. GLV-1h153-mediated killing of PANC-1 tumor xenografts. Two × 10
6
 PFU of GLV-

1h153 or GLV-1h68, or PBS were injected IVly or ITly into nude mice bearing S.C. PANC-1 tumors 
(~100 mm

3
). GLV-1h153 slowed growth and regressed pancreatic tumor xenografts from initial tumor 

volume when injected both ITly and IVly starting at day 13. The values are a mean of 4-5 mice, with 
bars indicating SEM.  

 

.  

Figure 12b. Body weights of animals post GLV-1h153 treatment. GLV-1h153 treatment of 
pancreatic tumor xenografts did not have adverse effects on body weight at 5 weeks postinjection, 
with the IT group even gaining weight compared to control. 
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5.2.3 Viral Biodistribution Assays.  

 

To assess viral biodistribution in animal models, GLV-1h153 particles were recovered from 

tumor tissues of virus-treated animals at 1 and 5 weeks in the order of 109 virus particles per 

gram tissue in both the IT and IV groups (3-4 mice per group per time point). Only trace 

amounts of virus were detected in the spleen and lungs for the IT and IV groups and in the 

spleen for the IT group at 1 week. By 5 weeks, virus replication persisted at almost 109 virus 

particles per gram of tissue in the tumors, while residual viral particles were mostly cleared in 

other organs with only trace amounts remaining in the lung and kidney in the IV and IT 

groups, respectively (Figure 13).  

 

 

Figure 13. GLV-1h153 biodistribution in animal models. GLV-1h153 and GLV-1h68 particles were 
recovered from tumor tissues of virus-treated animals at 1 and 5 weeks post IT or IV injection of virus 
in the order of 10

9
 viral particles in both groups (log scale, 3-4 mice per group per time point). Trace 

amounts of virus were detected in the testes, spleen, kidney and lungs for both viruses and for both 
the IV and IT group at 1 week. By 5 weeks, virus replication persisted at almost 10

9
 virus particles per 

gram of tissue in the tumors, while residual viral particles were cleared in most organs. 
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5.2.4 Histologic and Optical Confirmation GLV-1h153 Infection of Tumor Xenografts. 

 

To confirm virus presence in tumors, 2 animals from GLV-1h153 and GLV-1h68 IT and IV 

groups, as well as PBS controls, were sacrificed 1 week after treatment. All tumors treated 

with either GLV-1h153 or GLV-1h68 stained positive for vaccinia A27L antigen, yielding a 

brownish precipitate compared to the blue-purple hematoxylin background seen with 

uninfected areas and control tumors. Tumors injected ITly showed more homogenous areas 

of brown precipitation as compared to a more dispersed pattern in the IV-infected group, 

which is explained by the systemic rather than local spread of virus within the tumor. Tumors 

infected with GLV-1h153 expressed GFP, which persisted 5 weeks after injection. 

Furthermore, virus was detectable in virus-infected tumors by bioluminescence imaging of 

luciferase activity 1 week after viral administration (Figure 14). 

 

 

Figure 14. Histologic and optical detection of viral replication using vaccinia marker genes. 
GFP expression was monitored at 1, 3, and 5 weeks after GLV-1h153 injection and persisted 5 weeks 
posttreatment. GLV-1h153 was also detected via RLuc bioluminescence imaging 1 week 
posttreatment. Presence of GLV-1h153 in tumors was confirmed histologically, shown here with the 
brownish precipitate against vaccinia A27L antigen in the IT and IV groups at 400x magnification. 
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5.3 Specific Aim 3: To determine if GLV-1h153-induced hNIS expression facilitates 

intracellular uptake of radioiodide, thus enabling imaging of tumor and viral therapy. 

 

 

5.3.1 GLV-1h153 Enhanced Radiouptake in Tumor Xenografts and was Imaged Via 

PET. 

 

After successful cell culture radiouptake studies, the feasibility of using GLV-1h153 in 

combination with carrier-free 124I radiotracer to image infected PANC-1 tumors was 

investigated. hNIS protein expression in the PANC-1 tumor-bearing animals after GLV-

1h153 administration was visualized by 124I-PET. Carrier free 124I was IVly administered 48 

hours after IT virus injection and PET imaging was performed 1, 2, and 8 hours after 

radiotracer administration. Tumor radioactivity values (%ID/gm) were measured and 

compared to background. The maximum average levels of radioactivity in GLV-1h153-

injected tumors were 3.82 ± 0.46 1 hour after radiotracer administration, whereas GLV-1h68- 

and PBS-injected tumors could not be visualized, and therefore were not significantly above 

background (P< 0.001). The stomach and thyroid were also imaged due to native NIS 

expression, and the bladder due to tracer excretion (Figure 15). 

 

 

Figure 15. PET imaging of enhanced radiouptake in GLV-1h153-infected PANC-1 xenografts.  
Two × 10

7
 PFU of GLV-1h153, GLV-1h68, or PBS was injected ITly into PANC-1 hindleg tumor-

bearing mice. 
124

I PET scanning was obtained 48 hours after infection and 1 hour after radiotracer 
administration. GLV-1h153-infected PANC-1 tumors were easily visualized, while no enhanced signal 
was seen in the PBS- or GLV-1h68 injected tumors. Stomach and thyroid were also imaged due to 
native NIS expression, and the bladder due to tracer excretion  
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5.3.2 GLV-1h153-Enhanced Radiouptake Was Retained In PANC-1 Tumor Xenografts. 

 

When the ITly-injected mice were imaged serially over 1, 2, and 8 hours, absolute activity in 

tumors declined. However, the ratio of activity to background increased from 9.11 ± 1.48 

(P<0.001) to 25.0 ± 7.05 (P<0.01) (Figure 16b and 16c). 

 

 

Figure 16a. Timing characteristics of radiouptake in GLV-1h153-infected PANC-1 xenografts. 
Two × 10

7
 PFU of GLV-1h153 or PBS was injected ITly into PANC-1 hindleg tumor-bearing mice. 

124
I-

PET scanning was performed 48 hours after infection and 1, 4, and 8 hrs after radiotracer 
administration.  

 

Figure 16b. Ratio of radiouptake to background in PANC-1 xenografts. Although absolute 
radiouptake decreased between 1 and 8 hours post radiotracer administration, ratio of uptake versus 
background steadily increased, showing successful retention of radiotracer in tumors.  
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5.3.3 GLV-1h153-Mediated Tissue Radiouptake Correlated Well With Quantative PET. 

Enhanced radiouptake in ITly GLV-1h153-injected tumors to other organs as well as GLV-

1h68- and PBS-injected tumors was confirmed in ITly-injected mice (2-3 mice per group) via 

tissue radiouptake assay at 8 hours post radiotracer administration. The activity in GLV-

1h153-infected tumors correlated well with PET images, at 1.71 ± 0.30 (P<0.001 compared 

to both PBS and GLV-1h68 groups) and 1.84 ± 0.42 (P<0.01 also compared to both PBS 

and GLV-1h68), respectively, whereas tumors in the control groups were again not above 

background (Figure 17).  

.  

Figure 17. Tissue radiouptake assay. Enhanced radiouptake in tumors infected with GLV-1h153 
compared to GLV-1h68 and PBS 8 hrs after radiotracer injection was confirmed via tissue radiouptake 
assays and correlated well with quantitative PET. Native NIS expression in the stomach also leads to 
enhanced radiouptake in all groups, but only in the GLV-1h153-mediated NIS expression in infected 
tumors. 

 

5.3.4 GLV-1h153 Facilitated Serial Monitoring Of Systemic and IT Viral Therapy. 

 

After establishing that GLV-1h153 enhances radiouptake in animal models, is detected by 

PET, and induces radiouptake retention, GLV-1h153 facilitation of serial imaging and 

monitoring of both IT and systemic viral therapy was then determined. Two mice were 

injected either ITly or IVly with 2 x 106 PFU of virus, which was the same dose used in the 

therapeutic and biodistribution assay experiments. Mice were imaged at 1, 2, 3, and 5 weeks 
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post virus injection and 1 and 4 hours post radiotracer administration to determine 

radiouptake in tumors. At week 1 and 2 post virus injection, mice were also imaged at 1, 4, 

8, 24, 48, and 72 hours post injection in order to calculate absorbed doses in the tumor with 

dosimetry. As can be seen in the Figure 18, PET imaging readily detected virus replication in 

tumors as late as 5 weeks postinjection. While the GFP signal continued to be strong, hNIS-

mediated radiouptake peaked at around 2 weeks post virus injection, and gradually declined 

by week 3 and 5. This is despite a persistent strong GFP signal by 5 weeks.  

 

 

Figure 18. Serial monitoring of GLV-1h153 treatment of PANC-1 tumor xenografts. Two × 10
6
 

PFU of GLV-1h153 was injected IVly or ITly into PANC-1 right hindleg tumor-bearing mice. 
124

I PET 
scanning was obtained 1, 2, 3, and 5 weeks post virus injection, and 4 hours post radiotracer 
administration at each week. hNIS-mediated enhanced radiouptake in GLV-1h153-infected tumors 
could be serially monitored, being strong at week 1 and 2 post virus injection, with gradual declined by 
week 3 and 5 despite strong GFP expression remaining. 
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5.3.5 GLV-1h153 Tumor Infection was Confirmed Via GFP, Bioluminescence, and CT-

PET. 

 

GLV-1h153 presence in tumors, mediating radiouptake, was confirmed via GFP, 

bioluminescense, and CT-PET imaging 1 and 2 weeks post viral injection in both the IV and 

IT groups. As can be seen in Figure 19, all reporter genes were detectable, and fusion of 

PET and CT images correlated enhanced signals anatomically to the location of the tumor, 

stomach, bladder, and thyroid. 

 

 

Figure 19. GLV-1h153 reporter genes were detectable in PANC-1 xenografts. GFP, 
bioluminescence, and hNIS signal could all be detected in GLV-1h153-infected tumors. Fusion of PET 
and CT images correlated uptake signal anatomically to the location of the thyroid, stomach, bladder, 
and tumor, while GFP and bioluminescense signals located only to the tumor. 
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5.3.6 Correlation of PET Signal Pattern With Tumor Regression. 

 

When comparing PET signal intensity with tumor growth patterns in mice over 5 weeks, 

enhanced radiosignal appears to correlate with initial tumor growth, growth retardation, and 

eventual regression. The PET signal remained strong during the first 2 weeks postinjection 

of virus, which reflected initial tumor growth. However, when tumor growth began entering a 

plateau phase, PET signal began to decrease and almost disappear by week 5, when 

tumors have entered the regression phase. Interestingly, M3‘s tumor took longer to regress, 

and maintained a signal up to 5 weeks post virus injection (Figure 20). 

 

 

 

Figure 20. PET signal intensity and tumor growth charactersitics. The PET signal remained 
strong during initial tumor growth for serially imaged mice. When tumor growth entered a plateau 
phase, PET signal began to decrease. By week 5, tumors have entered the regression phase, and 
PET signal almost disappears.  
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5.3.7 Histology of GLV-1h153-Treated Tumors 5 Weeks Postinjection. 

 

Histology of serially imaged tumors confirmed wide areas of necrosis and inflammatory 

infiltrate (Figure 21). Necrotic areas were more homogenous in the IVly-treated group, 

whereas „islands―of necrosis surrounded by inflammatory infiltrate was seen in the IT group, 

reflecting virus route of administration. Interestingly, no viable cells were detected 

histologically in all mice tumors except M3, which retained some viable tumor proliferation 

activity.  

 

 

Figure 21. Histology of GLV-1h153-treated tumors 5 weeks postinjection. All mice were 
sacrificed 5 weeks post virus injection and serial imaging, and tumors harvested for histology. H&E 
staining of imaged tumors confirmed wide areas of necrosis and inflammatory infiltrate. No viable cells 
were detected histologically in all mice tumors except M3, which retained some viable tumor 
proliferation activity.  
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5.3.8 Viral Dose Comparisons. 

 

To investigate the effects of viral dose administered on the hNIS-mediated PET signal, 2 

groups of 1 animal each, bearing subcutaneous PANC-1 xenografts on the right hindleg, 

were injected IVly (2 mice) or ITly (2 mice) with 2 x 107 or 2 x 106 PFU of GLV-1h153. Mice 

were imaged with 124I-mediated PET scanning as above at 4 hours post radiotracer injection. 

IT injection of 2 x 107 PFU caused a weaker initial (Figure 22a) and more rapid loss of signal 

(Figure 22b) than the IT injection with 2 x 106. However, injection IVly with 2 x 107 PFU lead 

to a higher initial uptake (Figure 22a), although this also rapidly decreased over 5 weeks 

post viral injection (Figure 22b). This suggests that virally-mediated tumor cell death and/or 

necrosis, and thus hNIS functionality, is dose-dependent. 

 

 

Figure 22a. Imaging of viral dose comparisons. Mice were injected IVly or ITly with 2 x 10
7
 or 2 x 

10
6
 PFU of GLV-1h153 and imaged with 

124
I-mediated PET 4 hours post radiotracer injection. The IT 

injection of 2 x 10
7
 PFU caused a weaker initial signal than the IT injection with 2 x 10

6
. However, 

injection IVly with 2 x 10
7
 PFU lead to a strong initial signal similar to the 2 x 10

6
 group.  
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Figure 22b. Serial PET signal intensity and tumor growth characteristics of different viral 
doses. IT injection of 2 x 10

7
 PFU causes a weaker initial and more rapid loss of signal than the IT 

injection with 2 x 10
6
. Injection IVly with 2 x 10

7
 PFU lead to a higher initial uptake which also rapidly 

decreased over 5 weeks post viral injection.  
 

  

2e6 PFUs
In

tr
a

tu
m

o
ra

l
In

tr
a

v
e

n
o

u
s

2e7 PFUs

0

2

4

6

8

10

12

14

0

0.5

1

1.5

2

0 1 2 3 4 5

R
a

d
io

u
p

ta
k
e

 (
%

ID
/g

m
)

R
e

la
ti
v
e

 T
u

m
o

r 
V

o
lu

m
e

Week Post Virus Injection

Tumor Volume

Radiouptake

0

2

4

6

8

10

12

14

0

0.5

1

1.5

2

0 1 2 3 4 5

R
a

d
io

u
p

ta
k
e

 (
%

ID
/g

m
)

R
e

la
ti
v
e

 T
u

m
o

r 
V

o
lu

m
e

Week Post Virus Injection

0

2

4

6

8

10

12

14

0

0.5

1

1.5

2

0 1 2 3 4 5

R
a

d
io

u
p

ta
k
e

 (
%

ID
/g

m
)

R
e

la
ti
v
e

 T
u

m
o

r 
V

o
lu

m
e

Week Post Virus Injection

0

2

4

6

8

10

12

14

0

0.5

1

1.5

2

0 1 2 3 4 5

R
a

d
io

u
p

ta
k
e

 (
%

ID
/g

m
)

R
e

la
ti
v
e

 T
u

m
o

r 
V

o
lu

m
e

Week Post Virus Injection



95 

 

5.3.9 GLV-1h153 can be Detected Via 
99mTcO4-Mediated γ-Scanning. 

 

To determine if GLV-1h153-mediated hNIS transfer can also be detected with 99mTcO4, 3 

groups of 2 animals each, bearing subcutaneous PANC-1 xenografts on the right hindleg, 

were injected IVly (2 mice) or ITly (2 mice) with 2 × 107 PFU of GLV-1h153, or PBS (2 mice). 

One mouse from each group was imaged with 124I-mediated PET scanning and the other 

imaged with 99mTcO4-mediated γ-scanning. Viral-mediated uptake was successfully detected 

and easily visualized with 99mTcO4, although image resolutions were less than 124I-mediated 

PET scanning (Figure 23). Like the PET images, uptake was also noted in the bladder due 

to radiotracer excretion, as well as the thyroid and stomach due to intrinsic hNIS expression.  

 

Figure 23. Detection of GLV-1h153 with TcO4-mediated γ-scintigraphy. Three groups of 2 
animals each bearing subcutaneous PANC-1 xenografts on the right hindleg, were injected IVly (2 
mice) or ITly (2 mice) with 2 × 107 PFU of GLV-1h153, or PBS (2 mice). Mice were imaged 

124
I-

mediated PET or 
99m

TcO4-mediated γ-scanning. Viral-mediated uptake was successfully detected and 
easily with 

99m
TcO4-mediated γ-scintigraphy, 

124
I-mediated PET scanning. Uptake was also noted in 

the bladder due to radiotracer excretion, as well as the thyroid and stomach due to intrinsic NIS 
expression. 



96 

 

5.3.10 hNIS-Mediated Uptake Requires Presence of Virus and Adequate Blood Flow. 

 

To determine what conditions are therefore needed for adequate GLV-1h153-mediated 

radiouptake and retention in tumors, autoradiography was performed. Using 99mTcO4 and γ-

scintigraphy, 2 mice with tumors injected ITly with GLV-1h153 and 1 control mouse injected 

with PBS were imaged 2 days posttreatment. Mice were then IVly injected with hoechst dye 

to stain for blood flow, and tumors then harvested and sectioned in order to determine 

regions of uptake. The short viral treatment duration and localized IT administration enabled 

„hotspots― of radiouptake in the tumor, which when compared to adjacent slices for GFP and 

hoechst staining revealed the need for both blood flow and GLV-1h153 infection to be 

present. Areas that lacked GFP (and thus virus), and areas noted to be necrotic on H&E 

staining with lack of blood flow did not support uptake. No uptake was noted in control 

tumors despite adequate blood flow (Figure 24a and 24b). 



97 

 

 

Figure 24a. Autoradioraphy of tumor samples injected with GLV-1h153. Using 
99m

TcO4 and γ-scintigraphy, 2 mice with tumors injected ITly 
with GLV-1h153 and 1 control mouse were imaged 2 days posttreatment. Mice were then injected with hoechst dye to stain for blood flow and 
tumors harvested and sectioned in order to determine regions of uptake. „Hotspots― of radiouptake in tumors (T1 and T2) correlated with GFP and 
hoechst staining revealing the need for both blood flow and virus to be present. Areas that lacked GFP (and thus virus), and areas noted to be 
necrotic on H&E stain with lack of blood flow did not support uptake. No uptake was noted in control tumors despite adequate blood flow (T3).  
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Figure 24b. Enlarged merged sections correlating areas of uptake hotspots with GFP and hoechst dye. Areas that lacked GFP (and thus 
virus) and areas noted to be necrotic on H&E stain with lack of blood flow (and thus hoechst staining) did not support uptake. No uptake was noted 
in control tumors despite adequate blood flow. 

 

Uninfected Control T1 T2
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5.4 Specific Aim 4: To determine if combination therapy with GLV-1h153 and 131I 

produces additive or synergistic tumor killing. 

 

 

5.4.1 Time-Activity Curves. 

 

To calculate absorbed doses in tumors, time-activity concentration data was generated from 

previous mice injected IVly or ITly with 2 x 106 PFU of GLV-1h153. Mice were serially imaged at 

1, 4, 8, 24, 48, and 72 hours after radiotracer administration at 1 and 2 weeks post viral 

injection. At 1 week post virus injection, 124I Uptake was maximal at 1 hour post radiotracer 

injection at an average of 8.39 ± 1.23 %ID/gm for the IV group and 10.81 ± 1.10 for the IT 

group. Uptake exponentially declined over 72 hours (Figure 25a and 5b). Interestingly, image 

and time activity data were similar in week 2, with a slight increased maximal 1 hour uptake of 

10.14 ± 1.43 %ID/gm for the IV group and decreased maximal uptake of 8.05 ± 0.01 for the IT 

group (Figure 26a and 26b). 
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Figure 25a. Timing characteristics of radiouptake in GLV-1h153-infected PANC-1 xenografts 1 
week post virus injection. Image signal was strongest 1 hour postinjection and gradually declined over 
72 hours. 

 

Figure 25b. Time activity concentration data generated from image-derived radiouptakes 1 week 
post virus injection. Time activity concentration data derived from serial images at 1 week post virus 
injection revealed a maximal radiouptake at 1 hour post radiotracer injection, with an exponential 
decrease in uptake over 72 hours.  
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Figure 26a. Timing characteristics of radiouptake in GLV-1h153-infected PANC-1 xenografts 2 
weeks post virus injection. Image signal was strongest 1 hour postinjection and gradually declined over 

72 hours. 

 

Figure 26b. Time activity concentration data generated from image-derived radiouptakes 2 weeks 
post virus injection. Time activity concentration data derived from serial images at 2 weeks post virus 
injection revealed a maximal radiouptake at 1 hour post radiotracer injection with an exponential decrease 
in uptake over 72 hours.  
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5.4.2 GLV-1h153 has Potential to Deliver Targeted and Therapeutic Radioiodine to 

Tumors. 

 

To calculate absorbed doses in tumors, image-derived time-activity concentration data obtained 

above were corrected for radioactive decay to the time of injection and fit to exponential 

functions using least-squares regression. The 131I cumulated activity concentrations (in uCi-

hr/gm/uCi 131I administered) were then calculated by integrating the fitted time-activity functions, 

incorporating the physical decay constant of 131I. For the IV group, the average absorbed dose 

was 416.83 ± 130.68 rad/mci at week 1 and 514.57 ± 22.70 at week 2 post virus injection. The 

For the IT group, average absorbed doses were 387.02 ± 104.60 rad/mci at week 1 and 352.88 

± 95.45 at week 2. The absorbed dose at week 1 post virus injection appears higher in the IV 

group despite a lower maximal radiouptake, signifying longer retention time in the tumor. An 

estimated 2000 rad dose is required for a therapeutic effect to be seen in tumors. Therefore, in 

order to achieve a rad dose of 2000 in the IV-treated group 1 week post injection, around 4-5 

mci of 131I is required. Table 5 shows a summary of uptakes, effective ½ lives, and absorbed 

calculated doses in tumors. 

.  
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Table 5. Dosimetric calculations of radiouptake in tumor xenografts. 

Hour 1 2 1 2 1 2 1 2

1 9.26 11.14
4 8.10 9.95
8 5.86 8.33

24 1.75 0.84
48 0.20 0.09
72 0.07 0.04
1 7.52 9.13
4 4.55 7.84
8 2.43 5.71

24 1.18 1.12
48 0.50 0.12
72 0.10 0.05
1 11.58 8.04
4 6.86 4.99
8 2.53 3.15

24 0.31 0.41
48 0.04 0.06
72 0.03 0.03
1 10.03 8.05
4 8.89 6.73
8 5.55 5.01

24 1.24 1.09
48 0.18 0.13
72 0.08 0.05

124I
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M1 7.39 65.08 489

131I

Effective 1/2 time 

(hr) 
Absorbed 

dose 

(rad/mci)

Effective 1/2 time 

(hr) 
Absorbed 

dose 

(rad/mci)

Effective 1/2 time 

(hr) 
Absorbed 

dose 

(rad/mci)

Effective 1/2 time 

(hr) 
Absorbed 

dose 

(rad/mci)

Week 1 Post Virus Injection Week 2 Post Virus Injection

Uptake

Dosimetry

Uptake 

Dosimetry 

124I 131I

M2 2.54 15.17 312 2.58 16.46 324

7.68 98.21 509

7.39 65.08 487 7.68 98.21 499

5.82 73.99 5315.65 53.48 520

98.20 285

M4 4.75 16.57 452 4.87 18.12 461 7.39

98.21 313 4.63 65.08 273 4.74M3 3.35 65.08 304 3.41

65.08 407 7.68 98.21 420
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5.4.3 Combining GLV-1h153 and Radioiodine Mediates Greater Therapeutic Efficacy. 

 

For the combination therapy experiment, PANC-1 xenografts were established in the right 

hind leg in five groups of mice: GLV-1h153, GLV-1h153 + 131I, GLV-1h68, GLV-1h68 + 131I, 

and PBS control. Based on previous imaging and dosimetric calculations, one week 

following IV injection of 2x106 PFU of GLV-1h153 or control virus GLV-1h68, treated groups 

were administered ~5 mCi of 131I by a single IV injection in order to achieve an absorbed 

dose of around 2000 rads in tumors. Control tumors continued to grow, and while GLV-

1h153, GLV-1h68, and GLV-1h68 +131I mediated similar therapy effects, the GLV-1h153 

+131I group seemed to have more rapid and greater tumor regression (Figure 27). This effect, 

however, was not statistically significant. 

 

 

Figure 27. Combination therapy with GLV-1h153 and 
131

I. For the radiotherapeutic experiment, 
PANC-1 xenografts were established in the right hind leg in five groups of mice: GLV-1h153 (4 mice), 
GLV-1h153 + 

131
I (3 mice), GLV-1h68 (4 mice), GLV-1h68 + 

131
I (3 mice), and PBS control (5 mice, 

not shown in graph). One week following IV injection of 2x10
6
 PFU of GLV-1h153 or control virus 

GLV-1h68, treated groups of mice were administered 5 mCi of 
131

I by a single IV injection. GLV-
1h153, GLV-1h68, and GLV-1h68 +

131
I mediated similar therapy effects, while the GLV-1h153 +

131
I 

group seemed to have more rapid and greater tumor regression.    
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6.0 DISCUSSION 

 

Twelve million people worldwide will be diagnosed with cancer this year, and 7 million will 

die from cancer-related causes despite advances in conventional therapies1. Therefore, 

developing novel therapies, which may also work synergistically in combination with 

conventional treatment options, is vital. Oncolytic viral therapies have made their mark on 

the cancer research world as another potential therapeutic option, with the possible 

advantages of lessening side effects as well as strengthening treatment efficacy due to 

higher tumor selectivity9. Results have been so promising that oncolytic viral treatments 

have now been approved for clinical trials in several countries280, and the first oncolytic viral 

therapy has now been marketed as a treatment for head and neck cancers in China284. 

Pancreatic cancer in particular is a deadly disease with poor response single agent or 

combination chemotherapies, and explains the active investigation underway seeking novel 

therapeutic strategies for this disease6, 7.  

 

Several clinical trials are underway to assess the effects of viral therapies280. However, 

future clinical studies may benefit from the ability to noninvasively and serially identify sites 

of viral targeting and to measure the level of viral infection in order to provide important 

safety, efficacy, and toxicity information135, 285, 286. Such real-time tracking would also provide 

useful viral dose and administration schedule information for optimization of therapy and 

would obviate the need for multiple and repeated tissue biopsies. 

 

VACV is arguably the most successful biologic therapy agent, since versions of this virus 

were given to millions of humans during the smallpox eradication campaign46. More recently, 

engineered VACVs have also been successfully used as direct oncolytic agents, capable of 

preferentially infecting, replicating within, and killing a wide variety of cancer cell types9, 43, 72, 

96, 97, 110, 287-290. Vaccinia displays many of the qualities thought necessary for an effective 

oncolytic antitumor agent77, 289, 291. In particular, the large insertional cloning capacity allows 

for the inclusion of several functional and therapeutic transgenes. With the insertion of 

reporter genes not expressed in uninfected cells, viruses can be localized and the course of 

viral therapy monitored in patients. 

 

One such promising virus strain is GLV-1h68. This strain has shown efficacy in the treatment 

of breast tumors43, mesothelioma96, pancreatic cancers72, anaplastic thyroid cancer97, 287, 

and melanoma110, and is currently being tested in phase I human trials with substantial data 

showing promising safety and therapeutic responses280. 
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This work centers on the generation of a novel recombinant VACV, GLV-1h153, derived 

from GLV-1h68, which has been engineered for specific targeted treatment of cancer and 

the additional capability of facilitating noninvasive imaging of tumors and metastases. To 

date, GLV-1h153 is the first vaccinia oncolytic virus expressing the hNIS protein that can 

efficiently eliminate tumors and simultaneously facilitate deep tissue imaging of infected 

tumors.  

 

The reporter gene chosen for insertion into GLV-1h153 was based on the already successful 

PET and SPECT imaging characteristics of the hNIS and carrier free radioiodine reporter 

imaging system. hNIS is an intrinsic plasma membrane protein which mediates the active 

transport and concentration of iodide in the thyroid gland cells and some extra-thyroidal 

tissues166, 167, 292, 293. It is also one of several human reporter genes currently being used in 

preclinical studies and has even been used in clinical studies imaging adenoviral-mediated 

hNIS transfer in prostate cancer269, 280. hNIS gene transfer via viral vector may allow infected 

tumor cells to concentrate several radionuclide probes which have long been approved for 

human use. The hNIS‘s transporter based system also allows signal amplification rather 

than, for example, a 1:1 binding relationship with radiolabelled ligands as seen with the 

human somatostatin receptor hSSTR2120. Furthermore, imaging with hNIS has been 

comparable to the commonly used HSV1-tk reporter gene179 and correlated with 99mTcO4180.  

 

Oncolytic viruses encoding hNIS that have been investigated to date include several 

adenoviruses263, 264, 266-268 and measles viruses270-276, as well as a vesicular stomatitis virus 

(VSV)278. Results have been promising; however, there are several disadvantages to each 

strain. Although it can transduce a broad spectrum of cells with high infection efficiency, lack 

of replication and tumor transduction capacity due to gene insertion have limited clinical 

application of adenoviruses. Uptake in tumors has required high MOIs of initial virus 

administration, and imaging signals in tumors often did not last beyond 5 days263, 264, 266. 

Furthermore, the capsid proteins of adenoviral vectors have been found to be toxic to host 

cells and may raise host immune response against infected cells in humans. Therefore, the 

safety of adenoviral vectors has been questioned294. Similarly, measles viruses have also 

been reported to have inefficient transduction within tumors, when investigations of possible 

synergistic application of MV-NIS and radioiodine failed to produce synergistic therapeutic 

effects276. The VSV encoding hNIS also showed promise. However, VACV‘s safety profile is 

unsurpassed, and its high replication capacity and efficient cell to cell spread may enable it 

to overcome many of the limitations with other oncolytic viral vectors. 
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It has been previously discussed86 that VACV gene transcription occurs in a temporal 

manner, with early genes transcribed within the core of the virus particle soon after infection, 

whereas intermediate and late genes transcribe in the cytoplasm of infected cells after viral 

DNA replication295. Early, intermediate, and late mRNA synthesis was detectable within 20, 

100, and 140 minutes of infection, respectively. The strength of VACV promoters, early (PE), 

synthetic early/late (PE/L), and synthetic late (PL) also varies. PE is the weakest among 

these three but is stronger than native early promoters, whereas PE/L has been found to be 

comparable to or slightly stronger than PL. We initially attempted to generate recombinant 

VACVs expressing the hNIS protein under the control of all three promoters (PE, PE/L and 

PL) in order to evaluate the effect of the levels and temporal manner of the hNIS protein 

expression on virus replication, therapy, and imaging. The use of PE/L or PL at the HA locus 

failed to generate any recombinants, as overexpression and/or constitutive expression of 

hNIS seemed to be toxic to the virus. We were able to generate, however, a recombinant 

virus strain that expressed the hNIS protein under the control of PE, GLV-1h153. 

 

GLV-1h153 was effective at infecting, replicating within, and killing PANC-1 cells in cell 

culture and eradicating tumor xenografts as efficiently as parental virus GLV-1h68. This 

indicated that insertion of the hNIS protein did not negatively affect virus replication in animal 

models which was already the case in cell culture, or the cytolytic activity in cell culture and 

virotherapeutic efficacy in tumor xenografts. Since the genes exchanged under the HA locus 

were both under the control of the early promoter PE, these results are not surprising. 

Furthermore, similar effects were seen between the IT and IV groups treated with GLV-

1h153 or GLV-1h68, indicating the inherent affinity of both genetically modified vaccinia 

viruses to tumors. Administration of GLV-1h153 did not have any significant effects on mean 

net body weights of the animals 34 days after treatment, with the IT group even gaining 

weight as compared to untreated control. Furthermore, viral distribution revealed persistence 

of viral infection of tumors even 5 weeks after viral administration at ~109 viral particles per 

gram tissue, with most of the virus cleared from all other organs and trace residual amounts 

found in the lung and kidney.  

 

Microarray analysis revealed an almost 2000-fold change increase in hNIS mRNA and an 

almost 5000-fold change increase by 24 hours after PANC-1 infection with GLV-1h153 at a 

multiplicity of infection of 5.0. Western blot studies showed hNIS protein expression as a 

band between 75 and 100 kDa in PANC-1 cells infected with GLV-1h153, with higher 

concentrations of the protein at higher MOIs. This band also appears in normal human 

thyroid lysates which should contain intrinsic hNIS protein, at a slightly lower molecular 

weight, which is likely explained by differences in glycosylation within cells168. Differences in 
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the expected weight of 97 kDa was seen by other groups, with most also obtaining a band 

between 75 – 100kDa 172, 261, 296, 297. The hNIS protein was successfully transported and 

inserted into the cell membrane, as demonstrated by fluorescence microscopy.  

 

In cell culture, GLV-1h153-mediated expression of the hNIS protein in infected PANC-1 cells 

resulted in specific uptake of the radiotracer 131I in a time and dose-dependent manner, 

indicating that the hNIS protein was functional, The uptake levels were lower in the GLV-

1h153–infected cells compared with the NIS-expressing rat thyroid cell line PCCL3, 

however, in viral-treated cultures, it is likely that not all cells are simultaneously infected with 

virus and express the reporter gene during the early phase of viral infection. During the late, 

prelytic phase of viral infection (48 hours and beyond), the hNIS transporter could be 

impaired due to loss of cell membrane integrity, and following cell lysis, the accumulated 131I 

radiotracer would be lost. Thus, there seems to be a relatively narrow window, ~24 to 48 

hours after viral infection of PANC-1 cells, during which the hNIS reporter is maximally 

functional in cell culture at an MOI of 1.0. These results reflect the dynamic state between 

viral infection, replication, and lysis of tumor cells, and were also seen with the hNET-

expressing virus GLV-1h9986, 159. 

 

In mice, PANC-1 tumors infected with GLV-1h153 were readily detectable by PET, with no 

enhancement above background of either GLV-1h68- or PBS-treated tumors. Mice were 

treated intratumorally with GLV-1h153, non-hNIS expressing parent virus GLV-1h68, and 

PBS, and imaged 48 hours after with carrier free 124I. The quantitative 124I-PET showed that 

the three GLV-1h153-infected PANC-1 tumors were readily detectable with an average 

uptake of 3.82 ± 0.46 %ID/gm 1 hour after radiotracer administration, and no enhancement 

above background of either GLV-1h68- or PBS-treated tumors. Presence of virus in tumors 

was also readily visualized via GFP and bioluminescence imaging. It should be noted that 

the whole tumor is only partially infected with virus and tumor cells are at different stages of 

virus infection at any given time (shown by immunohistochemistry).  

 

The timing of PET imaging after 124I administration was also shown to be important, as 

radioactivity levels (% ID/gm) in GLV-1h153-infected tumors was highest during the first 1-

hour period after tracer administration. This difference is likely the effect of a degree of 

radioefflux from cells, however, the tumor uptake to background ratio actually increased in 

tumors with time, suggesting adequate retention of radioiodine even 8 hours after radiotracer 

injection. This was also seen with other hNIS-encoding viruses264, 270, 271. An exception was 

the adenovirus Ad5/3-24-hNIS, which retained its maximal uptake value 13 hours post 

injection265. Enhanced radiouptake in GLV-1h153-injected tumors compared to other organs, 
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as well as GLV-1h68- and PBS-injected tumors was confirmed in these mice via tissue 

radiouptake assay at 8 hours post radiotracer administration, and correlated well with 

quantative PET. 

 

After establishing that GLV-1h153 enhances radiouptake in tumors in animal models, is 

detected by PET, and induces radiouptake retention, the potential of GLV-1h153 for serial 

imaging and monitoring of both IT and systemic viral therapy was assessed. PET imaging 

readily detected virus replication in tumors as late as 5 weeks post injection. This is in 

contrast to some studies with other oncolytic viruses such as measles and adenoviruses, 

which had signals lasting only around 5 days post virus injection263, 267, 275. Other studies, on 

the other hand, reported the ability of hNIS signal to be detected as far as 30 days post virus 

treatment268, 273. Further, hNIS-mediated radiouptake with GLV-1h153 seemed to peak at 2 

weeks, and gradually decline by week 3 and 5 in both the IT and IV injected groups. This is 

interesting, as although the signal timing pattern in the IV group was similar to other what 

others have found, such as with VSV (51)-NIS and MV-NIS273, 278, the IT group had a much 

more prolonged uptake enhancement. This may be due to the fast replication and spread of 

vaccinia, and could also be due to more rapid cell lysis caused by intratumoral injection of 

the other viruses, which would compromise cell membrane integrity and thus hNIS 

functionality. It should be noted that it is difficult to compare exact values found with other 

oncolytic viruses, as dose effects may differ and are unlikely to be directly comparable. 

Decrease in signal enhancement with GLV-1h153 was despite persistent strong GFP 

expression by 5 weeks posttreatment. GLV-1h153-mediated radiouptake was confirmed via 

GFP, bioluminescence, and CT-PET imaging 1 and 2 weeks post viral injection in both the 

IV and IT groups. All reporter genes were detectable, and fusion of PET and CT images 

correlated enhanced signals anatomically to the location of the tumor, stomach, bladder, and 

thyroid. 

 

When comparing PET signal intensity with tumor growth patterns in mice over 5 weeks, 

enhanced radiosignal appears to correlate with the initial tumor growth, retardation, and 

eventual regression phases. The PET signal remained strong during the first 2 weeks 

postinjection of virus, which reflected initial tumor growth. However, when tumor growth 

began entering a retardation phase, PET signal began to decrease and almost disappear by 

week 5, when tumors have entered the regression phase. Correlation of hNIS-mediated 

uptake and signal patterns was not explored in any other paper investigating oncolytic 

viruses encoding hNIS. It is known that some delay occurs before an actual difference in 

tumor size is noted even after cell death and or necrosis has occurred post viral treatment. 

The only exception was one ITly-treated mouse (M3), where signal persisted up to 5 weeks 
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post GLV-1h153 injection, with an initial decrease in signal suggesting initial cellular death, 

and re-increase in signal, suggesting further tumor cellular proliferation within the tumor. 

Interestingly, the tumor took longer to regress, and maintained a signal up to 5 weeks post 

virus injection. These data suggest that the hNIS reporter gene is able to give insight into the 

biological activity of tumor cells, and whether cell death or necrosis is occurring. Non-viability 

of cells and loss of cell membrane integrity is likely to affect functionality of the hNIS protein 

as shown in cell culture radiouptake experiments, while the GFP reporter protein simply 

suggests viral activity, and once produced seems to persist despite non-viability of tumor 

cells. A similar pattern was observed in the cell culture 131I uptake studies, showing 

decreasing radiotracer uptake at later time points after GLV-1h153 infection also likely due to 

cell lysis and loss of cell membrane integrity. 

 

Histology of serially imaged tumors confirmed wide areas of necrosis and inflammatory 

infiltrate. Necrotic areas were more homogenous in the IVly-treated group, whereas „islands― 

of necrosis surrounded by inflammatory infiltrate was seen in the IT group, reflecting virus 

route of administration. Interestingly, no viable cells were detected histologically in all mice 

tumors except M3 which retained viable tumor proliferation activity. This may again explain 

lack of PET signal in the other imaged mice at 5 weeks post virus injection, and persistence 

of signal in M3. However, it is known from previous viral biodistribution assays that virus can 

persist at even 5 weeks post injection. This may be explained by the fact that virus particles 

can persist in the tumor microenvironment despite non-viability of actual tumor cells, but like 

the GFP signal, persistence of virus does not give insight into the biological activity occurring 

in the tumor cells in response to viral therapy. Further, when higher doses of virus are used, 

124I-mediated PET signals declined more rapidly than with lower doses, suggesting that cell 

death occurs more rapidly with higher doses of virus, especially in the IT groups. This again 

correlated with more rapid tumor retardation and regression. This suggested that virally-

mediated tumor cell death and/or necrosis, and thus hNIS functionality, is dose dependent, 

which was also seen in our in cell culture radiouptake assay. 

 

To determine what conditions are therefore needed for adequate GLV-1h153-mediated 

radiouptake and retention in tumors, autoradiography was performed utilizing 99mTcO4-

mediated Gamma scintigraphy and autoradiography. Areas that lacked GFP, and thus virus, 

and areas noted to be necrotic on H&E staining with lack of blood flow did not support 

uptake. Necrosis could have been virally-mediated or intrinsic due to tumor enlargement. 

However, this further may explain the loss of signal noted with serial monitoring of infected 

tumors, as necrotic areas occurring secondary to viral treatment lacked blood flow and likely 
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functional cell membranes, and thus are unlikely to facilitate hNIS-mediated uptake in 

tumors. No GFP and no uptake were noted in uninfected control tumors despite adequate 

blood flow. 

 
Time-activity concentration data over 72 hours post radiotracer injection generated from 

imaged mice revealed that 124I uptake was maximal at 1 hour post radiotracer injection at an 

average of 8.39 ± 1.23 %ID/gm for the IV group and 10.81 ± 1.10 for the IT group1 week 

post virus injection. Uptake declined over 72 hours in a classic exponential manner, but 

could still be visualized at 24 and even 48 hours after radiotracer injection. Interestingly, 

image and time activity data were similar in week 2, with a slight increased maximal 1 hour 

uptake of 10.14 ± 1.43 %ID/gm for the IV group and decreased maximal uptake of 8.05 ± 

0.01 for the IT group. The decreased uptake in the IT group by week 2 may be due to more 

rapid cell death occurring in the tumors. Uptakes seem to be similar to those mediated by all 

MV-NIS papers and some adenoviruses, but were also much lower than some reported278, 

especially when diet was supplemented with thyroxine and low iodine intake265. This 

highlights the potential of maximizing radioiodine uptake by blocking intrinsic hNIS uptake in 

the stomach and thyroid. 

 

Absorbed doses from image-derived time-activity concentration data of GLV-1h153-infected 

PANC-1 tumors were then calculated assuming 131I treatment. The average absorbed doses 

were 387.02 ± 104.60 rad/mci at week 1 and 352.88 ± 95.45 at week 2 for the IT group. The 

absorbed dose at week 1 post virus injection appears higher in the IV group despite a lower 

maximal radiouptake, signifying longer retention time in the tumor. An estimated 2000 rad 

dose is required for a therapeutic effect to be seen in tumors. Therefore, in order to achieve 

a rad dose of 2000 in the IV-treated group 1 week post injection, around 4-5 mci of 131I was 

estimated to be required. These results are similar to those with MV-NIS in the treatment of 

prostate cancer, with a calculated absorbed dose of 420 and 540rads/mci if injected IT or 

IV273. However, absorbed doses of over 1000 has been calculated with MV-NIS276 and 

VSV278. This could be due to thyroxine supplementation in MV-NIS, but this was not the case 

with VSV. Other factors could include greater viral replication at injected doses, or stronger 

promoter expression of hNIS by these viruses. 

 

Combination therapy of GLV-1h153 and 131I revealed a modest additive effect over GLV-

1h153 alone. While GLV-1h68, and GLV-1h68 with 131I mediated similar therapy effects, the 

GLV-1h153 with 131I group seemed to have more rapid and greater tumor regression. This 

effect, however, was not statistically significant. This is in contrast to several other papers 

showing the potential of enhanced treatment efficacy by combining 131I treatment with hNIS 



112 

 

encoding OVs in several different tumor models265, 266, 270, 273, 276, 278. This could be due to 

several factors, including the study not being sufficiently powered, possible lack of 

radiosensitivity of PANC-1 to radioiodine, lack of complete tumor transduction by virus, and 

large tumor volume. A  likely explanation, however, is that lower doses of virus are needed 

to show an additive or synergistic effect, as the virus appears to work very well on its own at 

the selected dose of 2 x 106 PFU. Further work is required to assess the optimum doses of 

virus to be combined with radiotherapy in order to obtain an additive or synergistic effect. 

 

As with any translational therapy, concerns over immune responses remain. Since hNIS is a 

human derived gene, it is unlikely to be immunogenic138. However, application of GLV-

1h153-mediated hNIS transfer raises concerns over the possibility of autoimmunity in 

patients. Several papers have already shown that hNIS is not a major candidate for 

autoimmune disease in patients with patients with Graves' disease and Hashimoto's 

thyroiditis298, 299. Moreover, the clinical trial assessing adenoviral-mediated hNIS transfer in 

humans did not report any serious adverse effects due to autoimmunity in patients treated 

for prostate cancer269. Further studies and caution are needed to assess the potential of 

autoimmunity with hNIS transfer in humans. 
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7.0 CONCLUSIONS 

 

The two most important factors that eventually determine the clinical safety and efficacy of 

any cancer therapeutic are tumor selectivity and anti-tumor potency. Vaccinia virus strains 

are a promising oncolytic virotherapy candidate capable of producing potent antitumor 

effects via cell lysis as well as tumor rejection by stimulating antitumoral immunity. So far, 

clinical trials with oncolytic vaccinia virus constructs indicate that oncolytic vaccinia viruses 

are generally safe and well tolerated in patients with advanced tumors, with certain degrees 

of antitumoral activity demonstrated. However, efforts are still needed to further improve 

safety and efficacy. With many oncolytic viral constructs currently being tested in varied 

phases of clinical trials, intense efforts are now being dedicated to improve efficacy, ability to 

non-invasively monitor therapy, and combine virotherapy with existing treatments for human 

malignancies.  

 

The GLV-1h153 vaccinia construct is a promising candidate for future clinical studies 

combining deep tissue imaging and oncolytic virotherapy. This novel new oncolytic VACV 

engineered to carry the human sodium iodide symporter gene (hNIS) can successfully 

replicate within pancreatic cancer cells as efficiently as its parental virus GLV-1h68, and 

expresses the hNIS reporter gene, which readily facilitated 131I radiouptake in cells. The 

cytotoxicity and safety, as well as tumor-specific imaging, has also been shown following 

treatment of pancreatic tumor xenografts with GLV-1h153. GLV-1h153-treated pancreatic 

tumors were readily imaged with the clinically approved radiopharmaceutical 124I and PET, 

as well as 99mTcO4–mediated gamma scintigraphy. Furthermore, radioiodine dose 

accumulation and retention time in infected tumors reached potentially therapeutic levels, 

and combination of GLV-1h153 and 131I seems promising for more rapid and potent tumor 

regression.  

 

Thus, the ability of GLV-1h153 to infect and image pancreatic cancer, a uniformly fatal 

disease resistant to conventional therapy, justifies further studies as well as the initiation of 

clinical trials. Further, this imaging system could be directly translated to human studies, and 

clinical trials of oncolytic viral therapy would benefit from this noninvasive monitoring 

modality. These findings also warrant further investigation into possible synergistic or 

additive effects of radioiodine combined with this novel new treatment and imaging modality. 

Further investigation is required into the effects of viral dose, tumor size, and metastatic 

disease on imaging capability and potential for targeted radiotherapy with this novel virus.  
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