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In the model plant Arabidopsis thaliana, more than 2000 genes are estimated to encode
transcription factors (TFs), which clearly emphasizes the importance of transcriptional con-
trol. Although genomic approaches have generated large TF open reading frame (ORF)
collections, only a limited number of these genes is functionally characterized, yet.
This review evaluates strategies and methods to identify TF functions. In particular, we
focus on two recently developed TF screening platforms, which make use of publically
available GATEWAY®-compatible ORF collections. (1) The Arabidopsis thaliana T F ORF
over-Expression (AtTORF-Ex) library provides pooled collections of transgenic lines over-
expressing HA-tagged TF genes, which are suited for screening approaches to define TF
functions in stress defense and development. (2) A high-throughput microtiter plate based
protoplast trans activation (PTA) system has been established to screen for TFs which are
regulating a given promoter:Luciferase construct in planta.
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INTRODUCTION
DNA-binding transcription factors (TFs) are important transcrip-
tional regulators which either activate or repress transcription of
their cognate target genes by binding to regulatory cis-elements in
a sequence-specific manner (Ptashne, 2005; Riechmann, 2006).
Non-DNA-binding TFs mediate their impact on transcription
via protein–protein interaction. In general, TFs are modular
in structure and composed of protein domains which facilitate
DNA-specific binding, homo- and heterodimerization with other
transcriptional regulators and accomplish their transcriptional
activation or repression activity (Figure 1A). Roughly 5–10%
of all Arabidopsis genes are encoding transcriptional regulators,
which clearly emphasizes the importance of transcriptional con-
trol (Riechmann et al., 2000; Mitsuda and Ohme-Takagi, 2009).
Depending on the bioinformatic approach used, approximately
2000 TF genes have been annotated in Arabidopsis (Riechmann
et al., 2000; Guo et al., 2005; Ramirez and Basu, 2009; Perez-
Rodriguez et al., 2010; Yilmaz et al., 2011). Based on their evolu-
tionary conserved DNA-binding domains, these TFs are grouped
into distinct gene families. In Arabidopsis, more than 60 TF families
have been assigned, such as MYBs, MADSs, bHLHs, and AP2/ERFs
(Riechmann et al., 2000; Mitsuda and Ohme-Takagi, 2009). Sev-
eral of these families harbor more than 100 members, which in
part share related functions. This redundancy clearly hampers
functional TF analysis in plants (Qu and Zhu, 2006; Mitsuda and
Ohme-Takagi, 2009). Until now, only a small fraction of the Ara-
bidopsis TFs is functionally well-characterized. Hence, tools are
required to assess TF function on a genomic scale (Figure 1B).

ORF REPOSITORIES ARE A VALUABLE SOURCE FOR FUNCTIONAL
GENOMICS OF TRANSCRIPTIONAL REGULATORS
In the recent years comprehensive genome sequencing projects
have given rise to a vast amount of information about plant

genomes and the number of genes they encode. This knowl-
edge enabled the cloning of the Arabidopsis open reading frames
(ORFs) to further study this ORFeom (e.g., Arabidopsis Biolog-
ical Resource Center, ABRC; RIKEN BioResource Center, RBC;
Hilson, 2006; Seki and Shinozaki, 2009). Focusing on genes of
transcriptional regulators at least five compiled ORF collections
have to be highlighted. These are the REGIA collection encom-
passing approximately 800 TF ORFs (Paz-Ares, 2002) which has
been considerably extended to roughly 1200 ORFs (Castrillo et al.,
2011), the PKU-Yale collection harboring 1300 ORFs (Gong et al.,
2004), and its further enlarged version which consists of ca. 1600
TF clones (Ou et al., 2011). Moreover, the comprehensive TF-
only library (Mitsuda et al., 2010) comprising around 1500 TF
ORFs has to be considered. Although these collections are highly
redundant they corporately cover almost the complete Arabidopsis
regulome (Riechmann et al., 2000; Guo et al., 2005; Mitsuda and
Ohme-Takagi, 2009). As a common feature, these libraries preserve
the cloned TF ORFs in recombinase-compatible vectors (such as
the GATEWAY® system), enabling the transfer of single coding-
sequences or whole ORF libraries into suitable expression vec-
tors. This immanent transfer-flexibility of these ORF repositories
allows the user to apply them for a broad variety of experimental
high-throughput screening tools.

HIGH-THROUGHPUT SCREENING TOOLS FOR FUNCTIONAL GENOMICS
ON ARABIDOPSIS TRANSCRIPTION FACTORS
Several gain-of-function approaches have been employed to func-
tionally characterize the Arabidopsis ORFeome making use of
transgenic plants (Kuromori et al., 2009; Kondou et al., 2010).
In this respect, the full-length cDNA over-expressing (FOX) gene
hunting system is one of the first described reverse genetic
approaches which provides plants expressing a cDNA library
of around 10.000 independent Arabidopsis full-length cDNAs
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FIGURE 1 | Methods to analyze transcription factor function. (A) The
modular structure of TFs. Domains which function in activation, repression,
dimerization or protein–protein interaction, and DNA-binding are color
coded in red, green, yellow, or blue, respectively. (B) Overview of methods
which can be used to elucidate TF functions. For details see text. Y2H,
yeast two-hybrid; Y1H, yeast one-hybrid; B1H, bacterial one-hybrid; P2H,
protoplast two-hybrid; BiFC, bimolecular fluorescence complementation;
FRET, fluorescence resonance energy transfer; Co-IP,
co-immuno-precipitation; PTA, protoplast transactivation; EMSA,
electrophoretic mobility shift assay; SELEX, systematic evolution of ligands
by exponential enrichment; DamID, DNA adenine methylation identification;
ChIP, chromatin immuno-precipitation; ChIP-chip, ChIP combined with tilling
array technology; ChIP-seq, ChIP combined with sequencing of
immunoprecipitated DNA fragments; CRES-T, chimeric repressor gene
silencing technology; RNAi, RNA interference; TSS, Transcriptional start site.

(Ichikawa et al., 2006). In order to develop a high-throughput
method specifically focusing on functional analysis of TFs, the
Arabidopsis thaliana t ranscription factor ORF over-expression
(At TORF-Ex) seed collection has been established (Weiste et al.,
2007). Instead of applying a labor- and cost-intensive one-
by-one transformation approach, a parallel batch procedure of
pooled collections of GATEWAY®-tagged TF cDNAs has been

used to simultaneously recombine ORF libraries into a plant
expression vector. This enables the expression of HA-tagged TF-
fusion proteins in plants under control of the 35S promoter. As
depicted in the scheme in Figure 2, properly recombined vec-
tor DNA pools are selected by E. coli transformation. E. coli-
derived vector DNA pools are subsequently used for Agrobac-
terium and Arabidopsis flower-dip transformation. After Basta®
selection, a seed library of transgenic lines is obtained which
over-expresses HA-tagged TF genes. T2-seeds of these transfor-
mants are harvested as seed stocks which can be applied for
various screening approaches to identify TF genes involved in
plant development or stress response. However, it has to be con-
sidered, that the seed stocks hold 25% of wild-type seeds, which
enlarge the number of plants which have to enter the screening
procedure.

The feasibility of the approach has been analyzed using near-
complete collections of the AP2/ERF family (Weiste et al., 2007).
The cDNAs used as starting material have been equally traced
during all steps of the procedure and no significant bias for par-
ticular clones and no preference for clone sizes has been observed.
The frequency of multiple transformation events has been deter-
mined to be relatively low (in the range of 4%). Expression analysis
has been performed on RNA and protein level using the HA-tag.
Approximately 60 or 30% of the plants show significant trans-
gene expression on RNA or protein level, respectively. In respect
to a particular transgene, several independent transgenic lines are
present in the At TORF-Ex collection displaying a high variety
in expression. In fact, this finding is important if high expres-
sion levels result in lethality. Striking phenotypic alterations have
been observed in 4% of the plants. Based on these data and sta-
tistical estimations an optimized protocol has been established
which ensures a high coverage of TF genes in the library (>99%).
Currently, the At TORF-Ex collection harbors transgenic plants
over-expressing 650 TF ORFs which are available as pools con-
sisting of 30–60 TFs (Table 1). Collections which are organized
in TF families enable screening approaches which are focused on
specific candidates.

In order to define which TF is involved in a particular function,
these collections can be used for phenotypical screens. Devel-
opmental phenotypes due to ectopic TF expression have suc-
cessfully been assayed, such as altered leaf shape or early leaf
senescence. Resistance to abiotic (e.g., treatment with paraquat,
heavy metals, salt) or biotic stresses (e.g., fungal infection) have
been accomplished. Beside classical screens based on altered
growth or resistance, screens can also be performed by assay-
ing molecular phenotypes, e.g., the production of secondary
metabolites.

As a proof-of-principle, Weiste et al. (2007) have demonstrated
that over-expression of At3g23220 (ERF95; Nakano et al., 2006)
leads to resistance to oxidative stress when seedlings were grown on
MS media supplemented with paraquat. The GATEWAY®-tagged
TF genes can easily be recovered from the selected plants by PCR
and sequencing using att-site specific primers. A recurring correla-
tion between phenotype and PCR-amplified transgenes discloses
likely TF candidates encoding the function of interest. This was
the case in 50% of the identified paraquat resistant plants. How-
ever, the observed phenotype might not necessarily be linked to
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FIGURE 2 | Establishment and application of the Arabidopsis thaliana

transcription factor ORF over-expression (At TORF-Ex) seed collection.

Pooled GATEWAY®-compatible ORF-TF expression vectors have been
transferred from E. coli via Agrobacterium tumefaciens to Arabidopsis.
Transgenic Basta®-resistant seeds were collected and stored as seed stocks
which can be screened for altered phenotypes. Downstream applications of
the AtTORF-Ex collections are indicated. For details see Weiste et al. (2007).

TF expression, e.g., if the T-DNA insertion leads to dominant
mutations due to truncated gene products. Alternatively, the

Table 1 | Overview of the available AtTORF-Ex screening collections.

Mix TF family No. of individualTF ORFs

#1 ERF 32

#2 ERF 30

#3 ERF 30

#4 ERF 25

#5 WRKY 32

#6 WRKY 32

#7 NAC 30

#8 NAC 34

#9 bZIP 56

#10 MYB 30

#11 DOF 29

#12 Mix 60

#13 Mix 60

#14 Mix 60

#15 Mix 60

#16 Mix 48

Σ = 648

Given are theTF family specific and mixed transgenic seed stocks.The collection

size is indicated.

phenotype might be due to co-suppression and not caused by
over-expression. In conclusion, promising candidates should be
obtained several times during the screen and carefully evaluated
by molecular means.

As a general drawback of a gain-of-function method, one
has to consider that by ectopic expression, both hypermorphs
(altered phenotype due to high expression levels) and neomorphs
(new function caused by inappropriate tissue or developmental
stage dependent expression) might appear (Qu and Zhu, 2006).
Therefore, loss-of-function approaches should be used to further
validate the findings. With respect to the mentioned example,
ERF95 loss-of-function plants show wt resistance to paraquat,
probably due to functional redundancy of closely related TF fam-
ily members (Nakano et al., 2006). Redundancy within large
gene families can easily be addressed by At TORF-Ex screening,
as homologous TFs involved in related functions are frequently
identified during exhaustive screens. In summary, this high-
throughput procedure for TF ORFeome analysis can efficiently
be used in unbiased screening approaches to unravel the TF
phenome.

FUTURE PERSPECTIVES OF SCREENS TO DECIPHER TRANSCRIPTION
FACTOR FUNCTION
As constitutive expression might result in severe phenotypical
alterations, inducible expression collections would clearly be use-
ful and can be generated both by one-by-one or batch pro-
cedures. To complement the ectopic expression experiments,
loss-of-function approaches would also provide straight-forward
screening tools. However, comprehensive RNAi- or amiRNA-
collections for studying TF function are not published, yet. As a
loss-of-function approach, the chimeric repressor gene silencing
t echnology (CRES-T) procedure is currently applied for study-
ing TFs on a genome-wide basis (http://www.cres-t.org/fiore/
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public_db/index.shtml). This resource uses a one-by-one transfor-
mation procedure expressing TF-fusions with an ERF-associated
amphiphilic repression (EAR) domain (Hiratsu et al., 2003). How-
ever, it has to be mentioned that fusion of a repressor domain
to a TF which functions as a negative regulator does not nec-
essarily phenocopy the loss-of-function mutant. Thus, careful
molecular and phenotypical analyses are needed to validate the
results.

As it has been described for the At TORF-Ex collection, the
CRES-T approach can also be performed as a pooled expression
system. As a major advantage, these artificial repressors block
DNA-binding sites of target promoters and therefore, are par-
ticularly useful when redundant TFs are studied. This Arabidop-
sis thaliana t ranscription factor ORF repression (At TORF-Rep)
collection is currently under investigation. Although single phe-
notypes described for knock-out plants have been reproduced,
the high-throughput analysis of these phenotypes are somewhat
difficult, as suppression is partial and might also lead to target
gene activation if a TF-specific activation domain competes with
the EAR repression domain. Hence, molecular interpretation of
phenotypes might not always be easy to perform.

SCREENING TOOLS TO IDENTIFY THE COGNATE TRANSCRIPTION
FACTOR REGULATING A PROMOTER OF INTEREST
Defining TFs which bind and/or regulate a promoter of choice
is a standard experimental approach. Classically, in vitro DNA-
binding of phage-expressed cDNA-derived proteins (“South-
Western” screening) has been used (Singh et al., 1988; Figure 1B).
However, in vitro DNA-binding might not reflect the situation in
a cell (Heinekamp et al., 2002). Yeast one-hybrid (Y1H) screen-
ings (Fields and Song, 1989) are favored methods to rapidly detect
protein–DNA interactions in vivo. Traditional Y1H screenings are
based on the interaction of complete cDNA expression libraries
with a promoter sequence driving a reporter gene. In order to iden-
tify TF–DNA interactions, libraries prepared from total mRNA
might not be appropriate as TF genes are frequently expressed
at low levels and are thus under-represented. In addition, regula-
tory proteins with high affinity to un-specific DNA regions may
frequently lead to false positives.

Recently, several Y1H approaches have been published, making
use of normalized collections composed of up to 1500 TF cDNAs
(Mitsuda et al., 2010; Castrillo et al., 2011; Ou et al., 2011). In
particular, TF collections arrayed in 96-well plates which can be
independently transferred in a high-throughput mating-type set-
up, appear to be promising tools (Castrillo et al., 2011). Hence,
it is assured that each cDNA clone of the collection is assayed.
Although TF-specific libraries enhance the screening efficiency,
yeast systems still have the disadvantage that the conditions inside
the yeast nucleus might differ from those in plant cells (Ehlert
et al., 2006). In comparison to plants, yeast promoters are shorter
in size and therefore, additional transcriptional start events might
compete when promoters are assayed which exceeds the size of
approximately 300 bps (Dobi and Winston, 2007; Mitsuda et al.,
2010). Hence,Y1H screens are limited to short promoter fragments
or multimerized cis-elements.

The use of plant cell screening systems prevents most of
these conceivable disadvantages. High-throughput microtiter

plate based protoplast transfection systems have been recently
described (De Sutter et al., 2005; Wehner et al., 2011) which can
be used in combination with arrayed TF expression collections to
identify TFs which regulate a promoter of choice (protoplast trans
activation System, PTA; Wehner et al., 2011). Applying this proce-
dure, the transactivation properties of 96 TFs can simultaneously
be defined (Figure 3).

Using the GATEWAY® technology, collections of TF ORFs
can easily be mobilized into a plant expression vector to enable
the expression of HA-tagged TF-fusion proteins in Arabidopsis
protoplasts. Screens for operating TFs can be performed by co-
transfection of promoter:LUCIFERASE reporters and assaying
the TF’s activation or repression potential by luciferase imag-
ing. The measurement is performed in vivo and does not need
any cell extraction. Thus this system is suited for automati-
zation or liquid handling by using multichannel pipettes or
robotic systems (De Sutter et al., 2005). Currently a screening
collection of roughly 850 TF expression vectors is available,
which is arrayed in microtiter plates. In contrast to classical
Y1H screens no time consuming DNA re-isolation steps are
necessary.

As a proof-of-principle several full-length Arabidopsis promot-
ers (up to 1500 bps) have been analyzed in the PTA system (Wehner
et al., 2011). Importantly, those TFs which have been described to
regulate these promoters could be re-isolated but moreover, several
closely related family members, which appear to show redundant
transactivation properties are likewise identified. Furthermore,
promoters with both, low and high background activities can be
used in this screening system.

The PTA system offers a wide range of applications. For
instance, it has been shown that activators as well as repres-
sors can be studied (Wehner et al., 2011). Moreover, in contrast
to yeast cells, protoplasts provide the necessary perception and
signaling system to study signal-induced plant processes. Sev-
eral stress or hormone treatments such as salt, abscisic acid,
auxin, jasmonic acid, or photosynthetic inhibitors have already
been successfully applied (Wehner et al., 2011). Finally, by
using protoplasts from different sources (e.g., leaves, roots, sus-
pension culture) tissue specific conditions can be taken into
account.

FUTURE PERSPECTIVES OF THE PTA SYSTEM: IDENTIFICATION OF
SIGNALING COMPOUNDS WHICH FUNCTIONALLY INTERACT WITH
TRANSCRIPTION FACTORS
Transcription factor function requires the interaction with other
proteins, e.g., transcriptional regulation often depends on the for-
mation of heterodimers. Protoplast t wo-hybrid (P2H) approaches
have already been successfully established to define in vivo protein–
protein interactions (Ehlert et al., 2006; Weltmeier et al., 2006;
Böttner et al., 2009). This approach can also be used in the proto-
plast high-throughput system. Moreover, the involvement of TFs
in signaling cascades can be assayed. For instance, TF activity is
frequently modulated by phosphorylation (Schütze et al., 2008).
Making use of the PTA system, the operating kinases can be iden-
tified by co-transformation of a collection of kinase expression
vectors. As a proof-of-principle, the functional interplay of the
SnRK1 kinase KIN10 (Baena-Gonzalez et al., 2007) and bZIP TFs
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FIGURE 3 | Schematic overview of the protoplast trans activation

(PTA) system to identifyTFs regulating a Promoter:LUC reporter. For
details see Wehner et al. (2011).

has already been addressed in the PTA system (Wehner et al.,
2011). Furthermore, Y1H assays have been used to screen for TFs
interacting with proteins such as co-regulators (Ou et al., 2011).
These experiments can also be performed in the PTA system, but
in a homologous cellular background. In order to rapidly model

plant signaling cascades, TFs and candidate signaling effectors can
be co-expressed in specific mutant backgrounds if these plants
are used as a source for protoplast preparation. Finally, the high-
throughput system might also be applied as a loss-of-function
approach. RNAi-based silencing has been demonstrated to work
efficiently in protoplasts (Zhai et al., 2009). Hence, GATEWAY®
TF–RNAi collections are needed to evaluate the potential of this
approach.

SCREENING TOOLS TO IDENTIFY TF BINDING SITES
The identification of TF target sites is crucial for deciphering their
biological function. Several in vitro selection methods have been
proposed to identify a DNA–binding-site for a given recombinant
TF protein (Figure 1B). Basically, systematic evolution of ligands
by exponential enrichment (SELEX)-type methods (Tuerk and
Gold, 1990) have been proposed (Xue, 2005). Recently, Godoy
et al. (2011) described a protein-binding microarray (PBM11)
containing a saturated collection of double-stranded 11-mers
for determining DNA-binding TFs. Although these methods are
clearly limited as they assay in vitro interactions, biological rele-
vant TF–DNA interactions have been reproduced. An alternative
in vivo bacterial one-hybrid approach using a library of cloned
random DNA-binding sites has been successfully applied in the
animal field (Meng et al., 2005). However, this tool has not been
described for plant TFs, yet.

Several methods are used to identify in vivo DNA-binding
sites of TFs, such as the DNA adenine methylation identification
(DamID) approach (Germann and Gaudin, 2011). Expression of
a TF-fusion with the prokaryotic DNA adenine methyltransferase
(Dam) enzyme leads to methylation fingerprints on the DNA
which are located in close vicinity to the TF binding-site. These
fingerprints can be disclosed by methylation-sensitive restric-
tion enzymes. Chromatin immuno-precipitation (ChIP) com-
bined with tilling array technology (ChIP-chip) or sequencing
of immunoprecipitated DNA fragments (ChIP-seq) appear to be
straight-forward methods to define TF binding sites in vivo (Fode
and Gatz, 2009; Mitsuda and Ohme-Takagi, 2009; Kaufmann
et al., 2010; Muino et al., 2011). These methods have success-
fully been applied in plants, however they are demanding with
respect to technical expertise and bioinformatic analysis. Using
this approach, highly expressed tagged TFs are easier to study and
do not require TF-specific antibodies. However, miss-expression
and protein fusions require careful additional analysis to validate
the obtained results.

CONCLUSION
Understanding the transcriptional networks is the final goal of
plant TF research. In order to define distinct or partly redun-
dant functions of highly related TF family members, the described
screening approaches are valuable additions to the molecular biol-
ogy tool-box which will significantly speed-up functional analysis
of plant TFs.
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