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1. Introduction

Coast dwellers especially know that extreme wind speeds are accompanied by rough and

heavy seas. The experience of an inshore storm can be an obvious example of the joint

occurrence of extreme events that Multivariate Extreme Value Analysis deals with. The

well-known and fascinating publication Sea and Wind: Multivariate Extremes at Work

(1998) (cf. de Haan and Ronde [33]) analyzes this just mentioned extreme dependence.

The article investigates the dependence structure between the co-players of storm events

and engages in modeling and estimating the probability of failure of a dutch sea dike by

order of the European Union project ”Neptune” 1995-1997. But not only coast dwellers

are threatened by extreme events like storm surges. Just the preceding years told us

about flooding caused by heavy or long-lasting rainfall. Thus, we are not only interested

in the maximum of a river‘s water level but also in how long the flood lasts and the

question of which neighboring rivers of the water system are also affected by the flood.

This example of a storm upsurge may surely not be able to compare with the whole

complexity of the current situation at the global financial market system, but it may

serve as a first descriptive image. Geluk et al. [22] published a measure called the

fragility index, which aims to describe the stability of a financial system under the

influence of extreme events. Now, given a random system of dimension d ∈ N denoted

by {Q1, . . . , Qd}. If one or several exceedances above a high threshold occur in a system,

i.e., we observe {Qj > s}, s ր for at least one j ∈ {1, . . . , d}, we are faced with the

failure of at least one component, up to the total collapse of the whole system, under

strong dependencies within the system. Considering a financial system of d banks, within

which at least one bank crashes due to high liabilities, the fragility index (FI), if it exists,

is defined as the limit of the expected number of exceedances above a high threshold

among d random variables Q1, . . . , Qd as the threshold increases, given that there is

at least one exceedance. The larger the value of the FI, the stronger the dependence
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1. Introduction

between extreme events among the system.

As we have already mentioned, the stability of a random system significantly depends

on the probability of exceedance above a high threshold. According to Balkema and

de Haan [3] and Pickands [53] the distribution of a random exceedance above a high

threshold can be approximated by a generalized Pareto distribution. This fact is well-

known as the peaks-over-threshold approach (POT), which goes back to Pickands [53], cf.

for example, the summary in Chapter 5 in Reiss and Thomas [55] or Beirlant [5], as well

as Chapter 7 in Embrechts et al. [13]. Since the fragility index is defined by means of a

conditional expectation, its calculation is based on the random number of exceedances

within the random system. However, in the current and past literature, less attention

is paid to the distribution of the number of exceedances. We shall deal extensively with

this topic within the work at hand. In doing so, we assume that the joint distribution

F of the random vector representing the system {Q1, . . . , Qd} belongs to the domain

of attraction of a multivariate extreme value distribution (EVD). This is referred to as

the domain-of-attraction assumption. It follows that the corresponding copula CF can

be approximated in its tail by a multivariate generalized Pareto distribution (GPD),

which turns out to be a crucial result within this work. Further, conditions are provided

under which the survival function of a GPD vanishes, i.e., there are no further possible

exceedances in the random system. Another crucial result is the representation of the

asymptotic conditional distribution of exceedance counts (ACDEC). The ACDEC serves

as a main tool within the closed representation of the fragility index and its extension.

A multivariate extreme value distribution (EVD) is defined by the specification of

its univariate margins and its so-called dependence function D, which describes the

dependence structure among the univariate margins. Historically, several equivalent

representations of an EVD evolved from the Balkema and Resnick representation, cf.

Balkema and Resnick [4]. Within the work at hand, we prefer the representation of

an EVD G by norms, i.e., G(x1, . . . , xd) = exp(‖(x1, . . . , xd)‖D), where the so-called

D-norm ‖·‖D is one possible representation of the dependence function D of an EVD

among several others, cf. Falk et al. [19] or Hofmann [36]. Hence, we succeed in the

representation of a compact form of the original representation of the fragility index in

Geluk et al. [22]. Further, our representation of the fragility index coincides with the

so-called dependence coefficient κ, defined by de Haan und Ferreira [29], cf. Section 7.4
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therein. This is because the so-called stable tail dependence function l, cf. Huang [39],

coincides with the D-norm, i.e. l(x1, . . . , xd) = ‖(x1, . . . , xd)‖D for xj ≤ 0, j ≤ d ∈ N.

Further analysis shows that the extremal coefficient ε, which goes back to Tiago de

Oliveira [70] and was named by Smith [63], also coincides with the D-norm at point

(1, . . . , 1). The coefficient ε reflects the amount of dependence between the identically

distributed univariate margins of an EVD. If we consider the exceedance of a component

Qj above a threshold that depends on the particular univariate margin Fj, a so-called

individual threshold, we obtain the simple representation FI = d/ε for the fragility index

of the random system {Q1, . . . , Qd}. This is an important enhancement of the fragility

index provided by Geluk et al. [22], who only consider exceedances above a threshold,

which is common for every component of the system, a so called common threshold.

Another main result of the work at hand is the extension of the fragility index, the

so-called extended fragility index FI(m), which is the limit of the expected number of

exceedances within the system, given there are at leastm exceedances. Thus, we are able

to capture the development of risk within the random system by an increasing number

of collapsing components. We show that the existence of the FI(m) for certain m ≤ d

depends on the convergence behavior of the survival copulas corresponding to certain

margins of the system‘s distribution F . If the FI(m) exists for certain m ≤ d, it can

be represented as a function of the extremal coefficients corresponding to those margins

GK of the EVD G, for which we have m ≤ |K| ≤ d. Thereby we assume that the copula

CF of the random system {Q1, . . . , Qd} belongs to the domain of attraction of an EVD.

We have FI(m) ∈ [m; d]. Therefore, we call {Q1, . . . , Qd} m-stable if FI(m) = m,

and fragile if FI(m) > m. Hence, the FI(m) turns out to be a suitable measure for

the tail dependence (structure) of a multivariate distribution F , whenever F belongs

to the domain of attraction of an EVD. Such a measure for tail dependence is not

present within the literature at the time of writing. Those tail dependence measures

that have been published so far mostly deal with the bivariate case, like the upper and

lower tail dependence coefficient (cf. Geoffrey [25] and Sibuya [60]), or the multivariate

(stable) tail dependence function (cf. Beirlant et al. [5], especially Section 9.4 as well

as Section 8.2 and 8.3, or Heffernan [35] for an appealing summary for measures of tail

dependence). Both the extremal coefficient and the (stable) tail dependence function

have disadvantages, which the (extended) fragility index overcomes.
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1. Introduction

So far, we have considered the number of exceedances within a finite random system

and captured its asymptotic stability by the (extended) fragility index. Within the

work at hand we also want to deal with a stochastic process (Xd)d∈N, where we are

interested in the number of sequential exceedances above a high threshold. This number

is referred to as the exceedance cluster length and thus covers the (discrete) sojourn time

of the stochastic process (Xd)d∈N. One may think of the earlier mentioned image of a

river flooding its banks and of neighboring rivers, which are also affected by an extreme

weather pattern. Beside our interest in the expected total number of threatened rivers

within a certain area – captured by the FI(m) – we are also interested in the duration

of an extreme water level. With the existing tools taken from the work on the fragility

index, we are able to provide the mean cluster size, i.e., the sojourn time of exceedance.

This measure can be regarded as the fragility index for sojourn times and captures the

amount of asymptotic dependence within a finite sequence of a stochastic system.

Further, it is well-known that the reciprocal of the mean cluster size coincides with

the so-called extremal index (cf. Hsing et al. [38]). The extremal index captures the

amount of dependence within a strictly stationary process, for an appealing summary

cf. Section 8.1 in Embrechts et al. [13]. We show that the reciprocal of the fragility

index of a finite sequence (X1, . . . , Xd) taken from (Xd)d∈N coincides with the extremal

index letting d→ ∞.

The last part of the work at hand provides a first approach towards an estimation

of the (extended) fragility index. The main idea is based on the estimation of the ex-

tremal coefficients corresponding to the margins of the EVD G, to whose domain of

attraction the system‘s distribution F belongs. Existing literature contains frequent

procedures of estimating the stable tail dependence function, i.e. the dependence struc-

ture of an EVD. These estimators are predominantly based on the estimation of the

Pickands dependence function (cf. for example Zhang et al. [71], Genest and Segers [24]

or Gudendorf and Segers [27]). Further, they are restricted to the assumption that the

observations follow exactly an EVD (EVD assumption). However, the fragility index is

based on the weaker domain of attraction assumption. We therefore use an estimator

for the extremal coefficient that is not restricted to the EVD assumption. Further, we

want to use a nonparametric estimation approach, since we do not want to focus on a

special parametric model for the dependence structure. The nonparametric estimator of
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the stable tail dependence function provided in Section 7.2 in de Haan and Ferreira [29]

turns out to be a suitable one for our purpose. The resulting nonparametric estimator

of the fragility index is consistent and asymptotically normal distributed.

By means of a simulation study we investigate the behavior of the obtained estimator

in dependence on the sample and chosen tail size as well as the amount of dependence

between. We simulate from a 3-dimensional logistic EVD. Further, we investigate the

mean squared error of the estimator and engage in the determination of an optimal tail

size. Finally, we apply the obtained nonparametric estimator of the extended fragility

index to a 3-dimensional German financial system and to an arbitrarily mixed system of

companies, which are listed in the DAX. Thereby, the obvious assumption is confirmed

that the financial system is of lower asymptotic stability than the mixed system.

Chapter 2 provides a short introduction to extreme value analysis and establishes neces-

sary tools for the representation and extension of the fragility index with a special focus

on the topics of tail dependence.

Chapter 3 covers the topic on events of exceedances, which serves as a crucial component

in the framework of establishing the (extended) fragility index. Section 3.2 analyzes the

conditions under which no further exceedances within a random system are possible.

Section 3.3 is almost as important, since it provides the asymptotic conditional distri-

bution of exceedance counts (ACDEC), which will be one of the two main tools for the

representation of the (extended) fragility index.

Chapter 4 provides the representation of the fragility index by norms and its extension

to a measure of the asymptotic system‘s stability where several exceedances within the

system have already occurred, the extended fragility index. Thereby we distinguish be-

tween the approach of exceedances above an individual and a common threshold (cf.

Section 4.2.1 and 4.2.2 and the discussion on the relevance of each approach in Section

4.2.3). Further, we shed light on the (extended) fragility index as a measure for tail

dependence, which is new to the literature with respect to this approach. Section 4.4

provides the fragility index for sojourn times and links the fragility index with the well-

known extremal index.

Chapter 5 shows a first approach in the estimation of the (extended) fragility index,

which works under the domain-of-attraction approach. Thereby Section 5.1 engages in
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1. Introduction

the theoretical background of the considered nonparametric estimator, while Section 5.2

provides a simulation study to investigate the behavior of the estimator with respect to

sample size, tail size and tail dependence of the simulated data. At last we apply the

estimator of the extended fragility index to financial data in Section 5.3.

Nomenclature, general information on this work at hand and basic auxiliary results, as

well as outlined figures and tables, can be found in the appendix (cf. Chapter 7).

6



2. Setting the stage

This chapter provides the framework of multivariate extreme value analysis and other

tools connected to multivariate analysis, which are used within this work at hand. Re-

sults shown here will be necessary for the theoretical results concerning events of ex-

ceedances and the construction of the fragility index and its applications.

The author wants the reader to know that this chapter is to be read as a ”short story

about things one should know to begin the story about the fragility index”. The sections

are not meant to divide this chapter into independent readable parts of this story and

are only provided for sake of clarity. Since many of the following provided results can

be found in literature, we often skimp the proofs or even refer to the literature.

2.1. A Short Introduction to Extreme Value

Distributions

We want to start with a short preface to the family of extreme value distributions (EVD).

Let Yi =
(
Y

(1)
i , . . . , Y

(d)
i

)
, i ≤ n, be iid d-variate random vectors with common df F .

The d-variate maximum is defined by

Mn := max
i≤n

Yi :=

(
max
i≤n

Y
(1)
i , . . . ,max

i≤n
Y

(d)
i

)
,

that means the maximum of the random vectors is taken component-wise.

We call G a (multivariate) extreme value distribution (abbr. EVD), if there exist nor-

malizing constants a
(j)
n > 0 and b

(j)
n ∈ R, j ≤ d such that

P (Mn ≤ anx+ bn) = P

(
M

(j)
n − b

(j)
n

a
(j)
n

≤ x(j), j ≤ d

)

= F n
(
a(1)n x(1) + b(1)n , . . . , a(d)n x(d) + b(d)n

)
→ G(x)(2.1)

7



2. Setting the stage

holds for n → ∞, where G is a non-degenerate df. G is uniquely defined by its depen-

dence structure and its one-dimensional marginal distributions. The one-dimensional

marginal dfs of G are univariate EVDs and turn out to be dfs of three possible types,

characterized by the families of univariate extreme value distributions, namely the fam-

ily of the Weibull, Fréchet or the Gumbel distributions. Further the components of the

normalizing vectors an, bn are the normalizing constants in the univariate case.

The following results and their proofs as well (of this section) are taken from Resnick

[56], Chapter 5.

A df F is called max-stable if for each n ∈ N,

F n(dn + cnx) = F (x), x ∈ R
d,

holds for some vectors cn > 0 and dn ∈ Rd. Max-stable dfs are the limiting dfs of

linearly normalized maxima. Hence, one is able to give a characterization of EVDs by

the max-stable dfs.

Theorem 2.1.1 The class of multivariate extreme value distributions is precisely the

class of max-stable distribution functions with non degenerate margins.

Proof: cf. Prop. 5.9 in Resnick [56]. �

Since we need the benefits of different representations of an EVD within our work

on the fragility index, we want to introduce those in the following. In order to follow

the historically development we will start with the so called max-id dfs, which are an

extension of max-stable dfs.

A df F on Rd is called max-infinitely divisible (max-id) if for every n there exists a df

Fn on Rd such that

F = F n
n

holds that means F 1/n is a df as well.

Lemma 2.1.2 F is max-id if and only if F t is a df for all t > 0.

Proof: cf. Proposition 5.1 in Resnick [56]. �

It turns out that any max-id df F can be represented in terms of an exponent measure

ν, i.e.

F (x) = exp
(
−ν([−∞,x]∁)

)

8



2.1. A Short Introduction to Extreme Value Distributions

for every x ∈ [l,∞]d\{l} with l ∈ [−∞,∞)d (cf. Section 5.3. in Resnick [56]).

Thereby, a σ-finite measure ν on the set E := [l,∞]d\{l} for l ∈ [−∞,∞)d is called an

exponent measure, if it satisfies

ν
(
R

j−1 × [−∞,∞)× R
d−j
)
= ∞

for j ≤ d and

ν
(
[−∞,x0]

∁
)
<∞

for some x0 ∈ Rd.

Proposition 2.1.3 (Balkema and Resnick) A df F is max-id if and only if there

exists an exponent measure ν on E := [l,∞]d\{l} for some l ∈ [−∞,∞)d such that

F (x) =

{
exp

(
−ν([−∞,x]∁)

)
, x ≥ l

0, otherwise
(2.2)

holds.

Proof: cf. Proposition 5.8 in Resnick [56] or Balkema and Resnick [4]. �

Since a max-stable df F is max-id, we get by Theorem 2.1.1 that an extreme value

distribution G can be represented by

G(x) = exp
(
−ν([−∞,x]∁)

)

for x ≥ l ∈ [−∞,∞)d. In the following we want to mark the development of the

de-Haan-Resnick-representation of an EVD coming from the representation via the ex-

ponent measure. For detailed information see Section 5.4. in Resnick [56].

Suppose, the convergence P
(

M
(j)
n −b

(j)
n

a
(j)
n

≤ x(j), j ≤ d
)
→ G(x) in (2.1) holds.

The max-stability of a df G̃ having standard Fréchet margins G̃j(x) = exp(−1/x),

x > 0, j ≤ d, implies G̃t(tx) = G̃(x) for x > 0. Since the margins of G̃ concentrate on

(0,∞), the exponent measure ν∗ regarding to G̃ concentrates on E : [0,∞]d\{0}. Fur-

ther G̃t(tx) = G̃(x) can be translated in a homogeneity property for ν∗ that means it is

equivalent to ν∗([0,x]
∁) = tν∗(t[0,x]

∁) for t > 0,x ≥ 0,x 6= 0 leading to ν∗(B) = tν∗(tB)

for all Borel subsets of E. Suppose ‖·‖ to be an arbitrary norm in Rd and denote by

SE := {z ∈ E : ‖z‖ = 1} the unit sphere in E. The transformation x → (‖x‖ , ‖x‖−1 x)
leads to

ν∗
(
y ∈ E : ‖y‖ > r, ‖y‖−1 y ∈ A

)
= r−1µ(A)

9



2. Setting the stage

with r > 0 for any Borel subset A ∈ SE , where µ defined by

µ(A) = ν∗
(
x : ‖x‖ > 1, ‖x‖−1 x ∈ A

)
(2.3)

is called the angular measure. Now denote by T : E → ((0,∞)× SE) via Ty =(
‖y‖ , ‖y‖−1 y

)
the transformation of a vector onto its polar coordinates. Thus, with the

well-known transformation for integrals we get ν∗ ◦ T−1(dr, da) = r−2drµ(da). Finally

note that T ([0,x]∁) =
(
(r,a) : r > maxj≤d

(
xj

aj

))
and we have

ν∗

(
[0,x]∁

)
=

∫

SE

max
i≤d

(
aj
xj

)
µ(da) .

Since this is a very short abstract of the approach to the de Haan-Resnick representation

of an EVD we refer to Section 5.4. in Resnick [56] where the sketch above is taken from.

Now we are able to present the de Haan-Resnick representation of an EVD with standard

Fréchet margins G(x) = exp (−x−1) , x > 0, which goes back to de Haan and Resnick

[31].

Theorem 2.1.4 (De Haan-Resnick Representation of an EVD) Any max-stable

df with standard Fréchet margins can be represented by

G̃(x) = exp

(
−
∫

SE

max
j≤d

(
aj
xj

)
dµ(a)

)
, x ∈ (0,∞) ,(2.4)

where E := (0,∞) , SE := {z ∈ E : ‖z‖ = 1} is the unit sphere and µ the angular

measure (cf. (2.3)) on SE which satisfies
∫

SE

ajdµ(a) = 1 , j ≤ d .

Proof: cf. Proposition 5.11. in Resnick [56]. �

We obtain the Pickands representation of a max-stable df G by transforming the

margins of G̃ to standard reverse exponential margins. Note that the property of max-

stability is preserved by the transformation of the univariate margins (cf. Lemma 5.6.8

in Falk et al. [19]). Suppose a max-stable df G̃ with standard Fréchet margins G(x) =

exp (−x−1) , x > 0, then G(x) = G̃
(
−x−11 , . . . ,−x−1d

)
is a max-stable df with standard

reverse exponential margins G(x) = exp(x), x ≤ 0, cf. Remark 2.1.12 for details on

transformation. From Theorem 2.1.4 we attain

G(x) = G̃

(
− 1

x1
, . . . ,− 1

xd

)
= exp

(∫

SE

min
j≤d

(ajxj)dµ(a)

)
, x ≤ 0.(2.5)

10



2.1. A Short Introduction to Extreme Value Distributions

Now choose the L1-norm and SE switches to the unit simplex S :=
{
u :

∑
j≤d uj

= 1, uj ≥ 0
}
.

The following theorem provides the representation of max-stable dfs with standard re-

verse exponential margins.

Theorem 2.1.5 (Pickands Representation of an EVD) A function G is a max-

stable, d-variate df with standard reverse exponential margins if and only if there exists

an angular measure µ on the d-variate unit simplex

S =
{
u :
∑

j≤d uj = 1, uj ≥ 0
}

having the property
∫
S
ujdµ(u) = 1 for j ≤ d , such

that

G(x) = exp

(
−
∫

S

max
j≤d

(−ujxj)dµ(u)
)

(2.6)

holds for x ≤ 0.

Proof: For the if-part, cf. Theorem 4.3.1 in Falk et al. [19]. For the converse implication

see Theorem 5.4.5 in Galambos [20]. As an alternative, Theorem 2.1.5 can be seen as a

corollary of Theorem 2.1.4 by just switching the margins. �

Within the following part of this section we demonstrate how to provide a represen-

tation of EVDs by norms. The norm-representation will be crucial for applications on

the fragility index.

Definition 2.1.6 Let µ be an angular measure on the unit sphere S as defined in (2.3).

Then the norm ‖·‖D : Rd → Rd
+ defined by

‖x‖D :=

∫

S

max
j≤d

(|xj | uj)µ(du)

is called D-norm on Rd.

Since the angular measure uniquely determines the D-norm, we say the angular mea-

sure induces theD-norm. The following corollary arises from Theorem 2.1.5 and provides

a characterization of a D-norm.

Corollary 2.1.7 A norm ‖·‖ on Rd is a D-norm if and only if

G(x) := exp (−‖x‖) , 0 ≥ x ∈ R
d,

11



2. Setting the stage

defines a df with standard negative exponential margins.

Indeed, the function ‖·‖D defines a norm on Rd. This can be shown by means of the

Pickands dependence function D : R → [0,∞), which is defined by

D(t1, . . . , td−1) :=

∫

S

max

(
u1t1, . . . , ud−1td−1, ud

(
1−

∑

j≤d−1

tj

))
dµ(u),

where the domain of D is given by R := {(t1, . . . , td−1) ∈ [0, 1]d−1 |∑j≤d−1 tj ≤ 1}, cf.
Section 4.4 in Falk et al. [19]. The D-norm, as defined in Definition 2.1.6, can be also

defined by means of the Pickands dependence function, i.e.

‖x‖D :=

(∑

j≤d

|xj |
)
D

(
|x1|∑
j≤d |xj |

, . . . ,
|xd−1|∑
j≤d |xj |

)
(2.7)

with the convention ‖0‖D = 0, cf. Equation (4.36) in Falk et al. [19]. Properties of

the Pickands dependence function can be found in Section 4.3 in Falk et al. [19]. They

especially imply that

‖x‖∞ := max (|x1| , . . . , |xd|) ≤ ‖x‖D ≤ ‖x‖1 :=
∑

j≤d

|xj |(2.8)

holds for every x ∈ Rd. Hence, any EVD G (recall that we can transform an arbitrary

EVD to an EVD with standard negative exponential margins) satisfies the inequalities
∏

j≤d

exp(xj) ≤ G(x) = exp(−‖x‖D) ≤ exp(min(x1, . . . , xd))

for x ≤ 0. Furthermore, the D-norm is standardized, i.e. ‖ej‖D = 1, j ≤ d. The

monotonicity of G implies that the D-norm is monotone, i.e. for arbitrary 0 ≤ x ≤ y

we have ‖x‖D ≤ ‖y‖D.
The Pickands representation of a multivariate EVD G on Rd with standard negative

exponential margins, cf. Theorem 2.1.5, further justifies the following characterization

of a D-norm.

Lemma 2.1.8 A norm ‖·‖ on Rd is a D-norm if, and only if, there exists a random

vector Z = (Z1, . . . , Zd) ∈ [0, c]d for some c ≥ 1, with E(Zj) = 1, 1 ≤ j ≤ d, such that

(2.9) ‖x‖ = E

(
max
j≤d

(|xj |Zj)

)
, x ∈ R

d.

In this case we call Z a generator of the D-norm ‖·‖.
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2.1. A Short Introduction to Extreme Value Distributions

Proof: The assertion follows with Definition 2.1.6 and the following transformation:

note that µ/d defines a probability measure, hence there exists a random variable Z̃

which distribution is determined by µ/d. Now set Z := d · Z̃. Then the assertion follows

for Z ≥ 0 with ‖Z‖ = d.

We want to remark that the assertion can be regarded as an implication of Proposition

2.3 in Aulbach et al. [2], too, which provides the representation of a max-stable process

η ∈ C̄−[0, 1] := {f ∈ C[0, 1] : f ≤ 0}. (2.9) is the assertion for the finite dimensional

marginals of η. �

Of course it is possible to represent an EVD with arbitrary margins by means of the

D-norm, cf. Proposition 2.1.10.

Furthermore it suggests itself to ask which conditions on a norm ‖·‖ have to be

required such that this norm is a D-norm that means, G(x) = exp(−‖x‖) defines an

EVD with standard reverse exponential margins.

Indeed, this is a complex question and has been solved by Hofmann [36]. Since it is a

basic result concerning the representation of the fragility index by norms, we want to

provide it in the following theorem.

Theorem 2.1.9 For any norm ‖·‖ on Rd the following assertions are equivalent:

(i) the function G(x) = exp(−‖x‖), x ≤ 0, defines a d-variate extreme value distri-

bution (with standard reverse exponential margins)

(ii) there exists a measure ν on [−∞,∞)\{−∞} with

ν
(
[−∞,x]∁

)
=

{
‖x‖ , x ≤ 0

0 , otherwise

(iii) the norm satisfies

(2.10)
∑

m∈{0,1}d:mi=1, i∈K

(−1)d+1−
∑

j≤d mj
∥∥(bm1

1 a1−m1
1 , . . . , bmd

d a1−md

d

)∥∥ ≥ 0

for every nonempty K ⊆ {1, . . . , d}, K 6= {1, . . . , d}, and −∞ < aj ≤ bj ≤ 0, 1 ≤
j ≤ d.

A norm which fulfills one condition from above will be called a D-norm, now denoted by

‖·‖D.

13



2. Setting the stage

Proof: cf. Theorem 3.1 in Hofmann [36]. �

Hence, condition (2.10) is sufficient and necessary for G(x) = exp(−‖x‖) defining an

EVD with standard reverse exponential margins solely by means of elementary tools.

Since we do not want to restrict the representation of an EVD by norms on standard

reverse exponential margins as done in Corollary 2.1.7, we provide the following propo-

sition. It shows in detail how to work with an EVD with arbitrary margins using the

representation by norms. Within our following work we will focus on the representation

of EVDs by norms.

Proposition 2.1.10 An arbitrary d-dim. EVD G can be represented by

Gα(x1, . . . , xd) = exp(−‖ψα1(x1), . . . , ψαd
(xd)‖D)(2.11)

with ψαj
(x) := log(Gαj

(x)), j ≤ d, where Gαj
is the j-th margin of the EVD G and

therefore belongs to the family of non-degenerate univariate EVDs. In their standard

version these are given by

Gα(x) :=

{
exp(−(−x)α), x ≤ 0

1, x > 0
for α > 0,

Gα(x) :=

{
0, x ≤ 0

exp(−xα), x > 0
for α < 0

and

G0(x) := exp(− exp(−x)), x ∈ R.

with the parameter α ∈ R. Hence, ψ is precisely defined by with

ψαj
(x) = log(Gαj

(x)) =





−(−x)αj , x < 0, αj > 0,

−xαj , x > 0, αj < 0,

− exp(−x), x ∈ R, αj = 0,

(2.12)

The first family is the Weibull, the second the Fréchet and the third is the Gumbel

distribution.

14



2.1. A Short Introduction to Extreme Value Distributions

Proof: We have to show that Gα defines a max-stable df with univariate margins

Gαj
(x) = exp(ψαj

(x)). This follows by Lemma 5.6.8 in Falk et al. [19]. �

The univariate margins of a multivariate EVD can be provided in a closed form as

well. The following representation of an univariate EVD is especially important within

estimation of the parameters defining the family of univariate EVD (cf. Section 5.1 in

Beirlant et al. [5]).

Definition 2.1.11 (Jenkinson-von Mises representation) The families of

univariate extreme value distributions are given in the closed form

Hξ(x) :=

{
exp

(
−(1 + ξx)−1/ξ

)
, ξ 6= 0,

exp (− exp(−x)) , ξ = 0 ,

where 1+ξx > 0. Hξ is called the standard generalized extreme value distribution (GEV).

The corresponding location-scale family Hξ;µ,β is defined by replacing x by (x−µ)/β for

µ ∈ R and β > 0. The support has to be adjusted accordingly. Note that ξ = −α−1 <
0 corresponds to the Weibull, ξ = α−1 > 0 corresponds to the Fréchet and ξ = 0

corresponds to the Gumbel distribution with α given in Proposition 2.1.10.

The following remark shows in detail how to switch between the families of EVDs.

Recall that the transformation of the univariate margins of an EVD G preserves the

max-stability of G (cf. Lemma 5.6.8 in Falk et al. [19]. Further, Equation (2.13) is

taken from (5.47) in Falk et al. [19]).

Remark 2.1.12 Recall that if Gα is max-stable with margins

Gαj
(x) = exp(ψαj

(x)), j ≤ d, and ψαi
as defined in Proposition 2.1.10, then

Gα(ψ
−1
α1
(x1), . . . , ψ

−1
αd
(xd)) = G(1,...,1)(x1, . . . , xd)(2.13)

is max stable with standard Weibull margins G(x) = exp(x), x ≤ 0, i.e. Weibull margins

with parameter α = 1, which are also denoted by standard reverse exponential margins.

Hence, with the transformation in (2.13) one is able to transform an EVD Gα with

arbitrary margins to an EVD with standard reverse exponential margins.

Hence, the assertion in Proposition 2.1.10 can be also formulated as

Gα(x1, . . . , xd) = G(1,...,1)(ψα1(x1), . . . , ψαd
(xd)) .(2.14)
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2. Setting the stage

Furthermore, if one likes to transform the EVD Gα to an EVD with standard Fréchet

margins G(x) = exp(− 1
x
), x > 0, one has to apply the transformation ψ̃αj

with

ψ̃αj
(x) := − 1

ψαj
(x)

=
1

− log(Gαj
(x))

, j ≤ d,

and

Gα(ψ̃
−1
α1
(x1), . . . , ψ̃

−1
αd
(xd)) = G(−1,...,−1)(x1, . . . , xd)

is max-stable with standard Fréchet margins.

And if one likes to transform the EVD Gα to an EVD with Gumbel margins G0(x) =

exp(− exp(−x)), x ∈ R, one has to apply the transformation ψ̆αj
with

ψ̆αj
(x) := − log

(
−ψαj

(x)
)
= − log(− log(Gαj

(x))) , j ≤ d,

and

Gα(ψ̆
−1
α1
(x1), . . . , ψ̆

−1
αd
(xd)) = G(0,...,0)(x1, . . . , xd)

is max-stable with Gumbel margins.

On the other hand, i.e., if one wants to transform an EVD with standard reverse ex-

ponential margins to an EVD with standard Fréchet or Gumbel margins respectively,

Equation (2.14) should be applied.

Since the parameters α = 1 or α = −1 lead to an EVD with standard Weibull, standard

Fréchet margins respectively, we denote by G(1,...,1) an EVD with standard Weibull mar-

gins and by G(−1,...,−1) an EVD with standard Fréchet margins. As well we denote by

G(0,...,0) an EVD with Gumbel margins.

Note that the D-norm is invariant under the transformation of the margins, e.g. the

dependence structure within the EVD remains maintained.

The type of transformation used is somehow according to taste. We will use the trans-

formation to standard reverse exponential margins. For the sake of simplicity, we denote

from now on by G a multivariate EVD with arbitrary margins and by G∗ a multivariate

EVD with standard reverse exponential margins Gj(x) = exp(x) for x ≤ 0 and j ≤ d

respectively. G∗ can therefore be represented by

G∗(x1, . . . , xd) = exp (−‖(x1, . . . , xd)‖D) ,x ≤ 0.
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2.1. A Short Introduction to Extreme Value Distributions

The above results show that an arbitrary EVD G is uniquely defined by speci-

fying the margins and the D-norm. If we focus on the d-variate unit sphere S ={
u :
∑

j≤d uj = 1, uj ≥ 0
}

that means the unit sphere defined by the L1-norm, the

determination of the D-norm solely depends on the choice of the angular measure µ,

i.e. there exists a direct link between the D-norm and µ. The two cases, of complete

independence or respectively of dependence, between the margins of G, are of particular

interest. We exemplarily provide these two cases.

Example 2.1.13 Assume the angular measure µ on Sd which puts equal weight on the

d points ej for j ≤ d, i.e. µ(ej) = 1, i ≤ d. Then we get

‖x‖D =

∫

Sd

max
j≤d

(|xj |uj)µ(du)

=
∑

ej , j≤d

max
i≤d

((|xj| ej)
(i))

=
∑

j≤d

|xj | = ‖x‖1 .

Hence, this is the case of complete independence of the margins, since G(x) = exp(−‖x‖1) =
exp(−∑j≤d |xj |) =

∏
j≤dGj(xj).

Now assume the angular measure µ on Sd which puts its whole weight on the point(
1
d
, . . . , 1

d

)
. Then we get

‖x‖D =

∫

Sd

max
j≤d

(|xj |uj)µ(du)

= max
j≤d

(
1

d
|xj |
)
· d = ‖x‖∞ .

Hence, this is the case of complete dependence of the margins.

A very popular example of an extreme value distribution, especially within applica-

tions of extreme value theory, is the family of logistic EVD.

Example 2.1.14 (EVD of logistic type) Consider the arbitrary Lλ-norm defined by

‖(x1, . . . , xd)‖λ :=
(∑d

j=1 |xj|λ
)1/λ

for 1 ≤ λ < ∞ and ‖(x1, . . . , xd)‖∞ := maxj≤d |xj |.
Then

G(x) = exp(−‖x‖λ) , x ≤ 0,

17



2. Setting the stage

is a max-stable df which we call the EVD of logistic type (with standard reverse expo-

nential margins).

The max-stability of the function exp(−‖x‖) can easily be shown, due to the homogeneity

property of an arbitrary norm ‖·‖, i.e.
(
exp

(
−
∥∥∥∥
1

n
x

∥∥∥∥
))n

=

(
exp

(
−1

n
‖x‖

))n

= exp(−‖x‖) .

Further, exp(−‖x‖λ) is a distribution function. This is shown by Kotz and Nadarajah

[42], cf. the considerations following (3.27) in Section 3.5.1 therein.

Note that since G(x) = exp(−‖x‖λ) is an EVD, this implies by means of Corollary 2.1.7

that the Lλ-norm is a D-norm. We have total independence between the margins of G

if λ = 1 and total dependence between the margins for the maximum norm. Further,

note that some authors, e.g. Stephenson [67], define the logistic EVD by means of the

parameter ϑ := 1/λ ∈ [0, 1]. The cases of complete dependence and independence has to

be adjusted of course.

2.2. The extremal coefficient

As already noted, the cases of complete independence and complete dependence are

usually of special interest. The following theorem provides a characterization of inde-

pendence and total dependence of the univariate margins of a multivariate EVD and is

due to Takahashi [68].

Theorem 2.2.1 (Takahashi) Let G be an arbitrary d-dimensional EVD with margins

Gj, j ≤ d. We have

(i) G(x) =
∏

j≤dGj(xj) for each x = (x1, . . . , xd) ∈ Rd if and only if there exists one

y = (y1, . . . , yd) ∈ Rd with 0 < Gj(yj) < 1, j ≤ d, such that G(y) =
∏

j≤dGj(yj).

(ii) G(x) = minj≤dGj(xj) for each x = (x1, . . . , xd) ∈ Rd if and only if there exists

y = (y1, . . . , yd) ∈ Rd with 0 < Gj(yj) < 1, j ≤ d, such that G(y) = G1(y1) =

. . . = Gd(yd).

Proof: cf. Theorem 2.2 and 3.1 in Takahashi [68]. �

The following result entails in particular that bivariate independence of the margins of
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2.2. The extremal coefficient

a multivariate EVD is equivalent to complete independence of the margins. This is a

specific characteristic for multivariate EVDs.

Theorem 2.2.2 Let G be an arbitrary d-dimensional EVD with one dimensional mar-

gins Gj, j ≤ d. Suppose that for each bivariate margin G(i,j) of G there exists y(i,j) =(
y
(1)
(i,j), y

(2)
(i,j)

)
∈ R2 with 0 < Gi

(
y
(1)
(i,j)

)
, Gj

(
y
(2)
(i,j)

)
< 1 such that G(i,j)(y(i,j)) = Gi

(
y
(1)
(i,j)

)

Gj

(
y
(2)
(i,j)

)
. Then the margins of G are independent, i.e., G(y) =

∏
j≤dGj(yj) for all

y ∈ Rd.

Proof: cf. Theorem 4.3.3 in Falk et al. [19]. �

Furthermore, Takahashi’s Theorem 2.2.1, for instance, can be provided by means of

D-norms as follows. The proof solely contains the use of properties of the Pickands

dependence function (cf. Section 4.3 in Falk et al. [19]), and the relation between the

Pickands dependence function and the D-norm, cf. (2.7).

Corollary 2.2.3 (Takahashi in terms of the D-norm) We have the following equiv-

alences:

(i) ‖·‖D = ‖·‖1 ⇐⇒ ‖y‖D = ‖y‖1 for at least one y ∈ Rd, whose components are

all different from 0.

(ii) ‖·‖D = ‖·‖∞ ⇐⇒ ‖(1, . . . , 1)‖D =
∥∥∥
∑

j≤d ej

∥∥∥
D
= 1.

Hence, Corollary 2.2.3 provides necessary and sufficient condition for a D-norm charac-

terizing complete independence or dependence.

Since we have 1 = ‖(1, . . . , 1)‖∞ ≤ ‖(1, . . . , 1)‖D ≤ ‖(1, . . . , 1)‖1 = d with (2.8),

the number ‖(1, . . . , 1)‖D can be used to quantify the amount of dependence between

the margins of an EVD G with identical margins. The number ‖(1, . . . , 1)‖D will play

a crucial role within our work on the fragility index. First of all, its significance as a

measure for dependence has been mentioned in Tiago de Oliveira [70] as an index for

extremal dependence between two variables. The naming goes back to Smith [63].

Definition 2.2.4 (Extremal Coefficient) Let G be an EVD with identical margins

G1(x) = . . . = Gd(x) = exp(x) for x ≤ 0 and D-norm ‖·‖D. The number

ε :=

∥∥∥∥∥
∑

j≤d

ej

∥∥∥∥∥
D

= ‖(1, . . . , 1)‖D ∈ [1, d](2.15)
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2. Setting the stage

satisfies G(x, . . . , x) = Gε
1(x), x ∈ R. We call it the extremal coefficient.

Note that ε is invariant under monotone transformations of the identical univariate

margins of an EVD G, since we have

Gα(x, . . . , x) = exp


−

∥∥∥∥∥
∑

j≤d

ψα1(x)ej

∥∥∥∥∥
D


 = exp(εψα1(x)) = exp(ψα1(x))

ε.

Hence, it is obvious that above results (Takahashi) can be summarized as

ε = 1 ⇔ ‖·‖D = ‖·‖∞ ⇔ complete dependence of the margins(2.16)

and

ε = d ⇔ ‖·‖D = ‖·‖1 ⇔ independence of the margins .

Note that we have independence between the margins if we have ‖ei + ej‖D = 2 for

i 6= j ∈ {1, . . . , d}. This goes back to Tiago de Oliveira [70].

Hence, the extremal coefficient measures the amount of dependence between the identical

margins of an EVD and the amount of dependence increases with decreasing value of ε.

The name extremal coefficient goes back to Smith [63]. The extremal coefficient can be

regarded as a link between the correlation coefficient and the extremal index (cf. page

13 in Smith [63]). It is well-known that the correlation coefficient fails in measuring

dependence between extremal events, not to mention that it is a measure for bivariate

dependence (cf. Chapter 7 in Dempster [11] for an appealing summary regarding this

issue). The extremal index (cf. Section 8.1 in Embrechts et al. [13]) measures the

amount of dependence within a stochastic process, more precisely in the case of {Xk}k∈N
being a strictly stationary sequence of random numbers, cf. Section 4.4.1. Within this

work, we will see that there exists a direct link between the fragility index, the extremal

coefficient and the extremal index, which we consider extensively in Section 4.3 and 4.4.1

respectively.

From now on, denote by GK the |K|-dimensional margin

GK :=G ⋆ (πk)k∈K , with πk(x) := xk for ∅ 6= K ⊆ {1, . . . , d}(2.17)

of an EVD G.

If GK is the |K|-variate margin of an EVD G with identical margins, we will see that
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2.3. Copulas and the stable tail dependence function

the extremal coefficient of GK is given by

εK :=

∥∥∥∥∥
∑

j∈K

ej

∥∥∥∥∥
D

,(2.18)

cf. Lemma 3.1.1 and Section 4.2 for a detailed discussion on this topic. Hence the

εK are the extremal coefficients of the |K|-dimensional margins of the EVD G having

identical margins for an arbitrary subset K ⊆ {1, . . . , d}. If not stated otherwise, the

simplification ε := εd shall refer to the extremal coefficient of G. We will show in Section

4.2 that the εK will be crucial for the definition of the extended fragility index. More

precisely, we will show that under certain conditions (e.g. exceedances above individual

thresholds), the extended fragility index can be regarded as an extension of the extremal

coefficient with dropping the requirements of identical margins. We provide this result

in Section 4.3 and point out its relevance as a measure for tail dependence in Section

2.4. A similar consideration on those ”marginal” extremal coefficients, of which there

exist 2d − 1 for a d-variate distribution, can be found in Schlather et al. [58].

2.3. Copulas and the stable tail dependence function

Within the next subsection the reader will be introduced to the link between the popular

use of copulas and the stable tail dependence function as a measure for tail dependence.

It is crucial with respect to any part of the work at hand. This link is also crucially

influenced by the generalized Pareto distributions.

Definition 2.3.1 (Copula) Let X be a random variable in Rd with df F and denote

by Fj its j-th marginal df. Suppose that F is continuous. The function

CF (u) = F (F−1j (uj), j ≤ d) , u ∈ [0, 1]d,

is the copula of F satisfying F (x) = CF (Fj(xj), j ≤ d) , x ∈ Rd. Further, CF is a df

on [0, 1]d with uniform margins.

Obviously, the copula ”couples” the joint df F to its margins in a specific, unique way

(in case of continuity of F ) - the name copula suggests itself. In view of the dependence

structure, the copula describes the dependence structure of the df F without paying
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2. Setting the stage

attention to the margins, since they are transformed to uniform distributed ones. Indeed

it is not trivial that for every (continuous) multivariate df F , there exists a decomposition

of margins and dependence structure as given in Definition 2.3.1 as a characteristic of

the copula CF . The following theorem provides this result. It firstly appeared in Sklar

[61] for the bivariate case.

Theorem 2.3.2 (Sklar) Let F be a joint distribution function on Rd with margins

Fj, j ≤ d. Then there exists a copula denoted by CF such that

F (x1, . . . , xd) = CF (F1(x1), . . . , Fd(xd))(2.19)

holds for all x ∈ Rd. If the margins Fj , j ≤ d, are continuous, then CF is uniquely

determined. Otherwise, CF is uniquely determined on Ran(F1)× · · · × Ran(Fd), where

Ran(Fj) defines the range of Fj for j ≤ d. Conversely, if C is a copula and Fj is a df

for every j ≤ d, then the function F defined by (2.19) is a d-dimensional distribution

function with margins Fj , j ≤ d.

Proof: cf. Theorem 2.10.9 in Nelsen [52]. �

The copula of an EVD is of special interest. A popular assumption within extreme

value analysis is that a multivariate df F belongs to the so-called domain of attraction of

an EVD G, which can be defined by the convergence in (2.1), if the limit G exists. In or-

der to provide a more convenient characterization of the domain of attraction condition,

we need the following definition.

Definition 2.3.3 Any copula C which satisfies

Ct(u1, . . . , ud) = C(ut1, . . . , u
t
d)(2.20)

for (u1, . . . , ud) ∈ [0, 1]d, t > 0, is called an extreme value copula (EVC). It is the copula

distribution function corresponding to an extreme value distribution.

The following result is due to the application of Sklar‘s Theorem to an arbitrary EVD

and provides the representation of an EVC by norms.

Corollary 2.3.4 (Extreme Value Copula) Let G(x) = exp(−‖(ψ1(x1), . . . ,

ψd(xd))‖D) be an arbitrary EVD. The corresponding copula CG is given by

CG(u) = exp(−‖(log(u1), . . . , log(ud))‖D) , u ∈ (0, 1]d .(2.21)
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2.3. Copulas and the stable tail dependence function

The naming of this family is self-explanatory.

Proof: Note that the univariate margins of G are continuous functions, cf. Proposition

2.1.10. Check, that (2.21) fulfills G(x) = CG(Gj(x), j ≤ d) and CG has uniform margins

by means of ψj(x) = log(Gj(x)) for j ≤ d. �

Beside the well-known normal- and t-copula, a very popular example for a copula is

the parametric family of the Gumbel copula.

Example 2.3.5 Consider the logistic EVD Gλ(x) := exp(−‖x‖λ) of example 2.1.14.

Its corresponding copula is given by

CGu(u) = exp


−

(∑

i≤d

(− log(ui))
λ

) 1
λ


 = exp (−‖log(u)‖λ) ,(2.22)

which is known as the Gumbel copula, since it goes back to Gumbel [28]. Note that one

often refers the Gumbel copula to the so-called logistic copula, which is mostly defined

by the parameter ϑ := 1/λ ∈ (0, 1] and ϑ := 0 for the maximum-norm in (7.1). We call

the family of EVD defined by the arbitrary Lλ-norm (cf. Section A of the appendix) the

logistic EVD with corresponding Gumbel copula.

Assume that the d-variate random vector X follows a df F . Then, with the well-

known additivity formula, cf. Theorem A.6, the corresponding survival distribution

function F̄ is defined by

F̄ (x) := P (X ≥ x) =1−
∑

j≤d

(−1)j+1
∑

T⊆{1,...,d}
|T |=j

P (Xj ≤ xj , j ∈ T )

=1−
∑

j≤d

(−1)j+1
∑

T⊆{1,...,d}
|T |=j

FT (xj , j ∈ T ) ,

where FT denotes the |T |-variate marginal df of F corresponding to ∅ 6= T ⊆ {1, . . . , d}.
The corresponding survival copula distribution function of F̄ is defined as follows, e.g.

cf. Nelsen [52], Section 2.6.

Definition 2.3.6 (Survival Copula) Let X be a random vector in Rd with df F .

Further denote by F̄ the joint survival distribution function which is given by F̄ (x) =
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2. Setting the stage

P (Xj > xj , j ≤ d) and denote by F̄j the j-th marginal survival function, i.e. F̄j(x) =

P (Xj > x). Suppose that F is continuous. The function

C̃F (u) := F̄ (F̄−1j (uj), j ≤ d) = P (1− Fj(Xj) ≤ uj, j ≤ d) , u ∈ [0, 1]d,

defines the survival copula of F in accordance to the definition of the copula CF of F ,

cf. Definition 2.3.1. C̃F satisfies F̄ (x) = C̃F (F̄j(xj), j ≤ d) , x ∈ Rd. Further, C̃F is

a df on [0, 1]d with uniform margins. Due to its construction the survival copula is also

called tail copula.

Of course there is a connection between the copula CF and the survival copula C̃F of

the distribution F :

C̃F (uj, j ≤ d) =P (1− Fj(Xj) ≤ uj, j ≤ d)

=P (Fj(Xj) ≥ 1− uj, j ≤ d)

=1− P

(⋃

j≤d

{Fj(Xj) ≤ 1− uj}
)

=1−
∑

∅6=T⊆{1,...,d}

(−1)|T |+1P

(⋂

i∈T

{Fi(Xi) ≤ 1− ui}
)

=1−
∑

j≤d

(−1)j+1
∑

∅6=T⊆{1,...,d}

CFT
(1− ui, i ∈ T ) ,

where CFT
denotes the copula corresponding to the |T |-variate margin FT of F for

∅ 6= T ⊆ {1, . . . , d}. For the bivariate case the above connection between the survival

copula and the copula of the df F simplifies to

C̃(u1, u2) = u1 + u2 − 1 + C(1− u1, 1− u2) .

Now we want to give a short introduction to multivariate generalized Pareto distribu-

tions. For detailed information cf. Chapter 5 in Falk et al. [19] or Michel [50].

The upper tail of an EVD G can be approximated by a class of multivariate functions,

which are of the form W (x) = 1+ log(G(x)), log(G(x)) ≥ −1, where G denotes a mul-

tivariate EVD. This class is called the Generalized Pareto functions (GP). See Section

5.1 in Falk et al. [19] for a motivation and Section 5.2, especially Theorem 5.2.3 therein

for detailed information.
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2.3. Copulas and the stable tail dependence function

In the univariate and bivariate case, one can show that W (x) = 1 + log(G(x)) defines a

distribution function for any max-stable df G, if only log(G(x)) ≥ −1 holds, cf. Lemma

5.1.1 in Falk et al. [19]. This is not true for dimensions d ≥ 3. For a discussion and

proof see Section 5.1 in Falk et al. [19] and detailed information in Michel [50], Chapter

2.

Regarding Proposition 2.1.10 we provide the multivariate generalized Pareto distribution

functions, which have the form 1+log(G) in the upper tail of G, where G is a max-stable

df in Rd. Let us start with the following definition.

Definition 2.3.7 Let Gα be an arbitrary EVD. The function

Wα(x) := 1 + log(Gα(x)), log(Gα(x)) ≥ −1,

is called a generalized Pareto function (GP). For case of simplicity this is often shortened

by Wα = 1+ log(Gα). Further, we call Wα = 1+ log(Gα) a generalized Pareto distribu-

tion (GPD), if there exists x0 ∈ Rd, such that Wα(x) = 1+ log(Gα(x)) is a distribution

function for x ≥ x0. By means of Proposition 2.1.10, Wα can be represented by

Wα(x) = 1− ‖ψα1(x1), . . . , ψαd
(xd)‖D ,

with

ψαj
(x) = log(Gαj

(x)) =





−(−x)αj , x < 0, αj > 0,

−xαj , x > 0, αj < 0,

− exp(−x), x ∈ R, αj = 0,

for j ≤ d and the univariate margins Gαj
as defined in Proposition 2.1.10.

Hence, we have uniform margins Wαj
of the Pareto distribution Wα in the first case,

Pareto margins in the second case and exponential margins in the third case.

Since any GPD can be transformed to uniform margins, we want to focus on the

GPD corresponding to G(x) = exp(−‖x‖D). We call a d-dimensional df W1,...,1 a

(multivariate) generalized Pareto df with uniform margins, if there exists an EVD with

standard reverse exponential margins such that

W1,...,1(x) = 1 + log(G1,...,1(x)) = 1− ‖x‖D
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for x in a left neighborhood of 0 ∈ Rd.

For a more precise definition of the ”neighborhood of 0” in this specific case, one is able

to choose the cube [−1/d, 0]d as a suitable area for this neighborhood.

That means that for every D-norm ‖·‖D there exists a df W on (−∞, 0]d, such that

W (x) = 1− ‖x‖D

holds on x ∈ [−1/d, 0]d, cf. Theorem 6.2.1 in Hofmann [36]. In the case of independence

between the margins, i.e. ‖x‖D = ‖x‖1, the function W (x) = 1 − ‖x‖1 is not a df for

any dimension d ≥ 3. The GPD Wλ(x) := 1 − ‖x‖λ is called the GPD of logistic type

and is the corresponding GPD to the EVD of logistic type, i.e. Gλ(x) = exp(−‖x‖λ),
cf. Example 2.1.14. Note that Wλ(x) is not a df for any λ ≥ 1 and d ≥ 3. This is

Proposition 5.1.3 in Falk et al. [19].

Definition 2.3.8 The copula of a GPD W with uniform margins is given by

CW (u) = W
(
W−1

j (uj), j ≤ d
)

for u ∈ [0, 1]d and is itself a shifted GPD with uniform margins. Therefore, we call CW

a GPD-copula. For u close to 1, CW can be represented by

CW (u) = 1− ‖u− 1‖D .

The following result characterizes a GPD with uniform margins in terms of rv. It

provides in particular an easy way to generate a multivariate GPD, thus extending the

bivariate approach proposed by Buishand et al. [7] to an arbitrary dimension. For a

recent account on simulation techniques of multivariate GPDs we refer to Michel [50].

The following proposition and corollary is due to Aulbach et al. [1].

Proposition 2.3.9 (i) Let W be a multivariate GPD with standard uniform margins

in a left neighborhood of 0 ∈ Rd. Then there exists an rv Z = (Z1, . . . , Zd) with

Zj ∈ [0, d] and E(Zj) = 1, j ≤ d, and a vector (−1
d
, . . . ,−1

d
)

≤ x0 < 0 such that

W (x) =P

(
−U

(
1

Z1
, . . . ,

1

Zd

)
≤ x

)
, x0 ≤ x ≤ 0,(2.23)

where the rv U is uniformly distributed on (0, 1) and independent of Z.
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2.3. Copulas and the stable tail dependence function

(ii) The rv −U(1/Z1, . . . , 1/Zd) follows a GPD with standard uniform margins in a left

neighborhood of 0 ∈ Rd if U is independent of Z = (Z1, . . . , Zd) and 0 ≤ Zj ≤ cj

a.s. with E(Zj) = 1, j ≤ d, for some c1, . . . , cd ≥ 1.

Proof: cf. Aulbach et al. [1], Proposition 2.4 �

We want to note that Equation (2.23) is well defined, since we may consider the rv

Y := max
(
−U

(
1
Z1
, . . . , 1

Zd

)
,M
)
for M > −∞ (this ensures the existence of 1

Zj
), as

Equation (2.23) is said to hold for x0 ≤ x ≤ 0.

Further note that the case of a GPD W with arbitrary uniform marginsWj(x) = 1−ajx
in a left neighborhood of 0 with arbitrary scaling factors aj > 0, j ≤ d, immediately

follows from the preceding result by substituting Zj by ajZj.

Since we will need the above results due to Fréchet margins we provide the following

corollary.

Corollary 2.3.10 Let Z = (Z1, . . . , Zd) satisfy Zj ∈ [0, cj] for cj ≥ 1 and E(Zj) = 1

for j ≤ d. Then we get

(i) Let W be a multivariate GPD with standard Pareto margins in the upper tail. Then

there exists a rv Z as mentioned above and a vector (d, . . . , d) ≤ x0 such that

W (x) = P

(
1

U
Z ≤ x

)
, x ≥ x0,

where the rv U is uniformly on distributed (0, 1) and independent of Z.

(ii) The rv 1
U
(Z1, . . . , Zd) follows a GPD with standard Pareto margins in a left neigh-

borhood of ∞ if U is independent of Z = (Z1, . . . , Zd), hence we have

P

(
1

U
Z ≤ x

)
= 1−

∥∥∥∥
(

1

x1
, . . . ,

1

xd

)∥∥∥∥
D

.

Proof: Assume that there exists a rv Q̃ := −U(1/Z1, . . . , 1/Zd) as given in Proposition

2.3.9. Hence Q̃ follows a GPD with uniform margins. With the transformation x 7→ − 1
x
,

cf. Remark 2.1.12, we transform the margins of Q̃ to pareto margins and obtain for

Q = (1/U)(Z1, . . . , Zd) that

P

(
1

U
Z ≤ x

)
= 1−

∥∥∥∥
(

1

x1
, . . . ,

1

xd

)∥∥∥∥
D
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2. Setting the stage

holds for x > (d, . . . , d) ≥ (0, . . . , 0) ∈ Rd. This implies the assertion. �

In the very beginning of this section we introduced an EVD G as the limit distribution

of normalized maxima of random variables following a df F . The following definition

characterizes the property, if this limit exists.

Definition 2.3.11 (Domain of attraction) Let F be a d-dimensional df. Then we say

F belongs to the (maximum) domain of attraction of an EVD G, denoted by F ∈ D(G),

if there exist vectors an > 0, bn ∈ Rd, n ∈ N, such that

F n(anx+ bn) →n→∞ G(x) , x ∈ R
d .

From now on we refer to the assumption F ∈ D(G) as the domain-of-attraction assump-

tion.

The following Theorem gives a necessary and sufficient condition for F ∈ D(G).

Theorem 2.3.12 (Domain of attraction) Let X1, X2, . . . be i.i.d. d-dimensional

random vectors with common df F and suppose constants an > 0, bn ∈ Rd, n ∈ N. Then

F ∈ D(G) if and only if this is true for each univariate margin of F , i.e. Fj ∈ D(Gj)

holds for j ≤ d, together with the convergence of the copula

Cn
F (u

1/n) →n→∞ CG(u), u ∈ (0, 1)d .(2.24)

Proof: cf. Deheuvels [10] or Theorem 5.2.3 in Galambos [20]. �

Note that the copula CG on the right side of (2.24) is an extreme value copula, cf.

Definition 2.3.3. Loosely speaking, the convergence of (2.24) tells us that the df F is in

the domain of attraction of an EVD G if and only if the same holds for the univariate

margins and the convergence result for the copula of F in (2.24). In the following we

will show that (2.24) offers a very useful equivalent convergence for our purpose.

Definition 2.3.13 (Stable tail dependence function) Let F be an arbitrary

d-dimensional df. If the limit

lim
t↓0

t−1(1− CF (1+ tx)) =:lF (x)(2.25)

exists for x ≤ 0, then lF is called the stable tail dependence function of the function F

(Huang [39]).
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2.3. Copulas and the stable tail dependence function

If the df F belongs to the domain of attraction of a multivariate EVD G, then the

limit in (2.25) exists and the stable tail dependence function lF coincides with the stable

tail dependence function lG of the EVD G. Huang [39] defines lG by

lG(x1, . . . , xd) := − log(G(x)), x > 0,(2.26)

where G is an EVD with Frèchet margins in this case. The following corollary contains

this assertion and is itself a consequence of Theorem 2.3.12.

Corollary 2.3.14 Let F be a multivariate continuous df. Then F ∈ D(G) if and only

if this is true for each univariate margin of F , i.e. Fj ∈ D(Gj) holds for j ≤ d, together

with the convergence of the copula

t−1(1− CF (1+ tx)) →t↓0 − log(CG(exp(x))) = lG(x)(2.27)

for x ≤ 0.

Proof: The assertion follows from Theorem 2.3.12 with respect to the following

equivalences. A definition of the so-called Landau symbols o and O is given in Definition

A.1. By taking logarithm, we get

Cn
F

(
u1/n

)
→n→∞ CG(u) ⇔ − n ln

(
CF

(
u1/n

))
→n→∞ − ln (CG(u)) .(2.28)

With the Taylor expansion of the natural logarithm at point 1, i.e. ln
(
CF

(
1 + 1

n
x
))

= CF

(
1 + 1

n
x
)
− 1 +O

(
1
n2

)
, entails that (2.28) is equivalent to

n
(
1− CF

(
u1/n

))
→n→∞ − ln (CG(u)) .(2.29)

Now choose u = exp(x) for x ≤ 0. Then (2.29) is equivalent to

n

(
1− CF

(
exp

(
1

n
x

)))
→n→∞ − ln (CG (exp(x))) .(2.30)

By means of Corollary 2.3.4 and Equation (2.26), the right hand side of (2.30) turns into

lG(x). Further Taylor expansion of the exponential function at point 0, i.e. exp
(
1
n
x
)
=

1 + 1
n
x + o

(
1
n2

)
, together with the continuity of CF close to 1 entails that (2.30) is

equivalent to

n

(
1− CF

(
1+

1

n
x

))
→n→∞ lG(x) ,(2.31)
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where a continuous version of (2.31) is given by

t−1 (1− CF (1+ tx)) →t↓0 lG(x) ,

cf. e.g., Section 4.2 in de Haan and Ronde [33]. �

Remark 2.3.15 Note that with the representation of an EVD by norms, cf. Corollary

2.3.4, we get

CG(exp(x)) = exp(−‖log(exp(x))‖D) = exp(−‖x‖D)(2.32)

for the expression CG(exp(x)) of the above proof. Hence, if F ∈ D(G), the copula

CF of a df F belongs to the domain of attraction of an EVD G with standard reverse

exponential margins. Furthermore, the equation in (2.27) together with (2.32) implies

lG(x) = ‖x‖D(2.33)

for x ≤ 0. Hence, the stable tail dependence function is a norm and therefore fulfills the

homogeneity condition. Furthermore, it is a continuous and convex function. Especially,

listed properties of the stable tail dependence function, which can be found in de Haan

and Ferreira [29], Proposition 6.1.21, are obvious.

The following assertion follows directly from above considerations and will be crucial

for theoretical results as well applications on the fragility index through the whole work

at hand.

Corollary 2.3.16 Assume the copula CF of a multivariate df F belongs to the domain

of attraction of an EVD G. Then the limit in Definition 2.3.13 exists, coincides with

the D-norm and can be computed by

lim
t↓0

1− CF (1+ tx)

t
= ‖x‖D(2.34)

for x ≤ 0.

The above results – starting from Theorem 2.3.12 – concerning the characterization of

the domain of attraction of a copula can be summarized in the following corollary.
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2.3. Copulas and the stable tail dependence function

Corollary 2.3.17 Let CF be the copula corresponding to a multivariate df F . Further

denote by G an arbitrary EVD with dependence function ‖x‖D and by G∗ an EVD with

standard reverse exponential margins. Then

CF ∈ D(G∗) if and only if lim
t↓0

1− CF (1+ tx)

t
= ‖x‖D , x ≤ 0 .

Furthermore it holds that

F ∈ D(G) ⇔ Fj ∈ D(Gj), j ≤ d and lim
t↓0

1− CF (1+ tx)

t
= ‖x‖D .

Due to the fact that if the df F is in the domain of attraction of an arbitrary EVD

G, the corresponding copula CF is in the domain of attraction of an EVD with standard

Weibull margins, the following approximation of CF is obvious. Both the theorem and

the corollary are taken from Aulbach et al. [1]. For a definition of the Landau symbols

o and O, cf. Definition A.1.

Theorem 2.3.18 An arbitrary df F is in the domain of attraction of a multivariate

EVD G if and only if this is true for the univariate margins together with the existence

of a GPD W with uniform margins such that

CF (y) =W (y − 1) + o(‖y − 1‖)

uniformly for y ∈ [0, 1]m.

Proof: From Corollary 2.3.14 we get

1− CF (1+ tx)

t
→t↓0 lG(x) .

With Definition 2.3.7 and the equality lG(x) = ‖x‖D, cf. (2.33) in Remark 2.3.15, we

get lG(x) = 1 −W (x) for x close to 0, where W is a multivariate GPD with uniform

margins. This implies

W (y − 1)− CF (y)

‖y − 1‖ =
1− lG(y − 1)− CF (y)

‖y − 1‖ → 0

for y ↑ 1. Since the limit function W is continuous, above convergence is uniformly in

y (cf. Section 3.1 in Gänsler and Stute [21]). Note that above convergence coincides

with the notation CF (y) = W (y − 1) + o(‖y − 1‖) by using the Landau-symbol o, cf.
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Definition A.1. �

The next result is again provided by Aulbach et al. [1] and is in accordance with

Rootzén and Tajvidi [57]. It shows, that the upper tail of the copula CF of a df F can

be approximated by a multivariate GPD with uniform margins, if F ∈ D(G).

Corollary 2.3.19 A copula C is in the domain of attraction of an EVD G.

⇐⇒ There exists a GPD function W with uniform margins such that

C(y) = W (y − 1) + o (‖y − 1‖) ,

uniformly for y ∈ [0, 1]m. In this case W = 1 + log(G).

⇐⇒ There exists a norm ‖·‖D on Rm such that

C(y) = 1− ‖y − 1‖D + o (‖y − 1‖D) ,

uniformly for y ∈ [0, 1]m. In this case G(x) = exp (−‖x‖D), x ≤ 0.

Proof: cf. Aulbach et al. [1], Corollary 2.2. �

Another characterization for F lying in the domain of attraction of a multivariate

EVD goes back to Resnick [56]. It shows an alternative approach to provide sufficient

and necessary conditions for F ∈ D(G). The difference to the approach provided in

Theorem 2.3.12 lies in the kind of transformation of the margins of F , i.e. therein, the

transformation to uniform margins is applied, which entails the copula CF corresponding

to F .

Proposition 2.3.20 Let G be an arbitrary multivariate EVD and define by

G̃(x) = G(ψ̃−11 (x1), . . . , ψ̃
−1
d (xd))

with ψ̃(x) := 1/(− log(Gi)), x ≥ 0, i ≤ d an EVD with standard Fréchet margins, cf.

Remark 2.1.12. Further, consider Uj := 1/(1 − Fj), j ≤ d, for a distribution Fj and

define by U←j its inverse function. Now, set

F̃ (x) = F (U←1 (x1), . . . , U
←
d (xd)), x ≥ 1 .

Then we have
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(i)

F̃ ∈ D(G̃) if and only if lim
t→∞

1− F̃ (tx)

1− F̃ (t1)
=

log G̃(x)

log G̃(1)

holds for x > 0.

(ii) F ∈ D(G) if and only if Fj ∈ D(Gj) holds for every j ≤ d and F̃ ∈ D(G̃).

Proof: cf. Resnick [56], Proposition 5.15. �

Remark 2.3.21 The limit in (i) of Proposition 2.3.20 turns to

lim
t→∞

1− F̃ (tx)

1− F̃ (t1)
=

log G̃(x)

log G̃(1)
= ε−1

∥∥∥∥
(

1

x1
, . . . ,

1

xd

)∥∥∥∥
D

,

where ε is the extremal coefficient, cf. Definition 2.2.4. Hence, (i) in Proposition 2.3.20

is equivalent to

F̃ ∈ D(G̃) if and only if lim
t→∞

1− F̃ (tx)

1− F̃ (t1)
= ε−1

∥∥∥∥
(

1

x1
, . . . ,

1

xd

)∥∥∥∥
D

.

2.4. Measures for tail dependence

This section gives a short review of measures of tail dependence within the existing lit-

erature. In doing so, it makes no claim to be complete, since the literature concerning

this topic is extensive. It provides instead a useful selection with respect to the progress

of the work at hand. For example, an overview to the literature can be found in Chapter

9 of Beirlant et al. [5], especially Section 9.4 as well Section 8.2 and 8.3, or Heffernan

[35], who concentrates on the bivariate case but therefore gives a detailed summary

of the tail dependence coefficient. Those estimators presented therein provide answers

to the question, ”How to estimate dependence between the univariate tails of a multi-

variate distribution F” under specific assumptions on F , like the domain-of-attraction

assumption or the assumption of a slowly varying tail.

Let us start with the bivariate case.

Definition 2.4.1 Let X1 and X2 be two random variables having joint distribution func-

tion F with continuous margins F1 and F2. Then the upper and the lower tail dependence
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coefficients are defined by

λup := lim
t↓0

P (X2 > F−12 (1− t) |X1 > F−11 (1− t))

and

λlo := lim
t↓0

P (X2 ≤ F−12 (t) |X1 ≤ F−11 (t)) .

If λup (λlo) exists and is positive, then we say that X1 and X2 are upper-tail (lower-

tail) dependent. If the limit is zero, then X1 and X2 are tail-independent. The tail

dependent coefficient λ goes back to Geoffrey [25] and Sibuya [60]. Further, note that

the above definition yields that λup, λlo ∈ [0, 1]. Note that with the definition of the

survival copula, cf. Definition 2.3.6, and the assumption of continuous univariate tails,

we have

λup = lim
t↓0

C̃(t, t)

t
and λlo = lim

t↓0

C(t, t)

t
.

Hence the upper and lower tail dependence coefficients refer to the limit behavior of the

survival copula, the copula corresponding to F respectively .

Now consider a subset ∅ 6= S ⊂ {1, . . . , d}. Then a possible extension of the upper

tail dependence coefficient is given by

lim
t↓0

P (Xi > F−1i (1− t), i ∈ S |Xj > F−1j (1− t), j ∈ S∁),(2.35)

where this limit crucially depends on the chosen subset S. Further, such an extension

of the bivariate tail dependence coefficients, as provided in Definition 2.4.1, is not used

in literature as a measure for tail dependence as far as is known to the author due to

obvious necessary restrictions on S. But we want to mention that the limit distributions

in (2.35) are the basic elements of a limit distribution, which are called the asymptotic

conditional distribution of exceedance counts (ACDEC) and will be provided in Section

3.3 and used as a basic tool for the fragility index.

A second measure for bivariate tail dependence is provided by Ledford and Tawn [44],

[45]. They assume the model

P (X1 > s,X2 > s) ∼ L(s)s−1/η

for the joint survival function, where η ∈ (0, 1] is called the coefficient of tail dependence

and L is a slowly varying function, i.e. L(ts)/L(s) → 1 as s → ∞. The cases of total
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independence and dependence can not be determined as easy. For example we have

asymptotic independence if η = 1 and lims→∞L(s) = c for some 0 < c ≤ 1. The case of

asymptotic dependence occurs if 0 < η < 1 or if η = 1 together with lims→∞L(s) = 0,

i.e. the coefficient of tail dependence does not determine the amount of dependence

between the margins solely. Hence, its absolute value cannot be interpreted. For a

detailed discussion see Section 9.5.1 in Beirlant et al. [5].

A well known measure for tail dependence is the stable tail dependence function

as already defined in Definition 2.3.13. From the domain of attraction condition, cf.

Theorem 2.3.12, we have for x ≤ 0

l(x1, . . . , xd) := lim
t↓0

P ({F1(X1) > 1 + tx1} ∪ . . . ∪ {Fd(Xd) > 1 + txd})
t

= lim
t↓0

1− CF (1 + tx)

t
= ‖x‖D

if F ∈ D(G) with G(x) = exp(−‖x‖D). In close connection one can consider the tail

dependence function.

Lemma 2.4.2 (Tail dependence function) Suppose F ∈ D(G). Further denote by

C̃F the tail copula corresponding to F , cf. Definition 2.3.6. Then, the limit

λ(x1, . . . , xd) := lim
t↓0

C̃F (−tx)
t

=
∑

∅6=T⊆{1,...,d}

(−1)|T |−1

∥∥∥∥∥
∑

j∈T

xjej

∥∥∥∥∥
D

exists for x ≤ 0 and is called the tail dependence function corresponding to the df F .

Proof: By means of Theorem A.6 and Corollary 2.3.17, we get

λ(x1, . . . , xd) = lim
t↓0

C̃F (−tx)
t

= lim
t↓0

P (F1(X1) > 1 + tx1, . . . , Fd(Xd) > 1 + txd)

t

= lim
t↓0

1− P (F1(X1) ≤ 1 + tx1 ∪ . . . ∪ Fd(Xd) ≤ 1 + txd)

t

= lim
t↓0

1−∑∅6=T⊆{1,...,d}(−1)|T |−1CFT
(1 + tx)

t

=
∑

∅6=T⊆{1,...,d}

(−1)|T |−1 lim
t↓0

(1− CFT
(1 + tx))

t

=
∑

∅6=T⊆{1,...,d}

(−1)|T |−1

∥∥∥∥∥
∑

j∈T

xjej

∥∥∥∥∥
D

.(2.36)
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Note that (2.36) can be represented in terms of the stable tail dependence functions

of the |T |-variate marginals GT of G, cf. (2.17). Hence we get

∑

∅6=T⊆{1,...,d}

(−1)|T |−1

∥∥∥∥∥
∑

j∈T

xjej

∥∥∥∥∥
D

=
∑

∅6=T⊆{1,...,d}

(−1)|T |−1lT (xi1 , . . . , xiT ) ,(2.37)

where lT denotes the stable tail dependence function of GT . This can be seen by using

the equality lG(x) = ‖x‖D in Remark 2.3.15 and the assertions of Lemma 3.1.1. Hence,

(2.37) shows that there exists a direct link between the stable tail dependence function

and the tail dependence function.

We will see in Section 4.2.1 that the sum in (2.36) will play a crucial role with respect

to the extended fragility index.

In the bivariate case, (2.37) simplifies to

lim
t↓0

P (F1(X1) > 1 + tx1, F2(X2) > 1 + tx2)

t
= x1 + x2 − l(x1, x2) = λ(x1, x2)

for x1, x2 ≤ 0. Further, this implies that if F ∈ D(G), we have

λup =λ(1, 1) = 2− l(1, 1) = 2− ‖(1, 1)‖D = 2− ε,(2.38)

where ε is the extremal coefficient, cf. Definition 2.2.4. As shown in Section 2.3, we know

that the D-norm coincides with the stable tail dependence function, i.e. ‖x‖D = l(x).

This implies ε = l(1, . . . , 1), hence the extremal coefficient is the stable tail dependence

function at point (1, . . . , 1).

There exists frequent literature on estimating the stable tail dependence function (for

example see Huang [39], Einmahl et al. [16] or de Haan et al. [32]).

Literature about estimating the tail dependence function are for example de Haan et al.

[30], who provide a parametric estimation procedure as well a goodness-of-fit test. Fur-

ther, a nonparametric estimation procedure for the tail dependence function is given by

Hsing et al. [37] and a semi-parametric estimation procedure for the tail-copula is pro-

vided by Klüppelberg et al. [41]. Klüppelberg et al. [40] also provided an estimator for

the tail dependence function in the special but popular case of an elliptical distribution.

As a general statement it is worth mentioning that a lot of estimators for the de-

pendence structure between rare events are based on the Pickands dependence function
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or even the exponent or angular measure itself, since the representation of an EVD is

mainly determined by them; see the representations in (2.2), (2.4) and (2.6). Most of

these estimators are restricted to the knowledge about the univariate margins. Therefore,

Genest and Segers [24] provide rank-based (bivariate) versions of Pickands-estimators

(and CFG-estimators, see mentioned below) to overcome the restriction of the knowl-

edge of the univariate margins. Their estimator, as most of the established estimators

for the Pickands dependence function, is based on the assumption that the underlying

distribution function is actually an EVD.

The domain-of-attraction assumption suggests to estimate the tail of a copula CF by

an extreme value copula, since the approximation

CF (w) ≈C
1/n
G (wn) = CG(w)(2.39)

is the better the closer w to 1. If one therefore assumes a specific model for the ex-

tremal copula CG, such as the popular logistic model (Gumbel-copula), the estimation

procedure can be reduced to the estimation of the copula parameter, e.g. the parameter

ϑ, if one considers the dependence function of the logistic model, i.e. the stable tail

dependence function l(x) =
(∑

j≤d |xj |
ϑ
)1/ϑ

. For example this is done by de Haan et al.

[30] in the bivariate case with a possible extension to higher dimension. Doing so, one

has to be aware of the fact that the structure of tail dependence is already determined

by the choice of the parametric model. However, the amount of tail dependence is also

controlled by the parameters of the parametric model.

Modeling tail dependence via extreme value copulas based on the approximation in

(2.39) has been widely investigated by Tawn and others (see for example Ledford and

Tawn [44], [45]). They suggest a (semi-) parametric maximum-likelihood estimation for

so-called censored data in the bivariate case. The approach of censored data coupled

with an estimation procedure for the dependence function of an EVD refers to the set-

ting, where the considered df F belongs to the domain of attraction of an EVD instead

of being an EVD itself, cf. Section 5.4 for a short outlook on this topic.

In close connection to (2.39) one may also consider a parametric estimation approach

for the dependence structure in the tail using the fact that the tail of CF can be ap-

proximated by a GPD, if CF belongs to the domain of attraction of an EVD, cf. Corol-

lary 2.3.19. A popular parametric model for the GPD is the logistic GPD defined by
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W (x) = 1− ‖x‖λ, where ‖·‖λ denotes the Lλ-norm, cf. (7.1). Estimation of tail depen-

dence via the logistic GPD is done by Michel [51] (see especially Chapter 6 therein, for

example).

A semiparametric estimation of copulas has been provided by Genest et al. [23] and

a nonparametric estimation in the bivariate case by Capéraà et al. [8], (so-called CFG-

estimators), and extended to the multivariate case by Zhang et al. [71], to mention

but a few. Recent work on modeling the dependence structure between rare events are

established by Gudendorf, Segers and Genest, among others. Gudendorf and Segers [27]

provide a nonparametric estimator for an EVD-copula, extending the idea of Capéraà

et al. [8], who provided a purely nonparametric estimator of the Pickands dependence

function by means of the empirical distribution function. The estimation procedures

therein are restricted to the assumption that data comes from a multivariate distribution

with an extreme value copula, which we call the EVD-assumption. We also want to

mention the recent work of Einmahl et al. [17], who provided a parametric estimation

procedure for the dependence structure of an EVD by a minimum distance estimator.

Their approach works in arbitrary dimension under the assumption, that the underlying

distribution belongs to the domain of attraction of an EVD, which we call the domain-

of-attraction-assumption.

An appealing overview to the world of extreme value copulas, including parametric

and nonparametric models as well as different estimation procedures, are provided by

Gudendorf and Segers [26].

The extremal coefficient ε := ‖(1, . . . , 1)‖D in the d-variate case can be regarded as a

measure for tail dependence between the margins of a multivariate distribution F , which

belongs to the domain of attraction of an EVD G with identical margins, cf. Definition

2.2.4. Due to the inequalities (2.8) for the D-norm, we have ε ∈ [1, d], hence the extremal

coefficient can be transformed to the interval [0, 1] by the transformation

T (ε) :=
‖(1, . . . , 1)‖1 − ε

‖(1, . . . , 1)‖1 − ‖(1, . . . , 1)‖∞
,

which enables us to interpret the amount of tail dependence between the identical mar-

gins of G. The tail dependence function as well as the stable tail dependence function are

not restricted to measure the tail dependence between the margins of F , which belongs

to an EVD with identical margins. Hence this is an advantage of these two measures
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2.4. Measures for tail dependence

over the extremal coefficient. But their disadvantage is due to the fact that they are not

bounded within a finite interval, as this holds for the extremal coefficient.

The fragility index combines the two mentioned advantages of compactness and va-

lidity for dependence between arbitrary margins. Furthermore, the extended fragility

index measures the persisting dependence within a random system that already exhibits

asymptotic dependent components. The (extended) fragility index can therefore be con-

sidered as an extension of the extremal coefficient and can be used as a powerful measure

for tail dependence between the components of a random system that belongs to the

domain of attraction of an extreme value distribution with arbitrary margins.

We will work out theoretical results on the representation and the extension of the

fragility index in Chapters 3 and 4. All necessary previous knowledge is presented in

Chapter 2. A nonparametric estimation procedure for the fragility index and applica-

tions on it are provided in Chapter 5.
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3. Theoretical results for events of

exceedance

This chapter contains preliminaries and results about the asymptotic conditional distri-

bution of the number of exceedances. This distribution plays a crucial role within the

representation and the extension of the fragility index as a measure for tail dependence.

The chapter starts with some technical tools in Section 3.1. An insight to the problems

that come up when looking at the asymptotic distribution of exceedances is given in

Section 3.2. The main results from the events of exceedances are provided in Section

3.3. Therein we distinguish between exceedances above an individual and a common

threshold for each component of the concerned random system. The latter approach

is in line with Geluk et al. [22]. Section 3.3.3 provides examples for the asymptotic

conditional distribution of exceedances counts from two different points of view.

3.1. Technical tools

At first, to provide the following condition, which is needed in the framework of events

of exceedances above a common threshold, denote by F a multivariate df with univariate

margins Fj , j ≤ d, where ω(Fj) := sup{t ∈ R : Fj(t) < 1} ∈ (−∞,∞] is the upper

endpoint of the univariate df Fj for j ∈ {1, . . . , d}.

Condition C: There exists an index κ ∈ {1, . . . , d} with ω(Fκ) =: ω∗, such that

lim
s↑ω∗

1− Fj(s)

1− Fκ(s)
=: γj ∈ [0,∞), 1 ≤ j ≤ d(3.1)

holds. Note that ω(Fj) ≤ ω∗ holds for j ≤ d, since otherwise we would get γj = ∞,

which is excluded. If ω(Fj) < ω∗ we get γj = 0. We have γκ = 1. If F has identical

margins Fj , we get γj = 1, i ≤ d.
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3. Events of exceedances

For further considerations the case of γj = 0 for j ∈ I ⊂ {1, . . . , d} will be of

substantial interest. In Section 4.2, i.e. within the framework of exceedances above a

common threshold, we will observe that the value of the extended fragility index depends

on the number of such coefficients γj being zero. Note that γj equals zero if ω(Fj) < ω∗,

which means the distribution function Fj has a finite upper endpoint. γj equals zero as

well if ω(Fj) = ω∗ and 1 − Fj = o(1 − Fκ), which means the convergence rate of Fj is

higher than that of Fκ, see Definition A.1.

The following lemma is necessary for further considerations.

Lemma 3.1.1 Let G be an EVD with pertaining D-norm ‖·‖D on Rd and angular mea-

sure µ on the unit sphere Sd. Further consider K ⊆ {1, . . . , d} and denote by GK

the corresponding |K| =: m-variate marginal df of G, cf. (2.17). Then the following

assertions hold.

(i) There exists an angular measure µ̃ on Sm, such that the marginal df GK of G can

be represented by

GK(x) = exp

(∫

Sm

min
i≤m

(uixi)dµ̃(u)

)

for x ≤ 0 ∈ Rm.

(ii) The angular measure µ̃ induces a D-norm ‖·‖D̃ on Rm such that

∥∥∥∥∥
∑

j≤d

xjej

∥∥∥∥∥
D

=

∥∥∥∥∥
∑

j∈K

xij ẽj

∥∥∥∥∥
D̃

holds with xij = 0 for j ∈ K∁, where ej is the j-th unit vector in Rd and ẽj is the

j-th unit vector in Rm.

(iii) Denote by Gid
K that |K|-variate margin of the EVD G one obtains, if we trans-

form the margins of GK to identical ones, cf. Remark 2.1.12. Then the extremal

coefficient εK of Gid
K is given by

εK =

∥∥∥∥∥
∑

j∈K

ej

∥∥∥∥∥
D

=

∥∥∥∥∥
∑

j≤m

ẽj

∥∥∥∥∥
D̃

,(3.2)

where ej and ẽj are the j-th unit vectors in Rd and Rm respectively.
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Proof: The first assertion is due to the fact that the marginals of max-stable distribu-

tions are max-stable again, hence, there exists an angular measure µ̃ on Sm, such that

GK can be represented as given in (i). Now suppose xi = 0 for i ∈ K∁ and xj < 0 for

j ∈ K. Then we have

G(x1, . . . , xd) = exp


−

∥∥∥∥∥
∑

j∈K

xjej

∥∥∥∥∥
D


 ,(3.3)

where ej denotes the j-th unit vector in Rd. Thereby, the df in (3.3) is a m := |K|-
variate margin of the EVD G. Since any margin of the EVD G is max-stable again,

there exists a D-norm ‖·‖D̃ defined by

‖(xi1 , . . . , xim)‖D̃ :=

∫

Sm

max
j≤m

(
∣∣xij
∣∣ uj)µ̃(du),

cf. Definition 2.1.6. A m-variate margin GK of G can therefore by provided by

GK(xi1 , . . . , xim) = exp


−

∥∥∥∥∥
∑

j≤m

xij ẽj

∥∥∥∥∥
D̃


 ,(3.4)

where ẽj is the j-th unit vector in Rm.

Hence, the quality ∥∥∥∥∥
∑

j∈K

xjej

∥∥∥∥∥
D

=

∥∥∥∥∥
∑

j≤m

xij ẽj

∥∥∥∥∥
D̃

holds under the condition xij = 0 for j ∈ K∁. This shows the assertion in (ii).

Now, assume that we have xij = 0 for j ∈ K∁ and xij = x < 0 for j ∈ K. Then we get

∥∥∥∥∥
∑

j∈K

ej

∥∥∥∥∥
D

=

∥∥∥∥∥
∑

j≤m

ẽj

∥∥∥∥∥
D̃

.

Since Gid
(∑

j∈K xej

)
= exp

(
−
∥∥∥
∑

j∈K xej

∥∥∥
D

)
= (exp(− |x|))‖

∑

j∈K ej‖
D is a |K|-

variate margin with identical margins of the EVD G, the extremal coefficient of Gid,

denoted by εK , can be represented by εK =
∥∥∥
∑

j∈K ej

∥∥∥
D
, cf. Definition 2.2.4. This is

assertion (iii). �

Noting that assertion (iii) of Lemma 3.1.1 will play a crucial role within the framework

of the extended fragility index, cf. Section 4.3. Therefore we advise the reader not
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3. Events of exceedances

to confuse the terms ”extremal coefficient of an EVD G”, cf. Definition 2.2.4, and

”extremal coefficient corresponding to an EVD G”. The former requires that the EVD G

has identical margins, whereas the latter shall be considered to be the extremal coefficient

of the EVD Gid that one obtains by transforming the margins of G to identical ones.

Therefore we provide the following definition.

Definition 3.1.2 (Corresponding extremal coefficient) Let Gα be an EVD with

arbitrary, not necessarily identical margins Gαj
(x) = exp(ψαj

(x)) for j ≤ d with ψ

defined in (2.12), i.e. Gα can be represented by

Gα(x1, . . . , xd) = exp(−‖ψα1(x1), . . . , ψαd
(xd)‖D),

cf. Proposition 2.1.10. Further denote by Gid the EVD one obtains, if we transform the

margins of GK to identical ones, e.g. Gid
α
(x1, . . . , xd) = Gα(ψ

−1
α1
(x1), . . . ,

ψ−1αd
(xd)) is an EVD with standard exponential margins with identical D-norm to Gα,

cf. Remark 2.1.12. The extremal coefficient of Gid
α

is defined by ε =
∥∥∥
∑

j≤d ej

∥∥∥
D
. This

is called the extremal coefficient ”corresponding” to the EVD Gα.

3.2. No Exceedances

Consider a random system {Q1, . . . , Qd)}, which shall be represented by the random

vector Q := (Q1, . . . , Qd). Suppose that Q follows the multivariate df F , which is in

the domain of attraction of an EVD G. Now, we may be interested in the event of

exceedance {Qj > sj} for any j ≤ d, given that m exceedances have already occurred

within the system. Under certain conditions we may be faced with the situation that no

further exceedances are ”possible”. Within this section we will provide the tools that

are necessary to investigate the situation of no exceedances.

We know from Theorem 2.3.18 that if F ∈ D(G), the copula corresponding to F

can be approximated by a GPD in the upper tail. Now, suppose further that Q̃ is any

margin of Q of size m ≤ d denoted by Q̃ := (Q1, . . . , Qm) for simplicity. Hence, with
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Corollary 2.3.19 and Theorem A.6, we get that

P (Q̃ > x) = P (F1(Q1) > F1(x1), . . . , Fm(Qm) > Fm(xm))

= 1−
∑

∅6=T⊆{1,...,m}

(−1)|T |−1P (Fi(Qi) ≤ Fi(xi), i ∈ T )

= 1−
∑

∅6=T⊆{1,...,m}

(−1)|T |−1CFT
(Fi(xi), i ∈ T )

=
∑

∅6=T⊆{1,...,m}

(−1)|T |−1

∥∥∥∥∥
∑

i∈T

(Fi(xi)− 1)ei

∥∥∥∥∥
D

+o

(
sup

T⊆{1,...,m}

{‖Fi(xi)− 1, i ∈ T‖D}
)

holds in the upper tail of F , where CFT
denotes the copula corresponding to the margin

FT of F and
∑
∅6=T⊆{1,...,m}(−1)|T |−1 = 1, see Lemma A.3.

Now suppose that the rv U ∈ Rd follows a GPD-copula, cf. Definition 2.3.8, i.e. we

have P (U ≤ u) = 1 − ‖u− 1‖D for u close to 1. Then, the survival function of U is

given by

P (U > u) =1−
(⋃

j≤d

{Uj ≤ uj}
)

=1−
∑

∅6={1,...,d}

(−1)|T |−1

(
1−

∥∥∥∥∥
∑

i∈T

(ui − 1)ei

∥∥∥∥∥
D

)

=
∑

∅6={1,...,d}

(−1)|T |−1

∥∥∥∥∥
∑

i∈T

(ui − 1)ei

∥∥∥∥∥
D

for u close to 1 where we use Theorem A.6 and Lemma A.3.

This implies that we may approximate the survival function of Q̃ by means of the survival

function of a GPD-copula.

Without loss of generality, we are able to consider the special case that F is in the

domain of attraction of an EVD G∗ with standard Weibull margins. Now, the following

interesting question appears:

”Is there a GPD W , such that

(3.5) P (Q̃ > c) = 0
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(0,0)

Y = −(U, 1− U)

-1

-1

c1

c2

Figure 3.1.: Support line of Y = −(U, 1− U).

holds for some c := (c1, . . . , cm) in a left neighborhood of 0 with P (Qj > cj) > 0, j ≤ m,

where the rv Q̃ has df W ?”

At first, let us consider the following bivariate example. Let the rv U be uniformly

distributed on (0, 1) and put

Y = −(U, 1− U).

Then, obviously, we have

P (Y > c) = 0

if c = (c1, c2) < 0 satisfies c1 + c2 > −1, see Figure 3.1.

Note that for y = (y1, y2) ≤ 0, y1 + y2 ≥ −1, we get

P (Y ≤ y) = 1 + y1 + y2

= 1− ‖y‖1
= 1 + log(G(y)),

where

G(y) = exp (−‖y‖1) , y ≤ 0,

is a bivariate EVD with standard negative exponential margins and, consequently,

W (y) = P (Y ≤ y) = 1 + log(G(y))
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is a GPD with uniform margins in a left neighborhood of 0. Hence, this shows that the

rv Y follows a GPD with dependence structure ‖·‖D = ‖·‖1 in a left neighborhood of

0. It turns out that in the bivariate case, any rv Y satisfying condition (3.5) follows a

GPD W (y) = 1− ‖y‖1.

Lemma 3.2.1 Let Y ∈ [−∞, 0]2 be an rv following a GPD with uniform margins.

Further suppose there exist c1, c2 < 0 such that P (Y > c) = 0 and P (Yj > cj) > 0, j ≤ 2,

holds. Then we have

P (Y > x) = 0 for all x ≥ c ⇔ ‖·‖D = ‖·‖1 .

Proof: Assume that P (Y > x) = 0 holds for all x ≥ c. Then

0 = P (Y > x)

= 1− P

(⋃

j≤2

{Yj ≤ xj}
)

= 1− (P (Y1 ≤ x1) + P (Y2 ≤ x2)− P (Y ≤ x))

= 1− (1− ‖(x1, 0)‖D + 1− ‖(0, x2)‖D − (1− ‖x‖D))
= ‖(x1, 0)‖D + ‖(0, x2)‖D − ‖x‖D
= |x1|+ |x2| − ‖x‖D , x0 ≤ x ≤ 0,

yields

‖x‖D = ‖x‖1 , x ≤ 0 ∈ R
d.

The other implication is obvious due to the above calculation. �

For higher dimensions d ≥ 3 the assertions of Lemma 3.2.1 is not true. Indeed

one can show that if the threshold x is a common one, say x := (x, . . . , x), we have

P (Y > x) = 0 for x ≥ c, if ‖·‖D = ‖·‖1.

Lemma 3.2.2 Let Y be an rv in Rm, m ≥ 2, following a GPD with uniform margins.

Further suppose that there exists c :=
∑

j≤m cej < 0 such that P (Y > c) = 0 and

P (Yj > c) = |c| for j ≤ m and consider the common threshold x :=
∑

j≤m xej =

(x, . . . , x). Then we have

P (Y > x) = 0 for all x ≥ c

if ‖x‖D = ‖x‖1.
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Proof: At first, note that the survival function of a GPD W with uniform margins can

be represented by

P (Y > x) =1− P

(⋃

j≤m

{Yj ≤ xj}
)

(3.6)

=1−
∑

∅6=T⊆{1,...,m}

(−1)|T |−1P (Yi ≤ xi, i ∈ T )

=
∑

∅6=T⊆{1,...,m}

(−1)|T |−1

∥∥∥∥∥
∑

i∈T

xiei

∥∥∥∥∥
D

for x in a left neighborhood of 0. Together with Lemma A.4 and the condition ‖x‖D =

‖x‖1, we get

P (Y > x) =
∑

∅6=T⊆{1,...,d}

(−1)|T |−1

∥∥∥∥∥
∑

i∈T

xei

∥∥∥∥∥
1

= |x|
∑

∅6=T⊆{1,...,d}

(−1)|T |−1 |T |

= |x|
∑

1≤j≤d

∑

T⊆{1,...,d}

(−1)j−1j

= |x|
∑

1≤j≤d

(
d

j

)
(−1)j−1j

=(− |x|)
d∑

j=0

(
d

j

)
(−1)j−1j

︸ ︷︷ ︸
=0

= 0

�

As already noted, the assertion of Lemma 3.2.1 is not true for higher dimension d ≥ 3,

see Example 3.2.4 as a counter example. That means, ‖·‖D = ‖·‖1 is in general neither

a necessary nor sufficient condition for (3.5) in higher dimensions.

The following lemma gives necessary and sufficient conditions such that condition

(3.5) is fulfilled.

Lemma 3.2.3 Let ‖·‖D be a D-norm on Rm with pertaining angular measure µ on Sm.

Then we have

∑

∅6=T⊆{1,...,m}

(−1)|T |−1

∥∥∥∥∥
∑

i∈T

xiei

∥∥∥∥∥
D

= 0 for some x < 0(3.7)
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if and only if

µ

({
u ∈ Sm : min

j≤m
uj = 0

})
= µ

({
u ∈ Sm :

∏

j≤m

uj = 0

})
=m.(3.8)

Proof: Without loss of generality we can show the assertion for any (x̃1, . . . , x̃m) :=
1
a
(x1, . . . , xm) < (0, . . . , 0), since (3.7) remains true if we divide it by any positive number

a > 0, i.e.

(3.7) ⇔
∑

∅6=T⊆{1,...,m}

(−1)|T |−1

∥∥∥∥∥
∑

i∈T

xiei

∥∥∥∥∥
D

= 0 for all x ≤ 0.(3.9)

Hence assume a vector x0 as close to 0, such that there exists a random vector Y

which follows a GPD with uniform margins on (x0, 0]. Hence we have P (Y > x) =
∑
∅6=T⊆{1,...,m}(−1)|T |−1

∥∥∑
i∈T xiei

∥∥
D

for x > x0. Since Y follows a GPD, Proposition

2.3.9 yields that there exists an rv Z with Zj ∈ [0, m] and E(Zj) = 1, j ≤ m, and a

vector (− 1
m
, . . . ,− 1

m
) ≤ x0 < 0 such that P (Y > x) = P

(
−U

(
1
Z1
, . . . , 1

Zm

)
> x

)
for

x > x0. Further note that the generator Z has probability measure µ/m. Hence we get

P (Y > x) =P

(
−U

(
1

Z1
, . . . ,

1

Zm

)
> x

)

=P

(
U

(
1

Z1
, . . . ,

1

Zm

)
< −x

)

=P

(
U < min

j≤m
(−xjZj)

)

=

∫ 1

0

P

(
u < −min

j≤m
(xjZj) |U = u

)
(P ∗ U)(du) for all x > x0

=

∫ 1

0

P

(
u < −min

j≤m
(xjZj)

)
du for all x > x0 .
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3. Events of exceedances

This implies
∫ 1

0

P

(
u < −min

j≤m
(xjZj)

)
du = 0 ⇔

P

(
−min

j≤m
(xjZj) > u

)
= 0 a.s. for 0 < u < 1 ⇔

P

(
−min

j≤m
(xjZj) = 0

)
= 1 ⇔

P (min
j≤m

Zj = 0) = 1 ⇔

µ

({
u ∈ Sm : min

j≤m
uj = 0

})
= m

which shows the assertion. �

We want to note that the right hand side of (3.9) is equivalent to

∑

∅6=T⊆{1,...,m}

(−1)|T |−1

∥∥∥∥∥
∑

i∈T

xiei

∥∥∥∥∥
D

= 0 for all x ≥ 0

since any norm fulfills ‖x‖ = ‖−x‖ ,x ∈ Rd.

The condition concerning the angular measure in (3.8) states that µ puts its whole mass

on the boundary of the m-variate simplex Sm := {u ≥ 0 : ‖u‖1 = 1}. Note that we

have independence between the margins, if the measure µ concentrates on the edges

of Sm, more precisely on {ej , j ≤ d}, see Corollary 5.25 in Resnick [56]. Geometric

interpretation of condition (3.8) is visualized in Figure 3.2.

Further note that Condition (3.8) is equivalent to ‖·‖D = ‖·‖1 in dimension m = 2

while this is not true in higher dimensions, hence we provide the sufficient and necessary

condition on the angular measure corresponding to the D-norm, see Condition (3.7).

The following example provides a choice for an angular measure which fulfills Condition

(3.8) but does not induce the L1-norm. Hence it is a counterexample for Lemma 3.2.1

in dimension d ≥ 3.

Example 3.2.4 Consider that angular measure µ, which puts equal weight 1 on each of

the m points of the set
{(

0,
1

m− 1
, . . . ,

1

m− 1

)
, . . . ,

(
1

m− 1
, . . . ,

1

m− 1
, 0

)}

=

{
1

m− 1

∑

j≤m, j 6=i

ej , i ≤ m

}
.
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(1, 0)

(0, 1)

(0, 0, 1)

(1, 0, 0)

(0, 1, 0)

Figure 3.2.: Above figure show the valid set defined by the angular measure under Condition (3.8).

The blue areas shows the simplex and the red area the set under (3.8). Shown is the two-

and three-dimensional case.

Obviously, this angular measure fulfills Condition (3.8) and therefore implies that Equa-

tion (3.7) holds, where the induced D-norm is

‖x‖D =

∫

Sm

max
k≤m

(xkuk)µ(du)

=
∑

i≤m

∫

{ 1
m−1

∑

j≤m, j 6=i ej}
max
k≤m

(xkuk)µ(du)

=
∑

i≤m

1

m− 1
max

j≤m, j 6=i
|xj |

=
1

m− 1

∑

i≤m

(
max

j≤m, j 6=i
|xj|
)
, x ∈ R

m.

This D-norm does not coincide with the L1-norm for m ≥ 3.

Condition (3.8) quantifies a certain kind of independence, which can also be charac-

terized by means of the exponent measure.

LetG be an EVD with standard negative exponential margins, i.e. G(x) = exp (−‖x‖D)
for x ≤ 0 ∈ Rd and some D-norm ‖·‖D on Rd, or, equivalently, there exists a σ-finite

measure ν on [−∞, 0]\ {−∞} with G(x) = exp
(
−ν
(
[−∞,x]∁

))
for x ≤ 0 ∈ Rd, where

ν is the exponent measure, see Proposition 2.1.3 and preceding notes.
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3. Events of exceedances

Lemma 3.2.5 Let G be an EVD on Rd with standard negative exponential margins,

corresponding D-norm ‖·‖D and exponent measure ν. Then we have for x ≤ 0 ∈ Rd

ν(x, 0] =
∑

∅6=T⊆{1,...,d}

(−1)|T |−1

∥∥∥∥∥
∑

i∈T

xiei

∥∥∥∥∥
D

.

Proof: Since ν is σ-finite, there exists a sequence of measurable subsets B1 ⊂ B2 ⊂
. . . of Ω := [−∞, 0]\ {−∞} with

⋃
n∈NBn = Ω and ν(Bn) =: bn <∞, n ∈ N.

Put

νn(·) := ν(· ∩Bn), n ∈ N.

Then νn, n ∈ N, defines a sequence of finite measures on Ω, νn(Ω) = bn, n ∈ N, with

lim
n→∞

νn(B) = ν(B)

for any measurable subset B of Ω.

The ∆-monotonicity of an arbitrary finite measure implies

νn(x,y] =
∑

m∈{0,1}d

(−1)d−
∑

j≤d mjνn

([
−∞,

∑

i≤d

ymi

i x1−mi

i ei

])
≥ 0

for any −∞ < x ≤ y ≤ 0 and, thus, switching to complements,

νn(x,y] =
∑

m∈{0,1}d

(−1)d−
∑

j≤d mj


bn − νn



[
−∞,

∑

i≤d

ymi

i x1−mi

i ei

]∁




=
∑

m∈{0,1}d

(−1)d+1−
∑

j≤d mjνn



[
−∞,

∑

i≤d

ymi

i x1−mi

i ei

]∁


for any n ∈ N; note that
∑

m∈{0,1}d(−1)d−
∑

j≤d mj =
∑

m∈{0,1}d(−1)
∑

j≤d mj

=
∑d

k=0(−1)k
(
d
k

)
= 0.
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We thus obtain,

ν(x,y] = lim
n→∞

νn(x,y]

=
∑

m∈{0,1}d

(−1)d+1−
∑

j≤d mj lim
n→∞

νn



[
−∞,

∑

i≤d

ymi

i x1−mi

i ei

]∁


=
∑

m∈{0,1}d

(−1)d+1−
∑

j≤d mjν



[
−∞,

∑

i≤d

ymi

i x1−mi

i ei

]∁


=
∑

m∈{0,1}d

(−1)d+1−
∑

j≤d mj

∥∥∥∥∥
∑

i≤d

ymi

i x1−mi

i ei

∥∥∥∥∥
D

.

Putting y = 0 and substituting mi by 1−mi we obtain

ν(x, 0] =
∑

m∈{0,1}d

(−1)d+1−
∑

j≤d mj

∥∥∥∥∥
∑

i≤d

0mix1−mi

i ei

∥∥∥∥∥
D

=
∑

m∈{0,1}d

(−1)1+
∑

j≤d mj

∥∥∥∥∥
∑

i≤d

01−mixmi

i ei

∥∥∥∥∥
D

=
∑

∅6=T⊆{1,...,d}

(−1)|T |−1

∥∥∥∥∥
∑

i∈T

xiei

∥∥∥∥∥
D

.

�

Recall that any random vector Z = (Z1, . . . , Zd) ∈ [0, c]d for some c ≥ 1, which

satisfies E(Zj) = 1 for j ≤ d generates a D-norm by ‖x‖D = E(maxj≤d |xj |Zj), see

Lemma 2.1.8. Further note that
∑

T⊆K(−1)|T |−1maxi∈T ai = mink∈K ak for any set

{ak : k ∈ K} of real numbers, which can be seen by induction.

The following further equivalences will be useful for providing conditions under which

the extended fragility index exists.

Corollary 3.2.6 Let ‖·‖D be a D-norm on Rm with pertaining angular measure µ on

Sm and exponent measure ν respectively. Further denote by Zj, j ≤ m, the generator of

the D-norm. Then we have the following list of equivalences:

(i) E(minj≤m |xj |Zj) = 0 for some x := (x1, . . . , xm) < 0.

(ii)
∑
∅6=T⊆{1,...,m}(−1)|T |−1

∥∥∑
i∈T xiei

∥∥
D
= 0 for all x ≤ 0.
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3. Events of exceedances

(iii) µ ({u ∈ Sm : minj≤m uj = 0}) = m.

(iv) ν is the null measure on (−∞, 0], i.e., ν(−∞, 0] = 0.

(v) ν has all its mass (which is infinite) on the set {x ∈ [−∞, 0]\ {−∞} : minj≤m xj =

−∞}.

Proof: We have for any K ⊆ {1, . . . , m}

∑

T⊆K

(−1)|T |−1

∥∥∥∥∥
∑

i∈T

xiei

∥∥∥∥∥
D

=
∑

T⊆K

(−1)|T |−1E

(
max
i∈T

|xi|Zi

)
= E

(
min
i∈K

|xi|Zi

)

with Definition 2.1.8 and thus

∑

T⊆K

(−1)|T |−1

∥∥∥∥∥
∑

i∈T

xiei

∥∥∥∥∥
D

= 0 ⇐⇒ E

(
min
i∈K

|xi|Zi

)
= 0 .

The equivalence of (ii) and (iv) follows from Lemma 3.2.5, (ii) ⇔ (iii) follows from

Lemma 3.2.3 and (iv) ⇔ (v) is due to the definition of the exponent measure. �

3.3. Asymptotic distribution of exceedance counts

This chapter presents necessary tools to provide the representation and extension of the

fragility index. We will mainly focus on the asymptotic behavior of the conditional distri-

bution function of the number of exceedances among the random system {Q1, . . . , Qd}.
This section is divided into two parts, which mainly cover two different approaches

to the asymptotic conditional distribution of exceedance counts. This will lead to two

possible representations of the extended fragility index in Chapter 4, which depend on

the type of event of exceedance one considers. Therefore, Section 3.3.1 will focus on

exceedances above a common high threshold within the system. This is in accordance

with the approach of Geluk et al. [22] who established the fragility index as a measure for

the stability of a random system. Section 3.3.2 provides the asymptotic distribution of

exceedance counts with respect to exceedances above a threshold, which is an individual

one for every component of the system.

We will start with the approach of exceedances above a common threshold for every

component of the random system {Q1, . . . , Qd}.
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3.3.1. A common threshold for events of exceedance

Consider a random system {Q1, . . . , Qd} of size d. Let s be a high threshold and define

by

{Qj > s}

for any j ≤ d the exceedance of the component Qj above a high threshold s. Thereby

the threshold s should be chosen high enough such that {Qj > s} is an extreme event.

Further define by

Ns :=
d∑

j=1

1(s,∞)(Qj)(3.10)

the number of exceedances within the system. The aim of this section is to provide the

asymptotic distribution of Ns given at least m ≤ d exceedances for any 1 ≤ m ≤ d have

occurred. We start with some technical results.

Lemma 3.3.1 Suppose (Q1, . . . , Qd) ∼ F is continuous for x close to ω(F ) := (ω(F1),

. . . , ω(Fd)) and the pertaining copula satisfies CF ∈ D(G). Furthermore suppose that

condition C, see (3.1), holds. Then we have for arbitrary K ⊆ {1, . . . , d}

P (Qi ≤ s, i ∈ K) = 1− c(s)

∥∥∥∥∥
∑

i∈K

γiei

∥∥∥∥∥
D

+ o(c(s))(3.11)

for s ↑ ω∗ with c(s) := 1− Fκ(s) ↓s↑ω∗ 0.
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3. Events of exceedances

Proof: With Definition 2.3.1 and Theorem 2.3.18, Corollary 2.3.19 respectively, we

get

P (Qi ≤ s, i ∈ K) = P (Fi(Qi) ≤ Fi(s), i ∈ K) = CF

(∑

j∈K

Fj(s)ej +
∑

i 6∈K

ei

)

= 1−
∥∥∥∥∥
∑

i∈K

(Fi(s)− 1)ei

∥∥∥∥∥
D

+ o

(∥∥∥∥∥
∑

i∈K

(Fi(s)− 1)ei

∥∥∥∥∥
D

)

= 1−
∥∥∥∥∥
∑

i∈K

1− Fi(s)

1− Fκ(s)
(1− Fκ(s))ei

∥∥∥∥∥
D

+ o

(∥∥∥∥∥
∑

i∈K

1− Fi(s)

1− Fκ(s)
(1− Fκ(s))ei

∥∥∥∥∥
D

)

= 1− (1− Fκ(s)) ·
∥∥∥∥∥
∑

i∈K

γiei

∥∥∥∥∥
D

+ o



(1− Fκ(s)) ·

∥∥∥∥∥
∑

i∈K

γiei

∥∥∥∥∥
D︸ ︷︷ ︸

const.




= 1− (1− Fκ(s)) ·
∥∥∥∥∥
∑

i∈K

γiei

∥∥∥∥∥
D

+ o(1− Fκ(s)),

hence the assertion follows with 1− Fκ(s) ↓ 0 for s ↑ ω∗ and c(s) := 1− Fκ(s). �

Corollary 3.3.2 Assume the same assumptions as in Lemma 3.3.1. Denote by ∅ 6= I ⊂
{1, . . . , d} the set of indices with γi = 0 and choose an arbitrary K ⊆ {1, . . . , d}. Then

the distribution in (3.11) simplifies to

(i) P (Qi ≤ s, i ∈ K) = 1− o(c(s)) for s ↑ ω∗ and K ⊆ I,

(ii) P (Qi ≤ s, i ∈ K) = 1−
∥∥∑

i∈K∩I∁ γiei

∥∥
D
+ o(c(s)) for s ↑ ω∗.

Now we are able to provide the asymptotic distribution of the number of exceedances

above a common threshold, denoted by Ns.

Lemma 3.3.3 Assume the same assumptions as in Lemma 3.3.1.

Let Ns :=
∑

j≤d 1(s,∞)(Qj) be the number of exceedances above a common threshold s
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within the random system {Q1, . . . , Qd}. Then we have

P (Ns = 0) = 1− c(s)

∥∥∥∥∥
∑

1≤j≤d

γjej

∥∥∥∥∥
D

+ o(c(s)) =: 1− c(s)a0(γ) + o(c(s)) ,

P (Ns = k) = c(s)
∑

0≤j≤k

(−1)k−j+1

(
d− j

k − j

) ∑

T⊆{1,...,d}
|T |=d−j

∥∥∥∥∥
∑

i∈T

γiei

∥∥∥∥∥
D

+ o(c(s))

=: c(s) ak(γ) + o(c(s)) for 1 ≤ k ≤ d− 1 and

P (Ns = d) = c(s) ·
d∑

j=1

(−1)j+1
∑

T⊆{1,...,d}
|T |=j

∥∥∥∥∥
∑

i∈T

γiei

∥∥∥∥∥
D

+ o(c(s))

=: c(s) ad(γ) + o(c(s))

for s ↑ ω∗ with c(s) = 1− Fκ(s).

Proof: Lemma 3.3.1 immediately implies

P (Ns = 0) = P (Qj ≤ s, 1 ≤ j ≤ d) = 1− c(s)

∥∥∥∥∥
d∑

j=1

γjej

∥∥∥∥∥
D

+ o(c(s))

for s ↑ ω∗. For 1 ≤ k ≤ d− 1 we get due to disjoint events and Theorem A.6

P (Ns = k) =
∑

S⊆{1,...,d}
|S|=k

P (Qi > s, i ∈ S, Qj ≤ s, j ∈ S∁)

=
∑

S⊆{1,...,d}
|S|=k

P (Qi > s, i ∈ S |Qj ≤ s, j ∈ S∁) · P (Qj ≤ s, j ∈ S∁)

=
∑

S⊆{1,...,d}
|S|=k

[
P (Qj ≤ s, j ∈ S∁)·


1−

∑

r≤|S|

(−1)r+1
∑

K⊆S
|K|=r

P (Qi ≤ s, i ∈ K |Qj ≤ s, j ∈ S∁)







=
∑

S⊆{1,...,d}
|S|=k

[
P (Qj ≤ s, j ∈ S∁)·


1−

∑

r≤|S|

(−1)r+1
∑

K⊆S
|K|=r

P (Qi ≤ s, i ∈ K ∪ S∁)

P (Qj ≤ s, j ∈ S∁)
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=
∑

S⊆{1,...,d}
|S|=k

[
P (Qj ≤ s, j ∈ S∁)·


1− 1

P (Qj ≤ s, j ∈ S∁)

∑

r≤|S|

(−1)r+1P (Qi ≤ s, i ∈ K ∪ S∁)






=
∑

S⊆{1,...,d}
|S|=k


P (Qj ≤ s, j ∈ S∁)−

∑

r≤|S|

(−1)r+1
∑

K⊆S
|K|=r

P (Qi ≤ s, i ∈ K ∪ S∁)


 .

Now let s ↑ ω∗ with c(s) := 1− Fκ(s). Then it follows from Lemma 3.3.1

P (Ns = k) =
∑

S⊆{1,...,d}
|S|=k


1− c(s)

∥∥∥∥∥∥
∑

j∈S∁

γjej

∥∥∥∥∥∥
D

+ o(c(s))

−
∑

r≤|S|

(−1)r+1
∑

K⊆S

|K|=r


1− c(s)

∥∥∥∥∥∥
∑

j∈K∪S∁

γjej

∥∥∥∥∥∥
D

+ o(c(s))







=
∑

S⊆{1,...,d}
|S|=k



1− c(s)

∥∥∥∥∥∥
∑

j∈S∁

γjej

∥∥∥∥∥∥
D

+ o(c(s))−
∑

r≤|S|

(−1)r+1
∑

K⊆S
|K|=r

1

︸ ︷︷ ︸
=1

+
∑

r≤|S|

(−1)r+1
∑

K⊆S
|K|=r


c(s)

∥∥∥∥∥∥
∑

j∈K∪S∁

γjej

∥∥∥∥∥∥
D

+ o(c(s))







=
∑

S⊆{1,...,d}
|S|=k


1− c(s)

∥∥∥∥∥∥
∑

j∈K∪S∁

γjej

∥∥∥∥∥∥
D

+ o(c(s))− 1

+c(s) ·
∑

r≤|S|

(−1)r+1
∑

K⊆S

|K|=r

∥∥∥∥∥∥
∑

j∈K∪S∁

γjej

∥∥∥∥∥∥
D

+ o(c(s))
∑

r≤|S|

(−1)r+1
∑

K⊆S

|K|=r

1

︸ ︷︷ ︸
=1




=
∑

S⊆{1,...,d}
|S|=k


c(s) ·



∑

r≤|S|

(−1)r+1
∑

K⊆S

|K|=r

∥∥∥∥∥∥
∑

j∈K∪S∁

γjej

∥∥∥∥∥∥
D

−

∥∥∥∥∥∥
∑

j∈S∁

γjej

∥∥∥∥∥∥
D
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+o(c(s))]

=
∑

S⊆{1,...,d}
|S|=k


o(c(s)) + c(s) ·

∑

0≤r≤|S|

(−1)r+1
∑

K⊆S
|K|=r

∥∥∥∥∥∥
∑

j∈K∪S∁

γjej

∥∥∥∥∥∥
D




= c(s) ·
∑

S⊆{1,...,d}
|S|=k

∑

0≤r≤|S|

(−1)r+1
∑

K⊆S

|K|=r

∥∥∥∥∥∥
∑

j∈K∪S∁

γjej

∥∥∥∥∥∥
D

+ o(c(s)) .

With an index transformation we get

P (Ns = k) = c(s) ·
∑

S⊆{1,...,d}
|S|=k

∑

0≤r≤|S|

(−1)r+1
∑

K⊆S
|K|=r

∥∥∥∥∥∥∥∥∥∥∥∥∥

∑

j∈K ∪ S∁

︸ ︷︷ ︸
:=T,

|T |=r+d−k

γjej

∥∥∥∥∥∥∥∥∥∥∥∥∥
D

+o(c(s))

= c(s) ·
∑

0≤r≤k

(−1)r+1
∑

S⊆{1,...,d}
|S|=k

∑

K⊆S

|K|=r

∥∥∥∥∥
∑

i∈T

γiei

∥∥∥∥∥
D

+ o(c(s))

= c(s) ·
∑

0≤r≤k

(−1)r+1
∑

K⊆{1,...,d}
|K|=r

∑

K⊆T
|T |=r+d−k

∥∥∥∥∥
∑

i∈T

γiei

∥∥∥∥∥
D

+ o(c(s))

= c(s) ·
∑

0≤r≤k

(−1)r+1
∑

T⊆{1,...,d}
|T |=r+d−k

∑

K⊆T

|K|=r

∥∥∥∥∥
∑

i∈T

γiei

∥∥∥∥∥
D

+ o(c(s))

= c(s) ·
∑

0≤r≤k

(−1)r+1
∑

T⊆{1,...,d}
|T |=r+d−k

∥∥∥∥∥
∑

i∈T

γiei

∥∥∥∥∥
D

∑

K⊆T
|K|=r

1

︸ ︷︷ ︸

=









|T |
r









+o(c(s))

= c(s) ·
∑

0≤r≤k

(−1)r+1
∑

T⊆{1,...,d}
|T |=r+d−k

(
r + d− k

r

)∥∥∥∥∥
∑

i∈T

γiei

∥∥∥∥∥
D

+ o(c(s))

j=k−r
= c(s) ·

∑

0≤j≤k

(−1)k−j+1
∑

T⊆{1,...,d}
|T |=d−j

(
d− j

k − j

)∥∥∥∥∥
∑

i∈T

γiei

∥∥∥∥∥
D

+ o(c(s))
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= c(s) ·
∑

0≤j≤k

(−1)k−j+1

(
d− j

k − j

) ∑

T⊆{1,...,d}
|T |=d−j

∥∥∥∥∥
∑

i∈T

γiei

∥∥∥∥∥
D

+ o(c(s)) ,

and

P (Ns = d) = P (Qj > s, j ≤ d) = 1− P (∪j≤d{Qj ≤ s})
= 1−

∑

j≤d

(−1)j+1
∑

T⊆{1,...,d}
|T |=j

P (Qi ≤ s, i ∈ T )

= 1−
∑

j≤d

(−1)j+1
∑

T⊆{1,...,d}
|T |=j

(
1− c(s) ·

∥∥∥∥∥
∑

i∈T

γiei

∥∥∥∥∥
D

+ o(c(s))

)

= c(s) ·
∑

j≤d

(−1)j+1
∑

T⊆{1,...,d}
|T |=j

∥∥∥∥∥
∑

i∈T

γiei

∥∥∥∥∥
D

+ o(c(s))

for s ↑ ω∗. Note that one also gets the assertion for P (Ns = d) by putting k = d in the

above step of calculation. �

The following corollary is an immediate consequence of Lemma 3.3.3.

Corollary 3.3.4 We have a0(γ) > 0, since γκ = 1, ak(γ) ≥ 0 , 1 ≤ k ≤ d and

a0(γ) =
∑d

k=1 ak(γ). Furthermore it holds

ak(γ) = lim
s↑ω∗

P (Ns = k)

c(s)
=
∑

0≤j≤k

(−1)k−j+1

(
d− j

k − j

) ∑

T⊆{1,...,d}
|T |=d−j

∥∥∥∥∥
∑

i∈T

γiei

∥∥∥∥∥
D

for 1 ≤ k ≤ d− 1,

ad(γ) = lim
s↑ω∗

P (Ns = d)

c(s)
=
∑

1≤j≤d

(−1)j+1
∑

T⊆{1,...,d},
|T |=j

∥∥∥∥∥
∑

i∈T

γiei

∥∥∥∥∥
D

and

a0(γ) = lim
s↑ω∗

P (Ns > 0)

c(s)
=

∥∥∥∥∥
∑

1≤j≤d

γjej

∥∥∥∥∥
D

.

In the following we simplify the above result for the case γi = 0 for i ∈ I ⊂ {1, . . . , d}.
Therefore assume that the set I of indices with γi = 0 is not empty. The case I =

{1, . . . , d}\{κ} is of special interest. We also include the results for arbitrary ∅ 6= I ⊂
{1, . . . , d} for the sake of completeness even if they are obvious.
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3.3. Asymptotic distribution of exceedance counts

Corollary 3.3.5 Denote by ∅ 6= I ⊂ {1, . . . , d} the set of indices with γi = 0. Then we

get

a0(γ) = lim
s↑ω∗

P (Ns > 0)

c(s)
=

∥∥∥∥∥∥
∑

j∈I∁

γjej

∥∥∥∥∥∥
D

,

ak(γ) = lim
s↑ω∗

P (Ns = k)

c(s)

=
∑

0≤j≤k

(−1)k−j+1

(
d− j

k − j

) ∑

T⊆{1,...,d}
|T |=d−j

∥∥∥∥∥∥
∑

i∈T∩I∁

γiei

∥∥∥∥∥∥
D

for 1 ≤ k ≤ d− 1 and

ad(γ) =
∑

1≤j≤d

(−1)j+1
∑

T⊆{1,...,d},
|T |=j

∥∥∥∥∥∥
∑

i∈T∩I∁

γiei

∥∥∥∥∥∥
D

.

For the special case of I∁ = {κ} the limits above simplify to

a0(γ) = a1(γ) = 1

and

ak(γ) = 0 for 2 ≤ k ≤ d .

Proof: The first part of the corollary is obvious, we provided it for sake of com-

pleteness. Hence, we only prove the assertion for the special case of I∁ = {κ}, which
is the second part of the corollary. Note that γκ = 1, hence we get a0(γ) = 1.

For k = 1 the assertion is a straightforward calculation. Now, we show ak(γ) = 0

for 2 ≤ k ≤ d. Note that there are

(
d− 1

d− j − 1

)
subsets of {1, . . . , d} of length

d − j for j ≤ k and k ≤ d, which contain the index κ. For I∁ = {κ} we get∥∥∑
i∈T∩I∁ γiei

∥∥
D

= ‖eκ‖D = 1, if κ ∈ T (else we sum up over the empty set) and

therefore the sum
∑

0≤j≤k(−1)k−j+1

(
d− j

k − j

)
∑

T⊆{1,...,d}
|T |=d−j

∥∥∑
i∈T∩I∁ γiei

∥∥
D
simplifies to

∑

0≤j≤k

(−1)k−j+1

(
d− j

k − j

)(
d− 1

d− j − 1

)
.(3.12)

61



3. Events of exceedances

Note that (3.12) equals 1 for k = 1. For 2 ≤ k ≤ d we get

∑

0≤j≤k

(−1)k−j+1

(
d− j

k − j

)(
d− 1

d− j − 1

)

=

(
d

k

)
1

d

∑

0≤j≤k

(−1)k−j+1

(
k

j

)
(d− j)

=

(
d

k

) ∑

0≤j≤k

(−1)k−j+1

(
k

j

)
−
(
d

k

)
1

d

∑

0≤j≤k

(−1)k−j+1

(
k

j

)
j

= 0− 1

d

(
d

k

) ∑

1≤j≤k

(−1)k−j+1k

(
k − 1

j − 1

)

= (−1)
k

d

(
d

k

) ∑

0≤j≤k−1

(−1)k−j

(
k − 1

j

)

= (−1)
k

d

(
d

k

) ∑

0≤j≤k−1

(−1)k−1−j

(
k − 1

j

)
= 0 ,

which proves the assertion. �

The following corollary is a consequence of Lemma 3.3.3 and directly follows by the

preceding Corollary 3.3.5.

Corollary 3.3.6 Assume the same setting as in Lemma 3.3.3. Denote by I 6= ∅ ⊂
{1, . . . , d} the set of indices with γi = 0. Then the distribution of Nc in (3.11) can be

written as

P (Ns = 0) = 1− c(s)

∥∥∥∥∥∥
∑

j∈I∁

γjej

∥∥∥∥∥∥
D

+ o(c(s)) =: 1− c(s)a0(γ) + o(c(s)) ,

P (Ns = k) = c(s)
∑

0≤j≤k

(−1)k−j+1

(
d− j

k − j

) ∑

T⊆{1,...,d}
|T |=d−j

∥∥∥∥∥∥
∑

i∈T∩I∁

γiei

∥∥∥∥∥∥
D

+ o(c(s))

=: c(s) ak(γ) + o(c(s)) for 1 ≤ k ≤ d− 1 and

P (Ns = d) = c(s) ·
d∑

j=1

(−1)j+1
∑

T⊆{1,...,d}
|T |=j

∥∥∥∥∥∥
∑

i∈T∩I∁

γiei

∥∥∥∥∥∥
D

+ o(c(s))

=: c(s) ad(γ) + o(c(s))
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3.3. Asymptotic distribution of exceedance counts

for s ↑ ω∗ with c(s) = 1−Fκ(s). In the special case of I∁ = {κ} we get the simplification

P (Ns = 0) = 1− c(s) + o(c(s)) ,

P (Ns = 1) = c(s) + o(c(s)) and

P (Ns = k) = o(c(s)) for 2 ≤ k ≤ d .

In the following we want to provide the asymptotic conditional distribution of ex-

ceedance counts among {Q1, . . . , Qd} (ACDEC). The limit of pk := P (Ns = k |Ns > 0),

as the threshold increases, turns out to be the ratio of ak and a0 as given in Corollary

3.3.4. The following result is an implication of the above considerations and will be the

main result within this section. Since it will be a very important tool for the extension

of the fragility index, we will provide the ACDEC as a theorem.

Theorem 3.3.7 (ACDEC) Set pk(γ) := ak(γ)/a0(γ) , 1 ≤ k ≤ d, . Then pk(γ)

defines a probability distribution on {1, . . . , d} and is the asymptotic conditional distri-

bution function of exceedance counts, abbreviated by ACDEC.

lim
s↑ω∗

P (Ns = k |Ns > 0) =

∑
0≤j≤k(−1)k−j+1

(
d− j

k − j

)
∑

T⊆{1,...,d}
|T |=d−j

‖∑i∈T γiei‖D

‖∑d
j=1 γjej‖D

=: pk(γ)

for 1 ≤ k ≤ d− 1 and

lim
s↑ω∗

P (Ns = d |Ns > 0) =
∑

1≤j≤d(−1)j+1
∑

T⊆{1,...,d},
|T |=j

‖∑i∈T γiei‖D
‖∑d

j=1 γjej‖D
=: pd(γ) .

Proof: The assertion follows from the equation

lim
s↑ω∗

P (Ns = k |Ns > 0) = lim
s↑ω∗

P (Ns = k)/c(s)

P (Ns > 0)/c(s)

for k ≤ d together with the definition of ak(γ), see Corollary 3.3.4, for 1 ≤ k ≤ d, which

are finite numbers, and a0(γ) > 0. Hence the limits pk(γ), k ≤ d, are well defined and

exist. �

For sake of completeness we establish the representation of the ACDEC under the

special case of |I| ≥ 1.
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3. Events of exceedances

Corollary 3.3.8 Denote by ∅ 6= I ⊂ {1, . . . , d} the set of indices with γi = 0 and choose

an arbitrary K ⊆ {1, . . . , d}. Then the ACDEC can be represented by

pk(γ) =

∑
0≤j≤k(−1)k−j+1

(
d− j

k − j

)
∑

T⊆{1,...,d}
|T |=d−j

‖∑i∈T∩I∁ γiei‖D

‖∑j∈I∁ γjej‖D
for 1 ≤ k ≤ d− 1 and

pd(γ) =

∑
1≤j≤d(−1)j+1

∑
T⊆{1,...,d},

|T |=j

‖∑i∈T∩I∁ γiei‖D
‖∑j∈I∁ γjej‖D

.

For the special case of I∁ = {κ} the ACDEC simplifies to

p1(γ) =
a1(γ)

a0(γ)
= 1

and

pk(γ) =
ak(γ)

a0(γ)
= 0 for 2 ≤ k ≤ d .

3.3.2. An individual threshold for events of exceedance

Hitherto we have worked with events of exceedance {Qj > s} , j ∈ {1, . . . , d}, for s close
to ω∗. Hence we considered a common threshold for components of the random system

{Q1, . . . , Qd}.
We assume in the following that the joint df F is continuous in its upper tail. Now,

as an alternative approach to Section 3.3.1, we want to consider

{Qj > F−1j (1− c)} for c ↓ 0(3.13)

as an event of exceedance among {Q1, . . . , Qd}. Since the threshold depends on the

margin Fj this is a so-called individual threshold for every component of the system,

more precisely s̃j := F−1j (1 − c) for j ≤ d. This is once again an extreme event if c

is chosen close enough to 0. Hence, the individual thresholds s̃j may differ, but the

probability of exceedance remains the same for every component Qj , j ≤ d.

Due to the equality F−1(q) > t ⇔ q > F (t), q ∈ (0, 1), t ∈ R, the event (3.13) is

equivalent to

{Fj(Qj) > 1− c} for c ↓ 0
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3.3. Asymptotic distribution of exceedance counts

as an event of exceedance in the random system {F1(Q1), . . . , Fd(Qd)}. Hence we con-

sider the system of the copula, i.e. (U1, . . . , Ud) := (F1(Q1), . . . , Fd(Qd)) ∼ CF , if F is

continuous.

Further we note that with respect to the fragility index the approach of exceedances

above an individual threshold is new to the literature. For example, Geluk et al. [22]

solely consider exceedances above a common threshold in order to provide a fragility

index for the stability of a random system. Of course, there exists broad literature

concerning asymptotic distribution results for multivariate exceedances above a high

individual threshold; see e.g. Buishand [7], Section 2.2 or Rootzén and Tajvidi [57], who

define a multivariate curve {u(t) | t ∈ [1,∞)} to which certain normalized excesses are

considered, see page 921ff therein.

In the following we want to give a short summary of the results obtained by working with

an individual threshold as defined in (3.13). The procedure is the same as in Section

3.3.1.

Lemma 3.3.9 Suppose (Q1, . . . , Qd) ∼ F and F is continuous in the neighborhood of

ω(F ) := (ω(F1), . . . , ω(Fd)) ∈ (−∞,∞]d and the pertaining copula satisfies CF ∈ D(G).

Then it holds for any K ⊆ {1, . . . , d}

P (Fj(Qj) ≤ 1− c, j ∈ K) = 1− c ·
∥∥∥∥∥
∑

j∈K

ej

∥∥∥∥∥
D

+ o(c)

for c ↓ 0.

Proof: First, note that if the copula CF belongs to the domain of attraction of an

EVD G and the |K|-variate margin of the copula CF , denoted by CFK
, belongs to the

domain of attraction of the |K|-variate margin GK of the EVD G. Then the assertion

immediately follows with Corollary 2.3.19, i.e.

P (Fj(Qj) ≤ 1− c, j ∈ K) = CF

(∑

j∈K

(1− c)ej +
∑

j 6∈K

ej

)

= 1− c ·
∥∥∥∥∥
∑

j∈K

ej

∥∥∥∥∥
D

+ o(c) .

�
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3. Events of exceedances

Define by

Nc :=
∑

j≤d

1(1−c,1](Fj(Qj))(3.14)

the number of exceedances of Fj(Qj) above 1 − c among the system {Q1, . . . , Qd} for

any j ≤ d. The following lemma plays the crucial role with regard to the representation

of the fragility index based on individual thresholds.

Lemma 3.3.10 Assume the same assumptions as in Lemma 3.3.9.

Let Nc :=
∑

j≤d 1(1−c,1](Fj(Qj)) be the number of exceedances above 1− c. Then we have

(i) P (Nc = 0) = 1− c ·
∥∥∥
∑

1≤j≤d ej

∥∥∥
D
+ o(c) =: 1− c · a0 + o(c) , c ↓ 0,

(ii) and for k ≤ d− 1 we have

P (Nc = k) = c ·
∑

0≤j≤k

(−1)k−j+1

(
d− j

k − j

) ∑

T⊆{1,...,d}
|T |=d−j

∥∥∥∥∥
∑

i∈T

ei

∥∥∥∥∥
D

+ o(c)

=: c · ak + o(c)

for c ↓ 0 and

(iii)

P (Nc = d) = c ·
d∑

j=1

(−1)j+1
∑

T⊆{1...,d}
|T |=j

∥∥∥∥∥
∑

i∈T

ei

∥∥∥∥∥
D

+ o(c)

=: c · ad + o(c) , c ↓ 0 .

Proof: The proof is analogue to the proof of Lemma 3.3.3 by means of Lemma 3.3.9.

�

Corollary 3.3.11 Lemma 3.3.10 implies

ak = lim
c↓0

P (Nc = k)

c

=
∑

0≤j≤k

(−1)k−j+1

(
d− j

k − j

) ∑

T⊆{1,...,d}
|T |=d−j

∥∥∥∥∥
∑

i∈T

ei

∥∥∥∥∥
D

for 1 ≤ k ≤ d and a0 = limc↓0
P (Nc>0)

c
=
∥∥∥
∑

1≤j≤d ej

∥∥∥
D
.
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Using Lemma 3.3.10 we get the following result concerning the asymptotic distribution

of Nc given that we have already observed at least one exceedance. As we do in Section

3.3.1, we call this distribution the asymptotic conditional distribution of exceedance

counts, ACDEC. Although it is an implication of preceding results, we provide it as a

theorem due to its importance for future considerations.

Theorem 3.3.12 (ACDEC) Under the same assumptions of Lemma 3.3.9 we get

lim
c↓0

P (Nc = k |Nc > 0) =

=

∑
0≤j≤k(−1)k−j+1

(
d− j

k − j

)
∑

T⊆{1,...,d}
|T |=d−j

∥∥∑
i∈T ei

∥∥
D

∥∥∥
∑d

j=1 ej

∥∥∥
D

=: pk

for 1 ≤ k ≤ d− 1 and

lim
c↓0

P (Nc = d |Nc > 0) =

∑
1≤j≤d(−1)j+1

∑
T⊆{1,...,d}

|T |=j

∥∥∑
i∈T ei

∥∥
D∥∥∥

∑
1≤j≤d ej

∥∥∥
D

=: pd .

Since pj ≥ 0, 1 ≤ j ≤ d,
∑d

j=1 pj = 1 holds, p1, . . . , pd is a probability-distribution on

{1, . . . , d}.

Proof: The assertion immediately follows from Corollary 3.3.11 and the notes in the

proof of Theorem 3.3.7. �

Recall the definition of the extremal coefficient ε := ‖(1, . . . , 1)‖D ∈ [1, d] correspond-

ing to an EVD G(x) = exp(−‖x‖D), cf. Definition 2.2.4, and the term ”corresponding

extremal coefficient”, cf. Remark 3.1.2. Further, recall (2.18). Denote by GK the |K|-
variate margin of the EVD G corresponding to K ⊂ {1, . . . , d}. Then the extremal

coefficient corresponding to GK is defined by εK :=
∥∥∥
∑

j∈K ej

∥∥∥
D
=
∥∥∥
∑

j≤m ẽj

∥∥∥
D̃
, where

‖·‖D̃ is theD-norm corresponding to GK , see Lemma 3.1.1. Hence the ACDEC pk, k ≤ d,

is a composition of the extremal coefficients of the margins GK of G (included G itself)

where |K| ≥ d − k, i.e. pk, depends on the extremal coefficients corresponding to the

margins GK of dimension larger or equal d− k.
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3. Events of exceedances

Remark 3.3.13 Consider the EVD G(x) = exp(−‖x‖D) and denote by εK :=
∥∥∥
∑

j∈K ej

∥∥∥
D

the extremal coefficient corresponding to the |K|-variate margin GK of G, ∅ 6= K ⊂
{1, . . . , d}, see Definition 3.1.2. Then the ACDEC (pk respectively) as provided in The-

orem 3.3.12 can be represented in terms of the extremal coefficients corresponding to the

margins of G with dimension |K| ≥ d− k for any k ≤ d. Precisely we have

pk :=
1

ε

∑

0≤j≤k

(−1)k−j+1

(
d− j

k − j

) ∑

T⊆{1,...,d}
|T |=d−j

εT(3.15)

for any k ≤ d. Thereby recall the terming ”corresponding extremal coefficient”, cf.

Remark 3.1.2.

3.3.3. Examples for the ACDEC

Within this section we want to provide some examples for the ACDEC, which may

give a first insight into applications on it. This section will be divided into two parts.

The first part sets the focus on the D-norm. The second part focuses on the condition

CF ∈ D(G), which leads to the ”corresponding” D-norm via the limit in (2.34) within

Corollary 2.3.16.

3.3.3.1. Certain examples for the D-norm

Let us start with an easy example, which turns out to be crucial within applications

on the fragility index. With respect to the popular logistic EVD, cf. Example 2.1.14,

we want to consider the arbitrary Lλ-norm, which includes the two extreme cases of

maximum dependence and full independence in the tail of (Q1, . . . , Qd).

Lemma 3.3.14 Let
∥∥∥
∑

j∈A ej

∥∥∥
D

=
∥∥∥
∑

j∈B ej

∥∥∥
D

for arbitrary A,B ⊆ {1, . . . , d} with

|A| = |B|. Then we get

pk =

(−1)k+1

(
d

k

)
∑

0≤j≤k(−1)j

(
k

j

)∥∥∥
∑d−j

i=1 ei

∥∥∥
D

∥∥∥
∑

1≤j≤d ej

∥∥∥
D

, 1 ≤ k ≤ d− 1
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and

pd =

∑
1≤j≤d(−1)j+1

(
d

j

)∥∥∥
∑j

i=1 ei

∥∥∥
D

∥∥∥
∑

1≤j≤d ej

∥∥∥
D

.

Proof: This is elementary:

∑

0≤j≤k

(−1)k−j+1

(
d− j

k − j

) ∑

T⊆{1,...,d},
|T |=d−j

∥∥∥∥∥
∑

j∈T

ej

∥∥∥∥∥
D

=
∑

0≤j≤k

(−1)k−j+1

(
d− j

k − j

)(
d

d− j

)

︸ ︷︷ ︸

=









d

k

















k

j









∥∥∥∥∥

d−j∑

i=1

ei

∥∥∥∥∥
D

= (−1)k+1

(
d

k

) ∑

0≤j≤k

(−1)j

(
k

j

)∥∥∥∥∥

d−j∑

i=1

ei

∥∥∥∥∥
D

.

�

Note that the Lλ-norm fulfills the required symmetry condition in Lemma 3.3.14.

Corollary 3.3.15 (i) The choice of the Lλ-norm, cf. (7.1) for 1 < λ < ∞ implies

‖∑k
j=1 ej‖λ = k1/λ and therefore we get

pk = (−1)k+1

(
d

k

) ∑

0≤j≤k

(−1)j

(
k

j

)(
1− j

d

)1/λ

, 1 ≤ k ≤ d− 1

and

pd =
∑

1≤j≤d

(−1)j+1

(
d

j

)(
j

d

)1/λ

.

(ii) For the maximum-norm, cf. (7.1), we get∥∥∥
∑k

j=1 ej

∥∥∥
∞

= 1 and therefore

pk = (−1)k+1

(
d

k

) ∑

0≤j≤k

(−1)j

(
k

j

)
= 0 for 1 ≤ k ≤ d− 1
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and

pd =
∑

1≤j≤d

(−1)j+1

(
d

j

)
= 1 .

Hence in the case of the maximum-norm the ACDEC vanishes for k ≤ d − 1, i.e.

the whole mass of the distribution is on k = d.

(iii) For the L1-norm, cf. (7.1) for λ = 1, we get
∥∥∥
∑k

j=1 ej

∥∥∥
1
= k and hence

pk =

(−1)k+1

(
d

k

)
∑

0≤j≤k(−1)j

(
k

j

)
(d− j)

d

= 0 +
1

d
(−1)kk

∑

0≤j≤k−1

(−1)j

(
k − 1

j

)
= 0 , 2 ≤ k ≤ d

and p1 = 1.

Hence, in the case of the L1-norm, the ACDEC vanishes for k ≥ 2, i.e. the whole

mass of the distribution is on k = 1.

We want to use the two extreme cases ‖·‖1 and ‖·‖∞ to provide another example.

Example 3.3.16 (Marshall-Olkin) The convex combination of the maximum- and

the L1-norm

‖x‖MO := ϑ ‖x‖1 + (1− ϑ) ‖x‖∞ , x ∈ R
d, ϑ ∈ [0, 1]

is called the Marshall-Olkin norm (see Falk et al. [19], Example 4.3.2, for the so called

Marshall-Olkin df). Note that ‖·‖MO defines a D-norm, since the convex combination

of two Pickands dependence functions is a Pickands dependence function (see Section

4.3 in Falk et al. [19]) and the D-norm can be represented by means of the Pickands

dependence function, see (2.7).

By means of Theorem 3.3.12, Lemma A.4 and the binomial formula
∑m

j=0(−1)j
(
m
j

)

= (1 + (−1))m = 0 we have

pk :=

∑
0≤j≤k(−1)k−j+1

(
d− j

k − j

)
∑

T⊆{1,...,d}
|T |=d−j

(
ϑ
∥∥∑

i∈T ei

∥∥
1
+ (1− ϑ)

∥∥∑
i∈T ei

∥∥
∞

)

ϑ
∥∥∥
∑d

j=1 ej

∥∥∥
1
+ (1− ϑ)

∥∥∥
∑d

j=1 ej

∥∥∥
∞
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=

∑
0≤j≤k(−1)k−j+1

(
d− j

k − j

)(
d

d− j

)
(ϑ(d− j) + (1− ϑ))

ϑd+ (1− ϑ)

=

(
d

k

)
∑

0≤j≤k(−1)k−j+1

(
k

j

)
(ϑ(d− 1) + 1− ϑj))

ϑd + (1− ϑ)

=

(
d

k

)
(−1)kϑ

∑
0≤j≤k(−1)j

(
k

j

)
j

ϑd+ (1− ϑ)

=





(dk)(−1)kϑ(−1)kk!
ϑd+1−ϑ

, k = 1

0, 2 ≤ k ≤ d− 1 .

for k ≤ d− 1 and

pd =

∑
1≤j≤k(−1)j+1

∑
T⊆{1,...,d}

|T |=j

(
ϑ
∥∥∑

i∈T ei

∥∥
1
+ (1− ϑ)

∥∥∑
i∈T ei

∥∥
∞

)

ϑ
∥∥∥
∑d

j=1 ej

∥∥∥
1
+ (1− ϑ)

∥∥∥
∑d

j=1 ej

∥∥∥
∞

=

∑
1≤j≤k(−1)j+1

(
d

j

)
(ϑj + (1− ϑ))

ϑd + (1− ϑ)

=
1− ϑ

ϑd + 1− ϑ

for k = d. Hence we obtain

p1 =
ϑd

ϑd+ 1− ϑ
, pd =

1− ϑ

ϑd + 1− ϑ

and pk = 0 for 2 ≤ k ≤ d − 1, i.e. the Marshall-Olkin norm implies that the whole

mass of the distribution is on k = 1 and k = d. For ϑ = 1 we get the L1-norm and

for ϑ = 0 we get the maximum-norm. Hence the parameter ϑ determines the degree of

dependence between the margins of G (the asymptotic dependence between the margins

of F respectively) and covers the cases of total dependence as well independence. For

further results ascribed to the Marshall-Olkin norm, see Example 4.2.19 and Remark

4.4.3.
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In the particular case, where the D-norm is the usual Lλ-norm with λ ∈ [0,∞], we

can derive the limit

(3.16) lim
d→∞

pk = lim
d→∞

pk(d)

of the ACDEC as the dimension d increases.

With the results of Corollary 3.3.15, (ii) and (iii), the limit behavior of pk in (3.16) is

clear for λ ∈ {1,∞}. We, therefore, restrict ourselves in the following to λ ∈ (0,∞).

The next proposition provides the asymptotic ACDEC for the Lλ-norm.

Proposition 3.3.17 (Asymptotic ACDEC) Suppose that the underlying D-norm is

the Lλ-norm with 1 < λ <∞. Then we have for k ∈ N

p∗k(λ) := lim
d→∞

pk =
1

λk

k−1∏

j=1

(
1− 1

jλ

)
.

Proof: First, recall the assertion of Lemma A.4. Further, recall that

pk = pk(d) =

(
d

k

) ∑

0≤j≤k

(−1)k−j+1

(
k

j

)(
1− j

d

)1/λ

, 1 ≤ k ≤ d.

Put f(x) := x1/λ, x ≥ 0. The Taylor expansion of length k implies for ε ∈ (0, 1)

f(1− ε) = f(1) +
∑

1≤i≤k−1

f (i)(1)

i!
(−ε)i + f (k)(ξ)

k!
(−ε)k,

where ξ ∈ (1− ε, 1) and

f (i)(x) = x
1
λ
−i

∏

0≤r≤i−1

(
1

λ
− r

)
.

We, thus, obtain for 1 ≤ j ≤ k < d with ε = j/d

(
1− j

d

)1/λ

= 1 +
∑

1≤i≤k−1

(
−j
d

)i
∏

0≤r≤i−1

(
1
λ
− r
)

i!

+ ξ
1
λ
−k

j

(
−j
d

)k
∏

0≤r≤k−1

(
1
λ
− r
)

k!
,

where ξj ∈ (1− j/d, 1). This implies for fixed 1 ≤ k < d

pk =

(
d

k

) ∑

0≤j≤k

(−1)k−j+1

(
k

j

)(
1− j

d

)1/λ
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=

(
d

k

)(
(−1)k+1 +

∑

1≤j≤k

(−1)k−j+1

(
k

j

)(
1− j

d

)1/λ
)

=

(
d

k

)(
(−1)k+1 +

∑

1≤j≤k

(−1)k−j+1

(
k

j

){
1 +

∑

1≤i≤k−1

(
−j
d

)i
∏

0≤r≤i−1

(
1
λ
− r
)

i!

+ ξ
1
λ
−k

j

(
−j
d

)k
∏

0≤r≤k−1

(
1
λ
− r
)

k!

})

=

(
d

k

) ∑

1≤j≤k

(−1)k−j+1

(
k

j

){ ∑

1≤i≤k−1

(
−j
d

)i
∏

0≤r≤i−1

(
1
λ
− r
)

i!

+ ξ
1
λ
−k

j

(
−j
d

)k
∏

0≤r≤k−1

(
1
λ
− r
)

k!

}

=

(
d

k

) ∑

1≤i≤k−1

∏
0≤r≤i−1

(
1
λ
− r
)

i!

( ∑

1≤j≤k

(−1)k−j+1

(
k

j

)(
−j
d

)i
)

+

(
d

k

)∏
0≤r≤k−1

(
1
λ
− r
)

k!

∑

1≤j≤k

(−1)k−j+1

(
k

j

)(
−j
d

)k

ξ
1
λ
−k

j .

The first term in the final equation on the right hand side above vanishes by Lemma

A.4. For fixed k and d→ ∞, the second term converges to
∏

0≤r≤k−1

(
1
λ
− r
)

(k!)2

∑

1≤j≤k

(−1)−j+1

(
k

j

)
jk = (−1)k−1

∏
0≤r≤k−1

(
1
λ
− r
)

k!

=
1

λk

k−1∏

j=1

(
1− 1

jλ

)

by Lemma A.4. �

Note that p∗k(λ) = 1/(λk)
∏k−1

j=1

(
1− 1

jλ

)
, k ∈ N, is the distribution of a stopping

time: Let X1, X2 . . . be an independent rv with values in {0, 1} and

P (Xj = 0) = 1− 1

jλ
= 1− P (Xj = 1), j ∈ N.

Put

τ(λ) := min {j ∈ N : Xj = 1} .

Then, obviously,

P (τ(λ) = k) =
1

λk

k−1∏

j=1

(
1− 1

jλ

)
= p∗k(λ), k ∈ N.
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Note that P (τ(λ) < ∞) = 1, 1 ≤ λ < ∞, whereas P (τ(∞) = ∞) = 1, if we include

λ ∈ {1,∞} in our considerations.

Denote by Pλ the ACDEC as given in 3.3.15, i.e., Pλ(k) = pk(d), k ∈ N. Then

Proposition 3.3.17 can be formulated as follows, where →D denotes weak convergence.

Proposition 3.3.18 We have for λ ∈ [1,∞) as d→ ∞

Pλ →D τ(λ).

The following Example is motivated by a similar one taken from Geluk et al. [22],

Example 6 together with an extension of Theorem 3 therein.

Example 3.3.19 (Weighted Pareto) Let X1, . . . , Xm be an independent and identi-

cally Pareto distributed rv with parameter α > 0. Put

Qi :=
m∑

j=1

λijXj, 1 ≤ i ≤ d,

where the weights λij are nonnegative and satisfy
∑m

j=1 λ
α
ij = 1, 1 ≤ i ≤ d.

The df of the rv Q = (Q1, . . . , Qd) is in the domain of attraction of the EVD

G∗(s) = exp

(
−

m∑

j=1

max
i≤d

(
λij
si

)α
)
, s = (s1, . . . , sd) > 0,(3.17)

with standard Fréchet margins Gk(s) = exp (−s−α), s > 0, 1 ≤ k ≤ d. This can be seen

by proving that

P

(
m∑

j=1

λijXj ≤ n1/αsi, 1 ≤ i ≤ d

)

= 1− 1

n

(
m∑

j=1

max
i≤d

(
λij
si

)α

+ o(1)

)
, s > 0 ∈ R

d,

which follows from tedious but elementary computations, using conditioning on Xj = xj,

j = 2, . . . , m.

As a consequence, we obtain that the copula pertaining to X is in the domain of

attraction of G(x) = exp (−‖x‖D), x ≤ 0 ∈ Rd, where the D-norm is

‖x‖D :=

m∑

j=1

(
max
i≤d

(
λαij |xi|

))
, x ∈ R

d,

see (3.17).
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3.3. Asymptotic distribution of exceedance counts

3.3.3.2. Certain examples for the copula

In the following we show a certain choice of parametric models for the copula CF , on

which we require that it is in the domain of attraction of an EVD G with corresponding

D-norm ‖·‖D.
Even if we are in the situation that we know the df F , it will be hard work to

determine the domain of attraction F belongs to (in case it exists) in the majority of

cases. Concerning this matter, one can find characterizations of multivariate domains

of attraction in Falk et al. [19], Theorem 5.3.1 or in Resnick [56], Proposition 5.15. One

might check the sufficient conditions for F ∈ D(G) given there.

We want to follow another approach within this Section. It is common to model the

dependence structure of a df F with an arbitrary family of multivariate parametric

copula function C. This involves elliptical copulas, such as the Normal-copula and the

t-copula, as well as the family of Archimedean copulas, with popular members as the

Frank and the Clayton copulas, for example. For more detailed information, see Nelsen

[52].

Recall that we are able to compute theD-norm by means of the copula. The necessary

tools have already been provided in Chapter 2.

Suppose that (Q1, . . . , Qd) ∼ F ∈ D(G). Then the corresponding copula CF converges

to the copula CG of G, see Theorem 2.3.12. Furthermore, we have shown that the

convergence of the copulas is equivalent to

lim
t↓0

1− CF (1 + tx)

t
= ‖x‖D ,(3.18)

see Corollary 2.3.16.

Now we want to provide some examples for the ACDEC, using the limit result in

(3.18).

A popular parametric copula model in financial mathematics and insurances is the family

of Archimedean copulas; see Chapter 4 in Nelsen [52] for an appealing overview. The

following definition is taken from McNeil and Nĕslehová [48], Definition 2.2.

Definition 3.3.20 A nonincreasing and continuous function ϕ : [0, 1] → [0,∞), which

satisfies

(i) ϕ is strictly decreasing on (0, 1],
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3. Events of exceedances

(ii) ϕ(1) = 0,

(iii) limx↓0 ϕ(x) = ∞

is called an Archimedean generator. A d-dimensional copula Cϕ is called Archime-

dean if it permits the representation

Cϕ(u) = ϕ−1(ϕ(u1) + . . .+ ϕ(um)) , u ∈ [0, 1]

for some Archimedean generator ϕ and its inverse ϕ−1(t) := inf{x > 0 : ϕ(x) ≤ t}.

Note that McNeil and Nĕslehová [48] define Archimedean copulas in terms of ϕ instead

of ϕ−1, as done in Definition 3.3.20. We use the above definition, since it is in line with the

majority of authors defining Archimedean copulas. The following theorem is Theorem

2.2 in McNeil and Nĕslehová [48] and provides necessary and sufficient conditions on ϕ

such that Cϕ is a d-dimensional copula on [0, 1]d.

Theorem 3.3.21 Let ϕ be an Archimedean generator as defined in Definition 3.3.20.

Then C : [0, 1]d → [0, 1] given by

c(u) = ϕ
(
ϕ−1(u1) + . . .+ ϕ−1(ud)

)
, u ∈ [0, 1]d

is a d-dimensional copula if and only if ϕ is d-monotone on [0,∞) (see Definition A.2

for the definition of d-monotonicity).

Proof: See McNeil and Nĕslehová [48].

The following proposition shows that under certain additional conditions on the gen-

erator ϕ, the limit in (2.34) equals the L1-norm.

Proposition 3.3.22 Let Cϕ be an Archimedean Copula and assume that the generator

ϕ is differentiable to the left in x = 1 and that the left derivative of ϕ in x = 1 is not

equal to 0. Then we get

lim
t↓0

1− Cϕ(1+ tx)

t
= ‖x‖1 , x ≤ 0 .

Proof: At first note that Cϕ(1 + tx) = ϕ−1
(∑

j≤d ϕ(1 + txj)
)
, xj ≤ 0, j ≤ d follows

from definition. Therefore we get
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lim
t↓0

1− Cϕ(1+ tx)

t
= lim

t↓0

ϕ−1
(∑

j≤d ϕ(1)
)
− ϕ−1

(∑
j≤d ϕ(1 + txj)

)

t

= lim
t↓0

ϕ−1
(∑

j≤d ϕ(1)
)
− ϕ−1

(∑
j≤d ϕ(1) +

∑
j≤d ϕ(1 + txj)

)

∑
j≤d ϕ(1 + txj)

·
∑

j≤d

ϕ(1 + txj)

txj
xj

= lim
t↓0

(−1)
ϕ−1

(∑
j≤d ϕ(1) +

∑
j≤d ϕ(1 + txj)

)
− ϕ−1

(∑
j≤d ϕ(1)

)

∑
j≤d ϕ(1 + txj)

·
∑

j≤d

ϕ(1 + txj)− ϕ(1)

txj
xj

= lim
t↓0

ϕ−1
(∑

j≤d ϕ(1) +
∑

j≤d ϕ(1 + txj)
)
− ϕ−1

(∑
j≤d ϕ(1)

)

∑
j≤d ϕ(1 + txj)

lim
t↓0

∑

j≤d

ϕ(1 + txj)− ϕ(1)

txj
(−xj)

=
(
ϕ−1(0)

)′ ·
∑

j≤d

(ϕ′(1)(−xj)) =
1

ϕ′(ϕ−1(0))
·
∑

j≤d

(ϕ′(1)(−xj))

=
∑

j≤d

(−xj) =
∑

j≤d

|xj | = ‖x‖1

for xj ≤ 0, j ≤ d. �

Note that the cases ‖x‖D = ‖x‖∞ and ‖x‖D = ‖x‖1 represent the two extreme sce-

narios of asymptotic dependence, independence in the system {Q1, . . . , Qd} respectively.

Therefore, the above result shows that the application of Archimedean copulas, which

fulfills the conditions in Proposition 3.3.22, leads to a model that inhibits asymptotic

independence among the margins of (Q1, . . . , Qd).

Example 3.3.23 (Archimedean copula) Take for example the Clayton copula with

generator

ϕC(x) =
1

ϑ

(
(x)−ϑ − 1

)
, ϑ ∈ [−1,∞)\0

or the Frank copula with generator

ϕF (x) = − log

(
exp(−ϑx)− 1

exp(−ϑ)− 1

)
, ϑ > 0 ,
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which are popular copulas within the application of finance and economics (see Nelsen

[52], Chapter 4). Both generator functions fulfill the conditions in Proposition 3.3.22.

Hence we get ‖x‖D = ‖x‖1, i.e. the margins of (Q1, . . . , Qd) are asymptotically inde-

pendent. Hence the ACDEC is given by p1 = 1 and pk = 0 for 2 ≤ k ≤ d, see Corollary

3.3.15, (iii).

Take now the Gumbel copula with generator

ϕG(x) = (− log(x))λ, λ ∈ [1,∞) .

Hence the expression for the Gumbel copula is

CGu(u) = exp


−

(∑

j≤d

(− log(uj))
λ

) 1
λ


 = exp (−‖log(u)‖λ) ,(3.19)

see also Example 2.3.5.

The derivative of the generator ϕG equals 0 in x = 1, hence the condition in Propo-

sition 3.3.22 is not fulfilled.

With the Taylor approximation exp(x) = 1+x+o(x2), x ∈ R and ln(1+x) = x+O(x2)

for x ≤ 0 close to 0 we get

1− CGu(1 + tx) = 1− exp(−‖− log(1 + txj), j ≤ d‖λ)
= 1− exp(−

∥∥−txj +O(t2), j ≤ d
∥∥
λ
)

= 1− (1−
∥∥−txj +O(t2), j ≤ d

∥∥
λ
+ o(

∥∥−txj +O(t2), j ≤ d
∥∥2
λ
))

=
∥∥−txj +O(t2), j ≤ d

∥∥
λ
+ o(

∥∥−txj +O(t2), j ≤ d
∥∥2
λ
) .

Therefore we have

lim
t↓0

1− CGu(1 + tx)

t
(3.20)

= lim
t↓0

t
(
‖−xj +O(t), j ≤ d‖λ + o(‖−txj +O(t), j ≤ d‖2λ

)

t
= ‖x‖λ .

Hence, the Gumbel copula corresponds to the arbitrary Lλ-norm and therefore covers as

well the case of asymptotic full dependence and independence between the margins of

(Q1, . . . , Qd). The ACDEC is provided by Corollary 3.3.15.

The Ali-Mikhail-Haq family of copulas with generator function

ϕAMH(x) = − ln

(
1− θ(1− x)

x

)
, θ ∈ (−1, 1)
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fulfills the condition in Proposition 3.3.22 and hence the ACDEC is given by p1 = 1 and

pk = 0 for 2 ≤ k ≤ d, see Corollary 3.3.15, (iii).

Also, the Fairlie-Gumbel-Morgenstern copula (see Example 3.12 in Nelsen [52]), which

is popular within financial applications, leads to the L1-norm using (3.18) and the rule

of L‘Hospital.

We want to note that the majority of generators of Archimedean copulas (see for

example the listing in Table 4.1 in Nelsen [52]) fulfill the conditions in Proposition

3.3.22 and this therefore implies asymptotic independence between the margins of an rv

(Q1, . . . , Qd) if its copula belongs to the domain of attraction of an EVD.

We summarize to inform the interested reader that, unfortunately, a wide range of cop-

ulas, mainly Archimedean copulas, provide a parametric model that inhibits asymptotic

independence. This is an undesirable property if one wishes to model the obvious present

tail dependence in random systems like the financial one. With respect to above results,

the Gumbel copula for λ > 1 provides a useful parametric model for tail dependence.

Applying Corollary 2.3.19, the tail of an arbitrary copula, which belongs to the domain

of attraction of an EVD can be approximated by

C(y) ∼ 1− ‖y − 1‖D , y ∈ [0, 1]d ,

Hence, the following approximation for the resulting D-norm concerning the Gumbel

copula

‖x‖D ∼ 1− exp (−‖log(x+ 1)‖λ)

holds for x < 0 close to 0. In particular, we conclude that in the tail of the Gumbel

copula, theD-norm is a function that can be approximated by a transformed exponential

function.
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4. Representation and Extension of

the Fragility Index

This chapter aims to provide and extend a measure for the stability of a random system,

namely the fragility index. This work is based on the results of Geluk et al. [22],

who established the fragility index in the framework of financial systems. We want to

generalize their approach to an arbitrary setting where we consider a stochastic system

with special interest to its tail dependence structure.

With the focus on the system‘s stability, we provide an extension of the fragility index

that is even able to capture the amount of risk when some components of the system

have already exceeded their critical threshold. It turns out that the fragility index is a

suitable measure for tail dependence, even if the margins of the system‘s distribution

do not belong to the same domain of attraction. More precisely, we regard the fragility

index to be a generalization of the extremal coefficient (see Smith [64]) by dropping the

assumption that the distribution of the system has identical margins. We focus on this

topic in Section 4.3.

A stochastic system might also be considered as the finite sequence taken from a

stochastic process. Doing so we provide in Section 4.4 the so-called sojourn index,

which measures the excursion time of a stochastic process exceeding a high threshold

within a finite sequence at a certain time point. Therefore, the amount of asymptotic

dependence within a finite sequence of a stochastic process can be captured by the

number of sequential exceedances in comparison to the fragility index, which provides

the expected total number of exceedances given at least one (or several) exceedance(s).

We start with the representation of the fragility index by norms within Section 4.1.

Then we continue with the extension of the fragility index in Section 4.2. As already

mentioned, Section 4.3 aims to point out the meaning of the fragility index in comparison
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to the extremal coefficient and Section 4.4 provides a short excursion of the fragility index

to the world of stochastic processes.

4.1. The Fragility Index

Based on the results for the ACDEC - see Section 3.3 - we are able to present the

fragility index by norms. We start with the representation of the fragility index by

means of exceedances above a common threshold and continue by means of exceedances

above an individual threshold.

Definition 4.1.1 Denote by Ns the number of exceedances within the random system

{Q1, . . . , Qd} as defined in (3.10).

The limit

FI : = lim
sր

E(Ns |Ns > 0)

is called the fragility index, abbr. FI, if it exists. The FI defines a measure for asymptotic

stability at the system‘s level.

Hence, the fragility index is the limit of the expected number of exceedances above a

high threshold within the random system as the threshold increases, given there is at

least one exceedance. The following proposition provides the representation of the FI

by norms.

Proposition 4.1.2 Under the assumptions of Lemma 3.3.1 we get

FI =

∑d
j=1 γj∥∥∥

∑d
j=1 γjej

∥∥∥
D

.(4.1)

Proof: Recall Condition (3.1), ω∗ and γj defined therein and the assertion of Lemma

3.3.3. Then we get

lim
s↑ω∗

E(Ns | Ns > 0) =

d∑

j=1

lim
s↑ω∗

E
(
1(s,∞)(Qj) | Ns > 0

)

=

d∑

j=1

lim
s↑ω∗

P (Qj > s)

1− P (Ns = 0)
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4.1. The Fragility Index

=
d∑

j=1

lim
s↑ω∗

1− Fj(s)

1− Fκ(s)

1− Fκ(s)

1− P (Ns = 0)

=

∑d
j=1 γj∥∥∥

∑d
j=1 γjej

∥∥∥
D

.

�

Remark 4.1.3 Note that FI ∈ [1, d] and we call the financial system {Q1, . . . , Qd}
weak fragile if FI = 1 and strongly fragile if FI > 1. We also refer to these cases

as asymptotic stability, asymptotic instability of a random system respectively. This

coincides with the notation in Geluk et al. [22].

Now we want to consider the case γj = 1, j ≤ d, which follows from identical or tail-

equivalent margins in the framework of a common threshold. In this case, the resulting

fragility index coincides with the approach of exceedances above an individual threshold,

see Section 3.3.2. We will interpret this case and its implications extensively in Section

4.2.2 and for this moment request to suppose the case γj = 1, j ≤ d.

Corollary 4.1.4 Assume the conditions of Lemma 3.3.1 and further suppose that γj = 1

holds for j ≤ d. Then we get

FI =
d∥∥∥

∑
j≤d ej

∥∥∥
D

=
d

ε
,

where ε is the extremal coefficient corresponding to the EVD G, see Definition 2.2.4.

Further note that in the bivariate case, we have

FI =
2

ε
=

2

2− λup
,

where λup is the well known upper tail dependence coefficient (Geoffrey [25] and Sibuya

[60]), see Section 2.4. Recall that λup only measures upper tail dependence in the bivariate

case, where the FI serves as a measure for tail dependence in arbitrary dimensions.

Proof: The first assertion is a direct implication of Proposition 4.1.2 and the definition

of the extremal coefficient, cf. Definition 2.2.4. The second assertion follows by Equation

(2.38). �
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4. The Fragility Index

Hence we obtain the representation FI = d/ε in case of identical margins Fj , j ≤ d.

However, if one considers the approach of an individual threshold, we obtain the same

representation of the FI. This shows the following corollary.

Corollary 4.1.5 Consider the approach of exceedances above an individual threshold,

cf. Section 3.3.2, i.e. exceedances defined by {Qj > F−1j (1−c)} for c ↓ 0 and the number

of exceedances defined by Nc :=
∑

j≤d 1(1−c,1](Fj(Qj)). Then the fragility index is defined

by FI := limc↓0E(Nc |Nc > 0) and we get

FI =
d

ε
.(4.2)

Proof: Recall Lemmata 3.3.9 and 3.3.10. Hence we get

FI = lim
c↓0

E(Nc |Nc > 0) = lim
c↓0

∑

j≤d

E
(
1(1−c,1](Fj(Qj)) | Nc > 0

)

=
∑

j≤d

lim
c↓0

P (Fj(Qj) > 1− c)

1− P (Nc = 0)
=
d

ε
.

�

We want to mention that the resulting representation of the fragility index in (4.2) is

in line with results provided in de Haan and Ferreira [29], Section 7.4, who consider a

dependence coefficient called κ defined by

κ := lim
t→∞

E(K(t) |K(t) ≥ 1),

where K(t) is the number of exceedances within the system {X1, . . . , Xd}. Thereby

they define the exceedance {Xj ≥ Uj(t)} with the threshold Uj :=
(

1
1−Fj

)←
, i.e. they

focus on the domain of attraction of an EVD with Fréchet margins. Their dependence

coefficient κ coincides with the fragility index as given in Corollary 4.1.4, since we know

that the stable tail dependence function as named by L in de Haan and Ferreira [29],

Section 6.1.5, is equal to the D-norm together with the equality ‖(1, . . . , 1)‖D = ε. This

shows that the fragility index based on the approach of Section 3.3.2 and under the

assumption γj = 0 for j ≤ d respectively, leads to the same results as provided by de

Haan and Ferreira [29].

Finally we want to present an example of the fragility index. It shows the FI under

the popular parametric family of Gumbel copula.

84



4.2. Extension of the Fragility Index

Corollary 4.1.6 Consider the setting of Corollary 4.1.4, Corollary 4.1.5 respectively

and assume ‖·‖D = ‖·‖λ, i.e. the arbitrary Lλ-norm as defined in (7.1). This corresponds

to the assumption that the df F belongs to the domain of attraction of the logistic EVD.

Then we get

FI =





1, ‖·‖D = ‖·‖1
d1−1/λ, ‖·‖D = ‖·‖λ , 1 < λ <∞
d, ‖·‖D = ‖·‖∞

.

Hence, the Lλ-norm covers the whole range of asymptotic dependence within a random

system covering the case of asymptotic dependence as well asymptotic independence, see

Remark 4.1.3. This means the larger λ the higher the amount of tail dependence within

the regarded random system.

Remark 4.1.7 Note that under the setting of Corollary 4.1.4, Corollary 4.1.5 respec-

tively, we get

FI = 1 ⇔ ‖·‖D = ‖·‖1 and FI = d ⇔ ‖·‖D = ‖·‖∞ ,

i.e. the L1-norm corresponds to asymptotic stability of the random system where the

maximum-norm corresponds to asymptotic instability.

4.2. Extension of the Fragility Index

Within the preceding section we provided the fragility index as a measure for tail de-

pendence, which can also be used to characterize the asymptotic stability of a random

system.

Now we want to extend this approach. By means of the extended fragility index we

are additionally able to capture the amount of risk as well as the development of the risk-

structure in a random system {Q1, . . . , Qd} if the system already indicates instability,

i.e. there have already occurred at least m ≥ 2 exceedances.

The fragility index depends on whether one considers exceedances above a common

or an individual threshold, which may lead to different values for the fragility index

independently from the univariate margins and the tail dependence structure of the

df F of random system {Q1, . . . , Qd}. We want to start with the former one. The
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4. The Fragility Index

latter approach leads to a fragility index whose representation, i.e. its value in case of

existence, can be embedded in the approach of common threshold exceedances. The

difference between the two approaches is crucial with respect to the existence as well as

the representation of the extended fragility index. Hence we provide both approaches

separately from each other.

4.2.1. Approach of a common threshold

Consider the event of exceedance {Qj > s} for j ≤ d above a common threshold s

required to be high enough. Further, denote by Ns :=
∑d

j=1 1(s,∞)(Qj) the number of

exceedances as already defined in (3.10) with respect to considerations leading to the

asymptotic distribution of exceedance counts.

The extended FI is the asymptotic expected number of exceedances above a high

threshold, conditional on the assumption that there are at least m ≥ 1 exceedances.

The following definition is based on the definition of the conditional expectation of a

discrete random variable. Note that Ns is a discrete random variable with values in

[m; d].

Definition 4.2.1 Denote by Ns :=
∑d

j=1 1(s,∞)(Qj) the number of exceedances among

{Q1, . . . , Qd}. The limit

FI(m) := lim
s↑ω∗

E(Ns |Ns ≥ m), m ≤ d,

is called the extended fragility index whenever it exists for certain m ≤ d, where ω∗

is defined in (3.1). It defines a measure for asymptotic stability of a random system

{Q1, . . . , Qd} in the situation of at least m exceedances within the system. We call the

system {Q1, . . . , Qd} m-stable if FI(m) = m and fragile if FI(m) > m. According

to Geluk et al. [22] and Remark 4.1.3 we also refer to the asymptotic behaviour of

{Q1, . . . , Qd} by weakly fragile, resp. strongly fragile.

Especially for m = 1 we get the FI as defined in Definition 4.1.1.

The conditional expectation of Ns given the event {Ns ≥ m} is defined by

E(Ns |Ns ≥ m) =
d∑

k=1

k · P (Ns = k |Ns ≥ m)
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4.2. Extension of the Fragility Index

=
1

P (Ns ≥ m)

d∑

k=m

k · P (Ns = k)

=

∑d
k=m k · P (Ns = k)∑d
k=m P (Ns = k)

for m ≤ k ≤ d, given that the denominator is larger than 0. By means of the ACDEC

(see Theorem 3.3.7), the extended fragility index is therefore provided by

FI(m) :=

∑d
k=m kpk(γ)∑d
k=m pk(γ)

(4.3)

for those m ≤ d for which
∑d

k=m pk(γ) > 0 holds.

Hence the following considerations aim to give necessary and sufficient conditions

under which the extended fragility index is well-defined for certain m ≤ d, i.e. the de-

nominator satisfies
∑d

k=m pk(γ) > 0.

The content of the following lemma will be crucial for the main result concerning suf-

ficient and necessary conditions under which the FI(m) exists. Hence we explicitly

provide it, although the statements are rather obvious.

Lemma 4.2.2 Assume d ∈ N and an arbitrary subset M ⊆ {1, . . . , d} with |M | =: m ≤
d. Then it holds

(i)

P




d⋃

k=m

⋃

S⊆{1,...,d}
|S|=k

{Qi > s, i ∈ S,Qj ≤ s, j ∈ S∁}


 =

d∑

k=m

∑

S⊆{1,...,d}
|S|=k

P (Qi > s, i ∈ S,Qj ≤ s, j ∈ S∁) ,

(ii) {Qi > s, i ∈M} ⊆
{⋃d

k=m

⋃
S⊆{1,...,d}

|S|=k

{Qi > s, i ∈ S,Qj ≤ s, j ∈ S∁}
}
.

Proof: For any S 6= S̃ ⊆ {1, . . . , d} the sets {Qi > s, i ∈ S,Qj ≤ s, j ∈ S∁} and

{Qi > s, i ∈ S̃, Qj ≤ s, j ∈ S̃∁} are disjoint. This shows the assertion in (i).

Now we have to show (ii).The following considerations are based on the repeated ap-

plication of separation of an event into disjoint ones. In order to give an insight in
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4. The Fragility Index

the following argumentation, we start with an example: the event {Qi > s, i ∈ M}
can be separated into the disjoint events {Qi > s, i ∈ M,Qj1 ≤ s, j1 ∈ M∁} and

{Qi > s, i ∈ M,Qj1 > s, j1 ∈ M∁}. If we want to provide a decomposition concerning

to j1, j2, . . ., the considerations will be more complicated. Hence, let A := {Qi, i ∈ M}
and BK := {Qj1 ≤ s, . . . , QiL ≤ s,QjL+1

> s, . . . , Qj|K|
> s} with 0 ≤ |K| ≤ |M∁|,

K = {j1, . . . , jk} ⊆ I and 0 ≤ |L| ≤ |K| =: k. There exist a number of |K|!
disjoint events BK . We want to separate {Qi > s, i ∈ M} into the disjoint events

{Qi > s, i ∈M} ∩ BK . We obtain with the above considerations

{Qi > s, i ∈M} =
⋃

K⊆M∁

{Qi > s, i ∈ M,Qj ≤ s, j ∈ K,Ql > s, l ∈M∁\K}

=
⋃

K⊆M∁

{Qi > s, i ∈ M ∪ (i\K)︸ ︷︷ ︸
=:S∁

, Qj ≤ s, j ∈ K︸︷︷︸
=S

}

=
⋃

S⊆{1,...,d}
M⊆S, |S|≥|M|

{Qi > s, i ∈ S,Qj ≤ s, j ∈ S∁}

=
d⋃

k=m

⋃

S⊆{1,...,d}
|S|=k,M⊆S

{Qi > s, i ∈ S,Qj ≤ s, j ∈ S∁}

⊆
d⋃

k=m

⋃

S⊆{1,...,d}
|S|=k

{Qi > s, i ∈ S,Qj ≤ s, j ∈ S∁}

since within the last step the condition M ⊆ S is omitted. �

Remember, we assume {Q1, . . . , Qd} ∼ F where F is in the domain of attraction of an

EVD G with arbitrary margins. We shall see that the dependence structure within the

EVD G – represented by the D-norm, which is induced by the angular measure µ (see

Corollary 2.1.7) – plays the crucial role with respect to the question, for which m ≤ d

the extended fragility index is well-defined. In the framework of exceedances above a

common threshold, this further depends on the margins of F . The following proposition

excludes the cases under which the FI(m) is not defined with respect to the number m.

Together with Proposition 4.2.4 we provide a sufficient and necessary condition under

which the FI(m) is defined for certain m ≤ d depending on the asymptotic behavior

of the margins of F , cf. condition C in (3.1) and the dependence structure of the EVD

to whose domain of attraction the df F belongs to. The main result concerning the

extension of the fragility index is obtained by Theorem 4.2.5.
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4.2. Extension of the Fragility Index

Proposition 4.2.3 Suppose {Q1, . . . , Qd} ∼ F with corresponding copula CF , which

belongs to the domain of attraction of an EVD G with pertaining D-norm. Furthermore,

suppose

γi := lim
s↑ω∗

1− Fi(s)

1− Fκ(s)
= 0

for i ∈ I, where I ⊂ {1, . . . , d} or I = ∅, 0 ≤ |I| ≤ d − 1 and γj > 0 for j ∈ I∁. Let ω∗

be defined as in condition C, see (3.1). Recall the limits

ak(γ) = lim
s↑ω∗

P (Ns = k)

1− Fκ(s)

as defined in Corollary 3.3.5 for 0 ≤ k ≤ d. Further set m∗ := d − |I|. Then we get
∑d

k=m ak(γ) = 0 for m > m∗.

Proof: Consider S ⊆ {1, . . . , d} with |S| ≥ m∗ + 1 = d − |I| + 1. Hence we have

|S∁| ≤ |I| − 1, i.e. S ∩ I 6= ∅, namely there exists an index τk ∈ S ∩ I depending on

k ≥ m∗ and therefore lims↑ω∗
1−Fτk

(s)

1−Fκ(s)
= 0. We get for any k ≥ m∗ + 1

ak(γ) = lim
s↑ω∗

P (Ns = k)

1− Fκ(s)
= lim

s↑ω∗

∑

S⊆{1,...,d}
|S|=k

P (Qi > s, i ∈ S,Qj ≤ s, j ∈ S∁)

1− Fκ(s)

= lim sup
s↑ω∗

∑

S⊆{1,...,d}
|S|=k

P (Qi > s, i ∈ S\{τk}, Qτk > s,Qj ≤ s, j ∈ S∁)

1− Fκ(s)

≤ lim sup
s↑ω∗

∑

S⊆{1,...,d}
|S|=k

P (Qτk > s)

1− Fκ(s)

=
∑

S⊆{1,...,d}
|S|=k

lim sup
s↑ω∗

∑

S⊆{1,...,d}
|S|=k

1− Fτk(s)

1− Fκ(s)

︸ ︷︷ ︸
=0

= 0,

which implies ak(γ) = 0 for k ≥ m∗, since ak ≥ 0 for any k ≥ 0. �

Now we are ready to give a sufficient and necessary condition for a well-defined ex-

tended fragility index.

Proposition 4.2.4 Assume the same assumptions as in Proposition 4.2.3 and put I =

{i ∈ {1, . . . , d} : γi = 0}. Consider an arbitrary but fixed m ≤ m∗ = |I∁|. Then we have
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∑d
k=m ak(γ) > 0 if and only if there exists K ⊆ I∁ with m ≤ |K| ≤ m∗ such that

∑

∅6=T⊆K

(−1)|T |−1

∥∥∥∥∥
∑

i∈T

γiei

∥∥∥∥∥
D

> 0 .(4.4)

Proof: First assume
∑
∅6=T⊆K(−1)|T |−1

∥∥∑
i∈T γiei

∥∥
D
> 0 holds for K ⊆ I∁. By means

of Lemma A.3, Theorem A.6 and Corollary 2.3.19 we further have

lim
s↑ω∗

P (Qi > s, i ∈ K)

1− Fκ(s)
= lim

s↑ω∗

P (Fi(Qi) > Fi(s), i ∈ K)

1− Fκ(s)
(4.5)

= lim
s↑ω∗

1−∑∅6=T⊆K(−1)|T |−1P (Fi(Qi) ≤ Fi(s), i ∈ T )

1− Fκ(s)

= lim
s↑ω∗

1−∑∅6=T⊆K(−1)|T |−1CT (Fi(s), i ∈ T )

1− Fκ(s)

= lim
s↑ω∗

∑
∅6=T⊆K(−1)|T |−1(1− CT (Fi(s), i ∈ T ))

1− Fκ(s)

= lim
s↑ω∗

∑
∅6=T⊆K(−1)|T |−1(1− CT (1− (1− Fi(s)), i ∈ T ))

1− Fκ(s)

= lim
s↑ω∗

∑

∅6=T⊆K

(−1)|T |−1
1

1− Fκ(s)
·

(
1− CT

(
1− (1− Fκ(s))

1− Fi(s)

1− Fκ(s)
, i ∈ T

))

=
∑

∅6=T⊆K

(−1)|T |−1

∥∥∥∥∥
∑

i∈T

γiei

∥∥∥∥∥
D

.

Hence (4.4) is equivalent to lims↑ω∗ c(s)−1P (Qi > s, i ∈ K) > 0. Since this limit exists

we get with Lemma 4.2.2

lim
s↑ω∗

P (Qi > s, i ∈ K)

c(s)

≤ lim
s↑ω∗

d∑

k=|K|

∑

S⊆{1,...,d}
|S|=k

P (Qi > s, i ∈ S,Qj ≤ s, j ∈ S∁)

c(s)
= a|K|(γ) .

Hence, we have a|K|(γ) > 0, which implies
∑d

k=m ak(γ) > 0 for every m ≤ |K|. This is
the sufficient condition.
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Now assume
∑d

k=m ak(γ) > 0 for every m ≤ |K|. Recall that
d∑

k=m

ak(γ) = lim
s↑ω∗

d∑

k=m

1

c(s)

∑

S⊆{1,...,d}
|S|=k

P (Qi > s, i ∈ S,Qj ≤ s, j ∈ S∁) .

Hence this implies that there exists an index set K ⊆ {1, . . . , d} with m ≤ |K| ≤ m∗,

such that

lim
s↑ω∗

P (Qi > s, i ∈ K,Qj ≤ s, j ∈ K∁)

c(s)
> 0

holds. Now the inequalities

0 < lim
s↑ω∗

P (Qi > s, i ∈ K,Qj ≤ s, j ∈ K∁)

c(s)

= lim sup
s↑ω∗

P (Qi > s, i ∈ K,Qj ≤ s, j ∈ K∁)

c(s)

≤ lim sup
s↑ω∗

P (Qi > s, i ∈ K)

c(s)
= lim

s↑ω∗

P (Qi > s, i ∈ K)

c(s)

=
∑

∅6=T⊆K

(−1)|T |−1

∥∥∥∥∥
∑

i∈T

γiei

∥∥∥∥∥
D

yield the assertion for the necessary condition where the last identity is due to the

considerations following (4.5) downward. �

The above considerations allow us to give a necessary and sufficient condition under

which the extended fragility index is well-defined. It is the main result within this

section.

Theorem 4.2.5 (Extended Fragility Index) Consider a random system

{Q1, . . . , Qd}, which can be represented by the random vector (Q1, . . . , Qd). Assume

(Q1, . . . , Qd) ∼ F , where F is continuous in its upper tail and its corresponding copula

CF belongs to the domain of attraction of an EVD G with pertaining D-norm. Further

put I := {i ∈ {1, . . . , d} : γi = 0}. We have |I| ≤ d − 1 and I = ∅ is allowed, too.

Furthermore, define m∗ := |I∁|. There exists an index set K ⊆ I∁ (hence |K| ≤ m∗)

such that

∑

∅6=T⊆K

(−1)|T |−1

∥∥∥∥∥
∑

i∈T

γiei

∥∥∥∥∥
D

> 0(4.6)
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holds, if and only if the FI(m) is well-defined for m ≤ |K|. In this case it

is given by

FI(m) =

∑d
k=m k · pk(γ)∑d
k=m pk(γ)

=

∑d
k=m k ·

∑k
j=0(−1)k−j+1

(
d− j

k − j

)
∑

T⊆{1,...,d}
|T |=d−j

‖∑i∈T γiei‖D

∑d
k=m

∑k
j=0(−1)k−j+1

(
d− j

k − j

)
∑

T⊆{1,...,d}
|T |=d−j

‖∑i∈T γiei‖D
,

where the ACDEC pk(γ) is defined in Theorem 3.3.7.

Proof: Note that we have
∑d

k=m pk(γ) > 0 if and only if
∑d

k=m ak(γ) > 0, where pk :=

ak(γ)/a0(γ) and a0(γ) > 0 holds, see Corollary 3.3.4. Then the assertion follows together

with Proposition 4.2.4. The representation of the FI(m) follows by the considerations

leading to (4.3) and the representation of the ACDEC pk(γ), see Theorem 3.3.7. �

Remark 4.2.6 Theorem 4.2.5 implies that in the situation of a common threshold s the

value of FI(m) depends on the univariate margins of the df F of (Q1, . . . , Qd), since γi

is the limit of 1−Fi(s)
1−Fκ(s)

for s ↑ ω∗. This connection between the value of the FI(m) and

the type of margins Fj plays the central and crucial role in Geluk et al. [22] – therein,

the results are restricted to the FI.

Further, we remark that the domain of the FI(m) depends on the univariate margins of

F as well as on the dependence structure, captured by the D-norm, of the |K|-variate
margin GK of the EVD G to which domain of attraction the df F belongs to.

Of course one expects the extension of the fragility index for m = 1 to coincide with

the representation of the fragility index as given in Proposition 4.1.2. Indeed this is true,

which will be shown next.

The representation of the extended fragility index for m = 1 can be derived as follows

from the representation of the FI(m) in Theorem 4.2.5. At first, recall that we have
∑d

k=1 pk(γ) = 1 by Theorem 3.3.7. Hence we get

FI =
d∑

k=1

kpk(γ)
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=

d∑

k=1

k ·

∑d
k=1 k ·

∑k
j=0(−1)k−j+1

(
d− j

k − j

)
∑

T⊆{1,...,d}
|T |=d−j

‖∑i∈T γiei‖D

‖∑j≤d γjej‖D
.(4.7)

We show that (4.7) equals (4.1).

Recall the definition of the ACDEC as given in Theorem 3.3.7. We get

∑

1≤k≤d

k
∑

0≤j≤k

(−1)k−j+1

(
d− j

k − j

) ∑

T⊆{1,...,d}
|T |=d−j

∥∥∥∥∥
∑

i∈T

γiei

∥∥∥∥∥
D

=
∑

0≤j≤d

∑

1≤k≤d

k(−1)k−j+1

(
d− j

k − j

) ∑

T⊆{1,...,d}
|T |=d−j

∥∥∥∥∥
∑

i∈T

γiei

∥∥∥∥∥
D

=
∑

0≤j≤d

∑

T⊆{1,...,d}
|T |=d−j

∥∥∥∥∥
∑

i∈T

γiei

∥∥∥∥∥
D

∑

1≤k≤d

k(−1)k−j+1

(
d− j

k − j

)

=
∑

T⊆{1,...,d}
|T |=1

∥∥∥∥∥
∑

i∈T

γiei

∥∥∥∥∥
D

=
∑

j≤d

‖γjej‖D =
∑

j≤d

γj

where the last but one equation follows by Lemma A.5.

In Section 3.2 we provided an extensive discussion on equivalent conditions to the

condition in (4.6). Recall that the D-norm is induced by an angular measure µ on the

d-variate unit sphere Sd and the angular measure corresponds to an exponent measure

ν on [−∞, 0]d\{−∞}. Further note that under the assumption CF ∈ D(G) the tail of

the df F can be approximated by that of a GPD, cf. Corollary 2.3.19. With respect

to these considerations, Condition (4.6) can be interpreted as follows. There exists a

GPD W (x) = 1 −
∥∥∥
(

1
x1
, . . . , 1

xd

)∥∥∥
D
with |K|-variate marginal df WK having a survival

function for which Condition (4.6) is fulfilled with xi := 1/γi for i ∈ K. Based on

the results of Section 3.2 we want to consider conditions equivalent to (4.6) in order to

characterize sufficient and necessary conditions under which the FI(m) is defined for

certain 1 ∈ {m. . . , d}.
First note that Condition (4.6) is equivalent to

lim
s↑ω∗

P (Qi > s, i ∈ K)

c(s)
> 0 ,

cf. the first part of the proof of Proposition 4.2.4, i.e. the convergence rate of the survival

function of the |K|-variate margin FK of F is not larger than the convergence rate at
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4. The Fragility Index

which the univariate tail 1− Fκ =: c(s) converges to 0.

Note that further equivalences of Condition (4.6) can be taken from Corollary 3.2.6.

However, Theorem 4.2.5 only provides the existence of such an index set |K|. Indeed,
in any case, there exists such an index set, take K = {κ}, which obviously fulfills

Condition (4.4). Of course K is not uniquely defined, and there may exist several index

sets which fulfill (4.4). Needless to say we are also interested in that index set K,

which is the largest one among those fulfilling Condition (4.4). Indicating such a largest

Kmax ⊆ I∁, we define by

mmax := max{1 ≤ m ≤ m∗ : FI(m) is well defined}

the largest number for which the extended fragility index FI(m) exists.

The largest possible index set is I∁. It can be regarded to be the most desired index set,

since this implies that the FI(m) is well-defined on the maximum range {1, . . . , m∗}.
Although the following assertion is a special case of Theorem 4.2.5, i.e. put K = I∁, we

provide it as a corollary.

Corollary 4.2.7 Assume the same assumptions as in Theorem 4.2.5. Put I := {i ∈
{1, . . . , d} : γi = 0} and m∗ =

∣∣I∁
∣∣. Then if and only if

∑

∅6=T⊆I∁

(−1)|T |−1

∥∥∥∥∥
∑

i∈T

γiei

∥∥∥∥∥
D

> 0(4.8)

holds, the maximum range, on which the extended fragility index is well-defined, equals

{1, . . . , m∗}, i.e. FI(m) is well-defined for any m ≤ m∗.

We further want to remark that FI(m) is an increasing function inm, which obviously

follows by the definition of a conditional expectation.

Remark 4.2.8 We are faced with the case of γj = 1 for all j ≤ d under several settings.

The first one is the case that the df F has identical margins. The second one occurs if

the margins of F are ”tail equivalent”, i.e. lims↑ω∗
1−Fj(s)

1−Fκ(s)
= 1 holds for every j ≤ d, see

Condition (3.1).

We remark that in the case of γj = 1, j ≤ d, the behavior of the marginal tails is

negligible, which implies that the FI(m) is independent of the marginals. In this case,
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4.2. Extension of the Fragility Index

the domain of the FI(m) only depends on the dependence structure, captured by the

D-norm, of the |K|-variate margin GK of the EVD G to which domain of attraction the

df F belongs to (see (4.6) in Theorem 4.2.5).

The representation of the fragility index in the case of γj = 1, j ≤ d, is equivalent to

the representation of the FI(m) within the approach of exceedances above an individual

threshold. Since the definition of the events of exceedances within the approach of a

common, individual threshold respectively, is a different one, but crucial for applications

on the extended fragility index, we provide the following section separately from the

preceding one.

4.2.2. Approach of an individual threshold

The preceding section provided the representation of the extended fragility index and

conditions under which it is well-defined on a certain subset of {1, . . . , d}. It turns

out that the FI(m) depends crucially on the tail behavior of the univariate margins

of F . This is not a surprising result if one keeps in mind that we consider events of

exceedances above a common threshold for all components Qj for j ≤ d. Thereby,

the exceedance probability of different components might differ from each other, if the

univariate margins of F are not identical. In order to pay attention to this fact we

consider exceedances above an individual threshold separately for each component of

the system.

Now suppose we want to consider extreme events concerning each component of

{Q1, . . . , Qd}, which have equal exceedance probabilities. Therefore, with respect to

the application of the extended fragility index, it might be reasonable to consider events

of exceedance above an individual threshold since we cannot assume that the univariate

margins exhibit equal tail properties that would allow us to define events of exceedance

with respect to a common threshold.

Now consider the event of exceedance {Qj > F−1j (1−c)} for j ≤ d above an individual

threshold sj := F−1j (1 − c) and denote by Nc :=
∑

j≤d 1(1−c,1](Fj(Qj)) the number of

exceedances above 1− c, c close to 0, as already defined in (3.14).

In principle, the representation of the extended fragility index, as well as the condition

on it to be well-defined within the approach of an individual threshold, is obtained by the
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4. The Fragility Index

approach of a common threshold considering the case I = {i ∈ {1, . . . , d} : γi = 1} =

{1, . . . , d}. But, to state once again, only the resulting representation of the FI(m) can

be derived from the approach of a common threshold, while the construction of events

of exceedance among the system distinguishes between the two approaches. We will see

that the definition of events of exceedance crucially affects the domain and the value of

the FI(m).

Therefore we dedicate the extended fragility index under the approach of an individual

threshold to an extra section and want to provide a shortcut of the results.

The extended fragility index under the approach of an individual threshold is analogue

to Definition 4.2.1 defined as

FI(m) := lim
c↓0

E(Nc |Nc ≥ m),(4.9)

whenever it exists for certain m ≤ d.

By means of the ACDEC, see Theorem 3.3.12, the FI(m) is provided by

FI(m) =

∑d
k=m kpk∑d
k=m pk

for those m ≤ d for which
∑d

k=m pk > 0 holds. Hence we once again provide sufficient

and necessary conditions under which the extended fragility is well-defined on a certain

subset of {1, . . . , d}.

Proposition 4.2.9 Consider a random system {F1(Q1), . . . , Fd(Qd)}, which belongs to

the domain of attraction of an EVD G(x) = exp(−‖x‖D) with pertaining D-norm,

angular measure µ respectively. Further denote by pk the ACDEC as given in Theorem

3.3.12 for k ≤ d. Choosem ∈ {1, . . . , d}. Then we have the following list of equivalences.

(i) There exists an index set K ⊆ {1, . . . , d} with m ≤ |K| ≤ d, such that

limc↓0
P (Fj(Qj)>1−c,j∈K)

c
> 0

(ii)
∑d

k=m pk > 0

(iii)
∑
∅6=T⊆K(−1)|T |−1

∥∥∑
i∈T ei

∥∥
D
> 0

(iv) µ ({u ∈ Sd : mini∈K ui = 0}) < |K|
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4.2. Extension of the Fragility Index

Proof: Equivalence (i) ⇔ (ii) is true by the first part of the proof of Proposition 4.2.4

with γj = 1, j ≤ d. Equivalence (ii) ⇔ (iii) follows by Proposition 4.2.4 with γj = 1 for

j ≤ d, i.e. we have I∁ = {1, . . . , d} and
∑d

k=m ak > 0 ⇔ ∑d
k=m pk > 0. Equivalence

(iii) ⇔ (iv) follows by Lemma 3.2.3 for xj = 1, j ≤ d, with the remark of (3.9), since

(3.9) remains true by dividing each side of the equation by any negative number, i.e.
∑
∅6=T⊆{1,...,m}(−1)|T |−1

∥∥∑
i∈T xiei

∥∥
D
= 0 for all x ≥ 0. �

A geometrical interpretation of Condition (iv) in Proposition 4.2.9 can be found in

Section 3.2, cf. Figure 3.2.

By means of Proposition 4.2.9 we are able to provide the representation of the FI(m)

within the approach of an individual threshold. It is equivalent to Theorem 4.2.5 for

γj = 1, j ≤ d. Due to its importance as the main result within this section – and in

case one is only interested in exceedances above an individual threshold – we provide it

separately.

Theorem 4.2.10 (Extended Fragility Index) Consider a random system

{Q1, . . . , Qd}, which can be represented by the vector (Q1, . . . , Qd). Assume

(Q1, . . . , Qd) ∼ F , where F is continuous in its upper tail and its corresponding copula

CF belongs to the domain of attraction of an EVD G with pertaining D-norm. There

exists an index set K ⊆ {1, . . . , d} with |K| =: m̃, such that

∑

∅6=T⊆K

(−1)|T |−1

∥∥∥∥∥
∑

i∈T

ei

∥∥∥∥∥
D

> 0(4.10)

holds, if and only if the FI(m) is well-defined for m ≤ m̃. In this case it is given by

FI(m) =

∑d
k=m k · pk∑d
k=m pk

=

∑d
k=m k ·

∑k
j=0(−1)k−j+1

(
d− j

k − j

)
∑

T⊆{1,...,d}
|T |=d−j

‖∑i∈T ei‖D

∑d
k=m

∑k
j=0(−1)k−j+1

(
d− j

k − j

)
∑

T⊆{1,...,d}
|T |=d−j

‖∑i∈T ei‖D
,

where pk is defined in Theorem 3.3.12.

Proof: The assertion follows by Proposition 4.2.9 ((ii) ⇔ (iii)) and Theorem 3.3.12. �
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4. The Fragility Index

Once again note that Theorem 4.2.10 only states that there exists an index set K ⊆
{1, . . . , d}, such that the FI(m) is well-defined for any m ≤ |K|. Obviously, any K ⊆
{1, . . . , d} that fulfills one of the conditions in Proposition 4.2.9 provides a sufficient

condition for the FI(m) being well-defined for m ≤ |K|. Of course those situations are

desirable for which the FI(m) is defined on the maximum range {1, . . . , d}. This is the
index set K := {1, . . . , d}.

Corollary 4.2.11 Assume the same assumptions as in Theorem 4.2.10. Then the

FI(m) is well-defined for any m ≤ d if and only if

∑

∅6=T⊆{1,...,d}

(−1)|T |−1

∥∥∥∥∥
∑

i∈T

ei

∥∥∥∥∥
D

> 0(4.11)

holds.

Remember that with Proposition 4.2.9, Condition (4.11) is equivalent to

lim
c↓0

P (Fj(Qj) > 1− c, j ≤ d)

c
= lim

c↓0

C̃F

(∑
j≤d cej

)

c
> 0 ,

where C̃F denotes the survival copula corresponding to the df F (see Definition 2.3.6).

Further note that the above limit simplifies to

lim
c↓0

C̃F

(∑
j≤d cej

)

c
= lim

c↓0

C̃F (c, j ≤ d)

c
= λF (1, . . . , 1) > 0,

where λF (x) is called the tail dependence function for x > 0 (see Section 2.4).

Hence, in order to get the maximum domain for the FI(m), i.e. FI(m) exists for any

m ∈ {1, . . . , d}, we require that the convergence rate of the survival copula C̃F is at

most that of a linear function.

In the case of K 6= {1, . . . , d}, we obviously have

Condition (4.11) holds ⇔ lim
c↓0

C̃FK
(c, j ≤ d)

c
=: λFK

(1, . . . , 1) > 0,(4.12)

which is a condition on the survival copula, the tail dependence function at point

(1, . . . , 1) respectively, corresponding to the |K|-variate marginal df of F ; see Section

2.4.
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4.2. Extension of the Fragility Index

With the focus on the application of the fragility index one may be interested in checking

Condition (4.11) via statistical tools. Since the D-norm coincides with the stable tail

dependence function, one may use estimators for the stable tail dependence function, of

which there exist several in the literature; see Section 2.4 for an incomplete overview.

With the equivalence in (4.12) one is also able to use estimators of the tail dependence

function; see once again Section 2.4. We suggest to use semiparametric or nonparametric

estimators, since the usage of a parametric estimator may already inhibit an assumption

about the structure of the model. For example, de Haan et al. [30] pay attention to

this restriction, as they suggest a parametric estimation procedure of the tail depen-

dence function together with a goodness-of-fit test, which tests as well the validity of

the parametric model assumption.

4.2.3. Trade-off between common and individual threshold

The definition of the (extended) fragility index is based on the type of extreme event one

considers. We established two alternatives. I.e., the event {Qj > s} for j ∈ {1, . . . , d},
and a threshold s high enough that corresponds to a common threshold for the compo-

nents Qj , j ≤ d, of a random system {Q1, . . . , Qd}. On the other hand, we may consider

the event {Qj > F−1j (1 − c)} for j ≤ d and c in a right neighborhood of 0, which

corresponds to an individual threshold for every component Qj of a random system

{Q1, . . . , Qd}. Hence, the deciding difference between these approaches is the question

whether we want to consider exceedances above a common or an individual threshold.

This question plays a crucial role within the application of the (extended) fragility in-

dex as a measure for tail dependence. Thereby, the goodness of an estimator of the

fragility index also depends on the question whether the considered finite thresholds

really correspond to univariate tails and nothing else of the random system.

Further, we want to mention that the approach of an individual threshold can be

imbedded in the approach of a common threshold with respect to the representation

of the (extended) fragility index. More precisely, if γj = 1 holds for every j ≤ d, the

representation of the (extended) fragility index is independent of the type of event of

exceedance one considers, which means the resulting (extended) fragility index is the

same. For example, this occurs if the univariate margins Fj , j ≤ d, are identical or at
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least tail equivalent. If this assumption is supportable, we do not have to know the

univariate margins in order to provide the fragility index. If the univariate margins are

different, they have to be known in order to establish the (extended) fragility index,

both in the framework of exceedances above a common threshold and in the framework

of exceedances above an individual threshold. With respect to applications on the (ex-

tended) fragility index, we do not think that the required knowledge of the univariate

margins is a big problem, since there exist frequent approaches for estimating those, take

for example the empirical df of Fj or the well-known Peaks-over-threshold approach; see

Chapter 5 in Reiss and Thomas [55] for a summary. In the original literature (see Geluk

et al. [22]), the fragility index is based on the exceedances above a common threshold.

We extended this approach for the mentioned reasoning.

4.2.4. The Fragility Index in case of a GPD

Let us consider once again a random system {Q1, . . . , Qd} with corresponding joint dis-

tribution function F . Within this section we want to strengthen the domain of attraction

condition F ∈ D(G) to the assumption that the df F follows a multivariate GPD in its

upper tail, i.e. we assume that there exists a vector x0 < 0 close enough to 0 and a

norm ‖·‖D, as defined in Section 2.1, such that

F (x) =1− ‖x‖D(4.13)

for x ≥ x0. That means the tail of {Q1, . . . , Qd} follows a generalized Pareto distribution

with uniform margins on [−1, 0]d, which we call W (see Section 2.3). As we did in the

preceding sections, we want to calculate the extended fragility index, but now under

assumption (4.13), which we call the GPD-assumption. Therefore consider the event of

exceedance {Qj > W−1
j (1−c)} for j ≤ d above an individual threshold sj :=W−1

j (1−c)
and denote by Nc :=

∑
j≤d 1(1−c,1](Wj(Qj)) the number of exceedances above 1 − c.

This is analogue to Section 4.2.2. Note that the above definition of an exceedance event

implies that we consider the random copula system {W1(Q1), . . . ,Wd(Qd)} following a

GPD-copula on [−1, 0]d; see Definition 2.3.8.

We will see that the deciding difference to the domain of attraction assumption is the

fact that under the GPD-assumption, the (extended) fragility index attains its ”limit”

for a finite threshold.
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The following results follow easily from the considerations in Section 3.3.

Lemma 4.2.12 Denote by {Q1, . . . , Qd} a random system that follows a GPD W in its

upper tail. Hence, suppose that there exists a vector u0 ∈ [0, 1]d close enough to 1 and

a norm ‖·‖D, as defined in Section 2.1, such that

(W1(Q1), . . . ,Wd(Qd)) ∼ CW (u) = 1− ‖u− 1‖D

for u ≥ u0. Then

P (Wj(Qj) ≤ 1− c, j ∈ K) = 1− c ·
∥∥∥∥∥
∑

j∈K

ej

∥∥∥∥∥
D

holds for any K ⊆ {1, . . . , d} and all c ≤ 1−maxj≤d(u0,j).

Proof: The assertion follows by the definition of the GPD-copula, see Definition 2.3.8,

i.e. there exists u0 ∈ [0, 1]d close to 1, such that for all (c, . . . , c) ≤ 1− u0 we have

P (Wj(Qj) ≤ 1− c, j ∈ K) =1−

∥∥∥∥∥∥
∑

j∈K

(1− c)ej +
∑

j /∈K

ej −
∑

j≤d

ej

∥∥∥∥∥∥
D

=1− c ·
∥∥∥∥∥
∑

j∈K

ej

∥∥∥∥∥
D

.

�

Now we provide the distribution of the number of exceedances under the GPD-

assumption.

Lemma 4.2.13 Assume the same assumptions as in Lemma 4.2.12. Let Nc =∑
j≤d 1(1−c,1](Wj(Qj)) be the number of exceedances above 1− c. Then we have

(i) P (Nc = 0) = 1− c ·
∥∥∥
∑

1≤j≤d ej

∥∥∥
D
=: 1− c · a0

(ii) and for k ≤ d− 1 we have

P (Nc = k) = c ·
∑

0≤j≤k

(−1)k−j+1

(
d− j

k − j

) ∑

T⊆{1,...,d}
|T |=d−j

∥∥∥∥∥
∑

i∈T

ei

∥∥∥∥∥
D

=: c · ak
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(iii)

P (Nc = d) = c ·
d∑

j=1

(−1)j+1
∑

T⊆{1...,d}
|T |=j

∥∥∥∥∥
∑

i∈T

ei

∥∥∥∥∥
D

=: c · ad

Proof: The proof is analogue to the proof of Lemma 3.3.3 with obvious respect to the

GPD assumption instead of the use of Corollary 2.3.19 as referenced in Lemma 3.3.3. �

In order to provide the extended fragility index within the framework of the GPD-

assumption, we need the conditional distribution of exceedance counts. It is based on

the assumptions and the results of preceding considerations.

Corollary 4.2.14 (ACDEC under the GPD-assumption) Set pk := ak/a0 for 1 ≤
k ≤ d. Then pk defines a probability distribution on {1, . . . , d} and is the conditional

distribution function of exceedance counts. Further assume the same assumptions as in

Lemma 4.2.12. Then we have

P (Nc = k |Nc > 0) =
P (Nc = k)

P (Nc > 0)
=

∑
0≤j≤k(−1)k−j+1

(
d− j

k − j

)
∑

T⊆{1,...,d}
|T |=d−j

‖∑i∈T ei‖D

‖∑d
j=1 ej‖D

=: pk

for 1 ≤ k ≤ d− 1 and

P (Nc = d |Nc > 0) =
P (Nc = k)

P (Nc > 0)
=

∑
1≤j≤d(−1)j+1

∑
T⊆{1,...,d},

|T |=j

‖∑i∈T ei‖D
‖∑d

j=1 ej‖D
=: pd .

Proof: The assertion follows immediately from Lemma 4.2.12 and 4.2.13. �

Note that the fact that the ACDEC under the GPD-assumption attains its limit at

a finite threshold is related to the multivariate POT-stability of a GPD, see Falk and

Guillou [18]. They show that the excess distribution of an rv X is invariant under the

chosen thresholds, if X follows a multivariate GPD.
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Remark 4.2.15 Denote by Nc the number of exceedances among {Q1, . . . , Qd} as de-

fined in Lemma 4.2.13. In the case of (Q1, . . . , Qd) following a GPD in the upper tail,

the conditional expectation

E(Nc |Nc ≥ m), m ≤ d

for c close but finite to 0 serves as a measure for system stability and is called the extended

fragility index (FI(m)) under the GPD-assumption whenever it exists for certain m ≤ d.

This is analogue to the definition of the extended fragility index under the approach of an

individual threshold; see the definition in (4.9), with the crucial difference that, under

the GPD-assumption, the FI(m) attains its limit at a finite threshold.

Now we are ready to represent the (extended) fragility index in case of the GPD-

assumption.

In analogy to the maximum of attraction condition we have to ensure that the ex-

tended fragility index is well-defined. Remember that under the domain of attraction

assumption (Q1, . . . , Qd) ∼ F ∈ D(G) with G(x) = exp(−‖x‖D) we set conditions on

the survival function of W (x) = 1− ‖x‖D. Now we assume F = W in the upper tail.

Theorem 4.2.16 (Extended Fragility Index) Consider a random system

{Q1, . . . , Qd} which can be represented by the vector (Q1, . . . , Qd). Assume that the df

of (Q1, . . . , Qd) coincides with a GPD W in the upper tail, i.e. there exists x0 < 0 and

a norm ‖·‖D, such that W (x) = 1 − ‖x‖D holds for x ≥ x0. There exists an index set

K ⊆ {1, . . . , d} with |K| =: m̃, such that

∑

∅6=T⊆K

(−1)|T |−1

∥∥∥∥∥
∑

i∈T

ei

∥∥∥∥∥
D

> 0(4.14)

holds, if and only if the FI(m) is well-defined for m ≤ m̃. In this case the representa-

tion of the FI(m) coincides with the representation of the FI(m) under the domain of

attraction assumption in case of an individual threshold (see Theorem 4.2.10).

Proof: Since a GPD belongs to the maximum domain of attraction of an EVD, the

assertion follows by Theorem 4.2.10. �

Note that condition (4.14) is equivalent to those in Proposition 4.2.9.
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The considerations within this section can be used as follows. Under the domain

of attraction condition, the stability of a system can be theoretically captured by the

limit of the expected number of collapses, given several have already occurred. Within

applications on the extended fragility index we will use a finite approximation to the

(extended) fragility Index as defined hitherto. The problem at hand is obvious: How to

choose a threshold high enough, such that the obtained tail is indeed a tail, which entails

that the approximation of the fragility index is already quite good?

Under the GPD-assumption, we do not have to care about the goodness of approxima-

tion, since we can find a threshold u0 < 0, such that the fragility index exists as a finite

number for all c ≤ 1−maxj≤d(u0,j). As one may guess, we have to pay for that benefit.

The GPD-assumption is much stronger than the domain of attraction condition.

4.2.5. Examples of the Fragility Index

To get an impression of the (extended) fragility index at work we want to establish a few

examples. The representation of the FI(m) is mainly based on the D-norm. In order to

compute the FI(m) for a certain setting (Q1, . . . , Qd) ∼ F ∈ D(G) we need to know the

D-norm corresponding to the EVD G. If we know the df F we are in principle aware

of the domain of attraction to which F belongs to (in case of existence) and therefore

we are able to determine the D-norm even if this might be difficult (cf. introduction of

Section 3.3.3.2).

We want to provide examples for the FI(m) under several settings. Some of the

represented examples have already been prepared within the examples of the ACDEC

(see Section 3.3.3).

Let us start with a very simple bivariate example, which shows in detail how to compute

a D-norm.

Example 4.2.17 (Extension of Example 5.16 in Resnick [56]) Suppose

(Q1, Q2) follows the bivariate distribution function

F (x, y) = 1− exp(−x)− exp(−y) + 1

exp(x) + exp(y)− 1
, x, y ≥ 0 .

Hence, we have margins F1(x) := limy→∞ F (x, y) = 1− exp(−x) and F2(y) := limx→∞

F (x, y) = 1 − exp(−y), i.e. exponential margins. F is in the domain of attraction of a
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bivariate EVD

G(x, y) = exp

(
−
(
exp(−x) + exp(−y)− 1

exp(x) + exp(y)

))

with margins G1(x) = G2(x) = exp(− exp(−x)), i.e. Gumbel margins. (See Example

5.16 in Resnick [56].)

Since we have identical margins, we may apply Theorem 4.2.10 or Theorem 4.2.5 with

γj = 1, j ≤ d, i.e. we have

FI(1) =
‖(0, 1)‖D + ‖(1, 0)‖D

‖(1, 1)‖D
=

2

‖(1, 1)‖D
.(4.15)

Transformation of G to an EVD with standard Frèchet margins (see Remark 2.1.12)

leads to

G(0,0)

(
− log

(
1

x

)
,− log

(
1

x

))

= exp

(
−
(
1

x
+

1

y
−
(
exp

(
− log

(
1

x

))
+ exp

(
− log

(
1

x

)))−1))

= exp

(
−
(
1

x
+

1

y
− 1

x+ y

))
= G(1,1)(x, y) , x, y > 0.

Hence we get

‖(x, y)‖D =
1

|x| +
1

|y| −
1

|x|+ |y| .

This implies ‖(1, 1)‖D = 3
2
and with (4.15) we have FI(1) = 4

3
. It follows that in this

situation, the system {Q1, Q2} is strongly fragile. Note that FI(2) = 2.

We want to continue with an example on the popular logistic EVD. We already know

from Corollary 3.3.15 and Example 3.3.23 that the arbitrary Lλ-norm is the limit of

1 − Cλ(1 + tx)/t where Cλ denotes the Gumbel copula. Hence, if the df F belongs to

the domain of attraction of a logistic EVD, the corresponding D-norm is the Lλ-norm.

Example 4.2.18 (Fragility Index under the logistic EVD) Assume that

(Q1, . . . , Qd) follows a df F which is in the domain of attraction of a logistic EVD, i.e,

F ∈ D(G) with G(x) = exp(−‖x‖λ). Further consider the approach of exceedances

above an individual threshold. Under this setting, Corollary 3.3.15 provides the ACDEC

and the extended fragility index is provided as follows.
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(i) For 1 < λ <∞ we get

FI(m) =

∑
m≤k≤d k(−1)k+1

(
d

k

)
∑

0≤j≤k(−1)j

(
k

j

)
(
1− j

d

)1/λ

∑
m≤k≤d(−1)k+1

(
d

k

)
∑

0≤j≤k(−1)j

(
k

j

)
(
1− j

d

)1/λ

for m ≤ d. In the special case of m = 1 a less complex representation of the

FI under the Lλ-norm is provided by Corollary 4.1.6. It coincides with the rep-

resentation given here, see therefore the general considerations which follow after

Theorem 4.2.5.

(ii) For the maximum-norm we have pk = 0 for 1 ≤ k ≤ d−1 and pd = 1 . Hence, the

FI(m) is defined for every m ≤ d and we get FI(m) = dpd
pd

= d for every m ≤ d,

which is the case of total dependence in the tail of (Q1, . . . , Qd).

(iii) For the L1-norm we have p1 = 1 and pk = 0 for 2 ≤ k ≤ d. Hence the FI(m) is

only defined for m = 1 and we get FI(1) = FI = 1p1
p1

= 1, which is the case of

total independence. Note that the FI(m) is not defined for m > 1, since all mass

of the distribution pk is concentrated on k = 1 (see Corollary 3.3.15).

Note that we obtain the same results for the FI(m), if we consider the approach of a

common threshold together with γj = 1 for every j ≤ d (see Remark 4.2.8).

Hence, this example shows that we have the maximum of dependence in the tail of

(Q1, . . . , Qd), e.g. total dependency, if we choose the L∞-norm. But the maximum norm

represents only a sufficient condition for asymptotic instability of the system (see the

next example).

Figure 4.1 visualizes Example 4.2.18. It shows the extended fragility index under certain

choices for the λ. We observe that the FI(m) is an increasing function in λ. Furthermore,

the figure indicates that under the Lλ-norm the FI(m) is a concave function in m.

The following example is also crucial with respect to the need for the extended fragility

index. It is the answer to the question ”Why do we need an extension of the fragility

index, since the fragility index already describes the stability of a random system?”
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Figure 4.1.: The FI(m) for a random system of dimension d = 10 with respect to certain choices of

the Lλ-norm, especially including λ = 1 and the maximum-norm. The figure visualizes

the results of Example 4.2.18.

Example 4.2.19 (Fragility Index under the Marshall-Olkin norm) As-

sume that the copula corresponding to (Q1, . . . , Qd) belongs to the domain of attraction

of the Marshall-Olkin copula, i.e. the copula corresponding to G(x) = exp(−‖x‖MO),

where we denote by

‖x‖MO := ϑ ‖x‖1 + (1− ϑ) ‖x‖∞ , x ∈ R
d, ϑ ∈ [0, 1]
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4. The Fragility Index

the Marshall-Olkin norm. By Example 3.3.16 we have

p1 =
ϑd

ϑd+ 1− ϑ
, pd =

1− ϑ

ϑd + 1− ϑ
, pk = 0, 2 ≤ k ≤ d− 1,

and this yields

FI(1) = FI =
d

ϑ(d− 1) + 1
and FI(m) = d for every 2 ≤ m ≤ d

for ϑ ∈ [0, 1) and

FI(1) = 1

for ϑ = 1. In the latter case, the Marshall-Olkin norm coincides with the L1-norm,

i.e. we have asymptotic independence and the FI(m) is not defined for m ≥ 2, see

Example 4.2.18. The former case, i.e. ϑ ∈ [0, 1), leads to full asymptotic dependence

when looking at the extended FI(m), although the FI(1) does not necessarily show full

asymptotic dependence.

Recall that for the fragility index we have FI = d if and only if ‖·‖D = ‖·‖∞, see
Corollary 4.1.6. This is not true for m ≥ 2 (see the previous Example 4.2.19). That

means, the choice of the maximum norm is only a sufficient condition for full asymptotic

instability of the system with respect to the extended fragility index, i.e. in situations

where we have already observed at least more than one exceedance among the random

system {Q1, . . . , Qd}.
Further note that the Marshall-Olkin norm represents an important example with

respect to the extension of the fragility index, since the fragility index (i.e. FI(1)) may

take any value in [1, d], depending on the value of ϑ ∈ [0, 1], whereas the extended

fragility index FI(m) takes the value d for every m ≥ 2 in case of ϑ < 1. This can be

seen as follows. Suppose that ϑ ∈ [0, 1), then we get FI(m) = d independently of the

number m and the value of ϑ. That means, if we observe more than one exceedance

among the random system, i.e. FI(1) > 1, then we have to expect the total collapse of

the whole system, hence the asymptotic expected number of exceedances ”jumps” from

FI(1) = a > 1 to FI(m) = d for m = 1 to m ≥ 2 even if a may be very close to 1 (this

is ϑ very close to 1). This highlights the necessity of the extended fragility index, since

one may get fooled by the assumptions that there is no strong tail dependence within a

random system, if the value of the fragility index FI(1) is close to 1 and one does not

look at the extended fragility index!
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Example 4.2.20 (Archimedean copulas with asymptotic independence) Suppose

that the corresponding copula to (Q1, . . . , Qd) is an Archimedean copula defined by Cϕ(u) =

ϕ−1(ϕ(u1 + . . . + ϕ(um)) with the generator ϕ as defined in Definition 3.3.20. Further

suppose that the generator ϕ is differentiable to the left in x = 1 and its left derivation

in x = 1 is not equal to 0. Then we get with Proposition 3.3.22 that the correspond-

ing D-norm to Cϕ is the L1-norm. Hence, the extended fragility index is only defined

for m = 1 and we get FI = 1, hence, the random system inhibits asymptotic stability.

For example, this is true for the Frank and the Clayton copulas and the Ali-Mikail-Haq

family, which are popular copulas within finance and insurance (see Example 3.3.23).

Example 4.2.21 (Weighted Pareto) Assume the setting as in Example 3.3.19, i.e.

assume X1, . . . , Xm to be independent and identically Pareto distributed rv with param-

eter α > 0. Put

Qi :=
m∑

j=1

λijXj, 1 ≤ i ≤ d,

where the weights λij are nonnegative and satisfy
∑m

j=1 λ
α
ij = 1, 1 ≤ i ≤ d. Then we

obtain the D-norm

‖x‖D :=

m∑

j=1

(
max
i≤d

(
λαij |xi|

))
, x ∈ R

d,

see Example 3.3.19.

Let us assume that we consider events of exceedance above a common threshold. From

Lemma A 3.26 in [13] we obtain that the df Fi of Xi satisfies

1− Fi(s) ∼ s−α
m∑

j=1

λαij = s−α, 1 ≤ i ≤ d,

as s→ ∞ and, thus,

γi = lim
s→∞

1− Fi(s)

1− Fκ(s)
= 1, 1 ≤ i ≤ d,

where κ ∈ {1, . . . , d} can be chosen arbitrarily. As a consequence, using Proposition

4.1.2, we obtain for the fragility index

FI =

∑d
i=1 γi∥∥∥

∑d
i=1 γiei

∥∥∥
D

=
d∑m

j=1maxi≤d λ
α
ij

.
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The following example shows that the assertion of Remark 4.1.7 is only true under

γj = 1, j ≤ d, the approach of an individual threshold respectively. If one considers

events of exceedances above a common threshold, i.i.d or tail equivalent margins Fj, j ≤
d, the convergence behavior of the marginal df may influence seriously the value of the

fragility index.

Example 4.2.22 Assume the bivariate case (Q1, Q2) ∼ F with corresponding copula

belonging to the domain of attraction of an EVD. Further assume that the margins F1

and F2 of F belong to the family of subexponential distributions, e.g. assume F1(x) =

1− exp(−λx), λ > 0 (exponential) and F2(x) = 1−
(

ϑ
ϑ+x

)α
, ϑ, α > 0, x ≥ 0 (Pareto).

The margins therefore belong to the domain of attraction of the Gumbel and the Frèchet

distribution respectively (see, e.g., Section 3.4 in Embrechts et al [13]). We want to

consider the approach of a common threshold. Therefore, we have to check Condition C.

Since

lim
x→∞

ϑα(ϑ+ x)−α

exp(−λx) = lim
x→∞

ϑα
exp(λx)

(ϑ+ x)α
= ∞ ,

we set ω∗ := ω(F2) = ∞. Then we get

γ1 = lim
x→∞

exp(−λx)
ϑα(ϑ+ x)−α

= lim
x→∞

(ϑ+ x)α

ϑα exp(λx)
= 0

for α > 0 and γ2 = 1.

Condition C is fulfilled. The fragility index takes the values (see Proposition 4.1.2)

FI(1) =
γ1 + γ2

‖(γ1, γ2)‖D
=

0 + 1

‖e2‖D
= 1

and FI(2) = 2 for an arbitrary D-norm. This example provides a scenario which leads

to asymptotic stability of the system {Q1, Q2} independently of the chosen D-norm!

As a generalization to an arbitrary dimension d > 2, we get FI(1) = 1 and the FI(m)

is not defined for m ≥ 2 if the convergence behavior of a single margin Fκ of F is

predominated by all the others, i.e. γi = 0, i 6= κ. This follows by Corollary 3.3.8, which

states that if I∁ = {κ}, we get p1 = 1 and pk = 0 for k ≥ 2.

Further note that if we consider exceedances above an individual threshold within the

same provided setting, we get FI(1) = 2
‖(1,1)‖D

. Hence, in this case, we get FI(1) = 1

if and only if ‖(1, 1)‖D = 2. By Remark 4.1.7 this is equivalent to ‖·‖D = ‖·‖1, hence
the approach of an individual threshold within the provided setting above only leads to

asymptotic stability of the system in case of the L1-norm.
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4.3. The Fragility Index as an extension of the

extremal coefficient

This section emphasizes on the fragility index as an extension of the extremal coeffi-

cient. Therefore, the fragility index can be interpreted as a measure for tail dependence,

which is new to the literature and overcomes the deficiency of the extremal coefficient

and the (stable) tail dependence function. As already discussed in Section 2.4 the ex-

tremal coefficient ε can be regarded to be a measure for tail dependence, since it is that

number which satisfies G(x, . . . , x) = Gε
1(x) where G is an EVD with identical margins

G1. Hence, it is a measure for tail dependence between the margins of a multivariate

distribution F that belongs to the domain of attraction of an EVD G with identical

margins, cf. Definition 2.2.4. It is obvious that this is a restriction, which one desires to

overcome.

It is well-known that the stable tail dependence function determines the dependence

structure within an EVD. Furthermore, in case of its existence, the stable tail depen-

dence function arises as the crucial limit under the domain of attraction condition on a

copula. Furthermore, it coincides with the D-norm. However, the stable tail dependence

function is not bounded and, therefore, fails as a coefficient of tail dependence, since its

value cannot be interpreted with the focus of identifying the amount of dependence nor

the special cases of full independence and dependence.

The (extended) fragility index is both bounded and not restricted to identical mar-

gins. It serves as a measure for tail dependence within a random system (Q1, . . . , Qd),

which follows an arbitrary multivariate df F . We only require that the correspond-

ing copula of F belongs to the domain of attraction of an EVD G. If the limit ex-

ists, the extended fragility index is defined as the asymptotic expected number of ex-

ceedances among (Q1, . . . , Qd) given there have already occurred m ≤ d exceedances,

i.e. FI(m) := limsրE(Ns |Ns ≥ m) for m ≤ d (cf. Definition 4.2.1). Hence its range is

FI(m) ∈ [m; d]. Therefore we apply the following transformation.

Definition 4.3.1 Consider the random system {Q1, . . . , Qd} of dimension d ∈ N. The

transformation

TFI(m) :=
FI(m)−m

d−m
∈ [0, 1], 1 ≤ m ≤ d− 1,
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4. The Fragility Index

shifts the FI(m) onto the interval [0, 1] and is denoted by the transformed fragility in-

dex together with TFI(d) := 1 (since FI(d) = d by construction), given FI(m) exists

for certain m ∈ {1, . . . , d}. We call the system {Q1, . . . , Qd} weakly fragile, resp. m-

stable (cf. Definition 4.2.1), if TFI(m) = 0 for every m ≤ d. Otherwise (that means

TFI(m) > m for at least one m ≤ d− 1), we call the system strongly fragile.

The above transformation provides a measure for tail dependence that is independent

of the dimension of the random system. Further, in connection to dependence measures

like the coefficient of correlation, it can be easily interpreted, since the closer TFI(m)

is to 1, the higher the amount of dependence within the random system, and the closer

TFI(m) is to 0, the less votes against total asymptotic independence within the system.

As already mentioned in Section 2.2, the extremal coefficient corresponding to an EVD

G with identical margins is given by ε = ‖(1, . . . , 1)‖D (cf. Definition 2.2.4). Further

denote by GK a K-dimensional margin of G, hence its corresponding extremal coefficient

(cf. Definition 3.1.2 for the meaning of ”corresponding” within this framework) is defined

by

εK :=

∥∥∥∥∥
∑

j∈K

ej

∥∥∥∥∥
D

=

∥∥∥∥∥
∑

j≤m

ẽj

∥∥∥∥∥
D̃

= ‖(1, . . . , 1)‖D̃ ,(4.16)

where ‖·‖D̃ corresponds to GK of dimension |K| = m (cf. Section 2.2 and Lemma 3.1.1).

The existence of ‖·‖D̃ is clear, since the margins of a max-stable df are again max-stable,

which enables the definition in (4.16).

Recall the representation of the extended fragility index within the approach of an

individual threshold (cf. Theorem 4.2.10). Define εT :=
∥∥∑

i∈T ei

∥∥
D
for T ⊆ {1, . . . , d}.

Then the FI(m) is given by

FI(m) =

∑d
k=m k ·

∑k
j=0(−1)k−j+1

(
d− j

k − j

)
∑

T⊆{1,...,d}
|T |=d−j

εT

∑d
k=m

∑k
j=0(−1)k−j+1

(
d− j

k − j

)
∑

T⊆{1,...,d}
|T |=d−j

εT

.(4.17)

Consider an arbitrary but fixed m ≤ d − 1. The extended fragility index FI(m) en-

ables us to calculate the tail dependence among the random ”subsystem” {Qi1 , . . . , Qit}
consisting of those components of the full system {Q1, . . . , Qd}, which still fall below
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their threshold. Thereby we account for the past exceedances among the system and

provide a tail dependence measure that captures the amount of risk that is still inherent

in the subsystem based on the tail information of the full system. This statement is

based on the fact that the FI(m) consists of the extremal coefficients corresponding to

those margins GT whose dimension is at least d−m (this coincides with the number of

components still falling below the threshold), cf. the range of the set T in (4.17).

This shows that the extended fragility index is a measure for tail dependence, which

factors those events having already occurred into the calculation of the FI(m). This

enables dynamic and variable conclusions about the tail behavior. Thereby past events

serve as a type of predictor for the risk of further exceedances, which may lead to a total

breakdown of the system as the worst scenario. We want to advise the reader that a ran-

dom system, which shows to be low tail dependence based on at least one exceedance,

may exhibit high risk when there have occurred several exceedances nonetheless, cf.

Example 4.2.19 and the following discussion there.

4.4. Sojourn times

Hitherto we considered exceedances above a high threshold among the components of a

stochastic system {Q1, . . . , Qd}. Within Section 3.3 we provided the asymptotic condi-

tional distribution of exceedance counts, which is the basic tool of the expected number

of exceedances among {Q1, . . . , Qd}, given there is at least one exceedance. Now, we

investigate the aspect of tail dependence from another point of view. Consider a station-

ary process (Xd)d∈N on the natural numbers, hence we denote it a stationary sequence.

A finite sequence taken from (Xd)d∈N is a random vector and therefore its fragility index

can be derived as done in Section 4.2.1 and 4.2.2. We provide the link between the

fragility index and the extremal index in Section 4.4.1.

Further, we compute the expected excursion time as a measure for asymptotic depen-

dence within a stochastic process in Section 4.4.2. It can be regarded to be a measure

for tail dependence as well, with the focus on sequential dependence, since we consider

the amount of tail dependence by the sojourn time of an exceedance. Remember that

in the framework of the fragility index, we captured the amount of risk by the number

of exceedances among a random system.
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4.4.1. Link between the Fragility Index and the Extremal

Index

In what follows we show that the reciprocal of the fragility index, as a function of the

dimension d, converges to the extremal index of a strictly stationary sequence. Hence,

within this section we use the notation FI(d). Therefore consider a strictly stationary

sequence (Xd)d∈N of rv, which means (Xd+k)d∈N has the same distribution as (Xd)d∈N

for any integer k > 0.

Definition 4.4.1 (Extremal index) Let (Xd)d∈N be a strictly stationary sequence of

rv and θ a number in [0, 1]. Assume that for every τ > 0 there exists a sequence (ud)d∈N

of numbers such that

(4.18) lim
d→∞

d(1− F (ud)) = τ,

where F is the df of X1, and

(4.19) lim
d→∞

P

(
max
1≤k≤d

Xk ≤ ud

)
= exp(−θτ).

Then θ is called the extremal index of the sequence (Xd)d∈N.

We refer to Section 8.1 in Embrechts et al. [13] for an appealing summary and

discussion of the extremal index.

Denote by Nn(·) :=
∑d

i=1 εn−1i(·)1{Xi>ud} the point process of the exceedances of ud

by X1, . . . , Xd. Then one can show that Nn converges weakly to a compound Poisson

process N∞ :=
∑∞

i=1 ξiεΓi
(cf. Section 5.5.1 in Embrechts et al. [13]), where ξi are i.i.d

cluster sizes and Γi are the points of a homogeneous Poisson process.

It is in particular well-known (cf. Hsing et al. [38]) that the extremal index is the

reciprocal of the mean cluster size of the limiting compound process associated with the

point process of the exceedances by X1, . . . , Xd for d→ ∞.

For the sake of simplicity denote by (X1, . . . , Xd) an arbitrary finite dimensional rv

taken from the stochastic process (Xd)d∈N. Hence, its joint distribution F (d) is a d-

variate marginal distribution of the process (Xd)d∈N, which has identical margins F by

requirements. Further denote by C
(d)
F the corresponding copula to F (d). The number of

exceedances above
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s by X1, . . . , Xd are defined by Ns :=
∑

k≤d 1(s,∞)(Xk). Within this framework the

fragility index can be defined by

FI(d) := lim
sր

E (Ns | Ns > 0)

analogue to Definition 4.1.1.

The following result links the fragility index with the extremal index.

Theorem 4.4.2 Let (Xd)d∈N be a strictly stationary sequence with extremal index θ.

Suppose that the copula C(d) associated with the vector X(d) = (X1, . . . , Xd) satisfies the

expansion

(4.20) C(d)(y) = 1− ‖1− y‖D(d) + o(d |1− y|)

with y = (y, . . . , y) uniformly for y ∈ [0, 1] and d ∈ N, where ‖·‖D(d) is a D-norm on

Rd, cf. Definition 2.1.6. Then the fragility index FI = FI(d) exists for X(d) for each

d ∈ N, i.e.

FI(d) =
d

‖1‖D(d)

and we have

lim
d→∞

1

FI(d)
= θ.

Note that Condition (4.20) is derived from Corollary 2.3.19 in a natural way using

the fact that every D-norm is bounded above by the L1-norm.

Proof: We have

FI(d) = lim
sր

d∑

k=1

E

(
1(s,∞)(Xk) | max

1≤k≤d
Xk > s

)

= lim
sր

d(1− F (s))

1− P (Xk ≤ s, 1 ≤ k ≤ d)

= lim
sր

d(1− F (s))

1− C(d)(F (s), . . . , F (s))

=
d

‖1‖D(d)

by Condition (4.20). We have, moreover, by the same condition

P

(
max
1≤k≤d

Xk ≤ ud

)
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= C(d)(F (ud), . . . , F (ud))

= 1− (1− F (ud)) ‖1‖D(d) + o(d(1− F (ud))

= 1− d(1− F (ud))

FI(d)
+ o(d(1− F (ud))

and, thus, by Condition (4.18) and (4.19)

exp(−θτ) + o(1) = 1− τ + o(1)

FI(d)
+ o(τ)

as d→ ∞. This implies
1

FI(d)
=

1− exp(−θτ) + o(τ)

τ

as d→ ∞. Letting now τ converge to 0 yields the assertion. �

The preceding result enables a further interpretation of the extremal index. Take

again the Marshall-Olkin D-norm, i.e., the convex combination of the L1- and the max-

imum norm, which are the two extremal D-norms representing independence and com-

plete dependence of the margins of the associated EVD:

‖·‖MO = ϑ ‖·‖1 + (1− ϑ) ‖·‖∞ ,

where ϑ ∈ [0, 1] (cf. Section A and Example 3.3.16). Take now an arbitrary D-norm

‖·‖D(d) on Rd. Since every D-norm is bounded above by the L1-norm and bounded below

by the maximum-norm, there exists a unique ϑd ∈ [0, 1] such that ‖1‖D(d) coincides with

the pertaining Marshall-Olkin norm of 1, i.e.,

‖1‖D(d) = ϑd ‖1‖1 + (1− ϑd) ‖1‖∞ = 1 + (d− 1)ϑd.

We thus obtain that the sequence of reciprocals ‖1‖D(d) /d of the fragility index FI(d)

converges as d → ∞ if, and only if, limd→∞ ϑd ∈ [0, 1] exists. Theorem 4.4.2 now yields

that limd→∞ ϑd = θ, the extremal index.

Remark 4.4.3 With respect to the previous considerations, the extremal index can be

considered as the ”proportion of tail independence” contained in the vector X(d) for large

d, as the L1-norm represents the case of independence of the margins of the limiting

extreme value distribution G(d)(x) = exp (−‖x‖D(d)), x ≤ 0 ∈ Rd associated with X(d).

The following example shows that the extremal index of a GPD-process is 0.
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Example 4.4.4 (GPD-Process) Let (Zk)k∈N be a strictly stationary process with 0 <

Z1 ≤ c almost surely for some c > 1 and E(Z1) = 1. Let U be a uniformly on (0, 1)

distributed rv, which is independent of the process (Zk)k∈N and put

Xk := 1− U

Zk
, k ∈ N.

Then the process (Xk)k∈N is a GPD-process (cf. Buishand et al. [7]). It is obviously

strictly stationary and the copula C(d) corresponding to (X1, . . . , Xd) is a GPD-copula.

We show in the following that C(d) satisfies Condition (4.20) and that the extremal

index corresponding to (Xk)k∈N is 0.

Note that we have for 1− 1/c ≤ xk ≤ 1, k ≤ d,

P (Xk ≤ xk, 1 ≤ k ≤ d) = 1−
∫

max
1≤k≤d

((1− xk)zk) (P ∗ (Z1, . . . , Zd))(dz)

= 1− E

(
max
1≤k≤d

((1− xk)Zk)

)

= 1− ‖(1− x1, . . . , 1− xd)‖D(d) ,

with the definition of the D-norm (cf. Lemma 2.1.8), i.e.

‖y‖D(d) := E

(
max
1≤k≤d

(|yk|Zk)

)
, y ∈ R

d,

defines aD-norm on Rd for each d ∈ N. Condition (4.20) is, therefore, obviously satisfied.

Next we show that the extremal index of (Xk)k∈N exists and that it is equal to 0.

With d = 1 we obtain for 1− 1/c ≤ x ≤ 1

P (X1 ≤ x) = 1− (1− x)E(Z1) = x

and, thus, with ud := 1− τ/d, τ > 0, we have

d(1− P (X1 ≤ ud)) = τ

for d large.

Finally, we obtain

P

(
max
1≤k≤d

Xk ≤ ud

)
= C(d)(F (ud), . . . , F (ud))

= 1− ‖(1− ud, . . . , 1− ud)‖D(d)
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= 1− τ

d
‖(1, . . . , 1)‖D(d)

→d→∞ 1,

as ‖(1, . . . , 1)‖D(d) = E (max1≤k≤d Zk) ≤ c and thus, by (4.19), the extremal index of

(Xk)k∈N is θ = 0.

4.4.2. Fragility Index in terms of a stochastic system

Within this section we consider a stochastic process (Xd)d∈N, which is not required to

be strictly stationary as in Section 4.4.1. The total number of sequential time points at

which (Xd)d∈N exceeds a high threshold is called an excursion time. The mathematical

tools developed in the preceding sections enable the computation of its distribution

as well. Precisely, denote by Lκ(s) the number of sequential exceedances above the

threshold s, if we have an exceedance at κ ∈ {1, . . . , d}, i.e.

Lκ(s) :=
d−κ∑

k=0

k · 1(Xκ>s,...,Xκ+k>s,Xκ+k+1≤s).

We have, in particular, Ld(s) := 0 = Lκ(s), if Xκ+1 ≤ s.

We suppose throughout this section that Condition (3.1) holds for the index κ ∈
{1, . . . , d}.

Within this section the definition of the D-norm by the so-called generator Z (cf.

Lemma 2.1.8), i.e.

(4.21) ‖x‖D = E

(
max
1≤j≤d

(|xj |Zj)

)
, x ∈ R

d,

will be quite useful.

Note that the distribution of the generator of a D-norm is in general not uniquely

determined. Put, for example, Z = 2U , where U follows an arbitrary copula on [0, 1]d

with P (U1 + · · · + Ud = d/2) < 1, i.e. P (Z1 + · · · + Zd = d) < 1. The rv Z is the

generator of a D-norm ‖·‖D as in Lemma 2.1.8, i.e. G(x) = exp(−‖x‖D), x ≤ 0 ∈ Rd,

defines an EVD with standard negative exponential margins. But the Pickands-de Haan-

Resnick representation of G implies the existence of another generator Z̃ of ‖·‖D with

the additional property Z̃1 + · · ·+ Z̃d = d.

The following auxiliary result will be crucial.
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Lemma 4.4.5 Assume the conditions of Lemma 3.3.1. Then we obtain for κ ∈ {1, . . . , d}
as sր ω∗

P (Lκ(s) ≥ k | Xκ > s) =
∑

∅6=T⊆{κ,...,κ+k}

(−1)|T |+1

∥∥∥∥∥
∑

i∈T

γiei

∥∥∥∥∥
D

+ o(1)

=: sκ(k) + o(1), 0 ≤ k ≤ d− κ.

Proof: By means of Theorem A.6 we obtain

P (Xκ > s, . . . , Xκ+k > s | Xκ > s)

=
1− P

(⋃
0≤i≤k {Xκ+i ≤ s}

)

1− Fκ(s)

=
1−∑∅6=T⊆{κ,...,κ+k}(−1)|T |+1P (Xi ≤ s, i ∈ T )

1− Fκ(s)

=
1−∑∅6=T⊆{κ,...,κ+k}(−1)|T |+1

(
1− c(s)

∥∥∑
i∈T γiei

∥∥
D

)
+ o(1− Fκ(s))

1− Fκ(s)

=
∑

∅6=T⊆{κ,...,κ+k}

(−1)|T |+1

∥∥∥∥∥
∑

i∈T

γiei

∥∥∥∥∥
D

+ o(1).

�

If we represent the D-norm by means of an expectation, c.f. Lemma 2.1.8, we get an

equivalent formulation of Lemma 4.4.5. At first, we need the following Lemma.

Lemma 4.4.6 For arbitrary numbers a1, . . . , ad ∈ R and d ∈ N we have

min
1≤i≤d

ai =
∑

∅6=L⊆{1,...,d}

(−1)|L|−1max
k∈L

ak.

Proof: We show the assertion by induction over d. The assertion is obvious for d = 1.

Suppose that it is true for d ∈ N. Without loss of generality suppose a1 ≤ a2 ≤ . . . ≤
ad+1. Now we have

∑

1≤j≤d+1

(−1)j−1
∑

T⊆{1,...,d+1}
|T |=j

max
k∈T

(ak)

=
∑

1≤j≤d

(−1)j−1




∑

T⊆{1,...,d}
|T |=j

max
k∈T

(ak) +
∑

T⊆{1,...,d+1}
|T |=j,{d+1}∈T

max
k∈T

(ak)


+ (−1)d max

k∈{1,...,d+1}
(ak)
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= min
1≤i≤d

(ai) +
∑

1≤j≤d

(−1)j−1
∑

T⊆{1,...,d+1}
|T |=j,{d+1}∈T

max
k∈T

(ak) + (−1)d max
k∈{1,...,d+1}

(ak)

= min
1≤i≤d

(ai) +
∑

0≤j≤d

(−1)j
∑

T⊆{1,...,d}
|T |=j

max
k∈{T∪{d+1}}

(ak)

= min
1≤i≤d

(ai) +
∑

0≤j≤d

(−1)j
(
d

j

)

︸ ︷︷ ︸
=0

ad+1 = min
1≤i≤d+1

(ai)

since we supposed a1 ≤ a2 ≤ . . . ≤ ad+1. �

Corollary 4.4.7 Suppose in addition to the assumptions in Lemma 3.3.1 that Z is a

generator of the D-norm ‖·‖D. Then we obtain for κ ∈ {1, . . . , d} as sր ω∗

P (Lκ(s) ≥ k | Xκ > s) = E

(
min

κ≤i≤κ+k
(γiZi)

)
+ o(1),

for 0 ≤ k ≤ d− κ.

Proof: By means of Lemma 4.4.6 we get

∑

∅6=T⊆{κ,...,κ+k}

(−1)|T |+1

∥∥∥∥∥
∑

i∈T

γiei

∥∥∥∥∥
D

+ o(1)

=
∑

∅6=T⊆{κ,...,κ+k}

(−1)|T |+1E

(
max

i∈{κ,...,κ+k}
(γiZi)

)
+ o(1)

= E


 ∑

∅6=T⊆{κ,...,κ+k}

(−1)|T |+1 max
i∈{κ,...,κ+k}

(γiZi) + o(1)




= E

(
min

i∈{κ,...,κ+k}
(γiZi)

)
+ o(1) .

�

The asymptotic distribution of the excursion time, conditional on the assumption

that there is an exceedance at time point κ ∈ {1, . . . , d}, is an immediate consequence

of Lemma 4.4.5.

Proposition 4.4.8 Assume the conditions of Lemma 3.3.1. Then we have for κ < d

as sր ω∗

P (Lκ(s) = k | Xκ > s)
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=





∑
∅6=T⊆{κ,...,d}(−1)|T |+1

∥∥∑
i∈T γiei

∥∥
D
+ o(1),

k = d− κ,
∑

T⊆{κ,...,κ+k}(−1)|T |+1
∥∥γκ+k+1eκ+k+1 +

∑
i∈T γiei

∥∥
D
+ o(1),

0 ≤ k < d− κ.

Proof: First note that P (Lκ(s) = 0 | Xκ > s) = 1 for κ = d. For k = d − κ, the

assertion is clear by P (Lκ(s) = d − κ | Xκ > s) = P (Lκ(s) ≥ d − κ | Xκ > s) and the

use of Lemma 4.4.5. For 0 ≤ k < d− κ, we get with Lemma 4.4.5

P (Lκ(s) = k | Xκ > s) =P (Lκ(s) ≥ k | Xκ > s)− P (Lκ(s) ≥ k + 1 | Xκ > s)

=
∑

∅6=T⊆{κ,...,κ+k}

(−1)|T |+1

∥∥∥∥∥
∑

i∈T

γiei

∥∥∥∥∥
D

−
∑

∅6=T⊆{κ,...,κ+k+1}

(−1)|T |+1

∥∥∥∥∥
∑

i∈T

γiei

∥∥∥∥∥
D

+ o(1)

=−
∑

T∪{κ+k+1},
T⊆{κ,...,κ+k}

(−1)|T |

∥∥∥∥∥∥
∑

i∈{T∪{κ+k+1}}

γiei

∥∥∥∥∥∥
D

+ o(1)

=
∑

T⊆{κ,...,κ+k+1}

(−1)|T |+1

∥∥∥∥∥γκ+k+1eκ+k+1 +
∑

i∈T

γiei

∥∥∥∥∥
D

+ o(1),

which completes the proof. �

In terms of a generator Z of aD-norm, Proposition 4.4.8 becomes the following result.

Corollary 4.4.9 Assume in addition to the conditions of Lemma 3.3.1 that Z is a

generator of the D-norm ‖·‖D. Then we have for κ < d as sր ω∗

(i) P (Lκ(s) = k | Xκ > s)

=




E (minκ≤i≤d(γiZi)) + o(1), k = d− κ

E (minκ≤i≤κ+k(γiZi)−minκ≤i≤κ+k+1(γiZi)) + o(1), 0 ≤ k < d− κ.

(ii) P (Lκ(s) ≤ k | Xκ > s)

=




1, k = d− κ

1− E (minκ≤i≤κ+k+1(γiZi)) + o(1), 0 ≤ k < d− κ.
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Proof: By means of Lemma 4.4.6 we have

P (Lκ(s) = k | Xκ > s) =
∑

∅6=T⊆{κ,...,d}

(−1)|T |+1

∥∥∥∥∥
∑

i∈T

γiei

∥∥∥∥∥
D

+ o(1)

=E


 ∑

∅6=T⊆{κ,...,d}

(−1)|T |+1max
i∈T

(γiZi) + o(1)




=E

(
min
κ≤i≤d

(γiZi)

)
+ o(1)

for k = d− κ and

P (Lκ(s) = k | Xκ > s) =
∑

T⊆{κ,...,κ+k}

(−1)|T |+1

∥∥∥∥∥γκ+k+1eκ+k+1 +
∑

i∈T

γiei

∥∥∥∥∥
D

+ o(1)

=
∑

T⊆{κ,...,κ+k}

(−1)|T |+1E

(
max

i∈{T∪{κ+k+1}}
(γiZi)

)
+ o(1)

=E




∑

T∪{κ+k+1},
T⊆{κ,...,κ+k}

(−1)|T |+1 max
i∈{T∪{κ+k+1}}

(γiZi)


+ o(1)

=E


 ∑

∅6=T⊆{κ,...,κ+k}

(−1)|T |+1max
i∈T

(γiZi)

−
∑

∅6=T⊆{κ,...,κ+k+1}

(−1)|T |+1max
i∈T

(γiZi)


 + o(1)

=E

(
min

k≤i≤κ+k
(γiZi)− min

k≤i≤κ+k+1
(γiZi)

)
+ o(1)

for 0 ≤ k < d− κ, which shows (i). Further we have

P (Lκ(s) ≤ d− κ | Xκ > s) = 1− P (Lκ(s) > d− κ | Xκ > s)︸ ︷︷ ︸
=0

= 1

and by means of Corollary 4.4.7 we get

P (Lκ(s) ≤ k | Xκ > s) =1− P (Lκ(s) ≥ k + 1 | Xκ > s)

=1−E

(
min

κ≤i≤κ+k+1
(γiZi)

)
+ o(1)
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for 0 ≤ k < d− κ, which completes the proof of (ii). �

We thus obtain the limit distribution of the excursion time:

Qκ([0, k]) := lim
sրω∗

P (Lκ(s) ≤ k | Xκ > s)

=




1, k = d− κ

1−E (minκ≤i≤κ+k+1(γiZi)) , 0 ≤ k < d− κ.

Take, for example, the generator Z = 2(U1, . . . , Ud), where the Ui are independent

and uniformly on (0, 1) distributed rv. If, in addition, γi = 1, κ ≤ i ≤ d, then we obtain

Qκ([0, k]) =




1, k = d− κ

1− 2
k+3

, 0 ≤ k < d− κ.

Note that Z is not a generator of the L1-norm ‖x‖1 =
∑d

i=1 |xi|, which yields the EVD

G(x) = exp
(
−∑d

i=1 |xi|
)
, x ≤ 0 ∈ Rd, with independent margins (cf. Example 4.4.13).

Next we compute the asymptotic mean excursion time. It can be interpreted as the

fragility index for sojourn times, hence we call it the sojourn index (SI).

Definition 4.4.10 (Sojourn Index) The sojourn index is defined by the limit

lim
sրω∗

E (Lκ(s) | Xκ > s) =




0, if κ = d
∑d−κ

k=1 sκ(k) else

=




0, if κ = d
∑d−κ

k=1 E (minκ≤i≤κ+k(γiZi)) else

and defines a measure for asymptotic dependence within a finite sequence of a stochastic

process.

Note that we have

E (Lκ(s) | Xκ > s) ∈ [1, d− κ+ 1]

by construction. Hence, in a period of d + 1 sequential time points, we may expect the

duration of exceedance by at least 1 and at most d+1 time units if we have an exceedance

at the starting time point. In comparison to the fragility index, we capture the amount of

asymptotic dependence within a finite sequence of a stochastic process by the limit of the
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expected excursion time within a finite sequence of the stochastic process (Xd)d∈N. By

the way, considering a strictly stationary stochastic process, the results due to the finite

sequence can be carried over to the stochastic process if one applies a transformation

of the sojourn index to the interval [0, 1] as done for the extended fragility index in

Definition 4.3.1 in a similar way.

Proposition 4.4.11 (Sojourn Index) Assume the conditions of Lemma 3.3.1 and let

Z be a generator of the D-norm ‖·‖D. Then we have for 1 ≤ κ ≤ d

E (Lκ(s) | Xκ > s) =




0, if κ = d
∑d−κ

k=1 sκ(k) + o(1) else

=




0, if κ = d
∑d−κ

k=1 E (minκ≤i≤κ+k(γiZi)) + o(1) else.

Proof: Since Lκ(s) attains only nonnegative values, we have for κ < d

E (Lκ(s) | Xκ > s) =

∫ ∞

0

P (Lκ(s) ≥ t | Xκ > s) dt

=

d−κ∑

k=1

P (Lκ(s) ≥ k | Xκ > s)

=

d−κ∑

k=1

P (Xκ > s, . . . , Xκ+k > s | Xκ > s)

=
d−κ∑

k=1

sκ(k) + o(1),

where sκ is defined in Lemma 4.4.5. �

Corollary 4.4.12 Under the conditions of Proposition 4.4.11 we have for κ < d, if

γk > 0, 1 ≤ k ≤ d,

lim
s↑ω∗

E(Lκ(s) | Xκ > s) = 0

if and only if

‖xeκ + yeκ+1‖D = ‖xeκ + yeκ+1‖1 = x+ y, x, y ≥ 0.
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Proof: Note that sκ(1) ≥ · · · ≥ sκ(d− κ). We, thus, obtain from Proposition 4.4.11

lim
s↑ω∗

E(Lκ(s) | Xκ > s) = 0 ⇐⇒ sκ(1) = 0.

And further we have sκ(1) = 0 if and only if ‖γκeκ + γκ+1eκ+1‖D = γκ + γκ+1 for

arbitrary γκ, γκ+1 > 0. Hence the assertion follows in analogy to the proof of Lemma

3.2.1. �

The following considerations will be used in Example 4.4.13. Suppose in addition

to the assumptions of Lemma 3.3.1 that the components X1, . . . , Xd of the rv X are

exchangeable. Then we have γ1 = · · · = γd = 1, as well as

∥∥∥∥∥
∑

i∈T

ei

∥∥∥∥∥
D

=

∥∥∥∥∥∥

|T |∑

i=1

ei

∥∥∥∥∥∥
D

for any nonempty subset T ⊆ {1, . . . , d}. As a consequence we obtain

sκ(k) =
k+1∑

j=1

(−1)j+1

(
k + 1

j

)∥∥∥∥∥

j∑

i=1

ei

∥∥∥∥∥
D

, 0 ≤ k ≤ d− κ,

and, thus, by rearranging sums,

lim
sր

E (Lκ(s) | Xκ > s) =
d−κ∑

k=1

sκ(k)

=
d−κ+1∑

j=1

(−1)j+1

∥∥∥∥∥

j∑

i=1

ei

∥∥∥∥∥
D

d−κ∑

k=max(1,j−1)

(
k + 1

j

)

= −1 +

d−κ+1∑

j=1

(−1)j+1

(
d− κ+ 2

j + 1

)∥∥∥∥∥

j∑

i=1

ei

∥∥∥∥∥
D

,(4.22)

where the final equality follows from the general equation
∑N

r=n

(
r
n

)
=
(
N+1
n+1

)
.

We want to finish this section with an example for the sojourn index.

Example 4.4.13 (Marshall-Olkin D-norm) Consider the Marshall-Olkin D-norm

‖x‖MO = ϑ ‖x‖1 + (1− ϑ) ‖x‖∞ , x ∈ R
d, ϑ ∈ [0, 1],

cf. Section A and Example 3.3.16. In this case, i.e. ‖·‖D = ‖·‖MO, we obtain from

Equation (4.22)

lim
sր

E (Lκ(s) | Xκ > s) = (1− ϑ)(d− κ),
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which can be seen as follows. By means of Lemma A.4 and the binomial formula
∑m

j=0(−1)j
(
m
j

)
= (1 + (−1))m = 0, we get

lim
sր

E (Lκ(s) | Xκ > s)

= −1 +
d−κ+1∑

j=1

(−1)j+1

(
d− κ + 2

j + 1

)∥∥∥∥∥

j∑

i=1

ei

∥∥∥∥∥
MO

= −1 +
d−κ+1∑

j=1

(−1)j+1

(
d− κ + 2

j + 1

)
jϑ+ (1− ϑ)

d−κ+1∑

j=1

(−1)j+1

(
d− κ+ 2

j + 1

)

= −1 + ϑ
d−κ+2∑

j=2

(−1)j
(
d− κ + 2

j

)
j − ϑ

d−κ+2∑

j=2

(−1)j
(
d− κ+ 2

j

)

+
d−κ+2∑

j=2

(−1)j
(
d− κ+ 2

j

)
− ϑ

d−κ+2∑

j=2

(−1)j
(
d− κ+ 2

j

)

= −1 + ϑ




d−κ+2∑

j=0

(−1)j
(
d− κ + 2

j

)
j

︸ ︷︷ ︸
=0

+(d− κ+ 2)




− ϑ




d−κ+2∑

j=0

(−1)j
(
d− κ+ 2

j

)

︸ ︷︷ ︸
=0

−1 + d− κ+ 2




+
d−κ+2∑

j=0

(−1)j
(
d− κ+ 2

j

)

︸ ︷︷ ︸
=0

−1 + d− κ+ 2

− ϑ




d−κ+2∑

j=0

(−1)j
(
d− κ+ 2

j

)

︸ ︷︷ ︸
=0

−1 + d− κ+ 2




= −1 + ϑ(d− κ+ 2)− ϑ(d − κ + 1) + d− κ+ 1− ϑ(d− κ+ 1)

= (d− κ)(1− ϑ) .
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In the case ϑ = 0 of complete tail dependence of the margins we therefore obtain

lim
sր

E (Lκ(s) | Xκ > s) = d− κ,

which is the full possible length, whereas in the tail independence case ϑ = 1 we obtain

the shortest length

lim
sր

E (Lκ(s) | Xκ > s) = 0,

which is in complete accordance with Corollary 4.4.12.

Hence this example covers the whole range of what is possible with respect to the

amount of asymptotic dependence within a finite sequence of the stochastic process

(Xd)d∈N. To investigate the dependence structure, one may consider different choices for

the D-norm as done in Section 4.2.5.
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5. Applications on the Fragility

Index

This chapter engages in the estimation of the (extended) fragility index and its applica-

tion on random systems in order to shed light on their asymptotic stability. Thereby we

focus on a nonparametric estimation procedure for the dependence structure of the EVD

to which domain of attraction the random system‘s representing distribution function

belongs to. A nonparametric approach is reasonable since we do not want to make as-

sumptions on a parametric model for the EVD. The estimation of the (extended) fragility

index is of great importance with respect to the fact that it can be considered as a tail

dependence measure under the domain-of-attraction condition for arbitrary dimensions

(cf. Section 4.3).

This chapter is structured as follows. Section 5.1 summarizes a nonparametric es-

timation procedure of the stable tail dependence function and carries over to the non-

parametric estimation approach of the (extended) fragility index. Section 5.2 provides

a simulation study of the nonparametric estimator for the extremal coefficient and the

thereof derived (extended) fragility index. Therein we simulate the distribution and the

mean squared error of the estimators and comment on an optimal tail fraction. Section

5.3 presents the application of the (extended) fragility index on two random systems

represented by stock prices taken from the DAX over the last ten years.

5.1. Estimation of the Fragility Index

This section aims to provide an estimation procedure for the fragility index. The repre-

sentation of the fragility index, as well as the extended fragility index, is based on the

extremal coefficients corresponding to the margins of the EVD G to which domain of
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attraction the df F of the random system {Q1 . . . , Qd} belongs to (cf. (4.17) in Section

4.3). The extremal coefficient corresponding to an EVD G with arbitrary margins is

defined by means of the D-norm (cf. Definition 2.2.4). Further we know that the D-

norm coincides with the stable tail dependence function (cf. Section 2.3). There exists

a multitude of possibilities to estimate the stable tail dependence function (cf. Section

2.4 for an overview and corresponding literature). Most of those estimators focus on

the fact that the stable tail dependence function represents the dependence structure

of an EVD, hence most estimators of the stable tail dependence function are provided

under the assumption that the underlying multivariate distribution function is actually

an EVD (we call it the EVD-assumption). For example, the CFG-estimators for the

Pickands-dependence function (cf. Genest et al. [23] and Capéraà et al. [8] for the

bivariate case, extended to the multivariate case by Zhang et al. [71]) are restricted to

the EVD-assumption. This is also true for recent work of Genest and Seghers [24] or

Gudendorf and Seghers [27], who extensively work on the estimation of the dependence

structure of an EVD.

Our (extended) fragility index is based on the assumption that the copula of the

underlying distribution belongs to the domain of attraction of an EVD (we call it the

domain-of-attraction-assumption). In this case we have

CF ∈ D(G) ⇔ lim
t↓0

1− CF (1 + tx)

t
= ‖x‖D ,(5.1)

cf. Corollary 2.3.17. Hence we use a weaker assumption than the EVD-assumption. In

the following we focus on the nonparametric estimation of the D-norm. At this point

we want to note that (5.1) also suggests a parametric estimation approach based on the

copula CF (cf. Section 5.4 for an outlook on this topic).

The nonparametric estimator of the stable tail dependence function, provided in de Haan

and Ferreira [29], Section 7.2, emerged to be a suitable estimator for our purpose. In

the following we want to present this estimator and the results concerning consistency

and the asymptotic behavior of its distribution function. We start with the derivation

of the estimator (cf. de Haan and Ferreira [29], Section 7.2).

Due to Definition 2.3.1, the right hand side of (5.1) is equivalent to

lim
t→∞

t ·
(
1− F

(
Uj

(
t

xj

)
, j ≤ d

))
= l(x) ,(5.2)
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5.1. Estimation of the Fragility Index

with Uj(x) := F−1j

(
1− 1

x

)
, where Fj is continuous for j ≤ d, where l denotes the stable

tail dependence function as defined in Definition 2.3.13.

With regard to certain regularity conditions, which we will need later, we require k =

k(n) → ∞, k/n→ 0, n→ ∞. Then (5.2) is equivalent to

lim
n→∞

n

k

(
1− F

(
Uj

(
n

kxj

)
, j ≤ d

))
= l(x1, . . . , xd) .

Now, use empirical counterparts for the function Uj and F to derive an estimator, i.e.

use the order statistic Y
(j)
n−[kxj]+1,n instead of Uj

(
n

kxj

)
= F−1j

(
1− k

n
xj
)
and take the

empirical df F̂ of F . Hence, we get for x1, . . . , xd > 0

‖(x1, . . . , xd)‖D̂ :=
1

k

n∑

i=1

1
{Y

(1)
i ≥Y

(1)
n−[kx1]+1,n

or ... or Y
(d)
i ≥Y

(d)
n−[kxd]+1,n

}
(5.3)

as a nonparametric estimator for the D-norm. Note that (5.3) is invariant under mono-

tone transformations of the margins. The following results concerning consistency and

asymptotic normality of ‖(x1, . . . , xd)‖D̂ are provided by Theorem 7.2.1 and 7.2.2. of

de Haan and Ferreira [29] for the bivariate case. The proofs are rather extensive, but

obvious for extension to higher dimensions (cf. the notes in the first paragraph of Section

6.1.2 of de Haan and Ferreira [29]). We want to start with the consistency of ‖·‖D̂.

Theorem 5.1.1 Suppose X1, . . . ,Xn to be i.i.d. random vectors with joint df F ∈ D(G)

and continuous margins. Denote by ‖·‖D the D-norm corresponding to G. Further,

suppose that we have k = k(n) → ∞, k/n → 0 for k < n and n → ∞. Then we get for

T > 0

sup
0≤x≤T

| ‖x‖D − ‖x‖D̂ | →P 0

as n→ ∞, where →P denotes convergence in probability.

Proof: Cf. Theorem 7.2.1 in de Haan and Ferreira [29]. �

The next theorem states the asymptotic normality of ‖·‖D̂.

Theorem 5.1.2 Suppose X1, . . . ,Xn to be i.i.d. random vectors with joint df F ∈ D(G)

and continuous margins. Denote by Li(x) :=
∂‖x‖D
∂xj

the continuous first-order j-th partial

derivative of the function ‖x‖D, for which it holds that ‖xei‖D = ‖xej‖D = x for i, j ≤ d
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and x ≥ 0. Furthermore, suppose that for some α > 0 and for all x > 0, we have

t

(
1− F

(
Uj

(
t

xj

)
, j ≤ d

))
= ‖x‖D +O(t−α)

for t → ∞ uniformly on the unit simplex S =
{
u :
∑

j≤d uj = 1, uj ≥ 0
}
, where Uj

is defined in (5.2) for j ≤ d. Further, suppose that we have k = k(n) → ∞ with

k(n) = o
(
n2α/(1+2α)

)
, α > 0 and k/n → 0 for k < n and n → ∞. Then we have for

n→ ∞

√
k (‖(x1, . . . , xd)‖D − ‖(x1, . . . , xd)‖D̂) →D B(x1, . . . , xd)

in D([0, T ]d) for every T > 0 and x ∈ Rd
+, where

B(x1, . . . , xd) =W (x1, . . . , xd)−
∑

j≤d

Lj(x1, . . . , xd)W (xjej)

and W is a continuous Gaussian process with mean zero and covariance structure

E(W (x1, . . . , xd)W (y1, . . . , yd)) = µ (R(x1, . . . , xd) ∩ R(y1, . . . , yd)) with
R(x1, . . . , xd) :=

{
(u1, . . . , ud) ∈ Rd

+ :
⋃

j≤d{0 ≤ uj ≤ xj}
}
. Thereby, µ is defined by

means of the exponent measure ν (cf. Proposition 2.1.3), i.e µ := ν ∗ T defined by

µ(A) =ν(T−1(A))(5.4)

with T : x 7→ −x for x ≤ 0 and A ⊆ [0,∞]d\{∞}.

Proof: Cf. Theorem 7.2.2 in de Haan and Ferreira [29]. �

Further information about results of Theorems 5.1.1 and 5.1.2 can be found in de Haan

and de Ronde [33], Section 5.1. Of special interest regarding Theorem 5.1.2 is the recent

work of Einmahl et al. [17]. Theorem 4.6 therein states, that asymptotic normality of

the nonparametric estimator ‖·‖D̂ for the stable tail dependence function holds under

a weaker smoothness condition on ‖·‖D, namely Lj(x) is continuous on a certain set

of points instead of the whole interval [0,∞]d. Furthermore, they succeed to provide

a parametric estimator for the stable tail dependence function in arbitrary dimensions,

which exhibits asymptotic normality without any differentiability conditions on ‖·‖D.
Note that the basic element of the extended fragility index is

εK :=

∥∥∥∥∥
∑

j∈K

ej

∥∥∥∥∥
D

, for K ⊆ {1, . . . , d} ,(5.5)
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cf. Theorem 4.2.10. Thereby εK is the extremal coefficient of the |K|-dimensional margin

GK(x) = G(
∑

j∈K xjej) of an EVD G. Recall the considerations on the extremal coef-

ficient; cf. Definition 2.2.4 and the following discussion there. Using the nonparametric

estimator for the stable tail dependence function, as given in (5.3), we obtain

ε̂K :=

∥∥∥∥∥
∑

j∈K

ej

∥∥∥∥∥
D̂

:=
1

k

n∑

i=1

1
{
⋃

j∈K{Y
(j)
i ≥Y

(j)
n−k+1,n}}

(5.6)

as a nonparametric estimator for the extremal coefficient corresponding to the EVD GK .

Applying Theorem 5.1.1 and 5.1.2 we obtain consistency and asymptotic normality for

the extremal coefficient estimator ε̂K by considering the special case xj = 1 for j ∈ K.

For the sake of simplicity, we restrict ourselves to the case K = {1, . . . , m}. Therefore,

denote by ej the j-th unit vector in Rm.

Corollary 5.1.3 Denote by W (1) the Gaussian process and Lj(1), j ≤ d, as defined in

Theorem 5.1.2 at point 1 :=
∑

j≤m ej. Under the conditions of Theorem 5.1.2, we get

for n→ ∞
√
k (ε− ε̂) →D B(1) ,

where

B(1) =W (1)−
∑

j≤m

Lj(1)W (ej).(5.7)

In the specific situation of Corollary 5.1.3 we are able to specify the normal distribution

in (5.7).

Recall that we have ‖x‖D = ν {[−∞,x]c} for x ≤ 0 ∈ Rm, cf. Theorem 2.1.9, where ν

denotes the exponent measure, cf. proposition 2.1.3. More precisely, we have

‖x‖D = ν

({
s ∈ [−∞, 0]m\{−∞} :

⋃

j≤m

{sj > xj}
})

for x ≤ 0. With the definition of the measure µ in (5.4) we have

µ

({
(s1, . . . , sm) ∈ [0,∞]m\{∞} :

⋃

j≤m

{sj < xj}
})
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:= ν

(
T−1

({
(s1, . . . , sm) ∈ [0,∞]m\{∞} :

⋃

j≤m

{sj < xj}
}))

= ν

({
(s1, . . . , sm) ∈ [−∞, 0]m\{−∞} :

⋃

j≤m

{sj > xj}
})

.

Hence this implies

‖x‖D = µ

({
(s1, . . . , sm) ∈ [0,∞]m\{∞} :

⋃

j≤m

{sj < xj}
})

for x ≥ 0.

With the definition of the covariance structure of the Gaussian process W as given

in Theorem 5.1.2, we get

V ar(W (1)) =E(W (1)W (1)) = µ(R(1))

=µ

({
u ∈ R

m
+ :

⋃

j≤m

{0 ≤ uj ≤ 1}
})

= ‖1‖D = ε.

Further we have

V ar(W (ej)) =E(W (ej)W (ej)) = µ(R(ej))

=µ

({
u ∈ R

m
+ : {0 ≤ uj ≤ 1} ∪

⋃

i 6=j

{ui = 0}
})

= ‖ej‖D = 1,

E(W (1) ·W (ej)) =µ(R(ej)) = 1,

and

E(W (ei) ·W (ej)) = µ(R(ei) ∩ R(ej))

= µ(R(ei)) + µ(R(ej))− µ(R(ei) ∪ R(ej))

= 1 + 1− µ

({
u ∈ R

m
+ : {0 ≤ ui ≤ 1} ∪ {0 ≤ uj ≤ 1} ∪

⋃

k 6=i,j

{uk = 0}
})

= 2− ‖ei + ej‖D = 2− ε{i,j} .

Hence we get

V ar

(
W (1)−

∑

j≤m

Lj(1)W (ej)

)
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= E



(
W (1)−

∑

j≤m

Lj(1)W (ej)− E

(
W (1)−

∑

j≤m

Lj(1)W (ej)

))2



= E



(
W (1)−

∑

j≤m

Lj(1)W (ej)

)2



= E


W 2(1)− 2 ·W (1)

∑

j≤m

Lj(1)W (ej) +

(∑

j≤m

Lj(1)W (ej)

)2



= V ar(W (1))− 2 ·
∑

j≤m

Lj(1)E(W (1)W (ej))

+
∑

i≤m

∑

j≤m

Li(1)Lj(1)E(W (ei)W (ej))

= ε− 2 ·
∑

j≤m

Lj(1) +
∑

i≤m

∑

j≤m

j 6=i

Li(1)Lj(1)
(
2− ε{i,j}

)

+
∑

j≤m

L2
j (1)V ar(W (ej))

= ε+
∑

j≤m

(
L2
i (1)− 2Li(1)

)
+
∑

i≤m

∑

j≤m
j 6=i

Li(1)Lj(1)
(
2− ε{i,j}

)
.

We finally obtain

W (1)−
∑

j≤m

Lj(1)W (ej) =DN(0, σ),(5.8)

with

σ2 :=ε+
∑

j≤m

(L2
j (1)− 2Lj(1)) +

∑

j≤m

∑

i≤m

i6=j

Lj(1)Li(1)(2− εi,j) ,(5.9)

cf. Section 7.4. in de Haan and Ferreira [29].

The fragility index can be regarded as a tail dependence coefficient based on the

extremal coefficient, see Section 4.3. With the nonparametric estimator in (5.6), we

obtain an estimator for the extended fragility index FI(m), m ≤ d, of the random

system {Q1, . . . , Qd} via

F̂ I(m) :=

∑d
k=m kp̂k∑d
k=m p̂k

(5.10)
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with

p̂k := 1/ε̂ ·
∑

0≤j≤k

(−1)k−j+1

(
d− j

k − j

) ∑

T⊆{1,...,d}
|T |=d−j

ε̂T ,

cf. Theorem 3.3.12 for the definition of pk and Remark 3.3.13 for the representation of

pk by the extremal coefficients εT . The fragility index as provided in Corollary 4.1.4 is

given by

F̂ I := F̂ I(1) =
d

ε̂
(5.11)

Note that the above estimator for the (extended) fragility index works under the ap-

proach of an individual threshold for every component Qj of the random system (Q1, . . . ,

Qd} or within the situation of identically distributed and tail equivalent components re-

spectively (cf. the discussion in Section 4.2.3). However, in order to obtain the individual

thresholds, one is able to estimate the univariate margins by a parametric POT-approach

(cf. Chapter 7 in Embrechts et al. [13] for an appealing summary), or a nonparametric

approach using the empirical distribution function, if the tail size is chosen not too small.

For the specific case m = 1, i.e. the fragility index FI, we can derive the following

asymptotic distribution result for FI. Under the assumption that the estimator F̂ I is

consistent, i.e. the convergence F̂ I → FI holds in probability, we obtain

√
k
(
F̂ I − FI

)
→D N

(
0,
dσ

ε2

)
.(5.12)

This is due to Cramer‘s Delta method, cf. Theorem A.7, which can be seen as follows.

Consider the function h : [1, d] → [1, d] defined by x 7→ d
x
for d ∈ N. Note that h is

continuous in x and
∂h

∂x
(ε) =

(−1)d

ε2
6= 0 .

Hence, the assertion follows by means of Theorem A.7.

Above provided properties of the estimator for the extremal coefficient and the derived

fragility index will be investigated by means of a simulation study, cf. Section 5.2.

Therein we also provide simulations of the estimator‘s distribution for the extended

fragility index FI(m), m ≤ d. However, we are not able to provide theoretical results

on its asymptotic behavior except in the case of m = 1.
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5.2. Simulation Study

This section aims to show simulation results for the estimator of the extremal coefficient

and the fragility index provided in Section 5.1. Further we show simulation results for

the extended fragility index, although we do not provide theoretical results concerning

consistency and normality. This shall serve as a first insight into the properties of

the nonparametric estimator for the extended fragility index established in (5.10) with

respect to its mean squared error and its distribution according to sample and tail size.

Section 5.2.1 refers to the simulation technique for the extremal coefficient and the

(extended) fragility index respectively. Results of the simulation study are provided in

Section 5.2.2 and Section 5.2.3 aims to suggest a choice for an optimal tail fraction to

which the estimation of the extremal coefficient is applied to.

5.2.1. Simulation of the estimators distribution

We simulate samples of size n of three-dimensional random vectors coming from an EVD

with logistic dependence structure and Fréchet margins with parameters ξj = 0.5, µj =

0 and βj = 1 for j ≤ d according to the Jenkinson-von Mises representation of an

univariate EVD (cf. Definition 2.1.11). Although the extremal coefficient is invariant

under transformation of the univariate margins of an EVD, we have to choose the type of

simulated margins. With respect to further application to financial data, which mostly

exhibit heavy tails, we therefore simulate Fréchet margins. Hence we simulate from the

multivariate EVD

G(x) = exp


−

(∑

j≤d

(x−2j )λ

)1/λ

(5.13)

with λ ∈ [1;∞], hence the logistic EVD, cf. Example 2.1.14. The copula belonging to

an EVD of logistic type is just the Gumbel copula (cf. Example 2.3.5). Thereby note

that some authors, e.g. Stephenson [67], refer to the logistic EVD and corresponding

copula by means of (5.13) with dependence parameter ϑ := 1/λ ∈ (0, 1]. The multi-

variate logistic model with standard Fréchet margins goes back to Gumbel [28]. For the

generation of EVD of the logistic type we use an algorithm provided by Stephenson [67].

It is based on the so-called Shi transformation, which is given by (Xi)
−1/ϑ 7→ (XiV )

−1/ϑ
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with V :=
(∑

j≤dX
−1/ϑ
j

)ϑ
for j ≤ d, i.e. the transformation of standard Fréchet mar-

gins to the d − 1 dimensional unit simplex (cf. Shi [59]). In the framework of logistic

dependence structure, the Shi transformation is also used by Michel [51], who provided

an algorithm in order to simulate from a multivariate generalized Pareto distribution of

logistic type.

For each simulated sample from the logistic EVD we apply the nonparametric esti-

mator for the extremal coefficient εK as defined in Section 5.1, i.e.

ε̂K :=

∥∥∥∥∥
∑

j∈K

ej

∥∥∥∥∥
D̂

:=
1

k

n∑

i=1

1
{
⋃

j∈K{Y
(j)
i ≥Y

(j)
n−k+1,n}}

,(5.14)

which is the corresponding extremal coefficient (cf. Definition 3.1.2) to each marginal

distribution GK of G. We repeat this simulation and estimation procedure m times.

Hence, we obtain an empirical distribution of the estimator ε̂K of size m. Then we

compute the estimator for the fragility index and the extended fragility index via (5.11)

and (5.10) based on the estimation results of ε̂K . Hence we also obtain an empirical

distribution of each of the estimators for FI(m).

To investigate the influence on the size of the tail (denoted by γ), the amount of de-

pendence (denoted by λ) and the sample size of simulated EVDs (denoted by n) on the

estimation results, we took simulations of various combinations of the parameters γ, λ

and n.

Since the nonparametric estimator ε̂K depends on the number of observations in the

tail, denoted by k in (5.14), we chose a set of increasing tail fractions γs := ks/n, s ∈
S. The choice of the tail was determined by k/n heavily influences consistency and

asymptotic normality of the estimator (cf. Theorem 5.1.1 and 5.1.2). The smaller γs,

the more variability will be inherent in the estimator due to less observations, but on the

other hand, it should show higher accuracy the smaller the tail, due to the construction

of the estimator serving for estimating tail -dependence. This is the well-known trade-off

in the framework of tail estimation. With regard to the question, ”Which tail fraction is

an optimal choice in the face of above mentioned trade-off?” we refer to Section 5.2.3,

where we investigate the mean squared error of the estimator.
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5.2.2. Simulation Results

This section represents the simulation results of the nonparametric estimator of the ex-

tremal coefficient provided in (5.3) and the derived estimator for the (extended) fragility

index (cf. 5.10 in Section 5.1).

In doing so, our simulation study aims to provide the empirical distribution of the non-

parametric estimator for the extremal coefficient ε := ‖(1, 1, 1)‖D (cf. Definition 2.2.4

and Section 2.4). The simulated data, to which the nonparametric estimation procedure

is applied to, come from a logistic EVD with dependence parameter λ, cf. (5.13). Hence

we wish to estimate the true underlying extremal coefficient ‖(1, 1, 1)‖λ by means of the

nonparametric estimator ε̂ := ‖(1, 1, 1)‖D̂ provided in (5.3). In the following we refer to

this estimator by ε̂.

Within this section we present figures of boxplots of the nonparametric estimator for

the extremal coefficient and the (extended) fragility index. We decided to represent and

discuss the simulation results by means of boxplots, since they easily summarize the

empirical distribution of the estimator in contrast to the use of tables representing basic

statistics like sample mean and standard deviation, which may lie above our capacity for

the huge amount of presented information. The boxplots correspond to the combination

of simulation parameters like simulated sample size n, tail fraction γ and dependence

parameter λ, ε = ‖(1, 1, 1)‖λ respectively, of the logistic model. For sake of simplicity,

we shorten ”simulated sample size” by ”sample size” and ask the reader not to confuse

the sample size of the datasets (i.e. the number of simulated rv coming from a logistic

EVD), which is denoted by n, with the sample size underlying each boxplot, which is

fixed to m = 10000, i.e. the number of datasets generated from the mentioned logistic

EVD.

First have a look at Figure 5.1, which represents the estimation results correspond-

ing to λ = 1.7, which reflects a medium amount of dependence, since ‖(1, 1, 1)‖1.7 ≈
1.9 (cf. 2.15). Each floor represents the boxplot’s corresponding level to a specific

choice of sample size n, here we choose n = 500, 1000, 2500, 5000, 10000 and 20000,

i.e. we see six floors. Within one floor each step in the boxplot corresponds to a

specific choice of tail fraction, here we choose γ = 0.002, 0.004, 0.006, 0.008, 0.01, 0.02,

0.03, 0.04, 0.05, 0.075, 0.1, 0.2, 0.3, i.e. each

floor consists of 13 steps. Each boxplot shows the dataset of m = 10000 replicates of the
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Figure 5.1.: Shown is the wave plot corresponding to the estimator of the extremal coefficient ε =

‖(1, 1, 1)‖
1.7 ≈ 1.9 (represented by the vertical line). The floors from the bottom to the

top show the increasing sample sizes n = 500, 1000, 2500, 5000, 10000, 20000. Boxplots

are also grouped by tail fractions γ. The data shown in boxplots represent the simulation

results of the nonparametric estimation approach for the extremal coefficient by means

of the estimator in (5.3), cf. Section 5.1.

estimator ε̂ corresponding to varying combinations of λ, n and γ. Thereby, the median

is represented by the line within the box, the sample mean (if shown) is visualized by an

asterisk and observations beyond the whiskers are represented by circles (whiskers are

defined by [x25% − 1.5 · IQR] and [x75% + 1.5 · IQR] respectively, where x25% and x75%
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5.2. Simulation Study

define the lower and upper quartile and IQR denotes the inter quartile range).

We observe that for increasing sample sizes n the variance of ε̂ decreases, this is also

true for the increasing tail fractions γ within each floor of the figure. With respect to

the standard deviation, the same behavior is shown by the boxplots corresponding to

λ = 1.1 and λ = 3 (cf. Figure C.1 and C.2 in Chapter 7, Section C).

The vertical line through Figure 5.1 represents the extremal coefficient ε = ‖(1, 1, 1)‖1.7 ≈
1.9. The larger the tail fraction, the more bias arises by the use of the nonparametric

estimator ε̂. We observe that for too large tail fractions, this bias leads to complete

underestimating of the true underlying value of the extremal coefficient. Thereby the

tail fraction γ, which leads to bias of the estimator, depends on the sample size n of the

underlying dataset. For example, for n = 500 we observe bias to the left for tail fractions

of about γ ≥ 0.05, whereas for n = 5000 bias already occurs for about γ ≥ 0.02. In the

following we explain this fact.

However, we know from Theorem 5.1.1 that ε̂ is asymptotically unbiased, even consis-

tent. The crucial requirement under which this is true regards to the convergence rate

of the sequences n and corresponding tail size k(n). Indeed we have the requirement

k = k(n) → ∞, k/n → 0 for k < n and n → ∞. This means that k crucially depends

on n with the restriction that the convergence rate of k is of a lower rate than that of a

linear function. In view of Theorem 5.1.1 one is advised to choose γ := k/n the smaller

the higher the sample size n is chosen, for example choose k :=
√
n. We will extensively

discuss the choice of k later on, especially in Section 5.2.3.

With respect to the described behavior of ε̂, we call such a plot a wave plot.

We also want to remark that the extreme bias, which we observe for large tail fractions,

seems to be reduced by increasing values for the dependence parameter λ (cf. Figure

C.3 in Section C for a representative choice of n = 2500).

Hitherto we discussed the behavior of ε̂ with respect to its variance and bias; more pre-

cisely we investigated the consistency of ε̂ by means of the so-called mean squared error

(MSE). Since the MSE will play a crucial role within the question of which tail size k

should be chosen in order to reduce variance and bias, i.e. the MSE, we will discuss the

MSE of ε̂ separately and extensively in Section 5.2.3.

Now we want to continue with discussing the skewness of the estimator. Therefore

we representatively choose the wave corresponding to n = 2500 of Figure 5.1.
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Figure 5.2.: Shown are the boxplots of the estimator of the extremal coefficient ε = ‖(1, 1, 1)‖
1.7 ≈ 1.9

and n = 2500. This is the wave corresponding to n = 2500 of Figure 5.1.

The boxplots of Figure 5.2 show an increasing goodness of approximation of the

sample mean (represented by an asterisk) to the median with increasing tail fraction

γ. Thereby the minimal value of γ at which the mean fits the median decreases with

increasing sample size n (cf. the represented selection of n in Figure C.4 and C.5 in

Section C). Further, Figure 5.2, C.4 and C.5 show that in general neither a tendency

to skewness to the left nor a skewness to the right can be observed. But in general,

skewness vanishes for increasing tail size.
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5.2. Simulation Study

Furthermore, we want to mention that the number of outliers, defined as those observa-

tions that lie beyond the whiskers of the boxplot, amounts at most to about 1 % of the

data for arbitrary combination of λ, n and γ.

Lastly, we want to check the property of (asymptotic) normality of the estimator ε̂,

since this result is provided in Theorem 5.1.2 and Corollary 5.1.3 respectively. For this

we use normal probability plots (NP plots) of the simulated samples of ε̂ additionally to

the above considerations regarding skewness and the number of outliers.

Figure 5.3 shows NP plots of ε̂ for sample size n = 2500 and a representative selection

of tail fractions γ. Thereby the solid line connects the first and third quartile of the

dataset, where the dashed line represents the line, which shall be approximated by

the NP plot under the validity of normality of ε̂ (see later). First note that the NP

plots indicate a very good fit to a linear function, which shall not let us doubt in the

assumption of normality. Of course, the smaller the tail fraction γ the more ties appear

in the dataset of m = 10000 replicates of ε̂, because ε̂ is then based on the very small

number k := γ · n of tail observations. This deficiency is displayed by the occurrence

of steps within the NP-plot. Furthermore, the interpretation of the NP plots is done

based on a finite number of observations, hence we have to neglect the violation of the

continuity property of the normal distribution. Anyway, we are only able to check the

normality assumption at finiteness in order to investigate the influence of sample size n

and tail fraction γ on the goodness of fit of the corresponding empirical distribution of

ε̂ to the normal distribution. Based on the theoretical asymptotic results of Theorem

5.1.1 and 5.1.2, the estimator ε̂ in (5.3) is approximately normal distributed with mean

value µε = ε and standard deviation σε = σ/
√
k where σ is given in (5.9) and k := γ · n

(cf. Corollary 5.1.3). Of course, the approximation is as better as larger n and k with

respect to the sufficient condition k/n → 0. The first two NP plots of Figure 5.3 show

an intercept µε of the line y = µε+ σε ·x which is satisfyingly close to ε = 1.9 under the

validity of ε̂ ∼ N(µε, σε). This is not true for the last two NP plots of Figure 5.3, which

correspond to the larger tail fractions γ = 0.075, 0.2, which exhibit a noteworthy bias

of the estimator. The same holds for NP plots corresponding to ε = 1.4, 2.7 (figures are

not shown).

Table 5.1 shows a listing of the absolute relative deviation ssd,σε
between the empirical

standard deviation of ε̂, denoted by sd, and the approximative standard deviation σε =
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Figure 5.3.: The figure shows the NP plots of the estimator of the extremal coefficient ε =

‖(1, 1, 1)‖
1.7 ≈ 1.9 for sample size n = 2500 and a representative selection of γ. The

solid line connects the first and third quartile of the dataset. The dashed line represents

the line y = µε+σε ·x, where µε = ε and σε = σ/
√
k with σ is given in (5.9) and k := γ ·n.

We expect ε̂ ∼ N(µε, σε).

σ/
√
k of ε̂ obtained by Corollary 5.1.3, i.e. dsd,σε

:= |sd− σε| /σε. These values are

based on the simulation data of the extremal coefficient ε = ‖(1, 1, 1)‖λ for λ = 1.7.

We summarize that the tail fraction at which the minimum of absolute relative deviation

in dsd,σε
is obtained decreases with increasing sample size. If one wants to generalize this

assertion with respect to the sample size n ∈ [500; 20000] one may choose tail fractions
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5.2. Simulation Study

γ ∈ [0.006; 0.1] in order to obtain as less values for dsd,σε
. This is also true for the results

corresponding to λ = 1.1 and λ = 3 (table is not shown). The NP plots of Figure 5.3

show a good fit to the required normal distribution (provided by Corollary 5.1.3) for tail

fractions γ ≤ 0.02.

We close this section with the representation of the boxplots corresponding to the

fragility index FI and the extended fragility index FI(2). Analogue to Figure 5.1, we

provide the wave plots for the estimator F̂ I in (5.11) and F̂ I(2) in (5.10) corresponding

to λ = 1.7 (cf. Figure C.6 and C.7 in Section C). The boxplots of Figure C.6 show a

quite similar behavior as the boxplots of ε̂ in Figure 5.1, which is not surprising, since

we have F̂ I = d/ε̂. However, the boxplots of the estimator F̂ I(2) in Figure C.7 indicate

that there is almost no bias of F̂ I(2), which is surprising in view of the observed bias of

ε̂ and F̂ I.

Figure 5.4 represents the boxplots of F̂ I and F̂ I(2) corresponding to λ = 1.7 and the

representative sample size n = 2500.

The boxplots show a very good approximation of the arithmetic mean to the true un-

derlying values FI ≈ 1.57 and FI(2) ≈ 2.57 for tail fractions γ ≤ 0.02. This is in line

with the behavior of ε̂. Significantly, for the estimator F̂ I(2), this approximation is still

excellent for larger tail fractions up to γ = 0.2; hence there is almost no bias, which

neither can be observed for ε̂ nor F̂ I.

Lastly we want to check the normal behavior of F̂ I. We know from (5.12) that the

estimator F̂ I is approximately normal distributed with mean value FI and standard

deviation (dσ)/(ε2
√
k), where σ is given in (5.9) and k = n · γ. Figure 5.5 shows the

NP plots of F̂ I corresponding to λ = 1.7 and n = 2500 for a representative selection

of tail fractions γ. For γ ≤ 0.01 the NP plots show a convex behavior, which votes

against the assumption of normality. Skewness seems to vanish for larger tail fractions,

say γ ≥ 0.02, but unfortunately we then observe an increasing bias, since the NP plots

show a worsening goodness of fit to the dashed line for increasing tail fractions γ.
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λ = 1.7 0.002 0.004 0.006 0.008 0.01 0.02 0.03 0.04 0.05 0.075 0.1 0.2 0.3

500 0.112 0.034 0.008 0.001 0.001 0.005 0.014 0.018 0.049 0.075 0.08 0.161 0.246

1000 0.028 0.001 0.011 0.011 0.009 0.024 0.019 0.045 0.051 0.067 0.077 0.169 0.249

2500 0.004 0.000 0.009 0.006 0.000 0.011 0.031 0.035 0.046 0.062 0.071 0.156 0.272

5000 0.000 0.012 0.004 0.009 0.011 0.021 0.041 0.031 0.049 0.079 0.093 0.16 0.242

10000 0.006 0.009 0.014 0.012 0.007 0.011 0.031 0.021 0.031 0.081 0.115 0.187 0.234

20000 0.000 0.012 0.004 0.009 0.009 0.021 0.007 0.051 0.027 0.079 0.062 0.204 0.242

Table 5.1.: Shown is the absolute relative deviation between the empirical standard deviation of ε̂ and the approximative standard deviation

σε = σ/
√
k of ε̂ corresponding to λ = 1.7, i.e. the entries of the table represent dsd,σε

:= |sd− σε| /σε. Tabled values of 0.000

correspond to those ones for which dsd,σε
< 5 · 10−4 holds.
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Figure 5.4.: Boxplots of the estimator of FI and FI(2), provided in (5.10) and (5.11) respectively,

corresponding to λ = 1.7 and n = 2500. The horizontal line represents the value FI ≈
1.57 respectively FI(2) ≈ 2.57.

Hence, for n = 2500 and λ = 1.7, the choice γ = 0.01 can be a trade-off between the

validity of the normal assumption and a negligible bias.

Figure C.8 shows the NP plots of F̂ I corresponding to λ = 1.7 and n = 10000. Here,

for n = 10000, the skewness of F̂ I is already negligible for γ ≥ 0.008 in contrast to

n = 2500. For γ ≤ 0.01 we observe no bias.

For the estimator of the extended fragility index FI(2) we do not have any theoretical

results concerning normality. In order to get an impression of a possible normal behavior
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Figure 5.5.: NP plots of the estimator F̂ I corresponding to λ = 1.7 for sample size n = 2500 and a

representative selection of γ. The solid line connects the first and third quartile of the

dataset. The dashed line represents the line y = µε + σε · x, where µFI = FI ≈ 1.57 and

σFI = (dσ)/(ε2
√
(k)) with σ is given in (5.9) and k := γ · n. We expect F̂ I ∼ N(µε, σε).

we once again look at NP plots. Figure 5.6 presents the NP plots of the estimator F̂ I(2)

of the extended fragility index. The combination of λ = 1.7 and n = 2500 and a

representative selection of γ is shown. We observe that the NP plots show a very good

fit to the solid line even for very small tail fractions of γ = 0.006, 0.008.

The boxplots and NP plots of the (extended) fragility index corresponding to λ = 1.1
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Figure 5.6.: NP plots of the estimator F̂ I(2) for sample size n = 2500 and a representative selection

of γ. The solid line connects the first and third quartile of the dataset.

and λ = 3 behave similarly and are therefore not shown.
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5.2.3. An optimal tail fraction

This section aims to provide an optimal choice for the tail fraction within the nonpara-

metric estimation procedure for the extremal coefficient provided in Section 5.1. The

accurate estimation namely depends on a precise choice of number of observations in

the tail, to sufficiently allow for the trade-off between them, but only tail observations

are taken into account.

One of the most important properties of a point estimator is its consistency. A

sequence of estimators δn of g(δ) is called consistent if

lim
n→∞

P (|δn − g(δ)| < ε) = 1

holds for every g(δ). (More precisely, this is weak consistency, whereas strong consistency

is almost surely convergence of δn to g(δ).)

The estimator ε̂ in (5.3) for the extremal coefficient is consistent, cf. Theorem 5.1.1. But

consistency in this case crucially depends on the condition that there exists a sequence

k(n) representing the size of the tail, for which we have k = k(n) → ∞, k/n → 0 for

k < n and n → ∞. To investigate the influence of this condition on the consistency of

ε̂ we study the behavior of the so-called mean squared error

MSE(δn) := E
[
(δn − g(δ))2

]

of the estimator δn. If E [(δn − g(δ))2] → 0 for all δ, then δn is a consistent estimator of

g(δ) (cf. Theorem 8.2 in Section 1 of Lehmann and Casella [46] for example). Note that

the MSE decomposes into the sum of the variance and the squared bias of an estimator,

i.e. we have MSE(δn) = V ar(δn) + bias2(δn).

Within the simulation procedure established in Section 5.2.1 we also computed the

MSE of the estimator ε̂ based on the sample of estimators ε̂(n, γ)1, . . . , ε̂(n, γ)m by means

of

M̂SE (ε̂(n, γ)) :=
1

m

∑

i≤m

(ε̂(n, γ)i − ε)2(5.15)

separately for each combination of the size of the data sets n and the tail fraction γ.

Table 5.2 provides an overview of the (estimated) mean squared error of ε̂. We observe

that M̂SE decreases with increasing sample sizes n for every tail fraction γ. Thereby

150



5.2. Simulation Study

the strength of the decrease of M̂SE regarding n depends on γ, e.g. the decrease almost

vanishes for γ ≥ 0.1. This is not surprising, since we observe a huge bias of ε̂ for larger

tail fractions for which the bias is then balanced by small variance.

With respect to the MSE, the estimator ε̂ in (5.3) mostly behaves as well as other

nonparametric estimators of the dependence structure of an EVD. Based on a simulation

study taken from Zhang et al. [71], the Pickands estimator, provided first in Pickands

[54], shows a maximum MSE, which is in the same order of magnitude than the MSE

of the estimator in (5.3) taken from Table 5.2. The new estimator provided in Zhang

et al. [71], which is an extension of the bivariate CFG estimator (cf. Capéraà et al. [8]

and Section 2.4) to the multivariate setting of an EVD, shows a maximum MSE, which

is of order 10−1 regarding to the MSE of ε̂. The same holds for the estimator of the

Pickands dependence function provided by Gudendorf and Segers [27]. But note that the

estimators provided in [27] and [71] are based on the EVD-assumption. The estimator

in (5.3), which we used, serves as an estimator for tail dependence under the domain-of-

attraction-assumption. Hence, the worse MSE of ε̂ may be because estimation is done

under the weaker domain-of-attraction-assumption. However, beside the disadvantage

of ε̂ in (5.3) with respect to a larger MSE, ε̂ can also be applied in the framework of

the domain-of-attraction-assumption, which is our existing framework regarding to the

estimation of the (extended) fragility index.

In order to pay attention to the increasing bias regarding γ, Table 5.3 represents the

estimator

b̂ias
2
(ε̂(n, γ)) :=

(
1

m

∑

i≤m

ε̂(n, γ)i − ε

)2

(5.16)

for the squared bias of ε̂ based on our simulation data. Table 5.3 clearly visualizes the

dependence of the bias on the combination of sample size n and tail fraction γ. We

observe that the minimum of bias is obtained at those tail fractions γ, which can be

taken as smaller the larger the sample size n is considered. This fact is visualized by the

belt of zeros (representing a bias, for which bias2 < 5 · 10−5 holds), whose position also

depends on the logistic dependence parameter λ of the simulated EVD.

To provide an optimal tail fraction γ for the nonparametric estimator ε̂ in (5.3), one has

to clarify the definition of optimality. We require:
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5. Applications on the Fragility Index

An optimal γ should minimize the MSE of ε̂, where the minimization of the bias

should be of greater importance than the minimization of the variance.

Hence we have to take into account that the tail fraction γ at which the bias is minimized

tends to be smaller than that γ at which the MSE is minimized in general. Unfortunately,

the location of the belt of minimized MSE (typed in bold numbers, cf. Figure 5.2), as

well as bias depends on the simulated logistic dependence parameter λ, which is unknown

and its knowledge is precisely the aim of estimation given a real dataset.

Hence, first we assume that one is aware of an estimate for λ (hypothesized λ) given

a certain dataset based on the assumption of goodness of fit of the logistic model. Then

we suggest to take that tail fraction γ, which corresponds to the left boundary of the belt

of minimized MSE of Table 5.2 with respect to a hypothesized λ and certain (known) n.

For example, for a hypothesized λ ≈ 1.7 and n = 2500 we suggest to take the optimal

tail fraction of γ = 0.03. This shall be an acceptable guideline reflecting our forced

criterion on optimality. Note that for this example we should have taken γ = 0.05 if we

only focused on the minimization of the MSE with no special weight on the minimization

of the bias.

Usually, when faced with a real dataset, one does not know the parameter λ reflect-

ing the amount of tail dependence within the dataset. In this case, once again based

on minimization of the MSE and with the main focus on the minimization of bias, we

suggest to take that γ, which lies in the interval corresponding to the sample size n of

the dataset at hand (cf. Table 5.4). Thereby, the lower the amount of assumed tail

dependence in the dataset (e.g. based on analysis of dependence from previous histori-

cal data), the closer should be the choice of γ to the left boundary of the interval. Of

course this is only a heuristic procedure and therefore can only serve as a rough guideline.
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λ = 1.1 0.002 0.004 0.006 0.008 0.01 0.02 0.03 0.04 0.05 0.075 0.1 0.2 0.3

500 0.2689 0.1488 0.1018 0.0815 0.0654 0.0357 0.0276 0.0256 0.0272 0.0385 0.0588 0.2003 0.4214

1000 0.149 0.0797 0.0541 0.0425 0.0342 0.019 0.0164 0.0172 0.0206 0.0342 0.0557 0.1981 0.4199

n 2500 0.0645 0.0337 0.023 0.0173 0.0144 0.0091 0.0095 0.012 0.0158 0.0313 0.0526 0.197 0.4197

5000 0.0334 0.0169 0.0117 0.0088 0.0074 0.0056 0.007 0.0104 0.0146 0.0303 0.0525 0.1968 0.4191

10000 0.0167 0.0086 0.006 0.0047 0.004 0.0039 0.006 0.0094 0.0139 0.0299 0.052 0.1966 0.4194

20000 0.0085 0.0044 0.0031 0.0025 0.0023 0.0031 0.0054 0.009 0.0136 0.0297 0.0518 0.1966 0.4192

λ = 1.7 0.002 0.004 0.006 0.008 0.01 0.02 0.03 0.04 0.05 0.075 0.1 0.2 0.3

500 0.6532 0.2803 0.1767 0.1297 0.1032 0.0506 0.0332 0.0251 0.0198 0.0158 0.0157 0.0339 0.0719

1000 0.2791 0.1296 0.0878 0.063 0.0503 0.0245 0.0166 0.0128 0.0108 0.01 0.0118 0.0327 0.0703

n 2500 0.1047 0.0514 0.0335 0.0253 0.0205 0.0103 0.0071 0.006 0.0058 0.0067 0.0095 0.0317 0.0702

5000 0.0511 0.0249 0.017 0.0125 0.0101 0.0052 0.0038 0.0036 0.0038 0.0055 0.0086 0.0314 0.0699

10000 0.0252 0.0125 0.0083 0.0062 0.0052 0.0028 0.0024 0.0025 0.0029 0.0051 0.0082 0.0311 0.07

20000 0.0128 0.0063 0.0042 0.0032 0.0027 0.0016 0.0016 0.0019 0.0024 0.0047 0.0081 0.0311 0.0699

λ = 3 0.002 0.004 0.006 0.008 0.01 0.02 0.03 0.04 0.05 0.075 0.1 0.2 0.3

500 0.4839 0.1905 0.1157 0.0804 0.0637 0.0286 0.0182 0.0133 0.0104 0.0069 0.0057 0.0062 0.0113

1000 0.1985 0.082 0.0506 0.0368 0.0288 0.0138 0.0092 0.0067 0.0054 0.0039 0.0033 0.0053 0.0108

n 2500 0.0637 0.0293 0.0189 0.014 0.0113 0.0054 0.0037 0.0028 0.0023 0.0019 0.0019 0.0048 0.0105

5000 0.0299 0.0142 0.0095 0.007 0.0055 0.0027 0.0019 0.0014 0.0013 0.0012 0.0015 0.0045 0.0104

10000 0.0146 0.0072 0.0047 0.0035 0.0027 0.0014 9e− 04 8e− 04 8e− 04 9e− 04 0.0013 0.0045 0.0103

20000 0.007 0.0034 0.0023 0.0017 0.0014 7e− 04 5e− 04 5e− 04 5e− 04 7e− 04 0.0012 0.0044 0.0103

Table 5.2.: Shown is the estimated mean squared error M̂SE(ε̂(n, γ)) of the nonparametric estimator of the extremal coefficient ε =

‖(1, 1, 1)‖λ for simulated logistic data with dependence parameter λ for increasing sample sizes n and tail fractions γ. Thereby

the estimator in (5.15) is used.
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λ = 1.1 0.002 0.004 0.006 0.008 0.01 0.02 0.03 0.04 0.05 0.075 0.1 0.2 0.3

500 0.0046 9e-04 3e-04 0 1e-04 0.0015 0.0044 0.0079 0.0127 0.029 0.0515 0.1969 0.4195

1000 9e-04 2e-04 0 1e-04 2e-04 0.0019 0.0044 0.0085 0.0133 0.0293 0.0521 0.1964 0.4189

n 2500 1e-04 0 1e-04 2e-04 4e-04 0.0021 0.0048 0.0084 0.0129 0.0294 0.0511 0.1963 0.4193

5000 0 0 2e-04 3e-04 5e-04 0.0021 0.0047 0.0086 0.0131 0.0294 0.0517 0.1965 0.4189

10000 0 1e-04 2e-04 3e-04 5e-04 0.0021 0.0048 0.0085 0.0132 0.0294 0.0516 0.1964 0.4193

20000 0 1e-04 2e-04 3e-04 5e-04 0.0022 0.0048 0.0086 0.0132 0.0294 0.0516 0.1965 0.4192

λ = 1.7 0.002 0.004 0.006 0.008 0.01 0.02 0.03 0.04 0.05 0.075 0.1 0.2 0.3

500 0.0216 0.0072 0.0035 0.0017 8e-04 0 2e-04 6e-04 0.0014 0.0041 0.0071 0.0303 0.07

1000 0.0085 0.0019 7e-04 4e-04 1e-04 1e-04 4e-04 0.001 0.0016 0.0041 0.0075 0.031 0.0694

n 2500 0.0014 2e-04 0 0 0 3e-04 7e-04 0.0013 0.002 0.0043 0.0078 0.031 0.0698

5000 3e-04 0 0 0 1e-04 3e-04 7e-04 0.0012 0.002 0.0044 0.0077 0.031 0.0697

10000 0 0 0 0 1e-04 3e-04 7e-04 0.0013 0.002 0.0045 0.0078 0.0309 0.0699

20000 0 0 0 1e-04 1e-04 3e-04 8e-04 0.0013 0.002 0.0044 0.0078 0.031 0.0698

λ = 3 0.002 0.004 0.006 0.008 0.01 0.02 0.03 0.04 0.05 0.075 0.1 0.2 0.3

500 0.0135 0.0055 0.0043 0.0024 0.0018 2e-04 0 0 0 3e-04 8e-04 0.004 0.0101

1000 0.0068 0.0022 0.0012 9e-04 4e-04 0 0 0 1e-04 5e-04 9e-04 0.0042 0.0102

n 2500 0.0017 4e-04 2e-04 1e-04 0 0 0 1e-04 2e-04 5e-04 0.001 0.0044 0.0103

5000 5e-04 1e-04 1e-04 0 0 0 1e-04 1e-04 2e-04 6e-04 0.001 0.0043 0.0103

10000 1e-04 0 0 0 0 0 1e-04 1e-04 2e-04 6e-04 0.001 0.0044 0.0102

20000 0 0 0 0 0 0 1e-04 2e-04 2e-04 6e-04 0.001 0.0044 0.0103

Table 5.3.: Shown is the estimated squared bias b̂ias
2

(ε(n, γ)) of the nonparametric estimator of the extremal coefficient ε = ‖(1, 1, 1)‖λ for

simulated logistic data with dependence parameter λ for increasing sample sizes n and tail fractions γ. Thereby the estimator

in (5.16) is used. Displayed values of 0 represent a bias, for which bias2 < 5 · 10−5 holds.
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n interval of optimal γ n interval of optimal γ

500 [0.02; 0.075] 1000 [0.02; 0.05]

2500 [0.02; 0.04] 5000 [0.008; 0.03]

10000 [0.008; 0.03] 20000 [0.006; 0.02]

Table 5.4.: The presented table shows the interval for an optimal choice of tail fraction γ corresponding

to certain sample sizes n of present dataset. Optimality is based on minimized MSE and

bias of λ̂ based on Table 5.2 and Table 5.3.

Given a real dataset, Danielsson et al. [9] suggested a bootstrap based method to

choose an optimal tail fraction within the tail index estimation of a df F having a

regularly varying tail. This procedure aims for an optimal tail fraction, which minimizes

the MSE of Hill‘s estimator of the tail index. Beside the fact that Danielsson et al.

[9] focus on the estimation of the tail index, we do not adopt, but comply with, their

optimality criterion: Based on the fact that the estimator of the extremal coefficient in

(5.3) exhibits a huge bias if the tail fraction is chosen too large, we use the minimization

of the MSE with special focus on the minimization of the bias as an optimality criterion

for the tail size k in (5.3).

Further, we remark that the preassigned optimal choice for the tail fraction also shows an

acceptable fit of the simulated empirical df of ε̂ to the approximated normal distribution

(cf. the discussion in Section 5.2.2 based on Corollary 5.1.3).

5.3. Application to Financial Data

In the following we provide an application of the (extended) fragility index on financial

data. The estimation procedure is based on the nonparametric estimator (5.3) for the

extremal coefficient, established in the former sections. Thereby we apply a Monte

Carlo simulation (cf. Section B) in order to obtain a confidence interval of the estimated

(extended) fragility index of a system of stock prices taken from the DAX over the last

ten years. Hence we shed light on the amount of tail dependence within a German

financial system and provide a statement about its asymptotic stability and behavior

under the stepwise breakdown of the system.
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Within finance and economy it is common to analyze stock prices by use of so-called

log returns defined by the daily logarithmic difference

Rt := ln

(
Xt

Xt−1

)
,

where {Xt}t∈N is a real-valued process (cf. Embrechts et al. [13] for an appealing

introduction). Since we have Rt = ln
(

Xt

Xt−1

)
≈ Xt−Xt−1

Xt−1
, t ∈ N, we consider daily relative

returns, i.e. only the relative change over time is of interest. Within this framework a

large value of relative change presents an extreme event. Now assume a 3-dimensional

financial system
(
R

(1)
i , R

(2)
i , R

(3)
i

)
, i ≤ n, on n consecutive days. With the focus on the

stability of the system we are interested in the dependence structure between extreme

losses of stock prices, i.e. we consider the highest negative values of log returns. Hence

we work on the dataset
(
Q

(1)
i , Q

(2)
i , Q

(3)
i

)
:=
(
−R(1)

i ,−R(2)
i ,−R(3)

i

)
, i ≤ n,

whose upper tail plays the crucial role within the nonparametric estimation approach of

Section 5.1. If the considered time series (Qi)i∈N :=
(
Q

(1)
i , Q

(2)
i , Q

(3)
i

)
i∈N

can be assumed

to be stationary, the theory of multivariate EVD also holds within this setting, instead

of considering i.i.d. observations (cf. Section 7.1.3 in McNeil et al. [47]). It is an

accepted working hypothesis that time series of daily log returns can be considered to

be stationary.

In the following we select the stock prices from the three DAX indices, ”Deutsche

Bank”, ”Commerzbank” and ”Allianz”, denoted by the financial system

{D,C,A}. At the end of this section, we also look at the mixed DAX system {D,A,B},
containing the indices of the companies ”Deutsche Bank”, ”Adidas” and ”Bayer AG”,

in order to compare its asymptotic stability with that of the financial system {D,C,A}.
The system {D,C,A} shall be considered to represent a system of German financial

institutions. Thereby we analyze the 3-dimensional dataset containing the log returns of

their closing prices during the ten-year period of 6th September 2001 to 5th September

2011. This results in 2577 daily returns. Figure 5.7 shows the two-dimensional scatter-

plots of the daily negative log returns of {D,C,A}. The three-dimensional plot is not

shown with respect to the restriction of the two-dimensional output on this work. By

means of a bootstrap procedure we obtain the empirical distribution of bootstrap esti-

mators for the extremal coefficient. We use the Monte Carlo simulation as described in
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Figure 5.7.: Two-dimensional scatterplots of the financial DAX system {D,C,A} during the ten-

year period Sept. 2001 - Sept. 2011. The sample size is n = 2577. The complete

two-dimensional datasets are shown on the left, where the corresponding upper tails are

shown on the right. The tail fraction of the univariate tails is γ = 0.04.

Section B. Based on this bootstrap data we derive the empirical distribution of the non-

parametric estimator of the (extended) fragility index as provided in (5.11) and (5.10).

The number of bootstrap resamples is 10000, which coincides with the number m of

simulated datasets coming from a logistic EVD (cf. Section 5.2.2).

Figure 5.8 shows the bootstrap samples of the estimator (5.3) for the extremal coef-

ficient corresponding to increasing tail fractions γ. We observe decreasing variance of
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Figure 5.8.: Boxplots of the bootstrap estimates of the extremal coefficient ε correspond-

ing to the financial system {D,C,A} during the ten-year period Sept. 2001

- Sept. 2011. Shown are the tail fractions γ = 0.006, 0.008, 0.01, 0.015,

0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2. The sample size is

n = 2577. The sample size is n = 2577. The horizontal line represents the value ε = 1.96.

the bootstrap estimator and increasing influence of bias for increasing γ. This behavior

of the bootstrap estimator of the extremal coefficient has already been observed within

the simulation study in Section 5.2.2. The horizontal line ε = 1.96 in Figure 5.8 repre-

sents an approximation on the median of the bootstrap samples based on the interval

[0.02; 0.04] for γ, cf. Table 5.4 and the justification of the chosen interval. Due to the
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5.3. Application to Financial Data

symmetric behavior of the bootstrap estimator, the value ε = 1.96 also represents a good

approximation on the mean of the bootstrap samples for γ ∈ [0.02; 0.04]. Further, the

NP plots in Figure C.9 do not vote against the assumption of normality of the estimator

of the extremal coefficient.
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Figure 5.9.: Boxplots of the bootstrap estimates of the fragility index and the extended fragility index

FI(2) corresponding to the financial system {D,C,A} during the ten-year period Sept.

2001 - Sept. 2011. Shown are the same tail fractions as in Figure 5.8. The sample size is

n = 2577. The horizontal line represents the value FI = 1.53, resp. FI(2) = 2.36.

Figure 5.9 shows the bootstrap samples of the estimator for the fragility index, (5.11),

the extended fragility index (5.10) respectively. Once again we observe the influence of
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5. Applications on the Fragility Index

bias on the estimator F̂ I for increasing tail fractions. The boxplots of bootstrap samples

for F̂ I(2) (right figure of Figure 5.9) represent a so-called bathtub curve, i.e. the median of

F̂ I(2) starts with high values for small tail fractions, stays at a constant level for central

tail fractions of about γ = 0.02 to γ = 0.04 and increases once again by increasing

tail fractions γ > 0.04. Thereby the horizontal lines in Figure 5.9 represent the value

FI = 1.53 (left), resp. FI(2) = 2.36 (right). These values represent the average of

means corresponding to γ ∈ [0.02; 0.04] in analogy to Figure 5.8. The shown behavior

of the bootstrap estimators in Figure 5.9 confirm the suggestion for an optimal tail

fraction, based on our simulation results, represented in Table 5.4. To specify the value

for γ, we look at the behavior of the MSE of the bootstrap estimates for the extremal

coefficient. The simulation of the MSE has been done via (5.15) based on a Monte Carlo

simulation. For an increasing sequence of tail fractions γ, we computed the MSE based

on the m bootstrap estimators for the extremal coefficient, where the true but unknown

value ε in (5.15) is replaced by the mean of bootstrap estimates for ε corresponding to

γ ∈ {0.01, 0.02, 0.03}. This procedure is not completely in line with the one suggested

in Danielsson et al. [9], since we have to account for an increasing bias of ε̂ shown by

our simulation results.

Table 5.5 shows the bootstrap estimates for the MSE of ε for increasing tail fractions

γ. There exists an unique value at which the MSE takes on its minimum. Hence,

we suggest the optimal tail fraction of γ = 0.04 for our DAX-example of the financial

system {D,C,A}.
Based on the tail fraction γ = 0.04, a 95%- bootstrap confidence interval for the extremal

coefficient ε and the (extended) fragility index of the financial system {D,C,A} is given

by

BC(ε) =[1.82; 2.06],(5.17)

BC(FI) =[1.45; 1.65], BC(FI(2)) = [2.22; 2.44],(5.18)

respectively, cf. (7.11) in Section B for computation and references. For a listing of

mean and standard deviation of the bootstrap estimator of the extremal coefficient, FI

and FI(2), cf. Table 7.1 in Section C. Furthermore, Table 7.2 represents the 95%-

bootstrap confidence interval of ε, FI and FI(2) based on further tail fractions. The
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γ 0.006 0.008 0.01 0.015 0.02 0.025 0.03 0.035 0.04

MSE 0.0401 0.0249 0.0205 0.0151 0.0098 0.0071 0.0064 0.0049 0.0042

γ 0.045 0.05 0.06 0.07 0.08 0.09 0.1 0.2

MSE 0.0052 0.0069 0.0089 0.0073 0.0076 0.0133 0.0193 0.0752

Table 5.5.: Shown is the simulated mean squared error (MSE) of the bootstrap estimator of the ex-

tremal coefficient corresponding to the financial system {D,C,A}. The sample size is

n = 2577.

numbers of the bootstrap confidence interval for the (extended) fragility index in (5.18)

represent an estimator for the stability of the financial system {D,C,A}. Thereby we

focus on the approach of exceedances of the components of {D,C,A} above an individ-

ual threshold, cf. Section 4.2.2. The individual thresholds of the components D, C and

A are given by the empirical 96%-quantile ŝD := x̂D96% = 0.041, ŝC := x̂C96% = 0.052 and

ŝA := x̂A96% = 0.040 respectively.

Hence, with respect to Remark 4.2.1 and Definition 4.1.3, the system {D,C,A} is

(strongly) fragile.

At last, we want to present another example taken from the DAX, namely the mixed
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5. Applications on the Fragility Index

system of the companies ”Deutsche Bank”, ”Adidas” and ”Bayer AG”, {D,A,B}. We

analyzed the log return of stock prices over the same ten-year period Sept. 2001 -

Sept. 2011 as done for the financial system {D,C,A}. Two-dimensional scatterplots

of the system {D,A,B} are shown in Section C, Figure C.10. Figure C.11 and Figure

C.12 show the boxplots of the simulation results for the extremal coefficient and the

(extended) fragility index of the mixed Dax system {D,A,B}. In order to suggest an

optimal tail fraction for the system {D,A,B}, we look at the MSE of the estimated

extremal coefficient, cf. Table 5.6.
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γ 0.006 0.008 0.01 0.015 0.02 0.025 0.03 0.035 0.04

MSE 0.1044 0.0924 0.0838 0.027 0.0085 0.0081 0.0063 0.005 0.0041

γ 0.045 0.05 0.06 0.07 0.08 0.09 0.1 0.2

MSE 0.0039 0.0044 0.0081 0.0133 0.024 0.0346 0.0409 0.1295

Table 5.6.: Shown is the simulated mean squared error (MSE) of the bootstrap estimator of the ex-

tremal coefficient corresponding to the mixed DAX system {D,A,B}. The sample size is

n = 2577.

The MSE plot suggests to choose the optimal tail fraction of γ = 0.045. Based on
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γ = 0.045, the 95%- bootstrap confidence interval for the extremal coefficient ε and the

(extended) fragility index of the mixed DAX system {D,A,B} is given by

BC(ε) = [2.14; 2.37]

and

BC(FI) = [1.27; 1.40], BC(FI(2)) = [2.12; 2.32],

respectively, cf. preceding procedure corresponding to the financial system

{D,C,A}. Thereby the individual thresholds of the system {D,A,B} are given by the

empirical 95.5%-quantile ŝD := x̂D95.5% = 0.039, ŝA := x̂A95.5% = 0.034 and ŝB := x̂B95.5% =

0.032

The resulting BC-intervals corresponding to the mixed DAX system {D,A,B} are

lying beyond the BC-interval corresponding to the financial system {D,C,A}, cf. (5.17)
and (5.18). Hence, the estimated FI (tendency for FI(2)) of the mixed DAX system is

lower than that of the financial system, i.e. we observe less tail dependence within the

mixed DAX system. However, the system {D,A,B} is (strongly) fragile too.

The simulations and the figures have been done with the software R, Version 2.11.1,

cf. http://www.r-project.org/.

5.4. Outlook on Parametric Estimation Approach

for the (Extended) Fragility Index

As far as known to the author, the estimation approach provided in Section 5.1 is the

first attempt within research about the fragility index. Since we do not want to restrict

ourselves to a parametric EVD model for the first time, we have used a nonparametric

estimation approach for the D-norm in the domain-of-attraction condition, cf. (5.1). As

already noted, (5.1) also allows for a parametric estimation approach, e.g. the paramet-

ric estimation of the copula CG, to which the domain of attraction CF belongs. One

therefore assumes a certain parametric model for the extreme value copula CG. Since

the approximation in (2.39) is only good in the tail of the copula, one might precede

as follows. Choose a parametric model for CG which can be assumed to fit well. Addi-

tionally, the univariate tails can be estimated by a peaks-over-threshold method (POT
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method), cf. Leadbetter [43] or Section 6.5.1 in Embrechts et al. [13] for an appealing

introduction to the POT method. (If one does, not only the copula CF but also the

whole df F is estimated in its tail.) Then couple a parametric estimation approach,

like the maximum-likelihood (ML) method, with the so-called censored data approach.

The approach of censored data takes into account that, under the domain-of-attraction

assumption, only tail data should be used within the estimation procedure. This is

called the multivariate threshold exceedances for censored data and has been extensively

applied by Ledford and Tawn [44] and Smith et al. [66]. They especially use the para-

metric EVD model of the Gumbel copula and a POT approach for the univariate tails.

The former article provides a nice introduction to the above described ML method for

censored data. Unfortunately, at this time, there does not exist any result – beside

some results under certain restrictions – concerning the asymptotic behavior of the thus

obtained ML estimator. It remains an open question whether the ML estimator also

exhibits asymptotic normality and consistency in combination with the censored data

approach, as one is used to expect from the ML estimators under efficient likelihood

estimation (cf. page 462 and Theorem 5.1 of Section 6 in Lehmann and Casella [46]).

We have extended the bivariate approach for censored data as published in Ledford and

Tawn [44] and Smith et al. [66] to arbitrary dimension for the logistic model. Simu-

lation studies, within which we apply the ML method for censored data to simulated

three-dimensional data coming from a logistic EVD with different dependence parame-

ters, show promising results. For example, the ML estimator of the logistic dependence

parameter is unbiased for tail fractions γ ≤ 0.1 and its corresponding NP plots do not

vote against the assumption of normality if the tail size is chosen not too small. This

might give reason for theoretical research, including consistency and asymptotic nor-

mality and an optimal tail size, on the topic of ML estimators for censored data in

the framework of a parametric estimation procedure for the (extended) fragility index.

However, recall that a parametric copula model will restrict the dependence structure;

hence, the addressed parametric estimation approach can only serve as a suitable esti-

mation procedure if the assumption about the parametric copula model can be assumed

to fit the data of interest. De Haan et al. [30] therefore provide a goodness of fit test

within extreme-value dependence. They also establish a parametric estimator for the

bivariate tail dependence function, which can serve as an alternative to the approach of
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Ledford and Tawn [44] in the bivariate case. Another recent approach in estimating the

dependence parameter in a parametric EVD copula model is provided by Einmahl et al.

[17]. They provided a minimum distance estimator for the dependence structure of an

EVD under the domain-of-attraction condition in arbitrary dimension.

At last, we remark that the presented nonparametric estimation procedure for the

(extended) fragility index of Sections 5.1 to 5.3 can be easily applied to arbitrary dimen-

sions. In order to shed light on the asymptotic stability of a random system, it is an

interesting question whether the total breakdown of this system announces itself early or

only after the situation has become serious. This can be answered by the investigation

of the curvilinear behavior of the extended fragility index FI(m) as a function of the

number m.
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6. Final Remarks

The main results of the work at hand include the compact representation of the fragility

index by norms and its extension to a measure for system stability, which also cap-

tures the persisting amount of risk within a step-by-step collapsing system, namely the

extended fragility index. Thereby we require that the copula CF , which captures the

dependence structure of the random system {Q1, . . . , Qd}, belongs to the domain of at-

traction of an EVD. Further we provide the fragility index based on the approach of

exceedances above an individual threshold, i.e. the threshold sj := F−1j (1 − c), j ≤ d,

c close to zero, depends on the univariate margins of the distribution F . The represen-

tation by norms and the use of an individual threshold improves the fragility index as

defined in the original literature Geluk et al. [22]. We consider the domain-of-attraction

assumption to be a suitable condition, which facilitates the handling of the FI, in con-

trast to Geluk et al. [22] who work out the FI by means of the univariate margins and

the derived joint distribution F (cf., for example, Theorem 3 in [22]). Further, we think

that the approach of an individual threshold supersedes the originally by Geluk et al.

[22] defined approach of a common threshold. To apply the (extended) fragility index

as a measure for tail dependence we have to ensure that the tail and nothing else is es-

timated. If one considers exceedances above a common threshold s, this fixed threshold

s may not be high enough to define a tail event for every component of the random

system. To overcome this problem we prefer exceedances above an individual threshold

with a certain fixed exceedance probability being small enough. In the framework of

exceedances above an common threshold, we only have equal exceedance probabilities

if the univariate margins are identical on which we do not want to restrict ourselves.

Further quantiles of exceedance can be estimated quite easily, see the well known theo-

rem of Glivenko-Cantelli or the POT-approach, cf. Chapter 5 in Beirlant et al. [5]. See

Section 4.2.3 for a discussion on the use of an individual or a common threshold.
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Within the framework of the extended fragility index we provided equivalent con-

ditions under which the FI(m) is well-defined for certain m ∈ {1, . . . , d}, see Lemma

3.2.3 and Corollary 3.2.6. These conditions are quite technical, since they deal with the

abstract dependence function of an EVD represented by the angular measure µ or the

D-norm. Within the approach of an individual threshold we may simplify this condition

(cf. Corollary 4.2.11 and the following considerations there). Hence, if the tail depen-

dence function λF is larger than 0, the FI(m) is well-defined for any m ≤ d. By use of

estimators for the tail dependence function (see de Haan et al. [30] or Hsing et al. [37])

one is able to provide a statistical condition under which the extended fragility index

is well-defined. This might be useful with respect to applications on the (extended)

fragility index and has not been considered within the work at hand.

Section 5.1 provides a nonparametric estimation approach for the (extended) fragility

index. The estimation procedure is based on a quite simple nonparametric estimator

for the stable tail dependence function (cf. Section 7.2 in de Haan and Ferreira [29]),

more precisely the extremal coefficients corresponding to the margins GK , m ≤ |K| ≤ d,

of that EVD G for which we have F ∈ D(G). The obtained estimator for the FI is

consistent and asymptotic normal. This cannot be derived as easily for the extended

fragility index and is still an open question within the work at hand.

Further, one may be interested in a parametric estimation approach for the extended

fragility index. Based on simulation studies, we think that the maximum likelihood

approach for censored data (cf. Ledford and Tawn [44] as well as Smith et al. [66]) may

serve as a promising approach for estimation the FI(m) under a parametric point of view.

Unfortunately, there do not exist theoretical results like consistency and asymptotic

normality for the obtained parametric estimator of the dependence parameter of an

EVD as efficient estimators like ML estimators usually exhibit. We did not engage in

this topic since the focus on the work at hand is on the representation and extension of

the fragility index. Tawn [69] states that checking sufficient conditions for asymptotic

normality of the ML estimator (cf. Lehman and Casella [46], Chapter 6, Theorem 2.6

and 3.10) fails in the framework of censored data. However, the approach of censored

data is a quite simple approach for using parametric EVD models, although data are

obtained under the domain-of-attraction assumption instead of an EVD assumption,

cf. Section 5.4 on this topic. Hence we think that further research on the asymptotic
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behavior of ML estimators for censored data is worthwhile, not only in the framework

of a parametric estimation approach for the (extended) fragility index.
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7. Appendix

A. Abbreviations, auxiliary definitions and

propositions

This section provides a summary of abbreviations, standard definitions and basic propo-

sitions used within the work at hand.

Throughout this thesis we denote by ej the j-th unit vector in Rd. If not stated other-

wise, we have x ∈ Rd, i.e. x := (x1, . . . , xd) is d-variate. All operations on vectors are

meant component wise, i.e. x ≤ 0 is defined by xj ≤ 0 for every j ≤ d. Thereby, we

set Rd
+ := {x ∈ R : x > 0} and Rd

0 := {x ∈ R : x ≥ 0}. Further we denote by the

symbol ⊂ a real subset, where ⊆ also contains equality of sets and the symbol ∁ denotes

the complement of a set.

We denote by ‖·‖λ the arbitrary Lλ-norm defined by

‖(x1, . . . , xd)‖λ :=

(
d∑

j=1

|xj|λ
)1/λ

(7.1)

for 1 ≤ λ < ∞ and ‖(x1, . . . , xd)‖∞ := maxj≤d |xj | for any x ∈ Rd. The convex-

combination of the L1-norm and the maximum-norm, i.e.

‖x‖MO := ϑ ‖x‖1 + (1− ϑ) ‖x‖∞ , x ∈ R
d, ϑ ∈ [0, 1]

is called the Marshall-Olkin norm and defines a D-norm (cf. Section4.3 in Falk et al.

[19]).

Definition A.1 (Landau symbols) Let a ∈ R ∪ {−∞,∞} and assume f, g : R → R

to be continuous in a neighborhood U of a, denoted by U(a). Then we define the so-called
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Landau symbols by

f(x) = o(g(x))

if and only if limx→a
f(x)
g(x)

= 0 and

f(x) = O(g(x))

if and only if there exists C ≥ 0 such that there exists U(a) and |f(x)| ≤ C |g(x)| holds
for every x ∈ U .

Further we write

f(x) ∼ g(x)

if and only if there exists C ∈ R\0, such that limx→a
f(x)
g(x)

= A 6= 0 holds. If a ∈ {−∞,∞}
we call f and g tail-equivalent.

Definition A.2 A real function f is called d-monotone in (a, b), where a, b ∈ [−∞,∞]

and d ≥ 2, if it is differentiable there up to the order d− 2 and the derivatives satisfy

(−1)kf (k)(x) ≥ 0, k = 0, 1, . . . , d− 2

for any x ∈ (a, b) and further if (−1)d−2f (d−2) is nonincreasing and convex in (a, b). For

d = 1, f is called I-monotone in (a, b) if it is nonnegative and nonincreasing there. If f

has derivatives of all orders in (a, b) and if (−1)kf (k)(x) ≥ 0 for any x in (a, b), then f

is called completely monotone.

Further a real function f on an interval I ⊆ [−∞,∞] is d-monotone (completely mono-

tone) on I, d ∈ N, if it is continuous there and if f restricted to the interior int(I) of I

is d-monotone (completely monotone) on int(I).

Lemma A.3 Consider any finite set M with |M | = m ∈ N. Then we have

∑

∅6=T⊆M

(−1)|T |−1 = 1 .

Proof: By the binomial formula we get

∑

∅6=T⊆M

(−1)|T |−1 = (−1)


 ∑

∅⊆T⊆M

(−1)|T | − 1
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= (−1)





|M |∑

k=0

(
|M |
k

)
(−1)k1|M |−k


− 1


 = 1 .

�

Lemma A.4 We have for k ∈ N

∑

0≤j≤k

(−1)j
(
k

j

)
ji =




0, 0 ≤ i ≤ k − 1,

(−1)kk!, i = k.

Proof: We establish the first case, where 0 ≤ i ≤ k − 1, by induction over k.

The assertion is obvious for k = 1. Suppose that it is true for k ∈ N; note that
∑

0≤j≤k(−1)j
(
k
j

)
= (1 + (−1))k = 0 for any k ∈ N. Then, for 1 ≤ i ≤ k,

∑

0≤j≤k+1

(−1)j
(
k + 1

j

)
ji

=
∑

1≤j≤k+1

(−1)j
(
k + 1

j

)
ji

= (k + 1)(−1)
∑

1≤j≤k+1

(−1)j−1
(

k

j − 1

)
(1 + (j − 1))i−1

= −(k + 1)
∑

0≤j≤k

(−1)j
(
k

j

)
(1 + j)i−1

= −(k + 1)
∑

0≤j≤k

(−1)j
(
k

j

) i−1∑

r=0

(
i− 1

r

)
1i−1−rjr

= −(k + 1)
∑

0≤j≤k

(−1)j
(
k

j

) i−1∑

r=0

(
i− 1

r

)
jr

︸ ︷︷ ︸
(∗)

(7.2)

= 0

by applying the induction hypothesis to (*) for every r ≤ i−1. This establishes the first

equation. Next we establish the assertion in case i = k, again by induction.

The assertion is obviously true for k = 1. Suppose it is true for k. Then we obtain

∑

0≤j≤k+1

(−1)j
(
k + 1

j

)
jk+1
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= (k + 1)
∑

1≤j≤k+1

(−1)j
(

k

j − 1

)
(1 + (j − 1))k

= −(k + 1)
∑

0≤j≤k

(−1)j
(
k

j

)
(1 + j)k(7.3)

= −(k + 1)
∑

0≤j≤k

(−1)j
(
k

j

)
(j)k(7.4)

= −(k + 1)(−1)kk! = (−1)k+1(k + 1)!,(7.5)

where step (7.3) to step (7.4) follows in analogy to the argumentation in (7.2) and step

(7.4) to step (7.5) follows by the application of the induction hypothesis. �

Lemma A.5 For arbitrary d ∈ N and j ≤ d we get

d∑

k=1

k(−1)k−j+1

(
d− j

k − j

)
=





1 for j = d− 1

−d for j = d

0 else

Proof: The assertion is clear for j = d. Note, that

(
d

i

)
= 0 for i < 0. For j ≤ d− 1

we get

d∑

k=1

k(−1)k−j+1

(
d− j

k − j

)

=
d∑

k=j

k(−1)k−j+1

(
d− j

k − j

)
, k 7→ k − j, j 6= d

=

d−j∑

k=0

(k + j)(−1)k+1

(
d− j

k

)

=

d−j∑

k=0

k(−1)k+1

(
d− j

k

)
+ j

d−j∑

k=0

(−1)k+1

(
d− j

k

)

︸ ︷︷ ︸
=(−1)(−1+1)d−j=0

, j 6= d

= (d− j)

d−j∑

k=1

(−1)k+1

(
d− j − 1

k − 1

)
k 7→ k − 1

= (d− j)

d−j−1∑

k=0

(−1)k

(
d− j − 1

k

)
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= (d− j)(−1 + 1)d−j−1 =

{
1 for j = d− 1

0 for j < d− 1

�

Theorem A.6 (Additive law of probability) Let (Ω,A, P ) be a probability space.

Then we have

P (A1 ∪ . . . ∪ Am) =
∑

∅6=T⊆{1,...,m}

(−1)|T |+1P

(⋂

i∈T

Ai

)

for A1, . . . , Am ∈ A.

Proof: The proof is done by induction over m ∈ N. For m = 2 the assertion is obvious.

Now assume, the assertion holds for arbitrary but fixed m ∈ N. We get

P ((A1 ∪ . . . ∪ Am) ∪ Am+1) = P (A1 ∪ . . . ∪ Am) + P (Am+1)

−P ((A1 ∩ Am+1) ∪ (A2 ∩ Am+1) ∪ . . . ∪ (Am ∩ Am+1))

=
∑

∅6=T⊆{1,...,m}

(−1)|T |+1P

(⋂

i∈T

Ai

)
+ P (Am+1)

−
∑

∅6=T⊆{1,...,m}

(−1)|T |+1P

(⋂

i∈T

(Ai ∩ Am+1)

)

=
∑

∅6=T⊆{1,...,m+1},m+1/∈T

(−1)|T |+1P

(⋂

i∈T

Ai

)
+ P (Am+1)

+
∑

T⊆{1,...,m+1},m+1∈T,T∩{1,...,m}6=∅

(−1)|T |+1P

(⋂

i∈T

Ai

)

=
∑

∅6=T⊆{1,...,m+1}

(−1)|T |+1P

(⋂

i∈T

Ai

)
,

which shows the assertion. �

Theorem A.7 (Cramer‘s Delta method) Denote by Tn a sequence of estimators for

θ which satisfies

√
n(Tn − θ) →DN(0, σ2),(7.6)
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where N(0, σ2) is the normal distribution with mean value 0 and variance σ2. Now,

denote by h a continuous and differentiable function. Then we get

√
n (h(Tn)− h(θ)) →D N(0, σ2(h′(θ)2)),

provided the derivative h′(θ) exists and is not zero.

Proof: By Taylor expansion of the function h at point θ we get

h(Tn) =h(θ) + h′(θ)(Tn − θ) +Rn ,(7.7)

where the remainder term Rn is continuous in θ with h(θ) = 0 defined by Rn := h′′(ξ)
2

(Tn−
θ)2 for the applied Taylor approximation of first degree. Thereby, ξ lies between Tn and

θ and Rn → 0 if Tn → θ. Further we have

√
n(h(Tn)− h(θ)) =

√
nh′(θ)(Tn − θ) +

√
nRn(7.8)

is equivalent to (7.7). Since the convergence in (7.6) holds, we get Tn → θ in probability

and hence Rn → 0 in probability. Now due to the assumption
√
n(Tn − θ) →D N(0, σ2)

and the equality in (7.8), we immediately obtain
√
n (h(Tn)− h(θ)) →D N(0, σ2(h′(θ)2))

for the left hand side of (7.8), since the normal distributed rv Y := Tn − θ is multiplied

by the constant h′(θ), which implies that h′(θ)Y is normal distributed with variance

h′(θ)2σ2. �

B. Bootstrap Procedures

The Bootstrap method is a ”resampling” method, which provides the approximation of

the theoretical distribution of a random variable on the basis of a single given sample.

It goes back to Bradley Efron, who made a considerable contribution to the work on

non-parametric procedures with his work on Bootstrap Methods: Another Look at the

Jacknife (see Efron [14]). With the soaring capacity of present-day computers, it poses

as a successful method. Furthermore, bootstrap methods are accepted within scientific

research if theoretical problems cannot be solved otherwise.

Suppose, we have observed a sample S = {x1, x2, . . . , xn} of size n from an unknown

population G with population parameter µ. The estimator µ̂ based on S is a sample
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estimator of µ. Obviously, we are faced with the questions ”How accurate is this sample

estimator? And which distribution does it follow?”. Hence we are interested in the

distribution F of the random variable

Z :=
µ̂− µ

s(µ̂)
,

with s(µ̂) being the standard deviation of µ̂, and an (approximative) confidence interval

for µ with coverage 1 − α respectively. Unfortunately, there do not exist in any case

theoretical results concerning these questions. Resampling techniques, like the bootstrap

method, turn out to be an appropriate and satisfying alternative.

Note that the following summary is based on Efron and Tibshirani [15].

The procedure is quite simple. Draw a random sample S∗ from the sample S with

replacement, i.e. we get S∗ = {x∗1, . . . , x∗n}. Then compute an estimator µ∗ for µ based on

the sample S∗. Repeat this procedure B times. This procedure is called resampling and

the samples and obtained estimators are therefore called resamples, bootstrap estimators

respectively. Hence we get a sample of bootstrap estimators

{µ∗1, . . . , µ∗B},

which can be regarded as a kind of empirical distribution estimator of the unknown distri-

bution of µ. Based on the bootstrap estimators we compute their mean µ∗. :=
1
B

∑
i≤B µ

∗
i

and standard deviation s∗ := ( 1
B−1

∑
i≤B(µ

∗
i −µ∗. )2)1/2. Hence, s∗ is a bootstrap estimate

of the standard error of µ̂. The numbers z∗i = (µ∗i − µ̂)/s∗ can be regarded as realizations

of the random variable

Z∗ =
µ̂∗ − µ̂

s∗
,

which distribution function shall be denoted by F ∗, the bootstrap distribution of the

bootstrap parameter µ∗. The empirical distribution function of Z∗ - given by the re-

alizations z∗i , i ≤ B - is obviously an approximation on the bootstrap distribution F ∗

and as well as an approximation on the true but unknown distribution F of the rv Z.

Theoretically, it is possible to specify the bootstrap distribution F ∗ of the random vari-

able Z∗ exactly by generating the finite number of possible bootstrap populations. Since

this is too time-consuming, one simplifies this procedure by just generating by random

a number of B bootstrap replicates. Of course, B shall be therefore large enough to get

a good replicate of the true underlying population parameter µ. This simulation based
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procedure is referred to as Monte Carlo simulation and will be carried out by computer.

By means on the above mentioned procedure we are able to provide a confidence interval

(CI) for θ. The easiest method is to construct a quantile-based CI based on the empirical

df F̂ ∗, i.e.

[
µ̂∗α/2 ; µ̂

∗
1−α/2

]
,(7.9)

where µ̂∗α/2 is denoted to be the empirical α/2-quantile, analogue for 1 − α/2, i.e. the

[B×α/2]-th value in the ordered list of bootstrap replicates ([·] shall denote the nearest
integer). This (approximate) bootstrap CI is called quantile confidence interval (for

detailed information see Chapter 13 in Efron and Tibshirani [15]).

An alternative to (7.9) is to construct a confidence interval based on the student‘s t

distribution and the standard error. Therefore compute the bootstrap standard error

s∗ as defined above and denote by tα/2 the α/2-quantile of the t-distribution. Hence, a

bootstrap estimate of the 1−α-confidence interval [µ̂− t1−α/2ŝe; µ̂+ tα/2ŝe] of µ is given

by

[µ̂− t1−α/2s∗; µ̂+ tα/2s∗](7.10)

based on the original sample S, cf. Section 12 in Efron and Tibshirani [15]. This kind

of CI is called the bootstrap-t confidence interval.

Unfortunately neither the quantile- nor the bootstrap-t confidence interval exhibit two

important properties. A confidence interval is called first order accurate if

P (µ ≤ µ̂[α/2]) = α+O(n−1/2)

and second order accurate if

P (µ ≤ µ̂[α/2]) = α +O(n−1) .

The quantile CI is first order accurate, the bootstrap-t CI is second order accurate (see

Section 14.3 in Efron and Tibshirani [15]). Hence one may suggest to choose the latter

because of ”better” coverage, i.e. we expect the true but unknown parameter µ to be

found in the (1 − α) CI with probability (1 − α). Unfortunately, the bootstrap-t CI

does not carry another nice property, that of transformation invariance. If we want to

provide a CI of a function g of the parameter µ we just have to apply the function g
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to the endpoints of the CI. This procedure results in a CI for the parameter g(µ) with

the same properties like the CI of µ carries, if g is a monotone increasing function (see

Section 14.3 in Efron and Tibshirani [15]).

At last we want to introduce a confidence interval based on bootstrap methods, one

which fulfills the property of second order accuracy as well as the transformation in-

variance. This CI is based on the bootstrap quantiles corresponding to an (1 − 2α)-CI

with an adjustment due to bias and acceleration and is therefore called BCa-confidence

interval (bias-corrected and accelerated). For intended coverage of 1 − 2α, it is given

by

BCa :=[µ̂∗α1
; µ̂∗α2

],(7.11)

where µ̂∗α1
and µ̂∗α2

are the empirical α1-, respectively α2-quantiles of the sample of

bootstrap estimators {µ∗1, . . . , µ∗B}. α1 and α2 are computed by

α1 = Φ

(
ẑ0 +

ẑ0 + z(α)

1− â(ẑ0 + z(α))

)
and α2 = Φ

(
ẑ0 +

ẑ0 + z(1−α)

1− â(ẑ0 + z(1−α))

)
.

Thereby Φ denotes the standard normal df, and z(α) is the 100 ∗α-th quantile of Φ. The

numbers of the bias-correction ẑ0 and the acceleration â are also easy to compute (see

page 186 in Efron and Tibshirani [15]).

One can show that the BCα confidence interval is second order accurate and invariant

under monotone increasing transformations. The proof can be found in Hall [34].

C. Further figures and tables

This section contains further figures and tables regarding the estimation results of Section

5.2.2 and Section 5.3 and which are not represented there for reasons of clarity.
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Figure C.1.: Shown is the wave plot corresponding to the estimator of the extremal coefficient ε =

‖(1, 1, 1)‖
1.1 ≈ 2.7 (represented by the vertical line). The floors from bottom to the top

show the increasing sample sizes n = 500, 1000, 2500, 5000, 10000, 20000. Boxplots are

also grouped by tail fractions γ. Shown data in boxplots represent the simulation results

of the nonparametric estimation approach for the extremal coefficient by means of the

estimator in (5.3), see Section 5.1.
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Figure C.2.: Shown is the wave plot corresponding to the estimator of the extremal coefficient ε =

‖(1, 1, 1)‖
3
≈ 1.4 (represented by the vertical line). The floors from bottom to the top

show the increasing sample sizes n = 500, 1000, 2500, 5000, 10000, 20000. Boxplots are

also grouped by tail fractions γ. Shown data in boxplots represent the simulation results

of the nonparametric estimation approach for the extremal coefficient by means of the

estimator in (5.3), see Section 5.1.
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Figure C.3.: The three figures show the boxplots of the estimator (5.3) of the extremal coefficient

ε = ‖(1, 1, 1)‖λ ∈ {2.7, 1.9, 1.4} (represented by the horizontal line) which corresponds

to the logistic dependence parameter λ ∈ {1.1, 1.7, 3} for simulated sample size n =

2500. Shown data represent the simulation results of the nonparametric estimator of the

extremal coefficient, see (5.3) in Section 5.1.
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Figure C.4.: The figures show the boxplots of the estimator (5.3) of the extremal coefficient ε =

‖(1, 1, 1)‖
1.7 ≈ 1.9 for simulated sample sizes n ∈ {500, 2500}. Shown data represent the

simulation results of the nonparametric estimator of the extremal coefficient, see (5.3) in

Section 5.1. 183
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Figure C.5.: The figures show the boxplots of the estimator (5.3) of the extremal coefficient ε =

‖(1, 1, 1)‖
1.7 ≈ 1.9 for simulated sample sizes n ∈ {5000, 20000}. Shown data represent

the simulation results of the nonparametric estimator of the extremal coefficient, see (5.3)

in Section 5.1.
184



C. Further figures and tables
0.

00
2

0.
1

0.
03

0.
01

0.
00

6
0.

3
0.

05
0.

02

1.0 1.5 2.0 2.5 3.0

estimated FI(1)

ta
il 

fr
ac

tio
n 

 γ

Figure C.6.: Shown is the wave plot of the estimator of the fragility index FI corresponding to the

logistic dependence parameter λ = 1.7. The vertical line represents the true value

FI(1) ≈ 1.57. The floors from bottom to the top show the increasing sample sizes

n = 500, 1000, 2500, 5000, 10000, 20000. Boxplots are also grouped by tail fractions γ.

Shown data in boxplots represent the simulation results of the nonparametric estimation

approach for the fragility index, see (5.11) in Section 5.1.
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Figure C.7.: Shown is the wave plot of the estimator of the extended fragility index FI(2) correspond-

ing to the logistic dependence parameter λ = 1.7. The vertical line represents the true

value FI(2) ≈ 2.57. The floors from bottom to the top show the increasing sample sizes

n = 500, 1000, 2500, 5000, 10000, 20000. Boxplots are also grouped by tail fractions γ.

Shown data in boxplots represent the simulation results of the nonparametric estimation

approach for extended fragility index by means of the estimator in (5.10), see Section

5.1.
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Figure C.8.: The figure shows the NP plots of the estimator F̂ I corresponding to the logistic de-

pendence parameter λ = 1.7 for simulated sample size n = 10000 and a representa-

tive selection of γ. The solid line connects the first and third quartile of the dataset.

The dashed line represents the line y = µFI + σFI ∗ x, where µFI = FI ≈ 1.57 and

σFI = (dσ)/(ε2
√
(k)) with σ given in (5.9) and k := γ∗n. We expect F̂ I ∼ N(µFI , σFI).
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Figure C.9.: NP plots of the bootstrap estimates of the extremal coefficient ε corresponding to the

boxplots for γ = 0.008, 0.02, 0.04, 0.08 in Figure 5.8 of the financial system {D,C,A}.
The sample size is n = 2577. The solid line connects the first and third empirical quantile.
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Figure C.10.: Two-dimensional scatterplots of the mixed DAX system {D,A,B} during the ten-year

period Sept. 2001 - Sept. 2011, cf. Section 5.3. The sample size is n = 2577. The

complete two-dimensional datasets are shown on the left, where the corresponding upper

tails are shown on the right. The tail fraction of the univariate tails is γ = 0.045.
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Figure C.11.: Boxplots of the bootstrap estimates of the extremal coefficient ε corresponding

to the mixed DAX system {D,A,B} during the ten-year period Sept. 2001

- Sept. 2011. Shown are the tail fractions γ = 0.006, 0.008, 0.01, 0.015,

0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2. The sample size is

n = 2577. The horizontal line represents the value ε = 2.27.
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γ 0.008 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

mean(ε) 1.966 1.964 1.985 1.955 1.942 1.899 1.882 1.894 1.885 1.851 1.826

sd(ε) 0.158 0.143 0.096 0.080 0.062 0.057 0.054 0.055 0.045 0.040 0.038

mean(FI) 1.519 1.522 1.508 1.533 1.543 1.579 1.593 1.584 1.591 1.620 1.643

sd(FI) 0.122 0.110 0.073 0.062 0.049 0.047 0.045 0.046 0.038 0.035 0.034

mean(FI(2)) 2.466 2.418 2.361 2.368 2.364 2.411 2.429 2.472 2.487 2.472 2.460

sd(FI(2)) 0.155 0.126 0.083 0.066 0.055 0.050 0.047 0.044 0.042 0.041 0.035

Table 7.1.: Shown are the sample mean and standard deviation of the bootstrap estimator of the ex-

tremal coefficient ε and the (extended) fragility index FI, FI(2) for the financial system

{D,C,A} respectively, which is investigated in Section 5.3. The table shows a representa-

tive selection of tail fractions γ.

γ 0.008 0.01 0.02 0.03 0.04

BC(ε) [1.71; 2.33] [1.73; 2.31] [1.81; 2.19] [1.78; 2.09] [1.82; 2.06]

BC(FI) [1.27; 1.72] [1.34; 1.77] [1.39; 1.68] [1.43; 1.68] [1.45; 1.65]

BC(FI(2) [2.28; 2.92] [2.21; 2.71] [2.22; 2.55] [2.26; 2.52] [2.22; 2.44]

γ 0.05 0.06 0.07 0.08 0.1

BC(ε) [1.77; 1.99] [1.75; 1.96] [1.78; 1.99] [1.78; 1.96] [1.78; 1.92]

BC(FI) [1.51; 1.69] [1.53; 1.72] [1.50; 1.68] [1.53; 1.68] [1.56; 1.70]

BC(FI(2) [2.33; 2.53] [2.30; 2.48] [2.41; 2.59] [2.41; 2.58] [2.38; 2.52]

Table 7.2.: The table shows the bootstrap confidence interval (BC) of the estimators of the extremal

coefficient ε, FI and FI(2) for the financial system {D,C,A}, which is analyzed in Section

5.3. Thereby a representative selection of the tail fraction γ is provided. See (7.11) in

Section B for the computation of BC.

γ 0.008 0.01 0.02 0.03 0.04 0.045 0.05 0.06 0.07 0.08 0.1

mean(ε) 2.535 2.526 2.266 2.275 2.261 2.248 2.230 2.191 2.161 2.118 2.068

sd(ε) 0.145 0.130 0.093 0.079 0.063 0.060 0.056 0.051 0.046 0.043 0.041

mean(FI) 1.175 1.180 1.321 1.317 1.325 1.333 1.344 1.368 1.387 1.415 1.450

sd(FI) 0.065 0.060 0.054 0.046 0.037 0.036 0.033 0.032 0.030 0.029 0.029

mean(FI(2)) 2.216 2.271 2.241 2.247 2.234 2.220 2.228 2.248 2.247 2.247 2.280

sd(FI(2)) 0.185 0.177 0.082 0.066 0.057 0.052 0.049 0.044 0.041 0.037 0.034

Table 7.3.: Shown are the sample mean and standard deviation of the bootstrap estimator of the

extremal coefficient ε, FI and FI(2) for the mixed DAX system {D,A,B} in Section 5.3.
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Figure C.12.: Boxplots of the bootstrap estimates of the fragility index FI and the extended fragility

index FI(2) corresponding to the mixed DAX system {D,A,B} during the ten-year

period Sept. 2001 - Sept. 2011, see Section 5.3. Shown are the same tail fractions as

in Figure 5.8. The sample size is n = 2577. The horizontal line represents the value

FI = 1.32 (left), resp. FI(2) = 2.24 (right).
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γ 0.008 0.01 0.02 0.03 0.04 0.045

BC(ε) [2.24; 2.81] [2.42; 2.92] [2.04; 2.40] [2.14; 2.45] [2.14; 2.39] [2.14; 2.37]

BC(FI) [1.07; 1.31] [1.06; 1.28] [1.25; 1.47] [1.23; 1.41] [1.26; 1.41] [1.27; 1.40]

BC(FI(2) [2.00; 2.50] [2.13; 3.00 ] [2.14; 2.48] [2.14; 2.41] [2.11; 2.33] [2.12; 2.32]

γ 0.05 0.06 0.07 0.08 0.1

BC(ε) [2.13; 2.35] [2.08; 2.27] [2.12; 2.30] [2.01; 2.18] [1.97; 2.13]

BC(FI) [1.28; 1.41] [1.32; 1.44] [1.30; 1.42] [1.38; 1.49] [1.41; 1.52]

BC(FI(2) [2.12; 2.32] [2.15; 2.32] [2.16; 2.31] [2.17; 2.32] [2.22; 2.35]

Table 7.4.: The table shows the bootstrap confidence interval (BC) of the estimators of the extremal

coefficient ε, FI and FI(2) for the mixed DAX system {D,A,B}, which is analyzed in

Section 5.3, cf. Table 7.2. See (7.11) in Section B for the computation of BC.
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