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Abstract

In this thesis, time-optimal control of the bi-steerable robot (BSR) is addressed. The BSR, a
vehicle with two independently steerable axles, is a complex nonholonomic system with applica-
tions in many areas of land-based robotics. Motion planning and optimal control are challenging
tasks for this system, since standard control schemes do not apply.

The model of the BSR considered here is a reduced kinematic model with the driving velocity
and the steering angles of the front and rear axle as inputs. The steering angles of the two axles
can be set independently from each other. The reduced kinematic model is a control system
with affine and non-affine inputs, as the driving velocity enters the system linearly, whereas the
steering angles enter nonlinearly.

In this work, a new approach to solve the time-optimal control problem for the BSR is
presented. In contrast to most standard methods for time-optimal control, our approach does
not exclusively rely on discretization and purely numerical methods. Instead, the Pontryagin
Maximum Principle is used to characterize candidates for time-optimal solutions. The resultant
boundary value problem is solved by optimization to obtain solutions to the path planning
problem over a given time horizon. The time horizon is decreased and the path planning is
iterated to approximate a time-optimal solution. An optimality condition is introduced which
depends on the number of cusps, i.e., reversals of the driving direction of the robot. This
optimality condition allows to single out non-optimal solutions with too many cusps.

In general, our approach only gives approximations of time-optimal solutions, since only
normal regular extremals are considered as solutions to the path planning problem, and the
path planning is terminated when an extremal with minimal number of cusps is found. However,
for most desired configurations, normal regular extremals with the minimal number of cusps
provide time-optimal solutions for the BSR. The convergence of the approach is analyzed and
its probabilistic completeness is shown. Moreover, simulation results on time-optimal solutions
for the BSR are presented.
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1 Introduction

In classical mechanics, systems are studied which may have constraints that restrict their mo-
tion. The constraints may be holonomic or nonholonomic. Holonomic constraints are con-
straints on the configuration ¢ of a system. The configuration of a system describes its posi-
tion, orientation, and internal shape. In contrast, nonholonomic constraints restrict the feasible
velocities ¢ and cannot be expressed as constraints on the configuration ¢g. Nonholonomic con-
straints of mechanical systems are in general linear velocity constraints A(q)¢ = 0. Systems
subject to nonholonomic constraints are called nonholonomic systems. They can be represented
locally by nonlinear ordinary differential equations. Nowadays, nonholonomic constraints and
nonholonomic systems are considered apart from classical mechanics as well.

In the following, nonholonomic systems are addressed which are control systems, i.e., they
have inputs to control their behavior. Such systems can be modeled as kinematic or dynamic
systems. Nonholonomic kinematic systems are first-order systems with velocity inputs. For
linear velocity constraints, they are driftless affine control systems ¢ = g1(q) u1+- - -+ gm () tm
Nonholonomic dynamic systems are second-order systems with force inputs. For an introduction
to nonholonomic systems, see [12, 22, 35, 80].

There is a great variety of nonholonomic systems. One of the simplest nonholonomic sys-
tem is the Heisenberg system, also called Brockett’s system or nonholonomic integrator. The
nonholonomic constraint of the Heisenberg system with configuration ¢ = (g1, g2, ¢3) is

@2 —a —1]] ¢ |=0. (1.1)

For the inputs u; = ¢1 and us = ¢o, the corresponding nonholonomic kinematic system is

G 1 0
dg = 0 Uq + 1 us. (12)
qs G2 —q1

All velocities ¢ = (41, ¢2,¢3) of system (1.2) satisfy the nonholonomic constraint (1.1). The
Heisenberg system discussed in [12, 18, 80] is a benchmark system for nonlinear control methods.
Optimal control of the Heisenberg system with minimal control energy is related to the motion
of a particle in a constant magnetic field.

Another simple mechanical system with a nonholonomic constraint is the rolling disk, also
called rolling penny or unicycle. The constraint of the rolling disk arises from the assumption
of ideal rolling of the disk over the ground without sliding. Due to this assumption, the disk
can turn around its vertical axis and roll in its heading direction, but it cannot slide orthogo-
nally to this direction. In robotics, the rolling disk is called unicycle and provides an example
of a wheeled mobile robot with a nonholonomic constraint. It is addressed in Section 3.4.1.
More complex wheeled mobile robots are the car-like robot discussed in the next section and the
bi-steerable robot covered in this thesis. Other well-known nonholonomic systems are the differ-
ential drive, the car with n trailers, the snakeboard, the roller racer, and the Chaplygin sleigh.
For practical applications, nonholonomic systems play an important role in different fields like
classical mechanics, quantum mechanics, or robotics. Besides wheeled mobile robots, robotic
applications of nonholonomic systems include underwater vehicles and robotic manipulators.

Nonholonomic systems are interesting for both control theoretic aspects and practical appli-
cations. Controllability and optimal control lie at the heart of many studies on nonholonomic
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systems. A kinematic system is controllable if it can be steered from any initial configuration
qo to any desired configuration g4. For a driftless kinematic system, controllability in the whole
configuration space is equivalent to the fact that the constraint of the system is nonholonomic,
as a nonholonomic constraint does not restrict the reachable configurations. In contrast, if the
constraint is holonomic, the system can only evolve on the subset of the configuration space for
which the constraint holds, i. e., it cannot reach any configuration ¢4 from any configuration gq.

The goal of optimal control of nonholonomic systems is to find solutions that satisfy the
nonholonomic constraint and are optimal with respect to a given cost function. For kinematic
models of wheeled mobile robots, shortest paths are studied most often. For this, solutions from
an initial configuration ¢y to a desired configuration ¢, are searched which give the minimal

path length
T
l:/ [ve(7)] dr.
0

Here, |v| is the absolute translational velocity. Besides shortest paths, time-optimal solutions
are considered to go from ¢g to ¢4 in minimal time T'. According to [108, 120, 124], time-optimal
solutions are equivalent to shortest paths for kinematic models of wheeled mobile robots with
constant absolute translational velocity and positive minimal turning radius, i.e., for robots
which cannot turn on the spot. For nonholonomic dynamic systems, solutions with minimal
control energy are mostly addressed. Necessary optimality conditions for optimal solutions of
nonholonomic systems can be given by the Pontryagin Maximum Principle. For applications
of the Maximum Principle to nonholonomic systems, see [2, 15, 106, 120].

There is a close connection between nonholonomic systems and differential geometry. As
discussed below, fundamental results on shortest paths of wheeled mobile robots stem from
the study of geodesics, i.e., locally length minimizing curves, which have bounded curvature.
Nowadays, these paths are known as Dubins and Reeds-Shepp paths. More generally, optimal
control problems for nonholonomic systems relate to problems in sub-Riemannian geometry. In
sub-Riemannian geometry, geodesics are analyzed on smooth manifolds M which are equipped
with a sub-Riemannian metric Gg defined by a positive definite quadratic form on a subbundle S
of the tangent bundle T'M. The configuration space of a nonholonomic system can be identified
with a manifold M. The constraint distribution, which results from the nonholonomic constraint
and describes the feasible velocities ¢, can be identified with a subbundle S. Then, geodesics for
a specific metric Gg give locally optimal solutions for a specific nonholonomic system. Here, Gg
is chosen depending on the cost function of the optimal control problem. For an introduction
to sub-Riemannian geometry, see [109], and for a control theoretic perspective, see [2, 15, 18].

In this thesis, time-optimal control of the bi-steerable robot, a wheeled mobile robot with
two independently steerable axles, is covered. The kinematics of the robot corresponds to that
of a bicycle where both wheels have handlebars. Based on the nonholonomic constraint from
the assumption of ideal rolling of the wheels, the nonholonomic kinematic system of the robot
is obtained. From this system, the so-called reduced kinematic model is derived. For this
model, time-optimal solutions from an initial configuration gy to a desired configuration gg4 are
searched. Necessary optimality conditions of the Maximum Principle define the extremals which
give candidates for optimal solutions. Based on the extremals, path planning is performed to
find solutions from ¢g to gqg. The path planning is iterated over a decreasing time horizon to
approximate time-optimal solutions. The optimality of the solutions is analyzed depending on
the number of reversals of the driving direction of the robot.

1.1 Historical perspective

Optimal control of nonholonomic systems has a long history which originates from problems
in classical differential geometry. Initially, curves in R™ were considered which minimize a cost
function J on the curvature or length of the curve. One of the first studies in this direction is the
elastic problem of Euler from 1744. For this problem addressed in [49], two points z1, x5 € R?,
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two tangent vectors @1 and @ at x1 and xo satisfying ||#1]|| = [|42]| = 1, and an end time
T > 0 are given. A curve x(t) is searched which meets x(0) = z1, ©(0) = &1, 2(T) = z2, and
#(T) = @2 and minimizes

1 T
J= f/ E2(t) dt
2 0

among all such curves. Here, k() is the geodesic curvature along the curve z(t). Solutions to
the elastic problem called Euler elastica can be given by elliptic functions.

In 1957, L. E. Dubins published in [37] his famous work on curves between fixed initial
and terminal points with given initial and terminal direction, bounded curvature, and minimal
length in the plane. He called them R-geodesics, with R being the minimal admissible radius
of curvature. Dubins showed that R-geodesics are concatenations of a finite number of pieces,
each of which is either a straight line segment S or an arc of a circle C' of radius R. Moreover,
he proved that every R-geodesic consists of at most three pieces and is of type C'SC (an arc of
a circle, a line segment, one more arc of a circle) or CCC' (three arcs of circles in series), where
one or more pieces can vanish. For this purpose, he showed that curves with more than three
pieces or of other type than C'SC or CCC cannot have minimal length. To obtain his result,
Dubins used only elementary calculus and geometric reasoning. He did not apply techniques of
the calculus of variations or optimal control theory.

Regarding optimal control of nonholonomic systems, the R-geodesics, called Dubins paths
today, are the shortest paths of a simplified model of the car-like robot. The car-like robot is
a mobile robot with a steerable front axle. To obtain Dubins paths, the robot drives forward
at constant velocity and has fixed positive minimal turning radius. Figure 1.1 shows Dubins
paths from gy to gg. The circles have the minimal turning radius R. The pentagons represent
the robot and their arrowheads give the forward direction. The control system of the car-like
robot with configuration ¢ = (0, z,y) consisting of the orientation # and the position (z,y) is

0 1 0
Gg=| @ | =10 [u + | cos(f) | us. (1.3)
7 0 sin(6)
Here, wu; is the steering input, ug the driving input, and U, = [—1,1] x {1} the input space.

Due to us = 1, the robot drives at constant velocity. System (1.3) is addressed in Section 3.4.2.

TR

Figure 1.1: Dubins paths of type CCC (left) and C'SC (right).

In their seminal paper [94] from 1990, J. A. Reeds and L. A. Shepp described the shortest
paths of a car-like robot with fixed positive minimal turning radius that can drive forward and
backward at constant absolute velocity, i. e., us = £1 holds. The control system is given by (1.3)
for the input space Uzs = [—1,1] x {—1, 1}. In contrast to Dubins paths of a robot only driving
forward, Reeds-Shepp paths can have cusps, i.e., reversals of the driving direction, which are
indicated by the line |. That is, X|Y represents a path consisting of one piece X € {C, S}, a
cusp, and one more piece Y € {C,S}. Reeds and Shepp showed that every shortest path has
at most two cusps and is of type C|CSC|C or CC|CC, where one or several pieces or cusps
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Figure 1.2: Reeds-Shepp paths of type C|C|C' (left) and C'SC|C' (right).

may be missing. By considering arcs of circles C' turning left and right as well as arcs of circles
C' and straight line segments S traversed forward and backward, they constructed a sufficient
family of 48 paths to connect each initial and desired configuration with minimal path length.
Like Dubins, they did not resort to the calculus of variations or optimal control theory, but
applied the results of Dubins and differential calculus to find critical points of the path length
and analyzed whether they are minima or saddle points. Moreover, [94] provides closed-form
solutions for the 48 paths of the sufficient family of the car-like robot. This allows to implement
an optimal control by testing which of these paths connect the initial and desired configuration
and then choosing the shortest one. Two Reeds-Shepp paths with the same initial and desired
configurations as the Dubins paths in Figure 1.1 are depicted in Figure 1.2. According to the
figures, Reeds-Shepp paths are in general shorter than Dubins paths.

In 1991, H. J. Sussmann and G. Tang sharpened and extended the results of [37, 94] by
extensive application of geometric and optimal control theory in [120]. They used the Maximum
Principle to obtain necessary optimality conditions to characterize candidates for shortest paths.
Sussmann and Tang considered the Lie algebra of the input vectors fields of the car-like robot
and computed the time derivatives of their switching functions using iterated Lie brackets.
Based on this study, they analyzed the candidates for optimal paths and singled out non-
optimal solutions. Moreover, they applied the theory of envelopes discussed in Section 4.5.3 to
show that paths consisting of too many pieces cannot be optimal. They improved the findings of
Reeds and Shepp by reducing the sufficient family from 48 to 46 paths. Besides, they extended
the results of Dubins by imposing new conditions on the duration of the pieces C and S for the
Dubins paths CCC and CSC.

In 1996, P. Soueres and J.-P. Laumond presented in [108] a complete characterization of
the shortest paths for the car-like robot which can go forward and backward with bounded
velocity and fixed positive minimal turning radius. Based on [94, 120], they constructed a finite
partition of the configuration space into connected domains which are the regions of activity
for the different paths. For each initial point in one of these domains, the optimal path to the
origin is given by one or several of the 46 paths of the sufficient family. In combination with
symmetry properties of the paths, this allows to select shortest paths from any initial to any
desired point.

While the results in [37, 94, 108, 120] apply to the car-like robot (1.3), there are essential
findings for optimal control of other nonholonomic systems as well. Optimal control of specific
nonholonomic kinematic systems ¢ = g1(q) u1 + - - - + gm(q) w4y, with minimal control energy

T
J:/ u|® dt
0

is originally addressed in [18] and further analyzed in [12, 80, 81]. For nonholonomic kinematic
systems which are first-order controllable, i.e., the accessibility distribution A4 defined in
Section 3.1.4 is generated by the input vector fields g; and first-order Lie brackets [g;, g;],
optimal inputs for minimal control energy are sinusoids at integrally related frequencies. They
are determined by a linear differential equation @ = Q u with skew-symmetric 2. An example of
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a first-order controllable system with sinusoids as optimal inputs is the Heisenberg system (1.2).
Figure 1.3 shows the geodesic sphere of the Heisenberg system. It consists of the end points
(q1,q2,q3) € R3 of geodesics which start from (0,0,0) and have the same minimal control energy
J = fOT (u% + u%) dt. In Riemannian geometry, geodesic spheres are smooth manifolds, whereas
in sub-Riemannian geometry, they are nonsmooth. Correspondingly, the geodesic sphere of the
Heisenberg system is not smooth at the north and south pole.

q1

Figure 1.3: Geodesic sphere of the Heisenberg system.

1.2 Problem formulation and motivation

In this thesis, time-optimal control of the bi-steerable robot (BSR), a wheeled mobile robot
with two independently steerable axles, is addressed. The BSR plays an important role in many
applications of land-based robotics like reconnaissance, transportation, and disaster relief. The
mobile soldier assistance system Mustang MK I and the automated straddle carrier AutoStrad
in Figure 1.4 are applications of the BSR which are discussed in Chapter 5.

To obtain a control system of the BSR for optimal control, the bicycle model of the BSR
depicted in Figure 1.5 is used, which consists of front axle, rear axle, and chassis. Its config-
uration ¢ = (0, z,y, ¢, @) includes of the orientation € of the robot, the position (x,y) of its
center of mass, and the steering angles (¢, ¢,) of the front and rear axle. The steering angles
are restricted to |py| < T and |p,| < T, which is relevant for the controllability analysis in
Section 3.1.4. The distances between the center of mass and the front and rear axle are Ly and
L, respectively. The nonholonomic kinematic system of the BSR is

0 = LlerLr sin(py — ¢@r) ui,

i = i (Lrcostor) cos(0 + or) + Lycos(ior) cos(0 + o) us,

y = ﬁ (Lf cos(py)sin(f + ¢,) + L, cos(g,) sin(0 + gpf))ul, (1.4)
of = ug,

O = us3.
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The inputs are the driving velocity u; and the steering rates us and ws. The driving velocity
uy is the longitudinal velocity of the robot, i.e., the projection of the instantaneous velocity
of the center of mass on the longitudinal axis of the BSR. The control system (1.4) is called
full kinematic model (FKM) of the BSR to distinguish it from the reduced kinematic model
described next. The derivation of the FKM is covered in Section 5.2.

Y

Figure 1.4: Mustang MK T (left, photo by the author) and AutoStrad (right, photo courtesy of
Kalmar Industries).

Pr
Ly
L, ’ (]
Y = 0
Or front wheel
chassis

2

rear wheel

Figure 1.5: Model of the bi-steerable robot with steering angles ¢ > 0 and ¢, < 0.

The model of the BSR. for which time-optimal control is considered in this thesis is the reduced
kinematic model (RKM). This model obtained from the FKM has the reduced configuration
qr = (0,z,y) as system state. The RKM is

0 = ﬁ sin(gs — ¢r) u1,

T ﬁ(Lf cos(py) cos(d + @) + Ly cos(gor)cos(ﬂ—l—gof))ul, (1.5)

y = ﬁ(Lfcos(gof)sin(ﬂJrgor)+L,«cos(<pr)sin(0+cpf))u1.
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Here, the bounded steering angles (¢y, ¢, ) are the steering inputs and the velocity w; is the
driving input. The velocity enters the system linearly, whereas the steering inputs enter non-
linearly by trigonometric functions. Thus, the RKM is a control system with both affine and
non-affine inputs. The steering angles can be set independently from each other. In particular,
the rear steering angle ¢, is no function of the front steering ¢, angle, as it is often assumed
to simplify the path planning for the BSR, see [11, 44, 78, 97, 101, 102, 125]. The goal of
the time-optimal control covered here is to steer the RKM from a given initial configuration
(6o, 0, yo) to a given desired configuration (64, z4,yq) in minimal time.

The motivation to study the time-optimal control problem for the bi-steerable robot and to
consider the reduced kinematic model for the analysis is as follows:

e Bi-steerable robot. Due to the merits of the BSR over other wheeled mobile robots,
there are many applications of the BSR in land-based robotics. The advantages of the
BSR include its high maneuverability, uniform steering characteristics, and redundant
steering capability. Compared to vehicles with just one steerable axle, the BSR has
an improved maneuverability, as it can do sharper turns and perform diagonal motions.
The BSR has the same steering characteristics for driving forward and backward, which is
advantageous for autonomous driving and teleoperation. Because of its two independently
steerable axles, the BSR offers redundant steering capability, i. e., steering is possible even
if the steering actuation of one axle fails. In spite of the many applications of the BSR,
only very few results on path planning and optimal control are available, see Section 5.1.
In addition, for most of them, the rear steering angle is a function of the front steering
angle. However, only for independent steering angles (¢, ) as assumed in the following,
one can take full advantage of the two steerable axles.

e Time-optimal control problem. At first, time-optimal control is inherently impor-
tant, as solutions of minimal time duration are required for time-critical missions. Besides,
such solutions are beneficial for many tasks as they are efficient with respect to other per-
formance criteria like short path length or small sweep volume which has to be checked
with respect to collisions. According to [46], time-optimal paths in the plane can be used
as initial guesses for optimal solutions in rough terrain. Moreover, time-optimal solutions
give motion primitives which have properties like small-time local controllability that are
relevant for specific path planning methods, see [59, 60]. The author of this thesis is not
aware of any published work on time-optimal control of the BSR. Only general methods
for optimal control of wheeled mobile robots can be applied. These approaches are based
on discretization and purely numerical methods to solve the resultant large-scale opti-
mization problem like in [46]. As they do not directly take the special kinematics of the
BSR into account, it is questionable whether such methods can find optimal solutions.
Hence, time-optimal control of the BSR is an open problem.

e Reduced kinematic model. For time-optimal control of the BSR, the RKM with
configuration ¢, = (6,x,y) is considered instead of the FKM with configuration ¢ =
(0,z,y,07,¢). The configuration ¢, contains all variables relevant for time-optimal
control of the BSR, as transitions between two orientations and positions require time-
consuming driving and steering maneuvers in general. Compared to this, the steering
angles (¢, ¢,) can be set in short time and are thus treated as inputs. The lower dimen-
sion of the RKM compared to the FKM reduces the complexity of the control problem. In
particular, the analysis of the extremals from the Maximum Principle in Chapter 6 is less
involved. In addition, singular extremals play a less important role for the RKM as dis-
cussed in Section 9.6. This makes the control problem simpler, as singular extremals are
more difficult to handle than regular ones. In contrast, for the FKM, singular extremals
are essential for time-optimal control, as only these extremals admit steering rates (¢, @)
which do not have maximal modulus at all times. Because of these simplifications, the
RKM is considered for time-optimal control of the BSR.
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Several aspects make the time-optimal control problem for the BSR even more interesting. For
other wheeled mobile robots like the car-like robot, only the bounded curvature of the paths has
to be taken into account. For the BSR, in addition to bounded curvature, the freedom offered
by diagonal motion has to be considered. This is why the extremals for time-optimal control
of the BSR are more complex. Standard methods for path planning for nonholonomic systems
like those described in Section 3.5 often rely on a transformation of the system to a normal
form like the chain form in Section 3.3.2. As discussed in Section 5.1, the BSR can only be
transformed to chain form if the steering angles satisfy ¢ ¢ # ., which is a strong restriction on
the feasible paths. The RKM is in some way special, as it has both affine and non-affine inputs.
This is the case as the steering angles (¢, ¢,) instead of their time derivatives (¢, ¢,) are
used as inputs. For control systems with affine and non-affine inputs, most standard methods
for optimal control like switching time optimization addressed in Section 2.3 and most of the
optimality conditions in Chapter 4 do not apply. Besides, extremals of wheeled mobile robots
like the car-like robot are concatenations of elementary pieces like arcs of circles and straight line
segments. Thus, the time derivative 6 of the orientation of the robots is piecewise constant and
closed-form representations of the optimal solutions are available. Such closed-form solutions
facilitate the path planning and the analysis of the optimality of the solutions. In contrast to
this, for the RKM, no closed-form solutions can be derived, as 6 is not piecewise constant but
varies continuously for most extremals, see Section 6.6. Without closed-form representations,
one has to resort to numerical methods and approximations, making time-optimal control of
the BSR more challenging.

1.3 Main results

The original results of this thesis include aspects of modeling, analysis, path planning, time-
optimal control, and optimality of solutions of the BSR. The main contributions are as follows:

e Modeling and analysis of the BSR with independently steerable axles. The
FKM (1.4) and RKM (1.5) of the BSR are derived and studied in detail in Chapter 5.
The RKM is used in Chapter 6, 8, and 9 for time-optimal control of the BSR. Based
on the kinematics of the bicycle model of the BSR, the velocity constraint and the con-
straint distribution of the robot are established, from which the FKM and RKM result.
Controllability of the two models is proved and it is shown that the velocity constraint
is completely nonholonomic. For the RKM, properties relevant for time-optimal control
are analyzed, including its absolute translational velocity, minimal turning radius, and
representation as left-invariant control system on SE(2). The RKM of the BSR is also
considered in [11, 78, 97, 125]. However, in these references, the rear steering angle ¢,
is a function of the front steering ¢;. In contrast, all findings in this thesis apply to the
RKM with independently steerable axles.

e Extremals for time-optimal control. In Chapter 6, the extremals for time-optimal
control of the RKM are studied, and the existence of time-optimal solutions is shown. The
maximization of the Hamiltonian function is solved analytically, which reveals essential
properties of the extremals. Moreover, the analytical maximization allows to simulate the
extremals at low computational cost, compared to extremal inputs determined by numer-
ical methods. The extremals of the RKM are classified into normal, abnormal, regular,
and singular extremals. The relevant normal regular and normal singular extremals are
analyzed in detail. Here, both analytical and simulation results are given. These findings
are original contributions, as to the best of the author’s knowledge, there are no published
results on extremals for time-optimal control of the BSR.

e Optimality of the extremals. In Chapter 9, optimality results on normal regular and
normal singular extremals for time-optimal control of the RKM are presented, including
analytical and simulation results. In particular, a necessary optimality condition on the
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number of cusps is stated. For most desired configurations g4, normal regular extremals
can only be time-optimal if they have the minimal number of cusps. In fact, normal regular
extremals which satisfy the necessary optimality condition provide time-optimal solutions
for most desired configurations. Besides, simulation data on time-optimal normal regular
and time-optimal normal singular extremals is given and compared. All of these results
are new contributions for the BSR, as the author is not aware of any published work on
time-optimal solutions for this robot.

Further contributions of this thesis comprise a literature review for the BSR in Section 5.1
and a new approach for time-optimal control introduced in Chapter 7. In the literature review,
published work on modeling, analysis, and control of the BSR is discussed, including findings
for other wheeled mobile robots which also hold for the BSR. Our approach for time-optimal
control from Chapter 7 was applied to the RKM to obtain the simulation results on time-
optimal solutions presented in Chapter 8 and 9. Most standard methods for path planning and
optimal control apply to fixed end time problems. Thus, a time transformation is required to
convert a time-optimal control problem with free end time to a fixed end time problem. Our
approach directly handles free end time problems. Hence, no time transformation has to be
done. Moreover, the standard methods need a good initial guess of the solution. In contrast to
this, our algorithm implementing the approach uses random values for initialization.

1.4 Outline of work

e Chapter 2 contains known definitions and results on time-optimal control. The considered
class of control systems is given and solutions of such control systems are defined. Based on
this, different optimal control problems like time-optimal and near time-optimal control
problems are introduced. Finally, an overview of direct and indirect methods to solve
time-optimal control problems is provided.

e Chapter 3 gives an introduction to nonholonomic systems. At first, basics of nonlinear
control systems are discussed. Then, holonomic and nonholonomic constraints are defined,
and nonholonomic systems, i. e., control systems subject to nonholonomic constraints, are
addressed. As examples of nonholonomic systems, the unicycle, the car-like robot, and
the snakeboard are described. At the end, an overview of methods for open-loop control
of nonholonomic systems is presented.

e In Chapter 4, optimality conditions for time-optimal control problems are addressed.
The existence of optimal solutions is discussed first. Then, the Pontryagin Maximum
Principle is stated and its necessary optimality conditions are given which define the
extremals. The boundary value problems resulting from time-optimal control problems
are discussed. Afterwards, overviews of further necessary optimality conditions and of
sufficient optimality conditions are provided. As an example, time-optimal control of the
unicycle is studied.

e In Chapter 5, the bi-steerable robot (BSR) is covered, starting with a review of the
literature on this system. Then, two models of the BSR, the full kinematic model (FKM)
and the reduced kinematic model (RKM), are given and analyzed. Based on the bicycle
model of the BSR, the nonholonomic constraint of the robot is established, and the two
models are derived. Controllability, integrability of the nonholonomic constraint, and
further system properties of the RKM are shown. Finally, the two models of the BSR are
discussed with respect to their suitability for path planning and optimal control.

e In Chapter 6, the necessary optimality conditions of the Maximum Principle from Chapter
4 are applied to the RKM from Chapter 5 to define the extremals for time-optimal control.
For this, the appropriate optimality conditions are derived and the maximization of the
Hamiltonian function is performed analytically to determine the extremal inputs. Based
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on knowledge of the extremal inputs, the existence of time-optimal solutions is shown.
For time-optimal control of the RKM, normal regular and normal singular extremals are
relevant. These extremals are discussed, and simulation results are presented.

Chapter 7 introduces our approach for time-optimal control. The approach performs path
planning based on normal regular extremals iteratively over a decreasing time horizon.
At first, simplifications of the path planning problem are addressed. Then, the path
planning problem is formulated as an optimization problem. An algorithm to solve the
optimization problem is presented, and the convergence is analyzed. The time-optimal
control by iterated path planning is introduced and an algorithm for time-optimal control
is given, followed by an analysis of the convergence. At the end, modifications for practical
application are discussed.

In Chapter 8, the approach for time-optimal control from Chapter 7 is applied to the RKM,
using the extremals of the RKM from Chapter 6. At first, the path planning problem is
simplified. Then, implementation aspects of the approach are discussed. The conditions
required for convergence of the time-optimal control are verified, and simulation data
on time-optimal normal regular extremals of the RKM is presented. The time-optimal
extremals are compared to shortest paths of the car-like robot. The approach for time-
optimal control and the resultant solutions are discussed.

In Chapter 9, the optimality of the normal regular extremals of the RKM is covered. For
this, the necessary and sufficient optimality conditions from Chapter 4 are analyzed to find
optimality conditions which apply to the extremals of the RKM. Then, simulation results
on time-optimal normal regular extremals of the RKM are presented. Based on this, the
optimality of the extremals is studied depending on the number of cusps. This leads to a
necessary optimality condition for the normal regular extremals. Finally, simulation data
on time-optimal normal singular extremals is given, and the optimality results obtained
for the RKM are discussed.

In Chapter 10, a summary of the original contributions of this thesis is given, and an
overview of future work is provided.

Appendix A contains listings of the algorithms for path planning and time-optimal control
from Chapter 7.
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2 Time-optimal control

This chapter contains known definitions and results on time-optimal control. The considered
class of control systems is given and solutions of such control systems are defined. Based on
this, different optimal control problems including time-optimal and near time-optimal control
problems are addressed. Finally, an overview of direct and indirect methods to solve time-
optimal control problems is provided.

2.1 Control system

The following definitions of control system and its solution are required to define the control
problems in Section 2.2. The nonholonomic systems in Chapter 3 are a specific class of the
control systems addressed here. For an introduction to control systems, see [83, 98, 104]. The
following assumption holds for the state space of all control systems in this thesis.

Assumption 2.1.1 (State space) The state space M is an open subset of R™.

Definition 2.1.2 (Control system) Let M be an open subset of R™ and U a compact subset
of R™. Let f: M xU — TM, (z,u) — f(z,u) € T, M be a map which is real analytic in x for
all u and continuous in u. A system

T = f(x,u) (2.1)

with state © = (x1,...,2,) € M, state space M, input u = (uy,...,uy) € U, and input space
U is called control system.

Here, TM denotes the tangent bundle TM = J,,,; ToM of M, and T,,M the tangent space
to M at x € M. As M is an open subset of R", the tangent space T, M can be identified with
R™ at each x € M, and T'M can be identified with M xR". Nevertheless, © € T,, M is sometimes
used in the following instead of & € R™ to stress that & lies in the tangent space to M at x.
The map f = (f1,..., fn) of the system equation & = f(z,u) gives the dynamics of the system.
A control system with m = 1 is called single-input system and with m > 1 multi-input system.
For some of the optimality conditions in Chapter 4, further differentiability properties of f
with respect to u are required. According to [22, 104], systems studied in classical mechanics
are real analytic. Such systems are beneficial for integrability and controllability addressed in
Section 3.1 and for regularity properties of time-optimal solutions discussed in Section 4.5.2.
For a general discussion on the importance of real analyticity for control theory, in particular
with respect to reachable sets and optimal solutions, see [114].

Definition 2.1.3 (Solution of a control system) A control system 2.1.2, an initial state xq €
M, a compact proper time interval I =[0,T], and a bounded measurable input map u: I — U,
t — u(t) are considered. A solution of the control system is an absolutely continuous state
trajectory x: I — M, t — x(t) satisfying x(0) = xg and & = f(x,u) almost everywhere in I.

Regarding the existence of solutions 2.1.3, the following assumption holds.

Assumption 2.1.4 (Ezistence of solutions) The solutions of a control system exist for all
tel.

13
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As the control system (2.1) is autonomous, it is not restrictive to set the initial time of the
interval I to 0. The set of measurable bounded functions w: I — U is denoted by Ly (I) in
the following. Assumption 2.1.4 is made since in general, solutions of a control system do not
have to exist for all t. However, even if a solution z(-) does not exist for all ¢, there is always
a sufficiently small final time 7' > 0 such that x(-) exists for all ¢ € I. Conditions for the
existence of solutions are given e.g. in [1, 33, 98, 104]. These conditions involve properties of
the right-hand side f(x,u) of the control system like Lipschitz continuity and boundedness.

Solutions z(-) obtained for the addressed system and input class are called solutions in the
sense of Carathéodory. They satisfy the differential equation of the control system almost
everywhere in I and are unique. For details on measurable and absolutely continuous functions
and Carathéodory solutions, see [22, 26, 33, 104]. In this thesis, bounded measurable input
maps u(-) are considered, since for some optimal control problems, less general classes of inputs
like piecewise constant inputs give no optimal solutions as discussed in [77, 93].

Definition 2.1.5 (End-point map) A control system 2.1.2 with initial state xo € M 1is consid-
ered. For I =0,T), the map EL : Lu(I) — M,u s x(T) which gives the terminal state z(T)
of the solution x(-) is called end-point map.

The notation Ego is used to stress the dependence on the initial state zg and the final time
T. If a closed-form representation of Ego can be given, the end-point map is a valuable tool for
analysis and control. For details and applications of end-point maps, see [2, 15, 104, 120].

For constant input values 4 € U, the right-hand side of control system (2.1) defines a family
of real analytic vector fields X;: M — TM on the state space M parameterized by @. The
control system is then written as

&= f(z,a) = Xy(x). (2.2)

This point of view is useful to analyze controllability and perform motion planning for control
systems with piecewise constant inputs. Solutions of control systems under constant inputs can
be described by the flow defined next. For details on vector fields, see [1, 22, 49].

Definition 2.1.6 (Flow under a constant input) For the vector field Xg (2.2), the map ¢™: I x
M — M, (t,z0) — ¢%(z0) which gives the state x(t) = ¢ (xo) of the solution x(-) at time t is
called flow under the constant input u.

The notation ¢ shows the dependence on the constant input @ and the time t. The flow
meets the initial condition ¢f(xo) = zg, and, as the solution z(:) is assumed to exist for all
t € I, the ordinary differential equation & = X;(x) on M. That is, for all ¢ € I,

68 (w0) = Xa(0F (o)

holds. Solutions from piecewise constant inputs can be represented by the concatenation of
flows. Piecewise constant input on the boundary bd U of the input space are called bang-bang
inputs. For details on flows, see [2, 22, 49, 80, 104].

2.2 Time-optimal control problems

Different time-optimal control problems and their solutions are defined next. In preparation for
this, control problems with free end time and general optimal control problems are introduced.

Definition 2.2.1 (Control problem with free end time) A control system 2.1.2, an initial state
xg € M, and a desired state xq € M, xg # x4, are given. The problem to find a bounded end
time T > 0 and a bounded measurable input map u(-) such that a solution 2.1.3 results which
satisfies x(T) = wxq 1is called control problem with free end time. Any solution (7,xz(-),u(-)) to
this problem is called admissible solution denoted by S(xg,xq).
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The initial state zq is also called starting state and the desired state x4 is also called target
state. More general control problems can be studied, for which no initial and desired states are
fixed, but x(0) € My and z(7) € My has to hold for given subsets My and My of M. As xg # x4
is assumed in Definition 2.2.1 to exclude trivial control problems, the end time satisfies 7 > 0,
and the interval I = [0, 7] is proper. Since 7 is unspecified as it is not part of the problem data
but of the solution, problem 2.2.1 is a free end time problem. The existence of solutions to such
problems depends on the controllability properties of the control system.

A control problem can be solved by open-loop control, closed-loop control, or a combination
of both. For open-loop control, a steering law u: I — U generates the input without evaluation
the current state. The corresponding problem is called steering problem or trajectory planning
problem. In robotics, it is frequently called motion planning problem, and for kinematic systems,
i.e., first-order control systems with velocity inputs, path planning problem. For closed-loop
control also called feedback control, a feedback law u: M — U computes the input u based on
the current state x of the system. Besides, combinations of closed-loop and open-loop control
u: I x M — U exist. In the following, only open-loop control is considered.

Definition 2.2.2 (Optimal control problem) Let L(x,wu) be a real-valued continuous function
which is continuously differentiable with respect to x for all x € M. A control problem with free
end time is considered. The problem to find an admissible solution S(xg,24) which gives the
minimal value of the cost function

J(1,2,u) = /OT L(xz,u) dt (2.3)

is called optimal control problem. Any solution (7°,2°(+),u°(:)) to this problem is called optimal
solution.

Problem 2.2.2 results from problem 2.2.1 by the requirement that the solution should be
optimal, i.e., the cost function J should have minimal value among all admissible solutions
S(xo,xq). The cost function is also called objective function or performance criterion. It
quantifies the total cost of the solution, e.g. with respect to time duration, path length, or
control energy. The Lagrangian L gives the change of J over time, i.e., the instantaneous
running cost along the solution. For some of the optimality conditions in Chapter 4, L has to
satisfy additional differentiability properties with respect to x and w. If the initial and desired
state of an optimal control problem is not fixed, more general cost functions than (2.3) are
considered which take the resultant states x(0) and x(7) into account.

Definition 2.2.3 (Time-optimal control problem) The problem to find an optimal solution for
the Lagrangian L(x,u)=1 1is called time-optimal control problem. Any solution (7%°, xt°(-), u'°(-))
to this problem is called time-optimal solution.

The Lagrangian L(x,u) = 1 gives

J(1, 2, u) :/ L(z,u) dt = 7.
0

Equivalently, a time-optimal solution (7%, 2%(-),u!°(-)) is an admissible solution S(zg,zq)
which minimizes the end time 7%°, i.e., 7% < 7 holds for all admissible solutions. The ex-
istence of solutions to time-optimal control problems is addressed in Section 4.1. There, besides
controllability, the system has to satisfy conditions on the convexity and boundedness of f(x,u)
for all (z,u) € M x U. Time-optimal solutions are in general not unique. For uniqueness, ad-
ditional conditions like those in Section 4.6.1 have to hold.

The control problems considered so far are free end time problems, as the end time 7 of the
interval I = [0, 7] is unspecified. By the time transformation s = %t for constant 7 > 0, such
problems are converted to problems over the fixed interval I= [0,1]. The transformed problems
are called fixed end time problems. The unknown end time 7 is represented by an addition
state variable z, for which 2’ = dz/ds = 0 and z(0) = 7 is assumed.
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Definition 2.2.4 (Transformed time-optimal control problem with fived end time) A time-
optimal control problem is considered. Let X = (&, z) be the extended state, M = M x R the
extended state space, and

X = [ ] = [ #/(@9) ] — f(X.%) (2.0

the extended control system. The problem to find an initial condition z(0) = T and an input map
(-) such that a solution X (-) results which satisfies X (0) = (20, 7) and X (1) = (z4,7) and gives
the minimal value of the cost function j(Xﬂ]) = 7 is called transformed time-optimal control
problem with fized end time. Any solution ()v(“’(')7 ﬂto(~)) to this problem is called transformed
time-optimal solution.

The extended state X = (&, z) of dimension 72 = n + 1 arises from the extension of the state
# by the variable z for the end time of problem 2.2.3. The time derivative X’ = (&', z’) consists
of the derivative of & with respect to s and 2’ = 0. The cost function J(X7 12) = 7 results from

J(%. 1) :/OIL(X,Q) ds

for the Lagrangian L (X, 1) = z. By #(s) := z(7s) = 2(t) and u(s) := u(r s) = u(t), solutions
(X*t(-),at°(-)) to problem 2.2.4 and solutions (7%, z*°(-), u'°(-)) to problem 2.2.3 are equivalent
via X%(s) i= (2'°(7s),7%) = (2'°(t),7%°) and @'°(s) := u!®(7 s) = u'°(t). In this thesis, the
time-optimal control problem 2.2.3 with free end time is studied, except for some sections in
Chapter 4 and 9. There, optimality conditions are addressed which are usually applied to the
transformed time-optimal control problem 2.2.4.

Definition 2.2.5 (Near time-optimal control problem) A time-optimal control problem and the
end time 7'° of a time-optimal solution to this problem are considered. Fir a constant k > 1.
The problem to find an admissible solution S(xg,zq) with end time 7t° satisfying

7~_t0 S tho

is called near time-optimal control problem. Any solution (7°,z'°(-),u'°(-)) to this problem is
called near time-optimal solution. The constant k is called quality factor.

For near time-optimal control, other terms like almost or approximate time-optimal control
are used as well. The factor k is called quality factor as it quantifies how good a near time-
optimal solution approximates a time-optimal one with respect to the end time. If £k = 1 holds,
the solution is time-optimal. For k& > 1, a smaller value of k indicates a better approximation.

If for a specific control problem, the end time 7%° is known or can be estimated, k can be
set depending on the required approximation quality. Then, a method for optimal control can
be terminated when a solution with end time 7!° satisfying 7%© < k7! is found. Besides,
simulation results on time-optimal solutions with end time 7!° can be compared to solutions
which meet specific optimality conditions. If these solutions give good approximations of time-
optimal solutions, they can be defined to be near time-optimal solutions with end time 7. In
this case, the mean value of the resultant quality factor k := 7%°/7° over many solutions rates
the approximation of optimal solutions by solutions which satisfy the optimality conditions.
This is done in Chapter 9 for time-optimal and near time-optimal solutions for the BSR.

Near time-optimality is a generalization of time-optimality, as time-optimality is obtained
for k = 1. Thus, the conditions for the existence of time-optimal solutions from Section 4.1
are sufficient for the existence of near time-optimal solutions. Like time-optimal solutions,
near time-optimal solutions are in general not unique. There are several reasons to use near
time-optimal solutions instead of time-optimal ones. Their computation may be less costly, the
structure of their inputs may be simpler, or it may be the only way to obtain satisfying solutions.
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Even if time-optimal inputs can be computed, their implementation may be impossible due to
poor robustness, high frequency inputs causing oscillations, or jumps increasing wear and tear.
In contrast to this, near time-optimal solutions can take these limitations into account. They
are addressed e. g. in the following references:

e Near time-optimal control of robotic manipulators using bang-bang inputs is studied in
[82]. For near time-optimal control, the inputs are restricted to a subset of the input
space. Then, inputs taking values in the full input space can be applied to compensate
for disturbances. The bang-bang inputs are smoothed to avoid the excitation of high-
frequency dynamics. The restriction of the input space and the smoothing of the inputs
can be adjusted for steady transition between time-optimal and near time-optimal control.

e In [6], near time-optimal path planning for ground vehicles is considered. The Lagrangian
L(z,u) = 1 for time-optimal control is augmented by additional terms to take the driving
and steering inputs into account. The solutions for the augmented Lagrangian give rise
to additional flexibility and better robustness compared to time-optimal solutions.

e In [30, 31], time-optimal solutions for underwater vehicles with usually a high number
of switchings between constant inputs are adapted to obtain inputs suitable for practical
application. For these inputs, the number of switchings is restricted, which gives near
time-optimal solutions, called time efficient solutions in the references.

e Trajectory planning for the snakeboard described in Section 3.4.3 is considered in [48].
The planning yields near time-optimal solutions, called subtime-optimal solutions there,
which have the minimal number of switchings between motion primitives.

In this thesis, near time-optimal solutions for the BSR are studied, since only normal regular
extremals from the Maximum Principle are considered as candidates for optimal solutions.
Besides, the search for a solution with minimal time is terminated when a normal regular
extremal with minimal number of cusps is found. Using only normal regular extremals and
terminating the search depending on the number of cusps facilitates path planning, but makes
it impossible to find time-optimal solutions for some desired states x;. However, as discussed
in Section 9.6, for most states x4, normal regular extremals give time-optimal solutions.

The solutions considered so far are globally optimal, i.e., optimal among all solutions z(-) €
M from x( to x4. Besides, strong and weak local optimality can be studied as defined next.

Definition 2.2.6 (Strongly locally time-optimal solution, weakly locally time-optimal solution)
A time-optimal control problem, the interval I = [O,Tl"], and some € > 0 are considered.
An admissible solution (7'°,z'°(-),u'(-)) is called strongly locally time-optimal if it gives the
minimal end time T'° among all admissible solutions (1,z(-) ,u(-)) satisfying

InaX{’TlO—T‘, leo—xHoo} <e. (2.5)

An admissible solution (Tlo,xl°(~), ul0(~)) is called weakly locally time-optimal if it gives the
minimal end time T'° among all admissible solutions (1,z(-),u(-)) satisfying

max{‘7l0—7'|, ||xl°—xHOO,||ulo—uHOO} < e. (2.6)

Here, |yl = maxe; [ly(t)| is the infinity norm. A solution (7'°,'°(-),u'°(-)) is strongly
locally time-optimal if it is optimal among all solutions (7,z(:),u(+)) in the e-neighborhood
(2.5) with respect to 7 and x. A solution is weakly locally time-optimal if it is optimal among
all solutions in the e-neighborhood (2.6) with respect to 7, x, and w. For the transformed
time-optimal control problem 2.2.4, strong local optimality holds for HXlO — XHOO < ¢ instead
of (2.5) for some £ > 0, and weak local optimality for max{HX'lo - X }Oo, ale — 12”00} <é
instead of (2.6). In this thesis, strong and weak local time-optimality are considered for some
of the sufficient optimality conditions in Section 4.6. Besides the given ones, other definitions
of local optimality are used based on different norms or topologies. For references to strong
and weak local optimality, see [26, 49, 76, 85, 86, 89].
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2.3 Methods for time-optimal control

Two types of methods to solve time-optimal control problems exist, direct and indirect methods.
They differ in the way the optimal inputs are computed. For a comparison, see [24, 30, 60].

Direct methods rely on the direct computation of optimal inputs to solve an optimal control
problem. Two different approaches are used. The first approach is based on a discretization of
the time domain to obtain a finite dimensional optimization problem. Either the input is dis-
cretized and a direct sequential method is applied, or both the input and the state are discretized
and a direct simultaneous method is used. The resultant optimization problem may be high-
dimensional, depending on the dimension of the system and the resolution of the discretization.
An optimization is executed to minimize the cost function over the discretized input and state,
respectively. Constraints of the optimization arise from the system dynamics, initial and target
conditions, and maybe additional state and input constraints. Thus, methods for constrained
nonlinear optimization like sequential quadratic programming (SQP) are applied. For further
details and applications, see [24, 29, 30, 60, 92]. For the second approach, the structure of the
optimal solution must be known a priori, e. g. from the Maximum Principle. This allows a finite
parameterization of the inputs. Based on the parameterization, optimal inputs are computed.
For example, switching time optimization is applied to determine bang-bang inputs which give
optimal solutions for some control systems with affine inputs. Among others, such inputs are
parameterized by the times of the switchings between points on bd U. Switching time opti-
mization is addressed in [51, 71] for single-input systems and in [30, 31, 32, 73] for multi-input
systems. Combinations of both approaches are used as well. Here, optimal inputs are computed
by switching time optimization if they are bang-bang and by discretization otherwise.

In contrast to direct methods, indirect methods are based on optimality conditions from
optimal control theory like the Maximum Principle covered in Chapter 4. The Maximum
Principle gives necessary optimality conditions to characterize candidates for optimal solutions
called extremals. The extremals are generated by the inputs obtained from the maximization
of the Hamiltonian function, which depends on the state of the control system and the adjoint
state. Among the extremals, optimal solutions have to be determined. The necessary optimality
conditions for time-optimal control problems lead to a boundary value problem with fixed
initial and target state, unknown initial condition of the adjoint state, and free end time. For
applications of indirect methods to optimal control problems, see [5, 6, 60, 92].

Both methods have advantages and disadvantages: Direct methods do not require the some-
times difficult application of the Maximum Principle. Methods based on discretization are
robust with respect to initialization, i.e., no detailed knowledge of the optimal solutions is
required. Nevertheless, a fine discretization of the input and state space leads to a high-
dimensional optimization problem which is computationally costly to solve. Without fine dis-
cretization, only crude approximations of the optimal results are achieved. Besides, the solutions
are in general not optimal due to the discretization and since most of the solutions are only
locally optimal, see [22, 29]. Parameterizations of optimal inputs usually lead to optimization
problems of moderate dimension, but require detailed knowledge of the structure of the optimal
solutions. Indirect methods depend heavily on the Maximum Principle, which gives deep math-
ematical insight into the control problem. However, it may be difficult to extract all information
about the optimal solutions. Although computationally less costly than direct methods, solving
an optimal control problem with an indirect method may be hard as a good initial guess of the
solution is required to solve the emerging boundary value problem successfully. Without good
initial guesses, standard solvers for boundary value problems like shooting methods may give
poor results. Besides, solutions of the boundary value problems are only candidates for optimal
solutions. Among them, optimal solutions have to be identified by other means like geometrical
reasoning or higher-order optimality conditions.

In this thesis, near time-optimal solutions for the BSR are computed by an indirect method.
The Maximum Principle is applied and the boundary value problem is solved by optimization.
Near time-optimal solutions are obtained by an iterative approach which is terminated when a
solution with minimal number of cusps is found.



3 Nonholonomic systems

This chapter gives an introduction to nonholonomic systems. In the following, nonholonomic
systems are nonlinear control systems subject to nonholonomic constraints. A more compre-
hensive definition of nonholonomic system is given in Section 3.3. Nonholonomic constraints
and nonholonomic systems were first addressed in classical mechanics. Nowadays, mechanical
as well as other physical or non-physical systems are modeled as control systems with nonholo-
nomic constraints. For the study of nonholonomic mechanical systems, the configuration and
the configuration space are fundamental, which are defined next.

Definition 3.0.1 (Configuration, configuration space) For a mechanical system of m rigid
bodies, m > 1, let ¢ = (q1,...,qp) be coordinates which uniquely define the free position and
orientation of body 1 with respect to a fized reference frame as well as the free relative positions
and orientations of the remaining bodies, if any, with respect to a frame fived to body 1. Let
Q be an open subset of RP which is the set of all possible coordinates q. Then, q is called
configuration, and @ is called configuration space.

In Definition 3.0.1, a rigid body is an idealized model of a solid body which cannot be de-
formed, i.e., the relative position of any two points to one another is fixed. Free positions
and orientations means that the positions and orientations can change independently from each
other. A system with dim @ = p has p degrees of freedom. The relative positions and ori-
entations give the internal shape of the system. For more details on the configuration and
the configuration space, see [22]. In classical mechanics, the configuration ¢ is called general-
ized position, the configuration variables ¢; are called generalized coordinates, and their time
derivatives ¢; generalized velocities. An introduction to classical mechanics is provided in [7].

For kinematic systems, i. e., first-order control systems with velocity inputs, the configuration
space @ gives the state space M from Definition 2.1.2. In contrast, for dynamic systems which
are second-order control systems with force inputs, @) is a subspace of M, as M is a subset of the
tangent bundle T'Q). The configuration space of the control systems considered in this chapter
are open subsets of RP, except for Section 3.1.2, where systems on Lie groups are addressed.
The configuration space of these systems are matrix Lie groups.

A nonholonomic constraint of a mechanical system with configuration ¢ is a velocity con-
straint A(q) ¢ = ¢ for constant ¢. For more general nonholonomic constraints, see [22, 79]. A
constraint A(q) ¢ = ¢ defines the feasible velocities ¢ of a system. These velocities specify how
the configuration g of the system can change over time. The feasible velocities ¢ have to lie in
the constraint distribution D which results from the nonholonomic constraint and depends on
the underlying configuration ¢. A holonomic constraint h(g) = ¢ only affects the configuration
q of a system. In contrast, a nonholonomic constraint A(q)¢ = ¢ includes both ¢ and ¢ and
cannot be transformed to a constraint h(g) = c¢. Holonomic and nonholonomic constraints,
constraint distributions, and nonholonomic systems are discussed in Section 3.2 and 3.3.

For mechanical systems, nonholonomic constraints appear e.g. in the following settings:

e Systems whose motions are restricted to specific directions are subject to nonholonomic
constraints. Because of these constraints which are homogeneous velocity constraints
A(q) ¢ = 0, no lateral velocities orthogonal to these directions are possible. An example
of such a system is the rolling disk. Its constraint arises from the assumption of ideal
rolling of the disk over the ground without sliding. Due to this assumption, the disk can
turn around its vertical axis and roll in its heading direction, but it cannot slide orthog-
onally to this direction. Another example is a blade sliding on the ground. Under the

19
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assumption of ideal sliding, the blade can change its heading direction and move forward
or backward with respect to this direction, but no sliding orthogonally to the heading
direction is possible. In both examples, the configuration ¢ includes the orientation 6 and
position (z,y) of the system. The nonholonomic constraint A(g) ¢ = 0 restricts the feasible
translational velocities (&, y) and depends on the orientation § which gives the heading di-
rection of the system. It cannot be transformed to a holonomic constraint on the position.
For details and examples of such nonholonomic constraints, see [12, 22, 35, 79, 80]

e Free-flying multi-body systems like satellites with reaction wheels or hopping robots in
flight phase have nonholonomic constraints due to the conservation of angular momentum.
The configuration g of such systems consists of the position, attitude, and the relative
angles between the individual bodies. For nonzero angular momentum, inhomogeneous
velocity constraints A(q) ¢ = ¢ result for constant ¢ # 0. These velocity constraints are
nonholonomic as they cannot be written as constraints on the configuration variables for
the attitude and the relative angles. For details, see [12, 35, 80].

3.1 Basics of nonlinear control systems

The nonholonomic systems considered in the following are a specific class of control systems
2.1.2. At first, elementary properties of nonlinear control systems are given. Then, control
systems on Lie groups are addressed. Finally, integrability and controllability are discussed.

3.1.1 Fundamental properties of nonlinear control systems

In the following, basic properties of nonlinear control systems are defined. These properties
are required for the controllability conditions in Section 3.1.4, the definition of nonholonomic
system in Section 3.3, and the optimality conditions in Chapter 4.

Definition 3.1.1 (Symmetric control system, driftless control system, affine control system)
A control system & = f(x,u) is symmetric if for each (z,u) € M x U, there is an input @ € U
with f(x,u) = —f(x,u). A control system & = f(x,u) with f(x,0) = 0 is called driftless system.
A control system

i = folz) + Zgi(x) u; (3.1)

with a real analytic vector field fo and m linearly independent real analytic vector fields g; is
called affine control system.

An affine control system (3.1) can also be written as @ = fo(z) + G(x) u for the n x m matrix
Gx) = [g1(z),...,gm(x)]. In (3.1), fo is the drift vector field, and g; are the input vector
fields. The system class has its name from the fact that the inputs u; enter the system affinely.
If fo vanishes identically, a driftless control system is obtained.

Definition 3.1.2 (Proper input space, symmetric input space) An input space U C R™ satis-
fying 0 € int (conv (U)) is called proper input space. An input space

U= [—’fbl,ﬁl] X oo X [—ﬁm,ﬁm]
with 4; > 0 is called symmetric input space.

An input space U is proper if the origin is an interior point of its convex hull conv (U).
Here, conv (U) is the smallest convex set containing U. Proper input spaces are considered
e.g. in [22, 49, 60]. They are required for the controllability properties in Section 3.1.4. Each
symmetric input space is proper. A driftless affine system & = G(z)u with symmetric input
space is symmetric. The symmetric input space is the standard input space in this thesis. It
can be represented by U = {u € R™ | ¢(u) < 0} using an input constraint defined next.
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Definition 3.1.3 (Input constraint, active input constraint, modified input vector) For an
symmetric input space 3.1.2, the inequality

ey (u) —u;  —
e (u) w —
c(u) = = <0
¢, (u) e 1
c;’n(u) U, - ﬂm

is called input constraint. If at time t, the condition c; (u(t)) = 0 or ¢f (u(t)) = 0 holds for

some i € {1,...,m}, then ¢; (u) and ¢ (u) is called active input constraint, respectively. The
index set of active input constraints is
It)=={ie{l,....,m} |¢; (u(t)) =0V (u(t)) =0}. (3.2)

The number of active input constraints is nq(t) = |1(t)| and satisfies 0 < ny(t) < m.
The index set of input variables u; which are not affected by active input constraints is

J(t) :={je{l,....m} [j & I(t)} .

The number of input variables not affected by active input constraints is n,(t) = |J(t)| and
satisfies 0 < ny(t) < m. Besides, ng(t) + ny(t) = m holds. The vector

w = (uj)jeJ(t) (3.3)
of dimension n,(t) is called modified input vector.

If there are active input constraints at time ¢, i. e., if n,(¢) > 0 holds, then u(t) € bd U is true.
The modified input vector w (3.3) consists of all input variables u; which are not affected by
active input constraints, i.e., which do not lie on bd U. If there are no active input constraints
at time ¢, then n,(t) = m and w = v holds. Input constraints and modified input vectors are
required for the optimality conditions in Section 4.5.1 and 4.6.2.

3.1.2 Control systems on Lie groups

In contrast to the remaining chapter, the configuration space @ of the systems addressed here
are n-dimensional Lie groups. To represent the configuration space of specific classes of control
systems, matrix Lie groups like the special orthogonal group SO(n) or the special Euclidean
group SE(n) are used. Satellites and spacecraft can be modeled as systems on the special
orthogonal group SO(3) to describe their attitude. Regarding the configuration space of wheeled
mobile robots, the special Euclidean group SFE(2) gives the orientation and position of the robot
in the plane. For the attitude and position of underwater and aerial vehicles in three-dimensional
space, the special Euclidean group SFE(3) is applied. Nonholonomic systems transformable to
the chain form described in Section 3.3.2 can be modeled as systems on the group UT'(n) of
unipotent matrices, i. e., upper triangular matrices with ones on the diagonal. For references to
matrix Lie groups, see [22, 80, 98], and to systems on Lie groups, see [2, 12, 22, 36, 49, 80, 84].
The configurations of the nonholonomic systems in Section 3.4 and Chapter 5 include the
orientation angle 6 and the coordinates (x,y) of the center of mass. If a configuration is
q=(0,2,y) and 0 € R, (x,y) € R? is assumed, then the configuration space is Q = R x R2. For
the orientation, angles 6 and 6 4+ 27 can be identified, as they result in equivalent rotations.
Hence, the configuration space can actually be identified with SO(2) x R? ~ SE(2) and the
configuration ¢ € Q with a group element g € SE(2). A representation of g € SE(2) is

cos(f) —sin(9) =
g=| sin(d) cos(0) y |. (3.4)
0 0 1
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The open interval S := (—m, ) gives a chart for the unit circle S* minus one point. Locally,
SE(2) can be identified with @ = S x R%. Thus, a system on SE(2) induces a system on S x R?.
To simplify computations, the configuration space S x R? is sometimes used instead of SE(2).

To describe the tangent space of a Lie group, the associated Lie algebra is considered. The
Lie algebra g of a Lie group G is isomorphic to the tangent space TG at the identity element
E. For a general definition of Lie algebra, see Section 3.1.3. Each Lie algebra element v € TpG
can be shifted from F to any group element ¢ in a specific way, resulting in a tangent vector
vy € TyG at g. For a Lie group with identity element F, v, € T,G is obtained from v € TG
by the tangent map of the left translation TgL,: TeG — TG, so that vy = Tg Lgv holds.

For matrix Lie groups, left translation is left matrix multiplication and the tangent map of
left matrix multiplication is left matrix multiplication as well. Thus, for fixed v, TgL, is given
by left matrix multiplication by g as in f(g) = gv. Any vector field vy = f(g) which results for
some fixed v and all g € G is called left-invariant vector field on G. For SE(2), the standard
basis vectors of the associated Lie algebra se(2) are

0 -1 0 00 1 000
e1=|1 0 0], ee=]|00 0], es=|0 0 1
0 0 0 00 0 000

Each Lie algebra element v € se(2) can be written as v = ag e1 + ag ea + azes for a; € R. For
g as in (3.4), any left-invariant vector field can be written in the form

cos(f) —sin(f) =z 0 —a1
flg)= sin(0) cos(f) y a0 a3
0 0 1 0 0 0

Definition 3.1.4 (Left-invariant control system on a matriz Lie group G) A control system
T

g=9) wi(u)e;=gV(u) (3.5)
i=1

on an n-dimensional matriz Lie group G, real analytic functions w;: U — R, and r linearly
independent vectors e; € TG of the Lie algebra, v < n, are considered. Any system (5.5) is
called left-invariant control system on G.

Equation (3.5) can be used to represent a kinematic control system with the configuration ¢
given by a Lie group element g and the configuration space @) given by G. The tangent vector
gV (u) € T,G at g results from the Lie algebra element V(u) = >./_, w;(u)e; € TgG. For
G = SO(n), the set of trajectories of a left-invariant control system is invariant under rotation.
For G = SE(n), it is invariant under translation and rotation. For references and examples of
left-invariant systems, see [2, 22, 68, 84]. For invariant control systems, path planning problems
can be simplified as in Section 7.1.

3.1.3 Integrability of distributions

In this section, the integrability of distributions is discussed which is required below to analyze
controllability and to determine whether a velocity constraint A(q) ¢ = 0 is holonomic or non-
holonomic. For this purpose, distributions, regular distributions, and Lie brackets are defined,
and involutive distributions, the involutive closure, Lie algebras, and complete integrability of
distributions are addressed, followed by the Theorems of Frobenius and Nagano-Sussmann. In
this section, the state space M is an open subset of R" according to Assumption 2.1.1. All
functions, vector fields, and distributions are assumed to be real analytic, since all control sys-
tems addressed in this thesis are real analytic systems, see Section 2.1. Details on distributions
and their properties are given e.g. in [1, 16, 22, 49, 80, 98, 104].
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Definition 3.1.5 (Distribution, distribution defined by vector fields, regular distribution) A
map A: M — T M which assigns to each x € M a linear subspace of the tangent space T, M is
called a distribution.

Let X1,...,Xm: M— TM be a set of vector fields on M. The map A: M — TM,x — A(x)
given by

A(x) :=span{Xi(x),..., Xpn(2)} ST, M

18 called distribution defined by the vector fields X, ..., Xp,.
A distribution A with constant rank r = dim A(x) for all x € M is called regular.

As M is an open subset of R™, the tangent space T, M can be identified with R™ at each
x € M, and the tangent bundle TM = J,c,, To M of M can be identified with M x R™.

Definition 3.1.6 (Lie derivative, Lie bracket) Let X : M — TM be a vector field and h: M —
R a function on M. The function

Lxh(z) = dh(z) X(x)

is called Lie derivative of h along X.
Let X1, Xo: M — TM be vector fields on M. The operation [-,-] : TM x TM — TM which
s uniquely defined by

L[Xl,Xﬂh = LX1LX2h - LXzLth (3.6)
for all functions h: M — R is called Lie bracket of X1 and Xs.

The Lie derivative Lxh gives the rate of change of h along the flow of vector field X. For
any vector fields X; and X, the vector field [X7, X5] is uniquely defined by the way it acts as
differential operator on a function h according to (3.6). For details on the Lie derivative and
the Lie bracket, see [1, 22, 49].

Lemma 3.1.7 (Properties of the Lie bracket) Let X1, Xo, X3: M — TM be vector fields and
hi,ha: M — R functions on M. The Lie bracket 3.1.6 satisfies skew-symmetry

[X1, Xo] = — [X2, Xu],
the Jacobi identity
(X1, [ X2, Xs]] + [ X5, [X1, Xo]] + [X2, [X5, X1]] = 0,
and the chain rule
[h1 X1, hoXo] = hiho [X1, Xo] + hy (Lx, ha) Xo — ho (Lx,h1) X;.

Terms like [X7, [X2, X3]] are called repeated or iterated Lie brackets. An iterated Lie bracket
is of degree d if it consists of d vector fields X; counting multiplicity. For example, the Lie
bracket [X1, [X1, X3]] is of degree d = 3.

Definition 3.1.8 (Involutive distribution, involutive closure) A distribution A such that there
holds [X;, X;](z) € A(w) for all z € M and all X;, X; € A is called involutive. The smallest

distribution A which contains A such that [X;, X;] € A holds for all X;, X; € A is called
involutive closure of A.

A distribution A is involutive if it is closed under the Lie bracket, i.e., any vector field
[ X, X;](z) resulting from Lie brackets of vector fields X;(z), X;(x) € A(z) can be written as
linear combination of vector fields of A(z) for all z € M. Tt should be noted that for real
analytic vector fields and distributions, the involutivity of a set of vector fields and of the
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distribution defined by these vector fields is equivalent, see [22, 49]. Without real analyticity,
this equivalence holds only under additional conditions concerning e. g. regularity.

If the distribution A is not involutive, new vector fields [X;, X,] are generated for which
[X;, X;](z) € A(x) does not hold for all € M. If the new vector fields are added to the
distribution A(x), this gives the new distribution

Al(z) = A(z) + span {[X;, X;](2) | Xi(2) , X;(x) € A(z)} .
TIts rank 7/(z) = dim A’(z) satisfies v’ > r for all z € M and ' > r at least for some x € M.

Definition 3.1.9 (Lie algebra) A vector space V over R such that there is a bilinear operation
[,]: V xV =V which satisfies skew-symmetry and the Jacobi identity is called Lie algebra.

In the following, Lie algebras of a set of vector fields are considered.

Definition 3.1.10 (Lie algebra of vector fields) Let V(M) be the space of vector fields on M
and X1,...,Xm € V(M) a set of vector fields. The smallest linear subspace of V(M) which
contains X1, ..., X, and is closed under the Lie bracket is called Lie algebra of the vector fields
X1,..., X It is denoted by L(X1,...,Xm).

In Section 3.1.4, the accessibility algebra of an affine control system @ = fo(z)+> i~ g:(2) w;
is defined as the smallest Lie algebra of the vector fields fo, g1,. .., gm. A Lie algebra is nilpotent
if for some maximal degree d, all iterated Lie brackets of degree d > d vanish.

Definition 3.1.11 (Completely integrable distribution) A distribution A such that for any
x € M, there is a local submanifold N of M which contains x und satisfies TyN = A(y) for
each y € N s called completely integrable.

The local submanifold N is called local integral manifold of the distribution A at x. For
regular distributions, the following definition of complete integrability holds.

Definition 3.1.12 (Completely integrable regular distribution) A distribution A of constant
rank v such that a map h: M — R', | = n —r, with pointwise linearly independent dh;(x) exists
for which

Lx, hi(z) =0
holds for all x € M and all X; € A is called completely integrable.
For the map h from Definition 3.1.12, the hypersurface defined by
{r e M |h(z) =c}

for some specific ¢ € R! is called integral manifold of the distribution A. The map A is used for
the definition of nonholonomic constraint in Section 3.2.1.

Theorem 3.1.13 (Frobenius) A regular distribution is completely integrable if and only if it
1s involutive.

For details on Theorem 3.1.13 and proofs, see [1, 15, 16, 22, 49, 80, 84, 104]. According to
the theorem, for a regular distribution to be completely integrable, it is necessary and sufficient
that the distribution is involutive, i. e., closed under the Lie bracket. The Theorem of Frobenius
holds for regular distribution which are just smooth. In contrast, the following theorem applies
to real analytic distributions which need not be regular.

Theorem 3.1.14 (Nagano-Sussmann) A real analytic distribution is completely integrable if
and only if it is involutive.

For details and proofs of Theorem 3.1.14, which is also called Theorem of Hermann-Nagano,
see [15, 22, 49]. The Theorem of Frobenius is the basis for Theorem 3.2.6 below, which allows to
classify constraints into holonomic and nonholonomic depending on the rank of the involutive
closure of the constraint distribution.
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3.1.4 Controllability

In this section, controllability of nonlinear control systems is addressed. For literature on
controllability, see [22, 35, 49, 80, 83, 98, 104]. In the following, controllability, reachable sets,
and accessibility are defined. Based on the accessibility distribution, the Theorem of Chow
is given, providing necessary and sufficient conditions for accessibility of real analytic control
systems. Afterward, controllability conditions are stated for driftless affine control systems and
driftless control systems with non-affine inputs. The state space M of the control systems are
open subsets of R™. All vector fields, distributions, and control systems are real analytic.

Definition 3.1.15 (Controllability) A control system is controllable if there is an admissible
solution S(xo,xq) to control problem 2.2.1 for each pair (xo,xq) € M x M.

According to Definition 2.2.1, an admissible solution S(zg, z4) satisfies x(0) = xq, & = f(x, u)
for almost all ¢, and 2(7) = x4 for a bounded end time 7. Controllability is required to solve the
control problems defined in Section 2.2. Local controllability analysis via linearization about
a fixed state does not apply to some nonlinear control systems like nonholonomic systems as
discussed in [53, 98], since the linearization of such systems is not controllable.

Definition 3.1.16 (Reachable set) The reachable set at time T denoted by R(xo,T) is the set
of all states x(7) € M such that there is an admissible solution S(xo,x(7)). The reachable set
up to time T' is Ry(zo0) = U, <y R(wo, 7). The reachable set is R(zo) = U, ~q R(2o, 7).

If a control system is controllable, then R(xo) = M holds for all o € M.

Definition 3.1.17 (Accessibility) A control system is accessible at xo if Rr(xo) contains a
non-empty open set for all times T' > 0. A control system is accessible if it is accessible for all
x e M.

For general control systems, accessibility does not imply controllability, and controllability
does not imply accessibility.

Definition 3.1.18 (Accessibility distribution, accessibility algebra) For an affine control sys-
tem & = fo(x) + > v, gi(x) u;, the accessibility distribution Ay is the involutive closure of
the distribution of the vector fields fo,q1,...,9m-. The accessibility algebra is the smallest Lie
algebra containing fo, g1, ..., Gm-

The accessibility algebra is the Lie algebra 3.1.10 of the vector fields fo,g1,. .., gm-

Theorem 3.1.19 (Chow) Let Ay be the accessibility distribution 3.1.18. If the Lie algebra
rank condition dim A 4o (z¢) = n holds, the control system is accessible at xo. If the Lie algebra
rank condition dim A 4(x) = n holds for all x € M, the control system is accessible.

For proofs of Theorem 3.1.19, see [15, 22, 83, 98]. If dim A o(x) = n holds for all z € M, the
vector fields fo, g1, ..., gm of the system and their iterated Lie brackets span the whole tangent
space T, M at every x € M. For real analytic control systems, the Lie algebra rank condition
is necessary and sufficient for accessibility, whereas for smooth systems, it is only sufficient, see
[12, 15, 22, 35, 104].

Theorem 3.1.20 (Controllability of driftless affine control systems) Let U be a proper input
space 3.1.2. A driftless affine control system @ =Y ;" g;(x)u; is controllable if and only if it
1s accessible at every x € M.

As addressed in [12, 49], without additional conditions, Theorem 3.1.20 is true only for control
systems which are real analytic. For proofs and details on the theorem, see [15, 80, 83, 98, 104].
In contrast to Theorem 3.1.20 which applies only to driftless affine control systems, the following
theorem holds for general driftless systems which may have non-affine inputs.
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Theorem 3.1.21 (Controllability of driftless control systems) A driftless control system & =
f(x,u) is controllable if it is symmetric and if for all x € M, there are inputs u; € U resulting
in n vector fields f(x,u;) such that dimspan{f(z,u1),..., f(z,u,)} =n holds for all x € M.

For details on controllability of systems with non-affine inputs, see [15, 49, 103, 118]. Theorem
3.1.21 is similar to Theorem 3.1.20. Here, accessibility is replaced by the condition that n vector
fields f;(z) with dimspan{f(z,u1),..., f(z,u,)} = n are generated by suitable inputs, and
the proper input space U is replaced by the requirement that the system is symmetric.

3.2 Holonomic and nonholonomic constraints

Holonomic and nonholonomic constraints originate from classical mechanics. Holonomic con-
straints affect the configuration ¢ of a system as in Definition 3.0.1, whereas nonholonomic
constraints restrict the feasible velocities ¢. Nonholonomic constraints are not equivalent to
holonomic constraints, i. e., they cannot be expressed as constraints on the configuration q.

In the following, holonomic and nonholonomic constraints are addressed in Section 3.2.1
and 3.2.2, respectively. Besides holonomic and nonholonomic constraints, scleronomic and
rheonomic constraints are distinguished in classical mechanics. A scleronomic constraint is time-
independent, whereas a rheonomic constraint is time-dependent. All constraints considered in
the following are scleronomic constraints.

3.2.1 Holonomic constraints

Definition 3.2.1 (Holonomic constraint) Let h: Q — R! be a real analytic map, dim Q = p,
1<l<p,andce R! a constant. A constraint

ha) = (3.7)
with linearly independent dh;(q) for all g € Q is called holonomic constraint.

Holonomic constraints are constraints on the configuration g. In Definition 3.2.1, the differ-
entials dh;(g) are assumed to be linearly independent for all ¢ € Q). Otherwise, the [ scalar
constraints h;(q) = ¢; are not independent.

Holonomic constraints result e. g. from mechanical interconnections. For example, if a point
mass with coordinates ¢ = (q1, 2, ¢3) is attached to a fixed point p = (p1, p2, p3) by a rigid rod
of constant length L > 0, the scalar holonomic constraint

h(q) = \/(q1 —p1)?+ (2 —p2)°+ (s —p3)° =1L

holds. The configuration of a mechanical system with a configuration space @) of dimension p
and a holonomic constraint of dimension [ is restricted to evolve on a submanifold of the form
{g € Q | h(q) = ¢} of dimension p — . Thus, the system cannot reach configurations which do
not satisfy h(q) = ¢. For details on holonomic constraints, see [12, 35, 80].

3.2.2 Nonholonomic constraints

In contrast to holonomic constraints which can be represented as configuration constraints (3.7),
nonholonomic constraints are velocity constraints defined next.

Definition 3.2.2 (Velocity constraint, reqular velocity constraint) Let A(q) be a k X p matriz,
dim@ =p, 1 < k < p, with real analytic elements a;;(q), and ¢ € T4Q. The constraint

Alg)g=0

is called velocity constraint. If A(q) has full rank for all g € Q, the velocity constraint is reqular.
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A regular velocity constraint A(q) ¢ = 0 gives a set of k scalar linear constraints a; (¢) ¢ = 0
for a;(¢) = (ai1(q),...,aip(q)) and i=1,...,k. Here, k has to satisfy 1 < k < p, as for k = 0,
no constraint exists, and for k > p, only the trivial solution ¢ = 0 satisfies A(q) ¢ = 0. In the
following, A(q) ¢ = 0 is both referred to as one constraint of dimension k, to stress that it is
one vector-valued constraint, and as k constraints, considering the k separate constraints.

By differentiation, each holonomic constraint h(q) = ¢ gives a velocity constraint dh(q) ¢ = 0.
As the differentials dh;(q) are linearly independent for all ¢ € @ according to Definition 3.2.1,
A(q) := dh(q) has full rank for all ¢, and the velocity constraint dh(q) ¢ = 0 is regular.

Definition 3.2.3 (Nonholonomic constraint) A regular velocity constraint is called completely
nonholonomic if there is no real analytic map h: Q — R!, 1 <1 < k, with linearly independent
dhi(q) such that dh(q) ¢ = 0 holds for all ¢ € Q and all ¢ € T,Q which satisfy A(q) ¢ = 0.

A regular velocity constraint A(q) ¢ = 0 can be holonomic, partially nonholonomic, or com-
pletely nonholonomic. It is holonomic if there is a real analytic map h: Q — RF with linearly
independent dh;(q) which satisfies dh(q)¢ = 0 for all ¢ € T,Q for which A(q)¢ = 0 is true.
Then, A(q) ¢ = 0 can be transformed to a holonomic constraint (3.7) of dimension k, and the
configuration is restricted to evolve on a submanifold {¢ € Q | h(¢) = ¢} of dimension p — k. A
constraint is partially nonholonomic if there is an I, 1 < [ < k, and a map h: Q — R! with
linearly independent dh;(q) satisfying dh(q) ¢ = 0 for all ¢ € T,Q with A(q) ¢ = 0. This means
that | independent linear combinations of the k scalar constraints a; (¢) ¢ = 0 are equivalent
to holonomic constraints h;(g) = ¢;. The configuration evolves on a submanifold of dimension
p — I. A constraint is completely nonholonomic if it is neither holonomic nor partially non-
holonomic. Under a completely nonholonomic constraint, the configuration is not restricted
to evolve on any submanifold of ). Thus, every configuration ¢ € @ can be reached. In the
remainder of the thesis, nonholonomic means completely nonholonomic.

Nonholonomic constraints of mechanical systems are usually homogenous linear velocity con-
straints A(q) ¢ = 0. Details and examples of such constraints are given in [12, 22, 35, 53, 79, 80].
Moreover, there are more general nonholonomic constraints which are inhomogeneous or non-
linear in ¢. Inhomogeneous constraints A(q)¢ = c for constant ¢ # 0 result e.g. from the
conservation of nonzero angular momentum, see [12, 35, 80]. Nonlinear constraints h(q,¢) = 0
are addressed in [22, 79]. If the matrix A(q) of a velocity constraint drop ranks at specific
configurations, then the constraint cannot be a nonholonomic constraint as in Definition 3.2.3
anymore. According to [22], at singular configurations of A(g), it is not clear how to extend
the definition of nonholonomic constraint. Usually, singular configurations of A(q) are omitted
from the analysis, as it is done in [22] for the snakeboard and in Section 5.2 for the BSR by
restricting the steering angles.

Equivalently to Definition 3.2.3, a regular velocity constraint A(g)¢ = 0 is completely non-
holonomic if and only if for all full rank [ x k matrices Z(q), 1 <1 < k, there is no real analytic
map h: Q — R! with dh(q) = Z(q) A(q) for all ¢ € Q. For details, see [35, 80]. The matrix Z(q)
serves as integrating factor. It is not easy to determine the type of a regular velocity constraint
A(q) ¢ = 0, i.e., whether it is holonomic, partially nonholonomic, or completely nonholonomic,
by constructing a suitable map h. This is true as not only the set of k constraints a; (¢) ¢ = 0,
but also their linear combinations over real analytic functions have to be considered. Hence, the
constraint distribution D for a regular velocity constraint is defined next, and the dimension of
the involutive closure D is analyzed to determine the type of the constraint.

Definition 3.2.4 (Constraint distribution) Let A(q) be the matriz of a regular velocity con-
straint 3.2.2. The distribution D of constant rank m = p — k which satisfies

ker A(q) = D(q) (3.8)
for all g € Q s called constraint distribution.

As the velocity constraint is regular and real analytic, the constraint distribution D is regular,
i.e., of constant rank m, and real analytic as well. Since 1 < k < p was assumed in Definition
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3.2.2, 1 < m < p holds for m = p — k in Definition 3.2.4. If the matrix A(q) of a velocity
constraint drops rank at singular configurations, i.e., the constraint is no regular constraint
anymore, the dimension of the distribution D satisfying (3.8) must change.

Assumption 3.2.5 (Global generators of the constraint distribution) There are m real ana-
lytic global generators X1, ..., X,, of the constraint distribution D such that

D =span{Xy,..., X,n}
holds for all ¢ € Q.

The global generators X; are globally defined real analytic vector fields. As the constraint
distribution D is regular, they are linearly independent for all ¢ € @. Conditions for the
existence of global generators of a distribution are given in [1, 22]. The constraint distribution
D is a subbundle of the tangent bundle T'Q). It gives a pointwise assignment of the subspace
D(q) of T,Q at each configuration g € Q such that every vector field Y (¢) = > ", o X;(q) for
arbitrary «; € R satisfies A(¢) Y (¢) = 0. The distribution D is called annihilating distribution
of the velocity constraint, as A(q) ¢ = 0 holds for all ¢ € @ and all

qg= Zai Xi(q).
i=1

Theorem 3.2.6 (Holonomic, partially nonholonomic, completely nonholonomic constraint)
Let @ be a configuration space 3.0.1 with dim@Q = p, D be a constraint distribution 3.2.4 of
rank m of a regular velocity constraint 3.2.2, and D its involutive closure. Assume that D is
of constant rank r. Then, if r = m holds, the constraint is holonomic, if m < r < p holds, it is
partially nonholonomic, and if r = p holds, it is completely nonholonomic.

By Theorem 3.2.6, it is possible to check whether a regular velocity constraint is holonomic,
partially nonholonomic, or completely nonholonomic by studying the integrability of the con-
straint distribution D. Hence, no explicit construction of the map A from Definition 3.2.3
is required. Due to the connection between the integrability of D and the type of the con-
straint, a constraint is called completely integrable, partially integrable, and nonintegrable if it
is holonomic, partially nonholonomic, and completely nonholonomic, respectively. The proof of
Theorem 3.2.6 is based on the Theorems of Frobenius and Chow. For details, see [35, 49, 60, 80].

3.3 Nonholonomic systems

In this section, nonholonomic systems are addressed, i.e., systems subject to nonholonomic
constraints 3.2.3. All nonholonomic systems considered here are control systems, i.e., they
have inputs to control their behavior. Apart from that, dynamical systems with nonholonomic
constraints and no inputs can be studied as well.

Definition 3.3.1 (Nonholonomic system) Let & = f(x,u) be a control system 2.1.2 with state
space M, dim M = n, and input space U. Define the distribution

D(z) :=span{f(z,u) lue U} . (3.9)

If the involutive closure D has rank n for all x € M, the control system is called nonholonomic
system.

Definition 3.3.1, which can be found e.g. in [2, 49], is a rather general definition of nonholo-
nomic system. If the distribution D obtained from (3.9) is regular, Definition 3.3.1 is related
to Section 3.2.2 by considering D as the constraint distribution 3.2.4 of a velocity constraint
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A(x)# = 0. According to Theorem 3.2.6, this constraint is a nonholonomic constraint if the
involutive closure of D has full rank n = dim M for all x € M.

In the following, a specific class of nonholonomic systems is addressed, called nonholonomic
kinematic systems. These systems are kinematic systems, i.e., first-order control systems with
velocity inputs. Their state space is the configuration space ) from Definition 3.0.1. Nonholo-
nomic systems can also be modeled as dynamic systems, i. e., second-order control systems with
force inputs. Such systems are briefly discussed in Section 3.4.3.

Besides nonholonomic systems, there are holonomic systems, i.e., systems subject to holo-
nomic constraints. In contrast to nonholonomic systems, the constraints of holonomic systems
can be eliminated by a change of coordinates, see [12, 35, 80]. For a system with a holonomic
constraint h(q) = ¢ with h: Q@ — R! and dim Q = p, new coordinates § = (cjl, . 7(jp,l) can
be chosen for a parameterization of the submanifold {¢ € @ | h(¢) = ¢}. Then, a new system
with configuration ¢ can be studied which has the same trajectories as the original system with
configuration ¢. For the new system, the holonomic constraint h(q) = ¢ is always satisfied.

3.3.1 Nonholonomic kinematic systems

The global generators X; of the constraint distribution of a nonholonomic constraint can be used
as input vector fields g; of a driftless control system and the coefficients a; in ¢ = Y% | o X;(q)
as inputs. Then, the nonholonomic kinematic system results which is defined next.

Definition 3.3.2 (Nonholonomic kinematic system) Let Q be a configuration space 3.0.1 and
X1, ..., X global generators of the constraint distribution 3.2.4 of a nonholonomic constraint
3.2.8. Define the input vector fields g; := X;. The driftless affine control system

m

i= Zgi(Q) u; (3.10)

with state space @Q is called nonholonomic kinematic system.

A mnonholonomic kinematic system 3.3.2 is a special case of a nonholonomic system 3.3.1,
since the involutive closure D of the distribution

D :=span{g1,...,9m} (3.11)

has rank p = dim@ for all ¢ € Q. System 3.3.2 is also called full kinematic model of a
nonholonomic system in the following. It specifies the kinematics of a nonholonomic system,
i.e., it describes the motion of the system in a differential-geometric way. The input variables
u; have the physical meaning of velocities, although in general, they do not directly give the
generalized velocities ¢;, but are related to ¢ via (3.10). In contrast to dynamic systems, for
kinematic systems, discontinuous changes of the velocities u; and thus of ¢ are possible.

System (3.10) can also be written as ¢ = G(q) u. Here, the full rank p x m matrix G(q) =
[91(q) ..., 9m(q)] has real analytic elements g;;(g). In Definition 3.3.2, m < p holds, since
k > 1 is assumed in Definition 3.2.2 and m = p— k in Definition 3.2.4. Considered as first-order
control system with dim @ = p, dimU = m, and m < p, system 3.3.2 is underactuated, as it
has fewer input variables than degrees of freedom. However, because of the full rank of the
involutive closure D, it is controllable as stated next.

Corollary 3.3.3 (Controllability of nonholonomic kinematic systems) A nonholonomic kine-
matic system 3.3.2 with proper input space U is controllable.

Corollary 3.3.3 results from Theorem 3.1.20, as a nonholonomic kinematic system is a driftless
affine control system which is real analytic and accessible at every ¢ € @Q by the Theorem of
Chow. Accessibility holds since the involutive closure D of the distribution (3.11) has full rank
p for all ¢ € Q. Moreover, for real analytic systems, D can be identified with the accessibility
distribution 3.1.18 for fo = 0. Thus, a kinematic system ¢ = > 1", g;(¢) u; with m < p is
controllable if the corresponding velocity constraint A(q) ¢ = 0 is completely nonholonomic and
the input space U is proper. For details on Corollary 3.3.3, see [80, 98].
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3.3.2 Normal forms of nonholonomic kinematic systems

Normal forms of nonholonomic kinematic systems 3.3.2 are used to analyze system properties
like controllability and to design open-loop and closed-loop controls. Most nonholonomic kine-
matic systems can be locally or globally converted to a normal form by a state transformation
z = ®(¢) and an input transformation v = ©(g) u. Examples of normal forms for kinematic
systems are the chain form and the power form, which are equivalent by a state transformation.
For details on normal forms for nonholonomic systems, see [12, 35, 80, 81, 98].

The most widely used normal form is the chain form. For a system with p-dimensional

configuration ¢ = (¢1, .. .,¢p) and two-dimensional input u = (uq, u2), the one-chain form is
£ = w,
Cl = V2,
G = (o,
Cps = Cpo—101

with state variables z = (£,¢), ¢ = ((1,-..,(p,), 1 +p2 = p, and input variables v = (v1,v2).

The transformation of the unicycle and the car-like robot to chain form is addressed below.
Necessary and sufficient conditions for the local transformation of nonholonomic kinematic sys-
tems with two-dimensional input to one-chain form are given in [35]. A constructive algorithm
based on a sufficient condition for local conversion to chain form is described in [12, 35, 80, 98].
For this, two functions hq(¢) and ha(q) are determined by solving a system of partial differential
equations. Then, the state transformation z = ®(¢) and the input transformation v = O(q) u
are obtained from iterated Lie derivatives of hi(q) and ha(q) along the input vector fields g; of
the nonholonomic kinematic system.

If a nonholonomic kinematic system with p-dimensional configuration and m-dimensional
input w = (u1,...,uy) for m > 3 is transformed to chain form, the resultant multi-chain form
consisting of m — 1 chains is

z = Ui,

22 23 : _

Y = g, zy = wvs, e 2 = Uy,

32 _ 2 23 _ 3 sm _ m

22 = Zl V1, 22 = Zl U1, . Z2 = Zl U1, (312)

32 _ 2 23 _ 3 .. Lm — m

fpy T Fpa—1 Vs Fpy = Zpy-1 V1 P = Fpm—1U1
It has the new state variables z = (2',2%,...,2™), 2" = (2},...,2),) for i=2,...,m, 1 + py +
-+« + pm = p, and the new input variables v = (vy,..., V).

In [61], a transformation of the FKM (1.4) of the BSR with p = 5 and m = 3 to two-chain
form is given. As discussed in Section 5.1, for this transformation to be defined, steering angle
configurations with ¢y = ¢, have to be excluded, which is a strong restriction on the feasible
paths. Another example of a nonholonomic system transformed to two-chain form is the fire
truck with p = 6 and m = 3 in [23, 122]. Sufficient conditions for the local conversion of
nonholonomic kinematic systems with m > 3 to chain form are given [23, 81].

Chain form systems, i. e., kinematic systems transformed to chain form, are triangular control
systems. They become linear systems for constant input vy and behave like chains of integrators
then. Kinematic systems transformable to chain form are controllable as shown in [35, 80, 81,
98]. There are several methods for open-loop and closed-loop control of nonholonomic kinematic
systems which apply exclusively to chain form systems. Some of these methods are discussed
in Section 3.5.
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3.4 Examples

In this section, well-known examples of nonholonomic systems are given. The systems are
used to exemplify the definitions and properties of nonholonomic systems of this chapter and
to evaluate the results obtained for the BSR. In Section 3.4.1 and 3.4.2, the unicycle and
the car-like robot are described which are wheeled mobile robots modeled as nonholonomic
kinematic systems. The nonholonomic constraints and the kinematic models of these robots
can be derived the same way as it is done for the BSR in Section 5.2. In Section 3.4.3, the
snakeboard is considered as nonholonomic dynamic system.

Other known nonholonomic systems are the differential drive, the car with n trailers, the
roller racer, and the Chaplygin sleigh. The differential drive is a wheeled mobile robot with
two independently driven coaxial wheels. Depending on the rotational velocity of the wheels,
the robot drives a straight or curved path or turns on the spot. For the differential drive,
both the nonholonomic kinematic and dynamic system is studied, in particular with respect
to motion planning and optimal control. Time-optimal control of the kinematic system of
the differential drive is covered in [9, 10, 60, 106]. In [27, 60], the closely related problem of
steering the differential drive with minimal wheel rotation is analyzed. The car with n trailers
is addressed as nonholonomic kinematic system which is transformable to chain form. For
this wheeled mobile robot, path planning is performed based on finite parameterizations of
the inputs and differential flatness discussed in Section 3.5. For references to the car with n
trailers, see [35, 40, 53, 59, 60, 80]. The roller racer, a nonholonomic system consisting of two
coupled rigid bodies propelled by cyclic motions of the first body, is considered as nonholonomic
dynamic system. For this system, controllability properties and motion planning is addressed
in [12, 20, 22]. The Chaplygin sleigh is a rigid body sliding on a horizontal plane on two sliding
posts and one knife edge, i.e., a blade which imposes a nonholonomic constraint. For the
Chaplygin sleigh modeled as nonholonomic dynamic system, the computation of closed-form
solutions and the control of the sliding direction is studied in [12].

3.4.1 Unicycle

The unicycle is one of the most basic nonholonomic systems. It is considered both as kinematic
and dynamic system in the literature and serves as benchmark system for path planning and
feedback control of nonholonomic systems. For references, see [12, 22, 35, 45, 53, 60, 80].

Figure 3.1 shows a model of the unicycle in the plane consisting of one rigid body. The
unicycle can change its heading direction by turning around the vertical axis, called steering,
and move in this direction, called driving. The rotation of the unicycle around its rotation axis
is neglected, i. e., the unicycle is not treated as a wheel, but as a blade which defines the heading
direction. In Figure 3.1, (z,y) are the coordinates of the center of mass with respect to a fixed
reference frame. The angle 6 gives the orientation relative to the z-axis. The configuration is
q = (0,x,y) and the configuration space is Q = SE(2).

A

T

Figure 3.1: Model of the unicycle.

The nonholonomic constraint follows from the assumption that the unicycle cannot slide
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orthogonally to its heading direction. The resultant velocity constraint is
0
[0 sin(d) —cos(d) || & | =0. (3.13)
Y

The constraint distribution D is generated by the globally defined vector fields

0
Xi=10 |, Xo(q) = cos(9)
0 sin(6)

For ¢ := X1 and ¢2(q) := X2(q), the corresponding nonholonomic kinematic system is

1 0
g=1|a | =10 |u + | cos(d) | us. (3.14)
0 sin(0)

The velocities u; and uy are the steering and driving velocity. For @; > 0, the symmetric input
space is U = [—1q, G1] X [—ts, 2.
The accessibility distribution A 4 of the unicycle is A4 = span {g1, g2, [g1, 2]} with

0

l91,92](q) = | —sin(0)
cos(0)

The vector field [g1, g2](¢) corresponds to a lateral motion orthogonal to the heading direction
of the unicycle. The matrix [g1,92(q), [91,92](¢)] has constant rank 3 for all ¢ € Q, since
det[g1,92(9),[91,92](¢)] = 1 holds. Hence, the Lie algebra rank condition is satisfied for all
q € @, and the unicycle is accessible by the Theorem of Chow. As the input space U is
proper, the unicycle is controllable by Theorem 3.1.20. The constraint (3.13) is completely
nonholonomic according to Theorem 3.2.6, since system (3.14) is real analytic and for such
systems, the involutive closure D of the constraint distribution D = span{X;, Xo} can be
identified with the accessibility distribution A 4.
The nonholonomic kinematic system of the unicycle in one-chain form is

é = 1,
él = U2,
o= Gur.

It is obtained from system (3.14) by the globally defined state and input transformations

& =0,

(1 = xcos(f)+ysin(h),

(o = xsin(f) —y cos(h),

U= u,

vy = (y cos(0) — x sin(0)) uy + us.

In Section 4.7, time-optimal control of the unicycle is addressed to exemplify the necessary
optimality conditions of the Maximum Principle.
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3.4.2 Car-like robot

The car-like robot is a nonholonomic system of great importance for applications. It is mostly
studied as kinematic system with respect to path planning, optimal control, and feedback
control. Results on time-optimal control of the car-like robot are given in [13, 19, 37, 94, 106,
108, 120]. For more references to the car-like robot, see [6, 35, 45, 59, 60, 80, 81].

Figure 3.2 shows the bicycle model of the car-like robot. It has a steerable front axle and a
fixed rear axle like a car. The model is called bicycle model, as a single wheel in the midpoint
of each axle represents the pair of wheels of this axle. As for the unicycle, the rotation of
the wheels is neglected, i.e., they are considered as blades. With respect to a fixed reference
frame, (z,y) gives the coordinates of the midpoint of the rear axle. The angle 6 describes the
orientation of the longitudinal axis relative to the z-axis. The steering angle of the front axle
relative to the longitudinal axis is ¢y. It satisfies |[¢| < ¢ for 0 < ¢ < §. The configuration
is ¢ = (0,z,y,pf) and the configuration space is Q = SE(2) x (—¢, ). The distance between
front and rear axle is L > 0.

Pr

front wheel

rear | wheel

\J

T

Figure 3.2: Model of the car-like robot.

The nonholonomic constraint results from the assumption that the two wheels do not slide
laterally. The corresponding velocity constraint is

—L cos(py) sin(@+¢yr) —cos(@+¢yr) O x| |0
0 sin(0) —cos(6) 0 g | o’
Pr

The global generators of the constraint distribution D are

7 sin(ey)
cos(0) cos(py)
sin(6) cos(¢y)

0

Xi(q) = Xo =

= o O O

For ¢1(¢) := X1(q) and g2 := X5, the nonholonomic kinematic system of the car-like robot is

0 7 sin(py) 0

. z cos(8) cos(py) 0
= = . 3.15
1 7 sin(6) cos(py) n 0" (8.15)

oy 0 1
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Its inputs are the driving velocity u; at the front wheel and the steering velocity us. For u; > 0,
the symmetric input space is U = [—y, 1] X [—z, Us2).
The accessibility distribution is A4 = span {g1, 92, [91, 92] , [91, [91, 92]]} with

—1 cos(py) 0

| cos(8)sin(pf _ — 1 sin(0)

[glv 92](q) - 5111(0) sin((pf ’ [917 [91792]](61) % COS(Q)
0 0

The new vector field [g1,[g1,92]](¢) corresponds to a pure translation of the car-like robot.
The matrix [g1(q), 92, [91, 92](q), [91, [91, 92]](q¢)] has constant rank 4 for all ¢ € @ because of
det [g1(q), 92, [91, 92](q), [91, [91, 92]] (¢)] = 1/L?. Thus, the Lie algebra rank condition is satisfied
for all ¢ € @, and the car-like robot is accessible by the Theorem of Chow. For the proper
input space U, it is controllable according to Theorem 3.1.20. Since system (3.15) is real
analytic and the involutive closure D of the constraint distribution D = span {X;, Xo} can
thus be identified with the accessibility distribution A 4, the constraint of the car-like robot is
completely nonholonomic by Theorem 3.2.6.
The nonholonomic kinematic system of the car-like robot in one-chain form is

é = U1,
é1 = U2,
G o= Go,
<3 = G

Tt is derived from system (3.15) using the state and input transformations

§ = =z

G = % sec®(f) tan(py),

G = tan(f),

G =y

v = cos(f)cos(py)u,

vy = % sec3(6) (3 tan(0) sin(p ) tan(py) ur + Lsec?(¢y) uQ) )

These transformations are only local transformations, as sec(f) is not defined at 6 = £7.

In [13, 59, 60, 106, 108, 120, 124], a simplified model of the car-like robot is studied. It is
obtained from (3.15) by neglecting the dynamics of ¢y, fixing ¢ = § and L = 1, and using the
new inputs (v1,v2) = (sin(¢y) u1, cos(¢y) u1). This model already given in Section 1.1 is

1 0
g=| 2 | =10 |vi+ | cos(d) | va. (3.16)
0 sin(6)

The system looks like the nonholonomic kinematic system (3.14) of the unicycle, but the input
space is different. This is true as the inputs (vq,vs) cannot take values independently from
each other, but have to satisfy (v1,v2) = (sin(yy)uq,cos(ps)u1). To obtain Dubins paths
of a robot which drives forward at constant velocity, the input space is Up = [—1,1] x {1}.
For Reeds-Shepp paths of a robot that can drive forward and backward at constant absolute
velocity, Ups = [—1,1] x {—1,1} is used. The results on time-optimal control of the car-like
robot in Section 1.1 apply to system (3.16). In Section 6.6, extremals for time-optimal control
of the car-like robot are compared to those of the BSR. Time-optimal normal regular extremals
of the RKM and shortest paths of the car-like robot are compared in Section 8.5.
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3.4.3 Snakeboard

The snakeboard, a variant of the skateboard, is a nonholonomic system of great theoretical
interest. It is a complex system due to its underactuation, drift, nonholonomic constraints, and
symmetries. Its snake-like locomotion results from angular momentum generated by motions of
the rider. It is studied as nonholonomic dynamic system with torques as inputs and serves as
benchmark system for path planning for nonholonomic systems. For this system, controllability
is addressed in [21, 22, 62], motion planning in [21, 22, 63], and optimal control in [48, 54, 87].

Figure 3.3 shows the snakeboard consisting of two pairs of wheels, called front and rear wheels,
the coupler connecting the pairs of wheels, and the rotor. The front and rear wheels can rotate
about vertical axes through their pivotal points, controlled by foot movements of the rider. The
rider generates motion by twisting his torso and turning the wheels appropriately. This way, a
snake-like locomotion is generated without the rider touching the ground. The motion of the
human torso is simulated by the rotation of the rotor about a vertical axis through the center
of mass of the snakeboard. The rotor acts as a momentum wheel. Spinning this momentum
wheel causes a counter torque which acts on the coupler and wheels. If the wheels are turned
simultaneously with proper phase to the rotor, a combined translational and rotational motion
arises. This motion comes from the conservation of angular momentum about the instantaneous
center of rotation. Depending on the phase between rotor and wheels, different motions result
which propel the snakeboard in forward, lateral, or rotational direction.

For modeling, each pair of wheels is considered as one wheel. The rotation of the wheels
around their rotation axes is neglected. Relative to a fixed reference frame, (x,y) are the
coordinates of the center of mass. The angle 6 gives the orientation of the snakeboard with
respect to the z-axis. The steering angles of the front and rear wheel are ¢ and —¢ for
lo| < 5. The rotation angle of the rotor around the center of mass is given by ¢ relative
to the longitudinal axis. The configuration is ¢ = (0, z,y, p,?) and the configuration space
Q= SE(2) x (—7/2,7/2) x SO(2). The distance between the center of mass and the front and
rear wheels is L > 0. As discussed in [22, 87], configurations with ¢ = £7 are omitted from
the analysis, as the matrix A(q) of the nonholonomic constraint drops rank there.

front wheels

\J

Figure 3.3: Model of the snakeboard.
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The constraint resulting from the assumption that the wheels do not slide laterally is

—Lcos(p) sin(@+¢) —cos(@+¢) 0 0 ] (3.17)

Lcos(p) sin(0 —¢) —cos(d — @)

6 < 8
I
| —— |
o o
| S

A(q) W

This constraint can be derived from the constraint of the BSR, which is discussed Section 5.2.3.
The velocity constraint (3.17) is completely nonholonomic, which can be shown the same way
as it is done for the BSR in Section 5.3.2.

For the snakeboard, no nonholonomic kinematic system like for the unicycle and the car-
like robot is given here, as the snakeboard is studied as nonholonomic dynamic system, i.e., a
second-order control system with torques as inputs. Such a system can be represented as affine
control system

g = G(q)v,
0= —M<q>GT<q>(M(q>

NIE

(dgi G(q)ve]) +Clg, G(g) v) G(q))v + M(q) G'(q) B(q) u.
(3.18)

i=1

The state (q,v) of the system includes the configuration ¢ € @ and the vector of velocities
v, which is denoted by w in Section 3.3.1. The input variables u; in (3.18) have the physical
meaning of forces and torques. The p x m matrix G(q) = [91(q),-- -, 9m(q)] consists of the
input vector fields of the nonholonomic kinematic system, meaning that if A(g)¢ = 0 is the
nonholonomic constraint of the system, A(q) g;(¢) = 0 holds for all ¢ € @ and all vector fields
gi- The vector e; is the i-th standard basis vector of R™, i.e., the vector e; = (€;1,...,€im)
with e;; = 1 and e;; = 0 for ¢ # j. The row vector e; is used to represent G(q) as addressed
below. The p x m matrix B(q) is the input matrix. The inertia matrix M (q) is a symmetric
positive definite p x p matrix. From G(q) and M(q), the matrix M(q) = [GT(q) M(q) G(q)] !
results. The elements of the p X p matrix of the Coriolis forces C(q, G(¢q)v) = C(q,q) are

cis(a,d) = %Z (8mij(Q) L Omik(q) 8mkj(q)) i
k=1

Aqr 0q; 9qi

System (3.18) consists of two subsystems, the kinematic subsystem for ¢ and the dynamic
subsystem for ©. The kinematic subsystem corresponds to the nonholonomic kinematic system
except that the velocities v; of (3.18) are state variables and no input variables. Thus, the
velocities ¢ = G(q) v satisfy the nonholonomic constraint A(q)¢ = 0 for all v € R™. Both
subsystems together specify the dynamics of a nonholonomic system. That is, they describe
how the state (g, v) evolves over time driven by the input u and subject to the nonholonomic
constraints and dynamic effects represented by the drift vector field. System (3.18) can be
derived from the equations of motion of a nonholonomic mechanical system which are

M(q)i+C(¢g;4)i = AN(@) A+ B(q) u,
Alg)g = 0.

The first equation comes from the Lagrange-d’Alembert equations, a generalization of the
Euler-Lagrange equations to systems with constraints and the kinetic energy Lagrangian L =
%QTM (¢) ¢. The second equation A(q)¢ = 0 is the nonholonomic constraint. The k& unknown
time-varying constraint forces A act as Lagrange multiplier which takes values so that the mo-
tions of the system satisfy the constraint. The Lagrange-d’Alembert equations are based on
the Lagrange-d’Alembert principle, see [12, 79, 80]. According to this principle, the constraint

(3.19)
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forces A do no virtual work. System (3.18) is obtained from (3.19) by elimination of the unknown
constraint forces A, substitution of ¢ by

i=-q==(Gl@v)=G@v+G(@i=>Y (dg:G(g)ve]) v+ Glq),

i=1

and solving for 0. System (3.19) is a second-order system, as the acceleration § of the system
appears. Likewise, (3.18) is a second-order system, as © is the time derivative of the velocity v
and thus an acceleration as well. The systems (3.18) and (3.19) are discussed in [12, 35, 80].

The nonholonomic dynamic system of the snakeboard results from (3.18) for A(q) as in (3.17)
and the inertia and input matrices

J+J,4+2J, 0 0 0 J, 00

0 m 0 0 0 00

M= 0 0m 0 01, Blg=]0 0
0 0 0 2J, 0 10

Jy 00 0 J 0 1

Here, m is the mass of the snakeboard, J is the inertia of the coupler and the two wheels
around the center of mass, J, is the inertia of the rotor around the center of mass, and J,, is
the inertia of each wheel around its pivotal point. The total mass and the inertias are positive,
resulting in a positive definite matrix M. As M is constant, C'(¢,¢) = 0 holds for the matrix
of the Coriolis forces. The inputs u = (uy, uy) are torques which set the steering angle of the
front and rear wheels and actuate the rotor. The nonholonomic dynamic system (3.18) of the
snakeboard can be found e.g. in [21, 22, 62]. It is not given here, as the equations are very
long. In this thesis, the snakeboard serves as example of a system modeled as nonholonomic
dynamic system. Results on optimal control of the snakeboard are reviewed with respect to
applicability to the BSR in Section 5.1. In Section 5.2.3, the nonholonomic constraint of the
snakeboard and its singular configurations at ¢ = 47 are compared to those of the BSR.

3.5 Open-loop control of nonholonomic systems

This section gives an overview of methods for open-loop control of nonholonomic kinematic
and dynamic systems which solve the control problem 2.2.1. For this, a steering law u: I +— U
over a compact time interval I = [0,7] is used. This problem is called steering problem or
trajectory planning problem. In robotics, it is frequently called motion planning problem, and,
in particular for kinematic systems like system 3.3.2, path planning problem, as for kinematic
systems with the state being the configuration ¢, a solution ¢(-) from gg to gq over the interval T
is called a path. Some of the described steering methods are specific to nonholonomic systems,
while others are general trajectory planning methods. For further examples and details on
steering methods for nonholonomic systems, see [22, 35, 59, 60, 80, 98].

For nonholonomic kinematic systems transformable to chain form, path planning can be
done based on finite parameterizations of the inputs, as the chain form allows to successively
integrate the equations of the transformed system due to its triangular structure. Using the
integrated system, the parameters for a specific input which steers the transformed system
from qo to gq over a fixed interval I can be computed analytically. Then, the corresponding
input for the original system is derived from the input for the transformed system. There are
different types of parameterizable inputs for nonholonomic kinematic systems in chain form.
In [23, 35, 59, 60, 80, 81], sinusoidal inputs with integrally related frequencies are addressed.
Piecewise constant inputs inspired by multi-rate digital control which result in piecewise linear
systems are discussed in [35, 80, 98, 122]. For polynomial inputs which expand the features of
piecewise constant inputs by additional differentiability properties, see [23, 35, 59].
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A path planning method for nonholonomic kinematic systems ¢ = g1(q) ug + - -+ + gm(q) um
using an extended system is described in [57, 59, 60, 80]. Piecewise constant inputs generate
motions in the direction of iterated Lie brackets of the input vector fields g1, ..., g. These Lie
brackets give new fictitious input vector fields. The extended system

Gd=91(Q)ur+ -+ gm (@) m + gm+1(qQ) Ums1 + - + gr(q) ur

is considered. It has additional input vector fields g,,+1,...,¢, obtained from iterated Lie
brackets and additional input variables t,,11,...,u,. Path planning is performed for the ex-
tended system, which is straightforward if enough input vector fields are added. Based on a
path for the extended system from an initial configuration ¢y to a desired configuration g4, a
path of the original system from ¢ to g4 is determined. If the original system is nilpotent, i.e.,
if there is a maximal degree d such that all iterated Lie brackets of the input vector fields of
degree d > d vanish, the method allows exact steering from any g9 to any ¢qg4, as every path
planned for the extended system can be realized exactly by the original system. For systems
which are not nilpotent, the method can be applied iteratively to move arbitrarily close to ¢g.

For the implementation to real-world nonholonomic systems and for constructive controlla-
bility analysis, it is desirable to obtain solutions with a simple structure. Such solutions can
be constructed from a finite set of motion primitives. Motion primitives addressed in [41, 60]
are segments of solutions which are generated e.g. by constant inputs. Solutions from an
initial to a desired state result from suitable sequences of motion primitives which are applied
over appropriate durations. The straight line segments and arcs of circles discussed in Section
1.1 are motion primitives for the car-like robot. In [48], motion planning is performed for the
snakeboard, and solutions with minimal number of motion primitives are determined.

A general steering method for nonholonomic kinematic and dynamic systems is based on av-
eraging theory and oscillatory inputs, i.e., high-amplitude, high-frequency or small-amplitude,
low-frequency periodic inputs. Oscillatory inputs generate motions in the direction of iterated
Lie brackets of the input vector fields g1, ..., g,. These motions facilitate exact steering of the
averaged system and approximate steering of the original system. For details on averaging and
oscillatory inputs, see [12, 20, 22].

Another method for steering of nonholonomic systems is flatness based control arising from
the property of differential flatness originally given in [39]. A system is differentially flat if there

is a fictitious flat output z = <I>(ac, Uy Uy ... 7(13)), dim z = dim u, which depends on the state x, the
input u, and a finite number « of time derivatives of u. If there is a flat output z, then = and u

. . o . . . e
can be expressed in terms of z and a finite number of its time derivatives, i.e., z = © (z, Zyeiiy 2 )

and u = \Il(z, 2y ,”Z“) holds for finite 5, and the resultant z and u are unique. A flat output

may be locally or globally defined. If such an output z can be determined, path planning reduces
to the problem to find a sufficiently often differentiable trajectory z(-) satisfying conditions
imposed by the initial and desired state and input constraints. The input trajectory w(-)
required to steer a system from an initial state xy to a desired state x4 can be computed
directly from the trajectory z(-). There is a close connection between the transformability to
chain form and the existence of a flat output. For details on flatness based control and its
application to nonholonomic systems, see [40, 44, 59, 64, 67, 96, 101].

A fundamental approach to generate inputs for nonholonomic systems is optimal control.
Different cost functions are considered. For nonholonomic kinematic systems, shortest paths
and time-optimal solutions are studied most often, which are equivalent for specific systems,
see [108, 120, 124]. Shortest paths of the kinematic system of the car-like robot are covered
in [37, 94, 108, 120]. For additional references, see [2, 6, 13, 49, 106, 124]. For the kinematic
system of the differential drive mentioned in Section 3.4, time-optimal control is addressed in
[9, 10, 60, 106]. The related problem of steering with minimal wheel rotation is discussed in
[27, 60]. For nonholonomic dynamic systems, solutions with minimal control energy are mostly
studied. This is done for the snakeboard in [87]. Optimal control problems for nonholonomic
systems can be solved by direct and indirect methods described in Section 2.3. For more results
on optimal control of nonholonomic systems, see [12, 60, 80, 98].



4 Optimality conditions for time-optimal
control problems

This chapter addresses optimality conditions to characterize solutions to time-optimal control
problems. Optimality conditions comprise necessary and sufficient conditions. Necessary op-
timality conditions specify candidates for optimal solutions. Such conditions are addressed
in Section 4.2 and 4.5. In contrast, sufficient optimality conditions discussed in Section 4.6
guarantee that solutions are optimal. For additional information on necessary and sufficient
optimality conditions, see [2, 15, 26, 43, 75, 104, 106].

Regarding necessary optimality conditions, the most basic result of optimal control theory
is the Maximum Principle introduced in 1962 by L. S. Pontryagin and his co-workers in the
landmark book [93]. According to [116], the Maximum Principle is a generalization of the Euler-
Lagrange equations, the Legendre condition, and the Weierstrass condition from the classical
calculus of variations. It gives necessary optimality conditions for solutions which minimize
a specific cost function subject to initial and final conditions, constraints obtained from the
differential equations of the control system, and maybe additional constraints on the state and
input. For this, the Maximum Principle makes use of the adjoint state which acts as Lagrange
multiplier. Trajectories satisfying the necessary conditions of the Maximum Principle are called
extremals. They are a superset of the optimal solutions. The Maximum Principle gives first-
order optimality conditions. For optimal motion planning, it reduces the problem to find
input trajectories u(-) in the infinite space of bounded measurable input functions to the finite
dimensional problem to find initial conditions of the adjoint state. The Maximum Principle for
time-optimal control problems with free end time and with fixed end time is stated in Section
4.2. Besides [93], for literature on the Maximum Principle in the context of classical control
theory, see [26, 43, 104], and in the context of geometric control theory, see [2, 15, 22, 49, 117].

4.1 Existence of time-optimal solutions

If candidates for time-optimal solutions from an initial state xy to a desired state x4 should be
characterized by the necessary optimality conditions of the Maximum Principle, it makes sense
to verify that such solutions exist at all. Otherwise, there may be trajectories which satisfy the
necessary optimality conditions, but cannot give time-optimal or any other solutions from g
to x4, rendering the information from the optimality conditions useless. At first, the existence
of solutions depends on the controllability 3.1.15 of the control system. Only if a system is
controllable, i.e., if there is a solution from zg to x4, a time-optimal solution from zg to zq4
can exist. Besides, for the existence of optimal solutions, conditions on the boundedness and
convexity of f(z,u) for all (z,u) € M x U have to be satisfied.

Theorem 4.1.1 (Filippov Existence Theorem) Let & = f(x,u) be a control system 2.1.2 with
compact input space U. Time-optimal solutions exist if the control system is controllable, f(x,u)
satisfies the linear growth condition || f(z,u)|| < ¢(14 ||z|]) for some constant ¢ > 0 and all
(z,u) € M x U, and the velocity sets Fy(x) := {f(z,u) |u € U} are convex for all x € M.

Theorem 4.1.1 is the standard existence theorem for time-optimal control. For details, see
[2, 15, 26, 43]. Without additional assumptions, the linear growth condition rules out the
existence of time-optimal solutions for most systems with unbounded inputs. For such systems,
time-optimal solutions in general do not exist. By the principle of time-optimal evolution given

39



40 Chapter 4. Optimality conditions for time-optimal control problems

in [106], the state z(T) of an optimal trajectory has to lie on the boundary bd Ry (zo) of the
reachable set Rp(z) for each T > 0. For unbounded inputs, bd Rr(xg) may be empty.
Under additional assumptions, the convexity condition on Fy(z) can be replaced by less
restrictive conditions. For systems satisfying the linear growth condition but not the convexity
condition, the existence of time-optimal solutions can be shown by the following corollary.

Corollary 4.1.2 (FEzistence for systems with non-convexr velocity sets) Let & = f(x,u) be
a control system with compact input space U which satisfies the conditions of Theorem 4.1.1
except for the convexity of the velocity sets Fy(x). If the velocity sets Fi(x) = {f(x, u) ’ u € U}
obtained for a modified input space U>SU are convex, and if the optimal inputs of the control
system with input space U lie in the original input space U for almost all t, time-optimal
solutions exist for the control system with input space U.

Corollary 4.1.2 is discussed in [120], where it is applied to the model (3.16) of the car-like

robot with compact non-convex input space Ups = [—1,1] x {—1,1}. The modified input space
Urs = conv (Ugs) = [—1,1] x [—1,1] is used to prove the existence of shortest paths, as it is

done in [13, 106, 108, 124]. In [15], the existence of optimal solutions is shown for nonholonomic
kinematic systems with U = {u € R™ | ul® = 1} by considering U= {ueR™| Jul|® < 1}.
More results on the existence for systems with non-convex velocity sets are given in [26] using
generalized solutions and in [2] based on relaxed systems, for which conv (Fy (x)) is studied.

4.2 The Maximum Principle for time-optimal control problems

This section gives the necessary optimality conditions of the Maximum Principle for the time-
optimal control problems 2.2.3 and 2.2.4. To formulate these conditions, the Hamiltonian
function is introduced first.

4.2.1 Hamiltonian function

To define the Hamiltonian function for an optimal control problem, the adjoint state A is used,
which is also called adjoint vector, costate, or covector. For a control system & = f(x,u) with
state space M which is an open subset of R™, the adjoint state is a vector A = (A1,...,A,) € R™.
Its elements \; are called adjoint variables. According to the Maximum Principle for the time-
optimal control problem given below, there is an absolutely continuous trajectory A: I — R”™,
t — A(t) which satisfies an ordinary differential equation, the adjoint equation (4.2), for almost
all ¢ € I. The initial condition A(0) of the adjoint state is denoted by A.

As discussed in Section 2.1, for M being an open subset of R", the tangent space T, M can be
identified with R™ at each o € M. Thus, f(x,u) € R™ holds, and the scalar product A" f(x, u)
gives a real number. This way, the adjoint state A\ acts as Lagrange multiplier to include the
right-hand side f(x,u) of the control system into the Hamiltonian function defined next.

Definition 4.2.1 (Hamiltonian function) Let & = f(x,u) be a control system 2.1.2 with state
space M, X\ € R™ the adjoint state, and u € {0,1} a constant. The function H: M x {0,1} x
R x U = R, (x, pu, A\, u) = H(z, p, \,u),

H(z, N\ u) == —p+ X fx,u) (4.1)
18 called Hamiltonian function of the time-optimal control problem.

The scalar Lagrange multiplier u is called abnormal multiplier or cost function multiplier. It
incorporates the Lagrangian L which defines the running cost of the solution into the Hamilto-
nian function. For a general Lagrangian, the Hamiltonian function is

H(z,p,\u) = —p Lz, u) + X f(z,u).
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For time-optimal control, L(z,u) = 1 holds, and the Hamiltonian function (4.1) results. Ac-
cording to [26, 104], it is sufficient to consider p € {0,1} for the abnormal multiplier instead of
all values p > 0.

4.2.2 Necessary optimality conditions

In the following, necessary optimality conditions for the time-optimal control problems 2.2.3
and 2.2.4 are given. Trajectories of the state z, the adjoint state A\, and the input w which
satisfy these conditions are called extremals. They are denoted by z*(-), A*(-), and u*(-).

Theorem 4.2.2 (Mazimum Principle for the time-optimal control problem with free end time)
A time-optimal control problem 2.2.3 for a control system with compact input space U is consid-
ered. Let A € R™ be the adjoint state, H the Hamiltonian function 4.2.1, (z*(-), A\*(-), u*(+))
an extremal, and H*(-) :== H(x*(-), u, A*(+) ,u*(+)) the extremal Hamiltonian function over the
time interval I = [0,T]. Then, the following conditions hold:

N1: Forallt €1, (u,\*(t)) #0 is true.
N2: For almost all t € I, there holds the adjoint equation
OH

M= — g (@ A ). (4.2)
N3: For almost allt € I, u* satisfies
H(x™, p, N, u™) = max H(z™, p, \*, u) . (4.3)
uelU

N4: For almost allt € I, H*(t) = 0 holds.

In Theorem 4.2.2, the nontriviality condition N1 requires that the vector consisting of the
Lagrange multiplier 1 and the extremal adjoint state A* does not vanish for any ¢ € I. The
adjoint equation of condition N2 is a differential equation for the extremal adjoint state \*.
Starting from an initial condition A\(0) = Ao, the trajectory A*(-) is determined by this dif-
ferential equation. According to the maximization condition N3, the extremal input u* solves
the maximization problem (4.3) over the compact input space U almost everywhere in I. For
control systems and Lagrangians which are autonomous, the extremal Hamiltonian function
H* is constant. Besides, H*(T) = 0 is obtained from the transversality condition of the Max-
imum Principle for free end time problems. The resultant null-maximizing condition N4 is
characteristic for free time problems. For general fixed end time problems, a constant extremal
Hamiltonian function unequal to zero results. For proofs of the Maximum Principle 4.2.2, see
[2, 15, 22, 26, 93].

In Section 2.2, the transformed time-optimal control problem 2.2.4 with fixed end time was
defined. This problem arises from the time-optimal control problem 2.2.3 with free end time
by the time transformation s = %t for constant 7 > 0 which corresponds to the unknown end
time of problem 2.2.3. For the transformed problem, solutions (X*(-),%*(-)) of the extended
control system X’ = f(X, ) as in (2.4) are considered over the time interval I =10,1]. Using
the additional state variable z with 2’ = dz/ds = 0 and z(0) = 7 to represent 7, the extended
state X = (&, 2) of dimension 7 = n + 1 results. Besides, #(s) := z(7s) = z(t) and u(s) :=
u(7 s) = u(t) applies. To give the necessary optimality conditions of the Maximum Principle for
the transformed problem, the extended adjoint state A = (5\, 5\71) € R™ is used. It results from
the extension of A by the adjoint state variable A; related to z. Here, \(s) := )\(T s) = \(t)
applies. For the extended adjoint state A, the Lagrangian L(X ,a) = z, and the extended
control system X’ = f (X , 12), the Hamiltonian function is

ﬁ(X,u,A,ﬂ)z—uz—!—]\Tf(X,a). (4.4)
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Theorem 4.2.3 (Mazimum Principle for the transformed time-optimal control problem with
fized end time) A transformed time-optimal control problem 2.2.4 for an extended control sys-
tem with compact input space U in considered. Let A = ()\ A ) € R™ be the extended ad-

joint state, H the Hamiltonian function (4.4), (X*(-),A*(:),@*(-)) an extremal, and H*(-) :=

H(X*(-),p, A*(:) ,a*(+)) the extremal Hamiltonian function over the time interval I = [0,1].
Then, the following conditions hold:

N1': Foralls €I, (u,A*(s)) # 0 is true.
N2':  For almost all s € I, there holds the adjoint equation

OH
— A* ~ %
e (X*, 1, ).

1%

N3’: For almost all s € I, u* satisfies

H(X,u,A,ﬁ)fmeaécH( * o, A u)

N4':  For almost all s € I, H*(s) = 0 holds.

N5’:  There holds Ay (0) = Az (1) = 0.

The conditions N1’ to N4’ correspond to the conditions N1 to N4 of Theorem 4.2.2. Condition
N5’ comes from the transversality conditions of the Pontryagin Maximum Principle adapted to
problem 2.2.4. The transversality conditions are relevant if the initial state g and desired state
x4 of a solution over an interval I = [0, 7] are not fixed, but 2(0) € My and z(7) € M has to hold
for given subsets My and My of M. Then, the transversality conditions are A\*(0) L T,y Mo
and A\*(7) L Typ+(-yMg. At time 0, the extremal adjoint state A*(0) has to be orthogonal to the
tangent space to Mo at the resultant state 2*(0), and at time 7, z*(7) has to be orthogonal to
the tangent space to My at 2*(7). For the transformed problem with state space M = M xRy,
the corresponding subsets My and My of M are

My ={(z,z) € M |z =20,2> 0}, My={(z,2) € M |z=uz4,2>0}.

Thus, x is fixed, but z is not specified. Hence, at time 0 and 7 = 1, the transversality conditions
give A7 (0) = As(1) = 0. For details on transversality conditions, see [2, 15, 26, 93].

For the Hamiltonian functions H and H given by (4.4) and (4 1), the extended state X =
(2, 2), and the extended adjoint state A = (X, \),

H(X7u,]\,1i) :ZH(LE7/J,,)\7’11) (4.5)

holds. From condition N2/, A\ = ——- H* is obtained. Using condition N4/, Mz = 0 results,
and Az (s) = 0 is true for all s € I due to condition N5. Since H as in (4.4) does not depend
on \; due to 2/ = 0, the adjoint variable A is not relevant for the control problem. Just like
for free end time problems, the extremal Hamiltonian function H* is equal to zero.

4.2.3 Discussion of the Maximum Principle

The Maximum Principle in Theorem 4.2.2 and 4.2.3 gives necessary optimality conditions for
time-optimal control problems with free and fixed end time. The resulting extremals, which are
candidates for time-optimal solutions, are discussed in Section 4.3. In Section 4.4, boundary
value problems are formulated which have to be solved to find solutions from zq to x4 based on
the extremals. Moreover, the Maximum Principle is the basis for several optimality conditions
in Section 4.5 and 4.6. If the conditions of the Maximum Principle are completed by additional
conditions as in Section 4.6.1 and 4.6.4, sufficient optimality conditions are obtained.
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As discussed in [106, 108, 124], for optimal control of nonholonomic systems, the conditions of
the Maximum Principle have to be complemented by global conditions like geometric arguments
to find optimal solutions. This is the case as the Maximum Principle is a purely local principle
based on the comparison of solutions from infinitesimal perturbations of the input trajectory.
Thus, the conditions are inherently local. For control problems with fixed end time 7, the
extremals (z*(-) , u*(+)) from the Maximum Principle are optimal among all admissible solutions

(z(+) ,u(-)) satisfying
e — 207 <, / lu(8) — u(t)], dt < e

for some € > 0. This local optimality called Pontryagin optimality is addressed in [85, 89]. It is
similar to weak local optimality 2.2.6, since both types of local optimality take the trajectories
of x and v into account. However, for weak local optimality, the input trajectory has to lie in
an e-neighborhood with respect to the infinity norm, whereas for Pontryagin optimality, the
Li-norm of the input is considered.

4.3 Extremals

In the following, properties of extremals (z*(-), A*(-) ,u*(-)) obtained from the Maximum Prin-
ciple 4.2.2 for the time-optimal control problem with free end time are discussed. All properties
also apply to extremals (X*(-),A*(:),a*(+)) from the Maximum Principle 4.2.3 for the trans-
formed time-optimal control problem with fixed end time.

Definition 4.3.1 (Extremal) Any triple (x*(-) , \*(+) ,u*(+)) satisfying the necessary optimality
conditions of the Maximum Principle 4.2.2 is called extremal.

The trajectories 2*(-), A\*(-), and u*(-) are the extremal state, extremal adjoint state, and
extremal input. The Hamiltonian function H*(-) = H(z*(-), p, A*(+) ,u*(:)) is the extremal
Hamiltonian function. Extremals are candidates for solutions to the time-optimal control prob-
lem 2.2.3. If 2*(7) = x4 holds for some 7, the solution has not to be optimal, as 7 > 7'° can
be true. Thus, time-optimal solutions are a subset of the extremals.

Definition 4.3.2 (Normal extremal, abnormal extremal) Any extremal 4.3.1 satisfying the
necessary optimality conditions of the Mazimum Principle for p =1 is called normal extremal.
Any extremal satisfying the necessary optimality conditions for p = 0 is called abnormal ex-
tremal.

If an extremal is abnormal, the Lagrangian L does not affect the Hamiltonian function due
to 1 = 0. Thus, the cost function J(7,2,u) = [, L(z,u) dt is not taken into account when can-
didates for solutions are determined. For most nonholonomic kinematic systems, non-constant
abnormal extremals do not exist due to properties of their Lie algebras, see [117, 120].

Definition 4.3.3 (Regular extremal, singular extremal) Any extremal 4.3.1 for which the input
u*(+) is uniquely determined for almost all t € I by the maximization (4.3) of the Hamiltonian
function is called regular extremal. Any extremal for which the input u*(-) is not uniquely
determined by this mazimization over a proper time interval is called singular extremal.

For specific classes of control systems like affine systems, singular inputs can be determined
from successive time derivatives of the Hamiltonian function, see [2, 15, 56]. Besides extremals
which are either regular and singular, for some optimal control problems, there are extremals
which consist of regular and singular subarcs, i. e., segments where the extremal is regular and
segments where it is singular.
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By the null-maximizing condition N4 of the Maximum Principle 4.2.2, —1+\J f(zo,u*(0)) =
0 holds for =1 at time ¢ = 0. Then,

Agy = {Xo € R™ | =1+ AJ f(20,u"(0)) = 0} (4.6)

is the set of all initial conditions Ay of the adjoint state for which there are normal extremals
(z*(-) , \*(+) , u*(+)) which satisfy the necessary optimality conditions of the Maximum Principle
for 2*(0) = xo and \*(0) = Ag. The set A, satisfies dim A,, < n — 1 for dim M = n, see [104].
If all initial conditions Ao € A, which result in normal singular extremals are removed from
A107 the search space A, C Azo is obtained, which is defined next.

Definition 4.3.4 (Search space) A time-optimal control problem 2.2.3 with initial state xg
is considered. The set A, C Axo of initial conditions Ao for which there are normal reqular
extremals (x*(-) , A*(+) ,u*()) which satisfy the necessary optimality conditions of the Maximum
Principle for x*(0) = xg and \*(0) = Ao is called search space.

The set A, is called search space since for the path planning in Section 7.2, initial conditions
Ao € A, are searched such that normal regular extremals 2*(-) result which go from zg to the
desired state z4. The search space depends on the initial state xy of the control problem. If no
normal regular extremal exists for an initial state xo, A, is empty.

Definition 4.3.5 (Switching function, switching time, arc duration, bang-bang input, bang-
bang extremal) For an affine control system @ = fo(x)+> v, gi(x) u;, the Hamiltonian function
(4.1) is written as

m

H(z, M\ u) = —p+ A fo(z) +Zsi(x,)\) Uj. (4.7
i=1

The real-valued functions s;(x,\) :== AT g;(x) are called switching functions.

Let the switching functions have discrete sets of zeros and ns € N be finite. If s;(x(t;), A(t;)) =
0 holds for at least one switching function s; at time t = t;, then t; is called switching time.
For ng switchings taking place in the interval I = [0,T) at the switching times {t1,...,t,,} with
0<t1 < <tn, <T, the finite partition

I=LULU-Ul, Ul =[0,t))Ut1,t2) U+ Ultn.1,tn.) U [tn., T]

of I results. The periods Aty =t1, Atj =t; —tj_1, Aty,41 =T —ty, are called arc durations.
To implement the mazimization of the Hamiltonian function (4.7) for the symmetric input
space U = [—0y, U1] X + -+ X [~lm, U], the extremal input variables u; have to satisfy

u; = sgn(s;) i

for s¥(-) == si(z*(:),\*(+)). The extremal input u*(-) called bang-bang input is constant over
each arc duration At; for j=1,...,ns + 1 and satisfies u*(t) € bdU for almost all't € I. The
resultant extremal called bang-bang extremal is reqular.

If an extremal switching function s; has a zero-crossing at the switching time ¢;, the extremal
input u} switches from +4,; to F4; according to u; = sgn(s}) @;. Here, sgn is the sign function.
As the switching functions s; are assumed to have discrete sets of zeros in Definition 4.3.5, the
extremal inputs are uniquely determined by u} = sgn(s})u; for almost all ¢ € I. Thus, the
bang-bang extremals are regular. Otherwise, if sf(t) = 0 holds over a proper time interval,
a singular extremal is obtained, as u} is not defined by the maximization of the Hamiltonian
function. If at a switching time ¢;, there holds s;(z(t;), A(t;)) = 0 for one switching function
si, then t; is called simple switching time. If s;(z(t;), A(t;)) = 0 holds for several switching
functions, t; is called multiple switching time. In Definition 4.3.5, the number of switchings n,
is finite, which is the relevant case for most optimal control problems. In general, extremals with
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infinitely many switchings can occur. This situation called Fuller phenomenon was originally
described in [42]. In [2, 31, 32, 88, 99, 100, 106], optimal control problems for nonholonomic
and other systems are discussed which exhibit the Fuller phenomenon.

As the input u*(-) is constant over each arc duration At; for a finite number of arcs, u*(-)
is piecewise constant over the interval I. Bang-bang inputs are piecewise constant inputs
which take values on bd U for almost all £. Trajectories obtained from bang-bang inputs are
called bang-bang solutions. Optimal bang-bang solutions can be computed by switching time
optimization addressed in [30, 31, 32, 51, 71, 73]. For references to switching functions, bang-
bang inputs, and bang-bang extremals, see [2, 3, 15, 26, 76, 104, 120].

For optimal control of affine control systems like the car-like robot, the study of switching
functions, their time derivatives, and the switching structure equations of the coupled dynamics
of the switching functions is a key step to understand the optimal control problem. For details
on the analysis of optimal control problems by means of switching functions, see [28, 106, 108,
120, 124]. A bang-bang extremal for time-optimal control of the unicycle is given in Section 4.7.
In Chapter 6, extremals for time-optimal control of the BSR are considered which are similar
to bang-bang extremals.

4.4 Boundary value problems

In this section, the boundary value problems which result from the application of the Maximum
Principle to the time-optimal control problems 2.2.3 and 2.2.4 are defined, and an overview of
standard solvers for boundary value problems is given. Only regular extremals are considered
as solutions to these problems, as the solutions should be potentially optimal and uniquely
determined by the initial state, the initial condition of the adjoint state, and the interval I.
Thus, regular extremals are applied, for which the extremal input «*(-) is uniquely given by
the maximization of the Hamiltonian function for almost all ¢ € I. In contrast, for singular
extremals, u*(-) is not uniquely determined by the maximization for almost all ¢ € I.

Definition 4.4.1 (Boundary value problem of the time-optimal control problem) For a time-
optimal control problem 2.2.3, let (z*(-),\*(-),u*(-)) be regular extremals which satisfy the
necessary optimality conditions of the Mazimum Principle 4.2.2. The problem to find an end
time T > 0 and an nitial condition Ay such that for an extremal satisfying x*(0) = xo and
A*(0) = A, there holds x* (1) = x4 is called boundary value problem of the time-optimal control
problem with free end time. Any solution (Ao, T) is called solution to the boundary value problem.

In Definition 4.4.1, no minimal end time 7%° for a time-optimal solution 2.2.3 is required, but
any end time 7 satisfying x*(7) = z4. Problem 4.4.1 is a problem with free end time, as the
end time 7 is not specified. The value of the extremal adjoint state A*(7) at 7 is arbitrary.

Definition 4.4.2 (Boundary value problem of the transformed time-optimal control problem,)
For a transformed time-optimal control problem 2.2.4, let (X*(), INOR" ()) be reqular extremals
which satisfy the necessary optimality conditions of the Mazximum Principle 4.2.3. The problem
to find an initial condition z(0) = T and an initial condition \o such that for an extremal
satisfying X*(0) = (xo,7) and A*(0) = (5\0,0), there holds X*(1) = (xq,7) is called boundary
value problem of the transformed time-optimal control problem with fixed end time. Any solution
(5\0,7') 18 called solution to the boundary value problem.

For the initial condition A*(0) = (Ag, Az (0)), there holds A;(0) = 0 due to condition N5'.
Problem 4.4.2 is a problem with fixed end because of 7 = 1. Boundary value problems with
fixed end time can be solved by standard solvers, as these solvers require a fixed time interval.
In contrast, our approach for path planning in Chapter 7 directly tackles the boundary value
problem with free end time. Most standard solvers for boundary value problems are based
on the shooting method, the collocation method, or continuation. Compared to initial value
problems, boundary value problems are harder to solve. Depending on the boundary conditions,
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there may exist no solution or a finite or infinite number. The solvers discussed here need a
good guess of the solution for initialization. Otherwise, they give poor results, as they cannot
find solutions which are not close to the initial guess.

Shooting methods solve a boundary value problem by transforming it to an initial value
problem and a root-finding problem for the shooting function which gives the deviation from
the desired state at time 7. The root-finding problem is usually solved by an iterative method
like SQP. Starting from an initial guess of the solution ()\0,7), the values of Ay and 7 are
iteratively updated until the shooting function falls below a given tolerance. For details on
shooting methods, see [6, 30, 60], and for applications to boundary value problems which result
from optimal control problems, see [6, 8, 65, 72, 75, 76]. Shooting methods give poor convergence
if no good initial guess is available or if the initial value problem becomes unstable.

To handle boundary value problems which give unstable initial value problems, collocation
methods as discussed in [60] are applied. A frequently used implementation of a collocation
method is the solver bvp4c provided by MATLAB. For the approximation of the solution of
the boundary value problem, bvp4c uses cubic polynomials. To initialize the solver, an initial
mesh and a guess of the solution at the mesh points are required. The mesh is adapted to
obtain the specified accuracy of the solution for an almost minimal number of mesh points. For
highly accurate results, many mesh points are needed, slowing down the computation. Details
on bvp4c are given in [52]. In [47], bvp4c is used to solve an optimal control problem for
spacecraft formations.

To facilitate the initialization of the solutions, boundary value problems can be solved by
continuation. Starting from a simplified boundary value problem for which a closed-form solu-
tion exists, the boundary value problem is solved iteratively. Here, the solution of the previous
run is the initialization of the next. A continuation parameter ¢ € [0,1] is increased from
iteration to iteration, starting from ¢ = 0. For ¢ = 0, the simplified boundary value problem
with the closed-form solution arises, and for ¢ = 1, the original problem. In general, there is no
guarantee that a solution to the original boundary value problem is found this way, as it may
have a completely different structure than the solution to the simplified problem. Besides, the
iterative approach may be computationally costly, since at each iteration, the resultant bound-
ary value problem has to be solved. In [5], continuation is used to compute shortest paths for a
wheeled mobile robot. For the simplified boundary value problem, the orientation of the robot
is neglected, and the initial and desired configuration are connected by a straight line. In [47],
an optimal control problem for spacecraft formations is solved by continuation.

4.5 Overview of further necessary optimality conditions

Besides the necessary optimality conditions of the Maximum Principle, there are other nec-
essary optimality conditions which specify candidates for optimal solutions. The necessary
conditions addressed here comprise the Legendre-Clebsch conditions in Section 4.5.1, bounds
on the number of switchings in Section 4.5.2, and the theory of envelopes in Section 4.5.3.
These necessary optimality conditions are applicable to time-optimal control problems with
free end time. All optimality conditions of this section are used to analyze the optimality of
extremals (z*(-),A*(+),u*(-)) from the Maximum Principle. Hence, the superscript * is omit-
ted for the extremals in the following, and (x(-), A(:),u(-)) is written to simplify the notation.
Other necessary conditions not discussed here are higher-order Maximum Principles addressed
in [15, 17, 56]. Based on the ordinary Maximum Principle which provides first-order conditions,
the higher-order Maximum Principles give second- and third-order conditions.

4.5.1 Legendre-Clebsch conditions

For systems with compact input space U, the maximization condition N3 is a necessary op-
timality condition. In this section, systems with non-compact input space U are considered,
i.e., U is either an open subset of R™ or R™ itself. Moreover, the Hamiltonian function H is
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assumed to be twice differentiable with respect to w. Then, the condition H, = 0H/0u = 0 is
used instead of condition N3. The condition H, = 0 is true if u gives a minimum, a maximum,
or a saddle point of H. If in addition to H, = 0, the Legendre-Clebsch condition

0’H

Huu =
ou?

(z, p, A, u) <0 (4.8)
holds, then the Hessian H,, is negative semidefinite and H is concave in u. If the strict
Legendre-Clebsch condition H,, < 0 is true, then H,,, is negative definite, H is strictly concave
in u, and v gives a local maximum of H. The condition H,, < 0 is a second-order necessary
optimality condition for systems with non-compact input space. It is a sufficient condition
for an input u satisfying H, = 0 to give a local maximum of H. However, it is no sufficient
optimality condition, as H,, = 0 and H,, < 0 only guarantee that the maximization condition
N3 holds for systems with non-compact U. The strengthened Legendre-Clebsch condition

u' Hyu < —aul)’ (4.9)

for a > 0 is a prerequisite for the local second-order sufficient conditions in Section 4.6.2. For
details on Legendre-Clebsch conditions, see [15, 26, 56, 95].

While the conditions (4.8) and (4.9) apply to systems with non-compact input space U,
there are other conditions related to the Legendre-Clebsch conditions for systems with compact
input space. In [65, 75, 86], modified Legendre-Clebsch conditions are stated for systems with
compact input space U = {u € R™ |¢(u) < 0} specified by an input constraint 3.1.3. Recall
that the modified input vector w (3.3) consists of all input variables u; which are not affected
by active input constraints, i. e., the input variables w; are those which do not lie on bd U. The
input vector v contains all input variables w; which are not in w, i.e., which do lie on bdU.
Using v and w, the modified Legendre-Clebsch condition is

0’H

(, pt, A, v,w) <0 (4.10)

wa = a 5 .
ow? -

The strengthened modified Legendre-Clebsch condition for a > 0 is
w' Hypw < —a|lw|?. (4.11)

For singular extremals, generalized Legendre-Clebsch conditions are given in [2, 15, 56, 77, 95].

4.5.2 Bounds on the number of switchings

For bang-bang extremals 4.3.5, necessary optimality conditions for time-optimal control prob-
lems can be given based on the number of switchings ng, i.e., the number the inputs change
between values on bd U. General results on upper bounds on ng exist for linear time-invariant
systems and single-input affine systems of low dimension. The theory of envelopes which may
also give bounds on n; is discussed separately in Section 4.5.3.

For time-optimal control of linear time-invariant systems @ = A x + B u with compact convex
input space U, bounds on ng are addressed in [2, 15, 26, 93, 104, 117]. If A has only real
eigenvalues, a basic result for optimal bang-bang extremals of controllable single-input systems
& = Ax+bu with dim M = n and symmetric input space U = [—1, 4] is that ny < n— 1 holds.

For time-optimal control of single-input affine systems & = f(z) + g(z) v with symmetric
input space U, results on bounds on ng exist for n € {2,3}. For the bounds to hold, the
Lie algebra of the vector fields f and g has to satisfy specific conditions. For n = 2 and C*®
vector fields, bounds on ng are given in [15, 111, 117] which require additional nondegeneracy
conditions. For n = 2 and real analytic vector fields, results can be found in [112, 113]. They
do not rely on additional nondegeneracy conditions, as these conditions are satisfied for all real
analytic systems. In the most basic setting, for n = 2, bang-bang extremals with more than
one switching cannot be time-optimal. For systems & = f(z) + g(x) v with C* vector fields
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and n = 3, bounds on n, are discussed in [17, 99, 100]. Here, time-optimal solutions have at
most two switchings in the most elementary case.

Besides time-optimal control of linear time-invariant and single-input affine systems, bounds
on ng exist for other specific systems. Most of these findings are derived based on closed-form
solutions. In [28, 32], time-optimal solutions for underwater vehicles modeled as multi-input
dynamic systems are considered and bounds on ng are stated. For paths of the snakeboard with
minimal number of switchings between motion primitives, bounds on ns are provided in [48].
For paths of underactuated left-invariant systems on matrix Lie groups with minimal number
of switchings between left-invariant vector fields, bounds on n4 are given in [68]. For the Dubins
and Reeds-Shepp paths covered in [37, 94, 108, 120], ns < 2 and ns < 4 holds, respectively.
Besides, the number of cusps of the Reeds-Shepp paths satisfies n, < 2.

4.5.3 Theory of envelopes

In [110, 115, 120], necessary optimality conditions are derived based on a generalization of
the theory of envelopes from the classical calculus of variations. Among others, the necessary
conditions apply to bang-bang extremals 4.3.5. To obtain the conditions, exponential notation
is used to represent the flow under bang-bang inputs. For details on exponential notation, see
[80, 104]. By this notation, it is possible to give end-point maps 2.1.5 of the extremals for specific
systems. If such end-point maps are available, they can be differentiated with respect to the
arc durations. Using the resultant differentials, envelopes are constructed, and the generalized
envelope condition is applied to exclude bang-bang extremals with too many switchings.

In [110, 115], systems & = f(z)+ g(x) u with symmetric input space U are considered. Under
conditions on f, g, and [f, g, it is shown by the generalized envelope condition that bang-bang
extremals with more than one and two switchings cannot be time-optimal for n = 2 and n = 3,
respectively. In [120], the generalization of the theory of envelopes is used to prove that specific
Reeds-Shepp paths of type C|CC|C are not optimal. Likewise, it is shown that some Dubins
paths of type CCC' and all paths of type CCCC' cannot be optimal.

4.6 Overview of sufficient optimality conditions

Sufficient optimality conditions guarantee that a solution is optimal. The conditions addressed
here are the Arrow and Mangasarian sufficient conditions in Section 4.6.1, local second-order
sufficient conditions with Riccati equation in Section 4.6.2, local second-order sufficient condi-
tions for bang-bang extremals in Section 4.6.3, and Boltyanskii’s sufficient condition in Section
4.6.4. The Arrow and Mangasarian sufficient conditions and Boltyanskii’s sufficient condition
lead to global optimality, whereas the other conditions give local optimality. The sufficient
conditions of Section 4.6.1 and 4.6.2 are usually applied to transformed time-optimal control
problems 2.2.4 with fixed end time. The other conditions are also used for time-optimal control
problems 2.2.3 with free end time. Like in Section 4.5, the optimality conditions are applied
only to extremals from the Maximum Principle and the superscript * is omitted. Further re-
sults of optimal control theory regarding sufficiency are based on the Hamilton Jacobi Bellman
theory not discussed here. For references, see [2, 15, 26, 88, 104, 119].

4.6.1 Arrow and Mangasarian sufficient conditions

For the transformed time-optimal control problem 2.2.4 with fixed end time, a normal extremal
(X(-),A(), (")) is considered, i. e., an extremal which satisfies the conditions of the Maximum
Principle 4.2.3 for 4 = 1. If the extremal Hamiltonian function H = fI(X,u,A,a) is concave
in X on the whole state space, the extremal is globally optimal. This condition called Arrow
sufficient condition is addressed in [43, 50]. In general, concavity of the Hamiltonian function
H in X is very restrictive and not satisfied for most control problems. An even more restrictive
condition for global optimality discussed in [43, 66] is the Mangasarian sufficient condition
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which requires that H is concave in X and @. If the Arrow or Mangasarian sufficient condition
holds for strict concavity instead of simple concavity, the solution is optimal and unique.

In [74, 86], the Arrow sufficient condition is applied to a control problem of optimal production
and maintenance. As H is not concave in X, no optimality can be shown. In [47], optimality
and uniqueness of solutions for spacecraft formations with minimal fuel consumption are proved
by the Mangasarian sufficient condition.

4.6.2 Local second-order sufficient conditions with Riccati equation

Local second-order sufficient optimality conditions for systems with non-compact input space
which satisfy the strengthened Legendre-Clebsch condition u Hyuu < —a ||ul|® as in (4.9) are
covered in [8, 65, 70, 72, 75]. These conditions result from a study of the second variation
along an extremal. The solvability of a matrix Riccati differential equation is analyzed to check
positive definiteness of the quadratic form of the second variation. Provided that additional
regularity conditions hold, for an extremal to be locally optimal, a bounded solution Q(+) to the
Riccati equation has to exist which meets specific boundary conditions. To check strong local
optimality 2.2.6 of extremals of time-optimal control problems, the transformed time-optimal
control problem 2.2.4 is considered. The dimension of the extended state X = (&, 7) is 2 = n+1.
For the symmetric n x 1 matrix @), the Riccati equation

2 : - - SN 1 T
Q' =-Qfx —[x Q- Hyx + (Hgy+Qfa) Hyy (Hyy +Q fa) (4.12)
is studied for the partial derivatives
. of . of - PH o*H O*H
v = —~=, fa= ==, % = == Hzpp=——=—y Hu= 4.13
x=ox T g M= 5 Xi T pXou (4.13)

o2’

Here f and H are assumed to be such that the derivatives (4.13) exist. The derivatives are
evaluated along the extremal trajectories of X and @. For time-optimal control problems with
fixed initial and desired state, an extremal is strongly locally optimal if a bounded solution Q(-)
can be found whose element g5 satisfies the boundary conditions ¢ (0) > 0 and g5 (1) < 0.

For control systems with compact input space U = {u € R™ |c(u) < 0} specified by an
input constraint 3.1.3, a modified local second-order sufficient optimality condition addressed
in [65, 72, 75] gives weak local optimality 2.2.6. For this condition to apply, the strengthened
modified Legendre-Clebsch condition w T Hypw < —a|jw]|® as in (4.11) has to hold. Depending
on the active input constraints, the right-hand side of the Riccati equation switches, i. e., changes
discontinuously. The relevant Riccati equation is

Q/ = —QfX —]E;Q—HXX + (HXﬂ +vaﬁ)P(PTHﬂﬂP)71 pT (HXﬂ-i-qu)T (4.14)

Recall the index set I(s) as in (3.2) of active input constraints at time s and the number of
active input constraints n,(s) = |I(s)| which satisfies 0 < n,(s) < m. The matrix P in (4.14) is
a full rank m x (m — n,(s)) matrix which has to satisfy Cy P = 0 for the n,(s) x m matrix Cy.
Based on the vector ¢ = (¢y,¢f,...,¢,,,¢),) of the functions of the input constraint c¢(@) < 0,
the vector C' consists of the functions ¢; and ¢; of the active input constraints ¢; (@) = 0 and

¢f (@) = 0. From C, the matrix

7

oC

Ca = 5a

(4.15)

is obtained. If no input constraint is active, i. e., if n,(s) = 0 holds at time s, the Riccati equation
(4.14) results in (4.12). If n,(s) = m input constraints are active, the Riccati equation (4.14)
gives the linear matrix differential equation

Q=-Qf¢—frQ—-Hgg. (4.16)
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If a bounded solution Q(-) to equation (4.14) exists which satisfies ¢ (0) > 0 and ¢z (1) < 0,
the extremal is weakly locally optimal.
For control systems

z = f(z,v,w) = folz,w) + Zgi(x,w) v; (4.17)

i=1

with affine input v € V and non-affine input w € W, compact input space V.. C R™ and
W =R™2, a local second-order sufficient optimality condition is stated in [86]. This condition
can be applied if the input w meets the strengthened modified Legendre-Clebsch condition
(4.11). Then, it gives strong local optimality.

For applications of local second-order sufficient conditions with Riccati equation to time-
optimal control problems of the Earth-Mars orbit transfer, see [75], the Zermelo problem with
non-constant velocity field, see [70], and the Rayleigh problem, see [75]. For applications to
other than time-optimal control problems, see [8, 65, 72, 86].

4.6.3 Local second-order sufficient conditions for bang-bang extremals

Local second-order sufficient conditions for bang-bang extremals 4.3.5 are addressed in [3, 32,
73, 76, 85, 90, 91]. These conditions differ in the principles they are derived from, the required
assumptions, and the resultant local optimality. The conditions in [73, 76, 90] can be used for the
time-optimal control problem 2.2.3, whereas the conditions in [3, 91] apply to the transformed
time-optimal control problem 2.2.4. The optimality conditions for bang-bang extremals are
not given here in detail, as this would require to introduce much notation. In particular, the
conditions are not applicable to normal regular extremals of the BSR, as these extremals are
no bang-bang extremals, see Section 6.4.

One common precondition for all second-order sufficient conditions for bang-bang extremals is
the strict bang-bang property s;(z(t;), A(t;)) # 0, which has to hold for all switching functions
with s;(z(¢;), A(t;)) = 0 at each switching time ¢;. Most conditions require more restrictive
versions of this property which rule out multiple switching times, i.e., switchings of several
inputs at the same time. Ounly the conditions in [32, 91] allow multiple switching times.

According to [85], most second-order sufficient conditions for bang-bang extremals arise from
two basic approaches, the study of a quadratic form on a finite dimensional critical cone and
the transformation to a finite dimensional optimization problem. The optimality conditions
derived from these two principles are equivalent and give strong local time-optimality.

The first approach presented in [76, 85] provides local second-order sufficient conditions which
require that a quadratic form §2 on a finite dimensional critical cone is positive definite. The
elements of this critical cone are first-order variations of an extremal with respect to the switch-
ing times. To show positive definiteness, a transformation of {2 to perfect squares is applied
which is based on the solution of a Riccati equation similar to (4.16).

For the second approach described in [3, 73, 85, 90, 91], the control problem is transformed
to a finite dimensional optimization problem, the induced optimization problem. It arises from
perturbations of the switching times ¢; and the free end time 7. Local second-order sufficient
conditions for optimization problems with equality conditions are analyzed for this problem. If
these conditions and the strict bang-bang property hold, strong local time-optimality results.

Local second-order sufficient conditions for bang-bang extremals are applied to the time-
optimal control problem for the Van der Pol Oscillator in [76, 90], the Rayleigh problem in
[73, 76], an underwater vehicle in [32], a nuclear reactor in [76], and a two-link manipulator in
[73]. For applications to other than time-optimal control problems, see [73, 74].

4.6.4 Boltyanskii’'s sufficient condition

Boltyanskii’s sufficient condition, also called Boltyanskii’s regular synthesis, is originally given
in [14] and discussed in [26, 88, 105, 106, 119]. Regular synthesis means to find a piecewise
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smooth feedback u: Ix M — U, (t,x) — u(t, ) to generate solutions which satisfy the necessary
optimality conditions of the Maximum Principle. Solutions obtained this way are globally
optimal if they meet additional regularity conditions.

For Boltyanskii’s sufficient condition, the additional regularity conditions are analyzed based
on a partition of the state space M of dimension n into cells P; which are submanifolds of
dimension dim P; < n. The following conditions have to hold for optimality: The feedback
u(t, z) has to be smooth in each cell. The resultant solution has to enter each cell at a nonzero
angle. If a solution passes from cell P; to cell P;, dim P; and dim P; have to fit. The minimal
cost function J has to depend continuously on xy. For details, see [14, 26, 88, 106].

In [105, 106], Boltyanskii’s sufficient condition is applied to show optimality of the Reeds-
Shepp paths. For this, closed-form representations of the Reeds-Shepp paths are used. The
46 paths required to connect each initial and desired configuration are divided into seven path
types. For each path type, the cells implementing the partition of the configuration space are
given. As discussed in [88, 105, 106], Boltyanskii’s sufficient condition requires very strong
assumptions. According to [106], it does not apply to solutions with infinitely many switchings
resembling the Fuller phenomenon from Section 4.3. Besides, optimality of the Dubins paths
cannot be proved by Boltyanskii’s sufficient condition as the minimal path length does not de-
pend continuously on the initial state. Based on other definitions of regular synthesis, sufficient
conditions are given in [88, 119] under less strict assumptions.

4.7 Example: Time-optimal control of the unicycle

To exemplify the definitions and theorems of this chapter, time-optimal control of the unicycle
is addressed. For this, the kinematic model (3.14) of the unicycle, an affine control system with
symmetric input space U = [—1iy, {1 X [~ 12, Gi2], should be steered from an initial configuration
qo to a desired configuration ¢; in minimal time. By the Filippov Existence Theorem, time-
optimal solutions exist for this control problem. This is true as the unicycle is controllable,
see Section 3.4.1, and it satisfies the linear growth condition, as ||G(q)u| = uf +u3 <
Va2 + a3 < c¢(14]g|) holds for ¢ > (/4% + a3. The velocity sets Fy(q) = {G(q)u |u € U}
are convex for all ¢ € @, as U is convex and convexity is preserved under G(q).

To formulate the necessary optimality conditions of the Maximum Principle, the Hamiltonian
function is required. For system (3.14) and the adjoint state A = (A1, Aa, A3), it is

H(q,p, A\ u) = —p+ Aug + (A2 cos(@) + Az sin(f)) us. (4.18)

The Maximum Principle gives necessary optimality conditions which have to be satisfied by
extremals (¢*(-), \*(*),u*(+)) and H* = H(q*, pt, \*, u*). Because of condition N1, (u, A\*) # 0
must hold for all ¢ € I. The adjoint equation

A= (A\jsin(6*) — \; cos(6*)) uj,
s = 0,
o= 0

from condition N2 has to be true for almost all ¢ € I. Hence, \5(t) = A2(0) and A5(t) = A3(0)
applies for all ¢ € I. By condition N3, * has to maximize the Hamiltonian function (4.18) such
that H(q*, u, \*,u™) = maxy,epy H(q*, u, A*, w) holds for almost all ¢ € I. Condition N4 requires
H* = 0 for almost all ¢ € I. There are no abnormal extremals for time-optimal control of the
unicycle, since for these extremals, the conditions N1 and N4 cannot be true simultaneously.

As the kinematic model of the unicycle is an affine control system, the Hamiltonian function
(4.18) can be written in the form (4.7) as H(q, u, A, u) = —pp+ s1(q, \) ug + s2(q, \) uz with the
switching functions s1(g, A\) = A1 and s2(q, \) = A2 cos(@) + Azsin(0). For s7 = s1(¢*, \*) and
s5 = sa2(q*, \*), the extremal inputs uj = sgn(s}) 41 and uj = sgn(s}) o results.
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For p =1, 43 = iz = 1, and I = [0,4], a bang-bang extremal of the unicycle is shown in
Figure 4.1. The figure consists of a time plot of the orientation angle 6*, an (z*,y*) plot of
the position of the unicycle, a time plot of the elements (A}, A3, A5) of the adjoint state, and
time plots of the switching functions s} and inputs «} for ¢« = 1,2. The extremal starts from
go = (0,0,0) and has ny = 3 switchings. Table 4.1 gives the switching times ¢;, arc durations
At;, and extremal inputs ;. The switching of u; at to = 2.173 changes the steering from right
to left. The switchings of us at t; = 1.004 and t3 = 3.342 cause cusps, i.e., reversals of the
driving direction. The bang-bang extremal in Figure 4.1 is a normal regular extremal.
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Figure 4.1: Bang-bang extremal of the unicycle.

switching/final time | arc duration | extremal input |

t, = 1.004 Aty = 1.004 | @1y = (—ay, G2
ty = 2.173 Aty = 1.169 | fiz = (—t1, —2)
ty = 3.342 Aty = 1.169 | fi3 = (@, —0in)
T = 4.000 Aty = 0.658 | tig = (@, 02)

Table 4.1: Switching times, arc durations, and extremal inputs of the bang-bang extremal of
the unicycle.

To solve the boundary value problem of the time-optimal control problem, an end time 7 and
an initial condition A(0) are required such that an extremal ¢*(-) with ¢*(0) = go results which
satisfies ¢*(7) = qq. Extremals meeting this boundary value problem may give time-optimal
solutions. To single out optimal solutions of the unicycle with minimal end time 7%°, optimality
conditions like those from Section 4.5 and 4.6 can be applied.
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5 The bi-steerable robot

In this chapter, models of the bi-steerable robot (BSR) are developed and analyzed. The BSR
is a wheeled mobile robot with two independently steerable axles. There are many applications
of the BSR in land-based robotics. Examples of the BSR are Mustang MK I, CyCab, and
AutoStrad. Figure 5.1 shows Mustang MK I, a technology demonstrator of a mobile soldier
assistance system. This robot, co-developed by Diehl BGT Defence of Germany, is designed
for force protection, reconnaissance, and transportation. For details on Mustang MK I and
its capabilities regarding path planning and autonomous convoy driving in rough terrain, see
[55]. In Figure 5.2, two CyCab robots are depicted. The CyCab is a driverless automated
electric vehicle for passenger transport from Robosoft, a France-based company. It is addressed
in [11, 44, 78, 101, 102]. Another example of a wheeled mobile robot which can be modeled
to have the kinematics of the BSR is the automated straddle carrier AutoStrad in Figure 5.3.
This vehicle from Kalmar Industries of Finland is used for driverless container handling. At
the port of Brisbane, Australia, 18 automated straddle carriers are in operation since 2005. For
references to this robot, see [38, 125].

Figure 5.1: Mustang MK I from Diehl BGT Defence, Germany (photo by the author).

Compared to vehicles with just one steerable axle, the BSR has improved maneuverability,
as it can do sharper turns and perform diagonal motions. If both axles are steered in the same
direction, i.e., if ¢, > 0 holds for the front and rear steering angles ¢y and ¢,, the BSR
moves diagonally. If the axles are rotated in opposite directions, i.e., if ¢, < 0 is true, the
BSR goes through curves of smaller turning radius than a robot with only one steerable axle
rotated at ¢ or ¢,. Due to its improved maneuverability, the BSR can maneuver in narrower
spaces than robots with just one steerable axle, see [101]. This is beneficial for operations in
unstructured environments like disaster areas. Compared to other ground vehicles, the BSR
provides a highly maneuverable locomotion platform without resorting to tracks or skid steering
which are less suitable for high speed driving. Besides, the BSR can drive from one position to
another in maybe shorter time and with shorter path length than wheeled mobile robots with one

55
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Figure 5.2: CyCab robots from Robosoft, France (photo courtesy of Robosoft).

steerable axle. This is addressed in Section 8.5, where time-optimal normal regular extremals
of the RKM and shortest paths of the car-like robot are compared. Moreover, the BSR can be
controlled to have the same steering characteristics for driving forward or backward, which is
advantageous for autonomous driving and teleoperation. Finally, the BSR offers redundancy
as a limited steering capability remains if the steering actuation of one axle fails.

Figure 5.4 shows the bicycle model of the BSR used for modeling. This model, consist-
ing of front axle, rear axle, and chassis, is discussed in Section 5.2. The configuration ¢ =
(0,2,y,¢7,¢,) of the BSR includes the orientation angle 6 also called heading angle, the posi-
tion (z,y) of the center of mass, and the front and rear steering angles ¢ = (¢, ¢,). In Figure
5.4, ¢y > 0 and ¢, < 0 holds. The distances between the center of mass and the front and rear
axle are Ly and L,. The nonholonomic kinematic system 3.3.2 of the BSR, called full kinematic
model (FKM) of the BSR here, is defined next.

Definition 5.0.1 (Full kinematic model (FKM) of the BSR) Let QQ = SE(2) X (—¢,$) x
(=,9), 0 <@ < %, be the configuration space, q = (0,,y, 0y, ;) € Q the configuration, and
gi1, 912, and gi3 the real-valued functions

g1(a) = 4z siner — @),
g2(0) = A7 (Lf cos(py) cos(0 + ¢r) + Ly cos(epr) cos(6 + @f))7 (5.1)
qz(q) = ﬁ (Lf cos(py)sin(f + ¢,) + L, cos(g,) sin(0 + gof))

with Ly > 0 and L, > 0. The nonholonomic kinematic system 5.5.2 given by

911(q) 0 0
@ 912(q) 0 0
d=1| v | =| g3(q) |ur+| 0 [ua+ | 0 | us=g1(¢) w1 + g2 us + g3 us (5.2)
o; 0 1 0
& 0 0 1
with input space U = [—1q, 0] X [—lg, Ua] X [—ls, 03], 4; > 0, and input u = (u1,uz,u3) € U

1s called FKM of the BSR.

The input u of system (5.2) consists of the driving velocity u; and the steering velocities
uy = @5 and uz = ¢, of the front and rear axle. Model 5.0.1 is called full kinematic model to
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7

Figure 5.3: Automated straddle carrier AutoStrad from Kalmar Industries, Finland (photo
courtesy of Kalmar Industries).

distinguish it from the reduced kinematic model (RKM) of the BSR. The RKM is introduced
next to simplify the subsequent analysis, in particular the study of the extremals for time-
optimal control in Chapter 6. For the RKM, the steering angles ¢ = (¢, ¢,) are no longer state
but input variables. This is justified as the configuration variables (0, z,y) for the position and
heading of the robot are the essential configuration variables for path planning and time-optimal
control. In general, transitions between two positions and headings can only be achieved by
time-consuming driving and steering maneuvers due to the nonholonomic constraint. Compared
to this, the steering angles ¢ can be changed in short time. Thus, they are considered as inputs.

Definition 5.0.2 (Reduced kinematic model (RKM) of the BSR) Let Q, = SE(2) be the
configuration space, ¢, = (0,xz,y) € Q, the configuration, and g1, g2, and gs the real-valued
functions

91(9790) = Sin(@f - ‘Pr)a
92(0.¢) = 3 (cos(ir)cos( + ) + coslipy) cos(6 + ) ) (5.3)
g3(0,0) = (coslipy)sin(0 + o) + cos(ipr) sin(0 + 7).

The driftless control system

g1 (97 90)
Gr = z = g2 (07 QO) v = 9(97 (P) v (54)
y 93(& 90)

with input space U, = [=0,0]x [=, §| x[-@, @], 0 > 0,0 < ¢ < T, and input u, = (v, @5, ¢r) €
U, is called RKM of the BSR.

The configuration space @, of the RKM is a subspace of the configuration space @ of the
FKM. In the following, @, is called reduced configuration space and ¢, reduced configuration.
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Figure 5.4: Model of the bi-steerable robot with steering angles ¢ > 0 and ¢, < 0.

For path planning for the RKM, (6o, z0,¥0) is the initial configuration and (64, z4,yq) the
desired configuration. The functions (5.3) result from the functions (5.1) for a normalized
model of the BSR with Ly = L, = % This normalized model is used in the following to
simplify the subsequent studies, in particular in Chapter 6. Using Ly = L, does neither affect
the controllability nor the integrability of the constraint distribution of the BSR. System (5.4) is
no nonholonomic kinematic system 3.3.2, as the steering angles ¢ are no configuration variables
but input variables which enter the system by trigonometric functions. The driving velocity of
the RKM is denoted by v instead of uq, since it is the only remaining velocity input. As ¢, =0
holds for u, = (0,0,0), the RKM is driftless.

5.1 Literature review

Compared to the vast literature on other wheeled mobile robots like the unicycle, the car-like
robot, or the differential drive, there is little literature on the BSR. In the following references,
related work concerning modeling, analysis, and control of the BSR as well as results for other
wheeled mobile robots applicable to the BSR are discussed.

In [25], wheeled mobile robots with fixed and steerable conventional wheels as well as omni-
directional wheels are analyzed and classified into five classes. The BSR is a representative of
one of these classes. Generic models for robots of each class are given, and structural properties
like controllability and feedback equivalence are analyzed. In [34], tracking control of the five
classes of wheeled mobile robots by static and dynamic state feedback is addressed. For the
feedback law of the BSR to be defined, sin(yy)sin(p,) ui # 0 is required, i.e., configurations
with ¢ = 0 or ¢, = 0 are not feasible.

In [123], modeling, tracking control, and stabilization of wheeled mobile robots with several
steerable wheels or axles is discussed. One of the example systems is the BSR. For the considered
kinematic systems, tracking of non-constant reference trajectories by linearizing feedback and
stabilization of constant configurations by time-variant feedback is studied.

Tracking control of a reduced kinematic model of the BSR is addressed in [11]. The controller
is based on fuzzy logic and consists of a path tracking controller for steering and a velocity
planner. The velocity planner takes dynamic properties into account to compute the maximal
admissible velocity depending on the turning radius. For the steering of the BSR in [11],
¢, = s is always applied, i.e., ¢, is not set independently of ¢. In [78], the tracking
controller is extended by a reactive component for collision avoidance and applied to the CyCab.

In [69], the author of this thesis presents a robust tracking controller for nonholonomic dy-
namic systems. The tracking control is based on inverse kinematic models and sliding-mode
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control. The controller allows global tracking of arbitrary reference trajectories with bounded
first and second time derivatives. It makes the closed-loop system robust with respect to
bounded disturbances. The tracking is applied in [69] to the FKM 5.0.1 of the BSR.

In [61], the transformation of wheeled mobile robots including the BSR to the chain form
from Section 3.3.2 is addressed. For the FKM of the BSR with ¢ = (6, z,y,¢s,¢,) and u =
(u1, ug, uz), there holds p =5 and m = 3. Thus, in multi-chain form (3.12), the system is

1 =

z V1,

22 _ 3 _

2 = wa, 2 = wus, (5.5)
2 2 3 _ .3

Z5 = Z1V1, 25 = ZyU1.

In [61], a state and input transformation for the BSR with Ly = L, to (5.5) is given. Based on
this, a transformation for Ly # L, can be derived. It consists of the state transformation

2l =9,
22 = —xsin(f) +y cos(d) + (Lf+LST131(C;Sf(fLi§OS(%);
23 = xcos(f) +ysin(9),
. L ¢ cos sin(yp,. )+ L, cos(yp, ) sin
zi” = 2 cos() +y sin(h) — &£ (ps) s(if(;;r_%) (¢r) (@f)’
23 = xsin(d) —y cos(d)

and the input transformation v = ©(q) u with

©(q) =
sin(er—pr)
—r 0 0
Ly cos(py)sin(p,)+L, cos(p,) sin(py)—sin(ps —¢,) (z cos(0)+ysin(0))  —Lcos®(¢,) L cos®(py)
L sin? (¢ —r) sin (7 —¢r)
L cos(py) cos(pr)+sin(pr—p,)(y cos(0)—x sin(6)) Lsin(2 ¢,) —L cos(py)sin(py)
L 2 sin® (s —r) sin® (o7 —pr)

for L = Ly + L,. As discussed in [61] for Ly = L,, both transformations are not defined at
configurations with ¢y = ¢,. This is true for Ly # L, as well. Thus, to apply the transformation
to chain form, configurations with ¢ = ¢, have to be excluded. This is a strong restriction on
the feasible paths, as such configurations are essential for the BSR to go straight on or perform
diagonal motions at constant heading angle. To the best of the author’s knowledge, no globally
defined transformation of the FKM to chain form is available.

In [101, 102], a flat output of the kinematic system of the CyCab is presented based on the
results in [67]. For this, the rear steering angle of the CyCab is given as function of the front
steering angle. Configurations with ¢y = ¢, are excluded, as the flat output is not defined
there. This exemplifies the close connection between the transformability to chain form and
the existence of flat outputs, see [64]. A flatness based tracking controller for the CyCab can
be found in [44]. Here, ¢, := —k ¢ is used with constant k satisfying 0 < k& < 1.

Under additional assumptions on the dimensions and steering angles of the BSR discussed
in Section 5.2.3, the nonholonomic constraint of the snakeboard equals that of the BSR. As
discussed in Section 3.4.3, the snakeboard is considered as nonholonomic dynamic system. This
is justified by the snake-like locomotion of the snakeboard resulting from angular momentum
generated by motions of the rider. Several references address optimal control of the snakeboard.
In [48], optimal trajectory planning for solutions with minimal number of switchings between
motion primitives is addressed. In [54], optimal trajectories between two configurations with
fixed end time 7 are studied which minimize the cost function

_ T -2 2
J_/O(<p +4%) dt.
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Here, ¢ is the derivative of the steering angle and w the derivative of the rotation angle of the
rotor. Optimal motions of the snakeboard which minimize the control energy are addressed in
[87]. For time-optimal control of a kinematic model of the BSR, these results are not relevant.

Trajectory planning for an automated straddle carrier modeled as BSR is addressed in [125].
The trajectory planner consists of a steering planner and a velocity planner. For a reduced
kinematic model of the BSR, the steering planner implements the turning of the vehicle, while
the velocity planner determines the driving velocity along the path, taking dynamic effects and
bounded driving forces into account. Two maneuvers of the BSR are considered, the zero-side-
slip and the parallel-parking maneuver. For both maneuvers, ¢, is a function of ¢y, i.e., ¢f
and ¢, are not set independently from each other.

In [97], Reeds-Shepp paths of the car-like robot are extended for a reduced kinematic model
of the BSR. For this, steering angles with ¢, = £¢; are applied, resulting in straight line
segments for ¢y = ¢, = 0, arcs of circles for ¢, = —¢; # 0, and new path segments called
parallel steer paths for s = ¢, # 0. In the latter two cases, ¢, is set depending on ¢¢. The
new segments give paths for the BSR which are shorter than Reeds-Shepp paths. In addition,
different paths for the BSR between fixed initial and desired configurations are considered which
have the same path length and allow to avoid obstacles by using the parallel steer paths.

In the reviewed references, there are no results on path planning or optimal control of the BSR
with independent steering angles ¢ and ¢,. For the transformation to chain form in [61] and
the flatness based control in [44, 101, 102], steering angles ¢y = ¢, have to be excluded, which
restricts the admissible paths. The findings on optimal control of the nonholonomic dynamic
system of the snakeboard from [48, 54, 87] are not relevant for path planning and optimal
control of the BSR, which is considered as kinematic system with velocity inputs. The studies
in [97, 125] are most close in spirit to this thesis, as path planning for a reduced kinematic model
of the BSR similar to (5.4) is addressed. However, in both references, ¢, is set depending on
¢¢, and the optimality of the paths is not regarded.

5.2 Modeling

In this section, the modeling of the BSR is covered which results in the FKM 5.0.1. The bicycle
model of the BSR is described, and the configuration space of the BSR is discussed, along
with the configuration space of an idealized BSR with unrestricted steering angles. Then, the
kinematics of the bicycle model is specified, the velocity constraint is derived, and the constraint
distribution is given. The generators of this distribution provide the basis for the FKM.

5.2.1 Bicycle model and configuration space

Like in Section 3.4.2 where the kinematic model of the car-like robot is addressed, the bicycle
model is used here to obtain the FKM 5.0.1 of the BSR. For further applications of the bicycle
model to the BSR, see [44, 97, 125]. The bicycle model has its name from the two wheels in
the midpoint of the front and rear axle which represent the two pairs of wheels of the axles.
Instead of considering two wheels per axle with slightly different steering angles to implement
Ackermann steering, one wheel per axle is sufficient to determine the path of the robot. The
wheels for the front and rear axle have the front steering angle ¢ and rear steering angle ¢,,
respectively. Both angles are given with respect to the longitudinal axis of the robot. The
angles (¢, ) are uniquely related to the angles of the two wheels of the front and rear axle
of the original BSR.

For the car-like robot driving a curve, Figure 5.5 shows the four dark wheels of the vehicle
with the front wheels performing Ackermann steering and the resultant two light gray wheels
of the bicycle model. The distance between the center of rotation C' and the reference point P
at the midpoint of the fixed rear axle is R, the distance between front and rear axle is L, and
the length of both axles is d. For the angles (cp?, (p;) of the left and right front wheel and the
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angle ¢ of the front wheel of the bicycle model,

L g L L
tan(@lf) =7_ g, tan(gpf) = R7—|—%7 tan(py) = =

holds. Thus, for ¢ obtained from path planning, aplf and ¢% have to satisfy

L L
l T

¢y = arctan| —— | , @y = arctan| ————— | .
! <Lcot(<pf)—§> ! (Lcot(apf)—i—g)

Corresponding equations hold for the BSR. For details on steering angles of several wheels on
one steerable axle and the related steering angle in the midpoint of the axle, see [4].

A

Figure 5.5: Ackermann steering of the car-like robot.

The bicycle model of the BSR is shown in Figure 5.6 with a fixed reference frame. With
respect to this frame, (x,y) are the coordinates of the center of mass, and 6 is the orientation
relative to the z-axis. The robot moves in a horizontal plane. The model of the BSR consist of
three rigid bodies: the front and rear axle each represented by a single wheel, and the chassis
connecting the axles. As for the unicycle and car-like robot, the rotation of the wheels is
neglected. The steering angles (¢, ,) are given relative to the longitudinal axis of the robot.
In Figure 5.6, ¢ > 0 and ¢, < 0 holds. The center of mass of the BSR lies on its longitudinal
axis and is used as reference point for modeling. The distances between the center of mass and
the pivotal points of the front and rear axle are Ly > 0 and L, > 0.

Definition 5.2.1 (Configuration and configuration space of the BSR) The configuration

q= (gaxa%@fﬂpr)

of the BSR has dimension p =5 and consists of the heading angle 8 for the orientation of the
vehicle, the coordinates (x,y) of the center of mass, and the steering angles ¢ = (@5, r). The
configuration space of the BSR is

Q= SE(2) x (=¢,¢) x (=4, ) (5.6)

with (0,x,y) € SE(2), ¢5 € (=¢,¢), and ¢, € (=, ). The steering limit of the front and
rear azle satisfies 0 < @ < 3.

The configuration ¢ and the configuration space @ of the BSR are the same as in Definition
5.0.1 of the FKM. The steering limit ¢ < § is required since otherwise, the constraint distri-
bution of the BSR is not regular as shown in Section 5.3.2. For real-world robots, considerably
smaller values of ¢ result from the restricted displacement of the steerable wheels due to the
mechanical setup of the robots.
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Figure 5.6: Detailed model of the bi-steerable robot.

Definition 5.2.2 (Configuration space of the idealized BSR) The configuration space of the
idealized BSR is

Q* = SE(2) x SO(2) x SO(2). (5.7)

The idealized BSR has the same configuration ¢ = (6,z,y, ¢y, ¢,) as the BSR, but the
configuration space Q* (5.7) instead of @) (5.6). The steering angles (¢, ¢,) of the idealized
BSR are unrestricted, i. e., the steerable axles can make complete rotations. The idealized BSR
is of theoretical interest for the analysis of the BSR, as it shows the effects of unrestricted
steering angles. In [5], a car-like robot with unrestricted steering angle ¢ is considered.

5.2.2 Kinematics of the bicycle model
For the kinematics of the bicycle model, the following assumption holds.

Assumption 5.2.3 (Kinematics of the bicycle model of the BSR) The front and rear wheel of
the bicycle model of the BSR act as blades which can change their heading directions and move
forward or backward with respect to these directions.

Considering the wheels as blades makes sense as the rotation of the wheels around their
rotation axes is neglected. The heading directions of the wheels relative to the z-axis are 04y
and 6 4+ ¢,. The blades cannot slide laterally, i.e., no motions orthogonal to their heading
directions can occur.

Lemma 5.2.4 (Velocities of the wheels of the bicycle model) Under Assumption 5.2.3, the
velocities vy and v, of the front and rear wheel of the bicycle model are

by — iy | _ :'c—LfQ'sin(e) A
Uy U+ Ly 6 cos(6) o Yr
and satisfy

i+ L, 0 sin(f)
4§ — L, 0 cos(0)

] (5.8)

apsin(0 + @f) — gyeos(d +¢5) = 0, (5.9)
Epsin(0 + ) — grcos(@+¢r) = 0. '

Proof According to Figure 5.6, the positions of the front and rear wheel are

e | B | | ®H Ly cos(9) | E | | Drcos(6)
! ys y+Lysin(9) |7 7 Yr y—L,sin(d) |’
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Figure 5.7: Velocity of the front wheel of the bi-steerable robot.

Differentiating these positions with respect to time gives the velocities v and v, as in (5.8).

Because of Assumption 5.2.3, the velocities of the wheels orthogonal to their heading di-
rections vanish. Figure 5.7 shows the velocity v; with direction 6 + ¢ and a unit vector ny
orthogonal to vy. As vy can be written as

b

T cos(0 +
P O Y ) (6 + )
Uy sin(d + ¢y)

the unit vector ny orthogonal to vy is

b —sin(0 + ¢y)
! cos(0 +¢5) |’

The scalar product

—sin(0 + ¢y)

= —Zrsin(0 + + 4+ cos(6 +
cos(0 + 1) rsin(0 +¢5) + gy cos( + o)

ving = @ yf}l

equals zero because of the orthogonality of vy and ny. This gives the upper equation of (5.9).
The lower equation is obtained from the scalar product of the velocity v, of the rear wheel with
direction 6 4 ¢, represented by

€
Up = .T = /@2 +y?
Yr

cos(0 + ;)
sin(f + @)

and the unit vector

| —sin(@+¢y)
= cos(0 + ;)

orthogonal to v,.. B
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5.2.3 Velocity constraint and constraint distribution

Theorem 5.2.5 (Velocity constraint and constraint distribution of the BSR) For the BSR
with configuration space Q (5.6) and velocities (5.8) of the front and rear wheel,

0
—Lycos(py) sin(@+¢y) —cos(@+¢s) 0 0 x 10
L, cos(py) sin(@+¢,) —cos(@+@,) 0 0 1 :j B l 0 ] (5.10)
A(q) ¢i
is a regular velocity constraint 3.2.2 of dimension k =2 for all g € Q. The distribution
D = span {X;, X9, X3}
generated by the globally defined vector fields
[ Tz sin(er — or) T . .
i (L cos(or) cos(0+ ) + Ly cos(ipr) cos(0 + 1)) 0 0
X0 = | i (Lyostog) sind + o) + Ly cos()sin0 +2p) | 227 | 0 ) X070
| 3 | L)L

is a constraint distribution 3.2.4 of the constraint (5.10) of rank m = 3 for all ¢ € Q.

Proof Evaluating the velocities vy and v, as in (5.8) with the equations (5.9) gives

—Lfé cos(py) + & sin(d + @) —y cos(@ +¢y) = 0,
L, 0 cos(p,) + & sin(0 + ¢,.) — 3 cos(d + @) =

This is equivalent to (5.10), which is a velocity constraint of the form A(q) ¢ = 0.

To prove that the velocity constraint is regular, it is shown that there are no singular config-
urations in @) at which A(g) drops rank, i.e., rk A(q) = 2 holds for all ¢ € Q. By inspection,
A(g) # 0 is true for all g € Q, leading to rk A(g) > 1 for all ¢ € Q. For rk A(g) = 1,

sin(0 +pf)  —cos(0 + )
det = —cos(0 4 ¢,)sin(0 + ¢f) + cos(f + ;) sin(f + ¢;)
sin(@ + ¢,)  —cos(0+ ¢,)

= - Sin(‘ﬁf - 307')
=0
(5.11)

has to hold. For the configuration space @ (5.6), (¢, ¢r) € (=@,9) x (=@, @) for 0 < ¢ < T is
true. Thus, the steering angles (¢, @) satisfy [pr| < 5 and |@,| < §. Then, condition (5.11)
holds only for ¢ — ¢, = 0, from which ¢; = ¢, results. Plugging ¢ = ¢, in A(q) gives

—Lycos(pr) sin(@+¢,) —cos(@+¢,) 0 0

Aq) = .
(q) L, cos(p,) sin(@+¢,) —cos(@+¢,) 0 0

As sin(f + ¢,) and cos( + ¢,.) cannot be zero simultaneously, rk A(q) = 1 is satisfied only if

—Ly cos(pr) = Ly cos(pr) (5.12)
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holds. However, cos(¢,) > 0 is always true for |, | < 7, and Ly > 0 and L, > 0 applies. Thus,
there is no ¢, which satisfies (5.12), and rk A(q) = 2 holds for all [p,| < §. Consequently, there
are no singular configurations of A(q) in @, and the velocity constraint (5.10) is regular.

For o5 # ¢, the first element of X (¢) satisfies ﬁ sin(py —¢r) #0dueto | — | <7

for [pf| < 5 and |¢,| < 5. For ¢ = ¢, there holds || X1(q)|| = cos®(¢f) > 0 for |ps]| < 3.
Thus, the vector field X;(q) is defined and satisfies X;(q) # 0 for all ¢ € Q. The vector fields
Xo and X3 are defined for all ¢ € Q and satisfy X; # 0. Hence, D = span {X;, X3, X3} is a
distribution of constant rank m = 3 for all ¢ € Q. By inspection, ker A(¢) = D(q) holds, and
D is a constraint distribution 3.2.4. B

In Section 5.3.2, it is shown that the velocity constraint (5.10) is completely nonholonomic.
For ¢1(q) := X1(q), ¢2 := X3, and g3 := X3, the FKM 5.0.1 of the BSR results. The inputs
(u1,ug,uz) of the FKM are depicted in Figure 5.6. The velocity uy is the driving input. It is
the longitudinal velocity of the robot, i.e., the projection of the instantaneous velocity wuc,, of
the center of mass on the longitudinal axis of the BSR. To obtain w1, the velocity uc,, of the
robot is projected on its longitudinal axis with orientation angle #. Using the input u; instead
of ucy, allows to set g1(q) = Xi1(g). Otherwise, for the input wuc,,, the input vector field g
satisfying ¢ = §1(q) ucan + g2 u2 + g3 ug has to be used, which has more complicated elements
than g;. The inputs us and us give the steering rates ¢y and ¢, of the front and rear axle.
If the steering angles ¢y and ¢, are treated as inputs and the distances Ly and L, are set to
Ly=L,= %, the RKM 5.0.2 of the BSR is obtained.

For the idealized BSR with configuration space Q* (5.7), steering angles ¢y = =+
@, = £5 are permitted. For theses steering angles, the matrix A(q) gives

T
5 and

4 0 sgn(py)cos(d) sgn(pf)sin(d) 0 0
(@) = 0 sgn(p,)cos(d) sgn(p,)sin(@) 0 0 |’

and rk A(q) = 1 holds. Thus, configurations with ¢y = £7 and ¢, = £7 are singular. Hence,
for the idealized BSR, the constraint (5.10) is no regular velocity constraint 3.2.2.

Using Ly = L, or Ly # L, does not affect Theorem 5.2.5. Setting Ly = L, = L and
pf = —pr = p gives the matrix A(q) of the nonholonomic constraint (3.17) of the snakeboard.
Regarding the velocity variables (6, #,7) affected by A(q), the snakeboard and the BSR have
the same constraint. As discussed in [22], configurations with ¢ = 7 are omitted from the
analysis of the snakeboard, as the matrix A(gq) drops rank there. These singular configurations
correspond to the singular configurations of the matrix A(g) of the BSR.

5.3 Model analysis

In this section, the FKM and RKM of the BSR are analyzed. Regarding controllability of
the BSR in Section 5.3.1 and integrability of the constraint distribution in Section 5.3.2, the
idealized BSR is considered as well to compare the results obtained for the configuration spaces
@ and Q*. In Section 5.3.3, properties of the RKM relevant for time-optimal control are given.

5.3.1 Controllability
Theorem 5.3.1 (Controllability of the FKM of the BSR) The FKM 5.0.1 is controllable.

Proof According to Theorem 3.1.20, a driftless affine control system with proper input space
is controllable if and only if it is accessible at every ¢ € ). The FKM 5.0.1 is a driftless affine
control system. Its input space U = [—y, 1] X [—iz, Ua] X [—1s3, G3] is proper.

To show that the FKM is accessible at every ¢ € @Q, its accessibility distribution A 4 is
considered, which is the involutive closure of the distribution of the vector fields ¢;, g2, and gs.
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Using the Lie brackets
fﬁ cos(pf — @r)
ﬁ (Lf sin(ey) cos(8 + ¢,) + L, cos(¢p,) sin(f + <pf))

91, 92)(q) = Lf% (Lf sin(y)sin(0 + ¢,) — Ly cos(¢p,) cos(0 + <pf))
0
0

and
ﬁ cos(py — r)
ﬁ (Lf cos(py)sin(6 + ¢,) + L, sin(ep,.) cos(d + <pf)>

91, 93)(q) = ﬁ( — Ly cos(¢y) cos(8 + ¢r) + Ly sin(p,) Sin(9+<pf)) )

the accessibility distribution is

A4 = span{g1, 92,93, [91,92] 91, 93]} - (5.13)

According to the Theorem of Chow, a control system is accessible if the Lie algebra rank

condition dim A 4(¢) = p holds for all ¢ € . The matrix [g1(q) , g2, 93, [91, 92] () , [91, 93] (¢)]
has constant rank p =5 for all ¢ € Q, as

det [g1(q) , 92, 93, (91, 92](9) » [91, 93] (q)] = cos(py) cos(ipr) # 0 (5.14)

Ly+ L,
holds for |¢f| < § and |¢,| < 5. Hence, the Lie algebra rank condition is satisfied for all ¢ € @,
and the FKM is accessible by the Theorem of Chow and controllable by Theorem 3.1.20. B

Like Theorem 5.2.5, Theorem 5.3.1 does not depend on Ly = L, or Ls # L,.

To analyze the accessibility of the FKM of the idealized BSR with configuration space Q*
(5.7), steering angles ¢y € [—m,m) and ¢, € [, 7) have to be considered, as the trigonometric
functions in the elements of g; are periodic with period 27. Then, condition (5.14) does not
hold at specific configurations which do not satisfy |p¢| < § and |¢,| < 7. Instead of the single
accessibility distribution (5.13), the Lie algebra rank condition has to be checked for several
accessibility distributions. For configurations with ¢ # £7 and ¢, # +7, distribution (5.13)
satisfies the Lie algebra rank condition. For configurations with ¢y ¢ {—m,0} and ¢, # £7,
the accessibility distribution

Ay = span{g1, 92,93, [91,92] , [92, [91, 93]} (5.15)

meets the Lie algebra rank condition for the Lie bracket

—ﬁ sin(py — @)
_ﬁ (Lf sin(gpy)sin(f + ¢, ) — Ly sin(p,) sin(0 + gof))
[927 [91793]](q) = ﬁ(Lf sin(gaf)cos(e + (,07-) + Lr sin(gar) COS(& + Sof)) )

0
0
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since

det [g1(q) , 92, 93 [91, 92](9) s [92, [91, 93]1(9)] sin(py) cos(pr) # 0

B 1
L f+ L,
holds. For configurations with ¢ # +7 and ¢, ¢ {—, 0}, the accessibility distribution

AA = span {91792793, [91793] ) [927 [91793]]} (516)

satisfies the Lie algebra rank condition due to

cos(ipy) sin(i,) # 0.

et 91(a) 2. 95 o1, 51(0). [0 v, 950 = ~ -

Finally, for configurations with ¢ & {—m,0} and ¢, & {—m,0}, the accessibility distribution

A4 = span{gs, g3, 91, 92] » [91, 93] ; [92, [91, 93]} (5.17)

meets the Lie algebra rank condition because of

det [g2, g3, [91, 921(0) » [91, 931(@) , [92, (91, 93]](q)] = sin(py) sin(ipr) # 0.

1

Lf + Lr
By choosing the right distribution from (5.13), (5.15), (5.16), and (5.17) depending on ¢, accessi-
bility of the FKM of the idealized BSR results from the Theorem of Chow. Thus, controllability
follows from Theorem 3.1.20.

It is more complex to show controllability for the idealized BSR with configuration space
Q* (5.7) than for the BSR with configuration space @ (5.6), since for specific configurations,
iterated Lie brackets of degree d = 3 instead of degree d = 2 are required for accessibility. Thus,
path planning for the idealized BSR is more complex in general.

Theorem 5.3.2 (Controllability of the RKM of the BSR) The RKM 5.0.2 is controllable.

Proof According to Theorem 3.1.21, a driftless control system is controllable if it is sym-
metric and if for all ¢ € @, there are inputs u; € U resulting in p vector fields f(q,u;)
such that dimspan{f(q,u1),...,f(¢,up)} = p holds for all ¢ € . The RKM 5.0.2 is a
driftless control system which is symmetric, since for every ¢, = g(6,¢)v obtained for some
input uw, = (v,¢y,¢r), the input 4, = (—v, ¢y, ¢,) gives —g(0,¢)v. As the input space
U, =[-0,0] X [—, @] X [—@, §] is symmetric, @, € U, holds for each u, € U,.

The constant inputs u,.; = (v,0,0), e = (v, @, @), urz3 = (v,p, —p) give the vector fields

0 0 sin(2¢p)
fla,ur) = | cos(0) |v, f(g,uz) = | cos(p)cos(0+¢) |v, flg,us) = | cos?(p)cos(f) |v.
sin(0) sin(¢) sin(f + ¢) cos? () sin(6)

For v # 0 and 0 < [p| < 7,

det [f(q,u1) , f(g,u2) , £(g,u3)] = 2% cos® () sin* (i) # 0

results. Thus, dimspan {f(q,u1), f(q,uz2), f(q,us)} = 3 holds for all ¢, € @,, and the RKM is
controllable. W

5.3.2 Integrability of the constraint distribution

Corollary 5.3.3 (Nonholonomic constraint of the BSR) The velocity constraint (5.10) of the
BSR is a nonholonomic constraint 3.2.3.
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Proof According to Theorem 5.2.5, the constraint (5.10) is a regular velocity constraint 3.2.2.
To prove that it is a nonholonomic constraint 3.2.3, it has to be shown that the constraint is
completely nonholonomic, for which Theorem 3.2.6 is applied.

As the RKM is a real analytic system, the involutive closure D of the constraint distri-
bution D = span{X;, X2, X3} can be identified with the accessibility distribution Ay =
span{g1, 92, g3, [91, 92| , [g1, 93]} of the RKM given by (5.13). The accessibility distribution
has full rank dim A4(q) = p for all ¢ € @ as shown in the proof of Theorem 5.3.1. Thus, the
involutive closure D of the constraint distribution has full rank p for all ¢ € Q as well, and the
velocity constraint (5.10) is completely nonholonomic.

As before, Corollary 5.3.3 does not dependent on Ly = L, or Ly # L,.

For the idealized BSR with configuration space Q*, the constraint (5.10) is no regular veloc-
ity constraint at configurations with ¢ = &5 and ¢, = £7, see Section 5.2.3. According to
Definition 3.2.3, a velocity constraint A(q) ¢ = 0 has to be regular to be qualified for a non-
holonomic constraint. Thus, for the idealized BSR with configuration space Q*, the constraint
(5.10) cannot be a nonholonomic constraint 3.2.3. Nevertheless, the idealized BSR is control-
lable as shown in Section 5.3.1. This is true as the Lie algebra rank condition holds if the right

accessibility distribution is chosen depending on the configuration g.

5.3.3 System properties of the reduced kinematic model

In the following, several properties of the RKM 5.0.2 including the absolute translational ve-
locity, the norm of the right-hand side of system (5.4), the minimal turning radius, and the
representation of the RKM as left-invariant control system on SE(2) are discussed. The prop-
erties are used in the subsequent chapters, where time-optimal control of the RKM is addressed.

Lemma 5.3.4 (Absolute translational velocity of the RKM) The absolute translational velocity

[vg| := \/22 + 92 of the RKM is

|| = \/; (3 +2cos(2¢yg) +cos(2 (o — ¢r)) +2cos(2 cpr)) lv] . (5.18)

For |v| = v and ¢ = 7, the absolute translational velocity satisfies
vg] < 0. (5.19)
The mazximal value |vy| = ¥ is obtained at ¢ = (0,0).

Proof For & = g2(0, p) v and y = g3(0, ¢) v given by (5.4),

#2492 = % (cos2(g0f) (c082(9 + o)+ sin2(0 + gor)) + cos?(p,) (6052(9 + o5+ sin2(0 + cpf))

+2 cos(py) cos(pr) (cos( + ¢f) cos(f + ¢,) +sin(f0 + ) sin(f + @r)))

—
—

~—
M

v

I(cosz(gpf) + cos? () + 2 cos(py) cos(pr) cos(pf — gor))

—
N

—
M

2 (5 (4 cos(29) + & (1+ cos(25,))

_|_

% (14 cos(2¢y) +cos(2 (¢ — ¢r)) + cos(2 gz)r))>

2

= (3 +2cos(2¢y) +cos(2 (¢ — ¢r)) + 2cos(2 @T))

holds. Here, for (1),

cos?(a) +sin®(a) = 1
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and
cos(a) cos(3) + sin(a) sin(B) = cos(a — )

is applied, and for (2),

(14 cos(2a))

N | =

cos?(a) =
and

cos(a) cos() cos(y) = i (cos(a+ B —7) +cos(B+~v—a)+cos(y+a— )+ cos(a+ B+7))

is used. Then, for |v;| = /22 + §2, (5.18) follows from

2
2 + yz = % (3 + 2(303(2 gof) + COS(2 ((pf — 907")) + 2COS(2 gor)) .

To show that |v;| <o holds for [v| =¥ and ¢ = % and that |v;| = 0 is true for ¢ = (0,0),

1 ,. . 1
o(epser) = =3 (87 49%) = 3 (B+2008(25) + cos(2 (5 — ) +2c08(22,))

is considered for [py| < ¢ = T and |¢,| < $ = 7. Then, |v;| = /o © holds. The derivatives of
o with respect to ¢y and ¢, are

;:; = 1(-2sin(2¢y) —sin(2 (o5 — 9,))
5657« = %(sin(?(cpf—sor))_QSin(290f))-

If o has an extremum, do/0¢¢ = do/J¢, = 0 holds, and

0o do . . _
90 Yag ~ 2 (sin(2¢y) +sin(2¢,)) =0 (5.20)

s

holds as well. For || < T and |¢,| < 7, (5.20) implies ¢, = —¢y. Then,

G(pf) = o(ep, —ps) = cos*(¢y)

results. For |p¢[ < T, the maximal value of 5(py) is 1, which is obtained at ¢y = 0. If
¢, = —py is applied, o takes its maximal value 1 at ¢ = (0,0). Then, |v;| < ¥ and |v¢| = ¢ for
© = (0,0) arises from |v;| = /o ¥, and Lemma 5.3.4 is true. W

The absolute translational velocity |v¢| depends on (¢, ¢,) and is not constant for constant
|v]. Thus, time-optimal solutions of the RKM are in general no shortest paths, see Section 8.5.

Lemma 5.3.5 (Norm of the right-hand side of the RKM) The norm of the right-hand side of
system (5.4) is

1
llg(8, @) v|| = \/8 (7 +2 cos(2pf) —3 cos(2 (¢ — ¢r)) + 2 cos(2 gor)) [v]. (5.21)
For |v| =0 and ¢ = 7, the norm satisfies

0 < [lg(0,¢) vl < (5.22)

2
—= V.
V3
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Proof The norm of the right-hand side of system (5.4) is ||g(6, @) v|| = /62 + 2 + 2. Using
0 = sin(pf — ¢,) v according to (5.4) and @2 + §® = |v;|* with |v;| given by (5.18),

A . . . /L)2
0%+ i% + 2 = sin®(¢y — ) 02 + % (3+2c08(2¢p5) + cos(2 (v — @) + 2cos(2¢;))

=% (7 +2cos(2¢y) —3cos(2 (¢r — @r)) + 2cos(2 gor))

N

results for

sin?(a) = = (1 — cos(2a)).

N |

Thus, ||g(6, ) v|| = \/62 + 2 + 52 gives (5.21).
To obtain the bounds (5.22) on [|g(6, ) v|| for |v| =¥ and ¢ = 7,

1

5 (7 +2cos(2¢y) —3cos(2(ps — ¢r)) +2cos(2 cpr))

1 (o o
wigrser) = = (92 + +y2) =

is considered for |py| < ¢ = § and |¢.| < ¢ = §. Then, ||g(#,9) v|]| = Jwv holds. The
derivatives of w with respect to ¢y and ¢, are

ow ) _
Gy = 1(2sinep) +3sin(es — ),
ow ) .

oo 1 (=3sin(2(py —¢,)) — 2sin(2 ).

If w has an extremum, Ow/0y; = 0w/dp, = 0 holds. Then,

Ow | O
dpy Doy

= —5 (sin(2¢y) +sin(2¢,)) =0 (5.23)
is true as well. Because of |p¢| < 7 and |p,| < 7, (5.23) implies ¢, = —py, and

Bps) = wlog —p1) = 5 05%(ip7) (5 — Beos(20y) (524)

results. To obtain an extremum of @,
ow

Bo; = cos(ipy) (—5sin(pf) + 3sin(3pf)) = 0 (5.25)

has to hold. For |¢s| < T, (5.25) holds for ¢y = 0 and ¢y = Farccos(1/2/3), and (5.24) gives
w(0) =1, @(:tarccos( 2/3)) =4, o=xr) =2

Thus, the minimal value of © and w is 1, and the maximal value is 5. Hence, ||g(6, ¢) v|| = /wd
satisfies 0 < ||g(0, ) v|| < 2/V30. B

For the conditions (5.19) and (5.22), ¢ = 7 is assumed, as this steering limit is used for time-
optimal control of the RKM in the subsequent chapters. Besides, |v| = ¢ applies, as v(t) = +0
holds for the extremals for time-optimal control of the RKM for almost all ¢, see Section 6.1.1.

Definition 5.3.6 (Minimal turning radius) The radius of the smallest circle a wheeled mobile
robot can drive is called minimal turning radius R.
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The Dubins paths and Reeds-Shepp paths described in Section 1.1 give the shortest paths
of a car-like robot which can drive forward and forward and backward, respectively. These
shortest paths consist of straight line segments and arcs of circles of minimal turning radius R.
The radius r of the osculating circle to a curve (z,y) called radius of curvature is

i — @y

; (5.26)

see e.g. [16]. If the position of a wheeled mobile robot is described by (z,y), the minimal
possible value of r is the minimal turning radius R.

Lemma 5.3.7 (Minimal turning radius of the RKM) For 0 < ¢ < 5, the minimal turning
radius of the RKM is

It is obtained at p = (P, F@).

Proof To determine the minimal turning radius R, the radius r (5.26) is considered for
& = g2(0,p)v and § = g3(0,¢)v given by (5.4). For constant inputs (v,¢r,¢,), i.e., for
v=¢p=¢r=0,

s o= 09, _ —g3(0, @) sin(py — @) v?,
a0

) dg3 .

jo= Sp0v = g:(0.9)sin(es — )07

results from & = go(6, ) v and § = g3(0, ) v using 6 = sin(es — @) v, Ag2/00 = —g3(0, ¢),
and 0g3/00 = g2(0, ). Then, (5.26) yields

3
(9300, ) v* + g5(0, 0) v?) * _ | V53(0.0) v + 630, 0) 02
(93(0,0) v* + g3 (6, ¢) v*) sin(pf — @) v sin(py — @r) v

For \/g3(0, p) v2 + g2(0, ) v2 = /42 + > = || according to (5.18),

(5.27)

(34 2c0m(2:07) + eos(2 oy — 1)) + 2e05(20)
Sin(@f — ¢r)

follows, which gives

(34 2c08(2:07) + cos(2 ey — ) + 2e05(20)

T =
sin(py —¢r)

for sin(¢f — o) > 0. To determine the minimal turning radius, the derivatives

o _ — (3 cos(py) + cos(pr — 2¢,)) cos(¢r)
Oy V2B +2cos(2¢5) +cos(2(pf — ¢r)) +2cos(2¢,)) sin2(<,0f — )
or (cos(2¢y — ¢r) + 3 cos(pr)) cos(py)

0 V2 (3 +2cos(2¢f) +cos(2(¢r — 7)) +2cos(2 ;) sin®(¢r — o)
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are considered. Then, 0r/d¢y = Or/d¢, = 0 holds for minimal r. From this, Or/dps +
Or/d¢, = 0 follows, which gives

o, o _ ~ (sin(2p) + sin(2,)
Ops Oy \/2 (3+2cos(2¢y) +cos(2(pfr —pr)) +2cos(2p,)) sin(ps — <pT)'

For Or/0yps + Or/0¢, = 0 to hold, sin(2¢y) + sin(2¢,) = 0 has to be satisfied. Because of
lor| < @ and || <@ for 0 <@ < 7, there results ¢, = —¢y. Then, (5.27) yields

1
r =3 leot(y)].

The minimal turning radius R is obtained at ¢y = +¢. This gives ¢ = (¢r, ¢r) = (£, FP)
and R = 1 cot(¢). B

For 0 < ¢ < %, Figure 5.8 shows the minimal turning radius R = 3 cot(¢) of the RKM.

The radius R goes to zero for ¢ — 5. For the idealized BSR with unrestricted steering angles
(¢f,%r), R =0 holds, i.e., the robot can turn on the spot.

3 ~
—R($)
2 i
1+ |
0 | | | | | | |
0 s us 3m s 5m 37 T s
16 3 16 4 16 B 16 2

Figure 5.8: Minimal turning radius R() for 0 < ¢ < 7.

Next, it is shown that the RKM can be written as left-invariant control system on SE(2).
For this, the configuration ¢, = (6, ,y) of the RKM is represented by the Lie group element

cos(f) —sin(9) =
g=| sin(d) cos(d) y |. (5.28)
0 0 1

As discussed in Section 3.1.2, the standard basis vectors of the associated Lie algebra se(2) are

0 -1 0 00 1 000
e1=|1 0 0|, ee=]00 0], es=|0 0 1]. (5.29)
0 0 0 00 0 000

Lemma 5.3.8 (Left-invariant control system on SE(2)) Let g (5.28) be the group element of
SE(2) for the configuration g, of the RKM and {e1,ea,e3} given by (5.29) basis vectors of the
Lie algebra se(2). Then, the RKM can be represented as left-invariant control system

g =g (wi(u)er + wa(u) ez + ws(u) e3) (5.30)

on G = SE(2).
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Proof According to Definition 3.1.4, a left-invariant control system on a matrix Lie group G
has the form g = ¢ >\, w;(u) e; for real analytic functions w;: U — R and linearly independent
vectors e; € TG of the Lie algebra. For the RKM 5.0.2 with configuration space @, = SE(2),
the Lie group element g (5.28) is used to represent the configuration ¢, = (0,z,y). The time
derivative of g is

—6sin(0) —6 cos(0) i
g=| 6Ocos(0) —0sin(d) 3
0 0 0

The derivatives (6, &,7) are given by (5.4). Using the basis vectors (5.29) and the functions

w1 (u) sin(pf — r) v
wlu) = | wa(u) | = | cos(ps)cos(pr)v |, (5.31)
ws(u) %sin(gof +pr)v

system (5.30) results which is a left-invariant control system 3.1.4 on G = SE(2). B

The real analytic functions w;(u) in (5.31) can be considered as new input variables of the
transformed input w = w(w). Then, for the transformation matrix

1 0 0
T(@)=1| 0 cos(f) —sin(d) |, (5.32)
0 sin(d) cos(d)

the RKM (5.4) can be written as driftless affine control system ¢, = T(0) w. The transformed
input w takes values in the transformed input space
W = {(wy,wa,w3) |wy = wy(u),wy = wy(u),ws =ws(u),uecU,}.

For v = 1, W is shown in Figure 5.9 for ¢ € {%, T 51—g, %} For fixed v, the transformed
input w results from (5.31) depending on ¢; and ¢, with |ps| < ¢ and |¢,| < ¢. According to
the figure, there are no inputs w € W with w; # 0 or ws # 0 for wy = 0. This is true since only
if the RKM drives forward or backward, i.e., wy # 0 holds, the BSR can change its orientation
0 which requires w; # 0 or perform lateral motions which requires w3 # 0. In Section 6.2, the
transformed input space W is analyzed to show the existence of time-optimal solutions.

5.4 Discussion of the models of the bi-steerable robot

The FKM 5.0.1 with configuration ¢ = (0,z,y,¢f,¢,) is the standard model of the BSR
studied as kinematic nonholonomic system. Derived from the nonholonomic constraint (5.10),
it describes the complete kinematics of the robot. The inputs of the FKM are the driving
velocity w1 and the steering rates (u2,uz) = (¢, ¢r). The RKM 5.0.2 with configuration ¢, =
(0,2,y) is obtained from the FKM by using the steering angles (¢, ¢, ) instead of the steering
rates (¢f,r) as inputs. This is justified, as the configuration ¢, consists of the position and
orientation. Thus, it includes all essential configuration variables for path planning and time-
optimal control, as transitions between two positions and orientations require time-consuming
driving and steering maneuvers in general. Compared to this, the steering angles (¢, ¢,) can
be changed in short time. Hence, they are treated as inputs which can directly be set.
Trajectories of the RKM can be reproduced by the FKM only approximately, as bounded
measurable inputs us = ¢y and ug = ¢, of the FKM result in absolutely continuous trajectories
of ¢r and ¢,. Such trajectories do not permit discontinuous changes of the steering angles,
which are feasible for the bounded measurable steering angle inputs of the RKM. For more
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Figure 5.9: Transformed input space W for v = 1 and ¢ = ?i—g (top left), ¢ = T (top right),

¢ = 5% (bottom left), and ¢ = TZ (bottom right).

examples of reduced kinematic models with steering angle inputs, see [5, 45, 125]. Model (3.16)
of the car-like robot is a different kind of reduced kinematic model. Here, the dynamics of ¢
is also neglected, but ¢ is no new input variable, but only affects the inputs (v1,v2).

For motion planning and optimal control, both the FKM and RKM are suitable, since they
are controllable, see Section 5.3.1. Although the FKM is the standard model of the BSR,
standard methods like path planning for systems in chain form or flatness based control are
not applicable to the FKM. This is the case as steering angles ¢y = ¢, have to be excluded
according to Section 5.1, which strongly restricts the feasible paths. For the RKM, z = ¢, is
a globally defined flat output, and flatness based control can be applied. However, flatness is
not used here, as for most zyp and z,, trajectories z(-) from zg to z4 can only be determined
iteratively. Moreover, bounded measurable input trajectories and absolutely continuous state
trajectories are required for optimal solutions in general, see [77, 93]. For path planning based
on flatness, the trajectory z(+) from 2y to z4 must be at least once differentiable, which may rule
out optimal solutions. Thus, no time-optimal control for the flat output z = ¢, is considered.

The RKM has a lower dimensional configuration than the FKM. This decreases the com-
plexity of the control problem and simplifies the analysis of the extremals from the Maximum
Principle in the next chapter. In contrast to the FKM, the inputs enter the RKM both linearly
and nonlinearly. Hence, the maximization of the Hamiltonian function of the RKM is more
demanding. Due to the affine and non-affine inputs, most control methods like switching time
optimization for bang-bang extremals and most optimality conditions from Section 4.5 and 4.6
are not applicable, making the control problem more interesting. On the other hand, singular
extremals play a less important role for the RKM as shown in Chapter 9. This makes the
control problem simpler, as singular extremals are difficult to handle. Besides, the RKM can
be represented as left-invariant control system on G = SE(2). For left-invariant systems, path
planning problems can be simplified as addressed in Section 7.1.



6 Extremals for time-optimal control of
the bi-steerable robot

In this chapter, the necessary optimality conditions of the Maximum Principle from Chapter
4 are applied to the RKM 5.0.2 to define the extremals for time-optimal control. For this,
the appropriate optimality conditions are derived and the maximization of the Hamiltonian
function is performed analytically to determine the extremal inputs. Based on knowledge of
the extremal inputs, the existence of time-optimal solutions is shown. The resultant extremals
are classified into normal, abnormal, regular, and singular. For time-optimal control of the
RKM, only normal regular and normal singular extremals are relevant.
To simplify the structure of the extremals of the RKM, the following assumption holds.

Assumption 6.0.1 (Steering limit of the RKM) The steering limit of the front and rear azle
of the RKM is ¢ := 7.

In Chapter 5, 0 < ¢ < 7 was assumed to achieve a regular velocity constraint (5.10) according
to Theorem 5.2.5. In the following, the steering limit ¢ = 7 applies to obtain a less complex
structure of normal regular and normal singular extremals. The additional complexity of the
extremals which arise for steering limits ¢ # 7 with 0 < ¢ < 7 is discussed in Section 6.3.
The steering limit ¢ = 7§ is also used for the BSR in [69, 101] and for the car-like robot in
[13, 59, 60, 106, 108, 120, 124]. The space of the admissible steering angles (¢, ¢,) is

o [531 55 o

Definition 6.0.2 (Time-optimal control problem for the RKM) The time-optimal control prob-
lem 2.2.83 for the RKM 5.0.2 with initial configuration qy, desired configuration qq, and input
space U = [—=0,0] x ®, © > 0, is called time-optimal control problem for the RKM.

In the remaining thesis, the configuration ¢ = (0, x,y), the configuration space @ = SE(2),

the input v = (v,¢) = (v,¢¢,¢r), and the input space U = [—0,0] x ® are considered. To
simplify the notation, ¢, @, u, and U is used instead of ¢, @, u,, and U, as in Definition 5.0.2.

6.1 Necessary optimality conditions

This section addresses the necessary optimality conditions of the Maximum Principle and the
maximization of the Hamiltonian function H(q,u,A\,u) = —u + AT f(g,u) for time-optimal
control of the RKM. The optimality conditions define the extremals (¢*(-),A\*(-),u*(-)) over
the time interval I = [0,T]. The initial conditions of ¢*(-) and A*(-) are denoted by ¢(0) = ¢
and A(0) = Ag. The necessary optimality conditions in Section 6.1.1 arise from the conditions of
the Maximum Principle 4.2.2 applied to problem 6.0.2. The maximization of the Hamiltonian
function is performed analytically, based on partial derivatives of the Hamiltonian function with
respect to ¢ in int ® and a study of the Hamiltonian function on bd ®.

6.1.1 Application of the Maximum Principle

Theorem 6.1.1 (Necessary optimality conditions for time-optimal control of the RKM) The
time-optimal control problem 6.0.2 is considered. Let A\ = (A1, A2, A3) be the adjoint state and

(0]
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w € {0,1} a constant. Then, the Hamiltonian function
H(g, s Asu) = —p+ (g, A, ) v (6.2)
results with

h(g, A\, ¢) = Aisin(ey — ¢r) + (cos(8) Aa + sin(0) Ag) cos(py) cos(py)

1 : . (6.3)
+ 5 (—sin(f) A2 + cos(0) Az) sin(ps + ©;) .

Let (¢*(-), \*(), u*(+)) be an extremal and H*(-) := H(q*(-),u, A*(-),u*(:)) the extremal
Hamiltonian function over the time interval I = [0,T]. Then, the following conditions hold:

N1: Forallt eI, (u,A*(t)) # (0,0) is true.

N2: For almost all t € I, there holds the adjoint equation

A= (% cos(0%) sin (@} + i) + sin(6*) cos(¢7) cos(<p;‘i)>)\§ v*

+ (% sin(6*) sin(gp} + ¢}) — cos(6*) cos(go}) cos(goj)))\; v*, (6.4)
s o= 0,
Ay =

N3: For almost allt € I, u* = (v*,p*) satisfies

|h(g*, A", ") = max |h(q", A", ¢)]| (6.5)
ped
and
v* =sgn(h*)v. (6.6)

N4: For almost allt € I, H*(t) = 0 holds.

Proof The Hamiltonian function H (6.2) and the function h (6.3) result from H(q, p, A, u) =
—p 4+ AT f(g,u) for A = (A1, A2, A3) and the right-hand side f(q,u) := g(f,¢)v of the RKM
(5.4). The nontriviality condition N1 of Theorem 6.1.1 is obtained from condition N1 of the
Maximum Principle 4.2.2. Condition N2 is the adjoint equation (4.2) applied to the Hamil-
tonian function (6.2). Regarding condition N3, the extremal inputs u* = (v*, »*) maximize
the Hamiltonian function over all u € U = [—0,0] x ®, as H(q,pu, A\, u) = —p + h(g, A\, p) v
is maximal for maximal h(q, A, ¢)v. This is achieved if both h(q,\,¢) and v have maximal
modulus and the same sign. Condition N4 is the null-maximizing condition. B

Regarding the maximization condition N3, the extremal velocity arising from (6.6) satisfies
v* = +0 for almost all ¢ € I. In contrast to this, the extremal steering angles ¢* = (cp;}, gof,) do
not satisfy ¢} = £¢ for almost all ¢ € I, as they enter the RKM and the function h nonlinearly.

Definition 6.1.2 (Transformed adjoint state) For the adjoint state X = (A1, A2, A3) and

1 0 0
R(O)=| 0 cos(#) sin(0) |, (6.7)
0 —sin(d) cos(d)

the vector v = (y1,72,73) given by
v = R(0) A = (A1, co8(0) Ay + sin(0) A3, —sin(f) A2 + cos(€) A3)

1s called transformed adjoint state.
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In terms of the transformation matrix 7'(6) as in (5.32), R(0) = T(—0) holds. Asdet R() =1
is true for all 6, A # 0 implies v # 0, and vice versa. The adjoint state A\ relates to the
coordinates (z,y) of the fixed reference frame in Figure 5.6. The transformed adjoint state v
results from A via the rotation matrix R(6). Thus, ~ relates to a body-fixed frame of the robot.
In this thesis, « is used instead of A\ to shorten the notation and simplify the analysis of the
extremals. The function h written as function of the transformed adjoint state 7 gives

. 1
b(7, ¢) = msin(ps — pr) + 72 cos(py) cos(pr) + S yssin(es +or) . (6.8)
Using the function b, the maximization |h(g*, \*, p*)| = max,ca |h(¢*, A*, ¢)| can be replaced
by [b(v*, ¢*)| = maxyeq [b(y", ¢)| and v* = sgn(h*) O by
v* = sgn(b*) v. (6.9)

The differential equation for v* obtained from v* = R(6*) \* and 4* = R(6*) \* + R(6*) \* is

o= (% V5 sin(@f + @) — 5 cos(¢}) COS(sD;f)) v,
5 = 75 sin(ef — @F)vt, (6.10)
5 = = sin(p} — @F)o*

6.1.2 Maximization of the Hamiltonian function

For the maximization of the Hamiltonian function, |k| has to be maximized over ¢ € ® according
to condition N3. With respect to ¢, the maximization of |h| is equivalent to the maximization
of |b|. In the following, |b| is considered to obtain more compact results. The maximization is
not performed numerically but analytically, which reveals essential properties for the analysis
of the extremals. Moreover, it allows to simulate the extremals at low computational cost.

Theorem 6.1.3 (Candidates for extremal points of b for ¢ € ®) There are nine possible
candidates for extremal points of b. Onbd @, four candidates are p1 = (—H, —P), p2 = (—, P),
w3 = (P, —@), and py = (@, P), and four more candidates are o5 = (=P, pr.) and ©s = (P, Prg)
with |¢r,| < @, and o7 = (@5, —@) and s = (Y, @) with |pys,| < ¢. In int ®, there is one
candidate g = (¢4, Pro)-

For 273 cos(¢) — (291 + v3) sin(@) # 0, w5 = (—@, ©ry) is a candidate if |p..| < @ holds for

-2
prs = arctan ( 71 + ) cos(9) ) (6.11)
272 cos(@) — (271 + 3) sin(P)
For 275 cos(@) + (2v1 + v3) sin(@) # 0, ps = (ga,cprs) is a candidate if |prs| < ¢ holds for
-2
Yre = arctan ( 71 + ) cos(9) . ) . (6.12)
272¢08(@) + (271 + 73) sin(9)
For 275 cos(@) + (2v1 — v3) sin(p) # 0, o7 = (gof7, —¢) is a candidate if |y, | < ¢ holds for
(2
= arctan < % +73) cos(9) —— ) . (6.13)
279 cos(@) + (21 — 73) sin(@)
For 25 cos($) — (2v1 — v3) sin(p) # 0, ¢ = (cpfg,cﬁ) is a candidate if |@ | < ¢ holds for
(271 +73) cos(p) )
= arctan > - 6.14
o <272 cos(¢) — (271 — 73) sin(§) (6149
For vo # 0, w9 = (@4, ¢ry) is a candidate if |ps,| < ¢ and |¢r,| < ¢ holds for
_ 1 2m 23
P, = 3 ( arctan( ) + arctan (—)) ,
9 2 V2 V2 (6.15)
Pry = 1 ( arctan (27721> + arctan (32)) .

Not all candidates @;, i=1,...,9 have to exist. All existing candidates are different.
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Proof Extremal points of the function b can lie on bd @ or in int ®. Candidates for extremal
points on bd ® are the vertices (+¢, +£¢) which give the points ¢;, i =1,...,4 and points on
the line segments between these vertices which give ;, ¢ =5,...,8. The points ¢;, i =5,...,8
represent candidates for extremal points if the solutions of (6.11) to (6.14) satisfy |pr.| < &,
lors] < @, lor.| < @, and || < @, respectively. The equations (6.11) to (6.14) result from

3(?: = (% — ) cos(py) cos(er) — (y2cos(py) + (11 + L) sin(py)) sin(p,) = 0,
g)a;f = (m+2%)cos(py)cos(er) — (v2cos(er) — (71 — ) sin(gy)) sin(py) = 0

for oy = £¢ and ¢, = £, respectively. Solutions with vanishing denominator of the argument
of the arc tangent function of (6.11) to (6.14) are excluded, as they give no angles on bd ®.

The point ¢y is a candidate if the solution of (6.15) lies in int @, i.e., |¢s,| < ¢ and || < @
holds. The equations (6.15) are obtained from 0b/0¢; = 0 and 9b/0p, = 0 solved for (@7, , ¢r, )
Here, 72 = 0 is excluded, as 7y, = 0 gives a point ¢g9 not located in int ®.

Not all candidates @;, i = 1,...,9 have to exist, as the solutions of (6.11) to (6.15) may not
satisfy ¢, | < ¢ and |g,,| < @, respectively. The existing candidates are different due to their
different domains. B

The candidates ¢;, i=1,...,9 and ¢o = (0,0) are summarized in Table 6.1.

| extremal point | value | location |
©o (0,0) int ®
©1 (=¢,—9) bd ¢
2 (=%, 9) bd ¢
2 (X9 bd @
©5 (=@, ¢rs ) from (6.11) bd ®
Ve (@, ¢pre) from (6.12) bd ®
o7 (¢s., —¢) from (6.13) bd ®
Vs (¢, ) from (6.14) bd ®
09 (@o, Pry) from (6.15) int ®

Table 6.1: Candidates for extremal points of b.

In the following, the maximization of |b| over ¢ € ® is considered. Depending on v =
(71,72,73), six different cases C1 to C6 are distinguished. If for some case Ci, |b| is maximized
by one point, this point is denoted by ¢ = (cpjcci, gof) If |b| is maximized by two points, they
are denoted by ¢¢' = (go?],cpfl) and ¢’ = (QD?H,QDTCH) Here, " = —¢¢" holds as discussed
below, and ¢§' < 0 is assumed for a unique specification of p7* and ¢
Theorem 6.1.4 (Mazimization of |b| over ¢ € ®) For a particular v, let J C {1,...,9} be
the index set of the existing candidates for extremal points p; of b. For the mazximization of |b)
over p € @, the following cases are distinguished depending on ~y:

Cl: v4 = v2 =3 = 0: This case is not relevant for time-optimal control of the RKM.
C2: v1 =72 =0, 73 # 0: |b| is maximized by the points S = @1 and p$? = @4 on bd P.
C3: v1 =0, v2 #0,v3 =0: |b| is mazimized by the point p“* = g in int P.

C4: v1 #0, v2 = v3 = 0: |b| is mazimized by the points p* = ps and ©5* = p3 on bd P.
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C5: v1 #£0,v%2=0,v3 #0: If y1v3 > 0 holds, |b| is maximized by the points ©$° = @5 =

(= @, 957) and @5 = 6 = (p, —¢C7) with O = pry, = —pr, and [©S7| < @.

If y1v3 <0 and @g, <0 holds, |b| is mazimized by the points p$° = o7 = (cpjccf, —$) and
05" =g = (=5, ¢) with 09° = 5, = —py, and |07 < &.

If y1v3 < 0 and ¢z, > 0 holds, |b| is mazimized by the points p§° = pg = (cpjcc;7¢) and
057 = o7 = (=957, =) with §° = s, = —pf, and |p§?
The points p<° and ¢ are located on bd ®.

<.

C6: 72 # 0, 72 +~3 > 0: |b| is maximized by the point ¢ on bd ® or in int & with

[b(7, %) = max 1b(, ¢5)] - (6.16)

In case C1, the mazimized |b| satisfies |b(y, )| = 0. In all other cases, it satisfies |b(~y, )| > 0.

Proof

Cl1:

C2:

C3:

C4:

C5:

Case C1 is not relevant for time-optimal control, as the conditions of Theorem 6.1.1 can
neither be satisfied for ;1 = 0 nor for p = 1. For p = 0, the nontriviality condition N1 is
not true, and for g = 1, the null-maximizing condition N4 does not hold, as for b (6.8)
and v = (0,0,0), always b(y, p) = 0 is true.

In case C2, [b°*(v, )| = |%’Ys sin(py + QDT)| applies. Then, sin(yps + ¢,) has to take its
maximal absolute value over ¢ € ® to maximize |b°?|. From this, % = (=@, —@) = ¢
and ¢$* = (¢, p) = @4 results.

In case C3, [b°°(y,¢)| = |v2cos(pys)cos(e,)| is maximal for maximal cos(¢y) cos(g).
Thus, ¢“* = (0,0) = g holds.

In case C4, [b°*(, )| = |71 sin(pf — ¢,)| is maximized over ¢ € ®. Hence, sin(pf — ¢y)
has to take its maximal absolute value, which is achieved for p¢* = (=@, @) = @2 and

9024 = (9277 7@) = 3.

In case C5, [b°°(y, )| = |y sin(ey — ¢r) + 37ssin(ps + ¢p)| is maximized over ¢ € ®.
C

As b5 (7, ¢) = b (7, —p) holds in this case, two points {p¢°, ©5°} maximize [b°| which

satisfy ¢¢® = —p7°. For extremal points of 6°° in int P,
Oh* .
do; - M cos(pr — pr) + 573c08(pr +0r) = 0,
hes 1 (6.17)
oo T~ cos(pf — @r) + 373 c0s(pr +¢r) = 0

has to apply with |cpj?15| <,

gofﬂ < @, |g0?151| < ¢, and |apfl‘j| < @. As (6.17) is only true
for the points ¢ = (O,i%) and ¢ = (i%O) which do not satisfy ¢ € ®, no extremal
points of b“® exist in int ®. Hence, the extremals points {¢©®, ¢7°} are located on bd @,

I
and 957 = |02 | = @ or |pS?] = |95 | = ¢ has to hold.

Cs cs|

= || = ¢ holds, but [o77] = [of | = [of]

|cpfl";| = ¢ is not possible, the case ¢y = ¢ is considered. Then, according to (6.17),
ahCS

ey

To show that |¢5?| = |pF2| = @ or |p<?

= —yp cos(+p — ) + %73 cos(xp + ) =0 (6.18)

has to apply. Since for ¢ € &, always cos(x@ — ¢,-) > 0 and cos(+p + ¢,.) > 0 is true,
(6.18) can only be satisfied for 1 3 > 0. Solving (6.18) for ¢, yields

271 + 3 1 )
291 +73 tan(£¢) )

@, = arctan (
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24| < 1 holds. Besides, tan(+¢) = +1 is true for ¢ = . Thus,

For ~1 v3 > 0, 57 1Fs

271+ 73 1

— <1
291 + 93 tan (£9)

and |p,| < ¢ results. Likewise, if ¢, = +¢ applies, 71 3 < 0 has to hold for ¢ € @, and
lor| < ¢ is satisfied. As v; # 0 and 73 # 0 holds in case C5, 71 y3 = 0 does not occur.

=¢
| < ¢. Thus, ¢p?° = 5 and ¢° = @ holds. As v = 0 is true, ¢,

For 41 v3 > 0, |b] is maximized by two points ¢¢° and ¢¢° which satisfy |<p]‘?f = |<p?;l

and |7 = |7

rIr

obtained from (6.11) and ¢, from (6.12) satisfy ¢,, = —¢,,. Hence, ¢©° = (*95’805,5)
and ¢} = (95, *sﬁff) results for ngCJIS = pf,.
For 7173 < 0, the cases ¢y, < 0 and ¢p, > 0 are distinguished to obtain ¢%* < 0 for a

unique specification of p¢* and ¢$°. If v 3 < 0 holds, |b| is maximized by two points ¢¢°
and ¢¢° which satisfy ’apfj 751 = ¢ and |<pJ?; = ’ap?;] < ¢. Thus, if ¢y, <0 holds,

= |Pr
P7® = p7 and pT° = g is obtiineﬂd. If ¢, > 01s true, ¢¢° = g and p$* = @7 applies.
Due to 2 = 0, for ¢y, from (6.13) and ¢y, from (6.14), ¢, = —¢y, holds. Hence, if
v < 0 is assumed, p® = (go?f,f@) and ¢$° = (fcp?f,gé) results for o7’ = ¢y, If
g, > 0 is assumed, ¢y = (go?f, @) and ¢§° = (—goj?l"’, —95) is obtained for ¢§} = ¢@,.

C6: In the generic case C6, one extremal point ¢ exists. This is true as b(y, ) = —b(vy, —¢)
does not hold for v; # 0 due to 2 cos(¢y) cos(p,) = 2 cos(—py) cos(—p,) # 0. Hence,
there are no extremal points {p¢¢ 5%} with b(vy, %) = —b(7y,9%°). The index set
J C {1,...,9} gives the candidates for extremal points ¢;, i = 1,...,9 which exist for
the particular 4. Then, ¢“° is the one extremal point which arises from (6.16) for the
candidates ¢;, j € J.

In case C1, i.e., for v = (0,0, 0), there holds b(y,¢) = 0 for all ¢ € ®, resulting in |b(y, ¢)| = 0.
In the cases C2 to C6, b can take values unequal to zero. Thus, |b(y, p")| > 0 is true, as |b] is
maximized in each case Ci by the corresponding ¢°*. B

In summary, for the maximization of |b| over ¢ € ®, five cases are considered, as case C1 is
not relevant. Case C3 and C6 with 5 # 0 give one extremal point ¢* and ¢, respectively.
C C

Case C2, C4, and C5 with v, = 0 result in two extremal points {p¢?, 52}, {91, ©5*}, and
{p?®, 5}, respectively, which satisfy ¢ = —¢$" and ¢y, < 0. If there is one extremal point,

it lies on bd @ or in int @, and if there are two extremal points, they lie on bd ®.

6.2 Existence of time-optimal solutions

As discussed in Section 4.1, before candidates for time-optimal solutions from an initial state
xo to a desired state x4 are defined by necessary optimality conditions, it makes sense to verify
that such solutions exist. Otherwise, there may be trajectories which satisfy the necessary
optimality conditions, but give no time-optimal solutions from zg to z4. For the time-optimal
control problem for the RKM, the existence of time-optimal solutions is shown next.

Theorem 6.2.1 (Ezistence of time-optimal solutions for the RKM) For the time-optimal con-
trol problem 6.0.2, time-optimal solutions exist.

Proof To show the existence of time-optimal solutions for the RKM 5.0.2 by the Filippov
Existence Theorem 4.1.1, controllability has to hold, the linear growth condition

190, ) vll < c(1+lgll) (6.19)

has to apply for a constant ¢ > 0 and all (¢,u) € @ x U, and the velocity sets Fy(q) =
{f(q,u) |u € U} have to be convex for f(q,u) = g(0,¢)v and all g € Q.
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According to Theorem 5.3.2, the RKM is controllable. Regarding condition (6.19), the norm
of the right-hand side of the RKM satisfies ||g(6,¢) v|| < 2/v/3% for [v] < © and ¢ € ® by
Lemma 5.3.5. Thus, condition (6.19) is satisfied for ¢ > 2/1/3 0.

To analyze the convexity of the velocity sets Fy(q), the RKM ¢ = ¢(0,¢) v is written as
driftless affine control system ¢ = T'(f) w(u) using the transformation matrix 7'(6) given by
(5.32) and the transformed input (5.31) which is

w1 (u) sin(pf — @) v
w(u) = | wa(u) | = | cos(ps)cos(pr)v | . (6.20)
w3 (u) %sin(gof +@p)v
For U = [0, 9] x @, the transformed input satisfies w € W for the transformed input space

W = {(wy,wa,w3) |wy = wy(u),wy = wy(u),ws =ws(u),uecU}.

For v = 1, three views of W are shown in the upper row of Figure 6.1. The input space W has
the shape of a solid double cone with elliptic profile and curved boundary surfaces similar to
spherical caps. Obviously, W is non-convex.

The velocity sets of the RKM can be represented by Fy(6) = {g(6,¢) v |(v,) € U} for
u= (v,p) € U and by Fiw(0) = {T(0)w |w e W} for w € W. As Fy (0) results from the
rotation of the non-convex input space W by the matrix T'(0), the velocity sets Fyy (6) are non-
convex. Thus, the velocity sets Fi;(0) generated by the original input space U are non-convex,
and the Filippov Existence Theorem does not apply.

1 0.5 1
0.5 0.5
g 0 g 0 g 0
—0.5 —0.5
-1 —0.5 —1
-1 0 1 -1 0 1 —-0.5 0 0.5
w1 wq w3
1 0.5 1
0.5 0.5
g 0 g 0 g 0
—0.5 —0.5
-1 —0.5 - -1
-1 0 1 -1 0 1 —-0.5 0 0.5
w1 w1 w3

Figure 6.1: Non-convex input space W (upper row) and convexified input space W (lower row).

As the conditions of the Filippov Existence Theorem are true except for the convexity of
the velocity sets, Corollary 4.1.2 is used to show existence. For this, the driftless affine control
system ¢ = T'(0) w is studied for the convexified input space W = conv (W). The convexified
input space W is depicted in the lower row of Figure 6.1. As the map w: U — W given by
(6.20) is continuous and U is compact, W and W are compact as well.

By Theorem 6.1.4, for all v* # (0,0,0), always |b(v*, ¢*)| > 0 holds, and v = (0,0,0) is not
relevant for time-optimal control. Thus, v* = £0 given by (6.9) is true for almost all ¢ € I.
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Hence, the extremal inputs u* satisfy u* € U for the modified input space U= {=0,0} x ® for
almost all ¢ € I. The modified transformed input space W which corresponds to W is

W = {(wl,wg,wg) wy = wy(u"), we = wa(u”),ws = ws(u*),u* € (7} .

Because of v* = £0 for almost all ¢, the extremal inputs w* € W satisfy w* € W for almost
all £. Moreover, W C W holds for U C U. Thus, the extremal inputs w* of the driftless
affine control system ¢ = T'(f) w with convexified input space W lie in the original input space
W S W for almost all t, and time-optimal solutions exist according to Corollary 4.1.2. B

6.3 Classification of the extremals

In preparation for the classification of the extremals of the RKM into normal, abnormal, regular,
and singular, basic properties of the extremals are shown next.

Lemma 6.3.1 (Properties of the extremals of the RKM) Let the necessary optimality condi-
tions of Theorem 6.1.1 be satisfied. Then, the following properties hold for the extremals:

El: If~v*(t) # 0 holds for some t € I, it holds for allt € I.

E2: The conditions of case C2 can be satisfied by v* only at isolated times.
E3: If~*(t) is of case C3 for some t € 1, it is of case C3 for allt € I.

E4: If~*(t) is of case C4 for some t € 1, it is of case C4 for allt € I.

E5: The conditions of case C5 can be satisfied by v* only at isolated times.

E6: If v*(t) is of case C2, C5, or C6 for some t € I, it is of one of these cases for allt € I.
For almost all t € I, v*(t) is of case CG then.

E7: For v(0) # 0, the extremal configuration ¢*(-) is non-constant.
Proof

E1l: To show property E1, the time derivative of v* is considered for positive and negative
time. For positive time ¢+ := ¢, the time derivative 4** = dy*/d¢t* given by (6.10) is

Gt = (% 3 Sin(go; + o) =73 cos(cp}) cos(gpj)) v*,
r‘y;‘" = v sin((p;‘c — @ﬁ)v*, (6.21)
Y3t = =13 sin(p} — @F)o*
For negative time ¢t~ := —t, the time derivative 4*~ = dy*/dt™ is
o= - (% 75 sin(@} +¢f) — 5 cos(¢}) COS(@i)) v,
Yoo = v sin(pf — or)vt, (6.22)
Y3 o= 95 sin(pf — ¢r)v*.

For v*(t) of case C4, 4** = 0 holds due to 75 = 74 = 0. Thus, v* is constant in positive
time, and v* (') # 0 is true for all ¢’ satisfying ¢ < ¢’ < T. Likewise, for v5 = v5 = 0,

4*~ = 0 holds, and ~* is constant in negative time. Thus, v*(¢') # 0 is true for all ¢’
meeting 0 < ¢’ < t. Hence, v*(t) # 0 holds for all ¢t € I. For v* of case C2, C3, C5, or
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C6, 735 = 3((13)> + (73)?) is considered, which satisfies 733 > 0 in these cases. Using
(6.21) and (6.22) yields
g = BT+ =3 sin(e) — 0F)v* — 395 sin(e - oF)vt = 0,
Yoz = B AT = s sin(ef — ¢r)vt + 955 sin(pf —r)vt = 0.

As the time derivative of 455 in positive and negative time equals zero, 735 is constant in
positive and negative time. Thus, v*(t) # 0 holds for all ¢ € I, and property E1 is true.

E2: To show property E2, the time derivative (6.21) in positive time is considered for v*(t) of

case C2, i.e., for v =75 =0, 75 # 0, and 9% = 1 = (=@, —@) or 52 = 4 = (P, P).
Then, 4" # 0 holds, and 7*(¢ + ¢) is not of case C2 for sufficiently small € > 0.

E3: To prove property E3, the time derivatives (6.21) and (6.22) in positive and negative time
are analyzed for v*(t) of case C3, i.e., for 7§ =0, v3 # 0, v5 = 0, and ¢* = ¢y = (0, 0).
As ¥*T = 4*~ = 0 holds, v*(t) is of case C3 for all t € I.

E4: Likewise, property E4 is shown for v*(¢) of case C4 with v # 0, 75 = ~v4 = 0, and
OFt =2 = (=p, @) or o = 3 = (¢, —p). For pf* and ¢f*, there holds 4" = 4"~ =0,
and v*(t) is of case C4 for all t € I.

E5: Property E5 is shown like property E2. For v*(t) of case C5, i.e.,if v; # 0,v3 =0, v3 # 0,

C5

and ©* = ¢ or p* = ¢S° holds, 457 # 0 applies. This is true as 75 # 0, |gp}| = @,

|kl < @ or v # 0, ’gaﬂ < $, |¢¥| = ¢ holds, resulting in 457 = % sin(ap} —¢r) #0.
Thus, v*(t + ¢) is not of case C5 for sufficiently small ¢ > 0, and property E5 holds.

E6: To show property E6, it is utilized that v*(¢) # 0 holds for all ¢t € I by property E1, and,
if v*(t) is of case C3 or C4, then ~+*(¢) is of this case for all ¢t € I due to property E3
and E4, respectively. Hence, if v*(t) is of case C2, C5, or C6 at some t € I, it satisfies
v (t) £ 0 for all t € I, i.e., it is of one of the cases C2 to C6 for all ¢ € I. As the cases C3
and C4 are excluded because of property E3 and E4, v*(¢) is of one of the cases C2, C5,
or C6 for all ¢. Since v*(t) can be of case C2 or C5 only at isolated times due to property
E2 and E5, v*(t) is of case C6 for almost all ¢t € I, and property E6 is true.

E7: The proof of property E7 is based on that v*(¢) # 0 holds for v(0) # 0 for all t € I due
to property E1. Besides, for v*(t) # 0, always |[b(y*,¢*)| > 0 holds by Theorem 6.1.4.
Thus, v* = sgn(b*) 0 results in v* = £0 for © > 0. Then ¢*(¢) # 0 is true for all t € I, as
lg* || = [lg(6*, ¢*) v*|| given by (5.21) meets ||¢*|| > © for v* = +£0 and ¢* € ® according
to Lemma 5.3.5. Hence, the extremal configuration ¢*(+) is always non-constant. H

Definition 6.3.2 (Normalized initial condition of the transformed adjoint state) For any vyo =
(7105720, 730) # 0 and © > 0,
1

o= (0, " (0))] & (6.23)

18 called normalized initial condition of the transformed adjoint state.

In (6.23), b(v0,¢*(0)) is the function (6.8) evaluated at v = vy and ¢ = ¢*(0). For any
Yo = (710,720, 730) # 0, the normalized initial condition 5y = (%0, '720,'?30) of the transformed
adjoint state « is obtained. It is normalized, as for v*(0) = sgn(b(vo, ¢*(0))) 0, there results

b(%0,%*(0)) v*(0) = 1. (6.24)

Theorem 6.3.3 (Normal and abnormal extremals of the RKM) Let the necessary optimality
conditions of Theorem 6.1.1 be satisfied. Then, there are no abnormal extremals for = 0. For
any vo £ 0 and v(0) = 3o as in (6.23), a non-constant normal extremal results for p = 1.
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Proof By Theorem 6.2.1, time-optimal solutions exist for the RKM. To show that there
are no abnormal extremals, but normal extremals for normalized initial conditions 7, the
conditions N1 and N4 of Theorem 6.1.1 are considered. The conditions N2 and N3 are not
relevant, as they do not take the value of p into account. To satisfy condition N1 for p = 0,
v*(t) # 0 has to be true for all ¢ € I. This implies |b(y*,¢*)| > 0 by Theorem 6.1.4. Hence,
b* # 0 holds, and condition N4 cannot be true due to b* # 0 and v* # 0 for v* = sgn(b*) 0.
Thus, there are no abnormal extremals.

Since time-optimal solutions exist for the RKM, but there are no abnormal extremals, normal
extremals have to exist. As condition N1 is trivially satisfied for ;= 1, it only has to be shown
that there are suitable initial conditions called 7y such that condition N4 holds. Since H*(t) =0
holds according to condition N4 for almost all ¢ € I, it is sufficient to consider ¢ = 0. Initial
conditions 5o which satisfy condition N4 result from (6.23) for 79 # 0. The normalization (6.23)
is required since for ¢*(0) obtained from condition N3 at ¢ = 0, |b(v9, ¢*(0))| > 0 applies by
Theorem 6.1.4, and b(7p, ¢*(0)) v* > 0 holds for v* = sgn(b(yo, ¢*(0))) v. Hence, for 79 as in
(6.23), (6.24) results. Then, for p = 1, condition N4 is true at t = 0, and, as H* is constant,
for all t. Because of vy # 0, the extremals are non-constant due to property E7. B

Theorem 6.3.4 (Normal singular extremals of the RKM) Let the necessary optimality condi-
tions of Theorem 6.1.1 be satisfied for un = 1. For a normalized initial condition 7 of case C4
and v(0) = 70, a non-constant normal singular extremal results which is singular with respect
to ¢*. There are no singular extremals with respect to v*.

Proof By Theorem 6.3.3, non-constant normal extremals exist for normalized initial condi-
tions 7p. Due to property E2, if a normalized initial condition 7y is of case C4, v*(t) is of case C4
for all t. For v*(t) of case C4, |b| is maximized by the two points p¢* = @2 and ¢§* = ¢3. Thus,
the input u* = (v*, ¢*) is not uniquely determined over the proper time interval I, leading to
singular extremals with respect to ¢*.

No normal singular extremals with respect to v* exist, since for 4y # 0, there holds v*(¢) # 0
for all ¢ by property E1. Thus, due to Theorem 6.1.4, |b(v*, p*)| > 0 and b(y*, ¢*) # 0 applies
for all t € I, and v* is uniquely determined by v* = sgn(b*) v. B

Theorem 6.3.5 (Normal regular extremals of the RKM) Let the necessary optimality condi-
tions of Theorem 6.1.1 be satisfied for = 1. For a normalized initial condition 7y of case C2,
C3, C5, or C6 and v(0) = Ay, a non-constant normal reqular extremal results.

Proof Non-constant normal extremals exist for normalized initial conditions 7 according to
Theorem 6.3.3. For a normalized initial condition 4y of case C3, v*(¢) is of case C3 for all ¢ due
to property E3. For v*(¢) of case C3, |b| is maximized by ¢“* = ¢g. Thus, the extremal input
u* = (v*, ") is uniquely determined for all ¢ € I, and a normal regular extremal arises.

For a normalized initial condition 7y of case C2, C5, or C6, v*(¢) is of one of these cases for all

C C

t by property E6. Due to Theorem 6.1.4, in case C2, |b| is maximized by the points {¢¢?, 95},
in case Cb, by the points {¢¢?, 5}, and in the generic case C6, by the single point ¢“¢. By
property E2 and E5, v*(¢) can be of case C2 or C5 only at isolated times. Thus, the extremal in-
puts u* are not uniquely determined only at isolated times. Due to property E6, v*(t) is of case

C6 for almost all t € I. As u* is uniquely determined then, a normal regular extremal results. B

By Theorem 6.3.5 and 6.3.4, normal regular and normal singular extremals of the RKM
are obtained for normalized initial conditions 7y of case C2, C3, C5, and C6, and of case C4,
respectively. There are no extremals of the RKM which consist of regular and singular subarcs,
i.e., segments where the extremal is regular and segments where it is singular.

At the beginning of this chapter, the steering limit ¢ = 7 was fixed by Assumption 6.0.1.
This steering limit gives a simple structure of the extremals of the RKM. If instead of ¢ = 7,
a steering limit 0 < ¢ < 7 would be used and v* would be of case C5, then the solutions ¢7°
C C

and ¢$° would not satisfy |g0]‘55 = ¢ and |gar5’ < @ or |<,0f5| < ¢ and |gp$5| = ¢ for all (vf,~3).
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Instead, |¢5°| = ’Lpfs = ¢ could be true. In this case, property E5 of Lemma 6.3.1 would not
be guaranteed, but 45 = 0 could hold over a proper time interval. Then, v* could be of case
C5 over a proper time interval, leading to a singular extremal, as ¢ could be chosen from ¢¢®
and ©$° over this interval. The resultant extremal could be singular over the whole interval
I or consist of singular and regular arcs. That is, it could be singular at the beginning and
become regular after a time when the maximization of |b| gives solutions ¢§° and ¢§® with
‘90?5 = ¢ and |<pf5 < @ or ’@?5‘ < ¢ and ‘gpf) = ¢. Then, 45 = 0 would not hold any more,
and v* would not be of case C5 any longer. In contrast, for ¢ = 7%, property E5 holds, i.e.,
the conditions of case C5 can be satisfied by v* only at isolated times. Thus, ¢ can be chosen
from ¢ and ¢¢° only at isolates times, and the extremals are regular. In particular, there are
no extremals with singular and regular arcs. This considerably simplifies the structure of the
extremals for time-optimal control of the RKM.

If a steering limit § < ¢ < § would hold, then for v* of case C4, the maximization of |b|

would not give two isolated solutions {p¢*, ©5*}. Instead, all steering angles satisfying

™

5 (6.25)

pr—pr ==+
would maximize |b|. For all steering angles meeting condition (6.25), property E4 holds, i.e., if
~*(t) is of case C4 for some t € I, it is of case C4 for all ¢t € I. Since the steering angles are
not uniquely determined by (6.25), singular extremals result. As discussed in Section 6.5, for
singular extremals obtained for v* of case C4 and ¢ = 7, the extremal steering angles can be

chosen at each time from {¢¢*, ©S*}. The corresponding singular extremals are arcs of circles

of minimal turning radius. In contrast, for 7 < ¢ < 7, arbitrary steering angles satisfying
(6.25) can be chosen at each time. Depending on the chosen ¢, different derivatives (i, ¢) and
different singular extremals result, which do not have to consist of arcs of circles of constant
radius. Thus, singular extremals for ¢ = 7 have a less complex structure than for 7 < ¢ < 7.

Recall Definition 4.3.4 of the search space A,,. It includes all initial conditions Ao of the
adjoint state for which there are normal regular extremals with z*(0) = z¢ and A*(0) = Ao.

Based on Theorem 6.3.5, the search space for time-optimal control of the RKM is given next.

Corollary 6.3.6 (Search space Ay, ) The time-optimal control problem 6.0.2 is considered for
an initial configuration qo = (0o, zo,yo) with 8y = 0. Let vy be of case C2, C3, C5, or C6.
Then, Ao = o holds, and the search space Ay, consists of all normalized initial conditions

. 1
= 0, o O] 8

Proof For 6y = 0, the transformation (6.7) gives R(6p) = E3. Thus, Ao = 7o holds for
the adjoint state A\ and the transformed adjoint state v, and A\g = 7o for their normalized
initial conditions. For Ao = 7o, (6.26) results from (6.23). By Theorem 6.3.5, non-constant
normal regular extremals arise from normalized initial conditions 7 of case C2, C3, C5, and
C6. Hence, A,, consists of all normalized initial conditions Ay which are of one of these cases. B

Xo. (6.26)

For /\0 = ()\10,)\20,/\30) 75 07 the normalized initial condition ;\0 = (5\10,;\20,;\30) of the
adjoint state A results from (6.26).

6.4 Analysis of normal regular extremals

In this section, the normal regular extremals of the RKM are analyzed. They result from
normalized initial conditions 4 of case C2, C3, C5, and C6. Depending on the trajectory 6*(-),
the following types of normal regular extremals are distinguished.

Definition 6.4.1 (Types of normal regular extremals of the RKM) Depending on 0*(-), the
normal regular extremals of the RKM are divided into the following types:
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Type S: 0*(-) is constant, i. e., 0*(t) = 0 and 6*(t) = 0 holds for all t € I.
Type M: 0*(-) is strictly monotone, i. e., 0*(t) < 0 or 0*(t) > 0 holds for all t € I.
Type P: 0*(-) is periodic, i.e., 0*(t) = 6*(t + At) holds for some At >0 and allt € 1.

According to simulations, all normal regular extremals of the RKM are of type S, M, or P.
The extremals with constant 6*(-) are denoted by type S, as they are straight line segments.

Definition 6.4.2 (Cusp, cusp time) A reversal of the driving direction of the RKM at time
t. when v* = sgn(h*) 0 switches from 0 to F0 is called cusp. The time t. is called cusp time.

Definition 6.4.2 holds for b* = b(y*, ¢*) and v* = sgn(b*) ¢ as well. The cusps are a major
feature of the extremals of type M and P. Moreover, normal singular extremals in Section 6.5
can have cusps. In the next section, properties of normal regular extremals are given, in Section
6.4.2, simulation results are presented, and in Section 6.4.3, the extremals are discussed. As
only normal regular extremals are addressed here, they are simply referred to as extremals.

6.4.1 Properties

Lemma 6.4.3 (Properties of normal reqular extremals of the RKM) For normal regular ex-
tremals of the RKM, the following properties hold:

NR1:  Eztremals arising from normalized initial conditions 7y of case C3 are of type S.
NR2:  Eztremals of type S have no cusps.
NR3:  Let qo = (0o, x0,Y0) be the initial condition of an extremal of type S. There holds
to
g (t) = | wo+sgn(Fa)cos(bp)vt | . (6.27)
Yo + sgn(¥20) sin(fp) 0t

>

NR/:  FEztremals from initial conditions vy of case C2, C5, and C6 are of type M or P.
NR5:  If v5 has a zero-crossing at time t., then t. is a cusp time.
NR6:  Extremals of type M and P can have cusps.

NR7: If an extremal of type M has two consecutive cusps at the times t1 and to, then
0*(t2) — 0*(t1) = L7 holds.

Proof

NR1: According to property E3 of Lemma 6.3.1, if an initial condition 7y is of case C3,
~v*(t) is of case C3 for all t. As ¢* = o = (0,0) is obtained from the maximization
of |b| for v* of case C3, §* = sin(gp}i — ¢}) v* = 0 holds for all t. Thus, 6*(t) =, is
constant for all ¢, and an extremal of type S results.

NR2: For extremals of type S, the right-hand side of the differential equation for v* given
by (6.10) vanishes due to ¢* = ¢y = (0,0) and 75 = 0. Thus, v* and b* are constant.
Hence, b* has no zero-crossings, v* = sgn(b*) ¢ is constant, and there are no cusps.

NR3: For ¢* = vy = (0,0) and constant v* = sgn(Ja9) ¥, the RKM (5.4) gives

6 = 0,

* = sgn(Fa0) cos(bp) D, (6.28)
y* = sgn(e0)sin(fp) 0.
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NR4:

NRS5:

NRe6:

NRT7:

Here, v* = sgn(b*) ¥ gives v* = sgn(20) 0, as for v§ = 0, 75 = J20 # 0, 75 = 0,
and cos (4,0}) cos(p) > 0, there holds sgn(b*) = sgn(520). By analytical integration
of (6.28) starting from qo = (0o, zo,yo) at ¢ = 0, (6.27) results.

According to Definition 6.4.1, normal regular extremals of the RKM are of type S, M,
or P. By property NR1, extremals of type S result from initial conditions 7, of case
C3. By property E3 of Lemma 6.3.1, for 4y of case C3, v*(t) is of case C3 for all ¢.
By Theorem 6.3.5, normal regular extremals arise from initial conditions 7y of one of
these cases. By property E6, for 4y of case C2, C5, or C6, v*(t) is of case C2, C5,
or C6 for all ¢t € I. Hence, disregarding 7 of case C3 leading to extremals of type S,
initial conditions 7y of case C2, C5, and C6 give normal regular extremals which are
not of type S. Thus, they are of type M or P.

If b* has a zero-crossing, v* = sgn(b*) ¢ switches from +0 to F0, and a cusp oc-
curs. In the following, it is assumed that ~; has a zero-crossing at time ¢. such that
Y (te —e) < 0, v5(te) = 0, v5(tc. + &) > 0 holds for small € > 0. At time t., v*(t.)
is of case Cj for j € {2,5}, and |b| is maximized by two points {¢}(t.) ., ¢} (t.)} with
@r(te) = —pj(te), as for 75 = 0, there holds b(y*, ¢*) = —b(v*, —¢").

For v5 # 0, b(y*,¢*) = —b(v*,—¢*) does not hold. At time t. — & before the
zero-crossing of 5, the maximization of |b| results in [b(v*,¢™)| = —b(v*, "), as
5 cos(cp;l) cos(go;ﬁ) < 0 holds for 75 < 0 and all ¢* € ®. At time t. + ¢ after
the zero-crossing, |[b(v*,¢*)| = b(v*,¢") results from the maximization of |b|, as
Y5 cos(cp}) cos(goi) > 0 holds for v5 > 0 and all ¢* € ®. Thus, if 75 has a zero-
crossing at time t., then b* has a zero-crossing at time t., and a cusp occurs.

By property NR4, extremals of type M and P arise from initial conditions 7, of case
C2, C5, and C6. According to Definition 6.1.2 of the transformed adjoint state,

73 (1) = cos(8°(£)) N (¢) + sin(6° (1)) A5 (1)

holds, and due to the adjoint equation (6.4), A5 = A2 and A5 = Ago is true. If
Jo is of case C2, C5, or C6, then 73 is not constant, as A3(0) + A2(0) > 0 holds
for these initial conditions, and 6* is not constant for extremals of type M and P.
Here, A3(0) + A3(0) > 0 is true for 7o of case C2, C5, and C6, since for these initial
conditions, always 73(0) + ¥5(0) > 0 holds, and from v = R(6) A,

A= R7H0)y = R(~0) 7 = (71, cos(0) 72 — sin(0) 73, sin(6) 72 + cos(6) v3)
follows. As 3 is not constant, it may have zero-crossings, which give rise to cusps.

If v5(t.) = 0 holds for an extremal of type M, 5 has a zero-crossing and does not
touch zero, i.e., y5(t. —€) <0, ¥5(tc) =0, ¥5(t. + ) < 0 cannot hold. To see this,

V5 (te) = cos(0* (te)) Ao + sin(07 () Aso = 0 (6.29)
is assumed, resulting in

sin(Q*(tc)) o 5\20
cos(6*(tc)) A3
for cos(6*(t.)) # 0. For constant Ay and Asg, the time derivative of (6.29) gives

A3 (te) = =67 (te) sin(0* (t.)) Ao + 0% () cos(0*(te)) Ao = 0. (6.31)

(6.30)

Because of §*(-) # 0 for an extremal of type M, (6.31) yields

sin(0*(t))  Aso

s 00) A .
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for cos(6*(t.)) # 0. For (6.30) and (6.32) to hold simultaneously, oo = Ago = 0
must be true. However, according to property NR4, extremals of type M arise from
initial conditions jg of case C2, C5, and C6, for which 53(0) + 52(0) > 0 and thus
A3(0) + A2(0) > 0 holds. Hence, if v;(t.) = 0 holds, 73 cannot just touch zero at t..

If v5 has a zero-crossing at time ¢,
75 (t1) = cos(0* (1)) Aao + sin(6* (t1)) Azo = 0
holds. Then, v5(t2) = 0 applies if
0% (ta) — 0" (t1) = £nw (6.33)
is true for n € N, since
Y5(t2) = cos(0*(t2)) A2 + sin(6* (t2)) Aso
(0" (t1) £ k) Ago +sin(0* (1) £ k) Azo

= (=1)" (cos(0*(t1)) Xao + sin(0* (1)) Aso)
=0

= COS

follows then. Here, n = 0 resulting in 0*(t2) — 6*(t1) = 0 is excluded, as 6*(-) is
strictly monotone for an extremal of type M according to Definition 6.4.1. If (6.33) is
true, the extremal has cusps at t; and t5. Then, only n = 1 can hold, since otherwise
for n > 1, there would be additional zero-crossings of 5 and thus additional cusps

between t; and t5. Then, the cusps at t; and t5 would be no consecutive cusps as
assumed. Hence, n = 1 holds, and (6.33) gives 0*(t3) — 0*(¢t;) = 7. B

Normalized initial conditions of case C3 which lead to extremals of type S by property NR1
are 4o = (0,41/9,0). The closed-form representation (6.27) for extremals of type S exists due
to the constant orientation #*. For fixed gy and ¢ = T, it gives an end-point map 2.1.5. For
extremals of type M and P with non-constant 6*, no closed-form representations and no end-
point maps can be derived, see Section 6.6. Regarding property NR5, the sign of b* from the
maximization of |b| equals the sign of v5. Hence, cusps occur at the zero-crossings of 5.

6.4.2 Simulation results

For the simulation data given here, the differential equations (5.4) of the RKM and the adjoint
equation (6.4) were integrated numerically. The equations were driven by the extremal inputs
u* = (v*, p*) obtained from |b(v*, ¢*)| = max,ca [b(7*, )| and v* = sgn(b*) 0. For numerical
integration, the MATLAB function ode45 was used which implements a Runge-Kutta solver
of fifth order. All simulations were generated for go = (0,0,0), I = [0, 10], and v = 1.

Figure 6.2 shows an extremal of type S obtained from the initial condition 49 = (0, 1,0) which
is of case C3. The figure consists of time plots of the orientation angle 8* and the adjoint state
(A1, A5, %), an (z*,y*) plot, and time plots of the transformed adjoint state (v§,~v3,75), the
input (v*,gp}i,gpj), the Hamiltonian function H* (6.2), and the function h* (6.3). Extremals
of type S are straight line segments with constant velocity v* = sgn(520) 0, constant steering
angles ¢* = g, and no cusps.

The extremals of type M and P in Figure 6.3 and 6.4 arise from initial conditions 7y of case
C6. For Figure 6.3, 79 = (0.5,0.6,0.6) is used, and for Figure 6.4, 49 = (0.18,0.8,0.8). The
figures consist of the same plots as Figure 6.2. In Figure 6.3, 8* is plotted once as real number
0* € R and once as angle 0* € [—m,7), for which values 0* and 6* + 2n 7 are identified. In
Figure 6.3, 0* € R is strictly increasing, i.e., 9*(t) > 0 holds for all t € I. In Figure 6.4, 6* is
periodic and satisfies 0*(t) = 6*(¢t + At). The cusps of extremals of type M are located on one
side of an imaginary line in the gross direction of the extremal, and the cusps of extremals of
type P lie alternately on both sides. According to simulations, extremals of type M or P can
arise from initial conditions 7y of case C2, C5, and C6. The type depends on the specific vy.
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Figure 6.2: Normal regular extremal of the RKM of type S.

6.4.3 Discussion

Due to v* = sgn(h*) ¢ as in (6.6) and v* = sgn(b*) ¢ as in (6.9), the functions h* and b*
resemble switching functions 4.3.5. However, extremals of type M and P are no bang-bang
solutions, as the RKM is no affine control system. Between consecutive cusps, the extremal
velocity v* is constant, and at cusps, it is discontinuous. The extremal steering angles ¢* from
the maximization of |b| are piecewise differentiable. As long as ¢* = ¢; holds for fixed i=1,...,9,
the steering angles are differentiable, as they are either constant or result from the differentiable
functions (6.11) to (6.15). When the steering angles enter or leave bd ®, they are continuous,
since at this instant of time, they change from ¢* = ¢; to * = ¢; for i # j and ¢; = @;.
At a cusp time t., the steering angles ¢*(¢.) can be discontinuous, as v*(¢.) is of case Ci for

i € {2,5}, and the steering angles change from p* = %" to p* = ', or vice versa.

Since 6* is periodic for extremals of type P and 0* (¢t + At) = 6*(¢t) £ 2 holds for extremals
of type M due to property NR7, 75 oscillates periodically and symmetrically around zero. As
the cusps occur at the zero-crossings of 75 due to property NR5, the arc duration At, = %At
between two cusps is constant for each extremal. Extremals of type M and P are uniquely
determined by 7. They are independent of whether ¢ or ¢4 is chosen at a cusp time ¢, with
7*(tc) of case Ci for i € {2,5}. This is true as 45 (f.) is independent of the chosen extremal
point ¢¢* or ¢$'. The time derivatives (9*,3'3*, y*) as in (5.4) and (47,43) given by (6.10) have
different values at t = t. for ¢¢* and ¢¢‘, but are uniquely determined for almost all ¢ € I due
to property E2 and E5. Thus, extremals of type M and P are uniquely determined by 7.

For extremals of type M, 0*(¢t + At.) = 6*(t) £ = holds due to property NR7. According
to simulations, for extremals of type P, the total change of the orientation A, = ttf |0(t)| dt
between two cusps at time ¢; and to satisfies 0 < Af. < w. The value of Af,. depends on .
Both types of extremals have periodic trajectories 75 and constant arc durations At. between
cusps. Due to 6* = sin(go;‘c — cpji) v* and v* = +£0, there holds 9*(t)‘ < ¢ for all ¢t. Thus, for
extremals of type M and P, At. > 7 /0 and At. > Af./0 holds, respectively. As both bounds
on At are positive, only a finite number of cusps can occur in each compact interval I. Hence,
no Fuller phenomenon with an infinite number of switchings exists. Between two cusps, there
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Figure 6.3: Normal regular extremal of the RKM of type M.
are at most two times at which ¢* reaches or leaves bd ® so that ¢* changes from ¢; to ;.

6.5 Analysis of normal singular extremals

Normal singular extremals result from normalized initial conditions of case C4 which are 59 =
(1/ (sin(2$) 9),0,0).

Lemma 6.5.1 (Properties of normal singular extremals of the RKM) For normal singular
extremals of the RKM, the following properties hold:

NS1: The input u* = (v*,*) can be chosen at each time t from

u; = (—sgn(y10) 0, p2),

un = (sn(10) 6, 03). (6.34)

NS2:  Let q*(t1) = (0*(t1) ,2*(t1) ,y*(t1)) be the configuration at time t; and u* € {u,,uy}
the constant input over I = [t1,ts]. For u* = u,, set o, = 1, and for u* = uy, set
oy = —1. Then, at time ts, the configuration is

8*(t1) + sgn(’ylo) ’l} (tz — tl)
q*(t2)=| z*(t1) — 3 ou(sin(0*(t1) + sgn(F10) 0 (t2 — t1)) — sin(6*(t1))) | . (6.35)
y*(t1) + 2 0 (cos(6*(t1) + sgn(F10) d (t2 — 1)) — cos(6*(t1)))

Proof

NS1: By Theorem 6.3.4, normal singular extremals arise from normalized initial conditions
o of case C4. Due to property E2, for an initial condition of case C4, v*(¢) is of case C4
for all t € I. Then, |b| is maximized by ¢¢* = @9 and ¢* = ¢3. For v*(t) of case C4,
Y =10 # 0 and 73 = 74 = 0 holds. Thus, v* = sgn(b*) o = sgn (10 sin (gp;‘c —¢l))o
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Figure 6.4: Normal regular extremal of the RKM of type P.

is true. For ¢ = 7, the input u; = (—sgn(%10) 0, p2) results from pf* = @o = (=, ),
and the input u; = (sgn(310) 9, p3) results from p&* = 3 = (P, —P).

NS2: For a fixed input u* € {u;,u;;} and the corresponding o, the RKM (5.4) yields

0* = sgn(y10) 9,
it = —10, sgn(Fio0)cos(6*) 0, (6.36)
Ut = —3 0y sgn(Fio0)sin(6*) 0.

By analytical integration of (6.36) over [t1,t2] starting from ¢*(¢1), (6.35) results. B

For a normal singular extremal arising from an initial condition 7y of case C4, the input
u* can be chosen at each time from {u;,u;}. If a constant input u* is applied over a time
interval, an arc of a circle of minimal turning radius R is obtained. By Lemma 5.3.7, for ¢ = 7,
R= % results. The transition of the configuration along this arc is given by (6.35). The normal
singular extremals of the RKM are concatenations of such arcs. For fixed qo, T, ¢, and 0,
different extremals result depending on the sign of 419 and the intervals over which v* = u; and
u* = uy is used. Since the transition of the configuration along each arc can be represented by
(6.35), closed-form representations and end-point maps 2.1.5 of the normal singular extremals
can be derived. Every time the input switches from u; to u; or vice versa, a cusp occurs.

Figure 6.5 shows a normal singular extremal of the RKM consisting of three arcs of circles.
To generate the figure, ¢o = (0,0,0), % = (1,0,0), o = 1, and T = 6 was used. For the figure,
the input u, was set over the interval [0,2.5), the input u, over [2.5,4.5), and the input u,
over [4.5,6]. This way, a normal singular extremal with cusps at t; = 2.5 and ¢t = 4.5 resulted.

6.6 Discussion of the extremals

For the RKM, normal regular and normal singular extremals exist by Theorem 6.3.5 and 6.3.4.
These extremals were discussed in Section 6.4 and 6.5. They are generated by piecewise differen-
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Figure 6.5: Normal singular extremal of the RKM.

tiable steering inputs ¢* and piecewise constant driving inputs v*. Switchings of v* cause cusps,
i.e., reversals of the driving direction. Normal regular extremals of type M and P and normal
singular extremals may have cusps, whereas normal regular extremals of type S have none.
Over each compact interval I, the extremals can only have finitely many cusps. Depending on
the trajectory of 0*, each normal regular extremal is of type S, M, or P.

The extremals of the RKM, the car-like robot, and the differential drive show differences
and similarities. Reeds-Shepp paths, i.e., shortest paths of the car-like robot driving forward
and backward, are equivalent to time-optimal solutions, as the absolute translational velocity
|ve| = v/&2% 4+ y? is constant. These paths consist of straight line segments and arcs of circles
of minimal turning radius, see [94, 108, 120]. The extremals for time-optimal control of the
differential drive in [9, 10, 60] comprise straight line segments and turns on the spot. Similarly
simple extremals of the RKM are the normal regular extremals of type S which are straight line
segments and the normal singular extremals which consist of arcs of circles. As for the car-like
robot and the differential drive, no abnormal extremals exist for the RKM by Theorem 6.3.3.

The turning rate 6* of the extremals of the car-like robot and the differential drive is zero or
piecewise constant. Thus, closed-form representations of their extremals and end-point maps
2.1.5 can be given depending on a finite parameter set. These closed-form solutions simplify
the path planning and the optimality analysis based on derivatives of the end-point map, see
[94, 108, 120]. In contrast, for the RKM, closed-form representations only exist for normal
regular extremals of type S, which are given by (6.27), and for normal singular extremals,
which result from the concatenation of transitions (6.35). For normal regular extremals of
type M and P, such representations are not available, as the extremal turning rate 6* is not
piecewise constant but varies continuously. While v* is piecewise constant, ¢* obtained from
the maximization of |b| can vary continuously. In particular, no closed-form solutions of the
extremals can be derived based on the concatenation of flows under constant inputs 2.1.6, as
the extremal steering inputs are not piecewise constant. Hence, normal regular extremals of
type M and P can only be integrated numerically, which makes their analysis challenging.
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7 Approach for time-optimal control

This chapter introduces our approach for time-optimal control. It gives time-optimal or near
time-optimal solutions from an initial state xg to a desired state x4 based on normal regular
extremals. To find such solutions, the path planning is performed iteratively over a decreasing
time horizon until an optimal solution is found or the iteration is terminated. The path planning
searches for an initial condition A(0) of the adjoint state which give rise to a normal regular
extremal from g to x4. Here, A(0) is determined by local optimization initialized to a random
starting point. In this chapter, the optimization problem for the initial condition is analyzed
and algorithms for path planning and time-optimal control are given, followed by an analysis
of the convergence of the approach.

Definition 7.0.1 (Path planning problem using normal reqular extremals) For a time-optimal
control problem 2.2.3, let (z*(-),\*(-),u*(:)) be normal regular extremals which satisfy the
necessary optimality conditions of the Maximum Principle 4.2.2, and A, the search space 4.5.4.
Fiz a constant e, > 0. The problem to find an end time 7 and an initial condition A\J* € Ay,
such that for an extremal satisfying x*(0) = xo and \*(0) = A", there holds ||z*(7) — z4| < &x
is called path planning problem using normal regular extremals. Any solution (A", T) is called
solution to the path planning problem.

The path planning problem is a modified version of the boundary value problem 4.4.1 of the
time-optimal control problem with free end time. In contrast to problem 4.4.1, for problem
7.0.1, only normal regular extremals are considered, and the desired state x4 has to be reached
only within the tolerance ¢,. Here, ||-|| : M — Rx¢ is the Euclidean norm. If ||2*(7) — z4]| < &,
holds for small e, then x*(7) is close to z4. The search space A, consists of all initial conditions
Ao of the adjoint state for which there are normal regular extremals satisfying 2*(0) = 2o and
A*(0) = Ao. Thus, A\§” € A;, has to hold.

Due to the restriction to normal regular extremals, there may be no solution to problem 7.0.1
for specific xg, x4, and g,, even if the system is controllable and time-optimal solutions exist.
This is true since some x4 may be reachable from xy within the tolerance ¢, only by abnormal
or singular extremals.

Definition 7.0.2 (Near time-optimal control problem using normal regular extremals) For a
time-optimal control problem 2.2.8, let 7' be the end time of a time-optimal solution, (x*(-), \*(+),
u*(+)) normal regular extremals which satisfy the necessary optimality conditions of the Max-
imum Principle 4.2.2, and Ay, the search space 4.3.4. Fiz constants k > 1 and €, > 0. The
problem to find an end time 7° < k7' and an initial condition i’ € A, such that for an
extremal satisfying z*(0) = xo and X*(0) = N, there holds ||z*(71°) — xq4|| < e, is called near
time-optimal control problem using normal regular extremals. Any solution (N, 7°) is called
solution to the near time-optimal control problem.

The near time-optimal control problem results from the path planning problem 7.0.1 by the
requirement that the solution has to be a near time-optimal solution 2.2.5 satisfying 7t < k7.
If only normal regular extremals exist for a time-optimal control problem, solutions to problem
7.0.2 can be time-optimal, i.e., & = 1 can hold. For general control problems, there are not
only normal regular extremals, but also abnormal or singular ones. Solutions to problem 7.0.2
do not always exist. If there are solutions, they are not time-optimal in general.

In the following, path planning and time-optimal control using exclusively normal regular ex-
tremals is covered. The problems 7.0.1 and 7.0.2 are referred to as the path planning and near
time-optimal control problem without stressing each time that normal regular extremals are
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applied. The normal regular extremals are simply referred to as extremals, as neither normal sin-
gular nor abnormal extremals are taken into account. Since only extremals (x*(-), A*(+),u*(+))
are considered, the superscript * is omitted for the trajectories of x, A, and wu.

7.1 Simplification of the path planning problem

In this section, approaches are given to simplify a path planning problem by reducing its
complexity and scope. Such simplifications are often applied before a path planning problem
is solved, see [10, 13, 60, 94, 106, 107, 108]. In particular, the simplifications are beneficial
for practical application of path planning methods. At first, for a control system with affine
input v and non-affine input w, a scaling of the affine input is addressed. This scaling based on
a time transformation allows to normalize the affine input v so that for one input variable v;
with symmetric input space, v; € [—1, 1] results. Then, the transformation of the initial state
of a left-invariant control system 3.1.4 to the origin of the configuration space is discussed.
Further simplifications not mentioned here arise from symmetry properties of optimal paths.
Such properties are studied for the car-like robot in [13, 106, 108].

Theorem 7.1.1 (Affine input scaling) Let U =V x W be an input space with
V= [_7}17@1] X X [_ﬁmuﬁmJ )

my >0, 9 >0, and W a compact subset of R™?, my > 0. For a control system

@(t) = f(x(t), ut) = folz(t), w(t)) + Zgj(ﬁc(t) sw(t)) v (t) (7.1)

with input u = (V1,...,Vmy, Wi, ..., Why,) € U, let (1,2(-),u(-)) be an admissible solution
S(xo,xq) over the time interval I = [0,7].
Choose one input variable v; from (v1,...,Vm,). Then, for the control system
, 1 A
'(s) = f(@(s),a(s)) = = fo(&(s), w(s)) + > 9i(@(s) w(s)) 95(s) (7.2)
) J=1

with the scaled input space U =V x W,

V= [_vl Ul] N [—vil,uil} x [~1,1] x [_%H’WH} «

A ) A A~ ~
Vi Vg Vg Ui Vg Ui

and
o(s) 1= 0—1}(7}—1 s) = —u(t), u(s):= w(vi s) =w(t), (7.3)

(o,2(-),u(-)) is an admissible solution S(xo,xq) over the time interval I = [0,0] for o = ;7.

Proof Using the time transformation s = 0; ¢ and plugging in Z(s) := :c(vi ) = x(t), the

derivative of &(s) with respect to time s is #'(s) = dz(s) /ds = Uix(t) From (t) given by
(7.1) and t = 1711 s,

is obtained, and (7.3) gives (7.2).
Recall Definition 2.2.1 of an admissible solution S(xg,x4) of a control system = = f(x,u)
with state space M, initial state xg, desired state x4, and input space U. Each admissible
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solution consists of the end time 7 of an interval I = [0, 7], an input map u: I — U, and a
state trajectory x: I — M such that x(0) = zg, © = f(z,u) for almost all ¢ € I, and x(7) = x4
holds. Thus, for an admissible solution of system (7.1) with z(0) = z¢ and (1) = 24,

ﬂﬂ=m+AfWOw©MM

and u(t) € U is true for all ¢ € I. Then, by inspection, the integration of system (7.2) with
initial condition 4(0) = xg gives

f@=%+47mom@mc

which holds for all s € f, and (o) = z4. Because of (7.3), if u(t) € U and v(t) € V' is true for
all t € I, then 1u(s) € U and v(s) € V is true for all s € I as well. Thus, (o,2(-),a(-)) is an
admissible solution S(z,xq) from zg to z4. W

The purpose of the input scaling 7.1.1 is to obtain the scaled input space V with a normalized
input variable ©; € [—1,1]. If there is a solution (o, Z(:),a(-)) from xy to x4 for system (7.2)
with scaled input space V and end time o, then there is a solution (7,z(-),u(+)) from zg to x4
for system (7.1) with original input space V and end time 7 = Ui o. In general, no equivalent
scaling can be given for non-affine inputs w.

System (7.1) is more general than the affine control system @ = fo(z) + Y./~ gi(z) u;, as it
may have both affine and non-affine inputs. It is similar to system (4.17), for which local second-
order sufficient optimality conditions are considered in Section 4.6.2. However, for system (4.17),
W = R™2 holds, whereas for system (7.1), W is a compact subset of R™2.

Theorem 7.1.2 (Transformation of the initial state) For a left-invariant control system 3.1.4
on a matriz Lie group G, let g € G be the state, E the identity element of G, gy € G the
initial state, and gq € G the desired state. Let (1,g(-),u(-)) be an admissible solution S(go, gd)
over the time interval [0,7]. Then, for §(t) == g5 " g(t), (1,3(-) ,u(")) is an admissible solution

S(Go, Ga) over [0,7] which satisfies o = E and §q = go " ga-

Proof According to Definition 3.1.4, a left-invariant control system on a matrix Lie group G
with state g € G is given by ¢ = g >.;_, wi(u) e; = gV (u). Here, w;: U — R are real analytic
functions, and e; € TG are linearly independent vectors of the Lie algebra. For an admissible
solution (7, g(),u(-)) of a system with initial condition g(0) = go, there holds u(t) € U and

t

o(t) = go + /E 9(6) V(u(€)) de (7.4)

=0

for all ¢ € [0,7]. At time 7, g() = g4 is true. Left multiplication of (7.4) by g ' gives

glolt) = g (904-J£t SOV u(©) de)

=0
t

= galgo+961/ 9(&) V(u(€)) d¢

£=0

- B+ /5 a5 9(6) V(u(€)) de,

=0

since gal is constant. Thus, for the new state g = gal g, the new initial state gy = ggl go=FE,
and the new desired state g = 9o " gas (7,3(-) ,u(+)) is an admissible solution of the new control
system ¢ = gV (u) which satisfies u(t) € U for all ¢t € [0,7], g(0) = E, and §(7) = gq. B
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The transformation of a trajectory g(-) starting from g to a trajectory g(-) starting from
FE simplifies the path planning problem, as only solutions with initial state E have to be
determined. If a trajectory g(-) from E to gq generated by an input u(+) is known, the same input
gives a trajectory g(+) from go to g4. Theorem 7.1.2 is used in Section 7.4 about modifications
of the time-optimal control for practical application. By considering only paths starting from
FE which represents the origin of the configuration space, the number of precomputed solutions
is reduced. Transformations like in Theorem 7.1.2 are applied in [41, 60].

7.2 Path planning using normal regular extremals

This section addresses the path planning using normal regular extremals. It is performed
iteratively in Section 7.3 to obtain near time-optimal solutions. The path planning problem is
translated into an optimization problem, a solution approach for this problem is given, and its
convergence is analyzed. Then, an algorithm which implements the path planning is presented.

7.2.1 Path planning as optimization problem

The path planning is implemented as an optimization problem for the initial condition A(0) =
Ao € Ay, of the adjoint state. Here, A, is the search space from Definition 4.3.4. The initial
condition Ag results from the minimizing of the deviation between the state x(7) and the desired
state x4 at some end time 7. In the following, sometimes x, (t) := x(t, Ao) is written instead of
x(t) to stress that the extremal state x at time ¢ depends on Ag.

Definition 7.2.1 (Optimization problem for path planning) For the path planning problem
7.0.1, let (x5,(-), A(-) ,u(-)) be normal regular extremals which satisfy x,,(0) = xo and A\(0) =
Ao, Ay, the search space, and I =1[0,T] a time interval with sufficiently large T'.

Let D: A:z:o x I — RZO, ()\0,15) — D()\o,f),

D(Xo,t) = [lzs, () — zdll (7.5)
be the deviation between x, (t) and x4 over \g € Ay, andt € I. Letd: Ayy — R>q, Ao — d(Xo),

d()\o) = D()\(),tzm) = l’tnel}l D(/\(),t) (76)

be the minimal deviation between x, (t) and xq over Ao € Ay, at t7* € I. Let
T™ = {7 € 11D, ") = (M)} (7.7)
be the set of all times t* which satisfy (7.6). Choose the minimal time
t" = minT™. (7.8)
The problem to find any initial condition \i' for which

dONT) = inf  d(\o) (7.9)

)\OGA:L'O
holds is called optimization problem for path planning.

As discussed below, for a bounded search space A,,, the set 7™ is finite and discrete. By
(7.8), the minimal time ¢™ is chosen from 7™, since in Section 7.3, near time-optimal solutions
are determined by solving the optimization problem for path planning iteratively. Taking the
minimal time for ¢ gives faster convergence. For varying Ao, the times ¢ and ¢ may change.
The infimum in (7.9) gives the greatest lower bound on d for Ay € A,,. As the search space
A, does not have to be bounded or closed, there may be no point in A,, at which d attains its
infimum, i. e., there may be no minimum of d in A,,. Hence, the infimum of d is used in (7.9).
To deal with the minimum of d instead of the infimum, the following assumption is made.
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Assumption 7.2.2 (Minimum of d) There is at least one minimum of d in the search space
A, such that (7.9) can be replaced by

d(A{') = min d()\o). (7.10)

Ao€Az

Assumption 7.2.2 holds e.g. if A,, is compact and d is continuous as shown below. There
may be several minima satisfying (7.10). Then, any of these minima can be chosen. In the
next section, the minimization of d is implemented by local optimization. For several minima
meeting (7.10), the resultant minimum AJ* depends on the initialization of the optimization.

Lemma 7.2.3 (Solution to the path planning problem) For the optimization problem 7.2.1 and
x>0, let

DO ™) < &, (7.11)

be satisfied for an initial condition \j* € Ay, and a time t™ € I. Then, \§* = A\§* and 7 = t™
give a solution to the path planning problem 7.0.1.

Proof According to Definition 7.2.1, D(AF",t™) = ||x,, (™) — 4| holds for a normal regular
extremal (x,,(-),A(-),u(-)) which satisfies x,,(0) = z¢ and A(0) = AF*. Thus, for \j” = A
and 7 = t™, the condition D(A{”,7) = ||z, (7) — za| < €, is satisfied, and (A\j", 7) is a solution
to the path planning problem 7.0.1. H

A solution to path planning problem 7.0.1 exists if there is a normal regular extremal which
goes from z¢ to z(t™) such that ||z(t™) — 24| < &, and "™ < T holds. Hence, in Definition
7.2.1, the final time T of the interval I = [0,7T] is assumed to be sufficiently large to ensure
that no solution is missed if ||z (t") — z4]| < &, would hold only for a time t" > T.

Definition 7.2.4 (Solution minimum) An initial condition \j' € Ay, such that D(A\G',t™) <
ey holds for the time t™ obtained from (7.8) is called solution minimum.

Lemma 7.2.5 (Properties of the optimization problem for path planning) For the optimization
problem for path planning 7.2.1, the following properties hold:

O1: The minimal deviation d satisfies 0 < d(X\o) < d for all \g € Ay, and
d = ||z — x4 > 0.

02: The minimal deviation d is continuous in Ao for all Ao € Ag,, but it need not be differen-
tiable everywhere in Ay, .

03: Let &(t) # 0 hold for almost allt € I. Assume that the search space A, is bounded and
(2(t) —zq) " @(t) =0 (7.12)
does not hold over any proper interval in I. Then, the union
Ty = AgnLeJAm T (7.13)
of the sets T™ over all solution minima \j' in Ay, is finite and discrete.

Proof

O1: As d gives the minimal value of D with respect to t and D is the Euclidean norm of x — x4,
the minimal deviation d is non-negative. If D(\g,t) > D(X\g,0) holds for all t € (0,77,
then d = D(\p, 0) is the minimal value of d. Thus, d(Ag) < d holds for all \g € Ag,. Since
o # x4 holds for the control problem 2.2.1 underlying problem 7.0.1, d > 0 is true.
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02:

03:

For a fixed initial condition Ag, the deviation D = ||z — x4 is continuous in ¢, as x is
absolutely continuous in ¢ according to Definition 2.1.3, and the Euclidean norm ||-|| is
continuous. Likewise, for a fixed time ¢, D is continuous in A\g. This is true since the
extremal adjoint state A(¢) at the fixed time ¢ depends continuously on its initial condition
Ao. Hence, the extremal input u obtained from the maximization of the Hamiltonian
function H(x,pu, \,u) = —p + AT f(x,u) and thus the extremal state x resulting from
& = f(x,u) depend continuously on Ay at the fixed time ¢. The minimal deviation
d(Ao) = minge; D(Ag,t) is continuous in Ao for all \g € A,,, as D is continuous in ¢ and
Ao, and the minimum of D over t € I is continuous as well.

To show that d need not be differentiable with respect to Ao for all A\g € A,,, it is
assumed that for some Ay, the minimal deviation d is obtained at time t™ = t1, i.e.,
d(Ao) = D(Ao,t1) holds for ¢ from (7.8). For Xj close to Ag, ¢} close to t1, and to < t],
it is assumed that d(\j) = D(A),t}) = D(X},t2) holds, which implies z(#]) = x(t2). If
during the minimization of d, the initial condition changes from A to Af, the time ¢
does not change from ¢, to ], but to ta due to to < t}, and ¢™ is the minimal time of
the set T™. If t5 is not close to t1, i.e., if the time ¢ changes discontinuously from ¢; to
to, then &(t]) = 2(t2) does not result from x(t]) = x(t2) in general. Thus, if ¢" changes
discontinuously, d need not be differentiable with respect to Aq.

To show property O3, at first, it is assumed that there is only one solution minimum A’
in Ag,. Instead of D given by (7.5),

n

D(Xo, t) = % > (a(t) — za)® (7.14)

i=1

is analyzed. If D is constant over a proper time interval in I, then D is constant, and
vice versa. For D to be constant,

D= (x(t) - xq) = (x(t) — za) " i(t) =0
i=1

has to hold. If @(t) # 0 holds for almost all ¢ € I and (z(t) — z4) ' #(f) = 0 does not
hold over any proper interval in I, then (x(t) — xd)T #(t) # 0 holds for almost all ¢ € I.

Hence, D and D are not constant. Therefore, if at Aj* and ¢, there is a minimum of D,
then D cannot take the constant minimal value D(AJ',¢™) over a proper interval in I.
Thus, the set T™ of times tI" given by (7.7) is discrete. As the deviation D = ||x — xq4]| is
continuous in ¢ and the time interval I = [0, 7] is compact, the number of times ¢ which

satisfy (7.6) is finite. Thus, set T™ of times ¢J" is finite and discrete.

In general, there are multiple solution minima in A, , called A\{® in the following for
J € N5o. According to property 02, d is continuous everywhere in A,,. Thus, the region
of attraction €2; C Ay, of each solution minimum Ag’ cannot be arbitrarily small. As the
search space A, is assumed to be bounded, there is only a finite number of regions of
attraction and of solution minima in A, . The set Ty asin (7.13) is the union of the
sets 17" taken over all solution minima Ag? € Ag,. Since each T7" is finite and discrete as
shown above, TK;O is finite and discrete as well, and property O3 holds. W

The upper bound d on d from property O1 is considered in Section 7.2.4 with respect to
improvements of the path planning. If d(\g) = d holds for an extremal, the system moves away
from x4 for all ¢ € I, and x(0) = ¢ has the minimal deviation from z4. According to property
02, d is continuous, but need not be differentiable everywhere in A,,. Thus, the optimization
problem 7.2.1 can be nonsmooth. The condition (z(t) — x4) ' #(t) = 0 as in (7.12) means that
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there is no non-constant trajectory x(t) for which ||z(¢) — x4|| is constant over a proper time
interval. A system for which condition (7.12) can hold over a proper time interval is & = (u1,us)
for the state & = (71, x2), state space M = R?, input u = (u1,uz), and input space U = R2.
For x4 = (0,0), o # (0,0), u1 = z2, und uy = —x1, the state x evolves on a circle around
(0,0), and (7.12) is satisfied for all time.

During the minimization of d, the times ¢! € T can change discontinuously. The minimal
deviation d may have several minima in A, , which can be local or global minima. In general,
depending on the value of €., not all minima satisfy condition (7.11). To solve the optimization
problem 7.2.1, it is required to find not any minimum of d, but a solution minimum 7.2.4. Thus,
problem 7.2.1 is a global optimization problem.

For illustration, simulation results are given here for path planning for the RKM 5.0.2 covered
in detail in Chapter 8. Figure 7.1 shows d, t™, and Ay = ()\10,)\20,)\30) over a; € [1,2.5]. A
parameterization of the search space is given by Theorem 8.2.1. Using this parameterization, the
normalized initial conditions \g € Ay, are represented as Ag = Ag(a) for a = (@1, ap). Figure
7.2 gives a plot of the two-dimensional surface obtained from d over Ay,. For the simulation, the
initial configuration ¢o = (0,0, 0), desired configuration ¢4 = (,%4’ 2), final time T = 8.614,
and maximal velocity v = 1 was used. In Figure 7.1, the varying initial condition 5\0(0[) results
from a = (1,0.45) for a; € [1,2.5]. At ay = 1.309 and oy = 2.036, the time ¢t™ changes
discontinuously, and d is not differentiable but only continuous. In Figure 7.2, there are several
minima of d over A, including three solution minima. Over a large domain ¥ of Ay, there
holds d(X\g) = d. Simulations for many desired configurations ¢4 show that the search space
Ag, consists of regions of attraction €2 of one or several minima, which may be solution minima
satisfying condition (7.11) or other minima which do not meet (7.11), and a domain ¥ where
d(No) = d is true. In the interior of the regions of attraction {2 and the domain ¥, the minimal
deviation d is differentiable with respect to Ag. At the boundaries between the regions of
attraction 2 and the domain ¥, i.e., on a set of measure zero, d is only continuous. In Figure
7.2, the points o = (1.309,0.45) and « = (2.036,0.45) where t™ changes discontinuously lie on
the boundaries between the regions of attraction of the minima of d.

1 1.5 2 2.5
i ‘ ‘ - 5\10
0L — A2

1L — Ao g

1 1‘.5 é 2.5

(€51

Figure 7.1: Simulation results of the path planning.
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Figure 7.2: Deviation d over the search space.

7.2.2 Solution to the optimization problem for path planning

In this section, our solution approach to the optimization problem for path planning 7.2.1 is
given which is based on local optimization initialized to a random starting point. If condition
D\, t™) < e, as in (7.11) holds, a solution is found. The generation of random starting
points and the local optimization is repeated if required, as the optimization may converge
to a minimum which is no solution minimum and does not solve the path planning problem.
To control the local optimization and the path planning, exit conditions are defined. These
conditions are required since for some path planning problems, there may be no solution to the
optimization problem due to the restriction to normal regular extremals.

Approach 7.2.6 (Path planning by local optimization with random initialization) To obtain
a solution (A", T) to the path planning problem 7.0.1, a solution (AJ',t™) to the optimization
problem 7.2.1 is determined. For I = [0,T] with sufficiently large T, the following steps are
repeated until condition (7.11) holds or the path planning is terminated by an exit condition:

Step 1: Generate a random starting point A\§" € Ay, with uniform probability distribution.

Step 2: Perform a local optimization initialized to A\i© to minimize d over \g € Ay, until
condition (7.11) holds or the optimization is terminated.

If condition (7.11) holds, set \[* = A\ and T =t™.

The exit conditions for the local optimization and the path planning are defined below.
An algorithm to implement the path planning 7.2.6 is given in Section 7.2.3. For the local
optimization in Approach 7.2.6, a standard method for nonlinear optimization is used. For
each evaluation of d, the extremal is simulated over the interval I by numerical integration
of the control system starting from zy and the adjoint equation starting from the current Ag.
For the resultant extremal, the trajectory of the deviation D = ||z — x4]| is computed, and the
minimal deviation d is chosen as in (7.6). Then, d is minimized over A\g € A,, according to
(7.10) so that Ay and t" obtained from (7.7) and (7.8) result. It can be necessary to start the
local optimization several times with different A\§”, as the optimization may be trapped in a
minimum not meeting condition (7.11) or may not converge at all.
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As the location of the solution minima Af* is unknown, random samples from A, are chosen as
starting points A§” for the local optimizations. Suitable random sampling leads to probabilistic
completeness as shown below. The probability distribution is uniform and independent. If
information about the solution minima is available, A;” can be chosen from a subset of the search
space A, as discussed in Section 7.2.4. A selection of starting points based on a deterministic
sampling of A, requires an analysis of the location of the solution minima in A,,. Otherwise,
either ineffective starting points are chosen if the resolution of the sampling is too fine, or not
all regions of attraction are covered if the resolution is too coarse. For deterministic sampling
without an analysis, an iterative refinement of the sampling can be applied. However, such
refinements are not efficient for most applications, see [60].

For applicable and efficient path planning, it is necessary to control the individual optimiza-
tions in Step 2 and the overall path planning. Hence, the following exit conditions are applied,
which evaluate the number of simulated extremals as a measure of the computational cost.

Definition 7.2.7 (Ezit condition for local optimization) To control the path planning 7.2.6,
the following exit condition is used to terminate the individual local optimizations:

EC1: The number nt° of simulated extremals for the current local optimization satisfies

Sim

niS >nk for a bound nt° > 0.

Sim — Sim Sim

If exit condition EC1 holds, the current local optimization is terminated. Then, at least nL?,

extremals were simulated without finding a solution. This is the case if the optimization is
trapped in a minimum where condition (7.11) does not hold or if it does not converge.

Definition 7.2.8 (Ezxit condition for path planning) To control the path planning 7.2.6, the
following exit condition is used to terminate the overall path planning:

EC2: The number ntl  of simulated extremals for the path planning satisfies nE-” > nktr

Sim Sim  — Sim

for a bound nLl > 0.

If no solution to the path planning problem exists, the generation of random starting points
and the local optimization would be executed again and again. The prevent this, the number
of simulated extremals for the path planning is bounded by exit condition EC2.

The following definition of probabilistic completeness can be found e.g. in [59].

Definition 7.2.9 (Probabilistic completeness) An algorithm is probabilistically complete if it
includes random decisions and is guaranteed to find any existing solution in finite time.

Algorithms can be complete, resolution complete, probabilistically complete, or neither. If
an algorithm is complete, it finds a solution or correctly reports that no solution exists in finite
time. In general, completeness can only be achieved if the whole search space is scanned. If
this takes too long, e. g. for a global optimization problem, a search can be done which explores
the search space with a sampling scheme. The sampling can be deterministic or random. Using
deterministic sampling, an algorithm is called resolution complete if it samples densely such that
it finds any existing solution in finite time. Neither resolution nor probabilistically complete
algorithms can determine in finite time that no solution exists. For details on probabilistic
completeness and path planning, see [58, 59, 60, 121]. The path planning 7.2.6 utilizes random
sampling to generate the starting points Aj”. Thus, probabilistic completeness is studied.

Definition 7.2.10 (Probability of convergence) For the path planning problem 7.0.1, let \j' €
Ay, be a solution minimum 7.2.4 and Q) its region of attraction. The probability that a local
optimization initialized to a starting point A\§F € ) converges so that condition (7.11) holds is
called probability of convergence Po(A\S") for the starting point A\5". The mean value of Po(A\S")
over all \§" € Q is called probability of convergence P. for the solution minimum A\g".



104 Chapter 7. Approach for time-optimal control

As a solution minimum is assumed in Definition 7.2.10, there is at least one solution 7.2.3 to
problem 7.0.1. For P., local optimizations starting from points A§” in the region of attraction
Q of a solution minimum AJ' are studied. For a specific A§", Po(A") specifies how probable
an optimization starting from A" converges to Aj’. In this case, a solution to optimization
problem 7.2.1 and thus to path planning problem 7.0.1 is found. The mean value of P (A\5")
over all A\§” € ) gives the probability of convergence P, for the solution minimum Ag". It should
be noted that the probability of convergence P. does not give the probability of successful path
planning for an arbitrary point A\§” € A,,, since for P, only random starting points \j” in the
region of attraction of a solution minimum are considered. In general, the regions of attraction
of the solution minima are unknown for a specific path planning problem.

For the following theorem on convergence of the path planning, P. > 0 is assumed. Among
others, P, depends on the applied method for local optimization and the bound n%L7 for exit
condition EC1. If a suitable method for local optimization is used and nL? is sufficiently large,
P. > 0 is true. In general, convergence is not always achieved, but P. < 1 holds due to
two reasons. First, if condition (7.11) is true for some solution minimum AJ*, an optimization
converging too slowly to AF® is terminated by exit condition EC1 as it requires too many
simulated extremals. Second, the optimization problem 7.2.1 can be nonsmooth, since according
to property O2, d need not be differentiable everywhere in A,,. At a point where derivatives
change discontinuously, a derivative-based method for local optimization may fail to converge.

Theorem 7.2.11 (Convergence of the path planning) The path planning 7.2.6 is applied to
path planning problem 7.0.1. The local optimizations and the path planning are controlled by
the exit conditions EC1 and EC2 for a sufficiently large bound nLl . Assume that the search
space Ny, is bounded. If there is at least one solution to problem 7.0.1, let the probability of
convergence for each solution minimum satisfy P. > 0. Then, any existing solution to problem
7.0.1 is found after a finite number of simulated extremals. The path planning is probabilistically

complete.

Proof Provided that at least one solution to the path planning problem exists, it is assumed
that there is exactly one solution and thus one solution minimum A§* in A,,. If several solu-
tions and several solution minima exist, Theorem 7.2.11 can be shown analogously. A solution
minimum AJ* from Definition 7.2.4 is a minimum of d such that AJ* € A,, and d(\}") < &, is
true. Hence, there is a minimum of d in A,,, and Assumption 7.2.2 holds.

If a solution to the path planning problem 7.0.1 exists, the region of attraction Q C A,, of
the corresponding solution minimum A§’ cannot be not arbitrarily small, as d is continuous
everywhere in A, see property O2 of Lemma 7.2.5. As the search space A, is assumed to be
bounded and the region of attraction €2 is not arbitrarily small, €2 is hit by a random starting
point A§" after a finite number of starting points, since the points are uniformly distributed
over A,,. For a random starting point A\j” located in €2, the local optimization initialized to A\§"
converges on average with probability P > 0 so that condition (7.11) holds and a solution to
the path planning problem is found. As it takes only a finite number of random starting points
A” to hit Q and each A§” € ) leads on average with probability P, > 0 to convergence so
that condition (7.11) is true, convergence is obtained after a finite number of random starting
points A\;”. This number is denoted by ngp.

For each of the ngp starting points, one run of the local optimization is done. Each local
optimization is terminated if condition (7.11) holds or if exit condition EC1 is true, i.e., the
number n%? of simulated extremals satisfies nk? > nt? for finite L2 . If a solution to the
path planning problem exists, it is found after n” < L2 ngp simulated extremals. Thus, nZ”
is finite. As n.” is assumed to be sufficiently large, nf” < nZ” holds, and the path planning
is not terminated by exit condition EC2 before a solution is found. As it takes only a finite
time to simulate nZ” extremals, the path planning is probabilistically complete. B

For the proof of Theorem 7.2.11, it was assumed that only one solution and one solution
minimum exists. If there are several solution minima, a solution to the path planning problem
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is obtained after a smaller number of random starting points A§” in general, as it takes fewer
points A5 to hit the region of attraction of a solution minimum.

As discussed in [60, 121], for path planning problems which are global optimization problems,
an analysis of the rate of convergence is either expensive or requires restrictive assumptions.
Hence, the rate of convergence of the path planning 7.2.6 is not analyzed. In particular, no
expected number of random starting points or simulated extremals for a solution is given, as
this would require a detailed analysis of the minima of d over the search space A, for the
specific path planning problem. To characterize the rate of convergence, it would be necessary
to know the coverage of A,, by regions of attraction of solution minima. If this coverage would
be known, an expected number of random starting points to solve the path planning problem
could be given. From this number, an expected number of simulated extremals would result.

For a textbook example of path planning solved by the randomized potential field method,
the rate of convergence is analyzed in [58]. This method also addressed in [60] combines gradient
descent and random walk to escape from local minima. For each minimum of the potential field,
the region of attraction is explicitly specified. Minima leading to a solution of the path planning
problem are identified, and the transition probability between minima which solve the problem
and those which do not are calculated. Finally, an expected number of random walks required
to arrive at a solution minimum is given. For nontrivial problems like path planning for the
RKM, it is impossible to specify the regions of attraction and to determine which minima solve
the problem without a computationally expensive analysis.

7.2.3 Algorithm for path planning

An implementation of the path planning 7.2.6 is given in Algorithm 7.1. A detailed repre-
sentation of the algorithm in form of a listing in MATLAB-like code can be found in Section
Al

. A LO ~ PP
Parameters: zg,xq,6,, Ay, T, 050, NE

Output variables: \{”, 7

Initialization: Set nt? = 0.

Sim

Step 1: Choose a random starting point A5” from the search space A, .

Step 2: Minimize d over A\ € A,, starting from Ag = A\§". To calculate d(\g),
e simulate the extremal z(-) obtained for x(0) = g, A(0) = Ag over I = [0, T,
e calculate D(\g, ) = ||z(-) — z4l|,
e set d = minges D(Aog,t) and t™ = minT™ for T™ = {t!™ € I |D(\o,t!") =d}.

Let n%2 be the number of simulated extremals for the optimization.

Sim,

Ifd<e,orni? >nk holds, terminate the optimization. Set nf =nfl + nk?

Sim — Sim Sim Sim Sim*

Ifd < e, or nf > nlf holds, terminate the path planning and, if d < e, holds, set

m

AT = Ao and 7 = t". Otherwise, go to Step 1.

Algorithm 7.1: Algorithm for path planning.

The parameters of Algorithm 7.1 are the initial and desired state xg and x4, the tolerance
€z, a representation of the search space A,,, the final time T of the interval I = [0,T], and the
maximal number of simulated extremals for each run of the local optimization and the path
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planning, 757 and nL" . The algorithm returns the initial condition A§” and the end time 7

which solve the path planning problem.

For initialization, the counter n.’ for the total number of simulated extremals for the path
planning is set to zero. Then, Step 1 and Step 2 are executed iteratively until the path planning
is terminated. Step 1 and 2 of Algorithm 7.1 correspond to Step 1 and 2 of Approach 7.2.6.
In Step 1, a random starting point A" is chosen from the search space A;,. In Step 2, the
deviation d is minimized over A\g € A,, asin (7.10). The local optimization for the minimization
is initialized to A§". To calculate the value d(Xg) for the minimization, the normal regular
extremal obtained for the initial conditions x(0) = z¢ and A(0) = Ao is simulated over the
interval I, and the deviation D as in (7.5) is computed. Then, the minimal deviation d(X¢) is
chosen according to (7.6). It gives the value of d for the minimization. Besides, the end time
t™ results from (7.7) and (7.8). The minimization is terminated if d < e, or n5® > n%? holds.

Sim — Sim
Here, d < ¢, means that condition (7.11) is true for A\j* = Ao. If nL0, > nL7 applies, exit
condition EC1 holds, i.e., the maximal number of simulated extremals is used for the current
local optimization. Finally, the number n}” of simulated extremals for the path planning is
incremented by the number nLe of simulations done for the local optimization.
The path planning is terminated if the minimal deviation satisfies d < e, or if the total
number of simulated extremals meets nf” > nll . If d < e, is true, condition (7.11) holds for

Sim Sim
AJ" = Ao, and the path planning problem is solved. If nL7 > nLl is true, exit condition EC2
holds, and the path planning is terminated unsuccessfully, i.e., without finding a solution. If
the path planning is terminated due to d < ¢, the output variables A\[” and 7 are set to the
values of Ag and " from the last run of Step 2.

To simulate an extremal over the interval I = [0, T}, the ordinary differential equations of the
control system and the adjoint equation driven by the extremal inputs from the maximization of
the Hamiltonian function are integrated numerically. To compute and represent the trajectories
of z and D in an efficient way, the interval I is discretized using a discretization interval At > 0.

This gives the time vector
In = [t; |t =it i=0,...;n0, np = T/AL] (7.15)
Here, T'= n, At is assumed for n, € Nyy. The vector
x(In) = [a:, ’xi =x(t;), t; € IA]
results from the numerical integration for the extremal state z at the times Ia. Based on x(Ia),
D(Ip) = [D; |Di = [lz(t;) — zall, t; € In ]

is the deviation D at the times Ia. From D(Ia), the minimal element is chosen for (7.6). The
end time ¢ is the element of Io which meets (7.8). Thus, the resolution of t™ and 7 is At.

The discretization interval At is chosen depending on the tolerance €,. On the one hand, At
must be short enough for a fine resolution of t™ so that solutions satisfying condition (7.11) for
the specific €, can be found. Thus, for a smaller value of €., a smaller discretization interval
At is required. On the other hand, At should not be too short to keep the computational effort
low. Because of the discretization of I for At > 0, desired states x4 cannot be reached with
arbitrarily small deviation in general. For time-optimal control of the BSR, a value for At is
given depending on &, by Theorem 8.2.2.

The parameters of the algorithm for path planning are summarized in Table 7.1. There are
different types of parameters, parameters belonging to the problem data of the path planning
problem, parameters resulting from the path planning problem, and design parameters. The
parameters of the problem data are the initial and desired state xzg and x4 and the tolerance
e, for condition (7.11). The parameters from the path planning problem comprise A,,, At,
and T'. The search space A,, is represented by a suitable parameter set. The discretization
interval At has to be chosen depending on ¢, as discussed above. The final time T of I must
satisfy T' = ny At for ny € Nyg. Besides, T' must be as short as possible to obtain a vector
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I with minimal number of elements to reduce the computational effort. However, T has to
be sufficiently large to ensure that if there is a solution with end time 7, this solution is not
missed due to T < 7. The design parameters 5 and ni. are selected to adjust the path
planning. For a high probability of convergence P, of the local optimization, n% should be
large, but to prevent the local optimizations from wasting computational effort without yielding
convergence, 152 should be small. The same is true for n.” | which should be large to make it
possible to find a solution, but not too large to keep the cost low if no solution can be found.
The parameter 17 defines the maximal computational cost of the path planning. To set the

parameters A, , At, and T, an analysis of the path planning problem is required.

’ parameter \ description \ type ‘
o initial state problem data
Ty desired state problem data
€z tolerance for condition (7.11) problem data
Ay, parameter set to represent the search space | from path planning problem
At discretization interval from path planning problem
T final time of the interval I = [0, T from path planning problem
.10 maximal number of simulated extremals .
Ngim L design parameter
for each run of the local optimization
. pp maximal number of simulated extremals .
nee L design parameter
for path planning in total

Table 7.1: Parameters of the algorithm for path planning.

7.2.4 Discussion of the path planning

Approach 7.2.6 for path planning uses extremals of the time-optimal control problem, as the
goal of the time-optimal control based on the path planning is to find time-optimal solutions.
For path planning, only normal regular extremals are considered. Abnormal extremals are not
included, since they are in some way degenerate, as the Lagrangian is not taken into account.
Besides, non-constant abnormal extremals do not exist for most nonholonomic kinematic sys-
tems, see [117, 120]. In contrast to abnormal extremals, normal singular extremals are relevant
for optimal control of nonholonomic systems. However, such extremals are not studied here,
as they are more complicated than regular extremals in general. Only for specific classes of
control systems, singular inputs can be determined directly. Moreover, such extremals are nu-
merically difficult to handle. For the RKM, singular extremals give optimal solutions only for
some configurations gg which are not reachable by regular extremals, see Section 9.6.

To find a solution (A§”, 7) to the path planning problem 7.0.1, the optimization problem 7.2.1
is solved by Approach 7.2.6. This optimization problem is a boundary value problem with free
end time as in Definition 4.4.1. As discussed in Section 4.4, standard solvers for boundary value
problems require a fixed end time. For this, a time transformation can be applied to obtain a
control problem with new time s = % t € [0,1]. The unknown end time 7 of the original system
is modeled as additional state variable, resulting in a problem of higher dimension which is
more costly to solve. Besides, a good initial guess of 7 is needed, which may be difficult to give.
In contrast, for the path planning 7.2.6, no time transformation is required. Moreover, no guess
of 7 must be provided, but only an upper bound on the final time T of I = [0, T].

Aside from the time transformation, standard solvers for boundary value problems rely on
a good guess of the solution for initialization. Otherwise, no solution is found in general, as
the solvers can only find solutions close to the initial guess. For good initial guesses, a detailed
analysis of the boundary value problem is required. As discussed in Section 9.4, even for time-
optimal solutions to nearby desired states, the initial conditions \g of the adjoint state may be
completely different. Apart from Ao, the initialization of the state variable for 7 is important.



108 Chapter 7. Approach for time-optimal control

As standard solvers can only find solutions with 7 close to its initialization value, no solution
is found if an initialization value of 7 is set for which no solution with a nearby value exists. In
contrast, for Approach 7.2.6, a random starting point A§" is used for the initialization of A,
and no initialization value of 7 is needed.

The path planning can be easily adapted to specific problems. To implement it, the equations
of the control system, the adjoint equation, the extremal inputs, and the parameters of Table
7.1 have to be given. In particular, no knowledge of the minima of the optimization problem
for path planning is required, as random starting points are used for initialization and the path
planning is probabilistically complete. The maximal computational cost can be set by nL7 .

Depending on the control problem, the search space A, for optimization problem 7.2.1 can
be narrowed down to a subset containing all initial conditions which solve the path planning
problem. This subset can be given based on knowledge of the minima of d or heuristic rules.
Besides exit condition EC1 and EC2, further conditions may be used for the local optimiza-
tions and the path planning. An exit condition can check whether a starting point A§” yields
d(A§") = d = ||zg — 4]|. Then, this point is discarded, as d(\g) = d may hold for all Ay in the
neighborhood of A§”, impeding convergence of derivative-based optimization methods. Another
exit condition can prevent the optimization from converging to known minima which do not
solve the path planning problem. For this, all minima of d found so far are stored, and the
distance of the current \y to the these minima is monitored. If the distance to some minimum
falls below a threshold, the optimization is terminated.

As problem 7.2.1 is a global optimization problem, global optimization methods may be used.
Such methods can escape from minima which do not meet condition (7.11). An example of a
global optimization method is the hybrid approach in [127] which combines simulated annealing
to escape from local minima with gradient descent for faster convergence. This approach is
applied in [36] for time-optimal control of spin systems. Another example is the randomized
potential field method in [58, 60] which implements path planning by gradient descent and
random walk. Global optimization methods may yield convergence to solution minima which
satisfy condition (7.11). However, they typically require a detailed analysis of the optimization
problem, as discussed for the randomized potential field method at the end of Section 7.2.2.

According to property O2 of Lemma 7.2.5, problem 7.2.1 can be nonsmooth, as d need not
be differentiable everywhere in A, . For nonsmooth problems, derivative-based optimization
methods may fail to converge at points of the search space where derivatives change discon-
tinuously. Optimization methods for nonsmooth problems exist, but their efficiency depends
strongly on the particular problem. Moreover, smoothing approximations like in [126] may be
used to obtain a smooth optimization problem which can be solved by a standard method for
local optimization. From solutions to this new problem, solutions to the original nonsmooth
problem can be derived. Neither optimization methods for nonsmooth problems nor smoothing
approximations are used for the optimization problem 7.2.1, as standard optimization methods
yield good convergence in almost all simulations performed for this thesis.

7.3 Time-optimal control by iterated path planning

This section covers our approach for time-optimal control which performs the path planning
from Section 7.2 iteratively over a decreasing time horizon to solve the near time-optimal control
problem 7.0.2. Like in Section 7.2, the approach is described, its convergence is analyzed, and
an algorithm which implements the time-optimal control is given.

7.3.1 lterated path planning over a decreasing time horizon

Definition 7.3.1 (Time horizon, feasible time horizon, decreasing time horizon) The opti-
mization problem for path planning 7.2.1 is considered. For some final time T > 0, the time
interval I = [0,T] is called time horizon. A time horizon I is called feasible if there is an initial
condition \J' and a time t™ € I resulting from (7.8) such that condition (7.11) holds. For a
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new final time T < T, let I' = [0,T"] be the new time horizon. A time horizon changing from
I to I' C I is called decreasing time horizon.

Approach 7.3.2 (Time-optimal control by iterated path planning over a decreasing time hori-
zon) To obtain a solution (N, 7'°) to the near time-optimal control problem 7.0.2, solutions
to the path planning problem 7.0.1 are determined iteratively over a decreasing time horizon.
Starting from an initial time horizon I = [O,T] with sufficiently large T, the following steps
are iterated until a mnear time-optimal solution is found or the mear time-optimal control is
terminated by an exit condition:

Step 1: Perform the path planning 7.2.6 over the time horizon I until a solution (N, T) is
found or the path planning is terminated.

Step 2: If a solution (\J”,7) is found, set Ni? = N5 and 7'° = 1, let
T =7 — At
be the final time of the new time horizon I' = [0,T’], and set I :=1'.

To terminate the path planning in Step 1, exit condition EC2 is used. An exit condition
for the near time-optimal control is defined below. An algorithm which implements Approach
7.3.2 is presented in Section 7.3.2. For a solution (A(”, 7) to the path planning problem, 7 € T
holds, which implies 7 < T. Thus, for At > 0, the new final time 7" = 7 — At satisfies
T’ < T. Hence, each time horizon changing from I to I’ is a decreasing time horizon 7.3.1.
To obtain the new final time 7", the end time 7 is decreased by the period At. This period
equals the discretization interval At used for the discretization Ia (7.15) of the time horizon
I. For convergence of the time-optimal control, At must be sufficiently small, see Theorem
7.3.4 below. Using the discretization I, the interval At is the minimal possible value for the
decrease of 7. In Approach 7.3.2, the end time 7%° is determined by iterated path planning over
a decreasing time horizon and not by a direct optimization. The motivation for this iterative
procedure is given in Section 7.3.3.

According to Definition 2.2.5, a solution is near time-optimal if its end time 7% satisfies
Fto < k1t for a constant & > 1 and the end time 7%° of a time-optimal solution. If the end
time 7% is known, 7%° < k7% can be directly checked. However, in general, 7t° is unknown.
Thus, it is assumed in the following that an optimality condition can be given which is true if
a solution is near time-optimal. If this condition holds, the near time-optimal control 7.3.2 is
terminated. Such a condition, called condition for near time-optimality in the following, can
be based on the optimality conditions given in Section 4.5 and 4.6. For the BSR, conditions for
near time-optimality are addressed in Chapter 9.

In Figure 7.3, the decreasing time horizon is shown exemplary for a run of the time-optimal
control with disproportionately large At. The iterated path planning is performed over the
time horizons Iy, I, and I3. For the initial time horizon I; = [0,7}] with T3 = T, one run of
the path planning gives a solution with end time 7;. Then, the time horizon Iy = [0, T3] with
final time Ty = 7 — At is used. For this time horizon, a solution to the path planning problem
with end time 75 results. Finally, the time horizon I3 = [0, T3] with T3 = 75 — At is applied.
The solution obtained for this time horizon has the end time 75. For the example in Figure 7.3,
this solution is assumed to satisfy a condition for near time-optimality. Hence, 75 is the end
time of a near time-optimal solution, i.e., 73 = 7° holds.

Like the path planning, the time-optimal control has to be controlled for applicability and
efficiency. For this, the following exit condition is applied to terminate the time-optimal control
depending on the number of simulated extremals.

Definition 7.3.3 (Ezit condition for time-optimal control) To control the time-optimal control
7.3.2, the following exit condition is used:
EC3: The number no

Sim

Al for a bound nt° > 0.

Sim Sim

of simulated extremals for the time-optimal control satisfies nt° >

Sim
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Figure 7.3: Decreasing time horizon.

Exit condition EC3 restricts the total number n’? —of simulated extremals for the time-
optimal control which is the sum of the number of simulated extremals over all runs of the path
planning. It is applied to prevent the time-optimal control from running ad infinitum if no near

time-optimal solution is found.

Theorem 7.3.4 (Convergence of the time-optimal control) The time-optimal control 7.5.2
is applied to the near time-optimal control problem 7.0.2. The local optimizations, the path
planning, and the time-optimal control are controlled by the exit conditions EC1, EC2, and
EC3 for a sufficiently large bound 1n'° . The bound W57 for exit condition EC2 is set to

Sim * Sim
~pP __ o~to __ to (7 16)
nSivn - nSim, nSiwt . .

Assume that the search space Ay, is bounded. If there is at least one solution to problem 7.0.2,
let the probability of convergence for each solution minimum satisfy Pe > 0, let condition (7.12)
for property O3 of Lemma 7.2.5 be satisfied, and let the discretization interval At be sufficiently
small. Then, any existing solution to problem 7.0.2 is found after a finite number of simulated
extremals. The time-optimal control is probabilistically complete.

Proof The time-optimal control executes the path planning 7.2.6 iteratively over the de-
creasing time horizon I. Each solution to problem 7.0.2 is also a solution to the path planning
problem 7.0.1. Thus, if the assumptions of Theorem 7.3.4 hold and the bound 7L/ for exit
condition EC2 is sufficiently large, the assumptions of Theorem 7.2.11 for convergence of the
path planning hold as well. Due to (7.16), for each run of the path planning, all remaining sim-
ulations %2 —n'? are allocated. The bound 7% is assumed to be sufficiently large. Hence,
ntl is sufficiently large. Then, due to P, > 0, a solution to the path planning problem is found
after a finite number of simulated extremals for each feasible time horizon I.

The set T]\’io given by (7.13) is the union of the sets T™ of times t" which give the minimal
deviation d, taken over all solution minima Aj* € A,,. In Theorem 7.3.4, it is assumed that

condition (7.12) holds. Hence, the set T]\’;O is discrete by property O3. Thus, there is a
sufficiently small discretization interval At for which 7" = 7 — At is so large that no near time-
optimal solution is missed. That is, no final time 7" results such that 7’ < 7!° can hold for
the end time 7%° of any near time-optimal solution. As discussed above, a solution to the path
planning problem is found for each feasible time horizon. Thus, if at least one near time-optimal
solution exists, such a solution is found in the end, since the bound 7%  for exit condition EC3
is assumed to be sufficiently large.

For each solution to the path planning problem, the final time 7" of the new time horizon
satisfies T" < T because of 7 < T and At > 0. Thus, if a new solution with new end time 7/ € I’
is found, 7" < 7 holds. As T = 7 — /At is strictly decreasing for each new end time 7, the path
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planning gives at most one solution for each final time 7”. The number of time horizons I for
which the path planning is executed is finite. Since a solution to each path planning problem is
found after a finite number of simulated extremals, a near time-optimal solution is found after
a finite number n' ~ of simulated extremals. As it takes only a finite time to simulate n'

extremals, the time-optimal control 7.3.2 is probabilistically complete. B

According to Theorem 7.3.4, the time-optimal control 7.3.2 finds an existing near time-
optimal solution after n!? ~simulated extremals, provided that P, > 0 holds for each solution
minimum, condition (7.12) for property O3 is true, At is sufficiently small, and 72  is suffi-
ciently large. Then, for each feasible time horizon, a solution to the path planning is found as
nfP = nlo —n' s sufficiently large for sufficiently large 7% . Due to condition (7.12), for
sufficiently small At, no near time-optimal solution is missed because of a too short time hori-
zon for path planning. Since for each run of the path planning, the number n.” of simulated
extremals is finite, and the path planning is performed only finitely often, the number nf? = of
simulated extremals for a near time-optimal solution is finite.

As for the path planning, the rate of convergence of the time-optimal control is not analyzed
here. In particular, no expected number of runs of the path planning or of simulated extremals
for a near time-optimal solution is given. For this, an analysis of the minima of d over the
search space A,, would be necessary for each new time horizon I, as the minima change with

I. Thus, the analysis would be very expensive.

Sim

7.3.2 Algorithm for time-optimal control

An implementation of the time-optimal control 7.3.2 is given in Algorithm 7.2. A detailed
representation of the algorithm in MATLAB-like code can be found in Section A.2.

. Y
Parameters: xg,2q,¢,, Ay, AL, T, 05D R

Sim

Output variables: N[, 7%°

=0,n” =n° and T =T.

Sim Sim?

Initialization: Set n%°

Sim
Step 1: Perform the path planning 7.2.6 from z( to x4 over I = [0,T], using A,, and 152 .

Let d be the minimal deviation (7.10) and nf” the number of simulated extremals.

Sim
Ifd <e, or nLl >nLl holds, terminate the path planning and, if d < e, holds, set

Sim — Sim

PP __ __4m to __ to PP ~PP __ nto to
AP =Xpand 7 =t". Set ng, =ny +nil and nl] =1y —n

Sim Sim Sim *
Step 2: If d < &, holds, set A\’ = \§7, 7 =7, and T = 7 — At.

If a near time-optimal solution is found or n¢ > At

o > n2  holds, terminate the time-optimal
control. Otherwise, go to Step 1.

Algorithm 7.2: Algorithm for time-optimal control.

The parameters of Algorithm 7.2 include o, 24, €z, Az, and 75}, which are also parameters
of Algorithm 7.1, the discretization interval At, the final time T of the initial time horizon,
and the maximal number 72 of simulated extremals for the time-optimal control. The output
variables are the initial condition A}’ and the end time 7'° of a near time-optimal solution. As
the time vector (7.15) is used for the underlying path planning, the resolution of 7 is /At.

For initialization, the counter n'? for the total number of simulated extremals for time-
optimal control is set to zero, the maximal number n.” of simulated extremals for the next

run of the path planning is set to 7% , and the final time 7" of I is set to T. Then, Step 1 and

Sim?
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Step 2 corresponding to Step 1 and 2 of Approach 7.3.2 are executed iteratively until the time-
optimal control is terminated. In Step 1, the path planning 7.2.6 is performed from xg to x4
over the time interval I = [0, T]. For this, the search space A,, and the maximal number 2.7,
of simulated extremals for each run of the local optimization are required. The path planning
is terminated if d < e, or nL > nL’ holds. If d < e, is true for the minimal deviation d as in
(7.10), the path planning problem is solved for the current time horizon I. Then, the variables
AT = Ao and 7 = t™ are assigned. If nL) > nl7 holds, the path planning is terminated by

exit condition EC2, i.e., the maximal number of simulated extremals is used. At the end of
Step 1, the variables n° and Af” are updated by n® =nl° +nfP and AL =nlo —nlo

Sim Sim Sim Sim Sim Sim Sim Sim*

In Step 2, provided that d < e, holds, the output variables \{’ and 7'° are set to the values of
Ay and 7, and the final time of the new time horizon is set to ' = 7 — At.

The time-optimal control is terminated if a near time-optimal solution is found or the total
number of simulated extremals meets n% > 7% . To determine whether a solution in near
time-optimal, a condition for near time-optimality is evaluated. For the BSR, such conditions
are discussed in Chapter 9. If n’2 > 10 is satisfied, exit condition EC3 holds, and the time-
optimal control is terminated unsuccessfully, i.e., no near time-optimal solution was found.

The parameters of the algorithm for time-optimal control are given in Table 7.2. There are
different types of parameters, parameters of the problem data, parameters resulting from the
control problem, and design parameters. The parameters of the problem data are zq, x4, and
€z. The parameters from the control problem are A,,, At, and T. Here, xo, T4, €z, Mgy,
and At are the same parameters as for Algorithm 7.1. For 7', the requirements given for 7' in
Section 7.2.3 hold, i.e., T = ns At must be true for ns € N.g. Moreover, T should be large
enough to make it possible to find a solution, but not too large to keep the computational cost
low. For time-optimal control of the BSR, a value for T is derived in Section 8.2.3. The design
parameters n£° and nl° are used to adjust the time-optimal control. The value of 7£° has

Sim Sim Sim
to be set as described in Section 7.2.3. The parameter 7’2 defines the maximal computational
effort for the time-optimal control.

’ parameter \ description \ type

0 initial state problem data

Tq desired state problem data

€x tolerance for condition (7.11) problem data

Ay, parameter set to represent the search space | from time-optimal control problem
At discretization interval from time-optimal control problem

T final time of the initial time horizon from time-optimal control problem
1o maximal number of simulated extremals .
nkte L design parameter

for each run of the local optimization
to maximal number of simulated extremals .
ng . . - design parameter
for time-optimal control in total

Table 7.2: Parameters of the algorithm for time-optimal control.

7.3.3 Discussion of the time-optimal control

The time-optimal control 7.3.2 relies on a strictly monotonic decrease of the time horizon [
from one solution of the path planning problem to the next. This way, a near time-optimal
solution with end time 7' is obtained in the end. Starting from a first solution to the path
planning problem, for each new solution, a better approximation of 7% is provided until the
solution is near time-optimal. According to Theorem 7.3.4, this is the case after a finite number
of simulated extremals. In principle, the quality of the approximation increases with computa-
tional effort, which is important for many applications. In addition, as soon as the first solution
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to the path planning problem is found, at least any solution is available even if it is not near
time-optimal, which is important for practical applications as well.

The time-optimal control is based on three layered optimizations. The first one is the maxi-
mization of the Hamiltonian function to obtain extremals for time-optimal control. The second
one tackles the optimization problem 7.2.1 to find a solution to the path planning problem 7.0.1.
The third one iterates the path planning to minimize the end time and solve the near time-
optimal control problem 7.0.2. The results of the underlying problems are required to solve the
respective optimization problems. However, each optimization problem can be solved indepen-
dently from each other. If, for example, the extremals can directly be given, the optimization
problems for path planning and time-optimal control are not affected. Thus, our approach is
flexible and adjustable to various control problems, for which the individual problems may be
solved in different ways.

The end time 7%° of a near time-optimal solution is not determined by a direct optimization,
but by iterated path planning. If 7! should directly be optimized, the minimization of d has
to be replaced by a minimization of 7 subject to condition (7.11), which is now a constraint of
the optimization problem. Simulations show that it is hard to find a solution with end time 7t
this way without initializing 7 close to 7t°. Thus, 7t° is not directly optimized here.

As addressed in Section 2.3, direct and indirect methods for time-optimal control are distin-
guished. Direct methods are based on a discretization of the state and input space or on a finite
parameterization of the inputs, followed by a direct computation of the optimal inputs. Indirect
methods rely on extremals which are candidates for optimal solutions. The extremals are de-
fined by the necessary optimality conditions of the Maximum Principle and lead to a boundary
value problem with free end time. The time-optimal control 7.3.2 is based on path planning
using normal regular extremals and is thus an indirect method. No direct method is applied,
as for complex systems like the RKM, it is questionable whether time-optimal solutions can be
found this way, since mostly, only locally optimal solutions are obtained. Moreover, no finite
parameterization of the optimal inputs can be given. Hence, an indirect method is utilized. As
discussed in Section 7.2.4, no standard solver for boundary value problems is used, since for
such solvers, a good initial guess of the solution is required.

Besides exit condition EC1, EC2, and EC3, additional exit conditions may be used for the
time-optimal control. The location of all minima found so far over all runs of the path planning
can be stored. If a minimum does not satisfy condition (7.11) for some time horizon I = [0, T7,
it cannot satisfy the condition for I’ = [0,7"] with 7" < T. Thus, if the distance of the current
initial condition A\g to one of the minima falls below a threshold, the optimization is terminated.
The time-optimal control is well suited for parallelization, as the individual runs of the path
planning are independent from each other and can be executed in parallel. Between the nodes
running the path planning, only the minimal end time 7 obtained so far has to be shared. This
time is required to define the time horizon I for the next run of the path planning.

7.4 Modifications for practical application

For practical application of the path planning and time-optimal control to real-world systems,
the algorithms in Section 7.2.3 and 7.3.2 are not directly suitable. This is the case as both
algorithms do not satisfy requirements on real-time systems like deterministic response times,
as the Theorems 7.2.11 and 7.3.4 give probabilistic completeness, but no upper bounds on
the computational effort required for a solution. Since the path planning depends on random
starting points to initialize the local optimizations, it is hardly possible to give such bounds.
In this section, it is assumed that a time-optimal control should be realized for a specific
control system & = f(x,u) with state space M and input space U. For this, initial conditions
Ao can be computed based on a deterministic sampling scheme and stored in a lookup table.
In a first approach, sampling can be performed over M x M to consider all possible pairs of
initial and desired states zy and z4. The generation of the table is computationally costly,
but can be done offline before the time-optimal control is in operation. In addition, the final
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time 7' of the initial time horizon has to be stored for each sampling point. To obtain a
solution for a particular pair (g, 24), the precomputed initial condition Ag and the final time
T are interpolated to obtain a starting point and a final time for the subsequent online local
optimization. This optimization is required to reach exactly x4 from z(, since in general, zg
and x4 are no sampling points.

The resolution of the sampling has to be chosen depending on the current control problem. In
general, for larger values of €, a coarser resolution is sufficient. Depending on memory capacity,
sampling points can be used such that for each pair (xg,x4), a near time-optimal solution or
just any solution is obtained from the local optimization. If it is sufficient to find just any
solution for each pair (xg,x4), much less sampling points are needed, leading to significantly
reduced memory requirements compared to a sampling for near time-optimal solutions. Besides,
approaches to simplify the path planning problem from Section 7.1 can be applied. By an affine
input scaling 7.1.1, the final times T can be computed for different scaled input spaces U which
may result from gear changes of the drive actuating one of the affine inputs. Theorem 7.1.2
can be applied to left-invariant control systems on a matrix Lie group G. For such systems,
only initial conditions Ay have to be considered for trajectories x(-) which start from the initial
state xg represented by the identity element E of G. Trajectories with other initial states can
be computed from these trajectories by transformation. This way, it is possible to reduce the
number of sampling points, since for a fixed initial state x(, a sampling over M is sufficient
which incorporates all desired states x4 instead of all pairs (g, x4).



8 Time-optimal control of the bi-steerable
robot

In this chapter, the time-optimal control from Chapter 7 is applied to the RKM of the BSR.
Recalling Definition 5.0.2, the RKM is given by the driftless control system ¢ = g(6, ) v for
the configuration ¢ = (0, z,y), configuration space Q = SE(2), input u = (v, ¢y, p,), and
input space U = [-0,0] X [—@,¢] X [=$,¢]. The RKM should be steered from an initial
configuration qo = (6o, zo, yo) to a desired configuration g4 = (64,4, y4) in minimal time. For
this, the path planning problem and the near time-optimal control problem for the RKM are
considered and the convergence of the time-optimal control is analyzed. Then, the algorithm
for time-optimal control is applied to the RKM and simulation results are presented. Since
only extremals (¢*(-) ,\*(-),u*(-)) of the configuration, the adjoint state, and the input of the
RKM are considered in the following, the superscript * is omitted for the extremals.

Definition 8.0.1 (Path planning problem for the RKM) For the time-optimal control problem
for the RKM 6.0.2, let (q(-) , A(-),u(-)) be normal reqular extremals which satisfy the necessary
optimality conditions of Theorem 6.1.1, and Ay, the search space 6.3.6. Fizx a constant ¢4 > 0.
The problem to find an end time T and an initial condition \J¥ € Ag, such that for an extremal
satisfying q(0) = qo and A(0) = S\gp, there holds ||q(T) — qal| < €4 is called path planning

problem for the RKM. Any solution ()\5137’7') is called solution to the path planning problem.

The path planning problem for the RKM arises from the path planning problem 7.0.1 under-
lying the time-optimal control problem 6.0.2. In contrast to problem 7.0.1, the initial condition
of the adjoint state is denoted by Ag as it is a normalized initial condition 6.3.2. The search
space Ag, given by Corollary 6.3.6 consists of all normalized initial conditions Xo of case C2,
C3, C5, and C6, i.e., all initial conditions for which there are normal regular extremals which
satisfy ¢(0) = go and A\(0) = Ag. Thus, \;” € A, has to hold.

Definition 8.0.2 (Near time-optimal control problem for the RKM) For the time-optimal con-
trol problem for the RKM 6.0.2, let 7° be the end time of a time-optimal solution, (q(+), A(), u(+))
normal reqular extremals which satisfy the necessary optimality conditions of Theorem 6.1.1,
and Ay, the search space 6.3.6. Fix constants k > 1 and €, > 0. The problem to find an end
time 71° < k7% and an initial condition 5\60 € Ay, such that for an extremal satisfying ¢(0) = qo
and \(0) = N, there holds ||q(7%°) — qu|| < e, is called near time-optimal control problem for
the RKM. Any solution (:\60,7”") is called solution to the near time-optimal control problem.

The near time-optimal control problem for the RKM arises from the near time-optimal control
problem 7.0.2 applied to problem 6.0.2. In contrast to problem 6.0.2, only normal regular
extremals are considered as candidates for solutions, and the desired configuration g4 has to
be reached within the tolerance ¢,. For problem 6.0.2, solutions exist by Theorem 6.2.1. The
extremals include normal regular and normal singular extremals according to Theorem 6.3.4 and
6.3.5. For the problems 8.0.1 and 8.0.2, the existence of solutions is not discussed here, since
in general, it is unknown which desired configurations g4 are reachable within ¢, by normal
regular extremals. Thus, it is assumed that solutions exist. If this is not the case for some
specific qq, the time-optimal control is terminated by an exit condition.

For the heading angle 6 of the RKM, values 6 and 0 + 2 k7 with k € Z are identified, as they
give the same orientation of the robot. Thus, for (6(7),x(7),y(7)) and (8(7) + 2k, (1), y(7)),
the Euclidean norm ||¢(7) — qq4|| has the same result. For the path planning problem 8.0.1, it
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is irrelevant how many complete turns the BSR makes until it reaches gq4. For the near time-
optimal control problem 8.0.2, additional turns cause larger end times.

8.1 Simplification of the path planning problem

In this section, the approaches from Section 7.1 are applied to simplify the path planning
problem and the near time-optimal control problem for the RKM. The space of the admissible
T T s

steering angles ¢ = (py,¢,) is ® = [-5,%] x [-Z,Z] asin (6.1).

Corollary 8.1.1 (Affine input scaling for the RKM) For the control system

q(t) = g(0(t) , (t)) v(t) (8.1)

of the RKM 5.0.2 with input u = (v, ¢, ;) and input space U = [—0,0] x D, let (1,q¢(-), u(-))
be an admissible solution S(qo,qq) over the time interval I = [0,7].
Then, for the control system

7(5) = £ 9(0(5), 9(5)) 7(s) (52)
with the scaled input space
U=[-1,1]x®
and
5(s) 1= (b s) = zu(t), () = p(L5) = o(0),

(0,4(-),u(-)) is an admissible solution S(qo,qa) over the time interval I = [0,0] for o = 0.

Proof Corollary 8.1.1 results from Theorem 7.1.1 applied to the control system (8.1) of the
RKM with input space U = [—0, 0] x ®. Using the notation of Theorem 7.1.1, system (8.1) rep-
resents system (7.1) with input u = (vi, w1, w2) = (v, @5, ) € U, input space U =V x W for
V =[-9,0], W =®,m; =1, and my = 2, and vector fields fo(z,w) =0 and ¢; (z,w) = g(0, ¢).
System (8.2) is the transformed system (7.2) with scaled input space U = VxW = [~1,1]x®. R

Due to Corollary 8.1.1, it is sufficient to consider the problems 8.0.1 and 8.0.2 for the input
space U, i.e., for o € [~1,1]. Solutions for other values of ¢ result from those for & = 1. The
inputs (¢, ¢,) cannot be scaled, as they enter the RKM nonlinearly. In Corollary 8.1.1 and
throughout this thesis, the RKM is denoted by ¢ = g(6,¢)v. Only in the next corollary, g is
used for a Lie group element which represents the configuration ¢ of the RKM.

Corollary 8.1.2 (Transformation of the initial configuration of the RKM) For the RKM 5.0.2,
let (1,q(-),u(-)) be an admissible solution S(q(0),q(T)) over the time interval I = [0, 7] from

q(0) = (0o, z0,90) and q(7) = (0a, T, Ya)-

Then, for
0(t) — b
q(t) := (z(t) — o) cos(fo) + (y(t) —yo)sin(bo) |, (8.3)
—(x(t) —x0)sin(bo) + (y(t) — yo)cos(fh)

(7,4(-),u(-)) is an admissible solution S(G(0),q(t)) over I from G(0) = (0,0,0) to

04 — 09
q(r) = (xa — o) cos(fo) + (ya —yo)sin(fo) | . (8.4)
—(2a — @0) sin(6o) + (ya — yo) cos(fo)
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Proof By Lemma 5.3.8, the RKM can be written as left-invariant control system g =
g (wi(u)er + wa(u) ez + w3(u)es) on G = SE(2) for the basis vectors e; of the Lie algebra
se(2) given by (5.29) and the functions w;(u) as in (5.31). The configuration ¢ = (0,z,y) is
represented by the Lie group element

cos(d) —sin(d) =«
g=| sin(d) cos(@) 'y
0 0 1

Assume that (7, (), u(-)) is an admissible solution over the time interval [0, 7] from g¢(0) to

g(7) given by
cos(0p) —sin(fy) o cos((r)) —sin(d(r)) =
9(0) = | sin(fo) cos(bo) wo |, g(7)= | sin(0(7)) cos(b(r)) y(T)
0 0 1 0 0 1
Then, if §(t) = g5 ' g(t) is applied, (7,3(-),u(-)) is an admissible solution over [0,7] from

g(0)=Etog(r) = gO_1 ga by Theorem 7.1.2. Here, the configuration ¢ = (9, z, gj) is represented
by the Lie group element g. The identity element

E =

o O =
o = O
_ o O

of SE(2) corresponds to the initial configuration g(0) = (0,0,0). For

cos(6(t) — bo) —sin(0(t) —0o) (@(t) — o) cos(fo) + (y(t) — yo) sin(fo)
G(t) = g5 g(t)= | sin(0(t) — 0p) cos(0(t) —by) — (2(t) — zo)sin(bo) + (y(t) — yo) cos(6o) |,
0 1

(8.3) results, and for

cos(0g — 0p) —sin(@g —0y) (x4 — xo) cos(0o) + (ya — yo) sin(fp)
g(t) = gal ga = sin(f0g —0p) cos(0y —0y) — (xa— 20)sin(0o) + (ya — yo) cos(bp) |,
0 0 1

(8.4) is obtained. Thus, Corollary 8.1.2 holds. W

According to the corollary, if a solution ¢(-) goes from ¢ to gq, then the solution §(-) goes
from (0,0,0) to ¢(7). Hence, it is sufficient to study the problems 8.0.1 and 8.0.2 for the fixed
initial configuration (0, 0, 0).

In the following, the scaled input space [—1,1] x ® is denoted by U instead of U. The initial
configuration (0,0,0) is denoted by go. Due to 6y = 0 at qo, there holds Ao = o for the
normalized initial conditions of the adjoint state A and the transformed adjoint state . Thus,
only initial conditions Ay are considered. The simplified versions of the path planning problem
and the near time-optimal control problem for the RKM are as follows:

Definition 8.1.3 (Simplified path planning problem for the RKM) For the time-optimal con-
trol problem for the RKM 6.0.2 with initial configuration qo = (0,0,0) and input space U =
[—1,1]) x @, let (q(-) , A(:) ,u(-)) be normal regular extremals which satisfy the necessary optimal-
ity conditions of Theorem 6.1.1, and Ag, the search space 6.3.6. Fix a constant €4 > 0. The
problem to find an end time T and an initial condition 5\6”’ € Ay, such that for an extremal
satisfying q(0) = qo and X\(0) = N5%, there holds ||q(T) — qu|| < e, is called simplified path
planning problem for the RKM. Any solution (~6’P,7') s called solution to the simplified path
planning problem.
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Definition 8.1.4 (Simplified near time-optimal control problem for the RKM) For the time-
optimal control problem for the RKM 6.0.2 with initial configuration qo = (0,0,0) and input
space U = [—1,1] x ®, let 7° be the end time of a time-optimal solution, (q(-),A(-),u(-))
normal reqular extremals which satisfy the necessary optimality conditions of Theorem 6.1.1,
and Ay, the search space 6.3.6. Fix constants k > 1 and ¢4 > 0. The problem to find an
end time 7% < k7' and an initial condition N € Mg, such that for an extremal satisfying
q(0) = qo and M(0) = N, there holds ||q(7°) — qa|| < & is called simplified near time-optimal
control problem for the RKM. Any solution (S\BO,WO) is called solution to the simplified near
time-optimal control problem.

In the following, the simplified problems 8.1.3 and 8.1.4 are considered, which are referred to
as path planning problem and near time-optimal control problem for the RKM.

8.2 Implementation of the approach for time-optimal control

In this section, implementation aspects for the application of the time-optimal control 7.3.2 and
the underlying path planning 7.2.6 to the near time-optimal control problem 8.1.4 are addressed.
To implement the time-optimal control, the control system of the RKM, the adjoint equation,
the extremal inputs, the parameters of Table 7.2, and a condition for near time-optimality to
terminate the time-optimal control are required. Moreover, a parameterization of the search
space Ay, a discretization interval At for the representation of I by the time vector I, and a
final time 7' of the initial time horizon have to be specified, which is done in the following.

8.2.1 Parameterization of the search space

To represent the search space Ay, as in Corollary 6.3.6, consider the parameter sets

A={(a1,02) ER? | -7 < oy < 7, || < 1}
and
For o € A, let A\g = Ao(«) be given by the map
Ao(a) V1 — a3 cos(ay)
Aot A= R (o) = | Ao(a) | =| /1—a2sin(ay) |- (8.6)
/\SO(Q) (6%
For & = 1, a normalized initial condition \g = \(c) as in Definition 6.3.2 is obtained for
< 1
)\0 ) =
)= W) )

Here, b(Ao(a), ¢*(0)) is the function b(y, ) (6.8) evaluated at v = Ag(«r) with v = A because
of 8 = 0, and ¢ = ©*(0).

Ao(a) . (8.7)

Theorem 8.2.1 (Parameterization of the search space Ay, ) The near time-optimal control
problem 8.1.4 with the search space Ag, given by Corollary 6.3.6 is considered. For the parameter
set A (8.5), the map \o (8.6), and a € A, let Mo(r) be the normalized initial condition (8.7).
Then, a parameterization of the search space is Ngy = {5\0(04) | a € A}.

Proof According to Corollary 6.3.6, the search space A, consists of all normalized initial

conditions Ao of case C2, C3, C5, and C6. For & = 1, normalized initial conditions Ay result
from (8.7) for initial conditions Ag = Ag(x) # 0.
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By Theorem 6.1.4, initial conditions Ay of case C2 have to satisfy A9 = Aog = 0, A39 # O.
These initial conditions arise from (8.6) for @ = (o, a2) with arbitrary a3 € [—m, ) and
ag = £1. Initial conditions Ay of case C3 meeting A1g = 0, Aog # 0, A3g = 0 are obtained from
(8.6) for oy = +F and ap = 0. For oy € {—7,0} and 0 < |az| < 1, (8.6) gives initial conditions
Ao of case C5 with Ajg # 0, Moo = 0, A30 # 0. For o & {—m,0} and |as| < 1, initial conditions
of case C6 result from (8.6), for which Ay # 0 and A2, + A3, > 0 is true. The union of the
domains of « for initial conditions of case C2, C3, C5, and C6 gives the parameter set A.

Initial conditions of case C1 with Ajg = Aog = A30 = 0 are not relevant for time-optimal
control. Such initial conditions do not result from any o € A, as for (8.6), ||Ao(a)|| = 1 holds.
Initial conditions of case C4 with Aig # 0, Aog = A3p = 0 leading to normal singular extremals
result from o = (—7,0) and o = (0, 0). For the parameter set A, these values of « are excluded.
Thus, { o () ’ o€ A} gives a parameterization of the search space Ag,. W

Figure 8.1 shows the search space Ag,. It looks like a 2-sphere deformed by the normalization
(8.7). The red arrows point at the two excluded initial conditions which belong to normal
singular extremals. The parameterization Xo(a) of Ay, can be used for the path planning 7.2.6.
Then, from a randomly chosen " € A, a starting point A§” = \g(a”") € A, results, and the
minimization ming,e 4 d(:\o(a)) over A implements the minimization ming . g d(:\o) over Ay, .

Without the normalization (8.7), the image of A under the map (8.6) is the unit 2-sphere
minus two points. Other parameterizations of the 2-sphere like spherical coordinates with
azimuth and polar angle are common as well. Parameterization 8.2.1 is used since the surface
element dS = da; das is independent of . If the probability distribution on the parameter set
A is uniform, it is also uniform on the 2-sphere as the image of A under (8.6). This is not true for
spherical coordinates. If no knowledge of the minima of d is available, the uniform distribution is
advantageous, since random starting points S\(S)P = S\O(asp ) from a®” € A are located everywhere
on the 2-sphere with same probability. As the normalization (8.7) deforms the 2-sphere, a
uniform distribution on A gives a distribution on the 2-sphere which is approximately uniform.
This does not affect the probabilistic completeness of the path planning.

5\10

Figure 8.1: Search space Ay, .

If instead of A, the parameter set A given by (8.5) is considered, the set
Ry = {0 € B | =14+ 2] g(60,(0)) 0(0) = 0} (8.8)
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results, which is a deformed 2-sphere and thus compact. In contrast, the search space A4, is
a deformed 2-sphere minus two points. Hence, A, is not compact but only bounded. The set
Ay, corresponds to the set A, (4.6) for the RKM ¢ = g(f, ) v with the extremal inputs ¢(0)
and v(0) at time ¢ = 0. It contains all initial conditions for which there are normal extremals
meeting the necessary optimality conditions of Theorem 6.1.1 for ¢*(0) = go and A*(0) = Ao.

For practical reasons, « is not taken from A for the generation of random starting points
AP = Xo(a®") and the minimization min,, d(S\o (@)), but from its closure which is

A={(a1,a2) €R? ||ay| <, || < 1} .

Using A instead of A makes it possible to select o from a compact set. As A and A differ only in
a set of measure zero, almost all randomly chosen a € A satisfy a € A. A few normal singular
extremals obtained for & = (—m,0) or & = (0,0) do not affect the time-optimal control.

8.2.2 Discretization interval

Theorem 8.2.2 (Discretization interval At) The near time-optimal control problem 8.1.4 is
considered for a fized tolerance €, > 0. For a discretization interval At > 0, n, € Nsg, and
T =n; At, let

In = [t |t =it i=0,...,n0, np =T/t ]

be the discretization of the time horizon I = [0,T] as in (7.15) with sufficiently large T'. If
At < \/geq holds, any existing solution to problem 8.1.4 can be found.

Proof For the discretization
q(In) = [a |ai = q(t:), ti € In ]

of the configuration at the times Ia, the distance 6; = ||q(¢;) — q(t; + At)|| between two consec-
utive configurations is considered. By Lemma 5.3.5, the right-hand side of the RKM satisfies

2
0 < |g(l,p) v < —=17

< llg(8, ) vl 7
for |v| =% and ¢ = Z. Thus, ||g(6,¢) v|| < 2/v/3 results for & = 1, and the distance §; meets

6 <6=—At (8.9)

Sl

If for a desired configuration g4, at least one solution to problem 8.1.4 exists, it is assumed
that there is a normal regular extremal given by ¢(Ia), a time t; € I, and ¢ € [0, 1] such that

qa = q(ti) +c(q(t; + At) — q(t;)) (8.10)

holds. As (8.10) is true for some ¢ € [0,1], g4 lies on the line between ¢(t;) and q(t; + At).
If the distance 0; = ||q(t;) — q(t; + At)|| satisfies 6; < 2¢,, a solution to the path planning
problem is found, since at 7 = t; or 7 = t; + At, there holds ||¢(7) — g4l < 4. To reach g4
within €4 in the worst case, i. e., if the distance d; covered in the interval At equals the maximal

distance § = 2/\/§ At according to (8.9), 5 < 2¢, has to hold. From this, At < \/gsq results. W

For ¢; = 2¢4, an extremal meeting (8.10) is shown in Figure 8.2 on the left. A situation
where (8.10) is true but ¢; < 2¢, does not hold is shown in Figure 8.2 in the middle. Here,
llg(T) — qall < g4 is true neither at 7 =t; nor at 7 = ¢; + At. Depending on ¢q4, the assumption
that a normal regular extremal satisfying (8.10) exists may be too strong. There are solutions
for which ||¢(7) — qall < &4 is true even if (8.10) does not hold, see Figure 8.2 on the right. For
the implementation of the time-optimal control, a slightly smaller value than /3 gq is set to
ensure that no solutions are missed due to numerical errors.
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eé 4

Figure 8.2: Solution with gq = q(t;)+c (q(t; + At) — q(t;)), 6 = 2&, (left) and & > 2¢&, (middle),
solution with qg # q(t;) + ¢ (q(ti + At) — q(t;)) and § = 2¢, (right).

8.2.3 Final time of the initial time horizon

In the following, [T'] o, means that 7" is rounded up to the next integer multiple of At.

Theorem 8.2.3 (Final time T of the initial time horizon) The near time-optimal control
problem 8.1.4 is considered for a desired configuration qq = (04, %q,yq). For 0 < At < \/geq
and ny € Nsg, let T' = nz At be the final time of the initial time horizon I = [O,T], If

T:max{ﬁﬂht, [W—i— \/m-F 1ht} (8.11)

holds, any existing solution to problem 8.1.4 can be found.

Before Theorem 8.2.3 is proved, some properties of Dubins paths are given. Dubins paths
are the shortest paths of the simplified model (3.16) of the car-like robot which drives forward
at constant velocity and has fixed positive minimal turning radius. These paths are used in
the following to derive the upper bound (8.11). The paths consist of up to three pieces which
are straight line segments S or arcs of circles C' of radius R. Dubins paths are of type C'SC' or
CCC, where one or more pieces may vanish. They can be reproduced by the RKM, although
they are no extremals for time-optimal control in general. Figure 8.3 shows Dubins paths of
type CCC and C'SC. The angles of the arcs of the first, second, and third circle are called
Aby, Ny, and Af3. As shown in [19], for Dubins paths of type CCC,

T <|AbOy| <2,
0< |A91| < ‘A92| —mor 0< ‘A93| < |A02‘ — T

holds. For Dubins paths of type C'SC, [ is the length of the straight line segment. According
o [19], the angles Af; and A of the first and second circle of a path of type C'SC' satisfy

|AG1| + | Ay < 27 (8.13)

Proof To obtain (8.11), the maximal times Trce and Teso required to pass Dubins paths of
type CCC and C'SC are determined. For paths of type CCC, the minimal turning radius R and
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Figure 8.3: Dubins paths of type CCC' (left) and C'SC (right) with dimensions.

the maximal velocity © are taken into account. The time it takes to drive an arc of a circle of
radius 12 and angle |Af| with velocity 0 is T' = |A0] R/9. From (8.12), |Af1| +[Abs| + [Ab3] <
5 results. Thus, the maximal time T for a path of type CCC' is

. 5T

T = . 8.14
ccc 3 ( )

For paths of type CSC from qo = (0o, x0,Y0) to g4 = (04,24, ya), the distance

dpy = \/(l‘d —20)> + (ya — )’

is considered. For the length of the straight line segment, [ < d,, + 2 R holds, as it has to be
tangent to both circles at the points of contact. From the maximal time 27 R/0 required for
the two arcs of circles which satisfy (8.13) and (dyy + 2 R) /0 for the straight line segment,

TCSC = 1 (27TR + \/(:vd — x0)2 + (yd — y0)2 + 2R> (8.15)

0

results. The final time 7" is the maximum of chc and TCSC according to

T = max {chc, Tcsc} . (8.16)

For a final time 7' = ns At with ns € N.o, the times Trco and Tose are rounded up to the
next integer multiple of At. Using (8.14), (8.15), and (8.16) gives

Tmax{ Ftht, “ <27TR+ \/(xd —20)° + (ya — %0)° +2R>ht}.

For the minimal turning radius R = % given by Lemma 5.3.7 for ¢ = %, 0 = 1, and g = yo = 0,
(8.11) holds. W

The conditions (8.12) and (8.13) are also discussed in [2, 106, 120]. The time 7' given by
(8.11) is used as final time of the initial time horizon I = [0, T} for the time-optimal control. It
was derived based on Dubins paths from gg = (0,0,0) to g4 = (04, x4, ya). For the BSR, shorter
final times 7" than (8.11) can be obtained, since in contrast to the car-like robot considered for
Dubins paths, the BSR can drive forward and backward and has two steerable axles. Shorter
final times may be determined based on Reeds-Shepp paths, see [94].

8.3 Analysis of the convergence

In this section, the convergence of the time-optimal control is studied for the near time-optimal
control problem 8.1.4. For this, condition (7.12) for property O3 of Lemma 7.2.5 is analyzed,
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and probabilistic completeness of the time-optimal control is established by Theorem 7.3.4 and
the results from Section 8.2.1.

Lemma 8.3.1 (Condition (7.12) for property O3 of Lemma 7.2.5) For the time-optimal con-
trol problem for the RKM 6.0.2, let (q(-), A(+),u(-)) be normal reqular extremals which satisfy
the necessary optimality conditions of Theorem 6.1.1 over the time interval I = [0,7], and let
llg(t) — qal| be sufficiently small for all t € I. Then, ¢(t) # 0 holds for almost all t € I, and

(a(t) = ga)" d(t) =0 (8.17)
does not hold over any proper time interval in I.

Proof According to property E7 of Lemma 6.3.1, g is non-constant for all extremals. Thus,
G(t) # 0 holds for almost all ¢ € I. Using the deviation D = % | Agl® = 1Aq" Aq as in (7.14)
for Aq=q—qa, N0 =0 —04, Ax =2 — x4, and Ay =y — yq, (8.17) can be written as

D=Aq"G=2000+ Axi+ Ayy=0.

As discussed in Section 6.4.3, the extremal velocities v are constant between cusps and dis-
continuous at the cusps. In each compact time interval I, only a finite number of cusps can
occur. The extremal steering angles ¢ are piecewise differentiable, continuous if ¢ enters or
leaves bd @, and discontinuous at the cusps. Between two cusps, ¢ reaches or leaves bd @ at
most twice. Thus, the inputs v and ¢ are differentiable for almost all ¢ € I.

As from now, the inputs v and ¢ are assumed to be differentiable, since the times at which
v is not constant or ¢ is not differentiable do not affect whether (8.17) holds over a proper
interval or not. Then, the time derivative ¢ from ¢ = ¢(0, ) v is continuously differentiable,

and the second time derivative D of D = 1 | Ag||? exists and is

D=¢"¢+Aq"G=0*+i>+ >+ 2000+ A i+ Ayij.

For (8.17) to hold over a proper interval in I, D = 0 and D = 0 must hold at all times of the
interval at which the inputs v and ¢ are differentiable. This is true since (8.17) is equivalent to
D =0, and for D = 0 to hold over a proper interval, D = 0 must hold there as well. However,
in the following it is shown that if D =0 and D = 0 holds at some time ¢;, then D = 0 and
D = 0 cannot be true over any proper interval starting from ¢; for sufficiently small Aq. Here,
Aq = q — qq is sufficiently small, as ||q(t) — qq|| is assumed in Lemma 8.3.1 to be sufficiently
small for all t € I.

The first term of D = ¢ ¢+ Aq'§ is the squared norm of the right-hand side of the RKM

T
. . - T 2 . PN A
g=g0,0)v,ie, ¢ ¢=1g(0, ) vl applies. Due to Lemma 5.3.5, for |[v| = 0 and ¢ = T,

2
o< 11g(0, ) v|| < ==
<lg(0, ) vl 7

holds. Thus, ¢7¢ > 1 is true for & = 1. For ¢ = g(#, ) v and é—ltv = 0 since v is constant
between two cusps, the second time derivatives of (6, x,y) are

0 = (‘Pf - r) COS(‘Pf —or)v,
& = —% v(gbf (sin(py) cos( + ¢,) + cos(py) sin(d + ¢y))

+¢@r (cos(py) sin(0 + @) + sin(pr) cos(0 + o))

+ sin(py — o) (cos(ipy) sin(8 + pr) + cos(ipy) sin(0 + 1)) v),
i o= % v(<pf (—sin(py) sin(@ + @) + cos(p,) cos(0 + ¢y))

+¢@r (cos(py) cos( + ¢,) — sin(p,) sin(0 + ¢y))

+ sin(py — @r) (cos(py) cos( + ¢r) + cos(pr) cos(0 + ¢y)) v)
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with ¢ = %Lpf and ¢, = %Lpr. For these second time derivatives,

5 . . . 1. . . 1. .

0] <lpr = @rllol,  1E1 < 5 (sl + l@el + 200 [0l [ < 5 (@5l + @r] +2[0]) o]
holds. Thus, for [v| = 0 = 1, they satisfy

5 ) . N R . I A .
0] <los —¢rls 1E < 5 (sl + el +2), il < 5 (5] + 1o +2) (8.18)

The extremal inputs ¢;, i = 1,...,9 from Theorem 6.1.3 are either constant or result from
(6.11) to (6.15). For g = (¢fy, ry) as in (6.15), g9 = (@ fy, Pry) is given by

op = 1 (2(—71% +r2%) | 12Y3 =8
9 - 2 472_’_,}/2 72_}_,}/2 ?
o e (8.19)
o = 1 2(mde—7291) | e — e
v AN Rt B+3 )

As v is assumed to be differentiable and thus constant, no cusps occur at which v changes from
+0 to F0. Thus, 72 # 0 is true, since cusps take place at the zero-crossing of 7, according to
property NR5 of Lemma 6.4.3. Since 75 # 0 holds, v is bounded, and 4 as in (6.10) is bounded
for bounded 7 and bounded v, the time derivatives (¢, , ¥r,) given by (8.19) are bounded. The
derivatives ¢; of the other extremal inputs ¢;, i=1,...,8 are bounded as well.

All in all, ¢"¢ > 1 holds, the second time derivatives satisfy (8.18), and ¢; is bounded for

i=1,..,9. Hence, D > 0 holds for sufficiently small Ag. Since the deviation ||g(t) — qa| is
assumed to be sufficiently small for all ¢ € I, Aq = q — qq is sufficiently small. Thus, D #0is
true for D = 0, and (q(t) — qd)T G(t) = 0 does not hold over any proper time interval. l

To show Lemma 8.3.1 without assuming a sufficiently small Ag, closed-form representations
of ¢, v, and ¢ would be required. According to simulations, the lemma holds for arbitrary Ag.

Corollary 8.3.2 (Convergence of the time-optimal control of the RKM) The time-optimal
control 7.3.2 is applied to the near time-optimal control problem 8.1.4. The local optimizations,
the path planning, and the time-optimal control are controlled by the exit conditions EC1, EC2,
and ECS for a sufficiently large bound 7', . The bound nE”  for exit condition EC2 is set to

Sim
nfP = qpte —nbo . If there is at least one solution to problem 8.1.4, let the probability of
convergence for each solution minimum satisfy P > 0, let ||q(t) — qal| be sufficiently small for
all time t, and let the discretization interval At be sufficiently small. Then, any existing solution
to problem 8.1./4 is found after a finite number of simulated extremals. The time-optimal control

18 probabilistically complete.

Proof Corollary 8.3.2 results from Theorem 7.3.4 applied to the near time-optimal control
problem for the RKM. As discussed in Section 8.2.1, the search space A4, is bounded, since
Ay, is a deformed 2-sphere minus two points. By Lemma 8.3.1, if the deviation [|g(t) — gq|| is
sufficiently small for all ¢, condition (7.12) for property O3 is satisfied. Thus, if the assumptions
of Corollary 8.3.2 are satisfied, the assumptions of Theorem 7.3.4 hold as well. Hence, if at
least one solution to problem 8.1.4 exists, a solution is found after a finite number of simulated
extremals, and the time-optimal control is probabilistically complete. B

According to Corollary 8.3.2, for probabilistic completeness of the time-optimal control of
the RKM, the probability of convergence P, must be positive for each solution minimum, the
deviation ||q(t) — qq|| must be sufficiently small for all ¢, the discretization interval At for the
final time 7" = 7 — At must be sufficiently small, and the bound 72 for exit condition EC3
must be sufficiently large. According to simulations, Lemma 8.3.1 holds for arbitrary Ag. Thus,
condition (7.12) for property O3 is true without requiring that ||¢(t) — ¢4 is sufficiently small.



8.4. Simulation results 125

8.4 Simulation results

This section gives simulation data of the time-optimal control 7.3.2 applied to the near time-
optimal control problem 8.1.4. For this, the setup of the simulation is described, results on the
probability of convergence P. of the local optimization are discussed, and simulations of the
time-optimal control for two desired configurations g4 are presented.

8.4.1 Setup of the simulation

To use the discretization interval

At = 0.001, (8.20)
the tolerance g, for the condition [|¢(7) — g4 < &4 is set to

e, = 0.00058. (8.21)

For (z,y) given in m and 6 in rad, e, = 0.00058 corresponds to a net translational deviation of
0.00058 m = 0.58 mm or a net rotational deviation of 0.00058 rad = 0.033°. For comparison, the
length of Mustang MK I and the CyCab robot from Chapter 5 is 2.15 m and 1.9 m, respectively.
By Theorem 8.2.2, the discretization interval At has to satisfy At < \/gaq = 0.001005 for
gq = 0.00058. Thus, At = 0.001 is feasible.

Table 8.1 lists the values and references for the parameters of Table 7.2 for time-optimal
control of the RKM. No values for g4 and T are given, as the desired configuration g4 is
specified for each individual control problem and the final time 7' results from (8.11) for gq.
The value of nL° for the maximal number of simulated extremals for each run of the local

Sim

optimization is derived in Section 8.4.2. For n!° . a sufficiently large value is chosen so that

Sim )

the time-optimal control is not terminated by exit condition EC3.

’ parameter \ value \ reference ‘
q0 (0’ Ov 0) -
Eq 0.00058 (8.21)
Ag, - Theorem 8.2.1
At 0.001 (8.20)
neo. 150 Table 8.2
nto 1000 -

Table 8.1: Parameters for time-optimal control of the reduced kinematic model.

For local optimization, the MATLAB function fmincon was used, which applies sequential
quadratic programming (SQP) for medium-scale optimization problems. For the numerical
integration of the equations of the RKM and the adjoint equation (6.4) driven by the extremal
inputs (6.5) and (6.6), the function MATLAB function ode45 was applied. It implements a
Runge-Kutta solver of fifth order.

8.4.2 Probability of convergence of the local optimization

The probability of convergence P, from Definition 7.2.10 is analyzed in the following for the
local optimization method used for path planning for the RKM. For convergence of the path
planning and the time-optimal control, P. > 0 has to hold for each solution minimum. In Table
8.2, simulation results for P, are listed. The simulation data is given for different values of 2% ,
i.e., different maximal numbers of simulated extremals for each run of the local optimization.
Among others, the value of P, depends on ns? . If the number n? of simulated extremals for

a local optimization satisfies n£°2 > nt° | the optimization is terminated by exit condition EC1.

Sim — Sim
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For larger n7 , the probability of convergence is greater, as more extremals can be simulated

for each optimization until a solution is found or the optimization is terminated.
_ For the results of Table 8.2, local optimizations were performed for random starting points
AST = Ao(@®") in the region of attraction of solution minima. The desired configurations

v iy
Qa Z{Qd = (04, 24,Yaq) ’9d € {—W,—*,O, *}ﬁfd €1{0,2,4},ya € {0,2,4}, 24 + ya > 0}

2" 2

and the corresponding final times 7' (8.11) were used. Due to x4 + yg > 0, the configuration
qa = (0,0,0) was excluded, as gg # g4 should hold. The configurations (—, 0, 0), (fg, 0, 0), and
(g, 0, 0) were excluded by x4 + yq > 0, as they are not reachable by normal regular extremals,
see Section 9.4. For each desired configuration g4 € Qg, 150 local optimizations initialized
to different starting points 5\31’ were performed. The random starting points 5\313 = S\O(asp )
were represented by the parameterization 8.2.1. For different values of nf , the ratio of local
optimizations for which ||¢(7) — qa|| < &, holds for 7 < T’ was taken as value for Pe.

ﬁéﬁn P ‘ Nio ‘ P ‘ N sim ‘ ﬁéﬁn Py ‘ Nro ‘ P ‘ Nsim ‘
50 | 0.081 | 55 | 0.990 | 2750 || 180 | 0.938 21 0.996 | 360
60 | 0.239 | 17 | 0.990 | 1020 || 190 | 0.941 21 0.996 | 380
70 | 0.459 8 | 0.992 560 || 200 | 0.950 21 0.997 | 400
80 | 0.635 5 | 0.993 400 || 210 | 0.957 2 1 0.998 | 420
90 | 0.735 41 0.995 360 || 220 | 0.959 2| 0.998 | 440
100 | 0.793 3 | 0.991 300 || 230 | 0.964 2 1 0.998 | 460
110 | 0.829 3| 0.994 330 || 240 | 0.969 21 0.999 | 480
120 | 0.854 3 | 0.996 360 || 250 | 0.971 2 10.999 | 500
130 | 0.878 31 0.998 390 || 260 | 0.973 21 0.999 | 520
140 | 0.893 3 | 0.998 420 || 270 | 0.976 21 0.999 | 540
150 | 0.913 21 0.992 300 || 280 | 0.978 21 0.999 | 560
160 | 0.922 2 | 0.993 320 || 290 | 0.984 2 10.999 | 580
170 | 0.932 2 | 0.995 340 || 300 | 0.984 21 0.999 | 600

Table 8.2: Probability of convergence P. of the local optimization for path planning.

In Table 8.2, the expected number n,, of local optimizations is listed such that after n.,
optimizations, a solution to the path planning problem is found with probability P > 0.99. For
example, for nk? = 100, Table 8.2 gives P, = 0.793. To achieve P > 0.99, at least n,, = 3

local optimizations have to be performed, since after 3 optimizations,

P=P.+(1-P)P.+(1—P.)

P. =0.991 > 0.99
is true. Here, P is the sum of the probabilities P, (1 — P.) P., and (1 — Pc)2 P, that a solution
is found for the first, second, and third random starting point :\8” , respectively.

From nt? and n.o, the expected number ng,,, = 15’ n,, of simulated extremals results, i. e.,
N, simulated extremals are required to find a solution with probability P > 0.99, provided
that only random starting points S\[S)P in the regions of attraction of solution minima are chosen.
A small value of ng,, is desirable to keep the computational effort for path planning low.
According to Table 8.2, the minimal value ng;,, = 300 results for n%2 = 100 and n%° = 150.

Sim Sim
Because of the greater value of P, n5 = 150 is used in the following, for which P, = 0.913 > 0
holds. It should be noted that the value for P in Table 8.2 does not give the probability that
a solution to the path planning problem is found after ng,, simulated extremals for arbitrary
starting points 5\8’3 € Ay, since for Table 8.2, only random starting points 5\5” in the regions
of attraction of solution minima are considered. However, in general, the regions of attraction

of the solution minima are unknown for a specific path planning problem.

Sim
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8.4.3 Simulation results of the time-optimal control

In the following, simulation results of the time-optimal control 7.3.2 applied to the near time-
optimal control problem 8.1.4 are presented for the desired configurations g = (—%, 4, 2) and
qa = (0,2,—4). For ¢4 = (—g,4,2)7 the final time 7 is 8.614. In Table 8.3, a sequence
of solutions generated by the time-optimal control is listed. Each row of the table gives one

solution of the path planning 7.2.6.

ng | T |ng | nkl aF ASF afr AP T | ne
—0.8641 —0.7453

S1|8.614 1| 78 ((2);};12) 0.3934 (3;523) 0.5827 8.5628 | 3
' 0.3136 ) 0.3237
—0.3153 0.4264

5218527 6| 572 (égggg) 0.7353 (égg;g) 0.8335 6.249 | 1
' 0.5998 ’ 0.3510
—0.4469 0.2581

S316.248| 8| 770 (_201532;)3) 0.7106 <é§g§?> 0.7886 5492 | 1
' —0.5433 ’ 0.5581

Table 8.3: Solutions generated by the time-optimal control for ¢, = (—g, 4, 2).

The columns of Table 8.3 list ng, T, ngp, Nkl , o « , T, and n.. Here, ng is the

number of the solution, 7" the final time of the time horizon I = [0, T, ngp the number of random
starting points, and nZ” the number of extremals simulated so far. From the random value

o, the initial condition A\§* = A(a®") is obtained. The local optimization min, . 5 d(j\o ()

sp \spP PP PP
,)\0 9 7)‘0

results in o, which gives the initial condition S\ffp = 5\((1” 7) that solves the path planning
problem. The end time of the solution is 7 and the number of cusps is n.. From solution S1 to
solution S3, the number of random starting points ng, and simulated extremals nf increases.
The end time 7 decreases, and the number of cusps n. decreases or stays constant. The first,
sixth and eighth random value " gives a solution to the path planning problem. For the other
" no solution is obtained, and the local optimization is terminated by exit condition ECI.
The solutions S2 and S3 are near time-optimal solutions, as they have the minimal number of
cusps, see Section 9.5. Solution S3 is a time-optimal normal regular extremal.

The solutions S1 and S3 are depicted in Figure 8.4 and 8.5. Each figure consists of a time plot
of the orientation angle § € R and 0 € [—m, ) with angles § and 64 2 k 7 identified for k € Z, a
time plot of the adjoint state (5\1, 5\2, 5\3), an (z,y) plot, and time plots of the input (v, o, gor)7
the function h (6.3), the Hamiltonian function H (6.2), and the deviation D = [|q — qql| as in
(7.5) for fixed A\J”. Figure 8.6 contains (x,y) plots of the three solutions. The green, blue, and
red pentagons represent qo, gq, and ¢(7). Due to g, > 0, the blue and red pentagons differ
slightly. The arrowheads of the pentagons point in the forward direction of the BSR. Besides,
snapshots of the BSR at equal time intervals are shown. The light continuous curves give the
path of the center of mass of the BSR. The thick bars on the front and rear indicate the steering
angles. Regarding the types 6.4.1 of normal regular extremals, the solutions S1 and S2 are of
type M, and solution S3 is of type P. In Figure 8.6, the decrease of the end time 7 over the
solutions is clearly visible.

The Figures 8.7 and 8.8 show plots of the two-dimensional surface obtained from the minimal
deviation d for 7' = 8.614. In Figure 8.7, d(j\o(a)) is depicted over the search space Ag
obtained for o € A. In Figure 8.8, d(xo(a)) is given over a subset of A, which results for
o€ {(al,az) €R?|0<a; <7,0<ay<1}. According to the figures, the search space Ag,
consists of one domain ¥ where d = d holds for d = ||gy — q4|| = 4.740, and the regions of
attraction €2 of four minima. Three of the four minima of d are solution minima which result in
the solutions in Table 8.3. For the remaining minimum, ||¢(7) — ¢q|| < €4 cannot be achieved.



128 Chapter 8. Time-optimal control of the bi-steerable robot
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Figure 8.4: Solution S1 for ¢4 = (fE 4 2).

As the sequence of solutions in the table consists of three solutions, all three solution minima
are found during the run of the time-optimal control.

For the desired configuration g4 = (0,2, —4), the final time T is 8.614 as well. In Table 8.4,
a sequence of solutions generated by the time-optimal control is listed. Three solutions S1,
S2, and S3 are found. Solution S3 is a near time-optimal solution because of n, = 0 and a
time-optimal normal regular extremal. Figure 8.9 shows (x,y) plots of the solutions of Table
8.4. Solution S1 is of type M, and the solutions S2 and S3 are of type P. The end time 7
decreases over the solutions, and the number of cusps n. stays constant or decrease. In Figure
8.10, the minimal deviation d(j\o(a)) for T = 8.614 is shown over the search space Agy, for
a € A. The search space A,, comprises one domain ¥ where d = d = 4.472 holds, and the
regions of attraction 2 of multiple minima including several solution minima. Three of them
lead to the solutions in Table 8.4.

ng| T |ng |ni aF 5P af” AP T | ne
0.8238 0.6890

S1|8.614 1] 74 ( _001572;17 ) 0.1418 ( _0043252 ) 0.3240 7.324 | 2
) —0.5487 ) —0.6482

0.5404 —0.3358
§2 | 7.393 5| 332 (0.9431) < 2.4439 >

0.7450 0.2815 | |6.776 | 2
0.3909 0.3909 —0.8988 2088

2.9907 —0.9530 9 9761 —0.5968
—0.2658 0.1449 07961 0.0997 ||5.198 | 0
' —0.2658 ' —0.7961

S3 [6.775 91 433

Table 8.4: Solutions generated by the time-optimal control for ¢4 = (0,2, —4).
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Figure 8.5: Solution S3 for ¢4 = (fg,ll, 2).

8.5 Optimal solutions of the bi-steerable and the car-like robot

As addressed in Chapter 5, one advantage of the BSR is that is can go from one configuration
to another with maybe shorter path length than other wheeled mobile robots. To demonstrate
this, the simulation results on time-optimal normal regular extremals of Table 8.3 and 8.4 are
compared to Reeds-Shepp paths, i.e., shortest paths of the simplified model (3.16) of the car-
like robot. The solutions are compared with respect to the path length [ = fOT |ve(€)| d€ instead

of the end time 7. The absolute translational velocity |vi| = /22 + 2 of the RKM given
by (5.18) is not constant but depends on (¢, ¢, ). Thus, time-optimal solutions of the RKM
are in general no shortest paths, see [108, 120, 124]. However, for the desired configurations
qq = (,%47 2) and gq = (0,2, —4), time-optimal normal regular extremals of the RKM have
shorter path length than the Reeds-Shepp paths.

As discussed in Section 1.1, shortest paths of the car-like robot driving forward and backward
at constant absolute velocity consist of arcs of circles C' and straight line segments S. They
have at most two cusps denoted by | and are of type C|C'SC|C or CC|CC, where not all pieces
and cusps must exist. The Reeds-Shepp paths are obtained for the simplified model (3.16) of
the car-like robot with input space Urs = [—1,1] x {—1,1}. For details, see [94, 108, 120]. For
the car-like robot, shortest paths are also time-optimal, as the absolute translational velocity
|ve| = \/22 + g satisfies |v;| = |va| and is constant for constant |vs)|.

In Figure 8.11 and 8.12, time-optimal normal regular extremals of the BSR and shortest
paths of the car-like robot from ¢o = (0,0,0) to ¢4 = (—g,4, 2) and ¢q = (0,2, —4) are shown.
The initial configuration is represented by a green pentagon and the final configuration by a
blue one. The path of the center of mass as well as snapshots at equal time intervals are plotted
for the BSR in black and for the car-like robot in red. In Table 8.5, the time-optimal normal
regular extremals of the BSR and shortest paths of the car-like robot are compared. For the
extremals of the BSR, references to the solutions in Table 8.3 and 8.4 are given, and the path
length [ ;55 is stated. For the shortest paths of the car-like robot, the path type and path length
lrs is listed. Besides, the ratio lzsr/lzs is given.

In Table 8.5, for both desired configurations, {zsz/lzs < 1 holds, i.e., time-optimal normal
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Figure 8.6: Solutions for ¢4 = (fﬂ 4, 2).

desired BSR car-like robot lBsk
configuration gq4 solution \ lzsr || path type \ lrs lrs

(-3.4,2) S3 of Table 8.3 [ 4.908 [ csclc | 5.679 [ 0.864

(0,2, —4) S3 of Table 8.4 | 4.607 cscC 5.140 || 0.896

Table 8.5: Comparison of time-optimal normal regular extremals of the bi-steerable robot and
shortest paths of the car-like robot.

regular extremals of the BSR have shorter path length than Reeds-Shepp paths. One reason
for this is that the BSR can go through curves of smaller turning radius than the car-like
robot, provided that both robots have the same maximal steering angles. In addition, the
BSR can perform diagonal motions which are beneficial as well. Further simulations show that
Ipsr/lrs < 1 holds for all desired configurations. Hence, compared to Reeds-Shepp paths, time-
optimal solutions of the RKM are of equal or shorter path length. For ¢4 = (7374,2) and
qa = (0,2, —4), the optimal solutions of the BSR and the car-like robot have the same number
of cusps n..

8.6 Discussion of the time-optimal control

The simulations of Section 8.4.3 demonstrate the successful operation of the time-optimal con-
trol 7.3.2 applied to the near time-optimal control problem 8.1.4. Over the sequences of solu-
tions, the end time 7 decreases. For the given results, the end times 7 of the solutions of a
sequence differ by at least several intervals At = 0.001. There are no normal regular extremals
which lie close together and have almost the same end time 7. This is confirmed by additional
simulations of the time-optimal control for other desired configurations. Extremals which lie
close together and have almost the same end time are ruled out by the Maximum Principle
which ensures Pontryagin optimality, see Section 4.2.3.
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851

Figure 8.7: Deviation d(;\o(a)) over a € A for qg = (—%,4,2).

For an increasing number nZ” of simulated extremals, i.e., for more computational effort,

solutions with shorter end time 7 are obtained. Thus, a time-optimal solution is approximated
better and better. Finally, if the time-optimal control is not terminated by a condition for near
time-optimality or exit condition EC3, a time-optimal normal regular extremal is found. The
relation between the number of cusps and the optimality of a solution is discussed in the next
chapter. Over the sequence of solutions of the time-optimal control, the type of the extremals
can change.

The plots of the two-dimensional surfaces of the minimal deviation d over the search space
Ag, in Figure 8.7 and 8.10 and over the subset of A, in Figure 8.8 show that the minimization
of d over \o € Ag, is a global optimization problem. This is true as the search space A4, consists
of the domain ¥ where d = d = ||go — q4|| holds as well as regions of attraction  of several
minima which may be solution minima such that ||¢(7) — gq4| < €, holds. A random starting
point ;\gp in the region of attraction of a solution minimum gives rise to a solution, provided
that the optimization converges before it is terminated by exit condition EC1. In contrast,
a starting point S\(S)P in the domain W or in the region of attraction of a minimum for which
llg(T) — qal] < €4 cannot be achieved does not result in a solution. As could be seen from the
Figures 8.7, 8.8, and 8.10, the deviation d is differentiable in the interior of the domain ¥ and
the regions ) of attraction. At the boundaries between the regions of attraction, the minimal
deviation d is only continuous, which agrees with property O2 of Lemma 7.2.5.
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Figure 8.8: Deviation d(S\O(a)) over {a ER?|0<a; <7, —05<ay <1} for qq = (—%,4, 2).

Sl: 7 =7.324,n, =2 S2: 7 = 6.776, 1. = 2 S3: 7 =5.198,n, = 0

Figure 8.9: Solutions for ¢4 = (0,2, —4).
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Figure 8.10: Deviation d(;\o(a)) over a € A for g4 = (0,2, —4).
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Figure 8.11: Time-optimal normal regular extremal of the BSR (black) and shortest path of the
car-like robot (red) for ¢4 = (—%,4,2).
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Figure 8.12: Time-optimal normal regular extremal of the BSR (black) and shortest path of the
car-like robot (red) for g4 = (0,2, —4).



9 Optimality of normal regular extremals
of the bi-steerable robot

In this chapter, the optimality of normal regular extremals for time-optimal control of the RKM
is analyzed. In particular, optimality conditions are addressed which allow to terminate the
time-optimal control 7.3.2 when a near time-optimal solution is found. Moreover, time-optimal
normal regular and normal singular extremals of the RKM are compared.

Definition 9.0.1 (Condition for near time-optimality for the RKM) The near time-optimal
control problem 8.1.4 is considered for a desired configuration qq = (04, %q,yq). Let 7% be the
end time of a time-optimal solution, k > 1 a constant, and (~6’P,T) a solution to the path
planning problem 8.1.3 underlying problem 8.1.4. A condition which is true if T < k7° holds
18 called condition for near time-optimality for the RKM.

In Definition 9.0.1, the optimality of a solution to the path planning problem is addressed for
a specific desired configuration gg. In principle, instead of g4, the resultant final configuration
¢(7) has to be considered. However, the path planning is performed until ||¢(7) — g4 < g4
holds for small ,. For the discretization interval At = 0.001, the difference in the end time
of extremals which lie close together and have different final configurations ¢(7) satisfying
llg(T) — qall < &4 is at most one discretization interval At. In contrast, as discussed in Section
8.6, the end time 7 of consecutive solutions generated by the time-optimal control differs by at
least several intervals At. Thus, to simplify the analysis, the optimality of solutions is studied
with respect to the desired configuration ¢4 instead of the final configuration ¢(7). Since only
normalized initial conditions 6.3.2 are considered in this chapter, they are denoted by A instead
of Ay to simplify the notation.

If a condition for near time-optimality holds for a solution, the time-optimal control 7.3.2
can be terminated, as it is done in Algorithm 7.2. Without this condition, the algorithm
would execute the path planning until exit condition EC3 is true, i.e., the number of simulated
extremals exceeds 7' . In order to integrate a condition for near time-optimality into the
time-optimal control, the condition should be easy to apply and computationally cheap.

Conditions for near time-optimality depend on the specific control problem. To obtain a
condition for the normal regular extremals of the RKM, necessary and sufficient optimality
conditions are studied in Section 9.1 and 9.3. As no condition for near time-optimality results
from these conditions, a necessary optimality condition is derived in Section 9.5 which is based
on simulation results on time-optimal normal regular extremals given in Section 9.4. In the
following, both time-optimal and near time-optimal normal regular extremals of the RKM are
considered. Time-optimal normal regular extremals give time-optimal solutions if only normal
regular extremals exist for a control problem. Near time-optimal normal regular extremals are
near time-optimal solutions 2.2.5 among the normal regular extremals. For control problems
with normal regular and normal singular extremals, time-optimal normal regular extremals are
in general no time-optimal solutions, as such solutions may be normal singular extremals.

9.1 Application of necessary optimality conditions

In this section, the necessary optimality conditions from Section 4.5 are analyzed for the time-
optimal control problem 6.0.2 to find a condition for near time-optimality for the RKM.

The Legendre-Clebsch condition H,, < 0 given by (4.8) and the strengthened Legendre-
Clebsch condition v Hyu < —a|jul|* as in (4.9) for @ > 0 are necessary optimality conditions

135
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for systems with non-compact input space U. Thus, they cannot be applied to the RKM with
compact input space U = [—0,9] X [—%, %] X [—%, %] As a workaround, the Lagrangian
L(z,u) = 1 for time-optimal control can be replaced by L(z,u) =1+ Y " a; u? for a; > 0,
see [8]. For sufficiently large «a;, there holds u(t) € int U for all t € I. Then, the conditions
(4.8) and (4.9) can be applied. However, if the Lagrangian

L(x,u):1+a1v2+a2gpfc+a3g@%

is used and sufficiently large «; are chosen such that u(¢) € int U holds for all ¢ € I, extremal
velocities v with |v| < © result which give solutions that are far from time-optimal.
In contrast to condition (4.8) and (4.9), the modified Legendre-Clebsch condition

Hyy <0 (9.1)
given by (4.10) and the strengthened modified Legendre-Clebsch condition
w' Hyww < —a[|w]® (9.2)

according to (4.11) for @ > 0 are applicable to the RKM. For these conditions, the modified
input vector w is considered which consists of the input variables u; which do not lie on bd U,
see Definition 3.1.3. For the extremal input u = (v, ¢y, ¢,) of the RKM, v = %0, |¢y| < ¢,
and |¢,| < ¢ holds. The modified input vector is w = ¢ = (¢y, ¢;) for |ps| < ¢ and |p,| < &,
w = @y for |pf| < ¢ and || = @, w = @, for |pf| = ¢ and || < ¢, and w = @ for
lof| = |pr| = ¢. Using the Hamiltonian function H (6.2) and the function h (6.3),

H

Pref

=H =—vh

Prer T
results for w = ¢y and w = ¢,. For w = ¢ and
R o = hprop = A1sin(oy — @) + (cos(0) A2 + sin(6) Az) sin(py) sin(;)
- % (—sin(#) Az + cos(9) A3) sin(ef + ¢r) ,
the matrix

—vh  vhg,

Vhoo; vk

HWJ:[

is obtained. Simulations show that the conditions (9.1) and (9.2) are satisfied for all normal
regular extremals of the RKM. For solution S1 and S3 of Table 8.3, time plots of the input
u, the modified input vector w, w ' Hyww, and —a|jw||® are given in Figure 9.1 and 9.2 for
a = 0.5. In both figures, condition (9.2) holds. Thus, condition (9.1) holds as well. Hence, for
the solutions S1 and S3, the two conditions give no condition for near time-optimality 9.0.1,
as they are true for both solutions, although they have strongly different end times 7 = 8.528
and 7 = 5.492. Further simulations show that the conditions (9.1) and (9.2) hold for all normal
regular extremals, independent of the number of cusps n, and the end time 7.

Switchings of the velocity input v of the RKM give rise to cusps as discussed in Section 6.4.3.
In Section 4.5.2, bounds on the number of switchings ns are addressed for linear time-invariant
systems @ = Ax + Bu, single-input affine systems & = f(x) + g(z) u, and other specific control
systems considered e.g. in [28, 32, 37, 48, 68, 94]. However, the RKM ¢ = ¢(0, ¢) v belongs
to none of the classes of control systems for which bounds on the number of switchings ng are
available. Thus, no bound on the number of cusps n. for normal regular extremals of the RKM
can be given, and no condition for near time-optimality is obtained.

In Section 4.5.3, necessary optimality conditions derived from a generalization of the theory
of envelopes are addressed. For details, see [110, 115, 120]. In these references, end-point maps
2.1.5 are used to analyze the optimality of bang-bang extremals. As discussed in Section 6.6,
for normal regular extremals of the RKM of type M and P, no end-point maps are available,
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Figure 9.2: Input u, modified input w, w T Hyw, and —0.5 ||lw||* for solution S3 of Table 8.3.

as the extremal turning rate 6 of the RKM is not piecewise constant but varies continuously
depending on the extremal inputs v and . Thus, the generalization of the theory of envelopes
from [110, 115, 120] cannot be applied to obtain a necessary optimality condition for the RKM
which gives a condition for near time-optimality 9.0.1.

All in all, no condition for near time-optimality for the RKM results from the necessary
optimality conditions described in Section 4.5.

9.2 Transformed time-optimal control problem

Before the sufficient optimality conditions from Section 4.6 are studied in the next section,
the transformed time-optimal control problem 2.2.4 with fixed end time is considered for the
RKM, as some of the sufficient conditions are usually applied to this problem. The transformed
problem 2.2.4 results from the time-optimal control problem 2.2.3 with free end time by the
time transformation s = %t for constant 7 > 0. Here, 7 corresponds to the unknown end time
of problem 2.2.3. For problem 2.2.4, solutions (X*(-),u(-)) of the extended control system
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X' = f(X,4) as in (2.4) are studied over the fixed interval I = [0,1]. For the extended state
X = (#,2) of dimension 7 = n + 1 and the input @, there holds #(s) := x(rs) = z(t) and
a(s) == u(rs) = u(t). The extended adjoint state A = (5\7 ;\n) € R™ is used to formulate the
necessary optimality conditions of the Maximum Principle for problem 2.2.4. Here, A = (X, \;,)
consists of A with A(s) :== A(7s) = A(t) and the adjoint state variable \; related to z.

In the following, the Maximum Principle is applied to the transformed time-optimal control
problem 2.2.4 for the RKM. Like in Chapter 6, extremals are denoted by the superscript *,
which is omitted in the remaining chapter. No proofs are given in this section, as they can be
easily derived from the proofs in Chapter 6.

Definition 9.2.1 (Extended reduced kinematic model of the BSR) Let ]}7[ = SE(2) x Rxo be
the state space, X = (q,z) € M the state with ¢ = (0, %,7), and g11 = g11 (0, gb), J12 = g12 (9, gb),
and g13 = g13 (é, gb) the real-valued functions (5.8). The driftless control system

2 291(0,9)
) é V) )

PO N B 1 () B 03
7 colig) | g(r.0,¢) v (9:3)
2’ 0

with input space U = [=0,0] X [=@,¢] X [=@, @], © >0, ¢ < T, and input & = (0, Py, pr) € U
18 called extended RKM of the BSR.

System (9.3) is the extended system (

4) of the RKM 5.0.2. The space of the admissible
steering angles ¢ = (@5, @,) is ® = [_% ]

x [-Z,%] as in (6.1).

2.
s
1 101

Definition 9.2.2 (Transformed time-optimal control problem for the RKM) The transformed
time-optimal control problem 2.2.4 for the extended RKM with initial state Xo = (qo,T), desired
state Xq = (qq,7), and input space U = [—0,0] x ®, © > 0, is called transformed time-optimal
control problem for the RKM.

Problem 9.2.2 is the transformed time-optimal control problem which arises from the time-
optimal control problem for the RKM as in Definition 6.0.2.

Theorem 9.2.3 (Necessary optimality conditions for the transformed time-optimal control
problem for the RKM) The transformed time-optimal control problem 9.2.2 is considered. Let
A= (5\1,5\2,;\3,;\4) be the extended adjoint state and p € {0,1} a constant. Then, the Hamil-
tonian function

H(X,p,Ai) = —pz+2zh(X,A,¢) 0 (9.4)

results with

h(X,A,¢) = Aisin(@gy — @) + (cos(f) Ao +sin(0) A3) cos(¢y) cos(,)

+ % (— sin(é) Ao + cos(é) ;\3) sin(@f + @r) .
Let (X*(-),A*(-),a*(")) be an extremal and H*(-) := H(X*(-),p, A*(),4*(")) the extremal
Hamiltonian function over the time interval I = [0,1]. Then, the following conditions hold:

N1': Foralls € I, (p,A*(s)) # 0 is true.
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N2’:  For almost all s € I, there holds the adjoint equation

NE o= 2 (% cos(é*) sin(gb} + @)+ sin(é*) cos( V;‘) cos(gbjf)) A5 o
+ 2" (% sin(0*) sin(gb? + @F) — cos(6*) cos( ';2) cos(gb:))}\g 0%,
o= o
o= o,
Vo= L

N3’: For almost all s € I, 4* = (0*,9*) satisfies ’ﬁ(X*,A*,gb*)

and v* = sgn(ﬁ*) .

= maxgco Nz(X*,A*,gb)

N4': For almost all s € I, H*(s) = 0 holds.
N5’:  There holds A4(0) = A\s(1) = 0.

Theorem 9.2.3 results from the Maximum Principle 4.2.3 applied to problem 9.2.2. The
function h corresponds to the function h (6.3).

Theorem 9.2.4 (Normal extremal of the transformed time-optimal control problem) For the
time-optimal control problem 6.0.2, let (¢*(-), A*(-) ,u*(:)) be a normal extremal over I = [0, T]
which satisfies the optimality conditions of Theorem 6.1.1 for ¢*(0) = qo and ¢*(7) = qq.

Then, for the transformed problem 9.2.2, (X*(-),A*(-),a*(-)) with X*(s) := (¢* (7 s),7) =
(q*(t),7), A*(s) :== (\*(75),0) = (A*(£),0), and @*(s) := u* (7 s) = u*(t) is a normal extremal
over I = [0,1] which satisfies the optimality conditions of Theorem 9.2.3 for X*(0) = (qo,7)
and X*(1) = (g4, 7).

To prove the theorem, it can be shown that if an extremal (¢*(-) , \*(+),u*(+)) over I = [0, 7]
satisfies the conditions of Theorem 6.1.1 and goes from ¢y to gg, then (X'*() ,[\*(-),12 ())
over I = [0,1] meets the conditions of Theorem 9.2.3 and goes from (qo, 7) to (gq, 7). Due to
A1(0) = 0 from condition N5’ and A} = —% H* = 0 from condition N2 and N4’, Xj(s) = 0 is
true for all s € I.

By Theorem 9.2.4, an extremal (¢*(-),A*(+),u*()) of problem 6.0.2 corresponds to an ex-
tremal (X*(-),A*(-),a*(")) of problem 9.2.2. Figure 9.3 shows the solution to the transformed
control problem obtained from solution S1 of Table 8.3 for ¢4 = (—g, 4, 2) with D = lG — qall-
The Figures 8.4 and 9.3 give the same plots except for the different times ¢ and s. Sufficient
optimality conditions for fixed end time problems are applied next to extremals of the trans-
formed time-optimal control problem 9.2.2 to analyze extremals of the time-optimal control
problem 6.0.2.

9.3 Application of sufficient optimality conditions

In this section, the sufficient optimality conditions from Section 4.6 are studied for the time-
optimal control problem 6.0.2 and the transformed problem 9.2.2, respectively, to find a condi-
tion for near time-optimality for the RKM. The application of the local second-order sufficient
conditions with Riccati equation from Section 4.6.2 is discussed in detail in Section 9.3.1.

The Arrow and Mangasarian conditions from Section 4.6.1 are sufficient optimality conditions
for normal extremals of transformed time-optimal control problems with fixed end time. These
conditions hold if for p = 1, the extremal Hamiltonian function H = H (X i, A, 12) is concave
in X on the whole state space. To analyze the concavity of the extremal Hamiltonian function
H given by (9.4), the Hessian

HXX = ﬁ()\g?yﬂj\va)
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Figure 9.3: Solution to the transformed control problem obtained from solution S1 of Table 8.3
for g4 = (—g,4,2).

is studied for normal regular extremals (X (-),A(-),(-)) of the transformed time-optimal con-
trol problem 9.2.2. In simulations of different extremals including time-optimal ones, the eigen-
values {01,09,03,04, } of HXX satisfy o1 < 0, 0o > 0, 03 = 04 = 0 for all s € I. So, HXX
is not negative semidefinite, and H is not concave in X. Thus, the Arrow and Mangasarian
conditions are not satisfied and give no condition for near time-optimality.

If the local second-order sufficient conditions from Section 4.6.3 are satisfied, they give strong
local time-optimality for bang-bang extremals. The normal regular extremals of the time-
optimal control problem 6.0.2 are no bang-bang extremals, as the RKM is no affine control
system. Only the input v enters the RKM affinely, whereas the input ( enters by trigonometric
functions. Hence, for normal regular extremals, v(-) is a bang-bang input, but ¢(-) can vary
continuously. Thus, the sufficient conditions from Section 4.6.3 do not apply to problem 6.0.2.

Boltyanskii’s sufficient condition from Section 4.6.4 ensures optimality if a piecewise smooth
feedback u = wu(t, z) can be found which generates solutions that satisfy the necessary optimality
conditions of the Maximum Principle and additional regularity conditions. The additional
regularity conditions are analyzed in [105, 106] based on a partition of the configuration space
@ into cells which are submanifolds of (). For this, closed-form solutions of extremals are used
to obtain the partition of (. For the normal regular extremals of the time-optimal control
problem 6.0.2, it is not possible to generate a partition of the configuration space @) the way it
is done in [105, 106], since no closed-form solutions can be derived for extremals of type M and
P, see Section 6.6. Thus, no condition for near time-optimality is obtained from Boltyanskii’s
sufficient condition along the lines of [105, 106].

To sum up, no condition for near time-optimality for the RKM results from the sufficient
optimality conditions given in Section 4.6.1, 4.6.3, and 4.6.4.

9.3.1 Local second-order sufficient conditions with Riccati equation

The local second-order sufficient conditions with Riccati equation from Section 4.6.2 can be
used to check strong local optimality or weak local optimality of extremals of optimal control
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problems with fixed end time. Hence, the transformed time-optimal control problem is con-
sidered. Provided that specific regularity conditions hold, an extremal is locally optimal if a
bounded solution Q(-) to a Riccati equation exists which meets specific boundary conditions.
In the following, the local second-order sufficient conditions are studied for normal regular
extremals of the transformed time-optimal control problem 9.2.2. The condition for strong local
optimality with Riccati equation (4.12) cannot be used for problem 9.2.2, as it requires the
strengthened Legendre-Clebsch condition u ' H,,u < —a Hu||2 to hold for & > 0. As discussed
in Section 9.1, this condition is not applicable due to the compact input space U of the RKM.
The local second-order sufficient condition for control systems (4.17) given by

my
= fo(z,w) + Zgi(a:, w) v; (9.5)
i=1
with affine input v € V, non-affine input w € W, compact input space V-C R™, and W = R™2
from [86] does not apply, too. Although the extended RKM is a control system (9.5) with
folz,w) =0, g1(z,w) = Q(T,é,gb), affine input o, and non-affine input ¢, the input ¢ takes
values in [—27 %] X [—%, %], which is a compact subset of R2.

The second-order sufficient conditions from [65, 72, 75] give weak local optimality for systems
with compact input space described by an input constraint c(u) < 0 as in Definition 3.1.3. These
conditions can be applied to the normal regular extremals of the transformed time-optimal
control problem 9.2.2. For this, the input space U = [—0,0] X [—¢, §] X [—@, @] is written as
U={ueR?|c(a) <0} for the input constraint

- - 0
v - 0
cwy=| 7 Y |<o (9.6)
wr — @
—pr -
Sb'r - ()5

The strengthened modified Legendre-Clebsch condition ! Hygw < —a ||w]* as in (9.2) is
satisfied for normal regular extremals of the transformed time-optimal control problem 9.2.2
as this condition holds for the normal regular extremals of the time-optimal control problem
6.0.2, see Section 9.1, and H(X,u,[&,ﬂ) = zH(fv,u, 5\,12) as in (4.5) is true for z = 7 > 0.

For weak local optimality, a bounded solution @Q(-) to the Riccati equation (4.14) given by

Q=-Qfc—f1Q—Hex+ (Hyy+ Qi) P(PT Hu P) PT (Hgy +Qfa)
has to exist which is continuous at the switching times of the right-hand side of the Riccati
equation and meets the boundary conditions ¢7(0) > 0 and ¢z7(1) < 0. To compute the
right-hand side of the Riccati equation depending on the active input constraints 3.1.3, the
m X (m —ng(s)) matrix P is required. Here, n,(s) = |I(s)| is the number of active input
constraints with 0 < n,(s) < m. The matrix P has to meet C;; P = 0 for the matrix Cy (4.15)
which depends on the active input constraints.

For the normal regular extremals of the RKM, the first or second input constraint of (9.6)
is active for all s € I because of © = 0. Thus, n,(s) > 1 holds. The input constraints on oo
and @, may be true or not at each time s € I. If |@;(s)| < ¢ and |¢,(s)] < $ holds at some
time s, then ny(s) = 1 results, the 1 x 3 matrix Cj is

Cy = [ +£1 0 0 ] ,
and a 3 X 2 matrix satisfying Cy P = 0 is

P= (9.7)

o = O
_ o O
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If |@f(s)| = ¢ and |, (s)| < ¢ holds at s, then n,(s) = 2 is obtained, the 2 x 3 matrix Cj is

+1 0 0
“ 0 +1 0|’
and a 3 x 1 matrix meeting Cy; P =0 is
0
P=1]01|. (9.8)
1

If [¢r(s)| < ¢ and |@,(s)| = ¢ is satisfied at s, then n,(s) = 2 results, the 2 x 3 matrix Cy is

+1 0 0

Ca =
0 0 1

)

and a 3 x 1 matrix such that Cz P = 0 holds is

0
P=|1]. (9.9)
0

If |5 (s)| = |@r(s)| = ¢ holds at s, then n,(s) = 3 is true, the 3 x 3 matrix Cy is

1 0 0
Ca=1 0 +1 0 |,
0 0 =1

and there is no matrix P for Cy P = 0. For P as in (9.7), (9.8), or (9.9), the corresponding
Riccati equation (4.14) results. For |¢¢(s)| = |¢r(s)| = ¢ and n,(s) = 3, the Riccati equation
Q =-Qfy — f)‘(r Q — Hy g is obtained. To analyze whether a bounded solution Q(-) with
¢r7(0) > 0 and ¢pn(1) < O exists, an initial condition Q(0) with ¢zz(0) > 0 is chosen, the
Riccati equation for the current active input constraints is integrated, and the boundedness
of Q(-) as well as ¢nn(1) < 0 are checked. If no weak local optimality follows from the initial
condition, a new one is selected until local optimality is shown or the analysis is terminated.

In the following, solutions to the transformed control problem obtained from solution S1 and
S3 of Table 8.3 for g4 = (—g, 4, 2) are considered. Bounded solutions Q(-) exist for

000 0
00 0 0
Q=14 0 0 1
0013

Obviously, ¢7#(0) > 0 holds. At s = 1, the solutions obtained for S1 and S3 are
12829 0 0 —1.6429

0 0 0 0
1) = 9.10
Q() oo (9.10)
—1.6429 0 1 —1.2666
and
0.8551 0 0 —0.8354
0 0 0 0
1) = , 9.11
Q() 0 o0 (9.11)
—0.8354 0 1 -—1.1229
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respectively. As ¢qn(1) < 0 is true for (9.10) and (9.11), both solutions are locally optimal.
Simulations show that suitable solutions Q(+) exist for all normal regular extremals of the RKM,
independent of the number of cusps n. and the end time 7. Thus, the sufficient conditions from
[65, 72, 75] give no condition for near time-optimality for the RKM, as they do not single out
extremals with too large end time 7. This is the case as for weak local optimality 2.2.6, solutions
in an e-neighborhood with respect to 7, x, and u are considered. Hence, two normal regular
extremals with different end times 7 can both be locally optimal.

9.4 Simulations on time-optimal normal regular extremals

As the optimality conditions from Section 9.1 and 9.3 gave no condition for near time-optimality,
simulation data on time-optimal normal regular extremals is presented in this section. The
simulation results provide the motivation and basis for the necessary optimality condition for
the RKM discussed in the next section.

To generate the simulation data, the time-optimal control 7.3.2 was applied to the near time-
optimal control problem 8.1.4. The parameters of Table 8.1 were used, except for the maximal
number of simulated extremals 12 for time-optimal control which was set to 72 = 10000.
Moreover, no condition for near time-optimality was included to terminate the time-optimal
control. This way, time-optimal normal regular extremals were obtained for almost all desired
configurations gg which are reachable by normal regular extremals.

The MATLAB functions fmincon and ode45 were applied for optimization and numerical
integration. For the simulations, 13447 desired configurations

Qi = {Qd = (04,4, ya) ‘911 € Oy, 4 € X4, ya € Ya, qa # (0,0,0) } (9.12)
were considered obtained for
_ 3 T T T w 37
@d - {_W7_Ta_§a_Z7O7Z>§>T}>
X, = {0.0,01,...,39, 4.0}, (9.13)
Yy = {0.0,0.1,...,39, 4.0}

The 13447 desired configurations ¢; € Qg arise from 8 values for 6; and 41 values for z4 and
yq minus gq = (0,0,0), which is excluded because of gy = (0,0,0) and ¢p # ¢4. Time-optimal
normal regular solutions were simulated for desired configurations ¢4 with x4 > 0 and y; > 0, as
solutions for x4 < 0 or y4 < 0 result from these solutions via symmetry properties not discussed
here. No desired configurations with x4 > 4 or y; > 4 were considered, as all interesting
properties of time-optimal normal regular extremals regarding the end time 7 and the number
of cusps n. can be seen for 0 < z4 < 4 and 0 < yg < 4 as discussed below. For each desired
configuration, the final time 7" of the initial time horizon given by (8.11) was used.

In Figure 9.4, simulation data on the end time 7°" of time-optimal normal regular extremals
is shown. The superscript tor stands for time-optimal regular, as 7!°" is the end time of
an extremal which is time-optimal among all normal regular extremals to a specific desired
configuration gg. For each 4 € ©4 (9.13), a contour plot of the end time 74" over (z4,yq) €
XgxYyis given in Figure 9.4. Each line in the figure is an isometric line of constant 77°". Desired
configurations are colored in black if they are not reachable by normal regular extremals. As
ga = (0,0,0) is excluded from Qg, this configuration is black as well.

Results similar to Figure 9.4 are given in [10, 60, 106, 107]. In [10], a contour plot of the end
time of time-optimal paths of the differential drive is presented. In [107], lines of constant end
time are depicted for time-optimal paths of the car-like robot with free final orientation 6(r).
For Dubins paths, contour plots of the path length are shown in [60, 106].

To validate the final time 7" of the initial time horizon, the mean value of T/7'" over all
solutions was computed, resulting in 2.36 for the simulations in Figure 9.4. Hence, the final
time 7' of the initial time horizon for the first run of the path planning is on average more than

tor
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Figure 9.4: End time 7°°" of time-optimal normal regular extremals to g4 € Qq.

two times longer than the end time of a time-optimal normal regular extremal. Shorter final
times 7' than (8.11) for smaller mean values of 7/7%°" can be derived from Reeds-Shepp paths.

In Figure 9.5, simulation data on the number of cusps of time-optimal normal regular ex-
tremals is given for the desired configurations ¢4 € Qg (9.12). According to Corollary 9.5.2
below, a time-optimal normal regular extremal to a desired configuration ¢; has the minimal
number of cusps among all normal regular extremals to ¢. This minimal number called n}*
in the following is fundamental for the results on near time-optimality in the next section. In
Figure 9.5, n* is shown for the desired configurations ¢4 € Q4. For each 6; € G4, an (z,vy)
plot is given for (z4,y4) € X4 X Yy. In the (x,y) plots, domains of different minimal number of
cusps n," are marked in different colors. The desired configurations ¢4 in green, yellow, and red
domains are reached by time-optimal normal regular extremals with n*(¢q) = 0, nJ"(qq) = 1,
and n"(qq) = 2, respectively. Solutions with n(¢4) = 2 only exist for ; = 0. Domains col-
ored in black indicate that no normal regular extremals exists to the specific ¢4. More detailed
results than in Figure 9.5 can be given which do not only show the minimal number of cusps
ny' but also the type of the time-optimal normal regular extremal to gq.

In Figure 9.4, the end time of the time-optimal normal regular extremals satisfies 75" < 6.899
for all g4 € Q4. The time 7!°" increases approximately for growing ||(x4, ya)||, as it takes longer
to reach more distant positions. As could be seen in Figure 9.5, time-optimal normal regular
extremals to nearby configurations g4, and ¢q4, can be quite different. For example, for extremals
to configurations g4, = (Oay, Ta,,Ya,) and qa, = (Oay, Tays Ydy) With 04, = 04y, = 0, Ya, = Ydy,
and xq, < g, close together, n7(q4,) = 2 and n”"(q4,) = 0 can hold. Correspondingly, the
initial conditions Ay of the adjoint state for time-optimal normal regular extremals to nearby
configurations may have completely different values. Hence, in general, it is impossible to
determine the initial condition Ag for a time-optimal extremal to a configuration ¢; based on
the initial condition A for an extremal to a configuration close to gg.

The results of Figure 9.4 and 9.5 were obtained for time-optimal normal regular extremals.
For all configurations gq marked in black which are not reachable by such extremals, ||(z4, ya)||
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Figure 9.5: Minimal number of cusps n* of time-optimal normal regular extremals to gq € Qq.

is small. Thus, for sufficiently large ||(z4, ya)||, each configuration g4 can be reached by a normal
regular extremal. As discussed in Section 9.6, configurations not reachable by normal regular
extremals can be reached by normal singular ones. For X, and Y, given by (9.13), desired
configurations with x4 < 4 and yg < 4 were studied, as only for small ||(z4,y4)||, there are
configurations not reachable by normal regular extremals. All relevant domains of different n*
exist for x4 < 4 and y4 < 4. Thus, for Xy and Yy, all interesting properties of time-optimal
normal regular extremals can be seen. In Figure 9.5, the domains of different n* are slightly
affected by the discretization of x4 and yq as in (9.13) and the tolerance &,.

9.5 Time-optimality and number of cusps

As no condition for near time-optimality resulted from the optimality conditions in Section 9.1
and 9.3, a necessary optimality condition is derived in the following based on simulation data on
the minimal number of cusps n* from Section 9.4. For this, a theorem on the number of cusps
and the end time of normal regular extremals is stated, from which the necessary optimality
condition is derived. Simulation results on normal regular extremals satisfying this condition
are presented. For a given desired configuration g4, the necessary optimality condition can be
used to terminate the time-optimal control 7.3.2 for the RKM when a solution is found which
provides a good approximation of a time-optimal solution.

For each desired configuration g4, the minimal number of cusps n]* is the smallest existing
number of cusps among all normal regular extremals to g4. According to Figure 9.5, n(qq) < 2
holds for the time-optimal normal regular extremals of the RKM to the configurations ¢4 € Qg
which are reachable by normal regular extremals. Aside from simulations, it is hardly possible
to show n*(gq) < 2 without closed-form solutions. To make n(¢;) < 2 plausible, results on
the number of cusps and switchings are reviewed for related optimal control problems. For the
RKM with configuration g of dimension p = 3, the number of cusps of time-optimal normal
regular extremals satisfies n. < p — 1 = 2. Thus, to reach a configuration g4 = (04, xa,Ya)
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specified by three configuration variables, each time-optimal normal regular extremal consists
of up to three pieces of constant velocity. Reeds-Shepp paths, i.e., shortest paths of the car-
like robot which drives forward and backward and has the same configuration as the RKM,
have at most two cusps and three pieces of constant velocity as well, see [94, 108, 120]. In
Section 8.5, time-optimal normal regular extremals of the BSR, and shortest paths of the car-
like robot were compared. The optimal solutions of both systems had the same number of
cusps for the configurations ¢4 = (—g, 4, 2) and ¢q = (0,2, —4). Time-optimal solutions of the
differential drive with a configuration of dimension p = 3 are addressed in [9, 10]. The optimal
solutions have at most two cusps. In [48], near time-optimal solutions of the snakeboard with
minimal number of switchings ns; between motion primitives are analyzed. The snakeboard
has a configuration of dimension p = 5. For each configuration ¢4, the minimal number of
switchings among all solutions satisfies ng <p —1=4.

As no closed-form representations of normal regular extremals of type M and P are available,
the domains of different n)* and their boundaries cannot be described analytically. To determine
the minimal number of cusps for a specific configuration ¢4, simulation data like in Figure 9.5
can be stored in a lookup table, and n[*(¢4) can be computed approximately by nearest-neighbor
interpolation, as the interpolated number has to be integer. The boundaries of the domains
colored in black in Figure 9.5 consist of all configurations not reachable by normal regular
extremals. These boundaries can be given analytically, as the configurations can be reached by
normal singular extremals for which closed-form solutions exit, see Section 9.6.

9.5.1 Number of cusps and end time

The following result relates the number of cusps n. and the end time 7 of normal regular
extremals to a desired configuration gg. It can be shown analytically for some sequences of
types of extremals. For the remaining sequences, it is verified by extensive simulations.

Theorem 9.5.1 (Number of cusps and end time of normal regular extremals) The time-
optimal control problem for the RKM 6.0.2 is considered for the initial configuration qo =
(0,0,0) and a desired configuration qq = (04, xa,ya). Let S1 and S2 be normal regular extremals
from qo to qq with ne, and ne, cusps and end times 7 and T2, and let |04| or |xq| be sufficiently
large. Then, ne, > n., tmplies 71 > Ts.

Proof For the types 6.4.1 of normal regular extremals of the RKM, the following sequences
of extremals S1 and S2 can be considered:

S-S: Extremal S1 is of type S and extremal S2 is of type S.
S-M: Extremal S1 is of type S and extremal S2 is of type M.
S-P: Extremal S1 is of type S and extremal S2 is of type P.
M-S: Extremal S1 is of type M and extremal S2 is of type S.
M-M: Extremal S1 is of type M and extremal S2 is of type M.
M-P:  Extremal S1 is of type M and extremal S2 is of type P.
P-S: Extremal S1 is of type P and extremal S2 is of type S.
P-M:  Extremal S1 is of type P and extremal S2 is of type M.
P-P: Extremal S1 is of type P and extremal S2 is of type P.

For each sequence of extremals S1 and S2, either n., > n., cannot hold, i.e., the sequence
of extremals does not exist, or Theorem 9.5.1 is true. In the following, this is shown for the
sequences S-S, S-M, S-P, M-S, and P-S. For the remaining sequences M-M, M-P, P-M, and P-P,
Theorem 9.5.1 is verified by simulations as discussed below.
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According to property NR2 of Lemma 6.4.3, extremals of type S have no cusps. Thus, for an
extremal S1 of type S, n., = 0 holds, and there is no extremal S2 with n., < n., cusps, as n.,
cannot be negative. Hence, n., > n., cannot hold for the sequences S-S, S-M, and S-P for any
desired configuration ¢ .

By property NR3, extremals of type S are straight line segments from ¢y to q4. Thus, their
path length [g is minimal among all extremals. As [g is minimal, the path length [;; and [p of
extremals of type M and P satisfies [j; > lg and Ip > lg. For extremals of type S, ¢ = (0,0)
holds for all ¢. This is true since by property E3 of Lemma 6.3.1, the extremal adjoint state
A(t) is of case C3 for all ¢ if it is of this case for some ¢, and by Theorem 6.1.4, for A(t) of case
C3, the Hamiltonian function is maximized by ¢ = (0,0). For extremals with ¢(¢) = (0,0)
for all ¢, the absolute translational velocity |v;| given by (5.18) is maximal by Lemma 5.3.4. In
contrast, for extremals of type M and P,

0(t) = sin(ios (t) — @r(1)) v(t) # 0 (9-14)

holds for almost all ¢, as the orientation 6 of the extremals is not constant, see Definition 6.4.1.
Thus, because of v(t) # 0 for almost all ¢, % (t)+p7(t) > 0 results from (9.14), and the absolute
translational velocity |v:| is not maximal for almost all ¢. As an extremal of type S has minimal
path length lg and its absolute translational velocity |v;| takes its maximal value of all ¢, it has
a shorter end time 75 than an extremal of type M or P with end time 7. Hence, Theorem 9.5.1
holds for the sequences M-S and P-S for any desired configuration ¢;. W

For the sequences M-S and P-S, the proof of Theorem 9.5.1 is independent of the number of
cusps of the extremals of type M and P and of the configuration g4. According to extensive
simulations for gq € Qg4 (9.12), Theorem 9.5.1 holds for the sequences M-M, M-P, and P-P for
all configurations ¢4. In contrast, for the sequence P-M, there are extremals to configurations
gq with small values of |0y| and |z4| for which n., > n., does not imply 71 > 75. In general,
the type of the extremals to a specific ¢4 is unknown. Thus, for Theorem 9.5.1 to hold for any
sequence of extremals, the configuration gg must have sufficiently large values of |64] or |x4].
In the simulations, the theorem does not hold for some configurations gg with |64] < § and
|zq| < 0.5, but it is true for all configurations gq with |64 > § or |z4| > 0.5. For example, for
qq = (—%0.5, 3.7) and ¢4 = (0,0.4, 3.2), there are sequences P-M with n., > n., and 7 < 7.

To proof Theorem 9.5.1 for the sequences M-M, M-P, P-M, and P-P analytically, closed-form
representations of the extremals of type M and P would be required to give the path length [
and the total change A of the orientation of extremals from ¢y to gq. For an extremal from gq

to gqq with end time 7, the path length

1= [ o) ag

is the distance the RKM has to travel. The total change of the orientation

A9:/0T|9(§)|d§

is the total angular distance of the orientation the RKM has to cover. To compare the end times
71 and 7 of extremals S1 and S2 with path length /; and l5 and total change of the orientation
Afy and Afs, the absolute translational velocity |v¢| given by (5.18) and the absolute rate of
change of the orientation ‘0| = |sin(¢s — ¢,)| 0 obtained from 6 = sin(¢; — ¢,) v for |v] =
have to be considered. However, closed-form representations of extremals of type M and P are
not available. Thus, it is not possible to determine [ and Af analytically for extremals from gq
to gq with different values of n. to compare the end times.

By Theorem 9.5.1, normal regular extremals to a desired configuration g4 with sufficiently
large 04| or |x4| have shorter end times if they have fewer cusps. For a wheeled mobile robot
which can drive forward and backward, it is an intuitive result that fewer cusps lead to shorter
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end times. However, for the RKM, this is not true for extremals S1 and S2 of type P and M
and for some configurations ¢4. To make it plausible that n., > n., does not imply 7 > 7 for
particular configurations ¢4 with small |04] and |x4|, for extremals S1 and S2 of type P and M
with n., > n.,, the change of the orientation Af. between two consecutive cusps is considered.
As discussed in Section 6.4.3, for extremals of type P and M, 0 < Af, < 7w and Af. = 7 holds,
respectively. Thus, for the extremals S1 and S2, Af., < Af., is always true. Hence, even
if ne, > ne, is true, Ay < Afy may result. Then, for suitable path length /; and Iy of the
extremals, Af; < Afy may give rise to 71 < 7o despite of n., > ne,.

The sequence M-M of solution S1 and S2 of Table 8.3 and the sequence P-P of solution S2
and S3 of Table 8.4 agree with Theorem 9.5.1, since for the desired configurations ¢4 considered
there, normal regular extremals with fewer cusps have shorter end times. In contrast, extremals
with shorter end times do not always have fewer cusps, i.e., 71 > T2 does not imply n., > n.,,
but only n., > n.,. There are solutions with 71 > 7 and n., = n.,, like solution S2 and S3 of
Table 8.3 and solution S1 and S2 of Table 8.4.

9.5.2 Necessary optimality condition on the number of cusps

Based on Theorem 9.5.1, the following necessary optimality condition on the number of cusps
is obtained for the normal regular extremals of the RKM.

Corollary 9.5.2 (Necessary optimality condition on the number of cusps) The time-optimal
control problem for the RKM 6.0.2 is considered for the initial configuration qo = (0,0,0) and
a desired configuration qq = (04,2a,ya). Let n(qq) be the minimal number of cusps among
all normal regular extremals from qo to qq, and let |04] or |xq4| be sufficiently large. Then, if a
normal reqular extremal from qo to qq is time-optimal, it has nl*(qq) cusps.

Proof A desired configuration ¢4 with sufficiently large |04 or |24 is considered. Thus, The-
orem 9.5.1 applies. Let S1 be a time-optimal normal regular extremal to ¢q with n., > n"(qq)
cusps and end time 7. Then, by Theorem 9.5.1, there is another normal regular extremal S2
to qq with n., = n*(qq4) cusps which has a shorter end time 79 < 71. Thus, the extremal S1
cannot be time-optimal, and Corollary 9.5.2 holds. B

According to Corollary 9.5.2, for a desired configuration gg with sufficiently large [64] or
|z4|, a normal regular extremal can only be time-optimal if its number of cusps n. is the
minimal number of cusps n)* among all normal regular extremals to ¢4. Corollary 9.5.2 gives a
necessary optimality condition, i.e., it characterizes candidates for time-optimal normal regular
extremals. It is no sufficient optimality condition, as there are normal regular extremals which
satisfy n. = n"(qq) but are not time-optimal. For example, n. = n"(¢g4) holds for solution S2
and S3 of Table 8.3, but solution S2 has a larger end time than solution S3.

As discussed in Section 9.4, the minimal number of cusps for a specific configuration gqy
can be approximated by a nearest-neighbor interpolation of simulation data on n* stored in
a lookup table. Besides condition 9.5.2, there are other necessary optimality conditions for
the normal regular extremals of the RKM which depend on the number of cusps n.. As all
time-optimal normal regular extremals have at most two cusps as addressed in Section 9.4,
extremals with n. > 2 cannot be optimal. Thus, n. < 2 can be used instead of n. = n(qq).
This way, a weaker necessary condition is obtained for which no simulation data is needed. A
stronger necessary condition than condition 9.5.2 results if in addition to n. = n*(gq), the
normal regular extremal must have the same type as a time-optimal extremal to ¢4. For the
implementation of this condition, simulation data on the optimal type has to be stored.

9.5.3 Simulation results and condition for near time-optimality

The necessary optimality condition 9.5.2 is no condition for near time-optimality in the sense
of Definition 9.0.1. A condition 9.0.1 holds if the end time of a normal regular extremal to ¢4
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satisfies 7 < k 7% for a fixed quality factor k£ > 1 and the end time 7% of a time-optimal normal
regular extremal to gq. Condition 9.5.2 allows to single out extremals which have too many
cusps and thus larger end times than a time-optimal normal regular extremal to g4. However,
the condition does not take the quality factor k and the minimal end time 7%° into account.

In the following, simulation data on normal regular extremals satisfying condition 9.5.2 is
discussed. The condition is applied to solutions (Agp , T) to the path planning problem 8.1.3,
i.e., to normal regular extremals which reach the desired configuration g; within the tolerance
€q- As discussed above, in principle, the final configuration ¢(7) has to be considered for
optimality instead of gq, i. e., n. = n*(¢(7)) has to be checked instead of n. = n*(qq). However,
ne = n(gq) is used to simplify the analysis.

Solutions to the path planning problem 8.1.3 which satisfy n. = n7*(¢qq4) give good approxima-
tions of time-optimal normal regular extremals as shown below in this section. Hence, and since
no condition for near time-optimality 9.0.1 was found for the RKM, solutions with n. = n"*(qq)
are defined to be near time-optimal as from now. Their end time is denoted by 7/° and the
resultant quality factor k := 7!°/7%°" is used to rate the approximation.

In Table 9.1, near time-optimal solutions with n. = n*(gq) and time-optimal normal regular
extremals of Table 8.3 and 8.4 are compared. For the desired configurations qg = (—%,4, 2)
and gq = (0,2, —4), references to the near time-optimal and time-optimal solutions are given,
the end times 7' and 7'°" are listed, and the resultant quality factor k = 7° /7" is stated. For
qa = (0,2, —4), k = 1 holds, as the near time-optimal solution S3 is time-optimal as well. For
qq = (—g,4, 2), k = 1.138 results, as the end time 7%° of the near time-optimal solution S2 is
larger than the end time 7°" of the time-optimal normal regular extremal S3. Since k is small,
the near time-optimal solution S2 gives a good approximation of the time-optimal extremal S3
with respect to the end time.

desired near time-optimal time-optimal normal resultant
configuration solution regular extremal quality
4d solution Fto solution rtor factor k

(—2,4,2) [ S2of Table 8.3 [ 6.249 || S3 of Table 8.3 | 5.492 [ 1.138
(0,2,—4) || S3 of Table 8.4 | 5.198 || S3 of Table 8.4 | 5.198 || 1.000

Table 9.1: Comparison of near time-optimal solutions and time-optimal normal regular
extremals.

In Table 9.2, near time-optimal solutions to all desired configurations ¢z € Qq (9.12) are
considered. According to simulations, condition 9.5.2 holds for all configurations g € Qg
independent of |6, and |x4|. Thus, all configurations ¢4 € Qq are used for the results in Table
9.2. For Qg consisting of 13447 configurations, the number and percentage of configurations
reachable by normal regular extremals are given. Most configurations ¢4 € Q4 can be reached
by normal regular extremals. As discussed in the next section, the remaining configurations are
reachable by normal singular extremals. From the configurations reachable by normal regular
extremals, the number and percentage of solutions with n. = n”(q4) and 7' = 7'°" are given.
For these configurations, solutions are time-optimal if n. = n7*(gq) holds. As could be seen
from Table 9.2, this is the case for the majority of configurations ¢4 € Q4. Besides, the number
and percentage of the remaining configurations are stated. For these configurations, near time-
optimal solutions with n. = n™(q,) and 7% > 7" are obtained.

Condition 9.5.2 gives no information about the quality factor k. Thus, simulation data on the
minimal, mean, and maximal value of the resultant quality factor k is given in Table 9.2 for near
time-optimal solutions to ¢4 € Q4. Most often, k = 1 is attained for near time-optimal solutions
which are in fact time-optimal. As &k has the mean value 1.029, the end times 7%° of near time-
optimal solutions are on average 2.9 % larger than the end times 7!°" of time-optimal extremals.
Thus, near time-optimal solutions provide good approximations of time-optimal normal regular
extremals on average. Moreover, they give good approximations of all time-optimal solutions,
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as there are no configurations g4 reachable by normal regular extremals which can be reached
by normal singular extremals with shorter end times as discussed in the next section. Large
values of k occur for configurations with 65 = 0.

desired configurations gq reference Qa (9-12)
number 13447

qq reachable by normal number 13222
regular extremals percentage 98.32%
_ m q 7o — Ltor number 10038
ne =1 (ga) and 7 T percentage 75.92 %
m ~to tor | Mumber 3184
ne = n(qq) and 7 > 7 percentage 5108
minimal 1.000

resultant quality factor & mean 1.029
maximal 2.357

Table 9.2: Near time-optimal solutions for ¢4 € Qg4.

For a mean value of k close to 1, the end times 7'° of near time-optimal solutions are on average
only slightly larger than the end times 7'°" of time-optimal normal regular solutions extremals.
Thus, near time-optimal solutions give good approximations of time-optimal solutions for the
RKM. Hence, it is appropriate to use the necessary optimality condition 9.5.2 to terminate the
time-optimal control 7.3.2 when an extremal with n. = n”*(qq) is determined.

As discussed above, to integrate an optimality condition into the time-optimal control 7.3.2,
the condition should be easy to apply and computationally cheap. Condition 9.5.2 meets these
requirements, as the simulation data on n"* for the lookup table is generated offline before the
time-optimal control is executed, the nearest-neighbor interpolation to obtain n}* for a specific
configuration g4 is cheap, and n. = n*(g4) can be easily checked. This should be compared
to other optimality conditions like the second-order sufficient conditions with Riccati equation
in Section 4.6.2 and 9.3.1, which require that a suitable solution Q(-) to a Riccati equation is
found. For each configuration qq, n7"(¢4) € {0, 1,2} holds. Thus, the value of n* can be stored
with a small number of bits for each ¢4, and the memory capacity needed for the lookup table
is low. In particular, it is much lower than for a lookup table which contains initial conditions
A for a sampling of the configuration space @ such that for any g4, an initial condition for a
near time-optimal solution results by interpolation.

The percentage of near time-optimal solutions in Table 9.2 which are time-optimal depends
on the final time 7T (8.11) of the initial time horizon. For larger values of T, a higher percentage
of near time-optimal solutions which are not time-optimal is obtained. In contrast, the effect of
the discretization interval At = 0.001 on the percentage of near time-optimal solutions which
are time-optimal is negligible. This is true as the end times 7 of two subsequent solutions to
the path planning problem differ by at least several intervals At, see Section 8.6.

9.6 Time-optimal normal regular and normal singular extremals

For completeness, time-optimal normal singular extremals are compared in this section to the
time-optimal normal regular extremals from Section 9.4. Normal singular extremals are relevant
for two reasons: First, they provide solutions to configurations gg with small ||(x4, y4)|| which
are not reachable by normal regular extremals. Second, they may give solutions with shorter
end time than normal regular extremals for some configurations g4. As shown below, this is
not true for time-optimal control of the RKM. The end time of time-optimal normal singular
extremals is called 7%°%. The superscript tos stands for time-optimal singular, as 7!°° is the
end time of an extremal which is time-optimal among all normal singular extremals to gg.
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As our approach for time-optimal control is based on normal regular extremals, normal
singular extremals cannot be determined this way. Instead, closed-form representations of the
trajectories ¢(-) of normal singular extremals were used to generate the simulation results. The
trajectories were represented as vectors

qIn) = [ai |6 =q(ts), ti € In ]

for the times I (7.15). The closed-form solutions arise from the concatenation of transitions
(6.35) of the configuration for the arcs of circles of the normal singular extremals.

As 7T < 6.899 holds for all time-optimal normal regular extremals in Figure 9.4, normal
singular extremals with end times up to 6.899 are considered for solutions comparable to those
of Section 9.4. The time-optimal normal regular extremals have at most two cusps. Thus,
normal singular extremals are studied in the following which consist of at most three arcs
of circles. By a brute force method, closed-form representations ¢(Ia) of all normal singular
extremals over the times Ia with one, two, or three arcs were computed. For At = 0.001,
the time vector I for the interval I = [0,6.899] has 6900 elements. Because of 6y = 0 for
go = (0,0,0), there holds Ao = =y for the normalized initial conditions of the adjoint state A
and the transformed adjoint state v. Then, by Theorem 6.3.4, normal singular extremals result
from initial conditions Ao = (A10,0,0) with A\jg = £1 for = 1 and ¢ = Z. According to
property NS1 of Lemma 6.5.1, the input of a normal singular extremal can be chosen at each

time ¢ from {u;,uy} as in (6.34). For o = 1 and ¢ = 7, this gives

For the initial input at time ¢ = 0, there holds u(0) € {u,,u,}.
Due to Ajg = 1 and u(0) € {u,,uy,}, there are 4 different normal singular extremals without

cusps which consist of one arc over the whole time interval I = [0,6.899]. For normal singular
extremals with more than one arc, each arc is at least one interval /At long. Hence,

ur = (—sgn(ho), -7,

INERNE

U = (Sgn(AIO) ) %7 -

46898 = 27592

normal singular extremals exist with one cusp and two arcs, as A9 = +1 and «(0) € {u;,uy}
holds and the cusp can take place at t. =i At for i=1,...,6898. Here, i € {0,6899} is excluded
to rule out arcs of length zero. For normal singular extremal with two cusps and three arcs,

1
4. 3 6898 - 6897 = 95151 012 (9.15)

different solutions exist. Here, Ajg = £1 and u(0) € {u,,u, } holds, the first cusp can occur at
ty = i1 At for iy =1,...,6897, and the second cusp at to = iy At for io =11 + 1,...,6898. Using
the Gaussian sum formula, (9.15) is obtained. In total, vectors ¢(Ia) for

4427592 495151012 = 95178608

normal singular extremals are computed.

For the simulation data on 7'°%) the configurations ¢4 € Qq (9.12) were considered. For
each ¢4, all normal singular extremals with Hq(T) — qu < g4 for some end time 7 € Ia were
determined. Then, an extremal with minimal end time 7°® was chosen. In the simulations, no
shorter end times 7!°¢ were obtained for normal singular extremals with more than two cusps
and three arcs. This confirms that time-optimal extremals of the RKM have at most two cusps.

Like the end time 7%°" of time-optimal normal regular extremals in Figure 9.4, the end time
7198 of time-optimal normal singular extremals is depicted in Figure 9.6. For this, contour plots
of 7% over (z4,y4) € X4 x Yy are given for each 04 € ©4. As 7'°° is almost constant over large
domains, a color bar is shown in the first plot. Large domains in Figure 9.6 are colored in black
as the desired configurations are not reachable by normal singular extremals over I = [0, 6.899].
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Figure 9.6: End time 7% of time-optimal normal singular extremals to gz € Qg.

To compare the simulation data on the end times 7%°"

tremals and 7t°°

of time-optimal normal regular ex-
of time-optimal normal singular extremals, for each ¢4 € @4, the end times
are contrasted in Figure 9.7. Domains colored in red contain desired configurations which are
not reachable by normal regular but only by normal singular extremals (NSE). Configurations
depicted in yellow are reachable by both normal regular and normal singular extremals. Here,
the normal regular extremals give equal or shorter end times, i.e., 7" < 7! holds. Do-
mains colored in green comprise configurations which can only be reached by normal regular
extremals (NRE), but not by normal singular ones. There are no configurations reachable by
normal regular and normal singular extremals where singular extremals give shorter end times.

Table 9.3 shows results on reachable desired configurations of normal regular and normal
singular extremals. For the 13447 desired configurations qq € @4, the number and percentage
of configurations reachable by normal regular or normal singular extremals are given. Moreover,
the number and percentage of configurations are stated which can only be reached by normal
regular extremals and by normal regular and normal singular ones, respectively. In addition,
the number and percentage of configurations which are time-optimally reachable by normal
singular extremals are listed. These configurations correspond to those colored in red in Figure
9.7. All ratios of Table 9.3 are given with respect to the 13447 configurations ¢4 € Q4.

According to Figure 9.7, all desired configurations ¢; not reachable by normal regular ex-
tremals can be reached by normal singular ones. Hence, in Table 9.3, the ratio of configurations
reachable by normal regular or normal singular extremals is 1. Thus, an approach for time-
optimal control of the RKM which applies both normal regular and normal singular extremals
can find time-optimal solutions to all g4. In Figure 9.7, for all configurations marked in yel-
low which are reachable by both normal regular and normal singular extremals, 7!" < 7%°3
applies, i.e., normal regular extremals give equal or shorter end times than normal singular
extremals. There are no configurations which can be reached by normal regular and normal
singular extremals with 71°" > 7°%. The configurations gg which can be reached time-optimally
by normal singular extremals are not reachable by normal regular ones. Hence, for all ¢, reach-
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Figure 9.7: Comparison of time-optimal normal regular and normal singular extremals.

able by normal regular extremals, a control method using exclusively time-optimal normal
regular extremals gives time-optimal solutions. Even the time-optimal control 7.3.2 leads to
time-optimal solutions for most configurations, as most near time-optimal solutions are time-
optimal as discussed in Section 9.5.3. Like in Figure 9.5, the domains in Figure 9.6 and 9.7 are
slightly affected by the discretization of x4 and y4 and the tolerance ¢,.

9.7 Discussion of the optimality results

Aside from theoretical interest, the motivation to analyze the optimality of normal regular
extremals of the RKM arises from the need for a condition for near time-optimality 9.0.1. Such
a condition is required to terminate the time-optimal control 7.3.2 when a near time-optimal
solution is found, i. e., a solution with end time 7° close to the end time 7" of a time-optimal

desired configurations gq reference Qa (9.12)

number 13447
qq reachable by normal regular | number 13447
or normal singular extremals percentage 100.00 %
qq reachable only by normal number 13222
regular extremals percentage 98.32 %
qq reachable by normal regular | number 1353
and normal singular extremals | percentage 10.06 %
qq time-optimally reachable by | number 225
normal singular extremals percentage 1.67%

Table 9.3: Comparison of time-optimal normal regular and normal singular extremals.
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normal regular extremal. As discussed in Section 9.1 and 9.3, neither the necessary conditions
from Section 4.5 nor the sufficient conditions from Section 4.6 gave such a condition.

To find a suitable optimality condition for the RKM, extensive simulations of time-optimal
normal regular extremals to the desired configurations ¢z € Qg (9.12) were performed and
simulation data on the end time 7!°" and the minimal number of cusps n was analyzed.
According to these results, most desired configurations ¢; can be reached by normal regular
extremals. For the minimal number of cusps, n7"(¢s) < 2 holds. By Theorem 9.5.1, for
most desired configurations, normal regular extremals with fewer cusps have shorter end times.
Based on the theorem, the necessary optimality condition 9.5.2 on the number of cusps was
obtained. By this condition, normal regular extremals to a desired configuration ¢, can only
be time-optimal if they have the minimal number of cusps n]*. This condition can be used
to terminate the time-optimal control 7.3.2, as a solution which satisfies this condition gives
a good approximation of a time-optimal solution for most ¢g4. According to simulations, for
the majority of desired configurations ¢4, solutions which satisfy condition 9.5.2 are in fact
time-optimal solutions. For the desired configurations qq € @4, the mean value of the resultant
quality factor k = 7% /7" is 1.029. That is, on average, the end times of the solutions are only
2.9 % larger than those of time-optimal normal regular extremals.

Simulation data on time-optimal normal singular extremals was given and compared to the
results on time-optimal normal regular extremals. In the simulations, all desired configurations
qq not reachable by normal regular extremals can be reached by normal singular extremal.
Some configurations g4 can be reached by both normal regular and normal singular extremals.
For all of these configurations, normal regular extremals give equal or shorter end times than
normal singular ones.

All in all, most desired configurations g4 can be reached by normal regular extremals, the
remaining configurations are reachable by normal singular extremals, and some configurations
can be reached by both. For the latter desired configurations gy, normal regular extremals
give equal or shorter end times. Most normal regular extremals which satisfy the necessary
optimality condition 9.5.2 are time-optimal. On average, the end times of extremals satisfying
the condition are only 2.9 % larger than end times of time-optimal normal regular extremals.
Thus, the necessary optimality condition guarantees a good approximation of time-optimal
solutions of the RKM for most desired configurations g4. Hence, it can be used as condition to
terminate the time-optimal control 7.3.2.



10 Conclusion

In this thesis, several aspects of time-optimal control of the BSR have been addressed. At the
end, a summary of the original contributions and an overview of future work are given.

10.1 Summary

The main new contributions of this thesis are as follows:

e Modeling and analysis of the BSR with independently steerable axles. The
FKM 5.0.1 and RKM 5.0.2 of the BSR were derived and studied in Chapter 5. Based on
the kinematics of the bicycle model and its velocity constraint (5.10), the FKM 5.0.1 of the
BSR was obtained. By using the steering angles ¢ = (¢, ¢,) as input variables instead
of state variables, the RKM resulted. Controllability of the two models was proved by
Theorem 5.3.1 and 5.3.2, and it was shown by Corollary 5.3.3 that the constraint (5.10)
is completely nonholonomic. Properties of the RKM relevant for time-optimal control
were analyzed, including its absolute translational velocity, minimal turning radius, and
representation as left-invariant control system on SFE(2). In contrast to the studies on the
RKM in [11, 78, 97, 125] where the rear steering angle is a function of the front steering,
all findings in this thesis apply to the RKM with independently steerable axles.

o Extremals for time-optimal control. In Chapter 6, the extremals for time-optimal
control of the RKM were analyzed, and the existence of time-optimal solutions was shown.
The necessary optimality conditions of the Maximum Principle were stated in Theorem
6.1.1, followed by the analytical maximization of the Hamiltonian function in Theorem
6.1.3 and 6.1.4. The analytical maximization reveals essential properties of the extremals
and allows to simulate them at low computational cost. The extremals of the RKM
were classified into normal, abnormal, regular, and singular extremals, and the normal
regular and normal singular extremals relevant for time-optimal control of the RKM were
analyzed. In particular, the types S, M, and P of normal regular extremals were defined,
and properties of normal regular and normal singular extremals were given by Lemma
6.4.3 and 6.5.1. Simulation data on the extremals was presented and discussed. The
results of Chapter 6 are original contributions, as there is no published work on extremals
for time-optimal control of the BSR.

e Optimality of the extremals. Optimality results on normal regular and normal sin-
gular extremals for time-optimal control of the RKM were presented in Chapter 9. In
particular, the necessary optimality condition 9.5.2 was given which arises from Theorem
9.5.1. According to the theorem, for most desired configurations ¢4, normal regular ex-
tremals with fewer cusps have shorter end times. The optimality condition 9.5.2 requires
that a normal regular extremal to a desired configuration ¢4 has the minimal number of
cusps n.*', which is the number of cusps of a time-optimal normal regular extremal to
qq- Condition 9.5.2 is a necessary optimality condition, as for most configurations g,
only normal regular extremals with minimal number of cusps can be time-optimal. In
fact, normal regular extremals which meet the optimality condition provide time-optimal
solutions for the majority of desired configurations. On average, the end times of solu-
tions which satisfy the necessary optimality condition are only 2.9 % larger than the end
times of time-optimal normal regular extremals. Thus, they give good approximations of
time-optimal solutions. These optimality results are new contributions for the BSR, as
there are no published findings on time-optimal solutions for this robot.
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10.2 Future work

Many directions of work arise from the thesis. The following aspects are worth consideration:

e Further study of the time-optimal control problem for the RKM. For time-
optimal control of the RKM, many open issues remain. In this thesis, the driving input
v is the longitudinal velocity instead of the instantaneous velocity uc,, of the center of
mass, see Section 5.2.3. As the absolute translational velocity |v| given by (5.18) is not
constant, time-optimal solutions of the RKM are in general no shortest paths. The effect
of using v instead of wuc,, should be analyzed. As discussed in Section 6.6, no closed-
form solutions of normal regular extremals of type M and P could be derived. Such
closed-form representations would be valuable for path planning and optimality analysis.
In addition, the sets bd Ry (go) of configurations reachable from ¢y by normal regular
extremals within time T' could be described. In Figure 9.5, solutions with nl"(g¢q) = 2
only exist for configurations gg with 4 = 0, but not for |64] > F. Thus, it is interesting
to study solutions to configurations with small |#4|. The configurations gg with small
|04| and |z4| for which Theorem 9.5.1 does not hold should be considered. Finally, the
singular extremals should be analyzed further.

e Time-optimal control of other models of the BSR. Time-optimal control can be
studied for other models than the RKM. Instead of Ly = L, = 3, distances Ly # L,
can be considered. Likewise, instead of ¢ = 7, other maximal steering angles 0 < ¢ < &
can be used. As discussed in Chapter 6, a more complicated structure of the extremals
is expected then. Time-optimal control can be addressed for the FKM. For bounded
steering angles (¢, ;) which are state variables of the FKM, the Maximum Principle for
control systems with state constraints has to be applied. For references to this Maximum
Principle, see [43]. Moreover, a reduced kinematic model with acceleration input and
bounded velocity can be studied, obtained from the RKM for the longitudinal acceleration
a = v as driving input. The resultant model with state z = (¢, v) is

[g]z{gw{)’@}w{ﬂa. (10.1)

Bounded velocities v are ensured by a state constraint. Model (10.1) is more realistic
than the RKM, as it does not permit discontinuous velocities. For time-optimal control of
system (10.1), cusps play an important role, as reversals of the driving direction contribute
considerably to the end time of a solution due to acceleration and deceleration phases.

e Framework for time-optimal control of nonholonomic systems. Our approach
for time-optimal control is a first step to a framework for time-optimal control of nonholo-
nomic systems. Starting point is a reduced kinematic model for a system with directly
steerable axles or rudders. Such a model makes sense if the dynamics of the axles or rud-
ders is much faster than that of the system in position and orientation. Simplifications like
in Section 7.1 can be applied if the system is left-invariant on SO(n) or SE(n). Besides
wheeled mobile robots, the control can be used e.g. for underwater vehicles which are
left-invariant on SE(3) and have directly steerable rudders for roll, pitch, and yaw. For
references to optimal control of underwater vehicles, see [28, 29, 30, 31, 32]. To implement
the time-optimal control 7.3.2 to a specific problem, the equations of the control system,
the adjoint equation, and the extremal inputs are required. The parameters of Table 7.2
have to be set to adjust the algorithm for time-optimal control, including a parameteriza-
tion of the search space A,. Finally, optimality conditions are needed to terminate the
iterated path planning when a near time-optimal solution is found. To obtain a general
framework for time-optimal control of nonholonomic systems, sets of candidates for the
parameterization of the search space A, and for the optimality conditions are required.
Elements from these sets can be chosen to tailor the approach to the problem at hand.
This way, a versatile tool for optimal control of nonholonomic systems would arise.



A Listings

In the following, listings are given for Algorithm 7.1 which implements the path planning
7.2.6 and Algorithm 7.2 which implements the time-optimal control 7.3.2. In the listings, the
algorithms are written in MATLAB-like code. For convenience and in distinction from real
MATLAB code, the original names of the objects like 2y and ¢, are used.

A.1 Algorithm for path planning

The algorithm for the path planning 7.2.6 is given as MATLAB function pathplanning in
Listing A.1. The parameters of the algorithm are the initial and desired state xy and g4,
the tolerance ¢,, a parameter set A to represent the search space A,,, the interval At for
the discretization of I = [0,7], the final time T of I, and the maximal number of simulated
extremals for each optimization and the path planning, n%? and nZ] . Here, At > 0 and
T = n, At holds with n, € N5o. The algorithm returns the initial condition A\j” and the
end time 7 which solve the path planning problem as well as the number nf’ of simulated
extremals.

The function pathplanning consists of the definition of global variables, the initialization,
the loop for path planning, and the assignment of output variables. The global variables
comprise the end time t™, the number nk? of simulated extremals for the optimization, and
the flags SC and EC1. The flag SC (for Solution Condition) indicates whether condition (7.11)
for a solution to the path planning problem is satisfied. The flags EC1 and EC2 represent the
exit conditions EC1 and EC2. The global variables are used to exchange data with the function
deviation described below which can only return the value of the deviation d()\g) directly.
For initialization, the counter nZ’ for the total number of simulated extremals for the path
planning is set to zero, the flags SC and EC2 are initialized to false, and the output variables
AJT and T are set to [], i.e., they are defined, but no values are assigned.

The loop for path planning is executed until flag SC or EC2 is true. Flag SC is false as
long as the path planning problem is not solved, i.e., condition (7.11) is not true. Flag EC2
is false as long as the number nZ] of simulated extremals is less than nL7 . In the loop,
a random starting point A§” in the search space A,, represented by the parameter set A is
generated by the function random not detailed here. Then, the minimization of d as in (7.10)
is performed by calling the local optimization method opt. The flag EC1, which is set to true
in function deviation if the number nL? of extremals for the local optimization is greater or
equal to nLO , is initialized to false, and n. is set to zero. The local optimization is initialized
to A§F. Then, it minimizes d over Ao € A,, with d()\o) provided by deviation. The input
argument Qexit(SC||EC1) of opt represents a handler to a function exit which terminates the
optimization if SC or EC1 is true. The output of the optimization is the initial condition A{*
which gives the minimal value of d.

After the optimization, the number nZ” of simulated extremals for the path planning is
incremented by nL? . If nL” is greater or equal to ./ , EC2 is set to true. If SC is true as the
path planning problem is solved, the output variables A" and 7 are assigned. If SC is false, []
is returned for Aj¥ and 7 to indicate that no solution was found.

In Listing A.2, the function deviation is given. This function returns d()\g) for the mini-
mization (7.10). It consists of the definition of global variables, the computation of d()g), and
the assignment of global variables. The global variables are required as deviation can only
return the value of d()\g) directly, but not the variables t™, nt® |/ SC, and EC1 also required by

Sim?
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PP

Sim

LO PP )

function [X",7,nf’ | = pathplanning (zo,z4,c., A, At T, 050 AL
% global wvariables

global t™ ni? SC ECI;

% initialization

Nim = 03

SC = false; % condition DA\, t™) <e; not satisfied

EC2 = false; % nll <nll

= [

T =[]
% loop for path planning

while ((SC = false) & (EC2 = false))
AP = random(A);

Noim = 0;
EC1 = false; % ni2 < nt?

Sim Sim
AQY = opt(deviation (xg, x4, Ao, A, T, 052 ), A, A,Qexit (SC||EC1));
NGy = Mo T Mt
if (ng, >ng),)
EC2 = true;
end

end

% assignment of output variables
if (SC = true)

Ao = A

T =t"
end

Listing A.1: Function pathplanning for path planning.

the function pathplanning. For the computation of d()\g), the time vector
In = [t |ti =it i=0,...,np, np =T/t ]

is used which represents the discretized interval I = [0, 7. Besides the initial conditions z and
Ao, the time vector I is an input of the function extremal. The function returns the vector

ZE(IA) = [Q?z |1‘,’ = ZZ?(ti), t; € IA]

which represents the extremal state x at the times In. The function extremal not discussed
here in detail gives x(Ia) by numerical integration of the ordinary differential equations of
the control system and the adjoint equation driven by the extremal inputs. For this, the
differential equations are coded in extremal, and the maximization of the Hamiltonian function
is implemented. Based on x(Ix), the vector

D(IA) = [Dl |DZ = ||$(t1) —deH, t; € IA]

is generated which provides the deviation D as in (7.5) at the times Ian. From D(In), the
minimal element is chosen according to (7.6), and the index 4 of the corresponding element is
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returned. Then, ¢t is set to the element of In with index iy. By the MATLAB function min,
t™ = minT™ as in (7.8) is automatically true. The number n%2 of extremals is incremented
by one. If condition (7.11) holds, SC is set to true. If nL2 is greater or equal to n52 , EC1 is
set to true.

function d = deviation (zg,z4, Ao, A, T, 050
% global variables
global t™ n%? SC ECI;

% computation of d(\o)

In = 0:At:T;

x(In) = extremal(xg, Ao, In);

D(Ipn) = sqrt(sum((z(la) — za)."2));
[dia] = min(D(Ia));

% assignment of global wvariables
t"m = IA(Z'd);

ngp, = N, + 15
if (d<e,)

SC = true;
end

4 LO ~NLO
1 f (nSinz > nSim )

EC1 — true;
end

Listing A.2: Function deviation for the computation of d(\g).

A.2 Algorithm for time-optimal control

In Listing A.3, the algorithm for the time-optimal control 7.3.2 is given as MATLAB function
tocontrol. Its parameters include xo, x4, €2, At, A, and 75 which are also inputs of the
algorithm for path planning from Listing A.1, the final time T of the initial time horizon, and
the maximal number 2%, of simulated extremals for the time-optimal control. Here, T' = n; At
holds with ns € N5g. The output variables of the algorithm are the initial condition A and
the end time 7!° of a near time-optimal solution.

The function tocontrol consists of the initialization and the loop for time-optimal control.
For initialization, the counter n'  for the total number of simulated extremals for time-optimal
control is set to zero. The maximal number L7 of simulated extremals for the path planning
is initialized to 7% . The flag OC (for Optimality Condition) for the condition for near time-
optimality of the solution and the flag EC3 for exit condition EC3 are set to false. The final
time T of the time horizon I is set to 7. The output variables A and 7 are set to [].

The loop for time-optimal control is executed until flag OC or EC3 is true. The function
pathplanning is called, which returns the initial condition Aj” and the end time 7 if a solution
to the path planning problem was found, as well as the number nZ” of simulated extremals.
The number n'? = of simulated extremals for time-optimal control is incremented by nZ” . The
function optimality is called with the parameters xg, x4, A{", and 7 to check whether the
condition for near time-optimality holds. If this condition is satisfied, the flag OC is set to true.

If a solution to the path planning problem was found, then A§” from the function pathplanning
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function [\, 7"°] = tocontrol (zg,zq,e., A, At T, 0L, , N )

% initialization

ng,, = 0;

A = M

OC = false; % condition for mnear time—optimality not satisfied
EC3 = false; % n'9 <nl

T =T,

Ay =[]

o= [

% loop for time—optimal control

while ((OC = false) && (EC3 = false))

PP PP _ s ~NLO  APP .
[A)T,7,ntl | = pathplanning (xg, 24, A, ., At T, 05 AL );
nto — nto + nk? -

Sim Sim Sim )
OC = optimality (zo,zq, A{",7);
if (~isempty (A("))

to __ PP.
)\O - 70 >
Flo = 14
T =71 — At
~PP __ nto to .
nSiwn - nSi'm - nS'im7
end
s to ~to
if (nSinL > nSim)
EC3 = true;
end

end

Listing A.3: Function tocontrol for time-optimal control.

is not empty, i. e., it is unequal to []. In this case, A\[* and 7 are assigned to the output variables
Ay and 7', the final time T is set to 7 — At, and the maximal number 25" of simulated
extremals for the next run of the path planning is set to 212 —nf . If no is greater or equal
to n? | EC3 is set to true to exit the loop without further runs of the path planning.

If the loop for time-optimal control terminates due to flag OC, the solution (A, 7%°) is near
time-optimal. If the loop terminates due to flag EC3, then (A, 7°) is the best solution obtained
so far within n’? simulated extremals, or both variables A}’ and 7'° are [], indicating that no

solution was found.
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