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1 Introduction 

1.1  Malaria 

Malaria is a vector-borne disease which is caused by the protozoan parasite 

Plasmodium and is transmitted from human to human by the bite of an infected 

female Anopheles mosquito. Five human pathogenic species of Plasmodium have so 

far been described: P. falciparum, P. vivax, P. ovale, P. malariae and more recently 

P. knowlesi (Cox-Singh et al., 2008). Of these P. falciparum is responsible for 98 % of all 

malaria cases in the African region (WHO, 2011) and causes the severe form Malaria 

tropica. P. falciparum is a unicellular eukaryote which belongs to the Apicomplexa 

phylum (Fig. 1.1). 

 

 

 
 

 

 

 

 

According to the World Malaria Report 2011 released by the WHO, there were 216 million 

cases of malaria worldwide and an estimated 655 000 deaths in 2010. Children under the age 

of 5 years affect for 91 % of all malaria deaths in Africa (WHO, 2011; Fig. 1.2).  

 

 

 

 

 

 

 

 

 

Figure 1.2:  Malaria distribution. Areas at risk of transmission 2010 (from http://www.malaria.com). 

Figure 1.1:  Classification of  Plasmodium (from http://en.wikipedia.org/). 
 

Domain: Eukaryota 
Kingdom: Chromalveolata 

Superphylum: Alveolata 
Phylum: Apicomplexa 

Class:  Aconoidasida 
Order:  Haemosporida 

Family: Plasmodiidae 
Genus: Plasmodium                 

http://www.ncbi.nlm.nih.gov/pubmed/18171245
http://www.who.int/malaria/world_malaria_report_2011/en/
http://www.who.int/malaria/world_malaria_report_2011/en/
http://www.malaria.com/wp-content/uploads/Global_Malaria_2010_WHO.png
http://en.wikipedia.org/wiki/Plasmodium
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Reductions in malaria burden have been observed in all regions observed by the WHO, 

with the largest proportional decreases noted in the European Region, followed by the 

American region. The largest absolute decreases in deaths were observed in Africa 

(Fig. 1.2; WHO, 2010). While progress in reducing the malaria burden has been 

remarkable, there has been evidence of an increase in malaria cases in three African 

countries in 2009 (Rwanda, Sao Tome and Principe, and Zambia). The reasons for the 

resurgences are uncertain and regional changes in climate are overly simplistic (Hay et 

al., 2002). Increases in malaria cases highlight the fragility of malaria control and the 

need to maintain control programs, even if numbers of cases have been reduced 

substantially (WHO, 2010). Therefore, the work on the development of economical 

and effective drugs and vaccines is still an important objective of scientific research. 

Mounting evidence has revealed pathological interactions between HIV and malaria in 

dually infected patients, but the public health implications of the interplay have 

remained unclear (Abu-Raddad et al., 2006). Malaria has adverse impacts on regions 

affected through many avenues. Detrimental effects include decreased fertility, 

population growth, saving and investment, worker productivity, absenteeism, 

increased premature mortality and medical costs (reviewed in Sachs and Malaney, 

2002).  

Malaria is transmitted by the female Anopheles mosquito, 

one of the most accomplished vectors of human diseases. 

Various species have been found as vectors for Plasmodium 

in different parts of the world. A. gambiae is the major 

vector in Africa. In addition, species like A. stephensi 

(Fig. 1.3) are highly adaptable and are found to be very 

potent vectors of human malaria in Asia. Currently 

A. gambiae is responsible for approximately 80 % of the 

global malaria morbidity and mortality that occurs in 

sub-saharan Africa (Kessler and Guerin, 2008). 

In children, malaria causes various clinical symptoms such as cerebral malaria, severe 

anemia, severe respiratory distress, renal failure, hypoglycemia, and pulmonary 

edema, appearing alone or in combinations. After repeated infections with 

P. falciparum, individuals in malaria-endemic regions gradually develop semi-immunity 

resulting in protection from clinical symptoms in adults (Marsh  et al., 1989; 

Bull  et al., 1998). Despite this semi-immunity, women become highly susceptible to 

Figure 1.3: A. stephensi is 

able to transmit the 

malaria parasite (picture 

http://en.wikipedia.org). 

 

 

http://www.who.int/malaria/world_malaria_report_2010/en/
http://www.ncbi.nlm.nih.gov/pubmed/11859368
http://www.ncbi.nlm.nih.gov/pubmed/11859368
http://www.who.int/malaria/world_malaria_report_2010/en/
http://www.ncbi.nlm.nih.gov/pubmed/17158329
http://www.ncbi.nlm.nih.gov/pubmed/11832956
http://www.ncbi.nlm.nih.gov/pubmed/11832956
http://www.ncbi.nlm.nih.gov/pubmed/18697317
http://www.ncbi.nlm.nih.gov/pubmed/2694458
http://www.ncbi.nlm.nih.gov/pubmed/9500614
http://en.wikipedia.org/wiki/File:Anopheles_stephensi.jpeg
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the disease again when they get pregnant, especially in first- or second-time 

pregnancies. Malaria substantially contributes to maternal death, stillbirth, and 

miscarriage, as well as to complications like maternal anemia and low birth weight 

babies (reviewed in Rogerson et al., 2007). 

 

1.2  The malaria pathogen Plasmodium falciparum 

1.2.1 Life cycle  

P. falciparum parasites exhibit a complex life cycle consisting of an asexual and a 

sexual phase (Fig. 1.4). The life cycle of the parasite switches between the human host 

and the female anopheline mosquito.  

The infection begins with a bite by an infected female Anopheles mosquito. Together 

with the insect’s saliva, P. falciparum sporozoites are injected into the blood system of 

the human host. Upon injection, they reach bigger blood vessels and are transported 

to the liver within minutes (Rosenberg et al., 1990). Here sporozoites first transmigrate 

through Kupffer cells and several hepatocytes before they finally infect a hepatocyte 

(Mota et al., 2001; Pradel and Frevert, 2001) and build up a parasitophorous 

vacuole (PV) (reviewed in Mota and Rodriguez, 2001). In P. vivax or P. ovale the 

sporozoites can remain dormant as hypnozoites in the liver or they develop into 

thousands of merozoites such as P. falciparum does. Budding of parasite vesicles, 

called merosomes, release merozoites which invade erythrocytes and then replicate 

(reviewed in Sturm and Heussler, 2007). To produce more merozoites the parasite will 

go through different morphological changes over a 48 h period. These stages of 

development are known as rings, trophozoites, schizonts, and merozoites (Fig. 1.5). 

The intra-erythrocytic stages of the life cycle are responsible for the pathogenesis of 

malaria. Each infected erythrocyte is able to produce up to 16-32 new merozoites 

which are released from the infected cell. Schizonts are stimulated to release 

merozoites which in turn develop into the first sexual precursor cells, named male and 

female gametocytes (Bruce et al., 1990; reviewed in Hill, 2006). They are generated 

from merozoites in a process called gametocytogenesis. These transmissive stages 

develop into female macrogametes and male microgametes after ingestion by a blood-

feeding mosquito. The male microgametocyte can release eight motile microgametes 

that fertilize a macrogamete which in turn forms a zygote. Cell fusion is followed by 

nuclear fusion and meiosis, and within 3 h the zygote becomes tetraploid (Janse et al., 

1986 a; reviewed in Kuehn and Pradel, 2010). This cell builds up a motile ookinete that  

http://www.ncbi.nlm.nih.gov/pubmed/17251081
http://www.ncbi.nlm.nih.gov/pubmed/2202101
http://www.ncbi.nlm.nih.gov/pubmed/11141568
http://www.ncbi.nlm.nih.gov/pubmed/11343244
http://www.ncbi.nlm.nih.gov/pubmed/11709293
http://www.ncbi.nlm.nih.gov/pubmed/17410380
http://www.ncbi.nlm.nih.gov/pubmed/2189114
http://www.ncbi.nlm.nih.gov/pubmed/16493425
http://www.ncbi.nlm.nih.gov/pubmed/3092048
http://www.ncbi.nlm.nih.gov/pubmed/3092048
http://www.ncbi.nlm.nih.gov/pubmed/20419315
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penetrates the mosquito midgut wall and differentiates into an oocyst. Tetraploidy 

persists throughout the ookinete stage until sporozoites become haploid again (Janse 

et al., 1986 a; reviewed in Kuehn and Pradel, 2010). When mature, this gives rise to a 

number of sporozoites capable of migrating into the salivary glands (Lobo and Kumar, 

1998; reviewed in Ghosh and Jacobs-Lorena, 2009), from which they are discharged 

into the next human host during the blood meal. 

 

 

 

 

 

 

Figure 1.4:  Life cycle of P. falciparum. The female Anopheles mosquito transmits sporozoites of the 

malarial parasite with the bite into the human host. After a period of maturation in the 

liver, merozoites are released into the bloodstream. These invade red blood cells as part of 

the asexual cycle. Some develop into first sexual stages, the male and female gametocytes. 

During a subsequent blood meal, a mosquito ingests gametocytes into its midgut, leading 

to macro- (female) and microgametes (male), which, after fertilization and zygote 

formation, produce an ookinete that penetrates the mosquito midgut wall and generates 

oocysts containing sporozoites. They transit to the salivary gland of the mosquito, where 

they are released into the blood stream of the next human host, during the next bite of the 

mosquito (from http://ocw.jhsph.edu /imageLibrary/).  

Figure 1.5: Schematic view of P. falciparum blood stages. P. falciparum blood stages drawn from 

microscopic observation of thin blood smears: The maturation starts with a ring form in an 

erythrocyte which develops into a trophozoite and matures to a schizont. Each schizont 

releases merozoites which invade new erythrocytes to develop in the first sexual stages, 

the male or female gametocytes (modified from http://www.rph.wa. gov.au). 

http://www.ncbi.nlm.nih.gov/pubmed/3092048
http://www.ncbi.nlm.nih.gov/pubmed/3092048
http://www.ncbi.nlm.nih.gov/pubmed/20419315
http://www.ncbi.nlm.nih.gov/pubmed/17040732
http://www.ncbi.nlm.nih.gov/pubmed/17040732
http://www.ncbi.nlm.nih.gov/pubmed/19608457
http://ocw.jhsph.edu/imageLibrary/
http://www.rph.wa.gov.au/malaria/diagnosis.html
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1.2.2  Plasmodium falciparum sexual stages  

Gametocytes are responsible for the transmission of the malaria parasite to the 

mosquito vector (reviewed in Alano, 2007). Their vitality is of high importance for the 

maintenance of the Plasmodium population. Gametocytes exist as male and female 

parasites, referred to as micro- and macrogametocytes, respectively. Released 

merozoites from one schizont always develop to gametocytes of the same sex, 

indicating that sex determination occurs in the developing trophozoite of the 

preceding generation (Bruce et al. 1990; Silvestrini et al. 2000; Smith et al. 2000; 

reviewed in Paul et al., 2002). After the invasion of the sexually predetermined 

merozoites, gametocytogenesis takes about ten days (Fivelman et al., 2007). Both 

gametocyte sexes contain an apicoplast (see Fig. 1.6; Okamoto et al., 2008). Male 

gametocytes show in comparison to females a reduction in cytoplasmic ribosome 

density, which correlates with the appearance of a nucleolus only in female 

gametocytes (Sinden, 1982). 

 

 

 

 

 

 

 

 

 

 

 

 

Differentiation of gametocytes is divided into five (I-V) major phenotypically distinct 

stages (see Fig. 1.7; Hawking et al., 1971; Carter and Miller, 1979). Trophozoites and 

stage I gametocytes have a similar shape and are therefore difficult to distinguish. In 

stage II, the parasite becomes slightly elongated, appearing crescent-shaped. The 

hemoglobin of the erythrocyte is almost completely metabolized in stage III parasites 

Figure 1.6:   Female and male gametocyte of P. falciparum. Macro- and microgametocytes show 

morphologically different nuclei distributions. While female parasites have a small nucleus 

located in the middle of the parasite, the nucleus of male parasites is more widely 

distributed throughout the parasite. Both include four membranes; the erythrocyte 

membrane, the parasitophorous vacuole membrane, the parasite plasma membrane, and 

the subpellicular or inner membrane. The space between the parasitophorous vacuole 

membrane and the plasmalemma is named parasitophorous vacuole. Furthermore, 

gametocytes include cytoplasm with ribosomes, hemozoin, vacuoles, and membrane 

material (modified from http://www.gigers.com). 

http://www.ncbi.nlm.nih.gov/pubmed/17784927
http://www.ncbi.nlm.nih.gov/pubmed/2189114
http://www.ncbi.nlm.nih.gov/pubmed/11128797
http://www.ncbi.nlm.nih.gov/pubmed/11085232
http://www.ncbi.nlm.nih.gov/pubmed/11850012
http://www.ncbi.nlm.nih.gov/pubmed/17521751
http://www.ncbi.nlm.nih.gov/pubmed/18996983
http://www.ncbi.nlm.nih.gov/pubmed/7038594
http://www.ncbi.nlm.nih.gov/pubmed/5003557
http://www.ncbi.nlm.nih.gov/pubmed/397008
http://www.gigers.com/matthias/malaria/gametoz.pdf
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(see Fig. 1.7; Carter and Miller, 1979). In this stage the parasite features characteristic 

rounded ends. It continues to grow in length and reaches its maximum length in stage 

IV, where the parasite exhibits pointed ends along a straight axis. Stage V gametocytes 

exhibit again rounded ends. From this point onwards, the sex of mature stage V 

gametocytes can be distinguished. The cytoplasm of macrogametocytes stains blue, 

while male microgametocytes appear pink. The hemozoin crystals of female 

gametocytes accumulate mostly in the center of the parasite while the pigment of 

males is rather scattered. The gender ratio of gametocytes is female-biased with one 

mature male for about five mature female gametocytes (reviewed in Paul et al., 2002 

and Kuehn and Pradel, 2010). After further two or three days of circulation, 

gametocytes become infectious to mosquitoes, and can survive up to 21 days in the 

peripheral blood (Smalley and Sinden, 1977; Lensen et al., 1999; reviewed in Talman et 

al., 2004). Once in the midgut of the mosquito, the drop in temperature and the 

mosquito-derived molecule xanturenic acid (XA) trigger gametogenesis within a few 

minutes (Billker et al., 1997; Billker et al., 1998; Garcia et al., 1998). The ingested 

gametocytes then lose their protecting erythrocyte membrane (EM) and transform 

into extracellular male microgametes and female macrogametes (reviewed in Kuehn 

and Pradel, 2010). Each macrogametocyte produces a single spherical extracellular 

non-motile gamete. After three rounds of nuclear division, the microgametocytes 

usually remain trapped within the erythrocyte plasma membrane until the eight 

haploid motile microgametes are extruded to fertilize a macrogamete (reviewed in 

Sinden, 1983; Aikawa et al., 1984). During this time, the male gametocytes undergo a 

process of DNA replication and nuclear segregation, progressing from an 

approximately haploid genome to an octaploid genome with the formation and 

migration   of   eight   nuclei   into   the   extruding   gametes   (Janse   et   al.,   1986  a;  

 

 

 

 

 

 

 

Figure 1.7:   Gametocyte stages and gametes of P. falciparum. Giemsa stains of the five developmental 

stages of macro- and microgametocytes. After the activation in the mosquito midgut, male 

gametocytes form a spherical cell with eight motile flagella, called microgametes which are 

released to fertilize spherical immobile macrogametes.  

http://www.ncbi.nlm.nih.gov/pubmed/397008
http://www.ncbi.nlm.nih.gov/pubmed/11850012
http://www.ncbi.nlm.nih.gov/pubmed/20111746
http://www.ncbi.nlm.nih.gov/pubmed/320542
http://www.ncbi.nlm.nih.gov/pubmed/9920049
http://www.ncbi.nlm.nih.gov/pubmed/15253774
http://www.ncbi.nlm.nih.gov/pubmed/15253774
http://www.ncbi.nlm.nih.gov/pubmed/9280891
http://www.ncbi.nlm.nih.gov/pubmed/9521324
http://www.ncbi.nlm.nih.gov/pubmed/9575140
http://www.ncbi.nlm.nih.gov/pubmed/20111746
http://www.ncbi.nlm.nih.gov/pubmed/20111746
http://www.ncbi.nlm.nih.gov/pubmed/6191269
http://www.ncbi.nlm.nih.gov/pubmed/6502527
http://www.ncbi.nlm.nih.gov/pubmed/3092048
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Janse et al., 1986 b). This process of male parasites is referred as ‘exflagellation’ and is 

completed by approximately 15-30 min after the blood meal. Fertilization of female 

gametes by free-swimming male gametes is completed within 30 min (Templeton et 

al., 1998). 

During gametogenesis, gametocytes exit the EM by an inside-out type of egress. The 

parasitophorous vacuole membrane (PVM) ruptures at multiple sites within less than a 

minute following activation and the EM ruptures at a single breaking point 

approximately 15 min post activation (Sologub et al., 2011). A point of particular 

interest to the pathology and transmission of severe malaria is that gametes and 

zygotes are the only stages within the parasites life cycle that are able to survive 

outside a host cell for more than one day. In the mosquitoes midgut gametes and 

zygotes are compromised by factors found in the blood meal, including midgut 

bacteria, digestive enzymes, and components of the human immune system. This 

exposure results in an approximate 1000-fold loss of parasite abundance during 

transmission to the mosquito, and the malaria transmission stages are considered 

bottleneck stages of the parasite life cycle (Fig. 1.8; Vaughan et al., 1994; Kuehn and 

Pradel, 2010). 

 

 

 

 

 

 

 

 

1.3  Transmission blocking vaccine  

As has been pointed out in the previous chapter the sexual phase P. falciparum 

parasites are highly vulnerable against external influences. Transmission blocking 

vaccines (TBVs) are aimed at blocking malaria transmission by interrupting the parasite 

life cycle in the mosquito. These vaccines do not directly protect vaccinated individuals 

Figure 1.8:   Population ranges of the malaria parasite. From about trillions of parasites in the human 

blood, the number of parasites drops below five ookinetes in the mosquito midgut 

(modified from Vogel, 2010). 
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Figure 1.9:  Transmission blocking vaccine. Vaccine antigens of sexual stage parasites were injected 

into the human host and antibodies were generated. Parasites take up malaria parasites 

and antibodies with the blood meal. The sexual stage-specific antibodies block parasite 

transmission in the mosquito and therefore malaria infection of the next human host 

(modified from http://ocw.jhsph.edu/imageLibrary/). 

from infection; however, they contribute to elimination of the disease by lowering the 

parasite transmission efficiency. TBVs elicit antibodies against surface antigens of 

sexual- and mosquito-stage parasites and, thus, arrest subsequent development of 

parasite in the mosquito midgut (Fig. 1.9; reviewed in Carter et al., 2000). Antigens 

specifically expressed by zygotes and ookinetes in the mosquito midgut, referred to as 

post-fertilization target antigens, have been shown to be effective for inducing 

transmission-blocking immunity (Kaslow et al., 1988; Hisaeda et al., 2000; Wu et al., 

2006). Zygote or ookinete surface proteins, which do not present antigens in the 

human host, may be boostable TBV candidates. Surprisingly some gametocyte proteins 

induce antibody response in about 40 % of patients with natural malaria infection (Ong 

et al., 1990; Riley et al., 1994). It is assumed that gametocyte proteins are not exposed 

to the human immune response because they are covered by the EM. During 

degradation of erythrocytes, which also envelope mature gametocytes, surface 

proteins of gametocytes may be presented to the human immune system. The 

advantage of most TBV candidate antigens may be that these proteins have never 

been previously under immune selection and therefore are potentially highly 

immunogenic. 
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TBVs target a very sensitive phase of the parasites life cycle and are therefore a 

promising perspective to reduce the spread of malaria. Potentially this vaccine is able 

to eliminate the disease in the future (reviewed in Kaslow, 1997).  

The aim of TBVs is to exterminate malaria parasites with an economical, stable 

formulated and easy administrable vaccine. It is unlikely that a single antigen subunit 

vaccine will be sufficient; an antigen-cocktail is more promising. To receive maximum 

distribution transmission-blocking vaccines will be combined with other vaccines or 

control modalities (reviewed in Kaslow, 1997). 

 

1.4. Sexual stage-specific proteins of the malaria parasite 

A series of potential transmission-blocking vaccine candidates have been identified 

over the last two decades (reviewed in Pradel, 2007). Of particular note are surface 

proteins of the sexual stages of the malaria parasite. The first of such vaccine 

candidates was Pfs25. This 25 kDa-protein is localized on the surface of gamete, zygote 

and ookinete stages of P. falciparum and consists of four tandem epidermal growth 

factor (EGF) domains and an GPI-anchor (Kaslow et al., 1988). The potential for 

immunization against Pfs25 has been tested by generation of murine antibodies 

generated against Vaccinia virus infected mammalian cells (Kaslow et al., 1991) or 

recombinant Pfs25 from yeast (Barr et al., 1991). When 25 μg/ml of Pfs25 monoclonal 

antibodies, developed from the Vaccina system, were added to the mosquito’s blood 

meal, the infectivity of A.  freeborni with P. falciparum was reduced to 40 %. Oocyst 

viability was almost eliminated when the concentration of monoclonal antibodies was 

increased to 200 μg/ml and transmission blocking activity was reached when 

polyclonal antibodies were used (Kaslow et al., 1991; reviewed in Coutinho-Abreu and 

Ramalho-Ortigao, 2010). A few years later, a phase I (human safety assessment) trial of 

Pichia pastoris-expressed Pfs25 antigen mixed with an adjuvant was carried out. The 

anti-Pfs25 human serum inhibited P. falciparum infectivity in A. stephensi by more 

than 90 %. Nevertheless, the local and systemic reactogenicity in human volunteers 

prevented the adjuvant (Montanide ISA 51) to be used in combination with Pfs25 

antigen (Wu et al., 2008). To increase transmission-blocking activity against 

P. falciparum a second zygote stage expressed small 28 kDa-protein named Pfs28 was 

included. Pfs25 and Pfs28 were produced as a unique chimeric protein in 

Saccharomyces cerevisiae, the 25-28c recombinant protein. Vaccination with 25-28c 
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led to complete arrest of oocyst development, using a lower dose for a longer of time, 

than vaccination with either Pfs25 or Pfs28 alone or a combination of both (Duffy and 

Kaslow, 1997; Gozar et al. 1998; Coutinho-Abreu and Ramalho-Ortigao, 2010). Latest 

studies focus on adenovirus-vectored Pvs25 (Miyata et al., 2011) and plant-produced 

sexual stage protein Pfs25 (Farrance et al., 2011 a) anticipate great success. Particularly 

antibodies produced in plants block transmission to the next human host completely.  

Two further potential TBV candidates to control spread of P. falciparum are Pfs48/45 

and Pfs230 (reviewed in Pradel, 2007). The secreted Pfs230 binds to the GPI-anchored 

Pfs48/45 protein on the parasite’s surface of gametocytes and gametes (Kumar, 1987; 

Kumar and Wizel, 1992). Pfs48/45 gene disrupted gametes do not retain Pfs48/45 or 

Pfs230 on its surface (Eksi et al., 2006). Antibodies against Pfs230 inhibit exflagellation 

and blocked transition of sporozoites from the mosquito midgut to the salivary glands, 

in A. freeborni. However, the blocking activity of monoclonal anti-Pfs230 can only be 

verified in presence of an active complement system (Quakyi et al., 1987; Read et al., 

1994; Healer et al., 1997; Eksi et al., 2006). The pfs48/45 gene encodes a protein that 

appears as a double band under non-reducing conditions (Milek et al., 2000). This 

protein is localized on P. falciparum gametocyte and gamete surfaces and has a central 

role in male gamete fertility. Antibodies against Pfs48/45 prevent zygote development 

and therefore transmission (van Dijk et al., 2001). Moreover, anti-Pfs230 and Pfs48/45 

antibodies are raised rapidly after exposure to gametocytes in about 22-28 % of 

malaria patients and substantiate transmission-reducing activity of naturally infected 

humans (Bousema et al., 2010; Ouédraogo et al., 2011). Like described for Pfs25, also 

plant-produced antibodies against Pfs230, block malaria transmission to the mosquito 

(Farrance et al., 2011 b). The Pfs48/45 paralogue, Pfs47, found specifically in female 

gametocytes and gametes, has no known essential function in female fertility, as 

revealed by research conducted by disruption of pfs47 (van Schaijk et al., 2006). A 

protein that is localized in the osmiophilic bodies of female gametocytes was named 

Pfg377 (Alano et al., 1995; Severini et al., 1999). Gene-disruption of pfg377 concludes 

in the lacking of osmiophilic bodies in female gametocytes which are significantly less 

efficient in their emergence from the erythrocytes upon induction of gametogenesis 

and an almost complete blockade of infection in mosquitos (de Koning-Ward et al., 

2008).  PfPeg3 or alleged Pfmdv-1 is a small protein expressed in gametocytes 

(Silvestrini et al., 2005; Furuya et al., 2005). The disruption of the P. falciparum gene 

pfpeg3/pfmdv-1 linked to early arrest in male gametocytogenesis (Furuya et al., 2005).  
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Aside from that, it is important for female gametocyte activation (Lal et al., 2009). One 

of the earliest known gene products expressed at the onset of gametocytogenesis is 

the integral PVM protein Pfs16 (Moelans et al., 1991). Gene disruption is followed by a 

reduced gametocyte production and an impaired ability of male gametocytes to 

exflagellate (Kongkasuriyachai et al., 2004). In recent studies, Pfs16 was used for 

studying the trafficking of material from the parasite across the PV space to the PVM 

and it was described, that during emergence this protein concentrates at the poles of 

Figure 1.10:  A selection of sexual stage-specific proteins of P. falciparum. A. Overview depicting a 

small assortment of proteins expressed during the sexual phase. Full lines represent high 

protein abundance, dotted lines low protein abundance. Proteins are sorted according to 

their time of occurrence during maturation. B. Domain structure of select P. falciparum 

sexual and mosquito stage proteins (modified from Pradel, 2007). 

A 
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the parasite (Eksi and Williamson, 2011). One protein, which is expressed only in male 

stage V gametocytes, is the Pfs230 paralogue PfsMR5 (Eksi et al., 2006).  

An overview of the domain structure and the expression stages of all mentioned sexual 

stage proteins is shown in Figure 1.10. Within this overview of sexual stage proteins, 

orthologs in all Plasmodium species were found for Pfg377 and PfPeg3/Pfmdv-1. Pfs16 

has orthologs in P. knowlesi and P. vivax. The members of the PfCCp protein family 

(detailed description in section 1.5) hold additionally to all Plasmodium species 

orthologs in Theileria, Cryptosporidium, Toxoplasma and Babesia (Templeton et al., 

2004).  

 

1.5 PfCCp multi-adhesion domain proteins  

Among the above described sexual stage proteins a highly conserved family of six 

secreted proteins has been identified in P. falciparum (Pradel et al., 2004). They 

comprise multiple adhesive domains (Lasonder et al., 2002; reviewed in Dessens et al., 

2004; Pradel et al., 2004; Templeton et al., 2004) and five of these proteins possess 

common Limulus coagulation factor C (LCCL) domains. They are termed PfCCp1 

through PfCCp5, whereas a sixth protein, PfFNPA, lacks this domain but shares 

architectural features. This suggests an evolutionary relationship with PfCCp5 and 

provides evidence for its inclusion as a member of the multi-adhesion domain protein 

family. The PfCCp proteins are known as PbLAP proteins in the rodent malaria parasite 

P. berghei and have orthologs in other apicomplexan parasites like Cryptosporidium 

parvum and Toxoplasma gondii, indicating an evolutionary conserved function across 

the apicomplexan clade (reviewed in Dessens et al., 2004; Templeton et al., 2004; 

Trueman et al., 2004). The six PfCCp proteins are expressed during gametocytogenesis 

of P. falciparum and localize within the gametocyte PV (see Fig. 1.11; Pradel et al., 

2004; Pradel et al., 2006; Scholz et al., 2008). During gamete emergence PfCCp 

proteins are associated with the surface of macrogametes, but expression decreases 

within a day (Pradel et al., 2004; Scholz et al., 2008). Gene disruptions of pfccp2 or 

pfccp3 result in a complete blockage of infection in mosquitos, showing that these 

proteins are essential for the parasite development in the vector (Pradel et al., 2004). 

Gene disruption of pfccp4, on the other hand reveals a reduced number of oocysts, but 

no blockage in mosquito transition (Scholz et al., 2008). Antibodies directed against 

select PfCCp adhesion domains induce a reduction of exflagellation in the presence of 

an   active   complement  system,  marking  the  proteins   as   potential  candidates   as 
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subunits for TBV (Scholz et al., 2008). PfCCp1, PfCCp2, and PfCCp3 co-localize within 

the PV of mature gametocytes (Pradel et al., 2006). It has been shown that PfCCp1, 

PfCCp2, PfCCp3, PfCCp4, or PfFNPA knockout gametocytes exhibit reduced abundance 

or an absence of other PfCCp proteins. This was observed only at protein and not on 

transcript level (Pradel et al., 2006; Simon et al., 2009). 

 

Adhesion domains of PfCCp proteins 

PfCCp proteins are composed of various widely conserved adhesion domains and 

contain a signal peptide (Fig. 1.12). The ricin domain of PfCCp1 and PfCCp2 is a 

carbohydrate-binding domain which is widely distributed in bacteria, fungi, animals, 

and plants. It is part of several carbohydrate and glycoprotein interacting proteins. The 

widespread discoidin domain can be found in eukaryotes and bacteria and is able to 

bind sugars and lipid head groups (Templeton et al., 2004). The neurexin-collagen 

(NEC) domain consists of a deep cleft for ligand binding and exists in collagens, 

fibrinogen family proteins, and neurexins. The name for PfCCp proteins is derived from 

the ‘LCCL’ or ‘Limulus coagulation factor’ domain. The LCCL domain was first 

discovered in the horseshoe crab (Limulus) and is composed of six conserved cysteine 

residues which are found in all PfCCp proteins, except of PfFNPA. It is thought to be an 

autonomously folding domain that has been found in various multi-domain proteins 

Figure 1.11:  Expression of PfCCp proteins in gametocytes. Expression patterns in mature 

gametocytes as determined by IFA. PfCCp1 through PfCCp3 show a punctuate pattern in 

mature gametocytes, whereas PfCCp4 is homogenously expressed. PfCCp5 and PfFNPA 

proteins are predominantly localized at the poles of the gametocytes. PfCCp expression is 

shown in green, while erythrocytes are highlighted in red. Immunoelectron microscopic 

shows PfCCp1 localization in the PV in association with the PPM, labelled with anti-

PfCCp1 primary antibody and immunogold (Pradel et al., 2004; Scholz et al., 2008). 
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(Trexler et al., 2000). Some proteins which contain a LCCL domain, like the LPS 

endotoxin-sensitive trypsin type serine protease, are known to protect the organism 

from bacterial infections (Liepinsh et al., 2001). The levanase associated lectin domain 

is found predominantly in bacterial secreted levanases and glucosidases, whereas the 

ApicA domain seems to be apicomplexa-specific. The LH2 or PLAT domain 

(Lipoxygenase homology) of PfCCp3 is found in a variety of membrane bound lipid 

associated proteins in plants, animals, and bacteria. It is thought to mediate 

membrane attachment via other protein-binding partners (Marchler-Bauer et al., 

2011). The scavenger receptor domains are disulfide rich extracellular domains and 

contain six conserved cysteines. They are found in several extracellular receptors and 

may be involved in protein-protein interactions. The single pentraxin domain in PfCCp3 

is characterized by calcium dependent ligand binding (Emsley et al., 1994) and proteins 

of the pentraxin family are involved in acute immunological responses (reviewed in 

Gewurz et al., 1995). In contrast the fibronection type 2 domain of PfCCp5 and PfFNPA 

is a collagen binding protein domain that binds to cell surfaces and various compounds 

including collagen, fibrin, heparin, DNA, and actin (Dean, et al., 1987).  The anthrax 

protective antigen domain (or PA14 domain) exists in several bacterial proteins such as 

the Clostridium botulinum C2 toxin and β-glucosidases. This domain is also present in 

other glycosidases, glycosyltransferases, proteases, amidases, yeast adhesins, and 

bacterial toxins, including anthrax protective antigen (PA). These domains probably 

mediate calcium dependent interactions (Rigden et al., 2004; Templeton et al., 2004).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.12: Schematic of the domain structure of the PfCCp multi-adhesion domain protein            

family. The six PfCCp proteins contain a variety of adhesion domains and all except of 

PfFNPA contain the eponymous LCCL domain. 
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1.6  The malaria parasite and the human complement in the mosquito 

midgut 

1.6.1 Sexual reproduction of malaria parasites in the mosquito midgut 

Malaria parasites are taken up by the mosquito in form of sexual precursor cells, the 

intraerythrocytic gametocytes (reviewed in Pradel, 2007 and Kuehn and Pradel, 2010). 

After the ingestion into the mosquito’s midgut the malaria parasite has not only to 

survive, it has to reproduce sexually in the aggressive environment of the mosquito 

midgut. Triggered by external stimuli in the mosquito midgut, gametocytes egress 

from the enveloping host erythrocyte and form gametes. During this process the 

surrounding and protecting parasite membranes rupture (Sologub et al., 2011). Within 

approximately 20 min, fertile gametes have formed and fertilization occurs within one 

hour post-blood meal. The mosquito midgut contains digestive enzymes, midgut 

bacteria and furthermore, antibodies, immune cells, and human complement factors 

which were taken up together with the blood meal (see Fig. 1.13). Previous studies on 

P. berghei describe that during the first three hours of development in culture, 30-50 % 

of mosquito midgut stages survive complement exposure. Subsequently, parasites 

become increasingly sensitive to complement mediated lysis (Margos et al., 2001). 

Initial studies on complement effects on the infectivity of malaria parasites were 

conducted with P. gallinaceum, the malaria parasite which infects birds. The ability of 

gametocytes to infect mosquitoes in the presence of native human serum has been 

previously been attributed to proteases that inactivate the human complement system 

before the gametes and zygotes emerge as extracellular parasites in the blood meal 

(Grotendorst et al., 1986). 

 

 

 

 

 

 

 

 
Figure 1.13:  The malaria parasite in the mosquito midgut is surrounded by mosquito midgut factors 

and human blood meal contents. 
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1.6.2 The human complement system 

The human complement system is part of the innate immune system. It contributes to 

the nonspecific, humoral host defense, helps to eliminate cellular antigens (e.g. 

bacteria), and leads through several cascade-like activation steps resulting in the lysis 

of the target cell. In terms of developmental physiology, the complement system is the 

oldest barrier against infections. The human complement system removes immune 

complexes and is a lytic system for the elimination of pathogens. Essentially, it can be 

initiated via three different activation cascades, the classical, the alternative, and the 

lectin pathway. The alternative pathway (AP) is a constitutive process activated by 

biological surfaces (reviewed in Zipfel and Skerka, 2009). The classical pathway is 

triggered by antibodies bound to the target antigen (Law and Reid, 1995), initiated for 

example by viruses  or  gram-negative bacteria. The  lectin  pathway  is  homologous to  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.14:  Activation pathways of the human complement system. Complement is initiated by 

three major pathways. The AP is spontaneously and continuously activated. The CP is 

induced when antibodies bind to their corresponding antigen and the lectin pathway is 

triggered by the binding of mannan binding to mannose residues on the surface of 

microorganisms, which activate MBL-associated serine proteases (MASPs) which cleave 

C4 and C2 like in the classical pathway. Complement activation occurs in a sequential 

manner. Enzymes termed C3 and C5 convertases cleave pathway products and lead to 

opsonization and lysis of the target surface (modified from the review Zipfel and Skerka, 

2009). 
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the classical pathway, but with the opsonin, mannose-binding lectin (MBL) and is 

enabled by carbohydrates on microbial surfaces (reviewed in Fujita, 2002  and Degn et 

al., 2007).  

The first step of the activation of the classical pathway is the cleavage of C1. This leads 

to a deposition of C1q on the surface of the pathogen (Meri et al., 2002 a). Activation 

of the classical pathway results in assembly of the first enzyme of the cascade, C3 

convertase. The protein responsible varies between the AP, C3bBb, and for the 

classical and lectin pathways, C4bC2b (Fig. 1.15; reviewed in Zipfel and Skerka, 2009). 

These enzymes split the central complement component C3 and form the anaphylactic 

peptide C3a and the opsonin C3b which can be deposited onto any close surface. This 

activation step is followed by a strengthening reaction that generates more C3 

convertases and deposits further C3b at the local site. C3b then becomes inactivated 

and sequentially degraded. These resulting proteins mediate further effector functions 

for opsonization. If activation is under way a new enzyme, the C5 convertase 

(C3bBbC3b in the AP and C4bC2bC3b in the classical and lectin pathways), is 

generated. C5 convertase cleaves C5 releasing C5b which initiates the terminal 

pathway together with the complement factors C6 to C9. This arrangement of proteins 

is termed the terminal complement complex (TCC) or membrane attack complex 

(MAC). It forms a pore in the target cell membrane and causes lysis (reviewed in Zipfel 

and Skerka, 2009).  

 

1.6.3 Regulation of the alternative pathway of complement 

The APC is one of three complement pathways that opsonize and kill pathogens. It is 

antibody-independent, is activated by spontaneous hydrolysis of C3, and is amplified 

by C3b deposition on the surface of pathogens (Delvaeye et al., 2009). C3b attaches 

covalently to target surfaces to amplify complement response, labels cells for 

phagocytosis and stimulates the adaptive immune response. Cleavage of C3 (186 kDa) 

into C3b (177 kDa) and C3a (9 kDa) is the central step in the complement activation 

cascade. C3b covalently attaches to pathogenic, or apoptotic, target surfaces and 

thereby  prefaces  several  biological  processes.  C3b provides a molecular platform for 

the formation of convertase complexes. Binding of pro-enzyme factor B to C3b and 

subsequent cleavage of factor B by factor D yields the short-lived C3bBb complex 

which converts C3 into C3b and C3a, thereby amplifying the complement response and 
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forming the C3b2Bb complex that cleaves C5 to initiate the formation of large, 

membrane inserted lytic pores, the MAC (Janssen et al., 2006).  

The formation of C3b is a central step that requires tight regulation. Host cells express 

numerous cell surface and soluble regulators that interfere with the C3bBb complex 

formation or support the proteolytic degradation of C3b into iC3b, the inactive form of 

C3b. Regulators of complement are the soluble Factor H (FH), the FH-like protein 

(FHL-1) or the Complement Receptor (CR1), which dissociate the C3bBb complex and 

act as co-factors for the proteolysis of C3b into iC3b, which is mediated by the plasma 

protease Factor I (FI). Further APC activation is thereby inhibited (Fig. 1.15; Janssen et 

al., 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.15:  Alternative Pathway of Complement, Activation, and Regulation.  

APC activation on the right side: On pathogen surfaces, that lack complement regulators, 

C3b is deposited to bind factor B (CFB) to form the C3 convertase of the AP, an enzyme 

complex (C3bBb) that cleaves additional C3 molecules. C3b also takes part in the 

emergence of the C5 convertase (C3b2Bb), which by cleaving C5, releases C5a, an 

anaphylatoxin, and C5b, which initializes assembly of the membrane attack complex 

(MAC). 

No activation of APC on the left side: In host cells, several membrane-anchored and fluid-

phase regulators control this cascade. For example complement FH in the fluid phase 

binds to cell-surface glycosaminoglycans and to C3b and act as a cofactor for FI which 

mediates the cleavage of C3b to iC3b. This decreases downstream activation of C3 and 

C5, thereby shielding the pathogens or host cell membrane (modified from Delvaeye et 

al., 2009). 
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1.6.4 Properties of complement factor C3 and Factor H  

The alternative complement pathway is able to distinguish human cells and tissues 

from a wide variety of potential pathogens. To avoid complement activation from 

targeting the host cell, there are several different kinds of regulatory proteins that 

interrupt the complement activation process. The primary mode of deactivation of the 

APC is the proteolytic cleavage of C3b by the protease FI, resulting in an inactive form 

of C3b, the iC3b. Several proteins such as cell surface CR1, C4bp and FH can act as 

cofactor for FI, and thereby operate as regulators for the APC (reviewed in Zipfel and 

Skerka, 2009; Serruto et al., 2010). The complement regulator FH has cofactor activity 

for the FI-mediated cleavage of C3b and is an antagonist of C3b interactions with 

factor B and Bb (Whaley and Ruddy, 1976). To survive in the human host some 

pathogens have developed different strategies to escape the APC response. Some bind 

soluble complement factor regulators, such as FH, on their cell surface resulting in 

inactivation of the AP protecting the pathogen from the host’s immune attack. High 

affinity of FH to C3b is favored by cell surface components present such as sialic acid 

residues on glycophorin A and glycosaminoglycans in bacteria, and leads to inhibition 

of complement activation (Jokiranta et al., 1996; Schmidt et al., 2008). Cleavage of C3 

into C3a and C3b is the central step in the complement activation cascade (Janssen et 

al., 2006). Detection of α’1 and α’2 fragments indicates inactivation of C3b (Fig. 1.16; 

Riley-Vargas et al., 2005). The inactivated form of C3b is called iC3b. 

 

 

 

 

 

 

 

 

 

 

Figure 1.16:  Cleavage sides of Complement factor C3. C3 (180 kDa) is composed of two chains, 

α (109 kDa) and β (75 kDa). Upon activation, C3a (9 kDa) is released, leaving the 

truncated α′ chain (101 kDa) of C3b. FI cleaves the α′ chain at two points, creating the 

fragments α’1 (67 KDa) and α’2 (40 kDa) (composed of Barilla-LaBarca et al., 2002; Riley-

Vargas et al., 2005 and http://www.uniprot.org/uniprot/P01024). 
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The complement FH protein controls this cleavage and is one of the central regulators 

of the complement cascade. It is a soluble plasma protein, secreted primarily from the 

liver and composed of 20 homologous short consensus repeat (SCR) domains 

(reviewed in Rodriguez de Cordoba et al., 2004). These domains are characterized by 

four invariant cysteines and many highly conserved amino acids folded in compact 

units. FH belongs to the FH-family-proteins which represent a group of seven human 

multidomain, multifunctional secreted proteins. The two most prominent regulating 

proteins of this family are FH and FHL-1 (reviewed in Zipfel et al., 2008). FHL-1 is an 

alternative splicing product of FH and comprises seven SCR domains (reviewed in Józsi 

and Zipfel, 2008). FH and FHL-1 control the activity of the APC. Host cells utilize these 

soluble immune-regulators to manage complement inactivation directly at their 

surfaces. Three binding sites have been mapped for C3b and heparin on FH (Fig. 1.17). 

The first seven SCR domains of FHL-1 are identical to FH with same binding sides. The 

first four domains are in charge for complement regulation. FH (155 kDa) is present in 

the human plasma at a concentration of approximately 500 µg/ml, while the plasma 

concentration of FHL-1 (43 kDa; here running at a molecular weight of ~37 kDa) is 

10-50 µg/ml (reviewed in Zipfel et al., 2002). Another protein from the human FH 

protein family called CFHR-1 can also be found in plasma. It occurs in in two forms, 

CFHR-1α and CFHR-1β with molecular weights of 37 and 43 kDa (Fig. 1.17; Estaller et 

al., 1991; Skerka et al., 1991; reviewed in Zipfel et al., 2002). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.17:  Diagram of FH, FHL-1, and CFHR-1 structure including binding domains. FH is composed 

of twenty SCR domains, FHL-1 is identical in sequence with the seven N-terminal SCRs of 

Factor h and includes at its C-terminal end an extension of four amino acids. The first 

four SCR domains of FH and FHL-1 have cofactor activity by binding C3b and three 

further binding sites have been mapped for C3b and heparin. Sequence alignment of 

CFHR-1 with FH reveals two conserved regions, which are marked in grey in the FH 

molecule (SCRs 6–7 and 18–20) (modified from Zipfel et al., 2002).  
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1.6.6   Pathogens bind Factor H for complement inactivation 

The human complement is a first line of defense against microbial infections. It is an 

important part of innate immunity. One of the major features of complement is the 

destruction of invading microbes (reviewed in Zipfel et al., 2006). Thus, in order to 

achieve an infection and to become a pathogen, a microbe has to survive this immune 

defense and inactivate complement attack (Lachmann, 2002). This protection is 

thought to be mediated by regulatory proteins like FH or FHL-1 of the complement, 

which mark the foreign cells, and prevent complement mediated lysis, phagocytosis 

and opsonization (Kraiczy and Würzner, 2006; reviewed in Lambris et al., 2008 and 

Zipfel et al., 2008). Pathogenic microorganisms use this strategy and express surface 

proteins which imitate the host surface proteins and are able to bind FH and/or FHL-1 

(reviewed in Zipfel et al., 2002). Numerous proteins which bind complement 

regulatory factors are identified and called immune escape pathogen surface proteins 

(PSPs) (reviewed in Zipfel et al., 2008). Surface proteins of the outer membrane of 

pathogens bind FH, recruite FI to cleave C3b on the pathogens surface, and thereby 

inactivate the APC (Fig. 1.18). 

This mode of complement evasion has been initially shown with gram-positive bacteria 

such as Streptococcus pyogenes (Horstmann et al., 1987). It has been shown that the 

M protein, a surface protein of Group A S. pyogenes, binds to the seventh SCR module 

of human complement FH (Blackmore et al., 1998). Similarly gram-negative bacteria 

such as Borrelia burgdorferi bind FH and FHL-1 (Hellwage et al., 2001; Kraiczy et al., 

2004; Bhide et al., 2009) and Bordetella pertussis binds FH exclusively (Amdahl et al., 

2011) to  evade the attack of the host immune system.  PspC,  a  pneumococcal surface  

 

 

 

 

 

 

 

 

Figure 1.18:  Structure and model of two evasion mechanisms utilized by human pathogens. 

Restriction possibilities of the alternative complement activation upon binding of FH or 

FHL-1 to pathogen surface proteins (PSP) on the outer membrane (OM) (modified from 

the review Kraiczy and Würzner, 2006). 
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protein of S. pneumoniae (Dave et al., 2001; Duthy et al., 2002) and anaerobic bacteria 

(Friberg et al., 2008) bind the complement regulator FH to escape APC. Moreover, 

yeast-like fungi such as Candida albicans bind the two central complement regulators, 

FH and FHL-1, from normal human serum (Meri et al., 2002 b). In 1988 FH binding of a 

parasite was observed for the first time. It was discovered that FH binds to Toxocara 

canis and Schistosoma mansoni, but no effect on complement inactivation was proven. 

The ability of microfilariae of Onchocerca vulvulus to utilize FH in complement 

regulation was later detected (Meri et al., 2002 a), and this is so far the first known 

parasite which binds FH for complement evasion. 

 

1.6  Aim of the study 

Gametocyte development and gamete formation are accompanied by the coordinated 

expression of numerous sexual stage proteins, including the EGF domain-containing 

protein Pfs25, the cysteine motif-rich proteins Pfs230 and Pfs48/45, as well as the 

PfCCp multi-adhesion domain proteins. The majority of these proteins contain a 

variety of adhesion domains and are associated with the parasite surface, but 

expression usually ceases during fertilization. Preliminary data lead to the assumption 

that selected sexual stage adhesion proteins might form protein complexes on the 

surface of malaria gametocytes, which are taken up by the blood-feeding mosquito. 

The bloodmeal includes active components of the human complement system. In the 

mosquito midgut, the parasite egresses from the enveloping erythrocyte and thereby 

comes in contact with the human complement system.  

The key aspect of this doctoral thesis was to scrutinize molecular interactions of the 

malaria parasite P. falciparum during the sexual reproduction in the mosquito midgut. 

Sexual stage surface proteins play an essential role during the sexual phase of the 

parasite in the mosquito midgut. In recent studies it was shown that the six PfCCp 

proteins are co-dependently expressed, resulting in loss of all PfCCp members, when 

one protein was knocked-out. Furthermore, previous co-localization and binding 

studies indicate interactions between Pfs230 and PfCCp4 in the PV of gametocytes. 

These data give sufficient evidence to presume that more surface associated proteins 

of the malaria parasite bind to each other.  

The first aim of my doctoral thesis was to gain deeper insights into potential protein 

interactions between sexual stage proteins in the PV of gametocytes and on the 
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surface of newly emerged macrogametes. Protein complex formations need to be 

investigated in order to evaluate their function and their potential as TBV candidates. 

Extensive interaction studies on endogenous proteins using parasite lysates in 

Co-immunoprecipitation assays were planned in order to investigate interactions 

between well-known sexual stage proteins. Specific proteins of the precipitated 

protein complex should be identified by Western blot analysis using antibodies against 

the appropriate protein or via mass spectrometry. In order to elucidate direct 

interactions between the PfCCp proteins Co-elution binding assays with recombinant 

PfCCp proteins should be performed. Furthermore, the potential processing of PfCCp 

proteins during gametogenesis was to be examined. 

The second aim of this work concentrates on interactions between the malaria 

parasite and the human complement system in the mosquito midgut. Up to date it is 

not known how sexual stages of malaria parasites are able to escape from the attack of 

the human complement system in the mosquito midgut. Some pathogens are known 

to bind human complement regulator proteins to avoid complement-mediated lysis. If 

P. falciparum also utilizes this strategy to survive in the mosquito midgut was aimed to 

be addressed in this thesis. In addition, the activity of the complement system after 

the uptake of the blood meal in the mosquito midgut should be determined. The 

possible protection mechanism of the malaria parasite to bind the human complement 

regulator FH should be characterized in order to prove following complement 

inactivation. Subsequent studies aimed at the identification and characterization of the 

receptor protein of FH on the parasite’s surface, which might be a promising new TBV 

candidate.  
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2 Materials and Methods 

2.1  Materials 

2.1.1  Instruments 
 

Table 2.1: Instruments used and manufacturer 

Instrument Company 

AccuJet® pro Brand, Wertheim 

Amicon® Ultra-4, Ultra-10 filter units Millipore, Schwalbach 

Balances 440-47N and 440-33 Kern & Sohn GmbH, Balingen-Frommern 

Binocular FOMI B 50 Zeiss, Oberkochen 

Bunsen burner Gasi Schütt, Göttingen 

Cell culture flask 25 cm2, 75 cm2 Becton Dickinson, Falcon, Heidelberg 

Centrifuge Megafuge  Heraeus, Hanau 

Chromatography column PolyPrep®  Bio-Rad, München 

Confocal fluorescence microscope  Zeiss, Oberkochen 

Electrophoresis chamber Mini-Protean 3 Bio-Rad, München 

French® Press FA078 Heinemann, Schwäbisch Gmünd 

Gel drying apparatus 14 x 14 cm Roth, Karlsruhe 

Heat block Bio TBD-100, TBD-120 Lab-4you, Berlin 

Hot plate OTS 40 Medite, Burgdorf 

Incubator HERA cell Heraeus, Hanau 

Incubator Model 100-800 Memmert, Schwabach 

Light microscope Leica DMLS Leica, Solms 

Light microscope Leitz Laborlux 11 Leitz, Wetzlar 

Measuring cylinder Roth, Karlsruhe 

Microscope camera AxioCam Zeiss, Oberkochen 

Mini-Rocker MR1 Lab-4you, Berlin 

Mosquito Incubator Model 2015 VWR, West Chester, USA 
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pH-Meter InoLab WTW, Weilheim 

Pipettes  Eppendorf, Hamburg 

Rotator-Mixer Labinco, DG Breda, Niederlande 

Shaker SM 30 control Edmund Bühler GmbH, Tübingen 

Sterile bench HERAsafe Heraeus, Hanau 

Sterile filter Steritop™ 0,22 μm Millipore, Schwalbach 

Syringe filters Roth, Karlsruhe 

Tubes Sterican Braun, Melsungen 

Centrifuge Beckmann J2-HC Beckmann, München 

Vacuum Pump Laboport KNF, Freiburg 

Vortexer Power Mix Model L46 Labinco, Breda, Netherlands 

Water bath Hecht 3185 WTE Karl Hecht KG, Sondheim 

Western blot apparatus Mini-Trans-Blot Bio-Rad, München 

 
2.1.2  Chemicals and consumables 

 

Chemicals: 

• AppliChem, Darmstadt 

• ATCC, Manassas, USA 

• Dianova, Hamburg 

• GE Healthcare/Amersham Bioscience, München 

• Invitrogen/Gibco/MolecularProbes, Karlsruhe 

• Merck/Novagen/Calbiochem, Darmstadt 

• Pharmacia/Pfizer, Wien 

• Roth, Karlsruhe 

• Santa Cruz Biotechnology, Heidelberg 

• Sigma/Fluka, Taufkirchen 

• TecoMedical Group/Quidel, Bünde 

• WAK Chemie, Steinbach 
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Consumables: 

• BD Falcon, Heidelberg 

• Bio-Rad, München 

• Greiner, Flacht 

• Hartenstein, Würzburg 

• Millipore, Schwalbach 

• Noras, Höchberg 

• Provac, Austria-Winkel 

• Roth, Karlsruhe 

• Sarstedt, Nürnbrecht 
 

Miscellaneous 

• Cell culture grade A+ erythrocytes and serum was purchased from Bayerisches 
Rotes Kreuz (BRK), Würzburg. 

• Six week old female NMRI mice for immunization were obtained from Charles 
River Laboratories, Sulzfeld for immunization. 

• 50 l cylinders of gas (5 % O2, 5 % CO2, in 90 % N2) were purchased from Tyczka 
Industriegase, Würzburg, for use in cell culture procedures. 

 

2.1.3  Kits 

- QiAprep Spin Miniprep Kit (250); Qiagen, Hilden 

- C3a Plus EIA Kit MicroVue Complement, Quidel, TecoMedical Group, Bünde 

 

2.1.4  Buffers and solutions 

Table 2.2:  Buffers and solutions 

Designation Ingredients 

10 x PBS      80 g NaCl    
     2 g KCl   
11.5 g Na2HPO4 

     2 g KH2PO4 

H2Obidest    ad 1000 ml   pH 7.4 
PBS-Mix 
 

PBS pH 7.4 
0.5 %   Saponin 

PBS-Mix/NP40 
 

PBS pH 7.4 
0.5 %   Saponin 
0.5 %   NP40 
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2 x Sample buffer 
 

2.5 ml 500 mM Tris-HCl. pH 6.8 
2.0 ml Glycerin 
4.0 ml 10 % SDS 
0.5 ml 0.1 % Bromphenol blue 
H2Obidest     ad 10 ml 

10 x PAGE Running buffer 
 

  29 g Tris 
144 g Glycerin 
  10 g SDS 
H2Obidest   ad 1000 ml 

10 x TBS 
 

12.1 g    Tris  
87.3 g    NaCl          
H2Obidest   ad 1000 ml   pH 7.5 

Transfer buffer 
 

3.03 g  Tris 
14.4 g    Glycerin 
200 ml  Methanol 
H2Obidest     ad 1000 ml 

Blocking solution 50 ml      1 x TBS 
0.5 g       BSA (Fraction V Albumin) 
2.5 g       Milk powder 

TBS milk 3 % Milk powder in 1 x TBS 

Equilibration buffer 
 

12.1 g     Tris 
  5.8 g     NaCl  
10.2 g     MgCl2 

H2Obidest   ad 1000 ml   pH 9.5 
Stop buffer 
 

1.2 g        Tris 
0.4 g        EDTA  
H2Obidest    ad 1000 ml   pH 8 

1000 x Ampicillin 100 mg/ml in H2Obidest  

1000 x Kanamycin    50 mg/ml in H2Obidest  

1000 x Gentamycin   50 mg/ml in H2Obidest  

1000 x Hypoxanthine   0.05 g/ml in NaOH/H2Obidest  

1mM Xanthurenic acid  
 

   0.05 g     Xanthurenic acid 
      1 ml     0.5 M NH4OH 
  243 ml    H2Obidest 

Lysis buffer for MBP purification    50mM    Tris pH 8 
     1mM    EDTA 
100mM     NaCl                    in H2Obidest 

1 x TE (Tris-EDTA) buffer    10 mM    Tris pH 8  
    1 mM     EDTA pH 8         in H2Obidest 

Column buffer for MBP purification 
 

  50 mM     Tris pH 8 
    1 mM     EDTA 
100 mM     NaCl                   in H2Obidest 

Elution buffer for MBP purification   50 mM     Tris pH 8 
    1 mM     EDTA 
100 mM     NaCl 
  10 mM     Maltose             in H2Obidest 
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Lysis buffer for 6-His and GST purification     50 mM     Tris pH 8 
350 mM     NaCl 
      10 %     Glycerin 
    1 mM     β-Mercaptoethanol 
    0.2 %      IGEPAL 
 10 mM      Imidazol            in H2Obidest 

Column buffer 3 for 6-His purification 
 

  50 mM      Tris pH 8 
    1 mM      β-Mercaptoethanol 
350 mM      NaCl 
      10 %      Glycerin            in H2Obidest 

Elution buffer for 6-His purification    50 mM     Tris pH 8 
    1 mM      β-Mercaptoethanol 
350 mM      NaCl 
      10 %      Glycerin 
250 mM      Imidazol           in H2Obidest 

Elution buffer for GST purification   50 mM       Tris  pH 8 
  10 mM       reduced glutathione in H2Obidest 

Lysis buffer inclusion bodies   50 mM       Tris pH 8 
   0.25 %       Sucrose (w/v) 
    1 mM       EDTA                in H2Obidest 

Detergent buffer inclusion bodies    20 mM      Tris/HCl pH 7.5 
    2 mM      EDTA pH 8 
200 mM     NaCl 
        1 %      Deoxycholicacid 
        1 %      NP-40                in H2Obidest 

Washing buffer inclusion bodies      0.5 %     Triton X-100 
    1 mM     EDTA pH 8         in H2Obidest 

IFA incubation solution           1 x     PBS pH 7.4 
     0.5 %     BSA 
   0.01 %     Saponin             in H2Obidest 

SAX (gametogenesis activation solution)        100 µM    Xanturenic acid 
1.67 mg/ml    Glucose 
      8 mg/ml    NaCl 
      1 mg/ml    Tris pH 8,2   in H2Obidest 

 

2.1.5  Medium and agar plates 

Table 2.3: Cultivation media and agar plates  

Designation Ingredients 

LB agar       10 g     Tryptone 
        5 g     Yeast extract 
        5 g     NaCl 
      15 g     Agar____________               
      H2Obidest         ad 1000 ml    

LB        10 g     Tryptone 
        5 g     Yeast extract 
        5 g     NaCl___________              
        H2Obidest       ad 1000 ml    
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LB agar for MBP tagged  
protein expression 

      10 g     Tryptone 
        5 g     Yeast extract 
        5 g     NaCl 
        1 g     Glucose________ 
       H2Obidest        ad 1000 ml    

SOC medium       20 g     Tryptone 
        5 g     Yeast extract 
     0,5 g     NaCl 
    10 ml     0,25 M KCl 
      5 ml     2 M MgCl2 
    20 ml     1 M Glucose____ 
       H2Obidest        ad 1000 ml    

RPMI incomplete 10,43 g        RPMI-1640 powder 
   5,94 g       Hepes 
   0,05 g       Hypoxanthine 
       H2Obidest        ad 1000 ml    

RPMI complete    500 ml      RPMI 1640  + 25 mM Hepes 
                                           + L-Glutamine    
                                           + Sodium bicarbonate 
     50 ml      inactivated human A+ serum 
    550 μl      1000 x Hypoxanthine 
   (550 μl      1000 x Gentamycin) 

Glycerolyte 57 solution   26,66 g        Sodium lactate 
  584 mg        NaH2PO4 x 2 H2O 
2344 mg        Na2HPO4 x 7 H2O 
  570 mg        Glycerol 
  300 mg        Potassium chloride 
     H2Obidest          ad 1000 ml     pH 6.8 

Giemsa buffer           7 g        KH2PO4 
        10 g        Na2HPO4 
     H2Obidest          ad 1000 ml     pH 7.2 

 

2.1.6  Parasite and bacterial cell lines 

Cell lines of Escherichia coli (E. coli) and Staphylococcus aureus 

− E. coli-protein expression cell line: BL21-CodonPlus®-(DE3)-RIL, Stratagene.  

− E. coli-transformation cell line: Nova blue-Competent-Cells, Stratagene.  

− S. aureus cell line: Newman; kindly provided by AG Ohlsen, Institute for 
Molecular Infection Biology, Würzburg. 

 

 

Cell lines of P. falciparum  

Plasmodium falciparum WT NF54 strain is a gametocyte-producing strain. It is 

chloroquine sensitive and was isolated in 1982 from West Africa (Ponnudurai et al., 

1982). 
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2.1.7  Plasmids 

pGEX-4T1 

This high-copy protein expression vector contains an Ampicillin resistance and a 
Glutathione-S-transferase (GST) tag (Amersham Biosciences, Freiburg). 

 

 

 

 

 

 

 

 

 

 

 

 

 

pSUMO/pSMT3 

Low-copy-T7-Expression vector encodes a kanamycin resistance, N-terminal 6-His-

peptid, and a SUMO chaperon protein sequence; based on the plasmid pET28b 

(Novagen, Merk; Darmstadt) and kindly provided by Chris Lima (New York, USA). 

 

 

 

 

 

 

 

(5.6 kb) 

Figure 2.2:  pSUMO/pSMT3 expression vector represented with restrictions sites and kanamycin 

antibiotic resistance (kindly provided by Chris Lima, New York). 

Figure 2.1:  pGEX-4T-1 expression vector represented with restrictions sites and ampicillin resistance 

(http://www.biovisualtech.com/). 

http://www.biovisualtech.com/bvplasmid/pGEX-4T-1.htm
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pIH902/pMAL-c 

The pIH902 expression vector is the precursor of the later designed pMAL-c and its 

derivates (Maina et al., 1988; New England Biolabs, Frankfurt). It encodes a MBP-tag, a 

6-His-tag, a lacZα-gen for blue/white selection, and an ampicillin resistance (kindly 

provided by Kim Williamson, Chicago). 

 

 

 

 

 

 

 

 

 
 

2.1.8  Protein ladders 

 

 

 

 

 

 

 

 

 

Figure 2.3:  pIH902 expression vector represented with restrictions sites (vector map designed by 

Andrea Kühn). 

A    B                  C             D  

Figure 2.4:  Protein Ladders. A. Page-RulerTM-prestained-Protein standard (Thermo Scientific/ 

Fermentas, Schwerte). B. HiMark™- Prestained-Protein standard (Invitrogen, Karlsruhe). 

C. Spectra™ Multicolor High Range Protein Ladder (Thermo Scientific/Fermentas, 

Schwerte). D. PageRuler™ Prestained Protein Ladder Plus (Thermo Scientific/Fermentas, 

Schwerte) (www.fermentas.de and www.invitrogen.com). 

 

http://www.ncbi.nlm.nih.gov/pubmed/3073105
http://www.fermentas.de/
http://www.invitrogen.com/
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2.1.9  Antibodies and proteins 

Table 2.4: Antibodies and proteins 

Antibody Animal Dilution  
 
Western blot       IFA                            

Source 

Primary Antibodies 

Anti-PfCCp1/1rp1 pAb Mouse  1:200  1:100  AG Pradel , Würzburg 

Anti-PfCCp1/1rp6 pAb     

Anti-PfCCp2/2rp3  pAb Mouse  1:200  1:100  AG Pradel , Würzburg 

Anti-PfCCp3/SR  pAb Mouse  1:50  1:50 T. J. Templeton , New 
York 

Anti-PfCCp3/3rp3  pAb Mouse  1:100  1:100  AG Pradel , Würzburg 

Anti-PfCCp4/4rp1  pAb Mouse  1:100 1:50 AG Pradel , Würzburg 

Anti-PfCCp5/5rp4 pAb Mouse  1:200 1:100 AG Pradel , Würzburg 

Anti-PfFNPA/rp1 pAb Mouse  1:100 1:50 AG Pradel , Würzburg 

Anti-Pfs230 pAb Rabbit 1:100 1:200 Biogenes, Berlin 

Anti-Pfs230  pAb  Mouse  1:500  1:400  K. Williamson, Chicago  

Anti-Pfs48/45  pAb  Mouse  1:100  -  K. Williamson, Chicago  

Anti-Pfs16  pAb Mouse  1:500  -  K. Williamson, Chicago  

Anti-PfMR5  pAb Mouse  1:50 1:100 AG Pradel , Würzburg 

Anti-Pf39  pAb  Mouse  1:500  -  AG Pradel , Würzburg 

Anti-PfPeg3   pAb Rat  1:100  1:100  P. Alano, Rom, Italy  

Anti-PfActinII  pAb Mouse 1:200 - AG Pradel , Würzburg 

Anti-Proteasom SUα5 pAb Mouse  1:50 AG Pradel , Würzburg 

Anti-PF14_0412 (WD40 
protein) 

Mouse  1:50 AG Pradel , Würzburg 

Anti-GST mAb Goat  1:4000  -  GE Healthcare, Solingen 

Anti-His mAb Mouse  1:5000  -  Amersham/Pharmacia, 
Dübendorf  
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Anti-Pfs25  MRA-38 mAb Rabbit  1:500  1:1000  ATCC/MR4,  Manassas, 
USA 

Anti-Pfs28 MRA-18 pAb Rabbit  1:100 ATCC/MR4,  Manassas, 
USA 

Anti-Pfs230 MRA-27 mAb Mouse   ATCC/MR4,  Manassas, 
USA 

Neutral  mouse serum  Mouse  1:100  1:100  AG Pradel , Würzburg 

Neutral  goat serum  Goat  1:100  1:100  Sigma, Taufkirchen 

Anti-FH  pAb  
(against SCR1-20) 

Goat 1:800 1:100 Calbiochem/Merck 
Darmstadt 

Anti-FH mAb clone 131X 
(against SCR8-15) 

Mouse 1:400 1:1 in TBA 
and GIA 

Quidel, 
San Diego 

Anti-FH pAb  
(against SCR1-4) 

Rabbit 1:800  Santa Cruz Biotech-
nology, Heidelberg 

Anti-FH  mAb 
(against SCR18-20) 

Mouse 1:200  Enzo Life Sciences, 
Lörrach 

Anti-C1q 
polyclonal 

Goat 1:4000 1:1000 Quidel, 
San Diego 

Anti-C3 
polyclonal 

Goat 1:1000 1:200 Quidel, 
San Diego 

Secondary Antibodies 

Anti-Mouse IgG Alexa- 488  Goat -  1:1000  Invitrogen, Karlsruhe  

Anti-Mouse IgG Alexa-594  Goat  -  1:1000  Invitrogen, Karlsruhe  

Anti-Rabbit IgG Alexa-488  Goat  -  1:1000  Invitrogen, Karlsruhe  

Anti-Rabbit IgG Alexa-594  Goat  -  1:1000  Invitrogen, Karlsruhe  

Anti-Goat IgG Alexa-488 Chicken  1:1000 Invitrogen, Karlsruhe  

Anti-Mouse IgG  
alkaline phosphatase  

Goat  1:6000  -  Sigma, Taufkirchen 

Anti-Goat IgG  
alkaline phosphatase  

Rabitt  1:7000  -  Sigma, Taufkirchen 

Anti-Rat IgG  
alkaline phosphatase  

Goat 1:5000  -  Sigma, Taufkirchen 

Anti-Rabbit IgG  
alkaline phosphatase  

Goat  1:5000  -  Sigma, Taufkirchen 
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2.1.10 Protein identification numbers (PlasmoDB and Uniprot) 

Table 2.5: Identification numbers of plasmodial and human proteins  

Proteins 

purified  
human FH  

Human Serum Calbiochem/Merck 
Darmstadt 

FHR-1 recombinant 
peptide 

Insect Cells, Baculovirus expression 
vector system (BEVS) 

C. Skerka, P.F. Zipfel, 
Jena 

FH recombinant peptide 
SCR domain 1-4 

Insect Cells, BEVS C. Skerka, P.F. Zipfel, 
Jena 

FH recombinant peptide 
SCR domain  1-7 

Insect Cells, BEVS C. Skerka, P.F. Zipfel, 
Jena 

FH recombinant peptide  
SCR domain  8-11 

Insect Cells, BEVS C. Skerka, P.F. Zipfel, 
Jena 

FH recombinant peptide 
SCR domain  11-15 

Insect Cells, BEVS C. Skerka, P.F. Zipfel, 
Jena 

FH recombinant peptide 
SCR domain  15-18 

Insect Cells, BEVS C. Skerka, P.F. Zipfel, 
Jena 

FH recombinant peptide 
SCR domain  15-19 

Insect Cells, BEVS C. Skerka, P.F. Zipfel, 
Jena 

FH recombinant peptide 
SCR domain  8-20 

Insect Cells, BEVS C. Skerka, P.F. Zipfel, 
Jena 

FH recombinant peptide 
SCR domain  19/20 

Insect Cells, BEVS C. Skerka, P.F. Zipfel, 
Jena 

Protein Identification number 

Plasmodial Proteins (PlasmoDB) 

Pf39  PF11_0098  

PfActinII PF14_0124 

PfCCp1  PF14_0723  

PfCCp2  PF14_0532  

PfCCp3  PF14_0067  

PfCCp4  PFI0185w  

PfCCp5  PFA0445w  

PfFNPA  PF14_0491  

PfPeg3  PFL0795c  
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2.1.11 Bioinformatic Sources and Computer Programs  

• Clustal W sequence alignment 

• Mascot MS Ion search 

• OrthoMCL DB 

• ExPASy Proteomics Server 

• The NCBI Structure Group 

• Wellcome Trust Sanger Institute Search 
Pfam 

• SMART / EMBL Heidelberg 

• EMBL-EBI Toolbox 

• NCBI/ BLAST/ blastp suite 

• Adobe® Acrobat x Pro 

• Adobe® Photoshop CS 

• Microsoft® Excel 2010 

• Microsoft® Word 2010 

• Microsoft® Powerpoint 2010 

• ImageJ 1.44p 

 

 

2.2  Methods 

2.2.1 Cell biology 

2.2.1.1 Cultivation and storage of bacteria 

Bacteria were grown in LB with antibiotic pressure, dependent on selection conditions, 

in a shaking incubator at 37°C with 180-220 rpm. Cells were stored temporarily at 4°C, 

on an LB agar plate or in LB for a few days under selective pressure. Bacteria used as 

protein expression systems were not stored. These cells were transformed with 

corresponding plasmids directly before growth to ensure optimal protein expression. 

Long-term storage of bacterial cells was performed by resuspension in 

50 % glycerol/LB at -80°C.  

PfMR5  PFB0400w  

Pfs230  PFB0405w  

Pfs25  PF10_0303  

Pfg377 PFL2405c 

PfGAP50 PFI0880c 

Pfalpha subunit (α-SU) type 5  PF07_0112 

Human Complement Proteins (Uniprot) 

Human Complement Factor C3 
 

P01024 

Human Complement Factor H 
 

P08603 

Human Complement Factor I P05156 
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2.2.1.2 Transformation of competent bacterial cells 

Chemically competent E. coli cells were transformed by heat shock. Cells were slowly 

thawed on ice and about 100 ng of plasmid DNA was added. After incubation for 

30 min on ice, the bacteria were subjected to a heat shock at 42°C in a water bath for 

30 sec. After a 2 min incubation period on ice, 250 μl of SOC medium was added and 

incubated at 37°C for 1 h. The cells were pelleted, resuspended in 50 μl medium, and 

plated on LB agar plates containing an appropriate selective antibiotic. The plates were 

incubated overnight at 37°C.  
 

2.2.1.3 Culture of Plasmodium falciparum 

Cultivation of Plasmodium falciparum 

P. falciparum was cultured at 5 % hematocrit in 25 cm2 or 75 cm2 tissue culture flasks 

in a volume of 5 or 20 ml, respectively (Fig. 2.5). RPMI complete was used as culture 

medium. The parasites were propagated in erythrocytes of blood group A+ in a gas 

environment of 5 % O2, 5 % CO2, and 90 % N2 at 37°C. Culture medium was changed 

daily by gently tilting the flask and aspirating the medium with a glass Pasteur pipette 

(Fig. 2.5). Fresh medium, warmed to 37°C, was added to the final volume. Culture 

flasks were gassed for 20 sec, sealed tightly, and incubated at 37°C. Once a parasitemia 

above 2 % was reached, the culture was passaged. The process involved dilution of 

parasites in the medium to roughly 1 % parasitemia and addition of human A+ 

erythrocytes to a final hematocrit of 5 %. 

 

 

 

 

 

 

 

 

 

 
Figure 2.5:  Malaria parasite culturing. A. Incubator at 37°C for Plasmodium falciparum parasites in 

25 cm2 and 75 cm2 tissue culture flasks. B. Clean bench with hot plate for culture feeding. 

B A 



 __________________________________________________________Materials and Methods 

37 
 

For gametocyte maturation, a culture of asexual NF54 parasites was passaged until 1 % 

parasitemia and cultivated in a 75 cm2 culture flask for about 10-20 days. Stage 

progression was monitored microscopically using Giemsa-stained slides. When uniform 

gametocyte stages were needed synchronous ring-stage parasites were cultured for 

10-20 days in parasite media plus 62.5 mM N-acetyl glucosamine to inhibit merozoite 

invasion and thus asexual replication. 
 

Freezing and thawing of P. falciparum cultures 

Parasitemia of 3-4 % was attained, preferably containing high percentage of ring 

stages, the culture was centrifuged at 1000 x g for 5 min and the supernatant was 

discarded. The pellet was resuspended in 5 volumes of glycerolyte 57 solution and 

stored at -80°C or in liquid nitrogen until further required. To thaw and recultivate P. 

falciparum, a vial with 1 ml infected red blood cells was slowly thawed and transferred 

into a 15 ml falcon. 200 µl of 12 % NaCl solution was slowly added while swirling the 

tube. After a 2 min incubation period at RT, 10 ml 1.6 % NaCl per ml red blood cells 

suspension was added dropwise. The samples were centrifuged at 3000 x g for 5 min at 

room temperature (RT) and the supernatant was discarded. 10 ml of 0.2 % 

Dextrose/0.9 % NaCl solution was added drop by drop and centrifuged again at 

3000 x g for 5 min. The cells were washed once with medium and cultivated as 

described above. The pellet was resuspended in 5 ml RPMI complete medium to 5 % 

hematocrit. 
 

2.2.1.4 Determination of parasitemia and gametocytemia 

Parasitemia 

Parasite parasitemia of asexual cultures was determined every second day by 

preparation of a blood smear. 100 μl of the parasite culture was transferred into a 

1.5 ml tube and centrifuged at 3,400 x g for 1 min. The supernatant was discarded and 

the pellet was resuspended in an equal volume of RPMI complete. A smear of the 

resuspended pellet was prepared on a glass slide (Fig. 2.6). After drying, the cells were 

fixed with methanol and dried again. Subsequently the slide was incubated for 

15-20 min with Giemsa stain solution (1:20 dilution with Giemsa buffer), this followed 

by rinsing the slide with H2Obidest and air-drying. Then the blood smear was analyzed 

with a microscope at 1000 x magnification in oil immersion. The number of infected 

erythrocytes and of uninfected erythrocytes was counted in five fields containing more 

than 100 erythrocytes per field.  
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The mean percentage was calculated using the following formula: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gametocytemia 

The gametocytemia was calculated by counting erythrocytes in a Neubauer 

Hemacytometer (Fig. 2.7). A volume of 10 µl of diluted sample was placed into the 

chamber and the number of parasites in 80 small squares was counted. Then the 

number of cells in one µl was calculated using the formula below: 
 
 

      A      x      B 
    –––––––––––   = Erythrocytes or gametocytes / µl 
      C      x       D   

A = number of cells in 80 small red marked squares 

B = dilution of the cell solution 

C = 80 (number of counted squares) 

D = 0.00025 µl (Volume in one square) 

 

Gametocytemia was calculated using the same formula as for parasitemia; however, 

instead of infected erythrocytes the number of gametocytes counted was substituted. 

With the same approach it was also possible to determine the ratio of erythrocytes to 

gametocytes (used for FH-binding experiments).  

Figure 2.6:  Preparation of a blood smear. A. Illustration of a culture blood smear for determination of 

parasitemia. One drop of culture is distributed over a glass slide with another slide in an 

angle of about 45°. B. Picture of a mixed P. falciparum culture after Giemsa staining 

showing ring, trophozoite and gametocyte stages. 

A B 

                # Infected erythrocytes 
Parasitemia [%] =             x 100 
      # Infected erythrocytes + #Uninfected erythrocytes  
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2.2.1.5 Induction of gametogenesis 

A volume of 100-300 µl mature gametocyte culture was centrifuged at 3,400 x g for 

30 sec. The supernatant was discarded and the cells were gently resuspended with 

20 µl of appropriate gametogenesis inducing medium at RT. 

In vitro gametogenesis induction media:  

• SAX-medium 

• NHS (neutral human serum) 

• HIS (heat inactivated human serum) 
 

The sample was incubated for 15 min, transferred to a glass slide, and gently covered 

with a coverslip. Cells were then observed at 400 x magnification with a light 

microscope and the number of exflagellation centers was counted to determine the 

quality and maturity level of the culture (Fig. 2.8).  

 

 

 

 

 

 

Figure 2.7:  Neubauer counting chamber with cover slip and schematic representation of the counting 

grid. Red = erythrocyte and gametocyte counting areas (https://m3e.meduniwien.ac.at/). 

Figure 2.8:  Image of exflagellation centers. 

The picture was taken using a 

400 x fold magnification with a 

light microscope. Red circles 

indicate exflagellation centers. 

https://m3e.meduniwien.ac.at/mym3e/haem0006/Data/Data_E/Lab/count_manual.htm
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2.2.1.6  Gametogenesis Inhibition Assay (GIA) 

Anti-mouse mAb-FH (131X) was preincubated at a ratio of 1:1 with 10 µl NHS for 

15 min at 37°C. 300 µl of a mature gametocyte culture was taken, centrifuged at 

3,400 x g for 30 sec and the supernatant was discarded. The cell pellet was 

resuspended with the sera-antibody-mixture and 2 µl of XA (1 mM). Formation of 

microgametes was counted after 15 min using a 400 x magnification in a light 

microscope. The number microgametocytes in thirty optical fields were counted in 

triplicate. For the determination of macrogametes, the same culture was taken and 

coated on a slide. Macrogametes were labeled with Pfs25 antibody by IFA (see method 

2.2.1.8) and erythrocytes were counterstained with Evans Blue (Sigma). The confocal 

microscope was then used to observe the amount of macrogametes in thirty optical 

fields in triplicate. The same method was applied after 20 hours. Zygotes were coated 

and counted by the use of IFA with an anti-Pfs28 antibody. HIS serum and PBS were 

used in place of the antibody solution as a negative control. Data was evaluated with a 

Students t-test for equal sample sizes and equal variance. 

 

 

         -   standard deviation 

             X1    -   mean of group one 

             X2    -   mean of group two 

            n     -   sample size 
  

 

2.2.1.7 Gametocyte purification 

Gametocytes were grown until desired stage was obtained and purified using a percoll 

gradient (Kariuki et al., 1998). All centrifugations and incubation steps were carried out 

at 37°C to avoid gametocyte activation. Gametocyte cultures were pelleted at 1800 x g 

for 5 min and washed once with 10 ml RPMI incomplete. The pellet was resuspended 

in 2 ml RPMI incomplete and coated thoroughly on a gradient containing 2 ml percoll 

layers of 80, 65, 50, and 35 %. After 10 min centrifugation at 1,300 x g the second 

interphase (counted from the top) was extracted and washed once with RPMI 

incomplete for gametocyte purification. When gametocytes should be activated after 

purification, the last washing step was performed using RPMI complete. The purity of 

the final pellet was evaluated with a Neubauer Hemacytometer (section 2.2.1.4).   

http://www.ncbi.nlm.nih.gov/pubmed/9790418
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2.2.1.8 Indirect Immunofluorescence Assay (IFA) 

Parasite preparations for immunofluorescence microscopy included sexual stages, such 

as unactivated gametocytes (Gc), activated gametocytes (aGc), gametes (Gm), and 

zygotes of the P. falciparum NF54 isolate, and erythrocytes. Mature gametocytes were 

activated with different media (section 2.2.1.6) according to the experimental design. 

Preparations were air dried on IFA slides and fixed for 10 min in -80°C methanol. 

Blocking of non-specific binding was undertaken by fixation of cells which were 

incubated in 0.5 % BSA and 1 % neutral goat serum in PBS for 30 min each. When 

anti-goat sera were used for first antibody labeling, cells were blocked with 3 % BSA 

without neutral goat serum. Preparations were then incubated for 1.5 h at 37°C with 

an antibody against antigens specific to the suitable life stage in PBS. Binding of 

primary antibody was visualized using fluorescence-conjugated goat anti-mouse or 

goat anti-rabbit (Alexa Fluor 488 or Alexa Fluor 594) antibodies diluted 1:1000 in PBS 

for 1 h at 37°C (Fig. 2.9). For double-labeling experiments, specimens were 

consecutively incubated with the respective first antibody (sexual stage antibody) 

followed by Alexa Fluor 488-conjugated secondary antibody (green), before incubation 

with the respective second antibody followed by Alexa Fluor 594-conjugated 

secondary antibody (red). 0.05 % Evans Blue solution (Sigma) diluted in 1 x PBS was 

added to each well for 20 s as a red blood cell counterstain. Between all steps cells 

were washed twice with PBS. The slides were embedded with antifading medium 

MOWIOL (Citi Flour LTD, London), covered with a coverslip, and hermetically sealed 

with nail polish. Labelled specimens were examined with a Zeiss Axiolab microscope in 

conjunction with an Axiocam camera. Digital images were processed using Adobe 

Photoshop CS software. 

 

 

 

 

 

 

 

 

Figure 2.9:  Indirect Immunoflourescence. The fluorescent second antibody binds the first antibody 

which is specific for the protein of interest.  
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2.2.2 Protein biochemical methods 

2.2.2.1 Expression of recombinant proteins 

E. coli BL21-CodonPlus®-(DE3)-RIL bacteria cells were transformed with a vector 

construct (section 2.2.1.3) and plated onto agar plates containing either 0.1 mg/ml 

kanamycin or ampicillin. The plates were incubated at 37°C overnight. The following 

day single colonies were picked and precultured with LB medium containing 0.1 mg/ml 

of the appropriate antibiotic overnight. The cells were then incubated in an 

Erlenmeyer flask on a shaking platform at 37°C overnight. Cultures were seeded at 1 % 

v/v of preculture with LB/antibiotic the following morning. Cells were grown at 37°C 

until an OD600 of 0.5 was reached to ensure the cells had entered the log phase of 

growth. The induction of protein expression was enabled by the artificial substrate 

IPTG (Isopropyl-β-D-thiogalactoside) at a concentration of 0.75 mM. After 5 h 

induction at RT, cultures were centrifuged at 5,000 x g at 4°C to obtain bacterial 

pellets. These were either stored at -20°C until use or lysed to purify the recombinant 

protein. 

 

2.2.2.2 Purification of recombinant proteins 

During the work with proteins, the samples were kept on ice to avoid loss of stability. 

Samples were kept in aliquots, and successive thawing was avoided in order to 

minimize protein denaturation.  

 

Inclusion Bodies 

A bacterial pellet from 1.5 l culture was resuspended in inclusion body lysis buffer after 

IPTG induction (section 2.2.2.1). 200 mg lysozyme was added and the suspension was 

incubated on ice for 10 min. The sample was sonicated (50 % intensity, 50 % duty 

cycle) on ice for 10 min and the lysate was resuspended in 200 ml detergent buffer 

followed by centrifugation at 5,000 x g for 10 min at 4°C. The pellet was resuspended 

in 250 ml washing buffer and centrifuged at 5,000 x g for 10 min several times, until a 

discrete pellet has formed. The resulting pellet of inclusion bodies was thoroughly 

washed in 250 ml of 70 % ethanol and resuspended in 2-5 ml of sterile PBS. The pellet 

was sonicated until the protein solution was able to pass through a 23 G needle for 

subsequent immunization of mice. Protein concentration was estimated by 

comparison of stained SDS-gels showing a dilution series of BSA proteins of known 

concentration. Inclusion body proteins were stored at -20°C. 
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GST and 6-His-tag purification 

Pellets of E. coli BL21-CodonPlus®-(DE3)-RIL were resuspended in 6-His/GST lysis buffer 

and incubated for 1 h at 4°C on a shaker. Cell lysis was performed using a French Press 

in three stages followed by DNA degradation by pulse sonication for 2 min at 50 % 

intensity and 50 cycles. The resulting sample was centrifuged at 30,000 x g at 4°C. The 

supernatant was collected and filtered with a 0.22 μm syringe filter. Meanwhile, 500 µl 

glutathione-sepharose beads for GST purification or 50 % Ni-resin were washed three 

times with 1 x PBS and added to the supernatant followed by overnight incubation at 

4°C on a rotating mixer. The solution was loaded onto a PolyPrep® column whereby 

unbound proteins passed through the matrix. However, proteins selectively bound to 

GST-sepharose or Ni-resin were retained. The column was washed three times with 

PBS for GST-purification. For 6-His-purification the column was washed two times with 

wash buffer 3 for and one time with wash buffer 5. Finally, the proteins were eluted in 

three or more fractions with 500 µl of the appropriate elution buffer. Fractions were 

stored at -20°C and protein concentration was determined by SDS-PAGE (section 

2.2.2.3 and 2.2.2.4). 
 

MBP-tag purification 

For purification of MBP (maltose binding protein)-tagged recombinant proteins, the 

bacterial cells were grown in LB medium containing antibiotic and 0.1 % sterile 

glucose. The PBS-washed pellet was resuspended in MBP lysis buffer including 

lysozyme and 1 mM PMSF protease inhibitor and incubated on ice for 20 min. MgCl2 

and NaCl were added and the bacteria were incubated on a rotating mixer for 1 h at 

4°C to induce cell lysis. The cell mixture was centrifuged for 30 min at 30,000 x g. 

During the centrifugation step 1 ml of the amylase resin was washed for three times in 

TE buffer with centrifugation at 2,000 x g for 5 min and added to the supernatant of 

the centrifuged cell solution. The mixture was rotated over night at 4°C. The beads 

were washed three times with column buffer and eluted afterwards eight times with 

500 µl elution buffer containing maltose. Protein concentration of fractions were 

analyzed via SDS page and stored at -20°C.   
 

2.2.2.3  SDS polyacrylamide gel electrophoresis (PAGE) 

For the separation of proteins by SDS-PAGE, 8 %, 10 %, 12 % or 15 % polyacrylamide 

gels were prepared. The composition of stacking and resolving gels are given below. 

Samples were prepared  in  2 x protein  loading  buffer, heated  for 5 min  at  95°C and 
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Table 2.6: Composition of different SDS-Gels  

 Resolving Gel Stacking Gel 

8 % 10 % 12 % 15 % 5 % 

H2Obidest   2.3 ml 1.9 ml 1.6 ml 1.1 ml 2.4 ml 

30 % Acrylamide 1.3 ml 1.7 ml 2.0 ml 2.5 ml 0.6 ml 

1.5 M Tris pH 8.8 1.3 ml 1.3 ml 1.3 ml 1.3 ml - 

0.5 M Tris pH 6.8 - - - - 1.0 ml 

10 % SDS 50 µl 50 µl 50 µl 50 µl 12 µl 

10 % APS 50 µl 50 µl 50 µl 50 µl 12 µl 

TEMED 3 µl 2 µl 2 µl 2 µl 4 µl 

 

cooled down for 2 min on ice. The proteins were separated in 1 x SDS-PAGE running 

buffer for approximately 20 min at 60 V until the dye front had passed through the 

stacking gel and entered the resolving gel. The voltage was then switched to 120 V. 

Estimation of protein sizes was done by comparison to the size standards given in 

section 2.1.8. The gel was then either used for Western blotting (section 2.2.2.5) or 

stained (section 2.2.2.4).  

 

2.2.2.4  SDS gel staining, measurement of the protein concentration and conservation 

After SDS-PAGE gels were washed three times for 5 min with distilled water and 

stained for a minimum of one hour with GelCode®-Blue-Stain (PIERCE, Thermo Fisher, 

Rockford, USA) on a rocker. Once the desired staining was achieved, the gel was 

washed with water for about 2 h. For silver staining the SilverSNAP Stain Kit for Mass 

Spectrometry (PIERCE, Thermo Fisher, Rockford, USA) was used and performed 

according to the manufacturers protocol. The approximate protein concentrations 

were estimated by comparing band intensity with protein bands of known BSA 

concentration. For long term gel preservation, the gel was incubated with a solution of 

10 % glycerol and 20 % ethanol for about 30 min and then dried between two 

cellophane sheets in a gel drying frame for one day at RT. 
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2.2.2.5 Western blot analysis 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proteins were separated by SDS-PAGE and transferred to Hybond ECL nitrocellulose 

membrane (Amersham Biosciences, München) using the Mini-Trans-Blot-Apparatus 

from Bio-Rad according to the manufacturers’ instructions using transfer buffer (Fig. 

2.14). The transfer was performed for 2 h at 25 V or overnight at 15 V. In some cases 

efficient protein transfer was controlled by staining the nitrocellulose membrane with 

Ponceau S solution for 1 min at RT and extensive rinsing with H2Obidest. The membranes 

were then incubated in 1 x TBS to wash off excess staining solution. Blocking of free 

protein binding sites was performed with 0.5 % BSA/5 % milk in TBS for 1 h min at RT 

Figure 2.14:  Western blot analysis.  A. Construction of a Western blot apparatus: The cassette holds 

the gel and membrane between buffer-saturated filter paper and fiber pads. The cassette 

is inserted vertically in the transfer buffer-filled tank between the positive and negative 

electrodes. B. Illustration of protein detection on a nitrocellulose membrane. (modified 

from http://www.leinco.com/). 

A 

B 

http://www.leinco.com/general_wb
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on a rocker. Primary antibodies were diluted in 3 % TBS/milk and incubated for 2 h at 

RT or overnight at 4°C on a rocker. After washing for 10 min at RT, one time with 3 % 

TBS/milk, twice with 3 % TBS/milk/0.1 %Tween and once again with 3 % TBS/milk, the 

membranes were incubated with the corresponding alkaline phosphatase-conjugated 

secondary antibody in 3 % TBS/milk for 1 h at RT. To remove unbound antibody, 

further washes were performed with TBS and TBS/0.1 % Tween followed by addition of 

equilibration buffer for 3 min. Nitrocellulose membrane was developed in a solution of 

nitroblue tetrazolium chloride (NBT) and 4-chlor-3-indoxylphosphate (BCIP)  for 1-10 

min and the reaction was stopped with stop buffer. 

 

2.2.2.6 Interaction studies 

Affinity co-elution binding assay 

Bead-bound GST-fusion proteins (section 2.2.2.2/GST-tag purification) were 

transferred to a PolyPrep® column and washed two times with 10 ml PBS. Afterwards 

the prey-6-His protein sample was prepared similarly to the procedure described in 

section 2.2.2.2/6-His-tag purification, but without the addition of the Ni-resin, and was 

applied to the column. The column was washed three to four times with PBS to 

remove unbound proteins. Bound proteins were eluted three times from the column 

with 500 µl GST elution buffer. Finally, the obtained sample was analyzed by Western 

blotting for the presence of both, bait and prey fusion proteins (Fig. 2.11).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11:  Affinity co-elution binding column. Glutathione sepharose bound 

GST fusion proteins were transferred to a column. After washing the 

6-His-proteins were added. The protein samples were eluted from 

the column and analyzed via Western blot. 
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Co-immunoprecipitation (Co-IP) 

Parasite pellets, obtained from wild-type NF54 strain were resuspended in 200 μl PBS-

Mix or PBS-Mix/NP40 and sonicated with 50 % amplitude and 50 cycles followed by 

centrifugation at 13,000 x g and 4°C for 1 min. The supernatant was prepurified by 

consecutive incubation with 5 % v/v preimmune mouse sera and 20 μl of protein G-

beads (Santa Cruz Biotechnology, Heidelberg) for 30 min each at 4°C. After 

centrifugation at 3,500 x g for 5 min, the supernatant was incubated for 1 h at 4°C with 

the respective bait antibody. A volume of 20 μl of protein G-beads was added and 

incubated for another hour or overnight at 4°C. The beads were centrifuged at 

3,500 x g, washed five times with 1 ml cooled PBS, and mixed with an equal volume of 

loading buffer and loaded onto a SDS gel. Precipitated proteins were identified via 

Western blot analysis or silver staining and subsequent protein bands identification by 

mass spectrometry.  

 

 

 

 

 

 

 

2.2.2.7 Immunization of mice and generation of antibodies 

Specific immune sera were generated by the immunization of six week old female 

NMRI mice. Before immunization the purified proteins were transferred, using 

Millipore Amicon filters, in sterile PBS / 5 % Glycerin. 100 μg of recombinant proteins, 

GST, 6-His, MBP tagged or inclusion bodies, were dissolved in 200 µl sterile PBS and 

emulsified in 200 µl Freund's incomplete adjuvant. The boost followed after four 

weeks with 50 µg of inclusion bodies or 100 µg of the purified recombinant protein 

and Freud’s adjuvant. Ten days later mice were anesthetized by intraperitoneal 

injection with a mixture of ketamine and xylazine according to the manufacturer´s 

protocol (Sigma-Aldrich), and immune sera were collected via heart puncture. Sera 

from non-immunized mice served as a control for antibody reagent studies.  

 

 

Figure 2.12: Co-immunoprecipitation works by selecting an antibody (Ab) that targets a known 

protein (bait). This pulls the entire protein complex (prey) out of solution and thereby it 

is possible to identify members of the complex. 
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2.2.2.8  Preparation and handling of human serum 

Blood samples were drawn using standard phlebotomy techniques from healthy 

donors that never had contact with malarial parasites before. The blood was left to 

coagulate for 15-20 min and was centrifuged for 10 min at 3.000 x g. The sera were 

removed, aliquoted, and frozen at -80°C. Frozen specimens were thawed rapidly at 

37°C and transferred immediately to ice to prevent complement activation. Samples 

were kept on ice for no longer than two hours. Specimens were not thawed at RT or on 

ice as this can lead to C3 activation and affect results. Only one freeze/thaw cycle may 

be performed without affecting the samples. For complement activation assays the 

sera were not frozen and stored at 4°C for no longer than 10 days to avoid minor 

complement activation (Mollnes et al., 1988) otherwise they were used immediately 

after blood withdrawal. For complement inactivation the sera was vacuum filtered and 

heat inactivated for 50 min in water bath at 55°C and stored at -20°C.  

 

2.2.2.9  Determination of complement activity 

To survey the activity of the complement system in the mosquito midgut from the 

uptake of the blood until 20 hours later the C3a Plus EIA Microvue Kit (Quidel, San 

Diego, USA) was used. It represents an enzyme immunoassay for the quantitation of 

the C3a fragment of the complement protein C3 in human sera and provides 

information on the activity of the innate complement system. 

For this assay a mosquito feed was performed using fresh human serum (see method 

2.2.2.8) and fresh erythrocytes. The erythrocytes were mixed with human serum to a 

ratio of 1:1 and fed immediately to the mosquitoes (2.2.3.2). The mosquito midguts 

were dissected at different time points to investigate complement activation during a 

time of 20 h (2.2.3.3). Two midguts were dissected at different time points in triplicate, 

and frozen in 10 µl PBS at -80°C immediately. For the measurement the midguts were 

resuspended with PBS, solid cellular constituents were centrifuged down, and 1 µl of 

the supernatant, including the soluble C3a, was mixed with 99 µl Specimen Dilutent 

Buffer. To evaluate that 1 µl is the optimal volume to obtain sustainable ELISA values 

between 0 and 3 (extinction 450 nm) different volumina of midgut mixtures were 

tested previously. In other words 1 µl complies 0.2 midguts and was the optimal 

amount of midgut serum contents to evaluate the complement activity in the 

mosquito midgut using the C3a Plus Kit. All following steps were performed according 

to the manufacturer´s protocol. 

http://www.ncbi.nlm.nih.gov/pubmed/2463123


 __________________________________________________________Materials and Methods 

49 
 

2.2.2.10  Co-Factor Activity Assay 

Cofactor activity of FH on microbial cell surfaces was measured by the FI-mediated 

conversion of C3b to iC3b. Cells were incubated with an excess of purified FH for 

30 min at RT. After washing, bound complement regulators were incubated with a 

molar excess of purified C3b (Calbiochem) and purified FI (Sigma) for 30 min at RT. 

After a last washing step iC3b generation was quantified via Western blot analyses of 

the treated samples using a polyclonal anti-goat C3 antibody.  

 

2.2.2.11 Cell treatment for investigation of cell binding complement factors 

Malaria parasites were cultured in RPMI complete medium containing 10 % HIS. To 

take off cell culture bound complement factors cells were washed twice with PBS at 

37°C (1 min 3,400 x g). Then they were treated according to the type of experiment 

and washed once again with PBS. For Gc all following steps were carried out at 37°C. 

After induction of gametogenesis aGc were treated at RT. Erythrocytes were lysed with 

1 ml 0.02 % Saponin/RPMI incomplete for 5 min at RT, centrifuged at 3,400 x g for 

2 min and the remaining parasites were washed once again with PBS (3,400 x g 2 min). 

 

2.2.3 Mosquito rearing and feeding techniques 

2.2.3.1 Rearing of Anopheles stephensi mosquitoes 

Each stock colony of A. stephensi mosquitoes was kept in a gauze-covered, wire-

framed cage at 28°C and 80 % relative humidity. Adult female mosquitoes were fed 

once a week on uninfected rodent blood for 20 min with an anesthetized mouse. Eggs 

were laid by blood-fed female mosquitoes two to three days after a blood meal in 

small bowl filled with 1 ‰ NaCl water. The eggs were transferred into a vat with 

1 ‰ NaCl water (Fig. 2.13). The eggs began to hatch over two days. The larvae pupated 

after six to eight days and adults emerged between days nine and eleven. Floating dry 

cat food was used as nutrition for larvae and replaced every day. Pupae were collected 

daily and placed in a small bowl with water in a cage. Adult mosquitoes emerged two 

to three days post pupation. A cotton wool pad soaked with 5 % glucose (Sigma) and 

0.05 % p-aminobenzoic acid (PABA; Sigma) was placed on the cage within reach of 

mosquitoes and was replaced daily. 

 



 __________________________________________________________Materials and Methods 

50 
 

 

 

 

 

 

 

 

 

2.2.3.2  Ex vivo feeding of mosquitoes  

Mosquitoes to be used for Transmission Blocking Assays (TBA) were fed with a solution 

of 5 % glucose, 0.05 % PABA and 0.04 mg/ml gentamycin. On the day before the feed a 

mosquito container was prepared (500 ml Häagen-Dazs-cup) and 20-60 of four to six 

day-old virgin female mosquitoes were placed into the tub with the aid of a pooter 

(aspiration gun). A warm bottle was used to attract female mosquitoes to the front of 

the cage for collection with the pooter. Up to 20 mosquitoes were caught in the pooter 

during the transfer procedure. One day prior to feeding the cotton wool pad was 

removed to force maximum starvation. A Parafilm® M was placed on the blood feeder 

and the whole system was warmed up (Fig. 2.14). The following procedures were 

performed entirely at 37°C and as rapid as safe handling would permit. Good  
 

Table 2.7: Ingredients of different mosquito feeds, incubated at 37°C prior to the feed.  

 purified 
gametocytes 

fresh A+ 
erythrocytes 

A+ serum anti-FH or PBS 

Feed with parasites 1 vol. 1 vol. 2 vol. - 
Feed without parasites - 1 vol. 1 vol. - 

Transmission Blocking 

 

1 vol. 1 vol. 1 vol. 1 vol. 

 

 microbiological practice was observed in order to minimize the possibility of 

gametocytes committing to activation before the blood meal was taken up by the 

mosquito. The feeding-mix was transferred into the glass-feeder and placed within 

reachable distance for the mosquitos in the tub (Fig. 2.14). The light was turned off for 

20 min, and the insectary was left to avoid disturbing the feeding mosquitoes. Then 

the mosquitoes were sealed safely in the S3**-Insectary. Subsequent to a blood feed, 

the mosquitoes were put on a 5 % glucose (without PABA) diet.  

Figure 2.13: Rearing of mosquitoes. Adult mosquitoes were kept in cages. The eggs were transferred 

into plastic baskets were they grow to larvae until pupae stages. Then eclosion of pupae 

occurs in the cages. 
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2.2.3.3 Dissection of mosquito midguts 

Blood fed mosquito midguts were dissected at different time points, from 5 min until 

24 hours or 8 days after the feed, in case of oocyst counting in TBAs. The mosquitoes 

were removed from the tub via the pooter and cooled on ice for 3 min. The paralyzed 

mosquitoes were kept on ice in a closed petri dish to avoid escape. Individual 

mosquitoes were removed and mounted on glass microscope slides onto a drop of 

PBS. The mosquito midgut was dissected under a binocular light microscope using a 

40 × objective (total magnification 400 ×). Midguts were extricated by holding the 

anterior of the abdomen with tweezers whilst at the same time a second pair of 

tweezers were used to gently pull on the apex of the abdomen until the gut and 

malpighian tubule were exposed (Fig. 2.15). Then the midgut was placed in PBS on ice 

and immediately stored at -80°C, in order to avoid further complement or enzyme 

activation. For TBAs berried mosquitos were dissected and the midgut oocysts were 

stained with 0.2 % mercurochrome/PBS for 10 min. Oocysts were counted at 400 x fold 

magnification. 

 

 

 

 

 

Figure 2.14:  System of a mosquito membrane feed. Adult female mosquitoes were transferred in 

cups and fed with the bloodmeal. A circulation water bath connects the glass feeders 

with rubber tubing in a series. 

Figure 2.15:  Dissection of mosquito midguts. Paralyzed blood-fed female mosquitoes were 

transferred on a glass slide and the midgut was extricated (photo by Matthias 

Scheuermeyer). 
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3  Results 

3.1 Sexual stage proteins of the malaria parasite  

3.1.1 Orthologs and adhesion domains of PfCCp proteins  

Orthologs of the CCp proteins 

After the completion of the Plasmodium falciparum genome sequences in 2002 

(Gardner et al., 2002) the genome was screened for proteins with extracellular 

adhesive domains. A new protein family suggesting involvement in parasite-parasite or 

parasite-host interactions called PfCCp multi-domain adhesion proteins was discovered 

(Pradel et al., 2004; section 1.5). Orthologs of several PfCCp proteins were identified in 

different apicomplexan parasites. Within the last years the range of development of 

techniques in the field of bioinformatics have increased and re-annotation of PfCCp 

protein sequences were performed in this work. The investigations were carried out by 

bioinformatical screenings using the OrthoMCL database and the NCBI Structure 

Group. Up until now orthologs of all CCp proteins were found within the genus 

Plasmodium, in P. falciparum, P. vivax, P. yoelii, P. knowlesi, P. chabaudi and 

P. berghei, thus in all so far sequenced Plasmodium species. This genome survey study 

revealed that all CCp proteins, except of CCp4, were highly conserved throughout the 

apicomplexan clade, including Toxoplasma gondii, Cryptosporidium muris, C. hominis, 

C. parvum, Theileria annulata, Th. parva, Babesia bovis, B. divergens and Neospora 

caninum (Tab. 3.1). The number of identified orthologous CCp proteins increased with 

the rise of sequenced apicomplexan genomes during the last decade. For CCp1, CCp2 

and CCp3 orthologous protein sequences were firstly discovered in Toxoplasma gondii, 

Cryptosporidium muris, C. hominis, C. parvum, Theileria annulata and Th. parva and for 

FNPA only in C. parvum (Pradel et al., 2004; Templeton et al., 2004). Orthologs of CCp 

proteins in Babesia bovis, B. divergens (Becker et al., 2010) and Neospora caninum 

were found after genome sequence decoding of the respective parasites (Tab. 3.1). 

The occurrence of CCp5 and FNPA in Cryptosporidium hominis, C. parvum, C. muris, 

Theileria annulata, Th. parva, Babesia bovis and Neospora caninum was also proven in 

this study. An outstanding CCp protein, without orthologs in other species, is CCp4. It 

can only be found in Plasmodium (Tab. 3.1). 

http://www.ncbi.nlm.nih.gov/pubmed/12368864
http://www.ncbi.nlm.nih.gov/pubmed/15184503
http://www.ncbi.nlm.nih.gov/pubmed/15184503
http://www.ncbi.nlm.nih.gov/pubmed/15342554
http://www.ncbi.nlm.nih.gov/pubmed/20603159
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Table 3.1:  Orthologs of CCp proteins in genera except Plasmodium (e-value < 10-10, Query coverage 

> 30 %), the species were listed according to its date of identification as a CCp ortholog. 

*(Pradel et al., 2004; Templeton et al., 2004); **(Becker et al., 2010) 

CCp protein Discovery Date Species 

CCp1 2004 by Pradel/Templeton* 
 
 
 

January 2010 by Becker** 
 

June 2011 

Toxoplasma gondii  
Cryptosporidium muris, C. hominis, C. parvum 
Theileria annulata, Th. parva 
 

Babesia bovis, B. divergens 
 

Neospora caninum   

CCp2 2004 by Pradel/Templeton* 
 
 
 

January 2010 by Becker** 
 

June 2011 

Toxoplasma gondii 
Cryptosporidium muris C. hominis, C. parvum 
Theileria annulata, Theileria parva 
 

Babesia bovis 
 

Neospora caninum   

CCp3 2004 by Pradel/Templeton* 
 
 
 

January 2010 by Becker** 
 

June 2011 

Toxoplasma gondii 
Cryptosporidium muris, C. parvum, C. hominis 
Theileria annulata 
 

Babesia bovis 
 

Neospora caninum 
Mus musculus 

CCp4  - 

CCp5 2004 by Pradel/Templeton* 
 

January 2010 
 

June 2011 

- 
 

Toxoplasma gondii 
 

Cryptosporidium hominis, C. parvum, C. muris 
Theileria annulata, Th. parva 
Babesia bovis  
Neospora caninum  

FNPA 2004 by Pradel/Templeton* 
 

January 2010 
 

June 2011 

Cryptosporidium parvum 
 

- 
 

Toxoplasma gondii  
Cryptosporidium muris, C. parvum, C. hominis 
Theileria parva, Th. annulata 
Babesia bovis 
Neospora caninum  

 

http://www.ncbi.nlm.nih.gov/pubmed/15184503
http://www.ncbi.nlm.nih.gov/pubmed/15342554
http://www.ncbi.nlm.nih.gov/pubmed/20603159
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3.1.2 Modules of the PfCCp proteins  

Technological progress was also made in identifying domains in proteins using 

bioinformatic screenings. Re-annotation of PfCCp protein sequences revealed several 

additional adhesion domains. One Discoidin domain at the C-terminus of PfCCp1 and 

PfCCp2, a Ricin and an Anthrax Domain at the C-terminus of PfCCp4 and one additional 

Discoidin domain in PfCCp5, which is located between the Anthrax PA N-terminal 

domain and the LCCL domain, were discovered. All newly identified domains were 

surrounded by a dotted border (Fig. 3.1). For this study the results of five different 

databases were compared: ExPASy Proteomics Server, the NCBI Structure Group, 

Wellcome Trust Sanger Institute Search Pfam, SMART from EMBL Heidelberg, and 

EMBL-EBI Toolbox. 

 

 

 

 

 

 

 

 

 

 

 

3.1.3 Molecular interactions between sexual stage proteins of Plasmodium 

falciparum 

Recent studies revealed that the six PfCCp proteins were expressed in a co-dependent 

manner and that the absence of one protein results in complete or partial loss of all 

other protein family members (Pradel et al., 2006; Simon et al., 2009). This led to the 

assumption that these proteins may interact and form a multi-protein complex (MPC) 

in the PV of the parasite. Potential interactions between selections of sexual stage 

proteins were discovered in the following studies. 

Figure 3.1:  Schematic of the domain structure of PfCCp proteins. The overview depicts the six 

members of the PfCCp multi-domain adhesion protein family. Encircled black-dotted 

domains indicate newly identified motifs. 

http://www.ncbi.nlm.nih.gov/pubmed/16388802
http://www.ncbi.nlm.nih.gov/pubmed/19304662
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3.1.3.1  Co-immunoprecipitation studies in gametocytes and activated gametocytes 

In order to prove, if protein-protein interactions take place between sexual stage 

proteins in the PV and on the surface of newly emerged macrogametes, an extensive 

set of experiments was designed. 14 sexual stage-specific proteins were included into 

the study, namely PfCCp1 to PfCCp5, PfFNPA, Pfs230, Pfs48/45, Pfs25, Pfs16, PfPEG3, 

PfMR5, and Pfg377. Pf39 was used as control protein. Pf39 encodes a protein localized 

to the endoplasmic reticulum (Templeton et al., 1997). The investigations were 

performed as Co-IP assays (section 2.2.2.6.) using gametocyte (Gc) or activated 

gametocyte (aGc) lysate.  

The precipitation studies revealed numerous protein-protein interactions between the 

distinct PfCCp proteins and of selected PfCCp proteins with Pfs230 and Pfs25. 

Prominent protein bands for PfCCp1, PfCCp2, PfCCp3, PfCCp5, PfFNPA and Pfs230 were 

detected by Western blot analysis of gametocyte lysates or activated gametocyte 

lysate, when these were individually precipitated with antibodies directed against one 

of these proteins (Fig. 3.2). In detail, PfCCp1, PfCCp2, PfCCp3, and PfFNPA showed 

binding to Pfs230 in lysates of activated gametocytes. By comparison PfCCp4 bound to 

Pfs230 in lysates of non-activated gametocytes and activated gametocytes. The 

detection of PfCCp4 binding to PfCCp1, PfCCp2, PfCCp3, PfFNPA and Pfs48/45 was 

shown by Sabrina Scholz (Scholz, 2007). The interactions between PfFNPA and PfCCp1, 

PfCCp2, PfCCp3, and PfCCp5 were demonstrated by Marie-Adrienne Dude using 

PfFNPA as bait (Dude, 2010). Additional interactions of Pfs25 with PfCCp1, PfCCp2 and 

PfCCp3 were detected in activated gametocyte lysate using Pfs25 as bait. Single 

Western blots including controls of Pfg377 and PfPeg3 were done by Andrea Kuehn 

(Kuehn, 2007). The plus (+) and minus (-) below the distinct Western blot analysis 

signify positive or negative protein-protein interaction. In the case of a double-plus 

(++), a very strong interaction was detected, like it was the case for all interactions 

within the PfCCp family and between Pfs230 and PfCCp4. The precipitated proteins 

migrated at the expected molecular masses of 185 kDa (PfCCp1 and PfCCp2), 150 kDa 

(PfCCp3), 125 kDa (PfCCp5), 100 kDa (PfFNPA). A double band for Pfs230 at 300 kDa 

and 360 kDa was detected in activated gametocyte lysates. In the case of non-

activated gametocyte lysates Pfs230 appeared as a single band at 360 kDa. For PfCCp4 

the full-length band at 178 kDa was not verifiable, instead a strong band at about 

75 kDa displayed PfCCp4. All further proteins included in this study, like Pfs16 (16 kDa), 

PfPeg3 (25 kDa) and PfMR5 (290 kDa) revealed no binding to any of the other proteins. 

http://www.ncbi.nlm.nih.gov/pubmed/9497061
http://opus.bibliothek.uni-wuerzburg.de/volltexte/2008/2691/pdf/Sabrina_M_Scholz_Dissertation.pdf
http://opus.bibliothek.uni-wuerzburg.de/volltexte/2010/4586/pdf/DudeDiss.pdf
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The anti-rat PfPeg3 antibody detected the protein at the molecular weights of about 

18 and 20 kDa. No protein bands of sexual stage proteins, included in this study, were 

detectable when lysates were precipitated with antibodies against Pf39 (39 kDa) or 

vice versa. All experiments were repeated two to three times including the control 

approach with Pf39. The heavy chain of the precipitating antibody was detected at 

55 kDa and the light chain at 30 kDa. A schematic depicting the identified protein-

protein interactions is shown in Figure 3.2.  
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All members of the PfCCp protein family were identified to be part of one protein 

complex. In addition Pfs230 and Pfs25 were part of this MPC in aGc. This protein 

assembly is connected with the parasite’s plasma membrane by Pfs230 and its 

membrane-bound binding partner Pfs48/45. Furthermore PfCCp1 through PfCCp3 

revealed binding with the membrane associated Pfs25 protein. Therefore the complex 

is once more connected to the parasites plasma membrane. No binding properties 

were attributed to the proteins Pfs16, PfPEG3, PfMR5 and Pfg377 in this study (Fig. 

3.2). 

Figure 3.2:  Interaction studies of sexual stage specific proteins. Western blot analysis of performed 

Co-IPs sorted by bait proteins (indicated above the horizontal line). The detection of 

potential prey proteins reflected the Western blot below. Interacting protein pairs were 

marked with a plus (+), positive controls and strong interactions with double plus (++), and 

negative controls and not interacting proteins with a minus sign (-). All Co-IPs were 

performed with gametocyte lysate (Gc) or activated gametocyte lysates (aGc), which is 

indicated after the prey protein. Interactions were determined using mouse antibodies 

against PfCCp1, PfCCp2, PfCCp3, PfCCp4, PfCCp5, PfFNPA, Pfs16, Pfs48/45, PfMR5, Pfs230, 

PfMR5 and Pf39. PfPeg3 and Pfg377 antibodies were derived from rats and kindly provided 

by Pietro Alano (Rome, Italy). Pfs25 antibodies were generated in rabbits. Protein bands 

migrate at molecular masses of 185 kDa (PfCCp1, PfCCp2), 143 kDa (PfCCp3), 75 kDa 

(PfCCp4), 125 kDa (PfCCp5), 100 kDa (PfFNPA), and double band at 360 kDa and 300 kDa 

(Pfs230) in activated gametocyte lysate, and a single band at 360 kDa for Pfs230 in 

gametocytes, 290  kDa (PfMR5), 16 kDa (Pfs16), 24 kDa (Pfs25) and a double band at 18 kDa 

and 20 kDa (PfPeg3). Mouse antibodies against PfCCp4 detected a 75 kDa band instead of the 

full-length protein. Decisive protein bands were indicated with arrows. Antibodies directed 

against the endoplasmic reticulum-specific protein Pf39 (39 kDa) were used as negative 

control and revealed no binding in all cases. Protein bands at 55 kDa for the heavy chain and 

30 kDa for the light chain of the antibody were depicted. All PfCCp proteins bind strongly to 

other PfCCps. Pfs25 interacts with PfCCp1, PfCCp2, and PfCCp3 after activation of 

gametocytes. Equally Pfs230 binds to PfCCp1, PfCCp2, PfCCp3, and PfFNPA only in activated 

gametocytes. PfCCp4 interacts with Pfs230 in gametocytes and activated gametocytes. The 

proteins Pfs16, PfPeg3, PfMR5, and Pfg377 did not interact with any proteins used in this 

study. 



_____________________________________________________________________    Results 

59 
 

3.1.3.2  Co-elution binding assays with recombinant PfCCp proteins 

To investigate the molecular interactions between the PfCCp proteins in more detail, 

affinity chromatography co-elution binding assays were performed (section 2.2.2.6). 

Recombinant proteins corresponding to distinct adhesion domains were expressed for 

each of the six PfCCp proteins. Recombinant PfCCp3 adhesion domains, fused to a 

GST-tag, were immobilized to glutathione sepharose and used as main baits. Other 

recombinant PfCCp adhesion domains, fused to a 6-His/SUMO tag, functioned as preys 

and were incubated with the sepharose-bound PfCCp3 domains. Bound proteins were 

eluted after several washing steps. The eluted protein complexes were screened by 

Western blot analyses, in which the GST-tagged and 6-His/SUMO tagged proteins were 

detected via antibodies directed against the respective tags (see Fig. 3.3 for summary). 

Western blot assay representative of a positive interaction between the recombinant 

proteins PfCCp3rp3-GST and PfCCp1rp2-His6/SUMO gave an example for a co-elution 

binding assay between two proteins (PfCCp3rp4-GST and PfCCp2rp3-6-His/SUMO), 

which did not interact (Fig. 3.3 B). During each interaction experiment, a sample of the 

last washing step was investigated for the presence of prey or bait proteins and shown 

to be negative. In some cases, lower molecular mass protein bands of GST fusion 

proteins were detected in addition to the expected full size molecular mass 

recombinant protein. These protein bands are likely due to contamination of the 

recombinant protein with truncated recombinant products. In a set of negative 

controls, GST-tag alone was immobilized to sepharose, and the 6-His/SUMO tag alone 

was used as prey. In another negative control, GST-tagged Pf39 protein (termed 

Pf39rp1) was immobilized to sepharose and the PfCCp1rp1-6-His/SUMO protein was 

used as prey. In both control experiments, no interactions were detectable. In total, 

interactions between 33 combinations of recombinant PfCCp proteins were 

investigated. Of these pairs, 18 showed adhesive interaction, whereas 15 recombinant 

protein pairs did not interact in affinity chromatography co-elution binding assays (Fig. 

3.3 A).  

In an additional study binding events of distinct domains were analyzed. The number 

of binding events between domains of interacting proteins was compared with the 

counted number of domains which are part of recombinant proteins which did not 

interact (Tab. 3.2). Adhesion domains, which were predominantly involved in protein 

binding,   comprise   the   Ricin,  Nec,  and   SR   domain  (Fig. 3.4).   Prominent  was  the  
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Figure 3.3: PfCCp protein interactions through direct binding between distinct adhesion domains.  

A. Schematic overview of 33 implemented affinity chromatography co-elution binding 

assays. Tested recombinant proteins were indicated with lines below and above domains. 

Protein interaction (solid lines); no protein interaction (dotted lines). B. Examples of affinity 

chromatography co-elution binding assays using recombinant PfCCp proteins. Western blot 

analyses of eluted proteins, using anti-GST and anti-6-His antibodies, revealed an 

interaction between the two recombinant proteins PfCCp3rp3-GST and PfCCp1rp2-6-His 

and also showed a co-elution assay with two proteins (PfCCp3rp4-GST and PfCCp2rp3-

6-His/SUMO) which did not interact. As negative control, sepharose-bound GST-tagged 

Pf39 protein (termed Pf39rp1) did not interact with PfCCp1rp1-6-His protein. In another 

negative control, column-bound GST-tag alone did not interact with 6-His/SUMO tag alone. 

The arrows either indicate the eluted recombinant protein or the approximate migration 

position expected for the eluted protein. 

A 

B 
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appearance of the SR domain in 22 interacting recombinant proteins and only four 

SR domain-containing proteins did not interact with other proteins (Tab. 3.2). Peptides 

comprising the LH2 or Levanase domains, predominantly showed a minor involvement 

in protein-protein-binding (Tab. 3.2/Fig. 3.4).  
 

Table 3.2:  Domains involved and not involved in interactions and the resulting difference; values < 1: not 
interacting domains dominate; values > 1: interacting domains dominate. 

Domain Interaction no Interaction Ratio 

Discoidin 10 5 2 

Ricin 8 2 4 

Nec 10 3 3,33 

LCCL 28 23 1,22 

Levanase 2 6 0,33 

ApicA 6 4 1,5 

LH2 2 10 0,2 

SR 22 4 5,5 

Pentraxin 3 3 1 

FN2 2 1 2 

Anthrax 3 3 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4:  Binding affinity of different adhesion modules / Diagram of Table 3.2. The ratio of 

counted interactions and domains which are not involved in binding events was calculated. 

The Ricin, Nec, and SR domain (arrows) revealed highest ratios and thereby the most 

appropriate probability of all PfCCp domains to be involved in binding events.   
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3.1.3.3  Interaction studies of endogenous proteins with recombinant proteins 

Additionally the ability of recombinant PfCCp domains to bind endogenous PfCCp was 

examined. In a first set of experiments, the capability of the recombinant PfCCp3rp3 to 

bind to the endogenous MPCs was examined. The protein complex, which was 

precipitated from gametocyte lysate via Co-IP using anti-PfCCp1 antibodies, was used 

as bait and incubated with purified recombinant PfCCp3rp3-GST protein. A prominent 

PfCCp3rp3 protein band was detected by Western blot analysis using anti-GST 

antibodies (Fig. 3.5 A). The MPC of gametocyte lysate was incubated with recombinant 

GST proteins alone and no interactions between the tag and the endogenous proteins 

was revealed (see arrow Fig. 3.5 A).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Binding of endogenous PfCCp protein to recombinant protein A. Double Co-IP assay on 

recombinant PfCCp protein: The PfCCp MPC was firstly precipitated from gametocyte lysate 

by anti-PfCCp1 antibodies and then used for co-precipitation of PfCCp3rp3 protein. Western 

blot analyses showed presence of endogenous PfCCp1 protein complex (left lane). Blotting 

with antibodies directed against the GST-tag revealed that the PfCCp1 complex had bound 

to PfCCp3rp3 (center lane). No interaction was detected when the MPC was incubated with 

GST alone (26 kDa, right lane). The arrows indicate the expected migration position of 

protein. B. Affinity chromatography co-elution binding assay on endogenous PfCCp protein. 

Western blot analysis indicate binding of endogenous PfCCp1 of gametocyte lysate (GC) to 

the column-bound PfCCp3rp3-GST (79 kDa; left lane), as detected with anti-PfCCp1 

antibodies. The protein band for the co-eluted PfCCp1 migrates with the same molecular 

mass as PfCCp1 in gametocyte lysate (center lane). Additional protein bands that are visible 

in lane 1 likely represent bacterial proteins of the PfCCp3rp3-expressing bacterial strain, 

because the anti-PfCCp1 serum would be expected to recognize contaminant bacterial 

proteins that were carried through the immunization regimen. Similar protein bands were 

visualized by the anti-PfCCp1 serum, when the bacterially expressed PfCCp3rp3 was loaded 

to the gel directly (right lane). 

 

B A 
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In a vice versa approach affinity chromatography co-elution binding assays were 

performed using GST-tagged PfCCp3rp3 as bait protein which was incubated with 

gametocyte lysate. Western blot analysis on co-eluted samples using anti-PfCCp1 sera 

revealed binding between recombinant PfCCp3rp3 and endogenous PfCCp1 

(Fig. 3.5 B). These results confirmed that recombinant PfCCp proteins, developed in 

E. coli, possessed the correct folding to bind to endogenous PfCCp proteins. 

 

3.1.3.4  Identification of a further interaction partner of PfCCp proteins 

In the preceding studies a MPC in the PV of malaria parasite sexual stages was 

identified. To figure out potential new interaction partners of this MPC Co-IPs were 

performed using PfCCp1 as bait in gametocyte lysate, activated gametocyte lysate, and 

erythrocyte lysate as a control approach. By silver staining and a following Mass 

Spectrometry analysis (kindly performed by Stefan Baumeister, Philipps-University 

Marburg) of a prominent protein band (arrow Fig. 3.6) one new potential interaction 

partner of PfCCp1 was identified in gametocytes. The same protein band was present 

when PfCCp1 was used as bait protein in Co-IPs in activated gametocytes (Fig. 3.6).  

The identified protein with the gene ID PF14_0412 (PlasmoDB) exhibits two WD40 

motifs  and  is  a  conserved Plasmodium protein (96 kDa)  of  unknown function. These  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6:  Identification of an interaction partner of PfCCp1 via Mass Spectrometry. With the use of 

PfCCp1 as bait in a Co-IP assay, it was possible to identify one new interaction partner of 

PfCCp1 in gametocyte lysate (Gc). The same prominent protein band was also detected in 

activated gametocyte lysate (aGc). Erythrocyte lysate (Ery) was utilized as control approach. 

A prominent protein band (arrow) in gametocyte lysate was analyzed via Mass 

Spectrometry (by Stefan Baumeister, Philipps-University Marburg). It was identified as a 

conserved Plasmodium protein of unknown function with the gene ID PF14_0412 

(PlasmoDB). The identified protein contains two WD40 domains (e-value < 10-5 for domain 

prediction) and no transmembrane domain or signal peptide.  
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domains are found in a multitude of eukaryotic proteins involved in a variety of cellular 

processes. WD40 motifs act as a site for protein-protein interaction, and proteins 

containing WD40 repeats are known to serve as platforms for the assembly of protein 

complexes or mediators of transient interplay among other proteins (reviewed in 

Smith et al., 1999 and Li and Roberts, 2001). This protein may play an essential role in 

the assembly of the MPC in gametocytes and gametes. A recombinant protein 

construct for PF14_0412 was designed and cloned by Andrea Kuehn (Fig. 3.7 C). It was 

expressed as fusion protein with a MBP-tag using the pIH902 expression vector. 

Specific immune sera were generated by immunization of NMRI mice with 

recombinant protein (section 2.2.2.2 and 2.2.2.7). First IFAs confirmed expression in 

schizonts, gametocytes, and gametes (Fig. 3.7 A, kindly provided by Vanesa Ngongang). 

In Western blot analysis the α-PF14_0412 antibody detected a faint full-length protein 

band  at  96 kDa  and  additional bands  at  150 kDa,  70 kDa,  and  36 kDa in  schizonts.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7:  Expression of the WD40 domain containing protein PF14_0412 in blood stage and sexual 

stage parasites. A. Protein expression of schizont (Schiz), gametocyte (Gc), and gamete 

(Gm) stages using PF14_0412 mouse antiserum in IFAs. Erythrocytes were counterstained 

with Evans blue in red. B. Western blot analysis of schizont, gametocyte, activated 

gametocyte (aGc), and erythrocyte (Ery) lysates. Control approaches on erythrocyte, 

gametocyte, and activated gametocyte lysates with neutral mouse serum show unspecific 

binding of neutral mice sera (by Vanesa Ngongang). C. Localization of the PF14_0412 

recombinant protein (rp2), the used antibodies are directed against. Animal specific neutral 

serum controls can be looked up in section 3.4. 

C 

rp2 

A B 

http://www.ncbi.nlm.nih.gov/pubmed/10322433
http://www.ncbi.nlm.nih.gov/pubmed/11814058
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In gametocytes the intensity of the full-length protein band and the 70 kDa band 

increased, which indicates protein procession. After activation the 96 kDa protein was 

not detectable anymore and the 70 kDa band came into the fore. This band might also 

be interpreted as double band in activated gametocytes and indicates potential 

procession of the 70 kDa protein after activation. In the erythrocyte control approach 

with α-PF14_0412 antibody incubation a faint protein band at 36 kDa was detected 

and indicates unspecific binding of the antibody to an erythrocyte protein in the 

schizont lysate either. When lysates of erythrocytes, Gc, or aGc were incubated with 

neutral mice serum a faint protein band running at 150 kDa was visible in all three 

control approaches and might match the 150 kDa band also in schizont lysates (Fig. 

3.7; kindly provided by Vanesa Ngongang). 

 

3.1.4 Processing of PfCCp proteins 

The sexual stage protein Pfs230 is proteolytically processed during gamete formation 

in the mosquito midgut (Williamson et al., 1996). To determine if PfCCp proteins 

become processed as well during activation, gametocyte and activated gametocyte 

lysates were analyzed for the presence of potential procession products (Fig. 3.8). Both 

antibodies against PfCCp1 (directed against the domains described in Fig. 3.8 B) 

detected the 185 kDa full length protein and additional bands at 70 kDa and 35 kDa, 

which did not appear after activation. Two strong bands were detectable for PfCCp2, 

185 kDa and 80 kDa, but no difference between activated and non-activated lysates 

was observed. For PfCCp3 two different antibodies were used (Fig. 3.8 B) and both 

detected full-length protein at 143 kDa and a second band at 35 kDa. For both 

antibodies no 35 kDa band was visible after activation. The PfCCp4 antibody did not 

exhibit full length protein; instead it displayed strong bands at 70 kDa and 38 kDa. 

After activation the 70 kDa band became much weaker. The two anthrax domain 

containing proteins PfCCp5 and PfFNPA exhibited similar band pattern in gametocyte 

and activated gametocyte lysate (Fig. 3.8 A). PfCCp5 displayed the full-length protein at 

125 kDa and additional, smaller bands due to an overload of protein or less dilution of 

antibody. PfFNPA antibodies displayed the full length protein (100 kDa) and a strong 

band about 150 kDa. The erythrocyte control approaches showed no protein bands 

after incubation with the different PfCCp antibodies used for this study (Fig. 3.8 A). To 

sum up, PfCCp1, PfCCp3, and PfCCp4 were processed in gametocytes and unbound 

peptides were released after activation, because surrounding membranes rupture.  

http://www.ncbi.nlm.nih.gov/pubmed/8813686
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Figure 3.8:  Procession study of PfCCp proteins. A. PfCCp expression in gametocyte (Gc), 30 min 

activated gametocyte (aGc 30’), and erythrocyte lysates. The same culture and amount of 

parasites activated with SAX medium was used for every lane. Mouse antibodies targeting 

one specific part of the appropriate PfCCp protein were used for detection. Protein bands 

migrate at the expected molecular masses of 185 kDa (PfCCp1, PfCCp2), 150 kDa (PfCCp3), 

125 kDa (PfCCp5), and 100 kDa (PfFNPA). As an exception no full length protein of PfCCp4 

was detectable at 178 kDa, but instead strong bands at 70 kDa and 38 kDa occurred. Two 

additional protein bands at a molecular mass of 70 kDa and 35 kDa were detected by the 

PfCCp1rp1 antibody, after activation both bands were not visualized any more. By using 

the PfCCp1rp6 antibody only the 35 kDa band appeared in gametocytes and was not 

detectable after activation. For PfCCp2 and PfCCp3 two strong bands emerged, but no 

significant difference between activated and non-activated gametocyte lysate was noticed. 

Except with an antibody which is targeted on the first SR1 domain one 30 kDa band 

disappeared after activation. For the PfCCp4 protein the 70 kDa band became much 

weaker after activation and for PfCCp5 and PfFNPA no difference between activated and 

non-activated gametocytes was detected. In the erythrocyte control approaches no 

proteins bands were detected by any PfCCp antibody used in this study. B. Target antigens 

of PfCCp proteins where the antibodies are directed against.  

 

A 
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3.2 Human complement in the mosquito midgut   

3.2.1 Activity of the complement system in the mosquito midgut 

To survey the activity of the complement system in the mosquito midgut the C3a Plus 

EIA Microvue Kit (see method 2.2.2.9) was used. Female Anopheles stephensi 

mosquitoes were fed on human blood for 5 or 20 min and the engorged midguts were 

subsequently dissected at eight different time points between 5 min and 20 h post-

feeding. The activity of the APC in the blood meal was investigated by determining the 

amount of C3a, which forms after the spontaneous hydrolysis of C3, into C3a and C3b 

and which is a marker for complement activation. The amount of C3a was measured by 

ELISA, and the OD450 of the color reaction in the blood meal samples was compared to 

the one of PBS control, which was set to 1. Two midguts per time point were 

investigated and each setting was measured in triplicate. In standard applications an 

exact amount of serum or plasma was used to examine the concentration of C3a in 

ng/ml using the Kit. In this case the amount of C3a in one-fifth of one midgut was 

measured. This roughly corresponded to the suggested volume of serum.  

 

Table 3.3:  Values of the ELISA-reader OD450; each sample containing two midguts was measured in 
triplicate at different time points after the feed. 

Time after the feed Value 1 Value 2 Value 3 Mean 
Standard  
deviation 

control 1,00 1,00 1,00 1,00 ±0,00 

5 min 1,19 1,82 1,71 1,57 ±0,34 

20 min 2,72 2,34 2,27 2,44 ±0,24 

40 min 2,45 2,29 1,81 2,18 ±0,34 

1 h 2,12 1,77 1,67 1,85 ±0,24 

3 h 0,98 1,33 1,62 1,31 ±0,32 

6 h 0,89 1,38 1,01 1,09 ±0,26 

15 h 0,96 0,94 1,09 1,00 ±0,08 

20 h 1,02 0,98 0,92 0,97 ±0,05 
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The ELISA showed a significant increase in the amount of C3a in blood meal samples at 

5 min until 1 h post-blood meal compared to the PBS control (Tab. 3.3; Fig. 3.9). These 

data indicate that the human APC is active in the blood meal during the first hour post-

feeding, while subsequently the complement activity decreases rapidly. 

 

3.2.2    Examination of classical pathway activation 

The first component of the classical complement pathway is the complement protein 

C1. It is composed of three subunits, the subcomponent C1q (460 kDa) and the 

proenzymes C1r and C1s. The interaction of the C1q subcomponent with the Fc regions 

of IgG or IgM antibodies present in immune complexes or polyanionic structures, such 

as lipid A of gram-negative bacteria or certain viruses, efficiently initiate the classical 

pathway of complement (reviewed in Loos and Colomb, 1993). C1q binds directly to 

the pathogen surface. Anti-C1q antibodies were used to detect activation of classical 

complement pathway. Deposition of C1q to the surface of pathogens was assayed by 

Western blot analysis.  

Mature gametocyte cultures were treated as described in 2.2.2.11, incubated in NHS 

either in the presence or absence of mAbs against Pfs230 and loaded under reducing 

conditions onto a 12 % SDS gel. It was previously shown that antibodies against Pfs230  

Figure 3.9:  Activity of the human complement system in the mosquito midgut. The amount of C3a 

was measured by ELISA. The OD450 of the PBS control was set to 1. Mosquitoes were fed on 

fresh human blood and two mosquito midguts per time point were analyzed. The 

experiments were performed in triplicate. */**, significant increase in C3a compared to the 

control approach (*p < 0.05, **p < 0.01; student´s t-test). 

http://www.ncbi.nlm.nih.gov/pubmed/8172555


                                                                                                                                                              Results 

69 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

result in complement-mediated lysis of gametes during sexual reproduction (Quakyi et 

al., 1987; Read et al., 1994; Healer et al., 1997). The C1q complex (C1r and C1s) was 

detected as a double band via Western blot analysis using a polyclonal C1q goat 

antibody (Fig. 3.10 A). The Western blot analysis revealed only a minor binding of C1q 

to the activated gametocytes, with C1q running as a protein doublet with molecular 

weights of 26 kDa and 30 kDa, which resemble C1q processing products. The binding of 

C1q to the sexual stage parasites, however, was increased in the presence of 

anti-Pfs230 mAbs, as indicated by an increase in the signal strength for C1q in samples 

of gametocytes that were activated in the presence of anti-Pfs230 mAbs (Fig. 3.10 A). 

Figure 3.10:  Binding of C1q to sexual stage parasites in the presence of antibodies. A. Gametocytes 

were activated with NHS in the absence or presence of anti-Pfs230 mAbs. Parasite pellets 

were harvested at 15 min and 1 h post activation and subjected to SDS-PAGE and 

Western blotting, using anti-C1q antibodies to detect the C1q protein (doublet at 26 kDa; 

top). The signal strength for the C1q protein band (arrows) was measured using the 

ImageJ program (bottom). The experiments were performed in duplicate and the C1q 

signal in gametocyte samples after 15 min activation was set to 100 %. B. For loading 

control of the C1q experiment, the same approach of activated gametocytes were 

subjected to Western blot analyses, as described above and immunoblotted with 

polyclonal anti-PfCCp2 antisera to visualize PfCCp2 (185 kDa; top). The signal strength for 

the PfCCp2 protein bands (arrow) was measured using the ImageJ program (bottom).   

A B 

http://www.ncbi.nlm.nih.gov/pubmed/2447164
http://www.ncbi.nlm.nih.gov/pubmed/2447164
http://www.ncbi.nlm.nih.gov/pubmed/7532850
http://www.ncbi.nlm.nih.gov/pubmed/9234748
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The experiment was performed in duplicate and the signal strength for the C1q protein 

bands was measured using the ImageJ program. Immunoblotting with antibodies 

against PfCCp2was used as a loading control (Fig. 3.10 B).  

 

3.2.3  Binding of human complement factor C3 to malaria parasites  

Immunofluorescence assays of C3b-binding to the malaria parasite 

Malaria parasites lose their protective EM about 15 min after activation (Sologub et al., 

2011) in the mosquito midgut and expose their cell surface to the human complement 

system, which is taken up together with parasites during the bloodmeal of the 

mosquito. The APC becomes activated by pathogenic membrane surfaces. Binding of 

C3b to these surfaces results in AP activation and lyses the pathogenic cell. Binding of 

human complement regulators such as FH or FHL-1 can regulate inactivation of the 

APC. Complement inactivation on the cell surface can be observed by detection  

of C3 procession peptides as explained in sections 1.6.2 and 1.6.3. The presence of C3b  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11:  Indirect Immunofluorescence Assay of C3-binding to different sexual stages of malaria 

parasites. Gametocytes were activated with NHS and subjected to indirect immuno-

fluorescence assays. Non-infected erythrocytes and non-activated gametocytes were 

used for negative controls. The assay showed strong C3 binding to activated gametocytes 

(15 min) and gametes (1 h). Parasites were labelled in green with a goat anti-human C3 

antibody and counter-labeled using the appropriate sexual stage mouse antibody. The 

erythrocyte control was counterstained with Evans Blue (red). Animal specific neutral 

serum controls can be looked up in section 3.4. 

http://www.ncbi.nlm.nih.gov/pubmed/21501358
http://www.ncbi.nlm.nih.gov/pubmed/21501358
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was investigated on the surface of the activated gametocytes and gametes using 

indirect immunofluorescence assays. On the one hand C3b was labeled using anti-

human C3 goat antisera, on the other hand activated gametocytes and macrogametes 

were highlighted with anti-Pfs230 antibodies. Non-infected erythrocytes were stained 

with Evans Blue and non-activated gametocytes, labeled with antibodies against 

PfCCp4, were used for negative controls. The erythrocytes and the non-activated 

intraerythrocytic gametocytes exhibited a fine C3b labeling on their surfaces. Emerging 

macrogametes, though, showed an intense C3b-labeling, when being examined 

between 15 min and 1 h post-feeding (Fig. 3.11). 

 

Western blot assays of C3b-binding to the malaria parasite 

Due to the fact that malaria parasites are able to survive in the mosquito midgut the 

following experiment examined, if C3b becomes inactivated on the surface of malaria 

parasites after activation. Therefore C3 binding experiments were repeated and the 

NHS treated parasites were further examined via Western blot analyses to evaluate C3 

deposition using polyclonal goat anti-human C3 antibody. Inactivation of C3b can be 

proven by the detection of the procession products α’1 (67 kDa) and α’2 (40 kDa) of the 

α’ chain (Fig. 3.12 B). S. aureus was used as positive control. This pathogen was 

recently found to bind FH and Factor H related protein 1 (CFHR-1) and thereby C3b 

inactivation on the bacterial cell surface was proven (Haupt et al., 2008). For Western 

blot analysis mature stage V gametocytes were treated as described in 2.2.2.11, 

activated with 20 % NHS/SAX for different time periods and transferred under reducing 

conditions onto a 12 % SDS gel. Samples were taken at 15 min and 1 h post activation. 

For negative control, gametocytes were kept in NHS at 37°C for 15 min; and for 

positive control, S. aureus were kept in NHS for 1 h at 37°C. Similar numbers of 

gametocytes from the same culture were used for each setting. Gametocyte lysates 

were subjected to SDS-PAGE, followed by Western blotting, and probed with anti-C3-

antibodies. Purified C3b was loaded on the gel in order to highlight the unprocessed α´ 

chain and the β chain. The Western blots showed α´1 and α´2 peptides in activated 

gametocytes. Signals were more intense than in the unactivated gametocyte control 

(Fig. 3.12 A). Further, the signals for α´1 and α´2 slightly increased at 1 h post activation. 

This procession indicates inactivation of C3b into the inactivated form iC3b. An 

additional weak protein band was observed directly above the α´ signal, which 

originated from the α chain of non-hydrolysed C3. Very intense protein bands for 

peptides α´1 and α´2 were detected in the S. aureus positive control (Fig. 3.12 A). 

http://www.ncbi.nlm.nih.gov/pubmed/19112495
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3.2.4 Impact of the active human complement on parasite gametogenesis  

The studies above revealed that the complement system is active for about 1 h in the 

mosquito midgut and that C3b was inactivated on the surface of activated 

gametoocytes. The following experiments investigated the influence of an active 

complement system, in comparison to an inactivated one, on the gametogenesis of 

malaria parasites using gametogenesis inhibition assays (GIA). Furthermore the effect 

of antibodies against FH on the gametogenesis in the presence or absence of active 

complement was analyzed. Similarly the impact of antibodies against FH on the 

infection rate of parasite-fed mosquitoes was evaluated in Transmission Blocking 

Assays (TBA).     
 

Gametogenesis Inhibition Assays 

About 15 min after the activation of mature gametocytes male and female gametes 

develop. During the following hour, fertilization occurs and a zygote is formed. After 

showing that the human complement is active in the mosquito midgut for 

approximately 1 h, the effect of the APC on the fertilization of the parasite was 

A B 

Figure 3.12:  C3b inactivation on the surface of activated gametocytes. A. Gametocytes (Gc) were 

activated with NHS at RT (see 2.2.2.11). The parasite pellet was harvested at 15 min and 

1 h post activation and subjected to SDS-PAGE and Western blotting, using anti-C3 

antisera to visualize the C3b processing products. For negative control, gametocytes were 

kept in NHS at 37°C for 15 min; and for positive control, S. aureus strain Newman was kept 

in NHS for 1 h at 37°C. Purified C3b was loaded on the gel in order to highlight the 

unprocessed α´ chain and the β chain. B. Schematic depicting the composition of C3b. The 

cleavage sites are indicated (modified from Riley-Vargas et al., 2005). Peptide sizes: C3 

(180 kDa), α (109 kDa), β (75 kDa), C3a (9 kDa), α′ chain (101 kDa), α’1 (67 KDa) and α’2 

(40 kDa). 

http://www.ncbi.nlm.nih.gov/pubmed/15849610


                                                                                                                                                              Results 

73 
 

investigated. Mature gametocyte cultures were activated in vitro at RT in the presence 

of NHS or HIS. The number of exflagellation centers, as an indicator for activated 

microgametocytes, was counted by light microscopy 15 min after activation. The 

numbers of macrogametes and zygotes were determined by labeling the cells with 

antibodies against Pfs25 and Pfs28 in immunofluorescence assays at 20 min and 20 h 

post activation, respectively (section 2.2.1.8). Then the number of macrogametes or 

zygotes in thirty fields of vision was counted under the fluorescence microscope. Each 

experiment was performed in triplicate, and the number of sexual stage parasites in 

the NHS-treated samples was set to 100 %.  
 

Table 3.4: Influence of an active complement system and FH-antibodies on the gametogenesis. 

Micro-
gametes 

1. Count 
[%] 

2. Count 
[%] 

3. Count 
[%] 

Mean 
[%] 

Standard 
deviation 

t-
value 

Signifi-
cance 

NHS + PBS 84,6 115,4 100,0 100,0 15,4 
  

NHS + α-FH 97,4 76,9 89,7 88,0 10,4 1,12 no 

HIS + PBS 120,5 151,3 112,8 128,2 20,4 1,9 > 90 % 

HIS + α-FH 146,2 128,2 92,3 122,2 27,4 1,22 no 

        
Macro-

gametes 
1. Count 

[%] 
2. Count 

[%] 
3. Count 

[%] 
Mean 

[%] 
Standard 
deviation 

t-
value 

Signifi-
cance 

NHS + PBS 80,0 114,9 105,2 100,0 18,0 
  

NHS + α-FH 75,9 63,6 58,6 66,0 8,9 2,93 > 95 % 

HIS + PBS 145,0 174,0 108,1 142,4 33,0 1,95 > 90 % 

HIS + α-FH 182,2 117,8 161,1 153,7 32,9 2,48 > 90 % 

        

Zygotes 1. Count 
[%] 

2. Count 
[%] 

3. Count 
[%] 

Mean 
[%] 

Standard 
deviation 

t-
value 

Signifi-
cance 

NHS + PBS 60,9 132,5 106,6 100,0 36,3 
  

NHS + α-FH 31,0 43,4 42,3 38,9 6,9 2,86 > 90 % 

HIS + PBS 136,5 163,0 154,5 151,3 13,5 2,29 > 90 % 

HIS + α-FH 133,7 156,8 189,5 160,0 28,1 2,26 > 90 % 
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The in vitro assays showed that in HIS-treated activated gametocyte cultures, the 

numbers of exflagellation centers, macrogametes and zygotes were significantly higher 

than in cultures that were activated in the presence of NHS (Fig. 3.13). These data 

indicate that active human complement interferes with gametogenesis, reducing the 

number of gametes and zygotes. 

 

Transmission Blocking Assay (TBA) 

To evaluate the impact of FH antibodies on the infection rate of mosquitoes ex vivo 

TBAs were performed (section 2.2.3.2). Female A. stephensi mosquitoes were fed on 

mature gametocyte cultures in the presence of NHS for 20 min. In one experimental 

set up, anti-FH mAb 131X was added in a dilution of 1:4 to the gametocyte culture. 

Mosquitoes with engorged midguts were collected. The midguts were dissected 

10 days post-feeding, and the numbers of oocysts were counted for each midgut.  

 

Figure 3.13:  Impact of active human complement with parasite gametogenesis. Gametocytes were 

activated with NHS or HIS in the absence or presence of anti-FH mAb 131X, and the 

numbers of exflagellation centers was determined after 15 min, macrogametes after 

20 min, and zygotes 20 h post activation, microscopically. The numbers of NHS-activated 

cells was set to 100 %. The gametogenesis of parasites is about 20-40 % higher in HIS 

comparable to parasites which have to develop in NHS. The monoclonal anti-FH antibody 

showed an inhibitory effect of on the gametogenesis of malaria parasites. The addition of 

the anti-FH antibody only displayed an inhibitory effect on macrogamete and zygote 

formation in NHS. The tested antibody showed no influence on the gamete formation in 

HIS (control). *, significant increase in the number of counted parasites (*p < 0.05; 

student´s t-test). 

      serum:          NHS            NHS           HIS                       HIS 

        α-FH:             -                             +                            -                           + 

 

* 
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* 
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exflagellation centers 



                                                                                                                                                              Results 

75 
 

Table 3.5: Transmission blocking activity of anti-FH antibodies. 

TBA1  TBA2 

Midgut 
no. 

PBS control with α-FH  
Midgut 

no. 
PBS control with α-FH 

1 0 0  1 0 0 

2 1 0  2 0 0 

3 4 0  3 0 0 

4 0 0  4 1 0 

5 0 0  5 0 0 

6 6 0  6 0 0 

7 3 0  7 1 0 

8 1 0  8 1 0 

9 1 0  9 0 0 

10 0 0  10 0  

11 3 0  11 5  

12 2 0  12 0  

13 16 0  13 3  

14 1 0  14 4  

sum ∑ 38 ∑ 0  15 2  

    16 1  

    17 0  

    18 1  

    sum ∑ 19 ∑ 0 

       
 

 
 

number of 
infected/total 

number of oocysts/midgut; 
range 

Infection  
rate Inhibition  

TBA1 
PBS 10/14 4±4.4; 1-16 71 %  

α-FH 0/14 0; not applicable 0 % 100 % 

TBA2 
PBS 9/18 2±1.5, 1-5 50 %  

α-FH 0/9 0; not applicable 0 % 100 % 
 

 

Two independent experiments were performed. While in NHS mosquitoes exhibited 

infection rates of 71 % and 50 %, no infected mosquito was observed, when the 

anti-FH mAbs were added to the cultures prior to the blood meal (Tab. 3.5). Thus, the 

TBA results demonstrate a 100 % inhibition of parasite transmission to the mosquito 

by antibody-mediated inactivation of FH in the blood meal and suggest complement-

mediated clearance of parasites. 
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The in vitro and ex vivo experiments demonstrate that antibodies against FH inhibited 

the sexual development of Plasmodium falciparum. The following investigations will 

examine if FH binds to the malaria parasite and if it is responsible for the inactivation 

of C3b on the parasite’s surface.  

 

3.2.5 Human FH in the mosquito midgut  

According to previous studies, the bloodmeal of the mosquito is digested within 60 h, 

the latest point of digestion enzyme activity (Billingsley et al., 1991). The decay of 

activity and thus digestion of FH in the mosquito midgut in the time frame of 0 min to 

20 h should be examined. After the last time point all parasites which developed into 

ookinetes should have traversed the midgut wall to form an oocyst. To examine the 

potential procession or digestion of FH under endogenous conditions it was tested in 

vivo how long FH is stable in the mosquito midgut following a blood meal.  

Female A. stephensi mosquitoes were fed on human blood and the midguts were 

dissected at eight different time points between 0 min and 20 h post-feeding (section 

2.2.3.2). Blood meal samples were subjected to native gel electrophoresis and 

immunoblotted with anti-FH-SCR1-20 antisera. The Western blot detected the 155 kDa 

full-length FH and revealed that FH was stable in the mosquito midgut for 

approximately 6 h (Fig. 3.14 B). Over time a degradation product with a molecular 

weight of approximately 110 kDa accumulated in the samples. At 15 h post-feeding, 

the amount of FH decreased in the samples, probably due to degradation, and at 20 h 

post-feeding, FH was no longer detected in the blood meal. Similarly, FHL-1 was 

detected for approximately 6 h post-feeding. Interestingly, no protein bands for 

CFHR-1α and CFHR-1β were detectable. In contrast, the three regulatory proteins, FH, 

FHL-1, and CFHR-1, were present in the NHS sample (Fig. 3.14 A), suggesting that 

CFHR-1 is immediately absorbed or degraded in the mosquito midgut. The experiment 

was also performed using mosquitoes fed with mature P. falciparum gametocyte 

cultures in the presence of NHS via glass feeders, and a similar time-line for FH 

degradation was observed (Fig. 3.14 C). The combined data indicate that FH and FHL-1 

are stable in the mosquito midgut for approximately 6 h, thus for a longer time period 

than the APC was shown to be active. 

 

 

http://www.ncbi.nlm.nih.gov/pubmed/1770523
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3.2.6 Binding studies of FH and FH family proteins to malaria parasites 

3.2.6.1  Indirect Immunofluorescence Assay of FH binding 

The malaria parasite can survive in the mosquito midgut, though it loses its protective 

EM during gametogenesis. The complement system of the human host is active for 

about 1 h after ingestion. The in vitro assays and the ex vivo TBVs indicated that FH has 

a protective function for the emerging gametes following activation, preventing these 

from complement-induced lysis. In subsequent studies was therefore investigated, if 

the extracellular sexual stage parasites are able to bind FH. First, mature gametocytes 

Figure 3.14:  Degradation of FH in the mosquito midgut. A. Immunoblotting of NHS was used for 

positive control, subjected to native gel electrophoresis and immunoblotted with anti-FH-

SCR1-20 antiserum. The full-length FH (155 kDa), FHL-1 (37 kDa), CFHR-1α (34 kDa), and 

CFHR-1β (36 kDa) were detected. B. Female A. stephensi mosquitoes were fed on human 

blood and the midguts were dissected at eight different time points between 5 min and 

20 h post-feeding. Blood meal samples were subjected to native gel electrophoresis and 

immunoblotted with anti-FH-SCR1-20 antiserum. The full-length FH (155 kDa), a FH 

degradation product (110 kDa), and FHL-1 (37 kDa) were detected. C. The same 

experimental setup was conducted using mature gametocytes cultures mixed with 

human blood and resulted in a similar band pattern.  

A B 

C 
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were activated with 20 % NHS/SAX at RT and washed once with RPMI incomplete. 

Samples were taken at five different time points between 15 min and 6 h post 

activation and subjected to indirect immunofluorescence assays (section 2.2.1.8). On 

the one hand FH on the sexual stage parasite surface was labeled with polyclonal anti-

FH-SCR1-20 antiserum that recognizes the whole FH molecule, FHL-1, and CFHR-1, on 

the other hand macrogametes and zygotes were labeled, using antibodies against the 

stage-specific marker proteins Pfs230 and Pfs25, respectively. Non-infected 

erythrocytes  were  counterstained  with  Evans  Blue  and  non-activated  gametocytes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15:  Binding of FH to sexual stage parasites.  Gametocytes were activated with NHS and 

subjected to indirect immunofluorescence assays. Non-infected erythrocytes and non-

activated gametocytes were used for negative controls. FH was labeled with polyclonal 

anti-FH-SCR1-20 antiserum (green), the sexual stage parasites were labeled with 

antibodies against the respective marker proteins (PfCCp4, gametocytes; Pfs230, 

macrogametes; Pfs25, young zygotes; Pfs28, old zygotes; red), non-infected erythrocytes 

were labeled with Evans Blue (Cell marker, red). FH displayed weak binding to 

erythrocytes and gametocytes. The strongest binding was verified for activated 

gametocytes 30 min post activation. At later time points the amount of FH, which binds 

to gametes or zygotes decreases. Animal specific neutral serum controls can be looked up 

in section 3.4. 
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were co-labeled with antibodies against PfCCp4 and used for negative controls (Fig. 

3.15). The erythrocytes and the non-activated intraerythrocytic gametocytes exhibited 

a low FH labeling on their surfaces, which presumably is due to the permanent binding 

of FH to body cells. Emerging macrogametes and young zygotes, though, showed an 

enhanced labeling for FH on their surfaces, when being investigated at time points of 

15 min to 3 h post activation. FH labeling decreased on zygotes after 20 h, which were 

labeled with antibodies against Pfs28 (Fig. 3.15).  

 

3.2.6.2  Serum Absorbance Assay with malaria parasites   

A serum absorbance assay was performed by Western blotting to examine if FH binds 

directly to activated gametocytes. Gametogenesis was induced in vitro at RT either by 

NHS or by SAX, which was supplemented with purified FH at concentrations found in 

plasma. A concentration of 0,5 mg/ml was used. Cells were treated like described in 

section 2.2.2.11 without saponin treatment, in order to compare protein binding to 

erythrocytes and parasites. Samples were taken at six different time points between 

10 min and 6 h after activation, subjected to native gel electrophoresis and blotted 

with antibodies against FH-SCR1-20. The labeling intensity of the FH-positive bands, 

which showed a mobility of expected 155 kDa, was compared to the FH bands of 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16: Serum Absorbance Assays indicated that FH binds directly to activated gametocytes. 

Gametocytes were activated with NHS or HIS or with SAX in the absence or presence of 

FH. The parasite pellet was harvested at six different time points post activation and 

subjected to native gel electrophoresis and Western blotting, using polyclonal anti-

FH-SCR1-20 antibody in order to visualize bound FH (155 kDa). Non-infected erythrocytes 

(Ery) were used for negative control to indicate FH-binding to body cells. 

A B 

D C 
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equally treated non-infected erythrocytes, which were used for negative controls. For 

all time points, prominent FH bands of approximately 155 kDa were detected in the 

gametocyte samples that were activated by NHS (Fig. 3.16 A) or by SAX supplemented 

with purified FH (Fig. 3.16 C). The FH bands of these samples were more intense then 

the respective bands of the erythrocyte control. When gametocytes were activated 

with HIS, the intensity of the FH binding was strongly reduced (Fig. 3.16 B). In 

gametocytes activated with SAX, thus without any serum in the activation medium, FH 

labeling was very low (Fig. 3.16 D) and presumably resulted from remnants that had 

bound to the erythrocyte surface of the intraerythrocytic gametocytes during 

culturing. The combined data show that FH strongly binds directly to the surface of the 

in vitro cultivated gametes and young zygotes of P. falciparum for a time period of at 

least 6 h. 

 

3.2.6.3  Binding studies of FH family proteins to malaria parasites by Western blotting 

Different proteins which belong to the FH family can have regulatory functions for the 

APC. FH and FHL-1 are the most well characterized proteins which bind microbes like 

Borrellia as a complement evasion strategy (Bhide et al., 2009). Other bacteria, for 

instance Staphylococcus aureus, bind FH and CFHR-1 to escape from the attack of the 

human APC (Haupt et al., 2008). The following study investigated if FH, FHL-1 or 

CFHR-1 are recruited by Plasmodium parasites. Initially the presence of the two 

regulatory proteins, FH and FHL-1 in NHS was tested by Western blotting, using anti-FH 

antiserum. A protein band corresponding to the FHL-1 protein (expected molecular 

weight of 42 kDa, here running at a molecular weight of ~37 kDa), the two differently 

glycosylated chains of CFHR-1, termed CFHR-1α and CFHR-1β (expected molecular 

weights of 37 and 43 kDa, here running at two prominent protein bands of 34 and 

36 kDa), and additionally the 155 kDa protein band of FH was detected (Fig. 3.17). 

Gametocytes were activated in vitro in NHS at RT and samples were taken at seven 

different time points between 30 min and 20 h after activation. Samples were 

subjected to Western blot analysis, and revealed a prominent FH signal as well as a 

faint protein band for FHL-1 for all time points. The intensity of the FH and FHL-1 bands 

stayed constant for 20 h. As a positive control, we used Staphylococcus aureus strain 

Newman, which was incubated with NHS at 37°C for 1 h and the lysates were blotted 

with anti-FH antibodies. Protein bands for FH, CFHR-1α, and CFHR-1β were detected 

(Fig. 3.17). 

http://www.ncbi.nlm.nih.gov/pubmed/19604355
http://www.ncbi.nlm.nih.gov/pubmed/19112495
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To confirm binding of FH and FHL-1 to the sexual stage parasites, similar binding assays 

were performed, using antibodies directed against different SCR domains of FH and 

FHL-1. While the mAb anti-FH-SCR18-20 antibody only detects FH and CFHR proteins, 

the mAb anti-FH-SCR1-4 antibody is able to detect FH and FHL-1, but not CFHR-1. 

Furthermore, mAb 131X is able to detect FH, but not the FH-related proteins. For the 

molecular architecture of FH, see Fig. 3.18 A. These antibodies were used for probing 

the lysates of activated gametocytes (15 min and 1 h). The polyclonal antiserum anti-

FH-SCR1-20 was used as a positive control. In all cases FH was detected (Fig. 3.18 B). 

Furthermore, FHL-1 was detected binding to the parasite surface, when lysates were 

immunoblotted with the anti-FH-SCR1-4 and anti-FH-SCR1-20 antibodies. These data 

underline the binding of both FH and FHL-1 to the sexual stage surface and confirmed 

that malaria parasites did not bind CFHR proteins (Fig. 3.18 B).  

 

 

 

 

 

 

Figure 3.17:  Time study of FH and FHL-1 binding to sexual stage parasites. Gametocytes were 

activated with NHS. The parasite pellet was harvested at seven different time points after 

activation and subjected to native gel-electrophoresis and Western blotting, using 

polyclonal anti-FH-SCR1-20 antibody. NHS was used for positive control. Immunoblotting 

visualized bound FH (155 kDa) and FHL-1 (37 kDa), but no binding of CFHR-1α (34 kDa) 

and CFHR-1β (36 kDa) to sexual stage parasites. 

A 
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3.2.6.4   Peptide Binding Assay of recombinant FH-proteins on activated gametocytes 

Previous studies revealed binding of FH and FHL-1 to activated gametocytes. FH is 

composed of 20 SCR modules (Fig. 3.19 A), which have previously been studied 

extensively, and for which different regions for the binding of C3b and heparin were 

identified (Kühn et al., 1995; Haupt et al., 2007; Kunert et al., 2007; Skerka et al., 2007; 

Mihlan et al., 2009, 2011; Reuter et al., 2010; Weismann et al., 2011; Lauer et al. 

2011). In order to determine which of the SCR modules were primarily involved in 

surface binding of the sexual stage parasites, eight peptides, comprising different SCR 

modules, were investigated for binding. One of the peptides, comprising SCR modules 

1-7, resembled FHL-1. Additionally, a recombinant CFHR-1 molecule was tested 

(peptides were kindly provided by Christine Skerka and Peter F. Zipfel, Jena; overview 

in Fig. 3.19 B). Initially the purified fragments were loaded onto a gel in order to 

determine the molecular mobilities at which the respective proteins were running (Fig. 

3.19 C). Subsequently, gametocytes were activated in vitro at RT for 45 min, using SAX 

medium, which was supplemented with a 100 ng/μl concentration of one of the 

recombinant FH peptides per sample (section 2.2.2.11). The gametocytes were 

thoroughly washed and the respective lysates were then subjected to native gel 

electrophoresis and blotted with anti-FH-SCR1-20 antisera in order to detect the 

Figure 3.18:  Binding studies of FH and FHL-1 using antibodies directed against different FH domains. 

A. Schematic depicting of the SCR domain structures of FH, FHL-1, and CFHR-1. The 

binding sites for C3b and heparin (Hep) are indicated (modified from Zipfel et al., 2002). 

B. Gametocytes were activated with NHS. Parasite pellets were harvested at 15 min and 

1 h and subjected to gel electrophoresis and Western blotting, using mAbs anti-FH-

SCR18-20 and anti-FH-SCR8-15 (clone 131X), and polyclonal antibodies anti-FH-SCR1-4 

and anti-SCR1-20 to detect binding of FH (155 kDa), FHL-1 (37 kDa), CFHR-1α (34 kDa), 

and CFHR-1β (36 kDa). 

B 

http://www.ncbi.nlm.nih.gov/pubmed/7499851
http://www.ncbi.nlm.nih.gov/pubmed/17538892
http://www.ncbi.nlm.nih.gov/pubmed/17709513
http://www.ncbi.nlm.nih.gov/pubmed/17399790
http://www.ncbi.nlm.nih.gov/pubmed/19680263
http://www.ncbi.nlm.nih.gov/pubmed/21856781
http://www.ncbi.nlm.nih.gov/pubmed/20855886
http://www.ncbi.nlm.nih.gov/pubmed/21979047
http://www.ncbi.nlm.nih.gov/pubmed/21930971
http://www.ncbi.nlm.nih.gov/pubmed/21930971
http://www.ncbi.nlm.nih.gov/pubmed/12440956
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peptides. A protein band running at a molecular weight of approximately 37 kDa was 

detected, which resembled the protein SCR modules 1-7 (Fig. 3.19 D). For no other of 

the recombinant FH fragments, protein bands were detected including a FH fragment 

which was composed of SCR modules 1-4. Peptide SCR1-7 was again tested in a 

concentration of 10 ng/μl, and a prominent protein band was detected (Fig. 3.19 D, 

right lane). The combined data suggest that SCR modules 5-7 are involved in binding of 

FH to the surface of sexual stage parasites. 
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Figure 3.19:  Peptide binding assay with recombinant SCR domains. A. Schematic overview of three 

FH family proteins; FHL-1, FH, and CFHR-1. The bar highlights domains of FH and FHL-1 for 

binding to aGc. B. Description of FH peptides with SCR domains. C. FH peptides alone 

were detected by Western blotting with a polyclonal anti-FH-SCR1-20. D. Binding of 

peptide SCR1-7 to sexual stage parasites. Gametocytes were activated with SAX medium 

in the presence of FH fragments at a concentration of 100 ng/µl (and of 10 ng/µl in the 

case of SCR1-7; right). The parasite pellet was harvested at 45 min after activation and 

subjected to native gel-electrophoresis and Western blotting, using polyclonal anti-FH-

SCR1-20 antiserum. The binding of fragment SCR1-7 (= FHL-1; ~40 kDa) to sexual stage 

parasites was detected, while other recombinant SCR fragments as well as recombinant 

CFHR-1 did not bind.  
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3.2.7 Cofactor activity of FH on the surface of aGc  

The Cofactor activity assay of FH should demonstrate if surface-bound C3b is 

inactivated by FH. The method was described the first time in Giannakis et al., 2002. 

During C3b inactivation the α’-chain of C3 becomes cleaved into α’1 and α’2. This 

would indicate that APC inactivation is dependent on FH binding. In the absence of 

NHS, gametocytes were activated in vitro with SAX medium in the presence or absence 

of purified FH. After 30 min, gametocytes were thoroughly washed, and purified C3b 

and factor I were added to the activated cultures, which were incubated for another 

30 min at RT (section 2.2.2.10). Subsequently, gametocyte lysates were subjected to 

SDS-PAGE, followed by Western blotting, and probed with anti-C3-antisera. In samples 

of activated gametocytes, to which FH was added during activation in order to 

inactivate C3b, the α´ chain was processed by factor I, and the peptides α´1 and α´2 

(with molecular weights of 67 and 40 kDa) appeared in addition to the protein bands 

of α´ and β, which had mobilities of 101 and 75 kDa, respectively (Fig. 3.20). In samples 

without FH, however, the α´ chain was not cleaved to α´1 and α´2 by factor I (Fig. 3.20).  

 

 

 

 

 

 

 

 

 

 

3.2.8   Influence of heparin on C3b and FH binding 

Several C3b binding sites were previously identified within FH, namely for SCR1-4, 

SCR12-14 and SCR19-20 (see Fig. 3.19 A; Kühn et al., 1995; Jokiranta et al., 1996, 

Jokiranta et al., 2000). For the latter two C3b-binding sites, and for module SCR7, also 

heparin binding affinity were described (Kühn et al., 1995; Blackmore et al., 1998; 

Prodinger et al., 1998; Weismann et al., 2011). To confirm involvement of the SCR7 

domain in gametocyte attachment, competition studies were performed, where 

Figure 3.20:  FH-mediated processing of C3b by factor I. 

Gametocytes were activated with SAX medium in the 

absence of NHS and in the presence or absence of 

purified FH. After 30 min activation time purified C3b 

and factor I were added and incubated for another 30 

min at RT. After washing the gametocytes were 

subjected to SDS-PAGE and Western blotting, using 

anti-C3 antibodies, to visulize bound C3b products α´ 

(101 kDa) and β (75 kDa), and the processing products 

α´1 (67 kDa) and α´2 (40 kDa). 

http://www.ncbi.nlm.nih.gov/pubmed/11971006
http://www.ncbi.nlm.nih.gov/pubmed/7499851
http://www.ncbi.nlm.nih.gov/pubmed/8814308
http://www.ncbi.nlm.nih.gov/pubmed/10837479
http://www.ncbi.nlm.nih.gov/pubmed/7499851
http://www.ncbi.nlm.nih.gov/pubmed/9529063
http://www.ncbi.nlm.nih.gov/pubmed/9512460
http://www.ncbi.nlm.nih.gov/pubmed/21979047


                                                                                                                                                              Results 

85 
 

gametocytes were activated for 15 min and 1 h in NHS in the presence or absence of 

heparin (5 mg/ml). Subsequently, gametocyte lysates were subjected to SDS-PAGE, 

followed by Western blot analysis, and probed with anti-C3 antisera. In samples from 

gametocytes activated in the presence of heparin, C3b was less degraded, as detected 

by the reduced presence of cleavage products α´1 and α´2, when compared to samples 

from gametocyte that were activated in the absence of heparin (Fig. 3.21 A, top). The 

experiment was performed in triplicate and the signal strength for the α´1 protein 

bands was measured using the ImageJ program. The quantification revealed a 65 % 

reduction in the signal strength for α´1 in samples that were treated with heparin 

(Fig.3.21 A, bottom). Because the binding of heparin to FH would consequently cause a  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.21:  Influence of heparin on C3b and FH binding. A. Gametocytes were activated with NHS in 

the presence or absence of heparin. Parasite pellets were harvested after 15 min and 1 h 

activation time and subjected to SDS-PAGE and Western blotting, using anti-C3-antibodies 

to visualize the C3b processing products (top). The signal strength for the α´1 protein 

bands (arrow) was measured in gametocyte samples after 15 min and set to 100 % 

(bottom). B. FH-binding to the sexual stage surface in the presence of heparin. 

Gametocytes were treated like described above and subjected to gel-electrophoresis and 

Western blotting, using anti-FH-SCR1-20 antiserum (top). The signal strength for the FH 

protein bands (arrow) was measured after 15 min and set to 100 %. C. Loading control: 

Gametocytes were treated like described above and subjected to SDS-PAGE and Western 

blotting, using anti-PfCCp2 antisera to detect PfCCp2 (185 kDa; top). The signal strength 

of all proteins was measured using the ImageJ program and all experiments were 

performed in triplicate.  

A                                     B                                     C 
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reduction in the binding of FH to the surface, we further investigated the binding of FH 

to activated gametocytes, using the above described experimental setting. When the 

lysates of gametocytes activated in the presence of heparin were probed for FH 

binding using anti-FH-SCR1-20 antisera in Western blot analysis, a weaker FH signal 

was observed compared to samples of gametocytes activated in the absence of 

heparin (Fig. 3.21 B, top). Signal strength quantification revealed a reduced FH binding 

to the surface of the sexual stage parasites by 41 % (after 15 min activation) and 66 % 

(after 1 h activation), when these were preincubated with heparin (Fig 3.21 B, bottom). 

Immunoblotting with antisera against the sexual-stage specific protein PfCCp2 was 

used for loading control (Fig. 3.21 C). The combined data suggest that FH binds to the 

parasite surface via its heparin sites and mediates C3b inactivation. 

 

3.3  Interaction partner of FH on the surface of activated gametocytes 

3.3.1  Identification of the FH receptor protein  

After demonstrating that sexual stage parasites bind FH on their surface in order to 

inactivate C3b, the responsible plasmodial receptor for FH should be identified. 

Therefore gametocytes were activated in the presence of NHS for 30 min and Co-IPs 

were performed (section 2.2.2.6), using anti-FH mAb 131X bound to protein G beads. 

Co-IPs performed with lysates of asexual blood stage parasites using the same setting 

were used for negative control. The precipitated proteins were separated by SDS-PAGE 

and visualized via silver staining. Band patterns were compared between samples of 

precipitated activated gametocyte and asexual parasite proteins. Thick bands running 

at 55 kDa and 30 kDa displayed the heavy and the light chain of the bait antibodies. A 

dominant protein band of the activated gametocyte sample, and not present in the 

asexual lysate precipitate, was subjected to mass spectrometric analysis (Fig. 3.22 A, 

left). It was running with a molecular weight of approximately 45 kDa. The detected 

peptides were used for MASCOT searches to identify full-length proteins. Mass 

spectrometry (kindly performed by Edwin Lasonder; Nijmegen Proteomics Facility) 

identified the 45 kDa protein as the glideosome-associated protein PfGAP50 

(PlasmoDB Gene-ID: PFI0880c). Annotation of the protein sequence predicted an 

N-terminal signal peptide with a transmembrane domain and a C-terminal 

transmembrane domain. Annotation further indicated a metallo-dependent 

phosphatase domain (Fig. 3.22 B). PfGAP50 was originally assigned to the actin-myosin 

motor complex of the parasite invasive stages (reviewed in Baum et al., 2006; Sanders 

http://www.ncbi.nlm.nih.gov/pubmed/16845432
http://www.ncbi.nlm.nih.gov/pubmed/17553576


                                                                                                                                                              Results 

87 
 

et al., 2007; Yeoman et al., 2011) and was also described as a peripheral phosphatase 

in the P. falciparum blood stage parasites (Müller et al., 2010). For further 

investigations polyclonal mouse antisera against the recombinant expressed PfGAP50 

protein were generated by Matthias Scheuermeyer. When the antisera were used to 

probe the above precipitated protein samples via Western blot analysis, a similar 

protein band at 45 kDa was detected in the mAb 131X-precipitated gametocyte 

protein sample (running right below the broad protein band of the heavy chain of the 

precipitating antibody; Fig. 3.22 A), but not in the precipitated asexual blood stage 

protein sample.  

PfGAP50 expression in non-activated and activated gametocytes was also investigated 

via Western blot analysis. Lysates of asexual blood stage schizonts (kindly provided by  
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Figure 3.22: Interaction of FH with the transmembrane protein PfGAP50. A. Mass spectrometric 

identification of PfGAP50 as FH-binding protein. Proteins of gametocytes at 30 min post 

activation with NHS and of NHS-incubated mixed asexual cultures, which were co-

immunoprecipitated with anti-FH mAb 131X, were subjected to SDS-PAGE and visualized 

via silver staining (left). A 45 kDa protein of the gametocyte sample was picked, 

subjected to mass spectrometric analysis and identified as PfGAP50. The co-

immunoprecipitated proteins were subjected to SDS-PAGE and Western blotting, using 

polyclonal anti-PfGAP50 antisera, which detected PfGAP50 in the activated gametocyte 

sample (right). B. Schematic depicting the domain architecture of PfGAP50. SP, signal 

peptide; TM, transmembrane domain. C. Expression of PfGAP50 in blood stage parasites 

and gametocytes. Lysates of synchronized blood stage schizonts, of mature non-activated 

gametocytes (Gc) and of gametocytes after 1 h activation were subjected to SDS-PAGE 

and Western blotting. Anti-PfGAP50 antisera were used to detect the respective protein, 

which was running at molecular weights of 70 kDa and 45 kDa in the schizonts lysate, and 

as a 45/42 kDa doublet in the gametocyte lysates. 

http://www.ncbi.nlm.nih.gov/pubmed/17553576
http://www.ncbi.nlm.nih.gov/pubmed/21239623
http://www.ncbi.nlm.nih.gov/pubmed/20070315
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Ludmilla Sologub), mature non-activated gametocytes and activated gametocytes (1 h 

post activation) were subjected to SDS-PAGE and blotted with the anti-PfGAP50 

antisera. In lysates of schizonts, a protein band at the estimated molecular weight of 

45 kDa and a second band at ~70 kDa was detected (Fig. 3.22 C). In the lysates of 

mature gametocytes and particularly of activated gametocytes, on the other hand, a 

protein doublet running at approximately 45 kDa and 42 kDa, and no 70 kDa band, was 

identified (Fig. 3.22 C), indicating that in these stages a processed form of PfGAP50 is 

present. 

 

3.3.2  Expression and localization studies of PfGAP50 in sexual stage parasites 

PfGAP50 is predicted to be localized in the inner membrane complex (IMC) of 

merozoites (reviewed in Baum et al., 2006; Sanders et al., 2007; Yeoman et al., 2011). 

In the following studies it should be proven by IFAs how long PfGAP50 is expressed in 

the sexual stages of the malaria parasite and if PfGAP50 is surface associated after 

gametogenesis induction. 
 

Expression pattern of PfGAP50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.23: Expression of PfGAP50 in sexual stage parasites. Gametocytes were activated with NHS. 

Samples were taken at five different time points post activation. and prepared for 

indirect immunofluorescence assay. Specimens were saponin-permeabilized. Non-

activated gametocytes were used for positive control. The sexual stage parasites were 

labeled with antibodies against Pfs230 (red) and against PfGAP50 (green). Animal specific 

neutral serum controls can be looked up in section 3.4. 

http://www.ncbi.nlm.nih.gov/pubmed/16845432
http://www.ncbi.nlm.nih.gov/pubmed/17553576
http://www.ncbi.nlm.nih.gov/pubmed/21239623
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After activation gametocyte cultures were coated on Teflon slides at different time 

points. The samples were methanol-fixed and permeabilized. PfGAP50 was labeled 

using the respective antisera, and the activated gametocytes and macrogametes were 

labeled with anti-Pfs230 antisera. PfGAP50 was detectable in activated gametocytes 

and macrogametes for more than 6 h (Fig. 3.24), thus PfGAP50 was present in the 

sexual stages for as long as FH binding to the parasite surface was demonstrated. 

Similarly the PfGAP50 protein was present in non-activated gametocytes and in 

gametocytes 15 min post activation, but showed lower protein expression than in 

macrogametes. 

 

Surface association study of PfGAP50 

Subsequently was investigated, if PfGAP50 is present on the surface of the emerging 

gametes and thus accessible to FH. Gametocyte cultures were activated and fixed with 

methanol for 5 min. Immunofluorescence assays were performed in the absence of 

saponin  to  make  sure  that  only  the  extracellular proteins would be detected. When  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.24: Surface associated expression of PfGAP50 in activated gametocytes. Mature 

gametocytes were activated, fixed with methanol for 5 min and were subjected to 

indirect immunofluorescence assays without saponin-permeabilization 30 min post 

activation. PfGAP50 was labeled with polyclonal anti-PfGAP50 antisera (green), 

macrogametes were highlighted by Pfs25-labeling (red). For negative control, specimens 

were incubated with antisera against the intracellular proteasome subunit SU α5, and no 

labeling was detected. Contrary, SU α5 labeling was detected, when the specimens were 

saponin-permeabilized before antisera incubation (green). Animal specific neutral serum 

controls can be looked up in section 3.4. 
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activated gametocyte cultures were fixed with methanol in the absence of saponin, the 

emerged Pfs25-positive macrogametes were labeled for PfGAP50 (Fig. 3.25, top). As a 

negative control, indirect immunofluorescence assays were performed, using an 

antiserum directed against the intracellular protein proteasome subunit alpha 5 

(SU α5), a component of the plasmodial 26S proteasome (Aminake et al., 2011). No 

labeling of the Pfs25-positive macrogametes was detected (Fig. 3.25, center). When 

the cultures were permeabilized with saponin before incubation with the anti-SU α5 

antibody, on the other hand, the Pfs25-positive macrogametes showed a SU α5 signal 

(Fig. 3.25, bottom). The data indicate that PfGAP50 is relocated to the parasite surface 

during gametocyte activation and subsequently present on the surface of the emerged 

macrogametes for several hours. 

 

3.3.3  Interaction studies with recombinant PfGAP50 proteins and FH peptides 

Finally it has to be investigated, if PfGAP50 is able to directly bind FH and FHL-1. 

Recombinant PfGAP50 was immobilized to a microtiter plate and incubated with 

recombinant FH (SCR1-20) or FHL-1 (SCR1-7), which were applied at concentrations of 

2.5 μg/ml, 5 μg/ml, or 10 μg/ml. The binding intensity was colorimetrically evaluated in  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.25: Dose-dependent binding of FH and FHL-1 to PfGAP50. Recombinant immobilized 

PfGAP50 was incubated with recombinant SCR1-20 (=FH), SCR1-7 (=FHL-1) and FH-SCR1-4 

at concentrations of 2.5 μg/ml, 5 μg/ml, or 10 μg/ml. FH peptide binding was measured 

colorimetrically at OD450. Immobilized gelantine and PBS alone were used for negative 

controls; **p < 0.01,  *** p < 0.001, ns-no significance, related to the PBS control (from 

Christine Skerka, Jena). 

http://www.ncbi.nlm.nih.gov/pubmed/21245445
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triplicate. FH as well as FHL-1 bound to PfGAP50 and these effects were dose-

dependent (Fig. 3.23). The fragment representing SCR1-4 did not bind to recombinant 

PfGAP50, confirming that binding of FH to the parasite is preferentially mediated by 

SCR modules 5-7. Unspecific binding can be excluded, as the FH peptides did not bind 

to gelantine-coated wells. PBS was used for a background color control (kindly 

performed in the laboratory of Christine Skerka and Peter F. Zipfel, Leibniz-Institut, 

Jena). 

 

3.4  IFA controls of neutral animal sera 

All antisera used in IFAs in this thesis were polyclonal. To exclude unspecific binding of 

the polyclonal antibodies control IFAs using different neutral animal sera and sera 

against the GST-tag alone were performed and summarized in one figure (Figure 3.26). 

The parasites were counter labeled with antibodies against Pfs230. Incubation with 

neutral sera revealed no labeling of the parasites. However, rabbit antiserum gave a 

very faint background labeling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.26: Control IFAs with neutral animal sera. Sexual stage malaria parasites were counter 

labeled with rabbit or mouse anti-Pfs230 serum. Neutral goat, mouse, and rabbit sera 

were used for second antibody labeling and showed no binding, except of a faint 

background labeling of neutral rabbit antiserum. Furthermore antibodies against the GST-

tag alone revealed no binding to malaria parasites.  
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4  Discussion 

The sexual phase of the malaria pathogen begins with the differentiation of 

gametocytes in the human host and continues after the blood meal in the midgut of 

the mosquito vector. Gametogenesis, the formation of gametes, is triggered by 

environmental factors of the mosquito midgut. Subsequently, fertilization takes place, 

and the resulting zygote transforms into the infective ookinete, which leaves the 

midgut lumen to form an oocyst between the epithelium and the basal lamina of the 

midgut wall (reviewed in Pradel, 2007 and Kuehn and Pradel, 2010). The malaria sexual 

phase represents a crucial step in the spread of the disease, but to date the molecular 

details of parasite interactions with midgut contents during fertilization remain largely 

unknown. The primary focus of this doctoral thesis was to study the molecular 

interplay of P. falciparum sexual stage proteins during reproduction in the mosquito 

midgut. Initial investigations aroused interest in the details of intermolecular binding 

between surface associated adhesion proteins in gametocytes and during 

gametogenesis in the mosquito midgut. Follow-up studies addressed the interaction 

between midgut parasites and the human complement system during sexual 

reproduction in the mosquito midgut. 

 

4.1  Sexual stage surface proteins of the malaria parasite 

Orthologs of CCp proteins 

A gene related to a second gene by descent from a common ancestral DNA sequence is 

termed homolog. This term may apply to the relationship between genes separated by 

speciation (ortholog), or to the relationship between genes originating via genetic 

duplication (paralog) (Fitch, 1970). Deciphering of an increasing number of completed 

parasite genome sequences were completed during the last two decades. The raising 

bioinformatic possibilities discovered a growing number of orthologous genes. To 

explore orthologs of PfCCp proteins, two independent databases were scanned by 

bioinformatical screenings. The OrthoMCL database was established 2005 and the 

number of sequenced apicomplexan parasite genomes was doubled since this time 

(Chen et al., 2006). A recent study identified the CCp family members in the early 

branching apicomplexan class of gregarines, Ascogregarina taiwanensis (Templeton et 

al., 2010). The re-annotation work of CCp orthologs in this study did not support those 

findings, most probably due to the fact that the databases used in this study did not  

http://www.ncbi.nlm.nih.gov/pubmed/17714601
http://www.ncbi.nlm.nih.gov/pubmed/20111746
http://sysbio.oxfordjournals.org/content/19/2/99.full.pdf+html
http://www.ncbi.nlm.nih.gov/pubmed/16381887
http://www.ncbi.nlm.nih.gov/pubmed/19778951
http://www.ncbi.nlm.nih.gov/pubmed/19778951
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provide the gregarines genome sequence. The presence of Mus musculus, which 

seemingly comprises the CCp3 protein as a homologue can be described as exception, 

but also indicates the close relationship of the Scavenger receptor domain and the 

Pentraxin domain to vertebrate proteins. The overview of deciphered apicomplexan 

genomes of the OrthoMCL data base suggested that CCp homologues occur in all 

Apicomplexa, because they are found in all genomes sequenced so far. Similarly, the 

description of classification of apicomplexa is not consistent. Some sources create a 

new class for Cryptosporidium or combine Haemosporida and Piroplasmida in one 

group named Hematozoa (Fig. 4.1). In order to gain a schematic overview of identified 

orthologous CCp proteins a hypothetical tree of apicomplexa was developed. The 

apicomplexan genera containing CCp proteins were labelled with a turquoise dot 

(Fig. 4.1). 

For most of the CCp orthologs, sites of expression in the respective parasite species are 

yet unknown. Studies on Cryptosporidia and Plasmodium berghei revealed more 

detailed information on the CCp localization in these parasites. It is known that the 

expression of CpCCp1 of C. parvum (also referred to as Cpa135) starts in 

oocyst-sporozoites and increases rapidly after excystation (Snelling et al., 2006). In 

sporozoites, CpCCp1/Cpa135 is seemingly stored in the micronemes and is excreted 

upon host cell invasion. Subsequently, the protein localizes to the PVM. With the 

Figure 4.1:  Hypothetical tree of Apicomplexa. Four principal apicomplexan subclasses were depicted: 

gregarines, cryptosporidia, hematozoa and coccidia. Occurrence of orthologous CCp 

proteins was highlighted with a turquoise dot (modified from J. Slapeta 

http://tolweb.org/Apicomplexa/2446). 

http://www.ncbi.nlm.nih.gov/pubmed/17124246
http://tolweb.org/Apicomplexa/2446
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formation of merozoites, new transcript of CpCCp1/Cpa135 is detectable (Tosini et al., 

2004). Whereas characterization studies on CCp proteins in Babesia are still at the very 

beginning. BpCCp1, BpCCp2, and BpCCp3 were identified as markers for babesian 

sexual stages. So far it was not possible to differentiate between asexual and sexual 

stages of Babesia morphologically. Antibodies directed against BpCCp proteins offer 

new opportunities to study the sexual development of the babesian parasite (Becker et 

al., 2010). Like the degrees of relatedness the characteristics of CCp proteins in the 

rodent malaria parasite Plasmodium berghei are much more similar to the human 

pathogen than to other apicomplexa. CCp proteins are mainly expressed in female 

gametocytes (Khan et al., 2005; Raine et al., 2007). They are localized in the 

parasitophorous vacuole of gametocytes and attached to the parasites membrane of 

macrogametes after activation for about 1 h. Studies on GFP fusions of PbCCp3/LAP1 

(also termed PbSR), PbCCp1/LAP2, and PbCCp5/LAP3 revealed accumulation of these 

proteins in crystalloids. These organelles are formed in the ookinete and persist until 

the early oocyst stage (Carter et al., 2008; Saeed et al., 2010). Crystalloids are transient 

structures whose presence is restricted to the mosquito-specific ookinete and young 

oocyst stages of the parasite. The recent discoveries point to a potential important role 

in protein trafficking and sporozoite transmission that could be exploited as new 

targets for control of malaria transmission (Dessens et al., 2011). Similar observations 

were made in ookinete stages by IFA of Plasmodium falciparum. Strong single points of 

PfCCp proteins were detected with antibodies against the appropriate CCp protein in 

ookinetes (Bachelor Thesis of Vanesa Ngongang, 2011).  

The PfCCp proteins are comprised of multiple adhesive domains, whose remarkable 

architectures are conserved throughout the apicomplexan clade (Templeton et al., 

2004). The complex structure of these proteins suggests playing a role in protein, lipid, 

and carbohydrate interactions (Templeton et al., 2004; reviewed in Pradel et al., 2007). 

To benefit from progress in bioinformatic methods a domain search for PfCCp proteins 

was repeated and revealed five additional domains in the PfCCp protein family 

(reviewed in Kuehn et al., 2010). These findings filled gaps of so far not described CCp 

protein regions. Domain search was conducted via seven independent sequence 

analyzing programs and was confirmed by the PlasmoDB domain overview of each 

protein.  

To further understand the biological role of PfCCp proteins structural analyses are 

required. Experimental structure prediction methods can rely on detectable similarity 

http://www.ncbi.nlm.nih.gov/pubmed/14747151
http://www.ncbi.nlm.nih.gov/pubmed/14747151
http://www.ncbi.nlm.nih.gov/pubmed/20603159
http://www.ncbi.nlm.nih.gov/pubmed/20603159
http://www.ncbi.nlm.nih.gov/pubmed/15935755
http://www.ncbi.nlm.nih.gov/pubmed/17335349
http://www.ncbi.nlm.nih.gov/pubmed/18452513
http://www.ncbi.nlm.nih.gov/pubmed/19932717
http://www.ncbi.nlm.nih.gov/pubmed/21237711
http://www.ncbi.nlm.nih.gov/pubmed/15342554
http://www.ncbi.nlm.nih.gov/pubmed/15342554
http://www.ncbi.nlm.nih.gov/pubmed/15342554
http://www.ncbi.nlm.nih.gov/pubmed/17714601
http://www.ncbi.nlm.nih.gov/pubmed/20419315
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spanning of known structures or they predict the structure from sequence alone 

(Baker and Sali, 2001). Potentially these findings will give further understanding of the 

PfCCp function during the sexual development of malaria parasites.  

 

Interactions between sexual stage proteins in Plasmodium falciparum 

First studies on the PfCCp proteins reveal their localization in the PV of predominantly 

female gametocytes. Protein distribution occurs in a punctuated pattern for PfCCp1, 

PfCCp2 and PfCCp3 and mainly at the poles of gametocytes for PfCCp5 and PfFNPA. 

Further, PfCCp4 is spread homogenously (Delrieu et al., 2002; Pradel et al., 2004 and 

2006; Scholz et al., 2008). During gametogenesis PfCCp proteins appear to be partly 

released and later locate on the surface of newly emerged macrogametes (Pradel et 

al., 2004; Simon et al., 2009). Similarly it was shown that PfCCp2 and PfCCp3 knock-out 

parasites are not able to migrate to salivary glands (Pradel et al., 2004). This allows 

assigning these proteins to the group of potential TBV candidates. Furthermore it was 

recently reported that PfCCp1, PfCCp2, and PfCCp3 proteins are co-dependently 

expressed and that the abrogation of PfCCp3 in gene-disruptant gametocytes leads to 

the lack of PfCCp1 and PfCCp2 (Pradel et al., 2006). Studies verify that all PfCCp 

proteins are co-dependently expressed and that the lack of one of the proteins leads 

to partial or complete loss of the other family members (Simon et al., 2009). This 

guides to the hypothesis that PfCCp proteins interact with each other to form a MPC. 

In the present study this hypothesis is addressed. Molecular interactions between the 

six members of the PfCCp protein family were investigated and confirmed. It was 

subsequently revealed that the six endogenous PfCCp proteins interact by forming 

protein complexes that were co-precipitated using a variety of PfCCp antibodies. 

Protein interactions of recombinant PfCCp proteins were investigated by direct protein 

binding of distinct adhesion domains using bacterially expressed recombinant proteins. 

These results suggest direct protein-protein interactions between these sexual-stage 

proteins. Binding capacity was also revealed between the PfCCp protein complex and 

the surface associated protein Pfs230 and the GPI-anchored protein Pfs25. Binding 

studies revealed that PfCCp proteins showed binding capacity only to Pfs230 and Pfs25 

only after activation of gametocytes. One might hypothesize that PfCCp proteins have 

to be tightened to the plasma membrane of the parasite after the rupture of the PVM 

during activation. This is the first time that such complexes involving interactions of 

multiple adhesive proteins are described for the sexual stages of malaria parasites. 

http://www.ncbi.nlm.nih.gov/pubmed/11588250
http://www.ncbi.nlm.nih.gov/pubmed/11985859
http://www.ncbi.nlm.nih.gov/pubmed/15184503
http://www.ncbi.nlm.nih.gov/pubmed/16388802
http://www.ncbi.nlm.nih.gov/pubmed/17950739
http://www.ncbi.nlm.nih.gov/pubmed/15184503
http://www.ncbi.nlm.nih.gov/pubmed/15184503
http://www.ncbi.nlm.nih.gov/pubmed/19304662
http://www.ncbi.nlm.nih.gov/pubmed/15184503
http://www.ncbi.nlm.nih.gov/pubmed/16388802
http://www.ncbi.nlm.nih.gov/pubmed/19304662
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Other protein complexes have been identified in asexual parasites, for example on the 

merozoite surface (Kauth et al., 2003; Blackman et al., 1991; Ranjan et al., 2011) or in 

the rhoptries of mature schizonts (Cooper et al., 1988). 

During the last two decades a substantial number of proteins expressed in the sexual 

and mosquito stages of malaria parasites have been identified (reviewed in Pradel, 

2007). The majority of these sexual stage proteins are initially expressed in the PV 

during gametocyte differentiation, and some are later exposed on the surface of 

emerged gametes and fertilized zygotes. Surface-associated proteins include Pfs25 and 

Pfs28, Pfs48/45, Pfs230, as well as the six PfCCp proteins (reviewed in Pradel, 2007). 

Despite ongoing characterizations for most of the identified proteins, the functional 

basis   for   their   expression  within   the   PV  of  gametocytes,  their  exposure  during 

emergence,  and  the  role  of  the  numerous adhesive motifs of these proteins remain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2:  Schematic overview of interacting proteins in the parasitophorous vacuole of 

gametocytes and on the surface of macrogametes. This picture represents all proteins 

included in the study and their potential localization. Thick lines indicate strong 

interactions, thin lines standard interactions. PPM - parasite plasma membrane; 

PV - parasitophorous vacuole; PVM -parasitophorous vacuole membrane. 

http://www.ncbi.nlm.nih.gov/pubmed/12654909
http://www.ncbi.nlm.nih.gov/pubmed/1775158
http://www.ncbi.nlm.nih.gov/pubmed/21175202
http://www.ncbi.nlm.nih.gov/pubmed/3045543
http://www.ncbi.nlm.nih.gov/pubmed/17714601
http://www.ncbi.nlm.nih.gov/pubmed/17714601
http://www.ncbi.nlm.nih.gov/pubmed/17714601
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unclear. The PfCCp protein family comprises prominent members of sexual stage 

proteins with their expression lasting for about ten days (Scholz et al., 2008). Similarly 

it was demonstrated that the TBV candidate Pfs230 is expressed in male and female 

sexual parasites in association with the plasmalemma (Quakyi et al., 1987; Williamson 

et al., 1995). It mediates contact with erythrocytes and as a consequence is 

responsible for the formation of exflagellation centers (Eksi et al., 2006). During 

gametogenesis the protein becomes processed proteolytically and peptides are 

released into the surrounding medium (Williamson et al., 1996). Interestingly recent 

studies revealed that Pfs230 co-localizes with PfCCp4 in gametocytes and an 

interaction of both proteins via Co-IPs has been proven (Scholz et al., 2008).  

The above described findings lead to setting up an organization of an extended set of 

interaction studies between sexual stage proteins. This resulted in the supposition that 

all PfCCp proteins form a MPC inside the PV of gametocytes and on the surface of 

newly emerged gametes. The complex is tightend by Pfs25, Pfs230 and Pfs48/45 to the 

PM only in activated gametocytes (Fig. 4.2; reviewed in Kuehn et al., 2010). All 

experiments were implemented with endogenous proteins and protein complexes 

were co-precipitated using a variety of antibodies against sexual stage proteins. It is 

striking that interactions between PfCCp proteins seem to be very close or firm, as 

compared to interactions between Pfs230 and the PfCCp proteins, because bands of 

interacting PfCCp proteins are remarkably strong.   

However, the investigated proteins form an extensive MPC, whereas the sequence of 

interacting proteins remains unclear. Furthermore, the distance between the PPM and 

the PVM seems to be closer in pfs230 mutant parasites, than in the wildtype 

(unpublished observations of Gabriele Pradel). This emphasizes that Pfs230 stabilizes 

together with the PfCCp proteins the space between the PPM and the PVM in 

gametocytes. Interactions between the PfCCp proteins (except of PfCCp4) and Pfs230 

could only be proven after activation of gametocytes (Fig. 4.2). This confirms the 

hypothesis that Pfs230 tightens the PfCCp proteins on the surface of newly emerged 

macrogametes. In addition recent expression studies of pfs230 knockout parasites 

indicate that after activation PfCCp proteins are not detectable on the surface of 

macrogametes any more. However, it was proven that PfCCp proteins are expressed in 

pfs230 knockout gametocytes. Further investigations on activated gametocytes of 

pfs230 mutant parasites are under investigation.  

http://www.ncbi.nlm.nih.gov/pubmed/17950739
http://www.ncbi.nlm.nih.gov/pubmed/2447164
http://www.ncbi.nlm.nih.gov/pubmed/8720173
http://www.ncbi.nlm.nih.gov/pubmed/8720173
http://www.ncbi.nlm.nih.gov/pubmed/16879650
http://www.ncbi.nlm.nih.gov/pubmed/8813686
http://www.ncbi.nlm.nih.gov/pubmed/17950739
http://www.ncbi.nlm.nih.gov/pubmed/20419315
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Proteins like Pfs16 and Pfg377 showed no binding to the discovered complex, which 

can be explained by the fact that they are located in other cell compartments. Pfg377 

is associated with osmiophilic bodies in Plasmodium falciparum. These organelles lie 

beneath the subpellicular membrane of gametocytes, and release their contents, 

including Pfg377, into the PV after activation (de Koning-Ward et al., 2008). Pfs16 is 

described as gametocyte-specific protein, which exhibits one transmembrane domain 

and is integrated in the PVM (Baker et al., 1994), whereas the discovered MPC is 

associated with the PPM. Moreover a recent study revealed pole-oriented distribution 

of Pfs16 after the onset of gametogenesis, which is not corresponding with the 

distribution of the proteins belonging to the protein complex discovered in this thesis 

(Eksi and Williamson, 2011). Not many protein complexes are identified in Plasmodium 

falciparum beside one well-characterized complex involved in merozoites attachment 

is constituted by the PfMSP (merozoite surface protein) group (Blackman et al., 1991). 

The majority of these peripheral proteins is secreted into the PV of schizonts and 

subsequently binds to the surface of developing merozoites via interaction with GPI-

anchored proteins such as PfMSP1 (Blackman et al., 1991). This adhesive MSP-based 

protein complex, which consists of multiple secreted proteins assembling around a 

GPI-anchored EGF-domain protein (like Pfs25), shows superficial similarities with the 

here discussed cell surface-associated PfCCp MPC (Kuehn et al., 2010). 

The molecular interactions between the PfCCp proteins were investigated in more 

detail with affinity chromatography co-elution binding assays. An extensive range of 

recombinant PfCCp proteins was available and direct interaction studies of a selection 

of PfCCp domains were carried out. These investigations showed that PfCCp proteins 

directly interact with each other. The domain which is most frequently part of 

interacting proteins is the Scavenger Receptor domain. These investigations are not 

fully quantitative, because domains did not appear in the same number, and were not 

used with the same degree. Of course domains of the CCp3 proteins have more 

chances to attract attention because they were used as main bait in most of the 

interaction studies. Furthermore working with recombinant proteins expressed in 

E. coli always includes the risk of misfolding. Beside that E. coli is not able to 

glycosylate the proteins which are originally from eukaryotes.  

To prove if endogenous plasmodial proteins also bind recombinant proteins and vice 

versa, additional binding studies were performed. Results revealed that recombinant 

proteins produced by E. coli interact with endogenous proteins from parasite lysates. 

http://www.ncbi.nlm.nih.gov/pubmed/18086189
http://www.ncbi.nlm.nih.gov/pubmed/8159458
http://www.ncbi.nlm.nih.gov/pubmed/21498641
http://www.ncbi.nlm.nih.gov/pubmed/1775158
http://www.ncbi.nlm.nih.gov/pubmed/1775158
http://www.ncbi.nlm.nih.gov/pubmed/20419315
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In connection with the identified protein-protein interactions it is very likely that 

further so far uncharacterized proteins are part of the discovered MPC. To investigate 

this question the protein complex was precipitated using PfCCp1 as bait from 

gametocyte lysate. Mass spectrometry revealed one potential new member of the 

protein complex. A conserved, so far uncharacterized protein with the geneID 

PF14_0412 was identified. This 96 kDa protein contains two WD40 domains and no 

signal peptide or transmembrane domains. Proteins containing WD40 repeats often 

serve as platforms for the assembly of protein complexes or mediate the interplay of 

proteins (reviewed in Smith et al., 1999 and Li and Roberts, 2001). Further 

characterization of this protein is now under investigation. Antibodies against 

PF14_0412 were generated in mice. IFAs revealed protein expression in asexual 

parasites and gametocytes. In gametocytes the WD40 protein is located to the surface 

in a punctuated distribution, very similar to the expression pattern of PfCCp1-3. 

Therefore first results on the characterization of the WD40 protein emphasize that it is 

possibly involved in the protein complex formation in gametocytes. Preparation of 

PF14_0412 knock-out parasites and further investigation of protein expression and 

localization are currently under investigation by Andrea Kuehn and Vanesa Ngongang. 

Another potential function of this protein may be protein trafficking like it was 

assumed for a WD40-containing protein in asexual parasites (Adisa et al., 2001). 

Similarly an association with the myosin-motor-complex is not precluded. Myosin tails 

(MyoF) contain four to six WD40 repeats that have been implicated in diverse 

functions like signal transduction and transcriptional regulation (Foth et al., 2006). The 

PfMyoF-myosin is expressed steadily throughout development and maturation and 

hence also in gametocytes (Chaparro-Olaya et al., 2005). Actin is the most abundant 

protein found in eukaryotic cells and has multiple binding sites for myosin. Recent 

findings suggest interaction of Pfs230 and PfActin II (unpublished observations by 

Andrea Kühn). Furthermore, Actin II is not detectable in pfs230-knockout parasites, 

which indicates co-dependent expression of the two proteins. Actin II is described as a 

sexual stage-specific protein (Wesseling et al., 1988 and 1989) and disruption of actin II 

in P. berghei resulted in an inhibition of male gametogenesis (Deligianni et al., 2011). 

WD40-repeats have also been identified in actin-interacting proteins (Voegtli et al., 

2003; Mohri et al., 2004). The connection between the WD40-containing protein 

PF14_0412, Pfs230, and PfActin II has to be investigated. Furthermore its potential 

responsibility in the assembly of the newly identified MPC on the surface of activated 

gametocytes has to be explored. 

http://www.ncbi.nlm.nih.gov/pubmed/10322433
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http://www.ncbi.nlm.nih.gov/pubmed/11591825
http://www.ncbi.nlm.nih.gov/pubmed/16505385
http://www.ncbi.nlm.nih.gov/pubmed/15754360
http://www.ncbi.nlm.nih.gov/pubmed/2459617
http://www.ncbi.nlm.nih.gov/pubmed/2671721
http://www.ncbi.nlm.nih.gov/pubmed/21790945
http://www.ncbi.nlm.nih.gov/pubmed/12807914
http://www.ncbi.nlm.nih.gov/pubmed/12807914
http://www.ncbi.nlm.nih.gov/pubmed/15150269


_____________________________________________________________________Discussion 
 

100 
 

Procession of PfCCps  

After the uptake by the mosquito, both male and female gametocytes round up and 

escape from the enveloping membranes about 15 min post activation. The EM and the 

PVM therefore rupture within minutes after activation (Sologub et al., 2011) and 

unbound proteins of the PV are set free. For PfCCp1, PfCCp2, and PfCCp3, a partial 

release of protein during egress from the erythrocyte was reported previously, and the 

proteins later relocate surrounding exflagellation centers (Pradel et al., 2004). These 

findings correspond to the missing protein bands in some activated gametocyte lysates 

in comparison to non-activated gametocytes of the processing studies in this work. 

Processed, unbound PfCCp proteins might be released after activation because 

surrounding membranes (EM and PVM) rupture. Western blot analysis of PfCCp 

proteins in gametocyte and activated gametocyte lysates display additional protein 

bands beside the full length protein. Protease inhibitor was added directly in front of 

freezing the gametocyte or activated gametocyte lysate to avoid subsequent protein 

degradation. It is very likely that the additional bands are processed proteins. Despite 

this, an unspecific binding of antibodies or an overload of proteins might also lead to 

additional protein bands. The same amount of protein lysate was used for every lane. 

Since proteins differ in their expression level an overload of proteins might lead to 

unspecific protein bands. Processing of surface proteins in the malaria parasite was 

also described for the merozoites surface protein-1 (MSP1) (Blackman and Holder, 

1992) and for the Pfs230 protein (Williamson et al., 1996). But in comparison to the 

Pfs230 protein processing, which occurs after activation, PfCCp proteins are cleaved 

prior to activation and released when the surrounding membranes rupture during 

gametogenesis.  

 

Hypothesis of the MPC function  

PfCCp proteins form together with Pfs25, Pfs230, and Pfs48/45 an extensive protein 

complex which covers the surface of macrogametes, but functional details of this 

protein envelope are hitherto unknown. The expression of the PfCCp proteins starts 

during the transition from stage II to stage III gametocytes (Pradel et al., 2004). During 

gametocyte maturation some proteins become processed and protein complexes 

containing all PfCCp proteins are formed. After activation female gametocytes round 

up and lose the EM and PVM. Processed unbound PfCCp peptides are released and the 

PfCCp  complexes  bind  to  the  surface  associated  Pfs230  and  Pfs25   and   form  an  
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extensive protein complex on the surface of macrogametes. In addition, it was found 

that macrogametes form filamentous cell-to-cell connections alleged “nanotubes” 

(Rupp et al., 2011). These filaments contain Pfs230 and Pfs25 proteins. This facilitates 

the hypothesis that these proteins support interactions between macrogametes. 

Furthermore the adhesive properties of the PfCCp multi-protein complexes might form 

a protective shield that represents a barrier between the newly exposed gametes and 

the aggressive environment of the mosquito midgut. The malaria parasite’s surface 

might be affected by human blood meal factors which are taken up with the blood 

meal. Furthermore midgut bacteria or digestive enzymes can attack the surface of the 

newly emerged macrogametes, which might need time to stabilize their surface 

membrane after gametogenesis.  

 

4.2  The human complement system and malaria parasites in the 

mosquito midgut 

The binding of complement regulators by microbes is a means to mimic host cell 

surfaces and represents a mechanism of complement evasion that is used by a broad 

range of pathogens, including gram-positive and gram-negative bacteria, viruses, fungi 

and parasitic worms like Echinococcus granulosis and Onchocerca volvulus. Each of 

these pathogens bind soluble regulator proteins, like FH, FHL-1, CFHR-1, or the 

C4-binding protein C4BP on their surface, thereby inactivating C3b or C4b. During 

recent years, several types of microbial complement-binding receptor proteins have 

Figure 4.3:  Working Hypothesis: MPC formation of sexual stage parasites. During gametocyte 

development, adhesion proteins are expressed in the PV, become processed and assemble 

to MPCs. During gamete emergence processed peptides were released and the complexes 

are exposed to the macrogamete’s surface. 
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been identified and functionally characterized. Among others, this highly diverse group 

of proteins includes the streptococcal M proteins, the pneumococcal PspC proteins, 

and the complement regulator-acquiring surface proteins CRASP1-5 of Borrelia 

burgdorferi and Candida albicans. Each of these complement-binding receptors is able 

to interact with multiple soluble host proteins and complement regulators (reviewed 

in Zipfel et al., 2007). Despite the growing knowledge on complement evasion 

mechanisms of human pathogens, surprisingly few data were hitherto obtained on the 

complement evasion strategies of protozoan parasites. In the late 1980s APC evasion 

of Trypanosoma cruzi was investigated and discovered that the infective metacyclic 

form accumulates inactivated C3b on its surface (Joiner et al., 1986). The authors 

proposed that C3b inactivation was not due to FH binding, but to inefficient binding of 

the amplification component, factor B. At the same time APC evasion of sexual stages 

of P. gallinaceum, after emerging from the enveloping red blood cell, was examined 

(Grotendorst et al., 1986). Young zygotes were shown to have a protection mechanism 

against APC lysis, but the protection was lost at 6-8 h post-blood meal. The authors 

speculate that a protease derived from the mosquito midgut is responsible for APC 

inactivation (Grotendorst et al., 1986 and 1987). Several years later, APC activity in the 

mosquito midgut during infection with P. berghei was investigated (Margos et al., 

2001). Again, the sexual stages were shown to be protected from complement-induced 

lysis for approximately 3 h. The authors hypothesized that the sexual stages ingest the 

GPI-anchored protectin CD59 and subsequently present the receptor on their surface, 

like it had been proposed for Escherichia coli and Helicobacter pylori (Rautemaa et al., 

1998; Mihlan et al., 2011). However, no CD59 was detected in the zygotes (Margos et 

al., 2001).  

We now identified the protective component which enables APC evasion of malaria 

parasites in the blood meal during sexual reproduction as human FH. Emerging 

gametes and young zygotes bind FH, and to a lower extend FHL-1, on their surface. 

This results in decreased parasite lysis by the human complement. In consequence, 

surface-bound C3b becomes inactivated and processed by cofactor FH and factor I. 

Furthermore, FH becomes slowly degraded in the midgut during a period of 6 h, while 

the human APC of the blood meal is active for about 1 h. Thus APC activity ceases 

before FH is being degraded. This explains previous finding that malaria parasites are 

protected for approximately 3 h, but that they lose the protection after 6-8 h 

(Grotendorst et al., 1986 and 1987; Margos et al., 2001). 
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Activity of the human complement system 

In this thesis serum from uninfected, healthy humans was taken to analyze 

complement activation after the uptake of the human blood into the mosquito midgut. 

These investigations show that complement activation becomes initiated within 

minutes, is most active during the first 20 min post activation, and that activity persists 

up to 1 h. The resulting ELISA data cannot be compared with the presented standard 

curve in the user’s manual because a mixture of the whole content of mosquito 

midguts was measured and not only serum, like it was prescribed in the instructions of 

the C3a Plus EIA Microvue Kit. The small deviations of C3a measurements from 

different mosquito midgut lysates point out that the used method reveals plausible 

results. Almost the same volume of serum out of one midgut was examined, because 

no protein reduction and thereby volume reduction by digestion enzymes of the 

bloodmeal occurs within the first 4 h after the blood meal, where only osmoregulatory 

processes proceed. The synthesis of first secretory material, including digestive 

enzymes, starts 4-8 h after the bloodmeal and digestion enzymes at the earliest 8 h 

after feeding (Houk and Hardy, 1982; Jahan et al., 1999). This ensures that reduction of 

C3a occurs not due to digestion of midgut contents. The results demonstrate that the 

complement system is active in the midgut for a period of 3 h post infection. It was 

recently shown that during gametogenesis the parasites remain in the membrane of 

the host erythrocyte for approximately 15 min, before the membrane ruptures and 

releases the newly formed gametes (Sologub et al., 2011). The prolonged stay of the 

emerging gametes in the remnants of the host cell is probably a strategy to hide from 

the APC during its most active phase. Subsequently, the gametes have to rapidly bind 

FH to be protected from complement-mediated lysis. The gametogenesis inhibition 

assays pursued in this study indicate that about 1/3 of the emerging gametes are lysed 

by the complement. These might in part represent parasites that did not bind FH 

effectively or fast enough for protection. 

Classical pathway activation was examined either in the presence or absence of 

monoclonal antibodies against Pfs230 and the protein band strength of C1q was 

measured. C1q bound strongly to activated gametocytes only in the presence of 

antibodies, which strengthens the potential of Pfs230 as a TBV candidate. In the 

absence of Pfs230 antibody classical pathway activation was very weak. Therefore, 

classical pathway activation can be neglected, when mosquitoes were fed on blood of 

naïve individuals. But measuring classical complement activation with sera of 
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uninfected humans did not match with natural conditions in some cases. Studies reveal 

antibody production, for example against Pfs230 and Pfs48/45 in 15-20 % of infected 

humans (Bousema et al., 2010). These findings suggest that in several malaria patients 

proteins from the PPM within the PV were exposed to the human’s immune system 

and presented antigens for antibody production. Erythrocytes and gametocytes were 

degraded in the spleen or by hemolysis and thereby gametocyte proteins were 

released. Beside that, mature gametocytes die after several days and parasite proteins 

were set free in the human host. Gametocytes normally sequester away from the 

peripheral circulation (Day et al., 1998; Rogers et al., 1996), thereby avoiding clearance 

by the spleen. It has been suggested that stage I-II gametocytes adhere to CD36, 

before undergoing a switch in stage III / IV that permits sequestration in the bone 

marrow, while the mature stage V gametocytes lose the ability to cytoadhere (Rogers 

et al., 2000). However, a recent study does not support this receptor-mediated binding 

of host cells to gametocytes. The authors support a more efficient cell adhesion of 

asexual parasites to bone-marrow derived endothelial cells, than immature 

gametocytes (Silvestrini et al., 2012). Therefore, gametocytes die or can become 

degraded in the spleen and surface proteins like Pfs230 were presented to the immune 

system and might induce antibody production in infected humans. 

The central component of the complement system is the human complement factor 

C3. Activation of C3 follows from proteolytic cleavage of the C3 molecule into two 

biologically active fragments C3b and C3a and depicts complement activation 

(reviewed in Liszewski et al., 1996). Initial experiments via IFA display that C3b binds 

extensively to activated gametocytes and only a very faint binding to erythrocytes and 

Gc was found (Fig. 3.11). To gain deeper insight into the inactivation status of C3 on 

the surface of activated gametocytes C3 binding assays were carried out and C3 

deposition on the parasite’s surface was detected via Western blot analysis. This 

displays an inactivation of C3b which is indicated by the detection of the α’1 and α’2 

peptide of the α’-chain of C3 (Pangburn et al., 1977; Barilla-LaBarca et al., 2002; Riley-

Vargas et al., 2005). Different factors are known to regulate the activity of the human 

complement system and thereby the cleavage of C3b. Proteins such as CR1, the 

membrane cofactor protein MCP, and the decay-accelerating factor DAF are known to 

be inhibitors of complement activation (Meri and Jarva, 2001). Inactivation of the APC 

on the surface of pathogens often occurs by binding of the complement regulator FH 

and/or FHL-1 (Dave et al., 2001; Areschoug et al., 2002; Bhide et al., 2009, Amdahl et 
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al., 2011). Due to these findings it is assumed that malaria parasites bind regulatory 

factors like FH as well. Therefore the following experiments focused on FH 

characterization in the mosquito midgut and its binding capacity to different cell types 

present in the mosquito’s blood meal.  

 

Impact of the active human complement on the parasite gametogenesis 

To study the influence of active complement on the formation of gametes 

gametogenesis inhibition assays were performed. The numbers of male parasites were 

evaluated by exflagellation assays. With this method it is possible to count the 

formation of male gametes. Exflagellation was compared in samples with HIS and NHS.  

The results reveal a 20 % lower exflagellation rate of male gametes activated in NHS in 

comparison to HIS activated male parasites. Therefore it can be expected that about 

40 % of female parasites become lysed after the uptake into the mosquito’s midgut. 

But remaining 60 % of parasites are able to survive. The reason for the loss of parasites 

may be due to the short time parasites have time to prepare protective measures. 

Similarly, in NHS-treated gametocyte cultures, the presence of anti-FH antibodies 

significantly reduces the number of macrogametes and zygotes and further reduces 

the number of exflagellation centers compared to NHS-treated controls. Besides, anti-

FH antibodies are able to block transmission of Plasmodium to the mosquitoes, when 

taken up with the infected blood meal. The results reveal that FH-binding to the sexual 

stage surface is essential for parasite survival in the midgut. 

To investigate the time period FH, related proteins like FHL-1, or CFHR-1 are present in 

the mosquito midgut, contents were analyzed via Western blot analysis for their 

existence of these proteins. Full length FH was detected up to 15 h post feeding. First 

procession products were observed at 40 min post-feeding. The protein pattern of 

infected midguts is not substantially different from uninfected ones. It was proven that 

FH and FHL-1 are present for about 6 h in the mosquito’s midgut, but the α and β 

peptides of CFHR-1 are not detectable at any stage. Possibly CFHR-1 is degraded by the 

mosquitoes’ anticoagulants or an anti-complement protein. Only in blood-feeding 

arthropods anticoagulants have been found (reviewed in Ribeiro, 1987 and Ribeiro and 

Francischetti, 2003) and influence the consistency of the blood meal. The tick Ixodes 

scapularis owns an anti-complement protein, which is injected during the bite and 

reduces human complement activation (Valenzuela et al., 2000) and also Anopheles 
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mosquitoes have similar mechanisms to reduce complement activity in the mosquito 

midgut (Francischetti et al., 2002).  

The following studies focused on the binding of FH and related proteins to different 

cell types present in the bloodmeal of the mosquito. First IFAs revealed faint binding to 

erythrocytes and gametocytes. FH binding of sexual parasites increases considerably 

after activation and diminished after 3 h. The used FH antibody detects FH, FHL-1, and 

CFHR-1. To gain a deeper insight into the binding capacity of these proteins to malaria 

parasites in vitro binding studies were performed. This reveals that FH and FHL-1, but 

not CFHR-1 bound to activated gametocytes. With purified FH it was proven that FH 

binds directly to activated gametocytes. FH binding to parasites incubated in HIS 

remained very faint probably due to misfolding of FH during heat inactivation. That FH 

of HIS loses cell binding capacity after heat inactivation had previously been proven 

(Ollert et al., 1995). For all experiments it was indispensable to wash cells thoroughly 

because FH residues from cell culture incubation were always detectable, although the 

serum in cell culture medium was heat inactivated.  

Further investigations focused on the identification of specific binding domains of FH 

to the gametes surface. FH binding is mediated by SCR modules 5-7. The modules are 

also present in FHL-1, which is an alternative splicing product of FH and identical with 

the first seven SCR modules of FH. It is likely that only the SCR domains 6 and 7 bind to 

the parasite surface, like it was described for Candida albicans (Meri et al., 2002 b). In 

fact, binding of both FH and FHL-1 to the activated gametocytes as was detected. 

Because FHL-1 is present in the blood in a much lower concentration than FH (with a 

plasma concentration of 30 μg/ml for FHL-1 versus 500 μg/ml for FH; reviewed in Zipfel 

and Skerka, 1999 and 2009; Rodriguez de Cordoba et al., 2004), the predominant 

protein that bound to the surface of sexual stage parasites was FH. It is therefore 

presumed that malaria parasites preferentially co-opt FH for protection against the 

human APC. 

To ensure that FH is the decisive protein which is responsible for the inactivation of 

C3b on the surface of macrogametes, a Co-Factor activity assay was performed. 

Instead of NHS purified C3b, factor I and FH were incubated with gametocytes during 

activation. Distinct bands for the α’ cleavage were detectable only in the presence of 

FH, which demonstrated that FH is the decisive factor for C3b inactivation on the 

surface of activated gametocytes.  
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First FH binding of parasites was discovered in 1988 and demonstrated in Toxocara 

canis and Schistosoma mansoni (Kennedy et al., 1988). However, this did not correlate 

with the functional inhibition of C3b on the surface of these parasites. Thus it was 

shown that binding of FH does not necessarily inhibit the alternative pathway (Joiner 

et al., 1986; Kennedy et al., 1988). Bovine FH was discovered to bind to Echinococcus 

granulosus cyst walls (Diaz et al., 1997) and finally this was the first indicator that FH 

inhibits complement activation to protect parasites. In studies on microfilariae of 

Onchocerca volvulus FH binding was discovered and the Co-Factor Assay revealed the 

first time that human FH is responsible for inactivation of C3b into iC3b on a parasites 

surface (Meri et al., 2002 a). Immune evasion strategy can also be described as 

molecular mimicry. Host cell surfaces are imitated by parasites. One example in 

Plasmodium are the PfEMP1 variants, which are identical to parts of the heparin-

binding domain in the immunosuppressive human serum protein vitronectin (Ludin et 

al., 2011). Vitronectin promotes cell adhesion, spreading, and inhibits membrane-

damaging. It binds to bacterial surfaces and is known to protect from membrane-

attack-complex-mediated lysis by the complement system (Singh et al., 2010). 

 

FH comprises four C3b and three heparin binding domains, which overlap partly (Kühn 

et al., 1995; Haupt et al., 2007; Kunert et al., 2007; Skerka et al., 2007; Mihlan et al., 

2009, 2011; Reuter et al., 2010; Lauer et al. 2011; Weismann et al., 2011). SCR7 is one 

of the heparin binding sites and was shown to be part of the binding domains which 

bind to the surface of the malaria parasite. In order to confirm involvement of the 

SCR7 domain in gametocyte attachment, competition studies were performed. In the 

presence of heparin C3b binding was strongly reduced, because two of the three C3b 

binding sites were blocked by heparin. Moreover, C3b was less degraded, as detected 

by the reduced presence of cleavage products α’1 and α’2, when compared to samples 

activated without heparin. This indicates that heparin competed with FH binding to the 

gametocytes, resulting in less inactivation of C3b. Similarly, FH showed a weaker 

binding to activated gametocytes when activated with heparin treated serum. Due to 

the fact that it is not possible to block FH binding completely, it is assumed that SCR5 

and/or SCR6 play also an important role in FH binding. In addition, it is possible that FH 

shares a second binding site for attachment of malaria parasites and incorrect folding 

of recombinant proteins can never be excluded.  
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FH binding of a plasmodial cell surface protein   

In search of the FH binding protein on the surface of activated gametocytes, Co-IPs 

were performed using FH as bait protein. Out of the precipitated protein complex one 

45 kDa protein came to the fore in silver stained SDS-gels and was identified as 

PfGAP50. It was originally assigned to the actin-myosin motor complex of the invasive 

stages of P. falciparum and Toxoplasma gondii, where it forms a protein complex with 

GAP45 and myosin A (Fig. 4.5; reviewed in Baum et al., 2006; Sanders et al., 2007; 

Frénal et al., 2010). Further orthologs of GAP50 exist in Plasmodium vivax, P. yoelii, P. 

knowlesi, P. chabaudi and P. berghei, in Babesia bovis, Neospora caninum, Toxoplasma 

gondii, Theileria annulata, Eimeria tenella, Cryptosporidium parvum, C. muris, and C. 

hominis (reviewed in Baum et al., 2006). Full-length PfGAP50 is located in the 

endoplasmic reticulum in the early blood stages of P. falciparum and then redistributes 

to the surface of daughter merozoites during schizogony (Yeoman et al., 2011). The 

crystal structure of PfGAP50 was recently solved and the structure shows an αββα fold 

(Bosch et al., 2012). Interestingly, GAP50 exhibits a metallo-dependent phosphatase 

domain and was recently described as an active phosphatase in the P. falciparum 

blood stage parasites (Müller et al., 2010). The authors show that PfGAP50 enters the 

secretory pathway to the parasite periphery and is subsequently engulfed into the 

food vacuole. In accordance with previous findings PfGAP50 was found predominantly 

intracellular in merozoites. These cells exhibit an IMC, which plays a fundamental role 

in reinforcement and the motility of the invasive plasmodial parasite stages. Similarly,  

 

 

 

 

 

 

 

 

 

 

Figure 4.4:  Model of the invasion machinery of 

apicomplexa. The schematic drawing represents 

the key players of the motor complex of motile 

stages of Plasmodium and other apicomplexa. The 

IMC is connected to the actin-myosin motor. The 

exact orientation of PfGAP50 is unknown. IMC - 

Inner membrane complex; PPM - Parasite plasma 

membrane (modified from Bosch et al., 2012). 
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the IMC is an essential compartment for the development of the sexual stages of 

Plasmodium and seems to drive morphological changes during gametocytogenesis 

(Kono et al., 2012).  In asexual and gametocyte stages, the main part of PfGAP50 is in 

the IMC. During gametocyte maturation PfGAP45 disassociates from PfGAP50, and 

PfGAP50 directs towards the periphery of the parasite (Dearnley et al., 2012). After 

gametocyte activation and following disintegration of the IMC during gametogenesis 

(Sologub et al., 2011), though, PfGAP50 can be found on the macrogamete surface. 

During this emerging from the host-cell the IMC of gametocytes disintegrates and 

PfGAP50 turns up to the surface. In schizonts PfGAP50 displayed a 70 kDa and  a full-

length 46 kDa band, the 70 kDa band might be a dimer, or occurred due to unspecific 

binding of the antibody. In mature and activated gametocytes a protein band doublet 

was detected, indicating that beside the full-length protein a processed version of 

PfGAP50 is present in these stages. Bioinformatic analyses predict two transmembrane 

domains, one at the C-terminal end and one inside the N-terminal signal peptide. The 

predicted N-terminal transmembrane helix is in fact part of the signal peptide 

sequence, which is processed and cleaved of (Müller et al., 2010; Yeoman et al., 2011; 

Bosch et al., 2012) during maturation of the protein. The conserved surface of 

PfGAP50, 80 % identity within apicomplexa (reviewed in Anantharaman et al., 2007), 

suggests important transient interaction partners (Bosch et al., 2012). The C-terminal 

transmembrane helix remains intact and serves as anchor to the IMC (Bosch et al., 

2012). Interestingly, Yeoman et al., 2011 reported that a mutant of pfgap50, lacking 

the C-terminal membrane anchor, is not directed to the IMC, but to the 

parasitophorous vacuole. One can hypothesize that the C-terminal peptide might be 

cleaved off during gametocyte activation, thereby removing the C-terminal 

transmembrane domain, which results in the re-localization of PfGAP50 to the parasite 

surface. There PfGAP50 might be associated to the plasma membrane by an unknown 

protein of the plasma membrane. Another possibility would be that the membranes of 

the IMC form loops, which relocate GAP50 to the surface of the parasite. Dearnley et 

al., 2012 describes kind of looping extensions of the IMC in stage III gametocytes. 

Potentially a similar phenomenon occurs during gametogenesis, whereby the IMC 

disintegrates, like described in Sologub et al., 2011. Thereby GAP50 is navigated to the 

surface and fuses with the PPM. Once PfGAP50 is exposed on the surface of the newly 

formed macrogametes, it functions as a FH and FHL-1 receptor (Fig. 4.5).  
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This doctoral thesis provides new insights into molecular interactions of the malaria 

parasite in the mosquito midgut. Extensive protein complexes were formed in the PV 

of gametocytes and coat the parasites surface after activation in the mosquito midgut. 

All proteins which are components of this protein complex are potential TBV 

candidates and probably most effective when the vaccine will be administered as a 

protein cocktail. Moreover it was elucidated how the parasite is able to escape from 

the attack of the human complement system in the mosquito midgut. Thereby the 

receptor protein on the surface of newly emerged gametes, which binds regulatory 

human complement factors, has been identified and promises to become a potential 

TBV candidate as well.   

These recent findings elucidate several details about the sexual reproduction of the 

malaria parasite in the mosquito midgut and thereby offer additional opportunities to 

block the development of the parasite during this sensitive part of the life cycle. It is 

still desirable that the spread of the disease can be reduced enormously within the 

next years.  

Figure 4.5:  Working Hypothesis: Navigation of PfGAP50 to the surface of macrogametes during 

gametogenesis in order to bind FH and FHL-1. PfGAP50 is a transmembrane protein of the 

IMC in merozoites and gametocytes. During activation the IMC disintegrates and PfGAP50 is 

navigated to the surface of newly emerged macrogametes, potentially by loop formation of 

the IMC. After activation the human complement regulators FH and FHL-1 bind to C3b on 

the surface of Plasmodium falciparum via the membrane bound receptor PfGAP50. Thereby 

C3b becomes inactivated and the parasite is protected against the attack of the human 

complement system.  
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5 Future perspectives 

In P. falciparum gametocyte development and gamete formation is accompanied by 

the co-ordinated expression of numerous sexual stage proteins, including the multi-

adhesion domain PfCCp proteins, the EGF domain-containing protein Pfs25 and the 

cysteine motif-rich proteins Pfs230 and Pfs48/45. After activation, these proteins form 

complexes, which bind to the surface of newly emerged macrogametes. These 

proteins are potential candidates for components of a transmission blocking vaccine 

and future research continuously focuses on investigating the function of these 

proteins during the sexual development of the malaria parasite. Determining the role 

of PfCCp proteins is currently under investigation by studying PfCCp knock-out 

parasites. To pinpoint the phenotype of the different PfCCp mutants its survival 

through the transmission stages of the parasite in the mosquito vector will be studied 

by membrane feeding of mosquitoes with the mutant parasite line. Similarly the newly 

discovered WD40 domain-containing protein (PF14_0412) has to be further 

characterized. It may be an essential factor for protein complex assembly. Beside that 

the potential of PF14_0412 to bind PfActin II will be examined. The generation of a 

knock-out parasite line is currently in progress and antibodies against this WD40-

protein were generated for further characterization of this protein. Localization, 

function and the potential connection of the WD40-protein to the multi-protein 

complex will be examined by IFAs and Co-IPs on parasite lysates. Despite this, the 

identification by Co-IPs of further proteins, which are members of the newly identified 

protein complex in gametocytes and on macrogametes, is included in future projects. 

First studies on interactions between the malaria parasite and blood meal factors in 

the mosquito midgut revealed that the human complement regulators FH and FHL-1 

bind to the surface of P. falciparum macrogametes to protect these cells against the 

attack of the human complement system. The receptor of FH and FHL-1 was identified 

as PfGAP50 and described to be a glideosome-associated protein of the inner 

membrane complex. Protein localization studies revealed surface associated 

localization of PfGAP50 on macrogametes. Moreover, the way how this protein is 

transported from the inner membrane complex to the surface of macrogametes will be 

examined by IFAs or by Immunoelectron microscopy. Approaches in the future would 

be blocking the complement binding receptors of malaria parasites by peptides 
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identical to selected SCR domains of FH. Such inhibitory peptides could be introduced 

to the vector by transgenic midgut bacteria, thus independent from the human.  

In summary, research focus of future work will lie in understanding the molecular and 

cellular mechanisms of reproduction in the malaria parasite P. falciparum in the 

mosquito midgut. Proteins of the newly identified protein complex and PfGAP50 are 

potential candidates for Transmission Blocking Vaccines. Sexual stages of malaria 

parasites represent the least understood stages of the parasite’s life cycle. Gaining 

insight into these mechanisms increases the probability to find effective candidates for 

eradication of the disease in the future. 

 

 

 

 

 



                                                                                                                                                         Summary 

113 
 

6  Summary 

The sexual phase of Plasmodium falciparum begins with the differentiation of 

intraerythrocytic sexual stages, termed gametocytes, in the human host. Mature 

gametocytes circulate in the peripheral blood and are taken up by the mosquito during 

the blood meal. These stages are essential for the spread of the malaria disease and 

form gametes in the mosquito midgut within minutes. A highly conserved family of six 

secreted proteins has been identified in Plasmodium falciparum. They comprise 

multiple adhesive domains and are termed PfCCp1 through PfCCp5, and PfFNPA. It was 

revealed in this work that PfCCp multi-domain adhesion proteins form protein 

complexes in gametocytes and on the surface of newly emerged macrogametes by 

adhesion domain-mediated binding. Co-Immunoprecipitation assays with activated 

gametocyte lysates show interactions between PfCCp proteins and indicate surface 

association via Pfs230 and Pfs25.  Pfs230 is connected with the plasma membrane of 

the parasite by its interaction partner Pfs48/45. This protein is linked to the plasma 

membrane by a GPI anchor and presumably retains the multi-protein complex on the 

surface of newly emerged macrogametes in the mosquito midgut. A 

WD40 domain-containing protein was identified to be part of this protein complex. It 

might serve as platform for the assembly of the multi-protein complex or mediate the 

interplay among proteins, as suggested from known functions of the WD40 domain 

repeats. 

During egress from the host erythrocyte, the emerging gametes become vulnerable to 

factors of the human complement, which is taken up with the blood meal. In this thesis 

it was found that the complement system is active for about one hour post feeding. 

Macrogametes defend against complement-mediated lysis by co-opting the human 

complement regulators Factor H and FHL-1 from the blood-meal. These serum proteins 

bind via its SCR domains 5-7 to the surface of macrogametes. Once bound, they trigger 

complement inactivation of the alternative pathway, which prevents induction of 

complement lysis on the surface of the malaria parasite. Antibodies against Factor H 

are able to impair the sexual development in vitro and are able to block transmission 

to the mosquito. Interaction studies on endogenous proteins and immobilized 

recombinant proteins revealed the PfGAP50 protein as binding partner of Factor H and 

FHL-1. This protein was hitherto described as a glideosome-associated protein in 

invasive parasite stages, but has not yet been characterized in gametes. First 
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localization studies indicate a relocation of PfGAP50 from the inner membrane 

complex to the surface of macrogametes.  

Malaria still persists as one of the deadliest infectious diseases worldwide. 

Investigations on the essential transmissive stages, gametocytes and gametes of 

Plasmodium falciparum, stood in the background of research for a long time. This work 

deciphered details on protein interactions on the surface of the malaria parasite and 

provides first information about coactions between the parasite and the human 

complement in the mosquito midgut.  
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7 Zusammenfassung 

Die Sexualphase von Plasmodium falciparum beginnt mit der Ausbildung von 

intraerythrozytären Sexualstadien, sogenannten Gametozyten, im menschlichen Wirt. 

Reife Gametozyten zirkulieren im peripheren Blut und werden während der 

Blutmahlzeit von der Mücke aufgenommen. Dieses Parasitenstadium ist 

ausschlaggebend für die Verbreitung von Malaria und bildet im Mückendarm innerhalb 

von Minuten Gameten. In Plasmodium falciparum wurde eine hochkonservierte 

Familie bestehend aus sechs sekretierten Proteinen entdeckt. Diese bestehen aus 

verschiedenen Adhäsionsdomänen und werden PfCCp1 bis PfCCp5 und PfFNPA 

genannt.  In dieser Arbeit wurde gezeigt, dass PfCCp Multiadhäsionsproteine Komplexe 

in Gametozyten und auf der Oberfläche von jungen Makrogameten mittels 

domänenvermittelter Bindungen bilden. Ko-Immunpräzipitationen mit Lysat aus 

aktivierten Gametozyten zeigten oberflächenvermittelte Interaktionen der PfCCp 

Proteine durch Pfs230 und Pfs25. Pfs230 ist mit seinen Interaktionspartner Pfs48/45 

durch einen GPI-Anker mit der Plasmamembran des Parasiten  verbunden. Der Multi-

Proteinkomplex wird somit auf der Oberfläche von jungen weiblichen Gameten 

festgehalten. Zudem wurde in dem neu identifizierten Proteinkomplex ein Protein 

entschlüsselt welches WD40-Domänen aufweist. Bereits bekannte Funktionen von sich 

wiederholenden WD40-Domänen lassen vermuten, dass dieses Protein möglicher-

weise als Plattform für den Zusammenbau des Proteinkomplexes dient oder das 

Wechselspiel zwischen Proteinen vermittelt.   

Während des Ausbruchs aus der Wirtszelle, dem Erythrozyten, werden Gameten 

angreifbar für Faktoren des humanen Komplements, welches mit der Blutmahlzeit in 

den Mückendarm aufgenommen wird. In dieser Arbeit wurde ermittelt, dass das 

Komplementsystem nach der Blutmahlzeit etwa eine Stunde lang im Mückendarm 

aktiv ist. Durch die Bindung der Regulatoren Faktor H und FHL-1 des menschlichen 

Komplementsystems aus der Blutmahlzeit, schützen sich Makrogameten gegen eine 

komplementvermittelte Lyse. Diese Serumproteine binden mittels ihrer SCR-

Domänen 5-7 an die Oberfläche von Makrogameten und vermitteln damit die 

Inaktivierung des alternativen Komplementweges. Dadurch schützen sie sich vor der 

komplementinduzierten Lyse auf der Oberfläche des Parasiten. Antikörper gegen 
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Faktor H vermindern die sexuelle Entwicklung in vitro und können die 

Weiterentwicklung des Erregers in der Mücke blockieren. Interaktionsstudien mit 

endogenen Proteinen und immoblilisierten rekombinanten Proteinen offenbarten 

PfGAP50 als Bindungspartner von Faktor H und FHL-1. PfGAP50 wurde bislang einem 

Motorkomplex zugeschrieben, welcher für die Parasitenbewegung von invasiven 

Stadien zuständig ist. Es wurde jedoch bis heute nicht in Gameten charakterisiert. Erste 

Lokalisationsstudien weisen auf eine Relokalisierung von PfGAP50 vom inneren 

Membrankomplex zur Oberfläche von Makrogameten hin.  

Malaria ist weiterhin eine der tödlichsten Infektionskrankheiten weltweit. Die 

Erforschung dieser für die Übertragung essentiellen Stadien, den Gametozyten und 

Gameten von Plasmodium falciparum, stand lange im Hintergrund der Forschung. 

Diese Arbeit entschlüsselt Details über Proteininteraktionen auf der Oberfläche des 

Malariaparasiten und beschreibt das Zusammenwirken des Parasiten mit dem 

menschlichen Komplementsystem im Darm der Mücke. 
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9  Appendix 

9.1 Abbreviations 

% Percent 
‘ Minutes 
°C Degree Celsius 
AG Workgroup (Arbeitsgruppe) 
aGc Activated gametocytes 
AP Alternative pathway 
APC Alternative pathway of complement 
APS Ammonium peroxide sulphate 
B Babesia 
Baculovirus expression vector system  BEVS 
BCIP 5-Bromo-4-chloro-3-indoxylphosphate 
BSA Bovine serum albumin 
c Concentration 
C Cryptosporidium 
CO2 Carbon dioxide 
Co-IP Co-Immunoprecipitation 
DNA Deoxyribonucleic acid 
DTT Dithiothreitol 
E. coli Escherichia coli 
EDTA Ethylene diamide tetracetic acid 
EM  Erythrocyte membrane 
ER Endoplasmic reticulum 
et al. Et altera 
Fig. Figure 
g Gram 
Gc (unactivated) gametocytes 
GIA Gametogenesis inhibition assay 
Gm Gamete 
GST Glutathione-S-transferase 
h Hour 
H2Obidest Double distilled water 
HIS  Heat inactivated human serum 
HIV Human immunodeficiency virus 
IFA Indirect immunofluorescence assay 
IMC Inner membrane complex 
IPTG Isopropyl-β-D-1-thiogalactopyranoside 
kDa Kilodalton 
KO Knock-out 
l Liter 
IMC Inner membrane complex 
LB Lysogeny broth 
LCCL Limulus coagulation factor C 
M Molar 
m Milli 
mAb Monoclonal antibody 
MAC Membrane attack complex 
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MBP Myelin basic protein 
MeOH Methanol  
min Minutes 
MPC Multi protein complexes 
n Nano 
NaCl Sodium chloride 
NBT Nitroblue tetrazoliumchloride 
NGS Neutral goat serum 
NHS  Neutral human serum 
NMS Neutral mouse serum 
no. Number 
NP40 Nonidet P-40 
OD Optical density 
P Plasmodium 
p Page 
pAb Polyclonal antibody 
PABA p-aminobenzoic acid 
PAGE Polyacrylamide gel electrophoresis 
Pb Plasmodium berghei 
PBS Phosphate buffer saline 
Pf Plasmodium falciparum 
PFA Paraformaldehyde 
Pv Plasmodium vivax 
PVM Parasitophorous vacuole membrane 
rp Recombinant protein 
rpm Rounds per minute 
RPMI Roswell-Park-Memorial-Institute-Medium 
RT Room temperature 
RT Room temperature 
S Staphylococcus 
SAX  Gametogenesis activation solution 
SDS Sodium dodecylsulfate 
sec Seconds 
TBA Transmission blocking assay 
TBS Tris buffered saline 
TBSM Milk powder in TBS 
TBV Transmission blocking vaccine 
TE Tris-EDTA 
TEMED Tetramethylethylenediamine 
Th Theileria 
Tris Tris-(hydroxymethyl)-aminomethane 
V Volt 
v/v Volume/volume 
w/v Weight/volume 
WHO World health organization 
WT Wild type 
x g Gravitational force, g = 9.81 m/s2 
XA Xanthurenic acid 
μ Micro 
α Anti 
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Fig. 3.1    Schematic of the domain structure of PfCCp proteins. 

Fig. 3.2     Interaction studies of sexual stage specific proteins. 

Fig. 3.3     PfCCp protein interactions through direct binding between distinct adhesion 
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Fig. 3.25    Dose-dependent binding of FH and FHL-1 to PfGAP50. 

Fig. 4.1      Hypothetical tree of Apicomplexa. 

Fig. 4.2      Schematic overview of interacting proteins in the parasitophorous vacuole 

                   of gametocytes and on the surface of macrogametes. 

Fig. 4.3      Working Hypothesis: MPC formation of sexual stage parasites. 

Fig. 4.4      Model of the invasion machinery of apicomplexa. 
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