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Abstract

Self-organized nanowires at semiconductor surfaces offer the unique opportunity to study
electrons in reduced dimensions. Notably the dimensionality of the system determines it’s
electronic properties, beyond the quasiparticle description. In the quasi-one-dimensional
(1D) regime with weak lateral coupling between the chains, a Peierls instability can be
realized. A nesting condition in the Fermi surface leads to a back-folding of the 1D
electron band and thus to an insulating state. It is accompanied by a charge density
wave (CDW) in real space that corresponds to the nesting vector. This effect has been
claimed to occur in many surface-defined nanowire systems, such as the In chains on
Si(111) or the Au reconstructions on the terraced Si(553) and Si(557) surfaces. Therefore
a weak coupling between the nanowires in these systems has to be concluded. However
theory proposes another state in the perfect 1D limit, which is completely destroyed upon
slight coupling to higher dimensions. In this so-called Tomonaga-Luttinger liquid (TLL)
state, the quasiparticle description of the Fermi liquid breaks down. Since the interaction
between the electrons is enhanced due to the strong confinement, only collective excita-
tions are allowed. This leads to novel effects like spin charge separation, where spin and
charge degrees of freedom are decoupled and allowed to travel independently along the
1D-chain. Such rare state has not been realized at a surface until today.

This thesis uses a novel approach to realize nanowires with improved confinement by
studying the Au reconstructed Ge(001) surface. A new cleaning procedure using piranha
solution is presented, in order to prepare a clean and long-range ordered substrate. To
ensure optimal growth of the Au nanowires the phase diagram is extensively studied by
scanning tunneling microscopy (STM) and low energy electron diffraction (LEED). The
structural elements of the chains are revealed and described in high detail. Remarkably
a structural phase transition of the delicate wire structure is found to occur above room
temperature. Due to the lack of energy gaps a Peierls transition can be excluded as its
origin. The transition is rather determined as 3D Ising type and therefore includes the
substrate as well.

Two hallmark properties of a TLL are found in the Au/Ge(001) wires by spectroscopic

studies: Power-law suppression of the density of states (DOS) and universal scaling. This

impressively proves the existence of a TLL in these chains and opens up a gateway to

an atomic playground. Local studies and manipulations of a TLL state become possible

for the first time. These comprise (i) doping by alkaline atoms, (ii) studies on chain ends

and (iii) tunable coupling between the chains by additional Au atoms. Most importantly

these manipulations offer input and test for theoretical models and predictions, and are

thereby ultimately advancing the field of correlated electrons.
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Zusammenfassung
Selbstorganisierte Nanodrähte auf Halbleiteroberflächen ermöglichen die Untersuchung
von Elektronen in niedrigen Dimensionen. Interessanterweise werden die elektronischen
Eigenschaften des Systems von dessen Dimensionalität bestimmt, und das noch über das
Quasiteilchenbild hinaus. Das quasi-eindimensionale (1D) Regime zeichnet sich durch
eine schwache laterale Kopplung zwischen den Ketten aus und ermöglicht die Ausbildung
einer Peierls Instabilität. Durch eine Nesting Bedingung in der Fermi Fläche kommt es
zu einer Bandrückfaltung und damit zu einem isolierenden Grundzustand. Dies wird
begleitet von einer neuen Überstruktur im Realraum, die mit dem Nestingvektor kor-
respondiert. In früheren Nanodrahtsystemen wurde ein solcher Effekt gezeigt. Dazu
gehören Indium Ketten auf Si(111) und die Gold rekonstruierten Substrate Si(553) und
Si(557). Die Theorie sagt jedoch einen weiteren Zustand voraus, der nur im perfekten 1D
Grenzfall existiert und der bei geringster Kopplung mit höheren Dimensionen zerstört
wird. Dieser Zustand wird Tomonaga-Luttinger Flüssigkeit (TLL) genannt und führt
zu einem Zusammenbruch des Quasiteilchenbildes der Fermi-Flüssigkeit. Hier sind nur
noch kollektive Anregungen der Elektronen erlaubt, da die starke laterale Einschränkung
zu einer erhöhten Kopplung zwischen den Teilchen führt. Dadurch treten interessante
Effekte wie Spin-Ladungs-Trennung auf, bei dem sich die Ladung und der Spin eines
Elektrons entkoppeln und getrennt voneinander durch den Nanodraht bewegen können.
Bis heute wurde solch ein seltener Zustand noch nicht an einer Oberfläche beobachtet.

In dieser Arbeit wird ein neuer Ansatz zur Herstellung von besser definierten 1D Ket-

ten gewählt. Dazu wird die Au-rekonstruierte Ge(001) Nanodraht-Oberfläche untersucht.

Für die Präparation des Substrates wird ein neues Rezept entwickelt, welches eine langre-

ichweitig geordnete Oberfläche erzeugt. Um das Wachstum der Nanodrähte zu optimieren

wird das Wachstums-Phasendiagramm ausgiebig untersucht. Außerdem werden die struk-

turellen Bausteine der Ketten sehr genau beschrieben. Es ist bemerkenswert, dass ein

struktureller Phasenübergang der Ketten oberhalb von Raumtemperatur gefunden wird.

Aufgrund von spektroskopischen Untersuchungen kann eine Peierls Instabilität als Ur-

sache ausgeschlossen werden. Es handelt sich um einen 3D-Ising-Typ Übergang an dem

das Substrat ebenfalls beteiligt ist. Die Untersuchungen zur elektronischen Struktur der

Ketten zeigen zwei deutliche Erkennungsmerkmale einer TLL: Ein potenzgesetzartiger

Verlauf der Zustandsdichte und universales Skalenverhalten. Daher wird zum ersten

Mal eine TLL an einer Oberfläche nachgewiesen, was nun gezielt lokale Untersuchungen

und Manipulationen ermöglicht. Dazu gehören (i) Dotierung mit Alkalimetallen, (ii) die

Untersuchung von Kettenenden und (iii) die einstellbare Kopplung zwischen den Ket-

ten durch zusätzliche Goldatome. Damit wird ein wichtiger Beitrag zu theoretischen

Vorhersagen und Modellen geliefert und somit das Verständnis korrelierter Elektronen

vorangetrieben.
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1 Introduction

“In this age of Nanotechnology, where the promise is to shape the

world atom by atom, leading to the next industrial revolution, surface

physics should be at the very forefront. ” Ward Plummer [18]

Strongly correlated electron systems offer a unique insight in electronic interac-

tions and resulting phenomena beyond the simple quasiparticle description. Yet,

the fabrication of such experimental realizations was limited for a long time to

anisotropic bulk crystals, with very little control over the growth parameters. Novel

preparation techniques on the other hand may now produce films with atomic pre-

cision or harvest self-organization effects to achieve low-dimensional system growth.

In using the tools of surface science analysis, local studies of strongly correlated

systems come into reach. Even the tuning of the interactions in these new class of

materials becomes possible.

The spatial confinement at surface reconstructions enhances the correlations be-

tween the particles, since screening becomes less effective. Expected phenomena

comprise Mott-Hubbard insulators [19] or superconductivity [20]. Moreover due

to symmetry breaking at the surface a Rashba effect may occur [21], leading to a

spin-orbit splitting, when using heavy adsorbate atoms. For one-dimensional (1D)

nanowires at surfaces the coupling t⊥ between the chains controls their electronic

properties, refer to schematic phase diagram in fig. 1.1:

When reducing the dimensionality of a system at low temperatures a Peierls

instability can be observed [22], see fig. 1.1. In this state a nesting condition in

the Fermi surface drives a metal insulator transition, resulting in a charge density

wave (CDW) along the chain. This state is stabilized by a periodic lattice distortion

(PLD) due to electron-phonon coupling. However long-range order is only reached

upon finite coupling between nanowires. Fluctuations will inhibit the ordered state

3



1 Introduction

above T = 0 K. Consequently a Peierls ground state will only occur in the quasi-1D

regime.

Reducing the dimensionality even further one may reach the strict-1D regime

of the so called Tomonaga-Luttinger liquid (TLL) [23], see fig. 1.1. Due to the

strong confinement of this state the electrons are not allowed to act independently.

The quasiparticle picture of the Fermi liquid breaks down. Instead the low-energy

excitations are better described by bosons and lead to a suppression of the density

of states (DOS) towards the chemical potential. A remarkable effect, which may be

observed in such state is the spin-charge separation. An electron injected in a TLL

dissolves into two excitations, a spinon (carrying the spin) and a holon (carrying

the charge), that may move independently along the nanowire. Such state is very

fragile and is easily destroyed for slight coupling to higher dimensions. So far a

TLL was observed only in very few systems such as 1D crystals [24–26], carbon

nanotubes [27, 28] and gated GaAs channels [29, 30].

mean-field
Peierls

Fermi liquid

C
rit

ic
al

 T
em

pe
ra

tu
re

 T

cross-over

Luttinger liquid

flu
ctuatio

ns

1D 2DDimensionality (t )

Peierls
condensate

Figure 1.1: Schematic phase diagram for the relation of TLL and Fermi liquid, after [19]. De-
creasing the dimensionality at low temperatures leads to a stabilization of the Peierls
ground state. However this is only stable upon finite coupling between wires, i.e. in
the quasi-1D regime. As such in the perfect 1D limit TLL behavior may be observed
in a well confined system. This regime could not be reached with previous nanowires
at surfaces.
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In this context self-organized nanowires at surfaces offer the possibility to study

atomic structure and the electronic properties using the spatial resolution power of

scanning tunneling microscopy (STM). Furthermore the spectral function may be

accessed via angle resolved photoemission spectroscopy (ARPES). Previous chains

at surfaces were for example prepared by In atoms on Si(111) [31]. The four atom

wide chains undergo a phase transition upon cooling and a CDW was observed in

STM. A corresponding nesting condition could be identified using ARPES, thus

rendering this system the paradigmatic example of a Peierls instability at a surface.

Likewise the Au reconstructions on the stepped silicon surfaces of Si(557) [32] or

Si(553) [33] showed indications for a Peierls transition with a CDW upon cooling

and energy gaps in the band structure. Consequently these systems have to be

identified as quasi-1D with a lateral coupling between the wires at the surface.

Most importantly no indications for a TLL could be found in any surface defined

nanowires system up to now.

However the realization of a TLL at a surface would be highly intriguing, since

this would open the gateway towards an atomic playground. Local studies at chain

ends, at defects or terrace edges may serve as a test for theoretical predictions on

semi-infinite TLL models [34–36]. Doping and introduction of impurity atoms is

easily performed at a surface. This could alter the band fillings or induce additional

scattering sites in the chains. Additionally this holds the potential to lead to a

crossover into the Fermi liquid regime and to a Peierls instability.

Hence the quest for better confined structures at surfaces was ongoing. This

was the motivation for the present thesis. In turning to a different combination

of metal adsorbants and substrate the choice fell on Au nanowires on the Ge(001)

surface. This scarcely studied system [37, 38] turned out to be exceptionally well

confined and having conduction electrons at the chemical potential. But challenges

remained in the defect free preparation for long-range ordered chains as well as the

detailed analysis of structure and electronic properties.
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1 Introduction

This thesis is organized as follows: Chapter 2 describes the relevant theoretical

models of the Tomonaga Luttinger Liquid and the Peierls Instability, occurring in

1D systems. The experimental setup and background on the techniques used is

presented in chapter 3. A comparison of previous nanowire systems and the novel

approach using the Ge(001) surface along with it’s preparation are shown in chapter

4. Chapter 5 deals with the growth analysis of the self-organized Au/Ge(001)

nanowires as well as the detailed structural analysis with STM and low energy

electron diffraction (LEED). The study on the electronic properties, i.e. the density

of states seen by scanning tunneling spectroscopy (STS), and analysis on the TLL

behavior is described in chapter 6. The thesis closes with a summary and an outlook

for future studies.

6



2 Theoretical concepts of 1D

physics

“We used to think if we knew one, we knew two, because one and one

are two. We are finding that we must learn a great deal more about

‘and’.” Sir Arthur Eddington [39]

Generally the reduction of the dimensionality of a problem leads to a simplifica-

tion and an easier solution may be obtained. Yet, when examining a macroscopic

number of strongly interacting electrons in a solid, the reduction of the dimension is

no longer straight-forward. In three-dimensional (3D) Landau’s theory of the Fermi

liquid has been very successful in describing the system [40]. The introduction of

quasiparticles for the low-energy excitations allows to treat the quasiparticles as

non-interacting.

However electrons in one dimension do not behave this way. In the non-interacting

limit a Peierls instability may occur, creating an insulating ground state. Many

surface defined nanowires systems have been claimed to exhibit such effect. These

include the In chains on Si(111) and the Au chains on Si(553) and Si(557). Notably

this state is only stable in the quasi-one-dimensional (1D) case with slight coupling

between neighboring nanowires.

The other scenario with interacting electrons in strict 1D will lead to a breakdown

of the Fermi liquid picture and result in Tomonaga-Luttinger liquid (TLL) behavior.

Here the excitations of the system are no longer quasiparticles, but rather collective

excitations of spin and charge.

Both scenarios, the Perils instability and the TLL will be presented, as they are

crucial for the interpretation of the experimental data obtained in this thesis.
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2 Theoretical concepts of 1D physics

2.1 Peierls instability

Starting with a free electron gas in one dimension without any electron-electron

interactions, consider a linear chain of atoms, each occupied with one electron, fig.

2.1 top. This will result in a half-filled band and thus a metallic chain. Peierls

proposed such a chain as being unstable against a charge density wave (CDW) at

low temperature [22], which arises from a corresponding nesting condition in the

Fermi surface. A metal-insulator transition with band gaps at the superstructure

zone boundaries is spurred. In addition this is accompanied by a ×2 periodic lattice

distortion (PLD) due to phonon frequency renormalization, fig. 2.1 bottom. The

ground state may be identified by the new superstructure in real space, or by energy

gaps in the electronic structure, see fig. 2.2

In order to describe this phenomenon in more detail one has to start with a 1D

electron gas and it’s reaction to an external perturbation.

Figure 2.1: Schematic mechanism of the Peierls instability. Top: A linear chain of atoms occu-
pied with one electron will result in a half filled band. Bottom: Below the critical
temperature the chain will distort and open an energy gap at the new zone boundary.
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2.1 Peierls instability
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Figure 2.2: Mean-field description of the energy gap of the Peierls ground state. For T = 0 K
the gap opens to its maximum size. At higher temperatures the gap size ∆ shrinks
according to the mean-field formalism. In the presence of fluctuations the Van-
Hove-singularity will be smeared out and only a pseudogap will be observable. A
gap observed in spectroscopy measurements may serve as a signature for a Peierls
condensate. Compiled after [41]

2.1.1 Lindhard response function

The response of an electron gas to an external time dependent perturbation is

given by the Lindhard dielectric function also called Lindhard response function.

It is highly dependent on the dimensionality of the system. The time independent

external potential is given as [41]

Φ(~r) =

∫
q

Φ(~q)ei~q·~rd~q, (2.1)

where ~q is the wave vector of the periodic perturbation. The induced charge

density is then [40]

ρind(~r) =

∫
q

ρind(~q)ei~q·~rd~q. (2.2)

They are related via the Lindhard response function χ(~q)

ρind(~q) = χ(~q)Φ(~q), (2.3)
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2 Theoretical concepts of 1D physics

which for d dimensions is:

χ(~q) =

∫
d~k

(2π)d
· f(k)− f(k + q)

ε(k)− ε(k + q)
. (2.4)

f(k) is the Fermi-Dirac distribution and ε(k) the electron energy. Assuming a

linear dispersion in 1D the response simplifies to

χ(~q) = −e2 · n(EF ) · ln
∣∣∣∣q + 2kF
q − 2kF

∣∣∣∣ , (2.5)

where n(EF ) is the density of states at the Fermi energy EF per spin. Note that

χ(~q) diverges for q = 2kF . It can be interpreted that a spin or charge perturbation

with a periodicity of q = 2kF will lead to an infinitely strong response in a 1D

system at T = 0.

This is explained by so-called perfect nesting in the 1D Fermi surface. The main

contribution to the integral in eq. 2.4 is due to pairs of electrons and holes at a

distance q = 2kF . Such pairs may be found for the 1D Fermi surface at every kF ,

see fig. 2.3 (a). In higher dimensions perfect nesting is impossible. For a circular

2D Fermi surface or a spherical 3D Fermi surface only a single nesting vector may

be found, see fig. 2.3 (b)+(c). Yet for anisotropic quasi-1D materials, the shape of

the Fermi surface may be modulated to a certain degree and finite nesting becomes

possible. This can be realized by a cosine modulation of the Fermi surface contour,

see fig. 2.3 (d)

ε(k) = ε0 + 2tacos(kxa) + 2tbcos(kyb), (2.6)

with the lattice constants a and b. For anisotropic crystals, tb/ta → 0 [41],

enough nesting conditions will be fulfilled. It follows:

χ(q = 2kF , T ) = −e2n(EF )ln(
1.14ε0
kBT

), (2.7)

where ε0 is the Fermi energy. Again this expression is diverging for T → 0.

2.1.2 Electron-phonon interaction

Until now the lattice has been completely neglected in the considerations on the

modulation of the charge. The lattice of the system is usually included as a chain
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Figure 2.3: Fermi surfaces and nesting conditions for different dimensions. (a) For 1D perfect
nesting is achieved. Each kF can be connected with the same vector. For higher
dimensions only poor nesting can be realized. (b) In 2D the Fermi surface is a
circle and many inequivalent nesting vectors may be found. (c) This is also true
for the 3D spherical Fermi surface. (d) The most realistic case is quasi-1D where
the modulation of the straight 1D Fermi surface is described with a cosine function.
Thus some nesting conditions will be fulfilled with the same vector.
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2 Theoretical concepts of 1D physics

of positively charged ions, surrounded by the free electron gas [41]. By switching on

electron-phonon coupling in the model, a renormalized phonon spectrum is obtained

with a softening of the phonon mode below a critical temperature. For a complete

derivation within a mean-field approach in second quantization please refer to [41].

The resulting implications on the system are discussed in this chapter.

The phonon frequency is being renormalized to

ω2
ren,q = ω2

q +
2g2ωq
~

χ(q, T ), (2.8)

where g is the electron-phonon coupling constant and ωq represents the phonon

frequency. As discussed in the previous chapter the response is highest for q = 2kf ,

since the Lindhard dielectric function will diverge. Including eq. 2.7 into the

renormalized phonon frequency, leads to

ω2
ren,2kF

= ω2
2kF
− 2g2n(εF )ω2kF

~
· ln
(

1.14ε0
kBT

)
. (2.9)

For sufficiently low temperatures this expression results in a renormalized phonon

frequency of 0 Hz. Hence the chain will perform a PLD with the same wavelength

as the CDW. The critical temperature is

TC =
1, 14

kB
ε0e
− 1
λ , (2.10)

with the electron-phonon coupling constant λ. Close to the critical temperature

the expression simplifies to

ωren,2kF = ω2kF

(
T − TC
TC

)1/2

. (2.11)

Such behavior may be explained by looking at the temperature dependence of

the Lindhard response function. At high temperatures the divergence at q = 2kf is

smeared out due to thermal fluctuations. Towards lower temperatures these fluctu-

ations fade and the CDW state is achieved much easier. Then the electrons screen

the distortion of the lattice much more efficiently. Subsequently phonon modes

with the same periodicity as the CDW will soften. Below the critical temperature

this phonon will freeze and form the PLD eventually, see fig. 2.4.
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q
0 2kF

T<TC
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Figure 2.4: Phonon frequency renormalization due to electron phonon interaction. Far above TC
phonon dispersion is basically unaffected. Below TC the phonon at q = 2kf freezes
out and leads to a PLD.
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2 Theoretical concepts of 1D physics

2.1.3 Limitations of the Peierls picture

• Long-range order: In a perfect 1D system the long-range order will be

disturbed by fluctuations above T = 0 K [42]. Consequently no CDW state

will be realized. Therefore a finite coupling between the chains is needed in

order to stabilize a long-range ordered state.

• Mean-field formalism: For the determination of the transition temperature

a mean-field approach is used. It is, however a higher dimensional theory,

which must fail in 1D. This is also the reason why the mean-field energy gap

and the transition temperature do not follow the relation [41]

2∆ = 3.52kBT
MF
CDW (2.12)

in real world systems as predicted mean-field theory. As a consequence, the

transition temperature in reality is always be lower than TMF
CDW . See, e.g. the

Peierls transition temperature in NbSe3, which is four times lower, than the

predicted mean-field value [43].

• Peierls relevance as driving force: A recent theoretical study by Johannes

et. al [44] has examined the stability of a Peierls ground state in a real world

environment. They found, that such a state is easily destroyed at finite tem-

peratures, imperfect nesting or by scattering. Moreover they conclude, that

a nesting condition as a driving force for a phase transition is not sufficient.

There needs to be an additional structural component to the transition in

order to stabilized the distorted found state.
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2.2 Tomonaga-Luttinger liquid

2.2 Tomonaga-Luttinger liquid

In the previous chapter electron-electron interactions were neglected and the system

was essentially treated as a 1D electron gas. But what happens, if the interaction

between the particles is switched on? The answer to this question was given inde-

pendently by Tomonaga [45] and Luttinger [46] and later put together by Haldane

to what he termed the Tomonaga-Luttinger liquid theory [23]. First the spinless

description by Haldane will be presented and later the model will be generalized

to include spin. Finally, the implications of a TLL system on the physics of the

system as well as the measurable quantities in experiment will be discussed.

2.2.1 Excitations in one dimension

The dispersion relation of a 1D Fermi gas without interactions is shown in fig. 2.5

(a). All states below the chemical potential EF are filled, while higher states are

empty. The Fermi surface consists of two lines at ±kF . Consequently, low energy

particle-hole excitations of such system can only have a momentum of ∆k = q ∼ 0

or q ∼ 2kF . Therefore, a gap opens in the particle-hole excitation spectrum as

shown in fig. 2.5 (b). Note that such gap is easily filled in higher dimensions,

where the Fermi surface is a circle and arbitrary connections between two Fermi

points become possible. The energies of the excitations in 1D are [47]

Ek(q) = ε(k + q)− ε(k), (2.13)

where ε(k) is the energy of the occupied and ε(k+q) the energy of the unoccupied

state. Assuming a quadratic dispersion of the electron band

ε(k) =
~2

2m
(k2 − k2

F ), (2.14)

and only looking at low energy excitations, one may simply expand the expression

around kF to

ε(k) = ~vF (k − kF ) +
~2

2m
(k − kF )2 +O(k3), (2.15)

with the Fermi velocity vF . For (kF − q) < k < kF , the mean energy of an

excitation E(q) may be calculated using eq. 2.13 as [47]
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(a) (b)

k

q

E(k) E(q)

-kF +kF

0 2kF

EF

Figure 2.5: (a) Schematic of a quadratic dispersion relation of a 1D electron gas. Filled states
up to the Fermi energy are shaded blue (b) 1D particle-hole excitation spectrum.
Allowed excitations are in the shaded blue area. A gap opens up for low energy
excitations and only q ∼ 0, 2kF are allowed.

E(q) =
max(Ek(q)) +min(Ek(q))

2
(2.16)

E(q) =
1

2
(ε(kF + q)− ε(kF ) + ε(kF )− ε(kF − q))

E(q)
eq.2.15

= vF q.

Likewise one may consider the dispersion of these excitations as [47]

δE(q) = max(Ek(q))−min(Ek(q)) (2.17)

δE(q) = ε(kF + q)− ε(kF )− (ε(kF )− ε(kF − q))

δE(q)
eq.2.15

=
~2

2m
q2 =

~2

2mv2
F

E(q)2.

This means that the energy of a particle-hole excitations are linearly dependent

on their momentum q. Since the excitations destroy a fermion and create another

they are of bosonic character. Also the dispersion of these excitations goes faster

to zero than the average energy, namely as E(q)2, which implies increasing lifetime
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(a) (b)

k
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E E

-kF +kF

2kF0

right movers
n>0

left movers
n<0

Dirac sea

Figure 2.6: (a) Linearized dispersion relation in 1D. It is useful to divide the massless fermions
into left- and right-movers. Occupied states in shaded blue. (b) According particle-
hole excitation spectrum, which shows well defined excitations for low energies.

towards EF . These two findings make the excitations well defined quasi particles,

and thus point at a possible bosonic treatment of the 1D fermion system.

2.2.2 Tomonaga-Luttinger model and bosonization

In order to solve the problem of interacting fermions in 1D, and following the

description of Schönhammer [48, 49], the Tomonaga-Luttinger (TL) model starts

with the assumptions

(i) The dispersion of the electrons may be linearized around ±kF .

(ii) The interaction is weak and its range is longer than the mean particle distance

(high density limit).

(iii) There are only low energy excitations, which means no holes deep in the

Fermi/Dirac sea and no high energy particles with |k| − kF >> kc, where the

cutoff is kc << kF .

Note that it is also possible to solve the problem under the assumption of an

infinitely filled Dirac sea and extend the dispersion to k = ±∞ as originally per-

formed by Luttinger [46]. Yet one has to deal with unphysical states and it can

be shown to yield the same result as with the cut-off method, if the interaction is

sufficiently weak [50].
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If only forward scattering processes are considered, which will be discussed later,

the TL model becomes exactly solvable [23]. The linearized dispersion of the 1D

electron system and its excitation spectrum are shown in fig. 2.6. It is useful to

treat the two branches of the 1D band separately and distinguish between left- and

right-moving particles, see fig 2.6 (a). The linearization is readily justified for the

low energy case [23]. Note, that the excitation spectrum for low energies again has a

gap at low energies, see fig. 2.6 (b). Consequently the dispersion of the excitations

is again linear around q ∼ 0, 2kF .

We will now discuss the concept of bosonization and later look at specific inter-

action scenarios. Starting with a linear dispersion around ±kF , and neglecting spin

for the moment, the kinetic energy of the system in the second quantized form is

given as [49]

T̂ =
∑
n≥0

vF (kn − kF )ĉ†nĉn +
∑
n<0

(−vF )(kn + kF )ĉ†nĉn, (2.18)

with the fermionic creation and annihilation operators ĉ†n and ĉn. The equation

has been separated into left and right moving particles, see fig. 2.6 (a) . The

Coulomb interaction in momentum space is given as [49]

V̂ =
1

2L

∑
n6=0

Ṽ (kn)ρ̂†nρ̂n +
1

2L
N̂2Ṽ (0), (2.19)

with the length of the system L, the particle number operator N̂ and the fourier

transformation of the two-body interaction Ṽ (k). The densities are expressed by

the fermionic operators as

ρ̂n =
∑
n′≥0

ĉ†n′ ĉn′+n +
∑
n′<0

ĉ†n′ ĉn′+n = ρ̂n,+ + ρ̂n,− ; ρ̂†n = ρ̂−n. (2.20)

Interestingly these density operators behave like bosons. For the low energy case,

these follow the commutator relation [49]

[ρ̂m,α, ρ̂n,β] = nδn,mδα,β 1̂, α, β = +,−. (2.21)
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2.2 Tomonaga-Luttinger liquid

Consequently it is useful to construct new operators

b̂n =
1√
|n|

ρ̂n,+ for n > 0

ρ̂n,− for n < 0,
(2.22)

which follow the well-known bosonic commutation relations

[b̂n, b̂m] = 0 and [b̂n, b̂
†
m] = δn,m1̂. (2.23)

The Coulomb interaction may now be written in terms of these new bosonic

operators

V̂ =
∑
n>0

qn
Ṽ (kn)

2π

(
b̂†nb̂n + b̂†−nb̂−n + b̂†nb̂

†
−n + b̂−nb̂n

)
+

1

2L
Ṽ (0)

(
N̂+ + N̂−

)2

.

(2.24)

Likewise we find by inspection of the commutator of the kinetic energy with the

bosonic density operator [49]

[b̂†n, T̂ ] = vFknb̂
†
n. (2.25)

This means, that the bosonic operator b̂†n acts as the raising operator of the ki-

netic energy. This remarkable finding is known as the Kronig identity [51], which

expresses the fermionic kinetic energy in terms of bosonic kinetic energy. Con-

sequently we can also rewrite the kinetic energy in terms of these new bosonic

operators:

T̂ =
∑
n>0

vFkn

(
b̂†nb̂n + b̂†−nb̂−n

)
+

π

2L
vF N̂

2 +
π

2L
vF Ĵ

2, (2.26)

with

Ĵ2 =
(
N̂+ − N̂−

)2

, (2.27)

which is the current density operator or the difference between left- and right

moving particles. Note, that both the kinetic energy as well as the two-body inter-

action are quadratic in the bosonic densities, which makes the Hamiltonian trivial to
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2 Theoretical concepts of 1D physics

diagonalize. Consequently, we find for the Hamiltonian of the interacting fermions

in the bosonic form

Ĥ = T̂ + V̂

=
∑
n>0

kn

{(
vF +

Ṽ (kn)

2π

)
(b̂†nb̂n + b̂†−nb̂−n) +

Ṽ (kn)

2π
(b̂†nb̂

†
−n + b̂−nb̂n)

}
+

π

2L

(
vNN̂

2 + vJ Ĵ
2
)

(2.28)

= Ĥboson + ĤN,J ,

with the two velocities

vN = vF +
Ṽ (0)

π
and vJ = vF . (2.29)

Importantly since the boson operators commute with the particle number opera-

tors [23] the Hamiltonian may be split in two parts, which may be treated separately.

The velocity vN determines the energy cost for adding a particle [49], while vJ is

the energy cost for changing the difference between left and right moving particles.

Since the bosonic part of the Hamiltonian is separated one may diagonalize it by

using the Bogoliubov transformation [23]

â†n = cnb̂
†
n + snb̂−n. (2.30)

This results in the diagonalized form

Ĥboson =
∑
n6=0

ω(kn)α̂†nα̂n + const, (2.31)

with the dispersion relation

ε(kn) = ~ω(kn) = ~vF |kn|

√
1 +

Ṽ (kn)

πvF
. (2.32)
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2.2 Tomonaga-Luttinger liquid

For small kn and smooth potentials Ṽ (0), this results in a linear dispersion with

a charge velocity of vC =
√
vJvN

ε(kn) ≈ ~|kn|

√
vF (vF +

Ṽ (0)

π
)
eq.2.29

= ~|kn|
√
vJvN = ~|kn|vc. (2.33)

Note, that vC is larger than vF for Ṽ (0) > 0 [49], meaning that the charge

velocity is increased over the Fermi velocity of the non-interacting system. For now

we will not discuss the coefficients cn and sn from the Bogoliubov transformation,

which will be more important in the upcoming chapter, when looking at specific

interaction scenarios. The particles may interact via scattering processes, that are

described in the so-called g-ology.

2.2.3 Interaction scenarios and g-ology

No interaction, no spin

The Hamiltonian for the case of non-interacting spinless particles is simply given

by the kinetic energy as in eq. 2.26

Ĥ0 = T̂ =
∑
n>0

vFkn

(
b̂†nb̂n + b̂†−nb̂−n

)
+

π

2L
vF

(
N̂2 + Ĵ2

)
. (2.34)

After diagonalization this leads to the trivial result of a single linear dispersion

characterized by the Fermi velocity, see eq. 2.32 for Ṽ (kn) = 0

ε(kn) = ~vF |kn| (2.35)

Tomonaga-Luttinger model: Forward scattering, no spin

The low-energy interactions of 1D electrons are described in terms of scattering

processes, which are summarized in the g-ology. Four possible cases exist, see fig.

2.7. These are:

• g1 is 2kF backscattering, where the particles switch branches. In the TL

model this scattering is neglected which makes the model exactly solvable

[47]. Note that for spinless Fermions g1 and g2 are the same, since one can

not distinguish the outgoing particles.
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EF

g1: 2kF backward(a)

EF

g2: inter-branch forward(b)

EF

g3: umklapp(c)

EF

g4: intra-branch forward(d)

Figure 2.7: The four scattering processes in 1D (a) 2kF backscattering, which is neglected in
the TL model. (b) Inter-branch forward scattering. (c) Umklapp scattering is also
neglected. (d) Intra-branch forward scattering. After [47].

• g2 is inter-branch forward scattering. This means, that two fermions couple

from each side of the Fermi surface, but each species stays inside its branch.

• g3 is the umklapp scattering. This term is only relevant for special band

fillings and therefore also neglected in the TL model.

• g4 is intra-branch forward scattering and couples fermions from one branch

of the Fermi surface.

Consequently only g2 and g4 are used in the TL model, which means, that only

forward scattering will be relevant. The two interactions may be incorporated into

the Hamiltonian eq. 2.28 and lead to the generalized form [49]
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2.2 Tomonaga-Luttinger liquid

ĤTL =
∑
n>0

kn

{(
vF +

g4(kn)

2π

)
(b̂†nb̂n + b̂†−nb̂−n) +

g2(kn)

2π
(b̂†nb̂

†
−n + b̂−nb̂n)

}
+

π

2L

(
vNN̂

2 + vJ Ĵ
2
)
, (2.36)

with

vN = vF +
g4(0) + g2(0)

2π
and vJ = vF +

g4(0)− g2(0)

2π
. (2.37)

In using again the Bogoliubov transformation to diagonalize the TL-Hamiltonian

[49]

â†n = cnb̂
†
n + snb̂−n, (2.38)

one finds for the coefficients

cn =
1

2

(√
Kn +

1√
Kn

)
and sn =

1

2

(√
Kn −

1√
Kn

)
, (2.39)

with

Kn =

√
vJ(kn)

vN(kn)
, (2.40)

and the renormalized velocities

vN,J(kn) = vF +
g4(kn)± g2(kn)

2π
. (2.41)

This means, that the TL model is an exactly solvable model for interacting

electrons in one dimension! The dispersion is given as

ε(kn) = ~|kn|
√
vJ(kn)vN(kn) = ~|kn|vc, (2.42)
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2 Theoretical concepts of 1D physics

with the charge velocity vc. The interaction strength is given by the so-called

stiffness coefficient Kn. Kn < 1 is repulsive and Kn > 1 attractive interaction.

Kn = 1 is the non-interacting case. This can be easily seen in

Kn = 1 =

√
vJ(kn)

vN(kn)
⇒ vJ(kn) = vN(kn)

eq.2.41
= vF , (2.43)

which yields the same dispersion as eq. 2.35.

Note, that the low energy physics of a 1D interacting spinless fermion system

is described only by two parameters: The stiffness constant Kn and the charge

velocity vC . This solution to the TL model was first performed by Haldane [23],

who also showed in his seminal paper, that even for non-linear dispersions these

relations survive.

Spin-charge separation: Forward scattering, with spin

Up to now the spin of the electrons has been completely neglected. As it turns

out the inclusion of spin is rather straight forward [49]. One starts again with

the kinetic energy and two body interaction as eqs. 2.18 and 2.19 and follows the

bosonization procedure with some additional considerations. First one adds spin

labels to fermionic operators [49]

ĉ†n(ĉn)→ ĉ†n,σ(ĉn,σ) with σ =↑, ↓ (2.44)

and to the density operators

ρ̂n → ρ̂n,σ. (2.45)

Therefore, also the boson operators generalize to

b̂n → b̂n,σ. (2.46)

The interactions will also have to include spin

gν(kn)→ gσ,σ
′

ν (kn) = δσ,σ′gν,‖(kn) + δσ,−σ′gν,⊥(kn) , ν = 2, 4. (2.47)
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2.2 Tomonaga-Luttinger liquid

Now it is useful to construct new boson operators for charge (ρ) and spin (σ)

b̂n,ρ =
1√
2

(b̂n,↑ + b̂n,↓) and b̂n,σ =
1√
2

(b̂n,↑ − b̂n,↓). (2.48)

This allows the kinetic energy to be separated into spin and charge parts, which

commute [49]. Also the interaction matrix elements may be rewritten in terms of

spin and charge

gν,ρ(kn) = gν,‖(kn) + gν,⊥(kn) (2.49)

gν,σ(kn) = gν,‖(kn)− gν,⊥(kn) , ν = 2, 4 (2.50)

as well as the particle number operators

N̂α,ρ/σ =
1√
2

(
N̂α,↑ ± N̂α,↓

)
with α = +,−. (2.51)

Finally, we are able to write down the TL-Hamiltonian for spin 1/2 fermions

Ĥ
1/2
TL = ĤTL,ρ + ĤTL,σ, (2.52)

where each ĤTL,ρ/σ is of the form eq. 2.36. This means, that the Hamiltonian

is separated into spin and charge excitations, which may be treated independently.

This property is called spin-charge separation. Diagonalizing the two Hamiltonians

leads to the dispersions

ερ(kn) = ~vρ|kn| , vρ =
√
vJ,ρvN,ρ , Kρ =

√
vJ,ρ
vN,ρ

(2.53)

εσ(kn) = ~vσ|kn| , vσ =
√
vJ,σvN,σ , Kσ =

√
vJ,σ
vN,σ

. (2.54)

Consequently the TL-system is characterized by two velocities for spin and charge

excitations and by two stiffness coefficients Kρ and Kσ that describe the interaction

strength. This means that the excitations of the 1D electron gas may be treated as

two indecent species of particles. These are called spinon, carrying the spin excita-

tion and holon, carrying the charge excitation. Of course in experiments, probing

25



2 Theoretical concepts of 1D physics

the system is only possible by adding or removing one single electron to/from the

1D chain. So the response of the TLL system to such an external perturbation has

to be known, in order to interpret the experimental data. This response is given

by the spectral function of the system, which may now be finally calculated with

the results of this chapter.

2.2.4 Spectral function

Spectroscopic measurements like angle resolved photoemission spectroscopy (ARPES)

or scanning tunneling spectroscopy (STS) inject or remove one electron to/from the

system. The response to such perturbation is given by the single-particle Green’s

function. However its treatment, and especially the calculation of the measurable

spectral function is not straight forward, but rather lengthy and cumbersome. Con-

sequently there is a wealth of theoretical publications on the topic [34, 48, 49, 52–

57]. Therefore the calculation will only be sketched here in order to obtain some

measurable quantity for comparison with the STS data of chapter 6.3.2.

For the spinful TL model the Green’s function at T = 0, an infinitely long chain

L→∞ and r = 2/kc is [48, 49]

ieiEF tG<
+(x, t) =

−i
2π
eikF x

∏
a=ρ,σ

1

(x− vat− i0)1/2

(
r2

(x− vat− ir)(x+ vat+ ir)

)s2a/2
,

(2.55)

where EF is the chemical potential, + denotes that only right-movers are treated,

and < indicates an electron removal process. The spectral function is calculated

from the Green’s function via a double fourier transformation in time and space to

energy and k-space [48, 49] . STS will always probe the angle integrated spectral

function, which will be focussed on here. If the interaction of the electrons is spin

rotation invariant (SU(2)), then Kσ = 1 and the calculation of the angle-integrated

spectral function follows as [49]

ρ+(ω, T = 0) ∼
∫ ∞
−∞

dteiωtieiµtG<
+(0, t) (2.56)

∼ (−ω)s
2
ρΘ(−ω), (2.57)
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2.2 Tomonaga-Luttinger liquid

which can be written in terms of the anomalous dimension α

ρ+(ω, T = 0) ∼ (−ω)αΘ(−ω) with α = s2
ρ =

1

4
(Kρ +K−1

ρ − 2). (2.58)

More generally the exponent α is given by

α =
1

4
(Kσ +K−1

σ +Kρ +K−1
ρ − 4), (2.59)

but it simplifies to eq. 2.58 for spin rotational invariant interactions Kσ = 1.

The angle integrated spectral function thus follows a power law over energy close

to the chemical potential with the anomalous dimension α. When examining the

temperature dependence at the chemical potential, it can be similarly shown that

it also follows a power law upon temperature with the same exponent [49]

ρ+(ω = 0, T ) ∼ Tα. (2.60)

The complete temperature and energy dependence for small ω << vF qC and

T << vF qC is given by using the Fermi-Dirac function f(x) = (ex+1)−1 [27, 58, 59]

ρ(ω, T ) ∼ f(ω/T )Tαcosh(ω/T )

∣∣∣∣Γ(1 + α

2
+ i

ω

2πT

)∣∣∣∣2 . (2.61)

This is an important finding, since the measurable density of states (DOS) only

depends on terms with ω/T , and thus it is possible to perform a universal scaling

relation to yield a universal curve for all temperatures and energies. This will be

important, when analyzing the temperature dependent tunneling spectra in chapter

6.3.2

2.2.5 Tomonaga-Luttinger model with boundary

Up to now the description of the 1D system in terms of the TL model considered

an infinitely long chain. In the tunneling experiments presented in this thesis it is

also possible to study open boundary chains, i.e. chain ends at terrace steps or at

defects. An advanced treatment of the Green’s function with a position dependence

for the distance from the chain end is performed to address such effect [34]. As it

turns out for large distances from the end, the same result is recovered as in the
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2 Theoretical concepts of 1D physics

previous chapter for the infinite chain. Yet, more importantly at the boundary a

similar result for the spectral function as for the infinite case may be found, with

[34]

ρ(ω, 0) ∼ |ω|αB with αB =
K−1
ρ +K−1

σ

2
− 1. (2.62)

The boundary exponent is increased over the bulk value, which leads to an in-

creased suppression of the DOS towards the chemical potential at the chain end.

This should be detectable in STS, when performing spectroscopy close a chain end.

The crossover region between the edge and bulk was first modeled by Eggert et

al. [36]. They have calculated the spectral function depending on the distance from

the chain end for a semi-infinite chain. The result is shown in fig. 2.8. The spectral

function ρ(ωx) is plotted over a universal axis (ωx/vC) with the distance from the

chain end x and the charge velocity vC . Note that there is a crossover between the

two exponents. Two cases may be distinguished

ωx/vC < 1→ αend (2.63)

ωx/vC > 1→ αbulk (2.64)

At low energies the edge exponent dominates the spectrum, while towards higher

energies the bulk regime is recovered. The crossover is dependent on both energy

and distance from the edge. Importantly the low energy part will always be dom-

inated by the edge exponent. Yet the energy scale shrinks with the distance from

the edge with ∝ 1/x [36]. Consequently far away from the chain end only the bulk

value will be measurable in experiments.

Note, that starting from the crossover region the curve begins to oscillate, fig. 2.8.

These oscillations are not due to 2kF Friedel scattering, but are a result from the cal-

culations within the Hubbard model and importantly should be observable in exper-

iments. However the oscillations vanish asymptotically with sin(2ωx/vC)(ωx)−13/16

[36] and therefore require high resolution spectroscopy data to be resolved.
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2.2 Tomonaga-Luttinger liquid
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ω x/vc
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(ω x)1/2
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Figure 2.8: Spectral function ρ(ωx) plotted on the universal axis ωx/vC in arbitrary units. At
fixed boundary distance r, the low energy part is governed by the edge exponent,
while at higher energies there is a crossover to the bulk regime. Note that the
oscillations are not due to Friedel oscillation but result from the calculations within
the Hubbard model. After [36], plot S. Eggert, private communications.
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2.2.6 Summary

Since the treatment of the TLL physics can be quite lengthy, it is useful to sum-

marize the theoretical findings that will be most important for the experimental

studies in a brief list.

(i) Fermionic excitations in 1D may be described as bosons.

(ii) Spin and charge excitations may be treated separately.

(iii) The TL state is described by the two stiffness constants Kρ and Kσ as well

as the charge and spin velocity vρ and vσ.

(iv) The DOS is predicted to follow a power law depression at low energies with

ρ = |ω|α with α = s2
c = 1

4
(Kσ +K−1

σ +Kρ +K−1
ρ − 4).

(v) The DOS is predicted to obey universal scaling behavior over energy and

temperature and may be described with

ρ(ω, T ) ∼ f(ω/T )Tαcosh(ω/T )
∣∣Γ (1+α

2
+ i ω

2πT

)∣∣2.

(vi) At the chain end the power-law exponent is predicted to change to

αB =
K−1
ρ +K−1

σ

2
− 1.

(vii) There is a crossover region between bulk and end states, which may be ob-

served as a kink in the tunneling spectrum. Also oscillations around the

crossover region may be detected at very high energy resolution.

2.2.7 Limitations of the Tomonaga-Luttinger model

• One band: All considerations made were for a single band with two crossings

of the Fermi energy. Yet real world systems will likely comprise a more

complex band situation. This is also the case for the scrutinized Au chains

on Ge(001), which is a two band (four branch) system. Additional modeling

by theory will be needed in this direction.

• Non-linear dispersion: The TL-model is strictly only valid for an linear

dispersion and for low energy excitations. In experiment however one may

access also higher energy excitations by ARPES and STS and thus the cri-

terion for linearity may no longer be met. There are first works towards a
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2.2 Tomonaga-Luttinger liquid

spinless non-linear TLL theory [60–62], but a complete model for fermions

has not yet been established [63, 64].

• Phonons: Lattice contributions have been completely neglected in the TL-

model. However in real-world systems it is not possible to separate the elec-

trons from the lattice. Consequently above zero temperature there will also

be phonons present in the system that might couple to the TLL state and

potentially lead to a Peierls transition, thus rendering the system insulating.
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3 Experimental methods for

surface analysis

“If there is no duct tape involved it’s not an experiment, it’s a mea-

surement” (Carsten Detlefs, ESRF)

3.1 Tunneling microscopy

The scanning tunneling microscope was first introduced by Binnig and Rohrer in

1981 [65, 66]. For the first time they combined a vibration isolation system with a

piezoelectric scanner and an atomically sharp tip in order to record the topography

of a surface. Although the technology already existed at their time, many scientists

in the field did not believe in the feasibility of a scanning tunneling microscopy

(STM). However, until today it has developed to a versatile and powerful tool to

study the local topographic and spectroscopic properties of a surface with atomic

resolution.

3.1.1 Basic principle

Tunneling effect

The tunneling effect describes the ability of quantum mechanical objects, like elec-

trons, to tunnel through a thin barrier, which is classically forbidden. In fig. 3.1

the lion in a classical world is not allowed to leave the quantum well and the hu-

man next to it is safe. Yet, if the barrier of the well is thin enough and the lion is

assumed to be quantum mechanical, he has a finite probability to tunnel outside

of the well. In STM this mechanism is used by placing a metallic tip in a few

nanometer proximity to the sample surface and applying a voltage between the
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(a)

(b)

classical 
model

quantum 
mechanical

model

potential step
E>U E<U E>U

Figure 3.1: Difference between classical and quantum-mechanical view. (a) In QM the lion has
a finite probability to tunnel through the potential barrier, while (b) classically he
would not be allowed to leave the quantum well. After [67].

two. The electrons will tunnel between the tip and the surface, which is measured

as a current. Since the tunneling probability is exponentially dependent on the

tip-surface distance, the height of a homogeneous sample may be scanned in sub

Å precision [68]. The lateral resolution is basically given by the tip apex, which is

(preferably) the dimension of a single atom.

Image acquisition

Figure 3.2: Schematic setup of a STM. The tip is moved by three piezo crystals over the surface,
while the tunneling current is held constant. At a step (A) or at a material with
higher DOS (B) the tip is displaced by the feedback loop. [65, 66].
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3.1 Tunneling microscopy

The original principal setup of the STM is shown in fig. 3.2. The tunneling tip

is brought within a few nanometers distance to the sample surface, by moving the

PZ piezodrive. In using the piezoelectric effect it is possible to position the tip with

picometer precision in all three dimensions [69]. As soon as the desired setpoint

tunneling current is detected by the feedback loop the approach stops. In order to

scan the surface textbooks distinguish two modes:

(i) The first mode is termed constant-current, because the tip height is always

adjusted to keep the tunneling current at the specified setpoint. The tip is

subsequently moved by the PX and PY piezos, describing a line by line scan

of the surface. At every point the tunneling current is measured and the

height is adjusted. Thereby a topographic line profile is created. At steps

or protrusions, fig. 3.2 (A), the tip is displaced to follow the contour. Yet

also at areas with different DOS, as seen in area (C), the tip is displaced to

match the constant current criterium. This shows very nicely, that in STM

one measures only profiles of constant DOS. Therefore the interpretation

of images always has to include structural and electronic properties of the

scrutinized material. This will also be seen in the images of the Au/Ge(001)

nanowires in chapter 5.3.

(ii) The second scanning mode is called constant-height. This mode is much faster,

since the tip is held at a defined distance to the surface and the current is

recorded. So no feedback loop is needed for the image acquisition. Yet this

mode is only applicable for flat samples, like metal crystals. Otherwise the

chance of a tip crash at constant height is very likely.

In real measurements there is always an admixture of both modes, and the feed-

back loop as well as the scan speed may be adjusted to blend between the two.

Therefore always the height as well as the tunneling current is detected at all

times. However for slow scan speeds the feedback loop is given enough time to

adjust the tip height at every point of the sample and one may assume that the

signal was acquired in constant current mode. This was the preferred method for

all data presented in this thesis.
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3.1.2 Tunneling current

Tersoff and Hamann provided the first theoretical description of the tunneling cur-

rent between the tip and sample [70, 71]. Although their model includes some

simplifications about the wave function and geometry of the tip and is only valid

for small applied voltages, it has been most successful in describing the physics of

STM. This model will be presented here by following the two seminal publications

Refs [70, 71]. One starts by using Bardeens transfer Hamiltonian approach for the

tunneling between two metals, separated by a thin oxide layer [72]. Accordingly,

the current is given as

IT =
2πe

~
∑
µ,ν

f(Eµ)[1− f(Eν + eU)] |Mµν |2 δ(Eµ − Eν), (3.1)

where f(E) is the Fermi-Dirac distribution, U the applied bias, Ψµ and Ψν are

the eigenstates of tip and sample, respectively. The delta function provides the

energy conservation. Mµν represents the transition matrix element between the

two independent eigenstates and may be expressed as

Mµν =
~2

2m

∫
(Ψ∗µ~∇Ψν −Ψν

~∇Ψ∗µ)d~S, (3.2)

where the integral runs over an arbitrary surface between tip and sample. With

the simplification of low temperatures and small biases U < Φ, where Φ is the work

function, the Fermi-Dirac distributions are eliminated and the expression turns to

IT =
2π

~2
e2U

∑
µ,ν

|Mµν |2 δ(Eν − EF )δ(Eµ − EF ), (3.3)

where EF is the Fermi energy of tip and sample in equilibrium.

Point probe

Considering the simplest case of a point probe, the tip eigenfunctions are arbitrarily

localized and the matrix-element is simply proportional to the square amplitude of

the wave function of the sample at the position of the tip ~r0

IT ∝
∑
ν

|Ψν(~r0)|2 δ(Eν − EF ). (3.4)
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3.1 Tunneling microscopy

With this simple expression it is already apparent, that the tunneling current

depends on the local density of states (LDOS) of the sample at the Fermi energy at

the location of the tip. As stated earlier, this means that the STM records profiles

of constant LDOS rather than actual topography.

Modeled tip

In order to provide a more realistic situation of the tunneling experiment, the

calculation of the matrix element Mµν in eq. 3.1 is the most challenging part.

Therefore one has to assume some symmetries of the wave functions of tip and

sample. For a periodic surface, one may perform a fourier expansion of the wave

function of the sample

Ψν = Ω
− 1

2
s

∑
~G

aG exp

[
−
(
κ2 +

∣∣∣~k‖ + ~G
∣∣∣2) 1

2

z

]
× exp(i(~k‖ + ~G) · ~x), (3.5)

where Ωs is the sample volume and κ = ~−1
√

2mΦ is the inverse decay length

of the wave function into vacuum, Φ is the work function of the surface. ~k‖ is the

Bloch-vector of the surface state and ~G is the reciprocal lattice vector of the unit

cell. In a non-periodic scenario the sum over ~G is replaced by an integral.

R

dr0

sample

tip

Figure 3.3: The simplified tip model after Tersoff and Hamann [70, 71], assuming a spherical tip
with s-orbital wave function at a distance d away from the surface.
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For the geometry of the tip, Tersoff and Hamann assumed the tip to be spherical,

with a radius R at the distance d to the surface, see fig. 3.3. The vector ~r0 points

from the coordinate origin to the center of the tip. Generally one has no information

about the tip wave function, since it depends on the material of the tip and its

geometry. Yet, for the region of interest one may assume the wave function to be

described as a spherical s-orbital

Ψµ = Ω
− 1

2
t ctκRe

κR(κ |~r − ~r0|)−1e−κ|~r−~r0|, (3.6)

where Ωt is the probe volume. ct is a parameter, that depends on the tip geometry,

its electronic structure and the tip-vacuum boundary condition. For R� κ it is of

the order of unity. For simplicity it is assumed, that the work function of tip and

sample are equal. Again, this function may be expanded to

(κr)−1e−κr =

∫
d2qb(~q)exp[−(κ2 + q2)1/2 |z|]× exp(i~q · ~x), (3.7)

b(~q) = (2π)−1κ−2(1 + q2/κ2)−1/2. (3.8)

With these two wave functions for tip and sample the calculation of the matrix

element eq. 3.2 becomes straightforward and the tunneling current eq. 3.1 may be

calculated to

IT = 32π3e2V Φ2Dt(EF )R2~−1κ−4e2κR ×
∑
ν

|Ψν(~r0)|2 δ(Eν − EF ), (3.9)

where Dt is the density of states per unit volume of the tip. The sum basically

represents the density of states of the sample at the Fermi energy. This is in

accordance with the point probe result of eq. 3.4 and again means, that the STM

records profiles of constant DOS. A closer inspection of the sum term reveals that

|Ψν(~r0)|2 ∝ exp[−2κ(R + d)] (3.10)
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3.1 Tunneling microscopy

and therefore the tunneling current shows exponential dependence of the tip-

sample distance

IT ∝ e−2κd, (3.11)

which explains the high sensitivity of STM. Note that the result of Tersoff and

Harman is strictly valid only for

(i) Small applied voltages U < Φ.

(ii) Spherical tip with s-orbital.

The first criterium is mostly fulfilled for all spectroscopy experiments presented

in this thesis. Considering the tip orbital, most spectra were taken, using a Gold

tip. Gold has a 6s valence state, so the assumption of s-like states holds. Some

samples were also measured with a tungsten tip, which has a 5d state at the Fermi

energy. Orbitals with angular dependence are weighted by (1 + q2/κ2)−1/2 in the

matrix element [69]. However this weighting only becomes important for large tip

radii R and may therefore be neglected.

High bias regime

When performing tunneling microscopy on semiconductors, the low bias assumption

is not always justified, since bonds at the surface may lie several eV below or

above the Fermi energy. However, such states are only important for the bonding

geometry and the structure of the sample and don’t contribute to the conduction

properties, which only depend on the electrons close to EF . The exact treatment

of a high bias tunneling scenario is challenging, since the eigenstates of sample

and tip may depend on the applied voltage. For simplicity one assumes that these

states do not change with the bias. By applying the Wenzel-Kramers-Brillouin-

approximation (WKB) for planar tunneling, the current follows as [67]

IT =

∫ 0

EF

ρs(~r, E) · ρt(~r, E − eV )T (E, eV,~r)dE, (3.12)
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where ρs and ρt are the DOS at ~r of sample and tip, respectively. E is measured

from the individual Fermi levels. The tunneling transmission probability is given

as:

T (E, eU) = exp

(
−2(d+R)

√
2m

~2

(
Φt + Φs

2
+
eU

2
− E

))
= exp (−2κd) ,

(3.13)

where Φt and Φs are the work functions of tip and sample. A closer inspection

of the transmission probability T may be divided in two regions

(i) eU > 0, positive sample bias, unoccupied sample states

(ii) eU < 0, negative sample bias, occupied sample states.

In both cases the tunneling probability is highest for E = 0 eV, meaning that

electrons at the Fermi energy of the negatively biased electrode will always dominate

the signal. Deeper lying states will be exponentially damped by T.

Assuming a structureless DOS of the tip material, this means it is possible to (i)

selectively tunnel into the unoccupied states of the sample, see fig. 3.4 (a). The

leading edge of the tunneling current will always be dominated by the states at

EF of the tip. The reverse scenario however (ii) will always be dominated by the

unoccupied states of the sample at the Fermi energy, fig. 3.4 (b). Again it should

be stressed, that such effect is only relevant for high biasses and does not effect the

spectroscopy data shown in the current thesis. The structural observations will, on

the other hand be affected by the transmission probability. This will be important,

when analyzing the structure of the nanowires in chapter 5

3.2 Tunneling spectroscopy

As laid out in the previous chapter the STM records a signal, which is a convolu-

tion of topography and density of states. This fact may be used to locally measure

the DOS of the sample and thereby collecting structure and electronic information

simultaneously. Such capability is unique to the STM and has therefore made it a
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Tip Sample

EF+eU

EF

EVac

Surface DOS

(a)

Energy

Tip Sample

EF-eU

EF

EVac

Surface DOS

Energy
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Figure 3.4: Tunneling schematic for high bias regime. Occupied states in blue and red for tip
and sample, respectively. Note that the sample is always grounded and the voltage
is applied to the tip (a) Negative potential at the tip probes the unoccupied states of
the sample. (b) Positive tip potential probes mostly states close to the Fermi energy
of the sample. The tunneling probability is given as arrows, while longer arrows
mean higher probability. The leading edge effect in the signal becomes apparent.
After [73].
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very powerful tool to study the interplay of structure and electronics. A measure-

ment may be performed by collecting I(V) spectra with the feedback loop turned

off, or by using a lock-in amplifier. Both methods were used in this thesis.

3.2.1 I(V) spectra and extraction of the density of states

In order to record I(V) spectra, the tip is rastered across the surface in constant-

current mode and a topographic image is obtained. At the desired position, the

tip is stopped and eventually the feedback loop is opened. The tip now rests at

constant distance to the surface. Subsequently the bias is ramped over a voltage

range, e.g. ±0.1 V and the current is recorded. After the measurement is done,

the feedback loop is turned on again and the scan continues. Usually such spectra

are affected by noise, even at low temperature and long integration times. So the

measurement is performed several times for statistical confidence.

As shown in eq. 3.12, the tunneling current may be described as

IT =

∫ 0

EF

ρs(~r, E) · ρt(~r, E − eV )T (E, eV,~r)dE. (3.14)

Assuming a constant DOS of the tip and a constant tunneling probability over

the scrutinized voltage range, the derivative of the expression simplifies to

dIT
dV
∝ ρs(r, E). (3.15)

So the derivative of the I(V) curve will directly display the LDOS of the sample.

Note, that the derivative will be even more affected by noise than the I(V) curve

itself. Therefore in the current thesis up to 65000 spectra have been averaged for

one single dataset over equivalent sample areas to gain statistical confidence.

As a remark, for higher bias windows, e.g., ±1 V it is more common to use the

normalized conductivity

dI/dV

I/V
=

dln(I)

dln(V )
, (3.16)

because this expression eliminates the bias dependence of the transmission prob-

ability as well as the tunneling setpoint. However, by definition the normalized
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3.2 Tunneling spectroscopy

conductivity is 1 at 0 V bias and therefore any physics taking place at the Fermi

energy may not be detected.

3.2.2 Lock-In spectroscopy

In using a lock-in amplifier, the signal to noise ratio may be dramatically increased,

yet on the cost of longer measurement times. Thereby the tunneling voltage is

modulated with a periodic sine or cosine bias, which has a frequency higher than

the cutoff of the feedback loop. Therefore the image acquisition is not affected

by the periodic signal. The amplitude may be set to a desired value. Higher

amplitude will result in a better signal, yet it will also average over that bias window

and therefore over features in the sample DOS. The amplifier then compares the

tunneling current for a signal with the same frequency and phase. This signal is

then directly proportional to dI/dV and will therefore reflect the LDOS [65, 66, 74,

75]. With this method it is not only possible to perform tunneling spectroscopy

dI/dV(V) but also to scan the surface with a fixed voltage. The resulting image

acquired from the lock-in channel will then render the spatially resolved DOS at

a fixed energy. Such measurements have been performed in chapter 6.2, to detect

the conduction channels at the scrutinized nanowire surface.
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3.3 Low energy electron diffraction

In the wake of quantum mechanics and in a time when the wave nature of matter

was not yet fully established, Davisson and Germer by serendipity discovered elec-

tron diffraction from a Nickel crystal in 1927 [76]. Due to progress in ultra-high

vacuum (UHV) technology and the simplicity of this powerful method, low energy

electron diffraction (LEED) has developed to a powerful tool to study the quality

and long-range order of a crystal surface. Informations, that may be collected by

this technique are:

(i) By inspection of the diffraction pattern and knowledge of simple geometrical

scattering theory the unit cell of the surface may be revealed.

(ii) By using the kinematic theory to analyze the diffraction spot profiles one

finds information about the domain size as well as temperature effects.

(iii) By variation of the kinetic energy of the primary electrons and recording of the

spot intensity, intensity vs. voltage LEED (I(V)-LEED), information about

the atomic positions within the unit cell may be gained. This requires to

apply the advanced dynamical theory of scattering to account for the strong

interaction between slow electrons and matter.

The Au nanowires on Ge(001), studied in this work are scrutinized with LEED

using the first two methods in order to probe the delicate long-range order and to

study the second order phase transition occurring in this system, see chapter 5.

Principle

A typical schematic for a LEED instrumentation is shown in fig. 3.5. Electrons are

emitted from a heated filament and focussed by a Wehnelt cylinder. A lens system

then accelerates the electrons into the grounded drift tube and subsequently onto

the sample. In order to produce a field free region the sample and the first grid of

the optics are grounded. The diffracted electrons then pass through the grid optics.

The second grid is at slight negative potential in order to repel inelastically scattered

electrons. The fraction of elastically scattered electrons is only few percent, since

the excitation probability of plasmons for slow electrons is very high [77], see fig.

44



3.3 Low energy electron diffraction

1- 7 kV

Filament

Drift tube
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2. Grid (Supressor)
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Figure 3.5: Schematic of a typical LEED optics setup. Electrons are emitted from a filament
and subsequently accelerated onto the sample. The diffracted electrons then pass a
set of grids at different potentials and are then accelerated onto a fluorescent screen.
In looking from the filament side the pattern may be seen on the screen. After [77].

3.6. A third and optionally a fourth grid allow focussing onto the fluorescent screen,

which is at high positive potential of 1-7 kV. The diffraction pattern is then visible

on the screen, when looking from the filament side.

3.3.1 Surface sensitivity

Since electrons interact very strongly with matter [77], as compared to i.e. X-rays,

their mean free path is only of the order of a few nanometers. This is especially

true for slow electrons. In fact the mean free path for electrons in a solid obeys

the so called universal curve for many different materials, see fig. 3.6 [78]. This

characteristic behavior has a pronounced minimum at 50-100 eV, where the prob-

ability of plasmon excitation in the sample is the highest [79]. It subsequently

decreases for lower and higher energies and therefore the mean free path increases.

For typical LEED settings between 20 and 150 eV the mean free path is approx-

imately 1.5 - 2 nm only. Therefore the surface of the sample will dominate the

signal acquired.
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Figure 3.6: The mean free path of electrons in matter as a function of their kinetic energy [78].
A universal curve results for virtually all materials which has its minimum around
50-100 eV. There the portability to excite plasmons and inelastically scatter is the
highest.
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3.3 Low energy electron diffraction

3.3.2 Geometric theory

The two dimensional lattice of a surface may be described within the framework

of five Bravais lattices that are spanned by the vectors ~aj [40]. The corresponding

reciprocal lattice vectors ~bi have to fulfill the condition

~bi · ~aj = 2πδij, (3.17)

where the Kronecker delta δij = 1 for i = j and δij = 0 for i 6= j. This means,

that the reciprocal vectors are orthogonal to their real space counterparts. Using

the normal vector of the surface ~n the reciprocal lattice vectors may be constructed

using [80]

~b1 = 2π
~a2 × ~n
|~a1 × ~a2|

~b2 = 2π
~n× ~a1

|~a1 × ~a2|
. (3.18)

Consequently a reciprocal lattice vector at a surface is defined by

~G = h · ~b1 + k · ~b2. (3.19)

Since the translational symmetry perpendicular to the surface is infinite, the

reciprocal lattice points in this direction are infinitely dense, resulting in a rod

at each ~G. Therefore a scattering condition for electrons at a surface is much

easier fulfilled than in a bulk crystal. This condition is nicely described by the

Laue equations, which can be deduced from simple geometrical considerations as

shown in fig. 3.7. Two atoms from a crystal are placed at a distance ~R. The

incoming electron wave is described by the vector ~k and the scattered wave by ~k′.

Constructive interference will only occur, if

x+ x′ =
~k · ~R
k
−
~k′ · ~R
k′

= nλ, (3.20)

where n is a positive integer and λ the wavelength of the electron. In case of

elastic scattering, k = k′ = 2π/λ, this simplifies to

∆~k · ~R = 2πn with ∆~k = ~k − ~k′. (3.21)
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Figure 3.7: Geometrical description of the scattering condition at a crystal. This simple consid-
eration leads to the Laue equations for scattering. ~k is the incoming electron wave
and ~k′ the scattered wave. ~R corresponds to the lattice vector of the surface.

Since ~R corresponds to a lattice vector, this is exactly the definition for a re-

ciprocal lattice vector as in eq. 3.17. This formula is know as the Laue equation.

Therefore scattering will occur, if

∆~k = ~G. (3.22)

A very helpful representation of the scattering condition is the Ewald construc-

tion, fig. 3.8. The surface lattice will result in rods in reciprocal space. For elastic

scattering the Ewald sphere hat a radius of |~k| with its circumference fixed at the

origin of coordinates. In case of normal electron incident, as in LEED, this results

in a situation as depicted in fig. 3.8. At every intersection of the Ewald sphere

with the rods a solution to the Laue equations exists and in this direction electrons

will be scattered. Consequently the LEED pattern is a direct representation of the

reciprocal lattice of the surface.

Note that by tuning the primary energy of the electrons the radius of the sphere

may be set. For high energies the circle will grow and therefore more scattering

conditions will match. Yet also the scattering angles become steeper. Therefore

upon increasing the primary energy in LEED, the diffraction spots will move closer

to the backscattered (0,0) spot.
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Figure 3.8: Ewald construction for a surface lattice. At each intersection of the Ewald sphere
with a crystal truncation rod, a scattering condition is fulfilled. After [81]

3.3.3 Kinematic theory

The kinematic theory is based on the assumption of weak interaction between the

scatterer and the radiation. This is justified for X-rays or fast electrons. However

for slow electrons as in LEED also multiple scattering events have to be considered

to describe the complete picture. Nonetheless the kinematic theory is useful for

judgement of the disorder at the surface, which also includes temperature effects.

These will be important when analyzing the phase transition in the Au nanowires

in chapter 5.

Consider a plane electron wave with the wavelength λ that is traveling in direction

~s0 [77]

Ψ = Ψ0e
i ~k0~r, (3.23)

with the wave vector ~k0 = 2π
λ
~s0. As sketched in fig. 3.9 the point of observation

lies at X, which is far away from the sample. A scattered wave from ~Rj arrives

with an amplitude

Ψ =

(
Ψ0
ei
~k0
~R

R

)
· fj(~k0, ~k)ei(

~k− ~k0)~Rj . (3.24)
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R

Rj

s

0

X

Figure 3.9: Electron scattering schematic for the kinematic theory of diffraction. The point
of observation X is far away from the origin. The scattered wave arrives from ~s.
Summation over all ~s yields the diffracted intensity.

The first term again describes the plain wave. The second is the atomic scattering

factor and the third gives the phase shift between the origin and the point of

observation. Summation over the complete crystal surface leads to

Ψ ∝
∑
j

fj(~k0, ~k)ei(
~k− ~k0)~Rj . (3.25)

The sum over all atoms may be split in two terms with a lattice periodic factor

G and an atom or structure factor F, that describes the arrangement within the

unit cell [77]

Ψ ∝ F ·G. (3.26)

Of course the measurable quantity in experiment is the square of the waves

amplitude

I ∝ |Ψ|2 = |F |2|G|2. (3.27)

Basically G contains information on the long range order of the surface and do-

main size. F on the other hand contains information on the atoms within the unit

cell. In the dynamical theory of diffraction G is unaltered but special attention

is paid to the structure factor F, since multiple scattering events have to be ac-

counted for. Yet, even in the kinematic theory the temperature dependence of the
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3.3 Low energy electron diffraction

surface and influence of movement of the atoms may be estimated. These effects

are described by the Debye Waller factor [81].

3.3.4 Debye-Waller factor

As laid out in the previous chapter, the scattering amplitude depends on the square

of the structure factor F2, which contains the position of the atoms within the unit

cell. Yet, above zero temperature this position is not fixed, but a function of time,

since the atoms will begin to vibrate in the lattice. This may be described by the

time dependent position of the jth atom ~Rj(t) [40, 77]

~Rj(t) = ~rj
0 + ~uj(t), (3.28)

where ~rj
0 is the equilibrium position of the atom and ~uj(t) is the time-dependent

thermal vibration. Inserting this in eq. 3.24 and only considering the structure

contributions (ignoring contributions from the lattice) this yields

I ∝ |Ψ|2 = |F |2 = I0e
−((∆k)2·〈u2(t)〉), (3.29)

where I0 is the scattering amplitude of the fixed lattice and ∆k = k− k0. 〈u2(t)〉
is the mean square displacement of the atoms. By assuming independent motion

of the atoms and using Debyes theory of specific heat [40, 77]:

〈u2(t)〉 =
3h2

4π2mkB
· T

Θ2
D

, (3.30)

with m the atom mass, kB Boltzmanns constant and ΘD the Debye temperature.

In using the Laue condition eq. 3.21 and the condition for constructive interference

eq. 3.20 this yields

∆k =
4πcos(φ)

λ
, (3.31)

where λ is the electron wavelength and φ is the scattering angle. Insertion of eqs.

3.30 and 3.31 in eq. 3.29 yields

I = I0 · e−2M with 2M =
12h2

mkB

(
cosφ

λ

)2

· T
Θ2
D

. (3.32)
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The exponential function is known as the Debye Waller factor. Important con-

sequences are that the scattering intensity

(i) decreases with increasing temperature.

(ii) decreases for higher electron energies (shorter wavelengths).

(iii) depends on the scattering angle (strongest influence on the 0th order reflex).

These considerations will be important in the discussion on the phase transition

in the Au nanowires in chapter 5.7.2.
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3.4 Experimental setup

Low-temperature STM

The majority of the experiments were performed at the low-temperature STM

(LT-STM) in the Matzdrof group at the University of Kassel. Therefore the de-

scription of the experiment will be limited to this commercially available setup. Ul-

tra high vacuum conditions are necessary to ensure sufficiently long measurement

times before the surface is covered with adsorbents. Consequently the chamber

consists of three parts:

(i) A fast entry load-lock for introduction of samples and tunneling tips,

(ii) A preparation chamber (PC) for surface cleaning and evaporation of gold for

the self organized nanowires,

(iii) An analysis chamber (AC) housing the two cryostats and the STM therein.

A schematic of the setup may be seen in fig. 3.10 (a) and (c). The base pressure

of the PC and AC was 5×10−11 mbar and never exceeded 1×10−9 mbar during

sample preparation or transfer. This regime is reached by a combination of turbo

molecular and ion getter pumps. Especially the getter pumps are necessary to have

no moving parts at the chamber during an STM measurement. This minimizes

vibrational disturbances.

The Au/Ge(001) nanowires were prepared as described in chapters 4.3 and 5.2.

An Omicron Sepcta-LEED installed in the preparation chamber was used to ensure

surface quality before inserting the sample into the cryostat, but also to study the

temperature dependence of the phase transition, see chapter 5.7.2.

STM measurements were performed with an Omicron LT-STM either at a base

temperature of 77 K with liquid nitrogen (LN2) or at 4.7 K with liquid helium (LHe).

Temperatures in between could be accessed by a resistive heater, that was installed

at the STM base. A picture of the STM stage is shown in fig. 3.10 (b). The sample

enters face down and the tunneling tip on the tube scanner approaches from below.

An eddy current damping system along with three springs supplies the necessary

decoupling from the rest of the chamber. In addition the complete setup rests on

a dedicated foundation in the basement.
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Fast Entry Load Lock
Preparation Chamber

LT-STM

LT-STM
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Figure 3.10: (a) Schematic of the UHV setup for LT-STM measurements and sample prepara-
tion. (b) Sample stage of the LT-STM, removed from the cryostats. (c) 3D view
of the setup with the cryostat in blue. [82] (d) Sample holder of the LT-STM. The
sample is contacted on both top and bottom with Mo stripes.
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The sample holder for direct current heating is shown in fig. 3.10 (d). The sample

is clamped between two Molybdenum stripes in the center of the sample carrier.

Therefore the sample is contacted both on the top and the bottom. This will be

important, when discussing the circuiting of the tunneling spectroscopy experiment

in chapter 6.3.1. One side of the sample holder is isolated in order to inject the

heating current needed for the sample preparation. In the tunneling experiment

both sides are connected to ground.

Considering the performance of the STM preamplifier, the resolution broadening

due to electronics has been determined on an energy gap of a superconductor to 5

meV [25]. Additional broadening is induced in some measurements by the ampli-

tude of the lock-in amplifier, as well as temperature broadening of the tunneling

tip. This will be discussed at each relevant section in chapter 6 on the tunneling

spectroscopy results.

Variable-temperature STM

Considering the STM measurements above room temperature, an Omicron variable

temperature STM (VT-STM) was used. It is attached to a PC which offers the

same preparation possibilities as stated above. The base pressure in this chamber

is 1×10−10 mbar and never exceed 1×10−9 mbar during preparation. After prepa-

ration the sample is transferred into the STM, where first an image is acquired

at room temperature (RT). When the tip condition is stabilized a direct heating

current may be applied to the sample in order to increase the temperature. The

voltage drop over the sample is accounted for in the tunneling circuit. Using high

scan speeds to avoid thermal drift, it becomes possible to study the sample surface

above room temperature as presented in chapter 5.7.1 for the study of the phase

transition.
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ARPES using Synchrotron radiation

For completeness, the ARPES measurements were performed at two different syn-

chrotron light sources.

(i) Advanced Light Source (ALS), Berkeley, USA: The ARPES band maps and

the Fermi-surface were measured at the Electronic structure factory, beamline

7.0.1 with a Scienta R4000 analyzer at a photon energy of hν = 100 eV with

a total resolution of ∼ 30 meV. These results are presented in chapter 6.1

(ii) Swiss Light Source, Villigen, CH: The high resolution line shape of the 1D

band, as shown in chapter 6.3.1, was measured the SIS beamline using a

photon energy of hν = 21.2 eV and a Scienta R4000 analyzer. The total

energy resolution could be reduced to ∼ 10 meV.

Details and results about the synchrotron experiments on the Au/Ge(001) nanowires

may be found in [A.6, A.16]. For more general information on the synchrotron setup

and experiments see the recent introductory book by P. Willmott [83].
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4 Choosing the substrate

“There is plenty of room at the bottom.” (Richard Feynman, 1959)

4.1 Previous studies on nanowires at surfaces

Growing 1D nanostructures at surfaces is a challenging task. The most crucial

factor on the resulting chain structure is the choice of the right substrate. Nearly

all previous studies to date have been performed on the Si surfaces [84]. These are

the In chains on Si(111) and the Au reconstruction on the stepped silicon substrates

Si(553) and Si(557). Earlier studies on these systems focussed on the importance of

Peierls physics as well as TLL behavior, see chapter 2. The local structure of such

surface reconstructions can be studied with STM very conveniently. The electronic

structure may be probed using ARPES with high precision. Consequently these

systems seem to be the ideal candidates for the examination of the above mentioned

low dimensional properties. For comparison with the results of this thesis, a short

review of these three most thoroughly studied nanowire reconstructions with the

most important findings will be given here.

4.1.1 In chains on Si(111)

When depositing In on Si(111) the threefold symmetry of the surface is broken.

This leads to the formation of 1D nanowires. This is the first nanowire system

at a surface, where the occurrence of a Peierls transition has been claimed. The

seminal paper of Yeom et. al [31] served as the prototypical case of proof of a

charge density wave at a nanowires surface reconstruction. They found, that upon

deposition of In the surface reconstructs in a p(4×1) unit cell. In STM nanowires

are observed, which are four atoms wide an consist of two closely neighboring In

zig-zag chains [31], see fig. 4.1 (a) left. ARPES measurements find three surface
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states, which are all metallic at room temperature [85], see fig. 4.1 (a) left. The

band fillings of these three states are m1 = 0.11, m2 = 0.38 and m3 = 0.50. In

addition the m3 band shows a highly anisotropic character, which was determined

from tight binding fits of the Fermi surface contour, see [85]. The resulting ratio of

the transfer integral is
t‖
t⊥

= 72. This makes the In/Si(111) surface a prime example

for the Peierls scenario with half filling, see chapter 2.1.2.

Upon cooling to 120 K the chain structure is found to undergo a symmetry

breaking phase transition with a doubling of the periodicity in chain direction,

see fig. 4.1 (a) right. This was further supported by electron diffraction [31]. At

the same time the bandstructure is altered and only two bands may be detected in

ARPES. These new bands are both back folded at the ×2 zone boundary (K̄-point),

thereby matching the new real space periodicity and making the surface insulating.

This is explained by a charge transfer of the m1 to the m2 band, which then has

a band filling of m2’ = 0.49. It matches the half filling scenario and stabilizing

the CDW ground state [85], see fig. 4.1 (c). Consequently all indications of a

Peierls instability are presented, like the CDW in real space and the metal-insulator

transition (MIT) due to the back folding of the bands with a corresponding nesting

condition. With these findings the system seems to perfectly coincide with the

model described by Peierls.

However subsequent theoretical calculations found that the ×2 distortion of the

In chains does result in the correct ground state and also not to an insulating

surface [86]. Therefore the Peierls mechanism alone may not explain the ground

state. Further calculations proved, that the inclusion of a shear phonon is neces-

sary, leading to the formation of In hexagons in the ground state [87, 88]. This new

structure leads to an insulating band situation with the m1 band shifted above the

Fermi energy and both the m2 and m3 band backfolded at the ×2 zone boundary.

These calculations therefore reproduce both experimental findings from STM and

ARPES. Yet in this scenario the driving force of the transition is not the Peierls

instability, but rather the softening of the shear phonon at 120 K [87, 88]. Conse-

quently the paradigmatic character for a Peierls instability in this surface system

is at least partially rebutted.
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Figure 4.1: (a) STM image of the In/Si(111) nanowire reconstruction above the transition (left)
and below (right), from [31]. A period doubling may be observed in the LT phase.
(b) ARPES measurements of the In/Si(111) surface above (left) and below (right)
the critical temperature, from [85]. (c) A backfolding of the bands at the new zone
boundary K̄ is seen in the LT phase. In addition only two bands remain, from [85].
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4.1.2 Au chains on Si(557)

A fundamentally different approach to grow self organized nanowires is the use of

miscut substrates. In the case of Si(557) the (111) surface is miscut by 9.5◦ towards

the [1̄1̄2] direction. The resulting surface is stepped with a terrace width of 1.92 nm

[89]. Deposition of Au leads to the reconstruction of three kinds of chains. On each

terrace a chain of Au atoms that are incorporated into the first layer exists [90].

Additionally the Si atoms at the step edges form honeycomb chains of Si hexagons

[90]. The structure is similar to that of graphene. Furthermore Si adatoms form

a third chain. In STM only two chains may be seen in fig. 4.2 (a). The chain

with high ×2 corrugation is identified as Si adatoms, while the neighboring rather

structureless chain is the Si honeycomb step edge. The bandstructure detected by

ARPES is shown in fig. 4.2 (c). Two parabolic bands are seen situated symmetri-

cally around the Γ point. The band fillings are S1 = 0.49 and S2 = 0.42 [89]. The

S1 band is clearly metallic at RT, while the S2 band is slightly recessed from the

Fermi energy, see fig. 4.2 (d). Tight binding fits of the Fermi surface contour yield

a ratio of the transfer integrals
t‖
t⊥
> 60 for both bands, thus rendering the states

highly anisotropic [89].

Upon cooling a doubling of the step edge chain periodicity is found in STM, while

the adatom chain remains unchanged [91], see fig. 4.2 (b). At the same time the

S1 band is recessed from the Fermi energy, rendering the surface insulating [91],

see fig. 4.2 (d). From STS measurements of the energy gap a mean field transition

temperature could be calculated to TC = 260 K [91]. Again these observations

seem to coincide perfectly with the Peierls picture.

Later density functional theory (DFT) calculations by Riikonen et al. found that

a buckling of the Si step edge atoms leads to the doubling of the periodicity [92, 93].

At the same time the buckling result in a gap between the filled and empty states.

Consequently at low temperatures the amplitude of the buckling leads to a MIT

for the S1 band. The S2 band is attributed to bonds between the Au and the Si

adatoms, and is gaped at the zone boundary. The transition may be explained by

vibration of the step edge atoms. At high temperatures the vibration reduces the

gap size. However the proposed theoretical model predicts an asymmetric energy

gap, which is not observed in experiments [94].
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Figure 4.2: (a) STM image of the Au/Si(557) chains. The high corrugation chain is identified
as Si adatoms, while the structureless chain comes from the Si step edge, from [91].
(b) Below the transition temperature the step edge chain period is doubled, from
[91].
(c) ARPES at RT shows two metallic bands S1 and S2 almost half-filled [89].
(d) EDC analysis at the Fermi vectors of S1 and S2. At 300 K, S1 is clearly metallic,
while S2 is gaped. Below the transition temperature both bands are insulating, from
[91].
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Furthermore it was shown by spin resolved ARPES measurements, that the S1

and S2 state originate from the same band and are spin-orbit split due to the Rashba

effect [95]. This renders the band situation even more complicated, since the states

S1 and S2 are completely spin polarized with opposing spins. Consequently the

transition in the Au/Si(557) system is not completely settled and still under current

debate. More input from theory is now needed to understand the phase transition

and to incorporate the spin orbit split bands.

Finally it should be mentioned, that early ARPES studies on the Au/Si(557)

chains have claimed the occurrence of a TLL [32]. These studies showed two dis-

persing features, which merged at the Fermi energy. This finding was interpreted

as spinon and holon dispersion branches. At the same time no clear Fermi cutoff

could be found in the spectra and a power-law behavior was claimed. However

later studies with higher resolution completely disproved these findings [89]. The

ARPES data in fig. 4.2 (b) clearly show, that the features at the Fermi energy are

split and that a clear Fermi cutoff exists, see fig. 4.2 (d).

4.1.3 Au chains on Si(553)

In turning to the related surface Si(553) many similarities may be found. Here the

surface is miscut by 12.3◦ towards the [112̄] direction. The higher miscut angle

leads to a reduced width of the terraces of 1.48 nm. The deposition of Au results

in similar structure to that of Au/Si(557). Gold is substituted in the topmost

surface layer, forming a zig-zag double chain, while at the step edge Si honeycomb

chains are formed [96, 97]. But the adatom chain is not present here. In STM the

structure is seen as two chains [33], see fig. 4.3 (a). Both chains show mostly a ×1

period at RT, with only some parts showing a ×2 periodicity. The high corrugation

chain corresponds to the step edge. In ARPES similar to Au/Si(557) two parabolic

bands S1 and S2 are detected, but additionally a third band S3 is found. The

fillings correspond to S1 = 0.51, S2 = 0.56 and S3 = 0.27 [98], see fig. 4.3 (b).

A tight binding fit of the Fermi surface yields hopping ratios
t‖
t⊥

of S1 = 46,

S2 = 39 and S3 = 12. These are smaller than that of the Au/Si(557) chains, which

may be explained by the reduced terrace size. This enhances the coupling between

the chains [98]. In fact a systematic study of miscut Si(111) substrates showed,

that the coupling between the chains increases with decreasing terrace size [89].
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Figure 4.3: (a) STM images of the Au/Si(553) surface above (left) and below (right) the transi-
tion temperature, from [33]. Two chain types are visible with the strong corrugation
(red color code) undergoing a ×3 and the other a ×2 transition upon cooling . (b)
The corresponding band structure at room temperature. At the bottom the dis-
persing features are seen. Three bands are detected. Top: Fermi surface contour
with marginal wiggling, from [98]. (c) Avoided band crossing pattern due to spin-
orbit splitting. High resolution ARPES data showing avoided crossings at the zone
boundary, thereby pointing at spin orbit split bands S1 and S2, from [99].

63
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The low temperature structure of the surface observed with STM is shown in fig.

4.3 (a) left. While the honeycomb chain undergoes a ×3 transition, the Au chain

simultaneously is doubled in its periodicity [33]. The observations seem to coincide

with a gapping of the S1 and S3 band [33]. These are close to 1/2 and 1/3 filling

and thus the transition was interpreted as two simultaneous Peierls transitions. As

in the case for Au/Si(557) the S2 band was found to be gapped at all temperatures,

according to [33].

A similar mechanism to the step edge buckling as in the Au/Si(557) chains seems

unlikely, since the period of the step edge is tripled. Yet there are also further evi-

dences against a Peierls transition. High resolution ARPES studies of the S1 and

S2 band have found, that they are both backfolded at the ×2 zone boundary, see

fig. 4.3 (c). Interestingly there is a pattern of avoided crossings and it was followed

that the bands are spin orbit split [99]. Because two fermions cannot occupy the

same state the crossing pattern opens, see fig. 4.3 (c). This would not be the

case for unpolarized electron bands. Later calculations seem to corroborate this

picture, where a spin polarization of every third electron at the honeycomb chains

was proposed. [100]. Lastly spin resolved ARPES measurements performed in our

group find the bands to be spin orbit split [manuscript in preparation]. Therefore

again the simple Peierls picture cannot hold for this surface system and further

calculations are needed to understand the transition occurring in this system.

To sum up the findings from these three nanowire systems:

(i) All three chains undergo a symmetry breaking phase transition upon cooling.

(ii) The electronic structure also changes and forms energy gaps for most bands.

(iii) The earlier Peierls interpretation was challenged by calculations (hexagon

formation, step edge buckling).

(iv) At least in the Au chains on the stepped surfaces, spin-orbit interactions have

to be taken into account.

(v) In none of the systems could TLL behavior be shown, pointing to a finite

electronic coupling between these chains.
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(vi) The need for better confined 1D nanowires at surfaces arises in order to find

a model system for a 1D electron liquid. Consequently a different approach

to their fabrication is needed.

4.2 The Ge(001) surface

A fundamentally different approach to the growth of nanowires for a 1D model

system is the use of Ge(001) as a substrate. The nanowires growth is guided by the

intrinsic Ge dimer rows. In this chapter first a general description on the Ge(001)

surface will be given. Thereafter the newly developed cleaning procedure of the

surface will be shown and compared to other existing mechanisms. Eventually the

possible chain reconstructions will be discussed in the following chapter along with

the new results on the Au/Ge(001) nanowires.

Germanium belongs to the group IV elements, like silicon and carbon. Although

the first transistor was made from Ge, the technological development since then

has strongly been focussed on Si. However in recent years more and more research

has been done on Ge, because of the possibility to grow low-dimensional (low-D)

nano structures by self organization.

Bulk germanium condenses in the diamond lattice, which may be described as

two FCC lattices shifted by 1/4 along the cube diagonal. Each atom has four

nearest neighbors to which it is covalently bound. The 4s and 4p orbitals overlap

and form sp3 hybrid-states by linear combination of the original s and p wave

functions. Since there are excellent detailed review articles on the reconstruction

of the Ge(001) surface [101, 102] only a brief outline of the most important facts

will be given.

When cutting the Ge crystal along a [001] direction, i.e. along one side of the

cube, there will be two unsaturated orbitals (dangling bonds) per atom, reaching

into the vacuum. Because this state is energetically unfavorable two neighboring

germanium atoms will react and form a dimer. The result will then be the creation

of dimer rows. Since it is not possible to polish the crystal perfectly flat, there will

be terraces which are separated by an atomic step. Between each step the dimer

rows will be rotated by 90◦, but will all lie in parallel on one terrace. This is due

to the A-B stacking of the substrate. Consequently the dimer rows will run along
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4 Choosing the substrate

Figure 4.4: Buckled Ge dimer at the reconstructed surface, from [101]. Dimers are bound by a
σ-bond of two p orbitals. Two dangling bonds remain and reach out of the surface,
forming a weak additional π-bond.

the [110] and [1̄10] directions. Therefore one will end up with two domains on a

sample crystal.

By dimerization the total energy of the system is minimized. A further energy

reduction is performed by a buckling of the dimer axis perpendicular to the sample

surface, see fig. 4.4. Since left or right buckling configurations of the dimer are

energetically degenerate, at RT the system rapidly switches at 108-1010 Hz between

the two configurations [80], see fig. 4.5 left. Therefore the structure in STM will

appear at the same height, with no detectable buckling. This leads to a (2×1)

reconstruction of the surface. However towards low temperatures the vibration

stops and the long range order of the system is described as alternating left and

right buckled dimers, rendering a c(4×2) unit cell, see fig. 4.5 right. The latter

may also be seen at RT in the vicinity of defects and on terrace steps, where the

buckling is pinned [101].

4.3 Preparation of clean Ge(001) surfaces

The preparation of a clean and low-defect Ge(001) surface is a formidable task.

Main difficulties are due to the oxide of Ge, which serves as a protection layer in

ambient atmosphere. Unlike silicon, the GeO2 layer

(i) does not match the Ge lattice and therefore will strain and crack [103, 104].

(ii) is solvable in water and will therefore be etched in ambient air humidity.

Constant etching and regrowth lead to an incorporation of contaminants into

the oxide and also to the interface of Ge/GeO. Therefore in this thesis a cleaning
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Figure 4.5: Left: p(2×1) reconstruction of Ge(001). Topmost atoms are represented by white
circles. The dimer rows run vertical. Right: low-temperature c(4×2) phase with
buckled dimer configuration. Alternating left right buckling leads to a larger unit
cell, from [80, 101].

procedure has been developed, which is both reliable and fast, leading to a clean

Ge(001) surface with reproducible results [A.9].

The cleaning process is divided in two steps. The ex situ preparation involves wet

chemical etching and passivation by growth of a thermal oxide. Afterwards the sam-

ples are degassed and the oxide is eventually removed in situ. In short the recipe is:

1) Acetone bath in sonicator, 2 min → removal of photoresist

2) Triple organic baths, 2 min each → removal of hydrocarbons

3) Dry blow with nitrogen → removal of solvents

4) Piranha (7:2:1) etch, 5 sec → removal of native oxide

5) Water rinse, 1 min → removal of acid

6) Oven at 380 ◦C in high purity air, 5 min → growth of protective oxide

7) Heating in UHV at 250 ◦C, 6 hours → removal of adsorbates

8) Flash annealing in UHV to ∼ 600 ◦C → removal of protective oxide

4.3.1 Piranha etching and thermal passivation

The ex situ sample preparation is conducted in a clean room environment, pro-

vided by a flow-box. Commercially available Ge crystals were used from a variety

of different suppliers (CrysTec, MaTeck and Crystal). Resistivities due to different
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doping level ranged from 0.04 Ωcm to 20 Ωcm. All crystals yielded similar results.

The n-doped Ge(001) samples are ultrasonically cleaned in standard grade ace-

tone, to remove a protective photoresist. Adsorbed hydrocarbons are subsequently

removed by stirring the samples in ultra-pure acetone, propanol and methanol for

2 min each. Residual solvents are blown off with dry nitrogen. Afterwards the sam-

ples are dipped in piranha solution with H2SO4:H2O2:H2O (7:2:1) for 5 s. This step

not only strips the native oxide but also etches several layers of the Ge surface. Fur-

thermore piranha solution is very aggressive to remaining carbon and hydrocarbon

contaminants. Due to self heating of the solution by hydration of the SO2−
4 anions

in water, the etching process takes place at elevated temperatures (T ∼ 80 ◦C). All

chemicals are used in highest available purity. Since especially H2O2 may contain a

marginal amount of organic impurities, it should be used in highest purity without

stabilizers, and also in lowest effective concentration in the piranha solution. After

etching, the samples are rinsed in deionized water for 1 min. The water was chosen

in triple distilled purity (impurities ≤ 1 ppb) with a conductance below 2 µS/cm,

since the surface after etching has no protective oxide and any impurity will react

with it.

Thereafter, the samples are blown dry with nitrogen and placed in an oven at

380◦C in a high purity synthetic air for 5 min, in order to produce a clean passivating

oxide layer, which also buries residual contaminants. The elevated temperature is

necessary to provide the activation energy for the oxidization [105]. Afterwards the

samples are mounted onto the sample holder and eventually transferred into the

UHV system.

4.3.2 Degassing and oxide removal

The sample-holder is degassed in situ for 6 h at 250◦C, using direct current heating

of the semiconductor substrate. This is highly important to remove physisorbed gas

particles from the sample holder, since the dangling bonds of the free surface will

quickly react after oxide removal. This may even lead to a complete destruction

of the surface, if the vacuum conditions are not sufficient. A later removal of such

reacted adsorbates is virtually impossible since especially carbon and germanium

form a very strong bond (460 kJ/mol) which can only be broken at temperature

higher than the melting point of Ge (263 kJ/mol) [106].
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4.3 Preparation of clean Ge(001) surfaces

The oxide layer is removed by flash annealing for t ∼ 1 sec to T ∼ 600◦C.

The short annealing time ensures that there is no unnecessary activation every

for further reactions with contaminants after the oxide is removed. The oxide

desorption follows the reaction [107]:

GeO2 +Ge→ 2GeO (T = 400◦C), (4.1)

which in our case results in a total conversion of dioxide into the gaseous phase,

so that the passivation layer can be completely removed in UHV. Thereafter the

surface typically shows terrace diameters of about 100 nm with very low defects

and carbon contamination is barely detectable.

4.3.3 Protective oxide quality

The formation of GeO2 occurs via sub-oxides and only gradually leads to a closed

oxide film, due to the lattice mismatch of 21 % and strain relaxation between Ge and

GeO2 [103, 104]. Angle dependent X-ray photoelectron spectroscopy (XPS) studies

have been performed to judge the quality of the oxide layer, regarding thickness and

homogeneity. Electrons escaping the sample normal to the surface have the highest

probing depth, while shallow angles increase the surface sensitivity. By analyzing

the oxide-shifted component of the Ge 3d core level, the thickness of the passivating

oxide may thus be determined. For comparison a unprocessed (as bought) as well

as an etched and thermally oxidized sample are scrutinized.

The resulting spectra for the thermally grown oxide layer is shown in fig. 4.6 (a).

Starting with the highest probing depth (α = 0◦), two peaks are detected from the

Ge bulk (29.4 eV) as well as GeO2 (32.4 eV). Since most signal stems from the bulk

the Ge peak dominates the spectrum.When increasing the angle in steps of 10◦, the

surface sensitivity is enhanced, so that the GeO2 signal increases at the expense of

the bulk Ge signal.

The thickness of the oxide may be determined by thee analysis of the angular

dependence of the spectra. This is done by comparison of the substrate intensity

(Isub) and GeO2 intensity (Iox) of the Ge 3d core level, according to [108, 109]

dox = λox ln

(
ρsubλsub
ρoxλox

Iox
Isub

+ 1

)
cosα, (4.2)
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Figure 4.6: (a) Ge 3d core level spectra depending on the electron emission angle α to surface
normal, starting from normal emission towards in-plane. All spectra are normalized
to the Ge 3d bulk peak. (b) Reduced oxide layer thickness for thermally oxidized
samples (red triangles) and the native oxide samples (black dots). For native oxide
samples the oxide thickness amounts to 2.8 nm compared to the thermally grown
oxide of only 0.6 nm. The intensity drop off at α = 70◦ results from elastic scattering
of the photoelectrons. From [A.9].
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where ρ represents the atom densities. According to Tanuma, Powell and Penn

[110] one may calculate the inelastic mean free path for the oxide λox = 2.89 nm

and the Ge substrate λsub = 2.99 nm. The calculated oxide thickness is plotted

over the emission angle, see fig. 4.6 (b). The curve shows a constant thickness for

0 < α < 60◦, which indicates a homogeneous and smooth oxide layer. The drop-off

at 70◦ is due to elastic scattering of the photoelectrons. Consequently one finds

for the thermally grown oxide a thickness of 0.6 nm (∼ 3 monolayer [104]) and 2.8

nm for the native oxide. The latter is four times larger than the artificial oxide,

which is consistent with previous studies on the typical native oxide layer thickness

[109, 111]. However a thin oxide is desired in order to completely remove it upon

flash annealing the sample. Furthermore in the native oxide layer and its interface

with the Ge(001) substrate, all sorts of impurities from the polishing process of the

manufacturer will be contained.

The composition of the oxide may be judged from the chemical shift of about

3 eV in the upper Ge 3d core level of fig. 4.6 (a). One finds in good agreement

with Molle et al. that it is only GeO2, since the formation of GeO2 is favored over

GeO in the temperature growth regime below 400 ◦C [111].

In using atomic force microscopy (AFM) one may directly judge the surface

roughness with the oxide on top, see fig. 4.7 (a). Roughness analysis of an area

about 1 µm2 yields a root-mean-square value of approximately 0.28 nm, which

compares well to the roughness of the free Ge(001) surface obtained from STM.

This points at the growth of a homogeneous oxide layer with an overall constant

thickness.

4.3.4 Surface quality after oxide removal

XPS may also be used to judge the surface cleanliness before and after the desorp-

tion of the thermally grown oxide. The initial oxygen contribution to the Ge 3d

core level vanishes in the photoelectron spectra (lower panel fig. 4.7 (b)), leaving

only the bulk signal. Furthermore the initial O 1s peak disappears completely, see

fig. 4.7 (c), reflecting the overall removal of the oxide layer. Note that there is a

small contribution of the Ge Auger L2M23M23 peaks (534 eV and 525 eV) in the

O 1s spectra [112].
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Figure 4.7: (a) AFM image of 1 µm2 for thermally grown GeO2 with a root-mean-square rough-
ness of 0.28 nm. Core-level spectra before (red, upper curve) and after (blue, lower
curve) removal of thermally grown oxide. (b) Ge 3d, (c) O 1s and (d) C 1s. After
desorption no traces of carbon or oxygen are detectable, pointing to a complete lift
off of the oxide and a carbon free surface. From [A.9]
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Figure 4.8: (a) STM overview image of the Ge(001) surface (+1.7 V, 0.5 nA, RT). Typical
terrace widths are 50-100 nm. Few protrusions are visible. (b) Closeup STM image
(+1.5 V, 0.5 nA, RT) of the defect-free c(4×2) reconstruction. (c) LEED pattern at
41 eV; sharp reflexes with low background demonstrate high sample quality. From
[A.9]

The level of contaminations may be directly seen from the intensity of the C

1s core level. The oxide-desorbed surface in fig. 4.7(d) has almost no detectable

C 1s signal compared to the oxidized sample. Thus remaining contaminations

after etching are effectively buried upon oxidation and subsequently removed. For

comparison, an actual carbon contribution on the oxide-removed substrate can be

seen after exposure to atmosphere for 1 min in fig. 4.7 (d).

In order to judge the quality of the free surface STM has been performed to

resolve the surface with atomic precision. An overview image shows regular flat

terraces with a mean diameter of ∼ 100 nm, fig. 4.8 (a). This distribution depends

essentially on step pinning due to remaining defects, the surface roughness caused

by polishing as well as the miscut of the crystal. Notably only few protrusions

are detected and their density is very low compared to other chemical cleaning

procedures or ion bombardment and annealing (IBA) [113–115]. These are most

likely due to residual carbon contamination or dopant segregation to the surface.

Yet both (C and Sb) are well below the detection limit in the XPS spectra. Since

studies of undoped substrates show the same protrusions [113], it is likely that
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they are due to carbon. Additional investigations on the annealing duration show

the immobility of such protrusions so that no clustering can be observed, a fact

which is also reported in Ref. [114]. In looking more closely, one may even resolve

the intrinsic dimer rows, fig. 4.8 (b), which show both a regular (2×1) and the

co-existing c(4×2) surface reconstruction with low defect density.

In using LEED one may judge the surface long range order, averaged over a

larger sample area. The diffraction pattern shows a sharp and low background

(2×1) pattern in fig. 4.8 (c). The pattern was recorded at the minimum of the

universal cure (41 eV), see chapter 3.3.1, in order to maximize surface sensitivity.

Since the signal to background ratio is very high this points at a low defect and

contamination density.

4.3.5 Comparison with alternate cleaning procedures

Ion bombardment and annealing

The standard method for cleaning a Ge(001) surface is the use of several cycles of

Ar+ bombardment with subsequent annealing IBA [113]. Yet the surface damage

due to the ions may not be completely recovered and many cycles will lead to

carbon protrusions, which hinder further self-organized growth on the surface [113,

114]. Also the time consumption of the method is rather high since each cycle

requires ∼ 60 min, and typically 5-7 cycles are needed. Furthermore the long and

frequent annealing times lead to a high thermal budget in the sample, which can

lead to dopant segregation at the surface. However by evaporation of a Ge buffer

layer on top of the IBA treated surface, all damage may be recovers and a nearly

perfect surface may be produced [113]. Yet this involves an additional and lengthy

processing step in UHV, which is not possible to perform at all setups.

Etch and oxidization treatments

Usually chemical treatments of the Ge(001) surface involve and oxidizing agent like

hydrogen-peroxide (H2O2) and subsequent removal of the oxide-layer in a second

bath of HCl or HF [115–117]. The final passivation oxide is usually removed in UHV

by annealing. It yields a surface similar to the IBA treatment, with a comparable

protrusion density, yet carbon is not always removed effectively [113]. This may
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be due to a poor oxide layer quality since passivating Ge(001) with GeO2 in liquid

oxidizers (H2O2/H2O, NH4OH/H2O2/H2O or HNO3) [116, 117] is inefficient. This

is due to the fact that GeO2 is water soluble, so constant etching and reformation of

the oxide will occur in aqueous solutions [115, 117]. Also these chemical procedures

always leave detectable amounts of carbon residue at the surface [113–115], which

are caused either by an insufficient etching process or an incomplete oxide layer.

However, residual carbon and oxygen on the surface hinder surface mobility and

the development of larger terraces [113, 114]. So a complete removal is paramount.

In order to avoid the oxidation in a liquid, alternative methods have tried to

perform this step by UV/ozone treatment [115] or in situ oxidation with molecular

oxygen [118]. Both procedures effectively remove most carbon contaminations but

add an additional and complex processing step. Also the UV/ozone treatment

results vary with conditions of the lab [114].

Besides it’s cleaning efficiency, our proposed method does not require special

safety equipment, since only relatively harmless substances are used. This is unlike,

e.g., HF or UV/ozone, where special precautions have to be fulfilled. Thus the

piranha etching and thermal oxidization treatment is fast, simple and reproducible,

resulting in a clean and long-range ordered surface.
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5 Structural elements of

Au/Ge(001) nanowires

5.1 Current knowledge about nanowires on

Ge(001)

Ge(001) has become a well suited substrate to guide the growth of self organized

nanowires. Studies of noble metal growth on this substrate have recently been

frequent publications in the literature. Ag and Pd form 2D reconstructions and

lead to the formation of germanide clusters [119, 120]. Where as Au and Pt will

reconstruct in 1D nanowires. The following chapter will give a brief introduction

on these two chain systems. For a recent review see [A.3]

Pt nanowires on Ge(001)

Historically the Pt chains have attracted more attention, since they grow very well

by cold deposition and subsequent annealing [121, 122]. Depending on the tunneling

setpoint dimers along (fig. 5.1 (a)) or perpendicular to the chain direction are

observed in STM [123]. The Pt wires are spaced at 16 Å, which is four times the

lattice constant of Ge. Consequently the symmetry of the surface is described by a

p(4×2) unit cell. It is also possible to image the wires down to 50 meV tunneling

bias, thus pointing at a metallic character of the wire reconstruction. However,

it was observed with STS that the signal at the Fermi energy is vanishing and

therefore the chains are not very well suited for the study of conduction properties

of 1D chains, see fig. 5.1 (b). This was later corroborated by DFT [124, 125].

These calculations also yielded a structural model, the so-called tetramer-dimer-

chain-model, consisting of Ge-dimers in chain direction, see 5.1 (c). The conduction

path is formed by alternating Pt-Ge building blocks in chain direction.
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This model could reproduce the obtained STM images, as well as the tunnel-

ing spectra [124, 125]. The temperature broadened DOS from DFT qualitatively

matches the experimental tunneling spectrum. The chains are thus characterized

as a zero-gap semi metal. As the Ge surface is only scarcely covered with Pt chains,

no ARPES data exists to assess the band-structure. Efforts with deposition onto

the heated Ge substrate could improve the coverage up to 50 %. However, the

sample quality was not sufficient for ARPES studies in recent experiments [A.3].

(a)

10

(b) (c)

Figure 5.1: (a) STM image of the Pt/Ge(001) surface. Regular chains with 16 Å spacing are
detected at -1.4V. Along the chains dimerized structures are visible. (b) Tunneling
spectroscopy shows marginal conductance at EF with good agreement from DFT
calculations. (c) Tetramer-dimer-chain-model with Ge atoms in yellow and Pt in
pink. The conduction path is built by alternating Pt and Ge atoms. From [A.3].

Au nanowires on Ge(001)

Up to the beginning of this thesis only two publications existed on the Au recon-

struction on Ge(001). First adsorption studies had been performed by Wang et al.

[37, 38]. The authors examined the surface regarding the Au coverage and anneal-

ing temperature after deposition. The optimum recipe was 1.5 monolayer (ML) of

Au deposited at 675 K. Then the surface structure was found to completely recon-

struct in wire form, see fig. 5.2 (a). These chains consisted of two rows, bright

and dark as seen in the STM images. Note, that the wires are intercepted by va-

cancy defects. The wire length is determined from STM images to about 5-7 nm,

while the spacing of the chains is 16 Å. The depicted long range order is p(4×2)

with local c(8×2) segments. However this claim was not documented with a LEED

pattern and based on STM observations. From these a ball-and-stick model was
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proposed for the wire structure, see fig. 5.2 (b). The bright lines were identified

as Au-Au dimers, while the dark lines were proposed to be Au-Ge heterodimers.

A higher DOS of Au at the chemical potential explained the contrast detected in

STM between the two types of rows. Also in the images a slight zig-zag is seen

in the chains. It was interpreted as a buckling of the dimers and included in the

model.

(a) (b)

Figure 5.2: First Au adsorption studies on Ge(001) by Wang et al. (a) STM image of the Au
reconstructed Ge(001)-surface. The authors found two types of wires, bright and
dark in the image. The long range order was found to be (4×2) with local c(8×2)
segments. The solid black box indicates the area for the structural model. (b)
The bright wires are identified as Au dimers, while the lower contrast wires were
interpreted as Au-Ge dimers, according to a simple ball and stick model. From [37].

These first studies proved, that the growth of Au nanowries on the Ge(001)

surface is feasible. Yet the system has not been fully characterized and consequently

some open questions remained:

(i) What is the true long range order?

(ii) What is the local structural description?

(iii) What is the structural model?

(iv) What are the electronic properties?

(v) Does a Peierls Instability or exotic TL physics play a role?

These open questions were the trigger for this thesis.
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5.2 Growth regimes and phase diagram of

Au/Ge(001)

In order to optimize the nanowire growth conditions own studies have been per-

formed. They were focussed on the Au coverage as well as the substrate temper-

ature. After the clean Ge surface is prepared according to the recipe described in

chapter 4.3, Au was evaporated onto the surface via an electron beam evaporator.

During deposition the substrate was heated in order to ensure the mobility of the

Au atoms on the surface.

Figure 5.3: Schematic phase diagram for Au on Ge(001). At low substrate temperature only
short-range ordered nanowires grow. Around 500 ◦C the growth of long-range or-
dered nanowires occurs, with the optimum at 0.75 ML coverage. These parameters
lead to a complete coverage of the surface with nanowires. At higher coverages Au
cluster will grow additionally on top of the chains. Towards higher temperatures Au
diffuses into the Ge bulk and leaves a disordered surface behind.

Only a narrow parameter window of substrate temperature and Au coverage will

result in the desired long-range ordered nanowires, see phase diagram fig. 5.3. The

exact determination of the Au amount is very challenging, since e.g. a quartz crystal

thickness monitor has to be carefully calibrated in order to make precise statements.

This was achieved by Gallagher et al. by using the LEED signal of the Au/Si(111)

(5×2) reconstruction, where the Au coverage is well-known [126]. The optimal Au

coverage for the nanowire reconstruction was found to be 0.75± 0.05 ML of Au.
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Here 1 ML is 4 gold atoms per 4 Ge atoms in the unit cell. Notably this is only

half the coverage as that stated in the studies of Wang et al. [37].

In this thesis the optimal substrate temperature during deposition was identi-

fied to be 500 ◦C. Although further experiments have shown, that cold deposition

with subsequent annealing yields the same chain reconstruction [127]. However, the

long-range order is much improved by using a preheated substrate. At lower tem-

peratures only short-range ordered structures will form [37, 38]. Whereas at higher

temperatures the Au will diffuse into the Ge bulk, leading to a disordered surface.

At the optimal temperature two other phases occur with different Au coverages:

Vacancies and Au clusters. Closer inspection of these two phases allows the study

of the growth mode of the Au/Ge(001) nanowires.

Vacancies (low Au coverage)

20nm

Ge-dimers

Au/Ge-nanowires

0nm

2.2nm

Figure 5.4: STM overview image at 77 K of the Ge(001) surface, deposited with Au. The lower
terrace is completely covered with parallel Au chains. Neighboring terraces do not
show nanowires, but many vacancies (black dots). This hints at an intermixing and
diffusion of Au into the Ge substrate.

Fig. 5.4 is representing a STM image of a sample grown below the optimum

coverage of 0.75 ML Au. The lower terrace is completely covered with nanowires.

All lie in parallel with the identical spacing of 16 Å. Also on this terrace some pro-

trusions are visible, which can be interpreted contaminations or excess Au atoms.

Yet, their density is very low and the wire length is not ultimately limited by these

defects.
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5 Structural elements of Au/Ge(001) nanowires

Neighboring terraces, on the top left and right of fig. 5.4, are not covered with

nanowires. The dimer rows of the free Ge(001) surface are still visible, and 90◦

rotated to the row direction between an atomic terrace step. However, the dimers

are interrupted by many vacancy defects, represented as dim dots. These defects

have no long-range order and are most likely due to a diffusion of Au atoms into the

Ge bulk. Such processes leave a vacancy in the surface. Similar observations have

been made for Pt and Pd on Ge(001) [120, 122]. There the noble metal adsorbates

also diffuse into the substrate bulk. Upon a critical coverage of noble metal atoms,

these reemerge and the surface reconstructs. A similar mechanism may also be

involved in the present system. However, a significant difference between Pt and

Au growth is that Au chains always cover a complete terrace, while Pt forms isolated

chains [121, 122].

Consequently the growth mode of the Au chains may be concluded as follows.

First the surface is intermixed with Au, see phase diagram, fig. 5.3 along the arrow

of optimum temperature. The density of Au-induced Ge vacancies increases until

the critical coverage is reached. It is limited by the bulk solubility of Au in Ge,

1.36×10−15 [128]. Yet this would result in a coverage of 50 ML onto a 500 µm

sample, which is clearly not reached during evaporation [A.1]. This suggests that

Au is only incorporated in the topmost layers of the substrate. After substrate is

saturated with Au complete terraces will be converted to the nanowire reconstruc-

tion. Meanwhile still at neighboring terraces the dimer rows with vacancies exist.

Apparently the interface between the nanowires and the dimer rows is energetically

unfavorable and therefore avoided.

One may speculate, if the terraces covered with nanowires grow at the expense

of the surrounding terraces [126]. Upon evaporation of Au the mean terrace size in-

creases dramatically compared to the free Ge(001) surface. This has been described

as a surfactant effect [129, 130] and leads to a lowering of the potential barrier for

movement of the Ge atoms at the surface. The structure of the Au/Ge(001) chains

is rather complex and a severe rearrangement of the surface atoms seems likely, as

will be discussed in the following chapters. The surfactant effect is also observed

in the Pt/Ge(001) system, where the terrace size is even larger than for Au [122].

Yet, complete coverage of the surface with Pt chains has not been reported so far.
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5.2 Growth regimes and phase diagram of Au/Ge(001)

Au cluster growth (high Au coverage)

In the high Au coverage regime, clusters will eventually grow on top of the nanowire

reconstruction. Fig. 5.5 shows facets of these clusters. Their height varies from

10 to 100 nm, depending on the substrate temperature upon exposition and Au

coverage.

50 nm

Figure 5.5: Overview STM image 250×250 nm2 of a gold cluster at high surface coverage.
T= 4.7 K.

A closer inspection of the clusters allows to resolve the structure on their top.

Fig. 5.6 (a) shows an atomic resolution STM image of the cluster surface. Parallel

rows are resolved, which lie at a distance of 8.7 Å . As expected at these tunneling

conditions no atoms are observed along the rows [131]. The periodicity corresponds

to that of the Au(110) (2×1) missing row reconstruction [132], with lattice constants

of 4.08 Å and 2.88 Å . A close match of the structure can be achieved to the Ge

lattice constant of 3.99 Å in one direction. This may explain the deviation between

the ideal 8.2 Å and the observed 8.7 Å of the row spacing. There is potentially

some lattice strain involved in the growth of the Au facets.

The (2×1) reconstruction is observed for deposition of Au onto the cold substrate

only, while heating leads to a (1×1) reconstruction [38]. This counter-intuitive

finding may be explained by Ge intermixing into the cluster at higher temperatures,

since the solubility of Ge in Au is as high as 3 % for bulk materials [38]. The

incorporation of Ge will then induce a straining of the crystal lattice and result in
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5 Structural elements of Au/Ge(001) nanowires

a different surface reconstruction. This is a further indication for mass transport

taking place at the surface at elevated temperatures during growth.
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Figure 5.6: (a) Surface of Au cluster on top of the nanowires. Rows are identified at 8.7 Å
distance, matching the (2×1) reconstruction of the Au(110) surface. (-1 V, 0.5 nA,
4.7 K) (b) Spectroscopy average over 160 spectra shows finite slope of the I(V)-curves
at the Fermi energy of the Au clusters. This proves the metallic character of the
Au cluster and more importantly a good contact situation between the Ge substrate
and the external contacts even at the lowest accessible temperature.

Spectroscopic studies on the cluster surface clearly show metallic behavior, see

fig. 5.6 (b). The I(V) spectra average over 160 equivalent locations has a finite

slope at the Fermi energy (zero bias). Most notably the spectroscopy has been

performed at 4.7 K on a semiconducting Ge-substrate. A metallic behavior of the

cluster leads to the conclusion, that the substrate is still a good conductor even at

these low temperatures. Moreover no contact effects like a Schottky barrier occur.

This is very important for the spectroscopic studies of the nanowires, since a poorly

conducting or insulating substrate would have an undesired effect on the tunneling

experiment. This would result in charging of the wires or coulomb blockade effects

and the electronic properties of the chains themselves could no longer be studied.

However the metallic character of the Au clusters serves as a direct reference for a

good contact situation. The tunneling spectra of the nanowires will be discussed

in chapter 6.3.
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5.2 Growth regimes and phase diagram of Au/Ge(001)

Growth of nanowires (ideal Au coverage)

Upon deposition of 0.75 ML of Au at 500 ◦C the whole surface will be covered

with the Au/Ge(001) chain reconstruction, fig. 5.7. There are two domains at

the surface as guided by the substrate A-B stacking sequence, see chapter 4.2.

Between single atomic steps the wire direction is rotated by 90◦. On each terrace

all wires lie in parallel at a distance of 16 Å. The overall defect density is very low.

Only occasionally protrusions are visible on top of the chains. The wire length is

ultimately limited by atomic vacancies, which are visible as black lines in the wires.

However the individual chain length may easily reach 100 nm or more. Already

at this scale it is apparent, that the wires are well separated by deep trenches and

that no cross bonds exists between them. Only a weak corrugation is detected on

the wire top, so that the charge is almost equally delocalized in chain direction.

Yet, upon close inspection a weak and complex structure may be detected, which

will be described further in the following chapter.

5 nm

Figure 5.7: Dual domain STM image of the Au/Ge(001) surface at optimum Au coverage. Wires
of the two domains are orthogonal to each other. (+1.2 V 0.3 nA, 4.7 K).
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5.3 Chain architecture description

5.3.1 Structural elements
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Figure 5.8: (a) Unoccupied states STM image (+0.8 V, 0.4 nA, 10 nm × 6 nm, 77 K). Triplets of
charge clouds are visible. Arrows highlight small protrusions between the nanowires.
The unit cell is indicated by a dashed line. (b) Occupied states STM image (-0.8
V, 0.4 nA, 10 nm × 6 nm, 77 K). A zig-zag-shaped structure appears between the
triplet sites. The long-range order is built by V- and W-shaped segments. [A.9]

The ground state phase of the nanowire structure is scrutinized by STM at 77

K and shown in fig. 5.8. In the unoccupied states image, fig. 5.8 (a), the 16 Å

wide spacing of the chains with deep grooves in between becomes apparent. On

the wire top individual charge clouds are visible every 8 Å in chain direction. The

structure may be described in a c(8×2) reconstruction. This is the basic symmetry

of the surface and may be detected for most tunneling conditions. However, upon

close inspection an additional superstructure is resolved. The symmetry in chain

direction is fourfold due to the formation of triplets on the chain top. This results

in a 32 Å periodicity of the superstructure along the chains.

When imaging the occupied states, the structure changes dramatically, fig. 5.8

(b). Now the wires appear even thinner. The long-range order may be described

by alternating V and W zig-zag segments. Again this structure follows a 32 Å

periodicity. In addition, protrusions are visible between the chains in both images,

indicated with arrows. These protrusions are always closer to one ridge and never

in the middle of the trough. Also these protrusions share the 32 Å superstructure

periodicity.

Considering the alignment of triplets and the zig-zag pattern, the identical sample

surface is studied in fig 5.9. When comparing the two states the triplets of the
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Figure 5.9: (a) Unoccupied states at (+0.8 V, 77 K), and corresponding line profile. (b) Occupied
states at (-0.8 V, 77 K) of identical sample location. A zig-zag structure appears
between triplet sites. The long-range order contains V- and W-shaped segments.
From [A.9].

unoccupied states correspond to the V shape of the zig-zag. The W structure lies

exactly in between two triplets. This is a very nice example for the capability of

STM to detect electronic states, rather than true topography of the surface. Both

images are taken at rather high bias conditions of ±0.8 V, so that energetically

deeper lying electronic states will be detected. Thus triplets and V-W will depend

on the back bonding structure of the chains rather than on the conduction electrons.

The zig-zag is rather sharp and well confined. Thus one may speculate whether

these states originate from the Ge 4p orbitals, while the broader spherical charge

clouds in the empty states correspond to the Au 6s wave function. However detailed

conclusions may only be based on DFT calculations, which will be discussed in

chapter 5.8.

5.3.2 Long-range order

The superstructure on top of the c(8×2) basic structure also has a weak lateral

coupling. The triplets show a lateral correlation and a shift of 4 Å, e.g. in up direc-

tion, see fig. 5.10 for the left four wires. Most remarkable a down-shift is observed

with equal probability, right three wires. A given interchain phase correlation (up
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5 Structural elements of Au/Ge(001) nanowires

Figure 5.10: STM image of the nanowires at (+ 1 V, 1 nA, 4.7 K). Triplets are visible along the
chains, with specific alignment with respect to the neighboring chains, described
by the in matrix.

or down) persists typically over five to seven wires until the direction changes, sug-

gesting that both alignments are energetically equivalent. This superstructure may

be described by a superstructure matrix

~M =

(
0 −8

4 1

)
(5.1)

Since the spacing of the chains is very large, the lateral order already points at a

weak coupling of the wire structure via the substrate. Yet again, these conclusions

are only for the deeper bound states and do not necessarily have to be applicable

to the conduction electrons, which may as well be decoupled from the structure.

5.3.3 Bias series

In using the ability of STM to detect different electronic states, depending on the

applied bias (chapter 3.1.2), the Au/Ge(001) chains have been scrutinized over a

wide energy window of ±1.6 V. All images were subsequently taken on the same

sample surface. The deeper bound states are shown in fig. 5.11. In the unoccupied

states images the characteristic triplet structure is visible. Yet, while the triplets
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seem symmetric for the two high bias settings, starting from 1.2 V it becomes

apparent, that the outer charge clouds of the triplets are somehow connected to the

neighboring outer triplet cloud. On the other hand, the center of the triplet appears

to be separated from the other two charge clouds. This impression becomes stronger

with decreasing bias. Furthermore, in all unoccupied states images the protrusions

between the chains are well resolved as white dots on the blue background. These do

not move over time and occupy a fixed position close to a triplet. It is noteworthy

that the protrusions are not located at a triplet center, but always between two

charge clouds of the triplet. Also as stated above, the protrusions are always closer

to one wire and not located in the middle of the trough. Since there seems to be only

weak long range order of the protrusions with respect to its position at the triplet,

four degenerate positions are observed: Top/bottom of the chain and left/right of

the triplet. This may be seen in the bottom row of protrusions in fig. 5.11. The

left protrusion is placed at the left position of the triplet, while its two neighbors

occupy the right location. Also in the 1.6 V - 1.0 V images additional structures

are resolved between the protrusions at a distance of 8 Å in chain direction. These

structures might be due to gold dimers that build the trough region, see chapter

5.8.

Images of the occupied states do not change drastically over the range from

-1.6 V to -0.7 V. In all images the characteristic V and W alternating segments

are detected. This is due to the leading edge effect in tunneling probability, see

chapter 3.1.2, which will enhance the sensitivity to states at and just below the

Fermi energy of the sample. Notably the V shape is asymmetric with respect to

the chain direction and all V segments in fig. 5.11 point downward. Yet, the upward

pointing version is also equally observed, leading to the conclusion of two energet-

ically equivalent configurations. Typically though along one wire the orientation

does not change over several 10 unit cells. Additionally protrusions are observed

in the grooves at all negative bias settings in fig. 5.11. Note that these protrusions

are always closer the side of the wire where the V points.

The low energy states of the Au/Ge(001) chains are depicted in fig. 5.12. The

unoccupied states at 0.6 V to 0.4 V still show a weak triplet structure. Yet, the

center charge cloud is further enhanced, while the outer ones are more and more

smeared out to continuous segments. The most dramatic change is seen in the

lowest bias images 0.2 V and 0.1 V . Here, the center charge cloud of the triplet
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Figure 5.11: High energy bias series of the identical sample surface of 100 Å × 26.3 Å at 77 K.
All states show the fourfold superstructure on top of the basic c(8×2) symmetry.
In addition protrusions between the chains are visible at a distance of 32 Å match-
ing the superstructure. Unoccupied states show triplets in chain direction, while
occupied states appear as alternating V and W segments.
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Figure 5.12: Low energy bias series of the identical sample surface, also as in fig. 5.11. 100 Å
× 26.3 Å , 77 K. States close to the Fermi energy ± 0.1-0.2 V show a dramatically
different structure, due to the dominance of the 1D band in this tunneling window.
Yet all images show the (4×1) superstructure symmetry.
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fades away, while the structures in between are broadened. In addition nodes of

charge are detected perpendicular to the chain direction for some of the connecting

segments.

In the occupied states at -0.6 V to -0.4 V again the characteristic V-W structure

is observed with no visible changes between the images. Most notably at -0.2 V

and -0.1 V the W segment broadens and subsequently turns into the structure

which was detected in the unoccupied states. Perpendicular nodes in the charge

distribution are also detected.

In both states and at every bias the protrusions in the troughs are visible, leading

to the conclusion, that these are due to real topography rather than electronic

effects. On the other hand, the dramatic change of the wire structure can only be

explained by the contribution of different wave functions. Especially the change at

±0.2 V can only be explained by effects of the surface band structure, which lies in

the vicinity of the Fermi energy, see sketch of the band situation in fig. 5.13 [A.6].

A detailed analysis of the band structure will be performed in chapter 6.1, but for

the current discussion of the tunneling images a sketch is more than sufficient. The

band bottom of the 1D band lies at ∼ 150 mV in the occupied states. Apart from

a hole-like band at the Γ point this is the only band crossing the Fermi energy and

will therefore make a dramatic contribution to the tunneling signal and thus the

detected structure in STM. It should be considered, that the tunneling probability

depends on the electron momentum in the surface plane and highest at the center

of the brillouin zone [70], according to eq. 3.5. Yet, the 1D electron band is situated

at k‖ = ±0.2 Å−1. Computing this expression with typical tunneling parameters

(tip-sample distance of 8 Å and a work function of 4 eV) this results in a reduction

of the tunneling probability by only 35%.

IT ∝
∑
ν

|Ψν(~x)|2 with Ψν = Ω
− 1

2
s

∑
~G

aGe

[
−
(
κ2+|~k‖+ ~G|2

) 1
2
z

]
× e(i(~k‖+ ~G)·~x), (5.2)

IT [k‖ = 0.2 Å
−1

]/IT [k‖ = 0 Å
−1

] = 0.65 (5.3)

Therefore the 1D band will contribute with the same order of magnitude to the

tunneling signal as the hole band at the Γ point. This hole band on the other hand

is also present at lower binding energies and therefore will be seen at all bias values
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Figure 5.13: Schematic band situation for the Au/Ge(001) nanowires for discussion of the struc-
ture observed in STM. The 1D-band is electron-like and crosses the Fermi energy,
while the 2D band has its maximum at EF . More detailed analysis of the band
structure is performed in chapter 6.1. Compiled according to [A.6].

for the occupied states. However, since this hole band has its maximum at the

Fermi energy it will have no influence when imaging the unoccupied states. This

might explain the dramatic change in the obtained topography when changing the

tunneling polarity.

A summary of the band structure and a comparison to STM images is compiled

in the following table:

ARPES STM structure orbital character

hole band occupied states W+V Ge 2p

1D band ±low bias nodes unknown

n.A. unoccupied states triplets Au 6s

The occupied states at high binding energies are dominated by the hole band.

This band is very similar to the Ge bulk band [A.6] and a connection seems appro-

priate. Note however that this band has no dispersion perpendicular to the surface

and is therefore clearly a surface state [A.6]. The 1D band is of unknown origin

and may result from a complex surface structure with multiple binding geometries.

Yet, it is the only other band that clearly crosses the Fermi energy and thus must

be held responsible for the structure in STM at low bias. The unoccupied states

of course are only accessible by STM and not by ARPES for principal reasons.

Therefore, the assignment of the triplets to the Au 6s orbital is not supported by
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5 Structural elements of Au/Ge(001) nanowires

analysis of the bandstructure. However the spherical shape of the triplet charge

clouds supports the conclusion of an s-orbital.

It should be stressed that the above discussion has to be viewed cum grano salis,

since STM always detects structure and electronic effects simultaneously. Any final

explanation may only be based on detailed DFT calculations. Yet, for the sake

of discussion and as a starting point and input for a model these experimental

observations are highly important.

5.3.4 Lateral confinement
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Figure 5.14: Lateral profile comparison. (A) Nanowire data, ∼7.3 Å FWHM. (B) Single Au
atom on alumina [133]. (C) Calculation for Na atom on metal surface [134], offset
for clarity. (D) Au dimer on alumina [135]. The nanowire profile matches best
with the single atom data. From [A.1].

Considering the lateral confinement of the charge within the nanowires, a detailed

analysis of lateral profiles has been performed, see fig. 5.14. The wire width is

determined to (7.3 ± 0.3) Å FWHM as seen by STM. Note, that this value includes

the apex of the tip as well as the tunneling barrier. As a comparison measurements

of a single Au atom on an alumina surface are shown in black [133]. Here the width

is determined to 9 Å. Also the calculated profile for a Na atom on a metal surface

is depicted as the red curve, yielding a FWHM of 8.9 Å [134] . Both comparison

curves are in good agreement with the wire profile. In contrast the profile of an Au
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dimer, brown [135], cannot be matched with the obtained wire width. Therefore,

the assignment of a single atom in wire width seems appropriate. Note that STM

does not probe the atom positions directly, as stated in chapter 3.1.2, but is an

excellent probe for charge distributions. To conclude it is safe to say, that the

charge along the wire is confined to atomic dimensions, which is unprecedented

from related nanowires systems.

When comparing not only the lateral width but also the position of neighboring

charge clouds in the occupied states images, fig. 5.15, a zig-zag amplitude of only

1.28 ± 0.03 Å is detected. Such amplitude may not be explained by a buckled

dimer, which has been proposed as a structural building block of the nanowires

[136]. For comparison a Ge-Ge dimer at the free surfaces has a buckling undulation

of 2.45 Å [101]. Therefore the observed zig-zag may not be explained by a simple

buckled dimer model. This important finding will be discussed in more detail in

chapter 5.8 with the structural elements from DFT.

a1 

a2 

b1 

b2 

5 Å 

(a) (b) 

Figure 5.15: (a) High resolution STM image of the zig-zag chain element (-0.7 V, 0.4 nA, 1.1 ×
1.9 nm, 77 K) with four line profiles along the white lines. (b) Line profile analysis,
leading to a zig-zag amplitude of (1.28 ± 0.03) Å. From [A.9].

5.4 Dynamics

During the bias series of the Au/Ge(001) nanowries, chapter 5.3.3, no structural

rearrangements of the chain architecture could be detected within the scan duration

of approximately 12 hours. Yet in rare cases some parts of the wires appear noisy,
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see fig. 5.16. On the right hand side of the image a vacancy defect interrupts

the chain. Closely neighboring is a noisy area detected. The exact same sample

surface was scrutinized two hours later with the same result, thereby excluding scan

artifacts. Due to the slow scan speed of STM this noise may be due to a flipping

of the wire structure between two configurations. Such effect has been studied by

Mocking et. al [137], where their STM tip was fixed on the noisy area and the

tunneling current was recored over time, see fig. 5.16 (c). It can be seen, that the

current is alternating between two configurations, top and bottom. The frequency

is determined to 25 Hz, which is far more than the scan speed in STM. They

come to the conclusion that the dimer must be flipping between two energetically

equivalent configurations. Note, that such noisy areas are only observed close to

defects and therefore will not represent the undisturbed chain geometry. The finding

of dynamics in the chains architecture will play an important role later on, when

discussing the phase transition in chapter 5.7.3.

noisy area2 h same sample surface

(a)

(b)

(c) top

bottom

Figure 5.16: (a) (-1.6 V, 0.4 nA, 77 K) STM image of a single nanowire with chain end on the
right. Close to the end the wire appears noisy, pointing at dynamics at the surface
during the scan. (b) (-0.7 V, 0.4 nA, 77 K) exact same sample location 2 hours
later. The noisy area is found at the identical distance from the chain end. (c)
Tunneling current recorded over time on top of a noisy dimer (-1 V, RT) [137].
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5.5 Fourier transformation

As laid out in the previous chapters the wire architecture seen by STM comprises

a complex long range ordered structure with 32 Å periodicity and weak lateral

order. A schematic of the surface unit cells is shown in fig. 5.17. Blue is the basic

c(8×2) unit cell, while red represents the superstructure. This may be denoted in

a matrix as in eq. 5.1 or alternatively as a p(4×1) supercell on top of the basic

c(8×2). As can be seen in the schematic, there are two possible configurations of

the superstructure, up or down, depending on the arrangement of the supercell.

STM images show, that such lateral alignment typically persists over five to seven

wires [A.9]. This means, that large scale measurements will always detect both

super cells simultaneously.

p(4x1) 
up

p(4x1) 
down

c(8x2)

Figure 5.17: Schematic of the basic c(8×2) unit cell in blue and p(4×1) supercell in red. For
the superstructure two lateral alignments exist, which are termed up and down.

A typical fast-Fourier transformation (FFT) STM image of a (50×50) nm2 may

be seen in fig. 5.18. The wire direction is vertical. In the center row there are strong

peaks visible, which correspond to the wire distance of 16 Å. Next to this row the

intensity maxima are more streaks than dots. This is the case for every second row.

But upon closer inspection one identifies two maxima, that lie very close together.

The complete pattern is readily explained by the superstructure model, left side

of fig. 5.18. Here a simulated diffraction pattern is overlaid, shown as white dots.

This simulation includes a basic c(8×2) cell with a p(4×1) superlattice with up

and down domains. An almost perfect match with the FFT is made, while minor
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deviations are due to some residual drift from the STM measurements. Note, that

all reflexes are reproduced by the simulation, and also the streaks are explained

with two closely neighboring dots.

The explanation of the FFT pattern is highly relevant for the complementary

obtained diffraction pattern from LEED. However, since LEED averages over a

sample area of about 1 mm2 not only both superstructure domains will contribute

to the signal, but also the two directions of the chains on the substrate. Therefore

in total 4 different domains will be present in the diffraction pattern, leading to a

very complex signal. The expected pattern is rendered in fig. 5.19.

Figure 5.18: FFT of a (50×50) nm2 STM image. Two types of intensities are seen: Streaks and
dots. On the left hand side an overlay of a simulated diffraction pattern is shown.
All reflexes are explained by the simulation. The c(8×2) unit cell is shown in blue
and the two (up and down) p(4×1) supercells in red.

+ =

Figure 5.19: Addition of two domains from the chain directions leads to the expected LEED
pattern.
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5.6 Construction of the diffraction pattern

A typical LEED pattern at RT of the Au/Ge(001) surface is presented in fig. 5.20

(a). It shows very sharp reflexes and a low background, therefore demonstrating

excellent sample quality and long range order. This pattern may be explained by

the superstructure model with two substrate domains, fig. 5.19. The main reflexes

of the basic c(8×2) are depicted as blue dots in fig. 5.20 (b). Since the stacking

sequence of the substrate leads to two orthogonal wire domains and LEED detects

both simultaneously, two unit cells contribute to this pattern. These are shown

as blue diamonds. Yet on top of the basic symmetry many additional reflexes

are detected. They originate from the p(4×1) superstructure with up and down

domains. With this model all of the reflexes present in the pattern are readily

explained. Note that some of the superstructure reflexes are very close together

and therefore appear only as one single spot in the pattern. These are indicated as

red dots in fig. 5.20 (b). Strong reflexes of the superstructure in LEED point at a

highly long range ordered superstructure symmetry.

Figure 5.20: (a) Dual-domain LEED pattern (18 eV) at 300 K. (b) Geometric construction of
the LEED pattern, accounting for the experimentally observed diffraction spots
using a dual-domain pattern rotated by 90◦. It originates from the two possible
surface layer orientations of Au/Ge(001). Blue circles indicate reflections from
the two basic c(8×2) domains. Small white circles originate from the additional
superstructure, thereby proving the superstructure correlation matrix. Red circles
represent closely neighboring reflexes, which appear as one spot in the diffraction
pattern.
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5 Structural elements of Au/Ge(001) nanowires

5.7 Phase transition

From the relating nanowires systems it is known, that phase transitions play an

important role in the structure. Although in the In/Si(111), Au/Si(557) and

Au/Si(553) chains the phase transitions have been interpreted as a Peierls instabil-

ity, these claims were later challenged by alternative models, see chapter 4.1. The

debates on the transitions in these systems have lead to a more general questioning

of the relevance of Peierls physics in real world systems.

Consequently in the light of these previous debates also the Au/Ge(001) chains

have been scrutinized over a wide temperature range for a possible phase transition.

Specifically they were scrutinized for signatures of Peierls physics, such as energy

gaps or periodicity changes as introduced in chapter 2.1.2. Most remarkably, it is

found that a transition of the superstructure occurs above RT. This is confirmed in

both diffraction and microscopy measurements, which are presented in the following

chapters.

5.7.1 Transition observed in real space

Most previously presented STM data had been obtained at 77 K (LN2). Under these

stable tunneling conditions the delicate superstructure is best resolved. Towards

lower temperatures, down to 4.7 K (LHe) no change in the structure is detected.

Notably the superstructure also exists at RT, which is concluded from both the

LEED pattern, fig. 5.20, as well as from tunneling images. Yet towards higher

temperatures the superstructure vanishes completely. Fig. 5.21 shows equivalent

sample surfaces of the Au/Ge(001) chains at 77 K and 600 K with (a) occupied

and (b) unoccupied states respectively. A drastic change in the chain structure

is detected in both states. At 77 K the characteristic triplet/V-W zig-zag is seen,

while this 32 Å superstructure is completely absent at 600 K. A rather structureless

chain is seen in both polarities with only a marginal zig-zag of 8 Å period. This

corresponds very well with the basic c(8×2) symmetry of the chains. Furthermore

no protrusions are detected in the grooves, but rather a ladder like structure, again

with 8 Å period. Since these images were acquired at relatively high bias ±0.8 V,

this charge landscape will reflect the deeper bound states of the surface rather than
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5.7 Phase transition

the conduction electrons. Note that this transition is completely reversible, with

recovery of the superstructure upon cooling the sample from above TC .
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Figure 5.21: Comparison of STM images above and below the phase transition. (a) Occupied
and (b) unoccupied states. Above TC the fourfold superstructure vanishes com-
pletely but leaves the basic c(8×2) intact. At 600 K the chains show a marginal
zig-zag of 8 Å period on the chain top and a ladder like structure in the grooves
with the same periodicity. The transition is fully reversible, with recovery of the
superstructure upon cooling. From [A.9].

Further information on the transition may be gained by means of autocorrelated

STM images. These show the periodicities present at the surface, fig. 5.22. Below

the transition (a) clearly both symmetries are visible: c(8×2) as well as both su-

perstructure domains. Yet the p(4×1) up domain appears much stronger. This is

explained by the finite averaging window of the 50×50 nm2 STM image, where a

domain imbalance may be present. Furthermore, intensity is seen halfway between

the wire distance, indicated as white arrows in fig. 5.22 (a). Clearly this is due to

101



5 Structural elements of Au/Ge(001) nanowires

the observed protrusions in the grooves at low temperatures. In turning to the high

temperature autocorrelation map (b), much less intensities are identified. In fact

only the basic c(8×2) cell is seen. Interestingly at the groove distance no intensity

from the protrusions is detected, but rather two closely neighboring rows at a dis-

tance of 4 Å. In chapter 5.8 these observations will be important for the discussion

of a possible structural model for the reconstruction.

(a) (b)

p(4x1)

c(8x2)

77K 600K

4Å
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ot
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si
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Figure 5.22: Autocorrelated STM images (a) below and (b) above TC . At 77 K distances from
the superstructure are clearly visible. In addition, at half the wire distance intensity
appears (white arrows), which matches the protrusion distance in the groove in real
space. At 600 K only the basic structure is seen and no strong intensity between
the wires is resolved.

5.7.2 Transition observed in reciprocal space

The phase transition can be scrutinized in much more detail by using electron

diffraction. Since LEED averages over a sample surface of about 1 mm2 more

quantitative information about the transition is gained. A quantitative examination

of the LEED series, which was subsequently taken on the same sample surface, fig.

5.23, it is apparent that the superstructure reflexes (see fig. 5.20 (b)) undergo a

dramatic intensity change. At the same time the c(8×2) reflexes remain constant

in intensity. By increasing the temperature from RT the superstructure reflexes
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300 K

(a)

350 K

410 K

460 K

520 K
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560 K
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Tc=585 K
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Figure 5.23: Series of LEED patterns over a wide temperature range 300 K to 600 K. (a-h)
below TC superstructure reflexes are visible. (i-l) above the transition only the
c(8×2) pattern remains, with almost equal intensity. No effects of surface melting
or charging are detected.
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become increasingly darker and vanish completely at 585 K. Up to 600 K only the

basic symmetry of the surface prevails.
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Figure 5.24: Temperature of the sample as a function of the direct heating current for cali-
bration. The k-type thermocouple is directly attached to the sample surface at
ambient pressure.

In order to accurately determine the surface temperature through the transition,

a calibration curve was recorded. A K-type thermocouple was directly attached to

the sample surface and the temperature was measured in air. In order to minimize

the heat loss due to convection, the sample holder was covered with a glass beaker.

The direct-heating current was subsequently increased, while the temperature of

the sample was recorded. The obtained data are plotted in fig. 5.24. Error bars

in temperature were estimated to ±5 K from statistical deviation of different cal-

ibration measurements. With this curve a detailed examination of the transition

temperature may be performed.

In looking at the phase transition in a quantitative way, the intensities of the

Bragg reflections of the superstructure were monitored using LEED. For the anal-

ysis, the superstructure equivalent reflections indicated by green circles in the inset

of fig. 5.25 have been chosen. In total 12, reflections were averaged to gain sta-

tistical confidence. Also only directly neighboring reflexes from the c(8×2) were

chosen for reference. As already seen in the LEED pattern series, a dramatic de-

crease of the superstructure intensity with increasing temperature takes place, see

fig. 5.25. Above 585 K the superstructure vanishes completely, while the c(8×2)

reflections remain virtually unaffected by the temperature change, see also inset of
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5.7 Phase transition

fig. 5.25. This is a reversible process with full recovery of the superstructure inten-

sity upon cooling. Effects from sample charging or decomposition of the structure

can thereby be excluded. The data can be interpreted as a continuous second-order

phase transition The measured superstructure intensity I(T) may be fitted with a

power-law upon temperature [138] using

I(T ) ∝ ρ2(T ) ∝
(
TC − T
TC

)2β

, (5.4)

with the order parameter ρ(T) which serves to minimize the free energy. It

is interpreted as the transversal displacement of the local charge density seen in

STM. In diffraction experiments, the intensity I(T) of the superstructure Bragg

scattering is proportional to ρ2(T) [139]. A close fit to the data is achieved for a

critical temperature TC = (585 ± 10) K, and the exponent β = 0.29 ± 0.04.

(TC – T)2β, β = 0.29 

TC = 585 K 

300 K	

 620 K	



T<TC T>TC 

c(8x2) 
superstructure 

Figure 5.25: T-dependent LEED intensity analysis for basic c(8×2) (black) and superstructure
(red) diffraction spots. The superstructure undergoes a 2nd-order phase transition
with TC = 585 K, while the underlying c(8×2) structure remains unaffected. Inset:
Enlarged LEED images above and below TC . Green circles indicate reflexes chosen
for T-dependent analysis. From[A.9].
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Role of Debye-Waller factor for scattering intensities

As laid out in chapter 3.3.4, temperature has an influence on the reflex intensity

due to the movement of the atoms inside the unit cell. This effect is accounted for

in the Debye-Waller factor [77]. In order to quantify the contribution of this effect

several different scenarios have been computed. In using the expression derived in

chapter 3.3.4, eq. 3.32

I(T ) = I0exp

(
−12h2

mkB

(
cos(φ)

λ

)2
T

Θ2
D

)
, (5.5)

with m the mass of the scattering atom, φ the scattering angle of the scruti-

nized reflexes, λ the electron wavelength, and ΘD the Debye temperature. For the

temperature dependent LEED study, one may calculate the intensity ratio for the

highest and lowest temperature, 300 K and 600 K:

I(600K)

I(300K)
= exp

(
−12h2

mkB

(
cos(φ)

λ

)2
300K

Θ2
D

)
. (5.6)

The scattering angle of the scrutinized reflexes is about φ = 72◦ and therefore is a

dominant contribution in the expression, since the intensity follows I ∝ exp(cos(φ)2).

Thus, the overall change in intensity will be rather small, compared to reflexes at

lower scattering angles. For bulk Ge (m = 73 u, ΘD = 374 K, λ(25 eV)) one obtains

1.1 % intensity change over the whole 300 K window. Another possibility would

be the use of values for Au (m = 197 u, ΘD = 165 K, λ(25 eV)), leading to a

2.0 % change in intensity. By using the calculated surface Debye Temperature of

Au [140], ΘD,surface = 110 K the change would result in 4.5 % over 300 K. In any of

these scenarios, the small magnitude of these relative changes exclude a noticeable

Debye-Waller contribution.

5.7.3 Origin of the transition

As seen in the related chain systems, refer to chapter 4.1, also in the Au/Ge(001)

nanowires a structural transition occurs. Yet in the present case the transition

temperature is above RT rather than below. One might speculate if this transition

is due to a Peierls instability. The high transition temperature would lead to a large

energy gap at low temperatures. Since the ARPES experiments documented, that
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the band structure of the nanowires consists only of a single band at the surface

[A.1, A.6], see fig. 5.13, a Peierls transition would render the surface insulating

[22]. The expected size of the energy gap may be estimated within the mean-filed

approach by using eq. 2.12. A transition temperature of TC = 585K would result

in a zero temperature energy gap of

2∆ = 3.52kBT
MF
CDW = 177 meV, (5.7)

which is of the order of the filled bandwidth of the 1D electron band, see fig.

5.13. Although the mean-field gap is always overestimated, a reduction by a typical

factor of four [43] would still result in a gap of approximately 45 meV, which is

easily detected in STS and ARPES. Yet as will be shown in the study on the

electronic properties of the chains, see chapter 6, no energy gap exists around the

Fermi energy as seen by STS. This proves persistent metallicity in the ordered

phase. Consequently an electronic Peierls component to the transition may be

excluded. This conclusion is further corroborated by an analysis of the Fermi

surface nesting situation [A.6]. Possible nesting vectors may be determined from

the band situation in fig. 5.13. Corresponding real space periodicities would result

in λ1 = 66 Å , λ2 = 28 Å , and λ3 = 15 Å CDW repeat lengths. All of these do not

match the observed 32 Å repeat length in chain direction. As a result the origin of

the transition is clearly not driven by a Peierls mechanism.

A further possibility for the transition may be the buckling of dimers perpendicu-

lar to the chain direction. As shown in fig. 5.16 there are isolated wire segments at

77 K, that perform a flip flop motion over time. This flipping might be enhanced at

higher temperatures, thus leading to a reduced buckling seen by STM. As already

extracted from line profile analysis, the W-shape of the LT phase has a transversal

undulation amplitude of only 1.28 ± 0.03 Å at 77 K, see fig. 5.15. Upon heating

this undulation is reduced to almost zero, fig. 5.21. However the width of a e.g.

Ge-Ge dimer of clean Ge(001) amounts to 2.45 Å [101], which is twice as wide as the

low temperature undulation. Therefore a flip-flop motion of dimers can not explain

the transition. Consequently the transition has to be of displacive character.

Considering the dimensionality of the transition one may compare the obtained

critical exponent β = 0.29 with that of known transitions from the literature. The

closest match within error bars is the 3D Ising model with β = 0.33 [138]. Interest-
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ingly this would imply that the transition of the 1D chains is of higher dimensional

character. A diffraction study on the Ag/Si(111) reconstruction found a similar

value of β ∼ 0.27 [141, 142]. This 2D reconstruction was found to undergo an

order-disorder transition upon cooling. There the substrate is thought to interact

with the 2D reconstruction in the transition, thus leading to a 3D interaction of

the whole structure.

Information about the dimensionality of the transition may also be gained from

the behavior around the critical temperature. In the ideal 1D chain proposed by

Peierls, the long range order of a CDW will be suppressed due to fluctuations until

T = 0K. Coupling of the electronic states to higher dimensions is need to stabilize

the long range order [22]. Yet fluctuations will still be present around TC , thus

leading to a smeared out transition region for the order parameter. This is in stark

contrast to the findings from the LEED study, where a sharp transition is observed

at 585 K. Therefore the transition has to be of higher dimensional character.

How can the dichotomy between a 3D structural phase transition in a highly

confined 1D nanostructure be explained? It will be shown that the scrutinized

Au/Ge(001) chains show an unprecedented degree of one-dimensionality in the

electronic structure as seen by ARPES, see chapter 6.1. Therefore these chains

seem to be the ideal test system for a real world Peierls scenario. However in the

considerations about the phase transition the total energy of the system and conse-

quently all electronic states have to be taken into account. These include not only

the 1D conduction electrons, but also the substrate back-bonds as well as substrate-

mediated bonding between the chains. The finding of a 3D type transition leads to

the conclusion, that the 1D electron system in the Au wires is completely decou-

pled from the underlying structural elements, participating in the phase transition.

Such finding questions the relevance of the Peierls picture for real-world systems.

In the Peierls model only one band exists, while in all experimentally accessible

nanowires many electrons from different orbitals contribute to the ground state.

This finding is highly relevant for the related chain systems and their observed

transitions, see chapter 4.1. The initial interpretation of an electronically driven

transition was later challenged by structural models, e.g., the hexagon model of

In/Si(111) [87, 88] and likewise the step edge buckling for the Au/Si(557) chains

[92, 143]. The present studies may not exclude, that in these systems an electronic

contribution to the transition is possible. Yet the current findings indicate that a
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Peierls instability as a driving force for a transition in real-world systems seems

highly unlikely and that the model is too simplistic to describe an experimental

system. This was recently also predicted by a theoretical study by Johannes et. al,

which concluded, that a Peierls instability cannot be the driving force for a phase

transition, since the state is to fragile against the influence of finite temperature,

imperfect nesting or scattering [44]. Consequently non-Peierls-type transitions need

to be considered more closely in all related nanowire systems at semiconductor

surfaces.

5.8 Structural model from first principles

The determination of the atomic arrangement that builds the highly confined

Au/Ge(001) nanowires is very challenging. The initial model proposed by Wang et

al. [37, 38] with alternating rows of Au-Ge and Au-Au dimers, see fig. 5.2 (b) could

not be confirmed by our STM studies. The observation of two kinds of rows could

not be reproduced. Based on their own STM images van Houselt et al. proposed

a giant missing row reconstruction with large facetting of the surface in order to

account for the high corrugation as seen by STM [136]. This model consists of two

Au incorporated (111) facets and a Ge dimer on top. Yet later studies identified

this model as being energetically unfavorable [A.5].

In order to solve the problem a collaboration with the group of Prof. Bechstedt

was initiated. He is an expert in the field of DFT and has already resolved the

structure of the related Pt/Ge(001) chains [124, 125]. However due to the very

complex long-range order of the Au/Ge(001) surface, involving the fourfold super-

structure, determination of the bonding geometry by means of DFT is a rather

challenging task. Large unit cells lead to long computation times. Therefore a first

DFT study dealt with the basic c(8×2) symmetry of the surface only, neglecting

the superstructure [A.5]. As much as 150 different models have been inspected for

their energetic stability. Yet unfortunately none of them is able to accurately de-

scribe the observed tunneling images or the band structure from the ARPES data.

Consequently further work is needed in this direction. The closest match is the

AD/HD model, which involves alternating rows of Au-Au homodimer (AD) and

Au-Ge-heterodimer (HD), see fig. 5.26. This model will be discussed here.
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The proposed structure follows the basic c(8×2) symmetry. It also has a gold

coverage of 3/4 ML, which is in good agreement with the calibrated LEED study

[126]. Using the generalized gradient approximation (GGA) the surface energy is

-0.7 eV per unit cell compared to the free surface. Thus a stable reconstruction is

achieved. As apparent from the model the wires are built from Au-Ge heterodimers,

while the trough consists of Au homodimers. From the perspective view, fig. 5.26

(b), a slight buckling of the heterodimers is visible. Note that the AD and HD

rows lie at the same height on the substrate and thus the surface shows no strong

structural corrugation.

wire trough wire trough wire

(a)

(b)

Figure 5.26: AD/HD model for Au/Ge(001) surface. (a) Top view, unit cell blue. The troughs
are built from Au-dimers (golden), while the wires consist of Au-Ge-heterodimers
(Ge grey) (b) Perspective view, showing slight buckling of the heterodimers. From
[A.5]

In order to test the results obtained from DFT, STM images have been simulated,

see fig. 5.27. For comparison with experiment, STM images above the phase transi-

tion temperature have been chosen, which only include the basic c(8×2) symmetry.

The simulation for (a) occupied and (b) unoccupied states show a pronounced zig-

zag chain with a period of 8 Å. Although a weak zig-zag is also seen in experiment,

the model clearly does not arrive at matching the STM data. The troughs appear

rather structureless in DFT, but show an 8 Å ladder like structure in the unoccu-

pied states. This is confirmed by STM, although this structure is visible in both
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states. Form the model it can be associated with the Au-dimer structure, building

the trough. The HD row seems to have a much more pronounced density of states,

since the AD chains are at the same structural height. Therefore a 1D electron path

is identified in the HD chain. Also no side bonds are seen from DFT, which hints

at a strong confinement of the electrons in the wire. Note that the earlier findings

of a conduction path with atomic width and the exclusion of a buckled homodimer,

chapter 5.3.4, are not contradictory to the current model. In the simulated STM

images it becomes apparent, that the DOS is strongly confined to the Ge atoms,

see fig. 5.27. Consequently a narrow conduction path with slight buckling may be

realized.

occupied states unoccupied states(a) (b)

-1V

-0.8V

+1V

+0.8V

T=
60

0K

DFT

STM

Figure 5.27: Comparison of simulated STM images by DFT with experimental tunneling images
above the phase transition temperature. (a) Occupied states, a weak zig-zag is seen
in simulation and experiment. (b) Unoccupied states, the strong zig-zag from DFT
is not reproduced by STM. A ladder like structure is seen in the troughs, which is
also present for both tunneling polarities in experiment. DFT from [A.5].

It should be emphasized, that the model does not describe the complete structure

as seen by STM. Nor does it reproduce the correct band structure. Moreover

it cannot explain the complex ground state of the system with the delicate long

range ordered superstructure. Yet, some elements from the basic symmetry can be

matched with the high temperature phase. Therefore some elements will also be
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present in the low temperature phase and it may serve as a starting point for more

detailed studies. Furthermore some elements of this model could be confirmed by

our most recent surface X-ray diffraction (SXRD) studies which were performed in

the low temperature phase [A.13].

Consequently the quest for for the correct model is still ongoing. In all previous

DFT simulations only the topmost layer has been rearranged. It is likely that the

surface has to reconstructed several layers in order to result in the correct structure.

Further efforts may use the results obtained in this chapter as input and test in

order to verify their models.

Summary

The studies on the structure of the Au/Ge(001) nanowires show an unprecedented

degree of structural anisotropy at a surface. The main findings on the structure of

Au/Ge(001) are:

(i) The nanowires grow on large terraces with lengths up to 100 nm.

(ii) Profile analysis shows confinement of the electrons to atomic dimension in

width.

(iii) The wire spacing is 16 Å, far beyond orbital overlap.

(iv) No crossbonds are detected over a wide energy range in STM.

(v) A weak lateral superstructure exists on top of the basic chain symmetry.

Consequently questions on the dimensionality of the electron system and the con-

duction properties come to mind. Therefore, detailed studies by means of ARPES

and STS have been performed over a wide temperature and energy range,which

will be shown in chapter 6.
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Au/Ge(001) nanowires

The studies on the structure of the Au/Ge(001) nanowires show an unprecedented

degree of structural anisotropy at a surface, see chapter 5. Consequently questions

on the dimensionality of the electron system and the conduction properties come

to mind. It will be interesting to see if these chains fall into the quasi-1D regime as

the In chains on Si(111) or the Au chains on Si(553) and Si(557), see chapter 4.1.

This may possibly result in energy gaps in the spectra and insulating properties

due to a Peierls ground state. On the other hand the extreme confinement of the

Au/Ge(001) chains may lead to a new class of strictly 1D chains at surfaces. Thus

the desired TLL state may finally be realized.

In order to scrutinize the electronic properties, detailed studies by means of

ARPES and STS have been performed over a wide temperature and energy range.

While ARPES is paramount to determine the band dispersion and dimensionality

of the electron system, STS is an excellent tool to study the DOS locally with

atomic resolution.

6.1 Electronic band structure from ARPES

As already laid out in chapter 5.2, two orthogonal wire domains exist at the surface

with equal share. Therefore ARPES measurements will always probe both domains

simultaneously. Fig. 6.1 (a) shows the Fermi surface of the Au/Ge(001) chains

measured at a photon energy of hν = 100 eV. A two dimensional square is identified

around the surface Brillouin zone (SBZ) center Γ̄. It is a result of the contributions

of the two domains. For clarity the two SBZs are sketched in blue and orange,

respectively. Consequently only 2 parallel sheets of the Fermi surface belong to
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one domain, thus rendering the electron system highly 1D. Note that contrast in

higher SBZs is suppressed. This is due to optical matrix element effects at this

energy [79]. A band map through the center of the SBZ (white line in fig. 6.1

(a)) is shown in fig. 6.1 (b). Two electron pockets are revealed with the band

minimum at ±0.2 Å−1. The band width is about 150 meV. No dispersion in k⊥

is seen, when the incident photon energy is varied. Therefore this band clearly

shows surface character. Since such a band is not known from the pristine Ge(001)

surface [144] it must clearly originate from the Au chain reconstruction. A detailed

analysis of the bandstructure has been performed in [A.6] and revealed no dispersion

perpendicular to the wire direction within the resolution of the experimental setup.

c(8x2) 
1D 

2nd domain 

kF kF kF kF 

(a) (b)

Figure 6.1: (a) ARPES Fermi surface overview at hν = 100 eV, T = 15 K from dual-domain
sample. The two sheets within the SBZ are rather straight, perpendicular to the
corresponding 1D direction. Higher SBZs appear suppressed, which is ascribed to
matrix element effects. (b) ARPES band map at hν = 100 eV and T = 15 K along
chain direction through Γ̄. Two shallow electron pockets are seen (EDC taken at
blue dotted line). From [A.6].

Consequently, a band situation as sketched in fig. 6.2 (a) is identified. The

electron pocket has no dispersion perpendicular to the wire direction and therefore

will result in two parallel troughs (shown in orange) [A.6]. The SBZ is overlaid

in blue. Fig. 6.2 (b) shows a sample with slight domain imbalance, where two

perfectly straight Fermi surface sheets are seen.

Such dramatic display of one-dimensionality for chain systems at surfaces is un-

precedented in the literature. Tight binding fits of the band structure of Au/Si(557)

resulted in the ratio for the parallel and transverse hopping integral of t‖/t⊥ > 60

[89], which may be regarded as a good measure of the dimensionality. The well
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known Bechgaard salts, which show quasi-1D properties have a ratio of t‖/t⊥ ∼ 10

[41]. For the In/Si(111) chains one surface band exhibits an anisotropy of about 72

[85], see also chapter 4.1. Those fits could be achieved by the clearly observable per-

pendicular dispersion. In the case of Au/Ge(001) a value for the hopping integral

ratio may not be given, due to the lack of detectable dispersion perpendicular to the

chains. Yet as an upper boundary the dispersion is perfectly straight perpendicular

to the chain direction within the momentum resolution of δk = 0.004Å
−1

[A.6]. In

fact, this is almost a factor of 10 smaller, than the clearly detectable undulation

e.g. in the Au/Si(553) chains [98], with δk = 0.03Å
−1

.
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Figure 6.2: (a) Schematic of the band situation in the Au/Ge(001) chains. The 1D band forms
two electron pockets (orange). These show parallel sheets in the Fermi surface,
and are dispersion-less perpendicular to the chain direction within error margins.
The Brillouin zone is overlaid in blue. (b) ARPES Fermi surface data measured at
hν = 100 eV and T = 15 K, after [A.6]. As guide to the eye, white dotted lines show
the straight dispersion perpendicular to the 1D direction.

Note that there is a competing view about the dimensionality of the electron

system of the Au/Ge(001) chains. Nakatsuji et al. have also performed ARPES

studies on these chains [145]. They end up with a 2D dispersing state for the surface.

However they only present second derivative data, due to contrast problems with

the raw data files. These results can not be reconciled with the data presented in

fig. 6.1.

Furthermore Nakatsuji et al. performed ARPES studies on mono-domain sam-

ples, where a domain imbalance results in the formation of mostly parallel wires

[146]. Yet the surface quality suffers from many disordered steps and again only low
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statistics data are presented in second derivative. In these experiments also a clear

1D Fermi surface is identified, thereby matching our results. Only towards higher

binding energies their surface state becomes increasingly 2D. Most interestingly,

they claim the strong dispersion direction of the surface state to be perpendicular to

the wire direction. This implies, that the conduction path at the surface would also

be oriented perpendicular to the wires. In order to scrutinize this unintuitive find-

ing we have acquired DOS maps of the Au/Ge(001) surface. There the conduction

direction may be identified in real space with atomic resolution.

6.2 Density of states maps

STM was used to identify the DOS distribution at the surface with atomic resolution

by acquiring the topography and dI/dV simultaneously with a lock-in amplifier (see

chapter 3.2.2). Such measurements may be utilized to probe the dispersion relation

of the surface states on metal crystals [147] and even to determine the Fermi surface

of complex superconductors [148]. For the Au/Ge(001) chains we have used this

technique to determine the strong dispersion direction at the surface and thereby

contribute to the discussion on the dimensional character of the surface electron

pocket.

A bias series of the topography and dI/dV is shown in fig. 6.3. The energy

window extends over ± 100 meV, which lies within the band depth of the 1D

electron pocket. Note that the images at -100 mV, -50 mV and -40 mV suffer from

slight tip broadening, which is also apparent in the topography images. Moreover

in the DOS images bright and dark regions may be identified, that are not visible

in the topography images. These are most likely attributed to the Coulomb field

of dopants from the substrate, which reside right below the surface. This is a well

studied effect known from n-doped Si(100), where the subsurface dopants lead to

an altered charge landscape of several nm [149]. This local change of the DOS will

also influence the tunneling spectra, taken at different locations. Yet by averaging

over a sufficiently large sample areas these effects will be averaged out and only

the unaltered DOS signal from the nanowires may be obtained, as will be shown in

chapter 6.3.1.
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Figure 6.3: Simultaneous DOS and topography measurement of the Au/Ge(001) chains (I = 0.4
nA, Ueff= 7 mV). A clear 1D direction is identified in both DOS and topography
along the chains.
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6 Electronic properties of Au/Ge(001) nanowires

In all of the 10 probed states a clear 1D direction of the DOS is identified along

the chain direction as seen in the topography image, fig 6.3. The DOS is spread

out along the chain direction and nicely separated between the chains. Clearly no

conduction paths perpendicular to the chains are found in the scrutinized energy

regime. Therefore claims from Nakatsuji et al. for a strongly dispersing state in

ARPES perpendicular to the chain direction [146] cannot be corroborated with the

present STM results. Consequently an interpretation of the 1D band as deduced

from photoemission in fig. 6.2 is strongly supported by the DOS measurements. A

possible explanation for this dispute may be given by analysis of the DOS at higher

binding energies.

In going further away from the Fermi energy with the study of the DOS maps,

the preferential direction of the conduction filaments is rotated by 90◦. In fig.

6.4 (a) the Au/Ge(001) nanowires are seen as a topographic image. On the right

lower terrace the wire orientation is horizontal, as indicated by the white arrow. In

the DOS of the same area at an energy of -230 mV, one observes filaments, that

are oriented vertically, see fig. 6.4 (b). These are spaced at 32 Å and therefore

have an eightfold periodicity compared to the 4 Å Ge lattice constant. On the

left terrace one observes the same rotation by 90◦. Note that the 1D band is not

existent at this binding energy and therefore cannot contribute to the DOS signal,

see fig. 6.4 (c). As a result theses filaments have to originate from deeper bound

states, possibly the back bonds of the wires to the substrate. In using a different

photon energy hν = 35 eV to probe the bandstructure a split-off band of the 2D

hole band becomes visible [A.16]. Notably, this band and its backfolded counterpart

have a crossing right below the 1D band. At a binding energy of 230 meV only

these states may be detected in STS. Consequently this might lead to the rotated

filaments observed in the DOS.

One may speculate, if Nakatsuji et. al have studied the dispersion of these states

[146] instead of 1D band and therefore assumed a 90◦ rotated scenario compared

to our interpretation. This could be explained by a different doping level of their

substrates, resulting in a different chemical potential. Eventually high-resolution

mono-domain ARPES measurements on high quality samples are needed to find a

final answer on this debate.
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6.2 Density of states maps

Since all our ARPES and STS experiments point at a highly confined electron

system with unprecedented character of one-dimensionality, we will now focus on

the low energy excitations of the nanowires in order to look for 1D physics.

(a) (b)
topography DOS at -230 mV
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Figure 6.4: (a) STM image (69×61 nm2, U = 0.3 V, I = 0.6 nA, T = 4.7 K), showing two
terraces. On the lower terrace the wires are oriented horizontally (white arrow). (b)
Same area, showing the DOS at -230 mV occupied states. Filaments become visible,
that lie vertical (white arrow) that are 32 Å spaced. (c) Bandmap measured at hν =
35 eV, where an additional split of band is detected. This band and its backfolded
counter part show a crossing below the 1D band. STS at -230 meV will only detect
these states. Thus the 90◦ rotated filaments in the DOS maps are attributed to
these states. From [A.16]
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6.3 Tomonaga-Luttinger liquid behavior

6.3.1 Power-law suppression of the density of states

The low-energy excitations of this highly confined nanowire system have been

probed using STS. By recording the differential conductivity as dI/dV one ob-

tains a good measure of the DOS for a small energy window around the chemical

potential µ. Variations of the tunneling matrix element may then be neglected,

see chapter 3.2.1. Local effects from different orbitals or the influence of buried

defects (see previous chapter) are averaged out by integrating over typically 103

spectra taken over several unit cells. The tunneling spectrum at 4.7 K is shown

in fig. 6.5 (a). In the scrutinized energy window from -50 meV to +50 meV, one

finds a pronounced depression of the signal with a minimum at the chemical po-

tential µ. Notably no energy gap is detected, as was reported for the related chain

systems [84]. The observed spectral behavior appears to comply with a power-law

dependence upon energy. This is the prediction for a TLL, with its DOS ∝ Eα

(at T = 0 K), see chapter 2.2.4. More specifically the DOS was predicted to follow

eq. 2.61 for finite temperatures

ρ(E, T ) ∝ Tαcosh

(
E

2kBT

) ∣∣∣∣Γ(1 + α

2
+ i

E

2πkBT

)∣∣∣∣2 , (6.1)

with kB as Boltzmann’s constant. In using this equation convoluted with the

broadening of the Fermi distribution of the tunneling tip and the finite resolution

of the STM electronics (5 meV) [25, 27] a perfect fit to the data is achieved with

α = 0.53, see fig. 6.5 (a).

The DOS at the chemical potential (E = 0 eV) at temperatures from 4.7 K to

102 K is shown in fig. 6.5 (b). The data is overlaid with a Tα with α = 0.53

curve (grey) and a resolution broadened curve (orange). The resolution broadening

is only relevant in the low temperature limit and its contribution towards higher

temperatures decreases. Again a very close match with the data is achieved. The

identical power-law dependence in both energy and temperature is a key feature

of TLL theory. It results from the fact that the electronic low-energy excitation

spectrum has no intrinsic energy scale other than the temperature [47, 55]. Note,

that the data points on the temperature curve have been measured with different
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Figure 6.5: (a) Differential conductivity from tunneling spectroscopy. STS data at 4.7 K (aver-
aged over ∼103 spectra in a 30 nm × 30 nm area), showing a recess around zero bias.
Orange curve, TLL model, a power law with exponent α = 0.53 (b) T-dependent
DOS at zero bias plotted up to 102 K. The data are described by a power law with
the same exponent (grey); the orange curve includes experimental broadening. (c)
Spectra taken at different tunneling setpoints, as-measured. All may be fitted with
exponents by α = 0.53 ± 0.05. Only the absolute signal varies according to the tun-
neling setpoint. (d) After scaling all curves coincide. Therefore, different setpoints
for the data acquisition do not affect the observed power-law behaviour. From [A.8]
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6 Electronic properties of Au/Ge(001) nanowires

types of tunneling tip materials (Au, W, PtIr). This clearly shows, that there is no

influence of the tip on the observed DOS.

Importantly, the observed power-law is independent of the tunneling setpoint,

which may be seen in fig. 6.5 (c). A series of spectra have been recorded for several

tunneling setpoints. All curves can be fitted with the same power-law exponent

α = 0.53 ± 0.05. This becomes even more apparent when scaling the tunneling

spectra to unity at -50 meV to account for the different setpoints, see fig. 6.5 (d).

All curves coincide, leading to the conclusion, that the tunneling setpoint does not

affect the obtained spectra.
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Figure 6.6: (a) Angle-integrated line shape of 1D band from ARPES reveals the same power law
depression with the same exponent α = 0.53 as in STS. Inset: Wider energy range
spectrum. [A.8] (b) Corresponding band map with integration area in blue, from
[A.6].

Yet, since STS measurements probe the sample in a tunneling circuit geometry,

it is not always clear, if the signal reflects the intrinsic spectral function or extrinsic

effects from the circuit. Such extrinsic effects are identified as zero-bias anomalies

(ZBA) and will be discussed in detail in chapter 6.6. However several open questions

regarding the microscopic conduction path remain due to the lack of theoretical

modeling for this tunneling setup:

• How long resides an electron, tunneling from the tip to the sample, in the

chains before propagating to the back contact?

• Where does the electron leave the wire? (At terrace steps, through the sub-

strate or at the top contacts)
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6.3 Tomonaga-Luttinger liquid behavior

• What is the tunneling resistance between wire and substrate?

The answers to these questions are highly important, when it comes to analyze

the obtained signal from STS. Consequently the contact situations need to be

investigated more closely. The obtained results presented in this thesis may serve

as input for for future theoretical models.

For now independent information, obtained from the ARPES measurements is

available. Here it is widely accepted, that the signal reflects the spectral function

of the sample [34, 52, 79, 150] and is not influenced by extrinsic effects. For better

comparison with the STS measurements, the ARPES signal is integrated over the

right electron pocket, as seen in fig. 6.6 (b). Here one also finds a collapse of the

spectral weight, fig. 6.6 (a), which can be fitted independently by a power-law with

α = 0.53 ± 0.05. This complies perfectly with the STS results, so that the latter

must be interpreted as the intrinsic spectral function of the electron liquid.

6.3.2 Universal scaling

Further support for a TLL interpretation of the tunneling spectra comes from their

temperature-dependence. Several spectra between 4.7 and 102 K are plotted in fig.

6.7 (a). From TLL theory it is predicted for the DOS to follow the same power-law

over energy and temperature, chapter 2.2.4 [47, 55]. This was already shown in two

separate plots in fig. 6.5 (a) and (b). When examining the predicted power-law

behavior, eq. 6.1, it should be possible to reduce the data onto a single curve. This

scaling behavior can be directly tested for the tunneling spectra. In fig. 6.7 (b)

the experimental dI/dV curves of fig. 6.7 (a) are normalized to T 0.53 and plotted

versus eV/kBT . Most notably, all experimental spectra collapse onto a single curve

within the error bars α = 0.53 ± 0.05 . This is seen in even more detail in the

logarithmic data of fig. 6.7 (c) and (d). Here, the low energy part of the spectra

suffers from the finite resolution of the STM (5 meV). Yet, towards higher energies

all curves coincide on a straight line with a slope of α = 0.53. In both cases they

strictly follow the theoretical behavior. These observations thus provide proof for

the TLL nature of the conduction electron system in these Au atom chains.
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Figure 6.7: (a) Differential conductivity for a series of temperatures as indicated. The DOS at
zero bias increases with T. (b) Universal scaling plot of the tunneling data, using
the renormalized energy scale eV/kT. All curves coincide, showing universal scaling
behavior as predicted by TLL theory. The fit curve accounts for thermal broadening
of the TLL, the T dependence of the Fermi distribution for the tip, and is convoluted
with the experimental resolution. Black curve: TLL power law with α = 0.53. Grey:
α±0.05 variation. (c) and (d) positive bias side of spectra of (a) and (b) in log-log
scale. From [A.8]
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6.4 Spin-charge separation

The power-law exponent can be fixed with high accuracy to α = 0.53. It is

directly related to the charge stiffness constant Kρ, chapter 2.2.4:

αbulk = (Kρ +K−1
ρ − 2)/4, (6.2)

assuming repulsive and spin-rotation-invariant interaction, (Kσ=1) [47, 55]. The

parameter Kρ depends on the interaction strength in the system and lies in the

range between 0 and 1, with Kρ = 1 (α = 0) for the non-interacting scenario. In

the present case one may obtain a value Kρ = 0.26 for the Au/Ge(001) nanowires.

This corresponds to the strong interaction regime [55] and compares well to related

studies on TLL systems, see chapter 6.5.

Note however, that this consideration is strictly only valid in the TL model, which

is based on a single band situation. The electronic band structure of Au/Ge(001)

on the other hand comprises two electron pockets on either side of the Γ-point,

see fig. 6.1. There are recent theoretical treatments towards a better description

of such case of a two band (four branch) system [151]. These will be discussed in

detail, when examining chain-end spectra in chapter 2.2.5, where a different edge

exponent may be calculated from the new band situation.

6.4 Spin-charge separation

In a TLL the separation of spin and charge degrees of freedom is an important

property. This effect may be studied with photoemission or tunneling experiments.

After the removal of an electron, spin and charge decouple and propagate with

different velocities along the wire, see chapter 2.2.3. In using ARPES, a k-resolved

technique, it should be possible to observe two dispersing features. These two

apparent dispersion branches, are known as spinon and holon. The latter produces

a shadow band at higher binding energies. Yet, in the study on the 1D band only

a single dispersing feature is detected, fig. 6.1. Since there is strong evidence

for a TLL in the observed tunneling spectra, the question arises why spin-charge

separation has not been detected in ARPES?

The individual spectral weight of the spinon and holon branch depends strongly

on the charge stiffness parameter Kρ and therefore on the exponent α [52, 55, 57].

While the two branches have equal spectral weight for a half filled band in the
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6 Electronic properties of Au/Ge(001) nanowires

Figure 6.8: Weight of spinon (low energy peak) and holon (high energy peak) in the spectral
function plotted over the binding energy ω. Depending on the correlation strength
of the system α changes. (a) for weak correlation and (b) For strong correlation.
Above α = 0.5 the spectral weight of the spinon vanishes. Therefore it will not be
detectable in the ARPES measurements of the Au/Ge(001) chains. From [54].

TL model (α = 1/8), an increasing value of α leads to a shift of the spectral

weight away from the spinon branch. The intensity of the spinon peak decreases

out rapidly. Especially, for exponents greater than α = 1/2, all weight is removed

from the spinon peak, leaving only a faint intensity roll-off at the remaining single

holon peak, see fig. 6.8. This means that in the correlation regime this transfer of

spectral weight completely suppresses the occurrence of doublet peak. Therefore

indications of indicate spin-charge separation are absent in the spectral function.

For the specific case of the present Au chains with α = 0.53 this implies that the

spinon singularity has vanished, leaving only a single holon peak in the spectrum

[54, 55, 57]. Therefore, the observation of only one dispersing branch (holon) in

the ARPES spectra may be readily explained within the TL model. Note however,

that these considerations have to be refined by theoretical modeling, which does not

exists to date, to accommodate the two band case of the Au/Ge(001) bandstructure.

6.5 Related Tomonga-Luttinger liquid systems

Examples for the experimental observations of TLL behavior are very rare. Also

none of these systems is surface defined. Some examples with the determined charge
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6.5 Related Tomonga-Luttinger liquid systems

stiffness coefficients and the respective experimental method for analysis are listed

below:

• The organic Bechgaard Salts were the first system to show TLL signatures.

In TTF-TCNQ some indications from ARPES point towards the observation

of spin-charge separation. [24]. The other system is (TMTSF)2X, which has

been scrutinized with optical conductivity measurements. Here is determined

to Kρ = 0.23 [152].

• A further class of systems are the chalcogenides, forming layered crystallites.

Due to their high aspect ratio they are considered to be electronically 1D.

Prominent examples include NbSe3 [153] and MoSe [154], where TLL scaling

behavior could be shown in transport measurements.

• In transport measurements on carbon nanotubes universal scaling behavior

could be shown [27] and could later be confirmed by photoemission experi-

ments [28]. Kρ = 0.28− 0.36

• Recently the study of gated semiconductor channels also found the low energy

excitations to be compatible with a TLL scenario. Kρ = 0.26− 0.28 [30].

The Kρ determined range from 0.23 to 0.36, which is a rather close range. For

the Au/Ge(001) chains a Kρ = 0.26 was found, according to the TL model, fits

very well to these previous experimental results.

The surface of purple bronze Li0.9Mo6O17 has been thoroughly studied by the

same techniques as used in this thesis, namely STS and ARPES. Consequently the

results on the lithium bronze will be presented here in more detail and a comparison

to the Au/Ge(001) chains will be given.

Purple bronze Li0.9Mo6O17

The purple bronze Li0.9Mo6O17 is a bulk crystal with a high anisotropic conductivity

and thereby may be described as a quasi-1D, regarding the electron system. A very

detailed STS study has been performed by Hager et al. Their approach was similar

to the experiments performed in this thesis. Several thousand spectra have been

averaged for a single dataset in oder to eliminate the influence of local disturbances
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6 Electronic properties of Au/Ge(001) nanowires

and to gain high statistical confidence. A tunneling spectra at 4.9 K is shown in fig.

6.9 (a). A clear depression towards the Fermi energy is seen. It may be fitted with

the same expression as used in eq. 6.1 (including the finite resolution of the STM

5 meV). The fit (red curve) results in a critical exponent α = 0.60. Such spectra

have been acquired for a temperature range of 4.9 to 55 K. In fig. 6.9 (b) the DOS

at the Fermi energy is plotted over temperature. The dotted line follows a power

law with α = 0.46, which is the best fit to the data. Accounting for the resolution

broadening, the solid curve fits the data much better towards lower temperatures.

The study could determine the critical exponent to α = 0.62± 0.17.
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Figure 6.9: (a) High-resolution tunneling spectrum of the purple bronze surface. A clear sup-
pression towards the fermi energy is seen in the scrutinized energy range. The data
may be fitted very closely with a power-law with the exponent α = 0.60. (b) Tem-
perature dependent study of the DOS at the Fermi energy shows a power law with
the same exponent (dotted line). When accounting for resolution broadening (solid
line) also a close match can be made over the whole temperature range. From [25].

When comparing the results to the Au/Ge(001) chains one finds a slightly en-

hanced critical exponent in the purple bronze, yet with a much higher uncertainty.

It results in a charge stiffness coefficient of Kρ = 0.24, which is close to the value of

Kρ = 0.26 for the Au chains. Note that also ARPES studies have been performed

for the purple bronze, in which also no spin-charge separation could be detected.

This is consistent with the argumentation of the previous chapter and the effect

is confirmed by systematic modeling of the corresponding TLL spectra [155]. It is

also important to note, that the critical exponent from ARPES was determined to
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α = 0.9, which is far away from the STS result [26]. However this discrepancy is

presumably due to the band situation. Li0.9Mo6O17 is also a multi-band system,

and as stated earlier, the TL model does not account for such scenario. As a result

similar observations by means of photoemission and STS have been made. Yet the

data on the present Au chains are much more consistent and the critical exponent

could be detected with much higher certainty over both energy and temperature.

6.6 Zero-bias anomalies

Beside the TLL behavior there are certain other alternative mechanisms in reduced

dimensions and in specific circuiting geometries which can result in a suppression

of the DOS at the Fermi energy. So a careful discussion of the tunneling data from

the Au/Ge(001) chains has to be made in the light of these ZBA. The main idea

behind all of these effects is that the tunneling experiment consists of a current

flow from the tip, through the nanowires and eventually into the substrate. The

experiment is not a mere probing of the DOS but also influences the properties of

the scrutinized system. Since it is unknown how long the tunneled electron resides

on the wire before propagating into the substrate, a charging of the wire in terms

of a Coulomb blockade or hopping conductance between wire segments have to be

kept in mind and considered critically.

Coulomb pseudogap by disorder

An alternative explanation for a suppression of spectral weight in low-dimensional

metals would be a Coulomb pseudogap, which occurs in the presence of disorder.

The model for this effect consists of metallic 1D wires of randomly distributed size

closely neighboring each other, i.e. electron tunneling is possible. The problem

is, that the propagation of an injected electron along a single wire is affected by

electron-electron scattering due to the strong lateral confinement. Yet, also the

exchange of electrons between the disordered wires/channels is possible. In the

Au/Ge(001) system this could be due to coupling of the wires mediated by the

supporting substrate. By averaging over the complete DOS of such model sys-

tem one finds that the functional form of this zero-bias anomaly for low energies

is described by an exponential decrease. An advanced treatment of the tunnel-
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ing spectrum based on the Green’s function formalism, with explicit inclusion of

electron-electron scattering processes is performed in [156, 157]. Note that the ex-

ponential decrease is unlike the power-law suppression of the DOS described by the

TLL theory.

To test the disorder model a fit of the tunneling data is performed. Using the

interaction strength of the electrons Ω as free fit parameter the result is shown in fig.

6.10. While at higher energies a coarse approximation to the data can be achieved,

the match is increasingly poor at lower energies around the Fermi energy. Hence,

the obtained tunneling spectra may not be explained with a Coulomb pseudogap.
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Figure 6.10: Comparison of STS signal at 4.7 K with two fits. The orange curve shows a perfect
fit with power-law behavior. Grey is the model for the Coulomb blockade with an
interaction strength of Ω = 10 meV, where only a reasonable fit may be achieved
at higher energies. Towards the Fermi energy the fit becomes increasingly poor.
Thus a Coulomb blockade may be excluded for the observed spectra. From [A.8]

6.6.1 Charging of islands

A different model reported by Giaever and Zeller [158] assumes small metallic Sn

clusters incorporated into an insulating matrix, see fig. 6.11. This would be the

case if the Au/Ge(001) chains were metallic and placed on an insulating substrate.

In order to add or remove an electron to an individual cluster an energy price has

to be paid in terms of the Coulomb blockade.
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The charging energy of a nanowire may be calculated using the expression from

Jackson for the capacity of a cylindrical quantum wire [159]:

C = 4πε
l

2ln(l/R)

(
1 +

0.6137056

2ln(l/R)
+

1.086766

(2ln(l/R))2
+O(

1

(2ln(l/R))3
)

)
(6.3)

and

E =
e

C
, (6.4)

where ε is the permittivity of the wire, l the wire length and R its radius. With

a dielectric constant of 10 and a wire diameter of 0.5 nm and 100 nm length the

resulting charging energy is 15 meV. Consequently one expects to see an energy

gap of this size in the tunneling spectrum. By averaging over different cluster sizes

(chain lengths) one ultimately arrives at a tunneling spectrum that has a linear

suppression around zero bias [160]. This contradicts the experimental evidence.

Here the data unmistakably shows power-law behavior and, in addition, exhibits

universal scaling over energy and temperature. This is the canonical behavior of a

TLL.

glass
Al

Al

SnOxide U

Figure 6.11: Schematic of the experimental setup of Giaever and Zeller for the charging of islands
with Sn clusters in an insulating oxide layer. Tunneling occurs between the top
and bottom electrode through the islands. After [158].

Also the Au/Ge(001) data do not show a variation of the tunneling spectrum

for different wires (i.e., when performing measurements on different locations on

the sample). This would be the case when averaging over different chain lengths,

resulting in differently sized energy gaps. In conclusion, the objective finding is

that the tunneling spectra are not described by such charging scenario.
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Furthermore, from subsequent quantum-mechanical treatments it becomes ev-

ident that such charging scenario is overly simplistic, and not applicable to the

present situation. The island picture of Giaever and Zeller does not include exter-

nal resistances that have to be accounted for in the tunneling circuit. Alternatively

the advanced many-body quantum theory as proposed by M. H. Devoret et al. [161]

may be used, which describes the so-called dynamical Coulomb blockade.

6.6.2 Dynamical Coulomb blockade

The main idea behind the dynamical Coulomb blockade (DCB) is that a low di-

mensional system cannot be treated separately, but is always in contact with bulk

electrodes for performing the measurement. In the current case the tunneling tip

of the STM acting as the top contact and the Ge substrate as the back contact, see

schematic fig. 6.12. A theory with inclusion of the electromagnetic environment

(the contacts) was first developed by Devoret et al. [161]. The main conclusion

was, that a coulomb blockade may only be detected in a high impedance environ-

ment. This means that the impedance of the contacts has to be comparable to the

resistance quantum

RQ =
h

2e2
= 25.8kΩ, (6.5)

TLL Rexternal

U

C Rtunneltunnel

dynamical Coulomb
blockade

gap

Figure 6.12: Schematic representation of the dynamical Coulomb blockade. The tunneling setup
into the TLL is coupled to an external impedance. This might influence the ob-
tained spectra, if the external impedance is of the order of the resistance quantum.
Yet this regime has been carefully avoided in the studies on the Au/Ge(001) chains.
Note, that the tunneling resistance and capacity have been treated separately in
the DCB formalism. After [161].
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6.6 Zero-bias anomalies

with Planck’s constant h. Otherwise the Coulomb gap will be suppressed, since

it would require excitation of quantum-mechanical modes of the electromagnetic

environment.

Later it was discovered by Safi and Saleur [162], that this situation may result

in a power-law of the tunneling signal over the applied bias. Their model includes

an extrinsic impedance in the tunneling circuit. The resulting power-law exponent

depends on the ratio of the external impedance and the resistance quantum

αDCB =
2R

RQ

. (6.6)

Yet, there are a number of reasons why such external perturbation can be ruled

out for the present tunneling experiment:

(i) Only a very high external resistance R can result in a conductance which

follows the form of a power-law upon energy. As for the leads in the STM

setup, very low resistance copper or gold cables are used. The highest re-

sistance contribution in the tunneling experiment will be the semiconducting

substrate. However only highly conducting n-doped Ge substrates were used,

so that the total resistance of the semiconductor stripe can be determined

to about 50 Ω. Consequently the impedance of the complete setup will be

nearly three orders of magnitude lower than RQ, thus the DCB requirement

is not met.

(ii) The power-law exponent in the DCB model is dependent on the local resis-

tance as eq. 6.6. Consequently one should observe a trend when tunneling

far away from the edge contacts (in the center of the sample) or close to the

edge. Such trend is not observed and one only finds one single exponent of

α = 0.53. Moreover one may estimate the expected exponent in the DCB

model by assuming an external impedance of R ∼ 50 Ω as upper boundary,

one obtains

αDCB = 2R/RQ = 0.004. (6.7)
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This is clearly not reconcilable with the observed value of α = 0.53. Therefore,

a connection of the spectral shape to the environmental resistance can be

clearly excluded.

(iii) Since ARPES measures the identical power-law depression as STS there is

independent evidence from a technique, that does not correspond to a cir-

cuiting geometry, see figs. 6.5 and 6.6. There the electrons are removed by

photoemission and it is widely accepted, that the resulting spectra reflect the

intrinsic spectral function of the sample. Importantly the ARPES experi-

ments are performed on grounded samples and in a bias free environment.

Since both methods result in the same power-law exponent, one has to con-

clude, that the tunneling experiments indeed also reflect the intrinsic spectral

properties of the Au/Ge(001) nanowires.

6.6.3 Variable range hopping

Lastly, there is a model by Rodin and Fogler, which includes hopping conduction of

electrons between chains of variable length [163, 164] . Such scenario would require

a coupling of the Au/Ge(001) nanowires through the substrate. This so-called

variable range hopping (VRH) may also yield a power-law of the conductance as

a function of the applied bias and temperature. However, there are two different

exponents for V and T. Notably, the exponents in this model range from 2 to 4

and therefore are not compatible with the determined exponent of the Au/Ge(001)

chains of α = 0.53. In addition, the model proposes that when both exponents

coincide, the Tomonaga-Luttinger liquid case is recovered. This is exactly what is

observed for the current experimental data and shown in the scaling plot of fig. 6.7.

Consequently a VRH mechanism can therefore be excluded.

6.7 Atomic-scale manipulation

The surface character of the TLL in the Au/Ge(001) nanowire system allows to

study local variations of the electronic properties by using STM, see fig 6.13. In-

teresting scenarios include:
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(i) Chain Ends: The original TLL theory was proposed for an infinite chain

[23, 55]. In recent years there have been a number of theoretical publications

dealing with a finite system and the effects that occur at the end of a 1D

chain. Here, these predictions may be tested by examining spectra at the

edge of a substrate terrace or close to vacancies.

(ii) Doping: Additional alkaline atoms may act not only as scattering sites on

the chains but also locally modify the band filling of the 1D band. A gradual

increase of the filling may change the coupling strength of the electrons and

thereby change the properties of the TLL state. This is then detectable as a

different power-law exponent in the DOS.

(iii) Bridging Atoms: By deposition of excess gold it becomes possible to build

bridges between the chains and thereby tune the dimensionality of the electron

system. Coverage dependent spectra may give evidence for the stability of

the TLL state towards coupling to higher dimensions. Furthermore one may

speculate if a charge density wave at low coupling is feasible.

Impurity

Bridge

Chain
formation Atomic–scale

manipulation

Vacancy

Self–organized
growth of Au/Ge(001)

Au
 epitaxy

Figure 6.13: Schematic representation of chain formation and possible atomic modifications. For
the first time it is possible to study this surface defined TLL system regarding (i)
chain-ends at terrace steps or vacancy defects (ii) doping with alkaline atoms and
(iii) dimensional crossover by additional bridging atoms between the chains. From
[A.8]
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6 Electronic properties of Au/Ge(001) nanowires

6.7.1 Chain ends

Terrace edges on this surface defined system are the ideal locations to test the

theory for a bounded TLL. As laid out in chapter 2.2.5 the power law exponent α

is predicted to increase towards the chain end [36]:

αend = (K−1
ρ − 1)/2, (6.8)

for Kσ = 1, in the TL model. When using the Kρ = 0.26 derived from the bulk,

a theoretical αend = 1.43 is calculated, notably increased over the chain bulk. The

tunneling spectroscopy data close to a terrace edge are shown in fig. 6.14. As

seen from the STM topography, the left terrace is terminated towards the center of

the image. By averaging the DOS of two chains to improve statistics, the fit with

the T-corrected expression yields an exponent of α = 1.20, which is significantly

enhanced over the bulk value in long chains. Yet, the determined end exponent is

still smaller compared to the calculated αend = 1.43 predicted by theory. However,

this is due to the finite averaging window of the STS measurement. This will lead

to an averaging of different DOS curves. As presented in chapter 2.2.5 the end

spectrum of a TLL is characterized by a power-law exponent αend, which exists up

to a crossover energy ωC . This state collapses with increasing distance x from the

edge as ωC(x) ∝ 1/x. At energies above ωC , the spectral shape is characterized by

αbulk. In the experiment close to the edge this implies that the finite area used to

improve statistics will average over slightly different spectral shapes. It yields an

apparent exponent that is slightly less than the underlying TLL exponent αend.

This effect may be modeled using some simple assumptions on the spectral shape

of the DOS in dependence of the distance from the edge. When the TLL spectrum

ρ(ω,x) is plotted over the universal abscissa ω·x, one finds from a graphical estimate

(fig. 2.8) that the crossover kink occurs roughly at ωC ·x/vC ≈ 0.5 where vC is the

charge velocity. In order to produce numerical simulations, one may approximate

vC by vF , which can be derived from ARPES data in [A.6] as vF ∼ 2 eVÅ. This

leads to a crossover energy of

ωC(x) =
0.5 · vF
x

. (6.9)
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Figure 6.14: (a) STM image of a terrace edge (U = 1.5 V, I = 0.3 nA T= 4.7 K). (b) STS data
at 4.7 K. Further away from the edge, the spectrum shows an apparent exponent α
= 0.61, which is clearly dominated by the bulk value αbulk = 0.53 (c) Close to the
edge in the indicated area (averaged over two chains for statistics). The exponent
is increased to an apparent value of α = 1.20, from [A.8] (d) Simulated spectra of a
TLL at different locations from chain end, characterized by two exponents αend =
1.43 (at low energies) and αbulk = 0.53 (at high energies), with a crossover energy
that increases towards the end. The experimental length window is simulated by
averaging 101 spectra in this range of x = 1 - 5 nm with corresponding crossover
energies ωC = 100 - 20 meV. The curves include temperature- and resolution-
broadening (4.7 K, 5 meV). (e) The modeled TLL spectrum after spatial averaging
can closely be fitted with a single power-law, yielding an apparent exponent α =
1.20, as seen in the experiment, that is slightly reduced over the theoretical chain
end exponent αend = 1.43.
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6 Electronic properties of Au/Ge(001) nanowires

With this expression, it is possible to calculate the crossover energy ωC for every

distance from the chain end. The DOS N(ω,x) in the crossover region between the

two exponents αend and αbulk may thus be smoothly interpolated using a weighting

function f(ω, ωC):

N(ω, x) = x−αbulk
(
f(ω, ωC)

ωαend

ωαendC

+ [1− f(ω, ωC)]
ωαend

ωαbulkC

)
. (6.10)

For the weighting function a simple Fermi distribution function has been chosen:

f(ω, ωC(x)) =
(

1 + e
ω−ωC
∆ω/4

)−1

. (6.11)

Temperature effects are included by replacing the power-laws in eq. 6.10 with the

DOS (ω,T) for a single exponent α from eq. 6.1. In addition, finite tip temperature

and resolution broadening are included with subsequent convolution.

Regarding the obtained edge exponent of α = 1.20, the averaging window may

be determined to x = 1-5 nm. The corresponding numerical spectra are shown in

fig. 6.14 (d) in 1 nm steps. Since r is small, they vary noticeably over this range.

In order to perform a more continuous averaging, 101 spectra have been calculated

in the range of 1-5 nm. The mean curve is shown in fig. 6.14 (e). In using the

temperature corrected fitting function eq. 6.1 [25], the simulated curve is fitted by

a single exponent power-law with α = 1.20. The agreement with the model, despite

its simplicity and numerical approximations, is striking. It follows, that the spatial

average of nearby crossover spectra with two exponents αend and αbulk is a valid

explanation for the observed apparent exponent.

All considerations above are based on the TL-model with a single metallic band

and two crossings at the Fermi energy. However, most recently a refined treatment

by the Meden group [151] has been performed for a band structure with four Fermi-

crossings. This is the case in the Au/Ge(001) nanowires, see the band schematic

in fig. 6.2. Then the calculation for the exponents α and αend changes to [151]

α =
1

8

(
Kρ +K−1

ρ − 2
)

(6.12)

αend =
1

4

(
K−1
ρ − 1

)
. (6.13)
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From the bulk exponent of α = 0.53 the end exponent may then be computed

to αend = 1.27. This is much closer to the experimental observation than the 1.43

predicted by the two-crossing TLL theory. Therefore a four-crossing treatment may

be more appropriate for the current system. Both models are capable of explaining

the dramatically increased the chain end exponent over the bulk value. As stated

in chapter 2.2.5 both theoretical models are based on certain assumptions and the

reality in experiment is always more complex. Moreover it has to be highlighted

that both models, with two- and four-crossings, predict an edge exponent, that

comes close to the measured value observed in the STS experiments.

In going further away from the chain end, the bulk exponent begins to dominate

the spectrum, while the end spectrum energy scale almost vanishes. This is seen

in fig. 6.14 (b), where the apparent exponent is fitted to α = 0.61. It is already

close to (but still slightly higher than) αbulk = 0.53, which may be explained by the

vicinity to the chain end.

6.7.2 Crossover region

The proposed kink in the DOS due to the crossover of different exponents from

bulk and edge, see chapter 2.2.5, may be studied in more detail when examining

at intermediate distances between edge and bulk. The kink position will lie in the

energy region of 1-50 meV. Nonetheless the finite averaging window will broaden

the peak. An STS dataset measured at a distance x = 7-11 nm from the chain end

is shown in fig. 6.15. The logarithmic axes of the plot ensure that the power laws

of end and bulk exponent will be easily seen by different slopes. A kink occurs at

roughly 10-15 meV and clearly separates the αend = 1.43 and αbulk = 0.53 regime.

The resolution and temperature broadened curves for end and bulk are shown in

red and blue. They nicely match the data in the respective regions. In order to

model the complete dataset, the same crossover function with a Fermi weighting

has been used as in eq. 6.10. In averaging 101 equidistant spectra in the range

of x = 7-11 nm distance from the edge, an excellent fit to the data may be achieved,

see orange curve in fig. 6.15 (b). Again the simple model is capable of describing

the crossover region quite well. Importantly, this location-dependent analysis serves

as additional proof that one is dealing with a TLL. Hence, the current findings are

fully consistent with the expectations from TLL theory, including the strong effect
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6 Electronic properties of Au/Ge(001) nanowires

of the edge exponent. In the future it will be interesting to study the crossover

region in more detail and preferably with a smaller averaging window to track the

position of ωC(x). Also theory predicts small oscillations starting at ωC towards

higher binding energies [36]. So a better energy and spatial resolution might also

reveal such proposed fine structure on top of the spectra.
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Figure 6.15: Crossover TLL spectra near a chain end from experiment and theory. (a) The
experimental spectrum is taken in a window 7-11 nm away from the end. (b)
Data is shown as triangles. The overlaid TLL curves (red, blue) use the exponents
αend = 1.43 at low energies and αbulk = 0.53 at high energies, respectively, and
are temperature- and resolution-broadened (T = 4.7 K, 5 meV). The crossover
model applied for x = 7-11 nm yields locally varying crossover energies ωC of
14 to 9 meV. A total of 101 equidistant spectra has been averaged. The resulting
simulated spectrum (orange line) describes the data including the kink very closely.

6.7.3 Doping a Tomonga-Luttinger liquid

Since the Au/Ge(001) nanowires are the first surface defined realization of a TLL it

becomes very simple to dope the system by evaporation of sub monolayer amounts

of alkaline metals. There are three possible effects on the TLL state:

(i) Increased band-filling: In a rigid band model, the filling of the two 1D

electron pockets will increase and therefore shift them downwards. As such

the Fermi velocity vF will change and therefore alter the interaction parameter

of the TLL.
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6.7 Atomic-scale manipulation

(ii) Additional scattering sites at impurity potentials: The ions with their

positive charge will certainly influence the movement of electrons along the

chains.

(iii) Enhanced coupling between the chains: The dopant atoms are be ran-

domly distributed on the surface. Some will reside in the groove between the

nanowires and therefore potentially lead to an enhanced lateral coupling.

First ARPES studies showed that alkaline atoms in fact act as active dopants.

The band filling of the 1D pocket could be increased by a factor of three to about

500 meV. Yet, the background of the spectroscopy signal was dramatically increased

for the high doping regime.

Therefore, in the STM investigations very small amounts of dopants have been

chosen, in oder to study their distribution. A typical surface with a sub monolayer

amount of K is shown in the STM topography of fig. 6.16 (a). The nanowires

run from the bottom left to the top right and are seen as blue filaments. On top

yellow/red protrusions are visible, which are not found on the pristine nanowire re-

construction. As such they may be identified as the additional K atoms. Note that

a size distribution exists, ranging from single nanowire width to several nanome-

ter in width. The wider species is attributed to clustering of the alkaline atoms.

Interestingly, the single atom dopants preferably occupy sites on top of the wires,

whereas only a few are situated in the groove. Although the distance between the

dopants along the chains is random, there is an increased number of doublets, as

indicated by the white ellipse in fig. 6.16 (a). The distance matches the outer

charge clouds of the triplet structure in the unoccupied states or the V shape in the

occupied states, respectively. In changing the probed bias window from 1.5 V to

0.6 V in the unoccupied states, the dopant atoms are no longer detectable in STM,

see fig. 6.16 (b). Note, that both images were taken at the identical sample surface.

This implies, that the valence electron of the K atoms is indeed transferred in the

surface structure and that only deeper bound states exists in the dopant ions. This

finding further corroborates the doping effect seen in ARPES. Ti also proves that

the surface 1D band may indeed be influenced.

Considering the K atoms in the groove, a closeup STM images is shown in fig.

6.16 (a). Two dopants are seen between the chains. Their charge clouds extend
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(a) (b)

(c)

Figure 6.16: (a) STM image of the K dosed surface (+1.5 V 0.1 nA, 300 K). The doing atoms are
clearly visible as red/yellow dots on the blue nanowires. Interestingly most of the
dopants occupy a position on top of the wires, while only a few lie in the groove. (b)
Same sample surface probed at a lower binding energy (+ 0.6 V, 0.1 nA, 300 K).
The K atoms are not detectable anymore. This points at a successful doping due
to electron removal, and only deeper bound electrons exist at the dopants. (c)
Closeup of a bridging situation. The K atoms in yellow connect neighboring wires.
The charge around the dopants is spread so that a seamless connection is seen in
STM
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considerably, leading to a seamless connection between two chains. Therefore a

possible enhanced coupling between the chains is generated.

In order to test the effect of the dopants on the electronic properties, first spec-

troscopic data have been collected, see fig. 6.17. The topography shows the chains

in blue with K atoms on top. Spectroscopy data on the same sample surface of fig.

6.17 (a) is shown in fig. 6.17 (b). The characteristic depression of the DOS towards

the chemical potential is clearly seen. However, a fit with eq. 6.1 results in a dra-

matically increased power law exponent α = 0.92 compared to the undoped case of

0.53. This clearly shows, that the properties of the electron system are altered by

the dopants. Yet, it is not known if the change is due to the scattering potential of

the ions (chain-ends) or due to enhanced band filling. This situation holds the po-

tential for future studies on coverage dependent spectroscopy measurements. Also

in the extremely low coverage regime the DOS around an isolated dopant will be

interesting to study. Moreover different species of n-dopants (like K, Na or Cs) may

be used in order to test the influence of different ion radii. Also p-doping, which

might potentially depopulate the 1D band may lead to interesting effects. Then

studies with low electron density might give input for TLL theory, which is strictly

only valid in the high density limit.
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Figure 6.17: (a) STM image (40×35 nm, 1.5 V 0.3 nA, 4.7 K) of a K-doped surface. The dopant
atoms are clearly visible on top of the chains and do not seem to modify the wire
structure. A size distribution of the dopants suggests slight clustering. (b) STS of
the same sample surface as in (a) shows a dramatically increased TLL exponent
α = 0.92. This may be either induced by dopants acting as additional scattering
sites or by the increased band filling.
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The motivation for the present thesis was to look for candidate surface-defined

systems with a high degree of electronic correlation. The focus was on the Au

nanowires on the Ge(001) surface, which had been scarcely studied in the past.

Therefore an optimized preparation technique was developed in order to ensure a

long-range ordered surface. Subsequently the structure of the nanowires was studied

using STM and LEED. The electronic properties were scrutinized by ARPES and

STS, in order to look for effects of electronic correlations.

A novel cleaning technique was specifically developed for the preparation of the

Ge substrate, since the preparation of the Au wires requires excellent substrate

cleanliness. The method included a wet chemical etching procedure in a piranha

solution to remove the oxide and other contaminants. Dry oxidation in synthesized

air lead to a homogeneous and thin protective oxide. Its quality was verified by

angle-dependent XPS studies as well as AFM. Flash annealing in-situ was used to

remove the protection layer and a low defect long-range ordered substrate surface

was prepared. The method yields a much better surface quality over other chemical

procedures and it is significantly faster than a sputter and annealing treatment.

Thus this recipe ensured optimal conditions for the growth of the nanowires.

Growth parameters for the Au/Ge(001) nanowire reconstruction were investi-

gated over a wide Au coverage and substrate temperature regime. Beside the

nanowire reconstruction two additional phases were found. Upon low coverage va-

cancies in the Ge dimer rows were observed, pointing at diffusion of Au into the

topmost surface layers. Towards higher coverages Au clusters form on top of the

wires. These exhibit metallic behavior in the tunneling spectroscopy and therefore

may act as reference for a good contact situation even at lowest temperatures of

4.7 K.

For the nanowire growth it was found that Au evaporation onto a heated sub-

strate at 500 ◦C dramatically improves the long-range order of the chains as well
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as the coverage and terrace size, compared to cold deposition and subsequent an-

nealing. With this evaporation technique terraces of several hundreds of nanome-

ters in diameter could be produced, which render the ultimate length limit of the

nanowires.

Moreover a complete description of the nanowire structure as detected by the

two methods STM and LEED was given for the first time. The lateral charge

confinement found in STM is of the order of an atomic width and unprecedented

for comparable low-dimensional chain systems. No cross bonds between the 16 Å

separated chains were found over a wide bias regime. The basic reconstruction of

the chains is c(8×2), which was easily seen in STM and LEED. Yet only after

refinement of the preparation an additional weak long-range superstructure was

detected on top of the basic symmetry. In highly resolved STM topographies at

77 K, this structure was revealed for the first time as triplets in the unoccupied

states and a VW-zigzag pattern in the occupied states. A bias series over a wide

energy range showed the observed structures to be highly dependent on the energy.

This lead to the conclusion of a complex electronic contribution from different

orbitals to the tunneling signal. The long range order of the supercell could be

identified as a p(4×1), which also nicely explains the observed LEED pattern. Also

a discussion of the origin of the observed structure was given based on the detached

band-structure seen by ARPES measurements.

This superstructure was found not to be due to electronic instabilities like in the

Peierls picture, which often occur in chain systems at surfaces, as there was no

effect on the electronic properties of the chains. Moreover a reversible second-order

phase transition for this superstructure was revealed with a critical temperature

of TC = 585 K. In STM the triplets and the VW-zigzag disappeared above the

transition and only a chain with a marginal buckling of 8 Å period was visible.

This matched the underlying c(8×2) unit cell, and turned out to be unaffected by

the transition. The transition was quantitatively scrutinized with LEED spot anal-

ysis for a temperature range between 300 and 600 K. The analysis of the critical

exponent, determined from the peak height of the diffraction reflexes, pointed to-

wards a 3D Ising type transition. Interestingly the Au/Ge(001) chain system with

unprecedented structural anisotropy undergoes a 3D phase transition. This lead to

the conclusion that substrate is involved in the transition as well. A fact that has
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been underestimated in related chain systems at surfaces and has to be considered

in the future.

In cooperation with the Bechstedt group from Jena, various structural models

were developed on the basis of the observations from STM. A promising candidate

turned out to be the AD/HD (Au-dimer/heterodimer) model, which is energetically

favorably. It consisted of Au-Au dimers for the troughs and alternating Au-Ge

dimers for the wire architecture. Since the model neglected the superstructure, the

simulated STM images could be qualitatively compared to the experimental data

taken above the transition temperature. The quest for a structural model is thus

still ongoing, and will take advantage from the results presented in this thesis.

The electronic properties of the exceptionally structural 1D chains were probed

using ARPES and STS. From photoemission a highly 1D surface state was found

with no detectable dispersion perpendicular to the chain direction. DOS maps on

the nanowires in the energy range of the 1D band showed seamless conducting fil-

aments in chain direction. However, towards higher binding energies the filaments

are rotated by 90◦ and run perpendicular to the chain direction. These were pre-

sumably due to the back-bonding of the nanowires to the substrate and therefore

decoupled form the 1D electron band.

No gap opening around the Fermi energy was found over a wide temperature

regime of 4.7 to 102 K for the measured DOS spectra. Interestingly, a power-

law suppression of the DOS towards the Fermi energy with an exponent α = 0.53

was found, both over energy and temperature. No effect of the exponent on this

tunneling setpoint or the tip material could be found. The power-law behavior was

confirmed by analysis of the angle-integrated DOS of the 1D band from ARPES. A

temperature dependent STS study revealed universal scaling behaviour over energy

and temperature with the same critical exponent, which is a hallmark property of

a TLL. A critical discussion of the data with respect to experimental side effects

on the TLL was given. Eventually the first realization of a TLL at a surface, based

on the broad data basis, could be proven.

Atomic manipulation and local studies of a TLL now become possible. First

results could be achieved on the analysis of chain end effects. An increased exponent

was determined, which can be readily explained by theoretical predictions for both

a one and two band model. Also the predicted crossover region was observed and

matched the semi-infinite chain predictions from theory. In addition, first doping
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experiments were performed to alter the band filling of the electron system and

to add additional scattering sites to the system. Here an increased exponent was

found. Future studies may now focus on the atomic playground offered by this

system.

• Chain ends: Since it is the first TLL system at a surface, specifically chain

ends may be studied in more detail. With higher spatial resolution the depen-

dence of the crossover region may be quantitatively analyzed. Furthermore

with higher energy resolution it should become possible to detect the pre-

dicted oscillations near the crossover region.

• Dimensional crossover: Moreover the chains may be modified by doping

atoms, which potentially lead to an increased band filling. Also dimensional

crossover may be studied by additional bridging atoms or molecules between

the wires. This will potentially lead to a modified TLL physics and even a

Peierls instability due to the enhanced coupling between the chains.

• Spin-orbit interaction: The spin-orbit interaction of Au is clearly non

negligible as it has been shown to lead to a spin splitting in the related

Au/Ge(111) system. Therefore it will be interesting to see, if this has an

influence on the TLL properties, where also no theoretical modeling exists up

to now.

• Input for theory: Also the presented data may serve as impetus for theory

in the growing field of non-linear TLL. Then also higher energy investigations

of this system will be a test for the theoretical concepts. A more detailed

modeling of a realistic multi-band situation is highly desirable.

To conclude a novel atomic playground for TLL physics has been opened up

by the work presented in this thesis. It will serve as a test as well as input for

theoretical modeling. This will be highly relevant for understanding the conduction

properties of ever shrinking circuits in integrated electronic devices. The single

atom conduction path of the Au/Ge(001) chains represents the ultimate lower size

limit for any lead. Consequently the presented findings will greatly improve the

understanding of real world TLL-systems and will help to advance the field of

correlated electrons in low-dimensional systems.
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First-principles studies of Au-induced nanowires on Ge(001),
Physical Review B 81, 075412 (2010).
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Claessen,
Growth and Structural Elements of Au/Ge(001) Chains,
manuscript (2012).

153



Bibliography

General Literature

[18] E. Plummer, Ismail, R. Matzdorf, A. Melechko and J. Zhang, The next 25
years of surface physics, in Prog Surf Sci, pages 17–44, (2001).

[19] M. Imada, A. Fujimori and Y. Tokura, Metal-insulator transitions, Rev Mod
Phys 70, 1039 (1998).

[20] T. Zhang, P. Cheng, W.-J. Li, Y.-J. Sun, G. Wang, X.-G. Zhu, K. He,
L. Wang, X. Ma, X. Chen, Y. Wang, Y. Liu, H.-Q. Lin, J.-F. Jia and Q.-
K. Xue, Superconductivity in one-atomic-layer metal films grown on Si(111),
Nat Phys 6, 104 (2010).

[21] E. Rashba, Properties of Semiconductors with an Extremum Loop .1. Cy-
clotron and Combinational Resonance in a Magnetic Field Perpendicular to
the Plane of the Loop, Sov Phys-Sol State 2, 1109 (1960).

[22] R. Peierls, Quantum Theory of Solids, The International Series of Monographs
on Physics, Oxford University Press, USA (1996).

[23] F. Haldane, Luttinger Liquid Theory of One-Dimensional Quantum Fluids
.1. Properties of the Luttinger Model and Their Extension to the General 1d
Interacting Spinless Fermi Gas, J Phys C Solid State 14, 2585 (1981).

[24] R. Claessen, M. Sing, U. Schwingenschlogl, P. Blaha, M. Dressel and C. Ja-
cobsen, Spectroscopic signatures of spin-charge separation in the quasi-one-
dimensional organic conductor TTF-TCNQ, Phys. Rev. Lett. 88, 096402
(2002).

[25] J. Hager, R. Matzdorf, J. He, R. Jin, D. Mandrus, M. Cazalilla and E. Plum-
mer, Non-Fermi-Liquid Behavior in Quasi-One-Dimensional Li0.9Mo6O17,
Phys. Rev. Lett. 95, 186402 (2005).

[26] F. Wang, J. Alvarez, S. Mo, J. Allen, G. Gweon, J. He, R. Jin, D. Man-
drus and H. Hochst, New Luttinger-liquid physics from photoemission on
Li0.9Mo6O17, Phys. Rev. Lett. 96, 196403 (2006).

[27] M. Bockrath, D. Cobden, J. Lu, A. Rinzler, R. Smalley, T. Balents and
P. McEuen, Luttinger-liquid behaviour in carbon nanotubes, Nature 397, 598
(1999).

[28] H. Ishii, H. Kataura, H. Shiozawa, H. Yoshioka, H. Otsubo, Y. Takayama,
T. Miyahara, S. Suzuki, Y. Achiba, M. Nakatake, T. Narimura, M. Hi-
gashiguchi, K. Shimada, H. Namatame and M. Taniguchi, Direct observation
of Tomonaga-Luttinger-liquid state in carbon nanotubes at low temperatures,
Nature 426, 540 (2003).

154



Bibliography

[29] O. Auslaender, H. Steinberg, A. Yacoby, Y. Tserkovnyak, B. Halperin,
K. Baldwin, L. Pfeiffer and K. West, Spin-charge separation and localization
in one dimension, Science 308, 88 (2005).

[30] Y. Jompol, C. J. B. Ford, J. P. Griffiths, I. Farrer, G. A. C. Jones, D. An-
derson, D. A. Ritchie, T. W. Silk and A. J. Schofield, Probing Spin-Charge
Separation in a Tomonaga-Luttinger Liquid, Science 325, 597 (2009).

[31] H. Yeom, S. Takeda, E. Rotenberg, I. Matsuda, K. Horikoshi, J. Schaefer,
C. Lee, S. Kevan, T. Ohta, T. Nagao and S. Hasegawa, Instability and charge
density wave of metallic quantum chains on a silicon surface, Phys. Rev. Lett.
82, 4898 (1999).

[32] P. Segovia, D. Purdie, M. Hengsberger and Y. Baer, Observation of spin and
charge collective modes in one-dimensional metallic chains, Nature 402, 504
(1999).

[33] J. Ahn, P. Kang, K. Ryang and H. Yeom, Coexistence of two different peierls
distortions within an atomic scale wire: Si(553)-Au, Phys. Rev. Lett. 95,
196402 (2005).

[34] K. Schönhammer and V. Meden, Correlation-Effects in Photoemission From
Low-Dimensional Metals, J Electron Spectrosc 62, 225 (1993).

[35] C. Kane and M. Fisher, Transport in a One-Channel Luttinger Liquid, Phys.
Rev. Lett. 68, 1220 (1992).

[36] S. Eggert, H. Johannesson and A. Mattsson, Boundary effects on spectral
properties of interacting electrons in one dimension, Phys. Rev. Lett. 76,
1505 (1996).

[37] J. Wang, M. Li and E. Altman, Scanning tunneling microscopy study of self-
organized Au atomic chain growth on Ge(001), Phys. Rev. B 70, 233312
(2004).

[38] J. Wang, M. Li and E. Altman, Scanning tunneling microscopy study of Au
growth on Ge(001): Bulk migration, self-organization, and clustering, Surf
Sci 596, 126 (2005).

[39] A. L. Mackay, The Harvest of a quiet eye: a selection of scientific quotations,
Institute of Physics (1977).

[40] C. Kittel, Quantum theory of solids, Wiley (1963).
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