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Abstract. Using k · p theory, we derive an effective four-band model
describing the physics of the typical two-dimensional topological insulator
(HgTe/CdTe quantum well (QW)) in the presence of an out-of-plane (in the
z-direction) inversion breaking potential and an in-plane potential. We find that
up to third order in perturbation theory, only the inversion breaking potential
generates new elements to the four-band Hamiltonian that are off-diagonal in
spin space. When this new effective Hamiltonian is folded into an effective two-
band model for the conduction (electron) or valence (heavy hole) bands, two
competing terms appear: (i) a Rashba spin–orbit interaction originating from
inversion breaking potential in the z-direction and (ii) an in-plane Pauli term
as a consequence of the in-plane potential. Spin transport in the conduction band
is further analysed within the Landauer–Büttiker formalism. We find that for
asymmetrically doped HgTe QWs, the behaviour of the spin-Hall conductance is
dominated by the Rashba term.
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1. Introduction

Two-dimensional (2D) topological insulators form a new state of matter where the gapped bulk
state is accompanied by gapless spin edge states that are protected against small perturbations
by time reversal symmetry [1]–[7]. In contrast to the chiral nature of the quantum-Hall state,
where only one channel propagates at the edge of the system, these new edge states have a
helical nature, i.e. there are two counter-propagating spin-edge channels at the edge [1]–[7].
The topological protection of the edge states is connected with Kramer’s theorem and states
that a system with an odd number of Kramer’s pairs at a given edge is protected against single-
particle excitations [6]. The simplest way to find topologically nontrivial insulators is to look
at systems where the conduction and the valence bands have opposite parity and a change in
band ordering (band inversion) occurs as a function of a tuning parameter like the strength of
spin–orbit (SO) coupling [4, 8]. This criterion leads to the unified Dirac form of the effective
Hamiltonian for topological insulators with a spatial inversion centre [4, 9]. In this paper, we
will be particularly interested in HgTe/CdTe quantum wells (QWs), which is the first topological
insulator discovered in nature [4, 5]. This system can be tuned from the normal to 2D topological
insulator phase by changing the thickness d of the HgTe layer [4, 5]. Recent conductance
measurements in multi-terminal structures [5, 7] clearly show the existence of 1D helical edge
channels in this material for d larger than the critical value dc = 6.3 nm [5, 7].

An effective four-band model introduced by Bernevig, Hughes and Zhang (BHZ) [4]
consists of two disconnected blocks, each having the form of the Dirac Hamiltonian in 2D
and additional quadratic terms crucial for defining the concept of band inversion. The BHZ
model adequately describes the insulating regime in HgTe/CdTe QWs close to the 0 point
and the topological quantum phase transition near the critical thickness d = dc. It has been
extended to include the bulk inversion symmetry breaking effects in [6]. However, this model
does not yet include the structural inversion asymmetry (SIA) terms that can be very large in
this narrow gap material. Indeed, it was shown experimentally that an external top gate applied
to the HgTe/CdTe QWs can change the energy of the Rashba SO splitting in the range from 0 to
30 meV [10] and the samples can be tuned from insulating to metallic regime [11]. Furthermore,
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the Aharonov–Casher oscillations [12] as well as the ballistic spin-Hall effect in HgTe/CdTe
QWs [11], which occur in the metallic regime, can be well described by an effective two-
band (electron or heavy hole) model taking into account the Rashba SO interactions. Also,
very recent angle-resolved photoemission experiments on Bi2Se3 thin films [13] show the
importance of SIA terms [14]–[17]. Therefore, it is desirable to build a unified Hamiltonian
for 2D topological insulators, that includes information about both the band structure and the
presence of an inversion breaking potential. This is the purpose of this paper. Using k · p theory
we derive an extension of the BHZ model describing a 2D topological insulator, which includes
an out-of-plane (in the z-direction) inversion breaking potential and an in-plane potential. The
central result of this paper, the generalized four-band Hamiltonian, is presented in equation (17)
and should also be applicable to other 2D topological insulators, such as type II InAs/GaSb
QWs [18]. Next, we will use the Foldy–Wouthuysen (FW) transformation to find an effective
model describing the electron or heavy hole bands. We show that such an effective model
contains two different types of SO interactions; one of them is the well-known Rashba spin–orbit
interaction (SOI) induced by the inversion breaking potential in the z-direction, whereas the
other originates from the in-plane potential, and is referred to as the in-plane Pauli term.
Although both these terms, for the conduction band, are linear in the wave vector and the
spin, they contribute differently to spin transport. The first (Rashba) term does not conserve the
z-component of spin, Sz, causing spin precession, while the in-plane Pauli term conserves Sz.
We study the interplay of the Rashba and in-plane Pauli terms. We predict that the spin-Hall
conductance will show the precession pattern as a function of the inversion breaking potential
in the z-direction even in the presence of a strong in-plane potential. Further, the strong in-plane
potential enhances the spin-Hall conductance generated by the Rashba term, because it partially
fixates the direction of the precessing spin. Therefore, the behaviour of the spin transport in
asymmetrically doped QWs should be dominated by the Rashba term and it is justified to
describe the spin-Hall conductance in the metallic regime through simple effective models for
electrons and heavy holes (see equations (30) and (31) of this manuscript), as long as the band
gap is nonzero.

The rest of the paper is organized as follows. Section 2.1 gives the derivation of the effective
four-band model for a 2D topological insulator with a spatial inversion breaking potential using
k · p theory. In section 2.2, we show that the same Hamiltonian can be derived using general
symmetry arguments. In section 3, we derive an effective one-band model with competing
Rashba-type and in-plane Pauli contributions. Section 4 describes the interplay between both
terms within the Landauer–Büttiker formalism. We finish the paper with conclusions.

2. Effective Hamiltonian for HgTe QWs in the presence of the inversion breaking
potential in the z-direction and the in-plane potential

2.1. Derivation of the extended HgTe Hamiltonian within k · p theory

In this section, we will consider the influence of SIA on HgTe/CdTe QWs and derive a
corresponding effective 4 × 4 model with an out-of-plane (in the z-direction) inversion breaking
potential. Our starting point is the eight-band Kane Hamiltonian HK, which is described in [10].
The SO split-off bands |07,±1/2〉 are far away in energy from the other bands and are not
important for the description of the QW. This is in contrast to the bulk case, where SIA terms
are nonzero only when the 07 band is taken into account [19].
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Therefore we limit ourselves to the upper 6 × 6 block of the Kane model with the basis set
of wave functions in the sequence (|1〉 = |0−

6 , 1/2〉, |2〉 = |0−

6 ,−1/2〉, |3〉 = |0+
8 , 3/2〉, |4〉 =

|0+
8 , 1/2〉, |5〉 = |0+

8 ,−1/2〉, |6〉 = |0+
8 ,−3/2〉) where we use the standard notation with

|0−

6 ,±1/2〉 describing an s-like conduction band, |0+
8 ,±1/2〉 a p-like light hole band and

|0+
8 ,±3/2〉 a p-like heavy hole band in zinc blende crystal structures [19]. Let us emphasize that

the 6 × 6 Kane Hamiltonian preserves the bulk inversion asymmetry. We omit here negligible
effects of bulk inversion asymmetry introduced by the zinc blende structure of bulk HgTe and
CdTe [6].

In the following we always use |α〉 (α = 1, 2, . . . , 6) to denote the basis set of wave
functions. We consider a QW configuration with HgTe layers sandwiched by two CdTe
barrier layers along the z-direction; hence the parameters of the Kane model HK have spatial
dependence [4]. The matching of wave functions in the z-direction for HgTe/CdTe QWs has
to be done very carefully because the bulk barrier material CdTe has a normal band structure
with |0−

6 ,±1/2〉 above |0+
8 〉 bands while bulk HgTe has inverted band ordering with |0+

8 〉 above
|0−

6 ,±1/2〉 bands [4, 5]. This is exactly the reason for the change from the normal to inverted
band structure ordering for the HgTe/CdTe QWs above the critical value of HgTe layer width
dc = 6.3 nm (see for example figure 1 in [5]).

The envelope function approximation [20] is applied to solve the eigenproblem of the
QW. Since the Kane model preserves inversion symmetry, in order to discuss the SIA, we
need to take into account an additional potential V (r)= V0(x, y)+ zeEz, where e > 0 is the
elementary charge and zeEz is the inversion breaking potential in the z-direction, while V0(x, y)
is the in-plane potential and a possible form will be specified in section 4. Then the full
Hamiltonian is

Ĥfull = HK(k‖, z)+ V (r). (1)

Next we split the Hamiltonian (1) into two parts Ĥfull = H0 + H ′, where H0 is the Kane
Hamiltonian when k‖ = 0 and is treated as the zero-order Hamiltonian. Explicitly, H0 is given
by

H0 = HK(k‖ = 0)=



T (0) 0 0
√

2
3 Pk̂z 0 0

0 T (0) 0 0
√

2
3 Pk̂z 0

0 0 W (0)
+ 0 0 0√

2
3 Pk̂z 0 0 W (0)

− 0 0

0
√

2
3 Pk̂z 0 0 W (0)

− 0

0 0 0 0 0 W (0)
+


, (2)

where k̂z is an operator and the heavy hole bands (0+
8 ,±3/2) are completely decoupled from

the electron and light hole bands. Here P = −
h̄2

2m0
〈S|px |X〉 is the Kane matrix element between

the 06 and 08 bands, while the other parameters are given by

T (0)
= Ec(z)+

h̄2

2m0
k̂z(2F(z)+ 1)k̂z, (3)

W (0)
± = Ev(z)+

h̄2

2m0
k̂z (2γ2(z)∓ γ1(z)) k̂z, (4)
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with F(z)=
1

m0

∑05
j

|〈S|px |u j 〉|
2

Ec(z)−E j (z)
including remote bands |u j〉 with 05 symmetry perturbatively.

Ec/v designate the positions of the conduction/valence band edges and the γi are renormalized
Luttinger parameters [21]. The axial approximation is adopted [22, 23] in order to keep the
in-plane rotation symmetry.

H ′ is treated as a perturbation, and is written as

H ′
= HK(k)− H0 + V =



T (1) 0 −
Pk+√

2
0 Pk−

√
6

0

0 T (1) 0 −
Pk+√

6
0 Pk−

√
2

−
Pk−
√

2
0 W (1)

+ −S− R 0

0 −
Pk−
√

6
−S†

− W (1)
− C R

Pk+√
6

0 R† C† W (1)
− S†

+

0 Pk+√
2

0 R† S+ W (1)
+


, (5)

with k± = kx ± iky , C =
h̄2

2m0
k−[κ, kz], R =

√
3h̄2

2m0
γ̄ k2

−
, S± = −

√
3h̄2

2m0
k± ({γ3, kz} + [κ, kz]), T (1)

=

h̄2(2F+1)k2
‖

2m0
+ V and W (1)

± = −
h̄2

m0
(γ1 ± γ2) k2

‖
+ V . Here, γ̄ = (γ3 + γ2)/2. κ is the renormalized

Luttinger parameter related to the part of the Hamiltonian that is antisymmetric in the
components of k. In the original Luttinger model, it was introduced because in the presence
of a magnetic field the components of k do not commute. In our case, it appears because the
material parameters are functions of the z-coordinate.

Now we will generalize the BHZ approach [4] to project the Hamiltonian (1) into the
low energy subspace, which can be done in two steps. First, we numerically diagonalize the
Hamiltonian H0, so that H0|i〉 = Ei |i〉, to obtain the eigenenergies Ei and eigenstates |i〉 of the
QW. Here the eigenstate |i〉 can be expanded in the basis |α〉 as |i〉 =

∑
α fi,α(z)|α〉, where the

function fi(z) gives the envelope function along the z-direction for the QW. We use Greek
indices to indicate basis functions of the Kane Hamiltonian and Roman indices to denote
the subbands. The envelope function components fi,α(z) are calculated with the help of the
numerical diagonalization of H0.

In order to perform the degenerate perturbation calculation, we need to cast the eigenstates
of H0 into two classes. The first one, denoted as class A, includes the basis wave functions of our
final four-band effective model. As shown by BHZ [4], for HgTe/CdTe QWs, it is necessary to
take into account the two electron-like subbands |E1,±〉 and two heavy hole subbands |H1,±〉,
which are expanded explicitly as

|E1,+〉 = fE+,1(z)|1〉 + fE+,4(z)|4〉, (6)

|H1,+〉 = fH+,3(z)|3〉, (7)

|E1,−〉 = fE−,2(z)|2〉 + fE−,5(z)|5〉, (8)

|H1,−〉 = fH−,6(z)|6〉. (9)

As pointed out above, for H0 the heavy hole bands are decoupled from the electron and light hole
bands; therefore the eigenstate |H1,+(−)〉 consists only of the basis |3〉 (|6〉) while |E1,+(−)〉
is a combination of the basis |1〉 (|2〉) and |4〉 (|5〉). The second class, denoted as class B,
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Table 1. Parities of the envelope function components.

Even fE+,1 fE−,2 fLH+,4 fLH−,5 fH+,3 fH−,6 fHH3+,3 fHH3−,6

Odd fE+,4 fE−,5 fLH+,1 fLH−,2 fHH2+,3 fHH2−,6

includes the states that need to be taken into account in the following perturbation procedure.
Here we consider the first light hole-like subbands |L H ,±〉 and the second and third heavy hole
subbands |H H2,±〉 and |H H3,±〉, which are written explicitly as

|L H,+〉 = fLH+,1(z)|1〉 + fLH+,4(z)|4〉, (10)

|H Hn,+〉 = fHHn+,3(z)|3〉, (11)

|L H,−〉 = fLH−,2(z)|2〉 + fLH−,5(z)|5〉, (12)

|H Hn,−〉 = fHHn−,6(z)|6〉. (13)

All the other subbands of the QW are neglected here since they are well separated in energy.
Before we go to the next step of the perturbation calculation, it is useful to have a look

at the symmetry properties of the relevant states. For Hamiltonian H0, we have three types
of symmetries: the time reversal symmetry T, the inversion symmetry P and the in-plane full
rotation symmetry Rz(θ). For the time reversal operation T, it is not hard to show that |E1,±〉

(|H1,±〉) are Kramer’s partners, i.e. T |E1,+〉 = |E1,−〉, T |E1,−〉 = −|E1,+〉, T |H1,+〉 =

|H1,−〉 and T |H1,−〉 = −|H1,+〉 and we use phase conventions for the envelope functions
which yield the relations fE−,2 = f ∗

E+,1, fE−,5 = − f ∗

E+,4, fH−,6 = f ∗

H+,3, fLH−,2 = − f ∗

LH+,1 and
fHH2−,6 = − f ∗

HH2+,3. Time reversal symmetry relates states with opposite spin to each other;
hence when the effective Hamiltonian for one spin is constructed, the Hamiltonian for the
opposite spin can be easily obtained through the operation T. The inversion operation P defines
the parity of each subband, which can greatly simplify the matrix elements in the perturbation
procedure below. The parity of the subbands |i〉 in the QW is determined by both the envelope
function fi,α(z) and the basis wave function |α〉. The parities of the envelope functions can
be obtained through numerical calculation [4, 23], and are listed in table 1. The parities of
the basis functions are given by P|0−

6 ,±1/2〉 = −|0−

6 ,±1/2〉, P|0+
8 ,±〉 = +|0+

8 ,±〉. Thus,
the parities of the subbands are P|E1±〉 = −|E1±〉, P|H1±〉 = |H1±〉, P|L H±〉 = |L H±〉,
P|H H2±〉 = −|H H2±〉 and P|H H3±〉 = |H H3±〉. Due to the in-plane rotation symmetry,
the total angular momentum J along the z-direction is a good quantum number, which can
be used to identify the eigenstates. Since the electron-like subbands have J =

1
2 , the rotation

operator is Rz(θ)|E1±〉 = e±i θ2 |E1±〉, while for the heavy hole subbands with J =
3
2 , it should

be Rz(θ)|H1±〉 = e±i 3θ
2 |H1±〉.

Next, we calculate the effective Hamiltonian of the four states in class A based on quasi-
degenerate perturbation theory. All states in classes A and B are eigenstates of Hamiltonian
H0. However when H ′ is introduced, they are no longer eigenstates due to mixing between the
states of class A and class B. Therefore, treating H ′ as a small perturbation, we need to perform
a unitary transformation to eliminate the coupling between the states in class A and class B up
to the required order. Details of the perturbation procedure can be found in [19], and here we
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directly apply the following third-order perturbation formula:

H̃mm′ = Emδmm′ + H ′

mm′ +
1

2

∑
l

H ′

ml H
′

lm′

(
1

Em − El
+

1

Em′ − El

)
−

1

2

∑
l,m′′

(
H ′

ml H
′

lm′′ H ′

m′′m′

(Em′ − El)(Em′′ − El)
+

H ′

mm′′ H ′

m′′l H
′

lm′

(Em − El)(Em′′ − El)

)

+
1

2

∑
l,l ′

H ′

ml H
′

ll ′ H
′

l ′m′

(
1

(Em − El)(Em − El ′)
+

1

(Em′ − El)(Em′ − El ′)

)
(14)

with

H ′
jk := 〈 f j |H

′
| fk〉 =

∫
dz

6∑
α,β=1

f ∗

j,α(z)(H
′)αβ fk,β(z). (15)

The summation indices m,m ′,m ′′ are taken from the states in class A (E1+, E1−, H1+, H1−)
and indices l, l ′ are from the states in class B (L H+, L H−, H H2+, H H2−, H H3+, H H3−).
As mentioned above, Greek indices denote entries of the Kane matrix (5). Here we should
keep in mind that the order of the matrix elements of H ′ in (14) is important, as they may not
commute with each other.

The perturbation calculation based on (14) is straightforward but lengthy. The parities of
the envelope functions discussed above can be used to reduce the number of matrix elements of
H ′. For example, the first-order term

〈E1 + |H ′
|E1−〉 = −

Pk+
√

6
〈 fE−,2| fE+,4〉 +

Pk+
√

6
〈 fE−,5| fE+,1〉 + 〈 fE−,5|C

†
| fE+,4〉 (16)

vanishes completely because all integrands are odd functions of z (see table 1).
In the four-band basis (|E1+〉, |H1+〉, |E1−〉, |H1−〉), the final effective Hamiltonian is

written as

H̃ = H̃0 + H̃R + V0(x, y), (17)

H̃0 = ε(k)I +


M(k) Ak+ 0 0

Ak− −M(k) 0 0

0 0 M(k) −Ak−

0 0 −Ak+ −M(k)

 , (18)

H̃R =


0 0 −iR0k− −S0k2

−

0 0 S0k2
−

iT0k3
−

iR0k+ S0k2
+ 0 0

−S0k2
+ −iT0k3

+ 0 0

 , (19)

with A= A + A2k2,M(k)= M − Bk2, ε(k)= C − Dk2 and I is the diagonal unit matrix. Here
k2

= k2
x + k2

y .

We note that H̃0 is equivalent to the BHZ Hamiltonian in [4] if we further omit the
k-dependence of A, by setting A2 = 0. We also assume that the reference energy is fixed in the
middle of the gap, i.e. C = 0. Besides the BHZ Hamiltonian, we find a new term H̃R, which is
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off-diagonal in spin space due to the inversion breaking potential zeEz. As mentioned above, we
have included the subbands |H H3,±〉 in the calculation of the effective parameters A, B, D.
However these subbands do not contribute to H̃R. This is a consequence of the fact that the
envelope functions belonging to |H H3,±〉 have parities opposite to the envelope functions of
|H H2,±〉; see table 1.

There are three new terms in H̃R. The first term (R0 term) originates from the second-order
perturbation theory and is exactly the electron Rashba term with

R0 =
ieEz

3(ELH − EE1)

[ (
〈 fE+,1|z| fLH+,1〉 + 〈 fE+,4|z| fLH+,4〉

)
×

(
√

6P〈 fLH+,4| f ∗

E+,1〉 +
√

6P〈 fLH+,1| f ∗

E+,4〉 +
3h̄2

m0
〈 fLH+,4|[κ, kz]| f ∗

E+,4〉

)]
. (20)

Here 〈 fi,α|O| f j,β〉 =
∫

dz f ∗

i,α(z)O f j,β(z) for an arbitrary operator O . The electron Rashba term
is linear in k because of the 1

2 electron spin.
The second term (T0 term) originates from the third-order perturbation and denotes the

heavy hole k3 Rashba term with the parameter

T0 =
−i

√
3eEz h̄

2

8m2
0

(s1 + s2 + s3) (21)

with

s1 =
2

(EE1−EHH2)(EH1−EHH2)

[
(
√

2Pm0〈 fH+,3| fE+,1〉 −
√

3h̄2
〈 fH+,3|({γ3, kz} + [κ, kz])| fE+,4〉)

× 〈 fE+,4|γ̄ | f ∗

HH2+,3〉〈 f ∗

HH2+,3|z| f ∗

H+,3〉
]
, (22)

s2 =
2

(EE1−ELH)(EH1−ELH)

[
(
√

2Pm0〈 fH+,3| fE+,1〉 −
√

3h̄2
〈 fH+,3|({γ3, kz} + [κ, kz])| fE+,4〉)

× (〈 fE+,1|z| fLH+,1〉 + 〈 fE+,4|z| fLH+,4〉)〈 fLH+,4|γ̄ | f ∗

H+,3〉
]
, (23)

s3 =
4

(EH1−EHH2)(EH1−ELH)

[
〈 fH+,3|z| fHH2+,3〉(

√
2Pm0〈 fHH2+,3| fLH+,1〉

−
√

3h̄2
〈 fHH2+,3|({γ3, kz} + [κ, kz])| fLH+,4〉)〈 fLH+,4|γ̄ | f ∗

H+,3〉
]
. (24)

Since for heavy holes the spin is 3/2, the change of angular momentum upon a spin-flip is 3,
which corresponds to k3

±
.

The third term (S0 term), which is proportional to k2, also comes from the second-order
perturbation with the parameter

S0 = −

√
3h̄2eEz

4m0

[ (
1

EE1−EHH2
+

1

EH1−EHH2

)
〈 fH+,3|z| fHH2+,3〉〈 fHH2+,3|γ̄ | f ∗

E+,4〉

+

(
1

EE1−ELH
+

1

EH1−ELH

)
〈 fH+,3|γ̄ | f ∗

LH+,4〉(〈 f ∗

LH+,1|z| f ∗

E+,1〉 + 〈 f ∗

LH+,4|z| f ∗

E+,4〉)

]
(25)
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Table 2. Parameters of the effective 4 × 4 Hamiltonian, calculated for the QW
width 70 Å, at charge density n = 2 × 1010 cm−2.

A (nm eV) 0.365
B (nm2 eV) −0.706
D (nm2 eV) −0.532
M (eV) −10.09 × 10−3

R0/(eEz) (nm2) −15.6
T0/(eEz) (nm4) −8.91
iS0/(eEz) (nm3) −2.10

This is a new off-diagonal term between the electron-like 1
2 (− 1

2 ) and heavy hole −
3
2 ( 3

2 ) states
and the change of the angular momentum is 2, corresponding to k2

±
. All parameters can be

determined by using the numerically calculated fi,α(z), and are listed in table 2 for a QW with
a thickness d0 = 70 Å.

We note that all three terms in the inversion breaking Hamiltonian H̃R are proportional to
Ez but are independent of V0(x, y). The corrections originating from V0(x, y) to the 2 × 2 off-
diagonal blocks in (19) are of higher order in the perturbation than the ones coming from Ez.
Moreover, they must contain both E‖ = ∇V0(x, y)/e and Ez due to the fact that the in-plane field
E‖ does not break the z → −z inversion symmetry. Furthermore, V0(x, y) introduces corrections
of third or higher order to the element (H̃0)12, which have the form [k+, [k+, V0(x, y)]]k− and
∇E‖ · k+. These corrections are much smaller than the element Ak+, which appears already in
the first order of perturbation theory in H̃0. Corrections to the diagonal elements of H̃0 induced
by the in-plane potential are also very small. The latter corrections, after folding to the electron
or heavy hole subbands (see section 3), produce similar contributions to the ones originating
from H̃0, but are an order of magnitude smaller due to a large energy separation between main
bands and bands that are treated perturbatively. Therefore, we justified that the only significant
contribution to H̃ connected with the in-plane potential comes from the bare diagonal potential
V0(x, y), as shown in (17).

2.2. Symmetry arguments for the validity of the extended HgTe Hamiltonian

The goal of this subsection is to derive the effective 4 × 4 Hamiltonian (17) using the theory of
invariants [19]. The theory of invariants states that the Hamiltonian must be invariant under all
symmetry operations of the considered system. As discussed in the last section, the system has
time reversal symmetry T, space inversion symmetry P and in-plane rotation symmetry Rz(θ).
The transformation of the set of basis wave functions under these symmetries for the effective
model has been discussed in the last section. The symmetry operations in the matrix form for
the basis (|E1+〉, |H1+〉, |E1−〉, |H1−〉) are given by

• Time reversal symmetry: T=2K , where 2= −iσ2 ⊗ 1 and K is the complex conjugate
operator.

• Inversion symmetry: P = −1 ⊗ τ3.
• Rotation symmetry: Rz(θ)= eiθ6z/2 with 6z = σ3 ⊗ ( 1+τ3

2 + 3(1−τ3)

2 )= σ3 ⊗ (2 − τ3)

where the σi denote Pauli matrices acting on the spin basis and the τi represent Pauli matrices
acting on the electron or heavy hole subbands.
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Table 3. Summary of the symmetry properties of 0 matrices and the tensors
formed by k.

Rz T P

I 0 + +
(01, 02) 2 − −

(04, 03) 1 − −

(015, 025) 2 + −

(045, 035) 1 + −

05 0 + +
012 0 − +
034 0 − +

(014 +023, 031 +024) 1 − +
(023 −014, 031 −024) 3 − +

(kx , ky) 1 − −

k2
x + k2

y 0 + +
(k2

x − k2
y, 2kx ky) 2 + +

(k3
x − 3kx k2

y, 3k2
x ky − k3

y) 3 − −

(k3
x + kx k2

y, k2
x ky + k3

y) 1 − −

Generally, any 4 × 4 Hamiltonian can be expanded using 0 matrices as

Ĥeff = ε(k)I +
∑

i

di(k)0i +
∑

i j

di j(k)0i j , (26)

where I is the 4 × 4 identity matrix, 0i (i = 1, . . . , 5) denote five 0 matrices, which satisfy
{0i , 0 j} = 2δi j , and the ten commutators of 0 matrices 0i j = [0i , 0 j ]/2i . ε(k), di(k) and di j(k)
can be expanded as polynomials of the momentum k. The Hamiltonian should be invariant under
the symmetry operations P , T and Rz, which indicates that di( j)(k) should behave the same as
0i( j). Therefore we need to work out the transformation form of the di( j)(k) and the 0 matrices.
We construct the 0 matrices as follows:

01 = σ1 ⊗ τ1, 02 = σ2 ⊗ τ1, 03 = σ3 ⊗ τ1,

04 = 1 ⊗ τ2, 05 = 1 ⊗ τ3, 0i j = εi jkσk ⊗ 1,
0i4 = σi ⊗ τ3, 0i5 = −σi ⊗ τ2, 045 = 1 ⊗ τ1,

(27)

where i, j = 1, 2, 3. It is easy to prove that (0ab)
2
= 1, {0a, 0ab} = 0 and {0ab, 0ac} = 0 for

b 6= c. For the above 15 0 matrices, it is easy to calculate the symmetry transformation under
the time reversal operation T and inversion operation P , which are listed in table 3. For the
in-plane rotation operation Rz(θ), we can calculate the transformation rule 0′(θ)= ei62 θ0e−i62 θ

with the help of the differential equation d0′(θ)

dθ =
i
2 [6,0′(θ)]. The obtained results are also

given in table 3, from which we find that 05, 012 and 034 behave as a scalar under the
rotation Rz, (04, 03), (045, 035) and (014 +023, 031 +024) rotate as a vector with angular
momentum 1, (01, 02), (015, 025) corresponds to angular momentum 2, and (023 −014, 031 −

024) corresponds to angular momentum 3. In table 3, we also list the corresponding tensors
formed by k up to the order k3. From table 3, if we hope to preserve T, P and rotation symmetry,
then up to k3 the general form of the Hamiltonian is given by

H0 = εk +M(k)05 +A(k)(04, 03)

(
cos θ sin θ

− sin θ cos θ

) (
kx

ky

)
, (28)
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where A(k)= A + A2k2, M(k)= M − Bk2 and the phase θ represents the relative phase
between |E1+〉 and |H1+〉, which can be chosen arbitrarily. Taking θ = −π/2, in (28), we
recover the BHZ Hamiltonian [4].

We now consider additional terms that preserve rotation symmetry and time reversal
symmetry, but break the inversion symmetry. By inspecting table 3, the following three terms
are possible:

H̃ R =
R(k)

2
(014 +023, 031 +024)

(
cosφ sinφ

− sinφ cosφ

) (
kx

ky

)

+
T0

2
(023 −014, 031 −024)

(
cosψ sinψ

− sinψ cosψ

) (
k3

x − 3kxk2
y

3k2
xky − k3

y

)

+ S0(015, 025)

(
cosϕ sinϕ

− sinϕ cosϕ

) (
k2

x − k2
y

2kxky

)
, (29)

where R(k)= R0 + R2k2. Similar to θ , the phase factors φ, ϕ and ψ are also arbitrary and
will not affect the energy spectra. If we choose θ = −

π

2 , φ = −
π

2 , ψ =
π

2 and ϕ =
π

2 , then the
Hamiltonian (17) is recovered. This ensures that the derivation in section 2.1 has yielded the
Hamiltonian with the correct structure.

3. Foldy–Wouthuysen transformation of the effective HgTe Hamiltonian

The goal of this section is to obtain an effective 2 × 2 Hamiltonian (where 2 stands for the spin
degree of freedom) for electron |E1±〉 and heavy hole |H1±〉 subbands including nonzero
in-plane and out-of-plane electric fields. So far, the quantum spin-Hall effect (QSHE) was
described by the Hamiltonian used in [4], where only the diagonal blocks of our Hamiltonian
(17) were taken to be nonzero, i.e. for Ez, E‖ = 0. Such a block-diagonal Hamiltonian of a HgTe
QW is isomorphic to the Dirac Hamiltonian describing the relativistic motion of an electron in
two dimensions ( p̂z = 0), which couples particle and antiparticle components with the same spin
direction. Here, we start from the full Hamiltonian (17) and consider the low-energy physics
with the energy scale smaller than the gap 2M . In this case, we can apply the perturbation
formula (14) to obtain an effective model for electron and hole subbands. This procedure is
equivalent to the FW transformation [24], which reduces the relativistic Dirac equation in a
potential to the Pauli equation [19]. We keep terms up to linear order in the in-plane E‖ and
out-of-plane Ez electric fields, as well as terms up to the third order in k. Then the effective
Hamiltonians for electron (Ĥe) and hole (Ĥh) subbands are given by

Ĥe = M + V0(x, y)+

(
−D − B +

A2

2M

)
k2 +

A2

8M2
e∇E‖ −R(k)(σ × k)z + G(k)(eE‖ × k)zσz,

(30)

Ĥh = −M + V0(x, y)+

(
B − D −

A2

2M

)
k2 +

A2

8M2
e∇E‖ +

1

2

(
Q(k)σ+k3

−
+Q(k)†σ−k3

+

)
−G(k)(eE‖ × k)zσz +

1

2

(
AS0

2M2
[k−, [k−, V0]]σ+k− + h.c.

)
(31)
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Figure 1. Material parameters characterizing the SO coupling induced by (a) the
in-plane field (A2/4M2) and (b) the out-of-plane field (R0/(eEz)) as a function
of the QW thickness d. (c) Energies of the most relevant subbands as a function
of the QW width for the 0 point.

with

G(k)=
A2

4M2
, (32)

R(k)= R0 +

(
iAS0

M
−

A2

4M2
R0

)
k2 +

iAS0

2M2
e∇E‖, (33)

Q(k)= iT0 +
AS0

M
+

iA2 R0

4M2
. (34)

The spin-dependent term G(eE‖ × k)zσz and the spin-independent term (A2/8M2)e∇E‖
originate directly from the FW transformation from the Dirac-type Hamiltonian in the external
potential H̃0 + V0(x, y) (see equation (17)) to a Pauli-type equation. Therefore, by analogy to
the relativistic electron in vacuum, we call G(eE‖ × k)zσz the in-plane Pauli term, whereas we
call (A2/8M2)e∇E‖ the Darwin term. Note that the Pauli term can also be visualized as resulting
from a Rashba field due to the edges of a typical mesa structure used in experiments or as coming
from the atomic SO splitting but it is only active at the edges where E‖ is finite. The Darwin term
does not include a contribution from the field in the z-direction due to the assumption that Ez

is constant. The in-plane Pauli and Darwin terms appear in both the electron and hole effective
Hamiltonians. The additional terms that are proportional to R(k) and Q(k) originate from H̃R

and are a direct consequence of the broken space inversion symmetry in the z-direction. These
terms are usually called Rashba terms and they give linear and cubic in k contributions for
electron and heavy hole subsystems, correspondingly. In a typical experimental setup, Rashba
terms are generated by an asymmetric doping profile surrounding the QW and can be adjusted
by a top gate which induces a tunable electric field in the z-direction. Figures 1(a) and (b)
show the magnitude A2/4M2 of the in-plane SOI and electron Rashba coefficient R0/(eEz) as a
function of the thickness d of the HgTe/CdTe QW. Note that the coupling strength A2/4M2 for
the Pauli term decreases with d , whereas the strength of Rashba coupling R0/(eEz) increases
with d. The origin of the different behaviour of these two SOIs can be understood from the
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plot of energy versus d (see figure 1(c)). The in-plane term A2/4M2 comes from the coupling
between the electron and the heavy hole |H1±〉 subbands, and the energy difference between
these bands increases with d. The Rashba term R0/(eEz) originates from the coupling between
the electron and the light hole subbands. Their energy difference decreases with d; therefore
R0/(eEz) increases with d. Comparing the magnitudes of R0/(eEz) and A2/4M2, one can see that
close to the critical thickness d = dc determining the transition from a normal to a topologically
nontrivial insulator, the magnitude of the in-plane term is an order of magnitude larger than
the SOI term in the z-direction, while for d = 80 Å the magnitudes of both interactions are
comparable.

4. Spin transport within an effective electron model

As described in detail in the previous section, the effective conduction band description of a
HgTe QW (30) includes two different SOI terms: the Rashba SO coupling and the in-plane Pauli
term. To understand the interplay of both SOIs, we will analyse here the spin-Hall conductance
signal numerically using the tight binding version of the Hamiltonian equation (30) within the
Landauer–Büttiker formalism [26].

4.1. Description of the model

The Rashba field Ez can be applied constant in space and varied in strength easily by an
external top gate. By contrast, E‖, generating the in-plane Pauli term, usually originates from
impurities or from confinement due to sample boundaries. In our calculations we work in
the quasiballistic regime, which is very well justified for HgTe/CdTe QWs with the typical
mobilities 1–5 × 105 cm2 V−1 s−1. Consequently, the contribution of the impurities to the in-
plane field is negligible and the confining potential is dominant, i.e. |Ex,y| decreases with the
distance from the sample edges. The confining potential requires that an electric field at the
boundary always points outside the sample, i.e. its magnitude changes sign at opposite edges.

We use two different setups. In both setups a finite size sample with SOIs (see figures 2(a)
and (b)) is attached to four semi-infinite leads of the same width w. For the first setup, a
square sample, the in-plane field is introduced by tunnelling barriers between the leads and
the conductor along the blue lines in figure 2(a). This simple setup has the advantage that the
numerical results are easy to interpret, but is not a realistic description of actual experiments.
The second setup is a symmetric cross structure, which resembles the experimental Hall bars
and is shown in figure 2(b). In this case again the blue lines indicate the sample border, where a
confining potential is present (for a form of this potential, see also figure 2(c)).

We construct the confining potential in 1D V0(x, y) from the one dimensional profile

V1D(t)= e−t/ l + e−(w−t)/ l, (35)

where the coordinates in both the quadratic and the cross-shaped samples are chosen such
that 0, respectively w, mark the x- or y-coordinates at the edges of the central square. l is
the characteristic decay length of the potential. For the square-shaped sample, we define

V0(x, y)= csq (V1D(x)+ V1D(y)) . (36)

The maximal field is then E0
x = −∂x V0(x, y)|x=0. We adjust the constant csq to choose some

particular value E0
x . For the cross-shaped sample, we use the definition

V0(x, y)= ccrV1D(min(max(x, 0), w))V1D(min(max(y, 0), w)). (37)
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Figure 2. The two different samples we use for the numerics: (a) a quadratic Hall
bar of width w and (b) a cross structure. In both cases the sample (blue) contains
SOI, whereas the four semi-infinite leads (black) are SOI free. The numbering
of the leads and the used boundary conditions on the currents are indicated in
the figure, i.e. we drive a current I from leads 1 to 2 and do not allow for charge
currents at the vertical leads 3 and 4. The discretization is shown for a part of
each sample. Along the blue lines the confining potential V0(x, y) is applied, as
indicated in the inset of (b), to give rise to the in-plane Pauli interaction. In the
case of the quadratic sample, this potential corresponds to a tunneling barrier
between leads and sample. (c) Shows the confining potential normalized by its
maximal value (V max

0 ) for the cross structure.

Here the constant ccr is adjusted to choose the desired maximal field E0
x = −∂x V0(x, y)|x=y=0 and

we assume that E0
x = E0

y . Further, in the leads the potential is always set as zero. For clarification,
the confining potential corresponding to (37) is shown in figure 2(c). We find that the numerical
results do not change qualitatively if the boundary field is defined differently, as long as the
characteristic decay length l is unchanged. In both setups we assume that the leads do not
include SOI, and therefore an analytical form of the eigenmodes [27] and a clear definition of
the spin current are available [28].

In the calculations, we set the boundary conditions on the currents I1 = −I2 = I and
I3 = I4 = 0, where Ip = I ↑

p + I ↓

p is the total current at lead p. The spin-dependent current, I σp , is
calculated by use of the Landauer–Büttiker formula [26, 28, 29]

I σp =
e

h

∑
q 6=p

∑
σ ′=↑,↓

[
T σ ′σ

qp µp − T σσ ′

pq µq

]
, (38)

which links the spin-resolved current to the chemical potential µp = eV p via the transmission
matrix elements T σσ ′

pq . T σσ ′

pq describes the probability that an electron, entering the sample at lead
p with spin σ , will leave the sample through lead q having spin z-projection σ ′.

For a sample with nonzero SO coupling, applying an electric field between leads 1 and 2
will generate a transverse spin current I s

p = −h̄/(2e)(I ↑

p − I ↓

p ) at leads 3 and 4, which is the
so-called spin-Hall effect [28, 30, 31]. We define the spin-Hall conductance as follows:

Gs
p =

I s
p

V1 − V2
=

h̄

2e

I ↑

p − I ↓

p

V2 − V1
=

e

4π

∑
σ ′=↑,↓

(
T ↑σ ′

p1 − T ↓σ ′

p1

)
, p = 3, 4, (39)
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where V2 − V1 is the voltage difference between leads 2 and 1. Due to the symmetries of
the Hamiltonian, only a few transmission matrix elements are independent, so that the last
equality in (39) follows. The time reversal symmetry of (30) implies T σσ ′

pq = T −σ ′
−σ

qp , the fourfold
rotational symmetry C4 of the setup about the z-axis implies e.g. T σσ ′

23 = T σσ ′

14 , and the mirror
symmetry with respect to the yz-plane implies T σσ ′

32 = T −σ−σ ′

31 .
The transmission matrix elements are computed numerically in a tight binding approach by

using the Green’s function method [26]–[28], [31], and the Fisher–Lee relation [32] connecting
the Green’s function with the transmission amplitudes. We discretize the sample as indicated in
figure 2. By making use of the fermionic field operators c†

α,σ (cα,σ ), which create (annihilate) a
spin σ electron at lattice site α, the Rashba and in-plane Pauli interactions take the following
form in second quantization:

HRashba =
R0

2a

∑
α

[
ic†
α,↑cα+ay ,↓ + ic†

α,↓cα+ay ,↑ − c†
α↑

cα+ax ,↓ + c†
α↓

cα+ax ,↑ + h.c.
]
, (40)

HPauli = i
A2e

a8M2

∑
α,σ

[
Eα+ay/2

x c†
α+ay ,σ

cα,σ − Eα+ax/2
y c†

α+ax ,σ
cα,σ − h.c.

]
κσ , (41)

where R0/(eEz), A and M are the material parameters defined in section 2.1. Here a denotes
the lattice constant, and ax,y stand for the lattice unit vectors connecting nearest neighbours. To
obtain the parameter R0 we must assume a specific value of the perpendicular field Ez. Eαx and
Eαy designate, for a given site α, the in-plane electric field components. κσ = ±1 for spin up and
down, respectively, and the symbol h.c. denotes the Hermitian conjugate.

The Rashba SOI does not conserve the z-component of the spin and thus leads to spin
precession [33]. By contrast, the in-plane Pauli term (41) conserves the z-component of the
spin, causing a shift in energy for two spin directions. This energy shift, however, must not be
mistaken as the Zeeman effect, because (41) does not break time reversal symmetry.

For numerical calculations we consider the Hamiltonian

H= T̂ +HSO +HDis + V0(x, y)+HDar. (42)

Here T̂ =
(
−D − B + A2/(2M)

)
k2

= h̄2k2/(2m∗) describes the kinetic part of the conduction
band Hamiltonian (30). In second quantization, T̂ is described by spin-conserving nearest-
neighbour hopping [26]–[28]. HDis = diag(εi) specifies the disorder of the sample, where the
diagonal on-site energies εi are uniformly distributed between [−W/2,W/2] [34]. The disorder
strength W = h̄e/(m∗µ) is calculated from the mobility µ. The confining potential is taken
into account via V0(x, y). The SO coupling HSO is described by the Rashba term (40), the in-
plane Pauli term (41) or a linear superposition of both terms. Hence H mirrors the conduction
band Hamiltonian (30), where we omit the k dependence of the R parameter and negligible
terms that include the combined effect of the in-plane and out-of-plane electric fields. The spin-
independent Darwin term HDar ∝ ∇ · E‖ breaks the particle–hole symmetry of the tight binding
Hamiltonian, just like any space-dependent in-plane potential would do. Here particle–hole
symmetry means the relation Gs

3(Ef)= −Gs
3(−Ef) if the energy zero point is chosen in the

middle of the tight binding band. It originates from the cosine dispersion relation of a free
electron on a lattice. HSO does not break this symmetry. The Darwin term does not qualitatively
change the spin conductance signal and will be considered after the SO terms are analysed.

We use realistic parameters for the calculations, which are shown in table 2. Here, we
assume a thickness of the QW in the z-direction of 7 nm, corresponding to the inverted
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regime. Although this has no impact on our one-band approach, it guarantees a large coupling
strength R0/(eEz). The carrier density is set to n = 2 × 1010 cm−2, whereas the effective mass
m∗

= 0.00712m0, where m0 is the bare electron mass. We want to point out that we have
changed the originally negative sign of the effective mass to achieve a positive curvature of
the band dispersion, which is justified in a one-band model. In our calculations, we focus on
the regime where the Fermi energy is deep enough in the conduction band so that the spin
edge states have already merged into the bulk [6, 25] and the spin-Hall conductance that is the
property of the states close to the Fermi level will be dominated by the bulk response.

Assuming a quadratic dispersion around k = 0, we determine the Fermi energy to be Ef =

6.73 meV. Finally, the assumed mobility µ= 25 × 104 cm2 (V s−1) leads to W = 0.65 meV. For
such a small disorder strength, averaging over ten different disorder configurations is sufficient.
We note that the mean spin-Hall conductance deviates from that of a clean sample only by about
. 1%. The parameters are chosen carefully to the restricted range of possible energies where
this model is valid, i.e. Er < Ef < Egap, where Egap = 2M is the energy gap and Er is the energy
splitting of the band due to Rashba interaction.

We will first focus on the square sample because the scattering barrier in this setup allows
us to study the competition between the in-plane and out-of-plane electric fields. The influence
of in-plane electric fields is much weaker in the cross structures. Further, the first minimum in
the spin-Hall conductance generated by the Rashba contribution is shifted away from the spin
precession length to smaller fields due to quantum interference effects in the vertical stubs (see
e.g. [27]) and therefore the results are less transparent to interpret.

4.2. Numerical results for the quadratic sample

We choose a quadratic sample of width w = 1000 nm, which is discretized by 200 × 200
lattice points, so that the Fermi wavelength is about 36 times the lattice constant. The
characteristic length scale of the electric field is assumed to be l = 10 nm. The computed spin-
Hall conductance is presented in figure 3. First, we focus on pure SOI and consequently omit
the Darwin term and the potential in figures 3(a) and (b). Figure 3(a) shows Gs

3(E
0
‖
) for different

top gate fields and figure 3(b) presents Gs
3(Ez) for different in-plane fields.

4.2.1. Rashba coupling. The spin-Hall conductance signal induced by the Rashba coupling
alone, E‖ = 0, is shown in figure 3(b) by blue circles. For a small interaction strength R0, the
spin-Hall conductance rises quadratically, saturates and finally starts to precess. The behaviour
of the spin-Hall conductance originating from the Rashba model can be understood by the spin
force operator

F̂H =
−m∗

h̄2 [[r̂H, Ĥ ], Ĥ ] =
2 m∗ R2

0

h̄3

(
p̂H × z

)
⊗ σ̂ z

H, (43)

where r̂H, p̂H and σ̂ z
H are the position, momentum and spin-operators in the Heisenberg

representation (see Nikolić et al [33]) and z is a unit vector. In this simple picture the force
acting on electrons due to SO coupling is quadratic in R0, explaining the behaviour of Gs

3 as
a function of the out-of-plane electric field for low Ez. The force described in (43) deflects
the spin-↑ and the spin-↓ electrons in opposite transverse directions, leading to the spin-Hall
effect. However, the Hamiltonian does not conserve the z-component of the spin, leading to a
rotation of the spin direction and as a consequence to oscillations in Gs

3 as a function of R0. The
first maximum of the spin-Hall conductance is reached, when the spin has travelled a distance
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a b

c d

Figure 3. Spin-Hall conductance due to the presence of a superposition of
Rashba and in-plane Pauli terms in a quadratic sample with tunnelling barriers at
the boundaries. Due to the presence of the second interaction, the starting value
of spin-Hall conductance can be nonzero. (a) When Ez is nonzero, the magnitude
of Gs

3 as a function of E0
x,y is reduced. (b) Spin-Hall conductance as a func-

tion of Ez. For higher values E0
x,y the precession amplitude of Gs

3 at LSO (indicated
by a red line) is increased and the minimum is slightly shifted to higher
interaction energies. (c) and (d) show the same dependences of Gs

3 as above,
but here the Darwin term and the confining potential were additionally taken
into account.

equivalent to the spin precession length [30] LSO = π T̂ /(k2 R0), over which the expectation
value 〈σz〉 rotates by π . The electric field ESO

z = 1.08 mV nm−1 corresponding to the precession
length is indicated as a red line in figure 3(b) and is in good agreement with the maximum of
the absolute value of Gs

3.

4.2.2. In-plane Pauli interaction. The spin-Hall conductance shows linear behaviour as a
function of the in-plane electric field (see the blue circles in figure 3(a), where only the Ex,y

components are nonzero). This linear dependence on field strength can be explained within the
semiclassical approach, where we have adopted the wave packet dynamics by Sundaram and
Niu [35] to obtain equations of motion for the in-plane Pauli term:

ṙc =
1

h̄

∂ε

∂kc
− k̇c × �σ , (44a)

h̄ k̇c = −eE‖, (44b)

with the magnetic field set to zero. Here the index c denotes the center coordinate of the wave
packet in position and k space. The Berry curvature is defined as(

�±
σ

)
α

:= −εαβγ Im

〈
∂u±

σ (k)
∂kβ

∣∣∣∣∂u±

σ (k)
∂kγ

〉
, (45)

New Journal of Physics 12 (2010) 065012 (http://www.njp.org/)

http://www.njp.org/


18

where symbol ± corresponds to two eigenvalues E± = −Dk2
±

√
A2k2 +M2(k) of the upper

spin block of the Hamiltonian H̃0 in (18) with u±

σ (k) being corresponding eigenstates for
spin σ . Equation (44b) simply describes the change of the lattice momentum due to the
electric field. Equation (44a) describes the time evolution of the position operator due to the
band dispersion and the anomalous velocity term k̇c × �σ with the spin-dependent nonzero

z-components (�±
↑
)z = −(�±

↓
)z

k=0
= ±A2/2M2. The spin-dependent anomalous velocity term

shifts the position of the wave packet with different spins in two opposite transverse directions,
leading to the spin-Hall effect. Inserting (44b) into (44a) yields the dependence of the anomalous
velocity term linear in E‖. Note that the energy range (≈ 0.011t) plotted in figures 3(a) and (b) is
the same for both interaction terms. Since the coupling parameters can be quite different (in our
calculations 21 × R0/(eEz)≈ A2/(4M2)), the magnitudes of in-plane and out-of-plane electric
fields are adjusted so the interaction energies are the same.

4.2.3. Interplay of both interactions. A linear superposition of (40), (41) and T̂ leads to the
spin signal, which is shown in figures 3(a) and (b), when all three field components are nonzero.
The finite value of the spin-Hall conductance in figure 3(a) for E0

x,y = 0 is due to the Rashba
coupling. It can be observed that the linear behaviour of the in-plane Pauli term with the electric
field is not changed, when Rashba SO coupling is present. However, the slope of the spin-Hall
conductance curves decreases with Ez 6= 0, which means that the in-plane Pauli contribution to
the spin signal is suppressed by the Rashba interaction. The z-component of the spin is not
conserved for finite Ez, as can be seen from equation (40). The resulting spin precession implies
that generation of a spin current by the anomalous velocity becomes less effective. The smallest
slope and therefore smallest in-plane Pauli contribution in figure 3(a) is found for an electric
field Ez corresponding to the precession length, where an expectation value 〈σz〉 rotates by π .

Figure 3(b) shows Gs
3 as a function of Ez for different in-plane electric fields. One can see

the typical precession pattern of Gs
3(Ez) also for E‖ 6= 0. Moreover, the precession amplitude of

the spin-Hall conductance of the Rashba type is enhanced in the presence of the in-plane Pauli
term. The origin of this increase can be traced back to the k-dependent energy splitting of the
spin subbands due to the in-plane Pauli interaction. In order to lower its energy, the electron
now prefers to stay in either spin up or down states. The precession of the spin is thus slightly
suppressed, as can be seen in a small shift of the minima to higher electric fields. As discussed
above, the spin force operator (43) can act more efficiently on electrons with a preferred spin z-
projection, which leads to the relatively higher magnitude of the spin-Hall conductance caused
by Rashba coupling.

Figures 3(c) and (d) also show Gs
3(E‖) and Gs

3(Ez) respectively, but now with included
potential V0(x, y) and Darwin A2/(8M2)∇ · E‖ terms. In the tight binding approach, both
terms renormalize the diagonal on-site energy. They cannot generally be considered to be
small, as they scale, like the in-plane Pauli term, with the magnitude and the shape of the
confining electric field. The relative magnitudes of the in-plane Pauli, Darwin and potential
terms depend on the choice of the functional dependence V0(x, y). The most important scale is
the characteristic length scale l, over which the corresponding field drops to E0/e. We have
performed numerical calculations with different values E0

x,y and l, and found that the main
features of the results discussed in this paper stay the same. We found that the Darwin term
is the main contribution which renormalizes the spin-Hall conductances in figures 3(c) and (d)
with respect to Gs

3(E‖) and Gs
3(E⊥) in figures 3(a) and (b).
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a b

c d

Figure 4. Spin-Hall conductance for a cross structure, with the Darwin and the
potential terms included. In (a) and (b), we have used the same range of the
electric field as for the quadratic sample, i.e. l = 10 nm. Although the in-plane
field was enhanced to very high values, the influence of the in-plane electric
field on Gs

3(Ez) is very weak. In (c) and (d), we have increased l to 40 nm to
get a higher in-plane Pauli signal. In this case Gs

3 behaves similarly as for the
quadratic sample.

The divergence of E‖ appears as an additional term in the semiclassical equation (44b),
and therefore the spin-independent Darwin term can contribute to the anomalous velocity
and renormalize the spin-Hall conductance term. This can be seen in figure 3(c) as nonlinear
behaviour of Gs

3(E‖). However, in the range of in-plane electric fields shown in figures 3(c)
and (d), the qualitative behaviour of the spin-Hall conductance is the same as in the absence
of the Darwin term (see figure 3(a) and (b)). Increasing the in-plane electric field to the same
magnitude as the electric field perpendicular to the 2DEG has two difficulties. First of all the
interaction energy of the in-plane Pauli term exceeds the Fermi energy, which marks the limit
of validity of our effective electron model. Secondly, increasing E‖ comes along with raising the
tunnelling barrier in the quadratic sample. We can omit these difficulties by choosing the sample
in the shape of a cross (see the next subsection).

4.3. Numerical results for the cross sample

The cross sample is made up of five square parts: four stubs and the central square (see
figure 2(b)). Each part has width w = 500 nm and is discretized by 100 × 100 lattice sites. The
corresponding spin-Hall conductance originating from in-plane Pauli and Rashba terms in the
presence of the Darwin term and the confining potential is shown in figures 4(a)–(d).

Figures 4(a) and (b) show Gs
3(E‖) and Gs

3(Ez) for different values of fields in the z and in-
plane directions correspondingly and for the characteristic range of the electric field l = 10 nm.
These figures should be compared with figures 3(c) and (d) correspondingly. The overall
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behaviour of spin-Hall conductance in figures 4(a) and (b) is similar to the quadratic sample.
However, although we used values of the in-plane electric field around 20 times larger than
in figure 3(d), the influence of E‖ on Gs

3(Ez) is much weaker than for the square structure
(compare 4(b) with 3(d)). The probability of scattering from vertical and horizontal walls in the
cross structure is much smaller than in the case of square structure where the electron directly
hits the wall. Therefore, we find that the influence of an in-plane electric field will be much
weaker in the experimentally relevant cross samples.

In order to obtain a contribution to Gs
3 due to the confining potential comparable to that for

the quadratic sample, we have increased l from 10 to 40 nm, in figures 4(c) and (d). This leads to
a larger range of lattice sites, which can contribute efficiently to the spin-dependent hopping. In
the case of larger l, the results resemble those discussed in the last section for square samples. In
figure 4(d) the amplitude of the Rashba contribution to the spin-Hall effect counted to the first
minimum is enhanced by the confinement potential. By contrast, the signal due to the in-plane
Pauli term decreases until Ez corresponds to the first minimum, as can be seen in figure 4(c).
The magnitude of the slope increases slightly for higher values of the top gate field, but with an
inverted sign with respect to the quadratic sample (see figure 3(c)).

At the end of this section let us emphasize that for the experimentally relevant case both
interactions are present, but only Ez can be easily varied, e.g. by a top gate. Therefore, in the
experimentally relevant case, the presence of both the in-plane Pauli and the Darwin interactions
could lead to an increase of the amplitude of spin signal.

5. Conclusions

We have derived an extension to the BHZ Hamiltonian for the typical 2D topological insulator
(HgTe QWs) in the presence of the inversion breaking potential in the z-direction and in-
plane potential. For the derivation, we used two independent methods: k · p perturbation theory
and symmetry arguments based on Clifford algebra. We found that to the third order in the
perturbation theory, only the inversion breaking potential in the z-direction generates a new off-
diagonal in spin space terms. These terms lead to the Rashba SOI when the FW transformation
to the effective electron model is performed. On the other hand, the diagonal-in-spin space part
of the Hamiltonian in the presence of the in-plane potential generates an additional term to the
one-band model that is also linear in momentum and spin, but conserves the z-component of
the spin. By analogy with the equation for a relativistic electron in vacuum, we call this term the
in-plane Pauli term. The presence of both terms in the conduction band Hamiltonian leads to
interesting behaviour of the spin-Hall conductance. In particular, the in-plane Pauli contribution
to the spin-Hall conductance is suppressed in the presence of the spin precession inducing
terms. By contrast, the spin-Hall conductance from the Rashba term preserves the oscillation
pattern in the presence of the in-plane Pauli term and its magnitude can be enhanced due to
partial pinning of the z-component of the spin. This latter situation is experimentally relevant
since the inversion breaking potential in the z-direction can be easily tuned by a top gate in
experiments. Therefore, we expect that in experiments on asymmetrically doped HgTe/CdTe
QWs [11] in the metallic regime (the Fermi level in the conduction or valence band), the
behaviour of spin transport and especially the spin-Hall conductance will be dominated by the
Rashba SOI. Note that in our derivation we omit the BIA terms since they have already been
studied in [6].
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Let us also emphasize that our effective four-band Hamiltonian in the presence of inversion
breaking potential is not limited only to the HgTe/CdTe QWs and can be easily generalized to
other topological insulators such as type II InAs/GaSb/AlSb QWs [18] with correctly adjusted
strengths of the Rashba SOIs.

Acknowledgments

We gratefully acknowledge support from the German DFG grant no. HA5893/1-1.
C-X Liu acknowledges financial support from the Alexander von Humboldt Foundation of
Germany. LWM acknowledges the joint DFG-JST Forschergruppe on Topological Electronics
and German–Israeli Foundation grant I-881-138.7/2005. SCZ is supported by the US NSF
under grant number DMR-0904264. We thank Leibniz Rechenzentrum Munich for providing
computing resources.

References

[1] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[2] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[3] Bernevig B A and Zhang S-C 2006 Phys. Rev. Lett. 96 106802
[4] Bernevig B A, Hughes T L and Zhang S-C 2006 Science 314 1757
[5] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X-L and Zhang S-C 2007

Science 318 766
[6] König M, Buhmann H, Molenkamp L W, Hughes T, Liu C-X, Qi X-L and Zhang S-C 2008 J. Phys. Soc.

Japan 77 031007
[7] Roth A, Brüne C, Buhmann H, Molenkamp L W, Maciejko J, Qi X-L and Zhang S-C 2009 Science 325 294
[8] Fu L and Kane C L 2007 Phys. Rev. B 76 045302
[9] Zhang H, Liu C-X, Qi X-L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438

[10] Novik E G, Pfeuffer-Jeschke A, Jungwirth T, Latussek V, Becker C R, Landwehr G, Buhmann H and
Molenkamp L W 2005 Phys. Rev. B 72 035321

[11] Brüne C, Roth A, Novik E G, Koenig M, Buhmann H, Hankiewicz E M, Hanke W, Sinova J and Molenkamp
L W 2010 Nature Phys. 6 448

[12] König M, Tschetschetkin A, Hankiewicz E M, Sinova J, Hock V, Daumer V, Schäfer M, Becker C R,
Buhmann H and Molenkamp L W 2006 Phys. Rev. Lett. 96 076804

[13] Zhang Y et al 2009 arXiv:0911.3706
[14] Liu C-X, Zhang H J, Yan B, Qi X-L, Frauenheim T, Dai X, Fang Z and Zhang S-C 2010 Phys. Rev. B 81

041307
[15] Linder J, Yokoyama T and Sudbø A 2009 Phys. Rev. B 80 205401
[16] Lu H-Z, Shan W-Y, Yao W, Niu Q and Shen S-Q 2009 arXiv:cond-mat/0908.3120
[17] Shan W-Y, Lu H-Z and Shen S-Q 2010 arXiv:cond-mat/1001.0526
[18] Liu C-X, Hughes T L, Qi X-L, Wang K and Zhang S-C 2008 Phys. Rev. Lett. 100 236601
[19] Winkler R 2005 Spin–Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Berlin:

Springer)
[20] Burt M G 1988 Semicond. Sci. Technol. 3 739
[21] Luttinger J M 1956 Phys. Rev. 102 1030–41
[22] Ekenberg U and Altarelli M 1985 Phys. Rev. B 32 3712–22
[23] Pfeuffer-Jeschke A 2000 PhD Thesis Universität Würzburg
[24] Foldy L L and Wouthuysen S A 1950 Phys. Rev. 78 29
[25] Zhou B, Lu H-Z, Chu R-L, Shen S-Q and Niu Q 2008 Phys. Rev. Lett. 101 246807

New Journal of Physics 12 (2010) 065012 (http://www.njp.org/)

http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.96.106802
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1143/JPSJ.77.031007
http://dx.doi.org/10.1126/science.1174736
http://dx.doi.org/10.1103/PhysRevB.76.045302
http://dx.doi.org/10.1038/nphys1270
http://dx.doi.org/10.1103/PhysRevB.72.035321
http://dx.doi.org/10.1038/NPHYS1655
http://dx.doi.org/10.1103/PhysRevLett.96.076804
http://arxiv.org/abs/0911.3706
http://dx.doi.org/10.1103/PhysRevB.81.041307
http://dx.doi.org/10.1103/PhysRevB.81.041307
http://dx.doi.org/10.1103/PhysRevB.80.205401
http://arxiv.org/abs/cond-mat/0908.3120
http://arxiv.org/abs/cond-mat/1001.0526
http://dx.doi.org/10.1103/PhysRevLett.100.236601
http://dx.doi.org/10.1088/0268-1242/3/8/003
http://dx.doi.org/10.1103/PhysRev.102.1030
http://dx.doi.org/10.1103/PhysRevB.32.3712
http://dx.doi.org/10.1103/PhysRev.78.29
http://dx.doi.org/10.1103/PhysRevLett.101.246807
http://www.njp.org/


22

[26] Datta S 2007 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press)
[27] Sols F, Macucci M, Ravaioli U and Hess K 1989 J. Appl. Phys. 66 3892
[28] Hankiewicz E M, Molenkamp L W, Jungwirth T and Sinova J 2004 Phys. Rev. B 70 241301
[29] Büttiker M, Imry Y, Landauer R and Pinhas S 1985 Phys. Rev. B 31 6207–15
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