
  

 

 

Merocyanine Dyes as Donor Materials in 

Vacuum-Deposited Organic Solar Cells: 

Insights into Structure-Property-Performance 

Relationships 

 

 

Dissertation zur Erlangung des  

Naturwissenschaftlichen Doktorgrades   

der Julius-Maximilians-Universität Würzburg 

 

 

vorgelegt von 

Antti Ojala 

aus Porvoo / Finnland 

 

 

Ludwigshafen am Rhein 2011 



  

  



  

 

 

 

 

 

 

 

 

Eingereicht am  

bei der Fakultät für Chemie und Pharmazie 

 

 

1. Gutachter: Prof. Dr. Frank Würthner 

2. Gutachter: Prof. Dr. Jens Pflaum 

der Dissertation  

 

 

1. Prüfer: Prof. Dr. Frank Würthner 

2. Prüfer: Prof. Dr Jens Pflaum 

3. Prüfer: Prof. Dr. Bernd Engels 

des Öffentlichen Promotionskolloquiums 

 

 Tag des Öffentlichen Promotionskolloquiums:  

 

Doktorurkunde ausgehändigt am: 



  

  



  

 

 

 

to Niina 



  



  

List of Abbreviations 

 

A   acceptor 

AFM   atomic force microscopy  

BCP    bathocuproine  

BHJ    bulk heterojunction 

Bphen   4,7-diphenyl-1,10-phenanthroline  

Btu    British thermal units 

CSD   Cambridge structural database 

cBHJ    controlled bulk heterojunction  

c-Si   crystalline-Si 

CT   charge transfer 

CV    cyclic voltammetric 

D   donor 

DCM    dichloromethane 

DCV5T  a,a’-bis(2,2-dicyanovinyl)-quinquethiophene  

DFT    density functional theory 

DSC    differential scanning calorimetry  

EA   electron affinity 

EBL   electron blocking layer 

EOA    electro-optical absorption  

EQE    external quantum efficiency 

FWHM  full-weight-half-maximum 

GooF    goodness-of-fit 

HHJ    hybrid heterojunction   

HOMO  highest occupied molecular orbital 

IDOP    indoline dioxopyridine 

IP   ionization potential 

IQE   internal quantum efficiency 

IRSE    infrared spectroscopic ellipsometry 

ITO    indium tin oxide 

LUMO   lowest unoccupied molecular orbital 

MC    merocyanine 



  

MM   molecular mechanics 

Mp   melting point 

MPc    metal phthalocyanine 

NIR    near infrared  

NLO   non-linear optics 

NPD    N,N-bisnaphthalen-1-yl-N,N-bisphenyl-benzidine  

OECD   organization for economic growth and development 

OLED    organic light emitting diode 

OPV    organic photovoltaics 

OPVD    organic physical vapour deposition 

PCBM   [6,6]-phenyl-C61-butyric acid methyl ester 

PCE   power conversion efficiency 

Pedot:PSS  poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)  

PHJ   planar heterojunction 

PI    packing index 

PL    photoluminescence 

PTCBI   3,4,9,10-perylene tetracarboxylic acid bis-benzimidazole  

PTCDA  3,4,9,10-perylene tetracarboxylic acid dianhydride 

PTCDI   3,4,9,10-perylene tetracarboxylic acid diimide   

P3HT   poly(3-hexylthiophene)  

QM   quantum mechanics 

SCLC    space-charge-limited-current 

TCO    transparent conducting oxide 

UPS    ultraviolet photoemission spectroscopy 

UV/Vis  ultraviolet / visible 

VAC   vacuum   

XRPD    X-ray powder diffraction 



  

Table of Contents  

 

Chapter 1   Motivation and Aim of Thesis            1 
Chapter 2   Vacuum-Processed Organic Solar Cells 7 

2.1 General Discussion 8 

2.1.1 Fundamentals of Photovoltaic Devices 8 

2.1.2 Equivalent Circuit Model 9 

2.1.3 Donor/Acceptor Heterojunction 10 

2.1.4 Photocurrent Generation 13 

2.2 Thermally Vacuum-Deposited Organic Solar Cells 18 

2.2.1 Materials 18 

2.2.2 Device Architectures 21 

2.2.3 Tandem Cells 25 

2.2.4 Other Device Structures 28 

2.2.5 Device Lifetime 29 

2.2.6 Conclusions and Outlook 30 

2.3 References 31 

Chapter 3   Experimental Set-Ups for the Fabrication and Characterization          

of Solar Cells 37 

3.1 Substrate 38 

3.2 Device Fabrication 38 

3.3 Device Characterization 39 

3.3.1 Current-Voltage Characteristics 39 

3.3.2 Incident Photons to Current Measurements 40 

Chapter 4   Crystal Packing of Merocyanine Dyes: Effect of Molecular and     

Local Dipole Moments 43 

4.1 Introduction 44 

4.2 Results and Discussion 46 

4.2.1 Space Groups and Dipole Moments 46 

4.2.2 CSD Search 51 

4.2.3 Packing Motifs of Merocyanines Based on the Fischer’s Base 53 

4.2.4 Intermolecular Dipole-Dipole Interaction as a Supramolecular Synthon 74 

4.3 Conclusions 77 



  

4.4 Experimental Section 78 

4.5 References 79 

Chapter 5   Parallel Bulk Heterojunction Solar Cell by Electrostatically         

Driven Phase Separation 83 

5.1 Introduction 84 

5.2 Results and Discussion 85 

5.3 Conclusions 94 

5.4 Experimental Section 94 

5.6 References 97 

Chapter 6   Merocyanine/C60 Planar Heterojunction Solar Cells: Effect of Dye 

Orientation on Exciton Dissociation and Solar Cell Performance 99 

6.1 Introduction 100 

6.2 Results and Discussion 102 

6.2.1 Energy Level Diagram 102 

6.2.2 Device Characteristics 102 

6.2.3 Dye and Film Properties 105 

6.2.4 Analytical Electric Field Dependent CT-State Dissociation Model 107 

6.2.5 Molecular Orientations as Deduced from IRSE 111 

6.2.6 Computations of the CT-state Energies at the ID583/C60 Interface 113 

6.2.7 Bulk Heterojunction Cells 116 

6.3 Conclusions 117 

6.4 Experimental Section 118 

6.5 References 122 

Chapter 7   Planar, Bulk and Hybrid Merocyanine/C60 Heterojunction        Devices: 

A Case Study on Thin Film Morphology and          Photovoltaic 

Performance 127 

7.1 Introduction 128 

7.2 Results and Discussion 130 

7.2.1 Characterization of Thin Films 130 

7.2.2 Solar Cells 136 

7.3 Conclusions 144 

7.4 Experimental Section 145 

7.5 References 148 

Chapter 8   Summary 151 



  

Chapter 9   Zusammenfassung (Summary in German) 157 

Appendix     163 

List of Publications and Patents 201 

Acknowledgements 203 

 

 





Chapter 1              Motivation and Aim of Thesis 

 1 
 

Chapter 1 
 

Motivation and Aim of Thesis 

 

 

The world’s energy consumption in 2007 was 49.3 quadrillion Btu (1 quadrillion Btu 

= 2.9 × 1011 kWh) and it is estimated to increase by 49% to 73.5 quadrillion Btu in 2035 

(Figure 1).[ 1 ] The growth of global energy demand will be largest in non-OECD 

countries where it will increase according to estimations by 85% from 2007 to 2035  

whilst in OECD countries the increase of energy consumption will be 14%.[1] In the 

non-OECD countries the growth of energy consumption is facilitated by the economical 

growth which is expected to be 4.4% per year on average.  

Today the most important source of energy is the liquid fuels (e.g. petroleum) by 35% 

share of all consumed energy, followed by coal and natural gas with 25% and 21% 

shares, respectively.[1] Renewable energy sources covers 18% of all global consumed 

energy, counting biomass, large hydro power, and new renewables (bio fuel, wind, solar, 

etc.).[ 2 ] Biomass accounts for 13% and large hydro power for 3.2% whereas solar 

photovoltaics (PV) sources represent very marginal share (< 0.01%) of the global 

energy consumption. However, PV is the fastest growing of all renewable technologies, 

with a 60% annual average growth rate.[2]  

The global electricity consumption is growing significantly faster than the total need 

for energy, mainly because of the huge economical growth in non-OECD countries and 

especially in China (Figure 1).[1] Coal provides the largest share of world’s electricity 

generation with a 42% share and it is expected to be largerly unchanged through 2035. 

The large share of coal in electricity generation is worrying, not only because of the vast 

CO2 emissions (single most important), but also due to the particulate matter and heavy 

metal emissions which are released in air when coal is burned. It is estimated that only 

in USA particulate emissions from coal power plants cut short the lives of 30 000 

people.[3] 
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Figure 1.  Growth in world electric power generation and total energy consumption, 
1990-2035.[1]  

 
The renewable share of world electricity generation was 18% in 2007 and it is 

estimated to grow to 23% in 2035. PV technologies account at the moment only for ~ 

0.3% of the total electricity generation whilst it is estimated to reach 0.5% in 2035.[1] 

Although the growth rate among all renewable electricity sources is largest for PV 

technologies, its importance for the global energy production seems to stay marginal. 

However, the potential of PV technologies is enormous. It is estimated that the existing 

fossil and nuclear resources can be entirely replaced by harvesting less than 0.02% of 

the available solar energy (120,000 TW).[1]  

A major reason limiting the growth of traditional Si-based PV is the price, which is 

still today in mid Europe, USA, and Japan ~ 30 cent (US) / kwh. For example, the 

equivalent price produced in a coal power plant is only ~ 10 cent / kwh.[ 4 ] The 

production costs of crystalline-Si (c-Si) cells are too high to significantly influence the 

global energy production markets, and unfortunately, the manufacturing costs are 

expected to remain high in the near future. Hence, new generation PV techniques are 

needed, such as organic photovoltaics (OPV), to satisfy the global energy hunger.[5,6] 

The growth of interest on OPV has been tremendous in past years, and for example, the 

number of journal publications related to OPV has increased almost exponentially 

between 1980-2007.[5] The main benefits of thin film OPV techniques in comparison 

with the traditional c-Si solar cells are their potentially low cost, ease of processing, and 

compatibility with flexible substrates (Figure 2).  
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Chapter 3 describes the experimental methods that were used to fabricate and 

characterize the vacuum-deposited organic solar cells at BASF innovations Lab in 

Ludwigshafen 

In Chapter 4, the influence of molecular dipole moment on the crystal packing of 

highly dipolar merocyanine compounds is analyzed. The focus is on the crystal packing 

of merocyanine dyes with a Fischer base electron donor unit.  

Chapter 5 describes how the performance of vacuum-deposited merocyanine(s):C60 

bulk heterojunction (BHJ) solar cells can be improved by mixing two donors with 

complementary absorption regions.  

Chapter 6 shows how the efficiency of merocyanine (ID583)/C60 planar 

heterojunction (PHJ) solar cells can be improved by controlling the dye molecules’ 

orientation at the ID583/C60 heterojunction.  

Chapter 7 demonstrates the effect of a transition metal oxide underlayer on the 

morphology of vacuum-deposited merocyanine (HB364) thin films. The film 

morphology is studied by crystallographic, microscopic, and spectroscopic methods. In 

addition, solar cells are fabricated using HB364 as the donor material and various 

transition metal oxides as the anode buffer layer. 

Chapter 8 gives a summary of the thesis in English.  

Chapter 9 gives a summary of the thesis in German.  
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Chapter 2 

 

Vacuum-Processed Organic Solar Cells 

 

 

Abstract: In this chapter, first the fundamentals of organic photovoltaics are described. 

After that, an overview on vacuum-processed small molecule solar cells is given. The 

main focus of the latter part is on commonly used material classes and different device 

architectures. Finally, the issue of the cell lifetime is briefly discussed.  
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2.1 General Discussion  

 

2.1.1 Fundamentals of Photovoltaic Devices 

Photovoltaic (PV) cells convert energy of light into electrical energy.[1] The effect 

was described by French physicist Edmond Becquerel in 1839 but realization of the first 

silicon PV devices had to wait until 1954. [1] During the first energy crisis in 1970’s the 

first organic solar cells based on a single dye layer were investigated, however, with 

rather modest light-to-electricity conversion efficiency. In 1986, the first organic 

photovoltaic cells (OPV) with a reasonable efficiency (1%) were fabricated.[2] The 

devices were based on a layered p/n-heterojunction structure of copper phthalocyanine 

(CuPc) donor and 3,4,9,10-perylene-tetracarboxylic bisbenzimidazole (PTCBI) acceptor 

materials, sandwiched between tin-doped indium oxide (ITO) and Ag electrodes (Figure 

1a).  

The PV device’s performance can be analyzed by measuring current over an external 

voltage range under illumination as well as in dark conditions. A typical result of such a 

measurement (i.e. current-voltage (J-V) characteristics) is depicted in Figure 1b. The 

main parameters that can be extracted from the J-V curves under illumination are the 

short circuit current (JSC), the open circuit voltage, (VOC) and the fill factor (FF). The 

power conversion efficiency (PCE) of a PV cell is the maximum power that the cell can 

generate (Pmax) versus the power of the incident irradiance (P0). Thus, PCE of a device 

can be described by 

 

00

max

P

FFJV

P

P
PCE SCOC ,        (1) 

 

where Pmax is defined at the maximum power point (mpp) of the cell and it corresponds 

to the area of the filled gray rectangle in Figure 1b.     
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Figure 1. a) Schematic presentation of the first organic photovoltaic cell based on a 
donor/acceptor heterojunction.[2] b) Typical current-voltage (J-V) characteristics of a PV 
cell in dark conditions and under illumination. The maximum power point (mpp) is 
obtained from the maximum of the V × -J(V) plot (dotted line).  
 

2.1.2 Equivalent Circuit Model 

Single diode equivalent circuit model shown in Figure 2 can be used to explain the 

physical processes behind the experimental J-V characteristics of a PV device.[ 3 ] 

Because of the inevitable resistive losses of OPV cells, non-ideal device model is 

employed to simulate the J-V curves. This is usually done by the generalized Shockley 

equation:[3] 
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where Rs and Rp are the series and parallel resistance, respectively, n is the ideality 

factor, q is the electron charge, kB is the Boltzmann’s constant, T is the temperature, Js is 

the reverse saturation current density and Jph is the current density under illumination.  
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Figure 2. A single diode equivalent circuit model. The parallel and series resistance are 
Rp and Rs, respectively. Jph denotes the photocurrent density.[3] 
 

2.1.3 Donor/Acceptor Heterojunction 

The first organic solar cells comprised of a single absorbing layer that was deposited 

between metallic electrodes. However, the concept was highly inefficient and the 

devices showed power conversion efficiencies of only about 0.01%.[4] In 1986 Tang 

revolutionized the OPV research field by introducing the first devices based on a 

heterojunction of electron donating (D) and accepting (A) components (Figure 1a).[2] 

The D/A heterojunction concept lifted the performance of organic solar cells to 0.95% 

and it instantly became a standard structure of OPV cells. 

In inorganic solar cells an exciton, created upon absorption of a photon, immediately 

dissociates into free hole and electron charge carriers which then can be directly 

collected at the opposing electrodes. This process is fundamentally different in organic 

solar cells where absorption of a photon results in excitation of an electron from the 

highest occupied molecular orbital (HOMO) level to the lowest unoccupied molecular 

orbital (LUMO) level of a molecule (Figure 3a).[5]  The formed excited state is called 

exciton. At the excited state, the charge carriers feel strong Coulombic attraction that is 

estimated – although heavily debated – to be on the order of 0.5 – 1.5 eV in organic 

materials.[6] Irrespective of the true value, however, this binding energy is several times 

larger than the available thermal energy at room temperature (kBT = 0.025 eV) and, 

therefore, the created excitons cannot be efficiently dissociated by the built-in electric 

field of the device. The main reasons for the high binding energy and for the poor 

separation of the charges in organic materials are: i) negligible screening of the charges 

due to low dielectric constants (~ 2-4) with respect to inorganic materials (> 10) and ii) 

weak electronic interactions between the neighboring molecules resulting in narrow 

bandwidths as well as localization of the charges on the molecules.[7]   
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requirement for exciton quenching at the heterointerface. Note, that EA (not the optical 

LUMO) obtained from a cyclic voltammetric (CV) or an inverse photoelectron 

spectroscopic (IPES) measurement should be used as the LUMO level for the acceptor 

material.  

Several studies have demonstrated that VOC of organic solar cells is dependent on the 

band gap (ΔEDA) between the IP of the donor (IPD) and the LUMO of the acceptor (EAA) 

(Figure 3a).[8] For example, Scharber et al. showed a linear correlation between the IPs 

and the open circuit voltages of multiple polymer-fullerene cells using [6,6]-phenyl-C61-

butyric acid methyl ester (PCBM) as the acceptor.[8a] Based on their findings, the 

authors proposed the following relation for the VOC: 

 

  V 3.0)/1( ADOC  EAIPeV        (3) 

 

where e is the elementary charge and the value 0.3 V is an empirical correction factor 

which takes account of the influence of the dark current as well as the field dependency 

of the photocurrent generation.  

In a more detailed picture, the excitons are not directly dissociated to free charge 

carrier at the heterointerface; instead, the dissociation process occurs via an intermediate 

charge transfer (CT) state (Figure 3b). This mechanism has experimentally been 

observed for several different polymer:fullerene systems[9] and very recently Clark et al. 

have reviewed[5] the topic in detail. Formation of the CT-state can be described by a 

photoinduced charge transfer reaction D* + A → (D+/A-) where the electron is 

transferred from the excited donor molecule (D*) to the acceptor. The process has to be 

exothermic in order to occur efficiently i.e. the excited state of the donor (optical 

LUMO) has to be higher in energy than the CT-state (ECT). In the CT-state, the formed 

charges still feel a strong electrostatic attraction by an energy which is spectroscopically 

estimated to be well in excess of 0.1 eV.[7c,10] Thus, the magnitude of the charge-

transfer-state binding energy (EB
CT) is clearly sizable compared to the available thermal 

energy at room temperature (~ 0.025 eV) and should represent an energetic barrier to 

the exciton dissociation. Anyhow, organic solar cells have been observed to exhibit 

near-unit quantum yields, suggesting that the CT-states can be efficiently dissociated 

despite the large EB
CT.[11] To explain this discrepancy, a hot process of charge separation 

has been proposed where the excess energy from the exciton dissociation contributes to 
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dissociation of the CT-state.[10] Durrant and co-workers demonstrated with several 

oligothiophene:fullerene blends that the population of free charge carriers increases as 

ΔECT = ELUMO
D - EB

CT gets larger.[12] In the same study, they also observed that a mere 

exciton quenching at the D/A interface does not imply an efficient free charge carrier 

generation. Hence, they concluded that a sufficient energy level offset ΔECT is needed 

for efficient charge dissociation. To summarize, the heterojunction in an organic solar 

cell has to provide sufficient ΔECT to overcome the EB
CT while the band gap (ΔEDA) 

between the HOMO of the donor and the LUMO of the acceptor has to be maximized to 

ensure optimal VOC.  

 

2.1.4 Photocurrent Generation  

Formation of photoinduced current in organic solar cells involves several processes 

such as (1) exciton generation, (2) exciton diffusion, (3) charge separation, (4) charge 

transport, and (5) charge collection (Figure 4).[13] The different processes determine the 

external quantum efficiency (ηEQE) of a cell which can be described by 

 

CCCTCDEDAEQE   ,        (4) 

 

where ηA is the absorption efficiency of solar radiation within the active region of the 

solar cell; ηED is the exciton diffusion efficiency to the heterojunction, ηCD is the 

dissociation efficiency of the excitons to free charges; ηCT is the charge transport 

efficiency; and ηCC is the charge collection efficiency. In following the different steps 

and potential lost mechanism are briefly discussed.  
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Figure 4. Schematic presentation of the photovoltaic processes in organic solar cells. 
The main steps are: (1) absorption of light and relaxation of the formed exciton (ηA); (2) 
exciton diffusion (ηED); (3) charge (exciton) dissociation (ηCD); (4) charge transport (ηCT) 
and (5) charge collection (ηCC).[13] 
 

Absorption 

Photon absorption from the ground state (S0) to the excited state occurs when the 

energy of the incident light corresponds to an allowed optical transition. For this 

situation and films of sufficient thickness the efficiency is close to unity.[3] Immediately, 

after the excitation, the formed excited state undergoes a relaxation to the lowest excited 

singlet energy level (S1) which is observed as a bathochromic shift (Stokes shift) in the 

photoluminescence spectrum. This process reduces the excitonic energy and lowers the 

maximum VOC of the device.[3] 

Standardized spectral photon flux for air mass 1.5 global solar radiance (AM 1.5G) is 

depicted in Figure 5. In the same figure is also shown the accumulative solar power 

which is obtained by integrating the solar irradiance over the wavelength range. 

Although, the solar flux contains a significant amount of photons in the near infrared 

region (NIR), i.e. up to 1300 nm, the lower energy range appears useless for common 

OPV applications. Hence, the practical long wavelength absorption limit for organic 

solar cells is considered to be around 900 nm which covers ca. 70% of all incident solar 

energy.   
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Optically active materials in organic solar cells exhibit high absorption strengths 

commonly exceeding 1 × 10-5 cm-1.[3] One of the strongly absorbing chromophores is 

CuPc which is an archetypal donor material in organic solar cell. For example, a 100 nm 

thick film of CuPc:C60 mixture harvests at 630 nm 90% of the incident photons whereas 

a traditional crystalline-Si cell covers only 10% with the same layer thickness.[3] Hence, 

the organic solar cells have the potential to reach ηa close to 100% with a substantially 

thinner active layer structure compared to inorganic counterparts. The possibility to 

obtain a very high EQE with a thin active layer is crucial for OPV devices which often 

suffer of high resistive losses due to low charge carrier mobilities.[14]   

 

 

Figure 5. Solar photon flux (left), integrated solar power (right), and absorption band of 
a CuPc thin film (filled curve).  
 

Exciton diffusion 

As mentioned above, in organic solar cells the excitons can be efficiently dissociated 

to free charges only at the heterointerface. Thus, all excitons which are not formed in 

the vicinity of the D/A interface, must be transferred trough the manifold of the 

absorbing component. This process is called exciton diffusion and it may occur via a 

dipolar or an electron exchange mechanism.[3] In the small molecule organic solar cells 

the dipolar (i.e. Förster-type resonance) excitation transfer is the primary mechanism for 

the singlet exciton diffusion; whilst polymeric materials exhibit also the electron 

exchange (i.e. Dexter excitation transfer) mechanism which takes place along the π-

conjugated backbone.[3]  
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The distance that the formed exciton can travel before recombination back to the 

ground state is expressed by the exciton diffusion length (LD) and it is dependent of the 

material itself as well as of the homogeneity of the bulk film where the exciton has to 

travel.[3] For commonly used organic small molecular materials, the LD is observed to 

vary between 3-20 nm[15] and typically highly ordered crystalline materials exhibit 

longer exciton diffusion lengths compared to amorphous surroundings.[13,16] In addition, 

the LD is dependent on the crystalline dimension along which the exciton has to travel. 

For example, Lunt et al. observed that the exciton diffusion length of 3,4,9,10-perylene 

tetracarboxylic acid dianhydride (PTCDA) vary between 17 and 22 nm depending 

whether the molecules are standing or lying flat, respectively, on the substrate.[16] 

The exciton diffusion length is a significant factor limiting the PCE of organic solar 

cells, because only the excitons, that are able to reach the D/A heterointerface, can be 

converted to free charges. Of particular importance is the LD in planar heterojunction 

(PHJ) devices (for further discussion see section 2.2.2) where the diffusion length sets 

the practical limits for the thickness of the absorbing layer, and therefore, for the 

maximum EQE. In order to avoid the limits of a short LD, the bulk heterojunction (BHJ) 

cell architecture has been developed.[13] In the BHJ concept, donor and acceptor 

components are co-deposited in a single active layer forming nanoscale phase separated 

D and A regions. The fine interface structure of BHJ cells ensures that nearly 100% of 

the created excitons are able to reach the heterointerface before recombining back to the 

ground state.[17]  

 

Charge dissociation 

As discussed above (see section 2.1.3), a sufficient energy level offset (ΔECT) 

between the LUMO level of the donor and the CT-state has to be provided in order to 

efficiently dissociate the excitons into free charges at the D/A interface. However, 

before the charges are fully separated, they may recombine to the ground state or return 

back to the excitonic species.[7] The recombination to the ground state is commonly 

called geminate addressing the fact that the recombined hole and electron originate from 

the same exciton. Several studies have addressed the geminate recombination as one of 

the main lost mechanism in organic solar cells.[18]  
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Charge transfer 

The weak intermolecular interactions in organic solar cells act to localize not only the 

created excitons but the free charges as well.[3] Because the extended band structure is 

typically minimal in organic materials, transport of charges proceed via a localized 

hopping mechanism in accordance with the Marcus theory.[14,19] Furthermore, in organic 

semi-conductors the bulk film is typically amorphous, which gives for each molecule a 

unique environment, leading to an energetically inhomogeneous landscape. These 

factors give rise to carrier trapping which decreases the charge transport rates. However, 

the problem of the energetically inhomogeneous media can be circumvented using 

crystalline materials.[20] 

Additionally, electrons and holes created by charge separation may recombine back 

to the ground state if they come within the columbic interaction distance before they are 

collected at the opposing electrodes.[3] To distinguish this mechanism from the 

geminated recombination, it is often called bimolecular or non-geminate recombination 

which means that the recombined charges originate from different excitonic species. 

Bimolecular recombination is one of the main loss mechanisms in BHJ devices where 

the fine intermixing of the donor and acceptor materials usually decreases the charge 

carrier mobilities and increases the percolation path lengths to the electrodes.[ 21 ] 

Additionally, the blending may induce trap sites and dead ends which serve as the 

recombination zones for the charges. The charge carrier mobility may be increased by 

inducing crystallinity which is typically done by applying thermal treatment steps (e.g. 

substrate heating or post-annealing) during the fabrication process.[ 22 ] Additionally, 

solvent vapor annealing has proved to be an efficient method to increase the 

crystallinity and, thus, to improve the charge transport properties of the cells.[20a]  

 

Charge collection 

Collection of photogenerated charges to external circuit in organic solar cells is 

accomplished by sandwiching the active layers between a transparent conducting oxide 

(TCO) electrode, typically tin-doped indium oxide (ITO), and a metal counter electrode 

(e.g. Ag). The main requirement for the efficient charge collection is a favorable energy 

level alignment between the electrode and the organic layer. An inappropriate energy 

level alignment at the organic/electrode interface has been demonstrated to result in 

piling up of charges as well as in anomalous J-V characteristics.[23] In general, formation 

of the interface energy states is highly complicated because several factors may 
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influence, such as charge transfer across the interface which gives rise to interface 

dipoles.[24]  

 

2.2 Thermally Vacuum-Deposited Organic Solar Cells  

 

Despite the fact that the first efficient solar cells were fabricated by a thermal vacuum 

(VAC) deposition method,[2] the main focus of the scientific community has been in 

solution-processed polymeric devices. This has left the development of small molecule 

cells behind.[25] Probable reasons for the popularity of the solution processing methods 

are their simplicity and lower price of experimental set-ups compared to VAC 

deposition techniques.[ 26 ] Currently, the state-of-the-art solution processed cells are 

based on polymeric donor materials of which main drawbacks are relatively difficult 

synthetic accessibilities as well as poorly specified molecular structures. The solution 

deposition technique is also more prone for impurities that may reduce the batch-to-

batch reproducibility and be detrimental for the device lifetime. Furthermore, owing to 

the solubility issues, fabrication of stacked device architectures is very complicated by 

solution deposition methods.[27] The small molecular systems, instead, offer i) vast 

possibilities for chemical modifications, ii) well specified molecular compositions, and 

iii) potentially higher purities. Additionally, a significant advantage of VAC techniques 

is the excellent control over the device architecture, and especially, easy realization of 

tandem cell structures (see section 2.2.3). As a matter of fact, both vacuum- and 

solution-deposited solar cells, based on a heterojunction, currently held the same 

certified champion efficiency of 8.3%.[28]  

 

2.2.1 Materials 

 

Donors 

Figure 6 depicts molecular structures of commonly used absorber/semiconductor 

materials in organic solar cells. One of the most studied chromophore class in OPV is 

the metal phthalocyanines (MPc) which have already been used for decades as pigments 

in car industry and in printing applications.[29] Generally, the MPcs are well known for 

their high optical strengths as well as good thermal and chemical stabilities. Several 

different metallophthalocyanine complexes such as Cu, Zn, H2, Ni, Co, and Fe have 
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resistance limiting the FF of the solar cells whereas the red shifted absorption bands 

potentially increase the JSC.    

An alternative method to extend the absorption of phthalocyanine chromophores to 

the near-infrared range is to employ square-pyramidal complexes such as 

chloroaluminum Pc (ClAlPc)[35] or titanyl Pc (TiOPc)[36,37]. The out-of-plane Cl or O 

atoms are bonded to Al or Ti atoms, respectively, which strongly influences the 

molecular packing. Consequently, both compounds exhibit the characteristic “Phase II” 

polymorph which shows the Q-band maximum far in the NIR region. Additionally, 

ClAlPc and TiOPc feature favorable energy level alignments in respect with C60 which 

afford red-shifted absorption and higher VOC compared to CuPc. For example, 

Armstrong and co-workers showed by ultraviolet photoelectron spectroscopic (UPS) 

measurements that the HOMO level of TiOPc lies 0.2 eV deeper than the HOMO level 

of CuPc.[36] This was consistent with TiOPc/C60 and CuPc/C60 device results which 

demonstrated open circuit voltages of 600 and 450 mV, respectively.[36] 

Apart from Pc derivatives, also polyacenes have been used as donor materials in 

VAC processed organic solar cells.[ 38 ] The polyacenes such as pentacene exhibit 

excellent charge transport properties and hole mobilities exceeding 3 cm2 V-1 s-1 have 

been measured for thin films.[ 39 ] However, the generally poor photon harvesting 

properties of the materials reduce their usability in organic solar cells. Nonetheless, 

despite the limited device efficiency, especially pentacene is commonly employed as a 

model component in experimental as well as theoretical studies.[40] 

An interesting class of organic semiconductors are oligo- and polythiophenes such as 

a,a’-bis(2,2-dicyanovinyl)-quinquethiophene (DCV5T).[ 41 ] DCV5T comprises of a 

conjugated acceptor-donor-acceptor (A-D-A) push-pull system featuring a high 

absorption strength (εmax = 5.2 × 10-4 L mol-1 cm-1) as well as a favorable band gap (λmax 

= 573 nm). Indeed, Schulze et al. have demonstrated with DCV5T/C60 planar 

heterojunction cells efficiencies > 3% and VOC of 1.04 V.[41]    

Merocyanines (MC) are a new donor material class for VAC processed solar cells 

based on a heterojunction.[ 42 ] In a very recently published study of merocyanine 

HB194:C60 BHJ devices, power conversion efficiencies exceeding 5% and VOC of 1.00 

V where demonstrated which are among the highest values reported for small molecule 

single junction cells.[42c] Several factors such as excellent absorption coefficients 

(typically exceeding 1 × 10-5 M-1 cm-1) make the dyes highly attractive for organic solar 

cells. Furthermore, owing to the donor-acceptor push-pull structure of MCs, they often 
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demonstrate very high dipole moments and polarizabilities that may be favorable for the 

exciton dissociation at the heterojunction,[43] as recent theoretical studies have suggested 

for polymer:C60
[44] and quadrupolar-small molecule:C60 systems[45]. In addition, the D-A 

structure is synthetically easily accessible which offers great possibilities for fine tuning 

the physical properties.  

 

Acceptors 

Most commonly used acceptor materials in vacuum-deposited organic solar cells are 

perylene derivatives, such as 3,4,9,10-perylenetetracarboxylic bis-benzimidazole 

(PTCBI) and fullerene C60  and its derivatives (Figure 6).[25,30] Absorption properties of 

the perylene derivatives are superior compared to C60 which makes them highly 

attractive acceptor materials for organic solar cells. Suitability of perylenes for OPV 

was demonstrated by Kim et al. who fabricated planar heterojunction devices using 

PbPc as the donor and different perylene tetracarboxylic diimide (PTCDI) derivatives as 

the acceptor.[46] The manufactured devices showed broad absorption ranges 400-750 nm 

and PCEs up to 2.0%. Furthermore, the authors noted that packing of the acceptor layer 

was highly important for the photocurrent and those perylene derivatives which featured 

poor intermolecular distances as well as poor electron mobilities failed to perform well 

in solar cells. However, despite the promising PHJ cell results, the efficiency of BHJ 

devices based on perylene acceptors has been low so far, which has been attributed to 

the insufficient phase separation of the D/A components.[47] Hence, owing to C60’s 

superior ability to form BHJ structure, it is the state-of-the-art acceptor material in 

organic solar cells.[47]  

An attractive alternative for C60 and perylene compounds is C70 that exhibits 

substantially higher absorption strength at more favorable spectral region compared to 

C60. For example, Pfuetzner et al. have demonstrated with ZnPc:C70 cells a 25% 

increase in JSC compared to ZnPc:C60 devices.[48] However, the significantly higher 

price of C70 reduces its attractivity at the moment.[30]  

 

2.2.2 Device Architectures 

A major improvement to Tang’s PHJ cell architecture was the introduction of the 

exciton blocking layer (EBL) between the electron accepting film and the Ag electrode 

(Figure 7a).[ 49 ] Commonly used EBL materials are bathocuproine (BCP) and 4,7-

diphenyl-1,10-phenanthroline (Bphen) which both demonstrate wide band gaps, with 
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heterojunction layer. In such a structure, the created excitons can always reach the 

heterointerface which affords a thicker absorbing layer and a potentially higher 

photocurrent in BHJ devices compared to PHJ cells. The device architecture of 

Hiramoto and co-workers may also be considered as a hybrid solar cell combining 

planar and bulk heterojunction structures.[54]  

Forrest and co-workers presented in 2003, an updated version of the hybrid 

heterojunction (HHJ) cell architecture (Figure 7b).[51] Their devices were structured 

such that first a CuPc donor layer was evaporated on the ITO electrode, followed by a 

deposition of a CuPc:C60 blend film and a BCP electron blocking layer before the silver 

electrode. The novel HHJ cell architecture demonstrated a performance improvement of 

40% compared to conventional PHJ or BHJ devices based on the CuPc donor. Very 

recently Yuen et al. used the HHJ concept to improve the performance of chloroindium 

Pc (ClInPc):C60 blend devices by implementing a ZnPc layer between the blend film 

and the ITO anode.[55] The PCE of the HHJ cells (1.81%) was over doubled compared 

to simple ZnPc/C60 PHJ or ClInPc:C60 BHJ devices. The main reason for the enhanced 

performance was the complementary absorption profiles of the phthalocyanine 

chromophores which led to a broad coverage (600-900 nm) of the solar spectrum. 

The HHJ architecture may also be considered as a pin (p-conductor-intrinsic 

absorber-n-conductor) structure where the active bulk heterojunction layer is 

sandwiched between the hole and electron conducting layers. However, the first full pin 

structure, where the both p- and n-layers were effectively doped, was introduced in 

2004 by Maenning et al. (Figure 7c).[52a] Efficient doping of the transport layers enables 

ohmic contacts to the electrodes which are essential for the charge collection from the 

deep (high) lying HOMO (LUMO) energy level. Moreover, in ideal case, the transport 

layers (p and n) have absorptions below 400 nm and conductivities above 10-5 S cm-1 

which afford over 100 nm thick films with negligible optical and resistive losses.[52a] Of 

particular importance are the efficient p- and n-layers in tandem device architectures 

where highly conducting as well as transparent spacers are needed to optimize the 

optical properties of the cells (for discussion of the tandem device architectures see 

Chapter 2.2.3).[ 56 ] Furthermore, the doped layers selectively transport only specific 

charge carrier species and block opposite charge carries as well as excitons which 

makes separate electron and hole blocking layers unnecessary.  

As mentioned above, a common problem with organic solar cells is the relatively low 

hole and electron charge carrier mobilities of organic materials.[21] The problem is 
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particularly severe in blend films which demonstrate typically ca. order of magnitude 

lower mobilities compared to pure neat films. In fact, owing to the poor charge transport 

properties, the optimal active layer thickness in BHJ cells is typically well below the 

absorption depth of the active material.[30] Therefore, despite the nearly 100% exciton 

dissociation efficiency of BHJ devices, the short circuit current remains low (typically < 

15 mA cm-2) compared to c-Si cells (ca. 25 mA cm-2). To circumvent the short LD and 

the poor charge transport, which are the most important factors limiting the efficiency of 

PHJ and BHJ cells, respectively, a controlled bulk heterojunction (cBHJ) device 

architecture has been developed.[53] In an idealized case, the donor film in cBHJ cells 

exhibits a vertical growth of needle-like crystallites whose width is < 2 × LD and the 

height is ca. ½ × the absorption depth of the active material (Figure 7d). The highly 

ordered donor film potentially enables a good charge transport leading to high FF, 

whereas the needle-like structure increases the active surface area and ensures that all 

created excitons can reach the D/A interface. Additionally, the separate deposition of 

the donor and acceptor materials allows a better control over the film morphology 

compared to co-evaporation techniques.  

Yang  et al. demonstrated with CuPc/C60 cBHJ devices a PCE increase of 35% (under 

100 mW/cm2 AM 1.5 illumination) compared to conventional co-deposited BHJ 

cells.[53a] The main improvement was observed in FF and JSC which increased by 30% 

and 20%, respectively, whereas VOC remained constant. The devices were fabricated 

employing an organic-vapor-phase-deposition (OPVD) technique which enabled growth 

of highly ordered CuPc layers with a needle-like morphology (Figure 8a). The OPVD 

method employs a carrier gas to transport the active material onto the substrate, and thus, 

permits a better control over the film morphology compared to the conventional thermal 

VAC deposition method (Figure 8).  

In addition to the OPVD technique, several processing methods have been used to 

control and/or modify the film morphology of VAC deposited solar cells. For example, 

to enhance the molecular order in the active layer, devices have been sublimed on a 

preheated substrate[57] or post-annealed after the preparation[58] or exposed to solvent 

vapor during the fabrication.[20a] Also templating the substrate with a thin organic 

layer[37] or adding a buffer film between the ITO electrode and the successive organic 

layer[59] have successively been used to modify the growth of the overstanding film. For 

example, Sullivan et al. demonstrated a 60% improvement in JSC by modifying the 

preferred growth orientation of CuPc crystallites in CuPc/C60 PHJ devices.[37] Typically 
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Series connection 

The device architecture as well as the energy level diagram of a series connected 

tandem solar cell is illustrated in Figure 9. Typically a monolithic device structure is 

used where the sub-cells share a common recombination zone between the stacks. The 

anode of the back (front) cell is electrically connected to the cathode of the front (back) 

cell. Due to the device setup, the total photocurrent is constant throughout the device 

whereas the voltages generated by the sub-cells add up. Thus, for each point of the J-V 

characteristics the following relations are valid, 

 

JTandem = JBack = JFront        (5) 

VTandem = VBack + VFront.        (6) 

 

 

Figure 9. Series connected tandem solar cell. a) Energy level alignment at VOC 
condition and b) Schematic presentation of a stacked device structure featuring a 
common recombination layer and electrical connections between the anode and the 
cathode of the Front and Back cells, respectively. 
 

Parallel connection 

In a parallel connected tandem device architecture, the sub-cells share a common 

cathode (anode) and electrically connected anode (cathode) electrodes (Figure 10). 

Owing to the structure of the parallel tandem cells, for each point of the J-V 

characteristics, following relations are valid, 

 

VTandem = VBack = VFront        (7) 

JTandem = JBack + JFront.        (8)
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Unlike in the series connected devices, VOC of the parallel connected tandem cells is 

confined close to the level of the sub-cell with the lowest VOC. However, in the parallel 

connection the short circuit currents of the sub-cells add-up.   

 

Figure 10. Parallel connected tandem solar cell. a) Energy level alignment at VOC 
condition. b) Schematic presentation of a stacked device structure featuring a common 
cathode between the Front and Back cells as well as electrically connected anodes. 
Figure a) illustrates a hypothetical case where both sub-cells are identical, and therefore, 
VOC of the tandem cell is exactly the same as for the single cells. 
 

Literature examples of tandem devices  

Recently, Drechsel et al. demonstrated an efficient series connected tandem cell 

architecture by stacking two ZnPc:C60 pin sub-cells on top of each other (Figure 11a).[56] 

The device showed a PCE of 3.8%, under simulated AM 1.5G illumination, which was 

a significant improvement compared to the respective single junction devices (2.1%). 

Due to the efficient series connection, the tandem cell demonstrated VOC of 0.99 V 

which was exactly twofold compared to the optimized single junction cells (0.50 V).[56]  

However, the improvement of the efficiency was not twofold, due to the identical 

absorption range of the sub-cells which reduced the JSC compared to the individual cells 

(Figure 11b). Therefore, a further performance increase is expected by using sub-cells 

that harvest photons at different parts of the solar spectrum. The broader absorption 

range of such devices enables a higher short circuit current compared to tandem cells 

featuring identical stacks. However, the use of dissimilar sub-cell systems needs a fine 

balancing of the current densities because the JSC of the whole device is confined to the 

level of the sub-cell showing the lowest JSC (see Eq. 5).     

Kotlarski and Blom have estimated the ultimate efficiencies of single and multiple 

junction devices.[61] By taking account optical and electrical device models, the authors 

estimated the ultimate efficiency of a single junction polymer:fullerene solar cell to 

11.7%. The optimal device had a band gap of 1.7 eV leading to VOC of 1.00 V, JSC of 

15.7 mA cm-2, and FF of 74.3%. Previously, Yu and co-workers presented a similar 

+

--

Back cellFront cell

HOMO

LUMO

V
O

C
  
(B

ac
k)

V
O

C
  
(F

ro
nt

)

V
O

C
  
(t

an
de

m
)

Common electrode

HOMO

LUMO

Front cell

Back cell

Common electrode

Transparent electrode

Metal electrode

+

+
-
+
-

+
-
+
-

-

a) b)



Chapter

 
 

value 

Kotlar

optimi

Hereby

junctio

 

Figure
ultra t
device
 

2.2.4 O

In th

molecu

Forr

layered

compa

layer e

~ 1000

Howev

nm.   

Inste

has als

idea of

would 

directly

absorp

r 2 

for the ma

ski et al. an

ized device

y, the optim

on cell by ap

e 11. a) Dev
thin Au rec
es. The figur

Other Devic

he followin

ule solar cel

rest and co-

d structure: 

ared to devi

extended the

0 nm) and i

ver, the low

ead of using

so been imp

f the concep

not be othe

y donate th

ption range o

aximal effi

nalyzed also

e architectu

mized tande

pproximatel

vice archite
combination
res are adap

ce Structur

ng, some n

lls are descr

workers use

ITO/CuPc/

ices with o

e absorption

improved J

w hole mobi

g additional

proved by m

pt is to use 

erwise abso

he charges 

of the cell w

ciency of 

o series con

ure an ultim

em cell stru

ly 20%.  

ecture of the
n layer. b)
pted with pe

res 

novel device

ribed.  

ed a double

/SnPc/C60/B

nly the CuP

n range of t

JSC by 15% 

ility of SnP

l absorbing 

mixing addit

a small am

rbed by the

to the acc

where it is re

28 

a single ju

nnected tand

mate efficie

ucture is es

e stacked Zn
J-V chara

ermission fr

e concepts 

e donor PHJ

BCP/Ag. Th

Pc donor la

the double d

compared 

Pc impeded 

layers, the 

tives in eith

mount of a f

e cell. Howe

ceptor but 

eabsorbed a

Vacuum-P

unction cell

dem cells an

ency of 14

timated to 

nPc:C60 pin
acteristics o
rom Ref. 56

employed 

J device arc

he cells show

ayer.[63] Imp

donor devic

to optimize

the optima

photon har

her the dono

fluorescent 

ever, the ad

it rather em

and convert

Processed Org

l.[ 62 ] In th

nd conclude

.1% can b

improve PC

n solar cell c
of the singl
. 

in VAC pr

hitecture w

wed a PCE 

plementatio

es to NIR r

ed CuPc:C60

al film thick

rvest of orga

or or accepto

dye to abso

ditive is no

mits the lig

ed to separa

ganic Solar Ce

he same stu

ed that with

be achieved

CE of a sin

connected b
le and stac

rocessed sm

with a follow

 increase of

on of the S

region (onse

0 BHJ devi

kness to onl

anic solar c

tor film.[64] T

orb light wh

ot considere

ght within 

ated charge

ells 

udy, 

h an 

d.[61] 

ngle 

 

by a 
cked 

mall 

wing 

f 30% 

nPc 

et at 

ces. 

ly 5 

cells 

The 

hich 

d to 

the 

s.[64] 



Chapter 2  Vacuum-Processed Organic Solar Cells 

 29 
 

Alternatively, a luminescent concentrator layer – similar as in inorganic devices – has 

been used to collect and reemit photons which would not be otherwise absorbed by the 

cell.[65]  

Also additives, that can directly donate the excitons by the Förster-type resonance 

energy transfer to the host material have been employed.[66] This method requires a 

careful alignment of the energy levels such that the energy transfer is possible and no 

charge trapping can occur. For example, Luhman and Holmes improved the 

performance of N,N-bisnaphthalen-1-yl-N,N-bisphenyl-benzidine NPD/C60 PHJ devices 

by incorporating fac-(tris-2-phenylpyridine) iridium (Ir(ppy)3) phosphorescent sensitizer 

(5% by weight) into the NPD layer.[66] The authors proposed a complex mechanism 

where the singlet (S1) excitons created in the NPD component were first able to 

efficiently relax on the triplet (T1) level of the Ir(ppy)3 additive from which the T1 

excitons were back transferred on the T1 level of the NPD. Finally, the excitons diffused 

in the T1 manifold of the NPD host material to the heterointerface at which they were 

efficiently dissociated to free charges. The authors showed that incorporation of the 

phosphorescent sensitizer into the NPD host layer increased the LD from 6.5 ± 0.3 to 

11.6 ± 0.6 nm which was attributed to better diffusion of the triplet excitons compared 

to the singlet excitons. The sensitized donor layer devices demonstrated a PCE 

improvement of about 80% relative to unsensitized donor layer cells.[66] 

 

2.2.5 Device Lifetime  

The issue of the lifetime has not been in the focus of the organic solar cell community 

so far, as most of the efforts have been placed to increase the cell efficiency. Thus, 

relatively few studies describing the device lifetimes have been published until now. In 

addition, the lack of any standardized testing protocol makes the direct comparison of 

different results very difficult. However, this is to be changed, as very recently a 

standardized testing protocol has been developed for indoor and outdoor experiments 

which will uniform the testing conditions and make the direct comparison more reliable 

in future.[67]  

Several different factors may have an influence on device lifetime such as 

presence/absence of oxygen and humidity, ultraviolet light, temperature, as well as 

stability of electrodes.[30] Especially, molecular oxygen has been shown to rapidly 

degradate cells by oxidizing the metal electrode and/or causing irreversible 

photoinduced oxidation of the active materials.[ 68 ] The importance of oxygen and 
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humidity free environment was demonstrated with pentacene/C60 cells that were 

encapsulated with thick Al2O3 films.[ 69 ] The efficiency of the encapsulated devices 

reduced only by 6% over a period of 6100 h (~ 8.5 months) compared to a lifetime of < 

10 h for unencapsulated cells. Franke et al. made a similar observation with 

encapsulated VAC processed ZnPc:C60 tandem cells.[ 70 ] The devices showed an 

efficiency reduction of only 3% in ~ 1500 h under white light illumination (halogen 

lamp) with intensity of 185 mW/cm2 and temperature of 50 °C. However, a fast 

efficiency drop was observed only in a few hours after breakup of the encapsulation. 

Devices that were baked at 85 °C in dark conditions exhibited also a very fast 

degradation which pinpointed the challenges in the thermal stability of organic solar 

cells.[70]   

Consequently, not only the efficiency but also the lifetime of OPV cells is a major 

issue before the concept can be implemented in commercial applications. As a 

comparison c-Si solar cells exhibit lifetimes > 25 years. Nevertheless, lifetimes 

exceeding 10 000 h has been demonstrated for VAC processed organic light emitting 

diodes (OLED) which is a highly promising result for the small molecule solar cells as 

well.[71] Furthermore, an accelerated degradation study at elevated temperature and light 

intensity indicated a lifetime > 10 000 h for a polymer solar cell with an initial PCE of 

1.9%.[68a] Despite the low efficiency of the cell, the result suggested an operational 

lifetime over 5 years which is considered as the minimal requirement for the 

commercial utilization.  

 

2.2.6 Conclusions and Outlook 

The future of VAC processed organic solar cells looks promising, though, several 

major hurdles such as inadequate efficiency and lifetime are still to overcome. Although, 

polymeric cells have gathered most of the interest of the scientific community in the last 

years, thermally VAC deposited devices have demonstrated their potential as well. This 

is well reflected by the fact, that both concepts currently held the same certified record 

efficiency of 8.3%. The fabrication costs of polymeric devices are potentially extremely 

low due to cheap deposition techniques (e.g. printing) which are a significant advance 

compared to VAC deposition methods. However, as shown by multiple examples, the 

VAC processing techniques enable a very fine control over the device architecture as 

well as over the morphology of the active layers. Especially, the relatively easy 

realization of tandem cell structures is a major advantage for the VAC deposition 



Chapter 2  Vacuum-Processed Organic Solar Cells 

 31 
 

techniques. In addition, the excellent synthetic malleability of small molecules offers 

great possibilities for fine tuning the physical properties.  
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Chapter 3 

 

Experimental Set-Ups for the Fabrication and 

Characterization of Solar Cells 

 

 

Abstract: This chapter describes the fabrication and characterization of the solar cells. 

The cells are thermally vacuum-deposited on pre-structured ITO substrates in an ultra 

high vacuum chamber. Current-voltage (J-V) characteristics of the fabricated devices 

are measured by an automated measurement robot in ambient air. Incident photons to 

current spectra are recorded by an in-house built measurement set-up.  
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crucibles (8 for organic materials and 2 for metals) could be mounted in the chamber 

which enabled fabrication of complete devices without breaking the vacuum in between 

the evaporation steps. The deposition rates of the organic sources were controlled by 

four quartz crystal sensors (one for two sources) which allowed simultaneous deposition 

at most from four different organic sources.  

The substrate temperature was controlled by a copper block heater that contacted the 

substrate holder from behind. To improve the thermal connection a small amount of 

gallium was implemented between the copper block heater and the substrate holder. By 

this method, a maximum substrate temperature of ~ 200 °C could be reached.  

The large number of the cells (64) on a single substrate enabled simultaneous 

fabrication of several identical devices (typically 8) improving the measurement 

statistics. Shadow masks were used to focus the deposition on the selected area of the 

substrate (Figure 1). Additionally, during the fabrication, different layer thicknesses 

could be realized onto a single substrate by moving a wedge tool gradually over the 

substrate. 

 

3.3 Device Characterization 

 

3.3.1 Current-Voltage Characteristics 

Current-voltage (J-V) characteristics of the devices were recorded in ambient air 

using an in-house built automated measurement robot which enabled fast and accurate 

measurement of every cell on the substrate (Figure 2). A standard measurement of the 

complete substrate (64 cells) took only about 45 min. The fast measurement was 

important because the substrates were not typically encapsulated. Furthermore, owing to 

the short measurement time, the cell degradation was estimated to be negligible.   

The solar illumination was simulated using a Xe lamp with an AM 1.5 filter and the 

light intensity of 100 W/cm2 was fixed with a calibrated Si-photodiode. The current 

densities were recorded with a Keithley 2425 source measurement unit. In order to 

ensure reproducible measurement conditions, for every cell, first the automated 

measurement system searched the maximum current density spot by moving the 

substrate in xy-directions under the AM 1.5 simulated light after which the J-V 

characteristics was recorded.  
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Chapter 4 

 

Crystal Packing of Merocyanine Dyes: Effect of 

Molecular and Local Dipole Moments 

 

 

Abstract: In this study, the influence of molecular dipole moment on crystal packing of 

merocyanine (MC) dyes is investigated in detail. Crystal structures of 45 merocyanines 

of which 40 are previously unpublished are analyzed. A significant overrepresentation 

of centrosymmetric structures is found compared to the global population of the centric 

and acentric space groups. As a comparison, the distribution of 170 highly dipolar 

compounds, retrieved from Cambridge Structural Database (CSD), to different space 

groups is analyzed and almost an identical result with respect to the MC structures is 

observed. These findings unambiguously demonstrate that a high permanent ground 

state dipole moment (> 8 D) significantly increases compound’s probability to attain 

one of the centrosymmetric space groups. Furthermore, the effect of a molecular dipole 

moment on the formation of the closest packed structural motifs, in the crystal 

structures of MC dyes based on a Fischer base donor group, are investigated. 

Surprisingly, the influence of the molecular dipole moment is found to be minor. This is 

attributed to the bulky Fischer’s base that impedes the molecules to stack in the face-to-

face arrangement. Instead, other packing effects such as local electrostatics are, in many 

cases, observed to influence on the closest packed molecular assemblies.a 

[a] The electro-optical measurements were carried out at University of Würzburg by Dr. Matthias Stolte. 
Part of the analyzed merocyanine crystal structures were solved at University of Würzburg by Marcel 
Gsänger. The crystallized merocyanine dyes were provided by Dr. Helmut Reichelt (BASF Ludwigshafen) 
and Hannah Bürckstümmer (University of Würzburg).  
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4.1 Introduction 

 

The effect of permanent dipole moment on the crystal packing of small molecules is 

inadequately understood phenomenon, although, it is widely accepted that a high dipole 

moment increases compound’s probability to attain one of the centrosymmetric space 

groups.[1] Especially non-linear optical (NLO) applications have often failed due to  

centrosymmetric packing of dipolar molecules. This has led to development of 

molecules with a vanishing dipole moment as well as octopolar compounds in order to 

promote non-centrosymmetric packing arrangements.[2]  

To solve the puzzle, whether or not dipolar compounds favor centrosymmetric 

packing, Whitesell et al. did 1991 a statistical analysis of distribution of molecular 

dipole moments (derived from AM1 calculations) in three different space groups P1, P-

1, and P21 for randomly selected structures retrieved from Cambridge Structural 

Database (CSD).[ 3 ] Surprisingly, the authors observed that the distribution of the 

molecular dipole moments was very similar in all these space groups (average dipole 

moments within the space groups were 3.04-3.36 D) and the highly dipolar compounds 

did not seem to favor the centrosymmetric P-1 space group. In the same study, 

Whitesell et al. analyzed the relative orientations of the neighboring dipole vectors – 

related by a two fold screw axis symmetry – in the crystal structures featuring the P21 

space group. Surprisingly, the angles between the adjacent dipole vectors did not 

correlate with the magnitude of the molecular dipole moments which allowed the 

authors to concluded that “the high preference for organic molecules to crystallize in 

one of the centrosymmetric space groups cannot be attributed to molecular dipole-

dipole interactions”.[3] 

Desiraju and co-workers repeated 2005 the statistical study of the distribution of 

molecular dipoles among the space groups P1, P-1, and P21 retrieved from CSD.[4] 

Their results essentially reproduced the findings of Whitesell et al., and thus, seemed to 

confirm the counter intuitive observation that dipolar molecules do not prefer 

centrosymmetric packing motifs.[3] In the same study, Desiraju and co-workers 

calculated dipole moments by AM1 method for 200 randomly selected compounds 

taken from Aldrich catalog of chemicals. The authors observed that the distribution of 

the calculated dipole moments is very similar to those for the various space groups. 

Hence, they concluded that the synthetical procedures tend to produce molecules with 
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dipole moments ranging from 1-4 D and any bias for centrosymmetry would be 

suppressed by the vast majority of weakly dipolar compounds. In order to avoid this 

effect, Desiraju and co-workers analyzed 51 crystal structures of 4,4’-disubstituted 

diphenyl ethers of which dipole moments ranged from 0.3 to 8.0 D (AM1 computed). 

Interestingly, no preference for centrosymmetry was observed for compounds with a 

small molecular dipole moment. However, among the investigated group of diphenyl 

ethers, only centrosymmetric structures were obtained for molecular dipole moments 

above 4 D. This result allowed the authors to conclude: “there is a strong tendency 

towards centrosymmetry for conjugated or aromatic molecules with large dipole 

moments”.[4] 

Merocyanine (MC) push-pull dyes have been explored as functional materials for 

NLO[2,5] as well as for photorefractive[6] applications and recently also for organic bulk 

and planar heterojunction solar cells[ 7 ]. Earlier studies have demonstrated a strong 

tendency for MCs to antiparallel aggregations with dimerization constants up to Kdim > 

106 M-1 in non-polar solvents.[ 8 ] This phenomenon has been attributed to the 

electrostatic dipole-dipole interactions arising from their very high ground-state dipole 

moments μg (up to 17 D, measured by electrooptical absorption (EOA) spectroscopy). 

Furthermore, the thermodynamic driving force of highly dipolar MCs to dimeric 

aggregates has recently been successively used for controlled growth of supramolecular 

assemblies.[9] 

In this study, we explore the effect of molecular dipole-dipole interactions on the 

solid state packing of MC dyes. In particular, we will focus on the question: to what 

extend the preference of MC chromophores to form antiparallel dimer aggregates in 

solution relate to the solid state packing, thus providing a supramolecular synthon in 

crystal engineering? To answer this question, we first correlate the calculated dipole 

moments and space groups of 40 MCs. After this, the analysis is broadened to a selected 

group of dipolar compounds retrieved from CSD. The aim of the first part is to find out 

whether a high permanent dipole moment increases the probability of a dipolar 

compound to crystallize in one of the centrosymmetric space groups. In the second part 

of this study, we look in detail into the crystal structures of merocyanine dyes based on 

a sterically bulky Fischer base donor subunit. The aim of the second part is to evaluate 

the effect of a permanent dipole moment on the formation of the closest packed 

structural motifs. The molecules bearing the bulky Fischer base donor were chosen 

because they have not featured antiparallel aggregates in solutions – despite of very 
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high molecular dipole moments (up to 13 D). Furthermore, understanding the solid state 

packing of these dyes is of particular importance because of their very recent 

applications in high performance organic solar cells based on a heterojunction.[7]  

 

4.2 Results and Discussion 

 

4.2.1 Space Groups and Dipole Moments 

Altogether 45 merocyanine crystal structures, of which 40 are previously 

unpublished and only four are solvates, have been investigated. Molecular structures of 

the MCs are depicted in Figure 1 and the corresponding space groups as well as 

experimental and calculated dipole moments are listed in Table 1. Notably, 18 crystal 

structures were solved in this work and 22 crystallographic data files were provided by 

Prof. Frank Würthner and his co-workers (University of Würzburg).[ 10 ] The 

experimental molecular dipoles are taken from existing literature or were measured 

separately for this study by Dr. Matthias Stolte (University of Würzburg) by EOA 

spectroscopy.[11] The same experimental dipole moment is taken for the chromophores 

that differ only by the non-conjugated R-substituents whereas an individual dipole 

moment is calculated[12] for every compound. For the calculations, the chromophores 

were taken in those geometries as found in the crystal structures without any structural 

optimization. If the structure contains more than one molecule in the asymmetric unit, 

then the average dipole moment of its individual components is given.  
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Table 1. Space groups as well as experimental and calculated dipole moments of 
merocyanine dyes shown in Figure 1  
Dye Space 

group 
Dipole [D] Ref.a Ref.b  Dye Space 

group 
Dipole [D] Ref. a Ref.b 

  Exp. Calc.      Exp. Calc.   
1a P21/c 6.1 6.5 11 this 

work 
 4a P21/c 4.0 4.4 11 this 

work 
1b Pca21 6.1 6.9 11 this 

work 
 4b P21/c 4.0 4.9 11 10 

1c P-1 6.1 6.7 11 this 
work 

 5a P21/c 9.8 9.4 11 this 
work 

1d Pbca 6.1 6.8 11 this 
work 

 5b P21/c 9.8 9.3 11 this 
work 

1e P21/c 6.1 6.4 11 10  6 P21/c 5.7 7.4 11 this 
work 

1f P21/c 6.1 6.6 11 this 
work 

 7 P21/c 4.9 7.3 11 this 
work 

1gc P-1 6.1 7.8 11 this 
work 

 8 P21/c 4.1 6.0 11 this 
work 

1h P21/n 6.1 7.1 11 7a  9a Pnma 12.7 7.9 14 13 

2a P21/c 12.5 14.9 11 this 
work 

 9b P212121 12.7 8.2 14 10 

2bd P21/c 12.5 14.8 11 this 
work 

 10 d P-1 11.6 13.6 11 10 

2ce P-1 12.5 15.6 11 this 
work 

 11 P21/c 16.2 18.0 15 10 

2d P-1 12.5 15.6 11 10  12 P-1 8.6 8.8 11 10 

2e P21/c 12.5 14.4 11 this 
work 

 13 P-1 6.1 6.9 11 10 

2f P21/n 12.5 15.2 11 this 
work 

 14 P21/n 7.9 7.8 11 10 

2g P-1 12.5 15.3 11 this 
work 

 15 Ia/2 6.8 8.4 16 10 

3a P21/c 12.8 13.1 8a 10  16 P21 14.1 14.1 17 8a 

3b P21/c 12.8 13.0 8a 10  17a P21/a 9.6 10.2 18 this 
work 

3c P21/c 12.8 13.0 8a 10  17b P21/c 9.6 11.7 18 10 

3d P-1 12.8 12.8 8a 10  18 P21/c 11.2 15.1 8a 10 

3e P-1 12.8 12.8 8a 10  19af P-1 17 21.5 18 10 

3f P-1 12.8 13.0 8a 10  19b P-1 17 21.3 18 8a 

3g P-1 12.8 12.8 8a 10  20 P21/c - 9.8 19 19 

3h P21/c 12.8 13.8 8a 10        

[a] Reference for the experimental dipole moment obtained by electro-optical absorption spectroscopy; [b] 
Reference for the crystal structure; [c] Low data quality (twin); [d] Chlorobenzene solvate; [e] EtOH 
solvate; [f] Hydrate, low data quality (disorder).  
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Figure 2a shows the correlation between experimental and calculated dipole moments 

of the MCs. The results demonstrate that the calculated values satisfactorily reproduce 

(the means square root error of the linear regression R2 = 0.83) both the magnitude and 

the relative order of the experimental dipoles. In general, the computed values are 0.8 D 

higher than the experimental dipoles and only one chromophore (9a, 9b) clearly steps 

out by having a significantly higher experimental (µexp = 12.7 D measured for 9b)[14] 

than the calculated (µcalc = 7.9 D (9a) and µcalc = 8.2 D (9b)) dipole moment. Note, that 

dyes 5a and 5b with an extended chain but otherwise identical donor and acceptor 

subunits as in chromophores 9a and 9b exhibit a significantly smaller experimental 

dipole moment (µexp = 9.8 D measured for 5a). Furthermore, the calculated dipole 

moment of 5a (µcalc = 9.4 D) is higher than for compound 9b which suggests an 

overestimation in the experimental dipole moment of the latter dye. The experimental 

dipole moments of all MCs range from moderate (dyes 4a and 4b, µexp = 4 D) to 

extremely high (dyes 19a and 19b, µexp = 17 D), respectively. The median dipole 

moment of these dyes is 10.6 D and thus it clearly exceeds the average dipole moment 

of the previous statistical studies of Desiraju et al.[4] and Whitesell et al.[3] 

Figure 2b depicts the distribution of the space groups of 41 solvate free MCs with 

respect to the calculated molecular dipole moments. Interestingly, the centrosymmetric 

P21/c (57%) and P-1 (28%) space groups alone account 85% of all structures which 

significantly exceeds the global population (58%) of the space groups.[20] Additionally, 

only three other centrosymmetric space groups I2/a, Pbca, and Pnma with one structure 

in each are observed. Hereby, the preference for centrosymmetry is distinctly 

pronounced among the dyes (the ratio is 14:1) and only three non-centrosymmetric 

structures which all have different space groups P21 (16), P212121 (9a), and Pca21 (1b) 

are found. Note, however, that the dipole moment of dye 16 (µcalc = 14.1 D) is notably 

higher that the median (9.4 D) of all compounds.  
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4.2.2 CSD Search 

The findings for MCs suggest that a high molecular dipole moment increases the 

probability of a dipolar compound to crystallize in one of the centrosymmetric space 

groups. In particular, the centric space groups P-1 and P21/c are significantly 

overrepresented. To check whether the result holds for π-conjugated dipolar compounds 

in general, a CSD study was conducted.[21] In order to limit the number of hits only  

compounds containing amino donors and carbonyl or cyano acceptors were accepted 

(Scheme 1). In addition, all compounds containing over 40 non H-atoms or atoms 

heavier than S were left out. Moreover, to ensure comparability of the results, structures 

containing strong hydrogen bonds were excluded by rejecting all compounds with OH 

and NH groups. Molecules with internal centrosymmetry have been observed to 

crystallize almost exclusively in centric space groups[20] whereas enantiopure 

compounds can only form non-centrosymmetric structures. Therefore to draw out any 

influence of the centrosymmetry or the chirality only structures with one molecule per 

asymmetric unit were accepted and structures containing chiral carbon atoms were 

manually removed. Finally, the R-factor limit was set to 0.075 to ensure good data 

quality and not any ionic, solvate, or powder structures were accepted. These 

preconditions yielded 170 structures whose dipole moments were computed by the 

AM1 method[12] (for the CSD reference codes see Table A1 in the Appendix). 

 

Scheme 1. Molecular subunit condition for the CSD search[21] 

 

 

The distribution of space groups among the conjugated push-pull compounds, 

retrieved from CSD, is strikingly similar to our merocyanine dyes (Figure 4). The two 

most common space groups P-1 (29%) and P21/c (55%) cover 84% of all crystal 

structures which is nearly identical to what is found for our merocyanines. Surprisingly, 

only two other centrosymmetric space groups Pbca and C2/c with 10 and 4 structures, 

respectively, are observed among the 170 crystal structures. In addition, only 13 crystal 

structures with acentric space groups are found. The most common non-
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centrosymmetric space groups are P212121 and P21 with 6 and 3 structures, 

respectively, while the rest Cc, Ia, Pna21, and Aba2 each have only 1 structure. The 

ratio between the centrosymmetric and non-centrosymmetric structures is 12:1 that is 

very similar to our MC structures.   

The median dipole moment (6.2 D) of all structures, retrieved from CSD, is notably 

high. Nonetheless, the difference in the median dipole moments between the 

centrosymmetric (6.4 D) and non-centrosymmetric (5.8 D) space groups is surprisingly 

small. This can be explained by the fact that most of the compounds are accumulated at 

a relatively narrow dipole range: 75% of all centric and acentric structures are given by 

compounds whose dipole moments are below 8.6 and 7.8 D, respectively. Note, 

however, that only one non-centrosymmetric space group is observed when µcalc > 10 D 

while 23 of those compounds show centrosymmetric packing.   

 

 

Figure 4. Distribution of calculated dipole moments of π-conjugated dipolar 
compounds retrieved from CSD with respect to their space groups. Non-
centrosymmetric structures are denoted in red. Dotted line has a value of 8 D.  

 

The apparent bias to centrosymmetric space groups is a clear proof that dipolar 

compounds tend to pack in centric structures. However, the average dipole moment of 

the compounds, retrieved from CSD, featuring non-centrosymmetric space groups, is 

notably high (5.8 D). For example, Desiraju and co-workers did not observe in their 

study with 4,4’-disubstituted diphenyl ethers non-centrosymmetric packing motifs 

above 4 D.[4] In turn, in our study, the probability of finding an acentric structure below 

4 D is the same as for the whole set of compounds (12:1). However, the probability of 
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having a non-centrosymmetric space group significantly decreases (24:1) when the 

molecular dipole moment exceeds 8 D.  

As the example with chromophore 16 demonstrates, even an extremely high dipole 

moment (µcalc = 14 D) is not a guarantee of a centrosymmetric packing motif.[17] In fact, 

a closer look into the crystal structure of dye 16 revealed that the closest packed 

structural motif is an antiparallel dimer that is almost but not exactly centrosymmetric 

(Figure 3a). The antiparallel alignment significantly decreases the net dipole moment of 

the crystal, making the packing into the polar space group (P21) energetically less 

unfavorable. Likewise, other acentric structures of highly dipolar compounds are 

expected to feature packing motifs where the arrangement of the neighboring molecules 

significantly diminishes the net dipole moment of the crystal. Hence, an exact dipole 

moment limit can not be given, although, the probability of having a non-

centrosymmetric space group significantly decreases when the molecular dipole 

moment increases (> 8 D).    

 

4.2.3 Packing Motifs of Merocyanines Based on the Fischer’s Base  

In following, the crystal packing of merocyanine dyes with an indoline (Fischer’s 

base) electron donating group are discussed. The chromophores can be divided in three 

different groups based on the substituted indane (1a-h, 4a, 4b, 6, 7), thiazole (2a-g, 10), 

or dioxopyridine (3a-h) acceptor rings (Figure 1). In addition, the crystal structures of 

compounds with an indoline donor and a malonitrile acceptor connected by a 

tetramethine (5a and 5b) or a dimethine (9b) bridge are presented.  

Efficiency of the charge transfer from the donor (D) to the acceptor (A) along the 

conjugation path can be estimated by analyzing the π-conjucated C-C bond lengths D-

C1 and C1-C2 or C1(/C2)-A of the dimethine and methine bridges, respectively, as well 

as the torsions angles between the mean planes of the donor and acceptor groups 

(Scheme 2). A planar molecular π-system and a significant convergence of the bond 

lengths are clear indications of an efficient charge transfer from the donor to the 

acceptor and contribution of the zwitterionic resonance form.[6d] As a comparison, for 

the Brooker’s merocyanine, the shortening of the central bond (C1-C2) to 1.35 Å, was 

estimated to correspond 82% zwitterionic form.[22] 
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Figure 5. Schematic presentation of face-to-face stacked a) antiparallel (AP) and b) 
parallel (PA) dimers of permanently dipolar compounds. c) Dimer showing a rotational 
displacement θ viewed from top.  
 

Indoline-indane (D-A) chromophores 

For this series of dyes we were able to solve 12 crystal structures (Table 2). Eight 

crystal structures of chromophores 1a-h, with spatially hindered indoline (Fischer’s 

base) donors and well accessible 2-(3-oxo-indan-1-ylidene)-malonitrile acceptors, are 

only distinguished by the peripheral alkyl substituents at the indoline donor fragment 

(Figure 1). The structures are solvate free and have good data quality, except dye 1g 

which crystallized as a twin. The R-substituents of the donor rings were systematically 

altered from small methyl (1a) to bulky benzyl (1f) and hexyl (1g) units, whereas the 

electron accepting groups were kept intact.  

Despite the bulky R-substituents nearly coplanar π-conjugated systems (the twisting 

angles are from 3-14° between the mean planes of the indoline and indane rings) and 

significantly converged bond lengths within the conjugation paths are observed. The 

average bond lengths for D-C1, C1-C2, and C2-A are 1.39, 1.38, and 1.39 Å, 

respectively (Table 2). The almost vanished bond length alternation with a shortening of 

the central bond is a clear evidence of an efficient charge transfer and a significant 

contribution of the zwitterionic resonance structure among the compounds. Due to the 

orientation of the electron accepting carbonyl and malonitrile substituents at the 1- and 

3-positions of the indane ring, respectively, the permanent dipole moment of the 

chromophores is, however, only moderate (µexp = 6.1 D) for this series of dyes. 

Nonetheless, the polar substituents induce high local dipoles that can interact with 

adjacent molecules. The dimeric motifs with the highest intermolecular interaction 

energies as well as the π-stacking interactions (vertical) and the packing motifs 

perpendicular to the π-stacks (horizontal) in the crystal structures of the indoline-indane 

dyes are shown in Table 2.   
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Table 2. Bond lengths and torsion angles as well as packing motifs found in the crystal 
structures of indoline-indane chromophores.   
Dye Bond length [Å] Anglea Dimerb αc r d V e Vertical  Horizontal 

 D- 
C1 

C1-
C2 

C1/ 
C2-A 

[°]  [°] [Å]    

1a 1.389 1.383 1.395 7.6 AP 46 3.433 -16.5 - Mosaic 1/ 
Chain 1 

1b 1.387 1.385 1.402 10 -f -f 3.423 -20.9 Column 2 Chain 1 
1c 1.391 1.384 1.398 6.1 PA 22 3.420 -12.3 Brickwall 1 Chain 1 
1d 1.390 1.381 1.396 7.9 -f -f 3.396 -21.2 Column 3 - 
1e 1.390 1.391 1.395 6.1 AP 85 3.368 -24.2 Column 1 Chain 1 
1f 1.390 1.391 1.395 6.0 AP 90 3.398 -24.6 Column 1 Chain 1 
1g -g -g -g -g AP -g -g -g Column 1 Chain 1 
1h 1.389 1.383 1.395 7.6 -f -f 3.519 -20.5 Column 2 - 
4a 1.383 1.399 1.377 13 AP 54 3.380 -14.3 - Tape 
4b 1.386 1.393 1.381 7.5 PA 41 3.420 -14.0 Column 4 Tape 
6 1.371 1.402 1.368 7.2 AP 34 3.625 -12.4 Brickwall 1 Chain 1 
7 1.404 1.375 1.420 23 AP 33 3.256 -21.2 - - 
[a] Torsion angle between the mean planes of the A and D units; [b] Type of the dimeric motif showing 
the strongest intermolecular interaction; [c] Slipping angle of the dimer; [d] Shortest atom-to-plane 
distance in the dimer; [e] Intermolecular potential energy (kcal/mol) of the dimer;[25] [f] The dimer shows 
a large rotational displacement; [g] Inadequate data quality. 

 

Figure 6 depicts the dimeric arrangements showing the strongest intermolecular 

interactions[25] in the crystal structures of dyes 1e[10] and 1f. Despite the different R-

substituents, the structures demonstrate isostructural AP dimers with face-to-face 

stacked molecules (the slipping angles are 85° (1e) and 90° (1f)). The face-to-face 

motifs are possible due to the orientation of the R-alkyl substituents which are pointing 

away from the π-π-contact planes leaving the opposing side of the conjugated π-systems 

open for close interactions (the closest intermolecular atom-to-plane distance for both 

AP dimers is circa 3.4 Å). However, the bulky 3,3’-dimethyl-methylene unit in the 

donor rings forces the AP motifs in transversal displacements. Furthermore, the dimers 

are stabilized by two crystallographically identical C-H···O hydrogen bonds between 

the carbonyl oxygen and one of the dimethyl-methylene hydrogen of the adjacent dye 

molecules. Due to the sterical demand of the R-substituents, the subsequent molecules 

to the face-to-face stacked AP dimer are forced in a slipped arrangement where the 

closest π-π-interaction (3.5 Å) is observed between the sterically less congested 

acceptor rings. Hereby, both crystal structures (dyes 1e and 1f) feature columnar stacks 

(Column 1) where the perpendicular and the slipped arrangements are repeated 

alternately as shown in Figure 6e for dye 1f.  
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Surprisingly, R-ethyl substituted chromophore 1b crystallizes in an acentric space 

group Pca21 showing a notably different packing structure compared to methyl 

substituted 1a. The dimeric motif with the strongest intermolecular interaction in the 

crystal structure of chromophore 1b demonstrates large rotational (θ = 92°) as well as 

longitudinal displacements. Furthermore, the dimers π-stack with equidistant 

connections (3.4 Å) to one-dimensional columnar motifs (Column 2) via the cofacial 

acceptor rings (Figure 7a).  

Similar dimeric motifs as for dye 1b are also observed in the centrosymmetric crystal 

structures of chromophores 1d and 1h[7a] (Figures 7b and 7c). However, with an 

exception that, in the dimeric motif of 1b both malonitrile substituents are pointing 

toward the donor rings of the neighboring molecules whereas in the dimeric aggregates 

of chromophores 1d and 1h one of the molecules is rotated circa 180° about its long 

molecular axis and the malonitrile substituent is pointing away from the donor ring of 

the adjacent molecule. This has interesting consequences on the residual dipole 

moments of the dimers. In the crystal structure of 1b, the directionalities of the adjacent 

molecular dipole vectors lower the residual dipole moment (µres = 1.5 D (AM1)) of the 

dimer compared to the molecular dipole moment (µcalc = 6.8 D). In turn, in the crystal 

structures of dyes 1d and 1h, the residual dipole moments of the dimers are 9.1 and 8.9 

D, respectively, which are significantly larger than the molecular dipole moments (µcalc 

(1d)  = 6.8 D, µcalc (1h) = 7.1 D).  

Chromophores 1h π-stack in a similar columnar motif (Column 2) as observed for 1b 

whereas 1d dyes feature a totally different packing motif. Molecules 1d stack in 

columns showing short π-π-contacts between the neighboring donor and acceptor 

groups as well as between the adjacent acceptor rings (Column 3).  
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moments is significantly reduced; instead, the alignment of the adjacent dipole vectors 

in the crystal structures of dyes 1d and 1h enhances the dipole moments. Note, that the 

higher dipole moments are not equally important in the latter structures due to the 

centric space groups which ensure zero net dipole moments (Figure 7). Instead, the low 

residual dipole moment is energetically favorable for the polar crystal structure of 1b 

(see also the discussion for chromophore 16 in section 4.2.1).   

Within the indoline-indane series four more crystal structures of methyl (4a) and 

cyclic propyl (4b)[10] substituted indoline-1,3-indandione (D-A) dyes have been 

obtained. Molecular structures of 4a and 4b are highly similar to chromophores 1a-h as 

only the malonitrile unit in the acceptor group is substituted by a carbonyl unit (Figure 

1). However, the molecular dipole moments of 4a and 4b are significantly smaller (µexp 

= 4.0 D) owing to the reduced electron acceptor strength and the shorter conjugation 

path of a carbonyl group compared to a malonitrile unit. The average central bond 

length (C1-C2) of colorants 4a and 4b (1.40 Å) is longer than the average bond 

distances D-C1 and C2-A (1.38 Å) which implies a smaller contribution of the 

zwitterionic resonance structure and a more dominant neutral form. 

The strongest intermolecular interaction in the crystal structure of 4a is an antiparallel 

cofacially stacked dimer with the shortest van der Waals connection (d(C···O) = 3.38 Å) 

between the carbonyl groups of the neighboring dyes (Figure 9a). In addition to the AP 

dimer, however, no other significant π-π-interactions are observed. In contrast, 4b 

molecules pack in parallel aggregates via cofacially π-stacked donor and acceptor rings 

of the adjacent dyes (Figure 9b). The PA dimers stack further in a columnar motif 

(Column 4) showing equidistant contacts (atom-to-plane distance is 3.80 Å) to the 

neighboring molecules (Figure 9c). Furthermore, also chromophore 4b demonstrates the 

electrostatically favorable motif with a short van der Waals interaction (d(C···O) = 3.30 

Å) between the antiparallelly stacked carbonyl groups of the adjacent molecules.    

Perpendicular to the π-stacking direction both structures (dyes 4a and 4b) feature a 

one-dimensional tape motif with a 2-fold screw axis symmetry. An example of the tape 

structure for chromophore 4a is shown in Figure 9d. The densely packed motif is 

possible because of the symmetrically substituted indane rings and the small sterical 

demand of the R-substituents. For example, chromophores 1a-h cannot pack in the tape 

motif owing to the different sizes and hydrogen bond directionalities of the malonitrile 

and carbonyl substituents in the indane ring. The tape assemblies are enforced by 



Chapter

 
 

multip

interac

 

Figure
crystal
paralle
and 4a
denote
  

In ch

by a sp

stronge

slipped

(atom-

molecu

as obs

plane, 

enforc

neighb

 

r 4  Cr

ple weak C

ctions in the

e 9. Dimer
l structures 
el to a-axis 
a, respectiv
ed by dotted

hromophore

p³-carbon b

est intermo

d dimer wi

-to-plane di

ules (Figure

served in th

the structu

ed by weak

boring dyes 

rystal Packing

C-H···O hy

e crystal stru

ric motifs 
of dyes a) 
and d) infi

vely. Interm
d blue lines. 

e 6, the carb

but otherwis

olecular inte

ith α = 33°

istance is 3

e 10a). The 

he crystal st

ure (dye 6

k C-H···N i

(Figure 10c

g of Merocyan

drogen bon

uctures of d

showing th
4a and b) 

inite tape m
molecular d

bonyl group

se the molec

eraction in 

°. The mot

3.6 Å) betw

chromopho

tructure of 

) features 

interactions

c).  

nine Dyes: Eff

62 

nds which 

dyes 4a and 

he stronges
4b[10]. c) C

motif in the 
distances sh

p at the 3-p

cular structu

the crystal 

tif features 

ween the in

ores pack fu

dye 1c (Fi

the commo

s between th

fect of Molecu

are likely 

4b. 

st intermole
Columnar st
crystal stru

horter than 

position of t

ure is ident

structure o

the shortes

ndane acce

urther in a s

igure 10b).

on Chain 

he donor an

ular and Local

the main 

ecular inter
tack (Colum

ucture of ch
van der W

he indane r

ical to com

of dye 6 is 

st van der 

eptors of th

similar Bric

Parallel to 

1 -arrangem

nd acceptor

l Dipole Mom

intermolecu

 

ractions in 
mn 4) grow
hromophore
Waals radii 

ring is repla

mpound 1a. 

an antipara

Waals con

he neighbor

ckwall 1 -m

the molecu

ment which

r groups of 

ments 

ular 

the 
wing 
e 4b 

are 

aced 

The 

allel 

ntact 

ring 

motif 

ular 

h is 

f the 



Cha

 
 

Fig
gro
stru
are
 

C

3-p

dim

dye

cha

the

sub

acc

T

sys

wit

hig

ser

stac

mo

bet

Ho

obs

apter 4  

gure 10. a)
oups as wel
ucture of ch
e denoted by

Chromopho

positions of

methine brid

es with the 

arge transfe

e electron w

bstituents th

ceptor subun

The contort

stems of the

th the short

ghest interm

ries (Figure 

cked malon

otif demons

tween the 

owever, bey

served in th

 

 

Crystal Pac

 Slipped di
ll as b) chai
hromophore
y dotted blu

ore 7 diverg

f the indane

dge is 1.375

Fischer ba

er, the µexp i

withdrawing 

his chromop

nit is twiste

ted but steri

e neighborin

test van de

molecular in

11a).[25] A s

nitrile group

strates sever

dipolar ma

yond these 

he crystal str

cking of Meroc

imeric moti
in (Chain 1
e 6. Intermo

ue lines. 

ges of dye 6

e ring, resp

5 Å which i

ase donor s

is only 4.9 D

malonitrile

phore is the 

d by 23° wi

ically acces

ng compoun

er Waals di

nteraction e

second stron

ps of the a

ral very sho

alonitrile un

dimers no 

ructure of ch

cyanine Dyes

63 

if with π-π-
) and c) π-
olecular dis

by having t

pectively. T

is the short

subunit (Tab

D which is 

e substituent

most distor

ith respect t

ssible accep

nds to stack

istance of 

energy (-21

ng interacti

adjacent mo

ort π-π-con

nits of the

strong π-π

hromophore

: Effect of Mo

-contacts be
stack (Brick
stances shor

two maloni

The central 

test among 

ble 2). How

attributed t

ts. Furtherm

rted among

to the plane

ptor ring of 

k closely tog

3.26 Å. No

.2 kcal/mol

on is observ

olecules. Th

ntacts (the s

e neighbori

π-interaction

e 7.    

olecular and L

etween the 
kwall 1) mo
rter than va

trile substitu

bond (C1-

the investig

wever, desp

to the oppos

more, owing

this series 

of the indo

chromopho

gether in an

otably, this 

l) of the in

ved between

he electrost

shortest d(N

ing molecu

ns or horizo

Local Dipole M

adjacent a
otifs in the 
an der Waa

tuents at the

-C2) length

gated meroc

pite the sign

sing orienta

g to the mal

of dyes. Th

oline donor u

ore 7 allows

n antiparalle

 dimer sho

ndoline-inda

n the antipa

tatically fav

N···O) =  3

ules (Figure

ontal conta

Moments 

 
cceptor 
crystal 

als radii 

e 1- and 

h of the 

cyanine 

nificant 

ation of 

lonitrile 

hus, the 

unit.  

s the π-

el motif 

ows the 

ane dye 

arallelly 

vorable 

3.19 Å) 

e 11b). 

acts are 



Chapter

 
 

Figure
antipar
chromo
by blue
 

Indolin

Also

be ana

accept

measur

morph

particu

been s

planar 

rings a

bonds 

bridge

donors

Crys

motifs 

angles 

depicte

adjacen

short 

structu

(Colum

on top 

2e, the

contac

centros

motifs 

r 4  Cr

e 11. a) Di
rallel assem
ophore 7. In
e lines.  

ne-thiazoma

o for this cl

alyzed. Amo

ors are a st

red for 2b)

hology whic

ularly diffic

olved (Tabl

and the ty

are below 10

(average le

s, a clear 

s to the acce

stal structur

with cofac

α ranging 

ed in Figure

nt thiazole 

intermolecu

ures, except

mn 5) in wh

of each oth

e columns 

cts to the 

symmetric 

with sligh

rystal Packing

mer motif 
mbly of the 
ntermolecul

alonitrile/m

ass of chrom

ong this ser

tructurally u

)[10]. The dy

ch makes th

cult. Howev

le 1). The c

ypical twisti

0°. This is t

ngth is 1.38

evidence o

eptors (Tabl

res of dye s

cially stack

from 33 t

e 12a. A typ

heteroatom

ular S···S 

t 2f, show 

hich the thi

her (Figure 

have two-

neighborin

dimers and

ht variation

g of Merocyan

with close 
neighborin

lar interacti

alonitrile (D

mophores a

ries, dyes 2

uniform gro

yes show a

he growth o

ver, seven cr

chromophor

ing angle o

ogether wit

8 Å, identica

f effective 

le 3).    

series 2a-g

ked thiazole

o 45° (Tab

pical distanc

m ring is 3.

contacts r

a highly sim

azole rings 

12b). In the

fold screw

g molecule

d the colum

ns on the 

nine Dyes: Eff

64 

π-π-contac
ng malonitri
ions shorter 

D-A) chrom

a significant

2a-g with in

oup of highl

a strong ten

of suitable 

rystal struct

res, as foun

of the mean

th the signif

al for the fo

π-conjugat

demonstrat

e rings of 

ble 3). An 

ce between 

.5 Å. In ad

ranging fro

milar one-d

 of the adja

e crystal str

 axis symm

es. In turn

mnar stacks

π-π-distanc

fect of Molecu

ts between 
ile groups i
than van de

mophores 

t number (1

ndoline don

ly dipolar c

ndency to cr

crystals for

tures of wh

d in the cry

n planes of 

ficant shorte

ormer series

tions and c

te almost id

the neighb

example of

the S-atom 

ddition, the 

m 3.6 to 

dimensional

acent dyes a

ructures of c

metry, and 

n, dyes 2c

s comprise 

ces as wel

ular and Local

acceptor su
in the cryst
er Waals ra

1) of single

nors and thi

compounds 

rystallize in

r a single c

hich two are

ystal structu

the indolin

ening of the

s of 1a-h) of

charge trans

dentical ant

oring mole

f the dimer

and the me

dimers fea

4.0 Å. Fu

l columnar 

are cofacial

chromophor

hence, sho

, 2d,[10] an

of two kin

l as on th

l Dipole Mom

ubunits and
tal structure

adii are deno

e crystals co

iazomalonit

(μexp = 12.

n a needle-

crystal analy

e solvates h

ures, are alm

ne and thiaz

e C1-C2 cen

f the dimeth

sfers from 

tiparallel dim

ecules and 

r motif (2a

ean plane of

ature relativ

urthermore, 

packing m

lly π-π-stac

res 2a, 2b, 

ow equidis

nd 2g exh

nds of dim

he longitud

ments 

 

d b) 
e of 
oted 

ould 

trile 

5 D 

like 

ysis 

have 

most 

zole 

ntral 

hine 

the 

mer 

slip 

a) is 

f the 

vely 

all 

motif 

cked 

and 

tant 

hibit 

eric 

dinal 



Chapter 4  Crystal Packing of Merocyanine Dyes: Effect of Molecular and Local Dipole Moments 

 65 
 

displacements. Note, however, that the dimers that are related by the screw axis 

symmetry (dyes 2a, 2b, and 2e) exhibit only marginal rotational displacements (178 < θ 

< 180°) and are distinctly similar to the centrosymmetric dimers.  

Perpendicular to the π-stacking direction, the crystal structures of 2a-e and 2g feature 

isostructural two-dimensional sheet (Sheet 1) motifs of which an example is shown in 

Figure 12c. The sheet structures are supported by multiple weak C-H···N intermolecular 

hydrogen bonds.  

Only exception in the series is chromophore 2f with its bulky benzyl and phenyl 

substituents does not exhibit the columnar stacking motif in its crystal structure. Instead, 

the centrosymmetric aggregates are packed nearly orthogonal to the adjacent dimers 

showing close π-π-interactions between the R1-substituted benzyl ring and the π-plane 

of the molecule locating in the adjacent dimer (Figure 12d). 

 
Table 3. Bond lengths and torsion angles as well as packing motifs found in the crystal 
structures of indoline-thiazomalonitrile/ malonitrile (D-A) chromophores 
Dye Bond length [Å] Anglea Dimerb αc r d V e Vertical  Horizontal 

 D- 
C1 

C1-
C2 

C1/ 
C2-A 

[°]  [°] [Å]    

2a 1.399 1.382 1.398 3.8 AP 35 3.471 -25.1 Column 5 Sheet 1 
2b 1.394 1.386 1.399 12 AP 34 3.516 -25.7 Column 5 Sheet 1 
2c 1.402 1.381 1.402 4.4 AP 36 3.508 -23.4 Column 5 Sheet 1 
2d 1.396 1.373 1.398 17 AP 45 3.514 -29.1 Column 5 Sheet 1 
2e 1.393 1.377 1.395 5.5 AP 33 3.483 -22.0 Column 5 Sheet 1 
2f 1.398 1.378 1.397 5.5 AP 43 3.666 -27.7 - - 
2g 1.396 1.373 1.393 8.4 AP 37 3.546 -22.3 Column 5 Sheet 1 
5a 1.382 1.394 1.377 11 AP 70 3.485 -19.8 - Chain 2 
5b 1.375 1.394 1.380 6.6 AP 30 3.605 -18.9 - Sheet 1 
9b 1.372 - 1.387 0 PA 26 3.626 -8.41 Column 4 - 
10 1.419 1.405 1.416 4.0 AP 70 3.548 -31.6 Column 1 Chain 2 
[a] Torsion angle between the mean planes of the A and D units; [b] Type of the dimeric motif showing 
the strongest  intermolecular interaction; [c] Slipping angle of the dimer; [d] Shortest atom-to-plane 
distance in the dimer; [e] Intermolecular potential energy (kcal/mol) of the dimer.[25]  
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solution studies have demonstrated approximately 50% contribution of the zwitterionic 

resonance structure for IDOP dyes. [17,26]  

 

Table 4. Bond lengths and torsion angles as well as packing motifs found in the crystal 
structures of IDOP dyes.  
Dye Bond length [Å] Anglea Dimerb αc r d V e Vertical  Horizontal 

 D- 
C1 

C1-
C2 

C1/ 
C2-A 

[°]  [°] [Å]    

3a 1.400 1.378 1.406 17 AP 45 3.432 -16.7 Brickwall 2 Sheet 2 
3b 1.404 1.383 1.410 20 AP 47 3.565 -19.5 Column 1 Mosaic 2 
3c 1.406 1.386 1.410 21 AP 50 3.453 -16.5 Column 1 Mosaic 2 
3d 1.404 1.386 1.410 20 AP 41 3.501 -19.7 Column 1 Sheet 2 
3e 1.402 1.382 1.413 5.9 AP 42 3.342 -19.0 Brickwall 2 Sheet 2 
3f 1.401 1.385 1.410 22 AP 91 5.200 -23.8 Column 1 Sheet  2 
3g 1.403 1.381 1.414 17 PA 39 3.720 -18.1 Brickwall 3 Sheet  2 
3h 1.402 1.381 1.409 24 AP 47 3.494 -21.0 Column 1 Mosaic 2 
[a] Torsion angle between the mean planes of the A and D units; [b] Type of the dimeric aggregate 
showing the strongest intermolecular interaction; [c] Slipping angle of the dimer; [d] Shortest atom-to-
plane distance in the dimer; [e] Intermolecular potential energy (kcal/mol) of the dimer.[25] 

 

Figure 16a depicts the dimer with the strongest intermolecular interaction in the 

crystal structure of chromophore 3a. Owing to the sterically hindered donor and 

acceptor rings, the neighboring dyes are forced in a substantial longitudinal 

displacement (α = 45°). The shortest interaction (3.43 Å) in the formed antiparallel 

cofacial stack is between the carbonyl oxygen and the π-plane of the neighboring 

dioxopyridine ring (Table 4). This interaction is supported by the strong electron 

withdrawing groups of the dioxopyridine which reduce the electronegativity of the 

aromatic ring. Furthermore, the formed dimeric motif is acentric, and thus, posses a 

small residual dipole moment. The crystal structures of chromophores 3b-f and 3h 

exhibit similar AP dimer motifs as dye 3a with cofacially stacked acceptor groups (an 

example of the motif is shown in Figure 16b). However, unlike in the latter structure, 

the dimers in the former structures are centrosymmetric.  

Brickwall motif (Brickwall 2) is observed in the crystal structures of dyes 3a and 3e. 

Within the brickwall structure the neighboring molecules are packed in columnar π-

stacks via the cofacial dioxopyridine rings of the neighboring molecules. The columnar 

stacks show nearly equidistant π-π-contacts (3.4 Å) to the adjacent molecules and they 

closely resemble the structural features (Column 5 -motif) of dyes 2a-e and 2g shown in 

Figure 16c. For both dyes 3a and 3e, the R2-group in the dioxopyridine ring is an ethyl 

chain which is the sterically smallest R2-substituent among the investigated IDOP dyes. 

Hence, the divergent columnar packing motif of dyes 3a and 3e compared to the other 
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The crystal structure of 3g demonstrates a notably different π-stacking arrangement 

compared to any other compound of the investigated IDOP dyes (Figure 16 e).[10] For 

this dye, the strongest intermolecular interaction is observed between parallelly stacked 

molecules (PA dimer) with α = 46°. Due to the high sterical demand of the molecule, 

the π-systems of the cofacial molecules are forced to a substantially long van der Waals 

distance (the shortest atom-to-atom distance is 3.75 Å). The PA dimers are, further, 

stacked in Brickwall 3 –motif where the shortest (3.25 Å) π-π-contact is observed 

between the acceptor and donor rings of the parallelly aligned dyes locating in the 

adjacent stacks.  

Perpendicular to the π-stacking direction, the IDOP dyes exhibit two different types 

of packing motifs depending on the sterical demand of the R1- and R2-alkyl 

substituents (Figure 17). When the sizes of the R-substituents are alike, as for 3a and 

3d-f, the alkyl chains locating in the adjacent dyes are interlocked. In these structures, 

the molecules form antiparallelly aligned chains that are further assembled into a tightly 

packed two-dimensional sheet motif showing multiple weak C-H···X (X = O or N) 

hydrogen bonds (Figure 17a). The packing motif of 3g resembles closely the previously 

discussed dyes. However, owing to the branched R-substituents, the interlocking of the 

alkyl groups of the neighboring dyes is not possible (Figure 17b). This result in a void 

space between the adjacent chains which is then filled by the R-alkyl substituents of the 

adjacent molecules stacked on top and below.  

The packing motif of chromophores 3b, 3c, and 3h perpendicular to the columnar π-

stacks diverge of the other IDOP dyes. In these crystal structures, the dye molecules are 

assembled in an isostructural mosaic-like motif (Mosaic 2) where the long molecular 

axes are pointing orthogonal to the neighboring dyes (Figure 17c). The formed mosaic 

structures exhibit multiple weak C-H···X (X = O or N) interactions between the 

adjacent chromophores which satisfy the strong electron donating groups C=O and CN 

of the dioxopyridine rings. The main cause for the Mosaic 2 –motif is likely the 

different sizes of the R1- and R2-substituents that impede the interlocking of the 

neighboring alkyl chains.  
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electrostatically driven aggregation in non-polar solvent media for sterically bulky MC 

dyes.[8,9]  

The space groups P-1 and P21/c are clearly the most common among the investigated 

crystal structures of indoline-indane, IDOP, and indoline-thiazomalonitrile dyes. 

However, the observed packing motifs of the chromophores do not seem to favor any 

particular space group. For example, as discussed above, the indoline-thiazomalonitrile 

dyes feature the Column 5 –type stack in their crystal structures. In the case of colorants 

2a, 2b, and 2e, the neighboring molecules show 2-fold screw axis symmetry whereas 

the adjacent chromophores in the columnar stacks of dyes 2c, 2d,[10] and 2g  are related 

by inversion symmetry.  

 

4.2.4 Intermolecular Dipole-Dipole Interaction as a Supramolecular Synthon  

The statistical study of MC crystal structures as well as the CSD search strongly hints 

that a high molecular dipole moment increases a compound’s probability to attain one 

of the centrosymmetric space groups. For example, only three compounds (1b, 9b, and 

16) of the 40 solvate free merocyanine chromophores show non-centrosymmetric space 

groups. This is significantly less than could be expected from the global distribution of 

molecules between the centric and the acentric space groups (9:2).[20]  

As shown above, merocyanines with Fischer base donor cannot form cofacial π-π-

stacks because of the bulky 3,3’-dimethylmethylene substituent. Instead, in many cases, 

the abundant dimeric motifs exhibit slipped stacking arrangements. This is especially 

pronounced among the indoline-thiazomalonitrile dyes which all demonstrate an 

isostructural AP dimer with a large longitudinal offset. However, the question remains, 

what is the influence of the dipole-dipole interaction on the formation of this motif? The 

magnitude of the electrostatic interaction energy of the neighboring dipole vectors can 

be estimated by employing Eq. 1 that yields ΔEdim = -3.0 kcal/mol for the closest packed 

dimer in the crystal structure of 2a (α = 35°, r = 3.58 Å). This energy corresponds 

approximately to a weak hydrogen bond (typically 1-3 kcal/mol)[27] but compared to the 

calculated[25] intermolecular potential energy (-25.1 kcal/mol) it is rather small. 

However, the situation completely changes if the π-systems of the adjacent molecules 

are able to π-stack perfectly face-to-face to each other. For example, in a hypothetical 

case, where the adjacent molecules (dye 2a) feature α = 90° and r = 3.58 Å, the ΔEdim 

increases to -49 kcal/mol. Note, that the electrostatic potential clearly exceeds the 

bonding energy (-7.4 kcal/mol)[28] of the supramolecular synthon: O=C-O-H···O=C-O-
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interaction is substantially stronger compared to the slipped neighbor. This is attributed 

to the angular terms cos2α and sin3α in Eq. 1 that rapidly reduce ΔEdim as α decreases. 

Note, that the dipole-dipole interaction energy of the sandwich is also comparable to the 

interaction energy of the dimer (V = -23 kcal/mol), calculated by the force field 

method.[25]  

Small molecules feature often different polymorphs of which one phase optimizes 

specific intermolecular interactions whereas a second phase maximizes the packing 

density.[29] In such cases, it is often found that a specific intermolecular interaction (e.g. 

a strong hydrogen bond(s)) competes with other attractive and repulsive forces that 

drive the molecules into the densest possible packing structure. Likewise, the dipole-

dipole attraction can be considered as a specific intermolecular interaction that is 

competing with other attractive and repulsive packing forces in a crystallization process. 

Hence, it is possible that structures showing antiparallel cofacial π-stacks could exhibit 

more loose packing with respect to structures featuring less ideal alignments of the 

dipoles.  

This possibility was investigated among the IDOP dyes. Table 5 depicts the ΔEdim of 

the strongest dipole-dipole interactions in the crystal structures of IDOP dyes as well as 

the packing indices (PI)[30] of the corresponding crystal structures. Dye 3a demonstrates 

both the highest PI and the lowest ΔEdim, but otherwise the packing densities and the 

dipole-dipole energies do not seem to correlate, as shown in Figure 19. Although, the 

PIs are not dependent on the molecular dipole-dipole interaction energies in the crystal 

structures of the investigated IDOP dyes, the influence of the molecular dipole-dipole 

interactions on the alignment of the neighboring chromophores cannot be definitely 

ruled out. As a matter of fact, a clear majority of the IDOP dyes exhibit cofacial π-

stacks in their crystal structures of which interaction energies were estimated to be 

comparable to V. Furthermore, the cause that no correlation is observed may be 

attributed to other intermolecular interactions (e.g. hydrogen bonds) as well as to the 

different sterical demands of the alkyl substituents that may obscure the effect of the 

dipole-dipole attraction. However, it is clear that the dipole-dipole attraction is easily 

diminished by other packing effects.  
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permanent dipole moment on the entire crystal structure is evident as demonstrated by 

the statistical studies.  

In turn, the local dipoles have a clear effect on the crystal packing of the investigated 

MC dyes. For example, no close π-π-stacking interactions between the carbonyl or 

cyano groups are observed whereas several crystal structures (e.g. dyes 1a, 4a, 4b, and 

7) show close interactions between the antiparallelly π-stacked carbonyl or cyano 

substituents. In addition, a number of crystals exhibit infinite molecular chains that are 

supported by multiple weak hydrogen bonds. Formation of these assemblies may be 

attributed to following factors: (1) optimization of weak intermolecular interactions and 

(2) avoidance of like-like interactions of the dipolar units. The first point is well visible 

in the crystal structures of chromophores 4a and 4b which both exhibit planar tape 

motifs that optimize the C-H···O interactions. In turn, dye series 1a-h, with very similar 

molecular structures to chromophores 4a and 4b, do not demonstrate the tape motifs in 

their crystal structures; instead most of the dyes feature the Chain 1 –motif (see Figure 

8c). The cause for the different packing motifs is attributed to the different sizes and 

bonding directionalities of the strong hydrogen bond acceptors (CN and C=O) of dyes 

1a-h compared to dyes 4a and 4b. Furthermore, good examples of maximization of the 

intermolecular interactions are the chain and mosaic assemblies of colorants 3a-h.  

 

4.4 Experimental Section 

 

Single crystal analysis 

Suitable crystals for a single crystal analysis were typically grown by slow 

evaporation of DCM/EtOH (or hexane, heptane) solution of the dye at room 

temperature or at 4 °C. The single crystal structures solved in this work were commonly 

measured at 103 K employing a Bruker AXS CCD detector and a graphite-

monochromated Cu Kα (λ = 1.51478 Å) radiation. The structures were solved by a direct 

method and refined on F2 using the full matrix least square method in a SHELXTL-

program-package.[ 31 ] All non-hydrogen atoms were anisotropically refined and 

hydrogen atoms were placed on idealized positions. Crystallographic parameters for the 

crystal structures solved in this work are shown in the Appendix.  
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Chapter 5 

 

Parallel Bulk Heterojunction Solar Cell by 

Electrostatically Driven Phase Separation 

 

 

Abstract: In this study, a double-donor concept is used to improve the performance of 

thermally evaporated merocyanine(s)/C60 bulk heterojunction (BHJ) solar cells. It is 

shown that the co-evaporation of two merocyanine dyes with absorption bands at ~ 500 

nm (SW dye) and ~ 650 nm (LW dye), respectively, together with C60 fullerene results 

in an improvement of open-circuit voltage (VOC), short-circuit current (JSC) as well as 

total power conversion efficiency (PCE) compared to the best single-donor cell. The 

enhancement of JSC is attributed to a higher photon harvesting efficiency of the mixed-

donor devices due to a better spectral coverage. The VOC of the double-donor devices is 

observed to be linearly dependent on the mixing ratio of the dyes. This is explained by 

the formation of three distinct subphases (SW, LW, and C60) where the dyes are able to 

work independently, similarly to conventional parallel connected tandem solar cells. 

Electro-optical absorption (EOA) spectroscopy shows that the dipole moments of the 

applied dyes are very different which is assumed to provide the driving force for the 

phase separation between the two donor dyes by electrostatic interactions.a 

[a] The electro-optical measurements were performed at University of Würzburg by Dr. Mathias Stolte. 
The synthetical work was carried out at University of Würzburg by Hannah Bürckstümmer. This chapter 
has previously been published in Adv. Mater. 2011, DOI: 10.1002/adma.201103167. 
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5.1 Introduction 
 

Organic photovoltaics (OPV) is a rapidly expanding research area that promises to 

become a cost efficient method for the production of renewable energy. Despite the 

significant progress in recent years, further work is still required to reach the 10% 

power conversion efficiency (PCE) which is generally considered as minimum 

requirement to compete with silicon and other inorganic thin film technologies.[ 1 ] 

Among the main limitations of performance of organic solar cells are narrow absorption 

band widths and low charge carrier mobilities of π-conjugated organic materials.[2] Both 

limitations appear to be particularly critical for organic semiconductor materials based 

on low-molecular-weight colorants that are utilized for the dual role of light harvesting 

and hole transport in bulk or bilayer heterojunction solar cells. Thus, it is well-known 

that the highest absorption strength can be achieved by cyanine-type chromophores, 

although they also exhibit the most narrow absorption widths.[3] A possible approach to 

broaden the optical absorption region of the devices without increasing the active layer 

thickness is to blend multiple donor components with different absorption regimes, 

together with an acceptor component, in a bulk-heterojunction (BHJ) film. Recently, 

this simple method has been successfully applied to improve the photon harvesting of 

solution-processed solar cells by adding small dye molecules in the poly(3-

hexylthiophene) (P3HT)/fullerene matrix[ 4 ] or by blending several small donor 

molecules with fullerene derivatives.[5] In the reported cases the overall performance 

was limited and the improvement in performances was attributed to an increase in short-

circuit current (JSC) due to a broader absorption range. 

Merocyanine dyes have recently been introduced as a new class of p-type 

semiconductor molecules in small-molecule-based organic BHJ solar cells, showing 

remarkable efficiencies in both solution- and vapor-processed cells.[6,7] Independently, 

Jen and coworkers have demonstrated similarly efficient merocyanine-based polymeric 

BHJ cells.[ 8 ] Interesting perspectives may arise from these initial studies because 

merocyanines constitute a huge class of synthetically easily accessible and intensively 

absorbing colorants (with molar absorption coefficients  often exceeding 1 × 105 M-1 

cm-1) that offer multiple possibilities for the adjustment of the absorption properties and 

energy levels.  
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Herein, we report for the first time a parallel-BHJ cell that forms in situ driven by 

dipolar intermolecular forces when mixing two merocyanine dyes as double-donor with 

a C60 acceptor. The applied dyes have complementary absorption, which enables the 

harvesting of photons over a wider spectral range at a given active layer thickness. By 

optimizing the ratio of the two donor components and the thickness of the active layer, 

the power conversion efficiency (PCE) of the blend donor cells was considerably higher 

than either of the reference devices based on the individual dyes only. This synergetic 

effect is attributed to more efficient photon harvesting efficiency of the mixed donor 

cells compared to either of the single donor devices. 

 

5.2 Results and Discussion 

 

To study the effect of a mixed donor system, thermally evaporated small-molecule 

solar cells in single and multiple donor combinations with a C60 acceptor have been 

investigated. The short-wavelength dye (SW) absorbs at λmax = 492 nm, while the long-

wavelength dye (LW) features λmax = 624 nm (both in dichloromethane). We define the 

ratio of the two dyes as  

 

X = %wt LW / (%wt SW + %wt LW).      (1) 

 

Thus, X = 0 for SW-only, X = 1 for LW-only, and 0 < X < 1 in mixed devices. 

The device architecture and molecular structures are depicted in Figure 1. The 

identical layered device architecture was employed in all devices, starting with indium 

tin oxide (ITO)-coated glass substrate, on which a 4 nm MoO3 layer was evaporated. 

The function of the MoO3 layer is to improve the hole extraction from the organic layer 

and to shield the successive organic layer from the ITO.[9] Following the MoO3 film, the 

active layer consisting of C60 as acceptor and either of the dyes or a mixture of these 

dyes in different weight ratios as donors, were co-evaporated. An additional C60 layer 

(25 nm) was deposited on top of the active layer to provide efficient electron transport 

and optimize the optical properties of the cells.[10] A 4,7-diphenyl-1,10-phenanthroline 

(Bphen) hole blocking layer (5 nm) and the silver cathode were evaporated after the C60 

layer. The active layer thickness was generally fixed to 39 nm as it was observed to give 

the best results in both single and multiple donor devices. The only exception was the 
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derived independently by multiplying the EQE (External Quantum Efficiency) spectra 

(Figure 3a) with the AM 1.5 solar spectrum and integrating the result over the full 

wavelength range. The calculated JSC values are in excellent agreement with the 

current-voltage (J-V) measurements (see Figure 2b, stars).  

 

 
Figure 2. Dependence of VOC, JSC, FF, and PCE on the LW dye content. The dashed 
line in a) is a linear fit to the data. In figure b) is also shown the JSC values calculated 
from the EQEs (stars). The C60 content was 60 %wt in all cases. The active-layer 
thickness was 39 nm in all cases. 

 

The fill factor (FF) of the SW-only devices was 55 %, which was the highest of all 

tested solar cells whereas the LW-dye-only devices gave the lowest (42%) value. In all 

other cases, values between 43 and 47% were obtained. Overall, the blend devices with 

X = 0.66 show the highest PCE of 3.2%, which is a significant improvement over the 

single-donor cells (2.6 and 2.7%, respectively; see Fig. 2). In the highest PCE devices, 

although VOC and FF of blended devices were always lower or in between the values 

obtained from single cells, the increase in JSC was enough to overcompensate the loss 

from VOC and FF. 

In order to understand the reason for higher JSC, in-depth investigations on the EQE 

of the devices were performed. The EQE spectra of the SW and LW dye-only cells 

exhibit maxima at 495 (59%) and 655 (64%) nm, respectively, whilst blend devices 
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JSC,SW(X = y) = [JSC,calc(X = y) – JSC,C60] – JSC,LW(X = y).    (3) 

 

The plot in Fig. 3b shows, that the short-circuit current of the SW and LW components 

saturates when the X  0 or X  1, respectively.  

In order to understand the high EQE of the LW component, absorption spectra of the 

cells X = 0, 0.66, and 1 with the active layer thickness of 39 nm were recorded and the 

corresponding Internal Quantum Efficiencies (IQE) were calculated by dividing the 

EQE spectra with the corresponding absorption spectra (Figure 4b). In the absorption 

region of the LW component (λ ~ 660 nm), the IQE spectra of the cells X = 1 and X = 

0.66 are similar (~ 80%) whereas the latter device shows clearly lower (~ 50%) 

efficiency compared to the X = 0 cell at the photon harvesting region of the SW dye (λ ~ 

500 nm).  

The different IQEs of the cells X = 0 and 0.66 are expected considering the fill 

factors which were 55% and 43%, respectively. However, the similar IQEs of the LW 

components (devices X = 1 and X = 0.66) show that the main reason for the higher JSC 

is not due to improved electric properties of the blend devices compared to single donor 

cells, but rather the increased photon absorption of the blend devices as can be seen 

from the corresponding absorption spectra (Figure 4b). At 660 nm, the X = 1 device 

harvest only 10% more of the incident light compared to the X = 0.66 cell, although the 

increase of the dye content is 34%. This is due to the saturation of the absorption 

already at the active layer thickness of 39 nm (compare also Figure 3b). The saturation 

is mainly attributed to the high absorption coefficient α of the LW:C60 (40:60 %wt) 

active layer [αLW:C60 (655 nm) = 0.75 × 105 cm-1] as well as to the reflective losses in the 

cells (Figure 4a). Similarly, owing to the very high absorption coefficient of the SW:C60 

(40:60 %wt) layer (αSW:C60 (505 nm) = 1.0 × 105 cm-1), also the SW component of the X 

= 0.66 cell is closer to the SW dye-only device than would be expected from the simple 

mixing ratio. Therefore, the small losses in the total absorbance at the absorption 

maxima of the mix donor devices are overcompensated by the broader absorption bands, 

leading to higher JSC of the mix donor devices compared to the single donor BHJ cells.  
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recently been shown experimentally[ 13 ] and theoretically[ 14 ] that highly dipolar 

merocyanines pack as centrosymmetric dimers with antiparallel dipole orientation for 

which the largest contribution to the cohesive energy arises from electrostatic 

interactions whilst for less dipolar π-systems attraction by dispersion forces prevails. 

The antiparallel stacking of the dyes is supported by the thin film absorption spectra of 

both SW and LW donor dyes depicted in Figure 5a. The figure shows the solution (in 

dichloromethane (DCM)) and thin film (30 nm) absorption spectra of the SW and LW 

dyes, respectively. The solution spectrum of the SW dye shows a narrow absorption 

band with a maximum at 492 nm whilst the corresponding thin film absorption 

spectrum features a broader aggregate band with two maxima at 479 nm and 514 nm, 

respectively. Likewise, specific aggregate bands arise for the thin film of the LW dye. 

Here the absorption spectrum in DCM solution shows a maximum at 624 nm with two 

vibronic progressions at higher energies.[13] Compared to the solution spectrum the 

intensity of the longest wavelength peak decreases and a new maximum appears at a 

shorter wavelength (λmax = 593 nm) in the thin film. In previous studies, appearance of a 

hypsochromically shifted peak has been attributed to antiparallel arrangement (H-

aggregate) of the chromophores.[13] Importantly, for a co-deposited film of the dyes 

(SW:LW 40:60 %wt) the specific spectral features of the individual aggregate bands of 

both dyes are clearly visible (Figure 5b). Because these aggregate bands originate from 

excitonic coupling of the transition dipole moments they are unambiguous signatures of 

the formation of homo aggregates. For hetero aggregates excitonic coupling would be 

negligible owing to the different excitation energies of the involved optical transitions. 

Hence, we can conclude that the mixed film is composed of homo-aggregated dye 

manifolds, i.e. two separated dye phases, as expected from the large differences in the 

dipole-dipole interaction energies between the homo and hetero dimers.    
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treatment for a minimum of 15 min. Identical cell architecture was used for all devices 

by starting with deposition of a 4 nm MoO3 layer at a rate of 0.2 Å s-1. After the MoO3 

film, the active layer of merocyanine dye(s) and C60 was co-evaporated. The 

evaporation rate of C60 was fixed to 1.0 Å s-1 in all cells whereas the dye ratio was 

controlled by varying the rate from 0.20 to 1.0 Å s-1. The final C60 layer (25 nm) was 

deposited at rate of 1.0 Å s-1. The cathode was fabricated by evaporating first a 4 nm 

buffer layer of Bphen at a rate of 0.8 Å s-1 and then 100 nm thick silver electrode at rate 

of 4 Å s-1. The current-density-voltage (J-V) characteristics of the devices were 

measured under standard AM 1.5 illumination (100 mW cm-2) in ambient air and 

controlled by a Keithley 2425 source measurement unit. The mismatch factor was 

calculated to be very close to unity. Electro-optical absorption (EAO) measurements are 

described in Ref. 18.   

 
Synthesis of the LW and SW dyes 

LW dye (2-{4-tert-Butyl-5-[2-(3,3-dimethyl-1-hexyl-1,3-dihydro-indol-2-ylidene)-

ethylidene] -5H-thiazol-2-ylidene}-malononitrile was synthesized by heating a 10 mL 

Ac2O solution of 1-n-hexyl-3,3-dimethyl-1,3-dihydro-indol-2-ylidene)-acetaldehyde 

(1.63 g, 6.0 mmol) and the 2-(4-tert-butyl-5H-thiazol-2-ylidene)-malononitrile (1.23 g, 

6.0 mmol) to 90 °C for 60 min. After cooling to room temperature the precipitate was 

collected, washed with isopropanol, and recrystallized from CH2Cl2/n-hexane. Yield: 

2.06 g (4.5 mmol, 75%), dark blue solid. Mp 285–286 °C. 1H NMR (CDCl3, 400 

MHz): δ 8.23 (d, 3J = 13.3 Hz, 1H), 7.35 (m, 2H), 7.21 (m, 1H), 7.01 (d, 3J = 8.0 Hz, 

1H), 5.54 (d, 3J = 13.3 Hz, 1H), 3.89 (t, 3J = 7.5 Hz, 2H), 1.80 (m, 2H), 1.68 (s, 6H), 

1.54 (s, 9H), 1.45 (m, 2H), 1.36 (m, 4H), 0.92 (t, 3J = 7.1 Hz, 3H). UV–vis (CH2Cl2): 

max () = 581 (67500), 624 (132500 M−1 cm−1). HRMS (ESI): calcd for C28H35N4S 

[M+H]+: 459.2577, found: 459.2587. Elemental analysis (%) calcd. for C28H34N4S: C, 

73.32; H, 7.47; N, 12.22; S, 6.99. Found: C 73.29; H, 7.52; N, 12.21; S, 6.99.  

SW dye (2-[2-(1,3,3-Trimethyl-1,3-dihydro-indol-2-ylidene)-ethylidene]-indan-1,3-

dione was synthesized by heating a 1.5 mL Ac2O solution of 1,3,3-trimethyl-1,3-

dihydro-indol-2-ylidene)-acetaldehyde (1.00 g, 5.0 mmol) and the 1,3-indandione 

(0.73 g, 5.0 mmol) to 90 °C for 60 min. After cooling to room temperature the 

precipitate was collected, washed with iso-propanol and n-hexane, and recrystallized 

from acetic anhydride. Yield: 1.19 g (3.6 mmol, 72%), red solid. Mp 216–218 °C. 
1H NMR (DMSO-d6, 400 MHz): δ 7.97 (d, 3J = 14.2 Hz, 1H), 7.71 (m, 4H), 7.57 (d, 
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3J = 7.2 Hz, 1H), 7.39 (m, 2H), 7.30 (d, 3J = 14.2 Hz, 1H), 7.22 (m, 1H), 3.56 (s, 3H), 

1.66 (s, 6H). UV–vis (CH2Cl2): max () = 492 (91600 M−1 cm−1). HRMS (ESI): calcd 

for C22H20NO2 [M+H]+: 330.1489, found: 330.1477. Elemental analysis (%) calcd. for 

C22H19NO2: C, 80.22; H, 5.81; N, 4.25. Found: C, 80.31; H, 5.76; N, 4.33. 

 

Cyclic voltammetric (CV) measurements 

CV was performed on a standard commercial electrochemical analyzer (EC epsilon; 

BAS Instrument, UK) in a three electrode single-compartment cell under argon. 

Dichloromethane (HPLC grade) was obtained from J. T. Baker (Mumbai, India) and 

dried over calcium hydride and degassed prior to use. The supporting electrolyte 

tetrabutylammonium hexafluorophosphate (TBAHFP) was synthesized according to 

literature,[ 19 ] recrystallized from ethanol/water and dried in high vacuum. The 

measurements were carried out under exclusion of air and moisture at a concentration of 

104 M with ferrocene as internal standard for the calibration of the potential. Working 

electrode: Pt disc; reference electrode: Ag/AgCl; auxiliary electrode: Pt wire. From the 

values of the reversible half wave potentials E1/2 (ox) the HOMO levels were calculated 

according to EHOMO = 5.15 eV – e × E1/2 (ox). 

 

UV/Vis absorption measurements 

Integrating sphere and reflectance mode were used to measure the UV/vis absorption 

spectra (OceanOptics HR2000+) of the devices. The neat film spectra were recorded in 

transmittance mode. A Xe lamp was employed as the light source.  

 

External quantum efficiency 

EQE measurements were carried out by illuminating (Xe lamp) the cells with a 

monochromated (ACTON SpectraPro 2150i) light. Simultaneously, a white background 

bias light (LEDs) was employed to improve the measurement accuracy. The light 

intensities were calibrated with a Si-photodiode. The cells’ response to the 

monochromated light was monitored with a PC connected in-house built current-voltage 

amplifier. 

 



Chapter 5  Parallel Bulk Heterojunction Solar Cell by Electrostatically Driven Phase Separation 

 97 
 

Hole carrier mobility 

Employed hole-only devices featured following cell architecture: ITO/MoO3 (5 

nm)/X (50 nm)/MoO3 (5 nm)/Ag (100 nm) where X is SW:C60 (40:60 %wt), LW:C60 

(40:60 %wt), or SW:LW:C60 (20:20:60 %wt). Zero-field hole mobilities (µ0) of the 

hole-only devices were extracted from the current-voltage characteristics using field 

dependent space-charge-limited-current model (SCLC).[16] The approximated relative 

permittivity (εr) of the organic layers was 4.  
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Chapter 6 

 

Merocyanine/C60 Planar Heterojunction Solar Cells: Effect 

of Dye Orientation on Exciton Dissociation and Solar Cell 

Performance 

 

 

Abstract: In this study we investigate the charge dissociation at the donor/acceptor 

heterointerface of thermally evaporated planar heterojunction (PHJ) merocyanine/C60 

organic solar cells. Deposition of the donor material on a heated substrate as well as 

post-annealing of the complete devices at temperatures above the glass transition 

temperature of the donor material results in a twofold increase of the fill factor (FF).  

An analytical model employing an electric field dependent exciton dissociation 

mechanism reveals that geminate recombination is limiting the performance of as-

deposited cells. FT-IR ellipsometry shows that, at temperatures above the glass 

transition temperature of the donor material, the orientation of the dye molecules in the 

donor films undergoes changes upon annealing. Based on this finding, the influence of 

the dye molecules’ orientations on the charge transfer (CT) state energies is calculated 

by quantum mechanical/molecular mechanics (QM/MM) methods. The results of these 

detailed studies provide new insight into the exciton dissociation process in organic 

photovoltaic devices, and thus valuable guidelines for designing new donor materials.a 

[a] Andreas Petersen at BOSCH Stuttgart performed the J-V curve simulations. The IRSE measurements 
were carried out at University of Heidelberg by Dr. Robert Lovrincic, Carl Pölking, and Jens Trollman. 
The exciton dissociation energy calculations were done at BASF Ludwigshafen by Andreas Fuchs. This 
chapter has previously been published in Adv. Funct. Mater. 2011, DOI: 10.1002/adfm.201101697. 



Chapter 6  Merocyanine/C60 Planar Heterojunction Solar Cells: Effect of Dye Orientation 
on Exciton Dissociation and Solar Cell Performance 

 100 
 

6.1 Introduction 

 

Progress in the field of organic photovoltaics (OPV) has been rapid in recent years 

and cell efficiencies approaching 8%[1] have been reported. However, to further increase 

the efficiency beyond 10%, which is generally considered as the watershed for a wider 

commercialization of the concept, a deeper understanding of the correlation between 

molecular level processes and the cell performance is needed.[ 2 ]  One of the key 

processes in OPV cells and also the major difference compared to inorganic techniques 

concerns the formation of free charge carriers. In organic solar cells the absorption of a 

photon leads to the formation of a strongly bound electron-hole pair, known as an 

exciton. Because the built-in electric field of the device is insufficient to dissociate the 

excitons, they have to travel to a heterointerface between donor (D) and acceptor (A) 

components where the local energy level offset supports the dissociation. According to 

studies with polymer/fullerene blends, the dissociation of an exciton into free 

electron/hole pair takes place via an intermediate charge transfer (CT) state (D+/A-) in 

which the electron and hole are located on the lowest unoccupied molecular orbital 

(LUMO) of an acceptor molecule and on the highest occupied molecular orbital 

(HOMO) of the adjacent donor molecule, respectively.[3] At this point, the closely 

bound electron-hole pair is assumed to experience a strong Coulomb binding and can 

either dissociate into free charges or geminately recombine back to the ground state.[4] 

Several studies have identified geminate recombination as one of the main loss 

mechanism in OPV.[3c,5] It is widely accepted that a sufficient energy offset ΔELUMO = 

ELUMO
D – ELUMO

A between the LUMO levels of donor and acceptor materials is needed 

to provide the driving force for the CT-state dissociation.[3a,3b,6] On the other hand, the 

open circuit voltage VOC of the organic planar and bulk heterojunction solar cells has 

been shown to be ultimately limited by the HOMO/LUMO energy level offset at the 

interface of donor and acceptor molecules.[7] Therefore, ΔELUMO has to be optimized in 

order to maximize VOC and at the same time provide a sufficient driving force for the 

CT-state dissociation.  

In polymer/fullerene[8] bulk heterojunction (BHJ) devices and planar heterojunction 

(PHJ) phthalocyanine (Pc)/dicyanovinyl-terthiophene (DCV)[9] and Pc/fullerene[7d] cells, 

an efficient CT-state dissociation has been observed for an energy offset of ~ 0.4 eV. 

However, very recently Gong et al.[10] demonstrated modest OPV performance with a 
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poly(3-hexylthiophene)(P3HT)/12-(3,6,-dimethoxy-fluoren-9-ylidene)-12H-dibenzo 

[b,h] fluorine blend which shows a LUMO level offset of only 0.12 eV.  

The current-voltage (J-V) characteristics of PHJ solar cells often deviate from an 

ideal diode behavior which results in low fill factor (FF). This behavior has been 

attributed mainly to the following reasons: i) imbalanced charge carrier mobilities and a 

high series resistance,[11] ii) low effective electric field at the heterointerface,[12] and iii) 

accumulation of charges at the electrodes due to interface trapping.[13] The low FF can 

be significantly improved by inducing crystallization[12] or doping of the 

semiconductors[14] and thus improve the transport properties of the devices. Molecular 

orientation at the heterointerface may also play a significant role in the exciton 

dissociation process as recently discussed in theoretical studies with pentacene/C60
[15] 

and P3HT/C60
[ 16 ] interfaces.[ 17 ] Additionally, depending on the alignment of the 

molecules’ dipole moment at the heterointerface with respect to the applied field, the 

charge dissociation might be either supported or hindered.[3e,18] 

Interestingly, with highly dipolar merocyanine dyes excellent results have recently 

been obtained in both solution and vacuum deposited bulk heterojunction (BHJ) solar 

cells.[19] This was achieved, despite the relatively narrow band gap (~ 2.1 eV), owing to 

exceptionally high VOC (1.0 V) and JSC values (up to almost 12 mA cm-2), whereas low 

FF of < 40% for solution-processed and < 50% for vacuum-processed devices pinpoint 

the drawback that needs to be further analyzed.[19b]  

In this study, we investigate PHJ and BHJ merocyanine/C60 solar cells deposited by 

thermal evaporation. Current-voltage (J-V) characteristics of as-deposited devices show 

a strong dependence on the applied voltage. The application of thermal treatment steps 

during the fabrication process significantly diminishes this voltage dependence. We 

show that the origin of the low FF of the as-deposited cells is the initially low exciton 

dissociation efficiency at the D/A heterointerface. It dramatically improves during post-

annealing above the glass transition temperature of the merocyanine dye. An 

ellipsometric analysis reveals that the preferred orientation of the donor molecules 

undergoes a change upon annealing. Based on this result, two heterointerface models 

are simulated and their charge transfer (CT) exciton energies are calculated. These 

results support the experimental observation that the orientation of the dye molecules at 

the heterointerface has a significant influence on the exciton dissociation efficiency.  
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biased in forward direction (V > 0 V), the cells with the 14, 21, and 28 nm donor layers 

show a kink after which the photocurrent starts to decline linearly, until just before the 

open circuit voltage (VOC) condition a second kink appears due to the exponential 

increase of the diode current. The formation of the kinks adversely affects the 

performance of the devices featuring a donor layer thickness of 14, 21, and 28 nm. Their 

FFs have been measured to be 52, 39, and 28%, respectively. The kinks are not 

observed; however, in the J-V curve of the thinnest cells (7 nm donor layer) which 

yields the highest fill factor (FF) of 69%. Notably, the exceptionally high VOC (1.04-

1.07 V) and the short circuit current (JSC) are not affected by the kinks. The best JSC (5.4 

mA cm-2) is observed for the cells with a donor layer thicknesses of 21 nm. However, 

due to the rapidly decreasing FF upon increasing the layer thickness, the cells with the 

thinnest (7 nm) donor layers give the highest power conversion efficiency (PCE) of 

3.2%.  

 

Table 1. Key device characteristics of the PHJ and BHJ devices 

Fabrication temp. 

[°C] 

Cell type Donor layer thickness  

[nm] 

JSC    

[mA cm-2] 

FF  

[%] 

VOC 

[V] 

PCE  

[%] 

25 PHJ 7 4.5 69 1.04 3.2 

25 PHJ 14 5.0 52 1.06 2.8 

25 PHJ 21 5.4 39 1.07 2.3 

25 PHJ 28 5.0 28 1.07 1.5 

80a PHJ 21 4.5 70 1.04 3.3 

60b PHJ 21 5.2 70 1.06 3.9 

25 BHJ 28c 7.5 55 1.00 4.1 

[a] Post-annealed; [b] Heated substrate; [c] ID583:C60 (40:60 weight ratio) layer.  

 

Figure 2b shows J-V characteristics of the PHJ cells deposited on a preheated (60 °C) 

substrate. Interestingly, these devices do not exhibit similar kinks as the cells prepared 

at 25 °C. Therefore, the FF of the cells with the 14, 21, and 28 nm donor layers is 

significantly improved to 72, 70, and 64%, respectively. The enhancement of the FF is 

especially high for the thickest cells that showed a 2.2-fold increase compared to 

corresponding as-deposited devices. Preheating of the substrate does not influence the 

VOC (1.04 V) but JSC is slightly reduced, which is attributed to the lower absorption 

strength of the ID583 films evaporated on a preheated substrate (Figure 3). However, 

due to the significantly improved FF, the optimal donor layer thickness is increased 
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In a recent study on small molecule PHJ solar cells anomalous J-V characteristics 

were attributed to imbalanced charge carrier mobilities between the donor and acceptor 

layers.[11] This possibility in our devices was explored by measuring the hole mobilities 

of the ID583 hole-only devices prepared under different thermal conditions and by 

applying a space-charge-limited-current (SCLC) model.[25] The hole mobility of the 

devices fabricated at 25 °C is 6 × 10-6 cm2 / V s, whereas the deposition at 60 °C or 

post-annealing at 80 °C yields only 2 × 10-6 and 6 × 10-7 cm2 / V s, respectively (Figure 

6). The previously reported electron mobility of C60 is approximately 10-2 cm2 / V s.[26] 

Obviously, the decrease in hole mobilities with increased deposition temperature or 

with thermal annealing cannot explain the cause of the improved FFs in our PHJ 

devices. Consistently with the experimental hole mobilities, also the series resistance 

(RS) of the PHJ cells with a 21 nm thick ID583 layer gets worse after the thermal 

treatments (Figure 2d). Devices prepared at 25 °C show the lowest RS of 0.86 Ω cm² 

whilst the highest RS of 1.5 Ω cm² is observed for the post-annealed (80 °C) devices. 

Depositing the cells at 60 °C results in an intermediate value (RS = 1.1 Ω cm²). Note, 

that FFs of the devices prepared at 25 and 60 °C or post-annealed at 80 °C were 39, 70, 

and 70%, respectively.  

 

 

Figure 6. J-V characteristics (symbols) of devices prepared at different thermal 
conditions in logarithmic scales and fits of the SCLC model (lines). Fitted hole 
mobilities µh and field activation parameters γ are shown. 
 

6.2.4 Analytical Electric Field Dependent CT-State Dissociation Model  

As discussed above and depicted in Figure 2a, the onset of the kinks in the J-V 

characteristics of the as-deposited PHJ cells gradually shifts to lower applied voltages 
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with increasing donor layer thickness. By calculating the inverse of the slopes between 

the kinks and plotting them against the corresponding donor layer thicknesses, a linear 

correlation is observed (see inset in Figure 2a). This correlation is directly reflected in 

the FF of the devices which also linearly declines as the device thickness increases. 

These findings strongly suggest that the photocurrent at voltages around the maximum 

power point (mpp) depends on the effective electric field that can be approximated by  

 

d

)V(V
=F bi

el



,         (1) 

 

where d = ddonor + dacceptor  is the total cell thickness. The applied and the built-in voltage 

are labeled V and Vbi, respectively. In previous studies, the strong field dependence has 

been attributed to a high series resistance[11] or to a low exciton dissociation efficiency 

at the D/A heterointerface[12].  

Because it was found that the hole mobility and thus the charge transport properties 

of the donor material did not improve and even slightly decline during thermal 

treatment, the RS cannot be the cause of the low FF and high field dependency of the as-

deposited (substrate temperature T = 25 °C) PHJ cells. Furthermore, the field 

dependency cannot be attributed to non-geminate recombination because we have a 

planar heterojunction structure. In order to analyze the charge dissociation efficiency at 

the heterointerface, a field dependent CT-state dissociation model has been used to 

describe the illuminated J-V characteristics of the as-deposited devices. Within the 

frame of this model the current is given by 

 

     VJVJ=VJ photoexpdark, 
,       (2) 

 

where Jdark,exp(V) is the measured current of the not illuminated cell and the voltage 

dependent photocurrent is given by 

 

    satphoto,photo JVp=VJ
.        (3) 
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Here Jphoto,sat is the saturation value of the photocurrent and p(V) denotes the voltage 

dependent CT-state dissociation probability which can be calculated from the CT-state 

dissociation rate kdiss(V) and its recombination rate  kf 

 

   
 

 Vk

k
+

=
k+Vk

Vk
=Vp

diss

ffdiss

diss

1

1

.      (4) 

 

This expression assumes a finite lifetime of the CT-state τ = kf
-1 with respect to 

recombination and was introduced by Braun[ 27 ]. The CT-state dissociation rate is 

expressed as[28] 

 

sel
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
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where kdiss,0 is the dissociation rate at zero field, kB and T are the Boltzmann constant 

and the temperature, respectively, and rs is the distance over which the electric field is 

acting on the CT-state. This distance is the difference between the initial electron/hole 

pair separation in the CT-state and the distance at which the two charge carriers can be 

considered free. We use rs as a fitting parameter. A more detailed discussion of the 

model will be published elsewhere.[28] 

Using the loss ratio kf/kdiss and the separation distance rs as free parameters, the 

exciton dissociation model is fitted to the J-V characteristics of the illuminated as-

deposited PHJ cells. Figure 7 shows the excellent agreement of the model and the 

experimental data. The parameters used in the simulation are given in Table 2. The well 

saturated current densities at the applied voltage region of V < 0, imply an efficient CT-

state dissociation in all devices. However, when the direction of the applied electric 

field is reversed (V > 0), the CT-state separation probability p(V) decreases notably. For 

cells with a nominal donor layer thickness of 14 nm and at V = 0.5 V, the model 

predicts a separation probability of p = 89% while the cells with a 21 nm donor layer 

only reach about 76%, at the same value of the applied voltage V. Furthermore, when 

the nominal donor layer thickness increases to 28 nm, the predicted probability for the 
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CT-state dissociation at V = 0.5 V is only 62%. Because the internal field decreases 

with increasing cell thickness, the concurrent decrease of the field-assisted separation 

probability is a strong indication of the photocurrent being controlled by a geminate 

recombination process. Thus, the formation of kinks around the mpp of the as-deposited 

solar cells may be attributed to the high recombination rates of the geminately bound 

electron-hole pairs (CT-states). 

  

 

Figure 7. Experimental (symbols) and simulated (solid lines) J-V characteristics of PHJ 
cells with different donor layer thicknesses. The simulated curves are calculated 
according to Eq. 3 using the parameters shown in Table 2. 

 

Table 2. Model parameters used to simulate the J-V characteristics of PHJ cells (see 
Figure 7)   
Parameter Symbol Value Origin 

Loss ratio kf/kdiss 31 Fit 

Separation distance rs 8.7 nm Fit 

Built-in voltage Vbi 1.54 V Experimenta 

Acceptor thickness dacceptor 31.5 nm Experimentb 

Donor thickness ddonor 7.7 to 30.8 nm Experimentc 

Saturation photocurrent Jph,sat 4.5 to 5.6 mA cm-2 Experimentd 

Temperature T 298 K Experimente 

[a] Calculated from the energy difference between the cathode work function and the HOMO level of 
ID583 (assumes Fermi level pinning at the anode). For the cells with a donor thickness of 7 nm, the 
electrical field at the donor/acceptor interface has been increased by 15%. The increase is attributed to a 
band bending close to the anode;[29] [b] 90% of the nominal value (the experimental uncertainty of the 
layer thicknesses is 10%); [c] 110% of the nominal value (the experimental uncertainty of the layer 
thicknesses is 10%); [d] Experimental current assumed at V = -0.5 V for donor thicknesses ddonor > 7 nm. 
For ddonor = 7 nm the value V = 0 V is taken in order to avoid influences of the low parallel resistance; [e] 
Temperature of the substrate. 
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6.2.5 Molecular Orientations as Deduced from IRSE  

The XRPD measurements indicate that the amorphous ID583 neat films did not 

crystallize upon evaporation at elevated substrate temperatures or at post-annealing 

above the Tg of the dye. However, it is well known that organic films may possess 

different degrees of order, although the size of the ordered regions is too small to give 

coherent reflections in XRPD (X-ray amorphous). Therefore, we have performed IRSE 

analysis for two types of samples: thin films of ID583 (28 nm) evaporated on 

Si/SiO2/MoO3 with and without post annealing at 80 °C for 5 min. In all cases the 

thicknesses of the MoO3 and the natural Si oxide have been found to be around 3 nm. 

Figure 8a shows the ellipsometric parameters obtained from both sample types at an 

angle of incidence of θ = 60° and the corresponding modeled spectra. Already the raw 

data reveal clear indications for a change of molecular orientation upon annealing. Thus, 

the peak at 2209 cm-1 (νC-N) is a dip-down in Ψ for the annealed film and a dip-up for 

the as-deposited film, corresponding to out-of-plane and in-plane vibrations, 

respectively.[30] For a precise determination of the structural change in the film upon 

annealing, the accordance between the modeled dielectric function and the DFT 

(BP86/SV(P) level of theory) predicted absorption intensities was optimized by rotating 

a basis molecule set (and thereby the dipole moments) relative to the substrate. For each 

orientation a figure of merit (rating) was computed, and the orientation with best rating 

is then regarded as the preferred orientation of the molecules (for details of the method 

see Ref. 31). The optimization process was performed on three pronounced peaks at 

1555 (δC-H), 1678 (νC-O), and 2209 cm-1 (νC-N).  Figure 8b shows the experimentally 

derived imaginary parts ε2 of the dielectric functions for the two direction components 

of each sample in comparison to DFT intensity predictions for the optimized 

orientations of the molecule. As can be seen in Figure 9, the result indicates that in the 

as-deposited film the molecules are preferably standing with their long axis 

perpendicular to the substrate surface, and undergo a tilt of 45° upon annealing at 80 °C. 

This change is certainly driven by a higher packing density for the tilted orientation. As 

no peaks were observed in X-ray diffraction measurements for both annealed and non-

annealed films, it can be concluded that the films are X-ray amorphous but the 

molecules tend to align their long molecular axes along certain directions, namely along 

the surface normal in as-deposited films and along 45° relative to the surface normal 

after annealing. 
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6.2.6 Computations of the CT-state Energies at the ID583/C60 Interface 

The kinks disappear and the fill factors significantly improve when substrate heating 

is applied or the devices are post-annealed at 80 °C which is just above the Tg (77 °C) of 

the dye. The fact that the post-annealing below the Tg has negligible influence on the 

device performance strongly suggests that the reorientation of the dyes, as shown by the 

IRSE spectroscopic analysis, is the key for the improved device performance. In a 

recent theoretical[15] study with pentacene/C60 PHJ cells, it was observed that changes 

on the relative orientation of the quadrupolar donor molecule at the D/A interface have a 

significant influence on the charge dissociation energetics. Exposing the negatively 

charged π-plane of the pentacene to the C60 interface was found to give an additional 

driving force for the exciton dissociation. Unlike pentacene, ID583 contains a donor-

acceptor π-conjugated molecular scaffold with a permanent ground state dipole moment 

(7.1 D along the long and 5.5 D along the short axis of the molecule on BP86/TZVP 

level of theory).[32] Upon optical excitation of such push-pull chromophores the electron 

density is even further displaced toward the acceptor part of the dye leading to even 

larger dipole moments in the excited state.[33] Therefore, the relative orientation of 

molecules close to or at the D/A interface can have a significant impact on stabilization 

of the electron/hole pair and its dissociation at the interface.[15]  

To assess the influence of the dyes’ orientation on the stabilization of the 

electron/hole pair in the ID583/C60 cells, two model-interfaces were built using the 

crystal structures of C60 and ID583. In order to create meaningful interface structures, 

the preferred orientations from the IRSE study were compared with the single crystal 

structure of ID583 (Figure 9c). It is obvious that the perpendicular orientation of the 

long molecular axis of ID583 in the as-deposited films and the tilted (45°) arrangement 

after annealing match very well with the lattice planes [01-1] and [-110], respectively. 

Therefore, the interface models ([01-1]:[001] and [-110]:[001]) were constructed by 

positioning the C60 plane [001] over the dye layers. The distances between the layers 

were optimized using the Dreiding-force field[ 34 ] (Figure 9). All other degrees of 

freedom (intramolecular relaxation, translation and rotation of the molecules) were kept 

fixed. Note, that the space group of the crystal structure of ID583 is centrosymmetric P-

1 having two molecules with antiparallel orientation of the long molecular axis in the 

unit cell. We expect the antiparallel orientation of ID583 also to be found at the 

interface of the planar heterojunction. Therefore, two different types of interfaces with 

clearly distinct contacts between the merocyanine and fullerene components must be 
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considered: One where the acceptor part (indane) of the ID583 dye molecule is exposed 

to the C60 surface (in the following called A configurations) and one where the dyes’ 

donor part (indoline) is exposed (in the following called D configurations). A detailed 

description of the simulations can be found in Ref. 31.  

The energy of the charge transfer exciton for the different bimolecular (ID583/C60) 

interface configurations is shown in Table 3. Figure 10 demonstrates the energy level 

diagram of the ID583/C60 interface with energy levels of the different electron/hole-

pairs at the perpendicular and tilted interfaces. The energy levels of the electron/hole-

pairs are given relative to the HOMO energy of ID583. As expected, the energy of the 

CT-state critically depends on the interface geometry as well as on the orientation of 

ID583 towards the C60 surface. It is interesting to note that, irrespective of the interface 

geometry, the CT-state is lower in energy when the (partially negatively charged) 

indane acceptor group of the dye is exposed to the C60 surface (configurations 1A and 

2A). Due to the antiparallel orientation, the neighboring ID583 molecules of the 

bimolecular complexes 1A and 2A (which define the local polarization field) are 

oriented such that the indoline group is exposed to the C60 surface. Therefore, the CT-

state is stabilized by the positive partial charge of the indoline group of the neighboring 

ID583 molecules.  Furthermore, due to the fact that the CT-state is generated by an 

electron transfer from the S1-state of ID583 to the LUMO of C60, the electron density 

distribution of the ID583 S1-state crucially influences the energy of the CT-state. 

Therefore, when the vectors of the transition dipole moment of the S0 → S1 transition in 

ID583 and the transition dipole moment of the S1(ID583) → CT excitation are oriented 

parallel, the electron density distribution is closer to the interface and the CT-state is 

already preformed in the S1-state of ID583. Hence, the CT-state at the interface can be 

formed more easily due to the kinetic reasons.   

 

Table 3. Energy of the CT-state for different bimolecular ID583/C60 interface 
configurations  
Interface Exposed side of the dye E(CT)  [eV] ΔGS1→CT  [eV]a Configuration 

[-110]:[001] Acceptor 1.54 -0.51 2A 

[-110]:[001] Donor 1.95 -0.10 2D 

[01-1]:[001] Acceptor 1.35 -0.70 1A 

[01-1]:[001] Donor 1.61 -0.45 1D 

[a] The driving force between the measured optical gap (S1) of ID583 (2.05 eV) and the calculated energy 
of the CT-state. 
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the bulk C60 is 400 times higher (3 × 1010 Hz vs. 8 × 107 Hz) than the respective rate for 

the configuration 1A, which is due to the high ΔECT-LUMO
A of 0.4 eV. Note that it can be 

assumed that the LUMO level of the C60 molecules close to the interface is different 

from the respective bulk level so that the electron does not need to perform the λ 

energetic jump of 0.4 eV in one step but could reach the bulk LUMO level in several 

smaller steps.[15] Because this effect is expected to be similar for both interfaces, the 

dissociation rate of the CT-state at the tilted interface remains higher than the respective 

rate at the perpendicular interface. This shows that the high energetic stabilization of the 

CT-state 1A (which is the global minimum of all calculated interface excitons) makes 

its dissociation at the perpendicular interface very unlikely. Due to the absence of an 

energetic trap and the lower stabilization of the exciton at the tilted interface, it is 

expected to show a higher exciton dissociation rate compared to the perpendicular 

orientation, as indicated by the CT-state dissociation simulations.  

Summarizing the theoretical discussion, we have demonstrated that the CT-state is 

stabilized when the neighboring molecules are oriented such that the positive end of 

ID583 is exposed to the interface. Furthermore, the exciton dissociation rate is higher 

when the energy difference between the interface and bulk energy level is smaller. The 

calculated changes of the CT-state energies, caused by the change of the molecular 

orientation, also agree with our CT-state dissociation model. It predicts that the driving 

force for the CT-state dissociation has to be increased by at least 0.1 eV in order to 

account for the observed device behavior.[28] Our results are also in accordance with 

previous findings on merocyanine dye sensitized solar cells (DSC) which suggest that 

the electron injection efficiency improves if the electron accepting part of the push-pull 

chromophores, e.g. cyano groups, are closely located at the titanium dioxide (TiO2) 

surface.[37] Likewise, in our ID583/C60 devices, the tilted orientation, in which the two 

cyano groups of the ID583 are closest to the C60 surface, yields the highest CT-state 

dissociation efficiency.  

 

6.2.7 Bulk Heterojunction Cells  

As a comparison, we also fabricated bulk heterojunction (BHJ) cells featuring 

following layer structure: ITO/MoO3 (5 nm)/ID583:C60 (7-28 nm)/C60 (35 nm)/BPhen 

(5 nm)/Ag (100 nm). The active layer thickness (ID583:C60 40:60 wt %) was varied 

from 7-28 nm in steps of 7 nm. Figure 11 shows that the J-V characteristics of these 

devices do not demonstrate similar kinks as has been observed for the PHJ cells. Instead, 
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even with the active layer thicknesses of 28 nm, the devices exhibit a high FF of 55%. 

Although the open circuit voltage VOC = 1.00 V is lower than for the PHJ cells, the PCE 

(4.1%) is slightly increased due to a significantly increased JSC (7.5 mA cm-2).  

It is intriguing that the J-V characteristics of the BHJ cells resemble that of the heat-

treated PHJ devices. This is explained by the different heterointerface structures of PHJ 

and BHJ devices. It can be assumed that the interface structure of BHJ blends is random 

which leads to broad distribution of energetically different pathways for excitons to 

dissociate. Due to the energetically heterogeneous landscape a significant number of 

excitons are able to dissociate into free charges even at low effective electric field 

strength. In contrast, in the PHJ devices, the interface structure is expected to be more 

ordered leading to energetically homogenous surrounding which, depending of the dyes’ 

relative orientation, either supports or hinders the exciton dissociation. 

 

 

Figure 11. Illuminated J-V characteristics of BHJ devices with different ID583:C60 
layer thicknesses. 
 

6.3 Conclusions   

 

We have shown that by evaporating the dye film on a heated substrate or by post-

annealing the complete devices above the glass transition temperature (Tg) of the donor 

material, we can significantly improve the FF of merocyanine/C60 PHJ solar cells. By 

employing a field dependent charge transfer (CT) state dissociation model, we show 

that the low FF of the as-deposited cells is a result of the poor exciton dissociation 

efficiency at the D/A heterointerface which is significantly improved after the heat 
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treatments. Although, we observe no coherent reflections in the XRPD study, the 

utilization of an IRSE spectroscopic analysis demonstrated that the preferred orientation 

of the dye molecules in the donor film changes upon post-annealing at 80 °C. Based on 

this finding, we simulated two D/A heterointerface models and estimated their CT-state 

energies via QM/MM calculations. The computations suggest that the exciton 

dissociation rate is higher in post-annealed devices compared to as-deposited cells. 

Hereby, we argue that the low exciton dissociation efficiency of as-deposited devices is 

a result of the unfavorable molecular orientation at the heterointerface together with an 

insufficient driving force (LUMO(D)-LUMO(A) offset is ~0.3 eV). However, post-

annealing the devices above the Tg of the donor material changes the interface structure, 

facilitates the CT-state dissociation, and thus leads to a two-fold increase of the FF. 

Furthermore, the kinks cannot be observed in the J-V characteristics of the BHJ devices 

deposited at 25 °C; instead the curves resemble heat treated PHJ cells. This is due to the 

random orientation of the dyes at the heterointerface in BHJ devices which is expected 

to result in energetically favorable pathways for a significant number of excitons to 

dissociate.   

Our comprehensive study suggests that push-pull chromophores can be beneficial for 

exciton dissociation at the planar and bulk heterojunction interface if they are oriented 

in a proper way with respect to the acceptor manifold. This finding hints that by 

carefully tailoring the molecular structure and/or the film morphology, the energy level 

alignment at the heterojunction can be further optimized. This is important, especially 

because dyes with pronounced charge redistributions upon electronic excitation, e.g. in 

particular dipolar merocyanines (D-A),[19] but also quadrupolar squaraines and 

diketopyrrolopyrroles (D-A-D),[38,39] or dicyanovinyloligothiophenes (A-D-A)[40] are 

increasingly utilized in organic small-molecule planar and bulk heterojunction solar 

cells.  

 

6.4 Experimental Section 

 

Synthesis  

Merocyanine dye ID583 (1-propyl-2-[2-(3,3-trimethyl-1,3-dihydro-indol-2-ylidene)-

ethylidene]-3-dicyanovinyl-indan-1-one) was synthesized by refluxing a mixture of 

methylene base (8.05 g, 0.04 mol), 3-dicyanovinylindan-1-one (7.76 g, 0.04 mol) and 
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orthoformic ethyl ester (8.88 g, 0.06 mol) two hours in ethanol. After cooling, the 

crystallized product was filtered and washed with ethanol. Finally, the product was 

purified by recrystallizing it from dimethylformamide. Yield: 14.0 g (0.034 mol, 85%), 

green solid. Mp. 219–221 °C. 1H NMR (CDCl3, 360 MHz): δ = 9.05 (d, J = 13.6 Hz, 

1H), 8.57 (m, 1H), 8.08 (d, J = 14.0 Hz, 1H), 7.72 (m, 1H), 7.59 (m, 2H), 7.36 (m, 2H), 

7.25 (m, 1H), 7.07 (m, 1H), 4.04 (t, J = 7.2 Hz, 2H), 1.96 (m, 2H), 1.81 (s, 6H), 1.09 (t, 

J = 7.2 Hz, 3H). UV–vis (CH2Cl2): λmax (λ) = 575 nm (66501 M−1 cm−1). Elemental 

analysis (%) calcd. for C27H23N3O: C, 80.0; H, 5.7; N, 10.4; O, 4.0. Found: C, 80.1; H, 

5.8; N, 10.4; O, 4.1.  

 

Cyclic voltammetry (CV)  

The CV measurement of ID583 was performed on a commercial electrochemical 

analyzer (EC epsilon; BAS Instrument, UK) in a three electrode single-compartment 

cell under argon. Dichloromethane (HPLC grade; J. T. Baker) was dried over calcium 

hydride and degassed prior to use. The supporting electrolyte tetrabutylammonium 

hexafluorophosphate (TBAHFP) was synthesized according to a published method.[41] 

The measurements were carried out under exclusion of air and moisture at a 

concentration of 10-4 M with ferrocene (-5.15 eV) as internal standard for the calibration 

of the potential; working electrode: Pt disc; reference electrode: Ag/AgCl; auxiliary 

electrode: Pt wire. 

 

Atomic force microscopy (AFM)  

The AFM experiments (Dimension 5000 Microscope, Veeco Instruments) were 

performed on two different 21 nm-thick ID583 films evaporated on ITO substrates at 

substrate temperatures of 25 and 60 °C. The measurements were carried out in the 

tapping mode using silicon cantilevers with a nominal force constant of 42 N/m and a 

tip radius of ~7 nm from Olympus, type OMCL-AC160TS (Tokyo, Japan) at a 

resonance frequency of about 320 kHz. The scan rate was kept at 0.7 Hz, while the tip-

sample forces were carefully minimized to avoid artifacts.  

 

Differential scanning calorimetry (DSC)  

The glass transition temperature of ID583 was measured using Q2000 (TA-

instruments) differential scanning calorimeter (DSC). ID583 powder (5.4 mg) was 

heated/cooled at rate 20 K/min in aluminum pan under nitrogen atmosphere.  
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UV/Vis absorption spectra 

Absorbance spectra of ID583 films were recorded using HR+2000 spectrometer 

(OceanOptics) in transmission mode employing a Xe lamp as the light source. The 21 

nm thick films were fabricated on ITO covered glass slides at substrate temperatures of 

25 and 60 °C or post-annealed at 80 °C for 5 min. 

 

Single crystal analysis  

Red block crystals of ID583 were grown by slow evaporation of a dichloromethane 

solution of this dye at room temperature. The diffraction data were collected at 103 K 

with a Bruker AXS CCD detector, using graphite-monochromated Cu Kα (λ = 1.51478 

Å) radiation. The structure was solved by a direct method and refined on F2 using the 

full matrix least square method in SHELXTL program package.[42] All non-hydrogen 

atoms were anisotropically refined and hydrogen atoms were placed on idealized 

positions. The unit cell of the analyzed crystal is a = 9.2930(10) Å, b = 9.6240(11) Å, c 

= 12.6184(13) Å, α = 104.859(5)°, β = 97.120(4)°, and γ = 90.374(5)°. The space group 

is P-1 with Z = 2. A total amount of 2067 reflections was collected with 1651 unique 

reflections in the range from 3.65 - 57.29° (2θ). The R1 and wR1 of the refinement are 

0.0354 and 0.0832, respectively. The goodness of fit (GooF) for the solution is 1.065. 

Crystallographic data (excluding structure factors) for the structure reported in this 

paper have been deposited with the Cambridge Crystallographic Data Centre as 

supplementary publication no. CCDC-834686. Copies of the data can be obtained free 

of charge from www.ccdc.cam.ac.uk/conts/retrieving.html.  

 

X-ray diffraction 

X-ray powder diffraction (XRPD) scans were recorded in a Bragg – Brentano 

geometry using a PANalytica’s X’Pert Pro MPD diffractometer employing Cu Kα 

radiation (λ =1.542 nm). The scanning range was 3-35° (2θ) with a step size of 0.017° 

and counting time of 101 s/step. ID583 neat films (30 nm) were prepared on ITO 

covered glass slides at substrate temperatures of 25 °C and 60 °C, or post-annealed at 

80 °C for 5 min.  

 

Charge carrier mobilities 

ID583 hole-only devices were fabricated by depositing the ID583 films at substrate 

temperatures of 25 and 60 °C or post-annealing the complete cell at 80 °C for 5 min. 
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The used device architecture was ITO/MoO3 (5nm)/ID583/MoO3 (5nm)/Ag (100 nm) 

with an ID583 layer thickness of 80 nm for the devices evaporated at 25 and 60 °C. The 

ID583 layer thickness of the post-annealed device was 50 nm. The hole mobilities were 

extracted from the current-voltage characteristics of the devices using a space charge 

limited current model (SCLC).  

 

Device fabrication  

The same materials were used in all planar heterojunction (PHJ) and bulk 

heterojunction (BHJ) cells throughout this work. The commercial MoO3 (Merck), C60 

(CreaPhys, 2 × sublimed), 4,7-diphenyl-1,10-phenanthroline (Bphen; Fluka) and the 

synthesized ID583 dye were used as received. The solar cells were manufactured in a 

high vacuum (typically 2 × 10-6 mbar) chamber (Lesker Ltd) on prestructured indium tin 

oxide (ITO) substrates with an active cell area of 4 mm². Prior to transferring the ITO 

substrates into the chamber they were cleaned in UV/O3 oven for 15 min. All PHJ 

devices were fabricated according to following steps: first a MoO3 film (5 nm ±10%) 

was evaporated on the ITO substrate, followed by a 7, 14, 21, or 28 nm (±10%) thick 

ID583 donor layer. After the ID583 film, a C60 acceptor layer (35 nm ±10%) and a 

Bphen buffer film (5 nm ±10%) were deposited before preparation of the silver cathode 

(100 nm ±10%). The evaporation rate of all organic materials was 1.0 Å/s whereas the 

MoO3 and Ag layers were deposited at rates of 0.8 and 4 Å/s, respectively. Compared to 

the PHJ cells, the following changes were made in fabrication of the BHJ devices: the 

ID583 layers were replaced with ID583:C60 (40:60 wt ratio) mixed layers with 

thicknesses of 7, 14, 21, and 28 nm (±10%), followed by a 25 nm (±10%) thick C60 

layer. Some of the PHJ devices were prepared on a heated substrate or post-annealed 

after fabrication. When substrate heating was applied, the substrate was first heated with 

a copper block heater to 60 °C before evaporation of the ID583 layer after which the 

substrate was cooled below 30 °C until the successive layers were deposited. Post-

annealing of the cells was carried out such that the complete devices were heated 

directly after fabrication on a hot plate at 50, 60, 70, 80, and 100 °C for 5 min in 

nitrogen atmosphere. The current-voltage (J-V) characteristics of the cells were 

measured under AM 1.5G simulated illumination (Xe lamp) in ambient air and 

controlled by a Keithley 2425 source measurement unit. The light intensity (100 mW 

cm-2) was adjusted by a calibrated Si reference cell.       
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Infrared spectroscopic ellipsometry (IRSE)  

Ellipsometry measures the complex reflectance ratio ρ = rp / rs = tan(Ψ)exp(iΔ), 

where rp and rs are the reflection coefficients for light polarized parallel and 

perpendicular to the plane of incidence and Ψ and Δ are the standard ellipsometric 

parameters.[43] By modeling the obtained values for Ψ and Δ, a best-fit parameterized 

description of the dielectric function can be achieved, including optical anisotropy.[44] 

IRSE measurements at different angles of incidence were performed with a Woollam 

IR-VASE ellipsometer. The modeling was done using the WVASE-32 software 

package, which appropriately considers the layered structure of the samples. The 

anisotropic dielectric function can then provide information on crystal orientation and 

structural disorder of the film.[45] For polycrystalline thin films and amorphous films 

with a substrate-induced preferred orientation of the molecules, an effective uniaxial 

anisotropy can be expected with vibrations parallel (in-plane) and perpendicular (out-of-

plane) to the substrate surface,[46] even if the single molecules are orientated with an 

angle off the surface normal.   

To obtain the orientation of the molecules with regard to the substrate, the 

experimentally observed vibrational modes were compared to density functional theory 

(DFT) calculations (SV(P)/BP86 level of theory)[ 47 ] of vibrational eigenvalues and 

eigenvectors for a single molecule; DFT yields peak positions of vibrational modes and 

the directions of dipole moments relative to the molecule for each normal mode. Further 

information on the calculation of vibrational frequencies can be found in the Supporting 

Information. We developed a software tool that optimizes the accordance between DFT 

based vibration spectra and the experimental anisotropic dielectric function by varying 

the orientation of a molecule relative to the substrate.[48] In that way, by combining DFT 

results, which give us the orientation of the dipole moments with respect to the 

molecule, and ellipsometry results, which give us the orientation of the dipole moments 

with respect to the substrate surface, we can reliably determine the orientation of the 

molecules with respect to the substrate surface. 
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Chapter 7 

 

Planar, Bulk and Hybrid Merocyanine/C60 Heterojunction 

Devices: A Case Study on Thin Film Morphology and 

Photovoltaic Performance 

 

 

Abstract: The growth of a thermally deposited merocyanine (HB364) thin film can be 

modified through insertion of a transition metal oxide layer between an indium tin oxide 

(ITO) covered glass substrate and the dye film. Pure or V2O5 modified ITO substrates 

result in highly crystalline HB364 films where the dye molecules adopt an edge-on 

orientation. Changing the transition metal oxide layer to WO3 or MoO3 results in a less 

ordered dye film with a mixed growth of edge-on and face-on orientations. Planar 

HB364/C60 heterojunction (PHJ) solar cells are fabricated using the different transition 

metal oxides as the anode buffer layers. The devices with a pure ITO or a V2O5 

modified anode demonstrate the highest power conversion efficiencies up to 2.7% that 

also outperform HB364:C60 bulk heterojunction (BHJ) devices (2.5%). Finally, HB364/ 

HB364:C60 hybrid heterojunction (HHJ) cells are fabricated showing the highest power 

conversion efficiency of 2.9%.a  

[a] The atomic force microscopy scans were recorded at BASF Ludwigshafen by Katja Graf. The contact 
angle measurements were carried out at BASF Ludwigshafen by Dr. von Vacano. The HB364 was 
synthesized at University of Würzburg by Hannah Bürckstümmer. This Chapter has been previously 
published in J. Mater. Chem. 2011, DOI:10.1039/C2JM14927C.  
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7.1 Introduction 

 

Organic photovoltaics (OPV) is a merging concept for a cost efficient and an 

environment friendly energy source.[1] Compared to inorganic counterparts OPV has 

several advantages such as potentially very low production costs, vast diversity of active 

materials, and  significantly thinner as well as lighter devices.  

Two different device architectures, namely, a planar heterojunction (PHJ) and a bulk 

heterojunction (BHJ) are commonly used in OPV. The PHJ devices comprise of 

separately stacked donor (D) and acceptor (A) layers featuring a distinct heterointerface. 

In turn, in the BHJ cells, the donor and the acceptor are co-deposited in a common bulk 

film leading to fine intermixing of the components. The main advantage of the PHJ 

structure over the BHJ concept is the well defined p- and n-semiconducting layers 

which enable efficient collection of the photogenerated charges. However, because of 

the layered structure, the interface area between the D and A components is limited 

restricting the thickness of the photon absorbing layer to the exciton diffusion length of 

the absorber compound which is, typically, for organic small molecules 1-20 nm.[2] The 

exciton diffusion length is not usually considered the limiting factor in BHJ devices, 

due to the fine intermixing of the donor and acceptor components. However, an 

inadequate phase separation of D and A molecules results in dead ends as well as high 

resistive loses which are common problems in BHJ devices.[3]      

A promising approach to improve the photon harvesting efficiency of PHJ devices is 

to alter the morphology of the light absorbing donor layer. Higher crystallinity is 

considered advantages for exciton and charge carrier transport and way also to improve 

the absorption coefficient if the molecules are deposited suitably with regard to the 

direction of the light. Furthermore, in an ideal growth situation, the donor layer may 

feature vertically grown rod-shaped crystallites with a width that is usually smaller than 

the exciton diffusion length and a height that is approximately half of the absorption 

length (Figure 1). Several different methods have been used to realize well ordered film 

structures in organic solar cells, such as vapor phase deposition,[4] substrate heating,[5] 

thermal annealing,[6] and solvent vapor soaking.[7] Additionally, templating the ITO 

surface with a thin organic layer[ 8 ] or adding a thin buffer film between the ITO 

electrode and the successive organic layer,[9] have proved to be efficient methods to 

enhance crystallinity of the overstanding donor film. Other functions of a thin buffer 
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7.2 Results and Discussion  

 

7.2.1 Characterization of Thin Films  

X-ray diffraction 

The growth of HB364 neat films was investigated after insertion of a ~ 5 nm thick 

transition metal oxide layer between the HB364 film and the indium tin oxide (ITO) 

covered glass substrate. The samples were fabricated by depositing first a thin MoO3, 

WO3, or V2O5 layer (~ 5 nm) on an ITO substrate (cleaned in UV/O3 oven at least 15 

min), following the evaporation of a merocyanine (MC) HB364 layer with a nominal 

thickness of 10-40 nm. Additionally, also samples without the metal oxide layer were 

prepared. The results of the X-ray diffraction (XRD) scans of the 10 nm thick dye films 

on the different substrates are depicted in Figure 2a and analyzed in detail in Table 1. In 

the HB364 thin film diffraction graphs, the strong reflection at 2θ = 21.5° corresponds 

to the [211] diffraction plane of the crystalline ITO substrate[15] whilst the reflection at 

2θ = 7.7° is attributed to the polycrystalline dye film. The 2θ = 7.7° reflection is 

observed with 10 nm thick dye films on the pure and V2O5 modified ITO substrates 

whereas the HB364 films on the WO3 or MoO3 modified ITO substrates do not show 

any coherent reflection arising from the dye layer.  

Figure 2b depicts the XRD patterns of 20 nm thick HB364 layers on the different 

substrates. Deposition of the films on the pure and V2O5 modified ITO substrates result 

in strong 2θ = 7.7° reflections whose intensities are over doubled compared to the 10 

nm thick films on the corresponding substrates. In the case of the pure ITO substrate, 

the peak width decreases as the film thickness increases indicating a more uniform 

particle size (see also Table 1). In turn, the width of the 2θ = 7.7° reflection on the V2O5 

modified substrate does not substantially change when the HB364 film thickness 

increases from 10 to 20 nm. Furthermore, the dye film on the pure ITO substrate shows 

a very weak reflection at 2θ = 23.4° which is not observed in the graph of the V2O5 

modified sample. In turn, the 20 nm thick dye films on the WO3 and MoO3 modified 

ITO substrates demonstrate two very weak diffractions at 2θ = 7.7° and at 2θ = 23.4°, 

respectively. 
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Figure 4. XRD scans of 40 nm thick HB364 films on (from bottom to top) ITO/-, 
ITO/MoO3, and ITO/C60 substrates. The strong peak at 2θ = 21.4° is attributed to the 
[211] reflection of the polycrystalline ITO substrate.[15] 
 

Surface energies 

To investigate the surface properties, contact angles of water, formamide, and 

diiodomethane on a pure ITO substrate and after insertion of a thin (~ 5 nm) transition 

metal oxide layer on the ITO substrate were analyzed. Additionally, based on the 

obtained contact angles, surface energies Etotal were calculated employing the method of 

Owens-Wendt.[ 16 ] An UV/O3 treatment of the ITO substrate results in a highly 

hydrophilic surface with a water contact angle θwater of 11° whereas the V2O5, WO3, or 

MoO3 modified (~ 5 nm film) ITO substrates demonstrate rather hydrophobic surfaces 

with θwater of 66°, 73°, and 62°, respectively (Table 2). Correspondingly, the surface 

energy of the pure ITO substrate is substantially higher (71 mN/m) compared to the 

V2O5, WO3, and MoO3 modified substrates which demonstrate Etotal of 51, 48, and 52 

mN/m, respectively. As a comparison, surface energies of ITO substrates with and 

without a 10 nm thick WO3 film of 48 and 72 mN/m, respectively, were reported 

previously.[12] According to Owens-Wendt analysis, the contributions of the disperse 

Edisperse and the polar Epolar parts to the Etotal between the transition metal oxide modified 

surfaces are similar (Table 2).  In agreement with the molecular structure, the substrate 

with a 50 nm thick C60 layer shows a highly hydrophobic surface with only a marginal 

contribution of the Epolar part (0.5 mN/m) to the Etotal (46 mN/m). Hence, we can 

conclude, that the dye molecules seem to prefer the edge-on orientation on highly 

hydrophilic substrates (e.g. ITO) whereas hydrophobic substrates (e.g. C60) result in the 

face-on orientation. However, it is unclear why the molecules feature exclusively the 

[10-1] orientation on the V2O5 modified substrate whilst the MoO3 and WO3 
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As shown above, orientation of HB364 molecules is dependent on the substrate 

modification. Previous studies with copper phthalocyanine (CuPC) have shown, that the 

molecules either stand edge-on or lie face-on on the substrate depending on the 

chromophore-surface interactions.[9,19] On weakly interacting surfaces (such as ITO and 

SiO2) the chromophores prefer edge-on arrangement whereas strong interactions (e.g. 

with PTCDA or CuI) force the molecules to face-on alignment. Furthermore, orientation 

of the first chromophore layers on the substrate has been observed to control the growth 

of the whole crystalline CuPc film.[19]  

Correspondingly, the observed preferred growth of HB364 films on the different 

substrates are attributed to dye-surface interactions. As shown above, the 10 nm thick 

HB364 layer on the pure ITO substrate features only the [10-1] reflection suggesting 

that only the edge-on orientation is present. However, when the thickness of the HB364 

layer increases (> 10 nm), the relative strength of the large angle [020] reflection 

increases as well (Table 1). This may be rationalized by assuming that the first dye 

layers on the weakly interacting ITO substrate adopt the edge-on orientation which 

triggers the growth of the [10-1] crystallites. However, when the HB364 film thickness 

increases (> 10 nm) and the ITO substrate is fully covered with the dye, the successive 

molecules gradually adopt the face-on orientation which is, in turn, observed as 

enhancement of the [020] reflection. Instead, the C60 modified substrate shows only the 

[020] peak of HB364 which suggests that already the first dye layers on the C60 surface 

adopt the face-on arrangement. This may be explained by the strong dispersive 

interactions between the π-systems of the dye and C60 molecules.   

 

7.2.2 Solar Cells 

In the second part of this chapter, the effect of transition metal oxide buffer layers on 

the performance of HB364/C60 PHJ solar cells is presented. As a comparison also 

HB364:C60 bulk heterojunction (BHJ) and HB364/HB364:C60 hybrid heterojunction 

(HHJ)[20] devices were fabricated (Figure 7). As shown above, the orientation and the 

degree of crystallinity of the dye film can be altered by changing the underlying layer. 

The crystalline donor layers are expected to show several benefits over the less 

crystalline counterparts such as i) better charge transport properties,[21] ii) longer exciton 

diffusion lengths,[2b] and iii) improved photon collection efficiencies due to the larger 

interface areas.[6] 
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However, deposition of the C60 quenching layer on top of the 5 nm thick dye film results 

in an emission band with 30% of the original PL intensity. In turn, the 10 nm thick 

HB364 film with the overstanding C60 layer shows a significantly higher residual 

emission (65% of the intensity of the sample without the quenching layer). These results 

clearly demonstrate that the exciton quenching is more efficient in devices with a 5 nm 

thick donor layer. Furthermore, both thin films with the quenching layer show 

significant residual PL intensities suggesting that a substantially higher JSC could be 

achieved by a better control over the particle size of the donor layer in HB364/C60 PHJ 

devices.   

 

BHJ devices  

For comparison also bulk heterojunction (BHJ) devices were fabricated with a 

following cell architecture: ITO/MoO3 (5 nm)/HB364:C60 (10-40 nm)/C60 (25 

nm)/BPhen (5 nm)/Ag (100 nm), where the thickness of the active layer (HB364:C60 

40:60 by weight) was changed in steps of 10 nm from 10-40 nm (Figure 7c). The J-V 

characteristics of the BHJ devices are depicted in Figure 13a and Figure 15 shows the 

key device parameters with respect to the active layer thickness. The JSC improves from 

4.4 to 7.7 mA cm-2 when the active layer thickness increases from 10-30 nm, 

respectively, whilst the FF decreases from 65 to 45%. The PCE (2.5%) is maximized at 

the active layer thickness of 30 nm (see rest of the device parameters in Table 3).  

The absorption spectrum of the BHJ devices with a 30 nm thick active layer 

(HB364:C60) is depicted in Figure 11a. The absorption band is remarkably different 

from those of PHJ devices and resembles the solution spectrum with a clear maximum 

at 655 nm and a shoulder at 610 nm. The solution-like spectrum suggests an amorphous 

film structure. Hence, the donor phase does not grow into large crystalline domains as 

seen for the thin films because the donor and acceptor components are finely intermixed 

in the active layer enabling efficient exciton collection at the D/A heterointerface in the 

BHJ cells. Indeed, despite the lower absorption of the BHJ cells (Figure 11a), the JSC of 

the best devices is approximately 30% higher compared to the best PHJ cells. However, 

the fill factor of the BHJ devices is lower and strongly dependent on the HB364:C60 

layer thickness which is attributed to the poor charge transport properties of the 

amorphous active layer. Consequently, the PCE (2.5%) of the best BHJ devices remains 

below the best PHJ cells (2.7%).  
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Figure 13. a) J-V characteristics under AM 1.5, 100 mW cm-2 illumination of a) BHJ 
and b) HHJ devices with different HB364:C60 layer thicknesses (lines and symbols) and 
the corresponding dark curves (lines).  
 

Hybrid HJ devices 

As shown above, the short circuit current density of the BHJ devices is clearly higher 

compared to the PHJ cells. However, the PCE stays modest because of the poor FF 

which is attributed to the weak charge transport properties of the amorphous active layer 

in the BHJ cells. In order to improve the photon harvesting efficiency of the cells but at 

the same time maintain good FF, hybrid heterojunction (HHJ)[20] devices were 

fabricated. The HHJ cells present the following device architecture: ITO/V2O5 (5 

nm)/HB364 (5 nm)/HB364:C60 (5-20 nm)/C60 (35 nm)/Bphen (5 nm)/Ag (100 nm) 

(Figure 7d). The thickness of the HB364 layer was fixed to 5 nm which is a compromise 

between the photon collection efficiency and the charge transport property of the film.  

Figure 13b demonstrates the J-V characteristics of the HHJ devices and Figure 14 

shows the evolution of the key devices parameters with respect to the active layer 

thickness. Every cell parameter of the HHJ devices shows improvement compared to 

the BHJ cells with the same HB364:C60 layer thickness. The best HHJ cells with 15 and 

20 nm thick HB364:C60 active layers demonstrate PCE of 2.9% which is clearly higher 

than the highest PCE (2.5%) of the BHJ cells. However, compared to the best PHJ 

devices (2.7%) the efficiency improvement is small. This is attributed to the rapidly 

declining FF of the HHJ cells, with increasing HB364:C60 layer thickness, which is only 

partially compensated by the improvement of JSC.  
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Figure 14. Dependence of the key device parameters on the active layer (HB364:C60) 
thickness in the BHJ (squares) and HHJ (circles) cells. The lines are to guide the eye. 

 

7.3 Conclusions 

 

We have shown that the morphology of HB364 merocyanine thin films can be 

modified through insertion of a transition metal oxide layer between the ITO covered 

glass substrate and the dye film. We have also shown that deposition of the molecules 

on a pure or V2O5 modified ITO substrate result in highly crystalline dye films where 

the chromophores have adopted an edge-on orientation with respect to the substrate 

surface. In turn, the merocyanine films on WO3 or MoO3 modified ITO surfaces exhibit 

a lower degree of crystallinity as well as a simultaneous growth of the edge-on and face-

on orientations. A highly crystalline film showing exclusively the face-on arrangement 

is obtained when the dye molecules are deposited on top of a C60 layer.  

Planar heterojunction HB364/C60 devices were fabricated employing the transition 

metal oxides as the anode buffer layers. The PHJ devices with a pure ITO or V2O5 

modified anode demonstrated the highest device performances up to 2.7% whereas the 

efficiency of the devices with a WO3 buffer layer was clearly inferior. The best PHJ 

cells outperformed also the HB364:C60 bulk heterojunction (BHJ) cells whose 

efficiency reached 2.5%. However, despite the broader and stronger absorption of the 

PHJ devices, the JSC remained lower compared to the BHJ cells. This was explained by 
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the particle size of the HB364 donor film which is larger than the exciton diffusion 

length of the dye. Finally the highest power conversion efficiency of 2.9% could be 

achieved with the HB364/HB364:C60 hybrid heterojunction device architecture.  

 

7.4 Experimental Section  

 

Synthesis 

The HB364 2-{4-Butyl-5-[2-(1-butyl-3,3-dimethyl-1,3-dihydro-indol-2-ylidene) 

ethylidene]-5H-thiazol-2-ylidene}-malononitrile was synthesized by heating a 8 mL 

Ac2O solution of (1-n-butyl-3,3-dimethyl-1,3-dihydro-indol-2-ylidene)-acetaldehyde 

(1.98 g, 8.0 mmol) and 2-(4-tert-butyl-5H-thiazol-2-ylidene)-malononitrile (1.50 g, 

7.3 mmol) to 90 °C for 95 min after which n-hexane was added and the solution was 

decanted. After cooling to room temperature the precipitate was collected, washed with 

iso-propanol, and recrystallized from CH2Cl2/n-hexane. Yield: 2.24 g (5.2 mmol, 71%), 

dark blue solid. 1H NMR (CD2Cl2, 400 MHz): δ 7.97 (d, 3J = 13.5 Hz, 1H), 7.40 (m, 

2H), 7.26 (m, 1H), 7.09 (m, 1H), 5.72 (d, 3J = 13.6 Hz, 1H), 2.89 (m, 2H), 1.79 (m, 2H), 

1.69 (s, 6H), 1.48 (m, 2H), 1.00 (t, 3J = 7.4 Hz, 3H). UV/Vis (CH2Cl2): λmax : 618 nm 

(137100 M−1 cm−1). HRMS (ESI): calcd. for C26H30N4S [M]+: 430.2191, found: 

430.2185. Elemental analysis (%) calcd. for C26H30N4S: C, 72.52; H, 7.02; N, 13.01; S, 

7.45. Found: C, 72.56; H, 7.02; N, 13.02; S, 7.42. 

 

Atomic force microscopy  

Atomic force microscopy (AFM) experiments (Dimension 5000 Microscope, Veeco 

Instruments) were performed with silicon cantilevers from Olympus type OMCL-

AC160TS (Tokyo, Japan). For more details of the measurements, see section 6.4 of this 

thesis.  

 

X-ray powder diffraction  

X-ray powder diffraction (XRPD) graphs of the thin films were recorded by a 

PANalytica’s X’Pert Pro MPD diffractometer employing Cu Kα radiation (λ =1.542 nm). 

A typical scan was from 3-35° (2θ) with a step size of 0.017° and a counting time of 

100 s/step. The samples were prepared on a cleaned (15 min at an UV/O3 oven) ITO 

covered glass substrates by depositing a ~ 5 nm thick transition metal oxide layer, 
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following a 5-40 nm thick HB364 film. The deposition rate of the HB364 layer was 0.3 

Å/s.  

 

Single crystal analysis 

Deep blue block crystals were grown by a slow evaporation of 

dichloromethane/hexane solution of the dye at 4 °C. The data was collected at 296 K 

with a Bruker AXS CCD detector, using a graphite-monochromated Cu Kα (λ = 1.51478 

Å) radiation. The structure was solved by direct method and refined on full-matrix-

least-square method, using 3402 unique reflections and 285 parameters.[25] All non-

hydrogen atoms were anisotropically refined and hydrogen atoms were placed on 

idealized positions. The measurement angle was from 2θmin = 3.65° to 2θmax = 57.29°. 

The analyzed crystal belongs to monoclinic crystal system with the cell dimensions a = 

13.1462(17) Å, b = 7.6460(11) Å and c = 24.1006(32) Å and the angle β = 91.010(4)°. 

The space group is P21/n with Z = 4. The final R1 is 0.0493 and the weighted R1 is 

0.1242. The goodness-of-fit (GooF) for the solution is 1.078. 

 

UV/vis absorption spectra 

Absorbance spectra of the HB364 films were recorded in transmission mode 

employing a HR2000+ spectrometer (OceanOptics) and a Xe lamp as the light source. 

The absorption measurements of the devices were performed in reflectance mode 

employing HR2000+ spectrometer and an integrating sphere. 

 

Cyclic voltammetry 

 CV was performed on a standard commercial electrochemical analyzer (EC 

epsilon; BAS Instrument, UK) in a three electrode single-compartment cell under 

argon. Dichloromethane (HPLC grade) was obtained from J. T. Baker (Mumbai, 

India) and dried over calcium hydride and degassed prior to use. The supporting 

electrolyte tetrabutylammonium hexafluorophosphate (TBAHFP) was recrystallized 

from ethanol/water and dried in high vacuum. The measurements were carried out 

under exclusion of air and moisture at a concentration of 10-4 M with ferrocene as 

internal standard for the calibration of the potential. Working electrode: Pt disc; 

reference electrode: Ag/AgCl; auxiliary electrode: Pt wire. The reversible half wave 

potential E1/2 of the ferrocene/ferrocenium redox couple was associated with a 

HOMO orbital level of -5.15 eV. 
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Wetting analyses 

 Contact angles were measured with a standard drop shape analysis instrumentation 

(DSA 10, Kruss Germany). Reported values are advancing contact angles: A drop of 

the test liquid was placed on the sample surface and continuosly fed at 2 µl/min flow 

rate up to 20 µL total liquid volume. Starting from a minimum of about 3 µL, contact 

angles were measured while the syringe needle used for dosing remained in the 

droplet. Drop shape images were analyzed at a rate of ~ 0.5 Hz, evaluated by a tangent 

method to determine the contact angle only from the parts of the image directly at the 

three-phase contact line. These contact angles were averaged over time: For each 

sample, five advancing droplets were measured at different positions and the average 

value is reported. 

 

Device fabrication  

Planar heterojunction (PHJ) solar cells with different transition metal oxide anode 

buffer layers were fabricated on prestructured indium tin oxide (ITO) covered glass 

substrates with a cell area of 0.04 cm2. The devices were prepared by a thermal 

evaporation in a high vacuum (~ 2 × 10-6 mbar) chamber (Lesker Ltd). Prior to the 

fabrication of the cells, the ITO substrates were cleaned in an UV/O3 oven for 15 min 

after which they were transferred into the vacuum chamber. All layers were 

successively deposited at substrate temperature of 25 °C without breaking the vacuum 

in between the fabrication steps. The HB364 neat films as well as the donor films in the 

PHJ and HHJ devices were deposited at the rate of 0.3 Å/s. All other organic and 

transition metal oxide layers were deposited at the rate of 1 Å/s. The silver cathode 

layers were evaporated at the rate of 4 Å/s.  

 

Device characterization 

Current-voltage (J-V) characteristics were recorded with a Keithley 2425 

measurement unit at 25 °C in ambient air. During the J-V measurements, the cells were 

illuminated by 1.5 AM filtered light with intensity of 100 W/cm². The light intensity 

was set with a calibrated Si-photodiode. The cell degradation during the measurements 

was observed to be negligible. 
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Chapter 8 

 

Summary 

 

 

In this thesis, the relationship between the solid state packing and the solar cell 

performance of merocyanine dyes was investigated. X-ray diffraction and several other 

analytical methods were used to analyze the single crystal and thin film structures of 

merocyanines. The effect of solid state packing on the device performance was 

unambiguously demonstrated.  

Chapter 2 gave a brief introduction to fundamentals of organic photovoltaics as well 

as an overview on vacuum-deposited small molecule based solar cells. The progress on 

vacuum-deposited small molecule solar cells has been rapid in recent years and first 

commercial products are entering the markets. Vacuum deposition techniques offer 

relatively easy realization of different device architectures and enable the utilization of a 

vast number of potential active materials.  

In Chapter 3 the set-ups for the fabrication and characterization of solar cells applied 

in this thesis were discussed.  

Chapter 4 presented a comprehensive study on the single crystal packing of dipolar 

merocyanine dyes. The aim of the investigation was to evaluate the effect of a 

molecular dipole-dipole interaction on the formation of the closest packed structural 

motifs in the crystal structures of merocyanine chromophores. The statistical results 

proved that a high molecular dipole moment (> 8 D) significantly increases a 

molecule’s probability to adopt one of the centrosymmetric space groups.  

Dimers with antiparallelly oriented dipole vectors were frequently observed (Figure 

1a). However, a detailed analysis of the single crystal structures of merocyanines based 

on the Fischer base donor and various acceptors revealed limitations despite of the high 

molecular dipole moments (up to 13 D) of these dyes. This was explained by the steric 

demand of the bulky Fischer’s base that forces the adjacent dyes in a slipped 

arrangement. Hence, the effect of the molecular dipole-dipole interaction was estimated 

to be minor in these structures. In turn, other packing effects such as local dipole-dipole 
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Chapter 9 

 

Zusammenfassung 

 

 

Im Rahmen dieser Arbeit wurden Struktur-Eigenschafts-Beziehungen zwischen der 

Festkörpermorphologie und der Leistung organischer Solarzellen auf der Basis von 

Merocyanin-Farbstoffen untersucht. Verschiedene analytische Methoden, vor allem 

optische Untersuchungen und Röntgenbeugung, wurden verwendet, um die Einkristall- 

bzw. Dünnschichtstruktur der Merocyanine aufzuklären. Zusammenhänge zwischen der 

Festkörperstruktur der Farbstoffe und deren Leistung in Solarzellen wurden eindeutig 

nachgewiesen. 

In Kapitel 2 werden die Grundlagen der organischen Photovoltaik erläutert und ein 

Überblick über den Stand der Forschung auf dem Gebiet der durch Vakuumabscheidung 

von kleinen Molekülen hergestellten Solarzellen gegeben. Die Technologie der 

Vakuumverdampfung kleiner Moleküle hat sich in den letzten Jahren rasch 

weiterentwickelt und steht inzwischen an der Schwelle zur Kommerzialisierung erster 

Produkte. Vakuumabgeschiedene Solarzellen lassen sich mit hoher Reproduzierbarkeit 

herstellen und weisen gute Stabilitäten auf. Aus wissenschaftlicher Sicht ist vor allem 

die gute Verfügbarkeit zahlreicher Donoren und die einfache und exakte Realisierung 

verschiedenster Bauteilarchitekturen von Interesse. 

Im Kapitel 3 werden die in dieser Arbeit benutzten Architekturen für die Herstellung 

und Charakterisierung der Solarzellen vorgestellt und diskutiert. 

Kapitel 4 präsentiert eine umfassende Studie über die Kristallpackungen der 

dipolaren Merocyanin-Farbstoffe. Hier wurde vor allem die Wirkung der Dipol-Dipol-

Wechselwirkungen auf die gefundenen Strukturmotive in den Kristallstrukturen der 

Merocyanin-Farbstoffe analysiert. Die statistischen Auswertung zeigt, dass bei einem 

hohen molekularen Dipolmoment (> 8 D) die Wahrscheinlichkeit für die Anordnung der 

Moleküle in einer zentrosymmetrischen  Raumgruppen erhöht wird. 

Dimere mit einer antiparallelen Orientierung der Dipolmomente wurden häufig 

gefunden (Abbildung 1a). Eine detaillierte Untersuchung der Kristallstrukturen 

zahlreicher Merocyanine, in denen Fischerbase als Donor-Baustein in Kombination mit 
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Appendix 

 

Additional Crystallographic Information for Chapter 4 

 

Dipolar compounds retrieved from Cambridge Crystal Database  

 

Table A1. Reference codes, R-factors, space groups, and AM1 computed dipole 
moments of the dipolar compounds retrieved from CSD 
Ref. code R Space group Dipole moment 

[debye] 
Ref. code R Space group Dipole moment 

[debye] 
ACUPAP 4.45 P21/n 9.0 DUJJUO 5.59 P21/c 4.6 
ACUPET 5.52 P-1 11.1 IHAGUU 5.54 P21/c 9.6 
AGAHAR 5.34 P21/c 20.5 MUMROC 6.27 P-1 7.5 
AJAXAK 4.3 P-1 8.6 OBICIL 5.56 P21/c 6.6 
AJIXEW 4.41 P21/n 6.6 OCIGOW 5.21 P21/c 2.9 
AMFULV 7.5 P212121 7.8 OCIGUC 4.57 P-1 3.2 
ASULIJ 4.53 P21/c 6.4 OCIHAJ 4.19 P21/c 3.0 
BEPFEH 4.41 P21/n 9.1 OCIHEN 4.29 P21/c 3.3 
BESMER 4.8 P1121/b 6.5 PABMIP 5.22 P-1 21.6 
BETQIB 4.62 P21 4.8 PHPYHP 5.7 P-1 9.1 
BUFDIP 4.3 P21/n 4.1 PIHCUE 4.5 P-1 1.2 
CAXKIW 4.02 P21/c 9.8 POCYUC 4.54 P-1 4.6 
CAYSUQ 4.3 P-1 4.9 PODXEL 5.8 P-1 5.1 
CEJHIJ 4.42 P21/c 3.2 POVSAU 5.9 P-1 6.9 
CIHZUO 4.6 Pbca 7.5 QADMIR 4.4 P21/c 4.5 
CIPWIH 6.3 P21/n 3.8 QEHBAH 4.56 P-1 3.8 
CUFFOY 4.6 P21/a 2.7 QICTUR 5.6 P21/c 3.8 
DIZNEF 4.3 P-1 14.4 QOGZUI 4.4 P21/n 3.8 
DOCKIP 4.39 P-1 6.4 QUMGOU 7 P-1 7.2 
DOMZIO 5.39 P21/n 9.8 QUSKEU 4.14 P21/n 6.5 
EBTVPH10 6.2 P21/c 14.6 QUSKIY 4.59 P-1 6.9 
ECNTPO 5.9 P21/c 2.9 REVNOV 4.3 P-1 3.4 
EDUYUX 7.5 P21/a 6.2 RINXOB 5 P21/c 7.4 
EMILIV 4.65 P21/c 5.6 RIWTIA 6.29 P21/c 5.1 
EMILOB 4.14 P21/c 5.6 ROFLAA 4.79 P-1 4.8 
ERANEQ 5.97 P-1 6.0 RUHFAB 4.45 P21/c 4.6 
ERANIU 5.23 P21/n 1.4 RUHFIJ 4.02 P-1 5.5 
ETOBOE 3.83 P-1 5.2 RUHFOP 4.89 P21/c 6.6 
EXAHIU 5.93 P21/c 8.1 SAMGOC 4.3 P21/c 1.3 
FACWEM 2.56 P21/a 7.6 SAPNAY 4.1 P212121 4.0 
FARQUL 4.22 P21/c 7.5 SAYXUL 4.9 P21/n 6.6 
FIMPOG 5.9 P21/c 10.2 SETWEU 3.99 P-1 10.3 
GAVMAS 5.16 Pbca 5.1 SIPBEY 4.4 C2/c 9.4 
GEWBOZ 5.6 P21/n 5.0 SOHVAM01 4.7 Pbca 7.9 
GIMQAV 4.71 Pbca 11.6 SOWJIX 4.6 P21/c 6.6 
GODQOF 5.9 P21/n 10.2 TAXSOB 4.53 P21/c 5.8 
HABTAG 7.34 P21/n 9.6 TECPEX 6.02 C2/c 2.3 
HABWEN 3.68 P-1 7.8 TINXIY 4 P21/n 5.9 
HEGPEO 4.2 P21/c 2.2 TLPIND 4.2 P1121/b 3.6 
HEPHUG 5.96 P-1 10.4 TOHFIF 3.9 P-1 9.7 
HIVRUA 7.5 P21/n 8.2 TOVMUM 4 P-1 5.9 
HIVSAH 7.1 P21/a 4.3 TULYUU 4.5 Pna21 9.2 
HIVSEL 6.6 Pbca 5.5 TUZFEZ 4.92 C2/c 4.5 
HIYLUW 5.4 P-1 4.8 UJALOG 3.7 P-1 5.9 
HOCVIE 4.3 P1121/b 5.8 UJALUM 4.9 P21/a 6.0 
IFUNON 4.84 P-1 5.0 UJAMAT 3.82 P21/n 8.8 
IFUNUT 5.42 P-1 3.1 UNOFEI 4.18 P21/c 6.3 
IJEWID 3.89 Pbca 7.8 VAKZAI 5.2 Cc 11.2 
ILIRAW 5.72 P-1 4.6 VATCIC 3.1 P-1 10.0 
ITACOV 4.29 P21/n 19.7 VAXKUA 5.6 P212121 5.6 
ITACUB 5.5 Pbca 20.7 VERNIP 4.4 P-1 13.5 
IXAQAZ 3.9 P21/c 7.1 VIFZUG 6.24 P21/a 12.6 
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JAFBAT 6.5 P21/c 4.6 VIJYOC 4.7 P-1 6.4 
JAMNOA 3.7 P21/a 6.8 WALCUH 5.4 P21/c 11.1 
JEGVOG 5.4 Pbca 8.0 WEVMUF 3.8 P-1 14.9 
JEXPOR 3.83 P21/c 4.9 WIZHIX 6.05 P21/c 10.8 
JIBHEH 6.3 P21/c 6.0 WUDHIM 5.14 P-1 4.7 
JOFTIH 6.13 P21/a 8.7 WUGGUA 4.8 P212121 5.9 
JOFTON 5.24 P21/c 11.4 XASPIQ 6.73 P21/n 3.6 
JUHFAT 4.8 P-1 9.6 XASWIY 4.15 P21/n 3.5 
JUHFEX 5.5 P21/c 6.0 XATTIW 7.24 P212121 7.8 
KANREX 7.28 P21 7.5 XECNUP 5 P21/a 4.4 
LAFMUA 6.4 P-1 5.3 XECPAX 4.8 P-1 3.8 
LAVLUP 6.2 P21/n 7.6 XECPEB 7.2 P21/a 5.9 
LAVMEA 5.5 C2/c 7.3 XECPIF 5.6 P-1 3.2 
LAVMIE 5.2 P21/n 8.4 XECPOL 5.18 P-1 4.6 
LEMHAN 4.42 P-1 4.3 XIMSOC 7.06 P21/n 6.2 
LEXNOS 3.74 P-1 4.8 XIMTOD 5.05 P21/n 7.1 
MANBAE 3.9 P21/n 5.4 XOFROZ 5.36 P21/n 5.8 
MEWLIJ 6.4 P21/a 6.4 YABFOW 5.09 P-1 3.7 
MOPKOR 5.7 P21/c 8.7 YADYIM 3.01 P21/c 5.3 
MOPKUX 5.4 P-1 8.6 YAMXIT 3.58 P21/c 12.1 
MOPLAE 5.6 P21/n 8.6 YAMXUF 3.5 Pbca 8.4 
MOPLEI 4.4 P-1 8.5 YEGLEB01 4.65 P21/n 7.1 
MUDWIR 4.43 P21/n 10.5 YEGZEQ 7.45 Pbca 6.3 
MUHYIX 6.06 P21/n 12.1 YEGZIU 6.68 P21/c 4.5 
NEQNAY 6.9 P212121 5.8 YEJNUW 5.85 P21/n 4.2 
NEVPEJ 4.43 Aba2 3.5 YIBYIS 4.61 P21/n 3.1 
NITQOW 4.55 P-1 6.7 ZIPWIE 3 P1121/a 4.4 
NOCVEH 4.7 P21/c 7.9 ZIYSUV 5.2 P21/a 4.0 
NOLBIA 4.28 P21 4.2 ZULKAS 6.8 P21/c 9.0 
NOPCAW 6.6 Ia 3.1 YOTPED 5.93 P21/c 13.1 
NUTMOE 5.5 P-1 6.8 HOYPER 4.41 P21/c 5.6 
PUGNOV 4.01 P-1 5.0 PUBJEC 4.62 P21/n 6.0 
RUFPOY 4.57 P-1 8.8     



Appendix               Additional Crystallographic Information for Chapter 4 

 

 165 
 

Crystallographic parameters for the solved crystal structures  
 

Table A2. Numerical details of the solution and refinement of the solved crystal 
structures  
Compound 1a 1b 1c 1d 1f 1g 
Formula  C25H19N3O C26H21N3O C27H23N3O C27H23N3O C31H23N3O C30H28N3O 
Formula mass 377.43 391.46 405.48 405.48 453.52 446.55 
Space group P21/c Pca21 P-1 Pbca P21/c P-1 
a / Å 11.462(3)  13.839(3)  9.2930(10)  24.722(3)  10.2335(11)  13(2)  
b / Å 13.595(3)  19.234(5)  9.6240(11)  10.9911(12) 21.690(2)  13.432(3)  
c / Å 12.427(3) 7.8300(19) 12.6184(13) 31.768(3) 10.0187(11) 14.614(3) 
α / Å 90.00  90.00  104.859(5)  90.00 90 88.394(3)  
β / Å 99.345(12)  90.00 97.120(4)  90.00 96.670(6) 81.23(3)  
γ / Å 90.00 90.00 90.374(5) 90.00 90 75.19(3) 
V / Å3 1910.75 2084.18 1081.52 8632.06 2306.7 2438.06 
T / K 173(2) 173(2) 173(2) 173(2) 173(2) 173(2) 
Z 4 4 2 16 4 4 
Dcalc / g cm-3 1.312 1.248 1.245 1.248 1.306 1.196 
Radiation, λ / Å CuKα, 1.54178 CuKα, 1.54178 CuKα, 1.54178 CuKα, 1.54178 CuKα, 1.54178 CuKα, 1.54178 
2θmax /° 57.83 45.65 57.29 58.42 57.61 58.28 
Reflections collected 7997 4846 5110 38880 18562 7250 
No. of indep.  ref.  2055 1649 2067 5631 2989 7250 
Variables in final ref. 266 275 284 568 319 620 
R1  [I>2σ(I)] 0.0397 0.0407 0.0354 0.0539 0.0371 0.0615 
Rw [I>2σ(I)] 0.0911 0.0893 0.0832 0.1193 0.0935 0.1730 
GooF 1.143 0.937 1.065 1.093 1.090 0.654 
Largest diff. peak and 

hole  / e.Å-3 

0.199 and 
-0.316 

0.120 and  
-0.103 

0.148 and 
-0.175 

0.236 and  
-0.202 

0.208 and  
-0.194  

0.390 and  
-0.389 

       
Compound 2a 2b 2c 2e 2f 2g 
Formula  C25H28N4S (C29H28N4S)· 

(C6H5Cl) 
(C25H20N4S) 
(C2H6O) 

C31H24N4S 
 

C26H30N4S C26H22N4S 

Formula mass 416.57 502.68 863.09 484.60 430.60 422.54 
Space group P21/c P21/c P-1 P 21/c P21/n P-1 
a / Å 12.490(3) 12.690(3)  13.070(3)  11.8246(15)  13.0466(3)  6.946(2)  
b / Å 6.9700(14)  7.0200(14)  13.900(3)  11.2626(13)  7.5537(2)  12.377(4)  
c / Å 25.040(5) 31.000(6) 13.970(3) 18.988(2) 23.8222(6) 12.788(4) 
α / Å 90.00  90.00  89.35(3)  90.00  90 87.993(8)  
β / Å 91.15(3)  92.71(3)  63.74(3)  96.910(5)  91.0020(10)  82.469(10)  
γ / Å 90.00 90.00 89.77(3) 90.00 90 80.189(12) 
V / Å3 2179.4 2758.51 

 
2275.89 
 

2510.3 2347.32(10) 1073.8(6) 

T / K 293(2) 173(2) 173(2) 273(2) 296(2) 173(2) 
Z 4 4 2 4 4 2 
Dcalc / g cm-3 1.270 1.254 1.259 1.282 1.218 1.307 
Radiation, λ / Å Synchrotron, 

0.71073 
Synchrotron, 
0.73000 

Synchrotron, 
0.71073 

CuKα, 1.54178 CuKα, 1.54178 CuKα, 1.54178 

2θmax /° 30.51 27.14 24.79 57.92 62.37 58.22 
Reflections collected 12017 10534 6907 11525 15562 5172 
No. of indep.  ref.  6265 5510 6907 2760 3503 2109 
Variables in final ref. 278 375 576 328 285 284 
R1  [I>2σ(I)] 0.0562 0.0536 0.0641 0.0380 0.0340 0.0409 
Rw [I>2σ(I)] 0.1537 0.1406 0.1722 0.0865 0.0930 0.0999 
GooF 1.060 1.038 1.087 1.080 1.033 1.094 
Largest diff. peak and 

hole  / e.Å-3 

1.091 and  
-0.822 

0.391 and 
-0.582 

 0.73 and  
-0.45 

0.174 and  
-0.227 

0.257 and 
-0.183 

0.234 and  
-0.271  
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C(11)  7404(2) 9405(1) 1161(1) 25(1) 

C(12)  7938(2) 8791(1) 1992(1) 22(1) 

N(13)  7825(1) 7804(1) 1918(1) 23(1) 

C(14)  8987(2) 8034(1) 3559(1) 24(1) 

C(15)  9672(2) 7752(1) 4526(2) 27(1) 

C(16)  9746(2) 6755(1) 4788(2) 30(1) 

C(17)  9122(2) 6068(1) 4096(2) 30(1) 

C(18)  8447(2) 6337(1) 3117(1) 27(1) 

C(19)  8417(2) 7329(1) 2861(1) 22(1) 

C(20)  8697(2) 9048(1) 3080(1) 24(1) 

O(21)  5995(1) 9856(1) -968(1) 36(1) 

C(22)  7368(2) 12743(1) 1180(1) 24(1) 

C(23)  7181(2) 13783(1) 1140(1) 27(1) 

N(24)  7046(1) 14624(1) 1160(1) 36(1) 

C(25)  8092(2) 12437(1) 2168(2) 29(1) 

N(26)  8684(2) 12220(1) 2974(2) 40(1) 

C(27)  7987(2) 9629(1) 3817(1) 31(1) 

C(28)  9825(2) 9603(1) 2936(1) 30(1) 

C(29)  7195(2) 7287(1) 966(1) 28(1) 

 

Table A4. Bond lengths [Å] and angles [°] for 1a 

C(1)-O(21)  1.2277(19) C(10)-C(11)  1.383(2) C(18)-C(19)  1.384(2) 

C(1)-C(2)  1.480(2) C(11)-C(12)  1.389(2) C(20)-C(28)  1.532(2) 

C(2)-C(3)  1.377(3) C(12)-N(13)  1.350(2) C(20)-C(27)  1.539(2) 

C(2)-C(7)  1.396(2) C(12)-C(20)  1.525(3) C(22)-C(25)  1.427(3) 

C(3)-C(4)  1.390(2) N(13)-C(19)  1.411(2) C(22)-C(23)  1.430(2) 

C(3)-H(3)  0.95 N(13)-C(29)  1.461(2) C(23)-N(24)  1.155(2) 

C(4)-C(5)  1.385(3) C(14)-C(15)  1.379(3) C(25)-N(26)  1.153(2) 

C(4)-H(4)  0.95 C(14)-C(19)  1.384(2)   

C(5)-C(6)  1.384(3) C(14)-C(20)  1.517(2)   

C(6)-C(7)  1.393(2) C(15)-C(16)  1.394(2)   

C(7)-C(8)  1.484(3) C(16)-C(17)  1.387(3)   

C(8)-C(9)  1.440(2) C(17)-C(18)  1.382(3)   

      

O(21)-C(1)-C(9) 128.31(16) C(10)-C(9)-C(8) 128.15(15) C(18)-C(17)-C(16) 121.80(16) 

O(21)-C(1)-C(2) 124.98(16) C(10)-C(9)-C(1) 123.90(15) C(17)-C(18)-C(19) 116.73(16) 

C(9)-C(1)-C(2) 106.71(14) C(8)-C(9)-C(1) 107.90(14) C(14)-C(19)-C(18) 122.62(16) 

C(3)-C(2)-C(7) 121.94(16) C(11)-C(10)-C(9) 125.71(16) C(14)-C(19)-N(13) 108.54(14) 

C(3)-C(2)-C(1) 128.89(16) C(10)-C(11)-C(12) 125.01(16) C(18)-C(19)-N(13) 128.82(16) 

C(7)-C(2)-C(1) 109.16(16) N(13)-C(12)-C(11) 121.38(15) C(14)-C(20)-C(12) 101.32(13) 

C(2)-C(3)-C(4) 118.55(17) N(13)-C(12)-C(20) 108.86(14) C(14)-C(20)-C(28) 111.00(14) 

C(5)-C(4)-C(3) 120.00(18) C(11)-C(12)-C(20) 129.77(14) C(12)-C(20)-C(28) 112.35(13) 

C(6)-C(5)-C(4) 121.51(16) C(12)-N(13)-C(19) 111.73(13) C(14)-C(20)-C(27) 109.61(13) 

C(5)-C(6)-C(7) 118.89(16) C(12)-N(13)-C(29) 124.19(14) C(12)-C(20)-C(27) 111.40(14) 

C(6)-C(7)-C(2) 119.11(17) C(19)-N(13)-C(29) 124.05(13) C(28)-C(20)-C(27) 110.79(14) 

C(6)-C(7)-C(8) 132.46(16) C(15)-C(14)-C(19) 119.89(16) C(8)-C(22)-C(25) 124.04(15) 

C(2)-C(7)-C(8) 108.42(14) C(15)-C(14)-C(20) 130.66(16) C(8)-C(22)-C(23) 123.54(16) 

C(22)-C(8)-C(9) 128.34(15) C(19)-C(14)-C(20) 109.44(16) C(25)-C(22)-C(23) 112.38(14) 

C(22)-C(8)-C(7) 123.87(15) C(14)-C(15)-C(16) 118.55(17) N(24)-C(23)-C(22) 176.80(18) 

C(9)-C(8)-C(7) 107.78(14) C(17)-C(16)-C(15) 120.29(17) N(26)-C(25)-C(22) 177.89(17) 
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C(10)  2183(2) 7419(3) 2359(2) 33(1) 

C(11)  3132(2) 6306(3) 2172(2) 33(1) 

C(12)  3234(2) 5205(3) 2704(2) 30(1) 

C(13)  2453(2) 5005(2) 3655(2) 30(1) 

C(14)  3008(2) 3577(3) 3784(2) 30(1) 

C(15)  2675(2) 2750(3) 4476(2) 37(1) 

C(16)  3357(2) 1459(3) 4425(2) 41(1) 

C(17)  4374(2) 1016(3) 3702(2) 38(1) 

C(18)  4723(2) 1836(3) 3007(2) 34(1) 

C(19)  4018(2) 3107(3) 3062(2) 29(1) 

C(20)  -14(2) 9941(3) 2635(2) 36(1) 

C(21)  -956(3) 11123(3) 2694(2) 39(1) 

C(22)  -360(3) 9056(3) 3320(2) 61(1) 

C(23)  787(2) 4944(3) 3421(2) 39(1) 

C(24)  2986(2) 6204(2) 4703(2) 39(1) 

C(25)  5194(2) 4018(2) 1646(2) 35(1) 

C(26)  6537(2) 4982(2) 2120(2) 37(1) 

C(27)  7609(2) 4844(3) 1283(2) 42(1) 

N(1)  4148(2) 4120(2) 2441(1) 31(1) 

N(2)  -1746(2) 12050(2) 2759(2) 48(1) 

N(3)  -690(3) 8362(3) 3871(3) 112(1) 

O(1)   4049(2) 8000(2) 716(1) 41(1) 

 

Table A8. Bond lengths [Å] and angles [°] for 1c 
C(1)-O(1)  1.237(2) C(9)-C(10)  1.398(3) C(17)-C(18)  1.386(3) 

C(1)-C(9)  1.459(3) C(10)-C(11)  1.384(3) C(18)-C(19)  1.381(3) 

C(1)-C(2)  1.477(3) C(11)-C(12)  1.390(3) C(19)-N(1)  1.411(3) 

C(2)-C(3)  1.382(3) C(12)-N(1)  1.351(3) C(20)-C(22)  1.421(4) 

C(2)-C(7)  1.392(3) C(12)-C(13)  1.528(3) C(20)-C(21)  1.432(4) 

C(3)-C(4)  1.386(3) C(13)-C(14)  1.511(3) C(21)-N(2)  1.153(3) 

C(4)-C(5)  1.383(3) C(13)-C(23)  1.538(3) C(22)-N(3)  1.147(3) 

C(5)-C(6)  1.389(3) C(13)-C(24)  1.540(3) C(25)-N(1)  1.468(3) 

C(6)-C(7)  1.390(3) C(14)-C(15)  1.383(3) C(25)-C(26)  1.514(3) 

C(7)-C(8)  1.488(3) C(14)-C(19)  1.387(3) C(26)-C(27)  1.522(3) 

C(8)-C(20)  1.377(3) C(15)-C(16)  1.388(3)   

C(8)-C(9)  1.437(3) C(16)-C(17)  1.388(3)   

      

O(1)-C(1)-C(9) 128.5(2) C(10)-C(9)-C(1) 123.9(2) C(17)-C(16)-C(15) 120.5(2) 

O(1)-C(1)-C(2) 124.5(2) C(8)-C(9)-C(1) 108.1(2) C(18)-C(17)-C(16) 121.2(2) 

C(9)-C(1)-C(2) 107.0(2) C(11)-C(10)-C(9) 126.0(2) C(19)-C(18)-C(17) 117.4(2) 

C(3)-C(2)-C(7) 121.9(2) C(10)-C(11)-C(12) 125.5(2) C(18)-C(19)-C(14) 122.5(2) 

C(3)-C(2)-C(1) 129.1(2) N(1)-C(12)-C(11) 121.9(2) C(18)-C(19)-N(1) 129.0(2) 

C(7)-C(2)-C(1) 109.0(2) N(1)-C(12)-C(13) 108.9(2) C(14)-C(19)-N(1) 108.5(2) 

C(2)-C(3)-C(4) 118.7(2) C(11)-C(12)-C(13) 129.1(2) C(8)-C(20)-C(22) 124.2(2) 

C(5)-C(4)-C(3) 119.7(2) C(14)-C(13)-C(12) 101.18(18) C(8)-C(20)-C(21) 123.6(2) 

C(4)-C(5)-C(6) 121.9(2) C(14)-C(13)-C(23) 110.95(17) C(22)-C(20)-C(21) 112.1(2) 

C(5)-C(6)-C(7) 118.5(2) C(12)-C(13)-C(23) 114.77(17) N(2)-C(21)-C(20) 177.6(2) 

C(6)-C(7)-C(2) 119.3(2) C(14)-C(13)-C(24) 109.91(16) N(3)-C(22)-C(20) 177.4(3) 

C(6)-C(7)-C(8) 132.2(2) C(12)-C(13)-C(24) 109.00(17) N(1)-C(25)-C(26) 112.61(17) 

C(2)-C(7)-C(8) 108.5(2) C(23)-C(13)-C(24) 110.62(18) C(25)-C(26)-C(27) 111.50(18) 

C(20)-C(8)-C(9) 128.8(2) C(15)-C(14)-C(19) 119.4(2) C(12)-N(1)-C(19) 111.56(19) 

C(20)-C(8)-C(7) 123.8(2) C(15)-C(14)-C(13) 130.9(2) C(12)-N(1)-C(25) 125.00(19) 

C(9)-C(8)-C(7) 107.39(19) C(19)-C(14)-C(13) 109.7(2) C(19)-N(1)-C(25) 123.4(2) 
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N(4)  5648(1) 1959(2) 1658(1) 28(1) 

C(39)  5915(1) 2699(2) 1387(1) 27(1) 

C(29)  5196(1) 6576(2) 128(1) 26(1) 

N(6)  6350(1) 7099(2) -636(1) 48(1) 

C(40)  5996(1) 1044(2) 1819(1) 26(1) 

C(38)  5653(1) 3642(2) 1178(1) 30(1) 

C(50)  5066(1) 2002(2) 1781(1) 31(1) 

C(31)  4593(1) 7872(2) -251(1) 31(1) 

C(41)  5883(1) 111(2) 2097(1) 29(1) 

C(35)  4966(1) 5455(2) 728(1) 27(1) 

C(52)  4910(1) 3194(2) 1993(1) 38(1) 

C(42)  6305(1) -659(2) 2206(1) 31(1) 

C(51)  4699(1) 1658(3) 1416(1) 42(1) 

C(46)  6506(1) 2293(2) 1358(1) 27(1) 

C(34)  4770(1) 6296(2) 401(1) 26(1) 

C(54)  6664(1) 1873(2) 913(1) 34(1) 

C(53)  6890(1) 3296(2) 1512(1) 36(1) 

C(45)  6507(1) 1213(2) 1654(1) 26(1) 

C(43)  6818(1) -503(2) 2045(1) 32(1) 

C(44)  6924(1) 448(2) 1768(1) 33(1) 

C(37)  5854(1) 4384(2) 865(1) 29(1) 

C(32)  4170(1) 7567(2) 16(1) 32(1) 

C(36)  5542(1) 5214(2) 639(1) 26(1) 

C(28)  5684(1) 5902(2) 268(1) 26(1) 

C(49)  6633(1) 5249(3) 177(1) 43(1) 

C(48)  6256(1) 6586(3) -325(1) 34(1) 

C(30)  5103(1) 7388(2) -202(1) 29(1) 

C(33)  4257(1) 6768(2) 347(1) 29(1) 

N(5)  7019(1) 4702(3) 253(1) 69(1) 

C(47)   6170(1) 5931(2) 55(1) 30(1) 

 

Table A10. Bond lengths [Å] and angles [°] for 1d 
O(1)-C(8)  1.228(3) C(7)-C(6)  1.391(3) C(38)-C(37)  1.381(3) 

C(12)-N(1)  1.355(3) C(21)-N(2)  1.153(3) C(50)-C(51)  1.519(3) 

C(12)-C(11)  1.390(3) C(21)-C(20)  1.429(4) C(50)-C(52)  1.523(4) 

C(12)-C(19)  1.532(3) C(15)-C(16)  1.384(4) C(31)-C(30)  1.378(3) 

C(22)-N(3)  1.150(3) C(6)-C(5)  1.386(4) C(31)-C(32)  1.388(3) 

C(22)-C(20)  1.428(4) C(19)-C(26)  1.538(3) C(41)-C(42)  1.389(3) 

N(1)-C(13)  1.425(3) C(25)-C(23)  1.509(3) C(35)-C(36)  1.476(3) 

N(1)-C(23)  1.488(3) C(3)-C(4)  1.387(4) C(35)-C(34)  1.474(3) 

C(8)-C(9)  1.474(4) C(17)-C(16)  1.388(4) C(42)-C(43)  1.377(3) 

C(8)-C(7)  1.484(3) C(23)-C(24)  1.502(4) C(46)-C(45)  1.514(3) 

C(9)-C(10)  1.389(3) C(5)-C(4)  1.374(4) C(46)-C(53)  1.535(3) 

C(9)-C(1)  1.442(3) O(2)-C(35)  1.233(3) C(46)-C(54)  1.540(3) 

C(1)-C(20)  1.382(3) N(4)-C(39)  1.357(3) C(34)-C(33)  1.381(3) 

C(1)-C(2)  1.490(3) N(4)-C(40)  1.418(3) C(45)-C(44)  1.378(3) 

C(2)-C(3)  1.390(3) N(4)-C(50)  1.492(3) C(43)-C(44)  1.390(4) 

C(2)-C(7)  1.398(3) C(39)-C(38)  1.389(3) C(37)-C(36)  1.394(3) 

C(14)-C(15)  1.382(4) C(39)-C(46)  1.531(3) C(32)-C(33)  1.385(3) 

C(14)-C(13)  1.386(3) C(29)-C(30)  1.396(3) C(36)-C(28)  1.443(3) 

C(27)-C(19)  1.536(4) C(29)-C(34)  1.398(3) C(28)-C(47)  1.380(3) 

C(10)-C(11)  1.387(3) C(29)-C(28)  1.484(3) C(49)-N(5)  1.153(3) 

C(18)-C(17)  1.377(3) N(6)-C(48)  1.162(3) C(49)-C(47)  1.422(4) 
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Table A11.  Atomic coordinates (× 104) and equivalent isotropic displacement 
parameters (Å2 × 103) for 1f 

Atom  x y z U(eq) 

O(1)  2767(1) 5490(1) 6020(1) 33(1) 

N(1)  5921(1) 3869(1) 7019(1) 22(1) 

C(8)  4993(2) 3797(1) 6072(2) 22(1) 

C(1)  6716(2) 3324(1) 7206(2) 23(1) 

C(12)  5364(2) 4275(1) 9063(2) 22(1) 

N(3)  -599(2) 4290(1) 557(2) 38(1) 

N(2)  1615(2) 3049(1) 2921(1) 38(1) 

C(15)  4096(2) 4048(1) 11239(2) 29(1) 

C(21)  1201(2) 4692(1) 3419(2) 23(1) 

C(28)  2109(2) 5304(1) 5087(2) 24(1) 

C(27)  1095(2) 5681(1) 4376(2) 23(1) 

C(17)  6051(2) 4307(1) 10219(2) 26(1) 

C(31)  29(2) 4273(1) 1493(2) 28(1) 

C(10)  5360(2) 3121(1) 4150(2) 32(1) 

C(19)  3095(2) 4222(1) 4795(2) 24(1) 

C(16)  5421(2) 4193(1) 11302(2) 28(1) 

C(25)  -295(2) 6545(1) 3804(2) 29(1) 

C(20)  2176(2) 4692(1) 4459(2) 24(1) 

C(13)  4028(2) 4127(1) 9013(2) 29(1) 

C(7)  5114(2) 3131(1) 5542(2) 24(1) 

C(3)  8399(2) 2651(1) 8025(2) 30(1) 

C(18)  4080(2) 4265(1) 5739(2) 24(1) 

C(29)  859(2) 4202(1) 2608(2) 26(1) 

C(6)  6295(2) 2881(1) 6322(2) 24(1) 

C(11)  6056(2) 4402(1) 7887(2) 25(1) 

C(23)  -411(2) 5591(1) 2559(2) 28(1) 

C(4)  8002(2) 2202(1) 7143(2) 30(1) 

C(22)  563(2) 5328(1) 3368(2) 24(1) 

C(26)  678(2) 6285(1) 4608(2) 27(1) 

C(9)  3879(2) 2743(1) 5816(2) 33(1) 

C(24)  -818(2) 6201(1) 2794(2) 30(1) 

C(2)  7756(2) 3227(1) 8079(2) 25(1) 

C(5)  6947(2) 2312(1) 6283(2) 29(1) 

C(30)  1299(2) 3568(1) 2796(2) 28(1) 

C(14)  3397(2) 4017(1) 10093(2) 32(1) 

 

Table A12. Bond lengths [Å] and angles [°] for 1f 
O(1)-C(28)  1.2324(19) C(15)-C(14)  1.382(2) C(25)-C(24)  1.384(2) 

N(1)-C(8)  1.349(2) C(21)-C(29)  1.385(2) C(13)-C(14)  1.379(2) 

N(1)-C(1)  1.418(2) C(21)-C(20)  1.443(2) C(7)-C(6)  1.513(2) 

N(1)-C(11)  1.467(2) C(21)-C(22)  1.498(2) C(7)-C(9)  1.544(2) 

C(8)-C(18)  1.390(2) C(28)-C(20)  1.467(2) C(3)-C(4)  1.386(2) 

C(8)-C(7)  1.532(2) C(28)-C(27)  1.476(2) C(3)-C(2)  1.389(2) 

C(1)-C(2)  1.381(2) C(27)-C(26)  1.379(2) C(29)-C(30)  1.429(3) 

C(1)-C(6)  1.383(2) C(27)-C(22)  1.396(2) C(6)-C(5)  1.379(2) 

C(12)-C(17)  1.386(2) C(17)-C(16)  1.382(2) C(23)-C(24)  1.388(2) 

C(12)-C(13)  1.388(2) C(31)-C(29)  1.427(3) C(23)-C(22)  1.390(2) 

C(12)-C(11)  1.507(2) C(10)-C(7)  1.529(2) C(4)-C(5)  1.387(2) 

N(3)-C(31)  1.155(2) C(19)-C(18)  1.380(2)   

N(2)-C(30)  1.154(2) C(19)-C(20)  1.397(2)   
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C(12)  7616(5) 4833(5) 1028(5) 31(2) 

C(13)  6534(5) 4831(5) 1050(5) 32(2) 

C(14)  5885(5) 5911(5) 1297(4) 31(2) 

C(15)  4804(5) 6339(5) 1476(5) 36(2) 

C(16)  4428(6) 7394(6) 1664(5) 43(2) 

C(17)  5121(6) 8023(6) 1680(5) 45(2) 

C(18)  6203(6) 7606(6) 1518(5) 39(2) 

C(19)  6562(5) 6553(5) 1346(5) 30(2) 

C(20)  7665(5) 5902(5) 1169(5) 31(2) 

C(21)  11663(5) 4112(5) 1064(5) 34(2) 

C(22)  11640(7) 4415(7) 2063(6) 62(3) 

C(27)  10016(6) 1766(6) -99(5) 47(2) 

C(28)  9721(6) 1570(6) 1655(6) 50(2) 

C(29)  6136(5) 4026(5) 832(5) 32(2) 

C(30)  6769(6) 3071(6) 428(5) 36(2) 

N(31)  7243(5) 2288(5) 80(5) 47(2) 

C(32)  5038(6) 4081(5) 947(5) 37(2) 

N(33)  4174(5) 4064(5) 1040(5) 50(2) 

O(34)  8448(4) 6249(3) 1132(3) 37(1) 

N(35)  3240(4) 11506(4) 4126(4) 30(1) 

C(36)  2233(5) 12222(5) 4248(5) 29(2) 

C(37)  1997(5) 13293(5) 4257(5) 36(2) 

C(38)  943(6) 13824(6) 4408(5) 40(2) 

C(39)  168(5) 13282(6) 4536(5) 42(2) 

C(40)  435(6) 12203(5) 4521(5) 40(2) 

C(41)  1483(5) 11676(5) 4372(5) 33(2) 

C(42)  2006(5) 10517(5) 4341(5) 32(2) 

C(43)  3168(5) 10518(5) 4171(4) 30(2) 

C(44)  4059(5) 9671(5) 4074(4) 32(2) 

C(45)  4037(5) 8642(5) 4125(5) 30(2) 

C(46)  4910(5) 7796(5) 4013(5) 30(2) 

C(47)  4915(5) 6713(5) 3986(5) 31(2) 

C(48)  6037(5) 6082(5) 3736(5) 31(2) 

C(49)  6491(6) 5030(5) 3606(5) 38(2) 

C(50)  7576(6) 4701(6) 3410(5) 40(2) 

C(51)  8205(6) 5373(6) 3347(5) 42(2) 

C(52)  7741(6) 6426(6) 3472(5) 39(2) 

C(53)  6671(5) 6784(5) 3665(5) 32(2) 

C(54)  6013(5) 7861(6) 3827(5) 32(2) 

C(55)  4213(5) 11818(5) 3951(5) 34(2) 

C(56)  4574(5) 11933(6) 2924(5) 41(2) 

C(57)  5673(6) 12136(6) 2761(6) 51(2) 

C(58)  6579(6) 11186(6) 2809(6) 48(2) 

C(59)  6747(6) 10414(6) 2007(6) 54(2) 

C(60)  7754(6) 9549(6) 1984(6) 57(2) 

C(61)  1717(6) 10020(6) 5282(5) 45(2) 

C(62)  1697(6) 10002(6) 3524(6) 46(2) 

C(63)  4071(5) 6280(5) 4173(5) 35(2) 

C(64)  3054(6) 6845(6) 4551(6) 45(2) 

N(65)  2213(6) 7284(5) 4893(6) 77(3) 

C(66)  4135(6) 5216(6) 4001(5) 39(2) 

N(67)  4143(5) 4359(5) 3862(5) 51(2) 

O(68)  6336(4) 8638(4) 3821(3) 39(1) 

C(23)  11783(11) 5476(10) 2161(9) 132(6) 
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C(24)  11051(11) 6240(8) 2509(13) 169(8) 

C(25)  11233(9) 7326(8) 2548(10) 114(5) 

C(26)  10239(8) 8114(8) 2684(7) 84(3) 

 

Table A14. Bond lengths [Å] and angles [°] for 1g 
N(1)-C(9)  1.3(2) C(18)-C(19)  1.389(10) C(46)-C(47)  1.454(9) 

N(1)-C(2)  1.43(6) C(19)-C(20)  1.49(18) C(46)-C(54)  1.5(2) 

N(1)-C(21)  1.47(3) C(20)-O(34)  1.23(15) C(47)-C(63)  1.37(15) 

C(2)-C(3)  1.4(2) C(21)-C(22)  1.521(11) C(47)-C(48)  1.50(18) 

C(2)-C(7)  1.40(8) C(22)-C(23)  1.497(17) C(48)-C(49)  1.393(17) 

C(3)-C(4)  1.40(3) C(29)-C(32)  1.4(2) C(48)-C(53)  1.41(10) 

C(4)-C(5)  1.39(8) C(29)-C(30)  1.43(4) C(49)-C(50)  1.4(2) 

C(5)-C(6)  1.4(2) C(30)-N(31)  1.16(2) C(50)-C(51)  1.37(10) 

C(6)-C(7)  1.40(3) C(32)-N(33)  1.14(17) C(51)-C(52)  1.395(18) 

C(7)-C(8)  1.5(2) N(35)-C(43)  1.353(9) C(52)-C(53)  1.4(2) 

C(8)-C(28)  1.52(7) N(35)-C(36)  1.42(15) C(53)-C(54)  1.49(4) 

C(8)-C(27)  1.54(3) N(35)-C(55)  1.44(18) C(54)-O(68)  1.22(4) 

C(8)-C(9)  1.550(9) C(36)-C(41)  1.36(13) C(55)-C(56)  1.520(17) 

C(9)-C(10)  1.41(10) C(36)-C(37)  1.392(9) C(56)-C(57)  1.5(2) 

C(10)-C(11)  1.4(2) C(37)-C(38)  1.38(18) C(57)-C(58)  1.52(11) 

C(11)-C(12)  1.40(10) C(38)-C(39)  1.39(13) C(58)-C(59)  1.538(12) 

C(12)-C(13)  1.4(2) C(39)-C(40)  1.402(10) C(59)-C(60)  1.52(14) 

C(12)-C(20)  1.476(10) C(40)-C(41)  1.37(18) C(63)-C(64)  1.40(16) 

C(13)-C(29)  1.38(5) C(41)-C(42)  1.53(2) C(63)-C(66)  1.437(11) 

C(13)-C(14)  1.51(4) C(42)-C(43)  1.5(2) C(64)-N(65)  1.16(13) 

C(14)-C(15)  1.38(19) C(42)-C(61)  1.549(16) C(66)-N(67)  1.171(9) 

C(14)-C(19)  1.40(11) C(42)-C(62)  1.55(3) C(23)-C(24)  1.27(7) 

C(15)-C(16)  1.397(11) C(43)-C(44)  1.40(11) C(24)-C(25)  1.54(2) 

C(16)-C(17)  1.40(11) C(44)-C(45)  1.390(9) C(25)-C(26)  1.45(14) 

C(17)-C(18)  1.4(2) C(45)-C(46)  1.39(11)   

      

C(9)-N(1)-C(2) 111(6) C(18)-C(19)-C(14) 123(6) C(45)-C(46)-C(47) 128(6) 

C(9)-N(1)-C(21) 125.0(17) C(18)-C(19)-C(20) 129(2) C(45)-C(46)-C(54) 124(6) 

C(2)-N(1)-C(21) 124(7) C(14)-C(19)-C(20) 108(8) C(47)-C(46)-C(54) 107.7(7) 

C(3)-C(2)-C(7) 122(5) O(34)-C(20)-C(12) 129(2) C(63)-C(47)-C(46) 128(3) 

C(3)-C(2)-N(1) 128(3) O(34)-C(20)-C(19) 123(8) C(63)-C(47)-C(48) 123(7) 

C(7)-C(2)-N(1) 109(8) C(12)-C(20)-C(19) 108(5) C(46)-C(47)-C(48) 109(5) 

C(2)-C(3)-C(4) 117(2) N(1)-C(21)-C(22) 113.6(6) C(49)-C(48)-C(53) 121(7) 

C(5)-C(4)-C(3) 122(7) C(23)-C(22)-C(21) 113.2(8) C(49)-C(48)-C(47) 133.3(12) 

C(6)-C(5)-C(4) 120(5) C(13)-C(29)-C(32) 123(3) C(53)-C(48)-C(47) 106(8) 

C(5)-C(6)-C(7) 119(2) C(13)-C(29)-C(30) 124(7) C(50)-C(49)-C(48) 118.0(10) 

C(2)-C(7)-C(6) 119(8) C(32)-C(29)-C(30) 112(4) C(51)-C(50)-C(49) 122(6) 

C(2)-C(7)-C(8) 109(7) N(31)-C(30)-C(29) 176.7(8) C(50)-C(51)-C(52) 120(7) 

C(6)-C(7)-C(8) 131.8(7) N(33)-C(32)-C(29) 176.0(10) C(53)-C(52)-C(51) 120.4(9) 

C(7)-C(8)-C(28) 109(6) C(43)-N(35)-C(36) 112(6) C(52)-C(53)-C(48) 119(6) 

C(7)-C(8)-C(27) 109(4) C(43)-N(35)-C(55) 125.0(17) C(52)-C(53)-C(54) 129.5(17) 

C(28)-C(8)-C(27) 113(6) C(36)-N(35)-C(55) 123(7) C(48)-C(53)-C(54) 111(8) 

C(7)-C(8)-C(9) 102(4) C(41)-C(36)-C(37) 124(5) O(68)-C(54)-C(46) 127(2) 

C(28)-C(8)-C(9) 112.4(7) C(41)-C(36)-N(35) 108(8) O(68)-C(54)-C(53) 127(7) 

C(27)-C(8)-C(9) 110.4(6) C(37)-C(36)-N(35) 129(3) C(46)-C(54)-C(53) 106(5) 

N(1)-C(9)-C(10) 122(6) C(38)-C(37)-C(36) 118(2) N(35)-C(55)-C(56) 112.3(13) 

N(1)-C(9)-C(8) 108.8(7) C(37)-C(38)-C(39) 120(7) C(55)-C(56)-C(57) 110.7(14) 

C(10)-C(9)-C(8) 129(6) C(38)-C(39)-C(40) 121(5) C(58)-C(57)-C(56) 115(7) 
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N(3)  2065(1) 7499(2) 1231(1) 18(1) 

C(20)  6453(1) 5696(2) 4732(1) 13(1) 

C(21)  2236(1) 9223(3) 3360(1) 16(1) 

C(22)  9639(2) 7980(3) 2560(1) 20(1) 

C(23)  2936(1) 7440(2) 3459(1) 10(1) 

C(24)  8169(1) 7527(2) 4837(1) 10(1) 

C(25)  9545(2) 7626(2) 5513(1) 18(1) 

C(26)  2273(1) 5598(3) 3373(1) 16(1) 

C(27)  2928(1) 7468(2) 1406(1) 11(1) 

C(28)  4863(1) 7443(2) 1260(1) 12(1) 

C(29)  6457(1) 9342(2) 4700(1) 13(1) 

C(30)  10325(1) 7502(2) 5127(1) 16(1) 

 

Table A16. Bond lengths [Å] and angles [°] for 2a 
S(1)-C(16)  1.7366(16) C(8)-C(16)  1.4072(19) C(17)-C(24)  1.513(2) 

S(1)-C(14)  1.7595(15) C(8)-C(28)  1.414(2) C(17)-C(29)  1.538(2) 

N(1)-C(12)  1.3438(19) C(8)-C(27)  1.417(2) C(17)-C(20)  1.543(2) 

N(1)-C(10)  1.4204(19) C(9)-C(14)  1.398(2) C(18)-C(30)  1.399(2) 

N(1)-C(4)  1.471(2) C(10)-C(18)  1.383(2) N(3)-C(27)  1.155(2) 

N(2)-C(16)  1.3389(19) C(10)-C(24)  1.393(2) C(21)-C(23)  1.537(2) 

N(2)-C(11)  1.3497(18) C(11)-C(14)  1.415(2) C(23)-C(26)  1.540(2) 

C(4)-C(7)  1.534(2) C(11)-C(23)  1.528(2) C(25)-C(30)  1.390(3) 

C(5)-C(9)  1.382(2) C(12)-C(17)  1.530(2)   

C(5)-C(12)  1.399(2) C(13)-C(24)  1.388(2)   

N(4)-C(28)  1.153(2) C(13)-C(25)  1.397(2)   

C(7)-C(22)  1.532(2) C(15)-C(23)  1.529(2)   

      

C(16)-S(1)-C(14) 89.36(7) N(1)-C(12)-C(17) 109.22(13) C(11)-C(23)-C(26) 106.58(12) 

C(12)-N(1)-C(10) 111.67(13) C(5)-C(12)-C(17) 128.62(13) C(15)-C(23)-C(26) 108.53(13) 

C(12)-N(1)-C(4) 124.31(13) C(24)-C(13)-C(25) 118.12(15) C(21)-C(23)-C(26) 110.42(13) 

C(10)-N(1)-C(4) 123.68(13) C(9)-C(14)-C(11) 131.32(13) C(13)-C(24)-C(10) 119.83(14) 

C(16)-N(2)-C(11) 111.99(13) C(9)-C(14)-S(1) 120.00(11) C(13)-C(24)-C(17) 130.55(14) 

N(1)-C(4)-C(7) 113.41(15) C(11)-C(14)-S(1) 108.68(11) C(10)-C(24)-C(17) 109.61(13) 

C(9)-C(5)-C(12) 124.45(14) N(2)-C(16)-C(8) 123.25(14) C(30)-C(25)-C(13) 121.37(15) 

C(22)-C(7)-C(4) 109.20(15) N(2)-C(16)-S(1) 114.56(11) N(3)-C(27)-C(8) 179.22(17) 

C(16)-C(8)-C(28) 119.77(14) C(8)-C(16)-S(1) 122.19(12) N(4)-C(28)-C(8) 177.21(17) 

C(16)-C(8)-C(27) 120.21(14) C(24)-C(17)-C(12) 101.27(12) C(25)-C(30)-C(18) 120.85(15) 

C(28)-C(8)-C(27) 120.00(13) C(24)-C(17)-C(29) 110.22(12)   

C(5)-C(9)-C(14) 124.62(14) C(12)-C(17)-C(29) 113.22(12)   

C(18)-C(10)-C(24) 122.84(14) C(24)-C(17)-C(20) 110.01(12)   

C(18)-C(10)-N(1) 128.99(15) C(12)-C(17)-C(20) 110.47(12)   

C(24)-C(10)-N(1) 108.17(13) C(29)-C(17)-C(20) 111.22(13)   

N(2)-C(11)-C(14) 115.41(13) C(10)-C(18)-C(30) 116.98(16)   

N(2)-C(11)-C(23) 114.23(13) C(11)-C(23)-C(15) 115.93(13)   

C(14)-C(11)-C(23) 130.35(13) C(11)-C(23)-C(21) 107.10(12)   

N(1)-C(12)-C(5) 122.14(13) C(15)-C(23)-C(21) 108.25(13)   
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C(103)  4463(6) -717(7) 439(2) 39(1) 

C(104)  3578(6) -192(8) 174(2) 38(2) 

C(105)  3659(4) 540(7) -220(2) 29(1) 

C(106)  4674(12) 785(18) -384(4) 18(2) 

 

Table A18. Bond lengths [Å] and angles [°] for 2b 
N(1)-C(9)  1.344(2) C(12)-C(16)  1.417(3) C(28)-C(29)  1.539(3) 

N(1)-C(2)  1.420(2) C(12)-S(13)  1.7571(19) C(30)-C(33)  1.413(3) 

N(1)-C(17)  1.470(2) S(13)-C(14)  1.735(2) C(30)-C(31)  1.416(3) 

C(2)-C(3)  1.383(3) C(14)-N(15)  1.341(2) C(31)-N(32)  1.152(3) 

C(2)-C(7)  1.385(3) C(14)-C(30)  1.404(3) C(33)-N(34)  1.154(3) 

C(3)-C(4)  1.393(3) N(15)-C(16)  1.344(2) Cl(1)-C(101)  1.737(5) 

C(4)-C(5)  1.381(3) C(16)-C(29)  1.533(3) C(101)-C(106)  1.358(17) 

C(5)-C(6)  1.399(3) C(17)-C(18)  1.519(3) C(101)-C(102)  1.390(11) 

C(6)-C(7)  1.383(3) C(18)-C(23)  1.382(3) C(102)-C(103)  1.427(14) 

C(7)-C(8)  1.506(2) C(18)-C(19)  1.393(4) C(103)-C(104)  1.409(10) 

C(8)-C(25)  1.533(2) C(19)-C(20)  1.384(4) C(104)-C(105)  1.333(9) 

C(8)-C(9)  1.535(2) C(20)-C(21)  1.388(4) C(105)-C(106)  1.418(12) 

C(8)-C(24)  1.547(2) C(21)-C(22)  1.368(4)   

C(9)-C(10)  1.394(3) C(22)-C(23)  1.401(3)   

C(10)-C(11)  1.386(3) C(26)-C(29)  1.528(3)   

C(11)-C(12)  1.399(3) C(27)-C(29)  1.541(3)   

      

C(9)-N(1)-C(2) 111.35(15) C(10)-C(9)-C(8) 127.62(16) C(21)-C(22)-C(23) 120.4(2) 

C(9)-N(1)-C(17) 126.99(16) C(11)-C(10)-C(9) 124.63(17) C(18)-C(23)-C(22) 120.0(2) 

C(2)-N(1)-C(17) 121.07(16) C(10)-C(11)-C(12) 124.62(17) C(26)-C(29)-C(16) 115.91(16) 

C(3)-C(2)-C(7) 122.69(17) C(11)-C(12)-C(16) 132.16(17) C(26)-C(29)-C(28) 108.15(16) 

C(3)-C(2)-N(1) 128.61(17) C(11)-C(12)-S(13) 119.02(15) C(16)-C(29)-C(28) 107.62(15) 

C(7)-C(2)-N(1) 108.68(16) C(16)-C(12)-S(13) 108.79(14) C(26)-C(29)-C(27) 108.18(16) 

C(2)-C(3)-C(4) 116.44(18) C(14)-S(13)-C(12) 89.21(9) C(16)-C(29)-C(27) 107.20(15) 

C(5)-C(4)-C(3) 121.57(18) N(15)-C(14)-C(30) 123.69(18) C(28)-C(29)-C(27) 109.69(18) 

C(4)-C(5)-C(6) 121.25(18) N(15)-C(14)-S(13) 114.69(14) C(14)-C(30)-C(33) 119.77(17) 

C(7)-C(6)-C(5) 117.46(18) C(30)-C(14)-S(13) 121.62(15) C(14)-C(30)-C(31) 121.30(17) 

C(6)-C(7)-C(2) 120.58(17) C(14)-N(15)-C(16) 111.90(16) C(33)-C(30)-C(31) 118.91(17) 

C(6)-C(7)-C(8) 129.81(17) N(15)-C(16)-C(12) 115.41(17) N(32)-C(31)-C(30) 177.9(2) 

C(2)-C(7)-C(8) 109.54(16) N(15)-C(16)-C(29) 114.31(16) N(34)-C(33)-C(30) 178.4(2) 

C(7)-C(8)-C(25) 110.97(15) C(12)-C(16)-C(29) 130.27(17) C(106)-C(101)-C(102) 124.4(10) 

C(7)-C(8)-C(9) 101.40(14) N(1)-C(17)-C(18) 114.15(16) C(106)-C(101)-Cl(1) 118.3(5) 

C(25)-C(8)-C(9) 114.38(15) C(23)-C(18)-C(19) 119.3(2) C(102)-C(101)-Cl(1) 117.3(8) 

C(7)-C(8)-C(24) 108.52(15) C(23)-C(18)-C(17) 119.6(2) C(101)-C(102)-C(103) 115.9(13) 

C(25)-C(8)-C(24) 111.20(15) C(19)-C(18)-C(17) 121.02(19) C(104)-C(103)-C(102) 119.1(9) 

C(9)-C(8)-C(24) 109.85(14) C(20)-C(19)-C(18) 120.3(3) C(105)-C(104)-C(103) 122.8(7) 

N(1)-C(9)-C(10) 123.50(16) C(19)-C(20)-C(21) 120.2(3) C(104)-C(105)-C(106) 119.1(7) 

N(1)-C(9)-C(8) 108.87(15) C(22)-C(21)-C(20) 119.8(2) C(101)-C(106)-C(105) 118.7(8) 
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N44  0.5830(2) 0.11462(19) -0.1536(2) 0.0167(8) 

N58  0.8921(3) 0.1272(2) -0.2720(2) 0.0262(10) 

N60  0.7662(3) 0.1278(2) 0.0782(2) 0.0279(10) 

C32  -0.0456(3) 0.1234(2) 0.3899(3) 0.0178(9) 

C33  -0.1143(3) 0.1217(2) 0.4993(3) 0.0231(10) 

C34  -0.2314(3) 0.1206(2) 0.5316(3) 0.0233(10) 

C35  -0.2751(3) 0.1214(3) 0.4572(3) 0.0257(10) 

C36  -0.2036(3) 0.1223(2) 0.3476(3) 0.0208(10) 

C37  -0.0871(3) 0.1230(2) 0.3149(3) 0.0166(9) 

C38  0.0115(3) 0.1253(2) 0.2040(2) 0.0159(9) 

C39  0.1135(3) 0.1235(2) 0.2295(3) 0.0151(9) 

C40  0.2306(3) 0.1256(2) 0.1629(3) 0.0162(9) 

C41  0.2838(3) 0.1203(2) 0.0523(3) 0.0157(9) 

C42  0.4021(3) 0.1227(2) -0.0066(3) 0.0154(9) 

C43  0.4690(3) 0.1156(2) -0.1184(3) 0.0159(9) 

C45  0.6105(3) 0.1216(2) -0.0716(2) 0.0153(9) 

C47  0.1476(3) 0.1278(3) 0.3913(3) 0.0284(11) 

C48  0.0102(3) 0.2194(3) 0.1452(3) 0.0211(10) 

C49  0.0068(3) 0.0378(3) 0.1386(3) 0.0214(10) 

C50  0.4241(3) 0.1032(2) -0.1974(3) 0.0175(9) 

C51  0.3331(3) 0.1567(2) -0.1961(3) 0.0224(10) 

C52  0.2964(3) 0.1435(3) -0.2742(3) 0.0256(11) 

C53  0.3486(4) 0.0764(3) -0.3531(3) 0.0275(11) 

C54  0.4382(3) 0.0217(3) -0.3536(3) 0.0254(11) 

C55  0.4761(3) 0.0350(2) -0.2769(3) 0.0205(10) 

C56  0.7230(3) 0.1236(2) -0.0845(3) 0.0158(9) 

C57  0.8157(3) 0.1251(2) -0.1887(3) 0.0182(10) 

C59  0.7475(3) 0.1260(2) 0.0045(3) 0.0180(9) 

O61  0.3591(2) 0.53588(19) 0.2937(2) 0.0307(9) 

C62  0.4504(4) 0.5739(3) 0.3107(3) 0.0321(12) 

C63  0.4234(4) 0.6783(3) 0.3400(3) 0.0348(14) 

 
Table A20. Bond lengths [Å] and angles [°] for 2c 
N1-C9 1.331(4) C8-C9 1.528(6) C38-C39 1.525(6) 

N1-C17 1.456(5) C8-C18 1.536(5) C38-C48 1.541(5) 

N1-C2 1.424(5) C10-C11 1.374(5) C39-C40 1.396(6) 

N14-C15 1.339(4) C11-C12 1.410(6) C40-C41 1.388(5) 

N14-C13 1.357(5) C12-C13 1.405(5) S16-C12 1.749(4) 

N28-C27 1.158(5) C13-C20 1.477(6) S16-C15 1.737(3) 

N30-C29 1.151(5) C15-C26 1.415(6) S46-C45 1.741(3) 

N31-C39 1.351(5) C20-C21 1.394(6) S46-C42 1.750(4) 

N31-C32 1.419(5) C20-C25 1.401(5) O61-C62 1.421(6) 

N31-C47 1.456(5) C21-C22 1.389(6) C41-C42 1.394(6) 

N44-C45 1.348(4) C22-C23 1.377(6) C42-C43 1.417(5) 

N44-C43 1.347(5) C23-C24 1.386(7) C43-C50 1.473(6) 

N58-C57 1.150(5) C24-C25 1.381(6) C45-C56 1.400(6) 

N60-C59 1.159(5) C26-C29 1.412(6) C50-C55 1.395(5) 

C9-C10 1.408(5) C26-C27 1.416(5) C50-C51 1.394(6) 

C2-C7 1.389(6) C32-C37 1.377(6) C51-C52 1.387(6) 

C2-C3 1.376(5) C32-C33 1.388(5) C52-C53 1.380(6) 

C3-C4 1.394(6) C33-C34 1.391(6) C53-C54 1.391(7) 

C4-C5 1.393(6) C34-C35 1.390(6) C54-C55 1.379(6) 

C5-C6 1.387(5) C35-C36 1.397(5) C56-C59 1.415(6) 

C6-C7 1.383(6) C36-C37 1.383(6) C56-C57 1.424(5) 
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Table A21.  Atomic coordinates (× 104) and equivalent isotropic displacement 
parameters (Å2 × 103) for 2e 

Atom  x y z U(eq) 

S(16)  -673(1) 929(1) 707(1) 33(1) 

N(1)  2392(2) -1279(2) 2423(1) 25(1) 

C(2)  3389(2) -1443(2) 2914(1) 23(1) 

C(8)  3701(2) 183(2) 2174(1) 24(1) 

N(14)  -424(2) 2613(2) -211(1) 28(1) 

C(12)  697(2) 1454(2) 630(1) 27(1) 

C(17)  1387(2) -2050(2) 2375(1) 29(1) 

N(32)  -3214(2) 3183(2) -1271(1) 40(1) 

C(13)  626(2) 2349(2) 109(1) 26(1) 

C(15)  -1215(2) 1916(2) 41(1) 28(1) 

C(11)  1649(2) 1015(2) 1056(1) 29(1) 

C(25)  2528(2) 2316(2) -326(1) 30(1) 

C(23)  -716(2) -1637(2) 2214(1) 35(1) 

C(6)  5219(2) -551(2) 3193(1) 28(1) 

C(27)  3506(2) 4107(3) -565(1) 37(1) 

C(30)  -2378(2) 1923(2) -207(1) 28(1) 

C(29)  1680(2) 4204(2) -139(1) 32(1) 

C(24)  1627(2) 2968(2) -119(1) 27(1) 

C(18)  343(2) -1443(2) 2599(1) 27(1) 

C(3)  3585(2) -2257(2) 3462(1) 28(1) 

C(7)  4177(2) -598(2) 2781(1) 23(1) 

C(5)  5440(2) -1351(2) 3749(1) 29(1) 

C(19)  433(2) -688(2) 3175(1) 34(1) 

C(31)  -2832(2) 2633(2) -788(1) 29(1) 

C(4)  4633(2) -2182(2) 3882(1) 29(1) 

C(36)  3662(2) 1482(2) 2422(1) 31(1) 

C(35)  4401(2) 36(2) 1546(1) 32(1) 

N(34)  -3634(2) 404(2) 349(1) 37(1) 

C(33)  -3098(2) 1097(2) 85(1) 28(1) 

C(10)  1619(2) 65(2) 1510(1) 28(1) 

C(9)  2511(2) -335(2) 1999(1) 24(1) 

C(28)  2620(3) 4761(2) -357(1) 36(1) 

C(22)  -1669(2) -1067(2) 2407(2) 46(1) 

C(20)  -524(2) -122(2) 3368(1) 41(1) 

C(21)  -1575(2) -311(2) 2983(2) 47(1) 

C(26)  3462(2) 2880(2) -553(1) 36(1) 

 
Table A22. Bond lengths [Å] and angles [°] for 2e 

S(16)-C(12)  1.746(2) C(12)-C(13)  1.409(3) C(30)-C(31)  1.415(4) 

S(16)-C(15)  1.747(2) C(17)-C(18)  1.516(3) C(30)-C(33)  1.419(4) 

N(1)-C(9)  1.351(3) N(32)-C(31)  1.153(3) C(29)-C(28)  1.381(3) 

N(1)-C(2)  1.424(3) C(13)-C(24)  1.482(3) C(29)-C(24)  1.393(3) 

N(1)-C(17)  1.467(3) C(15)-C(30)  1.399(3) C(18)-C(19)  1.378(3) 

C(2)-C(7)  1.376(3) C(11)-C(10)  1.377(3) C(3)-C(4)  1.393(3) 

C(2)-C(3)  1.385(3) C(25)-C(26)  1.387(3) C(5)-C(4)  1.381(3) 

C(8)-C(7)  1.503(3) C(25)-C(24)  1.390(3) C(19)-C(20)  1.386(3) 

C(8)-C(9)  1.523(3) C(23)-C(22)  1.383(3) N(34)-C(33)  1.157(3) 

C(8)-C(36)  1.539(3) C(23)-C(18)  1.389(3) C(10)-C(9)  1.394(3) 

C(8)-C(35)  1.540(3) C(6)-C(7)  1.380(3) C(22)-C(21)  1.380(4) 

N(14)-C(13)  1.348(3) C(6)-C(5)  1.388(3) C(20)-C(21)  1.381(4) 

N(14)-C(15)  1.350(3) C(27)-C(28)  1.378(3)   
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C(2)  -1616(2) 2071(3) 58(1) 49(1) 

C(5)  -3036(2) 2633(4) 899(1) 52(1) 

C(16)  4994(2) 2902(3) 2545(1) 47(1) 

C(19)  590(2) 2020(3) 514(1) 44(1) 

C(11)  1545(2) 3323(3) 2546(1) 45(1) 

C(12)  1667(2) 3551(3) 3122(1) 44(1) 

C(10)  637(2) 3227(3) 2244(1) 45(1) 

C(23)  802(2) 3802(4) 3506(1) 50(1) 

N(3)  5142(2) 3130(3) 3977(1) 65(1) 

C(21)  2181(2) 3148(4) 86(1) 64(1) 

C(4)  -3351(2) 2344(4) 358(1) 63(1) 

C(18)  -1681(2) 4678(4) 1809(1) 58(1) 

C(17)  -1690(2) 1406(4) 1964(1) 55(1) 

N(4)  5506(2) 2744(4) 2171(1) 72(1) 

C(3)  -2650(2) 2073(4) -53(1) 62(1) 

C(20)  1142(2) 3614(3) 309(1) 54(1) 

C(24)  358(2) 2099(4) 3703(1) 69(1) 

C(25)  -588(3) 2366(5) 4054(2) 88(1) 

C(22)  2959(2) 2777(5) 532(2) 96(1) 

C(26)  -1474(3) 3075(6) 3729(2) 100(1) 

 
Table A24. Bond lengths [Å] and angles [°] for 2f 

S(1)-C(13)  1.730(2) C(13)-C(14)  1.397(3) C(11)-C(10)  1.390(3) 

S(1)-C(11)  1.746(2) C(14)-C(16)  1.409(3) C(11)-C(12)  1.404(3) 

N(1)-C(8)  1.341(3) C(14)-C(15)  1.411(4) C(12)-C(23)  1.491(3) 

N(1)-C(1)  1.408(3) C(9)-C(10)  1.371(3) C(23)-C(24)  1.507(4) 

N(1)-C(19)  1.462(3) C(1)-C(2)  1.378(3) C(21)-C(22)  1.499(4) 

N(2)-C(13)  1.345(3) C(1)-C(6)  1.383(3) C(21)-C(20)  1.518(3) 

N(2)-C(12)  1.345(3) C(15)-N(3)  1.150(3) C(4)-C(3)  1.381(4) 

C(7)-C(6)  1.503(3) C(6)-C(5)  1.381(3) C(24)-C(25)  1.530(4) 

C(7)-C(8)  1.528(3) C(2)-C(3)  1.380(4) C(25)-C(26)  1.494(5) 

C(7)-C(18)  1.530(3) C(5)-C(4)  1.378(4)   

C(7)-C(17)  1.538(3) C(16)-N(4)  1.141(3)   

C(8)-C(9)  1.387(3) C(19)-C(20)  1.507(3)   

      

C(13)-S(1)-C(11) 89.57(11) C(14)-C(13)-S(1) 121.65(18) C(10)-C(11)-C(12) 127.4(2) 

C(8)-N(1)-C(1) 111.37(19) C(13)-C(14)-C(16) 120.2(2) C(10)-C(11)-S(1) 123.99(19) 

C(8)-N(1)-C(19) 124.6(2) C(13)-C(14)-C(15) 120.9(2) C(12)-C(11)-S(1) 108.60(18) 

C(1)-N(1)-C(19) 123.92(19) C(16)-C(14)-C(15) 118.9(2) N(2)-C(12)-C(11) 116.2(2) 

C(13)-N(2)-C(12) 111.06(19) C(10)-C(9)-C(8) 126.4(2) N(2)-C(12)-C(23) 120.1(2) 

C(6)-C(7)-C(8) 101.51(17) C(2)-C(1)-C(6) 122.6(2) C(11)-C(12)-C(23) 123.7(2) 

C(6)-C(7)-C(18) 110.7(2) C(2)-C(1)-N(1) 128.4(2) C(9)-C(10)-C(11) 124.9(2) 

C(8)-C(7)-C(18) 112.8(2) C(6)-C(1)-N(1) 109.00(19) C(12)-C(23)-C(24) 112.8(2) 

C(6)-C(7)-C(17) 109.85(19) N(3)-C(15)-C(14) 178.6(3) C(22)-C(21)-C(20) 113.4(3) 

C(8)-C(7)-C(17) 110.58(19) C(5)-C(6)-C(1) 119.9(2) C(5)-C(4)-C(3) 120.6(3) 

C(18)-C(7)-C(17) 111.0(2) C(5)-C(6)-C(7) 131.0(2) C(2)-C(3)-C(4) 122.0(3) 

N(1)-C(8)-C(9) 121.7(2) C(1)-C(6)-C(7) 109.2(2) C(19)-C(20)-C(21) 111.6(2) 

N(1)-C(8)-C(7) 108.89(19) C(1)-C(2)-C(3) 116.5(3) C(23)-C(24)-C(25) 112.5(3) 

C(9)-C(8)-C(7) 129.4(2) C(4)-C(5)-C(6) 118.5(3) C(26)-C(25)-C(24) 113.1(3) 

N(2)-C(13)-C(14) 123.8(2) N(4)-C(16)-C(14) 178.9(3)   

N(2)-C(13)-S(1) 114.50(17) N(1)-C(19)-C(20) 114.5(2)   
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C(16)  4782(2) 906(1) 3206(1) 20(1) 

C(15)  4437(2) 1517(1) 3945(1) 17(1) 

C(13)  3009(2) 1649(1) 5519(1) 13(1) 

C(21)  -1025(2) -939(1) 8330(1) 18(1) 

C(5)  -3247(2) 1538(1) 10614(1) 19(1) 

C(23)  -1701(2) 2329(1) 7732(1) 14(1) 

C(10)  458(2) 526(1) 7285(1) 14(1) 

C(3)  -2738(2) -3(1) 9937(1) 16(1) 

C(17)  4256(2) -25(1) 3173(1) 20(1) 

C(9)  -382(2) 748(1) 8053(1) 12(1) 

C(22)  706(2) 2262(1) 8891(1) 16(1) 

C(11)  1301(2) 1169(1) 6778(1) 14(1) 

C(6)  -2374(2) 1988(1) 9957(1) 16(1) 

C(7)  -1689(2) 1435(1) 9291(1) 12(1) 

C(19)  3013(2) 241(1) 4604(1) 13(1) 

C(4)  -3411(2) 562(1) 10605(1) 19(1) 

C(20)  2084(2) 67(1) 5445(1) 14(1) 

 
 
Table A28. Bond lengths [Å] and angles [°] for 4a 

O(24)-C(13)  1.2287(19) C(8)-C(22)  1.538(2) C(16)-C(17)  1.392(2) 

O(25)-C(20)  1.2282(19) C(8)-C(23)  1.541(2) C(5)-C(4)  1.385(3) 

N(1)-C(9)  1.351(2) C(14)-C(15)  1.383(2) C(5)-C(6)  1.394(2) 

N(1)-C(2)  1.4089(19) C(14)-C(19)  1.395(2) C(10)-C(9)  1.383(2) 

N(1)-C(21)  1.458(2) C(14)-C(13)  1.501(2) C(10)-C(11)  1.399(2) 

C(12)-C(11)  1.377(2) C(2)-C(3)  1.385(2) C(3)-C(4)  1.393(2) 

C(12)-C(13)  1.458(2) C(2)-C(7)  1.387(2) C(6)-C(7)  1.387(2) 

C(12)-C(20)  1.465(2) C(18)-C(19)  1.381(2) C(19)-C(20)  1.501(2) 

C(8)-C(7)  1.512(2) C(18)-C(17)  1.391(2)   

C(8)-C(9)  1.534(2) C(16)-C(15)  1.392(2)   

      

C(9)-N(1)-C(2) 111.93(13) C(3)-C(2)-N(1) 128.85(15) C(7)-C(6)-C(5) 118.31(16) 

C(9)-N(1)-C(21) 124.21(13) C(7)-C(2)-N(1) 108.55(13) C(6)-C(7)-C(2) 120.05(14) 

C(2)-N(1)-C(21) 123.79(13) C(19)-C(18)-C(17) 118.05(16) C(6)-C(7)-C(8) 130.32(15) 

C(11)-C(12)-C(13) 123.30(15) C(15)-C(16)-C(17) 120.99(15) C(2)-C(7)-C(8) 109.59(13) 

C(11)-C(12)-C(20) 128.01(14) C(14)-C(15)-C(16) 118.01(16) C(18)-C(19)-C(14) 121.21(15) 

C(13)-C(12)-C(20) 108.66(13) O(24)-C(13)-C(12) 128.02(14) C(18)-C(19)-C(20) 129.49(15) 

C(7)-C(8)-C(9) 101.34(12) O(24)-C(13)-C(14) 125.11(14) C(14)-C(19)-C(20) 109.30(13) 

C(7)-C(8)-C(22) 110.61(12) C(12)-C(13)-C(14) 106.87(13) C(5)-C(4)-C(3) 121.61(15) 

C(9)-C(8)-C(22) 113.61(13) C(4)-C(5)-C(6) 120.74(15) O(25)-C(20)-C(12) 128.98(14) 

C(7)-C(8)-C(23) 109.72(12) C(9)-C(10)-C(11) 125.52(15) O(25)-C(20)-C(19) 124.69(14) 

C(9)-C(8)-C(23) 110.86(12) C(2)-C(3)-C(4) 116.69(16) C(12)-C(20)-C(19) 106.33(13) 

C(22)-C(8)-C(23) 110.35(13) C(18)-C(17)-C(16) 120.82(15)   

C(15)-C(14)-C(19) 120.92(15) N(1)-C(9)-C(10) 121.62(14)   

C(15)-C(14)-C(13) 130.30(15) N(1)-C(9)-C(8) 108.52(12)   

C(19)-C(14)-C(13) 108.78(13) C(10)-C(9)-C(8) 129.81(14)   

C(3)-C(2)-C(7) 122.59(14) C(12)-C(11)-C(10) 125.78(15)   
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C(15)  11962(2) 1519(2) 4108(3) 36(1) 

C(16)  12861(3) 1388(2) 3810(3) 42(1) 

C(17)  13563(3) 685(2) 4238(3) 44(1) 

C(18)  13350(3) 115(2) 4962(3) 44(1) 

C(19)  12464(3) 250(2) 5269(3) 36(1) 

C(20)  5939(2) 1644(2) 1239(3) 35(1) 
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C(22)  4247(2) 1225(2) 1613(3) 39(1) 

C(23)  3397(2) 1672(2) 611(3) 40(1) 

C(24)  2398(2) 2031(2) 797(3) 39(1) 

C(25)  1616(3) 2511(2) -216(3) 51(1) 

C(26)  9363(2) 1749(2) 757(3) 41(1) 

C(27)  8975(2) 122(2) 846(3) 40(1) 

C(28)  10993(2) 1110(2) 6321(3) 32(1) 

C(29)  12064(3) 1099(2) 7154(3) 40(1) 

N(30)  12916(2) 1105(2) 7851(2) 54(1) 

C(31)  10120(3) 1196(2) 6720(3) 38(1) 

N(32)  9400(2) 1266(2) 7023(2) 51(1) 

 
Table A32. Bond lengths [Å] and angles [°] for 5b 

N(1)-C(9)  1.363(4) C(8)-C(26)  1.543(4) C(18)-C(19)  1.368(4) 

N(1)-C(2)  1.424(4) C(9)-C(10)  1.378(4) C(20)-C(21)  1.529(4) 

N(1)-C(20)  1.454(3) C(10)-C(11)  1.395(4) C(21)-C(22)  1.517(4) 

C(2)-C(7)  1.377(4) C(11)-C(12)  1.383(4) C(22)-C(23)  1.532(4) 

C(2)-C(3)  1.383(4) C(12)-C(13)  1.413(4) C(23)-C(24)  1.510(4) 

C(3)-C(4)  1.385(4) C(13)-C(28)  1.399(4) C(24)-C(25)  1.530(4) 

C(4)-C(5)  1.366(4) C(13)-C(14)  1.472(4) C(28)-C(29)  1.421(5) 

C(5)-C(6)  1.399(4) C(14)-C(19)  1.395(4) C(28)-C(31)  1.419(5) 

C(6)-C(7)  1.391(4) C(14)-C(15)  1.400(4) C(29)-N(30)  1.148(4) 

C(7)-C(8)  1.513(4) C(15)-C(16)  1.376(4) C(31)-N(32)  1.147(4) 

C(8)-C(9)  1.524(4) C(16)-C(17)  1.388(4)   

C(8)-C(27)  1.540(4) C(17)-C(18)  1.386(4)   

      

C(9)-N(1)-C(2) 111.7(2) C(7)-C(8)-C(26) 109.8(2) C(15)-C(16)-C(17) 120.0(3) 

C(9)-N(1)-C(20) 126.2(3) C(9)-C(8)-C(26) 111.6(2) C(18)-C(17)-C(16) 119.6(3) 

C(2)-N(1)-C(20) 121.9(2) C(27)-C(8)-C(26) 111.3(2) C(19)-C(18)-C(17) 120.4(3) 

C(7)-C(2)-C(3) 122.8(3) N(1)-C(9)-C(10) 122.8(3) C(18)-C(19)-C(14) 120.8(3) 

C(7)-C(2)-N(1) 108.7(3) N(1)-C(9)-C(8) 107.8(3) N(1)-C(20)-C(21) 113.5(2) 

C(3)-C(2)-N(1) 128.5(3) C(10)-C(9)-C(8) 129.4(3) C(22)-C(21)-C(20) 110.7(2) 

C(2)-C(3)-C(4) 117.0(3) C(9)-C(10)-C(11) 127.3(3) C(21)-C(22)-C(23) 113.4(3) 

C(5)-C(4)-C(3) 122.2(3) C(12)-C(11)-C(10) 123.3(3) C(24)-C(23)-C(22) 114.7(3) 

C(4)-C(5)-C(6) 119.9(3) C(11)-C(12)-C(13) 127.7(3) C(23)-C(24)-C(25) 111.9(3) 

C(7)-C(6)-C(5) 119.2(3) C(28)-C(13)-C(12) 120.1(3) C(13)-C(28)-C(29) 123.3(3) 

C(2)-C(7)-C(6) 119.0(3) C(28)-C(13)-C(14) 119.1(3) C(13)-C(28)-C(31) 122.2(3) 

C(2)-C(7)-C(8) 109.3(3) C(12)-C(13)-C(14) 120.8(3) C(29)-C(28)-C(31) 114.3(3) 

C(6)-C(7)-C(8) 131.7(3) C(19)-C(14)-C(15) 118.4(3) N(30)-C(29)-C(28) 177.6(3) 

C(7)-C(8)-C(9) 102.5(2) C(19)-C(14)-C(13) 120.1(3) N(32)-C(31)-C(28) 178.8(3) 

C(7)-C(8)-C(27) 110.0(2) C(15)-C(14)-C(13) 121.5(3)   

C(9)-C(8)-C(27) 111.3(2) C(16)-C(15)-C(14) 120.7(3)   
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C(32)  1635(2) 3711(1) 4394(1) 19(1) 

C(29)  2066(2) 4523(1) 4905(1) 19(1) 

C(11)  3665(2) 2935(1) 6123(1) 18(1) 

C(18)  3515(2) 6327(1) 5755(1) 23(1) 

C(16)  5635(2) 6785(1) 6607(1) 27(1) 

C(4)  -24(2) -1012(1) 6291(1) 29(1) 

C(13)  5283(2) 4211(1) 6410(1) 20(1) 

C(27)  7534(2) 4135(1) 7362(1) 26(1) 

C(6)  2307(2) -801(1) 6552(1) 29(1) 

C(7)  2106(2) 119(1) 6412(1) 21(1) 

C(19)  3890(2) 5427(1) 5909(1) 19(1) 

C(25)  6599(2) 2812(1) 6555(1) 23(1) 

C(14)  5139(2) 5209(1) 6410(1) 19(1) 

C(15)  6020(2) 5888(1) 6767(1) 24(1) 

C(5)  1229(2) -1364(1) 6485(1) 33(1) 

C(23)  3845(2) 737(1) 5597(1) 25(1) 

C(8)  3063(2) 883(1) 6407(1) 20(1) 

C(24)  6420(2) 3747(1) 6755(1) 22(1) 

C(3)  -241(2) -89(1) 6172(1) 24(1) 

C(17)  4409(2) 6999(1) 6113(1) 28(1) 

 
Table A36. Bond lengths [Å] and angles [°] for 7 

N(1)-C(9)  1.337(2) C(9)-C(8)  1.529(2) C(13)-C(24)  1.382(3) 

N(1)-C(2)  1.417(2) C(12)-C(11)  1.420(3) C(13)-C(14)  1.484(3) 

N(1)-C(21)  1.465(2) C(12)-C(13)  1.443(3) C(27)-C(24)  1.434(3) 

N(33)-C(32)  1.153(2) C(22)-C(8)  1.542(3) C(6)-C(7)  1.384(3) 

C(30)-N(31)  1.152(2) C(2)-C(7)  1.381(3) C(6)-C(5)  1.393(3) 

C(30)-C(29)  1.432(3) C(2)-C(3)  1.391(3) C(7)-C(8)  1.512(3) 

C(10)-C(11)  1.375(3) C(32)-C(29)  1.430(3) C(19)-C(14)  1.405(3) 

C(10)-C(9)  1.404(2) C(18)-C(19)  1.394(3) C(25)-C(24)  1.431(3) 

C(20)-C(29)  1.382(3) C(18)-C(17)  1.394(3) C(14)-C(15)  1.393(3) 

C(20)-C(12)  1.442(2) C(16)-C(17)  1.379(3) C(23)-C(8)  1.542(3) 

C(20)-C(19)  1.480(2) C(16)-C(15)  1.393(3)   

N(28)-C(27)  1.152(3) C(4)-C(3)  1.388(3)   

N(26)-C(25)  1.156(3) C(4)-C(5)  1.391(3)   

      

C(9)-N(1)-C(2) 111.67(15) C(20)-C(29)-C(30) 123.72(16) C(15)-C(14)-C(13) 131.02(18) 

C(9)-N(1)-C(21) 124.80(15) C(32)-C(29)-C(30) 112.94(16) C(19)-C(14)-C(13) 108.24(15) 

C(2)-N(1)-C(21) 123.51(15) C(10)-C(11)-C(12) 127.58(17) C(14)-C(15)-C(16) 118.35(19) 

N(31)-C(30)-C(29) 176.9(2) C(19)-C(18)-C(17) 118.24(19) C(4)-C(5)-C(6) 120.86(18) 

C(11)-C(10)-C(9) 123.78(16) C(17)-C(16)-C(15) 121.02(18) C(7)-C(8)-C(9) 100.96(14) 

C(29)-C(20)-C(12) 127.32(16) C(3)-C(4)-C(5) 121.28(19) C(7)-C(8)-C(22) 110.54(15) 

C(29)-C(20)-C(19) 124.91(16) C(24)-C(13)-C(12) 127.75(17) C(9)-C(8)-C(22) 111.30(14) 

C(12)-C(20)-C(19) 107.30(15) C(24)-C(13)-C(14) 125.10(17) C(7)-C(8)-C(23) 110.14(15) 

N(1)-C(9)-C(10) 121.26(16) C(12)-C(13)-C(14) 107.15(15) C(9)-C(8)-C(23) 112.14(14) 

N(1)-C(9)-C(8) 109.23(15) N(28)-C(27)-C(24) 174.9(2) C(22)-C(8)-C(23) 111.33(16) 

C(10)-C(9)-C(8) 129.50(16) C(7)-C(6)-C(5) 118.5(2) C(13)-C(24)-C(25) 123.13(17) 

C(11)-C(12)-C(20) 127.44(17) C(2)-C(7)-C(6) 119.57(18) C(13)-C(24)-C(27) 124.34(18) 

C(11)-C(12)-C(13) 123.14(16) C(2)-C(7)-C(8) 109.80(15) C(25)-C(24)-C(27) 112.52(17) 

C(20)-C(12)-C(13) 108.09(15) C(6)-C(7)-C(8) 130.64(18) C(4)-C(3)-C(2) 116.5(2) 

C(7)-C(2)-C(3) 123.23(17) C(18)-C(19)-C(14) 120.44(17) C(16)-C(17)-C(18) 121.29(18) 

C(7)-C(2)-N(1) 108.33(16) C(18)-C(19)-C(20) 131.07(18)   

C(3)-C(2)-N(1) 128.43(18) C(14)-C(19)-C(20) 108.37(16)   

N(33)-C(32)-C(29) 177.47(19) N(26)-C(25)-C(24) 177.3(2)   
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C(14)  11753(1) 1617(1) 5900(2) 11(1) 

C(16)  13468(1) 2026(1) 5108(2) 19(1) 

C(4)  6060(1) -1439(1) 9001(2) 19(1) 

C(23)   6733(1) 261(1) 5791(2) 16(1) 

 
Table A38. Bond lengths [Å] and angles [°] for 7 

O(33)-C(25)  1.2293(17) C(31)-C(32)  1.499(2) C(8)-C(23)  1.541(2) 

O(35)-C(20)  1.2291(18) C(25)-C(26)  1.4876(19) C(8)-C(22)  1.541(2) 

N(1)-C(9)  1.3441(18) C(27)-C(28)  1.382(2) C(13)-C(12)  1.435(2) 

N(1)-C(2)  1.4130(19) C(27)-C(26)  1.385(2) C(13)-C(14)  1.4970(19) 

N(1)-C(21)  1.4640(18) C(2)-C(3)  1.386(2) C(6)-C(5)  1.395(2) 

C(11)-C(10)  1.384(2) C(2)-C(7)  1.389(2) C(3)-C(4)  1.394(2) 

C(11)-C(12)  1.406(2) C(9)-C(10)  1.399(2) C(17)-C(18)  1.387(2) 

C(24)-C(13)  1.395(2) C(9)-C(8)  1.5295(19) C(17)-C(16)  1.390(2) 

C(24)-C(25)  1.473(2) C(19)-C(18)  1.384(2) C(15)-C(16)  1.391(2) 

C(24)-C(32)  1.479(2) C(19)-C(14)  1.398(2) C(15)-C(14)  1.394(2) 

C(20)-C(12)  1.4730(19) C(30)-C(29)  1.392(2) C(5)-C(4)  1.386(2) 

C(20)-C(19)  1.480(2) C(28)-C(29)  1.397(2)   

C(31)-C(26)  1.385(2) C(7)-C(6)  1.381(2)   

C(31)-C(30)  1.387(2) C(7)-C(8)  1.5128(19)   

      

C(9)-N(1)-C(2) 111.83(11) C(10)-C(9)-C(8) 129.34(12) C(7)-C(6)-C(5) 118.45(14) 

C(9)-N(1)-C(21) 125.36(12) C(18)-C(19)-C(14) 122.78(14) C(2)-C(3)-C(4) 116.25(14) 

C(2)-N(1)-C(21) 122.75(12) C(18)-C(19)-C(20) 127.94(14) C(18)-C(17)-C(16) 120.09(14) 

C(10)-C(11)-C(12) 124.87(13) C(14)-C(19)-C(20) 109.08(12) C(31)-C(26)-C(27) 121.77(13) 

C(13)-C(24)-C(25) 125.76(13) C(31)-C(30)-C(29) 117.51(13) C(31)-C(26)-C(25) 109.77(12) 

C(13)-C(24)-C(32) 127.00(13) C(11)-C(10)-C(9) 124.85(13) C(27)-C(26)-C(25) 128.46(13) 

C(25)-C(24)-C(32) 107.10(12) C(27)-C(28)-C(29) 120.97(13) C(16)-C(15)-C(14) 118.24(14) 

O(35)-C(20)-C(12) 128.50(13) C(6)-C(7)-C(2) 119.83(13) C(30)-C(29)-C(28) 121.14(13) 

O(35)-C(20)-C(19) 124.89(13) C(6)-C(7)-C(8) 130.68(13) O(34)-C(32)-C(24) 129.26(13) 

C(12)-C(20)-C(19) 106.60(12) C(2)-C(7)-C(8) 109.49(12) O(34)-C(32)-C(31) 123.57(13) 

C(26)-C(31)-C(30) 120.99(13) C(7)-C(8)-C(9) 101.29(11) C(24)-C(32)-C(31) 106.96(11) 

C(26)-C(31)-C(32) 108.94(12) C(7)-C(8)-C(23) 110.80(12) C(19)-C(18)-C(17) 117.82(14) 

C(30)-C(31)-C(32) 130.08(13) C(9)-C(8)-C(23) 113.56(12) C(4)-C(5)-C(6) 120.70(14) 

O(33)-C(25)-C(24) 129.40(13) C(7)-C(8)-C(22) 109.71(12) C(15)-C(14)-C(19) 119.00(13) 

O(33)-C(25)-C(26) 123.17(13) C(9)-C(8)-C(22) 110.42(12) C(15)-C(14)-C(13) 131.75(13) 

C(24)-C(25)-C(26) 107.18(12) C(23)-C(8)-C(22) 110.69(12) C(19)-C(14)-C(13) 108.59(12) 

C(28)-C(27)-C(26) 117.62(13) C(24)-C(13)-C(12) 128.07(13) C(17)-C(16)-C(15) 122.05(14) 

C(3)-C(2)-C(7) 123.02(14) C(24)-C(13)-C(14) 124.54(13) C(5)-C(4)-C(3) 121.72(14) 

C(3)-C(2)-N(1) 128.57(13) C(12)-C(13)-C(14) 107.20(12)   

C(7)-C(2)-N(1) 108.41(12) C(11)-C(12)-C(13) 127.79(13)   

N(1)-C(9)-C(10) 121.69(13) C(11)-C(12)-C(20) 123.59(13)   

N(1)-C(9)-C(8) 108.95(12) C(13)-C(12)-C(20) 108.43(12)   
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Table A40. Bond lengths [Å] and angles [°] for 17a 
N(1)-C(2)  1.389(6) C(8)-C(12)  1.441(6) C(23)-C(24)  1.530(6) 

N(1)-C(6)  1.397(6) C(8)-S(9)  1.769(5) C(24)-C(25)  1.544(6) 

N(1)-C(13)  1.475(5) S(9)-C(10)  1.734(5) C(25)-C(26)  1.514(6) 

C(2)-O(17)  1.229(5) C(10)-N(22)  1.324(6) C(27)-C(28)  1.522(6) 

C(2)-C(3)  1.464(7) C(10)-N(11)  1.355(5) C(28)-C(29)  1.518(6) 

C(3)-C(4)  1.368(6) N(11)-C(12)  1.330(6) C(29)-C(30)  1.540(5) 

C(3)-C(18)  1.434(7) C(12)-C(31)  1.526(6) C(31)-C(33)  1.525(6) 

C(4)-C(5)  1.420(6) C(13)-C(14)  1.536(5) C(31)-C(34)  1.544(6) 

C(4)-C(20)  1.513(6) C(14)-C(15)  1.519(5) C(31)-C(32)  1.555(6) 

C(5)-C(7)  1.420(6) C(15)-C(16)  1.540(5)   

C(5)-C(6)  1.467(6) C(18)-N(19)  1.152(7)   

C(6)-O(21)  1.228(6) N(22)-C(27)  1.470(5)   

C(7)-C(8)  1.388(6) N(22)-C(23)  1.479(5)   

      

C(2)-N(1)-C(6) 125.7(5) N(1)-C(6)-C(5) 115.9(6) C(10)-N(22)-C(27) 121.3(4) 

C(2)-N(1)-C(13) 116.8(4) C(8)-C(7)-C(5) 139.0(5) C(10)-N(22)-C(23) 121.1(4) 

C(6)-N(1)-C(13) 117.4(5) C(7)-C(8)-C(12) 123.4(5) C(27)-N(22)-C(23) 117.6(4) 

O(17)-C(2)-N(1) 120.8(5) C(7)-C(8)-S(9) 127.8(4) N(22)-C(23)-C(24) 112.4(3) 

O(17)-C(2)-C(3) 123.3(6) C(12)-C(8)-S(9) 108.7(4) C(23)-C(24)-C(25) 112.9(4) 

N(1)-C(2)-C(3) 115.8(5) C(10)-S(9)-C(8) 88.6(3) C(26)-C(25)-C(24) 113.1(4) 

C(4)-C(3)-C(18) 122.9(5) N(22)-C(10)-N(11) 120.3(5) N(22)-C(27)-C(28) 112.3(4) 

C(4)-C(3)-C(2) 122.0(6) N(22)-C(10)-S(9) 124.1(4) C(29)-C(28)-C(27) 112.8(4) 

C(18)-C(3)-C(2) 115.0(5) N(11)-C(10)-S(9) 115.6(4) C(28)-C(29)-C(30) 111.5(4) 

C(3)-C(4)-C(5) 120.0(5) C(12)-N(11)-C(10) 111.7(4) C(33)-C(31)-C(12) 109.8(4) 

C(3)-C(4)-C(20) 118.6(5) N(11)-C(12)-C(8) 115.3(4) C(33)-C(31)-C(34) 107.5(4) 

C(5)-C(4)-C(20) 121.3(5) N(11)-C(12)-C(31) 116.8(5) C(12)-C(31)-C(34) 111.1(4) 

C(7)-C(5)-C(4) 119.0(5) C(8)-C(12)-C(31) 127.9(5) C(33)-C(31)-C(32) 106.8(4) 

C(7)-C(5)-C(6) 120.6(6) N(1)-C(13)-C(14) 111.6(4) C(12)-C(31)-C(32) 111.8(4) 

C(4)-C(5)-C(6) 120.4(5) C(15)-C(14)-C(13) 113.0(3) C(34)-C(31)-C(32) 109.7(4) 

O(21)-C(6)-N(1) 120.4(5) C(14)-C(15)-C(16) 111.6(4)   

O(21)-C(6)-C(5) 123.6(6) N(19)-C(18)-C(3) 177.9(6)   
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