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Abstract 
The analysis presented in this paper applies to experimental situations where observers or objects to 

be studied, all at stationary positions, are located in environments the optical thickness of which is 

strongly different. Non-transparent media comprise thin metallic films, packed or fluidised beds, 

superconductors, the Earth’s crust, and even dark clouds and other cosmological objects. The 

analysis applies mapping functions that correlate physical events, e, in non-transparent media, with 

their images, f(e), tentatively located on standard physical time scale. The analysis demonstrates, 

however, that physical time, in its rigorous sense, does not exist under non-transparency conditions. A 

proof of this conclusion is attempted in three steps: i) the theorem “there is no time without space and 

events” is accepted, (ii) images f[e(s,t)] do not constitute a dense, uncountably infinite set, and (iii) sets 

of images that are not uncountably infinite do not create physical time but only time-like sequences. As 

a consequence, mapping f[e(s,t)] in non-transparent space does not create physical analogues to the 

mathematical structure of the ordered, dense half-set R+ of real numbers, and reverse mapping, f-

1f[e(s,t)], the mathematical inverse problem, would not allow unique identification and reconstruction of 

original events from their images. In these cases, causality as well as invariance of physical processes 

under time reversal, might be violated. An interesting problem is whether temporal cloaking (a time 

hole) in a transparent medium, as very recently reported in the literature, can be explained by the 

present analysis. Existence of time holes could perhaps be possible, not in transparent but in non-

transparent media, as follows from the sequence of images, f[e(s,t)], that is not uncountably infinite, in 

contrast to R+. Impacts are expected for understanding physical diffusion-like, radiative transfer 

processes and stability models to protect superconductors against quenchs. There might be impacts 

also in relativity, quantum mechanics, nuclear decay, or in systems close to their phase transitions. 

The analysis is not restricted to objects of laboratory dimensions. 
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1 Introduction 
The analysis presented in this paper is focussed on experimental situations where 

observers or objects to be studied, all at stationary positions, are located in separate 

physical environments the optical thickness, or the scattering and 

absorption/remission properties of which, are strongly different. By their large optical 

thickness, non-transparent media are clearly distinguished from their transparent 

counterparts. For the following discussion, it is helpful to first recall basic properties of 

transparency before we will discuss existence of physical time in non-transparent 

media. 

 

A short list of properties is presented in the following that must be fulfilled by any 

gaseous, liquid or solid material if it shall be considered transparent to radiation. This 

applies in particular if transient states have to be analysed. 

 

Assume that a radiation source is placed in front of a non-conducting sample, and 

that a transmission experiment shall be performed. Close to the sample’s rear 

surface, a radiation detector sensitive to radiation at different wavelengths shall be 

positioned exactly on the beam axis. If the sample is transparent, and if the detector 

responds to exclusively the original beam (or its residuals, see below), an 

experimenter will be able to differentiate between 

 

(a) radiation emitted at arbitrary but constant intensity or wavelength, with the 

radiation source at different positions, or radiation emitted at variable intensity 

or wavelength, but with the radiation source at a fixed, single position; this 

includes any position inside the sample volume, and the source may strongly 

be focussed, like a laser beam, or of extended shape. 

(b) monochromatic radiation emitted by source at different intensities 

(c) radiation emitted at constant intensity but at different wavelengths 

(d) single, isolated pulses or series thereof, or periodic radiation sources, all 

emitted from any (stationary) position or at any wavelength or at any time or 

frequency. 

 

In short, if there is a radiation source located within a transparent region of space, 

and an observer, operating at a position stationary with respect to the source and 
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within the same transparent region of space, the observer will almost immediately 

notice any changes of the source’s physical properties (position, intensity, 

wavelength, direction of emitted radiation, stationary or transient behaviour). 

Limitations are only due to the velocity of light in vacuum. 

 

1.1 Transparency defined by mapping functions 
If the observer shall be able to clearly differentiate between corresponding origins 

and properties of the emitted radiation, it is useful to put the above items (a) to (d) 

into some mathematical form: Transparency can be described by means of mapping 

functions, f[e(s,t)], that create images of events, e(s,t), occurring at locations, s, and 

at times, t. To uniquely define transparency, the mapping functions must allow 

creation of images from all events, and allow reverse mapping: The inverse, e(s,t) =  

f-1f[e(s,t)] to f[e(s,t)] must exist and uniquely reproduce the underlying events 

(causes), e(s,t). To fulfil these requirements, the mapping functions must be bijective, 

also allow exchange of positions of sources and observers, at constant distances (or 

solid angles). 

 

For the mapping functions to be bijective, they must be injective and surjective, in the 

well known mathematical sense. Assume that there are two events, e(s1,t) and 

e(s2,t), belonging to a set of events, e(s,t), for example emission of radiation at the 

same intensity and wavelength, from two positions, s1 and s2, in space, R3, and at 

the same time, t.  Another example is scattering of single photons by solid particles 

with shape, size, electrical conductivity of the scattering centre, and direction of 

incidence and wavelength identical; scattering like emission shall occur at positions, 

s1 and s2, again at the same time, t. 

 

For the mapping function, f, to be injective, images, f[e(s,t)], of all elements, e(s,t), of 

the set must exist. For any pair of elements (events), e(s1,t) and e(s2,t), that occur at 

the same time, t, but at positions s1 ≠ s2, we accordingly request f[e(s1,t)] ≠ f[e(s2,t)], 

or, if s1 = s2, f[e(s1,t)] = f[e(s2,t)]. The stationary observer shall be equipped with an 

appropriate detector. Then, in the present case, he recognises, for example, two 

photons scattered at different positions but at the same time. The photons will arrive 

at his position at different times of which the difference is given by different lengths of 

optical paths that the photons have to travel provided their optical paths are located 
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in regions of space of identical optical properties (no problem in transparent space; 

relativity effects shall be excluded). The observer would be able to reconstruct the 

time, t, in transparent space, at which scattering of both photons occurred. The 

mapping function, for this purpose, has to be injective, in the usual sense: There is at 

the most one image, f[e(s,t)], of any of the elements, e(s,t), that is created when the 

mapping function is applied onto elements of this set of events.  

 

In order to conserve transparency in transmission experiments, we have to exclude 

images of events that do not belong to the set, e(s,t), of emissions or scattering 

interactions; for example, such images might result from noise in the detector or from 

signals originating from positions outside the considered transparent region of space. 

In order to exclude such images, the mapping function has to be surjective: All 

images, f[e(s,t)], originate from at least one element, e(s,t), in the set of events. The 

mapping function to be surjective accordingly requires that inverse mapping, f-

1f[e(s,t)], exists for each element of the set f[e(s,t)]. 

 

In analogy, for any pair of events, e(s,t1) and e(s,t2), that occur at the same positions, 

s, but at times t1 ≠ t2, the mapping to be bijective requires f[e(s,t1)] ≠ f[e(s,t1)], and the 

observer recognises both events at different times; here the difference need not 

necessarily has to be corrected with respect to different lengths of the optical paths. 

 

It is for physical reasons that an additional property has to be defined, which goes 

beyond usual mathematical definitions of injective and surjective mapping functions: 

 

If two emission or scattering events, e(s,t2)] and e(s,t1), occur at the same position, s, 

in transparent space, and if event (2) occurs only when event (1) is completed, the 

corresponding images, f[e(s,t)], measured appropriately by a clock on a physical time 

scale, t, shall fulfil f[e(s,t2)] > f[e(s,t1)]. Assume, for example, there are two scattering 

interactions of a photon occurring at the periphery of a transparent sphere located in 

an at least partially opaque environment, like a spherical void volume in a solid. A 

single scattering interaction (2) shall occur only when a preceding interaction (1) is 

completed. Then, on the physical time scale, t, and as recognised by a stationary 

observer, the corresponding image f[e(s,t2)] cannot precede the image f[e(s,t1)]. To 
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be able to recognise the images, the detector would have to be positioned at the 

radius of the sphere, a situation that might be difficult to be realised. 

 

This additional property of the mapping functions, to conserve transparency, requires 

the set of images to be ordered. The observer, to recognise this property or perhaps 

coincidence of events, must be positioned at a stationary place, with respect to the 

events. 

 

Properties like injective and surjective can be applied to any set, not necessarily to 

only mathematical sets. Accordingly, the definition of the mapping function, f[e(s,t)], 

applies to all items (a) to (d) of the above if we simply replace  time by intensity, 

wavelength, structure of the source (focussed or of extended shape, delivering 

single, isolated pulses or continuous waves), respectively. 

 

In Sects. 2 to 5 of the paper, it will be shown that mapping functions, f[e(s,t)], are not 

bijective if attempts would be made, in non-transparent media, to describe correlation 

between events and images.  

 

1.2 Non-transparency 
The question comes up: What happens if items (a) to (d) of Subsect. 1.1 would not 

be fulfilled? Optical thickness indicates the total number of mean free paths when a 

photon travels through a sample.1

 

 A sample is transparent if its optical thickness, τ, at 

all wavelengths is zero (or at least extremely small, an ideal situation approximately 

fulfilled in some dilute gases). If the optical thickness is zero, the photon will not be 

scattered into directions different from the original beam, and there is also no 

absorption/remission. The case τ = 0 accordingly indicates direct transmission. If τ is 

not zero, the residual intensity observed by the detector is given by application of 

Beer’s law provided the detector again responds to solely radiation transmitted 

exactly in the beam axis.  

But strong forward scattering may redirect extinguished (previously scattered or 

absorbed/remitted) radiation to the original direction. This is fulfilled, for example, if 

the wavelength of incoming radiation is small in relation to the dimension of the 
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scattering object. Even if the medium has only backward-scattering but no 

absorption/remission properties, this contribution will not be negligible. Accordingly, if 

the detector sees some radiation, this not necessarily indicates transparency.2

 

 Even 

if τ >> 0, the medium though non-transparent could be translucent, like a thick fog 

that in all directions uniformly screens direct solar radiation incidence. For the 

medium to be almost completely non-transparent, a simple estimate shows that it is 

(with some generosity) sufficient to have an optical thickness of at least τ = 15, 

because in this case the ratio of residual to original intensity according to Beer’s law 

is below 10-6, a number small enough to say there is almost no directly transmitted 

radiation from the source. If τ → ∞, a non -transparent medium finally acts like a 

heavy, opaque curtain. 

Looking through opaque curtains onto structures or processes behind is impossible 

even if the curtain would be constituted by only an extremely thin, non-transparent 

film (its extinction coefficient then would have to be very large). But is it possible to 

analyse processes proceeding in the interior of a non-transparent medium? The 

answer that presently can be given is: Space horizons of observers operating in front 

of a non-transparent curtain simply terminate at this structure. 

 

Non-transparent media, if not only interpreted from standard radiative transfer 

standpoints but also considering propagation of excitations other than by photons (for 

example elementary or even solid particles), cover the vast range between thin (at 

least 100 nm thickness) metallic films, packed or fluidised beds, solids like metals 

and superconductors, thermal insulations, chemical and nuclear reactors (the 

moderator), the Earth’s crust, the atmosphere of the Venice, mostly in the infrared 

wavelength regions, the outer layers of the Sun, and even dark clouds and other very 

large cosmological objects, these at least at visible wavelengths, while infrared 

radiation from regions behind such curtains, like radiation from young, bright stars, 

can well be detected. 

 

                                                                                                                                                                      
1 In a real sample, length of mean free path and thus optical thickness, the total number of mean free 
paths, both are statistical quantities.  
2 If this radiation is of a wavelength different from the wavelength of the original source, differentiation 
between original (i. e. the residual) and remitted radiation might be possible. 
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Fig. 1 shows a schematic division of non-transparent media against their transparent 

or translucent counterparts.3

 

 The figure also localises dispersed media: solid, liquid 

or gaseous substances that are dispersed with respect to radiative transfer. 

Dispersed media are so finely divided and insolubly distributed in vacuum or in a 

different hosting solid, liquid or gaseous medium that they are in a considerably 

higher state of energy than their proper compact phase. For the radiative case, it is 

sufficient that the constituents of the dispersed medium have a refractive index 

different from the index of the hosting environment. Non-transparent media in many 

cases are highly dispersed. 

Any non-transparent curtain divides space into regions of completely different 

properties of radiative transfer. This applies to all laboratory or technical objects 

regardless of their size.4

 

 Such divisions might be manifested by sharply defined 

planes, or instead, by diffuse boundaries. Particle beds and dark clouds or other very 

large, non-transparent objects usually do not have sharply defined “radiative” 

surfaces but diffuse boundaries. The thickness of the diffuse region depends on the 

mean free path, strictly speaking on multiples thereof, of photons; they could be 

emitted or forward scattered not only from exactly the surface but also from internal 

regions of these curtains and by transport processes directed onto an observer 

operating in transparent space outside the curtain. The same consideration in 

principle applies to also scattering and emission of quanta or particles other than 

photons. 

In non-transparent media, radiation propagation can be described as a diffusion 

process (radiative transfer in such media has frequently been studied in the literature, 

for a survey see the literature cited, for example, in Refs. 1 – 3). As a consequence, 

also residual radiation seen by a detector located near the rear surface of a non-

transparent sample will be diffusely distributed. Then, from measurement of solely 

the intensity of residual radiation, it is neither possible to safely make decisions 

concerning the properties of the radiation source nor the internal scattering and 

absorption/remission properties even if the radiation source would strongly be 

                                                      
3 In this paper, non-transparency and opacity will be used as synonyms; non-transparent media may 
be considered also as opaque “curtains” for a real observer positioned in front of such a curtain.   
4 This applies also to formal descriptions of the present structure of the universe that rely on a division 
of transparent regions of space (the well-known spherical space-time geometry) and an opaque 
enclosure (a hot background located behind the most distant, presently known objects). 
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focussed in the direction of the detector or if the scattering properties of the medium 

are highly anisotropic (illustrative examples are given in Sect. 5 and in Appendices 

A1 and A3).   

 

So far, all this is well known. In this paper, we will go a step ahead. While space 

horizons have extensively been treated in highly qualified standard textbooks (see e. 

g. Ref. 4) and in a large variety of individual papers, the second item, time horizons, 

apparently has received less attention. This is the subject of the present paper.  

 

Any event like emission of a beam or of only a single photon, at a time t0, into a 

transparent sample is definitely correlated with the (physical) time, t1, at which a 

detector responds to this event. The detector’s response at this time allows to 

uniquely identify the event “emission of a beam or of particles” if it is located in a 

transparent medium (this is simply a time-of-flight experiment). Does this correlation 

exist also in case such events take place in a non-transparent medium when direct 

observation of events (emission from a source, scattering) is not possible? 

 

The paper is organised as follows: In the remainder of Sect. 1, we summarise usually 

accepted properties of physical time and its contrast, psychological time, as far as 

application to non-transparent media would be concerned. This discussion serves to 

prepare Sects. 2 to 6 where real and virtual observers, operating in front of or inside 

a non-transparent medium, are introduced to precisely define the central problems of 

this paper: Does physical time exist in non-transparent media? If it would exist, to 

which extent can physical time then be ordered? These questions are also related to 

a temporal cloaking experiment very recently reported in the literature, and serves to 

discuss in Sect. 3 the possible existence of time holes under the conditions 

transparency or non-transparency. Sect. 4 considers entropy production in non-

transparent media, to support the conclusions made in the preceding Sections. 

Numerical examples for propagation of radiative pulses, like in laser-flash 

experiments, and of excitations other than radiative are presented in Sect. 5 and in 

the Appendices, to further outline the central problem: Is it possible to correlate 

events by means of physical time scales inside and outside a non-transparent 

medium? At the end of the paper (Sect. 6), invariably the question comes up, and is 

indeed tempting to discuss, whether the demonstrated limitations to existence and 
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order of physical time would have any consequences for research in objects of much 

larger than laboratory dimensions, for example into the past of the universe. Sect. 7 

summarises limitations to existence of physical time, coincidence and correlations. 

 

1.3 Properties of physical and psychological time 
As commonly accepted, physical time in a mathematical sense may be identified with 

the set, R, of real numbers (see, for example, Ref. 5). The set R is totally ordered: If 

a1 and a2 are elements of R, then one and only one of the following three relations 

holds: a1 < a2, a1 = a2 or a1 > a2. The set R also is dense, a continuum. Under this 

assumption (i. e. physical time identified with R), physical time in classical mechanics 

and in other classical disciplines allows representation of the corresponding laws of 

physics as differential equations, with respect to time. Classical mechanics in 

otherwise empty space, and without disturbances, is invariant under reversal of 

physical time; trajectories would not change when projected into past or future if 

observers do not move relative to the objects. The same applies to Fourier’s 

differential equation: It is linear in time otherwise transformation of time, t, to its 

negative, –t, would allow heat flow from regimes of low to high temperature (or of 

matter from regions of small to regions of high concentrations), clearly impossible. As 

Prigogine and Stengers (Ref. 6) pointed out, physical time is considered reversible 

also in relativity. 

 

An asymmetry of the direction of physical time, and thus an orientation of the arrow of 

time, becomes probable when the 2nd law of thermodynamics is taken into account. 

Mathematically, irreversibility then reduces R to the half-set R+. Hund (Ref. 7), when 

referring to the work of Lemaitre, said a distinction between past and future relies on 

a very improbable, initial, minimum entropy state of the universe, which means the 

universe, after an initial (zero-) point of space and time, could develop solely into a 

single direction of physical time. 

 

Whether the arrow of physical time, in contrast to its psychological counterpart, can 

be extended indefinitely into the future will not be discussed here. The other extreme, 

a lower limit of (successive) time intervals, when physical time no longer must be 

considered a continuum, is given by the Planck time, tP = (h G/c5)1/2, about 10-43 s, 

with h and G the Planck and gravitation constants, respectively,  and c the velocity of 
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light in vacuum. Planck time, tP, per definition indicates the minimum, non-zero 

physical time interval that light needs to travel across the Planck length, about 10-35 

m. The Planck length determines a lower limit up to which standard physical theories 

are applicable.  For the moment, Planck time can be neglected: Time steps between 

successive interactions of radiation with ordinary dispersed materials, or even 

between collisions of nuclei in an excited nucleus, are larger, by many orders of 

magnitude, than tP. 

 

Time, physical or psychological, cannot be imagined without events; we will later 

(Sect. 2) have to check whether this statement is valid in both directions. Physical 

time, or direction of its arrow, must closely be related to many-particle systems that 

experience a large number of interactions (events) when developing into a single 

direction of time. Physical time accordingly does not exist a priory, neither without 

space nor without a multiple of events (in many-particle systems). Accordingly, 

consideration of physical time has to involve many-particle systems and their states.5

 

 

In the following, we will indicate when these commonly accepted properties of 

physical and psychological time would require special attention if non-transparent 

media have to be considered. 

 

Assume that two scattering and absorption/remission events, e1 and e2, are observed 

at positions x1 and x2, respectively, with x2 > x1 (in any coordinate system) measured 

on the complicated path that a single photon travels through a non-transparent 

medium. Because of the 2nd law of thermodynamics, the corresponding physical 

arrival times, t1 and t2, of the photon at these positions (or the times when 

interactions occur at these positions), respectively, are ordered. We accordingly have 

t2 > t1 while the relations t2 = t1 or t2 < t1 are forbidden because these would be in 

contradiction to the total order of the set R+ provided physical time may be identified 

                                                      
5 Physical time came into being only after an initial singularity developed into events (expansion of 
space, condensation of energy to radiation and matter). The idea of a singularity from which physical 
time is created (and is extending in only one orientation) is indeed relevant predominantly in 
cosmology. It is supported by variety of observations or theories like the presently observed very 
smooth distribution of 2.7 K-background radiation, experimental confirmations of modelled light 
element (He, D)-abundance, the solutions of Einstein’s equations and by Hund‘s initial 
(thermodynamic) state. Hawking and Penrose demonstrated that any model of the universe based on 
approximate homogeneity and isotropy, as is apparently realised, must start from a singularity (see, for 
example, the discussion in Ref. 8, Chap. 9). But the problem of definition or identification of a zero-
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with this set in non-transparent media. Without this restriction, it appears physical 

time when related to events also in non-transparent media should be monotonously 

ordered (again, we will have to discuss this property in Sect. 2). 

  

Both physical time, as a measurable quantity and located within the half-set R+, and 

psychological time, as experienced (or simply imagined?) by human beings, allows 

arbitrarily large numbers of events: There is neither a maximum number of events in 

non-transparent media nor exists a maximum element in R+. But only physical time 

defines a point-wise, sharply defined „presence“, or even an arbitrary series of 

presences, and thus separates on its scales a corresponding arbitrarily large number 

of „pasts“ and „futures“ from each other. In Sect. 2, it will be discussed whether this 

view is valid also in non-transparent media. 

 

Instead, psychological time considers only one single presence that has a very 

specific property: A time interval of non-zero length, perhaps a few seconds 

measured on physical time scale; the actual length of presence is subject to each 

individual. Psychological time, unlike physical time, cannot without contradictions 

(Zenon’s paradox) imagine a zero length event, or sequences thereof. 

 

Physical time does allow zero length elements, for example if the events e1 and e2 

observed on the path of the (single) photon in a non-transparent medium coincide at 

the stationary x1 and x2 which implies the difference t2 - t1 of arrival times should be 

zero (or the length of a corresponding vector be zero, the zero element of a vector 

space to be defined in Subsect. 2.1). 

 

Like physical time, psychological time is a causally ordered sequence of events, but 

all of finite length, contrary to physical time. Psychological time yet is not an algebraic 

sum of measurable, non-zero length intervals. Psychological time, in our imagination, 

extends in both orientations to infinity. Both orientations emerge from a (finite) 

presence interval. 

 

Properties like these (extension of time in both orientations to infinity) cannot be 

realised with physical time. Instead, an initial, sharply defined presence, e. g. a 

                                                                                                                                                                      
point of physical time comes up also when investigating transient states in objects of modest, much 
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singularity, as the zero-point of physical time scales defined independently for each 

real observer, either is postulated to conserve causality (or to avoid problems arising 

from negative times), or it is deduced from experimental or theoretical results using 

appropriate models for description and analysis of past and future (an open question 

is whether these models a priori incorporate, or are based on, the idea of a 

singularity). The question to be discussed in Sect. 2 is whether a zero-point of 

physical time scales can be postulated or deduced also with respect to events in non-

transparent media.  

 

Since physical time is monotonously ordered, this means that at least the origin of 

physical time could rely on a property of psychological time (causality) while the idea 

of a zero-point cannot be deduced from, and instead is a contradiction to, 

psychological time. Psychological time neither can accept „points“, i. e. events of zero 

length like a zero-point of time, without running intro contradictions, nor could it 

accept an arrow of time oriented into a single orientation only. 

 

If we return to Planck time: Also the question comes up whether physical time, or 

corresponding time-like sequences of images in non-transparent media (Sect. 2), 

could be identified with a large multiple of Planck times. 

 

In summary, definition of the arrow of physical time apparently has profited from at 

least two properties of psychological time: 

 

(i) part of the „infinity property“ of psychological time (infinite in one 

orientation, a property that possibly could be valid only temporarily),  

(ii) a monotonously increasing, causal order. Yet physical time is not identical 

to psychological time. Physical time has no memory. 

  

Physical time cannot exist without events. What are “events”?  In this paper, we are 

mainly concerned with radiative transfer. Events then are understood as interruptions 

of the paths that photons travel, by scattering and absorption/remission interactions 

with matter. In a non-transparent medium, the number of interruptions is very large. If 

we assume a cloud of photons emitted from a source, propagation of the cloud 

                                                                                                                                                                      
smaller dimensions.   
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through the medium can be correlated with physical time of events that it initiates, 

certainly on a statistical basis only. Provided fast detectors are available, this 

measurement can be realised inside or outside the corresponding medium. 

 

Positions of the wave front can also theoretically be indicated, as a function of time, if 

the propagation velocity is known. We have to differentiate a purely scattering from 

an absorbing medium. In the first case, it is the speed of light, in the second the 

propagation velocity is given by an expression containing the thermal diffusivity of a 

(conductive) material (Sect. 5, Appendices). Thus positions, x, of the cloud on its way 

through the sample can be assigned arrival times, t(x): For x’ > x, we have t(x’) > t(x), 

the monotonous order, regardless whether the medium is only scattering or absorbs 

and emits radiation. But a difficulty arises from the observation that each individual 

photon of the cloud travels its own path regardless of the propagation of its 

companions (with exceptions from quantum correlations not considered here; it is 

indeed the question whether quantum entanglement would operate in non-

transparent media). All these paths are only statistically defined, and thus are 

independent of each other. This means the arrival times of each individual photon, for 

example at planes x located parallel to the sample’s surface, cannot be identical, it is 

a distribution (a “cloud”) of arrival times that is observed.  

 

Based on these preliminary considerations of transparency and physical vs. 

psychological time, we will demonstrate in the Sects. 2 to 5 that neither 

  

(a) existence of physical time, as a dense set of uncountably infinite elements, 

(b) uniquely defined monotonous order of physical time nor  

(c) existence of a zero-point of physical time, uniquely defined only after a 

singularity 

 

can rigorously be deduced and confirmed by observers if they operate in front of, or 

inside, a non-transparent medium. If these observers postulate an origin of time, a 

conclusion like this cannot stem from own experimental findings but rather might be a 

result adopted from psychological time. 
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1.4 Two extreme cases: radiative exchange, radiative transfer 
Assume two real observers positioned at different locations in otherwise empty 

space. The first observer shall report a series of events that on his physical time 

scale either are coincident or monotonously ordered. The second (real) observer will 

report coincidence, or the same monotonous order of events, respectively, provided 

the following conditions are fulfilled: 

 

(i) the second observer does not move relative to the first, 

(ii) there are no „obstacles“ located between positions of the observers and the 

locations where the events take place; such obstacles could interrupt, 

deteriorate, delay and even completely suspend exchange of information. The 

exchange may be realised by emission and detection of light signals or other 

carriers of information, 

(iii) both observers operate in the same environment (no obstacles).  

 

This is radiation exchange, one of the two extreme cases of radiative flow: Absolute 

transparency, direct transmission, propagation of light through empty space. We will 

in the present paper not consider curved space-time and phenomena like 

gravitational lenses and their possible impact, if any, on transparency or its 

complement. The other extreme case is radiative transfer in a non-transparent 

medium.   

 

2 Mapping functions 
2.1 Modelling physical time as a 1D vector space 
Physical time, t, frequently has been added to the usually considered 3-dimensional 

Euclidean space (xk, 1 ≤ k ≤ 3) as a 4 th independent component (x4 = i ct, with c the 

speed of light). Such 4-dimensional construction neither appears to be very 

descriptive (compare the comments in Ref. 9) nor is it obvious that the coordinate x4 

can be assigned a spatial quality.6 At the end of Subsect. 2.3, we will see that 

treating physical time as the 4th component of a common 4-dimensional vector space 

in non-transparent media invariably would lead to contradictions. We will instead 

construct the arrow of physical time in a separate vector space, to allow analysis of 

this very space independently of properties of the space R3. This does not introduce 
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new physics, it is used only as a tool to facilitate the following discussion, rather in a 

didactic sense (it will become clear that it is indeed a key to improve understanding of 

physical time in regions of space that have strongly differing optical thickness). 

 

As usual, points in the Euclidean space R3 shall be interpreted as endpoints of 

vectors constructed from multiples and linear combinations of basic vectors rk (1 ≤ k 

≤ 3). The symbols, rk, are taken to indicate basic vectors of this space, instead of the 

usually applied symbols ek, to omit confusion with events, e(s,t). Bold symbols like s 

denotes vectors. 

 

By analogy, we will assume physical time occupies a separate, independent vector 

space, Z, which is constructed from basic vectors zi. Vectors in Z are created when a 

clock coupled to an experiment performed in R3 indicates that an “event” has taken 

place, and the physical time noted at this instant gives the length of the 

corresponding vectors in Z. Experience with psychological time suggests Z is one-

dimensional, Z = Z1.   

 

In transparent media, both vector spaces R3 and Z1 are correlated in the following 

sense: All vectors in Z1 in the following are obtained from application of uniquely 

defined mapping functions that couple events in the completely transparent R3 with 

elements of Z1 (whether the vector space Z1, too, might be considered as 

“transparent” will be discussed in Subsect. 3.3). Before, it has to be decided whether 

a mapping like this can be realised at all also in case of non-transparency, and if it 

exists, whether this mapping could uniquely be defined.  

 

Assume, for example, that a particle moves in the completely transparent (empty) R3, 

with a velocity v << c, from the zero-point of a co-ordinate system to an end-point, s1. 

We define a mapping function f(s1) that assigns the point s1 in R3 exactly one point t1 

in Z1: t1 = f(s1) = α z1 (Fig. 2), with α є R+.  

 

We will not discuss whether all requirements are fulfilled to correctly assign the 

physical time space Z1 the quality of a vector space (psychological time certainly 

would not fulfil vector space axioms). A zero-element of physical time has to be 

                                                                                                                                                                      
6 Nevertheless, coordinates xi (1 ≤ i ≤ 4), as is well known, allow an elegant, 4 x 4 matrix derivation of 



 16  

postulated (to fulfil the property mentioned in Sect. 1.3), otherwise it would not be 

possible to define coincidence in Z1, and confusions between physical and 

psychological time would be the consequence. The mathematical structure of Z1 is 

close to the theory of one-parameter half-groups (Ref. 10).7

 

  

2.2 Mapping events from R3 to Z1 

Assume next that a non-transparent medium, for example a disk of finite thickness D, 

partly fills R3 (Fig. 3). Its optical thickness, τ, shall be very large but finite (the 

extinction properties accordingly are finite, too). A source Q located outside the non-

transparent medium emits radiation pulses (of Dirac type, or of finite length) to the 

front surface of the disk; the pulses shall impinge under right angles onto the surface 

(this assumption does not lead to loss of generality; it is made only to simplify the 

discussion). Because of the large optical thickness, a photon initially absorbed at, 

and then remitted from, the front surface (x = 0) will have to travel a very large 

number of steps (mean free paths) between front and rear sample surface. We 

assign an “event”, e(s,t), to each scattering or absorption/remission interaction during 

this period of time. 

 

We further assume that a real observer is located at a position A outside the non-

transparent disk (but within R3). However, since this observer cannot control what 

happens inside the non-transparent sample, we need another, a virtual observer to 

support him, who recognises all internal events and indeed shall be able to supervise 

the whole trajectory of the particle inside the non-transparent region (a real observer, 

any imaginable detector, could hardly do so). Assume that the virtual observer 

operates at an arbitrary position B, with x-coordinates 0 < x < D in the non-

transparent region (like the position A, the position B need not be specified explicitly 

with respect to coordinates y and z). 

 

2.2.1 Comparison of observations external/internal to non-transparent space 
First some specifications to the real observer: Positioned at or near the rear side of a 

non-transparent region of space, he recognises solely isotropic distributed radiation 

intensity. Since he does not know anything about the radiation source, he even does 

                                                                                                                                                                      
relativity principles. 
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not know this is the residual intensity of a pulse emitted from a source (or from a 

target spot at x = 0 where the emitted radiation is absorbed first and remitted). For 

example, he instead could assume the intensity distribution that he observes results 

from another radiation source located behind him and is the result of diffuse reflection 

from the rear sample surface (in front ob him). Further, the real observer neither shall 

know geometrical nor optical thickness of the slab nor shall he know scattering and 

absorption/remission properties of the sample material between x = 0 and x = D.   

 

Assume provisionally that a physical time scale, t, exists also within the non-

transparent region. We will very soon understand that this assumption cannot be 

realised with conventional time scales, but let for the present discussion the virtual 

observer be furnished with a clock that on this (pseudo-) physical time scale “books” 

images, f[e(s,t)] = t, of all internal events e(s,t), for example those occurring at 

positions s1 and s2 that a photon travels on path W1 in Fig. 3. The virtual observer 

recognises these events on his (and solely on his) time scale, t. The real observer 

instead does not know anything about events at these positions and, in particular, he 

does not know anything about time scales within this region. He may only believe that 

time scales inside the non-transparent region might exist and, if so, should be 

identical to his time scale. 

 

The virtual observer might attempt to approach positions s1 or s2 as close as 

possible, in order to resolve the distance between images f[e(s,t)] of events occurring 

at s1 and s2 on his time scale, t, into arbitrarily small time steps. However, this is not 

possible without limitations, for two reasons: 

 

a) Distances between s1 and s2 smaller than the mean free path, lm, of a 

photon cannot be detected because the lower limit of these distances is given, 

on the average, by just one mean free path along path W1, and no further 

scattering or absorption/remission as the immediately next event at s2 

following s1 will occur in-between 

                                                                                                                                                                      
7 Although zero length intervals do not exist in psychological time, this does not exclude coincidence: it 
is simply the identity of images on psychological time scales, which is not the same as a zero length-
difference between two images on physical time scales. 
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b) propagation of information is limited by the time needed to transfer the 

information (the images) obtained at s1 and s2 to his position, B; this is at least 

the time that a photon needs to travel the distance lm.   

 

Assigning to also the real observer a clock means that this observer will book 

images, too, but of quite different properties. In his case, an image is given, for 

example, by the time, t’, at which a temperature excursion, T(x,t), at the rear surface 

(x = D), i. e. a macroscopic physical quantity, attains a certain value, T(x=D,t’). The 

real observer believes this is the result of, and definitely coupled with, a very large 

number of internal scattering and absorption/remission events, e(s,t), the impact of 

the travelling single or of a cloud of scattered and absorbed/remitted photons. In 

logical sense (cause precedes effect), these interactions are indeed the cause (at 

least partially, because there might be also conduction) for the observed temperature 

excursion, T(x=D,t’). However, if the medium is non-conducting, he does not know 

whether it is a single photon or a cloud of photons each travelling through the sample 

on an internal physical time scale, t, that causes the temperature excursion observed 

at his physical time, t’. Though detection, by means of a temperature measurement, 

of the impact arising from absorption of just a single photon would cause him great 

experimental difficulties, we can assume, provisionally and only for the present 

discussion, that he could be successful.  

 

When the experiment is completed (all photons initially emitted by the source, Q, or, 

respectively, the photons remaining after a multiple of scattering and 

absorption/remission events) have left the sample, the virtual observer shall be 

allowed to report the final result (solely the detected elements of Z1) to the real 

observer, just for comparison of the time scales, t and t’, and for control what the real 

observer has believed until this moment. It is of little importance how the virtual 

observer would realise “reporting” (certainly not by photons, as these would also be 

scattered or absorbed/remitted). It is only to enable the real observer to compare 

what the virtual observer recognised on his private time scale that now is projected 

on his (the real observer’s) external scale, t’ (instead of the activity “reporting”, we 

could simply say the events e(s,t) occur at times f[e(s,t)] = t, regardless whether a 

real observer recognises the events or not). 
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The real observer, 

 

(a) if he observes radiation signals only: recognises at the sample’s rear surface, 

x = D, a completely diffuse distribution of intensities, i'(x=D,t’), 

(b) if he observes temperature signals only: recognises a temperature variation, 

T(x=D,t’), at the same position. Frequently, temperature measurement at the 

sample’s rear surface is realised by means of a radiation detector. 

 

In case (b), from the imagination that temperature fields must be differentiable with 

respect to space coordinates (no temperature jumps in a conducting sample), and 

time, he can only believe using corresponding analytical models, i. e. on purely 

theoretical grounds, that there should be clearly defined temperature excursions not 

only on the sample’s rear surface but also within the non-transparent sample if it has 

conduction properties. In this case, he will be in a position to indicate quantitatively 

the excursion T(0 ≤ x < D,t’) at any position, x, if he applies T(x=D,t’) as a boundary 

condition. 

 

In case (a), however, he cannot apply a boundary condition i'(x=D,t’), to quantitatively 

describe the inner radiation field, i'(0 ≤ x < D,t’), at any position because intensity at 

these positions is only statistically defined (only in the limit τ → ∞ will it be possible to 

assign radiative transfer a conduction-like behaviour). Beer’s law could be applied 

only in particular directions within the medium since it describes residual intensities, 

not a distribution of residual intensities (after scattering and absorption/remission, i. e. 

extinction interactions) plus intensities redistributed to this particular direction; this is 

the (difficult) task of the general equation of transfer. 

 

While in case (b), correlation between time, t’, and temperature field, T(x,t’), would be 

unique, since the prediction can be based on application of Fourier’s differential 

equation, this is not fulfilled in case (a) where the statistical distribution of the 

intensities could only be approximated (if τ → ∞) by an analytical and differentiable 

expression. 

 

In both cases, the real observer further has to believe both time scales, t and t’, 

would exist and be identical. Even if this were fulfilled, the real observer, from the 
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images, t’, will not be able to uniquely correlate these images with images, t, that the 

virtual observer booked in his space, Z1: Corresponding mapping functions neither 

are injective nor surjective: 

 

To be injective, a time scale, t, at which radiative interactions occurred, at a position x 

within the sample, as reported by the virtual observer, would have to be correlated 

uniquely to a time scale, t’, at which local temperature, T(x,t’), at or near the same 

position (within the distance, lm) observed by the real observer, would attain a specific 

value, clearly impossible. The real observer cannot detect temperatures neither at 

this internal nor at any other position within the sample (with the exception of a 

diffuse layer of maximum thickness lm near the sample’s rear surface). He can only 

believe in the existence of the excursion, T(x,t’), on the basis of analytical models. 

 

To be surjective, time t’ at which T(x,t’) attains a specific value, should result from at 

least one event within the sample that occurred at a time, t. The excursion T(x,t’) 

certainly relies on a very large number of scattering plus absorption/remission events, 

but not necessarily on events booked on the time scale, t, of the virtual observer even 

if the real observer could resolve temperature variations that might follow absorption 

of just a single photon. This absorption event occurs at positions 0 < x < D, i. e. least 

at a distance lm from x = D. Because of the finite value of the speed of light, the 

corresponding images, t and t’, cannot be identical. Thus, in non-transparent media, 

mapping functions are not bijective.  

 

So far we have implicitly assumed existence of a time scale, t, on which the virtual 

observer books his observations (this is the assumption provisionally made at the 

beginning of this Section). Accordingly, the question comes up whether this 

assumption can be confirmed. For this purpose, the discussion cannot be confined 

solely to comparison of images, t’, on a time scale outside the non-transparent 

sample, with events booked on a time scale, t, within the same sample. The very 

existence of the internal time scale, t, itself has to be questioned, on a basis 

exclusively prescribed by the properties of R+. The corresponding discussion is given 

in Sect. 2.3; it will be prepared in the next Subsection. 
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2.2.2 Comparison of observations all within non-transparent space 
The total length, SR, that photons have to travel along the schematically indicated, 

dotted paths, W1 or W2, in Fig. 3, between the planes x = 0 and x = D in R3 and as 

seen by the virtual observer at position B, is given by the algebraic sum SR = Σ ξk 

taken over N corresponding mean free paths ξk (k ≤ N = τ). It is clear that SR ≥ D, 

because of the large τ (the larger τ, the more will SR >> D be fulfilled, on a statistical 

basis). 

 

Each scattering or absorption/remission event as booked by the virtual observer 

when the photon arrives at the corresponding end points sk of the individual steps, i. 

e. the sum Σ ξk over the single mean free paths, ξk, is assigned a corresponding 

vector (the image) in Z1. This means if events e(ξk) are monotonously ordered with 

respect to distance from the origin seen along a path W, with s1 = ξ1 < s2 = ξ1 + ξ2 < 

s3 = ξ1 + ξ2 + ξ3 < …< sN = Σ ξk, their images f(ξ1) = t1, f(ξ1 + ξ2) = t1 + t2, f(ξ1 + ξ2 + ξ3) 

= t1 + t2 + t3,...,f(Σ ξk) = tN, are monotonously ordered as t1 < t1 + t2 < t1 + t2 + t3 < …< 

tN; this is a logical consequence.  

 

If E denotes the extinction coefficient of a bed of solid particles, and if, for example, E 

= 3.3 104 1/m, the mean free path, ξ, amounts to about 30 μm. This means the 

minimum distance, Δt, between end points of vectors in Z1 with images that result 

from events occurring in space on the same path, W, and that are separated by at 

least the step Δs = ξ, is about 10-13 s, as notified by the virtual observer (using the 

speed, c, of light of the photon and for simplicity assuming an index of refraction n = 

1 of the bed). The minimum distance, Δt, of images under this condition, is not zero, 

contrary to what is required if the commonly accepted property of the half-set R+ 

holds (we could assume also events created by propagation of particles other than 

photons). 

 

This is a first indication that proof of existence of physical time in non-transparent 

media might become difficult. We will see in the following that it is easier to prove 

non-existence of physical time, and this will be done in three steps:  

 

(i) the general validity of the theorem “no time without space and events” is 

accepted 
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(ii) images f[e(s,t)] do not constitute a dense set if they are created by 

application of mapping functions, f, on events e(s,t) occurring in non-

transparent space  

(iii) sets of images do not create physical time but only time-like sequences if 

the images  are not uncountably infinite. 

 

Item (i) besides relativity principles also reflects existence of time holes. In a time 

hole (a certain “empty” time interval), the time axis, considered as a collection of 

images of events, does not contain images. The statement “no events, no time”, if 

taken from left to right, means: If there are no events that could have occurred within 

a non-zero interval of physical time, accordingly there can be no images of events 

(times) that could be detected during this period. While this sounds trivial, it is correct 

only if for any event there is at least one image. The question is whether this 

statement is also correct if considered in the opposite direction: If there are no 

images, accordingly are there also no events that could be assigned a definite time 

when they occurred? We will come back to this question in Subsect. 3.2. 

 

2.3 Theorems proving non-existence of physical time in non-transparent 
space 

Even if a real observer could enter the interior of a non-transparent slab, he would 

recognise nothing but diffusely distributed radiation, probably of increased intensity 

the more he approaches the radiation source, as long as regions of large optical 

thickness like in Fig. 3 are between the source and his position. If the optical 

thickness of the sample increases without limitation, τ → ∞, the real observer like his 

virtual colleague, could try to overcome this problem by approaching the source (the 

target spot) as arbitrarily close as possible. Even then would he not recognise 

anything else than isotropic radiation intensity (provided there is indeed any intensity 

left when gradually τ → ∞). He also would not recognise anything else but 

infinitesimal small yet non-zero, minimum differences, Δt, between endpoints of 

vectors in Z1. Propagation of radiation in R3, under these conditions, cannot be 

described as a dense series of events and, accordingly, cannot constitute as well a 

dense series of images in Z1, a contradiction (in non-transparent space) to the 

commonly accepted assumption that physical time is dense like the elements of R+. 
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If events belong to exactly the same physical experiment, all physical events and 

their images, both among themselves, can uniquely be distinguished: Events are 

different in R3, for example, if either propagation of an object from one coordinate to 

another is considered. This also applies to images in Z1 if successive events simply 

are repetitions occurring at the same positions in space. 

 

We may argue there might be also events other than created by propagation of 

radiation, like propagation of phonons in a crystal lattice, diffusion of chemical 

species under concentration gradients, phase transitions, decay of radioactive 

impurities, to mention only a few. All images resulting from these events are booked, 

now by corresponding virtual observers that have appropriate mapping functions 

available, to create images in Z1. But it is not possible to fabricate in this way a dense 

series of images, as elements in Z1 or in other images spaces. 

 

All these conclusions will now be condensed in the following two theorems. 

 

Theorem 1:

(i) if the functions f apply as their arguments the coordinates of physical 

events located in any event space, and 

 With non-transparent media, it is not possible, by means of mapping 

functions, f, to create a dense set of elements in an image space that is contained in 

the half-set R+ of real numbers, 

(ii) if the coordinates of the events are uniquely defined by endpoints of 

vectors s that are multiples s = βk rk or linear combinations s = Σ βk rk 
(βk є R+, k ≤ 3) of basic vectors, rk, of a set Rk, and 

(iii)  if the set Rk is identical to or contained in (k < 3) the usual vector space 

R3, and 

(iv) if the events belong to the same physical experiment, and 

(v) if the mapping functions, f, are continuous, and 

(vi) if the images f[s(e)] are elements of a common, single image space  

(vii) if the image space is stationary  

 

To give an example to item (iv), the same physical experiment in case of radiation 

propagation is given by a path, W’, in the medium though, during the period of time a 

beam travels through the medium, secondary beams or photons can be emitted, after 
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corresponding absorption/remission interactions, that then travel on paths W’’ usually 

different from W’. Only if the medium is solely scattering will the path W’ be 

conserved: One beam or one photon means exactly one though complicated path 

(photon or another carrier shall not be split into sub-particles if the non-transparent 

medium is solely scattering). 

 

Assume two arbitrary but different events, e1, e2, the coordinates of which are given 

by corresponding vectors s1, s2 located in the same event space. Distance, Δs, of the 

coordinates is given by the difference Δs = s2 – s1 (in R3 or in any of its subsets, Rk) 

between events not only belonging to the same physical experiment (item iv) but also 

occurring under the same physical (initial or boundary) conditions; all other conditions 

as defined above by items (i) to (vii). 

Proof of theorem 1 

 

The difference Δs in non-transparent space never becomes zero. Since it was 

defined (condition vii) that the image space is stationary in relation to the event 

space, which means any observer does not move relative to the events, no 

transformation of positions or times, individually experienced by an observer, that 

could be requested from relativity principles, is necessary. Accordingly, assume that 

there are two events, e1, e2, with e2 occurring not before e1 has been completed. If 

then in this set the relation s1(e1) ≠ s2(e2) holds, their images f[s(e)] created by any 

continuous (injective) mapping function, f, are not identical, f[s(e)] ≠ f[s(e)], in any 

image space (not necessarily sets R+ or spaces, Z1; we neglect a possible impact of 

quantum entanglement). Accordingly, if any set S of coordinates s of events (of 

arbitrary large number) is contained in an event space Rk є R3 (k ≤ 3), Rk being a 

subset of R3, and if the elements of this set, under the above items (i) to (viii), would 

not constitute a dense set (because the difference Δs under physical conditions 

cannot become zero), then the corresponding set of images, f[s(e)], in any image 

space, for example in Z1, too, is not dense. This conclusion simply relies on the 

property of any continuous mapping functions defined on elements of R or R+ (here 

with the expansion coefficients βk є R+ or any of its dense and ordered subsets). 

End of proof
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Now let events and their images result from more than one physical experiment, for 

example radiation propagation in parallel to thermal conduction heat flow or if the 

sample is unstable to nuclear decay. In this way, a set of image sets, J, will be 

fabricated, and the images resulting from different physical experiments are to be 

collected on a single, common time scale, by appropriate injective mapping functions. 

We can tentatively assume that the number of different physical experiments (like 

propagation of radiation, decay of radioactive species, all within the same medium) 

could be increased strongly (which in reality is hardly possible), or that the number of 

initial or boundary conditions or in particular of optical properties in a limited number 

of physical experiments would be very large. The latter condition can be approached, 

for example, by increasing, in a specific radiation transfer experiment, the optical 

thickness gradually to τ → ∞. This generates a set of different experiments because 

for any optical thickness, there will be a different number of paths with a different 

distribution of scattering, absorption/remission events on each path. But the number 

of such experiments (the number N of elements of a corresponding set M of 

experiments), though potentially very large, neither is uncountably infinite nor is it 

infinitely large, for two physical reasons: 

 

(a) infinitely large values of optical thickness cannot be realised, which means there 

exists a maximum element number N within the set M (the set is bounded above) 

(b) The number N of experiments (elements of the set M) that can be realised neither 

is uncountably infinite nor is it infinitely large because there is a minimum difference 

(τ2 – τ1) > 0 between optical thicknesses ,τ1, τ2, with τ2 > τ1: Optical thickness is given 

by an integer multiple of mean free paths, lm. In case of infinitely large τ, lm = 0, so 

that under this condition radiation transfer would break down completely, and the 

corresponding experiment could not be realised. 

 

Accordingly, there is not only a maximum element (experiment) number N within the 

set M, but also the number of elements of M neither is uncountably infinite nor is it 

infinitely large. 

 

Assume next that there is a very large number N of experiments each of which 

generates a set J of images of its corresponding events.  
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It is not possible to create physical time scales from sets, M, each element of which 

generating a set, J, of images, if both the number of elements of M and of J are not 

uncountably infinite. 

Theorem 2 

 

Since the number N of experiments (elements of the set M) is limited, it is sufficient to 

prove that each set J is not composed of an uncountably infinite number of images 

(this holds even if the set M of events would be infinitely large). 

Proof of theorem 2 

 

An uncountably infinite number of images of even an infinite number of sets of 

experiments or events cannot exist, otherwise there would be an uncountably infinite 

number of images without corresponding sets of events (images and events are not 

equipotent, and in particular, the corresponding mapping not surjective). Any set J’ 

that comprises all images created within a specific experiment accordingly cannot not 

obtain the properties of the set R+, which means, this set J’ also cannot obtain the 

properties of physical time. The same applies to all other sets J even if an infinitely 

large number N of elements of sets M would be taken into account, each as origin of 

corresponding image sets, J. As a conclusion, while R+ is uncountably infinite, any of 

the sets J, and also the total number N of sets J, and images is not. An uncountably 

infinite set of images cannot be generated from a finite (limited, see above) or 

infinitely (not uncountably infinite) large number N of elements of sets M even if each 

of which might create an infinitely large number of elements (images). 

 

End of proof 

We recall from Subsect. 1.3 the theorem: Physical time does not exist a priory, 

neither without space nor without events. It is the uncountably infinite number of 

(ordered) images that is necessary to create physical time scales. If we have only an 

infinite (not uncountably infinite) number of images, they do not create physical time 

but at the most a sequence of images (discrete instants on a time-like arrow) the 

distances of which may become infinitesimal small but are not dense in the sense the 

set R+ is.  

 



 27  

Both physical time and its arrow, in usual understanding, are created by the images 

of the events occurring in transparent R3. The first event that ever existed is probably 

an expansion of the universe to one Planck length, after a singularity. It is not solely 

this event that created physical time, but just its beginning; physical time has been 

created by images of all events that included and followed the first image. However, 

from theorem 1, physical time, as the image of events, cannot be created from only 

discrete set of events even if sets like J would contain an infinite number of images, a 

conclusion that follows from theorem 2 (all events means: an uncountably infinite 

large number of images). 

 

Any set, J, of images also cannot be created from elements (images) that simply 

would be N-fold multiples (with N an arbitrary large element of the set of natural 

numbers) of the Planck time, tP. While the number of elements of J, under this 

construction, indeed would become indefinitely large, the set J again would not 

become uncountably infinite, which means it is not equipotent to R+. Though all these 

images are elements of R+, the number would not comprise all elements of R+. 

 

We also cannot apply r-fold multiples of tP with r є R+ for this construction, because 

only integer multiples of tP (r є N) could have physical meaning: Neither will non-

integer multiples (r < 1, r є R+) of tP exist, because no events and thus no physical 

time existed before completion of tP. Nor would r-fold multiples (r > 1, r є R+) of 

fractions of tP (as given by r tP/n, with n, r є R+, n ≠ r) have physical meaning because 

events can be correlated with physical time only if r-1 < N < or r+1 multiples N tP are 

considered. 

 

Physical time thus is not a set of elements that could be generated from any multiple 

r tP of the Planck time though also this set would be uncountably infinite if r є R+. 

Instead, only N-fold multiples (N a natural number) are possible, and this set is 

infinitely large but not uncountably infinite. 

 

These results also show that considering physical time scale as the 4th component of 

a common vector space invariably would lead to contradictions if non-transparent 

regions of space are involved: The structure of the three spatial and the 4th time-like 

components, when assigning coordinates to an event e(s,t) in such a region, is 



 28  

completely different. In the non-transparent region, and if radiative transfer is 

considered, lengths of the spatial vectors, s, are integer multiples of lm, while time 

coordinates are not uniquely defined at all. Distances between events in a 4D-space-

time thus cannot be defined properly if the events occur in non-transparent space. 

 

The results of this Subsection can be considered a special case of the well-known 

“inverse problems” coming up when solutions of ordinary and partial differential 

equations, or experimental results, shall be used to indentify the corresponding 

“origins”, which means known solutions of unknown equations shall yield information 

“backwards”, to identify the equations themselves and thus the underlying physical 

origin (that was the source for their formulation). Such problems accordingly 

comprise identification or reconstruction purposes as well as handling of control or 

design tasks. Inverse problems are frequently discussed in the literature, on 

mathematical and theoretical physics levels (inverse scattering, nuclear reactions) 

and on engineering levels (heat transfer, acoustics, seismology, chemical reactions, 

nano-technology, and others). For an introduction to inverse problems, compare e. g. 

Burger (Ref. 11) and literature cited therein.  

 

2.4 Conclusions from theorems 1 and 2 
If events exist, the order of their images in R+, if the events occur in a non-

transparent space, logically is the same as the order of the underlying events 

provided they are of the same physical experiment and if the mapping function is 

continuous. However, if in a non-transparent medium all events from all possible 

physical experiments are considered (provided the concept of non-transparency 

applies to also processes other than radiation propagation), positions of the elements 

of Z1 (or their distances among themselves on Z1) are, though logically ordered within 

specific physical experiments, randomly distributed if the images of all possible 

experiments are taken into account: It is an infinitely large number of series of 

discrete images in Z1 the distances of which, between any two elements of J, not 

necessarily must be identical; nor would images of all possible experiments 

necessarily coincide. The distances might be infinitesimal small, but if radiation 

propagation is considered, there is a minimum non-zero distance that at least 

amounts to ξ/c, between neighbouring images of this physical experiment. If other 

physical experiments are admitted, the distance might become smaller or larger. 
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Thus the images (elements of J) in total would be intermixed in Z1, by superposition 

of the sequences of images arising from different experiments. While each sequence 

(belonging to a particular experiment) is logically ordered, the total sequence (from 

superposition of all) might not be ordered at all, a contradiction to the properties of 

the completely ordered (dense) half-set R+. 

 

As a further conclusion from theorems 1 and 2, it is not possible to simply transfer 

time scales from empty to non-transparent space. Physical time exists, without 

inherent contradictions, if images in Z1 of events form a dense, ordered set of 

elements of uncountably infinite number, which means, if it is a continuum, in the 

strict mathematical sense. Instead, differences Δs = s2 – s1 between vectors s1 and 

s2 in a non-transparent medium cannot be made arbitrarily small in a way that Δs 

would converge to zero; the lower limit is given by the mean free path. Time scales 

outside a non-transparent medium are uniquely ordered and the elements 

uncountably infinite; analogue scales, if they would exist within a non-transparent 

medium, neither would be dense nor uniquely ordered or uncountably infinite. The 

images f[e(s,t)] at best constitute a time-like sequence (a sequence of discrete 

elements randomly distributed on this scale). The virtual observer at position B 

cannot recognise time scales at positions, A, of the real observer that could be 

transferred to his position simply because his situation is just the reverse of the 

situation of observer A: Non-transparent curtains suspend exchange of information in 

both orientations of connections between positions A and B, and mapping functions 

of events occurring in R3 applied to images in J thus could not uniquely be defined: 

the sets R+ and J, according to theorems 1 and 2, are not equipotent. 

 

Since both mathematical sets, R+ and J, are not equipotent, there would be left an 

uncountable infinite number of elements of R+ that cannot coincide with elements of 

J. The time scales, if both existed, thus not only would be very different, but time 

scales within a non-transparent medium, without inherent contradictions, apparently 

cannot exist at all. 

 

The same conclusion applies to invariance under time-reversal. In its strict sense, 

invariance cannot be confirmed; instead, reversing the order of elements within the 

set of images (elements of J) means reversal of just a sequence of a denumerably 
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infinite, discretely though very closely neighboured images. Since J neither is dense 

nor quantized, also the set (–J) constructed under this reversal neither is dense nor 

becomes quantized.  

 

If we yet would accept existence of physical time scales in non-transparent media, 

while images in this space cannot be dense, as a consequence there are sections on 

this pseudo time scale that do not contain images. These sections would have to be 

interpreted as “holes” in physical time. 

 

The imagination of holes in physical time has gained some interest from recently 

reported experiments demonstrating temporal cloaking (Ref. 12): Dispersion of an 

optical fibre based system is manipulated in time to initiate acceleration of the front 

part of a probe light beam and slowing down its rear part to create a well controlled 

temporal gap inside which an event occurs. Extension of the gap is in the order of 10-

11 s. The authors explain, cloaking objects, either in space or in time, requires the 

manipulation of light. The question then is whether also this experiment can be 

explained by non-existence of physical time in non-transparent media. 

 
3 Existence of time holes 
3.1 Reconstruction of events from their images in non-transparent media 
Fortunately, events e(s,t) in non-transparent space occur even though they are not 

directly observable from position A. Location of point A thus is of little importance for 

the following consequences (1) and (2). If the real observer stays at his original 

position, A, we have, in the notation of Figs. 2 and 3,   

 

(1) Before completion of the experiment: Since the real observer cannot locate 

the source Q (or its primary image, the target spot at x = 0), the uncertainty 

ΔxQA experienced in R3 with regard to the distance between A and the 

primary image (located at x = 0) of Q, at least amounts to the thickness, D, 

of the slab. 

(2) After completion of the experiment and the results being reported to the 

real observer: He cannot identify positions, xk, from which the reported 

images, f[(xk)], were created (he knows only the elements of Z1).  He 

accordingly cannot correlate images in Z1 with events in the non-
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transparent region of R3. The corresponding uncertainty ΔtQA then is at 

least as large as the physical time, tD, which a photon would need to 

directly travel on the line of sight through the sample. A corresponding 

conclusion applies for processes other than propagation of photons. 

 

Even if the real observer would be able to exactly determine the distance between his 

position and image of the source (which would imply ΔxQA → 0), this not necessarily 

eliminates also the uncertainty, ΔtQA, on the time scale. Length of single steps along 

paths like W1 or W2, and accordingly the total length of both paths, is only statistically 

determined. 

 

While a large variety of paths is open to a photon (on a statistical distribution, in 

radiative transfer usuaslly descried by a scattering function), and the corresponding 

sets of images f[(sk)] in Z1 all are monotonously ordered, with distances between 

neighbouring images that, too, are only statistically defined, it is not possible to 

identify from images in Z1 which specific path W was chosen by the photon.  Images 

f[(sk)] in Z1 are completely mixed, not differentiated to a particular path W. The real 

observer cannot distinguish between the corresponding open and closed circles on 

the axis of physical time in Fig. 3 when this scale would be reported to him after 

completion of the experiment. For the real observer, these positions are simply 

discrete images the origin of which remains completely hidden. 

 

Any mapping function f[(sk)] of events arising in non-transparent media therefore is 

not reversible if radiation or other physical sources, or their original images, if any, 

and the corresponding events initiated by the sources, are located inside or behind a 

non-transparent curtain. 

 

We could replace the sources by arbitrary thermodynamic “machines” provided they 

initíate events (excitations of in principle arbitrary nature in a correspondingly non-

transparent medium).  

 

3.2 Time holes 
The authors of Ref. 12 report an experiment of which they believe creation of a time 

hole in physical time was demonstrated. In non-transparent space, absence of 
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images would not prove non-existence of events; for this conclusion yet to hold, 

mapping f-1f[e(s,t)] would have to reversible, which according to the previous 

Subsections is not possible. In the experiment of Ref. 12, however, the space “optical 

fibre” usually is considered transparent, at least at the experimental wavelengths.   

 

The experiment reported in Ref. 12 has some similarity with the present discussion of 

whether physical time exists in non-transparent space. Following the previous 

Sections, we may interpret the non zero-length, empty intervals between images 

booked in the space Z1 as holes, too, not in a rigorously defined physical time but 

between discrete and randomly distributed elements of sets J on a time-like axis. 

Following theorem 2, physical time is not defined at least within these intervals, in-

between the corresponding images; that is why the intervals are empty (between 

their endpoints, they do not contain any images). This means, if we in such a time-

like space integrate over the empty intervals between images and divide the result by 

the number of photons concerned, the final result equals the period of time that on 

the average each photon travels until it leaves the space. The extension of this 

period, the hole, if measured in the space Z1, thus is given by the uncertainty ΔtQA.  

With τ = 20, the extension of this period amounts to at least about 7 10-11 s, a period 

of time of the same order as extension of the hole created in the fibre optical material 

in Ref. 12; the agreement of course is merely by coincidence. 

 

But also a structural similarity might exist between both cases that would allow 

analysis and interpretation of the observation made in Ref. 12 by the results 

presented in the present paper. We again have to clearly separate event in space 

and its image in physical time. 

 

The authors explain existence of a time hole becomes obvious when occurrence of 

an event experimentally initiated, within the assumed time hole, is hidden from an 

observer. The event in the present case is spectral modification of a probe beam due 

to an optical interaction. The quality “hidden” relies, as the authors report, on the 

observation that the amplitude of the event is reduced by more than an order of 

magnitude when the cloak is turned on. An image of this interaction event on a time 

axis is created by the arrival time of the probe beam (the probe beam delivers the 

corresponding mapping function, f). Now let in a non-transparent medium an optical 



 33  

interaction event (scattering, absorption/remission) occur at a position s1 on an 

optical path, W1. A virtual observer might approach the position s1 as arbitrarily close 

as possible, but the event also in this case most probably remains hidden, at 

whatever close position to s1 he observes the event (whether the event is really 

hidden depends on the spatial resolution of his detector). There is probably no image 

of this interaction at all, but the event, for example scattering, certainly has occurred. 

 

The event in Ref. 12 thus is of the same class of radiative interactions and their 

visibility as in the present discussion, and both events themselves may be hidden to 

the corresponding observers. 

 

The authors then conclude: 

 

(i) If the event e(s,t), that is, a radiative interaction (with its image a detectable 

signal amplitude), does not exist or, at least, is so strongly reduced that it 

cannot be observed safely (is hidden) within a certain period of time (what 

they interpret as the time-hole), there is no image, or at the most, only an 

almost vanishing image f[e(s,t)] of this event (how in detail the event is 

reported and the image created by the probe beam is of little importance). We 

recall: Here “image” means the arrival time at which the full, normally 

expected amplitude would become observable; the mapping function, here 

provided by the probe beam as a vehicle, creates the arrival time. So far this 

is in line with the analysis of events and their images in non-transparent 

samples. 

(ii) Since we (i. e. the authors of Ref. 12) cannot observe images (times at which 

full amplitudes should be discovered) within the said period of time (the time 

hole), corresponding interaction events have not occurred (“what is hidden 

does not exist”). 

 

Conclusions like (ii) need clarifying discussion. A clear decision could be drawn if we 

go back to mapping functions, f[e(s,t)], introduced in Sect. 1 to describe 

transparency, and to theorems 1 and 2. That reversibility of functions f[e(s,t)] shall 

exist, also in the present case, entirely relies on the property of the event space 

(optical fibres) as being sufficiently transparent to radiation. From reverse mapping, 
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an event e(s,t) = f-1f[e(s,t)], could be identified only under this condition. In order to 

fulfil this property, the mapping function would have to be bijective, the property to 

fulfil items (a) to (d) in Subsect. 1.1. Only in this case is a conclusion as drawn by the 

authors of Ref. 12 realistic. This is  not the case presently. Accordingly, it remains to 

be shown in further experiments that the corresponding event space, the optical 

fibre, is completely, or somewhat relaxed, at least sufficiently transparent, in the 

sense to make mapping functions, f[e(s,t)], definitely bijective. Only in this case can 

a safe decision be drawn on success of this experiment that presently relies, strictly 

speaking, not on images but on absence of images. 

 

The problem to some extent is similar to measurement of zero resistance of 

superconductors. It is not possible to arrive at exactly this result; what has been 

confirmed is that in induction experiments (decay of persistent currents) 

experimental values of the specific electrical resistance are extremely small, and the 

detected values have decreased steadily during the last decades. 

 

3.3    Is the space Z1 itself transparent? 
Returning to radiation propagation in non-transparent media, at least one positive 

aspect has to be mentioned, however. From the enormous number of images, the 

real observer safely can identify the last image booked in the space Z1: It is given by 

the maximum, max[f(Σ ξk)], of images that result from summations f(Σ ξk) obtained 

when photons travel along any particular path W in R3 (in Fig.3, it refers to the path 

W1). It is thus the largest element of Z1. But can the observer uniquely correlate at 

least this image with the correspondingly underlying event? Since the process of 

exchange of information between events e(s,t) and position of an observer requires a 

non-zero period of time, the question whether the space Z1 is transparent can be 

raised also as: Can the observer look into the past to uniquely identify the event? The 

answer is: No, the only information is that the image max[f(Σ ξk)] correlates with 

events on the plane x = D, but it is not clear at which coordinate, y, the very last 

emission event, the origin of max[f(Σ ξk)], has occurred on this plane (compare the 

coordinate axes in Fig. 3) . It is thus not possible to uniquely reconstruct the plane x = 

D from the results booked in Z1.  
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The same applies to reconstruction of the plane x = 0 from elements of Z1. Clearly, all 

images f[(sk)], exist in Z1, regardless whether they are recognised by an external 

observer or not. This means also the image f(e0) exists in Z1; it is booked when the 

photon impinges on the front side of the disk (at the target spot) and is firstly 

scattered or absorbed/remitted. It is thus the minimum, min[f(Σ ξk)], of the discrete set 

of images that can be found in the space Z1. But there is a non-vanishing probability 

that following events can occur on the plane x = 0 as well. For example, the 

scattering or emission angle at the first interaction might redirect the photon parallel 

to the plane x = 0 to any position, y, so that there would be different images in Z1 that 

all have their origin from interactions (subsequent events) on the same plane.  

 

And it applies also to all events occurring between the planes: After start of its 

journey from x = 0, the photon for the second time is scattered or absorbed/remitted, 

on a plane x1 = ξ cos(β), with β the angle of emission from the front surface of the 

slab. Again, the angle β is only statistically defined: In a purely absorbing/remitting 

medium, the angle is completely arbitrary, while in a purely scattering medium, the 

angle is given, as mentioned, by the scattering phase function. This is another 

statistical quantity that according to size and electrically conducting properties of the 

scattering centres assigns probabilities for isotropic, forward or backward scattering. 

This also applies to locations x1 < x < D of all other planes and for the corresponding 

coordinates, y. If τ → ∞, it constitutes a set now of positions x the values of which can 

be indicated only as statistical quantities. In case an optical thickness τ → ∞ could be 

realised with any known matter (which we know is impossible), the set would be 

composed of an infinitely large number of images, but the number still is not 

uncountably infinite, as the result of theorem 2. 

 

These results clearly indicate non-transparency of the vector space Z1, because all of 

the conditions (a) to (d) listed in Subsect. 1.1 are violated: 

 

Consider again items (a) to (c): changing intensity, wavelength or position of the 

source just leads to different distributions of images in Z1, neither to uncountably 

infinite numbers of images nor to ordering (the different distributions in an overall 

view could be very similar, at best), (d) changing the transient behaviour of the 

source leads to a set of images that well can be identified by the real observer from 
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observation of the images max[f(Σ ξk)], but the properties “dense” and “monotonously 

ordered” will not be obtained within the f(Σξk)-set. For the space Z1 to become 

transparent, its elements would have to be of uncountably infinite number and 

ordered as monotonously increasing values, a task that is in contradiction to the 

properties of media non-transparent with respect to transfer of photons or of other 

excitations that could manifest themselves as quanta, particles or quasi-particles.8

 

 

In summary of Sects. 2 and 3, non-transparent media do not allow bijective mapping 

of events, e(s,t) to images, f[e(s,t)], booked on a time arrow the elements of which 

would be dense and ordered. The most important conclusions from Sects. 2 and 3  

accordingly are: 

 

i) Physical time does not exist in non-transparent space. And as far as it 

perhaps existed in some transparent sub-regions of this space: 

ii)  Time is not transparent. 

 

In Sect. 5, some numerical examples shall demonstrate that the potential of a real 

observer to recognise and describe events in non-transparent space after a 

disturbance is strongly limited. 

 

4 Entropy production in non-transparent space 
Thermal conductive flux, qCond [W/m2], is accompanied by entropy flux, S, see for 

example, Falk and Ruppel (Ref. 13, § 6).  Assume for the moment a layer of a 

thermally conducting, non-transparent material with conductivity λ, thickness D and 

boundary temperatures T1 > T2. Using Fourier’s law of conduction, for simplicty in 

one dimension and under stationary conditions, qCond = -λ dT/dx, with qCond = T 

(dS/dt), because of dS = dQ/T, q = dQ/dt, entropy production is given by 

 

dS(D)/dt – dS(0)/dt = [ΔT/(T1 T2)] qCond > 0      (1) 

                                                      
8 Up to this point, we have not taken into account dependent scattering. It happens if clearance 
between neighbouring scattering centres becomes small against wavelength of incident radiation. 
Dependent scattering, in a strongly simplified picture, can be interpreted as “shadowing”: One 
scattering centre partly shadows its neighbour thus reducing the extinction cross section of both, a 
property that preferentially arises in non-transparent, strongly scattering media. As a result, the 
corresponding mean free paths increase, but the basic conclusion remains the same as before. 
Though some correlation between successive scattering events becomes possible, neither an 
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This is the basic relation to describe entropy production in a thermally conducting 

medium. But we wish to treat the radiative case. 

 

As is well known, the Rosseland radiation diffusion model (Ref. 14, the original 

reference source) leads to a radiative conductivity given as  

 

λRad = (16/3E) σ n2 T3         (2) 

 

which immediately allows to switch from the preliminary assumption of a thermally 

conducting medium to entropy production by diffusion of radiation: We simply replace 

the solid thermal conductivity, λ, by the radiative conductivity, λRad. In Eq. (2), σ 

denotes the Stefan-Boltzmann constant, n the real part of the complex refractive 

index of the medium, E the extinction coefficient, and T is a radiation temperature 

that is averaged over thickness, D, of the medium. Under stationary conditions, qCond 

is constant. Keeping for example also T1 constant, entropy production becomes very 

large if the extinction coefficient, E, goes to infinity (which means also optical 

thickness, τ = E D, goes to infinity, assuming thickness D is constant). Since λRad 

then becomes very small, the temperature T2 reduces to much smaller stationary 

values, which in Eq. (1) also increases ΔT = T1 - T2; the temperature profile finally 

becomes linear. 

 

Each direction, δ, in which radiation propagates can be interpreted as the direction of 

a separate beam. Since Beer’s law can be applied to all these conditions, the 

residual radiation i(τ,δ)/i(0,δ) for large τ would be reduced strongly under all beam 

angles, δ, against normal. Any radiative transfer in arbitrary directions in the 

absolutely non-transparent medium, over any, i. e. also arbitrarily short distances, 

thus is subject to maximum entropy production or maximum loss of information. 

There is maximum loss of information on any event occurring in the non-transparent 

slab in Fig. 3 before events and their images, of whatever physical content like time 

of their occurrence, have reached a real observer positioned outside the slab. 

 

                                                                                                                                                                      
uncountably infinite number of images nor a monotonously increasing order of the elements of Z1 will 
be observed. 
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Accordingly, a medium in which no entropy production occurs under radiative or other 

transfer processes must be transparent in the sense defined by the bijective mapping 

functions, f[e(s,t)], introduced in Subsect. 1.1 (additional properties might have to be 

fulfilled to create the ideal case “no entropy production”). Non-transparency comes 

into play if information is lost during transfer processes, and the f[e(s,t)] no longer 

would be bijective. 

 

5    Stability of a type II superconductor  
In this Section, we will demonstrate that it is even not sufficient to consider only 

differences between the time scales t and t’ that are recognized by which the real and 

virtual observers. Instead, another distinction between time scale t of the virtual 

observer and another internal time scale, t’’, has to be made. 

 

A superconductor is stable if it does not quench, i. e. perform an undesirable phase 

transition from superconducting to normal conducting state. A quench results from 

disturbances like conductor movement and corresponding transformation of 

mechanical into thermal energy, from absorption of radiation, fault currents or from 

momentary cooling failure. Quenching proceeds on time scales in the order of 

milliseconds or less. Superconducting current limiters are applied to protect electrical, 

medium voltage electrical circuits from damage under fault currents. 

 

Disturbances frequently are transient, but there are also permanent disturbances like 

hysteretic losses. Stability against quench, and the corresponding layout of fault 

current limiters, has been investigated in the literature by stability models, like the 

simple Stekly or the more advanced adiabatic, dynamic and intrinsic stability criteria; 

for a survey on these analytical stability models see e. g. Wilson Ref. (15) or Dresner 

Ref. (16).   

 

Stability models predict under which conditions a transport current will propagate 

without losses through the conductor, even under a disturbance. For this purpose, all 

stability models correlate disturbances with corresponding temperature evolution of 

the superconductor, which in turn determines evolution of critical current density. 

Temperature and critical current density thus depend on 
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(a) magnitude and duration of a disturbance 

(b) heat capacity of the solid 

(c) heat transfer within the conductor 

(d) conductor geometry 

(e) heat transfer to coolant or another conductor environment like electrical insulation 

     or matrix materials in multi-filament conductors. 

 

If conditions (a) to (c) and (e) are fixed, and the conductor, for example, is of 

cylindrical cross section, the stability models allow prediction of the maximum 

conductor radius, condition (d) of the above, up to which zero loss transport current 

can be expected.  

 

For understanding the reaction of the superconductor with respect to a disturbance, it 

is thus necessary to determine the resulting internal 3D-temperature excursion, 

T(x,y,z,t). Almost all superconductor properties depend on temperature.   

 

When positioning temperature sensors inside a non-transparent sample, daily 

laboratory experience shows that temperature fields calculated by application of 

Fourier’s differential equation will be confirmed, at least qualitatively, provided current 

leads necessary for coupling the sensors to some electronic measuring device do not 

introduce too large errors. The real observer is right when he believes that T(x,y,z,t) 

inside a superconductor sample or in another solid would follow the predictions given 

by the solution of Fourier’s equation. But the measured temperature evolution might 

rely on averages taken by the sensors over small, non-zero partial volumes of the 

sample to which the sensors are mechanically/thermally coupled. 

 

Any sensor, if operated in a non-transparent medium as a radiation detector, neither 

resolves the paths W by which single photons travel through the sample nor can it 

deliver any detail about transport properties and radiation field inside the sample, 

except for observations within a tiny environment around its position, and (perhaps) 

that the observed radiation is diffuse. If operated as a temperature detector, besides 

recognising incoming conductive heat flow, it integrates also over all incoming 

radiation contributions, but again this information comprises only diffusely arriving 

radiation signals that in the sample have their origin in the very neighbourhood of the 
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detector. Therefore, though experimental results might confirm calculated 

temperature excursions, temperature sensors cannot be used to compare time 

scales, t and t’ (and t’’, see below) related to arbitrary radiation events that in a 

superconductor may follow from a disturbance. 

 

5.1   No correlations between events and images 
A Monte Carlo model is applied to determine spatial distribution and magnitude of a 

large number of internal heat sources, Qint(x,y,z,t), that in a sample arise from 

absorption of radiation bundles (Fig. 4a). The radiation bundles stem from a heat 

source that e. g. arises during a superconductor quench. For different solid samples 

(ceramics, graphite), the general method has extensively been described (Ref. 17). In 

the present paper, the same analysis is applied to superconductor filaments (Fig. 4b). 

It is not necessary to repeat in detail the calculations for this specific case, only the 

general principle is described in the following referring to the results reported in Ref. 

17. Recursion to the superconductor will be made later. 

 

For a general description of Monte Carlo models, the reader may consult the 

literature cited in Siegel and Howell (Ref. 18), Chap.18.3. 

 

Radiation bundles may be emitted e. g. from a small volume or from a sample 

surface that has experienced a disturbance. Creation of a heat source (the 

disturbance) at physical time, t, is interpreted as the “event” that the virtual observer 

recognizes. The Monte Carlo calculation then yields the number of bundles, P, that 

hit a specific sample volume element, and thus create the distribution of follow-up 

heat sources, Qint(x,y,t), the images (since P >> 1 occurs rather frequently, in any of 

the volume elements, this is just the proof that events like these cannot be 

reconstructed from their images). 

 

In the simulations, the bundles initially are emitted from part of the sample surface (a 

target spot and later from interior positions, after scattering and absorption/remission 

of each bundle. Distribution of the Qint(x,y,z,t) depends on extinction properties of the 

sample material and the angle of emission from the target spot. Magnitude of the 

Qint(x,y,z,t) depends on albedo of the material, which determines remission of 

residual heat pulses after each absorption event, and on the phase function of 
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scattering. All items to determine the Qint(x,y,z,t) in the present analysis are treated 

as random variables. 

 

The bundles shall be emitted from the target spot, x = 0, into the sample, x > 0 

(compare Fig. 4a). The target spot is created after absorption of an initial pulse from 

the source Q. Taking the target spot as the “source”, this simplifies the procedure as 

it is not necessary to explicitly take into account for exact position of an original 

(external) source, Q. Under radiative equilibrium, after absorption of the bundle at a 

mean free path, lm, a new bundle would immediately be emitted, and the process 

continued until the bundle leaves the pellet or is completely absorbed. 

 

However, the present model has to assume non-equilibrium conditions: The bundle is 

not completely absorbed after a single mean free path but scattered, or remitted at 

reduced energy, and the difference transformed into thermal energy and transferred 

to the competing heat transfer mechanism, i. e. solid thermal conduction. 

Accordingly, if the mean free path is small and if albedo Ω > 0, complete absorption 

will take place only after a large number of absorption/remission interactions in the 

pellet if the bundle has not left the sample before final absorption. If Ω = 1, there is no 

absorption at all so that the bundle leaves the pellet, with energy conserved.  

 

It is assumed the radiation impinging on the target spot can be described without 

reference to a spectral distribution and that also the superconductor sample is “gray”, 

that is its radiative properties do not depend on wavelength. Tough both assumptions 

are rather crude approximations, they are sufficient for the present purpose (the 

spectral problem in ceramic solids has been investigated in Ref. 17). 

  

The geometry of the Monte Carlo-model, as illustrated in Fig. 4a, is designed to allow 

division of the sample thickness into a number of layers. This allows modeling 

samples of different materials composition or thickness (increasing the number of 

layers means extended computation times, however). The cross section of the 

sample is meshed with small steps ∆x and ∆y so that large number of area, and by 

rotation about the axis y = 0, volume elements Vij (j ≤ N, i ≤ M) is created. The 

scattering and absorption/remission and the coupled conduction/radiation transfer 

problem thus is of cylindrical symmetry, with y = 0 the symmetry axis in Fig. 4a. For j 
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= 1, the resulting volume element is a circular disk of radius ∆y, for j > 1, the V ij are 

given as hollow cylinders the volume of which increases, though Δy = const, with 

square of their distance from y = 0. All volume elements have thickness ∆x, for all j. 

 

Assume that a large number K of energy bundles per unit time is emitted from the 

target spot in positive x-directions, each carrying the same energy quantum 

(confining the direction to positive x-values is by convention, otherwise we had to 

describe energy transfer also in regions outside the sample).  The angular distribution 

of the bundles initially emitted from the target spot (x = 0) is assumed to be isotropic, 

without loss of generalization.  

 

The investigation in Ref. 17 applied a variety of random variables specifying angular 

distribution of the bundles, position, y, within the target spot from which the bundles 

leave the pellet surface, path length that the bundle travels in the pellet between two 

successive scattering or absorption/remission events, a decision whether the bundle 

is partly absorbed or scattered, and finally the angular distribution of the emitted new 

bundle; this allows to specify anisotropic scattering. 

 

For determination of temperature excursion with time in a conductive solid, Carslaw 

and Jaeger (Ref. 19) showed that an initial temperature distribution is equivalent to a 

distribution of instantaneous, initial heat sources. Conversely, once the radiative 

volume power sources have been determined from the Monte Carlo simulation, this 

distribution is equivalent to an initial temperature distribution within the pellet. At this 

point, coupling between radiative and conduction heat transfer in the calculations 

would have to be considered, and analyzing conduction total heat transfer then would 

again require application of Fourier’s equation; this is reported in Ref. 17. But we will 

stop here, because application of Fourier’s equation again would produce only what 

the real observer believes to have occurred inside the non-transparent sample.  

 

Reliability of the numerical method describing multiple absorption/remission and 

scattering events has been confirmed by calculation of the angular distribution of 

directional intensity (compare Fig. 3 in Ref. 17) emitted at the rear sample surface, 

for different values of the extinction coefficient. This also showed that a number K = 5 

104 bundles is sufficient for such present simulations, in agreement with radiative 
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Monte Carlo simulations reported in the literature (extended numbers of bundles 

would increase computation time, without much benefit).  

 

In the present investigation, we are more interested in the number of 

absorption/remission events to be expected in the volume elements of the sample.  

Data reported in  Ref. 17, the number P of absorption/remission (excluding scattering 

events), demonstrate that with the small target spot, most of the events are to be 

expected at forward (from x = 0) angular positions. The number of individual events 

per volume element ranges from a very small number at large up to several 

thousands events expected at small element number, respectively. This again 

confirms that in real situations, there is no potential to reconstruct events from their 

images that coincide within a simulated period of time Δt = 1 μs, at fixed time, t, 

within a total interval of 10 μs. 

 

The examples in Ref. 17 also show that summation over the number of events taken 

from all volume elements yields a number, P, by a factor of about 10 larger than the 

number K = 5 104 of bundles. This is due to multiple scattering and 

absorption/remission events that a bundle experiences on is path through the 

sample, and it reflects the assumed albedo (on the average, Ω = 0.5). If only 

absorption events are considered, there are about 10 absorption/remission events 

per bundle; if also scattering would be taken into account, the number obtained from 

the summation then should be a factor of 20 larger than the number K of bundles, 

which then would reflect the optical thickness (τ = 20 mean free paths, on the 

average, would be expected for each bundle). 

 

A considerable number of beams is backwards scattered from the sample and lost, or 

is forward or under large angles scattered in the slab and thus lost again (no deposits 

of energy are obtained from only scattered beams) while beam is not consumed 

completely during a single absorption interaction with the material. Also for this 

reason is reconstruction of the events not possible: The number P of images per 

volume element, as indicated by the symbols in Fig. 5 of Ref. 17, is large, P >> 1, in 

almost all volume elements. 
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The strongly inhomogeneous temperature distributions reported in Fig. 6 of Ref. 17 

lead to the conclusion: While in solely 1D conductive heat transfer, the temperature 

evolution at rear sample surface (x = 0) is homogeneous in space (identical for all 

coordinates, y), this is no longer the case in 1D coupled conductive/radiative heat 

transfer. As a consequence, events (absorption/remission interactions) occurring as 

bombardments of volume elements by photons, at an observed frequency and their 

images (times, t’, at which temperature evolution, T(t’), attains specific values, as an 

integral result of bombardment and internal radiation conduction properties) together 

do not allow unique reverse mapping, f-1f[e(s,t)]. 

  

5.2 Impacts on stability predictions 
We now come back to the superconductor stability problem. All traditional stability 

models rely on solely conductive heat transfer in the superconductor solids. The 

impact of radiation has been included only very recently (Ref. 20) into stability 

calculations. 

 

Temperature fields, T(x,y,z,t), have been calculated in Ref. 21 to solve the stability 

problem in NbTi and YBaCuO filaments, all embedded in suitable matrix materials.  

The results are shown in Figs. 5a,b.  

 

As before, the real observer has no quantitative information about any transient 

states in the interior of the (non-transparent) superconductor filaments nor does he 

know the cause of the disturbance. The real observer could operate a detector 

outside the filaments in order to control, for example, surface temperature on the 

conductor, current flow, possibly upcoming electrical fields in the filaments that would 

indicate build-up of a resistive state, and other macroscopic physical quantities that 

can be accessed from outside positions; all this would be very difficult to measure. 

Most interestingly is the event “quench” because the superconductor then quickly 

becomes normal conducting, with corresponding consequences for its operation in an 

electrical grid (as announced, we may think of the sample as being part of a 

superconducting fault current limiter). But like the internal temperature fields, 

T(x,y,z,t), the event “quench” is at first instances a local event, T(x,y,z,t) > TCrit, the 

critical temperature,  a materials property, that cannot be detected by a real observer 

from the outside. 
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As before, the question is whether physical time, t’, as recognised by the real 

observer could perhaps be uniquely correlated with physical time, t, as measured 

with a clock by the virtual observer operating inside the conductor. Is the real 

observer in a position to reconstruct events from their images like the time (the 

image, t’) when a quench occurs? Events for the virtual observer are, as before, 

scattering and absorption/remission of photons but also variations of current density, 

due to variations of the internal temperature fields. Since absorption leads to local 

temperature increase, there must be corresponding reductions of local critical current 

density that very sensitively depends on local temperature within a superconductor. 

The event “quench” then could be mapped to yield images like “time at which zero-

loss transport current, at positions inside the conductor, breaks down”. 

 

Ref. 20 describes results of stability calculations (stability function, zero loss DC 

transport current) under transient disturbances. According to the numerical method 

by which these results were produced, this is again what the real observer believes to 

occur in the non-transparent sample, here a superconductor. Instead of solely 

considering temperature fields, he believes also the critical current fields proceed 

according to physical laws that are differentiable, at least with respect to time. Images 

reported by the virtual observer are the particular times, t, at which, for example, a 

variation of the critical current density is detected; the stability function then contains 

the integral over the distribution of critical in relation to fault current density. The real 

observer has no idea by which local events a variation of the stability function was 

initiated. He can only make assumptions like “perhaps an increase of local transport 

current over critical current, or temperature above critical temperature”; such 

assumptions are based on the integral picture “stability function”. Most importantly, 

he has no idea at which time t (as seen by the virtual observer), the origin of the 

externally observed variation of the stability function (as seen by the real observer at 

his time t’), was measured. The conclusion accordingly is the analogue to the end of 

Sect. 2: 

 

In terms of mapping functions, time dependence of events, e(s,t), and their images, 

f[e(s,t)], have to be generalised to e[T(s,t)] and f{e[T(s,t)]}. A unique mapping of 

T(x,y,z,t)] to the field of critical current densities, JCrit[T(x,y,z,t)], can be found from 



 46  

usual 3D-diagrams that against the axes temperature, T, and magnetic flux density, 

B, describe the regions where superconductivity (non-zero critical current density) 

exists, see standard volumes on superconductivity). If it is accepted a variation of 

T(x,y,z,t) is immediately followed by a corresponding reaction of the field, 

JCrit[T(x,y,z,t)], the image on time scale of an event “variation of the stability function” 

would be very similar to the image of the event “variation of the temperature field”. In 

reality, break-up of electron (Cooper) pairs and recombination also require non-zero 

time intervals and induce a delay in time, Δt’’, see below. 

 

Even if a transient disturbance would be distributed homogeneously in a 

superconductor, in particular in a plane x = 0, it is not possible to reconstruct the 

origin “event” from the stability function and its development in physical time. This 

could simply be the consequence of, for example, of a hot spot (as shown in Fig. 6 of 

Ref. 20) that under coupled conduction/radiation heat transfer would develop on 

surfaces also of a superconductor. The same applies of course to local electron pair 

(carrier) density, critical current density and a variety of other superconductor 

properties that all depend on temperature. 

 

In summary, there again is no bijective mapping between events (variations of 

temperature under a disturbance, for example a fault current) and corresponding 

images (stability function, break-down of non-zero current transport), not only 

because a real observer is not able to recognise these events as internal to the 

superconductor, but also because physical time, t, in the non-transparent 

superconductor apparently does not exist, for the same reasons as outlined in 

Sections 2 and 3. 

 

5.3 Relaxation time 
Yet, there is still another problem with time scales. Up to now, we have implicitly 

assumed that there is just one “internal” time scale, t, as seen by a virtual observer 

and just one time scale, t’, as recognized by a real observer. In standard stability 

analysis, decrease dJCrit[T(x,y,z,t’ > t0’)]/dt, of critical current density (t0’ indicating 

start of the disturbance, on the physical time scale, t’) during the corresponding 

warm-up period is considered to closely follow increase of local temperature in the 

superconductor. Local temperature, usually measured with sensors thermally 
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(mechanical or radiative) connected to the solid, thus reflects the “phonon aspect” of 

the transient stability problem. In reality, superconductor stability is not confined to 

analysis of transient conduction/radiation heat transfer. Instead, the question is 

whether decay of electron pairs, the “electron aspect” under a disturbance, and 

subsequent recombination of excited electron states to a new dynamic equilibrium 

carrier concentration, proceeds on another time scale t’’ and whether this time scale 

is identical with the traditional (phononic) time scales, t or t’. 

 

Further, normal/superconductor phase transition during warm-up or cool-down 

periods traditionally is considered to occur at exactly the instant when solid 

temperature, the output of the phonon aspect, coincides with critical temperature, 

TCrit. Critical current density, JCrit(x,y,t), under the assumption t = t’ then should 

become zero (or during cool-down return from zero to JCrit(x,y,z,t) > 0), exactly at this 

instant, t.  But it is not clear that during cool-down from normal conducting state, 

when the time, t, the temperature T(x,y,z,t) becomes less than TCrit, the previously 

normal conducting electron system of the superconductor has already completed 

return to a dynamic equilibrium mixture of normal conducting and superconducting 

components, in a two-fluid model.  

 

Instead, at very low temperature, the superconductor electron system is decoupled 

from propagation of thermal waves. It reflects its own dynamic response to this or 

other specific excitations, by corresponding relaxation times, τEl (in the following, we 

will call this time a time constant, or a decay or average lifetime). Thermal diffusivity, 

on the other hand, determines a relaxation time, τPh, for propagation of thermal 

(phonon) waves in solids after a thermal disturbance. Both relaxation times, τEl and 

τPh, after the same disturbance, are not necessarily identical; the lattice, if excited, 

behaves quite differently from the electron system though there is a correlation 

between both systems that couples single electrons to pairs. 

 

A similar situation (two or more different relaxation times) arises in multi-filamentary 

superconductors, again after a thermal disturbance: Time constant, τB, for 

propagation of magnetic flux density, B, in the superconducting filaments is relatively 

small while thermal relaxation time, τPh, is much larger, by orders of magnitude. The 

inverse of this relationship in the matrix material is of enormous importance for 
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obtaining stability against quench in multi-filament superconductors, in particular for 

high field applications. 

 

In Ref. 21, lifetimes of thermally excited electron states have numerically been 

calculated from their decay rates using a sequential model with contributions (a) from 

an analogy to an aspect of the nucleon-nucleon, pion-mediated Yukawa interaction, 

(b) from the Racah-problem (expansion of an antisymmetric N-particle wave function 

from a N - 1 parent state; this aspect is to be observed in summations of individual 

decay widths to total lifetime, τEl, of the excited electron system), and (c) from the 

uncertainty principle. The sequential model is designed to account for the retarded 

electron-electron interaction since the phonon, mediating this interaction, travels at 

finite speed. The model serves to estimate the relaxation time τEl needed to 

reorganize the electron states to a new dynamic equilibrium that is described by an 

antisymmetric total wave function. Calculations have been performed in dependence 

of transient temperature fields (after a disturbance) that are obtained from a rigorous 

finite element analysis.  

 

Calculated temperature profiles are shown in Fig. 5a,b for the NbTi and YBaCuO-

filaments.  

 

For a plot of the stability function vs. the new time scale, t’’ = t’ + Δt’’ = t’ + τEl, we 

calculate relaxation times for both filament samples. It is expected that the correction 

Δt’’ to time scale t’ (or time scale, t), could perhaps be strong at positions where 

temperature approaches TCrit. This is confirmed in Fig. 6a,b that shows a plot of the 

delay times, Δt’’, vs. real time, t, for both samples. For the NbTi-filament, a strong 

peak is observed near the position (x = 0, y = 0). In case of the YBaCuO-filament, 

there is also a sharp peak but its magnitude is much smaller so that we can as before 

plot the stability function vs. t’ or vs. t. In the NbTi-filament, however, the delayed 

time, t’’, locally differs strongly from real time scale t’ so that critical current density, 

and as a result, also the stability function, if plotted against delayed time, t’’, will 

strongly be different from the corresponding standard plots of JCrit(x,y,z,t’), compare 

Fig. 7a,b, and stability function, Φ(t’), Fig. 8. In this plot, the magnitudes of Φ(t’) are 

delayed on the time axis to the proper times, t’’. 
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Fig. 7a,b shows critical current density plotted vs. time scale (t’, solid symbols)  and 

delayed time  (t’’, open symbols). For the NbTi-material, the deviation is strong since 

the time delay, at position (x = 0, y = 0), reaches values up to 5 s. But in the 

YBaCuO-filament, the deviation between the curves JCrit(x= 0, y = 0,t’) and JCrit(x= 0, 

y = 0,t’’) is very small, as was to be expected. 

 

A corresponding behaviour has to be expected for the stability function. In case of the 

YBaCuO-filament, there will be hardly any difference between Φ(t’) and Φ(t’’) but with 

the NbTi-filament, the deviation may be significant. It is exactly for this reason that 

another problem with time scales comes up: 

 

Corrections Δt’’ = Δt’’(x,y,z,t) = τEl(x,y,z,t’’) and delayed times, t’’ = t’’(x,y,z,t) = t’ + 

τEl(x,y,z,t’’) are different in each volume element of the filaments (i. e. at each 

arbitrary position x,y,z in the conductor) because temperature field, T(x,y,z,t’’) is 

different in each element and so is τEl(x,y,z,t’’). It is therefore not possible to define a 

unique time scale, t’ or t’’, that would exactly be the same for all elements in any 

plane located close to the target spot. This excludes the usual plot of the stability 

function, Φ(t), in dependence of one and only one, uniquely defined time, at positions 

near the disturbance. 

 

This problem becomes the weaker the larger the axial distance of the planes y from 

the target spot. This is demonstrated in Fig. 8: If we tentatively calculate the 

arithmetic mean of Φ(x,y,z,t’’) taken over all elements in a single plane y, then the 

curves Φ(x,y,z,t’’) approach the standard Φ(x,y,z,t) the more the larger the axial 

distance, y, from the target spot.   

 

Stability analysis accordingly should be performed not at exactly the position y = 0 

where the disturbance is located (or assumed, like a possibly developing hot spot at 

the superconductor/normal conductor contact in a technical application), or at 

distances close to this position. Instead the analysis should observe appropriate, 

safety related distances. These distances are correlated to propagation of the 

corresponding temperature field. For the NbTi-filament, the minimum distance to be 

observed, at the given conditions, is at least 60 µm, while it is near zero in case of 

the YBaCuO-filament. It is clear that the minimum distance depends on the evolution 
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of the particular temperature field, i. e. on the geometrical and thermal parameters 

(radius and material of filament and matrix, boundary conditions, diffusivity, location 

and magnitude of heat pulse, and others). The minimum distances thus may become 

larger if the temperature field looks different, e. g. under strong thermal disturbances. 

Note that the disturbances, Q, in the two filaments were chosen not to increase 

transient temperature of the finite elements (not the nodal values) above TCrit (see 

Ref. 21 for the differences between nodal and element temperatures). 

 

Another consequence from the different time scales, t (or t’) and t’’, not only affects 

the stability function. In a step before, it might directly concern critical current density: 

If under a disturbance the electron system is thermally excited, which means there is 

a reduction of the density of electron pairs available for zero loss transport current 

(or, in a magnetic field), shielding current, there could be a reduction of the 

magnitude of critical current density, or if critical current density is conserved, a 

reduction of the available conductor cross section that is open for zero loss transport. 

In other words, it is not clear that during the interval τ = τEl’’ a suffiently large number 

of electron pairs would (already?) be available. 

 

As a result of the analysis, it has to be expected that temporal mismatch between 

relaxation times τPh and τEl creates different time scales, t (or t’) and t’’, of which the 

scale t’’ is not a constant but is different in different regions of the superconductor 

cross section. The effect could be strong at temperatures near conductor phase 

transition. 

 

Besides magnitude of critical current density and stability function, this difference 

could affect also measurement of observables like levitation of a superconductor in a 

magnetic field or results of the electronic part of the specific heat measurements, i. e. 

in all experiments where critical current density is concerned. The possibly existing 

effect has been discussed in Ref. 21 for operation also of the fault current limiter. A 

decrease of critical current density due to a “dead time interval”, τEl - τPh, during which 

only a reduced number of electron pairs would be available for zero loss current 

transport could dangerously affect safe operation of the limiter and the electrical 

circuit to be protected.   
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6 A tempting application to current theories on the structure of the 
universe 

Almost no quantitative information is available on extinction (scattering or absorption) 

properties of the universe when it rather suddenly became transparent and at times 

before. The mean free path of electrons in the centre of the Sun is below 1 μm, 

already a factor of at least 1000 smaller than assumed for the mean free path of 

photons in the calculation of the solid samples in Ref. 17, or in the superconductor 

filaments in Section 5; in a white dwarf it is several orders of magnitudes even below 

this value, see standard volumes on plasma physics. 

  

Assume that the rest mass density, ρ, of the universe at times after the 

recombination time of 7*105 years was in the order of 10-20 kg/m3 (Ref. 22, 

Chap.10.4.4). With the specific extinction of very small, solid particles, E/ρ = 3.3*10-3 

m2/g, at cryogenic temperatures, we have E = 3.3*10-20 1/m. With the radius of the 

universe of at least 1 Mpc (Mega-parsec) at this time, this results in an optical 

thickness of the order τ = 103, a very rough estimate that only indicates the optical 

thickness probably was very large. 

 

Provisionally assume that the distance between real observers and the opaque 

background is constant. Then, as a consequence from non-transparency of physical 

time in or behind opaque curtains, the order of the time scale between a singularity (if 

it existed) and the date when the temperature of the early universe had fallen to 3000 

K, might be re-considered. As for a slab of non-transparent material, we have an 

uncertainty ΔtQA (like in Subsect. 3.1) that should amount to at least 3 105 years. 

Within this period of physical time, a unique ordering of events within the non-

transparent medium and identification of particular events including an origin of time 

apparently is not possible, as follows from Sects. 2 and 3. This limit exists regardless 

how close the horizon may be approached by observations through very large 

telescopes. The origin, a singularity, might exist but it is not possible to specify its 

exact location on the pseudo-time axis in view of this uncertainty. 

 

Also, the distance to the horizon increases steadily. Because of the continuous 

expansion of the universe, more and more cosmological objects will become visible, 

and the densities of galaxies should increase when observations extend further in the 
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past. This follows from observations of radio galaxies which means the (almost) 

transparent, presently visible space will gradually become more and more non-

transparent. Identification of such objects presently still occurs in transparent space, 

just outside the non-transparent background, in front of a continuously receding 

horizon. Problems perhaps associated with dark matter must be left open. 

 

7 Consequences expected from the obtained results, and summary 
From the theorems indicated in Sects. 1 and 2, it is not possible, in case radiative 

transfer in non-transparent media is involved, to create physical time in the space Z1 

and also to clearly identify an origin of physical time in such media. Physical time 

apparently neither exists in minute structures like a compound nucleus, immediately 

after its excitation (compare Ref. 23), nor in very large cosmological spaces, if they 

are non-transparent to radiation. Even if physical time existed in such situations, it 

would not be possible to construct it in monotonously increasing order. This leads to 

the following consequences:  

 

(i) It is questionable whether in non-transparent media the imagination of 

an origin of time, and its existence, is reasonable. This imagination 

rather might result from elements of psychological time. Time itself, in 

such media, cannot be understood in the common sense  

(ii) time scales, if it is understood they are composed of an uncountably 

infinite, ordered set, have no physical meaning within non-transparent 

media, and thus cannot be transferred to these media from empty 

space, because unique correlation between uncountably physical time 

and infinitely large number of events is not possible 

(iii)  non-transparent systems do not create own physical time scales but  

discrete sequences of images; the sets may have time-like properties 

and dimension, and the images, in an ultimate limit, be infinitesimal 

closely be arranged, but are yet of less density than the set R+ 

(iv)  time holes might exist in non-transparent media, because of (iii): 

whether they might exist also in transparent space is subject to 

existence of bijective mapping functions 

(v) physical time is not transparent, at least in non-transparent media 

because it contradicts the properties of the half-set R+  
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(vi) causality and invariance under time-reversal could be violated in the 

image spaces of non-transparent media if events and observers are 

located in regions of different optical thickness; photons travelling along 

a particular path W2 after scattering and absorption/remission 

interactions, could result from photons that originally travelled along a 

different path W1, and differentiation from which path these photons 

might come is not possible 

(vii) determinism might not necessarily be conserved in non-transparent 

media under all circumstances 

(viii) non-transparent media like superconductors near phase transitions 

require introduction of another time scale that is not uniquely defined 

within the solid but depends on temperature evolution after a 

disturbance that in turn is different at all internal positions. 

  

These conclusions are different from relativity principles where coordinates, lengths, 

velocities and coincidence depend on movement of an observer in relation to objects 

or on gravitational fields. Here, instead, it is the optical property of regions of space 

that are not empty but non-transparent to radiation, and  the relaxation times 

observed during decay of thermal and other excitations in superconductors.   

 

Conclusions (i) to (viii) may in a large number of experiments have little impact on 

obtained results, but it is clear the effects exist and could reveal their importance to 

what we can measure and what we are able to understand in a variety of situations. 

Impacts might be expected in classical physics and its mathematical formulations 

(differential equations), in relativity (non-stationary observers and objects located in 

different environments), perhaps in nuclear decay and in quantum mechanics 

(solutions of Schrödinger’s equation, uncertainty relation, perturbation theory); this list 

is not complete.   

 

As a final remark, it is well known that it is not possible, from solely radiative transfer 

experiments performed at arbitrary wavelengths, to obtain unlimitedly sharp 

information on the geometrical extension of solid or other objects if they are at least 

partly composed of transparent materials; such may situations arise for example 

when thickness of thin films or dimensions of micro-miniature electronic devices are 
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to be determined. Appropriate wavelengths by which the experiment is performed 

have to be chosen to avoid this situation, if possible. Emitted or scattered radiation 

intensity used as the signal to determine size of an object otherwise originates not 

from exactly its surface but from interior positions the distance of which from the 

surface is at least one, but more realistically a superposition of intensities coming 

from a depth of several mean free paths (the “law of darkening of the sun” is a 

striking example). Dimensions of the object thus become diffuse. Accordingly, size of 

the object can the better be determined the less its transparency. 
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Appendix A1 
A single, isolated radiation source is assumed in the following, or alternatively there 

are two independent, separate radiation sources (a double source), at different 

locations (double sources are not used for standard laser flash experiments). It is 

further assumed the single source either emits one radiative pulse (flux q = 5*109 

W/m2 and of 10 μs duration) onto the surface of a slab (x = 0), or there are two 

pulses emitted from the same single radiation source, now with a flux of only 109 

W/m2, each with duration of 10 μs as before, but the second pulse emitted 600 s after 

the first. The double source shall emit a single pulse only. Propagation velocity of a 

radiative (conductive) wave through the medium does not depend on height of the 

pulses (we apply constant extinction coefficients and neglect non-linear optics). 

 

The radiation pulses emitted by the source are directed onto a surface element (the 

target spot) located at the centre of the front surface. For simulation of a point source, 

it is sufficient that the element occupies a very small fraction (< 1%) of the whole front 

surface, and, with a thickness of 1 mm, a still smaller fraction of the volume of the 

slab. It is assumed this point source completely absorbs incident pulses emitted from 

the original source and thus enables us to simplify the transfer problem: The original 

source located at positions x < 0 need not be taken into the numerical solution 

scheme that is applied to only the interior (0 ≤ x ≤ D) of the slab. 

 

Assume that the initial temperature of the whole slab is T0 = 100 K (which again does 

not affect the general validity of the calculation as long as linear optics is concerned). 

Calculations of the resulting temperature excursion have been performed in 3D using 

for the solution of Fourier’s differential equation the method of finite elements and 

temperature-dependent transport and material properties (radiative conductivity, λRad, 

and specific heat, cp). Because of the T3-dependence of λRad, the problem is strongly 

non-linear. 

 

Calculated surface temperatures of the slab at target positions (τ = 0) for the one or 

two radiative pulses from the single source are given in Fig. A1.1 After absorption of 

the pulses, temperature at the irradiated target spot increases locally within 10 μs to 

values between 190 and 220 K. The increase with temperature of λRad and cp 

explains why the peak initiated by the second pulse in comparison to the peak from 
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the first pulse is not just of double height. At very large times exceeding the lengths of 

the abscissa after start of the experiment, the curves continue to slowly converge to 

their stagnation temperature. In a rough estimate, if only one pulse is absorbed, if the 

target spot radius amounts to, for example, 30 mm, and if the specific heat, cp, 

indicated above for T = 100 K is kept constant, the final sample temperature increase 

would amount to less than 25 mK (it is even smaller because of the increase of cp 

with temperature). 

 

Assuming there are no thermal losses from the slab surface to the environment, how 

long will it take the pulses to travel to the rear side of the slab? Hopefully longer than 

duration of the pulse, otherwise a detector would recognise radiation not only 

emerging from the transport process. Second, can observers at arbitrary positions 

distinguish the two cases? We already know the answer: No, they cannot 

differentiate between the two cases because of the diffusive radiation transport 

process. 

 

For comparison, there is the simple case of a sudden, permanent temperature rise (T 

- T0), instead of a pulse, delivered at t = 0 to the surface (x = 0) of a semi-infinite 

medium. For this case, the relation x = 3.6*(a*t)1/2, with a = λRad/(ρ*cp) the radiative 

diffusivity, ρ the density, would allow a straightforward estimate of the physical time, 

t, of which the real observer believes the disturbance (if he knows there indeed was a 

disturbance) will have to travel until a temperature increase (T - T0)/100 at a position, 

x > 0 could be detected (details for derivation of the relation x = 3.6*(a*t)1/2 are found, 

for example, in Ref. 24, Chap 4.3). But the relaxation x = 3.6*(a*t)1/2 relation, to all 

experience, holds very roughly also for a slab of finite thickness, a thin film. For x = 

0.004 m, which is small in comparison to the total thickness of the slab, we have 

already t = 1115 s using a = 1.107*10-9 m2/s, if T = 100 K would be kept constant. 

Radiation in this slab obviously propagates rather slowly, a natural consequence of 

the large optical thickness. This is almost ten orders of magnitude longer than the 

duration of the pulses, a good result that serves to justify the approximations. Short, 

single pulses, being strongly damped, will need even more time to arrive at any 

position x ≤ D than a sudden, stepwise and constant disturbance of magnitude (T - 

T0). 
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This expectation is confirmed by the transient temperatures reported in Fig. A1.2a,b 

following emission of one or two pulses by the single source. Data are given at target 

positions, τ = 0, or at positions exactly opposite to the target at different optical 

thickness. Temperature increase at positions τ > 0 is at least one order of magnitude 

smaller, at peak values, than observed at the surface. At τ = 20, a temperature 

increase of ∆T = 0.1 K, even one order below the (T - T0)/100 criterion, is not 

detected before 6 hrs. 

 

Apart from different magnitudes, hardly any difference can be seen when comparing 

the curves in Figs. A1.2a,b: Neither is the double peak resolved, even when 

assuming a rather long time delay of the second pulse (600 s), after emission of the 

first, nor any other significant details can be identified, although the T(t)-curve in Fig. 

A2b at position τ = 4 (open diamonds) was calculated in small time steps between 

700 and 8000 s. Real observers do not know the strength of the source, they 

accordingly cannot distinguish the two different cases, by observation of thermal 

radiation waves (temperature variations) only. 

 

A real observer perhaps believes he could resolve both pulses (again, if he knows 

there were two pulses) on his time scale from positions external to the slab, if he 

subtracts the data in Fig. A1.2a  from the corresponding data given in Fig. A1.2b. The 

result (Fig. A1.2c) shows the contribution by the „hidden“, second pulse when it 

arrives at the different positions. What the observer experiences is just a diffuse 

radiation intensity at x = D and a temperature variation at this position of which he 

believes it is the consequence of temperature variations within the slab and because 

of the previously mentioned properties of the temperature field. 

 

In case only one pulse is emitted from a double source, Fig. A1.3 shows how the 

original contours (top of the figure) spread, and the peak values more and more are 

smoothed out, if the optical thickness of the slab is increased up to τ = 160 and 240 

(centre and bottom of the figure, respectively). Note the extremely small temperature 

increase, even at peak positions, at the rear side of the slab which means the 

temperature distribution is almost perfectly homogeneous. 
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Appendix A2 
Traditional literature reports values for the absorption coefficients of Corundum at 

room temperature and in the far infrared of about 2000 and 200 [m-1], for 

wavelengths of 50 and 200 μm, respectively; similar values are reported for 

magnesium oxide at 200 μm wavelength. However, the corresponding 

measurements have been made with very pure substances (single crystals). When 

using polycrystalline materials, scattering will enormously enhance extinction. The 

large value of the extinction coefficient can be justified also from comparison with 

results obtained by application of rigorous Mie theory of scattering for a variety of 

spherical or fibrous particles. For example, the specific Rosseland mean, ER/ρ, of the 

extinction coefficient of spherical particles (ρ denotes density of a porous sample) 

amounts to about 0.01 m2/g for particle diameter d = 4 μm and a radiation 

temperature of 500 K, in an absorbing medium (mc = 2 – 10-3i, with mc the complex 

refractive index), compare Ref. 2, Fig. 6.1d. This value has been applied also to 

Zirconia in the present calculations. Assuming that a sample poly-crystalline material 

consists of spherical constituents of this diameter, and ρ = 5 103 kg/m3, we roughly 

have E = 5 104 [m-1]; dependent scattering might to some extent reduce this value. 
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Appendix A3 
For illustration of the multiple scattering process, Fig. A3.1 shows the number P of 

absorption/remission events, in the present example for a slab of 500 mm radius and 

20 mm thickness. Data are obtained from a Monte Carlo-Model for different volume 

elements of the slab and are given for target spot radii of 15 (circles) and 50 mm 

(diamonds). Element volume numbers given on the abscissa are counted starting 

from 100 and increased up to 6000, in steps of 100. Position of elements beginning 

with number 100 is at a distance y = 1 mm, and beginning with number 6000 is at y = 

60 mm from the axis of symmetry.  Small volume element numbers accordingly 

indicate incidence of radiation under small scattering angles measured against the x-

axis, while large volume element numbers indicate incidence under large scattering 

angles (note the axial symmetry). 

 

Fig. A3.2 shows differences that arise in the over-temperature, ΔT(x,y,t) = T(x,y,t) – 

T0, at the rear sample surface (x = D) obtained for a ZrO2-pellet (thickness 1 mm) 

developing under coupled conduction/radiation heat flow using a constant 

(independent of wavelength) extinction coefficient, E = 104 [m-1]. Data are given at 

the axis of symmetry (y = 0, uppermost curve) and for positions, y > 0, of 

successively increasing horizontal distances (radial directions on the sample, 

compare Fig. 4a) in steps of 3 mm (counted from top to bottom). We have rT = rp = 

120 mm, to initiate, at t = 0, strictly 1D coupled conductive/radiative heat transfer, as 

assumed in the well-known Parker and Jenkins approach. 

 

Accordingly, in case of solely solid conduction, all curves given in Fig. A3.2, at any 

position, x, within sample thickness, would coincide, which means isotropic 

temperature distribution within planes 0 ≤ x ≤ D parallel to front surface, at all times, t. 

However, because of the additional and anisotropic radiation heat transfer 

(superimposed onto conduction), the temperature distributions as shown in this figure 

are no longer isotropic but depend on the radial coordinate, y, with a “hot spot” near 

the origin. 
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Figure captions for figures in the text 
 

Fig. 1

 

 Schematic representation, using set theory notation, of dispersed, transparent, 

translucent and non-transparent media. The figure relates to a fixed wavelength of 

radiation propagating in these substances. The figure has two hierarchies: First, 

dispersed media are elements of the thick circle; accordingly, all elements outside 

this circle are non-dispersed (continuous) media like massive solids or liquids without 

formation of bubbles. Second, elements of transparent, translucent or non-

transparent media are elements of the thin circles, and no elements outside these 

circles exist (accordingly, elements of non-transparent media are not the complement 

of the uppermost circle with the index “transparent” but are contained only in the 

lowest circle). The thin circles are ordered with respect to increasing optical 

thickness, τ, from top to bottom of the figure. Population of the seven sets may be as 

given by the following examples: (1) metallised or metallic fibres, heavily opacified, 

non-conducting fibres or powders, soot, graphite; (2) metals, liquids (not thin films 

thereof); (3)  glass wool with fibre diameters large compared to wavelength of 

incident radiation, low density powders, aerogels, fog, snow; (4) water and other clear 

liquids, panes; (5)  pure (not opacified) glass fibre boards, powders, particle beds, 

concrete, sands, dust, with particle diameters large compared with incident 

wavelength; region (5) indicates an intermediate region between translucent and 

non-transparent, both dispersed media; (6) clouds, powders, fibres with medium 

optical thickness; (7) the vacuum, dilute gases. Size of the areas included in the 

circles, in relation to each other, neither indicates frequency by which they occur in 

nature or in technical applications nor is size an indication for their importance. Main 

focus of the discussion in this paper is on the shaded regions. 

Fig. 2

 

 Vector spaces R3 (3-dimensional geometry) und Z1 (1-dimensional space of 

images on a physical time scale); the images result from mapping functions f[e(s,t)] 

of events e(s,t) taking place at locations (vectors), s, denoted by multiples of or 

combinations of basic vectors, rk. 

Fig. 3 A disk of a non-transparent, non-conductive medium of thickness, D, a 

radiation source, Q (shaded circle), that emits radiation pulses of intensity, i, and a 

real observer at position, A, exterior to the non-transparent slab (all schematic). 
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Arrows and large half-circles (envelopes to the arrows) indicate isotropic emission of 

radiation from positions of the plane x = D. The small circles within the slab indicate 

scattering or absorption/remission events that photons or excitations other than 

radiative experience when travelling through the slab. In the lower part of the figure, 

open and closed circles arranged on the upper horizontal line denote images, f(e), of 

events, e, as recognised by a virtual observer if he is positioned at point B in the 

figure and if he, at the instant one of the said events is observed, books the 

corresponding time, t, at which this occurs on his time scale (in the text it is shown 

that this time scale cannot be identical to physical time). The images are obtained by 

application of a mapping function, f(e): open and closed circles on the upper 

horizontal line correspond to images obtained from events on different paths, in this 

example the paths W1 and W2. See text for more explanations. The lower horizontal 

line indicates a true time scale (t’), as experienced as physical time by the real 

observer. 

  

Fig. 4a

 

 Schematic description of area elements and of cylindrical co-ordinate systems 

(x,y) and, in parallel, (i,j), for Monte Carlo and finite element calculations using 

arbitrary solid samples. Numbers i introduced into the area elements are counted 

from the symmetry axis to right (1 ≤ i ≤ M) or left directions ( -M ≤ i ≤ -1); numbers j 

are between (1 ≤ j ≤ N), and N and M are large. Rotating the area elements around 

the axis of symmetry (y = 0, thick dashed-dotted line) generates hollow cylindrical 

volume elements. Inside the volume elements, hypothetical bundles (thick solid lines) 

are absorbed/remitted and/or scattered. The large full circles denote final absorption 

of a bundle, the smaller open circles scattering of the bundle, respectively. Bundles 

may escape from the sample (index Escape) after a series of absorption/remission or 

scattering interactions; scattering angle of bundles escaping from the sample at the 

rear surface (x = D) is denoted by θ. Radii rt and rp denote target spot and sample. 

 Fig. 4b Section of a superconductor filament (NbTi or YBaCuO) embedded in a 

matrix material (Cu or Ag, respectively). Schematic presentation (not to scale; note 

that the x- and y- coordinates here have been interchanged, in comparison to Fig. 

4a), under cylindrical symmetry (the vertical dashed-dotted line indicates axis of 

symmetry). All measures are given in micrometers. Superconductor and matrix 

material are identified by light grey and dark grey shading, respectively. The target 
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area (here of radius 6 µm) is indicated by the horizontal thick, black line. Horizontal 

blue lines indicate planes 1 to 4 used for calculation of the stability function and of 

zero loss transport current, at different axial distances from the target area. The finite 

element mesh is schematically indicated by thin horizontal and vertical lines. 
 
 
Fig. 5a

 

 Nodal temperature,T(x,y,t), obtained from a finite element simulation, at front 

(x = 0, y = 0) and rear positions (x = 0 or 30 µm, y = 0 and 300 µm, respectively; 

compare Fig. 4b) calculated for the superconducting NbTi-filament under a heat 

pulse absorbed at radial positions 0 ≤ x ≤ 6 µm, y = 0, of Q = 2.5 10-10 Ws during a 

period of 8 ns. 

 
Fig. 5b

 

 Nodal temperature, T(x,y,t), in the superconducting YBaCuO-filament. Same 

finite element calculation as in Fig. 5a, with absorption of a heat pulse of Q = 3 10-8 

Ws during 8 ns. 

Fig. 6a

 

 Time interval, ΔτEl’’, as a function of real time, t’, calculated in the NbTi-

filament for the element (in the finite element scheme, Fig. 4b) positioned near the 

central front node (x = 0, y = 0).  

Fig. 6b

 

 Time interval, ΔτE’’l, in the superconducting YBaCuO-filament. Same 

calculation as in Fig. 6a.  

Fig. 7a

   

 Critical current density in the superconducting NbTi-filament. Data are 

calculated from the element temperatures reported in Fig. 6a using Eq. (14) in Ref. 

21, with the exponent n = 3/2 and are given for the element (of the finite element 

scheme, Fig. 4b) positioned near the central node (x = 0, y = 0).  Data JCrit (x,y,t) are 

plotted vs. real time scale, t (solid symbols) and the delayed (“shifted”) time scale t’’ = 

t’ + ΔτEl’’ (open symbols), with the shift ΔτEl’’ from Fig. 6a. 

 
Fig. 7b Critical current density in the superconducting YBaCuO-filament. Data are 

calculated from the element temperatures reported in Fig. 6b using Eq. (14) in Ref. 

21, with the exponent n = 2 and are given for the element (of the finite element 

scheme, Fig. 4b) positioned near the central node (x = 0, y = 0). Data JCrit (x,y,t) are 
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plotted vs. real time scale, t (solid symbols) and the delayed time scale t’’ = t’ + ΔτEl’’ 

(open symbols), with the shift ΔτEl’’ from Fig. 6b.   

 
 
Fig. 8 Stability function, Φ(t), of the NbTi-filament, calculated using Eq. (16) in Ref. 

21, under a heat pulse absorbed at radial positions 0 ≤ x ≤ 6 µm, y = 0, of Q = 2.5 10-

10 Ws during a period of 8 ns (compare Fig. 4b). The figure shows Φ(t) at planes 1 

and 4 (axial distances from the target spot) of y = 0 and 56.3 µm, respectively. Data 

Φ(t) are plotted vs. real time scale, t (solid symbols) and the delayed time scale t’’ = t’ 

+ ΔτEl’’ (open symbols), as a rough approximation with (provisionally) an arithmetic 

mean ΔτEl’’ of the shift ΔτEl(x,y,t)’’ taken over the corresponding planes.  
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Figures in the Appendices 
Appendix A1 
 

Fig. A1.1

 

 Surface temperature at the target spot after absorption, on the sample 

surface (x = 0), of one or two successively arriving radiative pulses originally emitted 

from an external radiation source positioned at x < 0 (compare Fig. 4a). The pulses 

are each of 5 109 W/m2 flux density and of 10 μs duration. The target spot by its 

dimensions can be interpreted as a point source relative to sample geometry and 

size. Emission of the two pulses from the sample surface is separated by a time 

interval of 600 s. Results are calculated using 3D Finite Element simulation for a flat, 

quadratic sample (side length 1 m, thickness 20 mm) of optical thickness τ = 20.  

Fig. A1.2a-c

 

 Transient temperatures at positions exactly opposite to the target spot, 

at different geometrical, i. e. optical thickness, for the same slab as before, calculated 

for one (Fig. A1.2a) or two radiation pulses (Fig. A1.2b); flux density, separation and 

duration as are the same as in Fig. A1.1. After subtraction of the data of Fig. A1.2a 

from those of Fig. A1.2b, the contributions by the second pulse can be identified (Fig. 

A1.2c). Open diamonds, squares, triangles and circles denote x = 4, 8, 12 and 16 

mm, full diamonds are at x = 20 mm, respectively; using an extinction coefficient of 

1000 1/m, these symbols correspond to optical thickness τ = 4, 8, 12, 16 and 20. 

Fig. A1.3

 

 Temperature fields given as contour diagrams taken at target position (τ = 

0) after t = 10 μs (upper diagram) and at the rear side of the slab (τ = 160 and 240, 

lower diagrams, from top to bottom) after t = 20 hrs, resulting from a double radiation 

source with a centre to centre distance of 20 mm located on the front surface (τ = 0) 

of the slab each delivering a pulse of 109 W/m2 and 10 μs duration. Like in Fig. A1.1, 

the double radiation source is created from absorption of corresponding radiation 

pulses emitted by external radiation sources. The horizontal bar indicates 

temperature intervals to the top figure only (target position). Maximum temperature 

variation at τ = 160 and 240 (lower diagrams) is 0.5 mK counted in steps of 100 μK 

(neighbouring colours) and 0.01 mK (in steps of 2 μK), respectively. 

 

 



 67  

Appendix A3 
 
Fig. A3.1

 

 Number P of absorption/remission events in a slab of 500 mm radius and 

20 mm thickness occurring within a period of time Δt = 1 μs (within the total interval of 

10 μs), vs. volume element number, after a pulse of 5 109 W/m2 is emitted from the 

target spot. Data are obtained from a Monte Carlo-Model for different volume 

elements of the slab and are given for target spot radii of 15 (circles) and 50 mm 

(diamonds). Extinction coefficient E = 103 1/m, albedo of single scattering, Ωc = 0.5, 

and anisotropy factor, mS = 6, are constant. Element volume numbers given on the 

abscissa are counted starting from 100 and increased up to 6000, in steps of 100. 

Position of elements beginning with number 100 is at a distance y = 1 mm, and 

beginning with number 6000 is at y = 60 mm from the axis of symmetry (compare 

Fig. 4a).  Small volume element numbers accordingly indicate incidence of radiation 

under small scattering angles measured against the x-axis, while large volume 

element numbers indicate incidence under large scattering angles (note the axial 

symmetry). 

Fig. A3.2

 

 Rear sample surface (x = D) over-temperature, ΔT(x,y,t) = T(x,y,t) – T0, of 

the ZrO2-pellet (thickness 1 mm) developing under coupled conduction/radiation heat 

flow using a constant (independent of wavelength) extinction coefficient, E = 104 [m-

1]. Initial temperature is indicated by T0 = 300 K. Albedo of single scattering, Ωc, and 

anisotropy factor, mS, also are constant, Ωc = 0.5, mS = 2. The thermal diffusivity 

amounts to a = 5.75 10-7 m2/s), near room temperature (RT), taken as constant and 

isotropic. Index of refraction is n = 2. The pellet is exposed to an energy pulse of 1 J 

delivered during 8 ns to the target spot; total incident power thus is Q = 1.25 108 W, 

like in Ref. 17. Data are given at the axis of symmetry (y = 0, uppermost curve) and 

for positions, y > 0, of successively increasing horizontal distances (radial directions 

on the sample, compare Fig. 4a) in steps of 3 mm (counted from top to bottom). We 

have rT = rp = 120 mm, to initiate, at t = 0, strictly 1D coupled conductive/radiative 

heat transfer, as assumed in the traditional Parker and Jenkins approach (Ref. 25). In 

case of solely solid conduction, all curves given in Fig. 6, at any position, x, within 

sample thickness, would coincide, which means isotropic temperature distribution 

within planes 0 ≤ x ≤ D parallel to front surface, at all times, t.  
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Fig. 2
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Fig. 3
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Fig. 4a 
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Fig. 4b 
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Fig. 5a 

 

Excursion of NODAL temperature at front and rear NbTi-filament 
nodal positions (x,y), vs. time

2

4

6

8

10

12

14

16

1,0E-10 1,0E-08 1,0E-06 1,0E-04 1,0E-02 1,0E+00 1,0E+02 1,0E+04

Time (s)

N
od

al
 te

m
pe

ra
tu

re
 (K

)

x = 0, y = 0

x = 30 µm, y = 0

x = 30 µm, y = 300 µmx = 0, y = 300 µm



 74  

Fig. 5b 
 

Excursion of NODAL temperature at front and rear YBCO-filament 
nodal positions (x,y), vs. time
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 Fig. 6a  
 
 

Time interval, delta-Tau, near central front positions of NbTi-
filament, vs. real time, t
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Fig.6b 

 

Time interval, delta-Tau, near central front positions of YBCO-
filament, vs. real time, t
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Fig.7a 

 

Critical current density, JCrit(x = 0,y = 0) near front NbTi-filament 
nodal positions, vs. real time, t, and shifted time, t + delta-tau
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Fig.7b 

 

Critical current density, JCrit(x = 0,y = 0) near front YBCO-filament 
nodal positions, vs. real time, t, and shifted time, t + delta-tau
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Fig. 8 

 

Stability function through planes 1 and 4 located at different 
depth, y, from front positions of NbTi-Filament, vs. real time, t, and 

shifted time, t + delta-Tau
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Fig. A1.1  

 

 

Surface temperature after absorption of one (diamonds) or two 
radiative pulses (circles) each of 10 microsecond duration 
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Fig. A1.2a 

Temperatures at different optical thickness after absorption of one 
radiative pulse at the position x = 0
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Fig. A1.2b

Temperatures at different optical thickness after absorption of two 
radiative pulses at the position x = 0
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Fig. A1.2c

Temperature difference calculated for identification of the 
second radiative pulse at different optical thickness
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Fig. A1.3 
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Fig. A3.1 

 

Number of absorbtion/remission events expected at different 
locations in the slab, for two different sizes of  the target spot, vs. 

volume element number
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Fig. A3.2 
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