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Lectori salutem

Der Einsatz digitaler Systeme sowie drahtloser Kommunikation innerhalb

weitreichender und keineswegs auf die Erde beschränkter Netzwerke hat sich

durch ihre explosionsartige Verbreitung während der letzten Jahrzehnte in

den meisten vonMenschen besiedelten Gebieten zu einem wesentlichen Be-

standteil des täglichen Lebens entwickelt. Dies ist verglichen mit "früheren"

Arten der Kommunikation nur verständlich und konsequent angesichts der

enormen Reichweite, Geschwindigkeit und Kosteneffizienz. Und so tragen

die vielfältigenMöglichkeiten ihrer teils bewussten und unmittelbaren, häufig

aber auch kaum wahrgenommenen und sehr indirekten Nutzung inzwischen

wesentlich zur Sicherung und (gefühlten) Steigerung unseres Lebensstan-

dards bei. Ein Ende dieser Entwicklung ist aktuell nicht abzusehen, weshalb

auch die Weiterentwicklung informationsverarbeitender Systeme sowie der

Ausbau zugehöriger Infrastrukturen und Netze weiter voranschreiten wird,

um immermehr relevant gewordene, nützliche – aber auch weniger nützliche

– Dienste zur Verfügung zu stellen. Stets und überall. Und um Information zu

gewinnen. Daten, die dann – hoffentlich angemessen gefiltert und vorverar-

beitet, in jedem Falle aber unverfälscht – den Nutzern wiederum zur Verfü-

gung gestellt oder in deren Interesse eingesetzt werden. Ob dies in jedem Fall

eine gesellschaftliche oder individuelle Bereicherung bedeutet bleibt kritisch

abzuwarten und soll hier lediglich ins Bewusstsein des Lesers gerückt werden;

aus wissenschaftlicher und technischer Sicht sind die in diesem Kontext zu

behandelnden Fragestellungen jedoch ein schier unerschöpflicher Quell an

Inspiration und Herausforderung.

Die vorliegende Arbeit wird sich mit einer ausgewählten Teildisziplin dieser

digitalen Systeme und Kommunikationsnetze beschäftigen: Den "Draht-

losen Sensor/Aktuator Netzwerken" und ihren elementaren Bausteinen, den

"Drahtlosen Sensor/Aktuator Knoten". Durchaus weitläufig und in mittleren

bis großen Stückzahlen in einer zu observierenden Umgebung verteilt, wer-

den diese eingebetteten Systeme eingesetzt, um verschiedenste Informa-

tionen aus der Umwelt zu extrahieren, zu verknüpfen, und entsprechende

Reaktionen auf diverse Ereignisse einzuleiten bzw. selbst auszuführen. Ihre

(angestrebte) Autonomie und Autarkie macht sie dabei sowohl zivil als auch

militärisch hochgradig interessant. Nutzen, Sicherheit, Zuverlässigkeit und

Performanz müssen also gewährleistet sein!
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Lectori salutem

Hinsichtlich der Zuverlässigkeit und Performanz – und nur diese beiden

Aspekte werden wir im Rahmen dieser Arbeit behandeln – verlangt dies

nach einem tiefgreifenden technologischen Verständnis bei der Entwick-

lung von Hardware, Software, und Kommunikationsstrategien. Unter beson-

derer Berücksichtigung von Reaktivität und Ressourceneffizienz ist ein

angemessenes Co-Design im Kontext der jeweiligen Anwendung unerlässlich,

um trotz der verhältnismäßig geringen Performanz und der eingeschränkten

Energievorräte typischer Knoten komplexe Verfahren lokal implementieren

zu können und übergreifende Aufgaben kooperativ bzw. kollaborativ zu be-

wältigen – auch in hochgradig dynamischen Umgebungen!

Am Beispiel des im Rahmen dieser Arbeit entstandenen Lokalisationssys-

tems SNoW Bat werden diesbezüglich einige neue Strategien, Methoden und

Paradigmen vorgestellt: Gekapselt in das von Grund auf neu entwickelte

Echtzeitbetriebssystem SmartOS, das zusammenmit diversen Erweiterungen

als Schwerpunkt dieser Arbeit gelten darf, werden wir einigen auch nach

Jahren der Forschung noch immer auftretenden Problemen beim Design

kompositioneller Software mit neuartigen Konzepten etwa zur dynamis-

chen Ressourcenverwaltung begegnen und ereignisgesteuerten Echtzeit-

Applikationen im Bereich der drahtlosen Sensor/Aktuator Netze ein bisher

unerreichtes Zeitbewusstsein ermöglichen.

Knotenübergreifend werden wir die Reaktivität und Leistungsfähigkeit dieses

Systems anhand speziell aufeinander abgestimmten Algorithmen zur Dis-

tanzmessung und Positionsbestimmung sowie eines ebenfalls neu entwick-

elten Datenaggregationsprotokolls demonstrieren. Letzteres wird im Rah-

men dieses Co-Designs auch zeigen, dass die semantische Nutzung implizit

verfügbarer Information – sowohl aus der Umwelt als auch aus dem verteil-

ten System selbst stammend – zur Optimierung des Datendurchsatzes und

zur Erhöhung der Informationsdichte bei der Sensordatenfusion genutzt

werden kann. Umfangreiche Tests aller vorgestellten Techniken, Konzepte

und Paradigmen fanden unter realistischen Bedingungen auf SNoW5 Sensor-

knoten statt.
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Organization and Classification

1. Background and Evolution

Before heading to the actual work and its various theoretical and practical parts, I’ll give a short

retrospective on the evolution of the research area “Wireless Sensor/Actuator Networks” at the

Chair for Computer Engineering V at the University of Würzburg.

The “SNoW Project” originated from a practical course in hardware design which I supervised

during some exceptionally snowywintermonths. Originally coming from the hardware synthesis

and FPGA/VHDL area, we decided to take a short trip to off-the-shelf microcontroller systems.

Especially interested in the digital circuit layout and in general embedded systems design, we

asked the participating students to implement a simple radio communication stack for a newly

developed wireless sensor system: The Sensor Node of Würzburg (SNoW5). Initially, the software

for the first prototype of this platform had to be implemented using plain C, before the first

version of our operating system YaOS – which later turned into SmartOS – introduced the

“convenience” of preemptive multitasking. Virtually at the same time, the first successful radio

transmission took place. Many ideas which emerged during the practical course made their way

into further projects, and the results finally attracted considerable attention of students and

other researchers within the institute. In fact, plenty of positive feedback and the increasing

number of interested students encouraged us to start an entirely new research focus at our

institute: Wireless Sensor Networks (WSN). Supported by my advisor, I and two Ph.D. colleagues

at the research group intensified our work in this area. Since then, we supervised about 100

practical courses, student research projects, and diploma thesis. Needless to say, the intended

short trip became a long journey – which has not even ended yet. In fact, we traveled a long

and exciting way with many intermediate stops, ranging from e.g. hardware prototyping and

operating systems design, over theoretical and practical issues in (wireless) communication and

localization, to technical and physical problems in distributed real-world deployments. Finally,

“Wireless sensor networking is a decathlon of information sciences.”

(Reiner Kolla)

proofed to be a quite precise characterization of this research area. It involves numerous well-

known areas like hardware/software (co-)design, energy awareness, remote-management and

security issues, networking and distributed algorithms, self-organization and scalability, infor-

mation aggregation and processing, and real-time operation in dynamic environments – just to

name a few. In addition, it touches countless application scenarios in long established areas

like transportation (e.g. logistics and goods monitoring), industrial and home automation (e.g.

vii



Organization and Classification

robotics and security systems), environmental surveillance (e.g. object detection, localization

and tracking), healthcare (e.g. patient monitoring and treatment), and cyberphysical systems in

general.

In the meantime we extended our focus toWireless Sensor/Actuator Networks (WSAN), since

we believe in the proactivity of this ubiquitous and still evolving technology. On the software side,

YaOS was completely revised, and turned into the full grown operating system SmartOS for time-

critical embedded systems. Besides the support for three entirely different CPU architectures2,

various novel kernel concepts have been developed and implemented. The 16 bit sensor node

SNoW5 reached its third revision, and several extensions for sensors, actuators, communication,

and power supply units became available. Besides this energy efficient low performance node,

the 32 bit SuperG platform [210] was developed as high performance infrastructure element and

wireless communication gateway with six simultaneously operating radio transceivers. Today,

more than sixty SNoW5 nodes and eight SuperG platforms are available within our hardware pool.

These, and the availability of an adequate remote-management system (SNoWGhost), allows

the realization of quite complex projects – like e.g. the indoor localization system SNoW Bat. As

expected, their real-world implementation repeatedly showed the enormous diversity of the

involved research areas, and demanded for numerous solutions for a multitude of different and

often unpredictable problems. A selection of the most interesting challenges and approaches

will be discussed within this work. As my research colleagues would certainly agree, the most

central lesson learned can be summarized as:

It is a challenge to make the complex appear simple.

2. Research Approach and Methodology

Since the work on wireless sensor/actuator networks meant the beginning of an entirely new

research area at our institute, appropriate basics had to be created first. With the SNoW Project a

practical framework was initiated during this work, which would allow to study various aspects

of embedded systems on specific hardware and under real-world conditions. Therefore, both

the sensor node SNoW5 (→ Chapter 2) and the operating system SmartOS (→ Chapter 4) were

designed in the first place and implemented from scratch to gain a complete and accurate under-

standing of all hardware and software issues, and to amply comprehend the related processes

in detail. The aspired goal was to get a solid, yet completely transparent basis for scientific

experiments and the evaluation of novel concepts. In particular, the specific requirements of

typical components within the WSAN domain (e.g. sensor nodes and infrastructure elements),

as well as their interaction with the environment and with traditional computers systems and

networks, could therefore always be completely taken into account. However, when making

such demands, a scientist in a theoretic working environment will find himself exposed to two

self-evident and inevitable questions:

2Atmel ATmega128 (8 Bit), Texas Instruments MSP430 (16 Bit, SmartOS reference implementation), Renesas SuperH

SH-2A (32 Bit)
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2. Research Approach and Methodology

1. What is the advantage of putting efforts into concrete implementations, compared to

limiting oneself to analytic approaches followed by simulative studies when indicated?

2. Is it reasonable to take the risk of re-inventing the wheel, and subsequently to conduct

research concerning only a small part of the wagon built on it?

First, analytic considerations must always be undertaken – independent from the research

approach. They are not only required for comparing related work, but also to ensure the quality,

viability and sustainability of novel concepts by appropriate proofs. But how can we evaluate

the impact of our research on existing problems, which we are expected to solve successively?

In this concern, the advantages of a practical, though potentially complex approach with

several side effects are manifold and invaluable at the same time: Since the developed systems,

and the techniques implemented therein, have to prove their capabilities and reliability under

realistic conditions and arbitrary environmental influences, this will not only reveal the true

effects of underestimated or even entirely hidden problems for improving the own work, but

it is also an almost endless source of inspiration for new ideas. There is always something

one would not have expected, and the attempt to transfer specific theories to the real-world

will in general create a diversified insight into more or less related areas. In fact, many errors

and preventable quality degradations in hardware and software systems arise from the fact,

that researchers and developers (at times) do not know exactly what they are doing during

the design and implementation stage, or at least do not assess the consequences sufficiently

far-sighted. If the complexity ismanageable, this problem can be attenuated significantly by

the exclusive use of self-made components, since these are commonly better understood and

much easier to adapt or extend by new features. For the development of compositional time

and safety critical systems in particular, such an approach proved to be quite adequate, since

errors and unexpected behavior emerging from the use of “black-boxes” at lower system levels

(e.g. the hardware/software interfaces) are hard to trace, locate, solve or compensate for. Finally,

successfully tested systems canmore easily be transferred to target applications. A significant

disadvantage of practical approaches, however, is their restricted flexibility regarding the inten-

tional modification of environmental properties and system abstractions. Once implemented

or installed, only few scenarios can be observed under hardly influenceable conditions. This

complicates both the comparison to other systems and the reproduction of results, since sys-

tem states and environmental conditions are difficult to configure and hardly conservable or

restorable in detail.

Thus, simulation is often preferred as an alternative to real hardware for the implementation

of techniques, methods and theories under examination. Besides, simulation offers some

more advantages regarding the problems just described: Especially for systems with a large

parameter and state space regarding the software, hardware, and the environment, simulation

commonly offers muchmore flexibility for analyzing more configurations in significantly less

time. Furthermore, one is not constrained by the given specifications of concrete hardware or

environments, but it is much easier to apply certain abstractions to modify them and to “focus

on the essential”. A potential fallacy(!), since it is exactly this convenience which sometimes leads
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to a central and well-known problem: Though abstraction may produce easy to handle models,

it can rapidly lead to the masking of relevant facts and problems, and the relation to reality

may deteriorate unnoticed. In addition, errors or imprecision in the models may not become

apparent in the simulation results, and thus lead to false – albeit plausible – assumptions. This is

especially true for the modeling of various physical and temporal phenomena as e.g. discussed

for the SNoW Bat localization system in Part III of this work. Another difficulty are side effects

within the hardware and software to be analyzed (e.g. CPU gate and instruction level behavior,

or complex task interactions as considered in Part II). These are often ignored as they are simply

not evident or cannot be simulated thoroughly. Finally, the effort for developing a highly precise

simulator is often comparable to working with real systems3.

Eventually, it should be noted that in addition to the due diligence in the implementation

of real systems and simulation models, both approaches have their specific strengths and

weaknesses. In particular, both cannot conduct a complete system state analysis, and thus

cannot guarantee or validate the correctness of the system under test4. The final selection

depends on the main objective: Though mature simulators for either pure low-level or pure

high-level evaluations are available for the WSAN domain5, they can hardly unite both demands

to process complex models in great detail. Instead, and especially if temporal behavior or

environmental interaction must be considered, the analysis should be done directly within a

real test bed. Of course, in-situ probing within the systems under test might also affect their

behavior, and must be considered adequately.

Even though the mentioned advantages of real-world implementations compared to simula-

tion might still seem to be less attractive from a scientific point of view – i.e. due to the desire for

analyzingmore aspects and solution strategies under arbitrary system configurations – I selected

the first approach to gain amore embracing understanding for embedded, time-critical, reactive,

and networked systems. In addition, the domain of sensor networks – in spite of the demand for

more practical work and a growing interest in real-world applications and deployments [108]

within the community – is still mostly treated from a theoretical point of view. However, for

some extremely complex algorithms, especially for those studies which required lots of inter-

mediate data logging for debugging and the selection of an appropriate parameter set within a

large configuration space, the severely resource constrained sensor nodes were often too weak

regarding their CPU performance andmemory footprint, and a hybrid approach was chosen:

Real-world equipment was used to obtain original (sensor) information, which in turn was fed

into a simulation environment for applying various algorithms. While this hardware-in-the-loop

(HIL) approach meant a good trade-off, especially for higher level software like the localization

algorithms in Chapter 13, it was omitted for low-level concepts related to the operating system

or network layer.

3In fact, a simulator is usually neither perfect, nor is it based on the same architecture as the simulated system –

otherwise the system itself could be used.
4Considering this, the application of model checking [264] is a quite novel and promising strategy for the formal

verification of WSAN systems. Since the involved components (i.e. sensor nodes) are similar or even identical,

exploiting certain symmetries can sometimes even attenuate the state space explosion problem and lead to a

significant acceleration of the validation process [10, 11].
5Examples are OMNeT++ [285] and ns-2 or ns-3[136] for discrete event networks simulations, and MSPsim [273] for

instruction level sensor node simulation.
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3. Scientific Contribution

3. Scientific Contribution

Throughout this work, we’ll take a close look at several quite different research areas related to

the design of networked embedded sensor/actuator systems. Figure 1 gives an overview on the

major parts, and relates the various chapters to each other:

Part I provides a general introduction to wireless sensor/actuator networks. Besides introduc-

ing some definitions and the most central characteristics, we’ll identify somemotivations for

researching this pervasive approach. We’ll also constitute its conceptual embedding in the wide

area of computer sciences, separate it from similar disciplines, and present some related work

along with the state of the art in the context of this work.

Part II addresses the specific design aspects for embedded sensor/actuator systems in highly

dynamic environments. We’ll present the exclusively developed SNoW5 sensor node for our real-

world evaluations, and introduce the new preemptive operating system SmartOS along with its

highly precise timemanagement, collaborative resource sharing (DynamicHinting) and dynamic

memory management (CoMem) concepts. These improve the reactivity and compositionality of

concurrently running tasks within time-critical and resource constrained embedded systems

in general. Considering the sometimes hard to access nodes, their quite large number and the

spatial extensions of the evolving networks, we’ll finally present the remote maintenance system

SNoW Bat for over-the-air software updates based on the SmartNet communication protocol.

Part III presents a concrete WSAN application for indoor localization and object tracking:

SNoW Bat. Based on the hardware and software concepts from Part II, we’ll introduce some

novel algorithms for ultrasound based distance measurement (Cut), wireless data aggregation

(HashSlot), and position estimation (pVoted). Applied as a subsystem within a real-world in-

stallation for autonomous vehicle path control, the underlying approaches had to be robust

against environmental influences, and technical imponderabilities. In particular, the measure-

ment noise and timing imprecision as well as hardware and communication failures had to be

considered carefully. Beyond, and despite of the severe resource constraints of typical sensor

nodes, other goals were to achieve a high localization frequency and precision.

Part IV draws a conclusion about this work, discusses and evaluates its scientific contribution

from amore distant point of view, and gives recommendations for future research directions.

Part V contains additional material and technical details for a more comprehensive under-

standing of various details within this work.

The variety of the topics illustrates the potential complexity of current sensor network appli-

cations; especially when enriched with actuators for proactivity and environmental interaction.

Besides their conception, development, installation and long-term operation, we’ll mainly focus

onmore “low-level” aspects: Compositional hardware and software design, task cooperation

and collaboration, memory management, and real-time operation will be addressed from a
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Figure 1.: This work at a glance
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3. Scientific Contribution

local node perspective. In contrast, inter-node synchronization, communication, as well as

sensor data acquisition, aggregation, and fusion will be discussed from a rather global network

view. The diversity in the concepts was intentionally accepted to finally facilitate the reliable

implementation of truly complex systems. In particular, these should go beyond the usual “sense

and transmit of sensor data”, but show how powerful today’s networked sensor/actuator systems

can be despite of their low computational performance and constrained hardware:

If their resources are only coordinated efficiently!

3.1. Subject Summary

Before heading to the actual work and its various theoretical and practical parts, I’ll briefly intro-

duce each individual research contribution, and provide a very quick overview by summarizing

the main results (→ Figure 1 for dependencies):

◦ SNoW5 – a new sensor node and hardware platform for research and education as well as

for the evaluation and analysis of novel approaches and theoretical considerations under

real-world conditions. Each single concept, technique, and software implementation

within this work has been tested and evaluated on SNoW5 nodes.

Main contribution: Modularity and expandability for rapid prototyping, and flexible

wireless communication for highly configurable communication protocols.

◦ SmartOS – the software counterpart to the SNoW5 hardware: A novel preemptive operat-

ing system and extensive software platform for embedded systems in general, and for all

algorithmic approaches and applications within this work in particular.

Main contribution: Compositional software design through reflective task synchroniza-

tion with priority inheritance based collaboration concepts. Time-awareness through

precise event timestamping and temporal semantics. Support for complex design pat-

terns like inter-task synchronization and communication, centralized IRQ handling, and

task-specific exception support as commonly known from full grown operating systems.

· Timestamping – a sophisticated SmartOS concept for dealing with temporal impreci-

sion resulting e.g. from software execution imponderabilities and the discretization

of time within digital systems.

Main contribution: Reliable capturing of event timestamps as well as the precise

scheduling and invocation of (re)actions with – in average – perfectly symmetric error

intervals around the true event occurrence or intended reaction time, respectively.

· DynamicHinting – a novel runtime paradigm for the collaborative management of

exclusively shared resources among concurrently running tasks in real-time systems.

Main contribution: Combines task priority reflexion, the reduced duration of

bounded and unbounded priority inversions, task starvation avoidance, and dead-

lock detection (all at runtime) to facilitate and simplify compositional software

design significantly.
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· CoMem – a novel concept for dynamic heap memory management in resource

constrained (embedded) real-time systems.

Main contribution: On-demand heap reorganization in case of memory shortage,

task priority reflexion, and guaranteed worst case allocation times (WCAT) for time-

critical requests.

◦ SNoWGhost – a remote-management system for over-the-air software updates.

Main contribution: Provides software broadcast and flooding (push) as well as viral soft-

ware updates (pull). SNoW Ghost will only be considered briefly; see [20] for details.

◦ SNoW Bat – The real-world indoor localization, tracking, and vehicle steering system

will serve us as a representative for complex compositional software design using of the

previously presented hardware/software techniques.

Main contribution: Coordinates a distributed system of autonomously operating sensor

nodes (46 in our real-world test bed installation) to achieve a localization frequency of up

to 2.5Hz and a typical position estimation accuracy of about 9mm.

· Cut – a simple but resource efficient DSP algorithm for ultrasound based distance

measurements between a sender and several receives.

Main contribution: Angle and distance independent error characteristics with an

average measurement precision of about ±0.8mm despite of low-cost off-the-shelf

transducers.

· HashSlot – a novel TDMA communication protocol for efficient data aggregation in

ultrasound based localization systems.

Main contribution: Provides a scheme for computing collision-free and tightly

packed TDMA slots for optimal throughput and perfectly deterministic data ag-

gregation time. Based on the semantic use of implicitly available information, it

needs no central coordinator or explicit sender communication, but nevertheless

supports the dynamic adjustment of the amount of acquired information to the

receiver’s varying QoS demands.

· pVoted – a novel 3D position estimation algorithm based on progressive voting for

potential locations to filter inaccurate distance measurements.

Main contribution: Achieves a theoretical 3D accuracy below 3mm, and provides

a quality indicator for each estimation (can be used for e.g. path prediction and

application optimization).

3.2. Underlying Publications

This work is based on the following publications with me as the main author (sorted by topic

and year). Unfortunately not all of them found their way into this work as a separate section.

Nevertheless they are deeply related to the main subject of this thesis, and might possibly serve

as sources of further information. References are given in the text where appropriate.
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Part I.

Wireless Sensor/Actuator

Networks: An Introduction
"Curiosity is always first in a

problem that waits to be solved."

(Galileo Galilei,

Italian philosopher)





1. Introduction

The technological and technical advances during the past 150 years did not only introduce the

directed radio communication1 between two parties (denoted as sender and receiver or source

and sink), but today even the operation of complex wireless networks comprising an enormous

number of participants (denoted as nodes) became reality for military, industrial, scientific, and

private use. Beginning with pulsed electromagnetic waves and the unidirectional transmission

of Morse signals in the 1890s, the application of modulation techniques permitted the first

analog voice communication in 1913. Since then, the technology was mainly used for radio and

television broadcasts with few senders andmany receivers within their transmission range. Bidi-

rectional communication (especially in full-duplex mode) was expensive and hard to manage,

and thus remained reserved for non private customers. The invention of integrated circuits in-

troduced digital signal processing and digital radio communication. In the early 1990s the DECT

(Digital European Cordless Telephony) and GSM (Global System for Mobile communications)

standards for cordless and mobile phones established digital voice transmission and service

provision in the private domain and with wide coverage. Today, data oriented transmissions

are available for computer systems via WLAN (Wireless Local Area Network) and the 802.11

standard, as well as for mobile phones via e.g. UMTS (Universal Mobile Telecommunications

System) or 4G standards. In parallel to the corresponding voice and data oriented networks –

which slowly merge into each other since Voice over IP and similar techniques transform all

traffic into compatible formats for the world wide web – yet another type of wireless network

has emerged: Thewireless sensor network (WSN) and its proactive extension, thewireless sen-

sor/actuator network (WSAN). We also refer to these as sensor network (SN) or sensor/actuator

network (SANet) in those cases where the explicitly wireless communication type is not available

or simply not relevant.

1.1. Wireless Sensor/Actuator Networks: Definitions &

Paradigms

The main purpose of a wireless sensor network is perfectly described by its name: Basically,

it consists of a set of sensor nodes, also denoted asmotes, which are deployed randomly or at

strategically relevant locations within the environment or onto objects and creatures under

surveillance to locally measure or sample certain application or objective specific information

by appropriate hardware equipment (sensor data acquisition). Some popular examples are

temperature, humidity, distances, pollutants, sound, signal strengths, and vibration. In the

1Electromagnetic waves were predicted by James Clerk Maxwell in 1864, and experimentally validated by Heinrich

Hertz in 1888.
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1. Introduction

most basic vision, the acquired sensor information is transferred to a central sink (sensor data

aggregation) for simple monitoring, centralized analysis, or further processing in general. This

so called remote metering allows the systematic observation of dynamic processes by combining

the received information from several nodes into a “big picture” of the overall system (sensor

data fusion). Examples are position estimation and object tracking as well as the tracing of event

patterns and their temporal and spatial propagation. By comparing the observed information to

an expected state (concerning both the environment and the system itself), adequate measures

can be undertaken by other (non-WSN) subsystems, e.g. at the sink, to finally reach, control, or

recover the desired state. This leads us directly to the first definition and paradigm:

Definition I.1: (Wireless) Sensor Networks: The Sense and Aggregate Paradigm

A sensor network (SN) is a spatially and computationally distributed system of sensor nodes for

the conjoint monitoring of physical or chemical [122] conditions. Inwireless sensor networks

(WSN), which are commonly deployed in exceptionally vast or hard to wire environments, the

sensor nodes operate mostly autarkic2, and communicate and interact over-the-air.

As an extension to this purely investigative approach, proactivity becomes inherent to these

distributed systems when supplementing the sensors with actuators which would allow them

to exert direct influence on the environment. Though an additional communication channel

returning from the sink to the sensor/actuator nodes is consequently required to supply these

with behavioral instructions, e.g. actuator commands, this extension introduces the option to

trigger reactions and corrections nearby the corresponding metering points.

In more advanced systems, the nodes are almost entirely independent from a central sink

which issues the actuator commands, but gain partial autonomy by integrating their own control

systems. These operate according to more general objectives from one or more coordinators,

or simply by static rules specified within their local application software. To further support

this reactive approach, nodes commonly communicate with each other and coordinate their

behavior for achieving collective success (emergent behavior):

Definition I.2: (Wireless) Sensor/Actuator Networks: The Sense and React Paradigm

A sensor/actuator network (SANet) is a hierarchical system of cooperating sensor/actuator nodes

which incorporates an also hierarchical control system for the distributed accomplishment of

complex and distributed objectives. In wireless sensor/actuator networks (WSAN), especially

when deployed in vast or hard to wire environments, the sensor/actuator nodes are required to

operate mostly autarkic and partially autonomic3.

Figure 1.1 gives an example: Though the depicted sensor/actuator node contains its own

control system for reacting on self-measured sensor values, it also accounts for external infor-

mation received wirelessly from other (maybe equal) nodes to fulfill its current local objective.

2Autarky or self-sufficiency: The freedom from external, non-natural resources (e.g. energy).
3Autonomy or self-governance: The freedom from external decisions and rules (e.g. commands).
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Figure 1.1.: Schematic of hierarchical control systems in wireless sensor/actuator networks

In addition, it also accepts instructions from a higher level coordinator which in turn might

modify these local objectives based on its own variable but more comprehensive notion of the

monitored dynamic system, the static application specification, and the global objectives derived

therefrom.

Although we have just introduced distinctive definitions for WSN and WSAN, we’ll use the

notions of node, sensor node, sensor/actuator node, and mote as synonyms throughout this

work, and always consider the particular device to incorporate both sensors and actuators. See

Chapter 2.1 for a description of various node types and their design considerations.

1.1.1. Typical Characteristics and the Environmental Context

Besides their fundamental definition, wireless sensor/actuator networks can be described

by a multitude of properties. Some of them are an inherent part of each deployed system,

others depend on the actual application and the underlying objectives. Three very common

notions refer to the terms ubiquitous computing [305], pervasive computing [201], and ambient

intelligence [322]. Though these are often used interchangeably, they were originally introduced

by Xerox (Mark Weiser, 1988), IBM (Lou Gerstner, 1994), and Philips (Simon Birrell, 1998),

respectively, and express subtle differences in the system’s interaction as well as in the user’s

perception of the technology. While [252] gives a comprehensive study on the evolution of these

terms, we summarize their definitions as follows:

Definition I.3: Ubiquity, Pervasiveness, and Ambient Intelligence

Ubiquity denotes a technology’s property of being invisibly omnipresent and deployed every-

where without making any statement about the interaction between the appendant devices

(e.g. embedded computer systems in general). Pervasiveness denotes a ubiquitous technology’s

property of being permeate and inevitably influencing our everyday’s live by providing services

through interconnected and networked devices (e.g. mobile communication). Ambient intelli-

gence denotes a pervasive technology’s property of seamlessly bridging the gap between the real

and the digital world by being practically invisible for the user (e.g. augmented reality).
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According to Definition I.3, we will differentiate between a local view considering the nodes as

(ubiquitous) embedded systems and a global view considering the entire networks as (pervasive)

distributed systems. Figure 1.2 gives an extensive (yet possibly incomplete) summary of their

various characteristics which can finally lead to the user’s perception of an ambient intelligence

for a multitude of services.

The local node view. While each node is per definition a wirelessly communicating and

signal processing device, it is also designed for energy efficiency. However, the exact meaning of

this demand is often only vaguely defined, and can in particular not be expressed universally by

simply specifying the node’s power consumption under certain operation modes. Instead, it

depends on the duty cycleDm of each modem which is commonly influenced by the software

system and the environmental situation. A detailed study concerning our SNoW5 sensor node

can be found in Section 2.2.2 and [93]. For this work, we define energy efficiency as follows:

Definition I.4: Energy Efficiency

A node is energy efficient, if it shows a favorable balance between energy consumption, reserves,

and regeneration. That is, if it autarkically survives the intended network lifetime while reliably

and sufficiently providing its individual services even in the worst case, e.g. during periods of

maximal energy consumption andminimal harvestingwhich can be expected for the application

it is used for. Of course this definition can easily be extended to the entire network by simply

requesting energy efficiency for each single node.

In addition to the mentioned inherent properties, nodes are commonly considered to be

designed as special purpose devices4 with low performance but quite complex self-management

features. For some systems, they are required to be mobile or even real-time capable for im-

proved reactivity within highly dynamic environments. If the numbers and placement of nodes

is sufficiently large and dense to provide a certain service with extensive coverage, they are

considered to be ubiquitous.

The global network view. From a global network view, we see nodes interacting with the

environment and with each other to cooperate or even collaborate5 with respect to a common

objective. Therefore, and for an increased deployment range, the direct node-to-node com-

munication must inevitably be extended to multi-hop where intermediate nodes between the

original sender and the final receiver forward the transmitted data. To eventually ensure a

proper operation, nodes have to be integrated into the environment in a way to exert minimal

undesired impact on the surrounding [193, 220] and to also receive minimal disturbance from it

[122]. Optional characteristics in this context are their capability to establish their own (physical

and logical) infrastructure, and to scale their operation with the number of nodes and commu-

nication links. Starting with a certain degree of complexity, self-organization [21, 82] becomes

essential to maintain dynamic topologies, and to achieve reliable fault tolerance. In fact, this is

the next step from the nodes’ ubiquity to the overall system’s pervasiveness.

4At least the sensor and actuator equipment is commonly application-specific.
5See Section 6.5.2[p109] for a detailed disambiguation of these terms.
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Figure 1.2.: Characterization of wireless sensor/actuator nodes and networks:

Generally accepted inherent (red) and application-specific (blue) properties

The environmental context. When supported by an appropriate hardware/software/net-

work design, the elementary characteristics of wireless sensor/actuator networks reveal three

main advantages which finally allow them to integrate almost seamlessly into the context of

common application scenarios, and to improve long established techniques which were initially

based on wired devices (and centralized data processing):

1. spatially distributed operation through wireless installation

2. environmental interaction through decentralized data processing

3. service reliability and fault tolerance through self-organization

However, these properties come at sometimes huge system and application complexity – at least

when considering the constrained performance and resources of today’s typical sensor nodes.

1.1.2. The Design Space and Related Disciplines in Computer Sciences

The complexity of wireless sensor/actuator networks is reflected by a multidimensional design

space. Though we won’t discuss its various aspects in detail, but refer to later sections and

appropriate literature like [4, 50, 99, 130, 249], Figure 1.3 gives an impression about its extent and

shows a (still incomplete) property tree with four main branches. Besides application-specific

requirements for the local nodes and the global networking aspect itself, it also covers the special

challenges of highly dynamic and particularly sensitive or harsh environments in which these

distributed systems are often expected to operate. Another criterion is the analyzability of the

overall system. Indeed, any WSAN design introduces a multivariable optimization problem:

Definition I.5: The WSAN Optimization Problem

For a given objective, find a global and local system configuration (including hardware, software,

and communication subsystems) to meet the specifications. At the same time, provide energy

efficiency according to Definition I.4, and maximize the system utility and environmental

compatibility under minimal costs and effort for development, deployment, and maintenance.

To solve this problem, flexible concepts are essential for the reliable composition of all involved

subsystems. The customization of hardware (e.g. sensors, actuators, andMCUs), infrastructure
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(e.g. communication and routing protocols), and software subsystems (e.g. operating systems

and application tasks) provides the flexibility to tune minimal cost and energy consumption

against maximal utility and lifetime of each individual node and the overall network.

As a consequence, wireless sensor/actuator networks are rooted in many areas of computer

science. Figure 1.4 shows a structured overview on related research disciplines and the corre-

sponding main requirements for the WSAN domain. More detailed discussions can be found in

the corresponding chapters within this work.

1.1.3. Differentiation with Respect to other Wireless Networks

The ability to communicate wirelessly might raise the question why entirely novel techniques

are required in coexistence with long established, widely accepted, and thoroughly approved

standards for e.g. WLAN and cellular phones with permanently extending coverage, improving

hardware, and increasing data rates. The reasons are mainly justified by application-specific

requirements related to energy, infrastructure, real-time-behavior, data-flow direction, and the

conflicting constraints imposed by most existing protocol standards focusing on large data

volumes and service dissemination.

While today’s wirelessly communicating computers andmobile phones are commonly data

sinks receiving more information than sending, sensor nodes work in the opposite direction as

they mainly collect or generate information and exchange it with others. Although the required

data rates are rather low, special timing specifications must sometimes be met. These demand

for the design of tailored radio protocols with deterministic transmission delays and guaranteed

collision-freedom, even in the case of high prioritymessage bursts and nodemobility (→Chapter

12). Nevertheless, these protocols must be energy efficient since communication is one of the

most current consuming tasks of a sensor node (→ Section 2.2.2), and consequently deserve

careful optimization6 to avoid related power failures and the need for manual maintenance of

hard-to-access and virtually autarkic devices7. In contrast, consumer handheld devices contain

other, more energy consuming components like powerful CPUs and displays, but can easily

be recharged when required. Finally, while someWSAN applications demand for pure ad hoc

communication, others require the prior setup of special infrastructures with precisely defined

geometric or technical properties (→Chapter 13); both requirements are commonly not satisfied

by the initially named standards.

1.2. Wireless Sensor/Actuator Networks: Past – Present –

Future

Having introduced the special characteristics and strengths of wireless sensor/actuator networks,

we still need to discuss which solutions or services this technology might provide and which

6A corresponding consideration according to Amdahl’s law can be found in Section 10.2.4.
7Similar problems which often jeopardize a node’s autarky and autonomy relate to dynamic resource management

among preemptive tasks under real-time conditions (→ Chapter 6).
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Figure 1.3.: The design space and classification of wireless sensor/actuator networks:

A few selected properties and realization options
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applicationsmight significantly profit from its support to justify the efforts in solving the involved

design and optimization problems.

During the past decade, wireless sensor networks attracted an enormous attention within

research and industry. Initially brought to life in the early 80s by military forces8, eager for more

flexible and efficient information retrieval through on-demand node deployments with ad hoc

capabilities, the presentation of the civilian Smart Dust project [9, 148] in 1998 triggered an

unprecedented hype around this still new and hardly recognized technology. The combina-

tion of miniaturized circuitry, wireless communication, and micro electromechanical systems

(MEMS) created entirely new opportunities, and the vision of deploying several thousands

of intelligent, yet small and cheap sensors in arbitrary places, rapidly stirred up the hope for

revolutionary monitoring applications. The combined power of a so called swarm of motes

and the invaluable advantage of wireless communication – finally eliminating the expensive

and fault-prone cabling between sensors which has been used previously – inspired projects

in medicine, meteorology, geophysics, biology, astronomy, and various other disciplines. Even

an entirely new research community within the computer sciences emerged from the desire to

solve the manifold upcoming problems, and consequently the number of related publications

increased exponentially [134]. Regarding its impact, the Technology Review Journal identified

the wireless sensor networks (WSN) in 2003 as one out of “10 emerging technologies that will

change the world” [16].

For many years, however, only few real-world deployments brought notable benefits for

industrial customers or end-users. In fact, the exaggerated early visions were not realizable at

once, and thus researchers focused on theoretical work and the hype disappeared along with

the industry’s attention. Since 2005, the Gartner analysts for information technology evaluate

8See the DARPA Distributed Sensor Networks (DSN) program as an example.
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the maturity of emerging technologies with reference to the so calledHype Cycle, which is an

indicator for their visibility, acceptance and impact to the market9. Independent from the

technology under consideration, the Hype Cycle is always presented as a graph as depicted in

Figure 1.5: Its visualization avoids to put the absolute time on the x-axis but applies evolution

steps instead. Beginning with the initial trigger, followed by a peak of extreme expectations

and a valley of disillusionment, the sensibility for the technology’s central aspects grows, and

finally leads to the plateau of productivity which is robust but far from the early visions. The

resulting sequence exposes a constant shape and allows to conveniently compare an arbitrary

number of technologies within a single figure. During the annual market analysis the current

visibility of each candidate is evaluated andmarked on the shape. Since the individual evolution

depends on highly dynamic factors and can even end abruptly, the markers might consequently

jump back and forth or even disappear. However, most technologies make their way in the

direction of solid acceptance. Figure 1.5 shows the evaluation for sensor networks (denoted as

“Mesh Networks: Sensors”) and some related technologies. While the latter grow steadily, the

sensor networks jump between hype and disappointment; they even disappeared temporarily

in 2008. Nevertheless, they are considered to inflict high benefits in over 10 years as depicted by

the Priority Matrix which is always associated with the Hype Cycle. So, what is the reason for

the lasting stagnation? Considering the market, there are only few concrete requests for sensor

network solutions, leading to even more theoretical work or feasibility studies. Since these won’t

arouse public attention, the market won’t grow and the requests remain absent. Indeed, the

technical progress – especially in the hardware area – always resulted from technology pushes

but not frommarket pulls.

So, how can we change the situation and escape from this vicious cycle? One long sought

chance would be to finally find a true killer application making the benefit more visible to the

consumer. Especially in the end-user market the usability in terms of deployment, configura-

tion, and maintenance must be improved significantly to gain a broader acceptance. Other

wireless technologies, like mobile communication and wireless LAN, are ahead by far in this

regard. In fact, the vast network of cellular phones is already considered as the largest real-world

“sensor network”. Another option is to form a symbiosis with other potent and future proof,

but still premature and thus susceptible technologies, and to derive concrete requirements

from these overlay applications. Let’s once more have a look at Figure 1.5: Location aware

applications are already close to mature in the end-user market – which is mainly caused by

satellite navigation (GNSS, → Part III) and mobile communication. Augmented reality and

mobile robotics are at significantly earlier stage, and might still incorporate sensor network

applications for improved perception quality and environmental interaction. Additionally, the

first is expected to cause a high benefit in 5-10 years, and the second is even considered as

“transformational” in about 10 years. Indeed, we can already see increased efforts in pushing into

multimedia systems (MMS) and cyberphysical systems (CPS) [171], which will definitely require

complex sensor systems as central parts of their control loops. Some other promising applica-

tion areas for wireless sensor/actuator networks include logistics [225, 255] and traffic control

9The Gartner, Inc. Hype Cycle and Priority Matrix 2011: http://www.gartner.com/technology/research/

hype-cycles/, last accessed in 01/2012.
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[39], biomedicine and healthcare [78], facility and plant management [66, 219], environmental

surveillance [227, 311, 313] and habitat monitoring [183, 193, 220], and – once more – military

operations [118]. Yet, to succeed in such cooperations – and even within critical infrastructures

–, powerful hardware/software concepts are required to facilitate the deployment and operation

while fulfilling the high quality standards for reliability, security, and performance.

1.2.1. WSAN Research Directions

If we envision and comprehend wireless sensor/actuator networks with their flexible but re-

source constrained nodes as part of larger systems for physical interaction and environmental

control, we’ll discover some considerable shortcomings of many current sensor network ap-

proaches which mainly focus on the sensing and the networking aspect. As illustrated in Figure

1.6 we see and predict a clear focus shift frommonitoring in classical WSN or SN applications

towards proactivity in advancedWSAN and SANet control systems. Cyber physical systems (CPS)

for example already integrate complex computational and physical processes [171]. Comparable

to a sensor/actuator node’s control loop in the small (→ Section 1.1), computation in those

larger host systems also influences the surrounding “world” and vice versa. While many WSAN

designs still consider node failures as tolerable evil, CPS commonly demand for extremely reli-

able operation where malfunctions would cause serious consequences in application areas like

highly confident medical devices, intelligent materials, advanced automotive, avionic and naval

control (X-by-wire), as well as for defense and warfare systems. The divergent philosophies of

the underlying design concepts impose demanding challenges when composing such systems

to merge physical dynamics and computation. We’ll highlight them next, and address several

aspects throughout the text – a summary can already be found in Figure 1.7.

Time management and time-awareness. Embedded systems aremost commonly real-time

or time-aware systems, where a considerable amount of operations involves time as limiting

factor (deadlines and timeouts) or at least as measurement variable and scheduling criterion

for the execution of processes (worst case execution time, WCET) and interactions (worst case

response time, WCRT).
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However, the notion of time is missing in almost all WSAN operating system kernels. Though

it is sometimes available at higher layers, e.g. as additional component for simplemeasurements

and periodic triggers, it then suffers from imprecision caused by inter-layer communication and

the simple fact that it is treated just like other components which are subject to unpredictable

conditions: Conflicting tasks, variable execution delays, and resource-related or semantic

limitations are just a few examples. Indeed, available OS concepts mainly focus on software

abstractions and design patterns for modular applications and service-oriented programming;

they do hardly cover the imponderabilities of dynamic environments but render the already

complex activities even less manageable with regard to real-time requirements. While static

WCET analysis is frequently applied for truly mission critical systems in order to optimize and

guarantee their correct overall behavior, it is hard to accomplish on-line, and almost infeasible

when considering the weak mote hardware compared to the complexity of the devices they

control: Unknown system conditions and sporadic interrupts are just two common examples.

Finally, any optimization effort is rapidly undone even by minor software and configuration

updates or by modifications to the network’s topology.

For the future we need to avoid non-determinism wherever possible. Finding new approaches

or redesigning current ones to be more predictable will become inevitable. For many host

applications, timing precision is relevant down to the smallest subsystem. Therefore, we should

integrate time management at the lowest levels (within the kernel or even through appropriate

hardware support), and must not let developers at higher levels try to compensate for the

deficiencies at deeper levels. Of course, the kernel’s time-awareness must be propagated up to

the task level where the system API provides appropriate semantics for the user code.

Compositional software design. Complex systems do most commonly exhibit a modular

structure, where various components are flexibly assembled, and, at least in the case of software,

can even be exchanged at execution time as long as their interfaces are compatible.

While hardware prototyping is done at development time, mostly conforms to fixed intercon-

nections, and can thus be statically tested for compatibility, software composition is much more

dynamic. As one consequence, the latter introduces resource management problems which
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result once more in timing violations, race conditions, priority inversions or even deadlock

situations. These phenomena can also be observed in the SANet domain, where a multitude of

(sometimes expandable) motes satisfy specific requirements. While the hardware operates quite

stable, the software development still suffers from critical deficits, and embarrassingly the use of

watchdog timers (WDT) for triggering hard resets in case of unsolvable failures is quite common.

Although some operating systems provide very simple synchronization primitives in addition

to inter-task-communication, it is still the developers who are responsible for their proper use

and for surveying all potential interactions and execution flows. This does not only affect the

directly visible task code, but also, and in particular, hidden device drivers, library functions,

and communication protocols. In this context, task priorities – both explicitly defined by the

developer or implicitly assigned by the OS – are yet another problem. Apart from the need for

general configuration and functionality update mechanisms, this is one reason why reliable

remote-management systems are required formanaging the spatially distributed and sometimes

hard-to-access nodes. Though such systems do exist for the partial or complete deployment of

application software over-the-air, these do not cover the verification of the resulting or modi-

fied system. For partial updates in particular, the additional management effort (including e.g.

dynamic address maps, jump tables, or code fragmentation) is still hardly researched.

For the future we need improved synchronization primitives for reflecting task priorities even

under exceptional circumstances. Software modules should become aware of their influence on

the system to react adequately and to resolve critical situations in a collaborative manner. After

all, under real-world conditions there is no human intelligence around to restart an inevitably

terminated task or even reset a node after a software failure. Finally, this problem will even

increase along with the software integration density on each node, which is required to reduce

hardware, deployment, and maintenance cost.

Semantic use of data. Distributed systems most commonly process information from var-

ious sources, whereby data dissemination, aggregation and fusion become central aspects.

Closely related to reliability, energy and timing demands, these capabilities also account signifi-

cantly for the overall WSAN service quality.

Wireless network and communication protocols represent one of the most popular research

areas within the WSAN domain. Myriads of approaches consider static and dynamic strategies

for information coding, collision prevention or avoidance, routing, and topology control. A

special sub-problem is the explicit querying for information from the network, and the related

reply strategy. For large systems with several sinks (e.g. robots in industrial environments)

both the queries and the replies might interfere and annihilate each other sporadically, leading

to reduced information availability and increased communication latency. Only little work is

done for adjusting the number of replies implicitly, i.e. without querying the corresponding

sensors directly and successively. Instead, embedded data such as locations, QoS demands

or other context information within the query should be semantically exploited to select an

appropriate subset of responding nodes, and to coordinate their transmissions for guaranteed

success. Eventually, no more data than necessary should be transferred to reduce interference,

energy consumption, and processing time at both the sender and the receiver side.

15



1. Introduction

For the future we need to develop context-aware network protocols and communication

schemes to maximize the fusion benefit, i.e. to obtain an adequate amount of information from

aminimum of wirelessly transmitted data. Since communication cost is obviously not equal to

fusion cost, appropriate techniques will definitely depend on the system state, and the current

demandmust be efficiently propagated to the nodes and respected by the network (see e.g. [47]).

Quality awareness. Physical environments are commonly highly dynamic and hard to assess

over time, meaning that the technical systems therein must be robust against uncertainty and

external disturbances. Affected areas include sensing and measurement, cooperation and

collaboration, data fusion and decision making, deployment density and node failure, energy

reserves and regeneration predictions – just to name a few.

Unexpected conditions and events are a worrying problem in general. To reliably capture

environmental contexts despite of imprecise (though sometimes apparently consistent) and

incomplete information, iterative processes of control, perception and reasoning10 are often

applied. However, this is a time-consuming approach during which the observed circumstances

might not even remain constant. Where available, error characteristics are commonly included

into the data processing step to filter outliers, speed up the computation, and to validate the

(interim) results through plausibility tests. The quality of the acquired information is crucial for

algorithms and self-x mechanisms with local relevance and global impact.

For the future we need to empower applications to be quality aware. In fact we have to

provide dynamic indicators for the quality (e.g. reliability or precision) of the obtained data and

information. This would facilitate the implementation of quality aware data fusion processes

which are able to stop progressively improving iterations once a certain quality threshold (→
QoS) or timeout (→WCRT) is reached.

Synopsis. The just postulated demands represent the author’s opinion regarding the relevant

research directions which already are and will still become evenmore essential for the success

and further evolution of next-generation WSAN applications.

The integration of the wireless sensor/actuator network technology into other areas (related to

e.g. the private, industrial, andmilitary sectors)must still be extended, andwill be a benefit for all

parties involved. Furthermore, forming a symbiosis with still new and upcoming technologies

(→ Figure 1.5) is an inevitable step: We definitely do offer the potential to introduce a new

flexibility into existing processes, and conversely will receive invaluable input for discovering

entirely new challenges and application areas. Of course the acceptance of a wireless technology

which mainly relies on many but inherently weak and susceptible devices depends on the trust

we can gain regarding the overall reliability and service quality of our hardware and software

deployments. For sure, these demands can only be met through the clever and professional

support for the points just discussed.

Figure 1.7 summarizes the necessary research directions, their benefits and goals on our way

to spreading WSAN concepts. While various related points will be discussed, and novel concepts

10Here: The process of correlating events to contexts.
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will be presented throughout themain chapters of this work, many other popular aspects like e.g.

emerging behavior or biologically inspired computing are not within scope, and were entirely

left for further research. See e.g. [68, 82, 88, 224, 275] for an overview of challenges.

1.3. Summary

In this section we introduced the most relevant definitions and paradigms for understanding

the purpose and operation of wireless sensor/actuator networks in general. Regarding their

characteristics and design space we identified related disciplines in computer sciences, but also

separated these distributed systems from similar wireless networks. Finally the discussion of

past, present and future goals illustrated the evolution of this still emerging technology, and also

indicated the necessary research directions for future success – at least in the author’s opinion.
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The Design of Time-Critical

Sensor/Actuator Systems:

Embedded Real-Time Concepts
»Auch in Wissenschaften kann

man eigentlich nichts wissen. Es

will immer getan sein.«

(Johann Wolfgang von Goethe,

German poet)





2. Hardware Platforms

2.1. Introduction

The miniaturization of powerful information processing

technology is essential for its integration into daily life. Only

small-sized and lightweight devices with little and almost

unrecognizable impact on the environment in which they are

deployed will be accepted by humans and other creatures

within their operation range. Examples can be found in the

area of location tracking (Active Badge [302]), in-situ habitat

monitoring (Great Duck Island [193] and Skomer Island [220]), and animal behavior research

[274]. It is quite similar for industrial applications, where tiny devices can be attached much

easier and with less influence on the system under surveillance or control. Related examples

tackle the monitoring of technical equipment within industrial plants and on board of ships

[260] or aircrafts [309]. However, one must always take into concern, that physical requirements

like form-factors and weight already lead to considerable limitations regarding these devices’

resource variety, computational performance, and overall capabilities. In addition, economic,

ecologic, and integration related constraints put further limitations on their design [55]. Table

2.1 gives an overview on relevant aspects.

Besides adhering to predefined specifications, the devices must still be able to operate au-

tonomously, and to communicate and cooperate adequately for compensating their individu-

ally low performance by powerful distributed operations. Since the specific design obviously

depends on application and environmental factors, the nodes might even be equipped or con-

figured differently and form heterogeneous networks. In particular, we also distinguish between

“sensor nodes” or “motes” for short, and “infrastructure nodes” or “gateways”.

Infrastructure nodes. Since gateways are commonly installed within the infrastructure, they

may be rather large and line powered, offer significantly better performance than ordinarymotes,

Constraint category Design aspects

physical size, weight, power consumption

economical production, deployment andmaintenance costs

ecological environmental impact, pollution

integrative communication interference, environmental robustness, accessibility

technical on board components, expandability

performance CPU/MCU architecture, memory

Table 2.1.: Sensor node design constraints and design aspects
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Sensor Node Infrastructure Node

WSN 1
(e.g. )Bluetooth

WSN 2
(e.g. )Zigbee

Observer

Arbitrary Network

Figure 2.1.: Example for a network of heterogeneous nodes

and support various wireless and wired interfaces for multi-modality. If required, gateways are

responsible for complex computations1, the storage and forwarding of information between

different networks (horizontal and vertical handover), and for the network observation and

control through arbitrarily connected workstation computers. Figure 2.1 gives an example for a

heterogeneous network comprising the mentioned node types.

Sensor nodes. In contrast, the comparably smaller motes are often installed on objects or

carried by creatures under surveillance. For flexible deployment within the environment and

potential mobility, these devices are often battery powered or generate their required energy

via sophisticated harvesting techniques (e.g. by transforming solar [93] or mechanical energy).

Event though they commonly provide a low performance microcontroller (MCU) and just one

wireless communication unit, it is their task to acquire information, perform some lightweight

(pre-)processing, communicate with others if required, and initiate adequate reactions. Figure

2.2a shows the layout of a typical sensor node. Sensors and actuators – to which we refer as

“interaction devices” – are selected according to the application scenario, and performance

enhancing components (like DSPs or even FPGAs) can be added on-demand.

During the past years, myriads of sensor nodes have been developed [55, 99, 315]. Beginning

with the Smart Dust platform [9, 148] in 1998, the nodes’ usability was continuously improved,

and until today several real-world installations were successfully deployed. While Figure 2.2b

shows some common nodes, Table 2.1 gives a comparison regarding various design criterions.

Among the most popular are the Telos [229] and Mica [74] platforms, the BTnode [45], EYES

[297], Gumsense [198] and the ESB [105]. In general, motes can be characterized along a truly

multidimensional configuration space. Again, Table 2.1 gives a comprehensive overview on the

various design aspects. These also reflect the fundamental requirements of WSN applications –

like e.g. energy and cost efficiency, networking, and scalability – as described in e.g. [4, 249] and

the following sections.

2.2. SNoW5 - The Sensor Node of Würzburg

Before heading to the main research topics “reactive software design” and “indoor localization”

within this work, we’ll introduce the design concepts and basic architecture of our specially

1which are most commonly provided as network services
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(b) Some common sensor nodes

Figure 2.2.: Sensor nodes: Schematic and examples

developed sensor node SNoW5 (→ Figure 2.6). Designed as an energy efficient embedded system

for wireless sensor networking, the SNoW5 still reflects the current state of the art for typical

sensor nodes. Yet, it offers more hardware flexibility while at the same time, it is not overloaded

with speculatively required equipment. Instead, it employs carefully selected components

featuring certain important advantages for our research attempts, and it is in line with our

demand to build a totally understood system from scratch. In retrospective, the node’s versatility

turned it into a powerful tool for WSN research and educational applications. However, we’ll just

give a short conceptual overview here. See Appendix B and [31, 34] for a detailed description of

the SNoW5 platform, and Table 2.3 for an extensive comparison to other existing nodes.

2.2.1. Requirements and Design Goals

Since research and education are the main application areas of SNoW5, we value flexibility,

expandability, and convenient debugging higher than small dimensions and specialization.

More specific designs for certain scenarios can still be derived from the existing one when

required. On the other hand, overloading the device with a multitude of components like

sensors and actors had to be avoided for cost and energy reasons. In addition, these would have

made the device larger and take away its all-purpose character. In fact, we mainly focused on

the following aspects when designing the SNoW5 platform:

◦ compact design for reduced environmental impact within real-world deployments

◦ modularity for rapid prototyping and application-specific customization

◦ flexible wireless communication for efficient data exchange and node cooperation

◦ autonomous operation for robustness against temporary network and link failures

◦ convenient debugging and appropriate hardware support for remote maintenance

◦ energy efficiency for a long lifetime despite of weak power supplies
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Figure 2.3.: The SNoW5 platform overview

2.2.2. Hardware Components and Conceptual Properties

Having motivated the design goals for our versatile sensor node platform, we’ll briefly review its

most central hardware (→ Figure 2.3) to become familiar with the conceptual properties, and to

establish the required understanding for the remaining work.

General Design and Expandability

According to our demand for a flexible design, the SNoW5 was designed as a mainboard carrying

only the most important active components for stand-alone operation. Besides anMCU and a

radio transceiver, we limit the equipment to few supplements which can be switched individually

for energy aware operation: An RS232 bus driver, a reference voltage generator, and a power

regulator. While we consider an extra flash memory as indispensable for autonomous long-

term operation and over-the-air software updates (→ SNoWGhost, Chapter 8.2), sensors and

actors, in particular, were omitted entirely. Instead, we propagate a stackable design where such

components can be easily attached through a complete set of header ports. This avoids the

pre-assignment of valuable MCU pins to speculatively available devices, reduces costs2 and

energy consumption, simplifies maintenance, and preserves the option to mount interaction

devices and energy harvesting related equipment in direct contact with the environment. Since

most of the MCU’s on-chip peripherals support external interfacing, these were completely

made available for expansion boards. In addition to the 56 digital and analog signals, and the 2

power lines, three extra lines are freely available for sharing additional signals or power supplies

across the expansions. The 2.54mm raster facilitates rapid prototyping via standard bread

boards, and simplifies signal observation for testing and debugging purposes. In particular, this

2Prototypes ranging around 50 EUR per node.
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Figure 2.4.: Block diagram of the Texas Instruments MSP430F1611 MCU

can help significantly to analyze the timing behavior of reactive systems. Figures 2.7 and 2.8

show some examples of customized nodes with stacked expansion boards. See Appendix B for

circuit details.

On Board Components

The microcontroller. The central unit of a sensor node is its microcontroller (MCU). The

SNoW5 is equipped with an 16 bit ultra low power MCU from Texas Instrument’s MSP430 family

[279]. The selected device is theMSP430F1611 [280] providing 48 kB of flashmemory (ROM) and

10 kB of RAM3. It supports five operation modes with energy characteristics ranging from 0.2µA

current consumption in lowpowermode LPM4up to 75µA in LPM0/14, and 4mA in activemode

AM at f = 8MHz CPU frequency and VCC = 3.0 V supply voltage5. While the clock frequency

is generally still software adjustable between 32 kHz and 8MHz via a rather unstable DCO

(Digitally Controlled Oscillator), an external 8MHz quartz crystal provides increased stability at

the highest permitted speed6. This did not only prove to be the right decision when running

time-critical and preemptive task systems on low performance hardware, but it also allowed to

use a simple frequency divider for deriving a 1MHz clock as required for the internal SmartOS

timemanagement (→ Section 5.3). Another reason for choosing the MSP430 was its large variety

of on-chip peripherals as depicted in Figure 2.4. Since we wanted to design a general purpose

node for research and education, these provide high flexibility for arbitrary applications. In fact,

the anchor node software within the SNoW Bat indoor localization system from Part III makes

use of each single peripheral (except for the watchdog timer). Finally, the MSP430 still receives

considerable support from the open source community around the mspgcc C compiler [292],

and it is reasonably priced to setup even large WSAN deployments.

3During the SNoW5 design stage, the MSP430F1611 offered the largest RAMwithin the MSP430 family.
4LPM1 is activated by SmartOS when in idle mode.
5Though energy could be saved in active mode when operating at lower supply voltages down to 1.8 V, at least 2.7 V

are required for flashing the ROMmemory. Since we provide over-the-air programming via SNoW Ghost, we

decided to stick to 3.0 V, since this will also keep the RS232 level converter active.
6See Figure 5.3[p75] for the crystal’s characteristics.
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Figure 2.5.: The SNoW5 radio transceiver current consumption at various base frequencies (→ [281, 283])

The radio transceiver. The second characteristic component of each sensor node is its

wireless communication unit. Keeping the focus on research and education, we intentionally

avoided a device featuring a specific transmission standard or MAC (Medium Access Control)

protocol. Instead, we selected the Sub 1GHz RF transceiver ChipCon/TI CC11007 [281], and

preserved the option to freely develop novel approaches for themedium access and higher layers

within the OSI (Open Systems Interconnection) model [140]. Compared to some other common

RF units (e.g. the RFM TR1000 [243]), it provides a fully digital interface. Two 64 B rx and tx

buffers allow for a packet and stream oriented communication with variable and unbounded

packet lengths at data rates ranging from 1.2−500 kbit/s. Depending on the antenna circuitry,
several base frequencies are supported; some within the ISM bands8 for industrial, scientific and

medical use. Figure 2.5 depicts the current consumption – which is of utmost importance for the

node’s lifetime and the network’s reliability – in comparison to the widely used 802.15.4/ZigBee

compatible transducer CC2420 [283] operating at 2.4 GHz. Besides various software selectable

modulation formats, the CC1100 supports channel switching for flexible FDMA (Frequency

Division Multiple Access), optional CCA (Clear Channel Assessment) for collision avoiding

CSMA (Carrier Sense Multiple Access) protocols9, and preamble-based low power listening. Its

extensive configuration space and interrupt capabilities provide a convenient base for highly

precise rx/tx timestamping and radio-based node (de-)synchronization [206] (→ Chapter 12).

Considering the popular area of WSN based localization systems, RSSI (Received Signal Strength

Indicator) measurements might even be used to estimate the distances between a sender and its

receivers (→ Section 9.2, [192]). However, for the problems described in [259]10 we do neither

use nor recommend this option.

7Texas Instruments Inc. acquired ChipCon AS in early 2006 and continued most of their low power RF solutions.
8The ISM band is license free since 1985.
9RX to TX switching time: ≈9.3µs
10Diploma thesis conducted in conjunction with this work.
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2.2. SNoW5 - The Sensor Node of Würzburg

Under test Operation MCUmode Theoretical1 [mA] Measured2 [mA]

CPU active AM 4.3 5.2

idle LPM1 0.3 1.0

Radio cont. rx LPM1 16.2 17.4

cont. tx (0 dBm) LPM1 16.9 18.1

Data Flash cont. read AM -3 5.5

cont. write AM -3 9.5

SNoWGhost4 radio rx / flash write AM/LPM1 -3 19.3

flash read / ROMwrite AM -3 23.3

Ultrasound5 cont. rx LPM1 2.5 3.4

cont. tx LPM1 5.3 6.1

1 Values taken from data sheets. Does only account for ICs, not for passive components
2Measured under SmartOS
3 Unpredictable (depends on the duty cycle of the involved devices)
4 The remote software update system as described in Section 8.2
5 Involves the MICADUS extension board

Table 2.2.: Current consumption of various SNoW5 sensor node components in mA

(Node under test: ID 82, VCC = 3.0 V, f = 8MHz via ext. quartz crystal)

The external flash memory. To account for autonomous operation in case of transient

communication failures, we added Atmel’s 16Mbit, non-volatile flash memory AT45DB161B

[13] to the node. The device can help to avoid the loss of short-term information, and also allows

long-term data storage, e.g. for logging and redundant saving of highly relevant information

across several nodes. Related concepts can be found in [97]11. Additionally, this component

is required as firmware buffer for reliable over-the-air software updates (→ Section 8.2), since

these images will commonly not fit into the node’s RAM, and node resets during the update

process – caused by e.g. malfunctions or power failures – would render the node inoperable.

Further information about an appropriate embedded file system can be found in [190].

Energy Consumption

Keeping the energy efficiency aspect from Definition I.4 in mind, the successful realization

through our node design is at first hard to predict in absolute numbers and almost impossible to

evaluate objectively for the general case. In fact, it depends on the system software [169], the

individual system configuration, and various environmental conditions. However, considering

the current consumption for some relevant operation modes, quantitative information can be

given. Table 2.2 summarizes somemeasured values and compares them to the achievable best

case as specified within the official data sheets of the involved components. Reflecting these

values, two observationsmight catch the reader’s eye: First, there is a fairly constant difference of

≈1mA. This “loss” is caused by passive components (e.g. pull-up resistors), production related

variations, and measurement imprecision. Second, the values might appear to be quite high

compared to the specifications of some other nodes. How can this be explained, although

many components are identical or at least comparable? In fact, this is a hardware/software

co-design issue and caused by two facts: First, we obtained the values using the SNoW5 default

11Diploma thesis conducted in conjunction with this work.
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2. Hardware Platforms

supply voltage of 3 V though 1.8 V would be sufficient for ordinary program execution. Second,

SmartOS operates the MCU at its maximum CPU speed when in active mode (IAM ≈ 4mA),

and cannot go below low power mode 1 (ILPM1 ≈ 0.6mA compared to ILPM4 ≈ 0.2µA) when in

idle mode to keep the sub-main clock alive. The reason is the continuously running SmartOS

real-time clock (→ Section 4.3.4): With a resolution of 1µs it is a quite power consuming but

highly desirable feature as we will see in various sections within this work12. While other nodes

claim to achieve significantly better energy values (e.g. 1.8µA for the TelosB), they obviously

apply lower clock frequencies, voltages, power modes, or duty cycles. Yet, we consider the higher

power consumption legitimate for obtaining various important advantages like remote update

capabilities13, faster computations or reduced MCU duty cycles, and – most important for this

work – higher timing accuracy for reactive and time-critical applications. Upgrading other nodes

likewise would definitely also raise their energy consumption significantly.

A methodology for evaluating the power consumption of wireless sensor networks can be

found in [266]; though based on the TelosB it can also be transferred to the SNoW5 or similar

nodes. Just to get an idea: For a simplified node model without energy harvester and an average

current consumption14 of I ≈ 1mA, an initial charge capacity ofQ = 8700mAh would last for

t =
Q

I
≈
8700mAh

1mA
≈ 8700h≈ 1y. (2.1)

Summary

This introductory chapter described the most central design considerations along with some

technical aspects and specifications of the SNoW5 sensor node platform. Developed during the

early stage of this work, these details gained considerable relevance for the real-world evaluation

of the presented concepts within the remainder of this work since all test benches were carried

out using SNoW5 hardware as depicted in Figure 2.6.

12Examples are precise event timestamping (→ Section 5.3), accurate ultrasound distance measurement (→ Chapter

11), reliably timed radio transmissions (→ Section 12.7), and representative benchmarking issues in general.
13Programming the flash ROM requires ≥ 2.7 V according to [280].
14Based on SNoW5 values from Table 2.2 with duty cyclesDidle = 0.9,Dactive = 0.07, andDrx =Dtx = 0.03.
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2. Hardware Platforms

(a) Top view

(b) Bottom view

Figure 2.6.: The SNoW5 mainboard (approximately in original size)
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2.2. SNoW5 - The Sensor Node of Würzburg

(a)Ultrasound (MICADUS)

transducer

(b)HD44780 dot matrix display &

GPS interface

(c) Acceleration sensor

(d) Stepper motor control (e) Ethernet interface (f )USB & CAN bus interface

Figure 2.7.: The SNoW5 sensor node with various extension boards

Figure 2.8.: The SNoW5 sensor node equipped with a PWMmotor controller and the MICADUS ultra-

sound extension (left), and mounted on a modified LEGO Spybotics vehicle (right)
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3. Operating Systems

Abstract

Sensor/actuator networks often consist of a more or less large number of

cooperating nodes handling even complex objectives. Even though these

embedded systems are subject to low computational performance, tight

memory, and severe energy constraints, it is nevertheless necessary for some

applications to support the execution of “multifunctional” software and “time-

critical” operations within e.g. control and feedback control systems.

Up to a certain complexity, an endlessly repeating (periodic or event-

triggered) single-loop implementation which successively steps through the

various operation stages might be sufficient for truly small systems. For more

elaborate demands however, such an approach would hardly be comfortable

since it is extremely inflexible and commonly results in extreme CPU load

and energy waste – at least if it has to check and process various (external)

conditions over and over at high frequency. Even worse, the response time

of such single-loop systems is quite high, and the program code is hard to

maintain, extend, or reuse.

Implementing several of those loops for “parallel” execution is one obvious

solution to decompose the application logic into smaller parts which are

less overloaded and more convenient to handle. This is where operating

systems (OS) attempt to provide efficient and suitable solution concepts, and

take significant influence on the performance of the overall device: At the

lowest software layer – right on top of the hardware – they coordinate the

application execution, the interaction between software components, and

their synchronization regarding any access to operational resources. Apart

from these “local” responsibilities further demands might arise from the

distribution of applications over several nodes.

This chapter deals with the main challenges and objectives to be considered

when designing operating systems for reactive embedded systems in general,

and for sensor/actuator nodes in particular. We’ll also present a classifica-

tion framework for kernel architectures and present some well-established

representatives before the next chapter finally introduces our novel solution:

SmartOS.
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3. Operating Systems

3.1. Introduction

Oncemonolithic information processing systems reach a certain complexity and are not satisfac-

torily manageable any more to guarantee their reliability in any situation (a problem which can

already be critical for small systems), they are commonly broken down into so called modules,

which can be developed independently from each other. The motivation for this decomposition

is exceptionally manifold, and so are the usually high expectations to this strategy and the result-

ing problems regarding their realization1. Though details will be addressed in later sections, it is

quite obvious that modules, whatever they might do in detail, must finally be reassembled to

a complete system – the so called application – operating within its specifications. While this

composition of modules is usually planned and carefully checked for consistency and compati-

bility at development time, their coordination and interaction at runtime can be interpreted

as a central objective of any operating system. The exact range of features required therefore,

can hardly be defined in general: The various application types and scenarios impose specific

demands for which not all operating systems might be equally qualified. In this respect, the so

called “operating system architecture” is of central relevance. It defines the basic operation of

its most central components – the so called kernel – and consequently introduces some kind

of philosophy for the development of all modules based on it. Ensuring the correct behavior

– both with each other and with respect to the environment – is then the responsibility of the

operating system.

The literature describes various demands on operating systems which already differ in their

most inherent components. While purists see only the most elementary low-level functions for

process-scheduling, andmaybe for inter-process communication (IPC) as well as for synchro-

1It should already be mentioned, that the principle of modularization will neither simplify the system design nor its

implementation unreservedly. Usually only a shift or hiding of some problems occurs: There is nothing for free!
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Figure 3.1.: Reference architecture for sensor node and embedded systems hardware and software layers
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3.2. Operating System Objectives

nization, others suggest file systems, networking capability, update functionality, and similarly

complex mechanisms as native operating system components. Therefore, we first clarify the

terminology and distinguish strictly between the terms operating system and kernel:

Definition II.1: Kernel

As kernel we denote exactly thosemechanisms of the operating system, which aremandatory for

the philosophy-compliant coordination of activities on each supported hardware. They provide

the basis for any compatible application and are thus always available and identically defined.

Conversely, kernel-implied requirements should never be bypassed or ignored2. We inten-

tionally just demand to satisfy the requirements; whether a violation can be detected or even

prevented at runtime often depends on the available hardware (e.g. a memory management

unit), and would consequently imply an excessive restriction on the portability.

Definition II.2: Operating System

As operating system (OS) we denote the complete functionality which the same provides for

running applications. It integrates the kernel as central component, but may also comprise

advancedmechanisms – if necessary even with varying and platform-specific characteristics

and API.

An operating systemmay include methods for runtime analysis, energy management, cross-

system communication, etc. Regarding the performance andmemory requirements these are

often available on-demand, and may even be replaced by application-specific variants. See

Figure 3.1 for a reference architecture regarding hardware and software layers.

For the design of an operating system architecture, we distinguish three main perspectives on

its core competencies: On the one hand, the OS should provide an abstraction of the hardware

so that arbitrary application code runs without any special adaptation3. On the other hand,

the OS should coordinate the coexistence and execution of modules so that they can interact

while not affecting each other in an uncontrolled way. Ultimately, the OS should ensure a fair

execution of these modules so that they get sufficient resources to meet their specifications. The

related problems will be addressed next.

3.2. Operating System Objectives

The operating system as hardware abstraction. The hardware components within com-

puter systems are extremely versatile both in their internal structure and function, and their

interconnection and communication among each other. Although their interfaces4 are specified

2Violating this philosophy by ignoring or circumventing the OS specifications, may rapidly lead to unmanageable

side effects and invalidates the benefits of an operating system.
3apart from re-compilation
4e.g. communication protocols, instruction sets, timing behavior, etc.
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3. Operating Systems

by the manufacturer, an enormous effort would arise if the support for each component would

have to be implemented from scratch for all applications.

If software modules access hardware components exclusively via OS functions (and encap-

sulated drivers), this hardware abstraction layer (HAL) offers further convenience and clarity

through platform independence and standardization. In this case the OS represents some

kind of virtual machine (VM) which is customized for the actual hardware and offers a unified

view on the underlying systems and components. However, this demand involves significant

problems for the OS architectures, and the solutions are commonly hard to reconcile. On the

one hand, the provided functionality should be constant and independent from the OS port

and the hardware equipment. On the other hand, even individual hardware features need to be

respected and exploited for increased functionality and performance. Considering both, the

systemmust remain correct while being small, fast, flexible, and simple to maintain and port.

Just consider the communication between two computer systems: For the transfer of data to a

certain destination, unified functions like send(dst,data) allow for compact programs, and

also provide an enormous comfort. Apart from a standardized syntax for “important” functions

(e.g. according to POSIX [133]), compatible programs show comparable behavior5 and do their

work invisibly for their caller. In the case of send, the application profits from an intuitive access

on complex networking techniques. Success or failure is indicated by an also standardized

return value.

In consequence, we need to question the importance of each potential feature when designing

an operating system architecture: Which functionality should be integrated directly into the

kernel, and in which concern will it affect the OS philosophy and the application development?

Which extensions must always be available, and which ones can be added on-demand? Is it

advisable to locate them in libraries and to provide them through drivers? Will components need

to interact or depend on each other? In fact, the previously unconsidered question about when

and how long modules may access these components must also be resolved. Thus, operating

systems do most commonly also coordinate the (dynamic) access of concurrently operating

modules to resources.

The operating system as arbiter and resource manager. Resources constitute theworking

basis for all programs which are executed by a computer system. Beginning with the central

processing unit (CPU), which also executes the operating system and the resource manager6

itself, we generally divide resources into four types:

◦ Processors for the execution of instruction sequences (→ Section 4.3.2),

◦ Peripherals like I/O devices, timers, data sources and sinks (→ Section 4.3.7),

◦ Memory and data structures therein (→ Chapter 7), and

◦ Virtual resources for process synchronization (→ Section 4.3.7).

5Since compatible systems are not necessarily identical, even slightest differences can lead to varying runtime

results, in particular regarding the temporal behavior. Sometimes, the OS even has to compensate for deficits

which are hidden in the instruction set of the used processor.
6Though the resource manager can also be implemented at application layer for highly customized requirements,

we assume it to be an OS kernel component.
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other resourcesCPUSmartOS specific:

Availability

physical

virtual

Management

static

dynamic

Access

exclusive

preemptive

Duration

short-term

long-term

Sharing

temporal

spatial

Assignment

shared

fixed

Key: cooperative collaborative

Figure 3.2.: Resource classification framework: In general and under SmartOS

Independent from their type, resources are always distributed among the current set of

concurrently operating processes, but may only be used when granted by the resource manager.

This policy synchronizes the modules, and introduces mutually exclusive resource access (r/w)

and reservation to avoid race conditions.

According to the classification framework from Figure 3.2, resources can be physical, meaning

that they exist as real hardware components, or virtual, meaning that they are just emulated

by the resource manager. We classify them as shared if their owner or user process may change

at runtime, and as fixed (e.g. during development or system startup) otherwise. For shared

resources we distinguish between temporal sharing, meaning that nomore than one process

can access the resource at the same time, and spatial sharing, meaning that several instances

of a resource are available and can be used simultaneously. Additionally, the management

of shared resources among the particular processes is either done in a static manner, i.e. by

a predefined schedule, or dynamically, i.e. upon request by the processes at runtime. Then,

the access is either exclusive, meaning that no other process can access the resource as long

as it is allocated by its current owner, or preemptive, meaning that the resource manager can

temporarily withdraw the resource and assign it to another process as long as the initial owner’s

operation is not compromised. While preemption is commonly done by saving a resource’s

state before the handover and restoring it afterwards, exclusive resources must be handed over

voluntarily by the processes in a cooperativemanner. The novel DynamicHinting technique

for collaborative resource sharing is introduced in Chapter 6. Finally, we’ll distinguish between

short-term and long-term allocation. While the first means that a process does not suspend

itself while holding the resource, the latter permits self-suspension. The distinction will become

relevant when dealing with priority inversion and deadlocks (→ Section 6.3.1).

The operating system as scheduler. TheCPU takes a special role among the resources since

it executes not only the application processes but also the operating system itself. According to

our classification it is a shared resource. It is temporally shared if it provides just a single core,

and even the support for preemptive processes yields no truly parallel execution then; kernel

and processes have to alternate and interleave appropriately. In case of several cores, spatial

sharing allows for true parallelism of processes and the kernel7. In spite of rapidly advancing

research in the field of multi-core processors [222, 287], we’ll focus on single core architectures

and simply denote these as CPU or processor. The reason is their still persisting dominance in

the field of embedded systems and sensor networks in particular. Besides, the demand for low

7Note, that each core is again temporally shared, and that the kernel may even use a dedicated core.
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costs despite the large node quantity and energy efficiency for a long runtime, this decision is

also encouraged by their generally lower complexity and smaller size (→ Section 2.1). Finally,

when used efficiently, even sensor nodes with simple MCUs are sufficient for most current

applications.

Apart from a solid software design, this very efficiency is largely the responsibility of the

operating system and its applied strategy for interleaving processes on the CPU – the so called

scheduling. The scheduler is a central part of the kernel, and ensures its own execution and

the execution of the processes. Just like the selection of the application code to execute, the

amount of CPU time which is provided for each process depends on the process set and on

external events. In this concern, the interaction with the environment introduces significant

dynamics, sincemany events have to be treated sporadically, and at unpredictable points in time.

If reactions have to take place within a certain deadline, the sudden competition for resources

(including the CPU) can lead to impairments of the desired temporal behavior. Depending on

the operating system philosophy several approaches are available for this problem. While some

ignore the problem entirely, others are optimized for fairness, or focus on real-time capability

and fast response times. Many rely on prioritized processes, and also support the withdrawal

of preemptive resources for the benefit of higher priority processes. Here, the CPU is treated

significantly different from all other resources. While the latter must be allocated explicitly prior

to use8, the CPU is always implicitly made available – maybe due to a previously defined trigger.

If no application process is ready to be executed, a special idle process is commonly selected.

3.3. Operating Systems for Embedded Systems and

Sensor/Actuator Networks

Operating systems for WSAN and embedded systems differ significantly from conventional

operating systems for desktops and servers: While desktop operating systems aim on large

application diversity, multimedia, and convenient user interaction via graphical interfaces,

server operating systems focus on high availability, security, and throughput for queries and

data transfers. Both operate in direct contact and under maintaining surveillance of humans to

detect and fix failures as these appear. In contrast, embedded operating systems operate without

permanent human inspection. At the same time they often drive a ubiquitous technology which

affects our daily life even in the most critical situations. Just like the underlying hardware, they

are also characterized by resource-aware andmaintenance-free operation along with specific

(and sometimes verifiable or provable) guarantees for their correctness, reliability, failure-safety,

reactivity, and real-time capabilities. As a subset, networked embedded operating systems, e.g.

for the WSAN domain, face a specific problem: They have to coordinate the cooperation of

initially independent, loosely coupled, and autonomously running node systems, and thus need

to synchronize their common objectives via more or less reliable links to achieve pervasiveness.

Additionally, they need to integrate several software subsystems to reduce the costs and effort

for deploying andmaintaining service specific hardware and infrastructures.

8Though this might not be visible within the application code: For example stack memory modifications for the

declaration of local variables are commonly handled directly in the instruction set.
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Figure 3.3.: Selected classification features of operating systems kernels for embedded systems and

wireless sensor/actuator networks (SmartOS characteristics are highlighted).

Ultimately, the most demanding challenge when designing a (networked) embedded op-

erating system for sensor nodes is to reliably cope with severe resource constraints 9 for the

composition of concurrent software subsystems, and the operation within dynamic environ-

ments (under unreliable communication and information exchange).

3.3.1. The Kernel Classification Framework

To comprehensively understand the complexity of hardware and software systems, and to

compare various operating system kernels in the context of wireless sensor/actuator networks,

we’ll first introduce an appropriate classification framework for the most central kernel features.

Therefore, we focus on the reference architecture from Figure 3.1, but limit ourselves to some

selected characteristics from Figure 3.3. Similar, though significantly coarser or more network-

related classifications can also be found in [237, 275, 301, 314].

Kernel architecture and hardware abstraction constitute the basic operating system struc-

ture and philosophy:

Exokernels like Nemesis [294] strictly separate the protection of kernel-irrelevant resources

from their management [94]. In particular, the resource-related coordination of concurrent

processes is not supported by the kernel. While the latter provides only the resource allocation

mechanisms, their operation and sharing is entirely managed at higher layers. Since the kernel

9e.g. CPU performance, memory, peripherals, energy, . . .
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consequently offers no resource-specific hardware abstraction (apart from the CPUmanage-

ment), this must also be accomplished by the application. As a benefit, this reduces inter-layer

communication and makes even untrusted applications as powerful and efficient as the ker-

nel itself. An even more strict variation of this concept are nanokernels like the Nano-kernel

[17]. These outsource even the most basic functions, such as the timer control, to the applica-

tion. In contrast, another less integrative variation are resource kernels [238] like Nano-RK [95]:

Though these also separate resource protection frommanagement, they commonly guarantee

the allocation of requested resources within defined time limits.

Microkernels like SOS [120] directly incorporate abstractions for several hardware components,

and provide related services to the higher layers. This includes scheduling and synchronization

primitives like inter-process-communication (IPC) and resource sharing. Other features range

from time and dynamic memory management to inter-system communication.

Monolithic kernels provide a complete hardware abstraction, or even execute all device drivers

in kernel mode. In the WSAN domain such approaches are rarely used, since their complexity is

often too demanding for low performance microcontrollers.

Process organization, execution model, scheduling, and memory management form

the basis for the application design:

The process organization defines whether the application code is implemented as either

a single state machine with externally triggered transitions, as a set of handlers which will

be executed on-demand to react on external and peripheral events, or as a set of concurrent

processes or threads which coordinate their execution by synchronization primitives. Since we

consider strictly handler-based operation or even single-loop approaches as not satisfying for

reactive platforms, we prefer individual tasks for each logical job, and put them together for the

final application as depicted in Figure 3.4.

For concurrency handling, we distinguish between preemption, meaning that the scheduler

may switch between processes at any time, cooperation, meaning that each processmust release

the CPU voluntarily, and run-to-completion, meaning that a process can neither be preempted

nor preempt itself but runs until it terminates. For the presented options, the processes may

either share a single stack area or possess their individual stack area each. The data memory can

either be provided dynamically at runtime or assigned statically at compile or linking time.

The execution model is separated into periodic code execution (time triggered), which is

most commonly scheduled and tested for feasibility at development time, and sporadic code

execution (event-driven), where events trigger the execution. Event-driven programming is very

popular for small embedded systems. It does not only save energy by limiting code execution

to the event occurrence, but also gives the impression of compositional designs by supporting

several simultaneously active event handlers (functions or processes) for distinct reactions.

Handler functions are commonly atomic10 and consequently profit from several advantages:

Besides the option to save memory by sharing a single stack, the concurrent access on exclusive

resources is precluded – at least if these return to a consistent state at the end of the handler –,

and switching between handlers is rather simple since contexts need not be saved. Nevertheless,

10In some systems, special privileged parts of the kernel may still interleave the handler executions.
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Main Function
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}
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while (1) {

someCode();

}

}

1x

8

(b) concurrent processes

Figure 3.4.: Comparison of process organization and implementation approaches

this method also imposes some drawbacks: If handlers are completely stateless, resources

cannot remain allocated throughout several calls, and local variables must be saved globally to

make the information persistent. Finally, the handlers must be serialized in an appropriate way:

If their executions would overlap, unpredictable delays might occur. The last issue is addressed

by the scheduling policy. Time driven [144] systems operate with respect to a schedule, priority-

based systems account for specific priorities, and share driven systems provide a certain fraction

of CPU time for each process and resource. Of course, the schedules, priorities, and fractions

can be selected both statically (fixed) and dynamically (on-line), and combined with queues for

serialization.

Time, reactivity, process synchronization, and interrupt handling are of central impor-

tance for time-critical systems:

Time-awareness is a crucial point when interacting with physical systems. While many appli-

cations need no explicit notion of time, but are simply required to execute “as fast as possible”

on the particular hardware or possibly seek to meet certain timing constraints through careful

implementation, others rely on time as inherent metric for handling system dynamics. These

may even require some kind of temporal semantics for the specification of delays, deadlines and

response or execution times, for the taking of timestamps, and for the scheduling of reactions.

Therefore, real-time kernels commonly provide a system-wide local time which then yields

a significantly higher precision than implementing a comparable service at higher layers (→
Section 5.3). For networked systems in particular, this may even be extended to inter-system syn-

chronization and the provisioning of a network-wide global time for the consistent attribution

of events and gathered information (→ Chapter 5). Considering the system reactivity on external

and internal events, the temporal precision plays an important role. While best effort solutions

need not care about time but react as soon as possible (ASAP), deterministic approaches can

specify a precise interval for the delay. This is relevant for the design of hard/soft real-time

systems where time frames must/should be met in order to assure a correct operation.

Besides the pure notion of time, accurately timed reactions can also depend on the exclusive

access to shared code and resources, as well as on the proper cooperation of all involved

processes: The process synchronization can be managed by the kernel by providing well-known
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primitives like critical sections11, mutexes, semaphores, andmonitors [276]. Combining these

with priority-based scheduling enables task collaboration as a novel concept for improved

reactivity (→ Chapter 6).

While inter-process communication becomes feasible through event and messaging passing

(e.g. pipes, publish/subscribe patterns, shared memory, etc.), external events are signaled

through interrupts. These can either be processed by a centralized handler within the kernel,

which operates the IRQ controller as a fixed resource and demultiplexes the incoming events by

triggering the corresponding processes, or by specific handlers provided by the application.

Further characterizations may refer to energy management [169], error handling and self-

diagnostics, verifiability and simulation, inter-system communication, portability, etc. However,

these are out of scope for this work, and won’t be addressed here. Remote systemmaintenance

and software update strategies will be addressed in Section 8.2.

3.3.2. Related Work and State of the Art

Before we start over with SmartOS, we take a closer look at some existing embedded operating

systems. Due to their enormous number, we limit our survey to the most popular ones in the

sensor networking domain, and to those which support similar features than SmartOS: These

comprise e.g. preemptive multitasking, extended timing capabilities, and dynamic resource

management. Though a sharp classification according to our framework is hard because of very

specific techniques and hybrid characteristics, a comparative overview of SmartOS and some

other relevant operating systems can also be found in Table 3.1.

TinyOS [128, 129, 174, 175, 291]. Developed since 1999 TinyOS was the first operating system

designed for the special demands of wireless sensor networks. Its central architecture supports a

component based system design with each component being a computational entity comprising

tasks for the actual computation, commands for triggering non-blocking operations, and events

for signaling their completion. Applications are typically developed in nesC [109], a C-like

language with some restrictions to the C standard on the one hand, and some extensions for

component interactions on the other hand. The source code is finally compiled and linked into

a static binary for direct or remote deployment. Though runtime modifications are rather hard

to accomplish, some approaches are described in [215] and [197].

Three execution classes are supported for application code: asynchronous interrupts, syn-

chronous tasks and preemptive TOSThreads. For the tasks, TinyOS uses an event based FIFO

scheduling with run-to-completion (RTC) semantics. In fact tasks can be posted, i.e. appended

to a queue of tasks waiting for execution, and, once started, run until their self-termination. This

simplifies the implementation of the dispatcher, and also allows the use of a single shared stack

for all tasks. Tasks contain synchronous code and can only be interleaved by asynchronous code

(which is triggered externally) to post tasks for event handling; the handling delay, however, is

11While a critical section can only be executed by at most one task at a time but may be interrupted or interleaved by

interrupt handlers or other tasks, an atomic section cannot be interrupted at all.
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unknown and depends on the current queue state. This is exactly why TinyOS is hardly suitable

for time-critical software [52], but needs severe application design efforts to achieve acceptable

reactivity and fair task interleaving. An option is to apply the so called split-phase design: Long

running computations must be split manually into smaller tasks for subsequent execution, to

manually avoid missing deadlines or events such as incoming radio packets. Additionally, tasks

can be enqueued only once at a time, which makes the maximum queue length known at com-

pile time, but reduces flexibility, and complicates scheduling predictions. Though the scheduler

is a component and can be replaced since TinyOS 2.x, only few alternatives exist. A proof of

concept for EDF scheduling is proposed in TEP10612, and preemptive scheduling is addressed

in e.g. [83]13. Since TinyOS 2.1, so called TOSThreads [158] allow cooperative multi-threading,

but are simply put on top of the initial task model to stay backward compatible. TOSThreads

use dedicated stacks, and can be preempted by each other and by ordinary tasks. As long as no

such task is executed, a round robin scheduler with fixed time slices (default: 5ms) alternates

their execution. Apart from the missing resource allocation and sharing primitives, this hier-

archy does not necessarily improve the system reactivity, but mainly reduces the splitting of

computationally complex operations. To keep the kernel atomic all syscalls from within threads

will post a special task which in turn will preempt the thread, execute the syscall, and return to

sleep to continue the thread. This is done to ensure that only the kernel thread (which is a novel

encapsulation compared to standard TinyOS) will execute kernel code.

Other features like dynamic memory or time-awareness are not supported within the kernel,

but must be added at component layer when required. A comparison of TinyOS and SmartOS

regarding their performance and reactivity under various conditions can be found in [52]14.

Contiki [85–87]. Initially developed in 2002 for the Commodore C64 Contiki is nowadays

known as operating system for small embedded devices. Its design allows the modification of

application code by runtime replacements, and the loading and unloading of modules. New

code will be linked dynamically for native execution without any VM-like approach.

The kernel offers a lightweight scheduler for synchronous and asynchronous events, which,

once triggered, will run-to-completion. In turn, these events trigger the execution of process

code on a common shared stack. Processes can be considered as either applications or services,

and include event handlers and poll handlers. While synchronous events will trigger the target

process and preempt the invoking process immediately, asynchronous events will be enqueued

and processed once the target process is scheduled anyway. Between asynchronous events,

the kernel calls all registered poll handlers to e.g. support polling based software. Since events

can be interleaved by interrupts (which are never disabled for the potential option to support

real-time demands), these cannot trigger events15, but may set flags to cause the immediate

call of a polling handler right after the ISR. Interprocess communication is provided by the

kernel through event posting. A special Contiki feature is its protothreads. These voluntarily

12TinyOS Enhancement Proposal 106: http://www.tinyos.net/tinyos-2.x/doc/html/tep106.html
13Early advances in adding concurrency to TinyOS applications can also be found in TinyMOS [288], which tries to

execute TinyOS within preemptive Mantis OS threads.
14Diploma thesis conducted in conjunction with this work.
15This is forbidden to avoid race conditions among handlers.
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allow cooperative context switching by means of special yield directives (yield, wait) within

the program code. Since these directives are visible to the developer, it becomes directly obvious

if a certain resource needs to be locked explicitly across their call. Since the so called stack

rewinding clears the stack at each yield directive, protothreads can easily share a common

stack and do not need to save register contents; consequently do also not retain their states

and local variables automatically16. Internally, the corresponding dispatcher makes use of a C

switch statement, which, depending on the protothread’s state variable, jumps to strategically

placed case targets. These are injected after each yield point and render the storage of the

program counter unnecessary. The scheduling of protothreads must finally be managed by the

application software itself. In addition to processes and protothreads, a library for preemptive

multi-threading is available for the event-driven kernel. While the first share a common stack

region, threads require separate stacks andmore sophisticated synchronization primitives.

Other features like dynamic memory are also supported by Contiki. However, it offers no

inherent resource management, time-awareness, or temporal semantics.

Mantis [2, 46]. First published in 2003, the Mantis (MultimodAl NeTworks of In-situ Sensors)

operating system was designed as a preemptive multi-threading kernel for improved real-time

capabilities – at least in comparison to event-driven systems with run-to-completion semantics.

Mantis supports five priority levels, and schedules fixed-priority threads according to the round

robin policy (10ms time slices) within each level. The timing is driven by clock interrupts,

which are handled by the kernel and also allow the maintenance of a 32 bit timeline17. The

temporal semantics is limited to the specification of sleep times, i.e. the limited self-suspensions

of threads. For fast reaction on external events, other interrupts are handled by device drivers

and trigger the execution of waiting threads by setting them to ready state. For its execution

each thread uses an individual stack, which is dynamically allocated from the system heap upon

thread loading. Though mutexes and semaphores are supported for thread synchronization,

neither primitive considers priorities for coordinating pending requests.

SOS [64, 120]. Presented in 2005 the Simple Operating System pursues a module based

strategy for simple software updates at runtime. The kernel provides components for dynamic

memory management, message scheduling, and dynamic linking.

Modules implement handlers and functions for interactions. Functions can be called directly

and are executed instantly (synchronous processing). Handlers, also denoted as tasks, are

triggered by messages from interrupts or other tasks, enqueued into (three) priority queues,

and finally called by the scheduler (asynchronous processing). Since handlers are scheduled

cooperatively, they must release the CPU voluntarily, and consequently induce the potential

problem of starving other handlers. Incorrect or unfair module operation is generally neither

detectable nor avoidable since, apart from critical sections, no synchronization primitives exist.

Considering time-awareness, a simple local time is maintained but no temporal semantics exists

for task operations.

16The same is true for thread-blocking calls, which may switch the context.
17With a resolution of 1ms an overflow occurs after 232 ms ≈ 50 days.
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SenSmart [69]. Under development since 2009, SenSmart combines a kernel runtime with

binary translation to achieve preemptive multitasking for arbitrarily assembled tasks. Therefore,

the task binaries – wherever these originate from, and whatever system software they might

contain – are prepared on a so called base station: First, modifications to kernel relevant

resources are caught by so called “trampoline functions” and emulated specifically. Second,

scheduling does not rely on a system timer but is done by modifying branch instructions

to invoke the kernel after each 256th branch. This so called “interrupt free preemption” is

comparable to the t-Kernel [116, 117]: The scheduler applies a round robin scheme, and counts

ticks of one of the MCU’s system timers to preempt the running task after its time slice is

over. Third, memory access instructions are replaced by jumps to the memory manager, which

supports logical address translation, memory protection and isolation, as well as on-demand

stack relocation to reduce external fragmentation while increasing stack versatility.

Though SenSmart provides advanced memory sharing concepts, it lacks time-awareness

and temporal semantics for its tasks. Real-time concepts, especially for the composition of

complex systems, are also missing. In particular, it offers no synchronization primitives or

inter-task-communication, but executes all tasks completely independent from each other.

Nano-RK [95]. Released in 2005, the Nano Resource Kernel supports fixed-priority preemp-

tive multitasking where higher priority tasks may immediately suspend lower priority tasks.

Apart from critical sections, inter-task-communication is provided via 32 signals or events. Yet,

special focus is given to the resource reservation concept, which assigns resources according to

(energy related) budgets and allocation counts as defined at development time: The associated

semaphores support the priority ceiling protocol emulation (PCPE), and consequently prevent

deadlocks (→ Section 6.3.1). For the CPU resource, each task defines its requirements, and is

suspended immediately if it exceeds its budget. Similar to SmartOS, where a task T can query

the remaining time until a higher priority task would miss its deadline if itself (T ) would not

release a specific resource, Nano-RK tasks may query their remaining budget for self-adaptation.

To reflect the timing demands of periodic sensor tasks, rate monotonic scheduling is also sup-

ported, and time-awareness is available through both a local time (1ms resolution) and the

temporally limited waiting for signals.

Other operating systems. Besides the just mentioned representatives, a multitude of further

embedded operating system architectures for mote class devices is available. We won’t discuss

them in detail, but refer to additional overviews which can be found in e.g. [89, 98, 240]. Where

reasonable, specific details might yet be considered throughout later chapters.

3.3.3. Open Problems and SmartOS

As already requested in Section 1.2, time-awareness and compositional software design will be

required for complex sensor/actuator systems under time-critical conditions. Thus, temporal

semantics, priority-based scheduling, and sophisticated resource management should be com-

bined for improved system reliability. Another problem is the dynamic handling of sporadic

software failures or system imponderabilities through appropriate programming concepts, like

e.g. exception handling. These issues will be addressed throughout the next chapter.
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Name SmartOS TinyOS Contiki MantisOS

References [36] [128, 129, 174, 175, 291] [85–87] [2, 46]

Project active Yes Yes Yes No

App. Lang. C nesC [109] C C

Kernel Arch. exo / micro monolithic exo micro

Res. Handling coord. HAL - protection

Process Org. tasks tasks6 handlers7 threads

Concurrency preemptive RTC cooperative preemptive

Stack Memory individual shared shared individual

Data Memory static3 static3 dynamic static4

Exec. Model time/ev. driven ev. driven ev. driven time/ev. driven

Scheduling1 prio (FCFS/RR) queue (FIFO) queue prio (RR)

Time-Awareness2 local (1us) - local local (1ms)

Temp. Semantics sleep, DL, TS - - sleep

Reactivity BE / RT BE BE BE

Process Sync. mutex, sema.9 mutex sema. mutex, sema.

IPC events - events, mess. events

IRQ Handling central / app8 app app app

Name SOS SenSmart Nano-RK

References [64, 120] [69] [95]

Project active No Yes Yes

App. Lang. C any C

Kernel Arch. micro exo exo

Res. Handling - coord. for memory coord.

Process Org. handlers tasks tasks

Concurrency cooperative preemptive preemptive

Stack Memory shared individual individual

Data Memory dynamic static5 static

Exec. Model ev. driven - time/ev. driven

Scheduling1 prio (3 FIFO queues) queue (RR) prio (RMS)

Time-Awareness2 local - local (1ms)

Temp. Semantics - - sleep, DL for signals

Reactivity BE BE BE

Process Sync. CS - CS, sema.10

IPC mess. - events (32)

IRQ Handling central central central

1 the policy for queues and tasks with equal priorities is given in brackets
2 resolution in brackets
3 dynamic memory through libraries
4 dynamic memory for the kernel only
5 dynamic memory for stack placement only
6 threads with individual stacks, cooperative concurrency, and round robin scheduling as

library
7 threads with individual stacks are available as library
8 centralized acceptance, handling at application layer
9 supported by PIP / PCP
10 supported by PCPE

Table 3.1.: Comparison of WSAN operating system kernels (refers to Figure 3.3[p39])
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real-time Operating System

Abstract

This chapter introduces SmartOS, the Smallmodular adept real-timeOper-

ating System for sensor/actuator nodes.

Though several operating systems for sensor nodes are already available, our

vision of an OS for such embedded real-time systems demanded for both

inherent time-awareness to support reactive operation within highly dynamic

environments, and sophisticated resource management to facilitate modular

application design. Hence, we present a kernel to provide priority-based

scheduling for fully preemptive tasks, integrated temporal semantics and

highly precise time management. A unified interrupt and event handling

concept, as well as dynamic resource management with support for modified

priority inheritance protocols and on-demand task collaboration introduce

an entirely novel programming paradigm into SANet software design. The

support for exception-like failure handling completes the functionality.

Apart from presenting the basic concepts, some implementation details, and

software examples, this chapter also provides the basis for the subsequent

discussion of time-awareness (→ Chapter 5), dynamic resource management

(→ Chapter 6), and dynamic memory management (→ Chapter 7) in particu-

lar. A complex real-world application based on SmartOS is presented in Part

III of this work.
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4.1. Introduction

SmartOS was developed for research and education

in the area of time-critical embedded systems. Its refer-

ence implementation, to which we will refer through-

out this and subsequent chapters, supports Texas In-

strument’s MSP430 [279] family of 16 Bit microcontrollers as found on the SNoW5 sensor node

described in Section 2.2. Additional ports are available for Atmel’s ATmega128 8 Bit and Renesas’

SuperH SH-2A 32 Bit architectures. Applications and their modules are typically developed in

plain C, and linked together for creating monolithic binaries. All SmartOS-related examples

and test benches within this work refer to code and binaries created using the GNU mspgcc

toolchain1 (version 3.2.3), and were executed on SNoW5 sensor nodes (version 1.2+) with TI

MSP430F1611 MCUs [280].

The main focus of SmartOS [36] lies on compositional software design through sophisticated

time and resource management. While its specific characteristics were already summarized

and highlighted in Figures 3.2[p37] and 3.3[p39], the benefits for embedded applications become

visible, inter alia, within various test benches, and especially when discussing the design of the

wireless communication MAC protocol SmartNet in Section 8.1, and the indoor localization

system SNoW Bat in Part III of this work.

4.2. Philosophy and Classification

Regarding the classification framework from Section 3.3.1, SmartOS features a hybrid exo/micro

kernel architecture and incorporates several advantages of both classes. While it supports

arbitrary resource allocation (exo), it provides native abstractions only for a small set of system

components (micro): Organized as a system of concurrently running tasks with individual

stack areas, the preemptive scheduler supports dynamic user priorities in combination with

synchronization primitives like mutexes to protect code sequences from interleaved execution

by several tasks, and semaphores to coordinate the dynamic access to temporally shared but

exclusive resources. The resource manager supports physical as well as virtual resources under

both long-term and short-term allocation. It does not only assign them for exclusive allocation2,

but also coordinates pending allocation requests with respect to each involved task’s priority.

Therefore, it employs modified priority inheritance protocols (PIP and PCP) for collaborative

resource sharing (→ Chapter 6). Inter-task-communication and environmental interaction is

provided via events which can be invoked by tasks and interrupt handlers. While interrupt

acceptance is always centralized, their actual handling is done at application layer.

Time-awareness is an inherent design concept in SmartOS. Apart from a local system time

and highly precise IRQ timestamping (→ Section 5.3), a temporal semantic forwards the notion

of time to the application tasks, and provides non-blocking versions of all kernel functions which

1The GCC toolchain for the Texas Instruments MSP430 MCUs [292]: http://mspgcc.sourceforge.net
2Protection is not supported due to missing hardware support on the considered microcontrollers.
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Demands:

Problems:

Challenges:

Solutions:

handling of
sporadic/periodic events

code interleaving
(dep. on event relevance)

information management
(task sync./comm.)

compliance with (hard/soft)
timing constraints

fast response times
(dep. on job relevance)

resource management
(allocation/assignment)

modular software
design

code composition
(dep. on application)

online time management
(temporal semantics)

preemptive, prioritized tasks

events/mutexes resource concept timing / IRQ concept

Figure 4.1.: From demands to solutions: The central concepts of the SmartOS philosophy

might not complete immediately: Sleeping is equally supported as the specification of deadlines

for events and resource requests.

While each system’s reactivity initially relies on best effort and always respects task priorities,

additional real-time demands can be satisfied by limiting the worst case allocation time of

resources via DynamicHinting. In summary, preemptive scheduling allows to combine the se-

mantics of time and events to simultaneously support time triggered and event-driven execution

models for both periodic and sporadic tasks. Another novel concept in the domain of SANet

operating systems is task-specific exception handling capability for reacting on unforeseeable

system conditions. Finally, though provided as a library on top of the collaboration concept,

CoMem allows dynamic heap memory management for the collaboratively coordinated sharing

of the typically sparse memory resource onmost motes (→ Chapter 7).

4.3. Kernel Architecture and Central Concepts

In Chapter 3.1 we already demanded for a uniform hardware abstraction through the operating

system. Besides a platform-independent philosophy, this also includes a constant set of kernel

components and consistent signatures for all kernel functions, the so called kernel API (Applica-

tion Programming Interface)3. In general, SmartOS is constructed according to the reference

architecture from Figure 3.1[p34]. While it shares the CPU with the tasks, the (exo)kernel requires

exclusive access to just one hardware timer and the IRQ controller – the allocation of these two

resources is fixed throughout the entire system runtime. In this section, we’ll introduce the seven

central concepts of the SmartOS (micro-)kernel: tasks, time, mutexes, events, resources, IRQ

management, and exception handling. Figure 4.1 summarizes the initial demands, the resulting

problems, the self-induced challenges which arise from our decision to support preemptive and

prioritized tasks, and our corresponding solutions for the development of reactive embedded

applications. For a comprehensive understanding, we’ll also present some code examples. How-

3By this, the application code has always the same view of the system, and both its development and porting should

be simplified (at least in theory). For the same reason, libraries and drivers (which access software and hardware

components, and most commonly require manual adaptation for each port), should also provide a uniform API.
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ever, since the identifiers and function names therein should be self-explaining, we won’t go

into detail about each individual line, but refer to the complete API reference of kernel functions

and data types in Appendix A.

4.3.1. Basic Terminology

Before dealing with the central concepts of the SmartOS kernel architecture, we’ll first introduce

the most basic terminology:

Control block, OS object. The term control block denotes the data structure for storing the

management and state information of an OS object. OS objects comprise tasks, resources,

events, mutexes, and IRQ handlers. An overview can be found in Appendix A.

Context, priority, context switch, scheduler, dispatcher. The term context denotes the en-

vironment in which a task is executed. It comprises its task state, specific register contents,

stack memory, and various management information like priorities. Priorities are task-

specific numeric values between 0 (lowest) and 255 (highest), which indicate a task’s

relevance in relation to others. If a task’s execution is interleaved with another one this

is called a context switch. While the scheduler selects the task to be executed next, the

context switch itself is conducted by the dispatcher.

Syscall, syscall wrapper, invoking task. The term syscall denotes an atomic kernel function,

which is executed in kernel mode, and finally ends up by calling the scheduler. Since

syscalls must not be called from within task context, switching to the kernel mode is done

by so called syscall wrappers (→ Figure A.2[p327]). A task which triggered the execution of a

syscall is called invoking task.

4.3.2. Process Organization: Tasks

Tasks represent the most basic logical unit of any SmartOS-based application. While operations

within each task are executed in sequential order, tasks are always preemptive, and can be

interleaved for quasi-parallel execution4. Atomic sections are not supported. Although SmartOS

supports an arbitrary number of tasks5, the set T of tasks is fixed after linking6. Each task

contains a never returning entry function, and executes its job as an infinitely looped code

sequence. During its declaration, each application task t ∈ T receives a unique identifier, a fixed

stack size, and an initial base priority Pt between 2 and 254. While the base priority may be

changed at runtime by application code, the stack is fixed and must be dimensioned properly at

development time. A source code profiler is available to compute an upper bound for a task’s

stack requirement at compile time [154]7. An example task and the systemmain function which

4Truly parallel execution cannot be supported unless more than one CPU or core is available.
5Yet, limitations arise from the data type for the task ID within the task control block (→ Appendix A).
6The reason is, that for higher performance through pointer arithmetic, the linker places the task control blocks

successively aligned in the data memory (→ Figure A.1[p324]): Of course, some free slots could be reserved, or used

slots could be replaced to gain more dynamics.
7Diploma thesis conducted as part of this work: Since such analysis is a hard problem, and sometimes even

unfeasible, adequate annotations within specially prepared C comments can be added to the code to refine the

estimation. For example the use of recursive functions can rapidly lead to the demand for an infinite stack size.

Providing the maximum recursion depth by manual annotation can solve this problem.
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OS_MAIN {

os_run (); // Init system

// and OS objects.

// os_run () starts

// the scheduler

// and will never

// return.

}

(a) The SmartOS main() function.

OS_DECLARE_EVENT(evButton );

OS_DECLARE_IRQ_HANDLER(

OS_IRQ_PIN10 , setEvent , &evButton );

OS_DECLARE_TASK(tDP , 50, 128);

OS_TASKENTRY(tDP) {

initIRQPin(OS_IRQ_PIN10 );

while (1) {

clearEvent (& evButton ); // ignore button

// during reaction

waitEvent (& evButton );

react (); // any code

}

}

(b) Example task for IRQ handling under SmartOS

stack size base priority

Listing 4.1: SmartOS main() function and interrupt handling example

initializes all OS objects before starting the scheduler is shown in Listing 4.1.

From the kernel perspective, tasks are initially independent from each other, but may develop

dynamic dependencies at runtime (e.g. through resource sharing or inter-task-communication).

As we will see in Chapter 6, the resource manager therefore also maintains a dynamic active

priority p(t) for each task t ∈ T with respect to its current resource dependencies, and conse-

quently the priority-based scheduler always considers the active priorities8. Basically, tasks

transit between three task states: running,waiting, and ready, with ready being the initial state

(→ Figure 6.4[p103]). As Figure 4.2 shows, the kernel maintains a system-wide timeout queue for

tasks waiting for deadlines, and specific event queues for tasks waiting for the very event. Ready

tasks are kept in the system-wide ready queue, with the head being the current running task.

While the ready and event queues are sorted by decreasing priorities to serve higher priority

tasks first, the timeout queue is sorted by increasing absolute deadlines to simplify the timer

configuration for the resumption of waiting tasks as described in Section 4.3.4.

Apart from regular application tasks, SmartOS schedules an architecture-specific system idle

task if no other task is ready. Thus, it has lowest priority (0), will never transit to waiting state,

and does not incur dependencies to other tasks. It is used for the most elementary energy

management, and controls the architecture-specific low power modes as long as they do not

affect the application flow9. For each application, one specific user idle task (with base priority

1) can be implemented for more sophisticated energy savings and housekeeping actions in

relation to the current system state; if it fails or enters waiting state, the system idle task is still

available as fallback.

8If no resource-related priority adaptation is required, the active priority equals base priority (i.e. p(t) = Pt )

throughout the entire system runtime.
9As already shown in Table 2.2[p27], the idle task for the MSP430 architecture will simply switch off the CPU (LPM1)

but leaves all other peripherals untouched (especially the system timer).
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priority

...

id = 2

next = 4
next_timeout

priority priority priority

... ... ...

id = 3 id = 4 id = 5

next next = 5 next
next_timeout = 2 next_timeout = 3 next_timeout

event queue timeout queue

priority

...

id = 6

next = 0
next_timeout

priority

...

id = 0

next
next_timeout

priority

...

id = 7

next = 6
next_timeout

(for event e)

(awaits event e
with deadline)

(awaits event e
with deadline)

(awaits event e
without deadline)

(sleeping, not part of
any priority queue)

(ready) (ready) (running)

(system wide)

now

deadline order:

timeout queues
(sorted by increasing timeout)

priority queues
(sorted by decreasing task priority) tail of queue

head of queue

ready queue
(system wide)

running task

Figure 4.2.: Example for priority and timeout queues in SmartOS

4.3.3. Operation Modes and Syscall Handing

Since SmartOS shares the CPU with the tasks it manages, and thus has to protect its internal

data structures from simultaneous access by concurrently running tasks and asynchronous IRQ

handlers, it distinguishes between two operation modes: task mode and kernel mode. Tasks

are executed in task mode where specific stacks are used and interrupts are always enabled. In

contrast, all interrupt service routines – the so called kernel ISRs – as well as the syscalls are

always executed in atomic kernelmodewhere the kernel stack is used and interrupts are disabled.

If further interrupts occur while the kernel mode is active, their acceptance is deferred until

the kernel returned. To yet maintain reactivity in spite of a non-preemptive kernel, SmartOS

executes as little atomic code as possible. However, since all kernel components with potential

write access to internal kernel data structures are encapsulated in either ISRs (timemanagement)

or syscalls (anything else), these are implicitly protected from race conditions. In fact, as Figure

4.5 illustrates, syscalls and interrupts are even comparable regarding their execution flow which

is divided into three parts: While the kernel entry is responsible for stack preparation and context

saving, the kernel body handles the actual request, and the kernel exit contains the scheduler

and the dispatcher for task selection and context switching.

Since handling syscalls is quite tricky, we’ll take a closer look at the underlying concept.

As an example, Listing 4.2b shows the syscall for the CAS (compare and swap) kernel func-
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Object_t *head = NULL; // any list head

void updateHead () {

Object_t *oldHead , *newHead;

do {

oldHead = head; // current head

newHead = ... // new head

} while

(!CAS(( Mutex_t *)head ,

(int)oldHead ,

(int)newHead ));

}

(a) Lock-free modification of a list head

void OS_SYSCALL __syscall_CAS(

Mutex_t *addr ,

int expVal , int newVal) {

if (*addr == expVal) { // success

*addr = newVal;

running_task ->reg_context [12] = 1;

} else { // failure

running_task ->reg_context [12] = 0;

}

}

int CAS(Mutex_t *a, int e, int n) {

return syscall_CAS(a, e, n); }

(b) Atomic CAS emulation through a syscall

Listing 4.2:Mutex usage under SmartOS

tion10. In particular, though CAS(...) is defined to return an integer result, the underlying

__syscall_CAS(...) is defined to be void. The missing adaptation is done by the associated

wrapper syscall_CAS(...) as shown in Figure 4.5: In fact, all syscalls are initially void; since

they are treated like ISRs, and the kernel mode always returns by reti11 instead of ret12, they

cannot return a result as usual. Instead, return values must be passed directly via the invoking

task’s context, i.e. the currently running task as depicted in Listing 4.2b. By writing the result into

the task’s saved context according to the C ABI (Application Binary Interface) for register usage,

the dispatcher will implicitly restore the return values when resuming the task, and the initially

called CAS function will provide the integer result as expected. If a syscall is invoked from within

kernel mode (e.g. by an IRQ handler), it simply returns by an ordinary RET instruction since we

won’t leave the kernel mode then. Return values are passed as described before.

4.3.4. Time Management: The Timeline

Unlikemost available sensor network operating systems (→ Table 3.1), time is an inherent design

concept of the SmartOS kernel, and the central foundation of any application software. The

SmartOS time management maintains a local system time – the so called timeline – with a

standardized resolution of 1µs, and a counter width of 64 bit. Counting starts from 0µs with

the scheduler start, is entirely independent from application code, and overflows after 264µs

≈ 584942 years13. Besides its natural progression, the system time does neither warp in any

direction, nor can it be set directly. However, since it is driven by a periodic timer component of

the underlying hardware, it reflects all clock drifts and frequency instabilities (→ Chapter 5). No

compensation or even synchronization with other systems will be provided by the kernel (but

can be implemented at higher levels).

10While CAS-like functions are useful for implementing lock-free operations of any kind, no native support is available

within the ISA of many MCUs, and we have to emulate an appropriate substitute in software.
11RETurn from Interrupt
12RETurn (from subroutine)
13Which should be sufficient compared the expected lifetime of continuously powered hardware devices.
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// Task stack size: 10W, priority: 128

OS_DECLARE_TASK(tPeriodic , 10, 128);

OS_TASKENTRY(tPeriodic) {

while (1) {

periodicAction (); // any code

sleep (1000000); // relative

}

}

(a) Relative timeout. Start of n-th iteration:

t (n)= t (0)+
∑n
i=1(λ+ǫi )

// Task stack size: 10W, priority: 128

OS_DECLARE_TASK(tPeriodic , 10, 128);

OS_TASKENTRY(tPeriodic) {

Time_t nextTime;

getCurrentTime (& nextTime );

while (1) {

periodicAction (); // any code

nextTime += 1000000;

sleepUntil (& nextTime ); // absolute

}

}

(b) Absolute deadline. Start of n-th iteration:

t (n)= t (0)+
∑n
i=1λ+ǫn

Listing 4.3: Periodic tasks under SmartOS (Period λ = 1 s, task resumption imprecision ǫi for the i -th

resumption)

From an application’s point of view, all time-involving API functions refer to the timeline.

They provide a temporal semantic for the tasks, and forward the notion of time to support

non-blocking versions of all kernel functions which might not complete immediately. The

specification of absolute deadlines or relative timeouts allows the temporally limited waiting

for events and resources (→ Sections 4.3.6 and 4.3.7). Based on this, arbitrary sleeping and

periodic task executions can also be realized. As Figure A.2[p327] depicts for the call hierarchy of

the syscall __syscall_waitEventUntil, sleeping is emulated by infinite waiting for the special

NULL-event, which does not even exist and thus will never occur. Listing 4.3 gives an example

for periodic tasks: Note, that while using relative timeouts results in accumulated errors for the

begin of each iteration, absolute deadlines yield improved period stability.

Additionally, the SmartOS API allows to query the timestamps and relative order of external

events, and, in consequence, both the attribution of collected information and themeasurement

of delays. In this context, the term timestamp denotes the timeline snapshot at the instant of

an IRQ occurrence14. Based on the timeline, the kernel automatically captures a timestamp

tIRQ for each interrupt, and can achieve a symmetric error interval [−1
2
µs, 1

2
µs) around the true

occurrence time t ′
IRQ

15. Though this timestamp will be overwritten by the next interrupt, it stays

valid throughout its corresponding ISR and can be saved for further use. In fact, a timestamp

is never missed, unless the interrupt itself was missed16. While these features are relevant for

sensor systems, the specification of real-time requirements and delays for scheduling time-

dependent (re)actions is indispensable for reactive sensor/actuator systems. In this context,

a self-adaptive technique for scheduling tasks in time and to achieve the precise execution of

reactions is presented in Section 5.4. Additionally, time-utility-functions (TUF) [176] can be

implemented for self-reflective task adaptations as described in Chapter 6.

From the kernel’s point of view, the scheduler relies on the timeline and the timer to resume

14Not IRQ acceptance, though.
15For MCU architectures without hardware supported timestamping (e.g. the TI MSP430), a CPU load-dependent

imprecision may appear if an interrupt occurs while their acceptance is disabled.
16This will not occur as long as interrupts are buffered in hardware. Yet, their processing order might change then.

54



4.3. Kernel Architecture and Central Concepts

waiting tasks in case they have reached their absolute deadlines. As depicted in Figure A.2[p327] the

call hierarchy always maps relative timeouts to absolute deadlines. In contrast, other operating

systems, like SenSmart [69] and the t-Kernel [116, 117], avoid using a timer for triggering the

kernel mode, but extend certain CPU instructions by stepping counters, and activate the kernel

code as a certain threshold is reached (→ Section 3.3.2). Their motivation is that interrupts

might not only get disabled by system-wide dint instructions, but they also cause significant

CPU load while the underlying timer consumes lots of valuable energy. However, the tasks’

temporal specifications will suffer significantly from such approaches since the next kernel

invocation depends on the currently executed code. While real-time operating systems often

sacrifice security for the benefit of reactivity, we also spend some CPU time and energy for

increasing the scheduler precision. In fact, true resource protection cannot be provided anyway

on typical WSANMCUs, unless all memory access instructions are checked either at compile

time or at runtime17. The induced CPU load of ≈0.063% can be neglected, but will nevertheless

be discussed in Section 4.4.3.

Further details about the use of time in digital systems, its integration into SmartOS, and the

highly precise interrupt timestamping will be discussed in Chapter 5.

4.3.5. Interrupts and Interrupt Handlers

As indicated in Section 4.3.3 and Figure 4.5, the acceptance and initial handling of interrupts

is always done by standardized kernel ISRs (one for each interrupt source), but transfered to

application-specific IRQ handlers which will be executed within the kernel body. Listing 5.1[p79]

shows an example. Executing these handlers in kernel mode highlights their independence

from tasks, simplifies task stack dimensioning, and provides them with an even higher (implicit)

priority than any application task. Since disabling interrupts in task context is illegal18, the

kernel ISRs can interleave task executions immediately, and, unless the system already operates

in kernel mode, the IRQ handlers are executed with some constant delay τentry after the interrupt

occurrence. Figures 4.3 and 4.4 show examples with τentry = 15.84µs. Since IRQ handlers are

neither preemptive nor related to tasks, theymust never suspend themselves or invoke functions

which cause or require the ownership of a resource; these cannot be assigned to IRQ handlers19.

The IRQ related kernel API is summarized in Appendix A20.

For most MCU architectures it is common practice to share interrupts among several sources.

This is a problem when developing modular software components independently from each

other, as a common IRQ handler must still be adopted to meet the requirements of all involved

tasks. Therefore, the SmartOS interrupt concept supports soft IRQ handlers for automatic

demultiplexing21. While Figure 4.3 shows the execution of setEvent(...) as IRQ handler,

Figure 4.4 corresponds to the module code from Listing 4.1b where an event is set by using

17Beware of using DMA (direct memory access) controllers as long as their destination addresses cannot be checked

properly!
18Though it cannot be prevented onmost MCU architectures, we assume that tasks will never do so.
19This would not be compatible with the resource management concept from Chapter 6.
20Illegal calls to prohibited functions will be detected and result in a kernel panic (shutdown or reset).
21e.g. for multiplexed port pins, DMA channels, DAC channels, etc.
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Mutexes Events Resources

specific owner task – – ✓
1

access control compare and swap2 wait for event3 request resource3

counting –4 – ✓

arbitrary access order / cascading ✓ ✓ ✓

deadlock proof – – – (PIP) /✓(PCP)

affects task priorities – – via PIP/PCP

access within IRQ handlers read/write test/set test

access within tasks read/write test/set/wait test/release/get

control block data type Mutex_t Event_t Resource_t

RAM requirement 1 W 1W 6W

description in section 4.3.6 4.3.6 4.3.7, 6

1 supports allocation and resource request coordination according to Figure 3.3[p39]

2 non-blocking operation (spinning at application layer)
3 supports task self-suspension for temporally limited waiting
4 counting can be implemented at application layer

Table 4.1.: Comparison betweenmutexes, events, and resources under SmartOS

setEvent(&evButton) as soft IRQ handler for pin P1.0. Demultiplexing the shared port inter-

rupt is done by some other module, which is not discussed within this work.

In general, each void function with exactly one parameter of type int can be registered as

(soft) IRQ handler. This allows to specify the same function for various interrupt sources (e.g.

setEvent(...)), but declare different parameters (e.g. events) for a case specific handling.

4.3.6. Synchronization: Mutexes and Events

Since the SmartOS scheduler supports preemptive task concurrency, appropriate synchroniza-

tion primitives must be supported. A summary is given in Table 4.1:

Mutexes are the most basic approach, and realized through atomic compare and swap (CAS)

functions for non-blocking access to integer variables or pointers of architecture word width.

Since Mutexes have no owner tasks, full access is also granted for IRQ handlers. While Listing

4.2a shows an example for the lock-free modification of a list head, we’ll also find the underlying

idea applied in the context of dynamic memory allocation in Section 7.4.2.

Events provide a more sophisticated synchronization mechanism, which can be used for

inter-task-communication (ITC) and the reaction on interrupts (→ Listing 4.1b). In comparison

to mutexes, events support only two states for non-counting operation: set and unset. While

changing or querying the state is non-blocking and may be done at any time from within tasks

or IRQ handlers, only tasks may suspend themselves to wait for the occurrence of an event. The

example in Listing 4.4 demonstrates their use for the producer/consumer design pattern. As

already described in Section 4.3.2 and Figure 4.2, the kernel maintains an individual event queue

for waiting tasks. According to the API’s temporal semantic, waiting can either be limited by

putting the task into the timeout queue, or suspend a task forever (→ Figure A.2[p327]). If an event

is set by a task or IRQ handler, it either causes the task with highest priority within the specific

event queue to leave waiting state, or it remains set for later consumption or explicit clearing.
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OS_DECLARE_EVENT(evFull ); // unset

OS_DECLARE_TASK(tProd , 50, 128);

OS_TASKENTRY(tProd) {

while (1) {

waitEvent (& evEmpty );

fillBuffer (); // any code

setEvent (& evFull );

}

}

(a) Producer and initially unset full indicator

OS_DECLARE_ACTIVE_EVENT(evEmpty ); //set

OS_DECLARE_TASK(tCons , 50, 128);

OS_TASKENTRY(tCons) {

while (1) {

waitEvent (& evFull );

processBuffer (); // any code

setEvent (& evEmpty );

}

}

(b) Consumer and initially set empty indicator

Listing 4.4: The producer/consumer problem in SmartOS: Buffer handling

4.3.7. Hardware Abstraction: Resources and Resource Chains

Resources coordinate the access of tasks to physical hardware components, like peripherals or

buses, and to virtual abstract entities, like data structures or application code. According to the

classification framework from Figure 3.2[p37], SmartOS supports the dynamic management of

temporally shared resources under both long-term and short-term allocation. While the CPU

and the tasks remain preemptive in general, all other resources are always assigned exclusively.

Recall, that (apart from the CPU, one timer and the IRQ controller) SmartOS has no notion about

the components or entities it manages. In particular, it offers no resource protection. Instead, it

only coordinates the access, and leaves their operation for application code at higher layers.

Comparable to waiting for events, tasks may suspend themselves to wait for a currently un-

available resource. In fact, the corresponding Resource_t control blocks contain one Event_t

OS object each, to count the number of allocations by the current owner task22 and tomaintain a

priority queue of concurrently persisting requests by other tasks. While this implicitly serializes

tasks regarding their allocation requests, the proper use of the corresponding operational units

is the responsibility of the application developers. Though SmartOS offers some assistance, the

kernel will neither detect nor block illegal access attempts to not properly allocated units. In

particular, it will never withdraw resources.

The most significant difference between resources and events is, that events are simply

consumed by tasks, while resources stay assigned to tasks until these release them voluntarily

and explicitly. For this reason, IRQ handlers may never allocate (or release) resources. Related

problems for concurrent task systems (e.g. task starvation, priority inversion, and allocation

deadlocks), will be deeply discussed in Chapters 6 and 7.

A novel concept in the area or WSN operating systems are the so called resource chains for

the automatic allocation of dependent resources: In Listing 4.5, a hypothetical radio protocol

task tRadio allocates and releases an externally defined resource rRADIO for transmitting a data

packet (Lines L60 – L63). Within the radio chip driver the radioSend function first asserts if

the resource belongs to the caller (L47), i.e. the running task23. However, when looking at the

22Resources are counting, though events are not. Thus, resources can be allocated several times by the same task,

and must be released as often.
23Assertions can be removed from the binary code by a compiler switch. Failing raises a kernel panic.
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1 OS_IMPORT_RESOURCE(rSPI); // SPI bus

2

3 /* init hardware interconnection */

4 int rRADIO_fInit(void) {

5 if (radioChipInit () == 0) return 0;

6 return 1; // indicate success

7 }

8

9 /* initialize radio for use */

10 int rRADIO_fGet(Time_t* deadline) {

11

12 // create res. chain: rRADIO ->rSPI

13 if (getResourceUntil (&rSPI ,

14 deadline) == 0) return 0;

15

16 // configure radio (e.g. channel)

17 if (radioConfig(radioCfg) == 0) {

18 releaseResource (&rSPI);

19 return 0;

20 }

21

22 return 1; // indicate success

23 }

24

25 /* de -initialize radio */

26 int rRADIO_fRelease(void) {

27

28 // set to defined state

29 radioStrobe(RADIOSTOBE_IDLE_MODE );

30

31 // dissolve res. chain rRADIO ->rSPI

32 releaseResource (&rSPI);

33

34 return 1; // indicate success

35 }

(a)Outline of a potential radio chip driver

36 /* create the resource */

37 OS_DECLARE_RESOURCE_EXT(

38 rRADIO , &rRADIO_fInit ,

39 &rRADIO_fGet , &rRADIO_fRelease );

40

41 /* transmission function */

42 int radioSend(int dst ,

43 char *buf , int len) {

44

45 /* check for legal access */

46 QASSERT(

47 testResource (& rRADIO) == 1);

48

49 /* code for sending */

50 ...

51 }

52 OS_IMPORT_RESOURCE(rRADIO );

53

54 OS_DECLARE_TASK(tRadio , 50, 250);

55 OS_TASKENTRY(tRadio) {

56 ...

57 while (1) {

58 ...

59 preparePacket ();

60 if (! getResourceFor (&rRADIO ,

61 10000)) continue ();

62 radioSend (0xFFFF , buffer , 32);

63 releaseResource (& rRADIO );

64 ...

65 }

66 }

(b)Usage of the radio resource

Listing 4.5: Resource usage under SmartOS

extended resource declaration (L37), we can see the specification of three handler functions.

The fInit function (L4) will be called once prior to the scheduler start to initialize persisting

configurations (L5). The fGet function (L10) will be called each time the resource is successfully

allocated. It subsequently allocates depending resources (L13), and initializes fragile configu-

rations (L17). Though resource allocations are managed by a syscall, fGet is executed in task

mode, to support the complete set of API functions. Additionally, the initially specified relative

allocation timeout (10ms, L61) is converted and passed as absolute deadline to support the

temporally limited execution of fGet. Here, the temporal limitation is used for bounding the

allocation of the SPI bus resource (L13) which is required for accessing the radio chip. Finally, the

fRelease function (L26) will be called in task mode after the last deallocation. It de-initializes

the resource to gain a safe and defined state (L29), and dissolves the resource chain by releasing

the dependent resources (L32). While fGet and fRelease operate transparent to the requesting

task, they signal their success to the kernel: In case fGet fails, the resource is not allocated and

getResourceUntil(...) returns an appropriate failure indicator to the requester.
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4.3.8. Exception Handling

The occurrence of dynamic software failures or sporadic system imponderabilities must not

be neglected throughout the application design stage. Since the corresponding runtime errors

can not only occur at almost any code position, but also asynchronously, they must often be

returned from the point of their detection through the entire but variable call hierarchy to the

point of their handling. While function return values are often exploited for their propagation,

this misuse of “operation results” is error-prone, hard to maintain, and finally causes various

restrictions on the affected API definitions. To compensate this weakness, exception handling is

a commonmechanism in higher level programming languages (e.g. in Java [112], ADA [139], C++

[141]) and system architectures. It allows to conveniently separate the program logic from error

handling: Developers are advised to encapsulate code which might not complete successfully

in so called “try” blocks. On the first occurrence of any failure therein an exception is thrown

by the application code. As a consequence, the try block is left immediately, and the failure

itself is handled within subsequent “catch” blocks. Listing 4.6a gives a Java compliant example

which throws and handles an exception of type Exception_t to indicate randomly generated

error states. Since exceptions are commonly dynamic objects24, polymorphism even allows to

throw arbitrary exception types; the information therein can be defined specifically to support

an adequate failure recovery. In case of an unhandled exception, it will simply be forwarded to

the surrounding try block, or lead to program termination if there is no such block.

In contrast, lower-level languages like plain C do neither support object-oriented program-

ming paradigms nor exceptions. Nevertheless a similar concept can be implemented with few

limitations. Using the setjmp/longjmp functions from the C standard library [104] allows to

emulate the typical try/catch structure: While setjmp(buf) puts the current execution context

into an architecture-specific data buffer and returns 0 after its first call, longjmp(buf, value)

restores the previously saved context (including the PC) and adjusts the setjmp’s former return

value as specified. This way longjmp emulates the “throw” directive, and setjmp is used to

decide between executing the try block (0) or the catch block (6= 0). Under SmartOS, throwing

an exception “object” is emulated by storing the specific identifier of type unsigned char into

an automatic Exception_t structure on the stack25, and by forwarding its specific information

into the catch block. Though provided by SmartOS for consistency reasons, this procedure does

not involve any kernel interaction, but is encapsulated in convenient C preprocessor macros

which are entirely executed in task mode. By their naming (TRY, CATCH, THROW) even the look

and feel of high-level languages is provided for SmartOS applications26. In order to support

exception nesting and their independent handling within each task and IRQ handlers, the exe-

cution contexts will also be stored on the tasks’ and the kernel’s stacks respectively27. Listing

4.6b shows the mentioned application example with exception nesting and forwarding under

SmartOS in comparison to the already discussed Java version. Throwing an exception outside of

24Note that dynamically allocated objects are created on the heap. This leads to fragmentation andmay even cause

out-of-memory conditions which are also hard to handle on small embedded systems (→ Chapter 7).
25See Section 7.2 for a disambiguation between automatic and dynamic variables or objects.
26Themacro implementation is based on the cexcept library by Costello and Truta (http://sourceforge.net/

projects/cexcept/).
27For the MSP430 MCUs each try block requires 11 words of stack.
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1 Object obj;

2

3 try {

4 try {

5 obj = new Object (); // dyn. object

6 throw new // type: any exception

7 Exception_t(rand() % 3); //[0,2]

8 // unreachable code

9 } catch (Exception_t e) {

10 // automatic destruction of obj

11 switch (e.id) {

12 case 0: /* complete handling */

13 break;

14 case 1: /* partial handling */

15 throw e; // forward

16 default: throw e; // forward only

17 }

18 }

19 } catch (Exception_t e) {

20 /* handle e.id == 1 and e.id == 2 */

21 }

(a) Java compliant

1 MCB_t mem = NULL;

2 Exception_t e; // type: unsigned char

3 TRY {

4 TRY {

5 mem = malloc (64); //dyn. alloc.

6 THROW

7 (rand() % 3); // [0,2]

8 // unreachable code

9 } CATCH (e) {

10 if (!mem) free(mem); //cond. free

11 switch (e) {

12 case 0: /* complete handling */

13 break;

14 case 1: /* partial handling */

15 THROW e; // forward

16 default: THROW e; // forward only

17 }

18 }

19 } CATCH (e) {

20 /* handle e == 1 and e == 2 */

21 }

(b) SmartOS (C) compliant

Listing 4.6: Exception handling examples: A comparison

any try block will immediately raise a kernel panic and stop the entire system.

While the emulation of the well-known exception concept adds significant convenience

to the application design we’ll see its particular benefit for resolving unpredictable and even

asynchronously emerging resource conflicts under real-time conditions in Chapters 6 and 7.

Nevertheless, compared to full grown and language inherent exception handling, where a large

amount of additional information is managed, and where the compiler conducts additional

static code checks, our emulation involves twomajor drawbacks: First, jumping out of or into

try blocks is forbidden28, but cannot be prevented reliably at runtime. Second, objects which

were already created dynamically within a try block will not be destroyed automatically if an

exception is thrown. Instead, the catch block is responsible for deleting these objects. The same

is true for e.g. releasing resources which were allocated before the exception was thrown within

the try block29. Lines 5 and 10 of Listing 4.6b give an example for the conditional but explicit

release of the dynamically allocated memory block mem30. In contrast, the dynamically created

object obj is destroyed automatically within the Java code from Listing 4.6a.

4.4. Evaluation and Benchmarking

In Chapter 4.3 we introduced the uniform hardware abstraction and platform-independent

kernel API of the SmartOS operating system; unfortunately, a uniform syntax and philosophy

28Appropriate stack maintenance would be missing then.
29Adding a “finally” block which would always be executed (i.e. independent from the exception) is possible but still

remains to be done.
30See Chapter 7 for details on our collaborative memory management approach CoMem.
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metric under test duration Figure

m1 task preemption τentry = 12.52µs 4.6

m2 interrupt latency τentry = 18.74µs 4.3

m3 event invocation levent = 111.70µs 4.3

m4 context switching τsystem = 43.36µs 4.6

m5 getResource τsystem = 52.70µs 4.5

releaseResource τsystem = 52.10µs 4.5

m6 setEvent τsystem = 44.20µs 4.5

waitEvent τsystem = 46.40µs 4.5

– getCurrentTime τsystem = 5.00µs –

– TRY block initiation 9.0µs –

– THROW→ CATCH transition 10.0µs –

Table 4.2.: SmartOS Rhealstone (mi ) and other benchmark results

does not necessarily guarantee exactly identical semantics. Even if a comparison of application

code at instruction level would certify equivalent effects on the system states31, its temporal

behavior may still vary. While changing CPU frequencies and architectures can result in sig-

nificant variations on the hardware layer, temporal imponderabilities may already occur due

to environmental dynamics on the same hardware. Since this leads to serious problems for

time-critical systems, it is the operating system’s responsibility, to keep the runtime overhead

low, and to facilitate (or even guarantee) a reliable application execution even at high system

load [314].

4.4.1. Concurrent Task Scheduling

Compositional software design is a hard challenge since the combination of independently

developed tasks must still result in an operational system. While the operating system should

make this composition transparent for the developer, it is hard to decide whether a certain task

combination finally assembles to correct overall system.

Essentially, the related problems can be traced back to resource conflicts, and must either be

addressed statically during development or dynamically at runtime. In this respect SmartOS

relies on purely dynamic operation, and assigns resources (including the CPU) at best effort

under consideration of user defined priorities. Since prior analysis of the overall systemdemands

and inter-task dependencies is omitted entirely, the kernel is not capable of hard real-time

operation. Additionally, and comparable to the Unix kernel [194], the SmartOS kernel itself is

non-preemptive. Nevertheless, soft real-time systems can be implemented by using our novel

collaboration based resourcemanagement concept for improving these weaknesses significantly.

Regarding the CPU, the SmartOS kernel supports deterministic task scheduling only for a

single task with maximum priority, since resuming this task means to simply remove it as the

31Not identical effects, though! Even if the operating system remains consistent, the underlying architectures change,

and incompatibilities must often be compensated by entirely different implementations of the same functionality.

A common source of such discrepancies is for example the handling of interrupts, and the mostly varying extend

of the instruction sets (→ CAS emulation in Listing 4.2b). Anyway, such a comparison will remain a theoretical

consideration due to [290].
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timeout queue’s head, and insert it as new head into the ready queue. Obviously, both operations

are inO(1) and the total runtime is bounded to τsystem = 43.36µs according to Figures 4.5 and

4.6. Although it is obviously not possible to predict the behavior of a dynamic SmartOS system

exactly, we will at least review some benchmark results to gain a deeper understanding of its

temporal behavior on the MSP430 architecture. According to the Rhealstone suite [150], which

proposes a set of metrics for benchmarking real-time operating systems, Table 4.2 summarizes

the minimal execution times τsystem of some kernel functions (i.e. if the invoking task does not

interfere with other tasks), some timings from the kernel mode execution as shown in Figure 4.5,

and some timing benchmarks for exception handling.

4.4.2. Kernel and Application Benchmarking

The performance evaluation of (embedded) software systems is a difficult but necessary task,

especially when integrating and analyzing novel techniques. While fine-grained benchmarks

consider the execution time of individual functions, application-specific tests analyze the behav-

ior of tasks or the overall system. For real-world test beds, so called “hardware monitors” profit

from not influencing the system behavior during the observation. However, they are expensive

as they demand for specific measurement equipment, and commonly require access to various

MCU internal signals: For off-the-shelf MCUs, these signals must be made visible by injecting

appropriate code as displayed in Listing 4.7a. In contrast, “software monitors” are much simpler

to implement since they rely only on the system functionality itself. As a drawback, the system

and the monitor might influence each other, and lead to both a modified behavior of the system

under test, and corrupted or imprecise measurements.

For time-related benchmarks within this work, we applied SmartOS itself as software monitor,

and used the timeline for measuring durations and execution times (→ Listing 4.7). Apart

from the convenience compared to attaching e.g. oscilloscopes as hardware monitors in real-

world scenarios, this would also allow us to conduct task-specific evaluations and long-term

measurements. To verify the reliability of this approach, we initially measured the execution

time of various functions internally and externally32: Comparing the results showed an almost

constant imprecision of 5.00µs, which is exactly the execution time of the getCurrentTime

function as shown in Table 4.2.

4.4.3. Timer Interrupt Overhead

In Section 4.3.4 we already motivated the use of a hardware timer for the local time manage-

ment. Regarding the induced CPU load we still have to discuss the 64 bit timeline maintenance

strategy as depicted in Figure 4.5: Since hardware timers commonly provide widths below

64 bit, an interrupt signals an overflow and the kernel advances the timeline in software by

calling update_timer(). Though cascading several timers would increase the overall length

and support overflow handling in hardware, we limit the resource requirements of the SmartOS

kernel to a single timer, and leave others for the actual application. As Figures 4.8 and 4.9 show

for an unloaded system with only the idle task running, timeline updates occur at a minimal

32Measurement equipment: Tektronix Oscilloscope TDS3034B (http://www.tek.com)
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Time_t start , stop , delay;

getCurrentTime (&start); // int. meas.

togglePin (); // ext. meas.

functionUnderTest ();

togglePin ();

getCurrentTime (&stop);

delay = stop - start;

(a) Execution timemeasurement (internal, external)

OS_DECLARE_TASK(tObserver , 100, 255);

OS_TASKENTRY(tObserver) {

while (1) {

doConfig ();

sleep(TEST_DURATION ); // free CPU

doStatistics ();

OS_HALT ();

}

}

(b)Observer task with maximal priority 255

Listing 4.7: Benchmarking under SmartOS

frequency ftimer = 1
61440µs ≈ 16.28 Hz and require 38.47µs each33. This results in a duty cycle

of ftimer ·38.47µs ≈ 0.063%, which yields a good trade-off between energy or CPU overhead

and the benefits which come with this approach. If the head of the timeout_queue changes,

i.e. if timeouts are reached or if a task or interrupt handler invokes any corresponding syscall,

the timeline update will occur immediately when leaving the kernel mode. Thus, the update

frequency may increase, but on the other hand, the temporal overhead decreases since we need

no extra switch to the kernel mode, but do the update while still being there. If the next timeout

is less than 61440µs away, the overflow value will be adapted adequately to allow the new head

task’s resumption in time.

4.4.4. Interrupt Processing Overhead

Regarding the CPU overhead for processing additional (non-timer) interrupts, we evaluate the

performance loss for the application tasks according to [194]:

Let τ(t , fIRQ) be the time a task t requires for the execution of a defined code sequence if it is

interrupted by fIRQ interrupts per second. Then, t ’s minimal fractional time loss I (t , fIRQ) which

results from the invocation of these interrupts calculates as

I (t , fIRQ)=
τ(t , fIRQ)−τ(t ,0)

τ(t ,0)
. (4.1)

For a representative evaluation of the inherent OS overhead caused by the standardized

interrupt processing from Figure 4.5, the ISR itself (as supplied by the application!) should

be minimal and contain as few instructions as possible. For our test we registered an empty

function as IRQ handler for processing the interrupts of the second system timer (handler

execution time: 46.07µs), and configured it for various frequencies fIRQ. As shown in Figure 4.7,

the execution time of the test task t doubles for fIRQ ≈ 10.6 kHz. In turn, when taking the system

timer into account, the maximal interrupt frequency fIRQ,max a SmartOS system can handle on

our particular SNoW5 hardware from Section 2.2 is

fIRQ,max =
1 s−1 s· ftimer ·38.47µs

46.07µs
·1 Hz≈ 21692.5Hz. (4.2)

33The reason for using 0xF000 (61440µs) instead of 0xFFFF as overflow value for the MSP430’s 16 bit timer is a

technical detail, and won’t be discussed here.
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ROM [B] RAM [B]

SmartOS kernel1 5299 28

SmartOS debugging library 4154 0

CC1100 radio driver 1466 42

SmartNet radio protocol 3142 564

CoMem dynamic memory 2291 16

SNoWGhost remote maintenance 1535 226

UART driver 162 1

SPI driver 437 12

1 Includes the priority inheritance protocol, DynamicHint-

ing, runtime stack checking, and some helper functions

Table 4.3.:Maximal code and data sizes for the SmartOS

kernel and various modules

Consequently, some on-chip peripherals, e.g. for processing data streams over standardized

buses (like RS232, SPI, or I2C), can therefore not be handled via interrupts when operating

at maximal speed. However, context switching makes the centralized interrupt handling in-

dispensable, and the advantage of true multitasking and automatic interrupt timestamping

compensates for this weakness as we will show in various chapters within this work.

4.4.5. Further Evaluation Metrics

Apart from the time-related metrics considered so far, code size and energy consumption are

very popular numbers to look at, but always depend significantly on the application code and

environmental interactions. While the energy consumption was already discussed in Section

2.2.2 and summarized in Table 2.2, the code size is hard tomeasure. Table 4.3 shows themaximal

code size for the kernel and some selected modules. However, these modules contain a lot of

rarely used functions, and, since the linker performs function garbage collection, finally shrink to

significantly reduced application sizes34. E.g. the minimal application from Listing 4.1a consists

of just the kernel and the idle task, and requires 4 kB of ROM and 96 B of RAM35.

34The central kernel functionality will not be reduced, though.
35Compiled for the SNoW5 sensor node: 28 B SmartOS kernel, 60 B idle task TCB, 8 B idle task stack
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waitEvent success

IRQ handler
(setEvent)

scheduler

kernel ISR
timestamping

external trigger /
interrupt occurrence

Figure 4.3.: Execution of the setEvent function when called as IRQ handler

external trigger /
interrupt occurrence

IRQ handler
(demuxGPIO)

soft IRQ handler
(setEvent)

scheduler

waitEvent success

timestamping
kernel ISR

Figure 4.4.: Execution of an IRQ handler for I/O port demultiplexing, and a soft IRQ handler for the

corresponding pin.
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II. Interrupt invocation
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Figure 4.5.: The SmartOS kernel mode execution flow depending on its trigger:

Syscall or interrupt invocation (→ Figure 6.10[p122] for the stack evolution)
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Figure 4.6.: Execution time of the yield function when called from within a task
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Figure 4.7.: Interrupt processing overhead for various interrupt frequencies fIRQ of a test IRQ

(in addition to the hardware timer IRQ for the timeline management)
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Figure 4.8.: Execution time of the system timer ISR

(unloaded system, idle task only)

Figure 4.9.: Frequency and duty cycle of the timer IRQ

(unloaded system, idle task only)
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Abstract

In Chapter 4 we discussed the notion of time for bounding the execution of

SmartOS kernel functions. The proposed temporal semantics of the kernel

API allows us to specify timeouts and deadlines for waiting on events and

resources without influencing other tasks by spin blocking or active loops. Up

to now, this notion of time is individual for each task, and does neither induce

temporal dependencies among them (since they have no information about

the deadlines of others), nor does it allow to relate time with environmental

information and (re-)actions.

While the first problem is relevant for coordinating concurrent task systems

and will be discussed in Chapter 6, we will now address the latter problem

which is of utmost importance for the precise attribution of environmental

events andmeasurements (→Def. I.1: The Sense and Aggregate Paradigm),

as well as for the precise scheduling and execution of corresponding reactions

(→Def. I.2: The Sense and React Paradigm) in sensor/actuator systems.

In this chapter we’ll initially summarize the related problems which result

from the discrete timemeasurement in digital systems. Subsequently, we’ll

present a novel technique for the automatic creation of highly precise times-

tamps for external events, as well as for the scheduling of related (re-)actions

and processes. Managed by the operating system kernel at the lowest possible

software level, we achieve a symmetric error interval for the (true) times-

tamps and the scheduled reaction times – both with an average error close

to 0µs. Based on this symmetry, we’ll subsequently introduce a dynamic

self-calibration technique for managing the compliance with these times,

i.e. to achieve the temporally exact execution of the corresponding actions.

An application example will show that the integration of these techniques

into SmartOS allows to determine the clock drift between two (or more) in-

dependently running embedded systems without exchanging any explicit

information, except for the mutual triggering of periodic interrupts. In fact, a

real-world test bed achieved a precision of±3µs in the worst case for the drift
computation, and provides a basis for further applications and services like

e.g. time synchronization and self-organization techniques from Chapters 11

and 12.
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5.1. Introduction on Information Attribution

Temporal and spatial information are the two most fundamental measures

emiTfor the “attribution” or “tagging” of states and events (i.e. state transitions)

within any observed environment. In this context, the states describe a set

of physical and logical conditions at a given position x and at a certain time t , and they are

specified by one or more continuous or discrete state values si . Though position and time can

obviously also be considered as state values, we’ll attach a special meaning to them, and pay

special attention to their generation:

While temporal information can initially be obtained through purely local measurements,

obtaining spatial information is a more complex task in general, and commonly requires the

fusion of various previously collected data and information (e.g. angles or distances towards

well-known reference points). Thus we’ll defer the latter problem to Part III of this work, but

already introduce both attributes at once, since they are inherently linked to each other. In fact,

measured or otherwise obtained environmental information is sometimes of no use unless it is

associated with temporal and spatial information1.

Recorded over a certain period of time, variations in the state values allow the detection

and analysis of events and event patterns [248, 308] within the environment. These variations

do not only indicate the events’ spatial extension, propagation speed, and influence on the

environment, but most commonly they also allow the prediction of future states for both the

observing system and its surrounding. In this regard, the interaction with the environment,

which we already proclaimed in Chapter 1 to be the most central objective in sensor/actuator

systems, typically requires the precise knowledge of time and space to be associated with self-

captured and foreign values from other nodes in order to properly correlate the contained

information, and to trigger adequate reactions.

While the position information is commonly considered as a three dimensional vector x =
(x, y,z)T which can change freely over time and in any of its components, the time t is always a

one dimensional scalar which advances continuously at a fixed rate.

From the perspective of a perfect external observer, the state values si are available for

any given position x ∈❘3 and time t ∈❘. In particular they are always free from any error.

Throughout this work we’ll denote correct values as s′
i
,x′, and t ′, respectively, and represent the

environment’s true state S′(x, t ) at any queried position x and time t as

S′(x, t ) := (x′, t ′, s′1, . . . , s
′
m)

T with x
′ = x and t ′ = t . (5.1)

From the perspective of an autonomous sensor system with a restricted view on the environ-

ment, the local and remote state values si can only be obtained for some positions x ∈❘3 and

times t ∈❘. While some of these values are directly available (e.g. from local sensor readings),

1Since many applications do not request for explicit location awareness, its integration into an operating system

kernel is commonly omitted entirely. Although today’s mobile communication devices (e.g. Smartphones)

increasingly often integrate so called location based services (LBS), and thus need to know the user’s position, the

location information is commonly determined at higher levels.
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5.2. Time in Digital Systems

Figure 5.1.: Error in the state vector of a node n regarding a 2D position x and time t

others must be derived algorithmically first (e.g. via sensor data fusion [118]). However, since

these values are also based on prior measurements, they are never perfect but always exhibit

some error. This is also and especially true for the associated time and position information.

Henceforth, we’ll denote imprecise values as x̃, t̃ , and s̃i , respectively, and define the observed

state S̃n(x, t ) of a node n ∈N for a queried position x at time t as

S̃n(x, t ) := (x̃, t̃ , s̃1, . . . , s̃m)
T . (5.2)

For the real system both x and t need not necessarily match x̃ and t̃ , respectively, since even if

the system expects its own values to relate to x and t they might relate to x̃ and t̃ instead. Based

on the true and the observed values we define the error E in the position x, the time t , and each

state value si as

Ex := x
′− x̃, Et := t ′− t̃ , and Esi := s′i − s̃i . (5.3)

As exemplified in Figure 5.1 we also define themultidimensional and system specific error vector

En(x, t ) := S′(x, t )− S̃n(x, t ). (5.4)

A detailed example for evaluating position estimation algorithms will be given in Chapter 13.

5.2. Time in Digital Systems

In contrast to the specific position vectors of e.g. sensor nodes (which can change sporadically,

independently from each other, and arbitrarily in any of their components), time is a common

property. It is system independent, and advances continuously with a globally constant rate of

change2. If the sensor nodes manage to establish a network-wide and consistent notion of time,

this information provides a natural base for their joint interaction among each other and with

the environment. Since processors in synchronous digital systems like sensor nodes are always

2At least we expect this to be true, and simply ignore the theory of relativity when considering individual systems

and networks. Furthermore, it is easy for corresponding sensor networks to get over location specific variations in

time, since today’s sensor nodes cannot be synchronized sufficiently precise anyway to observe this phenomenon,

or to be considerably affected by it.

71



5. Time and Reactivity in SmartOS

driven by a clock generator C with frequency fC and period λC = 1
fC
, time and time intervals

can easily and independently be measured3 – at least in theory: If it is possible to count the

number of elapsed clock periods since system start, each captured event e – e.g. indicated by

an interrupt as described in Section 4.3.5 – can be attributed with the current counter value ce .

Consequently, the event’s absolute local system time t̃e can easily be recovered by

t̃e := ce ·λC , (5.5)

and the time difference (i.e. the delay) ∆̃e1,e2 between two events e1,e2 computes as

∆̃e1,e2 := t̃e2 − t̃e1 = (ce2 − ce1) ·λC . (5.6)

Obviously, both the time t̃e and the delay ∆̃e1,e2 already involve a certain imprecision due to

the discretized counters ce ∈◆. In addition, we silently assumed for Eq. (5.5) and Eq. (5.6) that

λC is perfectly known and constant. Neither is true under real-world conditions.

Finally, as often requested for interactive systems, a reaction r can be scheduled for a captured

event e. Its intended execution time t ′r ∈❘ is commonly related to any t ′e ∈❘ by the specification

of a corresponding delay ∆′
e,r ∈❘:

t ′r = t ′e +∆
′
e,r (5.7)

However, the reaction will in the best case, i.e. if the scheduler permits the timely switch to the

responding task’s context, be triggered upon reaching the corresponding counter value cr ∈◆
and the corresponding system time t̃r :

cr = ce +

Ì
Ì
Ì
Ê
∆
′
e,r

λC

Í
Í
Í
Ë t̃r = t̃e +

Ì
Ì
Ì
Ê
∆
′
e,r

λC

Í
Í
Í
Ë ·λC (5.8)

Although the described imprecision is quite intuitive and well-known, it is commonly simply

accepted or ignored. Nevertheless it introduces certain “hidden” implementation problems in

real systems; in particular since the temporal error is neither constant nor predictable. In the

following we’ll indicate and discuss the causes and effects of these problems, and present an

approach to reliably compensate the related imprecision in the average case.

Problem P1: Discretization of time. The difference between the true global time and

the individual system time has already become visible in Eq. (5.5) and Eq. (5.8). While the first

progresses continuously, the use of a digital counter leads to a discretization of the latter, and

imposes a resolution which is strictly proportional to the counter’s clock frequency fC . As

illustrated in Figure 5.2, this may lead to serious systematic errors for the time measurement

and the subsequent scheduling of reactions:

The simple capturing of timestamps t for external events – the so called timestamping – is

immediately affected by the inevitable rounding, and suffers from ameasurement error Et ∈ I1
with |I1| =λC . For the naïve and adverse reading of the counter in Figure 5.2a, rounding down

3See Figure 2.4[p25] for a concrete CPU example regarding the SNoW5 platform: fMCLK = 8 MHz.
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a) Capturing of timestamps b) Measurement of delays

c) Specification of delays d) Scheduling of reaction times

e) Timestamping with interrupt latency compensation

Timestamp
taking

Key:

True times:

Timer ticks ( ):fC

System times:

Timing errors:

True delays:

System delays:

Error interval:
1st ISR instruction

timstamp reading

counter
value

external event

Figure 5.2.: Emergence of timing errors for the naïve discretization of time

results in I1 = [0,λC ), and induces a symmetry around the average measurement error Et = 1
2
λC .

Depending on the use of such timestamps, the emerging errors might accumulate during the

system runtime. According to Figure 5.2c, the explicit specification of delays ∆′
t in software is

also subject to rounding errors E∆. However, since we can round half up
4 manually this time,

E∆ ∈ I3 = [−1
2
λC ,+1

2
λC ). Thus I3 is at least symmetric around 0, and the average error is 0µs.

Based on these two fundamental error intervals I1 and I3, others can be derived, and conse-

quently exhibit an imprecision, too: For themeasurement of delays ∆E , as depicted in Figure

5.2b, we see the implicit compensation of the asymmetry in I1: E∆ ∈ I2 = I1− I1 = (−λC ,+λC ).
In contrast, the scheduling of reaction times t on external events inherits the asymmetry in I1:

Et ∈ I4 = I1+ I3 = [−1
2
λC ,+3

2
λC ). As illustrated in Figure 5.2d, system reactions will consequently

suffer from an average systematic lateness of 1
2
λC . The resulting effects, and our proposed

solution to compensate this asymmetry, will be discussed later.

Table 5.1 summarizes the errors and their intervals which must be expected for the naïve

capturing of timestamps by simply reading the timer register (e.g. within an IRQ handler).

Problem P2: Capturing of timestamps. The creation of reactive systems demands for the

precise assignment of timestamps for external events. Reaching a threshold within an analog-

digital-converter (ADC) or detecting a signal edge at an I/O pin are just two simple examples.

However, almost all observable changes within the environment have in common, that they are

indicated to the CPU at runtime by so called interrupt requests (IRQs), and should be handled

as soon and fast as possible by the corresponding interrupt service routines (ISRs) (→ Section

4.3.5 and Figure 4.5[p66]). Since ISRs are commonly more privileged than regular application code,

4e.g. according to DIN 1333
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error type derived from error interval symmetry error interval symmetry

(naïve discretization) (compensated discretization)

capturing of fundamental I1 = [0,λC ) 1
2λC I3 = [− 1

2λC ,+ 1
2λC ) 0

timestamps

measurement of I1 − I1 I2 = (−λC ,+λC ) 0 I2 = (−λC ,+λC ) 0

delays

specification of fundamental I3 = [− 1
2λC ,+ 1

2λC ) 0 I3 = [− 1
2λC ,+ 1

2λC ) 0

delays

scheduling of I1 + I3 I4 = [− 1
2λC ,+ 3

2λC ) 1
2λC I4 = [−λC ,+λC ) 0

reaction times

Table 5.1.: Error intervals for different discretization techniques (system time resolution: λC )

and will preempt it for their own execution, they seem to be perfectly suitable for capturing the

timestamp for any emerging event. However, as depicted in Figure 5.2e, even the first instruction

within each ISR is not executed before some additional delay, which is also known as interrupt

latency ∆IRQ. If the timer value cTS for the timestamp itself is copied after another delay ∆ISR

within the ISR, then we can compute the discrete timestamp t̃e for the captured event e as

follows:

t̃e = cTS ·λC − (∆IRQ +∆ISR)= t̃TS −∆TS (5.9)

Hence, a prerequisite for reliable time tracking via Eq. (5.9) is, that the correction value ∆TS is

constant and free from rounding errors with respect to the discrete system time period.

Problem P3: Simultaneity and scheduling reliability. Although the perfectly simultane-

ous transition of two states can never occur in real systems5, the surjective discretization of

time can easily lead to the assignment of exactly the same system time for multiple events or

scheduled actions. Since resource conflicts prevent the truly parallel processing of events as

well as the simultaneous execution of (re)actions, and usually lead to an implicit serialization,

their prioritization depends on the task scheduler or the task internal order. Since there is most

commonly only a single IRQ controller, this is already true for the generation of timestamps. In

fact, the maximum degree of parallelism is always limited by the number of available functional

units6. A safe scheduling – e.g. to meet hard real-time demands – must be achieved by either

static techniques at development time or dynamic methods at runtime. In this context, we’ll

present the DynamicHinting technique for dynamic resource management under real-time

conditions in Chapter 6.

Problem P4: Imprecision in the timer frequency. Time measurement in digital systems

is usually accomplished by using a pulse generator with specified frequency f0. Internally, this

component uses an oscillator – most commonly a quartz crystal – to generate a periodic clock

5The time measurement resolution must simply be chosen fine enough to increase the improbability for observing

simultaneity!
6Functional units refer to e.g. processors and their cores, or autonomous peripheral components.
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AT-cut BT-cut

Figure 5.3.: Temperature sensitivity of typical HC49 quartz crystals (for various cutting angles)

signal. Since the characteristics and stability of such oscillators depend significantly on their

manufacturing parameters, their age, and on various environmental conditions [125], a varying

frequency drift ∆ f must always be expected. The relative error
∆ f
f0
is commonly expressed in

units of ppm (parts per million). Figure 5.3 gives an example for the temperature sensitivity7

of a typical HC49 quartz, as applied on the SNoW5 sensor node from Section 2.2. For simple

low-cost quartzes, and within the typical temperature ranges of WSAN applications, this can

already result in deviations of ± 20 ppm8.

Variations in the clock precision are especially critical in distributed applications. Since time

measurement is initially individual for each involved system and therefore can drift apart (→
Figure 5.6), this may quickly generate inconsistent data, and must be compensated by adequate

synchronization measures. The SNoW Bat indoor localization system as described in Part III of

this work will illustrate this in several ways.

Problem P5: Global time base and synchronization with other systems. When does

time measurement actually start, i.e. when is or was time t0 = 0? If we consider an independent

system which uses time only for its internal operation, e.g. to capture events and to schedule

actions by a partial order9, the use of a pure local timewith arbitrary begin is absolutely sufficient

– e.g. time t0 = 0 may simply indicate the system start10. However, as soon as time is of global

relevance, e.g. if actions have to take place synchronized on different systems, a common time

base is often indispensable. This immediately raises the question about which time or system

is used as a reference. In any case, the provider should be highly available and exhibit a high

clock stability and precision. Several methods exist for the actual synchronization: These are

either based on (regular) time checks or on the measurement of the pairwise drift between

7. . .which in turn depends on the quartz material’s temperature coefficient and its cutting angle . . .
8Other variations of f0 are caused by fluctuations in the applied voltage, the angle dependent influence of gravity

and motion, and electromagnetic fields. However, these errors are small and negligible in typical sensor network

applications. Further information can be found in [125].
9partial since the discretization of time may lead to simultaneity
10On the other hand, a completely independent system is also completely useless.
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the involved systems. While dedicated reference systems allow synchronization based on

centrally triggered events11 (e.g. radio broadcasts as specified in theDCF77 protocol), distributed

methods are available for multi-hop systems to successively achieve a common time base (e.g.

via Desynchronization [207]).

5.3. Time in SmartOS

Considering the aforementioned problems, which originated from the integration of time-

awareness into digital systems, P1-P3 directly affect the environmental interaction and can

be addressed by each system individually. In contrast, P4 and P5 require some information

exchange with other systems, which are however not necessarily available at all times. For this

reason, P1-P3 are treated directly within the SmartOS kernel, while P4 and P5must be addressed

at higher layers.

As already described in Section 4.3.4, SmartOS relies on a periodic timer component to drive

its local timeline. Based on this the kernel automatically captures a timestamp t̃e for each

interrupt e, and compensates the error’s asymmetry about 0 which would result from using

the naïve approach with I1 = [0,λC ) as explained in Section 5.2. Therefore, the centralized

interrupt processing by standardized kernel ISRs is exploited to introduce a constant and care-

fully dimensioned delay ∆ISR for capturing the timer’s counter value. According to Eq. (5.9)

we have to apply an adequate correction value ∆IRQComp for the total delay ∆TS =∆IRQ +∆ISR.

Selected properly, this correction finally results in the symmetry about 0 for I1 = [−1
2
λ, 1

2
λ),

and in turn reduces the average timestamp error from initially 1
2
λ down to 0µs (while Ete will

still be equally distributed over I1). At the same time, the propagation and amplification of

systematic errors for time-dependent reactions, will also be kept low and symmetric about

0µs, i.e. I4 = I1 + I3 = [−λC ,+λC ). Table 5.1 compares the error intervals of our compensation

approach with the naïve technique.

In order to deal with the related problems P1 and P2, we propose a concept based on two

synchronized clocks with interdependent frequency. Thereby, we assume the CPU frequency

to be higher than the timer frequency, while conversely, the system time is derived from the

quartz-stabilized CPU clock by an even integer divider. As already demanded in Chapter 2, both

requests do not impose an unreasonable restriction on the hardware/software design: In fact

they are already satisfied in many systems, since usually only a single central oscillator is used as

base for all other system clocks. While the CPU is commonly directly driven by this main clock,

other components apply power-of-two dividers to derive their individual frequencies. Finally,

and for constrained embedded systems in particular, driving a local time with the maximum

resolution would cause unnecessary CPU load12.

Besides the following formal description of our approach, we also refer to the example in

11. . .which must be directly receivable for all participants since forwarding induces additional problems . . .
12The system time must be accumulated in software at every timer overflow. Especially for timers with small

word widths, this can quickly lead to a huge performance penalty. Thus, as shown in Table 3.1[p46], most WSAN

operating systems with an integrated system time support a resolution of just 1 ms (which is too imprecise for

many application scenarios as we will see in Chapter 11 on ultrasound distance measurement).
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Figure 5.4.: IRQ timestamp acquisition under SmartOS

Figure 5.4 for a comprehensive understanding. Initially, we denote the CPU clock frequency

and period as f and λ, and the system time frequency and period as fC and λC , respectively. In

addition, we demand for

fC :=
1

α
· f and λC :=α ·λ with α ∈◆≥2,α even. (5.10)

If an interrupt e occurs at time t ′e , the corresponding timer counter ce will not be copied before

some system inherent delay ∆TS has passed. Specifically, we request this delay to comprise

exactly ∆c CPU cycles as follows:

∆c := n ·α+
1

2
·α with n ∈◆+

0 (5.11)

Thus, the delayed acquisition of the timestamp takes place at time

t ′TS = t ′e +∆TS = t ′e +∆c ·
1

f
= t ′e +

(

n ·α+
1

2
·α

)

·
1

f
. (5.12)

To compensate for this delay, and to force the timestamp error interval I1 to become symmet-

ric around the true event occurrence time while also exhibiting an average error close to 0µs,

we select the correction value as

∆IRQComp := (n ·α) ·
1

f
= n ·λC . (5.13)

Finally, we simply have to subtract n from the copied timer value ce to compute the timestamp
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t̃e for the interrupt e:

t̃e =

Ì
Ì
Ì
Ê
t ′
TS

λC

Í
Í
Í
Ë ·λC −∆IRQComp = ce ·λC −n ·λC =

(

ce −n
)

·λC (5.14)

Since ce (timer driven) and n (constant) are integers of architecture word width, their subtrac-

tion is easily accomplished. Besides, the result’s resolution equals the resolution of the system

time, i.e. 1µs under SmartOS. However, we still have to prove the symmetry about 0µs for the

error intervals in Table 5.1; in particular we have to show that t̃e ∈ I1 = [−1
2
λC ,

1
2
λC ).

Lemma II.1. The error intervals I1, I2, I3, and I4 for taking timestamps, for measuring and

specifying delays, as well as for computing reaction times are symmetric about 0.

Proof. While I3 is not affected by our novel approach, the demanded symmetry of I1, I2, and I4

in particular can easily be proofed by some interval arithmetic. The expected error Ete of the

timestamp t̃e computes as

Ete = t ′e − t̃e
(5.12),(5.14)=



t ′TS−
(

n ·α+
1

2
·α

)

·
1

f



−






Ì
Ì
Ì
Ê
t ′
TS

λC

Í
Í
Í
Ë ·λC −n ·λC






= t ′TS−
(

n ·α+
1

2
·α

)

·
λC

α
−

Ì
Ì
Ì
Ê
t ′
TS

λC

Í
Í
Í
Ë ·λC +n ·λC

= t ′TS−

Ì
Ì
Ì
Ê
t ′
TS

λC

Í
Í
Í
Ë ·λC

︸ ︷︷ ︸

∈
[

0,λC
)

−
1

2
·λC ∈

[

−
1

2
λC ,+

1

2
λC

)

⇒ I1 =
[

−
1

2
λC ,+

1

2
λC

)

⇒ I2 = I1− I1 =
[

−
1

2
λC ,+

1

2
λC

)

−
[

−
1

2
λC ,+

1

2
λC

)

=
(

−λC ,+λC
)

⇒ I4 = I1+ I3 =
[

−
1

2
λC ,+

1

2
λC

)

+
[

−
1

2
λC ,+

1

2
λC

)

=
[

−λC ,+λC
)

As concrete example, we’ll take a look at the reference implementation of SmartOS for the

MSP430F1611 [280] MCU and the SNoW5 sensor nodes. While the main clock drives the CPU at

f = 8MHz, the divider α= 8 derives the frequency fC = 1MHz for the system time. According

to Eq. (5.11), adequate delays between each interrupt occurrence and the acquisition of its

timestamp are

∆c := n ·α+
α

2
= n ·8+4 with n ∈◆+

0 . (5.15)
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1 ; Kernel ISR for IRQ number e

2 __hwirq_e:

3 ;------------------------------ TIMESTAMPING -------------------------------;

4 ; hardware IRQ latency ; +6 CPU cycles from t ′e ∆IRQ = 6λ

5 nop ; +1 CPU cycle \

6 nop ; +1 CPU cycle > ∆ISR = 6λ

7 mov &TIMER_COUNTER , &__hwirq_TS ; +4 CPU cycles for latch in /

8 ; Total delay of captured timestamp: ∆TS = 12λ= 1.5µs

9

10 ;---------------------- PREPARE AND ENTER KERNEL MODE ----------------------;

11 mov #e, &__hwirq_number ; save IRQ number for processing in kernel body

12 jmp __kernel_entry ; jump to kernel mode

Listing 5.1: Timestamping within the kernel ISR for an IRQ e

inline void getIRQTime(Time_t *time) {

*time = (timeline + __hwirq_TS) - __hwirq_n; // t̃e = (ce −n)·λC (→ Eq. (5.14))

}

Listing 5.2:Delayed timestamp calculation for the last interrupt

Listing 5.1 shows the kernel ISR for the interrupt e: Since the CPU inherently delays the accep-

tance of an interrupt by ∆IRQ = 6 CPU cycles, we already have to select n ≥ 1. In fact, we did

select n = 1 and thus have to wait for an additional number of∆ISR = 6 CPU cycles within the ISR

(1·8+4= 6+6). According to the specification of the mov instruction, which is used for saving the
timer value __hwirq_TS in Line 7, it takes 4 CPU cycles until the value is read from the special

function register TIMER_COUNTER. The remaining two cycles are filled up by nop instructions.

After the acquisition of the counter value, the specific IRQ number is saved and the kernel mode

is entered for the actual event handling (→ Figure 4.5[p66]).

To save CPU time the ISR will initially only save the current 16 Bit timer value which indicates

the delay since the last timeline update. The computation of the final absolute timestamp is

avoided, and delayed until the IRQ handler requests this information via the getIRQTime(...)

function from Listing 5.2. According to Eq. (5.13), n can simply be subtracted from ce , which

in turn is the sum of the timeline and the just captured timer value. The result can directly

be interpreted as absolute system time t̃e in µs. Note that the applied computation is always

correct, since IRQ handlers are always executed in kernel mode where further interrupts are

disabled and neither the timeline nor __hwirq_TSwill change concurrently (→ Figure 4.5[p66]).

5.4. Test Bed: Node Self-Calibration and Pairwise Drift

Calculation

The test bed for demonstrating the benefit of our timestamping approach consists of pairs of

nodes A,B playing some sort of Ping Pong game as depicted in Figure 5.5: By a wired or wireless

connection, one node, WLOG B , triggers an IRQ signal e0 which is received and timestamped

(t̃0) by the other node A through the just presented SmartOS timestamping technique. After

some fixed delay ∆delay the signal will be returned by A, and in turn the other node B catches
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expected delays (perfect system) observed delays (real system)

Figure 5.5.: The Ping Pong test bed for evaluating the timing precision of SmartOS

and returns the signal after the same delay ∆delay. Having received the last trigger en with local

timestamp t̃n in a perfect system (green arrows), the observed delay ∆̃total,n between each node’s

captured first and last signal timestamp should obviously equal the theoretical delay ∆′
total,n

:

∆̃total,n := t̃n − t̃0
!= 2n ·∆delay =:∆′

total,n (5.16)

However, this equality will commonly not be observable in real systems (blue arrows). In fact

each involved device will suffer from its own and the other device’s imprecision:

First, the nodes apply independent clocks, drift apart, and thus will finally not defer their

responses by exactly the same delay ∆delay. The blue arrows in Figure 5.5 indicate the difference

from the view of an external observer. Though our nodes’ CPUs are driven by quartzes from

the same lot, the clock drifts vary depending on the selected node pair and the environmental

influences described before. While the gray areas in Figure 5.5 illustrate the continuously

growing maximum temporal extend of this phenomenon for each iteration, Figure 5.6 shows

significantly different drifts dA,B (t ) for three node pairs
13 measured over some time t .

Second, the responses must be scheduled and initiated by the responsible task on each node.

Therefore, these tasks compute their intended local response time t∗r from each previously

captured signal timestamp, and then sleep to release the CPU for other tasks. However, waking

up sufficiently early to emit the signal in time is not that easy since some load-dependent and

variable system overhead must always be taken into account.

Third, the base for each delay computation is never perfect since each captured timestamp t̃c

exhibits an inherent error E t̃c ∈ I1. While this cannot be avoided entirely as discussed before, its

average error should at least be 0µs in the average case according to Lemma II.1.

13The nodeswith IDs 10, 11, and 72were arbitrarily selected fromour pool. The drift wasmeasured via an oscilloscope

tracking the delay between two periodically triggered I/O pins at both nodes. Note, that the drift of each pair

corresponds perfectly to the other pairs’ drifts: 918
µs
100s +1900

µs
100s = 2818

µs
100s .
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Figure 5.6.: Clock drift for three node pairs (environmental temperature: 24 ◦C)

5.4.1. Signal Emission and Self-Calibration

For the precisely timed signal emission, we propose a dynamic self-calibration scheme based

on self-observation14. Therefore, the trigger signal will not only be captured by the other node

where it is tagged with the timestamp t̃c , but also by the emitting node itself. We denote the

corresponding local timestamp as t̃r . If the intended local response time for the current iteration

has been computed as t∗r , the lateness can be computed afterwards and used as compensation

value ∆comp to adjust the delay for the next iteration at emission time t∗r :

∆comp := t̃r − t∗r (5.17)

t∗r := t̃c +∆delay−∆comp (5.18)

Listing 5.3 shows the corresponding code sections15. In fact, the response time precision

error (Et∗r ∈ I4) depends not only on the two timestamps and their particular precision error

(E t̃r ,E t̃c ∈ I1), but also on the error in the measured delay (E∆comp
∈ I2) and the hard coded delay

(E∆delay
∈ I3) itself. Since we intentionally selected ∆delay :=m ·λC withm ∈◆+, at least this value

is free from rounding errors and I3 := [0;0) for this special application.

14This technique will also be relevant for the precisely scheduled emission of slotted radio packets during the data

aggregation stage of our indoor localization system SNoW Bat in Part III of this work. See Section 12.7 for details.
15Note that within the IRQ handler ISRTrigger (Line 10) calling getIRQTime will just take a copy of the already

captured IRQ timestamp, and that the trigger task will not be resumed before ISRTrigger has returned. Also,

calling response (Line 7) will indirectly invoke the self-trigger which will in turn update t̃r before it is used for

the computation of ∆comp (Line 8).
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1 Time_t ∆delay=1000000 , ∆comp=0;

2 while (1) {

3 waitEvent (&e); // wait for trigger

4 t∗r = t̃c // next emission

5 + ∆delay−∆comp;

6 sleepUntil(t∗r ); // absolute deadline

7 response (); // emit trigger

8 ∆comp = t̃r − t∗r ; // self -calibration

9 }

(a) the inner loop of the trigger task

10 void ISRTrigger(int unused) {

11 getIRQTime (& t̃c ); // log timestamp

12 setEvent (&e); // resume trigger task

13 }

14 OS_DECLARE_IRQ_HANDLER( //ext. trigger

15 OS_IRQ_PIN10 , ISRTrigger , 0);

16

17 OS_DECLARE_IRQ_HANDLER( //self -trigger

18 OS_IRQ_PIN11 , getIRQTime , & t̃r );

(b) IRQ Handlers (for demultiplexed I/O pins 10,11)

Listing 5.3: The timing test bench: Trigger task and IRQ handlers

5.4.2. Pairwise Drift Calculation

For our tests we set up various node pairs A,B as depicted in Figure 5.5, and we were interested

in each nodes’ x ∈ {A,B} local timing error ex which was individually calculated by each node

after n iterations:

ex
(5.16)
:= ∆̃total,n −∆

′
total,n = (t̃n − t̃0)−2n ·∆delay (5.19)

Obviously, both timing errors eA ,eB have different sign unless the clocks are perfectly syn-

chronous (then eA = eB = 0µs). Additionally, we define the symmetry error esymm as seen by an

external observer as the average value over eA ,eB . Since the average timestamp error Et ∈ I1 will
accumulate over the two acquired trigger timestamps within each iteration,

esymm :=
eA+eB

2
= 2n ·Et . (5.20)

If we indeed achieved the timestamping error interval I1 to be truly symmetric about 0, i.e. by

selecting ∆c = n ·α+ 1
2
·α properly in Eq. (5.11), we can consequently expect two observations

for any pair of nodes A,B :

1. If both values eA and eB are made available to an external observer, their measured clock

drift dA,B , as depicted in Figure 5.6, can be verified through

d ′
A,B := eA−eB

!= dA,B with dA,B =−dB ,A . (5.21)

2. According to Eq. (5.20), esymm
!= 2n ·0µs = 0µs, and thus both values eA and eB will show

the same absolute values. In direct consequence, each node can autonomously estimate

its own drift towards the other node by simply calculating

d̃A,B = 2·eA (for node A) and d̃B ,A = 2·eB (for node B). (5.22)

In particular, the exchange of any additional data, such as timestamps, between the nodes

is not necessary to obtain this information (since ∆delay is constant).
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The reason becomes clear when considering the involved error intervals over n iterations:

t∗r
(5.18)
:= t̃c + ∆delay − ∆comp

iter I4 I1 I3 I2

1 : [−λC ;λC ) [−1
2
λC ;

1
2
λC ) [0;0) (−1

2
λC ;

1
2
λC )

...
...

...
...

n : [−nλC ;nλC ) [−1
2
λC ;

1
2
λC ) [0;0) (−(n− 1

2
)λC ; (n− 1

2
)λC )

∆comp
(5.17)
:= t̃r − t∗r

iter I2 I1 I1

1 : (−3
2
λC ;

3
2
λC ) [−1

2
λC ;

1
2
λC ) [−λC ;λC )

...
...

...

n : (−(n+ 1
2
)λC ; (n+ 1

2
)λC ) [−1

2
λC ;

1
2
λC ) [−nλC ;nλC )

Obviously, all error intervals remain symmetric about 0µs throughout the entire test. In

particular, the average error for each variable is 0µs, and consequently esymm = 0µs, too.

In contrast, if we intentionally violate Eq. (5.11) and use e.g. ∆c := n ·α instead, the average

timestamp error interval will be symmetric around Et = 1
2
λC :

t∗r
(5.18)
:= t̃c + ∆delay − ∆comp

iter I4 I1 I3 I2

1 : [−1
2
λC ;

3
2
λC ) [0;λC ) [0;0) (−1

2
λC ;

1
2
λC )

...
...

...
...

n : [−(n− 1
2
)λC ; (n+ 1

2
)λC ) [0;λC ) [0;0) (−(n− 1

2
)λC ; (n− 1

2
)λC )

∆comp
(5.17)
:= t̃r − t∗r

iter I2 I1 I1

1 : (−3
2
λC ;

3
2
λC ) [0;λC ) [−1

2
λC ;

3
2
λC )

...
...

...

n : (−(n+ 1
2
)λC ; (n+ 1

2
)λC ) [0;λC ) [−(n− 1

2
)λC ; (n+ 1

2
)λC )

Consequently, esymm
(5.20)= n ·λC , and neither the autonomous drift computation through

Eq. (5.22) nor the external drift verification through Eq. (5.21) will work any more.

5.4.3. Real-World Test Bed Analysis

Figure 5.7 shows the test bed results for the three already mentioned node pairs from Figure

5.6, and for various values of ∆c after n = 50 iterations with ∆delay = 1 s (∆′
total,n

= 100 s). Note

that the results repeat in a cyclic manner with period α= 8, and thus the values for ∆c = 10 are

similar to those for ∆c = 18.

When using ∆c = 1·8+ 8
2
= 12, we did indeed achieve the expected symmetry error esymm ≈

0µs for all pairs. At least we received |esymm| <λC = 1µs, which is the timeline resolution and
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local information1,2 observer3

d̃A,B node 10 node 11 node 72 d ′
A,B

d̃72,11 1900.0 1902.0 1900.0 1900

d̃72,10 2818.0 2818.0 2816.0 2818

d̃11,10 918.0 916.0 916.0 918

1 black: measured according to Eq. (5.22)
2 red: calculated according to Eq. (5.23)
3 true drift as expected from Figure 5.6

Table 5.2.:Drift calculation for ∆c = 12

local information1,2 observer3

d̃A,B node 10 node 11 node 72 d ′
A,B

d̃72,11 1884.0 1836.0 2032.0 1900

d̃72,10 2724.0 2870.0 2922.0 2818

d̃11,10 840.0 1034.0 890.0 918

1 black: measured according to Eq. (5.22)
2 red: calculated according to Eq. (5.23)
3 true drift as expected from Figure 5.6

Table 5.3.:Drift calculation for ∆c = 16

thus the best precision a node can reach. Furthermore, d ′
A,B ≈ d̃A,B verifies the measured values

from Figure 5.6. Most important, as shown in Table 5.2, the autonomously measured drifts

between two nodes are almost perfect. Indeed, the maximum error is ±2µs. Another fact which
we can verify from this table is, that since WLOG node A knows its drifts d̃A,B and d̃A,C towards

the two other nodes B andC respectively, it can also reliably derive the drift d̃B ,C via

d̃B ,C := d̃A,C − d̃A,B . (5.23)

For any other values of ∆c , the nodes can not gain reliable information about their relative

drift on their own. When using ∆c = 2·8 = 16 for example, Figure 5.7 shows values close to

the expected symmetry error esymm = 2n · 1
2
λc = 50µs. As a result, Table 5.3 summarizes the

autonomously measured and computed drifts between the node pairs, and reveals quite large

and asymmetric errors between to -132µs and +94µs.

Besides the precision of the autonomous drift estimation, another interesting metric is the

resulting trigger frequency. The theoretical value

ftrig :=
(

2·∆delay

)−1
(5.24)

will not be visible in reality since neither node uses a perfect clock. However, we would at least

like to achieve

ftrig, av. =
(

∆
′
delay,A+∆

′
delay,B

)−1
, (5.25)

which is definitely the best compromise two nodes A,B can find if their true drift compared to

the perfect global clock is unknown. Again, this is only possible if esymm = 0. When looking at

e.g. the graph for the nodes with IDs 11 and 72 in Figure 5.7, the extrapolation of esymm leads

to a symmetry error of −345.6µs for ∆c = 12 and 42336µs for ∆c = 16 within one complete day.

Thus, the larger |esymm| the larger the deviation from ftrig, av.. The effects are once more visible

in Tables 5.2 and 5.3: For ∆c = 12 the values in each row are almost equal, while they exhibit

significant variations for ∆c = 16.
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Figure 5.7.: The node timing error after 100 s as measured by each node

(see Figure 5.6 for the expected d ′ values)
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5.4.4. Conclusion and Outlook

In this chapter we proposed a technique for obtaining precise timestamps t̃e for external events

e, and for the precisely timed execution of reactions r at scheduled times t̃r . The error intervals

for both t̃e and t̃r are symmetric about 0. While the first is achieved through the centralized

and specially prepared preprocessing of interrupts by the kernel, the latter becomes possible

through a simple self-calibration scheme at application layer. Throughout the remainder of this

work, both approaches will show to be a great benefit for an inherent problemwithin distributed

but interacting and time-critical (embedded) systems: In fact, as long as time is not properly

manageable locally by the individual nodes, network-wide synchronization and event or state

attribution will hardly achieve the potentially feasible precision.

A corresponding test bed verified, that it is possible to determine the drift between two nodes

without the explicit exchange of any quantitative information (like e.g. timestamps or previously

measured delays). Instead, it is sufficient to periodically pass events (i.e. interrupts) between the

nodes. Since similar periodic behavior can also be found in several (wireless) communication

protocols [142, 217, 269, 311], the proposed techniques can also be applied to support time

synchronization among the involved systems. Regarding our demand for reliable environmental

interaction from Section 1.1, the local time-awareness of any participating node improved

significantly.
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Networked Sensor/Actuator Systems

Abstract

The increasing complexity of today’s sensor/actuator network (SANet) ap-

plications does not only demand for a careful selection of the underlying

embedded hardware; it also imposes considerable challenges on the subse-

quent software design. Due to various reasons (→ Table 2.1[p21]) the nodes

are commonly very constrained in their computational power and available

resources. Specific problems originate from these limitations and affect their

modularity and real-time capabilities as demanded in Chapter 1. While

preemptive operating systems like SmartOS are one approach to retain ac-

ceptable reactivity – within highly dynamic environments in particular –, their

concurrency paradigm commonly leads to severe resource sharing problems.

These are caused by the coexistence of tasks with interfering and even varying

requirements.

To counteract these problems, we developed the DynamicHinting approach

as entirely novel design and programming paradigm for managing the re-

activity and real-time operation within compositional task systems. The

key lies in the support for reflective and collaborative task behavior dynami-

cally at runtime, and permits the efficient combination of preemptive task or

CPU scheduling and the non-preemptive access to other temporarily shared

resources. In summary, we facilitate compositional software design by provid-

ing independently developed but concurrently executing tasks with runtime

information about their mutual influence on each other. As an extension

to the purely cooperative resource access as described in Section 3.2, the

resulting self-awareness allows tasks to relate their own requirements to su-

perior objectives for yet collaborative and reflective resource sharing – e.g.

supported by so called time-utility-functions. With respect to task priorities

and the limited performance of sensor nodes (and comparable embedded

devices), our technique significantly improves classical methods for handling

task starvation, priority inversion, and deadlock conditions (where required),

under both short- and long-term resource allocations. Inmany cases this even

allows to reduce task blocking and resource allocation delays as otherwise

imposed by bounded priority inversion.
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6.1. Introduction

The ever increasing size, pervasiveness and ser-

vice variety of today’s sensor/actuator networks

(SANet) significantly boosts the demands on and the complexity of the underlying nodes. To

still allow their convenient and unobtrusive deployment in large numbers, while at the same

time keeping costs, power consumption, and maintenance efforts low, these embedded sys-

tems are – and will probably remain – rather small in size, computationally weak, and severely

resource constrained1. Thus, modular hardware and software concepts have become pop-

ular to manage their design, implementation and operation. For example service-oriented

programming abstractions [152, 166] introduce several sub-layers within the application layer

(→ Figure 3.1[p34]), or propose the almost independent development of subsystems by simply

defining their interfaces. However, hiding too much complexity from the developer can rapidly

become critical for autonomously operating systems: Adequate interaction between the vari-

ous modules is essential to avoid typical compositional problems, but is hard to achieve and

maintain automatically. Besides task scheduling [49], directly related issues comprise dynamic

resource sharing or even real-time operation [172]. Concerning this, we find that current re-

search in the field of severely resource constrained embedded systems is still too focused and

limited to static design concepts. As already stated in [60] and discussed in Section 1.2, next-

generation embedded systems will be more frequently used as reactive real-time platforms in

highly dynamic environments. Here, the true system load varies considerably, and can hardly

be predicted a priori during development. In fact, we definitely expect a clear focus shift from

almost pure sensing in classic sensor networks (SNs) toward additional and intense proactivity

in SANet applications (→ Figure 1.6[p13]). Integrated control systems for facility management,

medical application, andmilitary purposes are just few examples, but already comprise complex

functionality like precise and DSP based on-demand measurements, time synchronization,

real-time event recording and processing, dynamic routing, and reliable emergency handling

throughout critical situations. Then, preemptive and prioritized tasks are required for fast re-

sponse on various (sporadic or periodic) events, but further complicate resource assignment

and reactivity. This is especially true for open systems where real-time and non real-time tasks

must coexist in order to reduce hardware overhead, energy issues and deployment effort.

Definition II.3: Real-Time-Critical/Capability/Scheduling

We denote a task T as real-time-critical, if it must complete at least one real-time-critical action

or response within a well-defined temporal boundary [τmin,τmax] with τmin,τmax ∈ ❘+
0 and

0≤ τmin ≤ τmax, i.e. it must produce algorithmically correct results and system states within this

interval. A task T is not real-time-critical if τmin = 0 and τmax =∞ for all actions. Throughout

this work we limit ourselves to bounding the maximal execution or response time τmax, and

denote a task system as real-time capable, if it can provably complete all actions within this so

called absolute deadline τmax.

In this chapter we present the novelDynamicHinting approach for improving cooperative

1While related aspects were already discussed in Section 1.2.1, an exemplary sensor node prototype is presented in

Section 2.2.
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methods for the dynamic management of exclusive but temporarily shared resources among

prioritized and preemptive tasks with real-time requirements. Thereby we support both periodic

and aperiodic tasks (e.g. sporadically triggered in event-driven designs). In Section 1.2.1 we

already demanded for improved quality awareness of networked embedded systems to con-

duct runtime self-evaluation, and to finally adopt to various self-x strategies. Projected to the

application layer, our novel paradigm improves compositional software design by inducing

resource-related self-awareness for independently developed, but concurrently running tasks

concerning their mutual influence on each other. As often suggested (e.g. in [15]), we take

advantage of the resource manager’s enormous runtime knowledge about the system’s current

requirements. This information is carefully filtered and forwarded via so called hints to exactly

those tasks, which currently block the execution of more relevant tasks due to a lasting resource

allocation.

Definition II.4: Blocking, Blocker, Critical Resource, and Blocking Delay

We denote a task h as blocked, if it waits for the allocation (i.e. it is suspended in a pending

resource request) of a resource s which can currently not be assigned due to the lasting allocation

of a (not necessarily different) resource r by another task l 6= h with lower base priority, i.e.

Pl < Ph . In this case, l is called blocker, and r is called critical resource. The time for which a task

is blocked until its requested resource is assigned, is called blocking delay.

In turn, our hints allow blocking and even deadlocked tasks to adapt to the current resource

demands and finally to contribute to the system’s overall reactivity and stability in a collaborative

manner. Furthermore, accounting for the task priorities as defined by the developer is simplified.

In many cases, even delays which would otherwise occur due to bounded priority inversion

can be reduced. The decision between following or ignoring a hint is made by each task au-

tonomously and dynamically at runtime, e.g. by the use of appropriate time-utility-functions

(TUF) [176]. In our opinion, the central weakness of all resource management approaches

we found so far is, that tasks are not aware of their (varying) influence on the remaining sys-

tem, and thus cannot collaborate adequately. In this respect, DynamicHinting follows classic

reflexion concepts [15, 270], and introduces a new policy into operating system kernels, by

which programs can become ‘self-aware’ and may change their behavior according to their own

current requirements as well as to the system demands. Thus, DynamicHinting is not limited to

embedded systems and the SANet domain, but can be applied to real-time operation in general.

In this work, we primarily present DynamicHinting as extension for the priority inheritance

protocol (PIP) [262]. This way, we intentionally focus on long-term resource allocations (as

frequently required for e.g. complex objects or hardware devices [51]), and avoid some related

shortcomings of similar techniques. Yet, it may also be combined with most other policies

and systems where task blocking can occur. Thus, we also compare results from using our

concept with the priority ceiling protocol (PCP) [262]. Though both original protocols face

several problems and failed almost completely within some of our test beds, DynamicHinting

always achieved considerable improvements: It allowed a significantly higher resource load and

increased task progress/utility. Just limited by the CPU performance, our approach improved
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both resource allocation delays and task reactivity to be very close to the achievable best case

values. In fact, by the nature of both original protocols, extending PIP commonly resulted in a

much better performance gain than extending PCP. A comparison can be found in Section 6.7.

This chapter is organized as follows: Initially, we will further motivate the need for sophis-

ticated resource management and real-time operation in reactive embedded systems, and

sensor/actuator platforms in particular. Followed by an outline on some existing techniques,

we’ll motivate the selection of PIP as preferred basis for our novel approach. A detailed de-

scription of DynamicHinting and its integration into SmartOS will form the central part of

this chapter. In this context, we’ll also discuss the impact on the programming model, and

evaluate the strengths and benefits through some synthetic stress tests and concrete application

scenarios from real-world systems. The results will finally show that – despite of the problem’s

complexity – DynamicHinting is efficiently applicable even for low performance devices like

sensor nodes.

6.2. Motivation and Requirements

An operating system has significant influence on the overall system performance since it coordi-

nates task interactions (ITC) as well as the access to shared operational resources like hardware

components or data structures. For some of them, exclusive access must be granted at least

temporarily to avoid race conditions, resulting malfunctions or even system breakdown. Unfor-

tunately, resource assignment in complex, modular systems with concurrently running tasks is

hard to manage during development and runtime. This is particularly true, if tasks are allowed

to use virtually any available resource in any order, and if they may even require exclusive access

to several of them at the same time. As long as allocation times remain short-termed2, or if

the system’s overall runtime requirements are roughly predictable, efficient methods already

exist (→ Section 6.3.1). However, if long-term allocations collide with sporadic but time-critical

on-demand requests in dynamic environments, smart adaptive techniques are needed to still

provide good reactivity [60].

Whereas the main resource of each computing system, the CPU, is often managed by the

task scheduler in a preemptive way, we believe that the operating system should also coordinate

the access to other, exclusive resources (where automatic preemption is often not that easy)

by contributing appropriate runtime mechanisms. Though some techniques were already

implemented for resource constrained node platforms, most of them do not address the specific

aspects of reactive real-time operation.

6.2.1. Terminology and the Problem Model

As already discussed in Section 3.2 we denote a system resource as preemptive if the resource

manager is authorized at any time to temporarily withdraw the resource from a task, and if it is

also capable of returning it in its previous state. In contrast, a non-preemptive resource must

always be released voluntarily by its current owner task. Apart from the preemptive CPU, we

2According to Section 3.2[p35] task self-suspensions are forbidden during short-term allocations.
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consider all other resources as non-preemptive. Additionally, we distinguish between short-

term and long-term resource allocations: While the first term indicates that a process does not

suspend itself while holding the resource (e.g. lock a data structure, process it, and release it

eventually), the latter permits self-suspensions (e.g. lock a hardware component and release the

CPU until an IRQ occurs).

Regarding these definitions, our optimization target for DynamicHinting is twofold: First, we

aim on on-demand resource deallocations to reduce the duration of (bounded and unbounded)

priority inversions, and to help software designers in avoiding prophylactic (e.g. regular/fre-

quent) deallocations just to possibly serve other tasks. Second, we intend to improve the

interleaved execution of preemptive tasks through the provision of a generous but priority aware

resource assignment policy, which relieves the resource manager from the need to maintain a

so called safe state on the resource pool. By combining both goals we achieve that persisting

(long and short-term) resource allocations do not circumvent the assignment of further (free)

resources, and finally observe a significantly improved task progression and utility compared to

PIP and the conservative PCP in particular.

Compared to the classical problem model, which is commonly used in PIP/PCP related

literature andwhere a task locks/allocates a resource andwon’t unlock/release/deallocate it until

its work with this resource has been entirely finished, our modified problemmodel relaxes this

constraint: We intentionally introduce the option for an early but strictly task-controlled release

of non-preemptive resources if these cause the blocking of a task which is higher prioritized

than the one which currently keeps the resource locked. In fact, the resulting the on-demand

resource handover is the key to our concept’s success and outperforms PIP, PCP, and similar

resource sharing protocols significantly.

6.2.2. Requirements

During research and practical work, we found that reactivity and proactivity in modern embed-

ded and SANet applications requires quite sophisticated real-time and resource management

concepts. We’ll give just a few examples from real-world application scenarios:

Sporadic resource sharing under long-term allocations. As exemplified in Figure 6.1, a

radio protocol task commonly requires the long-term allocation of the used transceiver in

combination with relatively short but sporadic accesses to the interconnection bus3. Obviously,

both resources need specific configuration sets, and thus are non-preemptive. Although the

radio task might suspend itself while holding the transceiver and waiting for certain interrupt-

triggered events, using the bus on-demand becomes time-critical when radio transmission

slots must be obeyed or when a receive buffer must be read and cleared quickly to allow the

reception of successive radio packets without data loss. Concurrent to this communication

task, other tasks might use exactly the same interconnection bus for data exchange or even

continuous streaming (e.g. from an ADC to some external memory). Again, their resources are

non-preemptive, but this time the bus is also locked in a long-term allocation. Even though

this conflict involves just one single shared resource, the resulting compositional problem is

3In fact, the inter-arrival time of incoming packets and transmission requests is unknown in many cases.
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Figure 6.1.: Colliding resource requirement between two interfering tasks

already hard to solve. Even if task priorities can be selected carefully to indicate the desired

relevance of each task, their compliance can not necessarily be guaranteed. Instead, knowledge

about the overall system load and module interactions (including further tasks) must often

be incorporated manually into the code – if this is possible at all. The regular and voluntary

release of long-term resources could be one solution. However, while such prophylactic releases

might simply be unnecessary in many cases, they might also impose considerable overhead

when deallocation and reallocation are expensive in time (→ Table 4.2[p61] for SmartOS overhead)

and energy, which we already indicated as a valuable resource in Section 2.2.2. Where data

streams often require explicit termination (trailers) and initiation (headers), physical resources

might require a time-consuming (de-)initialization procedure upon each (de-)allocation4. The

additional use of so calledmonitors [276] for the managed operation of such resources is also no

universal option, especially if either the performance for this abstraction is simply not available,

or if their operation cannot be adjusted sufficiently well to the application demands5.

Dynamic base priorities. Regarding the demand for quality awareness and the semantic use

of data from Figure 1.7[p14], we found the support for adjustable task base priorities convenient

and useful – though this complicates resource management even further: Besides a sensitive

adaptation of tasks to changing environmental conditions, this would also allow server tasks to

adapt to the priority of their (most relevant) clients at runtime. The SmartNet MAC protocol

from Section 8.1 gives a concrete example for such an implementation under SmartOS. Another

specific example is the sharing of hardware among virtual networks on routers or nodes: The

idea is to largely isolate corresponding virtual subsystems on the same device for maintain-

ability, security and safety reasons [223]. These, however have changing QoS demands, and in

consequence need flexible access to still shared I/O ports. While variable base priorities can

signal their relative importance, the prompt adaptation remains problematic: Techniques for

coordinating the changing requirements of separate but interfering subsystems dynamically

4Under SmartOS we support this by providing resource-specific handler functions as described in Section 4.3.7
5In fact, the monitors themselves (and their internal data structures) are also comparable to shared resources then.
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Figure 6.2.:Main challenges for many system service design problems

and on-demand have to deal with severe problems like priority inversions and deadlocks, and

are still rarely found. With the increasing availability of multi-core architectures in embedded

and SANet areas [51, 222] this must be considered even more carefully to efficiently utilize their

advanced capabilities.

Summary. Fast reactions on internal and external events (e.g. inter-task triggers or interrupts)

are frequently required within reactive sensor/actuator systems, but often suffer from severe

delays and critical system states due to resources which are currently blocked in short-term and

long-term allocations. Then, their fast handover to the reacting task is essential, and should

at least be accelerated by the resource manager without damaging the atomicity of depending

operations. According to Figure 6.2, which depicts the five main challenges for many system

design problems6, we request the following features to be supported by our novel approach:

F1 RUNTIME PERFORMANCE

◦ Adjust allocation delays with respect to the task priorities.

◦ Support (hard) real-time demands at least for high priority tasks.

◦ Avoid the starvation of low priority tasks.

F2 RESOURCE EFFICIENCY

◦ Reduce themanagement overhead in terms of CPU load, memory requirements, and

energy consumption.

F3 SAFETY AND SECURITY

◦ Handle deadlocks (e.g. through avoidance, prevention, detection & resolution).

◦ Coordinate and protect long-term and short-term resource allocations properly.

F4 USABILITY

◦ Do not impose unreasonable restrictions on the application design.

◦ Keep the impact on the programming model low.

F5 SCALABILITY

◦ Maintain F1–F4 independent from the number of tasks and managed resources.

6In fact, we’ll revert to these challenges in later chapters on e.g. memory management, localization, and wireless

data aggregation.
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Of course, it is almost impossible to support all features at the same time. While resources are

not protected by SmartOS in general (→ Section 4.3.7[p57]), certain efforts must be undertaken at

application layer to benefit from the already mentioned reflexion and collaboration concept.

Having motivated our requirements for real-time resource management in embedded and

SANet scenarios in particular, we’ll now overview some related work before presenting our novel

approach.

6.3. Related Work

In this section we focus on resource management, and tie in with both the kernel classification

framework from Section 3.3 and the OS kernel comparison from Table 3.1[p46].

Non-preemptive systems with run-to-completion policy are very common in sensor/actua-

tor systems7. These prevent some resource conflicts implicitly since task or process executions

cannot be interleaved, and each allocated resource will be released implicitly upon task termi-

nation. If tasks need to hold exclusive access to certain resources over several runs, a frequent

approach is to implement special server tasks (which implicitly own a particular resource for

exclusive access) or stateful function libraries for managing these resources. Such an abstraction

layer allows to share or even virtualize resources comparable to the TinyOS component concept

[291]. In such systems, however, the so called split-phase software design and large resource

hierarchies might result in severe inter-communication overhead and reduced overall perfor-

mance, then. Additionally, run-to-completion tasks often provide bad reactivity on sporadic

events since they can not be suspended arbitrarily for more important actions. Indeed, interrupt

handlers might react quickly, but using resources therein is seldom wise since these might

currently be unavailable, and the mere attempt could block the whole system forever. Many

event-driven systems (like e.g. TinyOS) solve this problem by simply triggering (posting) an

appropriate handler task during the interrupt service routine. However, its true execution delay

is unknown or at least non-deterministic, and again depends on the currently running task and

the scheduling policy. Note, that for reactive handler tasks the non-preemptive use of the CPU

can already lead to some kind of priority inversion, then (→Definition II.5). Therefore, TinyOS

and Contiki [85], which natively also runs non-preemptive processes, both support so called

TOSThreads [158], and protothreads [87] respectively. These are preemptive but lack priorities

and native resource management entirely.

Preemptive systems potentially provide much better reactivity. Here, a task can be pre-

empted at any time for a more important action implemented in another task. Therefore

individual priorities commonly define each task’s relevance. Yet, preemption yields no instant

advantage if an important action requires a shared resource which is exclusively held by a less

important task. Resulting problems like priority inversion [172, 321] might lead to the blocking

of high priority tasks, and even deadlocks may occur. To cope with these issues, well studied

approaches like the priority ceiling protocol (PCP), the highest locker protocol (HLP), the priority

7Due to their low CPU andmemory overhead for task context switching and stack space.
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inheritance protocol (PIP) [63, 262], and the stack resource policy (SRP) [19] can be found in

literature. Besides inflicting some runtime overhead, these techniques also suffer from certain

weaknesses addressed in the next section. Additionally, these are hardly implemented in embed-

ded operating systems with small memory footprint and low performance requirements. Apart

from the priority ceiling protocol emulation (PCPE)8 in Nano-RK [95], other preemptive sensor

network operating systems like e.g. MantisOS [46], RETOS [62], or SenSmart [69] do not consider

real-time and resource-related problems at all. At most they recommend to encapsulate the

usage of resources in atomic sections, which executes tasks non-preemptively, and thus is similar

to the also widely known non preemption protocol (NPP).

6.3.1. Resource Management in Preemptive Systems

Many scheduling algorithms, like e.g. earliest deadline first (EDF) and rate monotonic scheduling

(RMS) [180], induce a strictly periodic execution model9, and also assume that the processes

they manage are entirely independent from each other: Only the CPU is implicitly considered

as a shared resource which must be synchronized properly to meet all deadlines. Since further

inter-task dependencies are neglected, the underlying scheduling problem can be solved and

decided through schedulability analysis [180]. However it is often forgotten (or simply ignored),

that various explicit and implicit dependencies can exist between the tasks. In fact, these

can be always traced back to resource conflicts, and make scheduling hard: While explicit

dependencies emerge from the purposive interaction between tasks through intentionally shared

resources (e.g. the shared memory within the producer/consumer example from Listing 4.4[p57]),

implicit dependencies emerge from the unconscious or even unnoticed interaction between

tasks through unintentionally shared resources (e.g. peripheral components like the data bus

and the radio unit from Listing 4.5[p58] and Section 6.2.2). A more complex example will follow in

Section 6.7.

Deadlocks. In the context of resource dependencies deadlocks are a frequent problem, e.g.

if two tasks hold at least one resource each while requesting another one which is currently

held by the other task, respectively. As a simple solution, the frequently recommended banker’s

algorithm [79] grants a resource only if all resource demands of at least one task can always

still be satisfied, then. More restrictive versions start a new task only if its worst case resource

requirements can still be satisfied when all other running tasks also claim their demands entirely.

Maintaining so called safe states avoids deadlocks, but implies two major problems: First, a

(time-critical) task might not start promptly when required (e.g. an event handler task). Second,

two tasks whichmight require the same unique resource may never run interleaved. In many

statically linked task systems (like e.g. SmartOS) they could not even coexist. Another strategy is

to require the allocation order for resources to be globally fixed and inverse to their release order

(LIFO). In many scenarios this is neither possible nor desired, and would violate our demand for

usability (F4[p93]). The constraint might even cause resources to remain allocated longer than

8PCPE is comparable to the highest locker protocol HLP.
9At least for real-time-critical tasks (→ Figure 3.3[p39]). EDF can also be used for non-periodic tasks.
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Figure 6.3.: Types of priority inversions

really required by the task logic. So, either deadlock detection and recovery is required, or other

techniques must be found.

Priority inversion. Mostly in the special context of implicit dependencies, priority inversion

is another inherent problem of preemptive, prioritized task systems. Here, the competition for a

single exclusive resource may already lead to the (temporary) blocking of a high priority task:

Definition II.5: Bounded / Unbounded Priority Inversion (BPI / UPI)

If a high priority task h requests an exclusive resource which is currently allocated by a lower

prioritized task l (→ Figure 6.3a), h is blocked, and this direct dependency is known as bounded

priority inversion. If an additional taskm with medium priority prevents l from running and

thus from releasing the resource, this indirect dependency is known as unbounded priority

inversion (→ Figure 6.3b), and might even result in the final suspension of h.

Since in both cases the task priorities, as defined by the developer, are not obeyed as desired,

this might lead to unexpected behavior, reduced reactivity and real-time capability of the

overall system. In particular this might not only affect directly involved tasks, but it can also

induce far-reaching consequences beyond the time of occurrence. The described problem

became famous in 1997 when the Mars Pathfinder mission had almost failed because of an

inappropriately shared data bus [147]. The engineers’ initial view on the synchronization

problem was devastating:

“The data bus task executes very frequently and is time-critical – we shouldn’t spend

the extra time in it to perform priority inheritance!” 10

10Fortunately, the VxWorks [307] based software was configured in such a way that (via remote-management) the

mutex for coordinating the access to the data bus could be reconfigured to use the priority inheritance protocol,

which finally resolved the unbounded priority inversion.
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In fact, especially for situations where time-critical behavior is expected or even mission

critical, additional effort can commonly not be avoided without jeopardizing a proper operation.

A truly critical property of priority inversion is that its occurrence depends on many variable

runtime factors, and thus it is hard to reproduce. In addition, the effects depend on the situation,

and vary widely from barely perceptible to catastrophic. Unfortunately, small or rarely observed

abnormalities are frequently ignored in software development and classified as non-critical, if

they no longer occur in subsequent (non-exhaustive) tests.

Available brute force solutions. So, what can be done in case of deadlocks or priority

inversions? A common approach is to terminate a spurious low priority task or withdraw

its resources for the benefit of a more important task. However, this might also result in highly

critical system states: While undoing the work so far, it might even leave the resources in an

undefined state, making a handover or re-initialization difficult. Just imagine the disastrous

withdrawal of a currently active DMA or radio controller! Counteracting with checkpointing

and roll-backs of whole tasks and involved resource states is hard or even impossible on tiny

embedded systems. Even if rarely used, this would produce enormous system load and memory

overhead issues, and seriously conflict with our feature requests F1 and F2[p93]. Not to mention

the increased power consumptionwhich is of special importance for energy constrained systems

like sensor nodes.

6.3.2. Resource Synchronization Protocols with Priority Inheritance

Another option are resource sharing protocols which assign dynamic task priorities in order to

handle deadlocks and deal with priority inversions. Since we present DynamicHinting as an

extension for cooperatively managing this kind of exclusively accessed and temporally shared

resources, we’ll introduce some definitions and review some basic protocols first. In particular,

we’ll discuss their central policies with respect to their qualification for the demands from

Section 6.2.2 as well as for being combined with and improved through DynamicHinting. A

summary of these protocols – which basically rely on priority inheritance mechanisms – can be

found in Table 6.1.

Definition II.6: Priority Inheritance

Depending on the concrete protocol, the general idea of priority inheritance is to temporarily,

and either implicitly or explicitly, raise the active priority11 p(t) of a task t ∈ T above its initial

base priority Pt to either

◦ the maximum active priority of all tasks it currently blocks (true priority inheritance),

◦ or a priority which would preventively avoid further blocking of a resource holder in the

future.

Though (unbounded) priority inversions can be encountered through this idea, we also pay

this improvement by some consequent problems:

11According to the SmartOS terminology, active priority means the priority according to which the scheduler and the

resource manager execute a task and assign resources. Base priorities are initially left untouched.
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Definition II.7: Inheritance Related Inversion / Starvation (IRI / IRS)

If any priority inheritance strategy raised a task l ’s active priority p(l )> Pl , and consequently

another task m with Pl < p(m) < p(l ) cannot preempt any more, m undergoes inheritance

related inversion. If tasks with a priority below the priority of any resource owner will not be

scheduled in general, these undergo inheritance related starvation.

Definition II.8: Avoidance Related Rejection / Inversion (ARR / ARI)

If a resource request for a currently unallocated resource is rejected in order to avoid potential

problems (e.g. deadlocks) in the future, this is called avoidance related rejection. If the rejected

task h has higher base priority than the task l which causes the rejection due to a resource

allocation, i.e. Ph > Pl , this is called avoidance related inversion [73].

While IRI is obviously required to counteract the problem of unbounded priority inversion,

IRS, ARR, and ARI impose severe problems for long-term resource allocations since these

jeopardize our feature request F1[p93].

Protocols. A truly simple approach to avoid unbounded priority inversion is the non pre-

emption protocol (NPP) which executes tasks non-preemptively as long as these keep resources

allocated. While NPP can in general be emulated by encapsulating resource usage in atomic

sections, it implicitly raises the owner’s priority to the system-wide maximum, but also causes

IRS. Deadlocks are reliably avoided since tasks may commonly not even suspend themselves

while holding a resource. A relaxed version of the NPP allows the voluntary release of the CPU

by means of yield-directives. However, this variation is only deadlock free if not more than one

task at a time is allowed to allocate resources. Any other task’s request will implicitly yield then,

and resumes the current resource owner to at least ensure its own progression. This behavior

turns IRS into ARR. The advantage of both versions is both the simple implementation and the

convenient option to share one stack among the tasks12. The most significant disadvantage is

their bad reactivity on sporadic events, and that they are obviously not suitable for long-term

allocations because of inheritance related starvation and avoidance related rejection.

In 1990 Sha et al. [262] and Baker [19] presented various improved approaches for avoiding

unbounded priority inversion in the context of exclusively managed resources: The already

mentioned PIP, PCP and HLP techniques [262] face this problem by adjusting task priorities

dynamically at runtime according to the current resource assignment situation. SRP [19] is an

extension to PCP, but also supports multi-instance resources13, and assigns so called preemption

levelswith regard to various selectable metrics (e.g. deadlines and periods under EDF and RM

scheduling). Since these protocols are commonly still applied in their original form, we won’t go

into detail about their general policies. Instead we’ll only mention some critical problems in the

12We have already discussed cooperative CPU scheduling in the context of the Contiki OS in Section 3.3.2 where

yield-directives perform stack rewinding to share the stack, but invalidate all local variables.
13For this work we limit our consideration to single-instance resources.
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NPP1 NPP2 PIP PCP/OCPP HLP/ICPP SRP

reference(s) [262] [262] [63] [19, 296]

avoids bounded priority inversion – –4 –4 –4 – –

avoids unbounded priority inversion ✓ – ✓ ✓ ✓ ✓

avoids chain blocking · 5 ✓ – ✓ ✓ ✓

deadlock avoidance ✓ ✓
6 – ✓ ✓ ✓

avoids inheritance related inversion · 5 – – – – –

avoids inheritance related starvation – ✓ ✓ ✓ – –10

true priority inheritance9 – – ✓ ✓ – ✓

avoids avoidance related rejection · 5 – ✓ – – –

suitable for long-term allocations11 · 5 – ✓ – – –

allows task self-suspension8 – ✓ ✓ ✓ – –10

interleaved exec. of equal prio. tasks8 · 5 · 5 ✓ ✓ – –10

support for dynamic base priorities ✓ ✓ ✓ –7 –7 ✓

blocks on preempt. request request request preempt. preempt.

required a priori information3 none none none alloc. graph alloc. graph alloc. graph

computation of allocation delay simple simple hard12 simple simple medium17

expected implementation complexity simple simple medium12 high13 medium simple18

extensible via DynamicHinting · 5 ✓ ✓ ✓ ✓
14

✓
14

available in SmartOS – –15 ✓ ✓ – –

available in e.g.16 POSIX POSIX(PPP) µC/OS-II

RTSJ RTSJ(PCE)

ADA95(CLP) ADA05(PLP)

OSEK

Nano-RK(PCPE)

1 without voluntary yield (i.e. explicit self-preemption) during a lasting resource allocation
2 with voluntary yield (i.e. explicit self-preemption) during a lasting resource allocation
3 e.g. the computation of resource-specific ceiling priorities: c(r ) :=max{Pt |t ∈ T might allocate r }
4 can be improved via DynamicHinting
5 not relevant / cannot occur since only one task may hold resources at a time
6 only if a denied request yields
7 would require the dynamic adaptation of ceiling priorities (which is hard while resources are still allocated)
8 during lasting resource allocations
9 i.e. a task is not raised higher than to the priority of the highest prioritized task it blocks
10 would corrupt the stack sharing feature of SRP
11 according to Section 3.2 long-term allocations last over at least one task self-suspension
12 because of potential chain blocking
13 because of avoidance related inversion
14 untested
15 can be emulated
16 system specific name in brackets
17 depends on the scheduler: feasibility tests for RM and EDF are available
18 simple if deallocations order is inverse to allocation order (LIFO)

Table 6.1.: A comparison of common synchronization protocols with priority inheritance

(→ Section 6.3.2 for definitions and detailed explanations)
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context of our demands from Section 6.2.2, and refer to [19, 73, 172, 262] for further information.

Nevertheless, a concrete formalization of PIP and PCP in the context of their implementation for

SmartOS will be presented in Sections 6.4.1, and 6.7 respectively.

Initially, the mentioned protocols have in common that they address the problem of bounded

priority inversion only indirectly by raising the priority of blocking or simply resource holding

tasks to potentially accelerate their operation and resource deallocation. For deadlock avoidance

HLP, PCP, and SRPmaintain a safe state (like NPP), and therefore use a rather conservative policy

when adjusting task priorities or preemption levels, and deciding if a task is scheduled or if a

resource request is granted or denied. While PIP and PCP will block a task not until it requests

an already allocated resource (block on request), HLP and SRP will already block a task upon

its attempt to preempt another task (block on preemption): Based on resource-specific ceiling

priorities c(r ), which represent the maximum base priority over all tasks that might potentially

request the resource r , a free resource is only assigned (PCP), and a task t is only executed (HLP,

SRP) if its active priority is higher than the current system ceiling priority c̄, which in turn is the

maximum ceiling priority over all resources which are currently allocated by other tasks u 6= t .

Please note, that the computation of the ceiling priorities requires some static information about

each task’s potential resource requirements to which we refer as the allocation graph in Table

6.1.

Although the execution and assignment policies of PCP, HLP, and SRP perfectly meet our

demand F3[p93] for safety, they severely conflict with F1[p93] which requests for reactivity and

performance for both high and low priority tasks. Obviously, they can rapidly lead to the already

introduced problems of avoidance related inversion/rejection fromDefinition II.8: If a task t1

with active priority p(t1) holds a resource s with ceiling priority c(s)≥ Pt1 , PCP at least refuses

the assignment of any remaining but free resource r to any other task t2 with p(t2)≤ c(s). SRP

and HLP (at least according to the implementation from [63]) implicitly act in a similar way by

avoiding the execution of such a task t2 entirely. Even though these implicit and anticipatory

reservations would also ensure a fast assignment of further resources to t1, i.e. each task is

blocked at most once, they are critical in many respects: First, t2 is rejected even if r will not be

allocated by t1 for a long time. Second, for simplicity and performance inmany implementations

it is assumed that any task may request any resource, i.e. that the potential allocation graph is

entirely meshed. In this case, t2 would also be rejected if it does not even share a single resource

with t1. Finally, the penalty is even worse if the protocol already raised p(t1) above its original

base priority Pt1 while in fact, t2 was specified to be truly more relevant than t1 (i.e. Pt2 > Pt1). In

summary, a task implicitly prevents other tasks with equal or lower priority from being served

while it simply holds a (maybe rarely shared) resource. When recalling our motivation for both

real-time resource requests and long-term resource allocations from Section 6.2.2, it becomes

obvious that such a behavior is not acceptable. Another problem with PCP and HLP is, that

resource ceiling priorities complicate the support for dynamic task base priorities. For large

task systems in particular, this feature will either cause significant algorithmic runtime effort

to avoid the comeback of deadlocks, or it must be disabled while tasks hold resources. Finally,

arbitrary resource allocation nesting is hard to manage in case of independent allocation and
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deallocation orders. SRP in particular requires LIFO order for a simplified implementation and

the option to share a common stack among the application tasks.

Summary. Though PCP, HLP, SRP, and NPP inherently prevent deadlock situations (→ F3), and

even restrict allocation delays or blocking (of initially unknown duration) to every first requested

resource per task, these techniques imply some serious problems. Apart fromNPP they need

initial information about each task’s worst case resource requirements, which are often not even

constant over several runs, but depend on various conditions and the code execution flow. Most

notably, long-term resource allocations can immediately trigger inheritance related starvations

and avoidance related rejections, and consequently result in disastrous performance effects on

lower priority tasks (→ F1).

Thus, we selected the priority inheritance protocol (PIP) as basic technique for our DynamicH-

inting approach. In comparison to the presented alternatives, PIP is much more generous when

granting resource requests, and often gains a better average case performance [184]: Since PIP

treats safety against fairness, it achieves a good trade-off between serving high and low priority

tasks. Here, requests for currently free resources are always granted immediately: The successful

allocation of a resource r by a task l will initially leave l ’s priority untouched. Then, as soon as a

task h with higher priority requests r , l will be raised to the priority of h. This avoids unbounded

priority inversion and allows l a fast deallocation of r (at least in theory) by granting more CPU

time compared to scheduling with its initial priority. By doing so l ’s priority is reduced again, h

obtains r and is finally resumed. In turn l is preempted and transits to ready state. However,

since PIP will fortunately neither cause inheritance related starvation nor avoidance related

rejection, it may consequently and unfortunately lead to chains of resource blocked tasks (chain

blocking14) as depicted in Figure 6.5a, and even deadlocks may occur. Whether these problems

can still be avoided or prevented entirely depends on the general resource management policy

of the underlying operating system. Although this is not the case for SmartOS, we will show that

both shortcomings can be handled and solved by our DynamicHinting approach in an efficient

manner. In fact, though complete deadlock avoidance is a desirable property of autonomous

systems (→ F3[p93]), it is not very practical in most reactive embedded applications.

So far, we presented our requirements for real-time-aware resource management along with

some already available approaches and protocols for SANet and general embedded applications.

Additionally, though the central idea behind DynamicHinting can also be combined with some

other techniques, we motivated our decision for using the priority inheritance protocol as

basis for our new approach, since it inherently allows long-term resource allocations without

avoidance related inversions. Nevertheless, we will also confirm this decision by comparing

performance results between a PIP and a PCP version within the test beds in Section 6.7.

14Regarding the allocation delay, a task can be blocked at most by i critical sections of lower priority tasks or by j

critical sections corresponding to resources shared with lower priority tasks: IfU denotes the allocation time for

each task and resource, then the blocking delay τ :=min{i , j } ·U .
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6.4. Resources and Priority Inheritance under SmartOS

This section presents the details about our novel resource management approach. Apart from

embedded and real-time systems, the basic idea behind DynamicHinting may be applied as

integral concept for many other operating systems in case these support truly preemptive and

prioritized tasks, plus a timing concept that allows temporally limited resource requests. For our

reference implementation we extended SmartOS (→ Chapter 4), since it provides appropriate

task, timing and resource basics, and consequently allowed an easy integration. In addition, it is

available for several microcontroller architectures, offers quite common OS characteristics, and

thus is a good representative for the adaptation of similar systems: Since SmartOSwas developed

for reactive systems, it inherently applies a priority-based scheduler for fully preemptive tasks:

Apart from syscalls which are executed in the kernelmode, atomic sections are entirely forbidden.

Each task has its individual and dynamic base priority, which satisfies our request for a flexible

adaptation to changing demands and environmental conditions at runtime, and an active

priority which reflects dynamic task dependencies and dominates the scheduling process.

Furthermore, the kernelmaintains a local system time andprovides a temporal semantic through

the API which enables tasks to suspend themselves while waiting for events and resources with a

certain (relative) timeout or (absolute) deadline. Thereby, tasks may react on resource allocation

failures and event imponderabilities without jamming thewhole system (e.g. by spinning request

loops). Beyond, this already provides an early and simple method for delayed but guaranteed

deadlock recovery.

With respect to our feature requests F1 – F5 from Section 6.2.2, we’ll now formalize the

extended resource management policy of SmartOS along with our novel strategy to extend the

priority inheritance protocol with reflective task collaboration for on-demand resource sharing.

See Section 6.7 for a comparison to the priority ceiling protocol version.

6.4.1. Extended SmartOS Specifications

This section formalizes the central properties of the SmartOS kernel as presented in Section 4.3,

and extends the informal description by resource-related specifications.

S1 Each SmartOS system consists of a set of preemptive tasks T (|T | ≥ 1), events E (|E | ≥ 0),

and non-preemptive resourcesR (|R| ≥ 0). Each task t ∈ T is executed for the whole system

runtime and can neither be started dynamically nor terminate entirely. As depicted in

Figure 6.4, each task t ∈ T \{t0} is always either in

◦ waiting state, if it can currently not be executed since it waits for the invocation of an

event (i.e. a regular event, a resource allocation, or some time to elapse),

◦ ready state, if it is neither executing nor waiting for any event (instead it is in the

ready queue, and can potentially be selected for execution on the CPU), or

◦ running state, if it is the first task in the ready queue, and thus itself or the kernel is

currently executed on the CPU15.

15In case of idle tasks (→ Section 4.3.2[p50]), this does not necessarily mean that the CPU is active.
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driven

self-suspension
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Figure 6.4.: Task state transitions under SmartOS

On startup, all tasks are in ready state. At runtime exactly one task is always in running

state. The system idle task t0 will never suspend itself, and thus can only transit between

ready and running state. In particular, it will never wait for any event or request any

resource.

S2 Each task t ∈ T has a base priority Pt which is defined at compile time, and can be

changed at runtime by application code. An additional active priority p(t) is used by

the scheduler which always selects a task with highest active priority in ready state for

execution. For tasks with equal active priorities either round robin (default) or strictly

cooperative scheduling can be selected at compile time.

For our DynamicHinting approach we define p(t )≥ Pt , and assign active priorities accord-

ing to a dynamic priority inheritance protocol like e.g. PIP. At system start ∀t∈T : p(t )= Pt

holds. In case of the system idle task t0, p(t0)= Pt0 = 0= const.

S3 State transitions can be triggered in three ways (→ Figure 6.4):

a) self-suspension: the running task transits towaiting state by either sleeping, request-

ing a resource which is currently allocated by another task, or by waiting for a still

outstanding event.

b) self-preemption: the running task transits to ready state by releasing a resource, or

by invoking an event for which a higher prioritized task is already waiting. Reducing

its own base priority might also cause this transition if, by this action, another task in

ready state receives a higher active priority.

c) driven: a task’s state is changed due to any other task’s or IRQ handler’s operation (e.g.

by invoking an event or releasing a resource), or if its deadline for a self-suspension in

waiting state is reached.

S4 All resources in R are treated as non-preemptive and will never be withdrawn. Once

assigned, each owner task is responsible for releasing its resources. In particular, no other

task or IRQ handler can force their release or handover16.

16The question if and when a task will release its resources cannot be decided by SmartOS at runtime. If this is

relevant for the correctness of the overall system other methods – like e.g. formal verification – must be applied at

application level, and might even identify code positions which violate the specific requirements.
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S5 If a task t ∈ T \{t0} requests a currently free resource, it immediately succeeds and remains

running or at least ready17. Otherwise it transits to waiting state. Waiting can be limited by

the specification of a timeout. A task remains in waiting state until it receives the resource

or until the timeout is reached. Then, depending on the other tasks, it transits to either

ready or running state.

S6 Any application task t ∈ T \{t0} may allocate any resource several times and must release it

as often. Requests for already self-allocated resources are granted immediately without

self-suspension.

S7 Each task t ∈ T \{t0} may wait for at most one single resource r ∈R at the same time. The

awaited resource is

αt :=







; if t awaits no resource

r ∈R if t awaits r
.

S8 Several tasks Tr ( T \{t0} may await the same resource r ∈R at the same time (due to S5,

S6: Tr 6= T ):

Tr :=
{

t ∈ T |αt = r
}

.

S9 Each resource r ∈R may be assigned to at most one owner task t ∈ T \{t0} at the same time.

The owner task is

σr :=







; if r is not assigned to any task

t ∈ T \{t0} if r is assigned to t
.

S10 Each task t ∈ T \{t0} may hold exclusive access to several resources Rt ⊆ R at the same

time:

Rt :=
{

r ∈R |σr = t
}

.

Allocation and deallocation orders of resources are arbitrary and independent from each

other.

S11 As soon as a task t ∈ T \{t0} releases a resource r ∈ Rt entirely, r will directly be handed

over to the task u ∈ Tr with highest active priority p(u). For tasks with equal priorities the
one which requested r first will receive it and leaves waiting state (→ S3c).

In consequence to these specifications, adequate methods for dealing with deadlocks will be

required at runtime since the four Coffman conditions Co1–Co4 [70] are fulfilled and deadlock

prevention is not possible:

Co1 mutual exclusion (due to S9),

Co2 hold and wait (due to S7, S10),

Co3 non-preemptive resources (due to S4), and

Co4 circular waits (due to S5 and S10).

17For the special occasion that another task u with p(u) > p(t) reaches its deadline during the execution of the

corresponding syscall, the scheduler will resume u instead, and t implicitly transits to ready state.
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6.4.2. Priority Inheritance and Deadlock Occurrence

Having introduced the formal SmartOS specifications, we’ll next define the resource-await-

queue (RAQ) as central data structure for our resource management approach.

Definition II.9: The Resource-Await-Queue A(t )

The resource-await-queue A(t ) of a task t ∈ T is an alternating list of tasks and resources for the

representation of currently existing task-resource dependencies18 (→ Figure 6.5a):

A(t ) :=






t , αt

︸︷︷︸

∈R

,σ(αt )
︸ ︷︷ ︸

=u∈T

, αu
︸︷︷︸

∈R

,σ(αu )
︸ ︷︷ ︸

=v∈T

,αv ,σ(αv ), ...







with length |A(t )| (6.1)

Due to the SmartOS specifications and the definition of RAQs, three important facts become

obvious:

Lemma II.2. On the structural properties of RAQs:

a) For each task t ∈ T , A(t ) is well-defined and cannot diverge, since

∀x∈A(t ) : outdeg(x)≤ 1 due to S7 and S9. ä

b) Two or more RAQs may converge (→ Figure 6.5b), since

∀x∈A(t ) : indeg(x)≥ 0 due to S8 and S10. ä

c) For each task t ∈ T , A(t ) ends either in a task or in a cycle (→ Figures 6.5a,d).

Proof. Assume A(t) ends in a resource r ∈R. Then, σr =; and ∃u∈T :αu = r . This means

that u would await r even though r is free – a conflict to S5 and S11.

Lemma II.2 directly leads to somemore observations:

1. If A(t) and A(u) contain at least one common element x ∈ R ∪T , they also contain at

least one common task v ∈ T . Finally, A(v) controls the further execution of both t and u.
Within the example in Figure 6.5b the tasks t1, . . . , t6 depend on A(t6) and finally on t7.

2. If A(t ) does not end in a cycle, only its last task can be in ready or running state. All other

tasks are currentlywaiting.

These observations are exactly the critical point when dealing with resource management

under real-time conditions. The tail of a RAQ (cycles will be addressed later) always prevents all

other tasks therein from running because of at least one certain resource. Until now, this was

regarded entirely independent from any task priorities. However, we actually want all tasks to be

18For the internal representations of this dynamic data structures, each TCB contains a pointer to the resource the

task currently waits for, and each RCB contains a pointer to the its current owner (→ Section A).
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running:

new
request

Figure 6.5.: Examples for Resource-Await-Queues

scheduled close to their intended base priorities (→ F1), but we also mentioned in Section 6.3.1

that this is not always possible due to priority inversions. Therefore, we adapt each task’s active

priority to the resource situation as follows:

Each task t ∈ T always receives the maximum active priority p(u) of all tasks u 6= t it currently

blocks. Obviously t ∈ A(u) holds, and t blocks all its preceding tasks in A(u). In this case we

want t to release its resources quickly to grant a fast resumption of more important tasks.

With respect to F1 and F2[p93], we want to obtain the task active priorities efficiently, and

without using additional memory or data structures except for those which are already provided

by SmartOS, i.e. the task and resource control blocks from Appendix A[p321]. The problem with

this is, that our demand for convenient usability (F4[p93]) complicates this procedure: While

timeouts can split RAQs arbitrarily and modify system-wide task-resource dependencies asyn-

chronously to any executing task, the support for dynamic base priorities and independent

allocation/deallocation orders prohibits the use of stack based priority maintenance19. Apart

from the memory overhead which would arise frommaintaining task-specific priority stacks,

each task’s active priority may vary severely and arbitrarily, and will in particular not necessarily

decrease in the opposite order in which it did increase previously. Consequently we need to

re-compute any task’s active priority each time a related RAQ changes. Therefore, as shown in

Figure 6.6, we initially define

w(r ) :=







0 if Tr =; (indeg(r )= 0)

max
{

p(t ) | t ∈ Tr
}

if Tr 6= ; (indeg(r )≥ 1)
(6.2)

as the maximum active priority of all tasks t currently waiting for the resource r . Hence, to

19E.g. similar to the proposed SRP implementation in [19]
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support “true priority inheritance” (cf. Table 6.1), the optimum active priority p(t ) for each task

t ∈ T has its lower bound limited by its allocated resources at

W (t ) :=







0 if Rt =; (indeg(t )= 0)

max
{

w(r ) | r ∈Rt

}

if Rt 6= ; (indeg(t )≥ 1)
. (6.3)

Furthermore, p(t ) is always limited to the bottom by its own base priority Pt . Finally, t ’s active

priority computes as

p(t ) :=max
{

Pt ,W (t )
}

≥ Pt . (6.4)

This does not only solve the priority selection for priority inheritance, but it also leads to the fact

that priority inheritance is transitive:

Lemma II.3. Each RAQ A(t ) is always partially ordered by active priorities and thus its tail has

highest active priority.

Proof. If |A(t )| = 1 then αt =;, in particular no other task is in A(t ), and the Lemma obviously

holds. Otherwise, according to Lemma II.2, for each resource r ∈ A(t ) exists exactly one owner

task v ∈ A(t ) and exactly one task u ∈ A(t ) waiting for it:

∀r∈A(t )∩R : ∃u,v∈A(t )∩T :αu = r,σr = v ⇒ u ∈ Tr 6= ;,r ∈Rv 6= ;

According to Definition II.9 this covers all tasks in A(t ), and finally the Lemma holds since

p(v)
(6.4)

≥ W (v)
(6.3)

≥ w(r )
(6.2)

≥ p(u).

Figure 6.6 gives an example, and also shows the mentioned chain blocking from Section 6.3.2.

At the end of Section 6.4.1 we already mentioned that the extended SmartOS specification does

not prevent deadlocks (→ Coffman conditions Co1–Co4[p104]). In fact, our resource inheritance

strategy from Eq. (6.4) does not avoid them either, and thus they still require closer examination

(→ Figure 6.5d):

Lemma II.4. If any RAQ A(t ) contains a cyclic subsequence C, then:

a) C contains at least two tasks proof by S6. ä

b) A(t ) contains no other cycle proof by Lemma II.2a. ä

c) All tasks in A(t ) are suspended proof by Lemma II.2c. ä

d) ∀u,v∈C∩T : p(u)= p(v) proof by Lemma II.3. ä

e) C is a persistent deadlock if no task t ∈C ∩T specified a deadline.

Otherwise it is a temporary deadlock. proof by S5. ä
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Figure 6.6.: Example for priority inheritance and DynamicHinting

Let’s consider the consequences: By requesting a resource r which is currently allocated by a

task u =σr , the running task t only produces a deadlock if it already holds another resource s ∈
A(u) (→ Figure 6.5c). Then, A(u) and A(t ) contain exactly the same elements. Thus, deadlocks

are first considered when a task requests a resource.

As requested in Section 6.2, the formalization of our resource management policy along

with the priority inheritance protocol is ready to support arbitrary and independent resource

(de-)allocation orders plus dynamic base priorities. Next we’ll present our DynamicHinting

approach for improving bounded priority inversion, chain blocking, and deadlock situations,

before implementation details follow in Section 6.6.

6.5. The DynamicHinting Approach

The central objective of DynamicHinting is to grant tasks the collaborative access to exclusively

and temporally shared resources while, at the same time, it allows them to closely comply with

their intended base priorities. We already introduced various related compositional problems

within preemptive and concurrent task systems, but also motivated in Sections 6.2 and 6.3 why

we accept and handle them dynamically at runtime.

6.5.1. Addressed Problems

Many conservative resource management approaches try to avoid deadlocks and chain blocking

by simply refusing a resource request (or even a task execution) immediately if it would cause

such problems or could do so in the future. Others take the risk and accept such situations,

but simply suspend any requester until it can be served. In our opinion, both methods are not

satisfying since exactly the just rejected or suspended task h ∈ T alone has to cope with the

situation. This is especially annoying if h is truly more important than at least one other task t in
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the just averted cycle or extended chain. Independent from the applied resource management

policy, this results in a violation of base priorities (Pt < Ph). Furthermore, resources are usually

indispensable when requested, and these requests are commonly not meant to be replaced

by any other proceeding. Then, developers, or tasks respectively, tend to retry infinitely until

the request succeeds. This results in so called active or spinning loops or in long timeouts, and

might not only starve other tasks, but even worse, this will simply shift the problem back from

system level to task level without further information about how to proceed effectively. In fact,

since the task-resource-dependencies and RAQ structures are highly dynamic and depend on

the system-wide allocation order, another task therein might react much better than h if it knew

about the situation. Unfortunately, tasks are commonly not aware about their spurious influence

on each other and so the RAQs are reduced successively, beginning at their very end (→ Lemma

II.3)20. This is exactly where DynamicHinting applies.

6.5.2. Cooperation and Collaboration

Before we start, we’ll clarify the basic terminology, and disambiguate the terms cooperation and

collaboration from Figure 3.2[p37] in the context of concurrent task systems:

In today’s literature, both terms are sometimes used differently and sometimes interchange-

ably. In [54], Brna presents a detailed overview on commonmeanings of the notion of collabo-

ration. Among these we find two definitions which reflect our requirements adequately, since

they allow a precise differentiation towards the notion of cooperation. Initially, according to

Roschelle and Teasley [253], “collaboration is a coordinated, synchronous activity that is the

result of a continued attempt to construct and maintain a shared conception of a problem”. In

contrast, “cooperative work is accomplished by the division of labor among participants, as an

activity where each person is responsible for a portion of the problem solving”. According to

Grice [114], collaboration may be extended by a formal contract or a contract-like component,

whereby the participants are obliged, at least to some extent, to participate actively in solving a

problem. In the context of this work, both terms will play a substantial role, and thus we’ll adapt

them according to our requirements with tasks taking the role of the participants. While the

differentiation can still be smooth we define them according to [114, 253] as follows:

Definition II.10: Cooperation and Collaboration

As cooperationwe denote the intentionally planned and explicitly implemented interaction

between tasks in order to conjointly fulfill a common objective, and consequently to comply

with the system specification. In particular, these interactions are inherently part of the system

design and known at development time. As collaborationwe denote the dynamic arrangement

and mutual engagement of tasks to solve one or more sporadically emerging problems upon

their occurrence through coordinated efforts and on-demand interaction. In particular, the

set of involved tasks and the degree of interaction is variable and situation specific, and thus

unknown at development time.

20Please note: Though limited to at most one blocked resource per task (∀t∈T : |A(t )| ≤ 3), this problem also exists for

e.g. PCP and HLP.
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Similar definitions within information sciences are known from information processing [115]

and agent systems [59]. A common scenario for cooperation and explicit task dependencies

is the exchange of information via a common and dedicated data structure, e.g. among the

producer/consumer tasks from Listing 4.4[p57]. Here, the local objective to jointly fulfill a function

was intentionally divided between a fixed number of tasks at development time, and is part

of the system design. In contrast, in the context of DynamicHinting, collaboration means the

distributed detection and handling of implicit task-resource dependencies. Since these are

often unpredictable, tasks acquire the related information autonomously, but coordinate their

operation on-demand for resolving the situation. Since this obviously requires some distributed

knowledge, the information must be accessible for the involved tasks, and comprises

C1 the local objectives which can e.g. be derived from global objectives as depicted in Figure

1.1[p5], (defined within the system specification)

C2 a notion and an appropriate description of the current problem,

. (provided by dynamic hints)

C3 the knowledge about individually available solution strategies and techniques,

. (task and task state specific)

C4 an association for relating the objectives, problems, and potential solutions. This includes

the time and quality awareness, and the self-evaluation through the semantic use of data

(→ Figure 1.7[p14]), (e.g. specified through static rules or time-utility-functions)

C5 an optional contract for regulating the task-specific participation and engagement in the

problem solving process [114]. (e.g. from real-time andWCRT specifications)

Since we address compositional software design in the context of dynamic resource manage-

ment, we aim on solving sporadic concurrency problems emerging from implicit dependencies

with on-demand collaboration strategies. The optional contract can be defined by the system

designer, but commonly aims on reflecting the task priorities.

6.5.3. The Proposed Solution

Via so called hints our approach provides runtime information for each task about which

resource it should release to improve the overall system reactivity and liveliness. Receiving and

following these hints is always optional for each task. But if followed, it definitely breaks an RAQ

and reduces direct, chain, or deadlock blocking of at least one taskwith higher priority (→ Figures

6.6, 6.7). In the case of direct blocking, even bounded priority inversions are reduced since

the resource handover is accelerated. However, in order to allow blocking tasks to collaborate

adequately, two preconditions must be fulfilled:
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DH1 A lasting resource allocation must never prevent any task from requesting any resource.

Otherwise, our approach lacks the knowledge about the overall system requirements21.

Within our specifications, this is provided by S2, S5, and the priority inheritance protocol

in general.

DH2 A spurious task must receive the time and opportunity to react on a hint. Here, the

possibility to request resources with arbitrary timeout (→ S5) provides the time for the

current owner t , and Eq. (6.4) provides the appropriate priority, i.e. exactly the active

priority of the highest prioritized task blocked by t .

When the SmartOS resource manager determines the currently existing hints, the first step

is to identify the critical resources crit(t) for each task t ∈ T (→ Figure 6.6). These resources

currently define p(t) and thus, they directly or indirectly cause the blocking of any task h ∈ T
with higher base priority Ph > Pt and t ∈ A(h):

crit(t ) :=







; if p(t )= Pt
{

r ∈Rt |w(r )> Pt

}

if p(t )> Pt

(6.5)

According to Eq. (6.4), the presence of a critical resource for a task t ∈ T implies a raised active

priority, and vice versa:

crit(t ) 6= ;⇔ p(t )> Pt . (6.6)

Then, p(t ) was raised by at least one pending resource request of a task u with p(u)= p(t )> Pt .

In turn, t can reduce the blocking of at least one more important task by releasing any resource

r ∈ crit(t). Finally, t ’s hint can be selected in many ways, e.g. with regard to the blocked tasks’

(remaining) timeouts and periods, or priority thresholds and RAQ characteristics. Even subsets

of crit(t ) could be selected and signaled to t . Yet, for this chapter our approach always selects

the resource r ∈ crit(t) which blocks a most important task, and thus defines p(t) :=w(r ), as

follows (→ Figure 6.6):

hint(t ) := r ∈ crit(t ) with p(t )=w(r ) and r was requested last. (6.7)

While this information is directly signaled to t , further critical resources can be queried by the

task upon processing the hint by simply calling getResourceHint(...) again.

As soon as t releases the indicated resource, it will directly be passed to the first task in the

resource’s priority queue of waiting tasks, WLOG u (→ S11 and Section 4.3.7[p57]). Next, p(t) is

updated according to Eq. (6.2) – Eq. (6.4) and u is scheduled promptly. This is true since then u

holds the highest priority of all tasks in ready state, and t did let u pass by (→ S3b,c). As soon

as t is scheduled again, it can immediately re-request the just released resource to continue

its operation quickly. If, however, there is still another hint for t , our approach will signal this

situation again. In any case, the untimely release of a hint definitely resolves a priority inversion,

and accounts for the intended task base priorities.

21Since SRP, HLP, and NPP block on preemption (→ Table 6.1[p99]) these are ruled out entirely, and we have to rely on

e.g. PIP and PCP which block on request.
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hint
new
hint

new
request

(a) Chain

new
requestnew

hint

hint

(b)Deadlock

Figure 6.7.:DynamicHinting examples

The example in Figure 6.6 shows crit(t5) := {r2,r4} since both allocations block the execution

of more important tasks: t4, t2, and t6 suffer from bounded priority inversion. In particular,

p(t5)> Pt5 was defined by t4’s request for r2. Releasing r2 would instantly relax p(t5) :=w(r4).

Then, t4 is served and scheduled immediately since it indeed is the task with highest priority but

currently still blocked by t5. The allocation timeout which t4 specified for r2 grants t5 the time to

collaborate as described. If t5 follows its hint r2 prior to its regular release, it indeed reduces the

bounded priority inversion toward t4. At the same time, it also reduces the allocation delay of t2

which is also more relevant (Pt2 > Pt5) and will receive r2 right after t4. As soon as t5 is resumed,

it can either re-request r2 or follow yet another hint r4 to speed up the also still blocked task

t6 (Pt6 > Pt5). Please note that according to Definition II.7, t3 suffers from inheritance related

inversion (not inheritance related starvation, though) as long as t5 holds either r2 or r4 since

then Pt5 < p(t3)< p(t5). Task t1 can simply be preempted because of its low base priority.

For a better understanding of the implementation details in Section 6.6 and the integration

with PIP, we’ll briefly address the situations in which a task’s hint must be updated via Eq. (6.5)

and Eq. (6.7). This is relevant since we want limit the computation of critical resources and hints

to a minimum22 to comply with the performance demand F1[p93].

1. A new hint(t ) evolves iff another task u with p(u)> p(t ) requests any resource r ∈Rt while

p(t )= Pt .

2. An already existing hint(t ) changes if another task u with p(u)≥ p(t ) requests any resource

r ∈Rt while p(t )> Pt . It also changes or even voids if another task’s timeout for the hinted

resource is reached or if t releases it.

Two issues are obvious: First, hint(t) may change each time when p(t) is updated. Second,

hint(t ) often changes while t itself is not running. However, t might become running then (→
S3c) and must get informed instantly about its spurious influence.

6.5.4. Receiving Hints

A special problem with dynamic resource sharing is, that task blocking can occur at virtually any

time. From the blocker’s view, this happens quasi-asynchronously and regardless of its current

22These computations include list operations, and depend on their current length and the position of the affected

elements therein.
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situation, task state or code position. Thus, we’ll now describe three ways in which a task may

receive and handle its hints quickly to collaborate, and to speed upmore important tasks (code

and usage examples will follow in Section 6.7). While a comparative property matrix can be

found in Table 6.2[p116], the corresponding API functions are summarized in Listing 6.1[p115].

Explicit Querying (EQ). First, an explicit query can be invoked from within task mode, e.g.

periodically or at distinct code positions, where its handling would be possible at all. While

an explicit call to the corresponding getResourceHint(...) function allows the synchronous,

and thus fine-grained and situation specific collaboration, a task can never react on a priority

inversion as long as it is in waiting state. Yet, this is mandatory upon deadlocks (→ Figure

6.7b) and during many long-term allocations, where tasks sleep occasionally, or wait for some

events or interrupts while holding a resource (→ Sections 6.2.2, 6.7). Then, their collaboration

delay is unpredictable and deferred until the next query. Besides this severe weakness, the

implementation effort and code pollution might be immense – a contradiction to F4[p93].

Early Wakeup (EW). Second, to reduce the collaboration delay from EQ, but to still preserve

the advantage of synchronous reactions, we propose theEarlyWakeup technique. When enabled,

all functions by which a task suspends itself to waiting state (→ S3a) may return early upon a

new or changed hint. A dedicated return value will indicate this special situation. The effort and

impact on the programming model is similar to exception handling in various programming

languages or under SmartOS in general: A task ’tries’ to e.g. sleep but ’catches’ an Early Wakeup

to react on its blocking influence23. This way, coping with hints can be done instantly while it is

entirely limited to those caseswhen they really occur. Figure 6.8a shows an example for a sleeping

task l (in waiting state) which nevertheless reduces the blocking delay of a higher prioritized

task h promptly: Though l allocated a resource r at time τ0 and subsequently requested at time

τ1 to sleep until τ7, it wakes up early as h requests the same resource r at τ3. In consequence

l releases the hinted resource at time τ4 < τ7. The immediate handover suspends l to ready

state, but serves h immediately. Finally, l is resumed, reallocates the resource at time τ5, and

continues to sleep from τ6 until τ7.

The use of EarlyWakeup can be selected and tuned individually by each task t and for each self-

suspension. Therefore, we added a call specific threshold parameter ϕ to the involved SmartOS

syscalls and all subordinate API functions from Figure A.2[p327]. By passing ϕ, the threshold will

be stored in the caller’s task control block (hintPrio :=ϕ), and the self-suspending function

will only return early if

ϕ 6= 0 ∧ p(t )> Pt ∧ p(t )≥ϕ(t ), (6.8)

i.e. if priority inheritance raised the caller’s priority p(t ) to at least the specified threshold ϕ. In

particular, these functions will also return right after calling if a hint is already available then.

See Listing 6.1a for details.

23Compared to the ordinary SmartOS exceptions from Section 4.3.8, “trying” is implicit and covers just the self-

suspending function. In fact, the internal implementation is entirely different, since it is not supported to throw

exceptions from one task to another.
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running (w/o resource)

running (w/ resource)

ready

waiting (sleeping)

waiting (blocked)

Task States:

running (hint processing)

(a) Early Wakeup

handover

release

allocationrequest

timeout

Resource Operations:

(b)Hint Handler

Figure 6.8.:Hint processing strategies (top: PIP/PCP only, bottom: PIP/PCP & DynamicHinting)

Regarding the RAQs from Figures 6.7, both new requests of t1 will immediately resume t2

if it has Early Wakeup enabled. Then, t2’s own request for r2 is withdrawn. If not enabled, t3

may wake up early, instead. The same applies if t2 refuses to release its new hint r1, but simply

requests r2 again. So, beginning with the most promising task, i.e. the one which could reduce

the blocking most, the hint is forwarded, and obviously a single collaborative task in a chain or

cycle is already sufficient to improve or recover from the situation.

HintHandler (HH). Third, the last method for receiving hints are so calledHintHandlers. So

far, tasks in waiting state can use Early Wakeup, and running tasks can use explicit querying. The

advantage of bothmethods is, that the hints can be received and handled directly within the task

code, i.e. at positions where the developer knows the current task and resource situation, and

thus can react in an appropriate way. However, a problem remains for tasks which are seldom in

waiting state, or execute code which can not be modified for explicit querying. Indeed, code

modifications are often not desired or simply neither allowed nor possible at all24. Then, a block-

ing task’s priority is still raised according to PIP, but again the reactivity of other tasks remains

reduced, since the resource deallocation is deferred at least until the next query or wakeup

occurs. Our solution to this is to allow the resource manager to inject a special handler routine

24E.g. restrictive software licenses or the use of closed source might prohibit such modifications.
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// For sleepX and waitEventX functions

void __syscall_waitEventUntil(

Event_t *e, Time_t *deadline , ϕ)

// For getResourceX functions

void __syscall_getResourceUntil(

Resource_t *r, Time_t *deadline , ϕ)

(a) Early Wakeup related syscalls

// Set/get dynamic hint handler

void setDHH(handler *)

handler* getDHH(void)

// Set invokation threshold (0 disables)

void enaDHH(ϕ);

(b)HintHandler related functions

Resource_t* getResourceHint(Priority_t* p, boolean* deadlock , Time_t* deadline );

(c)General API

Listing 6.1: SmartOS functions for the DynamicHinting API (apply for the running task)

into the task execution flow, which is capable of releasing the critical resource temporarily with

respect to the current task situation. When enabled, these HintHandlers are similar to SmartOS

IRQ handlers since they can also be invoked asynchronously at any code position. However, in

contrast to ordinary IRQ handlers which may never access resources (→ Section 4.3.7 and Table

4.1[p56]), HintHandlers are always executed directly within their corresponding task’s context.

Thus, they are allowed to operate on the task’s resources just like the task itself. In particular, they

may release and (re-)allocate critical resources (→ S4), and also use DynamicHinting themselves

for solving further potential conflicts. As soon as a handler returns, its corresponding task (or

handler, respectively) is resumed where it was preempted before25.

Figure 6.8b shows an example: Here, the high priority task h preempts the low priority task

l at time τ2 and requests l ’s allocated resource r at time τ3. Instead of simply resuming l after

raising its priority p(l ) := p(h), the scheduler immediately invokes l ’s task-specific HintHandler,

and consequently l prepares for releasing the hinted resource r at τ4. Again, this suspends l

until τ5 where l reallocates the just released resource, and continues its regular operation right

after the HintHandler.

To make the HintHandler’s execution entirely transparent and invisible to its corresponding

task, it must fulfill two preconditions:

1. It must know how to safely release the hinted resource at the current time, and

2. it must be able to recover the resource’s previous state.

Then, similar to the CPU scheduler in preemptive kernels, a HintHandler allows to operate

literally non-preemptive resources in a quasi-preemptive way. Sometimes, similar techniques

are also provided by drivers. However, these are commonly neither task-specific nor able to

handle resource dependencies properly. During our work, we found that it is very common,

that further resources depend on a critical resource and must also be handled (→ Listing 4.5[p58]).

In fact, the current owner task (or its HintHandler) can do this best, since it has the required

knowledge for providing an all-embracing solution.

25By preparing the task stacks adequately there is no further context switch when leaving the HintHandler, and

its execution is entirely transparent and invisible to the corresponding task. The advanced option to combine

HintHandlers with SmartOS exception handling will be addressed in Section 6.5.5.
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Explicit Early Hint

Querying Wakeup Handler

option while in running state ✓ – ✓

option while inwaiting state – ✓ –

option while in ready state on resumption – ✓

expected code modifications many few handler only

execution of handling code synchronous synchronous asynchronous1

delay until the hint is received until query prompt prompt

task & resource-specific ✓ ✓ ✓

TUFs applicable ✓ ✓ ✓

support for throwing exceptions ✓ ✓ ✓

1 can be synchronized via SmartOS exceptions (→ Section 4.3.8)

Table 6.2.: Property matrix for the presented hint reception methods

Though it would be useful to associate one HintHandler per task-resource-combination, our

current implementationWLOG supports only one handler per task to save memory (→ F2[p93]).

While the handler must demultiplex the sources with respect to the hinted resource, it can also

be exchanged dynamically at runtime. Similar to Early Wakeup, the current handler must be

activated by the specification of a priority thresholdϕ. See Listing 6.1b for details. This way, each

task can also adjust and fine-tune its individual acceptance for hints. Again, the HintHandler is

only invoked if Eq. (6.8) holds.

6.5.5. Processing Hints

While DynamicHinting can be limited to task-specific priority thresholds, another option is to

introduce a common real-time priority threshold by initially defining ϕ equal for all tasks. This

inherently limits any potential collaboration to situations where tasks (directly or indirectly)

block any real-time task trt with Ptrt ≥ϕ.

Time-utility-functions and behavior functions. Of course, priority thresholds are not the

only useful metric for deciding between collaborative or egoistic behavior. Thus, besides the

hinted resource itself, we grant each task t access to some further information. According to

Listing 6.1c, this comprises

◦ its current (raised) priority p(t ),

◦ a flag indicating that a deadlock might persist if the hint is not followed, and

◦ the absolute deadline for the hint to expire due to its latest request timeout.

This information is of special interest for applying time-utility-functions (TUF) as proposed

in [113, 176]. First introduced by Gouda et al. [113], TUFs are a generalization of the common

deadline constraint: They describe the utility of completing an action within a certain time limit,

and therefore refer to the current system state, and static or dynamic demands. As exemplified

in Figure 6.9, they are specified as a multivariable function u : Ak 7→ X which maps a set of k

current properties a ∈ A (e.g. the current time) to a numeric value x ∈ X indicating a reward

(x ≥ 0) or a penalty (x < 0). While TUFs are commonly used by kernel modules to coordinate
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(a)Hard deadline,

collab. when useful

(b) Soft deadline,

collab. while critical

(c)Utility range,

collab. always

(d)Deadline w/ penalty,

collab. until penalty

Figure 6.9.: Various shapes of time-utility-functions for the time domain (black, u : T 7→ X ),

and potentially associated binary behavior functions (green, c : T 7→ {0,1})

the scheduling processes, we forward certain resource-related properties to the tasks. This

allows each task to reflectively relate its own demands and utility to other tasks and local system

objectives, and to decide between collaborative or egoistic behavior. For example a hint could be

ignored, if the remaining time until the deadline of the blocked task is still sufficient to complete

the own operation regularly, or if it is too short for a timely deallocation. Otherwise it is either

always followed, or the decision depends on further factors like the priority difference, task

states, energy effort, etc. In fact, we propose the implementation and application of a binary

behavior function c : An 7→ {0,1} which depends, among other factors, on the current time and

on the properties provided by the getResourceHint(...) function from Listing 6.1c:

c(tnow,hint,priority,deadlock,deadline, ...)=







1 collaborate (follow hint)

0 otherwise (ignore hint)
(6.9)

The test bed in Section 6.7.3 gives a concrete example for such decision criterions.

Direct hint processing. By providing the three presented techniques for hint reception, our

approach covers all potential states in which a task can be when it starts blocking another more

important task (→ Figure 6.8). Table 6.2 gives a summary. Thereby, it avoids the brute force

withdrawal of resources or the termination of tasks while it potentially reduces blocking delays

caused by resource conflicts. Up to now, handling a hint always follows the same procedure, and

targets on a possibly continuous operation of the resource and the task execution flow:

◦ Query the critical resource, and decide between following or ignoring the hint by using

Eq. (6.9). When following the hint:

1. Save the resource state (if necessary) and stop its operation.

2. Release the resource. This will cause an implicit task self-preemption (→ S3b) due to

the resource handover (→ S11).

3. Reallocate the just released resource upon resumption.

4. Restore the resource state and restart its operation.
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1 OS_DECLARE_TASK(t, 200, 100);

2

3 OS_TASKENTRY(t) {

4 Exception_t e;

5 while (1) {

6 getResource (& rResource );

7 TRY {

8 spinFunc (); // throws EX_HH

9 // via hint handler

10 waitFunc (); // throws EX_EW directly

11 } CATCH (e) {

12 Resource_t *h = getResourceHint (...);

13 switch (e) { // situation sensitive

14 case EX_HH: /* specific code */

15 case EX_EW: /* specific code */

16 }

17 }

18 releaseResource (& rResource );

19 }

20 }

(a) A task t with centralized hint handling (Pt = 100)

21 OS_DHHANDLER(hintHandler) {

22 if (behaviorFunction (...) == 1)

23 THROW EX_HH; // cond. collab.

24 }

25

26 /* Spins but can be interrupted

27 by a hint */

28 void spinFunc () {

29 setDHH (& hintHandler );

30 enaDHH (1);

31 while (condition) doSomething ();

32 enaDHH (0);

33 }

34

35

36 /* Sleeps but can wake up early */

37 void waitFunc () {

38 if (sleep (3000000 , 1) == -1)

39 THROW EX_EW; // uncond. collab.

40 }

(b)Hint forwarding via exceptions (ϕ(t )= 1)

Listing 6.2: Combining DynamicHinting with SmartOS exceptions

Combining DynamicHinting with SmartOS exceptions. Another convenient option apart

from the direct processing of hints at the point of their detection (i.e. synchronous or asyn-

chronous) is the combination of DynamicHinting with the SmartOS exception concept from

Section 4.3.8. Instead of implementing situation specific handlers at each potentially affected

code position, exceptions can be thrown (from within a task or HintHandler) in case of collabo-

rative behavior. These can be caught and processed at centralized – and thus easier to maintain

– sections of the application task. While throwing an exception will obviously work for Explicit

Querying and Early Wakeup, HintHandlers can also do so without any further concerns (→
Section 6.6.4 for implementation details). Most notably, the use within HintHandlers can even

allow to pass the initially asynchronous processing of hints back to the task, which synchronizes

on the catch block, and handles the request just like any other exception. Listing 6.2 gives an

example. The difference between processing a hint directly and raising an exception instead

is, that for the first option, the intermediate release of the critical resource is transparent to the

task logic, while for the latter option, the resource will most probably not be reallocated, but the

task will continue to some kind of failure recovery mode. Then, we have a slightly modified hint

handling procedure:

◦ Query the critical resource, and decide between following or ignoring the hint by using

Eq. (6.9). When following the hint, throw an exception. In the exception handler:

1. Stop and Release the resource. This will cause an implicit task self-preemption (→
S3b) due to the resource handover (→ S11).

2. Do some failure recovery (e.g. restart the try block).
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6.5.6. Summary

In this section we described, how DynamicHinting can help to reduce resource allocation delays

and even to recover from deadlocks. By accepting hints from the resource manager tasks are still

free to decide between collaborative or egoistic behavior at runtime. As demanded in Definition

II.10
[p109] this happens without explicit knowledge about each other. Since our approach gives

no guarantee about that, but initially depends on the behavior of the involved tasks, deadlocks

might consolidate and blocking persists if all involved tasks behave egoistic and ignore their

hints. However, a single collaborative task is already sufficient for the effective improvement of

these problems. To reduce this deficit, contracts between tasks may be used to regulate the hint

handling, and to account for a stable system behavior even under hard real-time conditions (→
Chapter 7). When considering our demands F1–F4[p93] and the SmartOS resource policy, a soft

advise is a good chance to facilitate a reflective operation with regard to long-term allocations.

This also avoids complex brute force recovery methods which often cause high system load

and energy consumption along with still reduced reactivity and hard-to-control system states.

Examples and performance tests follow in Section 6.7.

6.6. Implementation Details

This section shows the central algorithmic aspects and complexity details about our resource

management approach within our reference implementation under SmartOS. Regarding the

tight performance andmemory constraints of many embedded systems, the DynamicHinting

API is limited to three central functions26, the timeout handling, and the support for the pre-

sented hint processing strategies. As proposed in Section 4.3.3, the related functions are atomic

syscalls and, since kernel data structures like RAQs and task priorities might get changed, always

terminate by calling the scheduler.

The algorithmic problem is how to efficiently select each task’s active priority and dynamic

hint simultaneously. Thus, we first consider the situations in which p(t ) might change at all:

1. p(t) might increase, if a task u 6= t requests a resource r ∉ Ru , and thus t ∉ A(u) t ∈
A(u). Since the priority order within RAQs is transitive (→ Lemma II.3[p107]), r ∈Rt (direct

blocking) needs not necessarily to hold.

2. p(t ) might decrease, if t releases a resource r ∈Rt , or if a task u 6= t with t ∈ A(u) waiting

for a resource s times out. Then, u ∈ Ts u ∉ Ts . Again, s ∈Rt needs not necessarily hold.

3. p(t ) might change in either direction if any base priority Pu is changed at runtime while

t ∈ A(u). We’ll omit further details here, since this just requires the application of Eq. (6.4)

and Eq. (6.7) to tasks in A(u) until the RAQ’s transitive priority order is consistent again.

Before heading to the functional details, we’ll consider the computational complexities for

w(r ) from Eq. (6.2) andW (t) from Eq. (6.3): Since the internal representation for each Tr is a

priority queue (of active priorities), retrieving w(r ) is inO(1). In contrast, each Rt is a list and

thusW (t ) is inO(indeg(t ))=O(|Rt |).
26getResource, releaseResource, and changeBasePrioritiy
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1 int doBreak = 0;

2 Task_t *i = t; // iterate over A(t ) where t is the running_task

3 Task_t *u = NULL;

4 while (i != NULL) {

5 Resource_t r = αi ; if (!r ) break; // end of RAQ reached (Lemma II.2c)

6 u = σr ;

7 if (p(u)< p(t )) { // Priority order in RAQs is transitive => update

8

9 hint(u) = r ; // r is critical for u and will raise p(u). If enabled

10 // by u, hint (u) 6= ; will also cause the hint handler

11 // injection on resumption of u from ready state.

12

13 if (p(t )≥ϕ(u)) // Eq. (6.8) will be fulfilled in Line 17, and thus we

14 doBreak = // have to wake up u early if it is currently

15 earlyWakeup(u); // waiting (u will become head of the ready_queue ).

16

17 p(u) = p(t ); // priority inheritance: u blocks t

18 update_priority(u); // Update u’s position within its priority queue

19 } else doBreak = 1; // RAQs are again sorted by increasing priority since

20 // tasks with higher active priority than t

21 // won’t be affected anyway.

22

23 if (doBreak == 1) {

24 hint(u)->deadlock =

25 isInRAQ(u,u); // u ∈ A(u) <=> deadlock condition detected

26 break; // done.

27 }

28 i = u; // prepare for next iteration

29 }

Listing 6.3: getResource(. . . ): Main loop for processing the affected RAQ

6.6.1. Resource Allocation

int getResourceUntil(Resource_t *r, Time_t *d, Priority_t ϕ)

This function either returns 1 (success), 0 (timeout), or -1 (Early Wakeup) to its caller t . Two

fundamental cases must be considered:

1. If r is free (σr =;) or already allocated by t (σr = t), the request succeeds immediately

without suspending t . Updating any priorities or dynamic hints is not required.

This is obvious due to Lemma II.2 and S6. In particular, t is at most tail of other RAQs, and

thus the partial order of all RAQs remains implicitly valid. Complexity: O(1). ä

2. If r is occupied by σr 6= t , t is suspended, and must wait for the current owner to release r

(→ S9). Thus, priority management and hint selection must be executed for A(t ).

Here p(t) remains unaffected, but t ’s state is changed from running to waiting. Thus,

αt := r and t is inserted into Tr := Tr ∪ {t }27. Due to Eq. (6.2), w(r )new ≥w(r )old.

If w(r )new > p(σr ), the partial order for A(t) is violated and must be fixed by raising

p(σr ) := p(t). In this case, hint(σr ) := r is also updated since p(σr ) is now limited by r

due to Eq. (6.3). Both changes might propagate over further task-resource-dependencies,

27If the specified deadline d <∞, t is also inserted into the global timeout queue (→ Figure 4.2[p52]).
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6.6. Implementation Details

1 Task_t *v = σr ;

2 αt = NULL; // stop waiting.

3 if (p(t )== p(v)) {

4 while (v) { // iterate over A(v)

5 Priority_t p =W (v); // implicitly updates hint(v)

6 if (p == p(v)) break; // no further changes

7 p(v) = max(Pv ,p); // update p(v)

8 if (αv != NULL) v =σαv ;

9 else break;

10 }

11 }

Listing 6.4: Timeout handling: Processing of A(t ) if t ’s request for resource r times out

and so we iterate over A(t ) until a task u ∈ A(t ) with p(u)≥ p(t ) is found. Other RAQs than

A(t ) need not be considered due to Lemma II.2a,b. Complexity: O(|A(t )|). ä

Listing 6.3 shows the corresponding code, and also indicates the application of Early Wakeup

and the HintHandler. According to Section 6.5.4, we already resume the execution of the first

waiting task u ∈ A(t ) with Early Wakeup enabled and for which Eq. (6.8) is true. If u follows the

hint, DynamicHinting was already successful. Otherwise, u will simply continue its execution or

restart its own just aborted request. By doing so, a hint can be passed to the next task in A(u).

6.6.2. Resource Deallocation

void releaseResource(Resource_t *r)

Releasing a resource r is always initiated by its owner task t = σr (→ S4). If t holds r several

times, one is freed and no priority adjustments are required. The same is true if t frees r entirely

while Tr =;, since then w(r )= 0, and p(t) was obviously not defined through r . Complexity:

O(1). ä
If Tr 6= ; and t releases r entirely, the resource is directly handed over to a task v ∈ Tr with

highest active priority (→ S11). Thus, σr := v,αv :=;,Tr := Tr \{v} and finally w(r )new ≤w(r )old.

Yet, p(v) ≤ p(t) still holds due to Lemma II.3 and priority management remains to be done.

First, p(v) of the new owner remains unaffected. But only if p(v)= p(t ) holds, p(v) might have

defined p(t) in the past and thus p(t) and hint(t) might need an update according to Eq. (6.4)

– Eq. (6.7). RAQs need not be iterated since t is the running task, i.e. |A(t)| = 1. As desired,

Pt ≤ p(t )new ≤ p(t )old finally holds due to Lemma II.3. Complexity: O(indeg(t )) =O(|Rt |). ä

6.6.3. Timeout Handling

If a task t ’s request for a resource r = αt times out, we have to check and possibly update

the priorities and hints for several tasks in A(t). Indeed, ∃!v∈A(t ) : v = σr (→ Lemma II.2) and

p(t )≤ p(v) (→ Lemma II.3).

If p(t) � p(v), then t and v are neither on a common cycle nor was p(v) defined by p(t).

Hence, neither p(v) nor hint(v) need to be updated and we are done inO(1). ä
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Figure 6.10.: Stack layout and evolution when resuming a task (cf. Figure 4.5[p66])

Only if p(t) = p(v) holds, p(v) is currently limited at least by p(t). Listing 6.4 shows the

corresponding code: In this case, all tasks in A(v) need to be checked and updated iteratively by

Eq. (6.4) – Eq. (6.7) until the partial order is satisfied again. Complexity: O(|A(v)|)=O(|A(σr )|).
ä

6.6.4. HintHandlers

If a task t transits from ready to running state while hint(t ) 6= ;, t ’s HintHandler is injected into
its ordinary execution flow. To be entirely transparent and to avoid lasting modifications of

the task’s stack or the register set it uses, handlers always operate according to the callee-saves

strategy28.

Although handlers are implemented like ordinary functions without any parameters or a

return value, they are compiled as ISRs and thus return via the RETI instruction instead of

the expected RET (→ Listing 6.6, Line 14). Comparable to many CPU architectures which

automatically save machine status flags on IRQ occurrence, and finally restore them via RETI,

the MSP430 also uses this strategy. Since syscalls and IRQ Handlers are executed in kernel mode

just like interrupts (→ Section 4.3.3), we consequently have to preserve the status register across

the handler execution, and need to prepare the stack as depicted in Figure 6.10b. Otherwise,

the handler would consume these flags (e.g. the overflow flag) and corrupt the subsequent task

execution. Resuming into the handler is done by the dispatcher as usual (→ Figure 4.5[p66]): Its

final RETI instruction follows the context switch to the corresponding task, and, in particular, it

consumes only a copy of the status register29. In Section 6.5.4 we already requested this behavior

in order to execute the HintHandlers in task mode, and to grant them full access to their task’s

resources. Yet, returning from the handler abuses the RETI instruction to finally restore the

original status register and resume the original task – although neither a context switch nor a

’true’ interrupt return occurs at that time.

Another advantage of this implementation strategy is the inherent compatibility to the

28I.e. the called (handler) function has to save and restore the stack frame and the registers it uses.
29Since the HintHandler is declared as ISR, it won’t depend on the status flags at all.
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SmartOS exception concept from Section 4.3.8. If a hint handler is executed within (i.e. in-

jected into) a try block of its corresponding task, and an exception is thrown (but not processed)

therein, the THROWmacro restores the task’s context at the beginning of the try block, and contin-

ues to the catch block, where the hint can be processed synchronously within the ordinary task

execution flow. Leaving the HintHandler this way requires no additional action. In particular, it

is not required to return from the handler as depicted in Figure 6.10b. Instead, Figure 6.11 shows

the stack evolution in case of an exception throwing HintHandler.

Memory and Response-Time Overhead

Since the main data structure (i.e. the RAQ) must be maintained anyway in order to support the

classic PIP/PCP protocols, there is almost no additional RAM overhead for the DynamicHinting

approach itself. In fact each task’s control block contains 3 additional machine words: a flag field,

a pointer for the associated HintHandler, and another pointer for the current critical resource

(i.e. the hint). Of course the additional ROM requirements depend on the code for processing

the hints.

The absolute response time overhead for passing a hint depends on the underlying hardware,

but equals the time for an ordinary context switch since invoking a HintHandler or resuming a

task early is nothing else than switching to the corresponding task context (≈ 35µs on the test

bed hardware from Section 6.7).

6.7. Real-World Applications and Test Beds

The novel DynamicHinting programming paradigm as introduced in Sections 6.5 and 6.6 com-

bines temporally limited resource requests, priority inheritance, and the idea of task collabora-

tion to support long-term allocations, arbitrary allocation orders, and dynamic base priorities.

At the same time it reduces allocation and blocking delays, avoids inheritance related starvation

(IRS), avoidance related rejection (ARR), avoidance related inversion (ARI), and allows tasks to

handle deadlocks as these occur. Therefore it was designed to always support and comply with

the task base priorities as defined at development time, or as adjusted at runtime.
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In order to analyze the benefit of our approach we extended the SmartOS kernel as described

before. In addition to the proposed use of PIP as underlying protocol, we also implemented

a PCP version according to [262]. This allowed us to perform a comprehensive and mean-

ingful comparison between two very common strategies with different claims (e.g. generous

resource assignment for PIP versus deadlock prevention for PCP). In fact, according to Table

6.1[p99], only PIP and PCP allow task self-suspensions and avoid unbounded priority inversion

at the same time. However, since PCP showed significantly less performance in most test beds,

especially when dealing with long-term or rarely shared resources, we omit algorithmic and

implementation related details here but refer to e.g. [262] instead.

Again, both versions were implemented for the TI MSP430 family of microprocessors, and

tested on SNoW5 (→ Section 2.2[p22]) sensor nodes (10 kB RAM, 48 kB ROM) running at 8MHz.

Requiring 4 kB of ROM and 40 B of RAM for the whole kernel, the typically low computational

performance and small memory footprint of sensor nodes was considered carefully to leave

sufficient space for the actual application. For detailed performance analysis at runtime, we

used the integrated SmartOS timeline with a resolution of 1µs (→ Section 4.4.2[p62]). Please note,

that besides the definition of the ceiling priorities under PCP, the used test bed sources were

exactly identical, and just the kernel was configured to apply either PIP or PCP.

6.7.1. DynamicHinting and the Priority Ceiling Protocol

For the integration of PCP (instead of PIP), some specifications from Section 6.4.1 were slightly

modified as follows:

◦ Adds to S2: At system start, each task t ∈ T registers itself for each resource it might require

during runtime:

ρr = {t ∈ T | t is registered for r }. (6.10)

ρr is not stored explicitly, but allows to incrementally compute the fixed ceiling priority

for each resource r ∈R:

c(r )=







0 if ρr =; (i.e. r is unused)

max{Pt | t ∈ ρr )} otherwise
(6.11)

In consequence, task base priorities are not dynamic any more. Otherwise, this would

not only require the re-computation of ceiling priorities at runtime but also jeopardize

the deadlock freedom of PCP when changing Pt of any t ∈ T during lasting resource

allocations.

◦ Replaces S5: If a task t ∈ T requests a resource r ∈R , it immediately succeeds and remains

running if it already owns r (σr = t ) or if, according to the PCP policy, both of the following

conditions hold:
1. σr =;

2. p(t )>max
{

c(s) | s ∈R∧σs ∉ {;, t }
} (6.12)
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I.e. r is free, and no other task holds any resource with ceiling priority equal or above

the requester’s active priority. Otherwise, t transits to waiting state until it receives the

resource or the timeout is reached. Yet, a blocking task v inherits at least t ’s active priority:

p(v)≥ p(t ).

◦ Replaces S11: If a task t ∈ T releases a resource r ∈ Rt , the system checks if it can serve

another task u ∈ T waiting for a resource s = αu (this is not necessarily r ) which was

previously not granted due to the PCP policy. If so, σs := u and u leaves waiting state.

Anyway, p(t ) is updated according to the PCP policy.

6.7.2. Test Bed I – Continuous Data Streaming

Our first test bed addresses a quite frequently encountered real-world situation: A task S is

used to continuously transfer some data over a shared bus b to an external device. The stream

is rather long, or even infinite, but it can be interrupted and resumed at any time for more

important communication over the same bus. Therefore, however, it always needs some bus

setup plus a (complex) header/trailer for proper initiation/termination. During the transfer, S

obviously requires exclusive access to b. We first encountered this problemwithin our SNoW Bat

localization system (→ Chapter 10): As depicted in Figure 2.8[p31], the top SNoW5 sensor node

had to stream position information to the node below while at the same time, it had to operate a

CC1100 radio controller attached to the same bus.

A common solution is to split the stream payload into atomic packets. Then, S would ter-

minate the stream and release the bus temporarily after each packet. This way, other tasks

may receive the bus regularly. However, since S does not really know if it currently blocks a

more relevant task, the temporary stream interruption and release of b might be completely

unnecessary. It is also obvious that the selected packet length has significant influence on

the extent of potentially resulting bounded priority inversions as defined in Section 6.3.1. By

using short (long) packets, the overhead increases (decreases) while it improves (degrades) the

reactivity of higher prioritized tasks when these request b. In fact, a fixed length is often selected

during development with regard to the individual application requirements. These must be

known exactly, then.

Using a server task for coordinating the bus access might even result in slightly worse perfor-

mance due to the client-server communication overhead. The mentioned problems remain the

same, but they are concentrated at the server which commonly also creates atomic packets or

grants exclusive bus reservations.

Finally, DynamicHinting provides two improvements. Since our approach knows about

pending bus requests, the task S could query its current blocking state periodically and react

only if necessary. This time the query interval must still be selected carefully, but the overhead

for useless stream interruptions is already avoided. The additional use of HintHandlers or Early

Wakeup even gains the desired reactivity, as both inform S instantly if it blocks a task with truly

higher priority. Therefore, these options must be enabled during the entire transmission, or at

least for the delay or suspension between two subsequent data words.
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1 /* Function for streaming data (executed in the context of task S) */

2 void streamData () {

3 int stop = 0;

4 /* allocate the bus and initiate the stream */

5 getResource (&SPI , 0); // no timeout , no early wakeup

6 cfgBus (); header (); startDMA ();

7 while (stop != 1) { // 1 indicates the stop event

8 /* "Try" to wait infinitely for the stopStream event.

9 Enable early wakeup for p(S)≥ϕ= 100. */

10 stop = waitEvent (&stopStream , ϕ);

11 if (stop == -1) { // "Catch" a hint!

11 Resource_t *hint = getResourceHint(NULL , NULL , NULL);

12 if (hint == &SPI) { // conditional hint handling

13 /* stop the stream and release the blocked resource */

14 stopDMA (); trailer (); releaseResource(hint);

15

16 /* ---------- THE TASK WILL BE PREEMPTED HERE SINCE AT ------------

17 ---------- LEAST ONE OTHER TASK WAITS FOR THE RELEASE ---------- */

18

19 /* continue streaming as soon as possible */

20 getResource(hint , 0);

21 cfgBus (); header (); startDMA ();

22 }

20 }

21 }

22 /* done. stop the stream */

23 stopDMA (); trailer (); releaseResource (&SPI);

24 }

Listing 6.5: Streaming test in operation mode 1 (DMA): Use Early Wakeup to react on hints

Application Setup. For the concrete application we had to stream 8 bit wide ADC data (sam-

pled at 10 kHz) continuously over an SPI bus. The overhead for each header and trailer was 1 B.

Besides, a radio transceiver R and a motor controller M shared the same SPI bus (at different set-

tings) for short communication. Yet, both associated tasks R,M had to process sporadic events

(average inter-arrival time ≈5ms) which were muchmore time and safety critical, since radio

packet loss had to be avoided, and especially failures in the motor control were disastrous. So,

we initially defined PS <ϕ= 100< PR < PM . For our application and test bed, we implemented

the streaming task S to operate the bus (at best effort) in two completely different ways:

Operation mode 1 (DMA). To reduce the CPU load, we first used a DMA channel for

sending the ADC values continuously to the bus controller. Thus, the streaming task S simply

had to allocate and configure the DMA, ADC, and SPI bus resources for a new stream. After

starting the DMA transfer, S did sleep until an event signaled to finalize the stream or until a

hint occurred. The code in Listing 6.5 shows the relevant implementation details for S when

using Early Wakeup. The hint handling itself is highlighted. Most notably, it includes the proper

handling of the DMA resource (Line 14) which depends on the current state of the shared bus.
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1 /* Function for streaming data (executed in the context of task S) */

2 void streamData () {

3 /* register and enable dynamic hint handler */

4 setDHH (& DHH_Stream ); enaDHH(ϕ);

5 /* allocate the bus and initiate the stream */

6 getResource (&SPI , 0); cfgBus (); header ();

7 /* get , process & send data until stopStream occurs */

8 while (! checkEvent (& stopStream )) SPI_TX(nextData ());

9 /* done. disable hint handler and stop the stream */

10 enaDHH (0); trailer (); releaseResource (&SPI);

11 }

13 /* task -specific hint handler (executed in the context of task S) */

14 OS_DHHANDLER(DHH_Stream) { // define the handler function

15 // as ISR (return by RETI)

16 Resource_t *hint = getResourceHint(NULL , NULL , NULL);

17 if (hint == &SPI) { // conditional hint handling

18 /* stop the stream and release the blocked resource */

19 trailer (); releaseResource(hint);

20

21 /* ------------ THE TASK WILL BE PREEMPTED HERE SINCE AT --------------

22 ------------ LEAST ONE OTHER TASK WAITS FOR THE RELEASE ------------ */

23

24 /* continue streaming as soon as possible */

25 getResource(hint , 0); cfgBus (); header ();

26 }

27 }

Listing 6.6: Streaming test in operation mode 2 (DSP): Use a HintHandler to react on hints

Operation mode 2 (DSP). In our second implementation we required the streaming task to

also process the data before sending it over the bus. Therefore, it fetched each sample from the

ADC and applied some functions first. The additional CPU load did not only reduce themaximal

achievable payload rate compared to the DMA version. It also reduced the sleeping time (i.e.

the task self-suspension) between two data words, and, in consequence, it also limited the use

of Early Wakeup. Thus, we implemented an additional HintHandler and associated it with the

streaming task S for a prompt reaction in case of blocking situations. The handler operated

fully transparent to S, and temporarily released the critical bus resource b – even during the

execution of the original foreign code. Again, we selected ϕ = 100. For improved readability, the

example code in Listing 6.6 shows the streaming function and the HintHandler only.

Test bed analysis. Processing data while simultaneously executing some sporadic but highly

reactive tasks might already cause extreme system load for low performance embedded systems

like sensor nodes. In particular if, besides the CPU, other exclusive resources must also be

shared. Yet, the test bed results will show that our approach can still gain good reactivity and

high throughput without manual task tuning during development. First, we implemented the

just described application with atomic fixed-length packets (AP) but without DynamicHinting.

Then we used DynamicHinting with Explicit Querying (EQ), and finally we activated Early

Wakeup (EW, Listing 6.5) andHintHandlers (HH, Listing 6.6).

For our analysis we consider the PIP based system first. Figure 6.12a shows the results in

terms of the average blocking delay τ of the real-time tasks, and the achieved payload data rate
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Figure 6.12.: Streaming test: Atomic fixed-length packets (AP) vs. DynamicHinting (EQ/EW/HH)
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ρ of the streaming task. Due to the fixed trailer length and sampling rate, the best case blocking

delay is τbc = 100µs, and the best case payload data rate is ρbc = 10 kB/s. As expected for the

packet oriented design without DynamicHinting (AP), its throughput ρAP improves while the

blocking delay τAP degrades rapidly with increasing packet length. When using DynamicHinting

with periodic explicit querying (EQ) and on-demand release only, ρEQ remains nearly constant

and close to the achievable maximum ρbc. On the other hand, the selected query period causes

the blocking delay to behave analogous to the AP version: τEQ almost matches τAP, and is also

not satisfying for long periods. When using Early Wakeup with the DMA version, the data rate

is still held high, and additionally the blocking delay (which also includes stopping the DMA)

is kept extremely low. Indeed, ρEW ≈ ρbc and τEW ≈ τbc. Finally, when using the HintHandler

with the DSP implementation, we still obtain roughly the same reactivity for the real-time tasks:

τHH ≈ τEW ≈ τbc. Yet, we can observe a slightly decreased (but still constant) data rate ρHH close

to ρbc. The reason is not the bus or resource management itself, but the fact that the real-time

tasks produce variable CPU load which sometimes slows down the data processing within the

streaming task.

For better comparability in Figure 6.12 the data rates ρEW, ρHH, and the blocking delays τEW,

τHH are visible as horizontal lines, though Early Wakeup and HintHandlers are independent

from any block length or query period, but occur just on-demand.

It is worthwhile to note, that in this test bed (since it shares just a single resource among only

three tasks), PIP behaves very similar to PCP since the long-term allocation is held by the lowest

priority task. Consequently, both protocols produced roughly the same priority assignments,

allocation delays, and overall program flow. While the evaluation of PIP implicitly applies to

PCP, too, Figure 6.12b shows the corresponding results. In fact, the observed differences always

ranged at ± 0.037ms for τ and ± 0.044 kB/s for ρ.

Summary. This stream test showed practical results from a real and quite common appli-

cation scenario30. It comprises resource dependencies as well as resource blocking, which is

mainly caused by one task in either running, ready, or waiting state. Our approach was able

to significantly improve both PIP and PCP to achieve almost maximal data rates at minimal

blocking delays. However, only few tasks and one shared resource were involved.

6.7.3. Test Bed II – The Dining Philosophers Stress Test

The next step is a tough stress test comprising many tasks, resources, and deadlock pitfalls.

Though being more synthetic, the resulting test application still draws some parallels to real-

world demands, and allows a deep analysis of our approach under extreme conditions. Further-

more, it demonstrates the supporting use of time-utility-functions (TUF) as described in Section

6.5.4.

Inspired by the well-known Dining Philosophers Problem [276], where ’thinking’ philosophers

(tasks) over and over compete for cutlery (resources) that would allow them to eat, we modified

30Note that this scenario also closely relates to the theoretical sleeping barber problem [276] with S being the barber

sleeping in his chair b until the customers R andM demand a hair cut, and thus also require b. Yet, in addition to

the original problem, priorities are involved here, and S does not necessarily sleep while holding b.
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Figure 6.13.: The dining philosopher’s problem

the scenario to be more complex. First, we extended the classic one dimensional problem to

two and three dimensions. As Figures 6.13a – 6.13c show, this causes much more extensive

task-resource-dependencies, and boosts the competition among the philosophers as well as the

overall system load. For cn =m philosopher tasks P0, . . . ,Pm−1 in an n-dimensional setup, the

system will contain |R| = n ·m resources, and each task requires 2·n resources for lunch. Then,

each dining philosopher directly bars its 2·n neighbors from also doing so since it exclusively

holds at least one of their shared resources. Obviously, the number of potential allocation cycles

(deadlocks) also increases significantly along with the dimension and task count.

Application Setup. According to Figure 6.13d we implemented each philosopher task as

follows: At the individual start time t0 of each philosopher’s lunch cycle, the corresponding task

tries to quickly allocate its required resources. The entire allocation attempt for all its resources

is temporally limited to tTO. If the timeout tTO is reached, the philosopher gives up, releases

all resources it allocated so far, and starts over. On success, the allocation delay tA is logged.

Then the task takes some fixed time tE for eating, and finally releases its cutlery before thinking

for a fixed time tT . The relationship to real-world embedded applications are tasks executing
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repeated actions for which they require the CPU and some exclusively shared resources with a

certain period stability.

Again, the most interesting point is the applied resource allocation concept. Similar to

common application logic, each philosopher requests its resources in a fixed order31. Therefore,

it specifies the same absolute deadline t0+ tTO for each part r of the cutlery while enabling Early

Wakeup as follows:

allocationResult = getResourceUntil(r , t0+ tTO, ϕ);

Within our implementation, we applied DynamicHinting with both PCP and PIP in the following

ways:

1. PIP / PCP: We disabled the hints completely (ϕ = 0) to study the performance of the pure

priority inheritance and priority ceiling protocol.

2. PIP+EW / PCP+EW: The philosophers used Early Wakeup (ϕ = 1) during their resource

allocation stage. In fact, they were always collaborative and released each hinted resource

on-demand. During each resource reallocation within the hint processing code, further hints

were considered in the same way.

3. PIP+EW+TUF / PCP+EW+TUF: We applied a time-utility-function for dynamic runtime

decision as follows:

Initially, we considered the allocation timeout to be hard, and, according to Section 6.5.5,

specified each task’s utility at time tnow as binary function

u(tnow, tTO) :=







1 if tnow ≤ t0+ tTO

0 otherwise
.

Accordingly, for each required resource an average allocation timeout
tTO
2n

can be accepted.

Thus, whenever a task received a hint, it checked if its own remaining timeout tremain :=
t0+ tTO− tnow was sufficient to allocate (in average case) its still required resources R

′ plus

the one which would be released when accepting the hint. To also resolve deadlocks we used

the behavior function

c(tTO, tremain,R
′,n,deadlock) :=







1 if
(

tremain > (|R ′|+1) · tTO
2n

)

or deadlock== tr ue

0 otherwise

(6.13)

to decide between following (1) or ignoring (0) the hint. Figure 6.13e shows the corresponding

graphs of u and c as functions of tremain. Still, ϕ= 1 was used, and further hints during the

reallocation attempts were considered in the same way.

31We did also try randomized allocation/deallocation orders for each lunch cycle, but did not notice considerable

changes in the test bed results.
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In summary, we implemented each philosopher to potentially set back its entire meal for other

more important tasks. But as soon as it has started lunch, it won’t stop for anybody else. This

behavior is similar to many real applications: A complex process might be deferred in time for

the benefit of a more important task, but when in progress once, it is not aborted.

For each of the three presented alternatives, we inspected all 48 test bed setups from the following

configuration space:

◦ Philosopher tasks: m = cn ∈ {41,91,161,22,32,42,23,33}
⇒ Resources: |R| ∈ {4,9,16,8,18,32,24,81}

◦ Resource allocation timeouts [ms]: tTO ∈
{

500,1000,∞
}

◦ Eat and think duration [ms]: tE , tT ∈
{

500,1000
}

Test bed analysis. Essentially, the observed basic characteristics were the same for any value

ofm. Hence, we’ll just present a small but representative selection form = 42 = 16 philosophers

in a 2D setup (→ Figure 6.13b).

Obviously, a thinking philosopher allows each of its neighbors to eat. Thus, χ := tE
tT
is an

indicator for the average system load. For χ = 1, the tasks might perfectly interleave their

eat/think processes if this is allowed by the resource assignment policy (→ Table 6.1). However,

due to some overhead (e.g. caused by context switches and the resource manager32), this will

never be visible in a real run. Instead, the whole system already faces a slight overload condition,

then. This overload even increases with χ> 1 and turns into underload for χ< 1.

As first metric for the achieved performance, we counted the number of each philosopher’s

successful lunch cycles l in relation to the achievable maximum lmax = ttestbench
tA+tE+tT with tA = 0.

Second, we considered the average allocation delay tA,av in relation to its maximum tTO. As third

metric we counted the number of persistent and temporary deadlock situations during each

run. The presented results were averaged over 10 runs à 20 min. Figures 6.14 and 6.15 show

the results for philosophers with increasing base priorities PPi
= 1+ i and identical values for

tTO = tE = tT = 500ms. Since χ= tE
tT

= 1, a lunch count close to 100%might be possible33.

PIP. Again, we start our analysis with the PIP based system: Using the pure priority inheritance

protocol without DynamicHinting already supports the increasing task priorities partially as

expected (→ Figure 6.14a). However, the values exhibit a clear jitter, and the average lunch

count over all tasks settled at 47.4%. The jitter is even worse for the allocation delay tA,av in

Figure 6.14b (the best case tA,bc = 4.0% is only achieved if no blocking occurs while just the

task load and allocation overhead is considered). In almost all of our setups (with χ≥ 0.7) this

phenomenon occurred when using PIP only. Obviously, the high variance arises from the tasks’

missing knowledge about each other’s requirements. The same is true for the system-wide

temporary deadlock count34 which reached an average of ≈ 161 per minute.

32See Table 4.2[p61] for some SmartOS timings.
33For a simplified comparison, both Figures 6.15 (PCP) and 6.14 (PIP) are based on the same test bed configurations.
34We received temporary deadlocks since these were resolved implicitly as soon as the first involved task reached its

timeout tTO.
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Using collaborative resource sharing by means of DynamicHinting instantly improved all

results while obeying the philosophers’ base priorities much better. Of course, when following

each hint, deadlocks are obviously avoided entirely (→ Section 6.5.4). Beyond, and in spite of

the philosophers’ generous behavior, the average lunch count increased to 79.5% at significantly

less jitter. This is also true for the allocation delays tA,av which are more stable around 16.2% of

tTO now.

Finally, by also applying the TUF described above, we observed additional improvements in

most setups. Now, the philosophers did only collaborate if they could afford it. Let’s consider

the consequences: Along with falling priority, tasks tend to receive more hints and less CPU

time. Thus, they also tend to get ever closer to their allocation timeout tTO and behave more

egoistic when short in time. This results in a slight reduction of lunch counts for high priority

philosophers but significantly increases the lunch count for the lower prioritized ones. Due to

the selective collaboration, the number of temporary deadlock situations did also rise again:

In our test bed we counted ≈ 2 temporary deadlocks per minute indeed, but nevertheless the

overall lunch count further improved to 85.2% of the potential maximum. The allocation delays

tA,av were also reduced further and stabilized even better around 12.4% of tTO.

Unfortunately, for massive underload/overload setups (i.e. χ< 0.7 or χ> 1.3), the time-utility-

function achieved only slight improvements for the lunch count compared to the PIP+EW

method. Then, the load was either manageable anyway or it was simply too extreme. However,

in any setup, DynamicHinting was always significantly better than the pure priority inheritance

protocol. Especially when using tTO =∞, the pure PIP always got stuck in persistent deadlocks

while our approach recovered reliably and still achieved good results35.

PCP. Though extending PIP yielded much better results, we’ll finally address and compare the

results from the PCP based system: The already mentioned problems from Section 6.3.2 are

particularly obvious within this test bed. Due to avoidance related rejection, PCP’s conservative

policy often lead to the unnecessary denial of free resources. In fact, this caused PCP to only

serve the highest priority tasks which mutually pass their resource among each other, then.

When choosing tT = λ · tE and thus χ = 1
λ , each thinking philosopher allows

⌈

λ
⌉

others to

start their lunch. As expected, exactly the
⌈

λ
⌉

+1 tasks with highest priority will settle and eat
alternately, leading to the final starvation of the others. Thus, for λ= 1 in Figure 6.15a, only the

two most important philosophers were allowed to eat. Regarding the allocation delay, this value

is minimal for perfect task interleaving, i.e. if λ ∈N0. Indeed, Figure 6.15b shows small values

close to the PIP version, but only for non-starved tasks! Yet, these are also not optimal due to the

OS overhead and the high task load in general.

Conditioning PIP and PCP. To also allow lunch for all m = 16 philosophers under PCP, we had to

choose tT = (m−1) · tE , i.e. a load of just χ= 1
15

= 6.7%. As Figure 6.16a shows, this resulted in an

average lunch count of lav ≈ 96.3%, then. In comparison, to also achieve lav' 96.3% under PIP,

it was sufficient to reduce the initial load from 100% to χ= 66.7%. Then, the average allocation

delay tA,av even dropped to stable 4.8%≈ tA,bc under PIP compared to unstable 85.3%≫ tA,bc

under PCP (→ Figure 6.16b).

35For tTO =∞, the behavior function from Eq. (6.13) considered deadlock situations only.
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The direct comparison of PIP and PCP shows two issues: First, compared to the stream test

from Section 6.7.2, the usage of DynamicHinting under PCP provides less advantage for the

philosopher test. Since PCP is inherently very restrictive to prevent deadlocks, and prophylacti-

cally denies low priority tasks access to requested resources, these get starved more often, and

consequently start less requests. Thus, hints are also rarely generated and the advantage of

our concept vanishes. Second, PIP avoids performance reducing denials due to its generous

policy, and thus serves low priority tasks more often. Though resulting problems like chained

blocking or deadlocks are serious then, these produce hints when necessary; these are handled

and resolved excellently by DynamicHinting at runtime.

Summary. As our test bed showed, choosing PIP as underlying protocol for our novel approach

allows to ’combine’ the advantages of PIP and PCP dynamically: Tasks achieve both a high

progress rate and short resource allocation delays which are strongly related to their relative

priorities. In summary, the introduced reflexion and collaboration concept always resulted in

significantly better results compared to the pure classic techniques.

6.8. Conclusion and Outlook

In this chapter, we introduced the novel DynamicHinting approach for collaborative resource

sharing among preemptive tasks in reactive systems. We showed that the underlying reflexion

paradigm – preferably in combination with the priority inheritance protocol – can help to

improve and stabilize the overall system performance. Therefore, our concept helps to reduce

resource allocation delays and to recover from deadlocks at runtime. In particular, the individual

task base priorities – as defined by the developer – are considered carefully to keep each task’s

performance and reactivity close to its intended relevance. Through DynamicHinting operating

system kernels become able to put a reasonable part of the resource management efforts into

the context of the affected tasks. Since these have the most complete knowledge for handling

their assigned resources, this can be donemore effectively, and the kernel is partially relieved

from resolving emerging conflicts. E.g. the memory overhead is reduced since the kernel would

have to store a standardized set of information on resource dependencies, while the tasks can

store an optimal set of information (or do so anyway). In fact, in order to allow blocking tasks to

be scheduled and collaborate adequately, the dynamic adaptation of task priorities remains to

be done for the kernel or resource manager, respectively.

The basic idea behind DynamicHinting is to analyze emerging task-resource conflicts at run-

time and to provide blocking tasks with information about how they can improve the reactivity

and progress of more relevant tasks. Therefore, and depending on their current state (running,

ready, waiting), we also introduced three central techniques for passing hints to them when

required (→ Section 6.5.4). Thereby, our reflective approach allows each task to dynamically

decide between collaborative or egoistic behavior with respect to its current conditions and the

other tasks’ requirements. By following the hints from the resource manager, tasks can implicitly

collaborate without explicit knowledge of each other. However, our approach can initially not

guarantee any time limits since these highly depend on the behavior of the involved tasks. Yet,
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even if used sparsely, our approach does not modify the policy or reduce the performance of the

applied resource management protocol. Thus it performs at least equal, and in most cases even

significantly better, when compared to non-collaborative operation.

The test beds and the integration of all presented concepts into the preemptive embedded

operating system SmartOS showed, that the effective use of prioritized tasks for creating reac-

tive systems is quite possible on resource constrained and computationally weak devices like

sensor nodes. Even time-critical resource sharing becomes feasible. Of course, a well-thought

application design still remains elementary, but compositional software development is already

facilitated through reflective on-demand resource handover. Using the SmartOS exception

concept further simplifies the application of DynamicHinting. In general, our approach is not

necessarily limited to networked sensor/actuator systems butmay also extend other (embedded)

systems.

Concerning real-world applications, we’ll see DynamicHinting applied within the WSAN

based indoor localization and vehicle steering system SNoW Bat (→ Chapter 10), where we

obtained considerable benefits due to faster event handling and data transmissions. In this

context, we applied our approach for collaborative memory management in open real-time

systems: In Chapter 7 we’ll present a framework for task-controlled heap reorganization in case

ofmemory shortages. This avoids brute forcememory withdrawals, data loss, and critical system

states, while still considering task priorities and allocation deadlines.

Regarding further research, we are working on more sophisticated concepts for adjusting

the acceptance of hints to the task and system situation. In particular, we see improvements

concerning the hint selection itself and the application of TUFs by considering even more

application-specific factors. For example, this might also allow us to relate the tight and varying

energy reserves of autarkically operating wireless sensor/actuator systems to their reactivity

requirements. Also, we plan to evaluate the use of DynamicHinting for remote resource man-

agement in distributed [42] and multi-core systems [90, 222], where blocking may induce hints

between the subsystems. When considering database systems or software transactional mem-

ory (STM) techniques [103], an improvement might also emerge from controlled on-demand

interruptions of interfering operations instead of the common but quite problematic aborts

and restarts. Finally, another more general focus is the application of software model checking

[10, 11, 264] for validating (distributed) system designs: For example, this technique can help

to identify potential deadlocks or timing violations, and inherently also indicates code posi-

tions and system states where our novel DynamicHinting approach can be used to solve these

problems dynamically at runtime.
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Reactive Sensor/Actuator Systems

Abstract

Besides the CPU, memory is a key resource for any computer system. How-

ever, its temporal sharing is hardly used under real-time conditions since

unpredictable task execution flows may cause highly variable memory frag-

mentation at runtime, and consequently result in non-deterministic alloca-

tion delays and task reactivity. Moreover, finding a technique which reliably

adapts to changing system demands is even harder. Regarding resource con-

strained embedded systems in particular, no concept offers a truly satisfying

solution for handling allocation failures due to out of continuousmemory

conditions. Since such situations can often not be avoided or prevented

entirely, more flexibility is required for highly integrated and autonomously

operating devices within dynamic environments, and leaves runtimemem-

ory management as a central subject within current and next-generation

sensor/actuator network research.

In this chapter we’ll discuss various related problems, and recommend the

collaborative sharing of dynamically allocated memory blocks at runtime.

In the tradition of DynamicHinting from Chapter 6, our novel CoMem ap-

proach maintains high task reactivity in severely memory-constrained but

time-critical systems, and even supports contracts for hard real-time specifi-

cations. With respect to task priorities and the typically limited performance

of sensor nodes, it further facilitates compositional software design by pro-

viding independently developed tasks with runtime information for reflective

memory sharing. Therefore CoMem creates a bidirectional communication

link between tasks and the OS memory manager component, and triggers

the on-demand but task-controlled heap reorganization in case of memory

shortages. Yet, it always treats assigned blocks as strictly exclusive.

While CoMem requires no special hardware support like MMUs, it is not even

limited to embedded systems and the SANet domain, but can be applied

for concurrent task systems in general. The evaluation of CoMem under

SmartOSwill show, that our approach can achieve to keepmemory allocation

delays close to the allocator’s achievable best case performance, and inversely

proportional to the requester’s task base priority.
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7.1. Introduction

In the last chapter we introduced DynamicHinting as a novel meMoCparadigm for collaborative resource sharing among preemptive

tasks. Throughout this chapter, and based on the DynamicHint-

ing philosophy, we’ll present and evaluate the also novel CoMem concept for runtimememory

management under hard and soft real-time conditions. CoMemwas designed to facilitate dy-

namic heap memory sharing among concurrently running and prioritized tasks, and therefore it

also relies on the already introduced reflexion concepts from Chapter 6.5. This way, it further

improves compositional software design by providing independently implemented tasks with

valuable information about their mutual influences concerning one of the most important

resources in each computer system: the random access memory (RAM).

When considering dynamic memory management, we will mainly focus on the on-demand

treatment of sporadic heap memory bottlenecks during allocation attempts. Therefore, we’ll

use the terms heap andmemory as synonyms within this chapter, and address out-of-memory

situations where no continuous and sufficiently large memory block is available to serve a task’s

allocation request without jeopardizing the system stability. Even though the requested memory

was available, its generous and careless assignment could possibly cause critical situations in

the future, and the consequences are hard to predict. Though this particular problem is of vital

importance for time and safety critical embedded systems, it has received little attention within

the SANet community so far. Instead, it is mostly suppressed by using either static memory, or it

is treated onlywith drasticmeasures like brute forcememory revocation or even task termination.

While the first measure interferes with the trend for executing complex software on cheap and

resource constrained devices (→ Sections 1.2.1 and 6.2), the others are typically precluded for use

within autonomous systems (→Definition I.2
[p4]), where no observing intelligence is available

to recover from such situations1. In fact, the general research in the field of dynamic memory

management has a long tradition, e.g. in large scale computing, multimedia systems, and multi-

user environments. Hence, most programming languages and execution environments (e.g.

operating systems and virtual machines) provide general purposememory allocation algorithms

– allocators for short – with sufficient performance for average applications2 (e.g. Doug Lea’s

[170] under C). Anyhow, most traditional allocators silently assume powerful CPUs and truly

large memory reserves (at least 32 Bit architectures), where shortages at runtime would be rare.

For these, MMU supported virtual memory management eliminates external fragmentation,

and the mere memory size makes internal fragmentation almost negligible3. Then, security and

1Though self-management and self-healing would be the relevant skills then, we better save them up for truly

unforeseeable occasions, instead of relying on them for any memory request.
2Whatever “average” means! In fact the applied metrics are quite diverse. While average case performance is

certainly a relevant factor, system designers often try to gain additional and highly task-specific advantages by

using customized allocators to tune heap management beyond out-of-the-box techniques. Nevertheless, Berger

et al. [44] found out that most applications should stick to just a few state of the art algorithms rather than using

their own techniques. For us, an allocator is sufficiently good, if it reliably serves any application task with respect

to its individual base priority, and if it provides a spatial and temporal allocation guarantee for hard real-time

tasks and requests.
3For example, under Unix sbrk can be invoked at any time to increment the calling program’s data space.
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scalability aspects remain the main focus.

In contrast, embedded (SANet) applications involve entirely different demands: In this con-

text, the event-driven character of many sensor/actuator systems (→ 3.3.2) can rapidly lead to

significant memory dynamics. As summarized in Figure 7.1, the additional selection of energy

efficient and resource constrained hardware collides with the desire for compositional software

design. The consequences are hard to arrange with the high system reactivity which is typically

required for handling sporadic events. Regarding the sparse memory of most sensor systems (up

to 16 Bit architectures), most traditional allocators would reach their limits quickly and lead to

weakmemory versatility [69]. While fragmentation andmemory shortages are just some obvious

problems, emerging priority inversions among the tasks are rather hidden; though hardly consid-

ered, they may lead to severe systemmisbehavior and real-time violations. Under such adverse

circumstances, and for compositional open systems in particular, it is quite difficult to find a

strategy which boosts certain privileged tasks while not degrading others excessively. Analogous

to the already mentioned design challenges for arbitrary system services from Figure 6.2[p93],

it repeatedly showed to be a difficult venture to simultaneously support conveniently usable,

resource efficient, fast, safe, and securememory management within concurrent task systems.

Without corresponding hardware support and energy reserves, which are most commonly not

available on cheap and autarkic embedded devices (→ Chapter 2.1), it is a truly tough problem4.

To face the mentioned problems in software, and to comply with a wide variety of further

requirements, CoMem is initially not an allocator on its own, but provides a system extension

to facilitate the on-demandmemory reorganization in case of (time and space) critical mem-

ory situations. In fact, the internally applied allocation algorithm is not directly prescribed

by our concept, but can be chosen almost arbitrarily as long as it respects the central CoMem

philosophy and complies with the two basic preconditions DH1/DH2[p111] for using DynamicH-

inting at all (→ Section 6.5.3). This flexibility does not only simplify its adaptation for other

storage-management systems apart from the one which we will use during our reference im-

plementation under SmartOS, but the dynamic adjustment and replacement of the allocator

can even be accomplished at runtime5. In any case we consider the memory management

subsystem to be a separate component besides the operating system kernel, e.g. a library as

depicted in Figure 3.1[p34]. To yet comply to the fundamental SmartOS philosophy, the necessary

task synchronization andmutual memory access control will be accomplished via the kernel’s

internal resource manager as depicted in Figure 7.6. This keeps the allocated memory blocks

strictly exclusive, and avoids an additional level of (address) indirection which would be required

if the memory manager was allowed to shift assigned blocks without notifying the current owner

explicitly (a comparable approach considering the stack space and its dynamic relocation can

4Of course there is the question of whether to treat the resulting problems in software, or if it would be wise to

wait for suitable hardware support for embedded systems. Presumably, however, their integration will be a slow

process: Firstly, any space and energy savings is initially associated with a loss of architectural properties (like

MMUs) and vice versa, and secondly, even the actual memory size is hardly growing compared to non-embedded

systems. While it is already in the range of several GB for desktop systems, the latest (ultra) low power MCUs are

still restricted to a few KB. A significant improvement in this situation is therefore hardly to be expected in the

foreseeable future.
5Although we won’t implement this option within this work, it can certainly be utilized to e.g. tune for better

performance after partial software updates and modified system specifications at runtime.
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Figure 7.1.:Dynamic memory management: From system design to runtime failure

be found in [69]).

As we will discuss throughout the next sections, one central weakness of all existing memory

management approaches is, that tasks are not aware of their (varying) impact on the remaining

system, and thus cannot collaborate adequately when required in case of a critical situation.

While tasks can directly interact with the memory manager via function calls, there is no com-

munication channel in the reverse direction. Once a memory block is assigned, the memory

manager has no chance to signal related problems to the owner task. In this respect, CoMem

benefits from the DynamicHinting policy within software and the operating system kernel by

which programs can become “self-aware”, and may proactively change their impact and influ-

ence according to their own current requirements and the system’s demands (→ Section 1.2.1

and Figure 1.7[p14]). Of course, there remains the question for a spatial and temporal guarantee

regarding the allocation attempts: How can the memory manager ensure – under all circum-

stances – that a task receives its requested memory within a maybe hard deadline? As proposed

in the collaboration prerequisite C5[p110], a contract based heap layout will help us to enforce the

timely servicing of reactive tasks with sporadic and hard-to-predict memory requirements in

open systems. Finally, a feasibility analysis allows the appropriate dimensioning of the required

heap space.

During Section 7.2, we’ll give amore detailed introduction on numerous problems and feature

requests related to dynamic memory management within embedded real-time systems. In

Section 7.3 we’ll review some related techniques from existing work, before details about our

novel approach will form the central Sections 7.4 and 7.5: A concrete implementation of CoMem

under SmartOS will show that – despite of the problem’s complexity – it is efficiently applicable

even for low performance devices like sensor nodes. Therefore, Section 7.6 presents some

application examples as well as the impact on the programming model, and some selected

performance results from real-world test beds.

Regarding our final goal to implement a WSAN based localization system, CoMemwill finally

allow us to efficiently coordinate the heapmemory usage among two very memory intensive
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subsystems for ultrasound signal processing and remote updates. Although the real-time re-

quirements of the DSP task would definitely indicate a static buffer allocation, this is simply

not realizable due to insufficient hardware resources. In consequence, a dynamic memory

allocation is essential, and becomes reliably feasible through CoMem.

7.2. Motivation and Requirements

Along with the CPU, time and memory are the central resources in any computer system6.

While virtually any application requires some statically allocated memory of fixed size for code

and data, most applications also make use of automatic and dynamic data structures which

will commonly be placed on the so called stack or heap memory. While both memory types

allow random data access, the stack is commonly filled incrementally at its current end (LIFO).

Therefore, and to simplify its organization in hardware7, it is designed as a strictly continuous

memory area. Local variables, which are automatically placed on the stack, will implicitly be

destroyed when leaving the code block in which they were created.

When considering the continuity aspect, heap memory is significantly less problematic.

Thoughmemory blocks must be allocated explicitly before use, these need not necessarily be

placed adjacently8 since the access is handled in software via address pointers to each assigned

memory block. Furthermore, dynamically placed contents on the heap remain valid until

released when not required any more (either intentionally by the application, or implicitly by a

garbage collector as soon as the last reference has disappeared).

7.2.1. Existing Problems

Fragmentation. Of course, the mentioned flexibility on the heap is not for free. In fact,

heap based memory management techniques suffer from several inherent flaws, stemming

entirely from fragmentation. These problems become worse and more frequent with increasing

fluctuation on the heap9. At runtime, they prevent the maintenance of a perfect heap memory

partitioning, which satisfies all upcoming or persisting requests without impairing already

established allocations. In this regard, it is worthwhile to note that fragmentation is not only

a question of the current memory layout, but also of its future use. For multitasking systems

in particular, it results in a severe lack of scalability due to high task dynamics and frequent

(de-)allocations. This is why most concepts still limit their focus on developing an allocator,

which assigns and releases the available heap space in a way to reject as few requests as possible

despite of unpredictable competition for shared memory. To achieve this, the simple coalescing

of neighboring free blocks, or the rather complex defragmentation of the entire heap space are

just two approaches to gain larger continuous areas. While external fragmentation can also be

6When seen as a state machine, the CPUmakes program progress possible by executing the algorithmically defined

transitions between system states represented by memory contents. For synchronous architectures, the system

clock is another key resource as it introduces time and triggers the transitions with a defined frequency.
7Via a dedicated stack pointer and associated atomic push and pop instructions within almost all ISAs.
8Although a foresighted placement can exploit the locality principle, and increases performance when using caches

(which are hardly found within current sensor/actuator systems).
9For most allocators fragmentation cannot occur until the first memory deallocation took place.
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reduced by increasing internal fragmentation10, it is said to be in general a problem of poor

allocator implementations: According to [146] most allocators would suffer from almost no

fragmentation when using well-known policies like best-fit, first-fit, and next-fit for placing new

blocks. However, up to now the worst case fragmentation is only known for best-fit and first-fit

[251]. Though we’ll also stick to a slightly modified first-fit strategy for our CoMem reference

implementation, even little fragmentation is too much if it circumvents the compliance to task

priorities and real-time operation at runtime.

Resource constraints and real-time operation. According to Wilson et al. [306], any allo-

cator can face situations where continuous free memory is short while the total amount of free

space would be sufficient to serve an allocation request. Especially for systems without MMU or

virtual address space, a centralized heap reorganization by the memory manager is hard or even

impossible then, since it lacks information about the actual memory usage by the current owner

tasks11.

Thus, the use of dynamic memory is largely avoided for time or safety critical systems [200].

For these, the allocator needs to be extended to support guaranteed allocations and the knowl-

edge about itsworst case execution time (WCET), also referred to as theworst case allocation time

(WCAT) when seen from the application’s view. Since both requirements are hard to provide in

dynamic systems, memory is most commonly still allocated in a static way to avoid unforesee-

able allocation failures or unbounded (de-)allocation delays at runtime. For modular systems

this is done during program loading12; for monolithic systems it is done during compile time

and linking. Since static memory as a unique resource is a well-known bin packing problem

[65, 100, 245], the memory requirements are typically hard to predict by system designers, and

often impossible to analyze automatically by profiling algorithms. Instead it is common practice

to simply measure them based on worst case runtime profiling, and to add some extra space

as tolerance. Of course, these preventative overestimations are one reason for unnecessarily

large allocations of this highly valuable resource. Even worse, these allocations stay reserved

throughout the whole program or system runtime. With increasing number of simultaneously

running tasks, such a waste of the memory resource becomes unacceptable without losing

flexibility and performance – the more so as it does not even guarantee their sufficient size.

If therefore dynamic memory sharing is not dispensable at all, real-time operating systems

often provide so called pools of fixed-size memory blocks (e.g. for small but unified data struc-

tures like message buffers). Besides low external and high internal fragmentation, these often

support a constant allocator execution time – at least in case of success. In contrast, blocks of

arbitrary size commonly providemore flexibility at less internal butmore external fragmentation

(e.g. for dynamically sized sampling and DSP buffers). At higher management effort they might

even partition the usually small heap space more efficiently – at least in theory13. Depending

on the internal heap organization, three central techniques are commonly distinguished: Se-

quential fits, segregated free lists and buddy systems. However, since we primarily focus on

10For example, external fragmentation can even be avoided entirely by allocating blocks of fixed size only.
11A formalization of the resulting fragmentation penalty will be given Section 7.6.
12Which might also imply dynamic memory allocation when seen from the operating system’s view.
13Althoughwe aim on reactive systems, we yet support arbitrarily sized blocks for flexibility and convenience reasons.
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collaborative memory reorganization in case of allocation failures, we won’t go into detail about

these techniques but refer to [200, 236, 306] instead. In [236] in particular, an analytical and

quantitative evaluation of worst case allocation/deallocation times is presented. Based on worst

case complexity analysis (pessimistic for hard real-time conditions) and real-world benchmarks

(commonly less pessimistic for soft real-time conditions) they provide suggestions about which

technique to use regarding the predictability aspect.

7.2.2. Feature Requests

According to e.g. Michael [211] and Lea [170], a good dynamic memory allocator should support

and balance a number of performance relevant features. While we already mentioned some

of them, there are still more aspects to remember. To further motivate the goals and design

considerations for our CoMem approach, we’ll give an extensive and distinguished summary

of fundamental requirements for designing reactive sensor/actuator systems. With respect to

the design challenges F1 – F5[p93] from Section 6.2.2, we will first introduce the general design

space of dynamic memory management systems. Then, we’ll divide the special feature requests

into three groups: While group A contains general objectives, group B focuses on concurrent

task systems as relevant for compositional software design, and group C addresses real-time

requirements as relevant for reactive systems.

The memory manager design space comprises four main dimensions, and the need for

scalability regarding any supported feature (→ Figure 6.2[p93]):

M1 RUNTIME PERFORMANCE. Optimize the administrative overhead to provide fast or even

deterministic execution times.

a) When calling related functions like malloc (allocation) and free (deallocation).

b) When accessing already allocated memory blocks.

M2 RESOURCE EFFICIENCY. Target on economic space and resource requirements:

a) Limit internal fragmentation, and maintain an efficient heap partitioning to also

keep external fragmentation low.

b) Optimize internal data structures and resource usage for managing memory areas. If

possible, manage the entire unused systemmemory dynamically.

M3 SAFETY AND SECURITY. Account for reliable application executions through a well-

controlled access to the systemmemory:

a) Prevent tasks from inadvertently or intentionally corrupt or read foreign data.

b) Account for properly (de-)initialized memory areas upon each (de-)allocation.

M4 USABILITY. Provide useful functionality while avoiding trivializing assumptions. I.e. make

allocation success and task progress feasible without imposing unreasonable restrictions

to the application design.
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M5 SCALABILITY. Maximize andmaintain scalability regarding the number of free or allocated

blocks, and the number of concurrently running tasks.

Contributing to these general demands has always been the responsibility of the various

allocators. Beyond, and depending the OS kernel’s philosophy and the specifications of each

individual application, various specific requirements must also be met. While some of the

following feature requests F1 – F13 must be followed stringently to ensure the system integrity

(marked with ■), others are less critical. Nevertheless, an effective treatment strategy is still

desirable, and CoMem pays special attention to those marked with N:

Group A – General objectives

F1 ■ ASYNC-SIGNAL SAFETY. Ensure that memory management functions do not interfere

with any ongoing operation when called asynchronously (e.g. from within ISRs or injected

HintHandlers).

F2 N AVERAGE CASE OPTIMIZATION. Minimize anomalies to support good average case

performance when using default settings.

F3 N TUNEABILITY. Support configuration options to account for dynamic and task-specific

requirements at runtime (e.g. on-demand and time-critical memory allocations).

F4 LOCALITY. Maximize locality by neighboring related blocks (e.g. from one task).

F5 PORTABILITY. Maximize portability and compatibility to other systems by using few but

widely supported hardware and software features.

Group B – Objectives for concurrent task systems

F6 ■ KILL TOLERANCE. Avoid the final loss of memory when terminating tasks with still

allocated memory.

F7 ■ PREEMPTION TOLERANCE. Avoid task starvation, livelocks, and high CPU load caused

by aggressively repeated calls to malloc in case of rejected memory requests (→ Figure

7.2a).

F8 ■ DEADLOCK TOLERANCE. Avoid or handle task deadlock conditions:

a) Handlememory deadlocks caused by tasks mutually requesting memory which is

currently allocated by the other task respectively (→ Figure 7.2b).

b) Avoidmanagement deadlocks caused by exclusive access to the memory manager’s

internal data structures.

F9 N REORGANIZATION TOLERANCE. Provide a means for controlled memory reorganization

in case of currently not grantable memory requests.
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Figure 7.2.: Persisting memory allocation failures for various implementations of malloc

F10 N PRIORITY REFLEXION. Comply with task priorities by serving high priority tasks first.

Nevertheless, avoid prophylactic memory reservations or rejections leading to a potential

starvation of low priority tasks14.

Group C – Objectives for reactive systems

F11 N PRIORITY INVERSION HANDLING. Handle situations where higher priority tasks cannot

be served due to existing allocations by lower priority tasks.

F12 ■ WORST CASE ALLOCATION TIME (WCAT). Support real-time allocations by providing

spatial and temporal guarantees for time-critical tasks. Also provide an appropriate

feasibility analysis at compile time or during the allocation attempts.

F13 N OUT-OF-MEMORY HANDLING. Facilitate the efficient and reliable handling of memory

shortages. With regard to the demanded system autonomy (→ Section 1.1), avoid brute

force memory revocation, relocation, and task termination if this can result in critical

system behavior which is hard to recover automatically.

Regarding the just requested feature requests wewill show that a collaborative point of view on

the varying system and memory situations can further improve existing techniques significantly.

However, before presenting our approaches for solving the related problems, we’ll first discuss

some available concepts for dynamicmemorymanagement in the domain of embedded systems

and sensor networks in particular.

7.3. Related Work and State of the Art

Meanwhile, dynamic memory management is subject to intense research efforts for over thirty

years [40]. Forced by the proceeding integration density of today’s embedded systems, dynamic

14Regarding general resources, this would be comparable to the conservative PCP or HLP policy from Section 6.3.2.
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Figure 7.3.: Related work for dynamic memory management systems

Red: SANet related, Blue: general memory management

memory management also plays an increasing role in the design and development of modular

embedded software. Figure 7.3 presents an overview on some relevant work in this area. Indeed,

it is a rather new research area for resource constrained and time-critical embedded systems,

and was hardly considered for sensor/actuator networks before this work. In 2004 Masmano

et al. [199] presented one of the first allocators for real-time systems at all, and in 2009 Ripoll

et al. [245] developed a framework for providing both a temporal and a spatial guarantee for

allocations; their approach will be discussed later within this section.

To get a better insight into existing work, we’ll take a short look at the memory management

concepts of some operating systems with real-time or embedded systems background. However,

in this work we intentionally focus on conventional heap space management only: For energy,

cost, and size reasons of modern sensor nodes both the data and program code is typically

stored in the on-chip RAM and ROM, and won’t be loaded or stored in an external memory. Thus,

overlaying and scratchpad techniques [81] are largely irrelevant for the SANet domain.

7.3.1. Dynamic Memory Management in general Embedded Systems

◦ VxWorks [307] uses a best-fit memory allocator for reduced fragmentation and short but

indeterministic allocation delays. Since there is no support for demand paging, at least the
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memory access itself is always deterministic (→M1b). To gain additional performance for

real-time tasks, these share a separate memory space which is protected in case a MMU is

available (→M3a).

◦ ChorusOS [3] introduces a user level virtual memory approach. So called pagers allow

the developer to provide code for an application-specific memory management policy.

Although this also allows to reflect some individual needs at compile time (→ F3), the

developer is still responsible for considering all potential system situations. Additionally,

it might be hard to reflect inherent OS concepts, like task priorities and timing constraints,

into such pagers.

◦ FreeBSD [235] and the GNU libC use ptmalloc [111] which is based on Doug Lea’s malloc,

and proved to be a good general purpose allocator for allocation-intensive programs (→
F2). Internally, it maintains several memory arenas (i.e. dynamically created heap areas)

to reduce the chance for allocation conflicts (→M1a). New arenas are created on-demand

if a request finds all existing arenas locked.

◦ Hoard [43] is optimized for multi processor systems andmanages one heap per core, as

well as one global heap. These heaps are partitioned into superblocks, which, in turn,

contain blocks of fixed size. A lock-free modification of Hoard is presented in [211]. By

using atomic CPU instructions (e.g. CAS) to repeatedly check and change system variables

in a non-interruptible way, functions like malloc and freewere split into small atomic

steps. Regarding the implementation this provides features like immunity to deadlocks (→
F8b), async-signal safety (→ F1), and preemption tolerance (→ F7). However, this strategy

also requires adequate instruction sets which are often not available on typical sensor

node MCUs, and causes considerable CPU load15 while it treats the shared memory in a

purely cooperative manner.

While from these representatives only VxWorks, and ChorusOS claim to support hard real-

time operation – in case their allocators are used properly(!) – no operating system provides any

mean for handling sporadic memory shortage without swapping (→ F13). In particular, since

signaling mechanisms from the memory manager towards spurious tasks are missing entirely,

not serviceable tasks must consequently be rejected independently from their relevance to the

system. Even if task priorities are supported by the scheduler, they are not reflected for the

memory allocations (→ F10, F11)16. Considering the deadlock tolerance for memory blocks

(→ F8a) none of the mentioned operating systems treats allocated blocks as ordinary system

resources. Thus, memory deadlocks are neither detected nor explicitly handled at runtime.

15Many do-while loops might need to execute quite often since the finalizing CAS operation can not succeed and

commit the loop’s modifications until the whole iteration has completed. Emulating CAS-like instructions, in case

they are not supported natively, is yet another issue (→ Listing 4.2[p53]).
16At best, there is sometimes a regulating but non-binding communication in the other direction: Under Unix for

example, an application can advise the kernel about how to handle paging within a specified address range

(commonly via madvise(...)). Though the kernel is always free to ignore the advice, it could choose appropriate

read-ahead and caching techniques to speed up the application.
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7.3.2. Dynamic Memory Management in Sensor/Actuator Systems

When considering the WSAN operating systems from Section 3.3.2, their capabilities are even

more reduced, and only few natively support dynamic memory for arbitrary use by application

tasks. Most of them simply justify this with the lack of necessity in the field of sensor networks.

Others, like SOS [120], make intense use of dynamic memory, and consider it as a key feature to

flexibility andmodularity in current and future sensor network applications. To give an adequate

overview for a later comparison, we’ll take a brief look on the most popular WSAN/SANet

operating systems, but mainly focus on those with preemptive multitasking or multi-threading

capabilities:

◦ TinyOS [291] offers no native support for dynamic memory within its kernel. In fact, it

encourages purely static memory allocations within all components [174].

However, since TinyOS 2.x, the PoolC data structure implements a semi-dynamic pool

approach in which a fixed number of blocks can be statically assigned to each component

[157]. At runtime, components can release their blocks to arbitrary pools, and reallocate

blocks as long as their initial number is not exceeded (→ Figure 7.4a). Though this pol-

icy prevents out-of-memory and memory deadlock conditions implicitly (→ F8a, F13),

and even data handover becomes possible, it also requires the worst case memory re-

quirements to be known at development time and stay reserved during the whole system

runtime. Furthermore, the block sizes are fixed, and, with decreasing size or increasing

granularity, it becomes unlikely to receive a continuous number of blocks for memory

intensive operations.

In [72] Cooprider et al. propose a technique to providememory safety for TinyOS (→M3a).

By using annotated nesC code and the Deputy [71] source-to-source compiler, they enrich

application code at compile time to support appropriate runtime checks. However, these

are not compatible with dynamic memory management approaches since block owners

are not resolved at runtime, and any access to any block would always appear to be valid –

even if it is not allocated at all.

◦ Contiki [85] uses dynamic memory for storing variables of dynamically loaded modules.

While this option is not available for arbitrary use by processes or protothreads [87], two

types of dynamic memory support are provided by libraries (→ Figure 7.4b):

The block based memb approach requires static declarations at compile time: In fact, any

number of uniquely named block sets with arbitrary block size and block count can be

declared within the program code. At runtime, processes can request and release blocks by

specifying the set name – block handovers are not intended. Since the block sizes are fixed,

at least one block set is needed for data types of different size. This increases external

fragmentation among the sets and requires the tasks to know the set names, which can

possibly be understood as a contradiction Contiki’s modularity concept.

In contrast, themanagedmemory allocator mmem features a “fragmentation free” approach

for allocations of arbitrary size. While only one system-wide memory area (default size:
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Figure 7.4.:Dynamic memory management examples

4096 B) is maintained, deallocations are always followed by a rearrangement of all still

allocated blocks at higher addresses. Though this compaction eliminates memory holes,

it produces high CPU load in case of frequent (de-)allocations and keeps internal data

structures locked until finished. In addition, the load does not only depend on the amount

of memory to be down-shifted, it is also exceptionally annoying if a rather “unimportant”

task17 releases a block at a low address. Finally, an additional level of base pointer indi-

rection is required, since even already allocated blocks might get shifted asynchronously

when seen from an owner’s view. The impact on dependent peripherals (like e.g. DMA

controllers) using such dynamic blocks is not considered at all.

◦ SOS [120] makes intense use of dynamic memory and uses a block based first-fit scheme

to store module variables andmessages (→ Figure 7.5a). The fixed and power-of-two sized

chunks are used to minimize the allocation overhead toO(1), but are likely to cause quite

high internal fragmentation (especially in the context of severely memory-constrained

sensor nodes). However, data transfer between tasks is supported by simply changing the

block owner. Finally, allocation failures immediately trigger a so called kernel panic mode

and stop the entire system – a behavior which is quite critical for inevitably self-managed

systems like sensor nodes, as we already mentioned in Section 7.2. While data protection

is initially not available, Kumar et al. [163] proposed a software based memory protection

scheme: By taking a sandbox approach, they perform write address checks at runtime to

protect the kernel space and the system stack area. Timing benchmarks can be found in

[120].

◦ Nano-Qplus basically also relies on static memory allocation. However, in [317] and [212],

a combination of sequential fits, segregated free lists, and the buddy system is proposed

for dynamic memory usage within tasks (→ Figure 7.5b). In addition, dynamic task stack

management was initially tested within Sesame [318] which (de-)allocates stack space on

a per-function basis, and further extended by Sesame-P [319] which uses a pool based

stack management with on-demand resizing.

◦ MantisOS [46] supports a best-fit approach to allocate blocks of arbitrary size for thread

17though task priorities are not explicitly supported
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Figure 7.5.: Pool layouts for dynamic memory management

stacks and the networking subsystem only. Therefore, it uses a double-linked list to

manage the free space (→ Figure 7.5b). For use within task code, it relies on pure static

memory allocation.

◦ SensorOS [165] incorporates dynamic memory management for message envelopes, and

for temporary buffers which are occasionally needed by tasks. A thread allocates and

releases previously reserved blocks from amemory pool. While a binary buddy algorithm

allows the allocation of different sized blocks, amore lightweight alternative uses fixed-size

blocks, and is mainly targeted to message envelopes.

◦ SenSmart [69] supports a technique to adapt the stack sizes within multitasking environ-

ments at runtime and with regard to each task’s current demands. During linking, some

management code is added to memory access instructions and allows runtimememory

protection, address translation, and stack relocation in case of shortages. Yet, there is

no guarantee for a successful expansion, and tasks simply get killed when the physical

memory is exhausted. Furthermore, this concept is neither reorganization tolerant (→ F9)

nor does it consider execution speed (→M1) or even real-time operation (→ F12).

◦ In [245] Ripoll et al. propose a contract based scheme to support dynamic memory man-

agement in real-time systems. For each block, the contract is proposed by the requesting

task through the specification of the allocation importance Rimp and a minimum stability

time Rstab. If a sufficient amount of free space is found, the request is granted immedi-

ately, otherwise unused memory is reclaimed from allocated blocks which exceeded their

stability time; lower priority blocks will be preferred. However, there are several problems

with this approach: While the owners won’t get informed about the revocation (→ F9),

such a stability time is almost impossible to estimate in multitasking environments. In

fact, a task might get slowed down by others and still uses its memory after it has been

withdrawn. Furthermore, block priorities are independent from task priorities and might

try to manage the memory conversely to the CPU scheduler. Worst case allocation times

cannot be guaranteed at all (→ F12). Finally, malloc and free are implemented as so

called transactions, and a scratchpad is used for each heapmodification. While this would
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allow on-demand heap compaction, it is quite expensive in time and resources when

considering typical embedded sensor/actuator systems.

◦ SDMA [278] uses simulation for comparing several candidates by various metrics, and

to find a suitable allocator for concrete WSN applications. Finally, the best performing

allocator is selected and linked statically. However, static allocator selections will hardly be

optimal in complex next-generation SANet applications since the choice cannot be easily

adapted in case of dynamic changes to the application code [85] (e.g. after fine-grained

software updates).

Besides SensorOS, no presented SANet OS provides the arbitrary use of dynamic memory

for tasks. In particular, none provides any mean for dynamic memory management in case

of time-critical sporadic requests, or priority inversions when low priority tasks block higher

priority tasks by any memory allocation. To the best of our knowledge, no OS exists to support

on-demandmemory reorganization in small embedded systems without brute force methods

like (energy intensive) swapping, memory revocation, or task termination with possibly critical

side effects. This is exactly where CoMem applies.

7.4. The CoMem Approach

As we have already indicated in Chapter 6, reflexion based task collaboration is a mighty strategy

to share general resources on-demand and “upwards” along with the task priorities. In this chap-

ter, we’ll adapt the strengths and benefits for the special case of dynamic memory management

where tasksmay allocate any number of blocks with arbitrary size. By addressing various specific

problems and the feature requests from Section 7.2, we’ll motivate and discuss the design and

implementation decisions behind our novel concept. Beyond, CoMem is in general an example

for the integration of the DynamicHinting programming paradigm into system services which

require priority-based task synchronization due to their dynamic dependencies on exclusively

shared resources.

7.4.1. Basic Design Criterions and Application Example

Wewant to emphasize once more that CoMemwas initially intended for systems with severely

limitedmemory and no hardware support for its protection or virtualization. Keeping the typical

specifications of today’s sensor/actuator systems in mind (→ Chapter 2), we yet seek to respect

the dynamics of concurrently running tasks without generating significant overhead in terms of

energy consumption (for e.g. data swapping), CPU load (for e.g. runtime address translations),

and memory (for e.g. scratchpad operations). Nevertheless, for the reasons given in Section 1.2

and 4.2, we also wanted to provide a means for bounding the WCAT under real-time conditions.

Internal component structure. As central kernel components, resourcemanagers are deeply

involved into the scheduling policy (→ Figure 3.1[p34]): They are responsible for monitoring and

enforcing the compliance of all application modules to the system specifications – either strictly
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or at best effort. We take advantage of this tight interaction, and treat each individual memory

block as an ordinary (SmartOS) system resource, just as described in Section 4.3.7. As central

idea, we’ll enrich the resource manager’s runtime knowledge about currently persisting memory

allocations, but this time we let the CoMem subsystem analyze emerging task/memory conflicts

based on certain contracts between the application tasks and the memory manager.

Therefore we split the CoMem memory management component into two parts named

allocator and collaborator: The heapmemory itself is managed by the allocator which is also

the layer in charge of negotiating new requests regarding their size. The contracts however

will be proposed by the application tasks, and checked for conformity by the collaborator

according to the current memory state and layout. While the allocator is reliable for the actual

heap partitioning, and can be selected almost arbitrarily with some interface adaptations, the

collaborator acts as an intermediate layer towards the application, offers a unified API, and

applies DynamicHinting to selectively provide spurious tasks with information about how

they can help to improve the allocation progress of more relevant tasks. In this context, the

combination with blocking based priority inheritance techniques already proved to reliably

enhance and stabilize the overall and average system performance. Since memory allocations

are commonly long-termed, i.e. tasks often suspend themselves while holding blocks, we’ll

stick to the priority inheritance protocol (PIP), since it avoids inheritance related starvation

and avoidance related rejection towards low priority tasks when these also request resources

concurrently (→ Table 6.1[p99]). In general, the combination of DynamicHinting and PIP reduces

resource allocation delays by resolving (bounded and unbounded) priority inversions, and even

provides an option to recover from deadlock situations as required by F8[p146]. Further reasons

for this decision will be discussed in Section 7.5.2.

Heap allocation and reorganization. Finding a suitable block allocation and heap mainte-

nance strategy (like e.g. free lists and defragmentation) is indeed a critical core element within

all memory managers, and was already considered in many ways, e.g. in [200, 306]. Regarding

the special case of on-demand heap reorganization in case of memory shortages (→ F2, F9, F13)

various options exist:

1. Do nothing, but simply indicate an allocation failure to the requester.

2. Kill one or more tasks to free all their memory.

3. Withdraw or relocate certain spurious memory blocks.

4. Swap out some data, reassign the gained free space, and keep the owner task suspended

until the data was made available again.

5. Ask an owner task to voluntarily release or relocate somememory.

Apart from the first option, which is the only one where the request is simply rejected, most

of them are hardly considered for embedded applications [69, 245]. In fact 2. – 4. are most

commonly not useful for autonomous, time-critical, and energy constrained systems: For

option 4 in particular the suspended task cannot easily be resumed if it e.g. causes a new

blocking and should be executed due to a priority inheritance policy. For option 3 it is important

to notice, that revoking or moving memory without signaling this action to the owner task is
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critical or even impossible in most cases since related addresses will become invalid. Not even

data structures which are just accessed relative to block base addresses (e.g. C structures) can

simply be relocated by moving the data and updating the start address: Expired addresses might

still reside in registers or CPU stages, then. Much worse, affected peripherals like e.g. DMA

controllers can often not be updated automatically, and would still transfer data from or to old

addresses. In such situations not even option 2, i.e. terminating and restarting a spurious task,

would be a valid solution. Instead, modifications to a memory block can best be handled by

the owner task which has complete knowledge about its current usage and all dependencies.

Thus, and for the reasons given in Sections 7.1 and 6.2, only the last option is supported by our

CoMem approach18.

Before we go into the details, we’ll briefly recall the general idea behind our collaboration

concept: According to the basic priority inheritance protocol policy, a task u’s active priority p(u)

is raised to p(t ) if u blocks at least one other task t with truly higher active priority p(t )> p(u)

by means of at least one critical resource. Only then, DynamicHinting passes a hint to u, indi-

cating this priority inversion, and “demands” for releasing at least one critical resource quickly.

While this was initially intended to facilitate the on-demand release and handover of blocked

resources, we’ll also use this indicator to trigger some situation specific memory management

and reorganization functions. According to the SmartOS specification S4[p103], which forbids the

revocation of any resource as well as its use by non-owners in general, modifications to any

allocated memory block must also be authorized by the corresponding owner and always be

conducted in its task context. In particular, this allows for adequate preparations prior to any

heap reorganization and avoids critical system states19. Their completion will finally be signaled

back to a blocked task, and implicitly triggers its re-request for memory.

For both voluntary actions (release and relocate), we need to discuss which blocks to select,

and how to treat them adequately with respect to their current owner task. Since our concept

targets on respecting and enforcing the compliance to task priorities only those blocks will be

considered for reorganization which belong to lower prioritized tasks, and which would lead

to sufficient continuous space for serving higher prioritized requesters. Among these we first

signal the one with lowest base address, and the capability to produce sufficient free space. If

a hint is rejected, it will cyclically be passed to the next appropriate task20. In contrast to the

frequently used free lists for currently unallocated areas (→ Figure 7.5b), our strategy therefore

applies a linear used list of currently allocated blocks since these must be known anyway in

order to dynamically select spurious owner tasks for DynamicHinting. Details will be discussed

in Section 7.5.

For the sake of tuneability (F3), the requester’s remaining timeout and active priority will

also be passed along with the hint to the blocking tasks. Furthermore, we advise the blockers

whether releasing or relocating their memory blocks would solve the actual problem most

18Of course the other options can (easily) be added by replacing the hint passing with another operation. However,

the collaborative character is entirely lost then, and other recovery strategies might be required.
19Adequate authorization checks can be incorporated into the corresponding code (e.g. via testResource(...)).
20Signaling tasks with their lowest priority first (compared to lowest base address first) did not makemuch difference,

but increased the average execution time of the selection algorithm.
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suitably, and thus would account for the reactivity and progress of more relevant tasks. If both

reactions are acceptable, relocating blocks will take precedence over releasing them: While a

relocation is less damaging and imposes less side effects on the blocker, releasing memory is at

least as effective when seen from the blocked task’s view. Eventually, the generated hints trigger

a self-controlled but on-demand heap reorganization by means of some further CoMem API

functions (e.g. relocate() and free() from Listing 7.4) which are legally called by and in the

context of the current owner task. Of course, specific performance and energy issues must still

be taken into account, but depend on the task’s actual hint processing strategy.

Usage and operation example. Exemplified by an initially not satisfiable memory request,

Figure 7.6 shows some typical interactions within our modular concept to still grant the allo-

cation in time: The task t2 requests some heap memory directly from the memory manager

(❶). Though it specified an absolute deadline, t2 can not be served immediately due to a lasting

memory shortage. However, with our approach the memory manager identifies a lower priority

task t1 with p(t1)< p(t2), which might help to relax the situation, and signals this option to the

resource manager (❷) which is reliable for the task synchronization. While t2 remains blocked

in suspended state, a hint is passed to t1 (❸) and possibly triggers a self-controlled heap reorga-

nization (❹). This can especially include the adaptation of referencing data structures, or the

deactivation and reconfiguration of an autonomously operating on-chip resource (e.g. a DMA

controller) which would otherwise continue to access expired block addresses. Under guidance

of the memory manager, this finally leads to sufficient space for serving and unblocking t2 (❺).

Regarding potential real-time constraints and the concomitant spatial and temporal guarantee

to serve t2 in time, t1’s block might have been selected intentionally since a valid contract en-

gaged t1 to react on the hint before t2’s deadline has been reached. Details on hard real-time

operation can be found in Section 7.5.4.

Yet, passing hints is not trivial in preemptive systems. From the blocker’s view, this happens

quasi-asynchronously and regardless of its current situation, task state, or code position. Given

that a blocking task itself can be in ready or even in waiting state while a new blocking comes

up, we already presented three techniques for receiving hints in Section 6.5.4. Since Explicit

Querying is cumbersome and hardly applicable for real software designs, and we intend to

comply to the usability feature M4, we won’t consider it for CoMem at all. When using Early

Wakeup and HintHandlers21, hints are passed automatically when blocking occurs. While this

is much more reliable and yields improved reactivity, we need to provide async-signal safety

then to comply with feature request F1. Nevertheless, our reflective approach still allows each

task to dynamically decide between collaborative or egoistic behavior with respect to its current

conditions and other tasks’ requirements – e.g. by using appropriate behavior functions.

7.4.2. Collaborative Memory Sharing

Since memory is commonly a scarce resource in small embedded systems, it needs to be shared

among the tasks in order to achieve a higher integration density for future versatile systems and

21Both methods can be combined with the SmartOS exception handling concept from Section 4.3.8.
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Figure 7.6.:Delayed memory allocation, and related interactions between system components

pervasive applications (→ Section 1.2). This is already true if some tasks run rather seldom and

a static memory allocation would leave valuable space unused for long periods. Nevertheless,

tasks in general might also be subject to tight timing constraints when requesting memory upon

certain events. Triggered by environmental interactions, even situation specific tuneability

might be required then (→ F3):

Priority compliance and task starvation. In this context, the first problem we want to

address is priority inversion concerning such an request (F11). According to Definition II.5
[p96]

this term was initially used upon blocking on exclusive but temporarily shared resources as

described in Sections 3.2 and 4.3.7. Considering the heap memory resource the available space

will not only become partitioned and fragmented at system runtime, but the number of allocated

blocks and owner tasks will vary also. In such cases a single-instance resource is insufficient

for synchronizing the interleaved but mutually exclusive access to dynamically assigned blocks.

Instead, virtualization or multi-instance resources are used by many approaches. These support

simultaneous allocations by different owners, and allow the spatial sharing of the internally split

(and otherwise monolithic) memory among concurrently running tasks. However, it is often

forgotten that priority inversion can also occur in conjunction with e.g. virtualization, and that

its handling is evenmore complex then, since it can originate frommultiple tasks at the same

time.

Figure 7.7a shows an example scenario: Tasks tA , tB , and tD hold memory blocks protected

by the multi-instance resource rH . Due to the actual heap situation, tC ’s memory request can

currently not be granted, andwe see a direct priority inversion originating from tA and tB towards

tC . The question whether to reject tC immediately or whether to grant the blocking tasks some

time to resolve the memory shortage, was already discussed in the context of general resources

in Chapter 6. In the case of multi-instance resources, simply using e.g. PIP or PCP for raising the

active priorities p(tA) and p(tB ), and to potentially accelerate their deallocationwhile tC remains

blocked in suspended state (→ Figure 6.4[p103]), imposes some additional questions: Which task’s

active priority should be adapted? Raising just one blocking task requires a reasonable selection

strategy, andmight still select the “wrong” one. Raising all blocking tasks tA and tB means setting

them to equal priorities p(tA)= p(tB )= PtC , and leads to e.g. round robin or strictly cooperative
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scheduling (→ Figure 3.3[p39]) despite of intentionally different base priorities PtA ≤ PtB ≤ PtC .

Furthermore, the chance for inheritance related inversions, which are fortunately minimized

under PIP22, increases along with the number of unnecessarily raised priorities. Finally, the

option for simultaneous allocations of a single resource by several tasks will result in increased

complexity andmanagement overhead, and thus is not supported under SmartOS. Especially

in combination with priority inheritance protocols, severe adaptations to the specifications

and internal data structures would significantly increase the execution time of the related

algorithms23.

Going back to the initial problem fromFigure 7.7a, tC could be served if either lower prioritized

task tA or tB would release or just relocate its memory block. Yet, in all existing approaches we

found within the embedded systems domain, especially in those from Section 7.3, tasks do not

know about their spurious influences, and thus cannot react adequately. In consequence, most

allocators do not even try to find a solution for improving the situation, but return immediately

and indicate this failure via an error code24. In turn, developers tend to retry aggressively until

the allocation succeeds:

a) Using e.g. plain C functionality within preemptive systems would result in spinning loops

calling the allocator, and cause the unintentional (and maybe infinite) starvation of lower

prioritized tasks. As depicted in Figure 7.2a, such behavior can even lead to livelocks of

spinning tasks.

b) If the underlying operating system supports timing control for tasks, spinning might be

22In fact this is one reason for which we prefer PIP over PCP as the proposed resource synchronization protocol (→
Table 6.1[p99]) under SmartOS and DynamicHinting.

23In particular the at most linear execution times for processing the resource-await-queues (RAQ) in Section 6.6 arose

from the fact that this data structure is well-defined for each Task t ∈ T (→ Lemma II.2). Potential divergences in

the RAQs would prohibit a linear traversal, and result in higher computational complexity.
24For example, the allocator from the GNU standard C library glibc (void* malloc(size_t size)) returns a NULL

pointer in case of an allocation failure [104].
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relaxed by periodic polling for free memory. While this would still cause significant CPU load

upon short periods, it can potentially miss sufficiently large areas of free memory upon long

periods: If the memory manager does not know that a task t actually still waits for a memory

block between its polls, it can neither serve t nor would it be a good advice to reservememory

in advance.

c) If task blocking has to be avoided entirely, lock-free methods, as applied by the modified

Hoard allocator [211] for multi-core architectures, can be an option. A shared resource is

defined as lock-free (non-blocking) if the resource manager guarantees that whenever a task

executes a finite number of steps, at least one operation on the resource by some task must

have made progress during the execution of these steps. Basically, the implementation of

lock-free methods applies do-while loops which are preemptible themselves (e.g. by higher

priority tasks) and (re)try to commit some changes to a resource until the code within their

loop body was executed without any interfering interruption, i.e. comparable to a critical

section where no other task modified the resource during the last iteration. In Listing 4.2a[p53]

we have already seen an example for the lock-free modification of a list head: While the

old head is saved right before the modification attempt, a CAS instruction tries to commit

the update and simultaneously checks for success or failure to directly control the break

condition at the loop’s end.

Even though these three techniques are quite common and reflect the state of the art, they

produce a high system load in case of not satisfiable requests, result in reduced CPU time for

blocking tasks, and consequently make it difficult to comply with real-time requirements.

Reducing CPU load through task self-suspension. To ease the problemof starved blocking

tasks, CoMemworks similar to the lock-free technique, but instead of letting blocked tasks spin

aggressively, it puts them into waiting (i.e. suspended) state and defers each iteration until

certain indicators announce a potential allocation success during the next retry. The provision

of task suspending malloc API functions minimizes the CPU load caused by currently not

serviceable tasks, while it still preserves the possibility to signal them a delayed success as soon

as possible:

Corresponding to the SmartOS kernel API, we allow temporarily limited memory requests by

extending the allocator’s interface with an optional deadline or timeout parameter (→ Figure

7.8), and, in the tradition of the self-suspending kernel functions from Figure A.2[p327], each task

consequently transfers the memory request to the memory and resource manager subsystem25.

Through this temporal limitation a task not only provides the CoMem collaborator with infor-

mation about how long it is willing to wait in worst case, but it also supplies the allocator with a

defined amount of time for the reorganization of the heap space26. While the concept of using

self-suspending functions for operations which might not complete immediately, but depend

25As Figure 3.1[p34] depicts, we consider the memory manager as an OS component which will not necessarily be

executed in kernel mode.
26In order to support DynamicHinting, the requesting task’s deadline will also be passed to the blocking tasks which

in turn can use this information within their TUFs or behavior functions (→ Section 7.6.2, F3).
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on other tasks than the caller, already showed in Section 4.3 to provide preemption tolerance

(F7) through SmartOS’s priority-based scheduler, kill tolerance (F6) is implicitly supported since

tasks cannot terminate entirely under SmartOS (→ S1[p102])27.

Avoiding indirect priority inversion. Regarding the requested priority reflexion (F10), an-

other point is to decide whether the CoMem subsystem itself should be implemented as task

(server), as kernel function (syscall), or if it operates entirely within the context of each task

(library).

If the memory manager was implemented as server task or atomic syscall, the internal data

structures would be implicitly protected against concurrent access28. On the other hand, servers

and syscalls commonly run at higher priority than ordinary application tasks, and indirect

priority inversionwould still emerge fromhandling each request immediately and independently

from the requester’s priority: As Figure 7.7b shows, this would allow a low priority task tL to

implicitly slow down a higher priority task tH by simply calling malloc(). To avoid this problem,

it is at least wise to design the memory manager as server task tM , and to adapt its base priority

PtM dynamically to themaximum active priority of all tasks with pendingmemory requests29. To

further reduce the runtime overhead in terms of task count, context switches, and stack space,

we decided to implement CoMem as a library, and to execute all contained functions entirely

within the context of the calling tasks. While this improves portability (F5), it will implicitly

treat the corresponding operations with adequate priority in relation to other tasks (F3). Yet,

async-signal safety issues must be considered for this approach since concurrently executing

tasks and HintHandlers might interfere30.

7.4.3. Summary

Throughout this section we already pointed out how we intend to fulfill most feature requests

from Section 7.2.2. From the remaining points we still have to discuss async-signal safety (F1),

to deal with the handling of potential deadlock situations (F8), and to provide a means for the

specification and enforcement of a WCAT for time-critical requests (F12). Since these depend on

the concrete CoMem implementation, we’ll present the technical details and central algorithms

first, and address them separately afterwards starting with Section 7.5.3. Previously, however,

we will summarize our CoMem design decisions and make sure that these correspond to the

preconditions DH1 and DH2[p111] from Section 6.5.3 for using DynamicHinting at all:

27Even if task terminationwas implemented under SmartOS, it would still be possible for the task ormemorymanager

to traverse the list of allocated blocks first in order to to query each well-defined owner task and to possibly release

the corresponding blocks (→ Section 7.5.1). Apart, we could also introduce some kind of “terminate-signal” as e.g.

known from the Unix world, and which could be sent as a hint to instruct a task to cleanly terminate itself.
28Comparable to the server task design pattern (→ SmartNet from Section 8.1), client tasks would just indicate their

request, and wait for an event to signal its completion.
29If dynamic base priorities are supported at all – like e.g. under SmartOSwhen using PIP. In addition to the discussion

about an appropriate resource synchronization protocol from Section 6.3.2, this is just another example for the

benefit of dynamic base priorities.
30Note that IRQ handlers are not affected since these may never access any resource through a potentially self-

suspending kernel function (→ Section 4.3.7 and Figure A.2[p327]).
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1. Persisting memory allocations must not prevent further requests (→DH1). While this avoids

task starvation, the collaborator can always keep track about all system-wide requirements,

and produce adequate hints and advices.

2. Extending malloc() by a timeout or deadline for limited waiting adds a temporal semantic

to the API (M4), and gives blocking tasks the time to react on a hint (→DH2).

3. Executing the memory management functions directly within the callers’ task contexts

reduces overhead (M1), and implicitly reflects the task priorities (F10).

Although requested in M3a, our concept does not even attempt to protect dynamic memory

blocks against unauthorized access as long as no MMU or MPU is available. While some

approaches (e.g. [69]) replace memory access instructions by jumps into special management

functions and allow to detect false sharing, they also cause significantly increased CPU load.

Beyond, perfect security cannot be provided anyway since indirect access (e.g. via a DMA

controller) remains hard to control. Thus, we prefer the direct and constant time access to

allocated blocks (→M1b), and only coordinate the exclusive sharing of the available heap space.

7.5. CoMem Implementation and Usage

This section presents the central implementation details about our novel memory management

approach. Just like in the case of DynamicHinting the basic idea behind CoMem can be applied

as integral concept for many (embedded) real-time operating systems if these support truly

preemptive and prioritized tasks plus a timing conceptwhich allows temporarily limited requests

for exclusively shared resources.

For our reference implementationwe further extended SmartOS fromChapter 4 since it fulfills

all these requirements. As also demanded in feature request F5, its kernel architecture offers

quite common characteristics, is available for several MCU architectures, and thus is a good

representative for the adaptation of similar systems. CoMem supports the SmartOS resource

sharing philosophy by entirely omitting centralized modifications to allocated memory blocks

by the memory manager: Once assigned, each owner task is responsible for releasing, resizing,

and relocating its memory block(s) explicitly and voluntarily. To still achieve priority aware and

on-demandmemory reorganization both the priority inheritance protocols from Section 6.3.2

and the DynamicHinting paradigm from Section 6 were applied as described previously. In the

following, we’ll discuss how to integrate our collaborative resource sharing approach and the

SmartOS specification to meet the CoMem design considerations from Section 7.4.2.

In general, the implementation of CoMem serves as an example on how the execution of an

(intrinsically atomic) operation within an application task can be interrupted by another task

or by the operating system by utilizing an ordinary synchronization resource as a mediator to

coordinate this (extraordinary) influence.
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7.5.1. Internal Data Structures

Regarding the tight performance and memory constraints of many embedded systems, CoMem

is limited to a central list data structure, a tiny API, and one control block for each dynamic

memory allocation. The heapmemory itself will be placed by the linker, and – as demanded in

M2b – occupies the entire unused system RAM, i.e. the free space between the global variables

and the kernel stack (→ Figure A.1[p324] for the MSP430 memory layout).

The Memory Control Blocks (MCB): Brokers as collaborative synchronization primi-

tive. As shown in Listing 7.1, eachmemory control block (MCB, data type: MCB_t) takes either

7 or 13 machine words in RAM31, and can be located anywhere in the systemmemory as long as

it remains accessible for its allocating task. Compared to other approaches, which often require

just about 2−3 machine words for managing each block (→ Knuth’s boundary tag method [159]

and Figure 7.5b) an MCB might appear to be quite large. However, storing some additional

information gives us the option to support (timing) contracts, and to establish the already men-

tioned bidirectional communication link between the memory manager and the block owners.

Through this strategy, which is quite novel in the area of dynamic memory management, we

are able to inform tasks immediately if they block a task of higher priority due to a dynamic

memory allocation. In fact we can simply use a special dynamic hint generation scheme for this,

and associate one ordinary SmartOS resource (→ Section 4.3.7) – a so called broker resource, or

simply broker – with eachmemory block. In case of successful memory allocation the broker

will be allocated automatically by the memory manager, but implicitly belongs to the requesting

task since it is exactly this task which executed the corresponding malloc library function within

its own context. The broker stays long-term allocated throughout the entire block allocation

time, and will finally also be released automatically by the memory manager during the block

deallocation process which, once more, is conducted by the free library function in the owner

task’s context. In direct consequence to this, we directly profit from five important advantages:

1. Each allocated memory block – though dynamic in size and location – is known to the

resource manager as an individual system resource: The underlying resource management

policy (e.g. PIP from Section 6.4.1) will implicitly be applied for the memory management,

and all operational resources will be treated in exactly the same way. In particular, the

synchronization scheme and task priorities will also be respected equally.

2. Memory blocks remain strictly exclusive: According to the SmartOS philosophy neither the

kernel nor the memory manager will ever touch an allocated block, but always notify the

owner in case of critical situations (e.g. priority inversions). This can be done by simply

requesting a task’s broker resource for a currently disturbingmemory block, which, according

to Definition II.4
[p89], is one of the owner’s critical resources then.

3. A notified owner task is free to decide dynamically between collaborative or egoistic behavior:

In particular it can adjust its reaction carefully by relating its current situation and its very

own requirements to the existing contracts and to the demands of the task(s) it is blocking.

31On the currently supported Atmel AVR (8Bit), TI MSP430 (16Bit), and Renesas SH2A (32Bit) architectures.
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1 /* CoMem MCB advice types and block types */

2 typedef enum { adv_nothing , adv_doRelocate , adv_doRelease , // for non -RT blocks

3 adv_RTBlock , // for RT blocks

4 adv_doClear , // for any block

5 } advice_t;

6

7 /* The CoMem MCB data structure */

8 typedef struct {

9 size_t size; // 1W: block size in machine words

10 // (const if advice == adv_RTBlock)

11 volatile int *base; // 1W: block start address (fixed for RT blocks)

12 // (const if advice == adv_RTBlock)

13 Resource_t *broker; // 1W: associated broker resource

14 // (NULL if advice == adv_RTBlock ,

15 // otherwise +6W for Resource_t)

16 union { // 2W: timing contract for real -time operation

17 Delay_t WCRT; // WCRT R in [µs] for hinting non -RT blocks

18 // WCRT = -1 for unknown or R ≥ 28·sizeof(Delay_t)−1
19 // (valid if advice != adv_RTBlock)

20 Delay_t WCAT; // WCAT A in [µs] for allocating RT blocks

21 // (valid if advice == adv_RTBlock)

22 }

23 advice_t advice; // 1W: advice for what to do upon a hint

24 // (const adv_RTBlock indicates a RT block)

25 MCB_t *next; // 1W: linked list pointer (next block in MCL)

26 } MCB_t; // Total RAM requirement:

27 // 7W + 0W = 7W for RT blocks

28 // 7W + 6W = 13W for non -RT blocks

Listing 7.1: The CoMem MCB_t data structure for Memory Control Blocks (MCB)

4. Though involved in the general resource management process, CoMem can entirely be

implemented as library: In compliance with F5 it does not produce additional code or

runtime overhead within the OS kernel (→ Figure 3.1[p34]).

5. By providing common or individual resource handler functions (i.e. fGet and fRelease) for

each broker resource (→ Section 4.3.7) we can ensure the automated and reliable initialization

and destruction of data stored in memory blocks for safety and security reasons (→M3).

The MCB_t data structures will either be created by the allocator (for non real-time requests)

or at compile time (for real-time requests). While the necessity for declaring real-time-critical

blocks at compile time will be discussed in Section 7.5.4, the macros in Listing 7.2 already exem-

plify the creation and initialization of the MCB_t data structures and the corresponding brokers

for non-RT blocks: According to the handle’s individual broker declaration, each deallocation

of such a memory resource will clear the corresponding block through mem_clearMemory and

system-wide standards. Since security is not only an issue of proper memory protection, but

also affected by the accessibility of information left over in released blocks, this automation is

important to provide compliance withM3. In contrast, safety is not only a problem of e.g. correct

address translation, but also of proper memory initialization during its allocation. However,

to reduce runtime overhead we avoid a common fGet function for this, and clear the entire

heap once throughout the initialization of the central memory management resource rCOMEM

(→ Listing 7.3). An individual fGet function could still be supplied manually for each block’s

broker.
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1 /* CoMem memory block deinitialization. Fills blocks with 0. */

2 int mem_clearMemory(Resource_t *broker) {

3 MCB_t *dm = mem_getMCBForBroker(broker ); // complexity: O(# allocatedBlocks)

4 if (dm->advice == adv_doClear)

5 mem_fill(dm, 0); // complexity: O(|dm|)

6 return 1;

7 }

8

9 /* CoMem block declaration macro for non -RT block m̌ (dynamic addr. and WCRT) */

10 #define COMEM_DECLARE_MCB(_name , _size)

11 OS_DECLARE_RESOURCE_EXT(__rCOMEM_ ##_name , NULL , NULL , mem_clearMemory );

12 MCB_t _name = { _size , NULL, &__rCOMEM_ ##_name , -1, adv_nothing , NULL }

13

14 /* CoMem block declaration macro for RT block m̂ (fixed address and WCAT) */

15 #define COMEM_DECLARE_RT_MCB(_name , _size , _base , WCAT)

16 MCB_t _name = { _size , _base + __heap , NULL, WCAT, adv_rt_block , NULL }

17

dynamic base

fixed base

broker

no broker

R(m̌)=∞

A(m̂)

Listing 7.2: The CoMemmemory control block (MCB) declaration and initialization

1 /* The fInit function for the CoMem management resource rCOMEM. */

2 int rCOMEM_fInit(Resource_t *unused) {

3 disableHint (& rCOMEM ); // disable DynamicHinting for this resource

4 clearHeapSpace () // initialize the entire heap space

5 return 1; // indicate initialization success

6 }

7

8 /* The CoMem management resource (protects critical sections) RAM: 6W */

9 OS_DECLARE_RESOURCE_EXT(rCOMEM , rCOMEM_fInit , NULL , NULL);

10

11 /* The CoMem management event (signals modifications to the MCL) RAM: 1W */

12 OS_DECLARE_EVENT(evMCLChanged );

13

14 /* The head of the memory control list (MCB with lowest address) RAM: 1W */

15 MCB_t *COMEM_MCL = NULL;

Listing 7.3: The CoMemmanagement resource (protection) and event (signaling)

The Memory Control List (MCL): A “used list” as the allocator’s main data structure.

Though the CoMem concept is initially independent from the applied allocator, we use a simple

first-fit scheme for studying the effectiveness of our collaborative approach. In contrast to many

other approaches, like e.g. [46], which maintain a so called free list of unallocated memory

areas, our reference allocator utilizes a used list for currently allocated blocks. Internally, this

memory control list (MCL) is organized as a linked list of preallocated MCBs sorted by block

base addresses, and thus allows the linear scanning for continuous free areas of sufficient

size for new requests. Beyond, removing an MCB from the linked list implicitly results in the

automatic coalescing of adjacent free areas without any additional efforts. Though other data

structures (like e.g. totally or partially ordered trees [306])might scale better for a large number of

simultaneous allocations, a simple list’s lowmaintenance complexity is in line with the typically

weak sensor node hardware, and still provided good performance within our test beds and real-
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world applications32. In fact, allocated blocks must be scanned anyway to select one particular

for reorganization in case of insufficient free space (→ Section 7.5.4) for blocked but pending

requests. Complexity: O(n), where n is the number of currently allocated blocks.

The concurrent access to the MCL is synchronized and protected against race conditions

through the unique management resource rCOMEM, which is acquired by each CoMem API

function prior to any MCL read or write operation to create a surrounding critical section33. Its

declaration is shown in Listing 7.3 alongwith theMCLhead pointer, and the centralmanagement

event evMCLChanged for signaling modifications to the MCL; the total RAM requirement for

these static variables and management data structures is 8 machine words31,34. The obvious

deactivation of DynamicHinting for rCOMEM in Line 3 is acceptable since – according to the

classification scheme from Section 3.2 – it will only be used as a short-term resource. In fact, the

avoidance of hints for rCOMEM is even required due to the request for async-signal safety (→ F1)

which will be discussed in Section 7.5.3.

7.5.2. API Functions

In the following we refer to Listing 7.4 which shows the central algorithms of the CoMem

collaborator, and to Figure 7.9 for some selected execution flows. Unlikemostmemorymanagers

whose API functions require just the size of the requested memory block or the block address

pointers themselves, the CoMem API relies on MCB pointers35 which will be passed to most

of its public collaborator functions. Let’s start with free and relocate since these are rather

simple compared to the memory allocation.

Memory deallocation and relocation. For releasing memory the free(m) function simply

removes the specified MCB m from the MCL and releases the broker resource bm (free:6).

Finally, it triggers the MCLChanged event to indicate the MCL update. In contrast, relocate(m)

seeks a new location for the specified blockm (cyclic next-fit) by which more continuous free

space would become available (relocate:3), and moves the contained data. Finally, it tem-

porarily releases its own broker resource bm (relocate:6-7) and triggers an event (relocate:9)

to indicate the modification and to resume waiting tasks. For subsequent address updates by

the caller, the block and data shift is returned in bytes.

Note that within both functions free and relocate DynamicHinting is disabled for the

broker before releasing it since any potential and subsequent handover to a blocked task means

just a short-term allocation (mallocUntilDH:21-22)36. Also note that both the broker release

32While the evaluation of more advanced data structures is left for future research, most SANet applications seem to

make use of only a few dynamically allocated memory blocks at the same time.
33Do not confuse this with atomic sections, which are intentionally not supported for application tasks under

SmartOS. Critical sections prevent simultaneous execution but are still preemptive under SmartOS.
34The ROM requirement depends on the architecture-specific code size (e.g. ≈2 kB for the TI MSP430).
35MCB pointers are comparable to file handles under e.g. Microsoft Windows [110] and the C standard library libC

[104].
36Any interference by yet another task with higher priority would cause entirely avoidable overhead since the

“borrowed” broker will be released immediately anyway. A hint would only delay this action through the additional

hint processing action (i.e. deallocation and reallocation) between the lines mallocUntilDH:21-22.
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mallocUntilDH(size_t, Time_t*, Delay_t)

malloc(size_t)mallocFor(size_t, Delay_t)

(size, now+delay, -1) (size, __DEADLINE_INFINITE, -1)

mallocDH(size_t, Delay_t)mallocForDH(size_t, Delay_t, Delay_t)

(size, now+delay, R) (size, __DEADLINE_INFINITE, R)

mallocUntil(size_t, Time_t*)

(size, timeout, -1)

mallocRT(MCB_t*)

Figure 7.8.: API and call hierarchy for the CoMem malloc functions

and the event trigger are used to resume tasks with pending requests (depending on their current

situation).

Memory allocation. The CoMem API functions for memory allocation are summarized in

Figure 7.8. As usual under SmartOS, most available variations map to one basic function

mallocUntilDH(...) which requests memory with an absolute deadline but without hard

real-time guarantees for the caller. For those non-RT blocks it accepts three parameters:

1. The requested size s of the continuous non-RTmemory block.

2. The absolute deadline τ for this request.

3. The requester’s WCRT R for processing a hint once the block has been allocated.

Internally mallocUntilDH checks if the caller is authorized to request dynamic memory and

throws an exception otherwise (mallocUntilDH:2). Then, comparable to lock-free methods, the

collaborator code loops until the request for dynamic memory succeeded or the deadline τ has

been reached (mallocUntilDH:6): Each retry attempts to insert the new blockm into the MCL

(mallocUntilDH:7). Therefore it reverts to the allocator (which uses a first-fit approach in our

case) and ends up in one out of three situations:

Case 1: On immediate success (mallocUntilDH:8), i.e. if the allocator returned an MCBm,

the corresponding broker resource bm is locked by the calling block owner σ(m) and we are

done. Figure 7.9 shows an immediately successful request by task a t2. Considering our resource

management policy, it will be sufficient for another task with higher priority to request this

particular resource if it finds itself blocked by σ(m) and thus requiresm to be removed.

Case 2: Indeed, this is exactly what will happen if sufficient space is not available but a spu-

rious memory block m′ was found (mallocUntilDH:15). In case the broker bm′ is currently

allocated (Case 2b) the short-term resource request (mallocUntilDH:21-22) adapts the active

priority p(σ(bm′)) of the blocking owner σ(bm′) through the priority inheritance protocol. In Fig-

ure 7.9 PIP raises p(t1) := p(t2)= 200. If DynamicHinting is enabled for bm′ (mallocUntilDH:10),

the resource manager immediately passes a hint to σ(bm′) (i.e. to t1 in Figure 7.9) and indicates

its disturbing influence. Ifσ(bm′) reacts by releasing or relocating its blockm′ before the blocked
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task’s deadline τ has expired, it also releases bm′ either ultimately (free:6) or temporarily

(relocate:6-7) to indicate the adjusted memory situation. This deallocation once more adapts

its priority, resumes the blocked task, and triggers a new retry for allocatingm. If the deadline

τ has expired the pending resource request is canceled (mallocUntilDH:21), retrying stops,

and NULL is returned (mallocUntilDH:31)37. In Figure 7.9 t1 relocates its block, and through

the subsequent broker handover PIP reduces p(t1) := 100 again. Flow 1 in the example shows

that t2 immediately releases the “borrowed” broker, and finds sufficient space during the next

allocation attempt; eventually t1 reallocates the broker for its relocated block and we are done.

During both Flows 2 and 3 yet another task t5 with even higher priority p(t5)= 250 interferes

with t2’s pending request. Most important for those examples, CoMem allows t5 to still overtake

t2 as demanded by our priority reflexion feature request F10: While t2 still holds t1’s broker

“borrowed” in Flow 2, it blocks the request of task t5 and receives a hint itself which it follows for

the benefit of t5. Finally t2 completes its own allocation by requesting t1 to remove its block. At

the beginning of Flow 3 task t5 also requests the broker of the spurious block which, however, is

already locked in a short-term allocation by the non-owner t2 (borrowed from t1), and thus won’t

generate a hint towards t2. After the broker has been handed over to t5 and released immediately

thereafter, t5 encounters case 2a and suspends itself until the next MCL update. Instead the

priority-based scheduler executes t2 which also runs into case 2a and likewise has to wait for the

MCLChanged event. As soon as t1 reallocated its broker t5 is resumed again and passes a hint to

t1. In turn t1 releases its block and sets both t5 and t2 ready through the broker deallocation and

the event trigger, respectively. After t5 succeeded first, t2 retries but this time it requests t6 to

free some space.

The remaining problem regarding the allocator is how to reasonably select and return a

blocking MCBm′ to the collaborator for generating a hint on. While scanning the MCL for free

space (mallocUntilDH:7), the allocator searches for two types of MCBs: The first type would

already produce the requested space if it was relocated, and the other one would only produce

the requested space if it was released entirely. Among these the first type takes precedence,

and m′
advice

will be set to either adv_doRelocate or adv_doRelease. Following the first-fit

approach for the allocation itself, the first block with a lower priority owner than the currently

blocked task is selected for hinting. Thus, along with the hint, its owner also receives the advice

for a suitable reaction. Of course, and from the view of the blocked task in particular, a release is

always at least as effective as a relocation.

Case 3: If no spurious task, or blockm′ respectively, was found (mallocUntilDH:27) at all, the

collaborator simply waits for the next modification to the heap space. Triggered by another task

through the MCLChanged event from within free or relocate, one more retry is started if this

happens within the deadline τ. Otherwise waiting is canceled and NULL is returned to indicate

the timeout. Once more Figure 7.9 gives an example where the low priority task t3 cannot hint

the higher prioritized block owners, but has to wait for a voluntary release; which is finally done

by t1 and lets t3 succeed.

37Note that forwarding the deadline τ to all self-suspending (kernel) functions allows us to immediately exit from the

inner loop.
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Figure 7.9.: Various memory allocation flows related to the source code from Listing 7.4

with DynamicHinting enabled, i.e. USE_HINTS = REQUEST_BROKER = 1
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1 MCB_t* mallocUntilDH(size_t s, Time_t *τ, Delay_t R) {

2 if (os_inKernelMode ()) THROW EXC_COMEM;

3 MCB_t *m’ = NULL;

4

5 retry = 1;

6 while (retry == 1) {

7 MCB_t *m = insertIntoMCL(s, R, &m’);

8 if (m != NULL) {

9 getResource(m->broker );

10 if (USE_HINTS == 1) enableHint(m->broker );

11 return m;

12 }

13 if (&τ == 0) return NULL;

14 clearEvent (& MCLChanged );

15 if (m’ != NULL) {

16 if (testResource(m’->broker) != 0) {

17 retry = waitEventUntil (& evMCLChanged , τ);

18 continue;

19 }

20 if (REQUEST_BROKER == 1) {

21 retry = getResourceUntil(m’->broker , τ);

22 if (retry) releaseResource(m’->broker );

23 } else {

24 retry = waitEventUntil (& evMCLChanged , τ);

25

26 }

27 } else {

28 retry = waitEventUntil (&MCLChanged , τ);

29 }

30 }

31 return NULL;

32 }

1 void free(MCB_t *m) {

2 if (os_inKernelMode ()) THROW EXC_COMEM;

3 removeFromMCL(m);

4 disableHint(m->broker );

5 m->advice = adv_doClear;

6 releaseResource(m->broker );

7 setEvent (& MCLChanged );

8 }

1 int relocate(MCB_t *m) {

2 if (os_inKernelMode ()) THROW EXC_COMEM;

3 delta = relocateInMCL(m);

4 moveDataBy(m, delta);

5 disableHint(m->broker );

6 releaseResource(m->broker );

7 getResource(m->broker );

8 if (USE_HINTS == 1) enableHint(m->broker );

9 setEvent (& MCLChanged );

10 return delta;

11 }

pass hint

(→ Listing 7.7)
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Prohibit requests by IRQ handlers, and create pointer

to a spurious block.

Retry until success or timeout...

Try to find continuous free space:

Case 1: Continuous free space found:

Lock the broker bm , enable DynamicHinting, and

return the handle.

Case 2: Found a spurious block m′ :
a) Broker free: Wait for an MCL update (owner

is already working on m′ and b
m′ is currently

not allocated).

b) Adapt the blocker’s priority by requesting its

broker resource b
m′ temporarily. This will also

pass a hint.

c) Omit a hint and just wait for MCL update.

(For test beds without DynamicHinting).

Case 3: Neither free space nor a spurious block

found:

Wait for the next MCL update.

Timeout.

Release the block m.

Release the broker bm .

Indicate the MCL update.

Find new space and copy the block content.

Temporary broker release.

Indicate the MCL update.

Listing 7.4: The CoMem API/collaborator functions and their interactions:

. Calls to allocator functions are protected through the short-termmanagement

. resource rCOMEM, and highlighted in gray (critical sections).

Green arrows: Interaction via the global MCLChanged event.

Red arrows: Interaction via a block specific broker resource.
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Summary. This section introduced the CoMem API functions. While relevant implementation

consequences regarding our feature request from Section 7.2.2 will be discussed next, the

support for time-critical memory allocations will be presented in Section 7.5.4, and application

examples can be found in the test bed Section 7.6.

7.5.3. Implementation Consequences

Having introduced the general algorithms behind the CoMem collaborator, we’ll now discuss

the implementation consequences for the remaining feature requests from Section 7.2.2. From

these we still have to discuss the usability aspect, in particular the selection of PIP, the deadlock

freedom for the management resource, and the async-signal safety of the library functions.

Selecting PIP to avoid unreasonable restrictions. Within our CoMem reference imple-

mentation we applied the priority inheritance protocol (→ Section 6.3.2) for synchronizing the

brokers, and hence we intentionally focused on long-termmemory allocations as frequently

required for complex objects like memory blocks (the related advantages of PIP were already

discussed in Chapter 6). Though CoMem can in principle also be realized with other policies

where task blocking can occur and DynamicHinting is supported, we want to illustrate once

more how the selection of PIP performs in the special case of CoMem and why it avoids some

significant shortcomings of similar techniques (→ Table 6.1[p99]):

At system runtime, each broker bm is likely to remain locked in a long-term allocation by

the owner task of the corresponding MCB (→ mallocUntilDH:9 in Listing 7.4). Meanwhile,

higher prioritized tasks might signal their demand for currently unavailable dynamic memory

by requesting such a foreign broker bm′ , and keep it locked briefly in a short-term allocation

(→ mallocUntilDH:21-22 in Listing 7.4). When using e.g. PCP (or any other protocol which

requires a priori knowledge like allocation graphs as introduced in Section 6.3.2), the true ceiling

priority for each broker resource bi is hard to compute, since the actual heap fragmentation and

the resulting broker requests are hardly predictable. To be prepared for the worst case, we can

only compute pessimistic ceiling priorities c(bi ) by considering all potential requests among the

tasks TDM ⊆ T \{t0} with dynamic memory utilization:

Lemma II.5. For resource synchronization protocols which require the knowledge of ceiling

priorities c(bi ) for all brokers bi , these are identical and compute according to Eq. (6.11) as

cb :=max{Pt | t ∈ TDM }. (7.1)

Proof. Eq. (7.1) is true since the highest prioritized task in TDM might potentially request each

broker, and thus ∀bi : c(bi ) :=max{Pt | t ∈ TDM }= cb .

Even worse, only one task could allocate one or more blocks at a time, since

∀t∈TDM
: p(t )≤ cb (7.2)

would hold then, and PCP’s resource assignment condition from Eq. (6.12)[p124] would fail im-

mediately for each additional request from another task. Even serviceable requests (from the
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allocator’s view) would be denied preventively since they could lead to the later rejection of

higher priority tasks. Similar to the DynamicHinting test bed results from Section 6.7, PCP would

perform unbalanced and worse than PIP due to its conservative policy. In fact, it would cause

unacceptable restrictions for any memory manager (→M4[p145]) and starve tasks. This is why we

continue to use PIP, and benefit once more from its generous resource assignment policy.

Deadlock freedom and async-signal safety. Within the introduction of this chapter we

requested for deadlock tolerance and async-signal safety as indispensable features of a dynamic

memory manager. Referring to our implementation from Listing 7.4 and the resource policy

from Section 6.4.1, we can show both properties for CoMem:

Lemma II.6. CoMem is free frommanagement deadlocks (→ F8b).

Proof. According to Lemma II.4, a task t can only produce a deadlock cycle, if it already owns

any resource ra while requesting another resource which is currently allocated by a task u 6= t .

Furthermore, such a cycle contains at least n ≥ 2 tasks, and n resources as well. Thus, let

t ,u ∈ T \{t0} be two arbitrary SmartOS application tasks and let ra ∈R be any SmartOS resource.

Most important, let rM ∈R be the SmartOS resource rCOMEM for protecting the internal CoMem

data structures as depicted in Listing 7.4. In order to produce a deadlock by simply requesting

some memory and putting rM into an RAQ cycle, a resource situation as depicted in Figure

7.10a must be reached. However, this scenario can never occur under SmartOS, since u would

obviously have allocated rM prior to requesting ra , then. As clearly visible within the CoMem

code from Listing 7.4, the algorithms will never request any resource while still holding rM ; in

particular, the broker resources are always allocated outside of the critical sections (gray areas).

In consequence, |A(rM )| ∈ {1,2}, and according to both Lemmata II.2c and II.4a CoMem is free

frommanagement deadlocks regarding its internal protection resource rCOMEM.

Lemma II.7. CoMem provides async-signal safety for its API functions (→ F1).

Proof. Regarding this property, we have to distinguish between the asynchronous occurrence of

IRQ handlers (→ Section 4.3.5) and HintHandlers (→ Section 6.5.4) under SmartOS:

a) For IRQ handlers, resource (de-)allocations are prohibited entirely according to the SmartOS

specification. Since this restriction also applies for dynamic memory allocations, and for

broker resources in particular, CoMem is async-signal safe for IRQ handlers38.

b) Regarding HintHandlers we have to distinguish between the management resource rM and

the broker resources39. Within the example from Figure 7.10b two critical situations might

emerge from two tasks’ interleaving request for memory. Here p(t )> p(u), and t preempted

u while the latter already held rM during a memory allocation attempt (❶). If t also requests

38As depicted in Listing 7.4, each CoMem API function will check for the correct execution context (i.e. task mode),

and throw an exception if the test fails. The exception might finally result in a kernel panic (if it is not caught

within the IRQ handler) to indicate a bad software design.
39Remind that HintHandlers also occur asynchronously just like interrupts, but havemore resource-related privileges.

In fact they are meant for resolving resource conflicts, and thus they will intentionally be executed within the

context of their associated task.
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Figure 7.10.: CoMem deadlock freedom and async-signal safety

(The numbers❶ –❹ denote the order of resource requests and allocations.)

rM for a memory allocation (❷), a hint will be passed to u indicating this priority inversion.

If u’s HintHandler decides to react on the hint, and requests rM once more in u’s context (❸),

it will succeed immediately since, according to the SmartOS specification S6[p104], u already

owns rM and will simply receive it twice. In consequence, u and its own handler would

concurrently execute critical sections protected by rM . This problem cannot be solved by

using synchronization primitives: Any attempt to synchronize between a signal handler and

a regular task execution would immediately result in a deadlock40. Thus, CoMem avoids the

multiple allocation of the management resource, and in general disables DynamicHinting on

rM for performance reasons and to provide async-signal safety (→ Listing 7.3, Line 3).

ä

Though DynamicHinting is disabled for rM the priority inheritance protocol is still applied,

and adjusts any blocking task’s priority regarding this and other resources: Since we strictly

avoided task self-suspensions by the allocator within CoMem’s critical sections, the execution

delay of any interleaving but blocked task will increase, but the extra time in waiting state (for

rM ) is mainly bounded by the worst case execution time for insertion, removal or relocation

of a single block. Since these operations will be executed at the priority of the blocked task,

comparable problems are inherent to any allocator design when used in combination with

preemptive tasks.

Compared to the async-signal safety and deadlock freedom for its API functions, CoMem does

not inherently provide these properties for brokers in general. Let’s take a look at Figure 7.10c

where the task u allocated some memory along with the corresponding broker resource bm

(❶), and the task t allocated a communication bus resource rS (❷). Next (❸), t requests some

memory which is currently not available, and implicitly triggers a hint for u. If u accepts the

hint, but decides to save the contents of its memory block to an external flash memory first, this

operation might also require the communication bus. In this case, u’s request for rS (❹) leads to

a deadlock situation between u and t , and must be handled as described in Section 6.5.5.

40While the handler holds exclusive access to the CPU, the task holds a resource which is requested by the handler

but cannot be released since the task won’t receive the CPU. A deep discussion of this problem can also be found

in the multithreaded programming guide for POSIX compatible operating systems [271]).
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7.5.4. Hard Real-Time Heap Organization

So far we have introduced the basic collaboration concept and implementation details behind

our novel memory management approach. However, until now the acceptance of hints and the

subsequent heap reorganization are neither guaranteed nor bounded in their execution time.

While we’ll already obtain remarkably low and task priority dependent memory allocation times

without further efforts (→ Section 7.6), the worst case allocation times (WCAT) remain uncertain

– a fact which is at most acceptable for non real-time or soft real-time operation.

In this section we present an extension for CoMem to support the reliable and efficient sharing

of the valuable heap space in open systems, i.e. among coexisting tasks with time-critical and

non time-critical requests for blocks of arbitrary size. Therefore our goal is threefold:

1. We need to save the commonly sparse memory reserves by truly sharing a single memory

space between real-time and non real-time tasks41.

2. Wemust provide a spatial and temporal guarantee for time-critical requests – even in

out-of-memory or high load situations.

3. We largely want to avoid the prophylactic rejection of requests from non time-critical

tasks – at least as long as free space is available.

While the 1st goal is just a predefinitionwemake, the others are objectives which can be enforced

through CoMem if some specific information about the memory related timing constraints

is available, and if we are ready to accept additional runtime effort resulting from a special

adaptation of the allocator. According to Figure 7.11 the idea is based on the one hand on static

compile time contracts between the allocator and time-critical tasks, and on the other hand

on dynamic runtime contracts between the collaborator and non time-critical tasks: Without

reserving the required space permanently, a static heap layout – the so called RT heap layout – is

created for time-critical allocations to definitely avoid their mutual interference and deadline

violation at runtime. Also at runtime the allocator relies on the RT heap layout to save heap

memory by dynamically co-locating non time-critical blocks in a way to ensure that an on-

demand heap reorganization for freeing space at shared but potentially colliding addresses is

temporarily bounded and below a co-located real-time task’s block allocation timeout. This

is achieved by maintaining some kind of safe state regarding the heap partitioning and the

available timing information. In the following we define this special RT heap layout to assure

timely memory allocations for real-time tasks with hard deadlines.

The static RT heap layout is based on some information which is commonly available

for hard real-time tasks anyway (e.g. through static code analysis): Initially we bipartition the

setM of memory blocks into time-critical blocks M̂ (RT blocks for short) and non time-critical

blocks M̌ (non-RT blocks for short) with M̂ ∩ M̌ =; and M̂ ∪ M̌ =M . While M̂ must be known

41In fact providing various heap areas or pools for critical and non-critical blocks would only attenuate the problem

since the time-critical tasks would still compete for memory and might still run into severe allocation failures.

Besides it would lead to increased external fragmentation as already discussed in Section 7.2.1.
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Figure 7.11.:Memory allocation contracts under CoMem

during the heap layout generation42, M̌ is arbitrary at any time. We also assume that RT blocks

won’t be superseded on-demand, and thus do neither trigger hints nor require a broker resource

(→ Listing 7.1). For each RT block m̂ ∈ M̂ we define the acceptableworst case allocation time

WCAT A(m̂) ∈ (0,∞), i.e. the value which will be used as hard timeout for the memory request.

Reflecting these timing constraints, the directed RTmemory graphGM̂ specifies the potentially

simultaneous allocations of RT blocks as follows:

GM̂ := (M̂ ,α) with

M̂ := the set of memory blocks with hard allocation timeouts

α := {(â, b̂) | â, b̂ ∈ M̂ ∧ A(â)≤ A(b̂)

∧ â, b̂ might be allocated simultaneously}

(7.3)

As an example Figure 7.12a shows a set M̂ = {â, . . . , î } of RT blocks, for which each path inGM̂ is

partially ordered by its nodes’ WCAT43.

Of course it is not always easy to determine which blocks will never be allocated simultane-

ously. While we won’t present an algorithm or tool to analyze an arbitrary set of SmartOS tasks

for potential interference but leave this for future work, corresponding information can easily

and automatically be deduced for tasks which allocate and deallocate blocks successively (since

these won’t interfere by nature), and – as amore complex challenge – for tasks with a well-known

execution interleaving (e.g. through mutual triggering as e.g. implemented for the SNoW Bat

task system in Section 10.2.4).

The next step is to generate the RT heap layout. To avoid spatially colliding requests for RT

blocks (i.e. to support any valid allocation scenario for blocks in M̂), but to also obtain as large

continuous areas of free memory as possible for non real-time tasks, we need yet another metric

for placing the RT blocks efficiently. For each heap address x we define Θ(x) as the minimal

42Within our current implementation the required static information must be provided by the system designer at

compile time. Modifications at runtime might require the computation of an entirely new heap layout from

scratch, and are currently not yet supported by our implementation. However, this option could be added e.g.

through an additional server task tS with high priority PtS which requests the entire heap, and passes hints to all

current owners. If these tasks are designed to always release or relocate their blocks in case of a sufficiently high

threshold priority ϕ≤ PtS , the new layout can also be computed on-demand by tS .
43If there is no appropriate information, we assume the worst case where all allocations in M̂ might exist simultane-

ously; thenGM̂ is still directed but fully meshed.
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(a) The RT memory graph GM̂
(considering block sizes)

(b) The RT heap layout and some exemplary block allocations (considering

timing constraints)

Figure 7.12.: The CoMem heap organization for RT blocks and co-located non-RT blocks

WCAT over all RT blocks spanning over x:

Θ(x) :=







min{A(m̂)} x is reserved for m̂ ∈ M̂

∞ x is not reserved for any m̂ ∈ M̂
(7.4)

Placing RT blocks at static addresses. After these preliminary considerations, the next

step is to generate the RT heap layout. As requested in M2[p145], our goal is to keep the scarce

memory in mind, and to efficiently share the heap space between the RT blocks M̂ and non-RT

blocks M̌ while not jeopardizing other feature requests44. To still avoid colliding requests among

RT blocks while obtaining large continuous areas of assignable memory for non real-time tasks,

we introduce two rules C1 and C2 based onGM̂ andΘ(x):

C1 No two different RT blocks m̂1,m̂2 ∈ M̂ with (m̂1,m̂2) ∈αmay span over a common heap

address x. I.e. RT blocks must never interfere with each other.

C2 Reservations for the RT blocks M̂ must be partially ordered by A(m̂) as follows: ∀x≤y :

Θ(x)≤Θ(y). I.e. the shorter A(m̂) the lower m̂’s base address.

Both rules are easily obeyed and the RT layout is quickly created inO(|M̂ | log |M̂ |) by sorting
M̂ by ascending A(m̂), and placing the RT blocks successively at the lowest address permitted

by C1 and C2. While C1 already solves the memory allocation for the RT blocks M̂ , we still have

to show how C2 simplifies the allocator’s dynamic placement algorithm for non-RT blocks M̌ .

As an example Figure 7.12b shows the statically generated RT heap layout for the RTmemory

graph from Figure 7.12a. In contrast to e.g. f̂ and î with ( f̂ , î ) ∈ α, the RT blocks â, b̂, and ĝ

can be placed at the same address since they won’t be allocated simultaneously (but maybe

alternately through synchronized tasks, or successively within a single loop). Though the RT

44Therefore some allocators (e.g. under VxWorks [307]) maintain several heaps to place memory blocks depending

on their owner’s priority. While this would once more raise problems regarding their individual size and the

resulting fragmentation, a temporal allocation guarantee can still not be given. Due to the limited memory we

won’t accept the concomitant overhead, and seek for another solution.
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block base addresses are fixed, the memory is not assigned statically but only reserved while

being shared with non-RT blocks at runtime45.

Placing non-RT blocks at dynamic addresses. While M̂ must obviously be known during

RT layout generation, non-RT blocks M̌ need not to be known then. However, to allow the

emergence of hints toward blocking non-RT tasks at runtime, we assume a strict separation

between RT and non-RT tasks regarding their initial base priority P as defined by the developer46:

∀m̌∈M̌ ,m̂∈M̂ : Pσ(m̌) < Pσ(m̂)

where σ(m) denotes the requester or owner task of blockm. Then PIP raises the active priority

p(σ(m̌))≥ p(t ) if a RT task t with Pt > Pσ(m̌) indirectly requests σ(m̌) 6= t to clear its exclusively

allocated space through CoMem47.

Upon each allocation attempt, the requester σ(m̌) of a non-RT block must provide an individ-

ual contract offer by specifying the WCRT R(m̌) ∈ (0,∞] of its hint handling routine for clearing

m̌ (by either free or relocate from Listing 7.4). Since CoMem relies on this information, the

specification of R(m̌) offers and accepts a contract at the same time. If R(m̌) is unknown,∞
must be specified to be prepared for the ultimate worst case. The offer is negotiated by the

memory manager, and allows an appropriate placement of the non-RT blocks as follows:

When considering some temporal overheadΦ for the memory management itself (e.g. for the

broker (de-)allocation), the lowest possible base address xmin(m̌) for any m̌ ∈ M̌ is

xmin(m̌) :=min{x |Θ(x)≥R(m̌)+Φ}. (7.5)

E.g. ň ∈ M̌ in Figure 7.12b is placed at its lowest possible address xmin(ň)= 10. Since however

several non-RT blocks may share a RT block’s reserved range (e.g. ǒ, ř , ĥ in Figure 7.12b), we

have to be careful with suchmultiple co-locations, and select each base address according to

the additional rule

C3 Maintain a temporal and spatial safe state for RT blocks by placing any m̌ ∈ M̌ at a base

address x ≥ xmin(m̌) so that the reserved space for any RT block m̂ ∈ M̂ can reliably be

freed within A(m̂):

∀m̂∈M̂ :
∑

m̌∈M̌
m̌ is co-located with m̂

R(m̌)+Φ≤ A(m̂) (7.6)

This way, all potentially disturbing non-RT blocks can be removed on-demand for the guaran-

teed and timely success of any RT task’s request. If all WCRTs of the affected non-RT tasks are

held, the hard WCATs of the RT blocks are also safe.

45Note that ifGM̂ was fully meshed, the RT blocks â, . . . , î would be placed successively in this order with â at the

lowest address.
46A property, which is commonly the case for hard real-time operation, anyway.
47Even if σ(m̌) would not be scheduled and thus break its contract, this would only occur due to another even

higher prioritized task. Schedulability analysis might be applicable to detect and avoid such system behavior at

development time.
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Since we placed the RT blocks according to C2, Eq. (7.5) holds and the allocator can start to

seek the required space at the highest heap address. Like for š, ť in Figure 7.12b it might not even

share memory with RT tasks then, but as soon as it needs to co-locate a non-RT block m̌ ∈ M̌
with any m̂ ∈ M̂ it can stop at address xmin(m̌) at the latest. This is why the MCL contains its

blocks sorted by base addresses.

If there is currently no space available for m̌, the memory manager tries to hint and eliminate

any other allocated m̌′ ∈ M̌ with R(m̌′)+Φ≤ A(m̌) and lower owner priority. In case of success

m̌ is allocated while C3 must still be followed to maintain the safe state. If an allocation is not

possible within A(m̌), the request is rejected (timeout).

Real-time feasibility and heap size dimensioning. To ensure the feasibility of our approach,

the total heap size sH must at least be sufficient for the RT blocks under C1 and C2. While the

exact size requirement ŝH for M̂ is known through the generated RT heap layout (ŝH = 80 in

Figure 7.12b), there is also a theoretical upper bound
⌈

ŝH
⌉

which can be computed by using

the individual block sizes |m̂| as node weights inGM̂ , and finding the longest acyclic path PM̂

therein. Then,
⌈

ŝH
⌉

:= |PM̂ | =
∑

m̂∈PM̂

|m̂| ≥ ŝH . (7.7)

In addition, some extra space šH should be reserved for those non-RT blocks which cannot be

entirely co-located with RT blocks due to Eq. (7.5) and C3, respectively. At least for those blocks

m̌ ∈ M̌ with known size |m̌|, the still non-allocatable fraction computes as

u(m̌) :=max{0, |m̌|− (ŝH −xmin(m̌))}.

With it,

šH :=max{u(m̌) | m̌ ∈ M̌ } (7.8)

is the lower bound for the extra space, and finally

sH ≥ ŝH + šH (7.9)

must be chosen as minimal heap size to be sufficient in terms of (timely) allocations for all RT

blocks, but also to provide at least one suitable location for each non-RT block of known size.

Still, allocations can never be granted for non-RT blocks.

For Figure 7.12a, PM̂ = â, ĉ, d̂ , ê, ĥ with
⌈

ŝH
⌉

= |PM̂ | = 80. The RT heap layout in Figure 7.12b

also requires ŝH = 80. Thus, sH ≥ ŝH + šH = 80+u(š)= 80+10= 90 must be selected. Since we

provided sH = 100, the allocator was able to place (the chronologically last request) ť at base

address 90; with sH = 90, ť could not have been allocated since â is already located at address 0.

Besides, if e.g. ĥ is requested, both ǒ and ř will be removed in time since according to Eq. (7.6)

R(ǒ)+R(ř )+2Φ= 50≤ 60= A(ĥ). Likewise, ň will be removed in time for the request of any RT

block ĉ, d̂ , ê, f̂ , or î .
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7.6. CoMem Evaluation and Benchmarks

Based on the just described CoMem concept and the operation details, we’ll next discuss some

performance results from concrete application scenarios. Just like in our previous benchmarks,

we’ll once more use one stress test to demonstrate the overall stability and behavior under

extreme conditions, and one real-world example which will also become relevant for the indoor

localization system SNoW Bat in Part III of this work.

Metrics. For analyzing the benefits of our collaborative memory management concept com-

pared to the classic approach, i.e. the combination of temporally limited memory requests and

on-demand heap reorganization vs. immediately returning allocator calls, various metrics were

of special interest:

1. The minimum, maximum, and average allocation delay δ(i ) for a task ti when requesting

memory,

2. the iteration count s(i ) (during a defined time) for a task ti which requests memory in a

periodic manner,

3. the hint count h(i ) for a task ti ,

4. the total fragmentation penalty X (P ) when either heap reorganization was required or

when tasks could not be served due to the current memory partitioning P , and finally

5. the memory overhead for the internal CoMemmanagement data structures.

While the metrics 1 – 3 are particularly relevant for evaluating the collaborator’s runtime

performance, metric 4 is mainly an indicator for the applied allocator’s quality. Since however

both components exert a strong influence on the task and memory states – which are highly

dynamic anyway – they inevitably affect each other, too, and must thus be evaluated regarding

their specific combination within the test beds. In contrast, metric 5 is constant for a given

implementation.

As already mentioned several times, the typically small memory of sensor nodes had to be

considered carefully during the reference implementation under SmartOS to leave sufficient

space for the actual application. Once more our test scenarios were executed on the SNoW5

platforms from Section 2.2 where we required 4+1 kB of ROM48 and 40+16 B of RAM49 for the

whole SmartOS kernel plus the CoMem library.

For a detailed performance analysis of the metrics 1 – 3 we used the integrated SmartOS

timeline with a resolution of 1µs, and let each task log its related values at runtime to compute

its individual statistics after the test run.

Metric 4 ismore complex and requires some preliminary considerations: Especially for storage

devices, such as hard drives, various metrics to assess a specific fragmentation have already

been examined. However, these always rely on the number of non-contiguous files, or on their

48Compiled without benchmarking functionality using mspgcc [292].
49MCL head pointer (1×1W), MCL changed event (1×1W), protection resource (1×6W)
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Figure 7.13.: Examples for heap fragmentation penalties

individual number of occupied clusters. As memory blocks on the heap (in contrast to files on

the medium) must always be contiguous, these metrics are rather useless for us. Nevertheless,

we want to make a statement about how good a specific heap fragmentation is in comparison

with an optimal arrangement of the occupied areas, e.g. if all allocated blocks are adjacent and

there is only one contiguous free area:

A partitioning P of a heap H with total size |H | > 0 consists of a finite but dynamic set

of n disjunctive memory areas b1, . . . ,bn of maximum size |bi | > 0. According to our block

management data structure MCL from Section 7.5, we assume the automatic coalescing of free

areas, and thus the sets of allocated and unallocated blocks are well-defined:

A(P ) :=
{

b ∈ P | b is allocated
}

and U (P ) :=
{

b ∈ P | b is unallocated
}

. (7.10)

When considering an average block size |b|av for the allocations within a certain application,
the heap’s total fragmentation penalty X (P ) is the number of average sized blocks which could

only be allocated in addition to the already allocated blocks if the current placement of the

latter was perfect, or, in other words, the number of average sized blocks which can not be

allocated since the used blocks are not perfectly placed50. Therefore, we initially define the

local fragmentation penalty of a free memory area as the fraction of an average size block which

would not completely fit inside if the area was filled up with such blocks. Consequently, X (P ) is

defined as the sum over all local penalties for each unallocated area b ∈U (P ) reduced by the
constant heap bias, which is the penalty for an entirely free heap:

X (P ) :=max{0,











∑
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⌊
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constant heap bias

} (7.11)

According to this definition, any X (P )< 1 can be considered as optimal, since not even one

more block could be allocated in case of a perfect block placement.

50In this context “perfect” does not necessarily require the adjacent placement of these blocks. We also ignore the

program logic and the concomitant locality principle (→ F4), but assume all blocks to be independent.
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Figure 7.13 gives an example: The depicted heap can hold 12.5 blocks of average size bav

and thus exhibits a constant bias of 0.5. The free areas within the upper partition can hold

2.5,0.5, and 2.5 blocks of average size, and thus put a penalty of 0.5 each. Finally, the heap

could hold X (P ) = 1 more such average sized blocks if the fragmentation was optimal. In

contrast, the lower partition is optimal since no other placement of allocated areas would allow

to allocate more blocks of average size. For pool based approaches in particular their unique

block sizes |b| = |b|av avoid external fragmentation, and consequently always yield a constant

fragmentation penalty X (P )= 0.

7.6.1. Dynamic Memory Stress Test

Setup. The first test bed scenario analyzes our CoMem approach under extreme conditions

with n cyclic tasks t0, . . . , tn−1 andmany concurrent but irregular memory requests. We inten-

tionally omitted dedicated RT blocks as well as explicit timing specifications and deadlines, to

study the average performance when using arbitrary allocation sizes (→ F2). Instead, we simply

assigned ascending base priorities Pti = 100+ i for the tasks to analyze their relative success

when requesting heap memory of arbitrary size. According to the state diagram from Figure

7.14a, the tasks were rather simple, and executed the same code repeatedly:

❶ Sleep for a randomized time ∆s .

❷ Request a memory block of randomized size bm without any finite timeout (i.e. τ=∞).

❸ Operate on the memory for a randomized time ∆c .

❹ Release the memory.

Both durations ∆s and ∆c , as well as the requested block sizes bm were randomized for each

iteration. By using various randomizer seeds, we obtained significant heap space dynamics,

fragmentation, and task blocking which needed on-demand handling at runtime. Of particular

interest in this respect is state ❸, which – in case of a memory related priority inversion as

described in Section 7.4.2 – should be left prematurely to speed up the allocation delay of a

higher priority task blocked in state❷. Since we specified infinite timeouts τ for the requests,

each task measured its specific execution times of malloc, and logged its minimum, maximum,

and average allocation delays δmin,δmax, and δav separately. Furthermore, the number of

received hints h(i ) and successful iterations s(i ) were counted. If CoMem performs according to

our expectations, the results should exhibit the following relations:

δav (i )∝
1

Pti

and s(i )∝ Pti (7.12)

The allocation delay would therefore decrease with increasing task priority; at the same time,

the number of iterations should be directly proportional to the individual task relevance. In

contrast, the number of triggered hints will show to be more difficult to predict.

Similar to the DynamicHinting test bed from Section 6.7 we once more applied two non-

collaborative policies (P1, P2) and two collaborative policies (P3, P4) for comparing the allocation

delays in relation to the task priorities when requesting memory according to Listing 7.4:
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Figure 7.14.: CoMem test bed task state diagrams (reduced to the relevant states)

P1 Classic approach: For this policy, we disabled the CoMem approach entirely (USE_HINTS

== 0) and simply omitted the request for any blocking task’s broker (REQUEST_BROKER

== 0). To still avoid spinning loops of currently not serviceable tasks, we just waited in

suspended state for heap modifications (Case 2c), and started another retry then. Conse-

quently, blocks were no longer treated like regular resources, i.e. the priority inheritance

protocol was not available for them. Furthermore, related hints as well as the chance for

collaborative memory sharing vanished completely. This policy is comparable to many

common approaches and its performance solely depends on the used allocator.

P2 Priority inheritance: For this policy, we reactivated the broker requests to signal upcom-

ing memory shortages immediately (Case 2b, REQUEST_BROKER == 1). However, we let

the blocking tasks simply ignore the emerging hints (USE_HINTS == 0). Though a block-

ing task t would not collaborate on-demand then, its active priority p(t ) was at least raised

to the priority of the task it blocked, and it received CPU time for step ❸ more quickly.

Please note that the sole use of PIP is of almost no use, if only little CPU load is generated

by the blocking task and it mainly stays suspended while holding the memory block51.

To exploit the potential of CoMem we let each task activate DynamicHinting on its broker

(USE_HINTS == 1) and triggered hints in case of out-of-memory situations (REQUEST_BROKER

== 1):

P3 CoMem&HintHandlers: Here, each task generated CPU load but supplied a HintHandler

for immediate injection into its own execution flow when blocking a higher prioritized

task. This resulted in blocking while in ready/preempted state.

P4 CoMem&EarlyWakeup: Finally, the tasks did sleep while holding a memory block. Yet,

they were resumed immediately when blocking a higher prioritized task. This resulted in

blocking while in waiting/suspended state.

51The same would be true for similar policies, like e.g. PCP, if task self-suspensions are allowed while holding

resources exclusively (long-term allocations).
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(a) P1: Classic approach, sH = 480 words
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(b) P1: Classic approach, sH = 320 words
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(c) P2: Priority inheritance, sH = 480 words
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(d) P2: Priority inheritance, sH = 320 words
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(e) P3: HintHandlers, sH = 480 words
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(f ) P3: HintHandlers, sH = 320 words
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(g) P4: Early Wakeup, sH = 480 words
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(h) P4: Early Wakeup, sH = 320 words

Figure 7.15.: CoMem stress test results for various policies and heap sizes:

Allocation delay and Hint count

(ascending base priorities for n = 10 tasks, test bed runtime: 10min)
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1 #if (TB_USE_HINTHANDLERS == 1) // use as hint handler (→ Section 6.6.4)

2 OS_DHHANDLER(DHH_Memory) {

3 #else

4 void DHH_Memory () { // use as regular function

5 #endif

6 MCB_t* dm = getMCBForBroker(getResourceHint(NULL ));

7 if (dm != NULL) {

8 // stop operation on the memory

9 if (dm->advice == adv_doRelocate) {

10 int delta = relocate(dm);

11 } else if (dm ->advice == adv_doRelease) {

12 size_t size = dm->size;

13 free(dm);

14 /* ---------- THE TASK WILL BE PREEMPTED HERE SINCE AT ----------

15 -- LEAST ONE OTHER TASK WAITS FOR THE MEMORY/BROKER RELEASE -- */

16 malloc(size);

17 } // ignore other advices

18 }

19 }

Listing 7.5:Hint handling for the CoMem stress test: The function can either be declared as asynchronous

HintHandler, or as regular function for explicit calling during Early Wakeup.

Under P3 and P4, a task tL treated its hints according to Listing 7.5: After querying the affected

MCB tL stopped the operation on the memory block, and – depending on the advice from the

CoMem subsystem – it either called free or relocate. As intended, this caused the immediate

allocation success as well as the scheduling of a directly blocked task tH with higher priority.

This is always true since tH then held the highest priority of all tasks in ready state and tL did let

tH “pass by”. When scheduled again, tL tried to continue or restart its operation quickly. In case

of relocate it reused the old but shifted block. In case of free it re-requested a block of the old

size. Please note that the data integrity within the memory blocks was not considered by this

test (→ Section 7.6.2 instead). Just the allocation delay was analyzed for reactivity and response

time evaluation.

Evaluation. We configured the test bed using several task counts n, heap sizes sH and ran-

domized block sizes sB under the policies described above. Since the results always showed

similar main characteristics, we just present the analysis for n = 10 tasks, block sizes sB ∈ {32,64}
words, and heap sizes sH ∈ {320,480,640} words. Each setup was executed for 10min.

As expected, all allocation attempts succeeded immediately when sufficient heap space

sH = 640 words was available to serve all requests even in the worst case. Though static memory

assignments would suit much better then, we did this cross-check to see if the influence on

the CPU load is already observable: Indeed, while the hint count h(i ) remained 0 for each

i ∈ {0, . . . ,n−1}, the average allocation delay already settled around δav (i )=280µs for each task

ti and policy. In comparison, the best case allocation time was δbc=226µs when executing only

one task (with immediate success and without any preemption or self-suspension).

Selecting sH := 10· 32+64
2

= 480 words (the required heap size for the average case) already

shows the benefits of our collaborative approach (→ Figure 7.15, left column). Please note the
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(b) P1: Classic approach, sH = 320 words
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(c) P2: Priority inheritance, sH = 480 words
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(d) P2: Priority inheritance, sH = 320 words
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(e) P3: HintHandlers, sH = 480 words

 0

 0.5

 1

 1.5

 2

 2.5

 3

0 1 2 3 4 5 6 7 8 9 av.

 0

 25

 50

 75

 100

 125

 150

0.1 0.1 0.1 0.1 0.1
0.0

0.1 0.1
0.2

0.1 0.1

47 65 87 95 107 118 110 110 119 112 97

0.9

 0

 0.5

 1

 1.5

 2

 2.5

 3

0 1 2 3 4 5 6 7 8 9 av.

 0

 25

 50

 75

 100

 125

 150

0.1 0.1 0.1 0.1 0.1
0.0

0.1 0.1
0.2

0.1 0.1

47 65 87 95 107 118 110 110 119 112 97

0.9

(f ) P3: HintHandlers, sH = 320 words
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(g) P4: Early Wakeup, sH = 480 words
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(h) P4: Early Wakeup, sH = 320 words

Figure 7.16.: CoMem stress test results for various policies and heap sizes:

Fragmentation penalty and Iteration count

(ascending base priorities for n = 10 tasks, test bed runtime: 10min)
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logarithmically scaled time axis. While the non-collaborative policies resulted in almost uniform

average allocation delays around 161ms (P1) and 69ms (P2) in Figures 7.15a and 7.15c, both do

not reflect the tasks’ intended base priorities at all. In contrast, using hints manages to reliably

signal tasks about their spurious influence and allows them to react adequately. Considering

both the average and maximal allocation delays, the task priorities are visibly reflected by

both collaborative policies P3 and P4 in Figures 7.15e and 7.15g. By following their hints, low

priority tasks obviously allowed higher priority tasks to achieve significantly reduced allocation

delays. Nevertheless, compared to P1 and P2, not even the lowest prioritized task t0 suffers

from significantly increased allocation delays (≈100ms). Instead, several high priority tasks are

very close to the achievable best case of δBC=226µs, now. In average, δav roughly improved by

factors 10.7 (compared to P1) and 4.6 (compared to P2), respectively.

Reducing sH := 10·32 = 320 words further increased the task competition and allocation

delays to be evenmore demanding (→ Figure 7.15, right column). While the different task priori-

ties were still not visible for P1 in Figure 7.15b, the sole application of the priority inheritance

protocol showed slight improvements for P2 under this heavy load in Figure 7.15d. However,

compared to the larger heap we’ve been using previously, both policies’ average allocation delays

increased by factor 7 (for P1) and even 23 (for P2), respectively. Since blocking obviously occurs

more often now, the hint count increased significantly for the collaborative policies P3 and P4 in

Figures 7.15f,h. Yet, these still managed to serve all tasks according to their intended relevance:

The twomost important tasks still achieved an average allocation delay of δav ≈ 1ms while even

the lowest prioritized ones were still at least as reactive as with the non-collaborative approaches.

Again, similar results were also observed for δmax.

Considering each task’s iteration count, Figure 7.16 clearly continues the already discussed

effects from Figure 7.15. While the pure PIP once more reflects the task priorities only for the

small heap (→ Figure 7.16d), the remaining runs with the non-collaborative policies P1 and P2

still do not seem to consider this metric at all. In contrast, the DynamicHinting concept in both

P3 and P4 boosts the overall performance by ≈ 6% (108→ 114) for the large heap, and by ≈ 22%

(80.5→ 94) for the small heap where the competition among the tasks is significantly higher. In

particular, as the iteration count s(i ) increases along with the base priorities, the graphs 7.16e –

7.16h show the expected shape from Eq. (7.12), and indicate the preferred servicing of the more

relevant tasks.

Regarding the fragmentation penalty it should first be mentioned that the selected first-fit

strategy seems to be a good choice for our CoMem allocator under all policies P1 – P4: The

average value X (P )av remained below 1.0 in most cases, and consequently not even one more

block of average size would have fit into the remaining free space if the heap partitioning had

been optimal. Conversely, the first-fit scheme also profits from our collaboration concept, since

higher priority tasks face less fragmentation in general. While the overall average fragmenta-

tion penalty decreased by just ≈ 0.1 when comparing P3 and P4 to P1 and P2, the maximum

values X (P )max were reduced notably: For both sH = 480 words and sH = 320 words the task

collaboration resulted in an overall improvement of ≈ 50% (2.4→ 1.2) and ≈ 40% (1.5→ 0.9),

respectively.
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This test bed addressed allocation delays for dynamic memory in case of periodic requests

among taskswith varying base priorities. Wepointed out that intentionally created dependencies

(via broker resources) between blocking and blocked tasks can already reduce these delays in

general and account for the specific task priorities in particular. While PIP already showed

rudimentary success for heavy load situations, the additional introduction of dynamic hints

facilitated explicit task collaboration and boosted this effect significantly. Our novel concept

even allowed almost best case delays for high priority tasks while hardly degrading lower priority

tasks (→ F10). Up to now explicit RT specifications have intentionally been omitted.

7.6.2. Real-World Application under Real-Time Conditions

Setup. The second test bed considers a problem from one of our real-world projects: The

infrastructure of our ultrasound based indoor vehicle tracking system SNoW Bat (→ Part III)

comprises several static anchors as references for the applied localization algorithms. These

anchors execute six preemptive tasks for several software components (radio communication,

sensor reading, etc). Among these, the two tasks tUS and tRC are exceptionally memory intensive.

With a maximum frequency of 3Hz, tUS performs the ultrasound signal detection, recording,

and processing for e.g. calculating the time of flight (ToF) between a synchronizing radio packet

and the corresponding ultrasound chirp. Each time it uses an on-chip capture compare unit to

trigger an ADC/DMA combination (→ Figure 2.4[p25]) which in turn samples the wave signal into

a buffer of 4 kB; then, a DSP algorithm operates on the sampled data. In parallel, each node runs

our SNoWGhost (→ Section 8.2) remote node management system which comprises a task tRC

for over-the-air software updates. Compared to other parts of the system this service is rarely

used, but as soon as a new firmware image (max. 48 kB for the SNoW5 nodes) is announced

via radio, tRC requests n ·256 B of RAM and successively fills this buffer with image fragments

received by radio. As soon as the buffer is full it is transferred to an external flash memory (block

size: 256 B); this is repeated until the entire image was received. For optimizing the data rate

and energy consumption, n should be chosen as large as possible: This reduces the frequent

switching of the SPI-communication between the MCU as bus master and the radio transceiver

or flash memory as slaves52, as well as the spacing delay between successive radio packets.

Furthermore, the external flash consumes less time and energy when accessed less frequently

but for longer burst writes. In fact we use n = 20 and thus require 5 kB for the software image

buffer.

From the controller’s 10 kB RAM, the OS components and the application modules already

require about 4 kB of static memory. The remaining 6 kB will be used as heap space. Thus, the

chirp sampling buffer m̌US (4 kB) and the image data buffer m̂RC (5 kB) must be co-located and

dynamically share the available heap memory. In this regard the development of an appropriate

software design requires some prior knowledge:

52On the SNoW5 both devices are connected via the same SPI bus (→ Figure B.3[p331]), but need different protocol

configurations. Though their synchronization and setup is accomplished automatically through SmartOS re-

sources and adequate handler functions (→ Section 4.3.7 and Listing 4.5[p58]), this inevitably consumes some time

which can be critical and should be optimized.
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1. SNoW Bat. The sporadic missing of an incoming chirp is acceptable in most situations:

Since other nodes within the localization system are still available, the failure of some

anchor nodes can probably be tolerated by the SNoW Bat localization system. In fact, the

node will become available again for later measurements.

2. SNoW Ghost. In contrast, missing even a single code image fragment is highly critical

indeed: Though SNoW Ghost supports some recovery strategies, an incomplete image

reception would cause avoidable time and energy overhead through expensive retrans-

missions and additional write accesses to the external data flash. For software updates

via (single-hop) radio broadcasts in particular, we cannot wait for (an actually unknown

number of) ACK packets after each image fragment transmission, but have to depend on

a reliable reception on each first try53.

To meet these considerations, tRC imposes a hard upper bound A(m̂RC) for its memory allo-

cation delay, and tUS guarantees to release its possibly allocated memory on-demand within

R(m̌US) ≤ A(m̂RC). Both real-time requirements can easily be guaranteed with our CoMem

approach. While Figure 7.14b shows the tasks’ state machines, the Listings 7.6 and 7.7 present

the corresponding code for tUS and tRC. Both tasks make use of DynamicHinting and SmartOS

exceptions as described before.

Since tUS requires its buffer quite frequently (up to 3Hz), but tries to limit the overhead for

frequent re-initializations, it allocates the memory at task start in Line tUS:10, and at the same

time it offers and accepts a contract which guarantees the on-demand deallocation within

1.3ms. Then it configures the DSP process and the DMA controller according to the assigned

block base address. Since tRC is more time-critical, it received a higher base priority PtRC > PtUS .

As soon as tRC requests dynamic memory with a deadline of τ=2ms in Line tRC:19 – which can

obviously not be granted immediately but causes an out-of-memory situation since tUS holds

its sampling buffer – CoMem immediately passes a hint to tUS:

◦ State 1. If the sampling buffer m̌US is currently not in use, i.e. if tUS waits for an incoming

radio packet54 in Line tUS:17, Early Wakeup will resume this self-suspension and an

exception is thrown by the task code. This will leave the main loop from Figure 7.14b,

transit into the hint processing state, and release m̌US in Line tUS:28 to serve tRC quickly.

◦ States 2 and 3. If m̌US is in usewhile tUS blocks, the SNoWBat helper functions fromListing

7.6b initiate an untimely but controlled abortion of the current measurement process: For

the sampling function doSampling() in particular, this includes the adequate handling

of running DMA and ADC operations before its internal exception handler forwards the

situation to the task entry function. The DSP function doDSP(), which operates at 100%

CPU load, receives the hint on the broker through the injectedHintHandler DHH_Memory()

which also throws an exception and directly ends up in the task’s catch block.

53According to Section 8.2, over-the-air broadcast updates via SNoWGhost allowed to reprogram the entire system of

n = 45 nodes in about 22 s compared to n ·22 s = 16.5min for the serial update within the SNoW Bat installation.

Energy considerations can also be found there.
54These so called Chirp Allocation Vectors (CAV) are e.g. required for node synchronization.
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1 OS_DECLARE_TASK(tUS , 200, 100);

2

3 OS_TASKENTRY(tUS) {

4

5 /* Prepare for DynamicHinting */

6 Exception_t e;

7 os_DHSetHandler (& DHH_Memory );

8

9 /* initial memory allocation */

10 MCB_t *m̌US = mallocDH (4096 , 1300);

11 ... // init buffer , DMA , DSP

12

13 while (1) {

14 TRY { // chirp processing

15

16 /* 1. wait for radio or hint */

17 if (waitEvent (& evCAV) == -1)

18 THROW EX_BAT_ABORT_WAIT;

19 /* 2. sample incoming chirp */

20 doSampling ();

21 /* 3. process recorded chirp */

22 doDSP ();

23

24 } CATCH (e) { // hint handling

25

26 /* on -demand memory release

27 (e.g. due to tRC:19) */

28 free(&m̌US);

29 /* == tUS WILL BE PREEMPTED HERE ==

30 since tRC waits for the memory */

31 /* re -request the memory */

32 mallocDM (4096 , 1300);

33 ... // reinit buffer , DMA , DSP

34 }

35 }

36 }

(a) The simplified SNoWBat task tUS taskwithPtUS = 100

int doSampling () {

Exception_t e;

TRY {

/* config. & start DMA/ADC/CC */

...

/* wait for CC trigger */

if (waitEvent (&evCC) == -1)

THROW EX_BAT_ABORT_SAMPLING;

/* stop sampling */

...

} CATCH (e) {

/* stop the DMA and ADC */

...

/* forward exception to tUS:24 */

THROW EX_BAT_ABORT_SAMPLING;

}

return 1;

}

OS_DHHANDLER(DHH_Memory) {

Resource_t *hint =

getResourceHint(NULL);

if (behaviorFunction (...) == 1)

/* issue exception to tUS:24 */

THROW EX_BAT_ABORT_DSP;

else { /* ignore hint */ }

}

int doDSP() {

/* Do some DSP:

Runs at 100% CPU load.

Hint handling is entirely done

within the handler. */

...

}

(b) Some SNoW Bat helper functions

receive

hint

receive

hint

receive

hint

|m̌US | R(m̌US)

|m̌US | R(m̌US)

Listing 7.6: The SNoW Bat ultrasound chirp detection subsystem (→ Figure 7.14b[p181])

Sincewe apply the priority inheritance protocol for rCOMEM and the broker resources, its policy

raises p(tUS) := PtRC while tRC blocks on its allocation request. During the memory deallocation

in Line tUS:28 the priority inheritance protocol will reduce p(tUS) := PtUS < PtRC again, and tRC is

served and scheduled promptly. As soon as tUS is scheduled again it will re-request its sampling

buffer for further measurements in Line tUS:32, and will receive it as soon as tRC has completed

the image reception after Line tRC:31. On allocation success, tUS leaves the hint handling state

from Figure 7.14b, i.e. the catch block in Lines tUS:24–34, and continues to execute its main

loop. While the use of behavior functions to decide between accepting or ignoring a hint is only

briefly indicated in the HintHandler code, the underlying self-reflexion concept could also be

used anywhere else in the code55. Further details can be found in Section 6.5.5.

55In our implementation, tUS requested the blocked task’s allocation timeout τ, and simply ignored the hint if it

could not release the memory block in time. While this would lead to an unavoidable deadline violation for the

blocked task tRC this situation never occurred in our test beds.
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1 // Declare the RT block: size = 5kB , base address = 0, τ = 2ms

2 COMEM_DECLARE_RT_MCB(m̂RC, 5120, 0, 2000);

3

4 OS_DECLARE_TASK(tRC , 100, 250);

5 OS_TASKENTRY(tRC) {

6 while (1) {

7

8 /* Prepare rx buffer and wait for incoming command or data.

9 See Sections 8.1 and 8.2 for details. */

10 GhostRxHandle ->event = &evGhostRX;

11 GhostRxHandle ->appID = APPID_GHOST;

12 if (! SmartNet_ReceivePacket (& GhostRxHandle )) /* error handling */;

13 waitEvent (& evGhostRX );

14

15 if (newImageStarts) {

16 /* Try to allocate dynamic memory

17 (the request will issue a hint towards tUS although

18 both tasks do initially not know about each other) */

19 if (mallocRT (&m̂RC) != 1) {

20 ... // alloc. failure handling

21 }

22 }

23

24 /* Process received command or image fragment */

25 ...

26

27 if (imageReceptionDone) {

28 /* Release the previously allocated dynamic memory

29 (this will implicitly return the memory to tUS from

30 Listing 7.6 which already issued a re-request in tUS:32) */

31 free(&m̂RC);

32 }

33 }

34 }

(a) The simplified SNoWGhost task tRC task with PtRC = 250

might pass a hint

(→ Listings

7.4 and 7.6)

|m̂RC | A(m̂RC)

stack size base priority

Listing 7.7: The SNoW Bat remote-management subsystem SNoWGhost (→ Figure 7.14b[p181])

Timing selection and test bed evaluation. Table 7.1 shows the results for tRC’s worst case

allocation delays: If tUS would only release its memory after each completed measurement

tRC would be blocked for δmax ≈ 141.3ms in the worst case. Using hints from our CoMem

approach allows an almost immediate memory handover which is just limited by the already

discussed memory manager overhead Φ = 0.226ms, and the required time for aborting any

currently running operation. Static analysis of the handler code revealed R(m̌US)≈ 1.3ms and

corresponds well to the measured values from Table 7.1. Thus, we declared m̂RC as RT block as

described in Section 7.5.4. According to C3[p176] and Eq. (7.6), A(m̂RC)≥ R(m̌US)+Φ= 1.3ms +
0.226ms also bounds theminimal tolerable delay∆ between any software image announcement

and the first image fragment. Thus, we selected ∆= 3.0ms for the SNoW Ghost transmission

protocol, and specified the hard timeout τ= 2.0ms= A(m̂RC)≥ 1.526ms for tRCwhen requesting

m̂RC. Indeed, we always observed δmax ≤ 1.351ms during our tests, and no timeout violation

was detected. Regarding the heap dimensioning, sH = |m̂RC|+0= 5 kB was sufficient according

to Eq. (7.9).

This test bed showed that CoMem allows tasks to coordinate sporadic and time-critical
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memory requirements without explicit and time-consuming inter-task-communication. As in

the previous test bed, a blocking task not even needs to know which task it blocks. Our approach

provides sufficient information (via hints) and adequate task priorities (via e.g. PIP) to allow

tasks a reflective resolution of their blocking influence at runtime. Besides the advantage of time-

aware on-demandmemory handover in sporadic real-time systems, the sometimes complex

termination and reconfiguration of dependent resources (e.g. ADC and DMA peripherals) or

subsystems (e.g. DSP algorithms) is limited to a minimum.

7.7. Summary and Conclusion

In this chapter, we introduced the novel CoMem approach for dynamic memory management

in reactive systems. We showed, that our technique can help to improve and stabilize the overall

system performance by optimizing memory allocation delays with respect to the dynamic prior-

ities of preemptive and concurrently executing tasks. As “each allocation policy is motivated by

an allocation strategy and implemented by an allocation mechanism” [187], CoMem establishes

a new philosophy in the area of embedded real-time systems: It applies the DynamicHinting

collaboration paradigm (→ Chapter 6) for on-demand but task-controlled heap reorganization

in case of blocking out-of-memory situations. Due to their hard to predict nature dynamic heap

operations, like e.g. compaction, are often associated with high effort. Thus we request this

process and the corresponding actions only in those cases where moving or releasing a task’s

memory block(s) would account for the progress of a higher prioritized task.

While various techniques for dynamic heap management have already been developed

throughout the past decades, either priority reflexion (→ F10) or reorganization tolerance

(→ F9) are often neglected though both properties are of vital importance for concurrent task

systems and highly integrated embedded devices with true hardware parallelism regarding their

peripherals. If at all, then the treatment of emerging hardware and software dependencies is

outsourced to device drivers or to the resource manager as a central intelligence. As an improve-

ment for flexibility and reduced resource manager complexity, CoMem introduces the chance

for application self-awareness as already demanded in Section 1.2.1:

heap memory tUS state tUS hint handling δmax(tRC) δmax(tRC)

(measured)1 (computed)2

free - - 226µs –3

allocated by tUS idle just free the memory 1301µs 1526µs

allocated by tUS sampling stop DMA/ADC & free 1351µs 1526µs

allocated by tUS DSP abort DSP & free 1342µs 1526µs

allocated by tUS sampling/DSP free after measurement 141284µs –3

1 The measured best case δmin = 226µs, i.e. with only one application task running and

immediate allocation success.
2 Computed through static analysis of the compiled code produced by the mspgcc toolchain

version 3.2.3 [292]. Instruction cycles were taken from [279].
3 The value was not computed since the code analysis would have been to complex.

Table 7.1.:Memory allocation delays for tRC within SNoW Bat
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Through the establisment of a bidirectional communication link between the memory man-

ager and the application code, CoMem facilitates the on-demand but task-controlled and

resource-dependency-aware memory reorganization. By monitoring and analyzing emerging

task/memory conflicts at runtime, our concept provides spurious tasks with information about

how to specifically reduce the blocking of more relevant tasks. Following these hints allows them

to collaborate implicitly without explicit knowledge of each other. The advantage is paid with

some additional overhead in terms of broker reservations for each allocated memory block.

As a reflective concept, CoMem also allows each task to decide autonomously between collab-

orative or egoistic behavior with respect to its current conditions and other tasks’ requirements.

Thus, we can initially not guarantee any worst case allocation times, since these highly depend

on the behavior of the blocking tasks. However, as requested by F2, the possible adaptation to

varying system situations commonly results in a good average case performance without prior

compile time information about e.g. task-memory relations and priorities. The concept even

reduces (bounded) priority inversions reliably, and achievesmemory allocation delays which are

mainly limited by the pure resource handover overhead. To still support hard allocation timeouts

for RT tasks – even if these share the heap with non-RT tasks in open systems(!) – we introduced

a special RT heap layout and a contract negotiation mechanism based on a mixture of static

and dynamic timing specifications. In this context the combination of a collaborator and an

allocator introduces dynamic and static contracts to provide both strictly exclusive allocations

and bounded allocation delays for hard real-time requirements.

Apart from the demandedmemory protection (M3a) and the locality principle (F4), which

mainly depend on hardware support and specific allocator improvements regarding the task and

application logic, our concept and reference implementation considers the entire design space

and all feature requests from Section 7.2. In particular, individual task base priorities as defined

by the system designer are considered carefully to keep each task’s progress and reactivity close

to its intended relevance.

Based on the reference implementation under SmartOS, the presented test beds showed

that the effective use of prioritized tasks for creating reactive open systems is quite feasible on

small embedded devices like sensor nodes: High priority tasks almost achieved the theoretical

best case allocation delays and reactivity while low priority tasks did hardly lose performance.

Even if used sparsely, CoMem always proved to be better compared to non-collaborative task

operation. Though a well-thought application design still remains elementary, compositional

software development is already facilitated. In general, our approach is not necessarily limited

to sensor/actuator networking, but may also extend other embedded systems as well.

Outlook and future work. Up to now, CoMemwas only analyzed for a simple first-fit allo-

cator56 in combination with a two stage hint generation scheme in case of memory shortages.

While stage one considers task priorities only, stage two also adheres to WCAT/WCRT contracts.

One option to further improve the overall memory management performance might be the

56According to [146] this choice would keep the chance for allocation failures low, and result in good average case

performance.
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implementation and analysis of different allocators. Depending on the application design and

system state, lock-free methods as presented in [43] and pool based approaches might yield

various advantages but will certainly lead to entirely different hint generation effects. The off-line

evaluation of various policies as proposed in e.g. [278] and [236] might also help to better reflect

specific application requirements.

Regarding the collaboration concept itself, which is the main contribution of CoMem, the

adaptation of time-utility-functions and behavior functions to more application and system

specific factors, like remaining timeouts and allocation frequencies, might also tune the hint

acceptance on the blocker side. In this regard, a good balance of cooperation and egoism will

definitely contribute to the overall application performance, and programming-by-contract, as

already applied for the RT heap layout, should be extended to other relevant requirements.

From the perspective of static code analysis for e.g. software validation purposes it should

also be mentioned that the on-demandmemory reorganization is likely to cause increased task

interaction and the enormous expansion of the application’s state space. The consequences for

verification techniques like software model checking still remain to be investigated.

Finally, a more distant research area is the application and evaluation of CoMem for shared

memory in multi-core systems [90, 222], where blocking may induce hints between the subsys-

tems across the cores. Just like in the software domain, runtime collaboration is hardly known

there. Nevertheless, first test benches using a hardware implementation of the DynamicHinting

concept on a Xilinx Spartan-3 FPGA [312] revealed promising results when sharing a common

data bus among three dynamically prioritized cores of a custom educational CPU [12, 80].
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8. Selected SmartOS Software Design

Examples

Abstract

For the sake of completeness, this chapter will briefly introduce two soft-

ware components which are relevant for wirelessly communicating sen-

sor/actuator nodes in general, and for the design of our distributed SNoW

Bat localization system throughout the next part of this work in particular:

While SmartNet is the radio MAC protocol which we do commonly apply

for SmartOS applications, SNoWGhost is the common remote maintenance

subsystem which can be linked into any SmartOS application.

The main advantage of SmartNet is its support for cross-node inter-task

communication through a scheme which is comparable to TCP ports in

TCP/IP basednetworks, andwhich reflects the special demands of preemptive

multitasking systems.

The main advantage of SNoWGhost is its support for arbitrary communica-

tion interfaces (as long as these provide a SmartNet compatible API), and the

ability to support both directed software updates through a dedicated sender

(pushmode) as well as the autonomous cloning of foreign software by each

node (pull mode).

While the theoretical background for both concepts is rather lightweight, they

demonstrate once more how to implement system services for SmartOS.
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8.1. The SmartNet Radio MAC Protocol

SmartNet is a lightweight radio media access control (MAC) protocol for the wireless transfer

of arbitrary data in the context of tiny embedded systems, and with special focus on the re-

quirements of multitasking environments1. On the hardware side it provides groupcasts and

broadcasts with optional flooding as well as routed point-to-point connections between two

devices. On the software side it supports directed point-to-point transfers between application

tasks on both ends. While any transmission is organized in packets of dynamic payload length

as illustrated in Figure 8.22, the achievable data rate is actually independent from SmartNet,

but mainly depends on the transceiver device, and the CPU performance or application load

respectively. Sincemost details about SmartNet would go beyond the scope of this work, we limit

ourselves to just a few selected aspects with particular relevance for the event timestamping and

the higher level HashSlot protocol which relies on the SmartNet MAC layer as depicted in Figure

8.1.

Functional protocol overview and SmartOS integration. As we have thoroughly dis-

cussed in Part II of this work, a common issue in embedded system design is the dynamic

sharing of exclusive resources among concurrently running processes in multitasking environ-

ments. While special care must be taken to avoid closely related problems like race conditions

or deadlock situations, the manual tuning of software components and system configurations,

which might create implicit runtime dependencies between intrinsically independent code, is

frequently found, but hard to control and almost impossible to verify. For example, the com-

munication channel between two or more devices is such an exclusively shared resource: It is

not only accessed by coexisting devices but also by various software components on both the

sender’s and the receiver’s end. Interleaving the data or superseding the signals on the channel

would corrupt the information and must therefore be avoided. While sending data might in

many cases be accomplished directly in the context of each task (which would consequently

have to keep the communication resource allocated during the entire transfer), waiting for a

packet reception would also require the resource to stay allocated and thus starves other tasks

when these try to communicate simultaneously. Furthermore the order of incoming packets

is commonly unknown in advance, and assigning the bus to an arbitrarily selected task is thus

likely to deliver the contained information to the wrong receiver. While discarding the informa-

tion would be no adequate option in general, forwarding the packet to the “true” receiver would

once more involve expensive task coordination (especially in the context of real-time systems).

SmartNet addresses these problems by providing a server task TNET for handling any send and

receive request as a system service for other application tasks (→ Figure 8.1). According to the

client/server design concept, any application task can simply transfer one or more data buffers

(either empty for receiving or filled for sending) along with some associated configuration

parameters to the SmartNet server task. The API functions for the service request are non-

blocking, i.e. they will transfer the buffer, trigger its processing by notifying TNET about the

1In fact, this section also serves as an example on how to implement system services under SmartOS.
2Up to 234 B payload for the SNoW Bat adaptation using the TI CC1100 radio transceiver.
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Figure 8.1.: SNoW Bat communication subsystems and task interactions for a mobile client (extract)

new request, and return immediately3. Conversely, a client will be notified through a request

specific SmartOS system event as soon as the corresponding rx/tx action has been completed4.

In the following we refer to the combination of a data buffer and its configuration (including the

not necessarily unique notification event) as a handle, and distinguish between rx-handles for

packet reception and tx-handles for packet transmission.

Referring to the OS kernel classification from Section 3.3.1 the integration of the radio com-

munication unit shows once more the advantage of the exokernel principle within SmartOS:

As illustrated in Figure 8.1 the SmartNet task and IRQ handler acquire direct access to the ex-

clusively shared radio module and interconnection bus by allocating SmartOS resources which

coordinate the exclusive access to the hardware and the corresponding device drivers. As soon

as the access has been granted – i.e. the resources have been assigned by the kernel – SmartNet

can access both the CC1100 and the SPI directly at full rights and without any additional de-

lay through further intermediate layers5. The general resource allocation process has already

been sketched in Listing 4.5[p58]. Of course it must be noted that SmartNet itself serves as an

intermediate layer for higher level protocols, and, from their perspective, also produces some

overhead and restricts the use of the wireless communication channel to its specific abilities.

Since however SmartNet is no inherent part of the operating system it can easily be replaced by

compatible alternatives, or even operate concurrently to other MAC protocols within the same

3While the API functions will be executed in the context of the client task, the actual packet processing takes place

in the context of the SmartNet server task. As an important side effect for system design considerations – and

comparable to the IRQ handler execution which is always accomplished in the SmartOS kernel context – this

keeps the stack requirement for the calling client tasks fixed.
4If a tx request demanded for an acknowledgment, the event will not be triggered unless the ack has been received.
5For portability reasons SmartNet nevertheless relies on the API of the corresponding device drivers. In fact, this

design concept proved to operate reliably when porting the MCU independent protocol code to the SuperH based

multi-radio switch SuperG [210] with four TI CC1100 [281] and two TI CC2520 devices [282].
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Figure 8.2.: The SmartNet packet layout (as implemented for the TI CC1100)

application as long as their resource demands are coordinated properly6.

Packet structure, transmission, and reception. SmartNet uses a standardized packet

structure for each transceiver type and thereby adapts to various hardware specific features.

Figure 8.2 shows the layout for the CC1100 radio where we find the packet length and the

upper byte of the next hop or destination address at a predefined position to exploit e.g. the

hardware support for broadcast detection. Apart from the 16 bit destination address (which is

comparable to an IP or MAC address) each SmartNet packet header contains an 8 bit appID

(which is comparable to a TCP port in TCP/IP based networks) and the payload length to retrieve

a suitable data buffer from the available rx-handles at the destination side, and to demultiplex

the incoming packets among the potential receiver tasks.

The SmartNet server task manages the committed tx-handles in the so called tx queue, a

priority queue which reflects each client task’s active priority (→ Specification S2[p103]) at the

instant when the transmission was requested. In case of several pending transmission requests

– and in the tradition of the priority inheritance philosophy from Chapter 6 – these will take

place in the order of their tasks’ relative relevance. Apart from the destination address, appID

and routing request, SmartNet respects each handle’s individual tx strength and retry count

limitation, and optionally performs CCA on the specified tx channel. Other techniques for

sharing the radio channel with further nodes must be provided through protocols at higher

software levels like e.g. Extended Desync [77, 207] or HashSlot from Chapter 12. An example

for the integration of the HashSlot library into the task system of SNoW Bat anchor nodes is

visualized in Figure 10.4[p229].

In contrast, the committed rx-handles are kept in the so called rx pool which is implemented

as a linked FIFO list. While receiving is always done on the so called base channel (which can

however be changed dynamically) the CC1100 will be put to idle mode to save energy and CPU

time in case the routing functionality is disabled and the rx pool is empty (i.e. no task would

be available anyway to process incoming data). As soon as a packet with the node’s address

is received the SmartNet server task scans the rx pool for an rx-handle with matching appID

6While potential conflicts regarding the communication mediummust obviously also be considered then, this is

not the reliability of the local task or software design.
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and sufficient buffer size (i.e. buffer size
!
≥ payload length to avoid buffer overflows)7. If no such

buffer can be found the incoming data is silently discarded and no acknowledgment will be

returned. Otherwise the incoming data is transferred to the data buffer which is associated with

the rx-handle, and an acknowledgment will be scheduled if requested by the sender through the

packet flags8.

Task notification. Since the preemptive SmartOS scheduler interleaves the SmartNet server

task execution with its clients, the support of non-blocking send and receive requests results in

various advantages which can be exploited in many ways:

1. A client task can achieve progress while it simultaneously “accepts” incoming data or

allows transmissions to complete. E.g. a strictly periodic task can convert the initially

event-driven SmartOS or SmartNet philosophy into a conditional packet processing by

regularly querying its rx-handle’s event state.

2. A client task needs not check for a handle’s event as long as it does not require access to

the handle. This is e.g. useful for messages which can be sent according to a best effort

strategy, but which won’t cause critical system states in case of a transmission failure.

3. If a task supplied several rx-handles to the SmartNet task (independent from whether

the notification events or appIDs are equal or not), any packet reception order will be

accepted and notified accordingly.

4. Regarding the performance impact on the remaining system, the SmartNet server task

largely avoids indirect priority inversions (→ Section 7.4.2) by dynamically adapting its

own base priority to the priority of the most important pending handle.

While the hardware resources remain exclusively allocated by the SmartNet server task, the

access rights regarding the rx/tx-handles must be transferred from the client to the server and

vice versa. Thus, it is absolutely essential that a client task leaves the contents of a handle

untouched unless it received the notification indicating the completion of a service request.

Listing 12.1[p275] gives an example for the use of SmartNet in the context of the HashSlot protocol.

Service request cancellation. In case a task requires to cancel the reception or transmission

of data after the corresponding handle has already been passed to the SmartNet server task,

SmartNet offers a stop function which synchronizes on the rx pool or the tx queue respectively,

and removes the handle from the particular data structure. If the indicated handle is currently

being processed while the stop function is called, the stop request will be rejected.

7If the routing request flag is set and the node is not indicated as the final destination while the hop count is greater

than zero, an arbitrary but initially registered routing protocol can be queried for the next hop address. For

flexibility reasons SmartNet does not offer such a protocol, but an interface for registering a compatible callback

function at runtime.
8Matching a packet and its ack is done via the included tx timestamp which is unique for each individual sender.
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Timestamping and synchronization As indicated in Figure 8.2 a local timestamp is taken

each time a sync word has been sent or received. According to the SmartOS timestamping

mechanism from Chapter 5 this is done by the SmartNet IRQ handler with a precision of ±0.5µs
and logged into the corresponding handle for optional post-processing through the client

task9. During a transmission, the just captured timestamp can also be included into the packet

and allows e.g. the computation of the nodes’ relative time drift at the receiver as well as the

scheduling of dependent actions like the emission of an ultrasound chirp in SNoW Bat.

8.2. The SNoW Ghost Remote Maintenance System

Wireless sensor/actuator networks commonly consist of a rather

large number of more or less widely deployed nodes, and, as already

mentioned in Sections 1.2.1 and 3.3.2, the resulting spatial complexity

arises extensive setup andmaintenance demands for each individual

embedded device and for the network as a whole. Thus, in order to

achieve a long lifetime for these distributed systems, they are subject to regular maintenance

cycles: Besides hardware related issues like the renewal of power supplies or the replacement and

attachment of modules, software related actions comprise application code and configuration

updates or just remote control capabilities. These allow to integrate new functionality or to

fix bugs. Sometimes, there is just the need to reset a node or to modify its configuration for

changing its behavior or individual role in the overall system.

The problem’s scope and intensity differs according to the evolution stage of the system.

During software development, frequent updates for few nodes within a test bed can be expected.

The frequency diminishes rapidly with the final release, but then affects significantly more nodes

within the original environment. The conventional method to gain direct physical access to

the nodes and to update them by means of mobile computers and debug-interfaces is safe and

secure indeed, but also annoying and time-consuming; sometimes it is even extremely complex

and expensive, or just impossible.

Therefore it is no surprise that code dissemination protocols have received wide attention

within the WSN community – where, at times, whole swarms of mobile sensors must be re-

programmed [76]. An early survey can be found in [121]. Even some operating systems like

Contiki [85], MantisOS [46], and SOS [120] as well as various middleware concepts like Impala

[182, 183] and FiGaRo [214] facilitate or provide native support for complete or partial repro-

gramming. Solutions for the special case of TinyOS were proposed in [215] (Dynamic TinyOS)

and [197] (FlexCup). More general approaches like Molecule [320], Typhoon [178], or Deluge

[131] provide dynamic reconfiguration schemes, or use well-known tools like rSync [145] or diff

[160] to achieve the central goal of energy efficiency [241] by reducing the amount of memory

which must be rewritten. According to [84] the virtual machine concept (as e.g. implemented by

Maté [173]) is just perfect in this regard: While VM code is often smaller than native code, the
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Figure 8.3.: SNoWGhost in action

communication cost is reduced (at increased interpretation cost).

From our viewpoint of reactive sensor/actuator systems however, VM concepts steal toomuch

real-time performance, and partial software updates in general are hard to control regarding the

compositionality aspects from both Chapters 6 and 710. Apart, as discussed in Section 12.1, a

common disadvantage of most presented approaches is that they require their own customized

communication or routing protocol. In our opinion these problems are unacceptable, since

remote maintenance is important indeed, but it should neither define the actual application’s

communication nor affect the overall system performance.

Thus SNoWGhost was designed to interface any already available communication protocol

with a compatible API (like e.g. SmartNet) and needs no modifications of the actual application.

Instead, it aims on resource-aware integration into any software, and accomplishes software

and configuration modifications by transferring complete firmware or configuration images.

8.2.1. Concept and Operation

Figure 8.3a shows a typical infrastructure for the SNoWGhost remote maintenance system: In

this case, data is transferred from a workstation computer to a dedicated gateway node which

in turn creates protocol compatible data packets and transmits them to the destination nodes.

Depending on this protocol, both unicasts and broadcasts including routing are possible. If

supported, groupcasts offer the special possibility to modify software in a role specific manner

simultaneously for certain subsets of nodes.

Implemented as add-on for the seamless integration into any SmartOS based application, the

SNoWGhost subsystem performs three central operation steps:

9According to [218] and our own observations [207] there is a hardware dependent but virtually constant delay

of about 20µs ± 1
2 µs between the two sync word IRQs at the sender and the receiver. This delay is directly

compensated by our CC1100 low-level driver and invisible for the SmartNet protocol implementation.
10While e.g. dynamic address resolution through jump tables are just an obvious performance problem, wemust also

not forget the inevitable ROM fragmentation which results from successive code modifications and eventually

requires severe management and energy effort (→ Table 2.2[p27] for example values).
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1. receive and check command and data packets for integrity

2. execute commands, and buffer image or configuration data into an external flash mem-

ory11

3. update affected memory blocks during the so called haunting process

According to Figure 8.3b it is therefore organized in two modules: While steps 1 and 2 are

executed during regular node operation (high-level task), the operating system along with the

entire application is stopped for step 3 (low-level functions). Since SmartOS is fully preemptive,

it is sufficient to link the SNoWGhost modules into the actual application.

Though the most central SNoW Ghost operation details were already discussed in the context

of dynamic memory management and resource sharing in Chapter 7, we’ll revert once more to

the implementation of the high-level task tRC from Listing 7.7[p189] (Lines 10 – 13): To be always

available for remote commands, tRC transfers an rx-handle to SmartNet from Section 8.1, and

waits for the associated event to indicate a packet reception on the configured application ID.

This way it runs “in parallel” to each node’s individual software, and interleaves its execution

just when required. Depending on its current state, it accepts five basic commands:

1. New initiates a new image transmission and assigns an ID12.

2. Data packets contain successively numbered image fragments for a given ID.

3. Haunt initiates the update process for any previously received image ID.

4. Reset simply restarts a node.

5. Query requests hardware, software, and runtime related information about the node13.

6. Clone requests the currently running application code from a node.

Figure 8.4a shows examples for remote software updating via a gateway node (push mode)

or via cloning (pull mode): By first sending a query, a node can check its neighborhood for

available software types and versions. Equipped with an initial firmware containing the SNoW

Ghost subsystem and the knowledge about its future role within the WSN (e.g. anchor or client

within the SNoW Bat localization system) newly deployed nodes can autonomously integrate

themselves into a running installation by requesting the appropriate software from surrounding

nodes. Likewise, nodes can stay up to date by observing their environment for newer versions of

their own software. This desired virus like spreading is particularly useful for very large networks

where the individual handling of each single node would become too complex. Of course, the

network protocol must remain compatible between the firmware versions.

Though safety, security, and reliability are truly relevant factors regarding the communication

vulnerability and the update process we won’t go into detail here but refer to [29] instead.

11External buffering is necessary at least for those MCUs with less RAM than ROM, and for storing several images.
12Various preconditions like e.g. the CPU type will be checked first to avoid the accidental installation of incompatible

software or configuration which would render the node inoperable.
13This includes, inter alia, the application type, version, build number, CPU type, and uptime. The information can

e.g. be used to check for a successful update or to identify a node as potential source for cloning.
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Figure 8.4.: SNoWGhost update flow and performance evaluation

8.2.2. Resource Demands and Performance Evaluation

Keeping in mind that software remote maintenance subsystems must stay active for the entire

system runtime (although the fraction of their active operation time is relatively small), the

complexity and permanent resource requirements (CPU, RAM, ROM)must be adjusted carefully

to the underlying embedded system, and a well-balanced cost-benefit-ratio must be found.

Apart from the demand for a 5 kB buffer when receiving a software image – which is allocated

as dynamic memory to keep this valuable resource available for other tasks whenever possible –

our implementation takes about 1 kB of ROM, and 200 B (100 words) of static RAM for the task

stack including a buffer for the data packet payload (→ Listing 7.7[p189]). As Figure 8.4b shows, the

latter has significant impact on the data dissemination time. Thus, we commonly chose image

fragment sizes of 100 B as a trade-off between speed andmemory consumption.

For performance evaluation under real-world conditions, we used the SNoW Bat indoor

localization system from Figure 10.1[p225] where reprogramming all 45 static anchor nodes (i.e.

the nodes at the ceiling) simultaneously through an image groupcast in push mode commonly

took the same time as reprogramming a single one (≈22 s). In comparison, manual flashing of

the sameWSN installation successively node by node via e.g. JTAG (and a student who didn’t

manage to run away quickly) took about 1 hour and more. Apart, it demanded for a mobile

laptop, meant annoying cabling, and offered no option to efficiently query the software state and

version of each node just for the sake of information retrieval and consistency checking. In fact,

the achieved speed up for the SNoW Bat development process was the initial main motivation

for implementing the SNoWGhost system at all – and a truly appreciated help in the end.

8.3. Summary

This chapter introduced the SmartNet wireless MAC protocol as well as the SNoW Ghost remote

maintenance system as representative examples for designing system services under SmartOS.

The opportunities and pitfalls of the multitasking aspect were addressed in particular, and a
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client/server model was proposed to help avoiding various related runtime conflicts among the

client tasks when accessing shared services. Throughout the next part of this work, both software

subsystems will be applied intensively: While SmartNet will form the basis for the wireless data

aggregation protocol HashSlot in Chapter 12, SNoW Ghost will show to be a great advantage for

e.g. deploying node software within a real-world SNoW Bat installation as presented in Chapter

14.
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9. Localization Systems

9.1. Introduction

Living creatures are instinctively able to determine the location of other creatures and objects in

their environment, and consciously or unconsciously use the gathered information to adapt

their behavior in regard to numerous aspects. Nature brought forth a large variety of senses

which would allow them to detect the close presence by means of characteristic indicators (e.g.

through touch, smell, and taste), and to perceive the direction and extent of spatially distant

events (e.g. through sight and audition). Though all kinds of organisms developed their senses

to different degrees, they are always distinctively applied depending on the current situation.

This natural situation awareness allows for instance the tracking and tracing of predators or

potential prey to launch a specific attack or an escape. Thus, the conscious or unconscious

three dimensional localization of objects within the various habitats is already fundamental

for the existence of life on earth. While the required and achieved accuracy and precision1 of

these innate localization abilities mainly depends on the size of the perceiving creature and the

objects it has to deal with, it is also limited to relative directions and distances. In consequence,

the gained information is at first only useful for each individual being. Therefore, some species

try to preserve, enrich, and accumulate this information, andmake it available to conspecifics

by choosing appropriate descriptions and attributes for locations or places, and by relating these

to other information. The involved kind of “early semantics” does not only allow to retrieve

or avoid special places at a later time; advanced intelligence even facilitates the prediction of

future events and environmental conditions through experience, and allows to make specific

appointments. Beyond, location information from different sources can be combined and

compared to obtain a higher quality and reliability, and to improve the utility of short-term and

long-term actions based on it.

Mankind thus developed and introduced well-defined length units and coordinate systems

to divide the natural environment into artificially created but more convenient and compara-

ble subspaces. Thereby it became possible to achieve almost any resolution for the location

specification and position estimation process – at least in theory: Under realistic conditions

the achieved precision always depends on accurate measurement techniques (compared to

natural senses) and sophisticated mathematical methods (rather than the mere instinct). Both

prerequisites must be satisfied to reliably convert the original and commonly erroneous sensor

information – as previously obtained from the environment – into meaningful position infor-

mation. In the age of automatic signal and data processing the temporal performance (i.e. the

1See Figure 9.6 for a distinction of these terms.
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computation time) as well as the practical complexity of the involved processes (as e.g. expressed

throughmemory demands) is yet another problem.

Years of research in the field of automated and computer aided location estimation, position

estimation and tracking has resulted in a large variety of systems with very different features,

advantages, and problems – and there are still more to come. Depending on the applied mea-

surement system some of the provided services are available virtually always, everywhere, and

for everyone (e.g. outdoor navigation systems with an accuracy of a few meters); others are

highly specialized for certain applications (e.g. surface analysis systems with sub-millimeter

precision), or explicitly designed for use inside of buildings (e.g. for emergency systems and

person tracking). Thereby, it is always essential to distinguish between the two fundamental

terms location and positionwhich we will use as follows:

Definition III.1: Position and Location

Position or position estimation refers to the numerical specification or determination of a

physical position P within a specific coordinate system2. Examples are the geographical coor-

dinates P =(29°58’45.05"N, 31°08’03.10"O) within the World Geodetic System WGS84 [135], or

P = {1,1,1} in any three dimensional reference system with currently not specified origin. In

general, numerical position information is mainly used for the well-defined and automatically

processable attribution of both stationary and mobile objects. The demands on the precision, ac-

curacy, and update frequency are highly application-specific. Common values and requirements

range from a few meters down to several micrometers and from seconds down to milliseconds,

respectively.

Location or location estimation refers to the descriptive specification or determination of a

symbolic position in relation to another (well-known) place. Examples are “next to the Great

Pyramid” where the physical location is irrelevant at first, but the place can nevertheless be

found. In the area of automatic information processing, location information is mostly used

for context-aware services, and therefore the demands in terms of precision, accuracy, and

update frequency are rather low. For instance Ward et al. [304] proposed a system which enables

employees in an office to find some just required equipment which is currently available and

free in their vicinity.

Many applications benefit greatly from the ability to determine the position of mobile objects

in the environment; some do even depend on it and rely on specially developed sensors and

supporting infrastructure, respectively. As we have already discussed in Section 5.1, sensor

readings and event notifications are commonly worthless unless tagged or annotated with their

date and place of origin. Therefore, the attribution of events and states with meaningful spatial

and temporal information is one of the central purposes of any sensor system3.

2The applied coordinate system can itself depend on another one, e.g. to express the relative position of objects.
3The development and provisioning of such services might also be a good chance to further establish the

WSAN/SANet technology in other areas, as already envisioned in Section 1.2.
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While the capturing of precise timestamps was already discussed in Chapter 5, this part of

the work addresses the spatially precise and temporally frequent capturing of positions within

WSAN environments. Before we go into the details, we will briefly highlight some concrete

application scenarios first to illustrate the enormous variety in the underlying objectives and

implementations, which has led to the broad acceptance and utilization of such localization

or position estimation systems – for example in the private, industrial, medical, and military

sector:

Home and office automation uses – depending on the required resolution – either locations

(e.g. rooms) or positions (e.g. within a room’s specific coordinate system) to capture and trace

people and objects on their ways through a building, and to adjust for example the temperature,

light and sound of the environment according to various factors such as the current use and the

time of day. If we abandon the anonymity of the users, even individual preferences can be taken

into account, and unauthorized or unidentified persons can be reported. For such systems,

mainly optical and radio-based hardware like cameras and RFID tags are used.

Social monitoring is a closely related area which often relies on RFID tags and near-field

communication in general to capture and trace relative neighborhood information. Observing

the proximity between humans or animals allows to deduce potential short-term interactions,

and even long-term relationships (like group forming processes and habitat monitoring) can be

evaluated through data fusion and data mining processes [14].

Consumer electronics has recently started to also record the physical actions of users. A real

hype can be observed particularly in games consoles [230, 298]. By locating the user itself or

special controllers, which are moved through the room by the players, actions can be captured

in detail and transferred to virtual characters. For such motion tracking and gesture recognition

systems, mainly optical and acoustic hardware like (stereoscopic) cameras and 3Dmicrophones

is used. Additional information is collected from e.g. acceleration sensors.

Navigation systems in the military sector already rely on Global Navigation Satellite Systems

(GNSS) since 19644 [231]. While simple GPS receivers for civil devices already achieve accuracies

of about 15m, certain extensions improve the precision to 1−3m (for GPS5), and even 10 cm (for

Galileo) are planned. Today the purpose of satellite navigation is to guide and support humans

and vehicles in passenger traffic, transportation, andmilitary as well as rescue operations. Taking

current information into account, e.g. from the TrafficMessage Channel (TMC) or by using eCall,

can help to dynamically calculate detours, avoid traffic jams, and report accidents.

Air traffic control and air surveillance already rely on RADAR systems (RAdio Detection

And Ranging) since 1934. Even at high distances of more than 100 km these can locate smaller

4Transit 1967-1996, GPS (USA) since 1990, GLONASS (Russia) and Compass (China) since 2011, Galileo (Europe)

expected in 2013/14.
5in combination with WAAS (Wide Area Augmentation System), EGNOS (European Geostationary Navigation

Overlay Service), or MSAS (Multi-Functional Satellite Augmentation System)
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9. Localization Systems

Figure 9.1.: Localization systems: Range vs. accuracy (based on [202])

objects with a precision of about 50m. Here, the detection reliability, velocity estimation, and

direction determination is muchmore relevant than the absolute precision.

Emergency and rescue systems can also benefit from location information about humans

in critical situations, and about various sources of danger. In combination with detailed maps

of buildings and the environment, information can be combined to predict mass panics and

the propagation of threats, and to adapt escape routes, guide rescue teams, and to coordinate

counter-measures in general. While special infrastructures are commonly required to obtain a

sufficient spatial resolution inside of buildings, outdoor teams can once more revert to GNSS, or

even cell phone tracking: Location based services (LBS) of mobile operators offer the automatic

association of emergency calls with the location of the caller (e.g. according to the E-911 standard

[213]).

Safety and surveillance systems for goods and equipment often use the radio-based track-

ing ofmarkers (e.g. RFID tags). These are attached to the products and inventory to bemonitored

in order to detect their conditions and presence in certain areas (the so called fencing [232]),

and to possibly trigger an alarm. While the absolute accuracy is of less importance here, these

systems focus on high reliability and robustness against random disturbances and targeted

attacks like e.g. spoofing.

Medical engineering applies various localization techniques to trace the position of probes

inside the human body and to associate the obtained information (e.g. from imaging techniques)

with time and location information. While avoiding surgical intervention this non-invasive

process allows unclouded investigation and detailed diagnostics. Another application scenario
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Figure 9.2.: TheWSN/WSAN process flow: From environmental conditions to usable information

is the monitoring of medical equipment in e.g. operating rooms [66].

Industrial plants use position estimation systems to track and controlmaterial flows aswell as

themovement of vehicles, robots, and tools. High update rates allowmany of the served systems

to even gain a certain autonomy regarding their mobility (→Def. I.2[p4]). Since accuracies in the

centimeter range are commonly sufficient for dynamic path control, tightly placed induction

loops or ultrasound based systems are widely used. The latter depend on statically deployed

anchors which must be calibrated as precisely as possible during their installation to ensure a

high quality and reliability for the actual localization process6. In this context, the automatic

calibration ofmachines and tools in generalmust bementioned: As a result of extensive research,

accuracies up to a fewmicrometers can be achieved nowadays. If this procedure must be non-

contact, optical or laser methods are commonly used, otherwise mechanical measuring systems

are a potential fall back.

As we have seen from our rather small selection of real-world scenarios, many services and

applications depend on the precise knowledge about the spatial location or position of (mobile)

creatures and objects in a more or less wide environment. Based on [202] Figure 9.1 gives

an extensive overview regarding the range and accuracy of typical techniques: Where large

scale radio ranging systems are designed for coarse but globally available outdoor navigation,

optical and acoustic systems are more suitable for indoor applications and commonly achieve a

significantly higher precision.

9.2. Motivation, Requirements, and Evaluation Metrics

Despite of the significant differences in their concrete realization as well as in the underlying

hardware and software architectures, all localization systems share a common goal:

Extract spatial information from observed environmental conditions.

Conceived and created by humans, this ambition is quite obvious and only natural since it helps

to support and extend the innate senses for an improved perception, situation awareness, and

reaction capability. In fact, even the technical accomplishment is comparable and seems to

6Related research which was conducted as part of this work – but is not included in detail – can be found in [257].
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(a) ToF (clocks must be synchronized) (b) RToF (∆reply must be known)

Figure 9.3.:Measuring distances based on signal propagation delays

be “nature inspired” as it follows an almost “unified” process flow as depicted in Figure 9.2:

Generate and (pre-)process data first, collect it from several sources, and fuse it thereafter. What

will finally be done with the obtained information – e.g. coordinate reactions immediately or

store it for later use – is out of scope for now, and depends on the application scenario.

Remembering the basic paradigms, objectives, and the design space of networked sensors –

and localization systems are nothing else indeed(!) – as discussed in the introductory Chapter 1

of this work, the relevant aspects can be separated into three main points of view. These will be

discussed next.

9.2.1. Points of View

When seen from a physical/technical point of view, each localization process starts with the

collection of sensor readings from the environment (data generation / data aggregation). As

Figure 9.5 depicts, the initial raw values describe e.g. signal strengths and propagation delays,

transmission and reception angles, aswell as cell or proximity relations between the participating

sensor nodes. In turn, the obtained sensor values can be converted into distance, direction or

neighborhood information, and will finally be (pre-)processed by locally executed algorithms

(data preprocessing). A comprehensive overview on wireless measurement techniques is given

in e.g. [300].

Since radio RSSI7 (Received Signal Strength Indicator) and sound signal ToF / RToF (Time

of Flight / Roundtrip Time of Flight) measurements are very common inWSN based position

estimation, and since SNoW Bat in particular relies on ultrasound metering after we found RSSI

to be too “unsteady”, we’ll give just two examples for the conversion between raw sensor values

and distance information:

ToF / RToF: If both the time of flight ∆TOF and the velocity v of any signal is known, then its

traveled distance d computes according to Figure 9.3a as

d =
v

∆TOF
. (9.1)

The precision and accuracy of d depends on themeasurement noise, i.e. on the knowledge

7[181] gives a detailed survey/overview on RSSI based systems like MoteTrack [186] and RADAR [18].
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Figure 9.4.: The radio signal reflection model

about the signal propagation speed (which depends on various environmental factors) as

well as on the timing and signal detection capability of the used hardware (e.g. temporal

resolution, reactivity and DSP). Another critical factor is the synchronization between the

signal’s sender and its receiver(s). Measuring the RToF as shown in Figure 9.3b can be an

option to avoid explicit synchronization. However, this technique is quite critical when

measuring distances to several anchors simultaneously: Similar to the data aggregation

problem fromChapter 12, returning the signal to the sender must be properly coordinated

to avoid interference and collisions which would otherwise lead to the loss of information.

RSSI If the radio transmission power Pt , the antenna gains Gt and Gr of the sender and the

receiver, and the radio wave length λ is known, then the signal strength Pr at the receiver

can be captured and allows the estimation of the distance d according to the path loss

theory as described by the free space propagationmodel (FSPM) and the Friis transmission

equation [239]:

Pr (d)=
Pt

d2
·
GtGrλ

2

(4π)2
=
Pt

d2
·c ⇔ d =

√

Pt

Pr
·c (9.2)

Unfortunately, this is only true under the precise knowledge of c, and for the optimal LoS

(Line of Sight) case without any reflections. Under real-world conditions, the imprecision

of the estimated distance d is significantly influenced by multi-path effects and signal

superposition. In fact, a single reflection as depicted in Figure 9.4 and described in

[167, 239] already affects the received signal strength Pr,g as follows:

Pr,g (d)= Pr (ddirect)+cos(∆ϕ) ·Pr (dindirect) ·Γv (9.3)

Here ∆ϕ represents the phase shift between the reflected and the unreflected signal, and

Γv defines the material properties of the reflector. Since indoor environments suffer

from many unpredictable reflections, and real antennas are never perfectly tuned, the

achievable precision is highly variable and not sufficient for many applications. In [38]

we give a detailed analysis on using RSSI distance measurements in indoor and outdoor

environments, and reveal why we finally switched to ultrasound for SNoW Bat.
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When seen from a theoretical/mathematical point of view, the localization process can be

described as a data fusion functionψwhich computes a position estimation p̃ frommeasured

or otherwise collected environmental information Ĩenv (like distances, anchor positions, etc.),

and an optional prediction function θ based on prior estimations and the current time t̃now:

ψ : Ĩenv
︸︷︷︸

newmeasurements

×







H
︸︷︷︸

history

× t̃now
︸︷︷︸

current time







︸ ︷︷ ︸

prediction θ (optional)

→ p̃
︸︷︷︸

position estimation

(9.4)

While the prediction is commonly used for tracking purposes, it may describe a single po-

tential location as well as an expectation or exclusion area for filtering. It may even provide a

so called quality indicator for its expected reliability. Thus, θ requires some historic position

values p∗ in association with their corresponding timestamps t∗ and further annotations a∗ (if

available). In fact, a trail of position estimations can be constructed over time and be used as

history H :

H :=







(p∗
0 , t

∗
0 ,a

∗
0 )

︸ ︷︷ ︸

h0

, . . . , (p∗
|H |−1, t

∗
|H |−1,a

∗
|H |−1)

︸ ︷︷ ︸

h|H |−1







with t∗0 ≤ . . .≤ t∗|H |−1 (9.5)

Obviously, each position estimation relies onmore or less prefect input values, and in turn

also produces imprecise and inaccurate results. Thus, one goal of any localization algorithm is

to compensate for measurement noise, errors, and failure. The generation of largely error-free

position estimations is mandatory for almost any application to be served. Available methods

use proximity analysis (like e.g. neighborhood relations), scene analysis (like e.g. fingerprinting

or maps) and geometric analysis (like e.g. lateration and angulation), and often rely on various

mathematical models (like e.g. filters or maximum likelihood estimators).

Finally, the algorithmic/computational point of view considers how to integrate the physical

measurements and mathematical methods into an application. In this context data aggregation,

processing, and fusion will once more turn out as central aspects. While the first one is mainly

considered by an appropriate communication or network protocol, the latter necessitate both

a reasonable filtering of available information as well as optimizations regarding the CPU and

memory requirements. Considering each single node and the entire distributed system as a

whole, these aspects will seriously affect the scalability, reliability, quality, energy requirements,

and update frequency of the localization service. In most cases, a trade-off must be found

(either statically or dynamically) with respect to the system situation and the actual application

requirements. In fact, two main approaches are generally distinguished:

◦ In centralized approaches the clients are relieved from estimating their own position or

location. Instead, dedicated systems are available as part of the infrastructure. These

execute the localization algorithms and forward the results to the particular clients. While

these central systems are commonly more powerful than ordinary sensor nodes, they
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Figure 9.5.:Wireless measurement techniques for localization systems

might even have access to global information. Thus, they can generate an extensive view

of the world, and process muchmore information by executing more complex computa-

tions (e.g. map stitching [168], multidimensional scaling (MDS) [263], and semidefinite

programming (SDP) [48, 161, 265]).

◦ In decentralized approaches the clients localize themselves, and do not rely on supplemen-

tary hardware for computation. While this causes higher CPU andmemory load on the

sensor nodes, they stay autonomous in their operation, and avoid (resource) bottlenecks

as well as a single point of failure. Also, depending on the remaining system specification,

there is commonly more anonymity. Common algorithms for this use case – like trilater-

ation, multilateration, (weighted) centroid methods, MinMax, and some hybrids – will

briefly be compared to our pVoted approach in Chapter 13.

Having described the various points of view on localization and tracking systems, we can

summarize the demands regarding the WSAN optimization problem fromDefinition I.5 as:

Optimize the data generation, communication, and data fusion cost to jointly save resources

while providing a well-balanced temporal performance along with spatial accuracy and

precision.

To achieve this long-term goal, we’ll next recommend concrete evaluation metrics and feature

requests regarding the design and implementation of such systems.

9.2.2. Evaluation Metrics

Besides the request for more or less relevant and “nice to have” features, the design of (indoor)

localization systems also involves the definition of feasible target specifications to finally comply

with. These depend on the application context and the customer’s individual requirements

on the one hand, but they are also limited by environmental constraints and physical laws

on the other hand. Thus, the implementation and configuration parameters for the underly-

ing hardware, software, and networking subsystems must be selected for both efficiency and

interoperability, and tested carefully according to certain metrics.
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(a) 1D distance measurement (b) 2D localization

Figure 9.6.: Accuracy vs. precision

Although most of these metrics can directly be derived from the just presented design space,

we nevertheless want to emphasize some selected issues, which – according to our experience –

are indispensable for rendering a localization and tracking system suitable for practice. More

specific metrics will be considered where appropriate throughout the next chapters.

Spatial performance: Precision and accuracy. In literature [196, 216, 224] as well as for

real installations (→ Table 9.1) the absolute accuracy is probably themost central concern during

both the initial specification and the concluding evaluation process. It is commonly defined as

themean error (ME) ormean square error (MSE) in the Euclidean distance between the true

positions p ′
mi

of a nodem to be localized and its estimated positions p̃mi
over n iterations:

eL =
1

n
·
n−1∑

i=0

∥
∥
∥p ′

mi
− p̃mi

∥
∥
∥

1
or eL =

1

n
·
n−1∑

i=0

∥
∥
∥p ′

mi
− p̃mi

∥
∥
∥

2
(9.6)

In contrast, the precision is an indicator for quantifying the numerical stability of the estimated

position coordinates when neither anchors nor the clients have moved during several localiza-

tions. Figure 9.6b illustrates the differences between those two terms for the 2D case; it behaves

analogously for the 3D case.

Since the just mentioned accuracy and precision of each estimated position is always influ-

enced by the quality of the previously acquired measurement data, the metric from Eq. (9.6) can

easily be adapted for e.g. measured and true distances dmi ,a j
between two nodesmi and a j over

n measurements:

ed =
1

n
·
n−1∑

k=0
(d ′

mi ,a j
− d̃mi ,a j

)1 or ed =
1

n
·
n−1∑

k=0
(d ′

mi ,a j
− d̃mi ,a j

)2 (9.7)

Also comparable, the measurement precision describes the scattering at constant distances as

depicted in Figure 9.6a.
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Energy consumption. In this regard we once more refer to Figure 9.2, and consider the cost

for data generation, preprocessing, aggregation, and fusion as relevant factors. As mentioned in

Section 1.1 energetic autarky plays an important role in the design of autonomous embedded

systems. With regard to WSAN based localization systems the energy consumption is mainly

defined by three major subsystems: While today’s MCUs are designed for energy efficiency

anyway, themost promising potential for further optimization can be found in themeasurement

hardware and the (wireless) communication. Since the energy consumption increases with

the localization rate fL , the communication stages should be kept short in general, and radio

retransmissions for e.g. error recovery should be avoided whenever possible. Since indoor

systems often rely on a fixed infrastructure, our energy consideration will mainly relate to the

mobile nodes.

Localization frequency and multi client support. According to e.g. [5, 261] the achievable

update rate fL and various related communication issues must also be considered. This is

particularly relevant for the realization of tracking and control systems with a temporally and

spatially high resolution. Our experiments in [191]8 have shown that for tracking a mobile target

moving at rather low speed of about 10 cm/s (i.e. 0.36 km/h) a localization frequency fL ≈ 2Hz is

already required to precisely steer a tiny LEGO™ vehicle with amaximal deviation of about 10 cm

along a predefined path – exclusively based on position estimations. In most cases it is argued

that the applied data fusion algorithms or CPUs are the limiting factors, and must therefore

simply be replaced by sufficiently fast alternatives. We will show that in both centralized and

decentralized systems, the data aggregation stage can quickly become a comparably relevant

issue which offers an enormous potential for optimization.

A closely related metric is the number of clients which can be supported simultaneously,

i.e. served with a “sufficiently” high localization frequency which in turn can depend on the

application, on each single node, or even on changing demands. A discussion as well as a system

optimized for numerous devices can be found in [261].

Deployment, service coverage and environmental integration. Another issue is to effi-

ciently and reasonably dimension and install the localization system in order to guarantee a

reliable service coverage at minimal cost and impact on the surrounding or on other systems.

In this regard we have to minimize the number of anchor nodes while keeping the service

quality constant at any position. While this would reduce environmental pollution caused by

the emission of radio and ultrasound signals and simplify the anchor calibration process [256]9

(e.g. during the deployment or at runtime), it is even likely to attenuate the competition on the

radio channel and the system’s overall energy consumption.

8Diploma thesis conducted in conjunction with this work.
9Diploma thesis conducted in conjunction with this work.

217



9. Localization Systems

9.2.3. The Design Space

A localization system’s design space comprises four main dimensions (LS1 – LS4), and the

need for scalability (LS5) regarding any supported feature10. Note, that several requirements

impose different challenges when seen from an anchor’s (i.e. a node or device in the installation’s

infrastructure) or a client’s (i.e. a node or device using the localization service) view:

LS1 SPATIAL AND TEMPORAL PERFORMANCE. Maximize precision and accuracy while minimiz-

ing runtime:

a) Reliably obtain an adequate set of environmental information, and apply data fusion

algorithms which are robust against false and noisy measurements.

b) Reduce the temporal overhead for measurements, inter-node communication, and

CPU activity.

LS2 RESOURCE EFFICIENCY. Optimize the overall system regarding both the local node and the

global network point of view:

a) At the distributed systems level: Minimize the required infrastructure to simplify its de-

ployment and maintenance. Also account for energy efficiency which is often defined

by the communication or data fusion cost.

b) At the embedded systems level: Minimize the hardware and software overhead to

reduce production costs as well as operational resource requirements (e.g. for compo-

sitional reasons as discussed in Part II of this work).

LS3 SAFETY AND SECURITY. Account for a reliable system operation:

a) Ensure a sufficiently wide service coverage – even in critical areas (e.g. borders) –

through a reasonably dimensioned infrastructure and efficient node interaction.

b) Provide failure-safety through a careful hardware and application design.

c) Preserve client anonymity where required, and protect inter-node communication

against attacks like spoofing or overhearing11.

LS4 USABILITY. Provide useful functionality while avoiding trivializing assumptions: Make

position estimation feasible without imposing unreasonable restrictions or prerequisites

on the hardware, software or natural laws. Aim for robustness regarding badly calibrated

anchor positions, noisy sensor data, or unreliable communication.

LS5 SCALABILITY. Maximize and preserve scalability regarding both the number of anchor and

concurrently operating client nodes as well as the demanded localization frequency.

10If you feel like having a déjà vu when reading these lines, then this is partially true! In fact, the design space we have

been using for the resource andmemory managers in Chapters 6 and 7 comprised the same “main dimensions”.

Though their peculiarity was different in the superordinate context, the most central objectives are closely related

and remain almost the same.
11This aspect has been omitted entirely within this work. See [7] for a survey.
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Since the presented aspects can obviously impose serious conflicts andmutual dependencies,

the integration of suitable solutions will commonly demand for a reasonable trade-off. This will

also affect the SNoW Bat design considerations, and thus we’ll address various strategies for

most of them throughout this part of the work.

9.3. Related Work

Since a lot of work on the various aspects ofWSNbased localization systems is available, wewon’t

give a complete overview but refer to literature for general surveys [8, 126, 203, 226], algorithmic

aspects [56, 224], tracking issues [289], evaluation metrics [300], security concerns [261], and

specific challenges regarding indoor environments [202, 259] instead. For this work in particular,

we strictly focus onWSN based indoor localization using ultrasound, and omit other systems

(using e.g. optical techniques as summarized in [204]) entirely.

Especially in the area of contact-free indoor localization, ultrasoundmeasurements appar-

ently allow for sufficiently “high accuracy ranging, low cost, safety, and good user imperceptibil-

ity” [267], and consequently a large variety of such systems does already exist. While Table 9.1

gives a brief comparison of SNoW Bat and some selected approaches, these and other concepts

are optimized for various application-specific demands, and can thus be classified with regard

to the already depicted points of view from Section 9.2.1.

Apart from the demand to track either persons roughly (❶ – ❻) or objects precisely (❼ –

❾), some localization systems content themselves with determining their clients’ positions or

locations. Therefore, however, all systems make use of a static infrastructure of pre-installed

reference anchors. While some systems allow their arbitrary deployment (❷ –❹,❻,❽), others

require a specific pattern to exploit geometrical relations during the data aggregation (❶), or

during the actual position or location estimation (❺,❼,❾). Independent from the deployment,

the spatial anchor calibration must be accomplished manually for most systems (❷ – ❹, ❻,

❽, ❾), while only a few provide an automatic self-calibration scheme with either explicitly

triggered operation e.g. during the deployment (❺,❼), or even a continuous self-observation

and self-adaptation (❶) at runtime.

Measuring the spatial distances between the client and several anchors is done via the meth-

ods from Section 9.2. Using either an initial or a repeated time synchronization to determine the

signal’s time of flight, it can be triggered periodically by the environment (❷,❻) or on-demand

by the clients. Apart, either the clients or the anchors can be used as US transmitters or receivers,

respectively. Letting the clients emit the signal (❶, ❹, ❺, ❼, ❾) allows for truly simultaneous

measurements, but must be coordinated properly to avoid sound interference in case of closely

operating clients. Letting the anchors emit the signal (❷, ❸, ❻, ❽) also demands for a proper

coordination, but also raises the problem of potentially inconsistent distances in case of moving

clients.

The two options for the trigger source and the sound emission direction also exert direct

influence on both the privacy aspect and the data aggregation: Regarding the first, some systems

do not even attempt to know about the presence of a client but simply provide the service (❷,

❻), others just detect their presence (❹,❽), and yet others even collect position or identification
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Design considerations Measurement Data aggregation Position estimation

operation

Localization system
SNoW Bat

Self calibration (Track & Steer)

applicationdeployment

(HashSlot) (pVoted)(Cut algorithm)

Figure 9.7.: The SNoW Bat localization system: An overview on Part III

information (❶, ❺, ❼, ❾). Regarding the latter, collecting the distance information from the

anchors is done either wirelessly (❶, ❸, ❹, ❻, ❽) or via wired connections (❺, ❼, ❾); only in

one case (❷) the data is collected from wired clients. The question remains who collects the

information: As described in Section 9.2.1, the clients represent the data sinks in decentralized

systems (❶, ❸, ❹, ❻, ❽). In contrast, centralized systems (❷, ❺, ❼, ❾) employ a central com-

putational unit to fuse the data and forward the final position or location information to the

client. Independent from this choice, all approaches apply lateration algorithms, which is quite

obvious due to the fact that they use ultrasound to determine distances instead of angles or

just the pure presence of clients within the serviced area. Finally, the position accuracy and

update frequency is a highly interesting point. Few systems (❷,❺) apply an ordinary PC (with

enormous computational power compared to typical sensor nodes) to achieve a high frequency

despite of executing complex data fusion algorithms for high position accuracies. Other systems

accept either a lower frequency (if considered at all) or a lower precision (❸, ❹, ❻, ❽, ❾), but

content themselves with sensor node hardware.

In order to improve both aspects by also just relying on exceptionally weak, but cheap and

energy efficient sensor node hardware (→ Chapter 2), we implemented the entirely novel SNoW

Bat system from scratch to thoroughly rethink the manifold design aspects, and to gain a

deep understanding of related hardware, software, and network issues. Regarding e.g. energy,

real-time, and scalability demands, we consider this step as indispensable for optimizing the

sometimes subtle interactions and implications through an efficient co-design.

9.3.1. Scope of this Part of the Work

Based on the presented SNoW5 sensor node and the operating system SmartOS from Part II of

this work, a real-world installation comprising 45 static anchor nodes allowed us to perform an

extensive analysis of some novel approaches (mainly the Cut, HashSlot, and pVoted algorithms

for data generation, aggregation, and fusion) under realistic conditions – and to stress test the

reliability and usability of the central building blocks.

Though we attach great importance to executing SNoW Bat on real WSN hardware, we also

linked the real system to a simulator and visualizer. This allowed us to process real-world data

(like e.g. distance measurements) within a partial simulation (e.g. of the localization algorithm),
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and helped us to evaluate the capability of various techniques and algorithms at an early stage.

At the same time it reduced the comparably complex and time-consuming implementation

of embedded software just for testing purposes. We already discussed the pros and cons of

simulation and real-world implementations in Section 2.

Figure 9.7 outlines the organization of this part of the work:

Chapter 10 introduces the general SNoW Bat operation principle, followed by some con-

siderations on the hardware platform, anchor deployment issues, service coverage, and the

software architecture. Beyond, we’ll investigate some critical algorithmic and physical factors

which bound the maximum achievable localization frequency. In this respect, far-reaching

decisions regarding compositional software design under real-time conditions and resource

sharing demands become once more relevant to obtain sufficiently frequent and precise po-

sition information for demanding applications like autonomous robot or vehicle steering and

path control.

Chapter 11 covers the ultrasound signal detection and ranging for precise distance mea-

surements. Physical aspects and the impact of using off-the-shelf transducer hardware will

be discussed as well as DSP based event detection using real-time timestamping and curve

matching.

Chapter 12 considers the special requirements for fast, reliable, and energy efficient data

aggregation at the client. The almost simultaneous arrival of the ultrasound signal at the anchors,

and the subsequent emergence of distance information imposes considerable consequences on

the wireless communication. The presented collision-free and almost optimal HashSlot protocol

is a key feature for SNoW Bat’s performance and allows to trade precision against speed.

Chapter 13 presents the decentralized localization algorithm pVoted. Using prediction and a

progressive voting scheme to progressively process the wirelessly received distance information

allows to immediately detect and filter (probably) faulty sensor data. This saves valuable RAM

and reduces distortions in the final position estimation. The numerical classification of each

estimation allows to stop the data fusion process as soon as an adjustable threshold is reached,

and provides a trust indicator for applications using the SNoW Bat subsystem as a service.

Chapter 14 presents a real-world evaluation of a concrete SNoW Bat installation based on the

SNoW5 hardware and the SmartOS operating system from Part II of this work. Considering the

temporal and spatial performance within a realistic environment, a conclusion on the previously

introduced techniques and approaches from Part III will be given as well as an outlook on

further research in the area of ultrasound based indoor localization in wireless sensor/actuator

networks.
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10. The SNoW Bat Indoor Localization

and Tracking System

Abstract

The SNoW Bat system is intended for the localization and tracking of mobile

objects within indoor environments, where e.g. GNSS is not available and an

accuracy of a fewmillimeters is required.

Similar to many WSN based indoor localization systems, SNoW Bat requires

a pre-installed infrastructure of static anchor nodes for estimating the posi-

tion ofmobile client nodeswhich are commonly mounted on various types

of objects under observation. To be independent from further hardware,

each SNoW Bat client operates autonomously, and localizes itself just when

required, e.g. periodically or upon certain events. Therefore it triggers the

simultaneous distance measurement between itself and several anchors, and

applies a decentralized position estimation algorithm on the wirelessly col-

lected distance information. Though using only typical WSAN components,

the intended objectives were to achieve a high localization accuracy, preci-

sion, and frequency despite of an easy deployment process and low energy

demands. At the same time we kept the focus on compositional and reliable

software design as demanded in Part II of this work to simplify the integra-

tion with other complex software modules on the same resource constrained

hardware.
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10. The SNoW Bat Indoor Localization and Tracking System

10.1. Operation Principles

SNoW Bat will serve as a representative for decentralized

indoor localization and tracking systems based on distributed

networked sensors. As illustrated in Figure 10.2 it relies on an

initially deployed infrastructure of spatially calibrated anchor

nodes at static positions within a reference coordinate sys-

tem, and allows concurrently operating mobile client nodes

within the serviced area to localize themselves on-demand

and based on ultrasound distance measurements between themselves and the anchors. While

the central SNoW Bat service concept provides just the infrastructure to generate, preprocess,

and aggregate spatial distance data at a client (→ Figure 9.2[p211]), the finally applied data fusion

algorithm for position or location estimation is not predefined per se, but can – in the tradition

of decentralization and autonomy – be chosen arbitrarily by each client. Nevertheless we recom-

mend the pVoted approach from Chapter 13 since it is optimized for various system properties

and completes the philosophy of hardware/software/network co-design.

Despite of our goal to support several clients in estimating their position simultaneously at

minimal energy consumption, this process should nevertheless be feasible at high frequency,

precision, and accuracy in all three dimensions. In this regard, runtime determinism and

resource sharing issues will once more turn out as relevant aspects for seamlessly integrating

SNoW Bat into existing applications as discussed in Section 1.2 – e.g. to allow vehicles on which

the clients are mounted to steer autonomously along predefined paths within the serviced area.

Regarding the terminology from Definition II.10
[p109] the anchors cooperate with the clients on-

demand to offer them a service base for their self-localization. In contrast the clients collaborate

with each other to retain the localization system’s reliability and efficiency: Though literally

independent they always seek to lock a minimum of the overall system resources1 to also let

coexisting nodes operate according to their individual demands. The resulting computational

load is distributed among the anchors (data generation and preprocessing) and the clients (data

fusion), and makes the entire system independent from additional hardware.

For performance reasons we thus attach particular importance to system parallelism; not

only within the network, but also for each node: As a comprehensive example for the design

and implementation of complex WSAN applications, SNoW Bat exploits the strengths of the

previously introduced preemptive and event-driven operating system SmartOS to achieve

reactive real-time operation through temporally deterministic task interaction and collaboration

– these are essential properties regarding the quite dynamic environment in which SNoW Bat

will finally operate. Nevertheless, a sophisticated software design is still required to optimize

the wireless communication, and to dynamically adapt both the localization frequency and the

spatial precision or accuracy to the varying requirements and potential of any individual client.

1Especially radio channels as well as anchors which may service only one client at any given time.
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10.1. Operation Principles

mobile client

static anchor

Figure 10.1.: The SNoW Bat test installation

10.1.1. SNoW Bat Operation Stages

At the clients, SNoW Bat provides the position estimation as a system service. It can be used

by any application task and relies on four operational stages P1 – P4, which, depending on the

application, can be triggered both periodically or sporadically. The anchors are involved in only

the two stages P2 and P3 and react on-demand, i.e. event-triggered by the clients. Figure 10.3

shows both the parallelized node operation from the view of an external observer watching

the mobile nodem ∈M and a single anchor a ∈ Am servingm, as well as the interleaved task

executions on both systems.

The clientm will finally annotate any position estimation p̃(t ) with the time t = tC
Chirp

of the

corresponding ultrasound signal emission2; preceding position predictions will thus also refer

to the intended time tC
Chirp

for the next iteration3. The corresponding sequential flow can be

described as follows:

P1 Position prediction: In the run-up to any position estimation p̃m(t ) a prediction p∗
m(t ) is

calculated from former annotated estimations h0, . . . ,h|H |−1 according to Eq. (9.5). While

details will be presented in Section 13.2, this step serves to increase the spatial precision,

2The chirp emission time tC
Chirp

is captured via the SmartOS IRQ timestamping functionality from Section 5.3.

3Scheduling the chirp emission precisely to the intended time can in turn be done as described in Section 5.4.1.
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10. The SNoW Bat Indoor Localization and Tracking System

Figure 10.2.: Schematic design of the SNoW Bat indoor localization system

accuracy, and reliability, and to select an adequately sized subset of anchors ARm ⊆ Am for

the immediately following distance measurement. Though less obvious, this situation

aware on-line configuration of the radio communication will prove to be crucial for

reducing both the data aggregation cost in stage P3 (→ Chapter 12) as well as the data

fusion cost in stage P4 (→ Section 13).

P2 Distancemeasurement: The distancemeasurement betweenm and each anchor Am ⊆ A

within both radio and ultrasound range is conducted simultaneously. This is particularly

relevant since m might otherwise move during several successive measurements; an

avoidablemodification to the overall system state whichwould complicate the subsequent

calculations. Thusm broadcasts a so called chirp allocation vector (CAV,→ Listing 10.1[p228])

containing the prediction p∗
m(t ) precisely at the time tC

CAV
= tC

Chirp
−∆SYNC first to announce

the measurement and to synchronize the involved anchors. Each (selected) anchor ai ∈
ARm ⊆ Am within the ultrasound coverage zone Zm (→ Figure 10.2) consequently calculates

the direct distance d̃m,ai towardsm using the chirp’s just measured time of flight ∆TOF.

See Chapter 11 for details on the chirp detection.

P3 Data aggregation: After the distance measurement each anchor ai ∈ ARm ⊆ Am wirelessly

returns a corresponding distance vector (DV,→ Listing 10.2[p228]) containing inter alia d̃m,ai

and its own (calibrated) 3D position back tom. We apply the self-organizing HashSlot data

aggregation protocol as introduced in Chapter 12 to assign definitely collision-free and

tightly packed TDMA slots s(ai ) ∈ [0; |ARm |−1] for each involved anchor. As visualized in
Figure 10.3 each slot is initially scheduled for time t A

DV,ai
= t A

DA
+ s(ai ) ·∆SLOT under Hash-

Slot, but may shift forward dynamically under HashSlot+ to fill up unexpected channel

idle times – for whatever reason these might appear4. The total number of requested DVs

as well as the same number of required slots to be reserved has already been encoded as

QoS value within the CAV. This reflects the (current) demands of the position estimation

4The begin of the data aggregation t A
DA

:= t A
CAV

+∆DA is computed by each anchor according to the previously

received CAV information from Listing 10.1, Line 18.
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Figure 10.3.: The SNoW Bat localization process

algorithm, and allows to adjust the duration of both the data aggregation and the overall

localization process for a deterministic limit.

P4 Position estimation: During the last stage a localization algorithm computes a position

estimation p̃m(t) from the prediction p∗
m(t) (if available) and the received DVs. Using

pVoted fromChapter 13 will – apart from the 3D coordinate ~Xm – also compute the current

3D velocity ~Vm and an indicator χ ∈ [0;1] which specifies the reliability of the estimation

regarding its precision and accuracy – a valuable information for subsequent predictions

and the actual application.

Regarding the call for real-time capability from earlier discussions (→ e.g. Chapter 5) the two

stages P2 and P3 deserve particular attention: P2 is critical in terms of time synchronization (→
“capturing of timestamps” in Section 5.3) through the CAV, the temporally precise emission of

the chirp by the clientm (→ “specification of delays” in Section 5.2), and the precise capturing

of the chirp arrival time by any anchor ai ∈ ARm (→ Chapter 11 or [41]5). P3 is critical in terms

of the compliance with assigned TDMA slots (→ “scheduling of reaction times” in Section 5.4)

since any violation would probably lead to radio collisions and result in the loss of valuable

information.

10.2. System Design Considerations

10.2.1. The Sensor Node Platform Configuration

The SNoWBat hardware is based on SNoW5 wireless sensor nodes6 fromChapter 2. Though – for

economic, deployment, and interchangeability reasons (→ Section 2.1) – it is exactly the same

5Bachelor thesis conducted in conjunction with this work.
6TI MSP430F1611 MCU [280] (8MHz CPU clock, 10 kB RAM, 48 kB ROM), TI CC1100 radio transceiver [281]
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1 typedef struct {

2 uint8_t qx; // the QoS level in x direction , 0= unused

3 uint8_t qy; // the QoS level in y direction , 0= unused

4 uint8_t gamma_ad; // the adaptive grid module , 0= unused

5 uint8_t dl; // dist. from anchor plane , lower bound [cm], 0= unused

6 uint8_t du; // dist. from anchor plane , upper bound [cm], 0= unused

7 uint8_t tTau; // τ for HashSlot+ [ms]

8 } hashSlot_Request_t;

9

10 typedef struct {

11 uint16_t cavID; // measurement ID (autoincrement)

12 uint16_t x; // predicted x-coord of the client [mm], 0= unknown

13 uint16_t y; // predicted y-coord of the client [mm], 0= unknown

14 uint16_t z; // predicted z-coord of the client [mm], 0= unknown

15 sint16_t temperature; // ambient temperature [1/100◦C]
16

17 uint16_t ∆SYNC; // the delay between the CAV and the chirp [ms]

18 uint16_t ∆DA; // the delay between the CAV and the first DV [ms]

19 // =∆SYNC+∆TOF,max+∆DSP

20

21 /* data aggregation specific */

22 batDAMAC_t DAProtocol; // the data aggregation protocol (see Section 12.3)

23 uint8_t retChannel; // the radio return channel for the data aggregation

24 uint8_t ∆SLOT; // slot length for TDMA methods [ms]

25 hashSlot_Request_t HS; // the HashSlot configuration

26

27 /* various additional data */

28 ...

29 } batCAV_t;

Listing 10.1: The SNoW Bat Chirp Allocation Vector (CAV) data structure of a clientm ∈M (29 B)

See Figure 10.3 as reference and Listing 10.2 for the replying Distance Vector (DV)

1

2 typedef struct {

3 uint16_t cavID; // copy from CAV (for matching)

4 uint16_t x; // x-coord of the anchor [mm], 0= unknown

5 uint16_t y; // y-coord of the anchor [mm], 0= unknown

6 uint16_t z; // z-coord of the anchor [mm], 0= unknown

7 sint16_t temperature; // ambient temperature [1/100◦C]
8

9 uint8_t DVSlot; // the used TDMA slot s(ai ) (for slotted protocols)

10 uint16_t ∆TOF; // the measured ultrasound TOF [us]

11 uint16_t d̃m,ai ; // the measured direct distance to the client m [mm]

12

13 /* various additional data */

14 ...

15 } batDV_t;

Listing 10.2: The SNoW Bat Distance Vector (DV) data structure of an anchor ai ∈ ARm (22 B)

See Figure 10.3 as reference and Listing 10.1 for the preceding Chirp Allocation Vector (CAV)
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Figure 10.4.: The SNoW Bat task system for mobile and anchor nodes

for the anchors and the clients, an overview on the respectively relevant hardware/software

components is summarized in Figure 10.4:

The sub-1 GHz radio transceiver is configured to operate at 915MHz base frequency where it

supports data rates up to 500 kbit/s at 255 freely selectable channels. To preserve a maximum of

control over most configuration options regarding the channel access scheme we did intention-

ally not rely on a standardizedMAC protocol like e.g. ZigBee, IEEE 802.15.4, or Bluetooth, but

implemented a more appropriate solution based on the CC1100’s proprietary PHY7: On each

node the SmartNet low-level MAC protocol keeps exclusive control over any wireless commu-

nication as well as over the automatic rx/tx timestamping. Implemented as a system service

SmartNet also serves as a flexible base for the implementation of higher level protocols like the

already mentioned HashSlot and HashSlot+ TDMA schemes. A short overview on SmartNet has

already been given in Section 8.1.

The ultrasound transceiver unit is implemented as extension board as depicted in Figure

2.7a[p31]: Like the sensor node itself the so called MICADUS board is exactly the same for the

anchors and the clients. Figure 2.8[p31] shows an additional extension which is compatible with

the MICADUS module but will exclusively be used for the mobile nodes: Outsourced to an

additional SNoW5 for autonomous path control using a LEGO Spybotics™ vehicle it interfaces a

PWMmotor controller to drive the differential gears8.

7“Appropriate” regarding the benefits for the concrete application, but especially regarding the fact that we operate

tiny but truly preemptive multitasking systems where – apart from each node’s individual network address –

even tasks must be (sub-)addressable and distinctively be notified about their individually received packets at

minimum delay and with respect to their active priority (→ Section 4.3.2).
8Interconnected via I2C the second SNoW5 node became necessary since executing both the localization algorithm

and the fuzzy controller showed to be simply too complex for a single MSP430F1611 regarding its CPU, RAM, and

ROM reserves.
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10. The SNoW Bat Indoor Localization and Tracking System

10.2.2. Anchor Infrastructure and Deployment

The deployment of a technical system into an existing environment should exert as little disturb-

ing influence on it as possible (→ LS2a[p218]) – for SNoW Bat this implies an adequate number and

placement of the static anchor nodes. On the one hand, few devices mean a fast deployment,

low (running) costs and energy consumption, reduced maintenance effort and environmental

pollution due to e.g. radio transmissions. On the other hand, a certain minimal amount of

anchors will be required to guarantee an area wide localization service coverage at sufficient

precision and fault tolerance.

Althoughmost position estimation algorithms need no special anchor alignment as long as

each one knows its exact position in world coordinates and as long as it is assured that a mobile

node can always measure a sufficient number of distances to different anchors, we intentionally

rely on a grid pattern for three reasons:

1. The deployment can be simplified through prefabricated and standardized building units

(like e.g. the ceiling panel from Figure 10.6b) with integrated sensor nodes.

2. The HashSlot data aggregation algorithm from Chapter 12 requires the anchors to be

roughly aligned along a regular pattern to unfold its full potential.

3. The system calibration will be simplified [256]9 since each node knows its rough position

in terms of the grid cell index (e.g. row and column).

Referring to Figure 10.5 we initially disclose our approach for finding an optimal anchor

grid to guarantee a sufficient number of distance measurements for each position estimation

process. During our considerations and experiments all anchors will be aligned to such a grid

and mounted on (roughly) the same level – the so called anchor plane – at the ceiling above the

observed space. As Figure 10.5c illustrates, it would also be possible to install the anchors on

e.g. the floor – even with a varying grid constant if demanded by the application: In case of the

landing platform as illustrated in Figure 10.5c the grid becomes finer towards the central landing

point as a function of the helicopter’s minimal height according to its entry lane. In any case the

US transducers will be directed towards the serviced space and orthogonal to the anchor plane.

In order to find an appropriate grid constant L, we’ll do some considerations about the room

geometry first. Regarding the fact that at least n+1 distances are required to locate an object in
n-dimensional space, these are of special importance as soon as clients might not only move in

parallel to the anchor plane (e.g. in 2D on the floor) but also orthogonal to it (i.e. freely in 3D).

While the maximum supported room height hsup := u · cos(ϕ) depends on the US transducer

range u and its beam angle ϕ which are constant parameters for the applied hardware, the

maximum distance dmax ≤ hsup of the mobile node from the anchor plane is implicitly limited.

In contrast, the least possible distance dmin ≤ d ≤ dmax ≤ hsup from a client to the anchor plane

depends on the application demands, but is a much more important specification since it

defines an upper bound for the grid constant L: In fact, the minimal coverage zone Z of the

US signal has a radius rmin := dmin · tan(ϕ), and we nevertheless have to guarantee that at least

9Diploma thesis conducted in conjunction with this work.
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(a) top view (b) side view (c) landing platform

Figure 10.5.: SNoW Bat room geometry and anchor node deployment analysis

four anchors are always within this (freely moving) circle. Thus, three grid points aligned like

A, B andC in Figure 10.5a must always be located inside Z 10, or, in other words: The minimal

coverage zone Z must be at least as large as the circumcircle of the triangle ABC . Some simple

trigonometric relations lead us to a simple equation for computing L during the deployment

stage: With

a =
√

2·L2 =
p
2·L,

sin
(
α
2

)

=
a
2p

L2+4 ·L2
= 1

2
·
√

2
5

sin
(
α
2

)

=
√

1
2
(1−cos(α))







⇒ cos(α)=
4

5
,

sin(α)=
√

1−cos2α=
3

5
= 0.6,

and the just mentioned precondition

rmin
︸︷︷︸

(coverage zone)

!
≥

a

2· sin(α)
=

p
2·L

1.2
︸ ︷︷ ︸

(circumcircle)

the maximal accepted grid constant computes as

L ≤
1.2·rminp

2
=
1.2·dmin · tan(ϕ)p

2
. (10.1)

Figure 10.6a gives an overview on various values. By arranging the anchors as described, it is

possible to localize any mobile object within a distance between dmin and dmax from the anchor

plane. Note, that fault tolerance improves implicitly with increasing distance from the ceiling

as more anchors will be located within Z then, and receive a mobile node’s chirp to measure

and return a distance. Another way to explicitly increase fault tolerance in case the client moves

10Although the coverage zone Z will not exhibit the shape of a perfect circle under realistic conditions, we’ll use

this simplified model since it is close to the true outline and proved to be sufficiently precise when verifying our

theoretical considerations during the real-world tests for both HashSlot and pVoted.
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Figure 10.6.: Room geometry considerations

close to the anchor plane is placing the anchors even more densely just where necessary.

Now, that L is computable from the application-specific dmin and the hardware specificϕ, it is

also possible to calculate the whole system’s maximum coverage area depending on the number

of anchors. As reference the MICADUS hardware specifications areϕ= 30◦ and u = 8m, leading

to hsup ≈ 6.93m. For tracking a vehicle on the plain floor of a hall with dmin = dmax = 5m an

anchor grid with L ≤ 245 cm would be required and an e.g. quadratic area of (⌊
p
64⌋−1)2 ·L2 ≈

294m2 could be covered with the SNoW Bat service using 64 nodes. Within our 3D test setup as

shown in Figure 10.1, dmin = 1m and dmax = 2m, and thus we require 45 anchors mounted at

L ≈ 49 cm for an area of 4m×2m.

10.2.3. The Impact of the Data Aggregation on the Localization Frequency

In Section 10.2.4 we have already discussed the impact of the software design on the localization

frequency, and pointed out that our preemptive and priority aware SmartOS kernel allows a

considerable speedup through the partial interleaving of the four localization stages: With regard

to data and control dependencies we serialized P2 and P3 in one high priority real-time task TUS

and optimized its reactivity. However, we still have to consider the impact of those two stages on

the task’s WCET since the data aggregation in particular involves hard-to-control node-to-node

interaction, and will show to be the potential source of energy, time, and information loss if not

managed carefully. In order to avoid unnecessarily reduced node lifetime, position update rates,

precision, and accuracy through our HashSlot data aggregation protocol, we’ll first evaluate the

impact of this communication process on the total duration of a single localization iteration.

Let’s assume we intend to use at least k ≥ n + 1 distance measurements for a single n-

dimensional position estimation. While k may already include some extra DVs to compensate

232



10.2. System Design Considerations

for measurement noise and imprecision as discussed in Chapter 11, the quite noteworthy unreli-

ability of some radio protocols is yet another factor to consider. With ρ ∈
[

0,1
)

being the expected

packet loss rate (PLR) of the applied data aggregation protocol, we consequently have to request

– either explicitly or implicitly – the distance vectors from at least g ≥
⌈

k · (1−ρ)−1
⌉

anchors at

the mobile client. Let’s further assume that each distance vector contains LDV bytes (including

the payload and radio protocol overhead) and will be transmitted wirelessly with data rateCDV.

On reception the client node requires some time tCPU
DV

to fetch the radio packet, i.e. to read the

radio transceiver’s RX buffer and to re-enter RXmode. Since most sensor nodes employ just a

single radio chip – and so does the SNoW5 – this communication unit and the locally selected

but globally effective radio channel represent exclusively shared resources. Consequently we

can only receive one packet at a time, and the immediately successful transmission of a single

DV will last for one so called time slot with the duration

∆SLOT := tHFDV + tCPUDV =
LDV

CDV
+ tCPUDV . (10.2)

According to these considerations and Figure 10.3, the entire data aggregation stage P3 for the g

requested DVs is a serialized process, and takes at least the time

d3 ≥Φ(g )= g ·∆SLOT. (10.3)

Equality in Eq. (10.3) will only be observed if all packets can be received successfully on the first

attempt and in direct succession without any inter-packet spacing. However, both assumptions

are rather unlikely for most communication protocols, and this raises two questions:

1. Can the theoretical optimum d3 =Φ(g )=Φ(k) for the data aggregation stage P3 really be

achieved? This is: Can we reduce ρ→ 0 while at the same time avoiding any additional

temporal effort for coordinating the anchors’ transmission schedules despite of the client’s

mobility and the varying subset of anchors within the freely moving US coverage zone?

2. If 1 is not possible, which timeout tTO ≥Φ(g ) should be chosen to reasonably limit P3 and

proceed to P4?

Although our deterministic HashSlot and HashSlot+ algorithms will prove to achieve the

optimal performance, we also want to compare some other protocols and thus accept a data

aggregation timeout ∆TO of up to twice the minimal stage duration for these approaches:

d3 ≤∆TO ≤ 2·Φ(g )=Φ(2g )

Thereby the proportion p(g ) of the reply stage on the total execution time of the task TUS (i.e.

without position estimation) is bounded by the number of requested packets g on the one hand

and by the given timeout ∆TO on the other hand:

g ·∆SLOT

d2+ g ·∆SLOT
≤ p(g )≤

∆TO

d2+∆TO
(10.4)
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According to Amdahl’s law undertaking considerable effort to be close to optimal or at least

not to utilize the entire timeout is quite justified, since the data aggregation will commonly

consumemuchmore time than the measurement process itself; and this is true even though

the ultrasound based distance measurement is already one of the slowest widely accepted

techniques. While

d2 :=∆SYNC+∆TOF,max+∆DSP

is mainly fixed through physical laws and environmental circumstances like e.g. the room

geometry it can not be optimized arbitrarily, and the only chance to improve the overall runtime

time is to optimize the radio protocol. In fact, with decreasing duration d2, e.g. through reducing

dmax along with the time of flight or by even using entirely different measurement techniques

(e.g. LASER or RSSI based), the impact of the wireless communication will grow even further.

Case study. Put into the context of the SNoW Bat system, each DV takes LDV = 22 B+19 B=
41 B according to Listing 10.2 (payload) and Figure 8.2[p196] (overhead). The radio transceiver

operates atCDV = 230 kbit/s, and the DV processing time on the receiving SNoW5 sensor nodes

is tCPU
DV

≈ 2.6ms. According to Eq. (10.2) each transmission takes ∆SLOT ≈ 4ms, and we still seek

to optimize the localization frequency fL by achieving d3 =Φ(g )≈ g · 4ms for g = k requested

DVs with ρ = 0.

Regarding an entire localization process for the maximal distance dmax = dsup ≈ 6.93m be-

tween the clients and the anchor plane the duration of the measurement stage is d2 ≈ 26.2ms.

The blue graphs in Figure 10.7 show that returning the minimum of n+1= 4 DVs back to the

client will already consume between 38% in the best case and 55% if the timeout ∆TO limits

d3 – although we do not know if a sufficient number of DVs has really been received in the

latter case! If we reduce the maximal distance to dmax = 2m the red graphs reveal that this even

worsens p(g ) to range between 57% and 73% as the measurement stage duration is also reduced

to d2 ≈ 11.8ms due to a shorter ∆TOF,max of the US chirp.

Anticipating the measurement error characteristics from Figure 11.4b[p249] with about 60%

“good” measurements around the central error and 40% side errors, some fault tolerance should

not be avoided, and we will already demand for k =
⌈

n+1
1−0.4

⌉

= 7 DVs then. Adding another two

DVs to compensate for e.g. node failures (which we cannot control) the data aggregation for

g = k+2= 9 will already take between 58% and 73% (for dmax = dsup) and between 75% and 86%

(for dmax = 2m) of the total time.

Eventually, the green graphs in Figure 10.7 indicate the maximal achievable localization

frequency fL,max when considering only the distance measurement task TUS while ignoring the

execution time for the interleaved position estimation task TPE.

Summary. As we have seen in this section, the data aggregation stage P3 in decentralized

localization systems like SNoW Bat has significant influence on the maximum position esti-

mation frequency fL,max. Apart from the quite obvious relevance for temporally fine-grained

node tracking in various control systems, this core specification is particularly important for

simultaneously supporting several mobile nodes: From the clients’ point of view the anchors are
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Figure 10.7.: Proportion p(g ) of the data aggregation time d3 in the complete localization time d
‖
L

dynamically but exclusively shared short-term resources and the localization delay consequently

reduces along with the localization speed. Thus, we will introduce the highly sophisticated

HashSlot and HashSlot+ protocols in Chapter 12 for optimizing the data aggregation stage with

respect to our considerations from this section.

10.2.4. The Impact of the Software Design on the Localization Frequency

Having introduced the basic operation of SNoW Bat as a representative for ultrasound based

localization systems, we’ll initially address its theoretical performance regarding the localization

frequency. Therefore we aim on parallelizing the execution of the stages P1 . . . P4 on the mobile

clients in order to minimize the duration dL of a single position estimation as well as the

minimal period of successively conducted iterations, respectively. In this context, we’ll consider

the achievable localization frequency

fL :=
1

dL
≤ fL,max :=

1

dL,min
(10.5)

with the help of Amdahl’s law [6], and show how to optimize fL through an efficient utilization

of the (preemptive) CPU and other (exclusive) resources under SmartOS.

Since the stages P4 and P1 are obviously data-dependent
11, and both stages P2 and P3 face

demanding real-time requirements as well as potential conflicts regarding some exclusively

shared resources (like e.g. radio, SPI, or the IRQ controller), their arbitrary parallelization is hard

11At least if we want to consider each position estimation (P4) for the directly following prediction (P1) during the

next iteration.
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to accomplish. Thus, we decided to combine the ultrasound measurement stages P2 and P3 in a

high priority real-time task TUS, and put the position estimation stages P1 and P4 into a lower

priority task TPE for pairwise parallelization.

While the mostly event-driven task TUS measures the sound propagation delays in stages P2

and P3 it will frequently suspend itself to grant a proper synchronization at the beginning of each

measurement process and to wait for the DVs to arrive successively at the end. Consequently

some task TUS specific self-suspensions will inevitably arise on the mobile node as illustrated

in Figure 10.3. Though we won’t go into detail here, it is important to note that these waiting

delays during both stages P2 and P3 are mainly determined by physical laws and technical facts

or realizations, and cannot be reduced arbitrarily (e.g. by “applying the optimal radio protocol”).

In a strictly sequential implementation of the localization process however, they lead to unused

idle periods and therefore provide great optimization potential.

In the following we denote the time periods where the CPU is busy during a stage Pi as bi , and

the inevitable waiting times as wi . With the just mentioned naïve sequential implementation of

the localization process we would obviously obtain

dL :=
4∑

i=1

(bi +wi )=
4∑

i=1

di = dL,max. (10.6)

Since P1 and P4 do obviously not exhibit any waiting times (i.e. w1 = w4 = 0), we can take

advantage of the truly preemptive SmartOS scheduler, and parallelize them partially with

P2 and P3 by interleaving the corresponding tasks TPE and TUS as suitable. One important

requirement to mention is that TUS must receive a truly higher base priority than TPE (PTUS
>

PTPE
) since a suspended calculation can be resumed arbitrarily while, in contrast, violating a

chirp emission time will result in measurement errors and processing DVs late can easily result

in losing subsequent DVs. According to Figure 10.8a, which shows a compressed schematic of

the interleaving, the resulting minimum period d
‖
L

of repeated position estimations computes as

d
‖
L

:= b2 +b3 +max{w2 +w3,b1 +b4}
︸ ︷︷ ︸

:=αmax

= dL −min{w2 +w3,b1 +b4}
︸ ︷︷ ︸

:=αmin

, (10.7)

and the achievable speedup s resulting solely from this parallelization finally computes as

s :=
dL

d
‖
L

=
dL

dL −min{w2 +w3,b1 +b4}
︸ ︷︷ ︸

αmin

≥ 1. (10.8)

According to Amdahl’s law the primary aim should therefore be to optimize the limiting factors

in d
‖
L
, starting with the largest one. As soon as the optimization is done, and αmax is minimal but

still bounded by either the busy or waiting times (whichever are longer), one is still free to

◦ improve the position estimation by granting more CPU time as long as b1 +b4 ≤w2 +w3

holds, or

◦ extend the data aggregation or improve its reliability as long as w2 +w3 ≤ b1 +b4 holds.
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(a) Schematic interleaving

getResource(&rBuf)setEvent(&evStart)

evDone evDone

(b) Task synchronization/interaction/communication

Figure 10.8.: Parallelization of the localization stages P1 . . . P4 on a mobile client node

While both options can even be exhausted and traded dynamically at runtime the paralleliza-

tion related speedup s grows to its maximum ifαmin =αmax =α, i.e. ifw2+w3 = b1+b4 holds. In
particular, the CPU load is 100% then since execution and waiting periods interleave perfectly12.

On the other hand the parallelization of the four stages through the two tasks on a single core

CPU will always restrict the speedup to

1≤ s =
b2+b3+2·α
b2+b3+α

≤ 2. (10.9)

Although concrete implementation details about the just introduced stages and tasks will

be deferred to the next sections, we’ll already reveal some task interaction, communication,

and synchronization concepts: Since the SNoW Bat position estimation subsystem can serve

only one task at any given time, exclusive access to its public library functions is provided

through an ordinary SmartOS system resource which must be allocated by the client task

first13. Encapsulated in such a library function – which is always executed in the client task’s

context – a dedicated the SmartOS event triggers the (“driven”) resumption of the currently

(“self-preempted”) waiting server task TUS which will immediately start with stage P2 of the

position estimation process (→ evStart in Figure 10.8b).

Due to the high throughput of the HashSlot data aggregation protocol in P3 and the low

CPU performance in general, TPE will commonly take longer to complete and exhibit a higher

WCET if all received DVs had to be processed thoroughly for the final position estimation. In

consequence we will almost always encounter situations with b1+b4 >w2+w3, i.e. TUS would

commonly have to wait for TPE to complete. While one option is to simply accept this structural

and computational imbalance (which might become quite extreme for a large number of DVs or

computationally complex data and information therein), another option would be to stop the

position estimation algorithm explicitly and on-demand as soon as the data aggregation stage

has finished or the client task’s timeout for the current iteration has been reached. In order to let

this rather complex and once more event-driven task synchronization take place properly we

need both a progressive position estimation algorithm (which would allow sporadic on-demand

12Apart from operating system overhead and additional load caused by other tasks or interrupts.
13Besides, this implicitly allows the priority aware sharing of this exclusive service through the priority inheritance

protocol and DynamicHinting from Chapter 6.
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10. The SNoW Bat Indoor Localization and Tracking System

requests for finalizing its computation almost arbitrarily), and the precise knowledge about

the end of the data aggregation stage (which in turn requires perfect control and temporal

predictability over the applied communication protocol to definitely identify the last TDMA slot

even if the corresponding packet does not even arrive).

While both requirements were carefully considered during the design and implementation of

the pVoted position estimation algorithm (→ Chapter 13) and the HashSlot data aggregation

protocol (→ Chapter 12), the inter-task communication must also take care for the management

of the local DV buffers with TUS being the producer (i.e. DV receiver) and TPE being the consumer

(i.e. DV processor): In fact, the task synchronization takes place via double-buffering: While

TUS transfers incoming DVs into the buffer Br with r ∈ {0,1} the other task TPE processes DVs
from the previous iteration stored in the buffer B(r+1) mod 2. The mutual access is coordinated

through a SmartOS resource as described in Section 4.3.7, and – as an additional benefit – we

can once more take advantage of the DynamicHinting programming paradigm to accomplish

the synchronization under real-time demands as illustrated in Figure 10.8b:

Having received and transferred the corresponding DVs for the current iteration into the

currently assigned buffer Br , TUS notifies the lower prioritized TPE by requesting the rBuf

resource which is commonly held by TPE. The purpose of rBuf is twofold in this context: First,

rBuf protects the exclusive access to the two buffers which is managed by TPE, and second, rBuf

acts like a broker resource comparable to the CoMem brokers from Chapter 7. Notified by the

generated hint TPE will – depending on the system configuration – either finalize or complete

the currently executing position estimation algorithm before it

1. swaps the DV buffers,

2. temporarily releases the rBuf resource to resume TUS for the next measurement (han-

dover)14, and

3. starts over with processing the just collected DVs from the just swapped buffer.

In order to provide a non-blocking system service which can be started by any client task, TUS

will eventually trigger an arbitrarily selectable event to signal this serviced task about each newly

completed position estimation (e.g. evDone in Figure 10.8b)15. Stopping the service is always

possible through a library function which simply instructs TUS to not request the broker (i.e.

rBuf) any more, but to suspend itself and wait for another evStart event to occur.

Using this concept compared to the non-parallelized naïve implementation we managed to

increase the localization frequency by s ≈ 81% to f
‖
L
≈ 3 Hz at least for those cases which will

become relevant later (i.e. 7≤ |ARm | ≤ 8 and a target accuracy of eL ≤ 5 mm for the position esti-

mation). An acceleration beyond this factor would become possible only through a systematic

improvement of the involved algorithms and their WCET. While Figure 14.2[p307] will finally reveal

real-world results for s and f
‖
L

we’ll discuss these graphs for a more detailed analysis (including

several side effects of the HashSlot and HashSlot+ data aggregation protocols) in Section 13.3.

14Note that TUS will immediately return the broker after the handover (→ Listing 11.1[p243], lines 41/42).
15While the client passes its individual signaling event along with the position estimation command, it can finally

query the result through yet another SNoW Bat API function.
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10.3. Summary

10.3. Summary

This chapter introduced the general SNoW Bat operation principles and various design consider-

ations including the hardware platform and the infrastructure deployment as well as the impact

of both the wireless data aggregation and the software design on the localization frequency.

Details on various potential approaches and solutions will be discussed next.
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11. Ultrasound Distance Measurement:

The Cut Algorithm

Abstract

In the last chapter we introduced the general SNoW Bat software architecture,

and emphasized the special real-time requirements during the ultrasound

based distance measurement stage P2. Although we decided to assign a high

base priority to the task TUS in charge of sending and receiving the ultrasound

chirp on both the mobile and the static nodes, respectively, we still have

to consider the handling of various measurement related phenomena and

problems which inevitably arise from physical conditions. In particular, we

will refer to those issues which are caused by the attenuation of the acoustic

wavesa when traveling through the air, and to those caused by the irregular or

at least angle dependent radiation power of directed ultrasound transducers

as applied for the MICADUS boards. Finally, since measurement errors and

imprecision can not be avoided entirely under real-world conditions, we will

at least manage to obtain a special error characteristics which allows us to

significantly simplify and improve the subsequent data fusion process in

Chapter 13.

aFrom a physical point of view acoustic waves traveling through gases (or other compressible media) are

longitudinal pressure waves with a certain oscillation frequency. The propagation characteristics is mainly

affected by the media’s temperature, motion, and viscosity. For air at 20 ◦C the speed of (ultra)sound is
vUS ≈ 343m/s.
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11. Ultrasound Distance Measurement: The Cut Algorithm

11.1. Timing and Chirp Emission

Node synchronization and precisely timed signal emission at the client tuC
are the first details we want to address since these definitely represent the

essential preconditions for determining the distance between two nodes or devices bymeasuring

the time difference of arrival (TDoA) between two signals propagating at different speed from

one device to the other. Since we are intentionally not interested in keeping all the nodes within a

SNoWBat system synchronized all the time1, but can also not afford to initiate and accept intense

communication efforts and an extended or even unpredictable temporal delay for synchronizing

the nodes on-demand, we depend on finding a reliable mechanism which would allow us to

“instantly” and “simultaneously” synchronize the subset ARm ⊆ A of potentially replying anchor

nodes by means of a single and unidirectional information transfer initiated by the mobile client

m.2 The nature inspired “thunder & lightning” principle has already been mentioned in Section

10.1.1: Sending a CAV right before each chirp is not only useful for announcing the chirp and for

disseminating various configuration parameters from the client to the anchors, but the quite

considerable clock drift between the nodes (→ Figure 5.6[p81]) can also be ignored then as long

as it cannot accumulate to exceed the maximum resolution between the sync time tCAV and

its last time-critical usage3. Since sending the CAV is accomplished on-demand (i.e. each time

a localization process is triggered) through the SmartNet radio protocol from Section 8.1, the

automatic tx/rx timestamping at both the sender and the receiver is guaranteed, and, based on

these timestamps, we achieve a sufficiently good synchronization between the involved nodes

based on tC
CAV

and t A
CAV

from Figure 10.3[p227], respectively.

Even though we already specified the reference time t := tCAV+∆SYNC for both the client and

the anchors we still have to ensure the precisely timed emission of the ultrasound chirp – i.e.

with an imprecision within the range [−1
2
µs;+1

2
µs) according to Table 5.1[p74]. Therefore we

once more rely on the dynamic self-calibration scheme for scheduling delays as presented in

Section 5.4.1 and Listing 5.3[p82]: Lines 14 – 23 in Listing 11.1 show the corresponding realization

within TUS on the mobile node. The task also compensates the considerable but unpredictable

influence of the system load on the task reactivity: Since the emission lateness will only affect

the current position estimation, the actually measured distances can immediately be corrected

by ∆dist during stage P3 as computed in Lines 25 – 29.

The chirp itself is generated by means of a precisely defined number of pulses of a rectangular

digital 40 kHz signal which drives the ultrasound transmitter as depicted in Figure 11.2a, and

enforces a deliberately shaped oscillation characteristic at the receiver as depicted in Figure

11.2b. This will turn out as a relevant detail for the precise determination of the chirp’s rx time

through our Cut algorithm.

1First, this would simply not be necessary but consume valuable energy, and second, we do not want to take

influence on coexisting subsystems which might need to establish their individual time synchronization scheme.
2Letting an anchor take the role of the synchronizer would either require a dedicated node (which differs from the

others) or a dynamic selection algorithm (which involves additional management efforts).
3For an expected clock drift of≈ 20 ppm (→ Figure 5.3[p75]) we thus implemented the task TUS to not exceed aWCET

of 25ms per iteration. Themaximumexpectable clock drift during one iteration ranges in±20 ppm·25ms=± 1
2µs

then, and perfectly matches the SmartOS temporal resolution of 1µs and the timestamping accuracy.
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11.1. Timing and Chirp Emission

1 OS_TASKENTRY(tUS_Client) {

2

3 while (1) {

4

5 /* Wait infinitely for the evStart event to start a measurement process:

6 Will be triggered by an application task through the SNoW Bat API. */

7 clearEvent (& evStart );

8 waitEvent (& evStart );

9

10 /* Send a CAV via SmartNet and get the main sync time. */

11 if (batSendCAV (& CAVHandle) != 1) goto failed;

12 batData.tC
CAV

= CAVHandle.ttx;

13

14 /* Schedule the chirp emission time (apply the self -calibration

15 scheme to compensate for any scheduling imprecision ). */

16 batData.tChirpSched = batData.tC
CAV

+ ∆SYNC - batData.∆comp;

17

18 /* Send the US chirp and save the ’true’ US emission time tC
Chirp

. */

19 if (sleepUntil (&( batData.tChirpSched )) == -1) goto failed;

20 usChirp (&( batData.tC
Chirp

));

21

22 /* Get the difference between the scheduled and the true chirp emission */

23 batData.∆comp = batData.tC
Chirp

- batData.tChirpSched;

24

25 /* Take the imprecision in obeying to ∆SYNC to compensate for

26 distance measurement errors: ∆dist will be added to each

27 successively received distance (DV preprocessing ). */

28 Delay_t lateness = ∆SYNC - (batData.tC
Chirp

- batData.tC
CAV

);

29 batData.∆dist = lateness * computeVSound(batData.localTemperature );

30

31 /* Schedule the DV reception via SmartNet.

32 The DVs will be processed through the position estimation task TPE. */

33 batData.tC
DA

= batData.tC
CAV

+ ∆SYNC + ∆TOF,max + ∆DSP;

34 if (batReceiveDVs(batData.tC
DA

) < 0) goto failed;

35

36 /* Log the reference time for later processing through the application. */

37 batUser ->timeChirp = batData.tC
Chirp

;

38

39 /* Notify the position estimation task TPE about the

40 completion of the data aggregation (see Figure 10.8b) */

41 getResource (&rBuf); // request the broker resource

42 releaseResource (&rBuf); // release the broker resource

43

44 continue;

45 failed:

46 // some error handling ...

47

48 }

49

50 }

the radio rx IRQ timestamp

as logged by SmartNet

passes a hint

to σ(rBuf) := TPE

returns rBuf to TPE

Listing 11.1: The ultrasound task TUS on the mobile client nodes.

The precise triggering of the chirp emission in lines 16 – 23 refers to the problem of “schedul-

ing reaction times” (based on the previously captured CAV transmission timestamp) from

Section 5.2 and applies the self-calibration scheme from Section 5.4.

Notifying a task through a broker resource in lines 41/42 refers to the technique from Section

7.5.1.
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11. Ultrasound Distance Measurement: The Cut Algorithm

An adequate synchronization test can be accomplished by a trusted external observer (e.g. an

oscilloscope during the development stage) which measures the delay between the first rectan-

gular pulse for the chirp generation at the client, and an intentionally generated signal edge at

the anchor which indicates its locally expected chirp emission time (→ red and blue channels in

Figure 11.2a). While this delay should exhibit a symmetry around 0 and be bounded by ±1
2
µs

according to Chapter 5, a statistical analysis is omitted here since details on the reliability of

our synchronization concept have already been presented in Section 5.3 of this work. Apart,

yet another synchronization test will become possible at the beginning of the data aggregation

stage P3, and will be discussed thoroughly in Chapter 12 (→ Figures 12.11 and 12.12[p288]).

11.2. Digital Signal Processing

Having discussed the chirp emission by the client, the chirp detection at the anchors is the

second detail we want to consider. Frequently underestimated, the challenge is to reliably

identify the beginning of the first ultrasound wave front arriving at an anchor and to precisely

capture the corresponding timestamp quickly and autonomously despite of the nodes’ low CPU

performance and unavailable hardware DSP support. Note that accidentally missing or adding

n complete US periods will definitely result in an individual distance measurement error of

n ·λUS = n ·vUS · f
−1
US

≈ n ·8.6mm, and is likely to also affect the precision and accuracy of the

position estimation algorithm during the sensor data fusion process in stage P4.

Considering the rectangular generator signal from Figure 11.2a, one might expect a similarly

shaped signal at the receiver. Unfortunately this is not the case, and, since both the transmitter

and the receiver capsules exhibit a slow transient oscillation as soon as a voltage is applied or the

wave reaches the membrane, we obtain a slowly rising shape as opposed in Figure 11.2b. In fact,

this so called ramping is the main problem for most ultrasound based distance measurement

systems as it is not constant regarding both the amplitude and the duration for any pair or set

of capsules, but clearly depends on the distance d and the angle ϕ between the membranes4.

Figures 11.1 and 11.3 illustrate these dependencies which are also discussed in [41]5.

A common approach to nevertheless capture the beginning of the incoming chirp at minimal

effort is to (extremely) amplify the signal and to feed the resulting voltage into a so called

capture/compare unit (as provided by most modernMCUs) which would trigger an interrupt

as soon as a certain threshold voltage is reached. As an example Figure 11.2b shows the chirp

oscillating around a carrier voltage offset of 1.44 V, and a trigger threshold of 1.65 V. The question

remains how to reasonably select both the amplification factor and ∆V :=Vcap/comp−Vcarrier.

While a low amplification would result in a slow ramping and late triggering at large distances or

angles (→ Figure 11.3b) and thus requires a small value for ∆V , stronger amplifications would

trigger earlier then (→ Figure 11.3a) but also increase the amplitude of the signal noise and

consequently demand for larger ∆V values to not mistakenly interpret noise as signal. In our

test beds this contradiction resulted in severe angle and distance related measurement errors

4Material and construction related issues are yet another factor which, however, won’t be discussed here.
5Practical work conducted in conjunction with this work.
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11.2. Digital Signal Processing

(a)US radiation power in dB vs. beam angle ϕ

at fUS =40 kHz
(b) The US coverage zone Zmax at ceiling height h

Figure 11.1.:US ranging depending on the node constellation and room geometry

ed of up to 10 cm even for rather short distances of up to 2m as depicted by the blue graphs

in Figure 11.4a6. In particular it is not needed to emphasize that these errors cannot be easily

compensated unless the relative position of the sender (towards the anchors) is known – an

unattainable precondition since we precisely undertake the effort to obtain this still missing

information in Stage P4.

Our solution to the ramping problem takes an entirely different approach: Since the mobile

sender emits a well-defined number of exactly 12 impulses during the chirp generation, the

envelope curve of the sampled chirp at the receiving anchor exhibits an almost constant shape

as shown for two different distances in Figure 11.3. Though the amplitude does still depend

on the distance d and the angle ϕ, the influence of both parameters fortunately proved to be

comparable or hardly distinguishable, and the sampled curves are almost matching except for

the voltage scaling in y direction and the temporal shift in x direction. Thus, our Cut algorithm

samples the incoming chirp and applies a lightweight DSP to analyze the captured envelope

characteristics regarding a constant reference envelope which has previously been recorded

during the development of the SNoW Bat system7. Since the reference signal envelope has been

captured at a well-known distance d and ϕ = 0◦, the distance for any captured chirp can be

computed as follows (see Figures 10.3[p227] and 11.3b for identifiers):

1. Sample each incoming chirp into a sufficiently large ring buffer: At the expected chirp

emission time t A
US

:= t A
CAV

+∆SYNC start the ADC and DMA peripherals, and wait for the

capture/compare IRQ to indicate that the chirp has already arrived. Keep sampling for

6Since the applied MSP430 did only allow certain capture/compare voltages like e.g. 1.65 V = 1
2VCC we selected

Vcarrier = 1.44 V experimentally to obtain an adequate value of ∆V= 0.21 V for our Cut algorithm.
7Please note that clipping might cut the signal at the maximum sampling voltage VCC and removes valuable

information which could otherwise be exploited to determine the maximal amplitude and to count back to the

beginning of the chirp.
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11. Ultrasound Distance Measurement: The Cut Algorithm

(a) Signal overview: Chirp tx and rx as seen by a global observer

(b) Signal closeup: The deliberately shaped chirp and its detection via a capture/compare unit

Figure 11.2.:Ultrasound chirp generation (blue, rectangular signal), reception sampling (green, rx cap-

sule), and detection (red, capture/compare)
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another 1.5ms to make sure that the entire chirp has been captured but its beginning has

not yet been overwritten cyclically. Save the timestamp tstop when deactivating the DMA

and the corresponding sample index sstop.

2. Determine the maximum gradient between two peaks of the sampled 40 kHz chirp signal,

and use their average voltage as the so called cut level as illustrated in both Figures 11.3a

and 11.3b. The sample index of the first one of those two peaks will be called sc .

3. Count the number of sampled ultrasound amplitudes above the cut level and remove

the same number of points beginning from the top of the reference envelope leaving the

rightmost untouched point during the ramping as reference point. The sample index of

this point will be called sr . Consequently δs := sc−sr denotes the sample distance between

the two peaks. Note, that considering the maximum gradient instead of the maximum

peak will implicitly solve the clipping problem where the incoming signal voltage exceeds

the ADC sampling range [0 V;VCC] (→ Figure 11.3a).

4. Scale the reference envelope along the y-axis until the reference point voltage (i.e. the

sample sr ) matches the cut level voltage, and shift it along the x-axis tomatch the captured

signal’s maximum gradient (i.e. the sample sc ). The anchor’s absolute local start time of

the chirp consequently computes as

t AChirp = (sm +δs + sstop) · f
−1
DMA+ tstop−∆ramp (11.1)

with sm being the known sample index of the largest amplitude in the reference envelope,

and ∆ramp being the known temporal delay between the beginning and the maximum of

the reference chirp (i.e. the previously determined ramping duration).

5. In order to refine the just computed timestamp we shift the already matched reference

curve by an additional ±1λUS, and check for a proper match at the cut level during the

fading of the chirp (see gray boxes in Figure 11.3). While the initial result (red graph) is

almost perfect for Figure 11.2a, the blue graph in Figure 11.2b yields a better result then

and t A
Chirp

will be adjusted accordingly.

6. Recalling Figure 10.3[p227], the measured distance between the mobile clientm and the

static anchor ai finally computes as

d̃m,ai = vUS ·∆TOF = vUS · (t
A
Chirp− t AUS). (11.2)

While the red graphs in Figure 11.4a show the almost distance and angle independent mea-

surement error ed of our Cut approach in the average case, Figure 11.4b indicates the typical

error distribution histogram and reveals an important fact for the pVoted position estimation

algorithm based on it (→ Chapter 13): Opposed to the capture/compare method where the

measurement error is almost uniformly distributed over the entire imprecision range, the Cut

algorithm limits the error to three significant but quite narrow peaks with a distance of exactly

±1λUS. Since each peak exhibits a normal distribution and a width of about ±0.1λUS they are
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11. Ultrasound Distance Measurement: The Cut Algorithm

clearly separated and the emerging side errors can commonly be identified and removed during

the final position estimation. According to our terminology from Figure 9.6[p216] this equals a

precision of about±0.86mm and an accuracy of either close to 0mmor±8.6mm. While various

long-term tests within the real system revealed that the central error comprises about 60% of

the measurements, the side errors comprise about 40% in total and are a result of imprecise

curve matching during the refinement procedure just described. Finally we also receive a 0.1%

chance for gross errors with ed ≥ 10 cm which result from arbitrarily delayed hardware interrupt

processing8 and the inevitably associated violation of real-time demands; these, however, can

be neglected in practice.

11.3. Summary

In this section we presented a fast, precise, and quite accurate DSP technique for simultaneously

determining the distance between one sensor node (the client) and an arbitrary number of

further nodes (the anchors) based on deliberately shaped ultrasound chirps. In particular

we managed to resolve the angle and distance dependency which frequently leads to severe

problems in similar systems such as [92]. Regarding the design space demands from Section

9.2.3 we achieved to improve the localization performance and scalability (→ LS1, LS5[p218])

by reducing the measurement noise through clearly separating less accurate distances from

more accurate ones, and by reducing the inter-node communication overhead to a single radio

broadcast. The problem of efficiently collecting the distance information will be discussed in

Chapter 12. Regarding the resource efficiency (→ LS2[p218]) we limited the hardware overhead to a

simple ultrasoundmodule on the anchors9, and reduced the CPU andmemory load to an extend

which proved to be adequate for typical sensor nodes – at least in contrast to comparable but

significantly more complex methods like curve fitting through e.g. cross correlation, or spline

interpolation [41]. Safety and security issues (→ LS3[p218]) were intentionally omitted. The next

obvious steps are to reliably and efficiently collect the measured distance information at the

mobile client, and to process the aggregated data for obtaining a precise and accurate position

estimation in a decentralized and autonomous manner.

8Most commonly these delays were caused by the non-interruptible SmartOS kernel mode.
9Note, that, though using RSSI based measurements would have been possible without further hardware, neither

the precision nor accuracy would have been comparably good then. See [259] for details.
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12. Efficient Data Aggregation: The

HashSlot Algorithm

Abstract

The wireless collection of remotely emerging or generated data and infor-

mation at a common sink is a well-known problem in the area of wireless

sensor/actuator network research. The obvious challenge behind this so

called data aggregation process is to reduce the communication cost by rea-

sonably sharing the exclusive radio channel resource among the participating

transmitters to optimize reliability, delay, predictability, throughput, and en-

ergy efficiency of all involved sensor nodes and the overall system. The less

obvious challenge is to also reduce the fusion cost through an adequate traffic

shaping and information limitation. In the special context of decentralized

localization systems reliable many-to-one communication is a central but

hardly addressed aspect: Compared to the position or location estimation it-

self, the involved communication effort and resulting information processing

overhead regarding the just mentioned metrics is often ignored entirely.

We present the novel HashSlot TDMAprotocol and its extensionHashSlot+ for

the wireless but definitely collision-free aggregation of radio packets originat-

ing frommultiple sources (anchors) at a common destination (client) within

a constant and deterministic time. By semantically exploiting both statically

available and dynamically – yet implicitly – emerging information from vari-

ous sources, our approach exhibits the maximum achievable performance

in terms of throughput, traffic volume, packet loss, and energy consumption

for our special use case. Therefore HashSlot needs neither a central intelli-

gence for generating and distributing transmission schedules nor any explicit

coordination between the sensor nodes. Instead it relies on locally available

information for self-organization to preserve a maximum of autonomy for

each anchor. In addition, our approach offers various frequently requested

features like selectable quality of service levels to dynamically limit the re-

turned information to a “useful” amount at runtime without losing its just

mentioned advantages. Thereby, both the spatial position estimation quality

and the speed of the localization process can be adjusted and traded against

fault tolerance and energy consumption.
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12.1. Introduction

In Section 10.1.1 we have already introduced the general op-

eration principles behind our decentralized SNoW Bat indoor

localization system, and identified the four central stages P1 –

P4 (position prediction, distance measurement, data aggregation, and position estimation) as

quite typical within comparable approaches (like e.g. [91]). In Sections 10.2.3 and 10.2.4 we

further discussed the impact of both the software architecture and the wireless communication

on the overall localization performance and the position estimation update frequency1. This

chapter will consequently focus on the demand for efficient measurement data aggregation in

such decentralized approaches where a dedicated node – the self-localizing mobile client in

our case – needs to reliably and quickly collect a sufficient and adequate amount of recently

generated distance information from the infrastructure – represented by the pre-installed static

anchors in our case – to eventually compute a position estimation.

Intense research in the general area of wireless communication schemes has already brought

forth an almost countless number of protocols operating at various layers of the ISO/OSI model:

Though intrinsically standardized, these layers are often reduced or merged for efficiency rea-

sons regarding code, implementation, runtime, and data size overhead. While most of these

protocols are general purpose approaches which strive to fulfill the various demands of many

applications at best effort – occasionally with specific modifications – they do most commonly

not achieve the optimal performance in the particular context. Only few protocols exploit the

individual properties as well as the valuable emerging runtime information to become qual-

ity aware regarding the use case they were integrated in or adapted for2. Even worse, many

protocols (e.g. token passing with fixed order) enforce their own philosophy, and require the

application to adapt to their rules and laws. In the spirit of the already demanded aim for

compositional software design from Section 1.2.1 this strategy might seem to be quite advis-

able at the first glance, since a multitude of different requirements must be fulfilled if initially

independent – but nevertheless concurrently running(!) – software components need to be

integrated on the same hardware platform3. Examples are mobile devices like e.g. the recently

upcoming Smartphones which introduced far-reaching capabilities along with intense end-user

interaction and customization with hard to predict characteristics [47]. However, for the special

case of (autonomous and autarkic) wireless sensor nodes with limited energy budgets and

considerable real-time demands, a second glance reveals various advantages of application-

tailored communication protocols. Except for linking sensor nodes with other networks (→ e.g.

[210]), where concrete protocols are often stipulated for compatibility reasons and to comply to

industrial standards, specific solutions should not be underestimated since intensely exploiting

the specific knowledge about the application’s individual properties and the emerging runtime

information will commonly help to achieve another essential goal from Section 1.2.1: Quality

1In fact, all systems from Table 9.1[p222] focus on hardware and algorithms for position estimation and the tracking

of mobile objects, but hardly discuss wireless communication regarding the concerns mentioned previously.
2Apart it saves considerable efforts to apply well-established mechanisms instead of inventing new ones.
3Related resource management problems and solution strategies have already been discussed thoroughly in Part II

of this work.
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awareness through the semantic use of (dynamic) data and information.

For the special case of sensor data fusion in centralized indoor localization systems we thus

developed the context-aware HashSlot data aggregation protocol with the goal to collect an

adequate amount of information (this is not necessarily themaximumpossible amount, though!)

from aminimum of transmitted data. Though highly specialized, our approach removes almost

all overhead in terms of time and energy consumption to the achievable minimum, and allows

us to reduce both the communication cost and the fusion cost (as also demanded for e.g. routing

algorithms in [189]).

12.2. Motivation and Requirements

WSN installations commonly consist of a more or less large number of sensor nodes, and,

from time to time, a rather small but variable subset of nodes needs to transmit information

to a common destination. Since – in the context of localization systems – the precision of the

final position estimation does not only depend on the precision and accuracy but also on the

amount and timeliness of acquired spatial measurements, it is important to guarantee the

almost immediate availability of a certain minimum of information at a common sink.

Along with the accomplishment of various temporal and spatial measurements, and the

position estimation itself, the sensor data aggregation can thus be considered as an equally

relevant task in localization systems, and therefore deserves special attention4. While the main

software/network co-design aspects of ourHashSlot approach can already be found summarized

in Figure 12.2, the accompanying challenges will be considered in this Section, and eventually

lead to the definition of a design space for appropriate solution techniques and algorithms.

12.2.1. Existing Problems regarding the Communication Cost

High radio load through quasi-simultaneous event detection. Since distributed sensor

networks are typically used to monitor environmental conditions and to instantly report ob-

served changes, it is quite common that spatially distributed events will be detected almost

simultaneously by different sensor nodes. Examples can be found in seismic surveillance,

weather observation, and material surveillance systems [155]. For event-driven distributed

systems in particular the locally derived information (which is associated with each relevant

event) will also become available almost simultaneously, and the impending notification will

lead to several timing and transmission related problems on the shared communication channel.

In the context of a many-to-one data aggregation process transmitting on such a shared channel

obviously needs sophisticated coordination to reduce (avoid) data loss through packet collision,

i.e. radio interference, and to increase (maximize) the data throughput5.

4Note that this chapter intentionally deals with data aggregationwhile data fusionwill be merely considered but

mainly addressed in the context of the position estimation algorithm pVoted in Chapter 13.
5According to the resource classification framework from Figure 3.2[p37] the radio channel in particular takes

considerable physical (i.e. electromagnetic) influence on the transducer’s surrounding, and thus is a dynamically

as well as temporarily shared exclusive resource. This is a quite challenging problem since there is no central

intelligence – comparable to e.g. the resource manager within an operating system kernel – which might grant

access rights reliably or even protect the resource from unauthorized use.
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For SNoW Bat the delay between the first and the last anchor’s chirp detection – also denoted

as the time difference of arrival ∆TDoA – depends on the current distance d of the client from

the anchor plane and the US emission angle ϕ. According to Figure 10.5b[p231] it is thus bounded

through the length of the interval I∆TOF
:=

[

d
vUS

, d
cosϕ ·vUS

]

after the chirp emission and results

in ∆TDoA,max :=
d(1−cosϕ)
vUS · cosϕ

. With the specifications from the SNoW Bat system and an assumed

vUS = 343m/s we receive I∆TOF
≈ [20.2ms,23.3ms] for the largest distance d = dsup ≈ 6.93m,

and ∆TDoA,max ≈ 3.1ms; this time difference is notably shorter than the transmission and pro-

cessing time for a single DV. Figure 12.1 shows the TDoA distribution for various ceiling heights.

Information loss through sporadic radio unavailability. Even if we manage to solve the

just described problem, the sole achievement of collision-freedom is not sufficient by far since

the receiving client requires some additional time to (pre-)process an incoming packet, i.e. to

read the radio transceiver’s RX buffer and to re-enter RX mode. Despite of our event-driven

software design, sporadic resource competition (e.g. for the interconnection bus between the

MCU and the radio device) might further delay or extend the packet handling, and will lead to

variable periods of radio inattention then: Though invisible for the anchors, this phenomenon

will cause additional information loss at the intended data sink since any subsequent packet

won’t be received even if it was scheduled properly to not collide. In case of SNoW Bat this

preprocessing (mainly accomplished through SmartNet from Section 8.1) takes about 2.7ms

(measured), and we consequently have to avoid a shorter inter-packet spacing carefully.

Energy, memory, and performance waste through greedy packet reception. Receiving

information wirelessly is a power consuming issue (→ Table 2.2[p27]) and should thus be reduced

to a minimumwhenever possible. In the context of intentionally triggered measurements with

subsequent data collection, most approaches operate greedily, and try to receive and buffer

every single reply packet. While this can rapidly lead to a significant energy andmemory overkill

if more packets then necessary are returned – a fact which won’t become obvious before the

end of the data fusion process(!) –, they also don’t know when to stop listening since there is

commonly no chance to reliably identify the last packet to come – there might still be another

one pending. A solution would be to process each packet progressively, i.e. immediately after

reception, and to determine if more information is required at all. Otherwise the reception can

simply be stopped. At the same time it would be desirable to obtain a priori information for

precisely predicting the total reply stage duration.

Data aggregation interference through concurrently operating clients. The last problem

we want to consider explicitly refers to the protocol scalability with regard to the number of

coexisting clients. As each client might potentially demand for an individually high localization

frequency, the data aggregation stages might often overlap, and an appropriate interleaving

strategy must be found. Once more, consulting a central master or using a (weighted) round

robin scheme would be a solution. However, though this would keep up the data aggregation

time itself, it would still share the system time among the clients and introduce additional

254



12.2. Motivation and Requirements

   -3000
   -2000

   -1000
       0

    1000
    2000

    3000
∆x [mm]    -3000

   -2000
   -1000

       0
    1000

    2000

    3000

∆y [mm]

0.0

1.0

2.0

3.0

4.0

T
D

o
A

 [
m

s]

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

client

(a) h = 2.00m

   -3000
   -2000

   -1000
       0

    1000
    2000

    3000
∆x [mm]    -3000

   -2000
   -1000

       0
    1000

    2000

    3000

∆y [mm]

0.0

1.0

2.0

3.0

4.0

T
D

o
A

 [
m

s]

 0  0.5  1  1.5  2  2.5  3  3.5

client

(b) h = 6.93m

Figure 12.1.: TDoA of the US chirp between the closest anchor (directly above the mobile node) and

anchors at arbitrary positions (∆x,∆y,h) for various ceiling heights h and limited to ϕ≤ 30◦

communication effort6. Beyond it would destroy our demand for a strictly self-organizing

scheme, and introduce a single source of failure. Thus, another solution must consequently be

found.

12.2.2. Feature Requests regarding the Data Fusion Cost

Optimizing the data fusion cost through a reasonable transmission order. The con-

sidered problems so far did mainly relate to the communication cost within the network of

distributed systems. From the perspective of the individual local embedded system, which is

finally responsible for the data fusion process, it is highly desirable to obtain this data ordered

by decreasing information value. While it is almost impossible for each individual data source to

evaluate its own quality without knowing the data from other sources in advance, this would

nevertheless be a true benefit for most progressive (sensor) data fusion algorithms – at least for

those, which, in the context of quality awareness, continuously monitor the changing outcome

of their iteratively emerging results in order to stop as soon as either an evaluation function did

reach a certain threshold or as a timeout has been reached.

Thus, an improvement for any data aggregation protocol would be to reorder the transmis-

sions in a way to increase the probability for obtaining the maximal utility for the data fusion

algorithm, i.e. to receive the most relevant (or “interesting”) data first. The problem however is

to accomplish this featurewithout additional and unreasonable inter-communication cost7 for

determining (from an e.g. distributed selection algorithm) which sensor node may send first.

Yet another reason for us to adapt the protocol to the application (rather than vice versa).

6Depending on the spatial extend of the localization system installation, evenmulti-hop communication might

be required then (involving challenges like the hidden/exposed node problems). Fortunately, this is a problem

which we do not need to consider for SNoW Bat.
7This would lead to increasing time and energy demands which we just intended to reduce.

255



12. Efficient Data Aggregation: The HashSlot Algorithm

Reasonably limiting a surplus of information. Being able to efficiently collect information

even from a large number of sources is desirable indeed, however, aggregating too much infor-

mation can also be inadequate – or at least useless – as soon as the data fusion algorithm runs

into saturation and the result won’t improve considerably from even more information. In order

to reduce unnecessarily high traffic volumes, which would jam the radio channel while wasting

time and energy for transmission and processing, it would be wise to a priori limit the number

of transmissions. Comparable to the last point, the question will be how to forecast the amount

of required or desired information, and how to select an adequate subset of sensors from those

which have the relevant information available – again, an implicit selection would be preferable

considering the additional effort for an explicit selection.

12.2.3. Feature Requests regarding the Network Maintenance

Reliably detecting and identifying defective nodes. Finding an optimal number and

placement of sensor nodes to establish a useful infrastructure for a concrete application has

already been indicated as a relevant and demanding optimization problem in Section 10.2.2.

Even if a reasonable deployment was finally conducted to ensure a sufficient service coverage,

the intentionally cheap hardware (→ Chapter 2) and the sometimes hazardous environmental

conditions may lead to quite high node failure rates at runtime. Then, the network reliability

and infrastructure maintenance would certainly benefit from communication protocols which

do not only coordinate the actual data transmissions, but which can also detect and identify

those nodes which do not transmit any more. Since it is commonly hard to determine (e.g. in

a distributed manner) which node should participate in a certain case, this feature demands

for a flexible topology control and situation awareness. Again, this is especially true in highly

dynamic environments with partial node participation during a data aggregation stage.

12.2.4. The Protocol Design Space

Having introduced the most relevant problems and feature requests regarding the data aggrega-

tion in event-driven and distributed monitoring systems, evenmore specific demands for the

special use case of decentralized (indoor) localization systems remain to be discussed in Section

12.68. Nevertheless, we will next present the concrete protocol design space with respect to the

WSAN optimization problem fromDefinition I.5
[p7] and the general design space from Section

6.2.29. The points marked with ■ (ä) are (not) solved by HashSlot or HashSlot+:

HS1 RUNTIME PERFORMANCE. Minimize the data aggregation delay and optimize its duration:

a) ■ Adjust the number of transmissions to

◦ avoid more traffic than necessary

◦ allow as much traffic as required

8These comprise traffic shaping and reasonable information selection as well as the reliable detection of defective

nodes.
9If you feel like having a déjà vu when reading these lines, then this is partially true! In fact, the design space we have

been using for the resource and memory managers in Chapters 6 and 7 comprised the same “main dimensions”.
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b) ■ Adjust the inter-transmission spacing to

◦ minimize temporal overhead

◦ reduce the impact of temporal radio unavailability at the receiver

◦ allow for progressive information processing

c) ■ Allow the first transmission to take place with minimal delay after the event detec-

tion or information emergence

HS2 RESOURCE EFFICIENCY. Maximize information exchange at minimum cost:

a) ■ Local: Reduce energy consumption through unnecessary radio activation

b) ■ Global: Reduce administrative overhead for the channel access management

c) ■Network: Avoid the need for retransmission and RTS/CTS strategies

HS3 SAFETY AND SECURITY. Maximize reliability and minimize susceptibility:

a) ■ Avoid packet loss, e.g. through collisions

b) ■ Provide a means to identify (or even locate) defective source nodes

c) ä Ensure data integrity, and prevent spoofing as well as unauthorized information

sniffing

HS4 USABILITY. Provide a means to achieve runtime quality awareness:

a) ■ Support the deterministically adjustable duration of the data aggregation process

b) ■ Reflect changing system demands through dynamically adjustable information

density

c) ■Maximize information value and data utility through a reasonable transmission

order

HS5 SCALABILITY. Maximize compositionality:

a) ■ Stay independent from the overall number of nodes

b) ■ Automatically compensate for node failures, and avoid unused channel reserva-

tions

c) ä Allow for coexisting radio protocols (on each node and within the network)

12.3. Related Work – Wireless Data Aggregation Protocols

The distributed character of wireless sensor/actuator networks and the associated problems

concerning the radio communication led to the development of a myriad of data aggregation

protocols regarding the just mentioned demands and feature requests from Section 12.2. Before

we present the details about our novel HashSlot protocol, we will thus briefly outline some

state of the art data aggregation approaches for coordinating numerous concurrently transmit-

ting source nodes in event-drivenWSAN applications. For instance, [284] proposes a generic

approach which takes the temporal correlation in the sensor data into account: A prediction

algorithm is executed on both the sources and the common sink, and a radio packet will only be

sent if the source detects a significant derivation between the measured and the predicted value;
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otherwise, the sink will implicitly use the predicted value. While this approach aims on reducing

the network traffic and payload size in general, neither the actual medium access scheme nor

the routing from the sources to the sink is discussed. Regarding these issues, [88] presents

classifications and design challenges. Surveys on data collection algorithms for wireless sensor

networks can be found in e.g. [177, 179, 295]. MAC protocols with special focus on mission

critical WSN applications are discussed in [272].

The considered protocols can in general be divided intomulti-hop and single-hop approaches

with both proactive and reactive focus: Single-hop protocols target on providing a reliable MAC

scheme to avoid radio interference and data loss within the communication radius of each

directly involved node. In contrast, multi-hop protocols strive to extend this one-hop communi-

cation range through robust routing schemes which would allow to forward information over

multiple intermediate nodes. While hybrid approaches can commonly be designed to better

reflect the specific needs of the actual application, reliable single-hop MAC protocols are always

required first when designing robust multi-hop routing protocols.

Multi-hop (routing) protocols. In the context of multi-hop protocols, the term proactive

refers to the establishment of fixed communication paths between the sources and the des-

tination [254]. Depending on the system dynamics and the link reliability, these fixed paths

can either be established just once during the initiation stage of the distributed system, or

periodically at the beginning of so called rounds. Reactive multi-hop protocols establish a com-

munication path on-demand [137], i.e. for each single data aggregation, and are consequently

more suitable for dynamic topologies or unstable links. In any case, however, most routing

protocols try to establish a hierarchical topology where so called clusters of nodes are managed

by dedicated cluster-heads which themselves form clusters, and so on. Depending on the just

partial and dynamic node participation in most data aggregation scenarios, the actual cluster

generation can thereby aim on e.g. balancing the fairness [101], ensuring the reliability [188],

reflecting selective queries [162], or considering energy demands [149, 205, 323]. A prominent

example for a purely proactive approach and round-based clustering is LEACH [123]: Meant

for continuous environmental observations, it creates static routes for strictly periodical trans-

missions, and assumes that each node has always some data to send. Besides, TEEN [195] and

EERP [286] refine the LEACH approach by also building the routing paths proactively, but using

them reactively on-demand just in case a measured value exceeds a certain application-specific

threshold.

Single-hop (MAC) protocols. In the context of single-hop protocols, the term proactive

refers to regularly transmitting nodes (e.g. for the periodic data aggregation in continuous moni-

toring systems), and the term reactive applies to more event-driven scenarios (e.g. on-demand

data aggregation in case of sporadic events). A two-class classification can be found in e.g.

[316]: Proactive MAC protocols often apply (dynamic) time schedules (TDMA) to coordinate

the channel access over long periods either autonomously as in e.g. [207], or through a master

as in e.g. [58]. Reactive MAC protocols like e.g. Sift [143], Crankshaft [119], or B-MAC [228]

often apply contention based techniques (CSMA) to check for a currently free radio channel
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just when required, and rely on certain back-off strategies to potentially delay the transmis-

sions. While the frequent clear channel assessment (CCA) consumes a significant amount of

energy, back-off strategies are also hard to configure for achieving high reliability at low delay. In

fact, collision-freedom can commonly not be guaranteed here due to the already mentioned

switching delay (and temporary radio unavailability) between CCA and TXmode. “Optimized

for reliability in scenarios with high node density and highly correlated event-driven data traffic”,

BPS-MAC (Back-off Preamble Sequential MAC) [156] overcomes this problem by introducing

a preamble-based contention resolution: Each node sends a preamble of randomized length

first, immediately switches to CCA mode thereafter, and only sends the actual payload if no

other preamble is received then. While this method needs no central coordinator and supports

dynamic topologies, it might require many retries for nodes with short preambles, and it is

non-deterministic regarding the total duration of the data aggregation. In contrast, BitMAC [244]

exploits a static star topology for generating a dynamic schedule based on periodic beacon pack-

ets: Each parent node coordinates the TDMA transmission of its children. Using parent specific

radio channels to also avoid collisions in multi-hop networks, these children concurrently trans-

mit one-bit allocation requests using OOK (on-off keying) modulation. Perfectly synchronized,

these packets contain n well-assigned bits for n children, and intentionally interfere to result in

a bitwise “or” on the radio channel. In turn the parent returns the allocation request through a

broadcast, and thereby implicitly negotiates the schedule for the immediately following data

transmission. Though collision-free, the number of nodes per parent must be known a priori,

and dynamic topologies with mobile nodes are hard to support. The same is true for another

integrative approach (MAC, topology control, and routing): Designed for reducing idle listening

and overhearing in periodic data collection scenarios, Dozer [58] uses a tree-based network

structure of arbitrary depth (the so called gathering tree) where parents schedule precise TDMA

rendezvous times to their children.

12.3.1. Potential Candidates for SNoW Bat

Despite of the availability of the just presented wireless single-hopMAC protocols, these show

significant deficits regarding our demands from Section 12.2. While each of them already

addresses the problemof handling radio peak load in case of quasi-simultaneous event detection

and radio transmissions, only BitMAC inherently supports concurrently operating data sinks.

Avoiding information loss in case of sporadic radio unavailability would already demand for

some adaptations to BitMAC, Dozer, and BPS-MAC, and detecting or even identifying defective

node would only be possible in case the total number and ID of the initially available nodes

is known. The demand for avoiding the need for greedy packet reception, for optimizing the

transmission order, and for limiting a surplus of information is not considered at all.

Regarding the decentralized position estimation scenario in SNoW Bat, the most severe

problem, however, is that the data sinks (i.e. the clients) themselves are mobile, and that the

source node participation (i.e. the subset of anchors within the ultrasound coverage zone) during

the data aggregation stage also depends on each client’s individual position. Thus, generating a

static TDMA schedule is not sufficiently flexible to reflect the actual anchor subset, and actively

negotiating a new schedule through explicit node interaction for each data aggregation would
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be too time-consuming. Thus, we omitted the usage of these protocols within SNoW Bat, but

implemented five simple but widely accepted general purpose MAC protocols for comparison

within our test beds. While two of them rely on synchronized TDMA time slots, just like HashSlot,

the others are free to transmit arbitrarily, and only depend on the timestamp t A
Chirp

when the

US chirp has been detected (→ Figure 10.3[p227]). Thoughmore sophisticated approaches might

achieve better results, they would probably still perform somewhere between our selection

of alternatives and HashSlot since the latter will prove to achieve the optimum in terms of

throughput, traffic volume, packet loss, and energy consumption for our special use case.

For each one of our selected methods we’ll also disclose the specific timeout ∆TO we applied,

and derive a lower as well as an upper bound for the time∆RX the client and each replying anchor

will stay in radio receive mode. In contrast, the transmission time ∆TX is fixed for the anchors as

each DV was sent exactly once, and neither acknowledgments nor retransmissions were used.

Consequently, we set ∆TX = 0 for the clients. The minimal time required for performing the clear

channel assessment (CCA) is denoted as tCCA
DV

. Recall, that the reply stage in SNoW Bat always

uses a dedicated and client specific radio channel for each mobile node. Thus, no interference

with any other radio communication – e.g. from concurrently operating clients – needs to be

expected as long as one dedicated return channel is available per client.

12.3.2. Non-slotted Methods

As non-slotted protocols don’t need to synchronize to any special clock, but only to other nodes

or the observed protocol traffic (if at all), their transmission might start in general as soon as the

distance information is available. Additional delays between the packets will thus be required for

collision avoidance, and can be dimensioned dynamically through various back-off strategies.

CSMA/CA: In carrier sense multiple access mode with collision avoidance (CSMA/CA), each

anchor initially tries to start its DV transmission with minimal delay as soon as the distance

measurement has completed, but performs the CCA right before actually entering tx mode to

detect if the channel is currently busy. To avoid taking the risk of a collision and consequently

corrupted data or lost information, it defers the transmission by a randomly chosen time and

retries. Another option is to continuously perform the carrier sense (CS) until the channel

becomes free, and to start the transmission with an additional (random) delay to avoid interfer-

ence with other waiting nodes using the same strategy. Since most modern radio transceivers

offer convenient CS/CCA hardware support, this protocol is fairly easy to implement10. Yet, it

unfortunately involves several serious problems: First, collisions cannot be avoided entirely as

the transition from CS/CCA to tx mode takes a small but certainly not negligible time in which

the channel could get occupied unnoticed. Explicit considerations about this problem and

a counteracting MAC scheme can be found in [156]; however, the solution presented there is

non-deterministic and introduces significant delays which would jeopardize our goal to achieve

10While the dimensioning of the back-off delays is not trivial in general, the channel access depends on the CCA

duration, and CSMA schemes will profit from future hardware improvements. In case of the CC1100 [67] radio

transceiver configuration we use for the SNoW5 nodes the CCA takes about 120µs.
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a high localization frequency. In the special case of SNoW Bat this effect is quite likely to be

observed, as we have already discussed in Section 12.2.1. Second, the so called hidden and

exposed node problems11 [164, 258] are another issue in CSMA/CA based networks: Using

RTS/CTS mechanisms or acknowledgments to safeguard the transmission would not only slow

down the data aggregation, but it would generate even more traffic leading to an increased

packet collision probability and energy consumption.

Brute Force: In brute force mode each anchor starts its DV transmission as soon as the

distance measurement has completed and without performing any CCA first. This mode is for

testing purposes only. While a quite short timeout ∆TO can obviously be chosen, it will turn out

as unreliable, since we have already discussed that the time difference of arrival (TDoA) of the

chirp at the anchors is commonly less than the transmission time ∆SLOT for a single DV. This fact

will inevitably cause radio collisions, and no information at all should finally arrive at the client.

Random Start + CSMA/CA: For this approach the mobile client integrates the number

of requested DVs g into the CAV. In turn each anchor selects a random transmission delay

∆DV ∈ [0; (γ ·g−1) ·∆SLOT] with γ ∈◆+\{0} being a spreading factor which can be tuned to reduce

the probability for collisions while stretching the reply stage duration and the applied timeout.

For further collision avoidance each sender performs a CCA first, and delays the transmission if

necessary.

Summary. Considering our protocol design space from Section 12.2 the approaches so far can

not guarantee the successful transmission of a sufficient number of DVs. They also do not obey to

synchronized transmission slots, and thus the mobile node must return to rx mode immediately

after each received packet until the desired amount of information has been received or the

timeout is reached. Another serious point to consider is, that valid packets might arrive in

quick succession at the client, i.e. with almost no inter-packet spacing, and before the rx mode

has been reactivated after the previous one. For SNoW Bat in particular the already discussed

information loss through sporadic radio unavailability will also complicate the application of

progressive position estimation algorithms as described in Chapter 13.

12.3.3. Slotted Methods

In contrast to the non-slotted protocols, the slotted approaches need to synchronize to de-

fined slot boundaries, and thus require a well-defined reference time along with a precise time

management. For SNoW Bat we can rely once more on the SmartOS timing concept and on

the synchronized timestamp t A
CAV

which was obtained previously through the chirp allocation

vector, and which has already been used as a reference for the distance measurement in Chapter

11. According to Figure 10.3[p227], we’ll start the data aggregation stage P3 with the first return

11Hidden node problem: While two senders cannot hear each other – and thus cannot rely on CCA –, their packets

interfere at a common destination node which is located within the transmission range of both source nodes.

Exposed node problem: While one sender detects a busy channel during CCA and consequently delays itself, the

transmission would yet be successful since its intended receiver is not within range of the detected signal.
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∆TO ∆RX (anchor) ∆RX (client)

CSMA/CA ∆TOF,max+γ ·g ·∆SLOT

[

∆
CCA
DV

;∆TO

] [

g · tHF
DV

;∆TO

]

Random Start + CSMA/CA ∆TOF,max+γ ·g ·∆SLOT

[

tCCA;∆TO

] [

g · tHF
DV

;∆TO

]

Brute Force ∆TOF,max+ tHF
DV

0 ∆TO

Random Slot γ ·g ·∆SLOT 0
[

g · tCCA
DV

;γ ·g · tHF
DV

]

NodeID |A| ·∆SLOT 0
[

g · tHF
DV

; (|A|− g ) · tCCA
DV

+ g · tHF
DV

]

HashSlot
⌈p

g
⌉2

·∆SLOT 0
⌈p

g
⌉2

· tDV

Table 12.1.: Comparison of various radio protocols for data aggregation in stage P3

slot at t A
DA

:= t A
CAV

+∆SYNC+∆TOF,max+∆DSP which should be identical for the mobile nodem

and each replying anchor in ai ∈ Am . The oscilloscope snapshots in Figures 12.11 and 12.12
[p288]

already visualize this synchronicity.

Random Slot: Just like for the non-slotted Random Start method, the mobile node includes

the number of desired DVs g into the CAV. This time each anchor ai ∈ ARm selects a random slot

s(ai ) ∈ [0;γ ·g −1] and transmits the DV at time t A
DV,ai

:= t A
DA

+ s(ai ) ·∆SLOT. Like for random start,

γ ∈◆+\{0} can be tuned to provide more slots and to reduce the probability for collisions while

expanding the timeout ∆TO along with the data aggregation stage duration d3.

NodeID: As node IDs in sensor networks are commonly available and unique, each anchor

ai ∈ ARm can easily and reliably obtain a definitely collision-free return slot by simply using its ID

ID(ai ) as slot number. This way, the DV return time computes as t A
DV,ai

:= t A
DA

+ ID(ai ) ·∆SLOT. In

case we have strictly consecutive nodes IDs, thismethod can be organized to be comparable with

token passing schemes (like e.g. [91]) where a dedicated node starts to transmit, and subsequent

nodes add their information in a well-defined order12, or to cable based installations (like e.g.

[267] ) where a central instance successively queries each node for its most recent distance

measurements. Nevertheless it might take up to IDmax− IDmin ≥ |A| slots, and one must always

consider that the number of unused slots increases with the system size since |ARm |≪ |A|will
commonly hold and result in bad protocol scalability.

Summary. Considering our protocol design space from Section 12.2 an important advantage

of slotted methods is the option to support progressive position estimation by selecting a

sufficiently large inter-packet spacing through appropriate slot lengths. Additionally, slotted

approaches allow the receiver to save valuable energy by activating the rx mode only for a short

time tCCA
DV

at the beginning of each slot13. Nevertheless it is an important optimization challenge

to select an adequate number of slots and to keep the number of unused slots low.

12Note the emerging problem of token loss caused by node failures.
13Recall that in our particular case the receiver is an autarkically operating sensor node which commonly strives to

save energy.
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Figure 12.2.: The HashSlot software/network co-design: Long-term goals and how to achieve them

through a reasonable and deterministic use of the shared radio channel

12.4. The HashSlot Protocol

The transmission of a sufficient number of distance vectors (DV) from the anchors to the mobile

node is essential for a reliable and fault-tolerant location or position estimation. Yet, the required

timemust be kept short to achieve a high localization frequency, to save local as well as global

resources, and to collaboratively avoid jamming on the shared radio channel. Though SNoW

Bat was initially based on a simple CSMA/CA scheme, the performance loss during the data

aggregation became unacceptable compared to the other stages, and we finally decided to

design an application-tailored radio protocol according to the demands from Section 12.2:

Except for HS3c and HS5c[p257], HashSlot addresses all design aspects and fulfills most of them.

The underlying software/network co-design aspects are summarized in Figure 12.2.

This section addresses the basic computation of unique and tightly packed slot numbers for

anchors ai ∈ Am ⊆ A within a client’s m moving US coverage zone Zm as depicted in Figure

10.2[p226]. We will also show how situation specific QoS demands and varying environmental

conditions can be considered algorithmically to achieve additional improvements. For fine-

grained runtime adjustments further considerations will allow the a priori calculation of the

network load, the overall data aggregation time, and the energy requirements.

Classification and feature overview. HashSlot is a single-hop data aggregation MAC proto-

col which semantically exploits some application-specific knowledge about the environment

and the event locality principle (which can be observed in many event-drivenWSN scenarios)

to dynamically generate collision-free TDMA transmission schedules: For SNoW Bat it allows

the quasi-optimal usage of the wireless communication medium regarding throughput, en-

ergy efficiency, reliability, and predictability14. Well aware of the precondition that anchors are

mounted along a previously designed pattern with well-defined shape (→ Section 10.2.2), the

slot calculation employs a mathematical hash function and draws advantage from the fact that

only anchors within a common and contiguous area – namely the ultrasound coverage zone Z –

will attempt to transmit their just generated information towards a common destination.

14ThoughHashSlot can also be used for wired data aggregation (andwhere it could replace e.g. CSMA/CD approaches

or round robin querying), we focus on wireless communication only.
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The key behind the HashSlot algorithm is to let the entirely independently operating anchors

combine the anyway available knowledge about their own location within the anchor grid as

well as the most recent position estimation (if available) of the client they currently serve, to

autonomously generate a definitely collision-free transmission slot without any further com-

munication with other nodes or a central coordinator. This autonomy will in particular also

guarantee the protocol’s scalability regarding the number of nodes; in fact its performance is

completely independent from the network size. The additional knowledge about the installa-

tion’s ultrasound characteristics even allows to pack these slots tightly – i.e. in direct succession

–, and to avoid undesired idle phases – so called vacant slots – on the communication channel.

Yet, intentional and dynamically scalable delays between the transmissions make HashSlot

particularly suitable for progressive information processing. Regarding the application’s qual-

ity awareness and the clients’ self-evaluation, our adaptive scheme also allows each client to

autonomously and dynamically adjust the number of replying anchors for each localization

process while preserving the just mentioned properties: Right after receiving a CAV, and based

on the information included therein, each anchor determines algorithmically if it is requested

to participate in the localization process, and otherwise omits the entire distance measurement

immediately to quickly become re-available for other concurrently operation clients. It is worth-

while to note that the clients will never select certain anchors explicitly; instead they will just

quantify the number of required DVs within the CAV – e.g. to trade the reply stage duration

against the amount of information – without knowing which anchors will finally respond to this

request. A reasonable DV transmission order will be generated automatically.

In order to react on node failures and other imponderabilities which might lead to vacant

slots – for which the protocol is not reliable – the HashSlot+ extension detects emerging and

unforeseen dead times with minimal and mainly hardware dependent delay, and allows the

remaining anchors to start their transmission early, but still strictly ordered. Though this feature

requires the anchors to perform some kind of CCA at the beginning of each slot, additional

supporting mechanisms like RTS/CTS or acknowledgments will never be required at all: Apart

from the CAV broadcast the directed response communication will remain strictly unidirectional.

The last feature to consider at this point addresses the systemmaintenance in general: As the

slot order computation can also be inverted by e.g. the client or a supervising systemmonitor to

unambiguously obtain the location of the corresponding anchor, this property can finally be

used to identify defective, faulty, or unreliable devices for e.g. recalibration, exchange, or repair.

12.4.1. Slot Calculation

The general idea. With respect to the often expected large scale of many wireless sensor

networks, HashSlot is a self-organizing data aggregation approach in two regards: From the

clients’ perspective it allows to select and limit the amount of returned data and information

implicitly, i.e. without explicit source selection but with respect to their dynamically varying

requirements. From the anchors’ perspective it allows to efficiently share the exclusive radio

channel, i.e. without explicit coordination (and associated communication). The common goal

of both intentions is to improve the quality of the subsequent data fusion process – i.e. the

position estimation – which does not only depend on the precision and accuracy of the acquired
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measurement results, but also on the amount, utility, and up-to-dateness of the contained

data15 – i.e. the information. To be successful the ability for self-organization must obviously be

based on some specific information originating from both the clients and the anchors. Starting

with the request for a position estimation (e.g. triggered by an arbitrary event and issued by

the client’s software), each clientm ∈M embeds its current demands along with some timing

specifications into the query for measurement results16.

Received by an anchor ai ∈ Am the client’s information ICm is enriched with locally available

information I A
i
and used as input for a hash function

H : I Ai × ICm 7→ S ⊂◆+
0 . (12.1)

As the resulting hash value si ∈ S will finally be used as a TDMA slot number s(ai ) to specify

the sequence in which the transmissions will take place, it is highly desirable to obtain tightly

packed values within a well-defined andminimal range. Regarding the number of requested DVs

g , |S| = g would be optimal. On the other hand,H must also be designed to always generate

pairwise different values si , s j ∈ S (si 6= s j ) for any two different anchors ai ,a j ∈ Am (ai 6= a j ).

Since the CAV is simply broadcasted and the client cannot know which anchors will finally

be involved in the measurement process, ICm is always the same for each anchor. Nevertheless

these anchors are not allowed to coordinate or communicate among each other (→HS2b[p257]),

and thus the key to success must obviously be embedded in each anchor’s local information

I A
i
: Though initially fixed, some situation specific information must be obtained through the

semantic use of statically available and dynamically observed knowledge to enrich I A
i
and to

reflect the high system dynamics which inevitably results from the clients mobility.

Realization. Though we previously identified the almost simultaneous event detection in

Section 12.2.1 as one of the most critical problems for many event-triggered WSN surveillance

systems, we do exploit this very locality principle for our special use case by correlating the

◦ static position

(i.e. the row and column index in the anchor grid, static knowledge after deployment)

◦ of each involved anchor

(i.e. the ones which received the chirp, implicit pre-selection through the US characteristics)

to the

◦ estimated spatial extent of the trigger event

(i.e. the size of the US coverage zone, semantically derived by the anchors)

◦ and the client’s QoS demands

(i.e. the total number g of requested DVs, explicitly adjusted by the client).

15Note that the amount and utility of information is not necessarily the same: In the case of many localization

algorithms even an arbitrary number if DVs is of no use if they originate from anchors at linear dependent

positions (→ Section 12.6 and 13.3).
16While this query could be transmitted as a separate radio packet we include it WLOG into the CAV from Listing 10.1

as this packet will be broadcasted anyway for synchronization purposes during the stage P2.
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The naïve method. In Eq. (10.1) we calculated an upper bound for the grid constant L

depending on the minimal distance dmin of the client from the anchor plane to guarantee that

any circular US coverage zone Z with minimal radius rmin always includes at least four anchors

for the distance measurement. As visualized in Figure 12.3 it also becomes apparent, that with

increasing distance d ∈ [dmin,dmax] a minimum squareQ around Z always covers n ∈◆ nodes

aligned in c× c grid rows and columns:

4≤ n ≤





⌊

2·rmax

L

⌋

+1





2

=: nmax 2≤ c ≤





⌊

2·rmax

L

⌋

+1



= cmax =: Γ (12.2)

We will call Γ := cmax the standard grid module, and initially reserve nmax transmission slots for

returning the absolute maximum number of nmax = Γ
2 of DVs to be expected.

Most important however, with Eq. (10.1) both Γ≥ 3 and Γ ·L > 2·rmax always hold, and even

the largest Z possible, i.e. Zmax with radius rmax, will always fit into a square of nmax = Γ×Γ

anchors – independent from its overlay position. See the example in Figure 12.3a for Γ= 6 and

nmax = 62 = 36.

The next step is to assign the reserved return slots to the involved anchors Am depending on

their (geometric) grid position17. Considering the fact that the z-coordinate is almost constant

for all anchors in the anchor plane, an arbitrary anchor ai ∈ Am at absolute world coordinates

Pai (x|y |z) resides in columnCx and rowCy within the grid (→ Figure 12.4):

Cx :=

Ì
Ì
Ì
Ê
x+ L

2

L

Í
Í
Í
Ë Cy :=

Ì
Ì
Ì
Ê
y + L

2

L

Í
Í
Í
Ë (12.3)

From an algorithmic point of view, and as an important advantage for the infrastructure

deployment, each anchor may thus safely be placed with an imprecision of about ±L
2
in x and

y direction around its intended exact grid point. Once computed, the cell index (Cx ,Cy ) stays

unique and constant for each anchor, and we can compute the associated hash values Hx and

Hy by using the standard grid module Γ:

Hx :=Cx mod Γ Hy :=Cy mod Γ (12.4)

The last step is to assign an exclusive return slot s(ai ) ∈ [0;nmax−1] to the anchor ai :

s(ai )=H (I Ai ) :=Hy ·Γ+Hx (12.5)

According to Figure 10.3[p227], the resulting maximum amount of time tnmax
which must finally

be reserved for aggregating all DVs at the client bounds stage P3 and is known a priori (through

dmax and rmax):

d3 ≤ tnmax
:= nmax ·∆SLOT. (12.6)

While the naïve Eq. (12.5) does obviously not depend on any information ICm from the client it

must indeed be applied as long as no further information is available for optimization – e.g. dur-

17Additional optimization factors like the adjustable QoS level will be addressed later.
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ing the first few localization processes. Nevertheless, the discretization of the anchor positions

with respect to the anchor grid already resulted in sufficient anchor specific information I A
i
to

finally guarantee that any two different anchors ai 6= a j with s(ai )= s(a j ) can never be located

within the same Z independent from the coverage zone’s overlay position on the anchor grid.

Thus, wherever a mobile client localizes itself, no two or more anchors will use the same return

slot for their DVs (→HS3a[p257]).

Remaining deficiencies. Though being provably collision-free so far, it is not always useful

to reserve nmax slots (→HS1a). As long as the mobile node is known (or limited) to move only in

two dimensions and in parallel to the anchor plane (e.g. on the floor with dmax = dmin resulting

in rmax = rmin), both the grid constant L and n = nmax would always be chosen perfectly through

Eq. (10.1) and Eq. (12.2). But as soon as dmax dmin (3Dmovement) we have to distinguish two

cases:

1. A client far away from the anchor plane may indeed receive almost nmax DVs, but in many

cases the contained information significantly exceeds the amount which is required even

for fault-tolerant position estimation. The large Z in Figure 12.3a shows a scenario where

31 DVs would be collected within d3 = 36·∆SLOT while 4 DVs might already be sufficient

for 3D localization. A 900% surplus of information, and a waste of time and energy.

2. A client close to the anchor plane will still receive a sufficient number of DVs since L was

chosen accordingly, but only nmin =
(⌊

2 ·rmin

L

⌋

+1
)2

≪ nmax return slots may finally be

used. The small Z in Figure 12.3a shows a scenario where a sufficient number of only 6

DVs would be collected; yet it would still take d3 = 36·∆SLOT. A 600% waste of time.

This is where dynamic quality of service (QoS) requests may help to achieve a trade-off

between time and energy consumption, and to limit the number of returned DVs for case 1.

Case 2 can under certain circumstances be improved by the dynamic calculation of the so called

adaptive grid module (AGM) Γad. Remind, that any runtime optimization must always deal with

the given static anchor grid since L has already been fixed during the deployment stage and

cannot be changed anymore.

Improvement 1: Quality of service (QoS) selection. The support for a discrete but dy-

namically selectable QoS level q allows a clientm ∈M to individually limit the subset ARm ⊆ Am

of replying anchors within its US coverage zone Zm . As part of I
C
m , q := (qx ,qy ) is a tuple of natu-

ral numbers qx ,qy ∈ [1 . . .Γ] which is broadcasted along with the CAV and defines the number of

anchor grid rows and columns to be involved18. Therefore q also defines the maximal number

nq of DVs to be expected at the client and the exact number nq of return slots to be reserved as

1≤ nq := qx ·qy ≤ nmax. (12.7)

18Of course q could easily be extended by qz to support three dimensions, e.g. grid layers, if required.
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Figure 12.3.: Return slot assignment within the smallest / largest supported coverage zone at various QoS

and AGM levels
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The required time to transmit the DVs computes analoguous to Eq. (12.6) as

tnq
:= nq ·∆SLOT ≤ tnmax

. (12.8)

While Figure 12.4 gives an overview on various QoS settings for Γ= 6, both Figures 12.3b and

12.3c show concrete application examples for the QoS level19.

In order to implicitly select “appropriate” anchors, and to limit the number of reserved return

slots to nq (→HS1a), we have to rearrange the transmissions more tightly over time by scaling

the hash values from Eq. (12.4) with
q
Γ
first:

H ′
x =

⌊

Hx ·
qx

Γ

⌋

H ′
y =

⌊

Hy ·
qy

Γ

⌋

(12.9)

Next, it is required to avoid radio collisions by properly selecting exactly those nodes which

may return their DVs. To retain its autonomy (→ HS2b) each node determines this privilege

independently from the others, and will only return a DV if

w :=
∧

v∈{x,y}

((

Hv ·qv

)

mod Γ< qv

)

(12.10)

is true. This results in a uniform sub-grid, and the corresponding slot s(ai ) for an anchor ai ∈ Am

will be computed analogous to Eq. (12.5) as

s(ai )=H (I Ai , I
C
m) :=







H ′
y ·qx +H ′

x if w = true

none otherwise
∈ [0;nq −1]∪ {ǫ}, (12.11)

and generates the subset of replying anchors ARm ⊆ Am .

Yet, there remains the question for the optimal QoS level qopt if the distance d ∈ [dl ,du] ⊆
[dmin,dmax] from the mobile object to the anchor plane (or at least the lower bound dl ) is known

(→ Figure 12.5). This might be feasible for clients that move only in parallel to the anchor plane

or for those which can estimate dl from prior localizations. Assuming once more a circular Z

we’ll give a solution for qopt,x = qopt,y : With

rdl
Fig. (10.5)
:= dl · tan(ϕ) (≥ rmin)

Lopt
Eq. (10.1)
:=

1.2·rdlp
2

(≥ L, fixed!)

Γopt
Eq. (12.2)
:=

⌊

2·rdl
Lopt

⌋

+1= 3 (≤ Γ)

19Remind that as visualized in Figure 10.5a[p231], though 1 is the minimum QoS level per dimension, selecting

qx ,qy < 3 might result in less than 4 DVs for the position estimation depending on the overlay position of Z .
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we can easily calculate

qopt,x = qopt,y :=
⌈

L ·Γ

Lopt

⌉

=
⌈

rmin

rdl
·Γ

⌉

(≤ Γ). (12.12)

In case rdl = rmin this selects the maximum QoS level qopt = (Γ,Γ) which is really required

then since we must not exclude any row or column. The small US coverage zone in Figure 12.3a

gives an example. In case rdl = rmax

qopt,x = qopt,y
Eq. (12.12)=

⌈

rmin

rmax
·Γ

⌉

Eq. (12.2)=

È

Ì
Ì
Ì
Ì

rmin

rmax
·





⌊

2·rmax

L

⌋

+1





É

Í
Í
Í
Í

≥
⌈

rmin

rmax
·
2 ·rmax

L

⌉

Eq. (10.1)=

È

Ì
Ì
Ì

2·
p
2

1.2

É

Í
Í
Í

= 3

as expected. Therefore it is proven that qopt,x/y ∈ [3;Γ], and that at least 9 slots will always be
reserved to hopefully collect at least 4 DVs at the client. The large US coverage zone in Figure

12.3b gives an example.

Improvement 2: The adaptive grid module (AGM). As both Figures 12.3b and 12.3c

show, adapting the QoS level is no adequate option for small US coverage zones, since leaving

out whole rows or columns is likely to result in (too) few returned DVs – at least in comparison

to the number of reserved slots. To still obtain sufficient DVs and information in a short time

despite of a small Z and a large grid module Γwe initially keep all anchors ai ∈ Am involved, but

temporarily adjust the grid module to the expected size of the US coverage zone. Therefore we

also require the client to predict its distance d ∈ [dl ,du]⊆ [dmin,dmax] from the anchor plane (or

at least the upper bound du) as depicted in Figure 12.5b.

Having broadcasted du along with the CAV the client m enables each anchor ai ∈ Am to

autonomously compute the corresponding adaptive grid module Γad ≤ Γ for the current local-

ization procedure. Obtaining Γad, s(ai )ad, and tad works analogous as before:

rdu
Fig. (10.5)
:= du · tan(ϕ) (≤ rmax)

ndu
Eq. (12.2)
:= Γ

2
ad =





⌊

2·rdu
L

⌋

+1





2

(≤ nmax) (12.13)

∀v∈{x,y} :Hv,ad

Eq. (12.4)
:= Cv mod Γad (≤Hv )

s(ai )ad
Eq. (12.5)
:= Hy,ad ·Γad+Hx,ad ( ∈ [0;ndu −1]) (12.14)

tad
Eq. (12.6)
:= ndu ·∆SLOT (≤ tnmax

)

The small Z in Figure 12.3d exemplifies that the adaptive grid module allows both, a reasonable

reduction of reserved return slots as well as their extremely tight packing. In contrast, the large
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(a) Calculation of an optimal QoS level (b) Estimating d ∈ [dl ,du ]⊆ [dmin,dmax]

Figure 12.5.:QoS related considerations

Z in Figure 12.3d shows, that underestimating du must be avoided carefully (i.e. the client is

farer away from the anchor plane than expected) as it would inevitably result in an adaptive grid

module Γad which is too small for the US coverage zone; in consequence valuable information

would be lost through multiply assigned slot numbers and colliding DV transmissions.

Improvement 3: Combining QoS and AGM. As depicted in Figure 12.6 this mixture

reveals the most effective method for adapting the data aggregation to a freely moving client’s

current distance d from the anchor plane: If both an upper and a lower bound for d ∈ [dl ,du]⊆
[dmin,dmax] can be estimated, it is obviously possible to compute Γad from du via Eq. (12.13) first,

and qopt from dl andΓad via Eq. (12.12) thereafter. The idea is to temporarily assume a “modified”

dmin and dmax for obtaining a new imaginary L and Γ. As these values are fixed since the anchor

deployment, the combination of Γad and qopt finds themost time saving solution for the number

of return slots nd with respect to the fixed anchor grid constant L and the uncertainty in d :

nd
Eq. (12.7)
:= qopt,x ·qopt,y td

Eq. (12.6)
:= nd ·∆SLOT (12.15)

Since the resulting efficiency and performance of HashSlot will show to improve with decreasing

uncertainty ∆d := (du − dl ), this is a good motivation for optimizing the 3D precision and

accuracy of the applied localization algorithm according to Figure 9.6[p216]. It is also worthwhile

to note, that computing qopt from Γad reaches its maximum value qopt,max at d ∈ [dmin,dmin+
∆d ] for any given uncertainty ∆d . Unlike Γ and n in Eq. (12.2), the value of qopt,max becomes

independent from dmax and rmax, respectively:

qopt,x/y
Eq. (12.12)=

È

Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì

dmin

dl
·






Ì
Ì
Ì
Ê
2·

p
2

1.2
·
du

dmin

Í
Í
Í
Ë+1






︸ ︷︷ ︸

Γad

É

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

≤ qopt,max,x/y =

Ì
Ì
Ì
Ê
2·

p
2

1.2
·
dmin+∆d

dmin

Í
Í
Í
Ë+1

(12.16)

This way, combining QoS plus AGM always delivers an autonomously and precisely computable

number of required return slots with nd ,max
Eq. (12.16)

∝ (dmin +∆d )
2. Without optimizations,
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(b)∆d = 0.10m (realistic case)
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(c)∆d = 0.50m
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Figure 12.6.: The number of reserved DV slots for different optimization strategies and uncertainties for

d ∈ [dl ,du] with ∆d = du −dl (System setup: dmin = 2m, dmax = 6m⇒ Γ= 8,nmax = 64)
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nmax
Eq. (12.2)

∝ d2max would always hold instead. Figure 12.6 shows concrete examples for the

number of return slots with respect to different optimization strategies and uncertainty ranges

∆d for d . In particular, the graphs show that combining QoS plus AGMwill always reserve less

slots than a single optimization does.

Choosing the optimal configuration for SNoW Bat. If a mobile client wants to estimate

its own position, it first tries to predict the upper and lower bound du ,dl for d at the instant

tC
Chirp

of the intended chirp emission. While Γad is ultimately fixed through du and Eq. (12.13) to

avoid colliding slots, qx ,qy ∈ [qopt,Γad] can still be chosen arbitrarily to reflect the application’s
current requirements regarding the number of desired DVs k ≤ qx ·qy . If WLOG we assume

qx = qy for the sake of simplicity the number of reserved slots will always be quadratic, and thus

g =
⌈p

k
⌉2
DVs should finally be requested by using

qx = qy :=min

{

max

{

qopt,
⌈p

k
⌉}

,Γad

}

∈
[

qopt;Γad

]

. (12.17)

In case d cannot be estimated at all, e.g. due to the lack of a meaningful position estimation

history to predict a movement path from, we have to revert to worst case conditions and assume

dl = dmin,du = dmax, and k = nmax = Γ
2 to sacrifice speed for reliability. Apart from the first

few position estimations of a newly activated client, this strategy can also be pursued if the

last position estimation has been considered as unreliable20, or if significantly less DVs than

expected have been received. While both symptoms often cause each other and build up over

several iterations, another reason for the latter can be observed if the client moves close to a

border of the anchor grid where the ultrasound signal covers only a few anchors.

To definitely avoid colliding slots through different calculations of Γad at the anchors soever,

the client computes this essential value, includes it in ICm , and broadcasts it along with q within

the CAV from Listing 10.1[p228].

12.4.2. Transmission Time Calculation and Slot Boundary Compliance

Now, as each anchor is able to autonomously calculate a collision-free TDMA slot number for

returning its DV to the client it currently serves, it still has to determine the corresponding

start time of its own slot, and to comply to the boundaries. While the quality of the distance

measurement depends on the synchronization between a clientm and the anchors ai ∈ Am ,

the data aggregation in stage P3 also requires the anchors to be synchronized. Based on the

timestamp t A
CAV

, for which we already showed to be sufficiently precise in Section 11.1, we define

t ADA = t A
CAV

+d2 as the start time of both P3 and the first slot. Thus

t ADV,ai := t ADA+ s(ai ) ·∆SLOT. (12.18)

20Of course this requires the position estimation algorithm or some postprocessor to support such an “reliability

indicator”. See pVoted in Chapter 13 for an example.
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1 Time_t tDV = tDA + slot * ∆SLOT -

2 tEmisComp;

3 if (sleepUntil (&tDV) == -1) goto failed; // delay the DV transmission

4 if (SmartNET_SendPacket (& DVHandle) != 0)

5 goto failed; // immediate send through SmartNet

6 if (waitEventFor (&evDVSent , ∆SLOT) != 1) { // error handling:

7 SmartNET_StopRXTX (& DVHandle ); // do not violate the TDMA slot

8 goto failed;

9 }

10 tEmisComp = DVHandle.RXTXTime - tDV; // compute lateness

precisely captured by SmartNet during DV tx

Listing 12.1: Anchor node self-calibration for the precisely timed emission of distance vectors

We have already learned form Chapter 5 that the scheduling of reaction times is not trivial. As

sending the DV is a timed reaction on receiving the CAV, we once more apply the self-calibration

technique from Section 5.4.1. The implementation relies on SmartNet, and an excerpt can be

found in Listing 12.1.

12.4.3. Summary

From this section we learned that the HashSlot based TDMA slot scheduling algorithm does not

only facilitate definitely collision-free (→HS3a[p257]) and tightly packed (→HS1b) wireless data

aggregation, but also that the overall data throughput can carefully be adjusted (→HS4b) against

the amount of requested information (→HS1a) – a considerable fact which consequently helps

to control the performance of many subsequent sensor data fusion processes, e.g. the position

estimation in our case. Nevertheless it relies on an entirely autonomous slot calculation scheme

to avoid any coordination cost between the anchors (→HS2), and provides a deterministic data

aggregation duration for the clients (→HS4a)21. In summary, HashSlot commonly scales with

the number of requested reply packets k – and sometimes with nmax in case no supplementary

information is available – but it is always entirely independent from the network size and the

number of anchors |A| (→HS5a).

12.5. A first Real-World Test Bed and Performance Analysis

For a meaningful performance evaluation under real-world conditions we set up a SNoW Bat

test bed comprising |A| = 36 anchors and a single client, and did let HashSlot compete against

the communication protocols from Section 12.3 regarding reliability, speed, and energy con-

sumption.

Direct measurements. For certain selected combinations of radio protocol and subsets of

replying anchors ARm ⊆ A with |ARm | ∈
{

4,9,16,25,36
}

we observed 400 data aggregation stages

21A closer look to the equations within this section shows that simple integer arithmetic is sufficient for all computa-

tions, and allows an efficient implementation even on typically weak sensor node MCUs (→ Chapter 2).

275



12. Efficient Data Aggregation: The HashSlot Algorithm

and accomplished the following measurements at the client22:

a) The average packet loss rateΛ(|ARm |) is the standardmetric, as it indicates the percentage

of DVs which did not arrive at the clientm (→ Figure 12.7a).

b) The average sufficiency rateΩ(|ARm |) evaluates the protocol reliability, as it indicates the
percentage of data aggregation stages where at least π

4
· |ARm | DVs did arrive at clientm

(→ Figure 12.7b). The reason for using the factor π
4
will be discussed in Section 12.7.

Considering the already discussed fact that a certain minimum of DVs must be made

available at the client to obtain a “good” position estimation, this metric also describes

the number of localization attempts which must be made to finally succeed once.

c) The average reply stage duration d3(|ARm |) evaluates the protocol speed, as it indicates
the time it took to either receive at least π

4
· |ARm |DVs at the clientm or until the timeout

had been reached (→ Figure 12.7c).

d) The average RXmode duration tRX(|ARm |) evaluates the protocol’s energy consumption,

as it indicates the time the clientm had to keep the radio receive mode active (→ Figure

12.7d).

For these measurements we did intentionally focus on the client, since the energy supply for

the anchors within the infrastructure is most commonly less critical compared to the e.g. battery

powered mobile nodes. Additionally we were particularly interested in the maximum temporal

resolution the client could possibly achieve when tracing its ownmovement path23.

Regarding the test bed results from Figures 12.7a – d, the Brute Force method did indeed

perform as badly as expected, and impressively verified the packet collision problem caused

by the quasi-simultaneous event detection from Section 12.2: ≈ 100% packet loss rate at ≈ 0%

sufficiency rate. Conversely, the NodeID based schedule achieved ≈ 0% packet loss rate and

≈ 100% sufficiency rate; yet it is tremendously slow (even for the low IDmax = 69 we used), and

the radio rx time in particular depends on the anchor constellation and ID distribution within

the current Z .24

Considering the Random Slot approach the packet loss rate is still low but almost constant

at ≈ 10%; however, the muchmore interesting average sufficiency rate rapidly decreases from

Ω(4)≈ 90% toΩ(9)≈ 43%. At least it achieved an almost linear reply stage duration and rx time –

possibly caused by the uniform distribution of the DV emission over the timeout range.

Looking at the non-slotted methods, Random Slot + CSMA/CA exhibits an increasing packet

loss rate depending on the number of involved anchors, and consequently achieves a lower

average sufficiency rate ofΩ(9)≈ 22%. Also, it takes significantly more time for both d3 and tRX.

The pureCSMA/CAprotocol performs evenworse. Possibly due to the fact that the anchors did

their CCA almost simultaneously, and could consequently not observe each others transmissions,

22Two further sniffer nodes were configured to also record the radio traffic for validating the correct operation of the

client.
23The durations d3 and tRX were measured using the SmartOS timing functionality.
24The larger IDmin the longer it takes to receive the first DV. Beyond, the IDs are commonly not tightly packed.
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Figure 12.7.:Measurement results (a – d) and derived metrics (e – h) from the real-world test bed for

selected counts of anchors |ARm | in a client’sm US coverage zone
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the quite long switching delay from rx to tx mode led to numerous packet collisions and a low

average sufficiency rate of Ω(9)≈ 12% for the relevant case. Yet, both d3 and tRX were almost

linear.

By semantically exploiting the information about the clients predicted spatial position, Hash-

Slot achieved almost perfect collision-freedom and an average sufficiency rate of ≈ 100% inde-

pendent from the involved anchor subset. Comparable to the NodeIDmethod in this regard,

the tight slot packing also reduced d3 and tRX to the theoretically achievable minimum. Note

that though these two results might seem to be comparable to Random Slot in Figures 12.7c

and 12.7d, this is only the case for this particular test bed setup where we used the spreading

factor γ = 1. While using γ = 2 or γ = 3 resulted in just a slightly higher sufficiency rate then,

both values d3 and tRX did double or triple then. Of course they remained constant for HashSlot.

Derived metrics. Relating the just presented measurement results to the SNoW5 energy

consumption characteristics fromTable 2.2[p27] allowed us to derive somemore interesting values.

Though we still focus on the client, we also considered the energy required for transmitting the

synchronizing CAV in stage P2, but explicitly omitted the energy required by the MCU or the

ultrasonic hardware to strictly focus on the radio protocol. The results are visualized in Figures

12.7e – 12.7h:

e) The achievable localization frequency when operating only on a sufficient number of

DVs:

fL(|ARm |) :=
1

d1+d2+d3(|ARm |)+d4
·Ω(|ARm |)

f) The average radio energy consumption per localization attempt independent from suc-

cess of failure:

WL(|ARm |) := tRX(|ARm |) ·PRX+ tTX ·PTX

g) The average radio energy consumption per received DV:

WDV(|ARm |) :=
WL(|ARm |)

|ARm | ·
(

1−Λ(|ARm |)
)

h) The average radio energy waste per localization attempt i.e. the invested energy for

finally canceled position estimations, due to an insufficient number of received DVs:

Ww (|ARm |) :=WL(|ARm |) ·
(

1−Ω(|ARm |)
)

Once more it becomes obvious that the tightly packed and collision-free slots facilitate a com-

parably higher localization frequency for HashSlot (→ Figure 12.7e)25. In fact, our new approach

requires virtually the same amount of energy per localization attempt and DV reception than

25Note that the trend is not linear since the other factors, i.e. d1,d2,d4 were considered to be constant for this

evaluation.
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Random Slot (→ Figures 12.7f, 12.7g), but it wastes significantly less energy due to almost no

canceled localizations (→ Figure 12.7h).

As expected, the most remarkable result is, that HashSlot is independent from the total

number of anchors |A|, and even achieves almost constant values for the average packet loss

rate, sufficiency rate, energy consumption per DV, and energy waste per localization attempt

when considering the subset of replying anchors ARm ⊆ A. Just the achievable localization

time and frequency fL as well as the total energy requirement is not constant but depends

on the number of received DVs. Though we can already state that the theoretically expected

characteristics of the basic HashSlot approach were indeed verifiable within our real-world test

bed, there are still somemore problems to be considered in the next section.

12.6. Further Improvements for Real-World and

Application-Specific Requirements

Until now we have discussed the general requirements and design considerations for event-

triggered data aggregation protocols in Section 12.2, and presented theHashSlot approach for the

special case of ultrasound based distance measurement in Section 12.4. A test bed for evaluating

the pure protocol performance regarding our primary goal to reduce the communication cost

was presented in Section 12.5, and already showed the benefits of semantically exploiting some

dynamically emerging runtime information for optimizing the transmission schedule of the

involved anchors. Yet, receiving DVs efficiently and reliably is not our only objective; regarding

the fusion cost and some maintenance issues for indoor localization systems in particular

HashSlot has more to offer:

Network maintenance: Locating defective anchors through inverted slot calculation.

For the test bed in Section 12.5 we assumed that each anchor operates perfectly reliable; in

fact, a hand-picked set of sensor nodes from our pool guaranteed failure-free DV transmissions.

This certainty however, it not self-evident under real-world conditions. In fact, TDMA slots will

be observed vacant if anchors fail to send for whatever reason. Even if sporadic malfunctions

might be tolerable for many applications (e.g. if the number of requested packets can be ad-

justed to largely compensate for such problems), permanent local failures might rapidly lead to

the unreliability of the overall system installation, and will commonly demand for repair and

maintenance as indicated in Section 12.2.3. While the specific impact of unused slots on the

protocol performance will be discussed and largely attenuated by the HashSlot+ extension in

Section 12.7, we’ll next present a method for determining the anchor grid coordinate related to

an arbitrary (unused) slot number (→HS3b[p257]). While at least one DVmust have been received

successfully, either before or after the vacant slot, no more information than already available

will be required to let the client (or any other observer) implement this feature:

LetDi := (xi , yi , s(ai )) be the relevant informationwithin a successfully receivedDV (→ Listing

10.2[p228]) from an anchor ai ∈ ARm at absolute world position (xi , yi ), and let s(a j ) 6= s(ai ) be the
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unused slot number related to another anchor a j ∈ Am at world coordinate (x j , y j ).
26 The

missing DV is represented byD j := (x j , y j , s(a j )), and we are interested in calculating (x j , y j ) or

at least the grid coordinate (Cx j ,Cy j ) from s(a j ) (observed),Di , and q (given).

For any slot number u < qx ·qy Eq. (12.5) allows to compute

Hx(u) := u mod qx and Hy (u) :=
⌊

u

qy

⌋

. (12.19)

Thus, the relative distance in grid cells between ai and a j is

∆Hx(ai ,a j ) :=Hx(s(a j ))−Hx(s(ai )) and ∆Hy (ai ,a j ) :=Hy (s(a j ))−Hy (s(ai )). (12.20)

According to Eq. (12.3) we also obtain an initial tuple for the cell coordinate (C̃x j ,C̃y j ) as

C̃x j :=Cxi +
⌊

∆Hx(ai ,a j ) ·
Γ

qx

⌋

and C̃y j :=Cyi +
⌊

∆Hy (ai ,a j ) ·
Γ

qy

⌋

. (12.21)

A problem with this result is that (C̃x j ,C̃y j ) will always relate to an anchor a j within the same

module cell than ai . Let’s take a look at the US coverage zone in Figure 12.8 for an example:

Imagine aDVDi = (4m,6m,2) has been received from ai at (Cxi ,Cyi )= (4,6) during slot s(ai )= 2.

Slot 3 has been assigned to a j , but was observed vacant at the client. With q = (3,3) we obtain

∆Hx(ai ,a j )= (3 mod 3)− (2 mod 3)=−2 and ∆Hy (ai ,a j )=
⌊

3

3

⌋

−
⌊

2

3

⌋

= 1. (12.22)

With Γ= 6 we also receive

C̃x j = 4+
⌊

−2·
6

3

⌋

= 0 and C̃y j = 6+
⌊

1·
6

3

⌋

= 8. (12.23)

While the initial result C̃ j = (0,8) indicates an anchor ah with s(ah)= 3 within the samemodule

cell than ai , the true anchor a j with s(a j )= 3 resides within an adjacent module cell27 with

Cx j ∈Θx :=
{

C̃x j −Γ,C̃x j ,C̃x j +Γ

}

and Cy j ∈Θy :=
{

C̃y j −Γ,C̃y j ,C̃y j +Γ

}

. (12.24)

A disambiguation is easily possible by considering the set R of somemore received DVs:

∃k∈R :Cxk ∈Θx ⇒Cx j :=Cxk and ∃k∈R :Cyk ∈Θy ⇒Cy j :=Cyk (12.25)

For our example from Figure 12.8 we obtainΘx =
{

−6,0,6
}

andΘy =
{

2,8,14
}

, and since we

also received the anchors for slot 5 in grid row 8 and for slot 6 in grid column 6 we know that

26Note that even if s(ai ) is not explicitly included in the DV payload it can easily be calculated according to Eq. (12.18)

and Figure 10.3[p227] from the rx timestamp at the client: s(ai ) :=

Ì
Ì
Ì
Ê
tC
DV,ai

−tC
DA

∆SLOT

Í
Í
Í
Ë.

27The proof follows directly from the selection of Γ in Eq. (12.2).
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Figure 12.8.: Locating defective anchors through inverted slot calculation

the missing DV relates to a j atC j = (6,8). Finally the (defective?) node a j can be found at the

absolute world position (6L,8L) with L being the initially defined grid constant.

Accelerating the data fusion: Improving the DV utility through slot reordering. As

already suggested in Section 12.2.2, it can be a valuable benefit for many progressive data fusion

processes to receive the most relevant or valuable data first. Though it might appear like a detail

for HashSlot itself, a slight modification to the hash function reorders the DV slots in a way to

obtain a significantly higher utility for the data fusion process in the context of the considered

position estimation algorithm from Chapter 13 (→HS4c[p257]).

Without anticipating the details of pVoted or any other approach, there is the inevitable

question about how to determine the “quality” of each DV a priori from a “zero knowledge

decision” and without any coordinating anchor interaction. Apart, the specific DV utility might

not only depend on the directly contained information, but also on various relations between

the DVs – these however might not become visible unless the DVs have been gathered and

processed.

Fortunately we can once more profit from the anchor grid structure we proposed for SNoW

Bat, and extract valuable information for the special case of localization and position estimation

algorithms. Since most of them are based on solving linear equations or maximum likelihood

estimations, they require the anchors to be located at non-collinear positions (→ Section 13.3

for details). While this is obviously not always attainable within a quasi-rectangular anchor grid,

Eq. (12.5) even generates a so called Z-order as depicted in Figure 12.9a where anchors at qx

linear dependent positions transmit first. In other words, the larger qx the longer it will take

until the first numerically reliable position estimation can start.
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Figure 12.9.:HashSlot Slot number reordering for improved reception of non-collinear DVs (qx = qy = 5)

Obtaining a more appropriate schedule through consistent slot reordering can be accom-

plished in various ways. With the client’s initially broadcasted information ICm containing the

grid module and QoS level to be used as globally available protocol configuration, we’ll describe

the distributed computation of just one example permutation as depicted in Figure 12.9b: Be-

ginning at the border of a module cell and proceeding to its center, the anchors at the 4 corners

will transmit first, followed by their clockwise neighbors. From Eq. (12.9) each anchor knows its

individual H ′
x ,H

′
y values, and, if we assumeWLOG equal QoS values qxy := qx = qy for simplicity

reasons, the new slot number s∗(ai ) can still be computed consistently and autonomously by

each anchor ai ∈ ARm :

V :=min
{

H ′
x ,H

′
y ,qxy −H ′

x −1,qxy −H ′
y −1

}

U := qxy −1−V ;

B :=
V∑

j=1
4·(qxy +1−2 j )

s∗(ai ) :=







4·(H ′
x −V )+0+B if (H ′

y =V ∧H ′
x 6=U )

4 · (U −H ′
x)+1+B if (H ′

y =U ∧H ′
x 6=V )

4 · (H ′
y −V )+2+B if (H ′

x =U ∧H ′
x 6=U )

4 · (U −H ′
x)+3+B if (H ′

x =V ∧H ′
x 6=V )

B if (V =U )

(12.26)

Traffic Shaping: Adjusting the transmission rate to a varying data fusion complexity.

Another problem with progressive (sensor) data fusion algorithms is that they often require

more time the more information has already been received at the processing node. Using

TDMA slots of fixed order can easily reflect this demand by dynamically expanding the basic

slot duration ∆SLOT according to some simple scaling factor or a complex calculation (→HS1b);
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depending on the slot number the additional information required therefore can be both static or

dynamic, e.g. integrated into the information request. For tiny embedded systems in particular,

where dynamic memory allocation is possible (→ Chapter 7) but often avoided for performance

and real-time reasons, this technique even helps to avoid the memory intensive buffering of

information28, but allows to process the data packets completely as they arrive.

As an example, a linear scaling factor α for extending the basic slot length ∆SLOT might be

included into the CAV to instruct each anchor ai ∈ ARm to override Eq. (12.18), and to compute

its individual DV emission time as

t ADV,ai :=







t A
DA

if s(ai )= 0

t A
DV,ai−1

+αs(ai )−1 ·∆SLOT if s(ai ) 6= 0
. (12.27)

Scalability: Supporting concurrently operating clients through individual frequencies.

This suggestion is less an improvement for scheduling the anchors which currently serve a

common client, but an option to perform several data aggregation processes simultaneously.

As a DV is always meant for a single client, and a clientm will not intend to receive DVs from

other anchors ai ∉ Am than covered by its own US coverage zone Zm , the data aggregation

processes are entirely independent from each other29. Thus, we are not constrained to temporal

communication interleaving (as we were for transmitting associated DVs), but can benefit

from the dynamic channel switching capability of most modern radio transceivers30 as already

depicted in Figure 10.3[p227]: While the CAVmust be transmitted using a common radio frequency

– the so called control channel – to reach a broad number of anchors, the DVs will simply be

returned using a client specific frequency – the so called return channel – as specified in the CAV

(→ Listing 10.1). Using this FDMA-like (frequency division multiple access) approach implicitly

avoids mutual disturbance.

The transmission of the CAV however is not covered by the HashSlot protocol, andmust be

managed by other approaches. Client specific requirements (e.g. on the localization frequency

and fairness) are also likely to be relevant here and demand for similarly reliable techniques.

Options are e.g. static round robin, or dynamic desynchronization [207, 208].

12.7. The HashSlot+ Extension

Up to now the basic HashSlot approach was designed to let autonomously operating anchor

nodes compute their individual, collision-free, and tightly packed TDMA slots without any

mutual interaction or explicit coordination with other potentially interfering systems. The

thereby avoided coordination overhead reduced both the time and energy requirements to a

28It also removes the need for a reasonable dimensioning of the data buffer itself, which is commonly hard and can

easily lead to memory waste through internal fragmentation of the valuable RAMmemory (→ Section 7.2.1).
29Note, that though uncritical for the data aggregation, two or even more overlapping US coverage zones might be

a severe problem for the distance measurement process: If the chirps interfere, both the signal shapes and the

source matching can be damaged.
30The CC1100 applied on the SNoW5 supports 255 channels (→ Section 10.2.1).
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minimum demanded for the pure DV transmission and aggregation31.

However the resulting performance can only be retained under realistic conditions if each

reserved slot will really be used and the reserved time will not pass by, i.e. if (1.) each slot is

assigned to an anchor, and (2.) if each anchor for which a slot has been assigned will indeed

participate in the data aggregation process. In the last section we already presented a method to

identify anchor positions by their corresponding slot number (e.g. for maintenance reasons);

in this Section we’ll extend the credulous HashSlot algorithm by an additional observation

scheme which accepts some additional energy effort to detect vacant slots as they appear, and

dynamically contracts the data aggregation stage by letting subsequently scheduled anchors

transmit early to fill up valuable dead time on the radio channel. The so called HashSlot+ slot

compressionwill nevertheless keep the general operation from Section 12.4 and the presented

improvements from Section 12.6 valid since, once fixed, the anchors’ slot order itself remains

untouched – in fact, retaining the order is an inevitable precondition to know which anchor

might start early without causing a radio collision.

Background. The reason for vacant slots can originate from various imponderabilities which

can neither be predicted nor considered by the hash function or emission time calculation due

to their sporadic nature. While defective anchors are an obvious problem, another issue are

geometric discrepancies between the US coverage zone Z , i.e. the area covered by the event to

be detected, and the shape of the anchor deployment pattern. For our rectangular (or quadratic)

anchor grid HashSlot always assigns qx ·qy slots to anchors spanning a rectangleQ ⊇ Z , and

the protocol performance increases the better Z matchesQ since anchors within the areaQ\Z

won’t return a DV but waste the reserved slot time ∆SLOT (→ Figure 12.3 for several examples).

Unfortunately the ultrasound transducers emit a conical beam (→ Figure 11.1[p245]), and

generate a circular Z which moves freely over the anchor plane. Thus no anchor pattern will

ever be perfect32, and we have to find another feasible way to compensate for this structural

performance loss. By the way, it is hard to quantify the number of anchors to be expected

in Q\Z : The underlying lattice point problem [132, 151, 221] which addresses the question

of how many lattice points N (r ) are located within a freely placed circular area with radius

r is hard to solve for the general case, and even for a known center position of Z there is no

closed formula. Though iterative equations can easily be found33 and an approximation is given

through N (r )=πr 2+O(rλ) with 1
2
≤λ≤ 46

73
(Huxley [132]), these calculations presume a perfect

grid without any irregularities stemming from the anchor deployment.

For reduced complexity we simply found the fraction πr 2

4r 2
= π

4
≈ 78.5% to be sufficiently precise,

and consequently expect φ≈ 21.5% of vacant slots in average.

31Note that in particular entering rx mode is avoided for the anchors whereas activating tx mode is avoided for the

clients during the data aggregation stage P3.
32Maybe a honeycombed pattern would be slightly more suitable, however the anchor deployment and calibration

effort would increase then, and so would the overall number of anchors.
33For the specific Gaussian circle problem, where the center of Z matches a lattice point, N (r ) = 1+ 4⌊r ⌋ +

4
∑⌊r⌋
i=1

⌊
√

r 2− i2
⌋

according to [127].
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1 int8_t HSPlus_send(uint8_t ownSlot) {

2 uint8_t received = 0, vacant = 0, nextSlot = 0;

3 Exception_t ex;

4

5 TRY {

6 while (nextSlot <= ownSlot) {

7 uint8_t c = ownSlot - nextSlot;

8 Time_t tNext = t A
DA

+ received * ∆SLOT + vacant * τ;

9 Time_t tDL = tNext += c * τ;

10

11 if (sleepUntil (& tNext) == -1) throw EX_DH; // handle early wakeup

12 if (c == 0) return sendDV (); // regular send

13 if (carrierSenseUntil (&tRX , &tDL) == 1) { // foreign DV detected

14 uint8_t v = (tRX - tNext) / τ; // number of vacant slots

15 received += 1; // count the received DV

16 vacant += v; // count the missed DVs

17 nextSlot += v + 1; // next slot to be expected

18 } else { // deadline reached

19 return sendDV ();

20 }

21 }

22 } CATCH (ex) { // dynamic hinting

23 handleFailure ();

24 return 0;

25 }

26 }

Listing 12.2: The DV emission and slot compression algorithm for HashSlot+

Approach. Our solution to the problem of vacant slots (→HS5b) – for whatever reason these

might emerge – requires to put the anchors ARm in rx mode beginning from the start of the data

aggregation stage P3 at t
A
DA

and ending with their individual DV transmission. In between they

listen to the protocol traffic caused by anchors with lower slot number, and without processing

the passively received DVs they count the number of used and unused slots to compute the

next true slot boundary. To reliably identify an unused slot we require each participating anchor

ai ∈ ARm to transmit its DV within a time window
[

t A
DV,ai

: t A
DV,ai

+τ
]

with τ < ∆SLOT. Though

real-time-critical, this demand is no problem due to the general SNoW Bat software design using

SmartOS, and the task priority selection in particular as discussed in Section 10.2.4.

The idea is formalized in Listing 12.2: Having calculated its own slot number s(ai ) each anchor

ai ∈ ARm iterates until finished (L6), and updates the number of slots c to let pass by until itself

may send (L7). It also determines the adapted time tNEXT of the next slot (L8), and – since it

is not yet known then whether the expected c anchors will send indeed – it also computes its

individual deadline tDL based on tNEXT (L9) to resume at the latest, i.e. if no foreign transmission

has been detected, and to eventually emit its own DV early. Then it suspends itself until the

next slot begins (L11), and sends immediately if it is its turn, i.e. if c = 0; otherwise it switches to

rx mode and performs a carrier sense (L13) until it either receives a foreign DV (from another

anchor with lower slot number) or the deadline is reached (if the intermediate anchors did not

send). In case of the deadline (L18) the anchor may send early, and we are done. Otherwise (L14

et seq.) we have to count 1 observed DV as well as v vacant slots for this iteration; the number

of the next slot to be expected is also updated accordingly before we start over. Figure 12.10
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compares HashSlot and HashSlot+ visually, and illustrates the slot compression; Table 12.2 gives

the corresponding values for the involved anchors. In particular both nodes scheduled for slot 3

and 6 reached their deadline while waiting for a DV and started their own transmission right

thereafter.

As the duration of a vacant slot is defined as τ≤∆SLOT, the duration d
+
3 of the data aggregation

stage P3 under HashSlot
+ is no longer constant for a given number of requested DVs n = qx ·qy ,

but depends on the numberm = |ARm | ≤ n of truly replying anchors:

d+
3 :=m ·∆SLOT+ (n−m) ·τ

︸ ︷︷ ︸

HashSlot+

≤ d3 := n ·∆SLOT
︸ ︷︷ ︸

HashSlot

(12.28)

For the client it is also possible to dynamically update the maximum remaining duration of

the data aggregation stage based on its initially selected QoS level. Even the worst case – where

no anchor replies at all – will become obvious if no DV has been received after tC
DA

+n ·τ.

Improvements and consequences. If we imagine an average ratio φ of non-participating

anchors and assume a relationship τ :=α ·∆SLOT with α ∈ [0;1], the temporal improvement of

HashSlot+ compared to the conventional HashSlot approach computes as

1−
(1−φ) ·∆SLOT+φ · (α ·∆SLOT)

∆SLOT
=φ(1−α). (12.29)

Regarding our initial consideration about the expected loss of φ ≈ 21.5% of slots due to the

discrepancy between the circular Z and the rectangular grid, the example from Figure 12.10 with

an arbitrarily selected τ= 1
5
·∆SLOT would reduce d3 by 0.215·0.8= 17.2%. A result which is only

about 4% worse than the optimum. While α= 0 would obviously be optimal, the minimal value

of this scaling factor and the resulting τ depends on the real-time capability of the anchors to

start the CCA or DV transmission right at the beginning of each slot. An adequate self-calibration

scheme has already been proposed in Section 5.4.1 and applied for HashSlot in Listing 12.1.

A consequencewhich results from this temporal improvement is the increased energy demand

caused by the newly introduced carrier sense. However it is limited to the anchors, and even

depends on their individual slot number (the lower the less) as well as on the total number of

requested DVs. In the worst case where only the last slot is used, the corresponding anchor

has to listen for a period of at most τ · (qx ·qy −1). For the best case where each slot is used,
the additional energy demand once more reduces the closer towards 0 the better each anchor

manages to perfectly schedule the DV transmission to the beginning of its slot.

Though detecting and compressing vacant slots is the key to the HashSlot+ performance

improvements, it also introduces a severe weakness in case of unreliable hardware or software:

If an anchor misses a foreign DV and considers the corresponding slot as vacant it becomes

temporally misaligned to the other anchors which did receive the DV. Eventually it might cause a

packet collision when sending its own DV too early then. Yet, during our real-world tests (using

SmartNet from Section 8.1 as MAC layer in charge of entering rx and tx mode under real-time

demands) this problem occurred too seldom to justify taking explicit counter-measures.
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Figure 12.10.: Example for slot compression under HashSlot+ (→ Table 12.2, Listing 12.2)

anchor @ slot iteration c tNext tDL tRX t A
DV

L received vacant nextSlot

0 1 0 0 0 0 0 0 0

3 1 3 0 6 0 0 1 0 1

2 2 10 14 DL 14

4 1 4 0 8 0 0 1 0 1

2 3 10 16 14 2 2 2 4

3 0 24 24 24

6 1 6 0 12 0 0 1 0 1

2 5 10 20 14 2 2 2 4

3 2 24 28 24 0 3 2 5

4 1 34 36 DL 36

7 1 7 0 14 0 0 1 0 1

2 6 10 22 14 2 2 2 4

3 3 24 30 24 0 3 2 5

4 2 34 38 36 1 4 3 7

5 0 46 46 46

Table 12.2.: Example for slot compression under HashSlot+ (→ Figure 12.10, Listing 12.2)
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Figure 12.11.: Vacant slots under HashSlot:

Slots 0 – 3, ∆SLOT = 16ms

Figure 12.12.: Vacant slots under HashSlot+:
Slots 0 – 3, ∆SLOT = 16ms

τ= 1
2
∆SLOT = 8ms
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Real-world feasibility test. A real-world comparison between HashSlot and HashSlot+ is

depicted in Figures 12.11 and 12.12: The scope snapshots show the protocol operation for 4

selected anchors with assigned slots 0−3 and∆SLOT = 16ms. As already demanded in our SNoW

Bat reference Figure 10.3[p227], each snapshot indicates the node synchronicity at the beginning

t A
DA

of the data aggregation stage through a rising signal edge34. Another interesting detail is the

precisely met minimal inter-packet spacing of 10ms following each transmission indicated by a

6ms low signal level at the beginning of each slot. For the topmost snapshot in particular – where

all anchors emit their DV – the high temporal precision complies to our demand for granting

the client a sufficient amount of time for progressive packet processing without prophylactic

buffering. In fact both HashSlot and HashSlot+ induce the same timing characteristics and

demonstrate the deterministic behavior of our scheduling scheme. Considering the second

snapshot in each figure depicts the slot compression under HashSlot+: With τ= 1
2
·∆SLOT = 8ms

we intentionally deactivated the anchor assigned to slot 1 and indeed observed a temporal shift

of the 2nd slot by ∆SLOT−τ = 8ms for HashSlot+, which resulted in 24ms to elapse between

the first two DVs compared to 2·∆SLOT = 32ms under HashSlot. Additionally deactivating the

anchor for slot 2 amplified this phenomenon to require ∆SLOT+2·τ= 32ms under HashSlot+

compared to 3·∆SLOT = 48ms for HashSlot as depicted by the last snapshots in both figures.

Another remarkable detail in the snapshots is the enormous stability in the measured values

in general. If we recall the SNoW5 MCU speed of 8MHz and the resolution of 1µs for the

SmartOS system time it is quite astonishing to continuously observe absolutely identical values

for the different system setups under HashSlot in Figure 12.11 – even though the temporal

resolution of the oscilloscope had to be chosen relatively low (i.e. 10µs) to capture all relevant

signal events. Notably the high complexity of the observed distributed system of autonomously

operating and self-synchronizing sensor nodes involves device serial dispersion, hardware

imponderabilities, radio communication, event-driven multitasking, dynamic resource sharing

issues, timestamp capturing, and various complex algorithms in general. Nevertheless the

measured values differ only slightly from the expected values – even for the increased temporal

dynamics under HashSlot+ in Figure 12.12.

12.8. Summary

In this chapter we identified the challenge of wireless data aggregation as a major performance

issue in manyWSN/WSAN applications, and emphasized its special relevance for optimizing

decentralized localization systems like SNoWBat. After the introduction of an extensive problem-

specific design space in Section 12.2.4 we presented the basic HashSlot data aggregation protocol

and its extension HashSlot+ for solving all but two denoted demands.

Based on the distributed calculation of TDMA slot numbers for each anchor it solves, among

other issues, the problem of sporadically high radio load upon quasi-simultaneous event detec-

tion in event-triggered systems. The key to success in reducing the pure communication cost

is to semantically exploit static information (known to the static anchors) as well as dynamic

34Though not visible here, the synchronization test revealed an inaccuracy of ≤ 1
2 µs as expected from Chapter 5.
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information (provided by the mobile client and observed from the environment) to obtain

collision-free and tightly packed transmission slots without explicit communication or even

coordination between the involved nodes. In fact, this renders HashSlot highly scalable and

entirely independent from the overall number of nodes: While the total and deterministic du-

ration of the data aggregation stage can always be predicted by the client, additional features

like dynamic quality of service (QoS) selection refines the approach by reasonable limiting the

amount of returned data, and allows an optimal adaption to changing environmental conditions

and the application’s demands. Regarding the demand for reduced data fusion cost, several

extensions allow to adjust e.g. the inter-transmission spacing for simplified progressive informa-

tion processing, and to reorder the packets regarding their projected utility for the data fusion

algorithm.

Considering node failure HashSlot+ manages to detect vacant slots as these appear, and

dynamically reduces the data aggregation stage duration close to the optimum; inverting the

slot selection equations at the client even allows to locate the position of (defective) devices

from (vacant) slot numbers (e.g. for simplified network maintenance).

As an advantage for the quite complex SNoW Bat software design, both the implementation

as well as usage of the presented approach is quite simple. Based on the already discussed

MAC protocol SmartNet from Section 8.1 it integrates seamlessly into the concurrently running

software components.

As indicated in this chapter’s introduction, tailoring the radio protocol to the application

meant some effort at first, but proved to result in exceptionally high performance and energy

savings as shown in the test bed results (almost optimal speed andminimal packet loss rate).

Nevertheless, using the general HashSlot idea for other application scenarios is still possible.

Though the central hash function must probably be adapted to the specific demands, even the

assignment of e.g. radio channels or spread codes for FDMA or CDMA based protocols instead

of slots for TDMA schedules is quite conceivable.
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pVoted Algorithm

Abstract

As we have seen in the introduction to this part of the work, localization and

position estimation algorithms form a vast topic in wireless sensor network-

ing, and hence it is not surprising that quite a number of such data fusion

approaches do already exist.

Most commonly, a certain amount of environmental information (e.g. dis-

tances, angles, or neighborhood relations) is gathered first and then processed

at once. However, especially in highly dynamic environments where severe

real-time requirements, energy constraints, and reliability demands meet,

progressive algorithms can significantly increase the overall system perfor-

mance with respect to various metrics.

Taking advantage of the previous chapters, this chapter introduces the novel

pVoted algorithm for accurate and robust 3D position estimation despite of

noisy (i.e. imprecise) and sometimes even faulty (i.e. inaccurate) distance

measurements. Our decentralized approach allows mobile sensor nodes

to localize themselves autonomously from progressively gathered distance

information (the “p” in pVoted is for progressive), and it is optimized for the

dynamic adjustment of speed, precision, and energy consumption. Regarding

our demand for quality awareness and self-evaluation from Section 1.2.1 this

allows each node to adjust its preferences at runtime according to its current

requirements and available resources. This includes the limitation of the

required (RAM) memory as well as the calculation of an individual quality

indicator for each estimation.

Beyond the already completed discussion of the HashSlot goals to reduce

the communication cost and to simplify the network maintenance (→ Figure

12.2[p263]), the remaining goal to reduce the data fusion cost while still obtain-

ing “good” position estimations will be further addressed in this chapter.

291



13. Progressive Position Estimation: The pVoted Algorithm

13.1. Introduction

If we consider the general WSN process flow from Figure 9.2[p211] in detoVp
the context of decentralized localization systems, this part of the work

so far did already cover the data generation and preprocessing through the Cut DSP algorithm

(→Chapter 11), as well as the data aggregation throughHashSlot (→Chapter 12). The last step to

go in order to obtain usable position information from the observed environmental conditions

is the data fusion process.

In this regard several preliminary considerations about how to integrate this step into the final

software design have already beenmade in Section 10.2.4, and various preparations regarding

the quality and quantity of the distance measurements as well as the order and delay of their

transmission through the anchors have been made in Sections 11.2, 12.4, 12.6, and 12.7, respec-

tively. In order to reasonably exploit these deliberately created arrangements we developed

the pVoted position estimation algorithm: Optimized for various common system properties it

completes the philosophy of hardware/software/network co-design to finally reduce the data

fusion cost while retaining a “good” quality and performance for the position estimations.

However, despite of the obvious relevance of location or position estimation algorithms for

any localization system, we will intentionally limit ourselves to the integration related part of

pVoted, i.e. the mutual influences between the algorithm and the remaining system. Regarding

the mathematical aspects only a brief overview will be given, since the required theoretical and

mathematical background to understand every detail about the myriads of position estimation

approaches would demand for an entirely independent thesis. Also, these details are not directly

related to the scope of “time-critical system design considerations for sensor/actuator systems”.

Nevertheless, and for the sake of completeness, we will show how pVoted as a representative

for similar (progressive) approaches can benefit from the previously presented techniques and

paradigms.

Though pVoted offers a multitude of configuration options to adjust the data fusion process

to the specific properties of the environment and the measurement error characteristics, we’ll

thus highlight just the most central concepts without analyzing all specific (mutual) effects of

each parameter thoroughly. Based on a single configuration set – which is optimized for the

SNoW Bat system installation from Chapter 10 –, we’ll yet compare some selected algorithms

with respect to the speed, precision, and accuracy.

13.2. The pVoted Position Estimation Algorithm

In contrast to most ranging based position estimation algorithms which rely on maximum likeli-

hood estimators, force models, or the solving of linear equation systems to reduce the derivation

between the measured distances and the ones calculated between the anchor positions and

the position estimation, pVoted calculates several potential solutions from received DV triplets

and compares these for consistency. The idea is illustrated in Figure 13.1: Each anchor’s DV

describes a sphere with the anchor position representing the center (of the ultrasound receiver

capsule), and the measured distance (to the client’s sender capsule) representing the radius.
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Figure 13.1.: Intersecting a triplet of spheres based on distance measurements between three anchors

A,B ,C and one client (due to measurement errors, the resulting location point (LP) needs

not necessarily match the client’s true position pm)

Intersecting a triplet of such spheres will always result in either 0, 1, or 2 intersection points.

Since we assume the anchors to be placed in a common anchor plane1 only the last solution

scenario is relevant for us, and we discard the intersection point above the anchor plane; the

other one will be stored as so called location point (LP), and represents one potential solution for

the current position estimation. This way pVoted can start its computation as soon as the third

DV has been received, and immediately receives an “early result”. Please note, that when using

the HashSlot TDMA slot reordering scheme from Section 12.6, the first three DVs will definitely

describe spheres at non-collinear center positions – a relevant advantage for many localization

algorithms which cannot operate otherwise (like e.g. trilateration using linear equations), or

which would at least suffer from numerical instability (like e.g. WCL or pVoted) then.

To progressively obtain more LPs from each successively received DV, pVoted does not only

store the LPs but also the relevant DV information (i.e. the sphere’s center and radius). Apart, it

generates up to
(i−1
2

)

new LPs for the i -th received DV. Listing 13.1 gives an outline on the DV

processing function. Obviously, the data fusion process will take longer with each received DV,

and finally, for g received DVs,
(g
3

)

DV triplet intersections must be computed to receive and

store up to
(g
3

)

LPs2. If we however recall the feature of the HashSlot data aggregation protocol

to limit the number g of sending anchors using a QoS request, and to progressively extend

the slot lengths after each successful transmission, we see once more that the foresighted and

1Minor deviations in the z-coordinate can easily be compensated on-the-fly as described in [242].
2With some optimization within our code this involves

∑g

i=1(i −1) sphere intersections.
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1 int processDV(dv) {

2 s = createSphere(dv); // create new sphere from just received DV

3

4 foreach (triplet t of spheres containing s) {

5 q1 = intersectTriplet(t ); // new LP (Eq. (13.2), Eq. (13.14))

6 foreach (previously created LP q2) {

7 if (d(q1, q2) <= δ) { // mutual voting (Eq. (13.4))

8 vote(q1, q2); // updates consistencies , voter count , and WCL

9 // information (Eq. (13.5) -- Eq. (13.9))

10 qb = updateBestLP(q1,q2); // select by max. consistency

11 }

12 }

13 storeLP(q1); // if necessary , deletes the least consistent LP first

14 // to free memory

15 }

16

17 storeSphere(s); // if necessary , deletes the worst sphere first to free memory

18 // i.e. the one which is involved in the least voted DVs

19

20 if (α(qb )≥ 2
3 && β(qb )≥ 2

3 ) // classify by (Eq. (13.11), Eq. (13.12))

21 return 1; // indicate good quality of qb (stop data aggregation)

22 else return 0; // indicate bad quality of qb (wait for more DVs)

23 }

Listing 13.1: The pVoted core algorithm for processing a just received DV (pseudocode)

application-specific protocol design from Chapter 12 turns out as a great benefit now3.

Nevertheless, regarding the low CPU performance and the severely restricted RAM of typical

sensor nodes4 the resource-related and computational effort would initially still be too complex

to store all DVs and LPs – especially if we consider that error-proneDVswill also increase the data

fusion cost. For example, g = 9 received DVs would already demand for 36 sphere intersections

resulting in up to
(9
3

)

= 84 LPs, and require 9·8 B+84·6 B= 576 B just for the spatial information5.

While we can accelerate the computations by storing intermediate results for subsequent DVs at

even more memory consumption(!), another approach showed to be much better for reducing

both costs:

The idea is to simply limit the maximum number of storable DVs and LPs. If we take the

sharp separation of central and side errors from Figure 11.4b[p249] into account, we can let the

LPs vote for each other to evaluate their trustworthiness, and delete the least “consistent” LPs as

well as the corresponding DVs as soon as the available memory is exhausted. This frees space

and saves CPU time for the next DV processing. While a careful LP ranking is essential then

to not mistakenly delete good data but keep the bad instead, the consistency will also be used

for selecting one LP for the final position estimation. Since it might still happen that “good”

data must be deleted during the data aggregation process – e.g. in case of many received DVs

compared to the memory quotas – it is important to transfer the relevant information to the

remaining LPs first. Following Listing 13.1 this is achieved as follows:

3Of course it would always be possible with any protocol to simply stop after the g -th DV, but the ones received so

far would probably not be distributed comparably uniform within the US coverage zone. Besides, a waste of time

and (exclusive) anchors resources would occur if these stood involved unnecessarily long.
4. . . which already meant considerable resource sharing efforts through dynamic memory management to integrate

both the SNoWGhost remote maintenance system and the Cut DSP algorithm (→ Section 7.6.2).
5While we assume 16 bit values for x/y/z-coordinates and distances at millimeter resolution, the true memory

demand of our implementation is 2610 B and includes some additional runtime information.
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(a) 90◦ (b) 60◦

Figure 13.2.: The impact of the distance measurement imprecision ǫ on the potential position of inter-

section points (2D visualization).

Triplet intersection analysis for precision evaluation. Intersecting three spheres (→ Line

5) with a distance measurement imprecision of up to ±ǫ in each radius reduces the expectable
precision and accuracy of the intersection point the less the closer the angles between the

tangents in this intersection point approach 90◦. A 2D example for two circles is illustrated

in Figure 13.2: For ϕ = 60◦ in Figure 13.2b even a slight imprecision can potentially move

an intersection point – and the corresponding LP in particular(!) – significantly further away

from the true position than exactly the same imprecision would do for ϕ= 90◦ in Figure 13.2a.

Projected to the 3D case, the intersection of two spheres s1, s2 with an intersection angle ϕ

receives an initial precision trust

P (ϕs1,s2) :=







1
90
·ϕs1,s2 if ϕs1,s2 ∈ [0◦,90◦]

− 1
90
·ϕs1,s2 +2 if ϕs1,s2 ∈ (90◦,180◦]

∈ [0,1] (13.1)

as visualized in Figure 13.3. While we considered various alternatives for Eq. (13.1) which will

not be discussed here, this one achieved the best results throughout our tests. Accordingly, each

newly created LP q (which in turn results from intersecting two sphere intersections from a

triplet (s1, s2, s3) with s1 being the latest sphere) receives the precision trust

P (q) :=
1

2

(

P (ϕs1,s2)+P (ϕs1,s3)
)

. (13.2)

Taking also P (ϕs2,s3) into account would be intuitive, but was intentionally avoided for perfor-

mance reasons and since it did not affect the quality of the result notably. Another issue which

became apparent during our tests is, that anchors at larger distance from each other within

the US coverage zone tend to result in more trusted intersection angles6. Thus it is yet another

benefit of HashSlot that reordering the transmission slots will schedule anchors opposing each

other within their module cell first (→ Figure 12.9[p282]).

6While it should thus be optimal to use US transmitters with an emission angle of about 90◦ (→ Figure 11.1[p245]) our

transceivers did unfortunately not allow us to approve this under real-world conditions.
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13. Progressive Position Estimation: The pVoted Algorithm

Figure 13.3.: The precision trust distribution for two anchors A,B .

Referring to Figure 13.2 the three depicted intersection examples also exhibit the potential

LP areas: The “more quadratic” the larger the precision trust P (ϕ).

Mutual LP voting for accuracy evaluation and on-line data reduction. Having assigned

a precision trust P (q) for each newly created LP q , the next step is the actual voting (→ Line 6).

Once more we take the measurement error characteristics from Figure 11.4b[p249] into account:

If we imagine a 3D version of Figure 13.2a, it becomes obvious that even for this optimal

constellation with ϕ = 90◦, and a maximum imprecision of ±ǫ for three intersecting spheres
from the same accuracy category (either central or side error), the maximal imprecision ξwhich

we have to accept for the final position estimation computes as

ξ :=
√

3ǫ2 =
p
3ǫ. (13.3)

Since we always assume at least a small distance measurement error we also assume ξ> 0. Thus,

a “good” LP must never be more than ξ away from the true position, and the maximum distance

d ∈❘+
0 we accept between two LPs q1 and q2 to vote for each other (→ Line 7 et seq.) is limited

by

δ := 2ξ= 2ǫ
p
3. (13.4)

Evaluating pairwise LP distances d will not only create clouds of LPs voting for each other, but it

is also intended to separate “good” LPs (which emerged from accurate distance measurements

around the central error) from inaccurate ones (which resulted from side errors). Figure 13.4

shows an example scenario from our evaluation environment.

From the overall set of LPs we still have to select the most likely one within the most likely

cloud for our final position estimation. Therefore the voting process successively counts each

LP’s voters ν(q) and adds a distance d dependent attraction bonus s(d) to the consistencyC (q)

of each one of the two LPs q1,q2 it currently compares:

C (q1) :=C (q1)+L(q2) · s(d) and C (q2) :=C (q2)+L(q1) · s(d) (13.5)

ν(q1) := ν(q1)+1 and ν(q2) := ν(q2)+1 (13.6)
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13.2. The pVoted Position Estimation Algorithm

Figure 13.4.: A potential pVoted scenario: The LPs within the red circle of radius δ did vote for the best

LP so far, and the final position estimation is indeed within the green circle of radius ξ

representing the tolerable distance error.

While the initial values for both ν(q) andC (q) is 0, L(q) is an LP’s location trust which adjusts

the attraction between two LPs and remains to be discussed later in the context of position

prediction – for now we simply assume L(q)= 1. The attraction s(d) represents a linear score

with 1 indicating the maximum tolerated distance (i.e. d
Eq. (13.4)= δ), and 2 indicating a perfect

match (i.e. d = 0):

s(d) :=−
d

δ
+2 ∈ [1;2] (13.7)

Keeping our goal to implement a progressive scheme in mind, the most consistent LP qb so

far will be marked and updated immediately after each voting (→ Line 10). Also, each newly

created LP will be stored (→ Line 13). In case the available memory therefore is exhausted, the

least consistent one will be removed for on-line data reduction (not information reduction as

described next). It is similar for saving the spheres: The ones which contributed to the least

voted LPs will be removed first (→ Line 17).

WCL for position estimation. Apart from the accuracy related information, pVoted also

accumulates some spatial information for each LP q to simplify and accelerate the final position

estimation using an adapted weighted centroid localization (WCL) over the most consistent

LP qb and its surrounding cloud of supporting voters. The idea is to move the coordinate of qb

component-wise according to the weighted distances of its voters in range δ.

However, we have to avoid the need to identify, access, and process these voters once more

then, since, apart from their possibly large number, some of them might already have been

deleted. Thus, we also accumulate the component-wise weightsWx/y/z for the two LPs q1 and

q2 with Euclidean distance d = ||(dx ,dy ,dz)|| ≤ δ voting for each other:

Wω(q1) :=Wω(q1)+dω ·P (q2) · s(d) and

Wω(q2) :=Wω(q2)+dω ·P (q1) · s(d) with ω ∈ {x, y,z}
(13.8)
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While the mutually imposed weight obviously depends on the precision trust P (q) of each voter,

a divider with initial value 0 must also be updated incrementally:

divider(q1) := divider(q1)+P (q2) · s(d)

divider(q2) := divider(q2)+P (q1) · s(d)
(13.9)

In the end, i.e. as the data aggregation stops for whatever reason (→ Section 10.2.4 for exam-

ples), the final position estimation p̃m for a clientm will be computed from just the currently

most consistent LP qb at position (qb,x ,qb,y ,qb,z):

p̃m := (mx ,my ,mz) with mω := qb,ω+
Wω(qb)

divider(qb)
for ω ∈ {x, y,z} (13.10)

Result classification for early termination. Considering the ultrasoundmeasurement error

distribution from Figure 11.4b[p249] we can easily predict the expected number of accurate DVs

from the total number of receivedDVs. From these values we can in turn compute the expectable

number of voters Vexp as well as the maximum obtainable number of voters Vmax for a “good”

LP7. These values can be used to classify the LP q and the final position estimation p̃m resulting

thereof as

α(p̃m)=α(q) :=







ν(q)
2 ·Vexp

∈ [0; 1
2
) for ν(q)<Vexp

ν(q)−Vexp
2 · (Vmax−Vexp) +

1
2

∈ [1
2
;1] for ν(q)≥Vexp

(13.11)

and

β(p̃m)=β(q) :=
divider(q)

2 ·ν(q)
∈ [0;1]. (13.12)

This means: The larger α(p̃m) the more accuracy can be expected from the position estimation,

and the larger β(p̃m) the more precision can be expected. During our tests values below 1
3
for

both metrics commonly indicated “bad” position estimations; these should neither be used for

subsequent position predictions nor by the application which uses the localization service. In

contrast, we stopped the data aggregation as soon as both values reached 2
3
since this empirically

indicated the result to be sufficiently “good”, i.e. within its tolerable distance error ξ.

Position prediction. pVoted maintains a history of up to 3 most recent position estimations

p̃i with i ∈ {1,2,3}8, and p̃1 being the latest. Moreover, it assigns a tristate marker ηi for each one

to indicate if itself did match with its own prediction p∗
i
:

ηi :=







1 if ‖p̃i −p∗
i
‖ ≤ ξ

0 if ‖p̃i −p∗
i
‖ > ξ

−1 if no prediction p∗
i
was available

(13.13)

7While details on the formulas will be omitted here, we use a lookup table for up to 6 DVs. This proved to be

absolutely sufficient for our error characteristics.
8Note that themaximum tolerable age of a historic estimationmust be adjusted to the client’s speed and its likeliness

to change its direction.
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1* 1 -11 1 1 -11 -1* -1 0* 0

Figure 13.5.: Position prediction based on three historic estimations p̃1, p̃2, p̃3

As illustrated in Figure 13.5 the new prediction p∗ for the current position estimation com-

putes as linear interpolation over a rule based selection of two historic estimations: If η1 ≥ 0 use

p̃1 and the next p̃i with i ∈ {2,3} and ηi ≥ 0; this eliminates one potential error in either p̃2 or p̃3.

If η1 = η2 ≤ 0 assume a change in the client’s movement direction and nevertheless use p̃1, p̃2.

If η1 < 1 but η2 = η3 = 1 assume p̃1 as erroneous and use p̃2, p̃3. In any other case (some won’t

occur), the prediction is omitted entirely.

Once computed, the prediction p∗ itself will according to Eq. (13.11) and Eq. (13.12) simply

be considered as the first LP q∗. While q∗ will never be deleted, its consistency C (q∗) and

precision trust P (q∗) will simply be computed from the average α and β values of the used

historic estimations. Apart, q∗ will initially be assumed as the best LP so far (i.e. qb := q∗), and

the prediction attracts other LPs within its cloud more than ordinary LPs do. Thus, as applied in

Eq. (13.5), the location trust L(q) ∈ [0;1] for each newly created LP q computes as

L(q) :=







1 if qi = q∗ or if no prediction available

2
C (q∗) ·ν(q∗) otherwise

. (13.14)

While this decreases the impact of ordinary LPs along with an increasing expected “quality” of

q∗, a bad prediction p∗ will still be outperformed as the initially most consistent LP during the

progressive DV processing. Beyond, this history based evaluation of the future even smooths

captured paths for tracking applications.

13.3. Evaluation

During the just presented description of themost central pVoted operation steps we have already

anticipated to expect various synergetic benefits between the progressive voting approach,

the data aggregation protocol design, and the software architecture. Though we avoided the

discussion of general mathematical details on position estimation algorithms (since this would

go beyond the scope of this work for the reasons given in Section 13.1), we will instead focus

on analyzing the mutual influences between these interacting concepts, and present some

empirical studies to support the validity of our assumptions from the previous chapters. Namely,

these are:
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(a) circles (2D) (b) squares (2D) (c) cylinder (3D) (d) randomwalk (3D)

Figure 13.6.: SNoW Bat test bed evaluation paths (ceiling height h = 7m, dmin = 2.8m, L = 1.3m)

◦ The general pVoted position estimation performance (under various HashSlot configura-

tions) in comparison to some other selected approaches.

◦ The impact of both the DV slot reordering from Section 12.6 and the result classification

scheme from Section 13.2 on both the pVoted precision and the localization speed.

The analysis framework. For a convenient comparison of various system configurations and

position estimation algorithms, we developed a tailored observation framework for desktop PCs

with support for both purely simulation based analysis and hardware-in-the-loop operation.

Implemented in Java it interfaces a SmartNet compatible SNoW5 sniffer node as depicted in

Figure 10.2[p226] to passively or actively participate in the network’s radio communication. This

way it gains easy access to the CAV andDV packets, and can oncemore supervise the reliability of

the HashSlot protocol as well as the temporal progression of most SNoW Bat operation stages P1

–P4 from Section 10.1.19. Most important for this evaluation, thewirelessly gathered information

(→ Listings 10.1, 10.2[p228]) allowed to obtain the real-world anchor positions, and to compare the

mobile client’s position estimation results of the native SmartOS implementation (using integer

arithmetic and truly limited memory reserves) to the Java implementation (using floating point

arithmetic and quasi “unlimited” memory reserves). Yet, the problem with this approach is that

neither the simulator nor the real-world installation has perfect knowledge about the client’s

current position – especially in case of a moving client. Beside we were always limited to the

rather small test installation from Figure 10.1[p225].

As a consequence, the analysis framework was extended to also simulate arbitrarily deployed

virtual anchors and moving clients within 3D environments of arbitrary size: An emulation for

the ultrasound distance measurement is based on the error characteristics which we obtained

from using our Cut algorithm in Chapter 11 as real-world reference model (→ Figure 11.4b[p249]).

A HashSlot emulation calculates the TDMA slot schedule for the anchors within the projected

US coverage zone as well as the corresponding DV processing order at a freely moving virtual

client.

For each position estimation iteration, either the sniffed DVs or the ones which were created

by the simulator are successively forwarded to the available position estimation algorithms. Thus

we achieved a perfectly identical information base for all range based data fusion approaches

under test:

9As a side effect, the sniffer node also served as gateway for the SNoW Ghost remote-management subsystem from

Section 8.2.
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◦ Centroid Localization (CL), Weighted Centroid Localization (WCL), and MinMax (also

known as BoundingBox) were tested, but won’t be presented here due to their comparably

bad performance (see [259] for an evaluation in the context of RSSI based localization).

◦ Multilateration (ML) was tested in two modes: While the regular implementation was

providedwith simply all receivedDVs, the “oracle” implementation received andprocessed

only the accurate distance measurements, i.e. those within the central error in Figure

11.4b[p249]. Although the oracle method is obviously not applicable in real-world systems,

it achieves almost completely error-free results and served as a challenging reference

competitor for pVoted.

◦ Trilateration with Kalman filtering according to Eckert [91] was finally used to compare an

approach from another real-world installation.

◦ pVoted – of course.

Apart from the pVoted and Eckert’s trilateration approach an overview on the remaining

algorithms can be found in [259]10.

Analysis I: Simulation. For our first analysis we tracked a mobile node along four traces

within a virtual industrial hall of size 30m×20m×7m. While three paths were fixed for spatial

repeatability under varying HashSlot and pVoted configurations (→ Figures 13.6a – 13.6c), one

path follows a random walk for increased diversity regarding environmental constellations

(→ Figures 13.6d). The anchors at the ceiling were installed according to the demanded grid

structure from Section 10.2.2 and Eq. (10.1) to grant a 99% probability for receiving at least 4

accurate measurements during each position estimation: With a uniformly distributed place-

ment deviation of ±10%·L in both the x and y direction they were nevertheless assumed to

be perfectly calibrated. While this is initially acceptable for this test bed, the impact of less

precisely calibrated anchors as well as a corresponding self-calibration approach for SNoW Bat

is discussed in [256]11 but won’t be applied here.

For pVoted only, the alreadymentionedmemory saving strategywas incorporated by reserving

space for up to 6 spheres (DVs) and up to 10 LPs before we had to delete the least consistent

ones to gain space for new data. Figure 13.4 once more gives an example for a potential LP

constellation within this test bed. For all algorithmsmentioned above, Figure 13.7a shows the

rooted mean square errors (RMSE)

√
√
√
√

1

n
·
n−1∑

i=0

∥
∥
∥p ′

mi
− p̃mi

∥
∥
∥

2
(13.15)

between the true client positions p ′
mi

and the position estimation p̃mi
over n = 1000 iterations.

Two bars are presented for pVoted: While the red bar represents the results over all n iterations,

the pink bar (pVoted*) refers to only those results whichwere classified as “good” by the algorithm

10Diploma thesis conducted in conjunction with this work.
11Diploma thesis conducted in conjunction with this work.
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itself; i.e. those estimations for which the algorithm assumed a precision below 2·ξ
Eq. (13.3)=

2ǫ ·
p
3≈ 2.98mm. The true percentage of position estimations within this tolerable bound is

also given as numbers for each algorithm within this Figure, and identifies pVoted as quite

comparable to the oracle multilateration. Note that the RMSE values become worse for the

3D paths since moving closer to the ceiling involves less anchors and information for the data

fusion process. Regarding pVoted’s quality self-awareness Figure 13.7b shows the corresponding

binary evaluation of the pVoted classifier [325]: The good “correct classification” and “positive

predictive values” (PPV) raise the hope that using consistency thresholds can reliably be used

for terminating the data aggregation process early without losing too much precision and

accuracy12.

For pVoted only Figure 13.8b illustrates these savings by comparing the average number

of potentially available DVs to the average number of discarded DVs per position estimation

iteration. Apart, it also supports the already expected influence of the TDMA slot schedule and

DV processing order: Using slot reordering according to Section 12.6 was intended to obtain the

more relevant DVs first, and indeedmanages to cope with less DVs; especially for the “circles”

and “squares” paths where more DVs can potentially be aggregated due to the client’s larger

distance from the anchor plane. Even more interesting, Figure 13.8a shows that reordering

really maintains a higher precision for pVoted (red bars) than doing without (pink bars). This

influence is obviously less significant for the other schemes which always process all DVs and

do not attempt to ignore some of them entirely. On the other hand, ignoring DVs under pVoted

also results in reduced CPU load and improved data aggregation speed as already discussed in

Section 10.2.4.

Up to now we did not consider the impact of the HashSlot QoS option. As we have just seen,

this is acceptable for position estimation algorithms which are able to stop the data aggregation

process according to a dynamic classification scheme; for the others, however, explicitly request-

ing an “adequate” number of DVs remains the only option to tune the performance. Comparable

to Figure 13.7 without any QoS limitation, Figure 13.9 show the RMSE and classification evalua-

tion for g = 16 requested DVs. Though the RMSE increases slightly for the “circles” and “squares”

paths due to the reduced amount of information (Figure 13.8b certifies about 20 potentially

available DVs without the QoS limitation), the other paths are less significantly affected since

the average number of available DVs remained almost constant.

Analysis II: Real-World. Following the Java implementation, pVoted was also implemented

in C13 for execution on real SNoW5 hardware within our SNoW Bat setup from Figure 10.1[p225].

This allowed us to verify the expected impact of the hardware/software/network co-design as

discussed in e.g. Section 10.2.4 and Chapter 12, as well as the position estimation error under

real-world conditions. Since however the overall system quality and performance depends on

the intense interaction between the various techniques, concepts, and paradigms from earlier

12The comparably low “negative predictive values” (NPV) are quite acceptable since classifying sufficiently precise

estimations as “bad” every now and then is less critical than vice versa.
13Though the realization as SmartOS library is quite straight forward, dynamic hints must be handled according to

Figure 10.8b[p237].
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Figure 13.7.: Position estimation results for the paths from Figure 13.6 (average over 1000 iterations)

(HashSlot: QoS = max, slot reordering enabled— pVoted: early termination disabled)
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Figure 13.8.: The impact of the HashSlot TDMA slot reordering scheme on the data aggregation speed

(average over 1000 iterations)

(HashSlot: QoS = max— pVoted: early termination enabled)
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Figure 13.9.: Position estimation results for the paths from Figure 13.6 (average over 1000 iterations)

(HashSlot: QoS = 16, TDMA slot reordering enabled— pVoted: early termination disabled)
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chapters, we’ll defer the discussion of the “combined” results to the conclusion Chapter 14.

Yet, as an early summary we can already anticipate that the entire system of distributed nodes

performed sufficiently fast and reliable to generate about 2.5 position estimations per second at

an average spatial error of about 10mm: Also limited to storing up to 6 DVs and 10 LPs for saving

memory and CPU load (just like we did for the simulative analysis), the final position estimation

results between the Java and the C version processing the same captured distance information

differed by about 2mm caused by rounding and the discrepancies between floating point and

integer arithmetic. The remaining differences in the spatial results will be discussed next.

13.4. Summary

This chapter introduced the pVoted position estimation algorithm as a representative for progres-

sive data fusion approaches. Based on successively collected distance measurements, potential

solutions are calculated and classified immediately, i.e. with each incoming data packet, through

mutual voting: Taking the (known) distance measurement error characteristic into account, this

allows to reliably distinguish “good” from “bad” information, and to filter the latter immediately

for reducing the data fusion cost in term of memory demands and CPU load on the typically

weak and resource constrained sensor node hardware.

As already expected in the previous Chapter 12, where we dealt with the general concepts of

wireless data aggregation in lateration based indoor localization systems, the pVoted test beds

showed once more that is is essential (or at least beneficial) to obtain the most “useful” distance

information first: In combination with the progressive filtering and “quality” classification this

can be exploited for terminating the data fusion process early, and to save even more CPU time

and energy in particular.

Compared to most naïve approaches, were information is collected arbitrarily and greedily

(maybe just bounded by a certain deadline or packet count limitation), the combination of

◦ DV transmission reordering through HashSlot,

◦ solution filtering through mutual voting, and the

◦ early termination through continuous result classifications

did not only satisfy our long-term goals to reduce both the data aggregation and the data fusion

cost (→ Figure 9.2), but it also managed to reliably keep the position estimation error low. In this

concern, pVoted always achieved overall results which are definitely comparable to the “oracle”

multilateration approach. If we limit the evaluation to those values which were considered as

“good” by the algorithm itself – and these make up about 98% of the overall position estimations

– we even obtain significantly better results as depicted in Figures 13.7a and 13.9a. Thus, we can

finally state that incorporating (quality) self-awareness as already demanded in Figure 1.7[p14]

proofed to be a true benefit for our specific application, and will probably be a good advice for

any time-critical system – at least if it employs severely constrained hardware.
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14. Real-World Evaluation: The complete

SNoW Bat System Installation

This chapter evaluates the composition of the previously introduced techniques, concepts, and

paradigms from within this work by means of a comprehensive real-world analysis1. Based

on the SNoW Bat installation from Figure 10.1[p225] the presentation of real-world benchmark

results completes our initially self-defined demand for testing each presented part of the work

within a real environment. The installation comprises a grid of 9×5= 45 static anchors (grid

constant L = 0.25m) mounted 2m above the ground, and 1 mobile client moving freely in 3

dimensions with a minimum distance of dmin = 1m from the anchor plane. With respect to the

title of this work we pay special attention to the temporal performance as mainly defined by

the hardware/software/network co-design, but also present some related spatial performance

results for the sake of completeness. While the general operation principles of SNoW Bat

have already been introduced in Chapter 10, Figure 14.1 summarizes once more the complete

execution flow spanning over the stages P1 - P4 as defined in Section 10.1.

1Specific benchmarks can be found within the corresponding chapters of this work.

generate & classify position
estimation from best LP

position prediction &
adaptive configuration of the

data aggregation protocol

anchor synchronisation &
simultaneous ultrasound ranging

receive next distance vector DV,
generate potential LPs,

mutual voting and ranking of LPs/DVs

delete worst
DVs and LPs

Y

last DV received
consistency thr. reached

or N

data generation/
data preprocessing

(progressive)
data aggregation/
data fusion

information classification/
system self-evaluation

information prediction
& system preparation

Figure 14.1.: The SNoW Bat execution flow with regard to the specific operation stages from Figure

10.3[p227] and the general WSN process flow from Figure 9.2[p211]
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14.1. Temporal Performance

Figure 14.2 gives the timing results for various system configurations at the mobile client2:

Regarding our software design optimization attempts from Section 10.2.4 to parallelize the

position estimation task TPE and the ultrasound task TUS, both Figures 14.2a and 14.2b compare

both tasks’ total active and idle periods when using either HashSlot or HashSlot+ for the data

aggregation: While for an equal number g of received DVs the data fusion process (i.e., b1+b4)

can obviously not benefit from the TDMA slot compression (in fact, the CPU load for pVoted

remains constant), the idle times (i.e.,w2+w3) for waiting on the DVs were significantly reduced

through HashSlot+. In particular, this also explains the clear steps in Figure 14.2a for those cases

where the fraction of used (|ARm |) and reserved (g ) slots is low, i.e. when we switch to the next
power-of-two number for the QoS level. This phenomenon is almost completely smoothed out

in Figure 14.2b where vacant slots are significantly shorter. On the other hand, since the two

tasks TUS and TPE are intended to operate interleaved, one might think that pVoted can profit

from increased radio silence between two DVs to process previously collected information and

(maybe) terminate early or be more precise. Even though this is not wrong per se, we do luckily

not depend on such occasional coincidences, but profit once more from the traffic shaping

feature of HashSlot and HashSlot+ which adjusts the DV transmission rate of the anchors to the

varying data fusion complexity of the client as described in Section 12.6: In fact, the TDMA slot

length will grow progressively to provide sufficient time for the DV processing3.

Keeping this option in mind, we can continue to compare the achieved localization frequen-

cies fL and f
‖
L
for the serialized and the parallelized task execution: Figures 14.2c and 14.2d

refer to a setup where the position estimation stage is not bounded, i.e. where pVoted “runs

to completion” until either all DVs have been processed or until the consistency threshold has

been reached to terminate early. Figures 14.2e and 14.2f refer to a setup where the data fusion is

additionally bounded by the deterministic duration of the corresponding data aggregation stage.

This means the hint in Figure 10.8b[p237] is ignored for the first and accepted for the latter setup:

While the relatively large idle times under HashSlot still result in clearly visible frequency steps

when changing the number of requested DVs g , HashSlot+ continues to reliably compensate

this effect and consequently achieves an increased overall localization frequency. Limiting

the data fusion duration to the data aggregation duration increases the localization frequency

even further, and makes the entire localization process deterministic – a highly appreciated

property in time-critical systems which is clearly reflected by the quite linear frequency graphs

for constant values of g in Figures 14.2e and 14.2f. The effect is even better reflected by the

increased andmore steady speedup s (in comparison to the unbounded data fusion) which we

gain from evaluating the benefit of the task parallelization. Even though Eq. (10.9)[p237] predicted

s = 2 in the optimum case, various system overhead (e.g. caused by the operating system) and

2Evaluating the static anchors was intentionally omitted here since the client’s operation is muchmore complex

and time-critical.
3Note that HashSlot – which does not observe the radio channel to detect foreign DVs or vacant slots – will increase

the TDMA slot length for every slot, while HashSlot+ – which observes the radio channel to detect and reduce

vacant slots – will only increase the slot length for truly used TDMA slots. The applied scaling factor has been

chosen empirically to match the pVoted runtime demands within our test bed.
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position estimation (P4) is bounded
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︸ ︷︷ ︸

HashSlot (vacant slots are uncompressed)

︸ ︷︷ ︸

HashSlot+ (vacant slots are compressed)

Figure 14.2.: Serial vs. parallel execution of the distance measurement task TUS and the position esti-

mation task TPE using HashSlot and HashSlot
+ for data aggregation. Relevant scenarios

which resulted in sufficiently “fast” and “good” position estimations are enclosed between

the vertical lines. Reminder:

. g is the number of requested DVs and reserved TDMA slots

. |ARm | ≤ g is the number of replying anchors and used TDMA slots
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14. Real-World Evaluation: The complete SNoW Bat System Installation

configuration imperfection (e.g. caused by the lattice point problem as described in Section

12.7) reduces this theoretical gain to s ≈ 1.7 in Figure 14.2f. Nevertheless, we see once more

the enormous advantages an appropriate hardware/software/network co-design can offer, and

use the setup from Figure 14.2f with an average localization frequency of f
‖
L
≈ 2.85Hz for the

relevant scenarios when analyzing the system’s spatial performance quality next.

14.2. Spatial Performance

As already mentioned in the previous chapter about pVoted, the achievable position error for

a moving client was hard to evaluate under real-world conditions since we had no reliable

“reference position estimation system” available for a meaningful comparison. Thus we put a

static client at various manually determined positions on the floor and on an elevated platform.

For both resulting distances from the anchor plane, i.e. 1913mm and 1204mm, respectively4,

we logged the position prediction over n = 1000 iterations, and observed two phenomena:

1. For a newly calibrated infrastructure of anchors, we obtained an average position error of

about 9mm – virtually independent from the client’s position.

2. About oneweek after the calibration – thoughwe carefully avoided to touch the installation

– the average error had already increased to about 30mm.

How can this be explained? First, comparing the simulatively obtained position errors of

significantly less than 9mmwhich we received for the just analyzed virtual industrial hall (→
Figure 13.7[p303]) to these real-world results, shows once more that realistic conditions are hard to

represent by a systemmodel: Irregularities in the node hardware (e.g. concerning oscillators

and ultrasound capsules) and within the infrastructure deployment itself (e.g. concerning the

anchors’ intended but hard to preserve common z-coordinate for spanning a perfect anchor

plane) introduces various sources of imponderabilities as already anticipated in Section 2[pviii].

Nevertheless, achieving a 3D position accuracy of about 10mm under real-world conditions

and with low-cost off-the-shelf sensor node hardware can be considered as acceptable. At least

it is a significant improvement over many other ultrasound based systems (→ Table 9.1[p222]).

This is particularly true if we also take the localization frequency of about 2.85Hz into account.

Second, regarding the deteriorating results after one week evenminor vibrations, e.g. from

people passing by, obviously exerted a significant effect on the rather unsteady metal frame.

Using more solid anchor suspensions (e.g. by means of fixed ceiling panels as depicted in

Figure 10.6b[p232]) might be one (untested) solution. Relying on continuous self-recalibration

(as demanded anyway in the context of self-x techniques in Figure 1.7[p14]) might be another

approach. Though this seems to be an essential requirement for counteracting the truly serious

problem of keeping long-term installations operational, it will not be discussed within this work;

in fact, it already has been discussed for SNoW Bat in [256]5.

More detailed spatial performance evaluations regarding the SNoWBat real-world installation

will also not be considered here: Implementation specific precision and accuracy issues have

4These distances have already been used for evaluating the Cut algorithm from Chapter 11 (→ Figure 11.3[p247]).
5Diploma thesis conducted in conjunction with this work.
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14.2. Spatial Performance

already been discussed in [242]6, and a study about the SNoW Bat client tracking capabilities

were presented in the context of an autonomous car steering system using fuzzy control and

periodic position estimations in [191]7.

6Bachelor thesis conducted in conjunction with this work.
7Diploma thesis conducted in conjunction with this work.
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15. Summary, Outlook and Conclusion

This final chapter of the thesis summarizes the scientific contributions of the various addressed

topics. Considering theory and practice, we will also suggest future work and potential research

activities to overcome still remaining limitations in the context of concrete application scenarios,

and to benefit from emerging possibilities as well as from technological advances to be expected.

15.1. Scientific Contributions

According to the title of this work, we present a number of significant “advances in distributed

real-time sensor/actuator operation”, ranging from sensor node hardware over embedded real-

time operating systems to wireless communication issues and concrete application design

considerations for indoor localization. As already announced in the introduction, the diversity

of the addressed research areas was intentionally accepted to gain a deep understanding of

the underlying problems andmutual side effects, and to finally provide far-reaching concepts

and paradigms for creating reasonable hardware/software/network co-designs in complex

embedded systems. While Part I specifies the related demands, Part II and Part III contain the

central contribution of this work with respect to the proposed WSN/WSAN research directions

from Section 1.2.1 (→ Figure 1.7[p14]):

Regarding the hardware aspect, Chapter 2 initially introduces the SNoW5 sensor node as

versatile base for subsequent test beds and for real-world installations.

Regarding the operating systems design, Chapter 4 introduces SmartOS as an entirely novel

solution for implementing preemptive multitasking systems under both hard and soft real-time

demands in resource constrained embedded systems. Apart from the support for quite “com-

mon” features (like events, semaphores, inter-task-communication, etc.), its central scientific

contribution aims on facilitating compositional software designs through four unprecedented

dynamic concepts for time management, resource management, and error handling in the area

of reactive task systems:

1. Chapter 5, time management: The sophisticated integration of time into the SmartOS

kernel allows an automatic and unified capturing of event timestamps, as well as the

precise scheduling and invocation of reactions with perfectly symmetric temporal error

intervals around the true event occurrence or intended reaction time, respectively. In

the average case, the temporal error reduces to 0. Furthermore, providing the underlying

temporal semantics to the application layer enables the implementation of highly reactive

software and precisely predictable system behavior (e.g. for environmental interactions or

time synchronization).
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2. Chapter 6, resourcemanagement: DynamicHinting is an entirely novel concept for sharing

arbitrary but strictly exclusive resources (like e.g. peripheral devices or data structures) un-

der real-time conditions in openmultitasking environments. Based on extending classic

priority inheritance techniques, DynamicHinting features a collaborative approach: Re-

source conflicts are detected at runtime by the resource manager, and indicated through

so called “dynamic hints” to exactly those spurious tasks which currently block other

higher priority tasks. Thereby, DynamicHinting applies a generous resource assignment

policy where starving low priority tasks is avoided entirely. The associated novel program-

ming paradigm consequently allows for on-demand resource hand-overs: Self-controlled

by each individual task, so called time-utility-functions can be used to decide from appli-

cation specific contracts and from the blocking task’s own requirements, about whether to

follow or ignore a hint. As a major contribution (compared to all other embedded operat-

ing systems we know about), bounded priority inversions can be resolved on-demand to

reliably reflect hard real-time demands among concurrently running taskswithout forced

resource revocations or the prophylactic maintenance of so called safe states.

3. Chapter 7, memory management: The CoMem approach is based on DynamicHinting,

and provides lock-free and truly dynamic heapmanagement for assembling evenmemory-

demanding subsystems onmemory-constrained hardware. As an entirely novel feature in

embedded systems design, the application of optional contracts and suitable time-utility-

functions for releasing allocated memory blocks on-demand even guarantees worst case

allocation times for time-critical requests.

4. Chapter 4, exception handling: The native support for task-specific exception handling

is another unknown concept in most embedded operating system kernels. As otherwise

only known from higher level programming languages, SmartOS exceptions are provided

as an improvement to clearly separate the task logic from the error handling. In the

special context of dynamic resource management, mapping dynamic hints to exceptions

even allows to synchronize sporadically and asynchronously emerging resource conflict

situations to the execution flow of any spurious task. This way, the indication delay is only

bounded by the overhead for a single task context switch, and increases the performance

of both DynamicHinting and CoMem, respectively.

Regarding the system design and communication aspect, and to further demonstrate the

conceptual advantages and practical suitability of the previously presented techniques, Chapter

8 closes Part II of this work with a first idea on how to combine SmartOS, DynamicHinting,

and CoMem to realize both the wireless MAC protocol SmartNet and the remote-management

system SNoWGhost.

Part III of this work thoroughly addresses various aspects of ultrasound based indoor localiza-

tion systems. Apart from discussing initial design considerations on the general WSAN process

flow (→ Figure 9.2[p211]), we continue to apply the building blocks from Part II for developing

SNoWBat as a real-world example for a complex, distributed, and time-critical sensor/actuator

system. While the underlying system architecture is described in Chapter 10, the central scien-
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tific contribution of Part III covers three novel concepts for co-designing efficiently interacting

data generation, data aggregation, and data fusion schemes:

1. Chapter 11, data generation: The Cut algorithm for ultrasound based distance measure-

ment makes use of a lightweight DSP algorithm and the SmartOS timestamping capability

to simultaneously determine several spatial distances between static anchors within the

infrastructure and freely moving clients within the serviced area. As a specific contribu-

tion, we managed to create a special error characteristics, which allows us to significantly

improve the subsequent data fusion process.

2. Chapter 12, data aggregation: HashSlot is a radio-based TDMAMAC protocol for single-

hop data aggregation in reactive networks. The scientific objective is twofold:

Regarding general communication issues, HashSlot is designed for gathering data on-

demand from statically deployed sensor nodes at a mobile sink. Without the need for any

explicit coordination or communication between the nodes, the distributed slot sched-

ule calculation is accomplished by each source autonomously: The process relies on a

hash function which exploits both implicitly available and explicitly provided information

(from the data sink) to guarantee collision-free and tightly packed transmissions even in

case of sporadically high radio loads. As often required for event-driven WSN systems

with dynamic topology, the schedule is calculated for each data aggregation stage. Nev-

ertheless it scales well, and provably achieves the optimum in terms of response delay,

energy consumption, data throughput, and transmission reliability. Using HashSlot+ even

compensates for real-world imponderabilities, like node failures, by compressing vacant

slots on-demand.

Regarding the hardware/software/network co-design, the hash function can be adapted to

reflect the demands of the actual data fusion process by a suitable transmission order. In

case of real-time demands, QoS parameters also allow to precisely configure and predict

the duration of the entire data aggregation process, and successively increasing slot lengths

facilitate the use of progressive data fusion algorithms with increasing execution times.

For a simplified network maintenance, using invertible hash functions finally allows the

detection and location of defective nodes from their (vacant) slot numbers.

3. Chapter 13, data fusion: The pVoted position estimation algorithm provides an entirely

novel approach for a progressive fusion of the just collected distance information. As

final contribution regarding our WSAN research directions from Section 1.2.1, it takes

the ultrasoundmeasurement characteristics and a history based position prediction into

account to develop a special quality self-awareness: Before each iteration, pVoted allows

to configure both the data generation and the data aggregation to reflect the current

demands of the mobile sink. During the actual position estimation process, the position

estimation filters bad measurements by letting intermediately computed results vote for

or against each other. It also evaluates the preliminary and successively improving results

to maybe terminate the data algorithm early in case of a sufficiently “good” score.

315



15. Summary, Outlook and Conclusion

15.2. Future Work

Potential future work in the context of this thesis comprises various options:

Regarding (indoor) localization systems, it is always desirable to further improve the preci-

sion and accuracy. Within our particular concept, improving the quality awareness for more

reliable break conditions during the position estimation process would be another goal. Apart,

HashSlot is only optimal for the special anchor pattern we have been using so far. Extending

the approach and its hash function to maybe arbitrary deployments or even entirely different

purposes would also be an interesting challenge.

Regarding the demands of event-driven systems, the implementation of the presented

timestamping concept in hardware would be desirable. Since tick counters are available anyway

in many CPU architectures, individual timestamps could be taken automatically and simultane-

ously for each accepted IRQ. In particular, this would overcome the handler latency problem for

cascading or tightly consecutive interrupts.

Regarding the general embedded systems design, the still increasing demands on the capa-

bilities and features of mobile networked devices impose a strong effect on the evolution of the

related hardware and software. An exceptionally interesting point for the conception of reactive

open systems is the evolution of multi-core or even many-core processors: These architectures

do not only increase the computational power by allowing the truly parallel execution of program

code, but they also promise to reduce the overall energy consumption of the CPU.

For many applications, however, these advantages are largely defeated as long as developers

are not able to overcome the problem of sharing resources efficiently among the cores. Though

numerous virtualization techniques are already available (e.g. [153, 247, 310]), they commonly

rely on a (rather strict) isolation between the software subsystems, and assign resources statically

and exclusively to the available cores [102, 124].

Here, we see the most promising research direction for extending this work: As already stated,

SmartOS is not limited to tiny and resource constrained sensor nodes, but it also proved to be

suitable for more generic computer systems. DynamicHinting in particular might establish

an entirely novel option for sharing resources even across core borders: An early FPGA based

realization of the approach already manages the resource access in hardware, and uses special

IRQs to pass hints between the cores. While advanced metrics for deciding on hints must be

applied then, a first and promising evaluation of the resulting hierarchical three-layer co-design

(hardware hints to notify cores, operating system hints to notify tasks, and application based

resource conflict handling) can be found in [30].

15.3. Conclusion

This work presents various novel advances in distributed real-time sensor/actuator systems

operation, ranging from operating systems over communication to application design concepts.

Apart from the theoretical evaluation of the presented approaches, techniques, and paradigms,

we also fulfilled our initially self-imposed demand to also prove their feasibility and suitability

316



15.3. Conclusion

under real-world conditions. Therefore, we implemented them on real hardware, and built

the indoor localization system SNoW Bat which integrates quite complex subsystems. Though

time-critical, these subsystems concurrently accomplish memory intense measurements, com-

putationally complex position estimation, energy efficient wireless communication, and reliable

remote maintenance.

The resulting composition revealed various real-time and resource sharing problems. While

trying to solve these, we found our initial thesis confirmed: Both novel programming paradigms

and co-designed approaches are definitely required to properly and reasonably coordinate the

typically limited resources of sensor nodes or general embedded systems at runtime – especially

when operating in highly dynamic environments.

In this regard, SmartOS, DynamicHinting, CoMem (systems level), and HashSlot (network

level) can be considered as the most central contributions of this work. In combination with

the kernel’s temporal semantics and exception handling concept (application level), we pro-

vided a strategy to achieve and retain an exceptionally high task and system reactivity when

sharing exclusive resources in open multitasking environments. Within our special use case, our

localization algorithm pVoted achieved a position estimation accuracy of 1 cm or better, and an

update frequency of about 3Hz using cheap and low power SNoW5 hardware with off-the-shelf

components only.
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Appendix A.

SmartOS API and Data Type Reference

Data Type Reference

Data types within the public SmartOS kernel API refer to tasks, time, mutexes, events, resources,

and interrupt processing. These OS objects can be declared via macros from Section A. The

non-public kernel data is not visible to the application code.

As depicted in Figure A.1, the RAM memory is organized by the linker to contain a well

structured arrangement for control blocks, and stack areas. Furthermore, special sections for

task entry functions, the remote update service, and other information data are reserved within

the ROMmemory. While this special alignment is hidden from application code, it provides an

efficient access to various data by simple pointer arithmetic within the kernel.

SmartOSBasic Data Types data structure: various (–)

typedef uint8_t TaskId_t; // task IDs

typedef TaskId_t Tasklist_t; // task IDs

typedef uint8_t Priority_t; // task priorities

typedef uint64_t Time_t; // time in us (64 Bit unsigned)

typedef uint32_t Delay_t; // delays in us (32 Bit unsigned)

typedef int64_t TimeDiff_t; // time differences in us (32 Bit signed)

typedef int Mutex_t; // Mutex data type

SmartOSEvent Control Block (ECB) data structure: Event_t (1 W)

typedef struct {

char value; // 0 for unset , 1 for set

Tasklist_t waitqueue; // head of the priority queue for waiting tasks

} Event_t;
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SmartOSResource Control Block (RCB) data structure: Resource_t (6 W)

typedef struct {

Event_t release_event; // the event connected to this resource

TaskId_t owner; // the owner task (NIL_ID for not allocated)

uint8_t flags; // flags for Dynamic Hinting

char *name; // resource name (for debugging only)

int (*fInit)(void); // resource initialization (before scheduler start)

int (*fGet)( const Time_t *deadline ); // called during first allocation

int (* fRelease )(void); // called during last deallocation

} Resource_t;

SmartOS IRQ Handler Control Block (ICB) data structure: IRQHandler_t (2 W)

typedef struct {

void (* handler )( unsigned int); // the handler function

unsigned int argument; // the argument for the handler

} IRQHandler_t;

SmartOS Exceptions data structure: EC_t (2 B + 1 W)

jmp_buf *env; // the execution context (see setjmp.h)

char caught; // caught indicator (0/1)

volatile unsigned char id; // the exception identifier

SmartOSTask Control Block (TCB) data structure: Task_t (30 W)

typedef struct {

int reg_context[REG_CONTEXT_SIZE ]; // register context

void (* dhHandler )(void); // the dynamic hint handler

Resource_t *hint; // the actual hint (NULL for none)

Resource_t *awaits; // pointer to the awaited resource (NULL=none)

char *name; // task name (for debugging only)

Tasklist_t *memberlist; // head of prio. queue this task belongs to

Priority_t priority; // the task’s active priority

Priority_t priority_base; // the task’s base priority

TaskId_t id; // the task’s id

uint8_t flags; // flags for Dynamic Hinting

unsigned int *stackarea; // address of the last word on the stack

TaskId_t next_timeout; // next task in the timeout queue (or NIL_ID)

TaskId_t next; // next task in any priority queue (or NIL_ID)

Time_t time_out; // next timeout of this task

void (* entry)(void); // the task entry function on system start.

Priority_t hintPrio; // receive hints only when blocking tasks

// above this priority threshold ϕ (Section 6.5.4)

EC_t ec; // the task -specific exception context

} Task_t;
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SmartOSDynamic Kernel Data (RAM) data structure: various (18 B + 5 W)

/* timing related */

Time_t timeline; // 8B the current system time

unsigned char timeout_queue_dirty; // 1B head of timeout queue has changed

Tasklist_t timeout_queue; // 1B the head of the timeout queue

/* task related */

Tasklist_t ready_tasks; // 1B ID of the first task in ready queue

Task_t *running_task; // 1W the currently running task’s TCB

TaskId_t running_task_id; // 1B the currently running task’s ID

uint16_t deadlockCount; // 2B total number of detected deadlocks

// since system start

/* misc */

EC_t *current_ec // 1W the current exception context

unsigned int os_RTFlags; // 1W runtime flags (init./ running/mode)

unsigned int __hwirq_number; // 1W IRQ number ( <200) or syscall address

unsigned int __hwirq_TS; // 1W timer counter when entering an IRQ

Delay_t __hwirq_COMP; // 4B the IRQ time compensation value.

SmartOS Static Kernel Data (ROM) data structure: various (4 B)

uint8_t const task_count; // 1B the total number of declared tasks

uint8_t const resource_count; // 1B the total number of declared resources

uint16_t const os_CTFlags; // 2B kernel compile time flags

SmartOSOS Objects Control Blocks data structure: various (–)

Task_t tasks []; // RAM: task_count * sizeof(Task_t)

// the array of TCBs

Resource_t resources []; // RAM: resource_count * sizeof(Resource_t)

// the array of RCBs

IRQHandler_t __os_irq_table []; // ROM: |HardIRQs| * sizeof(IRQHandler_t)

// the hardware IRQ table

IRQHandler_t __os_softirq_table []; // ROM: |SoftIRQs| * sizeof(IRQHandler_t)

// the software IRQ table
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Figure A.1.: The SmartOSmemory layout for the MSP430F1611 MCU
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API Function Reference

Function names within the SmartOS kernel API should be self-explaining in the context of their

use throughout this work. However, we use the following markers: (D) for macros which declare

OS objects, (I) for macros which import OS objects, and (S) for functions which will finally

invoke a syscall. For these functions, the call graphs and the partially automatic parameterization

is shown in Figure A.2. The subsequent syscall execution flow is depicted in Figure 4.5[p66].

SmartOSKernel data structure: – (40 B)

Functions:

void os_run(void);

char os_isRunning(void);

char os_isInitialized(void);

unsigned int os_inKernelMode(void);

unsigned int os_inTaskMode(void);

uint16_t os_getCompileTimeFlags(void);

SmartOSTime data structure: Time_t (8 W)

Functions:

void getCurrentTime(Time_t *t);

void getIRQTime(Time_t *t);

void os_setIRQTimeCompensation(Delay_t comp);

SmartOS Interrupts data structure: IRQHandler_t (2 W)

Declaration:

OS_DECLARE_IRQ_HANDLER(int irqno, *handler, int argument);(D)

SmartOSTasks and Priorities data structure: Task_t (30 W)

Declaration:

OS_DECLARE_TASK(name, int stackSize, Priority_t priority);(D)

OS_DECLARE_TASK_DH(name, hHandler, int stacksize, Priority_t priority);(D)

OS_DECLARE_USER_IDLE_TASK(entry, int stacksize);(D)

Functions:

TaskId_t os_getMyTaskID();

unsigned int os_check_stack(Task_t *task);

unsigned int os_check_my_stack(void);

void yield(void); (S)void setBasePriority(Task_t *task, Priority_t

priority);(S)

void setMyBasePriority(Priority_t priority);

Priority_t getBasePriority(Task_t *task);

Priority_t getMyBasePriority();

Priority_t getMyCurrentPriority();
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Appendix A. SmartOS API and Data Type Reference

SmartOSMutexes data structure: Mutex_t (1 W)

Declaration:

OS_DECLARE_MUTEX(name);(D)

OS_DECLARE_SET_MUTEX(name);(D)

OS_IMPORT_MUTEX(name);(I)

Functions:

int CAS(Mutex_t *addr, int expVal, int newVal);(S)

int TAS(Mutex_t *addr);

int TAC(Mutex_t *addr);

int TST(Mutex_t *addr);

void CLR(Mutex_t *addr);

SmartOSEvents data structure: Event_t (1 W)

Declaration:

OS_DECLARE_EVENT(name);(D)

OS_DECLARE_ACTIVE_EVENT(name);(D)

OS_IMPORT_EVENT(name);(I)

Functions:

void setEvent(Event_t *event);(S)

int waitEventFor(Event_t *event, Delay_t timeout);

int waitEventUntil(Event_t *event, Time_t *deadline);(S)

int clearEvent(Event_t *event);(S)

int waitEvent(Event_t *event);(S)

int sleep(Delay_t timeout);(S)

int sleepUntil(Time_t *deadline);(S)

int checkEvent(Event_t* event);

SmartOSResources data structure: Resource_t (6 W)

Declaration:

OS_DECLARE_RESOURCE(name);(D)

OS_DECLARE_RESOURCE_EXT(name, f *fInit, f *fGet, f *fRelease);(D)

OS_IMPORT_RESOURCE(name);(I)

Functions:

void releaseResource(Resource_t *resource);(S)

int getResourceUntil(Resource_t *resource, Time_t *deadline);(S)

int getResourceFor(Resource_t *resource, Delay_t timeout);

int getResource(Resource_t *resource);

int testResource(Resource_t *resource);

int isResourceOwner(TaskId_t taskID, Resource_t *resource);

see Section 6.5.4 for DynamicHinting related functions
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void __syscall_waitEventUntil(Event_t*, Time_t*)

int syscall_waitEventUntil(Event_t*, Time_t*)

sleepUntil(Time_t*)

sleep(Delay_t)

waitEventUntil(Event_t*, Time_t*)

waitEventFor(Event_t*, Delay_t) waitEvent(Event_t*)

clearEvent(Event_t*)

(ev, __DEADLINE_INFINITE)

(ev, dl)

(ev, __DEADLINE_PRESET)

(ev, __DEADLINE_CLEAREVENT)

(NULL, to)

(NULL, dl)

void syscall_setBasePriority(Task_t*, Priority_t)

void __syscall_setBasePriority(Task_t*, Priority_t)

setBasePriority(Task_t*, Priority_t)setMyBasePriority(Priority_t)

(running_task, p) (t, p)

void __syscall_getResourceUntil(Resource_t*, Time_t*)

int syscall_getResourceUntil(Resource_t*, Time_t*)

getResourceUntil(Resource_t*, Time_t*)

getResourceFor(Resource_t*, Delay_t*)getResource(Resource_t*)

(r, dl)

(r, __DEADLINE_INFINITE) (r, __DEADLINE_PRESET)

int syscall_CAS( )Mutex_t*, int, int

void __syscall_CAS(Mutex_t*, int, int)

CAS( )Mutex_t*, int, int

(m, i, i)

(m, 1, 0)

TAS( _t*)Mutex TAC( _t*)Mutex

(m, 0, 1)

void __syscall_setEvent(Event_t*)

void syscall_setEvent(Event_t*)

setEvent(Event_t*)

(ev)

void __syscall_releaseResource(Resource_t*)

releaseResource(Resource_t*)

void syscall_releaseResource(Resource_t*)

(r)

void __syscall_yield()

void syscall_yield()

yield()

black : Task-Mode
Kernel Functions

red : Switch to Kernel Mode
Syscall Wrappers

blue : Kernel-Mode
True Syscalls Task safe ISR safe

Figure A.2.: SmartOS kernel functions and syscalls (self-suspending functions support an additional

parameter ϕ for DynamicHinting as described in Section 6.5.4.)
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Appendix B.

SNoW5 Schematics and Layout

This appendix contains the circuit schematics (Figures B.1 – B.3) and PCB layouts (Figure B.4)

for the SNoW5 sensor node as described in Section 2.2. Since SNoW5 was designed for usability

and flexibility in research and education, its design propagates a trade-off between size (85mm

× 50mm) and easy expandability through a complete set of connectors. We’ll just give a short

overview here. See Chapter 2.2 for some design considerations and [31, 34] for a detailed

technical description of the SNoW5 platform.

Connectors are grouped in I/O ports and aligned in a 2.54mm raster as commonly specified

for standard breadboards in rapid prototyping. Since the ports provide access to each I/O pin of

all mounted devices, their observation by measurement equipment (e.g. oscilloscopes or logic

analyzers) is simplified.

Power can be either directly supplied by any 1.8−3.3 V source or by any 4−20 V source via a
reverse voltage protected DC/DC regulator. The direct and regulated voltage is also forwarded to

the header ports via DC_T and VCC, respectively. Three connectors (NC1, NC2, NC3) are freely

available for propagating additional signals or voltages across expansion boards. To save energy,

e.g. when battery powered, the power indicator LED is only active in combination with the

DC/DC regulator and the RS232 level converter can be switched off manually.

Programming and debugging the device is done via the service port which offers access to

the MCU’s JTAG (IEEE1149.1) and BSL interface, while, at the same time, it can be used for direct

power supply. Apart from the hardware supported programming, there is also an option for

SmartOS based over-the-air software updates by using the SNoWGhost remote maintenance

system [20] as described in Section 8.2.
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Appendix B. SNoW5 Schematics and Layout

Figure B.1.: SNoW5 schematics: MCU and power supply

Figure B.2.: SNoW5 schematics: I/O header ports
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Figure B.3.: SNoW5 schematics: Radio transceiver and data flash

Figure B.4.: The SNoW5 layout: Top (left) and bottom (right) side at original size
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Part VI.

Lists and Indexes
«Je ne cherche pas. Je trouve.»

(Pablo Picasso,

Spanish painter)
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