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Preface and Acknowledgments

What is “Extreme Value Theory” and what does “C[0,1]” mean?

Imagine your spouse goes out shopping – perhaps at a hardware or shoe store, depending on

his or her preferences. Then, at least if you have been happily married for some time, you

can calculate how much your wife or husband spent on average on similar shopping tours in

the past and you get an estimate on the amount of money which will leave your bank account

soon. All of your experience and calculations may be worthless, however, if, this time, your

loved one sees something, he or she has always wanted – and buys it without regard to the

costs.

You know that the probability for your account to be overdrawn is very small. But you also

know that it could happen and if it did, it would have severe consequences. Even though

you have (hopefully) not experienced such an event before, you may ask yourself whether you

could estimate a certain amount of money that would not be exceeded by the expenses of

your spouse with a particular, very high certainty.

The answer to this question can be given with the help of Extreme Value Theory:

motivated by questions as the one above (but in a much more serious context!), first results

in this field were published, roughly speaking, in the mid-twentieth century. Extreme Value

Theory can be classified as a part of probability theory in a wider sense.

Now, imagine you are out shopping at the same time as your spouse. You have put so

much money into your bank account, that you can be almost certain it will not be overdrawn,

even if one of you gets infected by shopping fever. But if both of you find something you

most urgently need, however, your account is once again in great danger. The probability

of such a scenario is of course even smaller than that of the situation described above, but

the consequences are more severe. This second issue concerns Multivariate Extreme Value

Theory, wich focuses on (finitely many) extreme observations which occur “at the same time”.

This dissertation goes one step further and examines “infinitely many extreme observations

occurring simultaneously”. This is quite abstract and lies – admittedly and fortunately –

outside the scope of the shopping scenario (infinite number of spouses, all going shopping at

the same time!). In general, infinitely many observations are not easy to handle and require

additional structure: in the following, the “objects” under consideration are continuous

functions on the compact interval [0,1] and the “space” containing all these functions is

commonly denoted by C[0,1] in the field of mathematics.
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1 Introduction

Background

A max-stable distribution (MSD) on the real line with distribution function G is characterized

by the property, that there exists for every n ∈ N some numbers an > 0, bn ∈ R, such that

(G(anx+ bn))
n = G(x) for every x ∈ R. It immediately turns out, that “The class of MSD

coincides with the class of all (non-degenerate) limit laws for (properly normalized) maxima

of iid rvs”; this sentence is exactly Theorem 3.2.2 in Embrechts et al. [14]. Thereby, a

“(non-degenerate) limit law” of “(properly normalized) maxima of iid rvs” is obtained, if

we have independent and identically distributed (iid) random variables (rv) X1, . . . ,Xn with

distribution function F and there are numbers cn > 0, dn ∈ R, such that

lim
n→∞

P

(
max1≤i≤nXi − dn

cn
≤ x

)
= lim

n→∞
(F (cnx+ dn))

n = G(x), x ∈ R.

This limit behavior of normalized iid maxima of random variables is the starting point of

extreme value theory (EVT). The answers to associated questions as on the characterization

of those MSD G and on the requirements on the distribution functions F where given in the

first papers on that issue until, roughly speaking, the middle of the last century. They can

be found in any textbook on EVT since then; just Embrechts et al. [14] should be mentioned

here, because this book contains a lot of “Notes and Comments” with all crucial references

on the historical development given therein.

We start with a closer look at multivariate EVT, i.e. the random elements are elements

of Rd. The well-known de Haan-Resnick representation (cf. de Haan and Resnick [13], Falk

et al. [17]) of MSD in Rd, d ≥ 2, can be reformulated in the following way.

A distribution function G on Rd is an MSD with standard negative exponential margins if

and only if there exists a real number m ≥ 1 and a random vector Z = (Z1, . . . , Zd) which

satisfies

min(Z1, . . . , Zd) ≥ 0 a.s., max(Z1, . . . , Zd) = m a.s. and E(Zi) = 1, i = 1, . . . , d, (1.1)

and the representation

G(x) = exp

(
−E

(
max
i≤d

(|xi|Zi)

))
(1.2)

holds for x = (x1, . . . , xd) ∈ (−∞, 0]d.

Note that the connection between the angular measure φ of the MSD G in the com-

monly known de Haan-Resnick representation and the distribution P ∗ Z of Z is given by

φ(A) = m(P ∗ Z)(mA)

for any Borel set A ⊂ {x ∈ [0,∞)d : max1≤i≤d xi = 1} =: SE; here we used the notation in

Falk et al. [17, Theorem 4.2.5] and we have chosen the maximum norm for ‖·‖.
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We call Z a generator andm = − logG(−1, . . . ,−1) = E (max1≤i≤d Zi) the generator

constant of the MSD G.

As the dependence structure within the components of the d−variate MSD is solely affected

by the angular measure, in our rewritten setup the generator Z now is responsible for the

dependence structure of G. Following the argumentation in Falk et al. [17, Section 4.4], we

identify the D -norm of the MSD, ‖x‖D = E (maxi≤d(|xi|Zi)) for x ∈ Rd. Immediately,

1 ≤ m ≤ d now follows from Falk et al. [17, Proposition 4.4.5], and Takahashi’s Theorem (cf.

Falk et al. [17, Theorem 4.3.2 and 4.4.1] yields

m = 1 ⇐⇒ G has complete dependent margins;

m = d ⇐⇒ G has independent margins.

Let us first have a closer inspection of the latter case of independent margins: for a generator

Z = (Z1, . . . , Zd) of an MSD G with standard negative exponential and independent margins

we get

E

(
d∑

i=1

Zi

)
= d = m = E

(
max
1≤i≤d

Zi

)
,

where we have used the properties of a generator in (1.1). Because of
∑d

i=1 Zi ≥ max1≤i≤d Zi,

this is equivalent to
∑d

i=1 Zi = max1≤i≤d Zi with probability one.

On the one hand, immediately P (min(Zi, Zj) = 0) = 1 for each 1 ≤ i 6= j ≤ d follows. On

the other hand, if min(Zi, Zj) = 0 a.s. is true for each pair of different indices i 6= j, then we

get by the identity max(a1, . . . , ad) =
∑

∅6=T⊂{1,...,d}(−1)|T |−1 min(ai, i ∈ T ), which is true for

arbitrary numbers a1, . . . , ad and can be seen by induction, that

max
1≤i≤d

Zi =
∑

∅6=T⊂{1,...,d}

(−1)|T |−1 min(Zi, i ∈ T ) =
d∑

i=1

Zi

almost surely. Thus, we have shown the following:

If G is a MSD on Rd with standard negative exponential univariate margins and Z =

(Z1, . . . , Zd) is a generator of G, then:

G has independent margins ⇐⇒ P (min(Zi, Zj) = 0) = 1, 1 ≤ i 6= j ≤ d. (1.3)

Note that this has the following reformulation in terms of the angular measure: an MSD has

independent margins if and only if its angular measure has all its mass on the axes, i.e. it is

the discrete measure with mass 1 on the unit vectors in Rd.

Furthermore, if we have m = E (maxi≤d(Zi)) = 1, we get max1≤i≤d Zi = Zj a.s., for all

1 ≤ j ≤ d, again because of the second property of a generator in (1.1). But this implies

Z1 = · · · = Zd a.s. and we have shown:

If G is a MSD on Rd with standard negative exponential univariate margins and Z =

(Z1, . . . , Zd) is a generator of G, then:

G has complete dependent margins ⇐⇒ P (Z1 = Zi) = 1, 1 ≤ i ≤ d. (1.4)
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Note that the latter arguments are in particular a complete proof of the “complete dependence

part” of Takahashi’s Theorem.

The foregoing considerations show, that proofs of interesting and useful results in finite

dimensional EVT may get short and clear if one uses random elements (i.e. those generator

random vectors Z) instead of angular measures.

Another great advantage of this approach is that we can adapt it to the infinite dimensional

case which is the content of this thesis.

Aims and scope of this work

In the present work elements of functional EVT are considered: we study random elements

which are continuous functions on a compact interval (we use [0, 1] all along, but all assertions

should hold for arbitrary compact subsets of R) and which have a max-stable distribution on

function space. This issue was treated earlier, for example in de Haan [12], de Haan and

Pickands [11], Giné et al. [20], de Haan and Lin [10], see also the monograph de Haan and

Ferreira [9].

There is an analogon to the de Haan-Resnick representation in C[0, 1], cf. Giné et al. [20],

characterizing all continuous max-stable processes (MSP) by means of an “angular measure”,

this time this measure is defined on the space of continuous functions. We start in this work

again by “rewriting” this result in terms of a generator Z, now, of course, the realizations

of Z are continuous functions. It turns out (cf. Lemma 2.7), that a process η, which has

all its sample paths in C[0, 1] is an MSP with standard negative exponential distributed one-

dimensional margins (i.e. P (ηt ≤ x) = exp(x), x ≤ 0, t ∈ [0, 1]), if, and only if, its functional

distr ibution function can be represented as

P (η ≤ f) = exp

(
−E

(
sup
t∈[0,1]

(|f(t)|Zt)

))
, for all f ∈ Ē−[0, 1],

where Z = (Zt)t∈[0,1] is a process whose sample paths all are in C̄+[0, 1] := {f : [0, 1] →
[0,∞), f is continuous} and it fulfills

sup
t∈[0,1]

Zt = m ∈ [1,∞) a.s. and E(Zt) = 1, t ∈ [0, 1] (1.5)

(here Ē−[0, 1] denotes the set of those functions on f : [0, 1] → (−∞, 0] which are bounded

and have at most a finite set of discontinuities).

This is in high accordance to the finite-dimensional case and this setup enables us to carry

over several assertions from the multivariate theory to the functional case in a (somehow)

straightforward way. Although some of the results in the Sections 2.1 and 2.2 are already

known (and were established, essentially, in Giné et al. [20]) we state them for the sake of

completeness and consistency.

But there are new problems (and answers) arising from the infinite dimension of the consid-

ered space and the continuity of the processes: Does any continuous MSP hit every value x in

its image set with positive probability (cf. Section 2.3.1)? Is there any MSP which hits every

x < 0 twice with positive probability but the event “hitting the same value three or more

times” has probability zero (cf. Section 2.4 for Examples on various issues)? Which MSP
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with standard negative exponential margins can itself be a generator process by multiplying

it by -1 – and are there some MSP which coincide with their generator processes (apart from

the sign; cf. Section 2.5)?

In Chapter 3 we turn our focus to the limit of normalized maxima of iid copies of continuous

processes. In de Haan and Lin [10], convergence of those maxima towards an MSP is considered

in terms of weak convergence on C[0, 1]. This is, of course, consistent to the finite dimensional

setup, as in Rd weak convergence of measures is equivalent to convergence of the corresponding

distribution functions. But as weak convergence on function space is in general quite difficult

to handle (cf. Billingsley [7]), we introduce a type of convergence which is formulated in term

of distribution functions on function space: we say that a stochastic process Y in C[0, 1] is

in the functional domain of attraction of a standard MSP η (“standard” says, that

all univariate margins are standard negative exponential distributions), if there are functions

an ∈ C+[0, 1] := {f ∈ C[0, 1] : f > 0}, bn ∈ C[0, 1], n ∈ N, such that

lim
n→∞

P

(
Y − bn

an
≤ f

)n

= P (η ≤ f)

for any f ∈ Ē−[0, 1].

This approach is in great accordance to the finite dimensional case and it is more general

than the usual one based on weak convergence, which is shown in Section 3.1. We bring

this type of convergence towards a (standard) MSP in line with convergence of the finite

dimensional distributions and hypoconvergence (see Molchanov [22]).

Moreover, in Section 3.2, we suggest another type of convergence for continuous processes:

Let X be a stochastic process in C̄−[0, 1] and put for f ∈ Ē−[0, 1]

SX(f) :=

∫ 1

0
1 (Xt > f(t)) dt,

which is the so journ time of X above the function f , i.e. the random “time” which the

processX spends above the “threshold function” f (cf. Berman [6]). We say that a sequence of

stochastic processes X(n) in C̄−[0, 1], n ∈ N, converges with respect to the so journ

time transformation to X in C̄−[0, 1], denoted by X(n) →STR X, if

S
X(n)(f) →D SX(f), f ∈ Ē−[0, 1], n → ∞;

note that this is convergence of univariate rv. We compare this type of convergence with

the convergence of functional distribution functions introduced before (Lemma 3.8).

In Section 3.4 we introduce “copula processes”, which are defined by U = (Ut)t∈[0,1] :=

(Ft(Yt))t∈[0,1] if Y = (Yt)t∈[0,1] is a continuous stochastic process with continuous marginal

df Ft, t ∈ [0, 1]. Note that the sample paths of U are in C[0, 1]. The foregoing results on

functional domain of attraction are applied to those copula processes.

It was established in de Haan and Lin [10] that univariate weak convergence of the marginal

maxima to a univariate MSD together with weak convergence of the corresponding copula

process towards a standard MSP in the function space is equivalent to the assertion that a

process is in the domain of attraction (in the sense of weak convergence) of an MSP with
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arbitrary marginal distributions, compare also de Haan and Ferreira [9, Chapter 9]. We

examine this issue in case of convergence of functional distribution functions in Section 3.5.

The idea of functional generalized Pareto distributions is introduced in Section 3.6, where

the foregoing results allow representations and argumentation in great accordance to the

multivariate case.

Chapter 4 is about sojourn times of continuous stochastic processes Y = (Yt)t∈[0,1] which

have identical continuous marginal distribution functions (df) F , say. Sojourn times of

stochastic processes have been extensively studied in the literature, with emphasis on Gaus-

sian processes and Markov random fields, we refer to Berman [6] and the literature given

therein. A more general approach is the excursion random measure as investigated by Hsing

and Leadbetter [21] for stationary processes. Different to that, we will investigate the sojourn

time under the condition that the copula process C := (F (Yt))t∈[0,1] corresponding to Y is in

the functional domain of attraction of a max-stable process η, say.

Denote by Ns :=
∑n

i=1 1(s,∞)(Yi/n) the number of exceedances among (Yi/n)1≤i≤n above the

threshold s. The fragility index (FI) corresponding to (Yi/n)1≤i≤n is defined as the asymptotic

expectation of the number of exceedances given that there is at least one exceedance:

FI := lim
sրω(F )

E(Ns | Ns > 0),

where ω(F ) := sup {t ∈ R : F (t) < 1}. The FI was introduced in Geluk et al. [19] to measure

the stability of a stochastic system. The system is called stable if FI = 1, otherwise it is

called fragile.

We consider the analogon for continuous processes: let SY (s) be the sojourn time of Y above

the constant threshold function f ≡ s ∈ R. It turns out that the limit limsրω(F )E(S(s) |
S(s) > 0), of the expected sojourn time given that it is positive, exists if the copula process

corresponding to Y is in the functional domain of attraction of a max-stable process. This

limit coincides with the limit of the FI corresponding to (Yi/n)1≤i≤n as n and the threshold

increase, cf. Section 4.1. Moreover, by defining

I(s) =

∫ 1

0
(Yt − s)1(Yt > s) dt,

we get the total “sum” of excesses above the threshold s; so the idea of the (cumulative) ex-

pected shortfal l at level s pertaining to Y as the expectation of the total sum of excesses,

given that there is at least one exceedance, can be carried over to the function space:

ES(s) := E(I(s) | S(s) > 0),

see Lemma 4.6 and Proposition 4.7.

For such processes, which are in a certain neighborhood of a generalized Pareto process, we

can replace the constant threshold by a threshold function and we can compute the (asymp-

totic) conditional sojourn time distribution above a high threshold function; max-stable pro-

cesses are prominent examples, cf. Section 4.2.

Given that there is an exceedance Yt0 > s above the threshold s at t0, we can also compute

the asymptotic distribution of the remaining excursion time, that the process spends above

the threshold function without cease; Section 4.3 contains these considerations.
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There is, finally, an Appendix on “Random Closed Sets and Hypoconvergence of Continuous

Processes” (from p. 79 on). This is more or less a collection of results taken from the book of

Molchanov [22]: therein, all results are given for (upper or lower) semi-continuous processes

in great generality, so this Appendix should show the connections to our setup more clearly.

Notes and Conventions

One may wonder what those graphs on the cover page stand for: they are realizations of a

(standard) generalized Pareto process, cf. Section 3.6, where the pertaining generator process

is a modified Brownian Motion, cf. Example 2.31. All graphs pictured in the several figures

within this work were produced by using R (version 2.10.1).

To improve the readability we use in the sequel bold face, such as ξ, Y , for stochastic

processes and default font, f , an etc., for non-stochastic functions. Operations on functions

such as ξ < f or (ξ−bn)/an are always meant pointwise. The usual abbreviations df, fidis, iid,

a.s. and rv for the terms distribution function, finite dimensional distributions, independent

and identically distributed, almost surely and random variable, respectively, are used.

Furthermore, we use the terms “weak convergence” and “convergence in distribution” side

by side and with the usual inconsistency in denotation. By definition, a sequence of random

elements converges “in distribution” if the sequence of the corresponding distributions con-

verges “weakly”, see Billingsley [7] for a detailed introduction to this issue. So if we say that a

sequence of random elements converges weakly, this is to be understood as weak convergence

of the sequence of the pertaining distributions. The notation for this type of convergence is

“→D”.
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2 Max-Stable Processes in C[0, 1]

A max-stable process (MSP) ζ = (ζt)t∈[0,1] which has all its sample paths in C[0, 1] :=

{f : [0, 1] → R : f continuous}, equipped with the sup-norm ‖f‖∞ = supt∈[0,1] |f(t)|, is a

stochastic process with the characteristic property that its distribution is max-stable, i.e., ζ

has the same distribution as max1≤i≤n(ζ
(i) − bn)/an for independent copies ζ(1), ζ(2), . . . of ζ

and some an, bn ∈ C[0, 1], an > 0, n ∈ N (c.f. de Haan and Ferreira [9]), i.e.,

ζ
d
= max

1≤i≤n
(ζ(i) − bn)/an, (2.1)

the maxima being taken pointwise. In particular, ζt is a max-stable real valued rv for every t ∈
[0, 1], i.e. its distribution has for some a(t) > 0 and b(t), γ(t) ∈ R a von Mises representation

(cf. Falk et al. [17], de Haan and Ferreira [9])

P

(
ζt − b(t)

a(t)
≤ x

)
=: Fγ(t)(x) = exp

(
−(1 + γ(t)x)−1/γ(t)

)
, γ(t)x ≥ −1, (2.2)

t ∈ [0, 1], where

Fγ(t)(x) =





0 for γ(t) > 0 and x ≤ −1/γ(t),
1 for γ(t) < 0 and x ≥ −1/γ(t),
exp (− exp(−x)) for γ(t) = 0 and x ∈ R.

It was shown in Giné et al. [20] that there is a straightforward relationship between the

continuous norming functions an > 0, bn in (2.1) and a(t) > 0 and b(t), γ(t) ∈ R in (2.2) as

for every n ∈ N and t ∈ [0, 1]

an(t) = nγ(t), bn(t) =

{ (
nγ(t) − 1

) ( a(t)
γ(t) − b(t)

)
for γ(t) 6= 0

a(t) lnn for γ(t) = 0.
(2.3)

This can be seen by elementary calculations as follows: given an arbitrary MSP ζ in C[0, 1]

and the setup as before, we get for n ∈ N

P

(
ζt − b(t)

a(t)
≤ x

)
= P (ζt ≤ a(t)x+ b(t))

= P

(
max
1≤i≤n

(ζ
(i)
t − bn(t))/an(t) ≤ a(t)x+ b(t)

)

= [P (ζt ≤ an(t)(a(t)x + b(t)) + bn(t))]
n

=

[
P

(
ζt − b(t)

a(t)
≤ an(t)x+

(an(t)− 1)b(t) + bn(t)

a(t)

)]n
. (2.4)

For γ(t) = 0 this reads as

exp (− exp(−x)) = exp

(
−n exp

(
−an(t)x+

(an(t)− 1)b(t) + bn(t)

a(t)

))
,
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which is true for an ≡ 1 and bn(t) = a(t) · lnn, t ∈ [0, 1].

In case of γ(t) 6= 0 equation (2.4) leads to

(1 + γ(t)x) nγ(t) =

(
1 + γ(t)an(t)x+

(an(t)− 1)b(t) + bn(t)

a(t)

)
,

which is, in turn, true for an(t) = nγ(t) and bn(t) =
(
nγ(t) − 1

) (a(t)
γ(t) − b(t)

)
, t ∈ [0, 1].

The next assertion was established in Lemma 3.5.(i) in Giné et al. [20], it can be proven

by (2.3) together with some analytic arguments; because it is crucial for what follows and for

the sake of completeness we state the result here.

Lemma 2.1. Let ζ in C[0, 1] be an MSP and for t ∈ [0, 1] let a(t), b(t), γ(t) be the norming

numbers from equation (2.2). Then the functions a : [0, 1] → (0,∞), t 7→ a(t), b : [0, 1] →
R, t 7→ b(t) and γ : [0, 1] → R, t 7→ γ(t) are continuous in t ∈ [0, 1].

In finite-dimensional case, characterization of all max-stable distributions is typically done

by characterizing some standard case (with certain margin restrictions) and reaching all other

cases by (margin) transformation. We will proceed in an analoguous way by characterizing

a class of standard MSP and stating thereafter, that an arbitrary MSP can always be

transformed to such a standard MSP.

2.1 Standard Max-Stable Processes and D-Norm on Function

Spaces

We call a process η which has all its sample paths in C[0, 1] a standard MSP, if it is an

MSP with standard negative exponential (one-dimensional) margins, P (ηt ≤ x) = exp(x),

x ≤ 0, t ∈ [0, 1].

According to Giné et al. [20] and de Haan and Ferreira [9], a process ξ in C[0, 1] is

called a simple MSP, if it is an MSP with standard Fréchet (one-dimensional) margins,

P (ξt ≤ x) = exp(−1/x), x > 0, t ∈ [0, 1]. We will see that each simple MSP ξ can be

transformed to a standard MSP η by just transforming the univariate margins ηt := −1/ξt,

0 ≤ t ≤ 1, and, vice versa, ξt := −1/ηt. With this one-to-one correspondence one might

consider the spaces of simple MSP and standard MSP as dual spaces.

Remark 1. Note a first easy consequence for standard MSP: as the standard negative expo-

nential distribution has the parameters a(t) = 1, b(t) = γ(t) = −1, t ∈ [0, 1] in the von Mises

representation (2.2), we immediately get by (2.3) the norming functions an(t) = 1/n, bn(t) = 0

for all t ∈ [0, 1], i.e. for independent standard MSP η(i), i = 1, . . . , n, we have

η
d
= n max

1≤i≤n
η(i), n ∈ N.

This is, of course, in complete accordance with multivariate EVT: it is well-known that the one-

dimensional margins solely determine the norming “constants” an, bn of higher dimensional

max-stable random elements.
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A crucial observation is the fact that neither a simple MSP ξ nor a standard MSP η attains

the value 0 with probability one. First we consider the case of standard MSP and we will

see, that P (ηt = 0 for some t ∈ [0, 1]) = 0 for some standard MSP η follows directly by using

the max-stability and the marginal distribution. In Section 2.3 we get a much more general

result which contains the following lemma as an easy consequence, compare Remark 5.

Lemma 2.2. Let K be a compact subset of [0, 1] and let ηK = (ηt)t∈K be an MSP on K

with standard negative exponential margins, which has all its sample paths in the space of

continuous functions C̄−(K) := {f : K → (−∞, 0], f is continuous}. Then we have

P

(
sup
t∈K

ηt < 0

)
= 1.

Proof. First we state

P

(
sup
t∈K

ηt < 0

)
∈ {0, 1} , (2.5)

which can be seen as follows.

From the max-stability of η (cf. Remark 1) we obtain

P

(
sup
t∈K

ηt ≤
−ε

n

)
= P (ηK ≤ −ε/n)

= (P (ηK ≤ −ε/n)n)1/n

= P

(
n max

1≤i≤n
η
(i)
K ≤ −ε

)1/n

= P

(
sup
t∈K

ηt ≤ −ε

)1/n

→n→∞ 1

unless P (supt∈K ηt ≤ −ε) = 0. Equation (2.5) now follows from the continuity from above of

a probability measure:

P

(
sup
t∈K

ηt < 0

)
= P

(
⋃

n∈N

{
sup
t∈K

ηt ≤
−ε

n

})

= lim
n→∞

P

(
sup
t∈K

ηt ≤
−ε

n

)
.

We show by contradiction that this probability is actually zero. Assume that it is 1. We di-

vide the interval [0, 1] into the two subintervals [0, 1/2], [1/2, 1]. Now we obtain from equation

(2.5) that P
(
supt∈[0,1/2]∩K ηt = 0

)
= 1 or P

(
supt∈[1/2,1]∩K ηt = 0

)
= 1 (the supremum taken

over the empty set is set to −∞). Suppose without loss of generality that the first probability

is 1. Then we divide the interval [0, 1/2] into the two subintervals [0, 1/4], [1/4, 1/2] and

repeat the preceding arguments. By iterating, this generates a sequence of nested intervals

In = [tn, t̃n] in [0, 1] with P
(
supt∈In∩K ηt = 0

)
= 1, t̃n − tn = 2−n, n ∈ N, and tn ↑ t0, t̃n ↓ t0
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as n → ∞ for some t0 ∈ K. From the lower continuity of a probability measure and the fact,

that ηt0 is negative exponential distributed, we conclude

0 = P (ηt0 = 0)

= P

(
⋂

n∈N

{
sup

t∈In∩K
ηt = 0

})

= lim
n→∞

P

({
sup

t∈In∩K
ηt = 0

})

= 1,

which is a contradiction.

Lemma 2.3 was already established by Giné et al. [20] using the theory of random sets.

Furthermore, the proof of Theorem 9.4.1 in de Haan and Ferreira [9] contains this assertion,

too, proven by elementary probabilistic arguments.

Lemma 2.3. Let K be a compact subset of [0, 1] and let ξK = (ξt)t∈K be an MSP on K with

standard Fréchet margins, which has all its sample paths in the space of continuous functions

C̄+(K) := {f : K → [0,∞), f is continuous}. Then we have

P

(
inf
t∈K

ξt > 0

)
= 1.

The following crucial characterization of continuous MSP is a consequence of Giné et al.

[20, Proposition 3.2]; we refer also to de Haan and Ferreira [9, Theorem 9.4.1].

Proposition 2.4. Let Z = (Zt)t∈[0,1] be a stochastic process whose sample paths all pertain

to C̄+[0, 1] with the properties

sup
t∈[0,1]

Zt = m ∈ [1,∞) a.s. and E(Zt) = 1, t ∈ [0, 1]. (2.6)

(i) A process ξ = (ξt)t∈[0,1] in C̄+[0, 1] is a s imple MSP if there exists a stochastic process

Z as above such that for compact subsets K1, . . . ,Kd of [0, 1] and x1, . . . , xd > 0, d ∈ N,

P

(
max
t∈Kj

ξt ≤ xj, 1 ≤ j ≤ d

)

= exp

(
−E

(
max
1≤j≤d

(
maxt∈Kj

Zt

xj

)))
. (2.7)

(ii) A process η = (ηt)t∈[0,1] in C̄−[0, 1] = {f ∈ C[0, 1] : f ≤ 0} is a standard MSP if

there exists a stochastic process Z as above such that for compact subsets K1, . . . ,Kd

of [0, 1] and x1, . . . , xd ≤ 0, d ∈ N,

P

(
max
t∈Kj

ηt ≤ xj , 1 ≤ j ≤ d

)
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= exp

(
−E

(
max
1≤j≤d

(
|xj |max

t∈Kj

Zt

)))
. (2.8)

Conversely, every stochastic process Z in C̄+[0, 1] satisfying (2.6) gives rise to a simple

and to a standard MSP. The connection is via (2.7) and (2.8), respectively. We call Z a

generator of η and ξ.

Proof. Identify the finite measure σ in Giné et al. [20, Proposition 3.2] with m(P ∗ Z̃), where

(P ∗ Z̃) denotes the distribution of some process Z̃ in C̄+
1 := {f ∈ C[0, 1] : f ≥ 0, ‖f‖∞ = 1}

and set Z = mZ̃, where m is the total mass of the measure σ. Assertion (ii) now follows by

setting η = −1/ξ, which is well defined by Lemma 2.3.

While a generator Z is in general not uniquely determined, the numberm = E
(
supt∈[0,1] Zt

)

is, see Remark 2 below. We, therefore, call m the generator constant of η.

According to de Haan and Ferreira [9, Corollary 9.4.5], condition (2.6) can be weakened to

the condition E(Zt) = 1, t ∈ [0, 1], together with E
(
supt∈[0,1] Zt

)
< ∞, see Remark 4 below.

The characterization in Proposition 2.4 implies in particular that the fidis of η are multi-

variate negative EVD with standard negative exponential margins: We have for 0 ≤ t1 < t2 <

· · · < td ≤ 1

− log(Gt1,...,td(x)) = E

(
max
1≤i≤d

(|xi|Zti)

)
=: ‖x‖Dt1,...,td

, x ≤ 0 ∈ Rd, (2.9)

where ‖·‖Dt1,...,td
is a D -norm on Rd (see Falk et al. [17]).

Denote by E[0, 1] the set of all functions on [0, 1] that are bounded, and which have only

a finite number of discontinuities. Furthermore, denote by E−[0, 1] those functions in E[0, 1]

which do not attain positive values.

Definition 2.5. For a generator process Z = (Zt)t∈[0,1] in C̄+[0, 1] with properties (2.6) and

all f ∈ E[0, 1] set

‖f‖D := E

(
sup
t∈[0,1]

(|f(t)|Zt)

)
.

Then ‖·‖D obviously defines a norm on E[0, 1], called a D -norm with generator Z.

Proof. ‖·‖D is, actually, a norm:

As the generator fulfills Z ≥ 0 a.s, we have ‖f‖D ≥ 0 for every f ∈ E[0, 1]. If f ∈ E[0, 1]

is not the constant zero function, then there is some t0 ∈ [0, 1] with |f(t0)| > 0. Thus,

‖f‖D = E

(
sup
t∈[0,1]

(|f(t)|Zt)

)
≥ E (|f(t0)|Zt0) = |f(t0)| > 0,

so ‖f‖D = 0 ⇐⇒ f ≡ 0.
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The homogeneity ‖cf‖D = |c| ‖f‖D is clear and for the triangle inequalitity take some

f, g ∈ E[0, 1] and observe

‖f + g‖D = E

(
sup
t∈[0,1]

(|f(t) + g(t)|Zt)

)
≤ E

(
sup
t∈[0,1]

(|f(t)|Zt + |g(t)|Zt)

)
≤ ‖f‖D + ‖g‖D .

The sup-norm

‖f‖∞ := sup
t∈[0,1]

|f(t)| , f ∈ E[0, 1],

is a particular D-norm with generator Zt = Z, t ∈ [0, 1], for an arbitrary random variable Z,

which has the properties P (Z ≥ 0) = 1 and E(Z) = 1 (in particular, Z = 1 a.s. is a possible

choice). It is, moreover, the least D-norm, as the next Lemma shows.

Lemma 2.6. For any D-norm ‖·‖D whose generator satisfies E
(
supt∈[0,1] Zt

)
= m we have

‖f‖∞ ≤ ‖f‖D ≤ m ‖f‖∞ , f ∈ E[0, 1]. (2.10)

Proof. The inequality on the right hand side is true because of

‖f‖D = E

(
sup
t∈[0,1]

(|f(t)|Zt)

)
≤ E

(
sup
t∈[0,1]

Zt

)
sup
t∈[0,1]

|f(t)| = m ‖f‖∞ .

For the inequality on the left hand side observe, that ‖f‖∞ = supt∈[0,1] |f(t)| may not be

attained for f ∈ E[0, 1]. But there will always be a sequence (tn)n∈N with tn → t0 ∈ [0, 1] and

|f(tn)| → ‖f‖∞ , n → ∞. We get, thus,

‖f‖∞ = lim
n→∞

|f(tn)| = lim
n→∞

E (|f(tn)|Ztn) ≤ E

(
sup
t∈[0,1]

(|f(t)|Zt)

)
= ‖f‖D .

Note that inequality (2.10) implies that each functional D-norm is equivalent to the sup-

norm on Ē−[0, 1].

The next Lemma introduces a closed-form expression of the distr ibution function of

a standard MSP in terms of the D-norm on Ē−[0, 1].

Lemma 2.7. Let η = (ηt)t∈[0,1] be a standard MSP with continuous sample paths and gen-

erator Z = (Zt)t∈[0,1]. Then we have

P (η ≤ f) = exp (−‖f‖D) = exp

(
−E

(
sup
t∈[0,1]

(|f(t)|Zt)

))
, for all f ∈ Ē−[0, 1]. (2.11)

Conversely, if there is some Z with properties (2.6) and a sample continuous process η in

C−[0, 1] fulfills (2.11), then η is standard max-stable with generator Z.
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Proof. Let Q = {q1, q2 . . . } be a denumerable and dense subset of [0, 1] which contains the

finitely many points, at which f ∈ Ē−[0, 1] has a discontinuity. We identify

{η ≤ f} = {ηt ≤ f(t), for all t ∈ [0, 1]} =
⋂

d∈N

{
ηqj ≤ f(qj), 1 ≤ j ≤ d

}
,

so we obtain from the continuity of η, the continuity from above of each probability measure

and equation (2.9)

P (η ≤ f) = P

(
⋂

d∈N

{
ηqj ≤ f(qj), 1 ≤ j ≤ d

}
)

= lim
d→∞

P
(
ηqj ≤ f(qj), 1 ≤ j ≤ d

)

= lim
d→∞

exp

(
−E

(
max
1≤j≤d

(
|f(qj)|Zqj

)))

= exp

(
− lim

d→∞
E

(
max
1≤j≤d

(
|f(qj)|Zqj

)))

= exp

(
−E

(
lim
d→∞

max
1≤j≤d

(
|f(qj)|Zqj

)))

= exp

(
−E

(
sup
t∈[0,1]

(|f(t)|Zt)

))

= exp (−‖f‖D) ,

where the third to last equation follows from the dominated convergence theorem.

If some Z has properties (2.6) it gives rise to some standard MSP η̂ due to Proposition 2.4.

But since by (2.8) and (2.11) the fidis of η̂ and those of η coincide, η̂
d
= η follows.

The representation

P (η ≤ f) = exp (−‖f‖D) , f ∈ Ē−[0, 1],

of a standard MSP is in complete accordance with the df of a multivariate EVD with standard

negative exponential margins via a D-norm on Rd as developed in [17, Section 4.4].

Remark 2. Oberserve P (η ≤ 1) = exp(−‖1‖D) = exp(−m), so it is obvious, that the

generator constant m = E(supt∈[0,1] Zt) is unique for every standard MSP η.

The space Ē−[0, 1] allows the incorporation of the finite-dimensional marginal distributions

of η into the preceding representation: for some subset I ⊂ [0, 1] denote by 1I : [0, 1] → {0, 1}
the indicator function of I, i.e. 1I(t) = 1, if t ∈ I, and 1I(t) = 0, if t 6∈ I. Now choose indices

0 ≤ t1 < · · · < td ≤ 1 and numbers xi < 0, 1 ≤ i ≤ d for d ∈ N. Then the function

f(t) =
d∑

i=1

xi1{ti}(t)
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is an element of Ē−[0, 1] with the property

P (η ≤ f) = exp (−‖f‖D)

= exp

(
−E

(
sup
t∈[0,1]

(|f(t)|Zt)

))

= exp

(
−E

(
max
1≤i≤d

(|xi|Zti)

))

= exp
(
−‖x‖Dt1,...,td

)

= P (ηt1 ≤ x1, . . . , ηtd ≤ xd).

This is one of the reasons, why we prefer standard MSPs (with standard negative expo-

nential margins), whereas de Haan and Ferreira [9], for instance, consider simple MSPs (with

standard Fréchet margins).

The next Lemma states basic properties of the distribution function of a standard MSP η.

Lemma 2.8. Let η in C̄−[0, 1] be a standard MSP and consider its distribution function

G(f) = P (η ≤ f) = exp (−‖f‖D) , f ∈ Ē−[0, 1].

Then we have

(i) G(·) is continuous with respect to the sup-norm.

(ii) For every f ∈ Ē−[0, 1] we have P (η ≤ f) = P (η < f).

Proof. The first assertion follows by the triangle inequality (|‖fn‖D − ‖f‖D| ≤ ‖fn − f‖D),
Lemma 2.6 (‖fn − f‖D → 0 as ‖fn − f‖∞ → 0) and the continuity of the exponential function.

The continuity from below of an arbitrary probability measure implies

P (η < f) = P

(
η ∈

⋃

k∈N

{
g ∈ C̄−[0, 1] : g ≤ f − 1/k

}
)

= lim
k→∞

P
(
η ≤ f − 1

k

)

= P (η ≤ f),

where the last equality is due to the first part of the Lemma.

Remark 3. Bringing together the assertions of Proposition 2.4 and Lemma 2.7, the distribu-

tion function of a simple MSP ξ is for f ∈ E+[0, 1], f > 0, given by

P (ξ ≤ f) = exp

(
−E

(
sup

s∈[0,1]

Z(s)

f(s)

))
,

and the distribution of ξ is completely determined by this representation.
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Remark 4. Condition (2.6) in Proposition 2.4 can be weakened to the condition E(Zt) = 1,

t ∈ [0, 1], together with E
(
supt∈[0,1] Zt

)
< ∞. This can be seen by applying Corollary 9.4.5

in de Haan and Ferreira [9]; therefore, we recall this result slightly adjusted to our notation:

A simple MSP ξ in C+[0, 1] can be generated in the following way: let Ñ be a

Poisson point process on (0,∞] with mean measure ν̃(·) =
∫
· dr/r

2 and let {Yi}i∈N
be the points of this process. Further consider iid stochastic processes Z, Z1, Z2, . . .

in C̄+[0, 1] with the properties E(Zt) = 1 for all t ∈ [0, 1] and E
(
supt∈[0,1] Zt

)
< ∞.

Let the point process N and the sequence Z, Z1, Z2, . . . be independent. Then

ξ
d
=
∨

i∈N

YiZi

It remains to show, that the processes Zi in this corollary coincide with the generator

process in Proposition 2.4. We deduce from de Haan and Ferreira [9, Lemma 9.4.7] that the

collection {(Yi,Zi)}i∈N are the points of a Poisson point process N on (0,∞]× C̄+[0, 1] with

mean measure ν = ν̃ × (P ∗ Z), where (P ∗ Z) denotes the distribution of Z. Thus, for

arbitrary f ∈ E+[0, 1],

P (ξ ≤ f) = P (
∨

i∈N

YiZi ≤ f)

= P (N has no points (Yi,Zi), for which ∃s ∈ [0, 1] : YiZi(s) > f(s))

= P

(
N has no points in

{
(y, z) ∈ (0,∞] × C̄+[0, 1] : y > inf

s∈[0,1]
(f(s)/z(s))

})

= exp(−ν

({
(y, z) ∈ (0,∞] × C̄+[0, 1] : y > inf

s∈[0,1]
(f(s)/z(s))

})
)

= exp

(
−
∫

C̄+[0,1]

∫ ∞

infs∈[0,1](f(s)/z(s))
r−2 dr (P ∗Z)(dz)

)

= exp

(
−E

(
sup

s∈[0,1]

Z(s)

f(s)

))
.

The assertion now follows by Remark 3.

2.2 Transformation to Arbitrary Margins

Having introduced the concept of the distribution functions of standard MSP by means of the

D-norm on function space, we show in the following, that these considerations are already

sufficient to characterize al l MSP.

In accordance to the finite dimensional case, this is a question of margin transformation.

The additional difficulty to state the required transformations in function space is to ensure

that all processes under consideration are well-defined – more precisely: to ensure that the

resulting processes of specific continuous transformations of arbitrary MSP never take the

value zero with probability one.
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Hence, the main result in this section is the following Lemma 2.9; its assertion was already

shown by Giné et al. [20] using the theory of random closed sets. Nevertheless, we state the

result in our setup, giving an alternative point of view to the theory as we use only elementary

probabilistic arguments.

Lemma 2.9. Let ζ be an arbitrary MSP in C[0, 1] and a > 0, b, γ the continuous functions

which fulfill

P

(
ζt − b(t)

a(t)
≤ x

)
= Fγ(t)(x), t ∈ [0, 1],

cf. equation (2.2) and Lemma 2.1. Then the (sample continuous) process ζ̂ := 1 + γ
a (ζ − b)

will not take the value zero with probability one, i.e.

P (ζ̂t 6= 0 for all t ∈ [0, 1]) = 1

Proof. First observe, that for every t ∈ [0, 1] we have

P (ζ̂t ≥ 0) =





1− P
(
(ζt − b(t))/a(t) ≤ −1/γ(t)

)
for γ(t) > 0

P
(
1 ≥ 0

)
for γ(t) = 0

P
(
(ζt − b(t))/a(t) ≤ −1/γ(t)

)
for γ(t) < 0





= 1 (2.12)

because of (2.2) and the explanation thereafter.

Now define

K1 := {t ∈ [0, 1] : γ(t) ≥ 0}, K2 := {t ∈ [0, 1] : γ(t) ≤ 0},

which are compact subsets of [0, 1] by the continuity of γ. Because of

P (ζ̂t = 0 for some t ∈ [0, 1]) ≤
2∑

i=1

P (ζ̂t = 0 for some t ∈ Ki)

the assertion is shown, if both summands on the right hand side are equal to zero.

Now define for t ∈ K2

η̂t := −
(
1 +

γ(t)

a(t)
(ζt − b(t))

)−1/γ(t)

= −(ζ̂t)
−1/γ(t),

where for γ(t) = 0 this is meant to be η̂t = − exp(−(ζt − b(t))/a(t)).

Then η̂ = (η̂t)t∈[0,1] is well-defined and a standard MSP on K2, which can be seen by

elementary computations as follows: for arbitrary t ∈ K2 and x ≤ 0, we get

– in case γ(t) = 0:

P (η̂t ≤ x) = P
(
− exp(−(ζt − b(t))/a(t)) ≤ x

)
= P

(
(ζt − b(t))/a(t) ≤ − ln(−x)

)
= exp(x);
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– in case γ(t) 6= 0:

P (η̂t ≤ x) = P
(
−
(
1 +

γ(t)

a(t)
(ζt − b(t))

)−1/γ(t)

≤ x
)

= P
(
(ζt − b(t))/a(t) ≤

(
(−x)−γ(t) − 1

)
/γ(t)

)
= exp(x);

so all one-dimensional margins are standard negative exponential distributions. For the max-

stability one has to show, that all fidis are max-stable. Since the one-dimensional margins

determine the norming functions an ≡ 1/n and bn ≡ 0, n ∈ N, we get, thus, for arbitrary

d, n ∈ N, t1, . . . , td ∈ K2 and x1, . . . , xd ≤ 0, with the relations in (2.3) and η̂(k) iid copies of

η̂, k = 1, . . . , n:

– in case γ(t) = 0:

P

(
n · max

1≤k≤n
η̂
(k)
ti

≤ xi, i = 1, . . . , d

)

= P

(
n · max

1≤k≤n
− exp(−(ζ

(k)
ti

− b(ti))/a(ti)) ≤ xi, i = 1, . . . , d

)

= P

(
− exp(−( max

1≤k≤n
ζ
(k)
ti

− b(ti))/a(ti)) ≤ xi/n, i = 1, . . . , d

)

= P

(
max1≤k≤n ζ

(k)
ti

− bn(ti)

an(ti)
≤ −a(ti) ln (|xi| /n) + b(ti)− bn(ti)

an(ti)
, i = 1, . . . , d

)

= P (ζti ≤ −a(ti) ln (|xi| /n) + b(ti)− a(ti) ln(n), i = 1, . . . , d)

= P (− exp(−(ζti − b(ti))/a(ti)) ≤ xi, i = 1, . . . , d)

= P (η̂ti ≤ xi, i = 1, . . . , d) ;

– in case γ(t) 6= 0:

P

(
n · max

1≤k≤n
η̂
(k)
ti

≤ xi, i = 1, . . . , d

)

= P

(
n · max

1≤k≤n

(
−
(
1 +

γ(ti)

a(ti)
(ζ

(k)
ti

− b(ti))

)−1/γ(ti)
)

≤ xi, i = 1, . . . , d

)

= P

(
−
(
1 +

γ(ti)

a(ti)

(
max
1≤k≤n

ζ
(k)
ti

− b(ti)

))−1/γ(ti)

≤ xi/n, i = 1, . . . , d

)

= P
((

max
1≤k≤n

ζ
(k)
ti

− bn(ti)

)
/an(ti) ≤

1

an(ti)

[a(ti)
γ(ti)

(
(|xi| /n)−γ(ti) − 1

)
+

+b(ti)− bn(ti)
]
, i = 1, . . . , d

)
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= P
(
ζti ≤ n−γ(ti)

[a(ti)
γ(ti)

(
(|xi| /n)−γ(ti) − 1

)
+ b(ti)−

−nγ(ti)

(
a(ti)

γ(ti)
− b(ti)

)
+

a(ti)

γ(ti)
− b(ti)

]
, i = 1, . . . , d

)

= P
(
ζti − b(ti) ≤ n−γ(ti)

a(ti)

γ(ti)
(|xi| /n)−γ(ti) − a(ti)

γ(ti)
, i = 1, . . . , d

)

= P

(
−
(
1 +

γ(ti)

a(ti)
(ζti − b(ti))

)−1/γ(ti)

≤ xi, i = 1, . . . , d

)

= P (η̂ti ≤ xi, i = 1, . . . , d) .

We have shown that η̂ is a standard MSP on K2, and, thus, Lemma 2.2 yields P (η̂t =

0 for some t ∈ K2) = 0 and this implies P (ζ̂t = 0 for some t ∈ K2) = 0.

Now define for t ∈ K1

ξ̂t :=

(
1 +

γ(t)

a(t)
(ζt − b(t))

)1/γ(t)

= (ζ̂t)
1/γ(t)

and, as before, ξ̂t = exp((ζt − b(t))/a(t)) for γ(t) = 0.

Then ξ̂ = (ξ̂t)t∈[0,1] is a well-defined MSP on K2 with standard Fréchet margins, which can

be seen by analogue computations as before. So P (ξ̂ 6= 0) = 1 by Lemma 2.3 and the result

follows.

Proposition 2.10. Let ζ an arbitrary MSP in C[0, 1] and a > 0, b, γ the continuous functions

for which

P

(
ζt − b(t)

a(t)
≤ x

)
= Fγ(t)(x), t ∈ [0, 1],

holds. Define

ηt :=





−
(
1 + γ(t)

a(t) (ζt − b(t))
)−1/γ(t)

for γ(t) 6= 0

− exp (−(ζt − b(t))/a(t)) for γ(t) = 0.
(2.13)

Then η = (ηt)t∈[0,1] is a standard MSP in C[0, 1].

Proof. Because of Lemma 2.9 the process η is well defined and it is sample continuous because

of Lemma 2.1. Moreover, elementary computations as before (cf. proof of Lemma 2.9) show

that the one-dimensional distributions are negative exponential distributions and that the

fidis of nmax1≤i≤n η
(i) for iid copies η(i) of η, n ∈ N, are the same as those of η, so the

process is standard max-stable.

Inverting equation (2.13) yields for an arbitrary MSP ζ = (ζt)t∈[0,1] in C[0, 1] – coming

along with its norming functions a > 0, b, γ as before – some standard MSP η = (ηt)t∈[0,1]
with

ζt :=

{
−a(t)
γ(t)

(
1− (−ηt)

−γ(t)
)
+ b(t) for γ(t) 6= 0;

−a(t) ln (−ηt) + b(t) for γ(t) = 0;
t ∈ [0, 1].
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Thus, the functional df of an arbitrary MSP ζ in C[0, 1] can be written by means of the

D-norm: we get for f ∈ E[0, 1]

P (ζ ≤ f) = P (η ≤ Ψ(f))

= exp (−‖Ψ(f)‖D) , (2.14)

where we define for functions f ∈ E[0, 1]

Ψ(f) = Ψ(f(t)) :=





−
(
1 + γ(t)

a(t) (f(t)− b(t))
)−1/γ(t)

for γ(t) 6= 0;

− exp (−(f(t)− b(t))/a(t)) for γ(t) = 0;
t ∈ [0, 1].

2.3 Further Properties of Standard MSP and Their Distributions

So far, all MSP were characterized by means of the D-norm on function space. It will turn

out in this section, that the characterization of the max-stable distributions on C[0, 1] via a

distribution function (cf. (2.14)) allows a deeper inside into dependence structures and sample

paths properties of (standard) MSP: we give characterizations of the complete dependence

MSP and consider hitting probabilities of standard MSP (cf. Section 2.3.1). Moreover, we

study the “survivor function”, i.e. P (η > f) for f ∈ Ē−[0, 1], on function space (cf. Section

2.3.2), which will play a crucial role in the sequel.

Some results within this section request examples: We collect in Section 2.4 some examples

of generator process and standard MSP with several special properties.

First, we turn to the well-known characterization of Takahashi (cf. Takahashi [26], Falk

et al. [17, Theorem 4.4.1]) of the complete dependence case of the marginal distributions,

which can be extended to the function space E[0, 1]. To this end, we state the following

assertion, which will be useful in Section 2.5, too.

Lemma 2.11. Let η(n), n ∈ N, be a sequence of standard MSP with pertaining D-norms

‖·‖Dn
, n ∈ N. Then we have

∥∥1[0,1]
∥∥
Dn

→n→∞ 1 ⇐⇒ ‖f‖Dn
→ ‖f‖∞ , f ∈ E[0, 1].

Proof. It suffices to establish the implication ’ =⇒ ’. Let Z(n) be the generator process

corresponding to η(n). For each f ∈ E[0, 1] and each ε > 0 there exists t0 ∈ [0, 1] such that

|f(t0)|+ ε ≥ ‖f‖∞. We have

‖f‖∞
∥∥1[0,1]

∥∥
Dn

= ‖f‖∞E

(
sup
t∈[0,1]

Z
(n)
t

)

≥ E

(
sup
t∈[0,1]

(
|f(t)|Z(n)

t

))

= ‖f‖Dn

≥ |f(t0)|E
(
Z

(n)
t0

)
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= |f(t0)|
≥ ‖f‖∞ − ε.

The assertion now follows from the convergence
∥∥1[0,1]

∥∥
Dn

→ 1 as n → ∞.

The following result is a consequence of Lemma 2.11 by putting η(n) = η, n ∈ N.

Lemma 2.12 (Functional Takahashi). Let η be a standard MSP with generator constant

m = E(supt∈[0,1] Zt) = ‖1‖D and some generator process Z = (Zt)t∈[0,1]. Then:

‖·‖D = ‖·‖∞ ⇐⇒ ‖1‖D = 1.

In this case, the generator Z = (Zt)t∈[0,1] is for all t ∈ [0, 1] equal to some non-negative rv

Z with E(Z) = 1 and all sample paths of η are constant in t, i.e. ηt = η for all t ∈ [0, 1],

where η is negative exponential distributed.

2.3.1 Hitting Probabilities

We turn to the analysis of sample path properties of standard MSP η, especially we ask the

question:

What is the probability of the event that the sample paths of η hit a certain x0 ≤ 0?

On the one hand, this question was already partially answered by Lemma 2.2: the value

x0 = 0 is not attained by sample paths of any η with probability one.

On the other hand one may wonder whether P (ηt = x0 for some t ∈ [0, 1]) = 0 is

true for all x0 ≤ 0, in accordance to the finite dimensional case: as a negative expo-

nential distributed rv X = (X1, . . . ,Xd) in Rd has a continuous distribution, there is

P (Xi = x0, for some i ∈ {1, . . . , d}) = 0 for every x0 ≤ 0.

The somehow surprising answer is that P (ηt = x0 for some t ∈ [0, 1]) > 0 for al l x0 < 0,

namely for every standard MSP η, unless the generator constant of η is equal to one: this

yields, in particular, an alternative characterization of the complete dependence case.

Going on we ask which conditions have to be fulfilled, that η hits some values x0 < 0 more

than once with positive probability. The answers are given by Proposition 2.18 (sufficient

condition that the sample paths of η hit every x < 0 (at least) two times) and Example 2.29,

which is an example of an MSP, which does not hit any x0 < 0 more than twice.

We start by recalling Lemma 2.8: we know that for every standard MSP η and every

f ∈ Ē−[0, 1] we have P (η ≤ f) = P (η < f). In other words: for all f ∈ Ē−[0, 1]

P
(
ηt = f(t) for some t ∈ [0, 1]

∣∣ηt ≤ f(t) for all t ∈ [0, 1]
)

= [P ({ηt = f(t) for some t ∈ [0, 1]} ∩ {ηt ≤ f(t) for all t ∈ [0, 1]})] exp(‖f‖D)
= [P (η ≤ f)− P (η < f)] exp(‖f‖D)
= 0. (2.15)
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Remark 5. Note that (2.15) immediately implies Lemma 2.2 by setting f ≡ 0.

Remark 6. Note that the preceding considerations imply in particular, that for f ∈ Ē−[0, 1]

the sets
{
g ∈ C̄−[0, 1] : g(t) ≤ f(t), for all t ∈ [0, 1]

}
are continuity sets with respect to

the distribution of the standard MSP η on (C̄−[0, 1], ‖·‖∞): the boundary ∂B of a set B

“consists of those points, which are limits of sequences of points in B and are also limits of

sequences of points outside B”, cf. Billingsley [7, p. 2]. So we have

∂
{
g ∈ C̄−[0, 1] : g(t) ≤ f(t), for all t ∈ [0, 1]

}

=
{
g ∈ C̄−[0, 1] : g(t) = f(t) for some t ∈ [0, 1]

}
∩
{
g ∈ C̄−[0, 1] : g(t) ≤ f(t) for all t ∈ [0, 1]

}
,

and, thus, (2.15) yields P
(
η ∈ ∂

{
g ∈ C̄−[0, 1] : g(t) ≤ f(t), for all t ∈ [0, 1]

})
= 0.

Hence, conditioned on {η ≤ f}, the probability that some η hits f is in fact alwas

equal to zero. From now on we will consider the unconditioned hitting probabil ity

P (ηt = f(t) for some t ∈ [0, 1]).

Example 2.13. Consider the (discontinuous) function f ∈ Ē−[0, 1] defined by f(t) =∑n
i=1 xi1{ti}(t), t ∈ [0, 1] for ti ∈ [0, 1], xi < 0, i = 1, . . . , n, n ∈ N. Then

P (ηt = f(t) for some t ∈ [0, 1]) = P

(
n⋃

i=1

{ηti = f(ti)}
)

= 0,

as ηti is standard negative exponential distributed, i = 1, . . . , n.

Example 2.14. Consider the complete dependence case, i.e. the standard MSP η with

generator constant m = 1, cf. Corollary 2.12.

We immediately get

P (ηt < x0 for all t ∈ [0, 1]) = P (ηt < x0 for some t ∈ [0, 1]) = exp(x0),

for x0 ≤ 0 and, thus, P (ηt = x0 for some t ∈ [0, 1]) = 0 follows.

On the other hand, for arbitrary non-constant continuous functions f ∈ C̄−[0, 1],

P (ηt = f(t) for some t ∈ [0, 1]) = P (η0 ∈ im(f)) > 0,

as the image im(f) of f is an interval of positive length.

Having seen some special cases of what could happen, we now give the complete answer to

the foregoing question.
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Proposition 2.15. Let η = (ηt)t∈[0,1] be a standard MSP with generator process Z =

(Zt)t∈[0,1]. Suppose that there exists x0 < 0 and a subinterval I ⊂ [0, 1] with positive length

such that

P (ηt = x0 for some t ∈ I) = 0.

Then Zt = Zs almost surely for t, s ∈ I.

In other words: if ‖1I‖D > 1 for a subinterval I ⊂ [0, 1] with positive length, then

P (ηt = x0 for some t ∈ I) > 0 for all x0 < 0.

Proof. Assume P (ηt = x0 for some t ∈ I) = 0 for some x0 < 0 and an interval I ⊂ [0, 1] with

positive length. Define for k ∈ N and arbitrary t0 ∈ I the functions g, gk ∈ Ē−[0, 1] by

g(t) := x01I(t); gt0,k(t) := (x0 − 1/k)1t0(t).

Then, by Lemma 2.2,

P (ηt < x0 for all t ∈ I) = P (ηt < g(t) for all t ∈ [0, 1])

= exp (x0 ‖1I‖D) = exp

(
x0E

(
sup
t∈I

Zt

))
.

By assumption, we get on the other hand

exp(x0 − 1/k) = P (ηt ≤ gt0,k(t) for all t ∈ [0, 1])

= P (ηt ≤ gt0,k(t) for all t ∈ [0, 1], ηt < x0 for all t ∈ I) ,

and, thus,

exp(x0) = lim
k→∞

P (ηt ≤ gt0,k(t) for all t ∈ [0, 1], ηt < x0 for all t ∈ I)

= P

(
⋃

k∈N

{ηt ≤ gt0,k(t) for all t ∈ [0, 1], ηt < x0 for all t ∈ I}
)

= P (ηt < x0 for all t ∈ I})
= exp (x0 ‖1I‖D) ,

i.e. ‖1I‖D = E (supt∈I Zt) = 1.

As Z is a generator process fulfilling the conditions (2.6), we get for every s ∈ I

E

(
sup
t∈I

Zt − Zs

)
= 0 ⇐⇒ sup

t∈I
Zt = Zs a.s.,

and, thus, Zt = Zs for all s, t ∈ I with probability one.

An example of a standard MSP η with generator Z and m > 1 but Zt = Zs for all s, t ∈ I

with probability one for some interval I ⊂ [0, 1] of positive length is given in Example 2.24

below.

The following assertion is an immediate consequence of Proposition 2.15 and Example 2.14.
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Corollary 2.16. A standard MSP η = (ηt)t∈[0,1] has completely dependent margins, i.e. its

D-norm is equal to the sup-norm, if, and only if there exists some x0 < 0 such that

P (ηt = x0 for some t ∈ [0, 1]) = 0. (2.16)

In this case (2.16) holds for every x0 < 0.

Now the question arises how often the paths of a standard MSP hit some x0 < 0. We give a

sufficient condition on the generator Z of a standard MSP η such that the probability of the

event that the paths of η hit some x0 < 0 (at least) two times in some interval [t′, t′′] ⊂ [0, 1]

is positive for every x0 < 0. We need the following Lemma which is of interest of its own.

Lemma 2.17. Take 0 ≤ t′ < t′′ ≤ 1 and consider a standard MSP η = (ηt)t∈[0,1] with

generator Z = (Zt)t∈[0,1].

If, for every t0 ∈ (t′, t′′) and some x0 < 0,

P (ηt′ ≤ x0, ηt0 > x0, ηt′′ ≤ x0) = 0 (2.17)

holds, then we get

E

(
sup

t∈[t′,t′′]
Zt

)
= E (max(Zt′ , Zt′′)) (2.18)

and (2.17) is true for every x0 < 0.

Conversely, (2.18) implies (2.17) for all t0 ∈ (t′, t′′) and all x0 < 0.

Proof. Let x0 < 0 be given such that

P (ηt′ ≤ x0, ηt0 > x0, ηt′′ ≤ x0)

= P (ηt′ ≤ x0, ηt′′ ≤ x0)− P (ηt′ ≤ x0, ηt0 ≤ x0, ηt′′ ≤ x0)

= exp (x0E (max(Zt′ , Zt′′)))− exp (x0E (max(Zt′ , Zt0 , Zt′′))) = 0, (2.17’)

for all t0 ∈ (t′, t′′). Then

E (max(Zt′ , Zt′′)) = E (max(Zt′ , Zt0 , Zt′′))

⇐⇒ P (max(Zt′ , Zt′′) = max(Zt′ , Zt0 , Zt′′)) = 1

for all t0 ∈ (t′, t′′), and, thus, we get for finitely many t1, . . . , tn ∈ (t′, t′′), n ∈ N,

max(Zt′ , Zt1 , . . . , Ztn , Zt′′) = max(Zt′ , Zt′′) a.s..

Hence, the continuity of Z implies for {t1, t2, . . .} := (t′, t′′) ∩Q

sup
t∈[t′,t′′]

Zt = sup
t∈{t′,t′′,t1,t2,...}

Zt = lim
n→∞

max
t∈{t′,t1,...,tn,t′′}

Zt = max(Zt′ , Zt′′) (2.19)

with probability one, which is equivalent to (2.18).

On the other hand, (2.19) implies P (max(Zt′ , Zt′′) = max(Zt′ , Zt0 , Zt′′)) = 1 for all t0 ∈
(t′, t′′), so (2.17’) follows for all t0 ∈ (t′, t′′) and all x0 < 0.
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Now the following assertion on the hitting probability follows easily from the foregoing

Lemma.

Proposition 2.18. Let t′, t′′ ∈ [0, 1] be arbitrary with 0 ≤ t′ < t′′ ≤ 1 and consider a standard

MSP η = (ηt)t∈[0,1] with generator Z = (Zt)t∈[0,1]. If we have

E

(
sup

t∈[t′,t′′]
Zt

)
> E (max (Zt′ , Zt′′)) ,

then there is some t0 ∈ (t′, t′′) with

P
(
ηt = x0 for some t ∈ [t′, t0], ηt = x0 for some t ∈ [t0, t

′′]
)
> 0,

for every x0 < 0.

Proof. Note that

P
(
ηt = x0 for some t ∈ [t′, t0], ηt = x0 for some t ∈ [t0, t

′′]
)
≥ P (ηt′ ≤ x0, ηt0 > x0, ηt′′ ≤ x0) ,

so Lemma 2.17 implies the assertion.

In the proof of Lemma 2.17, the property supt∈[t′,t′′] Zt = max(Zt′ , Zt′′) almost surely of

a generator process Z plays a crucial role, cf. equation (2.19). It is clear that a generator

process which is pathwise linear on [t′, t′′], i.e. Zt := t′′−t
t′′−t′Zt′ +

t−t′

t′′−t′Zt′′ , t ∈ [t′, t′′] a.s.,

obviously fulfills (2.19). All paths of a generator Z fulfilling (2.19) have to be either strictly

monotone or convex on [t′, t′′] and one may ask if there are other examples than pathwise

linear processes: the answer is ”yes”, see Example 2.28.

Nevertheless, equation (2.19) has some further implications.

Corollary 2.19. Let η = (ηt)t∈[0,1] be a standard MSP with generator process Z = (Zt)t∈[0,1]
and fix 0 ≤ t′ < t′′ ≤ 1. Then the following conditions are equivalent:

(i) P (ηt′ ≤ x0, ηt0 > x0, ηt′′ ≤ x0) = 0, for all x0 < 0 and every t0 ∈ (t′, t′′);

(ii) P (supt∈[t′,t′′] Zt = max(Zt′ , Zt′′)) = 1;

(iii) E(supt∈[t′,t′′] Zt) = E(max(Zt′ , Zt′′));

(iv) P (ηt ≤ x0 for all t ∈ [t′, t′′]) = P (ηt′ ≤ x0, ηt′′ ≤ x0), for all x0 < 0;

(v) P (ηt ≤ x0 for all t ∈ [t′, t′′])− P (ηt′ > x0, ηt′′ > x0) = 2 exp(x0)− 1, for all x0 < 0.

Proof. The proof of Proposition 2.18 already contains (i) ⇐⇒ (ii) ⇐⇒ (iii). Moreover, (iii) is

true, if, and only if,

P (ηt ≤ x01[t′,t′′](t) for all t ∈ [0, 1]) = exp

(
x0E

(
sup

t∈[t′,t′′]
Zt

))
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= exp (x0E (max(Zt′ , Zt′′))

= P (ηt′ ≤ x0, ηt′′ ≤ x0),

for all x0 < 0, i.e. (iii) ⇐⇒ (iv). Finally, we have for arbitrary x0 < 0

P (ηt′ ≤ x0, ηt′′ ≤ x0) =

= P (ηt ≤ x01[t′,t′′](t) for all t ∈ [0, 1])

+P ({ηt′ ≤ x0, ηt′′ ≤ x0} ∩ {ηt > x0 for some t ∈ t′, t′′}),

and, thus,

(iv) ⇐⇒ P ({ηt′ ≤ x0, ηt′′ ≤ x0} ∩ {ηt > x0 for some t ∈ t′, t′′}) = 0

⇐⇒ P ({ηt′ > x0} ∪ {ηt′′ > x0} ∪ {ηt ≤ x0 for all t ∈ t′, t′′}) = 1,

which is (v) by using the inclusion-exclusion formula.

2.3.2 The Survivor Function of Standard MSP

In the finite-dimensional setup, survivor functions x 7→ P (X > x) for a rv X play a fun-

damental role in EVT. In this section we give some properties of the survivor function

P (η > f) = P (ηt > f(t) for all t ∈ [0, 1]), f ∈ Ē−[0, 1], of a standard MSP η.

Proposition 2.20. Let η = (ηt)t∈[0,1] be a standard MSP with generator Z = (Zt)t∈[0,1].

Then we obtain for f ∈ Ē−[0, 1]:

(i) P (η > f) ≥ 1− exp

(
−E

(
inf

0≤t≤1
(|f(t)|Zt)

))
;

(ii) lim
s↓0

P (η > sf)

s
= E

(
inf

0≤t≤1
(|f(t)|Zt)

)
.

Proof. Due to the continuity of η and Z it is sufficient to consider f ∈ Ē−[0, 1] with

sup0≤t≤1 f(t) < 0. From Subsection 2.2 below we know that

ξt := − 1

ηt
, 0 ≤ t ≤ 1,

defines a continuous MSP ξ = (ξt)0≤t≤1 on [0, 1] with standard Fréchet margins and Propo-

sition 3.2 in Giné et. al [20] yields

ξ
d
= max

i
Yi

in C̄+[0, 1], where Y1,Y2, . . . are the points (functions in C̄+[0, 1]) of a Poisson process N

with intensity measure ν given by dν = dσ × dr/r2 on C̄+
1 [0, 1] × (0,∞) =: C[0, 1]+ =

{h ∈ C[0, 1] : h ≥ 0, h 6= 0}. By C̄+
1 [0, 1] we denote the space of those functions h in C̄+[0, 1]

with ‖h‖∞ = sup0≤t≤1 |h(t)| = 1. The (finite) measure σ is given by σ(·) = mP (Z̃ ∈ ·), where
Z̃ := Z/m and m is the generator constant pertaining to Z. Note that m coincides with the



2 Max-Stable Processes in C[0, 1] 26

total mass of σ.

Observe P (ηt > f(t), for all t ∈ [0, 1]) = 1− P (ηt ≤ f(t), for some t ∈ [0, 1]), and we obtain

P (ηt ≤ f(t), for some t ∈ [0, 1])

= P

(
ξt ≤

1

|f(t)| , for some t ∈ [0, 1]

)

= P

(
for some t ∈ [0, 1], ∀i ∈ N : Yi(t) ≤

1

|f(t)|

)

≤ P

(
∀i ∈ N, for some t ∈ [0, 1] : Yi(t) ≤

1

|f(t)|

)

= P

(
N

({
g ∈ C[0, 1]+ : g(t) >

1

|f(t)| , t ∈ [0, 1]

})
= 0

)

= exp
(
−ν
({

g ∈ C[0, 1]+ : g(t) |f(t)| > 1, t ∈ [0, 1]
}))

= exp
(
−ν
({

(h, r) ∈ C̄+
1 [0, 1] × (0,∞) : rh(t) |f(t)| > 1, t ∈ [0, 1]

}))

= exp

(
−
∫

{(h,r)∈C̄+
1 [0,1]×(0,∞): rh(t)|f(t)|>1, t∈[0,1]}

1

r2
dr σ(dh)

)

= exp

(
−
∫

C̄+
1 [0,1]

∫ ∞

1/ inft∈[0,1](h(t)|f(t)|)

1

r2
dr σ(dh)

)

= exp

(
−
∫

C̄+
1 [0,1]

inf
t∈[0,1]

(h(t) |f(t)|)σ(dh)
)

= exp

(
−E

(
inf

t∈[0,1]
(|f(t)|Zt)

))
.

which is assertion (i). Next we establish the inequality

lim sup
s↓0

P (η > sf)

s
≤ E

(
min

1≤j≤m

(
|f(tj)|Ztj

))
, (2.20)

where {t1, t2, . . .} is a denumerable dense subset of [0,1], which contains those finitely many

points ti at which the function f is discontinuous.

The inclusion-exclusion theorem implies

P (η > sf) ≤ P




m⋂

j=1

{
ηtj > sf(tj)

}



= 1− P




m⋃

j=1

{
ηtj ≤ sf(tj)

}



= 1−
∑

∅6=T⊂{1,...,m}

(−1)|T |−1P


⋂

j∈T

{
ηtj ≤ sf(tj)

}



= 1−
∑

∅6=T⊂{1,...,m}

(−1)|T |−1 exp

(
−sE

(
max
j∈T

(
|f(tj)|Ztj

)))

=: 1−H(s)



2 Max-Stable Processes in C[0, 1] 27

= H(0)−H(s),

where the function H is differentiable and, thus,

lim sup
s↓0

P (η > sf)

s
≤ − lim

s↓0

H(s)−H(0)

s

= −H ′(0)

=
∑

∅6=T⊂{1,...,m}

(−1)|T |−1E

(
max
j∈T

(
|f(tj)|Ztj

))

= E

(
min

1≤j≤m

(
|f(tj)|Ztj

))
,

since
∑

∅6=T⊂{1,...,m}(−1)|T |−1 maxj∈T aj = min1≤j≤m aj for arbitrary numbers a1, . . . , am ∈
R, which can be seen by induction.

As we have limm→∞E
(
min1≤j≤m

(
|f(tj)|Ztj

))
= E

(
mint∈[0,1] (|f(t)|Zt)

)
by the domi-

nated convergence theorem, we get,

lim sup
s↓0

P (η > sf)

s
≤ E

(
min
t∈[0,1]

(|f(t)|Zt)

)
.

On the other hand, the inequality lim infs↓0 P (η > sf)/s ≥ E
(
mint∈[0,1] (|f(t)|Zt)

)
follows

immediately from (i) and Taylor expansion of the exponential function and, thus, the proof

is complete.

Example 2.25 below shows, that in general we do not have equality in part (i) of the

preceding lemma.

A modification of the preceding result is needed to prove Proposition 2.33 below.

Lemma 2.21. Let η = (ηt)t∈[0,1] be a standard MSP with generator process Z = (Zt)t∈[0,1].

Then, for 0 ≤ t1 < · · · < tm ≤ 1, m ∈ N, x ≤ 0 and f ∈ Ē−[0, 1]:

(i) P (min1≤i≤m ηti > x) ≥ 1− exp (xE (min1≤i≤m Zti)), if Z = (Zt)t∈[0,1] satisfies in addi-

tion P
(
inft∈[0,1] Zt > 0

)
= 1;

(ii) P (ηti > sf(ti), 1 ≤ i ≤ k) = sE (min1≤i≤k (|f(ti)|Zti)) + o(s), as s ↓ 0.

Proof. Choose x < 0 and define for n ∈ N the function fn ∈ Ē−[0, 1] by

fn(t) :=

{
−n if t 6∈ {t1, . . . , tm}
x otherwise.

Then we have

P (η > fn) ↑n∈N P

(
min

1≤i≤m
ηti > x

)

and

inf
t∈[0,1]

(|fn(t)|Zt) ↑n∈N min
1≤i≤m

(|x|Zti) ,
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due to the condition P
(
inft∈[0,1] Zt > 0

)
= 1.

From part (i) of Proposition 2.20 we obtain

P (η > fn) ≥ 1− exp

(
−E

(
inf

0≤t≤1
(|fn(t)|Zt)

))

and, thus, by the preceding considerations and the monotone convergence theorem

P

(
min

1≤i≤m
ηti > x

)
≥ 1− exp

(
x min

1≤i≤m
Zti

)
.

The assertion of part (ii) follows by repeating the arguments in the proof of part (ii) of

Proposition 2.20

By the help of Proposition 2.20 we summarize some considerations on the hitting prob-

abil ity hη(x) of η and x, defined by hη(x) := P (ηt = x for some t ∈ [0, 1]) , x ≤ 0

Proposition 2.22. Let η = (ηt)t∈[0,1] a standard MSP with generator Z = (Zt)t∈[0,1],

generator constant m = E(supt∈[0,1] Zt) > 1 and with the additional property that m̃ :=

E(inft∈[0,1] Zt) > 0.

Then the hitting probability hη of η and x has the properties

hη(0) = 0, hη(x) > 0 for x < 0 and lim
x→−∞

hη(x) = 0.

Moreover,

0 <

∫ 0

−∞
hη(x) dx ≤ m− m̃

mm̃
.

Proof. The assertion follows from Proposition 2.15 and the inequality

P (ηt = x for some t ∈ [0, 1])

= 1− P (ηt 6= x for all t ∈ [0, 1])

= 1− [P (ηt > x for all t ∈ [0, 1]) + P (ηt < x for all t ∈ [0, 1])]

= P (ηt ≤ x for some t ∈ [0, 1])− exp(xm)

≤ exp(xm̃)− exp(xm),

which holds for all x ∈ (−∞, 0] by Proposition 2.20.

In the setup of the preceding proposition, the term m−m̃
mm̃ can be interpreted as a measure

of the dependence structure of η. In case of complete dependence we have m = m̃ = 1, and,

thus, m−m̃
mm̃ = 0. Because of

E( inf
s∈[0,1]

Zs) = 1 ⇐⇒ E(Zt − inf
s∈[0,1]

Zs) = 0, ∀t ∈ [0, 1]

⇐⇒ P (Zt = inf
s∈[0,1]

Zs) = 1, ∀t ∈ [0, 1]

⇐⇒ P (Zt = sup
s∈[0,1]

Zs) = 1, ∀t ∈ [0, 1]
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⇐⇒ E( sup
s∈[0,1]

Zs) = 1,

we get m > 1 ⇐⇒ m̃ < 1 and, therefore, m−m̃
mm̃ > 0 in this case.

We close this section with an observation on the univariate rv inft∈[0,1] ηt, where η is a

standard MSP.

Lemma 2.23. Let η = (ηt)t∈[0,1] be a standard MSP with generator Z = (Zt)t∈[0,1] with the

additional property E(inf t∈[0,1] Zt) > 0. Consider the (univariate) rv inft∈[0,1] ηt and its df

F (x) := P
(
inft∈[0,1] ηt ≤ x

)
, x < 0.

Then:

(i) the function f : (0,∞) → [0, 1], x 7→ 1 − F (−1/x) is regularly varying with index

α = −1.

(ii) for every x < 0

Fn(−γnx) → exp(x), n → ∞,

where γn = F−1(1 − 1/n) and F−1(q) = inf{t ∈ R : F (t) ≥ q}, q ∈ (0, 1) is the

generalized inverse of F . That is, inft∈[0,1] ηt is in the (univariate) maximum domain of

attraction of a standard negative exponential distribution.

Proof. Note that part (ii) follows immediately from part (i) and Proposition 1.13 in Resnick

[24]. We know by Lemma 2.20 that for all y > 0

lim
s↓0

P (η > −ys)/s = lim
s↓0

P ( inf
t∈[0,1]

ηt > −ys)/s = yE( inf
t∈[0,1]

Zt).

This implies that the function f(x) = P (inft∈[0,1] ηt > −1/x) fulfills for all y > 0

lim
x→∞

f(xy)

f(x)
= lim

x→∞

xf(xy)

xf(x)
= y−1.

The latter assertions use the additional assumption E(inft∈[0,1] Zt) > 0 on the generator

process Z. Example 2.30 shows, that this assumption is not too restrictive.

2.4 Examples

This section contains several examples of standard MSP and generator processes, each of them

illustrates a specific issue appearing in one of the assertions of the previous section.

We start with a standard MSP η, which has a generator constant m > 1 but there is a

interval I on which its generator Z fulfills Zt = Zs for all s, t ∈ I a.s., cf. Proposition 2.15.
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Example 2.24. Let Z0, Z1 be iid rv with

P (Zi =
1

n
) =

n

n+ 1
= 1− P (Zi = n);

in particular E(Zi) = 1, i = 0, 1 for n ∈ N. For some 0 < a < b < 1 define

Zt :=





a−t
a Z0 +

t
a for t ∈ [0, a);

1 for t ∈ [a, b];
1−t
1−b +

t−b
1−bZ1 for t ∈ (b, 1],

and Z is obviously a generator process with properties (2.6) and the corresponding standard

MSP η is pathwise a constant function on [a, b] with probability one. But η is for n > 1 not

the complete dependence MSP as

m = E( sup
t∈[0,1]

Zt) =

(
n

n+ 1

)2

+ n

(
1−

(
n

n+ 1

)2
)

=
3n2 + n

(n+ 1)2
> 1.

The following example of a standard MSP η shows, that there is in general not equality in

assertion (i) of Lemma 2.20.

Example 2.25. Let η0, η1 independent max-stable rv with standard negative exponential

distribution, i.e. P (ηi ≤ x) = exp(x), x ≤ 0, i = 1, 2. Their joint (bivariate) distribution is a

standard max-stable distribution, so it can written by means of a D-norm on R2 (actually, the

D−norm is the L1-norm because of the independent margins) and this D-norm is generated

by some Z0, Z1 with E(Zi) = 1, i = 0, 1:

P (η0 ≤ x0, η1 ≤ x1) = exp (−‖x0, x1‖D) = exp

(
−E

(
max
i=0,1

(|xi|Zi)

))
.

Note that in this setup E(max(Z0, Z1)) = 2 = E(Z0 + Z1) which implies min(Z0, Z1) =

Z0 + Z1 −max(Z0, Z1) = 0 almost surely.

Define Zt := tZ0 + (1 − t)Z1 for t ∈ [0, 1], which is a generator process, so there is some

standard MSP η with

P (η ≤ f) = exp

(
−E

(
sup
t∈[0,1]

|f(t)|Zt

))
.

Now consider the function fn ∈ Ē−[0, 1] defined for n ∈ N and c < 0 by

fn(t) :=

{
c for t = 0 and t = 1;

−n elsewhere.

Then we get on the one hand

lim
n→∞

P (η > fn) = P (
⋃

n∈N

{η > fn})
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= P (η0 > c, η1 > c) = (1− exp(c))2 > 0

due to the independence of η0, η1.

Suppose the equality P (η > fn) = 1 − exp (−E (inf0≤t≤1(|fn(t)|Zt))) to be true for all

n ∈ N. Then, on the other hand, we get

lim
n→∞

P (η > fn) = 1− lim
n→∞

exp

(
−E

(
inf

0≤t≤1
(|fn(t)|Zt)

))

= 1− exp (−E (min(|c|Z0, |c|Z1))) = 1− exp (c · 0) = 0.

Thus, P (η > fn) = 1− exp (−E (inf0≤t≤1(|fn(t)|Zt))) cannot be true for all n ∈ N.

The next two examples concern the upper boundary (m−m̃)/(mm̃) of the hitting probability

hη in Proposition 2.22: while the family of standard MSP in Example 2.26 converges to the

total dependence MSP, and, therefore, (m(n) − m̃(n))/m(n)m̃(n) runs to zero for n → ∞,

Example 2.27 shows a diverging boundary (m(n) − m̃(n))/m(n)m̃(n).

Example 2.26. Let Z
(n)
0 , Z

(n)
1 be i.i.d. rv with distribution P (Z

(n)
0 = 1 + 1/n) = 1

2 =

P (Z
(n)
0 = 1− 1/n) for n ≥ 2 and define the generator processes Z(n) by linear interpolation,

i.e.

Z
(n)
t := (1− t)Z

(n)
0 + tZ

(n)
1 , t ∈ [0, 1].

Then Z(n) gets for large n arbitrarily close to the constant function 1[0,1], which is a generator

of the complete dependence MSP.

Furthermore,

m(n) = E( sup
t∈[0,1]

Zt) = 1 +
1

2n
, m̃(n) = E( inf

t∈[0,1]
Zt) = 1− 1

2n
,

and this implies (m(n)− m̃(n))/m(n)m̃(n) = 4n/(4n2 − 1), which converges to zero for n → ∞.

Example 2.27. Let Z
(n)
0 , Z

(n)
1 be i.i.d. rv with distribution P (Z

(n)
0 = 1/n) = n

n+1 = 1 −
P (Z

(n)
0 = n) for n ≥ 2 and define the generator processes Z(n) by linear interpolation, i.e.

Z
(n)
t := (1− t)Z

(n)
0 + tZ

(n)
1 , t ∈ [0, 1].

Then

m(n) = E( sup
t∈[0,1]

Zt) =
2n

n+ 1
, m̃(n) = E( inf

t∈[0,1]
Zt) =

2

n+ 1
,

and this implies (m(n) − m̃(n))/m(n)m̃(n) = n2/2n, which converges to infinity for n → ∞
(note that m(n) → 2 for n → ∞).

The upcoming Example 2.28 shows, that there are generator processes, which fulfill

P
(
supt∈[t′,t′′] Zt = max(Zt′ , Zt′′)

)
= 1 but which are not pathwise linear; cf. Lemma 2.17

and Corollary 2.19.
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Example 2.28. Take real numbers a, b, c, d, e > 0 with the following properties:

1 < a; b < 1; 1 < c <
a− b

a− 1
; (1 <)

a− b

a− b− c(a− 1)
< d; e < 1;

and define

p :=
1− b

a− b
; p̃ :=

1− e

d− e
.

Let Y, Ỹ be some independent Bernoulli rvs with P (Y = 1) = p = 1 − P (Y = 0) and

P (Ỹ = 1) = p̃ = 1− P (Ỹ = 0). Now define

Z0 := Y a+ (1− Y )b; Z1/2 := 1; Z1 := (1− Y )c+

(
1− a− 1

a− b
c

)(
Ỹ d+ (1− Ỹ )e

)
.

Elementary computations show that E(Z0) = E(Z1/2) = E(Z1) = 1, so the linear interpola-

tion process Z = (Zt)t∈[0,1] defined by

Zt :=

{
2(12 − t)Z0 + 2tZ1/2 for t ∈ [0, 1/2]

2(1 − t)Z1/2 + 2(t− 1
2)Z1 for t ∈ [1/2, 1].

is a proper generator process. We have

P

(
sup

t∈[t′,t′′]
Zt = max(Zt′ , Zt′′)

)
= 1

for arbitrary 0 ≤ t′ < t′′ ≤ 1, as three of the possible four paths are (strictly) monotone,

and there is (with probability p · p̃) one path which is (strictly) convex, see Figure 2.1.

Note that the numbers a, b, c, d, e can be substituted by appropriate rvs (independent of

each other and of Y, Ỹ ), which have those values as their expectation, respectively, and that

Z1/2 can also be chosen to be random.

The next example shows in particular, that there are standard MSP, which hit every x0 < 0

twice with positive probability, but the probability of hitting any x0 < 0 three or more times

is equal to zero.

Example 2.29. Let η0, η1 independent negative exponential distributed rv and define the

continuous process η by

ηt := max(
1

1− t
η0,

1

t
η1), t ∈ [0, 1].

Elementary computations show that all fidis of η are max-stable and that the one-dimensional

marginal distributions are standard negative exponential, so η is a standard MSP.

We have P (ηt < x for all t ∈ [0, 1]) = P (max(η0, η1) < x) = exp(2x) for x < 0, so the

generator constant of η is given by m = 2. Furthermore, note that

η0 + η1 ≤ ηt ≤ max(η0, η1), for all t ∈ [0, 1].
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Figure 2.1: All possible paths of the process Z in Example 2.28. The values are a = 3, b =
0.25, c = 9/8, d = 12, e = 0.1.

Hence, for abitrary x < 0:

h(x) = P (ηt = x for some t ∈ [0, 1])

= P (η0 + η1 < x < max(η0, η1))

=

∫ 0

−∞
P (η0 + y < x < max(η0, y)) exp(y) dy

=

∫ x

−∞
P (η0 + y < x < max(η0, y)) exp(y) dy

+

∫ 0

x
P (η0 + y < x < max(η0, y)) exp(y) dy

=

∫ x

−∞
P (η0 > x) exp(y) dy +

∫ 0

x
P (η0 < x− y) exp(y) dy

= (1− exp(x))

∫ x

−∞
exp(y) dy − x exp(x)

= (1− exp(x)− x) exp(x),

and this implies
∫ 0
−∞ h(x) dx = 3/2.

Moreover, elementary computations yield for every t0 ∈ (0, 1) and arbitrary x < 0

P
(
{ηt = x for some t ∈ [0, t0)} ∩ {ηt = x for some t ∈ [t0, 1]}

)
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η0 + η1

η1

η0

0

0 1η1 (η0 + η1)

Figure 2.2: Some sample paths of η in Example 2.29.

= (exp(x(1− t0))− exp(x))(exp(xt0)− exp(x)) > 0,

so all paths of η hit every x < 0 two times with positive probability.

On the other hand, we get for disjoint intervals I1, I2, I3 ⊂ [0, 1]

P
( ⋂

k=1,2,3

{ηt = x for some t ∈ Ik}
)
= 0, x < 0,

so every path of η does not hit any x < 0 three times (or more often).

Proof. We carry out the elementary computations of the last assertions.

P
(
{ηt = x for some t ∈ [0, t0)} ∩ {ηt = x for some t ∈ [t0, 1]}

)
=

= P
(
{ηt = x for some t ∈ [0, t0)} ∩ {ηt = x for some t ∈ [t0, 1]}, η1/(η0 + η1) < t0

)

+ P
(
{ηt = x for some t ∈ [0, t0)} ∩ {ηt = x for some t ∈ [t0, 1]}, η1/(η0 + η1) ≥ t0

)

= P
(
max(η0, ηt0) ≥ x ≥ η0 + η1, ηt0 ≤ x ≤ η1, η1/(η0 + η1) < t0

)

+ P
(
η0 ≥ x ≥ ηt0 , η0 + η1 ≤ x ≤ max(η1, ηt0), η1/(η0 + η1) ≥ t0

)

= P
(
{η0 ≥ x ≥ η0 + η1} ∪ {ηt0 ≥ x ≥ η0 + η1}, ηt0 ≤ x ≤ η1, η1/(η0 + η1) < t0

)
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+ P
(
η0 ≥ x ≥ ηt0 , {η0 + η1 ≤ x ≤ η1} ∪ {η0 + η1 ≤ x ≤ ηt0}, η1/(η0 + η1) ≥ t0

)

= P
(
η0 ≥ x ≥ η0 + η1,max(η0/(1 − t0), η1/t0) ≤ x ≤ η1, η1/(η0 + η1) < t0

)

+ P
(
η0 ≥ x ≥ max(η0/(1− t0), η1/t0), η0 + η1 ≤ x ≤ η1, η1/(η0 + η1) ≥ t0

)

= P
(
x ≤ η0 ≤ (1− t0)x, x ≤ η1 ≤ t0x, η0 + η1 ≤ x, η1(1− t0)/t0 > η0

)

+ P
(
x ≤ η0 ≤ (1− t0)x, x ≤ η1 ≤ t0x, η0 + η1 ≤ x, η1(1− t0)/t0 ≤ η0

)

= P
(
x ≤ η0 ≤ (1− t0)x, x ≤ η1 ≤ t0x, η0 + η1 ≤ x

)

= P
(
x ≤ η0 ≤ (1− t0)x, x ≤ η1 ≤ t0x

)

= P
(
x ≤ η0 ≤ (1− t0)x

)
· P
(
x ≤ η1 ≤ t0x

)

= (exp(x(1− t0))− exp(x))(exp(xt0)− exp(x)).

In order to show that P
(⋂

k=1,2,3{ηt = x for some t ∈ Ik}
)
= 0 for all x < 0 and arbitrary

disjoint intervals Ik ⊂ [0, 1], k = 1, 2, 3, we show that for arbitrary 0 < t1 < t2 < 1

P
(
{ηt = x for some t ∈ [0, t1)} ∩ {ηt = x for some t ∈ [t1, t2)}

∩ {ηt = x for some t ∈ [t2, 1]}
)
= 0. (2.21)

Having seen this, we get the assertion as follows: assume those arbitrary disjoint intervals

Ik ⊂ [0, 1], k = 1, 2, 3 without loss of generality to be ”ordered”, i.e. sup(x : x ∈ I1) ≤ inf(x :

x ∈ I2) and sup(x : x ∈ I2) ≤ inf(x : x ∈ I3). Then choose 0 < t1 < t2 < 1 such that

I1 ⊂ [0, t1], I2 ⊂ [t1, t2] and I3 ⊂ [t2, 1] (which is possible if all Ik, k = 1, 2, 3, are of positive

length, otherwise the assertion is trivial anyway) and we get

P
( ⋂

k=1,2,3

{ηt = x for some t ∈ Ik}
)

≤ P
(
{ηt = x for some t ∈ [0, t1]} ∩ {ηt = x for some t ∈ [t1, t2]}

∩ {ηt = x for some t ∈ [t2, 1]}
)

= P
(
{ηt = x for some t ∈ [0, t1)} ∩ {ηt = x for some t ∈ [t1, t2)}

∩ {ηt = x for some t ∈ [t2, 1]}
)
= 0.

It remains to show, that (2.21) is true. For ease of notation we write At1,t2 := {ηt =

x for some t ∈ [0, t1)} ∩ {ηt = x for some t ∈ [t1, t2)} ∩ {ηt = x for some t ∈ [t2, 1]}, and

we get

P
(
At1,t2

)

= P
(
At1,t2 ∩ {η1/(η1 + η0) ∈ [0, t1)}

)
+ P

(
At1,t2 ∩ {η1/(η1 + η0) ∈ (t1, t2]}

)
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+P
(
At1,t2 ∩ {η1/(η1 + η0) ∈ [t2, 1]}

)

= P
(
At1,t2 ∩ {η1/(η1 + η0) ∈ (t1, t2]}

)
.

This is immediate from the construction of η: if the random time t = η1/(η1 + η0) at which

every path of η attains its global minimum lies in [0, t1) then all paths with this property are

strictly increasing on [t1, 1], so it is impossible that those paths hit any x < 0 on both subin-

tervals, [t1, t2) and [t2, 1]; an analogous argument yields that the last term in the foregoing

sum is also equal to zero.

Now, in turn,

P
(
At1,t2

)

= P
(
At1,t2 ∩ {η1/(η1 + η0) ∈ (t1, t2]}

)

= P
(
{η0 > x > ηt1 ,max(ηt1 , ηt2) > x > η0 + η1, ηt2 < x < η1}

∩{η1/(η1 + η0) ∈ (t1, t2]}
)

≤ P
(
{x < η0 < (1− t1)x, x < η1 < t2x}

∩
{
{η0 > (1− t1)x} ∪ {η1 > t2x}

})

= 0,

and the assertions are completely proven.

Some of the assertions in Section 2.3 made the additional assumption E (inf0≤t≤1 Zt) > 0

on a generator process Z of a standard MSP η. The following considerations show, that

there is for every generator constant m ∈ [1,∞) some generator process Z which fulfills

E (inf0≤t≤1 Zt) > 0 (note that this is equivalent to P
(
mint∈[0,1] Zt > 0

)
> 0).

Example 2.30. Let Zti , i = 1, 2, . . . be iid rv with discrete distribution

P (Zti = 1/p) = p; P (Zti = 0) = 1− p, for some p ∈ (0, 1].

Set Z = (Zt)t∈[0,1] as the linear interpolation of n ∈ N of those Zti , i.e.

Zt =

{
Zti for t = ti, i = 1, . . . n;

linearly interpolated elsewhere.

Obviously, the process Z := (Zt)t∈[0,1] is continuous, fulfills P (Z ≥ 0) = 1, E(Zt) = 1 for

every t ∈ [0, 1] and there is

m = E

(
sup
t∈[0,1]

Zt

)
=

1

p
(1− (1− p)n) ∈ [1, n) for p ∈ (0, 1],

and E
(
mint∈[0,1] Zt

)
= 1

pp
n = pn−1 > 0.



2 Max-Stable Processes in C[0, 1] 37

As the Brownian motion is quite popular and easy to simulate, we give an example of a

generator process, which is an appropriate modification of the Brownian motion.

Example 2.31. Denote by B = (Bt)t∈[0,1] a standard Brownian Motion (restricted to [0, 1]),

i.e. B0 = 0 a.s., E(Bt) = 0 and V ar(Bt) = t for t ∈ [0, 1]. For some δ ∈ (0, 1] set

Z(BM) = (Z
(BM)
t )t∈[0,1] := 1 + max(min(Bt, δ),−δ), t ∈ [0, 1].

Then Z(BM) has continuous sample paths with P (Z
(BM)
t ∈ [1− δ, 1 + δ] for all t ∈ [0, 1]) = 1

and, for every t ∈ [0, 1], we have

P (Z
(BM)
t − 1 ≤ x) = Φ(x/

√
t) for x ∈ [−δ, δ),

and P (Z
(BM)
t − 1 = −δ) = Φ(−δ/

√
t) = P (Zt − 1 = δ),

where Φ denotes the distribution function of the standard normal distribution, i.e. Φ(x) =∫ x
−∞ exp(−y2/2) dy/

√
2π. This implies in particular E(Z

(BM)
t ) = 1, t ∈ [0, 1], and, thus, Z is

a proper generator, see Figure 2.3.

Note that it is possible to modify a Brownian Bridge in an analogous manner to get a

generator process: let BB = (BBt)t∈[0,1] defined by

BBt := Bt − t ·B1, t ∈ [0, 1],

where (Bt)t∈[0,1] is a standard Brownian Motion as before. Then, with similar arguments as

before,

Z(BB) = (Z
(BB)
t )t∈[0,1] := 1 + max(min(BBt, δ),−δ), t ∈ [0, 1].

is a generator process for every δ ∈ (0, 1]; see Figure 2.4 for some sample paths.

2.5 Standard MSP as Generator Processes

It is conspicuous that we have E(ηt) = −1, t ∈ [0, 1], for a standard MSP η and that one of

the crucial requirements on a generator process is E(Zt) = 1, t ∈ [0, 1]. So we consider in this

section standard MSP η for which −η =: Z ′ is, in turn, a generator processes.

Proposition 2.32. Let η be a standard MSP with some generator Z, which fulfills in addition

E (inf0≤t≤1 Zt) > 0. Then the process Z ′ := −η is a generator process of some standard MSP

η′.

Proof. We have to show that P (Z ′ ≥ 0) = 1, E(Z ′
t) = 1 for every t ∈ [0, 1] and

E
(
sup0≤t≤1 Z

′
t

)
< ∞ holds. As η is a standard MSP, Lemma 2.2 immediately implies

P (η ≤ 0) = P (Z ′ ≥ 0) = 1. In addition, as ηt is standard negative exponential distributed,

E(ηt) = −1, so it is clear that E(Z ′
t) = E(−ηt) = 1 for every t ∈ [0, 1]. Note that these

properties are fulfilled without any further assumption.
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Figure 2.3: Three sample paths of Z(BM) in Example 2.31 with δ = 0.9.
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Figure 2.4: Three sample paths of Z(BB) in Example 2.31 with δ = 0.9.
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Set E (inf0≤t≤1 Zt) =: c, so c > 0 by assumption. From Proposition 2.20 we get for every

x ∈ (0,∞)

P

(
sup
t∈[0,1]

Z ′
t > x

)
≤ exp(−xc),

which implies

E

(
sup

0≤t≤1
Z ′
t

)
=

∫ ∞

0
P

(
sup

0≤t≤1
Z ′
t > x

)
dx ≤

∫ ∞

0
exp(−xc) dx = c−1.

The next naturally arising question is, if self-generating standard MSP exist, i.e., if it is

possible, that

P (ηt ≤ f(t), t ∈ [0, 1]) = exp

(
−E

(
sup
t∈[0,1]

(|f(t)|Zt)

))
, f ∈ Ē−[0, 1],

with Zt = |ηt|, t ∈ [0, 1].

Consider the standard MSP η, whose margins are completely dependent, i.e., ηt = η0, t ∈
[0, 1]. Then the corresponding D-norm is equal to the sup-norm, ‖·‖D = ‖·‖∞, and, therefore,

P (η ≤ f) = exp(−‖f‖∞) = exp

(
−E

(
sup
t∈[0,1]

|f(t)||η0|
))

= exp

(
−E

(
sup
t∈[0,1]

|f(t)||ηt|
))

,

f ∈ Ē−[0, 1], i.e., the complete dependence standard MSP η is indeed self-generating. More-

over, it is the only standard MSP with this property. This is established in the next result.

Proposition 2.33. The standard MSP η with complete dependence of the margins is the

only self-generating standard MSP.

Proof. Let η be a self-generating standard MSP. Choose 0 ≤ t1 < · · · < tm ≤ 1. Then we

have

E

(
min

1≤i≤m
|ηti |

)
=

∫ ∞

0
P

(
min

1≤i≤m
|ηti | ≥ x

)
dx

=

∫ ∞

0
P

(
max
1≤i≤m

ηti ≤ −x

)
dx

=

∫ ∞

0
exp

(
−xE

(
max
1≤i≤m

Zti

))
dx

=
1

E (max1≤i≤m Zti)
,

where Z = (Zt)t∈[0,1] is the generator corresponding to η, i.e., Z = |η|, and, thus, we have

established

E

(
min

1≤i≤m
|ηti |

)
=

1

E (max1≤i≤m |ηti |)
. (2.22)
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We have, moreover, by Lemma 2.21

E

(
max
1≤i≤m

|ηti |
)

=

∫ ∞

0
P

(
max
1≤i≤m

|ηti | > x

)
dx

=

∫ ∞

0
P

(
min

1≤i≤m
ηti < −x

)
dx

≤
∫ ∞

0
exp

(
−xE

(
min

1≤i≤m
Zti

))
dx

=
1

E (min1≤i≤m Zti)

=
1

E (min1≤i≤m |ηti |)

= E

(
max
1≤i≤m

|ηti |
)

by equation (2.22) and this implies

P

(
min

1≤i≤m
ηti ≤ y

)
= exp

(
yE

(
min

1≤i≤m
|ηti |

))
, y ≤ 0. (2.23)

We claim that

E

(
min

1≤i≤m
|ηti |

)
= 1, t1, . . . , tm ∈ [0, 1], m ∈ N. (2.24)

This can be seen by induction over m. The case m = 1 is trivial. For m = 2 we obtain

P

(
min
i=1,2

ηti ≤ y

)
= P (ηt1 ≤ y) + P (ηt2 ≤ y)− P (ηt1 ≤ y, ηt2 ≤ y)

= 2 exp(y)− exp

(
yE

(
max
i=1,2

|ηti |
))

as well as

P

(
min
i=1,2

ηti ≤ y

)
= exp

(
yE

(
min
i=1,2

|ηti |
))

by (2.23), i.e., we have

exp

(
yE

(
min
i=1,2

|ηti |
))

= 2exp(y)− exp

(
yE

(
max
i=1,2

|ηti |
))

, y ≤ 0,

or, by (2.22),

exp(ay) = 2 exp(y)− exp
(y
a

)
, y ≤ 0,

with a = E (mini=1,2 |ηti |). Differentiating this equation on both sides and setting y = 0 yields

a = 2− 1

a

which implies a = 1. We, thus, have established equation (2.24) for m = 2. Suppose now that

equation (2.24) is true for m ∈ N, i.e., E (max1≤i≤m |ηti |) = 1 by (2.22) as well. We have by

the inclusion-exclusion formula

P

(
min

1≤i≤m+1
ηti ≤ y

)
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=
∑

∅6=T⊂{1,...,m+1}

(−1)|T |−1P (ηti ≤ y, i ∈ T )

=
∑

∅6=T⊂{1,...,m+1}

(−1)|T |−1 exp

(
yE

(
max
i∈T

|ηti |
))

=

m∑

k=1

(−1)k−1

(
m+ 1

k

)
exp(y) + (−1)m exp

(
yE

(
max

1≤i≤m+1
|ηti |

))

= exp(y) (1− (−1)m) + (−1)m exp

(
yE

(
max

1≤i≤m+1
|ηti |

))
, y ≤ 0,

as well as

P

(
min

1≤i≤m+1
ηti ≤ y

)
= exp

(
yE

(
min

1≤i≤m+1
|ηti |

))
, y ≤ 0,

by (2.23) and, thus,

exp(ay) = exp(y) (1− (−1)m) + exp
(y
a

)
, y ≤ 0,

with a = E (min1≤i≤m+1 |ηti |) by (2.22). For m even we immediately obtain a = 1/a and,

thus, a = 1, whereas for m odd we obtain exp(ay) = 2 exp(y) + exp(y/a), which also implies

a = 1 as before. We, thus, have established equation (2.24).

Let {t1, t2, . . . } be an enumeration of the set of rationals in [0, 1]. The continuity of (ηt)t∈[0,1]
together with equation (2.22), (2.24) and the monotone convergence theorem implies

E

(
sup
t∈[0,1]

|ηt|
)

= E

(
sup

t∈Q∩[0,1]
|ηt|
)

= lim
m∈N

E

(
max
1≤i≤m

|ηti |
)

= 1.

We, thus, have shown that the generator constant corresponding to the standard MSP η is

one, which by Lemma 2.12 implies complete dependence of the margins of η.

Let η(0) be a standard MSP with generator Z(0) satisfying P (inft∈[0,1] Z
(0)
t > 0) = 1 and

generator constant m(0) = E(supt∈[0,1] Z
(0)
t ) ≥ 1. By Proposition 2.32 the process Z(1) :=

|η(0)| is a generator process of some standard MSP η(1) with generator constant m(1) =

E(supt∈[0,1] Z
(1)
t ). Furthermore, by Lemma 2.2, P (supt∈[0,1] ηt < 0) = P (inft∈[0,1] |ηt| > 0) = 1

holds for every standard MSP η, so Z(2) := |η(1)| is, in turn, a generator of some standard

MSP η(2) with generator constant m(2) and so on. Does this iteration have some limit?

Lemma 2.34. Let (η(i),Z(i),m(i))i≥0 be a sequence of standard MSPs with corresponding

generator processes and constants, respectively. Consider the iteration Z(i) := |η(i−1)|, i ∈ N,

starting with some Z(0) satisfying P (inft∈[0,1] Z
(0)
t > 0) = 1. Then the sequence of generator

constants (m(i))i≥0 fulfills

m(i) ≥ m(i+2), i = 0, 1, . . .

Proof. First observe that we have for i ≥ 1

E

(
inf

t∈[0,1]
Z

(i)
t

)
= E

(
inf

t∈[0,1]
|η(i−1)

t |
)
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=

∫ ∞

0
P

(
inf

t∈[0,1]
|η(i−1)

t | > x

)
dx

=

∫ ∞

0
P

(
sup
t∈[0,1]

η
(i−1)
t < −x

)
dx

=

∫ ∞

0
exp

(
−xE

(
sup
t∈[0,1]

Z
(i−1)
t

))
dx

=
(
m(i−1)

)−1
. (2.25)

Furthermore, by Lemma 2.20, there is for i ≥ 1

m(i) = E

(
sup
t∈[0,1]

Z
(i)
t

)
= E

(
sup
t∈[0,1]

|ηt|(i−1)

)

=

∫ ∞

0
P

(
sup
t∈[0,1]

|η(i−1)
t | > x

)
dx

=

∫ ∞

0
P

(
inf

t∈[0,1]
η
(i−1)
t < −x

)
dx

≤
∫ ∞

0
exp

(
−xE

(
inf

t∈[0,1]
Z

(i−1)
t

))
dx

=

(
E

(
inf

t∈[0,1]
Z

(i−1)
t

))−1

. (2.26)

Bringing these results together we get

m(0) ≥ m(2) ≥ m(4) ≥ m(6) ≥ · · · ,

and (
E

(
inf

t∈[0,1]
Z

(0)
t

))−1

≥ m(1) ≥ m(3) ≥ m(5) ≥ · · · .

Because m ≥ 1 holds for every generator constant m, we know by the preceding Lemma,

that the sequences m(2n) and m(2n+1) converge to a limit m,m′ ≥ 1, respectively. Define in

the following

m := lim
n→∞

m(2n) = lim
n→∞

E

(
sup
t∈[0,1]

Z
(2n)
t

)
;

m′ := lim
n→∞

m(2n+1) = lim
n→∞

E

(
sup
t∈[0,1]

Z
(2n+1)
t

)
,

which implies by (2.25)

lim
n→∞

E

(
inf

t∈[0,1]
Z

(2n+1)
t

)
= 1/m; lim

n→∞
E

(
inf

t∈[0,1]
Z

(2n)
t

)
= 1/m′.
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We, thus, have for y < 0

P

(
inf

t∈[0,1]
η
(2n)
t < y

)
≥ P

(
η(2n) < y

)
→n→∞ exp(ym)

by Lemma 2.8 as well as by part (i) of Lemma 2.20

P

(
inf

t∈[0,1]
η
(2n)
t < y

)
= 1− P

(
η(2n) ≥ y

)

≤ 1− P
(
η(2n) > y

)

≤ 1−
(
1− exp

(
yE

(
inf

t∈[0,1]
Z

(2n)
t

)))

→n→∞ exp

(
y
1

m′

)
.

But this implies exp(ym) ≤ exp(y/m′) and, thus, m ≥ 1/m′. As both m,m′ ≥ 1, we obtain

m = 1 = m′. We, consequently, have established that the D-norms pertaining to the sequence

η(n), n ∈ N, converge to one as n increases. The next result is, thus, a consequence of Lemma

2.11.

Proposition 2.35. Let (η(n),Z(n),m(n))n≥0 be the sequence of standard MSP with cor-

responding generator processes and constants, respectively, with Z(n) := |η(n−1)|, n ∈ N,

starting with some Z(0) satisfying P
(
inft∈[0,1] Z

(0)
t > 0

)
= 1. Then

lim
n→∞

P
(
η(n) ≤ f

)
= P (η ≤ f), f ∈ Ē−[0, 1],

where η is a standard max-stable process in C[0, 1] with completely dependent margins.
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3 Functional Domain of Attraction

It is well-known that the class of MSP coincides with the class of possible limit processes of

the normalized maxima of i.i.d. processes Yi in C[0, 1], i = 1, . . . , n, n ∈ N, cf. de Haan and

Ferreira [9, Chapter 9], where the limit is taken with respect to weak convergence in C[0, 1].

As weak convergence on function space is in general quite difficult to handle, we introduce in

this section a type of convergence, which is in great accordance to the finite dimensional case.

We give some characterizations, in particular we will see that our approach is more general

than the usual one based on weak convergence.

First, we restrict our considerations on convergence (in some sense) towards standard

MSP. In Section 3.4 we turn our focus on the special case of copula processes, which are

continuous processes in C[0, 1], whose marginal one-dimensional distributions are all uniform

distributions on (0, 1). If the normed maxima of i.i.d. copies of such a copula process converges

to a max-stable process, then the limit process is necessarily a standard MSP (which will follow

immediately from the fact, that the uniform distribution is in the domain of attraction of the

standard negative exponential distribution in the usual univariate sense). Finally, we use the

obtained results to examine the case of MSP with arbitrary marginal distributions as limit

processes in Section 3.5.

3.1 Functional Domain of Attraction of a Standard MSP

We say that a stochastic process Y in C[0, 1] is in the functional domain of attrac-

tion of a standard MSP η, denoted by Y ∈ D(η), if there are functions an ∈ C+[0, 1] :=

{f ∈ C[0, 1] : f > 0}, bn ∈ C[0, 1], n ∈ N, such that

lim
n→∞

P

(
Y − bn

an
≤ f

)n

= P (η ≤ f) = exp (−‖f‖D) (3.1)

for any f ∈ Ē−[0, 1]. Note that this condition is equivalent with

lim
n→∞

P

(
max
1≤i≤n

Y (i) − bn
an

≤ f

)
= P (η ≤ f) (3.1’)

for any f ∈ Ē−[0, 1], where Y (1),Y (2), . . . are independent copies of Y .

In the following, this domain of attraction condition will be studied; we state several prop-

erties and implications. We also compare condition 3.1 with other modes of convergence in

function space.

Due to the continuity of the functional df of η, we get immediately the following assertion.
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Lemma 3.1. We have Y ∈ D(η) for some standard MSP η, i.e. (3.1’) holds, if, and only if

lim
n→∞

P

(
max
1≤i≤n

(Y (i) − bn)/an < f

)
= P (η < f) (3.2)

for every f ∈ Ē−[0, 1], with Y (i), an, bn as before.

Proof. Set X(n) := max1≤i≤n(Y
(i) − bn)/an. If (3.1’) holds, we get the inequality

lim sup
n→∞

P (X(n) < f) ≤ lim
n→∞

P (X(n) ≤ f) = P (η ≤ f) = P (η < f)

for every f ∈ Ē−[0, 1], see Lemma 2.8.

On the other hand, for all f ∈ Ē−[0, 1] and every ε > 0:

P (η ≤ f − ε) = lim
n→∞

P (X(n) ≤ f − ε) ≤ lim inf
n→∞

P (X(n) < f).

As G(f) = P (η ≤ f) is continuous in f with respect to the sup−norm, cf. Lemma 2.8, (3.2)

follows. The reverse implication follows with analogous arguments.

Again by the help of Lemma 2.8 we deduce the following corollary.

Corollary 3.2. Let Y ∈ D(η) for some standard MSP η, andX(n) := max1≤i≤n(Y
(i)−bn)/an

as in Lemma 3.1. Then, for f ∈ Ē−[0, 1]:

lim
n→∞

P
(
X

(n)
t = f(t) for some t ∈ [0, 1]

∣∣X(n)
t ≤ f(t) for all t ∈ [0, 1]

)

= lim
n→∞

[
P
(
X(n) ≤ f

)
− P

(
X(n) < f

)]
/P
(
X(n) ≤ f

)

= [P (η ≤ f)− P (η < f)] /P (η ≤ f)

= 0

In particular, we have

lim
n→∞

P
(
X

(n)
t = f(t) for all t ∈ [0, 1]

)
= 0.

There should be no risk of confusion with the notation of domain of attraction in the sense

of weak convergence of stochastic processes as investigated in de Haan and Lin [10]. But to

distinguish between these two approaches we will consistently speak of functional domain

of attraction in this paper, if the above definition is meant. Actually, functional domain of

attraction is less restrictive as the next lemma shows.

Proposition 3.3. Suppose that Y in C̄−[0, 1] and let Y (1),Y (2), . . . be independent copies

of Y . If the sequence X(n) = max1≤i≤n

((
Y (i) − bn)/an

))
of continuous processes converges

weakly in C̄−[0, 1], equipped with the sup-norm ‖·‖∞, to the standard MSP η, then Y ∈ D(η).
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Proof. The Portmanteau Theorem (see, e.g., Billingsley [7]) characterizes weak convergence

in particular in terms of convergence of the mass of all continuity sets of the limit measure,

which reads in our case

lim
n→∞

P
(
{X(n) ∈ C}

)
= P ({η ∈ C})

for all Borel-measurable sets C in (C̄−[0, 1], ‖·‖∞) with P ({η ∈ ∂C}) = 0, where ∂C denotes

the boundary of the set C. But as we have seen in Remark 6, the sets {g ∈ C̄−[0, 1] : g(t) ≤
f(t) for all t ∈ [0, 1]} for f ∈ Ē−[0, 1] are continuity sets of the distribution of η, and, thus,

the assertion follows.

Examples of continuous processes in C̄−[0, 1], whose properly normed maxima of iid copies

converge weakly to an MSP and which obviously satisfy condition (3.1), are the GPD-pro -

cesses introduced by Buishand et al. [8]. We consider these generalized Pareto processes in

Section 3.6 below.

The following example shows, that convergence of a sequence of functional df of some

continuous processes η(n) to the functional df of some standard MSP η does in general not

imply weak convergence in C[0, 1].

Example 3.4. Let η be a standard MSP with generator Z = (Zt)t∈[0,1] satisfying 1 >

E
(
mint∈[0,1] Zt

)
> 0; note that the first inequality of the foregoing condition ensures that

η is not the complete dependence MSP.

Let U be a uniformly on (0, 1) distributed rv, which is independent of η. Define for u ∈ [0, 1]

the triangle shaped continuous function ∆u
n : [0, 1] → [0, 1] by

∆u
n(t) :=





1, if t = u,

0, if t 6∈ [u− 2−n, u+ 2−n],

linearly interpolated elsewhere.

Set

η(n) := η −∆U
n , n ∈ N.

Note that η(n) ≤ η. We get on the one hand

P (η ≤ f) ≤ P (η(n) ≤ f)

= P
(
η ≤ f +∆U

n

)

=

∫ 1

0
P (ηt ≤ f(t) + ∆u

n(t) for all t ∈ [0, 1]) du

≤
∫ 1

0
P (ηt ≤ f(t), for all t 6∈ [u− 2−n, u+ 2−n]) du

=

∫ 1

0
exp

(
−E

(
sup

t6∈[u−2−n,u+2−n]

(|f(t)|Zt)

))
du

→n→∞

∫ 1

0
exp

(
−E

(
sup
t∈[0,1]

(|f(t)|Zt)

))
du
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= P (η ≤ f)

by the continuity of Z, the continuity up to finitely many points of f and the dominated

convergence theorem.

On the other hand, η(n) does not converge weakly to η in C[0, 1]: If that would be the case,

by the Portmanteau theorem,

lim inf
n→∞

P (η(n) ∈ O) ≥ P (η ∈ O)

should hold for every open subset O of C[0, 1] (with respect to the maximum distance

‖f − g‖∞ = maxt∈[0,1] |f(t)− g(t)|).
Choose a constant c with−

(
1− E

(
mint∈[0,1] Zt

))−1
< c < −1. The set {g ∈ C[0, 1] : g > c}

is an open subset of C[0, 1] and, hence, we should have

lim inf
n→∞

P (η(n) > c) ≥ P (η > c). (3.3)

We know from Lemma 2.20 that

P (η > c) ≥ 1− exp

(
cE

(
min
t∈[0,1]

Zt

))
,

and we get

P (η(n) > c) = P (η −∆U
n > c)

=

∫ 1

0
P (η > c+∆u

n) du

≤
∫ 1

0
P (ηu > c+ 1) du

=

∫ 1

0
1− exp(c+ 1) du

= 1− exp(c+ 1)

< 1− exp

(
cE

(
min
t∈[0,1]

Zt

))

≤ P (η > c),

as we have chosen c properly. But this contradicts equation (3.3).

By now, we have shown that functional domain of attraction is less restrictive than the do-

main of attraction in the sense of weak convergence. In turn, functional domain of attraction

obviously implies convergence of the fidis, and, moreover, hypoconvergence of the normed

maximum-process to the standard MSP in the sense of Molchanov [22] is implied. For the

latter see the Appendix on “Random Closed Sets and Hypoconvergence of Continuous Pro-

cesses”, p. 79, where we give a summary of – for this work at hand – crucial parts of random

set theory, including a rewritten characterization of hypoconvergence. It will turn out, that

this type of convergence is indeed strictly weaker than the functional domain of attraction

convergence.
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3.2 The Sojourn Time Transformation

In Chapter 4 below we study the random sojourn time which a continuous process spends

above some deterministic function. The setup enables in particular considerations of a type of

convergence for random elements in C̄−[0, 1]: we introduce the “convergence with respect to

the sojourn time transformation”, →STR for short, and examine the relations to other types

of convergence, in particular to the functional df convergence as defined in (3.1). To simplify

notation we write in the sequel for example 1 (Xt > f(t)) for 1{x:x>f(t)}(Xt).

Let X be a stochastic process in C̄−[0, 1] and put for f ∈ Ē−[0, 1]

SX(f) :=

∫ 1

0
1 (Xt > f(t)) dt,

which is the so journ time of X above the function f ; moreover, set

S̄X(f) := 1− SX(f) =

∫ 1

0
1(Xt ≤ f(t)) dt.

Lemma 3.5. The so journ time transformation, which maps the distribution of a

stochastic process X with sample paths in C̄−[0, 1] onto the family of (one dimensional)

sojourn time distributions

P ∗X 7→
{
P ∗ SX(f) : f ∈ Ē−[0, 1]

}

is one-to-one.

Proof. This is trivial from the fact that the distribution ofX is determined by its fidis together

with the equation

P (SX(f) = 0) = P (X ≤ f) , f ∈ Ē−[0, 1].

We say that a sequence of stochastic processes X(n) in C̄−[0, 1], n ∈ N, converges with re-

sp ect to the so journ time transformation to X in C̄−[0, 1], denoted by X(n) →STR

X, if

S
X(n)(f) →D SX(f), f ∈ Ē−[0, 1]. (3.4)

Note that (3.4) is equivalent with

S̄
X(n)(f) →D S̄X(f), f ∈ Ē−[0, 1], (3.5)

and recall that →D denotes usual convergence in distribution of a sequence of rv.

Proposition 3.6. Let X(n), n ∈ N, and X be stochastic processes in C̄−[0, 1] and suppose

that X has continuous marginal df. If the fidis of the sequence X(n) converge weakly to those

of X, then X(n) →STR X.
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Proof. We prove the assertion by verifying (3.5), which will be shown via convergence of

characteristic functions. We have for s ∈ R and f ∈ Ē−[0, 1]

E
(
exp

(
isS̄

X(n)(f)
))

= E

(
∞∑

k=0

(is)k

k!
S̄k
X(n)(f)

)
=

∞∑

k=0

(is)k

k!
E
(
S̄k
X(n)(f)

)
,

where we can interchange the sum and the expectation by the dominated convergence theorem,

as P (S
X(n)(f) ∈ [0, 1]) = 1.

From Fubini’s theorem we obtain for k ≥ 1

E
(
S̄k
X(n)(f)

)
= E

(∫ 1

0
. . .

∫ 1

0

k∏

i=1

1
(
X

(n)
ti

≤ f(ti)
)
dt1 . . . dtk

)

=

∫ 1

0
. . .

∫ 1

0
E

(
k∏

i=1

1
(
X

(n)
ti

≤ f(ti)
))

dt1 . . . dtk

=

∫ 1

0
. . .

∫ 1

0
P
(
X

(n)
t1 ≤ f(t1), . . . ,X

(n)
tk

≤ f(tk)
)
dt1 . . . dtk

→n→∞

∫ 1

0
. . .

∫ 1

0
P (Xt1 ≤ f(t1), . . . ,Xtk ≤ f(tk)) dt1 . . . dtk

= E
(
S̄k
X
(f)
)

by the dominated convergence theorem. But this implies

E
(
exp

(
isS̄

X(n)(f)
))

→n→∞ E
(
exp

(
isS̄X(f)

))
.

The reverse implication in Proposition 3.6 does not hold, i.e., STR-convergence does not

imply weak convergence of the fidis. This is shown in the following example.

Example 3.7. Take independent rv U and η, where U is uniformly on (−1, 0) distributed

and η follows a standard negative exponential distribution. Put for n ∈ N

X
(n)
t :=





U if t = 0,

η if t ∈ [1/n, 1],

(1− nt)U + ntη if t ∈ [0, 1/n],

and set

ηt = η, t ∈ [0, 1].

Then X(n), n ∈ N, η = (ηt)t∈[0,1] are processes in C̄−[0, 1], and we have X(n) →STR η, as

with f ∈ Ē−[0, 1]

∣∣∣∣
∫ 1

0
1(X

(n)
t > f(t)) dt−

∫ 1

0
1(ηt > f(t)) dt

∣∣∣∣

=

∣∣∣∣∣

∫ 1/n

0
1(X

(n)
t > f(t)) dt−

∫ 1/n

0
1(ηt > f(t)) dt

∣∣∣∣∣
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≤ 1

n
→n→∞ 0,

but U = X
(n)
0 6→D η0 = η.

Lemma 3.8. Let X(n) in C̄−[0, 1], n ∈ N, satisfy

P
(
X(n) ≤ f

)
→n→∞ P (X ≤ f) , f ∈ Ē−[0, 1],

where X ∈ C̄−[0, 1] has continuous marginal df. Then X(n) →STR X.

Proof. The assumption implies that the fidis of X(n) converge weakly to those of X and,

thus, Proposition 3.6 applies.

Note that zero is typically not a continuity point of the df of SX(f), i.e., we typically have

0 < P (SX(f) = 0) = P (X ≤ f) .

We, therefore, sharpen the definition of X(n) →STR X by requiring in addition convergence

at zero, i.e.,

P (S
X(n)(f) = 0) →n→∞ P (SX(f) = 0) .

We denote this more restrictive definition by X(n) →STR∗ X. The (double star-convergence)

STR∗-convergence characterizes convergence of the functional df, and, thus, functional domain

of attraction.

Lemma 3.9. Let X(n), n ∈ N, and X be stochastic processes in C̄−[0, 1] and suppose that

X has continuous marginal df. Then

P
(
X(n) ≤ f

)
→n→∞ P (X ≤ f) , f ∈ Ē−[0, 1] ⇐⇒ X(n) →STR∗ X.

As an example recall the iteration problem of Section 2.5.

Example 3.10. Let η(0) be a standard MSP with generator process Z(0) satisfying

P
(
inft∈[0,1] Z

(n)
t > 0

)
= 1, and consider the sequence η(n), n ≥ 1, of standard MSP

defined by iteration, i.e., Z(n) := |η(n−1)|, η(n) a standard MSP with generator Z(n), n ∈ N.

Let η be a standard MSP with completely dependent margins, i.e., ηt = η0, t ∈ [0, 1].

Bringing together the foregoing Lemma and Proposition 2.35 we get

η(n) →STR∗ η.

To summarize the foregoing considerations, the following picture gives an overview of the

implications of the different types of convergence towards standard MSP (“FDA” stands for

the “Functional Domain of Attraction”-convergence as defined in (3.1)):
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hypo

⇑
weak ⇒ FDA ⇔ STR∗

⇓
fidis

⇓
STR

3.3 A Sufficient Condition for Weak Convergence in C[0,1]

We have seen, that weak convergence of a sequence of continuous processes towards some

standard MSP is not implied by any of the types of convergence considered so far. However,

it is possible to give a sufficient condition for weak convergence in terms of an extension of

the sojourn time transformation.

First recall a useful condition for weak convergence on a separable metric space (S,S),
where S is the Borel σ−field on S, i.e. S is generated by the open balls B(x, ε) with respect

to the metric, cf. Billingsley [7, Theorem 2.3]: let A be a subclass of S which is closed under

the formation of finite intersections and for every x ∈ S and every ε > 0 there is some A ∈ A,

such that x ∈ A◦ ⊂ A ⊂ B(x, ε) (A◦ denotes the interior of A). Then A is a “convergence

determining class”, that is, Pn(A) → P (A) for n → ∞ implies weak convergence of this

sequence of measures (Pn)n∈N towards the measure P .

Furthermore, recall that the space (C[0, 1], ‖·‖∞) is separable (and complete), cf. Billingsley

[7, p. 11], and that the closed ball B̄(f, ε) with center f ∈ C[0, 1] and radius ε > 0 is given

by

B̄(f, ε) =
{
g ∈ C[0, 1] : supt∈[0,1] |f(t)− g(t)| ≤ ε

}

= {g ∈ C[0, 1] : f(t)− ε ≤ g(t) ≤ f(t) + ε for all t ∈ [0, 1]} .

Consider the class A of finite intersections of such closed balls B̄(f, ε). Then A obviously

fulfills the requirements on a convergence determining class listed above and an arbitrary

element A ∈ A is given by

A =
⋂

1≤i≤n

B̄(fi, εi)

=

{
g ∈ C[0, 1] : max

1≤i≤n
(fi − εi)(t) ≤ g(t) ≤ min

1≤i≤n
(fi + εi)(t) for all t ∈ [0, 1]

}
,

for some n ∈ N and appropriate fi ∈ C[0, 1], εi > 0, i = 1, . . . , n.

As both, max1≤i≤n(fi − εi) and min1≤i≤n(fi + εi) are continuous functions, we get due to

the foregoing arguments:

lim
n→∞

P
(
f1 ≤ X(n) ≤ f2

)
= P (f1 ≤ X ≤ f2) , for all f1 ≤ f2 ∈ C̄−[0, 1] =⇒ X(n) →D X,

(3.6)
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with Xn,X being processes with sample paths in C[0,1], n ∈ N; note that in this case “→D”

stands for weak convergence in (C[0, 1], ‖·‖∞).

Keeping this in mind, let X be a stochastic process in C̄−[0, 1] and f1, f2 ∈ Ē−[0, 1] with

f1 ≤ f2. Then

SX(f1, f2) :=

∫ 1

0
1(f1(t) ≤ Xt ≤ f2(t)) dt

is the so journ time which the process X spends between f1 and f2. With f2 = 0,

Sf (X) = Sf,0(X) is the sojourn time of X above the function f ∈ Ē−[0, 1].

Due to (3.6) we immediately get the following assertion.

Proposition 3.11. Let X(n), n ∈ N, and X be stochastic processes in C̄−[0, 1]. Then

P (S
X(n)(f1, f2) = 1) →n→∞ P (SX(f1, f2) = 1) for all f1 ≤ f2 ∈ C̄−[0, 1] =⇒ X(n) →D X.

Remark 7. It can be shown with completely analogous arguments as in the proof of Proposi-

tion 3.6 that weak convergence of the fidis of a sequence X(n) towards those of X is sufficient

for

S
X(n)(f1, f2) →D SX(f1, f2) for all f1 ≤ f2 ∈ Ē−[0, 1],

X(n), n ∈ N, and X being stochastic processes in C̄−[0, 1] and X has continuous marginal

df. Note that one is typically not a continuity point of the df of SX(f1, f2), as we have

P (SX(f1, f2) = 1) = P (f1 ≤ X ≤ f2) .

Remark 8. Suppose a sequence of functional distribution functions of stochastic processes

X(n) in C̄−[0, 1] converges to the functional distribution function of some X in C̄−[0, 1] with

continuous marginal df, i.e.

lim
n→∞

P
(
X(n) ≤ f

)
= P (X ≤ f), f ∈ Ē−[0, 1] (3.7)

(in particular, X = η with some standard MSP η is possible). As (3.7) immediately implies

weak convergence of the fidis we get S
X(n)(f1, f2) →D SX(f1, f2) for all f1 ≤ f2 ∈ Ē−[0, 1].

The Portmanteau Theorem (e.g. Billingsley [7, Theorem 2.1]) implies that

lim sup
n→∞

P (S
X(n)(f1, f2) = 1) ≤ P (SX(f1, f2) = 1) .

But we have seen in Example 3.4, that in presence of (3.7) it is possible that

lim inf
n→∞

P (S
X(n)(f1, f2) = 1) < P (SX(f1, f2) = 1) .

3.4 Functional Domain of Attraction for Copula Processes

Let Y = (Yt)t∈[0,1] in C[0, 1] be a stochastic process with continuous marginal df Ft, t ∈ [0, 1].

Set

U = (Ut)t∈[0,1] := (Ft(Yt))t∈[0,1], (3.8)
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which is the copula process corresponding to Y . Note that each one-dimensional

marginal distribution of U is the uniform distribution on [0, 1]. Moreover, U has continuous

sample paths, as can be seen as follows: the continuous sample paths of the process Y

imply Ftn(x) → Ft(x) for tn → t and as we assume continuous marginal df Ft for ev-

ery t ∈ [0, 1], the convergence of the df is in fact uniformly in x ∈ R. But this implies

Utn = Ftn(Ytn) → Ft(Yt) = Ut, i.e. the paths of U = (Ft(Yt))t∈[0,1] are continuous.

Suppose that the copula process corresponding to Y is in the functional domain of attraction

of a standard MSP η, representable as in Proposition 2.4. Then we know from Aulbach et al.

[3] that for d ∈ N the copula Cd corresponding to the rv (Yi/d)
d
i=1 satisfies the equation

Cd(y) = 1− ‖1− y‖Dd
+ o (‖1− y‖∞) , (3.9)

as ‖1− y‖∞ → 0, uniformly in y ∈ [0, 1]d, where the D-norm is given by

‖x‖Dd
= E

(
max
1≤i≤d

(
|xi|Zi/d

))
, x ∈ Rd.

We are going to establish an analogous result for the functional domain of attraction.

Let η be a standard MSP and let Y be an arbitrary stochastic process in C[0, 1]. By taking

logarithms, we obtain the following equivalences with some norming functions an ∈ C+[0, 1],

bn ∈ C[0, 1], n ∈ N:

Y ∈ D(η) in the sense of condition (3.1)

⇐⇒ P

(
Y − bn

an
≤ f

)n

= exp (−‖f‖D) + o(1), f ∈ Ē−[0, 1], as n → ∞,

⇐⇒ P

(
Y − bn

an
≤ f

)
= 1− 1

n
‖f‖D + o

(
1

n

)
, f ∈ Ē−[0, 1], as n → ∞.

Let U be a copula-process as defined in (3.8) and set Hf (s) := P (U − 1 ≤ s |f |), s ≤
0, f ∈ Ē−[0, 1]. Note that Hf (·) defines a univariate df on (−∞, 0]. The family P :={
Hf : f ∈ Ē−[0, 1]

}
of univariate df is the spectral decomposition of the df H(f) =

P (U−1 ≤ f), f ∈ Ē−[0, 1] of U−1. This extends the spectral decomposition of a multivariate

df in Falk et al. [17, Section 5.4]. Note that the norming functions an ∈ C+[0, 1], bn ∈ C[0, 1]

are in case of copula processes necessarily given by an ≡ n, bn = 1 for n ∈ N, due to the

uniformly distributed one-dimensional margins of U ; so standard arguments yield the next

result.

Proposition 3.12. The following equivalences hold:

U ∈ D(η) in the sense of condition (3.1)

⇔ P

(
U − 1 ≤ f

n

)
= 1−

∥∥∥∥
f

n

∥∥∥∥
D

+ o

(
1

n

)
, f ∈ Ē−[0, 1], as n → ∞,

⇔ Hf (s) = 1 + s ‖f‖D + o(s), f ∈ Ē−[0, 1], as s ↑ 0, (3.10)

Remark 9. Characterization (3.10) entails in particular that Hf (s) is differentiable from the

left in s = 0 with derivative hf (0) :=
d
dsHf (s)|s=0 = ‖f‖D , f ∈ Ē−[0, 1].
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Remark 10. A sufficient condition for U ∈ D(η) is given by

P (U − 1 ≤ g) = 1− ‖g‖D + o(‖g‖∞) (3.11)

as ‖g‖∞ → 0, uniformly for all g ∈ Ē−[0, 1] with ‖g‖∞ ≤ 1, i.e., for all g in the unit ball of

Ē−[0, 1].

Example 3.13. Take U = exp(η). Then U is a copula process, and we obtain uniformly for

g ∈ Ē−[0, 1] with ‖g‖∞ ≤ 1− ε by using the approximation log(1 + x) = x+O
(
x2
)
as x → 0

P (U − 1 ≤ g) = P (η ≤ log(1 + g))

= exp

(
−E

(
sup
t∈[0,1]

(|log(1 + g(t))|Zt)

))

= exp

(
−E

(
sup
t∈[0,1]

(∣∣g(t) +O
(
g(t)2

)∣∣Zt

)
))

= exp

(
−E

(
sup
t∈[0,1]

(|g(t)|Zt)

)
+O

(
‖g‖2∞

))

= 1− ‖g‖D +O
(
‖g‖2∞

)
, (3.12)

i.e., the copula process U = exp(η) satisfies condition (3.11).

We have seen in Lemma 2.2 that a standard MSP η satisfies P (η < 0) = 1. We add two

corresponding results for copula processes, which are in the domain of attraction of some

standard MSP η.

Lemma 3.14. Suppose that the copula process U with sample paths in C[0, 1] satisfies −U ∈
D(η), where η is a standard MSP in C[0, 1]. Then

P

(
inf

t∈[0,1]
Ut > 0

)
= 1.

Proof. The continuity from below of a probability measure implies

P

(
inf

t∈[0,1]
Ut > 0

)
= P

(
sup
t∈[0,1]

(−Ut) < 0

)

= P

(
⋃

n∈N

{
sup
t∈[0,1]

(−Ut) ≤ − 1

n

})

= lim
n→∞

P

(
sup
t∈[0,1]

(−Ut) ≤ − 1

n

)

= lim
n→∞

P (n(−U) ≤ −1)
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= lim
n→∞

(P (n(−U) ≤ −1)n)1/n

= 1

as P (n(−U) ≤ −1)n →n→∞ P (η ≤ −1) = exp(−‖1‖D) > 0.

Corollary 3.15. Suppose that the copula process U with sample paths in C[0, 1] satisfies

U ∈ D(η), where η is a standard MSP in C[0, 1]. Then

P

(
sup
t∈[0,1]

Ut < 1

)
= 1.

Proof. Note that Ũ := U − 1 ∈ D(η) and that

P

(
sup
t∈[0,1]

Ut < 1

)
= P

(
inf

t∈[0,1]
−(Ũt) > 0

)
.

The assertion is now a consequence of Lemma 3.14.

We close this section by giving an example of a copula process which fulfills the requirements

of the foregoing assertions and which will be usefull in the next section.

Example 3.16. Let ζ = (ζt)t∈[0,1] an MSP in C[0, 1] with arbitrary (max-stable) one-

dimensional marginal distributions. That is, for every t ∈ [0, 1], there are a(t) > 0, b(t), γ(t) ∈
R with

Gt(x) := P (ζt ≤ x) = exp

(
−
(
1 + γ(t)

x− b(t)

a(t)

)−1/γ(t)
)
,

compare the considerations at the beginning of Chapter 2. Moreover, we have

P (ζ ≤ f) = exp(−‖Ψ(f)‖D), f ∈ E[0, 1]

for some D-norm ‖·‖D and with Ψ(·) defined as on page 19.

Define U := (Ut)t∈[0,1] := (Gt(ζt))t∈[0,1] which is the (continuous) copula process of ζ. Then

we get for every g ∈ Ē−[0, 1] with ‖g‖∞ ≤ 1

P (U − 1 ≤ g) = P (ζt ≤ G−1
t (g(t) + 1) for all t ∈ [0, 1])

= exp(−
∥∥Ψ(G−1

t (g(t) + 1))
∥∥
D
)

= exp(−‖log(g(t) + 1)‖D).

Thus, the same arguments as in Example 3.13 yield that U fulfills (3.11), so U ∈ D(η) for

some standard MSP η.

Moreover, Lemma 3.14 yields P (U > 0) = 1.
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3.5 A Characterization of Functional Domain of Attraction via
Copula Processes

We conclude from de Haan and Lin [10] that a process Y = (Yt)t∈[0,1] with continuous marginal

df Ft, t ∈ [0, 1] is in the domain of attraction (in the sense of weak convergence of probability

measures on C[0, 1]) of an MSP if, and only if Yt is in the domain of attraction of a univariate

extreme value distribution for each t ∈ [0, 1] together with the condition that the pertaining

copula process U = (Ut)t∈[0,1] = (Ft(Yt))t∈[0,1] converges weakly to a standard MSP η, that is
(
max
1≤i≤n

n(U
(i)
t − 1)

)

t∈[0,1]

→D η (3.13)

in C[0, 1], where U (i), i ∈ N, are independent copies of U .

The question arises, if it possible to characterize functional domain of attraction of an

MSP ξ with arbitrary univariate (max-stable) margins in an analogous manner. This is the

issue of this section.

Let X = (Xt)t∈[0,1] in C[0, 1] be a stochastic process with continuous marginal df Ft(x) =

P (Xt ≤ x), x ∈ R, t ∈ [0, 1], and let ξ = (ξt)t∈[0,1] in C[0, 1] be an MSP with marginal df Gt,

t ∈ [0, 1]. Suppose that there exist norming functions an > 0, bn ∈ C[0, 1], n ∈ N, such that

sup
t∈[0,1]

∣∣n
(
Ft(an(t)x+ bn(t))− 1

)
− log

(
Gt(x)

)∣∣→n→∞ 0 (3.14)

for each x ∈ R with Gt(x) > 0, t ∈ [0, 1]. This condition is condition (3.11) in de Haan and

Lin [10]. Using Taylor expansion log(1 + ε) = ε+O(ε2) as ε → 0, condition (3.14) implies in

particular weak convergence of the univariate margins, i.e.,

Ft(an(t)x+ bn(t))
n →n→∞ Gt(x), x ∈ R, t ∈ [0, 1].

Proposition 3.17. Put U := (Ut)t∈[0,1] := (Ft(Xt))t∈[0,1], which is the copula process

corresponding to X. Let U (1),U (2), . . . and X(1),X(2), . . . be independent copies of U and

X, respectively.

Then, in the presence of condition (3.14),

P

(
max
1≤i≤n

X(i) − bn
an

≤ f

)
→n→∞ P (ξ ≤ f), f ∈ E[0, 1], (3.15)

if and only if

P

(
n max

1≤i≤n

(
U (i) − 1

)
≤ g

)
→n→∞ P (η ≤ g), g ∈ E−[0, 1], (3.16)

where for the implication (3.15) =⇒ (3.16) we set ηt := log(Gt(ξt)), t ∈ [0, 1], and for the

reverse conclusion ξt := G−1
t (exp(ηt)), t ∈ [0, 1]. In both cases the processes ξ := (ξt)t∈[0,1],

η := (ηt)t∈[0,1] are max-stable processes in C[0, 1], η being an standard MSP.

Note that P (Gt(ξt) = 0 for some t ∈ [0, 1]) = 0 for an MSP ξ = (ξt)t∈[0,1], see Example

3.16, and, thus, ηt := log(Gt(ξt)), t ∈ [0, 1] is well-defined.
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Proof. As X has continuous sample paths, we have continuity of the function [0, 1] ∋ t 7→
Gt(x) for each x ∈ R and, thus, continuity of the function [0, 1] × R ∋ (t, x) 7→ Gt(x) as well

as its monotonicity in x for a fixed t. Elementary arguments now imply that condition (3.14)

is equivalent with

sup
x∈[x1,x2]

sup
t∈[0,1]

∣∣n
(
Ft(an(t)x+ bn(t))− 1

)
− log

(
Gt(x)

)∣∣→n→∞ 0 (3.17)

for each x1 ≤ x2 ∈ R with Gt(x1) > 0, t ∈ [0, 1]. As Gt(x1) is a continuous function in

t ∈ [0, 1], this condition on x1 is equivalent with inft∈[0,1]Gt(x1) > 0. Condition (3.17) is,

therefore, equivalent with

sup
t∈[0,1]

∣∣n
(
Ft(an(t)f(t) + bn(t))− 1

)
− log

(
Gt(f(t))

)∣∣→n→∞ 0 (3.18)

for each f ∈ E[0, 1] with inft∈[0,1]Gt(f(t)) > 0.

We first establish the implication (3.15) =⇒ (3.16). Choose g ∈ E−[0, 1] with

supt∈[0,1] g(t) < 0, and put f(t) := G−1
t (exp(g(t)) ∈ E[0, 1]. From assumption (3.15)

we obtain

P

(
max
1≤i≤n

X(i) ≤ anf + bn

)
→n→∞ P (ξ ≤ f) = P (η ≤ g) = exp (−‖g‖D) , (3.19)

where ‖·‖D is the D-norm corresponding to the SMSP η.

We have, on the other hand, by condition (3.18)

P

(
max
1≤i≤n

X(i) ≤ anf + bn

)

= P

(
n max

1≤i≤n

(
U

(i)
t − 1

)
≤ n

(
Ft(an(t)f(t) + bn(t)) − 1

)
, t ∈ [0, 1]

)

= P

(
n max

1≤i≤n

(
U

(i)
t − 1

)
≤ g(t) + rn(t), t ∈ [0, 1]

)
,

where rn(t) = o(1) as n → ∞, uniformly for t ∈ [0, 1]. We claim that

P

(
n max

1≤i≤n

(
U (i) − 1

)
≤ g

)
→n→∞ P (η ≤ g). (3.20)

Replace g by g + ε and g − ε for ε > 0 small enough such that g + ε < 0, and put

fε(t) := G−1
t (exp(g(t) + ε)), f−ε(t) := G−1

t (exp(g(t) − ε)), t ∈ [0, 1].

Then fε, f−ε ∈ E[0, 1], and we obtain from condition (3.18) and equation (3.19) for n ≥ n0

P

(
n max

1≤i≤n

(
U

(i)
t − 1

)
≤ n

(
Ft(an(t)fε(t) + bn(t))− 1

)
, t ∈ [0, 1]

)

≥ P

(
n max

1≤i≤n

(
U (i) − 1

)
≤ g

)

≥ P

(
n max

1≤i≤n

(
U

(i)
t − 1

)
≤ n

(
Ft(an(t)f−ε(t) + bn(t))− 1

)
, t ∈ [0, 1]

)
,
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where the upper bound converges to exp (−‖g + ε‖D) and the lower bound to exp (−‖g − ε‖D).
As both converge to exp (−‖g‖D) as ε → 0, we have established (3.20).

Next we claim that (3.20) is true for each g ∈ E−[0, 1], i.e., we drop the assumption

supt∈[0,1] g(t) < 0. We prove this by a contradiction. Suppose first that there exists g ∈
E−[0, 1] such that

lim inf
n→∞

P

(
n max

1≤i≤n

(
U (i) − 1

)
≤ g

)
≤ exp (−‖g‖D)− δ

for some δ > 0. From (3.20) we deduce that for each ε > 0

lim
n→∞

P

(
n max

1≤i≤n

(
U (i) − 1

)
≤ g − ε

)
= exp (−‖g − ε‖D)

and, thus,

exp (−‖g‖D)− δ

≥ lim inf
n→∞

P

(
n max

1≤i≤n

(
U (i) − 1

)
≤ g

)

≥ lim inf
n→∞

P

(
n max

1≤i≤n

(
U (i) − 1

)
≤ g − ε

)

= exp (−‖g − ε‖D) .

As ε > 0 was arbitrary, we have reached a contradiction and, thus, we have established that

lim inf
n→∞

P

(
n max

1≤i≤n

(
U (i) − 1

)
≤ g

)
≥ exp (−‖g‖D) , g ∈ E−[0, 1].

Suppose next that there exists g ∈ E−[0, 1] such that

lim sup
n→∞

P

(
n max

1≤i≤n

(
U (i) − 1

)
≤ g

)
≥ exp (−‖g‖D) + δ

for some δ > 0. We have by (3.20) for ε > 0

lim
n→∞

P

(
n max

1≤i≤n

(
U (i) − 1

)
≤ −ε

)
= exp (−ε ‖1‖D) →ε↓0 1,

and, thus,

exp (−‖g‖D) + δ

≤ lim sup
n→∞

P

(
n max

1≤i≤n

(
U (i) − 1

)
≤ g

)

≤ lim sup
n→∞

(
P

(
n max

1≤i≤n

(
U (i) − 1

)
≤ g, n max

1≤i≤n

(
U (i) − 1

)
≤ −ε

)

+ P

((
n max

1≤i≤n

(
U (i) − 1

)
≤ −ε

)∁
))

= exp
(
−
∥∥(min(g(t),−ε)t∈[0,1]

∥∥
D

)
+ 1− exp (−ε ‖1‖D)
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by (3.20). As the first term in the final line above converges to exp (−‖g‖D) as ε ↓ 0 and the

second one to zero, we have established another contradiction and, thus,

lim sup
n→∞

P

(
n max

1≤i≤n

(
U (i) − 1

)
≤ g

)
≤ exp (−‖g‖D) , g ∈ E−[0, 1].

This proves equation (3.20) for arbitrary g ∈ E−[0, 1] and completes the proof of the conclusion

(3.15) =⇒ (3.16).

Next we establish the implication (3.16) =⇒ (3.15). Choose f ∈ E[0, 1] with

inft∈[0,1] Gt(f(t)) > 0 and put g(t) := log(Gt(f(t))), t ∈ [0, 1]. From the assumption

(3.16) we obtain

P

(
n max

1≤i≤n

(
U (i) − 1

)
≤ g

)
→n→∞ P (η ≤ g) = P (ξ ≤ f) = exp (−‖g‖D) .

On the other hand, we have by condition (3.14)

P

(
n max

1≤i≤n

(
U (i) − 1

)
≤ g

)

= P

(
n max

1≤i≤n

(
U (i) − 1

)
≤ n

(
Ft(an(t)f(t) + bn(t))− 1

)
+ rn(t), t ∈ [0, 1]

)
,

where rn(t) = o(1) as n → ∞, uniformly for t ∈ [0, 1]. We claim that

P

(
n max

1≤i≤n

(
U (i) − 1

)
≤ n

(
Ft(an(t)f(t) + bn(t)) − 1

)
, t ∈ [0, 1]

)

→n→∞ P (η ≤ g)

= exp (−‖g‖D) . (3.21)

Replace g by min(g+ ε, 0) and g− ε, where ε > 0 is arbitrary. Then we obtain from (3.16)

and condition (3.14) for n ≥ n0 = n0(ε)

P

(
n max

1≤i≤n

(
U (i) − 1

)
≤ min(g + ε, 0)

)

= P

(
n max

1≤i≤n

(
U (i) − 1

)
≤ g + ε

)

≥ P

(
n max

1≤i≤n

(
U (i) − 1

)
≤ n

(
Ft(an(t)f(t) + bn(t))− 1

)
, t ∈ [0, 1]

)

≥ P

(
n max

1≤i≤n

(
U (i) − 1

)
≤ g − ε

)
.

As

P

(
n max

1≤i≤n

(
U (i) − 1

)
≤ min(g + ε, 0)

)
→n→∞ exp (−‖min(g + ε, 0)‖D)

and
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P

(
n max

1≤i≤n

(
U (i) − 1

)
≤ g − ε

)
→n→∞ exp (−‖g − ε‖D) ,

and ε > 0 was arbitrary, (3.21) follows.

From the equality

P

(
n max

1≤i≤n

(
U (i) − 1

)
≤ n

(
Ft(an(t)f(t) + bn(t)) − 1

)
, t ∈ [0, 1]

)

= P

(
max
1≤i≤n

X(i) ≤ anf + bn

)

we obtain from (3.21) that

lim
n→∞

P

(
max
1≤i≤n

X(i) ≤ anf + bn

)
= P (ξ ≤ f) (3.22)

for each f ∈ E[0, 1] with inft∈[0,1]Gt(f(t)) > 0. If inft∈[0,1]Gt(f(t)) = 0, then, for ε > 0,

there exists t0 ∈ [0, 1] such that Gt0(f(t0)) ≤ ε. We, thus, have P (ξ ≤ f) ≤ P (ξt0 ≤ f(t0)) =

Gt0(f(t0)) ≤ ε and, by condition (3.14)

P

(
max
1≤i≤n

X(i) ≤ anf + bn

)
≤ P

(
max
1≤i≤n

X
(i)
t0 ≤ an(t0)f(t0) + bn(t0)

)

→n→∞ Gt0(f(t0))

≤ ε.

As ε > 0 was arbitrary, we have established

lim
n→∞

P

(
max
1≤i≤n

X(i) ≤ anf + bn

)
= 0 = P (ξ ≤ f)

in that case, where inft∈[0,1]Gt(f(t)) = 0 and, thus, (3.22) for each f ∈ E[0, 1].

We close this section by considering the case of identical marginal distributions: under this

restriction a characterization as in (3.13) is possible for functional domain of attraction. It

is subject of current research whether this condition of identical marginal distribution can be

dropped.

Corollary 3.18. Let X = (Xt)t∈[0,1] in C[0, 1] be a stochastic process with identical contin-

uous marginal df F (x) = P (Xt ≤ x), x ∈ R, t ∈ [0, 1], and let ξ = (ξt)t∈[0,1] in C[0, 1] be

an MSP with identical marginal df G. Denote by U = (Ut)t∈[0,1] := (F (Ut))t∈[0,1] the copula

process pertaining to X. Then we have X ∈ D(η) if and only if U ∈ D(η) together with the

condition F ∈ D(G).

Proof. The assumption F ∈ D(G) yields supx∈R |Fn(anx+ bn)−G(x)| →n→∞ 0 for some

sequence of norming constants an > 0, bn ∈ R, n ∈ N. Taking logarithms and using Taylor
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expansion of log(1 + x) for x ∈ [x0, x1] with x0 > 0 implies

sup
x∈[x0,x1]

|n(F (anx+ bn)− 1)− log(G(x))| →n→∞ 0

and, thus, condition (3.14) is satisfied. Corollary 3.18 is now an immediate consequence of

Theorem 3.17 together with the fact that the assumption X ∈ D(ξ) implies in particular that

F ∈ D(G).

3.6 Generalized Pareto Processes

A univariate GPD W is simply given by W (x) = 1 + log(G(x)), G(x) ≥ 1/e, where G is a

univariate EVD (see, e.g., Falk et al. [17]). It was, roughly, established by Pickands [23] and

Balkema and de Haan [5] that the maximum of n iid univariate observations, linearly stan-

dardized, converges in distribution to an EVD as n increases if, and only if, the exceedances

above an increasing threshold follow a generalized Pareto distribution (GPD). The multivari-

ate analogon is due to Rootzén and Tajvidi [25]. It was observed by Buishand et al. [8] that

a d-dimensional GPD W with ultimately standard Pareto margins can be represented in its

upper tail as W (x) = P (U−1Z ≤ x), x0 ≤ x ≤ 0 ∈ Rd, where the rv U is uniformly on (0, 1)

distributed and independent of the rv Z = (Z1, . . . , Zd) with 0 ≤ Zi ≤ c for some c ≥ 1 and

E(Zi) = 1, 1 ≤ i ≤ d.

In infinite dimensional space, the investigation of generalized Pareto processes is at the

very beginning: in Buishand et al. [8] and as a sketch in exercise 9.5 in de Haan and Ferreira

[9], the foregoing constructive approach on Rd was carried over to continuous processes on

compact intervals:

Let U be a uniformly on [0, 1] distributed rv, which is independent of a generator process

Z ∈ C̄+[0, 1] with properties (2.6). Then the stochastic process

Y :=
1

U
Z ∈ C̄+[0, 1].

is called a simple GPD-process (cf. Buishand et al. [8]).

The one-dimensional margins Yt of Y have ultimately standard Pareto tails:

P (Yt ≤ x) = P

(
1

x
Zt ≤ U

)

=

∫ m

0
P

(
1

x
z ≤ U

)
(P ∗ Zt)(dz)

= 1− 1

x

∫ m

0
z (P ∗ Zt)(dz)

= 1− 1

x
E(Zt)

= 1− 1

x
, x ≥ m, 0 ≤ t ≤ 1.

Put V := −1/Y . Then we get

P (V ≤ f) = P

(
sup
t∈[0,1]

(|f(t)|Zt) ≤ U

)
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= 1−
∫ 1

0
P

(
sup
t∈[0,1]

(|f(t)|Zt) > u

)
du

= 1− E

(
sup
t∈[0,1]

(|f(t)|Zt)

)

= 1− ‖f‖D
for all f ∈ Ē−[0, 1] with ‖f‖∞ ≤ 1/m, i.e., V has the property that its distribution function

is in its upper tail equal to

W (f) := P (V ≤ f)

= 1− ‖f‖D
= 1 + log (exp (−‖f‖D))
= 1 + log(G(f)), f ∈ Ē−[0, 1], ‖f‖∞ ≤ 1/m, (3.23)

where G(f) = P (η ≤ f) is the functional df of the MSP η with D-norm ‖·‖D and generator

Z.

The preceding representation of the upper tail of a functional GPD in terms of 1 + log(G)

is in complete accordance with the unit- and multivariate case (see, for example, Falk et al.

[17, Chapter 5]). We write W = 1 + log(G) in short notation and call V a GPD-process as

well.

Remark 11. One of the most recent considerations on the issue of generalized Pareto pro-

cesses is the paper of Ferreira and de Haan [18]. Therein, a simple Pareto process W is

defined as given above, but the generator process Z ≡ V (this is the notation within the

referenced work) has slightly modified properties: the requirement E(Z(s)) = 1, s ∈ [0, 1]

in our setup is weakened to E(V (s)) > 0, s ∈ [0, 1], but there has to be some ω0 > 0 with

P (sups∈[0,1] V (s) = ω0) = 1. It was shown, that

P (W ≤ f) = 1− E

(
sup
t∈[0,1]

V (s)

f(s)

)
, and P (W > f) = E

(
inf

t∈[0,1]

V (s)

f(s)

)
,

for W = (W (s))s∈[0,1] := (V (s)/U)s∈[0,1] and f ∈ C[0, 1] with inft∈[0,1] f(t) ≥ ω0. This is in

accordance with the setup presented here (compare also Lemma 3.22 below).

Remark 12. Due to representation (3.23), the GPD process V is clearly in the functional

domain of attraction of the standard MSP η with D-norm ‖·‖D and generator Z (in the sense

of equation (3.1); take an ≡ 1/n and bn ≡ 0).

Remark 13. As already mentioned by Buishand et. al [8], the GPD-process Y is in the

domain of attraction of a simple max-stable process ξ in the sense of weak convergence on

C[0, 1]: for Y1,Y2, . . . independent copies of Y we have

1

n
max
1≤i≤n

Yi →D ξ in C[0, 1].
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We deduce in particular a functional version of the well-known fact that the spectral df of

a GPD random vector is equal to a uniform df in a neighborhood of 0.

Lemma 3.19. We have for f ∈ Ē−[0, 1] with ‖f‖∞ ≤ m and some t0 < 0

Wf (t) := P (V ≤ t |f |) = 1 + t ‖f‖D , t0 ≤ t ≤ 0.

Let U be a copula process. Then the following extension of Proposition 3.12 holds.

Proposition 3.20. The property U ∈ D(η) in the sense of condition (3.1) is equivalent to

lim
t↑0

1−Hf (t)

1−Wf (t)
= 1, f ∈ Ē−[0, 1], (3.24)

i.e., the spectral df Hf (t) = P (U − 1 ≤ t |f |), t ≤ 0, of U − 1 is tai l equivalent with that

of the GPD W = 1 + log(G).

Definition 3.21. A stochastic process V with sample paths in C̄−[0, 1] is a standard gen-

eral ized Pareto process (GPP), if there exists a D-norm ‖·‖D on E[0, 1] and some c0 > 0

such that

P (V ≤ f) = 1− ‖f‖D
for all f ∈ Ē−[0, 1] with ‖f‖∞ ≤ c0.

Equivalently, V is a standard GPP, if and only if there is ε0 > 0, M < 0 and some generator

process Z = (Zt)t∈[0,1] with P (V ≤ f) = P
(
(max(−U/Zt,M))0≤t≤1 ≤ f

)
for all f ∈ Ē−[0, 1]

with ‖f‖∞ ≤ ε0. As Z may attain the value zero, we introduce the constant M to ensure

finite values of the process.

The following assertion will be useful in Section 4.2.

Lemma 3.22. For each standard GPP V there exists s0 > 0 such that for 0 ≤ s ≤ s0 and

for each f ∈ Ē−[0, 1] with ‖f‖∞ ≤ 1

(i)

P (V ≤ sf) = 1− sE

(
sup
t∈[0,1]

(|f(t)|Zt)

)
= 1− s ‖f‖D ,

(ii)

P (V > sf) = sE

(
inf

t∈[0,1]
(|f(t)|Zt)

)
,
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(iii)

P (Vti > sf(ti), 1 ≤ i ≤ k) = sE

(
min
1≤i≤k

(|f(ti)|Zti)

)

for each set 0 ≤ t1 < · · · < tk ≤ 1, k ∈ N.

Proof. Assertion (i) is immediately from the definition. For (ii) take a generator process

Z = (Zt)t∈[0,1] and an uniformly distributed rv U , independent of Z, with V = (Vt)t∈[0,1] =

(max(−U/Zt,M))t∈[0,1] in the upper tail. Then, for some s0 > 0 small enough, we get

P (V > sf) = P (−U/Z > sf)

= P (U < s inf
t∈[0,1]

(|f(t)|Zt))

= sE( inf
t∈[0,1]

(|f(t)|Zt)),

for 0 ≤ s ≤ s0 and for each f ∈ Ē−[0, 1] with ‖f‖∞ ≤ 1 by the independence of U and Z.

With completely analogous arguments, (iii) follows.

Examples of Standard GPP

Due to the representation V = (Vt)t∈[0,1] = (−U/Zt)t∈[0,1] for standard GPP with some

generator process Z = (Zt)t∈[0,1], we can take the exemplary generator processes of Section

2.4 to get a visual idea of possible sample paths of standard GPP.

0.0 0.2 0.4 0.6 0.8 1.0

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

U[1] = 0.5976
U[2] = 0.8423
U[3] = 0.421
U[4] = 0.06838

Figure 3.1: Some sample paths of the standard GPP V = −U/Z resulting from the sample
paths pictured in Figure 2.1 with different realizations of the uniformly distributed
rv U .
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0.0 0.2 0.4 0.6 0.8 1.0

−8

−6

−4

−2

0

U[1] = 0.2289
U[2] = 0.8293
U[3] = 0.07632

Figure 3.2: Some sample paths of the standard GPP V = −U/Z(BM) resulting from the
sample paths pictured in Figure 2.3 with different realizations of the uniformly
distributed rv U .

0.0 0.2 0.4 0.6 0.8 1.0

−8

−6

−4

−2

0

U[1] = 0.7433
U[2] = 0.03311
U[3] = 0.9181

Figure 3.3: Some sample paths of the standard GPP V = −U/Z(BB) resulting from the
sample paths pictured in Figure 2.4 with different realizations of the uniformly
distributed rv U .
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4 Sojourn Times of Continuous Processes

We already introduced in Subsection 3.2 the random sojourn time SX(f) of a stochastic

process X with sample paths in C̄−[0, 1] above some function f ∈ Ē−[0, 1] and we defined a

type of convergence for continuous processes based on that. In this chapter we study properties

of

SY (f) :=

∫ 1

0
1(Yt > f(t)) dt,

where Y is a sample continuous process with – in most cases – identical continuous marginal

distribution. We first investigate in Section 4.1 the expectation of the sojourn time SY (s)

of Y above a constant threshold function s ∈ R, i.e., SY (s) =
∫ 1
0 1(Yt > s) dt, under the

condition that there is an exceedance, i.e., S(s) > 0. In particular we establish its asymptotic

equality with the limit of the so-called fragility index (FI; cf. Geluk et al. [19]) corresponding

to (Yi/n)1≤i≤n. Moreover, our setup enables an appealing representation of the cumulative

expected shortfall for continuous stochastic processes.

For processes, which are in a certain neighborhood of a generalized Pareto process (e.g.

MSP), we can replace the constant threshold s ∈ R by a threshold function and we can

compute the asymptotic sojourn time distribution above a high threshold function, see Section

4.2. Given that there is an exceedance Yt0 > s above the threshold s at t0, we compute in

Section 4.3 the asymptotic distribution of the remaining excursion time, that the process

spends above the threshold function without cease.

4.1 Sojourn Times, Fragility Index and Expected Shortfall

Let Y = (Yt)t∈[0,1] be a continuous stochastic process with identical continuous marginal df

F .

Before we present the main results of this section we need some auxiliary results. Put for

n ∈ N

S(n)(s) := S
(n)
Y

(s) :=
1

n

n∑

i=1

1(Yi/n > s),

which is a Riemann sum of the integral S(s) := SY (s). We have

S(n)(s) →n→∞ S(s)

and, thus,

P (S(n)(s) ≤ x) →n→∞ P (S(s) ≤ x)

for each x ≥ 0 such that P (S(s) = x) = 0. Additionally, we have always convergence for

x = 0, although P (S(s) = 0) = P (Yt ≤ s for all t ∈ [0, 1]) > 0 in general.



4 Sojourn Times of Continuous Processes 67

Lemma 4.1. We have

P (S(n)(s) = 0) →n→∞ P (S(s) = 0),

Proof. We have

P (S(n)(s) = 0) ≤ P (S(n)(s) ≤ ε) →n→∞ P (S(s) ≤ ε) = P (S(s) = 0) + δ,

where ε, δ > 0 can be made arbitrarily small. This implies lim supn→∞ P (S(n)(s) = 0) ≤
P (S(s) = 0). We have, on the other hand,

P (S(s) = 0) = P

(
⋂

n∈N

{
S(n)(s) = 0

})
≤ lim inf

n→∞
P (S(n)(s) = 0),

which implies the assertion.

As a consequence we obtain

P (S(n)(s) ≤ x | S(n)(s) > 0) =
P (0 < S(n)(s) ≤ x)

P (S(n)(s) > 0)

→n→∞
P (0 < S(s) ≤ x)

P (S(s) > 0)

= P (S(s) ≤ x | S(s) > 0)

for each x > 0 such that P (S(s) = x) = 0, if P (S(s) > 0).

Due to the assumption that all one dimensional margins of Y have identical continuous df

F , we get

S(n)(s) =
1

n

n∑

i=1

1(F (Yi/n) > F (s)) =
1

n

n∑

i=1

1(Ui/n > c)

with probability one, where Ui/n := F (Yi/n) is uniformly distributed on (0, 1), i = 1, . . . , n,

and c := F (s).

Denote by Ns :=
∑n

i=1 1(s,∞)(Yi/n) the number of exceedances among (Yi/n)1≤i≤n above

the threshold s. The fragil ity index (FI) corresponding to (Yi/n)1≤i≤n is defined as the

asymptotic expectation of the number of exceedances given that there is at least one ex-

ceedance:

FI := lim
sրω(F )

E(Ns | Ns > 0),

where ω(F ) := sup {t ∈ R : F (t) < 1}. The FI was introduced in Geluk et al. [19] to measure

the stability of a stochastic system. The system is called stable if FI = 1, otherwise it is called

fragile. The collapse of a bank, symbolized by an exceedance, would be a typical example,

illustrating the FI as a measure of joint stability among a portfolio of banks. For an extensive

investigation and extension of the FI we refer to Falk and Tichy [16, 15].

Note that

FI(n)(s) := E(nS(n)(s) | S(n)(s) > 0)
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= E

(
n∑

i=1

1(Ui/n > c) | S(n)(s) > 0

)

=
n∑

i=1

P
(
Ui/n > c | S(n)(s) > 0

)

=

n∑

i=1

P (Ui/n > c)

P
(
S(n)(s) > 0

)

= n
1− c

1− P
(
S(n)(s) = 0

)

is the FI of level s corresponding to Yi/n, 1 ≤ i ≤ n. The following theorem is the first main

result of this section.

Theorem 4.2. Let Y be a stochastic process in C[0, 1] with identical continuous marginal df

F . Suppose that the copula process U = (F (Yt))t∈[0,1] corresponding to Y is in the functional

domain of attraction of a MSP η with generator constant m ≥ 1, cf. Proposition 2.4. Then

we have

lim
n→∞

lim
sրω(F )

FI(n)(s)

n
= lim

sրω(F )
lim
n→∞

FI(n)(s)

n
= lim

sրω(F )
E(S(s) | S(s) > 0) =

1

m
.

Proof. Expansion (3.9) implies for n ∈ N

P (S(n)(s) > 0)

= 1− P

(
n∑

i=1

1(Ui/n > c) = 0

)

= 1− P (Ui/n ≤ c, 1 ≤ i ≤ n)

= 1− Cn(c, . . . , c)

= (1 − c) ‖(1, . . . , 1)‖Dn
+ o

(
(1− c) ‖(1, . . . , 1)‖Dn

)

= (1 − c)E

(
max
1≤i≤n

Zi/n

)
+ o

(
(1− c)E

(
max
1≤i≤n

Zi/n

))

as c ↑ 1 and, thus,

FI(n)(s)

n
=

1− c

P (S(n)(s) > 0)

=
1

E
(
max1≤i≤n Zi/n

)
+ o

(
E
(
max1≤i≤n Zi/n

))

as c ↑ 1. This yields, by the dominated convergence theorem,

lim
n→∞

lim
sրω(F )

FI(n)(s)

n
= lim

n→∞

1

E
(
max1≤i≤n Zi/n

) =
1

E
(
supt∈[0,1] Zt

) =
1

m
.
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We have, on the other hand,

lim
n→∞

FI(n)(s)

n
= lim

n→∞

1− c

1− P
(
S(n)(s) = 0

) =
1− c

1− P (S(s) = 0)
,

due to Lemma 4.1. Since U ∈ D(η), we obtain from condition (3.10)

lim
sրω(F )

lim
n→∞

FI(n)(s)

n
= lim

sրω(F )

1− c

1− P (S(s) = 0)

= lim
sրω(F )

1− c

1− P (Y ≤ s)

= lim
sրω(F )

1− c

1− P (U ≤ c)

= lim
sրω(F )

1− c

1− (1− (1− c)
∥∥1[0,1]

∥∥
D
+ o(1− c))

=
1∥∥1[0,1]
∥∥
D

=
1

E
(
sup0≤t≤1 Zt

)

=
1

m
.

Finally, the dominated convergence theorem implies

FI(n)(s)

n
= E(S(n)(s) | S(n)(s) > 0)

=
E(S(n)(s))

P (S(n)(s) > 0)

→n→∞
E(S(s))

P (S(s) > 0)

= E(S(s) | S(s) > 0).

Remark 14. Under the conditions of Theorem 4.2 we have

P (S(s) > 0) = (1− c)m+ o(1− c) as c ր 1 and E(S(s)) = 1− F (s).

To apply the preceding result to generalized Pareto processes, we add an extension of

Theorem 4.2. It is shown by repeating the preceding arguments.

We call a copula process U = (Ut)t∈[0,1] (upper) tai l continuous, if the process Uc0 :=

(max(c0, Ut))t∈[0,1] is a.s. continuous for some c0 < 1. Note that in this case Uc is a.s.

continuous for each c ≥ c0.

A stochastic process Y = (Yt)t∈[0,1] is said to have ultimately identical and continuous

marginal df Ft, t ∈ [0, 1], if Ft(x) = Fs(x), 0 ≤ s, t ≤ 1, x ≥ x0 with F1(x0) < 1, and F1(x) is

continuous for x ≥ x0.
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Theorem 4.3. Let Y = (Yt)t∈[0,1] be a stochastic process with ultimately identical and

continuous marginal df. Suppose that the copula process pertaining to Y is tail continuous

and that it is in the functional domain of attraction of a MSP η, whose corresponding D-

norm is generated by a sample continuous generator Z = (Zt)t∈[0,1] with 0 ≤ Zt ≤ m a.s.,

E(Zt) = 1, t ∈ [0, 1], for some m ≥ 1. Then we have

lim
n→∞

lim
sրω(F )

FI(n)(s)

n
= lim

sրω(F )
lim
n→∞

FI(n)(s)

n

= lim
sրω(F )

E(S(s) | S(s) > 0)

=
1

E
(
sup0≤t≤1 Zt

) .

Example 4.4. Consider the d-dimensional EVD G(x) = exp(−‖x‖p), x ≤ 0 ∈ Rd, d ≥ 2,

where the D-norm is the usual p-norm ‖x‖D =
(∑d

i=1 |xi|p
)1/p

= ‖x‖p, x ∈ Rd, with

1 ≤ p ≤ ∞. This is known as the Gumbel-Hougaard or logistic model. The case p = ∞ yields

the maximum-norm ‖x‖∞. Let the rv (Z1, . . . , Zd) be a generator of ‖·‖p, i.e., 0 ≤ Zi ≤ c

a.s., E(Zi) = 1, 1 ≤ i ≤ d with some c ≥ 1, and ‖x‖p = E (max1≤i≤d(|xi|Zi)), x ∈ Rd. The

rv (Z1, . . . , Zd) can be extended by linear interpolation to a generator Z = (Zt)t∈[0,1] of a

standard MSP η: Put for i = 1, . . . , d− 1

Z(1−ϑ) i−1
d−1

+ϑ i
d−1

:= (1− ϑ)Zi + ϑZi+1, 0 ≤ ϑ ≤ 1,

which yields a continuous generator Z = (Zt)t∈[0,1]. In this case we have

1

E
(
sup0≤t≤1 Zt

) =
1

E (max1≤i≤d Zi)
=

1

‖(1, . . . , 1)‖p
=

1

d1/p
,

i.e., the generator constant is d1/p.

Note that a standard MSP η, whose finite dimensional marginal distributions Gt1,...,td are

for each set set of indices 0 ≤ t1 < t2 < · · · < td ≤ 1 and each d ≥ 1 given by Gt1,...,td(x) =

exp(−‖x‖p), x ≤ 0 ∈ Rd, does not exist for p ∈ [1,∞). This follows from the fact that in this

case the generator constant would be infinite. The case p = ∞ leads to complete dependent

margins; as a generator one can choose the constant function Zt = 1, t ∈ [0, 1].

Example 4.5. Note that the copula process pertaining to the GPP Z/U is in its upper tail

given by the shifted standard GPP 1+V , which satisfies the conditions of Theorem 4.3. We,

therefore, obtain for the GPP process Z/U

lim
n→∞

lim
sրω(F )

FI(n)(s)

n
= lim

sրω(F )
E(S(s) | S(s) > 0) =

1

E
(
sup0≤t≤1 Zt

) .

The mathematical tools from Section 3.4 enable also the computation of the (cumulative)

expected shortfall corresponding to a stochastic process as defined below.
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Let Y = (Yt)t∈[0,1] be a stochastic process in C[0, 1] with identical and continuous univariate

marginal df F and put

I(s) =

∫ 1

0
(Yt − s)1(Yt > s) dt.

The number I(s) can be interpreted as the total sum of excesses above the threshold s.

The expected shortfal l at level s pertaining to Y is the expectation of the total sum of

excesses, given that there is at least one exceedance:

ES(s) := E(I(s) | S(s) > 0).

Lemma 4.6. Let U = (Ut)t∈[0,1] = (F (Yt))t∈[0,1] be the copula process pertaining to Y . Then

we have

ES(s) =

∫ ω(F )
s 1− F (x) dx

1− P (Ut ≤ F (s) for all t ∈ [0, 1])
.

Proof. We have

E(I(s) | S(s) > 0) = E

(∫ 1

0
(Yt − s)1(Yt > s) dt |

∫ 1

0
1(Yt > s) dt > 0

)

= E

(∫ 1

0
(Yt − s)1(Yt > s) dt | sup

t∈[0,1]
Yt > s

)

=
E
((∫ 1

0 (Yt − s)1(Yt > s) dt
)
1
(
supt∈[0,1] Yt > s

))

P
(
supt∈[0,1] Yt > s

)

=
E
(∫ 1

0 (Yt − s)1(Yt > s) dt
)

P
(
supt∈[0,1] Yt > s

) ,

where by Fubini’s theorem

E

(∫ 1

0
(Yt − s)1(Yt > s) dt

)
=

∫ 1

0
E((Yt − s)1(Yt > s)) dt

=

∫ 1

0

∫ ω(F )

0
1− P (Yt − s ≤ x) dx dt

=

∫ 1

0

∫ ω(F )

0
1− F (x+ s) dx dt

=

∫ ω(F )

s
1− F (x) dx

and

P

(
sup
t∈[0,1]

Yt > s

)
= 1− P

(
sup
t∈[0,1]

Yt ≤ s

)
= 1− P (Ut ≤ F (s) for all t ∈ [0, 1]) .
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Suppose in addition that the copula process U is in the domain of attraction in the sense of

condition (3.10) of a standard MSP with generator constant m. Then there exists a D-norm

‖·‖D on C[0, 1] with
∥∥1[0,1]

∥∥
D
= m such that

P (Ut ≤ F (s), t ∈ [0, 1]) = 1− (1− F (s))
∥∥1[0,1]

∥∥
D
+ o(1− F (s))

as s ր ω(F ). The next result is, therefore, an obvious consequence of Lemma 4.6.

Proposition 4.7. If in addition the copula process U is in the domain of attraction of a

standard MSP with generator constant m, then we obtain

ES(s) =

∫ ω(F )
s 1− F (x) dx

1− F (s)

(
1

m
+ o(1− F (s))

)

as s ր ω(F ).

Proposition 4.7 precisely separates the contribution of the dependence structure of

the stochastic process Y on the expected shortfall as the threshold increases, which is

1/
∥∥1[0,1]

∥∥
D

= 1/m, from that of the marginal distribution, which is the first factor. In

particular we obtain that the expected shortfall converges in [0,∞) as s ր ω(F ) if and only

if limsրω(F )

∫ ω(F )
s 1− F (t) dt/(1 − F (s)) := c ∈ [0,∞). And in this case its limit is c/m.

4.2 Conditional Sojourn Time Distribution

In this section we compute the asymptotic distribution of the sojourn time, under the condition

that it is positive, of such processes, which are in a certain neighborhood of a standard GPP.

A standard MSP is a prominent example. In this setup we can replace the constant threshold

s by a threshold function.

The conditional sojourn time distribution of a standard GPP is easily computed as the

following lemma shows. This distribution is independent of the threshold level s, which

reveals an exceedance stability of a GPP. Note that we replace the constant threshold line s

in what follows by a threshold function sf(t), where f ∈ Ē−[0, 1] is fixed and s is the

variable threshold level.

Lemma 4.8. Let V in C̄−[0, 1] be a standard GPP, i.e. there is an ε0 > 0 such that P (V ≤
g) = P (−U/Z ≤ g) for all g ∈ Ē−[0, 1] with ‖g‖∞ ≤ ε0, where U is uniformly on (0, 1)

distributed and independent of the generator Z = (Zt)t∈[0,1], which has the properties (2.6).

Choose f ∈ Ē−[0, 1]. Then there is an s0 > 0 such that the sojourn time df Hf of V above

sf is given by

P

(∫ 1

0
1 (Vt > sf(t)) dt > y |

∫ 1

0
1 (Vt > sf(t)) dt > 0

)

=

∫m‖f‖
∞

0 P
(∫ 1

0 1 (|f(t)|Zt > u) dt > y
)
du

∫m‖f‖
∞

0 P
(∫ 1

0 1 (|f(t)|Zt > u) dt > 0
)
du
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=: 1−Hf (y), 0 ≤ y ≤ 1, 0 < s ≤ s0,

provided the denominator is greater than zero. Note that Hf (0) = 0, Hf(1) = 1.

Proof. The assertion is an immediate consequence of standard rules of integration together

with conditioning on U = u:

P

(∫ 1

0
1 (Vt > sf(t)) dt > y

)

= P

(∫ 1

0
1 (U < s |f(t)|Zt) dt > y

)

=

∫ 1

0
P

(∫ 1

0
1 (u < s |f(t)|Zt) dt > y

)
du,

where substituting u by su yields

= s

∫ 1/s

0
P

(∫ 1

0
1 (|f(t)|Zt > u) dt > y

)
du

= s

∫ m‖f‖
∞

0
P

(∫ 1

0
1 (|f(t)|Zt > u) dt > y

)
du

if s ≤ 1/(m ‖f‖∞). This implies the assertion.

Example 4.9. Any continuous df F on [0, 1] can occur as a conditional sojourn time df.

Take Zt = 1, 0 ≤ t ≤ 1, which provides the case of complete dependence of the margins

of the corresponding standard MSP η. Choose a continuous df F : [0, 1] → [0, 1] and put

f(t) = F (t) − 1, 0 ≤ t ≤ 1. Then the conditional sojourn time df equals F , Hf(y) = F (y),

y ∈ [0, 1].

If we take, on the other hand, f(t) = −1, t ∈ [0, 1], then Hf has all its mass at 1, i.e.,

Hf (y) = 0, y < 1, and Hf (1) = 1. These examples show in particular that the sojourn time

df Hf can be continuous as well as discrete.

Next we will extend the preceding lemma to processes ξ in C̄−[0, 1] which are in certain

neighborhoods of a standard GPP V . Precisely, we require that for a given function f ∈
Ē−

1 [0, 1] :=
{
f ∈ Ē−[0, 1] : ‖f‖∞ ≤ 1

}

P (ξti > sf(ti), 1 ≤ i ≤ k) = P (Vti > sf(ti), 1 ≤ i ≤ k) + o(s) (4.1)

for each set 0 ≤ t1 < · · · < tk ≤ 1, k ∈ N, and

P (ξ ≤ sf) = P (V ≤ sf) + o(s) (4.2)

as s ↓ 0.

Recall that for a standard GPP V there exists s0 > 0 such that for 0 ≤ s ≤ s0 and

for each f ∈ Ē−[0, 1] with ‖f‖∞ ≤ 1 we have P (V ≤ sf) = 1 − sE
(
supt∈[0,1] (|f(t)|Zt)

)
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and P (Vti > sf(ti), 1 ≤ i ≤ k) = sE (min1≤i≤k (|f(ti)|Zti)) for some generator process Z =

(Zt)t∈[0,1], cf. Lemma 3.22. Therefore, Lemma 2.21 and equation (2.11) (together with Taylor

expansion of exp) implies, that all standard MSP η are examples of processes which satisfy

conditions (4.1) and (4.2).

The next result extends Lemma 4.8 to processes which satisfy condition (4.1) and (4.2).

Proposition 4.10. Suppose that ξ ∈ C̄−[0, 1] has identical univariate margins and that it

satisfies condition (4.1) as well as (4.2). Choose f ∈ Ē−
1 [0, 1]. Then the asymptotic sojourn

time distribution of ξ, conditional on the assumption that it is positive, is given by

P

(∫ 1

0
1 (ξt > sf(t)) dt > y |

∫ 1

0
1 (ξt > sf(t)) dt > 0

)
→s↓0 1−Hf (y),

where the sojourn time df Hf is given in Lemma 4.8.

Proof. We establish this result by establishing convergence of characteristic functions. Put

Is :=
∫ 1
0 1(ξt > sf(t)) dt, s > 0. The characteristic function of the rv Is, conditional on the

event that it is positive, is

E (exp (itIs) | Is > 0) =

∫
{Is>0} exp(itIs) dP

P (Is > 0)
.

Note that 0 ≤ Is ≤ 1. By the dominated convergence theorem we have

∫

{Is>0}
exp(itIs) dP =

∫

{Is>0}

∞∑

k=0

(itIs)
k

k!
dP

=

∞∑

k=0

(it)k

k!

∫

{Is>0}
Iks dP

= P (Is > 0) +

∞∑

k=1

(it)k

k!

∫

Ω
Iks dP

= P (Is > 0) +

∞∑

k=1

(it)k

k!
E
(
Iks

)
. (4.3)

From condition (4.2) we obtain

P (Is > 0) = 1− P (Is = 0)

= 1− P (ξ ≤ sf)

= 1− P (V ≤ sf) + o(s)

= s

(
E

(
sup
t∈[0,1]

|f(t)Zt|
)

+ o(1)

)
(4.4)

as s ↓ 0.
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From Fubini’s theorem we obtain for k ∈ N

E(Iks ) = E

((∫ 1

0
1(ξt > sf(t)) dt

)k
)

= E

(∫ 1

0
. . .

∫ 1

0

k∏

i=1

1 (ξti > sf(ti)) dt1 . . . dtk

)

=

∫ 1

0
. . .

∫ 1

0
E

(
k∏

i=1

1 (ξti > sf(ti))

)
dt1 . . . dtk

=

∫ 1

0
. . .

∫ 1

0
P (ξti > sf(ti), 1 ≤ i ≤ k) dt1 . . . dtk.

We have by condition (4.1)

P (ξti > sf(ti), 1 ≤ i ≤ k) ≤ P (ξt1 > −s) = P (ξ0 > −s) = P (V0 > −s) + o(s)

uniformly for t1, . . . , tk ∈ [0, 1] and, thus, P (ξti > sf(ti), 1 ≤ i ≤ k) /s is uniformly bounded.

Condition (4.1) together with the dominated convergence theorem now implies

E(Iks )

s
=

∫ 1

0
. . .

∫ 1

0

P (ξti > sf(ti), 1 ≤ i ≤ k)

s
dt1 . . . dtk

=

∫ 1

0
. . .

∫ 1

0

P (Vti > sf(ti), 1 ≤ i ≤ k) + o(s)

s
dt1 . . . dtk

→s↓0

∫ 1

0
. . .

∫ 1

0
E

(
min
1≤i≤k

|f(ti)Zti |
)

dt1 . . . dtk. (4.5)

From equations (4.3)-(4.5) we obtain

∫

{Is>0}
exp(itIs) dP

= s(1 + o(1))

(
E

(
sup
t∈[0,1]

|f(t)Zt|
)

+
n∑

k=1

(it)k

k!

(∫ 1

0
. . .

∫ 1

0
E

(
min
1≤i≤k

|f(ti)Zti |
)

dt1 . . . dtk

))

+
∞∑

k=n+1

(it)k

k!
E(Iks ),

where n ∈ N is chosen such that for a given ε > 0 we have
∑∞

k=m+1 1/k! ≤ ε. As Is ∈ [0, 1],

we obtain

E(Iks ) ≤ E(Is)

=

∫ 1

0
P (ξt > sf(t)) dt

=

∫ 1

0
P (ξ0 > sf(t)) dt
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≤ P

(
ξ0 > s inf

t∈[0,1]
f(t)

)

= s inf
t∈[0,1]

|f(t)|+ o(s)

by condition (4.1) and, thus,
∫

{Is>0}
exp(itIs) dP

= s(1 + o(1))

(
E

(
sup
t∈[0,1]

|f(t)Zt|
)

+

n∑

k=1

(it)k

k!

(∫ 1

0
. . .

∫ 1

0
E

(
min
1≤i≤k

|f(ti)Zti |
)

dt1 . . . dtk

)
+O(ε)

)

as s ↓ 0. Since ε > 0 was arbitrary we obtain

lim
s↓0

∫
{Is>0} exp(itIs) dP

P (Is > 0)

= 1 +

∑∞
k=1

(it)k

k!

(∫ 1
0 . . .

∫ 1
0 E (min1≤i≤k |f(ti)Zti |) dt1 . . . dtk

)

E
(
supt∈[0,1] |f(t)Zt|

)

=: ϕ(t), t ∈ R.

An inspection of the preceding arguments shows that ϕ is the characteristic function of the

sojourn time df Hf , which completes the proof.

4.3 Remaining Excursion Time

The considerations in the previous section enable us also to compute the limit distribution of

the “remaining” excursion time above the threshold sf of a process X in C̄−[0, 1], which is

in a neighborhood of a standard GPP. Precisely, we require the following condition. Choose

0 ≤ a ≤ b ≤ 1, and denote by C̄−[a, b] the set of continuous functions f : [a, b] → (−∞, 0].

We suppose that for f ∈ C̄−[a, b]

P (Xt > sf(t), t ∈ [a, b]) = P (Vt > sf(t), t ∈ [a, b]) + o(s) (4.6)

as s ↓ 0, where V = (Vt)t∈[0,1] is a standard GPP. Note that

P (Vt > sf(t), t ∈ [a, b]) = sE

(
min
a≤t≤b

(|f(t)|Zt)

)
+ o(s), s ∈ (0, s0), (4.7)

and that we allow the case a = b. We do not requireX to have identical marginal distributions.

A standard MSP η satisfies condition (4.6), see Proposition 2.20. Another exam-

ple is provided by the following class of processes. Substitute the rv U in the GPP

V = (max(−U/Zt,M))t∈[0,1] by a rv W ≥ 0, which is independent of Z as well and whose df

H satisfies

H(x) = x+ o(x), as x → 0.
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The standard exponential df H(x) = 1 − exp(−x), x > 0, is a typical example. Then the

process

X :=

(
max

(
−W

Zt
,M

))

t∈[0,1]

satisfies condition (4.7) as well.

The remaining excursion time above sf of the process X with inspection point t0 ∈
[0, 1) is the remaining time that the process spends above sf , under the condition that Xt0 >

sf(t0), i.e., it is defined by

τt0(s) := sup {L ∈ (0, 1 − t0] : Xt > sf(t), t ∈ [t0, t0 + L)}

under the condition that Xt0 > sf(t0).

Proposition 4.11. Suppose that X in C̄−[0, 1] satisfies condition (4.6). Then we have for

u ∈ [0, 1 − t0) and f ∈ C̄−[a, b] with f(t0) < 0

lim
s↓0

P (τt0(s) > u | Xt0 > sf(t0)) =
E (mint0≤t≤t0+u(|f(t)|Zt))

|f(t0)|
.

Proof. We have for u ∈ [0, 1 − t0)

P (τt0(s) > u | Xt0 > sf(t0)) =
P (Xt > sf(t), t ∈ [t0, t0 + u])

P (Xt0 > sf(t0))

=
P (Vt > sf(t), t ∈ [t0, t0 + u]) + o(s)

P (Vt0 > sf(t0)) + o(s)

=
E (mint0≤t≤t0+u(|f(t)|Zt))

|f(t0)|
+ o(1)

as s ↓ 0.

The asymptotic remaining excursion time Tt0 , as s ↓ 0, with inspection point t0 ∈ [0, 1)

has, consequently, the continuous df

P (Tt0 ≤ u) = 1− E (mint0≤t≤t0+u(|f(t)|Zt))

|f(t0)|
for 0 ≤ u < 1− t0, and possibly positive mass at 1− t0:

P (Tt0 = 1− t0) =
E (mint0≤t≤1(|f(t)|Zt))

|f(t0)|
.

Its expected value is, therefore, given by

E (Tt0) =

∫ 1−t0

0
P (Tt0 > u) du

=
1

|f(t0)|

∫ 1−t0

0
E

(
min

t0≤t≤t0+u
(|f(t)|Zt)

)
du

=
1

|f(t0)|
E

(∫ 1

t0

min
t0≤t≤u

(|f(t)|Zt) du

)
.
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5 Reflection and Outlook

We have started to think about “functional” Extreme Value Theory when we have realized,

that reformulating the analogon to the de Haan-Resnick representation in function space due

to Giné et al. [20, Proposition 3.2] in terms of those generator processes Z makes things a

bit more “elementary”: we have been able to consider random functions instead of “angular”

measures to examine the dependence structure within MSP. Many interesting questions im-

mediately posed themselves and some answers have been given in Chapter 2. But, of course,

there are several open problems which are subject to current and future research. For exam-

ple, properties like stationarity in some sense or analytic path properties (beyond the content

of Section 2.3.1) have not been considered yet. Moreover, we do not know so far, whether

sets like {g ∈ C̄−[0, 1] : g ≥ f} for some f ∈ Ē−[0, 1] are continuity sets with respect to the

distribution of a (standard) MSP (recall, that the sets {g ∈ C̄−[0, 1] : g ≤ f} are continuity

sets for all standard MSP, cf. Remark 6).

The answer to this question would also affect another, perhaps the most crucial part of this

dissertation: in Chapter 3 we have introduced a type of convergence in function space, which

is “weaker” than weak convergence of probability measures. Until now, we did not succeed to

give the exact difference between these two types of convergence. It is not clear, whether

condition (3.6) is also necessary for weak convergence on function space – and the answer to

the foregoing question concerning the continuity sets could help to solve the latter problem.

It can be seen in Chapter 4, that the concept of convergence of functional distribution

functions is useful. Nice results on terms which are in touching distance to applications have

been obtained, such as sojourn times above high thresholds, remaining excursion times and

the extensions of the fragility index and the expected shortfall to function space. “Real”

applications are not considered within this work, which would also be an interesting issue of

future research.

Finally, it should be mentioned that there are already some answers to further questions

based on the theory introduced within this work, see Aulbach et al. [4] and Aulbach and Falk

[1, 2].
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Appendix: Random Closed Sets and
Hypoconvergence of Continuous Processes

We collect some basic theory on random sets, following the book of Molchanov [22].

Let E be a locally compact Hausdorff second countable topological space and denote by

F ,G,K the family of closed/open/compact subsets of E, respectively.

Moreover, let (Ω,A, P ) be a complete probability space, i.e., B ⊂ A ∈ A with P (A) = 0

implies that B ∈ A.

Definition 5.1 (Molchanov [22, Definition 1.1.1]). A map X : Ω 7→ F is called a ran-

dom closed set, if

{ω ∈ Ω : X ∩K 6= ∅} ∈ A for all K ∈ K.

Set FK := {F ∈ F : F ∩K 6= ∅} for K ∈ K and denote by B(F) the σ-algebra generated

by (FK)K∈K, which is the so-called Effros-σ-algebra on F (compare Molchanov [22, Section

1.2.1]). However, B(F) is the Borel-σ-algebra of the so-called Fell-topology, see Molchanov

[22, p. 2 and Appendix B]. In the sequel, therefore, the boundary ∂X , the interior X ◦ and

the closure X̄ of sets X ∈ F should be interpreted with respect to the Fell-topology.

The defining condition of a random closed set can be reformulated: X : Ω 7→ F is a random

closed set, if

X−1(X ) = {ω ∈ Ω : X(ω) ∈ X} ∈ A for all X ∈ B(F).

The values of the distribution P (X ∈ FK) of a random closed set X on FK , K ∈ K, play a

crucial role in the following.

Definition 5.2 (Molchanov [22, Definition 1.1.4]). The functional TX : K 7→ [0, 1] given

by

TX(K) = P (X ∩K 6= ∅) = P (X ∈ FK), K ∈ K,

is said to be the capacity functional of X.

The capacity functional can be extended onto the family of all subsets P of E by putting

T ∗(G) := sup {T (K) : K ∈ K,K ⊂ G} , G ∈ G,

and

T ∗(M) := inf {T ∗(G) : G ∈ G,M ⊂ G} , M ∈ P.
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Then, in particular, T ∗(K) = T (K) for K ∈ K (cf. Molchanov [22, p. 9]).

The concept of weak convergence of probability measures is defined for random closed sets

in the usual way (cf. Billingsley [7]).

Definition 5.3 (Molchanov [22, Definition 1.6.1]). A sequence of random closed sets

(Xn)n∈N is said to converge weakly to a random closed set X, if

P (Xn ∈ X ) → P (X ∈ X ) for n → ∞

for each X ∈ B(F) such that P (X ∈ ∂X ) = 0.

There is a useful result which helps to identify some special but crucial continuity sets; for

a proof see Molchanov [22, Lemma 1.6.3].

Lemma 5.4 (Molchanov [22, p. 85]). For every K ∈ K, each of the equivalent conditions

P (X ∈ FK) = P (X ∈ FK◦)

P (X ∩K 6= ∅,X ∩K◦ = ∅) = 0

TX(K) = TX(K◦)

implies P (X ∈ ∂FK) = 0.

Definition 5.5 (Molchanov [22, Definition 1.6.4]). The family consisting of elements of

the relatively compact sets {B ∈ B(F) : B̄ ∈ K} satisfying

TX(B̄) = TX(B◦)

is called the continuity family of a random closed set X and will be denoted by CX .

Weak convergence of random closed sets can be characterized by convergence of the corre-

sponding capacity functionals.

Theorem 5.6 (Molchanov [22, Theorem 1.6.5]). A sequence of random closed sets Xn

converges weakly to a random closed set X if and only if

TXn(K) → TX(K), n → ∞, (5.1)

for each K ∈ K ∩ CX .

It is sufficient to check condition (5.1) on a possibly smaller family of sets.
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Definition 5.7 (Molchanov [22, Definition 1.1.25]). A class B of relatively compact sets

is called separating if

(i) ∅ ∈ B

(ii) for every K ∈ K and G ∈ G with K ⊂ G, there exists a set B ∈ B such that K ⊂ B ⊂ G.

Proposition 5.8 (Molchanov [22, Corollary 1.6.9]). Weak convergence of Xn to X for

n → ∞ follows, if

TXn(B) → TX(B), n → ∞,

for each B ∈ B ∩ CX , where B is a separating class.

Note that Proposition 5.8 implies Theorem 5.6 for B = K. According to a remark in

Molchanov [22, p. 87] typically used separating classes in metric spaces E are the class of

finite unions of balls of positive radii or, if E is a subspace of Rd, the countable class of finite

unions of balls with rational midpoints and positive rational radii.

Weak Epi- and Hypoconvergence

The preceding setup of random closed sets can be used to define a type of convergence for

stochastic processes, cf. Molchanov [22, Section 5.3].

Let E be a locally compact Hausdorff second countable topological space and (Ω,A, P ) a

complete probability space. Consider for a function ζ : E× Ω 7→ R̄ its epigraph

epi ζ(ω) := {(x, t) ∈ E× R : t ≥ ζ(x;ω)}

and its hypograph

hypoζ(ω) := {(x, t) ∈ E× R : t ≤ ζ(x;ω)},

for ω ∈ Ω.

Definition 5.9 (Molchanov [22, Definition 5.3.5]). A function ζ : E×Ω 7→ R̄ is called a

normal integrand if its epigraph epi ζ is a random closed set.

It is necessary for ζ to be a normal integrand that its epigraph epi ζ(ω) is a closed set in

E×R. At this point, the concept of semicontinuity should be introduced (cf. Molchanov [22,

pp. 391]).

Definition 5.10. A function f : E 7→ R̄ is called upper semicontinuous at x ∈ E, if

lim sup
y→x

f(y) ≤ f(x),
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and lower semicontinuous at x ∈ E, if

lim inf
y→x

f(y) ≥ f(x).

If f is upper (lower) semicontinuous at every x ∈ E, then f is called upper (lower) semicon-

tinuous.

The link between semicontinuous functions and the theory of random closed sets is the

following characterization of semicontinuity in terms of epi-/hypographs.

Proposition 5.11 (Molchanov [22, Proposition A.2]). Let f : E 7→ R be a real valued

function. Then:

f is upper semicontinuous ⇐⇒ hypo f = {(x, t) : t ≤ f(x)} is closed in E× R;

and

f is lower semicontinuous ⇐⇒ epi f = {(x, t) : t ≥ f(x)} is closed in E× R.

Thus, as also mentioned in Molchanov [22, p. 339], it is necessary for a stochastic process

ζ to be a normal integrand that ζ is lower semicontinuous almost surely. But this is not

sufficient because of the specific requirements on measurability for random closed sets.

Proposition 5.12 (Molchanov [22, Proposition 5.3.6]). Let ζ(·, ω) be a lower semi-

continuous function for almost all ω ∈ Ω and let ζ be jointly measurable in (x, ω), i.e.

ζ−1(B) ∈ (B(E)×A) for every B ∈ B(R). Then ζ is a normal integrand.

It is now possible to define the so-called weak epiconvergence which is based on weak

convergence of the epigraphs of normal integrands in the sense of Definition 5.3.

Definition 5.13 (Molchanov [22, Definition 5.3.14]). A sequence (ζn)n∈N of normal

integrands weakly epiconverges to a normal integrand ζ if the sequence Xn := epi ζn
converges weakly to X = epi ζ as random closed sets in E× R.

There is an immediate characterization of weak epiconvergence in terms of the distribution

of ζn, ζ, essentially due to Corollary 5.8.

Proposition 5.14 (Molchanov [22, Proposition 5.3.15]). A sequence (ζn)n∈N of normal

integrands weakly epiconverges to a normal integrand ζ if and only if

P

(
inf
x∈Ki

ζn(x) > ti, i = 1, . . . ,m

)
→ P

(
inf
x∈Ki

ζ(x) > ti, i = 1, . . . ,m

)
, n → ∞,
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for all m ∈ N, t1, . . . , tm ∈ R and K1, . . . ,Km belonging to a separating class B on E and

satisfying the continuity condition

P

(
inf
x∈Ki

ζ(x) > ti

)
= P

(
inf

x∈K◦

i

ζ(x) ≥ ti

)
, i = 1, . . . ,m.

A note in Molchanov [22, p. 384] says, that the introduced concepts can be reformulated

for upper semicontinuous functions and their hypographs.

Definition 5.15. Let ζn, ζ be jointly measurable and upper semi-continuous processes.

Then the sequence ζn is said to weakly hyper-converge to ζ, if the hypographs hypo ζn
converge weakly to hypoζ as random closed sets in E× R.

The Specific Case of Processes with Continuous Sample Paths

The preceding theory is in particular applicable to continuous processes ζ : [0, 1]×Ω 7→ R, i.e

E = [0, 1] with the usual (Euclidean) topology.

As ζ is continuous for all ω ∈ Ω, it is lower and upper semicontinuous, so epi ζ and hypo ζ

are both closed sets. For every x ∈ [0, 1], ζ(x) is a random variable on R, but by continuity,

ζ(x, ω) is also jointly measurable (i.e., ζ−1(B) ∈ (B(E)×A) for every B ∈ B(R)):

Define for n ∈ N

ζ(n)(t, ω) := ζ(t, ω) for k/n ≤ t < (k + 1)/n, k = 0, 1, . . . , n − 1, ζ(n)(1, ω) := ζ(1, ω).

Then, for every x ∈ R and every n ∈ N,

(ζ(n))−1((−∞, x]) =
n−1⋃

k=1

{[k/n, (k+1)/n)×ζ−1
k/n((−∞, x])}∪{{1}×ζ−1

1 ((−∞, x])} ∈ B([0, 1])×A,

so ζ(n) is jointly measurable for all n, and, because of the continuity of ζ for all ω, so is

limn→∞ ζ(n) = ζ.

Thus, for ζ in C[0, 1], epi ζ as well as hypoζ are random closed sets and weak epi- and

hypoconvergence is well defined.

The following result is a reformulation of Proposition 5.14 in the specific case of stochastic

processes ζ whose sample paths lie in C[0, 1] and hypoconvergence. Note that on R and on

E = [0, 1] the set of all finite unions of (closed) intervals form a separating class.

Proposition 5.16. A sequence of stochastic processes (ζn)n∈N with sample paths in C[0, 1]

weakly hypoconverges to a sample continuous ζ if and only if

P

(
sup
x∈Ki

ζn(x) < ti, i = 1, . . . ,m

)
→ P

(
sup
x∈Ki

ζ(x) < ti, i = 1, . . . ,m

)
, n → ∞, (5.2)
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for all m ∈ N, t1, . . . , tm ∈ R and K1, . . . ,Km ⊂ [0, 1] finite unions of (closed) intervals

satisfying the continuity condition

P

(
sup
x∈K̄i

ζ(x) < ti, i = 1, . . . ,m

)
= P

(
sup
x∈K◦

i

ζ(x) ≤ ti, i = 1, . . . ,m

)
. (5.3)

Proof. Let Ki ⊂ [0, 1] be finite unions of intervals, i = 1, . . . ,m, then
⋃m

i=1Ki × [ai, bi] with

ai ≤ bi ∈ R, i = 1, . . . ,m forms a separating class in [0, 1] × R (recall that (Ki × [ai, bi])i is a

base of the product topology in [0, 1] × R, so (
⋃m

i=1Ki × [ai, bi])m∈N is a separating class in

the product space). Furthermore, for a lower semi-continuous function f ,

hypo f ∩Ki × [a, b] 6= ∅ ⇐⇒ hypo f ∩Ki × [a,∞) 6= ∅

by construction of the hypograph.

Thus, by Corollary 5.8, ζn weakly hypoconverges if and only if

Thypo ζn(K) → Thypo ζ(K), n → ∞, (5.4)

for all K =
⋃m

i=1Ki × [ti,∞) with the additional property

Thypo ζ(K̄) = Thypo ζ(K
◦), (5.5)

where m ∈ N, t1, . . . , tm ∈ R and K1, . . . ,Km ⊂ [0, 1] are finite unions of (closed) intervals.

It remains to show, that (5.4) corresponds to (5.2) and (5.5) is (5.3).

To this end, note that the capacity functional Thypo ζ(K) can be rewritten as

Thypo ζ(K) = P

(
hypo ζ ∩

m⋃

i=1

Ki × [ti,∞) 6= ∅
)

= P (hypoζ hits some element of {Ki × [ti,∞), 1 ≤ i ≤ m})
= 1− P (hypo ζ hits no element of {Ki × [ti,∞), 1 ≤ i ≤ m})

= 1− P

(
sup
x∈Ki

ζ(x) < ti, i = 1, . . . ,m

)
,

so an application of this calculation to (5.4) and (5.5) yields the desired correspondence.

Functional Domain of Attraction and Hypoconvergence

After recalling the theory of random closed sets and adjusting the results in Molchanov [22]

to our purposes, we show in this section that the functional domain of attraction condition

implies hypoconvergence of the normalized maximum-processes to the standard MSP η.

Recall that a stochastic process Y with continuous sample paths is said to be in the func-

tional domain of attraction of a standard MSP η if there are functions an ∈ C+[0, 1] :=

{f ∈ C[0, 1] : f > 0}, bn ∈ C[0, 1], n ∈ N, such that

lim
n→∞

P

(
Y − bn

an
≤ f

)n

= P (η ≤ f) (3.1)
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for any f ∈ Ē−[0, 1]. Moreover, recall that there is for every standard MSP η some sample

continuous generator process Z = (Zt)t∈[0,1] with

P (η ≤ f) = P (η < f) = exp

(
−E

(
sup
t∈[0,1]

f(t)Zt

))

for f ∈ Ē−[0, 1], cf. Lemmata 2.7 and 2.8.

Let for the sake of simplicity and without loss of generality Ki ⊂ [0, 1] be disjoint intervals,

xi ∈ (−∞, 0], i = 1, . . . ,m, and define for t ∈ [0, 1] the functions

g(t) :=

m∑

i=1

xi1Ki
(t); ḡ(t) :=

m∑

i=1

xi1K̄i
(t); g◦(t) :=

m∑

i=1

xi1K◦

i
(t).

Then g, ḡ, g◦ ∈ Ē−[0, 1], and we have by the continuity of the generator process Z

P

(
sup
t∈K◦

i

η(t) ≤ xi, i = 1, . . . ,m

)
= P (η ≤ g◦)

= exp

(
−E

(
max
1≤i≤m

(
|xi| sup

t∈K◦

i

Zt

)))

= exp

(
−E

(
max
1≤i≤m

(
|xi| sup

t∈K̄i

Zt

)))

= P (η ≤ ḡ)

= P (η < ḡ)

= P

(
sup
t∈K̄i

η(t) < xi, i = 1, . . . ,m

)
.

This shows, that, as the limit process is a standard MSP, the continuity condition (5.3)

is satisfied for al l m ∈ N, x1, . . . , xm ≤ 0 and K1, . . . ,Km ⊂ [0, 1] finite unions of (closed)

intervals. Hence, must hold for all those xi, Ki as before and this is, indeed, the case:

In Lemma 3.1 it was shown, that (3.1) is equivalent to

lim
n→∞

P

(
Y − bn

an
< f

)
= P (η < f) , f ∈ Ē−[0, 1]. (3.2)

With g defined as before, this reads

lim
n→∞

P

(
sup
t∈Ki

Xn(t) < xi, i = 1, . . . ,m

)
= P

(
sup
t∈Ki

η(t) < xi, i = 1, . . . ,m

)
,

which is (5.2).

Note that hypoconvergence of the normalized maximum process does in general not imply

convergence in the sense of (3.2), since the continuity condition in Proposition 5.16 excludes

convergence for closed subsets K ⊂ [0, 1] of the form K = {t}, t ∈ [0, 1].
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