Novel $\mathrm{Ca}_{\mathrm{v}} 1.2$ and PMCA4b interacting PDZ domain containing proteins

DISSERTATION ZUR ERLANGUNG DES
NATURWISSENSCHAFTLICHEN DOKTORGRADES
DER JULIUS-MAXIMILIANS-UNIVERSITÄT WÜRZBURG

vorgelegt von

Doreen Fetting
aus
Leipzig

Würzburg 2011

Eingereicht am: \qquad
bei der Fakultät für Biologie.

1. Gutachter: Prof. Dr. Kai Schuh
2. Gutachter: Prof. Dr. Charlotte Förster der Dissertation.
3. Prüfer: Prof. Dr. Kai Schuh
4. Prüfer: Prof. Dr. Charlotte Förster
5. Vorsitzender:
des öffentlichen Promotionskolloquiums.

Tag des öffentlichen Promotionskolloquiums: \qquad

Doktorurkunde ausgehändigt am:

Die vorliegende Arbeit wurde auf Anregung und unter Anleitung von

Herrn Prof. Dr. Kai Schuh

am Physiologischen Institut der Julius-Maximilians-Universität Würzburg angefertigt.
„Darin besteht das Wesen der Wissenschaft. Zuerst denkt man an etwas, das wahr sein könnte. Dann sieht man nach, ob es der Fall ist und im Allgemeinen ist es nicht der Fall."

Teile der vorliegenden Dissertation wurden bereits an folgenden Stellen veröffentlicht:

Doreen Fetting, Priscilla Y. Tng, Vladimir Milenkovic, Nadine Reichhart, Olaf Strauss, Oliver Ritter, Peter M. Benz, and Kai Schuh (2010) Identification of novel L-type Cav 1.2 Ca^{2+} channel and plasma membrane Ca^{2+} ATPase isoform 4b (PMCA4b) interacting PDZ (PSD95/DLG/ZO-1) domain protein. Submitted in JBC, November 2010, presently in Revision

Doreen Fetting, Priscilla Tng, Kai Schuh (2009) Novel $\mathrm{Ca}_{\mathrm{v}} 1.2$ and PMCA4b interacting PDZ domain containing proteins. Deutsche Physiologische Gesellschaft in Gießen (Vortrag)

Doreen Fetting, Priscilla Tng, Kai Schuh (2009) Novel Cav 1.2 interacting PDZ domain containing proteins. CBCS/ESC Summer School in Nizza (European Society of Cardiology) (Posterpräsentation)

Doreen Fetting, Ruth Freudinger, Kai Schuh (2008) Novel Ca 1.2 interacting PDZ domain containing proteins. Deutsche Physiologische Gesellschaft in Köln (Posterpräsentation)

SUMMARY

The voltage -gated calcium channel, $\mathrm{Ca}_{\mathrm{v}} 1.2$, and the plasma membrane calcium ATPase, PMCA4b, play important roles in excitable and non-excitable cells. The central function of $\mathrm{Ca}_{\mathrm{v}} 1.2$ is to regulate the calcium entry into cells upon depolarization, while PMCA4b is responsible for calcium extrusion and has an influence on cellular calcium homeostasis. Both proteins control fundamental functions in the heart and brain, but the specific functions and the precise mechanisms are still investigated. In order to identify new interaction partners that may regulate the activities of the $\mathrm{Ca}_{\mathrm{v}} 1.2$ and the PMCA4b, we used three independent assays and co-localization studies. The assays, which were used are PDZ domain arrays (testing 124 different PDZ domains), GST pull-downs, and conventional immunoprecipitation assays. In the PDZ arrays, strongest interactions with $\mathrm{Ca}_{\mathrm{v}} 1.2$ and PMCA4b were found for the PDZ domains of MAST-205, MAGI-1, MAGI-2, MAGI-3, and ZO-1. Additionally, we established interactions between $\mathrm{Ca}_{\mathrm{v}} 1.2$ and the PDZ domains of NHERF1/2, Mint-2, and CASK. PMCA4b was observed to interact with Mint-2, and its interactions with Chapsyn-110 and CASK were confirmed. Furthermore, we validated interaction of $\mathrm{Ca}_{\mathrm{v}} 1.2$ and PMCA4b with NHERF1, CASK, MAST-205 and MAGI-3 via immunoprecipitation. We also demonstrated direct interaction of the C -terminus of $\mathrm{Ca}_{\mathrm{v}} 1.2$ and the PDZ domain of nNOS. We assumed that nNOS overexpression would reduce Ca^{2+} influx through $\mathrm{Ca}_{\mathrm{v}} 1.2$. To address this question, we measured Ca^{2+} currents in stably transfected HEK 293 cells expressing the $\mathrm{Ca}_{\mathrm{v}} 1.2$ ($\alpha 1 \mathrm{~b}$ and $\beta 2$ a subunit of the smooth muscle L-type calcium channel) and nNOS. It has been shown that NO modulates ion channel activity by nitrosylation of sulfhydryl groups on the channel protein. So we propose that the interaction between the C-terminus of $\mathrm{Ca}_{\mathrm{v}} 1.2$ and the PDZ domain of nNOS inhibits the currents by an S-nitrosylation of the channel protein. All these interactions connect both proteins to signaling networks involved in signal transmission, cell adhesion, and apoptosis, which may help provide new hints about the physiological functions of $\mathrm{Ca}_{\mathrm{v}} 1.2$ and PMCA4b in intra- and intercellular signaling.

ZUSAMMENFASSUNG

Der spannungsabhängige Calcium-Kanal, $\mathrm{Ca}_{\mathrm{v}} 1.2$, und die Plasmamembran Calcium ATPase, PMCA4b, spielen eine wichtige Rolle in erregbaren und nicht-erregbaren Zellen. Der Cav 1.2 Kanal reguliert den Calciumeintritt in die Zelle nach einer Depolarisation, während die PMCA4b für den Calciumausstrom und für die Calcium-Homöostase verantwortlich ist. Beide Proteine haben einen grossen Einfluss auf die Funktionen von Herz und Gehirn, aber die genauen Aufgaben und spezifischen Mechanismen, sind noch nicht geklärt. In dieser Arbeit benutzten wir drei unabhängige Assays und Kolokalisationen, um Interaktionspartner von $\mathrm{Ca}_{\mathrm{v}} 1.2$ und PMCA4b zu identifizieren, welche möglicherweise die Aktivitäten von $\mathrm{Ca}_{\mathrm{v}} 1.2$ und PMCA4b regulieren. Die Assays, die wir benutzten waren PDZ Domain Arrays (getestet wurden 124 unterschiedliche PDZ Domänen), GST Pull Downs und konventionelle Immunopräzipitationen. Die Ergebnisse des PDZ Arrays zeigten, dass die PDZ Liganden $\mathrm{Ca}_{\mathrm{v}} 1.2$ und PMCA4b stark mit den PDZ Domänen von MAST-205, MAGI-1, MAGI-2, MAGI-3 und ZO-1 interagierten. Zusätzlich, konnten wir Interaktionen zwischen $\mathrm{Ca}_{\mathrm{v}} 1.2$ und den PDZ Domänen von NHERF1/2, Mint-2 und CASK nachweisen. Es wurde beobachtet, dass PMCA4b mit dem PDZ Protein Mint-2 ein starkes Signal auf der Membran zeigte. Andere Interaktionen von PMCA4b und PDZ Proteinen, konnten durch unseren PDZ Domain Array bestätigt werden (z.B. Chapsyn-110 und CASK). Weiterhin untersuchten wir die Interaktionspartner (NHERF1, CASK, MAST-205 und MAGI-3) von Ca $\mathrm{Ca}_{\mathrm{v}} 1.2$ und PMCA4b durch Immunopräzipitationen genauer. Ein sehr interessantes PDZ Protein, welches wir durch alle drei unabhängigen Assays bestätigen konnten, war nNOS. Schuh et al. konnte schon 2001 zeigen, dass die PDZ Domäne von nNOS mit der PMCA4b interagiert. In der vorliegenden Arbeit konnten wir eine direkte Interaktion des C-terminus von $\mathrm{Ca}_{\mathrm{v}} 1.2$ und dem PDZ Protein nNOS nachweisen. Wir fomulierten eine Hypothese, die lautete, dass eine nNOS Überexpression den Calcium-Einstrom durch den $\mathrm{Ca}_{\mathrm{v}} 1.2$ Kanal reduziert. Um diese Hypothese zu bestätigen wurden Calcium-Ströme in stabil transfizierten HEK 293 Zellen gemessen. Diese HEK 293 Zellen waren stabil transfiziert mit der α 1b und $\beta 2$ a Untereinheit des L-type Calcium Kanals und mit nNOS. Es konnte in anderen Studien gezeigt werden, dass NO die Ionenkanal-Aktivität durch Nitrosylierung von Sulfhydryl-Gruppen an den KanalProteinen moduliert. Wir denken, dass die Interaktion zwischen dem C-terminus von $\mathrm{Ca}_{\mathrm{v}} 1.2$ und dem PDZ Protein nNOS, die Calcium-Ströme durch eine S-Nitrosylierung von $\mathrm{Ca}_{\mathrm{v}} 1.2$ inhibiert.

Durch all diese Interaktionen wird klar, dass $\mathrm{Ca}_{\mathrm{v}} 1.2$ und PMCA4b eine wichtige Rolle spielen im signalen Netzwerk, in der zellulären Erregung, in Zelladhäsion und Apoptose. Und
das wiederum gibt Aufschluss über die physiologischen Funktionen von $\mathrm{Ca}_{\mathrm{v}} 1.2$ und PMCA4b in intra- und interzellulären Signalen.

Acknowledgement

I would like to thank Prof. Dr. Kai Schuh for the friendly acceptance in his research group and for the interesting project, for all his support, the patient mentoring and the excellent working conditions. Also, for the freedom to work independently and for the lunch breaks where we talked a lot about bicycles. It's just a bummer that there was no chance to ride a bike together. Maybe next time.

Thanks Prof. Dr. Charlotte Förster, a member of the Faculty of Biology, Department of Genetic, who was willing to present the project for the Faculty of Biology and for her considerate acceptance of giving a second opinion.

Thanks all the colleagues of the physiology, who supports me in the daily lab life, and for the possibility to work in such a nice atmosphere, especially my working group for the helpful discussions of experimental problems, the technical assistance, and for the life outside the lab. That means some wine events, our trip to the zoo, the canoe tour, and the really cold trip to the Frankenwarte, some evenings in cocktail bars In particular I thank Dr. Peter Benz for his consultation in bioinformatics and biochemistry topics, all the tips and tricks, and our master student Priscilla Tng, who did parts of the PDZ arrays and the $\mathrm{Ca}_{\mathrm{v}} 1.2$ antibody purification.

Also, I would like to thank Vladimir Milencovic and Olaf Strauss from the University of Regensburg, who measured the calcium currents via patch clamp technique.

My best friends from Würzburg, Sara and Hilde for the funny girlie evenings.

My parents Eberhard and Andrea Fetting, my small brother Manuel and my grandmother for all encouragement and the positive pressure because they were asking me since 2009 every week "What do you think how long would it be take that you are a doctor?" Thanks for being there. And my boyfriend Markus for all his support and patience, for all the nice adventures and outside activities that we did together, and for your love.

Table of Contents

1. INTRODUCTION 1
1.1. Calcium 1
1.1.1. Release of Ca^{2+} from internal stores 2
1.1.2. Ca^{2+} influx trough voltage gated calcium channels 2
1.1.3. $\alpha 1$-, β-, $\alpha 2 \delta$-, and γ-subunit 4
1.1.4. $\mathrm{Ca}_{\mathrm{v}} 1.2$ calcium channel 7
1.1.5. Mouse knockout models of L-type calcium channel (LTCC) 8
1.2. Plasma membrane calcium ATPase (PMCA) 10
1.2.1. Localization and Function of PMCA 10
1.2.2. Structure of the PMCA 11
1.2.3. PMCA4b 13
1.2.4. Mouse knockout models of PMCA 13
1.3. PDZ Domains 14
1.3.1. Structural characteristics of PDZ domains 15
1.3.2. Higher-order organization of PDZ domain containing proteins 17
1.3.3. The PDZ domain mechanisms of recognition 18
1.4. Nitric oxide synthase 20
1.5. Aims of the thesis 23
2. MATERIALS AND METHODS 24
2.1. Plasmids 24
2.2. TranSignal PDZ Domain Array 29
2.3. GST Fusion Proteins 30
2.4. GST pull-down 30
2.5. Talon His-Tag Purification Resins 31
2.6. Co-immunoprecipitations 33
2.7. Antibodies for immunoblotting 33
2.8. Immunohistochemistry 34
2.9. Tricine-SDS-PAGE 34
2.10. Biotin Switch Assay 35
2.11. Current Recordings 39
3. RESULTS 40
3.1. PDZ domain arrays 40
3.1.1. Exspression of the PDZ array ligands 40
3.1.2. PDZ domain array I 42
3.1.3. PDZ domain array II 45
3.1.4. PDZ domain array III 48
3.1.5. PDZ domain array IV 52
3.2. Co-immunoprecipitation of $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$ 56
3.2.1. Co-immunoprecipitation of $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$ with putative interaction partners 56
3.3. Co-immunoprecipitation of PMCA4b 59
3.3.1. Co-immunoprecipitation of PMCA4b with putative interaction partners 59
3.4. Co-localization 62
3.4.1. Co-localization of $\mathrm{Ca}_{\mathrm{v}} 1.2$ and NHERF1, $\mathrm{Ca}_{\mathrm{v}} 1.2$ and
MAGI-3 as well as PMCA4b and MAGI-3 in rat cardiac myocytes 62
3.5. Talon His-Tag Purification Resins 64
3.5.1. pull-down via Talon Metal Affinity Resins 64
3.6. GST pull-down 65
3.6.1. Interaction C-terminus of $\mathrm{Ca}_{\mathrm{v}} 1.2$ kurz with PDZ domain containing protein MAST-205 via GST pull-down 65
3.6.2. Confirmation of the interaction of $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$ with the PDZ domain containing protein nNOS via GST pull-down and co-immunoprecipitation 68
3.7. S-nitrosylation 70
3.8. Current Recordings 72
4. DISCUSSION 75
4.1. PDZ Domain Arrays and IPs 76
4.2. Co-localizations in rat cardiomyocytes 83
4.3. Interaction of $\mathrm{Ca}_{\mathrm{v}} 1.2$ with PDZ domain containing protein nNOS 84
4.4. His-Tag pull-down 86
4.5. Interaction $\mathrm{Ca}_{\mathrm{v}} 1.2$ kurz with MAST- 205 via GST pull-down 86
4.6. S-nitrosylation of $\mathrm{Ca}_{\mathrm{v}} 1.2$ via Biotin Switch Assay 87
5. OUTLOOK 89
BIBLIOGRAPHY 90
A. APPENDIX 111
A.1. Sequence alignments of vector constructs 111
A.1.1. pEXP-LTCC 111
A.1.2. pGex-4T-3-LTCC 114
A.1.3. pGex-4T-3-Ct-Ca 1.2 lang/kurz 120
ABBREVIATIONS 146
DECLERATION 150

Cytosolic calcium is an ubiquitous intracellular signal and is essential in various signal transduction pathways, controlling a wide range of cellular activities (Berridge, 2002; Carafoli et al., 2001). Calcium ions $\left(\mathrm{Ca}^{2+}\right)$ play a major role in controlling the function of all body cells by acting as carriers of intracellular signals. Cells obtain external signals through neurotransmitters and hormones, which bind to receptors on their surface. These signals are transferred to the inside of the cell either through the opening of channels in the cell membrane, allowing external Ca^{2+} ions to enter the cell, or by releasing Ca^{2+} ions from internal stores (endoplasmic reticulum, ER) into the cytoplasm. Ca^{2+} as a second messenger mediates cellular functions like muscle excitation-contraction coupling, neurotransmitter and hormone release, metabolism, cell division and differentiation (Berridge, 2002; Carafoli et al., 2001). Entry of Ca^{2+} is driven by the presence of a large electrochemical gradient across the plasma membrane. Much is known about the voltage gated L-(long-lasting), P/Q-(purkinje), N -(neural), R-(residual) and T -(transient) type channels (VGCC), and the ligand-gated calcium channels inositol triphosphate- ($\mathrm{IP}_{3} \mathrm{R}$), N-methyl-D-aspartate- (NMDA) and ryanodine-receptors (RyR). Calcium ATPases like the plasma membrane Ca^{2+} ATPase (PMCA) and the sarcoplasmatic reticulum (SR) Ca^{2+} ATPase (SERCA) also contribute to the transport of Ca^{2+} out of cells, and back into the SR , respectively. Our main focus is the voltage-gated L-type calcium channel $\mathrm{Ca}_{\mathrm{v}} 1.2$ (LTCC) and the plasma membrane Ca^{2+} ATPase $4 b$ (PMCA4b).

1.1.1. Release of Ca^{2+} from internal stores

Ca^{2+} is stored intracellularly in specialized compartments such as the endoplasmic reticulum $(E R)$ or the sarcoplasmic reticulum (SR). In principle $E R=S R$, in every cell it is called $E R$ only in muscle cells it is called SR. The binding of several hormones and growth factors to particular receptors on the plasma membrane leads to the activation of phospholipase C (PLC), which catalyzes the hydrolysis of phosphatidylinositol 4,5-biphosphate (PIP_{2}) to generate the intracellular messengers inositol 1,4,5-triphosphate (IP_{3}) and diacylglycerol (DAG) (Bootman et al., 2001a; Bootman et al., 2001b). IP_{3} disseminates into the cell interior and binds to specific IP_{3} receptors ($\mathrm{IP}_{3} \mathrm{Rs}$) in the ER/SR. After conformational change, the receptors open, allowing the Ca^{2+} that is stored at high concentrations in the ER/SR to enter the cytoplasm. Besides IP_{3}, a variety of established intracellular messengers exist, which increase intracellular Ca^{2+} concentration: cyclic adenosine 5^{\prime}-diphosphoribose (cADPR), which stimulates ryanodine receptors (RyRs), nitric oxide (NO), diacylglycerol (DAG), sphingolipids and Ca^{2+} itself (Bootman et al., 2001b). Analogous to the $\mathrm{IP}_{3} \mathrm{R}$ are the ryanodine receptors (RyRs), a class of intracellular Ca^{2+} release channels found in excitable tissues like neurons and muscles. These receptors are named after the plant alkaloid ryanodine that binds to the channel with high affinity. RyRs mediate the calcium release from internal Ca^{2+} stores, which is an essential step in muscle contraction. In cardiac muscles, channel activation occurs via intracellular Ca^{2+} that are amplified by Ca^{2+} release from ryanodinesensitive Ca^{2+} stores (Fabiato, 1983).

1.1.2. Ca^{2+} influx through voltage gated calcium channels (VGCCs)

Voltage-gated Ca^{2+} channels are protein complexes that control Ca^{2+} currents in cells. This group of channels are transmembrane channels and they are the fastest Ca^{2+} signal molecules. In one second, over one million Ca^{2+} ions pass through these channels and can increase the $\left[\mathrm{Ca}^{2+}\right]_{\text {inside }}$ by a factor upto 20.000 (Bootman and Berridge, 1995; Clapham, 2007). There are two groups of VGCCs: the High Voltage Activated channels (HVA) and the Low Voltage Activated (LVA) (Yaari et al., 1987). Biophysical and pharmacological characteristics separate the channels in different subtypes (Table 1.1.). L-type calcium channels (LTCCs) have a Large conductance, and a Long lasting opening, with barium as carrier. The channel is only active when a Large depolarisation at the cell membrane is modulated. The T-type calcium channel has a Tiny conductance, a Transient opening, and is active when the
membrane potential is negative (Cribbs et al., 1998; Klugbauer et al., 1999; Perez-Reyes et al., 1998). Additionally the channels are divided in N-type channels, which are mainly which are mainly found in neurons, and the P/Q- and R-type channels. For their activation, they require a strong depolarisation at the membrane (Llinas et al., 1989; Randall and Tsien, 1995). Members of the VGCC Ca $\mathrm{v}_{\mathrm{v}} 1$ and $\mathrm{Ca}_{\mathrm{v}} 2$ families consist of a pore-forming $\alpha 1$-subunit (190-250 kDa), which has four domains (I-IV), each containing six transmembrane segments (S1-S6). The $\alpha 1$-subunit is associated with an intracellular β-subunit and an $\alpha 2$-subunit, which is completely extracellular and is linked to the membrane by disulphide bonds to a transmembrane δ-subunit. In several channels, the complex is completed by a γ-subunit, which is only expressed in some tissues (Bers, 2002; Bodi et al., 2005; Catterall, 2000; Kamp and Hell, 2000; Leung et al., 1988; Striessnig et al., 1986; Witcher et al., 1993) (Figure 1.1.). Members of the $\mathrm{Ca}_{\mathrm{v}} 3$ family might contain only a single $\alpha 1$-subunit, but the exact subunit composition of these channels is not clear.

Table 1.1.: Classification of VGCCs

Activation profile	Native current	α 1-subunit subtypes	localization	inhibitors	literature
HVA	P/Q-type	$\alpha_{1 A}\left(\mathrm{Ca}_{v} 2.1\right)$	neurons, neuroendocrine cells	ω-Agatoxin IVA	Mori et al., 1991 Starr et al., 1991
HVA	N-type	$\alpha_{1 B}\left(\mathrm{Ca}_{v} 2.2\right)$	neurons, neuroendocrine cells	ω-Conotoxin GVIA SNX-111	Dubel et al., 1992 Williams et al., 1992
HVA	L-type	$\alpha_{1 \mathrm{C}}\left(\mathrm{Ca}_{v} 1.2\right)$	heart, smooth muscles, brain, pancreas	$\begin{aligned} & \text { DHP } \\ & \text { PAA } \\ & \text { BTZ } \end{aligned}$	Biel et al., 1990 Mikami et al., 1989 Snutch et al., 1991
		$\alpha_{1 \mathrm{D}}\left(\mathrm{Ca}_{v} 1.3\right)$	brain, pancreas, kidney, ovar, cochlea	$\begin{aligned} & \text { DHP } \\ & \text { PAA } \\ & \text { BTZ } \end{aligned}$	Seino et al., 1992
		$\alpha_{1 \mathrm{~F}}\left(\mathrm{Ca}_{\mathrm{v}} 1.4\right)$	retina	DHP D-cis-Diltiazem	Strom et al., 1998
		$\alpha_{15}\left(\mathrm{Ca}_{\mathrm{v}} 1.1\right)$	sceletal muscle transverse tubules	$\begin{aligned} & \text { DHP } \\ & \text { PAA } \\ & \text { BTZ } \end{aligned}$	Tanabe et al., 1987
HVA	R-type	$\alpha_{\text {IE }}\left(\mathrm{Ca}_{\mathbf{v}} 2.3\right)$	brain, cochlea, retina, heart	SNX-482	Niidome et al., 1992
LVA	T-type	$\alpha_{16}\left(\mathrm{Ca}_{v} 3.1\right)$	brain, heart	Kurtoxin Mibefradil	Perez-Reyes, 1998
		$\alpha_{1 H}\left(\mathrm{Ca}_{v} 3.2\right)$	brain, heart	Kurtoxin Mibefradil	Cribbs et al., 1998
		$\alpha_{11}\left(\mathrm{Ca}_{v} 3.3\right)$	brain	Kurtoxin Mibefradil	Lee et al., 1999

The table shows an overview about the classification of the voltage gated calcium channels, their localization, and their inhibitors. DHP = Dihydropyridines; PAA = Phenylalkylamines; BTZ = Benzothiazepines

1.1.3. $\alpha 1-, \beta-, \alpha_{2} \delta$-, and γ-subunit

Ten $\alpha 1$ isoforms are well-known and these can be classified into three families: $\mathrm{Ca}_{\mathrm{v}} 1, \mathrm{Ca}_{\mathrm{v}} 2$, and $\mathrm{Ca}_{\mathrm{v}} 3$ (Ertel et al., 2000). The $\mathrm{Ca}_{\mathrm{v}} 1$ group ($\mathrm{Ca}_{\mathrm{v}} 1.1-1.4$) consists of subunits of channels that mediate L-type Ca^{2+} currents, which are $\alpha_{1} \mathrm{~S}, \alpha_{1} \mathrm{C}, \alpha_{1} \mathrm{D}$, and $\alpha_{1} \mathrm{~F}$. P/Q-, R- and N-type channels, comprising $\alpha_{1} \mathrm{~A}, \alpha_{1} \mathrm{~B}$, and $\alpha_{1} \mathrm{E}$, are listed under the $\mathrm{Ca}_{\mathrm{v}} 2$ family ($\mathrm{Ca}_{\mathrm{v}} 2.1-2.3$). T-type channels, $\alpha_{1} \mathrm{G}, \alpha_{1} \mathrm{H}$, and $\alpha_{1} \mathrm{I}$, are Ca_{v} 3.1-3.3 (Table 1.1.). Figure 1.1 shows the structure of the $\alpha 1$-subunit from the L-type Ca^{2+} channel. The segment 4 (S4) works as a voltage sensor and
the ion selectivity filter is built from the intracellular loop between S5 and S6. The interaction motif for the β-subunit is located between the I-II linker (Hofmann et al., 1999). In the intracellular C-terminal tail (CT), an isoleucin-glutamine (IQ) motif, which binds calmodulin (CaM) is located. CaM is a 17 kDa protein and acts as a calcium sensor. The CaM-binding on the IQ motif is important for the autoregulation of the L-type Ca^{2+} channel (Zuhlke et al., 2000). The EF-hand region of CT is also involved in Ca^{2+}-dependent inactivation (CDI) (Budde et al., 2002; Peterson et al., 1999; Striessnig, 1999). CDI is an important feedback mechanism that prevents excessive influx of Ca^{2+}, which would be potentially toxic for the cell. The mechanisms that underlie this feedback inhibitions have been uncovered only recently. It was found that permeating Ca^{2+} inhibits LTCCs by interacting with calmodulin that is tightly bound to specific regions in the C-terminus of the channel (for detail review of CDI see (Budde et al., 2002). The C-terminal tail of $\mathrm{Ca}_{\mathrm{v}} 1.2\left(\alpha_{1} \mathrm{C}\right)$ contains an unique class I PDZ [postsynaptic density-95 (PSD-95)/Disc large/Zonula occludens-1 (ZO-1)] interaction sequence, that has been shown to associate with synapse specific scaffolding proteins, MAGUK proteins, and nucleotid exchange factors that contain PDZ domains (Kurschner et al., 1998). Associations with PDZ proteins play an important role in coupling L-type VGCCs. Summarized, the function of $\alpha 1$-subunits are voltage sensing, ion selection and passage through a conserved pore lined by S6, autoregulation, and drug binding (Bodi et al., 2005; Carafoli et al., 2001; Catterall, 2000; Striessnig, 1999). The $\alpha_{2} \delta$-subunit is directly associated with the α_{1} subunit by surface interaction. The $\alpha_{2} \delta$-subunit is a glycosylated protein, which is highly conserved in most tissues, while the transmembrane δ-subunit anchors the extracellular α_{2} protein by disulfide bridges to the plasma membrane (Hofmann et al., 1994). The δ subunit is sufficient to stabilize the gating properties to the channels, whereas α_{2} is essential to stabilize DHP binding to the α_{1}-subunit (Gurnett et al., 1996). The intracellular β-subunit (5575 kDa) is the most important subunit for fine-tuning of L-type VGCC activity. It also stabilizes the pore region and facilitates conformational changes, which open the channel once the voltage sensor movement is completed. Furthermore, all different isoforms of the β subunit (Figure 1.1.) enhance L-VGCC membrane density by modulating α_{1}-subunit expression (Neely et al., 1993). The γ-subunit was originally found only in skeletal muscle calcium channels. However, a neuronal γ-subunit isoform has been identified recently (Striessnig, 1999). Although these auxiliary subunits change the properties of the channel complex, the pharmacological and electrophysiological diversity of calcium channels arises mostly from the existence of multiple α_{1}-subunits.

Figure 1.1.: Subunit composition of voltage-dependent calcium channels

Folding structures of the diverse subunits. There are several genes and splice variants for each calcium channel subunit (see boxes). Adapted from Klugbauer et al., 2002, Hofmann et al., 1999.

1.1.4. $\mathrm{Ca}_{\mathrm{v}} 1.2$ calcium channel

The $\mathrm{Ca}_{\mathrm{v}} 1$ calcium channel family includes four members, $\mathrm{Ca}_{\mathrm{v}} 1.1(\alpha 1 \mathrm{~S}), \mathrm{Ca}_{\mathrm{v}} 1.2(\alpha 1 \mathrm{C}), \mathrm{Ca}_{\mathrm{v}} 1.3$ $(\alpha 1 \mathrm{D})$ and $\mathrm{Ca}_{\mathrm{v}} 1.4(\alpha 1 \mathrm{~F}) .75 \%$ of the sequences of these proteins are identical to one another. $\mathrm{Ca}_{\mathrm{v}} 1.1$ is mainly expressed in skeletal muscle where it is a key element of the excitationcontraction coupling (Tanabe et al., 1988). $\mathrm{Ca}_{\mathrm{v}} 1.2$ is the most widely distributed member of the $\mathrm{Ca}_{\mathrm{v}} 1$ family. For example, the $\mathrm{Ca}_{\mathrm{v}} 1.2 \mathrm{a}$ isoform is expressed in cardiomyocytes (Mikami et al., 1989), while the $\mathrm{Ca}_{\mathrm{v}} 1.2 \mathrm{~b}$ isoform is predominantly found in smooth muscle cells (Biel et al., 1990). $\mathrm{Ca}_{\mathrm{v}} 1.2$ transcripts are also expressed in many types of neurons as well as in endocrine cells. $\mathrm{Ca}_{\mathrm{v}} 1.2$ is involved in the control of essential physiological functions including smooth muscle tone (Moosmang et al., 2003), heart contractility (Reuter, 1979), secretion of hormones (Milani et al., 1990), and integration of synaptic inputs (Bean, 1989). Furthermore, mutations in the CACNA1C gene (human), which codes for the $\mathrm{Ca}_{\mathrm{v}} 1.2$ subunit, are causative for the Timothy syndrome. This disease is characterized by a multiorgan disorder with serious cardiac defects, sudden death, and other comorbidities (Splawski et al., 2005; Splawski et al., 2004). The $\mathrm{Ca}_{\mathrm{v}} 1.3$ channel was first cloned from neuronal and endocrine tissue and is possibly involved in the control of hormone secretion (Seino et al., 1992; Williams et al., 1992). The recent studies indicate that the channel is also expressed in myocardial tissue (Platzer et al., 2000). The $\mathrm{Ca}_{\mathrm{v}} 1.4$ gene is the only calcium channel gene localized on the X-chromosome (Xp11.23) (Striessnig et al., 2010), and is specifically expressed in retinal photoreceptors and bipolar cells (Striessnig et al., 2010).

Figure 1.2.: Expression and function of $\mathrm{Ca}_{\mathrm{v}} 1.2$ in mice

This figure shows the expression and the function of the calcium channel $\mathrm{Ca}_{\mathrm{v}} 1.2$ in mouse. The scheme is adapted from (Moosmang et al., 2005).

1.1.5. Mouse knockout models of L-type calcium channel (LTCC)

Cloning of L-type calcium channels and their auxiliary subunits in different studies have demonstrated a large understanding about the function and regulation of these channels. The strategy to study calcium channels by knocking out genes is an important model to clarify and confirm heterologous expression studies and central in vivo functions of the calcium channels. Efforts to identify the native role of the diverse L-type calcium channel subunits, have produced a varity of knockout mice (Table 1.2.). VGCCs control two key processes required for normal heart function. First, Ca^{2+} influx through calcium channels is a prerequisite for excitation-contraction coupling in cardiomyocytes, and hence for heart contraction. Secondly, Ca^{2+} influx contributes to the generation of pacemaker potentials in cardiac conduction tissue, repeat of hence, is involved in the regulation of heart rhythmicity see review (Hofmann et al., 1999; Stieber et al., 2003). A typical heart cell contains both L- and T-type currents, but the L-type channels at the transverse tubules are more interesting. During the heart systole (plateau of cardiac action potential), the membrane is depolarized over 100 ms . As a result,
Ca^{2+} streams along the concentration gradient over the $\mathrm{Ca}_{\mathrm{v}} 1.2$ in the cell. This Ca^{2+} influx triggers an intracellular Ca^{2+} release from SR over the ryanodine receptor. The increase of $\left[\mathrm{Ca}^{2+}\right]_{\text {inside }}$; (from 100 nM to 1 mM) cause cell contraction. During the diastolic relaxation, the Ca^{2+} goes the way from cytosol over $\mathrm{Na}^{+} / \mathrm{Ca}^{2+}$ exchanger (NCX) to the outside of the cell and through the Ca^{2+} ATPase of SR (SERCA) back to the SR (Bers, 2002). Mice lacking the $\mathrm{Ca}_{\mathrm{v}} 1.2$ L-type calcium channel die in utero before day 15 postcoitum (p.c.), indicating that this channel is necessary for normal embryonic development (Seisenberger et al., 2000) and is indispensible during heart development (Seisenberger et al., 2000; Xu et al., 2003b).
Mice deficient for $\mathrm{Ca}_{\mathrm{v}} 1.3$ are viable and have a natural life span (Platzer et al., 2000). While the deletion of $\mathrm{Ca}_{\mathrm{v}} 1.3$ has no obvious consequence on embryonic development, $\mathrm{Ca}_{\mathrm{v}} 1.3$ knockout mice reveal sinoatrial node dysfunction resulting in bradycardia and arrhythmia. Therefore, $\mathrm{Ca}_{\mathrm{v}} 1.3$ is likely to be involved in the generation of pacemaker potentials in the sinus node region. Further analysis of the phenotype of $\mathrm{Ca}_{\mathrm{v}} 1.3$ null mice revealed that these mice are deaf (Martinez-Dunst et al., 1997).
$\beta 1$ knockout mice are unable to move and die at birth from asphyxiation (Gregg et al., 1996). The $\beta 1$ knockout mice show a reduction in muscle mass with disorganization of thick and thin filaments of skeletal muscle. The early death of the homozygous animals has not permitted a close examination of the role of the $\beta 1$ subunit in brain and heart.
The inactivation of the cardiac $\beta 2$ subunit of VGCCs results in low cardiac calcium current densities and in embryonic death at embryonic day 9.5.
In $\beta 3$ knockout mice electrophysiological analyses indicated a 30% reduction in Ca^{2+} channel current density, a slower inactivation rate, and a decreased dihydropyridine-sensitive current (Namkung et al., 1998). Despite the reduction in L-type calcium channel density, $\beta 3$ null mice showed normal blood pressure.
The $\gamma 1$ knockout mice are viable and show no distinguished phenotype from wild type. The features of $\gamma 1$ knockout mice are the increased L-type current amplitude, the deceleration of the inactivation and shifts in the steady state inactivation to more positive potentials (Freise et al., 2000).

Table 1.2.: Deletion of L-type calcium channel subunits in mice

deleted subunit gene	tissue	phenotype	reference
Ca $1.2^{\text {Ca } 1.3}$	heart, smooth muscle, brain	embryonic lethal < 14,5	

1.2. Plasma membrane calcium ATPase (PMCA)

1.2.1. Localization and Function of PMCA

The PMCA was described first in erythrocytes (Schatzmann, 1966). It is responsible for the calcium transport against a concentration gradient in the extracellular room or into the SR, and is expressed ubiquitously in all eukaryotic cells. PMCA is an important enzyme for Ca^{2+} homeostasis (Cartwright et al., 2007, 2009; Strehler et al., 2007a; Strehler et al., 2007b). The P-type ATPase PMCA is a transmembrane protein and has a molecular weight between 130150 kDa , depending on the isoform and splice variant, respectively. Four major isoforms PMCA1-4 (Table 1.3.) and over twenty splice variants have been described, so far (Cartwright et al., 2009). They are expressed developmental-, tissue- and cell-specifically but the PMCA1 and 4 are housekeeping forms and expressed ubiquitously (Strehler, 1991; Strehler et al., 1991). All four isoforms occur in excitable cells like neuron cells, skeletal cells, and cardiomyocytes (Carafoli and Stauffer, 1994; Hammes et al., 1994). PMCA has a greater role in spatial Ca^{2+} signaling within the cell than previously thought (Cartwright et al., 2007, 2009; Strehler et al., 2007a). This type of ATPase is also localized in caveolae (Fujimoto, 1993), which are rich in lipids, receptors, signal transducers and effectors, and involved in signal transduction organisation (Kurzchalia and Parton, 1999; Maxfield, 2002). Caveolae are plasmamembrane invaginations and have a size from 50 to 100 nm . Important
structural proteins are the 20-22 kDa caveolins 1-3 (Rothberg et al., 1992). Some interaction partners of caveolins were described (Segal et al., 1999; Venema et al., 1997). The localization of numerous signaling proteins in caveolae suggested that these invaginations are crucial for signal transduction. Such proteins for example are receptors for Atrial Natriuretic Peptide (ANP), Muscarin m2, Bradycinin B2, Platelet Derived Growth Factor (PDGF), Insulin, Endothelin, protein kinases (Ras, Src, Raf), endothelial NO-Synthase (eNOS), and neuronal NO-Synthase (nNOS) (Anderson, 1998).

Table 1.3.: PMCA isoforms and gene nomenclature of the Human Genome Organisation (HUGO) and the exactly gene locus.

isoform	HUGO nomen clature	gen localization
PMCA1	ATP2B1	$12 \mathrm{q} 21-12 \mathrm{q} 23$
PMCA2	ATP2B2	$3 \mathrm{p} 26-3 \mathrm{p} 25$
PMCA3	ATP2B3	Xq28-Xq28
PMCA4	ATP2B4	$1 \mathrm{q} 25-1 \mathrm{q} 32$

1.2.2. Structure of the PMCA

PMCAs have ten transmembrane domains (TM1-10), four cytosolic linkers (TM2-TM3, TM4-TM5, TM6-TM7 and TM8-TM9), and cytosolic N- and C-terminal tails (Brini, 2009; Cartwright et al., 2009; Di Leva et al., 2008). A 14-3-3 protein binding site has been described to be located in the N -terminal tail, and association with this protein effects the inhibition of pump activity (Rimessi et al., 2005). The C-terminal tail includes sites that control pump activity, protein kinase C (PKC) and protein kinase A (PKA) phosphorylation sites (Monteith and Roufogalis, 1995; Penniston and Enyedi, 1998; Strehler and Zacharias, 2001), and an autoinhibitory calmodulin binding domain (CaM-BD) (Carafoli et al., 1992; James et al., 1988; Vorherr et al., 1992; Vorherr et al., 1990), where the inhibition is lifted upon binding of Ca^{2+}-bound calmodulin $\left(\mathrm{Ca}^{2+} / \mathrm{CaM}\right)$. At the C -terminal tail an alternative splice site (Strehler and Zacharias, 2001), a positive modulatory homodimerization site (Brini, 2009), and a PDZ binding domain is located (DeMarco and Strehler, 2001; Kim et al., 1998; Schuh et al., 2003). The TM2-TM3 loop harbours a phospholipid sensitive region (Brodin et al., 1992; Zvaritch et al., 1990), and a splice A site (Chicka and Strehler, 2003; Hill et al., 2006; Strehler and Zacharias, 2001). TM4-TM5 is the longest cytoplasmic linker and it is where the ATP-binding site and the catalytic domain are situated. This loop also interacts with the CaM-BD and is therefore implicated in autoinhibition (Falchetto et al., 1991), similar
to TM2-TM3 (Fig.1.3.). Active PMCA has two conformational states (Krebs et al., 1987): the PMCA Ca^{2+} binding change, leading to the E 2 state, where the bound Ca^{2+} is released extracellulary due to the decline in Ca^{2+} affinity of the binding site. The enzyme then returns to the E1 conformation when the phosphate is cleaved from it.

Figure 1.3.: Scheme of the PMCA and their regions of structural diversity among isoforms and sites of protein-protein interactions

Anchoring
Targeting
Signaling

The N- and C-terminal endings are marketed, and the location of the catalytic loop is indicated. Regions of significant sequence divergence among isoforms are illustrated as bulky black lines. 'Splice Site A' and 'Splice Site C' characterize the regions by alternative splicing. Site A, the insertion of a peptide segment encoded by alternatively spliced exon is indicated; at site C, the two key splice variants ' a ' and ' b ' are shown with split tails. A choice of PMCA-interacting proteins are demonstrate close to the domain of the PMCA where they bind, and their identified or expected roles in providing functional diversity are indicated. The PMCA is represented in its activated state with CaM bound to the C-tail. AIPP, ATPase-interacting PDZ protein; MAGUK, membraneassociated guanylate kinase; NOS-1, nitric oxide synthase-1; PISP, PMCA-interacting single-PDZ protein; RASSF1, Ras association domain family-1. Adapted from (Strehler et al., 2007b).

1.2.3. PMCA4b

Mammalian PMCAs are products of four genes (ATP2B1 - ATP2B4) (Table 1.3.), which share $80-90 \%$ sequence homology at the amino acid level in human, rat and mouse (Strehler and Zacharias, 2001). Differential splicing of PMCA RNA transcripts results in different subtypes of these isoforms. More than 20 splice variants have been identified (Strehler and Zacharias, 2001). The C-termini of the b-splice variants of all PMCA isoforms is supposed to bind preferentially type 1 PDZ domains as the consensus sequence is E-T/S-X-L/V (where X stands for any amino acid). The human ETSV* motif ($*=$ stop, possess different C-terminal ends) of the PMCA4b interacts with members of the membrane-associated guanylate kinase (MAGUK) family (DeMarco and Strehler, 2001; Strehler and Zacharias, 2001), such as postsynaptic density protein-95/synapse-associated protein 90 (PSD-95/SAP90), synapseassociated protein 97 (SAP97/hDlg), synapse-associated protein 102 (SAP-102), postsynaptic density protein-93/Channel associated protein of synapse-110 (PSD-93/Chapsyn-110) (DeMarco and Strehler, 2001) and calcium/calmodulin-dependent serine protein kinase (CASK) (Schuh et al., 2003). In addition PMCA4b interacts also with PMCA-interacting single PDZ protein (PISP) (Goellner et al., 2003), $\mathrm{Na}^{+} / \mathrm{H}^{+}$exchanger regulatory factor 2 (NHERF2) (DeMarco et al., 2002) and neuronal nitric oxide synthase (nNOS), which regulates its activity (Schuh et al., 2001). PMCA4b can also interact other proteins via other domains, for example via second intracellular loop with the tumor suppressor Ras-associated factor 1, calcineurin and $\alpha 1$ synthrophin (Armesilla et al., 2004; Buch et al., 2005; Williams et al., 2006b).

1.2.4. Mouse knockout models of PMCA

Knockout mice have been designed and the phenotypes analyzed for each isoforms of the PMCA pumps, except the PMCA3. That isoform is typically expressed in tissues of developing embryos, its function maybe essential for normal growth of gestation. PMCA1 was interrupted by targeting the catalytic phosphorylation site, but homozygous knockout mice resulted in embryonic lethality. Null mutant embryos were recognized up to day 3 of gestation but not for the stage of organogenesis. The lack of ability to breed fully developed life animals emphasizes the necessary role of this housekeeping isoform from the earliest ages of development. On the other hand, heterozygous mutants did not present a pathological phenotype, even if the smooth muscle of blood vessels appeared apoptotic. While this smooth muscle does not express the other omnipresent isoform PMCA4, the absence of PMCA1 gene on one allele was obviously inefficiently compensated (Krebs, 1996). Mice subjected to the
targeted ablation of the PMCA4 survived and seemed healthy at first sight. Histological investigations of organs presented no major tissue alterations or in vivo cell death. Despite is ubiquitous expression, PMCA4 appears to be less critical than PMCA1 in the maintenance of Ca^{2+} homeostasis. A major phenotype alteration was, on the other hand, detected, and this was male infertility. Sperm were unable to get efficient hyperactivated motility and was unable to contact and fertilize the egg (Okunade et al., 2004). This was evidently due to the fact that isoform 4 represents 90% of all PMCA pumps expressed in testis cells (Schuh et al., 2004). The investigation of the phenotypes of PMCA2 knockout mouse has exposed interesting characteristics. While the animals appeared quite normal at birth, they started to present balance impairment around day 10 (Furuta et al., 1998). Recording of the auditory brain response have shown that they were deaf, and the study of the vestibular inner ear explained the absence of otoconia (Kozel et al., 1998). It was also observed that sensory hair cells started to degenerate after day 10 . The most severely affected animals also presented partial loss of nerve cells (Furuta et al., 1998; Garcia and Strehler, 1999; Strehler and Zacharias, 2001).

1.3. PDZ Domains

Different biological activities are regulated through interactions of modular protein domains, like WW domain (protein domain with two highly conserved tryptophans that binds prolinerich peptide motifs), Sre homology 3 (SH3) and PDZ domains, and their corresponding binding partners (Pawson, 2007). The name PDZ comes from the first three proteins in which these domains were identified: PSD-95 (a 95 kDa protein, post-synaptic density protein), Dlg (the Drosophila melanogaster Discs Large protein) and ZO-1 (the zonula occludens 1 protein involved in maintenance of epithelial polarity) (Cho et al., 1992; Kim et al., 1995; Woods and Bryant, 1993). These protein-protein interactions can offer important views into biological processes such as cell proliferation and cell polarity (Pawson, 2007; Pawson and Nash, 2003). In various species there are PDZ domains, for example in Caenorhabditis elegans, D. melanogaster, and Homo sapiens (Doyle et al., 1996; Kennedy, 1995; Morais Cabral et al., 1996). In the mouse genome, for example, 928 PDZ domains have been recognized in 328 proteins, which are present in single or multiple copies or in combination with other interaction modules (Spaller, 2006). PDZ domains are absent in yeast, but numerous PDZ-like domains are present in bacteria and plants (Pallen and Ponting, 1997). From the abundance and variety of PDZ domains in cells, it is obvious that many cellular and biological functions, especially those involving signal transduction complexes are mediated by PDZ-mediated
interactions (Bezprozvanny and Maximov, 2001; Brone and Eggermont, 2005; Fan and Zhang, 2002; Garner et al., 2000; Harris and Lim, 2001; Hung and Sheng, 2002; Kim and Kim, 2005; Petit et al., 2009; Sheng and Sala, 2001; Zhang and Wang, 2003).

1.3.1. Structural characteristics of PDZ domains

PDZ domains are relatively small (≥ 90 amino acids), fold into a compact structure and have N - and C-termini that are in close proximity in the folded structure.

PDZ domains are modular items consisting of 5 or 6β-stranded ($\beta \mathrm{A}-\beta \mathrm{F}$) and 2 or 3α-helical structures $(\alpha \mathrm{A}-\alpha \mathrm{C})$ Figure 1.4. (Fanning and Anderson, 1996; Kim and Sheng, 2004; Long et al., 2003). PDZ domains characteristically recognize the C-termini of target proteins (Saras and Heldin, 1996) but a few also bind the internal sequence motif of target proteins through a single binding site on the domains (Cowburn, 1997; Giallourakis et al., 2006; Wang et al., 2008). The nomenclature for residues within the PDZ-binding motif is as follows: the Cterminal residue is referred to as the P_{0} residue; subsequent residues towards the N -terminus are termed $\mathrm{P}_{-1}, \mathrm{P}_{-2}, \mathrm{P}_{-3}$, etc. Studies show that PDZ domains can be divided into three main classes: class I PDZ domains recognize the motif S/T-X- $\Phi-\mathrm{COOH}$ (Φ is a hydrophobic amino acid and X is any amino acid), class II PDZ domains identify the motif $\Phi-\mathrm{X}-\Phi-\mathrm{COOH}$; and class III PDZ domains recognize the motif X-X-C-COOH. There are few other PDZ domains that do not fall into any of these classes (Table 1.4.) (Schultz et al., 1998; Songyang et al., 1997).

Figure 1.4.: Three-dimensional structure of PDZ domains

Structure of the third PDZ domain of PSD-95 (α-helices in green, β-strands in blue) coordinated with its target C-terminal peptide (purple) (Kim and Sheng, 2004).

Table 1.4.: Examples of PDZ ligands (Harris and Lim, 2001)

PDZ domain	Consensus binding sequence*					Ligand protein	Reference
				P_{0}			
Class I Syntrophin PSD-95 D1;2 NHERF			X	Φ^{8}	- COOH		
	E	S	L	V	- COOH	voltage-gated Na channe	l Schultz et al., 1998a
	E	T	D	V	- COOH	Shaker-type K channel	Kim et al., 1995
		T	X	L	- COOH	$\beta 2$-adrenergic receptor	Hall et al. 1998
$\begin{aligned} & \text { Class II } \\ & \text { hCASK } \end{aligned}$		Φ	X	Φ	- COOH		
	E	Y	Y	V	- COOH	Neurexin	Songyang et al., 1997
$\begin{array}{r} \text { Class III } \\ \text { Mint-1 } \end{array}$		X	X	C	- COOH		
	D	H	W	C	- COOH	N-type Ca^{2+} channel	Maximov et al., 1999
Other							
nNOS	G	D	X	V	- COOH	PMCA4b	Schuh et al., 2001
MAGI		S/T	W	V	- COOH	PTEN	Wu et al., 2000

[^0]
1.3.2. Higher-order organization of PDZ domain containing proteins

Multi-PDZ domain containing proteins

A remarkable aspect of PDZ domains is the frequency with which multiple domains occur within the same polypeptide. In humans 18% of the PDZ domain containing proteins have three or more PDZ domains within the same polypeptide. These are, for example, MUPP, in which the protein consists of 13 PDZ motifs (Ullmer et al., 1998). Other multi-PDZ domain containing proteins include INAD and NHERF (Fig. 1.5.). INAD have 5 PDZ motifs, NHERF 2 PDZ domains.

MAGUK proteins

Another large family of PDZ domain containing proteins is the MAGUK (membraneassociated guanylate kinase) family. This subgroup contains between one and three PDZ domains, an SH3 domain and a guanylate kinase homology (GuK) domain (Gomperts, 1996) (Fig. 1.5.). There is no confirmation that this domain has enzymatic activity. Several of these proteins, including Dlg, ZO-proteins, and the MAGI (membrane-associated guanylate kinases with inverted orientation) proteins, are associated with the tight junctions (TJ) of various cell types and are seemingly implicated in assembly of these main structures.

PDZ domain containing proteins with other sequence motifs

A third large group of PDZ proteins contain a variety of other sequence motifs (but not guanylate kinase-like domain) with one or more PDZ domains. In that family proteins containing leucine-rich repeats (LAP proteins), LIM or crib motifs (Lasky, 2005).

1.3.3. The PDZ domain mechanism of recognition

At the ending of the peptide-binding groove is the carboxylate-binding loop. This loop contains the sequence motif GLGF (Gly-Leu-Gly-Phe) and is located between $\beta \mathrm{B}$ and $\alpha \mathrm{B}$. The first Gly residue in this motif is not strictly conserved in canonical PDZ domains, and can be changed by a Ser, Thr, or Phe residue (Laskowski et al., 2005). The second and the fourth residues are hydrophobic (e.g. Val, Ile, Leu, or Phe). The side chains of the P_{0} and P_{-2} ligand residues point directly into the base of the peptide-binding pocket. It can be suggested that ligand positions 0 and -2 are crucial for recognition and binding to target proteins. The importance of these two positions also lead to the general classification of PDZ domains into three classes (see Table 1.4.) (Bezprozvanny and Maximov, 2001; Doyle et al., 1996; Harrison, 1996; Song et al., 2006). Numerous examples demonstrate that some PDZ domains can also recognize internal peptide motifs, lipids and other PDZ domains. The best characterized example of an internal-motif-mediated PDZ interaction is the PDZ domain of nNOS and the PDZ domain of either syntrophin or PSD-95. The domains interact in a remarkable linear head-to-tail arrangement (Brenman et al., 1996; Gee et al., 1998; Hillier et al., 1999). The 30 -residue extension to the nNOS PDZ domain adopts an extended β-hairpin fold (called β-finger) (Christopherson et al., 1999). This nNOS β-hairpin pockets in the binding site of syntrophin protein, which mimicks a peptide ligand through its P_{0} and P_{-2} pocket interaction.
PDZ domain containing proteins play key roles in organizing polar sites of cell-cell communication. They assemble receptors and their downstream effectors. PDZ domain containing proteins crosslink many different polypeptides by binding to C-terminal sequences. Internal motif recognition is not an exception to the rules of PDZ recognition but another way to satisfy the same energetic requirements. A complete understanding of the regulatory mechanisms of PDZ-mediated interactions will enhance our knowledge of many cellular and biological processes.

Figure 1.5.: Schematic diagram of PDZ domaining proteins

This figure shows an overview about the different groups of PDZ domain containing proteins and their various domains.

1.4. Nitric Oxide Synthase

NO is a signaling molecule generated by three different kinds of NO synthases (NOSs), which catalyze the transformation of the amino acid L-arginine to L-citrulline. NO is participating in physiological and pathophysiological processes. The three different isoforms are neuronal NOS (also known as NOS-1), which was first identified in neuronal tissue, inducible NOS (also known as NOS-2) being the isoform, which is inducible in numerous cells and tissues, and endothelial NOS (NOS-3), which is the isoform first found in vascular endothelial cells. Sometimes these isoforms also distinguished on the basis of their constitutive (eNOS and nNOS) versus inducible (iNOS) expression, and their calcium-dependence (eNOS and nNOS) or-independence (iNOS), see Fig.1.6.

Figure1.6.: Domain structure of human nNOS, eNOS and iNOS, adapted from (Alderton et al., 2001)

In the boxes you see the oxygenase, reductase and PDZ domains. The start/end and amino acids of the different isoforms are shown. $\mathrm{Myr}=$ myristoylation; Palm = palmitolylation; $\mathrm{Zn}=$ zinc-ligating cysteines.

The NOS genes contain a similar genomic composition. NOSs demonstrate a bidomain structure in which an N -terminal oxygenase domain containing binding sites for haem, BH_{4} and L-arginine is linked by a CaM-recognition site to a C-terminal reductase domain that includes binding sites for FAD, FMN and NADPH (Fig. 1.7.) (McMillan and Masters, 1995; Richards and Marletta, 1994).

Figure 1.7.: reactions and cofactors of NOS (Alderton et al., 2001)

Electrons (e-) are donated by NADPH to the reductase domain of the enzyme and carry on via FAD and FMN redox carriers to the oxygenase domain. They interact with the haem and BH_{4} at the active site to catalyze the reaction of oxygen with L-arginine, generating citrulline and NO as products. Electrons flow through the reductase domain requires the presence of bound $\mathrm{Ca} 2+/ \mathrm{CaM}$.

The N-terminal 220 amino-acids of nNOS are especially, because that isoform contains a PDZ domain that targets nNOS to synaptic sites in brain and skeletal muscle. The PDZ domain of nNOS interacts with the second of several similar PDZ motifs in neuron-specific PSD-95 and PSD-93. nNOS interacts with $\alpha 1$-syntrophin in skeletal muscles, which forms a complex with the sarcolemmal dystrophin complex. The nNOS-PDZ consensus sequence is G (D, E)-X-V (Schepens et al., 1997). Different splice variants of nNOS were descriebed. nNOS α contains the PDZ domain and is localized in various tissues. The protein has a size of 160 kDa . Both nNOS β and nNOS γ lack the PDZ domain of nNOS, which is encoded by exon 2 (Brenman et al., 1996). If translated in vivo, nNOS β would be a 136 kDa protein and nNOS γ a 125 kDa protein. $\mathrm{nNOS} \mu$ is selectively expressed in heart and is the predominant isoform in skeletal muscle (Silvagno et al., 1996). nNOS μ has additional 34 amino acids inserted between the CaM-and flavin-binding domains. nNOS-2 has been identified in mouse brain and in human neuroblastoma cells (Fujisawa et al., 1994). nNOS-2 is possibly catalytically inactive and for that reason the function plays a dominat negative role (Brenman et al., 1997). See Figure 1.8.

Figure 1.8.: Splice variants of rat nNOS (Alderton et al., 2001)

The PDZ, oxygenase and reductase domains are marked by solid boxes. The splice variants are shown by arrowed lines: black, nNOS α (amino acids 1-1433); red, nNOS β (amino acids 236-1433); green, nNOS γ (amino acids 336-1433); blue, nNOS μ (1-1433 with a 34 amino acid insert in the FMN-bindin gdomain). The deleted amino acid residues 504-608 in nNOS-2.

Regulation of NOS activity

CaM is nessecary for the enzymatic activity of all three isoforms. The calcium-dependence of NO synthesis differentiates the NOS isoforms, so nNOS and eNOS having a much higher calcium requirement than iNOS. CaM binding increases the rate of electron transfer from NADPH to the reductase domain flavin (Gachhui et al., 1998; Gachhui et al., 1996) and artificial electron acceptors, like Ferricyanide and Cytochrom c. CaM also activates the electron transfer from the reductase domain to the haem centre (Abu-Soud et al., 1994a; AbuSoud et al., 1994b) (Fig.1.7.). The phosphorylation of nNOS and eNOS have an effect on NOS activity. The phosphorylation of eNOS triggers an increase in electron flux through the reductase domain and an increase in NO production (McCabe et al., 2000). In contrast, the phosphorylation of nNOS processes a decrease in NOS activity (Hayashi et al., 1999).

1.5. Aim of the thesis

The Ca^{2+} channel $\mathrm{Ca}_{\mathrm{v}} 1.2$ and the plasma membrane calcium ATPase PMCA4b are transmembrane proteins and operate with their C-terminal end as PDZ ligands. Both proteins play a key role in Ca^{2+} signalling and in Ca^{2+} fluctuation, for example gene expression, regulation of blood pressure, and they are involved in cardiac excitation-contraction coupling. Previous studies have shown that PMCA interacts with a few cytoskeletal proteins, as mentioned before. Also it is known that PMCA interacts with nNOS (Schuh et al., 2001). However, the molecular mechanisms responsible for spatial and temporal specificity of NOmediated regulation of intracellular Ca^{2+} are still unclear as well as the physiological role of $\mathrm{Ca}_{\mathrm{v}} 1.2$ and PMCA4b.
Based on these observations, this thesis has the following aims:

1. To screen for new interaction partners of $\mathrm{Ca}_{\mathrm{v}} 1.2$ and PMCA4b via three independent assays (PDZ domain array, immunoprecipitation and pull down). Often new interaction partners could give information about signalling pathways or physiological relevance. Co-localizations of some protein interactions could support the results.
2. The nNOS α PDZ domain interacts with the C-terminus of PMCA4. About the interaction and physiological key role of nNOS and $\mathrm{Ca}_{\mathrm{v}} 1.2$ via PDZ domain is littleknown. To generate a heterologous system that express $\mathrm{Ca}_{\mathrm{v}} 1.2$ and nNOS for electrophysiological measurements, we and co-workers from Regensburg designed patch clamp experiments to achieve information on the consequences of their interactions.
3. Nitric oxide, which is generated by nNOS, is a crucial signalling molecule in mammals. In addition, NO can interact directly with reactive thiols in many proteins, leading to post-translational modifications that induce functional changes. Such Snitrosylations could influence $\mathrm{Ca}_{\mathrm{v}} 1.2$ activity, regulated by nNOS. To verify that we established the biotin switch assay.

MATERIALS AND METHODS

2.1. Plasmids

Plasmid constructs were generated by standard PCR-based cloning strategies and confirmed by DNA-sequencing. PCR products were gel purified, digested with appropriate restriction enzymes (Table 2.1.), again purified from an agarose gel according to manufacturer's instructions (NucleoSpin Extract II, Macherey-Nagel), and ligated into a vector that was opened with the same restriction enzymes. Codons for the final 10 amino acids of $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$ (accession no. AAI45106) and the final 15 amino acids of PMCA4b (accession no. NP_001675) were cloned into the pEXP vector (Figs. 2.4, 2.5) containing a $6 \times$ Histidine tag (Panomics, Fremont, CA, USA) to produce 6xHis-tagged fusion proteins for PDZ Domain Arrays (Panomics) (pEXP-LTCC; pEXP-PMCA4b, see cloning constructions in appendix). The same codons of $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$, the complete C -terminal cytoplasmatic tail of $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$ (accession no. P15381), and approximately half of the complete C-terminal cytoplasmic tail were inserted into the pGEX-4T-3 vector (GE Healthcare Biosciences AB, Uppsala, Figs. 2.7, $2.9,2.10$) to produce Glutathion-S-Transferase (GST) fusion proteins for pull-downs (pGex-4T-3-LTCC; pGex-4T-3-Ct-Ca 1.2 lang; pGex-4T-3-Ct-Ca 1.2 kurz, see cloning constructions in appendix). The expression constructs pGex-4T-1-nNOS-PDZ, pcDNA3$\Delta \mathrm{nNOS}$ ($\Delta \mathrm{nNOS}$ denotes the absence of the PDZ domain and was created by K. Schuh) and pcDNA3-nNOS were kind gifts from D. Bredt (University of California, San Francisco, CA), the plasmid pRK5-kinase-MAST-205, pRK5-kinase-PDZ-MAST-205 from Rafael Pulido (Centro de Investigacion Principe Felipe, Valencia, Spain, see Fig. 2.0.) and the plasmid pcDNA3-Ca 1.2α a gift from Sebastian Meier (University of Wuerzburg, Germany), which was a template for plasmid constructs. Furthermore, we utilized the plasmids pBK-CMVNHERF1 and pCMV-hPMCA4b for transfections.

Figure 2.0.: MAST-205 constructs (by Rafael Pulido)

In that figure the different recombinant proteins of HA-MAST-205 are shown. They were used for Coimmunoprecipitations and pull downs. The pink bar represents the kinase domain of MAST-205 (residues 453726) and the blue bar shows the PDZ domain (residues 1038-1131) of that protein.

Table 2.1.: Oligonucleotide primers for plasmid constructs used for PDZ Domain Arrays and GST Fusion Proteins

Primer	Restriction site	Primer Sequence ${ }^{1}$
for_Cave 1.2 LTCC expression vector pEXP	PstI	...5'- CTG CAG GAC AGC AGG TCC TAT GTC AGC AAC CTG TAG T -3 '
$\text { rev_Ca } 1.2 \text { LTCC }$ expression vector pEXP	XbaI	...5'- TCT AGA CTA CAG GTT GCT GAC ATA GGA CCT GCT GTC - 3 '
for_Ca 1.2 LTCC expression vector pGEX-4T-3	EcoRI	...5'- G AAT TCC GAC AGC AGG TCC TAT GTC AGC AAC CTG TAG - 3^{\prime}
$\begin{aligned} & \text { rev_Cav } 1.2 \text { LTCC } \\ & \text { expression vector } \\ & \text { pGEX-4T-3 } \end{aligned}$	SalI	...5'- GTC GAC CTAC AGG TTG CTG ACA TAG GAC CTG CTG ACG G -3'
GST_C_Ca ${ }_{\text {v_l }}$ lang_for expression vector pGEX-4T-3	EcoRI	...5'- C GGA ATT CCC GAC AAC TTT GAC TAC CTG ACA AG -3'

GST_C_Ca_rev expression vector pGEX-4T-3	XhoI	...'- CCG CTC GAG CTA CAG GCT GCT GAC GCC GGC $-3 \prime$
GST_C_Cav_kurz_for expression vector pGEX-4T-3	EcoRI	$\ldots 5^{\prime}-$ C GGA ATT CCC AGG CAG CAT
GGA AGC TCA GC -3'		

[^1]
TA-Cloning

For the constructs pEXP-LTCC; pGex-4T-3-LTCC; pGex-4T-3-Ct-Cav1.2_lang and pGex-4T-3-Ct-Cav1-2_kurz we used the Topo-TA-cloning kit (Invitrogen).

TA-cloning is a cloning technique without restriction enzymes. That method is based on the ability of adenine (A) and thymine (T). A and T are complementary basepairs which excist on different DNA fragments. In the presence of ligase they were ligated together. The insert is formed by PCR using Taq DNA polymerase. This polymerase lacks 3 ' to 5^{\prime} proofreading activity and adds a single 3 '- adenine overhang to each end of the PCR product. The target vector is linearized and cut with a blunt-end restriction enzyme. It is important to use dideoxythymidine triphosphate (ddTTP) to guarantee the addition of only one T residue (tailing the vector with 3 '- overhang on each blunt end). If no possible restriction sites are existing or the traditional cloning is difficult, TA-cloning is often used as an alternative. A disadvantage is that directional TA-cloning is not feasible, so the gene has 50% chance of getting cloned in the reverse direction. In our case we sequenced the constructs after TAcloning and afterwards we cut via restriction enzymes (Table 2.1.) and ligated them in the suitable vector (Table 2.1.).

Figure 2.1: vector map pcDNA3-Ca 1.2 , gift from S. Meier, University of Wuerzburg, Germany

Figure 2.3: vector map pcDNA3-nNOS, gift from D. Bredt, University of California, San Francisco

Figure 2.5: vector map pEXP-PMCA4b, K. Schuh, University of Wuerzburg, Germany

Figure 2.2: vector map pcDNA3- $\Delta \mathrm{nNOS}$, gift from D. Bredt, University of California, San Francisco

Figure 2.4: vector map pEXP-LTCC, D. Fetting, University of Wuerzburg, Germany

Figure 2.6: vector map pGex-6P-2 (pGex-4T-3 is the same like pGex-6P-2 just another frame), GE Healthcare. Munich

Dissertation, Doreen Fetting

Figure 2.7: vector map pGex-4T-3-LTCC
D. Fetting, University of Wuerzburg, Germany

Figure 2.9: vector map pGex-4T-3-Ct-Ca, 1.2 Lang, D. Fetting, University of Wuerzburg, Germany

Figure 2.11: vector map pRK5-KD-MAST205, gift from R. Pulido, Centro de Investigacion Principe Felipe, Valencia, Spain

Figure 2.8: vector map pGex-4T-1-nNOS, gift from D. Bredt, University of California, San Francisco

Figure 2.10: vector map pGex-4T-3-Ct-Cav1.2 Kurz, D. Fetting, University of Wuerzburg, Germany

Figure 2.12: vector map pRK5-KD-PDZ-MAST205, gift from R. Pulido, Centro de Investigacion Principe Felipe, Valencia, Spain

2.2. TranSignal ${ }^{\text {TM }}$ PDZ Domain Array

pEXP-Ca 1.2α, pEXP-PMCA4b were transformed into E. coli BL21 (DE3) bacteria. The bacteria were inoculated in 3 ml of $\mathrm{LB} / \mathrm{Amp}(100 \mu \mathrm{~g} / \mathrm{ml})$. Bacteria were shaken for one hour at $37{ }^{\circ} \mathrm{C}$ at 300 rpm . When OD600 of the bacterial culture $0.5-0.8$ was attained, 1 mM isopropyl-1-thio- β-D-galactopyranoside (IPTG) was added to the bacteria (grow 3-4 h at 37 ${ }^{\circ} \mathrm{C}$). Cells were collected by centrifugation (4000xg for 10 min at $4^{\circ} \mathrm{C}$). The pellet was resuspended in 2 ml Resuspension Buffer (Panomics) and lysed with a sonicator. Afterwards, cells were centrifugated (14.000 rpm for 5 min at $4^{\circ} \mathrm{C}$) and the supernatant was analyzed via bicinchoninic acid (BCA) protein assay. Each membrane (I-VI for pEXP-Cav 1.2 and I-IV for pEXP-PMCA4b) was rinsed for 30 min with Wash Buffer (Panomics) and then blocked with Blocking Buffer (Panomics) for 1-2 h at room temperature before further washing. The membranes were incubated with diluted bacterial extract ($5 \mu \mathrm{~g} / \mathrm{ml}$ in Blocking Buffer) for 1-2 h at room temperature and washed afterwards three times with Wash Buffer for 5 min each. The PDZ membrane was incubated with 1x Anti-Histidine horse radish peroxidise (HRP) Conjugate (Panomics) diluted in Wash Buffer for 1-2 h at room temperature. Antibody complexes were detected by enhanced chemiluminescence using ECL Western blotting substrate (ECL ${ }^{\text {TM }}$ Plus kit, Amersham). X-rays were scanned and analysed with ImageJ. The higher the signal intensity, the stronger is the protein-protein interaction between the PDZ protein and the C-terminal ligand. The values were standardized against the GST negative control.

Figure 2.13.: PDZ Domain Array

This figure shows the flow chart of the TranSignal PDZ Domain Array assay (drafted by P.Tng).

2.3. GST Fusion Proteins

GST and GST fusion proteins were expressed in E. coli BL21 (DE3) by induction with 1 mM IPTG for 6 h. Bacteria cells were pelleted, resuspended in PBS ($137 \mathrm{mM} \mathrm{NaCl}, 2.7 \mathrm{mM} \mathrm{KCl}$, $100 \mathrm{mM} \mathrm{Na} 2 \mathrm{HPO}_{4}, 2 \mathrm{mM} \mathrm{KH} 2 \mathrm{PO}_{4}, \mathrm{pH} 7.4$) containing protease inhibitor (complete EDTAfree Protease Inhibitor Cocktail Tablets, Roche) and lysed by addition of lysozym ($1 \mathrm{mg} / \mathrm{ml}$) and sonication. The lysate was cleared by centrifugation at 30.000 xg for 20 min at $4^{\circ} \mathrm{C}$. The pellet was resupended in PBS and the resulting lysate was bound to glutathione-Sepharose (GE Healthcare) and rotated overhead for 2 h at $4^{\circ} \mathrm{C}$ (Fig. 2.14.). The quantity of washed and bound fusion proteins was estimated by Coomassie Blue staining of SDS-polyacrylamide gels.

2.4. GST pull-down

To prepare tissue lysates, organs were removed from mice and immediately homogenized by a glass homogenizer in cold RIPA buffer (50 mM Tris-HCl, pH $8.0,150 \mathrm{mM} \mathrm{NaCl}, 1 \%$ Nonidet P-40, 0.5 \% Na-Deoxycholate, protease inhibitor and optional 0.1% SDS). The homogenate was centrifuged at 4000 xg for 3 min . For cell lysates, the same RIPA buffer was used. The supernatant of all lysates ($500 \mu \mathrm{~g}$) and $\sim 3 \mu \mathrm{~g}$ of bound GST or GST fusion proteins on agarose beads were rotated overnight at $4{ }^{\circ} \mathrm{C}$ (Fig. 2.14.). The beads were pelleted and washed three times in PBS with protease inhibitors. Bound proteins were eluated in 2xLaemmli buffer (4 \% SDS, 20 \% glycerol, 10 \% 2-mercaptoethanol, 0,004 \% bromphenol blue, $0,125 \mathrm{M}$ Tris $\mathrm{HCl}, \mathrm{pH} 6.8$) (Laemmli, 1970) and separated on polyacrylamide-gels followed by transfer onto nitrocellulose following standard Western blotting procedures. Nitrocellulose membranes were blocked in TBST (TBS+0.1 \% Tween) with 5% milk before immunoblotting with appropriate primary and secondary antibodies. All secondary antibodies on immunoblots were detected using chemiluminescence (ECL ${ }^{\text {TM }}$ Plus kit, Amersham).

Figure 2.14.: GST pull-down

This figure demonstrates the technique of the GST pull-down. The yellow star shows the GST tag. The black wave line (with the C-terminal tail) demonstrates the ligand protein, which binds in the first step to the sepharose-glutathion beads (G). The blue circle illustrates the PDZ protein with the PDZ domain, which binds to the C-terminal tail of our ligand protein.

2.5. Talon His-Tag Purification Resins

Talon His-Tag Purification Resin is used for preparing pure his-tagged proteins from bacterial, mammalian, and yeast cells, under native or denaturating conditions. Talon is an immobilized metal affinity chromatography (IMAC) resin charged with cobalt, which binds to his-tagged proteins with higher specificity than nickel-charged resins (Fig. 2.15.). 6xHis-Tag fusion proteins (pEXP and pEXP-PMCA4b) were expressed in E. coli BL21 (DE3) by induction with 1 mM IPTG for 6 h . Bacteria cells were pelleted, resuspended in PBS (137 $\left.\mathrm{mM} \mathrm{NaCl}, 2.7 \mathrm{mM} \mathrm{KCl}, 100 \mathrm{mM} \mathrm{Na} 2 \mathrm{HPO}_{4}, 2 \mathrm{mM} \mathrm{KH} 2 \mathrm{PO}_{4}, \mathrm{pH} 7.4\right)$ containing protease inhibitor (complete EDTA-free Protease Inhibitor Cocktail Tablets, Roche) and lysed by addition of lysozym ($1 \mathrm{mg} / \mathrm{ml}$) and sonication. The lysate was cleared by centrifugation at 30.000 xg for 20 min at $4^{\circ} \mathrm{C}$. The pellet was resupended in PBS and the resulting suspension
was bound to talon resin (Clontech Laboratories) and rotated overhead for 20 min at room temperature to allow the polyhistidine-tagged proteins to bind the resin. After centrifugation, the resin was washed by adding 1x Equilibration/Wash Buffer ($50 \mathrm{mM} \mathrm{Na}{ }_{2} \mathrm{HPO}_{4}, 150 \mathrm{mM}$ $\mathrm{NaCl}, \mathrm{pH} 7.0)$ and rotated overhead for 10 min at room temperature. The quantity of washed and bound fusion proteins was estimated by Coomassie Blue staining of SDS-polyacrylamide gels. For the His-tag pull-down of pEXP and pEXP-PMCA4b via Talon Metal resin, we followed the description in 2.4.

Figure 2.15.: Talon His-Tag Purification Resins

This figure shows the schematic diagram of the Talon metal beads. Part A: Talon Metal Affinity Resin; Sepharose bead bearing the tetradentate chelator of the Co^{2+} metal ion. Part B: Thepolyhistidine-tagged recombinant protein binds to the resin (adapted from Clontech).

2.6. Co-immunoprecipitations

HEK 293 cells (DMEM supplemented with 10 \% FCS), ECV cells (DMEM supplemented with 10% FCS, $4.5 \mathrm{~g} / \mathrm{l}$ glucose) and HEK 293 cells stably expressing α_{lb} ($\mathrm{Ca}_{\mathrm{v}} 1.2 \mathrm{~b}$) and the $\mathrm{Ca}_{\mathrm{v}} \beta 2 \mathrm{a}$ subunit of the smooth muscle L-type calcium channel (DMEM supplemented with $10 \% \mathrm{FCS}, 200 \mu \mathrm{~g} / \mathrm{ml}$ G418 plus $100 \mu \mathrm{~g} / \mathrm{ml}$ hygromycine B) were grown to $\sim 80 \%$ confluence on $10-\mathrm{cm}$ plates (BD Falcon). Cells were transfected with $20 \mu \mathrm{~g}$ of total DNA using Lipofectamine ${ }^{\mathrm{TM}} 2000$ (Invitrogen) according to the manufacturer's instruction. After $\sim 48 \mathrm{~h}$, cells were rinsed with cold PBS and lysed in RIPA buffer without 0.1 \% SDS. After 10 min incubation on ice, cells were scraped from the plates and were centrifugated at 13.000 xg for 10 min at $4{ }^{\circ} \mathrm{C} .300 \mu \mathrm{~g}$ of the lysate was used for each immunoprecipitation. 1-5 $\mu \mathrm{g}$ of antibodies: anti-Ca 1.2 (Alomone Labs); anti-MAGI-3 (Abcam); anti-HA (Covance); anti-PMCA4-JA9 (Sigma) were added, respectively. After 2 h of agitation at $4^{\circ} \mathrm{C}, 50 \mu \mathrm{l}$ of protein A/G agarose was added to each mixture and rotated overnight at $4^{\circ} \mathrm{C}$. Protein A/G agarose was pelleted at 4.000 xg for 30 s and washed twice with RIPA buffer containing protease inhibitors. Bound proteins were eluated in $2 x$ xaemmli buffer. The bound proteins were separated on polyacrylamide gels followed by transfer onto nitrocellulose for Western blotting as described above.

2.7. Antibodies for immunoblotting

The following antibodies were used for immunoblotting: anti-ZO-1 (BD Transduction Laboratories ${ }^{\mathrm{TM}}$) used at 1:1000 dilution, anti-nNOS (Zymed Laboratories) used at 1:2000 dilution, anti-Ca 1.2 (Alomone Labs) diluted 1:200, anti-CASK (BD Transduction) diluted 1:1000, anti-NHERF1 (Cell Signaling) diluted 1:1000, anti-MAGI-3 (Abcam) diluted 1:1000, anti-HA (Covance) diluted 1:1000. Secondary goat anti-mouse antibodies were purchased from Jackson Immuno Research and used at 1:5000 dilution, goat anti-rabbit (Jackson Immuno Research) used at 1:10000 dilution. From eBioscience we used rabbit IgG TrueBlot (1:1000) and mouse IgG TrueBlot (1:1000).

2.8. Immunohistochemistry

Rat heart was frozen in liquid nitrogen. Tissue was fixed with Tissue Tek (Sakura) on section blocks, and cryosections ($20 \mu \mathrm{~m}$) were cut with microtome blades. Cryosections were placed on glass slides, fixed in 4% paraformaldehyde/PBS for 5 min , permeabilized with 0.2% TritonX-100/PBS for 10 min , and blocked with 5% goat serum in PBS for 1 h to reduce nonspecific binding. Sections were incubated with primary antibodies overnight at $4{ }^{\circ} \mathrm{C}$, washed thrice in PBS followed by incubation with the appropriate secondary antibodies. Stained sections were washed three times in PBS and mounted in Mowiol. The following antibodies were used: polyclonal rabbit anti-Cav 1.2 -ATTO 488 (Alomone Labs), polyclonal rabbit antiNHERF1 (Cell Signaling), polyclonal rabbit anti-MAGI-3 (Abcam), monoclonal mouse antiPMCA 5F10 (Sigma) and Alexa Fluor 488 goat anti-mouse, Alexa Fluor 594 goat anti-rabbit (Invitrogen). To test for unspecific binding, the secondary Alexa Fluor labeled antibodies were used alone. The confocal micrographs were taken with an Eclipse E600 Nikon microscope using a C 1 confocal scanning head and a 60 -fold oil immersion objective.

2.9. Tricine-SDS-PAGE (Schagger and von Jagow, 1987)

Proteins in the mass range between $1-100 \mathrm{kDa}$ were separated with this procedure. The assembly procedure is rather similar to a standard SDS-PAGE. The follow reagents were used: anode buffer (0.2 M Tris, pH 8.0), cathode buffer (0.1 M Tris, 0.1 M Tricine (Sigma Aldrich), 0.1 \% SDS, pH 8.25), gel buffer (3.0 M Tris, 0.3 \% SDS, pH 8.45), separating gel monomer 16,5:1 (49.5% T $6 \% \mathrm{C}$) and stacking gel monomer 33:1 (49.5 \% T $3 \% \mathrm{C}$). T denotes the total percentage concentration of acrylamide and bisacrylamide (Roth) and C is the percentage concentration of the crosslinker relative to the total concentration T (Hjerten, 1962). At first, we prepared the separating gel solution (16.5% T $6 \% \mathrm{C}$), mixing 10 ml separating gel monomer, 10 ml gel buffer and 3.2 ml glycerol (Merck). We then added $100 \mu 1$ of 10% APS (Sigma Aldrich) and $10 \mu \mathrm{l}$ TEMED (Sigma Aldrich). For the stacking gel (4% T 3% C) we used 1 ml stacking gel monomer, 3.1 ml gel buffer, 8.4 ml dH 2 O , and added 100 $\mu \mathrm{l}$ APS and $10 \mu \mathrm{TEMED}$. The upper (cathode) and lower (anode) buffer chambers were filled with the appropriate buffer. Electrophoresis was performed at $4^{\circ} \mathrm{C}$ at 30 V and 200 mA . After 1 h , when the sample had completely entered the stacking gel, the running conditions were set at 90 V and 300 mA for $\sim 5 \mathrm{~h}$. Afterwards, gels were stained with Coomassie Brilliant Blue G250 (Merck).

2.10. Biotin Switch Assay

Within the last few years, the research on cysteine residues represents a very dynamic and regulated event that can control a multitude of protein functions. Between the diverse oxidative modifications occurring on cysteine residues, S-nitros(yl)ation is rising as an essential nitric oxide (NO) dependent posttranslational modification that regulates a large variety of cellular functions and signalling events. We prefer to stay with the classical chemical nomenclature whereby "nitrosation" is defined as addition of an NO^{+}equivalent and "nitrosylation" as addition of an NO radical to another reactant to form a nitroso or nitrosyl group. Under conditions where the mechanism is either unknown or includes both pathways, the chimera "nitros(yl)ation is used here to indicate the involvement of nitrosation and/or nitrosylation. Measuring free NO levels after cleavage of S-NO bonds or replacing the original nitrosothiols with another detectable tag (see Fig. 2.16.) for a schematic view of methods for analysis S-nitrosylation. We decided us for the Biotin Switch Assay.

Figure 2.16. Schematic illustration of the reactions occurring in the different investigational techniques employed to detect S-nitrosylation, adapted from (Torta et al., 2008).

Background of the Biotin Switch Assay

In the first experimental step proteins are treated with a thiol blocking agent, such as monomethyl thiosulphonate (MMTS) or others, to chemically block all free thiols, leaving Snitrosylated thiols and disulphide bonds untouched. As the S-NO bond is light sensitive, all the experimental procedures should be conducted in the dark. Following the blocking step, the S-NO bond is specifically reduced to a free thiol, usually with milimolar concentrations of ascorbat (for 1 h) in the presence of the metal ion chelators ethylenediaminetetracetic acid (EDTA) and neocuproine. Free thiols react with a thiol-specific biotinylating agent, such as biotin-HPDP (N-(6-(biotinamido)hexyl)-3-(2-pyridyldithio)propionamide)), which results in a disulphide-linked label that can be used for Western blotting. This label can be easily removed by using mercaptoethanol or dichlorodiphenyltrichloroethane (DTT).

Procedure

S-Nitrosylated proteins were detected by a modification of the biotin switch method (Jaffrey and Snyder, 2001). Cells were lysed in HEN buffer (250 mM Hepes NaOH, pH 7.1, 1 mM EDTA, 0.1 mM neocuproine from Sigma) and centrifugated at 1000 xg for 10 min at $4^{\circ} \mathrm{C}$. Cell lysates $(240 \mu \mathrm{~g})$ were added to four volumes of blocking buffer (nine volumes of HEN buffer plus 1 volume 25% SDS, adjusted to 20 mM methyl methanethiosulfonate (MMTS from Fluka) with a 2 M stock prepared in dimethylformamide DMF from Sigma) at $50^{\circ} \mathrm{C}$ for 20 min with frequent vortexing. The MMTS was then removed by adding four volumes acetone and the proteins precipitated at $-20^{\circ} \mathrm{C}$ for 20 min . The proteins were recovered by centrifugation 5.000 xg for 5 min , followed by rinsing of the pellet with $4 \times 1 \mathrm{ml} 70 \%$ acetone $/ \mathrm{H}_{2} \mathrm{O}$. After removal of acetone, the proteins were resuspended in $240 \mu \mathrm{l}$ of HENS buffer (HEN buffer containing 1% SDS). To the suspension we added biotin-HPDP (Thermo Fisher Scientific) prepared fresh as a 4 mM solution in dimethylsulfoxid (DMSO from Sigma) from a 50 mM stock suspension in DMF. Sodium ascorbate was added to a final concentration of 1 mM . Labeling reaction was performed in the dark unless otherwise indicated. After incubation for 1 h at $25^{\circ} \mathrm{C}$, biotinylated proteins were precipitated by streptavidin-agarose beads (Fluka). To detect an individual SNO protein from lysates, the labeling reaction was acetone-precipitated as previously described. The washed pellet was resuspended in $250 \mu \mathrm{l}$ of HEN/10 buffer (HEN diluted 10 -fold into $\mathrm{H}_{2} \mathrm{O}$ containing 1% SDS) followed by addition of $750 \mu \mathrm{l}$ of neutralization buffer (25 mM Hepes, $100 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$

EDTA, 1 \% Triton X-100, pH 7.5) This material was incubated overnight at $4{ }^{\circ} \mathrm{C}$ with $50 \mu \mathrm{l}$ of a streptavidin-agarose slurry. The beads were washed with $4 \times 1 \mathrm{ml}$ of wash buffer (neutralization buffer plus 500 mM NaCl), followed by $2 \times 1 \mathrm{ml}$ of neutralization buffer. The beads were eluated with $50 \mu \mathrm{l}$ of HEN/10 $+1 \% \beta$-mercaptoethanol at room temperature for 20 min . The eluated mixture was then analyzed by SDS-PAGE, followed by immunoblotting with anti- $\mathrm{Ca}_{\mathrm{v}} 1.2$.

Figure 2.17.: Biotin Switch Assay

The schematic diagram shows the important chemical steps of the Biotin Switch Assay (Proteomics).

2.11. Current Recordings (that part was done by Olaf Strauss and his group)

Transfection

For patch clamp experiments HEK 293 cells were transiently transfected with either GFP alone or nNOS and GFP or \triangle NOS and GFP. All transfections were carried out using Lipofectamine transfection reagent (Invitrogen) following the manufacturer's instructions. Cells were analyzed at 36 h after transfection.

Patch-Clamp recordings

Membrane currents were measured in the whole-cell configuration of the patch-clamp technique. During the recordings, transfected cells were superfused by a bath solution containing (mM): NaCl 82 , TEA-Cl $20, \mathrm{BaCl}_{2} 30, \mathrm{CsCl} 5.4, \mathrm{MgCl}_{2} 1$, EGTA 0.1, Glucose 10 , HEPES 5, pH 7.4 adjusted with $\mathrm{NaOH} ; 302.9 \mathrm{mOsm}$. The perfusion chamber was mounted onto a stage of an inverted fluorescence microscope. Transfected cells were selected by their GFP fluorescence. For whole-cell recordings, patch-pipettes of 3-5 $\mathrm{M} \Omega$ were made from borosilicate tubes using a DMZ-Universal Puller (Zeitz). Pipettes were filled with a pipettesolution containing (mM): CsCl 102, TEA-Cl 10, EGTA $10, \mathrm{MgCl}_{2} 1, \mathrm{Na}_{2}$ ATP 3, HEPES 5, pH 7.4 adjusted with $\mathrm{CsOH} ; 248 \mathrm{mOsm}$. Membrane currents were recorded using an EPC-10 computer-controlled patch-clamp amplifier in conjunction with the software TIDA for data acquisition and analysis. The access resistance was compensated for to values lower than 10 $\mathrm{M} \Omega$. For analysis of voltage-dependent activation steady-state currents were plotted against the membrane potentials of the electrical stimulation. Plots of each individual cell were fitted using the Boltzmann equation.

Statistical analysis

Statistical significance was tested using one-way analysis of variance (ANOVA). All data were given as mean \pm SEM. $\mathrm{n}=$ number of independent experiments, $*=$ statistical significance with $\mathrm{p}<0.05$. Mean values of data obtained from Boltzmann fits calculated for each individual cell.

RESULTS

3.1. PDZ domain arrays

3.1.1. Expression of the PDZ array ligands

To discover novel PDZ domain containing protein interaction partners of $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$ and PMCA4b, the nucleotide sequences coding for the C-termini of these proteins were cloned into pEXP bacterial expression vectors (Fig. 3.1.B). Verification of expression and size of His-tagged recombinant proteins in bacteria via tricine gel analysis confirmed high expression levels and expected sizes of proteins, i.e. for the pEXP read-through, $\mathrm{pEXP}-\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$ and pEXP-PMCA4b, 9 kDa as calculated, 8.47 kDa , and 8.97 kDa , respectively (Fig. 3.1.B). Probing the PDZ domain arrays with these bacterial lysates and successive detection of interactions with anti-6xHis antibodies revealed a series of positive spots on all PDZ arrays tested.

Figure 3.1.: Expression of the PDZ array ligands $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$ and PMCA4b

A

C-terminal end Ca, 1.2	
human	VSSL*
mouse	VSNL* *
rat	VSNL* *
consensus	VSXL* *

C-terminal end PMCA4b	
human	ETSV** *
mouse	ETPV* *
rat	ETPV*
consensus	ETXV*

B

pEXP-Cas 1.2α	6xHis-tag	poly-Glycine linker	C-term: DSRSYVSNL*
pEXP-PMCA4b	6xHis-tag	poly-Glycine linker	C-term:LPQSDSSLQSLETSV*

A: C-terminal binding motif of $\mathrm{Ca}_{\mathrm{v}} 1.2$ and PMCA4b. The X represents any amino acid and the $*=$ stop, possess different C-terminal ends and resulting in interactions with different PDZ domain containing proteins \mathbf{B} : the last 10 amino acid residues of $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$ and the final 15 amino acid residues of PMCA4b were expressed with a $6 x$ Histidine tag linked by a poly-Glycine linker through insertion into the expression vector pEXP . $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$ (VSNL*) and PMCA4b (ETSV*) C: Tricine-SDS-PAGE to validate the expression of recombinant protein ligands in BL21 bacteria. The shifts between the lanes pEXP ($\sim 9 \mathrm{kDa}$), pEXP-Ca $1.2 \alpha(8.47 \mathrm{kDa})$, pEXPPMCA4b (8.97 kDa), where the read through product, pEXP, is larger than the PDZ ligands, confirmed their successful expression. Each lane contained $4 \mu \mathrm{l}$ of bacterial lysate.

3.1.2. PDZ domain array I

Figure 3.2.: PDZ domain array I

A: schematic chart of the TranSignal PDZ domain array I. 100 ng of the PDZ domain containing proteins are spotted in duplicate on the array. pos - positive control (Histidine-tagged ligand), negative control - Glutathione-S-Transferase (GST). B: PDZ domain array I was treated with bacterial extract containing the Histidine-tagged recombinant protein, pEXP-Cav 1.2α. C: PDZ domain array I was treated with bacterial lysate containing the Histidine-tagged recombinant protein, pEXP-PMCA4b. Both bacterial extracts had a concentration of $5 \mathrm{mg} / \mathrm{ml}$. PDZ domain and ligand interactions were visualized with anti-Histidine antibodies.

Incubation of the PDZ Domain Array I, on which mainly PDZ domains of synaptic proteins were spotted (overview in Fig. 3.2.A), with the C-terminal PDZ ligands of $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$ and PMCA4b revealed a panel of additional positive PDZ spots, representing possible interaction partners of the $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$ and the PMCA4b (Figs. 3.2.B and C). The ImageJ analysis of these signal intensities is listed in Table 3.1 and Fig. 3.3. In this case, the $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$ and PMCA4b Ctermini interacted strongly with the PDZ domains of Mint-2-D1, OMP25 and Dlg-D1 (also called SAP97-D1). In addition to these bindings, a promiscuous binding of the $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha \mathrm{C}$ terminus to HtrA2, hCLIM1, hPTP1E-D1, RIL, and ZO-2-D3 was identified. Moreover, binding of the PMCA4b C-terminus to PDZ domains of CASK and an interaction with the

Chapsyn-110 (Dlg PDZ domain 2) was very prominent and the signal strength was much stronger than the positive controls of the array.

Table 3.1.: PDZ domain array I

PDZ domain	full name of protein	accession	mean grey values	
			$\mathrm{Ca}_{\mathrm{v}} 1.2$	PMCA4b
Mint-2-D1	X11L protein PDZ Domain 1	Q99767	31.5	17.7
Mint-3-D1	X11L2 protein, PDZ Domain 1	O96018	0	0.5
Mint-3-D2	X11L2 protein, PDZ Domain 2	O96018	0	0
Mint-1-D1	X11 protein, PDZ Domain 1	Q02410	2.2	0.3
Mint-1-D2	X11 protein, PDZ Domain 2	Q02410	0.1	0.9
CASK	Calcium/Calmodulin-dependent serine protein kinase	O14936	11.0	4.4
Dlg-D1	Synapse-associated protein 97 PDZ-Domain 1	Q12959	30.4	49.8
Dlg1-D3	Synapse-associated protein 97 PDZ-Domain 3	Q12959	0	0.3
Dlg2-D2	Channel associated protein of synapse-110, PDZ Domain 2, PSD-93	Q15700	0.1	242.8
Dlg4-D3	Human postsynaptic density-95, PDZ Domain 3	P78352	0.2	0.2
DVL1	Dishevelled 1	O14640	0.2	0.9
DVL3	Dishevelled 3	Q92997	0.3	0
DVLL	Dishevelled-1-like	P54792	0.3	0
GIPC	GAIP C-terminus interacting protein GIPC	O14908	0.2	0
HtrA2	High temperature requirement protein A2	O43464	0	0
LIMK2	LIM motif-containing protein kinase-2	P53671	8.9	0
MPP2	MAGUK p55 subfamily member 2	Q14168	0	0
OMP25	Mitochondrial outer membrane protein 25	P57105	0.3	0.1
NEB1	Neurabin-I, neural tissue-specific F-actin-binding protein I	Q9ULJ8	0.2	0.1
hCLIM1	Human 36kDa carboxyl terminal LIM domain protein	O00151	5.4	132.5
PTPH1	Protein-tyrosine phosphatase H1	P26045	2.3	0
ZO-2-D1	Zonula occludens protein 2, PDZ Domain 1	Q9UDY2	0	0
hPTP1E-D1	Protein-tyrosine phosphatase 1E, PDZ Domain 1	Q12923	5.2	0
hPTP1E-D5	Protein-tyrosein phosphatase 1E, PDZ Domain 5	Q12923	7.9	0
RGS12	Regulator of G-protein signaling 12	O14924	0	0.1
RIL	Reversion-induced LIM protein	P50479	14.8	0.9
ZO-1-D3	Zonula occludens protein 1, PDZ Domain 3	Q07157	0.3	0
ZO-2-D3	Zonula occludens protein 2, PDZ Domain 3	Q9UDY2	8.2	0.1
pos	PDZ Domain positive control for Kv1.4 ligand		102.2	153.3
GST	Glutathione-S-Transferase (negative control)		0.0	0.0

PDZ domain containing proteins from membrane I. This table lists signal intensities of the visualised spots. We incubated the membrane I with bacterial lysate containing pEXP-Cav 1.2 and pEXP-PMCA4b.

Figure 3.3.: Bar chart of spot intensities of PDZ domain array I

Blue $=$ incubated with $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$ C-terminus. Red $=$ incubated with PMCA4b C-terminus.

3.1.3. PDZ domain array II

Figure 3.4.: PDZ domain array II

A: The arrangement of the TranSignal PDZ domain array II. The controls were the same as described in Fig. 3.2. B: PDZ domain array II was incubated with the bacterial extract containing pEXP-Ca 1.2α. C: PDZ domain array II was incubated with bacterial lysate containing pEXP-PMCA4b.

The PDZ Domain Array II is organized as shown in Fig. 3.4.A, which includes some tight junction proteins, sodium/hydrogen exchanger proteins and further PDZ domains. Strong interactions for both PDZ ligands were observed for ZO-1-D1, MAST-205 and, of course, for the PDZ positive controls (SAP-102). Cav 1.2α C-terminus had a high affinity for 4 additional PDZ domains as well: ZO-1-D2, NHERF1-D1, NHERF2-D1/D2, several KIAA proteins and nNOS (Figs. 3.4.B and C and analyses of signal intensities summarized in Table 3.2. and Fig. 3.5.).

Table 3.2.: PDZ domain array II

			mean grey values	
PDZ domain	full name of protein	accession	$\mathrm{Ca}_{\mathrm{v}} 1.2$	PMCA4b
KIAA0300-D6	KIAA0300 protein, Domain 6	O15018	0	20.8
KIAA0303	KIAA0303 protein	O15021	0	0
KIAA0316	KIAA0316 protein	Q14CM0	24.8	8.2
KIAA0559	KIAA0559 protein	Q9Y6V0	0	0
KIAA0613	KIAA0613 protein, Domain 7	O75112	10.8	0
KIAA1719-D7	KIAA1719 protein, Domain 7	Q9C0E4	18.2	0
KIAA1719-D4	KIAA1719 protein, Domain 4	Q9C0E4	0	0
KIAA1719-D3	KIAA1719 protein, Domain 3	Q9C0E4	0	0
KIAA1526-D3	KIAA1526 protein, Domain 3	Q9P202	66.5	0
MAST205	microtubule associated testis specific serine/threonine protein kinase	Q6P0Q8	77.7	53.5
KIAA1849	hypothetical protein KIAA1849	Q96JH8	0	0
PALS1-D8	Pals1-associated tight junction protein, Domain 8	Q8NI35	0	0
PALS1-D9	Pals1-associated tight junction protein, Domain 9	Q8NI35	0	0
PALS 1-D1	Pals1-associated tight junction protein, Domain 1	Q8NI35	0	0
PALS1-D2	Pals1-associated tight junction protein, Domain 2	Q8NI35	0	0
PALS1-D5	Pals1-associated tight junction protein, Domain 5	Q8NI35	0	0
PALS1-D3	Pals1-associated tight junction protein, Domain 3	Q8NI35	0	0
MGC5395	similar to hypothetical protein MGC5395	AAH12477	0	0
FLJ23209-D1	hypothetical protein FLJ23209, Domain 1	NP_079171	0	0
FLJ23209-D2	hypothetical protein FLJ23209, Domain 2	NP_079171	0	0
KIAA1719-D6	KIAA1719 protein, Domain 6	Q9 ${ }^{\text {C0E4 }}$	7.6	0
FLJ00011	FLJ00011 protein (Fragment)	Q9H7Q6	45.5	0
NHERF2-D1	solute carrier family 9 (sodium/hydrogen exchanger), 3 regulatory factor 2 , Domain 1	Q15599	77.0	0
NHERF2-D2	solute carrier family 9 (sodium/hydrogen exchnager), 3 regulatory factor 2 , Domain 2	Q15599	0 848	0
NHERF1-D1	solute carrier family 9 (sodium/hydrogen exchanger) 3 regulatory factor 1, Domain 1	O14745	84.8	0
Z01-D1	tight junction protein 1 (zona occludens), Domain 1	Q07157	130.7	40.6
Z01-D2	tight junction protein 1 (zona occludens), Domain 2	Q07157	152.0	0
SDB1-D1	syndecan binding protein (syntenin), melanoma differentiation associated protein-9, Pro-TGF-alphacytoplasmic domain interacting protein 18 (TACIP18), Domain 1	NP_005616S	0	0
SDB1-D2	syndecan binding protein (syntenin), melanoma differentiation associated protein-9, Pro-TGF-alpha cytoplasmic domain interacting protein 18 (TACIP18), Domain 2	NP_005616S	0	0
IL16(2)-D3	interleukin 16 isoform 2; lymphocyte chemoattractant factor, Domain 3	Q14005	2.5	0
LNX1-D3	numb-binding protein 1 ; ligand of numb-protein, Domain 3	Q8TBB1	23.5	0
nNOS	nitric oxide synthase 1 (neuronal), Domain 5	P29475	36.2	0
PDZ-pos	PDZ Domain positive control for Kv1.4 ligand synapse associated protein 102		172.4	241.4
pos	PDZ Domain positive control for Kv1.4 ligand		102.2	153.3
GST	Glutathione-S-Transferase (negative control)		0.0	0.0

PDZ domain containing proteins from membrane II. This table gives signal intensities of protein spots. We incubated the membrane II with bacterial lysates containing pEXP-Ca $\mathrm{a}_{\mathrm{v}} 1.2$ and pEXP-PMCA4b.

Figure 3.5.: Bar chart of spot intensities of PDZ domain array II

Blue $=$ incubated with $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$ C-terminus. Red $=$ incubated with PMCA4b C-terminus.

3.1.4. PDZ domain array III

Figure 3.6.: PDZ domain array III
A

A: Schematic representation of the TranSignal PDZ domain array III. 100 ng of the PDZ domain containing proteins are spotted in duplicate on the array. pos - positive control (Histidine-tagged ligand), negative control -Glutathione-S-Transferase (GST). B: PDZ domain array III was incubated with the bacterial lysate containing the Histidine-tagged recombinant protein, pEXP-Ca $\mathrm{v}_{\mathrm{v}} 1.2 \alpha$. C: PDZ domain array III was incubated with the bacterial lysate containing the Histidine-tagged recombinant protein, pEXP-PMCA4b. Both bacterial extracts had a concentration of $5 \mu \mathrm{~g} / \mathrm{ml}$. PDZ domain and ligand interactions were visualized with anti-Histidine antibodies.

Figure 3.6.A gives an overview of the arrangement of the PDZ Domain Array III and the corresponding results for $\mathrm{Ca}_{\mathrm{v}} 1.2$ and PMCA4b are shown in Figs. 3.6.B and C, respectively. The PDZ Domain Array III was mainly spotted with PDZ domains of scaffolding proteins, especially MAGUKs. ImageJ quantification (Table 3.3. and Fig. 3.7.) revealed that both PDZ ligands interacted strongly with different domains of MAGI-1 (also called BAI-1, brainspecific angiogenesis inhibitor-associated protein 1), MAGI-2 (also called AIP-1, atrophin 1 interacting protein), and MAGI-3, domains of SCRIB1, and TIP1.

Table 3.3.: PDZ domain array III

			mean grey values	
PDZ domain	full name of protein	accession	$\mathrm{Ca}_{\mathrm{v}} 1.2$	PMCA4b
MAGI3-D2	membrane-associated guanylate kinase-related 3, Domain 2	Q5TCQ9	17.9	160.3
MAGI3-D4	membrane-associated guanylate kinase-related 3, Domain 4	Q5TCQ9	18.3	17.9
MAGI3-D5	membrane-associated guanylate kinase-related 3, Domain 5	Q5TCQ9	18.1	25.7
MAGI3-D6	membrane-associated guanylate kinase-related 3, Domain 6	Q5TCQ9	72.7	203.3
MAGI1-D2	membrane-associated guanylate kinase inverted 1 ; brain-specific angiogenesis inhibitor-associated protein 1; WW domain-containing protein 3; atrophin- 1 interacting protein 3, Domain 2	Q96QZ7	39.5	55.5
MAGI1-D3	membrane-associated guanylate kinase inverted 1 ; brain-specific angiogenesis inhibitor-associated protein 1 ; WW domain-containing protein 3;	Q96QZ7	41.0	218.7
MAGI1-D4	atrophin-1 interacting protein 3, Domain 3 membrane-associated guanylate kinase inverted 1 ; brain-specific angiogenesis inhibitor-associated protein 1 ; WW domain-containing protein 3 ;	Q96QZ7	22.3	22.5
MAGI1-D1	atrophin-1 interacting protein 3, Domain 4 membrane-associated guanylate kinase inverted 1 ; brain-specific angiogenesis inhibitor-associated protein 1 ; WW domain-containing protein 3 ;	Q96QZ7	17.0	1.8
MAGI1-D6	atrophin- 1 interacting protein 3, Domain 1 membrane-associated guanylate kinase inverted 1 ; brain-specific angiogenesis inhibitor-associated protein 1; WW domain-containing protein 3;	Q96QZ7	26.7	4.7
MAGI2-D2	atrophin-1 interacting protein 3, Domain 6 membrane-associated guanylate kinase inverted 1 ; atrophin- 1 interacting protein 1, Domain 2	Q86UL8	2.9	48.5
MAGI2-D3	membrane-associated guanylate kinase inverted 1 ; atrophin- 1 interacting protein 1, Domain 3	Q86UL8	14.9	226.5
MAGI2-D4	membrane-associated guanylate kinase inverted 1 ; atrophin- 1 interacting protein 1, Domain 4	Q86UL8	13.5	13.7
MAGI2-D5	membrane-associated guanylate kinase inverted 1 ; atrophin-1 interacting protein 1, Domain 5	Q86UL8	28.3	98.6
MAGI2-D6	membrane-associated guanylate kinase inverted 1 ; atrophin- 1 interacting protein 1, Domain 6	Q86UL8	98.9	229.2
hPTP1E-D2	protein tyrosine phosphatase, non-receptor type 13 isoform 4; protein-tyrosine phosphatase PTPL1;protein tyrosine phosphatase 1E; Fas-associated phosphatase-1; protein-tyrosine phosphatase 1, Fas-associated APO-1/CD95	Q12923	17.4	0.1
hPTP1E-D3	protein tyrosine phosphatase, non-receptor type 13 isoform 4; protein-tyrosine phosphatase PTPL1; protein tyrosine phosphatase 1E; Fas-associated phosphatase-1; protein-tyrosine phosphatase 1, Fas-associated APO-1/CD95 (Fas)-associated phosphatase, Domain 3	Q12923	8.8	0.1
hPTP1E-D4	protein tyrosine phosphatase, non-receptor type 13 isoform 4; protein-tyrosine phosphatase PTPL1; protein tyrosine phosphatase 1E; Fas-associated phosphatase-1; protein-tyrosine phosphatase 1, Fas-associated APO-1/CD95	Q12923	23.7	0.5
PTPN4	(Fas)-associated phosphatase, Domain 4 protein tyrosine phosphatase, non-receptor type 4; megakaryocyte phosphatase; PTPase-MEG1	P29074	22.8	0.1

Table 3.3.: continued from previous page

			mean grey values	
PDZ domain	full name of protein		accession	Ca $_{\text {v }} 1.2$

PDZ domain containing proteins from membrane III. This table shows signal intensities of visualised spots. We incubated the membrane III with bacterial lysate containing pEXP-Ca 1.2 and pEXP-PMCA4b.

Figure 3.7.: Bar chart of spot intensities of PDZ domain array III

Blue $=$ incubated with $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$ C-terminus. Red $=$ incubated with PMCA4b C-terminus.

3.1.5. PDZ domain array IV

Figure 3.8.: PDZ domain array IV

A

A: arrangement of the TranSignal PDZ domain array IV. It received the same treatment as described in figure 3.2. B: PDZ domain array IV was incubated with bacterial lysates containing pEXP-Ca ${ }_{\mathrm{v}} 1.2 \alpha$. C: PDZ domain IV was incubated with bacterial extract containing pEXP-PMCA4b.

Probing the PDZ Domain Array IV, which consists, for the most part, of a variety of scaffolding proteins, MAGUKs, Lin-7 proteins, nucleotide exchange factors, and synthrophins (Fig. 3.8.A), revealed strong interaction of the PMCA4b C-terminus with PDZ domains of MUPP1, Dlg2 (Chapsyn-110), Dlg3 (SAP-102), LIN7A, LIN7B, LIN7C, SNA1, and SNB1. Both PDZ ligands interact with the PDZ domains of GEF11, GEF12 and SHK1, and the $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$ C-terminus binds specifically to that of PIST (Figs. 3.8.B and C and initial quantification of dot intensities summarized in Table 3.4. and Fig. 3.9.).

For additional analyses, several of the already established- and some of the observedinteraction partners were selected (listed in Table 3.5.) and the interactions were verified in co-immunoprecipitation and co-localization experiments.

Table 3.4.: PDZ domain array IV

			mean grey values	
PDZ domain	full name of protein	accession	$\mathrm{Ca}_{\mathrm{v}} 1.2$	PMCA4b
MUPP1-D6	multiple PDZ domain protein, Domain 6	075970	0	0
MUPP1-D12	multiple PDZ domain protein, Domain 12	O75970	0	22.3
MUPP1-D2	multiple PDZ domain protein, Domain 2	075970	0	0
MUPP1-D3	multiple PDZ domain protein, Domain 3	075970	0	0
MUPP1-D13	multiple PDZ domain protein, Domain 13	075970	0	195.2
MUPP1-D1	multiple PDZ domain protein, Domain 1	O75970	0	25.3
Dlg3-D2	synapse-associated prote in 102; neuroendocrine dlg, discs large homolog 3,	Q92796	10.9	244.5
Dlg3-D3	Domain 2 synapse-associated protein 102; neuroendocrine dlg, discs large homolog 3, Domain 3	Q92796	0	204.5
Dlg5-D1	discs, large homolog 5, Domain 1	Q87DM6	0	0
Dlg5-D4	discs, large homolog 5, Domain 4	Q87DM6	0	0
Dlg5-D3	discs, large homolog 5, Domain 3	Q87DM6	0	0
Dlg5-D2	discs, large homolog 5, Domain 2	Q87DM6	0	0
Dlg2-D3	Channel associated protein of synapse-110 (Chapsyn-110), Domain 3	Q15700	0	191.7
PAR6B	Partitioning defective-6 homolog beta, Domain 1	Q9BYG5	0	0
LIK1	LIM domain kinase 1 isoform; LIM motif containing protein kinase	P53667	0	0
LOMP	LIM domain only 7 isoform a; KIAA0858 protein	Q8WWI1	0	0
RIL	LIM protein RIL (Reversion-induced LIM protein)	P50479	0	0
A2LIM	alpha-actinin-2-associated LIM protein; enigma homolog	Q53GG5	0	0
TIAM1	T-cell lymphoma invasion and metastasis 1	Q13009	0	0
LIN7C	Lin-7 homolog C	Q9NUP9	0	112.6
LIN7B	Lin-7 homolog B	Q9HAP6	0	66.9
LIN7A	Lin-7 homolog A	O14910	0	85.9
GEF11	Rho guanine exchange factor (GEF) 11; glutamate transporter EAAT4-asociated prote in 48; KIAA0380 protein	O15085	62.9	134.6
GEF12	Rho guanine exchange factor (GEF) 12; leukemia-associated GEF; similar to mouse Lsc oncogene	Q9NZN5	55.9	68.9
PDZK1-D1	PDZ domain containing 1, Domain 1	Q5T2W1	0	0
PDZK1-D2	PDZ domain containing 1, Domain 2	Q5T2W1	0	0
SNB1	Beta-1-syntrophin; tax interaction protein 43; dystrophin-associated protein A1,59kD, basic component 1	Q13884	0	101.1
SNA1	acidic alpha 1 syntrophin; dystrophin-associated protein A1, 59 kD , acidic component; pro-TGF-alpha cytoplasmic domain-interacting protein 1	Q13424	10.0	163.6
SHK1	somatostatin receptor-interacting protein; Sh3 and multiple ankyrin repeat domains 1	Q9Y566	47.8	52.1
MPP6	membrane protein, palmitoylated 6; protein associated with Lin7 2; VELI-associated MAGUK 1; MAGUK protein p55T	Q9NZW5	0.5	0
PIST	Golgi associated and coiled-coil motif containing protein; CFTR-associated PDZ/coiled-coil domain binding partner for the rho-family GTPase Tc 10 ; fused in glioblastoma; Golgi associated PDZ an coiled-coil motif containing protein	Q9HD26	26.0	0
GEF2	Rap guanine nucleotide exchange factor; PDZ domain-containing guanine nucleotide exchange factor 1	Q8TEU7	0.3	0
RIM2	regulating synaptic membrane exocytosis 2 ; RAB3 interacting protein 3; KIAA0751 protein	Q9UQ26	0	0
PDZ-pos	PDZ Domain positive control for Kv1.4 ligand synapse associated protein 102		172.4	241.4
pos	PDZ Domain positive control for Kv1.4 ligand		102.2	153.3
GST	Glutathione-S-Transferase (negative control)		0.0	0.0

PDZ domain containing protein from membrane IV. This table shows signal intensities of protein spots. We incubated the membrane IV with bacteria lysate containing pEXP-Ca 1.2 and pEXP-PMCA4b.

Figure 3.9.: Bar chart of spot intensities of PDZ domain array IV

Blue $=$ incubated with $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$ C-terminus. Red $=$ incubated with PMCA4b C-terminus.

Table 3.5.: Summary of certain potential interaction partners of $\mathrm{Ca}_{\mathrm{v}} \mathbf{1 . 2} \alpha$ and PMCA4b.

			mean grey values	
PDZ domain	full name of protein	accession	$\mathrm{Ca}_{\mathrm{v}} 1.2$	PMCA4b
Dlg2-D2	Channel associated protein of synapse-110, PDZ Domain 2, PSD-93	Q15700	0.1	242.8
CASK	Calcium/Calmodulin-dependent serine protein kinase	O14936	11.0	4.4
hCLIM1	Human 36 kDa carboxyl terminal LIM domain protein	O00151	5.4	132.5
MAST205	microtubule associated testis specific serine/threonine protein kinase	Q6P0Q8	77.7	53.5
NHERF1-D1	solute carrier family 9 (sodium/hydrogen exchanger) 3 regulatory factor 1, Domain 1	O14745	84.8	0
Z01-D1	tight junction protein 1 (zona occludens), Domain 1	Q07157	130.7	40.6
nNOS	nitric oxide synthase 1 (neuronal), Domain 5	P29475	36.2	0
MAGI3-D6	membrane-associated guanylate kinase-related 3, Domain 6	Q5TCQ9	72.7	203.3
MAGI1-D3	membrane-associated guanylate kinase inverted 1 ; brain-specific angiogenesis inhibitor-associated protein 1 ; WW domain-containing protein 3; atrophin-1 interacting protein 3, Domain 3	Q96QZ7	41.0	218.7
MAGI2-D6	membrane-associated guanylate kinase inverted 1 ; atrophin-1 interacting protein 1, Domain 6	Q86UL8	98.9	229.2
SCRIB1-D1	Scribble, Domain 1	Q14160	102.6	253.3
GEF11	Rho guanine exchange factor (GEF) 11; glutamate transporter EAAT4-asociated protein 48; KIAA0380 prote in	O15085	62.9	134.6
GEF12	Rho guanine exchange factor (GEF) 12; leukemia-associated GEF; similar to mouse Lsc oncogene	Q9NZN5	55.9	68.9

Signal intensities of positive protein spots on the PDZ domain membranes incubated with lysates of bacteria expressing pEXP-Ca $\mathrm{a}_{\mathrm{v}} 1.2$ and $\mathrm{pEXP}-\mathrm{PMCA} 4 \mathrm{~b}$. Comment: Please note that not all high score partners were listed here. For more details, please refer to the tables before.

3.2. Co-immunoprecipitation of $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$

3.2.1. Co-immunoprecipitations of $\mathbf{C a}_{\mathbf{v}} \mathbf{1} .2 \alpha$ with putative interaction partners

The interaction of $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$ with diverse members of MAGUKs (CASK, MAGI-3 and ZO-1), and the proteins NHERF1 and MAST-205, was established by co-immunoprecipitations. CASK, a 112 kDa protein, is expressed at neuronal synapses, where it interacts with neurexin, and in renal epithelial cells (Hata et al., 1996). Consequently, we examined the putative interaction between $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$ and CASK in mouse brain lysates, which naturally express both proteins, and lysates of HEK 293 cells, which were transfected with $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$. Interaction of CASK with $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$ was observed in both lysate types, and in ordinary, untransfected HEK 293 cells (Fig. 3.10.A).
NHERF1, also well-known as ezrin binding protein 50 , is a 55 kDa phosphoprotein, which contains two PDZ domains (Weinman et al., 1998). Co-immunoprecipitations were performed to test for interaction of full length proteins in heart and kidney lysates. HEK 293 cells with stable overexpression of the α and β subunits of $\mathrm{Ca}_{\mathrm{v}} 1.2$ were subsequently transfected with NHERF1 and probed as well. It was possible to co-precipitate NHERF1 with the Cáv.2specific antibody in the organ lysates and the transfected cells (Fig. 3.10.B).
MAGI-3 (160 kDa) is predominantly expressed in a variety of tissues including the brain (Nakanishi et al., 1997; Wood et al., 1998; Wu et al., 2000b). Co-immunoprecipitations discovered potential interaction between $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$ and MAGI- 3 in mouse brain lysates (Fig. 3.10.C).

The tight junction protein ZO-1 is found in epithelial cells (Anderson et al., 1988b; Stevenson et al., 1986), therefore, we searched for an interaction between $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$ and ZO-1 in ECV endothelial cells transfected with $\mathrm{Ca}_{\mathrm{v}} 1.2$. As depicted in Fig. 3.10.D, the prominent band suggested a possible interaction of $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$ and $\mathrm{ZO}-1$ in ECV cells.
The serine/threonine kinase (Ser/Thr kinase) MAST-205 is expressed in testis, brain and kidney tissues (Walden and Cowan, 1993; Wang et al., 2006). To test for protein interactions between $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$ and MAST-205, we used the HA-tag constructs pRK5-kinase-MAST205 (36 kDa) and pRK5-kinase-PDZ-MAST205 (77 kDa), performed co-immunoprecipitations as above and used a $\mathrm{Ca}_{\mathrm{v}} 1.2$-specific antibody. We found that the $\mathrm{Ca}_{\mathrm{v}} 1.2$ antibody co-precipitated MAST-205 kinase domain (KD) + PDZ domain from transfected HEK 293 cells with stable overexpression of the α and β subunits of $\mathrm{Ca}_{\mathrm{v}} 1.2$ (Fig. 3.10.E). In all immunoprecipitations, the positive controls were inputs of the respective protein and the negative controls were the relevant protein samples with protein A / G-agarose beads and an irrelevant antibody (α - AT_{2} ($\mathrm{H}-143$)).

Figure 3.10.: Co-immunoprecipitation of $\mathrm{Ca}_{\mathrm{v}} \mathbf{1 . 2 \alpha}$

A: Co-immunoprecipitation representing an interaction of $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$ with CASK. CASK was expressed in HEK 293 cells, which were additionally transfected with pcDNA3-Ca 1.2α. We also probed mouse brain lysates. These lysates were precipitated with polyclonal $\alpha-\mathrm{Ca}_{\mathrm{v}} 1.2$ antibody and probed with monoclonal α-CASK antibody for immunoblotting (IB). The positive control (input) consisted of $20 \mu \mathrm{~g}$ of HEK 293 lysate. The negative control was HEK 293 cells immunoprecipitated (IP) with an irrelevant antibody (α-NFATc2). B: Interaction between $\mathrm{Ca}_{\mathrm{v}} 1.2$ and NHERF1. The positive control was HEK 293 cells transfected with pcDNA3NHERF1, and the negative control was incubated with an irrelevant antibody (α-AT2). We precipitated HEK 293 cells stably expressing NHERF1 with polyclonal $\alpha-\mathrm{Ca}_{\mathrm{v}} 1.2$ antibody, and also tissue lysates of heart and kidney. For IB we used α-NHERF1 antibody. C: IP revealed an interaction of $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$ with MAGI-3. Positive and negative controls are as described above. $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$ antibody was used for IP and MAGI-3 antibody for IB. D: Interaction between $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$ and ZO-1. ZO-1 protein is expressed in ECV cells, hence the positive control was non-transfected ECV cells, the negative control contained ECV cells immunoprecipitated with an irrelevant antibody (α-NFATc2), and for the IP we used $\mathrm{Ca}_{\mathrm{v}} 1.2$ antibody for precipitation and $\alpha-\mathrm{ZO}-1$ for the IB. E: HEK 293 cells with stable overexpression of the α and β subunits of $\mathrm{Ca}_{\mathrm{v}} 1.2$ transfected with HA-KD (36 kDa) or HAKD+PDZ domain of MAST205 (77 kDa) were incubated with $\alpha-\mathrm{Ca}_{\mathrm{v}} 1.2$ and protein complexes were subsequently precipitated with protein A/G beads. Western blots were probed with HA antibodies. Irrelevant antibodies were used in negative controls and non-precipitated HEK lysates as positive controls.

3.3. Co-immunoprecipitation of PMCA4b

3.3.1. Co-immunoprecipitations of PMCA4b with putative interaction partners

To confirm our data from the PDZ arrays, we tested PMCA4b and CASK by coimmunoprecipitations from kidney and brain lysates, and transfected HEK 293 cells (Fig. 3.11.A). The results confirmed an interaction of PMCA4b and CASK, as previously verified (Schuh et al., 2003). Binding of the proteins PMCA4b and ZO-1 was demonstrated in extracts from various sources. The PMCA-specific antibody co-precipitated the 220 kDa protein ZO-1 in all cell lysates tested (Fig. 3.11.B). We also checked the interaction between PMCA4b and MAST-205 by co-immunoprecipitation. The HEK 293 cells were two-double transfected, thereby expressing the proteins PMCA4b and HA-KD from MAST-205 or PMCA4b and HAKD + PDZ domain from MAST-205. The HA-specific antibody co-precipitated the 136 kDa protein PMCA4b (Fig. 3.11.C). Figure 3.11.D shows a transfection control of the HA-tag constructs pRK5-kinase-MAST205 (36 kDa) and pRK5-kinase-PDZ-MAST205 (77 kDa). In immunoblots A and B, the positive controls were inputs of PMCA4b-transfected HEK 293 cells, the positive controls in the blots C and D were inputs of double transfected HEK 293 cells with PMCA4b and HA-KD MAST-205 or HA-KD + PDZ domain of MAST-205. The negative controls in all blots were the positive controls incubated with A/G-agarose beads and an irrelevant antibody (α-NF-ATc 2).

Figure 3.11.: Co-immunoprecipitation of PMCA4b

A

B

IP: anti-PMCA4b

- anti-PMCA4b

A: Lysates of transfected HEK 293-PMCA4b cells, kidney and brain were incubated with monoclonal antibody specific for PMCA4b (for details please refer to Materials and Methods section). Protein complexes were then precipitated with protein A/G beads. Western blots of precipitated proteins were probed with a CASK-specific antibody. Irrelevant antibodies were used in negative control (α-NFATc2), and transfected HEK 293-PMCA4b cells were used as positive control. B: Co-immunoprecipitation demonstrated an interaction of PMCA4b and ZO-1. For the IP, lysates of transfected HEK 293-PMCA4b cells, HEK 293 cells and ECV cells were precipitated with monoclonal antibody specific for PMCA4b and subsequently IB was performed with antibodies against ZO-1. The negative control was ECV cell lysate incubated with an irrelevant antibody ($\alpha-$ NFATc2) and the positive control an input of the same cell lysate. C: lysates of the double transfected HEK 293 cells (PMCA4b + HA-KD MAST, PMCA4b + HA-KD + PDZ-MAST, respectively) were incubated with monoclonal antibody specific for HA. The IB of precipitated proteins were probed with a PMCA4b-specific antibody. D: It is exactly the same blot like in C, only the detecting antibody for the IB was an HA-specific antibody. That picture demonstrated the positive transfection of the HEK 293 cells with the HA constructs. The negative control of C and D were HEK 293 cell lysatesincubated with an irrelevant antibody (α-NFATc2) and the positive control an input of the same cell lysate.

3.4. Co-localization

3.4.1. Co-localization of $\mathrm{Ca}_{\mathbf{v}} 1.2$ and NHERF1, $\mathrm{Ca}_{\mathrm{v}} 1.2$ and MAGI-3 as well as PMCA4b and MAGI-3 in rat cardiac myocytes

Confocal laser scanning microscopy studies of rat heart sections attested congruent distribution of $\mathrm{Ca}_{\mathrm{v}} 1.2$, NHERF1 and MAGI-3 in cardiac tissue. All of them were localized at intercalated discs (Figs. 3.12.A-F), and $\mathrm{Ca}_{\mathrm{v}} 1.2$ and MAGI-3 were additionally expressed at the transverse tubules (Figs. 3.12.D-F). As shown in Figs. 3.12.G-I, PMCA4b and MAGI-3 were partially co-localized at the plasma membrane and the transverse tubules of rat cardiac myocytes.

Figure 3.12.: Co-localization of $\mathrm{Ca}_{\mathbf{v}} 1.2$ and NHERF1, $\mathrm{Ca}_{\mathbf{v}} \mathbf{1} .2$ and MAGI- 3 as well as PMCA4b and MAGI 3 in rat cardiac myocytes

Double immunofluorescent staining of $\mathrm{Ca}_{\mathrm{v}} 1.2$ and NHERF1 (A-C), MAGI-3 and $\mathrm{Ca}_{\mathrm{v}} 1.2$ (D-F), and of PMCA4b and MAGI-3 (G-I) in rat cardiomyocytes. For heart sections the following antibodies were used: polyclonal rabbit anti-Ca ${ }_{\mathrm{v}} 1.2$-ATTO 488 (A, D), polyclonal rabbit anti-NHERF1 (B), polyclonal rabbit anti-MAGI-3 (E, G), monoclonal mouse anti-PMCA 5F10 (H) followed by Alexa Fluor 488 goat anti-mouse, or Alexa Fluor 594 goat anti-rabbit, where appropriate. C, F and I, are merged images. $\mathrm{Ca}_{\mathrm{v}} 1.2$ and NHERF1 are coexpressed at the intercalated discs of cardiomyocytes (see arrow \rightarrow), $\mathrm{Ca}_{\mathrm{v}} 1.2$ and MAGI- 3 at the intercalated discs and transverse tubules (T-tubuli) (see arrow »). PMCA4b and MAGI-3 are located at the T-tubules as well (see arrow »).

3.5. Talon His-Tag Purification Resins

3.5.1. pull-down via Talon Metal Affinity Resins

To verify our data from the PDZ arrays II and III (Figs. 3.4. and 3.6.) and coimmunoprecipitations (Fig. 3.11.C), we checked interactions between the C-terminus of PMCA4b and MAGI-3 and/or MAST-205 by a special His-tag pull-down via Talon Metal Affinity Resins. Our cloned pEXP bacterial expression vector pEXP-PMCA4b and pEXP (see Fig. 3.1.A and B) were bound with a $6 x$ His-Tag to the talon metal resin. Verification of expression and size of His-tagged recombinant proteins in bacteria BL21 and on the beads via tricine gel analysis confirmed expression levels. The size of pEXP expression vector is 9 kDa and pEXP-PMCA4b 8.97 kDa (Fig. 3.13.A). Therefore, the pEXP and pEXP-PMCA4b lysates showed a clear shift (Fig. 3.13.A) and were ready for the pull-down.

We performed pull-down assays from mouse brain, testis and heart extracts. As shown in Figs. 3.13.B and 3.13.C, the resulting pull-downs demonstrated unspecific binding between the C-terminus of PMCA4b, and MAST-205 and MAGI-3 protein.

Figure 3.13.: His-Tag pull-down

A: Tricine-SDS-PAGE (Coomassie dyed) to verify the expression of recombinant protein ligands in BL21 bacteria and to proof the binding of His-Tag proteins to the talon resin. The shifts between the resuspended pEXP ($\sim 9 \mathrm{kDa}$) and resuspended pEXP-PMCA4b ($\sim 8.97 \mathrm{kDa}$) confirmed their successful expression and binding to the beads. B: Lysates from mouse organs (brain, testis) were incubated with polyhistidine-tagged talon metal beads containing equal amounts of pEXP and pEXP-PMCA4b. For detection, we used α-MAST-205 antibody (205 kDa). Signals were observed between PMCA4b fusion proteins pEXP, and pEXP-PMCA4b. C: Lysates of mouse brain and heart were used for the pull-down. The negative control was pEXP without Cterminus of PMCA4b. For detection, we used α-MAGI-3 antibody (160 kDa). An interaction was observed between MAGI-3 and the fusion protein pEXP-PMCA4b, where the final C-terminal 15 amino acids were fused to the His-Tag.

3.6. GST pull-downs

3.6.1. Interaction C-terminus of $\mathrm{Ca}_{\mathbf{v}} \mathbf{1 . 2}$ kurz with PDZ domain containing protein MAST-205 via GST pull-down

It has been described before that the PDZ domain of MAST-205 interacts with the C-terminal tail of $\mathrm{Ca}_{\mathrm{v}} 1.2$ (see Figs. 3.4.B and 3.10.E). To proof this interaction by another assay, we used affinity-purified GST fusion proteins containing the C-terminus of $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$ (encoded by the plasmid pGEX-4T-3-Cav 1.2 kurz). We performed pull-down assays from stably transfected HEK 293 cells, which were additionally transfected with pRK5-KD-MAST-205 or pRK5-KD + PDZ-MAST-205). As shown in Fig. 3.14.B the Coomassie gel shows GST alone (27 kDa) and the expression of the GST fusion protein $\mathrm{Ca}_{\mathrm{v}} 1.2 \mathrm{kurz}(\sim 70 \mathrm{kDa})$. The BSA standard helps to assess the protein amount of the GST fusion proteins. The GST pull-down in Fig. 3.14.C demonstrated an interaction between kinase domain (without PDZ domain) from MAST-205 and the C-terminus of $\mathrm{Ca}_{\mathrm{v}} 1.2$. But the GST + HEK KD-MAST-205 signal was slightly weaker than that of GST-Cav $1.2+$ HEK KD-MAST-205. Surprisingly, there was no interaction between PDZ domain of MAST-205 and $\mathrm{Ca}_{\mathrm{v}} 1.2$ detectable (see Fig. 3.14.C).

Figure 3.14.: GST pull-down MAST-205 and $\mathrm{Ca}_{\mathbf{v}} \mathbf{1 . 2}$

A

B

A: Amino acid-and protein sequence (in yellow) of the C-terminal tail from $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$, which is encoded by the plasmid pGEX-4T-3 (pGEX-4T-3-Ca 1.2 kurz). The green marked sequence presents the EcoRI cutting site, the blue bar shows the XhoI cutting sequence. The pink double CC are inserted amino acids to allow a clear open reading frame. The red tag presents the stop codon. B: The Coomassie Blue staining of SDS-polyacrylamide gel ascertained the expression of the GST fusion proteins pGEX-4T-3 ($\sim 27 \mathrm{kDa}$) (GST 1, GST 2) and pGEX-4T-3$\mathrm{Ca}_{\mathrm{v}} 1.2 \mathrm{kurz}(\sim 70 \mathrm{kDa})$ in BL21 bacteria. GST 1 are $7 \mu \mathrm{l}$ of the bead-slurry, GST 2 are $21 \mu \mathrm{l}$ of the bead-slurry, GST-Ca 1.2 kurz 1 are $50 \mu \mathrm{l}$ of the slurry and GST-Ca 1.2 kurz 2 are $150 \mu \mathrm{l}$ of the slurry. The BSA standard helps to assess the protein amount of the GST fusion proteins. C: lysates from stably transfected HEK 293 cells (expressing the α and β subunits of $\mathrm{Ca}_{\mathrm{v}} 1.2$) cotransfected with pRK5-KD-MAST-205 or pRK5-KD + PDZ-MAST-205 were incubated with glutathione-Sepharose beads containing equal amounts of GST and GST$\mathrm{Ca}_{\mathrm{v}} 1.2$. For detection we used $\alpha-\mathrm{HA}(\mathrm{KD}=36 \mathrm{kDa} ; \mathrm{KD}+\mathrm{PDZ}=77 \mathrm{kDa})$. An interaction was observed between KD of MAST-205 and GST-Ca 1.2 and a little weaker between KD of MAST-205 and GST alone. No interaction was detected between the KD + PDZ domain of MAST-205 and GST-Ca ${ }_{\mathrm{v}} 1.2$. The positive control were the stably cotransfected HEK 293 cells and the negative control was GST (pGEX-4T-3).

3.6.2. Confirmation of the interaction of $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$ with the PDZ domain containing protein nNOS via GST pull-downs and co-immunoprecipitaton.

It has been previously reported that the PDZ domain of nNOS interacts with the C-terminal end of PMCA4b (Schuh et al., 2001). The Domain Array II (Fig. 3.4.B) indicated that the PDZ domain of nNOS may also interact with $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$. To assess this interaction in more detail, we used affinity-purified GST fusion proteins containing the C-terminus of $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$ (encoded by the plasmid pGEX-4T-3-LTCC), and the PDZ domain of nNOS (plasmid pGEX-4T-1-nNOS-PDZ). We performed pull-down assays from mouse brain and aorta extracts, and HEK 293 cell lysates, either normal and untransfected, or transfected with pcDNA3-Cav 1.2α or pcDNA3-nNOS. As shown in Fig. 3.15.B, the resulting GST pull-down clearly demonstrates binding between the C-terminus of $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$ and the nNOS protein. This interaction was ascertained in reverse, confirming the interaction of nNOS and Cav 1.2α (Fig. 3.15.A). Additionally, using an independent assay, we could prove this protein-protein interaction by conventional co-immunoprecipitations. In this assay, we cotransfected HEK 293 cells with the α and β subunits of $\mathrm{Ca}_{\mathrm{v}} 1.2$ and nNOS. Subsequent precipitation with $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$-specific antibodies pulled nNOS down as well (Fig. 3.15.C).

Figure 3．15．： $\mathrm{Ca}_{\mathbf{v}} 1.2 \alpha$ C－terminal end interaction with PDZ domain of nNOS．
A
pGEX－4T－3
pGEX－4T－1－nNOS－PDZ
皆
IB：$\alpha-\mathrm{Ca}_{\mathrm{v}} 1.2$

B

pGEX－4T－3					pGEX－4T－3－LTCC			
皆	嫘	$\begin{aligned} & \text { ָ } \\ & \underset{y}{\underset{y}{x}} \end{aligned}$	$\begin{aligned} & \text { n } \\ & 0 \\ & \vdots \\ & y \\ & y \\ & y \end{aligned}$	\emptyset	皆	第		$\begin{aligned} & \text { n } \\ & 0 \\ & \vdots \\ & \vdots \\ & \cline { 1 - 2 } \end{aligned}$

IB：α－nNOS

A：lysates from mouse organs（aorta，brain），and lysates from untransfected HEK 293 cells and HEK 293 cells transfected with pcDNA3－Ca 1.2α were incubated with glutathione－Sepharose beads containing equal amounts of GST（pGEX－4T－3）and the nNOS PDZ domain fused to GST（pGEX－4T－1－nNOS－PDZ）．For detection we used $\alpha-\mathrm{Ca}_{\mathrm{v}} 1.2$ antibody from Alomone Labs（190－210 kDa）．An interaction is observed between $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$ and the GST fusion protein pGEX－4T－1－nNOS－PDZ，but not with GST．B：the lysates were the same as described above． Here the HEK 293 cells were transfected with pcDNA3－nNOS．The negative control was GST（pGEX－4T－3）． For detection，we used α－nNOS antibody from Zymed（ 160 kDa ）．An interaction between nNOS to the fusion protein pGEX－4T－1－LTCC，where the final C－terminal 10 amino acids were fused to GST，was shown．C：Co－ immunoprecipitation demonstrated an interaction of $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$ with nNOS．HEK 293 cells were transfected with pcDNA3－nNOS． $20 \mu \mathrm{~g}$ of the protein lysate was used directly as input for SDS－polyacrylamide gel electrophoresis．The negative controls were HEK 293 cells transfected with nNOS expression constructs immunoprecipitated with an irrelevant α－rabbit antibody（ α－AT2），and the last lane contained HEK 293 cell lysate（stably expressing the α and β subunits of $\mathrm{Ca}_{\mathrm{v}} 1.2$ ）cotransfected with pcDNA3－nNOS，and immunoprecipitated with $\alpha-\mathrm{Ca}_{\mathrm{v}} 1.2$ antibody．For the immunoblot we used the antibody α－nNOS．

3.7. S-nitrosylation

It is well established that the redox state of cysteins represents a very dynamic and regulated balance, which can strongly influence not only the functional activity of a protein, but also its interactions with other protein partners as well as its subcellular distribution. Because of that we were looking via Biotin Switch Assay for S-nitrosylation in HEK cell lysates, which were transfected with nNOS and $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$.
$\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$ is S-nitrosylated in transfected HEK 293 cells treated with 20 mM ascorbat. To investigate S-nitrosylation of $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$, we used HEK 293 cells co-transfected with nNOS and $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$ because the function and importance of the NO-cGMP pathway is well defined: NO made by NO-synthases is a transmitter molecule and activates intracellular receptors, first of all the soluble guanylate cyclase (sGC) (Snyder, 1992). The signal transmission for relaxation of smooth muscle cells and hence the vasodilatation are effected by the second messenger cyclic 3', 5'-guanosin monophosphat (cGMP) (Garbers, 1979; Hardman and Sutherland, 1969). Thus sGC is stimulated by exogenic NO thereby the cGMP level increase and cause a relaxation of smooth muscles (Arnold et al., 1977).

The HEK 293 lysate (transfected with $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$) was pretreated with $40 \mu \mathrm{M}$ GSNO (Snitrosoglutathione $=$ NO Donor) in the dark for 1 h (the S-NO bonds are light sensitive) as a positive control. For the negative control we used HEK 293 co-transfected with $\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha$ and nNOS, and treated that with 200 mM NaCl instead ascorbat. S-nitrosylation was assessed by the biotin switch followed by avidin purification and detection by anti-Ca $\mathrm{Ca}_{\mathrm{v}} 1.2$ antibody. Before we treated all the various lysates with avidin beads, we used them as protein inputs and so we did WB with anti-Cav 1.2 (Fig. 3.17.A). In Figure 3.17.A the HEK 293 lysates expressed the relevant protein $\mathrm{Ca}_{\mathrm{v}} 1.2$. Figure 3.17.B showed the S -nitrosylation of $\mathrm{Ca}_{\mathrm{v}} 1.2$ (see lane 4 in that figure). The lysates HEK 293; HEK 293 transfected with $\mathrm{Ca}_{\mathrm{v}} 1.2$ alone and HEK 293 transfected only with nNOS showed no signal. So we conclude that an Snitrosylation of the calcium channel $\mathrm{Ca}_{\mathrm{v}} 1.2$ is possible.

Figure 3.17.: S-nitrosylation of the $\mathrm{Ca}_{\mathbf{v}} \mathbf{1 . 2}$

The calcium channel $\mathrm{Ca}_{\mathrm{v}} 1.2$ is S-nitrosylated in the presence of nNOS. A: Wetsern blot with anti-Ca $\mathrm{Ca}_{\mathrm{v}} 1.2$. The inputs indicated similar $\mathrm{Ca}_{\mathrm{v}} 1.2$ levels in each sample. B: Western blot analysis with anti-Ca 1.2 of a biotin switch assay followed by Avidin purification confirming that $\mathrm{Ca}_{\mathrm{v}} 1.2$ is S -nitrosylated by nNOS. The positive control was performed with $40 \mu \mathrm{M}$ GSNO and the negative control with 200 mM NaCl instead of ascorbat.

3.8. Current Recordings

Electrophysiological properties

To examine the electrophysiological properties of $\mathrm{Ca}_{\mathrm{v}} 1.2$ subunits, Ba^{2+} currents were measured in the whole-cell configuration of the patch-clamp technique. To activate voltagedependent Ca^{2+} channel membrane potential of cells was clamped to a holding potential of 70 mV . From this holding potential, the cells were depolarized stepwise by 9 voltage-steps of +10 mV increment and 50 ms duration (Fig. 3.16.A). HEK cells, which stably express the $\mathrm{Ca}_{\mathrm{v}} 1.2$ subunit, showed voltage-dependent inwardly directed Ba^{2+} currents with a fast timedependent activation with no inactivation (Fig. 3.16.B). The kinetic behavior of the Cav 1.2 currents was not changed when the cells were additionally transfected with wild-type nNOS (Fig. 3.16.C). Also, in cells, which have been transfected with mutant nNOS, the kinetic behavior of Ba^{2+} currents was not different to currents in cells transfected with wild-type nNOS (Fig. 3.16.D). No differences in the overall activity of the currents were detected: Cav 1.2 currents under control conditions, in the presence of nNOS or in the presence of the mutant nNOS showed no statistical different current densities (Fig. 3.16.E). However, the presence of nNOS led to a change in the voltage-dependence of $\mathrm{Ca}_{\mathrm{v}} 1.2 \mathrm{Ba}^{2+}$ currents (Fig. 3.16.F). To analyze the voltage-dependence, normalized currents were plotted against their corresponding voltages of electrical stimulation and the curve was fitted by the Boltzmann function to calculate basic parameters of voltage-dependence such as potential of half maximal activation $\left(\mathrm{V}_{1 / 2}\right)$ and the steepness of the curve ($\mathrm{k}_{\mathrm{act}}$) (Fig. 3.16.G-J; Table 3.6.). nNOS presence led to shift of the voltage-dependent activation and potential of maximal current amplitude towards more positive voltages. Statistical analysis of parameters of voltage-dependence of wild-type Cav 1.2 currents showed that activation threshold of the currents was not changed (Fig. 3.16.G) but the potential of half-maximal activation $\mathrm{V}_{1 / 2}$ was shifted from -3 to +1.5 mV (Fig. 3.16.H), which was due to a shift of the slope of the Boltzmann fitted curve (Fig. 3.16.I) and not due to a shift of the activation threshold. The same characteristics in nNOS-dependent modulation of the voltage-dependence was observed in currents of the Cav 1.2 mutant. This shift in voltage-dependence resulted in a different potential of maximal current amplitude (Fig. 3.16.J).

Figure 3.16.: Current Recordings

Electrophysiological properties of Ba^{2+} currents from $\mathrm{Ca}_{\mathrm{v}} 1.2$ subunits: A: Pattern of electrical stimulation. The membrane potential was clamped to a holding potential of -70 mV . From the holding potential the cells were depolarized by nine voltage-steps with +10 mV incrementing amplitude and 50 ms duration. $\mathbf{B}: \mathrm{Ba}^{2+}$ currents induced by the electrical stimulation shown in A in a cell expressing wild-type $\mathrm{Ca}_{\mathrm{v}} 1.2$ channels. C: Cav 1.2 channel Ba^{2+} currents induced by the electrical stimulation shown in A in a cell expressing wild-type nNOS. \mathbf{D} : $\mathrm{Ca}_{\mathrm{v}} 1.2$ channel Ba^{2+} currents induced by the electrical stimulation shown in A in a cell expressing mutant nNOS. E: Maximal current density of control $\mathrm{Ca}_{\mathrm{v}} 1.2$ currents, $\mathrm{Ca}_{\mathrm{v}} 1.2$ subunits in the presence of wild-tpye nNOS and $\mathrm{Ca}_{\mathrm{v}} 1.2$ subunits in the presence of mutant nNOS. F: Voltage-dependence of Ba^{2+} currents: currents were normalized to the maximal current amplitude and plotted against the potentials of the electrical stimulation; the curve was fitted using the Boltzmann equation. G: Activation threshold of Ba^{2+} currents from $\mathrm{Ca}_{\mathrm{v}} 1.2$ subunits, $\mathrm{Ca}_{\mathrm{v}} 1.2$ subunits in the presence of wild-type nNOS and $\mathrm{Ca}_{\mathrm{v}} 1.2$ subunits in the presence of mutant nNOS; the number indicate the level of significance. \mathbf{H} : Voltage of half maximal activation Ba^{2+} currents from $\mathrm{Ca}_{\mathrm{v}} 1.2$ subunits, $\mathrm{Ca}_{\mathrm{v}} 1.2$ subunits in the presence of wild-type nNOS and $\mathrm{Ca}_{\mathrm{v}} 1.2$ subunits in the presence of mutant nNOS; the potentials of half maximal activation were significantly shifted towards positive potentials in the presence of nNOS or mutant nNOS. I: Slope of Boltzmann curve ($\mathrm{k}_{\mathrm{act}}$) of Ba^{2+} currents from $\mathrm{Ca}_{\mathrm{v}} 1.2$ subunits, $\mathrm{Ca}_{\mathrm{v}} 1.2$ subunits in the presence of wild-type nNOS and $\mathrm{Ca}_{\mathrm{v}} 1.2$ subunits in the presence of mutant nNOS; the $\mathrm{k}_{\text {act }}$ values were significantly larger in the presence of nNOS or mutant nNOS. J: Comparison of the voltages of maximal current amplitudes ($\mathrm{V}_{\text {max }}$); in the presence of nNOS or mutant nNOS $\mathrm{V}_{\text {max }}$ was shifted towards more positive voltages of currents from $\mathrm{Ca}_{\mathrm{v}} 1.2$ subunits.

DISCUSSION

The voltage-gated L-type calcium channel, $\mathrm{Ca}_{\mathrm{v}} 1.2$, and the plasma membrane calcium ATPase, PMCA4b, play major roles in excitable and non-excitable cells. $\mathrm{Ca}_{\mathrm{v}} 1.2$ regulates the calcium entry into cells upon depolarization, while PMCA4b controls cellular calcium homeostasis by calcium extrusion.
Both are important functional proteins in the heart and brain, but the specific tasks and the precise mechanisms of action are still investigated. The present studies were initiated to understand the regulatory consequence and the physiological background of the interactions from the C-terminal ligands $\mathrm{Ca}_{\mathrm{v}} 1.2$ and PMCA4b with PDZ domain containing proteins. Three independent assays (PDZ Domain Array, GST pull-down, and immunoprecipitation) and co-localizations showed the interaction of a multiplicity of PDZ domain containing proteins and their ligands, $\mathrm{Ca}_{\mathrm{v}} 1.2$ and PMCA4b. These interactions connect both proteins to signaling networks implicated in synaptic transmission, cell adhesion and apoptosis, which may help present new indications about the physiological functions of $\mathrm{Ca}_{\mathrm{v}} 1.2$ and PMCA4b in intra- and intercellular signaling. PDZ domains are protein-interaction domains that are specialized for binding to short peptide motifs at the carboxy C-termini of other proteins. You can find them in many proteins (more that 400 in humans or mice) (Kim and Sheng, 2004). PDZ domains are often arranged in tandem arrays and/or associated with other interaction domains (for example SH3 domains, WW domains) to form multidomain scaffold proteins.
Furthermore, PDZ motifs are protein binding adapters that play key roles in targeting proteins to the cytoskeleton or in regulating the intrinsic activities of enzymes (Brenman et al., 1996; Kim et al., 1995; Kornau et al., 1995; Niethammer et al., 1996; Sato et al., 1995; Shieh and Zhu, 1996). PDZ domain proteins regulate traffic and targeting of proteins, assembly of signaling complexes and networks designed for efficient and specific signal transduction (Nourry et al., 2003). For instance, the effectiveness of certain channels seems to increase by their association with PDZ containing proteins. The K^{+}channel Kir 4.1 express much higher current density when cotransfected with the multivalent PDZ domain protein CIIP (Kurschner
et al., 1998). Presently, some of the described interaction partners of PMCA4b belong to the family of MAGUKs (DeMarco and Strehler, 2001; Kim et al., 1998; Schuh et al., 2003) but, in addition, nNOS and NHERF2 have previously been identified as interacting partners of PMCA C-termini (DeMarco et al., 2002; Schuh et al., 2001). The C-terminal end of the PMCA splice variant 4 b (ETSV*, the asterisk indicates the COOH-terminal residue) differs from other b variants (DeMarco et al., 2002; Penniston and Enyedi, 1998; Strehler and Zacharias, 2001), suggesting that the C-termini determine the specificity of interactions with other proteins (DeMarco et al., 2002). We identified new PDZ protein interaction partners of PMCA4b, whereby ZO-1, MAGI-1-3, Mint-2, and MAST-205 are of primary importance. For $\mathrm{Ca}_{\mathrm{v}} 1.2$, we detected the same combination of interacting proteins, with the addition of CASK, NHERF1, NHERF2 and nNOS.

4.1. PDZ Domain Arrays and IPs

Zonula occludens proteins are regulators of tight junction (TJ) assembly, and new investigations have shown that these proteins also promote adherens junction (AJ) assembly (Fanning and Anderson, 2009). AJs are crucial for certain signaling pathways like growth, cell morphology, and cell differentiation, and these junctions mediate cell-cell adhesion (Halbleib and Nelson, 2006). Important proteins of the AJs are Cadherines which are calciumdependent transmembrane proteins. Cadherines are connected with different anchor proteins, like Vinculin and α-Actinin, and the actin cytoskeleton (Geiger and Ayalon, 1992; Geiger et al., 1990; Geiger et al., 1987; Yap et al., 1997). TJs control the fluctuation of ions, macromolecules, and immune cells through the paracellular space (Anderson et al., 2004; Lee et al., 2006). ZO-1 has an N-terminus with a structure similar to other MAGUKs, with three PDZ domains, an SH3 domain, and a region of homology to guanylate kinase (GUK) (Fanning, 2006; Schneeberger and Lynch, 2004). ZO-1 is enriched at the TJ of epithelial and endothelial cells but also in nonepithelial cells, such as astrocytes, Schwann cells, fibroblasts, glioma and myeloma cell lines (Anderson et al., 1988a; Itoh et al., 1991). The relative mass of that protein is species-dependent and between 210 and 225 kDa (Anderson et al., 1988a). The disruption of ZO-1 in mice resulted in embryonic lethality and was associated with disruption of the paracellular barrier and the structure of cell junctions (Damsky and Ilic, 2002; Daniel, 2007). The protein binding between the PDZ domain 1 of ZO-1 and the C-terminus of PMCA4b is insofar expectable because both proteins are located at the membrane (Fig. 3.4., 3.5., 3.11.B, Table 3.2.). A similar interaction was observed between the C-terminus of $\mathrm{Ca}_{\mathrm{v}} 1.2$ and the PDZ domains 1 and 2 of ZO-1 (Fig. 3.4., 3.5., 3.10.D, Table 3.2.). Recently, it
was demonstrated that calcium calmodulin binds to the GUK domain of ZO-1 (CaM binds also on calcium channels and plasma calcium ATPase), suggesting the novel assumption that intracellular calcium levels control various ZO-1 functions (Fanning and Anderson, 2009; Paarmann et al., 2008). We suggest that this protein interaction is probably important for the regulation of calcium ions and cytoskeletal dynamics at cell junctions and the plasma membrane. In our experiments we detected that the three MAGI proteins (MAGI-1 domain 3; MAGI-2 and MAGI-3 domain 6) bind to the C-terminus of PMCA4b and Cave 1.2. MAGI-1 and MAGI-3 are widely expressed in tissues like brain, heart, lung, and colon, but tend to be localized to tight junctions between adjacent epithelial cells (Franklin et al., 2005; Laura et al., 2002) (see Fig. 3.6., 3.7., 3.10.C, Table 3.3.). MAGI-2 is exclusively widespread in neuronal tissue (Iida et al., 2004). In the early stages of PDZ domain protein research, people thought scaffold proteins like MAGI-1, MAGI-2, and MAGI-3 were static scaffolds at the cell surface. Now we know that these proteins cooperate dynamically with PDZ targets at the cell surface for a dynamic and mobile cell structure (van Ham and Hendriks, 2003). The group of Hall (He et al., 2006; Xu et al., 2001) reported that the $\beta 1$ adrenergic receptor ($\beta 1 \mathrm{AR}$) binds MAGI-2 and MAGI-3. β ARs are a subfamily of G protein coupled receptors (GPCRs). That subfamily includes the subtypes $\beta 1 \mathrm{AR}, \beta 2 \mathrm{AR}$, and $\beta 3 \mathrm{AR}$ and mediates physiological responses to epinephrine (also known as adrenaline) and norepinephrine (noradrenaline) (Hall, 2004). MAGI-2 enhances the receptor's association with β-Catenin and its internalization, while MAGI-3 inhibits G_{i}-mediated ERK activation by $\beta 1 \mathrm{AR}$. G_{i} alpha subunit (or $\mathrm{G}_{\mathrm{i}} / \mathrm{G}_{0}$) is a heterotrimeric G protein subunit that inhibits the production of cAMP from ATP. An interesting point is the coexpression with $\beta 1$ AR and MAGI-3 at the plasma membrane, whereas MAGI-3 expressed alone in the nucleus of certain cell types (He et al., 2006). The group of Hall and coworkers hypothesize that MAGI-3 play a physiological role in the nucleus, and the MAGI-3 localization via association with transmembrane proteins like $\beta 1$ AR could represent a novel and specific mechanism by which such PDZ interacting transmembrane proteins can control nuclear function (Adamsky et al., 2003; He et al., 2006). MAGI-2 and MAGI-3 also bind to the tumor suppressor gene product of PTEN (phoshatase and tensin homolog). PTEN works as tumor suppressor gene through the action of its phosphatase protein product. That phosphatase is involved in the regulation of the cell cycle, preventing cells from growing and dividing too rapidly (Chu and Tarnawski, 2004). These MAGI proteins support PTEN suppression of Akt/PKB (a pleckstrin homology domaincontaining serine/threonine kinase), which is involved in apoptosis suppression and growth induction (Wu et al., 2000a; Wu et al., 2000b). These findings and the interaction of PMCA4b
and $\mathrm{Ca}_{\mathrm{v}} 1.2$ with MAGI suggested the involvement of both proteins in cell death and growth regulation. While PDZ proteins function as specific membrane subdomains, they also operate in cell compartments and support trafficking of PDZ target proteins to the cell surface. Such an example would be the interaction of MAGI-3 with transforming growth factor α (TGF α) (Franklin et al., 2005). TGF α is upregulated in several human cancers. This growth factor occurrs in macrophages, brain cells, and keratinocytes, and is responsible for epithelial development. TGF α is closely related to epidermal grow factor (EGF), and bind to the EGF receptor with similar effects (Franklin et al., 2005). However, MAGI-3 is localized to diverse cellular compartments including the nucleus, cytoplasm, and junctional complexes at the cell surface (Adamsky et al., 2003), making it into a central modulator of its function as scaffold protein. It is interesting that both investigated ligands, PMCA4b and $\mathrm{Ca}_{\mathrm{v}} 1.2$, interacted with all three MAGI proteins since the scaffolds are components of signaling complexes implicated in processes that require calcium. PMCA4b and $\mathrm{Ca}_{\mathrm{v}} 1.2$ may play key roles in the arrangement of calcium dependent AJs, and may thus be responsible for cell growth, cell morphology and cell differentiation. The Mint protein family (munc18-interacting protein) has three members, Mint-1, Mint-2, and Mint-3 (Okamoto and Sudhof, 1997, 1998). All three proteins contain a phosphotyrosine binding (PTB) domain and two PDZ domains (Borg et al., 1996; Okamoto and Sudhof, 1997, 1998). Mint-1 and Mint-2 are expressed in neuronal tissues (Okamoto and Sudhof, 1997), and new investigations show that Mint-1 is also expressed in insulin-secreting β-cells (Zhang et al., 2004). Mint-3 is ubiquitously expressed (Okamoto and Sudhof, 1998). The C-terminal PDZ domains of Mint mediate an interaction with the neuronal surface protein neurexin and the N -type Ca^{2+} channel (Borg et al., 1999; Maximov et al., 1999). The Mint family plays a role in the arrangement of multiprotein complexes, and its ability to control the signaling and trafficking of membrane proteins (Rogelj et al., 2006). Mints bind to munc-18, a protein necessary for synaptic vesicle exocytosis, and to CASK, which is involved in targeting and localization of synaptic membrane proteins (Butz et al., 1998; Ferro-Novick and Jahn, 1994; Hill et al., 2003; Martin, 1997; Okamoto and Sudhof, 1997; Sudhof, 1995; Zucker, 1996). They also regulate β-amyloid precursor protein (β-APP) metabolism, trafficking and $\mathrm{A} \beta$ (39-43 amino acid β-amylopeptid) production. Mint-2 presence in neurons is associated with Alzheimer's disease amyloid plaques (see for reviews: (Hardy, 1997; Mattson, 1997; McLoughlin et al., 1999). The mechanism by which Mints inhibit β-APP processing is not well understood but the Mints and their binding partners have appeared as potential therapeutic targets for the treatment of Alzheimer disease. The presence of PDZ domains in Mints indicates a potential involvement of these proteins in connecting
synaptic vesicles to the sites of synaptic intercellular junctions (Gomperts, 1996). The multiprotein complex between our investigated ligands and Mint proteins could play a role in the exocytosis of synaptic vesicles, as the process requires a Ca^{2+} trigger and the resultant release of neurotransmitters is a Ca^{2+}-dependent reaction. Synaptic vesicle exocytosis initiates with the docking of the vesicles, subsequently they are primed for Ca^{2+} in a complex reaction that may involve partial fusion of the vesicles. In conclusion, Ca^{2+} rapidly triggers the release of neurotransmitters. Additionally, we and other groups have seen that the association of Mint proteins with the plasma membrane could be mediated by the binding of its PDZ domains (Gomperts, 1996; Okamoto and Sudhof, 1997; van der Geer and Pawson, 1995) (see Fig. 3.2., 3.3., Table 3.1.). MAST-205 (microtubule associated Serine/Threonine kinase) is highly expressed in testis (Walden and Cowan, 1993) and in kidney, adrenal glands, hindbrain, small intestine and colon tissues (Wang et al., 2006). This protein possesses a Ser/Thr kinase and one PDZ domain. Few protein interactions with MAST-205 have been identified. One such interaction is that of $\beta 2$-synthrophin at the neuromuscular junction via its PDZ domain to the PDZ domain of MAST-205 (Lumeng et al., 1999). That observation suggests that the synthrophins may operate as a link between the dystrophin/utrophin network and a family of microtubule-associated protein kinases in the membrane cytoskeleton. The PDZ domain of MAST-205 additionally binds to PTEN, a tumor suppressor phosphatase, which regulates the cell growth and apoptosis. The phosphorylation of PTEN by the kinase domain of MAST205, suggests that PTEN could be a physiological substrate, PTEN also interacts with MAGI-1-3 (Valiente et al., 2005), with MAGI-2 and 3 promoting its suppression of Akt, another major player in apoptosis and growth (Wu et al., 2000a; Wu et al., 2000b). Recent studies showed that this Ser/Thr kinase plays a role in interleukin-12 synthesis and NF-кB activation via interaction with TRAF6 (a member of the tumor necrosis factor receptor (TNFR)associated factor (TRAF) family that mediates cytokine signaling pathways) (Takeda and Akira, 2004; Xiong et al., 2004; Zhou et al., 2004). So, these authors conclude that MAST205 might be a regulator between the adaptive and innate immune response. The group of Yun demonstrated that MAST205 modulates the transport activity of $\mathrm{Na}^{+} / \mathrm{H}^{+}$exchanger (NHE3) in the renal proximal tubule, and this regulation was dependent on the presence of the kinase motif in MAST-205 (Wang et al., 2006). Our studies suggest that the C-terminal tail of PMCA4b and $\mathrm{Ca}_{\mathrm{v}} 1.2$ may act as component for specific and efficient PDZ domain recognition, which could be important in the control of PMCA4b and $\mathrm{Ca}_{\mathrm{v}} 1.2$ protein phosphorylation, stability, and function (Fig. 3.4., Fig. 3.10., Fig. 3.11). We have identified the PDZ domain containing protein CASK as a functional interaction partner of $\mathrm{Ca}_{\mathrm{v}} 1.2$.

Additionally, the interaction between CASK and PMCA4b was confirmed (Schuh et al., 2003). The MAGUK protein CASK consists of a Ca^{2+}-calmodulin kinase, a PDZ domain, a SH3 domain, and an inactive guanylate kinase domain. It is mainly expressed at the neuronal presynaptic membrane, interacting with neuroligin associated neurexin (Atasoy et al., 2007; Irie et al., 1997; Suckow et al., 2008), and additionally expressed in epithelial cells (Hata et al., 1996). CASK is the mammalian homolog of Caenorhabditis elegans LIN-2. In vertebrates, CASK is found at the lateral face of epithelial cells and binds syndecan-2 at the C terminal tail (EFYA) (Cohen et al., 1998). Syndecans are heparin sulphate proteoglycans, which are able to bind to the extracellular matrix and growth factors such as FGF (fibroblast growth factor). CASK is a regulator of epidermal progenitor cells and participates in the maintenance of epidermal homeostasis (Ojeh et al., 2008). Mutation or deletion of CASK results in unusual synaptic function and perinatal death in mice (Atasoy et al., 2007), verifying its importance for brain development and function. CASK controls synapse formation and synaptic strength, and mutation or deletion in the gene leads to mental retardation (Hsueh, 2009). Maximov and Bezprozvanny (Bezprozvanny and Maximov, 2001) showed that the C-terminus splice region of N-type calcium channels is capable of interacting with the adaptor proteins Mint-1 (by PDZ domain) and CASK (by SH3 domain). And so they might be play a role in the synaptic vesicle release machinery. Note that CASK is not a neuron-specific protein; it also presents key functions in non-neural tissue like kidney. All these studies indicate that $\mathrm{Ca}_{\mathrm{v}} 1.2$ and PMCA4b in conjunction with CASK may play vital roles in the targeting of protein complexes in brain and epithelial cells, and in the modulation of synaptic transmission (see Figs. 3.2., 3.3., 3.10.A, 3.11.A, Table 3.1.). Another interesting interaction partner is the sodium-hydrogen exchanger regulatory factor, NHERF1 (also named ezrin binding protein 50, EBP50) and NHERF2 (called E3KARP), both containing two tandem PDZ domains (PDZ1 and PDZ2), besides to an ERM domain that links the proteins to the cytoskeleton. NHERF1 is 52% identical to NHERF2. The PDZ domains bind to a varity of membrane proteins together with ion transport proteins, tyrosine kinase receptors (e.g. platelet derived growth factor receptor, PDGFR), and the G-protein-coupled receptors (e.g. $\beta 2$ adrenergic receptor, $\beta 2 \mathrm{AR}$). For more details see reviews (Shenolikar et al., 2004; Weinman et al., 2006). NHERF1/2 are structurally related protein adapters that are highly expressed in epithelial tissues. In coexistence, they possess overlapping function as regulators of transmembrane receptors, transporters, and other proteins localized at or near the plasma membrane. The ERM (ezrin, radixin, moesin and merlin) family of membrane cytoskeletal adapters is a crucial cellular target of NHERF (Murthy et al., 1998; Reczek et al., 1997b). The
other isoforms of NHERF family (NHERF3 and NHERF4) contain four PDZ domains without any additional regulatory or interaction domain like the ERM binding region (Seidler et al., 2009). To regulate NHE3 signaling with cAMP, NHERF1 (or NHERF2), ezrin, and protein kinase A form a multiprotein signal complex connecting NHE3 to the actin cytoskeleton. This complex is proposed to facilitate the phosphorylation and downregulation of NHE3 (Reczek et al., 1997b; Weinman, 2001; Weinman et al., 2000). There it plays a crucial role in the proximal tubule, because H^{+}is secreted into the lumen by NHE3, essentially maintaining the acid base balance of the kidney. One more central aspect is the relationship between NHERF and CFTR (cystic fibrosis transmembrane regulator). CFTR is the intestinal Cl^{-}transporter and is located in the apical membrane of different tissues. CFTR is a channel that allows the flow of chloride (and bicarbonate) from the epithelial cells into the lumen. CFTR is expressed in epithelia of airways, secretory glands, epididymis, bile ducts and intestine. The genetic disease cystic fibrosis (CF) is caused by mutations in the CFTR gene (Sheppard et al., 1999). CFTR chloride channels in lung epithelium guarantee the secretion of chloride ions and, as secondary effect, of water in the airway fluid. In CF airway epithelia, chloride secretion is reduced and sodium absorption is enhanced, resulting in the formation of dry and thick mucus (Knowles et al., 1983). The interaction between CFTR and NHERF may explain CFTRs ability to regulate other transport proteins, including the epithelial sodium channel, the renal outer medullary potassium channel, and NHE3 (Moyer et al., 1999; Raghuram et al., 2001). NHERF bear also a function in growth factor signaling. The activation of the PDGF (platelet derived growth factor) receptor tyrosine kinase is stabilized by the binding to the NHERF PDZ1-domain. The acquirement of NHERF to built homodimers could support PDGFR activation and initiate mitogenic signals through the PI 3kinase (phosphatidylinositol 3-kinase) and MAP kinase (mitogen-activated protein kinase) pathways. MAP kinases are protein serine and threonine kinases that play central roles in cell development, differentiation, survival, and in calcium stability (Ishizuya et al., 1997; Schindeler and Little, 2006; Sneddon et al., 2000). One knockout mouse model for NHERF1 inactivation demonstrated that NHERF1 is essential for stabilizing active phosphorylated ERM proteins at the apical membrane of the polarized epithelia of the kidney and small intestine (Morales et al., 2004). NHERF1 knockout mice introduce structural deficiencies of the intestinal brush border membrane that is similar to the failures found in ezrin knockout mice (Morales et al., 2004). A further feature of NHERF1 is its function as tumour suppressor in human breast cancer (Dai et al., 2004; Reczek et al., 1997a; Weinman et al., 2000). Mangia et al. (Mangia et al., 2009) detected that NHERF1 is overexpressed in aggressive human
breast tumours and that it has the ability to enhance cell invasion and generate an invasive phenotype in breast cancer cells in vitro, either alone or in synergy with modifications of the tumour metabolic microenvironment. That study indicates that NHERF1 seems to operate as tumour suppressor when localized at the apical level of the membrane, and as an oncogenic protein when localized in the cytoplasm or nucleus. Loss of heterozygosity (LOH) at the NHERF1 locus is established in more than 50% of breast tumours. Additionally, NHERF1 is mutated in selective primary breast tumours and breast cancer cell lines. LOH at the NHERF1 locus is associated with aggressive characteristics of breast tumours, thereby defining NHERF1 as a haploinsufficieny tumour suppressor gene (Pan et al., 2006). DeMarco et al. 2000 suggested that the PDZ domains of NHERF1/2 recognize the D-(S/T)-X-L motif (X represents any amino acid) at the C terminus. Therefore, PMCA1b-3b (motif ETSL) interacts with NHERF1/2, with the exception of PMCA4b, which has the ETSV motif. We confirmed these results with the PDZ domain array (Fig. 3.4., 3.5., Table 3.2.). Additionally, we identified a new interaction between NHERF1/2 with $\mathrm{Ca}_{\mathrm{v}} 1.2$ (motif VSNL) in Fig. 3.4., 3.5., 3.10.B. Our findings and previous studies from other groups, emphasize the importance of a C-terminal leucine residue for high affinity peptide interaction with NHERF (DeMarco et al., 2002; Hall et al., 1998; Moyer et al., 2000). The complex of $\mathrm{Ca}_{\mathrm{v}} 1.2$ and NHERF1/2 may provide an indirect link between the Ca^{2+} channel and the actin cytoskeletal network, especially to stabilize the channel along the membrane and allowing its regulation by coassembled cAMP-dependent protein kinases. The PDZ domain 1 of NHERF1 is associated with SOCs (store operated calcium channel), $\operatorname{Trp4}$, $\operatorname{Trp5}$, as well as the phospholipases $\mathrm{C} \beta 1$ and $\mathrm{C} \beta 2$ (Tang et al., 2000), suggesting that NHERF can link the functions of SOCs to PLC β to organize calcium and phosphoinositide metabolism, and control cell metabolism and growth. Our new results suggest an involvement of NHERF1/2 in the regulation of Ca^{2+} transport as well.

Concluding remarks for the PDZ array

All novel identified interactions between our ligands $\left(\mathrm{Ca}_{\mathrm{v}} 1.2\right.$ and PMCA4b) and the PDZ domain containing proteins demonstrate the potential of this proteomics approach to identify physiologically important interactions between signaling molecules. Nevertheless, the PDZ array tool is not without limitations. The binding of C-terminal peptides to isolated PDZ domains does not explain secondary interactions that could contribute to binding affinity and specificity. Maybe, not all identified interactions will be physiologically relevant. The interacting partners have to be expressed in parallel in the same cell for obvious evidence.

But, that uncomplicated array has the potential to test objectively all possible interactions with both membrane bound and cytosolic signaling proteins. That array is potent enough to allow identification of interactions with specific PDZ domains in a protein that includes numerous such domains. So, it is possible to identify potential relations between multiple signaling molecules.

4.2. Co-localizations in rat cardiomyocytes

The co-localization of $\mathrm{Ca}_{\mathrm{v}} 1.2$ and NHERF1 at the intercalated disc in rat cardiomyocytes, and of Ca 1.2 and MAGI- 3 at the intercalated discs (Fig. 3.12.) and the transversale tubules is worthy of note. Intercalated discs are complex structures, which connect single cardiac myocytes to an electrochemical syncytium. They are primarily responsible for pulse transmission for the duration of muscle contraction and for stabilization. These discs support quick swell of action potentials and the coordinated contraction of the myocardium. Intercalated discs exhibit three special types of cell-cell junctions: the actin filament anchoring adherens junctions (fascia adherens), the intermediate filament anchoring desmosomes (macula adherens) and gap junctions. The transversale tubules (T-tubules) are invaginations of the sarcolemma. These invaginations facilitate rapid transfer of a depolarization from the plasmamembrane to the core of the cell. The same applies for PMCA4b and MAGI-3 at the transverse tubules (Fig. 3.12.). T-tubules are important for the coupling of excitation and contraction. The L-type calcium channels occurred at these invaginations in a large number. So they trigger in response to electrical stimulation: their opening allows calcium flow driven by electrochemical gradient and into the cell. An interesting study is from P. Day and B. Kobilka (Day and Kobilka, 2006). They have shown an expression of MAGI-3 in cardiac myocytes and have detected a co-expression in HEK 293 cells between MAGI-3 and $\beta 1$-adrenocepter. MAGI- 3 is localized in the nucleus in the absence of $\beta 1$-adrenoceptors, but targeted to the plasmamembrane when both were expressed in HEK 293 cells. The interaction between MAGI- 3 and $\beta 1$-and $\beta 2$-adrenoceptors are important physiological tasks in neonatal cardiac myocytes (Xiang et al., 2002; Xiang and Kobilka, 2003). The $\beta 1$-adrenoceptor does not undertake internalization and links only to the α - subunit of the G-protein (activates cAMP dependent pathway) in these myocytes (Devic et al., 2001). MAGI-3 also binds to frizzled transmembrane receptors 4 and 7, both of these are expressed in the heart and may play a role in cardiac remodeling in response to injury (Yao et al., 2004). PMCA4b and $\mathrm{Ca}_{\mathrm{v}} 1.2$ are both expressed at the caveolae and at the plasmamembrane, as mentioned above. Little is known about the function of MAGI-3 and

NHERF1 in the heart. However, we would conclude that our findings of co-localizations play a role in signal transmission of cell contraction and stabilization at the membrane.
We also did immunhistochemistry (data not shown) in $\mathrm{Ca}_{\mathrm{v}} 1.2$ transfected ECV cells and checked the co-localization with ZO-1 and also in double-transfected HEK 293 cells (transfected with $\mathrm{Ca}_{\mathrm{v}} 1.2$ and nNOS). Both co-localizations have not confirmed clear results. ZO-1 was well seen at the membrane but $\mathrm{Ca}_{\mathrm{v}} 1.2$ was diffuse and more expressed in the cytoplasm. An explanation could be that $\mathrm{Ca}_{\mathrm{v}} 1.2$ expression vector contains only the α-subunit of the channel. It is known from various studies that the β-subunit is essential to express that protein on the membrane (Catterall, 2000). The same outcome was obtained for the localization of $\mathrm{Ca}_{\mathrm{v}} 1.2$ and nNOS in HEK 293 cells. Daniel et al. (Daniel et al., 2001) observed in canine lower esophageal sphincter (LES) that colocalization of nNOS and L-type Ca^{2+} channel takes place in the caveolae. However, until now, no well-defined localization of nNOS in cells was detected.

4.3. Interaction of $\mathbf{C a}_{\mathbf{v}} 1.2$ with PDZ domain containing protein nNOS

NO is an important effector in the cardiovascular system and it exerts many myocardial functions, like modulation of contractile function, energetics, substrate metabolism, cell growth and survival (Massion et al., 2003; Sears et al., 2004). NO causes vascular relaxation through funtional interaction with soluble guanylyl cyclase (sGC) in the blood vessel wall, but also disperses into the lumen of the vessel where it interacts with a number of other cell types. In smooth muscles, the sGC is the primary target for NO, also in platelets and inflammatory cells. In mammalian myocardium, eNOS and nNOS are expressed. eNOS is found in coronary and endocardial endothelial cells and cardiomyocytes (Feron et al., 1996). nNOS has been localized in cardiac autonomic nerves, ganglia and cardiomyocytes (Danson et al., 2005; Xu et al., 1999a). Both NOS enzymes are expressed in divergent subcellular compartments in cardiomyocytes (Feron et al., 1996; Williams et al., 2006a; Xu et al., 1999a) where they are expected to couple to different effector molecules and exert diverse effects following enzyme activation. nNOS regulates excitation-contraction coupling (Barouch et al., 2002; Sears et al., 2003), β-adrenergic inotropic response (Barouch et al., 2002), and the development of heart failure (Bendall et al., 2004; Damy et al., 2004). nNOS-derived NO may play a role in the physiological regulation of myocardial contraction and Ca^{2+} fluxes. nNOS was identified in the sarcoplasmic reticulum (SR) in the myocardium, where it was initially found to inhibit Ca^{2+} uptake through the $\mathrm{SR} \mathrm{Ca}^{2+}$ pump (SERCA2a) in SR microvesicles (Schuh et al., 2001; Xu et al., 1999b; Xu et al., 2003a). nNOS also controls the opening of L-
type Ca^{2+} channel (Sears et al., 2003). A controvers discussion has aroused about the interaction of nNOS with the $\mathrm{SR} \mathrm{Ca}^{2+}$ release channel (Ryanodine receptor, RyR2) in the heart. Burkard et al. (Burkard et al., 2007) have not seen an interaction between these two proteins. Other groups co-immunoprecipitated nNOS and RyR2 (Barouch et al., 2002; Bendall et al., 2004; Damy et al., 2003; Damy et al., 2004). Myocardial nNOS has also been localized to the sarcolemma (Williams et al., 2006a), particularly in the left ventricular (LV) myocardium of remodelled and failing hearts (Bendall et al., 2004; Damy et al., 2003; Damy et al., 2004). The subcellular localization of nNOS is dependent on interactions between its PDZ domain and scaffold adaptor proteins, for example Dystrophin, α-Syntrophin (Williams et al., 2006a) and Caveolin-3 (Venema et al., 1997). Overexpression of nNOS has been found to trigger a decrease in Ca^{2+} currents in sinoatrial node cells (Heaton et al., 2006). In the same way, myocardial-specific nNOS overexpression has been correlated with a reduction in Ca^{2+} current density, [Ca2+]i transient amplitude and cell shortening in isolated myocytes and in vivo (Burkard et al., 2007). nNOS deletion or inhibition causes an increase in Ca^{2+} currents through the L-type Ca^{2+} channels and a reduction in SERCA activity, leading to enhancement of contraction and impairment of relaxation (Seddon et al., 2007). We confirmed these studies by measurement of Ca^{2+} currents in HEK 293 cells stably expressing $\mathrm{Ca}_{\mathrm{v}} 1.2$ and cotransfected with nNOS (Fig. 3.16.). And we observed that the nNOS PDZ domain is possibly important for protein interaction (Fig. 3.15.). It has been shown that NO modulates ion channel activity by nitrosylation of sulfhydryl groups on the channel protein (Bolotina et al., 1994; Campbell et al., 1996a; Hu et al., 1997b). Summers et al. detected that NO inhibits Ltype voltage-gated Ca^{2+} channels (Summers et al., 1999). So we postulate that the interaction between the C-terminus of $\mathrm{Ca}_{\mathrm{v}} 1.2$ and the PDZ domain of nNOS inhibits the currents by Snitrosylation of the channel protein (Fig. 3.17.). All these data propose that under basal conditions nNOS-derived NO may exert an inhibitory effect on Ca^{2+} influx and myocardial contraction thereby promoting relaxation. NO binds and stimulates sGC, which leads to the production of cGMP, which than activates a cascade of signalling events through activation of Protein kinase G. NO is also thought to control heart function through a number of cGMPindependent pathways including nitrosylation of various proteins involved in excitationcontraction coupling and the generation of peroxynitrite.

4.4. His-Tag pull-down

The interactions between the C-terminus of PMCA4b and the proteins MAST-205 and MAGI-3 were verified by His-tag pull-down via Talon Metal Affinity Resins (see 2.5.). The pull-down assays were performed from brain, testis and heart extracts (Figs. 3.13.B and 3.13.C). From the unspecific binding between the control vector pEXP and our expression vector $\mathrm{pEXP}-\mathrm{PMCA} 4 \mathrm{~b}$. The binding pattern was seen in every lane, whether or not pEXP, pEXP-PMCA4b, respectively. Particularly, the Coomassie Blue staining of SDSpolyacrylamide gel showed an explicit shift from the bound fusion proteins. The explanation for vague binding results could be on one hand the lysates of the organs which are often highly concentrated and contain so many different proteins, peptides, fats and fatty acids. So, an unspecific binding is not unusual. On the other hand both proteins (MAST-205, MAGI-3) are not very common proteins. As a consequence of this, there exists only one company which sell these antibodies. So maybe the antibodies were not good working. A solution for the His-tag pull down might be a construct enabling of MAST-205 protein and MAGI-3 protein for cell transfection.

4.5. Interaction Cav 1.2 kurz with MAST-205 via GST pull-down

The interacting of $\mathrm{Ca}_{\mathrm{v}} 1.2$ with the PDZ domain of MAST-205 posed the question of wether MAST kinase may phosphorylate $\mathrm{Ca}_{\mathrm{v}} 1.2$. To explore this possibility, we tested the ability of the kinase domain (KD/MAST-205) and the kinase plus the PDZ domain of MAST-205 (KD + PDZ/MAST-205) to interact physically with $\mathrm{Ca}_{\mathrm{v}} 1.2$ (Fig. 3.14. B). Stable HEK cells were transfected with plasmids encoding HA KD/MAST-205 or HA KD + PDZ/MAST-205 protein, and pull-down assays were performed using GST-Ca ${ }_{\mathrm{v}} 1.2$ kurz purified from bacteria (Fig. 3.14. A). We expected that $\mathrm{Ca}_{\mathrm{v}} 1.2$ co-precipitate the kinase + PDZ/MAST-205 protein. Unfortunately, our results did not show clearly that interaction. Probably it is a technical problem: the GST protein expression could be stronger and more clearly. However, the GST pull-down present tendencies in binding of $\mathrm{Ca}_{\mathrm{v}} 1.2$ to the PDZ domain of MAST-205 (Fig. 3.14. B, last lane). The signal in the last lane showed a disaggregation of the protein lysate. After optimizing the GST protein expression in bacteria and the pull-down protocol, a positive result might be expected. $\mathrm{Ca}_{\mathrm{v}} 1.2$ as well interacted with kinase/MAST-205 (Fig. 3.14.B, lane 3), suggesting that $\mathrm{Ca}_{\mathrm{v}} 1.2$ could be a substrate for MAST-205. The future step could be MAST-kinase assay. The procedure includes incubation of GST-Cav 1.2 with purified HA kinase/MAST-205 in the presence of $\left[\gamma_{-}{ }^{32} \mathrm{P}\right]$ ATP, and the phosphorylated proteins might be detected by SDS-polyacrylamide gels. Together, our results demonstrate for
the first time a binding of the C-terminal end of $\mathrm{Ca}_{\mathrm{v}} 1.2$ to the PDZ domain of MAST-205. A new approach testing if the calcium channel could be phosphorylated by the kinase domain of MAST-205 would be of interest.

4.6. S-nitrosylation of $\mathrm{Ca}_{\mathbf{v}} \mathbf{1 . 2}$ via Biotin Switch Assay

We discussed in 4.3. the intracellular signaling pathways together with the effects of nNOSderived NO. Nitric oxide does not act as a freely diffusible messenger. Either NO stimulates the activity of guanylate cyclase, that produces cGMP from GTP or NO nitrosylates tyrosine and thiol groups of cysteine in proteins. During nitrosylation, proteins could modify their properties, equivalent to the changes induced by phosphorylation and palmitoylation (Hess et al., 2005; Mannick and Schonhoff, 2002; Martinez-Ruiz and Lamas, 2004). Cellular proteins that may undergo S-nitrosylation are L-type Ca^{2+} channel (Campbell et al., 1996b; Hu et al., 1997a; Sun et al., 2006), potassium channel K $\mathrm{K}_{\mathrm{v}} 1.5$, SERCA and RyR2 (Eu et al., 1999; Lokuta et al., 2005; Nunez et al., 2006; Xu et al., 1998). It is also known that NO plays a significant role in modulating myocardial function in both health and disease (Hare and Stamler, 2005) and so, the nitrosative and oxidative stress play essential roles in the regulation of cardiac myocyte function and survival (Hare and Stamler, 2005). Under physiological oxidative stress, NO might provide protection to cells by S-nitrosylation of some critical protein thiols, preventing them from additional oxidative damage. This NO-induced post-translational modification of proteins serves as a key effector of NO bioactivity and is an imperative regulator of cellular signal transduction. In our study, we would conclude that S-nitrosylation of the $\mathrm{Ca}_{\mathrm{v}} 1.2$ channel is possible (Fig. 3.17.). The result (Fig. 3.17.B) confirmed a clear banding pattern in the lane 4 with the $\mathrm{Ca}_{\mathrm{v}} 1.2$ and nNOS lysate. Even if the controls were not clearly (Fig. 3.17.B lane 5/6). NO is a highly diffusible and short-living physiological messenger, obviously the influential factor that supports S-nitrosylation. The detection of protein S-nitrosylation is not simply performed with traditional methods such as IP or IB, where the S-NO bond is broken during the SDS-PAGE. The largest part of the works in this field have been prepared using indirect methods, measuring free NO levels after cleavage of S-NO bonds or changing the unique nitrosothiols with a different detectable tag (see scheme 2.16.). These methods are sensitive but lack specificity. The first and most commonly method for the specific tagging of S-nitrosylated proteins was developed by Jaffrey et al. (Jaffrey et al., 2001) and named Biotin Switch. Their suggestion was to convert nitrosylated cysteins into biotinylated cysteins that could then be identified afterwards via streptavidin or a specific antibody without difficulty (see 2.10.). However, there are some critical points to discuss,
which were potentially the reason for our imprecise controls in that assay. On the one hand, the Biotin Switch assay is very light sensitive, meaning the assay has to be entirely conducted in darkness. On the other hand, ascorbate, which is used in the labeling step, is a poor reducer of protein S-NO and long incubation times are necessary to realize a quantitative reaction (Zhang et al., 2005). Furthermore, it has been reported that use of ascorbate can initiate false positive signals (Landino et al., 2006). Despite these controversial discussions, the Biotin Switch is the most commonly used method of detection of S-nitrosylated proteins in biological samples, which have been effectively used to identify the S-nitrosylated sites.

We conclude that $\mathrm{Ca}_{\mathrm{v}} 1.2$ interacts physically with nNOS-, MAST-205-, MAGI-3-, NHERF1-, and ZO-1-PDZ domains; and PMCA4b with MAST-205- and MAGI-3-PDZ domains, all demonstrated via different assays (PDZ array, GST pull-down, IP). The partial co-localization of $\mathrm{Ca}_{\mathrm{v}} 1.2$ and MAGI-3, $\mathrm{Ca}_{\mathrm{v}} 1.2$ and NHERF1, and PMCA4b and MAGI-3 in rat cardiomyocytes indicates that an interaction of these proteins is highly possible. From our results, we conclude that $\mathrm{Ca}_{\mathrm{v}} 1.2$ and PMCA4b bind promiscuously to a variety of PDZ domains. The physiological consequences of some of these interactions remain to be investigated.

OUTLOOK

$\mathrm{Ca}_{\mathrm{v}} 1.2$ and PMCA4b are important in heart, brain, smooth and skeletal muscles. Despite numerous studies, their physiological functions have not yet been completely clearified. The novel discovered interaction partners of both protein ligands have possible influences on to their intercellular signaling, cell adhesion, and angiogenesis. Further investigations, like co-localizations and co-immunoprecipitations should be conducted for these interactions, for example an IP of $\mathrm{Ca}_{\mathrm{v}} 1.2$ with $\triangle \mathrm{nNOS}$ (mutant nNOS without PDZ domain). The physiological roles must be more recessed. We measured calcium currents in stably $\mathrm{Ca}_{\mathrm{v}} 1.2$ transfected HEK 293 cells (co-transfected with nNOS, Δ nNOS respectively). In future, we should extend these experiments, e.g. with NO donors. In order to prove that the MAST kinase affects the $\mathrm{Ca}_{\mathrm{v}} 1.2$ channel a physiological experiment could be a MAST-205 kinase assay. More experiments should also be done with the S-nitrosylation assays. Overexpression and knock-down research with the interacting partners could also be a part of future projects. These steps would expose further physiological functions of $\mathrm{Ca}_{\mathrm{v}} 1.2$ and PMCA4b in the cardiovascular system and in the nervous system.

BIBLIOGRAPHY

Abu-Soud, H.M., Feldman, P.L., Clark, P., and Stuehr, D.J. (1994a). Electron transfer in the nitric-oxide synthases. Characterization of L-arginine analogs that block heme iron reduction. J Biol Chem 269, 32318-32326.

Abu-Soud, H.M., Yoho, L.L., and Stuehr, D.J. (1994b). Calmodulin controls neuronal nitricoxide synthase by a dual mechanism. Activation of intra- and interdomain electron transfer. J Biol Chem 269, 32047-32050.

Adamsky, K., Arnold, K., Sabanay, H., and Peles, E. (2003). Junctional protein MAGI-3 interacts with receptor tyrosine phosphatase beta (RPTP beta) and tyrosine-phosphorylated proteins. J Cell Sci 116, 1279-1289.

Alderton, W.K., Cooper, C.E., and Knowles, R.G. (2001). Nitric oxide synthases: structure, function and inhibition. Biochem J 357, 593-615.

Anderson, C.R. (1998). Identification of cardiovascular pathways in the sympathetic nervous system. Clin Exp Pharmacol Physiol 25, 449-452.

Anderson, J.M., Stevenson, B.R., Jesaitis, L.A., Goodenough, D.A., and Mooseker, M.S. (1988a). Characterization of ZO-1, a protein component of the tight junction from mouse liver and Madin-Darby canine kidney cells. J Cell Biol 106, 1141-1149.

Anderson, J.M., Stevenson, B.R., Jesaitis, L.A., Goodenough, D.A., and Mooseker, M.S. (1988b). Characterization of ZO-1, a protein component of the tight junction from mouse liver and Madin-Darby canine kidney cells. J Cell Biol 106, 1141-1149.

Anderson, J.M., Van Itallie, C.M., and Fanning, A.S. (2004). Setting up a selective barrier at the apical junction complex. Curr Opin Cell Biol 16, 140-145.

Armesilla, A.L., Williams, J.C., Buch, M.H., Pickard, A., Emerson, M., Cartwright, E.J., Oceandy, D., Vos, M.D., Gillies, S., Clark, G.J., et al. (2004). Novel functional interaction between the plasma membrane $\mathrm{Ca} 2+$ pump 4 b and the proapoptotic tumor suppressor Rasassociated factor 1 (RASSF1). J Biol Chem 279, 31318-31328.

Arnold, W.P., Mittal, C.K., Katsuki, S., and Murad, F. (1977). Nitric oxide activates guanylate cyclase and increases guanosine $3^{\prime}: 5^{\prime}$-cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci U S A 74, 3203-3207.

Atasoy, D., Schoch, S., Ho, A., Nadasy, K.A., Liu, X., Zhang, W., Mukherjee, K., Nosyreva, E.D., Fernandez-Chacon, R., Missler, M., et al. (2007). Deletion of CASK in mice is lethal and impairs synaptic function. Proc Natl Acad Sci U S A 104, 2525-2530.

Barouch, L.A., Harrison, R.W., Skaf, M.W., Rosas, G.O., Cappola, T.P., Kobeissi, Z.A., Hobai, I.A., Lemmon, C.A., Burnett, A.L., O'Rourke, B., et al. (2002). Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature 416, 337-339.

Bean, B.P. (1989). Classes of calcium channels in vertebrate cells. Annu Rev Physiol 51, 367384.

Bendall, J.K., Damy, T., Ratajczak, P., Loyer, X., Monceau, V., Marty, I., Milliez, P., Robidel, E., Marotte, F., Samuel, J.L., et al. (2004). Role of myocardial neuronal nitric oxide synthase-derived nitric oxide in beta-adrenergic hyporesponsiveness after myocardial infarction-induced heart failure in rat. Circulation 110, 2368-2375.

Berridge, M.J. (2002). The endoplasmic reticulum: a multifunctional signaling organelle. Cell Calcium 32, 235-249.

Bers, D.M. (2002). Cardiac excitation-contraction coupling. Nature 415, 198-205.
Bezprozvanny, I., and Maximov, A. (2001). PDZ domains: More than just a glue. Proc Natl Acad Sci U S A 98, 787-789.

Biel, M., Ruth, P., Bosse, E., Hullin, R., Stuhmer, W., Flockerzi, V., and Hofmann, F. (1990). Primary structure and functional expression of a high voltage activated calcium channel from rabbit lung. FEBS Lett 269, 409-412.

Bodi, I., Mikala, G., Koch, S.E., Akhter, S.A., and Schwartz, A. (2005). The L-type calcium channel in the heart: the beat goes on. J Clin Invest 115, 3306-3317.

Bolotina, V.M., Najibi, S., Palacino, J.J., Pagano, P.J., and Cohen, R.A. (1994). Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 368, 850-853.

Bootman, M.D., and Berridge, M.J. (1995). The elemental principles of calcium signaling. Cell 83, 675-678.

Bootman, M.D., Collins, T.J., Peppiatt, C.M., Prothero, L.S., MacKenzie, L., De Smet, P., Travers, M., Tovey, S.C., Seo, J.T., Berridge, M.J., et al. (2001a). Calcium signalling--an overview. Semin Cell Dev Biol 12, 3-10.

Bootman, M.D., Lipp, P., and Berridge, M.J. (2001b). The organisation and functions of local $\mathrm{Ca}(2+)$ signals. J Cell Sci 114, 2213-2222.

Borg, J.P., Lopez-Figueroa, M.O., de Taddeo-Borg, M., Kroon, D.E., Turner, R.S., Watson, S.J., and Margolis, B. (1999). Molecular analysis of the X11-mLin-2/CASK complex in brain. J Neurosci 19, 1307-1316.

Borg, J.P., Ooi, J., Levy, E., and Margolis, B. (1996). The phosphotyrosine interaction domains of X11 and FE65 bind to distinct sites on the YENPTY motif of amyloid precursor protein. Mol Cell Biol 16, 6229-6241.

Brenman, J.E., Chao, D.S., Gee, S.H., McGee, A.W., Craven, S.E., Santillano, D.R., Wu, Z., Huang, F., Xia, H., Peters, M.F., et al. (1996). Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains. Cell 84, 757-767.

Brenman, J.E., Xia, H., Chao, D.S., Black, S.M., and Bredt, D.S. (1997). Regulation of neuronal nitric oxide synthase through alternative transcripts. Dev Neurosci 19, 224-231.

Brini, M. (2009). Plasma membrane $\mathrm{Ca}(2+)$-ATPase: from a housekeeping function to a versatile signaling role. Pflugers Arch 457, 657-664.

Brodin, P., Falchetto, R., Vorherr, T., and Carafoli, E. (1992). Identification of two domains which mediate the binding of activating phospholipids to the plasma-membrane $\mathrm{Ca} 2+$ pump. Eur J Biochem 204, 939-946.

Brone, B., and Eggermont, J. (2005). PDZ proteins retain and regulate membrane transporters in polarized epithelial cell membranes. Am J Physiol Cell Physiol 288, C20-29.

Buch, M.H., Pickard, A., Rodriguez, A., Gillies, S., Maass, A.H., Emerson, M., Cartwright, E.J., Williams, J.C., Oceandy, D., Redondo, J.M., et al. (2005). The sarcolemmal calcium pump inhibits the calcineurin/nuclear factor of activated T-cell pathway via interaction with the calcineurin A catalytic subunit. J Biol Chem 280, 29479-29487.

Budde, T., Meuth, S., and Pape, H.C. (2002). Calcium-dependent inactivation of neuronal calcium channels. Nat Rev Neurosci 3, 873-883.

Burkard, N., Rokita, A.G., Kaufmann, S.G., Hallhuber, M., Wu, R., Hu, K., Hofmann, U., Bonz, A., Frantz, S., Cartwright, E.J., et al. (2007). Conditional neuronal nitric oxide synthase overexpression impairs myocardial contractility. Circ Res 100, e32-44.

Butz, S., Okamoto, M., and Sudhof, T.C. (1998). A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Cell 94, 773-782.

Campbell, D.L., Stamler, J.S., and Strauss, H.C. (1996a). Redox modulation of L-type calcium channels in ferret ventricular myocytes. Dual mechanism regulation by nitric oxide and S-nitrosothiols. J Gen Physiol 108, 277-293.

Campbell, D.L., Stamler, J.S., and Strauss, H.C. (1996b). Redox modulation of L-type calcium channels in ferret ventricular myocytes. Dual mechanism regulation by nitric oxide and S-nitrosothiols. J Gen Physiol 108, 277-293.

Carafoli, E., Kessler, F., Falchetto, R., Heim, R., Quadroni, M., Krebs, J., Strehler, E.E., and Vorherr, T. (1992). The molecular basis of the modulation of the plasma membrane calcium pump by calmodulin. Ann N Y Acad Sci 671, 58-68; discussion 68-59.

Carafoli, E., Santella, L., Branca, D., and Brini, M. (2001). Generation, control, and processing of cellular calcium signals. Crit Rev Biochem Mol Biol 36, 107-260.

Carafoli, E., and Stauffer, T. (1994). The plasma membrane calcium pump: functional domains, regulation of the activity, and tissue specificity of isoform expression. J Neurobiol 25, 312-324.

Cartwright, E.J., Oceandy, D., and Neyses, L. (2007). Plasma membrane calcium ATPase and its relationship to nitric oxide signaling in the heart. Ann N Y Acad Sci 1099, 247-253.

Cartwright, E.J., Oceandy, D., and Neyses, L. (2009). Physiological implications of the interaction between the plasma membrane calcium pump and nNOS. Pflugers Arch 457, 665671.

Catterall, W.A. (2000). Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16, 521-555.

Chicka, M.C., and Strehler, E.E. (2003). Alternative splicing of the first intracellular loop of plasma membrane Ca2+-ATPase isoform 2 alters its membrane targeting. J Biol Chem 278, 18464-18470.

Cho, K.O., Hunt, C.A., and Kennedy, M.B. (1992). The rat brain postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein. Neuron 9, 929942.

Christopherson, K.S., Hillier, B.J., Lim, W.A., and Bredt, D.S. (1999). PSD-95 assembles a ternary complex with the N-methyl-D-aspartic acid receptor and a bivalent neuronal NO synthase PDZ domain. J Biol Chem 274, 27467-27473.

Chu, E.C., and Tarnawski, A.S. (2004). PTEN regulatory functions in tumor suppression and cell biology. Med Sci Monit 10, RA235-241.

Clapham, D.E. (2007). Calcium signaling. Cell 131, 1047-1058.
Cohen, A.R., Woods, D.F., Marfatia, S.M., Walther, Z., Chishti, A.H., and Anderson, J.M. (1998). Human CASK/LIN-2 binds syndecan-2 and protein 4.1 and localizes to the basolateral membrane of epithelial cells. J Cell Biol 142, 129-138.

Cowburn, D. (1997). Peptide recognition by PTB and PDZ domains. Curr Opin Struct Biol 7, 835-838.

Cribbs, L.L., Lee, J.H., Yang, J., Satin, J., Zhang, Y., Daud, A., Barclay, J., Williamson, M.P., Fox, M., Rees, M., et al. (1998). Cloning and characterization of alpha1H from human heart, a member of the T-type Ca2+ channel gene family. Circ Res 83, 103-109.

Dai, J.L., Wang, L., Sahin, A.A., Broemeling, L.D., Schutte, M., and Pan, Y. (2004). NHERF ($\mathrm{Na}+/ \mathrm{H}+$ exchanger regulatory factor) gene mutations in human breast cancer. Oncogene 23, 8681-8687.

Damsky, C.H., and Ilic, D. (2002). Integrin signaling: it's where the action is. Curr Opin Cell Biol 14, 594-602.

Damy, T., Ratajczak, P., Robidel, E., Bendall, J.K., Oliviero, P., Boczkowski, J., Ebrahimian, T., Marotte, F., Samuel, J.L., and Heymes, C. (2003). Up-regulation of cardiac nitric oxide synthase 1-derived nitric oxide after myocardial infarction in senescent rats. Faseb J 17, 19341936.

Damy, T., Ratajczak, P., Shah, A.M., Camors, E., Marty, I., Hasenfuss, G., Marotte, F., Samuel, J.L., and Heymes, C. (2004). Increased neuronal nitric oxide synthase-derived NO production in the failing human heart. Lancet 363, 1365-1367.

Daniel, E.E., Jury, J., and Wang, Y.F. (2001). nNOS in canine lower esophageal sphincter: colocalized with Cav-1 and Ca2+-handling proteins? Am J Physiol Gastrointest Liver Physiol 281, G1101-1114.

Daniel, J.M. (2007). Dancing in and out of the nucleus: p120(ctn) and the transcription factor Kaiso. Biochim Biophys Acta 1773, 59-68.

Danson, E.J., Choate, J.K., and Paterson, D.J. (2005). Cardiac nitric oxide: emerging role for nNOS in regulating physiological function. Pharmacol Ther 106, 57-74.

Day, P., and Kobilka, B. (2006). PDZ-domain arrays for identifying components of GPCR signaling complexes. Trends Pharmacol Sci 27, 509-511.

DeMarco, S.J., Chicka, M.C., and Strehler, E.E. (2002). Plasma membrane Ca2+ ATPase isoform 2 b interacts preferentially with $\mathrm{Na}+/ \mathrm{H}+$ exchanger regulatory factor 2 in apical plasma membranes. J Biol Chem 277, 10506-10511.

DeMarco, S.J., and Strehler, E.E. (2001). Plasma membrane Ca2+-atpase isoforms 2 b and 4b interact promiscuously and selectively with members of the membrane-associated guanylate kinase family of PDZ (PSD95/Dlg/ZO-1) domain-containing proteins. J Biol Chem 276, 21594-21600.

Devic, E., Xiang, Y., Gould, D., and Kobilka, B. (2001). Beta-adrenergic receptor subtypespecific signaling in cardiac myocytes from beta(1) and beta(2) adrenoceptor knockout mice. Mol Pharmacol 60, 577-583.

Di Leva, F., Domi, T., Fedrizzi, L., Lim, D., and Carafoli, E. (2008). The plasma membrane $\mathrm{Ca} 2+$ ATPase of animal cells: structure, function and regulation. Arch Biochem Biophys 476, 65-74.

Doyle, D.A., Lee, A., Lewis, J., Kim, E., Sheng, M., and MacKinnon, R. (1996). Crystal structures of a complexed and peptide-free membrane protein-binding domain: molecular basis of peptide recognition by PDZ. Cell 85, 1067-1076.

Ertel, E.A., Campbell, K.P., Harpold, M.M., Hofmann, F., Mori, Y., Perez-Reyes, E., Schwartz, A., Snutch, T.P., Tanabe, T., Birnbaumer, L., et al. (2000). Nomenclature of voltage-gated calcium channels. Neuron 25, 533-535.

Eu, J.P., Xu, L., Stamler, J.S., and Meissner, G. (1999). Regulation of ryanodine receptors by reactive nitrogen species. Biochem Pharmacol 57, 1079-1084.

Fabiato, A. (1983). Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol 245, C1-14.

Falchetto, R., Vorherr, T., Brunner, J., and Carafoli, E. (1991). The plasma membrane Ca2+ pump contains a site that interacts with its calmodulin-binding domain. J Biol Chem 266, 2930-2936.

Fan, J.S., and Zhang, M. (2002). Signaling complex organization by PDZ domain proteins. Neurosignals 11, 315-321.

Fanning, A., ed. (2006). ZO proteins and tight junction assembly., 64-65 edn (New York, Landes Bioscience).

Fanning, A.S., and Anderson, J.M. (1996). Protein-protein interactions: PDZ domain networks. Curr Biol 6, 1385-1388.

Fanning, A.S., and Anderson, J.M. (2009). Zonula occludens-1 and -2 are cytosolic scaffolds that regulate the assembly of cellular junctions. Ann N Y Acad Sci 1165, 113-120.

Feron, O., Belhassen, L., Kobzik, L., Smith, T.W., Kelly, R.A., and Michel, T. (1996). Endothelial nitric oxide synthase targeting to caveolae. Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells. J Biol Chem 271, 22810-22814.

Ferro-Novick, S., and Jahn, R. (1994). Vesicle fusion from yeast to man. Nature 370, 191193.

Franklin, J.L., Yoshiura, K., Dempsey, P.J., Bogatcheva, G., Jeyakumar, L., Meise, K.S., Pearsall, R.S., Threadgill, D., and Coffey, R.J. (2005). Identification of MAGI-3 as a transforming growth factor-alpha tail binding protein. Exp Cell Res 303, 457-470.

Freise, D., Held, B., Wissenbach, U., Pfeifer, A., Trost, C., Himmerkus, N., Schweig, U., Freichel, M., Biel, M., Hofmann, F., et al. (2000). Absence of the gamma subunit of the skeletal muscle dihydropyridine receptor increases L-type Ca2+ currents and alters channel inactivation properties. J Biol Chem 275, 14476-14481.

Fujimoto, T. (1993). Calcium pump of the plasma membrane is localized in caveolae. J Cell Biol 120, 1147-1157.

Fujisawa, H., Ogura, T., Kurashima, Y., Yokoyama, T., Yamashita, J., and Esumi, H. (1994). Expression of two types of nitric oxide synthase mRNA in human neuroblastoma cell lines. J Neurochem 63, 140-145.

Furuta, H., Luo, L., Hepler, K., and Ryan, A.F. (1998). Evidence for differential regulation of calcium by outer versus inner hair cells: plasma membrane Ca-ATPase gene expression. Hear Res 123, 10-26.

Gachhui, R., Abu-Soud, H.M., Ghosha, D.K., Presta, A., Blazing, M.A., Mayer, B., George, S.E., and Stuehr, D.J. (1998). Neuronal nitric-oxide synthase interaction with calmodulintroponin C chimeras. J Biol Chem 273, 5451-5454.

Gachhui, R., Presta, A., Bentley, D.F., Abu-Soud, H.M., McArthur, R., Brudvig, G., Ghosh, D.K., and Stuehr, D.J. (1996). Characterization of the reductase domain of rat neuronal nitric oxide synthase generated in the methylotrophic yeast Pichia pastoris. Calmodulin response is complete within the reductase domain itself. J Biol Chem 271, 20594-20602.

Garbers, D.L. (1979). Purification of soluble guanylate cyclase from rat lung. J Biol Chem 254, 240-243.

Garcia, M.L., and Strehler, E.E. (1999). Plasma membrane calcium ATPases as critical regulators of calcium homeostasis during neuronal cell function. Front Biosci 4, D869-882.

Garner, C.C., Nash, J., and Huganir, R.L. (2000). PDZ domains in synapse assembly and signalling. Trends Cell Biol 10, 274-280.

Gee, S.H., Sekely, S.A., Lombardo, C., Kurakin, A., Froehner, S.C., and Kay, B.K. (1998). Cyclic peptides as non-carboxyl-terminal ligands of syntrophin PDZ domains. J Biol Chem 273, 21980-21987.

Geiger, B., and Ayalon, O. (1992). Cadherins. Annu Rev Cell Biol 8, 307-332.
Geiger, B., Ginsberg, D., Salomon, D., and Volberg, T. (1990). The molecular basis for the assembly and modulation of adherens-type junctions. Cell Differ Dev 32, 343-353.

Geiger, B., Volk, T., Volberg, T., and Bendori, R. (1987). Molecular interactions in adherenstype contacts. J Cell Sci Suppl 8, 251-272.

Giallourakis, C., Cao, Z., Green, T., Wachtel, H., Xie, X., Lopez-Illasaca, M., Daly, M., Rioux, J., and Xavier, R. (2006). A molecular-properties-based approach to understanding PDZ domain proteins and PDZ ligands. Genome Res 16, 1056-1072.

Goellner, G.M., DeMarco, S.J., and Strehler, E.E. (2003). Characterization of PISP, a novel single-PDZ protein that binds to all plasma membrane $\mathrm{Ca} 2+$-ATPase b-splice variants. Ann N Y Acad Sci 986, 461-471.

Gomperts, S.N. (1996). Clustering membrane proteins: It's all coming together with the PSD95/SAP90 protein family. Cell 84, 659-662.

Gregg, R.G., Messing, A., Strube, C., Beurg, M., Moss, R., Behan, M., Sukhareva, M., Haynes, S., Powell, J.A., Coronado, R., et al. (1996). Absence of the beta subunit (cchb1) of the skeletal muscle dihydropyridine receptor alters expression of the alpha 1 subunit and eliminates excitation-contraction coupling. Proc Natl Acad Sci U S A 93, 13961-13966.

Gurnett, C.A., De Waard, M., and Campbell, K.P. (1996). Dual function of the voltagedependent $\mathrm{Ca} 2+$ channel alpha 2 delta subunit in current stimulation and subunit interaction. Neuron 16, 431-440.

Halbleib, J.M., and Nelson, W.J. (2006). Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev 20, 3199-3214.

Hall, R.A. (2004). Beta-adrenergic receptors and their interacting proteins. Semin Cell Dev Biol 15, 281-288.

Hall, R.A., Ostedgaard, L.S., Premont, R.T., Blitzer, J.T., Rahman, N., Welsh, M.J., and Lefkowitz, R.J. (1998). A C-terminal motif found in the beta2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the $\mathrm{Na}+/ \mathrm{H}+$ exchanger regulatory factor family of PDZ proteins. Proc Natl Acad Sci U S A 95, 8496-8501.

Hammes, A., Oberdorf, S., Strehler, E.E., Stauffer, T., Carafoli, E., Vetter, H., and Neyses, L. (1994). Differentiation-specific isoform mRNA expression of the calmodulin-dependent plasma membrane $\mathrm{Ca}(2+)$-ATPase. Faseb J 8, 428-435.

Hardman, J.G., and Sutherland, E.W. (1969). Guanyl cyclase, an enzyme catalyzing the formation of guanosine $3^{\prime}, 5$ '-monophosphate from guanosine trihosphate. J Biol Chem 244, 6363-6370.

Hardy, J. (1997). The Alzheimer family of diseases: many etiologies, one pathogenesis? Proc Natl Acad Sci U S A 94, 2095-2097.

Hare, J.M., and Stamler, J.S. (2005). NO/redox disequilibrium in the failing heart and cardiovascular system. J Clin Invest 115, 509-517.

Harris, B.Z., and Lim, W.A. (2001). Mechanism and role of PDZ domains in signaling complex assembly. J Cell Sci 114, 3219-3231.

Harrison, S.C. (1996). Peptide-surface association: the case of PDZ and PTB domains. Cell 86, 341-343.

Hata, Y., Butz, S., and Sudhof, T.C. (1996). CASK: a novel dlg/PSD95 homolog with an Nterminal calmodulin-dependent protein kinase domain identified by interaction with neurexins. J Neurosci 16, 2488-2494.

Hayashi, Y., Nishio, M., Naito, Y., Yokokura, H., Nimura, Y., Hidaka, H., and Watanabe, Y. (1999). Regulation of neuronal nitric-oxide synthase by calmodulin kinases. J Biol Chem 274, 20597-20602.

He, J., Bellini, M., Inuzuka, H., Xu, J., Xiong, Y., Yang, X., Castleberry, A.M., and Hall, R.A. (2006). Proteomic analysis of beta1-adrenergic receptor interactions with PDZ scaffold proteins. J Biol Chem 281, 2820-2827.

Heaton, D.A., Lei, M., Li, D., Golding, S., Dawson, T.A., Mohan, R.M., and Paterson, D.J. (2006). Remodeling of the cardiac pacemaker L-type calcium current and its beta-adrenergic responsiveness in hypertension after neuronal NO synthase gene transfer. Hypertension 48, 443-452.

Hess, D.T., Matsumoto, A., Kim, S.O., Marshall, H.E., and Stamler, J.S. (2005). Protein Snitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6, 150-166.

Hill, J.K., Williams, D.E., LeMasurier, M., Dumont, R.A., Strehler, E.E., and Gillespie, P.G. (2006). Splice-site A choice targets plasma-membrane Ca2+-ATPase isoform 2 to hair bundles. J Neurosci 26, 6172-6180.

Hill, K., Li, Y., Bennett, M., McKay, M., Zhu, X., Shern, J., Torre, E., Lah, J.J., Levey, A.I., and Kahn, R.A. (2003). Munc18 interacting proteins: ADP-ribosylation factor-dependent coat proteins that regulate the traffic of beta-Alzheimer's precursor protein. J Biol Chem 278, 36032-36040.

Hillier, B.J., Christopherson, K.S., Prehoda, K.E., Bredt, D.S., and Lim, W.A. (1999). Unexpected modes of PDZ domain scaffolding revealed by structure of nNOS-syntrophin complex. Science 284, 812-815.

Hjerten, S. (1962). A new method for preparation of agaraose for gel electrophoresis. Biochim Biophys Acta 62, 445-449.

Hofmann, F., Biel, M., and Flockerzi, V. (1994). Molecular basis for Ca2+ channel diversity. Annu Rev Neurosci 17, 399-418.

Hofmann, F., Lacinova, L., and Klugbauer, N. (1999). Voltage-dependent calcium channels: from structure to function. Rev Physiol Biochem Pharmacol 139, 33-87.

Hsueh, Y.P. (2009). Calcium/calmodulin-dependent serine protein kinase and mental retardation. Ann Neurol 66, 438-443.

Hu, H., Chiamvimonvat, N., Yamagishi, T., and Marban, E. (1997a). Direct inhibition of expressed cardiac L-type Ca2+ channels by S-nitrosothiol nitric oxide donors. Circ Res 81, 742-752.

Hu, H., Chiamvimonvat, N., Yamagishi, T., and Marban, E. (1997b). Direct inhibition of expressed cardiac L-type Ca2+ channels by S-nitrosothiol nitric oxide donors. Circ Res 81, 742-752.

Hung, A.Y., and Sheng, M. (2002). PDZ domains: structural modules for protein complex assembly. J Biol Chem 277, 5699-5702.

Iida, J., Hirabayashi, S., Sato, Y., and Hata, Y. (2004). Synaptic scaffolding molecule is involved in the synaptic clustering of neuroligin. Mol Cell Neurosci 27, 497-508.

Irie, M., Hata, Y., Takeuchi, M., Ichtchenko, K., Toyoda, A., Hirao, K., Takai, Y., Rosahl, T.W., and Sudhof, T.C. (1997). Binding of neuroligins to PSD-95. Science 277, 1511-1515.

Ishizuya, T., Yokose, S., Hori, M., Noda, T., Suda, T., Yoshiki, S., and Yamaguchi, A. (1997). Parathyroid hormone exerts disparate effects on osteoblast differentiation depending on exposure time in rat osteoblastic cells. J Clin Invest 99, 2961-2970.

Itoh, M., Yonemura, S., Nagafuchi, A., and Tsukita, S. (1991). A 220-kD undercoatconstitutive protein: its specific localization at cadherin-based cell-cell adhesion sites. J Cell Biol 115, 1449-1462.

Jaffrey, S.R., Erdjument-Bromage, H., Ferris, C.D., Tempst, P., and Snyder, S.H. (2001). Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol 3, 193197.

Jaffrey, S.R., and Snyder, S.H. (2001). The biotin switch method for the detection of Snitrosylated proteins. Sci STKE 2001, pl1.

James, P., Maeda, M., Fischer, R., Verma, A.K., Krebs, J., Penniston, J.T., and Carafoli, E. (1988). Identification and primary structure of a calmodulin binding domain of the $\mathrm{Ca} 2+$ pump of human erythrocytes. J Biol Chem 263, 2905-2910.

Kamp, T.J., and Hell, J.W. (2000). Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C. Circ Res 87, 1095-1102.

Kennedy, M.B. (1995). Origin of PDZ (DHR, GLGF) domains. Trends Biochem Sci 20, 350.
Kim, D.Y., and Kim, K.K. (2005). Structure and function of HtrA family proteins, the key players in protein quality control. J Biochem Mol Biol 38, 266-274.

Kim, E., DeMarco, S.J., Marfatia, S.M., Chishti, A.H., Sheng, M., and Strehler, E.E. (1998). Plasma membrane Ca2+ ATPase isoform 4b binds to membrane-associated guanylate kinase (MAGUK) proteins via their PDZ (PSD-95/Dlg/ZO-1) domains. J Biol Chem 273, 15911595.

Kim, E., Niethammer, M., Rothschild, A., Jan, Y.N., and Sheng, M. (1995). Clustering of Shaker-type K+ channels by interaction with a family of membrane-associated guanylate kinases. Nature 378, 85-88.

Kim, E., and Sheng, M. (2004). PDZ domain proteins of synapses. Nat Rev Neurosci 5, 771781.

Klugbauer, N., Marais, E., Lacinova, L., and Hofmann, F. (1999). A T-type calcium channel from mouse brain. Pflugers Arch 437, 710-715.

Knowles, M.R., Stutts, M.J., Spock, A., Fischer, N., Gatzy, J.T., and Boucher, R.C. (1983). Abnormal ion permeation through cystic fibrosis respiratory epithelium. Science 221, 10671070.

Kornau, H.C., Schenker, L.T., Kennedy, M.B., and Seeburg, P.H. (1995). Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269, 1737-1740.

Kozel, P.J., Friedman, R.A., Erway, L.C., Yamoah, E.N., Liu, L.H., Riddle, T., Duffy, J.J., Doetschman, T., Miller, M.L., Cardell, E.L., et al. (1998). Balance and hearing deficits in mice with a null mutation in the gene encoding plasma membrane $\mathrm{Ca} 2+$-ATPase isoform 2. J Biol Chem 273, 18693-18696.

Krebs, G., ed. (1996). Biomemranes.
Krebs, J., Vasak, M., Scarpa, A., and Carafoli, E. (1987). Conformational differences between the E1 and E2 states of the calcium adenosinetriphosphatase of the erythrocyte plasma membrane as revealed by circular dichroism and fluorescence spectroscopy. Biochemistry 26, 3921-3926.

Kurschner, C., Mermelstein, P.G., Holden, W.T., and Surmeier, D.J. (1998). CIPP, a novel multivalent PDZ domain protein, selectively interacts with Kir4.0 family members, NMDA receptor subunits, neurexins, and neuroligins. Mol Cell Neurosci 11, 161-172.

Kurzchalia, T.V., and Parton, R.G. (1999). Membrane microdomains and caveolae. Curr Opin Cell Biol 11, 424-431.

Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.

Landino, L.M., Koumas, M.T., Mason, C.E., and Alston, J.A. (2006). Ascorbic acid reduction of microtubule protein disulfides and its relevance to protein S-nitrosylation assays. Biochem Biophys Res Commun 340, 347-352.

Laskowski, R.A., Watson, J.D., and Thornton, J.M. (2005). Protein function prediction using local 3D templates. J Mol Biol 351, 614-626.

Lasky, L.A., Skelton, N. J., Siduh S. S. (2005). PDZ Domains: Intracellular Mediators of Carboxy-terminal Protein Recognition and Scaffolding. In Modular Protein Domains, G. Cesareni, Gimona M., Sudol, M., Yaffe, M. , ed. (Weinheim, WILEY-VCH Verlag GmbH \& Co), pp. 257-273.

Laura, R.P., Ross, S., Koeppen, H., and Lasky, L.A. (2002). MAGI-1: a widely expressed, alternatively spliced tight junction protein. Exp Cell Res 275, 155-170.

Lee, D.B., Huang, E., and Ward, H.J. (2006). Tight junction biology and kidney dysfunction. Am J Physiol Renal Physiol 290, F20-34.

Leung, A.T., Imagawa, T., Block, B., Franzini-Armstrong, C., and Campbell, K.P. (1988). Biochemical and ultrastructural characterization of the 1,4-dihydropyridine receptor from rabbit skeletal muscle. Evidence for a 52,000 Da subunit. J Biol Chem 263, 994-1001.

Llinas, R.R., Sugimori, M., and Cherksey, B. (1989). Voltage-dependent calcium conductances in mammalian neurons. The P channel. Ann N Y Acad Sci 560, 103-111.

Lokuta, A.J., Maertz, N.A., Meethal, S.V., Potter, K.T., Kamp, T.J., Valdivia, H.H., and Haworth, R.A. (2005). Increased nitration of sarcoplasmic reticulum Ca2+-ATPase in human heart failure. Circulation 111, 988-995.

Long, J.F., Tochio, H., Wang, P., Fan, J.S., Sala, C., Niethammer, M., Sheng, M., and Zhang, M. (2003). Supramodular structure and synergistic target binding of the N-terminal tandem PDZ domains of PSD-95. J Mol Biol 327, 203-214.

Lumeng, C., Phelps, S., Crawford, G.E., Walden, P.D., Barald, K., and Chamberlain, J.S. (1999). Interactions between beta 2-syntrophin and a family of microtubule-associated serine/threonine kinases. Nat Neurosci 2, 611-617.

Mangia, A., Chiriatti, A., Bellizzi, A., Malfettone, A., Stea, B., Zito, F.A., Reshkin, S.J., Simone, G., and Paradiso, A. (2009). Biological role of NHERF1 protein expression in breast cancer. Histopathology 55, 600-608.

Mannick, J.B., and Schonhoff, C.M. (2002). Nitrosylation: the next phosphorylation? Arch Biochem Biophys 408, 1-6.

Martin, T.F. (1997). Stages of regulated exocytosis. Trends Cell Biol 7, 271-276.
Martinez-Dunst, C., Michaels, R.L., and Fuchs, P.A. (1997). Release sites and calcium channels in hair cells of the chick's cochlea. J Neurosci 17, 9133-9144.

Martinez-Ruiz, A., and Lamas, S. (2004). S-nitrosylation: a potential new paradigm in signal transduction. Cardiovasc Res 62, 43-52.

Massion, P.B., Feron, O., Dessy, C., and Balligand, J.L. (2003). Nitric oxide and cardiac function: ten years after, and continuing. Circ Res 93, 388-398.

Mattson, M.P. (1997). Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol Rev 77, 1081-1132.

Maxfield, F.R. (2002). Plasma membrane microdomains. Curr Opin Cell Biol 14, 483-487.
Maximov, A., Sudhof, T.C., and Bezprozvanny, I. (1999). Association of neuronal calcium channels with modular adaptor proteins. J Biol Chem 274, 24453-24456.

McCabe, T.J., Fulton, D., Roman, L.J., and Sessa, W.C. (2000). Enhanced electron flux and reduced calmodulin dissociation may explain "calcium-independent" eNOS activation by phosphorylation. J Biol Chem 275, 6123-6128.

McLoughlin, D.M., Irving, N.G., Brownlees, J., Brion, J.P., Leroy, K., and Miller, C.C. (1999). Mint2/X11-like colocalizes with the Alzheimer's disease amyloid precursor protein and is associated with neuritic plaques in Alzheimer's disease. Eur J Neurosci 11, 1988-1994.

McMillan, K., and Masters, B.S. (1995). Prokaryotic expression of the heme- and flavinbinding domains of rat neuronal nitric oxide synthase as distinct polypeptides: identification of the heme-binding proximal thiolate ligand as cysteine-415. Biochemistry 34, 3686-3693.

Mikami, A., Imoto, K., Tanabe, T., Niidome, T., Mori, Y., Takeshima, H., Narumiya, S., and Numa, S. (1989). Primary structure and functional expression of the cardiac dihydropyridinesensitive calcium channel. Nature 340, 230-233.

Milani, D., Malgaroli, A., Guidolin, D., Fasolato, C., Skaper, S.D., Meldolesi, J., and Pozzan, T. (1990). $\mathrm{Ca} 2+$ channels and intracellular $\mathrm{Ca} 2+$ stores in neuronal and neuroendocrine cells. Cell Calcium 11, 191-199.

Monteith, G.R., and Roufogalis, B.D. (1995). The plasma membrane calcium pump--a physiological perspective on its regulation. Cell Calcium 18, 459-470.

Moosmang, S., Lenhardt, P., Haider, N., Hofmann, F., and Wegener, J.W. (2005). Mouse models to study L-type calcium channel function. Pharmacol Ther 106, 347-355.

Moosmang, S., Schulla, V., Welling, A., Feil, R., Feil, S., Wegener, J.W., Hofmann, F., and Klugbauer, N. (2003). Dominant role of smooth muscle L-type calcium channel Cav1.2 for blood pressure regulation. Embo J 22, 6027-6034.

Morais Cabral, J.H., Petosa, C., Sutcliffe, M.J., Raza, S., Byron, O., Poy, F., Marfatia, S.M., Chishti, A.H., and Liddington, R.C. (1996). Crystal structure of a PDZ domain. Nature 382, 649-652.

Morales, F.C., Takahashi, Y., Kreimann, E.L., and Georgescu, M.M. (2004). Ezrin-radixinmoesin (ERM)-binding phosphoprotein 50 organizes ERM proteins at the apical membrane of polarized epithelia. Proc Natl Acad Sci U S A 101, 17705-17710.

Moyer, B.D., Denton, J., Karlson, K.H., Reynolds, D., Wang, S., Mickle, J.E., Milewski, M., Cutting, G.R., Guggino, W.B., Li, M., et al. (1999). A PDZ-interacting domain in CFTR is an apical membrane polarization signal. J Clin Invest 104, 1353-1361.

Moyer, B.D., Duhaime, M., Shaw, C., Denton, J., Reynolds, D., Karlson, K.H., Pfeiffer, J., Wang, S., Mickle, J.E., Milewski, M., et al. (2000). The PDZ-interacting domain of cystic fibrosis transmembrane conductance regulator is required for functional expression in the apical plasma membrane. J Biol Chem 275, 27069-27074.

Murthy, A., Gonzalez-Agosti, C., Cordero, E., Pinney, D., Candia, C., Solomon, F., Gusella, J., and Ramesh, V. (1998). NHE-RF, a regulatory cofactor for $\mathrm{Na}(+)-\mathrm{H}+$ exchange, is a common interactor for merlin and ERM (MERM) proteins. J Biol Chem 273, 1273-1276.

Nakanishi, H., Obaishi, H., Satoh, A., Wada, M., Mandai, K., Satoh, K., Nishioka, H., Matsuura, Y., Mizoguchi, A., and Takai, Y. (1997). Neurabin: a novel neural tissue-specific actin filament-binding protein involved in neurite formation. J Cell Biol 139, 951-961.

Namkung, Y., Smith, S.M., Lee, S.B., Skrypnyk, N.V., Kim, H.L., Chin, H., Scheller, R.H., Tsien, R.W., and Shin, H.S. (1998). Targeted disruption of the Ca2+ channel beta3 subunit reduces N - and L-type Ca2+ channel activity and alters the voltage-dependent activation of P/Q-type Ca2+ channels in neurons. Proc Natl Acad Sci U S A 95, 12010-12015.

Neely, A., Wei, X., Olcese, R., Birnbaumer, L., and Stefani, E. (1993). Potentiation by the beta subunit of the ratio of the ionic current to the charge movement in the cardiac calcium channel. Science 262, 575-578.

Niethammer, M., Kim, E., and Sheng, M. (1996). Interaction between the C terminus of NMDA receptor subunits and multiple members of the PSD-95 family of membraneassociated guanylate kinases. J Neurosci 16, 2157-2163.

Nourry, C., Grant, S.G., and Borg, J.P. (2003). PDZ domain proteins: plug and play! Sci STKE 2003, RE7.

Nunez, L., Vaquero, M., Gomez, R., Caballero, R., Mateos-Caceres, P., Macaya, C., Iriepa, I., Galvez, E., Lopez-Farre, A., Tamargo, J., et al. (2006). Nitric oxide blocks hKv1.5 channels by S-nitrosylation and by a cyclic GMP-dependent mechanism. Cardiovasc Res 72, 80-89.

Ojeh, N., Pekovic, V., Jahoda, C., and Maatta, A. (2008). The MAGUK-family protein CASK is targeted to nuclei of the basal epidermis and controls keratinocyte proliferation. J Cell Sci 121, 2705-2717.

Okamoto, M., and Sudhof, T.C. (1997). Mints, Munc18-interacting proteins in synaptic vesicle exocytosis. J Biol Chem 272, 31459-31464.

Okamoto, M., and Sudhof, T.C. (1998). Mint 3: a ubiquitous mint isoform that does not bind to munc 18-1 or -2. Eur J Cell Biol 77, 161-165.

Okunade, G.W., Miller, M.L., Pyne, G.J., Sutliff, R.L., O'Connor, K.T., Neumann, J.C., Andringa, A., Miller, D.A., Prasad, V., Doetschman, T., et al. (2004). Targeted ablation of plasma membrane Ca2+-ATPase (PMCA) 1 and 4 indicates a major housekeeping function for PMCA1 and a critical role in hyperactivated sperm motility and male fertility for PMCA4. J Biol Chem 279, 33742-33750.

Paarmann, I., Lye, M.F., Lavie, A., and Konrad, M. (2008). Structural requirements for calmodulin binding to membrane-associated guanylate kinase homologs. Protein Sci 17, 1946-1954.

Pallen, M.J., and Ponting, C.P. (1997). PDZ domains in bacterial proteins. Mol Microbiol 26, 411-413.

Pan, Y., Wang, L., and Dai, J.L. (2006). Suppression of breast cancer cell growth by Na+/H+ exchanger regulatory factor 1 (NHERF1). Breast Cancer Res 8, R63.

Pawson, T. (2007). Dynamic control of signaling by modular adaptor proteins. Curr Opin Cell Biol 19, 112-116.

Pawson, T., and Nash, P. (2003). Assembly of cell regulatory systems through protein interaction domains. Science 300, 445-452.

Penniston, J.T., and Enyedi, A. (1998). Modulation of the plasma membrane Ca2+ pump. J Membr Biol 165, 101-109.

Perez-Reyes, E., Cribbs, L.L., Daud, A., Lacerda, A.E., Barclay, J., Williamson, M.P., Fox, M., Rees, M., and Lee, J.H. (1998). Molecular characterization of a neuronal low-voltageactivated T-type calcium channel. Nature 391, 896-900.

Peterson, B.Z., DeMaria, C.D., Adelman, J.P., and Yue, D.T. (1999). Calmodulin is the Ca2+ sensor for Ca2+-dependent inactivation of L-type calcium channels. Neuron 22, 549-558.

Petit, C.M., Zhang, J., Sapienza, P.J., Fuentes, E.J., and Lee, A.L. (2009). Hidden dynamic allostery in a PDZ domain. Proc Natl Acad Sci U S A 106, 18249-18254.

Platzer, J., Engel, J., Schrott-Fischer, A., Stephan, K., Bova, S., Chen, H., Zheng, H., and Striessnig, J. (2000). Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 102, 89-97.

Raghuram, V., Mak, D.O., and Foskett, J.K. (2001). Regulation of cystic fibrosis transmembrane conductance regulator single-channel gating by bivalent PDZ-domainmediated interaction. Proc Natl Acad Sci U S A 98, 1300-1305.

Randall, A., and Tsien, R.W. (1995). Pharmacological dissection of multiple types of Ca2+ channel currents in rat cerebellar granule neurons. J Neurosci 15, 2995-3012.

Reczek, D., Berryman, M., and Bretscher, A. (1997a). Identification of EBP50: A PDZcontaining phosphoprotein that associates with members of the ezrin-radixin-moesin family. J Cell Biol 139, 169-179.

Reczek, D., Berryman, M., and Bretscher, A. (1997b). Identification of EBP50: A PDZcontaining phosphoprotein that associates with members of the ezrin-radixin-moesin family. J Cell Biol 139, 169-179.

Reuter, H. (1979). Properties of two inward membrane currents in the heart. Annu Rev Physiol 41, 413-424.

Richards, M.K., and Marletta, M.A. (1994). Characterization of neuronal nitric oxide synthase and a C 415 H mutant, purified from a baculovirus overexpression system. Biochemistry 33, 14723-14732.

Rimessi, A., Coletto, L., Pinton, P., Rizzuto, R., Brini, M., and Carafoli, E. (2005). Inhibitory interaction of the 14-3-3 \{epsilon\} protein with isoform 4 of the plasma membrane $\mathrm{Ca}(2+)$ ATPase pump. J Biol Chem 280, 37195-37203.

Rogelj, B., Mitchell, J.C., Miller, C.C., and McLoughlin, D.M. (2006). The X11/Mint family of adaptor proteins. Brain Res Rev 52, 305-315.

Rothberg, K.G., Heuser, J.E., Donzell, W.C., Ying, Y.S., Glenney, J.R., and Anderson, R.G. (1992). Caveolin, a protein component of caveolae membrane coats. Cell 68, 673-682.

Saras, J., and Heldin, C.H. (1996). PDZ domains bind carboxy-terminal sequences of target proteins. Trends Biochem Sci 21, 455-458.

Sato, T., Irie, S., Kitada, S., and Reed, J.C. (1995). FAP-1: a protein tyrosine phosphatase that associates with Fas. Science 268, 411-415.

Schagger, H., and von Jagow, G. (1987). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa . Anal Biochem 166, 368-379.

Schatzmann, H.J. (1966). ATP-dependent Ca++-extrusion from human red cells. Experientia 22, 364-365.

Schepens, J., Cuppen, E., Wieringa, B., and Hendriks, W. (1997). The neuronal nitric oxide synthase PDZ motif binds to -G(D,E)XV* carboxyterminal sequences. FEBS Lett 409, 53-56.

Schindeler, A., and Little, D.G. (2006). Ras-MAPK signaling in osteogenic differentiation: friend or foe? J Bone Miner Res 21, 1331-1338.

Schneeberger, E.E., and Lynch, R.D. (2004). The tight junction: a multifunctional complex. Am J Physiol Cell Physiol 286, C1213-1228.

Schuh, K., Cartwright, E.J., Jankevics, E., Bundschu, K., Liebermann, J., Williams, J.C., Armesilla, A.L., Emerson, M., Oceandy, D., Knobeloch, K.P., et al. (2004). Plasma membrane Ca2+ ATPase 4 is required for sperm motility and male fertility. J Biol Chem 279, 28220-28226.

Schuh, K., Uldrijan, S., Gambaryan, S., Roethlein, N., and Neyses, L. (2003). Interaction of the plasma membrane $\mathrm{Ca} 2+$ pump $4 \mathrm{~b} / \mathrm{CI}$ with the $\mathrm{Ca} 2+$ /calmodulin-dependent membraneassociated kinase CASK. J Biol Chem 278, 9778-9783.

Schuh, K., Uldrijan, S., Telkamp, M., Rothlein, N., and Neyses, L. (2001). The plasmamembrane calmodulin-dependent calcium pump: a major regulator of nitric oxide synthase I. J Cell Biol 155, 201-205.

Schultz, J., Hoffmuller, U., Krause, G., Ashurst, J., Macias, M.J., Schmieder, P., SchneiderMergener, J., and Oschkinat, H. (1998). Specific interactions between the syntrophin PDZ domain and voltage-gated sodium channels. Nat Struct Biol 5, 19-24.

Sears, C.E., Ashley, E.A., and Casadei, B. (2004). Nitric oxide control of cardiac function: is neuronal nitric oxide synthase a key component? Philos Trans R Soc Lond B Biol Sci 359, 1021-1044.

Sears, C.E., Bryant, S.M., Ashley, E.A., Lygate, C.A., Rakovic, S., Wallis, H.L., Neubauer, S., Terrar, D.A., and Casadei, B. (2003). Cardiac neuronal nitric oxide synthase isoform regulates myocardial contraction and calcium handling. Circ Res 92, e52-59.

Seddon, M., Shah, A.M., and Casadei, B. (2007). Cardiomyocytes as effectors of nitric oxide signalling. Cardiovasc Res 75, 315-326.

Segal, S.S., Brett, S.E., and Sessa, W.C. (1999). Codistribution of NOS and caveolin throughout peripheral vasculature and skeletal muscle of hamsters. Am J Physiol 277, H1 1671177.

Seidler, U., Singh, A.K., Cinar, A., Chen, M., Hillesheim, J., Hogema, B., and Riederer, B. (2009). The role of the NHERF family of PDZ scaffolding proteins in the regulation of salt and water transport. Ann N Y Acad Sci 1165, 249-260.

Seino, S., Chen, L., Seino, M., Blondel, O., Takeda, J., Johnson, J.H., and Bell, G.I. (1992). Cloning of the alpha 1 subunit of a voltage-dependent calcium channel expressed in pancreatic beta cells. Proc Natl Acad Sci U S A 89, 584-588.

Seisenberger, C., Specht, V., Welling, A., Platzer, J., Pfeifer, A., Kuhbandner, S., Striessnig, J., Klugbauer, N., Feil, R., and Hofmann, F. (2000). Functional embryonic cardiomyocytes after disruption of the L-type alpha1C (Cav1.2) calcium channel gene in the mouse. J Biol Chem 275, 39193-39199.

Sheng, M., and Sala, C. (2001). PDZ domains and the organization of supramolecular complexes. Annu Rev Neurosci 24, 1-29.

Shenolikar, S., Voltz, J.W., Cunningham, R., and Weinman, E.J. (2004). Regulation of ion transport by the NHERF family of PDZ proteins. Physiology (Bethesda) 19, 362-369.

Sheppard, L., Levy, D., Norris, G., Larson, T.V., and Koenig, J.Q. (1999). Effects of ambient air pollution on nonelderly asthma hospital admissions in Seattle, Washington, 1987-1994. Epidemiology 10, 23-30.

Shieh, B.H., and Zhu, M.Y. (1996). Regulation of the TRP Ca2+ channel by INAD in Drosophila photoreceptors. Neuron 16, 991-998.

Silvagno, F., Xia, H., and Bredt, D.S. (1996). Neuronal nitric-oxide synthase-mu, an alternatively spliced isoform expressed in differentiated skeletal muscle. J Biol Chem 271, 11204-11208.

Sneddon, W.B., Liu, F., Gesek, F.A., and Friedman, P.A. (2000). Obligate mitogen-activated protein kinase activation in parathyroid hormone stimulation of calcium transport but not calcium signaling. Endocrinology 141, 4185-4193.

Snyder, S.H. (1992). Nitric oxide: first in a new class of neurotransmitters. Science 257, 494496.

Song, E., Gao, S., Tian, R., Ma, S., Huang, H., Guo, J., Li, Y., Zhang, L., and Gao, Y. (2006). A high efficiency strategy for binding property characterization of peptide-binding domains. Mol Cell Proteomics 5, 1368-1381.

Songyang, Z., Fanning, A.S., Fu, C., Xu, J., Marfatia, S.M., Chishti, A.H., Crompton, A., Chan, A.C., Anderson, J.M., and Cantley, L.C. (1997). Recognition of unique carboxylterminal motifs by distinct PDZ domains. Science 275, 73-77.

Spaller, M.R. (2006). Act globally, think locally: systems biology addresses the PDZ domain. ACS Chem Biol 1, 207-210.

Splawski, I., Timothy, K.W., Decher, N., Kumar, P., Sachse, F.B., Beggs, A.H., Sanguinetti, M.C., and Keating, M.T. (2005). Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations. Proc Natl Acad Sci U S A 102, 8089-8096; discussion 8086-8088.

Splawski, I., Timothy, K.W., Sharpe, L.M., Decher, N., Kumar, P., Bloise, R., Napolitano, C., Schwartz, P.J., Joseph, R.M., Condouris, K., et al. (2004). Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119, 19-31.

Stevenson, B.R., Siliciano, J.D., Mooseker, M.S., and Goodenough, D.A. (1986). Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J Cell Biol 103, 755-766.

Stieber, J., Herrmann, S., Feil, S., Loster, J., Feil, R., Biel, M., Hofmann, F., and Ludwig, A. (2003). The hyperpolarization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart. Proc Natl Acad Sci U S A 100, 1523515240.

Strehler, B.L. (1991). Where is the self? A neuroanatomical theory of consciousness. Synapse 7, 44-91.

Strehler, E.E., Caride, A.J., Filoteo, A.G., Xiong, Y., Penniston, J.T., and Enyedi, A. (2007a). Plasma membrane $\mathrm{Ca} 2+$ ATPases as dynamic regulators of cellular calcium handling. Ann N Y Acad Sci 1099, 226-236.

Strehler, E.E., Filoteo, A.G., Penniston, J.T., and Caride, A.J. (2007b). Plasma-membrane $\mathrm{Ca}(2+)$ pumps: structural diversity as the basis for functional versatility. Biochem Soc Trans 35, 919-922.

Strehler, E.E., Heim, R., and Carafoli, E. (1991). Molecular characterization of plasma membrane calcium pump isoforms. Adv Exp Med Biol 307, 251-261.

Strehler, E.E., and Zacharias, D.A. (2001). Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol Rev 81, 21-50.

Striessnig, J. (1999). Pharmacology, structure and function of cardiac L-type Ca(2+) channels. Cell Physiol Biochem 9, 242-269.

Striessnig, J., Bolz, H.J., and Koschak, A. (2010). Channelopathies in Cav1.1, Cav1.3, and Cav1.4 voltage-gated L-type Ca2+ channels. Pflugers Arch 460, 361-374.

Striessnig, J., Goll, A., Moosburger, K., and Glossmann, H. (1986). Purified calcium channels have three allosterically coupled drug receptors. FEBS Lett 197, 204-210.

Suckow, A.T., Comoletti, D., Waldrop, M.A., Mosedale, M., Egodage, S., Taylor, P., and Chessler, S.D. (2008). Expression of neurexin, neuroligin, and their cytoplasmic binding partners in the pancreatic beta-cells and the involvement of neuroligin in insulin secretion. Endocrinology 149, 6006-6017.

Sudhof, T.C. (1995). The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature 375, 645-653.

Summers, B.A., Overholt, J.L., and Prabhakar, N.R. (1999). Nitric oxide inhibits L-type Ca2+ current in glomus cells of the rabbit carotid body via a cGMP-independent mechanism. J Neurophysiol 81, 1449-1457.

Sun, J., Picht, E., Ginsburg, K.S., Bers, D.M., Steenbergen, C., and Murphy, E. (2006). Hypercontractile female hearts exhibit increased S-nitrosylation of the L-type Ca2+ channel alpha1 subunit and reduced ischemia/reperfusion injury. Circ Res 98, 403-411.

Takeda, K., and Akira, S. (2004). TLR signaling pathways. Semin Immunol 16, 3-9.
Tanabe, T., Beam, K.G., Powell, J.A., and Numa, S. (1988). Restoration of excitationcontraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA. Nature 336, 134-139.

Tang, Y., Tang, J., Chen, Z., Trost, C., Flockerzi, V., Li, M., Ramesh, V., and Zhu, M.X. (2000). Association of mammalian trp4 and phospholipase C isozymes with a PDZ domaincontaining protein, NHERF. J Biol Chem 275, 37559-37564.

Torta, F., Usuelli, V., Malgaroli, A., and Bachi, A. (2008). Proteomic analysis of protein Snitrosylation. Proteomics 8, 4484-4494.

Ullmer, C., Schmuck, K., Figge, A., and Lubbert, H. (1998). Cloning and characterization of MUPP1, a novel PDZ domain protein. FEBS Lett 424, 63-68.

Valiente, M., Andres-Pons, A., Gomar, B., Torres, J., Gil, A., Tapparel, C., Antonarakis, S.E., and Pulido, R. (2005). Binding of PTEN to specific PDZ domains contributes to PTEN protein stability and phosphorylation by microtubule-associated serine/threonine kinases. J Biol Chem 280, 28936-28943.
van der Geer, P., and Pawson, T. (1995). The PTB domain: a new protein module implicated in signal transduction. Trends Biochem Sci 20, 277-280.
van Ham, M., and Hendriks, W. (2003). PDZ domains-glue and guide. Mol Biol Rep 30, 6982.

Venema, V.J., Ju, H., Zou, R., and Venema, R.C. (1997). Interaction of neuronal nitric-oxide synthase with caveolin-3 in skeletal muscle. Identification of a novel caveolin scaffolding/inhibitory domain. J Biol Chem 272, 28187-28190.

Vorherr, T., Chiesi, M., Schwaller, R., and Carafoli, E. (1992). Regulation of the calcium ion pump of sarcoplasmic reticulum: reversible inhibition by phospholamban and by the calmodulin binding domain of the plasma membrane calcium ion pump. Biochemistry 31, 371-376.

Vorherr, T., James, P., Krebs, J., Enyedi, A., McCormick, D.J., Penniston, J.T., and Carafoli, E. (1990). Interaction of calmodulin with the calmodulin binding domain of the plasma membrane Ca2+ pump. Biochemistry 29, 355-365.

Walden, P.D., and Cowan, N.J. (1993). A novel 205-kilodalton testis-specific serine/threonine protein kinase associated with microtubules of the spermatid manchette. Mol Cell Biol 13, 7625-7635.

Wang, D., Lee, H.J., Cooper, D.S., Cebotaro, L., Walden, P.D., Choi, I., and Yun, C.C. (2006). Coexpression of MAST205 inhibits the activity of Na+/H+ exchanger NHE3. Am J Physiol Renal Physiol 290, F428-437.

Wang, N.X., Lee, H.J., and Zheng, J.J. (2008). Therapeutic use of PDZ protein-protein interaction antagonism. Drug News Perspect 21, 137-141.

Weinman, E.J. (2001). New functions for the NHERF family of proteins. J Clin Invest 108, 185-186.

Weinman, E.J., Hall, R.A., Friedman, P.A., Liu-Chen, L.Y., and Shenolikar, S. (2006). The association of NHERF adaptor proteins with g protein-coupled receptors and receptor tyrosine kinases. Annu Rev Physiol 68, 491-505.

Weinman, E.J., Minkoff, C., and Shenolikar, S. (2000). Signal complex regulation of renal transport proteins: NHERF and regulation of NHE3 by PKA. Am J Physiol Renal Physiol 279, F393-399.

Weinman, E.J., Steplock, D., Tate, K., Hall, R.A., Spurney, R.F., and Shenolikar, S. (1998). Structure-function of recombinant Na / H exchanger regulatory factor (NHE-RF). J Clin Invest 101, 2199-2206.

Williams, J.C., Armesilla, A.L., Mohamed, T.M., Hagarty, C.L., McIntyre, F.H., Schomburg, S., Zaki, A.O., Oceandy, D., Cartwright, E.J., Buch, M.H., et al. (2006a). The sarcolemmal calcium pump, alpha-1 syntrophin, and neuronal nitric-oxide synthase are parts of a macromolecular protein complex. J Biol Chem 281, 23341-23348.

Williams, J.P., Stewart, T., Li, B., Mulloy, R., Dimova, D., and Classon, M. (2006b). The retinoblastoma protein is required for Ras-induced oncogenic transformation. Mol Cell Biol 26, 1170-1182.

Williams, M.E., Feldman, D.H., McCue, A.F., Brenner, R., Velicelebi, G., Ellis, S.B., and Harpold, M.M. (1992). Structure and functional expression of alpha 1, alpha 2, and beta subunits of a novel human neuronal calcium channel subtype. Neuron 8, 71-84.

Witcher, D.R., De Waard, M., Sakamoto, J., Franzini-Armstrong, C., Pragnell, M., Kahl, S.D., and Campbell, K.P. (1993). Subunit identification and reconstitution of the N-type Ca2+ channel complex purified from brain. Science 261, 486-489.

Wood, J.D., Yuan, J., Margolis, R.L., Colomer, V., Duan, K., Kushi, J., Kaminsky, Z., Kleiderlein, J.J., Sharp, A.H., and Ross, C.A. (1998). Atrophin-1, the DRPLA gene product, interacts with two families of WW domain-containing proteins. Mol Cell Neurosci 11, 149160.

Woods, D.F., and Bryant, P.J. (1993). ZO-1, DlgA and PSD-95/SAP90: homologous proteins in tight, septate and synaptic cell junctions. Mech Dev 44, 85-89.

Wu, X., Hepner, K., Castelino-Prabhu, S., Do, D., Kaye, M.B., Yuan, X.J., Wood, J., Ross, C., Sawyers, C.L., and Whang, Y.E. (2000a). Evidence for regulation of the PTEN tumor suppressor by a membrane-localized multi-PDZ domain containing scaffold protein MAGI-2. Proc Natl Acad Sci U S A 97, 4233-4238.

Wu, Y., Dowbenko, D., Spencer, S., Laura, R., Lee, J., Gu, Q., and Lasky, L.A. (2000b). Interaction of the tumor suppressor PTEN/MMAC with a PDZ domain of MAGI3, a novel membrane-associated guanylate kinase. J Biol Chem 275, 21477-21485.

Xiang, Y., Devic, E., and Kobilka, B. (2002). The PDZ binding motif of the beta 1 adrenergic receptor modulates receptor trafficking and signaling in cardiac myocytes. J Biol Chem 277, 33783-33790.

Xiang, Y., and Kobilka, B. (2003). The PDZ-binding motif of the beta2-adrenoceptor is essential for physiologic signaling and trafficking in cardiac myocytes. Proc Natl Acad Sci U S A 100, 10776-10781.

Xiong, H., Li, H., Chen, Y., Zhao, J., and Unkeless, J.C. (2004). Interaction of TRAF6 with MAST205 regulates NF-kappaB activation and MAST205 stability. J Biol Chem 279, 4367543683.

Xu, J., Paquet, M., Lau, A.G., Wood, J.D., Ross, C.A., and Hall, R.A. (2001). beta 1adrenergic receptor association with the synaptic scaffolding protein membrane-associated
guanylate kinase inverted-2 (MAGI-2). Differential regulation of receptor internalization by MAGI-2 and PSD-95. J Biol Chem 276, 41310-41317.

Xu, K.Y., Huso, D.L., Dawson, T.M., Bredt, D.S., and Becker, L.C. (1999a). Nitric oxide synthase in cardiac sarcoplasmic reticulum. Proc Natl Acad Sci U S A 96, 657-662.

Xu, K.Y., Huso, D.L., Dawson, T.M., Bredt, D.S., and Becker, L.C. (1999b). Nitric oxide synthase in cardiac sarcoplasmic reticulum. Proc Natl Acad Sci U S A 96, 657-662.

Xu, K.Y., Kuppusamy, S.P., Wang, J.Q., Li, H., Cui, H., Dawson, T.M., Huang, P.L., Burnett, A.L., Kuppusamy, P., and Becker, L.C. (2003a). Nitric oxide protects cardiac sarcolemmal membrane enzyme function and ion active transport against ischemia-induced inactivation. J Biol Chem 278, 41798-41803.

Xu, L., Eu, J.P., Meissner, G., and Stamler, J.S. (1998). Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 279, 234-237.

Xu, M., Welling, A., Paparisto, S., Hofmann, F., and Klugbauer, N. (2003b). Enhanced expression of L-type Cav1.3 calcium channels in murine embryonic hearts from Cav1.2deficient mice. J Biol Chem 278, 40837-40841.

Yaari, Y., Hamon, B., and Lux, H.D. (1987). Development of two types of calcium channels in cultured mammalian hippocampal neurons. Science 235, 680-682.

Yao, R., Natsume, Y., and Noda, T. (2004). MAGI-3 is involved in the regulation of the JNK signaling pathway as a scaffold protein for frizzled and Ltap. Oncogene 23, 6023-6030.

Yap, A.S., Brieher, W.M., and Gumbiner, B.M. (1997). Molecular and functional analysis of cadherin-based adherens junctions. Annu Rev Cell Dev Biol 13, 119-146.

Zhang, M., and Wang, W. (2003). Organization of signaling complexes by PDZ-domain scaffold proteins. Acc Chem Res 36, 530-538.

Zhang, W., Lilja, L., Bark, C., Berggren, P.O., and Meister, B. (2004). Mint1, a Munc-18interacting protein, is expressed in insulin-secreting beta-cells. Biochem Biophys Res Commun 320, 717-721.

Zhang, Y., Keszler, A., Broniowska, K.A., and Hogg, N. (2005). Characterization and application of the biotin-switch assay for the identification of S-nitrosated proteins. Free Radic Biol Med 38, 874-881.

Zhou, H., Xiong, H., Li, H., Plevy, S.E., Walden, P.D., Sassaroli, M., Prestwich, G.D., and Unkeless, J.C. (2004). Microtubule-associated serine/threonine kinase-205 kDa and Fc gamma receptor control IL-12 p40 synthesis and NF-kappa B activation. J Immunol 172, 2559-2568.

Zucker, R.S. (1996). Exocytosis: a molecular and physiological perspective. Neuron 17, 1049-1055.

Zuhlke, R.D., Pitt, G.S., Tsien, R.W., and Reuter, H. (2000). Ca2+-sensitive inactivation and facilitation of L-type $\mathrm{Ca} 2+$ channels both depend on specific amino acid residues in a consensus calmodulin-binding motif in the(alpha)1C subunit. J Biol Chem 275, 21121-21129.

Zvaritch, E., James, P., Vorherr, T., Falchetto, R., Modyanov, N., and Carafoli, E. (1990). Mapping of functional domains in the plasma membrane Ca2+ pump using trypsin proteolysis. Biochemistry 29, 8070-8076.

A.1. Sequence alignments of vector constructs

A.1.1. pEXP-LTCC

1	AGC	GCC	CAA	TAC	GCA	AAC	CGC	CTC	TCC	CCG	CGC	GTT	GGC	CGA	TTC	45
1	Ser	Ala	Gln	Tyr	Ala	Asn	Arg	Leu	Ser	Pro	Arg	Val	Gly	Arg	Phe	15
46	ATT	AAT	GCA	GCT	GGC	ACG	ACA	GGT	TTC	CCG	ACT	GGA	AAG	CGG	GCA	90
16	Ile	Asn	Ala	Ala	Gly	Thr	Thr	Gly	Phe	Pro	Thr	Gly	Lys	Arg	Ala	30
91	GTG	AGC	GCA	ACG	CAA	TTA	ATG	TGA	GTT	AGC	TCA	CTC	ATT	AGG	CAC	35
31	Val	Ser	Ala	Thr	Gln	Leu	Met	End	Val	Ser	Ser	Leu	Ile	Arg	His	45
136	CCC	AGG	CTT	TAC	ACT	TTA	TGC	TTC	CGG	CTC	GTA	TGT	TGT	GTG	GAA	180
46	Pro	Arg	Leu	Tyr	Thr	Leu	Cys	Phe	Arg	Leu	Val	Cys	Cys	Val	Glu	60
181	TTG	TGA	GCG	GAT	AAC	AAT	TTC	ACA	CAG	GAA	ACA	GCT	ATG	ACC	ATG	225
61	Leu	End	Ala	Asp	Asn	Asn	Phe	Thr	Gln	Glu	Thr	Ala	Met	Thr	Met	75
						Sta	t His	stidi	in-t	ag	(241-2	258)				
226	AtT	ACG	CCA	AGC	TTG	CAT	CAC	CAT	CAC	CAT	CAC	AAG	AAG	AAA	CCA	270
76	Ile	Thr	Pro	Ser	Leu	His	His	His	His	His	His	Lys	Lys	Lys	Pro	90
271	CTG	GAT	GGA	GAA	TAT	TTC	ACC	CTT	CAG	ATC	CGT	GGG	CGT	GAG	CGC	315
91	Leu	Asp	Gly	Glu	Tyr	Phe	Thr	Leu	Gln	Ile	Arg	Gly	Arg	Glu	Arg	105
316	TTC	GAG	ATG	TTC	CGA	GAG	CTG	AAT	GAG	GCC	TTG	GAA	CTC	AAG	GAT	360
106	Phe	Glu	Met	Phe	Arg	Glu	Leu	Asn	Glu	Ala	Leu	Glu	Leu	Lys	Asp	120
361	GCC	CAG	GCT	GGG	AAG	GAG	CCA	GGG	GGT	405						
121	Ala	Gln	Ala	Gly	Lys	Glu	Pro	Gly	135							

Multiple Cloning Side, MCS (406-483)

GAC AGC AGG tCC tat gTC AGC AAC CTG tag (LTCC) 418-447, Sequence of C-terminal tail of Cave 1.2

| (restriction enzymes) PstI \downarrow XbaI, the red arrow indicate the position of the insert | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 406 | GCA TGC CTG CAG TCT AGA GGA TCC CCG GGT ACC GGT ACT | | | | | | | |
| 136 | Ala Cys Leu Gln Val Asp Ser Arg Gly Ser Pro Gly Thr Gly Thr | 150 | | | | | | |
| | | | | | | | | |
| 451 | AGT AGA AAA AAT GAG TAA CGG CCG TAC GGG CCC TTT CGT CTC GCG | 495 | | | | | | |
| 151 | Ser Arg Lys Asn Glu End Arg Pro Tyr Gly Pro Phe Arg Leu Ala | 165 | | | | | | |
| 496 | CGT TTC GGT GAT GAC GGT GAA AAC CTC TGA CAC ATG CAG CTC CCG | 540 | | | | | | |

796	Gly	Gly	n	Val	r	Gly	S	Arg	Gln	Gly					Ala	810
2431	CAC	GAG	GGA	GCT	TCC	AGG	GGG	AAA	CGC	CTG	GTA	TCT	TTA	TAG	TCC	2475
811	His	Glu	Gly	Ala	Ser	Arg	Gly	Lys	Arg	Leu	Val	Ser	Leu	End	Ser	825
2476	TGT	CGG	GTT	TCG	CCA	CCT	CTG	ACT	TGA	GCG	TCG	ATT	TTT	GTG	ATG	2520
826	Cys	Arg	Val	Ser	Pro	Pro	Leu	Thr	End	Ala	Ser	Ile	Phe	Val	Met	840
2521	CTC	GTC	AGG	GGG	GCG	GAG	CCT	ATG	GAA	AAA	CGC	CAG	CAA	CGC	GGC	2565
841	Leu	Val	Arg	Gly	Ala	Glu	Pro	Met	Glu	Lys	Arg	Gln	Gln	Arg	Gly	855
2566	CTT	TTT	ACG	GTT	CCT	GGC	CTT	TTG	CTG	GCC	TTT	TGC	TCA	CAT	GTT	2610
856	Leu	Phe	Thr	Val	Pro	Gly	Leu	Leu	Leu	Ala	Phe	Cys	Ser	His	Val	870
2611	CTT	TCC	TGC	GTT	ATC	CCC	TGA	TTC	TGT	GGA	TAA	CCG	TAT	TAC	CGC	2655
871	Leu	Ser	Cys	Val	Ile	Pro	End	Phe	Cys	Gly	End	Pro	Tyr	Tyr	Arg	885
2656	CTT	TGA	GTG	AGC	TGA	TAC	CGC	TCG	CCG	CAG	CCG	AAC	GAC	CGA	GCG	2700
886	Leu	End	Val	Ser	End	Tyr	Arg	Ser	Pro	Gln	Pro	Asn	Asp	Arg	Ala	900
2701	CAG	CGA	GTC	AGT	GAG	CGA	GGA	AGC	GGA		27					
901	Gln	Arg	Val	Ser	Glu	Arg	Gly	Ser	Gly							

A.1.2. pGEX-4T-3-LTCC

```
pGEX-4T-3
3 GTT ATC GAC TGC ACG GTG CAC CAA TGC TTC TGG CGT CAG GCA GCC 47
0 Val Ile Asp Cys Thr Val His Gln Cys Phe Trp Arg Gln Ala Ala 14
48 ATC GGA AGC TGT GGT ATG GCT GTG CAG GTC GTA AAT CAC TGC ATA 92
15 Ile Gly Ser Cys Gly Met Ala Val Gln Val Val Asn His Cys Ile 29
93 ATT CGT GTC GCT CAA GGC GCA CTC CCG TTC TGG ATA ATG TTT TTT 137
30 Ile Arg Val Ala Gln Gly Ala Leu Pro Phe Trp Ile Met Phe Phe 44
138 GCG CCG ACA TCA TAA CGG TTC TGG CAA ATA TTC TGA AAT GAG CTG 182
4 5 ~ A l a ~ P r o ~ T h r ~ S e r ~ E n d ~ A r g ~ P h e ~ T r p ~ G l n ~ I l e ~ P h e ~ E n d ~ A s n ~ G l u ~ L e u ~ 5 9 ~
183 TTG ACA ATT AAT CAT CGG CTC GTA TAA TGT GTG GAA TTG TGA GCG 227
60 Leu Thr Ile Asn His Arg Leu Val End Cys Val Glu Leu End Ala }7
Startcodon GST
```


| 498 | ATG TTG GGT GGT TGT CCA AAA GAG CGT GCA GAG ATT TCA ATG CTT | 542 |
| :--- |
| 165 | Met Leu Gly Gly Cys Pro Lys Glu Arg Ala Glu Ile Ser Met Leu | 179 |
| 543 | GAA GGA GCG GTT TTG GAT ATT AGA TAC GGT GTT TCG AGA ATT GCA | 587 |
| 180 | Glu Gly Ala Val Leu Asp Ile Arg Tyr Gly Val Ser Arg Ile Ala | 194 |
| 588 | TAT AGT AAA GAC TTT GAA ACT CTC AAA GTT GAT TTT CTT AGC AAG | 632 |
| 195 | Tyr Ser Lys Asp Phe Glu Thr Leu Lys Val Asp Phe Leu Ser Lys | 209 |
| 633 | CTA CCT GAA ATG CTG AAA ATG TTC GAA GAT CGT TTA TGT CAT AAA | 677 |
| 210 | Leu Pro Glu Met Leu Lys Met Phe Glu Asp Arg Leu Cys His Lys | 224 |
| 678 | ACA TAT TTA AAT GGT GAT CAT GTA ACC CAT CCT GAC TTC ATG TTG | 722 |
| 225 | Thr Tyr Leu Asn Gly Asp His Val Thr His Pro Asp Phe Met Leu | 239 |
| 723 | TAT GAC GCT CTT GAT GTT GTT TTA TAC ATG GAC CCA ATG TGC CTG | 767 |
| 240 | Tyr Asp Ala Leu Asp Val Val Leu Tyr Met Asp Pro Met Cys Leu | 254 |
| 768 | GAT GCG TTC CCA AAA TTA GTT TGT TTT AAA AAA CGT ATT GAA GCT | 812 |
| 255 | Asp Ala Phe Pro Lys Leu Val Cys Phe Lys Lys Arg Ile Glu Ala | 269 |

Start Multiple Cloning Side MCS

LTCC: GACAGCAGGTCCTATGTCAGCAACCTGTAG (sequence of C-terminal tail og Cavi.2)
(EcoRI and SalI)

263	GAA ATG	TGC G	GCG	GAA	CCC	CTA	TTT	GTT	TAT	TTT	TCT	AAA	TAC	ATT	307
420	Glu Met	Cys A	Ala	Glu	Pro	Leu	Phe	Val	Tyr	Phe	Ser	Lys	Tyr	Ile	434
1308	CAA ATA	TGT A	ATC	CGC	TCA	TGA	GAC	AAT	AAC	CCT	GAT	AAA	TGC	TTC	1352
435	Gln Ile	Cys I	Ile A	Arg	Ser	End	Asp	Asn	Asn	Pro	Asp	Lys	Cys	Phe	449
1353	AAT AAT	ATT	GAA A	AAA	GGA	AGA	GTA	TGA	GTA	TTC	AAC	ATT	TCC	GTG	1397
450	Asn Asn	Ile G	Glu L	Lys	Gly	Arg	Val	End	Val	Phe	Asn	Ile	Ser	Val	464
1398	TCG CCC	TTA	TTC	CCT	TTT	TTG	CGG	CAT	TTT	GCC	TTC	CTG	TTT	TTG	1442
465	Ser Pro	Leu P	Phe P	Pro	Phe	Leu	Arg	His	Phe	Ala	Phe	Leu	Phe	Leu	479
1443	CTC ACC	CAG A	AAA	CGC	TGG	TGA	AAG	TAA	AAG	ATG	CTG	AAG	ATC	AGT	1487
480	Leu Thr	Gln L	Lys A	Arg	Trp	End	Lys	End	Lys	Met	Leu	Lys	Ile	Ser	494
1488	TGG GTG	CAC G	GAG T	TGG	GTT	ACA	TCG	AAC	TGG	ATC	TCA	ACA	GCG	GTA	1532
495	Trp Val	His G	Glu T	Trp	Val	Thr	er	Asn	Trp	Ile	Ser	Thr	Ala	Val	509
1533	AGA TCC	TTG A	AGA	GTT	TTC	GCC	CCG	AAG	AAC	GTT	TTC	CAA	TGA	TGA	1577
510	Arg Ser	Leu A	Arg V	Val	Phe	Ala	Pro	Lys	Asn	Val	Phe	Gln	End	End	524
1578	GCA CTT	TTA A	AAG I	TTC	TGC	TAT	GTG	GCG	CGG	TAT	TAT	CCC	GTG	TTG	1622
525	Ala Leu	Leu L	Lys P	Phe	Cys	Tyr	Val	Ala	Arg	Tyr	Tyr	Pro	Val	Leu	539
1623	ACG CCG	GGC A	AAG A	AGC	AAC	TCG	GTC	GCC	GCA	TAC	ACT	ATT	CTC	AGA	1667
540	Thr Pro	Gly L	Lys S	Ser	Asn	Ser	Val	Ala	Ala	Tyr	Thr	Ile	Leu	Arg	554
1668	ATG ACT	TGG T	TTG A	AGT	ACT	CAC	CAG	TCA	CAG	AAA	AGC	ATC	TTA	CGG	1712
555	Met Thr	Trp L	Leu S	Ser	Thr	His	Gln	Ser	Gln	Lys	Ser	Ile	Leu	Arg	569
1713	ATG GCA	TGA	CAG T	TAA	GAG	AAT	TAT	GCA	GTG	CTG	CCA	TAA	CCA	TGA	1757
570	Met Ala	End G	Gln E	End	Glu	Asn	Tyr	Ala	Val	Leu	Pro	End	Pro	End	584
1758	GTG ATA	ACA	CTG	CGG	CCA	ACT	TAC	TTC	TGA	CAA	CGA	TCG	GAG	GAC	1802
585	Val Ile	Thr L	eu A	Arg	Pro	Thr	Tyr	Phe	End	Gln	Arg	Ser	Glu	Asp	599
1803	CGA AGG	AGC T	TAA	CCG	CTT	TTT	TGC	ACA	ACA	TGG	GGG	ATC	ATG	TAA	1847
600	Arg Arg	Ser E	End P	Pro	Leu	Phe	Cys	Thr	Thr	Trp	Gly	Ile	Met	End	614
1848	CTC GCC	TTG A	ATC G	GTT	GGG	AAC	CGG	AGC	TGA	ATG	AAG	CCA	TAC	CAA	1892
615	Leu Ala	Leu I	Ile V	Val	Gly	Asn	Arg	Ser	End	Met	Lys	Pro	Tyr	Gln	629
1893	ACG ACG	AGC G	GTG A	ACA	CCA	CGA	TGC	CTG	CAG	CAA	TGG	CAA	CAA	CGT	1937
630	Thr Thr	Ser V	Val	Thr	Pro	Arg	Cys	Leu	Gln	Gln	Trp	Gln	Gln	Arg	644
1938	TGC GCA	AAC I	TAT T	TAA	CTG	GCG	AAC	TAC	TTA	CTC	TAG	CTT	CCC	GGC	1982
645	Cys Ala	Asn T	Tyr E	End	Leu	Ala	Asn	Tyr	Leu	Leu	End	Leu	Pro	Gly	659
1983	AAC AAT	TAA	TAG	ACT	GGA	TGG	AGG	CGG	ATA	AAG	TTG	CAG	GAC	CAC	2027
660	Asn Asn	End E	End T	Thr	Gly	Trp	Arg	Arg	Ile	Lys	Leu	Gln	Asp	His	674
2028	TTC TGC	GCT	CGG	CCC	TTC	CGG	CTG	GCT	GGT	TTA	TTG	CTG	ATA	AAT	2072
675	Phe Cys	Ala A	Arg P	Pro	Phe	Arg	Leu	Ala	Gly	Leu	Leu	Leu	Ile	Asn	689
2073	CTG GAG	CCG	GTG A	AGC	GTG	GGT	CTC	GCG	GTA	TCA	TTG	CAG	CAC	TGG	2117
690	Leu Glu	Pro V	Val S	Ser	Val	Gly	Leu	Ala	Val	Ser	Leu	Gln	His	Trp	704
2118	GGC CAG	ATG	GTA A	AGC	CCT	CCC	GTA	TCG	TAG	TTA	TCT	ACA	CGA	CGG	2162
705	Gly Gln	Met V	Val	Ser	Pro	Pro	Val	Ser	End	Leu	Ser	Thr	Arg	Arg	719
2163	GGA GTC	AGG	CAA	CTA	TGG	ATG	AAC	GAA	AtA	GAC	AGA	TCG	CTG	AGA	2207
720	Gly Val	Arg	Gln L	Leu	Trp	Met	Asn	Glu	Ile	Asp	Arg	Ser	Leu	Arg	734

2208	TAG	GTG	CCT	CAC	TGA	TTA	AGC	ATT	GGT	AAC	TGT	CAG	ACC	AAG	TTT	2252
735	End	Val	Pro	His	End	Leu	Ser	Ile	Gly	Asn	Cys	Gln	Thr	Lys	Phe	749
2253	ACT	CAT	ATA	TAC	TTT	AGA	TTG	ATT	TAA	AAC	TTC	ATt	TTT	AAT	TTA	2297
750	Thr	His	Ile	Tyr	Phe	Arg	Leu	Ile	End	Asn	Phe	Ile	Phe	Asn	Leu	764
2298	AAA	GGA	TCT	AGG	TGA	AGA	TCC	TTT	TTG	ATA	ATC	TCA	TGA	CCA	AAA	2342
765	Lys	Gly	Ser	Arg	End	Arg	Ser	Phe	Leu	Ile	Ile	Ser	End	Pro	Lys	779
2343	TCC	CTT	AAC	GTG	AGT	TTT	CGT	TCC	ACT	GAG	CGT	CAG	ACC	CCG	TAG	2387
780	Ser	Leu	Asn	Val	Ser	Phe	Arg	Ser	Thr	Glu	Arg	Gln	Thr	Pro	End	794
2388	AAA	AGA	TCA	AAG	GAT	CTT	CTT	GAG	ATC	CTT	TTT	TTC	TGC	GCG	TAA	2432
795	Lys	Arg	Ser	Lys	Asp	Leu	Leu	Glu	Ile	Leu	Phe	Phe	Cys	Ala	End	809
2433	TCT	GCT	GCT	TGC	AAA	CAA	AAA	AAC	CAC	CGC	TAC	CAG	CGG	TGG	TTT	2477
810	Ser	Ala	Ala	Cys	Lys	Gln	Lys	Asn	His	Arg	Tyr	Gln	Arg	Trp	Phe	824
2478	GTT	TGC	CGG	ATC	AAG	AGC	TAC	CAA	CTC	TTT	TTC	CGA	AGG	TAA	CTG	2522
825	Val	Cys	Arg	Ile	Lys	Ser	Tyr	Gln	Leu	Phe	Phe	Arg	Arg	End	Leu	839
2523	GCT	TCA	GCA	GAG	CGC	AGA	TAC	CAA	ATA	CTG	TCC	TTC	TAG	TGT	AGC	2567
840	Ala	Ser	Ala	Glu	Arg	Arg	Tyr	Gln	Ile	Leu	Ser	Phe	End	Cys	Ser	854
2568	CGT	AGT	TAG	GCC	ACC	ACT	TCA	AGA	ACT	CTG	TAG	CAC	CGC	CTA	CAT	2612
855	Arg	Ser	End	Ala	Thr	Thr	Ser	Arg	Thr	Leu	End	His	Arg	Leu	His	869
2613	ACC	TCG	CTC	TGC	TAA	TCC	TGT	TAC	CAG	TGG	CTG	CTG	CCA	GTG	GCG	2657
870	Thr	Ser	Leu	Cys	End	Ser	Cys	Tyr	Gln	Trp	Leu	Leu	Pro	Val	Ala	884
2658	ATA	AGT	CGT	GTC	TTA	CCG	GGT	TGG	ACT	CAA	GAC	GAT	AGT	TAC	CGG	2702
885	Ile	Ser	Arg	Val	Leu	Pro	Gly	Trp	Thr	Gln	Asp	Asp	Ser	Tyr	Arg	899
2703	ATA	AGG	CGC	AGC	GGT	CGG	GCT	GAA	CGG	GGG	GTT	CGT	GCA	CAC	AGC	2747
900	Ile	Arg	Arg	Ser	Gly	Arg	Ala	Glu	Arg	Gly	Val	Arg	Ala	His	Ser	914
2748	CCA	GCT	TGG	AGC	GAA	CGA	CCT	ACA	CCG	AAC	TGA	GAT	ACC	TAC	AGC	2792
915	Pro	Ala	Trp	Ser	Glu	Arg	Pro	Thr	Pro	Asn	End	Asp	Thr	Tyr	Ser	929
2793	GTG	AGC	TAT	GAG	AAA	GCG	CCA	CGC	TTC	CCG	AAG	GGA	GAA	AGG	CGG	2837
930	Val	Ser	Tyr	Glu	Lys	Ala	Pro	Arg	Phe	Pro	Lys	Gly	Glu	Arg	Arg	944
2838	ACA	GGT	ATC	CGG	TAA	GCG	GCA	GGG	TCG	GAA	CAG	GAG	AGC	GCA	CGA	2882
945	Thr	Gly	Ile	Arg	End	Ala	Ala	Gly	Ser	Glu	Gln	Glu	Ser	Ala	Arg	959
2883	GGG	AGC	TTC	CAG	GGG	GAA	ACG	CCT	GGT	ATC	TTT	ATA	GTC	CTG	TCG	2927
960	Gly	Ser	Phe	Gln	Gly	Glu	Thr	Pro	Gly	Ile	Phe	Ile	Val	Leu	Ser	974
2928	GGT	TTC	GCC	ACC	TCT	GAC	TTG	AGC	GTC	GAT	TTT	TGT	GAT	GCT	CGT	2972
975	Gly	Phe	Ala	Thr	Ser	Asp	Leu	Ser	Val	Asp	Phe	Cys	Asp	Ala	Arg	989
2973	CAG	GGG	GGC	GGA	GCC	TAT	GGA	AAA	ACG	CCA	GCA	ACG	CGG	CCT	TTT	3017
990	Gln	Gly	Gly	Gly	Ala	Tyr	Gly	Lys	Thr	Pro	Ala	Thr	Arg	Pro	Phe	1004
3018	TAC	GGT	TCC	TGG	CCT	TTT	GCT	GGC	CTT	TTG	CTC	ACA	TGT	TCT	TTC	3062
1005	Tyr	Gly	Ser	Trp	Pro	Phe	Ala	Gly	Leu	Leu	Leu	Thr	Cys	Ser	Phe	1019
3063	CTG	CGT	TAT	CCC	CTG	ATT	CTG	TGG	ATA	ACC	GTA	TTA	CCG	CCT	TTG	3107
1020	Leu	Arg	Tyr	Pro	Leu	Ile	Leu	Trp	Ile	Thr	Val	Leu	Pro	Pro	Leu	1034
3108	AGT	GAG	CTG	ATA	CCG	CTC	GCC	GCA	GCC	GAA	CGA	CCG	AGC	GCA	GCG	3152
1035	Ser	Glu	Leu	Ile	Pro	Leu	Ala	Ala	Ala	Glu	Arg	Pro	Ser	Ala	Ala	1049

3153	AGT	CAG	TGA	GCG	AGG	AAG	CGG	AAG	AGC	GCC	TGA	TGC	GGT	ATT	TTC	3197
1050	Ser	Gln	End	Ala	Arg	Lys	Arg	Lys	Ser	Ala	End	Cys	Gly	Ile	Phe	1064
3198	TCC	TTA	CGC	ATC	TGT	GCG	GTA	TTT	CAC	ACC	GCA	TAA	ATT	CCG	ACA	3242
1065	Ser	Leu	Arg	Ile	Cys	Ala	Val	Phe	His	Thr	Ala	End	Ile	Pro	Thr	1079
3243	CCA	TCG	AAT	GGT	GCA	AAA	CCT	TTC	GCG	GTA	TGG	CAT	GAT	AGC	GCC	3287
1080	Pro	Ser	Asn	Gly	Ala	Lys	Pro	Phe	Ala	Val	Trp	His	Asp	Ser	Ala	1094
3288	CGG	AAG	AGA	GTC	AAT	TCA	GGG	TGG	TGA	ATG	TGA	AAC	CAG	TAA	CGT	3332
1095	Arg	Lys	Arg	Val	Asn	Ser	Gly	Trp	End	Met	End	Asn	Gln	End	Arg	1109
3333	TAT	ACG	ATG	TCG	CAG	AGT	ATG	CCG	GTG	TCT	CTT	ATC	AGA	CCG	TTT	3377
1110	Tyr	Thr	Met	Ser	Gln	Ser	Met	Pro	Val	Ser	Leu	Ile	Arg	Pro	Phe	1124
3378	CCC	GCG	TGG	TGA	ACC	AGG	CCA	GCC	ACG	TTT	CTG	CGA	AAA	CGC	GGG	3422
1125	Pro	Ala	Trp	End	Thr	Arg	Pro	Ala	Thr	Phe	Leu	Arg	Lys	Arg	Gly	1139
3423	AAA	AAG	TGG	AAG	CGG	CGA	TGG	CGG	AGC	TGA	ATT	ACA	TTC	CCA	ACC	3467
1140	Lys	Lys	Trp	Lys	Arg	Arg	Trp	Arg	Ser	End	Ile	Thr	Phe	Pro	Thr	1154
3468	GCG	TGG	CAC	AAC	AAC	TGG	CGG	GCA	AAC	AGT	CGT	TGC	TGA	TTG	GCG	3512
1155	Ala	Trp	His	Asn	Asn	Trp	Arg	Ala	Asn	Ser	Arg	Cys	End	Leu	Ala	1169
3513	TTG	CCA	CCT	CCA	GTC	TGG	CCC	TGC	ACG	CGC	CGT	CGC	AAA	TTG	TCG	3557
1170	Leu	Pro	Pro	Pro	Val	Trp	Pro	Cys	Thr	Arg	Arg	Arg	Lys	Leu	Ser	1184
3558	CGG	CGA	TTA	AAT	CTC	GCG	CCG	ATC	AAC	TGG	GTG	CCA	GCG	TGG	TGG	3602
1185	Arg	Arg	Leu	Asn	Leu	Ala	Pro	Ile	Asn	Trp	Val	Pro	Ala	Trp	Trp	1199
3603	TGT	CGA	TGG	TAG	AAC	GAA	GCG	GCG	TCG	AAG	CCT	GTA	AAG	CGG	CGG	3647
1200	Cys	Arg	Trp	End	Asn	Glu	Ala	Ala	Ser	Lys	Pro	Val	Lys	Arg	Arg	1214
3648	TGC	ACA	ATC	TTC	TCG	CGC	AAC	GCG	TCA	GTG	GGC	TGA	TCA	TTA	ACT	3692
1215	Cys	Thr	Ile	Phe	Ser	Arg	Asn	Ala	Ser	Val	Gly	End	Ser	Leu	Thr	1229
3693	ATC	CGC	TGG	ATG	ACC	AGG	ATG	CCA	TTG	CTG	TGG	AAG	CTG	CCT	GCA	3737
1230	Ile	Arg	Trp	Met	r	Arg	Met	Pro	u	Leu	Trp	Lys	Leu	Pro	Ala	1244
3738	CTA	ATG	TTC	CGG	CGT	TAT	TTC	TTG	ATG	TCT	CTG	ACC	AGA	CAC	CCA	3782
1245	Leu	Met	Phe	Arg	Arg	Tyr	Phe	Leu	Met	Ser	Leu	Thr	Arg	His	Pro	1259
3783	TCA	ACA	GTA	TTA	TTT	TCT	CCC	ATG	AAG	ACG	GTA	CGC	GAC	TGG	GCG	3827
1260	Ser	Thr	Val	Leu	Phe	Ser	Pro	Met	Lys	Thr	Val	Arg	Asp	Trp	Ala	1274
3828	TGG	AGC	ATC	TGG	TCG	CAT	TGG	GTC	ACC	AGC	AAA	TCG	CGC	TGT	TAG	3872
1275	Trp	Ser	Ile	Trp	Ser	His	Trp	Val	Thr	Ser	Lys	Ser	Arg	Cys	End	1289
3873	CGG	GCC	CAT	TAA	GTT	CTG	TCT	CGG	CGC	GTC	TGC	GTC	TGG	CTG	GCT	3917
1290	Arg	Ala	His	End	Val	Leu	Ser	Arg	Arg	Val	Cys	Val	Trp	Leu	Ala	1304
3918	GGC	ATA	AAT	ATC	TCA	CTC	GCA	ATC	AAA	TTC	AGC	CGA	TAG	CGG	AAC	3962
1305	Gly	Ile	Asn	Ile	Ser	Leu	Ala	Ile	Lys	Phe	Ser	Arg	End	Arg	Asn	1319
3963	GGG	AAG	GCG	ACT	GGA	GTG	CCA	TGT	CCG	GTT	TTC	AAC	AAA	CCA	TGC	4007
1320	Gly	Lys	Ala	Thr	Gly	Val	Pro	Cys	Pro	Val	Phe	Asn	Lys	Pro	Cys	1334
4008	AAA	TGC	TGA	ATG	AGG	GCA	TCG	TTC	CCA	CTG	CGA	TGC	TGG	TTG	CCA	4052
1335	Lys	Cys	End	Met	Arg	Ala	Ser	Phe	Pro	Leu	Arg	Cys	Trp	Leu	Pro	1349
4053	ACG	ATC	AGA	TGG	CGC	TGG	GCG	CAA	TGC	GCG	CCA	TTA	CCG	AGT	CCG	4097
1350	Thr	Ile	Arg	Trp	Arg	Trp	Ala	Gln	Cys	Ala	Pro	Leu	Pro	Ser	Pro	1364

4098	GGC	TGC	GCG	TTG	GTG	CGG	ATA	TCT	CGG	TAG	TGG	GAT	ACG	ACG	ATA	4142
1365	Gly	Cys	Ala	Leu	Val	Arg	Ile	Ser	Arg	End	Trp	Asp	Thr	Thr	Ile	1379
4143	CCG	AAG	ACA	GCT	CAT	GTT	ATA	TCC	CGC	CGT	TAA	CCA	CCA	TCA	AAC	4187
1380	Pro	Lys	Thr	Ala	His	Val	Ile	Ser	Arg	Arg	End	Pro	Pro	Ser	Asn	1394
4188	AGG	ATT	TTC	GCC	TGC	TGG	GGC	AAA	CCA	GCG	TGG	ACC	GCT	TGC	TGC	4232
1395	Arg	Ile	Phe	Ala	Cys	Trp	Gly	Lys	Pro	Ala	Trp	Thr	Ala	Cys	Cys	1409
4233	AAC	TCT	CTC	AGG	GCC	AGG	CGG	TGA	AGG	GCA	ATC	AGC	TGT	TGC	CCG	4277
1410	Asn	Ser	Leu	Arg	Ala	Arg	Arg	End	Arg	Ala	Ile	Ser	Cys	Cys	Pro	1424
4278	TCT	CAC	TGG	TGA	AAA	GAA	AAA	CCA	CCC	TGG	CGC	CCA	Ata	CGC	AAA	4322
1425	Ser	His	Trp	End	Lys	Glu	Lys	Pro	Pro	Trp	Arg	Pro	Ile	Arg	Lys	1439
4323	CCG	CCT	CTC	CCC	GCG	CGT	TGG	CCG	Att	CAT	TAA	TGC	AGC	TGG	CAC	4367
1440	Pro	Pro	Leu	Pro	Ala	Arg	Trp	Pro	Ile	His	End	Cys	Ser	Trp	His	1454
4368	GAC	AGG	TTT	CCC	GAC	TGG	AAA	GCG	GGC	AGT	GAG	CGC	AAC	GCA	ATT	4412
1455	Asp	Arg	Phe	Pro	Asp	Trp	Lys	Ala	Gly	Ser	Glu	Arg	Asn	Ala	Ile	1469
4413	AAT	GTG	AGT	TAG	CTC	ACT	CAT	TAG	GCA	CCC	CAG	GCT	TTA	CAC	TTT	4457
1470	Asn	Val	Ser	End	Leu	Thr	His	End	Ala	Pro	Gln	Ala	Leu	His	Phe	1484
4458	ATG	CTT	CCG	GCT	CGT	ATG	TTG	TGT	GGA	Att	GTG	AGC	GGA	TAA	CAA	4502
1485	Met	Leu	Pro	Ala	Arg	Met	Leu	Cys	Gly	Ile	Val	Ser	Gly	End	Gln	1499
4503	TTT	CAC	ACA	GGA	AAC	AGC	TAT	GAC	CAT	GAT	TAC	GGA	TTC	ACT	GGC	4547
1500	Phe	His	Thr	Gly	Asn	Ser	Tyr	Asp	His	Asp	Tyr	Gly	Phe	Thr	Gly	1514
4548	CGT	CGT	TTT	ACA	ACG	TCG	TGA	CTG	GGA	AAA	CCC	TGG	CGT	TAC	CCA	4592
1515	Arg	Arg P	Phe	Thr	Thr	Ser	End	Leu	Gly	Lys	Pro	Trp	Arg	Tyr	Pro	1529
4593	ACT	TAA	TCG	CCT	TGC	AGC	ACA	TCC	CCC	TTT	CGC	CAG	CTG	GCG	TAA	4637
1530	Thr	End	Ser	Pro	Cys	Ser	Thr	Ser	Pro	Phe	Arg	Gln	Leu	Ala	End	1544
4638	TAG	CGA	AGA	GGC	CCG	CAC	CGA	TCG	CCC	TTC	CCA	ACA	GTT	GCG	CAG	4682
1545	End	Arg A	Arg	Gly	Pro	His	Arg	Ser	Pro	Phe	Pro	Thr	Val	Ala	Gln	1559
4683	CCT	GAA	TGG	CGA	AtG	GCG	CTT	TGC	CTG	GTT	TCC	GGC	ACC	AGA	AGC	4727
1560	Pro	Glu	Trp	Arg	Met	Ala	Leu	Cys	Leu	Val	Ser	Gly	Thr	Arg	Ser	1574
4728	GGT	GCC	GGA	AAG	CTG	GCT	GGA	GTG	CGA	TCT	TCC	TGA	GGC	CGA	TAC	4772
1575	Gly	Ala	Gly	Lys	Leu	Ala	Gly	Val	Arg	Ser	Ser	End	Gly	Arg	Tyr	1589
4773	TGT	CGT	CGT	CCC	CTC	AAA	CTG	GCA	GAT	GCA	CGG	TTA	CGA	TGC	GCC	4817
1590	Cys	Arg	Arg	Pro	Leu	Lys	Leu	Ala	Asp	Ala	Arg	Leu	Arg	Cys	Ala	1604
4818	CAT	CTA	CAC	CAA	CGT	AAC	CTA	TCC	CAT	TAC	GGT	CAA	TCC	GCC	GTT	4862
1605	His	Leu	His	Gln	Arg	Asn	Leu	Ser	His	Tyr	Gly	Gln	Ser	Ala	Val	1619
4863	TGT	TCC	CAC	GGA	GAA	TCC	GAC	GGG	TTG	TTA	CTC	GCT	CAC	AtT	TAA	4907
1620	Cys	Ser	His	Gly	Glu	Ser	Asp	Gly	Leu	Leu	Leu	Ala	His	Ile	End	1634
4908	TGT	TGA	TGA	AAG	CTG	GCT	ACA	GGA	AGG	CCA	GAC	GCG	AAT	TAT	TTT	4952
1635	Cys	End	End	Lys	Leu	Ala	Thr	Gly	Arg	Pro	Asp	Ala	Asn	Tyr	Phe	1649
4953	TGA	TGG	CGT	TGG	AAT		967									
1650	End	Trp	Arg	Trp	Asn		654									

A.1.3. pGEX-4T-3-Ct-Cave 1.2 lang/kurz

Proteinsequence $\mathrm{Ca}_{\mathrm{v}} 1.2$ alpha subunit rabbit

Swiss-Prot: P15381.1

RecName: Full=Voltage-dependent L-type calcium channel subunit alpha-1C; AltName: Full=Voltage-gated calcium channel subunit alpha Cav1.2; AltName: Full=Calcium channel, L type, alpha-1 polypeptide, isoform 1, cardiac muscle
LOCUS P15381 2171 aa linear MAM 02-MAR-2010
DEFINITION RecName: Full=Voltage-dependent L-type calcium channel subunit
alpha-1C; AltName: Full=Voltage-gated calcium channel subunit alpha
Cav1.2; AltName: Full=Calcium channel, L type, alpha-1 polypeptide, isoform 1, cardiac muscle; AltName: Full=Smooth muscle calcium channel blocker receptor; Short=CACB-receptor.
ACCESSION P15381
mlralvqpatpayqplpshlsaetestckgtvvheaqlnhfyispggsnygsprpahanm nanaaaglapehiptpgaalswqaaidaarqaklmgsagnatistvsstqrkrqqygkpk kqgsttatrpprallcltlknpirracisivewkpfeiiilltifancvalaiyipfped dsnatnsnlerveylfliiftveaflkviaygllfhpnaylrngwnlldfiivvvglfsa ileqatkadganalggkgagfdvkalrafrvlrplrlvsgvpslqvvlnsiikamvpllh iallvlfviiiyaiiglelfmgkmhktcynqegvadvpaeddpspcaletghgrqcqngt vckpgwdgpkhgitnfdnfafamltvfqcitmegwtdvlywmqdamgyelpwvyfvslvi fgsffvlnlvlgvlsgefskerekakargdfqklrekqqleedlkgyldwitqaedidpe nedegmdeekprnmsmptsetesvntenvaggdiegencgarlahriskskfsrywrrwn rfcrrkcraavksnvfywlviflvflntltiasehynqphwltevqdtankallalftae mllkmyslglqayfvslfnrfdcfivcggiletilvetkvmsplgisvlrcvrllrifki trywnslsnlvasllnsvrsiaslllllflfiiifsllgmqlfggkfnfdemqtrrstfd nfpqslltvfqiltgedwnsvmydgimayggpsfpgmlvciyfiilficgnyillnvfla iavdnladaesltsaqkeeeeekerkklartaspekkqevvgkpaleeakeekielksit adgesppttkinmddlqpnesedkspypnpettgeedeeepempvgprprplselhlkek avpmpeasaffifspnnrfrlqchrivndtiftnlilffillssislaaedpvqhtsfrn hilfyfdivfttiftieialkmtaygaflhkgsfcrnyfnildllvvsvslisfgiqssa invvkilrvlrvlrplrainrakglkhvvqcvfvairtignivivttllqfmfacigvql fkgklytcsdsskqteaeckgnyitykdgevdhpiiqprswenskfdfdnvlaammalft vstfegwpellyrsidshtedkgpiynyrveisiffiiyiiiiaffmmnifvgfvivtfq eqgeqeyknceldknqrqcveyalkarplrryipknqhqykvwyvvnstyfeylmfvlil lnticlamqhygqsclfkiamnilnmlftglftvemilkliafkpkgyfsdpwnvfdfli vigsiidvilsetnpaehtqcspsmnaeensrisitffrlfrvmrlvkllsrgegirtll wtfiksfqalpyvallivmlffiyavigmqvfgkialndtteinrnnnfqtfpqavlllf rcatgeawqdimlacmpgkkcapesephnstegetpcgssfavfyfisfymlcafliinl fvavimdnfdyltrdwsilgphhldefkriwaeydpeakgrikhldvvtllrriqpplgf gklcphrvackrlvsmnmplnsdgtvmfnatlfalvrtalriktegnleqaneelraiik kiwkrtsmklldqvvppagddevtvgkfyatfliqeyfrkfkkrkeqglvgkpsqrnals lqaglrtlhdigpeirraisgdltaeeeldkamkeavsaaseddifrragglfgnhvsyy qsdsrsafpqtfttqrplhiskagnnqgdtespsheklvdstftpssysstgsnaninna nntalgrlprpagypstvstveghgsplspavraqeaawklsskrchsqesqiamacqeg asqddnydvrigedaeccsepsllstemlsyqddenrqlappeeekrdirlspkkgflrs aslgrrasfhleclkrqknqggdisqktvlplhlvhhqalavaglspllqrshsptslpr pcatppatpgsrgwppqpiptlrlegadsseklnssfpsihcgswsgenspcrgdssaar rarpvsltvpsqagaqgrqfhgsasslveavliseglgqfaqdpkfievttqeladacdl tieemenaaddilsggarqspngtllpfvnrrdpgrdragqneqdasgacapgcgqseea ladrragvssl
part of protein sequence of C terminal end $\mathrm{Ca}_{\mathrm{v}} 1.2$ (transmembranhelix)

TMHMM result (bioinformatic tool server), prediction of transmembrane helices in proteins

\# Sequence Length: 2171
\# Sequence Number of predicted TMHs: 19
\# Sequence Exp number of AAs in TMHs: 437.5233899999999999999999999999
\# Sequence Exp number, first 60 AAs: 0.00042
\# Sequence Total prob of N-in: 0.99076
Sequence
Sequence Sequence

TMHMM2. 0	inside	1	154	
TMHMM2. 0	TMhelix	155	177	
TMHMM2. 0	outside	178	191	
TMHMM2. 0	TMhelix	192	214	
TMHMM2. 0	inside	215	222	
TMHMM2. 0	TMhelix	223	242	
TMHMM2.0	outside	243	297	
TMHMM2. 0	TMhelix	298	320	
TMHMM2. 0	inside	321	379	
TMHMM2. 0	TMhelix	380	402	
TMHMM2.0	outside	403	411	
TMHMM2.0	TMhelix	412	434	
TMHMM2. 0	inside	435	553	
TMHMM2. 0	TMhelix	554	573	
TMHMM2.0	outside	574	592	
TMHMM2. 0	TMhelix	593	615	
TMHMM2. 0	inside	616	680	
TMHMM2. 0	TMhelix	681	703	
TMHMM2.0	outside	704	752	
TMHMM2. 0	TMhelix	753	775	
TMHMM2. 0	inside	776	925	
TMHMM2. 0	TMhelix	926	948	
TMHMM2. 0	outside	949	962	
TMHMM2. 0	TMhelix	963	985	
TMHMM2. 0	inside	986	997	
TMHMM2. 0	TMhelix	998	1020	
TMHMM2.0	outside	1021	1058	
TMHMM2. 0	TMhelix	1059	1081	
TMHMM2. 0	inside	1082	1174	
TMHMM2. 0	TMhelix	1175	1197	
TMHMM2. 0	outside	1198	1241	
TMHMM2. 0	TMhelix	1242	1264	
TMHMM2. 0	inside	1265	1275	
TMHMM2. 0	TMhelix	1276	1298	
TMHMM2.0	outside	1299	1388	
TMHMM2. 0	TMhelix	1389	1408	
TMHMM2. 0	inside	1409	1482	
TMHMM2. 0	TMhelix	1483	1505	protein sequence
TMHMM2. 0	outside	1506	2171	transmembranhelix of

TMHMM posterior probabilities for Sequence

Hmmtop (program for transmembrane topology prediction)

Length: 2171

N-terminus: OUT
Number of transmembrane helices: 17
Transmembrane helices: 158-177 196-215 224-242 298-317 413-436 549-572 625-
649 680-699 758-782 926-949 998-1021 1052-1076 1172-1196 1244-1268 1279-
1303 1390-1409 1481-1505
Total entropy of the model: 17.0257
Entropy of the best path: 17.0356
The best path:

```
seq MLRALVQPAT PAYQPLPSHL SAETESTCKG TVVHEAQLNH FYISPGGSNY
pred 0000000000 0000000000 0000000000 0000000000 0000000000
seq GSPRPAHANM NANAAAGLAP EHIPTPGAAL SWQAAIDAAR QAKLMGSAGN
pred 0000000000 0000000000 0000000000 0000000000 0000000000
seq ATISTVSSTQ RKRQQYGKPK KQGSTTATRP PRALLCLTLK NPIRRACISI
pred 0000000000 0000000000 0000000000 0000000000 0000000000
seq VEWKPFEIII LLTIFANCVA LAIYIPFPED DSNATNSNLE RVEYLFLIIF
pred оооооооннн нннннннннн нHннHHHiii iiiiiiiiii iiiiiHHHHH
seq TVEAFLKVIA YGLLFHPNAY LRNGWNLLDF IIVVVGLFSA ILEQATKADG
pred нннннннннн нннннооооо оооннннннн нннннннннн нHiiiiiiii
seq ANALGGKGAG FDVKALRAFR VLRPLRLVSG VPSLQVVLNS IIKAMVPLLH
pred iiiiiiiIII IIIIIIIIII IIIIIIIIII IIiiiiiiii iiiiiiiHHH
seq IALLVLFVII IYAIIGLELF MGKMHKTCYN QEGVADVPAE DDPSPCALET }35
pred нннннннннн нннннннооо 0000000000 0000000000 0000000000
seq GHGRQCQNGT VCKPGWDGPK HGITNFDNFA FAMLTVFQCI TMEGWTDVLY
pred 0000000000 0000000000 0000000000 0000000000 0000000000
seq WMQDAMGYEL PWVYFVSLVI FGSFFVLNLV LGVLSGEFSK EREKAKARGD
pred оооооооооо оонннннннн нннннннннн ннннннiiii iiiiiiiiii
seq FQKLREKQQL EEDLKGYLDW ITQAEDIDPE NEDEGMDEEK PRNMSMPTSE
pred iIIIIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII
seq TESVNTENVA GGDIEGENCG ARLAHRISKS KFSRYWRRWN RFCRRKCRAA 550
pred IIIIIIIIII IIIIIIIIII IIIIIIIIII IIIiiiiiii iiiiiiiiiHH
seq VKSNVFYWLV IFLVFLNTLT IASEHYNQPH WLTEVQDTAN KALLALFTAE
pred HHHHHHHHHH HHHHHHHHHH HHOOOOOOOO OO०००OOOOO OOOOOOOOOO
seq MLLKMYSLGL QAYFVSLFNR FDCFIVCGGI LETILVETKV MSPLGISVLR }65
```



```
seq CVRLLRIFKI TRYWNSLSNL VASLLNSVRS IASLLLLLFL FIIIFSLLGM
```



```
seq QLFGGKFNFD EMQTRRSTFD NFPQSLLTVF QILTGEDWNS VMYDGIMAYG}75
pred 0000000000 0000000000 0000000000 0000000000 0000000000
seq GPSFPGMLVC IYFIILFICG NYILLNVFLA IAVDNLADAE SLTSAQKEEE
pred оооооооНнH HHHHHHHHHH HHHHHHHHHH HHiiiiiiii iiiiiiiIII
seq EEKERKKLAR TASPEKKQEV VGKPALEEAK EEKIELKSIT ADGESPPTTK
pred IIIIIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII
seq INMDDLQPNE SEDKSPYPNP ETTGEEDEEE PEMPVGPRPR PLSELHLKEK
pred IIIIIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII
seq AVPMPEASAF FIFSPNNRFR LQCHRIVNDT IFTNLILFFI LLSSISLAAE
pred IIIIIIIIII iiiiiiiiii iiiiiнHннн нннннннннн ннннннннно
seq DPVQHTSFRN HILFYFDIVF TTIFTIEIAL KMTAYGAFLH KGSFCRNYFN 1000
```

Dissertation, Doreen Fetting
pred 0000000000 0000000000 0000000000 0000000000 0000000HHH seq ILDLLVVSVS LISFGIQSSA INVVKILRVL RVLRPLRAIN RAKGLKHVVQ pred HHHHHHHHHH HHHHHHHHHH Hiiiiiiiii iiiiiiiiii iiiiiiiiii
seq CVFVAIRTIG NIVIVTTLLQ FMFACIGVQL FKGKLYTCSD SSKQTEAECK pred iHHHHHHHHH HHHHHHHHHH HHHHHHOOOO OOOOOOOOOO 0000000000 seq GNYITYKDGE VDHPIIQPRS WENSKFDFDN VLAAMMALFT VSTFEGWPEL pred 00 seq LYRSIDSHTE DKGPIYNYRV EISIFFIIYI IIIAFFMMNI FVGFVIVTFQ pred OOOOOOOOOO OOOOOOOOOO OHHHHHHHHH HHHHHHHHHH HHHHHHiiii
seq EQGEQEYKNC ELDKNQRQCV EYALKARPLR RYIPKNQHQY KVWYVVNSTY pred iiiiiiiiiii iIIIIIIIII IIIIIIIIii iiiiiiiiii iiiHHHHHHH seq FEYLMFVLIL LNTICLAMQH YGQSCLFKIA MNILNMLFTG LFTVEMILKL pred HHHHHHHHHH HHHHHHHHOO OOOOOOOOHH HHHHHHHHHH HHHHHHHHHH
seq IAFKPKGYFS DPWNVFDFLI VIGSIIDVIL SETNPAEHTQ CSPSMNAEEN pred HHHiiiiiii iiiiiiiiII IIIIIIIIII IIIIIIIIII IIIIIIIII seq SRISITFFRL FRVMRLVKLL SRGEGIRTLL WTFIKSFQAL PYVALLIVML pred IIIIIIIIII IIIIIIIIII IIIIiiiiii iiiiiiiiiH HHHHHHHHHH
seq FFIYAVIGMQ VFGKIALNDT TEINRNNNFQ TFPQAVLLLF RCATGEAWQD pred HHHHHHHHHO OOOOO00000 0000000000 0000000000 0000000000
seq IMLACMPGKK CAPESEPHNS TEGETPCGSS FAVFYFISFY MLCAFLIINL pred 0000000000 0000000000 0000000000 НННННННННН НННННННННН
seq FVAVIMDNFD YLTRDWSILG PHHLDEFKRI WAEYDPEAKG RIKHLDVVTL pred HHHHHiiiii iiiiiiiiii IIIIIIIII IIIIIIIII IIIIIIIII
seq LRRIQPPLGF GKLCPHRVAC KRLVSMNMPL NSDGTVMFNA TLFALVRTAL pred IIIIIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII
seq RIKTEGNLEQ ANEELRAIIK KIWKRTSMKL LDQVVPPAGD DEVTVGKFYA pred IIIIIIIII IIIIIIIII IIIIIIIII IIIIIIIII IIIIIIIII
seq TFLIQEYFRK FKKRKEQGLV GKPSQRNALS LQAGLRTLHD IGPEIRRAIS pred IIIIIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII
seq GDLTAEEELD KAMKEAVSAA SEDDIFRRAG GLFGNHVSYY QSDSRSAFPQ pred IIIIIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIII seq TFTTQRPLHI SKAGNNQGDT ESPSHEKLVD STFTPSSYSS TGSNANINNA pred IIIIIIIII IIIIIIIII IIIIIIIII IIIIIIIII IIIIIIIII
seq NNTALGRLPR PAGYPSTVST VEGHGSPLSP AVRAQEAAWK LSSKRCHSQE pred IIIIIIIII IIIIIIIII IIIIIIIII IIIIIIIII IIIIIIIII
seq SQIAMACQEG ASQDDNYDVR IGEDAECCSE PSLLSTEMLS YQDDENRQLA pred IIIIIIIII IIIIIIIII IIIIIIIII IIIIIIIII IIIIIIIII
seq PPEEEKRDIR LSPKKGFLRS ASLGRRASFH LECLKRQKNQ GGDISQKTVL pred IIIIIIIII IIIIIIIII IIIIIIIII IIIIIIIII IIIIIIIII seq PLHLVHHQAL AVAGLSPLLQ RSHSPTSLPR PCATPPATPG SRGWPPQPIP pred IIIIIIIII IIIIIIIII IIIIIIIII IIIIIIIII IIIIIIIII
seq TLRLEGADSS EKLNSSFPSI HCGSWSGENS PCRGDSSAAR RARPVSLTVP pred IIIIIIIII IIIIIIIII IIIIIIIII IIIIIIIII IIIIIIIII seq SQAGAQGRQF HGSASSLVEA VLISEGLGQF AQDPKFIEVT TQELADACDL pred IIIIIIIII IIIIIIIII IIIIIIIII IIIIIIIIII IIIIIIIII seq TIEEMENAAD DILSGGARQS PNGTLLPFVN RRDPGRDRAG QNEQDASGAC pred IIIIIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

APPENDIX

```
1 0 5 0
```

1100
1150
1200
1250
1300
1350
1400
1450
1500
1550
1600
1650
1700
1750
1800
1850
1900
1950
2000
2050
2100
2150

```
seq APGCGQSEEA LADRRAGVSS L 2171
pred IIIIIIIIII IIIIIIIIII I
```


cacna $1 \mathrm{C}, \mathrm{PHDhtm}$ result

PHD transmembrane helix prediction result for : UNK_69740

Abstract Rost B, Casadio R, Fariselli P, Sander C : Transmembrane helices predicted at 95% accuracy. Protein Sci. 1995 Mar;4(3):521-33.

10	20	30	40	50	60	70
\mid						

MLRALVQPATPAYQPLPSHLSAETESTCKGTVVHEAQLNHFYISPGGSNYGSPRPAHANMNANAAAGLAP
EHIPTPGAALSWQAAIDAARQAKLMGSAGNATISTVSSTQRKRQQYGKPKKQGSTTATRPPRALLCLTLK
NPIRRACISIVEWKPFEIIILLTIFANCVALAIYIPFPEDDSNATNSNLERVEYLFLIIFTVEAFLKVIA нннннннннннннннннн \quad ннннннннннннннн YGLLFHPNAYLRNGWNLLDFIIVVVGLFSAILEQATKADGANALGGKGAGFDVKALRAFRVLRPLRLVSG HHHH HHHнHHHHHHHHH
VPSLQVVLNSIIKAMVPLLHIALLVLFVIIIYAIIGLELFMGKMHKTCYNQEGVADVPAEDDPSPCALET нннннннннннннннннннннннннннннннннннн
GHGRQCQNGTVCKPGWDGPKHGITNFDNFAFAMLTVFQCITMEGWTDVLYWMQDAMGYELPWVYFVSLVI нннннн ннн \quad нннннннннн FGSFFVLNLVLGVLSGEFSKEREKAKARGDFQKLREKQQLEEDLKGYLDWITQAEDIDPENEDEGMDEEK HHHHHHHHHHHHH
PRNMSMPTSETESVNTENVAGGDIEGENCGARLAHRISKSKFSRYWRRWNRFCRRKCRAAVKSNVFYWLV ннннннн IFLVFLNTLTIASEHYNQPHWLTEVQDTANKALLALFTAEMLLKMYSLGLQAYFVSLFNRFDCFIVCGGI ннннннннн ннннннннннннннн ннннннн LETILVETKVMSPLGISVLRCVRLLRIFKITRYWNSLSNLVASLLNSVRSIASLLLLLFLFIIIFSLLGM HHHH HH HH HHHHHHHHHHHHHHHHHHHHHHHHHHHH QLFGGKFNFDEMQTRRSTFDNFPQSLLTVFQILTGEDWNSVMYDGIMAYGGPSFPGMLVCIYFIILFICG H нннннннннннннн
NYILLNVFLAIAVDNLADAESLTSAQKEEEEEKERKKLARTASPEKKQEVVGKPALEEAKEEKIELKSIT нннннннннннн
ADGESPPTTKINMDDLQPNESEDKSPYPNPETTGEEDEEEPEMPVGPRPRPLSELHLKEKAVPMPEASAF
FIFSPNNRFRLQCHRIVNDTIFTNLILFFILLSSISLAAEDPVQHTSFRNHILFYFDIVFTTIFTIEIAL
нннннннннннннннн ннннннннннннн
KMTAYGAFLHKGSFCRNYFNILDLLVVSVSLISFGIQSSAINVVKILRVLRVLRPLRAINRAKGLKHVVQ
HHHH HHHHHHHHHHHHHHHHHH HHHHH
CVFVAIRTIGNIVIVTTLLQFMFACIGVQLFKGKLYTCSDSSKQTEAECKGNYITYKDGEVDHPIIQPRS ннннннннннннннннннннннннннннн
WENSKFDFDNVLAAMMALFTVSTFEGWPELLYRSIDSHTEDKGPIYNYRVEISIFFIIYIIIIAFFMMNI ннннннннннннннннннH
FVGFVIVTFQEQGEQEYKNCELDKNQRQCVEYALKARPLRRYIPKNQHQYKVWYVVNSTYFEYLMFVLIL HHHHHH HHHHHHHHHHH LNTICLAMQHYGQSCLFKIAMNILNMLFTGLFTVEMILKLIAFKPKGYFSDPWNVFDFLIVIGSIIDVIL нннннн нннннннннннннннннн нннннннннн
SETNPAEHTQCSPSMNAEENSRISITFFRLFRVMRLVKLLSRGEGIRTLLWTFIKSFQALPYVALLIVML ннннннннннннннннннннннннн
RIKHLDVVTLLRRIQPPLGFGKLCPHRVACKRLVSMNMPLNSDGTVMFNATLFALVRTALRIKTEGNLEQ
ANEELRAIIKKIWKRTSMKLLDQVVPPAGDDEVTVGKFYATFLIQEYFRKFKKRKEQGLVGKPSQRNALS
LQAGLRTLHDIGPEIRRAISGDLTAEEELDKAMKEAVSAASEDDIFRRAGGLFGNHVSYYQSDSRSAFPQ

L

Rabbit mRNA for cardiac dihydropyridine-sensitive calcium channel

taaaacgtaaagtattactaaaacctcaatttgcagcaatgccatatggccatgtaaact tttgtggcactgaaatgacattacaggaatagtttcttagtcttaaaaagttacaaggag aaaagatcacctgcagggtacttgtttagctttaaaaatcaccctgttttgtatacaact ggaaactgacaatgcttcgagcccttgttcagccagctacgcccgcataccagccgctgc ctagccacctgtctgctgaaacggagagtacatgtaaaggtactgtggtgcatgaagctc aactcaaccatttctacatctctcctggaggttccaactatgggagcccacgcccagctc atgccaacatgaatgccaacgcagctgcggggctcgcccctgagcacatccccaccccag gggcagccctgtcctggcaggcagccatcgatgcggcccggcaggccaagctgatgggca gtgctggcaacgcgactatctccaccgtcagctccacgcagcggaagcggcagcagtatg ggaagcccaagaagcagggcagcaccactgccactcgcccgccccgtgccctgctctgcc tcaccetgaagaaccccatccggagggcgtgcataagcatcgtcgagtggaaaccatttg aataattattttactgactatttttgccaattgtgtggccttagcaatctatattccct ttccagaagatgactccaatgccaccaattccaacctggaacgagtggaatatctctttc tcataatttttactgtggaagcatttttaaaagtaatagcctatggacttctgtttcacc ccaacgcttacctccgcaatggctggaatttactagactttataattgtggttgtagggc tttttagtgcaattttagaacaagcaaccaaagcagacggggccaatgccctaggaggga aaggggctggattcgacgtgaaggcgctgagggctttccgcgtgctgcgccccctgcggc tggtgtctggagtcccgagtctccaggtggtcctgaactccatcatcaaggccatggtcc ctctgctgcacattgccctgctagtgctgtttgtcatcatcatctatgccatcatcggcc tggagctcttcatggggaagatgcacaagacatgctacaaccaggagggtgtagcagatg tcccagcagaagatgatccttccccttgtgctctggagacgggccacgggcggcagtgcc agaacggcaccgtgtgcaagcctgggtgggatggacccaagcacggcatcaccaactttg acaattttgctttcgccatgttgacggtgttccagtgtatcaccatggagggctggaccg acgtgctgtactggatgcaggacgctatgggctatgagctaccctgggtgtattttgtca gtctggtcatctttggatcctttttcgttctaaatctggttctcggtgtgttgagcggag agttttccaaagagagggagaaggccaaagctcggggagatttccagaagttgcgggaga agcagcagctggaagaggacctcaaaggctacctggactggatcactcaggcagaagaca tcgaccctgagaatgaggatgaaggcatggatgaggagaaaccccgaaacatgagcatgc ccacaagtgagaccgaatctgtcaacactgaaaacgtggctggaggtgacatcgaaggag aaactgcggggccaggctggcccaccggatctccaagtcgaaattcagccgctactggc gccggtggaataggttctgcaggagaaagtgccgcgcagcggtcaagtcgaacgtcttct actggctggtgatcttcctggtcttcctgaacacgctcaccattgcctctgagcactaca accagccccactggctcacggaggtccaagacacggccaataaggctctactggccetgt tcactgccgagatgctgctgaagatgtacagcctgggcctgcaggcctatttcgtgtccc tcttcaaccgcttcgactgcttcattgtgtgcgggggcatcctggagaccatcctggtgg agaccaaggtcatgtcccccctgggcatctctgtgctgagatgcgtgcggctcctgagaa tattcaaaattacaaggtactggaactccttgagcaacctggtggcctccctgctgaact cggtgcgctccatcgcctccctgctcctgctcctcttcctcttcatcatcatcttctccc tgctggggatgcagctgtttggaggcaagttcaacttcgatgagatgcagacccggagga gcacgttcgacaatttcccgcagtccctgctcaccgtgtttcagatcctgaccggggagg actggaattcggtgatgtatgatgggatcatggcttatggcggcccctcttttccaggga tgttagtctgtatttacttcatcatcctcttcatctgtggaaattatatcctactgaatg tgttcttggccattgctgtggacaacctggctgatgctgagagccttacttctgcccaaa aggaagaggaagaagagaaggagagaaagaagctggccaggactgccagcccggagaaga aacaagaggtggtagggaagccggccctggaggaggccaaggaggagaaaattgagctga aatccattacagctgatggagagtccccgcctaccaccaagatcaacatggatgacctcc agcccaatgagagtgaggataagagtccctaccccaacccggaaaccacaggagaagagg atgaggaggagcctgagatgcctgtcggcccccgccetcggccactctccgagctgcacc ttaaggagaaggccgtgcctatgccagaagccagtgcgtttttcatcttcagccccaaca

Dissertation, Doreen Fetting
APPENDIX
acaggttccgcctccagtgtcaccgtatcgtcaacgacacgatcttcaccaacctgatcc tcttcttcattctgctcagcagcatttccctggctgccgaggaccctgtgcagcacacct ccttcaggaatcacattctgttttattttgacattgtttttactaccattttcaccattg aattgctctcaagatgactgcgtatggggccttcctgcacaagggctctttctgcagga actacttcaacatcctggacctgctggtggtcagcgtgtccctcatctccttcggcatcc agtccagcgcgatcaatgtcgtgaagatcttgcgagtgctgcgagtgctcaggccactgc gggccatcaacagggccaaggggctaaagcacgtggttcagtgtgtgttcgtggccatcc ggaccattgggaacatcgtgattgtcaccacgctgctgcagttcatgttcgcctgcatcg gagtccagctcttcaaggggaagctgtacacctgttcagacagttccaaacagactgagg ctgaatgcaagggtaactacatcacctacaaagatggagaggttgaccatcccatcatcc agccgcgcagctgggagaacagcaagtttgactttgacaacgtcctggcagccatgatgg ccctcttcactgtctccaccttcgagggctggccagagctgctgtaccgctccatcgact cccacacggaagacaagggccctatctacaactaccgagtggagatctccatcttcttca tcatctacatcatcatcatcgccttcttcatgatgaacatcttcgtgggtttcgtcattg tcaccttccaggagcagggggagcaggagtacaagaactgtgagctggacaagaaccagc ggcagtgcgtggaatatgccctcaaggcccggccectgcggaggtacatccccaagaacc agcaccagtacaaagtgtggtacgtggtcaactccacctactttgagtacctgatgttcg tcctcatcctgctcaacaccatctgcttggccatgcagcactacggccagagctgcctgt tcaaaatcgccatgaacatcctcaacatgctcttcaccggcctcttcaccgtggaaatga tcctgaagctcattgccttcaaacccaagggttactttagtgatccctggaatgtttttg acttcctcatcgtaattggcagcataattgacgtcattctcagtgagactaatccagctg aacatacccaatgctctccctctatgaacgcagaggagaactcccgcatctccatcacct tcttccgcctgttccgggtcatgcgcctggtcaagctgctgagccgcggggagggcatcc ggacgctgctgtggaccttcatcaagtccttccaggccctgccctatgtggctcttctga tcgtaatgctgttcttcatctatgctgtgatcgggatgcaggtgtttgggaaaatcgccc tgaacgacaccacggagatcaaccggaacaacaacttccagaccttcccccaagctgtgc tgctcctcttcaggtgtgccacgggggaggcttggcaggatatcatgctggcctgcatgc caggcaagaagtgtgccccagagtctgagccccacaacagcacagaaggggagaccccet gcggcagcagcttcgccgtcttctacttcatcagcttctacatgctttgtgccttcctga tcatcaatctctttgtagctgtcatcatggacaactttgactacctgacaagggactggt caatccttggtccccaccatctggatgaatttaaaagaatctgggcagagtatgaccctg aagccaagggtcgtatcaaacacctggatgtggtgaccctcctccggcggattcagcccc cactgggttttgggaagctgtgccctcaccgtgtggcttgcaaacgcctggtctccatga acatgcctctgaacagtgacgggacggtcatgttcaacgccaccctgtttgccctggtca ggacagctctgaggatcaaaacagaaggaaacctggaacaagccaatgaggagctgcggg ccatcatcaagaagatctggaagcggaccagcatgaagctgctggaccaagtggtgcccc ctgcaggcgatgatgaggtcacagtcggcaagttctacgctaccttcctgatccaagagt acttccggaaattcaagaagcgcaaagagcaagggcttgtgggcaagccctcccagagga atgccctttccctgcaggctggcctgcgcactctgcacgacatcgggcctgagatccgac gggccatctccggagacctgacagctgaggaagagctggacaaggccatgaaggaggctg tgtctgctgcctctgaagatgacatcttcaggagggccggtggcctgtttggcaaccatg tcagctactaccaaagtgacagccggagcgccttcccccagaccttcactacgcagcgcc cactgcacatcagcaaggctggcaacaaccaaggcgacaccgagtcaccctcccacgaga agctggtggactccactttcacccccagcagctactcgtccaccggctccaacgccaaca tcaacaatgccaacaacactgccctgggccgcctcccccgccccgccggctaccccagca cagtcagcactgtggagggccacgggtcccccttgtctcctgccgtccgggcacaggagg cagcatggaagctcagctccaagagatgccactcccaggagagccagatagccatggcgt gtcaggagggcgcatcccaggacgacaactacgacgtgaggatcggtgaagatgcagagt gctgcagtgagcccagcctgctctccacagagatgctctcctaccaggatgacgaaaacc gacaactggcgcccccggaggaggagaagcgggacatcaggctgtctccaaagaagggtt tcctgcgctccgcatcactgggtcgaagggcttccttccacctggagtgtctgaagcggc agaagaatcaagggggagacatctctcagaagacagtcctgcccctgcatctggtccacc accaggcattggcagtggcgggcctgagtcccctcctgcagagaagccattcccccacct cgctccctaggccctgtgccacgccccctgccacaccgggcagccgaggctggcccccac agcccatccccaccctgcggctggagggggccgactccagtgagaaactcaacagcagct tcccgtccatccactgcggctcatggtctggggagaacagcccctgcagaggggacagca gcgccgcccggagagcccggccegtctccctcactgtgcccagccaggctggggcceagg ggagacagttccatggcagcgccagcagcctggtggaagcggtcttgatttccgaaggac tggggcagtttgctcaagatcccaagttcatcgaggtcacgacccaggagctggctgacg cctgcgatctgaccatagaggagatggagaacgcggccgacgacattctcagcgggggcg cccggcagagccccaatggcaccetgttaccctttgtgaaccgcagggacccgggccggg acagagcggggcagaacgagcaggacgcgagcggcgcatgcgccccagggtgcgggcaga gcgaggaggccetcgcggaccgcagggccggcgtcagcagcctgtaggcgccagggccgg gggtgcgggttttttatttgtctcaatgttcctaatgggttcgtttcagaagtgcctcac tgttctcgtgacctggagttaaccggaacagcgtcttcattcatttctgttgggacgaga cgcaggctgggaggtgtggagccctctgtgtccgcagaggcgaggagggggcggcggccg cgggaaggggagagacccgccctcgagctctgctccaggcgcgccccgggcgggaaagag aacctcagctttctgcggtggccctcgctcgccaaaaggaccctgaaccaaacgggtgtc tttcaactttgcttgt

Dissertation, Doreen Fetting

APPENDIX

TAAAACGTAAAGTATTACTAAAACCTCAATTTGCAGCAATGCCATATGGCCATGTAAACTTTTGTGGCACTGAAA TGACATTACAGGAATAGTTTCTTAGTCTTAAAAAGTTACAAGGAGAAAAGATCACCTGCAGGGTACTTGTTTAGC TTTAAAAATCACCCTGTTTTGTATACAACTGGAAACTGACAATGCTTCGAGCCCTTGTTCAGCCAGCTACGCCCG CATACCAGCCGCTGCCTAGCCACCTGTCTGCTGAAACGGAGAGTACATGTAAAGGTACTGTGGTGCATGAAGCTC AACTCAACCATTTCTACATCTCTCCTGGAGGTTCCAACTATGGGAGCCCACGCCCAGCTCATGCCAACATGAATG CCAACGCAGCTGCGGGGCTCGCCCCTGAGCACATCCCCACCCCAGGGGCAGCCCTGTCCTGGCAGGCAGCCATCG ATGCGGCCCGGCAGGCCAAGCTGATGGGCAGTGCTGGCAACGCGACTATCTCCACCGTCAGCTCCACGCAGCGGA AGCGGCAGCAGTATGGGAAGCCCAAGAAGCAGGGCAGCACCACTGCCACTCGCCCGCCCCGTGCCCTGCTCTGCC TCACCCTGAAGAACCCCATCCGGAGGGCGTGCATAAGCATCGTCGAGTGGAAACCATTTGAAATAATTATTTTAC TGACTATTTTTGCCAATTGTGTGGCCTTAGCAATCTATATTCCCTTTCCAGAAGATGACTCCAATGCCACCAATT CCAACCTGGAACGAGTGGAATATCTCTTTCTCATAATTTTTACTGTGGAAGCATTTTTAAAAGTAATAGCCTATG GACTTCTGTTTCACCCCAACGCTTACCTCCGCAATGGCTGGAATTTACTAGACTTTATAATTGTGGTTGTAGGGC TTTTTAGTGCAATTTTAGAACAAGCAACCAAAGCAGACGGGGCCAATGCCCTAGGAGGGAAAGGGGCTGGATTCG ACGTGAAGGCGCTGAGGGCTTTCCGCGTGCTGCGCCCCCTGCGGCTGGTGTCTGGAGTCCCGAGTCTCCAGGTGG TCCTGAACTCCATCATCAAGGCCATGGTCCCTCTGCTGCACATTGCCCTGCTAGTGCTGTTTGTCATCATCATCT ATGCCATCATCGGCCTGGAGCTCTTCATGGGGAAGATGCACAAGACATGCTACAACCAGGAGGGTGTAGCAGATG TCCCAGCAGAAGATGATCCTTCCCCTTGTGCTCTGGAGACGGGCCACGGGCGGCAGTGCCAGAACGGCACCGTGT GCAAGCCTGGGTGGGATGGACCCAAGCACGGCATCACCAACTTTGACAATTTTGCTTTCGCCATGTTGACGGTGT TCCAGTGTATCACCATGGAGGGCTGGACCGACGTGCTGTACTGGATGCAGGACGCTATGGGCTATGAGCTACCCT GGGTGTATTTTGTCAGTCTGGTCATCTTTGGATCCTTTTTCGTTCTAAATCTGGTTCTCGGTGTGTTGAGCGGAG AGTTTTCCAAAGAGAGGGAGAAGGCCAAAGCTCGGGGAGATTTCCAGAAGTTGCGGGAGAAGCAGCAGCTGGAAG AGGACCTCAAAGGCTACCTGGACTGGATCACTCAGGCAGAAGACATCGACCCTGAGAATGAGGATGAAGGCATGG ATGAGGAGAAACCCCGAAACATGAGCATGCCCACAAGTGAGACCGAATCTGTCAACACTGAAAACGTGGCTGGAG GTGACATCGAAGGAGAAAACTGCGGGGCCAGGCTGGCCCACCGGATCTCCAAGTCGAAATTCAGCCGCTACTGGC GCCGGTGGAATAGGTTCTGCAGGAGAAAGTGCCGCGCAGCGGTCAAGTCGAACGTCTTCTACTGGCTGGTGATCT TCCTGGTCTTCCTGAACACGCTCACCATTGCCTCTGAGCACTACAACCAGCCCCACTGGCTCACGGAGGTCCAAG ACACGGCCAATAAGGCTCTACTGGCCCTGTTCACTGCCGAGATGCTGCTGAAGATGTACAGCCTGGGCCTGCAGG CCTATTTCGTGTCCCTCTTCAACCGCTTCGACTGCTTCATTGTGTGCGGGGGCATCCTGGAGACCATCCTGGTGG AGACCAAGGTCATGTCCCCCCTGGGCATCTCTGTGCTGAGATGCGTGCGGCTCCTGAGAATATTCAAAATTACAA GGTACTGGAACTCCTTGAGCAACCTGGTGGCCTCCCTGCTGAACTCGGTGCGCTCCATCGCCTCCCTGCTCCTGC TCCTCTTCCTCTTCATCATCATCTTCTCCCTGCTGGGGATGCAGCTGTTTGGAGGCAAGTTCAACTTCGATGAGA TGCAGACCCGGAGGAGCACGTTCGACAATTTCCCGCAGTCCCTGCTCACCGTGTTTCAGATCCTGACCGGGGAGG ACTGGAATTCGGTGATGTATGATGGGATCATGGCTTATGGCGGCCCCTCTTTTCCAGGGATGTTAGTCTGTATTT ACTTCATCATCCTCTTCATCTGTGGAAATTATATCCTACTGAATGTGTTCTTGGCCATTGCTGTGGACAACCTGG CTGATGCTGAGAGCCTTACTTCTGCCCAAAAGGAAGAGGAAGAAGAGAAGGAGAGAAAGAAGCTGGCCAGGACTG CCAGCCCGGAGAAGAAACAAGAGGTGGTAGGGAAGCCGGCCCTGGAGGAGGCCAAGGAGGAGAAAATTGAGCTGA AATCCATTACAGCTGATGGAGAGTCCCCGCCTACCACCAAGATCAACATGGATGACCTCCAGCCCAATGAGAGTG AGGATAAGAGTCCCTACCCCAACCCGGAAACCACAGGAGAAGAGGATGAGGAGGAGCCTGAGATGCCTGTCGGCC CCCGCCCTCGGCCACTCTCCGAGCTGCACCTTAAGGAGAAGGCCGTGCCTATGCCAGAAGCCAGTGCGTTTTTCA TCTTCAGCCCCAACAACAGGTTCCGCCTCCAGTGTCACCGTATCGTCAACGACACGATCTTCACCAACCTGATCC TCTTCTTCATTCTGCTCAGCAGCATTTCCCTGGCTGCCGAGGACCCTGTGCAGCACACCTCCTTCAGGAATCACA TTCTGTTTTATTTTGACATTGTTTTTACTACCATTTTCACCATTGAAATTGCTCTCAAGATGACTGCGTATGGGG CCTTCCTGCACAAGGGCTCTTTCTGCAGGAACTACTTCAACATCCTGGACCTGCTGGTGGTCAGCGTGTCCCTCA TCTCCTTCGGCATCCAGTCCAGCGCGATCAATGTCGTGAAGATCTTGCGAGTGCTGCGAGTGCTCAGGCCACTGC GGGCCATCAACAGGGCCAAGGGGCTAAAGCACGTGGTTCAGTGTGTGTTCGTGGCCATCCGGACCATTGGGAACA TCGTGATTGTCACCACGCTGCTGCAGTTCATGTTCGCCTGCATCGGAGTCCAGCTCTTCAAGGGGAAGCTGTACA CCTGTTCAGACAGTTCCAAACAGACTGAGGCTGAATGCAAGGGTAACTACATCACCTACAAAGATGGAGAGGTTG ACCATCCCATCATCCAGCCGCGCAGCTGGGAGAACAGCAAGTTTGACTTTGACAACGTCCTGGCAGCCATGATGG CCCTCTTCACTGTCTCCACCTTCGAGGGCTGGCCAGAGCTGCTGTACCGCTCCATCGACTCCCACACGGAAGACA AGGGCCCTATCTACAACTACCGAGTGGAGATCTCCATCTTCTTCATCATCTACATCATCATCATCGCCTTCTTCA TGATGAACATCTTCGTGGGTTTCGTCATTGTCACCTTCCAGGAGCAGGGGGAGCAGGAGTACAAGAACTGTGAGC TGGACAAGAACCAGCGGCAGTGCGTGGAATATGCCCTCAAGGCCCGGCCCCTGCGGAGGTACATCCCCAAGAACC AGCACCAGTACAAAGTGTGGTACGTGGTCAACTCCACCTACTTTGAGTACCTGATGTTCGTCCTCATCCTGCTCA ACACCATCTGCTTGGCCATGCAGCACTACGGCCAGAGCTGCCTGTTCAAAATCGCCATGAACATCCTCAACATGC TCTTCACCGGCCTCTTCACCGTGGAAATGATCCTGAAGCTCATTGCCTTCAAACCCAAGGGTTACTTTAGTGATC CCTGGAATGTTTTTGACTTCCTCATCGTAATTGGCAGCATAATTGACGTCATTCTCAGTGAGACTAATCCAGCTG AACATACCCAATGCTCTCCCTCTATGAACGCAGAGGAGAACTCCCGCATCTCCATCACCTTCTTCCGCCTGTTCC GGGTCATGCGCCTGGTCAAGCTGCTGAGCCGCGGGGAGGGCATCCGGACGCTGCTGTGGACCTTCATCAAGTCCT TCCAGGCCCTGCCCTATGTGGCTCTTCTGATCGTAATGCTGTTCTTCATCTATGCTGTGATCGGGATGCAGGTGT TTGGGAAAATCGCCCTGAACGACACCACGGAGATCAACCGGAACAACAACTTCCAGACCTTCCCCCAAGCTGTGC TGCTCCTCTTCAGGTGTGCCACGGGGGAGGCTTGGCAGGATATCATGCTGGCCTGCATGCCAGGCAAGAAGTGTG CCCCAGAGTCTGAGCCCCACAACAGCACAGAAGGGGAGACCCCCTGCGGCAGCAGCTTCGCCGTCTTCTACTTCA TCAGCTICTACATGCTTTGTGCCTTCCTGATCATCAATCTCTTTGTAGCTGTCATCATGGACAACTTTGACTACC

C-terminal cytoplasmic

Dissertation, Doreen Fetting

APPENDIX

TGACAAGGGACTGGTCAATCCTTGGTCCCCACCATCTGGATGAATTTAAAAGAATCTGGGCAGAGTATGACCCTG AAGCCAAGGGTCGTATCAAACACCTGGATGTGGTGACCCTCCTCCGGCGGATTCAGCCCCCACTGGGTTTTGGGA AGCTGTGCCCTCACCGTGTGGCTTGCAAACGCCTGGTCTCCATGAACATGCCTCTGAACAGTGACGGGACGGTCA TGTTCAACGCCACCCTGTTTGCCCTGGTCAGGACAGCTCTGAGGATCAAAACAGAAGGAAACCTGGAACAAGCCA ATGAGGAGCTGCGGGCCATCATCAAGAAGATCTGGAAGCGGACCAGCATGAAGCTGCTGGACCAAGTGGTGCCCC CTGCAGGCGATGATGAGGTCACAGTCGGCAAGTTCTACGCTACCTTCCTGATCCAAGAGTACTTCCGGAAATTCA AGAAGCGCAAAGAGCAAGGGCTTGTGGGCAAGCCCTCCCAGAGGAATGCCCTTTCCCTGCAGGCTGGCCTGCGCA CTCTGCACGACATCGGGCCTGAGATCCGACGGGCCATCTCCGGAGACCTGACAGCTGAGGAAGAGCTGGACAAGG CCATGAAGGAGGCTGTGTCTGCTGCCTCTGAAGATGACATCTTCAGGAGGGCCGGTGGCCTGTTTGGCAACCATG TCAGCTACTACCAAAGTGACAGCCGGAGCGCCTTCCCCCAGACCTTCACTACGCAGCGCCCACTGCACATCAGCA AGGCTGGCAACAACCAAGGCGACACCGAGTCACCCTCCCACGAGAAGCTGGTGGACTCCACTTTCACCCCCAGCA GCTACTCGTCCACCGGCTCCAACGCCAACATCAACAATGCCAACAACACTGCCCTGGGCCGCCTCCCCCGCCCCG CCGGCTACCCCAGCACAGTCAGCACTGTGGAGGGCCACGGGTCCCCCTTGTCTCCTGCCGTCCGGGCACAGGAGG CAGCATGGAAGCTCAGCTCCAAGAGATGCCACTCCCAGGAGAGCCAGATAGCCATGGCGTGTCAGGAGGGCGCAT CCCAGGACGACAACTACGACGTGAGGATCGGTGAAGATGCAGAGTGCTGCAGTGAGCCCAGCCTGCTCTCCACAG AGATGCTCTCCTACCAGGATGACGAAAACCGACAACTGGCGCCCCCGGAGGAGGAGAAGCGGGACATCAGGCTGT CTCCAAAGAAGGGTTTCCTGCGCTCCGCATCACTGGGTCGAAGGGCTTCCTTCCACCTGGAGTGTCTGAAGCGGC AGAAGAATCAAGGGGGAGACATCTCTCAGAAGACAGTCCTGCCCCTGCATCTGGTCCACCACCAGGCATTGGCAG TGGCGGGCCTGAGTCCCCTCCTGCAGAGAAGCCATTCCCCCACCTCGCTCCCTAGGCCCTGTGCCACGCCCCCTG CCACACCGGGCAGCCGAGGCTGGCCCCCACAGCCCATCCCCACCCTGCGGCTGGAGGGGGCCGACTCCAGTGAGA AACTCAACAGCAGCTTCCCGTCCATCCACTGCGGCTCATGGTCTGGGGAGAACAGCCCCTGCAGAGGGGACAGCA GCGCCGCCCGGAGAGCCCGGCCCGTCTCCCTCACTGTGCCCAGCCAGGCTGGGGCCCAGGGGAGACAGTTCCATG GCAGCGCCAGCAGCCTGGTGGAAGCGGTCTTGATTTCCGAAGGACTGGGGCAGTTTGCTCAAGATCCCAAGTTCA TCGAGGTCACGACCCAGGAGCTGGCTGACGCCTGCGATCTGACCATAGAGGAGATGGAGAACGCGGCCGACGACA TTCTCAGCGGGGGCGCCCGGCAGAGCCCCAATGGCACCCTGTTACCCTTTGTGAACCGCAGGGACCCGGGCCGGG ACAGAGCGGGGCAGAACGAGCAGGACGCGAGCGGCGCATGCGCCCCAGGGTGCGGGCAGAGCGAGGAGGCCCTCG CGGACCGCAGGGCCGGCGTCAGCAGCCTGTAGGCGCCAGGGCCGGGGGTGCGGGTTTTTTATTTGTCTCAATGTT CCTAATGGGTTCGTTTCAGAAGTGCCTCACTGTTCTCGTGACCTGGAGTTAACCGGAACAGCGTCTTCATTCATT TCTGTTGGGACGAGACGCAGGCTGGGAGGTGTGGAGCCCTCTGTGTCCGCAGAGGCGAGGAGGGGGCGGCGGCCG CGGGAAGGGGAGAGACCCGCCCTCGAGCTCTGCTCCAGGCGCGCCCCGGGCGGGAAAGAGAACCTCAGCTTTCTG CGGTGGCCCTCGCTCGCCAAAAGGACCCTGAACCAAACGGGTGTCTTTCAACTTTGCTTGT

Cytoplasmic C-terminus only

GACAACTTTGACTACCTGACAAGGGACTGGTCAATCCTTGGTCCCCACCATCTGGATGAATTTAAAAGAATCTGG GCAGAGTATGACCCTGAAGCCAAGGGTCGTATCAAACACCTGGATGTGGTGACCCTCCTCCGGCGGATTCAGCCC CCACTGGGTTTTGGGAAGCTGTGCCCTCACCGTGTGGCTTGCAAACGCCTGGTCTCCATGAACATGCCTCTGAAC AGTGACGGGACGGTCATGTTCAACGCCACCCTGTTTGCCCTGGTCAGGACAGCTCTGAGGATCAAAACAGAAGGA AACCTGGAACAAGCCAATGAGGAGCTGCGGGCCATCATCAAGAAGATCTGGAAGCGGACCAGCATGAAGCTGCTG GACCAAGTGGTGCCCCCTGCAGGCGATGATGAGGTCACAGTCGGCAAGTTCTACGCTACCTTCCTGATCCAAGAG TACTTCCGGAAATTCAAGAAGCGCAAAGAGCAAGGGCTTGTGGGCAAGCCCTCCCAGAGGAATGCCCTTTCCCTG CAGGCTGGCCTGCGCACTCTGCACGACATCGGGCCTGAGATCCGACGGGCCATCTCCGGAGACCTGACAGCTGAG GAAGAGCTGGACAAGGCCATGAAGGAGGCTGTGTCTGCTGCCTCTGAAGATGACATCTTCAGGAGGGCCGGTGGC CTGTTTGGCAACCATGTCAGCTACTACCAAAGTGACAGCCGGAGCGCCTTCCCCCAGACCTTCACTACGCAGCGC CCACTGCACATCAGCAAGGCTGGCAACAACCAAGGCGACACCGAGTCACCCTCCCACGAGAAGCTGGTGGACTCC ACTTTCACCCCCAGCAGCTACTCGTCCACCGGCTCCAACGCCAACATCAACAATGCCAACAACACTGCCCTGGGC CGCCTCCCCCGCCCCGCCGGCTACCCCAGCACAGTCAGCACTGTGGAGGGCCACGGGTCCCCCTTGTCTCCTGCC GTCCGGGCACAGGAGGCAGCATGGAAGCTCAGCTCCAAGAGATGCCACTCCCAGGAGAGCCAGATAGCCATGGCG TGTCAGGAGGGCGCATCCCAGGACGACAACTACGACGTGAGGATCGGTGAAGATGCAGAGTGCTGCAGTGAGCCC AGCCTGCTCTCCACAGAGATGCTCTCCTACCAGGATGACGAAAACCGACAACTGGCGCCCCCGGAGGAGGAGAAG CGGGACATCAGGCTGTCTCCAAAGAAGGGTTTCCTGCGCTCCGCATCACTGGGTCGAAGGGCTTCCTTCCACCTG GAGTGTCTGAAGCGGCAGAAGAATCAAGGGGGAGACATCTCTCAGAAGACAGTCCTGCCCCTGCATCTGGTCCAC CACCAGGCATTGGCAGTGGCGGGCCTGAGTCCCCTCCTGCAGAGAAGCCATTCCCCCACCTCGCTCCCTAGGCCC TGTGCCACGCCCCCTGCCACACCGGGCAGCCGAGGCTGGCCCCCACAGCCCATCCCCACCCTGCGGCTGGAGGGG GCCGACTCCAGTGAGAAACTCAACAGCAGCTTCCCGTCCATCCACTGCGGCTCATGGTCTGGGGAGAACAGCCCC TGCAGAGGGGACAGCAGCGCCGCCCGGAGAGCCCGGCCCGTCTCCCTCACTGTGCCCAGCCAGGCTGGGGCCCAG GGGAGACAGTTCCATGGCAGCGCCAGCAGCCTGGTGGAAGCGGTCTTGATTTCCGAAGGACTGGGGCAGTTTGCT CAAGATCCCAAGTTCATCGAGGTCACGACCCAGGAGCTGGCTGACGCCTGCGATCTGACCATAGAGGAGATGGAG AACGCGGCCGACGACATTCTCAGCGGGGGCGCCCGGCAGAGCCCCAATGGCACCCTGTTACCCTTTGTGAACCGC AGGGACCCGGGCCGGGACAGAGCGGGGCAGAACGAGCAGGACGCGAGCGGCGCATGCGCCCCAGGGTGCGGGCAG AGCGAGGAGGCCCTCGCGGACCGCAGGGCCGGCGTCAGCAGCCTGTAG

C-terminal cytoplasmic tail

Rabbit mRNA for cardiac dihydropyridine-sensitive calcium channel

Translate

5'3' Frame 3
taaaacgtaaagtattactaaaacctcaatttgcagcaatgccatatggccatgtaaacttt
 tgtggcactgaaatgacattacaggaatagtttcttagtcttaaaaagttacaaggagaa C G T E M T L Q E \quad I $\quad \mathrm{F} \quad \mathrm{L} \quad \mathrm{S} \quad \mathrm{L} \quad \mathrm{K} \quad \mathrm{K} \quad \mathrm{L} \quad$ Q $\quad \mathrm{G} \quad \mathrm{E}$ aagatcacctgcagggtacttgtttagctttaaaaatcaccctgttttgtatacaactgg
 aaactgacaatgcttcgagcccttgttcagccagctacgccegcataccagccgctgcct
 agccacctgtctgctgaaacggagagtacatgtaaaggtactgtggtgcatgaagctcaa
 ctcaaccatttctacatctctcctggaggttccaactatgggagcccacgcccagctcat
 gccaacatgaatgccaacgcagctgcggggctcgccoctgagcacatccccaccccaggg
 gcagccctgtcctggcaggcagccatcgatgcggcccggcaggccaagctgatgggcagt
 gctggcaacgcgactatctccaccgtcagctccacgcagcggaagcggcagcagtatggg
 aagcccaagaagcagggcagcaccactgccactcgcccgccccgtgccctgctctgcctc
 accetgaagaaccccatccggagggcgtgcataagcatcgtcgagtggaaaccatttgaa
 ataattattttactgactatttttgccaattgtgtggccttagcaatctatattcccttt
 ccagaagatgactccaatgccaccaattccaacctggaacgagtggaatatctctttctc
 ataatttttactgtggaagcatttttaaaagtaatagcctatggacttctgtttcacccc
 aacgcttacctccgcaatggctggaatttactagactttataattgtggttgtagggctt
 tttagtgcaattttagaacaagcaaccaaagcagacggggccaatgccctaggagggaaa
 ggggctggattcgacgtgaaggcgctgagggctttccgcgtgctgcgccccctgcggctg
 gtgtctggagtcccgagtctccaggtggtcctgaactccatcatcaaggccatggtccct
 ctgctgcacattgccctgctagtgctgtttgtcatcatcatctatgccatcatcggcctg
 gagctcttcatggggaagatgcacaagacatgctacaaccaggagggtgtagcagatgtc
 ccagcagaagatgatccttccccttgtgctctggagacgggccacgggcggcagtgccag
 aacggcaccgtgtgcaagcctgggtgggatggacccaagcacggcatcaccaactttgac
 aattttgctttcgccatgttgacggtgttccagtgtatcaccatggagggctggaccgac
 gtgctgtactggatgcaggacgctatgggctatgagctaccctgggtgtattttgtcagt
 ctggtcatctttggatcctttttcgttctaaatctggttctcggtgtgttgagcggagag L V I F F G $\quad \mathrm{S} \quad \mathrm{F} \quad \mathrm{F} \quad \mathrm{V} \quad \mathrm{L} \quad \mathrm{N} \quad \mathrm{L} \quad \mathrm{V} \quad \mathrm{L} \quad \mathrm{G} \quad \mathrm{V} \quad \mathrm{L} \quad \mathrm{S} \quad \mathrm{G} \quad \mathrm{E}$ ttttccaaagagagggagaaggccaaagctcggggagatttccagaagttgcgggagaag
 cagcagctggaagaggacctcaaaggctacctggactggatcactcaggcagaagacatc
 gaccetgagaatgaggatgaaggcatggatgaggagaaaccccgaaacatgagcatgccc
 acaagtgagaccgaatctgtcaacactgaaaacgtggctggaggtgacatcgaaggagaa
$\begin{array}{lllllllllllllllllllll}T & S & E & T & E & S & V & N & T & E & N & V & A & G & G & D & I & E & G & E\end{array}$ aactgcggggccaggctggcccaccggatctccaagtcgaaattcagccgctactggcgc
$\begin{array}{llllllllllllllllllll}\mathrm{N} & \mathrm{C} & \mathrm{G} & \mathrm{A} & \mathrm{R} & \mathrm{L} & \mathrm{A} & \mathrm{H} & \mathrm{R} & \mathrm{I} & \mathrm{S} & \mathrm{K} & \mathrm{S} & \mathrm{K} & \mathrm{F} & \mathrm{S} & \mathrm{R} & \mathrm{Y} & \mathrm{W} & \mathrm{R}\end{array}$ cggtggaataggttctgcaggagaaagtgccgcgcagcggtcaagtcgaacgtcttctac

methionin, Start codon

```
tggctggtgatcttcctggtcttcctgaacacgctcaccattgcctctgagcactacaac
    W
cagccccactggctcacggaggtccaagacacggccaataaggctctactggccctgttc
    Q P
actgccgagatgctgctgaagatgtacagcctgggcctgcaggcctatttcgtgtccctc
```



```
ttcaaccgcttcgactgcttcattgtgtgcgggggcatcctggagaccatcctggtggag
    F
accaaggtcatgtcccccctgggcatctctgtgctgagatgcgtgcggctcctgagaata
    T
ttcaaaattacaaggtactggaactccttgagcaacctggtggcctccctgctgaactcg
    F
gtgcgctccatcgcctccctgctcctgctcctcttcctcttcatcatcatcttctccctg
    V R R S I I A S L L L L L L L L F F L
ctggggatgcagctgtttggaggcaagttcaacttcgatgagatgcagacccggaggagc
```



```
acgttcgacaatttcccgcagtccctgctcaccgtgtttcagatcctgaccggggaggac
    T F D N F F Q S L L T V F F Q I L L T G E D
tggaattcggtgatgtatgatgggatcatggcttatggcggcccctcttttccagggatg
    W N S S V M M D D G I M M A Y G G G P S S F P
ttagtctgtatttacttcatcatcctcttcatctgtggaaattatatcctactgaatgtg
    L V C I Y F I I I L F I C C G N I Y In L I N N V
ttcttggccattgctgtggacaacctggctgatgctgagagccttacttctgcccaaaag
    F
gaagaggaagaagagaaggagagaaagaagctggccaggactgccagcccggagaagaaa
```



```
caagaggtggtagggaagccggccctggaggaggccaaggaggagaaaattgagctgaaa
```



```
tccattacagctgatggagagtccccgcctaccaccaagatcaacatggatgacctccag
```



```
cccaatgagagtgaggataagagtccctaccccaacccggaaaccacaggagaagaggat
```



```
gaggaggagcctgagatgcctgtcggcccccgccctcggccactctccgagctgcacctt
    E E E P P E M P P V G P P R P P R P
aaggagaaggccgtgcctatgccagaagccagtgcgtttttcatcttcagccccaacaac
    K E K A V P M M P E A A S I A Fllllllllllll
aggttccgcctccagtgtcaccgtatcgtcaacgacacgatcttcaccaacctgatcctc
    R
ttcttcattctgctcagcagcatttccctggctgccgaggaccctgtgcagcacacctcc
    F
ttcaggaatcacattctgttttattttgacattgtttttactaccattttcaccattgaa
    F
attgctctcaagatgactgcgtatggggccttcctgcacaagggctctttctgcaggaac
    I A Lllllllllllllllllllllllllll
tacttcaacatcctggacctgctggtggtcagcgtgtccctcatctccttcggcatccag
    Y
tccagcgcgatcaatgtcgtgaagatcttgcgagtgctgcgagtgctcaggccactgcgg
```



```
gccatcaacagggccaaggggctaaagcacgtggttcagtgtgtgttcgtggccatccgg
    A I N N A A K G L K K H V V V Q Q C V V F V V A I R
accattgggaacatcgtgattgtcaccacgctgctgcagttcatgttcgcctgcatcgga
    T I G N N I V I I V T T T L L L Q F F M M F A A C I I G
gtccagctcttcaaggggaagctgtacacctgttcagacagttccaaacagactgaggct
    V Q L F F K K G K L L Y Y T Clllllllllllllll
gaatgcaagggtaactacatcacctacaaagatggagaggttgaccatcccatcatccag
```



```
ccgcgcagctgggagaacagcaagtttgactttgacaacgtcctggcagccatgatggcc
    P
ctcttcactgtctccaccttcgagggctggccagagctgctgtaccgctccatcgactcc
    L
cacacggaagacaagggccctatctacaactaccgagtggagatctccatcttcttcatc
    H
atctacatcatcatcatcgccttcttcatgatgaacatcttcgtgggtttcgtcattgtc
    I Y I I I I I A F F F M M N N I F F V V G F V I I V
accttccaggagcagggggagcaggagtacaagaactgtgagctggacaagaaccagcgg
```



```
cagtgcgtggaatatgccctcaaggcccggcccctgcggaggtacatccccaagaaccag
    Q C V E Y A L K A R R P I L R R R M Y In P
caccagtacaaagtgtggtacgtggtcaactccacctactttgagtacctgatgttcgtc
    H Q Y K V W Y V V V N N S T T Y F F F E F Y L M M F V
```


Dissertation, Doreen Fetting

ctcatcctgctcaacaccatctgcttggccatgcagcactacggccagagctgcctgttc $\begin{array}{llllllllllllllllllll}\mathrm{L} & \mathrm{I} & \mathrm{L} & \mathrm{L} & \mathrm{N} & \mathrm{T} & \mathrm{I} & \mathrm{C} & \mathrm{L} & \mathrm{A} & \mathrm{M} & \text { Q } & \mathrm{H} & \mathrm{Y} & \mathrm{G} & \text { Q } & \mathrm{S} & \mathrm{C} & \mathrm{L} & \mathrm{F}\end{array}$ aaaatcgccatgaacatcctcaacatgctcttcaccggcctcttcaccgtggaaatgatc
 ctgaagctcattgccttcaaacccaagggttactttagtgatccctggaatgtttttgac
 ttcctcatcgtaattggcagcataattgacgtcattctcagtgagactaatccagctgaa $\mathrm{F} \quad \mathrm{L} \quad \mathrm{I} \quad \mathrm{V} \quad \mathrm{I} \quad \mathrm{G} \quad \mathrm{S} \quad \mathrm{I} \quad \mathrm{I} \quad \mathrm{D}$ V I L catacccaatgctctccctctatgaacgcagaggagaactcccgcatctccatcaccttc
 ttccgcctgttccgggtcatgcgcctggtcaagctgctgagccgcggggagggcatccgg
 acgctgctgtggaccttcatcaagtccttccaggccctgccctatgtggctcttctgatc
T L L W T F I K S I F Q A L gtaatgctgttcttcatctatgctgtgatcgggatgcaggtgtttgggaaaatcgccctg V M L F F I Y A V I G M Q V F G K I A L aacgacaccacggagatcaaccggaacaacaacttccagaccttcccccaagctgtgctg
 ctcctcttcaggtgtgccacgggggaggcttggcaggatatcatgctggcctgcatgcca
 ggcaagaagtgtgccccagagtctgagccccacaacagcacagaaggggagaccccctgc
 ggcagcagcttcgccgtcttctacttcatcagcttctacatgctttgtgccttcctgatc
 atcaatctctttgtagctgtcatcatggacaactttgactacctgacaagggactggtca $\begin{array}{lllllllllllllllllllll}I & N & L & F & V & A & V & I & M & D & N & F & D & Y & L & T & R & D & W & S\end{array}$ atccttggtccccaccatctggatgaatttaaaagaatctgggcagagtatgaccctgaa $\begin{array}{lllllllllllllllllllll}I & L & G & P & H & H & L & D & E & F & K & R & I & W & A & E & Y & D & P & E\end{array}$ gccaagggtcgtatcaaacacctggatgtggtgaccctcctccggcggattcagccccca
 ctgggttttgggaagctgtgccctcaccgtgtggcttgcaaacgcctggtctccatgaac
 Atgcctctgaacagtgacgggacggtcatgttcaacgccaccctgtttgccctggtcagg
 acagctctgaggatcaaaacagaaggaaacctggaacaagccaatgaggagctgcgggcc T A L R I K T E G N L E Q A N E E L R A atcatcaagaagatctggaagcggaccagcatgaagctgctggaccaagtggtgcccect $\begin{array}{llllllllllllllllllll}\text { I } & I & K & K & \mathrm{I} & \mathrm{W} & \mathrm{K} & \mathrm{R} & \mathrm{T} & \mathrm{S} & \mathrm{M} & \mathrm{K} & \mathrm{L} & \mathrm{L} & \mathrm{D} & \mathrm{Q} & \mathrm{V} & \mathrm{V} & \mathrm{P} & \mathrm{P}\end{array}$ gcaggcgatgatgaggtcacagtcggcaagttctacgctaccttcctgatccaagagtac
 ttccggaaattcaagaagcgcaaagagcaagggcttgtgggcaagccctcccagaggaat $\begin{array}{lllllllllllllllllllll}\mathrm{F} & \mathrm{R} & \mathrm{K} & \mathrm{F} & \mathrm{K} & \mathrm{K} & \mathrm{R} & \mathrm{K} & \mathrm{E} & \mathrm{Q} & \mathrm{G} & \mathrm{L} & \mathrm{V} & \mathrm{G} & \mathrm{K} & \mathrm{P} & \mathrm{S} & \mathrm{Q} & \mathrm{R} & \mathrm{N}\end{array}$ gccetttccctgcaggctggcctgcgcactctgcacgacatcgggcctgagatccgacgg
 gccatctccggagacctgacagctgaggaagagctggacaaggccatgaaggaggctgtg A I S G D L T A E E E L D K A M K E A V tctgctgcctctgaagatgacatcttcaggagggccggtggcctgtttggcaaccatgtc
 agctactaccaaagtgacagccggagcgccttcccccagaccttcactacgcagcgccca S Y Y Q S D S R S A F P Q T F T T Q R P ctgcacatcagcaaggctggcaacaaccaaggcgacaccgagtcaccctcccacgagaag L H I S K A G N N Q G D T ctggtggactccactttcacccccagcagctactcgtccaccggctccaacgccaacatc
 aacaatgccaacaacactgccctgggccgcctcccccgccccgccggctaccccagcaca
$\begin{array}{lllllllllllllllllllll}\mathrm{N} & \mathrm{N} & \mathrm{A} & \mathrm{N} & \mathrm{N} & \mathrm{T} & \mathrm{A} & \mathrm{L} & \mathrm{G} & \mathrm{R} & \mathrm{L} & \mathrm{P} & \mathrm{R} & \mathrm{P} & \mathrm{A} & \mathrm{G} & \mathrm{Y} & \mathrm{P} & \mathrm{S} & \mathrm{T}\end{array}$ gtcagcactgtggagggccacgggtcccccttgtctcctgccgtccgggcacaggaggca
 gcatggaagctcagctccaagagatgccactcccaggagagccagatagccatggcgtgt
 caggagggcgcatcccaggacgacaactacgacgtgaggatcggtgaagatgcagagtgc
 tgcagtgagcccagcctgctctccacagagatgctctcctaccaggatgacgaaaaccga
 caactggcgcccccggaggaggagaagcgggacatcaggctgtctccaaagaagggtttc
 ctgcgctccgcatcactgggtcgaagggcttccttccacctggagtgtctgaagcggcag $\begin{array}{lllllllllllllllllllll}\mathrm{L} & \mathrm{R} & \mathrm{S} & \mathrm{A} & \mathrm{S} & \mathrm{L} & \mathrm{G} & \mathrm{R} & \mathrm{R} & \mathrm{A} & \mathrm{S} & \mathrm{F} & \mathrm{H} & \mathrm{L} & \mathrm{E} & \mathrm{C} & \mathrm{L} & \mathrm{K} & \mathrm{R} & \mathrm{Q}\end{array}$ aagaatcaagggggagacatctctcagaagacagtcctgcccctgcatctggtccaccac $\begin{array}{lllllllllllllllllll}K & N & \text { Q } & G & D & I & S & \text { Q } & K & T & V & L & P & L & H & L & V & H & H\end{array}$

Q-Motiv
C-terminal cytoplasmic tail

```
caggcattggcagtggcgggcctgagtcccctcctgcagagaagccattcccccacctcg
```

Stop codon
pGEX-6P2 + Cytoplasmic C-Terminus of CACNA 1C (EcoRI/Xhol)
pGEX-6P-2 (4985 bp)

ACGTTATCGACTGCACGGTGCACCAATGCTTCTGGCGTCAGGCAGCCATCGGAAGCTGTGGTATGGCTGTGCAGG TCGTAAATCACTGCATAATTCGTGTCGCTCAAGGCGCACTCCCGTTCTGGATAATGTTTTTTGCGCCGACATCAT AACGGTTCTGGCAAATATTCTGAAATGAGCTGTTGACAATTAATCATCGGCTCGTATAATGTGTGGAATTGTGAG CGGATAACAATTTCACACAGGAAACAGTATTCATGTCCCCTATACTAGGTTATTGGAAAATTAAGGGCCTTGTGC AACCCACTCGACTTCTTTTGGAATATCTTGAAGAAAAATATGAAGAGCATTTGTATGAGCGCGATGAAGGTGATA AATGGCGAAACAAAAAGTTTGAATTGGGTTTGGAGTTTCCCAATCTTCCTTATTATATTGATGGTGATGTTAAAT TAACACAGTCTATGGCCATCATACGTTATATAGCTGACAAGCACAACATGTTGGGTGGTTGTCCAAAAGAGCGTG CAGAGATTTCAATGCTTGAAGGAGCGGTTTTGGATATTAGATACGGTGTTTCGAGAATTGCATATAGTAAAGACT TTGAAACTCTCAAAGTTGATTTTCTTAGCAAGCTACCTGAAATGCTGAAAATGTTCGAAGATCGTTTATGTCATA AAACATATTTAAATGGTGATCATGTAACCCATCCTGACTTCATGTTGTATGACGCTCTTGATGTTGTTTTATACA TGGACCCAATGTGCCTGGATGCGTTCCCAAAATTAGTTTGTTTTAAAAAACGTATTGAAGCTATCCCACAAATTG ATAAGTACTTGAAATCCAGCAAGTATATAGCATGGCCTTTGCAGGGCTGGCAAGCCACGTTTGGTGGTGGCGACC ATCCTCCAAAATCGGATCTGGAAGTTCTGTTCCAGGGGCCCCTGGGATCCCCAGGAATTCCCGGGTCGACTCGAG CGGCCGCATCGTGACTGACTGACGATCTGCCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAG CTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGT GTTGGCGGGTGTCGGGGCGCAGCCATGACCCAGTCACGTAGCGATAGCGGAGTGTATAATTCTTGAAGACGAAAG GGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTT CGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAA TAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATT CCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGAT CAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAA GAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTGTTGACGCCGGGCAA GAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTT ACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTT CTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGAT CGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACA

Dissertation, Doreen Fetting

APPENDIX

ACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCG GATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGT GAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACG ACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGG TAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAG GTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCC GTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCA CCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGA GCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCT ACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGAC TCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAG CGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAG GCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGG TATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGG AGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTC TTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGC CGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCTGATGCGGTATTTTCTCCTTACGCAT CTGTGCGGTATTTCACACCGCATAAATTCCGACACCATCGAATGGTGCAAAACCTTTCGCGGTATGGCATGATAG CGCCCGGAAGAGAGTCAATTCAGGGTGGTGAATGTGAAACCAGTAACGTTATACGATGTCGCAGAGTATGCCGGT GTCTCTTATCAGACCGTTTCCCGCGTGGTGAACCAGGCCAGCCACGTTTCTGCGAAAACGCGGGAAAAAGTGGAA GCGGCGATGGCGGAGCTGAATTACATTCCCAACCGCGTGGCACAACAACTGGCGGGCAAACAGTCGTTGCTGATT GGCGTTGCCACCTCCAGTCTGGCCCTGCACGCGCCGTCGCAAATTGTCGCGGCGATTAAATCTCGCGCCGATCAA CTGGGTGCCAGCGTGGTGGTGTCGATGGTAGAACGAAGCGGCGTCGAAGCCTGTAAAGCGGCGGTGCACAATCTT CTCGCGCAACGCGTCAGTGGGCTGATCATTAACTATCCGCTGGATGACCAGGATGCCATTGCTGTGGAAGCTGCC TGCACTAATGTTCCGGCGTTATTTCTTGATGTCTCTGACCAGACACCCATCAACAGTATTATTTTCTCCCATGAA GACGGTACGCGACTGGGCGTGGAGCATCTGGTCGCATTGGGTCACCAGCAAATCGCGCTGTTAGCGGGCCCATTA AGTTCTGTCTCGGCGCGTCTGCGTCTGGCTGGCTGGCATAAATATCTCACTCGCAATCAAATTCAGCCGATAGCG GAACGGGAAGGCGACTGGAGTGCCATGTCCGGTTTTCAACAAACCATGCAAATGCTGAATGAGGGCATCGTTCCC ACTGCGATGCTGGTTGCCAACGATCAGATGGCGCTGGGCGCAATGCGCGCCATTACCGAGTCCGGGCTGCGCGTT GGTGCGGATATCTCGGTAGTGGGATACGACGATACCGAAGACAGCTCATGTTATATCCCGCCGTCAACCACCATC AAACAGGATTTTCGCCTGCTGGGGCAAACCAGCGTGGACCGCTTGCTGCAACTCTCTCAGGGCCAGGCGGTGAAG GGCAATCAGCTGTTGCCCGTCTCACTGGTGAAAAGAAAAACCACCCTGGCGCCCAATACGCAAACCGCCTCTCCC CGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGC AATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGG AATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGGATTCACTGGCCGTCGTTTTAC AACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGC GTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGCTTTGCCT GGTTTCCGGCACCAGAAGCGGTGCCGGAAAGCTGGCTGGAGTGCGATCTTCCTGAGGCCGATACTGTCGTCGTCC CCTCAAACTGGCAGATGCACGGTTACGATGCGCCCATCTACACCAACGTAACCTATCCCATTACGGTCAATCCGC CGTTTGTTCCCACGGAGAATCCGACGGGTTGTTACTCGCTCACATTTAATGTTGATGAAAGCTGGCTACAGGAAG GCCAGACGCGAATTATTTTTGATGGCGTTGGAATT

pGEX-6P2 + Cytoplasmic C-Terminus of CACNA 1C

ACGTTATCGACTGCACGGTGCACCAATGCTTCTGGCGTCAGGCAGCCATCGGAAGCTGTGGTATGGCTGTGCAGG TCGTAAATCACTGCATAATTCGTGTCGCTCAAGGCGCACTCCCGTTCTGGATAATGTTTTTTGCGCCGACATCAT AACGGTTCTGGCAAATATTCTGAAATGAGCTGTTGACAATTAATCATCGGCTCGTATAATGTGTGGAATTGTGAG CGGATAACAATTTCACACAGGAAACAGTATTCATGTCCCCTATACTAGGTTATTGGAAAATTAAGGGCCTTGTGC AACCCACTCGACTTCTTTTGGAATATCTTGAAGAAAAATATGAAGAGCATTTGTATGAGCGCGATGAAGGTGATA AATGGCGAAACAAAAAGTTTGAATTGGGTTTGGAGTTTCCCAATCTTCCTTATTATATTGATGGTGATGTTAAAT TAACACAGTCTATGGCCATCATACGTTATATAGCTGACAAGCACAACATGTTGGGTGGTTGTCCAAAAGAGCGTG CAGAGATTTCAATGCTTGAAGGAGCGGTTTTGGATATTAGATACGGTGTTTCGAGAATTGCATATAGTAAAGACT TTGAAACTCTCAAAGTTGATTTTCTTAGCAAGCTACCTGAAATGCTGAAAATGTTCGAAGATCGTTTATGTCATA AAACATATTTAAATGGTGATCATGTAACCCATCCTGACTTCATGTTGTATGACGCTCTTGATGTTGTTTTATACA TGGACCCAATGTGCCTGGATGCGTTCCCAAAATTAGTTTGTTTTAAAAAACGTATTGAAGCTATCCCACAAATTG ATAAGTACTTGAAATCCAGCAAGTATATAGCATGGCCTTTGCAGGGCTGGCAAGCCACGTTTGGTGGTGGCGACC ATCCTCCAAAATCGGATCTGGAAGTTCTGTTCCAGGGGCCCCTGGGATCCCCAGGAATTCcCGACAACTTTGACT ACCTGACAAGGGACTGGTCAATCCTTGGTCCCCACCATCTGGATGAATTTAAAAGAATCTGGGCAGAGTATGACC CTGAAGCCAAGGGTCGTATCAAACACCTGGATGTGGTGACCCTCCTCCGGCGGATTCAGCCCCCACTGGGTTTTG GGAAGCTGTGCCCTCACCGTGTGGCTTGCAAACGCCTGGTCTCCATGAACATGCCTCTGAAC TCATGTTCAACGCCACCCTGTTTGCCCTGGTCAGGACAGCTCTGAGGATCAAAACAGAAGGAAACCTGGAACAAG

C-terminal cytoplasmic tail Q-Motiv

Dissertation, Doreen Fetting

APPENDIX

CCCCTGCAGGCGATGATGAGGTCACAGTCGGCAAGTTCTACGCTACCTTCCTGATCCAAGAGTACTTCCGGAAAT TCAAGAAGCGCAAAGAGCAAGGGCTTGTGGGCAAGCCCTCCCAGAGGAATGCCCTTTCCCTGCAGGCTGGCCTGC GCACTCTGCACGACATCGGGCCTGAGATCCGACGGGCCATCTCCGGAGACCTGACAGCTGAGGAAGAGCTGGACA AGGCCATGAAGGAGGCTGTGTCTGCTGCCTCTGAAGATGACATCTTCAGGAGGGCCGGTGGCCTGTTTGGCAACC ATGTCAGCTACTACCAAAGTGACAGCCGGAGCGCCTTCCCCCAGACCTTCACTACGCAGCGCCCACTGCACATCA GCAAGGCTGGCAACAACCAAGGCGACACCGAGTCACCCTCCCACGAGAAGCTGGTGGACTCCACTTTCACCCCCA GCAGCTACTCGTCCACCGGCTCCAACGCCAACATCAACAATGCCAACAACACTGCCCTGGGCCGCCTCCCCCGCC CCGCCGGCTACCCCAGCACAGTCAGCACTGTGGAGGGCCACGGGTCCCCCTTGTCTCCTGCCGTCCGGGCACAGG AGGCAGCATGGAAGCTCAGCTCCAAGAGATGCCACTCCCAGGAGAGCCAGATAGCCATGGCGTGTCAGGAGGGCG CATCCCAGGACGACAACTACGACGTGAGGATCGGTGAAGATGCAGAGTGCTGCAGTGAGCCCAGCCTGCTCTCCA CAGAGATGCTCTCCTACCAGGATGACGAAAACCGACAACTGGCGCCCCCGGAGGAGGAGAAGCGGGACATCAGGC TGTCTCCAAAGAAGGGTTTCCTGCGCTCCGCATCACTGGGTCGAAGGGCTTCCTTCCACCTGGAGTGTCTGAAGC GGCAGAAGAATCAAGGGGGAGACATCTCTCAGAAGACAGTCCTGCCCCTGCATCTGGTCCACCACCAGGCATTGG CAGTGGCGGGCCTGAGTCCCCTCCTGCAGAGAAGCCATTCCCCCACCTCGCTCCCTAGGCCCTGTGCCACGCCCC CTGCCACACCGGGCAGCCGAGGCTGGCCCCCACAGCCCATCCCCACCCTGCGGCTGGAGGGGGCCGACTCCAGTG AGAAACTCAACAGCAGCTTCCCGTCCATCCACTGCGGCTCATGGTCTGGGGAGAACAGCCCCTGCAGAGGGGACA GCAGCGCCGCCCGGAGAGCCCGGCCCGTCTCCCTCACTGTGCCCAGCCAGGCTGGGGCCCAGGGGAGACAGTTCC ATGGCAGCGCCAGCAGCCTGGTGGAAGCGGTCTTGATTTCCGAAGGACTGGGGCAGTTTGCTCAAGATCCCAAGT TCATCGAGGTCACGACCCAGGAGCTGGCTGACGCCTGCGATCTGACCATAGAGGAGATGGAGAACGCGGCCGACG ACATTCTCAGCGGGGGCGCCCGGCAGAGCCCCAATGGCACCCTGTTACCCTTTGTGAACCGCAGGGACCCGGGCC GGGACAGAGCGGGGCAGAACGAGCAGGACGCGAGCGGCGCATGCGCCCCAGGGTGCGGGCAGAGCGAGGAGGCCC TCGCGGACCGCAGGGCCGGCGTCAGCAGCCTGTAGCTCGAGCGGCCGCATCGTGACTGACTGACGATCTGCCTCG CGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGG ATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCGCAGCCATGACCCAGT CACGTAGCGATAGCGGAGTGTATAATTCTTGAAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATG TCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTAT TTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAA GGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTG CTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGG ATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTC TGCTATGTGGCGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGA ATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTG CTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCG CTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAA ACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTA CTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCC TTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGG GGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATA GACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTT AGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAA TCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTT TTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAG AGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGC CGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGG CTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGT CGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGC GTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAA CAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCT GACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTT TACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACC GTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGG AAGCGGAAGAGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATAAATTCCGACA CCATCGAATGGTGCAAAACCTTTCGCGGTATGGCATGATAGCGCCCGGAAGAGAGTCAATTCAGGGTGGTGAATG TGAAACCAGTAACGTTATACGATGTCGCAGAGTATGCCGGTGTCTCTTATCAGACCGTTTCCCGCGTGGTGAACC AGGCCAGCCACGTTTCTGCGAAAACGCGGGAAAAAGTGGAAGCGGCGATGGCGGAGCTGAATTACATTCCCAACC GCGTGGCACAACAACTGGCGGGCAAACAGTCGTTGCTGATTGGCGTTGCCACCTCCAGTCTGGCCCTGCACGCGC CGTCGCAAATTGTCGCGGCGATTAAATCTCGCGCCGATCAACTGGGTGCCAGCGTGGTGGTGTCGATGGTAGAAC GAAGCGGCGTCGAAGCCTGTAAAGCGGCGGTGCACAATCTTCTCGCGCAACGCGTCAGTGGGCTGATCATTAACT ATCCGCTGGATGACCAGGATGCCATTGCTGTGGAAGCTGCCTGCACTAATGTTCCGGCGTTATTTCTTGATGTCT CTGACCAGACACCCATCAACAGTATTATTTTCTCCCATGAAGACGGTACGCGACTGGGCGTGGAGCATCTGGTCG CATTGGGTCACCAGCAAATCGCGCTGTTAGCGGGCCCATTAAGTTCTGTCTCGGCGCGTCTGCGTCTGGCTGGCT GGCATAAATATCTCACTCGCAATCAAATTCAGCCGATAGCGGAACGGGAAGGCGACTGGAGTGCCATGTCCGGTT TTCAACAAACCATGCAAATGCTGAATGAGGGCATCGTTCCCACTGCGATGCTGGTTGCCAACGATCAGATGGCGC

TGGGCGCAATGCGCGCCATTACCGAGTCCGGGCTGCGCGTTGGTGCGGATATCTCGGTAGTGGGATACGACGATA CCGAAGACAGCTCATGTTATATCCCGCCGTCAACCACCATCAAACAGGATTTTCGCCTGCTGGGGCAAACCAGCG TGGACCGCTTGCTGCAACTCTCTCAGGGCCAGGCGGTGAAGGGCAATCAGCTGTTGCCCGTCTCACTGGTGAAAA GAAAAACCACCCTGGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCAC GACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGTTAGCTCACTCATTAGGCACCC CAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCGGATAACAATTTCACACAGGAAAC AGCTATGACCATGATTACGGATTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCA ACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTC CCAACAGTTGCGCAGCCTGAATGGCGAATGGCGCTTTGCCTGGTTTCCGGCACCAGAAGCGGTGCCGGAAAGCTG GCTGGAGTGCGATCTTCCTGAGGCCGATACTGTCGTCGTCCCCTCAAACTGGCAGATGCACGGTTACGATGCGCC CATCTACACCAACGTAACCTATCCCATTACGGTCAATCCGCCGTTTGTTCCCACGGAGAATCCGACGGGTTGTTA CTCGCTCACATTTAATGTTGATGAAAGCTGGCTACAGGAAGGCCAGACGCGAATTATTTTTGATGGCGTTGGAAT T

PCR-Primer for the GST fusion proteins:
GST_C_Cav_F_lang:
atcaatctctttgtagctgtcatcatggacaactttgactacctgacaagggactggtca

GST_C_CAV_F_kurz:
AGGCAGCATGGAAGCTCAGCTCCAAG

5'- c gGA ATT CCC agg cag cat gga agc tca gc

GST_C_CAV_R:
gaggaggccetcgcggaccgcagggccggcgtcagcagcctg-aggcgccagggccgggg

XhoI STOP
5' - ccgCTCGAGCTA CAG GCT GCT GAC GCC GGC - 3'

```
acgttatcgactgcacggtgcaccaatgcttctggcgtcaggcagccatcggaagctgtggt
    V I I D C C T F V H Clllllllllllllllllllllll
atggctgtgcaggtcgtaaatcactgcataattcgtgtcgctcaaggcgcactcccgttc
    M A V Q V V V N N H C I I I N R V A A Q G A L I P
tggataatgttttttgcgccgacatcataacggttctggcaaatattctgaaatgagctg
    W I M F F A P T S - R F F W Q I F F - N N E L
ttgacaattaatcatcggctcgtataatgtgtggaattgtgagcggataacaatttcaca
    L
caggaaacagtattcatgtcccctatactaggttattggaaaattaagggccttgtgcaa
```



```
cccactcgacttcttttggaatatcttgaagaaaaatatgaagagcatttgtatgagcgc
P T R L L L E Y L E E K Y E E H L Y E R
gatgaaggtgataaatggcgaaacaaaaagtttgaattgggtttggagtttcccaatctt
D E G D K W R N K K F E L L G L N E F F P N N N
P Y Y I D G D V K L T Q S M A I I R Y I
gctgacaagcacaacatgttgggtggttgtccaaaagagcgtgcagagatttcaatgctt
A D K H N M L G G C P K E R A A E I I S M L
gaaggagcggttttggatattagatacggtgtttcgagaattgcatatagtaaagacttt
E G A V L D I R Y G V S R I I A A Y S S K D F
gaaactctcaaagttgattttcttagcaagctacctgaaatgctgaaaatgttcgaagat
E T L K V D F L S K L P E M M L K M M F E N D 
```



```
tatgacgctcttgatgttgttttatacatggacccaatgtgcctggatgcgttcccaaaa
Y D A L D V V L Y M D P P M C L L D D A F P K
ttagtttgttttaaaaaacgtattgaagctatcccacaaattgataagtacttgaaatcc
agcaagtatatagcatggcctttgcagggctggcaagccacgtttggtggtggcgaccat
S K Y I A W P L O G W O A T F G G G D H
cctccaaaatcggatctggaagttctgttccaggggcccctgggatccccaggaattccc
P P K S D L E V L F O G P L G S P G I P
gacaactttgactacctgacaagggactggtcaatccttggtccccaccatctggatgaa
    D N F D I Y L T R D W W S I L L G P P
tttaaaagaatctgggcagagtatgaccctgaagccaagggtcgtatcaaacacctggat
    F
gtggtgaccctcctccggcggattcagcccccactgggttttgggaagctgtgccctcac
V V T L L R R I I Q P P P L L G F F G
cgtgtggcttgcaaacgcctggtctccatgaacatgcctctgaacagtgacgggacggtc
R V V A Clllllllllllllllllllllll
atgttcaacgccaccctgtttgccctggtcaggacagctctgaggatcaaaacagaagga
```



```
aacctggaacaagccaatgaggagctgcgggccatcatcaagaagatctggaagcggacc
N L E Q A N E E L L R A I I I I K K K In W K K R I
agcatgaagctgctggaccaagtggtgccccctgcaggcgatgatgaggtcacagtcggc
S M K L L L D Q V V V P
aagttctacgctaccttcctgatccaagagtacttccggaaattcaagaagcgcaaagag
```



```
caagggcttgtgggcaagccctcccagaggaatgccctttccctgcaggctggcctgcgc
Q G L V G K P S S Q R N N A L L S L L Q A A G L R
actctgcacgacatcgggcctgagatccgacgggccatctccggagacctgacagctgag
T L H H D I G P E I R R R A I I S G D D L I A A E
gaagagctggacaaggccatgaaggaggctgtgtctgctgcctctgaagatgacatcttc
E E L D K A M K E A V S A A S E D D D I I F
aggagggccggtggcctgtttggcaaccatgtcagctactaccaaagtgacagccggagc
R R A G G L F G N H V V S Y Y Y Q S S D S N N
gccttcccccagaccttcactacgcagcgcccactgcacatcagcaaggctggcaacaac
A F P Q T F T T Q R P L L H I N S K A G N N
caaggcgacaccgagtcaccctcccacgagaagctggtggactccactttcacccccagc
Q G D T E S P P S H E K K L V V D D S N
agctactcgtccaccggctccaacgccaacatcaacaatgccaacaacactgccctgggc
S Y S S S T G S N N A N N I I N N
cgcctcccccgccccgccggctaccccagcacagtcagcactgtggagggccacgggtcc
```



```
cccttgtctcctgccgtccgggcacaggaggcagcatggaagctcagctccaagagatgc
P L S P A V R A Q E A A A W K K L S S S K R C
cactcccaggagagccagatagccatggcgtgtcaggagggcgcatcccaggacgacaac
H S Q E S Q I A M A C Q E G A S Q D D N
tacgacgtgaggatcggtgaagatgcagagtgctgcagtgagcccagcctgctctccaca
Y D V V R I I G E E D A F E Clllllllllllllll
```

M = methionin
Start codon


```
aaaaccaccctggcgcccaatacgcaaaccgcctctccccgcgcgttggccgattcatta
    K T T T L A P P N T L Q T T A N
atgcagctggcacgacaggtttcccgactggaaagcgggcagtgagcgcaacgcaattaa
    M Q L A R Q V S R L E E S G Q - A N Q R N -
tgtgagttagctcactcattaggcaccccaggctttacactttatgcttccggctcgtat
    C E L L A H S L L G T P P G G F F
gttgtgtggaattgtgagcggataacaatttcacacaggaaacagctatgaccatgatta
```



```
cggattcactggccgtcgttttacaacgtcgtgactgggaaaaccctggcgttacccaac
```



```
ttaatcgccttgcagcacatccccctttcgccagctggcgtaatagcgaagaggcccgca
    L I A L Q H I P P L S P P A G V I I A A K R P A
ccgatcgcccttcccaacagttgcgcagcctgaatggcgaatggcgctttgcctggtttc
    P
cggcaccagaagcggtgccggaaagctggctggagtgcgatcttcctgaggccgatactg
    R Fllllllllllllllllllllllllll
tcgtcgtcccctcaaactggcagatgcacggttacgatgcgcccatctacaccaacgtaa
    S
cctatcccattacggtcaatccgccgtttgttcccacggagaatccgacgggttgttact
    P
cgctcacatttaatgttgatgaaagctggctacaggaaggccagacgcgaattatttttg
    R
atggcgttggaatt
    M A L E
```

MSPILGYWKIKGLVQPTRLLLEYLEEKYEEHLYERDEGDKWRNKKFELGLEFPNLPYYIDGDVKLTQSMAIIRYI ADKHNMLGGCPKERAEISMLEGAVLDIRYGVSRIAYSKDFETLKVDFLSKLPEMLKMFEDRLCHKTYLNGDHVTH PDFMLYDALDVVLYMDPMCLDAFPKLVCFKKRIEAIPQIDKYLKSSKYIAWPLQGWQATFGGGDHPPKSDLEVLF QGPLGSPGIPDNFDYLTRDWSILGPHHLDEFKRIWAEYDPEAKGRIKHLDVVTLLRRIQPPLGFGKLCPHRVACK RLVSMNMPLNSDGTVMFNATLFALVRTALRIKTEGNLEQANEELRAIIKKIWKRTSMKLLDQVVPPAGDDEVTVG KFYATFLIQEYFRKFKKRKEQGLVGKPSQRNALSLQAGLRTLHDIGPEIRRAISGDLTAEEELDKAMKEAVSAAS EDDIFRRAGGLFGNHVSYYQSDSRSAFPQTFTTQRPLHISKAGNNQGDTESPSHEKLVDSTFTPSSYSSTGSNAN INNANNTALGRLPRPAGYPSTVSTVEGHGSPLSPAVRAQEAAWKLSSKRCHSQESQIAMACQEGASQDDNYDVRI GEDAECCSEPSLLSTEMLSYQDDENRQLAPPEEEKRDIRLSPKKGFLRSASLGRRASFHLECLKRQKNQGGDISQ KTVLPLHLVHHQALAVAGLSPLLQRSHSPTSLPRPCATPPATPGSRGWPPQPIPTLRLEGADSSEKLNSSFPSIH CGSWSGENSPCRGDSSAARRARPVSLTVPSQAGAQGRQFHGSASSLVEAVLISEGLGQFAQDPKFIEVTTQELAD ACDLTIEEMENAADDILSGGARQSPNGTLLPFVNRRDPGRDRAGQNEQDASGACAPGCGQSEEALADRRAGVSSL

Stop

Expasy/ProtParam (allows computation of physical and chemical parameters for a given protein sequence)

User-provided sequence:
 MSPILGYWKI KGLVQPTRLE LEYLEEKYEE HLYERDEGDK WRNKKFELG \bar{L} EFPNLPYYI \bar{D}

70	80	90	100	110	120
GDVKLTQSMA	IIRYIADKHN	MLGGCPKERA	EISMLEGAVL	DIRYGVSRIA	YSKDFETLKV
130	140	150	160	$17 \underline{0}$	180
DFLSKLPEML	KMFEDRLCHK	TYLNGDHVTH	PDFMLYDALD	VVLYMDPMCL	DAFPKLVCFK
190	200	210	220	230	240
KRIEAIPQID	KYLKSSKYIA	WPLQGWQATF	GGGDHPPKSD	LEVLFQGPLG	SPGIPDNFDY
250	260	270	280	290	300
LTRDWSILGP	HHLDEFKRIW	AEYDPEAKGR	IKHLDVVTLL	RRIQPPLGFG	KLCPHRVACK
310	320	330	340	350	360
RLVSMNMPLN	SDGTVMFNAT	LFALVRTALR	IKTEGNLEQA	NEELRAIIKK	IWKRTSMKLL
370	380	390	400	410	420
DQVVPPAGDD	EVTVGKFYAT	FLIQEYFRKF	KKRKEQGLVG	KPSQRNALSL	QAGLRTLHDI

430	440	450	460	470	480
GPEIRRAISG	DLTAEEELDK	AMKEAVSAAS	EDDIFRRAGG	LFGNHVSYYQ	SDSRSAFPQT
490	500	510	520	530	540
FTTQRPLHIS	KAGNNQGDTE	SPSHEKLVDS	TFTPSSYSST	GSNANINNAN	NTALGRLPRP
550	560	570	580	590	600
AGYPSTVSTV	EGHGSPLSPA	VRAQEAAWKL	SSKRCHSQES	QIAMACQEGA	SQDDNYDVRI
610	620	630	640	650	660
GEDAECCSEP	SLLSTEMLSY	QDDENRQLAP	PEEEKRDIRL	SPKKGFLRSA	SLGRRASFHL
670	680	690	700	710	720
ECLKRQKNQG	GDISQKTVLP	LHLVHHQALA	VAGLSPLLQR	SHSPTSLPRP	CATPPATPGS
730	740	750	760	$77 \underline{0}$	780
RGWPPQPIPT	LRLEGADSSE	KLNSSFPSIH	CGSWSGENSP	CRGDSSAARR	ARPVSLTVPS
790	800	810	820	830	840
QAGAQGRQFH	GSASSLVEAV	LISEGLGQFA	QDPKFIEVTT	QELADACDLT	IEEMENAADD
850	860	870	880	890	900
ILSGGARQSP	NGTLLPFVNR	RDPGRDRAGQ	DASGACA	GQSEEAL	DRRAGVSS

Number of amino acids: 900
Molecular weight: 99750.8
Theoretical pI: 6.40
ACGTTATCGACTGCACGGTGCACCAATGCTTCTGGCGTCAGGCAGCCATCGGAAGCTGTGGTATGGCTGTGCAGG TCGTAAATCACTGCATAATTCGTGTCGCTCAAGGCGCACTCCCGTTCTGGATAATGTTTTTTGCGCCGACATCAT AACGGTTCTGGCAAATATTCTGAAATGAGCTGTTGACAATTAATCATCGGCTCGTATAATGTGTGGAATTGTGAG CGGATAACAATTTCACACAGGAAACAGTATTCATGTCCCCTATACTAGGTTATTGGAAAATTAAGGGCCTTGTGC AACCCACTCGACTTCTTTTGGAATATCTTGAAGAAAAATATGAAGAGCATTTGTATGAGCGCGATGAAGGTGATA AATGGCGAAACAAAAAGTTTGAATTGGGTTTGGAGTTTCCCAATCTTCCTTATTATATTGATGGTGATGTTAAAT TAACACAGTCTATGGCCATCATACGTTATATAGCTGACAAGCACAACATGTTGGGTGGTTGTCCAAAAGAGCGTG CAGAGATTTCAATGCTTGAAGGAGCGGTTTTGGATATTAGATACGGTGTTTCGAGAATTGCATATAGTAAAGACT TTGAAACTCTCAAAGTTGATTTTCTTAGCAAGCTACCTGAAATGCTGAAAATGTTCGAAGATCGTTTATGTCATA AAACATATTTAAATGGTGATCATGTAACCCATCCTGACTTCATGTTGTATGACGCTCTTGATGTTGTTTTATACA TGGACCCAATGTGCCTGGATGCGTTCCCAAAATTAGTTTGTTTTAAAAAACGTATTGAAGCTATCCCACAAATTG ATAAGTACTTGAAATCCAGCAAGTATATAGCATGGCCTTTGCAGGGCTGGCAAGCCACGTTTGGTGGTGGCGACC ATCCTCCAAAATCGGATCTGGAAGTTCTGTTCCAGGGGCCCCTGGGATCCCCAGGAATTCCCAGGCAGCATGGAA GCTCAGCTCCAAGAGATGCCACTCCCAGGAGAGCCAGATAGCCATGGCGTGTCAGGAGGGCGCATCCCAGGACGA CAACTACGACGTGAGGATCGGTGAAGATGCAGAGTGCTGCAGTGAGCCCAGCCTGCTCTCCACAGAGATGCTCTC CTACCAGGATGACGAAAACCGACAACTGGCGCCCCCGGAGGAGGAGAAGCGGGACATCAGGCTGTCTCCAAAGAA GGGTTTCCTGCGCTCCGCATCACTGGGTCGAAGGGCTTCCTTCCACCTGGAGTGTCTGAAGCGGCAGAAGAATCA AGGGGGAGACATCTCTCAGAAGACAGTCCTGCCCCTGCATCTGGTCCACCACCAGGCATTGGCAGTGGCGGGCCT GAGTCCCCTCCTGCAGAGAAGCCATTCCCCCACCTCGCTCCCTAGGCCCTGTGCCACGCCCCCTGCCACACCGGG CAGCCGAGGCTGGCCCCCACAGCCCATCCCCACCCTGCGGCTGGAGGGGGCCGACTCCAGTGAGAAACTCAACAG CAGCTTCCCGTCCATCCACTGCGGCTCATGGTCTGGGGAGAACAGCCCCTGCAGAGGGGACAGCAGCGCCGCCCG GAGAGCCCGGCCCGTCTCCCTCACTGTGCCCAGCCAGGCTGGGGCCCAGGGGAGACAGTTCCATGGCAGCGCCAG CAGCCTGGTGGAAGCGGTCTTGATTTCCGAAGGACTGGGGCAGTTTGCTCAAGATCCCAAGTTCATCGAGGTCAC GACCCAGGAGCTGGCTGACGCCTGCGATCTGACCATAGAGGAGATGGAGAACGCGGCCGACGACATTCTCAGCGG GGGCGCCCGGCAGAGCCCCAATGGCACCCTGTTACCCTTTGTGAACCGCAGGGACCCGGGCCGGGACAGAGCGGG GCAGAACGAGCAGGACGCGAGCGGCGCATGCGCCCCAGGGTGCGGGCAGAGCGAGGAGGCCCTCGCGGACCGCAG GGCCGGCGTCAGCAGCCTGTAGCTCGAGCGGCCGCATCGTGACTGACTGACGATCTGCCTCGCGCGTTTCGGTGA TGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAG ACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCGCAGCCATGACCCAGTCACGTAGCGATAG

half of C-terminal cytoplasmic tail IQ-Motiv lack

Dissertation, Doreen Fetting

APPENDIX

CGGAGTGTATAATTCTTGAAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAAT GGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACA TTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAG TATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAAC GCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGG TAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGC GGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGA GTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCAT GAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAA CATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGA CACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCG GCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTG GTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAA GCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGA GATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAA ACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGA GTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGT AATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCT TTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCA CCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGG CGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGG GGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGA AAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCAC GAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCG ATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGC CTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTT TGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCG CCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATAAATTCCGACACCATCGAATGGTG CAAAACCTTTCGCGGTATGGCATGATAGCGCCCGGAAGAGAGTCAATTCAGGGTGGTGAATGTGAAACCAGTAAC GTTATACGATGTCGCAGAGTATGCCGGTGTCTCTTATCAGACCGTTTCCCGCGTGGTGAACCAGGCCAGCCACGT TTCTGCGAAAACGCGGGAAAAAGTGGAAGCGGCGATGGCGGAGCTGAATTACATTCCCAACCGCGTGGCACAACA ACTGGCGGGCAAACAGTCGTTGCTGATTGGCGTTGCCACCTCCAGTCTGGCCCTGCACGCGCCGTCGCAAATTGT CGCGGCGATTAAATCTCGCGCCGATCAACTGGGTGCCAGCGTGGTGGTGTCGATGGTAGAACGAAGCGGCGTCGA AGCCTGTAAAGCGGCGGTGCACAATCTTCTCGCGCAACGCGTCAGTGGGCTGATCATTAACTATCCGCTGGATGA CCAGGATGCCATTGCTGTGGAAGCTGCCTGCACTAATGTTCCGGCGTTATTTCTTGATGTCTCTGACCAGACACC САTCAACAGTATTATTTTCTCCCATGAAGACGGTACGCGACTGGGCGTGGAGCATCTGGTCGCATTGGGTCACCA GCAAATCGCGCTGTTAGCGGGCCCATTAAGTTCTGTCTCGGCGCGTCTGCGTCTGGCTGGCTGGCATAAATATCT CACTCGCAATCAAATTCAGCCGATAGCGGAACGGGAAGGCGACTGGAGTGCCATGTCCGGTTTTCAACAAACCAT GCAAATGCTGAATGAGGGCATCGTTCCCACTGCGATGCTGGTTGCCAACGATCAGATGGCGCTGGGCGCAATGCG CGCCATTACCGAGTCCGGGCTGCGCGTTGGTGCGGATATCTCGGTAGTGGGATACGACGATACCGAAGACAGCTC ATGTTATATCCCGCCGTCAACCACCATCAAACAGGATTTTCGCCTGCTGGGGCAAACCAGCGTGGACCGCTTGCT GCAACTCTCTCAGGGCCAGGCGGTGAAGGGCAATCAGCTGTTGCCCGTCTCACTGGTGAAAAGAAAAACCACCCT GGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCG ACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACT TTATGCTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATG ATTACGGATTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTT GCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGC AGCCTGAATGGCGAATGGCGCTTTGCCTGGTTTCCGGCACCAGAAGCGGTGCCGGAAAGCTGGCTGGAGTGCGAT CTTCCTGAGGCCGATACTGTCGTCGTCCCCTCAAACTGGCAGATGCACGGTTACGATGCGCCCATCTACACCAAC GTAACCTATCCCATTACGGTCAATCCGCCGTTTGTTCCCACGGAGAATCCGACGGGTTGTTACTCGCTCACATTT AATGTTGATGAAAGCTGGCTACAGGAAGGCCAGACGCGAATTATTTTTGATGGCGTTGGAATT
acgttatcgactgcacggtgcaccaatgcttctggcgtcaggcagccatcggaagctgtgg
 tatggctgtgcaggtcgtaaatcactgcataattcgtgtcgctcaaggcgcactcccgtt
 ctggataatgttttttgcgccgacatcataacggttctggcaaatattctgaaatgagct
 gttgacaattaatcatcggctcgtataatgtgtggaattgtgagcggataacaatttcac
V D N - S S A R I M C G I V S G - Q F H acaggaaacagtattcatgtcccctatactaggttattggaaaattaagggccttgtgca
 acccactcgacttcttttggaatatcttgaagaaaaatatgaagagcatttgtatgagcg

Dissertation, Doreen Fetting

T H S T S F G I S - R K I - R A F V - A cgatgaaggtgataaatggcgaaacaaaaagtttgaattgggtttggagtttcccaatct R - R - \quad M A K Q K V - I G F G V S Q S tccttattatattgatggtgatgttaaattaacacagtctatggccatcatacgttatat
S L L Y - W - C - I N T V Y G H H T L Y agctgacaagcacaacatgttgggtggttgtccaaaagagcgtgcagagatttcaatgct
S - Q A Q H V G W L tgaaggagcggttttggatattagatacggtgtttcgagaattgcatatagtaaagactt

- R S G F G Y - I R C F E N C I - - R L
tgaaactctcaaagttgattttcttagcaagctacctgaaatgctgaaaatgttcgaaga - N S Q S - F S - Q A T - N A E N V R R tcgtttatgtcataaaacatatttaaatggtgatcatgtaacccatcctgacttcatgtt
 gtatgacgctcttgatgttgttttatacatggacccaatgtgcctggatgcgttcccaaa
V - R S - C C F I H G P N V P G C V P K attagtttgttttaaaaaacgtattgaagctatcccacaaattgataagtacttgaaatc I S L F - K T Y - S Y P T N - - V L E I cagcaagtatatagcatggcctttgcagggctggcaagccacgtttggtggtggcgacca
 tcctccaaaatcggatctggaagttctgttccaggggcccctgggatccccaggaattcc $\begin{array}{llllllllllllllllllll}S & S & K & I & G & S & G & S & S & V & P & G & A & P & G & I & P & R & N & S\end{array}$ daggcagcatggaagctcagctccaagagatgccactcccaggagagccagatagccatg
 gcgtgtcaggagggcgcatcccaggacgacaactacgacgtgaggatcggtgaagatgca
 gagtgctgcagtgagcccagcctgctctccacagagatgctctcctaccaggatgacgaa $\begin{array}{lllllllllllllllllllll}\text { E } & C & C & S & E & P & S & L & L & S & T & E & M & L & S & Y & \text { Q } & D & D & E\end{array}$ aaccgacaactggcgcccccggaggaggagaagcgggacatcaggctgtctccaaagaag
$\begin{array}{llllllllllllllllllll}N & R & Q & L & A & P & P & E & E & E & K & R & D & I & R & L & S & P & K & K\end{array}$ ggtttcctgcgctccgcatcactgggtcgaagggcttccttccacctggagtgtctgaag
 cggcagaagaatcaagggggagacatctctcagaagacagtcctgcccctgcatctggtc $\begin{array}{llllllllllllllllll}R & \text { Q } & \mathrm{N} & \text { Q } & \mathrm{G} & \mathrm{G} & \mathrm{D} & \mathrm{I} & \mathrm{S} & \text { Q } & \mathrm{K} & \mathrm{T} & \mathrm{V} & \mathrm{L} & \mathrm{P} & \mathrm{L} & \mathrm{H} & \mathrm{L} \\ \mathrm{V}\end{array}$ caccaccaggcattggcagtggcgggcctgagtcccctcctgcagagaagccattccccc $\begin{array}{llllllllllllllllllll}H & H & Q & A & L & A & V & A & G & L & S & P & L & L & Q & R & S & H & S & P\end{array}$ acctcgctccctaggccctgtgccacgccccctgccacaccgggcagccgaggctggcce
$\begin{array}{lllllllllllllllllllll}\mathrm{T} & \mathrm{S} & \mathrm{L} & \mathrm{P} & \mathrm{R} & \mathrm{P} & \mathrm{C} & \mathrm{A} & \mathrm{T} & \mathrm{P} & \mathrm{P} & \mathrm{A} & \mathrm{T} & \mathrm{P} & \mathrm{G} & \mathrm{S} & \mathrm{R} & \mathrm{G} & \mathrm{W} & \mathrm{P}\end{array}$ ccacagcccatccccaccctgcggctggagggggccgactccagtgagaaactcaacagc
$\begin{array}{llllllllllllllllllll}P & Q & P & I & P & T & L & R & L & E & A & D & S & S & E & K & L & N & S\end{array}$ agcttcccgtccatccactgcggctcatggtctggggagaacagcccctgcagaggggac
 agcagcgccgcccggagagcccggcccgtctccctcactgtgcccagccaggctggggcc
 caggggagacagttccatggcagcgccagcagcctggtggaagcggtcttgatttccgaa Q G R Q F H G S A S S L V E A ggactggggcagtttgctcaagatcccaagttcatcgaggtcacgacccaggagctggct
 gacgcctgcgatctgaccatagaggagatggagaacgcggccgacgacattctcagcggg $\begin{array}{llllllllllllllllllll}\text { D } & \text { A } & \text { C } & \text { D } & \text { L } & \text { T } & \text { I } & \text { E } & \text { E } & \text { M } & \text { E } & \text { N } & \text { A } & \text { A } & \text { D } & \text { D } & \text { I } & \text { L } & \text { S } & G\end{array}$ ggcgcccggcagagccccaatggcaccctgttaccctttgtgaaccgcagggacccgggc
 cgggacagagcggggcagaacgagcaggacgcgagcggcgcatgcgccccagggtgcggg
$\left.\begin{array}{llllllllllllllllll}R & D & R & A & G & Q & N & E & Q & D & A & S & G & A & C & A & P & G\end{array}\right] \quad$ G cagagcgaggaggccctcgcggaccgcagggccggcgtcagcagcctgtagctcgagcgg
 ccgcatcgtgactgactgacgatctgcctcgcgcgtttcggtgatgacggtgaaaacctc
 tgacacatgcagctcccggagacggtcacagcttgtctgtaagcggatgccgggagcaga - H M Q L P E T V T A C L caagcccgtcagggcgcgtcagcgggtgttggcgggtgtcggggcgcagccatgacccag
 tcacgtagcgatagcggagtgtataattcttgaagacgaaagggcctcgtgatacgccta

[^2]tttttataggttaatgtcatgataataatggtttcttagacgtcaggtggcacttttcgg
$\mathrm{F} \quad \mathrm{L} \quad-\mathrm{V} \quad \mathrm{N} \quad \mathrm{V} \quad \mathrm{M} \quad \mathrm{I} \quad \mathrm{I} \quad \mathrm{M} \operatorname{V} \quad \mathrm{S} \quad-\quad \mathrm{T} \quad \mathrm{S} \quad \mathrm{G} \quad \mathrm{G} \quad \mathrm{T} \quad \mathrm{F} \quad \mathrm{R}$ ggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccg
 ctcatgagacaataaccctgataaatgcttcaataatattgaaaaaggaagagtatgagt
 attcaacatttccgtgtcgcccttattcccttttttgcggcattttgccttcctgttttt
 gctcacccagaaacgctggtgaaagtaaaagatgctgaagatcagttgggtgcacgagtg
 ggttacatcgaactggatctcaacagcggtaagatccttgagagttttcgccccgaagaa
 cgttttccaatgatgagcacttttaaagttctgctatgtggcgcggtattatcccgtgtt
 gacgccgggcaagagcaactcggtcgccgcatacactattctcagaatgacttggttgag
 tactcaccagtcacagaaaagcatcttacggatggcatgacagtaagagaattatgcagt
 gctgccataaccatgagtgataacactgcggccaacttacttctgacaacgatcggagga
 ccgaaggagctaaccgcttttttgcacaacatgggggatcatgtaactcgccttgatcgt

$\begin{array}{lllllllllllllllllllll}\text { P } & \mathrm{K} & \mathrm{E} & \mathrm{L} & \mathrm{T} & \mathrm{A} & \mathrm{F} & \mathrm{L} & \mathrm{H} & \mathrm{N} & \mathrm{M} & \mathrm{G} & \mathrm{D} & \mathrm{H} & \mathrm{V} & \mathrm{T} & \mathrm{R} & \mathrm{L} & \mathrm{D} & \mathrm{R}\end{array}$ tgggaaccggagctgaatgaagccataccaaacgacgagcgtgacaccacgatgcctgca
 gcaatggcaacaacgttgcgcaaactattaactggcgaactacttactctagcttcccgg
 caacaattaatagactggatggaggcggataaagttgcaggaccacttctgcgctcggcc
 cttccggctggctggtttattgctgataaatctggagccggtgagcgtgggtctcgcggt
 atcattgcagcactggggccagatggtaagccctcccgtatcgtagttatctacacgacg I I A A L $\mathrm{A} \quad \mathrm{P} \quad \mathrm{D} \quad \mathrm{G} \quad \mathrm{K} \quad \mathrm{P} \quad \mathrm{S} \quad \mathrm{R} \quad \mathrm{I} \quad \mathrm{V} \quad \mathrm{V} \quad \mathrm{I} \quad \mathrm{Y} \quad \mathrm{T} \quad \mathrm{T}$ gggagtcaggcaactatggatgaacgaaatagacagatcgctgagataggtgcctcactg
 attaagcattggtaactgtcagaccaagtttactcatatatactttagattgatttaaaa
 cttcatttttaatttaaaaggatctaggtgaagatcctttttgataatctcatgaccaaa $\mathrm{L} \quad \mathrm{H} \quad \mathrm{F} \quad-\mathrm{F} \quad \mathrm{K} \quad \mathrm{R} \quad \mathrm{I} \quad-\quad \mathrm{V} \quad \mathrm{K} \quad \mathrm{I} \quad \mathrm{L} \quad \mathrm{F} \quad \mathrm{D} \quad \mathrm{N} \quad \mathrm{L} \quad \mathrm{M} \quad \mathrm{T} \quad \mathrm{K}$ atcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaagga
I P - R E F S F H $\quad \mathrm{F}$ A $\mathrm{S} \quad \mathrm{D} \quad \mathrm{P} \quad \mathrm{V} \quad \mathrm{E} \quad \mathrm{K} \quad \mathrm{I} \quad \mathrm{K} \quad \mathrm{G}$ tcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccg
 ctaccagcggtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaact
 ggcttcagcagagcgcagataccaaatactgtccttctagtgtagcogtagttaggccac
 cacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtg $\begin{array}{lllllllllllllllllllll}H & F & \mathrm{~K} & \mathrm{~N} & \mathrm{~S} & \mathrm{~V} & \mathrm{~A} & \mathrm{P} & \mathrm{P} & \mathrm{T} & \mathrm{Y} & \mathrm{L} & \mathrm{A} & \mathrm{L} & \mathrm{L} & \mathrm{I} & \mathrm{L} & \mathrm{L} & \mathrm{P} & \mathrm{V}\end{array}$ gctgctgccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccg
 gataaggcgcagcggtcgggctgaacggggggttcgtgcacacagcccagcttggagcga
 acgacctacaccgaactgagatacctacagcgtgagctatgagaaagcgccacgcttccc
 gaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggagagcgcacg
 agggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctc
 tgacttgagcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaacgcc
 agcaacgcggcctttttacggttcctggccttttgctggccttttgctcacatgttcttt
 cctgcgttatcccetgattctgtggataaccgtattaccgcctttgagtgagctgatacc
$\begin{array}{llllllllllllllllllll}\text { P } & \text { A } & \mathrm{L} & \mathrm{S} & \mathrm{P} & \mathrm{D} & \mathrm{S} & \mathrm{V} & \mathrm{D} & \mathrm{N} & \mathrm{R} & \mathrm{I} & \mathrm{T} & \mathrm{A} & \mathrm{F} & \mathrm{E} & - & \mathrm{A} & \mathrm{D} & \mathrm{T}\end{array}$ gctcgccgcagccgaacgaccgagcgcagcgagtcagtgagcgaggaagcggaagagcgc
$\begin{array}{llllllllllllllllllll}A & R & R & S & R & T & T & E & R & S & E & S & V & S & E & E & A & E & E & R\end{array}$ ctgatgcggtattttctccttacgcatctgtgcggtatttcacaccgcataaattccgac $\begin{array}{llllllllllllllllllll}\mathrm{L} & \mathrm{M} & \mathrm{R} & \mathrm{Y} & \mathrm{F} & \mathrm{L} & \mathrm{L} & \mathrm{T} & \mathrm{H} & \mathrm{L} & \mathrm{C} & \mathrm{G} & \mathrm{I} & \mathrm{S} & \mathrm{H} & \mathrm{R} & \mathrm{I} & \mathrm{N} & \mathrm{S} & \mathrm{D}\end{array}$ accatcgaatggtgcaaaacctttcgcggtatggcatgatagcgcccggaagagagtcaa $\begin{array}{llllllllllllllllllll}\mathrm{T} & \mathrm{I} & \mathrm{E} & \mathrm{W} & \mathrm{C} & \mathrm{K} & \mathrm{T} & \mathrm{F} & \mathrm{R} & \mathrm{G} & \mathrm{M} & \mathrm{A} & - & - & \mathrm{R} & \mathrm{P} & \mathrm{E} & \mathrm{E} & \mathrm{S} & \text { Q }\end{array}$ ttcagggtggtgaatgtgaaaccagtaacgttatacgatgtcgcagagtatgccggtgtc
 tcttatcagaccgtttcccgcgtggtgaaccaggccagccacgtttctgcgaaaacgcgg $\begin{array}{llllllllllllllllllll}S & Y & Q & T & V & S & V & V & N & \text { Q } & \text { A } & S & H & V & S & A & K & T & R\end{array}$ gaaaaagtggaagcggcgatggcggagctgaattacattcccaaccgcgtggcacaacaa
 ctggcgggcaaacagtcgttgctgattggcgttgccacctccagtctggccctgcacgcg
L A G K Q S L L I G V A T S ccgtcgcaaattgtcgcggcgattaaatctcgcgccgatcaactgggtgccagcgtggtg
$\begin{array}{llllllllllllllllllll}P & S & \text { Q } & \text { I } & \text { V } & \text { A } & \text { A } & \text { I } & \text { S } & \text { R } & \text { A } & D & \text { Q } & \text { L } & G & A & S & V & V\end{array}$ gtgtcgatggtagaacgaagcggcgtcgaagcctgtaaagcggcggtgcacaatcttctc
$\begin{array}{llllllllllllllllllll}\text { V } & \text { S } & \text { M } & \text { V } & \text { E } & \text { R } & \text { S } & \text { G } & \text { V } & \text { A } & \text { C } & \text { K } & \text { A } & \text { A } & \text { V } & \text { H } & \text { N } & \text { L } & \text { L }\end{array}$ gcgcaacgcgtcagtgggctgatcattaactatccgctggatgaccaggatgccattgct
 gtggaagctgcctgcactaatgttccggcgttatttcttgatgtctctgaccagacaccc
 atcaacagtattattttctcccatgaagacggtacgcgactgggcgtggagcatctggtc
$\begin{array}{llllllllllllllllllll}\text { I } & \mathrm{N} & \mathrm{S} & \mathrm{I} & \mathrm{I} & \mathrm{F} & \mathrm{S} & \mathrm{H} & \mathrm{E} & \mathrm{D} & \mathrm{G} & \mathrm{T} & \mathrm{R} & \mathrm{L} & \mathrm{G} & \mathrm{V} & \mathrm{E} & \mathrm{H} & \mathrm{L} & \mathrm{V}\end{array}$ gcattgggtcaccagcaaatcgcgctgttagcgggcccattaagttctgtctcggcgcgt
$\begin{array}{llllllllllllllllllll}\text { A } & \mathrm{L} & \mathrm{G} & \mathrm{H} & \mathrm{Q} & \mathrm{Q} & \mathrm{I} & \mathrm{A} & \mathrm{L} & \mathrm{L} & \mathrm{A} & \mathrm{G} & \mathrm{P} & \mathrm{L} & \mathrm{S} & \mathrm{S} & \mathrm{V} & \mathrm{S} & \text { A } & \mathrm{R}\end{array}$ ctgcgtctggctggctggcataaatatctcactcgcaatcaaattcagccgatagcggaa
$\begin{array}{lllllllllllllllllllll}\text { L } & \mathrm{R} & \mathrm{L} & \mathrm{A} & \mathrm{G} & \mathrm{W} & \mathrm{H} & \mathrm{K} & \mathrm{Y} & \mathrm{L} & \mathrm{T} & \mathrm{R} & \mathrm{N} & \text { Q } & \mathrm{I} & \mathrm{Q} & \mathrm{P} & \mathrm{I} & \mathrm{A} & \mathrm{E}\end{array}$ cgggaaggcgactggagtgccatgtccggttttcaacaaaccatgcaaatgctgaatgag $\begin{array}{llllllllllllllllllll}R & E & G & D & W & S & A & M & S & G & F & Q & Q & T & M & Q & M & L & N & E\end{array}$ ggcatcgttcccactgcgatgctggttgccaacgatcagatggcgctgggcgcaatgcgc $\begin{array}{llllllllllllllllllll}\text { G } & I & V & P & T & A & M & L & V & A & N & D & Q & M & A & L & G & A & M & R\end{array}$ gccattaccgagtccgggctgcgcgttggtgcggatatctcggtagtgggatacgacgat
 accgaagacagctcatgttatatcccgccgtcaaccaccatcaaacaggattttcgcctg
 ctggggcaaaccagcgtggaccgcttgctgcaactctctcagggccaggcggtgaagggc
$\begin{array}{llllllllllllllllllll}L & G & Q & T & S & D & R & L & \text { L } & \text { L } & \text { S } & \text { Q } & G & Q & A & V & K & G\end{array}$ aatcagctgttgcccgtctcactggtgaaaagaaaaaccaccctggcgcccaatacgcaa
 accgcctctccccgcgcgttggccgattcattaatgcagctggcacgacaggtttcccga
 ctggaaagcgggcagtgagcgcaacgcaattaatgtgagttagctcactcattaggcacc L E S G Q - A Q R N - C E L A H S L G T ccaggctttacactttatgcttccggctcgtatgttgtgtggaattgtgagcggataaca $\begin{array}{llllllllllllllllllll}\text { P } & G & F & T & L & Y & A & S & G & S & Y & V & V & W & N & C & E & R & I & T\end{array}$ atttcacacaggaaacagctatgaccatgattacggattcactggccgtcgttttacaac
$\begin{array}{llllllllllllllllllll}\text { I } & S & \mathrm{H} & \mathrm{K} & \mathrm{Q} & \mathrm{L} & - & \mathrm{P} & - & \mathrm{L} & \mathrm{R} & \mathrm{I} & \mathrm{H} & \mathrm{W} & \mathrm{P} & \mathrm{S} & \mathrm{F} & \mathrm{Y} & \mathrm{N}\end{array}$ gtcgtgactgggaaaaccctggcgttacccaacttaatcgccttgcagcacatccccctt
$\begin{array}{llllllllllllllllllll}\mathrm{V} & \mathrm{V} & \mathrm{T} & \mathrm{G} & \mathrm{K} & \mathrm{T} & \mathrm{L} & \mathrm{A} & \mathrm{L} & \mathrm{P} & \mathrm{N} & \mathrm{L} & \mathrm{I} & \mathrm{A} & \mathrm{L} & \mathrm{Q} & \mathrm{H} & \mathrm{I} & \mathrm{P} & \mathrm{L}\end{array}$ tcgccagctggcgtaatagcgaagaggcccgcaccgatcgcccttcccaacagttgcgca
$\begin{array}{llllllllllllllllllll}S & P & A & G & V & I & A & K & R & P & A & P & I & A & L & P & N & S & C & A\end{array}$ gcctgaatggcgaatggcgctttgcctggtttccggcaccagaagcggtgccggaaagct
 ggctggagtgcgatcttcctgaggccgatactgtcgtcgtcccctcaaactggcagatgc $\begin{array}{llllllllllllllllllll}\text { G } & \text { W } & \text { S } & \text { A } & \text { I } & \mathrm{F} & \mathrm{L} & \mathrm{R} & \mathrm{P} & \mathrm{I} & \mathrm{L} & \mathrm{S} & \mathrm{S} & \mathrm{S} & \mathrm{P} & \mathrm{Q} & \mathrm{T} & \mathrm{G} & \mathrm{R} & \mathrm{C}\end{array}$ acggttacgatgcgcccatctacaccaacgtaacctatcccattacggtcaatccgccgt
$\begin{array}{llllllllllllllllllll}\mathrm{T} & \mathrm{V} & \mathrm{T} & \mathrm{M} & \mathrm{R} & \mathrm{P} & \mathrm{S} & \mathrm{T} & \mathrm{P} & \mathrm{T} & - & \mathrm{P} & \mathrm{I} & \mathrm{P} & \mathrm{L} & \mathrm{R} & \mathrm{S} & \mathrm{I} & \mathrm{R} & \mathrm{R}\end{array}$ ttgttcccacggagaatccgacgggttgttactcgctcacatttaatgttgatgaaagct $\begin{array}{llllllllllllllllllll}L & F & P & R & R & I & R & R & V & V & T & R & S & H & L & M & L & M & K & A\end{array}$ ggctacaggaaggccagacgcgaattatttttgatggcgttggaatt
$\begin{array}{lllllllllllllll}G & Y & R & K & A & R & R & E & L & F & L & M & A & L & E\end{array}$

ABBREVIATIONS

\sim	approximately
$\left[\mathrm{Ca}^{2+}\right]$	Ca^{2+} concentration
AID	alpha interaction domain
BID	beta interaction domain
Ca^{2+}	calcium
CDI	Ca^{2+} dependent inactivation
cDNA	complementary DNA
CT	C-terminal tail
DHP	Dihydropyridine
DNA	Desoxyribonucleid acid
EC	excitation-contraction
ER	endoplasmic reticulum
E. coli	Escherichia coli
HEK	human embryonic kidney
IQ	isoleucine-glutamine
NO	nitric oxide
OD	optical density
PAGE	polyacrylamide gel electrophoresis
PCR	polymerase chain reaction
Pos	positive
RNA	Ribonucleid acid
SH3	Src homology 3
SR	sarcoplasmic reticulum
VGCC	voltage-gated calcium channel
WW	domain with conserved tryptophans

Abbreviations: Proteins

AJ	adherens junction protein
$\mathrm{Ca}_{\mathrm{v}} 1.2$	$\mathrm{Ca}_{\mathrm{v}} 1.2 \alpha 1 \mathrm{c}$
CaM	calmodulin
$\mathrm{CaM}-\mathrm{BD}$	calmodulin binding domain
CASK	$\mathrm{Ca}^{2+} /$ calmodulin-dependent membrane-associated kinase
CFTR	cystic fibrosis transmembrane conductance regulator
cGMP	cyclic-guanosin cyclise
GUK	guanylate kinase
DLG	Drosophila discs large
eNOS	endothelial nitric oxide synthase
GST	glutathione S-transferase

HRP	horse radish peroxidase
IgG	immunoglobulin G
iNOS	inducible nitric oxide synthase
IP ${ }_{3}$ R	inositol triphophate receptor
LTCC	L-type calcium channel
MAGI	multi-PDZ-containing protein membrane associated guanylate kinase inverted
MAGUK	membrane-associated guanylate kinase
MUPP	multi-PDZ domain protein
NCX	sodium/calcium exchanger
NHERF	sodium-hydrogen antiporter 3 regulator 1
NMDA-R	N-methyl-D-aspartic acid receptor
nNOS	neuronal nitric oxide synthase
PKA	protein kinase A
PKC	protein kinase C
PLC	phospholipase C
PMCA	plasma membrane calcium ATPase
PSD	postsynaptic density protein
RyR	ryanodine receptor
SERCA	sarcoplasmic reticulum Ca ${ }^{2+}$ ATPase
sGC	soluble guanylate cyclase
TJ	tight junction protein
ZO	zonula occludens

Abbreviations: Chemicals

APS	Ammonium persulphate
BCA	Bicinchoninic acis
BSA	Bovine serum albumin
DMEM	Dulbecco/modified Eagle's minimal essential medium
EDTA	ethylenediaminetetraacetic acid
FCS	Foetal calf serum
HEPES	4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
IPTG	isopropyl-1-thio- β-D-galactopyranoside
LB	Luria Bertani
LB-Amp	LB-medium supplemented with Ampicillin
PBS	Phosphate buffered saline
SDS	sodium dodecyl sulphate
TBS	Tris buffered saline

Abbreviations: units of measurement

μ	micro
xg	G-force
A	Ampere
bp	base pairs
kDa	kilodalton
g	gram
h	hour
kg	kilogram
l	litre
m	mili
M	molar
$\mathrm{mg} / \mathrm{ml}$	miligram per mililitre
min	minutes
n	nano
nm	nanometers
rpm	revolutions per minute
s	second
V	Volt

Abbreviations: amino acid residues

$*$	free carboxyl group
Φ	hydrophobic residue
Ψ	aromatic residue
X	any residue
A	Alanine
C	Cysteine
D	Aspartic acid
E	Glutamic acid
F	Phenylalanine
G	Glycine
H	Histidine
I	Isoleucine
K	Lysine
L	Leucine
M	Methionine
N	Asparagine
P	Proline
Q	Glutamine
R	Arginine

Dissertation, Doreen Fetting

S	Serine
T	Threonine
V	Valine
W	Tryptophan
Y	Tyrosine

Abstract

Affidavit

I hereby declare that my thesis entitled "Novel $\mathrm{Ca}_{\mathrm{v}} 1.2$ and PMCA4b interacting PDZ domain containing proteins" is the result of my own work. I did not receive any help or support from commercial consultants. All sources and / or materials applied are listed and specified in the thesis.

Furthermore, I verify that this thesis has not yet been submitted as part of another examination process neither in identical nor in similar form.

Würzburg, September 2011
(Doreen Fetting)

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, die Dissertation „Novel Cav 1.2 and PMCA4b interacting PDZ domain containing proteins" eigenständig, d.h. insbesondere selbstständig und ohne Hilfe eines komerziellen Promotionsberaters, angefertigt und keine anderen als die von mir angegebenen Quellen und Hilfsmittel verwendet zu haben.

Ich erkläre außerdem, dass die Dissertation weder in gleicher noch in ähnlicher Form bereits in einem anderen Prüfungsverfahren vorgelegen hat.

[^0]: * P_{0} is the C -terminal residue, P_{-1} is one residue N -terminal to it etc.
 aX denotes any amino acid
 $\S \Phi$ denotes a hydrophobic amino acid, usually V, I or L

[^1]: ${ }^{1}$ The restriction sites are indicated in blue. Stop codons are shown in red.

[^2]: $\begin{array}{llllllllllllllllllll}S & R & S & D & S & G & Y & N & S & - & R & R & K & G & L & V & I & R & L\end{array}$

