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Zusammenfassung

Eine allgemeingiiltige Theorie fiir alle unterschiedlichen Arten von unkonventionellen
Supraleitern ist immer noch eine der ungelosten Kernfragen der Festkorperphysik.
Momentan ist es nicht einmal bewiesen, dass es iiberhaupt einen gemeinsamen
grundlegenden Mechanismus gibt, sondern es miissen vielleicht mehrere verschiedene
Ursachen fiir unkonventionelle Supraleitung beriicksichtigt werden. Der Einfluss der
Elektron-Phonon-Wechselwirkung ist dabei noch nicht abschlieBend geklart.

In dieser Dissertation wird ein rein elektronischer Paarungsmechanismus untersucht,
in welchem die Paarung durch Spin-Fluktuationen vermittelt wird, was nach dem
aktuellen Stand der Forschung auf dem Gebiet der unkonventionellen Supraleiter
am wahrscheinlichsten ist. Der Schwerpunkt liegt dabei auf der Bestimmung von
Material-unabhiingigen Eigenschaften der supraleitenden Phase. Diese konnen durch eine
Auswahl sehr unterschiedlicher Systeme herausgearbeitet werden. Eine Untersuchung
der Phasendiagramme gibt auBlerdem Auskunft dariiber, welche konkurrierenden
Quantenfluktuationen den supraleitenden Zustand abschwichen oder verstirken.

Fiir diese Analyse von sehr unterschiedlichen supraleitenden Materialien ist der Einsatz
einer einzelnen numerischen Losungsmethode unzureichend. Fiir diese Dissertation ist
dies aber kein Nachteil, sondern vielmehr ein groer Vorteil, da der Einsatz verschiedener
Techniken die Abhéngigkeit der Ergebnisse von der verwendeten Numerik reduziert und
dadurch der grundlegende Mechanismus besser untersucht werden kann.

Im speziellen werden in dieser Dissertation die Kuprate mit der Variationellen
Clusterndherung ausgewertet, weil die Elektronen hier eine starke Wechselwirkung
untereinander besitzen.  Besonders die Frage eines moglichen “Klebstoffs” fiir
die Cooper-Paare wird ausfiihrlich diskutiert, auch mit einer Unterscheidung in
retardierte und nicht-retardierte Betrige. Den Kupraten werden das Kobaltat Na,CoO;
(NaCoO) sowie Graphen gegeniibergestellt. Diese Materialien sind jedoch schwach
korrelierte Systeme, so dass hier die Funkionelle Renormierungsgruppe als numerisches
Grundgeriist dient. Die Ergebnisse sind reichhaltige Phasendiagramme mit vielen
verschiedenen langreichweitigen Ordnungen, wie zum Beispiel d+id-wellenartige
Supraleitung. Diese bricht die Zeitumkehr-Symmetrie und besitzt eine vollstindige
Bandliicke, welche im Falle von NaCoO jedoch eine stark Dotierungs-abhéngige
Anisotropie aufweist. Als letztes wird das Kagome-Gitter allgemein diskutiert, ohne ein
konkretes Material zu beschreiben. Hier hat eine destruktive Interferenz zwischen den
Elektronen auf verschiedenen Untergittern drastische Auswirkungen auf die Instabilitdten
der Fermi-Fliche, so dass die iibliche Spin-Dichte-Welle und die damit verbundene
d+id-wellenartige Supraleitung unterdriickt werden. Dadurch treten ungewohnliche Spin-
und Ladungsdichte-Ordnungen sowie eine nematische Pomeranchuck Instabilitét hervor.

Zusammengefasst bietet diese Dissertation einen Einblick in unterschiedliche
Materialklassen von unkonventionellen Supraleitern. Dadurch wird es moglich, die
Material-spezifischen Eigenschaften von den universellen zu trennen.

Die Ergebnisse wurden in Refs. [1-5] veroffentlicht.



Abstract

A general theory for all classes of unconventional superconductors is still one of the
unsolved key issues in condensed-matter physics. Actually, it is not yet fully settled
if there is a common underlying pairing mechanism. Instead, it might be possible that
several distinct sources for unconventional (not phonon-mediated) superconductivity have
to be considered, or an electron-phonon interaction is not negligible.

The focus of this thesis is on the most probable mechanism for the formation of
Cooper pairs in unconventional superconductors, namely a strictly electronic one where
spin fluctuations are the mediators. Studying different superconductors in this thesis,
the emphasis is put on material-independent features of the pairing mechanism. In
addition, the investigation of the phase diagrams enables a view on the “vicinity” of
superconductivity. Thus, it is possible to clarify which competing quantum fluctuations
enhance or weaken the propensity for a superconducting state.

The broad range of superconducting materials requires the use of more than one
numerical technique to study an appropriate microscopic description. This is not a
problem but a big advantage because this facilitates the approach-independent description
of common underlying physics.

For this evaluation, the strongly correlated cuprates are simulated with the variational
cluster approach. Especially the question of a “pairing glue” is taken into consideration.
Furthermore, it is possible to distinguish between retarded and non-retarded contributions
to the gap function. The cuprates are confronted with the cobaltate Na,CoO, (NaCoO)
and graphene. These weakly correlated materials are investigated with the functional
renormalization group (fRG) and reveal a comprehensive phase diagram, including a
d+id-wave superconductivity, which breaks time-reversal symmetry. The corresponding
gap function is nodeless, but for NaCoO, it features a doping-dependent anisotropy.
In addition, some general considerations on the kagome lattice are completing the
discussion, where a “sublattice interference” dramatically affects the Fermi-surface
instabilities, suppressing the usual spin-density wave and d+id-wave superconductivity.
Thereby, some different fascinating charge and bond orders as well as a nematic are
observable.

In short, this thesis provides an insight to distinct classes of unconventional
superconductors with appropriate simulation techniques. This facilitates to separate the
material specific properties from the universal ones.

The results of this thesis are published in Refs. [[1-5].
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Challenges in Unconventional
Superconductivity

Until the discovery of cuprate superconductors, the underlying physics of
superconductivity had been considered as clarified: In the 1950s, L.N. Cooper
identified the charge carriers of the superconducting current as a pair of two electrons
with opposite momentum and spin, subsequently called Cooper pairs [6]. Together
with J. Bardeen and J.R. Schrieffer, he suggested that these pairs are formed due to an
attractive force induced by phonons, i.e. vibrations of the ionic lattice (BCS theory,
Ref. [7]).

High-7,. Superconductivity in Cuprates

However, in 1986, J.G. Bednorz and K.A. Miiller discovered superconductivity in
the exotic compound La;_,Ba,CuO4 [8]. That was an exciting observation because
La;_xBa,CuOy4 is not a metal and its transition temperature is 7, ~ 30K, nearly 10°
higher than the old record has been (Fig. [I.I). Indeed, the transition temperatures of
superconductors in this new class are so high that they can not be explained by the
phonon-mediated pairing of electrons to Cooper pairs. Therefore, they were labeled as
“unconventional” superconductors. In the following years, other cuprates with transition
temperatures over 100K were discovered [9].

The cuprates typically consist of two-dimensional CuO-layers, separated by layers
containing transition metals like lanthanum, barium and strontium. The coupling
between the CuO-layers is very weak compared to the coupling within these layers.
Furthermore, the superconducting current flows only parallel to these layers, while the
other constituents stabilize the lattice structure but do not contribute to bands near
the Fermi surface (FS). Hence, in a good approximation, cuprates can be described
by two-dimensional lattice models. During the last 25 years, a large variety of
experiments were performed on cuprates, e.g. angle-resolved photoemission spectroscopy
(ARPES) [11,/12]], Raman spectroscopy [13,(14]], SQUID interferometry [15] and neutron
scattering [16]. Thus, the physical properties of cuprates are well examined. A generic
phase diagram is plotted in Fig. [I.2] including the insulating state in the undoped parent
compound, which is a common feature of all cuprate superconductors [17]. Only with
electron or hole doping and a sufficiently low temperature, a phase transition to a
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Figure 1.1: Timeline of the records for transition temperatures in various superconducting
material classes [10].

superconducting state takes place. Here, the intermediate layers play an important role as
electron donators or acceptors. The band structure of the cuprates, which is measurable
via ARPES, reveals that only one band intersects the FS, which is dominated by the
d2_,2-orbitals of the copper atoms. Hence, in a first approximation, it is possible to
create an effective one-band model which neglects all other bands but reproduces the
“correct” FS detected by ARPES. In contrast to the conventional superconductors with
their constant (s-wave) gap, all cuprates have a non-uniform, i.e. strongly %—dependent,
gap at the Fermi energy, which even features “nodes” [18].

In detail, the undoped parent compounds are insulators, featuring an antiferromagnetic
spin order. This Néel state robustly persists if the number of electrons per unit cell is
increased [19], so superconductivity appears only in a narrow doping regime. On the
other side, if the compound is hole doped, the antiferromagnetic configuration becomes
soon less stable and, hence, superconductivity dominates over a wider doping regime.
This asymmetry between electron and hole doping is an outstanding feature of the generic
phase diagram (Fig. [I.2)). In general, the electron-doped compounds are less investigated
but gained some additional interest over the recent years [20,21]. Another distinctive
phenomenon appears for both hole and electron doping below a critical temperature
T*, where the spectral weight at the FS is drastically decreased. This reduction is
momentum-dependent, leaving parts of the FS around the diagonal of the Brillouin
zone ungapped. These “Fermi arcs” appear in the underdoped cuprates below T* but
above T.. Here, due to the high temperature, the pairing field creates only non-coherent
phase fluctuations, opening a partial gap without a superconducting current [22,23]]. But
there is still an ongoing discussion whether this “pseudogap” phase is a precursor of the
superconducting phase [24]] or a complete new electronic phase [25,26].

Although the classical BCS theory with its phonon-mediated pairing fails to describe
the superconductivity in cuprates, the replacement of 160 by 80 in YBa,Cu,0;_; clearly
decreases T; in the underdoped regime, while this effect is minimal at optimal doping. [17,
31.32]], However, there are some proposals how a non-phononic but electronic formalism
can explain this “isotope effect” [33,34].

Since the discovery of iron-based superconductors by Y. Kamihara et al. in 2006 [35],

the focus of condensed-matter physicists has somewhat moved away from the cuprates,
although many open questions remain.
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Figure 1.2: Generic phase diagram for cuprate superconductors, adopted from phase diagrams
in Refs. [[12}21]]. The basic compounds are antiferromagnetic Mott insulators [[17]]. For both
electron- and hole-doped materials, the antiferromagnetic phase (AF) remains stable up to a
critical doping, where superconductivity (SC) appears. There is an asymmetry between electron
and hole doping, with a spin-glass phase (SG) only appearing in the latter case. The Néel
temperature Ty indicates the phase transition to the antiferromagnetic phase, while 7 is the
critical temperature for superconductivity. Below a temperature 7, the Fermi surface (FS)
remains ungapped only in parts around the diagonals of the Brillouin zone. This effect is
similar to the SC phase, but without the SC current. Hence, this phase is called “pseudogap”
and may be discussed as a precursor to the superconducting gap [27-30].

Novel Superconductors

In recent years, superconductivity has been discovered in many classes of materials,
e.g. the iron pnictides [35,36]], the cobaltates [37] and organic structures [38]. Also,
spin-triplet superconductivity has been measured in ruthenates [39] and predicted to
appear in doped graphene [40]. These very different systems have in common that their
superconductivity is considered as not phonon mediated. Hence, they are all labeled
unconventional superconductors, but a common underlying mechanism is still missing.

From the pool of novel superconductors, the iron pnictides have gained the most
attention over the last few years (for a review, see Ref. [41]). In contrast to the undoped
cuprates, the undoped pnictides are metals. However, their resistivity is very high, so their
classification in bad metals (weakly correlated) or bad insulators (strongly correlated)
is not obvious, but the former assumption is established [41]. In the undoped parent
compounds, most iron pnictides feature a stripe spin-density wave below Ty ~ 150K,
succeeding to (or even coinciding with) a structural phase transition [42]. The states in
the proximity of the Fermi energy are dominated by all 5 Fe;-orbitals [43}44], resulting
in four (e.g. LaOFeP) or five (e.g. LaOFeAs) pockets [45]/46], so the FS is much
more complicated than the cuprates one. Within the superconducting phase, the FS is
completely gapped, and the gap function changes sign only between the pockets (s*-wave
type) [47]. Recently, also a time-reversal symmetry-breaking state with s+id-wave pairing
symmetry has been proposed [48]].

Another candidate for a chiral, i.e. parity and time-reversal symmetry-breaking,
superconducting state is graphene [2]. The most exciting feature of graphene
is its two-dimensional nature because, until the discovery of graphene [49, |50],
two-dimensional crystals had been classified as unstable [51,52]. For graphene, the
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evasion from this conflict is the forming of ripples to avoid a strict two-dimensionality [53|
54|]. Graphene features very interesting properties like an FS consisting of only six
points, called Dirac points, at half filling. Furthermore, the low-energy excitations have
a linear dispersion (“Dirac cones”) and are similar to the massless Fermions in quantum
electrodynamics (QED) but with much smaller velocity [55,56]. Due to this resemblance,
the electrons around the Fermi level got the attribute “relativistic”. A detailed review of
graphene’s electronic properties is given by A.H. Castro Neto et al. in Ref. [57]. Up to
now, superconductivity has not yet been detected in graphene yet.

Furthermore, if the cobaltate Nap3CoO; is immersed with water, a superconducting
phase can be measured [58]. The intercalation with water is volatile, so experiments are
complicated. As a result, there is an evidence for a singlet pairing state [59], which is
fully gapped by symmetry (s-wave or d+id-wave type). However, also an anisotropic
superconducting gap function with nodes was reported [60,61]. A solution for this
contradiction is still in discussion.

A common feature of these unconventional superconductors are their two-dimensional
layers, where Cooper pairs are formed. Also, the proximity to a magnetic instability is
conspicuous and, consequently, the evaluation of competing phases is necessary.

Many-Body Physics

The interplay between the kinetic energy of electrons and their Coulomb interaction
plays a crucial role in condensed-matter physics but is difficult to resolve. In general,
it is impossible to solve both kinetic motion and interaction analytically for an arbitrary
system of electrons in an ionic lattice, so perturbation theory is used. One ansatz is to
solve only the kinetic part and, afterwards, introduce the interaction as a perturbation.
This general approximation is reasonable for systems with weakly correlated electrons.
The numerical implementation of the functional renormalization group used in this thesis
(fRG, see Sec. for details) is based on this idea. In contrast, the approach for
strongly correlated electrons includes the full interaction but a limited electron motion.
Thereafter, the full kinetic motion is restored as a perturbation. A realization of this
concept is the variational cluster approach (VCA, see Sec. [2.4] for details). To decide
which approximation is appropriate, the bandwidth of the electronic band structure around
the Fermi level (as a degree of kinetic energy) is compared to the effective - i.e. screened
- Coulomb interaction. As a rough estimate, if the bandwidth is larger, it is a system with
weak coupling, but if the interaction is larger, the system is strongly correlated.

There are a plethora of methods to investigate condensed-matter physics on a theoretical
level, including both analytical and numerical methods. All have advantages and
disadvantages, hence the choice of the method is crucial. Additionally, new concepts
and approaches are developed year after year.

After the formulation of the functional renormalization-group (fRG, presented in
Sec. [2.6)), it was natural to test this new technique with the one-band Hubbard model for
the cuprates. C. Honerkamp et al. published results in Ref. [[62]. Here, a simple g-ology
model was used to set the starting value for the fRG-flow (see App. [A.T]for details). The
result was a phase diagram including three regimes with spin-density wave (low hole
doping), insulating spin liquid (intermediate doping) and d-wave superconductivity (high
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doping). This doping dependence was explained with the decreasing condition of nesting
at the FS. But (undoped) cuprates are Mott insulators [[17]], thus the interaction between
the electrons is not negligible. In contrast, the fRG is appropriate in the weak-coupling
scenario of the Fermi liquid. Only for strongly overdoped cuprates, the screening of the
interaction is sufficient to apply the approximation of a Fermi liquid [63]. Alternatively,
in the infinite coupling limit at half filling, the spin physics are available through the
pseudofermion functional renormalization group (PFFRG) [|64}65].

This leads to the conclusion that the cuprates are a nice technical test scenario for the
fRG but not the optimal field of application. In this thesis, both cuprates and fRG are
discussed but not in combination with each other.

For the cuprates, a strong-coupling approximation is needed to handle this strongly
correlated material. The VCA is a well recognized cluster technique that provides a
route to Mott physics. In addition to a simple one-band model, which includes only the
d,2_2-orbital of the copper atoms, a more intricate three-band model is considered. Here,
the p.- and py-orbitals of oxygen constituents are added. These additional bands change
the undoped compound from a Mott insulator to a charge-transfer insulator. The effects
of this transformation are discussed under the aspect of a common “pairing glue”. On
the other hand, the fRG works fine for weakly correlated systems. Hence, it is a suitable
technique for cobaltates and graphene because in these systems, the electron-electron
interaction is relatively small.

A General Theory for High-7. Superconductivity?

Although the record for a measured transition temperature with 138K in
Hgo s Tlp.2BazxCaCuzOy [66] for ambient pressure and 155K in HgBayCayCuz O, [9)]
for high pressure has been holding for nearly 20 years, high-7. superconductivity
is still one of the key issues in condensed-matter physics. Even 25 years after the
discovery of cuprate high-7;. superconductors, a complete theory is still missing [67].
It is accepted that the superconducting current is carried by Cooper pairs, but the high
transition temperatures preclude a strictly phonon-mediated pairing. Consequently,
another mechanism is needed to form Cooper pairs in high-7; superconductors. With
the iron pnictides, the cobaltates, the ruthenates and some organic structures, the field
of materials with unconventional superconducting phases has been further increased in
recent years, which do not feature a phonon-mediated pairing mechanism. However, a
common underlying mechanism is still unknown.

The important task is to determine which properties of these different classes are
material specific and which ones are generic for unconventional superconductors. For
example, a spin-fluctuation mediated pairing is proposed to be the common underlying
mechanism (for a review on this topic, see Ref. [68]]). With more information about
the pairing mechanism, it may be possible to define the optimal requirements for
superconducting materials. After this, the experimental physicists have to create samples
which fulfill the requirements as good as possible. This route might lead to increased
transition temperatures in each class of materials and perhaps to a new overall record.
If the mechanism of unconventional superconductivity is revealed, the search for new
high-7,. superconducting compounds can be focused. Even more, the question about
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the Holy Grail of condensed-matter physics can be answered: “Do room-temperature
superconductors exist?”’

The purpose and key issue of this thesis is the research on an electronic
pairing mechanism:

The formation of Cooper pairs is mediated by the electron-electron Coulomb
interaction on a static background lattice. By the selection of very different
material classes (cuprates, cobaltates, graphene and a generic kagome lattice) and
the simulation with appropriate techniques (VCA and fRG), the material specific
properties can be separated from the universal ones.

Structure of this Thesis

This thesis is organized as follows:

In Chap. 2] the theoretical background is given to understand the concepts of this thesis.
This includes an introduction to the implementation of the second quantization in lattice
systems in Secs. After this, the framework is built for the two major techniques
within this thesis, namely the variational cluster approximation (VCA) in Sec.[2.4]and
the functional renormalization group (fRG) in Sec. In between these blocks, in
Sec. [2.5] the analytical renormalization group (aRG) is introduced, which is a simplified
version of the fRG, restricted to superconducting instabilities at infinitesimal couplings.

After the theoretical part, the VCA is applied to the cuprate high-T. superconductors,
which are strongly correlated systems (Chap. [3). Here, the topic is the “pairing glue” of
the Cooper pairs. In a detailed discussion, the three-band model (doped charge-transfer
insulator) is opposed to the simplified one-band model (doped Mott insulator). The
similarities and differences of these two models are emphasized. Also, the one-band
model is challenged as a justified simplification.

The cobaltate NayCoO; - yH,O (NaCoO) is investigated with the fRG in Chap. {4}
It features an effective triangular lattice with three hybridized orbitals per site. The
phase diagram reveals (triplet) f-wave superconductivity as well as a chiral d+id-wave
superconductivity in competition with a spin-density wave order.  This strong
competition creates an anisotropy of the d+id-wave form factors. Consequently, the
effects on the gap function are striking.

In Chap. 3| the fRG is applied to graphene, the two-dimensional derivate of carbon.
Recently, graphene was doped away from half filling to a van Hove singularity, where
a spin-density order and chiral d+id-wave superconductivity are competing. The
winner of this competition is still in discussion because it depends on the parameters
for long-range hoppings as well as the screening of the Coulomb potential.

The last topic is the kagome lattice. Here, no real physical material is simulated,
but a more generic discussion is given about the competing orders in this particular
lattice. Beginning in Chap. [6] the kagome lattice is investigated with aRG. This simple
method regards only the spin-singlet superconductivity, but this is sufficient to show the
non-intuitive effects of sublattice interference.

This consideration is repeated with the more elaborate fRG in Chap. [7, where all
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competing orders are considered. The result is that the kagome lattice shows an
unexpected behavior not only in the superconducting channel, but also some exotic
long-range orders appear.

This thesis closes with an overview and outlook in Chap. [§]






Models and Methodology

In this chapter, I focus on the route to the two major techniques which are used
within this thesis, namely the variational cluster approach (VCA) and the functional
renormalization group (fRG).

For the basic concepts of many-particle physics, I recommend some common
textbooks [69-79]]. Especially the chapters about Green’s functions, perturbation theory,
functional-integral formalism and Feynman diagrams are advisable.

At the beginning, I introduce the tight-binding Hubbard model as prototype of
interacting models in a lattice. Subsequently, some basic two-dimensional lattice
structures are presented which set the base for the condensed-matter physics described
in the next chapters. 1 also explain the symmetry groups of these lattices and their
analytical form factors. The VCA is explicitly deduced in Sec. 2.4 After this, I
give a short introduction to the analytical renormalization group (aRG), which is the
infinitesimal-coupling limit of the fRG, presented in Sec.

Together, these tools provide a comprehensive gateway to both the strong- and
weak-coupling limits of many-body physics.

2.1 Hubbard Model

A very simple model for the interplay between kinetic energy and Coulomb interaction,
which was introduced by J. Hubbard in 1963 [80], features electrons which are
strongly located at an atomic core but are allowed to “tunnel” instantaneously to
a nearest-neighbor core, commonly referred as hopping between lattice sites. A
straightforward simplification is to concentrate on electronic bands at or near the
Fermi surface (FS) because these bands will dominate the electronic features at low
temperatures.

The tight-binding model in its simplest version includes only one orbital per site. Its
Hamiltonian reeds

A==t Y Y (htjo+He) +U YL iy Y (i + i) -
(i,j) © i i

[ /' \\ (.
-~ -~

~
kinetic energy interaction filling

2.1)




10 CHAPTER 2: Models and Methodology

A

Here, ¢;; creates an electron with spin ¢ at site i. The occupation number is 7z =

A A

CisCis» and the chemical potential u is the amount of energy needed to remove a single
electron from the system. At 7 = OK, it is identical to the Fermi energy. Hence, the
filling of the system is depending on the chemical potential with n = —%—Q, where
is the grand potential. In this thesis, I use the notation for the filling » as number of
occupied states divided by all possible states. This ensures that half filling is always
at n = 0.5, independently of the number of included bands or considered spins. For
u= % a bipartite lattice features one electron per unit cell, hence the system is half
filled. Moreover, the parameter ¢ represents the hopping and thereby the kinetic energy. It
corresponds to the overlap integral between atomic orbitals at adjacent sites. The hopping
is restricted to nearest neighbors, abbreviated by (i, j), thus hoppings to next-nearest
neighbors and larger distances are neglected. This is justified by the exponential decline
of overlap integrals with increasing distance. The symbol H.c. indicates the Hermitian
conjugate of the previous operator. In Eq. this corresponds to a back-hopping of
particles. Finally, the on-site Coulomb interaction is represented by the parameter U.
The reduction to a strictly local interaction is reasonable for a strong screening because
the long-range Coulomb potential decreases with ~ %, i.e. the Yukawa potential.
Furthermore, possible screening-induced bandwidth corrections [81] are negligible for
a first approximation.

For U — 0, the Hamiltonian represents a free system and can be transformed to
momentum space by a Fourier transform. This yields the energy dispersion, depending
on the background lattice. Some basic types of two-dimensional lattices are presented in
the next section, including their energy dispersion. With increasing U, the model is in
the weak-coupling (% < 1), intermediate-coupling (% ~ 1) or strong-coupling (% > 1)
regime, respectively. A special case is U — oo, where double occupied sites are extremely
energetically unfavorable and hence avoided. At half filling, every site is populated with
exactly one electron and, consequently, only virtual hopping processes are possiblze. This
5.

The basic Hubbard model has to be expanded if a more accurate description of a
material is needed. These expansions may include long-range hoppings, long-range
Coulomb interactions, multiorbital models or spin operators. Thus, one must have in mind
that a simple model reduces the analytical or numerical effort needed for solving, but it
can be an oversimplification which does not include all relevant physics. For example,
in Chap. [3] T will discuss whether a three-band model is needed for high-7;. cuprates or a
one-band model is already sufficient.

limit is called Heisenberg model, featuring a new magnetic interaction scale J ~

2.2 Two-dimensional Lattices

In a first approximation, the background ions are neglected because the most physical
properties of a condensed-matter system are founded on electronic processes. The charge
neutrality is fulfilled by a uniformly distributed positive background. For this picture, the
atomic cores are smeared over the whole space. This “jellium” model includes quantum
fluctuations within the electron-electron coupling but fails if the electron-ion interaction
is not negligible, so it is the perfect model for metals. For further details, see Ref. [76].
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Figure 2.1: (a) The quadratic lattice with one site per unit cell. (b) Band dispersion for t; = 1.0,
1 =0.0 (green) and t; = 1.0, 1, = —0.3, u = —0.7 (orange) between the high symmetry points
I'MXT'. (c) The corresponding density of states (DOS), with a van Hove singularity (VHS) for
each setting. (d) The resulting Fermi surface (FS) in the Brillouin zone contains either a hole
pocket around the I"-point or an electron pocket around the M-point, respectively. For the first
setting, the FS has a perfect nesting with Q = (m,m).

If the ionic background becomes crucial, the crystal structure of the condensed
matter has to be included in the theory framework. Certainly, real life matter is
three-dimensional, but a complete handling of all degrees of freedom may burst the
analytical and numerical effort. The reduction to two dimensions might be reasonable
in the following cases:

e The focus is on surface structures, e.g. Au on Ge(111) [82] or the Sn-induced
surface reconstruction on Si(111) [83].

e The crystal structure is anisotropic, so the essential physics act within
two-dimensional layers, e.g. the high-T, cuprates [84] and the (1111) class of the
iron pnictides [85].

e The topic is graphene, the alone real two-dimensional stuff known up to date [53,
S4].

Here, I will present the most commonly used two-dimensional lattice structures.

Quadratic Lattice

The simplest two-dimensional lattice includes a quadratic structure and is obtained if a
primitive, body-centered or face-centered cubic is cut in the (100) direction. Despite
its plainness, it is useful to discuss the generic features like the dispersion relation.
Concerning this, the kinetic part of the Hamiltonian in Eq. [2.1] has to be Fourier
transformed to momentum space. Then, the creation operator and its adjoint annihilation
operator read

A
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Applying these transformations to the hopping part of the Hamiltonian in Eq. 2.1} and
using some algebra,
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the creation and annihilation operators become diagonal in k witha prefactor € k), called
energy dispersion. The sum over nearest-neighbor connections ). was transformed to a
(i.j)
double sum over all sites and their nearest-neighbor sites } ). The lattice structure is
A
reflected in the relative position of the nearest neighbors, so this has to be adapted for
each lattice. For example, the quadratic lattice with lattice constant @ = 1 features four

nearest neighbors at
S 1 —1 0 0
= 10)-(0)-0)-(5)) o
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This yields

(2.5)
= —21 (cos (ky) +cos (ky)) .

The hopping to next-nearest neighbors can be analogously transformed, so the energy
dispersion for the quadratic lattice is extended to

€ (%) = —2t1 (cos (k) +cos (ky)) — 4tz (cos (ky) cos (ky)) —u , (2.6)

where #; and #, are the hopping integrals to the nearest neighbors and next-nearest
neighbors, respectively. The structure of the quadratic lattice is plotted in Fig. 2.1,
including notations for hopping-matrix elements and ranges of the Coulomb interaction.
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Figure 2.2: A simple depiction for the geometric spin frustration in the triangular lattice: At
half filling and a sufficiently large Coulomb repulsion, each site is occupied with exactly one
electron. If the exchange interaction is negligible, an energetically favorable state features
electrons with antiparallel spins on neighboring sites because this configuration allows virtual
hopping processes. For simplicity, the spin of the electrons is mapped to “up” or “down”,
respectively. This task is very easy to solve for the quadratic lattice but impossible for the
triangular one because, if the first two electrons are set (here on the red and green sites), the
third one is a problem.

It features only one site per unit cell. The energy dispersion (Eq. is plotted in
Fig. 2.1p for a simple setting with #{ = 1.0 and u = 0.0 (green line). If an additional
next-nearest-neighbor hopping is included (t; = 1.0, t, = —0.3, u = —0.7; orange line),
the result features a broken particle-hole symmetry. Here, the particle fillings are n = 0.5
and n = 0.48, respectively. The corresponding DOS are presented in Fig. 2.1k, where a
clear van Hove singularity (VHS) is visible for each setting. Finally, the FSs of these
two settings are compared in Fig. 2.1d. Without the next-nearest-neighbor hopping,
the FS (green line in Fig. 2.1d) features parallel parts, connected by a nesting vector
QN = (m,m). For particle excitations with this momentum transfer, there is a huge phase
space for possible processes. This has a significant effect on collective particle modes
with a non-zero ordering vector, e.g. the charge- and spin-density waves.

I will use this very simple model for the Cu-sites of cuprate superconductors in Chap.
There, I will also expand this model to three sites per unit cell, including the additional
degrees of freedom of the O-sites. While the one-band model is a Mott insulator at half
filling, the three-band model is a charge-transfer insulator at the corresponding filling.
By doping these compounds in a 7' = OK calculation, both become superconductors, but
reveal discrepancies in the high-energy excitations.

Triangular Lattice

Another simple arrangement of sites is the triangular lattice. This structure appears, for
example, if a basic cubic crystal is cut in the (111) direction or the body-centered cubic
crystal in the (110) direction.

In the quadratic lattice, the antiferromagnetic order of electrons is well-known [86].
There, the free energy of a system is minimized if two electrons have antiparallel spins on
neighboring sites because this configuration allows virtual hopping processes. Thus, they
will arrange themselves in a checkerboard pattern. In opposite, in the triangular lattice,
if two neighboring sites are fixed, they have a third neighbor in common which either
violates the optimal link to the first or to the second site (Fig.[2.2)). Thus, the lattice is in
a geometric spin frustration, and the antiferromagnetic order is suppressed. The system
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Figure 2.3: (a) The triangular lattice with one site per unit cell. (b) Band dispersion for #; = 1.0,
pu=—0.4 (green) and t; = 1.0, , = —0.3, u = 1.4 (orange) between the high symmetry points
I'KMT'. (c) The corresponding DOS. While #, = 0 has one VHS, for #; > 0 the weight is
redistributed to a second singularity at the bottom of the band. (d) The resulting FS in the
Brillouin zone (BZ) contains one hole pocket around the I'-point for the first setting. The second
parameter set is chosen to hit the Fermi energy at the VHS. At this limit, the FS undergoes a
topological transition from one hole to two electron pockets.

has to form another magnetic order, e.g. a 120° Néel order [87]. Analogously to Eq.[2.6]
The energy dispersion reads

e(k) =—21 (cos (ky) +2cos (%kx> cos (?I@))
—2n (cos (\/51@) +2cos (%kx) cos <?ky>>

The triangular lattice with hopping elements and interaction ranges is plotted in Fig.[2.3p.
The unit cell contains one site and has the form of a parallelogram. For #; = 0 and
u = —0.4, the energy dispersion is plotted with a green line in Fig.[2.3p. There is one VHS
in the DOS (Fig. 2.3k). The filling is n = 0.35. If an additional next-nearest-neighbor
hopping is implemented (1; = 1.0, r, = —0.3, u = 1.4, n = 0.65; orange line), the
singularity is considerably weakened. Its weight is redistributed to a second singularity,
which occurs because the bottom end of the band becomes vary flat. For u < uqiy =
2t1 + 31, the FS has a hole pocket around the I'-point. In contrast, for u > u.,i, it contains
two electron pockets, centered around the K- and K'-point. At u = u.,;;, these pockets get
in contact, marking a topological transition in the FS.

(2.7)

Within this thesis, an effective three-band model with three hybridized ions per unit cell
in a triangular superlattice is used to simulate the cobaltate NaCoO (Chap. [4).

Honeycomb Lattice

Motivated by the first separation of graphene by K.S. Novoselov et al. in 2005 [49,|50],
the honeycomb structure has gained a renaissance of attention. 60 years after the first
evaluation of the band structure [88], it was possible to measure the unique properties
of graphene, i.e. a two-dimensional allotrope of carbon, organized in a honeycomb-like
lattice structure. At half filling, the FS of graphene is reduced to six Dirac points (see
blue circles in Fig.[2.4). But in this thesis, the focus is on fillings around to the VHS.
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Figure 2.4: A calculated three-dimensional representation of the energy dispersion with #; = 1.
The upper band is green colored, the lower one red. The blue circles mark two of six contact
points of the Dirac cones, the others are not visible.

Here, the very high DOS combined with a very good nesting condition of the FS results
in strong interaction effects, although the scale of the interaction is small compared to the
bandwidth [89,90].

The honeycomb lattice consists of two sites per unit cell, resulting in a two-band energy
dispersion

2 3 3
€(k) ==x11,|3+2cos (\/gkxa> +4cos (%_ xa) cos (Ekya>

+n <2 cos <\/§kxa> +4cos <? xa) cos <§kya>> (2.8)

+13 \/3 +2cos <2x/§kxa> +4cos (\/gkxa> cos (3kya) ,

with the “4” before the first and third addend for the upper band and the “— for the lower
band, respectively. The hoppings {#;,t,#3} correspond to diverse neighbor distances,
as shown in Fig. 2.5h. The DOS has two singularities, which coincide with a perfect
nesting of the FS, as long as #3 and higher order hoppings are set to zero. The chemical
potential to hit this concurrence is u = =+¢| + 2f,. In Figs. @b-d, the band dispersion,
the DOS and the FS is plotted for two distinctive settings. For the first one (green),
alone #; =1 is included. To represent a longer ranged hopping, the second set (orange)
provides t; = 1,1, = —0.1,#3 = 0.01. The chemical potential is set to u = 0.8 and u = 1.4,
resulting in fillings with n = 0.57 and n = 0.75, respectively. The sublattice contributions
to the band dispersion are complex and vary around the BZ (the definition of sublattice
contributions is explained in detail for the kagome lattice in Sec. @), but the absolute
values of these sublattice weights around the orange pocket in Fig.[2.5d are constant, with
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Figure 2.5: (a) The honeycomb lattice with two sites per unit cell. (b) Band dispersion for
t;] =1.0,u=0.8 (green) and r; = 1.0, = —0.1, 13 = 0.01, u = 1.4 (orange) between the high
symmetry points 'KMT". (c¢) The corresponding DOS, with two van Hove singularities for each
setting. (d) The resulting FS in the BZ contains either one hole pocket around the I'-point or
two electron pockets around the K- and K’-point, respectively. The sublattice contributions to
the hole pocket (orange) are plotted in (e). These contributions are complex, so the absolute
value is depicted, which is constant. The complex phases differ within the BZ but have only a
minimal influence on the results.

both sublattices contributing equally to the FS (Fig. 2.5). Indeed, the complex phase
factors are k-dependent, but that feature had no effect on my calculations.

For both analytical RG (Sec. |2;5[) and functional RG (Sec. @), the interaction has to
be transformed to momentum space. The explicit calculation will be done for the more
complicated kagome lattice in Sec.[2.2] After a Fourier transform, the interaction in the
honeycomb lattice reads

—

V(K1,k2,k3) = Up Yty (k1) oy (K2) thy (R3) thyy Ry + K2 — K3)
mn

+ u (ei%ﬂ\/ﬁ% _,_ei%"—i\/i% +e—iqx)
2 n
<ty () 1, () st (R3) g (i + o — )
Ly (71413 otV oiar) (2.9)
2 n
Xy, (K )t (K2) g, (k3) gy (ky + Ky — K3)
9 _ 3D 4 y
+U> (cos (3 > \/52 ) +cos <\/§qy> +cos <3 > —l—\/§2 >>

X Zu;knn(iél) M:(nn(iéz) umn(ié3) umn(iél +7€2 _753)
mn
with gy := ki x — k3, gy := k1 y — k3, and the Bogoliubov-transform matrix element

Umn (K) for sublattice m and band n at vector k.
The honeycomb lattice will be the basis for the fRG calculations on graphene in Chap. [5
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Kagome Lattice

Another two-dimensional lattice considered within this thesis is the kagome lattice,
which features three sites per unit cell, and it is possible to decompose it into
three regular triangular sublattices.  This unusual structure is realized in some
exotic compounds, e.g. ZnCu3(OH )eCly (herbertsmithite) [91], SrCrg_,Gas1,O19 [92],
Pr3GasSiOy4 (langasite) [93] and BaNi3(OH),(VOyq4), (vesignieite) [94]. In this thesis,
the considerations are not adjusted to a special material but a general discussion about the
influence of this extraordinary lattice structure to many-body physics.

The kagome lattice features a triangular superlattice where each unit cell contains three
sites in a triangular arrangement (Fig. [2.6p). The nearest and next-nearest neighbors are
sites from a different sublattice, while the 3rd-nearest neighbors are sites from the same
sublattice again. The Hamiltonian reads

[:I =1 Z Z( lG ]G+H C. ) +U02nﬁnlj,+ ZZ”IG”]V +;UZan(7’ (210)
(i.j) ©

IJGV

where Al = cjoclc, and c denotes the electron creation operator of spin ¢ = {1,]}
at site i. The hopping is restrlcted to nearest neighbors, indicated by (i, j). The local
interaction is Uy, while the long-range interaction U, is implemented for U;, U, and
Us as an interaction between nearest neighbors, next-nearest neighbors or 3rd-nearest
neighbors, respectively. U; and U, connect different sublattices, while Uz connects sites
of the same sublattice. To obtain the band structure of the non-interacting system, the free
part of the Hamiltonian has to be transformed to momentum space. Consequently, the
lattice is divided in (translational invariant) unit cells, each containing three sites. This
results in a triangular superlattice with three sublattices. The new creation operator has

indices for (super)site, sublattice and spin:

At T _.%R’H‘ﬂm
i m w/—ZZ tynn (K) € % I . 2.11)
k" et ad

site Gublamce spin momentum band  spin

After the Fourier transform, the new creation operator has indices for momentum, band
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Figure 2.6: (a) The kagome lattice with three sites (a.,[3,y) per unit cell. Each sublattice (indicated
by blue/green/red circles) has a triangular structure. The nearest and next-nearest neighbors
are from a distinct sublattice. (b) Band dispersion for #; = 1.0, u = —0.2 between the high
symmetry points TKMTI". The third completely flat band is striking. (c) The corresponding
DOS, with two van Hove singularities and an additional singularity induced by the flat band. (d)
The resulting FS in the BZ. Here, the colors encode the sublattice contributions. (e) Sublattice
weights of the three sublattices at the FS.

and spin. The transformation of the non-interacting Hamiltonian follows
5 ~ ’\T ~
Ho = Zzztiajbciaccjbc
ijab ©
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The matrix U performs a Bogoliubov transform from a sublattice representation to a
band representation, with %—dependent matrix elements i, (75) The overlap integral 7, jj,
represents a hopping from sublattice b on site j to sublattice a on site i. After the Fourier
transform, the hopping is diagonal in the band operators, resulting in the one-particle
energy dispersion of the free system €, (%) For an alone nearest-neighbor hopping ¢,
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€ (E) can be calculated analytically:

e1(k) = -t — 1 \/ 3+ 2c0s (2k;) +2cos (kx + \/§ky> +2cos (kx - \/§ky)

; 2.13
e(k) = —11+1 \/ 3+ 2c0s (2ky) +2cos (kx + \/§ky> +2cos (kx - \/§ky) 2.13)
€3 (76)) =2h

The third band is totally flat with not k dependence. This is also conspicuous in the plot of
the dlspersmn relation (Fig. 2.6b). For next-nearest-neighbor hopping and higher orders,
en(k) is more complicated. In addition, only for a kagome Hubbard model with pure
next-nearest-neighbor hopping, the VHS in the DOS (Fig. [2.6c) and the perfect nesting
condition (Fig.[2.6d) coincide at the same particle filling.

Subsequently, the interaction part of the Hamiltonian has to be transformed to
momentum space. For Example, the nearest-neighbor Coulomb interaction can be
transformed by

N U R . )
HUI - 7122 Z ch-mﬁcj-nvcimgcinv
ZZ Z Zzums kl klce_lkl( l+rm)z ns(kZ) kzv _i%Z(ﬁi+?n)
m

nGVk k2

< Ltna) & e (o) Yo, (k) e, et ika (Ri-+75)

p— k4V
k3 k4

k3k4 NV
k1+k2 k3+k4
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ZZZ Z l/tms kl uﬂ\[s(kz) ms(k3) ug\[ (kl +k2_k3)
o,V ms N k1k2
k3

X e

xeiﬁm(%l+7$2—%3—(%1+%2—%3)) N(k1+k2 k3 kz) éj: éT A8
~ ~~ N ~~ - k1o kov k3(5 k1+k2 k3V
1 iR, (k| —K3) - -
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== Y YV Y Faclhs —ks) uhg (k) i (Ka) g (ks) g, (ki + K2 — K3)

At AT
XCs Co
kio kv k3(5 k1+k2 k3V

(2.14)

with

(I%Vn = ;%?m”vw (2.15)
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and A indicating nearest neighbors. The long-range prefactor Fmﬂ[(%l — 753) depends on
the sublattice and the nearest neighbors to this:

sublattice | nearest-neighbor sublattice Ry prefactor
I T A e
. v (o) (o)} | et
p o {8(05) (L) | | eos(=va%)
p y 4(J5) 4(25) | eos+va9)
y @ 16)-(3)] cos (@)
y p 8(J5) 4(25) s+ va%)

with gy := kiy — k3x and g, := k1, — k3y. This transformation is analogous for U, and Us.
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The full interaction up to 3rd-nearest neighbors reads

V(k1,k2,k3) = Up Y (K1) s (K2) thys(K3) thys (K1 + K2 — Ki3)
ms
+Ureos (% - v32) Y (5 K1) 15, (R2) s (Ks) g (s + K — Ks)

+uf;s<7q> s (K2) s (Ks) g (k1 + o — ) )

+ Uj cos qx Z (Ltw k] kz) um(kg,) (751 —|—7€’2 —76’3)

N
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+ U, cos (3% — ﬁ%) Z (uEs(ic'l) u;s(%z) uﬁs(ié) uvs(%l —|—i€2 —7&3)

5
16y (1) 10y (Ra) 1ty (K3) g (Rt + Ko —%3))
+Us (cos (qx — \/§qy> + cos (2¢y) + cos (qx + \/§Qy>>
X Y (kr) g (K2) 1t,5(k3) 5 (K1 + K — K3)
" (2.16)

with the abbreviation gy := kj x — k3, gy := k1 y — k3 5.

The kagome lattice will be investigated on a general level with analytical RG in Chap.
and functional RG in Chap. In particular, the z—dependent matrix elements i, (k)
create non-trivial contributions of the sublattices to the FS, which heavily influences
the nesting condition. This “sublattice interference” opens a route to new and exotic
long-range orders.

2.3 Symmetry Group Representations

The lattices presented in the latter sections can be categorized by their symmetries. This
enables the use of common features and general simplifications.

The quadratic lattice is invariant under 90°-rotations and features four reflection axis
(Fig.[2.1p). These properties are classified as C4 symmetry. Furthermore, the triangular
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Figure 2.7: (a) Symmetry group table for Cg,: Here, E are the number of elements and C; is
the trace of a 180° rotation matrix. Accordingly, C3 and Cg are for 120° and 60° rotations,
respectively. 6, and 6, define reflections at distinct lattice axis. The resulting form factors
in the BZ are plotted in Fig. (b) Construction of the B, form factor between next-nearest
neighbors in the honeycomb lattice. The sign at site 1 is fixed, so the symmetry transformations
define the signs on the other five sites. (¢) Harmonical function (f-wave in Eq. 2.19) which
obeys to the signs on sites 1 to 6 defined in (b).

lattice (Fig. [2.3p) features a symmetry under rotations by 60°. It is also invariant under
reflections at a plane which includes the axis of rotation. The other symmetry axis are
covered by rotations of the vertical one. Together, these symmetries define the Cg, group.
The honeycomb and kagome lattices (Fig. [2.5p and Fig. [2.6p) are also elements of this
group. There, the center of rotation is the middle of the hexagonal structures.

The categorization into symmetry groups enables the definition of harmonical functions
which belong to the same group. For example, the Cg, group includes the representations
plotted in Fig. [2.7n. The group members E;| and E; consist of two elements, which are
orthogonal, so any linear combination of these two elements fulfills the requirements of
the symmetry. The construction of the f-wave form factor, i.e. a B>-type group element,
is presented in Fig.[2.7p,c.

It is possible to construct a harmonical function which fit to the point group
representations. For next-nearest neighbors in the triangular lattice, the corresponding
bonds have to be transformed to momentum space [935]. Then, the superposition reads

for the singlet and triplet channel, respectively. The phases 0 and ¢ have to fit in the Cg,
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symmetry. For example, the singlet channel with 6 = =* and ¢ = —23—” yields

— <21 k k
Agia(k) = cos (ky) +e 7 cos ( +\/_—> re ¥ cos (Ex — \/§5y>

= c0s (kx) + (cos (%n) +isin (23—75) ) cos (% n \/5%)
+ (cos (—2?“) Fisin <_2?“))COS <’% _ \/5%>

(2.18)
1 ky k V3 ky k
= cos (ky) — 5 cos (E + \/§§y> +1\/7— cos (3 + \@Ey)
1 ky k\ V3 ky ky
— ECOS (E — \/§E> —ITCOS <5 - \/53)

= cos (ky) — cos (%) cos (\/5%) +i? sin (%) sin (\/5%) )
+

which is labeled as a d +id-wave symmetry. For 6 = 0 and ¢ = 0, the result is an s™-wave.
In the triplet channel, the symmetries are p + ip-wave (for 6 = %ﬁ and ¢ = ——) and
f-wave (for 6 = 0 and ¢ = 0). The final form factors are

& cos (k) + 2008 ("2 ) cos (ﬁ%)

pxtipy: [sin (ky) +sin (%) cos <\/§%)} +i [\/gcos (%) sin (\/§
do_yp +idy : [cos (ki) — cos <%) cos (ﬂ%)} +i {\/5 sin (%) sin (\@

i sin(ky) — 2s1n(]€2>cos(\/§%>.

These form factors have to be adapted for correlations beyond next-nearest neighbors or
other lattices, but the results are similar. For illustration, the form factors of Eq. @ are

plotted in Fig.[2.§]

The symmetry and the resulting form factors of long-range orders are crucial for
condensed-matter physics. For example, the d-wave form factor of the cuprate
superconductivity features nodes, which can be detected experimentally [17]. Often,
symmetries are available from experimental data and permit an elementary test for
theoretical models.

(SR

)|
)

(2.19)

| S

2.4 Variational Cluster Approach

The numerical effort to solve a model physically correct and complete dramatically
increases if additional degrees of freedom are included. For a two-dimensional layer
in a crystal, the critical parameter is the number of lattice sites and relevant orbitals.
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d+id-wave

Figure 2.8: Nearest-neighbor form factors within the Brillouin zone of the triangular lattice. The
analytical expressions are presented in Eq.[2.T9}

Although the computational power is still exponentially growing (Moore’s law [96])), the
exact diagonalization reaches its limits at only a few lattice sites.

A first ansatz is a strong-coupling perturbation theory for Hubbard models, which
already shows features like the Mott transition [97]. One possibility to get access to
larger systems is to tile up the complete lattice into small clusters. These are exactly
calculated, and, thereafter, the results are projected to the complete lattice. This class
of approximations is called embedded cluster techniques [98]. In one ansatz, the
hoppings between the clusters are regarded as a perturbation to the reference clusters,
namely in the cluster perturbation theory (CPT) [99,[100]. The subsequent step is to
add a self-consistency principle to get the “best” reference system out of a test space
(self-energy-functional theory (SFA) [101]]). If this concept is combined with clusters,
one yields the variational cluster approach (VCA). The advantage of this method is an
exact treatment of the reference cluster combined with a self-consist variational principle
for the extrapolation to the infinite lattice. I will use the VCA for the simulation of
high-T;. cuprates in Chap. 3] Certainly, there exist many other approximations for strongly
correlated electron systems. An overview of dynamical variational principles is given in
Refs. [1024104]].

The use of the VCA is well justified by the successful application on various fields:
Beginning with calculations on cuprates, the spectral function as well as the
ground-state phase diagram was investigated. Then, a closer look was taken
on the pseudogap phase and two distinct temperature scales [25] were reported.
Moreover, it was successfully applied to layered organic conductors and also some
more general features like a charge ordering are accessible [109]. In recent publications,
the VCA was adopted to the single-impurity Anderson model and topological
insulators [[111]]. In addition, a time-reversal symmetry-breaking phase was studied in
the Hubbard model [[112].

In this thesis, the formalism for two-particle excitations [113] is extended to the
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three-band model [114]. Furthermore, the gap function of Ref. [115] is implemented
for both the one-band and three-band Hubbard model. All together, this gives insight to
the pairing dynamics in terms of a “pairing glue” for superconductivity. The results are
presented in Chap.

2.4.1 Self-Energy-Functional Approach

One goal of theoretical physics is to create a model that reproduces and explains results
obtained by experiments. There, a sample is scanned for one-particle (e.g. photoemission
spectroscopy), two-particle (e.g. magnetic susceptibility) or collective excitations with
multiple particles (e.g. phonons). But, at the beginning, one has to determine the ground
state.

M. Potthoff has proved [101] that the grand potential €, one of the fundamental
thermodynamical quantities in statistical mechanics, can be expressed as a functional
of the self-energy of the system. Furthermore, the stationary points of this functional
determine the thermodynamically consistent approximations in a grand canonical
ensemble. This principle is called self-energy-functional approach (SFA). A detailed
review is given by M. Potthoff himself in Ref. [116].

The starting point is an arbitrary Hamiltonian for a system of electrons in an infinite
lattice. It can be divided in one-particle and two-particle operators

H = Hy(t)+ H,(U)
\%Q \Lz(,_l (2.20)
P P

where t and U represent sets of parameters. In general, the elementary excitations of a
system are described by Green’s functions. For fermionic systems, it is defined in the
Matsubara formalism

o0
A A 1 .
Gaﬁ(i(y)) =K AQ;BB > in= 3 / GocB(T)el(Md’C

. (221)
_ _% / (T{Aa(t)B(0) e dt,  iw, =i(2n+1)T, n€ Z.

—00

Here, A and B represent fermionic creation and annihilation operators in the
imaginary-time Heisenberg representation A(t) = e™*Ae#" and i are fermionic
Matsubara frequencies. The Green’s function can be rewritten in the Lehmann
representation

, (WolAu| @) (| B Wo)
Gop(io) =Y o (E EOB) , (2.22)

m

an expansion in the overlap between the ground state |¥y) and the excited states |®,,),
¥

under the influence of the operators Ay and BB' The Dyson equation [117] (graphical
represented in Fig. [2.9)
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- T

Figure 2.9: Diagrammatic representation of the Dyson equation for first-order vacuum
self-energies. The bold lines indicate fully dressed Green’s functions and the thin ones
illustrate non-interacting Green’s functions. The wiggly lines represent interactions. The
figure shows the recursive nature of definition. However, in the general Dyson equation, the
first-order vacuum self-energy can be replaced by any irreducible self-energy insertion, what,
for simplicity, is omitted in this figure.

D[G] g+@+%+%+%+g+ 0(3)

first order second order

Figure 2.10: Diagrammatic representation of the Luttinger-Ward functional as an infinite series
of skeleton diagrams. The bold lines indicate fully dressed Green’s functions and the wiggly
ones represent interactions. In this figure, only Feynman diagrams of first and second order are
shown.

G(0) =Go(w) X(0) G(m)
G (0 =6, (0) - Z(0)

describes the relation between the fully dressed Green’s function of an interacting system

G to the bare Green’s function of a free system Go(®) = +L — and the self-energy X, i.e.

the interactions of the particles with themselves. It can be calculated by the derivation of
the Luttinger-Ward functional ®[G] [118] (plotted in Fig.
ID[G]

oG

®[G] has no explicit dependence on one-particle parameters ¢. If two systems have

the same two-particle parameters U, they are described by the same Luttinger-Ward
functional [118]]. By a Legendre transform, one obtains

FZ] = ®[GZ]] - Tr(ZG[Z))

(2.23)

¥[G] = (2.24)

OF[y) (2.25)
On the other hand, the grand potential is given by
X[Z] = Tr(In( —G)) + F[E] = Tr(In( —(G, ' —X)™")) + F[E], (2.26)

with Tr(A) = % Y Axo(i®) and a fixed one-particle parameter set t. Performing the
®,0

derivative of Eq. with respect to X and using Eq. [2.25]

- —%(Gal —2)‘1+%G[2]

(2.27)
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one obtains at a stationary point:

o [X]
oX
Comparing this result with the Dyson equation (Eq. [2.23]), the equality is obvious. So,

only at a stationary point of €, [X], the Dyson equation is valid. Consequently, if ;[X] is
completely known, the ground state can be calculated by a derivative with respect to X.

=0 < GZ]=(G,'-x)! (2.28)

Up to now, no approximation was used. Hence, the SFA is an exact theory. But for
an arbitrary system, the exact functional ©,[X]| depends in general on an infinite number
of diagrams [[118]], so an approximation is needed: If the phase space of X is reduced
to a small subset, a stationary point of Q;[X] is the closest approximation to X within
this subset [106]. A possible reduction is to tile up the infinite lattice in small clusters
which can be solved exactly, whereby X is limited to a small reference system. All
correlation effects are exact up to the cluster-length scale but only mean-field-like beyond
this point [106]]. An arbitrary reference system has to feature the same two-particle
operators U as the infinite-lattice system but may differ in one-particle operators t’

A = Hy(t) + A, (V) (2.29)

because two distinct systems must include the same two-particle operators U to share the
same Luttinger-Ward functional. Consequently, € of the reference system is an implicit
function of t’:

QeZ(t)] = Tr (m(—(G’gl —Z(t’))’l)) FFE)] (2.30)

A general feature of the Luttinger-Ward functional is its independence of t [118]]. Thus,
also in the Legendre-transformed form holds F[X(t)] = F[X(t’)]. By subtracting Eq.

from Eq.[2.26]
U] - Qe[E()] = Tr (m(—((;(;l —z)*l)) Ty (m(—(G’gl —Z(t’))’l)) , (230D

the unknown Luttinger-Ward functional is eliminated. Consequently, one can use the
Dyson equation (Eq.[2.23) for both the infinite lattice and the reference system:

Q[E] = Q 4+ Tr(In(—G)) — Tr(In(—G”)) (2.32)

Here, the abbreviation Qg [X(t”)] = Q is used for the grand potential in the reference
system. By varying t’ over a reasonable range and testing for stationary points

0L [Z(t’)]

at, - 0 <:> tstat - t’ P (2_33)

tstat

the best approximations of the infinite lattice can be found. This method is called
variational cluster approach (VCA). It is important to stress that t’ is not necessarily a
hopping parameter but an arbitrary set of one-particle operators. This is a great advantage
to other cluster approximations like the CPT [99] because it enables to include fictional



28 CHAPTER 2: Models and Methodology

O
O
O

o
D). e e e
(a)O (b)

o
00
i

oo

oo
® <0 O
.%.

AAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

®
O
O
O

A AS A S S S ¢

000000000
0060000000
©O0 000000

o 00

O
Q
O
O

O
O
(@)
@)
O
O
O
O
@)

OO0 o000 0 O

Figure 2.11: Clustering of the lattice: (a) Example with a v/8 x /8 cluster. The hopping within
a cluster is exactly calculated (blue solid lines), while the hopping between the clusters is
perturbatively calculated (red dashed lines). A lattice site is given by the cluster vector R, plus
the vector within the cluster 7. The whole lattice is covered with clusters. The féa (marked by
sites with green borders) define a regular superlattice. (b) Examples for other possible clusters
fragmentations.

symmetry-breaking Weiss fields, which yield a consistent description of long-range
orders, e.g. antiferromagnetism and superconductivity (see also Sec. [2.4.3)).

In the thermodynamical limit, the reference system fills the whole lattice and,
consequently, this approach becomes exact. But by enlarging the reference cluster, the
complexity and dimension of the Hamiltonian is exponentially growing, so a compromise
between size and accuracy is needed.

The addends in Eq. [2.32]are calculated in App.[A.2] The result is
Q[E] = Q" +Tr(In(—G)) — Tr (In(—G”))

NE  E Y 0n(—m) + T 00— n) (2.34)

Q. = lim -
e =g e 2L, 2L,

with the ground-state energy Ey, the one-particle excitation energies of the reference
system ®’,, and of the infinite lattice ®,,. The Heavyside step function ®(x) is 1 for
x > 0 and otherwise 0. L. is the number of sites in the reference cluster.

In the next sections, I will explain how this formalism is applied to calculate a
(multiband) Hubbard model.

2.4.2 Solving the Reference Cluster

For the VCA, the reference cluster has to be solved exactly. The size of this cluster
should be as large as possible to reduce the systematic errors of the VCA because only
correlations within this cluster are fully considered. The upper bound of sites within
the cluster is set be technical limits (see below). Some examples of possible cluster
fragmentations are given in Fig. 2.11]

In this thesis, I focus on 7= OK (for a finite temperature implementation of the VCA,
see Ref. [119]). Here, the ground state is clear without ambiguity. Starting with the basic
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time-independent Schrodinger equation
H|Y,) = E,|¥,) (2.35)

with a Hamiltonian A for the reference cluster (Eq. , the lowest eigenvalue E is the

ground-state energy. The corresponding eigenvectors |¥y) determine the ground-state

configuration. It is reasonable to expand the eigenvectors in a base which is easy

accessible. Let |¥,;) be elements of a complete orthonormal base with Y |®;) (D] =1
\)

and (®,|®,) = &. In this base, the energy of an arbitrary state |¥,) reads

A W, | D) (D H | D) (D | W U,y (D4 H| D)UY,
-~ E = <‘Pn|H|an> B §r< n| s>< s’ ’ t>< tl n> _sz,; ns< s‘ ’ t> nt
Ll (¥ ) (W, [ %)

(2.36)

A suitable base is the electronic configuration on the lattice sites of the cluster, where an
electron occupation of {0,1,{,1]} is possible. So, the full Hilbert space has 4L elements,
with L. being the number of sites in the cluster. Eq.[2.36] shows that the calculation of
the state energies corresponds to the diagonalization of a matrix containing (®|H|®;)
as the (s,7)-element. The transformation matrix U comprises the state configurations
for the energies. Then, the state with the lowest energy is the ground state. The size
of the Hilbert space is growing with 4/, hence it is natural to use computers for the
calculation of Eq. After the definition of a representation for {0,1,],7)} and
an application of the Hamiltonian H, the result is a 4% x 4% matrix with the elements
(®y|H|®D,). To get the ground state and its energy, this matrix has to be diagonalized, but
the use of symmetries like particle and spin conservation is impossible because the focus
i1s on symmetry-broken phases, e.g. antiferromagnetism and superconductivity. Only
for clusters with L. < 4, a complete diagonalization is possible within an appropriate
amount of CPU time. For L, > 4, [ used the Lanczos algorithm [[120], which starts with a
random state and converges to the ground state within an iterative procedure. In detail, the
algorithm does not evaluate all eigenvalues but only M ones, but these are most probably
the lowest ones, with no degeneracies included. I used M = 150, so the lowest eigenvalue,
which is the ground-state energy, is certainly covered. This reduces U from dimension
4Le x 4l to M x 4%<, Unfortunately, for L. > 10 this algorithm also exceeds the resources
of an ordinary personal computer and a large national computer center has to be used.
For this thesis, I was awarded with CPU time at the Leibniz-Rechenzentrum in Garching
(Germany). There, it is possible to use a reference cluster with up to 15 sites.

Beside of the ground state, the one-particle excited states are needed to calculate the
Green’s functions (Eq. 2.22) and the grand potential (Eq. [2.34). These states are highly
degenerate, so the ordinary Lanczos algorithm is inappropriate. The solution is the
modified band-Lanczos algorithm [[121], which supports N (degenerate) starting vectors.
This allows a two step implementation: Firstly, the ground state is calculated within the
simple-Lanczos algorithm by starting with a random state. Secondly, the one-particle
creation and annihilation operators are applied for all L. sites and both spins in this ground
state, resulting in 4L, starting vectors for the band-Lanczos algorithm. This iterative
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procedure yields 4M excited states, with degeneracies included. Similar to the normal
Lanczos algorithm, these energies are most probably the lowest ones.

Up to now, all physics are restricted to a small reference cluster. This is equal to
the exact diagonalization method and has the consequence that no long-range order is
possible. Also, the limited cluster size L. in the real space is reflected in the momentum
space, so only L. momenta are accessible in the Brillouin zone and comparisons with
experimental data is hard. The variational principle of the VCA opens a self-consistent
route for an extrapolation to the infinite lattice.

2.4.3 Extrapolation to Lattice

The VCA formalism is a powerful tool to project the properties of the reference cluster to
the infinite lattice, but the distinct Hamiltonian in Eq. has to be considered: While
the one-particle operators, e.g. hopping between sites, can differ between these two
observation levels, the two-particle operators, e.g. Coulomb interaction, are forced to
be identical (see the Luttinger-Ward potential, Eq. [2.24). This is a radical restriction
for the Coulomb interaction because only on-site interactions can be included. For
interactions which range to nearest neighbors and further away, the cluster boundaries
are a drawback: In Fig.[2.TTh, the clusters are put side by side, covering the whole lattice
without holes, but the nearest-neighbor interactions between neighbors marked by red
dashed lines are disregarded. Consequently, the reference cluster and the infinite lattice
include distinct two-particle Hamiltonians, which is not permitted in the VCA. A possible
fix of this problem is a mean-field decoupling of the non-local interactions in one-particle
operators [[109] or a generalized Luttinger-Ward functional [[122]].

Another ansatz is the use of periodic boundary conditions. Again, the propagated
reference clusters differ from the lattice on the two-particle operator level, but, although
long-range correlations between clusters are still neglected, the correlations within the
cluster are considered to be more homogeneous. 1 will use this approximation for
the non-local interaction U,y in the three-band model in Sec. @ In this case, the
approximation is justified because the non-local interaction Uy, i1s much smaller than
the on-site interactions Ugy and Up,.

The argument that the nearest-neighbor properties of the side-by-side reference clusters
and the infinite lattice are different is also valid for the hopping operators. But these are
one-particle operators, so they do not have to be identical on the cluster and lattice level.
The hopping operator can be divided in a part I-AI()’imra(a), which describes hoppings within
a reference cluster at position Ea, and Iflo’imer(a, b), for hoppings between two reference
cluster at positions R, and Ry,:

HO mtra ZZtU ( Caic Aajc +H.c. )

i,j ©

i (2.37)
Aginier(@:5) = Y Y Vi ( mccbjc-l—H.c.) . with Vg, =0ifa=bh.

i,j ©

Indeed, this distribution can be generalized to all one-particle operators, while the



CHAPTER 2: Models and Methodology 31

two-particle operators have to be restricted to the cluster. Together, the Hamiltonian reads

A= Z (ﬁo,intra( )+HI +Z H inter (@, b))
- ~- . (2.38)

reference cluster

-~

lattice

The first part of Eq. acts only on the reference cluster, while both addends together
describe the whole lattice. Hence, if the addends are applied one by one, the primary
step gets the physics of the side-by-side reference clusters, while the second step adds the
connections between the clusters. Without a change to Eq. [2.38] an additional operator
A( ) can be appended to Eq. n so that

ﬁO,intra Zztu ( CaicC Aajc‘f‘H-C') +A(a)

i,j ©

i# (2.39)
HO 1nter a, b ZZVale ( alGCb]G +H.c. > 8a,bA(a) .

i,j ©

In a simple picture, this extra operator is added to the reference-cluster level, and later
subtracted. Hence, it does not exist on the lattice level. Within the SFA, the operator
A(a) expands the test space of Eq. so an even more suitable reference cluster can be
found because Q[X(A)] is optimized at a stationary point. The additional operator reads
in a general form

a) = ZZAU (égéég)c + H.c.) , (2.40)

i,j ©

where ¢(*) indicates that also anomalous combinations of creation/annihilation operators,
are allowed. However, the most important restriction is that only intracluster operators
are permitted.

Indeed, more than one of this so-called variational parameters are allowed. This opens
manifold possibilities for improving and verifying the reference cluster to get a more
realistic picture of the lattice.

A simple example is the question of periodic or open boundary conditions on the cluster
level. While other techniques like the cluster perturbation theory are not able to clarify this
point, it is possible to add a periodic boundary hopping e as a variational parameter to
the Hamiltonian within the VCA. For a quadratic lattice, the optimization process yields
that the alone stationary point exists at f,p. = 0, so a reference cluster with open boundary
conditions fits best to the infinite quadratic lattice [[123}|124]].

Within the VCA, the optimized reference cluster is the best fit to the lattice. If
there are some long-range order tendencies in the lattice, a reference cluster is still
to small to evolve this order. But the right choice of A(a) allows to “suggest” some
orders on the reference-cluster level. If this new order fits to a long-range order present
on the lattice level, the VCA yields a stationary point at a non-zero field. Hence,
the additional variational parameter A(a) plays the role of symmetry-breaking Weiss
fields [105,/106], which act only on the reference-cluster level and do not exist on the
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lattice level. Consequently, no additional physics are attached, but rather the test space
for the variations of the reference cluster is expanded. In general, the bigger the cluster,
the easier it is to break the symmetry. Thus, the optimal Weiss field tends towards zero
as the cluster size goes to infinity [104]. Two examples for these Weiss fields are a
staggered magnetic field for antiferromagnetism and a pairing field for superconductivity
(see Sec. [3.2] for an implementation in the three-band Hubbard model). Indeed, it is
impossible to detect orders that are not included in A(a).

Many experiments get results in the momentum space, e.g.  angle-resolved
photoemission spectroscopy (ARPES), but the reference cluster is solved in real space
(see the Hamiltonian in Eq. 2.38)). Thus, a Fourier transform has to be applied, but in
the VCA, the location of a site is given by the position of the cluster R, plus the position
of the site within this cluster 7;. While the Fourier transform with respect to R, is easy,
the challenge is the second transformation from a “mixed” representation to a complete
momentum-space one. In other words, the broken translational invariance of the lattice
has to be restored. The solutions are a diagonalization of the Green’s functions [125] or
the periodization of the self-energy [126,/127].

The limited size of the reference cluster provokes a discontinuous particle density on
doping. For example, the v/8 x v/8 cluster in Fig. with 8 particles is half filled,
but the next filling with 6 particles correspond to 25% doping (nothing but §¢ =
configurations are considered for the ground state). If the lattice doping is set to 15%,
which is close to the optimal hole doping for cuprate superconductors [12], the cluster is
in a superposition of the half-filled and a 25%-doped state, which is a good approximation.
A further improvement is the implementation of so-called bath sites [128L]129], where the
interaction is neglected and only a hopping #;, between them and fully correlated sites is
allowed. The bath sites act as a kind of “particle reservoir”, adjusting the doping level of
the reference cluster to the one of the lattice. The hopping #;, called hybridization, and the
chemical potential on the bath sites €, are additional variational parameters which contain
only one-particle operators, so the conditions for A(a) are fulfilled. Unfortunately, the
two extra parameters have to be optimized together with the already included variational
parameters. This enormously increases the numerical effort, so bath sites are omitted in
this thesis.

Finally, there exist some cases where the VCA is exact:

e The reference-cluster size is L. — oo: Here, the reference cluster becomes the
lattice, so the self-energies are identical.

e All hoppings are prohibited: Then, all lattice sites decouple and the self-energy is
local.

e No interactions are included: Both the self-energy of the reference cluster and the
one of the lattice are zero.

The optimal playground for the VCA are systems with interactions which are greater than
or equal to the bandwidth.
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2.4.4 Two-Particle Excitations

Whereas the one-particle excitations can be easily calculated within the VCA procedure
(Eq. 2.34), the two-particle excitations are a tricky problem. In his PhD-Thesis,
S. Brehm presented a parameter-free theory for an expansion of the VCA to two-particle
excitations [125]. He implemented the calculation of the transversal spin susceptibility
to get the magnetic-excitation spectrum. The results for the hole-doped one-band model
were published in Ref. [[113]. In this section, I will follow his derivation of the theory but
will include all necessary upgrades for multiband models.

The central idea is to use the two-particle equivalent of the Dyson equation (Eq. [2.23),
called four-point Bethe-Salpeter equation [[130]], which reads

L(Ri,Ry,R3,Rs) = ) /dTintLo(Rl,Rz,R3,R4)
Fint; Otint (2.41)

+Lo (R1,R2,R5,Rs) I'(Rs,Re,R7,Rg) L(R7,R3,R3,R4) ,

with L being an arbitrary two-particle response function and I" as an irreducible four-point
vertex. Lg represents a response function without vertex insertion, which is equivalent
to two distinct fully dressed one-particle Green’s functions. The indices are notated in
R; = (¥;,0,7;), which indicates site 7, orbital o; and time t;. The integral has to be
executed over all internal times dtj,, = dT5dt¢dt7dts and the sum is over all internal
sites Fine = {7s,7,77,73} and orbital degrees of freedom oy = {0s,06,07,08}. A
diagrammatic representation of the Bethe-Salpeter equation is given in Fig. 2.12a. Due
to momentum end energy conservation, the equation is reduced to three internal sites
and times but not orbitals. Thus, another combined index r; = (¥, 7;) is introduced,
including the position vector and an imaginary time. In Chap. 3| the magnetic excitations
of cuprates are considered, so the response function is specified to be the transversal spin
susceptibility, which reads

L. e "

X(XiBi(Xij<ri’Ti7rj7Tj) - <Sl'(xl-[3i<ﬂcl') SJOCJB/(TJ)>

_ Atat A —At Atv At 4 —At
(e il e chajichjTe 2)

L( Rl 9 R2 ) R3 ) R4 )_>XOL]B|OL3B3( rn 7"3)
F1,T1,00 2,T2,0 73,T3,03 74,T4,04 1,71 73,13

(2.42)

with the diagrammatic representation given in Fig. 2.12b. Here, the ingoing sites and
times have to be identical, while the orbitals are still independent. The same holds for the
outgoing parameters.

In a first approximation, the complexity of the internal integration and summation is
reduced by averaging over the internal degrees of freedom [[125]], which was successfully
applied in finite-T single-cluster quantum Monte Carlo calculations [131] as well
as two-particle susceptibility calculations within the dynamical cluster approximation
(DCA) [132]]. The resulting response function

X061[31002B2<r17r2) = XO,oclﬁl(xZBZ(rl,rz)—F
Z Z /d’C3dT4 X0,01 By 033 (r1,r3) 1:‘OL3,B3,0L4,B4(”37”4) Xa454a252(1’4,r2) (2.43)
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Figure 2.12: (a) Diagrammatic representation of the Bethe-Salpeter equation with an arbitrary
response function L and the irreducible particle-hole vertex I'. Ly marks two distinct fully
dressed Green’s functions, which are indicated by bold lines. The combined indices include
R; = (#,;,7;) and r; = (7,7;), respectively. Here, the recursive nature of the general
Bethe-Salpeter equation is obvious. (b) Special case of the spin susceptibility ¥ and (c) after
the averaging over the internal degrees of freedom. (d) The double lines indicate fully dressed
one-particle Green’s functions which are obtained by the VCA.

is plotted in Fig. 2.12c. However, the orbital degrees of freedom are not affected by this
approximation. For the calculation within the VCA, the clustering of the lattice has to be
considered. As stated in the previous section, the position vector of an arbitrary site 7; is
split into a vector of the superlattice R, plus a vector within the cluster 7. The translational
invariance counts only for the superlattice, while it is broken in the cluster. The Fourier
transform in the superlattice reads

N 1 L m E e
XalBlaij(q710)fn) = N Z /dT]dTZXQlBlQJBI(R]7T]7R2712) .elq(RZ Rl) I(Dm(TZ Tl) .
RiR,
(2.44)

The ®?, indicate bosonic Matsubara frequencies. This transformation can be applied to
an arbitrary site and yields

X()L,'B,'(Xjﬁj(rhrj) - XOC,‘B,‘OCJ‘BI‘ (I_éa +?l,'7ﬂcl.7l_éb +?;7Tj)
— XiociBi,jochj (Ea;Tiaﬁb7Tj) = X(Ravriaﬁbvrj) (2.45)
ET. .
= x(d,ioy,),

with the bold % indicating a matrix. Here, the arguments of ) are in momentum space,
while the matrix indices represent sites (and orbitals) in real space. The dimension of
is dim(y) = L. - L2 x L. - L2, with L. being the reference-cluster size and L, the number
of orbitals per site. The wave vector ¢ is element of the reduced Brillouin zone of the
superlattice. In this “mixed” representation, the Bethe-Salpeter equation (Eq. 2.43)) is
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rewritten to

%(.i0,) = x0(d. i) + x0(d.i0},) (G, 10%) X(d 1)) - (2.46)

To restore the full translational invariance, a Fourier transform with respect to the
reference-cluster sites is done. Here, only diagonal elements are taken into account. For
details, see Ref. [125]].

In the random phase approximation (RPA), the fully dressed Green’s functions are
approximated by the Green’s functions of the non-interacting system, hence it is restricted
to the weak-coupling limit. But here, the fully dressed one-particle Green’s functions are
already available within the VCA technique (see last section for Details). Hence, the
expectation value of the transversal spin susceptibility is rewritten to a product of Green’s
functions (“bubble approximation™ [[71},74./77]) and reads

A

(T 8303 (D) S5, (0))

= (T e (V)6 () €, (0)E5,(0))

<Tgmmw34mqum@wgﬂm»
—(T &l 1 (D, ()T & (1) 5 1(0)) (2.47)

= —(T &5 (0)}o,: (ONT & (1), (0))

—(T &l 1 (D&, ()T & (1) 5.1(0))

—G it (=) Gipyjoyt (V) — Fiog jou 1. (T) Fip gy (—T)

with the definitions
G jp ot (=) = = (T &5 1 (0)}o1 (7))
Foyjoy11,(7) = (T &1 (1), (0))

for the normal Green’s function G and the anomalous Green’s function F, which can be
calculated by the VCA and already include correlated physics on a one-particle level
(Figs. 2.12d). If no superconducting Weiss-field is included in the Hamiltonian, the
system has a particle number conservation (see Sec. [2.4.3] for details). In this case, the
anomalous Green’s functions are F' = 0. After the Fourier transform

(2.48)

VCA VCA . VCA (7 | = : s b
XO lalﬁlj(le?)j( - _ZZ ( jB]loc, k lmI);)GiBijajl,(k+q;1w£+lwm) 240
(2.49)
VCA - 7 * ,VCA
+ Fiaija_,-m(‘] —k,io), —io)) F BB H(k 1(.0"))

the susceptibility is again in a mixed representation. Here, N, is the number of reference
clusters in the lattice. This result can be included in Eq.[2.46] yielding

VCA

2(G,i0h,) = %0 A (@,i0)) + 2%y A (G i},) TG io),) x(G,i0)) . (2.50)

In this equation, the vertex I is still unknown, hence an approximation for the four-point
vertex is needed. In the RPA, it is simply approximated by the interaction U. However,
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in retrospect, one of the fundamental ideas of the VCA is to approximate the self-energy
of the lattice by the self-energy of the reference cluster. Within the SFA framework, the
optimization principle provides the best approach in the variational one-particle parameter
space. By rephrasing this idea, the two-particle irreducible vertex function of the infinite
lattice is approximated by the cluster equivalent, so

Pg.ioh) = (G i0h) -~ (x@ioh))
) (2.51)
(Gl = (65(@.i0) - (xGioh)

with % and ¢ being obtained on the reference-cluster level. While ¥ consists of fully

dressed one-particle cluster Green’s functions, Y is calculated by a slightly modified

Lehmann representation (Eq. [2.22), where A and B are replaced by S;&'B‘ and S’;OL By This
iPi jPi

can be evaluated straightforwardly, comparable to the one-particle excitations. Certainly,
the restriction of the vertex to the reference cluster works fine as long as the dominating
two-particle correlation functions are shorter ranged than the cluster size. A possible
check for the quality of the approximation provides the sum rule

_ZZXz(x,B,zocJB] G,10) = (Siup.Siap,) - (2.52)

Both sides can be calculated independently. Consequently, if the results match together,
the approximation is justified.

Furthermore, by introducing a constant prefactor o to (7, iw?,) in Eq. @L the sum
rule in Eq. is forced to be fulfilled [[133]]. In other words, o scales I'®f, so I is better
approximated.

It is important to stress that the additional parameter o is not a free parameter, but it has
to be self-consistently evaluated within the VCA.

The final version of the transversal spin susceptibility equation reads
ad . _1 —_ .
X(dieh) = (1-x (@ i0h) F@.io})) 2 G i))

ity = (12 @ik o (o) '~ (caion) ) B ol
(2.53)

Further details of the numerical implementation of the formalism introduced in this
section are presented in Ref. [[125] for the one-band Hamiltonian. In almost the same
manner, the three-band equations can be modified to calculate the longitudinal spin
susceptibility or the charge susceptibility. In general, this formalism is not restricted
to T = 0, but the VCA implementation I used is limited to absolute zero (see Sec. [2.4.2]
for details). In opposite, in Ref. [132]], the DCA is expanded to two-particle excitations
at finite temperatures with a similar approximation based on the Bethe-Salpeter equation,
which enables the calculation of a temperature-dependent phase diagram.
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In addition, if the self-constantly calculated constant o is close to 1, the selected
reference system is a suitable choice to represent the physics in the lattice. Otherwise,
the two-particle correlation functions act on a length scale larger than the cluster size.
A possible fix is to increase the reference-cluster size. On the other hand, if the doping
level is increased, the scattering between particles is enforced, so the correlation length of
two-particle excitations is reduced. In both cases, o approaches 1 [113]]. Also, a stronger
coupling reduces the effective range of interactions and, consequently, the appropriate
reference-cluster size. For the three-band model in Sec. [3.2] the controlling constant was
calculated to a0 = 1.03, so the effective vertex approximation is justified.

2.4.5 Gap Function for Superconductivity

In general, the self-energy reflects the interaction of the particles among themselves and,
due to the Dyson equation (Eq. [2.23)), depends on the Green’s functions of electrons.
If the two operators A and B in Eq. @ are both creation operators ¢, the Green’s
function is anomalous. Accordingly, two annihilation operators ¢ are also possible.
Thus, the anomalous Green’s functions correspond to Cooper pairs. With the Nambu
representation [134], the general Green’s function is rewritten to a 2 X 2 block-matrix
which includes both normal and anomalous contributions. Consequently, the self-energy
also features an anomalous part, which corresponds to the pairing strength and dynamics
of the Cooper pairs. Hence, to describe the pairing dynamics of the system, the Dyson
equation (Eq. can be rewritten to

G g (get o) [z« g
( cc Cjc) = ( 0 JC) - <ECC ZCTC> . (254)
G“ G 0 G
It is G8+CT = G° = 0 because the interaction-free system does not include any pairing

fields. After some algebra, the equation can be dissolved to the anomalous part of the
self-energy:

-1
ECCT zcﬁcT (G(C)CT> 0 (}CCJr Gc*c? -1
cc Zc"'c - 0 <G(L)Tc> -1 G Gc"'c

cct cfef -1
ZCTCT:O_ (G G T >
GCC GC C m

0od

(2.55)

Here, S; indicates that only the upper right quarter of the block-matrix has to be

considered. Finally, the gap function ¢(%, ®) is defined as the anomalous part of the
self-energy, after a Fourier transform to momentum space:

7 cfef i(7—F)k
ok, 0) = Y 25 (0) R (2.56)
Ly

This result is used in Sec.[3.6|for the interpretation of the pairing dynamics of the Hubbard
model for cuprates. There, the comparison of the one-band model (Mott insulator) and the
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three-band model (charge-transfer insulator) yield discrepancies in the pairing dynamics.
The VCA implementation of both models is suitable for the strongly correlated cuprates,
but simulations of weak-coupling materials need another theoretical framework.

2.5 Analytical Renormalization Group at Infinitesimal
Coupling

Over the last century, a myriad of methods to describe condensed-matter physics have
been developed. Together with the rise of supercomputers, numerical simulations became
more important and provided powerful tools to answer open questions. Both in the
strong-coupling ansatz of the variational cluster approach (VCA, Sec. [2.4) and the
weak-coupling approach of the functional renormalization group (fRG, Sec. [2.6)) there are
many competing phases, resulting in a colorful phase diagram. However, if the focus is
just on superconductivity, elaborate techniques are redundant. In this case, the analytical
renormalization group (aRG) is a suitable approximation.

This section provides the technical background of the aRG. It will be used to investigate
the effects of long-range interactions to the superconducting instability in the honeycomb
and the kagome lattice, respectively. The results are presented in Chap. [6]

2.5.1 Basic Concept and Formalism

The aRG is a perturbative approach to Fermi-liquid instabilities subject to an infinitesimal
interaction. Hence, the main generic instability found therein is superconductivity [135]].
Initiated by W. Kohn and J.M. Luttinger [136], this has become an established tool
for electronically driven superconducting Fermi-surface instabilities, and has been
formulated more rigorously by S. Raghu et al. [135,|137]. In the limit of infinitesimal
interactions, this approach is identical to the functional renormalization group scheme,
introduced in Sec.

In this ansatz, only the two-particle vertex I' is investigated. = Concerning the
infinitesimal-coupling limit, all self-energy effects and higher-particle vertices can be
neglected (this argument is discussed in detail for the fRG in Sec. 2.6.3). At low
temperatures, the pairing susceptibility in the superconducting channel is logarithmically
diverging for infinitesimally interacting Fermi liquids, ignoring the shape of the Fermi
surface (FS) [19]. The only instability that is generically nested for arbitrary kinetic
theories conserving inversion symmetry k — —k is the Cooper channel, so the focus is on
this instability. For this purpose, one has to consider all possible diagrams up to second
order in the interaction which contribute to the Cooper channel. These are illustrated
in Fig. 2.13] The notation of straight lines already suggests that the interaction vertex
(dashed line) conserves spin, i.e. it is spin-rotationally invariant.

It is important to stress that this ansatz is not equivalent to RPA-type summations.
To obtain the perturbative vertex F(%lc, —%11,7526, —752’:), one has to sum over all six
diagrams depicted in Fig.[2.13] The FS is discretized in N patches (equivalent to fRG, see
Fig.[2.19), so the vertex I is mapped to an N x N matrix. Numerically, one momentum at
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Figure 2.13: Diagrammatic expansion up to second order of plaquet diagrams in the cooper
channel. Continuous propagator lines indicate conserved spin. For the S; = 0 sector in
spin-rotationally invariant scenarios, the spins can be set to ¢ =1 (blue lines) and T = (green
lines), without loss of generality. For a strictly local interaction, the interaction vertices (dashed
lines) can only connect propagators with antiparallel spins. This is violated in the diagrams
(2¢), (2d) and (2e), indicated by red dashed lines. Hence, these diagrams have to be omitted if
the interaction is local.

the FS represents all momenta on this patch. The regularized vertex reads
v - R -
81k, = P——=——=I(k10,—k17,k20,—k»7) , (2.57)
v(ki) v(kz)

where p is the total density of states at the Fermi level, v(%) is the Fermi velocity at
momentum k and v is the harmonic mean—averaged Fermi velocity defined as

1_—/ (2.58)
\% lF VF

where the integral is performed as a line integral along the FS, indicated by the k notation.
[r 1is the linear length of the given FS and accordingly the normalization for this line
integral. The external variables for the I" function are the values 751 and 752. In this
discretized N x N representation, the eigenfunction system of g read

Z’éSIp
p

with n = {1,...,N}. 8lp(p) is the size of the line element from one patch of
the Brillouin zone. This prefactor ensures that the eigenvalues A become invariant
under the discretization N. A negative eigenvalue signals an instability towards
superconductivity. The lowest eigenvalue A := min[A"] is the critical one with the

associated superconducting form factor A(ié) = 6”75 and
C?

=107, (2.59)

T. ~ We T (2.60)

Y

with the bandwidth W of the kinetic theory. Formally, an infrared cutoff € at the Fermi
level is required to avoid divergences, which, at the same time, for local Hubbard Uy,
should reside in the regime

1
We P < Qo < (2.61)

2
-0
W
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to make the infinitesimal-coupling formulation independent of €. The bounds are
derived from above constraints imposed on the perturbative diagrams [135]. The
exponential IR bound of the cutoff ensures a broad regime in units of U where the aRG
is formally applicable. Assuming that U is still the leading or at least jointly leading
interaction energy scale, this line of reasoning does not change for long-range interactions.

The numerical effort to compute the perturbative diagrams can largely be reduced by
the following assumptions, listed with decreasing generality:

1. From infinitesimal coupling, there follows the limitation to the diagrams in Fig.[2.13
and a constraint to the Cooper channel.

2. From spin-rotational invariance of the interaction, it follows that the diagrams only
carry two spin indices and the propagators represent lines of conserved spin.

3. From spin-rotational invariance of the kinetic theory and (2.), one can go even
further and suppress all spin dependencies of the vertex because both the triplet
and the singlet channel are located in the S, = 0 sector, so one can assume without
loss of generality that 6 =1 and T =/ and suppress the spin notation in I'. Then, the
singlet and triplet channel is simply obtained by

1 g - - - — — — —
[ = E (F(k17_k17k27 _kZ) :[:F(_k17k17k27 _k2)> : (262)

Accordingly, the lowest eigenvalue has to be picked considering both the singlet
and triplet channel.

4. The focus is on single-band physics at the Fermi level. Hence, also the band index
of the propagators are suppressed, assuming the relevant electron to be located in
the band that forms the FS. Otherwise the vertex would carry 4 band indices.

Furthermore, if the interaction is strictly local (Uy ~ 7ij4#i;)), there exist an additional
constraint to the diagrams in Fig. [2.13] because only propagator lines with antiparallel
spins can be connected, which excludes the diagrams (2¢), (2d) and (2e). Hence, the
range of the interaction has to be carefully considered.

2.5.2 Interaction and Long-Range Scenario

As stated in the latter section, the long-range Hubbard interaction is set to be
spin-rotationally invariant (see also [2]). To distinguish the short-range from the
long-range scenario, the on-site Hubbard term is separated from the long-range part:

V=Uy+U- (2.63)

This is required because the local part of the interaction is suppressed in diagrams (2c),
(2d) and (2e) of Fig. and needs a special treatment.

Physically, diagram (1) is the lowest order in V' of this perturbative ansatz. Given that
V represents energy scales constrained to the bounds in Eq. 2.61] it is also the dominant
diagram as it is linear in V. Exactly as in the work by W. Kohn and J.M. Luttinger [136],
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diagram (1) effectively acts as a projector to a certain null space where the other diagrams
can form superconducting instabilities. For illustration, diagram (1) of Uy in an otherwise
trivial single-pocket FS effectively acts like a finite energy projector on the k-featureless
s-wave solution of I'. In matrix notation, diagram (1) would then give I'; ; = Uy and hence
assign AV = Uy to the s-wave susceptibility (H)%V ~pand AM'=0forn=1,....N—1.
This is a very intuitive way to see that any superconducting instability in infinitesimally
correlated systems has to form within the susceptibility null space spanned by diagram (1),
which for Uy would be the coset space of the s-wave channel. The inspection of diagram
(2a) yields that the result is form-invariant to diagram (1). In addition, if Us < Uj,
diagram (2a) is negligible, and also otherwise diagram (2a) only renormalizes diagram
(1) by an order of V /W. Consequently, diagram (2a) never has to be explicitly considered.
The joint effect of diagram (1) and diagram (2a) hence is to project the susceptibility onto
the null space of diagram (1).

The first diagram in Fig. gives the notation of order of arguments for the vertex
function: First both ingoing momenta, then both outgoing momenta, where the order is
such that the first ingoing and first outgoing are linked along the same propagation line.
The sign of the diagrams can be obtained by a prefactor

(_1)#V+#G+#L+l ’ (2.64)

with the number of interaction vertices #y, the number of internal Green’s functions #g,
. . /

the number of closed fermion loops #; and a 1 from the action (/D e~%0~5). Altogether,

this yields

(1) — V(iél 9 _7&1 77%27 _7&2)

@)=~ [V, ~F1.5,~P) V(. P oK) G5 G-
p

(2b) = —/V(ﬁ, —kt ko, p— ki — ko) V(y, B~ Ky — k2, B, —k2) G G5 1,
P

(20) = — / V(P —ki,p—ki +ha,—ka) Vo (kr, B =kt +Ka, B Ka) G G5t
p

(2.65)
@) =~ [V kot —E) Vo (b~ Eo B —R2) 65 Gy, 1,
p
(2e) = —/ (Vo(ﬁ+z1 — ko, —k1, B, —ka) Vo (K, B, B+ —F2) G Gt 1,
p
—2V- (P+ki — ko, —k1, B, —k2) V- (k1, B, ko, P+ K1 — k2) G ﬁggl,zz) ,
where
/__ /dmd2p
/ T (27.5)3 (266)
P
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and

1
Gy=— (2.67)

im, —€5
The reason for the appearance of V- in (2¢), (2d) and (2e) is discussed above. Also, the
fermion loop in (2e) is indefinite only if both interaction vertices are of long-range order,
so a case differentiation is necessary. As the interactions are assumed static because of
the infinitesimal coupling, the frequency integration over the two Green’s functions can
be easily worked out:

I &p oz
/F(kukz,l’) gﬁgﬁ+§:/WF(kl,k27P
p

)nF(€ﬁ+q) —nr(gp)
€p+q — &p
(2.68)

Y

1 ~ - _.np(€5.5) —nr(€z)
=V Y, F(ki k2, p) Ly E
Px:Py €p+q — Ep

for an arbitrary function F (%1 ,752, p) and momentum shift §. ng is the Fermi function,
which, for T = 0, becomes the standard Heavyside step function np(€) — @(er —€), and
V is the volume of the given system in units of the lattice constant a = 1. In a numerical
implementation, this V is the number of discretized parcels into which the Brillouin zone
is divided. This results in a summation over py and py, which corresponds to the number
of unit cells considered, what is a consequence of the discrete-continuum relation:

/dx—>Za and /dk/Zn%lel : (2.69)
Xi ki

The integral (2a) yields a divergence upon frequency integration ~ plog(W /). With
Eq. this divergence is compensated for.

2.5.3 Numerical Implementation: Short-Range versus Long-Range

As the number of relevant diagrams differs depending on the long-range character of
the interactions, it is useful to set up three scenarios for the numerical evaluation of the
problem:

1. V=U
Firstly, diagram (2a) is absorbed in diagram (1). As discussed above, the further
diagrams (2¢), (2d) and (2e) are zero. So, only diagram (1) is acting as a projector
and just diagram (2b) has to be computed. Here, the physics of the superconducting
instability is to be found.

2. V=Uy+Us,Us ~ Uy /W
In the case of small long-range Coulomb interactions, as only the terms quadratic in
U are considered, the assumptions of (1.) are still valid. Just the vertex of diagrams
(1) and (2b) should explicitly keep the full V, while all other diagrams are still
negligible. Again, diagram (1) acts as a projector, so both scenarios (1.) and (2.)
differ only by the treatment of diagram (2b).
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3. V=Uy+ U, Us ~ U
Except of the absorption of diagram (2a) in diagram (1), which is still a projector,
the diagrams (2b)-(2e) have to be considered with Eq.[2.63]

With this simple numerical technique, it is possible to evaluate the influence of long-range
interactions on the pairing instability.

2.6 Functional Renormalization Group

The crucial factor in condensed-matter physics is the strength of the interaction between
the electrons. In addition to the bare Coulomb interaction U between the quasiparticles in

the solids, i.e. electrons surrounded by a polarization cloud, also the magnetic interaction

2 . i . ) i
J ~ tU plays a key role. These interactions drive phenomena like metal-insulator

transition, magnetic orders or unconventional superconductivity. However, while the
Coulomb interaction is a few €V, the critical scale for superconductivity is down to some
meV, so very different energy scales have to be considered.

An exact and generic solution of condensed-matter physics is impossible, so one has
to use approaches and model systems to get an access to the physical properties which
can be detected by experiments. For this purpose, the electronic system has to be mapped
to a simplified model which includes all relevant degrees of freedom. “It can scarcely
be denied that the supreme goal of all theory is to make the irreducible basic elements as
simple and as few as possible without having to surrender the adequate representation of a
single datum of experience”!. Also the size of U compared to the bandwidth W is limiting
the practicality of physical approximation methods. An optimal principle has to include (i)
a handling of different energy scales at the same time and (ii) an unbiased implementation
of various orders. For example, the last statement is violated in the random phase
approximation (RPA) [70,/73] because a preselection of Feynman diagrams is executed.
But the functional renormalization group (fRG) provides the claimed properties.

The method combines functional methods of quantum field theory with
the intuitive renormalization group idea of K.G. Wilson. This technique
allows to interpolate smoothly between the known microscopic laws and
the complicated macroscopic phenomena in physical systems. In this sense,
it bridges the transition from simplicity of microphysics to complexity of

macrophysics?.

In the fRG, Feynman diagrams in various particle channels are summed up at the same
time. Hence, there is a competition of several orders and no a priori preselection for
a single phase. By integrating out the high-energy degrees of freedom, the underlying
low-energy long-range orders can be extracted. Furthermore, the temperature at which the
fRG-flow diverges is direct proportional to the critical temperature scale of the instability.

! Albert Einstein in Philosophy of Science, Vol. 1, No. 2, p. 165 (April 1934)
2“Functional renormalization group”from Wikipedia. Wikimedia Foundation, Inc. page version
updated on 24 February 2012 at 20:53. (http://en.wikipedia.org/wiki/Functional renormalization_group)
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Figure 2.14: Simplified picture of the fRG-flow from high to low energies for hole-doped
cuprates (Fig. [I.Z). The important energy scales are the Coulomb interaction U, the kinetic
energy parameter ¢ (hopping) and the magnetic interaction J. Depending on the doping
level, the fRG-flow yields either an antiferromagnetic order at the Néel temperature Ty or
superconductivity at the critical temperature 7.

The first materials studied with the fRG were cuprate superconductors [62,/138,(139].
Although their strong-coupling physics are not the optimal playground for the f{RG, the
results were quite suitable. But its triumphal procession started when it was applied to
new weakly correlated systems. In the last decade, the fRG initially was adopted to
the triangular lattice [[140] and ruthenates with triplet superconductivity [[141]. After the
discovery of iron-based high-7; superconductors, there were a lot of publications on the
iron pnictides [46-48,|142H146]]. In addition, graphene [147,/148] and an anisotropic
triangular lattice [[149] are accessible by fRG calculations.

For this thesis, the fRG was applied to NaCoO (three-band model in triangular lattice)
in Chap. {] to graphene (honeycomb lattice) in Chap. [5| and to a generic kagome lattice
in Chap. /| In this section, I give a short overview of the basic concepts of the fRG and
the derivation of the flow equations. They define the change of an effective action, driven
by the reduction of an external parameter. Here, I focus on the implementation of the
“temperature-flow”. After this, the handling of some technical problems is discussed.
In the conclusion of this section, I give a guide how to interpret the resulting coupling
functions. A more detailed review was published recently by W. Metzner et al. [150].

2.6.1 Basic Concept: The Flow to Low Energies

To illustrate the basic idea behind the fRG, the cuprate superconductors can serve as
an example. The relevant energy scales are plotted in Fig. [2.14] with the Coulomb
interaction U between the electrons as the starting point. For cuprates, the common
assumption is U ~ 4eV. But the long-range orders form at a lower energy scale, where
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(b)

Figure 2.15: (a) The cutoff energy +A divides the band structure in slow modes G- and fast
modes G~. The modes at +A are integrated out and subsequently becoming fast modes. (b)
Corresponding segmentation of the Brillouin zone (BZ).

thermal fluctuations do not disturb them. For this purpose, the high-energy effects have
to be “subtracted”. For example, the critical temperature below antiferromagnetic order
can be formed (Néel temperature) is equivalent to Ty ~ 0.1eV, while the superconducting
transition temperature is even lower, equivalent to 7, ~ 0.01eV. The fRG is a powerful
tool that provides an algorithm to systematically “integrate out” the high-energy modes,
resulting in a coupling function, which acts as an effective interaction. This low-energy
model is appropriate to determine the underlying long-range order of the system. Here,
the size and shape of the Fermi surface (FS) plays a crucial role. It is important to stress
that there are many competing orders and the fRG does not include any preselection. For
example, in the fRG implementation of the cuprates, the result (antiferromagnetism or
superconductivity, respectively) is depending on the doping level because it alters the FS
and, consequently, the nesting condition.

One implementation of the fRG is based on the division of the band structure and the
corresponding Brillouin zone (BZ) into fast modes G~ and slow modes G, as plotted
in Fig. 2.15] The classification follows the cutoff energy A. By a set of differential
equations (“flow equations™), a small decrease of A is evaluated and results in a new
effective vertex, which describes the interaction at this lower energy scale. At this step,
only the slow modes are fully included, while the modes at A are integrated out. The fast
modes are neglected but indirectly considered by the coupling function. This fRG-step
can be repeated iteratively, so A is continuously decreasing and more slow modes are
integrated out and become fast modes. The effective vertex is constantly changing,
resulting in the fRG-flow of the interaction. As every iterative procedure, the fRG needs
a break condition. This happens if the effective vertex is partially diverging, marking
the tendency to long-range order in the system. After the decoupling of the effective
vertex for various channels in a mean-field treatment, the most dominating order can be
extracted. Furthermore, the scale of the critical cutoff energy A, is an upper limit for the
critical temperature of the order.

In summary, the fRG provides a simple recipe: At the start, the total band structure
is included completely in the slow modes, defining Ag. By an iteratively decreasing
of A, the faster modes are integrated out subsequently, resulting in an effective vertex.
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When this coupling function is diverging, the fRG-flow breaks down and the tendency to
a long-range order can be extracted. In the old-style Wilson RG, momenta and fields have
to be rescaled, while integrating out some degrees of freedom [[151]]. This is due the fact
that the quartic part of the effective action has to be form-invariant under the RG-flow.
The functional RG flow equations do not involve any rescaling [[150]. Additionally, the
complete set of source fields remains included in the ongoing flow of the generating
functionals, not only low-energy ones or long wavelength behavior [[150]].

The division of the propagators in the BZ in slow and fast modes is only one
possible implementation of the fRG (“momentum-cutoff-flow”). In general, after a
modification of the flow equations, any arbitrary external parameter can be used. Another
common implementation is the temperature-flow (“7T-flow”, see Ref. [[139]]), and the
“frequency-cutoff-flow” [152]. Even an “interaction-flow” was considered [|153]].

In general, the choice of the flow-parameter depends on regularization of infrared
singularities, minimization of truncation errors, respecting symmetries, and technical
convenience [150]. Within this thesis, I use the T-flow. The advantages of this
implementation will be revealed in the subsequent derivation of the method.

2.6.2 Functional Flow Equations

There are some basic reviews on the renormalization group for fermionic systems [[150,
151,154, 155]], particularly Ref. [150] is focusing on state-of-the-art functional RG. In
this section, I present the required formalism to derivate the flow equations. As a start, the
grand canonical partition function Z can be rewritten in the functional integral formalism
(for details, see Ref. [[69,/75]])

Z= / DDy e VY with

N (2.70)
DyDy = lim I;I1 Hdwi dy} .
In general, the action S has the form
Stw¥l = ~TY65 () W v + TV v ¥ with
T @.71)
Vv = 3 X VOranm) w0 w02 vi) viw)
X142
y1y2

with G being the propagator of the interaction-free system, 7' the temperature, Y and
are Grassmann fields, while x and y are reasonable sets of quantum numbers, including
imaginary time or frequency. Y indicates that an integral or a sum has to be evaluated,
depending on a continuous or discrete quantum number, respectively. Furthermore, some
additional prefactors like volume are omitted. For simplicity, the temperature 7" is only
mentioned if it is important. By introducing some external source fields n and 1, a
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generating functional

FM,A] = —In (/ DyDy e v ¥l eﬂ:(ﬁ"’ﬂm)) with (2.72)
9FG Y 25
G _ _ o
F~10,0]=—In(2) , Y= on and Y= o (2.73)

can be obtained. For the interaction-free system, the partition function of Zy is connected
to Go by

/DWD\Tf X Gy Wy X (Ay+ym) _ /DIIIDITI XG0y —XGylin

J

(2.74)

v~

Zo

Otherwise, for the interacting system, Eq. can be rewritten in a Taylor expansion
with connected Green’s functions G:

FO Al =12+ Y Ga(x.9) A6 ()

xy

1 (2.75)

+ Wz Ga(x1,x2,y1,y2) N(x1) N(x2) n(y1) n(y2) +-..
X1X2
yiy2

To calculate the connected n-particle Green’s functions G»,, one has to derivate the
generating functional with respect to the source fields:

G2n(x17' .. ,xn,y1,...,yn) = —<\|I(X1) .. W(xn) ‘Tf(yn) .. -\_lf()’l))c
1y "7 n, 7 (2.76)
O (x1) -0 () M) - M (1) |y

Here, (...). donates the connected average of products of Grassmann variables. Starting
from now, the one-particle Green’s function G5 is simply listed by G.

A Legendre transform of F¢[n, 7] (Eq.[2.73)) yields the effective action 1 [y, ]:

7 (v = Y Gy ym) + O n. ) 2.77)

The one-particle irreducible vertex functions 1, can be accessed by a derivation of the
effective action with respect to the fields:

0¥ 1 [y, ]
W01) - 09 (m) OW ) - 9W(x1) [y

Don(V1y -y Vs Xl e ey Xn) = (2.78)

For example, in an interaction-free system, it holds

Tl = ~1n 20— Y. Gy (03) W) W) 279
Xy
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The connected n-particle Green’s functions Gy, consist of all permitted combinations of
vertex functions I, with m < n which are linked with free propagators. For example, the
connected two-particle Green’s function

Ga(x1,%2,y1,y2) :z G(x1,23) G(x2,24) Ta(23,24,21,22) G(z1,31) G(22,¥2)

<122
2324

(2.80)

is depending on the two-particle vertex function and four (one-particle) Green’s functions.
The functional derivatives of 71 in first and second order can be written as

= = - = (2.81)

82 T aZ:FI‘
D) [y, §) = (a"’ 9 5X0) 9 Y0 ) — 7T, (2.82)
NG IO

where the second one is abbreviated in a matrix representation. The same is possible for
the second derivative of FY:

P g6 __PFG
FG(2) m,f = — ( an(xgza}lc(y) ag%)rgn(y)> (2.83)
S on(x)an(y)  on(x) M)
-1
FO® 7] = (F-) [y, 9]) (2.84)

Another generating functional is the effective interaction [156]
FV %] = —In <% / DDy X Co WY eV[‘V+X~f‘T’+ﬂ> , (2.85)
with the interaction V as defined in Eq. and new fields
x=Go(x,y)n  and ¥ =Go(»x) 7. (2.86)
A functional derivation of FV [x,%] with respect to the fields y and ¥ yields Feynman

diagrams without external legs and bare internal propagators [75]. The generating
functionals are connected via

7V = FO Ml +1n(Z inGon (2.87)

This can be verified by inserting the substitution y — y — % in Eq. and using Eq.
In an interaction-free system, the functional is F" [y, %] = 0. For the next step, it is useful
to introduce the functional Laplacian

0
iax a ) (2.88)
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With this, the effective interaction

o F Xl — % / DyDy eX Gy WY o~ VIW+x. ¥+

Zy

— ¢ V[.0n] (X Gofn eE(ﬁx+nX)‘ (2.89)
N=n=0

— ¢ V[Pn:0n] X Godydy e)I(ﬁx+m‘c)‘

= Lovpna / DyDy eXCo W LM(v-+0)+n(¥-+1)

n:ﬁ:()
— eAGO er [X7X}

can be rewritten into an expression with functional derivatives.

Now, the effective interaction F" [x, %] has to be calculated. In quantum mechanics, it is
a common approach, firstly, to solve the non-interacting part of the system and, thereafter,
to switch on the interaction slowly (see Ref. [76]). Here, a similar approach is possible.
For that, an external parameter A is introduced, so the bare propagator G is modified to

Gy for A—0
Goa=4 0 . (2.90)
0 for A—Ap

Here, A is the starting condition for the external parameter. A possible implementation
of the external parameter is the cutoff energy A.. In this case, Gy is modified to

Go (i@, k) — Go , (104, k) = CZ)O()' EYC )(2;75)| : ;\))

(2.91)

with 8(75) being the band energy at momentum k and the Heavyside function ®. In this
approximation, the BZ is divided into slow modes and fast modes (see Fig. [2.15] for
illustration). Another goal of the introduction of the modified propagator is to suppress
infrared singularities and prepare a well-defined route to low energies.

In general, the derivation of the flow equations is not depending on the included external
parameter. With the modified propagator Gy, from Eq. 2.90} Eq. [2.89becomes

e_,‘}x/[Xn)_d — eAGO,A e_V[Xn)_d . (292)

For a better legibility, the functional dependencies are omitted from now if they are
obvious. From Eq. and Eq. 2.92|follows that

G
G FY for A—0
= 2.93
Ia {0 for A — Ag (293)
I
r F+ for A—0
= 2.94
Ia {5 for A — Ag (2.94)

\%
v F" for A—0
_ . 2.95
Ia {V for A — Ag (293)
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This implies that ¥, AGFV is solvable for A — Ag. By decreasing A, there is a smooth

interpolation between the interaction V and the generating functional F". Eq. H can
be rewritten to

14 As A As V
e,’r;- = eAGO er —e GO.,A+ Go.a er —e C0A efTA (2.96)

with Eq. and the inverse propagator Go o = Go — Gy . For a cutoff energy, G 4, is
restricted to slow modes. The derivation with respect to the external parameter

:_-‘}-Vd _}X/
fA M TN

Eq.297 7vi AGop o=V

BTN (e o e )

7t yf 4Goa 9 9 gy
dA dJyxdyx

B 2 dGoa 0F) 0F) -~ dGop O*FY
N dA 9y % dA  9x9y
yields a renormalization group equation [156]. With the initial condition F Ao = V> the

full “flow” of FV A 1s determined. Using Eq - and Eq. E the exact flow equations
for the generating functional F° A’ can be obtained:

dG, L 96 dG, L 9246
dgo_ 0A0TX OTN [ 9C0a O (2.98)
dA dA  dn I dA dnan

(2.97)

Both the flow equations for G, A and V>, o generate one-particle reducible terms, which
are more complicated to handle [150]]. This problem is solved by a Legendre transform to
the effective action (Eq.[2.77),

FA W) = Y QI+ Al with (299)
G
Y= aaj;[]\ and Y= aaiﬁ\ , (2.100)

which does not generate one-particle reducible terms [[150]]. The derivation yields

d d d i
A v = i( n\v+wd2>+—ff[n,n]

dFy M, 7] (d_ﬁf_f d_nf_f)
2( >+ dA nvﬁﬁxeﬁi dA T TaA n

Eq. 2100 d 7,0 [, 7]
B dA

n,n fixed

Eq. 08 2 dGy A 27,8 DFC
dA dn a7

—Tr (dGOA azfA )
n,1n fixed da 81181] n,n fixed

e dGy, 1 d -1
Eq P81 0,A - 1 a4~ r,(2) o
- 2 ( dA W) 21 ((dAGOvA> (F® v w) )

(2.101)
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with Fi’(z) being the A-modified version of Eq.[2.82|and

Gy (x,y) 0
-1 0,A X
G, = , . 2.102
0.A ( 0 —G () (2.102)

So the final result for the flow equation of the effective action is

sk vl =~ () -1 (356, ) (75 wew) )

(2.103)

In contrast to the traditional renormalization group by K.G. Wilson [151], which is limited
to momentum shell integration, Eq.[2.103]includes flow equations for an arbitrary external
parameter [150], e.g. the temperature [[139]. But the exact calculation is possible only for
a few special models because the initial condition for 7 is the bare action S (Eq.[2.94),
which includes all combinations of one-particle irreducible vertex functions,

2.6.3 Truncation of the Hierarchy in the 7-flow

If an exact solution is impossible in physics, a commonly accepted ansatz is to expand
the function in a power series and analyze the coefficients. Hence, the effective action is
expanded in powers of the fields

Fi [y, 9] = Zﬂz,l,\ (v, ¥ with (2.104)
n=0
_ 1)" _ _
/an,A[W7W]_(( )2 Y Tona(Vrse oo Xy ) W(y1) - W(ya) Wxr) - W(xn)
Vi
(2.105)

for coefficients with n > 1. The 0-th one is

1
Ao [V, 0] = Fo A [V, V] qum[ 7l Fa 278 —InZ=-_0x, (2.106)

identical to the modified grand potential Q, divided by the temperature 7. The final flow

equation (Eq. [2.103) includes the inverse of F i’(z) [

—1
— (FYP 1y ([ Gal(x,y) 0
Gp = (FA [W?W]‘WZ\TI:O) o < 0 —GA(y,x)> ) (2.107)

the second derivative of the effective action can be rewritten to

v, y]. With the full propagator

FL® y, ] E“':@?Zf L (Ga) " +(Ga) !

J/

T 2.108)

=(Ga)' —Eav,¥] ,
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hence the inverse yields

(F ¥ ewl) = () Sa i)

= (1-GAEA [W.9]) ' G
= (14 GAZA W, W]+ GAZA [W, 7] GAZA W, ] +...) Ga

(2.109)

where a geometric series is used. Inserting this result in Eq. [2.103] and using the cyclic
invariance of the trace, the result is:

d r dGyp _ 1 d 1) (pr@) !
—A—"A—‘i “ax 0] =31 ( (gaGoh ) (1)

B dGa,/l\ B d
= — yy | — —T G (1 + GAZA + GAZAGAZA +.. ) Ga

dA 2 dA
dG; ! dG=
= _2 07A T _Tr OAGA
dA dA
—nr(|6a(56G5h )6 (EA+EAGAEA +...)
2 A\ aA Al (B +2AGAZA
dGop dGy 1 L
:—2( aA W> —Tr( A Ga _ETr(SA(ZA+2AGAZA+...))
(2.110)
Here, the single-scale propagator Sx(x,y) is involved, which is defined as
d
SA = —GA
dA Y fixed
d _ -1
~dA (GOA ZA)
o fixed @2.111)

_ 1 ( d _ _
ok () oz

d
—GA<dAG )GA,

where the Dyson equation G = (Ga AT YA)~!is used. The matrix representation is

_ (Salxy) 0 d
sA_( 0 —SA(y,x)) GA<dAG )GA (2.112)



CHAPTER 2: Models and Methodology 53

N
d
@ Fr= = @

S
te (o)
d
. — .
d
9 iten - @ @ 5.5

Figure 2.16: Diagrammatic representation of the flow equations of the first three orders. Red lines
with a dash image the single-scale propagator Sy, the other intern lines the fully dressed normal
propagator G . (a) The first order corresponds to the self-energy ¥4 and includes a two-particle
vertex I'4 o, which flows in the second order (b). That in turn includes a three-particle vertex of
the third order (c), and so on. Hence, this expansion does not close.

Now, one can expand both side of Eq. 2.103] in a power series and compare the
coefficients. This yields a system of differential equations for 4, A:

dG;!
_ﬂ“__ dA
4 oaa= —1Tr(sAaﬂ14A 2G v
dA 2 0.A

d—Af447A = —ETr (SAazﬂ@A) + ETT (SA8252147A82544,A)

(2.113)

d 1
d—Aﬂé,A = —ETT (SAaz/qS,A) +

Inserting Eq. the first two orders of the hierarchy read

d
—Z I
A Ay Z; Sa(z1,22) Tan(y,220,%,21)
21,22
d
JF“ A1, Y2,x1,x2) = 2 Sa(z1,22) Te a(V1,¥2,22,%1,X2,21)

21,22

+X GA(z1,22) SA(z3,24) - (F4,A(YI7YZ;ZI,Z3) T4 a(22,24,%1,%2)
21,22
23.24

=Ty a(y1,24,%1,21) Tan(z2,52,23,%2) = Taa(v1,22,%1,23) Taa(24,¥2,21,%2)

+ T4 a(2,24,%1,21) Taa(22,51,23,%2) + T4 A (¥2,22,X1,23) r‘4,/\(24,)’1,Z1,)62)> -

(2.114)
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! Yy 1 Yy 1 Y2 21 Y2
L1 g, SA U | PN | VN |V |VWN
d z3 ) Z1 Z4 z3 Z9 Z1 Z4
— = — — (
AL Lan Lan . i J ) + . t + J IZ
21 - 29 4 1 2 3 4 1 2 3
i
2 Ga Y2 Tyn | N |V | VN
| 4 F2 Y2 T2 Y2 X2 Y1 T2 Y1
particle-particle direct particle-hole crossed particle hole

Figure 2.17: In detail diagrammatic representation of the contributions to the flow of the
two-particle vertex I'y o, with I's o being cut off. The diagrams can be sorted into the
particle-particle (one member), the direct particle-hole (two members) and the crossed
particle-hole channel (two members).

This leads to flow equations for the self-energy X (Fig. [2.16R), the two-particle vertex
I'4 A (Fig. @p), the three-particle vertex I's A (Fig. @]c) and higher-order vertices like
I's A, T'10,a, etc. The internal lines Ga and Sp are dressed by self-energy corrections.
Only one-particle irreducible one-loop diagrams contribute. This yields an infinite series
of diagrams because the flow of the n-th order vertex I';, o depends on an (n+ 1)-th
order vertex 15(,41) A- The diagrammatic representation of the flow equations is show in
Fig.[2.16] If the contribution of I's 4 is neglected, the flow for the two-particle vertex can
be plotted in detail (Fig.[2.17). Red lines with a dash image the single-scale propagator
SA, the other intern lines the fully dressed normal propagator G5. Here, the resulting
diagrams can be sorted into one particle-particle and four particle-hole diagrams. The
flow equations and the diagrams for the higher-order vertices I', o with n > 6 can be
calculated in a similar way.

Since the hierarchy of flow equations is an infinite series, one has to set a break
condition at a well-defined order. It is accepted to cut off all flow equations for I', o
with n > 6 [150]. Indeed, a focus on the second-order flow equation with the neglect
of three-particle vertex I'g o is sufficient to get the competition of different orders like
superconductivity, spin-density and charge-density waves [150]]. Although this low-level
truncation looks similar to a Hartree-Fock approximation, it is completely dissimilar and
works also in systems where Hartree-Fock fails [[150].

Up to now, the exact modification of the bare propagator G has been irrelevant. Only
the boundary conditions were defined in Eq.[2.90] namely

Goa =

)

fi A
{Go or —0 2.115)

0 for A=Ay’

with the external parameter A. For the calculation of the contributions in Eq.
one has the choose a reasonable A. Usually, a simple cutoff in the energy of the
free propagator is implemented [62]. For that, Gp is multiplied with a momentum- or
frequency-dependent cutoff function (Eq. [2.91). Thus, the propagators are divided into
fast and slow modes, where the latter ones are integrated out step by step (Fig. [2.15]). This
is similar to the old-style Wilson RG [151]], where momentum modes are integrated shell
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by shell. Unfortunately, local conservation laws are violated, resulting in A-dependent
Ward identities [150]. Another crucial error arises from the fact that only small shells
around the finite cutoff energy are considered in an fRG step. Hence, collective modes
with an ordering vector Q = (0,0) (e.g. ferromagnetism) are omitted until the end of the
flow, when A — 0. Thus, these orders are completely underestimated compared to other
competing orders which are considered for any A < Ag. Consequently, Q = (0,0)-orders
are not visible in the cutoff flow. In addition, the cutoff-energy flow has to be separately
executed for each relevant temperature. For details, the review of W. Metzner et al. [[150]
elaborately responds to the flow driven by a cutoff energy.

The second common external parameter is the temperature 7 [[139], which provides
several advantages: On the one hand, there is a direct temperature dependence, so
the critical scale of the flow parameter T is identical to the critical temperature of the
instability. On the other hand, in the 7-flow the complete energy spectrum is considered
at each step, so low-energy particle-hole excitations with small momentum transfer are
correctly handled. Hence, orders with ordering vectors Q = (0,0) are in competition.
Thirdly, the local symmetries and their corresponding Ward identities are respected at
least with the complete hierarchy [|150].

Due to these benefits, I implemented the T-flow. Here, one starts by moving the 73
prefactor of the interaction in Eq. to the fields. For that, some new fermionic fields

Yr=T*y and vy =Ty (2.116)

are introduced. Thereby, only the quartic part of the action remains 7-dependent. Here, a
new bare propagator can be defined:
. T 1/2
Gor(io,, k) = —— (2.117)
’ iw, —€(k)
With this modifications, the effective action in the new fields TTF [wr,Pr] is form invariant
to the basic flow equation (Eq. 2.103). In this approach, self-energy corrections are
neglected. In addition to the truncation of the flow equation hierarchy, this restricts the
implementation of the fRG used within this thesis to weakly correlated fermionic systems.
Hence, as a rough estimate, the total strength of the interaction has to be smaller than the
bandwidth of the spectral function [[157]. An fRG implementation including self-energy
corrections and frequency-dependence is presented in Refs. [158]159]. These expansions
only effect the critical scale of the flow but do not change the leading instability. Without
self-energy corrections, the dressed one-particle propagator is identical to the propagator
of the free system
. T 1/2
Gr(ioy, k) = — . (2.118)
iw, —e(k)
Thus, the single-scale propagator S7 (Eq. 2.1T1)) in the T-flow implementation is given
by
L o d 2 L
St(imy,, k) = Gr (10, k) (d_TGOI(lw”’k)) Gr(im,,k)
T2 e, +¢(k)

2 (imn _8(7()))2 .

(2.119)
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For simplicity, a combined index

10 ,75 =k as well as
(100, &) o (2.120)
e(ky) := & and ®, ;= O

are introduced. If the system’s Hamiltonian consists of more than one band, this
combined index may also include a band index. In general, the effective action has to
preserve all symmetries of the initial action. For a spin-rotationally invariant system, this
requires [[150]

L4 7(k1,01,k2,62,k3,03,ks,04) =
VT(k17k27k37k4) 861(5360264 _VT(k27k17k37k4) 6(516486263

with the four-point interaction V7. Here, the translational invariance of the lattice and the
time forces a momentum conservation at each vertex. Thus,

(2.121)

Vi (ky, ko, k3, ks) = Vi (k1 ko k3, ky + ko — k) . (2.122)

If a multiorbital system is considered, the 4-th momentum has still a degree of freedom
due choosing the band index. As an auxiliary construction, a product of a full propagator
Gt with a single-scale propagator S7 is defined:

Ly (ki,kz) = St(k1) Gr(k2) + Gr (k1) St(k2)

B 1 107 + € 1 1 107 + €
N 2 (i(x)l — 81)2 10 — & 10 — €1 (i(Dz — 82)2
WM +€1€ (2.123)

(i) —€1)? (i — )2

_d (1 1
N dTr 1MW) — €110 — &

Now, Eq.[2.114|can be rewritten to

d
FE0 (0 == [ d'p @Vr(k.p.k.p) = Ve (k. p.p. ) Sr(p)
d
ﬁVT(kl;kZ,k&lM) = Gpp,7(k1,k2,k3,ks) + Capn,7 (k1 k2, k3, ka) + Copr 7 (K1, k2, k3, k)
(2.124)
with

Cop, 1 (k1 ,k2, k3, k) = /d4p Vr(ki,ka,p) Lr(p,—p+ki+k2) Vr(p,—p+ki + k2, k3)

Capn,1 (k1,k2, k3, ks) = /d4p (=2Vr(ki,p.k3) Lr(k,p+ki —k3) Vr(p+ki — k3, k2, p)

+VT(klapap+kl _k3) LT(p7p+kl _k3) VT(p+k1 _k3ak27p>
+VT(k17p7k3) LT(p7p+kl _k3) VT(k27p+kl _k37p))

Cepn, 7 (k1 ,k2, k3, ka) = /d4p Vr(ki,p+ky—ks,p) Lr(p,p+ko—k3) Vr(p,ka,k3) .
(2.125)
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HeAY X

Cep,T CapH,T CePH,T

Figure 2.18: Diagrammatic representation of the contributions to the flow of the four-point vertex
Vr(ki,kz,k3,ks). The diagrams can be sorted into the particle-particle (Gep,r) as well as the
direct (Cgpn,7) and the crossed particle-hole (Cepy,7) channel. Each diagram has two intern
lines (blue), where one of them is a single-scale propagator S, the other is a full propagator
Gr. So, in total, ten distinct diagrams have to be summed up.

The contributions to the second-order flow are divided into a particle-particle channel
Cpp,r and a direct and crossed particle hole channel Cypy,r and Ceph,7, Tespectively (see
Fig. [2.18|for a diagrammatic representation). The frequency dependence of the coupling
function Vr (ky, k2, k3, k4) is not considered. That is possible because its most singular part
is at zero Matsubara frequency [[150].

At this point, the generic derivation of the fRG-flow is completed. At the beginning
of the calculation, a starting interaction Vr o has to be selected. After this, the derivative
of the four-point vertex with respect to the temperature %VT can be calculated by the
evaluation of one-loop diagrams. While the flow parameter 7 is decreased in small steps,
the effective vertex Vr develops the signature of a dominating instability.

In detail, some technical issues concerning the implementation of the fRG-flow have to
be considered, which are presented in the following section.

2.6.4 Implementation

At each fRG-step, the flow equations have to be solved (see Eq. [2.125] or Fig. 2.18§]
respectively). For this purpose, five one-loop diagrams have to be considered, with
two alternatives each. In any diagram, there is one free internal propagator. While
the integration of the momentum has to be numerically solved, the summation over
the Matsubara frequencies can be done analytically (see App. [A.3] for an extensive
calculation). The results reads

d d
ir (nF(8%1+%27ﬁ1)> +ar (nr(€p,))
+8ﬁ1

LT,PP(phkl "52 Pl) - -
k1+ky—p1
d ( )

<nF (e_zl+z2+ﬁl)> a7 <nF (eﬁl))

8—7&1 +7<'2+ﬁ1 o 81-7'1

O-lc_

Lrpu(Pr, —ki + ko + B1) =

for the particle-particle and the particle-hole channel, respectively.

The numerical integration of [d®p is still intricate, but the j,-dependence can be
neglected and thus the integration simplifies to two dimensions because the focus of
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Figure 2.19: Patching scheme for the discretization of the Fermi surface (FS). The bounds of the
patches are indicated with solid blue lines. The umklapp surface (dashed blue line) ensures that
each patch intersects the FS (red line). All vectors within one patch, e.g. the yellow shaded
area, are mapped to one point at the FS (red dots). (a) Quadratic BZ for the quadratic lattice
(Sec.[2:2). (b) Hexagonal BZ for the kagome lattice (Sec. [2.2), very similar to the patching
schemes for the triangular (Sec. @ and honeycomb lattice (Sec. @)

this thesis is on two-dimensional lattices (Sec. 2.2). To get the angular momentum
dependencies very accurately, the numerical integration is performed in polar coordinates

[[r dr do. Next, coupling function Vi (ki,k»,k3) in Eq. [2.124] and Egq. [2.125
BZ
includes three momenta as continuous input parameters (the 4th 1s fixed by momentum

conservation). To implement the exact flow equations in a computer program, one would
need an infinite number of variables to get the complete momentum resolution in V7.
Hence, some kind of discretization is needed. Also, one has to take into consideration that
with N discretization points, V7 has the dimension N x N x N. Consequently, N is limited
in size. The discretization into the patching schemes displayed in Fig. 2.19] exposed to
be a well-working choice [[155]. Here, the BZ is divided into 48 up to 256 patches.
Certainly, more patches are possible, but the dramatic increase in CPU time is confronted
to a minimal improvement of accuracy (at least in the models I used). To ensure that
each patch intersects the FS, an umklapp surface is implemented. The centers of the
FS within the patches are the discretized momenta, so Vg (%1,%2,%3) — Vr(k1, ko, k3).
The reduction of the full momentum dependence to momenta on the FS is a reasonable
approximation because excitations of particles around the Fermi energy need only a slight
amount of energy, and so they are the most probable ones. Also, the life time of the
quasi-particles increase when approaching the Fermi energy. All vectors have to be
mapped on the patch vectors. For example, if the 4th momentum ks = ki + ko — 753 is
somewhere in the yellow shaded area in Fig. one has to map 754 — %patch 33. Due to
the discretization and mapping of the momenta in the BZ, some symmetries are broken.
For example, Vr(ki,ky,k3) = Vr(ko,kyi,ks) is generally not correct. But the angular
momentum dependence around the FS is approximated very well [[150]]. This is sufficient
to capture the correct long-range order of the system. With the previous assumptions,
the implementation of a numerical fRG-flow is possible. The starting value of the flow
parameter 7 should be chosen sufficiently large, so all high-energy modes are included.
This is satisfied if Ty is in order of the bandwidth.

The next question is, when the flow has to be terminated. This is the case if one element
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Figure 2.20: Flow of matrix elements in coupling function Vr(ky,k2,k3). The dimension of the
matrix is N X N x N with N being the number of patches. Here, only the larges element (red
line) and the smallest one (green line) is plotted, together with some arbitrary elements (other
lines). Just before the critical value of the flow T is reached, the coupling function is quite
homogeneous (see amplification). After this, some elements are diverging. This is the break
point for the fRG-flow.

of the coupling function becomes significantly large and surpasses the bandwidth [62./150]]
(Fig. [2.20). If this happens, the truncation of the flow equation hierarchy after the second
order, as described in Sec.[2.6.3] is not a well-defined approximation any more. At this
point, the flow has to be terminated. But now, the renormalized coupling function includes
the dominating fluctuations, so the tendency to long-range orders can be extracted.

When the fRG coupling function Vp(ki,kp,k3) is “flowing”, controlled by the flow
equations, various orders are competing with each other, until one order gets totally
dominant and the flow breaks down. The fRG is a weak-coupling approximation, so
long-range orders accompanying with a reorganization of the FS are out of range. But
the diverging instability at the break-down of the fRG-flow demonstrates the tendency to
form long-range orders at low energies. Hence, the goal of this principle is to determine
which order is dominating at low energies. During the flow, various scattering processes
take place with different amplitudes, depending on the changes of the coupling function

A =Vr (ki ko ks ka) & | & & & (2.127)
Here o indicate additional degrees of freedom, e.g. a band or a sublattice index. They
are omitted in the following derivation, except they are necessary. To determine the
strength of an arbitrary order, a mean-field decoupling into one-particle operators O can
be performed [160,[161] (for details, see App.[A.4). For this purpose, the Hamiltonian for
scattering processes is decomposed to

(2.128)
=Y Xwir) 1) £ (5.7) | 010,

In the second step, the decoupled vertex Vr (%, p) is rewritten to a representation with
eigenvalues w;(T) and eigenvectors fi(k,7). When the fRG-flow is running and T is



60 CHAPTER 2: Models and Methodology

subsequently decreased, the absolute of the most negative eigenvalue is growing. This
indicates that the system is tending to develop an order within this channel. For all
combinations of O, a mean-field decoupling has to be performed. The system tends to
the order with the (absolute) largest eigenvalue w;. The dominating order is characterized
by

0 =Y fi(k) (07) , (2.129)

with the order parameter O;,. The eigenvector fl(%) represents the transformation
characteristics under rotation and reflection of the lattice (see Sec.[2.3]for details).

The tendencies to long-range orders can be separated in various channels by a
mean-field decoupling [161]]. These instabilities are accessible in each fRG step, so the
flow to long-range orders can be logged. The detailed derivation is done in App.[A.6] The
final results for the mean-field decoupled vertex read

Vspw (k, B, 0,T) = —2Vr (k, B, p — 0,k + 0)
Veow (k. 5.0.7) = Vr (. 5.+ 0.5~ 0) ~ 3V (K. 5~ 0.5+ 0)
Vem(k, B, T) = =2V (k, B, ﬁjé)l 2.130)
Vei(k,p,T) = Vr(k, p,k,p) — EVT( , D> D,k)
Visc(k, 5, T) = Vi (k, =k, B, —P) + Vi (k,—k,— P, P)
Visc(k, p,T) = Vr (k,—k, p,—p) — Vr (k,—k,— P, P) -

The labels of the channels are spin-density wave (SDW), charge-density wave (CDW),
ferromagnetism (FM), Pomeranchuk instability (PI), singlet superconductivity (sSC) and
triplet superconductivity (sSC). These labels give only a hint to the actually realized real
space pattern of the long-range order. For example, in the kagome lattice, the charge
bond order forms in the CDW channel (see Sec. for details). Depending on the
symmetry point group of the system, an analysis of the degeneracy of the eigenvalues and
the form of the eigenvectors allows a more accurate denotation of the orders, e.g. s-wave,
p-wave or d-wave superconductivity. Now, it is possible to distinguishing between the
dominating orders at any step of the flow, as plotted in Fig. At the break condition
of the fRG-flow, the absolute eigenvalue of one channel is dramatically increasing, which
determines the resulting long-range phase of the system.

The leading eigenvalue of the mean-field decoupled channels is a first hint to the
realized long-range order of the system. A more accurate indication is the grand potential,
which has to be minimized. The mean-field decoupling can also be used to determine the
size of the band gaps which are triggered by long-range orders [160]. I will present
the formalism for the Cooper channel with the (not yet symmetrized) pairing operators

dg. = 6{%61(7 X The other channels can be handled analogously. In the Cooper channel, the
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Figure 2.21: Examples for the flow of the leading (negative) eigenvalues in various channels for
Na,CoQO, with initial interaction U; = 0.24eV, U, = 0.31eV, Jg = 0.09¢V, and Jp = 0.09eV
(see Chap. 4] for details). (a) At a doping level of x = 0.15, the eigenvalue in the d+id channel
is diverging at 1.7meV, equivalent to 20K. (b) With an increased doping level of x = 0.24, the
flow stops already at 5.8meV or 67K, respectively. Here, the SDW channel is dominating.

Hamiltonian in momentum space reads (Eq.[2.1] Eq.[2.3))
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(2.131)
with the order parameter (Eq. [2.129) of the pairing field
ZV air (K, 4)(C_5/Car) - (2.132)

Now, the Nambu formalism can be applied, and the resulting 2 X 2 matrix can be
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diagonalized
A [ AT n 8(76)) A;(* 6kT
Hpalr:Z <CE cq><
Tk ¥ —g(— ¢
Al Ak 8( ) c_h
Sy |(g e o TVEREIAE " UT<€3T>
2 R 0 —/(e(R))2+ |2 ey
(2.133)

Here, the additional constant X is neglected because it shifts only the ground-state

T
a.
energy [162]. The modified creation and annihilation operators (A k ) =U7 ( kt )

- iy
are linear combinations of the bare electron creation and annihilation operators. Thus,

the Bogoliubov-transform matrix U mix up electrons and holes, so a correspond to

quasiparticles. The Hamiltonian can be written in these new creation and annihilation
operators, so

(2.134)

with E(k) = \/(8(75))2—!—|A%|2 being the one-particle excitation energies of the
quasi-particles. The grand potential corresponding to this Hamiltonian reads

— —

k k

Q=-TYn (1+e£@) +Ze(%)+2 )=y (e A,iﬂki ; (2.135)
k k

and its stationary points with respect to the pairing fields define the gap equation of the
pairing state to [[162]

1) 1 A; (3)
2y o oa=-lyyy 7 tanh(— .
oot % pair (K = (2.136)

The form factor of the gap can be solved iteratively because Eq. [2.136] provides a
self-consistency check. At the start, one can use the form factors of Eq. 2.129] At
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convergence, one can calculate Q by inserting Eq.[2.136)into Eq. 2.135}

Qua=-TY Y In (1 +e_£§)> +Y e(®)+Y E(k)
o i k k

- ! .- Z(3)
o A;‘ AT o . — q
§<C%TC_7<‘~L> ( N ;Vpalr(kycI) 2%:(6) tanh ( 2T

— 7YY n (1 +e£§z)> +Y e®)+Y E(K)
o 7 %

AZA- E(q)

q 4
tanh | —=%
Lo ™ ( 2T )

(2.137)

k

Q)

Now, the grand potential of all decoupled orders can be calculated. The order with the
lowest one is realized. Also, if more than one possible form factors are competing, e.g. if
there is a degeneracy in eigenvalues, the most favorable can be determined. Also a linear
combination might be realized.

2.6.5 Visualization of Competing Orders

With the theoretical background of the latter sections, it is possible to picture distinct
orders. The flow of the leading eigenvalues in various channels, e.g. plotted in Fig.
gives a first hint for the competition between different orders. The final confirmation
needs the iterative solution of the gap equation (Eq. with a subsequent evaluation
of the grand potential (Eq[2.137). However, in my results, the channel with the leading
eigenvalue had the lowest grand potential.

When any element in the coupling function V(ki,k»,k3) exceeds the predefined
threshold, the fRG-flow has to be aborted. Now, V(kj,k»,k3) is an effective vertex
which is not homogeneous any more but includes dominant and suppressed scattering
processes. These channels can be extracted by the mean-field decoupling described
in the latter section. But the dominating channel is also visible in the final vertex, as
presented in Fig. for a simple one-band Hamiltonian in the quadratic lattice. Since
V(ky,k,k3) includes three independent momenta, one is fixed to get a two-dimensional
density plot representation. Also, the discretization of the BZ into N = 64 patches
has to be considered. By modifying the parameter setting, the final effective vertex
develops distinct patterns, which are characteristic for various long-range orders. At
phase transitions, two distinct orders are in a close competition, so the vertex cuts have
patterns of both orders and the winner is not obvious. Then, the evaluation of the grand
potential is required to determine the realized order. Furthermore, while the patterns in
Figs.[2.22b,c are continuously positive or negative, respectively, there is a clear change of
sign in Fig. [2.22p. Hence, the SDW and CDW presumably feature an s-wave form factor,
while the SC one is more intricate.

This result can be verified by the mean-field decoupling of the final vertex, where the

eigenvector corresponding to the leading eigenvalue determines the form factor. Thus, the
s-wave form factor of the SDW and the CDW phase can be confirmed (Fig. [2.22k,f). In
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Figure 2.22: (a-c) Examples for cuts through the final coupling function V (k;,k»,k3) and (d-f)
the corresponding form factors for a simple one-band model in the quadratic lattice (see Sec.[2.2]
for details). The division of the BZ into 64 patches is plotted in Fig.[2.1%. The 3rd momentum
is set to patch 31, while the 4th momentum is fixed by momentum conservation. The particle
density is set to n = 0.5 and the other parameters are (a) ¢’ = —0.3¢ and Uy = 4.0z, (b) ¢’ =
0 and Up = 0.4¢ or (¢) ' = 0 and U; = 0.4¢, respectively. Here, the nesting vector is Q =
(m,m). For each setting, a representative pattern emerges which has to be compared to the
mean-field channels in Eq. Hence, the visible phases are superconductivity ((a), SC),
spin-density wave ((b), SDW) and charge-density wave ((c), CDW), respectively. (d) The SC
form factor (solid line) clearly features nodes. A fit to harmonical functions in the quadratic
lattice (dashed line) yield a very good correlation to cos(k,) — cos(ky), which corresponds to
d-wave superconductivity with pairs on nearest neighbors. (e,f) In the SDW and CDW phase,
the form factor does not have any nodes, hence it is of s-wave type.

opposite, the form factor for superconductivity (Fig. [2.22[d) includes clear nodes. Now,
the harmonical functions of the underlying quadratic lattice have to be considered (see
Sec. [2.3] for details). In addition, the distance of the pairs is important. Thus, a pairing
between particles on nearest neighbors, next-nearest neighbors, 3rd-nearest neighbors and
s0 on has to be tested. In Fig.[2.224d, the best fit is cos(k,) — cos(ky), which corresponds
to a d-wave pairing between nearest neighbors.

These considerations are based in the momentum space. To get a real-space pattern, one
has to perform a Fourier transform (Eq. [2.11)). Additionally, the band representation has
to be rewritten to an orbital or sublattice representation. For this purpose, the mean-field
decoupling of the final vertex (Eq. is combined with the Bogoliubov-transform
matrix elements u, (k). V(ky,ka,k3,ks) depends on four independent momenta and the
sublattice structure of the order is unknown, so all combinations of sublattice indices
have to be checked. Different possible nesting vectors have also to be considered. After
this, the leading eigenvalues determine the dominating phase and the corresponding
eigenvectors coincide with the form factors. This reveals a possible real-space pattern. For
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example, the instability in the charge-density channel in the kagome lattice can clearly be
transformed to an expectation value for a directed hopping between sublattices, resulting
in a bond-ordered phase, as presented in Sec. Otherwise, after the transformation of
the spin-density wave channel for graphene, there is no significant sublattice structure.
This suggests that the real-space pattern of this SDW phase is intricate. A detailed
discussion about that order is given in Sec. [5.6]

2.7 Confrontation of Methods

To conclude this chapter, I present a confrontation of the analytical renormalization group
(aRG), the functional renormalization group (fRG) and the variational cluster approach
(VCA). There are similarities and distinctions in following properties, with the most

important characteristics highlighted by colors:

| aRG fRG VCA
technique renormalization | renormalization embedded cluster
coupling infinitesimal weak intermediate - strong
Space momentum momentum real
temperature upper limit for 7. | upper limit for 7, T=0
underlying lattice any any any
(Sec.
discretization BZ patching BZ patching reference cluster
(Fig.[2.19) (Fig.[2.19) (Fig.2.11)
hopping range any any any
interaction range any any local: exact
long range: mean-field level
competing orders SC only unbiased explicit with Weiss fields

Firstly, the appropriate interaction scales from infinitesimal to strong coupling, so the
choice of a suitable method is deeply depending on the simulated system.

Furthermore, there are no competing orders in the aRG because this
infinitesimal-coupling approach is sensitive only to the superconducting instability.
On the other hand, the VCA is capable of including any competing order. But each
possible order has to be implemented by an additional Weiss field, increasing the
reference-cluster test space. Thus, the optimization of the grand potential is depending
on further parameters, essentially increasing the CPU time. Hence, the limitation to a
few reasonable Weiss field is recommendable. Only the fRG is totally unbiased without
any preselection of competing orders. Thus, also unforeseen long-range orders are
detectable. Due to the momentum-space nature of the fRG, the real-space pattern of the
dominating order is revealed by a Fourier transform. For some tricky orders, this can be
very complicated.

At the end of the theoretical part of my thesis, this overview summarizes the implemented
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numerical techniques with their fields of application and their features. In the next
chapters, these techniques are applied to convenient model systems.

The models and derivations of this chapter give a small insight to the complexity of
condensed-matter physics. It is fascinating what intricate systems can be simulated with a
sophisticated technique and the results are in good agreement with the experimental data.

The first class of materials considered within this thesis are the high-7,. cuprates. This
class includes La,_Ba,CuQy, the first-discovered non-phonon-mediated superconductor.



Three-Band versus One-Band
Hubbard Model for the
high-7. Cuprates: Pairing
Dynamics, Superconductivity
and the Ground-State Phase
Diagram

One central challenge in high-7, superconductivity is to derive a detailed understanding
for the specific role of the copper Cudxz_y2- and oxygen O, -orbital degrees of freedom.
In most theoretical studies, an effective one-band Hubbard or t-J model has been used.
Here, the physics is that of doping into a Mott-insulator, whereas the actual high-7,
cuprates are doped charge-transfer insulators.

To shed light on the related question, where the material-dependent physics enters, I
compare the competing magnetic and superconducting phases in the ground state, the
single- and two-particle excitations and, in particular, the pairing interaction and its
dynamics in the one- and three-band Hubbard models. The question is, which frequencies
are relevant for pairing in the two models as a function of interaction strength and
doping. In the three-band models, the interaction in the low- to optimal-doping regime is
dominated by retarded pairing due to low-energy spin fluctuations with surprisingly little
influence of interband charge fluctuations. On the other hand, in the one-band model, in
addition a part comes from “high-energy” excited states (Hubbard band), which may be
identified with a non-retarded contribution. These differences between a charge-transfer
and a Mott insulator are renormalized away for the ground-state phase diagram of the
one- or three-band models, which are in close overall agreement, i.e. are “universal”.

The results of this chapter are published with W. Hanke, M. Aichhorn, S. Brehm and
E. Arrigoni in Ref. [1].

3.1 One or Three Bands?

Many aspects of the physics of cuprate high-temperature superconductors remain
mysterious, despite impressive progress both on the experimental and theoretical front.
One key issue is, why are these composed out of CuO; planes and what is the specific
role of Cug- and O,-orbital degrees of freedom? The cuprate materials in the undoped,
i.e. half-filled situation, are charge-transfer insulators [[163],/164]. This fact induces an
experimentally observed asymmetry between hole and electron doping: While doped
holes go onto O-orbitals and may be bound to Cu spins to form Zhang-Rice singlets,
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doped electrons reside mainly on the Cu-orbitals [165-176]. This is believed to be
intimately related to the more extended stability of antiferromagnetic (AF) behavior
as a function of electron doping compared to that of hole doping. While introducing
electrons on the Cu-sites merely produces a dilution of spins, holes on O-sites create
a ferromagnetic coupling between neighboring Cu-orbitals, which is significantly more
effective in destroying the AF order. Beyond magnetism, the asymmetry is also exposed
in the superconducting (SC) behavior with the hole-doped materials exhibiting SC usually
over wide doping regimes and with high 7;.’s up to 150K, whereas in the electron-doped
system 7, is low and confined to a very narrow doping regime.

In much of the high-T, theoretical studies, the starting point has not been the above
three-band Hubbard model but instead the one-band Hubbard and 7-J models [84}165].
Here, the oxygen degrees of freedom are approximately eliminated via the Zhang-Rice
construction [[165]]. The mapping has as a crucial consequence that the undoped model
systems are Mott insulators and no longer governed by the charge-transfer energy A,y
between the Cu- and O-orbitals. Analytical and, in particular, numerical calculations
based on these two-dimensional single-band models have demonstrated Fermi surfaces
(FS), single-particle spectral weights, AF spin correlations and d,»_» pairing correlations
in qualitative agreement with experimental measurements [25,98,/106,177-183]]. This fact
has significantly contributed to the wide-spread belief that the physics of high-7; cuprates
is that of “doping into a Mott insulator” [[17]. However, how can this picture be reconciled
with the charge-transfer insulator picture embedded in the three-band model? Can it be
that the charge-transfer energy A, in the three-band model, the size of which is already
decisive for the accuracy of the one-band reduction [1635]], plays the role of an effective
on-site Hubbard U in the one-band models?

Quantifying these ideas requires solving the strongly correlated electron problem for
the three- and one-band Hubbard models at very low energy (and/or temperatures).
Early Quantum-Monte-Carlo (QMC) calculations for the three-band model showed
that characteristic features such as the doping dependence of the electronic
single-particle excitations and their interplay with magnetic excitations are in accord
with experiment [166,|167]. However, the very low-7 or ground-state properties
including the SC state, could not be reliably resolved, due to the well-known minus-sign
problem [184,/185]. The variational cluster approach (VCA, presented in Sec. [2.4)
has been shown for the one-band model to correctly reproduce salient features of the
ground-state (7 = 0) phase diagram of the high-7,. cuprates [25(106,114,/179]. In
particular, the AF and d-wave SC ground-states were found in doping ranges qualitatively
in accord with experimental data for both electron and hole doping such as the different
stability of the AF phase, in good agreement with experimental data (for a review, see
Ref. [12]]). It can be accounted for by a simple one-band model where the electron-hole
symmetry is broken by a longer-ranged (next-nearest) hopping term [[186]]. Regarding the
possibility of the reduction to a one-band model, there are questions concerning the direct
applicability of the Zhang-Rice construction. As discussed in the literature before [171]],
the natural tendency of a finite oxygen band width is to delocalize and to destabilize the
Zhang-Rice singlets. Secondly, the pragmatic finding that a 7-t'-U one-band model with
a significant value of ¢/, captures basic physics of the cuprates and in particular their
electron-hole asymmetry, cannot be accounted for in a strict Zhang-Rice picture [187]. In
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Figure 3.1: (a) Quadratic lattice with one Cu- and two-O sites per unit cell. (b) Orbital phase
factors for Cug-O, hopping #,4 and direct O,,-O, hopping t,,.

this picture, next-nearest-neighbor hoppings are very small compared to nearest neighbor
terms (if again O-O hopping 7, is taken into account).

What I will show in this chapter is that the three-band Hubbard model and a one-band
t-t'-U Hubbard model with a significant value for ¢’ (which may be taken as an empirical
parameter adjusted to fit the Fermi-surface topology [188]]) exhibit a similar low-energy
(here specifically, T = 0) physics concerning the qualitative behavior of the ground-state
phase diagram [[106] and of the single-particle excitations including the asymmetry as a
function of electron and hole doping.

3.2 Models and Reference Clusters

The starting point is a two-dimensional three-band Hubbard model (Sec. 2.1), with a unit
cell featuring one Cu- and two O-sites. Using the Pauli exclusion principle maximal one
spin-up and one spin-down electron are permitted at one site. A further approximation
is that the Coulomb interaction is restricted to electrons on the same sites or on nearest
neighbors. Finally, only nearest-neighbor hopping is considered:

H3pav = — pd Z Z (dlcpjc +H.C.> +1tpp Z Z (ﬁ;oﬁj,c +H.c.)

+ Uddznm’m +Upp2”n ,NLUPd Z Y ﬁfﬁ,nfc, (3.1

(i.,j)o.0'

—(ea—n Zznzo (&p—u Zznjc'
j ©

Here d?c creates a hole with spin G in the Cudey2 -orbital at site 7 and 15;5 creates a
hole with spin ¢ in the O, -orbital at site j. 1,4 represents the Cu-O hybridization
while #,, stands for direct O-O-hopping. Both hoppings are restricted to nearest
neighbors, indicated by (i, j) with phase factor depicted in Fig. B.1b. The occupation
numbers are n =d d._ and ﬁ‘;’o = ﬁj-cﬁ jo- Uda represents the Coulomb interaction

i67ic
between holes on Cu-sites and U, on O-sites respectively, while U, interacts between
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nearest-neighbor Cu- and O-sites. Additionally to chemical potential u, local orbital
levels €; and €, are introduced. This three-band Hubbard model is a charge-transfer
insulator with charge-transfer energy A =€, — €. t,q = 1 1s set as energy unit, ¢,, = 0.5,
Ugja = 8.0, Upp = 3.5, Upg = 0.5 and A = 3.0. The parameters are calculated within
the constrained density-functional theory [189] and are consistent with earlier extensive
Quantum-Monte-Carlo (QMC) [[166,|167|] as well as cluster [[188,/190] calculations. In
addition, the long-range Coulomb interaction U,; between holes on Cu- and O-sites is
implemented with periodic boundary conditions. The particle density of the lattice is
given by

0
(n) = —nlL Y / do Im (ZZGiajBG((D+iT]) eik(ﬂ‘r}-)) withn =0, (3.2)
¢ 7{’ o —0o0

ij off

with the sites in the reference cluster L. and the Green’s function G of the lattice. The
sublattice indices o and B indicate a Cuy, ,-orbital or an O,  -orbital, respectively.
X =y >

Furthermore, Eq. is equivalent to (n) = —%—% [106].

A further simplification is the elimination of the oxygen degrees of freedom by a
Zhang-Rice construction [165] to fit a one-band Hubbard model. Then, the undoped
system is not a charge-transfer insulator any more but a Mott insulator [17]. Here, the
Hamiltonian reads

Hipum =—1 Z Z (éjcéjg + H.c.> —t Z Z (éjcéjc + H.c.)
(i.j) ©

<Li,j> © (3'3)
+U Y Aigiy =y, (i + i)
i i

with the same notations as for the three-band model (Eq. 3.I). Additionally,
< i, j > indicates next-nearest-neighbor hopping and all creators are restricted to the
C“dxz,yz -orbital. Again the energy unitis ¢ = 1.

An important remark for the comparison of the two models is that one has to set z,; =
1.5eV and t = 0.4eV [189] when going back to an absolute energy scale.

To test the affinity of the models to superconductivity and antiferromagnetism, some
symmetry-breaking Weiss fields

I:IAF = h;\FZ (ﬁiT — ﬁii) eiéﬁi and
i

A / Sii (st At A -4)
Hsc = hsc ) 5 <Ci¢cj¢ “ﬂcn) )

(i.j)
are introduced [[105}|106]]. /. is a quantity for the strength of a staggered magnetic field

with ordering vector Q AF = (%/n), while A is the strength of a d-wave superconductivity
pairing field. The d-wave symmetry is ensured by the factor

i = ) (3.5)

£ o +1, if Ri—R;€{+,—}
v , if Ri—R;e{1,}}
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Figure 3.2: Two possible fragmentations of the lattice into clusters with 12 sites (4 - CuO5): (a)
straightforward fragmentation from Ref. [[114]. (b) A more symmetric arrangement of O-sites.
A third possibility has the same geometry as (b) but with an additional Weiss field at the “outer”
O-sites of the cluster (marked with “X”) (Eq. .

For the three-band model, these fields are restricted to the Cu-sites. The phases
represented by these Weiss fields are characterized by order parameters which can be
defined in a modification to Eq.[3.2]as

( ZZGl(XJBG (o+in)e ik(7i7) IQAF(Vl r,))

ij of

(ZZEGjBGG(OJ+in) 7)) (cos(ky) — Cos(ky))>
ij of
(3.6)

and n — 0. F indicates the anomalous Green’s function of the lattice, G is identical to
—0. Itiso’ =1 for o =1 and ¢/ = —1 for 6 =] [106]. But is has to be deliberated that the
Weiss fields hj\F and h’SC are not identical with the physical fields har and hgc: The Weiss
fields, as all other variational parameters, act only on the reference-cluster level. Within
the VCA, these parameters are subtracted and, consequently, they are not present in the
infinite lattice. In addition to these two physically motivated Weiss fields, I implemented
a secondary chemical potential

_hz Z o 3.7)

S outer (@)

which acts as a Weiss field at the outer O-sites of the cluster. The idea behind this
expansion is to get a more uniform particle density on the O-sites of the reference cluster.
The motivation for this explained later in this section. A similar variational parameter
was introduced by M. Knap et al. for a one-dimensional chain without periodic boundary
conditions [191]]: They added a fictional chemical potential to the two border sites of
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Figure 3.3: Scenario for the three-band model at 3% hole doping for various reference clusters:
(a,d) “standard” cluster (Fig.[3.2h), (b,e) symmetric cluster (Fig.[3.2b), (c,f) symmetric cluster
with additional chemical potential on the outer O-sites (Fig. 3.2p with Eq.[3.7). VCA results
for these clusters are showing (a-c) the spectral function A(z, ) as example for a one-particle
excitation and (d-e) the transversal spin susceptibility x(ié,m) as example for a two-particle
excitation.

While A(%,(D) shows only a small dependence on the reference cluster, the effects on x(%,m)
are very dramatic. Subfigure (f) has the best agreement with the one-band model in Ref. [[113].

the chain to reduce the effects of the open boundary conditions. Although an additional
variational parameter is always allowed in VCA, they justified this new parameter from
perturbation theory to get a physically coherent picture [[191].

In the end, up to three variational parameters have to be optimized, depending on the
phase: u', hsp, hgc. Furthermore, Ay, has to be optimized for a homogeneous particle
density on the O-sites of the reference cluster.

As stated in Sec. [2.4.2] the choice of the reference cluster of the VCA plays a crucial
role: Only correlations within the cluster are exactly calculated. All long-range hoppings,
correlations and orders are perturbatively treated, although the strong variational principle
optimizes the results. Hence, the reference cluster has to be as large as possible. For the
three-band model, a 2 x 2 cluster with 4 CuQO, unit-cells can be solved in a reasonable
amount of CPU time. This is effectively a 12-site cluster, filled with 20 particles in the
undoped case: At T = OK, the O-sites are completely filled (16 electrons on 8§ sites),
while the Cu-sites are half filled (4 electrons on 4 sites). For simplicity, a particle-hole
transformation is executed: In Eq.[3.1] the creation and annihilation operators act on holes,
so there are 4 particles (holes) on 12 sites in the undoped ground state. At first glance, the
shape of the cluster seems to have a minor influence on the results: Both, the one-particle
excitations, e.q. the spectral function [109], and the two-particle excitations, e.q. the
spin susceptibility [113]], do not show serious discrepancies when changing the reference
cluster, although some minor finite size effects occur. Indeed, the earlier results for the
three-band model phase diagram and the spectral function have been in close agreement
to the one-band model results [114]. There, a “standard” 2 x 2 layout had been used
(Fig.BZ0).

In this thesis, the two-particle excitations are added to the three-band Hubbard model
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Figure 3.4: Calculated ground-state particle densities for the three-band model (3% hole doped)
in various reference clusters. (a) “Standard” cluster, (b) symmetric cluster, (¢) symmetric
cluster with additional chemical potential on the outer O-sites (marked with “X”’). The yellow
double arrows indicate possible correlations between particles on two distinct sites within the
cluster. From (a) to (c), the particle densities on these sites are getting more uniform, so the
translational symmetry of the infinite lattice is better approximated.

and calculated within the VCA (for details, read Sec.[2.4.4). When the “standard” cluster
is used, the results for the transversal spin susceptibility x(?é, ®), plotted in Fig. , has
substantial differences to both the one-band calculations in Ref. [113]] and experiments
in Ref. [[192]: The magnon mode is very narrow. A possible solution for this artifact
in the three-band model is a new arrangement of the reference cluster: If the O-site are
ordered in the more symmetric composition (Fig. ), x(ié, ) develops a clear magnon
mode, presented in Fig.[3.3g. On the other hand, it is remarkable that the spectral function
A(%, ®), a one-particle excitation, undergoes only minimal changes (compare Figs.
vs. b). The crucial question is: What effect influences the two-particle excitations so
drastically but neglects the one-particle ones?

A look on the particle densities of the reference cluster clarifies the discrepancies
(Figs. [3.4a,b): For the two-particle excitations, the particle densities of two sites have
to be considered. The red double arrows connect sites with the same vector, so the VCA
spin susceptibility for these pairs should be equal (due to translational invariance of the
infinite lattice). Certainly, the limited cluster has some finite size effects, but the VCA gets
the “best possible approach”. Obviously, the projection of the two-particle excitations to
the infinite lattice is more effected by inhomogeneities than the one-particle excitations.
The symmetric composition of the O-sites rearranges the particle densities on these sites,
so the red arrows connect pairs with similar densities. If the homogeneous distribution of
particles densities improves the approach for the two-particle excitations, a further step
might be useful: By the introduction of an additional chemical potential on the “outer”
O-sites (Eq. [3.7), the particles densities are rearranged again. This additional field acts at
the reference cluster, but the VCA subtracts it, so it does not exist one the infinite lattice.
The idea is to choose the additional potential to fix the differences of the ground-state
particle densities on the O-sites. Then, the two-particle correlations will form at sites
with identical particle densities, as indicated in Fig. [3.4c. The excited states may stay
inhomogeneous, but the uniform ground state is dominating. The results of this symmetric
cluster with enforced equability of particle densities are presented in Figs. [3.3c.f. While
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Figure 3.5: (a,b) Ground-state phase diagram for the three-band model, based on a 2 x 2 reference
cluster. (c-f) For comparison, the one-band model based on a 4 x2 reference cluster. In (b,d,f),
the chemical potential u is plotted as a function of doping. The corresponding order parameters
for the models are given in (a,c,e). Between the mixed phase with both antiferromagnetic and
superconducting order (AF+SC) and the pure superconducting phase (SC) at higher dopings, is
a region of phase separation (PS), described in text. For the one-band model, both hole (c,d)
and electron (e,f) doping is presented.

There is no qualitative difference between the phase diagrams of the three-band and the
one-band model.

the spectral function is unaffected again, the spin susceptibility is further improved: The
magnon mode is getting broader, so the bandwidth of the mode fits to the one-band model
calculations in Ref. [113]] (different energy units have to be considered). Therefore, in the
next sections, I use the reference cluster in Fig. [3.2b with an additional chemical potential
on the outer O-sites if the interest is on two-particle excitations. On the other hand, if only
one-particle excitations are considered, the additional Weiss field is omitted because the
additional parameter drastically increases the CPU time,

3.3 Ground-State Phase Diagram

The phase-diagram results of the three- and the one-band model presented in Figs. [3.5p,c
are very similar, reproducing in both cases the overall ground-state phase diagram of
the high-7.. superconductors (see also Fig. 3 of Ref. [114] or Fig. [I.2). In particular,
they include salient features, such as the enhanced robustness of the AF state as a
function of electron doping and the tendency towards phase separation (‘“PS” regime)
into a mixed AF-SC phase at low doping and a pure SC phase at high (both hole and
electron) doping. In the low-doping regimes, there is a homogeneous symmetry-broken
state in which both the AF order parameter m and the d-wave SC order parameters
A are nonzero. This corresponds to a phase “AF+SC”, where AF and d-wave SC
order microscopically coexist. A homogeneous state with pure d-wave SC (m = 0
and A > 0) is obtained in the larger doping regimes. In the intermediate doping
regions, a macroscopic phase separation occurs, where these two latter phases are
thermodynamically unstable. M. Aichhorn et al. have shown for the one-band model
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Figure 3.6: Fermi surface (FS) of the 15% hole-doped three-band model. (a) With the Weiss
field hg. = 0, the system is in a non-superconducting state. Hence, the one-particle excitations
are gapless, resulting in a closed FS. (b) The d-wave form factor in the Brillouin zone. (c¢) The
anomalous part of the Nambu self-energy at the FS. (d) Same as (a) but with optimized h’SC.
Here, the one-particle excitations are partially gaped. The FS is reduced to the nodal region of
the superconducting gap (“Fermi arcs”).

that larger reference clusters still yield a qualitatively similar phase diagram, with one
notable exception: The larger clusters (up to 10 sites in the one-band model) results
suggest that phase separation remains persistent in the hole-doped case and disappears in
the electron-doped situation [[106]. Based on the overall very similar phase diagrams for
the 2x2 three-band model and for the 4 x2 one-band model (Fig. @b,d), it is obvious to
expect a similar disappearance of the PS-region for electron doping also in the three-band
model.

Why are the phase diagrams in Fig. [3.5] so similar despite the fact that, for example,
the interband-charge fluctuations give rise to an - at higher energies (® ~ A,;) even
qualitatively - different behavior of the dynamic pairing interaction for the three-band
results when compared to the one-band data (e.g. see the gap function / (%, Q) in Fig.
and Fig. [3.13)? The reason is that on the scale of the (maximal) d-wave gap energies,
Apq 1s a doping-independent “high-energy” scale (~ ten times larger than the SC gap)
the role of which is taken over in the one-band model by another doping independent
“high-energy” scale, namely an effective Hubbard U (see discussions, below). However,
the dynamics of the pairing mechanism may be quite different. This is expected to be of
importance for the “non-universality” , i.e. material-dependence of the cuprate SC.

In summary, the low-energy single-particle excitations of the three- and one-band
Hubbard model are qualitatively similar, when comparing the three-band model with
the empirical 7--U model. The corresponding nodal and anti-nodal doping regimes
are directly related to the observed asymmetry in the robustness of the AF order. On
closer inspection, however, there are some differences for higher energies of O(t,4).
An example is the recently much discussed “waterfall” structure or high-energy kink
appearing as an abrupt change in the band dispersion, which falls vertically at binding
energies below ~ 0.4eV [193H195]. This “waterfall” behavior is found to be rather
pronounced in the three-band model but not in the one-band model. In VCA calculations
by D. Katakiri et. al [196]], they study the relationship between charge-transfer models
and the corresponding single-band Hubbard models.
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Figure 3.7: Imaginary part of the transversal spin susceptibility x(%, o) for a reference system of
2 %2 unit cells. (a) One-band Hubbard model at 4% hole doping. (b) three-band Hubbard model
at the same doping. Different energy scales (¢ = 0.4¢eV, 1,4 ~ 1.5eV) have to be considered.

3.4 Magnetic Resonance Mode

When high-T, cuprate superconductors are in the superconducting phase, inelastic
neutron scattering experiments detected a resonant mode at the antiferromagnetic ordering
vector QAF = (%/n) [197-199]: This collective magnetic resonance mode, which is
an artifact of the magnetic parent compound of cuprate superconductors, is outshined
usually by the electron-hole spin-flip continuum. However, induced by the d-wave
superconducting state, a gap emerges in the continuum, opening a small window
where this magnetic mode can be detected. In this sense, the resonant mode is a
reminiscent “fingerprint” of the magnetic parent compound. This mode is restricted to
the superconducting phase, it is absent even in the pseudogap phase [200]. The VCA
is a reasonable choice for simulations because the SC phase is in the strong-coupling
regime [201,202]. The theoretical background for two-particle excitations within the
VCA is given in Sec.[2.4.4] Again, the choice of the reference cluster plays a crucial role:
The focus is on a weak magnetic mode within the superconducting phase. Unfortunately,
the magnon mode (Fig. [3.3f) is very robust on doping: It persists far into the pure
superconducting phase. That is the picture for most one-band clusters in Fig. as
well es for the three-band clusters of Fig. A notable exception is the one-band 3 x 3
cluster: The advantage of this arrangement is (i) the continuation to the next clusters
breaks the checkerboard order, so antiferromagnetism is completely suppressed, and (ii)
the cluster filling of 8/9 fits to the target doping of 15% on the lattice, so VCA results are
improved. Unfortunately, this choice excludes the three-band clusters: 3 x 3 -3 = 27 sites
are out of range, even with state-of-the art supercomputers.

In Ref. [114], as well as in the previous section, the qualitative similarity of the phase
diagram and single-particle excitations between the three-band and the one-band Hubbard
models was demonstrated. In particular, it was explicitly confirmed that the asymmetry
between electron- and hole-doped cuprates, despite being of fundamentally different
nature, shows very similar signatures in the single-particle spectrum of both models,
provided a next-nearest-neighbor hopping ¢’ is included in the latter one.

The question remains whether this similarity can be extended to two-particle
excitations. To address this question, in Fig. the imaginary parts of the spin
susceptibility evaluated in the deeply underdoped regime (x = 4%) are compared
for both the one- and three-band Hubbard model. While there are some minor
differences, both spectra display a dispersion which is a remnant of the spin-wave
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Figure 3.8: Electron vs. hole doping on a one-band 3 x 3 reference cluster. (a-c¢) 17% hole
doped, (d-f) 14% electron doped. (a,d) The SC gap in the spectral function A (K, ®) is within
the upper (lower) Hubbard band for the hole (electron) doped situation, respectively. (b,e) The
FSs are similar, but the nodal vector Ky is slightly increased for electron doping. (c) For the
hole-doped case, the imaginary part of the transversal spin susceptibility x(k ®) shows the
prominent hour-class structure [[113}/198]. (f) x(k o) is restricted to narrow limits around QAF
in the electron-doped situation (see text for further details).

band in the antiferromagnetic half-filled phase. This fact signals the presence of strong
antiferromagnetic fluctuations at this doping concentration also in a doped charge-transfer
insulator.

Last but not least, the VCA-extension to two-particle susceptibilities can account for the
magnetic resonance in both hole- and electron-doping regimes, without any adjustable
parameters (in contrast to RPA calculations in Refs. [203,[204]). Close to optimal
doping, the magnetic spectrum for the hole-doped one-band Hubbard model (Fig. [3.8f)
shows the famous magnetic resonance peak at energies of about 0.1¢ — 0.2¢ and around
wave-vector QAF = (m,m) [198]. From this resonance, a downward dispersion extends
down to the onset of the electron-hole continuum. In Fig. , the vector ky connects
the FS in the nodal direction, where the d-wave gap function has nodes (Fig. [3.6).
Here, electron-hole excitations can occur with ® Z 0, Landau damping all collective
modes. So, the magnetic resonance mode must form within the limits given by kn
(and (2m,2m) — &y by symmetry reasons), which is indicated by vertical red lines in
Fig.[3.8k. The striking feature leading to the celebrated “hourglass” structure is, however,
the additional upward dispersion, which can be seen in the spectrum of the one-band
Hubbard model displayed in Fig. [3.8c. The upper branch is much weaker than the
lower one because the electron-hole continuum damps this collective mode [113]].
the electron-doped case, the magnetic excitation spectrum displays a different structure.
In Fig. [3.8f, the magnetic spectrum in the electron-doped case within the VCA approach
for two-particle excitations is presented. As one can see, in this case the weight of the
magnetic spectrum is essentially concentrated in the vicinity of (m,7) and it is mostly
dispersionless, in accordance with the experimental situation [203,204]. The downward
dispersion observed in the calculation only carries very little weight, when compared with
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the strong peak around (7, 7). Thus, this might be the reason why this dispersion is not
seen in inelastic neutron scattering experiments [[199]]. A possible explanation is a slightly
change in FS: The nodal vector %N in Fig. is larger than in the hole-doped case, so
the resonance mode is confined to a small momentum region around Q AF (see red vertical
lines in Fig. [3.8f). Finally, in contrast to the hole-doped case, the upward dispersion
is not observed for electron doping. This is also in accordance with the experimental
observations [203,204].

In the next section, the role of two-particle excitations, especially magnetic ones, is
discussed in the context of understanding the issue of the “pairing glue” in high-7,
cuprates.

3.5 The Question of the Pairing Glue

P.W. Anderson has argued that pairing in conventional “low-7;.” superconductors (SC)
has a rather different microscopic origin from that in high-7;. cuprates and many other
unconventional SC [205]. But in either case, the paired electrons have to avoid the
strongly repulsive bare Coulomb interaction. In a low-7. SC, this repulsion can be
eliminated in favor of electron-pair binding via “dynamic screening”, i. e.

V (4, ) 2eG.0) (3.8)
where V (4, ®) is the Fourier transform of the electron-electron interaction in both space
and time and (g, ®) is the dynamic screening due to both ions and electrons, i.e. €(g,®) =
€ion (4, ®) + €c1(4, ). Anderson then gives an elegant discussion why, in his opinion, in
the high-7;. SC another pairing mechanism is at work, which may be termed “anisotropic
momentum (or real-space) mechanism”: Here, the strongly repulsive (short-range) part
of the Coulomb interaction is avoided by a mechanism suggested by L.P. Pitaevskii [206]
and K.A. Brueckner et al. [207] of choosing the pair state orthogonal to the repulsive core
of the Coulomb interaction, i.e. putting the electron pairs in an anisotropic wave function
(such as d-wave), which vanishes at the core of the Coulomb interaction.

Still following the arguments of Anderson for the low-T. SC, the calculations in
this chapter show an evidence that in the high-7, materials both the anisotropic
“momentum-space” mechanism and the dynamics are at work, what will be shown for
two different Hubbard models (Sec. [3.2). This gives a possibility to shed light on the
question to what extent both models lead to a similar pairing mechanism. The one-band
Hubbard model was studied recently by T.A. Maier et al. [115] as well as by B. Kyung
et al. [208], where also the pairing dynamics has been studied. The above questions
are clearly of relevance for the main issue raised by Anderson, namely “is there glue
in cuprate superconductors?”’, which is basically a question about the dynamics of the
pairing interaction. As argued by T.A. Maier et al., if the dynamics of the pairing
interaction arises from virtual states, whose energies correspond to the “high-energy”
Mott gap, and give rise to the exchange coupling J, the interaction is instantaneous
on the relative time scales of interest. However, if the energies correspond to typical
“low-energy” spin fluctuation (or phonon) excitations, then the interaction is retarded. In
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Figure 3.9: The effective pairing interaction in the weak-coupling low-7.. situation compared with
high-7. QMC simulations for the two-dimensional one-band Hubbard model by D.J. Scalapino
and his group [209].

this case it makes sense to use the terminology “spin-fluctuation glue”, which mediates
the d-wave pairing.

For this question, it is useful to contrast step by step the construction of the effective
electron-electron interaction for a weak-coupling low-7;,. SC with the effective interaction
of a high-7, (i.e. Hubbard type) SC. In the “dynamic screening” mechanism of Eq.
one can safely replace the electronic screening by a static one (i.e. €,(¢,® = 0)). This
is due to the fact that typical energies of electrons are of high energy (~ O(€permi))
compared to kg7, i.e. the SC energy scale: The plasma of other electrons then damps
away the long-range (1/r)-behavior and leaves a Thomas-Fermi screened core e?e ™" /r
(Ks: Thomas-Fermi constant). This gives rise to an essentially instantaneous interaction,
which is still very repulsive, and which - when averaged over the FS - is termed u (see
below). On the other hand, for the phonon case, the screening acts anti-adiabatically, i.e.
€ion (4, ®) is dynamic, since typical phonon frequencies are of the order of k7. In other
words, the final Fourier-transformed effective interaction is

&2

_ 3.9
Vet = (2 ) e(q,0) G2

and the effective electronic interaction is screened (anti-adiabatically) by the phonon
polarizations. Fig. 3.9 summarizes this weak-coupling low-7;. situation and rewrites the
effective pairing interaction as the usual sum of the dynamic phonon exchange and the
Thomas-Fermi screened Coulomb part. Here, ®, denotes phonon frequencies, g, the
electron-phonon coupling and ®,, are Matsubara frequencies. When the two terms in
the sum are averaged over the FS (the brackets in Fig. for Vg denote an average of
the momentum transfer ¢ over €f), then one finds that the corresponding averaged Ve is
larger than zero, i.e. -(A— u) > 0 and, thus, is still repulsive. The net interaction is thus
repulsive even in the phonon case, a fact which is required to guarantee the stability of the
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Figure 3.10: (left) Dynamics of the pairing interaction for the low-7. case: the emergence
of the difference in frequency scales, i.e. slow ionic-lattice polarization and fast Coulomb
repulsion. (right) The SC gap function (Sec. and its dynamics (both Re- and Im-parts)
for the three-band model. In particular, the real part displays a certain similarity to the gap
function shown for the low-7; case in the left-hand part of Fig. This is true for the
spin-fluctuation contribution appearing around the characteristic energy mg + Ay = P (see also
Figs.[3.12k.f)). Athigher energies of order ® = 1 and above additional structure appears mainly
due to interband-charge fluctuations (see again Figs. @:,f)).

solid.

So, how can one ever arrive at bound pairs if the interaction is never attractive? As
is well-known since L.N. Cooper’s seminal paper [6]] preceding BCS theory, this is due
to the difference in frequency scales or, equivalently, in time scales of the two parts of
the interaction. This is pictured in Fig. 3.10; The “first” electron (anti-adiabatically)
polarizes the ionic lattice and sets up a net negative charge polarization in its vicinity.
This first process is “slow” and happens on the frequency scale ®, of the ionic vibrations.
A “second” electron feels this polarization, but can only profit from it and build up an
effective attraction when the first electron “instantaneously” moves so as to avoid each
other. Thus, the “high-energy” part of the Coulomb interaction acts only over a short time,
given here by a d-function, while the attractive electron-phonon interaction is retarded
by the much slower lattice response. In other words, if the electrons forming the pair
correlate themselves in time to avoid the short-time Coulomb repulsion, they can take
advantage of the attractive electron-phonon-mediated interaction and form a Cooper pair.
As is well-known, this kind of renormalization, i.e. integrating out the “high-energy”
degrees of freedom in the relative pair wave function, can be done a variety of ways: By a
ladder sum renormalization or a pseudozation of the interaction, replacing u by u* [210].
Now, —(A—u*) <0, i.e. a situation where V¢ can be attractive, leading in L.N. Cooper’s
sense to the pairing instability at very low energies.

In this chapter, the main focus is on the dynamics of the pairing interaction in the high-7,
cuprates and, in particular, how there the two electrons about to form a pair can avoid
each other - and thus weaken their repulsion - by modifying the high-energy parts of their



CHAPTER 3: Pairing Glue for the Cuprates [VCA] 81

Low-T¢ High-T,
A(w) analogue for
Ap = Ao(cos(pz) — cos(py))
AN UA,
-7 \ =0
! wq}\ - w zp: 26,
ky

o= \4\ //

Figure 3.11: Avoiding the strongly repulsive part of the Coulomb repulsion: analogy of the gap
function A in the low-T7, (®-space) and high-7, (momentum-space) situation. The figure for the
momentum-space gap function in the high-7, case is again inspired from [209]]. Here, the green
dashed line is the normal-state FS and the solid curve surrounding the FS gives the size of the
d2_\2-gap Ay at the momentum % on this surface.

relative wave function. For this, it is instructive to look first at the frequency dependence
of the gap function of a low-7. SC, found by solving the Eliashberg equations [211],
following a discussion by D.J. Scalapino [209] (see the low-T, case in Fig. [3.11)): The
real part of the corresponding gap function A(®) first increases as the typical phonon
energy @ is approached. At this characteristic “glue energy”, it changes sign and
remains negative out to very large values of . This latter observation corresponds to
the instantaneous part. It just reflects the fact that the two electrons making up the pair
avoid “short-time short-range encounters”. This can be summarized (Fig. [3.I1) in a kind
of orthogonality relation, with the pair wave function A(®) being orthogonal to the “core”
(i.e. the Thomas-Fermi screened short-range part) of the Coulomb interaction [209]. The
essence of this orthogonality relation is that in practice (4me?/(g”> +x?)) can be replaced
over the frequency integral A to several times the Debye frequency wp by the weak
pseudo-potential u* [209,210].

So then, how do the electrons in high-7;. materials act so that they are seldom or never
in the same place at the same time?

Here, it is useful to first look at the effective interaction V¢ in real-space (or, more
precisely, at the real-space Fourier transform of the singlet vertex I'(/,®,, = 0) [211]
versus the separation [/ between the electrons in pairs). Fig. and Fig. plot
the results for Vg obtained from QMC simulations for the two-dimensional one-band
Hubbard model by the Scalapino group [209]. A similar pattern for the effective
interaction in the three-band model is obtained employing QMC, when again the two
electrons are placed on the Cu-sites [166]. Using the BCS gap equation for illustration,
ie.
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Ay

Ap= ;vpp/ 2, (3.10)
with V), the effective interaction or Fourier-transformed vertex V,,, = T(p' — p), one

immediately sees that the two pairing electrons avoid the repulsive parts of the Coulomb
interaction by arranging their pair wave-function in a d,»_,» orbit, with the simplest
nearest-neighbor pairing given in momentum space by A, = Ag(cos px — cos p,). This
can be expressed by
UA, 0
Z 5 =0 (3.11)
p p

This latter relation indeed seems to confirm Anderson’s conjecture in that the essence
of the pairing mechanism in low-7; SC is “dynamic screening”, whereas in the high-T;
cuprates it is anisotropic momentum-space pairing. In Fig. however, the dynamics
of the pairing interaction as reflected in the ®-dependence of the gap function A(®), what
is also of relevance for the high-7; cuprates. Here again, the real part of the gap function
changes sign at a characteristic frequency @ related to spin fluctuations and at higher
energies to interband-charge fluctuations.

3.6 Dynamics of the Pairing Interaction

The question of whether one can speak of a “pairing glue” has recently been addressed
by T.A. Maier et al. for the one-band Hubbard and ¢-J models [[115,212]. If the
dynamics of the pairing interaction is due to small-energy (two-particle) excitations,
such as the characteristic structures seen in the spin susceptibility, then one might speak
of the interaction as being retarded on the relative time scales of interest and of a
“spin-fluctuation”glue-mediating d-wave pairing. This clearly is reminiscent of the usual
phonon-mediated pairing interaction in the low-7,. SC [[115]. It is well-known that for
these latter systems the gap function ¢(7<', ) (Sec. IE is only very weakly depending
on momentum &, corresponding to the local character of the pairing interaction. However,
the dynamics of the gap function is important and it enters the Cauchy relations between
the real and imaginary parts of (1)(%, ), i.e

(I)(ié?('o) = (I)l (757 (D) —f-i(l)z(ié,(x))
- k
01 (k, ) = ¢2( m)d / (3.12)

o1(F,0=0) = /q’zkw o |

with ® = O for the latter one. A measure for the fractional contribution to the gap
function ¢(k,® = 0) and to pairing that comes from frequencies less than Q can then
be defined [115], i.e.

o (3.13)
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Figure 3.12: Three-band Hubbard model: (a,d) the single-particle spectral function A(ic', o) for a
2 x2 reference cluster (as in Fig. ). (b,e) The cluster d-wave projection Vd’cl((o) of the spin

susceptibility (Eq. . (c,f) The integrated contribution of gap function I(k = (m,0.17),Q).
For (a-c), the hole doping is 4% and for (d-f) 15%, respectively. Each time, the system is in a
pure superconducting state.

It gives the relative contribution to the pairing of the “retarded” glue part and of the
non-retarded, i.e. “instantaneous” part. In Ref. [115], it has been demonstrated that
1 (%,Q) is a useful diagnostic for the pairing glue (phonon contributions) in the case of
Pb. I (%, Q) increases as Q passes through ®phonon + Ao, Where Ag denotes the SC gap and
g the characteristic Pb phonon frequencies. Its asymptotic value / (75, Q > Ophonon +A0)
exceeds unity reflecting the fact there exists an instantaneous Coulomb pseudo-potential.
This leads to a negative, frequency-independent contribution Onr to ¢(7€,0)). At high
frequencies, (%,Q) exceeds 1 by the “instantaneous” contribution —ONR/ 0(0)- In this
chapter, the question is examined if a “pairing glue” exists, which offers a way of
distinguishing different pairing mechanisms for the one-band and three-band Hubbard
models in the relevant strong-correlation regime for the high-7, cuprates.

The VCA is particularly well suited for a study of the quantity / (%,Q). This is due
to the fact that the VCA allows for accurately calculating the real and imaginary parts
of the anomalous self-energy and, thus, of the gap function ¢1(%,m). This has already
been shown in a recent letter, reproducing the experimentally found gap dichotomy
of the nodal and anti-nodal gaps in high-7;. cuprates as a function of doping [25].
Also the single-particle excitations (as displayed in Fig. and Fig. as well
as earlier results by E. Arrigoni et al. [114]) are found qualitatively to be similar,
concerning the “low-energy” physics and, in particular, the electron-hole asymmetry
(Figs. ,e): Doped holes first enter around the nodal point (3, %), where the SC gap
vanishes, introducing a gapless screening which very effectively destroys long-range AF
order [106]. In contrast, introducing electrons around the anti-nodal point (7,0) fixes
u (due to the large density of states) within the SC gap, in a regime where this gap is
maximal. Here, an incomplete screening cannot disrupt AF order up to significantly large
electron dopings where, finally, u enters also here the gapless (7,%) region. So again,
it is the corresponding low-energy physics embedded in the qualitatively rather similar
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Figure 3.13: One-band Hubbard model: (a,d) the single-particle spectral function A(z,m) for a
3%3 reference cluster. (b,e) The cluster d-wave projection V. (®) of the spin susceptibility

(Eq. . (c,f) The Integrated contribution of the gap function I(k = (1,0.21), Q). For (a-c),
the hole doping is 5% and for (d-f) 15%, respectively. Each time, the system is in a pure
superconducting state.

single-particle spectra plotted in Fig. and Fig. which determines salient (here
AF) features of the phase diagram.

So, back to the question of the dynamics in the pairing interaction, the fractional
contribution / (75, Q) to the gap function in the three- as well as one-band models has
to be considered. The results for / (%,Q) for the three-band model, i.e. for the fraction
of the zero-frequency gap function which arises from frequencies below €, are plotted
in Figs. 3.12c,f. Here, two hole-doped cases with 4% and 15% doping are shown,
together with the corresponding single-particle spectral function A(ié, ®) and the data for
the d-wave projection of the cluster spin susceptibility (Eq. . Il (75, Q) is plotted for the
three-band model for a hole doping of 4% in Fig. [3.12f and for a higher doping of 15%
in Fig. . k= 7(0.1,0), i.e. a momentum close to the anti-nodal point (1,0) where the
d-wave SC gap is maximal. For both dopings, a first steep rises at a typical energy ® of
about my + Ay, where Ay denotes the quasi-particle (SC) gap and mq a characteristic spin
fluctuation frequency. Close to half filling, @y is roughly estimated by the strong-coupling
result for the Cu-Cu exchange energy g = 2Jc,,, with
4ty 1 1

+ =0.1t,4 .
(Apd + Upd)2 Apd + Upp/2 Udd) P

Jey = (3.14)

As shown by the d-wave projected result V; (o) in Figs. [3.12p,e, for the imaginary part
of the cluster spin susceptibility, with the definition

1 — —
Vacr(®) = WZ’ (cos(ky) —cos(ky)) (cos(k;) — cos(k;)) Imy (k— K, o), (3.15)
kK
the first dominant peak is found at low doping, i.e. 4% at about this energy (here
o = 0.13 as always in units of the hopping ,4) and, at 15% doping at a higher energy
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®y = 0.21. This correlation function was extracted from an infinite-lattice calculation
and not from the cluster spin susceptibility ;. The peaks in the Im(y,(k,®)) are
shifted somewhat down when going from the cluster to the infinite-lattice case [113].
Furthermore, the celebrated low-energy neutron-scattering resonance, which is an (S =1)
magnetic exciton appearing in the SC gap, can only be obtained in the infinite-lattice
case [L13] (see Sec. [3.4]for details). On the other hand, the anomalous self-energy and,
thus, the integrated gap function / (75, o) in Fig. and Fig. is calculated from the
variationally optimized self-energy of a reference cluster (and, as a result, implicitly also
the underlying susceptibility). Thus, an identification of ®wp+ Ag with the energy of the
steep first increase in / (75, ®) is only approximately possible (Fig. ), in particular, this
latter figure contains also contributions from the magnetic spin resonance. However, given
the generally accepted small weight of this resonance to the pairing [213]] and the behavior
of the first steep rise in Figs. [3.12f.f and Figs. [3.13.f as function of the Hubbard-U, this
rise can still be unambiguously identified with the dominant influence of spin fluctuations.

1(k, Q) displays an amazingly prominent first increase at an energy ® of about Ag + @y,
where Ay is the quasiparticle gap and @ the first dominant peak in the d-wave projection
of the dynamic spin susceptibility Imx(z, ®). The quasiparticle gap is found to be at Ay =
0.52 (obtained from the spectral function) for 4% doping and at a similar value (Ao = 0.41)
for 15% doping, thus Ag + @y = 0.65. The first sharp rise in / (%,Q) at the low-doping
situation (~ 4%) is at about @ = 0.56. The observation is that in this low-doping case for
the three-band model more than 90% of the saturation value of / (%, Q) =1 is due to the
dynamic contribution of the spin fluctuations. For 15% doping, ® is increasing [178]],
and so is Wy + Ag. Fig. further confirms the leading role of the spin fluctuations.
Here, the first dominant increase in I(k, Q) is plotted as a function of U /¢ at 15% h-doping.
One sees that as the value of U/t increases, this dominant increase in / (%, Q) is shifted
to lower energies, scaling essentially with the exchange energy J, while Ag 1s found to
be essentially constant as function of U/t. Here, at 15% doping, the spin fluctuation
contribution to the saturation value of [ (75, Q) =1 slightly decreases compared to the
4%-doping situation. From there on a mild rise takes place, starting at about = 1 for
both dopings. In both doping cases, this corresponds to virtual electron-hole transitions
involving the charge-transfer gap ~ A ,4/2 (Fig. ). Fig.[3.14b illustrates the influence

of the doping dependence of interband-charge fluctuations on /(k, Q). Here, at first glance,

the influence of these fluctuations on the integrated gap function / (75, Q) appears to be very
mild.

However, this picture changes significantly, when the three-band model results for
1 (75, Q) in Figs. ,f are confronted with the corresponding ones for the one-band
model and, thus, the doped Mott-insulator case (Figs. [3.13k,f): Again, for the latter
model there is a first dominant rise in the integrated gap function. This first rise - when
analyzing its (U /t)-dependence - can again be attributed to dynamic spin excitations.
However, a second prominent increase in this one-band model case occurs after a rather
pronounced drop at energies of order (U/t)/2. This has already been observed in
this one-band model case in Ref. [115]] and was termed a “non-retarded” contribution
occurring at an energy scale set by the Mott gap and being related to excited states (see
the red arrow in the corresponding A(7c’7 ®) spectrum in Fig. ), involving the upper
Hubbard band. For the 7-J model, Ref. [[115] finds this energy scale being pushed to
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Figure 3.14: Integrated contribution of the gap function /(k = (7,0.17),€) for the three-band
Hubbard model. (a) The first dominant increase in I(k,Q) plotted for different values of

Uga/t. (b) The doping dependence of I(k,Q), with the modest increase of interband-charge
fluctuations as function of doping.

“infinity”, with the corresponding exchange interaction being instantaneous. In contrast,
the retarded (spin-fluctuation) interaction, i.e. the first steep rise in / (%,Q), occurs at
an energy scale which is small (wg = 0.1¢) compared to the bare bandwidth 8¢ (and
the bare U). Thus, the one-band model as well as the -/ model may be interpreted
to contain both retarded and non-retarded contributions. This is qualitatively different
in the three-band model: Here, in Figs. [3.12k,f and Fig. [3.14p, a rather continuous
“filling in” of integrated weight is detected in the Q regions in I(k,Q), where in the
one-band model (Figs. [3.13,f) this weight is clearly missing. This “filling in” is due to
electron-hole excitations of O(thd) and, thus, due to interband-charge fluctuations (see
the corresponding electron-hole transitions in Fig. , marked with red arrows). Thus,
in the sense of the interpretations used for the one-band model above (and in Ref. [115]),
one may conclude that the three-band model is indeed different and contains only retarded
contributions in its d-wave pairing interaction.

Then, the question whether there is a “pairing glue” in the three-band model, is a
question of whether the dominant contribution to the pairing function ¢, (75, ® = 0) comes
from the integral of ¢, (k,®)/® and, more specifically, a low-energy (compared to 8¢)
region in this integral. Earlier results have shown that both the one-band Hubbard and ¢-J
models exhibit spin fluctuation “pairing glue” [115,[202,208]|]. For both the three- as well
as for the one-band model results, with the latter displayed for a similar higher-doping
case (15%) in Fig. one can include the full range of virtual electron-hole transitions
between the lower and upper Hubbard bands. As a consequence, the Cauchy relation for
¢(7€, ® = 0) does, strictly speaking, not contain a non-retarded contribution ¢nr and the
asymptotic value of 1(Q) approaches unity. In the one-band model, there is a first steep
rise, which can again be identified with a typical spin-fluctuation energy. Then, at higher
energies after a drop a second steep rise occurs at energies corresponding to (virtual)
electron-hole interband transition of order ~ % As argued in Ref. [115], it is this part
which in the 7-J model for U — oo (i.e. when the upper Hubbard band is projected out)
gives rise to an instantaneous contribution ¢nr. Thus, in this sense, both one-band models
also display a non-retarded interaction. The new result here is that in the three-band
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model only low-energy (spin-fluctuation) retarded contributions to the pairing interaction
dominate, whereas in the one-band model also a significant high-energy contribution
occurs. While these differences between a Mott and a charge-transfer insulator appear
to be renormalized away in the very similar, i.e. universal ground-state phase diagram of
these two models, one may use Eliashberg-type of arguments to form an expectation that
the finite-7" phase is rather different in the two models, i.e. strongly material-dependent
(see also Ref. [[188]]).

Finally a comment about the resonating valence bond state (RVB) [84]] physics in
the two models: A,; also enters in the exchange coupling Jc, between spins on the
Cu-sites. Thus, the role of U in the one-band model, setting the characteristic energy
of the RVB-coupling J, is taken over in the three-band model by the energy of the
interband-charge fluctuations (Eq. [3.14). In that sense, one may argue that the final
increase in the relative pairing strength I (k ®) to the value of I(k,®) = 1 again reflects
RVB physics. However, it was showed within this section that there is quite a difference
with respect to the relative weights of the spin-fluctuation and higher-energy contributions
between the two models.

3.7 Summary

In this chapter, I have discussed the role of the Cudxz,yz' and O, -orbital degrees of
freedom in high-7, cuprate superconductors. The essential question if an elaborate
three-band model is necessary or a simple effective one-band model is sufficient, is
dissected in various model properties. This simplification had to be investigated because
the physics of the one-band model is that of doping into a Mott-Hubbard insulator, but the
three-band model is a doped charge-transfer insulator, just as high-7; cuprates.

Firstly, the ground-state phase diagram is very similar in both models, including
competing antiferromagnetic and superconducting orders as well as an asymmetry in
electron and hole doping. Hence, the low-energy properties are successfully mapped
to a one-band Hubbard model.

Secondly, the two-particle excitations were considered. The transversal spin susceptibility
shows (i) a spin-wave mode, i.e. a magnon, in the antiferromagnetic phase and (ii) a
magnetic resonance mode (“hour glass structure”) in the superconducting phase. The
latter one is a reminiscent “fingerprint” of the magnetic parent compound. Due to
numerical problems and computational limits, it was only observed in the one-band
model. Otherwise, for the magnon mode, the agreement of both models was showed.

Finally, the gap function, i.e. the anomalous part of the self-energy, was compared. From
this quantity, an inference to the dynamic pairing interaction can be done: It is a kind
of “pairing glue” for superconductivity. Here, some important differences appear: In the
three-band model, there is a retarded pairing due to low-energy spin fluctuations, while in
the one-band Hubbard model an additional part rises, involving excited states in the upper
Hubbard band. The latter one may be associated with a “non-retarded” contribution.

In short, one may term the dynamics of the pairing interaction in the three-band
Hubbard model and, thus, in a doped charge-transfer insulator as retarded and being due
to a low-energy pairing glue, whereas in the one-band Hubbard model and, thus, a doped
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Mott insulator both retarded and non-retarded parts contribute.

So the high-energy physics in the one-band model differ significantly from the
three-band model.

After these considerations about doped Mott and charge-transfer insulators with their
strongly correlated physics, the focus is switched to some systems with a weaker
interaction. Thus, the relevance of Fermi-surface instabilities rises. Consequently, the
SC phase in NaCoO is heavily affected by magnetic fluctuations, which is discussed in
detail in the next chapter.



Unconventional
Superconductivity and Gap
Anisotropies in the Cobaltate
NaCoO

The cobaltates are one of the least understood superconductors. Superconductivity (SC)
appears as soon as Nap3Co0O, is immersed with water to increase the distance between
the CoO»-layers [58]. Na,CoO, without immersed water is a metal with low resistivity
and extremely high thermopower, hinting strong correlations in the metal phase [214].

To begin with, standard ab initio techniques could not match the Fermi-surface structure
found from angle-resolved photoemission spectroscopy (ARPES) studies [215] 216],
where differences have been assigned to strong correlations [217]], disorder [218], and
ARPES surface effects [219]. Hence. the theoretical predictions could not be very precise
and provide the whole range of s, p, and d-wave SC [220]. It is not fully settled either
whether the cobaltates should be considered from a weakly coupled or strongly coupled
fixed point, however, it seems such that the dominant contribution to the interaction comes
from electron-electron coupling (although still some part of the literature stresses the role
of phonons in the problem [221]]). In addition, a topological superconducting state was
proposed from first principle calculations in the surface of NaCoO,, where the Na content
of the terminating layer can be controlled by experimental conditions [222].

In this chapter, I present the results of functional renormalization-group (fRG, see
Sec.[2.6/for an introduction) calculations of an effective three-band model in the triangular
lattice (Sec. that matches the band structure of bulk Na,CoO, for x =~ 0.3. This
weak-coupling approach results in a rich phase diagram, including a chiral d-wave
superconducting phase.

The results of this chapter will be published with C. Platt, W. Hanke and R. Thomale in
Ref. [5]].

4.1 Effective Three-Band Model

The compound Na,CoO; (NaCoO) features alternating Na- and CoO,-layers, where the
latter one forms a triangular lattice and the Na-layers act as an electron donor. Here, the
Na-content between the CoO;-layers can be exactly tuned. This enables a phase diagram
which includes superconducting and metallic phases, together with a charge-ordered
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Figure 4.1: (a) Band structure at van Hove filling (x = 0.09). Only one band intersects the Fermi
energy, resulting in one electron pocket at I". (b) The van Hove singularity (VHS) of this band is
clearly visible in the density of states (DOS). (¢) The crystal structure of the CoO,. The yellow
circles indicate Co-sites with dy;- and dy,-orbitals, while the green circles represent O-sites
with p,-orbitals. (d) Simplified model of the crystal structure: A triangular lattice with three
hybridized orbitals at each site.

insulator and a weak-moment magnetically ordered state in a large doping regime of
x = [0,1] [223-225]. SC was detected at a doping level of x ~ 0.3, when water is
immersed [58]]. Since the focus of this thesis is on superconductivity, only doping levels
around the SC phase are considered. First-principles calculations, e.g. the local-density
approach (LDA), failed to describe an effective low-energy Hamiltonian for NaCoO
which reproduces the Fermi surface (FS) measured by angle-resolved photoemission
spectra (ARPES) [226-229]]: The so-called “sinking pockets” are detected below the
FS, while they were predicted at the Fermi level. Dynamical mean-field theory (DMFT)
studies show that the calculated heat capacity is consistent with experimental data only in
models without additional pockets at the FS [230].

Here, an effective model proposed by A. Bourgeois et al. [231,232] is used, which
contains all relevant orbitals, i.e. Co3; and Oy,,. They started with a CoOg cluster model
and mapped it down to an effective three-orbital Hamiltonian. The model parameters
were fitted to X-ray absorption spectroscopy (XAS) experiments. The parameter for
direct Co-Co-hopping was set to fit an FS obtained by ARPES experiments. This model
was subsequently solved by dynamical mean-field theory (DMFT). The bandwidth of
the effective model is ~ 0.6eV, a factor of three smaller than LDA calculations predict
(1.6eV [226] or 2.0eV [227]).

It is important to stress that self-energy effects are already considered in this effective
Hamiltonian. But these effects are anyway neglected in the implemented fRG scheme
(Sec.[2.6.3), so a double counting is excluded.

The correspondmg tight-binding model 1ncludes three hybridized orbitals per site
(dxy,dyz,d ) in a triangular superlattice (Sec. . The Hamiltonian reeds
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Figure 4.2: The Fermi surfaces (FS) at (b) x = 0.1, (¢) x = 0.2 and (d) x = 0.3. The different
colors indicate the dominant orbital weights at the FS. An explicit plot of the orbital weights at
the FS is given in (a) for x = 0.1 and (e) for x = 0.3. The marks I to VI are also plotted in the
corresponding FSs. The weight of one orbital is changing at the FS but never decreases to zero.
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where 6;((16 denotes the electron creation operator with spin ¢ in orbital o at site i. The
occupation number is defined as g = 6;661-0(6. Furthermore, ¢ represents the hopping

mediated by O,,_ and ¢’ corresponds to a direct Co-Co-hopping while D is the crystal-field
splitting. u is the chemical potential, which fixes the doping level. These parameters are
set to r = 0.1eV, ' = —0.02eV, D = 0.105eV [232]. The resulting dispersion relation
(plotted in Fig. @.Th) features three bands with only one band intersecting the Fermi level.
There is a van Hove singularity (VHS), clearly visible in the DOS, presented in Fig. 4.Tb.
It is remarkable that this singularity is much more pointed than the van Hove singularities
in the regular one-band models in the triangular (Fig. [2.3), honeycomb (Fig. [2.5c) and
kagome lattices (Fig.[2.6). This also influences the local DOS at the FS.

For the weak-coupling fRG calculations, only momenta next to the FS have to be
considered (as discussed in Sec. @ Hence, the focus is on the band intersecting the
FS, including the orbital contributions to this band. The FS only contains one hole pocket
around the I'-point, i.e. the center of the Brillouin zone. The evolution of this pocket is
plotted in Figs. [4.2b-d for doping levels x = {0.1,0.2,0.3}, respectively. Atx ~ 0.28, the
nesting of the FS is optimal, with three inequivalent nesting wave vectors

~ - 3 = 3
0= (-van0) Qz=(%,\/;ﬂ) and Q3=<%,—\/;n)- (42)

All three hybridized orbitals contribute to the FS. The orbital weights, which are
the Bogoliubov-transform matrix elements of the transformation from orbital to band
representation (Eq. 2.T1), are presented in Fig. (for x = 0.1) and Fig. (for
x = 0.3). Here, each orbital is represented by a red, green or blue line, respectively.
The dominating regions of orbitals are also included in the FSs in Figs. #.2b-d. Each
orbital features two antipodal dominant regions, linked by the nesting vectors él, QZ or
Qg, respectively.
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Figure 4.3: Phase diagram at electron doping.  There are four phases: d+id-wave
superconductivity (d+id SC, blue), weak ferromagnetism (weak FM, green), f-wave
superconductivity (f SC, yellow) and a phase with competitive spin-density wave and
d+id-wave superconductivity (SDW / d+id SC, purple and blue shaded). The basic interaction
is Uy = 0.25eV and Jy = Jp = 0.07eV. On the x-axis, U; /U, is varied and the y-axis shows the
doping dependencies. Additionally, the z-axis scales the global interaction strength (see text).

The interaction part of Eq. . T|features intraorbital Coulomb interaction Uy, interorbital
Coulomb interaction U, Hund’s rule coupling Jy and pair hopping Jp. In this
Hamiltonian, U, < U, is reasonable because hybridized orbitals are used. The parameter
values (U; = 0.37eV, U, = 0.25¢V, Jy = Jp = 0.07¢V) are taken from Ref. [232],
downscaled by a factor of five to satisfy the weak-coupling approach of the fRG. This
is a feasible assumption because the total interaction strength is still in discussion. Hence,
the global interaction scale is introduced as an additional scanning parameter.

4.2 Phase Diagram

To get a complete picture of the possible phases, the relation U; /U,, the doping level the
and global interaction scale is changed, respectively. The results are presented in Fig. 4.3}

For large interaction strengths, the huge DOS at the VHS promote fluctuations with
zero momentum transfer, resulting in weak ferromagnetism (weak FM). With a lowered
interaction scale, other fluctuations become more competitive. Very recently, G. Cao
et al. reported that additional immersed water, which raises the distance between
the CoO,-layers, increases the ferromagnetic fluctuations and hence the tendency to
triplet SC [233]]. In the fRG calculations of this chapter, an increased tendency to
ferromagnetism and f-wave SC corresponds to an increased total interaction. A possible
explanation is that the enlarged gap between layers reduces the screening of electrons and
hence increases the interaction scale. In contrast, at small total interactions, the phase
diagram is manifold: When the nesting of the FS is optimal, a spin-density wave (SDW)
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occurs. A tetrahedron magnetic order has been proposed, with four inequivalent sites in
an enlarged magnetic unit cell [234]]. Unfortunately, this real-space order is not accessible
with fRG (the same problem is discussed in detail for the honeycomb lattice in Sec. [5.6).
Within the SDW phase, singlet d+id-wave superconductivity is competitive (d+id SC).
For low dopings, low interaction scale and U; < Ua, a clear d+id SC is dominating with no
SDW background. In between these three phases, in the proximity of weak ferromagnetic
fluctuations, a triplet superconductivity with f-wave form factor (f SC) is dominant. The
form factors of the SC phases are discussed in the next section.

This three-band model has a rich variety of phases. In contrast, the simple
one-band model in the triangular lattice features the VHS and an optimal nesting at
the same doping level (Sec. 2.2). There, the nesting dominates and hence neither a
ferromagnetic instability nor triplet superconductivity was reported by comparable fRG
calculations [140].

4.3 Form Factors and Superconducting Gap

The SC state is classified by the symmetry of the Cooper-pair wave function and the
resulting band gap. In the triangular lattice (Cg, symmetry group), the most reasonable
form factors fit to the irreducible representations (Sec. [2.3) of s-wave (spin singlet,
nodeless), p+ip-wave (spin triplet, nodeless), d+id-wave (spin singlet, nodeless) and
f-wave (spin triplet, with nodes) symmetry. Unfortunately, the experimental data about
the symmetry of the SC state in NaCoO are still not clear: Knight shift measurements
detect both singlet SC [[59] and triplet SC [235]], while nuclear quadrupolar resonance [60,
61]], specific heat [236] and muon spin rotation [237] measurements yield evidence for
an anisotropic SC gap function, featuring clear nodes. Hence, f-wave SC is a possible
symmetry that fits for the triplet SC, but there is no singlet SC that features nodes.
Consequently, the focus of the fRG calculations is on this ostensibly inconsistent result.

The phase diagram in Fig. 4.3|includes both a singlet and a triplet dominated SC phase.
A mean-field like decoupling of the final fRG coupling function V(%l ,%2,753,%4) provides
the form factors associated with the different instabilities (Sec.[2.6.4). Here, the singlet SC
instability is twice degenerate and corresponds to a d-wave symmetry (E, representation),
while the triplet SC instability is non-degenerate and fulfills an f-wave symmetry (B>
representation). The corresponding form factors for nearest-neighbor pairing are

fE,,1 = 2co0s (k) —cos <kx’;/§ky oS <kx+;/§ky>

d-wave:
kx4 3ky kx—+/3ky
sz’z_—COS<A {))—COS<A [‘)

f-wave: fB, = sin(ky) —2cos (@) sin (%) :

The calculation of the gap function and the corresponding free energy of the system
is explained in Sec. As the degeneracy in the d+id-wave SC is protected by
symmetry, the system could generically form any linear combination d; + ¢®d, of both
d-wave solutions. In this fRG calculations, d+id was always the energetically preferred

4.3)
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Figure 4.4: (a) Form factors from Eq. (dotted lines) and the mean-field decoupled pairing
channel (solid lines) for f-wave superconducting phases with Uy = 0.32eV, U, = 0.25¢V, Jy =
Jp = 0.07eV, x = 0.18. (b) The corresponding gap size Ag on the FS, where blue regions
indicate nodes, which are absent in the d+id-wave superconducting phase, plotted in (¢). The
corresponding form factors are presented in (d). Here, the setting is U; = 0.13eV, U, = 0.25¢eV,
Ju =Jp=0.07eV x=0.14.

combination. This is rather generic in a situation of degenerate nodal SC order parameters,
since such a combination allows the system to avoid nodes in the gap function. In
addition, a time-reversal symmetry-breaking state is always energetically favorable within
a two-dimensional representation [238]]. For the f-wave SC, the gap follows the absolute
form factor and, consequently, features nodes. A comparison of these two phases is
presented in Fig. While there are nodes in the absolute gap of the f-wave SC
(Fig. [d.4b), it is nodeless for the d+id-wave SC (Fig. d.4k). Actually, the gap is nearly
homogeneous.

The close proximity of d+id and f-wave SC can explain, why Khnight shift
measurements are inconsistent between singlet and triplet SC [59,235]. But other
experiments show an anisotropic gap function with nodes [60, 61, 236L237], clearly
indicating an f-wave SC. So, d+id-wave SC is disproved?

A statement of S. Zhou and Z. Wang invoke a d+id-pairing on next-nearest neighbors
that features nodes at a doping level of x = 0.25, but they have no argument for preferring
a next-nearest-neighbor pairing [239]]. Also, the form factors in Fig. #.4c correspond
clearly to nearest-neighbor pairing, so this ansatz is questionable. In the next section, I
propose that a competition between the SDW and the SC phase is the source for a strongly
anisotropic d+id-wave gap.

4.4 Gap Anisotropy

Actually, the analysis of the d+id-wave gap in the previous section was within the pure
d+id SC (blue in Fig.[4.3). But, if doping is increased, the nesting of the FS gets better and
the SDW instability becomes competitive. How does this effect the d-wave instability?
The doping dependence of the two degenerate d-wave form factors and the resulting
gap is plotted in Fig. 1.5 Tt is striking that the discrepancy between the calculated fRG
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Figure 4.5: (a-d) Change of the d+id-wave form factor on doping. The setting is U; = 0.13eV,
U, = 0.25¢eV, Jg = Jp = 0.07eV and a doping level of (a,e) x = 0.14, (b,f) x = 0.16, (c,g)
x = 0.22 or (d,h) x = 0.28, respectively. While the fRG form factors (solid lines) in the pure
d+id SC phase (a) match to Eq.|4.3|(dotted lines) pretty well, the accordance is decreasing with
doping. If the SDW state is competitive (d), the form factors differ significantly. (e-h) This
influences also the SC gap of the d;+id; superposition, which develops nodes on doping.

A[][a u.]

form factors and the analytical nearest-neighbor form factors of Eq. [4.3]is dramatically
intensified when the doping approaches the competitive SDW / d+id SC phase. The
calculation of the resulting gap reveals that the linear combination dj+id, is still
energetically favorable, but the structure of the gap changes. A linear combination of
|d1+id>| has only roots if both d; and d> have roots at the same positions of the FS.
Obviously, this is not the case in Fig. #.5p, so the resulting gap is quite homogeneous
(Fig. B.5p). This changes in the competitive SDW / d+id SC phase, where d; and d»
do indeed feature roots near the positions I to VI (Fig. [4.5d), hence the blue regions in
Fig. indicate a very strong reduction of the gap and possibly nodes.

Evidently, the gap anisotropy is enhanced with increased doping. To test this statement,
the variance of the gap function is divided by the mean:

G(A
gap anisotropy =1 = (_0) 4.4)
Ao
In Fig. , 1M is plotted as a function of the doping x and the interaction relation %

corresponding to the x-y-layer in Fig. The maximum of M is at a doping level x ~
0.3, regardless of % This implies that the proximity to the optimal nesting distinctly
influences the d+id-wave, while the interaction scale is negligible. Thus, the FS topology
and the underlying band structure play a crucial role.

Furthermore, in Chaps. [6] and [7, the mechanism for sublattice interference is discussed
for the kagome lattice. There, the unfavorable distribution of the three sublattice weights
to the pocket at the FS suppresses the nesting effects for a local interaction. By including
long-range interactions, the suppression is reduced and, hence, the critical scale of
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Figure 4.6: Gap anisotropy N = %‘O") in the d+id-wave superconductivity phase. Blue regions

indicate a homogeneous gap. Around the doping for the optimal nesting condition, the gap is
very anisotropic, indicated by red regions.

superconductivity increased. In opposite, the orbital weights of NaCoO play a minor
role because the anisotropy of the d+id-wave SC gap dramatically decreases when the
doping is increased (Fig. @.5)), but the change of the orbital weights is negligible within
this doping range (Fig. vs. €). Thus, the anisotropy must have another reason.

To get a hint on the source of anisotropy, one has to compare the pure d+id SC phase
with the competitive SDW / d+id SC phase. In Fig. the FS, the DOS and the resulting
gap function is confronted for both conditions. Two exemplary vectors at the FS are
highlighted, one in the middle of an edge and one at a corner of the pocket. In Figs.4.7a-c,
the pure d+id phase is considered. The FS is angular and concave (Fig. 4. 7h), and the
optimal nesting vectors in Eq. 4.2] do not link any points. The closest vectors connect
some elements (indicated by blue arrows), but there is still no nesting. So the SDW
fluctuations are suppressed and an inhomogeneous local DOS (plotted in Fig. {.7p) is
insignificant. But the underlying SC fluctuations remain. This results in a homogeneous
SC gap (Fig. .7c). In contrast, for the competitive SDW / d+id SC phase, both vectors
have a good nesting condition (Fig. [4.7d), but the higher local DOS for the corner vector
enforces the SDW (Fig.[d.7¢) and, consequently, increasingly drives SC. At the end of the
RG-flow, there is a larger gap at the corner vectors than at the edge vectors. Consequently,
the gap is anisotropic (Fig. @.7f).

This result has to be reviewed in the context of the experiments stated at the beginning
of Sec. §.3] There, an evidence for an anisotropic SC gap function with nodes was
reported [[60,61,236,237], together with a singlet pairing state [59]. But both possible
Ce,-symmetries with singlet configuration (s-wave and d+id-wave SC) are gapless. How
does this fit together?

A possible solution is the anisotropic d+id-wave presented in this section because this
SC state is twice degenerate and the corresponding form factors obey the £, symmetry,
but they do not fit to the nearest-neighbor harmonic functions any more. Instead, they are
distorted by anisotropic nesting effects. This results in a very inhomogeneous gap that is
nearly closed at some vectors of the FS. This SC state is extremely unconventional. In
experiments, it is hard to distinguish between this very anisotropic gap and a gap function
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Figure 4.7: (a-c) A wave vector at an edge of the FS (orange marks) compared to one at a
corner of the FS (green marks) for the pure d+id SC phase with U; = 0.13eV, U, = 0.25¢V,
Jg =Jp =0.07eV, x = 0.14. (a) The vectors that are closest to the optimal nesting vectors
in Eq. [4.2] do not link opposing edges, so nesting is very bad. Thus, SDW fluctuations are
weak, independently of the local DOS. The SC fluctuations are homogeneous and result in an
isotropic gap, plotted in (c¢). (d-f) The same plots in the competitive SDW / d+id SC phase
with Uy = 0.32eV, U, =0.25¢eV, Jy = Jp = 0.07eV, x = 0.28. Here, the perfect nesting (plotted
in (d)) together with an anisotropic DOS (plotted in (e)) drive strong inhomogeneous SDW
fluctuations that yield the anisotropic gap shown in (f).

with real nodes.

4.5 Summary

The phase diagram of Na,CoO, immersed with water is studied at a low doping regime
x =~ 0.3, where a superconducting phase was detected. For this purpose, an effective
three-band model in a triangular lattice is solved with functional-renormalization group
calculations.

At doping levels around a van Hove singularity, ferromagnetic fluctuations are dominant
and thus f-wave superconductivity prevails. At increased doping, the ferromagnetic
fluctuations are weaker, so d+id-wave superconductivity becomes dominant. This
chiral state is a candidate for topological superconductivity, which is a hot topic of
condensed-matter physics (see Sec. for an introduction).

When the distance between the CoO,-layers is increased by additional water, a tendency
to ferromagnetic fluctuations and f-wave superconductivity is experimentally observed.
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In this thesis, this effect is connected with an increased interaction scale while the Fermi
surface remains unchanged.

The apparent contradiction in experiments that detected a singlet pairing state together
with nodes in the gap function is solved by the distortion of the d+id-wave state around
the doping level for optimal nesting. Thus, the gap function is very anisotropic and is
nearly partially closed, what is hard to distinguish from real nodes in experimental data.

To get a further insight into the gap anisotropy, more experimental data is needed. The
superconducting state is induced by an enlargement of the layer distances by immersed
water. This is hard to handle at the low temperatures needed to detect superconductivity.
The substitution of water by another chemical compound might increase the stability of
this material and hence facilitates the experimental analysis.

The chiral superconducting phase is an interesting new state of matter. For d-wave
superconductivity, the superposition of the degenerate d; and d; solutions yield a nodeless
gap function. The degeneracy of d; and d is protected by the Cg, symmetry of
the triangular lattice, but the competition with the spin-density phase phase induces
a heavy anisotropy of the gap function. Another lattice with Cg, symmetry is the
honeycomb lattice, which is the structure of the celebrated graphene. There, in contrast,
the competition between d+id-wave superconductivity and spin-density phase does not
induce a gap anisotropy, because the Fermi surface topology is distinct. This is the topic
of the next chapter.



Competing Many-Body
Instabilities and
Unconventional
Superconductivity in
Graphene

The band structure of graphene exhibits van Hove singularities (VHS) at dopings x =
+1/8 away from the Dirac point. Near the VHS, interactions effects, enhanced due
to the large density of states (DOS), can give rise to various many-body phases. The
competition between different many-body instabilities in graphene are studied using the
functional renormalization group (fRG, see Sec. [2.6|for technique). A rich phase diagram
is predicted, which, depending on long-range hopping as well as long-range character and
absolute scale of the Coulomb interaction, contains a d+id-wave superconducting (SC)
phase, or a spin-density wave phase at the VHS. The d+id state is expected to exhibit
quantized charge and spin Hall response, as well as Majorana modes bound to vortices.
In the vicinity of the VHS, singlet d+id-wave as well as triplet f-wave SC phases are
found.

The results of this chapter are published with C. Platt, W. Hanke, D.A. Abanin and
R. Thomale in Ref. [2].

5.1 Graphene - New Physics in Two Dimensions

Graphene, a monolayer of carbon, hosts a two-dimensional electronic system with
unique properties [57]. In particular, the Coulomb interaction plays an important
role in graphene [240], giving rise to interesting many-body phenomena, including
marginal Fermi-liquid behavior [241]], energy-dependent renormalization of the Fermi
velocity [242], as well as many-body states in the quantum-Hall regime [57]]. In very
high magnetic fields B > 40T, the quantum Hall effect is measurable even at room
temperature [243]. Experimentally, graphene offers a high degree of tunability. In
particular, carrier density can be controlled in a broad range. Near the Dirac point
(filling level of electrons n = 0.5), such a control is achieved by back gates and local
top gates [[57]]. Recently, it was demonstrated that chemical doping [244] and electrolytic
gating [245]] enable doping graphene far away from the Dirac point. In particular, the
density can be tuned to the vicinity of the van Hove singularities (VHS) in the band
structure, which occurs at fillings n = 3/8 and n = 5/8, respectively. In the case of
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chemical doping, the dopants form a superlattice on top of the graphene sheet. This
strongly reduces the amount of disorder induced by doping [244]. Furthermore, the
spacing of the superlattice is so large that hybridization in the dopant layer can be
neglected and, hence, transport measurements of the graphene sample remain unaffected.

Before the strong doping of graphene has been recently accomplished experimentally,
superconductivity had been predominantly studied around the Dirac point. This includes
p+ip-wave predictions from electron-phonon or plasmonic [40,246[], Kekule order [247],
as well as f or d+id-wave from electron-electron [248]] interaction effects. Mean-field
treatments [249,250]] have arrived at 7. > 1000K, with only slightly lower results for
variational approaches [251]. Despite these predictions, SC has not been experimentally
observed in this regime, due to small electronic DOS as well as weak phonon
effects [252]. Near a VHS, opposite to the Dirac point regime, electronic interaction
effects are expected to be strongly enhanced due to the logarithmically diverging DOS and
near-nested Fermi surface (FS) [57]. In this regime, many-body states with appreciable
critical temperatures may arise. Possible candidate states include charge-density wave
(CDW), a spin-density wave (SDW), or an SC state. The latter has been recently
considered within a perturbative three-patch renormalization group (3RG) [147] that only
takes into account the saddle points of the FS. Generally, however, a subtle interplay of
kinetic and interaction parameters is expected to decide which many-body instability is
preferred at the VHS. For graphene, the additional complication arises that, as the band
width (~ 17eV) is of the order of the interaction scale (~ 10eV), graphene cannot be
suitably described from the viewpoint of strict weak-coupling approaches, and adopting
a picture of intermediate coupling is necessary. Rephrased in terms of diagrammatic
expansions starting from the non-interacting problem, this amounts to investigating the
importance of leading and subleading divergent classes of diagrams. In particular, this is
relevant for the competition between magnetic and SC phases in these kind of systems,
one recent example of which have been the iron pnictides [46,253].

5.2 Model and Parameter Setup

Graphene is based on a carbon monolayer which is arranged in a honeycomb structure
(see Sec. for details). With two carbon atoms per unit cell, the resulting dispersion
relation features two bands. The interaction-free Hamiltonian (Eq. includes hopping
terms up to 3rd-nearest neighbors. This is the first order that shifts the VHS and the
optimal nesting condition to different particle fillings.

The hopping integrals #1, t, and t3 for graphene have not yet clearly been evaluated,
there are still some uncertainties about the long-range terms [57,[254]]. For dominant 71,
the band structure features two van Hove singularities (VHS) at n = 3/8 and n = 5/8.
Constrained to the electron-doped case, this is represented by the red line in Fig. [5.1h.
As depicted, this is the regime of largely enhanced DOS which is the focus of attention
in what follows. For #, = 13 = 0, the VHS coincides with the partial nesting of different
sections of the FS for

0, = <O,2n/\/§> . Or= (n,n/\@) and Q= <n, —n/\/§> , (5.1)



CHAPTER 5: Unconventional Superconductivity in Graphene [fRG] 101

(a) 0.617 (b)

0.625

0.625

T
I

I

I

i

I

—t; =28 [eV] 1
—t; =2.8,ty = 0.1,t3 = 0.07 [¢V] |
I

I

I

I

I

I

I

I

)

— ty =297ty = 0.073,t3 = 0.33 [eV]

dos [a.u.

0.559

T T T T t T
0.55 0.60 0.65 0.70 0.75 0.55 0.60 0.65 0.70 0.75

(n) (n)

Figure 5.1: (a) Density of states as function of the particle density for graphene. The
band structure is defined by three parameter settings. The first (red line) includes only
next-nearest-neighbor hopping #; = 2.8eV. The second one (green line) extends this model with
longer ranged hoppings #, = 0.1eV and 3 = 0.07eV (taken from Ref. [57]). The last one (blue
line) from Ref. [254] includes t; =2.97eV, t, =0.073eV and 13 = 0.33eV. The peaks correspond
to van Hove singularities. (b) Nesting factor as function of particle density. It tests how many
(infinitesimal) elements of the Fermi surface (FS) can be connected by the same vector.

The vertical dashed lines in both plots indicate the peaks in the other plot. This clearly reveals
that only in the first setting, the van hove singularity and the optimal nesting are at the same
particle density n = 5/8. For the phase diagram obtained in the next section, I used the setting
with £, = 0.1eV and 3 = 0.07¢eV.

The FSs corresponding to this parameter settings are plotted in Fig.

as shown in Fig. [5.1] with the red solid line. For a realistic band structure estimate with
finite > and 13 [57,254], this gives a relevant shift of the perfect nesting position versus the
VHS as well as DOS at the VHS (see green and blue solid lines in Fig. [5.1)), and affects
the many-body phase found there. The FSs for all three parameter settings are plotted
in Fig.[5.2] Only in setting (a) with ; = 13 = 0, the particle filling for VHS and optimal
Nesting is identical, resulting in the same FS. For t, > 0 and 73 > 0 (Figs. @,c), two
different particle densities are needed to get VHS or optimal nesting, so two different FSs
are plotted.

The Coulomb interactions were represented in Eq. [2.9] and included the Coulomb
repulsion scale from on-site to the next-nearest-neighbor interaction. It depends on the
DOS how strongly the Coulomb interaction is screened. At the VHS, perfect screening is
assumed, so only the local limit Uy is considered, while away from the VHS, the effects of
U, and U, are taken into consideration. The typical scale of the effective local repulsion
has been found to be Uy ~ 10eV < W [255]], where W ~ 17¢eV is the kinetic bandwidth.
This is in the limits of weakly correlated systems, so graphene can be calculated within
the fRG framework, as described in Sec.

To analyze all possible many-body phases and their dependence on the system
parameters, the fRG provides a systematic unbiased summation of diagrams in both
particle-particle channels and particle-hole channels as well as vertex corrections, and
keeps track of the whole FS. Here, the most important low-energy physics will form at
momenta near the FS. It is possible to confine the considerations to the band crossing
the FS, while the contributions of the other band is negligible. So the band index of the

Bogoliubov-transform matrix elements is fixed (i (k) — (k). For the discretization
of the fRG-flow, the Brillouin zone has to be divided into patches, which is shown in
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(b)

Figure 5.2: (a,b,c) FSs for graphene with three different settings for hopping parameters. The
particle densities are chosen to set the FS at the van Hove singularity (dashed blue line) or at
optimal nesting (solid red line), respectively (Fig.[5.I). The Parameter sets are: (a) t; = 2.8eV;
(b) 1y =2.8eV, t, = 0.1eV, 13 = 0.07eV [57] (used for the phase diagram), (c) t; = 2.97¢V,
ty =0.073eV, 13 = 0.33eV [254]. (d) The complete Brillouin zone is divided into 96 patches.

Fig.[5.24d.

5.3 Phase Diagram

The phase diagram as a function of doping, obtained for realistic microscopic kinetic and
interaction parameters [57,[255] is shown in Fig.[5.3] At the same time, however, trends
are investigated of how the system evolves when the parameters are tuned away from this
setting.

At the VHS (orange-shaded area in Fig. [5.3)), the DOS is so large that a local Hubbard
description is appropriate. (The conclusions drawn here also persist as small long-range
Coulomb components would be taken into account at exact van Hove filling.) For realistic
Uy ~ 10eV, the d+id SC instability is dominant, assuming finite hopping parameters f, =
0.1eV and 13 = 0.07eV [57]. (The result is rather similar for the values of [254]].) Only
at scales of Uy > 18 eV the SDW becomes dominant for this scenario. However, ?, is
reduced, the system gets more biased to the SDW, as the SDW fluctuations in the nesting
channel get enhanced. For #; only, the SDW already wins for Uy > 8.5eV, and can give
rise to a helical magnet scenario, as discussed in Sec. @

Doped away from the VHS (blue shaded area in Fig.[5.3), details of the band structure
become less relevant, and the critical instability scale 7, drops stronger towards the
Dirac point than away from it, mainly as a consequence of the reduced DOS. As SDW
fluctuations are weakened, SC phases become dominant. Still assuming rather local
Coulomb interactions (U; /Uy < 0.40), the system still favors the d+id SC state. If the
reduced screening of the Coulomb interaction does not justify the assumption of a local
Hubbard model description, a longer ranged Coulomb interactions [255]] can significantly
change the phase diagram. Hence, allowing for more long-range Hubbard interactions,
the picture changes: The CDW fluctuations are comparable to the SDW fluctuations
which would bias the system towards singlet SC, and triplet f-wave pairing becomes
competitive.

The results suggest that in experiment, modifications of the band structure such as
imposed by pressure as well as changing the dielectric environment of the graphene
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Figure 5.3: (a) Phase diagram for graphene around van Hove filling as obtained by fRG. T, serves
as an upper bound for the critical temperature of phase transitions as a function of doping. (b)
Dominant d+id instability at van Hove filling for Uy = 10eV and the band structure in Ref. [|57].
(c) Away from van Hove filling (blue shaded area), 7. drops. Whether d+id or f-wave SC
instability is preferred depends on the strength of long-range interactions (U; /Uy = 0.45 and
U, /Uy =0.15).

sample would enable the realization of different many-body states and possible phase
transitions between them.

5.4 Singlet Superconductivity: d+id-Wave Symmetry

At the VHS and nothing but a local interaction, the dominating phase is d-wave SC.
After the decomposition of the final vertex into the SC-channels (Eq. 2.130), the form
factors f (75) of the singlet channel can be calculated (see Sec. for details). Here,
the leading eigenvalue is twice degenerate, so two form factors have to be considered.
The results are plotted with solid lines in Figs. [5.4c,d. From the Fourier transform
of the momentum-resolved form factors along the FS it is possible to obtain the
pairing amplitudes of the real-space SC pairing function [256]]. Here, the form factors
corresponding to nearest, next-nearest, 3rd-nearest and so on, neighbor hopping are
calculated and transformed to momentum space and compared to the fRG form factors.
The honeycomb lattice is characterized by Cg, symmetry about the center of hexagons,
and the SC order parameter transforms as one of the irreducible representations.
As explained in Sec. the d,»_,» and dy-wave follow the two-dimensional E;
representation and are hence degenerate. Fig. [5.4p shows the character of the E,
representation. If these are applied to the next-nearest neighbors (see yellow arrows in

Fig.[5.4h, they read

3k, — 3k 3. + 3k
fE,.1 = 2cos (\/gky> — oS (%) oS (\/_ y2+ x)

V/3ky — 3ky V/3ky + 3k
sz,z = COS T —COoS T .

and (plotted with dotted lines in Figs. [5.4f,d) fit very well to the fRG ones. So one can

(5.2)
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Figure 5.4: (a) Real-space pattern of pairings between nearest (yellow arrows) and next nearest
(green arrows) neighbors in the same sublattice. (b) Possible character table of the E;
representation of the Cg, symmetry group. Combined with the positions marked in (a), they
yield the analytic form factors, as discussed in Sec. dxz,yz and d,,-wave solutions for (c-e)
Up = 10eV, U; /Uy = 0.45 and n = 5/8 (VHS) or (f-h) the same parameters with additionally
U, /Uy = 0.15, respectively. (c,d.f,g) show the form factors of d>_,» and dyy plotted along the
FS according to patch indices defined in Fig. [5.2d. The solutions change from (c,d) to (f,g).
The analytic form factors given in the text (blue dotted lines) fit the numerical data (red solid
lines). (e) and (h) show the gap profile of d+id along the FS (actual connection to experimental
energy scale can still vary by a global factor). The gap anisotropy increases from (e) to (h).

conclude that the Cooper pairing emerges on nearest neighbors of the same hexagonal
sublattice.

In the broader vicinity of the VHS, when long-range Hubbard interaction can not be
neglected, the form factors retain the d-wave E; representation, while the Cooper pair
wave function changes as shown in Figs. ,g (U1 /Uy = 0.45, Uy /Uy = 0.15). There,
the form factors change to

3v/ 3k, — 3k 33k, + 3k
fE,,1 = 2cos (3k,) —cos % —cos %
(5.3)
3v/3k, — 3k, 3v/3ky + 3ky
JE,2 = cos — — COoS — |

corresponding to a doubled number of nodes along the FS. Here the pairing spreads out
to the next-nearest neighbor of the same sublattice (see green arrows in Fig. [5.4p). This
is a consequence of the long-range Coulomb interactions: The Cooper pair wave function
seeks to develop more nodes to minimize Coulomb repulsion, and is able to do so by
longer ranged Cooper pairing. This, however, is not the form of the gap function of
the d-wave instability. As the degeneracy is protected by symmetry, the system could
generically form any linear combination d,>_,» + eiedxy of both d-wave solutions. The
gap equation Eq.[2.136]is iteratively solved, with the form factors of di, d» and d;+id; as
starting conditions. After the minimization, the grand potential is evaluated (Eq. [2.137),
where always d+id is the energetically preferred combination. This is rather generic in a
situation of degenerate nodal SC order parameters, since such a combination allows the
system to avoid nodes in the gap function. The gaps are hence nodeless and only slightly
change their anisotropy as the pairing function varies (Figs.[5.4g,h).
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Figure 5.5: (a,b) The real-space pattern is identical to Fig. |5.4p, but the character table now
describes the B; (nearest neighbors) or the B (next-nearest neighbors) symmetry, as discussed
in Sec. 2.3] (c-f) Pairing amplitudes, form factors, and gap profiles for the f-wave phase as
defined in Fig. representative for n = 0.65 (larger than the VHS) for (a) U; /Uy = 0.6 to (b)
U, /Uy =0.6,U/Uy = 0.2. The gap profile is nodal and the nodal points shift from (d) to (f).

As graphene can be tuned rather accurately to the van Hove filling, it may be a
reasonably accessible experimental system to study such an SC phase. The expected
experimental evidence for d+id would be a nodeless gap detectable through transport
measurements and singlet pairing due to a Knight shift drop below 7.. A minor
caveat is given by the role of impurities which may spoil the symmetry between the
two d-wave solutions. This could give rise to a nodal gap beyond sufficient impurity
concentration [257]].

5.5 Triplet Superconductivity: f-Wave Symmetry

It is similarly interesting to investigate the triplet f-wave instability [135]], which
dominates for longer ranged Coulomb interaction (Fig.[5.5). It obeys the one-dimensional
B or B, representation, depending on the range of the Coulomb interaction. For
U, /Uy = 0.6, the form factor and pairing amplitudes are plotted in Figs. ,d as well as
for U; /Uy = 0.6, Uy /Uy = 0.2 in Figs. ,f. Again, the Cooper pair distance increases
with longer ranged interactions, which manifests itself as a change of the form factor

fB, = sin (\/gky) —2sin (@) cos <%) in (c¢) to

f, = sin(3k,) —2sin (3—?> cos <3\/2§ky> in (e) .

The gap function follows the absolute value of the form factor, showing a nodal gap, where
the points of the nodes change with increasing Coulomb range. In the case of f-wave, the
position of the nodes would hence indicate the Cooper pairing distance associated with
the long-range properties of the Coulomb interaction, and suggest experimental evidence
of a nodal gap from transport and an invariant Knight shift due to triplet pairing. For
filling smaller than the VHS, the FS is disconnected and it can happen that the nodes do

(5.4)
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not coincide with the FSs. This f-wave regime is probably very low in 7¢, depending on
whether B or B; is preferred, and may be nodeless.

5.6 Spin-Density Wave Order

Around the van Hove filling, there is a strong competition between the spin-density
wave (SDW) and a chiral d+id-wave superconductivity. Already small changes in filling,
hopping ranges or interaction ranges change the dominating channel in the fRG-flow.

The discussion on the dominating order at van Hove filling is still active because some

calculations predict chiral d+id superconductivity [[147,244,258]], while others get a
magnetic order [[148]. Indeed, results from angle-resolved photoemission spectroscopy
verify the calculated band structures [244], but the real-space pattern of the magnetic
order is not clear. At the moment, there are two different suggestions:
The first one was proposed by 7. Li [259]] and continued by W.-S. Wang et al. [148]]. Here,
the order is not restricted to an S; projection but includes a full three-dimensional spin.
The three equivalent nesting vectors prefer different real-space orders. To implement all
three orders at once, each nesting vector is combined with an orthogonal spin direction.
Hence, energetically favorable spin structure is a linear combination [259]

= 1\2361Q3§ —|—]\_/jleié1ié —l—]\_/}zeiézié
- - - 5.5
_ s OF i, OR O o

with three mutually orthogonal and equal length vectors M, 2,3. This results in a real-space
pattern with four different sublattices with spin
sublattice 1 : +M1 +Mz +M3
sublattice 2 : — Ml — 1\7[2 —|—M3
sublattice 3 : +1\711 —]\712 —1\713
sublattice 4 : — Ml +M2 —Mg ,

(5.6)

which form the vertices of a tetrahedron. A possible real-space pattern of this order is
plotted in Fig. [5.6b. This chiral SDW state breaks parity and time-reversal invariance.
Also, the rotational symmetry Cg is broken and the translational symmetry is reduced to a
unit cell with eight sites. This pattern yields a magnetic state with nonzero spin chirality.
It is an insulator and features the anomalous quantized Hall effect [259]. An insulator
with nonzero Hall conductance is called a Chern insulator.

The other magnetic order was introduced by R. Nandkishore and G.-W. Chern et
al. [260,1261]] and features a paramagnetic phase that breaks the translational invariance
without changing the point-group symmetry of the lattice. It includes a new unit cell with
eight sites, namely, six sites with momentum —A and two sites with +3A. So, the O(3)
spin-rotationally symmetry is broken. There are four equivalent orders, which can not be
transformed into each other by a global spin rotation [261]]. The uniaxial SDW state is
plotted in Fig.[5.6c. A particular feature of this state are the gapless charged excitations
in just one spin branch, resulting in a half-metallic behavior [260].
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Figure 5.6: Various implementations of the real-space pattern of the SDW phase in graphene. (a)
In the standard Heisenberg antiferromagnet, one sublattice is populated by spin-up electrons
(green sites), the other one by spin-down electrons (blue sites). The magnetic unit cell
is identical to the non-magnetic one and contains two sites. (b) Tetrahedron magnetic
ordering [|148]|259]. There are four different spin orientations (red/green/blue/yellow sites),
which reflect the vertices of a tetrahedron. The magnetic unit cell contains eight sites. (c)
Uniaxial SDW order [260,[261]]. In a unit cell of eight sites, there are six sites with spin down
(yellow sites) and two sites with a trice spin up (red sites). The rotational symmetry is still
present.

Now, the task is to determine the real-space pattern of the SDW phase obtained by fRG
within this thesis. As described in Sec. [2.6.3} it is possible to transform the final vertex
from band to sublattice representation. After the mean-field decoupling of all possible
combinations, the dominating channel (now with sublattice indices) can be determined.
Indeed, there is no significantly dominating channel for the SDW phase. The reason is that
the decoupled vertex is still in momentum space, with a real-space unit cell containing two
sublattices. If the SDW order is a classical antiferromagnetic order (see Fig.[5.6p, realized
in graphene at half filling [248]]), electrons in one sublattice have spin up, the others spin
down. Here, the mean-field channel with <61Tm6iOC ¢>’ i.e a spin flip in the same sublattice, is
significantly larger than the channel with spin-flip hopping between different sublattices.
But both the tetrahedron SDW and the uniaxial SDW form a new magnetic unit cell with
eight sites. So there are more than one spin direction in one sublattice and the band to
sublattice transformation fails. So, the fRG does not tell anything about the SDW order?
Actually, one statement is clear: From the three real-space pattern in Fig. [5.6] order (a) is
excluded. But it is not possible to distinguish between the other two orders.

5.7 Outlook: Topological Superconductors

The possibility of the time-reversal symmetry-breaking d+id phase in graphene is very
intriguing because it has been noted early on in the context of the cuprates that such
a phase would have various interesting properties such as quantized edge currents [162,
262]. Furthermore, provided Rashba spin-orbit interaction is present, d+id phase supports
Majorana modes in the vortex cores obeying non-Abelian statistics [263]. This topic is
very present in current discussions, so a closer look on topological phases is appropriate.



108 CHAPTER 5: Unconventional Superconductivity in Graphene [fRG]

(a) Ae(k) (b) 46(7@ © 48(16)
bulk: valence band —— a7

spin-down edge state
>k

spin-up edge state

bulk: conduction band

Figure 5.7: (a) Band structure of a two-dimensional topological insulator. The bulk is an insulator
with gap size A¢, while two distinguishable edge states are crossing within the energy gap.
In this example, the edge states have antiparallel spin polarization. The crossing point is
protected by topology because a possible back scattering is extremely improbable because
of the antiparallel spins. In a three-dimensional topological insulator, the surface states are
protected. (b) Another example with three edge states. The two distinguishable edge channels,
indicated by red and blue solid lines, differ by spin polarization. There is one edge state in the
blue channel and two in the red one, resulting in three zero energy modes (indicated by circles).
(c) Slightly deformed band structure. Here, only the zero energy mode in the odd channel was
protected by topology.

Firstly, the so-called fopological insulators are band insulators in the bulk but have
metallic edge states that are protected by topology (Fig. [5.7a). These materials break
time-reversal symmetry and/or parity. The number of edge/surface states is odd or even,
represented by a Z, symmetry group. The topological invariant of an insulator can not
be changed, except the band gap of the bulk is closed [264]. Only with an odd number
of edge/surface states per channel, these are protected by topology (Figs. [5.7b,c). In
these systems, a new state of matter can be realized, the quantum spin Hall effect [265,
266]. That effect is also present in graphene with a Rashba coupling [267,268]]. In
general, the distinction between a normal and topological insulating phase is expressed
by a topological number v € Z;. A review on topological insulators is given in Refs. [264,
269,1270].

This concept can be transfered to superconductors [264},270] because these are (at least
partially) gaped within the superconducting phase. If the time-reversal symmetry as well
as parity is broken, there exist surface states between the superconducting domain and the
normal one [238]]. These states are protected by symmetry and hence stable. The topology
of these phases is characterized by the Chern number [238]]. Again, to change the Chern
number of a topological superconductor, the gap has to be closed.

Up to now, all discovered high-7,. superconductors are Type-II superconductors [271,
2772], which, above a critical magnetic field H., feature a lattice of vortices in the
superconducting phase. Within a single vortex, there is a quantized magnetic flux,
while there is no magnetic field in the remaining superconducting domain (Meissner
effect). Only if the magnetic field is larger than H,;, the superconducting state completely
vanishes. The boundaries of the vortices are surfaces between superconducting and
normal domains, so they can feature topological surface states if the requirements are
fulfilled. In the superconducting state, the particle conservation is violated, but there
is a particle-hole symmetry for excitations of quasiparticles. Hence, with és(€) being
the annihilation operator of a quasiparticle with spin ¢ and energy €, the particle-hole
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symmetry yields

Co(€) = 5 (—€)

fim (20 = i (¢5(-)
¢(0) = 5(0)
) )

(5.7
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I

So, creator and annihilator are equal. In other words, the (quasi)particle and its antiparticle
are identical. This construction is called a Majorana fermion (MF) [273-275]] at zero
energy. Originally, it had been proposed for high-energy particle physics to describe
elementary particles, e.g. the neutrino. There, the “classical” fermions are called Dirac
fermions. In condensed-matter physics, one need the combination of two MFs to create a
Dirac fermion:

f _ J;i% } . o
S 58)
fT Y 2Y

Two separate MFs can form a Dirac fermion, so this construction is non-local. In addition,
the non-local states described by f can be filled and emptied with no energy cost, resulting
in a ground-state degeneracy [275]. Hence, ¥ rotates the wave function inside of the
ground-state manifold in a non-commutative fashion [275].

To clarify the impact of this statement, one has to take a look on statistics: Particles with
an Abelian statistic include a commutation relation (¥1W¥;) = (¥,%¥;)e'®. Here, ¢ = 0
describe bosons, ¢ = 7 are fermions and the others are called anyons. So, only a complex
phase is multiplied, when two particles are exchanged. However, the quasi-particles
created by ¥ are more complicated because an exchange of two of these non-Abelian
anyons results in a complete new quantum state. So, if a vortex in a superconductor binds
an MF, the exchange of two vortices also will obey non-Abelian statistics. Here, it is
important to notice that only an odd number of MFs within a vortex obey non-Abelian
statistics [263]].

Very recently, V. Mourik et al claimed the detection of MFs in hybrid
superconductor-semiconductor nanowire devices [276]. If this result is verified, it would
be the first experimental realization of this theoretical concept. This will boost the interest
in research on MFs.

Now, one has to examine the circumstances for MFs in superconducting surface
states. As Eq. states, MFs have a fixed (quasi-) spin. Hence, systems with only
one kind of fermionic constituents for Cooper pairs provide ideal platforms [275], e.g.
a spin-triplet superconductor of p+ip-wave type. Another possible realization is a
spin-singlet superconductor with Rashba spin-orbit coupling in a magnetic field. Here,
the s-wave type need a Zeeman splitting larger than the superconducting gap, while for
the d+id-wave type a small magnetic field is sufficient [263]. Also, this type is more
stable than p+ip-wave one [263]]. One candidate is d+id-wave superconductivity in
Nag.3Co0; - H,0 [263] (see also Chap. {). As shown in this chapter, also graphene has
a phase with d+id-wave superconductivity. The tunability of the Rashba interaction in
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graphene [277] may enable realization of the Majorana modes in vortices; owing to the
two-dimensional nature of graphene and its remarkable tunability, their observation and
manipulation should be easier than in other materials.

The MFs in vortices of a topological superconductor with their non-Abelian statistics
are proposed to be candidates for a quantum computer device [275] because the energy
of the manifold-degenerate ground state of MFs is within the band gap, so this state
is robust to thermal fluctuations. In addition, the non-local origin of the MFs reduces
the probability of a random change in the ground state. Hence, a defined state is very
stable [275]. If this state is manipulated by an exchange of two vortices, i.e. the
exchange of two MFs, the state does not gain a simple phase but is completely altered,
due to the non-Abelian statistics. This corresponds to a rotation in the space of the
manifold-degenerate ground state and is equivalent to the manipulation of “qubits”, which
are an arbitrary superposition of |0) and |1) [278]], in contrast to classical computers,
which save information in digital bits with the values 0 and 1. Hence, with the same
number of bits and qubits, respectively, the quantum computer is able to save by far more
information. But this is only correct as long as the program is running because, when the
result is read, the superposition collapses. A review on quantum computers is given in
Ref. [278].

The advantage of such a quantum computer is enormous: For example, P. Shor has
published an algorithm for integer factorization that runs in polynomial time [279].
Unfortunately, nowadays the encryption of important data is based on public-key
cryptography, which in turn is based on multiplication of very large integers. So the
factorization of very large integers is needed to break the encryption. A classical computer
needs far to long to do this task, but a quantum computer with a Shor’s algorithm would
break all encryptions in a reasonable short time.

Up to day, the realization of a suitable quantum computer is still science fiction. But
the concepts presented in this section show a possible route to this invention.

5.8 Summary

This chapter has provided a detailed analysis of the competing many-body phases of
graphene at and around van Hove filling. For realistic band structure parameters and
interactions, the exotic nodeless singlet d+id-wave superconductivity phase is preferred
over an extended phase-space regime around the van Hove singularity.

Variations of the kinetic parameters and effective interaction scales can drive a transition
to a spin-density wave phase at the van Hove point. Away from the van Hove singularity,
reduced Coulomb screening and, thus, longer ranged Coulomb interactions change the
form of the d+id Cooper pair wave function, and in certain limits can favor a nodal triplet
f-wave SC phase. The real-space pattern of the spin-density wave is still in discussion,
but with the techniques used in this thesis it was not possible to make a statement on this
topic. Here, some open questions remain.

Finally, 1 gave a short outlook on Majorana fermions and quantum computers and
showed that the d+id phase of graphene is a possible compound for the realization of
this future technology.
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In summary, the chiral d+id-wave superconductivity and its properties have been
discussed for Nag 3CoO; - yH, O and graphene. These materials are based on the triangular
and the honeycomb lattice, respectively, which feature the Cg, symmetry. Hence, it is
consequent to propose a d+id-wave superconducting state also in the (Cg,-symmetric)
kagome lattice. Especially the similarity of the low-energy band structures of the
honeycomb and the kagome lattice suggest that statement. However, as discussed in the
next chapters, a closer look on the properties of the FS of the kagome lattice reveals the
effect of sublattice interference, which has a dramatic impact on FS instabilities and, in
particular, d+id-wave superconductivity.






Sublattice Interference in the
Kagome-Hubbard Model

Using an analytic renormalization group analysis, the electronic phases are studied in
the infinitesimal-coupling limit around van Hove filling of the kagome lattice (Sec. [2.2).
There exists an interference mechanism where the kagome sublattice structure affects
the character of the Fermi-surface instabilities. This roots in the observation that
similar to multiorbital models, where the Fermi surface (FS) can have varying orbital
weights at distinct points in the Brillouin zone (BZ), the multisublattice kagome Hubbard
model with local interactions exhibits reduced nesting effects due to different sublattice
distributions at the nested Fermi-surface regions. This leads to major suppression of 7,
for d+id superconductivity (SC) and causes an anomalous increase of 7. upon addition
of longer-range Hubbard interactions. The suppression of conventional Fermi-liquid
instabilities makes the kagome Hubbard model a prototype candidate for hosting
unconventional electronic states of matter at intermediate coupling.

The results of this chapter are published with R. Thomale in Ref. [3]].

6.1 Motivation

Understanding the variations of the critical scale 7; of unconventional, i.e. electronically
mediated, superconductivity is a long-standing challenge in condensed matter. For
the cuprates, 7. as a non-universal quantity has been found to depend on various
quantities such as structural parameters [280], number of layers [281], Fermi-surface
topology [282]], and orbital content of electrons at the Fermi level [283]. For the latter,
the d» admixture to the dominant d,>_» Fermi-surface character has been suggested as a
substantial influence on 7;, a motif which is even more visible in the iron pnictides. There,
all 1, Fey-orbitals host large portions of electronic states in the vicinity of the FS, which
generically necessitates a multiband description. As a consequence, universal trends of
superconductivity both in terms of order parameter anisotropy and 7; sensitively depend
on the structural features which determine this orbital composition [46,284].

Multiband descriptions are both implied due to multiple orbitals and multiple
sites associated with the unit cell of a given lattice. While previously mentioned



114 CHAPTER 6: Sublattice Interference in the Kagome Lattice [aRG]

kagome lattice honeycomb lattice
2)
(a) (b)

0 ______________________________________________________________________________
)
o

2

-4p K M T DOSGE) 41 K M T DOS(E)

Figure 6.1: Tight-binding model in the kagome (a,b) and the honeycomb (c,d) lattice,
respectively. If only nearest-neighbor hopping is included, the band structure of both lattices,
plotted in (a,c), is nearly equal. The kagome lattice features an additional flat band, but its
valence band dispersion is identical to the honeycomb one (red colored). The valence band
filling n, is the partial filling of this bands. (b,d) The corresponding density of states (DOS) is
consequently identical in the proximity of the Fermi surface (FS).

superconductors are all square lattices with one single site per unit cell, the kagome
lattice [285]] possesses a minimal three-band model due to three sites per unit cell. This
lattice is presented in Sec. For the kagome Hubbard model, the three sublattices
imply fundamental problems in characterizing its preferred electronic many-body phases.
In the strong-coupling limit at half filling, the kagome spin model exhibits strong
quantum-disorder fluctuations and both in theory and experiment has become one of
the paradigmatic models of frustrated magnetism [286-288]. While the associated
Mott transition at finite coupling might still be described within dynamical mean field
theory [289], the scope of collective electronic phases at intermediate Hubbard strength
and general filling is particularly challenging to investigate: In the same way as electronic
Bloch states at the Fermi level can involve different orbital admixtures for the multiorbital
case, the electronic states in the kagome lattice can be distributed differently among the
multiple sublattices. Furthermore, as the three sublattices spoil particle-hole symmetry,
large scale numerical simulations of two-dimensional systems such as quantum Monte
Carlo calculations cannot be employed due to the sign problem.

From a tight-binding perspective (Fig. [6.1), it is conceivable that the filling is a
sensitive parameter: In addition to two strongly dispersive bands, the kagome Hubbard
model features one flat band which, for appropriate fillings, has been suggested to be
particularly susceptible to ferromagnetism along Stoner’s criterion [290]. While it is
an ongoing challenging effort to identify kagome lattice materials at different electron
fillings, a promising alternative route starts to emerge in optical kagome lattices of
ultra-cold atomic gases, where the optical wavelengths can be suitably adjusted for
fermionic isotopes such as 6Li and 9K [291].

In this chapter, the focus is on the response of the tight-binding kagome model to
weak local and longer-range Hubbard interactions. The motivation is twofold. First, the
kind of competing Fermi-surface instabilities are questioned, revealing the interplay of
the sublattice structure and Fermi-surface topology. Here, the regime of the dispersive
bands around van Hove filling is considered, where critical scales are enhanced due
to large density of states (DOS) and nesting becomes relevant (Fig. [2.6c, Fig. [6.2h).
For superconductivity, which is expected as the generically dominant instability channel
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Figure 6.2: (a) FS of the kagome tight-binding model at n = 5/12 total filling. It touches
the M point of the hexagonal Brillouin zone (BZ), where the DOS is maximal; its topology
allows for three pairs of nesting features such as 03 = (—m/2,4/31/2). The colors blue, red,
and green label the major sublattice occupation of the Fermi-surface band eigenstates. (b)
The FS labels I-VI defined in (a) along with the color shift assist to read off the change of
sublattice occupation weights |u, (k)| counterclockwise along the FS. (c) FS of the honeycomb
tight-binding model at n = 5/8. Compared to (a), the FS topology and DOS are approximately
identical. (d) The sublattice occupation along the FS is homogeneous.

for weak coupling [136]], the multidimensional irreducible lattice representations in the
kagome lattice, i.e. Cg, symmetry about the center of the hexagons (see Sec. [2.3]
for details), also suggests the possibility of topological chiral singlet superconducting
phases [2]. Second, the infinitesimal-coupling limit provides a pivotal point of the
parameter space which can be solve up to analytic precision [[135,137]. This is a valuable
starting point for subsequent effective studies at intermediate coupling in Chap.

An introduction to the features of the kagome lattice is presented in Sec. [2.2] including
the Hamiltonian in real and momentum space. The analytical renormalization group
is elaborately explained in Sec. 2.5 The core information which is relevant for
investigating the interacting problem is encoded in the transformation coefficients ug, (k)
of the Bogoliubov transformation matrix from the real-space and sublattice picture to the
momentum-space and band representation, defined in Eq. 2.TT}

%El _‘s
m Zzusn kme —ik(Ri+7y) ©.1)

For a given band n and momentum point in the BZ &, the coefficients obey ¥, lugn (k)2 =1,
where the band index n can be omitted because only the interaction in the band at the
Fermi level plays a crucial role. In the following, these coefficients are called sublattice
weights.

6.2 Local Hubbard interaction

Firstly, U is set to zero, so the interaction is strictly local. The FS at van Hove filling
n=>5/12 is depicted in Fig. . The interaction vertex takes the simple form

V(%],%z,%3,k4 U()ZM kl k2 ”s<k3)MS<k4> (6.2)

From Eq. [6.2] because of the locality of Up, the only momentum dependence is given
by the sublattice weights. Their evolution along the FS is depicted through color
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Figure 6.3: (a) Critical SC scale A versus valence band filling for infinitesimal coupling with
nothing but a local interaction, presented for the kagome scenario in Figs.[6.2p,b (blue) and the
honeycomb scenario in Figs. ,d (red). Dashed line denotes f-wave, solid line d+id-wave.
The valence band filling n, = 0.25 corresponds to a van Hove point. All scales in the kagome
case are largely reduced as compared to the honeycomb case. Below n, = 0.25 the FS consists
of disconnected pieces (left inset) and gives sizable f-wave for the honeycomb case. Above
n, = 0.25, d+id is preferred with a quick drop A and always a higher scale for the honeycomb
case. (b) Relative change of A for finite U; as compared to the Uy only case as a function of
U, /Uy for both lattice scenarios at filling close to the van Hove regime. While A drops for the
honeycomb case, it rises for the kagome case.

coding in Figs. [6.2a,b. Eq. [6.2] looks very familiar from orbital makeup factors in
multiorbital systems. In the kagome Hubbard model, this role is assigned to the sublattice
weight distribution. As in the multiorbital case, the sublattice now affects the nesting
enhancement of particle-hole fluctuations along the FS. A first guess from Fermi-surface
topology without invoking the sublattice distribution would suggest the nesting vectors

_ 1 V3 > - 1 V3

gr=m T3 Ty , 02=mn(1,0) and Q3=m T3y (6.3)
As they connect FS points with mainly different sublattice occupation, however, the
interaction vertex [6.2) will be small as it is diagonal in the sublattice index s. Consequently,
this effect is called “sublattice interference”.

It is instructive to reconcile this scenario with the Hubbard model in the honeycomb
lattice with two lattice sites per unit cell (Sec.[2.2). There, the tight-binding band structure
matches the dispersive bands of the kagome lattice and allows one to similarly tune the
honeycomb model to the equivalent van Hove filling. While the DOS as well as the
Fermi-surface topology exactly match with the kagome case (compare Figs. [6.2p,c), the
sublattice weights for the honeycomb model are homogeneous along the FS (Fig. [6.2d).
This in turn suggests that sublattice interference is absent for the honeycomb case.

Fig. [6.3p summarizes the results for local Hubbard interaction both for the kagome
and honeycomb tight-binding model. The doping is varied around van Hove filling. The
valence band filling n, is the fraction of the partially occupied band

1
honeycomb: n, = 2 (n — 5)
(6.4)

1
kagome: n, =3 (n — §) ,
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which enables a direct comparison of both cases: The van Hove filling is located at n, =
1 /4, the Dirac cone filling at n, = 0. For 0 < n,, < 1/4, the FSs are disconnected (left inset
Fig.[6.3p), while they form one contingent pocket for n, > 0.25 (right inset Fig. [6.3). For
both lattice scenarios, triplet f-wave SC is preferred for the former (B, representation of
Ce, symmetry group), while d+id-wave is preferred for the latter (E, representation). In
detail, d+id features two degenerate SC eigenvalues A ; of d-wave symmetry, which then
in any mean field treatment yield the preferential topological d+id chiral superconducting
state in order to avoid loss of condensation energy due to nodes, which would necessarily
cross with the FS [2].

The main difference between the kagome (k) and honeycomb (/) scenario is seen
in the difference of A (Fig. [6.3h). At van Hove filling, Ay ~ 1/3)A;. This illustrates
at infinitesimal coupling how decisively sublattice interference affects the formation of
superconductivity in the kagome lattice.

6.3 Long-Range Hubbard Interactions

In the case of finite Uy, the interaction vertex gets significantly more complicated than for
the on-site interaction scenario (Eq.[6.2): The momentum dependence now originates both
from the harmonics associated with the finite interaction range as well as the sublattice
weights. The full interaction part of the Hamiltonian is written Eq. In particular,
however, V is not diagonal in the sublattice index anymore.

At a representative filling in the d+id wave regime at n, = 0.3, the superconducting
instabilities are plotted as a function of the ratio U; /Uy in Fig. . In the plot, the
ordinate is the ratio of the critical temperatures A /A, where A is the critical temperature
at Uy = 0. As elaborated on in Ref. [137], the generic case which applies to the
honeycomb scenario is such that long-range interaction should frustrate the pairing and
induce a drop of A, which might be tuned via the degree of external capacitive screening
of the superconducting layer [292].

The kagome Hubbard model shows a notably different behavior, as A increases for
longer range interactions. This phenomenon is intelligible from the perspective of
sublattice interference and the vertex function. As the vertex becomes non-diagonal in
the sublattice index due to longer range interactions, this yields a reduction of sublattice
interference effects as particle hole fluctuations between different sublattice components
become sizable and allow for reestablishing the full nesting enhancement given by
Fermi-surface topology.

6.4 Summary

In the kagome Hubbard model, d+id and f-wave superconductivity is predicted around
van Hove filling. f-wave is preferred at fillings where there are yet disconnected FSs
whereas d+id is the leading instability as it becomes one contingent FS pocket (Fig.[6.3)).
The latter has also been found in variational cluster approximation calculations [95],
where only local correlations are kept and no long-wavelength features of the electronic
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phase can be addressed. This finding alone combined with the shape of the dispersive
bands naively suggests a strong similarity to the honeycomb model doped to van Hove
filling, which has been recently investigated via random phase approximation, 3-patch
renormalization group, analytical and functional renormalization group [2}/135}|147,|148,
248.,258].

However, the scales of the kagome model are largely suppressed as compared
to the analogous honeycomb scenario: The kagome Hubbard model exhibits the
new mechanism of sublattice interference, affecting the formation of Fermi-surface
instabilities, as the inhomogeneous sublattice distribution of Fermi-level states causes
reduced nesting effects. Furthermore, while the usual effect of long-range Hubbard
interactions would be to reduce the critical scale of superconductivity [[137,292], it gets
enhanced for the kagome Hubbard model as the long-range interaction help to relieve
sublattice interference effects.

The consequent step is to extend this infinitesimal-coupling scenario to weak coupling.
The functional Renormalization Group, which is used in the next chapter, considers not
only the superconducting instability but also add1t10na1 competmg long-range orders.
Especially long-range orders with an ordering vector 01, 0s or 03, i.e. the nesting vector,
are dramatically effected by the sublattice interference.



Unconventional Fermi Surface

Instabilities in the Kagome
Hubbard Model

At first glance, the structure of the kagome lattice, which consists of triangulars
arranged around hexagons (Sec. [2.2)), is very similar to the triangular lattice (Sec. [2.2).
Consequently, at half filling and for large on-site interactions (Heisenberg model), the
spin frustration in the triangulars (Fig.[2.2) is suppressing a long-range antiferromagnetic
order [293,294]]. But in contrast to the triangular lattice, where the spin-frustrated
triangulars are located close to each other and, hence, affect themselves, the triangulars
are isolated in the kagome lattice, resulting in an enhanced spin frustration and a quantum
spin liquid [91,295-297] or a valence bond crystal [298]]. Hence, the literature about the
kagome lattice has its focus on the strong coupling regime. However, the herbertsmithites
such as ZnCuz(OH)eCl, appear as a relevant class of candidates for intermediately
coupled materials [299]. In addition, a promising alternative route starts to emerge in
optical kagome lattices of ultra-cold fermionic atomic gases such as for the isotopes °Li
and 4K [291].

Beside these considerations at half filling, the doped system has recently also attracted
attention: S.-L. Yu and J.-X. Li implemented the variational cluster approach (VCA,
Sec. for the kagome lattice [95]. At a particle filling of n = 5/12, the density of
states (DOS) has a logarithmic singularity (van Hove singularity, VHS) and the Fermi
surface (FS) is perfectly nested. They found a phase diagram with chiral d+id-wave
superconductivity (SC) at small interaction scales and a chiral spin-density wave (SDW)
at large ones.

On the other hand, the results from the infinitesimal-coupling limit (Chap. [6)
demonstrate that the instabilities, induced by the non-trivial FS, drive unexpected
features because the extension of a strictly local to long-range interaction induces a
contra-intuitive enhancement of superconducting fluctuations. Nevertheless, only the
superconducting instability was considered in that chapter. Hence, it is natural to broaden
the contemplations with the weak-coupling functional Renormalization Group (fRG, see
Sec. [2.6] for an introduction). Thereby, many distinct FS instabilities are competing with
each other, opening the route to various orders in a rich phase diagram.

In this chapter, I will show that the sublattice interference at the FS dramatically
suppresses the SDW order. Furthermore, d+id SC is also lacking because it is driven
by SDW fluctuations [2]. The absence of the commonly dominating phases opens the
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Figure 7.1: Phase diagram at and in the vicinity of the van Hove singularity (VHS). In both
settings, a ferromagnetic phase (FM, green) with ordering vector Q = (0,0) is located at
strong Uy, while the Pomeranchuk instability (PI, yellow) is dominant for a high U,. For very
weak interactions, the fRG combined with the patching scheme underestimates ferromagnetic
fluctuations (see text for details). (a) At VHS, the nesting is optimal, so density-wave
fluctuations are present, including a charge bond-ordered phase (cBO, blue area) and a spin
bond-ordered phase (sBO, red area). (b) Away from van Hove filling, when the nesting is
worsening, triplet f-wave superconductivity (f-SC) rises.

competition for exotic quantum states, including long-range orders with charge and spin
bond-ordered phases as well as a nematic state.

The results of this chapter are available in a preprint with C. Platt and R. Thomale in

Ref. [4].

7.1 Phase diagram

The Hamiltonian of the kagome Hubbard model is written in Eq.[2.10] After the Fourier
transform to momentum space, the kinetic part (Eq. [2.13)) and interaction part (Eq. [2.16)
were implemented in the fRG formalism.

The phase diagram obtained by parameter scans is plotted in Fig. [7.I] There, two
distinct fillings (at VHS and next to VHS) are confronted. It is conspicuous that only
ferromagnetic (FM) fluctuations are present for a strictly local interaction (Uy > 0,
U = 0). These fluctuations with Q = (0,0) are driven by the high DOS at the VHS,
independently of the FS topology. The order parameter reads

- o T -
Orm = ). <C%zu%czzv> ) (7.1)

k,J uv

with the vector of Pauli matrices 6 (Eq. . In addition, the background of
ferromagnetic fluctuations at high energies provides further bias for a spin bond-ordered
phase at VHS and the f-wave SC phase away from VHS. Due to numerical problems
induced by the discretized patching of the BZ (Fig.[2.19), the results for small interaction
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scales are not stable (gray area). Especially the M-points with the highest local DOS are
underrated. By altering the patching scheme, so that the patches are more concentrated
at the proximity of the M-points, the numerically stable parameter space is increased.
With this increased numerical effort, FM remains the dominating fluctuation even at
smaller interactions. The other phases (and their borders) are only minimally effected
by the alternative patching, demonstrating the stability of the technique. However, at
infinitesimal coupling and away from VHS, SC has to be the leading instability [136],
which is discussed in detail in Chap. [6]

Compared to the VCA phase diagram (Fig. 4 in Ref. [93])), a d+id SC and an SDW
phase is completely missing. Yet, they used a different ansatz to solve the system:
The VCA implements a strong-coupling approach with an exact local interaction and
a self-consistently optimized hopping between small clusters. The interaction U is the
essential scale. However, the fRG is a weak-coupling formalism, settled on Fermi-liquid
theory. Here, the topology and shape of the FS play a crucial role. As demonstrated in
the latter chapter, also the sublattice weights may be essential. But, these effects are less
distinctive in the VCA, so the results of the two approaches are not directly comparable.

The absence of the SDW is further discussed in the next section, while the missing
of the d+id SC is a immediate consequence of the suppressed SDW fluctuations [2]]
because the SDW promotes the formation of antiparallel spins and, hence, singlet SC
is induced by these fluctuations. In contrast, FM fluctuations form parallel spins and
consequently drive (triplet) f-wave SC. This phase is present only in Fig. since
under the perfect nesting condition at n = 5/12, long-range orders with an ordering vector
Oy are dominating (Fig. ). Indeed, there is no long-range order for a strictly local
interaction. Only the introduction of a nearest-neighbor interaction U; yields fluctuations
in the density wave channel. However, a closer look on these orders reveals a charge
bond order (¢cBO) and a spin bond order (sBO), two rather exotic phases. These orders
can arise as the conventional SDW is suppressed. In addition, the next-nearest-neighbor
interaction acts between different sublattices, thus the momentum-dependent structure of
the sublattice weights drives unconventional fluctuations. Also, there are three equivalent
nesting vectors

o 1 3 - = 1 v3
Q1=ﬂ(—§,—\/7_> , 0r=mn(1,0) and Q3=W(—§,\§>- (7.2)

One can show that 0;= — Q;, where “2” indicates “is equivalent modulo a reciprocal
lattice vector”. Each nesting vector induces a different long-range order, seated on distinct
pairs of sublattices and independent from each other. Hence, a superposition of all three
orders is possible. Finally, for large U;, the kagome lattice features a Pomeranchuk
instability (PI) phase. Here, the ordering vector is Q = (0,0) and, consequently, it is
independent from the nesting condition. Thus, the PI remains stable away from n =5/12.
Equivalent to the FM instability for finite Uy, the FS is reorganized to avoid the high DOS
at the Fermi energy: While for the FM, the DOS is reduced by a spin-dependent shift
of the FS, in the PI phase, a deformation of the parts of the FS with the highest DOS
decreases the total DOS. This deformation reduces the rotational symmetry of the FS,
while the translational symmetry of the lattice remains unaffected (‘“nematic phase”).
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This Up-U;-n phase diagram features already some very exotic and interesting phases
and an extension to longer ranged interactions U, and Us is dropped within this thesis.

The interesting phases are discussed in the next sections.

7.2 Suppression of the Spin-Density Wave

The first phase usually discussed is the spin-density wave (SDW), which is absent in the
phase diagram. At first, the long-range interaction is disabled, and only a local interaction
is considered with Uy > 0. If the FS features a perfect nesting condition, both Na,CoO,
(NaCoO) and graphene evolve strong SDW fluctuations, as depicted in the phase diagrams
of Fig. and Fig. respectively. In contrast, the kagome lattice shows only a weak
ferromagnetic fluctuation (Fig. [7.1), which is driven by the high DOS at the Fermi level.
For both NaCoO and graphene, these fluctuations are superimposed by an SDW. Only at
very high interaction scales, where the weak-coupling limit of the fRG is exhausted, FM
fluctuations become competitive.

In a direct comparison of the honeycomb lattice (graphene) and the kagome lattice,
the FS and the DOS are identical (Figs. ,d,e,h). Hence, the source for the missing
SDW fluctuations in the kagome lattice has to be connected to the different sublattice
contributions to the FS (Figs. [7.2c,g). To check this assumption for the kagome lattice,
the sublattice weights are set to a constant value of 1/\/3 for all bands and momenta,
neglecting the sublattice structure. With this simplification, the SDW is the dominating
instability, confirming that the sublattice weights play a key role for the understanding
of the missing SDW. Although the band structure of graphene and the kagome lattice are
very similar, the sublattice weights at the FS are different: For graphene, both sublattices
contribute equally to all elements on the FS, while for the kagome lattice, each sublattice
has distinct dominating FS parts.

Fig. shows the differences and their consequences in detail: The first column
displays the FSs of both lattices with magenta- and cyan-colored arrows representing two
nested FS parts. The second column plots the sublattice contributions at this patch. These
are the transformation coefficients ug, (%) of the Bogoliubov transformation matrix from
the real-space and sublattice picture to the momentum-space and band representation,

defined in Eq.[2.T1}

el ZZumn? e ikReAT), (7.3)

Only the band intersecting the FS is considered, so the band index n is neglected. The
local interaction is diagonal in the sublattice indices s:

V(7€1,7€2,%3,k4 U()ZM k1 kz um(% )um(%4) (7.4)

In the SDW channel, some parts of the FS are connected by a nesting vector O,.. Thus, for
a strictly local interaction, the nesting condition is modified by an overlap of the sublattice
weights ¥, (K )um(k+ O ), here subsequently called interaction overlap. This is plotted
in the third column of Fig.[7.2] Finally, the fourth column shows the local DOS at the FS.
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Figure 7.2: Comparison of the SDW fluctuations in the honeycomb and kagome lattice. (a,e)
The Fermi surfaces (FS) are identical (except for a rotation of the Brillouin zone (BZ)). The
magenta- and cyan-colored arrows are representatives of nesting vectors connecting corners
and sides of the FS, respectively. The corresponding parts of the FS are marked by vertical
lines in the other subplots. (b,f) Sublattice weights at the FS. (¢,g) The corresponding local
interaction overlap (IO, defined in text) is strongly anisotropic for the kagome lattice, while it
is constant at 1 in the honeycomb lattice. (d) The local density of states (DOS) at the FS for the
honeycomb lattice is anisotropic, but at least the magenta colored vector in (a) connects parts
of the FS with high local DOS and IO. This is sufficient to drive the SDW instability. (h) In the
kagome lattice, the local DOS and IO are anti cyclical, so the nesting condition is extremely
weakened and no SDW develops.

In the last three columns, the vertical magenta- and cyan-colored lines indicate the parts
of the FS marked in the first column.

For graphene, the sublattice weights are homogeneous at the FS, hence the interaction
overlap is constant at 1. The local DOS is very high for the magenta-colored vectors in
the FS plot, so these drive the fRG-flow to an SDW instability.

On the other side, for the kagome lattice, the nesting vectors connect parts of the FS with
inappropriate sublattice contributions: At the parts connected by the magenta-colored
vector, the first one is dominated by the green sublattice, while the red and blue ones are
negligible, but at the second vector, the red sublattice is the main contributor. Hence,
the channel indicated by the magenta-colored arrow has a tiny weight in the interaction
overlap. On the other hand, the cyan-colored arrow connects two parts where both the
green and the blue sublattice contribute to the FS and hence the interaction overlap is
finite. But on these parts, the local DOS is very low. Thus, the nesting condition is
strongly weakened and not sufficient to drive the fRG-flow to an SDW. As a consequence,
the ferromagnetic fluctuations are stronger and dominate the fRG-flow.

In summary, in the kagome lattice, the inhomogeneous distribution of sublattice
contributions to the FS linked with an inappropriate local DOS results in a strong
suppression of the SDW fluctuations. This effect is subsequently labeled as “sublattice
interference”.
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Figure 7.3: (a) f-wave Form factor for hopping between next-nearest neighbors on a- and B-sites.
The filling is next to the VHS (n =5/12+0.02 and U; = 6) and the labels I-VI are define in
Fig.[7.2p. After the transformation to sublattice representation, the fRG form factor (solid line)
fits to the analytical form factor for next-nearest-neighbor pairing (Eq.[7.5] dashed line). (b) The
corresponding real-space pattern of the o-B-pairing. The other two combinations are hinted.

7.3 f-wave Superconductivity

A superconducting instability appears if the filling is set away from the VHS and the
Coulomb interaction is long ranged (Fig.[7.1)). The vertex flow diverges in the spin-triplet
channel and is not degenerate. So, the form factor should have an f-wave symmetry
(Sec.[2.3). The mean-field decoupled vertex in the spin-triplet channel (Eq. yields
the form factor after a transformation to sublattice representation (see Sec. [/.4{for details).
This reveals that the best accordance is given for pairings between next-nearest neighbors,
which are located in different sublattices.

Each pair of sublattices is separated from the other ones as they form one-dimensional
chains. Within these chains, the next-nearest-neighbor hopping is transformed to
momentum space, modulated with an f-wave formfactor. This results in:

faﬁ(z) = sin (%kx + ?l@)

(3 V3 7.5
fpy(k) = sin <§kx - 71@) (7-5)

fqy(%) =sin <\/§ky>

with fun = fum and fu, = 0. In Fig. [7.3p, the form factor of the o-B-pairing is
compared to the analytical ones. It fits very well to the mean-field results (Fig. [7.3h).
The pair forms between next-nearest neighbors because, due to an increased pairing
distance, the (non-local) nearest-neighbor Coulomb interaction is compensated [2]. The
final superposition of all three sublattice pairings restore the full f-wave symmetry (B>
element of the Cg, group). Together, they form the order parameter

_ oot oot 7
Otsc = _,Z <szTczn¢ T Cic‘micic‘nT> fm,n (k) ’ (76)

k,m,n
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which can be rotated within the spin-triplet sector to the S, = +1 states.

In contrast to graphene, where the pairs favor the same sublattice (Sec. [5.5), in the
kagome lattice, the pairing is between different sublattices.

7.4 Charge and Spin Bond Order

The vertex flow shows also a leading instability in the density wave channels of Eq.

These instabilities are threefold degenerate, one for each nesting vector Ql, Qz and Q3.
The challenge is to determine to resulting phase: Is one Q,- selected, so the symmetry is
broken? Is there a superposition of all three nesting vectors?

In the literature, there are several reports on experiments about density-wave
instabilities with multiple ordering vectors in systems with Cg, symmetry. For example,
a chiral charge-density wave was measured in triangular lattice in layers [300-302].
Here, the ordering vector changes between lattice layers, resulting in multilayer structure.
For the honeycomb lattice, a spin-density wave was suggested, which contains 4 unit
cells [260], or in a chiral order [[148], respectively. Finally, a chiral spin-density wave was
also proposed in kagome lattice [95].

In this section, I will investigate the instabilities in the density-wave channels and
their resulting real-space pattern. At van Hove filling n = 5/12, the phase diagram
in Fig. features two density-wave phases, the spin bond order (sBO) and the
charge bond order (cBO). The labels of these phases are defined by the real-space
patterns revealed later in this section. Since, the fRG is executed in momentum space,
a Fourier transform has to be performed to determine the correct real-space picture
(Eq. 2.T1). Here, the sublattice structure of the kagome lattice has to be included into
the consideration: The final coupling function V(k1 kz,k3,k4) at the end of the fRG
flow consists of 4 creation/annihilation operators, which have to be transformed back
separately. Each combination of sublattice indices my, ma, m3, ny with m, € {a,B,7}
is possible. Additionally, three equivalent ordering vectors 01, 0> and Q3 have to be
included. For all 3° combinations, the mean-field decoupling in the SDW or CDW
channel is performed, respectively. Again, the absolute largest eigenvalues are of interest.
The result is a sixfold degeneracy for V (¥, my,72,my,73,m3,74,my4) at both the SDW and
the CDW channel:

mi | my | my | ma | Oy
a | o | v | vy|?2
Y|l Y| o | o |2
BBy v |1
Yy v | BB |1
o |a|PB|P|3
B| P | ol o3

These combinations are identical for both density wave phases. A closer look on the first
solution in the cBO reveals:

V(?l , O, ?27 aa??n’Y? ?47Y) ~ é&é&é’yé’y ~ <6(16Y>6(§67 (77)
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Figure 7.4: Construction of the cBO: The hopping from o- to y-sites is modulated by Eq. (red
arrows), the hopping from ¥- to a-sites by Eq.[7.9|(blue arrows). The ordering vector is parallel
to the o-y-chains, so B-sites are unaffected. Also, the ordering vector causes a minus sign
between neighboring chains. In total, the hopping amplitude between some bonds is enhanced,
alternating with bonds featuring reduced hopping.

with a mean-field decoupling in the last step. Indeed, there is a directed hopping
expectation value (é&éﬁ, resulting in an additional hopping on bonds between sublattices
o and y. The form factor is fitted best with a sin(k,), which corresponds to a correlation
between nearest neighbors. This form factor can be rewritten to sin(k,) = sin(7'k) with
translation vector 7' = (1,0) = Q2 , so the corresponding ordering vector is parallel to the

direction of these bonds, formmg quasi one-dimensional chains. The expectation value
reveals the real-space order [303]:

AT s —— )
<Cky t4da > sin(Tk) - P
AT A
§<C%YC%+Q ) sin(Tk) Zsm (TK) - &=
Z <@i A >el%(ﬁ,+7y) e—l(k—FQ)(RI—O—ra) l (Clﬂé _e—17§> -
— = i+7y Rj+7o 2i
iR;

(7.8)

Here, the position vector of a site is decomposed in the vector of the unit cell R; and the
vector within the unit cell 7. In addition, the square of the orbital weights is invariant
under reflection, so it analogously gives

At ST
<c%acz+éy) =sin(T
7.9
DY (P B Sy B 79
ﬁ ]“l‘rfy Rj+r'y Rj+r'y+T RJ“F v 21
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(a) cBO (b) sBO

Figure 7.5: Real space pattern of the bond-ordered phases with ordering vector 0,: (a) cBO
with the parameter setting Uy = 8.0, U; = 6.0 and n = 5/12 (VHS). There is an alternating
hopping amplitude between o~ and 7y-sites. The unit cell now contains 6 sites. (b) sBO with the
parameter setting U; = 6.0 and n = 5/12 (VHS). The real space pattern is similar to (a) but the
modulation depends on the spin polarization of the electrons.

Together, they form an alternating modulation of the hopping between nearest neighbors
in the chains. The construction of the real-space pattern is presented in Fig. while the
final pattern is plotted in Fig.[7.5p, featuring a bond-ordered structure. Such orders have
become recently accessible experimentally with sufficient tunability in dipolar fermion
models [304]], but the kagome lattice is the first system where these phases can be found
as the natural ordered state at low energies.

For a mean-field analysis of the resulting band structure, the non-interacting
Hamiltonian in Eq. has to be adapted and expanded with a Weiss field A;gp. Due
to the broken translational symmetry, the new unit cell includes six sites and, hence, a
six-band calculation is needed, which is explicitly done in App.[A.5] Also, the resulting
Brillouin zone (BZ), band structure and FS of this six-band model is depicted there
(Fig.[A4). As a consequence of the cBO, the FS is partially gaped. The same derivation
is possible for the sBO (with a spin dependence of the additional hopping term), with the
resulting real-space pattern plotted in Fig. [7.5pb. Furthermore, each pattern is threefold
degenerate, where the other patterns are obtained by rotations by 21t/3, corresponding to
the ordering vectors Ql and Q3.

It is striking that both real-space patterns of the order for 0> (Fig. affect only bonds
between o-sites (blue) and ¥-sites (red). The other bonds are included only in the orders
for 0 or 03, respectively. Consequently, the three different orders do not interfere with
each other and a simultaneous formation is possible.

Based on the assumption that a cBO order for one O, reduces the free energy of the
system and the orders for each O; are independent, the simultaneous formation of all three
orders should further optimize the free energy. To verify this statement, a mean-field
analysis is done in App. [A.5] equivalent to the six-band model but now containing 12
bands. As a result, the system linearly gains energy from forming the 3 individual
mean fields, so the ordering formation along the individual bond directions is indeed
independent. In addition, the new BZ is reduced to a quarter of the size and retains its
hexagonal structure (Fig. [7.7p). This illustrates that the C, symmetry, which is broken
if only one order with O is applied, is again restored. In the reduced BZ, the spectral
weight at the FS between the I'- and M-points is shifted away from the Fermi energy
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(a) cBO

Figure 7.6: Equivalent to Fig. but with 01, 0> and O3 simultaneously applied. The unit cell
contains 12 sites.

when the Weiss field Acgo is switched on. This is clearly visible in Figs.[7.7b,c, but no
gap opens at I'- and M-points and, hence, there is no full gap in the band structure. Thus,
the FS (Fig.[7.7p) is reduced to the I'- and M-points.

The real-space patterns of the superpositions are presented in Fig. including the
enlarged unit cell with 12 sites. Their order parameters are given by

p - T o= . ka
Osgo = ;Z <c%lycyvcz+émnv> sin (—n ) |€0mn|

MV
l,m,n

_ t [ Omk
R T RIR  ( [

kv
l.m,;n

(7.10)

with the Levi-Civita tensor €;,,,.

Finally a remark on the expectation value of these bond-ordered phases: Eq. can be
rewritten and compared to Eq. SO

—

AT A L ox
<C%yc%+é,»oc> = ®sin(Tk)
(€}, 5o = (@sin(Th))"
AT A _ ke 77
<c%+éiac%y> = ®*sin(T .1D)
(Cali gy = Culiigy) = @ sin(T (k+01) = & sin(Tk +)
<6£a6z+éﬁ> — ®sin(Tk) = —@* sin(Tk)
D=,

Thus, the amplitude & has to be imaginary, just as the current phases in Ref. [161]].

7.5 Pomeranchuk Instability

For a strong nearest-neighbor interaction Uj, the phase diagram (Fig. indicates a
Pomeranchuk instability (PI). In the mean-field decoupling (Eq[2.130), it is identical to
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Figure 7.7: (a) By the simultaneous application of all three ordering vectors 0;, the size of the
BZ is reduced to one fourth, but retains the hexagonal structure (shaded area). The labels o to
{ mark the back folded areas. The band structure and FS is plotted with (b,d) an infinitesimal
Weiss field Acgo = 07 and (c,e) Acgo = 0.1, respectively. (b,e) The back folded dispersion
relation results in 12 bands, but only the bands around the Fermi energy are plotted. (d,e) The
corresponding FSs. By setting the Weiss field to Acgo = 0.1, the bands are shifted, so the FS is
nearly gapped. Only at the I'- and M-points spectral weight remains at the Fermi energy.

the CDW channel with zero ordering momentum 0= (0,0). Hence, this phase does
not break translational symmetry. In the comparable scenario for the cuprates (one-band
model in the quadratic lattice), the PI results in a deformation of the FS, breaking its
tetragonal symmetry [305]]. Consequently, a similar effect can be expected for the kagome
lattice.

The mean-field decoupling of the PI channel yields a twice degenerate instability. After
transformation from band representation to sublattice representation (see latter section
for details), the correlations between the same sublattice are dominating. The fRG form
factors are presented in Fig. [7.8a. The analytical form factors for an E> representation
(Sec.|2.3)) on the 3rd-nearest nelghbors read:

fdxz_yz (75) = cos (2ky) — cos (ky) cos (\/5/@)
fd,, (%) = \/3sin (k,) sin <\/§ky)

The accordance between analytical and calculated form factors is nearly perfect. The
effective Hamiltonian reads after the mean-field decoupling:

Ao =Y Y e(b) &+ ZZVPI %,3) <6k6 o kcéq,G)
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Figure 7.8: (a) Form factors of the Pomeranchuk instability. The calculated ones (solid black
lines) fit very well to the analytical ones (dotted lines, Eq. . (b) Deformation of the FS
with the PI field Ao = 0.1 and p = —% (Eq. . At two opposite M-points, which are the
points of the FS with the highest DOS, the FS is shifted towards the center of the BZ, while it is
shifted away at the remaining four M-points. The symmetry group is reduced to C5,. (¢) Same
as (b) butp = 2% The distortion of the FS is opposed to (b). (d) Same as (b) but p = %. Here,

3
the FS includes no reflection symmetries, so the symmetry group is C>.

where the definition of the gap function

Ap = }VZ@‘,VH(E 4){eLstas) (7.14)
is used. One can further show that
(Ap) = <}V§vp1<k,a><é;céqc>>*
- ]lvgvm<%,é><<é§o%ﬂ> s
S %%vmk, Dot =&
= A ER,

so the gap function has to be real. This excludes a d+id-wave superposition of the form
factors, as realized in the d+id-wave superconductivity of NaCoO (Sec.[4.3) and graphene
(Sec.[5.4). Indeed, the PI adds a 3rd-nearest-neighbor hopping to the Hamiltonian, which
corresponds to hoppings within the sublattice. The Hamiltonian in real space (Eq.
includes a hopping matrix (#-matrix), which is transformed to momentum space. So, the
t-matrix has to be Hermitian and, consequently, the hoppings within the same sublattice
have to be real. This is ensured by the superposition of the hopping and back hopping
processes which annihilate any imaginary part. However, there is still a degree of freedom
in the choice of the d-wave form factor because any linear combination of d,»>_ > and dy,
is a solution. Here, the ansatz is d+id-superposition with an additional phase p. The
imaginary part vanishes anyway, so p enables a smooth transition between d,>_,» and dyy.
After Fourier transform, the 3rd-nearest-neighbor hopping is not equivalent for all three
hopping axis. The dispersion relation (Eq.[2.12) is extended to
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& (k) = £4(k) + Ao [eip (dea o+ idxy)} +Hec.
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This results in a deformation of the FS, as presented in Figs. @b—d, where the FS is
shifted away from the six M points, which are the momenta of highest DOS. The order
parameter is also adapted to this superposition:

=T (e e (s 0+ ()

klu

The phase factor p rotates the deformation field by p/2. In the PI phase, the symmetry of
the FS is reduced to

Gy ifp=Tz withzeZ
v Hp=3 wihze (7.18)
C, else,

point group {
while the symmetry of the lattice remains unbroken. So, the PI is a nematic phase [306,
307].

7.6 Summary

After the considerations for an infinite coupling in Chap. [} the kagome lattice is also
the topic of this chapter. Using the functional renormalization group, the weak-coupling
scenario can be elaborately investigated with more details: The functional renormalization
group features the flow of competing orders to Fermi surface instabilities, opening the
route to a rich phase diagram. Without the necessity of a preselection of diagrams,
the functional renormalization group provides an unbiased principle, so even unforeseen
long-range orders are possible. For the kagome lattice, the sublattice interference
suppresses the formation of a conventional spin-density wave, which is both predicted
and measured in similar lattices with Cg, symmetry (see Secs.d.2]and [5.3)). This enables
some non-conventional instabilities to form exotic long-range orders.

At van Hove filling, the phase diagram (Fig. features two long-range orders with an
ordering vector equivalent to the nesting vectors, namely the charge bond order and the
spin bond order. For each ordering vector, they form an alternating pattern on the bonds
in one-dimensional chains. While in the first case the charge density is modulated (charge
bond order), the orientation of the spins is alternating in the second case (spin bond order).
Both phases have in common that they can simultaneously coexist for all three ordering
vectors, enlarging the unit cell from three to twelve sites. Thus, a gap opens at the Fermi
energy, which is only closed at particular points of the Brillouin zone. Indeed, the free
energy is optimized with this superposition.

Away from van Hove filling, the nesting of the Fermi surface is reduced, so long-range
orders with a finite ordering vector are weakened. Here, the phase diagram indicates an
f-wave superconductivity. This is unusual for a system with Cg, symmetry because a
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d+id-wave superconductivity is completely missing, and not even present in a subleading
role. This reflects the close connection between the spin-density wave and the singlet
superconductivity because the suppressed spin-density wave is unable to drive the singlet
superconductivity instabilities, so d+id-wave superconductivity is absent. In this sense,
the f-wave superconductivity in the kagome lattice should be very stable.

Independently of the filling, there exist two instabilities with 0 = (0,0):
Ferromagnetism is dominating for a strictly local interaction because the sublattice
interference suppresses the other competitive orders. In opposite, for a large
nearest-neighbor interaction, the Pomeranchuk instability drives a deformation of the
Fermi surface. Thus, the high density of states is reduced at the Fermi surface. The
Pomeranchuk instability is a nematic phase, breaking the rotational symmetry, but leaving
the translational symmetry unmodified.

These interesting new phases occur because the sublattice interference suppresses
the instabilities for conventional orders. But the sublattice interference for a Fermi
surface instability implies that the system can be approximated by the (weak-coupling)
Fermi-liquid theory. Up to now, the experimental data [91-94] and some theoretical
simulations [95]] are in the strong-coupling regime. But the exotic phases predicted in
this chapter illustrate that a closer look on weak-coupling materials would be worthwhile.

With this second chapter about the kagome lattice, I finish my overview on unconventional
superconductors. In conclusion, the results of the chapters will be summarized and
contrasted.



Conclusion

The foundation of physics is the interplay between regularities, observed in and
interpolated from experiments, and theories, founded on a mathematical framework. The
task of theoretical physics is to develop a theory which fits to the experimental data
and reveals the essential principle behind the observations, so predictions for further
experiments are possible. These confirm or disprove the theory, but it is never absolutely
and completely proved: Some new measurements with a higher precision or under
extreme conditions may reveal unpredicted effects and the theory has to be modified or
even discarded. One famous example is the replacement of the Galilean transformation
by the Lorentz transformation in the framework of the special theory of relativity.

For superconductivity in metals, the BCS theory with its phonon-mediated pairing
mechanism is a complete theory. However, after the discovery of superconductivity in
cuprates, it was unveiled that there is more than one mechanism to form Cooper pairs.
Triggered by the revealing of additional classes of unconventional superconductors, the
search for a general underlying theory was reinforced and has not yet been successfully
finished.

In this thesis, I presented several distinct classes of unconventional superconductors.
Combined with appropriate numerical techniques, an electronic formalism was used to
reproduce the phase diagrams created by experimental data. Therein, the focus was on
the superconducting phases: The symmetry of the pairing states are observable quantities
(e.g. Knight shift measurements) and provide a direct comparison between theory and
experiment. Thereby, universal properties can be highlighted.

The source for the formation of Cooper pairs was considered as an electronic “pairing
glue” in Chap. |3l For the high-7, cuprates, the role of Cu- and O-orbital degrees of
freedom were investigated by the comparison of a one-band and a three-band model.
This is extremely interesting because the former model is a doped Mott insulator while
the latter one is a doped charge-transfer insulator. The evaluation of the gap function,
1.e. the anomalous part of the self-energy, yielded that only the Mott insulator has a
non-retarded contribution to the pairing (Sec. [3.6). In addition, in accordance with
experimental data, a magnetic resonance mode (“hour glass structure”) was observed in
the superconducting phase. This is a reminiscent ‘“fingerprint” of the magnetic parent
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compound (Sec. [3.4). Furthermore, the phase diagram presented in Sec. [3.3|features the
observed asymmetry between electron and hole doping. Here, the differences between
the one- and three-band model are slight, in contrast to the high-energy features.

After the cuprates, the cobaltates were considered (Chap. ). For that, the simulation
technique had to be changed from the variational cluster approach to the functional
renormalization group because this implies a change from strongly correlated physics
to weak-coupling physics. The model for the cobaltate Nag3CoO; - yH,O (NaCoO)
features a three-band Hamiltonian in a triangular lattice and results in a rich phase
diagram of competing phases (Sec.[.2)), including a chiral, i.e. parity and time-reversal
symmetry-breaking, d+id-wave superconductivity. The close correlation to the
magnetic spin-density wave combined with a highly anisotropic local density of
states triggers a distortion of the d+id-wave form factors (Sec. B.4). Thus, the gap
function becomes very anisotropic, nearly featuring nodes, which is extremely unusual
d+id-wave superconductivity. This might explain some contradictions in experimental
data.

A nodeless d+id-wave superconductivity is present in the phase diagram of graphene,
discussed in Chap. 3| If the filling is set to the van Hove singularity, superconductivity
is in heavy competition to the spin-density wave (Sec.[5.4). Away from the van Hove
singularity, the screening of the Coulomb interaction is weakened. Thus, long-range
interactions were included, resulting in enhanced charge-density wave fluctuations.
Subsequently, f-wave superconductivity becomes competitive (Sec.[5.3).

Finally, the focus was on the kagome lattice, where electrons at the Fermi level
feature a momentum- and sublattice-dependent contribution to the Fermi surface. It
is interesting that the parts of the Fermi surface which are connected by the nesting
vectors are predominantly influenced by distinct sublattices. If the interaction is strictly
local, it is diagonal in the sublattices and, hence, the nesting condition is dramatically
weakened. Consequently, the spin-density wave fluctuations are damped and thereby
d+id-wave superconductivity. This is the new concept of sublattice interference. But
a non-local interaction partially restores the nesting condition, so orders with finite
momentum are also possible. In Chap. [6| a simple analytical renormalization group
evaluation yielded that an addition of a long-range interaction indeed increases the
transition temperature of superconductivity (Sec. [6.3). This evaluation was repeated
with a more elaborate technique because the analytical renormalization group is limited
to the superconducting instability, except at van Hove filling. In contrast, the functional
renormalization group provides an unbiased flow of competing orders. The results are
presented in Chap. [/ including a phase diagram with exotic quantum states which are
usually superimposed by the spin-density wave (Sec. [7.2), namely spin and charge
bond-ordered phases (Sec. as well as a Pomeranchuk instability (Sec. [7.5)), which
induces a nematic long-range order. In addition, if the kagome lattice is doped away
from van Hove filling, where the nesting is optimal, the bond orders are weakened
and superconductivity rises. Due to the sublattice interference, the d+id-wave form is
suppressed and, hence, the f-wave form is dominating without competition. This pure
triplet superconductivity is detectable by experiments, e.g. Knight shift measurements.

After the investigation of such distinct classes of superconductors, a few conclusions are
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possible:

Superconductivity is connected to magnetism because in the phase diagrams of
the cuprates (Fig. [3.5), NaCoO (Fig. {.3)), graphene (Fig. and the kagome lattice
(Fig. [7.1)), the superconducting phase is next to a magnetic instability. This fact resulted
in the formulation of a unified theory [308], but within this theses, superconductivity
and magnetism are considered as two different but affiliated phenomena. Indeed, singlet
superconductivity, e.g. d+id-wave, is driven by spin-density wave fluctuations. This
is reasonable because an inhomogeneous order of spins facilitates the formation of pairs
with antiparallel spins. In contrast, triplet superconductivity, e.g. f-wave, is enhanced by
ferromagnetic fluctuations. In addition, a charge-density wave equally drives both singlet
and triplet superconductivity.

Furthermore, the underlying lattice is crucial: The formation of a chiral d+id-wave
superconductivity is predicted for NaCoO and graphene because their lattices have a
Ce,-symmetry, which protects the degeneracy of two d-wave solutions by symmetry
(E, representation). This is a great advantage over the chiral s+id-wave superconductivity
in pnictides, which is not protected by symmetry but has to be adjusted with extern
parameters [48]]. In contrast, the kagome lattice features a Cg,-symmetry but lacks of
d+id-wave superconductivity because of the sublattice interference.

Finally, in the strongly correlated approach, the electronic mechanism for the formation
of Cooper pairs is sensitive to the parent compound. Indeed, for the high-energy
excitations, there is a difference whether the superconductor is a doped Mott insulator
or a charge-transfer insulator, influencing the pairing glue of the system.

Altogether, a strictly electronic mechanism yields the phase diagrams of various
superconductors, in good accordance with experimental data. A few sources for
material-dependent differences are evaluated, e.g. the (sub)lattice structure. However,
some universal features are existing, e.g. the connection to magnetic phases. Overall,
this yields a comprehensive picture of the theory of unconventional and high-T;
superconductors.

Indeed, superconductors are not only a future technology but are already in use today:

e Electric power transmission: If a huge amount of energy has to be transported a
short distance, the transport in a superconducting cable without an energy loss is
less costly although the cable has to be cooled, e.g. a 1-kilometer-long cable has
been installed in the inner city of Essen [309].

e Strong electromagnets: Superconductors create electric fields far beyond those of
static magnets. The reduced energy costs have to be compared to high cooling costs.
Two fields of application are magnetic resonance imaging and particle accelerators,
e.g. the Large Hadron Collider at CERN (Geneva, Switzerland).

e Superconducting quantum interference devices (SQUID): These very sensitive
magnetometers are used to measure extremely tiny magnetic fields

With the worldwide technological progress, the field of application for superconductors
is also increasing. This encourages the search for materials with higher transition
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Figure 8.1: Schematic phase diagram for hole-doped cuprates as a function of temperature T
and doping [22]] (for a more detailed diagram, see Fig.[I.2). The superconducting transition
temperature 7. is limited by both the mean-field transition temperature 7MF, determined by the
pairing scale, and the upper bound on the phase ordering 7g***, influenced by phase fluctuations.

temperatures.

A new idea to enhance the stability of the superconducting phase is a multilayer system
composed of different materials. These heterostructures consist of a superconductor with
large paring scale but low superconducting 7; due to strong phase fluctuations (Fig. [8.1)),
coupled to a non-interacting metallic layer. The general idea, spelled out in detail by
E. Berg et al. in Ref. [310], is that through the coupling to the metallic layer, the phase
stiffness of the low-T7,. superconductor can be significantly enhanced. If this enhancement
of the phase stiffness is stronger than the reduction of the pairing scale due to the coupling
to the metallic layer, 7, of the composite system will be enhanced over T; of the isolated
superconducting layer.

The basic idea behind this scenario is to profit from the fact that these two layers have
very different properties. The metallic layer has no pairing, but a high superfluid stiffness,
while the interacting layer has a high pairing scale but negligible superfluid weight [311]].

If these two layers are coupled together via electron hopping, it is interesting to study
what properties this heterogeneous system has [312,313]]. If this system acquires the “best
of two worlds”, i.e. the high superfluid stiffness with a high pairing scale (Fig. [8.1), this
may result in a high transition temperature 7, [22].

Indeed, the first experimental results show an enhancement of 7, by the coupling of the
superconductor to metallic layers [314]] or by the coupling of underdoped and overdoped
superconductors [315]. So, this is a promising route to new high-7; superconductors.

It is undeniable that superconductivity will be one of the key technologies of the future.
But as Niels Bohr had already mentioned:

Prediction is very difficult, especially about the future.
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Appendix

A.1 g-ology Model

For the functional renormalization group (fRG, see Sec. @] for details), one has to set
a starting value for the coupling function V(%l,%z,zg,h). The simplest ansatz is V =
U, with U being the Coulomb interaction. This constant coupling function includes no
information of the microscopic model, so its significance is minimal.

In Refs. [62,143,316], the so-called g-ology model is used. Here, only excitations
near the Fermi energy are considered, resulting in band couplings in momentum space.
This reduces the interaction to four independent couplings g1,22,¢3 and g4, displayed in
Fig.[A.T] The simplified flow equations read

ky
+74 :

g4

gs
g1

\992
T . -k,

—TT é —+7r

Figure A.1: The relevant scattering processes near the FS are interband (g1), intraband (g, and
g4) and interband pair hopping (g3).
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g1=2¢g1(g2—3g1)

=83 +483 Al
g3 = —2g384+2g3(282 — g1)
§4=—83— 8

with ¢; = ﬁ% and the density of states p(0) at the Fermi energy. A is the flow
parameter, e.g. the cutoff energy. This ansatz includes independent interactions on a
band level.

In opposite, within this thesis, the interaction part of Hamiltonian is transfered to
momentum space (Eq. and Eq. and used as starting value for the coupling
function. Hence, all microscopic degrees of freedom are included.
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A.2 Evaluation of the VCA-Grand Potential
In the VCA formalism, the grand potential consists of three addends (Eq.[2.32)
Q[E] =Q +Tr(In(—G)) — Tr (In(—G”)) , (A.2)

which are calculated one by one in the following:

Firstly, ’ is the grand potential of the reference system and reads

Q= —%m (Tr (e—(ﬁ’—#fv’m)) - %m (;e—(E&—“Nr'UB) (A3)

With inverse temperature 3. Performing 7 — 0 (or equivalently § — +o0), the result is
Q = E() - ,LlN .

The second addend is a little more tricky. The starting point is a general form of a fully
dressed Green’s function

1
Cotu—t—X(o)

G(w) (A4)

and with a unitary matrix U(®) to diagonalize the fraction to g(®) with G(®) =
U(0)g(0)U ().

If G(®) conserves causality, g(®) has poles of order one at ® = ®,, with positive
residues. t+ X() is real and symmetric, so the transformation fits t+ X(®) =
U(o)n(0)U' (o) with go(®) = 1/(0+u—nNe(®)). n(o) features poles of order one
at ® = {,, with positive residue.

This results in

1 (0™ —1
Tr(In(-G)) =< ¥ & In | - .
B 10+ u — tag — Lo (i0)
(1)7()( N (010 (0704 (AS)
— Y el (UT(m)g(m)U(w)) .
B oo oo
Next, a function h(®) = —Bﬁ is introduced with poles at fermionic Matsubara

frequencies m, = g(Zn + 1) and residues equal to 1. By integrating this function over
a closed curve in C with including all poles and using the residue theorem, one obtains

1 )
75 h(®)do = —B 74 g do=2mpy 1. (A.6)
c C "

Accordingly, a product function 4(®) - g(®) yields

1 + . . 0,07
_B%mg((z)e“’o do = —ZTUBZH:g(lwn)e o0 (A7)
C
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Figure A.2: Deformation of the contour of integration: All separated contours around poles at
imaginary axis (a) are joined to a single contour (b), which is enlarged as far as possible while
poles only at the real axis are omitted (c). Finally, the contour at infinity can be neglected and

only two contributions D and D, remain (d).
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with a factor e®®” to ensure convergence. This relation can be applied to Eq. :
i00™ T (x)OJr
BZe In (U (w)g(w)U(w m 2n127{ (—ga(w))do. (A g)

The contour of the integration can be transformed to two parallel ways next to the real
axis (Fig.|A.2)). After some algebra,

oo _
%h(m)g(m)dm: /h((x)+i0+)g((o+i0+)dm+/h(oo—iO*)g(m—iO*)d(o

~ /h((o) (g(w+i0") — g(@—i0")) dw

Foo (A9)
- /h(co) (g(@+i0%) — (g(@+i07))*) do
=2 / h(®)Im (g(@+i07)) do
this relation is applied to Eq. and yields
® 1
L < o &<w1:72/h i (1 (a0 +10°))) do.
(A.10)

If o is expanded to C and an analytic continuation applied to both g;(®) and N (®), this
yields

i (gk(®+i07)) >0
n (A.11)

1
—EIm (Mk(0+i07)) >0.
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After a change to polar coordinates

—g(0+i0%) = r(@)e®®, weR

= In(—g(0+i07)) :ln(r((o))—i—i?\(go_)/ (A.12)
Re Im

and a reduction to the imaginary part

Im (—g(0+i0")) =0+

A.13
Im (In (—g(w+i07))) = P(w) , ( )
only 0 and 7 are possible results for the azimuth of ®(®), namely
Po)=mr if —g(w) <0
(@) i g(o) (A14)
d(w)=0 if —g(w) > 0.
This can be combined to a Heavyside function (step function) ®
1
Im (In (—g(0+i07))) =70 (g(0)) =16 (W) (A.15)
8

and inserted in Eq. [A.T0]

. oo
_?l;_é h(®)Im (ln(—ga((o + i0+))) do = —g_é h(®)® <m> do

~+oo
:—Z/Bewsl+1®(°°+“_““<°°))dm’

(A.16)

with h(®) = —Bﬁ and go(®) = 1/(0+u—nqg(w)) replaced. With a partial integration

+oo
Y [ By 0 (0+u-nu(@) do

O——+o0

= |5 (14¢7%) - @@+ u—na(0) (A17)

Bﬁ_/ ;
0 if @stoo 0 if @——o0 oo

+o0
—Z/%ln(l N e—mB) 4O (@ +4-na(®) ;-

do

the first addend is vanishing.

Now consider a function f(®) = ®+ u —ng(®) which is analytical except at first order
poles at the real axis. So, ®(f(®)) is constant with the same exceptions. Consequently,
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d®(({;()w)) = 0, but not at all points with f(®) change sign, i.e the roots and poles of f(®).

The roots m,, yield

P0)3((®) = ¥ 2O 50— 0,) (A18)
m f’(l(l)ml) .
with using f'(®) = %. The roots of f(®) correspond to poles of the diagonalized

Green’s function g(®) with positive residues. So f,((|$’”|)) =1

The poles , of f(®) can be considered analogous

(1/£)' ()
(1/0) (@)8((1/f)(w)) = S(w—Cn) - (A.19)
Z (1/£)(1Ga) "
Accordingly the poles of f(®) correspond to poles of the self-energy X with positive
residues and, hence, hold ((1 //j) ((‘% |)) —1. Together roots and poles form
d roots poles
252 (@+ 1= Nu(0 Z S(w—m)— Y d(0—C,) . (A.20)
This relation can be used in Eq. and yields
o
——0O(0+u—"mg(o))do =
Y/ B @@t una(@)
- (A.21)

.
_g/%m(ue—@ﬁ) (;a@—m,,,)—;&m—t;n)) do .

Now, one can perform the ®-integration and the sum over o. The sum simply yields
a factor 2L because go(®) has the same roots and poles for all o. L is the size of the
reference cluster and 2 is due to spin degeneracy. One gets

=—2L <Z ! In (1—1—670)’”[3) —Z I In (1+ec’1ﬁ)) (A.22)

with Ry = ¥} In (1 n e—CnB).

n
Finally, the limit B — 400 is considered and the residues can be rewritten to
In (1 +e—[3co> VH —_(”ejgz i (_(D>Ze—[3<o
N gy ey

lim lim

B oo p Borteo 1 Borieo —me PO (A.23)

-~

0 if ®>0 —o if <0
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The result for the second addend is now

lim —2L (Z—ln (1+e “’m5> )——ZL (Z‘”m Rz) . (A24)

B—-o0

which is a simple summation over negative excitation energies.

The third addend in Eq. [2.32]is analog to the second one: The infinite lattice is replaced be
the reference system. Consequently, one has to sum over all negative excitation energies
of the reference system.

In the SFA, by definition, the self-energy of the infinite lattice and the reference system
have to be equal, so Ry is also equal. If all transformations of this section are applied to
Eq.[2.32] Ry is canceling out:

Q] = +Tr(ln( G))—Tr(In(—-G”))
Qt[ | _

Qy = lim = Zcom —0n) + Y O nO(— ) .
B— oo m

(A.25)

This is the final result for the VCA grand potential.
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A.3 Analytical Evaluation of Loop Integrals

In the final flow equations (Eq. [2.125)), the product of intern propagators Ly (Eq. [2.123)
includes a free momentum p, which has to be integrated. In detail, for a general function
h

4 3>
/dph /dethOn,p (A.26)

the fourfold integration splits into a threefold integration over the momentum and a
summation over the fermionic Matsubara frequencies i®, = (i(2n+ 1)m)T. The latter
ones can be rewritten with the residue theorem (for a textbook, see Ref. [317]) into a
complex integral.
Firstly, one has to expand % to the complex numbers, so /(—iz). Now an auxiliary
function
- 1 :
8@ = pary Vb (A27)
Res|[g(z);z=iw,) =1

is defined. It has first-order poles with residue 1 at the Matsubara frequencies. If i(—iz)
has isolated singularities at {z;}, one obtains

Zh (im) fh —iz) §(z) dz = ja{h —iz) §(z) dz = ZRes (—iz) g(2)iz=2u) (a08)

by transforming the contour C; to & (“Cauchy’s integral theorem™) as plotted in Fig.

and a subsequent exploit of the residue theorem. Thereby, the infinite sum ) is
n
transformed into a finite sum Y. This yields the identities
k

T1/2 T1/2 T ( ) T ( )
= 7(€5 —2Z(
: : _ - - P1 o P2
n 10n — €5 100, — €5, €p —E€p, €5, —€p (A.29)
rt e L o)t ———glep) |
. . = g 8ﬁ1 g _8172 °
n 100 — &5 —10, — &5, —Ep —&p, —&5 — &

To calculate the diagrams in Fig. [2.18] the translational invariance in time and space can
be used: At each vertex, frequency and momentum conservation must be considered. For
the particle-particle channel, it holds

P2 =ki +k—
0y, = Wext, + Wext, — Wy, (A.30)
0

with the external frequencies set to zero because the frequency dependencies of the vertex
are neglected in this thesis. With a little bit straightforward algebra, the sum over the
Matsubara frequencies in Eq. [2.123]can be evaluated:
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L/

Figure A.3: Deformation of the contour of integration form (; (red) to & (green): The poles of
h (blue crosses) are encircled with both contours, while the poles of g (yellow crosses) remain

outside.

d VT VT
&*p1 &po Lrpe(P1,P2) = / &p) & ps .
ﬁlé dT 1172 o 10),1l — €5, 10y, — €5,
dT 03”1 — &5 —i0n — & 17, 5
_ i /d3 = T §(p1) -T g(—8}1+;2_ﬁ1)
dr \51 €~ Gtd-p1 itk P
/d% 4 <1+np(8kl+k2 pl)+nF(eﬁ1))
B K1 +ko—py &
d d
/d3_’ dT (nF(Skl-l-kz p1)> + dT (nF(Sl_jl))
B E_:kH-kz —D1 T &
(A.31)
Here, the Fermi-Dirac distribution ng(z) is inserted. It reads
@)= —p— =T &)
np(—z) =1-np(z) (A.32)
d z/T
(1r(2)) = =

dr (T2 ed/T +1)2

and has an inversion symmetry with respect to the inflection point. The derivative can be
easily calculated. The integral over the internal propagator line still has to be numerically
executed.
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For the particle-hole channel, the conservation conditions read

Pr=—ki +k+ P
0y, = —ext, +(Dext2 +p, , (A.33)
~—_———
0

so the evaluation of the sum over Matsubara frequency yields:

d d
dT <nF(e—%1+z2+ﬁ1)> T dr (nF(el_jl))

8—7&1—0—7&24—[3’1 - E-:1_7’1

(A.34)

Lrpu(Br, —ki + ko +Br) = —

These results are used for the numerical evaluation of the flow equations in Sec.[2.6.4
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A.4 Mean-Field Decoupling of One-Particle Operators

This section describes the mean-field decoupling in the Cooper channel. Here, two
creation operators are composed to the pairing operator. Analogously, other one-particle
operators can be considered. The total interaction is equal to the sum over all these
channels.

The interaction in the Cooper channel reads

Hpair = 5 Z Vais (K, C%TC—&C—NC@T

1 Lo (A.35)
kg
with the pairing operator
d,=clel. and  di=e .. (A.36)

The product of two pairing operators can be rewritten with the expectation value <d~qf> and
the variance Adg = d;f — (dZ,) to

i8N g

did, = <dz (dl) + (dk>)
_(AdE i
(o) (s
_AJTAT 7 7T
= AdIAd, +AdY () + (d) A

T (A.37)

(0 G+ (- ) + @
I

L

Q

] A

q
A —(d) (dy) + (dDd, ()

So the final result is

dld ~ (d;)d! +(d])d. — (d])(d}) (A.38)

T AT A A T N
chiﬂc tﬂcE/’T <C—Ei$cfﬁ>c%¢ci¢+< Kt 72¢> g~ < ki fk¢>< —qJ,Cc?T>
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A.5 Mean-Field Hamiltonian for Long-Range Orders in
the Kagome Lattice

For long-range orders with finite ordering vector 0 # (0,0), the translational symmetry of
the system is broken. Hence, the unit cell has to be expanded. This results in a reduction
of the Brillouin zone (BZ) and a back folding of the band dispersion, thus the number of
bands is increased.

As an example, the charge bond order (cBO) in the kagome lattice is considered,
discussed in Sec. There are three independent ordering vectors

len(—l —£> , O»=m(1,0) and Q3—7t< 1‘f> (A.39)

272 272

each corresponding to another real-space order. The expectation value (6% 6Z+ro>

(Eq. features creation and annihilation operators at distinct sublattices and momenta.
Hence, the Bogoliubov transform in Eq. is increased in dimension.

First, only 0 is regarded, so the vector of creation operators reads

A g A g A A
Cz (koc C%B CzY Cz+Q20C k+0B k+Q2Y>' (A.40)

Consequently, the non-interacting Hamiltonian reads

—u A() By 0 0 Yo
Ay —u Cyp O 0 0
. ~|Bo G —u Yo 0 0 | .
=Y * . _\cC (A41)
X%: 0 0 Y u AQ2 BQ2 2
0O 0 O Aéz —u CQ2
Yy 0 O Béz Céz u
with the hopping amplitudes
ky — — Dy
= -2t
1 COS 2 2 )
Bj = =2t cos (ky — px) (A.42)
= —2t;1cos ke — px +3 k= Py
2 2
and the Weiss field
Y5 = iAsin (ky — px) - (A.43)

The reduced BZ is plotted in Fig.[A.4] together with the band dispersion and FS for A — 0
and A = 0.1. The result is that a partial gap opens at the FS.
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2 normal Y cBO Y
Lo (©)[ B0 @ (© N

SIS OR P LT

x o S o A

K U > 4X L eenana s SdX
2 T r
-4 Q2

X Y T T X M r

Figure A.4: (a) The doubling of the unit cell for the bond-ordered phases with ordering vector
0, in Fig. causes a halving of the BZ. The new one is rectangular (shaded area). The labels
o to & mark the back folded areas. The band structure and Fermi surface (FS) is plotted with
an infinitesimal Weiss field (b,d) and Acgo = 0.1 (c,e). The back folded dispersion relation
results in 6 bands (b,c¢). (¢) With infinitesimal Weiss field, the FS is partially at the border of
the BZ, including a perfect nesting condition. The sublattice weights of this part of the FS are
dominated by o- and Y- sites. By introducing a Weiss field Acgo = 0.1, the bands are shifted

near the X-point and the new FS is partially gapped, especially the parts with o and 'y dominated
weights.

As discussed in Sec. it is possible to apply 01, 0, and 03 simultaneously. Hence,
the unit cell is expanded to 12 sites. Analogously to the above derivation, a 12-vector is
defined for the creation operators:

A R AF AT AT A o
Cp = <cjf (oA A A oA o oo ...
12 e B Ty o G0 GOy
A | SN N SRR éiﬂ>.
k+0Qc0 k+QoB  k+Qoy  k+Q3a k+03B k+Qsy

(A.44)

The Weiss fields corresponding to Q 1 and Q3 are introduced as

(A.45)

Additionally, one can show that Ql — Q2£Q3. So, the complete 12 x 12 matrix can be
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built up:

~u Ap By 0 O O O 0 Y O Z O

Ay —u G 0 0 X O 0 0 Z 0 0

By Co —u 0 X O Y O 0 0 0 0

0 0 0 —u Ag Bz O Zsg 0 0 0 Y

0 0 Xy A, —u Cs Zsg 0O 0 0 0 0
A |0 X; 0 Bs C5 x4 O O 0 Y5 O O
O:ZClz 0 0 ¥ 0 Z; 0 -u Az Bz 0 0 0 [Cp

k 0 0 0 z5 0 0 Ag —u Czy 0 0 X

Yy 0 0 0 0 Bg Cz —u 0O Xz O

0 7z, 0 0 0 Y, 0 0 0 -u Az By

Zz; 0.0 0 0 0 0 0 X5 A —u Cg

0 0 0 Yz 0 0 0 X5 0 Bj C5 —u

(A.46)

Again, the reduced BZ is plotted in Fig. together with the band dispersion and FS for
A — 0 and A = 0.1. The result is that the FS is nearly completely gapped. Only the M-
and I'-points remain gapless.

For the calculation of the free energy, the full Hamiltonian can be rewritten with a
mean-field decoupling, analogously to Eq. [2.131}

3 3
_ N A A ‘
r n=l1 i=1
- i =1 i i
+ ,:Z{ N ;VCCP <C%C% Q,> 55 5, + ; N zﬁ:Vccp ( 55 Qz> C%Ché,)
ok, 00, A A
3
_ AR CP At A
—Z,(nz‘,len(k) ;nc%n‘i'lz‘,( ; G5 +K;))
k = =

Here, an analytic Bogoliubov transformation fails due to the effective 12-band structure.
But within the mean-field approximation, the one-particle excitation energies can be
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calculated numerically (‘E(%) in Eq , so the total free energy reads

= ~El) : AT A cCP
Q=-T) ) In (1+e ! )_2ZZ<C% %+Qi>A%i '
7=t =17

A B

(A.48)

The second addend B is a sum over three mean fields, each corresponding to a quasi
one-dimensional bond order (e.q. Fig. . Under a rotation by %, these real space patters
can be transformed into each other, hence the energy cost for the creation of each mean
field is identical. In other words, it is linear in the application of the individual mean fields.
For addend A, this statement is not trivial, but a straightforward numerical evaluation
yields the linear relation. Consequently, the ordering formation along the individual bond
directions is indeed independent.
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A.6 Instabilities in the Coupling Function

During the flow of the functional renormalization group (fRG), the coupling function,
maps the development of instabilities for tendencies to long-range orders. A mean-field
decoupling into several channels enables to analyze and compare these competing
instabilities during the flow and, especially, at the break of the iterations.

As an example, a scattering processes which includes a momentum transfer identical to
the nesting vector O is considered. There are two possible processes:

P : ki=ki=k—0 and 5i=ky =ks+ O as well as
1 ki=ki=ks g p ko =ky g (A49)
P ki=ki=ks— 0 and p=ky=k3;+0Q

The system can include more than one nesting vector. In this case, the mean-field
decoupling has to be separately done for each Q. In this channel, the two possible
scattering processes are represented in the coupling function by

+VT(z7ﬁ7ﬁ_Q7z é) éT éT C. = €

L CL G- o
ko PV k+Qt p—Qoc
— - - - 1 -7 =7 =4
o — = AT AT A A _ n o AT AT A A
—VT(k,p,k‘i‘Q,p Q) %GCPTC[_)‘*QT 7{*+QG 2 T(k7p7p Q7k+Q> zccp'tcpféﬁccié_FQG
- - - — 1 7 27 _'
— —»_ ’\} ’\{ — s _‘_ A{ AT F
+Vr(k,p,p—Q,k+ Q) kGCpfccz_i_Qrcﬁ_Qc—}_ 2VT(k,p,p Q.k+0) i P -0t Tt o
— — — — 1 — - — — L
. = . — NEP A
= (Vr(k,p,k+ Q.p=Q)=Vrk,p.p—Q.k+ Q)) ko 75—k 0o
—2Vy(k, B, p— 0,k +0) Lase oo lase 6
N T\K, 7v ) J, 2 ko PT k+0t p—0c 4 ko PT p—0t k+0o
C ~ g

D
(A.50)

at any step of the fRG-flow, corresponding to the temperature 7. Here, the two terms were
expanded, so the coupling function can be reorganized. After this, the term marked with
B contains two one-particle operators:

AT A AT A o
%606 7 g~ .0
(A.51)

Hence, the particle-density operators are a possible implementation of the arbitrary
one-particle operators in Eq. This role is cast with spin-density operators for term
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D:
D Late se  _las sa
] kc k-i-Q’C Cpr p—0c 4 ko k+0oc p p—01
- _Z AI-LGAk+Q1:A;U H_Qv)(ZSGVSw SGTSF‘V)
*Gg‘c 6,uv
1 1 (A.52)
AT 2P A At &P a
=|=) C. 0.~ = — Y CL 0, ,C. =
<2§ ko OT k+Q‘c> (zyzv‘« puHY p—QV)
=%igSp0 Wi
- 1
. _\AT 2P A
kQ " ZZC%GGGTCQ-FQT
oT
At this step, 6" is the vector of Pauli matrices and reads
(1 o)
o o1 i)i
"= (ol |=|[. . (A.53)
P i 0
GZ

o 2)

Now, the term A and C can be identified with the mean-field decoupled matrices in the
charge-density (CDW) and the spin-density wave (SDW) channel, respectively. They read

o o > o o 1 o N
A VeowEB.T) = Ve (kP F+0,5—0)— ~Ve(k .5 — Ok
cpow ( ) r(k,p,k+0,p—0Q) ) r(kp.p—Q.k+0) (A.54)
C: VSDW(k T) - _ZVT(k7 71_5 Q7k+ Q)

This decoupling can be analogously repeated in other scattering channels. Two special
cases have to be considered for an infinitesimal momentum transfer Q = (e,€) withe — 0.
In the SDW channel, this corresponds to an order with all spins aligned in the same
direction, i.e. ferromagnetism (FM). Otherwise, in the CDW channel, it maps to the
Pomeranchuk instability (PI). For superconductivity, one has to regard k=k = —k and
p= k3 = —k4 with the pairing operators

s.ﬁ 2\ ko —k—o 775,(5 E,

(A.55)
f —i(éi . et g )
t.k \/§ ko —k—o —ko k,—o

for singlet and triplet pairing, respectively. Now, the coupling function in this channel can
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be decomposed:

—»_—» —— At AT R N _’_ - AT AT A A
VT,palr - VT(k7 kapa p) C%,GC—%,—G ﬁ:_cc_l_j>5 +VT(k7 k7 pap) cié,G _76’7_06‘_13'7_(56‘[3’75
A B
777 _n At T oA T T _7 R Al Toa A
+Vr(—k,k,p,—P) C_EGCE_Gcﬂ?_Gc_p’G—FVT( k,k,—p,p) ¢ 6t —ot ol
c D
' - R
R - T N +
= sSC(k7p7T) AS77<‘As7ﬁ+‘/tSC(k7p7T) ALkAt,p
- 1 ; 1
—Visc®k,5.T) = (& ¢+ i ) = (65 oty of o)
SSC( 2 ) \/z ko —k,—6+ %6 F—o > - p,(5+ 7—cC—p.c
+ (7$*T)i(éT et e )i(é e, —é. ¢ )
tSC\K, P, \/E ko —k—o %o k—c \/E —p,—c"po p,—6"—p,c
1 - .
= Visck,p,T) (&L &' ¢ . e 4é &' e e
2 SSC( 7p7 )( k,G —k.—o —D,—O p7(5+ k,G —k.,—G ,—0 —p,0
B A
AT AT A A A A A oA
cC - C- c - C cC - C- - C =
j_ —k,6 k,—o —P:—O p,G/j_ —k,c k,—G p,—O 7paG/)
D c
- 7{’ 5T Aj: AT_’ A A _/\j AT_’ A A
+ ZWSC( ’p’ ) <Ck,GC—k7—GC_p7_GCp7G kGC—k7—GCp7_GC_p7G
B A
At AT A A N A
C—%,Gcz,—cc_li_c ﬁvc +C—% Gcz,—ccﬁ7_0 —P7G)
D c

(A.56)

Due to a comparison of the prefactors of the terms marked with {A,B,C,D}, one yields a
system of linear equations

A: Vr(k,—k,p,—p)= 3 ssc(k,p,T)— EVtSC(kuva)
B: Vr(k,—k,—p,p) = 5Vssc(k,p,T)+ zVisc(k, p,T)
2 2
| 1 (A.57)
C: VT(_kakaﬁa_ﬁ):E SSC(kaﬁaT)+§‘/tSC(kaﬁvT)
D: VT(_kvk;_pvp):E SSC(k7p7T)_EVtSC(k7p7T) )

which can be easily solved:

A+B+C+D: Vic(k,p,T)=

| =

+Vr(—

A-B—C+D: Vsclk,p,T) =

N

| —
>~~~ =
S
—
=l
|
k)
S
|
!
N——
|
S
—~
=
|
N—— \‘»l N——
|
S
S
SN~—

|
=
|
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Moreover, rotational symmetry is used, so
V; 7&7_7&7 _‘7__’ =V _757757__‘7 p
(k.- P qp) r(—k ' pqp) (A.59)
VT(k7_k7 —P :VT(_k,kvpv_p)
The final results for the mean-field decoupled vertex read
Vsow (k, 3,0, T) = —2Vr (k, p, p— 0,k + 0)
- L, 0= o7 =, — 1 =N - = —
VCDW(k7p7Q7T) = VT(k7 7k+Q7 - Q) - EVT(]QP?P - Q7k+ Q)
Vem(k, B, T) = —2Vr (k, B, .k
e (k, P, T) r(k,p,p )1 (A.60)
VPI(k7ﬁ7T) = VT(k7ﬁ7k7ﬁ) - EVT( 7ﬁ7ﬁ7k)
VSSC(%vﬁv T) = VT(iéa _757]_57 _I_j\) +VT(7€7 _757 _ﬁ7ﬁ)
VtSC(EI_i T) = VT(E _7&71_7’7 _ﬁ> - VT(R _k7 _ﬁaﬁ) :
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