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1. Abstract  

Non–Small-Cell Lung Cancer (NSCLC) is the most frequent human lung cancer and a major 

cause of death due to its high rate of metastasis1. These facts emphasize the urgent need for the 

investigation of new targets for anti-metastatic therapy.  

Up to now a number of genes and gene products have been identified that positively or 

negatively affect the probability of established human tumor cell lines to metastasize2. 

Previously, together with the group of Professor Ulf Rapp, we have described the first 

conditional mouse model for metastasis of NSCLC and identified a gene, c-MYC, that is able to 

orchestrate all steps of this process. We could identify potential markers for detection of 

metastasis and highlighted GATA4, which is exclusively expressed during lung development, as 

a target for future therapeutic intervention2. However, the mechanism underlying this metastatic 

conversion remained to be identified, and was therefore the focus of the present work.  

Here, GATA4 is identified as a MYC target in the development of metastasis and epigenetic 

alterations at the GATA4 promoter level are shown after MYC expression in NSCLC in vivo and 

in vitro. Such alterations include site-specific demethylation that accompanies the displacement 

of the MYC-associated zinc finger protein (MAZ) from the GATA4 promoter, which leads to 

GATA4 expression. Histone modification analysis of the GATA4 promoter revealed a switch 

from repressive histone marks to active histone marks after MYC binding, which corresponds to 

active GATA4 expression. This work identifies a novel epigenetic mechanism by which MYC 

activates GATA4 leading to metastasis in NSCLC, suggesting novel potential targets for the 

development of anti-metastatic therapy. 
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1. Zusammenfassung  

Das nichtkleinzellige Bronchialkarzinom (Non-Small-Cell Lung Cancer/NSCLC) ist die 

häufigste Form des Lungenkrebs und ist aufgrund seiner hohen Metastasierungsrate für die 

meisten krebsbedingten Todesfälle verantwortlich1. 

Bisher konnte eine Vielzahl von Genen und Genprodukten identifiziert werden, die einen 

Einfluss auf das Metastasierungspotenzial von humanen Tumorzelllinien in vitro haben2. Vor 

kurzem gelang es uns unter der Leitung von Prof. Ulf R. Rapp das erste konditionelle Modell der 

Metastasierung von NSCLC zu beschreiben. Wir identifizierten u.a. das Gen c-MYC, welches in 

der Lage ist, in alle Schritte des Prozesses manipulierend einzugreifen. Im Rahmen dieser Arbeit 

konnten wir potentielle Marker zur Detektion der Metastasierung identifizieren. Unser 

Hauptaugenmerk lag dabei auf GATA4, ein Gen, das nur während der Lungenentwicklung 

exprimiert wird. Als potentielles Ziel für spätere therapeutische Eingriffe erscheint es daher 

besonders geeignet2. Die der Metastasierung zugrunde liegenden Mechanismen sind bisher 

weitestgehend ungeklärt und stellen daher einen Fokus dieser Arbeit dar. 

Im Rahmen der vorliegenden Arbeit wurde GATA4 als ein von MYC regulierter Faktor 

identifiziert, der an der Entwicklung von Metastasen beteiligt ist. Epigenetische Veränderungen 

am GATA4-Promotor nach der Expression von MYC konnten sowohl in vitro als auch in vivo 

nachgewiesen werden. Die Veränderungen beinhalten ortsspezifische Methylierungen, die 

einhergehen mit der Dislokation des MYC-assoziierten zinc finger protein (MAZ), die zur 

Expression von GATA4 führt. Die Analyse der Histon-Modifikationen am GATA4-Promotor 

ergab, dass nach der Bindung von MYC ein Wechsel von reprimierenden Histon-Markierungen 

zu aktiven stattfindet, der mit der GATA4-Expression korreliert. Im Rahmen dieser Arbeit 
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konnte also ein neuartiger epigenetischer Mechanismus identifiziert werden, mit dem MYC 

GATA4 aktiviert und auf diese Weise zur Metastasenbildung bei NSCLC führt. Gleichzeitig 

wurden dadurch neue potentielle Zielstrukturen für die Entwicklung von anti-metastasierenden 

Therapeutika gefunden. 
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2. Introduction 

2.1. Lung development 

The complex process of mammalian lung development includes lung airway branching 

morphogenesis and alveolarization, together with angiogenesis and vasculogenesis3. This process 

is orchestrated by finely integrated and mutually regulated networks of transcriptional factors, 

growth factors, matrix components and physical forces3. 

The respiratory system arises from the ventral foregut endoderm4. Following the embryonic 

period, which in humans corresponds to the first few weeks after fertilization, four overlapping 

phases of lung development are recognized: pseudoglandular, canalicular, saccular and alveolar5 

(Fig. 2.1). In the embryonic phase, lung appears as evaginations of the primitive gut which 

invade the surrounding mesenchyma. Two buds are formed on the left side and three on the right, 

representing the precursors of the mainstem bronchi and lobes in the adult lung6. In the 

pseudoglandular phase, progressive and complete division of the airways into smaller branches 

occurs and the diaphragm is formed6. This is followed by the canalicular phase where 

vascularization of peripheral mesenchyme rapidly increases the capillaries move into close 

contact with the surface epithelium, and connective tissue components are reduced to a 

minimum5. During saccular phase additional respiratory airways develop and the future 

respiratory units (acini) differentiate5. The epithelial cells differentiate into flat type I cells and 

larger type II. The latest cells secrete a mixture of lipids and proteins called surfactant during the 

final weeks of gestation which are essential to reduce the surface tension of the fluid, and have 

antimicrobial properties6. Finally in the alveolar phase, which lasts at least the first 3 years of 
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postnatal life alveolar formation commences, and alveoli multiply greatly in number up to a total 

of about 300 millions and reach a total surface area about 70 square meters6.  
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 Modified from5 and7  

Figure 2.1. Major events during lung development. 

Lung formation starts at the third week of embryonic development and extends to at least the third year of postnatal 

life and is divided in 5 distinct stages: embryonic, pseudoglandular, canalicular, saccular and alveolar.  

 

The adult lung is mainly comprised of numerous airways, alveolar ductal lumens and alveoli 

where the gas exchange of carbon dioxide and oxygen takes place, as well as alveolar septa and 

small pulmonary vessels8 (Fig. 2.2.A). Nearly 50 distinct types of cells have been identified in 

the lungs. Endothelial and epithelial cells (pneumocytes) and an attenuated interstitial space form 

the barrier which separates the pulmonary capillaries from the alveolar air. Two types of 

pneumocytes can be found in alveoli (Fig. 2.2.B). The type I cells are very flat and cover most of 

the alveolar surface. The type II cells are more irregularly shaped and secrete surfactant proteins, 

like surfactant associated protein C, Sp-C, which are the precursors of the type I pneumocytes6,4. 
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Sp-C is also expressed by a rare cell population located at the bronchioalveolar duct junction, 

which also express CC10, a marker for clara cells. These cells are called bronchioalveolar stem 

cells (BASCs) and have been shown to be capable of self-renewal and differentiation and to 

contribute to both the alveolar and bronchiolar lineages9,10. 
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Modified from6 and11 

Figure 2.2. Anatomy and cell populations of the lung. 

(A) Gross anatomy of lung and thorax. (B) Alveolar structure and cell populations. The putative lung stem cells 

(BASC) are located at the junction between the branching, bronchial region and the alveolar sac, and express 

markers from pneumocytes type II (Sp-C) cells and clara cells (CC10). 

 

2.2. Cancer 

Despite the enormous amount of research on cancer development and therapy, this disease 

continues to be a worldwide killer12. Cancer is defined as the abnormal growth of cells which 

tend to proliferate in an uncontrolled way13 and is caused by both internal and environmental 

factors. Internal factors include inherited mutations, hormones or immune conditions and 
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environmental/acquired factors include tobacco, diet, radiation and infectious organisms12. The 

path to cancer is driven by accumulation of genetic and epigenetic alterations, involves 

deregulation of many signaling pathways and requires that somatic cells escape from various 

intrinsic tumor suppressor mechanisms leading to uncontrolled cell growth14. The identification 

of genes and pathways involved in cancer progression is necessary to enhance our understanding 

of the biology of this process, and to provide new targets for early diagnosis and facilitate 

targeted treatment15. 

 

2.3. Lung cancer – NSCLC 

Lung cancer is the leading cause of cancer-related death worldwide due to its high metastasis 

rate, and thus a major health problem1. As the lung exposes an enormous area to the environment 

to efficiently load the blood with oxygen, the epithelial cells lining its surface are continuously 

exposed to air pollutants and are at high risk of oncogenic transformation16. Clinically, lung 

cancer can be divided into 2 groups: Small Cell Lung Cancer (SCLC) which begins in the nerve 

cells or hormone-producing cells of the lung and Non-Small-Cell Lung Cancer (NSCLC) which 

derives from epithelial cells. Approximately 75% of lung tumors are NSCLC, which includes 

squamous cell carcinoma, adenocarcinoma and large cell carcinoma1. The most frequent human 

NSCLC is adenocarcinoma. Molecular abnormalities in lung cancers are found in both growth-

promoting oncogenes and growth-suppressing tumor suppressor genes1. A dozen regulators of 

growth factor signal transduction were identified to be altered in lung cancers, especially 

regulators of the EGFR-RAS-RAF-MEK-ERK signaling network resulting in alterations on 

regulation of cell cycle, gene expression and apoptosis (Fig. 2.3).  
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Modified from 17 

Figure 2.3. Oncogene activation of the ERK-MAPK cascade. 

Mutationally activated RAF, RAS and mutationally activated (by missense mutations in the cytoplasmic kinase 

domain in NSCLC) and/or overexpressed EGFR leads to persistent activation of the ERK-MAPK cascade in human 

cancers. Activated ERKs translocate to the nucleus, where they phosphorylate and regulate various transcription 

factors leading to changes in gene expression. In particular, ERK-mediated transcription can result in the 

upregulation of EGFR ligands, such as TGFα, thus creating an autocrine feedback loop that is critical for RAS- 

mediated transformation and RAF-mediated gene expression changes17. 

 

The oncogene K-RAS is mutated in ~30% of the cases NSCLC, while EGFR is mutated in 10% 

of the cases17. EGFR, C-RAF and MYC are amplified in NSCLC1,18. C-RAF is a downstream 

effector of RAS signaling but although only the RAS GTPase is frequently mutated in lung 

cancer, C-RAF protein is found to be amplified in different lung cancers. Accumulated evidences 
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of deregulation in the EGFR-RAS-RAF-MEK-ERK pathway in lung cancer make this pathway 

an important subject of research and pharmaceutical scrutiny to identify novel target based 

approaches for cancer treatment17.   

 

2.4. MYC 

2.4.1. MYC protein family 

MYC family of proto-oncogenes codes for basic helix–loop–helix leucine zipper (bHLHZip) 

transcription factors that regulate the expression of genes involved in DNA synthesis, RNA 

metabolism, and cell cycle regulation and are deregulated and overexpressed in most cancer 

cells19. Members of this family include the well-characterized c-MYC, N-MYC and L-MYC genes 

which have similar overall structures, consisting of three exons with extensive areas of 

homology20. The c-MYC gene is expressed during all stages of the cell cycle and is normally 

downregulated during differentiation. In contrast, N-MYC and L-MYC expression is limited to 

particular stages of embryonic development, and to immature cells of the hematopoietic and 

neuronal compartments in the adult21. Activation of MYC genes occurs by amplification or loss 

of transcriptional control, resulting in MYC protein overexpression. In SCLC c-MYC, N-MYC or 

L-MYC are often amplified and aberrantly expressed, whereas in NSCLC exclusively c-MYC is 

found affected and only in 5% – 10% of the cases22. 

MYC-dependent transactivation requires heterodimerization with its bHLHZip partner protein 

MAX. Both the interaction with MAX and transactivation are essential for proliferative and 

oncogenic functions of c-MYC19. This dimerization enables specific binding of MYC:MAX 

complexes to 5′-CACGTG-3′ and similar E-box DNA sequences in the promoters of target 
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genes21. The C-terminal 90 amino acids of the MYC protein are required for dimerization with 

MAX and sequence- specific DNA binding23 (Fig. 2.4).  

 

c-MYC

MB I MB II MB III MB IV b HLH Zip

Transactivation 
Domain (TAD)

DNA-binding and 
dimerization with MAX

NLS

 

Modified from21 

Figure 2.4. Structure of the c-MYC protein. 

c-MYC contains at least six regions which are highly conserved between MYC paralogs and orthologs. The MYC 

N-terminal domain contains MYC Box I (MB I), MYC Box II (MB II) and MYC Box III (MB III). The MYC C-

terminal domain contains the MYC Box IV, the primary nuclear localization signal (NLS) and the basic helix-loop-

helix leucine zipper domains (bHLHZip).  

 

The N-terminal part of MYC proteins contains four highly conserved elements, the MYC boxes 

I, II and IIII. MYC box I (MBI) is required for gene activation, although the deletion of this 

region only partially abolishes the transforming ability of MYC. MYC box II (MBII) is essential 

for the ability of MYC to transform, drive cell proliferation, inhibit differentiation, repress gene 

transcription, and activate certain target genes, while MYC Box III (MBIII), plays a role in 

transformation, lymphomagenesis and apoptosis24. 

More recently a forth box has been described to regulate DNA binding, transformation, and G2 

arrest and apoptosis25. MYC exerts its main functions through gene regulation by recruiting 

transcriptional cofactors involved in modulation of RNA polymerase II function and of 

chromatin structure, including histone acetyl transferase (HAT) complexes. These are engaged 
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through interactions with the conserved MYC box II (MBII) in the transactivation domain 

(TAD) or with the bHLHZip domain21 (Fig. 2.4). The binding sites of MYC-proteins are ~25,000 

in the human genome, which by far exceeds the number of MYC molecules available in one cell, 

suggesting that a relatively brief binding of MYC leads to longer-lasting changes in the 

chromatin organization26. 

Carcinogenic events which lead to MYC deregulation enforce cells to undergo a transition to a 

hyperproliferative state, increase cell migration and independent anchorage growth ability, 

decrease cell adhesion and lead to metastasis2. However, MYC activation also provokes intrinsic 

tumor suppressor mechanisms including apoptosis, cellular senescence and DNA damage 

responses that act as barriers for tumor development21. Distinct threshold levels of MYC 

discriminate between normal and oncogenic MYC activity: while low levels of deregulated 

MYC drive ectopic proliferation of somatic cells and oncogenesis, activation of apoptotic 

pathways requires MYC over-expression27. 

 

2.4.2. Cooperation partners 

Although the c-MYC oncoprotein is required and sufficient for the induction of cellular 

proliferation, its role in the induction of apoptosis needs to be cancelled by the cooperation of 

another oncogenic partner to promote tumorigenesis progression. The cooperation of c-MYC 

with KRAS or LKB1 is sufficient to drive tumorigenesis2. Nevertheless, progression to 

metastasis is not achieved by the combination of these oncoproteins. In contrast, C-RAF 

cooperates with c-MYC in tumor progression and metastasis induction by suppressing apoptosis 

as described in the RAF-MYC balance model (Fig. 2.5)28,2.  
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Modified from29 

Figure 2.5. The balance model: Cooperation between RAF and MYC oncoproteins. 

Different cellular responses regarding proliferation, differentiation, senescence, apoptosis and survival, depending 

on the relative expression/activity levels of RAF and MYC.  

 

A hematopoietic lineage switch induced by a reprogramming of B lymphocytes to macrophages 

was previously observed as a result of RAF/MYC combination30. Moreover, the expression of c-

MYC in addition to C-RAF in type II pneumocytes promotes rapidly NSCLC tumor growth and 

is sufficient to induce metastasis to liver and lymph nodes. This combination cause the 

appearance of a phenotypic switch from cuboidal to Alveolar Papillary Columnar Epithelial cells 

(APECs) that are the most rapidly growing tumor cells and also predominate in liver metastasis2. 

 

2.5. Cancer stem cell hypothesis 

The cancer stem cell hypothesis suggests that many if not all tumors arise from both genetic and 

epigenetic changes in fully differentiated cells that can lead to genetic and phenotypic instability. 

These alterations induce dedifferentiation resulting in the reactivation of a sub-set of genes 
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expressed in progenitor or organ-specific stem cell. The subpopulation of cells that 

dedifferentiate as a consequence of reprogramming events induced by oncogenes are called 

cancer stem cells or cancer initiating cells. These cells have the capacity to sustain tumor growth 

by self-renewal, differentiation into the cell types of the original cancer and potent tumor 

formation30. It has been shown for mixed leukemia lineage that myeloid progenitor cells acquire 

properties of leukemia stem cells without changing their overall identity. These cells do not 

become stem cells but rather develop stem cell like behavior by reactivating a subset of genes 

highly expressed in normal hematopoietic stem cells31. The plasticity of functionally mature cells 

is induced by oncogenes like c-MYC or C-RAF30. It has been postulated by Rapp et al. that 

oncogeny is a faulty reversal of ontogeny and that a prelude to metastasis is the acquisition of 

phenotypes that are more primitive than those characterizing organ specific stem cells (Fig. 

2.6)29.  
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Figure 2.6. Metastasis as a faulty reversal of ontogeny. 

(A) Endodermal origin of the lung. Following gastrulation the definitive endoderm gives rise to the primitive gut 

tube, followed by secondary bud formation and branching morphogenesis, resulting in the formation of the bronchial 
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tree. Upon terminal differentiation the most distal region of the lung is organized into alveoli, where two types of 

epithelial cells are found: type I cells and cuboidal type II cells29. (B) Induction of plasticity in type II lung cells, e.g. 

by a combination of oncogenic RAF and MYC, allows reversal of differentiation of the type II cells to earlier points 

in their ontogenic history2. This may lead to other lung cell types (1,2) or to cells mimicking the phenotype of cells 

from the primitive gut tube (3,4). Upon evasion from the primary tumor these cells home to tissues, which resemble 

their phenotype, e.g. liver. Dedifferentiation is accompanied by a gain of novel potential metastatic targets and 

increase in malignancy of the tumor29. (C) A differentiation block imposed by forced MYC expression or by p53 

ablation (a) or by other factors (b) prevents redifferentiation and may further increase plasticity and heterogeneity of 

the transformed cell population29. 

 

This dedifferentiation confers to the cancer cells the ability to populate organs different from its 

origin by loss of organ identity. The reprogramming events triggered by oncogenes might have 

important consequences for the prevention, the prognostic evaluation and the treatment of 

cancer30. 

 

2.6. Metastasis 

The main reason for most of cancer related deaths is not the primary neoplasms, but secondary 

tumors, the metastasis32. The six hallmarks of cancer are distinctive and complementary 

capabilities that enable tumor growth and metastatic dissemination. They include sustaining 

proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative 

immortality, inducing angiogenesis, and ultimately activating invasion and metastasis33. A tumor 

which has not yet reached an invasive phenotype is often referred as “carcinoma in situ”. The 

capability to leave a primary tumor, travel via the circulation to a distant tissue site and form a 

secondary tumor is referred as metastasis32.  

Most cancer cells in a primary tumor have a ‘metastatic phenotype’, indicating that metastatic 

spread is an early event in tumorigenesis34. Metastasis is a complex multistep process which 



2. Introduction 
_____________________________________________________________________________________ 
 

19 

 

includes local tumor cell invasion, entry into the vasculature followed by the exit of carcinoma 

cells from the circulation and colonization at the distal sites35 (Fig. 2.7). The sequential nature of 

this metastatic cascade implies that failure to complete even one of these steps eliminates the 

possible development of secondary colonization36.  
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Figure 2.7. Metastatic cascade. 

The biological process of metastasis is a complex cascade with multiple steps: invasion and migration, intravasation, 

circulation, extravasation and proliferation and angiogenesis. 

 

In the first step of metastasis - invasion and migration -, individual cells detach from the primary 

tumor and invade adjacent tissue. The loss of E-cadherin by carcinoma cells, a key cell-to-cell 

adhesion molecule, is a well characterized alteration during this step33. Additionally, several lytic 

enzymes are secreted to degrade the ECM (extracellular matrix) and therefore facilitate 
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migration32. After invasion, tumor cells migrate as a response to chemokine and adhesive 

molecules gradients such collagene and fibronectin37.  

The intrusion of cancer cells into the blood and lymphatic vessels is referred as intravasation and 

is followed by circulation of the tumor cells. To settle at distant sites, tumor cells have to travel 

through the blood stream and withstand the conditions present in the blood. These conditions 

include high concentrations of oxygen and cytotoxic lymphocytes which are toxic for the cancer 

cells32. Escape of cancer cells from the circulation (extravasation) is thought to be a major rate-

limiting step in metastasis, with few cells being able to extravasate38. During extravasation, cells 

get stuck in the capillaries of a distant organ and leave the blood stream by penetrating the 

endothelium through proliferation and/or proteolytic enzyme32. The last step of the metastatic 

cascade includes colonization, proliferation and angiogenesis.  

At this point, the neoplastic cell settles at distant organs and builds a secondary tumor. This 

second tumor proliferates and induces neo-angiogenesis, which greatly improves blood supply of 

oxygen and nutrients and a system for the removal of waste products, permitting rapid 

growth32,37. Angiogenesis is regulated by signaling proteins that bind to stimulatory or inhibitory 

cell surface receptors displayed by vascular endothelial cells. The well-known prototype of 

angiogenesis inducers and inhibitors is the Vascular Endothelial Growth Factor-A (VEGF-A) 

which is produced by hypoxic tumor cells and thrombospondin- 1 (TSP-1), respectively37. 

Although metastasis is an inefficient process because few cells are able to overcome the adverse 

conditions between their entry into the circulation and settlement at a distant organ, the 

consequences of this process are often devastating due to high rate of treatment failure39. 
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2.7. GATA family 

GATA factors are a group of highly conserved transcriptional regulators that play crucial roles in 

the development, embryonic morphogenesis and differentiation of all eukaryotic organisms. 

Impaired function or reduced expression of these proteins contributes to malignant 

transformation due to failure of the affected cells to mature and exit the cell cycle. Therefore, a 

role of this family of genes in human cancers is not surprising40.  

GATA factors bind to the common WGATAR motif found in the transcriptional regulatory 

regions of numerous genes. In vertebrates, this family comprises six members (GATA1-6) which 

share a conserved DNA-binding domain composed of two multifunctional zinc fingers involved 

in DNA-binding and protein-protein interaction with other transcriptional partners and/or 

cofactors (Fig. 2.8.)41. The members of the GATA family can be separated into two subgroups 

based on their temporal and spatial patterns. While GATA1/2/3 are expressed in hematopoietic 

cell lineages and are essential for erythroid and megakaryocyte differentiation, proliferation of 

hematopoietic stem cells, and development of T lymphocytes, GATA4/5/6 proteins are mainly 

found in tissues of mesodermal and endodermal origin such as the heart, gut, and gonads41. 

However, this characterization does not justice to the much broader tissue distribution of most 

GATA proteins40. Indeed, the abundant expression of GATA proteins in several cell types of 

various endocrine organs together with their ever expanding list of target genes strongly 

indicates that these factors are essential regulators of cell specific gene expression involved in 

development, differentiation, and function of endocrine cells41. GATA factors can function in 

undifferentiated progenitor cells interfering in their expansion, or direct the maturation and cell 

cycle withdrawal in terminally differentiating cells. Thus, it is to be expected that mutations, loss 
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or overexpression of GATA factors contribute to the development of cancer in humans, 

including leukemia, breast or gastrointestinal cancers40.  
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Figure 2.8. Structure of the vertebrate family of GATA proteins. 

GATA factors share a conserved DNA-binding domain consisting of 2 zinc fingers (ZnF). The different GATA 

factors can be divided into 2 subgroups based temporal and spatial distribution: the hematopoietic subgroup 

(GATA1/2/3) and the cardiac subgroup (GATA4/5/6). Transactivation domains are found in both the N-terminal (N-

term) and/or C-terminal (C-term) portions of the different GATA proteins. NLS, nuclear localization signal. 

 

The member of this family, GATA4, plays a role in early endoderm development43, regulates 

genes involved in cardiac differentiation, is an important regulator of apoptosis and cell 

proliferation in humans and is essential for the maintenance of jejunal-ileal identities in adult 

mice44,45. In the intestine, GATA4 cooperates with TGF-β to activate gut epithelial gene 

expression43. In addition, this transcription factor was recently shown to control the expression of 
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Bcl-2 antiapoptotic factor and the cell cycle regulator cyclin D246. Its transcriptional activity was 

shown to be attenuated by direct methylation by the Polycomb-repressive complex 2 (PRC2)47.  

 

2.8. Epigenetic changes in cancer 

Epigenetics is defined as “heritable changes in gene expression that are not accompanied by 

changes in DNA sequence”48. Epigenetic mechanisms provide an "extra" layer of transcriptional 

control that regulates how genes are expressed. These mechanisms are critical for normal 

development and growth of cells49. In the cells, DNA is wrapped around clusters of globular 

histone proteins to form nucleosomes. These nucleosomes are organized into chromatin and 

changes in the structure of chromatin strongly influence gene expression. Genes are silenced if 

the chromatin is condensed and expressed if the chromatin is opened. These dynamic chromatin 

states are controlled by reversible epigenetic patterns of DNA methylation, histone modifications 

and nucleosome remodeling49. Like most biological processes, silencing can become deregulated 

resulting in the development of diseases like cancer48. The loss of normal DNA methylation 

patterns is the best understood epigenetic cause of disease49. DNA methylation is the addition of 

methyl groups to cytosines catalyzed by at least three DNA methyltransferases (DNMTs). The 

methylation takes place only at cytosine bases located 5´to a guanosine in a CpG dinucleotide. 

Most CpG islands are located in the proximal promoter regions in the mammalian genome, and 

are, generally, unmethylated in normal cells50 (Fig. 2.9.A). DNMTs found at the replication fork, 

copy the methylation pattern of the parent strand onto the daughter strand during S-phase. This 

makes methylation patterns heritable over many generations of cell divisions. The silencing 

mediated by DNA methylation occurs in combination with histone modification and nucleosome 

remodeling, which together establish a repressive chromatine structure51 (Fig. 2.9.B).  
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Figure 2.9. Epigenetic patterns in normal and cancer cells.  

(A) DNA methylation. In normal cells, nearly all of the CpG dinucleotides are methylated whereas CpG islands, 

mostly residing in 5´ regulatory regions of genes, are unmethylated. In cancer cells, many CpG islands become 

hypermethylated, in conjunction with silencing of their cognate genes, while global hypomethylation, mostly at 

repetitive elements, occurs. (B) Chromatin and histone modification. Active genes are associated with acetylation of 

histone tails, methylation of lysine 4 on histone H3 (H3K4), and nucleosome depletion at their promoters. The 

promoters of silenced genes (drawn here in conjunction with DNA hypermethylation) become associated with 

nucleosomes, lose acetylation and H3K4 methylation marks, and gain repressive methylation marks such as lysine 9 

or 27 on histone H3, which recruit repressive complexes51. 

 

The building blocks of nucleosomes – the histones – undergo several post-translational 

modifications that regulate chromatin structure, gene expression and DNA repair. The key link 
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between DNA methylation and histone modification is the recruitment of histone deacetylases 

(HDACs) to methylated DNA during chromatin compaction and gene silencing51. The DNA in 

these transcriptionally silent regions is packed into compact nucleosomes containing 

deacetylated histones, in particular histone H3, and this state helps to maintain nucleosomes in a 

compacted and transcriptionally silent state50.  

Together with acetylation, histone methylation is the most well studied histone modification. 

Histone methylation occurs mainly at histone lysine residues. In general, regions silenced by 

DNA methylation show hypermethylation and hypoacetylation of specific histone lysine 

residues, such as lysine 9 or 27 in histone H3, whereas hyperacetylation of histones H3 and H4, 

and methylation of lysine 4 of histone H3 characterize the transcriptionally active chromatin51. 

These epigenetic alterations lead to aberrant gene function and altered pattern of genes 

expression which are key features of cancer48. Loss of acetylation at lysine 16 and trimethylation 

at lysine 20 of histone H4 is a common hallmark of human cancer52, and global histone 

modifications patterns predict risk of prostate cancer53. Growing evidence suggests that these 

patterns may be generated by upstream-acting “programs” involving the Polycomb group 

complexes (PcGs) that went wrong. PcGs are proteins complexes responsible for the 

maintenance of long-term silencing of genes, mediated by the histone methyltransferase EZH2 of 

the Polycomb-repressive complex 2 (PCR2), which is known to be upregulated in tumors and is 

involved in tumor progression51. EZH2 methylates lysines 9 and 27 of histone H3, which are 

markers for silenced chromatin48. Also both hyper- and hypo methylation of individual CpG sites 

in the promoters are common in cancer either by loss of gene function like tumor suppressors or 

activation of genes that promote carcinogenesis50. Thus, it is today widely accepted that cancer is 

an epigenetic disease at the same level that it can be considered a genetic disease54. 
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2.9. Previous work and aim of the project 

It was previously shown by the group of Prof. Rapp that RAF/MYC combination leads to ectopic 

expression of intestinal selector genes, reminiscent of the ability of MYC to induce a myeloid 

lineage switch of RAF transformed B-cells29.  

Kerkhoff et al. showed the induction of premalignant lesions at the age of two weeks in a mouse 

model for human NSCLC (Sp-C-C-RAF) where the C-RAF transgene is specifically expressed in 

lung alveolar type II epithelial cells18. In this model, no metastasis could be found in young or 

old animals. A compound mouse model that in addition to constitutive expression of C-RAF, 

expresses the transgene c-MYC in lung alveolar type II epithelial cells (Sp-C-C-RAF-BxB/Sp-C-

c-MYC) have been shown to induce early macrometastasis to liver and lymph nodes indicating 

that c-MYC expression is a major determinant in this process. Moreover, the combination of c-

MYC and C-RAF caused appearance of a phenotypic switch from cuboidal to Alveolar Papillary 

Columnar Epithelial cells (APECs) that are the most rapidly growing tumor cells and also 

predominated in liver metastasis. The transplantation of immunodeficient mice with a high c-

MYC expressing A549 cell clone showed the development of metastasis in the liver and lymph 

nodes, establishing c-MYC as a strong metastasis inducing gene for NSCLC2.  

The expression of the intestine maintenance transcription factor GATA4 has been observed in 

the lung tumors and liver metastasis of Sp-C-C-RAF-BxB/Sp-C-c-MYC compound and Sp-C-c-

MYC single transgenic mice. In contrast, GATA4 was absent in the lung tumors of Sp-C-C-

RAF-BxB animals, which expressed GATA6 instead - a transcription factor that is involved in 

airway regeneration. GATA6 is an upstream factor of TTF1, which in turn is necessary for the 

activity of the Sp-C promoter. The GATA4 ectopically expressed in lung cells was shown to be 

functional, as the expression of its target mucin2 was detected. The expression of Cdx2, another 
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selector gene that marks intestinal lineages was not detected in primary tumors or metastasis of 

any of the genotypes highlighting GATA4 as a novel MYC target2.  

Although the data from the previous work directly apply to metastatic human lung cancer and 

identify a novel treatment target, the way in which these genes may contribute to metastatic 

process remained to be elucidated2. 

Therefore, the aim of the present work was to investigate the role of GATA4 in MYC induced 

metastasis in more detail and to get insights into the molecular mechanisms and signaling 

pathways involved in metastasis of NSCLC.  
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3. Materials and methods 

3.1. Materials 

3.1.1. Instruments 

Instrument Model and Manufacturer 

Array scanner Illumina 

Cell counter chamber Bürker 

CO2 incubator  Heracell 240i – Thermo Scientific 

Electrophoresis power supply  PowerPac 200 – Bio-Rad 

Electrophoresis unit for Agarose Gels  Sub-cell® GT - Bio-Rad 

Electroporator MicroPulserTM - Bio-Rad 

Fluorescence microscope  TCS SPE – Leica 

In vivo imaging system Maestro EX imaging system - CRi (Woburn, MA) 

Low light imaging system Argus 100 - Hamamatsu, Bridgewater, NJ 

Megacentrifuge Megafuge 1.0 – Heraeus Instruments 

Microcentrifuge Centrifuge 5415D – Eppendorf 

Microplate reader Infinite M200 – Tecan 

Microscope DM IL – Leica 

Microtome  Leitz – Wetzlar 

Paraffin embedding machine  EG1150 – Leica 

pH meter  pH 720 WTW series – inoLab 

Photometer Biophotometer – Eppendorf 

Pipettes P1000, P200, P100, P10 – Eppendorf 

Real-Time PCR systems Step One Plus – Applied Biosystems 

 LightCycler® 480 - Roche 

Sequencer Roche 454 FLX Standard 

Shaker  HT – Infors AG 

Spectrophotometer  NanoDrop® ND-1000 – peqlab 

Thermoblock TDB-120 – Lab4you GmbH 
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Instrument Model and Manufacturer 

Thermocycler T3 Thermocycler – Biometra 

Transilluminator Dark Hood DH 40/50 - Biostep 

Vortex  Vortex Gene2 – Scientific Industries 

Waterbath  Amersham-Buchler  

 

3.1.2. Chemical reagents 

Reagent Manufacturer 

1kb DNA ladder  Fermentas 

Absolute QPCR SYBR Green Mix Thermo Scientific 

Agarose, ultra pure  Invitrogen 

Ampicillin  Sigma  

Bacto-Agar Roth 

Bacto-Tryptone  Roth 

β-Mercaptoethanol  Roth 

Bovine serum albumin (BSA)  Sigma 

Chloroform  Roth 

DAPI Sigma 

DEPC  Roth 

Diaminobenzidine (DAB)  Sigma 

Dimethylsulfoxide (DMSO)  Sigma  

Doxycycline  Sigma 

dNTPs  Fermentas 

EDTA  Sigma 

Entellan  Merck 

Eosin  Merck 

Ethanol  Roth 

Ethidiumbromide  Invitrogen 

Fetal Calf Serum (FCS)  Invitrogen 
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Reagent Manufacturer 

Formaldehyde  Roth 

Glacical acetic acid  Roth 

Glycerol  Sigma 

HCl Roth 

Hematoxylin Merck 

HEPES  Roth 

Hydrogenperoxide (30%)  Hartenstein  

Isopropanol Roth 

Ketanest  Pfizer 

Lipofectamine TM 2000 Invitrogen 

Luciferin  Promega 

Methanol  Hartenstein 

Mowiol  Calbiochem  

MTT dye Sigma 

NaCl  Roth 

Paraformaldehyde (PFA)  Sigma 

Paraffin wax  Merck 

Phosphate-buffered saline (PBS)  Gibco 

Polybrene  Sigma 

Puromycin Sigma 

Rompum  Bayer 

PerfeCTa® SYBR® Green FastMix®, 
ROX™ 

Quanta Bioscences 

Serum (rabbit, goat, donkey)  Chemicon 

Sodiumdodecylsulfat (SDS)  Roth 

Tamoxifen (OHT) Sigma 

Tissue TEK (OCT)  Chemicon 

Trichostatin A (TSA) Sigma 

Tris  Roth 

Triton X-100  Sigma 
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Reagent Manufacturer 

Xylol Roth 

Yeast-extract  Invitrogen 

Zeocin Sigma 

 

3.1.3. Buffers and solutions 

Solution Composition 

  

6x DNA loading dye  

1,2 ml Glycerol  
1,2 ml 0,5 mM Na2EDTA  
300 µl 20% SDS  
bromphenol blue  
Water (up to 10 ml) 

  

Lysis buffer 

10 mM TrisHCl  
1 mM EDTA 
1% w/v of Tween 20 
100 µg/ml of proteinase K 

  

Tail lysis buffer  
50 mM EDTA  
50 mM Tris-HCl (pH8.0) 
0,5% SDS   

  

TE buffer  
1 mM EDTA  
10 mM Tris-HCl (pH8.0) 

 

3.1.4. Enzymes 

Enzyme Manufacturer 

Calf Intestine Alkaline Phosphatase 
(CIAP) 

Fermentas 

DNaseI  Fermentas 

Proteinase K  Roth 

Restrictionendonucleases  Fermentas 

RNaseA  Fermentas 
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Enzyme Manufacturer 

T4 Ligase  Fermentas 

Taq Polymerase  Genecraft 

 

3.1.5. Consumable material 

Material Manufacturer 

96-well plates Nunclon A/S, Greiner bio-one 

Cell culture flasks Sarstedt  

Cell culture plates Sarstedt  

Gene pulser cuvette, 0.1 cm electrode gap Bio-Rad 

Cryotubes  Sarstedt  

Falcon Tubes (15 and 50 ml) Sarstedt  

Glass coverslips  Leica 

Glass slides  Leica 

Micro tube (1,5 and 2 ml) Eppendorf 

Pasteur Pipette  Hartenstein  

Petri dish Roth 

Scalpel  Hartenstein  

Syringes Braun 

 

 

3.1.6. Antibodies 

Antibodies (Immunochemistry) Catalog Number – Manufacturer 

Anti-GATA4 (mouse)  sc-25310 AC – Santa Cruz 

Anti-Pro Sp-C (rabbit) gift from Jeffrey A. Whitsett 

  

Antibodies (ChIP) Catalog Number – Manufacturer 

Anti- chicken-MYC gift from Klaus Bister 
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Antibodies (Immunochemistry) Catalog Number – Manufacturer 

Anti- DNMT1  39204 - Active motive  

Anti- DNMT3a  ab13888 - Abcam  

Anti-DNMT3b  39207 - Activ motive  

Anti- EZH2 AC22 - Cell Signalling 

Anti-GATA4  sc-1237 - Santa Cruz 

Anti-GATA6  sc-9055 - Santa Cruz 

Anti-H3K4me2  07-030 – Upstate 

Anti-H3K4me3 07-473 – Upstate 

Anti-H3K9me2 ab1220 – Abcam 

Anti-H3K9me3 ab8898 – Abcam 

Anti-H3K27me3 07-449 – Upstate 

Anti-MAZ ab85725 – Abcam 

Anti- POLII  4H8 ab5408 –Abcam 

 

Secondary antibodies  Manufacturer 

Anti-mouse-biotinylated (rabbit)  Dako 

Anti-rabbit-biotinylated (goat)  Dako 

Anti-goat-biotinylated (rabbit) Dako 

Anti-mouse-Cy3 (goat)  Jackson Immuno Research  

Anti-goat-Cy5 (donkey)  Jackson Immuno Research 

Anti-rabbit-Cy3 (donkey) Jackson Immuno Research 

 

3.1.7. Plasmids 

Name Source Resistance 

pLKO.1-puro-shGATA4-24  Sigma Mission® shRNA  AmpR, PuroR 

pBpuro c-MYC-ERTM T. Littlewood55 AmpR, PuroR 

pEGZ F. Ceteci AmpR, ZeoR 
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Name Source Resistance 

pEGZ-GATA4 -11 This work AmpR, ZeoR 

pGL3 Luciferase Reporter  Promega AmpR 

pGL3_GATA4_Prom_455 This work AmpR 

pLKO.1-puro-shGATA4-26  Sigma Mission® shRNA  AmpR, PuroR 

pLKO.1-puro-shMAZ-345 Sigma Mission® shRNA  AmpR, PuroR 

 

3.1.8. Oligonucleotides for genotyping 

Mouse Line Name Sequence (5´->3´) 
   

Sp-C-c-MYC  
SpC_S1  
SpC-cMyc  

GAGGAGAGGAGAGCATAGCACC 
AAGGACTTGGCTGGCAGACAGG 

   

Sp-C-c-RAF-BxB  
CRaf_s 
CRaf_as 

GCTGGTGTTCATGCACTGCAG 
AAAGACTCAATGCATGCCACG 

   

Sp-C-rtTA  
rtta_s 
rtta_as 

TCCTGGCTGTAGAGTCCCTG 
CTCCAGGAACCCACTCTCTG 

   

Tet-o-C-RAF BxB 
Tet-o_new 
CRaf_as 

TAGAAGACACCGGGACCGATCCAG 
AAAGACTCAATGCATGCCACG 

   

Tet-o-c-MYC  
Tet-o_new 
Teto-myc 

TAGAAGACACCGGGACCGATCCAG 
CTGGTTCACCATGTCTCCTCCTCCCAG 

 

3.1.9. Oligonucleotides for cloning 

Name Sequence (5´->3´) 

GATA4_fwd AAAAAAGAATTCATGTATCAGAGCTTGGCCATGG 

GATA4_P_455_fwd AAAAAACTCGAGGGAACTAGCATCCAGCC 

GATA4_P_rev AAAAAAAAGCTTGCTGCAGCGGCGACGAA 

GATA4_rev AAAAAAGAATTCTTACGCAGTGATTATGTCCCC 
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3.1.10. Oligonucleotides for Real-Time PCR 

Name Sequence (5´->3´) 

β-actin (HS) 
sense: ACGCAGTCAATAAGTGATACCA 
anti-sense: GGATGTTTCCTGGTCAGCCT 

  

ANG1 (HS) 
sense: AAACAGCTGGAACCCATCTCCCGT 
anti-sense: CCGGCCCTGTGGTTTGGCATC 

  

BMP4 (HS) 
sense: GTGCCATCCCGAGCAACGCACT 
anti-sense: GCGTGGCCCTGAATCTCGGCG 

  

CD30 (HS) 
sense: CCGTGTCTGCGAATGTCGACCCG 
anti-sense: GGGAAGCCGGCTCACAGACCGT 

  

GATA4 (HS) 
sense: CTACATGGCCGACGTGGGAG 
anti-sense: CTCGCCTCCAGAGTGGGGTG 

  

GFP 
sense: GCAAGCTGACCCTGAAGTTCATC 
anti-sense: TCACCTTGATGCCGTTCTTCTG 

  

HIF1A (HS) 
sense: TTAACTTTGCTGGCCCCAGCCGC 
anti-sense: TGGCGTTTCAGCGGTGGGTAATGG 

  

HKDC1 (HS) 
sense: CCACGGGCTGGCCACGGTC 
anti-sense: ACATTCGCACTGACCTCCGTCCA 

  

HNF4A (HS) 
sense: AGCTGGCGGAGATGAGCCGGG 
anti-sense: ACCTGGGAACGCAGCCGCTTG 

  

KCNAB2 (HS) 
sense: TGGGCAAGTCTGGCCTGCGG 
anti-sense: GCCGGCTGCGTAGACTTCTGCTG 

  

LAMC2 (HS) 
sense: AGGGACCGCTGTTTGCCCTGC 
anti-sense: GCACCCCGCATCCGTGAGCA 

  

MYC (GG) 
sense: CGGCCTCTACCTGCACGACC 
anti-sense: GACCAGCGGACTGTGGTGGG 

  

MYC (HS) 
sense: GCCCACCACCAGCAGCGACTCT 
anti-sense: CGCCTCCCTCCACTCGGAAGGAC 

  

mucin2 (HS) 
sense: CGACTAACAACTTCGCCTCCG 
anti-sense: CGCGGGAGTAGACTTTGGTG 
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Name Sequence (5´->3´) 

  

NFKB1 (HS) 
sense: AGCCCAGCGAGGCCACCGTT 
anti-sense: GCAGTGAGATGGCGCTGGACGG 

  

SLC6A15 (HS) 
sense: TGGCTGCCTGGGTCATGGTTTGC 
anti-sense: GGGGTAAACATGTGGCGAATGCCATC 

  

TGF-β1 (HS) 
sense: CCTGGCGATACCTCAGCAACCGGC 
anti-sense: TGCTGTCACAGGAGCAGTGGGCG 

  

VEGFA (HS) 
sense: CCAGGCTGCACCCATGGCAGA 
anti-sense: AGCAGCCCCCGCATCGCATC 

  

CHIPGATA4_up 
sense: CGGAGACCCCAGAGCCTG 
anti-sense: CTCTCTACCTCCAGACAAGC 

  

 

3.1.11. Oligonucleotides for bisulfite sequencing 

Name Sequence (5´->3´) 

COGATA4-prom_up TAATAAAGTTGATTTTGGGTATTATAG 
  

COGATA4-prom_lo CCCTACCTACTAAACCTAAAAATTC 
  

454-COGATA4-prom_up 
GCCTCCCTCGCGCCATCAGXXXTAATAAAGTTGATTTTGG
GTATTATAG 

  

454-COGATA4-1_lo 
GCCTTGCCAGCCCGCTCAGXXXXCCCTACCTACTAAACCT
A AAAATTC 

 

3.1.12. Kits 

Kit Manufacturer 

DNeasy Blood & Tissue Kit QIAGEN 

EpiTect Bisulfite Kit QIAGEN 

First Strand cDNA Synthesis Kit Fermentas 

ONE-Glo™ Luciferase Assay System Promega 

peqGold TriFastTM Peqlab 
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Kit Manufacturer 

QIAquick Gel Extraction Kit QIAGEN 

QIAquick PCR Purification Kit QIAGEN 

QIAprep Spin Maxiprep Kit QIAGEN 

QIAprep Spin Miniprep Kit QIAGEN 

TOPO TA Cloning kit Invitrogen 

 

3.1.13. Bacterial strains 

Strain Source 

E. coli DH10b Department of Microbiology, University of Würzburg 

 

3.1.14. Cell lines 

Line Source 
  

A549 
Human alveolar basal epithelial adenocarcinoma 
Department of Microbiology, University of Würzburg 

  

A549 GATA4-11 
Human alveolar basal epithelial adenocarcinoma  
This work 

  

A549/GFP 
Human alveolar basal epithelial adenocarcinoma  
Michael Heß, Department of Biochemistry, University of 
Würzburg 

  

A549 J5-1 
Human alveolar basal epithelial adenocarcinoma  
Professor U. R. Rapp2 

  

A549 MYC-ER 
Human alveolar basal epithelial adenocarcinoma  
This work 

  

Caco-2 
Human epithelial colorectal adenocarcinoma 
Department of Microbiology, University of Würzburg 

  

HeLa 
Human cervical cancer 
Department of Microbiology, University of Würzburg 
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Line Source 

Phoenix ampho  Department of Microbiology, University of Würzburg 

 

3.1.15. Mouse lines 

Line Source 

Athymic Nude - Foxn1nu 
Harlan Winkelmann 
GmbH  

Sp-C-c-MYC  Gift from R. Halter  

Sp-C-C-RAF-BxB  Professor U. R. Rapp 

Sp-C rtTA Gift from J. Whitsett 

Tet-o-c-MYC Gift from T. Wirth 

Tet-o-C-RAF-BxB  Professor U. R. Rapp 

 

3.1.16. Media and additives 

Bacterial culture 

Luria-Bertani (LB) Medium  g for 1 Liter of Water 

Bacto-tryptone  10 

NaCl  10 

Yeast extract  5 

 

After the substances were dissolved in water, the pH was adjusted to 7.5 using NaOH. For 

production of plates, 15 g of bacto-agar were added. All media were autoclaved for 20 min at 

120°C. Antibiotics for the production of selective plates were added after cooling of the 

autoclaved liquids to about 45°C. The plates were stored at 4°C. 

Antibiotic Stock solution  Final concentration 

Ampicillin  100 mg/ml in H2O  100 µg/ml  
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3.1.17. Eukaryotic cell culture 

Medium  Manufacturer 

DMEM Invitrogen 

 

Antibiotic Stock solution  Final concentration 

Fetal Calf Serum (FCS)  Invitrogen 10x stock 

Penicillin/Streptomycin  Invitrogen 10x stock 

Trypsin-EDTA  Invitrogen  

 

3.2. Methods 

3.2.1. Bacterial manipulation 

Preparation of electrocompetent cells 

For preparation of electrocompetent cells, 30 ml LB medium were inoculated with E. coli 

DH10b and incubated over night at 37°C. 1 ml of the overnight culture was diluted with 100 ml 

LB medium. When the culture reached the OD600, it was equally transferred into two 50 ml tubes 

and incubated on ice for 15-30 min. After incubation, the cultures were centrifuged for 10 min at 

6000 rpm at 4°C and supernatants were discarded. The pellets were re-suspended in 1 ml of 10% 

glycerol and the tubes were filled up to 50 ml with 10% glycerol. Following centrifugation at 

6000 rpm for 10 min at 4°C, the supernatants were discarded and the pellets were re-suspended 

in 1 ml of 10% glycerol. 10% glycerol was added to the suspension up to 25 ml. The suspensions 

were centrifuged again and the pellets re-suspended and filled up to 10 ml with 10% glycerol. 

After a last centrifugation step, the pellets were re-suspended with 500 µl of 10% glycerol and 

stored at -80°C. 
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Transformation of electrocompetent cells 

Electroporation was used to transform E. coli. Frozen electrocompetent cells prepared as 

described above were used. 1 to 5 µg of DNA were added to 50 – 70 µl of competent cells on ice. 

After 1 min of incubation on ice the mixture was gently transferred to a pre-chilled 0.1 cm 

electroporation cuvette and electroporated (Gene Pulser at 1.8 kV, 25 µF and 200 Ohm, program: 

bacteria). After electroporation the cells were immediately resuspended in LB medium and then 

gently transferred into a sterile 1.5 ml tube. After transformation the bacteria were plated on LB-

agar plates containing a selective antibiotic. After incubation at 37°C overnight, a single colony 

could be picked and expanded in LB medium containing the selection antibiotic and used for 

DNA preparation. 

Purification of Plasmid-DNA 

To amplify plasmid DNA, a colony of E. coli previously transformed with the according plasmid 

was grown in 50 ml of LB medium overnight. From the pellet of this culture, the plasmid-DNA 

was isolated using the QIAprep Spin Miniprep or Maxiprep Kit as described in the manual. 

 

3.2.2. Analysis of DNA-molecules 

Electrophoresis of DNA in agarose gels 

For separation of DNA fragments on agarose gel, a suspension of agarose (0.8-2%) in 1xTAE-

buffer was cooked until the agarose was completely dissolved. After cooling to about 50°C, 

0.5g/ml of ethidium bromide was added to the solution, and after it was poured into the gel 

apparatus. After gel solidification, it was loaded with the DNA mixed with loading dye and 

electrophoresis was performed in 1xTAE buffer at 120V for 30min. The DNA bands were 

visualized under UV-light. 
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Extraction of DNA fragments from agarose gel 

The DNA fragments separated by agarose-gel electrophoresis visualized by UV-light could be 

excised with a sterile scalpel from the gel. Afterwards this DNA was isolated from the gel using 

the QIAGEN Gel Extraction kit according to the manual. 

 

3.2.3. Polymerase Chain Reaction (PCR) 

The Polymerase Chain Reaction (PCR) was used for amplification of specific regions of a DNA 

target. PCR was performed in an 30 µl reaction mix containing 3 µl of 10x Taq-Polymerase 

buffer, 1 µl of 2mM dNTP-mix, 0.5 µl of 20 pM forward and reverse primer and 0.3 µl of Taq-

polymerase, filled up with water. The PCR reaction typically consisted of 20-40 cycles. An 

initialization step for 10 min at 95°C was followed by a cycling of the denaturation step (for 30 

sec at 95°C), the annealing step (temperature depending on the primers used) and the elongation 

step (30 sec-1 min at 72°C). Finally, before cooling down the reaction mix, an additional 

elongation step was carried out at 72°C for 10 min. PCR reactions were performed as described 

unless other conditions are mentioned. 

 

3.2.4. Enzymatic manipulation of DNA 

Restriction digestion of DNA using restrictionendonucleases 

Restrictionendonucleases specifically bind to doublestranded DNA and cut in or next to their 4-8 

base pairs target sequence. For digestion of 0.5 µg of DNA, it was incubated for 2 h at 37°C with 

0.5-1 µl of each restrictionendonuclease used, 2 µl of the appropriate buffer and water up to a 

final volume of 20 µl. After digestion, the enzymes were inactivated for 20 min at their specific 
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inactivation temperature. The exact composition of the according buffers and the reaction 

conditions are described in the catalogue of the enzyme supplier. 

Dephosphorylation of digested plasmid- DNA 

To prevent re-ligation of linearized plasmid- DNA the 5’-phosphate-groups were removed from 

the DNA- ends. This was achieved by incubating 0.9 µl of Calf Intestine Alkaline Phosphatase 

(CIAP) and 2.1 µl of CIAP buffer together with 20 µl of digested DNA for 2 h at 37°C. To 

remove the phosphatase and buffer from the reaction mix, PCR purification was performed using 

QIAquick PCR Purification Kit (according to the included manual). 

Purification of PCR products  

To remove the nucleotides and the Taq-polymerase buffer from the PCR product, the PCR 

reaction solution was purified using the QIAquick PCR Purification Kit according to the 

included manual. 

Ligation of DNA fragments 

Ligation of DNA fragments was catalyzed by DNA Ligase. For this reaction, the concentration 

of the insert was about three times higher than the vector concentration. 1.5 µl of 10x ligation 

buffer and 1-2 units of T4-Ligase were added to the vector and insert and water was filled up to 

15 µl. The reaction was performed for 2 h at 22°C or overnight at 14°C. 

 

3.2.5. Isolation of RNA 

RNA isolation from eukaryotic cells 

To isolate RNA, the cells were centrifuged for 5 min at room temperature (500 rpm) and the 

pellet was then resuspended in 1 ml peqGold TriFast for cell lysis. After 5 min of incubation at 
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room temperature, 200 µl of chloroform p.A. were added. The mixture was incubated for 3-10 

min at room temperature. After incubation, centrifugation for 5 min at 12000 rpm separated the 

mixture in three phases. The upper colorless phase containing RNA was transferred into a fresh 

1.5 ml cap and 500 µl of isopropanol were added. After incubation on ice for 5-15 min, the 

solution was centrifuged for 10 min at 4°C (12000 rpm). The supernatant was discarded and 1 ml 

of 75% ethanol was added. After vortexing, new centrifugation was performed for 10 min at 4°C 

(12000 rpm). The supernatant was discarded and the pellet was washed again with ethanol as 

described before. The pellet was then air dried and resuspended in 40 µl of RNase free DEPC 

treated dH2O. 

Quantification of RNA 

Quantification of extracted RNA from each sample was done using a spectrophotometer. RNA in 

the solution was quantified by the absorbance of light (260 nm) in spectrophotometer. 

 

3.2.6. Real-Time PCR 

cDNA synthesis 

cDNA was synthesized from RNA isolated from eukaryotic cells. For cDNA synthesis, the First 

Strand cDNA Synthesis Kit was used according to the included manual. DNA concentration was 

determined using a spectrophotometer. DNA in the solution was quantified by the absorbance of 

light (260 nm) in spectrophotometer. 

Real-Time PCR 

Depending on the cDNA-quality, 0.5-2 µl of cDNA was used as template for Real-Time PCR 

analysis. 10 µl of the PerfeCTa® SYBR® Green FastMix®, ROX™ Master mix (if not specified 
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otherwise), the template cDNA, 0.5 µM of the specific forward and reverse primers for the gene 

of interest or for the housekeeping gene, respectively, were used in a 20 µl reaction. If not 

specified otherwise, the conditions used were: 1 cycle: 95°C x 15 minutes; 42 cycles: 95°C x 15 

seconds / annealing temperature x 40 seconds, read; melting curve 65°C - 95°C, read every 1°C. 

To calculate the relative amount of the transcript of the gene of interest, the amplification 

efficiency was raised to the power of the threshold cycle (Ct-value). This gives the number of 

cycles necessary for the product to be detectable. The resulting value was normalized against the 

level of the housekeeping gene for all samples in the same experiment. Assays were performed 

in triplicates following the manufacturer’s instructions in the Step One Plus detection system (if 

not specified otherwise). 

 

3.2.7. Bisulfite sequencing 

DNA isolation from paraffin sections for bisulfite sequencing 

After GATA4-staining sections were air dried and GATA4-positive and –negative tumor regions 

were scratched from the slide using a scalpel. Material was collected in 30 µl of lysis buffer and 

incubated overnight at 37°C. For inactivation of proteinase K samples were heated at 95°C for 

20 min. DNA was then precipitated and used for 454- and bisulfite sequencing. 

Conventional- and next generation- bisulfite sequencing 

For conventional bisulfite sequencing DNA from cultured cells was prepared using the DNeasy 

Blood & Tissue Kit according to the specifications of the manufacturer. Ca. 250 ng up to 1 µg of 

DNA was bisulfite treated with the EpiTect Bisulfite Kit according to the manufacturer’s 

instructions. Deaminated DNA was amplified by PCR using the following primers COGATA4-

prom_up and COGATA4-prom_lo (annealing temperature 55°C) listed on the Material section. 
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PCR conditions were as follows: 95°C for 3 min followed by 40 cycles at 95°C for 30 sec, 

annealing temperature for 40 sec and 72°C for 45 sec. At last, the reaction was incubated at 72°C 

for 3 min. PCR products were gel extracted using the QIAquick Gel Extraction Kit and cloned 

using the TOPO TA cloning Kit for sequencing, according to the manufacturer’s instructions. 

DNA from picked clones was prepared using the QIAprep Spin Miniprep Kit and sent for 

sequencing (GATC Konstanz, Germany). 

For next generation bisulfite sequencing DNA from cultured cells or paraffin section was 

prepared as described above. Ca. 250 ng up to 1 µg of DNA was bisulfite treated with the 

EpiTect Bisulfite Kit according to the manufacturer’s instructions. Deaminated DNA was 

amplified by PCR using the primer mentioned above, but with the 454-adapter sequence added 

and an identifier 4-base code for each tissue sample: 454-COGATA4-prom_up and 454-

COGATA4-1_lo listed in the Material section. PCR conditions were as follows: 95°C for 3 min 

followed by 40 cycles at 95°C for 30 sec, annealing temperature for 40 sec and 72°C for 45 sec, 

followed by a 3 min incubation at 72°C. PCR products were subsequently purified using the 

QIAquick gel extraction Kit. For sequencing, equimolar amounts of all amplicons were 

combined in a single tube. Roche 454 FLX Standard sequencing was provided by the Core 

Genomics and Proteomics Core Facility of the DKFZ and performed by Achim Breiling. 

 

3.2.8. Array-based DNA methylation profiling (Infinium-chip) 

Analysis of the whole genome methylation status in A549 and A549 J5-1 cells was performed by 

Achim Breiling at the Division of Epigenetics from The German Cancer Research Center 

(DKFZ) in Heidelberg, using Infinium HumanMethylation27 bead chip technology (Illumina) 

according to the manufacturer's instructions. 
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3.2.9. Chromatin immunoprecipitation 

Chomatin immunoprecipitation experiments were carried out by Achim Breiling. Crosslinked 

chromatin from A549 control cells or A549 J5-1 cells was prepared and immunoprecipitated as 

described previously56. ChIP-grade antibodies are listed in the Material section. 

Immunoprecipitates were dissolved in 30 µl of TE buffer. 1 µl was analysed by Real-Time PCR 

using a primer pair specific for the GATA4 promoter region (CHIPGATA4_up and 

CHIPGATA4_lo) in 10 µl PCR reactions, using the Absolute QPCR SYBR Green Mix and a 

Roche LightCycler 480. PCR conditions: 1 cycle: 95°C x 15 min; 42 cycles: 95°C x 15 sec / 

60°C x 40 sec, read; melting curve 65°C - 95°C, read every 1°C. Cycle threshold numbers for 

each amplification were measured with the LightCycler 480 software and enrichments were 

calculated as percentage of the input. 

 

3.2.10. Freezing cell lines 

Trypsinized cells were spun down in a centrifuge for 5 min at room temperature (1000rpm) and 

the pellet was washed with PBS, counted using a Neubauer chamber and diluted in ice-cold 

medium containing 20% FCS and 10% DMSO to obtain at least 1-2x106 cells per ml. 1 ml of 

this cell suspension was then transferred into a cryotube and stored at –80°C for at least 24 h. For 

prolonged storage the cryotubes were then transferred to liquid nitrogen. For reculturing of the 

frozen cells, the cell suspension was defrosted at 37°C and immediately put into prewarmed 

medium. To remove the toxic DMSO, the cells were spun down for 5 min at 37ºC (1000rpm) and 

the pellet was resuspended in warm medium and cultured at 37°C. 
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3.2.11. Transfection of eukaryotic cells using lipofectamine 

Introduction of plasmid DNA into eukaryotic cells was carried out with a cationic lipid 

(Lipofectamine TM 2000) enabling the DNA to pass the cell membrane. The procedure was 

performed according to the manual. For stable transfection, appropriate antibiotics for selection 

were added 48 hrs after transfection.  

 

3.2.12. Viral infection of cell lines 

For viral transfection, the viral plasmid (pBpuro c-MYC-ERTM 55, pLKO.1-puro-shGATA4, 

pLKO.1-puro-shMAZ or pEGZ GATA4) was transfected into the amphotrophic retrovirus 

producer cell line Phoenix using lipofectamine, as described above. The transfected cells were 

incubated at 37ºC for 48 hours, and supernatant was then collected and centrifuged at 500 rpm at 

4ºC and used for infection of the eukaryotic cells in the presence of 8 µg/ml of polybrene. 24 h 

after infection, appropriate antibiotics were added to the medium for selection. 

 

3.2.13. Soft agar assay 

For the soft agar assay, the bottom agar was prepared using an autoclaved stock of 5% sea plaque 

agarose, which was microwaved and mixed with DMEM medium to a final concentration of 

0.5% agarose. 5ml of 0.5% agarose were poured in a 60 mm dish. For the top agar the 5% stock 

was diluted to 0.6% agarose with DMEM medium and stored in a waterbath at 40°C. Dilutions 

of the cells were prepared in 1 ml of medium (10000 cells per 60mm dish) and then mixed 1:1 

with the 0.6% agarose. The mixture was poured on top of the solidified bottom agar. After 

solidification of the top agar, the dishes were incubated in a wet chamber at 37°C for 21-28 days, 

when the colonies number was counted. 
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3.2.14. Immunocytochemistry 

Immunocytochemistry was performed on cells grown on coverslips. After fixation using 4% 

PFA-PBS for 15 min at room temperature, cells were washed with PBS. To prevent unspecific 

antibody binding, cells were blocked with 4% goat serum, 0,3% Triton X-100 in PBS for 1 h at 

room temperature. The primary antibody (GATA4, sc-25310) was diluted 1:200 in 4% goat 

serum in PBS and applied over night at 4°C. After washing with PBS the cells were incubated 

with the secondary antibody (Anti-mouse-Cy3 – from Goat) diluted 1:100 in 4% goat serum in 

PBS for 2 h at room temperature. Before mounting with mowiol, cells were counterstained using 

DAPI (1:200) for 20 min at room temperature. Cells were observed under fluorescence 

microscopy. 

 

3.2.15. Luciferase reporter assay 

A 455 bp fragment upstream of the transcription start site of GATA4 was amplified from 

genomic DNA from HeLa cells using the primers GATA4_P_455_fwd and GATA4_P_rev listed 

in the Material section. The fragment was subcloned into XhoI and HindIII sites of the pGL3 

Luciferase Reporter- Basic Vector by enzymatic reaction. A549 and A549 J5-1 cells were 

transfected independently with the pGL3 vector containing the GATA4 promoter and with the 

pGL3 control vector containing luciferase under control of a SV40 promoter. Caco-2 cells were 

transfected with the same vectors and used as a positive control, as they normally express 

GATA457. To measure luciferase activity, ONE-Glo Luciferase Assay System was used and 

performed in 96 well plates according to the recommendations in the manual. The microplate 

reader was pre-heated to 37°C and the luminescence was measured with an integration time of 

100 ms. 
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3.2.16. Proliferation assessment of adherent cells 

To assess the proliferation of A549 and A549 GATA4-11 cells a MTT assay was used. Cell 

suspensions were plated into 96-well plates at 1.3x104 cells/per well. Twelve parallel wells were 

designated for each experimental group. Cells were grown for 48 hours. At this time point, 50 µl 

of MTT (5 mg/ml) were added to the wells and incubated at 37ºC for 30 min in the dark before 

the culture medium was discarded, and the reaction terminated by adding 150 µl of undiluted 

DMSO. The optical density (OD) at a wavelength of 540 nm was read on a microplate reader to 

determine cell numbers.  

 

3.2.17. Wound healing assay 

To assess the migration ability of cancer cells, a wound healing test was used. The cells were 

seeded in a 6-well plate (3 wells with A549 and 3 wells with A549 GATA4-11 cells) and when 

they reached confluence after 72 h, a straight scratch was made in the monolayer using a pipette 

tip (100 µl), simulating a wound. The images were captured at the beginning and at regular 

intervals during cell migration until close the wound.  

 

3.2.18. Animal experiments 

All animal experiments were performed according the German law for animal protection. 

Animals used in transplantation experiments were sacrificed by hypoxia in a carbon dioxide 

chamber. All the other animals were sacrificed under general anesthesia by heart perfusion with 

4% PFA-PBS and the lungs, livers and lymph nodes were collected for histology. 
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3.2.19. Preparation of tissue-sections 

The fresh tissue collected from mouse was washed with PBS and fixed in 4% PFA in PBS at 4°C 

overnight. After washing with PBS, the tissue was stored in 70% ethanol at 4°C until the 

embedding procedure. For paraffinization, tissues were sequentially embedded in the following 

solutions at room temperature: 50% ethanol (40 min), 70% ethanol (40 min), 80% ethanol (40 

min), 90% ethanol (40 min), 95% ethanol (40 min), 3 x 100% ethanol (40 min), 2 x 

chloroform:ethanol (1:1) (30 min) and chloroform (30 min). After paraffinization the tissues 

were transferred into melted paraffin and incubated for 1 h at 65°C and then in fresh paraffin 2 h 

or overnight at 65°C. Finally, the tissue was casted into paraffin blocks. Paraffin blocks were 

sectioned into 6-10 µm microsections and used for the further histological analysis. 

 

3.2.20. Hematoxylin and eosin (HE) staining 

For histological analysis of paraffin sections, the tissues were stained with hematoxylin and eosin 

(HE). First, paraffin had to be removed from the sections, and then the tissues were stained with 

HE, dehydrated and mounted with entellan. For the staining, the sections were embedded in the 

following solutions: 2 x xylol (10 min), 3 x 100% ethanol (5 min), 70% ethanol (10 min), 

millipore water (5 min), hematoxilyn (30 sec), tap water (5 min), Millipore water (5 min), eosin 

(20 sec), millipore water (5 min), 70% ethanol (10 min), 3 x 100% ethanol (5 min) and 2 x xylol 

(10 min). 

 

3.2.21. Immunohistochemistry 

Immunohistochemistry was performed on paraffin sections. After deparaffinization and 

rehydration, sections were boiled in 10 mM citrate buffer for 10-20 min for antigen retrieval. To 
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quench the endogenous peroxidase activity sections were incubated with methanol or PBS 

containing 1-3% H2O2. Non-specific antibody binding was prevented by incubation with 5% of 

serum with 0.2% Trition X-100 in PBS for 1 hour at room temperature. After blocking, sections 

were incubated with the primary antibody (GATA4, sc-1237, Santa Cruz (1:200); Pro Sp-C, gift 

from Jeffrey A. Whitsett (1:5000)) over night at 4°C. After washing, sections were incubated 

with the corresponding biotinylated secondary antibodies (Dako) at 1:200-600 for 1 hour at room 

temperature. For staining ABC reagent was applied (Vactastain Elite ABX Kit, Vector Labs) and 

color was developed with diaminobenzidine (DAB). For counterstaining haematoxylin was used. 

After dehydration the stainings were mounted with entellan. For immunofluorescence staining, 

the following secondary antibodies were used: donkey anti-goat Cy5 and donkey anti-rabbit Cy3 

at 1:200 dilutions.  

 

3.2.22. Genotyping of transgenic mice 

DNA for genotyping was obtained from the mouse tails cut in the age of 3-4 weeks. The tails 

were lysed in 190 µl of tail lysis buffer and 12 µl of 0.4 mg/ml of proteinase K and incubated 

overnight at 54°C. The resulting lysate was centrifuged at 10000 rpm for 5 min and the 

supernatant was diluted 1:10 with water and used as a PCR template. PCR reaction was carried 

out as described above with primers for genotyping listed in the material part. 

 

3.2.23. Transplantation experiments  

For transplantation experiments, A549/GFP and A549 GATA4-11 cells were injected 

subcutaneously in Athymic Nude - Foxn1nu mice. Before injection, the cells were washed two 

times with sterile PBS and counted. 2.5 x 106 cells were resuspended in 100 µl of PBS and 
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injected subcutaneously into the Athymic Nude - Foxn1nu mice. The tumor size was measured 

two times per week and the animals were sacrificed when the tumors were necrotic or close to 2 

cm of diameter.  

 

3.2.24. In vivo bioluminescence imaging 

Imaging of luciferase expression 

Bioluminescence imaging of luciferase expression in compound mice (Sp-C-C-RAF BxB/Sp-C-

rtTA/tet-O-c-MYC) was performed as described58. Briefly, mice were anesthetized with 

ketamine/rompun and subsequently received an i.p. injection of an aqueous solution of the 

substrate D-luciferin (125 mg/kg). The animals were then placed in a light-tight chamber and 

imaged with a CCCD camera. Images were acquired 20 min after luciferin administration. Signal 

intensity was quantified as the sum of all detected photon counts within the region of interest 

after subtraction of background luminescence, using the Argus100 Low Light Imaging System. 

Imaging of GFP expression 

Bioluminescence imaging of GFP expression in live animals was performed weekly. For 

imaging and quantification of GFP intensity a Maestro EX imaging system built equipped with a 

GFP-Filter Set (445 - 490 nm excitation filter and 515 nm longpass emission filter) was used. 

Quantitative measurements were performed using the Maestro Software 2.10.0. 

 

3.3. Statistical Analysis 

Statistical analyses of data sets were performed using the Graphpad Prism version 4.0 software. 

For all tests, statistical significance was considered to be at P<0.005. 
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The correlation between methylation and expression profiles of A549 and A549 J5-1 cells was 

calculated by Tobias Müller at the Department of Bioinformatics of the University of Würzburg 

using bioinformatic tools. 
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4. Results 

4.1. MYC expression in NSCLC tumor cells induces cell type change and metastasis 

formation 

It was previously reported that the combination of c-MYC and C-RAF transgenes in type II cells 

is sufficient to rapidly induce metastasis to liver and lymph nodes. The combination of these two 

transgenes also causes appearance of a phenotypic switch from cuboidal to Alveolar Papillary 

Columnar Epithelial cells (APECs) in NSCLC tumors. Furthermore, cells with this phenotype 

have shown that they develop tumors which grow more rapidly, and are also predominate in liver 

metastasis2. 

In this work, a triple transgenic mouse model was used to test the appearance and reversibility of 

this switch. The transgenic mice (Sp-C-C-RAF BxB/Sp-C-rtTA/tetO-c-MYC) express 

constitutively C-RAF BxB and conditionally c-MYC, under the control of an inducible promoter. 

The promoter used in this system contains a tetracycline-responsive element (Tet-O), which can 

be bound by the reverse tetracycline-controlled transcription activator protein (rtTA) in the 

presence of doxycycline, inducing the transcription of c-MYC59. This mouse model expresses 

rtTA under the control of a tissue-specific promoter, Sp-C. Therefore, these mice express the 

oncogenic c-MYC tissue-specifically by doxycycline feeding. The DOX treatment of the triple 

transgenic mice rapidly induced appearance of columnar cells in their lung tumors (Fig. 4.1.A). 

As these animals express luciferase under the control of the Tet-O promoter, the animals fed with 

DOX food were imaged after 1 week of treatment, showing that MYC expression was induced 

(Fig. 4.1.B). Following this period, DOX food was withdrawn for 4 weeks, and the animals were 

imaged again at this time point.  
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Figure 4.1. Conditional MYC expression in type II pneumocytes expressing C-RAF BxB. 

(A) HE staining of lung tumor sections from inducible (Sp-C-C-RAF BxB/Sp-C-rtTA/tetO-c-MYC) compound mice 

shows the kinetics of columnar cell appearance2. D: day, W: week, M: month. Right hand panel is a magnification of 

the yellow box. Scale bar 100 µm. (B) Luciferase imaging of inducible mice – Sp-C-C-RAF BxB/Sp-C-rtTA/tetO-c-

MYC. Six weeks old compound mice were imaged for in vivo luciferase expression following one week On DOX/4 

weeks Off DOX schedule demonstrating inducibility. HE staining of a lung tumor section of the On/Off DOX 

mouse. Inset highlights persistent papillary tumor area2. (C) Regression experiment in triple transgenic animals (Tet-

o-c-MYC/Sp-C-rtTA/Sp-C-C-RAF BxB). A group of 4 animals fed with doxycycline for 4 weeks showed an 

increase of tumors with columnar cells, when compared with the control. On the other hand, when the doxycycline 

feeding was removed for 4 weeks after 4 weeks of induction, a highly significant decrease in the number of tumors 

with columnar cells was observed. The number of columnar tumors in the lung of the animals where the doxycycline 
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was withdrawn for 10 weeks also decreased drastically. These data shows that the withdrawal of MYC is reverting 

the switch from cuboidal to columnar tumor cells; w - weeks.  

 

This result shows the reversibility of c-MYC transgene expression. Histological analysis of the 

imaged lung tumor showed persistence of columnar cells in the center of one remaining tumor 

that otherwise displays a cuboidal phenotype (Fig. 4.1.B)2. Extension of the observation period 

after DOX removal to 10 weeks demonstrated elimination of columnar cells in tumors of all 

mice analyzed (Fig. 4.1.C). These data suggest a ‘‘shock from oncogene withdrawal’’ –effect60. 

The addition of c-MYC to oncogenic C-RAF in these animals showed the development of liver 

macrometastasis after 7 months of MYC induction (Fig. 4.2.), in contrast to single transgenic 

animals Sp-C-C-RAF BxB, which although were uniformly tumor positive at 2 weeks of age2, 

were not able to develop metastasis.  

 

Sp-C-C-RAF BxB / Sp-C-rtTA / tetO-c-MYC
11 months old – 7 months induced with DOX

tetO-C-RAF BxB / Sp-C-rtTA / Sp-C-c-MYC 
14 months old – 12 months induced with DOX

A B A B

 

 

Figure 4.2. Macroscopic inspection of organs from Sp-C-C-RAF BxB/Sp-C-rtTA/tetO-c-

MYC animals after DOX induction.  

(A) Primary tumor in lung. (B) Metastatic tumors in liver. 

 

Another mouse model which constitutively expresses c-MYC under the control of Sp-C 

promoter, and conditionally expresses C-RAF BxB under the control of the TetO promoter, 
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following the same principle of the model described above, was inspected for the development of 

metastasis in the liver. After 12 months of C-RAF BxB induction combined with constitutive c-

MYC expression showed the development of highly pronounced macrometastasis (Fig. 4.2) 

 

4.2. MYC induces GATA4 expression in NSCLC 

GATA6-WNT pathway is required for epithelial stem cell development and airway 

regeneration61. In turn, GATA4 is involved in maintenance of adult intestine45. It was shown by 

our group a GATA6 to GATA4 switch in Sp-C-c-MYC and Sp-C-C-RAF-BxB/Sp-C-c-MYC 

lung tumors and liver metastases. In the present work it is shown that the expression of the 

transgene promoter, Sp-C, is collocated in a fraction of cells with GATA4-expression (Fig. 

4.3.A). Interestingly, a high percentage of GATA4 positive cells lost promoter activity of the Sp-

C promoter and therefore the expression of c-MYC. This suggests that MYC induces GATA4 

expression, but this expression is maintained even after the loss of c-MYC, by an epigenetic, 

self-perpetuating mechanism. The ability of MYC to induce GATA4 was tested in vitro using the 

cell line A549 J5-1, which highly expresses chicken v-MYC2. Real-Time PCR was performed 

for analysis of mRNA levels from the parental cell line, A549 and the MYC expressing cells, 

A549 J5-1 (Fig. 4.3.B). The levels of GATA4 mRNA and its target mucin262 were measured, 

and it was possible to confirm that MYC is inducing expression of functional GATA4 in vitro 

(Figs. 4.3.C and 4.3.D).  

A fusion of MYC with an estrogen receptor (ER), which depends on the presence of tamoxifen 

(OHT) to go into the nucleus, was introduced in A549 cells (Fig. 4.4.A) and the transfected cells 

were selected with puromycin. 
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Figure 4.3. MYC induces GATA4 expression and its target mucin2. 

(A) Staining of mouse lung tumor sections for Sp-C and GATA4 shows mutually exclusive expression patterns 

between them. Lung tumor serial sections were stained for Sp-C and GATA4 (left and middle panel). GATA4 

high/Sp-C negative- and GATA4 low/Sp-C positive tumor regions were encircled with red and green dashed lines, 

respectively. The most right panel shows double immunofluorescence staining of a mouse lung tumor section for 

Sp-C and GATA4. Note that the majority of GATA4 positive tumor cells (red) are negative for Sp-C (green). Dapi 

(blue) shows nuclei. Scale bar = 50 µm. (Collaboration with Fatih Ceteci and Simone Hausmann). (B) Chicken v-

MYC mRNA levels were measured in the cell line A549 J5-1. Results show the absence of chicken v-MYC in the 

parental cell line A549 in contrast to the high expression observed in A549 J5-1 cells. (C) MYC shows ability to 

induce GATA4 expression in vitro. (D) The target of GATA4 in the intestine, mucin2, is upregulated in MYC 

expressing A549 cells, demonstrating the functionality of GATA4. All the values represent SD of the mean. 

Statistical differences between groups as indicated. 

 

The newly prepared cells were seeded in soft agar to perform anchorage independent assay. 

MYC expression was induced with 100 nMolar of OHT for 4 weeks and at this time point the  
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Figure 4.4. Inducible expression of human c-MYC in A549 cells. 

(A) Establishment of a MYC-inducible NSCL cell line. A MYC-ER fusion was inserted in the puromycin-resistant 

plasmid pBabe, in the ECORI site55. A549 cells were transfected with the resulting plasmid. Cells carrying the 

plasmid were selected with puromycin. (B) Pictures from the colonies formed by A549 and A549 EV (Empty 

Vector) in the presence of OHT (controls), and A549 J5-1 and A549 MYC-ER in the presence of OHT, after 3 

weeks in soft agar. Magnification 20x. (C) Quantification of the colonies formed by the different cells lines 
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(conditions as indicated). A549 MYC-ER cells show, in the presence of OHT, comparable ability to form colonies 

to the A549 J-51 cells, indicating the induction of anchorage independent growth ability by MYC. All the values 

represent SD of the mean. Statistical differences between groups as indicated. (D) mRNA levels of human MYC, 

GATA4 and mucin2 in induced and not induced A549 MYC-ER cells over time. GATA4 and its target mucin2 are 

upregulated after 3 weeks of MYC induction in A549 MYC-ER cells, although MYC upregulation is detected as 

early as 1 week after induction.All the values represent SD of the mean. Statistical differences between groups as 

indicated; ns – non significant. 

 

number of colonies formed was counted. A549 and not induced A549 MYC-ER cells were used 

as control. A549 MYC-ER showed a significant higher number of colonies formed when 

compared with the controls. Moreover, the new cell line after OHT-induction, showed the same 

ability to form colonies anchorage independently as the cell line A549 J5-1 (Figs. 4.4.B-C). 

The expression of MYC induced by tamoxifen was measured by Real-Time PCR (Fig. 4.4.D). 

These cells showed a significant overexpression of MYC after 1 week of induction with 100 

nMolar of OHT. Moreover, we could show GATA4 and mucin2 mRNA upregulation after 3 

weeks of MYC induction, although MYC induction occurs as early as 1 week after tamoxifen 

addition (Fig. 4.4.D). This suggests that the epigenetic changes at GATA4 promoter level take 

effect at this time point. 

 

4.3. GATA4 knock-down in MYC expressing NSCLC cells inhibits the metastatic 

potential induced by MYC 

A549 J5-1 cells show the ability to develop metastasis when transplanted in Rag-/- mice2. To test 

the role of GATA4 in this gained feature, a shRNA-mediated knockdown of GATA4 was 

performed in A549 J5-1 cells. The cells were infected with a shRNA-producing virus (sh26) and 

Real-Time PCR analysis for the expression of the GATA4 and its-target gene mucin2 was 
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performed (Fig. 4.5.A) in parallel with an anchorage independent growth assay in soft agar (Fig. 

4.5.B). The mRNA levels of GATA4 and mucin2 were significantly increased in A549 J5-1 

cells, when compared with the parental cell line A549. After sh-RNA mediated knockdown, 

GATA4 and its target mucin2 mRNA levels decreased significantly in A549 J5-1 cells. These 

cells were seeded in soft agar and the number of colonies was counted after 3 weeks (Fig. 4.5.C).  
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Figure 4.5. GATA4 knockdown in A549 J5-1 cells. 

(A) Real-Time PCR analysis of A549 J5-1 cells for GATA4 and its target gene mucin2 after GATA4 knock-down. 

Results show a significant upregulation of GATA4 and mucin2 in A549 J5-1 cells. shRNA 26 efficiently reduced 

the expression of the GATA4 and its target gene mucin2 in A549 J5-1 cells. All the values represent SD of the 
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mean. Statistical differences between groups as indicated. (B) Pictures from the colonies formed by A549, A549 J5-

1 and A549 J-51 shGATA4 26 cells after 3 weeks in soft agar. Magnification 20x. (C) Quantification of the colonies 

formed in soft agar by A549 J5-1 cells after GATA4 knockdown. A549 J5-1 cells show a highly significant 

reduction in the number of colonies formed after infection with the shRNA26-expressing virus. All the values 

represent SD of the mean. Statistical differences between groups as indicated; ns – non significant. 

 

This assay showed that the knockdown of GATA4 in A549 J5-1 cells revert their ability to grow 

anchorage independently, an ability which has been induced by MYC. These data suggest that 

the expression of GATA4 is necessary for the induction of anchorage independent growth by c-

MYC. 

 

4.4. MYC induces changes in GATA4  promoter activity 

To gain more insight regarding the expression of GATA4 induced by MYC in NSCLC, a vector 

containing the firefly luciferase gene under the control of GATA4 promoter was transfected into 

NSCLC cells, A549 and A549 J5-1. The expression of luciferase enabled the measurement of the 

activity of the GATA4 promoter by luminescence assessments. Using the genomic DNA from 

HeLa cells as a template, a PCR reaction was performed using specific primers (GATA4_P_455 

_fwd and GATA4_P_rev, listed in the Material section). A 455 bp fragment upstream of the 

transcription start site of GATA4 was amplified (Fig. 4.6.A) and cloned into the pGL3 vector, 

which already contains firefly luciferase (Fig. 4.6.B). Therefore, A549 (control) and A549 J5-1 

cells were transfected with this vector carrying the gene of luciferase under the control of GATA4 

promoter 455. Caco-2 cells were transfected with the same vectors and used as a positive control, 

as they normally express GATA457. After incubation allowing the expression of the luciferase 

controlled by the GATA4 promoter, a luciferase assay was performed by Sebastian Kress, and 

luminescence was measured. Thereby the promoter activity was recorded in A549, A549 J5-1 
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and Caco-2 cells for different time points making up a kinetic assay. The measured luminescence 

was normalized against the respective cell number and the control. As control, each cell line was 

transfected with the pGL3 control vector containing luciferase under control of a SV40 promoter.  
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Figure 4.6. GATA4 promoter activity. 

(A) Nucleotide sequence of the 5’-upstream region of the human GATA4 gene (modified from63). Nucleotides are 

numbered from the transcriptional start site (vertical arrow). The potential binding sites for transcription factors are 

boxed according to the consensus sequence: AP-1: TGACT(C/A)A, E-box: CANNTG and GC-box: GGGCGG or 

CCGCCC. Overlapping GC-box is underlined. (B) Modified PGL3 luciferase reporter vector: luciferase gene under 
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the control of GATA4 promoter. This plasmid holds a promoter sequence with 455 bp upstream of the transcription 

start of GATA4. Additional description: Luciferase, cDNA encoding the modified firefly luciferase; AmpR, gene 

conferring ampicillin resistance in E. coli ; f1 ori, origin of replication derived from filamentous phage; ori, origin of 

replication in E. coli. Arrows within Luciferase and the AmpR gene indicate the direction of transcription; the arrow 

in the f1 ori indicates the direction of ssDNA strand synthesis. (C) GATA4 promoter activity in MYC expressing 

cells. In a kinetic assay the activity of the GATA4 promoter controlling firefly luciferase was measured at different 

time points in A549, A549 J5-1 and Caco-2 cells. Activity of GATA4 promoter 455 was higher in A549 J5-1 cells, 

when compared to A549 cells. This difference was observed from 24 h on, but significantly, it was observed just at 

56 hours. All the values represent SD of the mean. Statistical differences between groups as indicated. 

 

The activity of the GATA4 promoter 455 was higher in A549 J5-1 cells than in the control cells 

A549 (Fig. 4.6.C). Measurements of luminescence in the first 10.5 h after transfection showed 

low luciferase expression in both cell lines, and consequently, no difference in GATA4 promoter 

455 activities. However, 24 h post- transfection the expression of luciferase increased, showing 

at this time point a major difference between activities of the promoter in the two cell lines, 

although still not significant. At the time point 53 hours, the activity of GATA4 promoter was 

significantly higher in A549 J5-1 cells, when compared with the control cell line. Therefore, 

these data suggests GATA4 upregulation by direct transcriptional interaction with MYC. 

 

4.5. MYC induces GATA4  promoter demethylation in c-MYC/KRas-mutant typeII-

pneumocytes 

As the GATA4 promoter resides in a large CpG island, the hypothesis, that DNA methylation 

plays a role in GATA4 regulation was tested. Thus, Achim Breiling performed 454-bisulfite-

sequencing of a 389 bp long CpG-rich region, which contains the promoter region of the GATA4 

gene (Fig. 4.7), on GATA4-positive and –negative regions of a Sp-C-c-MYC/KRas-mutant lung 

tumor and on a GATA4-positive liver metastasis (Fig. 4.8.A).  
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GATA4promoter region

GATA4gene and CpG islands

 

 

Figure 4.7. CpG Islands present at the GATA4 promoter.  

CpG-islands in the the GATA4 gene were identified by the UCSC Genome browser64. Below, a fragment of the 

promoter region containing the transcription start site is shown in the deaminated status (all Cs not in a CG contect 

are transformed to T). CpG-sites in the CpG-island are indicated in yellow. The primer sequences used for bisulfite 

sequencing are highlighted in green.  

 

The overall methylation of the examined region did not change, but looking closer, a significant 

lower methylation could be seen for the CpG-sites 13-18 and most significantly 19-22 in the 

GATA4-positive tumor and metastasis material (Fig. 4.8.B and Table 4.1), indicating a 

significant hypomethylation of these regions in GATA4-expressing tissue.  

 

4.6. MYC induces GATA4  promoter demethylation in human NSCLC cells  

To test whether ectopic MYC expression is sufficient to induce demethylation of the GATA4 

promoter in a human NSCLC cell line, Achim Breiling performed bisulfate sequencing of the 

same region analyzed above, but in A549 and A549 J5-1 cells. Also in A459 cells the GATA4 

promoter region was strongly methylated, which does not change significantly upon MYC 

expression (83% and 85%, respectively). 
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Figure 4.8. Methylation pattern of GATA4 promoter in a GATA4 negative and positive 

region and corresponding liver metastasis.  

(A) In vivo material used for 454-sequencing. Lung and liver paraffin sections of Sp-C-c-MYC/KRas-mutant 

animals were stained for GATA4. The DNA from GATA4-positive and –negative regions (indicated with the yellow 

circles) was isolated. (B-D) 454-sequencing of the CpG-rich region near the GATA4 promoter (for exact primer 

location see Fig. 4.7). DNA was isolated from lung tumor regions stained negatively and positively for GATA4 and 

from GATA4-positive liver metastasis, respectively. Sequencing results are shown as heatmaps in which each row 

represents one sequence read. Individual red boxes indicate methylated and green boxes indicate unmethylated CpG 

dinucleotides. Sequencing gaps are shown in white. CpGs showing the highest degree of change between DNA from 

GATA4-positive and –negative tumor tissue are boxed. The overall methylation of the region is 76% for both 
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GATA4-positive and –negative lung tumors and 73% for the liver metastasis. A significant decrease in methylation 

of the CpGs 13-22 (boxed) was observed in GATA4 positive tissue. For statistical tests see Table 4.1. The DNA 

used for the 454-sequencing was isolated from GATA4-stained paraffin-sections as illustrated in A. 

 

CpG
GATA4 neg.
lung tumor

GATA4 pos.
lung tumor

GATA4 pos.
liver metastasis

p-values

13 91% 35% 69% 0.00000 / 0.00006 *

14 77% 49% 12% 0.00002 / 0.00000 *

15 63% 56% 57% 0.38834 / 0.47138

16 79% 55% 58% 0.00017 / 0.00073 *

17 79% 51% 27% 0.00002 / 0.00000 *

18 90% 68% 61% 0.00008 / 0.00000 *

19 56% 52% 40% 0.58037 / 0.02354

20 3% 5% 0% 0.23474 / 0.11188

21 31% 21% 67% 0.03541 / 0.00000 *

22 90% 36% 51% 0.00000 / 0.00000 *

* p<0.05 for both GATA4 positive samples, DMC

 

 

Table 4.1 – Statistical significance of methylation percentage differences at GATA4 

promoter of GATA4 positive and negative lung tumors and GATA4 positive liver 

metastasis tissues. 

The table shows the percentage of methylation (percentage of remaining cytosines after bisulfite conversion) for the 

CpG dinucleotides 13 to 22 shown in Fig. 4.8 in the three tumor types. The last column shows the p-values as 

determined using Fisher's exact test comparing each of the GATA4 positive sample set (second and third column) 

with the GATA4 negative set (first column). Rows with p-values below 0.05, indicating a statistical significant 

difference between GATA4 negative and GATA4 positive sample sets and therefore differently methylated CpGs 

(DMCs), are marked by an asterisk. 

 

Nevertheless, also in these cell lines, a significant change in methylation was observed at CpG-

sites 19-22 from 60% in the A549 cells to 23% in the A549 J5-1 cells (Fig. 4.9.A).  
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Figure 4.9. Site-specific demethylation of CpG dinucleotides in the promoter region of 

GATA4 upon MYC expression in A549 cells.  

(A) Bisulfite sequencing of the GATA4 promoter in A549 and A549 J5-1 cells (for exact primer location see Fig. 4.7 

and Fig. 4.10.A). Open circles = unmethylated CpGs; filled circles = methylated CpGs. Each row represents a single 

clone. No significant change in the overall methylation status of the CpG-rich region near the GATA4 promoter was 

observed, but the CpGs 19-22 were differentially methylated. (B) 454-sequencing of the same region as in “A” (for 

exact primer location see Fig. 4.7). Sequencing results are shown as heatmaps in which each row represents one 

sequence read. Individual red boxes indicate methylated and green boxes indicate unmethylated CpG dinucleotides. 
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Sequencing gaps are shown in white. There is no significant change in the overall methylation-status of the region, 

but significant demethylation of the CpGs 19-22 (left box) was observed. Note that the most pronounced change in 

the degree of methylation is seen in CpG 22. For statistical analysis see Table 4.2.  

 

This was basically confirmed using 454-bisulfite-sequencing, which was also performed by 

Achim Breiling. As shown in Fig. 4.9.B, the overall methylation was 72% and 71%, in A549 and 

A549 J5-1 cells, respectively, whereas the methylation of the CpG-sites 19-22 significantly 

changed from 49% in the A549 cells to 37% in the A549 J5-1 cells (Figs. 4.9.B, Table 4.2). 

 

CpG A549 A549 J5-1 p-values CpG

19 72% 51% 0.00111 * 19

20 16% 5% 0.00733 * 20

21 39% 32% 0.30010 21

22 70% 59% 0.03170 * 22

* p<0.05, DMC

 

Table 4.2 – Statistical significance of methylation percentage changes at GATA4 promoter 

upon MYC expression in A549 cells. 

The table shows the percentage of methylation (percentage of remaining cytosines after bisulfite conversion) for the 

CpG dinucleotides 19 to 22 shown in Fig. 4.9 in A549 and A549 J5-1 cells. The last column shows the p-values as 

determined using Fisher's exact test comparing both samples.  

 

4.7. Epigenetic landscape of the GATA4  promoter changes upon MYC expression 

To complement the analysis of epigenetic modifications in the GATA4 promoter, histone 

modifications in the same region were mapped by chromatin immunoprecipitation (ChIP) with 

the collaboration of Achim Breiling. Locations of ChIP primer pairs are shown in Fig. 4.10.A. 

Chromatin was prepared from A549 control and MYC expressing A549 J5-1 cells and 
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precipitated with antibodies against histone H3 dimethylated at lysine 9 (H3K9me2), histone H3 

trimethylated at lysine 9 (H3K9me3), histone H3 dimethylated at lysine 4 (H3K4me2), histone 

H3 trimethylated at lysine 4 (H3K4me3) and histone H3 trimethylated at lysine 27 (H3K27me3).  
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Figure 4.10. Chromatin immunoprecipitation (IP) analysis of the GATA4 promoter region 

in control (A549) and MYC expressing cells (J5-1). 

(A) Genomic promoter region of GATA4. The first exon is indicated with capital letters. Sequences corresponding to 

the primer pair used for bisulfite sequencing are highlighted in yellow. CpG dinucleotiodes 13-22 are shown in bold. 

The primer sequences used for ChIP analysis are shown in bold and italics. (B) IP was repeated at least three times 

with chromatin from biological replicates using antisera specific for H3K9me2, H3K9me3, H3K4me2, H3K4me3 

and H3K27me3. Immunoprecipitated DNA was analyzed by Real-Time PCR and a primer specific for the GATA4 

promoter region was used (shown in A). Enrichments are shown as percentage of the total input. 

 

As shown in Fig. 4.10.B, corresponding to the strong methylation on the DNA level in A459 

control cells, were found mainly repressive histone marks in the GATA4 promoter region 

(H3K9me3 and H3K27me3), most prominently trimethylation of lysine 27 of histone H3, which 

would indicate repression by Polycomb Group (GcP) proteins. In contrast, in the MYC 

expressing line J5-1 the levels of repressive marks are low, whereas both active marks on H3K4 

are enriched, indicating ongoing transcription at the GATA4 promoter. These results suggest a 
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significant change in the epigenetic landscape of the GATA4 promoter upon MYC expression: 

DNA-hypomethylation of a region encompassing CpGs 13-22 (Figs. 4.8.B-D and 4.9.B), which 

is accompanied by an epigenetic switch from repressive to active histone marks (Fig. 4.10.B). 

 

4.8. MYC leads to changes in protein occupancy at the GATA4  promoter region  

In order to find out which proteins might interact with the GATA4 promoter in A549 control and 

MYC expressing A549 J5-1 cells, in particular if there are specific binding sites in the region 

covered by CpGs 13-22, a fragment of the GATA4 promoter region corresponding to the segment 

amplified by the bisulfite primers was analyzed with the MatInspector software65. This revealed 

the presence of consensus binding sites for the MYC associated zinc finger protein - MAZ, 

which usually are shared by the SP1 transcription factor, a MYC-related E-box, a Y-box and 

consensus sequences for the general transcription factor TFIID between CpGs 15 and 22 (Fig. 

4.11.A).  

To validate these potential binding sites and to get an insight into the protein presence at the 

GATA4 promoter in control and MYC expressing cells, Achim Breiling performed ChIP using 

antibodies against chicken v-MYC (chk-MYC), GATA4, GATA6, MAZ, the three major DNA 

methyltransferases (DNMT1, DNMT3a and DNMT3b), Enhancer of Zeste 2 (EZH2) and the 

large subunit of the RNA-polymerase II (POL II) and chromatin prepared from A549 control 

cells and the J5-1 cell line. In the repressed case (A549 control), strong binding of MAZ and 

EZH2 to the GATA4 promoter was found, which was paralleled by the presence of DNMT1 (Fig. 

4.11.B). 
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Figure 4.11. Protein presence in the GATA4 promoter.  

(A) Consensus binding sites in the region covered by CpGs 13-22 of GATA4 promoter. The region directly upstream 

of the GATA transcription start site was analyzed for transcription factor binding sites using the MatInspector 

software65. The first exon is indicated with capital letters. Potential binding sites for MAZ and TFIID, an E-box, a 

Y-box and CpGs 13-22 are indicated. (B) ChIP assay monitoring occupancy of the GATA4 promoter by candidate 

proteins chicken v-MYC (chk-MYC), GATA4, GATA6, MAZ, the three major DNA methyltransferases (DNMT1, 

DNMT3a and DNMT3b), , Enhancer of Zeste 2 (EZH2) and the large subunit of the RNA-polymerase II (POL II). 

Binding of chicken v-MYC and GATA4 to the GATA4 promoter was significantly higher in the MYC expressing 

A549 J5-1 cells than in the parental A549 cells. In contrast, binding of MAZ to the GATA4 promoter was 

significantly higher in the parental A549 cells when compared to the A549 J5-1. Enrichments are shown as 

percentage of the total input. 

 

In A549 J5-1, MAZ and EZH2 binding is greatly reduced, whereas chk-MYC (the protein 

expressed in this cell line) and GATA4 itself are found enriched on the GATA4 promoter. 

DNMT1 levels do not change, which goes in line with the observation that the overall 
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methylation of the region does not change in MYC expressing cells. GATA6, as GATA4 

antagonist, could not be found interacting neither in control nor in J5-1 cells. In line with the 

observed activation of the GATA4 promoter in J5-1 cells, an increased interaction of POL II with 

the promoter was observed (Fig. 4.11.B). 

 

4.9. MAZ displacement in A549 cells leads to GATA4 expression 

MAZ has been described as a recruiter of DNMTs66. As it was observed in the ChIP assay that 

MAZ is displaced from the GATA4 promoter after MYC expression in A549 cells, the hypothesis 

that the displacement of MAZ can prevent de novo methylation of GATA4 promoter in a new cell 

cycle, and therefore permit GATA4 expression was postulated. Thus, a shRNA-mediated 

knockdown of MAZ in the A549 cells was performed.  

For this, the cells were infected with a shRNA-producing virus, containing the puromycin 

resistance gene. The infection was considered successful since the infected cells showed 

resistance to puromycin. The newly prepared cells were seeded in soft agar to test if the lack of 

MAZ in A549 is able to induce anchorage independent growth. After 3 weeks the number of 

colonies was counted (Figs. 4.12.A and 4.12.B). The knockdown of GATA4 mediated by the 

shRNA 345 producing virus was able to induce anchorage independent growth ability in A549 

cells in a significant manner. This result suggests that the knockdown of MAZ might be 

sufficient to transform A549 cells from a non-metastatic to metastatic phenotype. Moreover, and 

as postulated above, A549 cells where MAZ has been knockdown showed an upregulation of 

GATA4 and its target mucin2 (Figs. 4.12.C and 4.12.D). Altogether, these data suggest that 

MAZ might be involved in the regulation of GATA4 expression by an epigenetic mechanism, 

which is started by MYC. 
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Figure 4.12. MAZ knockdown in A549 cells leads to GATA4 upregulation and increases the 

ability of the cells to grow anchorage independently.  

(A) Anchorage independent growth ability of A549 cells after knockdown of MAZ. Pictures from the colonies 

formed by A549 and A549 shMAZ 345 cells after 3 weeks in soft agar. Magnification 20x. (B) Quantification of the 

colonies formed by the A549 cells after infection with shRNA-producing virus MAZ 345. The soft agar assay plate 

with the A549 shMAZ 345 cells shows a highly significant increase in the number of colonies formed, when 

compared with the parental cell line, A549. All the values represent SD of the mean. Statistical differences between 

groups as indicated. (C)(D) GATA4 and mucin2 mRNA levels were measured by Real-Time PCR in A549 and 

A549 shMAZ 345 cells. The results show a significant increase in both GATA4 and mucin2 mRNA levels in MAZ 

knocked-down cells, compared with the parental cell line, A549. All the values represent SD of the mean. Statistical 

differences between groups as indicated. 

 

4.10. Histone deacetylase inhibition in MYC expressing cells does not lead to an 

increase of GATA4 activity 

Beside its role recruiting DNMTs, MAZ has also been described to recruit HDACs66. If 

repression of GATA4 via MAZ recruited HDACs is important, histone deacetylase inhibition 

can lead to GATA4 activation, simulating the displacement of MAZ from the GATA4 promoter. 

To answer this question, A549 cells were treated with 50 ng of trichostatin A (TSA), which 

inhibits HDACs activity, from 24 hours to 4 weeks and mRNA levels of mucin2 were measured 

for each sample (Fig. 4.13). Against the expectations, expression of the GATA4 target, mucin2 
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was reduced upon TSA treatment. As TSA treatment affects many other genes, there might be 

many explanations for this result, like for example, the activation of some MYC or GATA4 

repressor. Nevertheless, this data suggests that HDACs are not involved in the epigenetic 

changes induced by MAZ displacement from GATA4 promoter. 
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Figure 4.13. Inhibition of HDACs activity does not lead to GATA4 activation. 

Mucin2 mRNA levels were measured in A549 cells by Real-Time PCR, before and after treatment with TSA. The 

results show mucin2 mRNA levels from 24 hours up to 4 weeks of TSA treatment. The GATA4 target gene, mucin2 

is downregulated as early as 24 hours after TSA treatment, and this behavior is maintained over time. All the values 

represent SD of the mean. Statistical differences between groups as indicated; ns – non-significant. 

 

4.11. Methylation profile of A549 cells changes upon MYC expression 

The hints given from the experiments above about epigenetic changes occurring at GATA4 

promoter after MYC induction arouse the interest about the whole genome methylation changes. 

Therefore, analysis of the whole genome methylation status upon MYC expression in A549 cells 

was performed by Achim Breiling using Infinium HumanMethylation27 bead chip technology 

(Illumina). Data from this experiment displayed in a scatter plot (Fig. 4.14.A), shows a wide 
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distribution of the points representing CpG islands, which means that many genes changed their 

methylation status in A549 J5-1 cells, when compared with the control cell line A549. For this 

purpose, interesting are the points which scatter away from the midline. Those genes show the 

strongest changes in their methylation status after MYC induction. This shows that the 

methylation profile of A549 cells changes upon MYC expression, supporting the hypothesis of 

an epigenetic mechanism induced by MYC.  

 

4.12. Epigenetic changes induced by MYC in A549 cells alter the expression profile 

Microarray analyses of A549 and A549 J5-1 cells have been performed by Ellen Leich. The 

experiment was carried out using RNA isolated from A549 and A549 J5-1 cells. The correlation 

of the expression and methylation profile before and after MYC expression in A549 cells was 

analyzed by Tobias Müller from the Department of Bioinformatics using statistic tools (Figs. 

4.14.B and 4.14.C). The correlation analysis pretends to disclose the effect of methylation 

changes in the expression status of the whole genome. A correlation could be found, although 

there are more genes downregulated and stronger methylated upon MYC introduction in A549 

cells, than genes that were demethylated and upregulated in the same cells. From these 

mathematical analyses, a set of few genes in which demethylation was correlated with protein 

upregulation, were picked for further analyses (Table 4.3). The upregulation of this set of genes 

in MYC expressing A549 cells was confirmed individually, by measurement of their mRNA 

levels (Fig. 4.15). All the genes tested in this experiment showed to be upregulated in A549 J5-1 

cells when compared to the parental cell line A549. These genes are therefore interesting 

candidates to be involved in the induction of metastatic potential of A549 J5-1 cells, induced by 

MYC. 
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Figure 4.14. MYC induces alteration in the overall methylation and expression profiles. 

(A) Correlation between methylation levels in A549 and A549 J5-1 DNA. Each spot represents a single CpG. The 

blue line crosses all the spots in the graph where the ratio of methylation did not change upon MYC expression. (B-

C) Correlation between overall methylation and expression changes upon MYC expression in A549 cells. The 

overall analysis shows that there are many genes downregulated and stronger methylated upon MYC introduction in 

A549 cells, while there are only a few genes that are demethylated and upregulated. 
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Gene
Expression 

A549
Expression 
A549 J5-1

Difference
(Exp A549 –
Exp A549 

J5-1) 

% Met
A549

%  Met 
A549 J5-1

Difference 
(% Met 

A549 – % 
Met A549 

J5-1)

LAMC2 -2.05 -1.72 0.33 79.72 2.28 77.43

HKDC1 -2.76 -1.13 -1.63 38.86 2.44 36.42

KCNAB2_1 -3.15 -2.56 0.59 58.56 0.82 57.74

SLC6A15 -0.87 2.09 -2.96 14.13 2.77 11.36

 

Table 4.3. Values of methylation and expression for selected genes. 

The table shows the absolute values of expression in A549 and A549 J5-1 cells of the genes listed. Absolute 

differences of expression (A549 - A549 J5-1) are shown in the 4th column. The values of methylation of both cell 

lines are showed in the 5th and 6th column, as a percentage; in the last column, the absolute difference between 

methylation percentages is displayed (A549 – A54 J5-1). Met (methylation), Exp (expression). 
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Figure 4.15. A549 J5-1 cells show upregulation of the indicated genes.  

(A-E) The upregulation of a set of genes in which demethylation is correlated with protein upregulation in A549 J5-

1 cells was confirmed by Real-Time PCR analyses. All the values represent SD of the mean. Statistical differences 

between groups as indicated. 
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4.13. Overexpression of GATA4 in A549 cells changes their anchorage independent 

growth ability 

To further test the functional role of GATA4 in NSLC, a new cell line overexpressing GATA4 

was prepared. For this, the coding sequence of human GATA4 was subcloned into the EcoRI site 

of the retroviral vector pEGZ by using the oligonucleotides GATA4_FWD and GATA4_REV 

listed in the Materials section. This vector incorporates in addition the EGFP and zeocin-

resistance gene. After infection of A549 cells with the construct pEGZ/GATA4, positively 

infected cells were selected with zeocin. Following selection, pools of 10 infected cells were 

seeded in 96 well-plates, and tested for GATA4 and EGFP expression. The infected cells pool 

showing higher levels of GATA4 mRNA was the number 11, and was consequently expanded to 

use in further experiments (Figs. 4.16.A and 4.16.B). This new cell line (from now called A549 

GATA4-11) was afterwards tested by immunocytochemistry using an antibody specific for 

human GATA4. As shown in Fig. 4.16.C, A549 GATA4-11 cells show GATA4 and GFP 

expression. Moreover, GATA4 showed to be localized in the nucleus. 

As shown in Fig. 4.16.D, A549 GATA4-11 cells have a different morphology compared to the 

parental cell line A549, when grown in adherent culture and show a tendency to detach from the 

surface. The cell proliferation rate of A549 GATA4-11 and A549 cells in adherent culture was 

measured by MTT assay (Fig. 4.17.A). This assay showed that GATA4 is not altering the 

proliferation rate of A549 cells, when grown in adherent culture. The ability to grow anchorage 

independently of GATA4 expressing and non-expressing A549 cells was compared in a soft agar 

assay. Although there is no difference between proliferation rate of the two cell lines in adherent 

culture, when grown in soft agar, the size and number of colonies formed by A549 GATA4-11 

cells was significantly higher when compared to the A549 cells (Figs. 4.17.B-C). These results 
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show that the expression of GATA4 in the human NSCLC cell line A549 highly significantly 

increases the ability for anchorage independent growth. 
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Figure 4.16. A549 cells infected with pEGZ/GATA4 vector show GATA4 and EGFP 

expression. 

(A-B) Relative mRNA levels of GATA4 and EGFP in A549 cells infected with the plasmid pEGZ/GATA4 

measured by Real-Time PCR. Numbers 10/11/12 refer to different pools of 10 cells seeded in a 96 wells plate after 

infection and selection with appropriate antibiotic. The best candidate pool was number 11, showing the highest 

level of GATA4 mRNA levels. This pool also showed high EGFP expression. (C) Immunocytochemistry for human 

GATA4 in A549 and A549 GATA4–11 cells. GATA4 expression was detected in the nucleus of the latest cells. 

GFP expression was also detected in these cells by fluorescence microscopy. Red (Cy5) colored cells are GATA4 

positive; Green cells are GFP positive; Scale bars = 50 µm. (D) Phase microscopic observation of GATA4 

expressing A549 cells. After introduction of human GATA4 in A549 cells, the cells change their morphology and 

tend to detach. Scale bar = 100µm. 
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Figure 4.17. Characterization of A549 GATA4-11 cells. 

(A) Proliferation rate of A549 cells does not change upon GATA4 expression in adherent culture. Proliferation was 

assessed by MTT assay. All the values represent SD of the mean. Statistical differences between groups as 

indicated. ns: Not significant. (B) Growing in soft agar resulted in an increase of number and size of colonies in the 

case of A549 GATA4–11 cells. Magnification 20x. (C) The number of colonies formed in soft agar by the cell line 

A549 GATA4-11 was significantly higher when compared to the parental cell line A549. All the values represent 

SD of the mean. Statistical differences between groups as indicated. (D) Images from a time-lapse sequence of A549 

and A549 GATA4-11 cells migrating to heal a wound. A549 cells show the healing of the wound at 48 hours, while 

A549 GATA4–11 were not able to heal the same sized wound in that time frame. The latest cells show a decrease in 

their migration potential, when compared with the parental cell line; ns – non-significant. 

 

4.14. GATA4 expressing A549 cells show a decrease in their migration ability 

Because active migration of tumor cells is a prerequisite for tumor-cell invasion and metastasis67, 

a wound healing assay was performed to access the migration potential of GATA4 expressing 

A549 cells. The migration behavior of these cells and of the control A549 was monitored during 
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48 hours (Fig. 4.17.D). Unexpectedly, this experiment showed healing of the wound at 48 hours 

in the case of A549 cells, while the GATA4 expressing A549 cells did not heal the wound in this 

time frame, suggesting a reduced migration potential of A549 GATA4 – 11 cells.  

 

4.15. GATA4 expression in A549 cells leads to accelerated tumor growth in vivo 

If the expression of GATA4 induced by MYC is sufficient to induce metastasis, the 

transplantation of a GATA4 expressing NSCLC cell line - A549 - in immunodeficient mice 

should lead to metastasis. To test this possibility, 2.5 x 106 A549/GFP and A549 GATA4-11 

cells were subcutaneously implanted in nude mice, respectively. Accelerated tumor growth was 

observed in the A549 GATA4-11 transplanted animals when compared to the animals injected 

with the control cells (Fig. 4.18.A). Taking advantage of GFP expression in the transplanted 

cells, tumor growth could also be monitored by GFP fluorescence measurements, which showed 

much higher GFP fluorescence in tumors from A549 GATA4-11 cells indicating again 

accelerated tumor growth induced by GATA4 (Figs. 4.18.B and 4.18.C). Among the differences 

between the two groups, it was still noticeable that tumors from GATA4 group presented in 

general a reddish color as blood vessels could be seen with necked eye, which was not observed 

in the control group (Fig. 4.19.A). Moreover, 12 out of 15 tumors from the GATA4 group started 

to bleed very early (27 days after transplantation), which suggests increased tumor 

vascularization. Due to fast tumor growth (reaching the allowed 2 cm tumor size very quickly) 

and premature tumor bleeding, the animals transplanted with A549 GATA4-11 cells had to be 

sacrificed 27 to 38 days after transplantation (Fig. 4.19.B). Whole body imaging of cells 

expressing GFP was done weekly (Fig. 4.18.C).  
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Figure 4.18. Xenograft assay of tumor (NSCLC tumors A549 cell derived) growth after 

GATA4 addition. 

The tumor cells were injected subcutaneously in nude mice. (A) Tumor diameters were measured twice per weeks 

and are indicated as the mean ± SD. (B) Tumor GFP fluorescence was measured once per week using the Maestro 

Software 2.10.0. (C) Whole body imaging of NSCLC cells expressing GFP (upper panels) and GFP in addition to 

GATA4 (lower panels) growing in nude mice over time. 

 

No GFP expression was observed in organs or lymph nodes adjacent to the primary tumors, 

neither in the GATA4 or control group, indicating no development of metastasis. After 

sacrification, the organs extracted were imaged in a petri dish and no GFP expression could be 

observed except in the primary tumors (Fig. 4.19.C). 
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Figure 4.19. GATA4 induces fast NSCLC tumor growth in nude mice.  

(A) Differences in tumor size and vascularization between mice injected with A549/GFP and A549 GATA4-11 

cells, 28 days after implantation. (B) Kaplan-Meier survival curves for nude mice implanted with A549/GFP and 

A549 GATA4-11 cells. Data plotted as percent of animals surviving in each group. (C) Organs imaging of NSCLC 

cells expressing GFP (left panel) and GFP in addition to GATA4 (right panel). Primary tumors in green. 

 

4.16. A549 cells show downregulation of angiogenic factors upon GATA4 expression 

Angiogenesis is a process necessary for a tumor to become metastatic68. Therefore, the 

expression of a set of genes known as angiogenic factors was evaluated in the GATA4 

expressing A549 cells, and corresponding parental cell line (Fig. 4.20).  

None of these genes, usually upregulated during metastasis development, showed upregulation in 

the A549 GATA4-11 cell line in comparison with A549 cells. Differently, all the tested genes 
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showed downregulation in GATA4 expressing cells (Fig. 4.20), which goes in line with the 

results from the wound healing assay.  
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Figure 4.20. A549 cells show downregulation of angiogenic factors upon GATA4 expression 

(A-E) Relative mRNA levels of angiogenic factors: VEGF A, HIF1 A, NFKB1, TGF beta and ANG1 in A549 and 

A549 GATA4–11 cells measured by Real-Time PCR. All the genes show downregulation upon GATA4 expression. 

All the values represent SD of the mean. Statistical differences between groups as indicated.  

 

4.17. A549 cells show downregulation of pluripotent stem cells markers, but not of 

CD30 

Based on the theory that tumor cells progressively acquire stem cell properties as a consequence 

of oncogene-induced plasticity30, and that MYC is involved in the induction of pluripotent stem 
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cells69, the question whether GATA4 has the same effect in NSCLC cells was addressed. 

Therefore, mRNA levels of commonly used pluripotent stem cell markers (BMP4, HNF4A and 

CD30)70,71,72 were measured in GATA4 expressing A549 cells (Fig. 4.21). The pluripotent stem 

cell markers BMP4 and HNF4A showed downregulation upon GATA4 expression in A549 cells, 

in contrast to the marker CD30, which showed upregulation in the same cells, comparing with 

the control A549. Thus, these data do not exclude that GATA4 can induce dedifferentiation in 

A549 cells. 
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Figure 4.21. A549 cells show downregulation of pluripotent stem cell markers upon 

GATA4 expression, but not of CD30. 

Relative mRNA levels of pluripotent stem cell markers: BMP4, HNF4A and CD30 in A549 and A549 GATA4–11 

cells measured by Real-Time PCR. (A-B) BMP4 and HNF4A show downregulation upon GATA4 expression. (C) 

In contrast, CD30 is upregulated in GATA4 expressing cells, when compared to the parental cell line, A549. All the 

values represent SD of the mean. Statistical differences between groups as indicated. 
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5. Discussion 

5.1. MYC induces a phenotypic and lineage switch in NSCLC 

In this work, an epigenetic switch induced by MYC in NSCLC is reported. The results 

demonstrate that MYC induces epigenetic alterations at the GATA4 promoter level leading to its 

upregulation. Such alterations include site-specific demethylation and acquisition of active 

histone modification marks in GATA4 promoter. Importantly, a novel epigenetic mechanism by 

which MYC activates GATA4 leading to a metastatic phenotype in NSCLC is proposed and 

novel potential targets for the development of anti-metastatic therapy are suggested.  

It was previously reported that constitutive expression of C-RAF under the control of the Sp-C 

promoter, or C-RAF BxB - an N-terminal deleted form of C-RAF that lacks RAS-binding 

domain -, gives rise to thousands of well differentiated adenomas, poorly vascularized, that do 

not progress to metastasis in mice18. In contrast, inducible or constitutive expression of nuclear c-

MYC was shown to be sufficient to induce early macrometastasis in RAF-driven-NSCLC mice, 

by suppressing apoptosis. Moreover, c-MYC is able to convert a non-metastatic NSCLC cell line 

A549, into metastasizing cells2. A second reported consequence of cooperation between C-RAF 

and c-MYC is the rapid induction of a new Alveolar Papillary Epithelial Cell type, APEC, which 

affects a large fraction of cells. The original phenotype of these cells is a cuboidal type. A higher 

proliferation index in primary lung tumors was shown for the APEC cells and they are the 

predominant cell type found in the corresponding solid metastasis2. In the present work, this 

phenotypic switch was shown and could be reverted after c-MYC withdrawal in vivo, by the 

disappearance of APECs, which suggest a “shock from oncogene withdrawal” – effect60 (Fig. 

4.1). In spite of the cuboidal to columnar phenotypic switch has been observed in all mice 
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overexpressing the two oncogenes in type II cells, only a fraction of them proceeds to develop 

metastasis2. Therefore the requirement of additional events for the metastasis switch has to be 

considered. A comparable phenotypic switch from cuboidal to columnar cells has been observed 

by Rapp et al. upon deletion of p53 in Sp-C-C-RAF BxB transgenic mice16. c-MYC upregulation 

can be the reason for the switch previously reported, since p53 transcriptionally represses c-

MYC73.  

In addition to the phenotypic switch, a lineage switch was previously observed in the tumors 

from animals expressing c-MYC in type II cells. GATA4, which is exclusively expressed in the 

lung during its development or in the intestine of adult mice74,45, was found in the tumors of 

single Sp-C-c-MYC or compound mice, but not in single Sp-C-C-RAF animals. In contrast, 

GATA6, a transcription factor involved in airway regeneration and normally expressed in the 

lung61, was found in single Sp-C-C-RAF transgenic animals and in the case of tumor tissues 

from c-MYC single and compound transgenic mice, it gave place to GATA4 expression. This 

mutually exclusive expression of GATA6/GATA4 is expected for a lineage switch process. The 

same lineage switch was reported in tumor tissue of metastasis with origin in lung tumors from 

animals expressing c-MYC in type II cells2, suggesting that the switch occurred in the primary 

tumor is important for the development of metastasis induced by c-MYC. 

In the present work, it was observed the loss of the transgenic promoter Sp-C in a high 

percentage of GATA4 positive cells of the primary tumors from Sp-C-c-MYC, showing that 

GATA4 expression is kept after loss of c-MYC, through the loss of its promoter (Fig. 4.3.A). 

These observations show that MYC induces a lineage switch, where GATA4 expression is 

induced and that GATA4 expression is afterwards independent of MYC expression, suggesting a 

self-sustaining mechanism for this GATA transcription factor. Moreover, this switch may drive 
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NSCLC progression to metastasis29. GATA4 transcription factor is activated by phosphorylation 

by ERK and protein kinase A in gonodal cells75. After a first activation by MYC, a similar 

mechanism might be involved in the subsequent GATA4 activation in NSCLC reported in this 

work. 

 

5.2. MYC drives GATA4 expression in human NSCLC cells 

As observed in murine lung tumors, here is shown that MYC also induces the expression of the 

transcription factor GATA4 in the metastatic cell line A549 J5-12 and in the MYC inducible cell 

line A549 MYC-ER in vitro (Figs. 4.3.C and 4.4.D). In addition to GATA4 upregulation, the 

inducible cell line shows increased ability to grow anchorage independent in soft agar after MYC 

expression, mimicking metastatic behavior of A549 J5-1 cells (Figs. 4.4.B-C). GATA4 is 

normally expressed in the intestine, and has mucin2 as its functional target45,62. The upregulation 

of mucin2 in MYC expressing cells proved the functionality of GATA4 induced by MYC in 

NSCLC (Figs. 4.3.D and 4.4.D). In fact, GATA4 is a lineage selector gene, and its upregulation 

might suggest a dedifferentiation of the cells and loss of organ identity which goes in line with 

the theory that the metastastic process is a recapitulation of ontogeny29. Moreover, a controlled 

addition of MYC to A549 cells showed that the upregulation of GATA4 induced by MYC starts 

3 weeks after ectopic MYC expression although MYC upregulation is detected as early as 1 

week after induction. This suggests that a multi-step mechanism might be involved in the 

changes induced by this oncogene (Fig. 4.4.D). 

Here, the involvement of GATA4 in the metastatic behavior induced by MYC could be shown, 

since A549 J5-1 cells lacking GATA4 expression showed a decreased ability to form colonies in 

soft agar comparing with the GATA4 expressing A549 J5-1 cells (Fig. 4.5). The ability of A549 
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J5-1 cells to grow in the absence of anchorage is a required step for the cells to metastasize76, 

and the lack of GATA4 seems to revert, at least partially, this metastatic behavior which has 

been induced by MYC. It was earlier reported that GATA4 promotes the expression of the anti-

apoptotic factor Bcl2 and cyclin D246. In fact, altered expression of GATA4 has been correlated 

with a broad range of tumors emerging from gastrointestinal tract, lungs, ovaries and brain. The 

forced expression of GATA4 in colorectal cancer cell lines was previously reported to increase 

their proliferation and migration capacities40. Another study showed that elevated GATA4 levels 

are associated with poor prognosis in ovarian granulose cell tumors77.  

 

5.3. MYC induces GATA4  promoter demethylation 

The GATA4 promoter activity of a 455 bp fragment 5’-upstream the transcription start of the 

human GATA4 gene was assessed, and results showed that MYC expressing A549 cells have a 

higher activity of GATA4 promoter, when compared with MYC non-expressing cells, A549 wild-

type (Fig. 4.6). This data suggests that MYC is enough to alter GATA4 promoter activity, and is 

in line with the evidence that MYC activates GATA4, also showed in this work. Indeed, it was 

interesting to see what is happening at the GATA4 promoter level, taking advantage of the recent 

explosion of knowledge of how epigenetic events modulate gene transcription50. 

Growing evidence now suggests that epigenetic alterations are at least as common as mutational 

events in the development of cancer50,30. Tumor-specific promoter hypermethylation is well 

documented50. Epigenetic silencing is also known as a frequent event in NSCLC, i.e. of p16, H-

cadherin, death-associated-protein (DAP), kinase1 (DAPK1), 14-3-3 sigma and the candidate 

tumor suppressor gene RASSF1A1. However, comparatively little is known about the role of 
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promoter hypomethylation in gene activation in cancer, especially in NSCLC. In the present 

work, it was shown that GATA4 upregulation in NSCLC is accompanied by demethylation of its 

promoter upon MYC expression in vitro and in vivo (Figs. 4.8 and 4.9). Interestingly, MYC did 

not alter the overall methylation level of GATA4 promoter, but it induced site-specific 

demethylation. Hypomethylation was observed in the CpG islands 13-18 of the GATA4 promoter 

from lung tumors and respective liver metastasis extracted from mice expressing ectopic MYC. 

The same effect was observed in the CpG islands 19-22, also in the promoter of MYC-

expressing A549 cells. Interestingly, the region of the GATA4 promoter between CpG islands 13 

and 22 comprises the binding site for MYC – an E-BOX sequence78,79 – which was previously 

shown to activate GATA4. E-BOX motif of the proximal GATA4 promoter has been reported to 

be a key regulatory element of GATA4 transcript expression in vitro80 and in vivo81. Therefore, 

hypomethylation of this specific region might be of great importance for the metastasis-inducing 

mechanism by MYC, especially because this effect was observed in metastatic tissue, as well as 

in the primary tumor (Fig. 4.8). Y-BOX sequence is also present in the referred region of GATA4 

promoter. Y-BOX binding protein 1 regulates expression of many important genes82 and has 

been reported to be involved in the development of metastasis in patients with gastric and breast 

cancer83. This protein might bind to the hypomethylated region of the GATA4 promoter 

regulating its expression, or even acting as a partner in metastasis development. 

The occurrence of hypo or hypermethylation in cancer cells has been controversially discussed. 

One of the first studies screening methylation levels in human cancers reported substantial 

hypomethylation in genes of cancer cells compared with their normal counterparts and 

progressive hypomethylation in metastasis84. On the other hand, several studies report aberrant 

hypermethylation in various types of cancer, especially silencing wild-type tumor 
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suppressors85,50,1,86. Hypermethylation of GATA4 in lung cancer have also been reported40,86. In 

fact, the data from the present work may seem inconsistent with these reports, but here, it was 

observed hypomethylation of GATA4 in metastatic cells and tissues, while in the revised 

literature, methylation studies were mainly made in primary tumors or non-metastatic cell lines. 

Therefore, as this study lacks the comparison of methylation levels of the primary tumors with 

analogous normal tissue, no statement can be made to corroborate previous findings about 

hypermethylation in primary tumors.  

Actually, a study about methylation of GATA genes in lung cancer using several lung cancer cell 

lines revealed GATA4 silencing by hypermethylation in most of the tested cells, including 

A54986. Curiously, the only cells extracted from metastasis tissue, H157 were unmethylated in 

the GATA4 promoter region analyzed86.  

In another report, analysis of GATA4 promoter methylation in ovarian cancer tissues collected 

from patients, showed that a rapidly invasive ovarian cancer (High-Grade Serous Ovarian 

Cancer) kept GATA4 promoter unmethylated in all cases, while tumors from patients with other 

type of ovarian cancers which are less invasive and develop slower, showed hypermethylation of 

GATA4 promoter87.  

Indeed, it is not surprising that in the present work it has been shown an involvement of GATA4 

upregulation by hypomethylation of its own promoter in the development of metastasis. The role 

of MYC in the induction of such epigenetic changes is likely, not only based on the data here 

presented, but also because of the well known preference of MYC to bind to promoter and CpG-

rich regions79. 
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5.4. MYC induces the enrichment of active histone marks and changes protein 

occupancy at the GATA4  promoter  

DNA methylation acts in cooperation with histone tail modifications and has the ability to alter 

the chromatin condensation status. Patterns of both events were shown to be altered in cancer88. 

Histones are no longer considered to be simple ‘DNA-packaging’ proteins; they are recognized 

as dynamic regulators of gene activity that undergo many post-translational chemical 

modifications, such as acetylation, methylation, phosphorylation, ubiquilation and sumoylation89. 

Acetylation and methylation of specific lysine residues in the tails of nucleosomal core histones, 

in particular Histone 3, are known to have an important role in regulating chromatin structure 

and therefore gene expression89. In general, histone hypoacetylation and hypermethylation are 

characteristic of DNA sequences that are methylated and repressed in normal cells88. Alterations 

in DNA methylation and in histone modification patterns potentially affect the structure and 

integrity of the genome and change normal patterns of gene expression, which might be causal 

factors in cance53. A signal that separates regions of transcriptionally active chromatin from 

regions of transcriptionally inactive chromatin seems to be given by the specific methylation 

markers in histone H350. Transcriptionally repressive chromatin has been related with 

methylation of lysine 27 (lys27)90 and of lysine 9 (Lys9) in the histone 3 tail50, in opposition to 

methylation of lysine 4 (Lys4) on histone 3 tail, which characterizes the transcriptionally active 

chromatin50. It was previously shown that several lysine residues, including lysines 4, 9, 27, and 

36 of Histone 3, are preferred sites of methylation and that lysine methylation can occur on the ε-

nitrogen atom as mono-, di-, or trimethylated forms91. 

In the present work, corresponding to the strong methylation on the GATA4 promoter of A459 

control, non-metastatic cells, were found mainly repressive histone marks H3K9me3, and most 
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prominently trimethylation of lysine 27 of histone H3 (Fig. 4.10). The enrichment of H3K27me3 

at GATA4 promoter of the non-metastatic cells A549 can indicate repression by polycomb group 

proteins (PcG)47. Indeed, polycomb-repressive complex 2 (PRC2) is known to repress gene 

expression by trimethylating of Lys27 on histone H3, establishing repressive epigenetic marks92. 

PRC2 methylates H3K27 via its catalytic subunit – Enhancer of Zeste 2 (EZH2) - which 

transfers a methyl group from S-adenosyl methionine (SAM) to Lysin 27 residue at H392,93. In 

fact, in this work EZH2 was found to be enriched at GATA4 promoter of A549 wild-type cells, in 

contrast to the low binding of the Enhancer detected at GATA4 promoter of MYC-expressing 

A549 cells (Fig. 4.11). GATA4 binds and recruits the transcriptional co-activator p300 to 

specific chromatin loci, which acetylates GATA4 augmenting its transcriptional activity94. It was 

recently shown that GATA4 methylation by PRC2 impairs its acetylation by p300 and reduces its 

recruitment of p300 to chromatin, resulting in reduced GATA4 transcriptional potency47. These 

facts support our findings that GATA4 expression is repressed in A549 cells, and that this event 

is accompanied by an enrichment of the PRC2 methylation target - H3K27 (Figs. 4.10 and 4.11).  

In contrast to the enrichment of repressive histone marks at the GATA4 promoter of wild-type 

A549 cells, in the MYC expressing line J5-1 the levels of repressive marks are low, whereas both 

active marks on H3K4 are enriched, indicating ongoing transcription at the GATA4 promoter 

(Fig. 4.10). It is widely assumed that the key rate-limiting step in gene activation is the 

recruitment of RNA polymerase II (Pol II) to the core promoter95. The recruitment of Pol II was 

previously reported to co-occur with the enrichment of the active histone marks H3K4 di- and 

trimethylated96. This effect could be seen in MYC-expressing A549 cells (Fig. 4.11). After MYC 

expression, the occupancy of Pol II at the GATA4 promoter of A549 cells was significantly 

elevated. Altogether, these data corroborate the hypothesis that GATA4 is transcriptionally active 
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in MYC expressing cells. Moreover, the present data suggest a significant change in the 

epigenetic landscape of the GATA4 promoter upon MYC expression: DNA hypomethylation of a 

region encompassing CpG islands 13-22, which is accompanied by an epigenetic switch from 

repressive to active histone marks. 

 

5.5. MYC induces changes in protein occupancy at GATA4  promoter 

Changes in protein occupancy levels at GATA4 promoter in MYC-expressing A549 cells were 

mentioned above. Briefly, the desenrichment of EZH2 at GATA4 promoter of A549 J5-1 cells 

suggests that GATA4 transcription has been repressed by the PcG proteins in wild-type A549 

cells, and the enrichment of Pol II supports the evidence of active transcription of GATA4 in 

MYC-expressing A549 cells. Among other proteins tested in this work, GATA4 markedly bound 

to its own promoter upon MYC expression. On the other hand, the HDAC and DNMTs recruiter 

- MAZ66 - and the already mentioned EZH2 protein were displaced from GATA4 promoter in 

MYC-expressing A549 cells (Fig. 4.11). MAZ displacement from the region which became 

hypomethylated after MYC expression, suggests that its role as HDAC and DNMTs recruiter 

might be a key event for the GATA4 repression before MYC expression, either by recruitment of 

DNMTs and subsequent methylation of that promoter region, or by recruitment of HDACs, 

deacetylating the histones and therefore maintaining the nucleosomes in a transcriptionally silent 

state97. The late hypothesis was excluded by inhibition of HDACs activity in A49 cells. 

Trichostatin (TSA) treatment of A549 cells, a potent inhibitor of HDACs activity50 did not result 

in the activation of the hypermethylated GATA4 gene (Fig. 4.13). Therefore, MAZ seems to 

repress GATA4 expression in A549 cells by DNMTs recruitment, while HDACs might not be 

involved. MAZ displacement might prevent de novo methylation by absence of DNMT 
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recruitment and therefore provoke promoter site-specific hypomethylation. In this work, the 

knock-down of MAZ in A549 cells led to GATA4 activation and overexpression of its functional 

target, mucin2 (Figs. 4.12.C-D). Moreover, the cells lacking MAZ expression mimic the 

behavior of MYC expressing A549 cells in soft agar proponing MAZ as a key-player in MYC 

induced metastasis via GATA4 activation (Figs. 4.12.A-B). 

These findings suggest the scenario that GATA4 is usually kept repressed by MAZ, DNMT1 and 

PcG containing complexes. Upon MYC expression, chk-MYC interacts with its binding site (E-

box) near the GATA4 promoter which leads to DNA hypomethylation of the region containing 

the MAZ binding site and the E-box and subsequent MAZ and EZH2 displacement. Activated 

transcription of GATA4 is then self-sustained by GATA4 interacting with its own promoter (Fig. 

5.1).  

 

5.6. Epigenetic changes induced by MYC are genome-wide  

Candidate gene approaches are not sufficient to evaluate the amount of epigenetic alteration in a 

cancer / metastasis genome98. This is just possible using a genome-wide approach, which 

discloses methylation signatures and opens up novel treatment options that include epigenetic 

therapeutic statagies98. Taking advantage of recent technological advances, it is possible to 

obtain a better picture from the cancer transcriptome and from genome-wide epigenetic changes 

that occur in a cancer genome99,98. In this work, the whole-genome analysis of methylation levels 

in A549 and metastatic MYC expressing A549 cells revealed that MYC induced epigenetic 

changes are not limited to GATA4, yet they were observed in a wide range of genes among the 

genome. Indeed, many genes showed differential methylation upon MYC ectopic expression in 
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A549 cells (Fig. 4.14.A). This is not surprising since several studies have previously connected 

MYC with reprogramming events100. The broad range of genes differentially methylated upon 

ectopic MYC expression did not show only hypomethylation but also hypermethylation of many 

genes (Fig. 4.14.A). 
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Figure 5.1. Locked switch model of self-perpetuating GATA4-expression induced by MYC. 

(A) Under physiological conditions MAZ binds to the GATA4 promoter. Sitting on the GATA4 promoter MAZ 

recruits DNMTs, which in turn methylate the CpG-sites. (B) When MYC expression rises above a given threshold, 

MYC binds to the GATA4 promoter displacing MAZ. As a consequence DNMTs are not recruited to the DNA-

region anymore. (C) After replication CpG-sites remain unmethylated due to the absence of DNMT-recruitment. (D) 

The expression of GATA4 is now maintained even in the absence of MYC by GATA4 binding to its own promoter. 
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Actually, hypermethylation at CpG islands is prevalent in basically every human cancer101 with 

emphasis on tumor or metastasis suppressor genes, like p16INK4a in lung cancer, in which 

methylation is accompanied with poor prognosis102. Consistently, the results from the infinium-

chip in the present work show hypermethylation of p16INK4a tumor suppressor gene in the 

metastatic MYC-expressing A549 cells (data not shown). Indeed, hypermethylation exceeds 

hypomethylation in cancer1, but little is known about this phenomena distinguishing benign from 

malignant tumors.  

In this work, the number of aberrant hypermethylated genes prevailed over the number of genes 

aberrantly hypomethylated in MYC expressing A549 cells. The number of genes aberrantly 

hypermethylated (in this case considered as methylayion of A549<20% and methylation of A549 

J5-1>80%) reached the number of 49, while genes methylated more than 80% in A549 and less 

than 20% in A549 J5-1 cells did not exceed 18. Data from a gene expression microarray analysis 

of A549 and A549 J5-1 cells performed by Ellen Leich was combined with the data from the 

infinium-chip, and the correlation between the 2 events was calculated by Tobias Müller using 

mathematical approaches. The combined data from methylation and expression showed that 

there are much more genes in which downregulation is correlated with promoter 

hypermethylation (41 genes) than genes in which upregulation is correlated with promoter 

hypomethylation (9 genes) (Figs. 4.14.B-C).  

Among the 41 genes silenced in MYC expressing cells by promoter hypermethylation, 11 were 

previously described as tumor or metastasis suppressors, and their downregulation was reported 

to be involved in tumor progression or poor prognosis. These known tumor suppressor genes, 

such as PXDN in lymphocytic and myeloid leukemia103,104, FOXL2 in ovarian cancer105, 

ADAMTS18 in esophageal, nasopharyngeal, gastric, colorectal and pancreatic cancers106,107, 
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H19 in colorectal cancer and hepatocarcinoma108, RBP4 in gastric, ovarian and esophageal 

cancer109,110,111, PCDH9 in nephro and glioblastoma112,113, EPHA5 in breast, colorectal, brain and 

lung cancers114,115,116, IGFBP3 in breast, prostate, endometrial, esophageal and Non-Small-Cell 

Lung Cancers117,118,119,120,121, DAPK1 in brain, renal, oral and Non-Small-Cell Lung 

cancers122,123,124,125, DKK1 in meduloblastoma, myeloid leukemia, breast, renal and lung 

cancers126,127,128,129,130 and SFRP1 in hepatocellular carcinoma, esophageal, thyroid, colorectal, 

lung cancers and specifically NSCLC131,132,133,134,135,136 were previously found to be 

downregulated and in most of the cases, epigenetically repressed by hypermethylation.  

Interestingly, the association between reduced lung cancer and metastasis risk and high Insulin-

like Growth Factor Binding Protein (IGFBP)-3 - the major IGF carrier protein in the serum117 - 

in the plasma was reported years ago137,119. The re-expression of IGFBP-3 in NSCLC 

significantly decreases the migration, invasion and metastatic potential of the tumors, in vivo and 

in vitro138. Reportedly, antiproliferative and pro-apoptotic IGFBP-3 effectively blocks uPA- and 

matrix metalloproteinase-2–stimulated invasion pathways reducing lung cancer cell 

metastasis119. In general, the tumor-suppressive properties of IGFBP-3 include sequestration of 

the IGFs139, senescence association140, and inhibition of cell adhesion to extracellular matrix 

components141. Moreover, the cooperation between MYC overexpression and IGFBP-3 deletion 

was previously associated with greater risk of aggressive, metastatic prostate cancer118. Besides 

IGFPB-3, some other tumor or metastasis suppressors silenced by hypermethylation in the 

present study piqued my interest for further discussion, namely EPHA5, DAPK1, SFRP1 and 

DKK1.  

Consistently with the present data, the receptors for Ephrin family ligands (EPH) have been 

described as important players in oncogenesis and progression of many types of cancer, 
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including lung cancer142. Ephrin/EPH signaling pathway networks with the Wnt signaling 

pathway during embryogenesis, tissue regeneration, and carcinogenesis143. This fact is of special 

interest since Wnt pathway was recently implicated in lung adenocarcinoma metastasis144 and its 

aberrant activation often correlates with overexpression or amplification of c-MYC oncogene145. 

The EPH receptor tyrosine kinase family member EPHA5 plays a critical role in the regulation 

of carcinogenesis114. Recent studies showed that the silencing of this gene by hypermethylation 

is correlated with progression of breast cancer from a noninvasive to an invasive phenotype114 

and that the decrease of EPHA5 levels in plasma of mice is associated with angiogenic fast 

growing glioblastoma116, which together with the results from the present work suggest the 

involvement of EPHA5 silencing in progression to metastasis. 

Also the Death-associated protein (DAP) kinase, a positive mediator of apoptosis146, has been 

described as a metastasis suppressor not only in lung cancer metastasis but also in mesothelioma, 

clear cell renal cell carcinoma and neuroblastoma metastasis123,147,122,124. In the later, the 

molecular pathology was related with several genomic alterations including amplification of the 

N-MYC oncogen122. Aggressiveness of malignant tumors and poor survival rates have been 

associated with the methylation of the promoter region of the DAPK gene and the loss of DAPK 

expression148. Therefore, the epigenetic aberration found in the present work for this gene 

promoter seems to be supported by previously published studies.  

Consistently with the present data, the downregulation of the secreted frizzled-related protein 1 

(SFRP1) gene by promoter hypermethylation suppressing tumor growth of lung cancer cells has 

been described some years ago136,131. SFRP1 hypermethylation was found to be associated with 

lymph node metastasis and progression from lung cancer149. Hereupon, the interest for SFRP1 

increased, especially after evidences for its role as Wnt antagonist150. Interestingly, another Wnt 
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antagonist – Dickkopf-related protein 1 (DKK1) - revealed in the present study to be 

downregulated by promoter hypermethylation upon ectopic MYC expression in NSCLC cells150. 

The poor prognosis associated to DKK1 downregulation due to epigenetic changes has been 

reported in several types of cancer, including lung cancer126,127,128. The silencing of DKK1 was 

found to coincide with polycomb-mediated repression in lung cancer126. Reportedly, the 

metastatic suppression through DKK1 silencing includes anti-apoptotic activity, proliferation 

induction and inhibition of anchorage independent growth in vitro129,128. 

Unrestrained Wnt signaling is found in many tumors and experimentally activated Wnt is 

oncogenic151. Moreover, the oncoprotein c-MYC, which is upregulated by Wnt signaling 

activity, participates in a positive feedback loop of canonical Wnt signaling through repression of 

Wnt antagonists DKK1 and SFRP1150,151. The downregulation of these 2 metastasis repressors - 

SFRP1 and DKK1 - upon MYC expression in A549 cells is convincingly supported by the 

revised literature.  

As previously discussed, hypomethylated promoters related with upregulation of the 

corresponding gene occurred at lower frequency that hypermethylation/downregulation events. 

The upregulation of those genes in MYC-expressing A549 cells was individually validated by 

mRNA levels measurement: HKDC1, LAMC2, KCNAB2 and SLC6A15 (Fig. 4.15). 

HKDC1 is an hexokinase which catalyzes the conversion of glucose to glucose-6- phosphate in 

the glycolytic pathway152 and is frequently overexpressed in rapidly growing tumors153. This is 

not surprising since the well known Warburg effect describes the energy production in tumor 

cells by a high rate of glycolysis, regardless of the availability of oxygen154. Consistently with 

the present data, c-MYC overexpression was previously associated with the regulation of glucose 
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metabolism by regulating glycolysis-associated genes like Lactate dehydrogenase-A (LDH-A), 

GluT1, hexokinase 2 (HK2), phosphofructokinase (PFK) and enolase 1 (ENO 1)155. This 

suggests that MYC might regulate HKDC1, and induce a metabolic switch in NSCLC which 

accompanied by progression to malignancy.  

LAMC2 is one of the 3 components of Laminin-5, an essential component of the basement 

membrane156. Diverse biological functions attributed to laminin include stimulation of cell 

growth and differentiation, cell adhesion, and locomotion157 and it has been implicated in a 

number of stages in tumor invasion and metastasis158. Additionally to its roles in cell adhesion 

and migration, laminin was described to mediate interactions of tumor cells with the immune 

system and to have more subtile roles in controlling metastatic behavior being proposed as an 

antimetastatic molecule suitable for therapy158. In the case of lung cancer, LAMC2, which was 

upregulated / demethylated in the metastatic cell line A549 J5-1 in the present work, was 

reported to accumulate around tumor clusters and this event was suggested as being significant 

for the spread and growth of malignant tumors159. Moreover, the upregulation of this gene due to 

promoter demethylation was earlier associated with metastasis with origin in bladder and gastric 

cancers160,161. Altogether, previous reports and the present data suggest that the epigenetic 

activation of LAMC2 by MYC might be important for the acquired metastatic behavior of A549 

J5-1 cells.  

Finally, epigenetic changes induced by MYC have an important effect in expression of both 

metastasis-suppressing and metastasis-inducing genes, altering the proteomic and epigenomic 

landscape of the tumor cells in a manner which is strongly supported by previous publications.  
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5.7. GATA4 alone is not enough to induce angiogenesis in vitro  

Along with few studies reporting overexpression of GATA4 in metastasis from other types of 

cancer, the present work also shows the upregulation of GATA4 in metastatic NSCLC (Figs. 

4.3.C and 4.4.D). GATA4 expression was previously associated with aggressive behavior of 

Ovarian Granulosa Cell Tumors and infiltrating pancreatic cancers77,162. In the latter, the 

overexpression of GATA4 was even correlated with infrequent methylation163 like it was found 

in the present work. Here, the GATA4 transcription factor showed to be involved in the 

metastatic behavior induced by MYC since, as discussed above, the knockdown of GATA4 in 

A549 J5-1 cells withdrew their acquired ability to grow anchorage independent (Fig. 4.5). 

Although not altering proliferation rates in adherent culture, the overexpression of GATA4 in 

A549 cells led to an increased ability to grow anchorage independently in soft agar when 

compared with A549 wild type cells, mimicking the behavior of MYC expressing cells (Figs. 

4.17.A-C). This supports the evidence that GATA4 is needed to the metastatic behavior induced 

by MYC in NSCLC. Moreover, the introduction of human GATA4 in A549 cells led to 

morphological changes and conferred a tendency to detach from adherent plates (Fig. 4.16.D). 

As expected, immunocytochemistry analysis of A549 GATA4-11 cells showed localization of 

GATA4 transcription factor in the nucleus (Fig. 4.16.C).  

Unexpectedly, upon GATA4 expression, A549 cells showed a decrease in migration ability 

while performing a wound-healing assay (Fig. 4.17.D). A possible explanation for this is the 

limitation of the assay itself. The ability of this approach to simulate biological processes in 

human tissues is limited, since it is known that signaling pathways function optimally when cells 

are spatially organized in three-dimensional tissues, but are uncoupled and lost in rudimentary 

monolayer culture systems164. Indeed, three-dimensional migration assays were recently reported 
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to correlate better the wound healing and migration of breast cancer cells lines with their 

metastatic capacity, in contrast to monolayer assays, which correlated inversely the migration 

capacity of the cancer cells with their metastatic capacity165. Therefore, a tree-dimensional 

migration assay might be necessary to give a better insight about the migration ability of NSCLC 

cells upon GATA4 expression, simulating more authentically the conditions in vivo like cell–cell 

and cell–extracellular matrix contacts166. 

Angiogenesis is the recruitment of new blood vessels induced by solid tumor growth and is an 

essential component of the metastatic pathway. These vessels are the principal path by which 

tumor cells exit the primary tumor site and enter the circulation167.  

The best characterized angiogenic factor – VEGF - is the main driving force behind angiogenesis 

and blood vessel formation by induction of proteases secretion, migration and proliferation68. In 

cancer patients, high levels of VEGF expression are closely related with the development of 

metastasis168. When a tumor grows beyond a certain size (usually 2mm), the cells in the center of 

the tumor have restricted access to nutrients and oxygen, leading to quiescence and hypoxia, 

respectively169. Hypoxia activates the expression of VEGF gene via the HIF-1 response element 

in its promoter170.  

Also the transcription factor NFkB has been shown to rapidly transduce hypoxic signals by 

increasing its DNA binding activity to promoters of several genes including genes encoding 

cytokines implicated in angiogenesis like VEGF, basic fibroblast growth factor (bFGF), and 

tumor necrosis factor (TNF)171. ANG-1, a member of angiopoietin family has also been 

described as an important regulator of angiogenesis governing the transition between quiescence 

and angiogenic growth68. The lately pro-angiogenic factors are expected to be upregulated in 
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metastatic cells. The assumption that GATA4 is a limiting step for metastasis induced by MYC 

in NSCLC led to the interest about regulation of these angiogenic factors in A549 GATA4-11 

cells (Fig. 4. 20). Surprisingly, none of the mentioned factors showed elevated levels of mRNA 

compared with the parental cell line A549. These results are not so surprising after a closer look 

at the tumor-induced angiogenesis mechanism. As mentioned above, hypoxia is required for 

VEGF production. Since the cells used in the present work were growing in monolayer, hypoxic 

conditions were absent and this might explain the current observations. Indeed, stromal 

environment is absolutely needed to induce angiogenesis, and such environment is difficult to 

reproduce in vitro. Cancers are not autonomous neoplastic cells but also include fibroblasts, 

immune cells, endothelial cells and specialized mesenchymal cells. These different cell types in 

the tumor stroma can be recruited by the malignant cells to produce angiogenic factors, support 

tumor growth and facilitate metastatic dissemination172. 

Still in the context of angiogenesis, TGF-b has been reported as a pro and anti-angiogenic 

factor173,174. In this work, mRNA levels of TGF-b were impaired upon GATA4 expression in 

A549 cells (Fig. 4.20.D). This could indicate angiogenesis progression by downregulation of this 

anti-angiogenic factor, but considering the absence of stromal environment within the cells 

during the experiment, no statement can be made about its pro or anti-angiogenic properties in 

A549 GATA4-11 cells. 

To overcome the discussed experimental limitations, in vivo analyses are required. Alternatively, 

A549 GATA4-11 cells can be cocultured with normal pulmonary fibroblasts, given that the 

crosstalk between the 2 cell types might be of great importance for the signaling between tumor 

cells and normal neighboring fibroblasts175. 
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5.8. GATA4 induces accelerated tumor growth in vivo 

The central question of the present work is whether GATA4 is able to induce metastasis from 

NSCLC in vivo. To answer this question, A549 cells overexpressing GATA4 in addition to GFP 

were transplanted in nude mice, and the appearance of metastasis was screened weekly using a 

laser-capture microscope to dissect GFP positive cells. The time frame of the transplantation 

experiment was 38 days, due to the fast growth of the tumors with origin in GATA4 expressing 

A549 cells, and no metastasis could be seen by whole mice or organs imaging (Figs. 4.18 and 

4.19). This result does not exclude that GATA4 is sufficient to induce metastasis, considering 

that the time frame of the experiment was too short for the development of tumors in adjacent 

organs (animals had to be sacrificed as soon as the tumors were bleeding or reached 2 cm of 

diameter). In a previous work where Rag-/- mice were transplanted with chk-MYC expressing 

A549 cells, metastasis to liver and lung could be observed at low frequency and it was suggested 

that a higher metastasis frequency could be achieved in a longer time frame2. To clarify if 

GATA4 is sufficient to induce metastasis from NSCLC using the xenograft model presented in 

this work, the primary tumor should be removed surgically when bleeding starts or 2 cm are 

reached, increasing the life time of the animals and therefore increasing the chance of metastasis 

development. Despite GATA4 failed to induce metastasis in vivo, the accelerated tumor growth 

induced by A549 cells expressing this transcription factor was clear and suggests a much more 

aggressive phenotype (Figs. 4.18.A-B). In contrast to the in vitro data, the accelerated tumor 

growth induced by GATA4 indicates that cell proliferation is increased and therefore dependent 

on the presence of other cell types from the tumor stroma. The differences in the tumor sizes 

from mice transplanted with A549 GATA4-11 or control cells can also be attributed to the 

recruitment of different cell types by the malignant cells. In addition to neoplastic cells, also 



5. Discussion 
_____________________________________________________________________________________ 
 

107 

 

fibroblasts, immune cells, endothelial and specialized mesenchymal cells might account to tumor 

enlargement. Moreover, these cells can produce angiogenic factors to recruit blood vessels67. The 

induction of angiogenesis in vivo by GATA4 is suggested by the observation of blood vessels 

with the necked eye in the tumors constituted of GATA4 expressing cells, and the fact that 12 

out of 15 tumors started to bleed before the achievement of 2 cm of diameter (Fig. 4.19.A). 

 

5.9. GATA4 might induce pluripotency in NSCLC cells 

The reported lineage switch induced by MYC led to the question whether GATA4 expression 

induces reprogramming to pluripotency, conferring to the cells an unlimited potential to grow 

which is characteristic from cancer and metastatic cells. This hypothesis was tested in the present 

work, by measuring the mRNA levels of 3 pluripotent stem cell markers in A549 cells upon 

expression of GATA4, namely, BMP4, HNF4A and CD3070,71,72. The current data showed 

upregulation of the latter but not of the 2 former markers in A549 cells upon GATA4 expression 

(Fig. 4.21). The upregulation of CD30 suggests that GATA4 might induce pluripotency in 

NSCLC. CD30 is a member of the tumor necrosis factor receptor superfamily whose 

upregulation was related to anaplastic large cell lymphoma, Hodgkin lymphoma cells and human 

transformed pluripotent stem cells72. Moreover, it was shown that CD30 expression provides a 

significant survival advantage to the pluripotent stem cells expressing it72. In addition, induced 

pluripotency might be important for metastasis dissemination, because of loss of organ-identity 

of the cells, which makes possible that they proliferate in a different organ from its origin30. This 

suggests that NSCLC cells overexpressing GATA4 might reprogram into pluripotency acquiring 

a survival advantage to become metastatic.  
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To conclude, in the present work it was possible to show that MYC induces a wide broad of 

epigenetic changes in NSCLC conferring metastatic potential, and GATA4 was identified as a 

potential target for anti-metastatic therapy, although further investigations are required to 

validate it.  
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7. Appendix 

7.1. List of abbreviations 

APEC – Alveolar Papillary Columnar Epithelial cells 

BASCs – Bronchioalveolar stem cells 

cDNA – complementary DNA 

ChIP – Chromatin immunoprecipitation 

CIAP – Calf Intestinal Alkaline Phosphatase  

chk-MYC – Chicken v-MYC 

cm – centimeter 

DAB – 3,3'-Diaminobenzidine 

DMSO – Dimethyl sulfoxide 

DNA – Deoxyribonucleic acid 

DNMTs – DNA methyltransferase 

dNTP – Deoxynucleotide Triphosphates 

DOX – Doxycycline 

E. coli – Escherichia coli 

ECM – Extracellular matrix 

EGFP – Enhanced Green Fluorescent Protein 

GFP – Green Fluorescent Protein 

GG – Gallus gallus 

g – gram 

h – hour 

HDACs – Histone deacetylase 

HE – Hematoxylin and Eosin 
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hs – Homo sapiens 

i.p. – intraperitoneal 

kg – kilogram 

kV – kilovolt 

LB – Luria Bertani  

min – minute 

ml – milliliter  

mM – millimolar 

ms – millisecond 

MTT – 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

ng – nanogram 

nm – nanometer 

ns – nanosecond 

NSCLC – Non-Small-Cell Lung Cancer 

OD – Optical Density 

OHT – 4-hydroxy-tamoxifen 

P.A. – pro analysis 

PBS – Phosphate buffered saline 

PcG – Polycomb group complexes  

PCR – Polymerase chain reaction 

PFA – Paraformaldehyde 

pM – picomolar 

POL II – RNA-polymerase II  

PRC – Polycomb-repressive complex  

RNA – Ribonucleic acid 
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rpm – Revolutions Per Minute 

SD – Standard Deviation 

sec – second 

TSA – Trichostatin A 

UV – Ultraviolet 

w – week 

V – volt 

µF – microfarad 

µg – microgram 

µl – microliter 
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