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Zusammenfassung

In dieser Arbeit werden die elektronischen Transporteigenschaften von Graphen-basierten
mesoskopischen Festkörpersystemen mittels numerischer und analytischer Methoden unter-
sucht. Im Besonderen wird analysiert, wie Konzepte von Quanteninterferenz und Unordnung,
die eine wesentliche Rolle für mesoskopische Systeme spielen, durch die einzigartigen elek-
tronischen und Transporteigenschaften von Graphen beeinflusst werden. Wir betrachten
den berühmten Aharonov-Bohm-Effekt in ringförmigen Transportgeometrien, geben einen
Überblick über die Entwicklung dieses Themas in den letzten Jahren und befassen uns mit
den charakteristischen Merkmalen, die fundamentale Phänomene wie Klein-Tunneln und
gerichtete Andreev-Reflexion, welche spezifisch für Graphen sind, in den Magnetooszillationen
der elektrischen Leitfähigkeit aufweisen. Dazu führen wir eine Variante der Methode der
rekursiven Greenschen Funktionen ein, die ein effizientes numerisches Verfahren zur Berech-
nung von Transportobservablen in effektiv nicht-wechselwirkenden, offenen Quantensystemen
im Rahmen eines „tight binding“-Modells darstellt. Diese Methode wird desweiteren zur
Erforschung eines speziellen Typs von Unordnung herangezogen, nämlich kurzreichweitiger,
resonanter Streuzentren wie stark gebundene Adatome oder Moleküle, die als Fehlstellen
in der Graphen-Gitterstruktur modelliert werden können. Diese numerische Analyse der
elektrischen Leitfähigkeit bei Anwesenheit resonanter Streuzentren in Graphen führt zu einer
nicht-trivialen Klassifizierung von Fremdatom-Gitterplätzen innerhalb des Graphen-Gitters
und wird durch eine unabhängige analytische Behandlung im Rahmen der Dirac-Gleichung
bekräftigt. Die vorliegende Arbeit enthält weiterhin eine formale Einführung in das The-
ma des Nichtgleichgewichts-Quantentransports, wie es für die Entwicklung der genannten
numerischen Methode dienlich ist, eine allgemeine Einführung in die Physik von Graphen
mit Fokus auf die speziellen Aspekte, die in dieser Arbeit untersucht werden, sowie eine
abschließende Darstellung, in der die erhaltenen Ergebnisse zusammengefasst und offene
Fragen sowie mögliche zukünftige Entwicklungen hervorgehoben werden.
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Summary

In this thesis, the electronic transport properties of mesoscopic condensed matter systems
based on graphene are investigated by means of numerical as well as analytical methods. In
particular, it is analyzed how the concepts of quantum interference and disorder, which are
essential to mesoscopic devices in general, are affected by the unique electronic and transport
properties of the graphene material system. We consider the famous Aharonov–Bohm effect
in ring-shaped transport geometries, and, besides providing an overview over the recent
developments on the subject, we study the signatures of fundamental phenomena such as
Klein tunneling and specular Andreev reflection, which are specific to graphene, in the
magnetoconductance oscillations. To this end, we introduce and utilize a variant of the
well-known recursive Green’s function technique, which is an efficient numerical method
for the calculation of transport observables in effectively non-interacting open quantum
systems in the framework of a tight binding model. This technique is also applied to study
the effects of a specific kind of disorder, namely short-range resonant scatterers, such as
strongly bound adatoms or molecules, that can be modeled as vacancies in the graphene
lattice. This numerical analysis of the conductance in the presence of resonant scatterers in
graphene leads to a non-trivial classification of impurity sites in the graphene lattice and
is further substantiated by an independent analytical treatment in the framework of the
Dirac equation. The present thesis further contains a formal introduction to the topic of
non-equilibrium quantum transport as appropriate for the development of the numerical
technique mentioned above, a general introduction to the physics of graphene with a focus
on the particular phenomena investigated in this work, and a conclusion where the obtained
results are summarized and open questions as well as potential future developments are
highlighted.
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Introduction

It is nowadays a well-known fact that the ongoing miniaturization of information and computer
technology, which over the past decades followed a deterministic development given by the
famous Moore’s law [Moo65], is limited by quantum effects. These effects come into play
when the device size becomes comparable to the quantum mechanical phase-coherence length—
typically on the sub-micrometer- or nanoscale—in which case quantization phenomena and
quantum corrections to classical expressions for electron transport in such devices become
dominant and the ohmic behavior breaks down. The scale of the phase-coherence length
thus defines an intermediate regime between the macroscopic and microscopic worlds, where
the laws of physics are fully governed by classical and quantum dynamics, respectively.
Consequently, the study of condensed matter at this length scale is commonly referred to as
mesoscopic1 physics [Dat05, Bee91].
The field of mesoscopic physics became active during the 1980s with the fabrication of

the first devices that allowed for experiments at the mesoscopic scale. While some of the
initial experiments utilized conventional metallic conductors, semiconductor heterostructures
such as GaAs−AlGaAs have soon proved to be the material system of choice, and the
field developed rapidly with the first commercial applications of semiconductor devices in
1990 [Dat05].

The phase-coherent character of electronic transport at the mesoscale gives rise to in-
terference of electron wavefunctions, leading to quantum corrections to the conductance.
Fundamental consequences of quantum interference include:

• weak localization, i.e., enhanced backscattering of electrons and thus a decrease in
conductance of order e2/h due to constructive interference of time-reversed scattering
paths as long as time-reversal symmetry is preserved,

• the Aharonov–Bohm effect [Aha59], i.e., conductance oscillations as a function of the
magnetic flux enclosed by different electron trajectories in ring-like geometries, and

• universal conductance fluctuations, i.e., reproducible conductance fluctuations of order
e2/h as a function of magnetic field or electron density and thus as a function of the
Fermi wavelength.

It is also worth highlighting that since in the last case, the conductance fluctuates due to
changes in the relative phases of different electron paths, leading to changes of the interference
pattern, the corresponding quantum correction also depends on the particular microscopic
distribution of impurities, representing scattering centers, whereas the classical conductance
only depends on the impurity density [Dat05].

1from Ancient Greek mésos, “middle”
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Introduction

In 2004, the field of mesoscopic physics was impacted by the discovery of a novel material
system exhibiting unique and intriguing transport properties. In Manchester, the group
around Andre Geim and Konstantin Novoselov for the first time successfully isolated a single
one-atom-thick layer of graphite called graphene [Nov04]. This perfectly two-dimensional
material, which had been theoretically known for nearly 60 years [Wal47], shows surprising
properties strongly resembling those of massless relativistic particles described by the Dirac
equation, in contrast to electrons in conventional metal or semiconductor structures that can
be described as massive, non-relativistic particles in terms of a Schrödinger equation with a
renormalized (or effective) mass. The behavior as massless Dirac fermions leads to a variety
of pseudorelativistic phenomena: The electronic excitations show a linear dispersion forming
a so-called Dirac cone and carry a novel degree of freedom called pseudospin—due to its
resemblance to the real electron spin—which is intimately connected to the fact that the
primitive unit cell contains two (identical) carbon atoms, giving rise to a two-fold sublattice
structure (see Fig. 3.1) [CN09]. Further, the direction of this pseudospin is either parallel
or antiparallel to the momentum of the low-energy excitations, which thus exhibit a chiral2
nature, leading, for instance, to the phenomenon of Klein tunneling through regions of
different doping [Kle29, Kat06b, Che06]. The spinor structure of the low-energy excitations
is further extended by a two-fold orbital degeneracy due to the presence of two Dirac cones,
one in each of the two inequivalent “valleys” of the full energy spectrum (see Fig. 3.2),
giving rise to an additional isospin degree of freedom. In analogy to spintronics, which is
concerned with the utilization of the intrinsic electron spin for quantum information purposes,
the field of “valleytronics” developed, which is concerned with the utilization of the valley
isospin [Ryc07, Nov11, Akh08a].
For their work on graphene, Geim and Novoselov received the Nobel prize for physics in

2010. At present, there is still ongoing progress in investigating graphene physics for a better
understanding of the fundamental properties and the development of possible applications in
quantum information theory. This thesis and the original published work referenced herein
constitute a contribution to this purpose. We consider fundamental graphene-specific aspects
and phenomena in the context of mesoscopic device implementations and the corresponding
paradigms of quantum interference effects as well as the effects of disorder, which strongly
affect and determine the properties of electronic transport in mesoscopic systems. To this
end, in the first part of this thesis, we present a general theory for the description of
quantum transport and the explicit calculation of observables such as the conductance.
More specifically, since transport processes are non-equilibrium many-body phenomena
by definition, we introduce a non-equilibrium field-theoretic formalism as the language
of choice in Chapter 1. For the case of (effectively) non-interacting systems, which we
consider throughout this work, this formal treatment of the quantum transport problem
reduces to the more descriptive language in terms of the scattering matrix, or S-matrix,
see, e.g., Ref. [Dat05]. Further, since the device geometries of interest rarely allow for
a fully analytical treatment, in Chapter 2, we introduce a computational scheme for the
numerical calculation of transport observables in a tight binding model3 for generic lattice
structures. In the second part of this thesis, we apply this scheme to the particular case

2 In the context of graphene, the terms “helicity” and “chirality” are often used interchangeably [CN09].
3 See Section 2.5.1 of Ref. [Wim09a] for a list of references for different tight binding representations.
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of the graphene lattice and investigate the specific electronic transport properties of this
material in quantum interference device geometries as well as in the presence of impurities.
More specifically, after a general introduction to the physics of graphene in Chapter 3,
in Chapter 4, we investigate the magnetoconductance of graphene ring structures into
which either Klein tunneling [Kle29, Kat06b, Che06] (by means of a side gate electrode
potential) or Andreev reflection [And64, Bee06] (by means of a superconducting contact) is
introduced—two phenomena, which are known to be closely related in graphene [Bee08b]. In
both cases, the magnetoconductance shows clear Aharonov–Bohm oscillations [Aha59] with
signatures specific to the peculiar electronic properties of graphene. We also provide a review
of recent developments on the topic of the Aharonov–Bohm effect in graphene and highlight
unresolved issues. In Chapter 5, we turn to graphene-specific effects of disorder, concentrating
on resonant scatterers, i.e., strongly bound adatoms or molecules that effectively behave as
vacancies in the graphene lattice. Since graphene exhibits a pseudospin structure in form
of the sublattice degree of freedom, in addition to the real electron spin, it is natural to
assume that transport properties are susceptible not only to the impurity density but also to
an imbalance in the distribution of such impurities over the two sublattices. However, we
will show that transport properties also show an additional dependence on a more subtle
structural scheme, exhibiting three inequivalent sites per sublattice, which is not evident
from the real space lattice or pseudospin structure, but rather originates from an interference
between the two valleys and thus from the isospin structure. In Chapter 6, we conclude our
work by providing a summary as well as an outlook towards potential future developments
of the field.
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Part I

Theoretical framework for quantum
transport





Chapter 1

Non-equilibrium Green’s function formalism
of quantum transport

In this chapter, where we follow in parts the presentation given in Refs. [Ram07, Wim09a], we
will outline the general theory of non-equilibrium quantum dynamics in the modern formula-
tion pioneered by Schwinger [Sch61], Kadanoff and Baym [Kad62], as well as Keldysh [Kel65]
and Craig [Cra68].
Due to its many-body nature, the problem of quantum transport is best formulated in

second quantization. We will therefore shortly summarize the basic expressions in this
language, as far as they are needed for the theory that follows; a detailed treatment can
be found in standard textbooks on quantum theory, such as Ref. [Nol05]. To this end, we
will choose the lattice description—i.e., representations in a discrete basis set—rather than
the more familiar continuum description since we will implement the resulting transport
equations numerically in a tight binding model.
We will then introduce the central element of the Keldysh formalism, namely the closed-

time [Sch61] or (Schwinger–)Keldysh contour [Ram07, Wim09a], which distinguishes this
specific formulation from more traditional approaches and which we will refer to simply
as the Keldysh contour. The theory describing the non-equilibrium situation of quantum
transport will turn out to have the form of a perturbation theory, which will be treated
numerically exact to all orders and which is conveniently described in terms of Green’s
functions, or “propagators” as they are commonly called. In this non-equilibrium Green’s
function (NEGF) formalism, the core of perturbation theory—the Dyson equation—will
relate the non-equilibrium properties to equilibrium Green’s functions, which are intimately
connected with the observables of interest in steady state situations.
In the following, we will restrict ourselves to quadratic Hamiltonians, i.e., Hamiltonians

that are quadratic in field operators, describing either non-interacting systems or interactions
that are taken into account as effective potentials in a mean-field approximation, such as the
Hartree(–Fock) approximations to the Coulomb interaction. At a later stage, we will shortly
outline the extensions to the formalism that arise when interactions are generically included.

1.1 Basic definitions

Consider a quantum system that is prepared at time t = t0 in a state described by a density
matrix ρ(t0) ≡ ρ0. Let further be t0 the reference time where Schrödinger, Heisenberg, and

7



Chapter 1 Non-equilibrium Green’s function formalism of quantum transport

interaction pictures coincide. Let our system be described by a quadratic Hamiltonian

H(t) ≡ H0 +H′(t)

with a time-independent part

H0 ≡
∑
i,j

(H0)ijψ†(i)ψ(j), Ĥ0 =
∑
i,j

(H0)ij |i〉〈j|, (H0)ij ≡ 〈i|Ĥ0|j〉, (1.1)

and a time-dependent part

H′(t) ≡
∑
i,j

Vij(t)ψ†(i)ψ(j), V̂ (t) =
∑
i,j

Vij(t)|i〉〈j|, Vij(t) ≡ 〈i|V̂ (t)|j〉, (1.2)

written in second quantized form with corresponding single particle operators Ĥ0 and V̂ (t)
according to the usual prescription for the construction of many-body operators. The
fermionic field operator ψ†(i) describes the creation of a particle in a state |i〉 of some discrete
basis set of single particle states {|i〉} that we will concretize at a later stage. The expansion
coefficient of the single-particle operators Ĥ and V̂ (t) in this basis constitute elements (H0)ij
and Vij(t) of matrices H0 and V (t), respectively, as indicated above. Later, H′(t) will be
interpreted as a perturbation to the unperturbed system described by H0.
In order to use a compact notation, we define

UX (t, t′) ≡ T exp
(
− i
~

∫ t

t′
X (t̃) dt̃

)
for some possibly time-dependent operator X (t), where the exponential is defined via the
series expansion and T denotes the usual time ordering operator that orders expressions
according to their time argument with later times to the left. We remind the reader that,
according to the usual convention, each interchange of fermionic field operators under this
operation generates an additional minus sign. Similarly, the anti-time ordering operator T̃
orders expressions with later times to the right.
For some operator O(t) in the Schrödinger picture, which may exhibit an explicit depen-

dence on time, we further define

OX (t) ≡ U†X (t, t0)O(t)UX (t, t0).

Then, OH(t) is the operator in the Heisenberg picture, where the time evolution of operators
is governed by H(t), and, for the expectation value, we have

〈O(t)〉 ≡ tr(ρ(t)O(t)) = tr(ρ0OH(t)) ≡ 〈OH(t)〉.

Similarly, OH0(t) is the operator in the interaction picture, where time evolution of operators
is governed by H0 and H′(t) is interpreted as perturbation.

Since we will make excessive use of field operators in the interaction picture, we introduce
the shorthand notation

ci(t) ≡ ψH0(i, t).

8



1.1 Basic definitions

Utilizing the fermionic anti-commutation relations, we obtain the equation of motion for the
field operator,

i~ d
dtci(t) = [ci(t),H0]

= U†H0
(t, t0)

∑
k,j

(H0)kj
(
ψ(i)ψ†(k)︸ ︷︷ ︸
δik−ψ†(k)ψ(i)

ψ(j)− ψ†(k)ψ(j)ψ(i)︸ ︷︷ ︸
−ψ(i)ψ(j)

)
UH0(t, t0)

=
∑
j

(H0)ijcj(t). (1.3)

It is easily verified that the solution to this equation is given by

ci(t) =
∑
α

(ϕα)ie−iEα(t−t0)/~aα, (1.4)

where (ϕα)i ≡ 〈i|ϕα〉 and |ϕα〉 and Eα denote eigenstates and eigenvalues of Ĥ0, respectively,

Ĥ0|ϕα〉 = Eα|ϕα〉,

and aα denote the corresponding field operators that diagonalize H0,

H0 =
∑
α

Eαa
†
αaα.

In the following, we assume H′(t ≤ t0) = 0 so that the system is in thermal equilibrium at
t = t0 and the corresponding grand canonical equilibrium density matrix ρ0 is governed by
H0,1

ρ0 = 1
Z

e−β(H0−µN ), (1.5)

where β ≡ (kBT )−1 is the inverse temperature, µ is the chemical potential, N ≡
∑
i ψ
†(i)ψ(i)

is the number operator, and the partition function is given by

Z = tr e−β(H0−µN ).

If H0 describes a set of independent subsystems, as will be the case later on,

H0 = HS1,0 ⊗ 1S2 ⊗ 1S3 ⊗ . . .+ 1S1 ⊗HS2,0 ⊗ 1S3 ⊗ . . .+ . . . ,

the density matrix at t = t0 is the direct product of the individual density matrices, describing
the individual thermal equilibrium state of each subsystem, i.e.,

ρ0 = ρS1,0 ⊗ ρS2,0 ⊗ ρS3,0 ⊗ . . .

We will now introduce the formalism that allows us to express the non-equilibrium situation

1 Note that this assumption does not pose a limitation for practical purposes, since thermal equilibrium
is the only meaningful condition accessible for preparation of a system consisting of a huge number of
particles.
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Chapter 1 Non-equilibrium Green’s function formalism of quantum transport

Figure 1.1: The closed time contour ct, starting at t0, running through t, and going back to t0. The
contour is set off from the real time axis for clarity only; this must not be understood as (infinitesimal)
shift into the complex plane.

described by H(t) in terms of the equilibrium state at t = t0 (described by H0) in form of a
perturbation theory.

1.2 Keldysh contour and Dyson equation

Interpreting H′(t) as a perturbation, we first note that an operator in the Heisenberg picture
can be expressed in the interaction picture as

Tct exp
(
− i
~

∫
ct
H′H0(τ̃) dτ̃

)
OH0(τ)

=
(
T̃ exp

(
− i
~

∫ t0

t
H′H0(t̃) dt̃

))
OH0(t)

(
T exp

(
− i
~

∫ t

t0
H′H0(t̃) dt̃

))
= U†H′H0

(t, t0)U†H0
(t, t0)O(t)UH0(t, t0)UH′H0

(t, t0)

= OH(t), (1.6)

where Tct denotes time ordering along the contour ct shown in Fig. 1.1, τ is the time lying
on the contour ct that corresponds to t (see the following remark), and in the last step, we
used Dyson’s formula [Ram07],

T exp
(
− i
~

∫ t

t0
H′H0(t̃) dt̃

)
︸ ︷︷ ︸

UH′H0
(t,t0)

= exp
( i
~
H0 × (t− t0)

)
︸ ︷︷ ︸

U†H0
(t,t0)

T exp
(
− i
~

∫ t

t0
H(t̃) dt̃

)
︸ ︷︷ ︸

UH(t,t0)

,

which can easily be verified by direct differentiation—applying (i~∂t −H′H0
(t)) from the left

on both sides gives zero—and noting that both sides fulfill the same initial condition at
t = t0 trivially.
One remark concerning notation: We denote times on a contour in general by the Greek

letter τ . In addition, t→ denotes a time on the forward part of a contour, whereas t← denotes
a time on the backward part of a contour. “Contour times” that lie at the turning point
are (unambiguously) identified with corresponding “standard times”, τ = t→ = t← = t. So,
strictly speaking, in the first line of Eq. (1.6), the argument t of the operator O, which is a
standard time, has been identified with the turning point of the contour under the contour
time ordering operation. As shown in the first step of Eq. (1.6), the contour time ordering
operation orders expressions according to contour times and then projects all contour times
onto corresponding standard times. In addition, note that contour time has nothing to do

10



1.2 Keldysh contour and Dyson equation

Figure 1.2: (a) Sets of contours c that are equivalent with respect to Eq. (1.7) due to cancellation of
hatched parts as explained in the text, shown for the cases t1 < t2 and t2 < t1, respectively. Contour
times τ1,2 correspond to standard times t1,2. (b) The Keldysh contour C, which is obtained by taking
the limits t0 → −∞ and tt →∞.

with imaginary time; times on the contour in Fig. 1.1 must not be understood as being
(infinitesimally) shifted away from the real time axis into the complex plane.2

Since observables will be expressed through correlation functions, i.e., expectation values
of products of field operators, we also infer the corresponding expression for products of
operators,

OH(t1)OH(t2) = Tc exp
(
− i
~

∫
c
H′H0(τ̃) dτ̃

)
OH0(τ1)OH0(τ2), (1.7)

where c denotes any of the contours shown in Fig. 1.2(a). All of these contours are equivalent
with respect to Eq. (1.7) since hatched parts in Fig. 1.2(a) correspond to terms that are of
the form

U†H′H0
(t, t′)UH′H0

(t, t′) = UH′H0
(t, t′)U†H′H0

(t, t′) = 1

and therefore cancel. We thus consider in the following the generic contour by taking the
limits tt → ∞ and t0 → −∞, the latter being justified by the fact that we will only be
interested in steady state properties.3 This contour C, depicted in Fig. 1.2(b), is called
“Keldysh contour”.

We now define the central object of the perturbation theory, namely the contour-ordered
Green’s function, which is a correlation function of quantum fields and from which observables

2 We therefore also use the term “standard time” rather than “real time”.
3 A strict definition of the steady state, that implies translational invariance in time, will be given in
Section 1.6.
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Chapter 1 Non-equilibrium Green’s function formalism of quantum transport

will be derived:

Gij(τ, τ ′) ≡ −
i
~

〈
TCψH(i, τ)ψ†H(j, τ ′)

〉
= − i

~
tr
(
ρ0TC exp

(
− i

~

∫
C

∑
k,l

Vkl(τ̃)c†k(τ̃)cl(τ̃) dτ̃
)
ci(τ)c†j(τ

′)
)

≡
∞∑
n=0

G
(n)
ij (τ, τ ′), (1.8)

where we employed Eq. (1.7) and the sum refers to the series expansion of the exponential.

Wick’s theorem

In order to evaluate Eq. (1.8), we may employ Wick’s theorem in the variant applicable to
finite temperatures,4 which provides a prescription how expectation values of strings of field
operators, which appear by expanding the exponential, can be expressed through products
of expectation values of pairs of field operators. For a general proof of the theorem, we refer
the reader to Ref. [Ram07].

The contribution G(n)
ij (τ, τ ′) to Eq. (1.8) due to the n-th order term of the series expansion

of the exponential contains a quadratically weighted trace5 of a contour time ordered string
of field operators,

tr
(
ρ0TC ci(τ)c†k1

(τ̃1) cl1(τ̃1)c†k2
(τ̃2) . . . cln−1(τ̃n−1)c†kn(τ̃n) cln(τ̃n)c†j(τ

′)
)
, (1.9)

where we have permuted the field operators under the contour time ordering operation
without an additional minus sign, since the number of transpositions is even. Wick’s theorem
is the statement that such an expression can be rewritten by partitioning the string of field
operators into pairs, writing down the product of the expectation values of these pairs, and
summing these products over all possibilities of pair formation. One way of choosing pairs is
already indicated in Eq. (1.9), giving rise to the product

tr
(
ρ0TCci(τ)c†k1

(τ̃1)
)

tr
(
ρ0TCcl1(τ̃1)c†k2

(τ̃2)
)
. . .

× tr
(
ρ0TCcln−1(τ̃n−1)c†kn(τ̃n)

)
tr
(
ρ0TCcln(τ̃n)c†j(τ

′)
)

= (i~)n+1G
(0)
ik1

(τ, τ̃1)G(0)
l1k2

(τ̃1, τ̃2) . . . G(0)
ln−1kn

(τ̃n−1, τ̃n)G(0)
lnj

(τ̃n, τ ′),

according to Wick’s theorem. Due to integration over internal contour times, there are n!
equivalent terms of this form, canceling the prefactor 1/n! that originates from the expansion
of the exponential. Combinations in which two annihilation operators or two creation
operators are paired obviously do not contribute since such operators change the number

4 In the original formulation [Wic50], Wick’s theorem refers to an operator identity valid at zero temperature,
i.e., in a ground state formalism.

5 A quadratically weighted trace is an expectation value with respect to a density matrix of the form (1.5)
governed by a quadratic Hamiltonian.
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1.3 Effective description of open quantum systems

of particles. Combinations allowing for a factorization of the n integrations contained in
G

(n)
ij (τ, τ ′) do not contribute either since integrals of the form∫

. . .

∫
G

(0)
l1k2

(τ̃1, τ̃2)G(0)
l2k3

(τ̃2, τ̃3) . . . G(0)
lmk1

(τ̃m, τ̃1) dτ̃1 . . . dτ̃m, m ≤ n,

clearly vanish.6 We therefore have

G
(n)
ij (τ, τ ′) =

∫
. . .

∫ ∑
k1...kn

∑
l1...ln

G
(0)
ik1

(τ, τ̃1)Vk1l1(τ̃1)G(0)
l1k2

(τ̃1, τ̃2)Vk2l2(τ̃2) . . .

× Vknln(τ̃n)G(0)
lnj

(τ̃n, τ ′) dτ̃1 . . . dτ̃n

=
∫
. . .

∫ (
G(0)(τ, τ̃1)V (τ̃1)G(0)(τ̃1, τ̃2)V (τ̃2) . . . V (τ̃n)G(0)(τ̃n, τ ′)

)
ij

dτ̃1 . . . dτ̃n,

where we introduced the matrix G(0)(τ, τ ′) with elements (G(0)(τ, τ ′))ij ≡ G
(0)
ij (τ, τ ′) and

identified the sums with corresponding matrix products. Condensing the notation even
more7 by implying integration over internal contour times, we arrive at the Dyson equation,8

G =
∞∑
n=0

G(n) = G(0) +G(0)V G(0) +G(0)V G(0)V G(0) + . . .

= G(0) +G(0)V G

= G(0) +GV G(0), (1.10)

where we introduced matrices G and G(n) analogous to G(0). The non-equilibrium situation
can thus be described in terms of an infinite series of products involving the corresponding
equilibrium Green’s function of the unperturbed system and the perturbation Hamiltonian.
Commonly, this expression is evaluated approximately by taking the elements of the series
expansion into account only up to a certain order n. In our work, we will treat the Dyson
equation exactly, taking all orders into account. In the following, we will describe how this
is achieved for open quantum systems, where particles are allowed to be injected into and
extracted from the system and where corresponding transport observables are of interest.

1.3 Effective description of open quantum systems
The systems considered in this work have the generic structure shown in Fig. 1.3. A central
scattering region S is connected to a number of leads Ll, l ∈ {1, . . . , NL}, through which
particles are able to enter and leave the scattering region. To accommodate the open
character of the system, the leads are assumed to extend to infinity and the system Green’s

6 This is easily verified by noting that contributions of forward and backward parts of the contour cancel
when integrating along the rightmost contour time variable, i.e., the one corresponding to the largest
standard time variable. Also see the last pair of equivalent contours in Fig. 1.2(a).

7 In analogy, one may think of a matrix structure in contour time with V being diagonal in contour time,
V (τn, τm) = V (τn)δ(τn − τm).

8 We will encounter more variants of the Dyson equation in the following. In all these cases, the last equality
of Eq. (1.10), which is obvious by iteration, holds correspondingly.

13



Chapter 1 Non-equilibrium Green’s function formalism of quantum transport

Figure 1.3: Sketch of a typical transport setup consisting of a central scattering region S and a
number of leads Ll, l ∈ {1, . . . , NL}, with NL = 3 in this case. The leads are assumed to extend to
infinity. In the non-equilibrium situation, lead Ll is coupled to the scattering region via a coupling
term VSLl

(and the hermitian conjugate VLlS = V †SLl
) as indicated by the arrows.

function G—as well as G(0)—is therefore given by a matrix of infinite size. A direct numerical
evaluation of Eq. (1.10) is thus not possible. To remedy this, we will introduce an effective
description of the scatterer, which again has the form of the Dyson equation but where the
hermitian perturbation Hamiltonian is amended by a so-called self-energy, which is in general
non-hermitian, describing the effects of in- and outflow of particles through the leads.

Let us first substantiate how the states |i〉 of our discrete basis are composed. Since we deal
with a translationally non-invariant system, the basis states are conveniently characterized
by position degrees of freedom, rather than momentum degrees of freedom. In addition,
the particles may have internal degrees of freedom, such as spin. Thus, a basis state
|i〉 ≡ |xi, si, . . .〉 describes a particle at position9 xi with spin si and possibly additional
degrees of freedom.

In the following, we will make extensive use of matrices acting on subspaces corresponding
to individual subsystems, i.e., individual parts of the full generic setup as shown in Fig. 1.3.
We therefore introduce the following notation: Let |iA〉 and |jB〉 describe states in subsystems
A and B, respectively. A generic single-particle operator X̂AB connecting the two subsystems
can then be written as

X̂AB ≡
∑
ij

|iA〉〈iA|X̂|jB〉〈jB|

and the corresponding matrix XAB is given by the matrix elements

(XAB)ij ≡ 〈iA|X̂|jB〉.

For the special case A = B, we further define X̂A ≡ X̂AA and XA ≡ XAA.
The matrix Green’s function components that describe the scattering region are then

9 Note that by choosing a discrete basis in position representation, the particles described by such basis
states are assumed to be located (with some orbital wavefunction) on the sites of a lattice—as they
naturally are in condensed matter systems—rather than at some position in continuous space.
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1.4 Transition from contour time to standard time

obtained from Eq. (1.10) as

GS = G
(0)
S +G

(0)
S (VS + Σ)GS , (1.11)

with the so-called self-energy of the leads,

Σ ≡
∑
L

VSLG
(0)
L VLS , (1.12)

where S labels the subsystem of the scattering region and L labels the subsystem of one
particular lead. Note that G(0)

SL = G
(0)
LS = 0 for any of the leads since in the initial thermal

equilibrium state leads and scatterer are all disconnected from each other and therefore they
are independent subsystems at t = t0. Thus, we also can infer

GLS = G
(0)
L

(
VLSGS +

∑
L′

VLL′GL′S

)
,

GSL =
(
GSVSL +

∑
L′

GSL′VL′L

)
G

(0)
L . (1.13)

Since the number of lattice sites in the scattering region is finite, Eq. (1.11) is a matrix
equation of finite-dimensional matrices—in contrast to Eq. (1.10)—in the form of a Dyson
equation describing the scattering region, where the effect of the leads is captured in the
self-energy Σ.

At first sight, it may seem that the evaluation of the self-energy is numerically not possible
since it contains products with the infinite-dimensional matrices G(0)

L . However, in practice
only a few matrix elements in VSL and VLS are non-zero and therefore only a finite number
of matrix elements of G(0)

L is involved in the matrix product, so that the calculation of Σ
becomes feasible. We will discuss the explicit calculation of the self-energy in Section 2.1;
in the next section, we will see how Eq. (1.11) can be expressed in standard time variables.
A Fourier transform will then relate time and energy domains, which will allow for the
calculation of steady state observables.

1.4 Transition from contour time to standard time
The mapping from contour times to standard times is not bijective since there are always two
contour times—one on each branch of the contour—that correspond to the same standard
time. We therefore introduce the lesser and greater Green’s functions as

G<(t1, t2) ≡ G(t→1 , t←2 ),
G>(t1, t2) ≡ G(t←1 , t→2 ),

respectively, where t→i (t←i ) is a contour time lying on the forward (backward) part of the
contour, corresponding to standard time ti. The names are inspired by the fact that—by
definition—the contour time associated with the first argument of the lesser (greater) Green’s
function is ensured to be earlier (later) than the contour time associated with the second
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Chapter 1 Non-equilibrium Green’s function formalism of quantum transport

argument, t→1
C
< t←2 (t←1

C
> t→2 ), irrespective of the numerical values, since these times lie

on different branches of the contour. We further define the retarded and advanced Green’s
functions as

Gr(t1, t2) ≡ Θ(t1 − t2)(G>(t1, t2)−G<(t1, t2)),
Ga(t1, t2) ≡ −Θ(t2 − t1)(G>(t1, t2)−G<(t1, t2)) = (Gr(t2, t1))†,

respectively, which are non-zero only if t1 > t2 and t1 < t2, respectively. In addition, we note
the identities

G(t→1 , t→2 ) = G<(t1, t2) +Gr(t1, t2) = G>(t1, t2) +Ga(t1, t2),
G(t←1 , t←2 ) = G<(t1, t2)−Ga(t1, t2) = G>(t1, t2)−Gr(t1, t2), (1.14)

which are easily verified using the property of the contour-ordered Green’s function that it
does not depend on whether the rightmost contour time is lying on the forward or backward
branch of the contour,

G(t→1 , t→2 ) =
{
G(t←1 , t→2 )
G(t→1 , t←2 )

and G(t←1 , t←2 ) =
{
G(t→1 , t←2 ) if t1 > t2,

G(t←1 , t→2 ) if t1 < t2,

see Fig. 1.2(a). Using Eq. (1.14), an expression of the form

γAB(τ1, τ2) ≡
∫
C
GA(τ1, τ)VAB(τ)GB(τ, τ2) dτ,

appearing in Eqs. (1.10) and (1.11), can then be rewritten in standard time as

γ≶AB(t1, t2) ≡ γAB(t�1 , t
�
2 ) =

∫
C
GA(t�1 , τ)VAB(τ)GB(τ, t�2 ) dτ

=
∫ ∞
−∞

GA(t�1 , t→)VAB(t)GB(t→, t�2 ) dt+
∫ −∞
∞

GA(t�1 , t←)VAB(t)GB(t←, t�2 ) dt

=
∫ ∞
−∞

(
GrA(t1, t)VAB(t)G≶B(t, t2) +G≶A(t1, t)VAB(t)GaB(t, t2)

)
dt,

or
γ≶AB = GrAVABG

≶
B +G≶AVABG

a
B (1.15)

in compact notation.10 Analogous, using

Gr −Ga = G> −G<, (1.16)

10 Here, integration is of course implied over standard time.
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1.4 Transition from contour time to standard time

we find

γr,aAB(t1, t2) ≡ ±Θ(±(t1 − t2))(γ>AB − γ
<
AB)|(t1,t2)

= ±Θ(±(t1 − t2))
(
GrAVAB(G>B −G

<
B) + (G>A −G

<
A)VABGaB

)∣∣∣
(t1,t2)

= ±Θ(±(t1 − t2))
(
GrAVABG

r
B −GaAVABGaB

)∣∣∣
(t1,t2)

= (Gr,aA VABG
r,a
B )|(t1,t2).

These identities—sometimes called analytic continuation rules [Wim09a, Hau96] although
they are not related to imaginary times at all—allow for the transition from contour time to
standard time and were originally established by Langreth [Lan72, Dev76]. It is clear from
the definition that the identities (1.14) also hold for γAB—see again Fig. 1.2(a). Therefore,
we can apply the same rules to an expression of the form

γABC(τ1, τ2) ≡
∫
C
γAB(τ1, τ)VBC(τ)GC(τ, τ2) dτ

and obtain

γ≶ABC = GrAVABG
r
BVBCG

≶
C + (GrAVABG

≶
B +G≶AVABG

a
B)VBCGaC ,

γr,aABC = Gr,aA VABG
r,a
B VBCG

r,a
C .

Application to the Dyson equation

The Langreth rules derived above can now be applied to Eq. (1.11) giving

Gr,aS = Gr,aS,0 +Gr,aS,0(VS + Σr,a)Gr,aS (1.17)

and
G≶S = G≶S,0 +GrS,0(VS + Σr)G≶S +GrS,0Σ≶GaS +G≶S,0(VS + Σa)GaS , (1.18)

where we defined GS,0 ≡ G(0)
S , GL,0 ≡ G(0)

L , and

Σr,a,≶ ≡
∑
L

VSLG
r,a,≶
L,0 VLS .

From Eq. (1.17), we can infer the identity
(
1 +GrS(VS + Σr)

)(
1−GrS,0(VS + Σr)

)
= 1, which

can be substituted into Eq. (1.18):

G≶S =
(
1 +GrS(VS + Σr)

)(
G≶S,0 +GrS,0Σ≶GaS +G≶S,0(VS + Σa)GaS

)
=
(
1 +GrS(VS + Σr)

)
G≶S,0

(
1 + (VS + Σa)GaS

)
︸ ︷︷ ︸

≡G≶
cor

+GrSΣ≶GaS , (1.19)

where in the last step we again used Eq. (1.17). In the next section, we will calculate explicit
expressions for Green’s functions in thermal equilibrium. In the course of doing so, we will

17



Chapter 1 Non-equilibrium Green’s function formalism of quantum transport

also see that the contribution G≶cor describes initial correlations that can often be neglected.

1.5 Equilibrium Green’s functions

In this section, we consider the thermal equilibrium situation and restrict ourselves to a
single isolated subsystem Sn that is fully described by HSn,0 and ρSn,0, suppressing the index
Sn ∈ {S,L1, . . . LNL} for brevity in this section. Note that this system is characterized by
translational invariance in time. We will first calculate explicit expressions for standard
time Green’s functions, which will enter into the definition of observables in the steady state.
Then, we will derive the equations of motion, which allow for a discussion of the contribution
G≶cor to Eq. (1.19).

Energy-dependent Green’s functions

Substituting the time evolution of the field operator, Eq. (1.4), into the definition of the
retarded and advanced Green’s functions, we obtain

(Gr,a0 )ij(t, t′) = ∓ i
~

Θ(±(t− t′))〈{ci(t), c†j(t
′)}〉

= ∓ i
~

Θ(±(t− t′))
∑
α,β

(φ(0)
α )i(φ(0)

β )∗je−i(Eα(t−t0)−Eβ(t′−t0))/~〈{aα, a†β}︸ ︷︷ ︸
δαβ

〉

= ∓ i
~

Θ(±(t− t′))
∑
α

(φ(0)
α )i(φ(0)

α )∗je−iEα(t−t′)/~. (1.20)

In compact matrix notation, the single-particle time evolution operator emerges:

Gr,a0 (t, t′) = ∓ i
~

Θ(±(t− t′))e−iH0(t−t′)/~ ≡ Gr,a0 (t− t′). (1.21)

The retarded (advanced) Green’s function—or propagator—thus has a clear meaning: It
propagates the system through time under the dynamics imposed by the single-particle
Hamiltonian H0; however, it is non-zero only if the propagation from t′ to t is forward
(backward) in time. Thus, up to the prefactor ∓i/~, (Gr,a0 )ij(t, t′) is the probability amplitude
〈i, t|j, t′〉 for being in state |i〉 at time t given that the system has been in state |j〉 at some
earlier (later) time t′ < t (t′ > t).

The retarded equilibrium Green’s function is translationally invariant in time as it should
be for any quantity in the case of an equilibrium situation. It is thus convenient to change
from the time domain to the energy domain by means of a Fourier transform,11

X(E) ≡
∫ ∞
−∞

eiEt/~X(t) dt, X(t) = 1
2π~

∫ ∞
−∞

e−iEt/~X(E) dE,

11 Since it will always be clear from the context, we will not introduce different symbols for (i) energy-
dependent (Green’s) functions, (ii) (Green’s) functions that explicitly depend on two times, and (iii)
(Green’s) functions that depend on a single time (difference), for the sake of clarity.
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1.5 Equilibrium Green’s functions

for any quantity X. Using the integral representation of the Heaviside step function,

Θ(t) = − 1
2πi

∫ ∞
−∞

e−iẼt/~ 1
Ẽ + i0+ dẼ,

where i0+ denotes an infinitesimal shift along the positive imaginary axis into the complex
plane, we obtain from Eq. (1.21):

Gr,a0 (E) = ± 1
2π~

∫ ∞
−∞

∫ ∞
−∞

ei(E−H0∓Ẽ)t/~ dt︸ ︷︷ ︸
2π~δ(E−H0∓Ẽ)

1
Ẽ + i0+ dẼ

= (E −H0 ± i0+)−1. (1.22)

Following Ref. [Kad62], the energy-dependent greater and lesser Green’s functions can be
expressed through the retarded and advanced Green’s functions. To this end, we first note
that, as mentioned above, also the greater and lesser Green’s functions may only depend on
time differences in thermal equilibrium, (G≶0 )ij(t, t′) ≡ (G≶0 )ij(t− t′). We then have

(G<0 )ij(t) = (G<0 )ij(t, 0)

= i
~

1
Z

tr
(
︸ ︷︷ ︸

exp(βµ)c†j(i~β)

e−β(H0−µN )c†j(0)

1︷ ︸︸ ︷
eβ(H0−µN )e−β(H0−µN ) ci(t)

)

= −eβµ(G>0 )ij(t, i~β)
= −eβµ(G>0 )ij(t− i~β),

where we used [H0,N ] = 0, the relation

c†j(0)e−βµN = e−βµ(N−1)c†j(0),

and the cyclic property of the trace. Switching to the energy domain, we obtain the detailed
balancing condition [Ram07],

G<0 (E) = −eβµ
∫ ∞−i~β

−∞−i~β
eiE(t̃+i~β)/~G>0 (t̃) dt̃

= −e−β(E−µ)
∫ ∞
−∞

eiEt̃/~G>0 (t̃) dt̃ = −e−β(E−µ)G>0 (E),

where we substituted the integration variable by t̃ = t− i~β and used the analyticity of the
integrand [Kad62, Ram07]. Using Eq. (1.16), we arrive at the famous fluctuation-dissipation
theorem [Wim09a, Sch08], in compact matrix notation:

G≶0 (E) = ∓G
r
0(E)−Ga0(E)
1 + e±β(E−µ) . (1.23)
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Chapter 1 Non-equilibrium Green’s function formalism of quantum transport

Equations of motion and initial correlations

Using the equation of motion for the field operator, Eq. (1.3), the equations of motion for
the lesser and greater Green’s functions read

i~∂t(G≶0 )ij(t, t′) =
{
−〈c†j(t′)∂tci(t)〉
+〈∂tci(t)c†j(t′)〉

= − i
~
∑
k

(H0)ik

{
−〈c†j(t′)ck(t)〉
+〈ck(t)c†j(t′)〉

=
∑
k

(H0)ik(G≶0 )kj(t, t′).

Together with Eq. (1.21), we therefore find, in compact matrix notation:

(i~∂t −H0)Gr,a0 (t, t′) = δ(t− t′)e−iH0(t−t′)/~ = δ(t− t′) · 1, (1.24)
(i~∂t −H0)G≶0 (t, t′) = 0, (1.25)

where in the last step in Eq. (1.24) we set t = t′ due to the delta function. Eq. (1.24) can
now be used to rewrite the term G≶cor that appears in Eq. (1.19), again suppressing the index
S for clarity:

G≶cor(t, t′) =
∫ ∫ ∫ (

1 +Gr(V + Σr)
)∣∣∣

(t,t1)

×
(

(i~∂t1 −H0)Gr0(t1, t2)︸ ︷︷ ︸
δ(t1−t2)·1

)
G≶0 (t2, t3)

(
1 + (V + Σa)Ga

)∣∣∣
(t3,t′)

dt1 dt2 dt3.

Due to the equilibrium property Gr0(t1, t2) = Gr0(t1 − t2), we may replace ∂t1 → −∂t2 in this
expression; then, integrating by parts, we find

G≶cor(t, t′) =
∫ ∫ (

1 +Gr(V + Σr)
)∣∣∣

(t,t1)

×
(
− i~

(
Gr0(t1, t̃)G≶0 (t̃, t3)

)t̃=∞
t̃=−∞ +

∫
Gr0(t1, t2)

(
(i~∂t2 −H0)G≶0 (t2, t3)︸ ︷︷ ︸

0

)
dt2
)

×
(
1 + (V + Σa)Ga

)∣∣∣
(t3,t′)

dt1 dt3,

where we used [H0, G
r
0] = 0 and Eq. (1.25). We are thus left with a boundary term evaluated

at times t̃ = ±∞, which is often neglected due to the decay of initial correlations at t̃ = −∞
over time [Dav93], i.e., the escape of initially occupied states through the leads as a transient
phenomenon. However, there may exist localized states that—if initially occupied—are not
able to leave the scattering region through the leads if they do not couple to the existing
energy channels. Of course, in non-interacting systems, such localized states do not interfere
with the current-carrying scattering states and therefore the current is unaffected, justifying
the negligence of the boundary term; this is the situation we will be interested in in the
following chapters. We will therefore omit a further discussion of this issue, which would be
necessary in the case of interacting systems or even for the calculation of observables like
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the local density in non-interacting systems. For a more detailed treatment, we refer the
reader to Section 2.5.3 of Ref. [Wim09a] and references therein. Anyway, in the present work,
we are exclusively concerned with steady state properties, where such a term—depending
explicitly on absolute times instead of time differences—cannot contribute by definition as
we will discuss in the next section.

Closing remark

Note that in contrast to lesser and greater Green’s functions, the retarded and advanced
Green’s functions are already fully characterized by the spectrum of H0. Moreover, Eqs. (1.20)
through (1.22) hold for any form of the density matrix ρ0 and are therefore not restricted to
a situation of thermal equilibrium.12 In the next section, we will make use of this fact when
we express the local density of states through retarded and advanced Green’s functions in
a steady state situation where the leads—which in general are characterized by different
chemical potentials and/or temperatures—are coupled through the scattering region13—a
system which is in general out of equilibrium.

1.6 Observables in steady state

In this section, we turn to the definition of observables in terms of Green’s functions.
As mentioned before, we will be exclusively interested in steady state situations, where
observables do not depend on time at all and the related quantities are therefore characterized
by translational invariance in time. More explicitly, our very definition of the steady state is
the dependence of Green’s functions on time differences only.14 Then, it is convenient to
work in the energy domain instead of the time domain since convolutions in the time domain,
as encountered in the Dyson equation, are transformed into simple products in the energy
domain:∫

G̃A(t1 − t̃)VABG̃B(t̃− t2) dt̃

= 1
(2π~)2

∫ ∫
G̃A(E)VABG̃B(E′)e−i(Et1−E′t2)/~

∫
ei(E−E′)t̃/~ dt̃︸ ︷︷ ︸
2π~δ(E−E′)

dE dE′

= 1
2π~

∫
G̃A(E)VABG̃B(E)e−iE(t1−t2)/~ dE ≡ γ̃(t1 − t2),

12 The (contour-ordered) Green’s function (1.8) can as well be defined for an arbitrary density matrix; the
explicit form of the (grand) canonical density matrix first enters the theory in the application of Wick’s
theorem in order to derive the Dyson equation.

13 The time-independent single particle Hamiltonian corresponding to this non-equilibrium steady state
situation is then formally given by H0 + V∞ instead of H0 only, where V∞ = V (t→∞) is the saturation
value of the perturbation.

14 This definition conforms to Ref. [Wim09a] and is stricter than other definitions commonly encountered in
the literature, e.g., in Ref. [Ram07], where by definition “the dependence on the initial state is lost, and
the time dependence is governed by external forces” in the steady state.
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Chapter 1 Non-equilibrium Green’s function formalism of quantum transport

and thus
γ̃(E) =

∫
γ̃(t̃)eiEt̃/~ dt̃ = G̃A(E)VABG̃B(E).

Here, G̃A and G̃B denote Green’s functions and VAB denotes one of the perturbation
contributions VS , VLS , or VSL. Note that by our definition of the steady state, the details of the
transient process when the coupling between leads and scattering region is turned on cannot
play a role; if VAB exhibited an explicit time dependence, the expression γ̃(t1, t2) 6= γ̃(t1− t2)
would not have the form of a convolution and would explicitly depend on two times. Therefore,
only the stationary value of the perturbation contributes in the steady state.15 In the steady
state, the Hamiltonian H = H0 +H′ of our open quantum system consisting of a scatterer S
and a number of leads Ll is thus time-independent. For convenience, we also absorb VS and
VL into H0, (H0)S + VS → HS , (H0)L + VL → HL, without loss of generality, so that

H0 =
∑
L

∑
ij

(HL)ijψ†(iL)ψ(jL)

︸ ︷︷ ︸
HL

+
∑
ij

(HS)ijψ†(iS)ψ(jS)

︸ ︷︷ ︸
HS

,

H′ =
∑
L

(∑
ij

(HLS)ijψ†(iL)ψ(jS)

︸ ︷︷ ︸
HLS

+
∑
ij

(HSL)ijψ†(iS)ψ(jL)

︸ ︷︷ ︸
HSL

)
, (1.26)

where for consistency we defined HLS ≡ VLS , HSL ≡ VSL, and HSL = H†LS since H is
hermitian. Here, we also assumed VLL′ = 0 for L 6= L′, which is natural and always possible
for a sensible definition of the leads.16 H0 describes the equilibrium steady state situation,
whereas H describes the non-equilibrium steady state situation.

Before calculating the current through this system, let us summarize the two central
matrix equations for Green’s functions in the steady state, namely the Dyson equation,

Gr,aS (E) = Gr,aS,0(E) +Gr,aS,0(E)Σr,a(E)Gr,aS (E) = (E −HS − Σr,a(E)± i0+)−1, (1.27)

and the so-called Keldysh equation [Wim09a, Hau96],

G≶S (E) = GrS(E)Σ≶(E)GaS(E), (1.28)

where Σr,a,≶ ≡
∑
l Σ

r,a,≶
l and

Σr,a,≶
l (E) ≡ HSLlG

r,a,≶
Ll,0 (E)HLlS . (1.29)

15 Formally, this corresponds to a sudden switching on of the perturbation, V (t) = V∞Θ(t− t0).
16 The design of the leads is discussed in Section 2.1.
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1.6 Observables in steady state

Current

In general, the current in lead Ll can be defined as expectation value of the derivative of the
charge Ql with respect to time,17

Il(t) ≡
〈 d

dtQl
〉
≡ −e tr

(
ρ0

d
dt(Nl)H(t)

)
= ie

~
tr
(
ρ0[(Nl)H(t),H]

)
= ie

~
tr
(
ρ0U†H(t, t0)[Nl,H]UH(t, t0)

)
= ie

~
∑
ij

(
(HLlS)ij tr

(
ρ0ψ

†
H(iLl , t)ψH(jS , t)

)
− (HSLl)ji tr

(
ρ0ψ

†
H(jS , t)ψH(iLl , t)

))
= e

∑
ij

(
(HLlS)ij(G<SLl)ji(t, t)− (HSLl)ji(G

<
LlS

)ij(t, t)
)

= e tr
(
HLlSG

<
SLl

(t− t)−HSLlG
<
LlS

(t− t)
)

= e

h

∫
tr
(
HLlSG

<
SLl

(E)−HSLlG
<
LlS

(E)
)

dE ≡ Il, (1.30)

where we made use of the anticommutation relations for the field operators, (−e) is the
quantum of charge, and Nl =

∑
i ψ
†(iLl)ψ(iLl) is the number operator in the lead. Thus, as

expected, the current is indeed independent of time in the steady state. Suppressing the
dependence on energy E in the following, we may use Eqs. (1.13) and (1.15) as well as the
cyclic property of the trace to rewrite Eq. (1.30):

Il = e

h

∫
tr
(
HSLl(G

a
Ll,0 −G

r
Ll,0)HLlS︸ ︷︷ ︸

Σa
l
−Σr

l

G<S +HSLlG
<
Ll,0HLlS︸ ︷︷ ︸

Σ<
l

(GrS −GaS)
)

dE

= e

h

∫
tr
(
iΓl
(
G<S + fl(E)(GrS −GaS︸ ︷︷ ︸

G>S−G
<
S

)
))

dE, (1.31)

where we defined Γl ≡ i(Σr
l − Σa

l ) = i(Σ>
l − Σ<

l ), used Eq. (1.23), and introduced the
Fermi–Dirac distribution

fl(E) ≡
(
1 + eβl(E−µl)

)−1
.

Using the Keldysh equation (1.28), we finally obtain

Il = e

h

∫
tr
(
iΓl
(
GrS

∑
l′

ifl′(E)Γl′︸ ︷︷ ︸
Σ<
l′

GaS + fl(E)GrS(Σ> − Σ<︸ ︷︷ ︸
−i
∑

l′ Γl′

)GaS
))

dE

= e

~

∫ ∑
l′

Tll′(E)
(
fl(E)− fl′(E)

)
dE, (1.32)

17 In order for the steady state to be well defined, the leads are always assumed to act as (or be connected
to) charge carrier reservoirs (i.e., the “battery”) that are infinitely large so that their respective chemical
potential does not change under current flow.
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Chapter 1 Non-equilibrium Green’s function formalism of quantum transport

where we defined the transmission function18 [Dat05]

Tll′(E) ≡ tr(ΓlGrSΓl′GaS). (1.33)

From Eq. (1.32), it is evident that the net current is carried solely by states close to the
Fermi energy within an energy window that is determined by the temperatures and chemical
potentials of the respective leads.

With the voltage19 Vl ≡ −µl/e, we obtain for the differential conductance:

dIl
dVl′

=


e2

h

∫ dfl′(E)
dE

∑
l̃ 6=l

Tll̃(E) dE if l = l′,

−e
2

h

∫ dfl′(E)
dE Tll′(E) dE if l 6= l′.

(1.34)

If the temperature in lead Ll′ is sufficiently low so that the transmission function is nearly
constant over the then narrow energy range that contributes to the integral in Eq. (1.34),
we may approximate

dIl
dVl′

≈


e2

h

∑
l̃ 6=l

Tll̃(µl′)
∫ dfl′(E)

dE dE = −e
2

h

∑
l̃ 6=l

Tll̃(µl′) if l = l′,

−e
2

h
Tll′(µl′)

∫ dfl′(E)
dE dE = e2

h
Tll′(µl′) if l 6= l′,

and note that the approximation becomes exact at zero temperature.

Moreover, in the regime of linear response that is characterized by low temperatures and
low bias voltages Vll′ ≡ Vl − Vl′ , we may employ the same approximation in Eq. (1.32):

Il ≈
e

h

∑
l′

Tll′(EF )
∫ (

fl(E)− fl′(E)
)

dE︸ ︷︷ ︸
µl−µl′

=
∑
l′

Gll′(Vl′ − Vl),

with the Fermi energy EF ≈ µl ≈ µl′ and the linear conductance

Gll′ ≡
e2

h
Tll′(EF ).

In the following chapters of this thesis, we will focus on the calculation of the transmission
function for various system types. Nevertheless, we conclude this section by summarizing
additional quantities that can be expressed in terms of Green’s functions and may in principle
be calculated from the technique developed in the next chapter.

18 This formula not only strongly resembles the Kubo formula for quantum conductance, but is also equivalent;
see Ref. [Nik01] for details.

19 For the remainder of this work, V denotes voltages and must not be confused with the perturbation
component in the leads, which has already been absorbed into H in Eq. (1.26).
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1.6 Observables in steady state

Spectral density and local density of states

The spectral density (or spectral weight function) A(E) corresponding to the Hamiltonian
H can be defined as

A(E) ≡ 2πδ(E −H) = i
( 1
E −H + i0+ −

1
E −H − i0+

)
= i
(
Gr(E)−Ga(E)

)
,

where we used the Sokhotsky–Weierstrass theorem,

1
E ± i0+ = P 1

E
∓ iπδ(E),

where P is the Cauchy principal value integral. The spatially resolved density of states
(DOS), also called local density of states (LDOS), is then given by the diagonal elements,

di(E) ≡
∑
α

δ(E − Eα)︸ ︷︷ ︸
DOS

|(ϕα)i|2 = 1
2πAii(E) = − 1

π
ImGrii(E), (1.35)

where Hϕα = Eαϕα. Note that if |i〉 contains internal degrees of freedom, di(E) not only is
position-resolved but also resolves all these internal degrees of freedom.

Local density

In single particle quantum mechanics on a continuous basis, the probability density of a
(spinless) particle in state |ϕ〉 is given as expectation value

|ϕ(x)|2 = 〈ϕ|x〉〈x|ϕ〉

of the single particle density operator |x〉〈x|. In second quantization, the corresponding
operator ψ†(x)ψ(x) is obtained following the usual prescription (see Eqs. (1.1) and (1.2))
and its expectation value is thus simply given by a diagonal element of the lesser Green’s
function evaluated at equal times.

Analogously, we can define the spin density operator20 for a particle with spin s ∈ {↑, ↓}:

n̂ν(xi) ≡
∑
ss′

σνss′ |xi, s〉〈xi, s′|,

where we identify ↑ with 1 and ↓ with 2 for matrix elements of the Pauli matrices σν ,
ν ∈ {0, x, y, z} and σ0 = 12×2, so that the local charge density is included via ν = 0. The
expectation value of the corresponding operator in second quantization is then given by

20 Since we chose a discrete basis in position space rather than a continuum, we deal here with probabilities
rather than probability densities. Nevertheless, we will continue to use the term “density” in the following.
Furthermore, we omit any inconvenient normalization constants that originate from the transition from
continuum to lattice space (see Appendix A of Ref. [Wim09a] for details).
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Chapter 1 Non-equilibrium Green’s function formalism of quantum transport

nν(xi) =
∫
nν(xi, E) dE, where

nν(xi, E) ≡ − i
2π
∑
ss′

σνss′〈xi, s′|Ĝ<(E)|xi, s〉

and we introduced the operator Ĝ<(E) corresponding to the matrix G<(E) along the lines of
Eqs. (1.1) and (1.2). Similar expressions may be defined analogously for additional internal
degrees of freedom if present.

For an isolated subsystem in thermal equilibrium described by the Fermi–Dirac distribution
f(E), Eq. (1.23) may be used to relate the local density (charge (ν = 0) or spin (ν = 1, 2, 3))
to the LDOS,

nν(xi) =
∫
f(E) 1

2π
∑
ss′

σνss′〈xi, s′|Â(E)|xi, s〉︸ ︷︷ ︸
≡dν(xi,E)

dE,

in analogy to Eq. (1.35). Here, we also introduced the operator Â(E) corresponding to the
matrix A(E).

Local current density
By correspondence to the classical expression j = nv, the local current density operator can
be defined as ĵν(xi) ≡ 1

2{n̂
ν(xi), v̂} for charge (ν = 0) and spin (ν = 1, 2, 3), where the anti-

commutator symmetrizes the otherwise non-hermitian operator. Here, v̂ ≡ dx̂/dt = i[Ĥ, x̂]/~
denotes the velocity operator and x̂ =

∑
i xi|i〉〈i| the position operator. We obtain

ĵν(xi) = i
2~

∑
j,s,s′,s̃

σνss′(xj − xi)(His′,js̃|xi, s〉〈xj , s̃| −Hjs̃,is|xj , s̃〉〈xi, s′|)

and thus jν(xi) =
∫

jν(xi, E) dE with

jν(xi, E) ≡ 1
2π~

∑
j,s,s′,s̃

(xj − xi) Re
(
σνss′His′,js̃G

<
js̃,is(E)

)
.
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Chapter 2

Numerical implementation

With the transmission function, Eq. (1.33), we established an expression from which the
current through the system under consideration can in principle be calculated. Central
ingredients of this quantity are the self-energies of the leads, whose practical numerical
calculation is so far unclear. We will thus take on where we left in Section 1.3 and begin
this chapter by outlining how the leads can be modeled in order to facilitate the calculation
of the self-energy. Having established the concrete design of the leads, we can then relate
the Green’s function formalism and in particular the transmission function to the scattering
matrix formalism, which offers a much more intuitive interpretation of Eq. (1.33) as well
as certain advantages for a numerical implementation. Subsequently, we turn to the actual
calculation of the relevant Green’s function elements using a variant of a well-established and
highly efficient recursive scheme. The efficiency of this technique is due to the absence of
interactions beyond a mean-field approximation and, concluding this chapter, we will shortly
outline the changes to the theory developed so far that would emerge if generic interactions
had been included.

2.1 Surface Green’s function and self-energy of an isolated lead

A numerical treatment of quantum transport necessitates the description of the system
under consideration through matrices of finite size. So far, the leads, which are assumed to
extend to infinity, are described by a Hamiltonian matrix of infinite size; a truncation of
this matrix would immediately destroy the open character of the quantum system, therefore
rendering this naive approach inapplicable. Instead, a particular semi-infinite lead L, as
depicted in Fig. 1.3, is usually modeled exhibiting a periodic, crystalline structure, i.e., an
infinite sequence of identical unit cells Lz, z ∈ N0, of finite size (see Fig. 2.1(a)). Then, the
full information about the lead is contained in the intra-cell matrix Huc and the inter-cell
coupling matrix Hc, which are independent of z due to the periodicity of the lead and whose
elements are given by

ĤLz =
∑
ij

(Huc)ij |iLz〉〈jLz |, (Huc)ij ≡ 〈iLz |Ĥ|jLz〉,

ĤLzLz+1 =
∑
ij

(Hc)ij |iLz〉〈jLz+1 | = (ĤLz+1Lz)
†, (Hc)ij ≡ 〈iLz |Ĥ|jLz+1〉.

Further, Bloch states, which are characterized by a well-defined crystal momentum quantum
number, can be defined according to Bloch’s theorem [Blo29] in the corresponding infinite
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Chapter 2 Numerical implementation

Figure 2.1: (a) A semi-infinite lead L is modeled as an infinite sequence of identical unit cells Lz,
z ∈ N0, and is fully described by the intra-cell matrix Huc and the inter-cell coupling matrix Hc, both
of which are of finite size. The corresponding infinite lead is given by the straightforward extension
of the series of units cells for negative values of z. (b) The semi-infinite lead is invariant under the
addition of another unit cell according to Eq. (2.7).

lead that is obtained from the semi-infinite lead by extending the sequence of identical unit
cells to negative values of z.

In addition, in realistic systems only a finite number of matrix elements of HSL is non-zero
so that the unit cell can always be chosen such that any lattice sites in the scattering region
S only couple to the first unit cell L0 of the lead, which we will refer to as the “surface” of
the lead. The matrix product in Eq. (1.29) then only involves matrix elements of the Green’s
function that are located within the surface:1

Σr
l = HSL0

l
grl (E)HL0

l
S ,

where we defined the retarded surface Green’s function

grl (E) ≡
(
GrLl,0(E)

)
L0
l
.

Due to the periodic structure of the lead, it is possible to derive an analytic expression
for the surface Green’s function. To this end, we will follow the approach by Sanvito et
al. [San99]. This approach requires the coupling matrix that connects neighboring unit
cells to be invertible. Since this requirement will not be fulfilled for the lattice structures
considered later, in Section 2.3, we will introduce an effective description of the lead that
remedies this problem and in addition offers increased performance of the algorithm presented
later in Section 2.4. For the remainder of this section, we will again suppress the lead index
as well as the dependence of the surface Green’s function on energy for brevity.

In order to calculate the retarded surface Green’s function, we essentially follow the general
idea from Ref. [San99] however using an elegant argument from Ref. [Wim09a] that simplifies
the derivation. In addition, we will change the terminology with respect to these references

1 In what follows, we can restrict ourselves to the consideration of retarded quantities.
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2.1 Surface Green’s function and self-energy of an isolated lead

from left- and right-moving states to in- and out-moving states for a universal description of
arbitrarily oriented leads in terms of a single expression for the retarded Green’s function.

We start by considering the infinite lead that corresponds to the semi-infinite lead shown in
Fig. 2.1(a). Since a given unit cell Lz only couples to cells Lz−1 and Lz+1, the Hamiltonian
of the infinite lead has a tridiagonal block matrix structure and the corresponding stationary
Schrödinger equation can be written as

H†cΦ(z − 1) +HucΦ(z) +HcΦ(z + 1) = EΦ(z), z ∈ Z. (2.1)

Due to Bloch’s theorem [Blo29], the eigenvectors Φ have the form of a Bloch state,

Φ(z) = nkφ(k)eikz ≡ Φk(z), (2.2)

where k is a longitudinal wave vector, the vector φ(k) is assumed to be normalized according
to φ†(k)φ(k) = 1, and nk is a normalization constant that will be fixed later. Substituting
this Bloch ansatz into Eq. (2.1), we obtain an effective Schrödinger equation,

(H†c e−ik +Huc +Hceik)φ(k) = Eφ(k). (2.3)

Numerically, the problem of finding the wavevectors k and the corresponding eigenvectors
φ(k) for a fixed value of the energy E is most conveniently solved by considering the equivalent
eigenvalue problem2(

−H−1
c (Huc − E) −H−1

c H†c
1 0

)(
φ(k)

e−ikφ(k)

)
= eik

(
φ(k)

e−ikφ(k)

)
. (2.4)

Obviously, this equation is well-defined only if Hc is invertible, as mentioned above. Each of
the solutions—commonly called “modes” or “channels”—can be classified into one of four
categories according to Eq. (2.2) and—for propagating modes, i.e., Im k = 0 (see below)—the
group velocity

v ≡ 1
~
∂E(k)
∂k

= 1
~
∂

∂k

(
φ†(k)

(
H†c e−ik +Huc +Hceik)φ(k)

)
= i

~
φ†(k)

(
Hceik −H†c e−ik)φ(k) = −2

~
Im
(
φ†(k)Hceikφ(k)

)
(2.5)

(where we have used the Hellmann–Feynman theorem3 [Hel37, Fey39]):
• The out-propagating modes φn, n = 1, . . . , N , are characterized by Im kn = 0 and
vn > 0, i.e., they propagate away from the surface in the direction of increasing z.

• The in-propagating modes φn̄, n = 1, . . . , N , are characterized by Im kn̄ = 0 and
2 Note that in contrast to the more common situation where the spectrum is calculated for a given value
of the wavevector, here we have to solve the inverse problem where the possible wavevectors k that are
compatible with a given value of the energy E are sought after, H(k)φ(k) = Eφ(k). The solutions φ(k)
are thus not guaranteed to form a complete orthonormal set, since they are solutions for the same energy
but different Hamiltonians, rather than for different energies and the same Hamiltonian.

3 For H(k)φ(k) = E(k)φ(k), we find ∂k
(
φ†(k)H(k)φ(k)

)
= φ†(k)

(
∂kH(k)

)
φ(k) + E(k)∂k

(
φ†(k)φ(k)

)
using

the product rule for derivatives. The second term vanishes due to the normalization φ†(k)φ(k) = 1.
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Chapter 2 Numerical implementation

vn̄ < 0, i.e., they propagate toward the surface in the direction of decreasing z. The
number of in-propagating modes equals the number of out-propagating modes at a
given energy since the energy dispersion is periodic beyond the first Brillouin zone
and each band thus crosses the energy E an equal number of times with positive and
negative slope [Wim09a, San99].4

• The out-decaying modes φn, n = N + 1, . . . ,M , are characterized by Im kn > 0, i.e.,
they decay away from the surface in the direction of increasing z.

• The in-decaying modes φn̄, n = N +1, . . . ,M , are characterized by Im kn̄ < 0, i.e., they
decay toward the surface in the direction of decreasing z.5 The number of in-decaying
modes equals the number of out-decaying modes at a given energy since Eq. (2.3) can
be recast into a quadratic eigenvalue problem, (Hcλ

2 + (Huc − E)λ + H†c )φ(k) = 0,
where λ ≡ eik, or, after hermitian conjugation, φ†(k)(Hcλ̃

2 + (Huc − E)λ̃+H†c ) = 0,
where λ̃ ≡ 1/λ∗, so for each eigenvalue to a right eigenvector with Im k < 0 there exists
an eigenvalue to a left eigenvector with Im k > 0 and vice versa [Wim09a, San99].

Degenerate propagating modes corresponding to the same eigenvalue λ = eik and constituting
the columns of a matrix Uλ ≡ (φn1 , φn2 , . . . , φn̄1 , φn̄2 , . . .) can always be chosen such that
the matrix

Vλ ≡ iU †λ(Hcλ−H†cλ∗)Uλ, (2.6)

which acts as a velocity operator in the subspace of degenerate states, is diagonal; this is true
since Vλ is hermitian and can thus be diagonalized by means of a unitary transformation,
and we will assume this choice in the following.6 Further, the definition of the group velocity
according to Eq. (2.5) is applicable to propagating modes only since for evanescent modes,
the expression (Hceik − H†ce−ik) is non-hermitian and the corresponding velocity would
in general be complex. Instead, we formally assign a vanishing group velocity v = 0 to
evanescent modes since these do not carry current.

We now employ the argument from Ref. [Wim09a]: As is clear from Fig. 2.1(a), the surface
Green’s function does not depend on the absolute position z of the surface. We can thus
employ Eq. (1.27) for the coupling shown in Fig. 2.1(b),

gr = (E −Huc −Hcg
rH†c + i0+)−1, (2.7)

and note at this point that Eq. (2.7) can serve as a strong consistency check of the numerical
implementation for the calculation of the surface Green’s function. With this equation, we
can show that each eigenvector φ̃ of the matrix (grH†c ) with eigenvalue eik̃, k̃ ∈ C, is a
solution to Eq. (2.4):

e−ik̃H†c φ̃ = (gr)−1φ̃ = (E −Huc −Hcg
rH†c )φ̃ = (E −Huc −Hceik̃)φ̃,

4 This is nothing else than the application of the mean value theorem of calculus to a periodic function.
5 It is clear that the decaying (or evanescent) modes are not normalizable solutions of the infinite lead;
however, they are solutions of Eq. (2.4) and become relevant for the semi-infinite lead as we will see below.

6 This choice is not arbitrary; it is essential for the correct classification of degenerate states with different
propagation direction. Moreover, even for states with the same direction of propagation, this choice is
required if the Landauer formula, Eq. (2.9), is invoked to calculate the transmission function [Wim09a],
and in order for the scattering matrix, Eq. (2.11), to be unitary [San99].
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2.2 Scattering description in the Landauer–Büttiker formalism

where we explicitly took the limit i0+ × φ̃→ 0. Thus, the matrix (grH†c ) can be written in
its spectral representation,7

grH†c = UΛU−1, (2.8)

where the columns of U contain appropriate solutions of Eq. (2.4) with corresponding
eigenvalues on the diagonal of the diagonal matrix Λ. As is done in Refs. [San99, Dat05], the
“appropriate” solutions can be inferred from the retarded property of the Green’s function,
namely that it may only contain solutions that propagate or decay away from the surface.8
Since each column of gr is given as a linear combination of the columns of U , it is thus
clear that the out-propagating and out-decaying modes constitute the columns of U with
corresponding eigenvalues eik on the diagonal of the diagonal matrix Λ:

U = (φ1, . . . , φM ), Λ = diag(eik1 , . . . , eikM ).

Due to the property grH†cΦk(z) = Φk(z + 1), the matrix grH†c is commonly called “transfer
matrix” [Lee81a, Reu00] since it essentially propagates the Bloch wave from one unit cell to
the next.

2.2 Scattering description in the Landauer–Büttiker formalism

Having obtained the surface Green’s function of the leads, one can explicitly calculate the
transmission function, Eq. (1.33). However, this formula still lacks physical intuition. It
is therefore convenient to connect the NEGF formalism to the description of transport
in non-interacting systems in terms of transmission amplitudes in the framework of the
Landauer–Büttiker formalism [Lan57, Büt85], and therefore to show the equivalence of
Eq. (1.33) to the Landauer formula,

Tll′(E) = tr(t†ll′tll′) =
∑
n,n′

|(tll′)nn′ |2, (2.9)

which expresses the total transmission through the probabilities |(tll′)nn′ |2 for transmission
from an in-propagating mode n′ in lead Ll′ into an out-propagating mode n in lead Ll at
energy E (again, we will suppress the dependence on energy in the following). The probability

7 . . . , provided that such a representation exists, i.e., U is invertible; however, a proof for this to be true is
lacking [Wim09a]. Note that also in the formulation of Ref. [San99] such an inversion is required although
it is not apparent at first glance since it is hidden in the implicit definition of the so-called dual vectors.

8 In a bit more detail: According to the discussion below Eq. (1.21), the retarded Green’s function of the
infinite lead (G∞0 )z0 describing the wave function in some unit cell z due to an excitation in the unit cell
located at z = 0 would exhibit contributions that propagate or decay toward larger (smaller) values of z
for z > 0 (z < 0) due to causality. (G∞0 )00 is then given by requiring continuity. Since for a semi-infinite
lead with the surface located at z = 0 as in Fig. 2.1(a) there are no cells with z < 0 and therefore no
contributions that propagate or decay toward smaller values of z, continuity is required with cells z > 0
only and thus only solutions that propagate or decay away from the surface towards larger values of z
contribute to (G∞/20 )00. For an alternative approach based on contour integration in the complex plane
that avoids using this argumentation for the construction of the surface Green’s function, we refer the
reader to Ref. [Wim09a].
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amplitudes9

(tll′)nn′ = i
~

1
√
vnvn̄′

φ†n(ΓlGrL0
l
L0
l′

Γl′ + iΓlδll′)φn̄′ (2.10)

constitute the elements of a matrix tll′ and in turn, these matrices constitute the blocks of a
unitary scattering matrix S,10

S =

 t11 . . . t1NL
. . . . . . . . .
tNL1 . . . tNLNL

 , (2.11)

where NL is the number of leads. For an excellent presentation of the rather involved
derivation of Eq. (2.10), starting from the scattering wave function of the system, we refer
the reader to Appendix C of Ref. [Wim09a]. Here, we restrict ourselves to showing the
equivalence of Eqs. (1.33) and (2.9)—also following Ref. [Wim09a]—for calculating the
transmission between two leads, l 6= l′, taking Eq. (2.10) as a definition.

To this end, we reconsider Eq. (2.4) for out-propagating and out-decaying modes,

(E −Huc)λnφn = (Hcλ
2
n +H†c )φn,

where λn ≡ eikn , and combine this equation with the adjoint,

φ†n′λ
∗
n′(E −Huc) = φ†n′

(
H†c (λ∗n′)2 +Hc

)
,

to give [
iφ†n′(Hcλn −H†cλ∗n′)φn

]
×
[
1− λnλ∗n′

]
= 0.

The expression in the second pair of brackets vanishes if and only if both modes n and n′
are propagating and λn = λn′ . In this case, the group velocity is recovered in the first pair
of brackets.11 In all other cases, the expression in the first bracket has to vanish. Since we
assigned vn = 0 for evanescent modes, we can thus write

iφ†n′(Hcλn −H†cλ∗n′)φn = ~vnδnn′ .

9 Any such relation connecting transmission probability amplitudes with Green’s functions is generally
called “Fisher–Lee relation” after Fisher and Lee, who were first to derive such a relation [Fis81]. We also
mention that for the actual calculation in the later chapters we use the expression for the transmission
amplitudes given in Ref. [San99], while for showing the connection between the NEGF and scattering
formalisms, Eq. (2.10) is more convenient. Of course, both expressions are equivalent [Wim09a].

10 The diagonal blocks of the scattering matrix describe reflection within a single lead instead of transmission
between two different leads and therefore commonly the notation rll is used for the diagonal elements
instead of tll. Further, in the presented form, the scattering matrix is expressed in terms of current
amplitudes rather than wave amplitudes—a prerequisite for the S-matrix being unitary [Dat05, Sto88],
expressing the conservation of current—i.e., it connects asymptotically free states in the leads, Eq. (2.2),
that are normalized to unit flux, nk = 1/

√
|v|, where the group velocity v is given by Eq. (2.5).

11 Note that we chose degenerate eigenvectors to diagonalize Eq. (2.6).
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Using this as well as Eq. (2.8),

grH†c = UΛU−1 =
M∑
n=1

φnλnφ̃
†
n = (Hcg

a)†,

where we denoted the n-th row of U−1 as φ̃†n, we can now rewrite:

Γ = i(Hcg
rH†c −Hcg

aH†c )

= i
M∑
n=1

( M∑
m=1

φ̃mφ
†
m︸ ︷︷ ︸

1

Hcφnλnφ̃
†
n − φ̃nλ∗nφ†nH†c

M∑
m=1

φmφ̃
†
m︸ ︷︷ ︸

1

)

=
M∑
n=1

M∑
m=1

φ̃m iφ†m(Hcλn −H†cλ∗m)φn︸ ︷︷ ︸
~vnδnm

φ̃†n

=
N∑
n=1

φ̃n~|vn|φ̃†n =
N∑
n=1

φ̃n̄~|vn̄|φ̃†n̄,

where the last equality follows in analogy noting that the advanced surface Green’s function
is given by gaH†c = Ū Λ̄Ū−1, where Ū and Λ̄ are composed of in-propagating and in-decaying
solutions. By multiplication from the left and using the relation φ†mφ̃n = φ†m̄φ̃n̄ = δnm, we
further find

φ†mΓ = ~|vm|φ̃†m and φ†m̄Γ = ~|vm̄|φ̃†m̄,

which highlights the role of Γ as velocity (or current) operator in the lead [Wim09a],

φ†mΓφn = ~|vm|δnm, (2.12)

and analogous for in-propagating modes. Thus, we finally obtain

Γ =
N∑
n=1

Γφnφ
†
n

~|vn|
Γ =

N∑
n=1

Γφn̄φ
†
n̄

~|vn̄|
Γ,

where we used Γ = Γ†. This expression can now be substituted into Eq. (1.33) to show the
equivalence of the NEGF formalism and the scattering description in the Landauer–Büttiker
formalism:

Tll′(E) = tr
(

ΓlGrL0
l
L0
l′

Γl′GaL0
l′L

0
l

)

= tr

 Nl∑
n=1

Γl
φ

(l)
n (φ(l)

n )†

~|v(l)
n |

ΓlGrL0
l
L0
l′

Nl′∑
n′=1

Γl′
φ

(l′)
n̄′ (φ(l′)

n̄′ )†

~|v(l′)
n̄′ |

Γl′GaL0
l′L

0
l


=

Nl∑
n=1

Nl′∑
n′=1

1
~2|v(l)

n ||v(l)
n̄′ |

(
(φ(l)
n )†ΓlGrL0

l
L0
l′

Γl′φ
(l′)
n̄′

)(
(φ(l′)
n̄′ )†Γl′GaL0

l′L
0
l
Γlφ(l)

n

)
︸ ︷︷ ︸

|(tll′ )nn′ |2

,
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Figure 2.2: A simple one-dimensional lattice structure whose coupling matrix Hc is not invertible,
see Eq. (2.13).

where we reintroduced the lead indices l and l′, and formally defined the scattering region to
include the first unit cell of each lead. In the special case where φn = φn̄ and Γφn = ~|vn|φn,
the expression for the transmission amplitudes reduces to the familiar form encountered in
textbooks such as Ref. [Dat05].

Expressing transport quantities in terms of transmission amplitudes rather than invoking
Eq. (1.33) has several advantages besides the intuitive interpretation the scattering formalism
offers. First, the unitarity of the scattering matrix S serves as a strong consistency check for
the implementation of the transport algorithm. Second, although not directly observable,
the scattering matrix offers additional information about the system since it resolves the
total transmission into individual scattering channels that can easily be inspected. Finally,
additional observables, such as the Fano factor F = tr

(
T (1 − T )

)
/ tr(T ), where T =

t†ll′tll′ [Two06], or in general the full counting statistics, i.e., the momenta of the transmission
distribution tr(T )n [Naz94], are easily obtained from the scattering matrix.

2.3 Effective description of leads with non-invertible inter-cell
coupling matrices

For lattice structures other than a simple square lattice, the issue of singular inter-cell
coupling matrices Hc mentioned in Section 2.1 is quite generic and will also be relevant for
the lattice structures considered later. We therefore introduce a simple prescription how
to resolve this issue. The general idea of this method is based on the observation that in
most cases when Hc is singular, the reason is that there exist lattice sites in cell Lz that do
not couple to cell Lz−1, as in the example shown in Fig. 2.2;12 there, the lead is defined by
matrices that can be parameterized as

Huc =
(
ε τuc
τ∗uc ε′

)
, Hc =

(
0 0
τc 0

)
, (2.13)

where ε, ε′ ∈ R in order for the Hamiltonian to be hermitian and τuc, τc ∈ C. Oviously, Hc is
not invertible in this case. A straightforward approach to resolving this issue is to find an
effective description of the lead that does not contain such lattice sites that do not couple
to the previous unit cell. This is achieved by formally decomposing the unit cell into two

12 Besides, there exist other cases where Hc is singular; for a discussion and an alternative approach on how
to calculate the surface Green’s function in such cases, we refer to Ref. [Roc06].
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2.3 Effective description of leads with non-invertible inter-cell coupling matrices

Figure 2.3: (a) Decomposition of unit cells (thick lines) into subcells (thin lines) according to Eq. (2.14)
yielding a doubly-periodic structure for the lead that terminates at z = 0. The subcell described by
h1 located within the unit cell at position z neither couples to the previous unit cell located at z − 1
nor to the scattering region S. (b) The effective lead resulting from the elimination of the subcells
described by h1 again exhibits a singly-periodic structure. Note that the effective lead terminates at
z = 1 (or z̃ = 0) and is coupled to the scattering region via an interface cell at z = 0 described by H̃ic.

subcells,13

Huc =
(
h0 h01
h†01 h1

)
, Hc =

(
0 0
h10 0

)
, (2.14)

as shown in Fig. 2.3(a), that leads to an effective lead structure exhibiting a doubly-periodicity.
Here, lattice sites described by h1 neither couple to the previous unit cell nor to the scattering
region; they may be eliminated from the description by taking them into account in an
effective direct coupling between lattice sites described by h0: Denoting the wave function in
the lead as Ψ(z) ≡ (Ψ0(z),Ψ1(z))ᵀ and the wave function in the scattering region as ΨS , we

13 This decomposition is always possible, since structures not containing such lattice sites that do not couple
to the previous unit cell (such as a simple square lattice) can be trivially included into this description via
the choice h0 = h1 = Huc and h01 = h10 = Hc.
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find:

h†01Ψ0(z) + h1Ψ1(z) + h10Ψ0(z + 1) = EΨ1(z) for z ≥ 0,

h†10Ψ1(z − 1) + h0Ψ0(z) + h01Ψ1(z) = EΨ0(z) for z > 0, and

H†SL00ΨS + h0Ψ0(0) + h01Ψ1(0) = EΨ0(0).

Here, L00 denotes the subcell of the surface of the lead that directly couples to the scattering
region. The first of these equations can be solved for Ψ1(z) and then be substituted into the
two remaining equations to give

H̃†cΨ0(z − 1) + H̃ucΨ0(z) + H̃cΨ0(z + 1) = EΨ0(z) for z > 0, and

H†SL00ΨS + H̃icΨ0(0) + H̃cΨ0(1) = EΨ0(0),

where

H̃uc ≡ θ†10 + h0 + θ01,

H̃c ≡ h01(E − h1)−1h10,

H̃ic ≡ h0 + θ01,

θij ≡ hij(E − h1)−1h†ij . (2.15)

These equations describing the coupling of the scattering region to the effective lead (see
Fig. 2.3(b)) are well-defined if the energy parameter E is chosen such that (E − h1) is
invertible; since h1 is hermitian, this is always the case when E does not coincide with one
of the eigenvalues of h1. In the later chapters, we will identify such isolated singularities in
the parameter space of the energy E for the particular lattice structures under consideration.
For the case of H̃c still being singular—which will not be the case for the lattice structures
considered in this work—there exist alternative ways to construct the surface Green’s function,
either by a more elaborate regularization procedure [Roc06, Run08] or directly by solving
the generalized eigenvalue problem corresponding to Eq. (2.4) [Wim09a]; the latter however
was found to be rather unstable under some circumstances [Roc06].

2.4 The Recursive Green’s Function (RGF) algorithm

In order to determine the scattering matrix, the calculation of the lead surface components
of the system Green’s function is needed (see Eq. (2.10)). In principle, this can be achieved
by direct inversion using the Dyson equation,

G̃r = (1− G̃r0Ṽ )−1G̃r0,
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where

G̃r0 ≡


G̃r
S̃,0

gr1
. . .

grNL

 , Ṽ ≡


H̃

(1)
c . . . H̃

(NL)
c

(H̃(1)
c )†
...

(H̃(NL)
c )†

 ,

and G̃r
S̃,0 ≡ (E −HS̃ + i0+)−1, where S̃ is the effective scattering region that contains the

proper scattering region S as well as the interface cells of the leads, see Fig. 2.4. However,
due to the size of S̃, this direct approach is usually numerically not feasible, both in terms
of computing time and memory. An efficient way is based on the facts that (i) in order to
evaluate observables it is not necessary to calculate the full Green’s function matrix but
rather some particular matrix elements thereof, and (ii) for practical purposes, the matrix
HS̃ is usually sparse, i.e., most of its entries are zero due to the local character of the coupling
between atomic sites within a tight binding model.14 Then, the scattering region S can be
formally decomposed into layers Ss, s = 1, . . . , NS , so that the Hamiltonian of the scattering
region can be written in block-tridiagonal form:

HS =


H1 H1,2
H2,1 H2 H2,3

. . . . . . . . .
HNS−1,NS−2 HNS−1 HNS−1,NS

HNS ,NS−1 HNS

 , (2.16)

where Hs,s′ = H†s′,s and we introduced the notation Hs ≡ HSs , Hs,s′ ≡ HSs,Ss′ ; below, we
will also use the notation T †s ≡ (T †1,s, . . . , T

†
NL,s

), where Tl,s ≡ HL00
l
Ss = H†

SsL00
l
.

We can now iteratively build up the whole system by repeatedly using the Dyson equation
for the individual layers as we will show in the following. Since we will only consider
retarded Green’s functions, we will suppress the upper index r for brevity, and we will also
absorb E ← E + i0+. In principle, the infinitesimal shift i0+ can be taken care of in the
implementation of the algorithm presented below by means of a corresponding parameter
that is very small compared to the relevant energy scales in the system as is done for example
in Ref. [Krs02]. This parameter has to be tuned in a controlled manner to ensure proper
convergence. However, in practice this inconvenient handle is hardly necessary as it will
be absorbed by the imaginary part of the self-energy, which is of finite size if there are any
propagating states present in the lead [Wim09a].

14 Physically, the off-diagonal matrix elements, which describe hopping between two atomic sites on the
lattice, are determined from integrals involving products of the orbital wavefunctions located at the
corresponding sites. Since these wavefunctions decay exponentially, only hopping integrals between nearest
(and sometimes between next-nearest) neighbors are commonly taken into account while hopping between
distant atomic sites is neglected.
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Figure 2.4: A detailed sketch of the effective system from which the surface components of the
Green’s function are calculated, shown for the case NL = 3. The effective scattering region S̃, which
is composed of the proper scattering region S and the interface cells of the leads, is shaded gray. A
particularly simple choice of layers Ss, s = 1, . . . , NS , described by Eq. (2.16), is also shown.
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2.4 The Recursive Green’s Function (RGF) algorithm

Connecting the interface cell to the lead surface

The initial step in the iterative scheme can be depicted in the following way:

Analogous to the derivation of Eq. (2.7), we find the Green’s function matrix within the
interface cell in the presence of the lead,

g
(l)
ic =

(
E − H̃(l)

ic − H̃
(l)
c gl(H̃(l)

c )†
)−1

.

Connecting the first layer

The coupling of the first layer has the following structure:

To connect the first layer S1 of the proper scattering region S to the appropriate interface
cells, we solve the Dyson equation g(1) =

(
1− g0(1)V (1)

)−1
g0(1), where

g0(1) ≡
(
gic(0) 0

0 (E −H1)−1

)
, V (1) ≡

(
0 T1
T †1 0

)
, gic(0) ≡


g

(1)
ic

. . .
g

(NL)
ic

 ,
and

g(1) ≡
(
gic(1) gT (1)
gT̄ (1) gS(1)

)
,
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and we find (see Appendix A)

gS(1) =
(
E −H1 − T †1gic(0)T1

)−1
,

gT (1) = gic(0)T1gS(1),

gT̄ (1) = gS(1)T †1gic(0),
gic(1) = gic(0) + gic(0)T1gT̄ (1).

Connecting the remaining layers (“forward sweep”)

The iterative connection of the remaining layers proceeds according to this scheme:

To connect layer Ss, s ∈ {2, . . . , NS}, to the previous layer Ss−1 and to the appropriate
interface cells, we solve the Dyson equation g(s) =

(
1− g0(s)V (s)

)−1
g0(s), where

g0(s) =

gic(s− 1) gT (s− 1) 0
gT̄ (s− 1) gS(s− 1) 0

0 0 (E −Hs)−1

 , V (s) ≡

 0 0 Ts
0 0 Hs−1,s
T †s H†s−1,s 0

 ,
and

g(s) ≡

gic(s) · gT (s)
· · ·

gT̄ (s) · gS(s)

 .
The matrix elements indicated by “·” in g(s) do not need to be calculated since only the
elements in the four corners of the matrix g(s) will enter into g0(s+ 1) in the next step of
the iteration. We obtain (see Appendix A)

gS(s) =
(
E −Hs −

(
Ω̃sTs + T †sΩ′s +H†s−1,sgS(s− 1)Hs−1,s

))−1
,

gT (s) = ΩsgS(s),
gT̄ (s) = gS(s)Ω̃s,

gic(s) = gic(s− 1) + ΩsgT̄ (s), (2.17)
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where we have defined

Ω′s ≡ gT (s− 1)Hs−1,s,

Ωs ≡ gic(s− 1)Ts + Ω′s,

Ω̃s ≡ T †s gic(s− 1) +H†s−1,sgT̄ (s− 1).

Usually, NS � 1 in practice, so this iteration for s = 2, . . . , NS is the most time-consuming
part of the calculation and should therefore be optimized. An efficient algorithm—involving
a minimum number of individual calculations and a minimum amount of computer memory—
could have the following form:

• Setting Ts = 0, calculate Ωs, Ω̃s, and ωs ≡ E −Hs −H†s−1,sgS(s− 1)Hs−1,s.

• If Ts 6= 0, then update in this order:
1. ωs ← ωs − T †sΩs (note that still Ωs = Ω′s at this point),
2. Ωs ← Ωs + gic(s− 1)Ts,
3. Ω̃s ← Ω̃s + T †s gic(s− 1),
4. ωs ← ωs − Ω̃sTs.

• Invert ωs to obtain gS(s) and calculate—in this order—gT (s), gT̄ (s), and gic(s) accord-
ing to Eqs. (2.17).

Updating the lead components
According to this scheme, the final values of the lead components are calculated:

The Dyson equation for this step reads gicL (NS) =
(
1− gicL (0)V ic

L

)−1
gicL (0), where

gicL (0) ≡
(
g̃ic(NS) 0

0 gL(0)

)
, V ic

L ≡
(

0 H̃L
c

(H̃L
c )† 0

)
,

where we defined

gL(0) ≡

g1
. . .

gNL

 , H̃L
c ≡


H̃

(1)
c

. . .
H̃

(NL)
c

 ,
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and
gicL (NS) ≡

(
gic(NS) ·
· gL(NS)

)
.

Again, “·” indicates matrix elements that do not need to be calculated. The component
g̃ic(NS) describing the Green’s function matrix elements on the interface cells in the presence
of the scattering region but in the absence of the leads is not known and therefore has to
be eliminated according to Eq. (A.1). Thus, we finally obtain the matrix Green’s function
components that enter the corresponding equation to Eq. (2.10) for the effective system
shown in Fig. 2.4,

GL̃0
1L̃

0
1

. . . GL̃0
1L̃

0
NL

. . . . . . . . .
GL̃0

NL
L̃0

1
. . . GL̃0

NL
L̃0
NL

 ≡ gL(NS)

= gL(0) + gL(0)(H̃L
c )†gic(NS)H̃L

c gL(0), (2.18)

where L̃0
l is the surface of the effective lead L̃l located at z̃l = 0 in Fig. 2.4.

2.5 Outlook

In this section concluding the methodic part of this thesis, we take a look beyond the actual
focus of this thesis to highlight the full potential of the RGF algorithm, discuss the effects of
interactions beyond a mean-field approximation, and comment on alternative computational
techniques.

Updating the scattering region (“backward sweep”)

The backward sweep proceeds according to this scheme:

For the evaluation of the transmission function, it is sufficient to calculate the surface elements
of the system Green’s function matrix as outlined above. If local quantities as defined in
Section 1.6 are of interest, it is necessary to calculate additional elements of the retarded
system Green’s function matrix. This is achieved by performing a “backward sweep” in
analogy to the “forward sweep” discussed in Section 2.4. The complexity of this procedure
depends on the number of non-zero couplings Ts. Since it is always possible (though not
always optimal in terms of efficiency) to choose layers such that Ts = 0 for s > 1, we will
outline this procedure for this simple case. Again, we have to solve the Dyson equation

42



2.5 Outlook

ḡ(s) =
(
1− ḡ0(s)V̄ (s)

)−1
ḡ0(s) iteratively for s = NS , . . . , 2, where

ḡ0(s) ≡

gic(s− 1) gT (s− 1) 0
gT̄ (s− 1) gS(s− 1) 0

0 0 g̃S(s)

 , V̄ (s) ≡

0 0 0
0 0 Hs−1,s
0 H†s−1,s 0

 ,
and

ḡ(s) ≡

 gic(NS) · ·
ḡT̄ (s− 1) ḡS(s− 1) ·
ḡT̄ (s) · ḡS(s)

 ,
where again “·” indicates matrix elements that do not need to be computed, and g̃S(s),
describing the Green’s function matrix elements on layer s in the presence of layers s′ > s but
in the absence of the leads and layers s′ < s, is not known. The matrices gS(s), s = 1, . . . , NS ,
have to be stored during the forward sweep. From Appendix A, we obtain the relations

ḡS(s− 1) = gS(s− 1) + gS(s− 1)Hs−1,sḡS(s)H†s−1,sgS(s− 1),
ḡT̄ (s− 1) = gT̄ (s− 1)︸ ︷︷ ︸(

ḡS(s)H†s−1,s

)−1
ḡT̄ (s)

+gS(s− 1)Hs−1,sḡT̄ (s),

where gT̄ (s − 1) can be substituted as indicated if it is not stored during the forward
sweep, e.g., due to limited computer memory. The initial conditions ḡS(NS) = gS(NS) and
ḡT̄ (NS) = gT̄ (NS) are known from the last step in the forward sweep. From ḡS(s) = GrSs(E),
the LDOS or rather the quantity dν(xi, E) defined in Section 1.6 can be obtained according
to Eq. (1.35) and with ḡT̄ (s) = GrSsSic(E), where Sic denotes the set of interface cells, the
elements of the lesser Green’s function that enter into the definition of the local charge or
spin (current) density can be obtained from Eqs. (1.28) and (1.29).

In some cases, it can be preferable—in terms of computational efficiency—to choose layers,
e.g., such that also TNS 6= 0; a commonly encountered situation where this is true is the
case of having a scattering region that is connected to two leads only. Then, the Green’s
function matrix elements involving sites on the last layer would have to be maintained during
the backward sweep. The necessary extensions to the algorithm presented in the previous
paragraph are straightforward. For more details, we refer the reader to Ref. [Wim09a], where
the author develops an optimization algorithm (based on graph theory) that automatically
identifies and constructs the layers for an arbitrary multi-terminal system geometry with
maximum performance.

Effect of interactions

Here, we summarize the changes to the formalism in the context of the computational
technique developed in this chapter if interactions beyond a mean-field approximation are
taken into account. We first note that the presence of such interactions at t = t0 give rise
to an appendix to the Keldysh contour along the negative imaginary time axis; however,
in most cases of interest, it can be argued that this appendix is negligible [Ram07]. The
fluctuation-dissipation theorem, Eq. (1.23), still holds in thermal equilibrium in the presence
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of interactions [Wim09a, Kad62], and while Eq. (1.32) is not valid anymore in the interacting
case, the current can still be obtained from Eq. (1.31) if interactions are present only in
the scattering region [Wim09a, Mei92]. Eq. (1.10) is amended by a self-energy contribution
Σint(τ1, τ2) [Ram07, Wim09a],

G = G(0) +G(0)(V + Σint)G

in compact notation. In an open quantum system in the steady state, in the energy domain
we then have equations for the retarded Green’s function of the form

GS = G
(0)
S +G

(0)
S

(
ΣS +

∑
l,l′

ΣSLlG̃ll′ΣLl′S

)
GS ,

G̃ll′ ≡ δll′G
(0)
Ll

+
∑
l′′

G
(0)
Ll

ΣLlLl′′ G̃l′′l′ ,

where we suppressed the upper index r and the energy variable E. For the case of non-
interacting leads, ΣLlLl′ = 0, a direct inversion (which is feasible for small systems only) is
still possible if ΣSLl and ΣLlS only involve the (appropriately chosen) surface of the lead:

GS =
(

1−G(0)
S

(
ΣS +

∑
l

ΣSLlG
(0)
Ll

ΣLlS

))−1
G

(0)
S .

Further, a recursive technique is applicable only if additionally ΣSLl and ΣLlS are local
in the sense that they only involve lattice sites in the (appropriately chosen) interface cell,
and if ΣS is layer-local, i.e., only involves lattice sites within neighboring layers. In this
case, ΣSLl and ΣLlS can simply be absorbed into the coupling matrices Ts, while ΣS can be
absorbed into the matrices Hs, Hs−1,s, and Hs,s−1.15

Alternative numerical techniques
The foundations of the algorithm presented in the previous section have already been
established about 30 years ago by Thouless and Kirkpatrick [Tho81], Lee and Fisher [Lee81b],
as well as MacKinnon [Mac85], who made this technique popular. Since then, a great number
of variants and extensions as well as similar techniques have evolved, and we refer the
reader to Ref. [Tod94] as well as Sections 4.1 and 4.4.2 of Ref. [Wim09a] for a number of
relevant references (for references concerning the construction of the lead Green’s function,
see Sections 3.1 and D.1 therein).

In the original formulation, the algorithm is restricted to systems with only two collinear
leads, giving rise to a natural ordering [Wim09a, Wim09b] of layers along the line connecting
the two leads. However, this restriction is easily resolved and while in Refs. [Wim09a,
Wim09b], the authors focus on the development of an elaborate generic transport algorithm
based on a graph-theoretic approach, which is applicable to arbitrary multi-terminal setups
and lattice structures and which provides optimal performance, in the previous section we
presented a prescription how multiple terminals can be taken into account that shows how
15 Note that the resulting effective Hamiltonian might not be hermitian anymore, so the concrete formulas in

Section 2.4 would have to be modified accordingly, e.g., by replacing H†s−1,s → Hs,s−1.
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easily such an extension to the original formulation can be obtained especially in the case
where only the scattering matrix is of interest. The key feature lies in maintaining more
components of the Green’s function during the recursion, and while our algorithm is therefore
not as efficient as the graph-theoretic approach, for most cases it is still comparable in
performance in the sense that the system sizes that can be managed for a given geometry
are similar for both algorithms.16

A key element of our implementation of the RGF technique is the effective treatment of
leads with non-invertible inter-cell coupling matrices Hc in a way that allows for solving an
ordinary linear eigenvalue problem, Eq. (2.4), instead of an equivalent generalized eigenvalue
problem, which is used in Ref. [Wim09a], but was found to be unstable in certain cases by
the authors of Ref. [Roc06]. While this effective description introduces a finite and usually
very small number of isolated singularities for the possible values of the energy E into the
problem, the matrix H̃uc describing the effective lead is generally smaller than Huc and
corresponding matrix multiplications are thus performed faster in the effective description—a
feature from which also the technique developed in Ref. [Wim09a] may benefit; we also
mention that the algorithm used there is not immune to such isolated singularities in general;
if at a given energy there are propagating states with vanishing group velocity, they cannot
be classified into in- or out-propagating states and consequently, eigendecomposition as well
as Schur decomposition based methods fail.
In Ref. [Wim09a], the author identifies numerically unstable behavior of the commonly

applied eigendecomposition based methods—as also used in the present thesis—to calculate
the lead surface Green’s function in the presence of strong magnetic fields in the leads,17 in
which case the matrix U may become ill-conditioned and its inversion in Eq. (2.8) is thus
meaningless. Using the Schur decomposition, the author further develops an alternative
construction routine for the lead Green’s function based on the calculation of so-called
invariant subspaces instead of individual eigenvectors, resolving this issue; however, although
the author finds this technique to be numerically stable for the investigated systems, he
does not rule out the possibility of this method becoming unstable in other contexts (see
Section 3.3.3 in this reference). As another slight disadvantage, he finds that the developed
technique is not able to cope with degenerate propagating states of different propagation
direction without introducing an inconvenient infinitesimal imaginary (or real) shift of the
energy into the numerics; in an eigendecomposition based method, Eq. (2.6) can always be
invoked in this case.

16 Due to the scaling properties of the various RGF algorithms, the theoretical increase in computing
time is a factor of 16 if the system size is scaled by a factor of 2. The graph-theoretic approach is
found to yield a performance gain up a factor of three only, for large systems and appropriate system
geometries [Wim09a, Wim09b]. Therefore, the main advantage of this routine is seen in the automated
construction of layers providing an effective two-terminal system, enabling the calculation of local properties
in the first place.

17 In our opinion, the relevance of such a situation for practical purposes is not immediately clear. Sure,
confining the magnetic field such that it vanishes in the leads can be argued to be not quite realistic;
however, if one instead implements the magnetic field in the leads, it would have to be homogeneous there
over an infinite distance due to the enforced periodicity of the lead—a situation which can be argued to be
equally unrealistic. However, avoiding the additional scattering at the boundaries of a region of confined
magnetic field by extending the field into the leads may be of use in the interpretation of numerical results.
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Electronic transport in graphene





Chapter 3

Basic properties of graphene

The formalism developed in the previous chapters allows for the numerical computation
of observables in effectively non-interacting open quantum systems described within the
tight binding approximation. The efficiency of the recursive scheme outlined in Section 2.4
facilitates the treatment of mesoscopic systems, i.e., systems composed of a large number
of lattice sites or atoms, which are much more complex than a typical molecule while still
being small enough to be subject to quantum effects. Mesoscopic systems thus constitute
an intermediate regime between the microscopic and macroscopic worlds fully governed by
quantum and classical physics, respectively.
In 2004, mesoscopic physics has been revolutionized by the first successful isolation

of a strictly two-dimensional material composed of an one atom thick layer of carbon
atoms arranged in a hexagonal lattice called “graphene” [Nov04]. Although alternative and
improved methods for isolating graphene have been developed in recent years [Gei07, Gei09],
the original technique, which is surprisingly simple and is often referred to as scotch-tape
technique [Gei09], is still routinely used. With this technique, individual carbon multilayers
are extracted from graphite by mechanical exfoliation and the number of layers of a particular
sample is determined by optical microscopy and Raman spectroscopy [Fer06, Gup06, Gei07].
Nowadays, besides topological insulators, graphene is still the most-used material system
in the field of mesoscopic physics and has already found its way into the commercial
market [gra12].

With its discovery in 2004, this two-dimensional allotrope is the last element in the series
of related carbon configurations of different dimensionality besides graphite, fullerenes (or
buckyballs), and carbon nanotubes [Gei07]. However, graphene has been known theoretically
since the fundamental work by Wallace in 1946 [Wal47]. In the remainder of this chapter, we
summarize some fundamental properties of graphene that will form the basis of the effects
investigated in the following chapters.

3.1 Tight binding and effective mass models of graphene

In Fig. 3.1(a), we show the hexagonal lattice structure of crystalline graphene, also known
as the honeycomb lattice. Each carbon atom is connected to three nearest neighbors at a
distance a0 ≈ 0.142 nm [CN09] via the vectors

δs = a0

(
cos(α+ 2πs/3)
sin(α+ 2πs/3)

)
, s = 0, 1, 2.
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Chapter 3 Basic properties of graphene

Figure 3.1: (a) The hexagonal lattice structure of crystalline graphene, also known as the honeycomb
lattice. The primitive unit cell (shaded) spanned by the primitive lattice vectors a1 and a2 contains
two inequivalent basis atoms forming two hexagonal sublattices labeled A and B. Each A atom has
three nearest neighbors on the B sublattice to which it is connected via the vectors δs, s = 0, 1, 2
(Figure adapted from Ref. [Sch11]). (b) The reciprocal lattice in k-space spanned by the primitive
reciprocal lattice vectors b1 and b2. The K- and K′-points as defined in the text are also indicated;
note that the remaining four corners of the Brillouin zone (shaded) are equivalent to either the
K-point (squares) or the K′-point (circles) by means of a translation along a reciprocal lattice vector.

Note that although there is only one type of atoms present, the graphene lattice cannot be
described as a Bravais lattice with a basis consisting of just one atom. Instead, the primitive
unit cell consists of two inequivalent1 basis atoms, encloses an area A = 3a2

0
√

3/2, and can
be chosen to be spanned by the primitive lattice vectors

a1,2 = δ0 − δ1,2, |a1,2| = a0
√

3.

The presence of two basis atoms within the primitive unit cell induces a sublattice structure:
Atoms located at positions r = na1 +ma2, n,m ∈ Z, are said to belong to the A sublattice,
the remaining atoms are said to belong to the B sublattice.
With the usual definition aibj = 2πδij , i, j ∈ {1, 2} [Kit96], we obtain the primitive

reciprocal lattice vectors

b1,2 = 2π
3a0

(
cosα±

√
3 sinα

sinα∓
√

3 cosα

)
, |b1,2| =

4π
3a0

.

The reciprocal space (or k-space) defined by these vectors as well as the (first) Brillouin
zone is shown in Fig. 3.1(b). The corners of the Brillouin zone are commonly called K- or

1 In a lattice (real or reciprocal space), we refer to two lattice sites as being equivalent if they are connected
by a (reciprocal) lattice vector.
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K′-point; more specifically, we define

K = 4π
3a0
√

3

(
sinα
− cosα

)
, K′ = −K,

without loss of generality; the remaining corners of the Brillouin zone are equivalent to either
K or K′ by means of a translation along a reciprocal lattice vector and therefore do not
constitute independent states in k-space.
The regions around the K- and K′-points are particularly crucial as we will see in the

following. To this end, we consider the electronic spectrum of graphene. Carbon atoms have
four valence electrons in the outermost shell. In the planar configuration, carbon exhibits a
sp2-hybridization, where the 2s-orbital is hybridized with the 2px- and 2py-orbitals (assuming
an orientation within the xy-plane) to yield three energetically equivalent sp2-orbitals. For
each carbon atom, three of the four valence electrons are used to form σ-bonds within the
sp2-orbitals in the graphene plane while the fourth electron remains as conduction electron in
the π-orbitals formed by the remaining 2pz-orbitals; usually, the calculation of the electronic
spectrum (or bandstructure) is solely concerned with these delocalized π-electrons. To be
more specific, there actually exist two bands of electronic states due to the fact that there
are two carbon atoms per unit cell; however, since there is only one π-electron per carbon
atom, only half of the states is actually occupied in undoped graphene.
The calculation of the tight binding bandstructure of graphene follows the standard

textbook procedure [Ash76] and has been done a number of times in the literature; for
details, we direct the reader to Refs. [Wal47, Wim09a, Ben09b, Sch12c, Sai00, Sai98]. In
the simplest approximation, where only hopping between nearest neighbors is taken into
account, the tight binding model of graphene can be formulated as

− t
2∑
s=0

Ψ(r + ζrδs) = EΨ(r), (3.1)

where the sign factor ζr = ±1 specifies the sublattice (A =̂ +1 and B =̂ −1) of the lattice
site located at position r and t ≈ 2.7 eV is the nearest neighbor hopping integral [CN09].
Neglecting overlap integrals of neighboring orbital wavefunctions, which are small compared
to the nearest neighbor hopping integral, the final expression for the energy dispersion
relation reads

E(k) = ±t
∣∣∣1 + eika1 + eika2

∣∣∣ (3.2)

and is shown in Fig. 3.2(a). Since exactly half of the available states are filled in undoped
(or intrinsic) graphene in the ground state, states with E < 0, which form the valence band
(bonding π band), are occupied, whereas states with E > 0, which form the conduction band
(antibonding π∗ band), are empty, and the Fermi energy is EF = 0; this zero of energy is
therefore also referred to as the charge neutrality point. Intrinsic graphene is thus a zero-gap
semiconductor or semimetal with a vanishing density of states2 at the charge neutrality
point as well as a van Hove singularity [Hov53] of divergent density of states at |E| = t
(see Fig. 3.2(b)). With respect to the ground state, the electronic excitations are referred

2 An analytical expression for the density of states is given in Refs. [CN09, Hob53].
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Figure 3.2: (a) The tight binding energy dispersion relation of graphene, obtained from Eq. (3.2),
shown for α = π/12. The Brillouin zone and the Dirac points from Fig. 3.1(b) are also indicated. (b)
The corresponding density of states ρ(E) as given in Refs. [CN09, Hob53], which exhibits a divergent
van Hove singularity [Hov53] at |E| = t and a linear behavior around E = 0 with slope 2A/(πv2

F ).

to either as electron states (occupied states in the conduction band) or hole states (empty
states, i.e., missing electrons, in the valence band). A change of the Fermi energy can be
induced, e.g., by means of a electrostatic gate potential. Such extrinsic graphene may be
either n-doped (EF > 0) or p-doped (EF < 0), and junctions between regions of different
doping levels are correspondingly referred to as np-junctions, nn′-junctions, and so forth.

The regions around K, K′, and equivalent points are commonly called “valleys”. Two
neighboring valleys are separated by a distance ∆K ≡ 4π/(3a0

√
3) in reciprocal space,

which provides the amount of momentum transfer necessary to scatter between the valleys
(“intervalley scattering”) by means of a scattering potential V (r) = (2π)−2 ∫ Ṽ (q)e−iqr dq.
This potential thus has to contain dominant high-frequency Fourier components Ṽ (q) with
|q| ∼ ∆K and in turn fluctuates on the lattice scale, λ ∼ 2π/∆K = 3a0

√
3/2 ∼ a0. Such

a potential is commonly called “short-ranged”, in contrast to long-range potentials, which
vary over distances that are large compared to the lattice scale; such smooth potentials only
contain dominant low-frequency Fourier components Ṽ (q) where |q| � ∆K and thus only
support scattering within a single valley (“intravalley scattering”).

Since electronic transport takes place in a narrow energy range ∼ kBT around the Fermi
energy, only states in the vicinity of the valleys at the K- and K′-points contribute to the
electronic transport, which is thus well-described by a low-energy expansion around these
points. This low-energy approximation, also called effective mass or continuum model, can
be introduced by the ansatz

Ψ(r) =
√
A
(
eiKrφζr + e−iKrφ′ζr

)
(3.3)
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for the tight binding wavefunction Ψ(r), where the two pairs of envelope functions φ± and
φ′± that correspond to the valleys at K and K′, respectively, are smooth on the scale a0, i.e.,
composed of Fourier components with wavevectors κ where |κ| � |K| such that we may use
the Taylor series approximation up to first order,

φ(r± δs) ≈ φ(r)± δs ·
(
∇φ

)
(r), s = 0, 1, 2, (3.4)

for any of the four envelope functions. Arranging these four slowly varying amplitudes in
the vector

|Φ〉 ≡
(
e−iα/2φ+, −ieiα/2φ−, −ie−iα/2φ′−, eiα/2φ′+

)ᵀ
(3.5)

and substituting the ansatz (3.3) into the tight binding model (3.1) taking into account
Eq. (3.4), one arrives at the valley-isotropic Dirac or Dirac–Weyl Hamiltonian [Bee08a],3

H0 = vF

(
σ · p 0

0 σ · p

)
, p = −i~∇, (3.6)

to which |Φ〉 is an eigenstate,
H0|Φ〉 = ±~vFκ|Φ〉,

if the envelope functions φ± and φ′± therein are composed of Fourier components with wave
vectors of modulus |κ| = κ; here ~vF ≡ 3ta0/2 and σ ≡ (σx, σy)ᵀ is the vector of Pauli
matrices in the sublattice space.
At this point, we like to add the following remark: Note that the presence of the two

(identical) carbon atoms per unit cell and the corresponding sublattice degree of freedom are
directly connected to the presence of the two bands π and π∗ and the electron–hole symmetry
of the spectrum; however, it is not connected to the presence of the two inequivalent Dirac
points K and K′ in the reciprocal space and the corresponding valley degree of freedom. The
sublattice and valley structures constitute two independent degrees of freedom, commonly—
but inconsistently4—called pseudo- and isospin, respectively, due to the resemblance to
the real electron spin. Also note that due to the presence of the two Dirac points, clean
graphene exhibits a two-fold valley (or orbital) degeneracy, in addition to the usual two-fold
real spin degeneracy. We also note that there is an additional degeneracy directly at the
charge neutrality point due to the touching of valence and conduction band.5
Using the usual replacement p→ ~κ, we see that momentum eigenstates also fulfill the

eigenvalue equation

σ · κ
κ

(
e−iφ/2

±eiφ/2

)
= ±

(
e−iφ/2

±eiφ/2

)
, κ ≡ |κ|, eiφ ≡ κx + iκy

κ
, (3.7)

which is valid for each of the two valleys. The direction of the pseudospin is thus tied to
the momentum (measured with respect to the charge neutrality point): it is parallel for

3 The valley-isotropic representation (3.6) is only one out of a number of different and commonly used
representations that are connected to each other by unitary transformations (see, e.g., Ref. [Akh08b]).

4 Compare, e.g., Refs. [McC06] and [Bee08a].
5 In more detail: At the Dirac points, the Hamiltonian density [Ben09b] vanishes, so that all possible linear
combinations of the two orbital wavefunctions per unit cell provide a zero-energy eigenstate.
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conduction band states while it is antiparallel for valence band states. Conduction band
states are said to exhibit a positive chirality6 (upper sign), while valence band states have
a negative chirality (lower sign). This property becomes even more obvious if one notes
that due to the conic structure of the low-energy dispersion, the direction of propagation,
which is given by the group velocity, i.e., the gradient of the energy dispersion, is tied to the
momentum κ and σ essentially represents the velocity operator in a single valley up to some
prefactor:

v ≡ d
dtr ≡

i
~

[H0, r] = vF

(
σ 0
0 σ

)
,

where we used the Heisenberg equation of motion. Also note the spinor property of the
two-component wavefunction in Eq. (3.7); it acquires an overall sign, a so-called Berry’s
phase π, by a rotation of the angle φ by 2π [Zha05, Nov05, CN09].

In summary, we can assess that the low-energy excitations of graphene behave similar to
massless, relativistic Dirac fermions with a linear7 dispersion forming one so-called Dirac
cone per valley, however with a renormalized (Fermi) velocity vF ≈ 106 m/s, which is roughly
0.3% of the speed of light.

3.2 Some phenomenological aspects of graphene
The unusual electronic structure of graphene discussed in the previous section, namely the
behavior of the low-energy excitations as massless Dirac fermions, gives rise to a number of
peculiar electronic and transport phenomena of (pseudo)relativistic character. In this section,
we shortly summarize some of these as far as they are relevant for the topics addressed in the
following chapters. For more details and the discussion of additional phenomena, we refer to
one of the reviews on graphene, see Refs. [Gei07, Bee08a, CN09, Gei09, DS11, Nov11, And09].

Boundary conditions and edge states. Graphene physics strongly depend on the boundary
conditions at lattice terminations. In Fig. 3.3, we show the lattice structure and the electronic
spectrum of so-called zigzag and armchair graphene nanoribbons, which are quasi-one-
dimensional systems and are named according to the microscopic shape of their respective
edges. The spectrum of an armchair graphene nanoribbon is obtained by quantizing the
transverse wavevector—ky at α = 0—of two-dimensional graphene (see Figs. 3.1 and 3.2)
according to the ribbon width. Note that in this case states from both valleys are located
around kx = 0 and the two valleys are therefore coupled. Further, the lowest modes which
cross the zero of energy are only present in metallic armchair graphene nanoribbons that
contain (3n + 1) × 4, n ∈ N, atoms in their primitive unit cell and not in the remaining
semiconducting armchair graphene nanoribbons. In contrast, the spectrum of zigzag graphene
nanoribbons cannot be obtained by simply quantizing the transverse wavevector—ky at
α = π/6—of two-dimensional graphene, since the zigzag edge supports additional states that

6 In the context of graphene, the terms helicity and chirality are often used interchangeably [CN09].
7 The tight binding dispersion relation exhibits a three-fold rotational symmetry around the Dirac points.
In the second order in momentum in the low-energy expansion, this gives rise to a corresponding deviation
of the linear spectrum from the strictly conical form, which is known as trigonal warping [CN09, Dre02,
And98].
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Figure 3.3: Lattice structures and electronic spectra of a metallic armchair graphene nanoribbon
(left, lattice constant aa = 3a0) and a zigzag graphene nanoribbon (right, lattice constant az = a0

√
3)

with 16 atoms in the unit cell (dashed) each.

are localized at the edges, which are not captured in the models given in the previous section
and shift the energies of the bulk states obtained by quantizing the transverse wavevector
in energy by an amount depending on kx. The edge states exhibit flat regions in the
bandstructure at |kx| & 2π/(3a0

√
3) leading to a divergence in the density of states at E = 0

in sharp contrast to the density of states of two-dimensional graphene (see Fig. 3.2(b)). Note
further that states originating from the two valleys are well-separated and located around
kx = ±2π/(3a0

√
3), respectively, in contrast to armchair graphene nanoribbons. Edges that

do not exhibit pure zigzag or armchair terminations have been found to behave generically
as zigzag edges [Akh08b]. For more details, we refer to Refs. [Bre06b, Bre07, Bre06a, Ryc07,
Akh08a, Nak96, Fuj96] and in particular to Ref. [Wim09a].

Next-nearest neighbor hopping. The effects of hopping between next-nearest neighbors
connected by the lattice vectors ±a1, ±a2, and ±(a1−a2), whose energy scale is ∼ 0.1t [CN09,
Wim09a, Por95, Sas06], was neglected in the previous section. Inclusion of this hopping
shifts the zero of energy and also breaks the electron–hole symmetry of the tight binding
dispersion relation [Wal47, CN09],8 which in turn leads to an asymmetric profile of the
density of states [CN09, Wal47]. Next-nearest neighbor hopping also has a large impact on
the edge state that is localized at a zigzag edge of graphene. It effectively acts on the edge
state as if an on-site potential was applied to the zigzag edge atoms, introducing a dispersion
into the previously flat band of the edge state [Wim09a]. Moreover, while electronic transport
through the edge state in nearest neighbor approximation is found to be surprisingly robust
to edge disorder, it suffers strong backscattering at such defects if next-nearest neighbor
hopping is accounted for [Wim09a].

8 Still, the linear spectrum of the effective mass model is electron–hole symmetric to a good approximation
since next-nearest neighbor hopping only introduces corrections of second order in momentum [Wim09a].
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Klein tunneling. An intriguing and extensively studied phenomenon that is encountered
in graphene is chiral tunneling or Klein tunneling [Che06, Bee08a]. It is found that the
transmission probability of Dirac quasiparticles through a potential barrier is one at normal
incidence independent of the barrier height.9 As the name suggests, this absence of backscat-
tering is directly related to the chiral property of the low-energy excitations within one valley.
At angles away from normal incidence, the transmission probability is in general less than one
(except for transmission resonances that occur at specific values for the incident angle or the
longitudinal momentum within the barrier) and is reduced with increasing smoothness of the
potential barrier profile. Signatures of this behavior will be further discussed in Section 4.2.

Specular Andreev reflection. A related [Bee08b] phenomenon is the occurrence of specular
Andreev reflection, i.e., the conversion of an electron to a hole at a graphene–superconductor
junction, where the hole does not retrace the path of the incident electron as is the case in
usual metals, but is instead reflected specularly from the interface [Bee06]. If the hole suffers
specular reflection or instead retroreflection is determined by the Fermi energy and the energy
of the electron–hole excitation. More specifically, reflection is specular if electron and hole
originate from different bands, while retroreflection involves electrons and holes originating
from the same band. This will be outlined further in Section 4.3. For details on the mean-field
description of superconductivity in terms of the Bogoliubov–de Gennes Hamiltonian that
couples electron and hole excitations via a superconducting order parameter, we refer the
reader to Ref. [Gen99].

Pseudodiffusive transport and minimal conductivity. Due to the vanishing density of
(propagating) states at E = 0, electronic transport at the Dirac point is dominated
by evanescent modes and therefore exhibits pseudodiffusive behavior even in a disorder-
free system [Pra07]. In contrast to ballistic transport, (pseudo)diffusive transport can
be characterized in terms of a conductivity σ = G × L/W for a rectangular sample
of length L along the transport direction, width W perpendicular to the transport di-
rection, and conductance G. In clean graphene, the conductivity exhibits a minimum
value σmin = 4e2/(πh) at the charge neutrality point in the universal limit W � L
where the microscopic details of the edges become insignificant while the Fano factor,
which is a measure for the shot noise, exhibits the value 1/3 typical for disordered met-
als [Two06, Kat06a, Dan08, Mia07, DiC08, Bee08a, Hee07, Bol08, Du08].

Disorder. Apart from the high mobilities—ranging from typical values of a few 104 cm2/(Vs)
up to values larger than 106 cm2/(Vs) especially in suspended samples—and mean-free paths
in the micron range at charge carrier densities up to 1013 cm−2 [Nov04, Nov05, Zha05,
Gei07, CN09, DS11, Nov11], graphene and in particular its electronic properties are quite
susceptible to the effects of disorder due to the two-dimensional character of the material. For
instance, the value 4e2/h for the minimal conductivity—in contrast to the theoretical value of
4e2/(πh)—which is often observed especially in larger samples [Nov05, Zha05, Tan07, Gei07]
may be attributed to the presence of impurities [Tit07a, Ost10, Sch09, Ost10]. Disorder
can be introduced into the system in many different ways (for a detailed overview, see

9 . . . , at least as long as contributions from evanescent modes within the barrier can be neglected [CN09].
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Section IV in Ref. [CN09]), some of which are collected in the following. First, a long-ranged
curvature of the graphene plane known as frozen flexural vibrational modes or ripples as well
as structural or topological defects in the graphene lattice structure present main sources of
intrinsic disorder. Curvatures and also strains within the graphene plane can locally change
the hopping integrals, eventually leading to pseudomagnetic fields which break the effective
time reversal symmetry within one valley (but not the real time reversal symmetry, which is
conserved in the absence of a real magnetic field). Extrinsic sources of disorder are mainly
classified according to their range; charged impurities that may be present either on top of
the graphene plane or within the substrate induce smooth, long-ranged Coulomb potentials
into the system, eventually leading to so-called electron–hole puddles, i.e., regions of different
doping character (n or p). Further, intervalley scattering is induced in the presence of point-
like defects, i.e., short-range potentials, which may originating from adatoms or molecules,
such as hydrogen or CH3, on the graphene surface. Adatoms, if strongly bound to graphene,
effectively act as vacancies in the honeycomb lattice, which support electronic states at the
charge neutrality point and thus act as resonant scatterers for the Dirac quasiparticles [Per06].
The effects of such impurities on the electronic transport properties of graphene are further
investigated in Section 5.2.
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Chapter 4

The Aharonov–Bohm effect in graphene

In this chapter, we consider electronic quantum interference in mesoscopic ring structures
based on graphene with a focus on the interplay between the Aharonov–Bohm effect and the
peculiar electronic and transport properties of this material. We first present an overview on
recent developments of this topic both from the experimental as well as the theoretical side.
We then present our work on two prominent graphene-specific features in the Aharonov–Bohm
conductance oscillations, namely Klein tunneling and specular Andreev reflection. We close
with an assessment of experimental and theoretical developments in the field and highlight
open questions as well as potential directions of the developments in future work.1

4.1 Overview
The Aharonov–Bohm effect [Ehr49, Aha59, Aha61] is a fundamental phenomenon of quantum
interference related to the transmission of particles through a closed loop pierced by a magnetic
flux. Besides its fundamental significance for quantum theory, its importance for applications
in mesoscopic interferometric devices such as the electron Sagnac gyroscope [Tol10] is
omnipresent. The effect was originally observed in metal rings in 1985 [Web85] and later also
in carbon nanotubes [Bac99]. In graphene, the Aharonov–Bohm effect is expected to exhibit
unusual behavior due to the peculiar electronic properties of this material, in which charge
carriers at low energy effectively behave as massless Dirac fermions, giving rise to a number
of (pseudo)relativistic effects such as a Berry’s phase π [Nov05, Zha05]. In the following, we
review recent developments on the Aharonov–Bohm effect in graphene nanostructures, first
from the experimental side, and later on, we elaborate more on theoretical aspects.

Experimental progress. The first experimental realization of a graphene ring structure
was reported in 2008 [Rus08]. In this work, the authors investigate the Aharonov–Bohm
oscillations in diffusive single-layer graphene as a function of the magnetic field which is
applied perpendicular to the graphene plane in a two-terminal setup. They find clear
magnetoconductance oscillations with the expected period corresponding to one magnetic
flux quantum Φ0 = h/e on top of a low-frequency background signal that is due to universal
conductance fluctuations, which are present in any disordered, phase-coherent mesoscopic
device [Dat05]. Increasing the temperature T gives rise to thermal averaging of the Aharonov–
Bohm oscillations and the authors find that the oscillation amplitudes decay as T−1/2 as is
commonly observed in metal rings [Was86].

1 The work presented in this chapter has also been published in Refs. [Sch10a, Sch12b, Sch12a].
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Figure 4.1: Scanning force micrograph and magnetoresistance of the four-terminal (S1/2, D1/2)
graphene ring structure with two side gates (SG1/2) investigated in Ref. [Hue10] (Figure adapted
from Ref. [Hue10]).

The authors further observe two unusual features in the recorded data. First, they find
indications of a linear relationship between the oscillation amplitude and the overall ring
conductance. Such a behavior has neither been observed in metal rings, nor in semiconductor
heterostructures, with the exception of Ref. [Ang07], where a similar effect is seen. The
authors speculate that tunnel barriers that may be present in their device could be responsible
for the observed behavior; however, a detailed theoretical analysis has yet to be done.

A second peculiar feature is the significant increase of the oscillation amplitude at strong
magnetic fields close to the onset of the quantum Hall regime. This increase is strong enough
to make the second harmonic—i.e., oscillations of period Φ0/2 = h/(2e)—visible in the
frequency spectrum. Such a behavior was also observed by another group in subsequent
experiments with smaller rings and higher visibility in a two-terminal as well as a four-
terminal geometry and was attributed there to scattering on magnetic impurities [Hue09]—an
explanation derived from corresponding observations in metallic rings that is not compatible
with the observations made in Ref. [Rus08], where the authors instead speculate that the
increase of the oscillation amplitude may be due to orbital effects originating from a potential
asymmetry in the arms of the ring; however, this assumption could not be confirmed in
subsequent numerical calculations [Wur10].
In Ref. [Hue09], the authors also introduce additional tunability into the graphene ring

device by applying a side gate potential to one of the ring arms. In subsequent experi-
ments [Hue10], the same group systematically investigates the influence of such side gates
in a four-terminal geometry (see Fig. 4.1) in the diffusive regime and find phase shifts of
the Aharonov–Bohm oscillations as a function of the gate voltage as well as phase jumps of
π at zero magnetic field—direct consequences of the electrostatic Aharonov–Bohm effect2

(which is more feasible in graphene than in metal rings due to the low screening of this
material) as well as the generalized Onsager relations. The authors of Ref. [Hue09] further
speculate on the presence of edge disorder indicated by the fact that the various charge
carrier trajectories around the ring, which can be derived from the frequency distribution of
the magnetooscillations, do not cover the full area of the ring arms.
Further experiments on graphene ring structures include the local oxidation nanolithog-

2 For details on the electrostatic Aharonov–Bohm, we refer the reader to Refs. [Boy73, Was87].
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raphy using atomic force microscopy [Wen08] and antidot arrays on epitaxial graphene
films [She08]; in the latter setup, universal conductance fluctuations are suppressed since
the sample size exceeds the phase coherence length while Aharonov–Bohm oscillations are
still visible due to the small size of the antidots. As a graphene-specific feature, the authors
also observe increased visibility of weak localization due to intervalley scattering on antidot
edges. Shubnikov–de Haas and Aharonov–Bohm effects on thin graphite single crystals with
columnar defects were investigated in Refs. [Lat09, Lat10] in a four-probe measurement and
a significant contribution of surface Dirac fermions (“graphene on graphite”) as well as evi-
dence supporting the theoretical prediction of edge states was found. Another multi-terminal
measurement of Shubnikov–de Haas oscillations in monolayer graphene relating the Landau
level separation between electrons and holes with the transport gap in the density of states
is given in Ref. [Yoo10]; the poor visibility of the Aharonov–Bohm oscillations therein is
attributed to a low phase coherence length.
Just recently, another experiment on the Aharonov–Bohm effect in graphene has been

conducted. In Ref. [Smi12], the authors investigate the period and the amplitude of the
observed Aharonov–Bohm oscillations in a graphene ring where one of the ring arms is
subject to a top gate electrode allowing for the creation of a pp′p- or pnp-junction along this
arm—a setup we initially proposed in Ref. [Sch10a] and which will be discussed in detail in
Section 4.2.

Theoretical progress. On the theoretical side, there is a great variety of topics which have
been addressed including the valley degree of freedom characteristic for graphene, particular
device geometries and edge symmetries, resonant behavior and transistor applications, as
well as the role of interactions. Common quantities expressing the influence of these aspects
include electronic properties such as electronic spectrum and persistent current, as well as
transport properties such as conductance and noise.
In the pioneering work on the topic of Aharonov–Bohm rings made of graphene [Rec07],

it was shown—both analytically using a circular ring in the weak intervalley scattering
limit in the continuum model as well as numerically using a hexagonal ring structure with
zigzag terminated edges and strong intervalley scattering—that in the confined geometry
of a graphene ring structure, an applied magnetic flux gives rise to a lifting of the orbital
degeneracy in a controllable fashion, which is manifest in conductance and persistent current
even in the absence of intervalley scattering. The magnitude of the lifting of the valley
degeneracy and its dependence on details of the geometry of the ring have subsequently also
been discussed in Ref. [Yan10]. The effect was further observed in numerical magnetotransport
simulations in the closed (or weakly coupled) circular ring geometry described by the tight
binding model [Wur10] for the case of smooth mass confinement, where intervalley scattering
is suppressed. In this work, simulations have been done both for ballistic and diffusive
regimes and up to the quantum Hall regime where Aharonov–Bohm oscillations are found to
be suppressed.
Perfectly shaped ring devices with clean, well defined edges, such as the hexagonal

ring structure mentioned before [Rec07], have been addressed in various studies exploiting
graphene-specific features of such ideal nanostructures. A detailed numerical study of the
influence of shape, geometry, edge symmetries, and corner structures on the electronic
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structure in the presence of a magnetic field reveals, for example, the edge state anticrossing
and therefore a gap opening due to the coupling of states localized at the inner and
outer edges of the ring as well as the crucial role of corners in zigzag or armchair edge
terminated rings [Bah09]. For instance, the corners in an ideal hexagonal ring with zigzag
edge termination in a magnetic field introduce intervalley scattering as was considered in
a supercell approach within the tight binding model [Ma09]; in this work, also a peculiar
dependence of the spectrum as well as the persistent current on the even (resulting in
semiconducting behavior) or odd (resulting in metallic behavior) character of the number of
atoms across the ring arm was found. The spectrum of such hexagonal as well as trigonal
rings of monolayer or bilayer graphene with zigzag boundaries as a function of the applied
magnetic flux has further been discussed in Ref. [Rom12] in the nearest neighbor tight
binding model, where, under inclusion of spin, the magnetization (or the persistent current)
shows an even–odd behavior in connection with period doubling as is known from metallic
rings in contrast to the observations made in Refs. [Yan10, Rec07]; while the authors argue
that this discrepancy might originate from the infinite-mass boundary condition employed
there, which is not able to capture effects of edge terminations and corner geometries, we
believe that the extremely small width (≈ 1 nm) of the considered rings hardly allows for
the observation of effects specific to (bulk) graphene, and indeed, the authors find that the
observed behavior is substantially modified for wider rings. Similar hexagonal rings with
metallic armchair termination have been considered in Refs. [Luo09, Fer10]; in such systems,
appropriately chosen corner junctions exhibit signatures of broken effective time reversal
symmetry—caused by pseudomagnetic fields—at low energies, such as broken electron–hole
symmetry or a gap in the spectrum that may be closed by the application of a real magnetic
flux.3 In Ref. [Ma10], the authors calculate the spectrum and the persistent current in ideal
diamond shaped graphene ring structures either with zigzag or armchair edge termination
within the tight binding model; they also encounter the even–odd behavior mentioned before
and compare their results with previous work on hexagonal rings [Ma09].
Such ideal structures have also been found to be dominated by resonant behavior in

the magnetotransport, for instance in Ref. [Wu10], where for small rectangular graphene
nanorings with perfect edges resonant tunneling through quasibound states was observed
rather than Aharonov–Bohm oscillations, which may be tuned by varying geometry, Fermi
energy, or magnetic field. Resonant behavior was also observed in Ref. [Wur10] as well as in
in Ref. [Mun11], where it was proposed to utilize the electrostatic Aharonov–Bohm effect
via side gates—such as already realized experimentally in Ref. [Hue10]—for application in
a quantum interference transistor with high on/off ratio made of a hexagonal graphene
ring structure with perfect edges, where armchair edges were found to be preferable. In
contrast, zigzag edges in the leads acting as valley filters and a circular graphene ring
structure exhibiting an irregular boundary have been considered in Ref. [Ryc09], where
resonant behavior was encountered as well; however, the main finding of this work was that
for opposite valley polarization in the leads and appropriately sized rings exhibiting higher
harmonics in the Fourier spectrum due to multiple turns around the ring region, the lowest
harmonic is suppressed while higher harmonics are unaffected. A similar geometry, namely

3 The generation of pseudomagnetic fields in graphene rings under strain (or shear stress) has further been
discussed in Ref. [Abe11].
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a graphene Aharonov–Bohm ring connected to valley filters which encircles a dislocation,
was considered in the continuum model in Ref. [Mes09] and decoherence properties were
discussed. Possible applications as quantum interference transistors have also recently been
discussed in Ref. [Xu12] for disordered graphene rings, where ballistic rectification and
negative differential resistance are observed in the I–V characteristic; further, while for
temperatures as large as 150 mK, phonon scattering is negligible, future work on the effect
of electron–phonon interaction might be interesting.
Other aspects of interactions in graphene quantum rings have also been addressed in

Ref. [Abe08] in the continuum model with a focus on the interplay between valley polarization
and Coulomb interaction affecting the valley degeneracy. This influence was found to be
accessible through the fractional nature of the periodicity of the Aharonov–Bohm oscillations
in the persistent current as well as changes in the absorption spectrum. An analysis in the
tight binding model including electron–electron interactions further revealed the connection
between electronic correlations and the spin polarization of the interacting ground state
as a function of ring size and number of electrons [Pot09, Pot10]. The interaction with
the electromagnetic field has been discussed in Ref. [Mos09], where it was found that in a
graphene ring threaded by a magnetic flux, excitations generated by electromagnetic pulses
give rise to “valley currents”—in analogy to spin currents.
The peculiar properties of graphene systems suggest to consider the Aharonov–Bohm

effect also in more graphene-specific ring geometries and transport regimes. The electronic
properties of monolayer as well as bilayer graphene rings in a magnetic field have been
addressed in Refs. [Zar09, Zar10b, Zar10a], either defining the ring geometry by tuning the
band gap of bilayer graphene or employing a simplified zero-width ring geometry within the
framework of the Dirac equation. In the magnetotransport within the (Andreev–)Corbino disk
geometry in graphene, Landau level resonances, the suppression of conductance oscillations
away from the charge neutrality point, and the crossover to the normal ballistic transport
regime at large doping and weak fields have been encountered [Ryc10]. Analytical expressions
for conductance and Fano factor in the magnetotransport of pseudodiffusive graphene rings,
where transport at the Dirac point is dominated by evanescent modes, have been derived in
Ref. [Kat10b].
In the next sections, we will discuss two graphene-specific effects in more detail. In

Section 4.2, Klein tunneling of Dirac fermions through a potential barrier in a graphene ring
system similar to the experimental setup of Refs. [Hue09, Hue10, Smi12] is considered. A
related effect—Andreev reflection at a graphene–superconductor interface in a mesoscopic
ring device—is subsequently discussed in Section 4.3. In Section 4.4 we will conclude and
provide an outlook on potential future developments on the topic of the Aharonov–Bohm
effect in graphene.

4.2 Interplay of the Aharonov–Bohm effect and Klein tunneling
in graphene

In this section, we numerically investigate the effect of Klein tunneling [Kat06b, Che06] on
the Aharonov–Bohm oscillations in a graphene ring on the basis of a tight binding model
with nearest neighbor couplings. In order to introduce Klein tunneling into the system,
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Figure 4.2: Schematic of the graphene ring structure (left) and the y-dependence of the on-site gate
potential V (right) that is applied to the lattice sites on the lower arm of the ring. V exhibits either
a smooth (black solid line) or sharp (red dashed line) profile along y-direction while being constant
along x-direction. The width of the arms of the ring is chosen equal to the width w of the leads. The
shaded area indicates the region of non-vanishing homogeneous magnetic field pointing out of plane.
Different edge disorder configurations are realized by randomly removing sites within the two regions
of width δ between dashed and solid circles (Figure adapted from Refs. [Sch10a, Sch12a]).

an electrostatic potential can be applied to one of the arms of the ring (see Fig. 4.2 for a
schematic) such that this arm together with the two adjacent leads form either a nn′n- or
npn-junction (n, n′: conduction band transport, p: valence band transport). The former
case corresponds to normal tunneling and the latter case to Klein tunneling. Then, the
transmission properties strongly depend on the smoothness of the pn-interfaces. In particular,
for sharp junctions the amplitude profile is symmetric around the charge neutrality point in
the gated arm, whereas for smooth junctions the Aharonov–Bohm oscillations are strongly
suppressed in the Klein tunneling regime as compared to the normal tunneling regime. Such
a setup thus allows for a clear graphene-specific signature in Aharonov–Bohm measurements
which seems to be readily observable. Its physical origin is the quantum interference of
normal tunneling as well as Klein tunneling trajectories through the two arms of the ring.
In the following, we will introduce the tight binding model that we use for the transport

analysis and afterwards, we will discuss our results in the different transport regions which
show the interplay of the Aharonov–Bohm effect and Klein tunneling in phase-coherent
graphene nanostructures.

Model

The calculation is based on the usual tight binding Hamiltonian for graphene,

H =
∑
i

Vi|i〉〈i|+
∑
〈i,j〉

tij |i〉〈j|, (4.1)

where the second sum runs over nearest neighbors and Vi = V (ri) is a position-dependent
on-site potential, taking the origin of coordinates at the center of the ring. The graphene
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Figure 4.3: Schematic of the influence of the potential profile introduced by Vg on the spectrum of
the lower arm of the ring. The left hand side shows the normal tunneling case (nn′n-junction) and the
right hand side the Klein tunneling case (npn-junction) (Figure adapted from Refs. [Sch10a, Sch12a]).

hopping integral t ≈ 2.7 eV picks up a Peierls phase4 [Pei33] in the presence of a magnetic
field, yielding for the nearest neighbor coupling element the expression

tij = −t exp
(2πi

Φ0

∫ rj

ri
A(r) dr

)
, (4.2)

where the line integral is taken along the straight path between sites i and j. Φ0 = h/e is
the magnetic flux quantum and

A(r) = −ByΘ(d− |x|)êx (4.3)

with d =
√
R2 − w2/4 is the vector potential giving rise to a homogeneous magnetic field

B(r) = ∇×A(r) = BΘ(d− |x|)êz. (4.4)

The system under consideration is a ring-shaped structure cut out of a graphene sheet
which is attached to two crystalline leads also modeled using the graphene lattice structure
(see Fig. 4.2). Besides the magnetic field, the structure is also subject to a gate electrode
potential Vg located on top of the lower arm of the ring. The smoothness of the potential
interface is controlled via the smoothing width ws measured from the lower edges of the
leads:

V = 0 for y ≥ −w/2,
V = Vg for y ≤ −w/2− ws,
0 < V < Vg otherwise.

In the presented simulations, a cosine-shaped smoothing profile is used and 0 ≤ ws ≤
R− 3w/2.
For a Fermi energy E > 0, together with the adjacent leads this lower arm forms either

a nn′n- or npn-junction for Vg < E and Vg > E, respectively (see Fig. 4.3 for a schematic;
the Fermi energy is measured relative to the charge neutrality point in the leads). Note
that the setup exhibits a flat potential profile for trajectories along the upper ring arm,

4 See Appendix F of Ref. [Wim09a] for a derivation.
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Figure 4.4: Graphene leads in (a) zigzag and (b) armchair orientation, as well as their decomposition
of unit cells (solid lines) into subcells (dashed lines) according to Fig. 2.3(a). The enumeration of
lattice sites within a subcell is also indicated. In the zigzag case, half of the lattice sites can be
eliminated by employing the effective description of the lead, see Fig. 2.3(b), while in the armchair
case even 3 out of 4 lattice sites can be eliminated, thus greatly reducing the size of the matrices that
describe the lead (Figure adapted from Ref. [Sch10a]).

i.e., a nnn-junction since there is no gate potential applied. This enables a rather large
transmission through the ring even when the lower ring arm is tuned towards the Dirac point
since transport through the upper arm always takes place at an energy distance E away
from the charge neutrality point.

We derive the transmission function through the ring from the S-matrix via Eq. (2.9) in the
Landauer–Büttiker formalism for elastic transport at zero temperature assuming complete
phase-coherence. The semi-infinite left and right leads are described through their respective
real-space surface Green’s functions, and below we will outline their explicit construction
for the case of a graphene lattice according to the method presented in Section 2.3. The
coupling of the leads via the Hamiltonian describing the ring structure is realized following
the recursive scheme introduced in Section 2.4.

Surface Green’s function and definition of layers

Fig. 4.4 shows two particularly simple choices of boundary conditions (or lattice orientations)
for a lead exhibiting the graphene lattice structure, namely zigzag and armchair orientations,
which are named after the microscopic shape of the edges (also see Fig. 3.3).5 By comparison
with Fig. 2.3 and Eq. (2.14), we find for the case of a zigzag edge (see Fig. 4.4(a)) the subcell
matrices h01, h10, and hk, k ∈ {0, 1}, whose non-zero elements can be parameterized in a

5 The subdivision of the graphene lead unit cell as depicted in Fig. 4.4 has also been previously used in
Ref. [Xu08].
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compact form (i ∈ N):

(hk)ii = V0,

(hk)2i+k−1,2i+k = −t0 = (hk)2i+k,2i+k−1,

(h01)ii = −t0 = (h10)ii,

where we assumed t0 ∈ R+ and a constant on-site matrix element V0 ∈ R. Of course, the roles
of h0 and h1 are interchangeable, depending on the details of the lead surface. Obviously,
the effective coupling matrix (see Eq. (2.15))

H̃c = h01(E − h1)−1h10 = t20(E − h1)−1

is invertible, in contrast to the coupling matrix Hc in the non-effective description, which is
clearly non-invertible since there are lattice sites within the unit cell that do not couple to
the previous unit cell, as was the case in Eq. (2.13). Additionally, the size of the matrices
describing the effective lead is smaller by a factor of two compared to the original description,
yielding increased performance of the computational routines.

The performance gain is even larger in the case of graphene leads with armchair edges
(see Fig. 4.4(b)) since then only 1/4 of the atomic sites within a particular unit cell couple
to the previous cell. We find

h0 = hα, h01 = (hαβ, 0, 0),

h1 =

 hβ hβγ 0
h†βγ hγ hγδ

0 h†γδ hδ

 , h10 =

 0
0
hδα

 ,
where

hα = hβ = hγ = hδ = V0 · 1, hβγ = hδα = −t0 · 1,

and the non-vanishing matrix elements of hαβ = h†γδ are given by

(hαβ)ij = −t0(δij + δi−1,j).

Again, the labels α, β, γ, and δ are interchangeable depending on the details of the lead
surface.

One point to note is that H̃c is not well defined for energy values E matching the eigenvalues
of h1. In the case of zigzag edges, this corresponds to the choices E = V0 and E = V0 ± t0.
The choice E = V0 corresponds to the charge neutrality point in graphene. In bulk graphene,
the density of states vanishes at this point and hence there are no propagating bulk modes
in the lead that may contribute to the current. The zigzag edge supports an additional edge
state, which can in principle carry current; however, at the charge neutrality point, the band
describing the edge states becomes completely flat, leading to a divergent density of states, a
vanishing group velocity, and therefore vanishing current (see Fig. 3.3). Thus, at E = V0,
there are no current-carrying modes available in the leads. The singularity at E = V0 ± t0
corresponds to the high-energy van Hove singularity in graphene, where the density of states
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diverges. In the armchair case, except for the singularity at the charge neutrality point, there
are only such singularities for |E − V0| > t0. Since for the remainder of this work we will
only be interested in the low-energy properties of graphene, |E−V0| � t0, these singularities
do not pose any problem.6
For the recursive scheme introduced in Section 2.4, we employ a simple partitioning of

the Hamiltonian which divides the ring area into layers H1, . . . , HNS (see Eq. (2.16) and
Fig. 2.4), that proceeds in the very same fashion as the decomposition of the lead unit cell into
subcells, see Fig. 4.4. The width ∆x of each layers in this natural ordering [Wim09b] along
x-direction is given by ∆x/a0 =

√
3/2 in the zigzag case and ∆x/a0 = 3/4 in the armchair

case. A slightly more efficient way of defining layers is given by following the optimization
approach developed in Refs. [Wim09a, Wim09b], as already discussed in Section 2.5.

Results

In the following, we present transmission properties for a ring with R = 300a0 and w = 60a0,
a0 ≈ 0.142 nm being the nearest neighbor distance in graphene, in terms of the linear
conductance G = 2e2/h × tr

(
t̂†t̂
)
, where the factor 2 accounts for spin degeneracy and t̂

is the N × N transmission matrix between the two leads, i.e., the lower left block of the
unitary scattering matrix S,

S =
(
r̂ t̂′

t̂ r̂′

)
.

N is the number of propagating modes in the leads. Edge disorder is applied to the ring
by randomly removing sites within a width δ from the inner and outer edges of the ring,
respectively (see Fig. 4.2). We choose δ = 1.5a0 in order to keep the edge of the ring as
smooth as possible while still allowing for different edge disorder configurations. Fermi energy
E and gate potential Vg are chosen such that transport always takes place in between the van
Hove singularities located at E = ±t, where the density of states diverges in the tight binding
model of graphene, 0 < E < t, 0 ≤ Vg ≤ 2E. In Fig. 4.5, we plot the magnetoconductance
at Fermi energy E = 0.5t and zero gate voltage (Vg = 0) for a particular ring realization
showing pronounced Aharonov–Bohm oscillations on top of a low-frequency background.
The background signal results from universal conductance fluctuations (UCF) which are
typical for phase-coherent mesoscopic devices [Dat05]. The behavior is in agreement with the
observations made in Ref. [Wur10], where the authors investigate an even wider magnetic
field range up to the quantum Hall regime. In Fig. 4.6, we also show the corresponding
frequency spectrum obtained from a Fourier transform of the magnetoconductance signal
up to B = 10−3Φ0/a

2
0 as well as the UCF background signal and the magnetooscillations

after background removal by means of a high pass frequency filter. The contributions
to the Aharonov–Bohm oscillations are centered around (∆Ba2

0e/h)−1 ∼ 2.3× 105. Using
R̃2π∆B = h/e, this frequency corresponds to a mean radius R̃ ∼ 270a0 of interfering electron
trajectories, which perfectly lies within the boundaries of the ring.
In Fig. 4.7, we show the same plot for E = 0.1t. The oscillations diminish at Ba2

0e/h ∼

6 Note that also the alternative algorithms developed in Ref. [Wim09a] are based on a classification of
propagating modes according to the sign of the group velocity. Therefore, they are also not applicable at
band edges, i.e., in the case of vanishing group velocities and a divergent density of states.
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Figure 4.5: Magnetoconductance of a ring with R = 300a0 and w = 60a0 at energy E = 0.5t and
zero gate voltage showing clear Aharonov–Bohm oscillations on top of a background signal which is
due to universal conductance fluctuations (Figure adapted from Refs. [Sch10a, Sch12a]).

Figure 4.6: (a) Frequency spectrum corresponding to Fig. 4.5, obtained from the Fourier transform G̃
of the magnetoconductance G. Besides the low frequency background and the fundamental oscillation
component, the second harmonic is also slightly visible in the spectrum. The dashed line indicates
the frequency limit of the high pass frequency filter used for background subtraction. (b) UCF
background signal (red) and magnetooscillations (blue) corresponding to Fig. 4.5 after background
subtraction (Figure adapted from Refs. [Sch10a, Sch12a]).
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Chapter 4 The Aharonov–Bohm effect in graphene

Figure 4.7: Magnetoconductance of a ring with R = 300a0, w = 60a0 at energy E = 0.1t and zero
gate voltage, showing the onset of the quantum Hall regime. Note: The conductance is still finite
near zero magnetic field, which is not visible on this scale (Figure adapted from Ref. [Sch10a]).

6×10−4. This field strength marks the onset of the quantum Hall regime, where the cyclotron
diameter becomes comparable to the width of the arms of the ring; an estimate [Wur10] of
the graphene cyclotron diameter dc = 2E/(vF eB), taking the Fermi velocity at the Dirac
point in graphene, vF = 3πta0/h, yields dc ∼ 40a0, a value of same order of magnitude as
the width w = 60a0.

By applying a gate voltage Vg > 0 to one of the ring arms, the magnitude of the Aharonov–
Bohm oscillations may be modified. A convenient measure of the oscillation magnitude is
the root mean square (RMS) amplitude of the signal. Prior to the RMS analysis, the UCF
background has to be removed from the signal. This is achieved by applying a high pass
frequency filter to the Fourier transform of the magnetoconductance data as indicated in
Fig. 4.6(a). The retained unbiased signal is squared and the root of the average over the
squared signal is defined as the RMS amplitude ∆GRMS.

In Fig. 4.8(a), we show the dependence of the RMS oscillation amplitude ∆GRMS on the
gate voltage Vg for different smoothing widths ws (see Fig. 4.2) at energy E = 0.5t, where
the average is taken over the range 0 ≤ Ba2

0/Φ0 ≤ 10−3. Increasing the gate voltage from
zero towards the neutrality point Vg = E not only leads to increased potential scattering
but also to a reduction in the number of accessible propagating states in the lower arm of
the ring. As can be seen in Fig. 4.8(a), the oscillation amplitude diminishes and reaches
a minimum value at the neutrality point. Note that since the transmission through the
upper ring arm is not at all affected by a gate potential, the overall conductance itself is
only slightly changed to fluctuate around 2.5× 2e2/h (see Fig. 4.9) as compared to values
around 3.4× 2e2/h in the case of zero gate potential on the lower ring arm (see Fig. 4.5).

For Vg < E, the decay of the RMS amplitude towards the neutrality point does not depend
on the details of the gate potential interface. However, in the regime of Klein tunneling,
Vg > E, the oscillation behavior strongly depends on the smoothness of the gate potential.
In case of a smooth potential, the partial waves in the lower arm have to tunnel through a
finite region of low density of states, where V ∼ E (see Fig. 4.2), in order to interfere with
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Figure 4.8: (a) RMS analysis for the setup used in Fig. 4.5 for different smoothing widths ws/a0 ∈
{0, 21, 52.5, 105, 210}. Each data point results from an average over five realizations of edge disorder.
The corresponding standard deviations lie between 0.005×2e2/h and 0.015×2e2/h but are suppressed
for better visibility. For better clarity, the spectrum schematics (see Fig. 4.3) are also included
(Figure adapted from Refs. [Sch10a, Sch12a]). (b) A corresponding measurement from Ref. [Smi12];
parameters are given in the text. For a broad range of values of the top gate voltage UT G applied
to the lower arm resulting in either a pp′p- or pnp-junction as schematically shown, the background
resistance R (red) as well as the absolute (green) and relative (blue) resistance oscillation amplitudes
RRMS[AB] and RRMS[AB]/R are shown. The dashed line indicates the effective position of the charge
neutrality point (Figure adapted from Ref. [Smi12]).

Figure 4.9: Magnetoconductance of a ring with R = 300a0 and w = 60a0 tuned close to the neutrality
point in the lower arm with a smooth potential interface (ws = 210a0). The plots (a)–(d) constitute a
representative selection and are obtained by a variation of the microscopic edge disorder configuration
(which is always chosen randomly) for values Vg/E = 1.00± 0.01 (Figure adapted from Ref. [Sch10a]).
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Chapter 4 The Aharonov–Bohm effect in graphene

the partial waves traversing the upper arm. The lower arm becomes increasingly penetrable
as this region gets narrower, until it gets transparent in case of a sharp potential. This
reflects the usual behavior of Klein tunneling phenomena, where the probability for tunneling
through a pn-junction depends on the smoothness of the pn-interface [Bee08a, Che06].

Just recently, a corresponding experiment has been conducted on a graphene ring with
inner and outer radii ri = 220 nm and ro = 360 nm in the diffusive regime with a mean free
path of approximately 105 nm, a charge carrier density of 8.6× 1011 cm−2, and an observed
oscillation period of 16.5 mT, which corresponds to an effective radius of r̃ ≈ 285 nm [Smi12].
A back gate voltage UBG = −4 V determines the Fermi level in the system for a vanishing
voltage UTG = 0 V on the top gate, which is applied to one of the ring arms to give either
a pp′p- or pnp-junction. The measurement, shown in Fig. 4.8(b), extends over a broad
range of values for UTG, thus complementing our analysis, where we considered limiting
cases of a nnn- and npn-junction with equal doping levels in the ring arms and the leads,
corresponding to UTG ∼ 0–2 V in the experimental situation, see Fig. 4.8(a). In particular,
the authors mention that there is no clear observation of Aharonov–Bohm oscillations at
the charge neutrality point, as is the case in the numerical simulations, while away from the
charge neutrality point, the oscillation amplitude is essentially constant—a behavior that
might already be indicated by the saturation of the oscillation amplitude away from the
charge neutrality point in Fig. 4.8(a). Unfortunately, from this experiment, it is not clear
how the oscillation amplitude behaves in a close vicinity around the Dirac point, e.g., for
values UTG ≈ 0.75–1.25 V, and how it depends on the smoothing width.

The described behavior of the RMS amplitude (see Fig. 4.8(a)) is robust over the whole
energy range under consideration, except for an increasing uncertainty at lower values for the
Fermi energy. Although all results are presented for zigzag boundary conditions in the leads,
the effects are independent of a change of orientation of the graphene lattice to armchair
boundaries in the leads.

Finally, we mention here an additional observation concerning the dependence of the
magnitude of the Aharonov–Bohm oscillations on the magnetic field strength B when the
lower arm of the ring is tuned near the neutrality point (see Fig. 4.9). It seems that in
this regime the oscillation magnitude is in general significantly lower for low field strengths
compared to the oscillations at higher field strengths. This is indeed the case for most of the
ring realizations we investigated though not for all of them (see Fig. 4.9(d)). The reason for
such a behavior is so far not understood. Since the increase in the oscillation magnitude
cannot be related to any particular length scale, a connection to the quantum Hall effect
seems unlikely.

In summary, Klein tunneling in graphene exhibits clear signatures in the Aharonov–Bohm
oscillations observed in mesoscopic rings. In the next section, we will show how another
graphene-specific effect, namely specular Andreev reflection at a graphene–superconductor
interface [Bee06], can be identified in such nanostructures.
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4.3 How to distinguish specular from retro Andreev reflection in
graphene rings

In this section, we present numerical transport calculations of Andreev reflection in a graphene
ring system threaded by a magnetic flux and attached to one normal conducting and one
superconducting lead. To this end, the Bogoliubov–de Gennes equation [Gen99] for the tight
binding model using the recursive Green’s functions technique is solved within the Landauer–
Büttiker framework for elastic transport. By tuning chemical potential and bias voltage, it
is possible to switch between regimes where electron and hole originate from the same band
(“retro configuration”) or from different bands (“specular configuration”) of the graphene
dispersion, respectively. Andreev reflection is known to be closely related to the effect of Klein
tunneling discussed in the previous section [Bee08b]. However, different aspects of Klein
tunneling have become experimentally accessible in the last years [Sta09, You09] whereas
specular Andreev reflection has not been observed to date although there exist a number
of proposals for the experimental control [Che09b] and detection [Bee06, Tit07b, Che11]
of this process. (For a review on both effects, see Ref. [Bee08a].) Here, we review a novel
approach concerning the identification of specular Andreev reflection, distinguishing it from
conventional retro reflection, and discuss the advantages over previous works in the field.
We find that the dominant contributions to the Aharonov–Bohm oscillations in the subgap
transport, i.e., in the absence of propagating modes in the superconducting lead, are of period
h/(2e) in retro configuration, whereas they are of period h/e in specular configuration. This
result confirms the predictions obtained from a qualitative analysis of interfering scattering
paths and since it is robust against disorder and moderate changes of the system, it provides
a clear signature to distinguish both types of Andreev reflection processes in graphene.

Scattering path analysis

Our approach is based on the observation that in general, the probability for an incident
electron to be reflected as a hole is less than one. This allows for effects typical for phase-
coherent mesoscopic devices, such as universal conductance fluctuations or Aharonov–Bohm
oscillations [Aha59] in the magnetoconductance. While in normal metals the fundamental
period of these oscillations is given by the flux quantum Φ0 = h/e, it is half the value for
Andreev (retro) reflection in conventional metals due to the charge 2e of a Cooper pair.
However, this is not true anymore in the case of specular Andreev reflection, therefore
providing a criterion to distinguish between specular and retro reflection. In order to show
this, we consider the phases due to the magnetic flux that are picked up by the various
scattering paths. In this analysis, we restrict ourselves to the contributions up to first order
in the sense that we take processes into account that involve only a single electron–hole
conversion process and that contain at most one additional round-trip of electron or hole,
respectively; higher order contributions connected with additional round-trips are often times
negligible [Sch10a, Rus08]. The corresponding paths are summarized in Fig. 4.10. In order
to obtain the magnetoconductance for the two types of Andreev reflection, we sum up the
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Chapter 4 The Aharonov–Bohm effect in graphene

Figure 4.10: (a) Device geometry showing a graphene ring structure that is penetrated by a magnetic
flux Φ measured in units of the flux quantum Φ0. At the interface with the superconductor (shaded
region), electron–hole conversion may occur. (b) The gauge is chosen such that each of the eight
individual electron (solid lines) and hole (dashed lines) paths picks up a phase ±Φ/2 as indicated. (c)
Scattering paths for electrons injected from and holes leaving through the left normal conducting lead;
only zeroth and first order contributions are included, i.e., terms containing a single electron–hole
conversion process and at most one additional round-trip of the electron or the hole. The paths
are categorized according to the total phase that is picked up and each path is associated with a
corresponding amplitude, where first order amplitudes are indicated by a prime (Figure adapted from
Refs. [Sch12b, Sch12a]).
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4.3 How to distinguish specular from retro Andreev reflection in graphene rings

amplitudes as defined in Fig. 4.10 for the various paths coherently:

Rs(Φ) ∼=
∣∣s+ + s− + s′+eiΦ + s′−e−iΦ∣∣2,

Rr(Φ) ∼=
∣∣r+eiΦ + r−e−iΦ + r′+e2iΦ + r′−e−2iΦ∣∣2,

where s′± = s′±e + s′±h, r′± = r′±e + r′±h, and Φ is the magnetic flux measured in units of the
flux quantum Φ0. Assuming |s| � |s′| for any zeroth and first order amplitudes, respectively,
we obtain

Rs(Φ) ∼= R0
s + 2 Re

(
(s′+s∗0 + s0s

′∗
−)eiΦ)+O

[
(s′)2], (4.5)

where s0 = s+ + s− and R0
s contains contributions that are constant with respect to Φ.

Therefore, in the case of specular reflection, oscillations of period h/e are dominant. In
contrast, in the case of retro reflection, contributions of period h/(2e) are dominant as
expected:

Rr(Φ) ∼= R0
r + 2 Re

(
r+r

∗
−e2iΦ)+O

[
rr′, (r′)2], (4.6)

where again R0
r contains Φ-independent terms and we assume |r| � |r′| for any zeroth and

first order amplitudes, respectively.

Numerical model

In order to test the previous analysis on the basis of a microscopic model, we implement
the Bogoliubov–de Gennes Hamiltonian from the mean-field description of superconductiv-
ity [Gen99],

H =
(
H − EF ∆

∆ EF −H∗

)
, (4.7)

within the tight binding formalism of graphene, Eq. (4.1). In this numerical calculation, all
higher order contributions beyond the ones discussed in the previous subsection are also
taken into account. In Eq. (4.7), we assume ∆i = ∆(ri) ∈ R for the superconducting order
parameter ∆ =

∑
i ∆i|i〉〈i|. The presence of a magnetic field is captured by a Peierls phase

in the hopping matrix element, see Eq. (4.2).
The structure of the graphene device under consideration is schematically shown in Fig. 4.10.

The two semi-infinite leads also exhibit the graphene lattice structure. Superconductivity is
induced into the right lead due to the proximity effect [Hol32, Gen99] of a superconducting
electrode on top of the graphene. We choose to orient the leads to exhibit armchair edges
and later comment on the reason for this particular choice. The whole ring is penetrated by
a uniform perpendicular magnetic field of strength B described by the vector potential (4.3).
The origin of coordinates is taken at the center of the ring.

In order to fulfill the mean-field requirement of superconductivity, which demands the
superconducting coherence length ξ = ~vF /∆ to be large compared to the wavelength λS in
the superconducting region [Bee06], we introduce additional doping into the superconducting
region by applying a gate potential Vi = VgΘ(xi − d). The type of Andreev reflection that
occurs at the NS interface is then determined by the excitation energy ε (i.e., the eigenvalues
of Eq. (4.7)) and the Fermi energy EF as shown in Fig. 4.11. In “retro configuration”,
EF > ε > 0, where v(h)

y v
(e)
y < 0 for the y-components of the electron and hole velocities,
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Figure 4.11: Schematics of the (radially symmetric) excitation spectrum (lower panel) and surfaces
of constant excitation energy in k-space (upper panel) in the cases EF > ε > 0 (“retro configuration”)
and 0 < EF < ε (“specular configuration”), respectively. Solid and dashed lines indicate electron-
and hole-like states, respectively; (hole) states originating from the valence band are shaded. The
small arrows in the upper panel indicate the direction of propagation of the corresponding states.
Electron–hole excitations are drawn assuming conservation of ky at the NS interface (Figure adapted
from Refs. [Sch12b, Sch12a]).

both electron and hole traverse the same arm of the ring. In “specular configuration”,
0 < EF < ε, the hole is reflected back through the other arm of the ring since v(h)

y v
(e)
y > 0.

In the following, we choose |Vg| � EF justifying the adoption of the step-function model for
the superconducting order parameter, ∆i = ∆Θ(xi − d) [Bee06].

In order to compare retro (r) and specular (s) configurations, we will choose ε(r) = E
(s)
F

and ε(s) = E
(r)
F since then the states in both configurations exhibit the same wavelength and

there is the same number of propagating modes. We further choose ε(r), E
(s)
F � ε(s), E

(r)
F so

that for nearly each value of ky there exist electron–hole scattering channels.

Again, the transport properties of the system are obtained from the scattering matrix S
that is calculated in the framework of the Landauer–Büttiker formalism using Eq. (2.10) and
the recursive scheme introduced in Section 2.4. The decomposition of the ring Hamiltonian
into layers and the construction of the effective leads according to Section 2.3 proceed as in
Section 4.2. In this framework for elastic transport, Green’s function and scattering matrix
are parameterized by the eigenvalues ε of the Hamiltonian (4.7).

In the following, we will concentrate on the regime ε < ∆ in which there are no propagating
modes in the superconducting lead so that electrons injected from the normal conducting
lead are reflected back either as electron (e) or hole (h). The scattering matrix thus has the
structure

S =
(
ree reh
rhe rhh

)
,
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Figure 4.12: Differential magnetoconductance for specular (black) and retro (gray) configuration for
E

(r)
F = 0.025t = ε(s), E(s)

F = 0.001t = ε(r), corresponding to 8 modes in the normal conducting lead
including all degeneracies (spin, valley, electron/hole). The high doping in the superconducting lead
is chosen such that EF − Vg = 0.5t in both cases. Other parameter values are provided in the main
text. The period of the dominant oscillation is B(s)

0 ≈ 1.8× 10−6a−2
0 h/e in specular configuration

and B(r)
0 ≈ 8.8× 10−7a−2

0 h/e ≈ 0.5B(s)
0 in retro configuration. The weak beating pattern in retro

configuration and the asymmetry in specular configuration arise due to minor contributions of contrary
frequencies (Figure adapted from Refs. [Sch12b, Sch12a]).

from which the differential conductance for the Andreev processes is given by

dI
dV = 4e2

h
× tr

(
r†herhe

)
,

where the factor 4 accounts for spin degeneracy and the quantization of charge in units of 2e.

Results

In Fig. 4.12, we show the calculated transmission for a ring of width w = 87
√

3a0 and outer
radius R = 500a0, where a0 is the distance between nearest neighbors. The transmission
function exhibits Aharonov–Bohm oscillations on top of a low frequency background which
is due to universal conductance fluctuations. The position of the NS interface is given by
d = 400a0. The chosen dimensions of the ring are large enough to exclude finite-size effects
while still being numerically manageable. For the superconducting order parameter we
choose a value of ∆ = 0.03t ≈ 80 meV which may appear unrealistic at first sight considered
the fact that typical values are up to a few meV [Kit96]. However, by making this choice,
we scale the value of the superconducting order parameter according to the scale of the
system size such that the dimensionless factor (∆R)/(~vF ) stays of same order of magnitude
compared with values realized in experiments [Rus08, Hue10]. Thus, for a realistic system
size of R ∼ 10−6 m, our choice of ∆ would correspond to a value of a few meV for the
superconducting gap. Note that due to these low energy scales and the rather large spacing
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Chapter 4 The Aharonov–Bohm effect in graphene

Figure 4.13: Breakdown of the h/e vs. h/(2e) signature for shifted positions of the NS interface as
explained in the text. Other parameters and color coding are chosen as in Fig. 4.12. For d = 340a0
(left) in specular configuration, one observes oscillations of period h/(2e) as in retro configuration. For
d = 490a0 (right), contributions of specularly reflected holes in retro configuration become important,
leading to the observation of additional h/e-oscillations. The value of the superconducting coherence
length is ξ = 50a0 (Figure adapted from Refs. [Sch12b, Sch12a]).

of modes resulting from the narrow geometry of the electron waveguides in such a ring
structure, in specular configuration only the regime of a low number of modes is accessible.
Also note that due to strong electron backscattering at the front of the hole and at the
rough edges of the ring, the average value of the differential conductance is much less than a
conductance quantum, e2/h.
The average radius r̄ of the scattering path is calculated according to r̄2πB0 = (h/e)/n,

where n = 1 (n = 2) in specular (retro) configuration and B0 is the (dominant) period
of the oscillation. Evaluating the period of the oscillations shown in Fig. 4.12, we obtain
r̄(s) ≈ 420a0 in specular configuration and r̄(r) ≈ 425a0 in retro configuration. The obtained
values lie well within the inner and outer radius of the ring and close to the arithmetic mean
R− w/2 ≈ 425a0, therefore confirming the predictions obtained from Eqs. (4.5) and (4.6).
Minor contributions of period h/e in retro configuration and h/(2e) in specular configuration
visible in Fig. 4.12 may arise due to terms neglected in Eqs. (4.5) and (4.6), scattering off
the sharp boundaries of the ring structure, and the fact that for the electron–hole conversion
at the NS interface ky is not strictly conserved.
Another strong evidence that supports our interpretation of the two different periods is

the breakdown of this particular signature that is observed for a shift of the position of the
NS interface on the scale of the width of the ring. Indeed, while in Ref. [Hau10]—where a
three-terminal graphene junction is analyzed—the exact position of the NS interface has no
effect, it matters in our case; the reason is that ξ is comparable or even less than the system
size while in Ref. [Hau10], the superconducting coherence length greatly exceeds the system
dimensions. If the interface is too close to the hole region (see Fig. 4.13(a) inset), then
specularly reflected holes are forced to traverse the same arm as the incoming electron. In
this case, one should observe h/(2e) oscillations in specular configuration. In contrast, if the
interface is too far from the hole (see Fig. 4.13(b) inset), holes may significantly be reflected
through the other arm, e.g., due to increased scattering at the ring boundaries. This would
manifest itself in the observation of h/e oscillations in addition to the h/(2e) oscillations
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4.3 How to distinguish specular from retro Andreev reflection in graphene rings

Figure 4.14: Differential magnetoconductance for d = 430a0, E(r)
F = 0.029t = ε(s), E(s)

F = 0.0001t =
ε(r), corresponding to twice the number of propagating modes compared to Fig. 4.12. Other parameters
and color coding are chosen as in Fig. 4.12. Note that the magnetoconductance signal is strongly
enhanced compared to Fig. 4.12 (Figure adapted from Ref. [Sch12a]).

in retro configuration. This behavior is confirmed in the observed magnetooscillations, as
shown in Fig. 4.13.

Apart from that, the h/e vs. h/(2e) signature proves to be very robust against moderate
changes to the length and energy scales in the system, such as the extent of the magnetic field
or the ratio of Fermi wavelength and the width of the NS interface. We also tested that the
signature persists when more propagating modes are present in the lead, leading to values of
the average conductance which are much larger compared to the few-mode situation shown in
Fig. 4.12 (see Fig. 4.14). Additionally, the signature is hardly affected by bulk disorder, which
is a major advantage of our setup. In Fig. 4.15, we show the magnetoconductance of the
system used in Fig. 4.12 with a particular random short-range disorder configuration that is
realized by applying an uncorrelated random on-site potential of Gaussian distribution with
zero mean and width σ = 0.01t to each site. In addition, the NS interface has been smeared
out over a distance l = 90a0 in this case. The robustness of the effect can be explained from
the topological nature of the signature; since all microscopic scattering paths can be classified
into just two groups—yielding h/e- or h/(2e)-oscillations, respectively—according to which
arm is traversed by the quasiparticles, impurity scattering and the resulting deflection of
quasiparticles has no adverse effect as long as scattering between the groups is weak, while
scattering within one group may be arbitrarily strong. In addition, note that while our
description of transport via the scattering matrix assumes complete phase coherence, a
signature that distinguishes retro from specular Andreev reflection is assumed to persist also
in the case of a finite phase coherence length. More specifically, if the phase coherence length
is on the order of the ring circumference, first order amplitudes in Eqs. (4.5) and (4.6) may
be neglected. Then, retro reflection would still manifest itself in h/(2e)-oscillations, while
there would be no oscillations at all in the case of specular reflection.
Finally, we add a remark concerning the choice of armchair boundary conditions in the

leads employed in the analysis in this section. In a tight binding implementation of graphene,
there are two simple choices for the orientation of the leads. Often, zigzag edges are considered
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Figure 4.15: Magnetoconductance of the system used in Fig. 4.12 with a smooth potential profile
(inset) with l = 90a0 and bulk disorder of strength σ = 0.01t as explained in the text. The h/e
vs. h/(2e) signature still persists. The color coding is the same as in Fig. 4.12 (Figure adapted from
Refs. [Sch12b, Sch12a]).

to represent a generic boundary condition for graphene ribbons [Akh08b]. In this case, edge
states are present in the system, which modify the simple picture provided in Fig. 4.11 by
adding additional scattering channels between bulk and edge states while removing certain
scattering channels between bulk states due to the conservation of the so-called pseudoparity
symmetry that acts like a selection rule [Rai09]. In the realistic limit of metal leads providing
a large number of propagating bulk modes, this effect should be less important. However, for
the system geometry used in the numerical calculations in combination with the low energy
scales, it may significantly affect the observed behavior. In order to avoid this influence,
we chose armchair boundary conditions in the leads, which do not provide any edge states.
Note in addition that in realistic systems the zigzag-specific effect would also be suppressed
since the zigzag edge state is not protected against disorder when next-nearest neighbor
hopping is taken into account [Wim09a]. Therefore, we are convinced that our results based
on armchair edges in the reservoirs describe the generic situation for wide leads.

4.4 Summary and outlook

Considering the development of the topic of the Aharonov–Bohm effect in graphene, we
can assess that there is a great variety of aspects covered by theoretical considerations, and
despite the significant amount of work done on graphene ring systems, there are still a number
of open questions drawn from initial experiments that remain unanswered so far as well as
a large number of theoretical predictions not yet confirmed by corresponding experiments.
On the one hand, it would be interesting from a theoretical point of view to investigate
the origin and significance of the seemingly linear relationship between conductance and
oscillation amplitude as well as the significant increase of the oscillation amplitude at high
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magnetic field observed in Ref. [Rus08]. Further analysis on the role of interactions may
also be worthwhile. On the other hand, while some of the theoretical models are hardly
realizable in experiments at the present stage, i.a., due to insufficient control over edge
properties, there are systems that should be experimentally accessible and robust and should
therefore allow for the observation of graphene-specific features in the Aharonov–Bohm effect.
Two of such systems have been introduced in the previous two sections. In Section 4.2, it
was shown that Klein tunneling through a npn-junction in graphene manifests itself in the
Aharonov–Bohm oscillations in a graphene ring structure where one of the ring arms is gated
to form the junction together with the two adjacent leads; more specifically, it was found that
for smooth npn-junctions, tunneling through this arm and thus the electron interference and
magnetooscillations in the ring structure are increasingly suppressed in accordance with the
fundamental properties of Klein tunneling in graphene as described in Refs. [Bee08a, Che06].
In Section 4.3, Andreev reflection at the interface between a graphene ring structure and a
superconducting lead in the subgap regime has been considered. Depending on the ratio
of Fermi energy and excitation energy (or bias voltage), the holes created at the interface
are either retro reflected or reflected specularly, with respect to the direction of the incident
electron. The corresponding trajectories of the charge carriers through the ring give rise to
different dominant frequencies of the observed magnetooscillations from which the type of
Andreev reflection can be inferred. This signature is topologically robust in the sense that
scattering has no adverse effect as long as the trajectories still traverse the same arm of the
ring.
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Chapter 5

Resonant scattering in graphene

In this chapter, we investigate the effects of disorder on the transport properties of graphene.
In particular, we concentrate on strong short-range on-site potentials induced, e.g., by
strongly bound adatoms or, equivalently, vacancies in the graphene lattice. Such defects are
known to support localized electronic states close to the Dirac point [Eli09, Ost06, Sta07,
Per08, Rob08, Ni10, Kat10a, Tit10, Ost10, Weh10, Yua10] and therefore act as resonant
scatterers for the Dirac fermions, which can be expected to alter the transport properties
of the low-energy excitations in graphene. Due to the sublattice degree of freedom in the
graphene lattice, the transport may not only depend on the total impurity concentration but
may also be affected by an imbalance of the distribution of defects over the two sublattices.
Indeed, such a dependence was found in Ref. [Ost10], where the authors study the quantum
critical regime at high impurity concentration, where the conductivity saturates at a value
that depends on the imbalance of the vacancy distribution among the two sublattices.
In Section 5.2, we will uncover an even more subtle sensitivity of the conductance of a

graphene sample in the presence of impurities, not only to the sublattice degree of freedom
but also to the specific type of defect site within a given sublattice. This particular type
of site is determined by the phase of the corresponding T -matrix, which may assume one
out of three possible values, giving rise to a superlattice structure with six inequivalent sites
per supercell and thus an extended classification of atomic sites within the graphene lattice
beyond the conventional sublattice structure.
The short-range character of the disorder type under consideration allows for an exact

analytical treatment of the full counting statistics in a N -dimensional vector space called
“unfolded (impurity) space” [Ost10], where N is the number of individual impurities. This
unfolded scattering theory, which is based on Nazarov’s generating function technique in
a matrix Green’s function formalism [Naz94, Tit10, Sch10b, Ost10, Ryu07], is presented in
Section 5.1 for a completely general Hamiltonian corresponding to the geometry shown in
Fig. 5.1 in the presence of point-like defects of arbitrary impurity profile.1 In Section 5.2, we
apply this theory to the particular case of vacancy states in the low-energy effective model of
graphene and compare the results with numerical simulations performed on the tight binding
model concentrating on the simplest case of only two vacancies present in the system. In
Section 5.3, we provide an outlook on potential future developments of the topic including
the dependence of the conductivity on the distribution of defects over the six inequivalent
sites at finite impurity concentration.

1 The expression “point-like” will be specified in more detail in the following section.
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Chapter 5 Resonant scattering in graphene

Figure 5.1: Two-terminal transport setup under consideration; a rectangular sample with length L
and width W is connected to two contacts at x = xL and x = xR, respectively, where x denotes the
transport direction (Figure adapted from Ref. [Sch10b]).

5.1 Unfolded scattering theory

In order to formulate the transport theory in the N -dimensional unfolded vector space formed
by N individual impurities, we utilize the generating function technique within the matrix
Green’s function formalism as pioneered by Nazarov [Naz94, Tit10, Sch10b, Ost10, Ryu07].
To this end, we partly follow Ref. [Sch10b] and consider a system with a left lead and a right
lead as shown in Fig. 5.1, whose transport characteristics can be described by a unitary
scattering matrix

S =
(
r t′

t r′

)
.

Without loss of generality, we will consider transport described by the transmission matrix
t in the following. The full counting statistics2 are conveniently expressed in terms of a
(cumulant) generating function F [Sch10b, Tit10, Ost10, Lev93], which we define as

F(z) ≡
∞∑
k=1

zk−1 tr
(
t†t
)k = tr

((
t†t
)−1 − z

)−1
=

M∑
m=1

Tm
1− zTm

, 0 ≤ z < 1,

where we used the expansion of the geometric series and the so-called “counting field” z ≥ 0
is chosen sufficiently small for this series to converge, i.e., |zTm| < 1 for all m = 1, . . . ,M ,
where T1, . . . , TM denote the M transmission eigenvalues, i.e., the eigenvalues of the matrix
t†t. With this definition, the moments of the transmission distribution are generated from
the derivatives of F(z) with respect to z evaluated at z = 0:3

F (k)(0) = k! tr
(
t†t
)k+1

, k ∈ N0.

Since a perturbation theory is best formulated in the language of Green’s functions, a
transition from the scattering description to the Green’s function formalism is convenient.

2 The full counting statistics are given by the moments tr(t†t)n, n ∈ N, of the transmission distribution,
yielding conductance, noise, and higher order cumulants, and contain the same information as the
transmission distribution itself, i.e., the probability distribution of the transmission eigenvalues (the
eigenvalues of the matrix t†t) [Sch10b].

3 We use the common short-hand notation for derivatives, (d/dx)nf(x)|x=x0 ≡ f (n)(x0) with f ′(x) ≡ f (1)(x),
and in addition define f (n)(0) ≡ limx0→0+ f (n)(x0) for functions f(x) where x is restricted according to
x ≥ 0.
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5.1 Unfolded scattering theory

In order to obtain an elegant formulation of this perturbation theory, we introduce two
quantities and relate them to the moments of the transmission distribution.
We first define a Green’s function Ǧ via the Dyson equation,

Ǧ ≡ Ǧ0 + Ǧ0V̌Ǧ ≡
∞∑
n=0

Ǧ(n)

in the compact notation introduced in Chapter 1, where integration over internal degrees of
freedom is implicitly assumed, and n denotes orders in V̌. Ǧ0 contains uncoupled retarded
and advanced Green’s functions and V̌ describes their coupling at the lead–sample interfaces:

Ǧ0 ≡
(
Ĝr 0
0 Ĝa

)
, V̌ ≡

√
z

(
0 Γ̂L

Γ̂R 0

)
,

where Ĝr,a ≡
(
E − Ĥ ± i0+)−1 denote the usual retarded and advanced Green’s functions

corresponding to the Hamiltonian Ĥ parametrized by the energy E. The coupling V̌ is
localized according to

Γ̂L,R(r, r′) ≡ δ(x− xL,R)Γ̂(r, r′).

Γ̂ is defined according to Section 2.2 and, as described there (see Eq. (2.12)), essentially
represents the velocity operator in the leads (times ~). More specifically, we express this
operator through the Heisenberg equation of motion as

Γ̂ ≡ ~v̂x ≡ ~
d
dt x̂ = i[Ĥ, x̂] (5.1)

for the system shown in Fig. 5.1. Ǧ is a matrix Green’s function in the so-called retarded–
advanced (RA) space [Sch10b, Tit10, Ost10],

Ǧ ≡
(
Ĝ11 Ĝ12
Ĝ21 Ĝ22

)
≡
∞∑
n=0

(
Ĝ

(n)
11 Ĝ

(n)
12

Ĝ
(n)
21 Ĝ

(n)
22

)
,

and was first introduced by Nazarov [Naz94, Naz95]. Solving the Dyson equation for the
inverse, Ǧ−1, we obtain

Ǧ−1 = Ǧ−1
0 − V̌ =

(
E − Ĥ + i0+ −

√
zΓ̂L

−
√
zΓ̂R E − Ĥ − i0+

)
. (5.2)

We further define the quantity4

Ω̃(z) ≡ − tr ln Ǧ = tr ln Ǧ−1

and show that it is related to the generating function. First, the derivative of Ω̃ with respect

4 Sometimes the identity tr lnA = ln detA for any square, non-singular matrix A [Wit10] is encountered or
used in the literature and we will also make use of it in the following.
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to the counting field z gives

Ω̃′(z) = tr
(
Ǧ

d
dz Ǧ

−1
)

= − 1
2
√
z

(
tr
(
Ĝ12Γ̂R

)
+ tr

(
Ĝ21Γ̂L

))
.

Noting that Ĝ(2n)
12 = Ĝ

(2n)
21 = 0 for n ∈ N0, we can then rewrite

−Ω̃′(z) = 1
2
√
z

∞∑
n=1

(
tr
(
Ĝ

(2n−1)
12 Γ̂R

)
+ tr

(
Ĝ

(2n−1)
21 Γ̂L

))
= 1

2

∞∑
n=1

(
tr
(
ĜrΓ̂LĜaΓ̂R

)n
zn−1 + tr

(
ĜaΓ̂RĜrΓ̂L

)n
zn−1

)
=
∞∑
n=1

zn−1 tr
(
Γ̂RĜrΓ̂LĜa

)n = F(z),

where the last step is obtained in complete analogy to Section 2.2 noting that the trace is
invariant under a change of the basis by means of a unitary transformation.5
To conveniently express transport observables, i.e., moments of the transmission distri-

bution, in terms of this quantity, we introduce a parametrization in terms of a so-called
“counting angle”:

z ≡ − sinh2(φ/2), Ω(φ) ≡ Ω̃(− sinh2(φ/2)), 0 ≤ iφ < π.

In this parametrization, the relation to the generating function reads

F(z)
∣∣
z=− sinh2(φ/2) = −

(
− d

dφ sinh2(φ/2)
)−1

Ω′(φ) = 2
sinhφΩ′(φ), (5.3)

or equivalently∫
F(z) dz

∣∣
z=− sinh2(φ/2) = − tr ln

(
1 + sinh2(φ/2)t†t

)
+ const. = −Ω(φ). (5.4)

We can immediately infer Ω′(0) = 0, while for the second derivative, we obtain—either by
direct calculation from Eq. (5.4) or by applying l’Hôpital’s rule to Eq. (5.3)—the linear
conductance:

G = e2

h
tr
(
t†t
)

= e2

h
F(0) = 2e2

h
Ω(2)(0). (5.5)

The two properties Ω′(0) = 0 and Ω(2)(0) ≥ 0 motivate the term “(fictitious) free energy”
that is commonly used for Ω [Sch10b] since this quantity is minimized under the influence of
a fictitious potential [Naz94, Naz95], expressed in terms of the counting field, for the physical
situation where this field vanishes.
One word of warning: The factor 2 in Eq. (5.5) originates from the last expression in

Eq. (5.3) and therefore does not account for any kind of (spin) degeneracy whatsoever. Any
5 Note that the theory outlined in the present section is formulated in a completely general abstract notation,
whereas in Section 2.2, a particular basis involving the (transverse) position representation has been
chosen.
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5.1 Unfolded scattering theory

such degeneracies still have to be taken into account either explicitly in the matrix structure
of the transmission matrix t—as is implicitly assumed here—or by introducing additional
factors by hand into the expression for the conductance. These prefactors must not be
confused.

Higher moments of the transmission distribution are most easily obtained by repeatedly
applying l’Hôpital’s rule; e.g., for the second moment, we obtain using Eq. (5.3):

tr
(
t†t
)2 = d

dzF(z)
∣∣∣
z=0

=
(
− d

dφ sinh2(φ/2)
)−1 d

dφ
2

sinhφΩ′(φ)
∣∣∣
φ=0

= −4Ω(2)(φ) sinhφ− Ω′(φ) coshφ
sinh3 φ

∣∣∣
φ=0

→ −4Ω(3)(φ)− Ω′(φ)
3 sinhφ coshφ

∣∣∣
φ=0
→ −4Ω(4)(φ)− Ω(2)(φ)

3 cosh(2φ)

∣∣∣
φ=0

= 4
3
(
Ω(2)(0)− Ω(4)(0)

)
,

where the application of l’Hôpital’s rule is indicated by arrows.

Perturbation theory

In the following, we follow in parts Ref. [Ost10] and consider the contribution to the free
energy Ω due to a disorder potential

V ≡
N∑
n=1

Vn,

which is composed of N individual impurity potentials Vn. As usual, the perturbation is
accounted for by means of a Dyson equation, which can be written as

G−1 ≡ G−1
0 − V, G0 ≡ Ǧ. (5.6)

The change in the free energy due to the presence of the disorder potential is then given as6

δΩ ≡ tr lnG−1 − tr lnG−1
0 = tr ln

(
G0G−1) = tr ln(1− G0V ). (5.7)

Using Sylvester’s determinant theorem [She12], which is a special case of the matrix deter-
minant lemma [Bro12] and states that det(1 +AB) = det(1 +BA) for any n×m matrix A

6 Note that in general, the relation ln(AB) = lnA+ lnB for two matrices A and B only holds if A and B
commute; however, even for non-commuting matrices, we have tr ln(AB) = ln det(AB) = ln(detAdetB) =
ln detA+ ln detB = tr lnA+ tr lnB. We thank Pavel Ostrovsky for pointing this identity out to us.

87



Chapter 5 Resonant scattering in graphene

and any m× n matrix B, we can rewrite this expression in the following way:

δΩ = tr ln(1− G0V ) = ln det(1− G0V ) = ln det

1− (G0, . . . ,G0)

V1
...
VN




= ln det

1−

V1
...
VN

 (G0, . . . ,G0)

 = ln det(1− V̂ Ĝ0) = tr ln(1− V̂ Ĝ0), (5.8)

where “̂ ” indicates N × N block matrices in the unfolded vector space of N individual
impurities, whose elements we label with indices n,m ∈ {1, . . . , N} in the following; in
particular, the elements of V̂ and Ĝ0 are defined by (V̂ )nm ≡ Vnδnm and (Ĝ0)nm ≡ G0,
respectively. Eq. (5.8) can then be manipulated further:

δΩ = tr ln
((

1− V̂ ĝ
)(

1− (1− V̂ ĝ)−1V̂ (Ĝ0 − ĝ)
))

= tr ln(1− V̂ ĝ)︸ ︷︷ ︸
const.

+ tr ln
(
1− T̂ (Ĝ0 − ĝ)

)
, (5.9)

where the elements of ĝ and T̂ are defined by (ĝ)nm ≡ gδnm and (T̂ )nm ≡ Tnδnm, respectively,
where g is the free Green’s function, i.e., the Green’s function corresponding to the disorder-
free system in the absence of the leads, and

Tn ≡ (1− Vng)−1Vn = Vn + VngVn + . . . , n = 1, . . . , N, (5.10)

are the T -matrix operators for the individual impurities. The first expression in Eq. (5.9) is
constant in the sense that it does not depend on φ and therefore does not contribute to any
transport observable. Using the series expansion of the logarithm, we obtain

δΩ = const.−
∞∑
k=1

N∑
n1,...,nk=1

1
k

tr
(
Tn1(G0 − gδn1n2) . . . Tnk(G0 − gδnkn1)

)
.

Note that the trace still implies integrations over all internal position degrees of freedom.
A key simplification now occurs for “point-like” impurities, i.e., if the individual impurity
potentials are sufficiently localized in position space such that we may approximate the
Green’s functions to be constant within the domain of integration in the following way:

G0(r ∈ ∂rn, r′ ∈ ∂rm) ≈ G0(rn, rm), n 6= m,

(G0 − g)(r ∈ ∂rn, r′ ∈ ∂rn) ≈ (G0 − g)(rn, rn) ≡ lim
r→rn

(
G0(rn, r)− g(rn, r)

)
, (5.11)

where rn = (xn, yn)ᵀ denotes the position where Vn is centered, ∂rn denotes the relevant
domain of non-vanishing impurity potential around rn that contributes to the integrals over
position, and the impurity potentials are assumed to be non-overlapping in the sense that
∂rn ∩ ∂rm = ∅ for n 6= m. Then, each integral over position only involves an individual
T -matrix and the correction to the free energy in the presence of such point-like impurities
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5.2 Color-dependent conductance of graphene with adatoms

can be written as
δΩ = const. + tr ln

(
1− T̂ Ĝreg

)
(5.12)

with the regularized Green’s function matrix Ĝreg with elements

(Ĝreg)nm ≡
{
G0(rn, rm) if n 6= m,

(G0 − g)(rn, rn) if n = m,
(5.13)

and (T̂ )nm ≡ Tnδnm, where

Tn ≡
∫
Vn(r) dr +

∫ ∫
Vn(r)g(r, r′)Vn(r′) dr dr′ + . . . , n = 1, . . . , N, (5.14)

are the integrated impurity T -matrices for the individual impurity potentials. The point-like
character of the impurity potentials thus allows for a reduction of a microscopic calculation
involving integrals over internal continuous position degrees of freedom, Eq. (5.7), to a simple
N ×N finite-size matrix algebra in the unfolded space, Eq. (5.12).
With Eq. (5.12), we have established a simple analytical expression from which the

corrections to transport properties in the presence of point-like impurities can be obtained
for a system geometry as shown in Fig. 5.1. The ingredients to this expression are:

• the free Green’s function g(r, r′;E) = g(r− r′;E) of the clean, homogeneous system,
i.e., in the absence of impurities and in the absence of the leads,

• the unperturbed Green’s function G0 for the impurity-free transport geometry shown
in Fig. 5.1, i.e., in the absence of impurities but in the presence of the leads, and

• the integrated impurity T -matrix for each individual impurity, which is obtained from
the impurity potential profile and the free Green’s function according to Eq. (5.14).

Note that the assumption of point-like impurities does not restrict the type of disorder
for which the theory remains valid to (atomically sharp) short-range scatterers but merely
requires non-overlapping impurity potential profiles. Smooth long-range impurities, which
do not lead to intervalley scattering, may as well be considered [Ost10, Tit10, Sch10b]; these
are characterized by a T -matrix which is diagonal in valley space.
In the next section, we will apply the unfolded scattering formalism to graphene for

the simple case of two individual impurities, and we will investigate the influence of their
distribution over the particular sites of the honeycomb lattice. In the course of doing so, we
will find that the graphene lattice exhibits a more subtle structure than the usual sublattice
degree of freedom. Finally, in Section 5.3, we will provide an outlook on the transport
properties in the case of finite impurity densities, when impurities are distributed in a specific
way over the substructure revealed in Section 5.2.

5.2 Color-dependent conductance of graphene with adatoms
Controllable deposition of adatoms known as chemical functionalization is an efficient way
to alter the electronic properties of graphene. Adatoms can change the orbital state of
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Chapter 5 Resonant scattering in graphene

the functionalized carbon atoms from sp2 to sp3 configuration removing electrons from
the conduction band and transforming graphene into a semiconductor [Liu08, Eli09]. For
instance, fully hydrogenated graphene, also called “graphane”, is predicted to have a wide
band gap of 3–14 eV [Leb09] in sharp contrast to clean graphene which has a gapless excitation
spectrum [Nov04].

A small concentration of strongly bound adatoms or molecules, such as hydrogen or CH3,
is naturally present even in the cleanest graphene samples produced by exfoliation. The
effect of vacancies, which can be thought of as infinitely strong on-site potential impurities,
is essentially analogous to that of adatoms. Such impurities support electronic states at
the Dirac point, leading to resonant scattering of Dirac quasiparticles [Eli09, Ost06, Sta07,
Per08, Rob08, Ni10, Kat10a, Tit10, Ost10, Weh10, Yua10, Weh09].

From a theoretical point of view, the strong on-site impurities or vacancies preserve both
time-reversal and chiral symmetries of the graphene Hamiltonian. The interplay of the
symmetries prevents quantum localization at the Dirac point [Ost06] and gives rise to a
quantum critical regime of charge transport at a sufficiently high impurity concentration. The
conductivity of graphene in this regime is predicted to take on a constant value that depends
on the distribution of adatoms among different sublattices of the graphene crystal [Ost10].
In this section, we describe an even more subtle sensitivity of transport quantities, not only
to the sublattice but also to the type of impurity sites therein, that can be clearly seen even
in the presence of only two scatterers.

The theory of quantum transport in disordered graphene is highly non-trivial in the vicinity
of the Dirac point due to the breakdown of the quasiclassical approximation. An essentially
exact and efficient approach, namely the unfolded scattering formalism, has been presented
in the previous section. In addition, we perform here a detailed comparison of this formalism
with numerical simulations based on the recursive Green’s function technique within the
Landauer–Büttiker formalism with no adjustable parameters. In particular, we calculate
both numerically and analytically the conductance of graphene at the Dirac point in the
presence of two vacancies. This quantity is shown to have a remarkable sensitivity to the
“color” of the vacated sites, which is determined by the phase of the Bloch wavefunction and
by the orientation of the crystal with respect to the transport direction and can take on one
out of six possible values for a fixed orientation angle. We further use the analytic results in
order to construct the first terms of the color-dependent virial expansion of the conductivity
with respect to vacancy concentration and find that the conductivity is particularly sensitive
to the crystal orientation if adatom sites have a preferred color.7

Model

An essential ingredient to the unfolded scattering formalism presented in the previous
section is the single-impurity T -matrix, which is known for a variety of impurity types in
graphene [Hen07, Nov07, Bas08] and carbon nanotubes [McC04]. Starting from the standard
tight binding model on the honeycomb lattice, one can relate the on-site potential to the
corresponding T -matrix and the free Green’s function via Eq. (5.10); in the long-wavelength
limit, at distances |r| � a0, where r is a vector connecting two lattice sites, the free

7 The work presented in this section has also been published in Ref. [Sch11].
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Green’s function between sites of the same sublattice (i.e., if r is a lattice vector) behaves
as g ∝ EH(1)

0 (|Er|/(~vF )) as a function of energy E and position r, whereas it behaves as
g ∝ EH(1)

1 (|Er|/(~vF )) between sites of different sublattices—apart from spatial variations
on the lattice scale due to interference between the two valleys [Ben09a]; here, H(1)

0,1 denote
Hankel functions of the first kind. In particular, while the free Green’s function remains
finite between sites of different sublattices in the limit E → 0, it vanishes as E lnE between
sites of the same sublattice [Ost06]—a behavior that also holds on the atomic scale, i.e., for
|r| ∼ a0 [Bas08].

In graphene, the key simplification thus occurs in the limit E → 0, i.e., at the Dirac point,
since then the lowest order contribution of the series expansion (5.10) is already exact if the
impurity potential vanishes on one sublattice. More specifically, for an impurity potential
that is localized on a particular atomic site i0 of the graphene lattice,

〈i|V |j〉 ≡ Vij = V0δijδii0 ,

such as the vacancies considered in this section, the expression for the T -matrix takes on a
particularly simple form in the limit E → 0:

〈i|T |j〉 ≡ Tij
= Vij +

∑
k1,k2

Vik1gk1k2Vk2j +
∑

k1,...,k4

Vik1gk1k2Vk2k3gk3k4Vk4j + . . . = Vij ,

where gij ≡ 〈i|g|j〉 is the free particle Green’s function taken between the lattice sites i and
j. Expressing this T -matrix in the valley–sublattice space of the Dirac Hamiltonian reveals
a color scheme for the graphene lattice as described in the following.
The tight binding and effective mass models of ideal graphene have been introduced in

Section 3.1 and here we follow the conventions chosen there. Again, the graphene lattice is
oriented at an angle α as shown in Fig. 5.2, and we regard x as the transport direction. The
tight binding wavefunction Ψ(r) (see Eqs. (3.1) and (3.3)) and the four-component spinor of
the effective mass model |Φ〉 (see Eqs. (3.5) and (3.6)) are connected via Ψ(r) = 〈u(r)|Φ〉,
where8

〈u(r)| ≡
√
A

{
(ei(α+2Kr)/2, 0, 0, e−i(α−2Kr)/2), ζr = +,
(0, ie−i(α−2Kr)/2, iei(α−2Kr)/2, 0), ζr = −.

(5.15)

The projector |u(r)〉〈u(r)| thus describes a transition between the effective mass and tight
binding models. Consequently, the representation in the effective mass model of the T -matrix
of an on-site potential impurity of strength V0 located at a position r ought to be written as

T = V0|u(r)〉〈u(r)|. (5.16)

The phase factors in Eq. (5.15) are responsible for a site classification that depends on the
8 Note that H0 (see Eq. (3.6)) and the derivatives ∂x and ∂y contained therein act on |Φ〉 (see Eq. (3.5))
and the envelope wave functions φ± and φ′± contained therein, which depend on a continuous position
variable that is suppressed in Eq. (3.5). They do not act on expressions such as Eq. (5.15), which contain
a discrete position variable that can only take on values corresponding to the sites of the honeycomb
lattice.
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Figure 5.2: Color schemes for vacancies or resonant adatoms: (a) General color scheme: The impurity
site is characterized by the phase θc

± ≡ ±α+ 2πc/3, where “±” refers to the sublattice (A =̂ + and
B =̂ −) and c ∈ {−, 0,+} denotes the colors (red, green, and blue, respectively). The color scheme
depends on the transport direction x or, equivalently, on the orientation angle α and introduces a
superlattice structure with six sites per supercell (light gray Wigner–Seitz cell) on top of the hexagonal
lattice with two sites per unit cell (dark gray). The phases at A and B sites connected by the vector
δ0 differ most for α = π/6. (b) Degenerate color scheme: The phases at A and B sites connected by
the vector δ0 are equal for α = 0 (Figure adapted from Ref. [Sch11]).

orientation angle α. Using Eqs. (5.15) and (5.16), we represent the impurity T -matrix as

T+ = AV0


1 0 0 e−i(α+2Kr)

0 0 0 0
0 0 0 0

ei(α+2Kr) 0 0 1

 , T− = AV0


0 0 0 0
0 1 ei(α−2Kr) 0
0 e−i(α−2Kr) 1 0
0 0 0 0

 ,
for impurities located on sublattice A and B, respectively. In a more compact notation, we
can rewrite

T± = 2π~v`1± σzτz + σ∓τ−e
iθ± + σ±τ+e

−iθ±

4 , ` ≡ AV0
π~vF

, (5.17)

in accordance with previous derivations of this T -matrix [Ost06, Bas08, McC04, Sho98]; here,
` is called “scattering length” [Bas08], σ± ≡ (σx ± iσy)/

√
2, τ± ≡ (τx ± iτy)/

√
2, and σx,y,z

and τx,y,z are the Pauli matrices in the sublattice and valley space, respectively. The phases
θ± in Eq. (5.17) are defined as θ± ≡ ±α + 2Kr. Since Kr is an integer multiple of 2π/3
for any lattice site, we encounter three possible values of the factor e2iKr = e−iKr = e2πic/3

with c = 0,±1, assuming an A site at r = 0 as in Fig. 5.2. Together with the sublattice
index ζ, this yields six possible T -matrices for on-site impurities. In order to visualize this
classification, in Fig. 5.2 we introduce a color scheme by assigning one out of six possible
colors to each lattice site (three colors in each sublattice) corresponding to the phase factors
eiθc± ≡ e±iα+2πic/3. These colors define a superlattice with a period of three elementary unit
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5.2 Color-dependent conductance of graphene with adatoms

cells and with six atoms per supercell. For α = 0, only three distinct phases remain yielding
the same three colors in both sublattices.
Having established the particular form of the impurity T -matrix, we can calculate the

correction to the conductance due to the presence of the impurities via Eqs. (5.5) and (5.12),

δG = 2× 2e2

h

d2

dφ2 ln det
(
1− T̂ Ĝreg

)∣∣
φ=0, (5.18)

where the additional factor 2 accounts for spin degeneracy. The regularized Green’s function
Ĝreg (see Eq. (5.13)) is obtained from the unperturbed Green’s function G0 = Ǧ (see Eq. (5.6)),
which in a single valley and in the limitW →∞ is the solution to the equation (see Eq. (5.2))(

µ(x)− vFσ · p + i0+ −i sinh(φ/2)~vFσxδ(x)
−i sinh(φ/2)~vFσxδ(x− L) µ(x)− vFσ · p− i0+

)
G0(r, r′) = δ(r− r′) (5.19)

with µ(x) = µ∞Θ(|x − L/2| − L/2), µ∞ → ∞, modeling the metallic character9—a high
density of states—of the leads, where we chose xL = 0 and xR = L without loss of generality,
while transport in the region 0 < x < L occurs at the Dirac point; we further used that in
graphene, Eq. (5.1) takes the form

Γ̂ = i[vFσ · p, x̂] = ~vFσx.

The solution to Eq. (5.19) has first been derived in Ref. [Tit10] in the standard way via
wavefunction matching of piecewise solutions, where µ∞, the infinitesimal shift i0+, and
the counting angle are incorporated into the boundary conditions. The final expression
reads [Ost10]

G0(rn, rm) = i
4~vFL

UxnΛΣzeiΣy(yn−ym)φ/(2L)R(rn, rm)ΛU−1
xm , (5.20)

where Σx,y,z are the Pauli matrices in RA space,

Ux ≡
(

i sinh φ(x−L)
2L cosh φ(x−L)

2L
i cosh φx

2L − sinh φx
2L

)
RA

and Λ ≡
(

1 0
0 σz

)
RA

are matrices in RA space, and

R(rn, rm) ≡
(

sin−1(zn + z∗m) sin−1(zn − zm)
sin−1(z∗n − z∗m) sin−1(z∗n + zm)

)
σ

, zn ≡
π

2L(xn + iyn),

is a matrix in sublattice space. According to Eq. (5.13), the off-diagonal elements of Ĝreg are
then given by Eq. (5.20),

(Ĝreg)nm = G0(rn, rm), n 6= m,

while for the diagonal elements, in addition the free Green’s function of graphene at the
9 Such a model was introduced earlier in Ref. [Two06].
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Dirac point [Ben09a, Tit10, Ost10],

g(r, r′) = g(r− r′), g(r) = −iσ · r
2π~vF r2 ,

enters into Eq. (5.13); the final expression for the diagonal elements reads [Ost10]

(Ĝreg)nn = i
4~vFL

UxnΛΣzRreg(rn)ΛU−1
xn , Rreg(r) =

(
sin−1(πx/L) Σyφ/π
−Σyφ/π sin−1(πx/L)

)
σ

.

With this, all ingredients to Eq. (5.18) have been established. Technical details and an
efficient algorithm to evaluate Eq. (5.18) for an arbitrary number of impurities are further
described in Ref. [Ost10]; in particular, for the case of two vacancies located at positions r1
and r2, respectively, corresponding to infinitely strong on-site potentials yielding a diverging
scattering length, `→∞, the correction to the conductance takes the form [Sch11]

δG = 4e2

h

ȳ2

L2
ρ11ρ22 Re(ρ2

12)− |ρ12|2(Re ρ12)2(
(Re ρ12)2 − ρ11ρ22

)2 (5.21)

with ȳ ≡ y1 − y2 and

ρij ≡ ei(θi−θj)/2 csc
π
(
ζixi + ζjxj + i(yi − yj)

)
2L ,

where θi ≡ αζi − Kri is the T -matrix phase, which can take on one of six values θc± ≡
±α+ 2πc/3, c = 0,±1, and ζi = ±1 indicates the sublattice on which the vacancy is located
(A =̂ +1 and B =̂ −1). The phase difference θ̄ ≡ θ1 − θ2 encodes the dependence of the
conductance on the colors of the vacancies and on the orientation angle α.

Results

To highlight the sensitivity of transport quantities to the colors of vacancy sites and in
order to test the results obtained from the unfolded scattering formalism, we compute the
conductance analytically from Eq. (5.21), which was obtained in the limit W → ∞, as
well as numerically in the usual nearest neighbor tight binding model (see Eq. (4.1)) for
W � L using the technique developed in Chapter 2 and the scheme for constructing the
surface Green’s functions of graphene leads exhibiting zigzag or armchair edges as outlined in
Section 4.2. The lattice geometry used in the numerical calculation is schematically shown for
armchair orientation (α = 0) in Fig. 5.3(a). For the numerical simulations, we have chosen
a sample length L ≈ 50a0 and a sample width W ≈ 600a0, and we consider two crystal
orientations: α = 0 (armchair) and α = π/6 (zigzag). The metallic leads at x < 0 and x > L
are defined by a large chemical potential, µnum

∞ = 0.3t ≈ 10~vF /L, measured with respect
to the Dirac point, which is chosen large enough to provide a sufficiently large number of
propagating modes in the leads while still being within the validity regime of the low-energy
approximation of graphene. Inside the sample (0 < x < L), the chemical potential is tuned
to the close vicinity of the Dirac point, µnum

0 = 0.001t, avoiding numerical instabilities that
occur directly at the Dirac point. In the absence of vacancies, the relative deviation of the
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5.2 Color-dependent conductance of graphene with adatoms

Figure 5.3: (a) Lattice geometry used in the numerical simulations, exemplary shown for armchair
orientation (α = 0). A vacancy site is created by setting all hopping matrix elements to or from this
site to zero. The leads (shaded area) are defined according to Fig. 2.3 by the matrices h0 and h1
(as well as corresponding matrices h01 and h10 not indicated here). The layers used in the recursive
scheme described in Section 2.4 are also indicated (dashed). (b) Setup for the plots shown in Figs. 5.4
and 5.5. One vacancy with phase θ1 is kept fixed at the center of the sample while the second vacancy
with phase θ2 is shifted along y-direction for a given value of the x-coordinate.

conductivity from the theoretical minimal value 4e2/(πh) (see Section 3.2) is found to be less
than 1%. While a single vacancy has only a negligible effect on the numerically calculated
ballistic conductance, a pair of vacancies leads to a finite correction δG. This behavior can
be understood in terms of resonant tunneling via the bound states formed by vacancies. A
single vacancy leads to a strong enhancement of the local density of states over the distance
L from the vacancy due to formation of a resonant state at the Dirac point. Still, it does not
produce any contribution to the conductance due to lack of coupling to the current-carrying
states in the leads, owing to the interplay of spatial symmetry and the peculiar projective
structure of the T -matrix, see Eq. (5.16). However, the symmetry of this state is, in general,
broken in the presence of a second vacancy within a distance L due to hybridization with an
energy splitting of order ~vF /L comparable to the width of the resonance. The resonant
tunneling through this hybridized bound state provides an extra conducting channel hence
yielding the L-independent correction δG ∼ e2/h for |ȳ| ∼ L, which we calculate numerically
for different positions of one vacancy while keeping the second vacancy fixed in the center of
the sample (see Fig. 5.3(b)).

The numerical and analytical results are compared in Figs. 5.4 and 5.5. One set of data
is shown in Fig. 5.4 for α = 0 and for vacancies of different type. One vacancy is kept fixed
on sublattice A at position r1 = (L/2, 0), a second vacancy is shifted along y-direction on
sublattice B, r2 = (x2, y2), where x2 ≈ 2L/3. The dependence of δG on all possible values of
ȳ = −y2 on the lattice is shown with the data points. The conductance switches between
three different smooth curves which correspond to a certain difference θ̄ = θ1 − θ2 of the
T -matrix phase at the two vacated sites, θ̄ = 0 and θ̄ = ±2π/3, respectively. Similar data is
plotted in Fig. 5.5(a) for the zigzag orientation of the crystal and for different transverse
positions of the B vacancy at x2 ≈ 0.45L. Here, three other phase differences, θ̄ = π and
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Chapter 5 Resonant scattering in graphene

Figure 5.4: Conductance variation for an “armchair” (α = 0) sample with two vacancies, one on each
sublattice. By changing the distance in y-direction, ȳ, the conductance jumps on the atomic scale
between three different smooth curves corresponding to θ̄ = 0 (green disks), θ̄ = 2π/3 (blue squares),
and θ̄ = −2π/3 (red diamonds), respectively. The numerical data agrees well with Eq. (5.21) as
shown by the corresponding curves (Figure adapted from Ref. [Sch11]).

Figure 5.5: Conductance variation for a “zigzag” (α = π/6) sample with two vacancies. (a) One
vacancy on each sublattice; by changing ȳ, the conductance jumps on the atomic scale between
different smooth curves corresponding to θ̄ = π (green disks), θ̄ = π/3 (blue squares), and θ̄ = −π/3
(red diamonds). (b) Both vacancies on sublattice A; here, the phase difference θ̄ is either 0 (green
disks), 2π/3 (blue squares), or −2π/3 (red diamonds). The numerical data agrees well with Eq. (5.21)
as shown by the corresponding curves (Figure adapted from Ref. [Sch11]).
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5.2 Color-dependent conductance of graphene with adatoms

θ̄ = ±π/3, appear. In Fig. 5.5(b), both vacancies are chosen to belong to the A sublattice
(x2 ≈ L/3, zigzag orientation). In this case, we find again θ̄ = 0 and θ̄ = ±2π/3 in agreement
with the classification of site colors presented in Fig. 5.2.

Figs. 5.4 and 5.5 show a remarkable agreement between the numerical data obtained by
the recursive Green’s function technique and the analytical result, Eq. (5.21). The small
deviations between analytical and numerical results are mainly due to the finite ratio W/L
and the chosen finite chemical potential in the leads; a small detuning from the Dirac point
within the sample, used in the simulations to avoid numerical instabilities as mentioned
above, may also play a role. A good agreement with the theory is similarly obtained for
other positions of the vacancies, except for deviations at θ̄ = 0 in the limit r2 → r1, where
the approximation of non-overlapping impurities, Eq. (5.11), breaks down and Eq. (5.21)
becomes indeterminate.

Virial expansion. In statistical mechanics, the partition function of a gas of interacting
particles can in general not be obtained exactly. Instead, the partition function Z is
decomposed into contributions Z0, Z1, Z2, . . . for 0, 1, 2, . . . particles, and a perturbative
treatment for low particle densities is employed in form of a so-called virial expansion. The
virial expansion is an expansion of the equation of state of a gas of interacting particles in
the particle density, where the zeroth order contribution is given by the equation of state
of the ideal, non-interacting gas and the (virial) coefficients of higher order corrections are
determined by the contributions Zn, n ∈ N [Sch06].
Pseudodiffusive transport in the “short and wide” (W � L) geometry can be described

by the mean conductivity σ = G × L/W , and for a low concentration of vacancies, a
corresponding expansion for σ in the impurity density can be established. The zeroth order
term is given by the universal minimal value of the conductivity of graphene, σmin = 4e2/(πh).
The first order correction is given by the effect of a single vacancy on the conductance, which
in our case is absent as described above. The second order correction is given by the effect
of two vacancies simultaneously present in the sample, which is non-trivial in our case. The
lowest order term of this series is therefore of second order in impurity density and the series
can be written in the form

σ = 4e2

πh

(
1 + L4 ∑

c1,c2

(
γ 2π

3 (c1−c2)
(
nAc1nAc2 + nBc1nBc2

)
+ 2γ̄2α+ 2π

3 (c1−c2)nAc1nBc2

)
+O(n3L6)

)
, (5.22)

where nAc and nBc with c = 0,±1 are the impurity concentrations of the corresponding sites
of the graphene superlattice (see Fig. 5.2) and 4e2/(πh) is the universal minimal value of
the conductivity at the Dirac point in the limit W � L [Kat06a, Two06, Mia07, Dan08].
Performing numerical averaging over impurity positions in Eq. (5.21), we find the values
γ0 ≈ 0.2653 and γ±2π/3 ≈ −0.1197, which are independent of the angle α. Both γχ and
γ̄χ are even 2π-periodic functions of χ. The mean value of γ̄χ over the period is zero.
In a sample with “armchair” orientation (α = 0), relevant parameters are γ̄0 ≈ 0.1700
and γ̄±2π/3 ≈ −0.0850. In a “zigzag” sample (α = π/6), we have γ̄±π/3 ≈ 0.0843 and
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γ̄π ≈ −0.1686. In each case, the sum of the three values is vanishingly small, ∼ 10−5. If
impurities are distributed uniformly among the lattice sites, the conductivity is given by

σ = 4e2

πh

(
1 + κn2L4 +O(n3L6)

)
, (5.23)

where n is the impurity concentration and κ ≈ 0.0043 exhibits tiny oscillations ∼ 10−5 as
a function of α. However, the dependence of the (minimal) conductivity on the crystal
orientation is substantial if the distribution of adatoms among sites of different colors is
not uniform. Such a non-uniform distribution can originate from adatom correlations, for
instance by electron-mediated interactions of on-site impurities, as described in Refs. [Shy09,
Aba10a, Che09a]; the proposed color classification extends beyond zero energy and gives
rise to interaction oscillations yielding a color scheme similar to that of Fig. 5.2. It is worth
noting that Ref. [Shy09] addressed the problem in an infinite system, whereas the effective
interaction of adatoms with the leads (encoded in Eq. (5.19)) may play an important role in a
finite sample. Further, a strong on-site impurity of finite strength V0 creates a resonance away
from the Dirac point at energy t2/V0 and an imbalance in the distribution of such impurities
over sublattices is predicted to open a gap in the vicinity of the Dirac point [Aba10b].
As a final remark, note that since the term linear in n vanishes in Eqs. (5.22) and (5.23)

because scattering on a single vacancy is not sufficient to produce a correction to the
conductivity, the finite correction shown in Figs. 5.4 and 5.5 is not to be interpreted as the
sum of the (actually absent) effects of two independent scatterers but is rather a second
order effect due to the presence of a dimer or pair of impurities. As a result, the leading
correction to the conductivity of the disordered sample, Eq. (5.21), is of second order in the
impurity concentration.

5.3 Summary and outlook

In the previous section, we theoretically proposed and numerically confirmed an extended
classification of impurity sites in the graphene honeycomb lattice for the case of strongly bound
adatoms or vacancies based on the unfolded scattering formalism developed in Section 5.1.
The classification illustrated in Fig. 5.2 by assigning colors to the lattice sites gives rise to a
color scheme with six inequivalent sites per supercell, three on each sublattice. The general
analytical expression for the correction to the Dirac point conductance of a graphene sample
with two resonant on-site impurities was given as a function of the impurity coordinates,
see Eq. (5.21). The Dirac point conductivity of graphene with a small number of randomly
distributed adatoms was shown to be sensitive to the relative concentration of impurities at
the sites belonging to different sublattices and having different colors by means of a virial
expansion. A non-uniform distribution of impurities within the color scheme is expected to
cause a substantial dependence of the conductivity on the transport direction.
Potential future work may be concerned with the extension of the color classification

beyond zero energy, where a non-uniform distribution of finite-energy resonant scatterers is
predicted to open a gap [Aba10b]. Another topic is the analysis of the color dependence for
the case of higher impurity concentrations beyond the validity of the virial expansion, whose
lowest order term was inferred in the previous section solely on the basis of the two-vacancy

98



5.3 Summary and outlook

▪
▪
▪
▪
▪
▪
▪
▪▪
▪
▪
▪
▪
▪
▪

▪

▪
▪
▪
▪
▪
▪
▪
▪▪
▪
▪
▪
▪
▪
▪
▪

▪
▪
▪
▪
▪
▪
▪
▪▪
▪
▪
▪
▪
▪
▪

▪

▪
▪
▪
▪
▪
▪
▪
▪ ▪
▪
▪
▪
▪
▪
▪

▪

▪
▪
▪
▪
▪
▪
▪
▪▪
▪
▪
▪
▪
▪
▪
▪

▪
▪
▪
▪
▪
▪
▪
▪ ▪
▪
▪
▪
▪
▪
▪

▪

▪
▪
▪
▪
▪
▪
▪
▪ ▪
▪
▪
▪
▪
▪
▪

▪

▪
▪
▪
▪
▪
▪
▪
▪▪
▪
▪
▪
▪
▪
▪
▪

▪
▪
▪
▪
▪
▪
▪
▪ ▪
▪
▪
▪
▪
▪
▪

▪

▪
▪
▪
▪
▪
▪
▪
▪▪
▪
▪
▪
▪
▪
▪
▪

▪

▪
▪
▪
▪
▪
▪
▪
▪▪
▪
▪
▪
▪
▪
▪
▪
▪

▪
▪
▪
▪
▪
▪
▪
▪▪

▪
▪
▪
▪
▪
▪
▪

▪

▪
▪
▪
▪
▪
▪
▪
▪ ▪
▪
▪
▪
▪
▪
▪
▪

▪

▪
▪
▪
▪
▪
▪
▪
▪▪
▪
▪
▪
▪
▪
▪
▪
▪

▪
▪
▪
▪
▪
▪
▪
▪ ▪
▪
▪
▪
▪
▪
▪
▪

▪

▪
▪
▪
▪
▪
▪
▪
▪ ▪
▪
▪
▪
▪
▪
▪
▪

▪

▪
▪
▪
▪
▪
▪
▪
▪▪
▪
▪
▪
▪
▪
▪
▪
▪

▪
▪
▪
▪
▪
▪
▪
▪ ▪
▪
▪
▪
▪
▪
▪
▪

▪

▪
▪
▪
▪
▪
▪
▪
▪▪
▪

▪
▪

▪
▪
▪
▪
▪

▪

▪
▪
▪
▪
▪
▪
▪
▪▪
▪
▪
▪
▪
▪
▪
▪
▪
▪

▪
▪
▪
▪
▪
▪
▪
▪▪
▪

▪
▪
▪
▪
▪
▪
▪

▪
▪
▪
▪
▪
▪
▪
▪ ▪
▪
▪
▪
▪
▪
▪
▪
▪

▪

▪
▪
▪
▪
▪
▪
▪
▪ ▪
▪
▪
▪
▪
▪
▪
▪
▪
▪

▪
▪
▪
▪
▪
▪
▪
▪▪
▪
▪
▪
▪
▪
▪
▪
▪

▪
▪
▪
▪
▪
▪
▪
▪ ▪
▪
▪
▪
▪
▪
▪
▪
▪

▪

▪
▪
▪
▪
▪
▪
▪
▪▪
▪
▪
▪
▪
▪
▪
▪
▪
▪

▪
▪
▪
▪
▪
▪
▪
▪▪
▪
▪
▪
▪
▪
▪
▪
▪

Figure 5.6: Dependence of the conductivity on the impurity density for different values of the length
L and the chemical potential µ0 in the region 0 < x < L.
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Figure 5.7: Lattice structures that emerge in the extreme case of maximum vacancy density for the
three different impurity distributions shown in Fig. 5.6.

result, Eq. (5.21); in Fig. 5.6, we show preliminary numerical results on the behavior of
the conductance in the presence of a finite impurity density for different distributions of
impurities over sublattices and colors in (semiconducting) armchair orientation (α = 0). The
conductivity σ is shown in units of 4e2/(πh) as a function of nL2 = N/(W/L), where N is
the total number of impurities, so that n is the total impurity density. W ≈ 600a0 is the
width of the sample, the chemical potential in the leads is µL = 0.15t, and the chemical
potential in the sample µS as well as the length L are as indicated in the individual plots.
Each data point is averaged over 100 disorder realizations in the following three different
disorder configurations:

1. Vacancies are distributed equally over a single color on each sublattice with equal
colors on sublattices A and B (blue).

2. Vacancies are distributed equally over a single color on each sublattice with different
colors on sublattices A and B (black).

3. Vacancies are distributed over a single color on sublattice A (green).

In Fig. 5.7, we also show the regular lattice structures that emerge in the extreme case of
maximum impurity concentration, where transport is again ballistic as in the impurity-free
case except for some contact resistance at the interfaces towards the leads. In configuration
1 (blue), an array of independent one-dimensional conducting channels connecting the leads
emerges, and the number of channels increases linearly with the sample width W , while
it is independent of the sample length L. In the plots shown in Fig. 5.6, the width W is
kept constant and so is the number of channels and thus the conductance G, explaining the
linear increase of the saturation value of the conductivity σ = G × L/W with increasing
length at maximum impurity concentration. In configuration 2 (black), a similar array of
independent one-dimensional conducting channels appears. However, these channels are
tilted by an angle of 60°, so that there may be disconnected channels that do not connect the
two leads. Hence, the number of conducting channels between the leads not only depends
on the length but also explicitly on the width of the sample (and not only on the ratio
W/L). While in configuration 1, there are 2W/(3

√
3) channels in the system, the number

of channels is W/(3
√

3) in configuration 2 if the length is sufficiently small so that there
are no disconnected channels. Thus, the number of conducting channels connecting the
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leads is always smaller at least by a factor of 2 compared to the same system geometry in
configuration 1, and it decreases with increasing length explaining the saturation value of
the conductivity of the black curves in Fig. 5.6 for maximum impurity concentration with
respect to the corresponding blue curves.
Such a simple analysis is not possible for configuration 3 (green); however, note that in

this case, the lattice structure that emerges at maximum impurity concentration can be
considered as an effective honeycomb lattice with a nearest neighbor distance ã0 = a0

√
3 in

zigzag orientation which is connected to conventional graphene leads in armchair orientation
(see Fig. 5.7). This consideration might help in the interpretation of the green curves in
Fig. 5.6. A detailed theory and understanding of the behavior shown in Fig. 5.6, especially
in the crossover regime of intermediate impurity concentration, has yet to be developed.
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Chapter 6

Conclusion

The interplay between the peculiar electronic properties of graphene and the fundamental
concepts of electronic transport in mesoscopic systems, namely quantum interference and
disorder effects, formed the focus of the present work. In this chapter, we recapitulate the
main findings obtained in the previous chapters and give a brief outlook on open questions.
Electronic transport in graphene, or in mesoscopic systems in general, involves many

particles in a non-equilibrium situation. The first part of this thesis was concerned with
the formulation of an appropriate language and a computational scheme for the description
of quantum transport and the calculation of observables of interest. In Chapter 1, we
introduced a very general field-theoretic non-equilibrium formalism capable of adequately
expressing the problem at hand. This rather formal approach reduced to an intuitive
picture for the case of (effectively) non-interacting systems, which we considered throughout
this work. In Chapter 2, we outlined in detail an efficient computational scheme for the
numerical evaluation of transport observables in terms of the single-particle Green’s function
as obtained in Chapter 1. In the second part of this thesis, we applied this scheme to graphene
after giving a general introduction to this material in Chapter 3, highlighting the essential
concepts and phenomena relevant for the subsequent analysis of graphene-specific effects
in typical transport geometries. In particular, in Chapter 4, we focused on the Aharonov–
Bohm geometry and, after providing a general overview of recent developments in the field,
concentrated on the interplay with either of two fundamental phenomena specific to graphene,
namely Klein tunneling and specular Andreev reflection. Introducing Klein tunneling into a
ring-shaped system by applying a gate voltage to one of the ring arms and thus creating a npn-
junction changes the amplitude of the magnetoconductance oscillations, with a considerable
dependence on the smoothness of the junction. This behavior is in accordance with a previous
analysis on the transmission properties of a np-junction in an infinite graphene sheet [Che06].
Introducing Andreev reflection by means of a superconducting contact, where electron–hole
conversion may take place, leads to different dominant magnetoconductance oscillation
periods of h/e for specular Andreev reflection—which is exclusive to graphene—and h/(2e)
for conventional retro reflection, depending on the ratio of Fermi energy and excitation energy
(or applied bias). This signature of specular vs. retro reflection proves to be very robust
due to the topological nature of the underlying detection mechanism. A second transport
geometry, a strip of graphene in a two-terminal setup, was considered in Chapter 5, and
the effect of disorder on the universal transport properties of ballistic graphene was studied.
The particular kind of disorder under consideration have been vacancies in the graphene
lattice, modeling the effect of strongly bound short-range scatterers such as adatoms or
molecules, that support electronic states at zero energy and thus represent resonant scatterers
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for the Dirac quasiparticles. The point-like character of these impurities allowed for an
analytical treatment in the framework of the Dirac equation, in addition to a numerical
analysis utilizing the tight binding model. Both descriptions show a remarkable agreement
on the results, which led to the construction of a non-trivial color scheme explaining the
surprising dependence of the conductance on the particular locations of the vacancies within
a supercell containing in general six inequivalent sites, three per sublattice. The origin of
this classification is quantum interference between the two valleys of the graphene dispersion.
The conductivity is further found to exhibit a dependence on the transport direction, which
is strongly enhanced if the distribution among the sites of the lattice is not uniform.

The effect of resonant scatterers has been extensively studied for the case of two vacancies
that are present in the system. Preliminary results on the situation at finite impurity
concentration have also been given in Section 5.3. Although some of the features shown
there can be easily understood by a consideration of the lattice structures that emerge at
extreme impurity concentrations, further analysis is required for a detailed understanding,
especially for the situation at intermediate impurity concentration. Since the energy states
created at the Dirac point by the presence of resonant scatterers exhibit a finite width of
the resonance, it is also instructive to analyze the energy dependence of the conductivity in
a vicinity around the charge neutrality point. Another interesting aspect is given by less
strongly bound impurities, which shift the resonance to finite energies, in which case a gap is
predicted to open [Aba10b]. Concerning the Aharonov–Bohm effect in graphene, we have
identified unresolved issues in recent measurements as well as theoretical considerations not
yet confirmed by corresponding experiments. In Ref. [Rus08], a seemingly linear relation
between conductance and magnetooscillation amplitude has been observed and remains to
be explored; the same experiment also showed an yet unexplained increase of the oscillation
amplitude at high field strengths. The two transport setups discussed theoretically in
Chapter 4 should in general be accessible to an experimental realization, and indeed, the
setup considered in Section 4.2 has just recently been realized experimentally [Smi12]. In
this setup, an unusual increase of the oscillation amplitude with increasing magnetic field
strength was observed in some—but not all—cases, when the lower ring arm was tuned
toward the charge neutrality point; this phenomenon could not be explained. We also note
that experimentally, the electrostatic Aharonov–Bohm effect may be utilized instead of the
application of a magnetic field, which might prove useful especially in the setup discussed in
Section 4.3 due to the presence of a superconducting lead; also note that in this system, the
electron–hole pair is spatially separated in the case of specular Andreev reflection, so that
its entangled property may be utilized in (spin) entanglement devices based on graphene; for
such applications, graphene proves to be a prime material anyway due to its low spin–orbit
and hyperfine interactions and a correspondingly large spin coherence length [Tra07].
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Appendix A

Explicit solutions to the Dyson equation

The two forms of the Dyson equation read

g + gV G = G = g +GV g.

Two-layer case

For
G =

(
G1 G12
G21 G2

)
, g =

(
g1 0
0 (E −H)−1

)
, V =

(
0 T
T † 0

)
,

the two forms of the Dyson equation can be written in components

g1 + g1TG21 = G1 = g1 +G12T
†g1,

g1TG2 = G12 = G1T (E −H)−1,

(E −H)−1T †G1 = G21 = G2T
†g1,

(E −H)−1(1 + T †G12) = G2 = (1 +G21T )(E −H)−1,

and analogous to the derivation of Eq. (2.7) (or directly solving for G2), we find

G2 = (E −H − T †g1T )−1,

or, if G1 is known instead of g1 (as in the derivation of Eq. (2.18)), we can write

G2 = g2 + g2T
†G1Tg2, (A.1)

where we defined g2 = (E −H)−1.

Three-layer case

For

G =

G1 G12 G13
G21 G2 G23
G31 G32 G3

 , g =

 g1 g12 0
g21 g2 0
0 0 (E −H)−1

 , V =

 0 0 T
0 0 h
T † h† 0

 ,
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Appendix A Explicit solutions to the Dyson equation

the two forms of the Dyson equation can be written in components

g1 + (g1T + g12h)G31 = G1 = g1 +G13(T †g1 + h†g21),
g12 + (g1T + g12h)G32 = G12 = g12 +G13(T †g12 + h†g2),

(g1T + g12h)G3 = G13 = (G1T +G12h)(E −H)−1,

g21 + (g21T + g2h)G31 = G21 = g21 +G23(T †g1 + h†g21),
g2 + (g21T + g2h)G32 = G2 = g2 +G23(T †g12 + h†g2),

(g21T + g2h)G3 = G23 = (G21T +G2h)(E −H)−1,

(E −H)−1(T †G1 + h†G21) = G31 = G3(T †g1 + h†g21),
(E −H)−1(T †G12 + h†G2) = G32 = G3(T †g12 + h†g2),

(E −H)−1(1 + T †G13 + h†G23) = G3 = (1 +G31T +G32h)(E −H)−1,

where the equations not used in Section 2.4 are shaded gray, and analogous to the derivation
of Eq. (2.7) (or directly solving for G3), we find

G3 =
(
E −H −

(
T †g1T + T †g12h+ h†g21T + h†g2h

))−1
.

106



Bibliography

[Aba10a] D. Abanin and L. Levitov. Spatial Ordering of Defects and Conductivity of
Functionalized Graphene (2010). arXiv:1008.1424v1.

[Aba10b] D. A. Abanin, A. V. Shytov, and L. S. Levitov. Peierls-Type Instability and
Tunable Band Gap in Functionalized Graphene. Phys. Rev. Lett. 105, 086802
(2010).

[Abe08] D. S. L. Abergel, V. M. Apalkov, and T. Chakraborty. Interplay between valley
polarization and electron-electron interaction in a graphene ring. Phys. Rev. B 78,
193405 (2008).

[Abe11] N. Abedpour, R. Asgari, and F. Guinea. Strains and pseudomagnetic fields in
circular graphene rings. Phys. Rev. B 84, 115437 (2011).

[Aha59] Y. Aharonov and D. Bohm. Significance of Electromagnetic Potentials in the
Quantum Theory. Phys. Rev. 115, 485 (1959).

[Aha61] Y. Aharonov and D. Bohm. Further Considerations on Electromagnetic Potentials
in the Quantum Theory. Phys. Rev. 123, 1511 (1961).

[Akh08a] A. R. Akhmerov, J. H. Bardarson, A. Rycerz, and C. W. J. Beenakker. Theory of
the valley-valve effect in graphene nanoribbons. Phys. Rev. B 77, 205416 (2008).

[Akh08b] A. R. Akhmerov and C. W. J. Beenakker. Boundary conditions for Dirac fermions
on a terminated honeycomb lattice. Phys. Rev. B 77, 085423 (2008).

[And64] A. F. Andreev. Thermal conductivity of the intermediate state of superconductors.
Sov. Phys. JETP 19, 1228 (1964).

[And98] T. Ando, T. Nakanishi, and R. Saito. Berry’s Phase and Absence of Back Scattering
in Carbon Nanotubes. J. Phys. Soc. Jpn. 67, 2857 (1998).

[And09] T. Ando. The electronic properties of graphene and carbon nanotubes. NPG Asia
Mater. 1, 17 (2009).

[Ang07] L. Angers, E. Zakka-Bajjani, R. Deblock, S. Guéron, H. Bouchiat, A. Cavanna,
U. Gennser, and M. Polianski. Magnetic-field asymmetry of mesoscopic dc rectifi-
cation in Aharonov-Bohm rings. Phys. Rev. B 75, 115309 (2007).

[Ash76] N. Ashcroft and N. Mermin. Solid state physics. Harcourt (1976).

107

arXiv:1008.1424v1


Bibliography

[Bac99] A. Bachtold, C. Strunk, J.-P. Salvetat, J.-M. Bonard, L. Forro, T. Nussbaumer,
and C. Schönenberger. Aharonov-Bohm oscillations in carbon nanotubes. Nature
397, 673 (1999).

[Bah09] D. A. Bahamon, A. L. C. Pereira, and P. A. Schulz. Inner and outer edge states in
graphene rings: A numerical investigation. Phys. Rev. B 79, 125414 (2009).

[Bas08] D. M. Basko. Resonant low-energy electron scattering on short-range impurities in
graphene. Phys. Rev. B 78, 115432 (2008).

[Bee91] C. W. J. Beenakker and H. van Houten. Quantum Transport in Semiconductor
Nanostructures. Solid State Phys. 44, 1 (1991).

[Bee06] C. W. J. Beenakker. Specular Andreev Reflection in Graphene. Phys. Rev. Lett.
97, 067007 (2006).

[Bee08a] C. W. J. Beenakker. Colloquium: Andreev reflection and Klein tunneling in
graphene. Rev. Mod. Phys. 80, 1337 (2008).

[Bee08b] C. W. J. Beenakker, A. R. Akhmerov, P. Recher, and J. Tworzydło. Correspondence
between Andreev reflection and Klein tunneling in bipolar graphene. Phys. Rev. B
77, 075409 (2008).

[Ben09a] C. Bena. Green’s functions and impurity scattering in graphene. Phys. Rev. B 79,
125427 (2009).

[Ben09b] C. Bena and G. Montambaux. Remarks on the tight-binding model of graphene.
New J. Phys. 11, 095003 (2009).

[Blo29] F. Bloch. Über die Quantenmechanik der Elektronen in Kristallgittern. Z. Phys. A
52, 555 (1929).

[Bol08] K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and
H. Stormer. Ultrahigh electron mobility in suspended graphene. Solid State Commun.
146, 351 (2008).

[Boy73] T. H. Boyer. Classical Electromagnetic Deflections and Lag Effects Associated with
Quantum Interference Pattern Shifts: Considerations Related to the Aharonov-
Bohm Effect. Phys. Rev. D 8, 1679 (1973).

[Bre06a] L. Brey and H. A. Fertig. Edge states and the quantized Hall effect in graphene.
Phys. Rev. B 73, 195408 (2006).

[Bre06b] L. Brey and H. A. Fertig. Electronic states of graphene nanoribbons studied with
the Dirac equation. Phys. Rev. B 73, 235411 (2006).

[Bre07] L. Brey and H. A. Fertig. Elementary electronic excitations in graphene nanoribbons.
Phys. Rev. B 75, 125434 (2007).

108



Bibliography

[Bro12] M. Brookes. The Matrix Reference Manual (2011; URL last accessed: May 3,
2012).
URL http://www.ee.imperial.ac.uk/hp/staff/dmb/matrix/intro.html

[Büt85] M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas. Generalized many-channel
conductance formula with application to small rings. Phys. Rev. B 31, 6207 (1985).

[Che06] V. V. Cheianov and V. I. Fal’ko. Selective transmission of Dirac electrons and
ballistic magnetoresistance of n-p junctions in graphene. Phys. Rev. B 74, 041403
(2006).

[Che09a] V. V. Cheianov, O. Syljuåsen, B. L. Altshuler, and V. Fal’ko. Ordered states of
adatoms on graphene. Phys. Rev. B 80, 233409 (2009).

[Che09b] S.-G. Cheng, Y. Xing, J. Wang, and Q.-F. Sun. Controllable Andreev Retroreflection
and Specular Andreev Reflection in a Four-Terminal Graphene-Superconductor
Hybrid System. Phys. Rev. Lett. 103, 167003 (2009).

[Che11] S.-G. Cheng, H. Zhang, and Q.-F. Sun. Effect of electron-hole inhomogeneity on
specular Andreev reflection and Andreev retroreflection in a graphene-superconductor
hybrid system. Phys. Rev. B 83, 235403 (2011).

[CN09] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim.
The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009).

[Cra68] R. A. Craig. Perturbation Expansion for Real-Time Green’s Functions. J. Math.
Phys. 9, 605 (1968).

[Dan08] R. Danneau, F. Wu, M. F. Craciun, S. Russo, M. Y. Tomi, J. Salmilehto, A. F.
Morpurgo, and P. J. Hakonen. Shot Noise in Ballistic Graphene. Phys. Rev. Lett.
100, 196802 (2008).

[Dat05] S. Datta. Electronic transport in mesoscopic systems. Cambridge University Press
(2005).

[Dav93] J. H. Davies, S. Hershfield, P. Hyldgaard, and J. W. Wilkins. Current and rate
equation for resonant tunneling. Phys. Rev. B 47, 4603 (1993).

[Dev76] J. Devreese and V. Doren. Linear and nonlinear electron transport in solids. Plenum
Press (1976).

[DiC08] L. DiCarlo, J. R. Williams, Y. Zhang, D. T. McClure, and C. M. Marcus. Shot
Noise in Graphene. Phys. Rev. Lett. 100, 156801 (2008).

[Dre02] M. S. Dresselhaus and G. Dresselhaus. Intercalation compounds of graphite. Adv.
Phys. 51, 1 (2002).

[DS11] S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi. Electronic transport in
two-dimensional graphene. Rev. Mod. Phys. 83, 407 (2011).

109

http://www.ee.imperial.ac.uk/hp/staff/dmb/matrix/intro.html


Bibliography

[Du08] X. Du, I. Skachko, and E. Y. Andrei. Towards ballistic transport in graphene. Int.
J. Mod. Phys. B 22, 4579 (2008).

[Ehr49] W. Ehrenberg and R. E. Siday. The Refractive Index in Electron Optics and the
Principles of Dynamics. Proc. Phys. Soc. B 62, 8 (1949).

[Eli09] D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P.
Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and
K. S. Novoselov. Control of Graphene’s Properties by Reversible Hydrogenation:
Evidence for Graphane. Science 323, 610 (2009).

[Fer06] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri,
S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim. Raman Spectrum
of Graphene and Graphene Layers. Phys. Rev. Lett. 97, 187401 (2006).

[Fer10] H. A. Fertig and L. Brey. Nanophysics in graphene: neutrino physics in quantum
rings and superlattices. Philos. T. Roy. Soc. A 368, 5483 (2010).

[Fey39] R. P. Feynman. Forces in Molecules. Phys. Rev. 56, 340 (1939).

[Fis81] D. S. Fisher and P. A. Lee. Relation between conductivity and transmission matrix.
Phys. Rev. B 23, 6851 (1981).

[Fuj96] M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe. Peculiar Localized State
at Zigzag Graphite Edge. J. Phys. Soc. Jpn. 65, 1920 (1996).

[Gei07] A. K. Geim and K. S. Novoselov. The rise of graphene. Nat. Mater. 6, 183 (2007).

[Gei09] A. K. Geim. Graphene: Status and Prospects. Science 324, 1530 (2009).

[Gen99] P. G. de Gennes. Superconductivity Of Metals And Alloys. Westview Press (1999).

[gra12] Graphene Industries Ltd. (2007; URL last accessed: May 3, 2012).
URL http://grapheneindustries.com/

[Gup06] A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and Eklund. Raman Scattering from
High-Frequency Phonons in Supported n-Graphene Layer Films. Nano Lett. 6, 2667
(2006).

[Hau96] H. Haug and A. Jauho. Quantum kinetics in transport and optics of semiconductors.
Springer (1996).

[Hau10] H. Haugen, D. Huertas-Hernando, A. Brataas, and X. Waintal. Crossed Andreev
reflection versus electron transfer in three-terminal graphene devices. Phys. Rev. B
81, 174523 (2010).

[Hee07] H. B. Heersche, P. Jarillo-Herrero, J. B. Oostinga, L. M. K. Vandersypen, and A. F.
Morpurgo. Bipolar supercurrent in graphene. Nature 446, 56 (2007).

[Hel37] H. Hellmann. Einführung in die Quantenchemie. F. Deuticke (1937).

110

http://grapheneindustries.com/


Bibliography

[Hen07] M. Hentschel and F. Guinea. Orthogonality catastrophe and Kondo effect in
graphene. Phys. Rev. B 76, 115407 (2007).

[Hob53] J. P. Hobson andW. A. Nierenberg. The Statistics of a Two-Dimensional, Hexagonal
Net. Phys. Rev. 89, 662 (1953).

[Hol32] R. Holm and W. Meissner. Messungen mit Hilfe von flüssigem Helium. XIII. Z.
Phys. A 74, 715 (1932).

[Hov53] L. van Hove. The Occurrence of Singularities in the Elastic Frequency Distribution
of a Crystal. Phys. Rev. 89, 1189 (1953).

[Hue09] M. Huefner, F. Molitor, A. Jacobsen, A. Pioda, C. Stampfer, K. Ensslin, and T. Ihn.
Investigation of the Aharonov–Bohm effect in a gated graphene ring. Phys. Status
Solidi B 246, 2756 (2009).

[Hue10] M. Huefner, F. Molitor, A. Jacobsen, A. Pioda, C. Stampfer, K. Ensslin, and T. Ihn.
The Aharonov–Bohm effect in a side-gated graphene ring. New J. Phys. 12, 043054
(2010).

[Kad62] L. Kadanoff and G. Baym. Quantum statistical mechanics: Green’s function
methods in equilibrium and nonequilibrium problems. W.A. Benjamin (1962).

[Kat06a] M. I. Katsnelson. Zitterbewegung, chirality, and minimal conductivity in graphene.
Eur. Phys. J. B 51, 157 (2006).

[Kat06b] M. I. Katsnelson, K. S. Novoselov, and A. K. Geim. Chiral tunnelling and the
Klein paradox in graphene. Nat. Phys. 2, 620 (2006).

[Kat10a] J. Katoch, J.-H. Chen, R. Tsuchikawa, C. W. Smith, E. R. Mucciolo, and
M. Ishigami. Uncovering the dominant scatterer in graphene sheets on SiO2.
Phys. Rev. B 82, 081417 (2010).

[Kat10b] M. I. Katsnelson. Aharonov-Bohm effect in undoped graphene: Magnetotransport
via evanescent waves. Eur. Phys. Lett. 89, 17001 (2010).

[Kel65] L. V. Keldysh. Diagram technique for nonequilibrium processes. Sov. Phys. JETP
20, 1018 (1965).

[Kit96] C. Kittel. Introduction to Solid State Physics. Wiley (1996).

[Kle29] O. Klein. Die Reflexion von Elektronen an einem Potentialsprung nach der rela-
tivistischen Dynamik von Dirac. Z. Phys. A 53, 157 (1929).

[Krs02] P. S. Krstić, X.-G. Zhang, and W. H. Butler. Generalized conductance formula for
the multiband tight-binding model. Phys. Rev. B 66, 205319 (2002).

[Lan57] R. Landauer. Spatial Variation of Currents and Fields Due to Localized Scatterers
in Metallic Conduction. IBM J. Res. Dev. 1, 223 (1957).

111



Bibliography

[Lan72] D. C. Langreth and J. W. Wilkins. Theory of Spin Resonance in Dilute Magnetic
Alloys. Phys. Rev. B 6, 3189 (1972).

[Lat09] Y. Latyshev, A. Latyshev, A. Orlov, A. Shchekin, V. Bykov, P. Monceau, K. van der
Beck, M. Kontsikovskii, and I. Monnet. Field-periodic magnetoresistance oscillations
in thin graphite single crystals with columnar defects. JETP Lett. 90, 480 (2009).

[Lat10] Y. U. I. Latyshev, A. P. Orlov, E. G. Shustin, N. V. Isaev, W. Escoffier, P. Monceau,
C. J. van der Beek, M. Konczykowski, and I. Monnet. Aharonov-Bohm effect on
columnar defects in thin graphite and graphene. J. Phys.: Conf. Ser. 248, 012001
(2010).

[Leb09] S. Lebègue, M. Klintenberg, O. Eriksson, and M. I. Katsnelson. Accurate electronic
band gap of pure and functionalized graphane from GW calculations. Phys. Rev. B
79, 245117 (2009).

[Lee81a] D. H. Lee and J. D. Joannopoulos. Simple scheme for surface-band calculations. II.
The Green’s function. Phys. Rev. B 23, 4997 (1981).

[Lee81b] P. A. Lee and D. S. Fisher. Anderson Localization in Two Dimensions. Phys. Rev.
Lett. 47, 882 (1981).

[Lev93] L. S. Levitov and G. B. Lesovik. Charge distribution in quantum shot noise. JETP
Lett. 58, 230 (1993).

[Liu08] L. Liu, S. Ryu, M. R. Tomasik, E. Stolyarova, N. Jung, M. S. Hybertsen, M. L.
Steigerwald, L. E. Brus, and G. W. Flynn. Graphene Oxidation: Thickness-
Dependent Etching and Strong Chemical Doping. Nano Lett. 8, 1965 (2008).

[Luo09] T. Luo, A. P. Iyengar, H. A. Fertig, and L. Brey. Effective time-reversal symmetry
breaking and energy spectra of graphene armchair rings. Phys. Rev. B 80, 165310
(2009).

[Ma09] M. M. Ma, J. W. Ding, and N. Xu. Odd-even width effect on persistent current in
zigzag hexagonal graphene rings. Nanoscale 1, 387 (2009).

[Ma10] M. Ma and J. Ding. Geometry dependence of persistent currents in diamond-like
graphene rings. Solid State Commun. 150, 1196 (2010).

[Mac85] A. MacKinnon. The calculation of transport properties and density of states of
disordered solids. Z. Phys. B 59, 385 (1985).

[McC04] E. McCann and V. I. Fal’Ko. Symmetry Properties of Impurities in Metallic
Single-Wall Carbon Nanotubes. Int. J. Mod. Phys. B 18, 3195 (2004).

[McC06] E. McCann, K. Kechedzhi, V. I. Fal’ko, H. Suzuura, T. Ando, and B. L. Altshuler.
Weak-Localization Magnetoresistance and Valley Symmetry in Graphene. Phys.
Rev. Lett. 97, 146805 (2006).

112



Bibliography

[Mei92] Y. Meir and N. S. Wingreen. Landauer formula for the current through an interacting
electron region. Phys. Rev. Lett. 68, 2512 (1992).

[Mes09] A. Mesaros, D. Sadri, and J. Zaanen. Berry phase of dislocations in graphene and
valley conserving decoherence. Phys. Rev. B 79, 155111 (2009).

[Mia07] F. Miao, S. Wijeratne, Y. Zhang, U. C. Coskun, W. Bao, and C. N. Lau. Phase-
Coherent Transport in Graphene Quantum Billiards. Science 317, 1530 (2007).

[Moo65] G. E. Moore. Cramming more components onto integrated circuits. Electronics 38
(1965).

[Mos09] A. S. Moskalenko and J. Berakdar. Light-induced valley currents and magnetization
in graphene rings. Phys. Rev. B 80, 193407 (2009).

[Mun11] J. Munárriz, F. Domínguez-Adame, and A. V. Malyshev. Toward graphene-based
quantum interference devices. Nanotech. 22, 365201 (2011).

[Nak96] K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus. Edge state in
graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B
54, 17954 (1996).

[Naz94] Y. V. Nazarov. Limits of universality in disordered conductors. Phys. Rev. Lett.
73, 134 (1994).

[Naz95] Y. V. Nazarov. Weak localization and the transmission matrix. Phys. Rev. B 52,
4720 (1995).

[Ni10] Z. H. Ni, L. A. Ponomarenko, R. R. Nair, R. Yang, S. Anissimova, I. V. Grigorieva,
F. Schedin, P. Blake, Z. X. Shen, E. H. Hill, K. S. Novoselov, and A. K. Geim. On
Resonant Scatterers As a Factor Limiting Carrier Mobility in Graphene. Nano
Lett. 10, 3868 (2010).

[Nik01] B. K. Nikolić. Deconstructing Kubo formula usage: Exact conductance of a meso-
scopic system from weak to strong disorder limit. Phys. Rev. B 64, 165303 (2001).

[Nol05] W. Nolting. Grundkurs Theoretische Physik 7: Viel-Teilchen-Theorie. Springer
(2005).

[Nov04] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos,
I. V. Grigorieva, and A. A. Firsov. Electric Field Effect in Atomically Thin Carbon
Films. Science 306, 666 (2004).

[Nov05] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V.
Grigorieva, S. V. Dubonos, and A. A. Firsov. Two-dimensional gas of massless
Dirac fermions in graphene. Nature 438, 197 (2005).

[Nov07] D. S. Novikov. Elastic scattering theory and transport in graphene. Phys. Rev. B
76, 245435 (2007).

113



Bibliography

[Nov11] K. S. Novoselov. Nobel Lecture: Graphene: Materials in the Flatland. Rev. Mod.
Phys. 83, 837 (2011).

[Ost06] P. M. Ostrovsky, I. V. Gornyi, and A. D. Mirlin. Electron transport in disordered
graphene. Phys. Rev. B 74, 235443 (2006).

[Ost10] P. M. Ostrovsky, M. Titov, S. Bera, I. V. Gornyi, and A. D. Mirlin. Diffusion and
Criticality in Undoped Graphene with Resonant Scatterers. Phys. Rev. Lett. 105,
266803 (2010).

[Pei33] R. Peierls. Zur Theorie des Diamagnetismus von Leitungselektronen. Z. Phys. A
80, 763 (1933).

[Per06] V. M. Pereira, F. Guinea, J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H.
Castro Neto. Disorder Induced Localized States in Graphene. Phys. Rev. Lett. 96,
036801 (2006).

[Per08] V. M. Pereira, J. M. B. Lopes dos Santos, and A. H. Castro Neto. Modeling disorder
in graphene. Phys. Rev. B 77, 115109 (2008).

[Por95] D. Porezag, T. Frauenheim, T. Köhler, G. Seifert, and R. Kaschner. Construction
of tight-binding-like potentials on the basis of density-functional theory: Application
to carbon. Phys. Rev. B 51, 12947 (1995).

[Pot09] P. Potasz, A. D. Güçlü, and P. Hawrylak. Electronic Shells of Dirac Fermions in
Graphene Quantum Rings in a Magnetic Field. Acta Phys. Pol. A 116, 832 (2009).

[Pot10] P. Potasz, A. D. Güçlü, and P. Hawrylak. Spin and electronic correlations in gated
graphene quantum rings. Phys. Rev. B 82, 075425 (2010).

[Pra07] E. Prada, P. San-Jose, B. Wunsch, and F. Guinea. Pseudodiffusive magnetotransport
in graphene. Phys. Rev. B 75, 113407 (2007).

[Rai09] D. Rainis, F. Taddei, F. Dolcini, M. Polini, and R. Fazio. Andreev reflection in
graphene nanoribbons. Phys. Rev. B 79, 115131 (2009).

[Ram07] J. Rammer. Quantum field theory of non-equilibrium states. Cambridge University
Press (2007).

[Rec07] P. Recher, B. Trauzettel, A. Rycerz, Y. M. Blanter, C. W. J. Beenakker, and A. F.
Morpurgo. Aharonov-Bohm effect and broken valley degeneracy in graphene rings.
Phys. Rev. B 76, 235404 (2007).

[Reu00] K. Reuter, P. de Andres, F. Garcia-Vidal, D. Sestovic, F. Flores, and K. Heinz.
Green’s function calculation of Ballistic Electron Emission Microscopy currents
(BEEM v2.1). Comp. Phys. Commun. 127, 327 (2000).

[Rob08] J. P. Robinson, H. Schomerus, L. Oroszlány, and V. I. Fal’ko. Adsorbate-Limited
Conductivity of Graphene. Phys. Rev. Lett. 101, 196803 (2008).

114



Bibliography

[Roc06] A. R. Rocha, V. M. García-Suárez, S. Bailey, C. Lambert, J. Ferrer, and S. Sanvito.
Spin and molecular electronics in atomically generated orbital landscapes. Phys.
Rev. B 73, 085414 (2006).

[Rom12] I. Romanovsky, C. Yannouleas, and U. Landman. Patterns of the Aharonov-Bohm
oscillations in graphene nanorings. Phys. Rev. B 85, 165434 (2012).

[Run08] I. Rungger and S. Sanvito. Algorithm for the construction of self-energies for
electronic transport calculations based on singularity elimination and singular value
decomposition. Phys. Rev. B 78, 035407 (2008).

[Rus08] S. Russo, J. B. Oostinga, D. Wehenkel, H. B. Heersche, S. S. Sobhani, L. M. K.
Vandersypen, and A. F. Morpurgo. Observation of Aharonov-Bohm conductance
oscillations in a graphene ring. Phys. Rev. B 77, 085413 (2008).

[Ryc07] A. Rycerz, J. Tworzydlo, and C. W. J. Beenakker. Valley filter and valley valve in
graphene. Nat. Phys. 3, 172 (2007).

[Ryc09] A. Rycerz. Aharonov-Bohm Effect and Valley Polarization in Nanoscopic Graphene
Rings. Acta Phys. Pol. A 115, 322 (2009).

[Ryc10] A. Rycerz. Magnetoconductance of the Corbino disk in graphene. Phys. Rev. B 81,
121404 (2010).

[Ryu07] S. Ryu, C. Mudry, A. Furusaki, and A. W. W. Ludwig. Landauer conductance
and twisted boundary conditions for Dirac fermions in two space dimensions. Phys.
Rev. B 75, 205344 (2007).

[Sai98] R. Saito, G. Dresselhaus, and S. Dresselhaus. Physical Properties of Carbon
Nanotubes. Imperial College Press (1998).

[Sai00] R. Saito, G. Dresselhaus, and M. S. Dresselhaus. Trigonal warping effect of carbon
nanotubes. Phys. Rev. B 61, 2981 (2000).

[San99] S. Sanvito, C. J. Lambert, J. H. Jefferson, and A. M. Bratkovsky. General Green’s-
function formalism for transport calculations with spd Hamiltonians and giant
magnetoresistance in Co- and Ni-based magnetic multilayers. Phys. Rev. B 59,
11936 (1999).

[Sas06] K. Sasaki, S. Murakami, and R. Saito. Stabilization mechanism of edge states in
graphene. Appl. Phys. Lett. 88, 113110 (2006).

[Sch61] J. Schwinger. Brownian Motion of a Quantum Oscillator. J. Math. Phys. 2, 407
(1961).

[Sch06] F. Schwabl. Statistische Mechanik. Springer (2006).

[Sch08] F. Schwabl. Advanced quantum mechanics. Springer (2008).

[Sch09] A. Schuessler, P. M. Ostrovsky, I. V. Gornyi, and A. D. Mirlin. Analytic theory of
ballistic transport in disordered graphene. Phys. Rev. B 79, 075405 (2009).

115



Bibliography

[Sch10a] J. Schelter, D. Bohr, and B. Trauzettel. Interplay of the Aharonov-Bohm effect and
Klein tunneling in graphene. Phys. Rev. B 81, 195441 (2010).

[Sch10b] A. Schuessler, P. M. Ostrovsky, I. V. Gornyi, and A. D. Mirlin. Full counting
statistics in disordered graphene at the Dirac point: From ballistics to diffusion.
Phys. Rev. B 82, 085419 (2010).

[Sch11] J. Schelter, P. M. Ostrovsky, I. V. Gornyi, B. Trauzettel, and M. Titov. Color-
Dependent Conductance of Graphene with Adatoms. Phys. Rev. Lett. 106, 166806
(2011).

[Sch12a] J. Schelter, P. Recher, and B. Trauzettel. The Aharonov–Bohm effect in graphene
rings. Solid State Commun. (2012). doi:10.1016/j.ssc.2012.04.039.

[Sch12b] J. Schelter, B. Trauzettel, and P. Recher. How to Distinguish between Specular and
Retroconfigurations for Andreev Reflection in Graphene Rings. Phys. Rev. Lett.
108, 106603 (2012).

[Sch12c] C. Schönenberger. Bandstructure of Graphene and Carbon Nanotubes: An Exercise
in Condensed Matter Physics (2000; URL last accessed: May 3, 2012).
URL www.nanoelectronics.ch/education/Nanotubes/LCAO-NT.pdf

[She08] T. Shen, Y. Q. Wu, M. A. Capano, L. P. Rokhinson, L. W. Engel, and P. D. Ye.
Magnetoconductance oscillations in graphene antidot arrays. Appl. Phys. Lett. 93,
122102 (2008).

[She12] K. G. Shenoy. The derivation of Sylvester’s Determinant Theorem (2011; URL last
accessed: May 03, 2012).
URL www.ee.iitb.ac.in/spann/sylvester.pdf

[Sho98] N. H. Shon and T. Ando. Quantum Transport in Two-Dimensional Graphite System.
J. Phys. Soc. Jpn. 67, 2421 (1998).

[Shy09] A. V. Shytov, D. A. Abanin, and L. S. Levitov. Long-Range Interaction between
Adatoms in Graphene. Phys. Rev. Lett. 103, 016806 (2009).

[Smi12] D. Smirnov, H. Schmidt, and R. J. Haug. Aharonov-Bohm effect in an electron-hole
graphene ring system (2012). arXiv:1204.6281.

[Sta07] T. Stauber, N. M. R. Peres, and F. Guinea. Electronic transport in graphene: A
semiclassical approach including midgap states. Phys. Rev. B 76, 205423 (2007).

[Sta09] N. Stander, B. Huard, and D. Goldhaber-Gordon. Evidence for Klein Tunneling in
Graphene p-n Junctions. Phys. Rev. Lett. 102, 026807 (2009).

[Sto88] S. D. Stone and A. Szafer. What is measured when you measure a resistance?—The
Landauer formula revisited. IBM J. Res. Dev. 32, 384 (1988).

[Tan07] Y.-W. Tan, Y. Zhang, H. L. Stormer, and P. Kim. Temperature dependent electron
transport in graphene. Eur. Phys. J. – Spec. Top. 148, 15 (2007).

116

www.nanoelectronics.ch/education/Nanotubes/LCAO-NT.pdf
www.ee.iitb.ac.in/spann/sylvester.pdf
arXiv:1204.6281


Bibliography

[Tho81] D. J. Thouless and S. Kirkpatrick. Conductivity of the disordered linear chain. J.
Phys. C 14, 235 (1981).

[Tit07a] M. Titov. Impurity-assisted tunneling in graphene. Eur. Phys. Lett. 79, 17004
(2007).

[Tit07b] M. Titov, A. Ossipov, and C. W. J. Beenakker. Excitation gap of a graphene
channel with superconducting boundaries. Phys. Rev. B 75, 045417 (2007).

[Tit10] M. Titov, P. M. Ostrovsky, I. V. Gornyi, A. Schuessler, and A. D. Mirlin. Charge
Transport in Graphene with Resonant Scatterers. Phys. Rev. Lett. 104, 076802
(2010).

[Tod94] T. N. Todorov and G. A. D. Briggs. Effects of compositional impurities and width
variation on the conductance of a quantum wire. J. Phys.: Cond. Mat. 6, 2559
(1994).

[Tol10] J. R. Toland and C. P. Search. Electron Sagnac gyroscope in an array of mesoscopic
quantum rings. Phys. Lett. A 374, 923 (2010).

[Tra07] B. Trauzettel, D. V. Bulaev, D. Loss, and G. Burkard. Spin qubits in graphene
quantum dots. Nat. Phys. 3, 192 (2007).

[Two06] J. Tworzydło, B. Trauzettel, M. Titov, A. Rycerz, and C. W. J. Beenakker. Sub-
Poissonian Shot Noise in Graphene. Phys. Rev. Lett. 96, 246802 (2006).

[Wal47] P. R. Wallace. The Band Theory of Graphite. Phys. Rev. 71, 622 (1947).

[Was86] S. Washburn and R. A. Webb. Aharonov-Bohm effect in normal metal quantum
coherence and transport. Adv. Phys. 35, 375 (1986).

[Was87] S. Washburn, H. Schmid, D. Kern, and R. A. Webb. Normal-metal Aharonov-Bohm
effect in the presence of a transverse electric field. Phys. Rev. Lett. 59, 1791 (1987).

[Web85] R. A. Webb, S. Washburn, C. P. Umbach, and R. B. Laibowitz. Observation of h/e
Aharonov-Bohm Oscillations in Normal-Metal Rings. Phys. Rev. Lett. 54, 2696
(1985).

[Weh09] T. O. Wehling, M. I. Katsnelson, and A. I. Lichtenstein. Impurities on graphene:
Midgap states and migration barriers. Phys. Rev. B 80, 085428 (2009).

[Weh10] T. O. Wehling, S. Yuan, A. I. Lichtenstein, A. K. Geim, and M. I. Katsnelson.
Resonant Scattering by Realistic Impurities in Graphene. Phys. Rev. Lett. 105,
056802 (2010).

[Wen08] L. Weng, L. Zhang, Y. P. Chen, and L. P. Rokhinson. Atomic force microscope
local oxidation nanolithography of graphene. Appl. Phys. Lett. 93, 093107 (2008).

[Wic50] G. C. Wick. The Evaluation of the Collision Matrix. Phys. Rev. 80, 268 (1950).

117



Bibliography

[Wim09a] M. Wimmer. Quantum transport in nanostructures: From computational concepts
to spintronics in graphene and magnetic tunnel junctions. Ph.D. thesis, Regensburg
(2009).

[Wim09b] M. Wimmer and K. Richter. Optimal block-tridiagonalization of matrices for
coherent charge transport. J. Comp. Phys. 228, 8548 (2009).

[Wit10] C. S. Withers and S. Nadarajah. log det A = tr log A. Int. J. Math. Edu. Sci. Tech.
41, 1121 (2010).

[Wu10] Z. Wu, Z. Z. Zhang, K. Chang, and F. M. Peeters. Quantum tunneling through
graphene nanorings. Nanotech. 21, 185201 (2010).

[Wur10] J. Wurm, M. Wimmer, H. U. Baranger, and K. Richter. Graphene rings in magnetic
fields: Aharonov–Bohm effect and valley splitting. Semicond. Sci. Tech. 25, 034003
(2010).

[Xu08] H. Xu, T. Heinzel, M. Evaldsson, and I. V. Zozoulenko. Magnetic barriers in
graphene nanoribbons: Theoretical study of transport properties. Phys. Rev. B 77,
245401 (2008).

[Xu12] N. Xu, J. Ding, B. Wang, D. Shi, and H. Sun. Transport properties of mesoscopic
graphene rings. Physica B 407, 335 (2012).

[Yan10] C.-H. Yan and L.-F. Wei. Size effects in Aharonov–Bohm graphene rings. J. Phys.:
Cond. Mat. 22, 295503 (2010).

[Yoo10] J. S. Yoo, Y. W. Park, V. Skakalova, and S. Roth. Shubnikov–de Haas and
Aharonov Bohm effects in a graphene nanoring structure. Appl. Phys. Lett. 96,
143112 (2010).

[You09] A. F. Young and P. Kim. Quantum interference and Klein tunnelling in graphene
heterojunctions. Nat. Phys. 5, 222 (2009).

[Yua10] S. Yuan, H. De Raedt, and M. I. Katsnelson. Modeling electronic structure and
transport properties of graphene with resonant scattering centers. Phys. Rev. B 82,
115448 (2010).

[Zar09] M. Zarenia, J. M. Pereira, F. M. Peeters, and G. A. Farias. Electrostatically
Confined Quantum Rings in Bilayer Graphene. Nano Lett. 9, 4088 (2009).

[Zar10a] M. Zarenia, J. M. Pereira, A. Chaves, F. M. Peeters, and G. A. Farias. Erratum:
Simplified model for the energy levels of quantum rings in single layer and bilayer
graphene [Phys. Rev. B 81, 045431 (2010)]. Phys. Rev. B 82, 119906 (2010).

[Zar10b] M. Zarenia, J. M. Pereira, A. Chaves, F. M. Peeters, and G. A. Farias. Simplified
model for the energy levels of quantum rings in single layer and bilayer graphene.
Phys. Rev. B 81, 045431 (2010).

[Zha05] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim. Experimental observation of the
quantum Hall effect and Berry’s phase in graphene. Nature 438, 201 (2005).

118



Acknowledgments / Danksagung

This thesis and the work presented herein, which is the result of several years of research,
development, and intellectual exchange and discussions, could not have been realized without
the help and support from a number of friends and colleagues, to whom I like to express my
most sincere gratitude. I first want to thank all past and present members of our group TP4;
it has been nice to watch this group, which initially started as “AG Mesoskopische Physik”
with only three members, grow over the years by the addition of a bunch of colleagues with
exceptional professional as well as social skills, the latter especially crystallizing in—but
not being restricted to—the numerous birthday & PRL cake, evening project, and barbecue
events, which became a tradition over the years, as well as the overall warm, friendly, and
cooperative atmosphere, which is the foundation of a productive working environment. In
particular, I want to thank Dietrich, Rolf, and our former group member Moritz Lenz for a
number of fruitful discussions about numerics, as well as Jan, from whose strong analytical
skills and comprehensive understanding for the world of physics I had the opportunity to
benefit a lot. It is also quite satisfying to know that the work on the numerical toolkit
developed over the past years is taken over and pursued further by Hans, who shows a quick
grasp for the underlying concepts. I also want to thank Patrik, not only for guiding me
through our joint work on the “Andreev ring”, but also for always having an open door and
taking the time for discussions, allowing me to benefit from his experience. Very cordial
thanks I want to express to Nelly, for always taking great care of the group in her pleasant,
provident style, and for keeping things running smoothly.

People I owe a debt of gratitude not only include members of our group. “Non-local” thanks
go to Dan Bohr, who originally introduced me to the basics of the numerical method used in
this work, provided and explained to me his implementation of the method I subsequently
extended, and thus made a significant contribution to this work, not only to our joint
project on the “Klein ring”. I also thank Michael Wimmer, who is an expert (not only)
on this numerical method and its application to graphene, for his advice and expertise
on multiple occasions. I was also very fortunate having been able to work together with
Mikhail “Misha” Titov and his colleagues Pavel “Pasha” Ostrovsky and Igor Gornyi; our
most enjoyable joint work on the color-dependent conductance allowed me to learn a new
powerful analytical method from the experts on the field, which not only formed the basis
of our joint publication but also nicely complements the assembly of this thesis. Pasha
and Misha, whom I bombarded with an extensive number of questions on the matter, both
showed great patience in answering them.
The person from my scientific environment I am most deeply indebted to is my advisor

Prof.Dr. Björn Trauzettel, who encouraged me to put into practice and further develop my
interests and skills in a highly interesting scientific field of strong dynamics and relevance.
With his remarkably deliberate, patient, and balanced style of guidance, he controlled and
kept track of my progress in various projects while also giving me the freedom and motivating

119



Acknowledgments / Danksagung

me to autonomously bring in, develop, and pursue my own ideas. Besides practicing a
“politics of open doors”, thus always taking the time for discussions and providing helpful
suggestions, he provided me with opportunities for attending and participating in various
schools and conferences as well as scientific exchange on a number of visits, and he helped me
developing my skills in various directions, for instance by entrusting me with responsibilities
such as the coaching of diploma and bachelor students or by providing me insights into the
work as a referee.

Ein wesentliches Element auf dem langwierigen und oftmals anstrengenden Weg zur
Fertigstellung einer wissenschaftlichen Arbeit ist zudem die Unterstützung aus dem familiären
Umfeld, zu dem ich nicht nur meine Eltern, Geschwister und Tanja, sondern auch Karl,
Sieglinde und Simone zähle, denen ich für ihren Rückhalt und ihren Zuspruch sehr dankbar
bin. Ein besonderer Dank gilt hierbei meinen Eltern Harald und Regina, die die Grundlagen
für den Weg gelegt haben, den ich gegangen bin, sowie Tanja, die mich während der letzten
Jahre stets anspornte und mir ein unerschöpfliches Maß an Geduld entgegenbrachte.

120



List of publications

The following articles have appeared in peer-reviewed journals:

1. Jörg Schelter, Patrik Recher, and Björn Trauzettel.
The Aharonov–Bohm effect in graphene rings.
Solid State Commun. (2012), doi:10.1016/j.ssc.2012.04.039.

2. Jörg Schelter, Björn Trauzettel, and Patrik Recher.
How to distinguish between specular and retroconfigurations for Andreev reflection in
graphene rings.
Phys.Rev. Lett. 108, 106603 (2012).

3. Jörg Schelter, Pavel Ostrovsky, Igor Gornyi, Björn Trauzettel, and Mikhail Titov.
Color-dependent conductance of graphene with adatoms.
Phys.Rev. Lett. 106, 166806 (2011).

4. Jörg Schelter, Dan Bohr, and Björn Trauzettel.
Interplay of the Aharonov–Bohm effect and Klein tunneling in graphene.
Phys.Rev. B 81, 195441 (2010).

5. Johannes Fuchs, Jörg Schelter, Francesco Ginelli, and Haye Hinrichsen.
Local persistence in the directed percolation universality class.
J. Stat.Mech.: Theor. Exp. P04015 (2008).





Erklärung

Die vorliegende Dissertation wurde am Lehrstuhl für Theoretische Physik IV am Institut
für Theoretische Physik und Astrophysik der Fakultät für Physik und Astronomie an der
Bayerischen Julius-Maximilians-Universität Würzburg angefertigt und von Prof. Dr. Björn
Trauzettel betreut. Hiermit versichere ich, Jörg Alexander Jürgen Schelter, geboren am 6.
Oktober 1981 in Fürth, an Eides statt, dass ich die vorliegende Dissertation eigenständig, d. h.
insbesondere selbstständig und ohne Hilfe eines kommerziellen Promotionsberaters angefertigt
und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Ich erkläre
außerdem, dass die vorliegende Dissertation weder in gleicher noch in anderer Form in einem
anderen Prüfungsfach vorgelegen hat, und dass ich außer den mit dem Zulassungsgesuch
urkundlich vorgelegten Graden keine weiteren akademischen Grade erworben oder zu erwerben
versucht habe.

Würzburg, den . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Jörg Schelter)


	Introduction
	Theoretical framework for quantum transport
	Non-equilibrium Green's function formalism of quantum transport
	Basic definitions
	Keldysh contour and Dyson equation
	Effective description of open quantum systems
	Transition from contour time to standard time
	Equilibrium Green's functions
	Observables in steady state

	Numerical implementation
	Surface Green's function and self-energy of an isolated lead
	Scattering description in the Landauer–Büttiker formalism
	Effective description of leads with non-invertible inter-cell coupling matrices
	The Recursive Green's Function (RGF) algorithm
	Outlook


	Electronic transport in graphene
	Basic properties of graphene
	Tight binding and effective mass models of graphene
	Some phenomenological aspects of graphene

	The Aharonov–Bohm effect in graphene
	Overview
	Interplay of the Aharonov–Bohm effect and Klein tunneling in graphene
	How to distinguish specular from retro Andreev reflection in graphene rings
	Summary and outlook

	Resonant scattering in graphene
	Unfolded scattering theory
	Color-dependent conductance of graphene with adatoms
	Summary and outlook

	Conclusion
	Explicit solutions to the Dyson equation
	Bibliography
	Acknowledgments / Danksagung
	List of publications
	Curriculum Vitae
	Erklärung


