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Chapter 1

Aim of the thesis and
introductory concepts

1.1 Motivation by exemplification

This thesis is principally devoted to the construction of appropriate ap-
proximating probability distributions, which are made to serve certain es-
sential needs in accordance with the situations. These aforesaid probability
distributions are constructed by the minimum information principle.
This principle shall be discussed elaborately in due course. The importance
of this work can be well motivated by picturing the following particular prac-
tical problem: The natural wind exerts a force on the rotor blades of a wind
turbine. This force may be termed as the wind-load on the rotor blades.
Depending on how large the wind-load could be, we need to determine the
maximum load on every rotor blade termed as maximum rotor-load. This
maximum rotor-load is exclusively caused by the wind-load and no other
external factors are taken into consideration. In our task, this maximum
rotor-load is defined by the continuous random variable Yw. The probability
distribution of Yw, which plays a deciding role here and which is determined
by the minimum information principle, shall also be discussed here.

For the purpose of designing or constructing the rotor blades, the
knowledge about this maximum rotor-load is of utmost importance.

The problem is, the maximum rotor-load is generally unknown
and therefore needs to be investigated by statistical methods. Of

13



14CHAPTER 1. AIM OF THE THESIS AND INTRODUCTORY CONCEPTS

course, this investigation is subjected to certain specified risks.

So, we are going to go ahead with the discussion of this particular problem.
For the sake of simplicity, it is assumed that the weather conditions are
constant, otherwise we shall need go for unnecessary complications.

The natural wind causing the wind-load exerted on the rotor blades has cer-
tain speeds. This wind speed has a certain variability. Realistically speaking,
this variability has to be a bounded range. In the language of Statistics, this
wind speed can be denoted by the continuous random variable W . Referring
to the source [10], the behavior of W is described by

• vw = E[W ] = Average wind speed

• σw =
√

E[(W − vw)2] = Turbulence (standard deviation)

With subject to the informative fact that σw is not unbelievably large, we
can justify the assumption that the probability distribution of W is given
by a bell- shaped 1 probability density curve. The question of the relation-
ship between the smallness of σw and the bell- shapeliness of the probability
distribution under consideration shall be discussed in due course.

At this point, let us take exactly one rotor blade of the wind turbine at
random for our consideration.

Again, the wind-load on this rotor blade (i.e. in other words, the influence of
wind on the rotor blade) changes with the position of this rotor blade. The
aspect of our interest shall be the maximum wind-load, i.e. principally
the maximum rotor load. Thus, there exists position of this rotor blade,
where the rotor load is maximum. Experiments have been carried out and it
has been found that this maximum rotor load shows an inherent variability
and this particular statement is referred to the source [42].

It is intuitively clear that this maximum rotor load is directly proportional to
the wind speed. It can be shown that this maximum rotor load described
by Yw has the same type of probability distribution as the same of W (the
formal argument of this very statement is beyond the scope of this work). In
other words, the probability distribution of Yw is of uni-modal type, i.e. the
probability density curve of Yw is bell-shaped.

1in the language of Statistics, a bell- shaped probability distribution is called uni-modal
probability distribution
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Again, from the realistic point of view, the probability distribution of Yw has
to have a bounded support2. Consequently, we shall proceed to construct the
probability distribution of Yw by the minimum information principle, after
having estimated the following parameters:

• a = min[Yw]. Usually, we take a = 0.

• b = max[Yw]

• µ
(1)
Yw

= E[Yw]

• σ2
Yw

= V ar[Yw]

By this principle, the probability density function of Yw denoted by fYw
(y)

is given as

fYw
(y) = eλ0+λ1y+λ2y2

, a ≤ y ≤ b

where the values of λ1 and λ2 are uniquely given by µ
(1)
Yw

and σ2
Yw

.

As a matter of fact, the parameters µ
(1)
Yw

and σ2
Yw

are not estimated only
once in practice, but certain number of times for the purpose of achieving a
reasonably good picture of the whole thing. But, for the sake of simplicity,
we shall show by a simple example, how the density function fYw

(y) can be
found out and how the maximum rotor-load can be found out subsequently.

Let the estimated values of a and b be 0 and 12000 units respectively. This
necessarily means that any possible value of Yw exceeding 12000 or falling
below 0 is completely ruled out. Moreover, let the estimated values of µ

(1)
Yw

and σ2
Yw

be 7500 and 170000 (i.e σYw
= 412.311 units) respectively. With

subject to these data, fYw
(y) is given as

fYw
(y) = e−172.38189186180912+0.04411764705882353y−2.941176470588235510−6y2

,

0 ≤ y ≤ 12000

Clearly, the density function fYw
(y) is bell-shaped.

2According to the IEC-Standard, the probability distribution of Yw is taken to be
a Weibull distribution with unbounded support. In our discussions, we shall use the
estimated parameters to construct the probability distributions with bounded support
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Consequently, if the involved risk in determining the maximum rotor-load is
taken to be 2.5 %, then we can easily achieve the following

8424.15∫

6575.85

fYw
(y)dy = 0.975 = 1 − 0.025

which says that the desired maximum rotor-load lies within the interval
[6575.85, 8424.15] (i.e. lies in between 6575 units and 8424.15 units), with
subject to the risk of 2.5 %.

Notably, this closed interval, namely [6575.85, 8424.15], which contains the
desired maximum rotor-load with subject to the risk of 2.5 %, has been
computed in a way that the length of the interval must be minimum.
In this case, this length is 1848.3 units.

This computed closed and bounded interval, in the language of stochastics
(referred to page 233 of [39] or to the detailed explanations given in [38]), is
called the optimal prediction interval with a reliability level 3 of 0.975.
This prediction interval (or prediction) (with reference to the page 233 of

[39]) is symbolized as A
(0.975)
Y ({(7500, 56420000)}) = [6575.85, 8424.15]. The

figures µ
(1)
Yw

= 7500 and µ
(2)
Yw

=
(
µ

(1)
Yw

)2

+ σ2
Yw

= 56420000 are the estimated

values of the first two moments of Y respectively. This is precisely the way,
how such a prediction interval is computed with respect to a given specified
risk. However, if the length of this interval is not minimum, then it is a
prediction interval with subject to the given reliability specification though,
but not optimal. This kind of determination of this interval demands that
the probability distribution of Yw needs to be a bell-shaped one.

In case we intend to reduce the risk to 1 %, then the upper limit of the
maximum rotor-load is found to be increased to 8562.04 units and the lower
limit of the maximum rotor-load to be reduced to 6437.96 units. In that
case, the optimal prediction interval with a reliability level of 0.99 becomes
A

(0.99)
Y ({(7500, 56420000)}) = [6437.96, 8562.04]. This basically says that if

the involved risk is reduced completely to 0 %, then the maximum rotor-load
is nothing different from 12000 units and thereby reducing the risk to 0 %
makes such stochastic procedures completely redundant.

3the chosen reliability level of a stochastic procedure ranges from 0 to 1 (referred to
the page 19 of [53] as well as to the current [38])
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Thus, taking reasonable risks makes the stochastic procedures worthy.

This way of solving this pictured practical problem should set us thinking
that we need to construct appropriate situation oriented probability dis-
tributions for the purpose of performing certain important needful tasks. In
other words, this should motivate us to go deeper into the search of finding
the appropriate approximating probability distributions.

The approximating probability distributions are those stochastic models,
which are principally used to develop stochastic procedures, for eg. pre-
diction procedures.

1.2 The general idea

Almost every probability distribution necessitates the knowledge of certain
relevant parameters. These parameters are the usually termed as distribu-
tional parameters. Therefore, a probability distribution of a specified type
can be determined by suitably chosen parameters. The number of param-
eters as well as the parameters themselves determine the complexity of the
probability distribution and the type of the probability distribution is termed
accordingly. The type of the probability distribution is ascribed to the uni-
form, monotonic, uni-extremal and multi-extremal nature of probability dis-
tributions. We shall categorize these types in accordance with the number of
extremes of the probability mass function or the probability density function,
as the case may be.

The random variable, say Y , whose probability distribution is of interest,
basically describes a random size of a particular aspect of interest. If this
aspect of interest has to tally with the real world, the random size cannot
be of infinite size. This must explain, why the support of the probability
distribution of Y (i.e. the range of variability of Y ) must be either finite, if
Y is of discrete type or a closed and bounded interval, if Y is of continuous
type.

Quite frequently, the cases do arise, when the exact function describing the
probability distribution of a specified type (i.e. an user-given type) is an open
question. In that case, the probability distribution fitting to the particular
situation under consideration needs to be constructed by certain rules and
principles. This construction technique needs to be specifically defined by
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mathematical means and implemented for practical needs. The formulation
and the implementation of this construction technique is precisely the aim of
this dissertation. However, the implementation is restricted to the commonly
known cases, namely uniform, monotonic and uni-extremal cases, which shall
be elaborated in due course.

This construction technique necessitates an amount of information about
the probability distribution of the specified type. So, we now proceed to
elaborate, what we do exactly mean by the amount of information necessary
to construct the probability distribution of the (user) specified type.

1.3 The needed quantitative information

In every given situation, the user has to specify the type of the probability
distribution he needs for his requirements. For eg., if he needs to play or
conduct a game of dice or any game of pure chances, he needs a constant
discrete probability distribution; if he needs to draw conclusions out of a
result of a random experiment by performing a specified finite number of
Bernoulli trials (i.e. each trial has a fixed probability of success), he needs a
uni-modal discrete probability distribution, etc. Coincidentally, this particular
uni-modal probability distribution is known to be the binomial distribution.

However, in each given situation, the user may or may not be provided with
a probability distribution that is conventionally known. So, in case the prob-
ability distribution is not available at hand, it needs to be constructed by
means of the available quantitative knowledge describing the situation.

This very concept of available quantitative knowledge is interpreted
mathematically as the quantitative information needed to determine
the desired probability distribution of Y uniquely. As a matter of fact, even
if the function specifying the probability distribution of Y in the given sit-
uation under consideration is not known, the distributional moments of
Y are always empirically estimable and therefore the utilization of these
moments as the provided quantitative information for the probabil-
ity distribution is imaginable. For this, we need a good amount of work to
perform.

Moreover, it is well understood that the point estimation procedures or inter-
val estimation procedures for estimating the parameters in form of moments
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are relatively simpler in comparison to the estimation of parameters in
other forms (i.e. in forms different from the moment-form of parameters).

The theoretical probability distributions are conventionally known to be
based on certain mathematical rules governing the laws of proba-
bility only. Unlike the conventional theoretical probability distributions, for
our practical purposes,

• the selection of the situation oriented need based probability distribu-
tion is based on the minimum information principle.

• the construction (development) of the selected situation oriented need
based probability distribution is strictly based on empirical experi-
ences. One of the reasons for this is, that the estimation procedures
for estimating the moments are principally based on the empirical
experimental results.

Let us denote the existing but generally unknown situation oriented
need based probability distribution of Y having the support XY by

fY (y), y ∈ XY (1.1)

The function fY (y) is the probability mass function or the probability
density function, according as Y is discrete or continuous.

Purely theoretically speaking, the complexity of a probability distri-
bution of a specified type is not necessarily fixed and is ascribed to the
amount of quantitative information4. So, from the theoretical point of
view, if the amount of information necessary to construct a probability distri-
bution of the desired (specified) type has to be reduced to minimum, then the
complexity of the probability distribution of specified type should also turn
out to be minimum. This minimum amount of information can be defined by
the minimum number of necessary distributional moments (referred
to the page 167 of [54]) for the construction of the probability distribution
of a specified type, in addition to the preassigned support of the probability
distribution.

It has to be carefully noted that the utilization of the amount of information
more than the minimum necessary information means an increase in accuracy

4From now on, for the sake of simplicity, we shall term the quantitative information

simply as information
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from the theoretical point of view only. But, from the practical point
of view, it is rather harmful, simply because only the estimated values
(not the exact theoretical actual values) of the moments of Y are taken
into consideration. Moreover, this too would mean a significant increase in
amount of programming work.

Keeping this in mind, we shall engage ourselves in determining (construct-
ing) the probability distribution of the specified type with subject to the
minimum information needed for the construction. The construction of
the required probability distribution of specified type is the basic aim of this
thesis.

However, every required probability distribution does not have the same
degree of complexity. So, this aim necessitates an intensive study of the
degree of complexity of each type of probability distribution that can be
specified by the user, especially those types that are of frequent use.

1.4 The preliminary idea of the minimum in-

formation principle

Before we go ahead, we need to briefly state that the support of the proba-
bility distribution of Y and the moments of Y are denoted by XY and µ

(i)
Y ,

i ∈ N respectively.

The constructed probability distribution of the specified type with the help of
the minimum possible information is called the minimum information prob-
ability distribution and the principle of construction involved in this regard,
is termed as the minimum information principle. This is to say that
under the consideration of the family of all the probability distributions with
bounded support, the minimum information principle says that in a given
situation if a probability distribution of a particular type is needed, then,
only that particular member of the family has to be identified which needs
the minimum quantitative information.

This idea of minimum information for the selection of a specified type of
probability distribution of Y is sketched as follows:

If the specified type of probability distribution is
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1. uniform (constant), then the knowledge of XY is needed as the infor-
mation at the very least.

2. monotone, then the knowledge of XY and that of the first moment,
namely µ

(1)
Y , is needed as the information at the very least.

3. uni-extremal, then the knowledge of XY and that of the first two mo-
ments, namely µ

(1)
Y and µ

(2)
Y , is needed as the information at the very

least.

4. (m − 1)- extremal (m ∈ N, m > 2), i.e. multi-extremal with m − 1
extremes, then the knowledge of XY and that of the first m moments,
namely µ

(1)
Y , µ

(2)
Y , . . . , µ

(m)
Y , is need as the information at the very least.

Basically, the minimum information principle says that exclusively the key
moments 5 are utilized for the construction of the probability distribution
of the user-specified type. The concept key moments means the moments of
dire necessity. This is to say that for a probability distribution with m − 1
extremes (m ≥ 1), the key moments are µ

(1)
Y , µ

(2)
Y , . . . , µ

(m)
Y , whereas the other

moments µ
(m+1)
Y , µ

(m+2)
Y , . . . are the non-key moments.

Now, the next question arises, how to select the probability distribution of Y
of a specified type with subject to the given XY and the moments of Y math-
ematically? The answer to this question is, the selection of that particular
probability distribution of Y with subject to the given XY and, if necessary,
the moments µ

(1)
Y , µ

(2)
Y , . . . , µ

(m)
Y , m ≥ 1, so that the probability distribution

has the maximum entropy. In other words, this selection is based on the
maximum entropy principle. Referring to the page 1 of [25], this prin-
ciple states that, with subject to a given set of probability distributions of
Y , each element of which is consistent with the specified information
about the probability distribution ( for eg. the information stating pre-

determinately the support XY and probably the moments µ
(1)
Y , µ

(2)
Y , . . . , µ

(m)
Y ,

m ≥ 1 of the probability distribution of Y of necessity), the user selects that
particular probability distribution of Y from the set that has the maximum
entropy.

5The German translation of key moments is Schlüsselmomente, the concept of min-
imum information in German says ”nur die notwendigste Anzahl der Momente sind
erforderlich”
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Notably, the case of m = 0 is included here. The means: The information
about the probability distribution includes the support XY only, i.e. not
the moments of Y . In that case, this information says that the probability
distribution of Y is exclusively uniform.

As a matter of fact, referring to the system of equations (4.2), it has been
duly shown in the subsection 3.3.1 that, with subject to the given XY and
µ

(1)
Y , µ

(2)
Y , . . . , µ

(m)
Y , m ≥ 1 in form of the information about the probability

distribution of Y ,

• for a discrete Y , the probability mass function of Y , namely

fY (yj) = PY ({yj}) = eλ0+λ1yj+λ2y2
j +...+λmym

j , j ∈ {1, 2, . . . , N} (1.2)

has the maximum entropy, where XY = {y1, y2, . . . , yN} and
a = y1 < y2 < . . . < yN = b

• for a continuous Y , the probability density function of Y , namely

fY (y) = eλ0+λ1y+λ2y2+...+λmym

, y ∈ XY (1.3)

has the maximum entropy, where XY = [a, b] and this means that the
resulting value of Y is unlikely to fall below a and to exceed b.

and in both discrete and continuous cases, the aforesaid representations of
both PY ({yj}) and fY (y) can be determined uniquely (referred to the
section 4.3) under certain existence conditions (referred to the section
4.4). These existence conditions involve the moments in both the discrete
and continuous cases of Y , but involve the support XY in discrete cases of Y
only.

Because of this very uniqueness of these aforesaid representations, namely
(1.2) for a discrete Y and (1.3) for a continuous Y , we are now in a position

to state that the moments of Y , namely µ
(1)
Y , µ

(2)
Y , . . . , µ

(m)
Y , can be treated as

the parameters of the probability distribution of Y .

Therefore, we need to define a set containing such parameters in a way that
each of its elements of it determines a probability distribution of Y uniquely.
This set may be termed as the parameter space. In the language of stochas-
tic science, this parameter space is called the ignorance space, symbolized
by DY . This is basically to say that, each element of the set DY together with
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the preassigned support XY of the probability distribution must determine a
particular member of the family of probability distributions of Y .

At this point, we need to introduce the mathematical structure Bernoulli
space BY,dY

describing a real natural phenomenon of interest (can be referred
to the page 155 of [54] as well as to the e-learning programme [38]). The
inherent randomness present in any real natural phenomenon is described by
the random structure of the random variable Y , the key parameters of the
probability distribution of Y being given by dY . The mathematical structural
representation of dY shall be described shortly.

But, for this, we need to state preliminarily in advance, that, since we have
already stated that the key moments of Y can be treated as the parame-
ters of the probability distribution of Y , dY is a representation of the key
moments of Y . So, we denote the constructed probability distribution (i.e.
the approximating probability distribution) of Y with the help of the key
parameters (i.e. key moments) duly defined by dY as

fY |{dY }(y), y ∈ XY (1.4)

the support of the probability distribution of Y being denoted by XY .

In a simple language, the probability distribution of Y given by (1.4) is the
approximating probability distribution of the actual, existing but unknown
probability distribution of Y given by (1.1).

The reason for the usage of the set notation for denoting the probability
distribution of Y as dependent on dY by putting {dY } instead of putting dY

in the representation (1.4) shall be briefed shortly.

The probability distribution of Y given by (1.4) stands for both the discrete
and continuous cases of Y . However, if we intend to be specific about the
discrete case of Y , just for a better degree of clarity, we shall denote the
probability mass function of Y as

PY |{dY }({y}), y ∈ XY (1.5)

With this, we proceed to introduce the Bernoulli space.
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1.5 The Bernoulli space

The stochastic model Bernoulli space, symbolized by BY,dY
, (referred to the

page 155 of [54]) is a three tuple 6 mathematical algebraic structure. This
BY,dY

pictures the unknownness of dY (i.e. the ignorance about dY ) as
well as the randomness of the random variable Y , this randomness being
controlled largely by dY .

This randomness of Y is described by the probability distribution of Y and
is therefore of basic interest. So, our objective shall be to construct this
situation oriented need based probability distribution of Y by means of
our available information.

The first, the second and the third element of BY,dY
are termed as the igno-

rance space (symbolized by DY ), the variability function (symbolized by

XY

(
D(0)

Y

)
) and the random structure function (symbolized by P

(
D(0)

Y

)
)

respectively, such that

• D(0)
Y denotes any subset of DY i.e. D(0)

Y ⊆ DY .

• both the variability function and the random structure function are the
functions of the subsets of DY , i.e. of D(0)

Y

The Bernoulli space is thereby structurally defined by

BY,dY
=

(
DY ,XY

(
D(0)

Y

)
,P

(
D(0)

Y

))
(1.6)

where dY denotes any element of DY , viz. dY ∈ DY , or in other words,
{dY } ⊆ DY .

Here, the domain of definition of both the variability function XY

(
D(0)

Y

)

and the random structure function P
(
D(0)

Y

)
is a suitably chosen system

of subsets of DY denoted by TDY
(DY ). The choice of TDY

(DY ) depends
exclusively on the situation under consideration.

Now, let us define the three elements of the Bernoulli Space (with reference
to the current magister e-learning programme [38]) briefly as follows:

6A tuple is a mathematical structure, which is a ordered list of certain elements.
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Definition 1.5.1 (The ignorance space (or the parameter space).
The ignorance space DY consists of all the potential values of dY , which
cannot be excluded at a given point of time.

Definition 1.5.2 (The variability function). The variability function

XY

(
D(0)

Y

)
has an argument D(0)

Y ∈ TDY
(DY ) (for a particular D(0)

Y ⊆ DY )

and the codomain as a compact set of all the possible empirical values of
Y , is described by

XY : TDY
(DY ) →

{
y

∣∣∣∣y ∈
[

min
dY ∈DY

XY (DY ) , max
dY ∈DY

XY (DY )

]
, y ∈ XY (DY )

}

(1.7)

and in fact

XY

(
D(0)

Y

)
=

⋃

dY ∈D(0)
Y

XY ({dY }) (1.8)

such that XY ({dY }) is the compact support of the probability distribution
of Y ( this compact support is a finite set in case of a discrete Y or a compact
interval in case of a continuous Y ).

In particular, the support of the probability distribution of Y defined by an
element dY (dY ∈ DY ) denoted by XY ({dY }) is thereby given by

XY ({dY }) = {y |y ∈ [minXY ({dY }) , maxXY ({dY })] , y ∈ XY ({dY })}
(1.9)

(i.e XY ({dY }) = the range of variability of Y determined by dY )

Definition 1.5.3 (The random structure function). The random struc-

ture function P
(
D(0)

Y

)
has an argument D(0)

Y ∈ TDY
(DY ) ( for a particular

D(0)
Y ⊆ DY ) and the codomain as a family P of all the possible expo-

nential polynomial probability distributions of Y that may be brought
under consideration, is described by

P : TDY
(DY ) → P (1.10)

and in fact

P
(
D(0)

Y

)
=

∑

dY ∈D(0)
Y

fY |{dY }(y)

∣∣∣D(0)
Y

∣∣∣
, y ∈ XY

(
D(0)

Y

)
(1.11)
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such that
∣∣∣D(0)

Y

∣∣∣ is the cardinality of the set D(0)
Y .

In particular, the probability distribution of Y defined by an element
dY (dY ∈ DY ) (i.e the probability mass function or the probability
density function of Y , according as Y is discrete or continuous) denoted
by fY |{dY }(y) is thereby defined by

P({dY }) = fY |{dY }(y), y ∈ XY ({dY }) (1.12)

having the support XY ({dY }).

As far as the relevancy of this dissertation is concerned, we shall restrict
our discussions to singleton subsets of TDY

(DY ) only. In other words, we

shall restrict our discussions to D(0)
Y = {dY } only. The very fact that the

subset D(0)
Y of the ignorance space DY is an argument of both the variability

function and the random structure function therefore clarifies, why we use
the notation {dY } instead of simple dY .

As the next step, we shall proceed to discuss the parameter space (or equiv-
alently the ignorance space) elaborately.

1.6 The parameter space and its elements

As a matter of fact, the parameters must be deterministically specified to
determine a probability distribution of a specified type uniquely. In other
words, the word deterministic nature of a parameter means, the paramet-
ric value under consideration is either specifically known or can be suitably
estimated by conventional estimation procedures. Therefore, since the pa-
rameters are needed to be of deterministic nature, the finite collection of
all the necessary parameters to construct a probability distribution can be
termed as the deterministic variable.

Now, let us take an example of the binomial distribution followed by the
discrete random variable Y , where the distributional parameters are either
known in advance or estimated to be N and p. Here, N and p determine
the binomial distribution of Y uniquely. Moreover, the first two moments of
the binomial distribution, namely Np and Np(1− p) + (Np)2 determine the
binomial distribution of Y uniquely as well. It is therefore absolutely clear
that any empirically estimated values of µ

(1)
Y and µ

(2)
Y determine the binomial
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distribution uniquely and therefore the deterministic variable specifying the
probability distribution (namely the binomial distribution) of Y , which can

be symbolized as dY , can be presented as dY = (µ
(1)
Y , µ

(2)
Y ).

However, in case of a binomial distribution, which is uni- modal by nature,
it remains to be unforgettably stated that this distribution is uniquely de-
terminable with the help of the support XY = {0, 1, . . . , N} and µ

(1)
Y only,

i.e. even by ignoring the µ
(2)
Y . This is a pure and simple coincidence. It

must be clearly stated that, in general, the construction of a uni-modal
probability distribution is not possible with the help of XY and µ

(1)
Y only,

but an additional need of µ
(2)
Y is absolutely necessary. This is precisely, what

the minimum information principle says.

Moreover, a very important careful observation has to be made here (i.e.
in this case of binomial distribution). It can be easily seen that XY (being
dependent on N) is dependent on dY and in fact, this dependency can be
well described by the following inequalities:

• 0 ≤ µ
(1)
Y ≤ N

•
(
µ

(1)
Y

)2

≤ µ
(2)
Y ≤ Nµ

(1)
Y

In general, it shall be shown in due course, (referred to (5.34) and (5.35))
that

• a ≤ µ
(1)
Y ≤ b

•
(
µ

(1)
Y

)2

≤ µ
(2)
Y ≤ (a + b)µ

(1)
Y − ab

• every moment µ
(i)
Y , i ∈ N is restricted by the values of the moments

µ
(1)
Y , µ

(2)
Y , . . . , µ

(i−1)
Y (of lower order) as well as by the values of a and b

and thus the general expression of dY , which defines the probability distri-
bution of Y uniquely, is given by

dY = (µ
(1)
Y , µ

(2)
Y , . . . , µ

(m)
Y ) (1.13)

This aforesaid dependency enables to express the support XY as a function
of dY , namely XY = XY ({dY }) (referred to the established definition (1.9)).
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Now, by having a look at the expressions (1.2) and (1.3), we can well see
that λ1, λ2, . . . , λm are the m parameters of a probability distribution. In
that case, the quantity λ, being defined by

λ = (λ1, λ2, . . . , λm),

determines the probability distribution of Y in each of the cases (1.2) and
(1.3) uniquely, provided the support XY is known too.

Importantly, in both the cases of (1.2) and (1.3), λ0 is uniquely determinable
by λ1, λ2, . . . , λm

This enables us to conclude that with subject to a given XY , either dY or
λ determine the probability distribution of Y uniquely. In other words, the
representations given by dY and λ are basically equivalent.

Therefore, our basic task of this dissertation is formulated in the following
way:

• An element of the ignorance space (denoted by dY ) is empirically
known and the variability function XY = XY ({dY }) is chosen ac-
cordingly and appropriately as per (1.9).

• Immediately after this, by solving a system of simultaneous nonlinear
equations for λ either analytically or numerically, thereby giving the
desired probability distribution of Y , namely the random structure
function fY |{dY }, y ∈ XY ({dY }) as per (1.12).

The numerical computation of the desired random structure
functions by numerical mathematical methods had been simply
a backbreaking amount of programming work for me.

So, as it is clear that λ (i.e. each λi, i ∈ {1, 2, . . . ,m}) is dependent on dY ,
we can express our λ in the following way:

λ(dY ) = (λ1(dY ), λ2(dY ), . . . , λm(dY )) (1.14)

Therefore, since every empirical value of dY is decisively important, we need
to find out the complete set containing the different possible empirical val-
ues of dY , simply for the purpose of knowing, which values of dY are at
all expected or imaginable. This set is termed as parameter space (or
ignorance space), symbolized by DY .
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In other words, the variable, whose variability range is DY , is denoted by dY .
So, we term dY as the deterministic variable, each empirical value of which
determines a particular probability distribution of Y with subject to the
additionally empirically known XY ({dY }). Of course, dY can be equivalently
expressed in other forms as well.

In a plain and simple language, since the representation (1.13) determines the
representation (1.14) uniquely for the purpose of determining the probability
mass function of Y given by (1.2) (or the probability density function of
Y given by (1.3)), the representation (1.14), namely λ, is termed as the
distribution related representation of the deterministic variable,
whereas the equivalent representation (1.13), namely dY , is termed as the
moments related representation of the deterministic variable.

Thus, if we intend to know the set of all possible probability distributions of
Y , we need to know the DY . Of course, if we find that some of the probability
distributions of Y defined by dY ∈ DY are absurd or useless, then we can
exclude such elements of DY .

Before ending this section, we would like to state another important thing
unforgettably. We have already mentioned that every moment µ

(i)
Y of Y

with i ∈ {1, 2, . . . ,m} of Y is restricted by upper and lower bounds and
therefore cannot assume any arbitrary real values. This means that the
parameter space DY is different from R

m, each element of it, being denoted
by dY , is described by the representation (1.13).

With this, we proceed to introduce the definition of the minimum information
principle formally, but briefly.

1.7 The minimum information selection prin-

ciple

In this section we shall define the minimum information selection principle
(referred to the pages from 167 to 173 of [54]). The elaboration of the clearer
meaning of the concept of minimum information shall be carried out
in the section 3.5.

The selection of an appropriate probability distribution is to be performed
particularly on the basis of empirical experiences. As we have already dis-
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cussed, the type of the selected probability distribution is ascribed to the
number of extremes (= m − 1, m ≥ 1) of the probability distribution of
Y (i.e. either of the probability mass function of a discrete Y or of the
probability density function of a continuous Y ).

The minimum information selection principle for selecting a probability dis-
tribution of Y therefore says the following:

1. The family of constant probability distributions is denoted by
P0. The random structure function P : TDY

(DY ) → P0 having the
codomain P0 is nothing but a plain and simple constant function.

That is, the value of the function fY |{dY }(y) is constant throughout the
range XY ({dY }), where dY = () does not contain any moment of Y .

The principle says that, for the purpose of constructing a constant
probability distribution of Y , the exact available information must read:
the knowledge of XY ({dY }) only and not of any moments of Y .

2. The family of monotone probability distributions is denoted by
P1. The random structure function P : TDY

(DY ) → P1 having the
codomain P1 is given by

P({dY }) = fY |{dY }(y) = eλ0+λ1y, y ∈ XY ({dY }) (1.15)

such that dY = (µ
(1)
Y ).

The principle says that, for the purpose of constructing a monotone
probability distribution of Y , the exact available information must read:
the knowledge of XY ({dY }) and of µ

(1)
Y .

3. The family of uni-extremal probability distributions is denoted
by P2. The random structure function P : TDY

(DY ) → P2 having the
codomain P2 is given by

P({dY }) = fY |{dY }(y) = eλ0+λ1y+λ2y2

, y ∈ XY ({dY }) (1.16)

such that dY = (µ
(1)
Y , µ

(2)
Y ).

The principle says that, for the purpose of constructing a uni-extremal
probability distribution of Y , the exact available information must read:
the knowledge of XY ({dY }) and of µ

(1)
Y and µ

(2)
Y .
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4. The family of multi-extremal probability distributions is denoted
by Pm for m − 1 extremes, with m − 1 ≥ 2 (i.e. m ≥ 3). The random
structure function P : TDY

(DY ) → Pm having the codomain Pm is given
by

P({dY }) = fY |{dY }(y) = eλ0+λ1y+λ2y2+...+λmym

, y ∈ XY ({dY }) (1.17)

such that dY = (µ
(1)
Y , µ

(2)
Y , . . . , µ

(m)
Y ).

The principle says that, for the purpose of constructing a multi-extremal
the probability distribution of Y , the exact available information must
read: the knowledge of XY ({dY }) and of µ

(1)
Y , µ

(2)
Y , . . . , µ

(m)
Y .

1.8 The formulation of the targeted aim

The actual targeted aim of this dissertation is to develop efficient software
programs by means of numerical mathematical methods to compute
the following:

1. Minimum information monotone probability distributions of Y stated
by (1.15), both in discrete and continuous cases of Y .

i.e. λ(dY ) = (λ1(dY )) is computed with subject to the predetermined

dY = (µ
(1)
Y ) as well as the predetermined XY ({dY })

2. Minimum information uni-extremal probability distributions of Y
stated by (1.16), both in discrete and continuous cases of Y .

i.e. λ(dY ) = (λ1(dY ), λ2(dY )) is computed with subject to the prede-

termined dY = (µ
(1)
Y , µ

(2)
Y ) as well as the predetermined XY ({dY })

and by using the object oriented programming concept. The computed
monotone as well as the uni- extremal probability distributions of Y are
used for the development of certain stochastic procedures, especially the
prediction procedures.

In other words, the computations of random structure functions P({dY })
in both monotone and uni- extremal cases in form of λ(dY ) defined by
(1.14) for m ∈ {1, 2} is the targeted aim of this thesis.
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A practical situation demanding the necessity of a prediction procedure,
namely the computation of an optimal prediction interval, has already
been exemplified right at the beginning of this thesis work.

My programming work regards the programming of numerical mathematical
methods for solving systems of simultaneous equations. The well known
numerical solution procedure for solving systems of simultaneous equations is
Newton Raphson procedure. Usage of the Newton Raphson procedure
necessitates extreme skillful programming techniques. In other
words, if the programmer is not skilled enough to use the Newton
Raphson procedure, he must avoid using it, otherwise he shall do
more harm than good. As a skilled programmer, I have used the
Newton Raphson procedure to big successes and it had meant a
backbreaking amount of programming work for me. The skilful
programming for to make the Newton Raphson procedure find the
numerical solutions is a significantly major part of this dissertation.

The usage of multi- extremal probability distributions of Y stated by (1.17)
have practically no relevance in the field of stochastic science and therefore
have no imminent importance in developing any stochastic procedure. There-
fore, discussions about multi- extremal probability distributions are carried
out briefly, i.e. without any elaborations or any practical implementations.

Of course, a sound character analysis of constant, monotone (in forms of
either (1.15) or (1.16)) and uni- extremal (in form of (1.16)) probability dis-
tributions of Y are eminently important from the stochastic point of view.
The probability distributions of Y of monotone types (in form exclusively of
(1.15)) and of uni- extremal types (in form exclusively of (1.16))) are therefore
termed as standard minimum information probability distributions, whose
characteristic properties are intensively analyzed in the chapter 6. Trivially,
a (standard) minimum information constant probability distribution of Y is
nothing different from an usual constant probability distribution of Y .

This aforesaid character analysis is also an aim of my dissertation next to
the aforesaid targeted aim of my dissertation, which principally deals with
the role of the first moment or the first two moments in characterizing
the types of the standard minimum information probability distributions.

Lastly, for the sake of completeness of my dissertation, we should justify the
usage of the exponential polynomial probability distributions of Y ( stated in
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(1.2) and (1.3) ) as approximating probability distributions. This justification
necessitates the discussions or presentations of certain essential properties of
the exponential polynomial probability distributions.

One of the most important properties of an exponential polynomial proba-
bility distribution of Y (referred to the representations (1.2) and (1.3)) for
any m ∈ N is its unique existence with subject to the provided available
information in form of dY and XY ({dY }) (elaborated in the sections 4.3 and
4.4). Other important properties of the same are discussed too.

In course of our discussions about the general properties of exponential poly-
nomial probability distributions of Y , we shall use the notation P giving the
family of all the exponential polynomial distributions of Y .

Before we draw this chapter to a close, let us mention certain important
points to be noted:

• Since dY determines λ(dY ) uniquely, dY and λ(dY ) are equivalent to
each other and the random structure function P(dY ) is therefore a
function of dY or equivalently of λ(dY ).

• Because of the very fact that dY determines a probability distribution
of Y uniquely, for the sake of higher degree of clarity, we could think
of writing Y as Y |{dY }. The same is the reason, for which we could
think of writing XY ({dY }) instead of simply XY .

However, if the notations are completely unambiguous, for the sake of
simplicity, we shall use the notations Y and XY .

• Generally, an empirically estimated value of the moment µ
(i)
Y = E[Y i],

i ∈ {1, 2, . . . ,m} has to be denoted by µ̂
(i)
Y . In the same way, an

empirically estimated value of the variance of Y denoted by σ2
Y =

E[(Y − µ
(1)
Y )2] has to be principally denoted by σ̂

(1)
Y . However, for

the sake of simplicity, we shall omit the hat symbol ̂ in course of
our discussions, because the meanings in individual cases, which are
discussed in this thesis, are completely unambiguous.

Referring to the skillful usage of the Newton Raphson procedure, let me give
an important statement pertaining to what has been possibly performed by
a particular group of three authors. As a matter of fact, the authors of
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[31] made only an effort in making use of the Newton Raphson procedure,
which has been termed by them as a hybrid approach. This programming
effort is rather wobble and is noway near the proper skillful usage of the
Newton Raphson procedure. This wobbliness is rather grave, because the
authors of [31] (in accordance with their works published in their joint paper)
have completely ignored giving the percentage volume of the input space of
moments that at all takes care of delivering the program-outputs. Not only
this, they have completely ignored taking care of the following basics of
programming techniques:

1. The running problems of the software-programm arising out of overflow
or underflow errors.

2. The convergence of the Newton Raphson procedure and the conditions
for the convergence of the same.

As the immediate subsequent step, we shall discuss the third element of the
Bernoulli space, namely the random structure function.



Chapter 2

The random structure function
P

2.1 The random variable Y

In probability theory, the random variables are defined as measurable func-
tions on Ω and three types of random variables are distinguished:

1. Type 1: Random variable Y of discrete type, characterized by the
fact, that the range of variability XY is denumerable. Equivalently, the
distribution function is a step function.

2. Type 2: Random variables Y of continuous type, characterized by
the fact, that the range of variability XY is non-denumerable and the
distribution function has the following representation:

FY (y) =

y∫

−∞

fY (t)dt (2.1)

Equivalently, the distribution function is absolutely continuous.

3. Type 3: Random variables Y of degenerated type, characterized by
the fact, that the range of variability XY is non-denumerable, but the
distribution function is not absolutely continuous.

However, our discussions shall be principally confined to the types 1 and 2
only.

35
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2.2 The random structure function

For analyzing a situation described by a pair of variables (Y, dY ) the selection
of the following are necessary at the very least:

• The parameter space DY , which contains all the potential empirical
values of dY that cannot be excluded.

• The range of variability XY ({dY }) of Y , which is imaged by every
singleton subset of DY denoted by {dY }.

The selection of the random structure function P is important for studying
the randomness of Y . The selection must be based on some knowledge
about DY having an influence on the random structure of Y or more precisely
said, about the underlying process that produces the values of Y in form of
outcomes.

Though P can be well defined on a suitably chosen system of subsets of
DY denoted by TDY

(DY ), as we have already mentioned, we shall confine
our discussions to singleton subsets of DY denoted by {dY } ⊂ DY only, i.e.
TDY

(DY ) = {{dY }|dY ∈ DY }. This singleton subset {dY } can also be termed
as an initial condition (or a boundary condition). So, we restate here,
the random structure function P has TDY

(DY ) as its domain of definition
and a particular family of the probability distributions of Y denoted by Pm as
its codomain. We shall elaborate the standard cases of Pm for m ∈ {0, 1, 2}
in this chapter itself.

Definition 2.2.1 (Symbolic notation of the random structure func-
tion particularly for a discrete Y ). If Y happens to be discrete, corre-
sponding to a given argument {dY }, the image of P described by the notation
P({dY }) for dY ∈ DY is a discrete probability measure:

P({dY }) = PY |{dY } (2.2)

where any probability measure PY |{dY } is simply defined by the corresponding
probability mass function fY |{dY }:

fY |{dY }(y) = PY |{dY }({y}), y ∈ XY ({dY }) (2.3)

such that the range of variability XY ({dY }) of Y is a set of finite number
of discrete elements only.
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Definition 2.2.2 (Symbolic notation of the random structure func-
tion particularly for a continuous Y ). If Y is continuous, the above
relation (2.2) can be simply redefined by the probability density fY |{dY } as

P({dY }) = fY |{dY } (2.4)

and (2.3) simply needs to be remodified as

fY |{dY }(y), y ∈ XY ({dY }) (2.5)

such that the variability range XY ({dY }) is simply a closed and bounded
interval.

From now on, for the sake of simplicity, let us restate the following for our
future references: the notation fY |{dY }(y) shall stand for both probability
mass function (if Y happens to be discrete) and probability density
function (if Y happens to be continuous). But, the notation PY |{dY }({y})
shall stand exclusively for a probability mass function of a discrete Y .

With reference to [54], the set of all probability functions is divided into a set
of disjoint families of probability describing functions of Y . (A probability
describing function stands for either a probability mass function or a
probability density function).

Thus, selecting an appropriate random structure function is equivalent to the
selection of an appropriate probability describing function for Y with subject
to a given dY . This task will be done in two steps. Firstly, a suitable family
of probability describing functions is selected and secondly a suitable family
member is determined.
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2.3 Partitioning of the set of probability de-

scribing functions

In the following, the discrete probability distributions with finite sup-
ports and the continuous probability distributions with closed and
bounded supports will be investigated. Both these discrete and the con-
tinuous types, being symbolized by fY |{dY }(y), are the functions of y for a
given choice of dY .

Definition 2.3.1 (Basic difference between the probability distribu-
tions of discrete and of continuous types). Both these discrete and the
continuous types are basically distinguished by their supports and in fact,

• in discrete cases,

the support is given by XY ({dY }) = {y1, y2, . . . , yN}. Without any loss
of generality, we assume y1 < y2 < . . . < yN and denote the probability
mass function of Y by fY |{dY }(y) = PY |{dY }({yj}) > 0, j = 1, 2, . . . , N .

• in continuous cases,

the support is given by XY ({dY }) = {y| −∞ < a ≤ y ≤ b < ∞} and
denote the probability density function of Y by fY |{dY }(y) > 0.

Definition 2.3.2 (Partitioning of all the probability distributions).
P being the set of all probability distributions of Y with compact supports
(both in cases for discrete and continuous), referring to page 166 of [54], the
following partition in disjoint families is considered:

• P0 is the set of all probability distributions, which represents uniform
(or constant) probability distributions.

•
P \ P0 =

∞⋃

k=1

Pk (2.6)

where Pk is the set of all probability distributions with exactly k − 1
relative extremal points of the function fY |{dY }(y) and all the elements
of this set are qualitatively of the same type.
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Remark 2.3.1 (The mode of partitioning). The above mode of partition-
ing says that, the P represents the set of uniform probability distributions,
monotonic probability distributions (i.e. k = 1) as well as the probability
distributions with one or more relative extremal points (i.e. k > 1) of
fY |{dY }(y).

Remark 2.3.2 (Disjoint partitioning). Clearly, (2.6) represents a disjoint
partition of the set of probability distributions. Moreover, the classes P0, P1,
P2, . . . are ordered according to the complexity of the the random structure,
where the complexity is measured by the value of k: higher is the value of
k, larger is the complexity of the random structure.

2.4 Efficiency of the exponential polynomial

distribution

As we have already mentioned, a suitably chosen exponential polynomial
probability distribution has to be designed to approximate the unknown
but existing probability distribution in a given situation. It is there-
fore extremely important for us to know, whether the exponential polynomial
probability distribution is efficient enough to approximate this unknown but
existing probability distribution. In plain and simple words, the word effi-
ciency in this regard is ascribed to the ability of the exponential polynomial
probability distribution to approximate this unknown but existing probabil-
ity distribution in the situation.

This efficiency adds to the justification of using the exponential polyno-
mial probability distribution as the random structure function.

This situation oriented need based probability distribution of Y described by
the probability describing function fY (y), y ∈ XY (as stated in (1.1)) may
be in the discrete form or even in the continuous form.

We shall show in this very section, that the exponential polynomial distribu-
tion approximates both the discrete and the continuous form of this situa-
tional oriented need based probability distribution well enough. In fact, the
exponential polynomial distribution coincides with the discrete form
completely and approximates the continuous form to any desired
predetermined degree of accuracy.
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Realistically speaking, in both discrete and continuous cases of Y , we do
not have any reason to assume that fY (y) = 0 for some y ∈ XY . In fact,
the zero values of fY (y) are of no interest at all and therefore can be kept
well out of consideration. Moreover, in reality, we do not have any reason to
assume that fY (y) could be discontinuous (in continuous cases of Y ) either.
So, keeping this in mind, we shall proceed.

With subject to the following conditional restrictions:

• If fY (y) describes a probability mass function defined on a finite set
XY of values of y, the description of fY (y) is restricted to fY (y) > 0
without violation of any basic rule for describing a probability distri-
bution

• If fY (y) describes a probability density function defined on a compact
interval XY , the description of fY (y) is restricted to its continuity as
well as fY (y) > 0 throughout that interval

with regard to the page 163 of [54], fY (y) is determinable or approxima-
tively expressible by a certain finite number of moments. Exactly in
this regard, fY (y) is expressible in the following form:

fY (y) ≅ e

n∑
i=0

λiy
i

(2.7)

such that

• in the discrete case, n = N − 1, where N is the number of elements
of the set of values of y and the representation is exact

• in the continuous case, the representation can be made arbitrarily
accurate by adjusting the value of n

For both discrete and continuous cases of Y , since for every fY (y) > 0,
the logarithmic expression log (fY (y)) is always a real function of y, we can
always rewrite the expression of fY (y) in that case in the following way

fY (y) = elog(fY (y))

= eg(y)
(2.8)

Now, let us discuss the discrete and the continuous cases one by one in
the subsequent subsections.
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2.4.1 Exact representation of fY (y) for the discrete case

Proposition 2.4.1. Let XY = {y1, y2, . . . , yN}, where y1 < y2 < . . . < yN .

In this discrete case of fY (y), we shall go only by fY (y) > 0.

Then, in that case, fY (y), y ∈ XY is representable as

fY (yj) = e

N−1∑
i=0

λiy
i
j

, j = 1, 2, . . . , N (2.9)

Proof of the proposition 2.4.1. By using (2.8), we get a series of N real
values as follows:

g(yj) = log (fY (yj)) , j = 1, 2, . . . , N (2.10)

with the help of which, we can always construct a polynomial of degree N−1
given by

g(yj) =
N−1∑

i=0

λiy
i
j, j = 1, 2, . . . , N (2.11)

where the coefficients λi, i = 0, 1, 2, . . . , N−1 of the integral powers of yj, for
j = 1, 2, . . . , N respectively are uniquely determined by solving the system of
N simultaneous linear equations (2.11) in λ0, λ1, λ2, . . . , λN−1 with subject to
the known values of g(yj), j = 1, 2, . . . , N by inverting the non-singular
Vandermonde matrix stated immediately below by the following working
rule:




λ0

λ1

λ2

...

λN−1




=




1 y1 y2
1 . . . yN−1

1

1 y2 y2
2 . . . yN−1

2

1 y3 y2
3 . . . yN−1

3

...
...

...
. . .

...

1 yN y2
N . . . yN−1

N




−1 


g(y1)

g(y2)

g(y3)

...

g(yN)




(2.12)

Therefore, by combining (2.8) (2.10) and (2.11), we get the uniquely deter-
mined representation of fY (y) as

fY (yj) = e

N−1∑
i=0

λiy
i
j

, j = 1, 2, . . . , N (2.13)

and hence our proposition 2.4.1 gets proven.
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Remark 2.4.1 (Representation for the discrete case is exact). The

probability mass function e

N−1∑
i=0

λiy
i
j

, which represents the existing but un-
known probability mass function fY (yj), is the exact representation (in the
discrete case) of fY (yj).

2.4.2 Approximative representation of fY (y) for the con-
tinuous case

At first, let us state the Weierstrass’s theorem on approximations by
polynomials.

Theorem 2.4.1 (Weierstrass’s theorem on approximations by poly-
nomials). Every continuous function g(y) defined in a closed and bounded
interval [a, b] can be uniformly approximated in [a, b] by a polynomial.
That is, for any arbitrarily preassigned positive number ǫ > 0, there exists a
polynomial Pǫ(y), such that |g(y) − Pǫ(y)| < ǫ for every y ∈ [a, b].

The formal analytical proof of the theorem 2.4.1 by means of the usage of
the Fourier series is well stated and proved in the pages 446 - 448 of [32],
§14.08 - 14.081.

Remark 2.4.2. In the year 1885, Weierstrass has proven two important
theorems regarding the analytic representability of univariate functions, the
first theorem of Weierstrass being exactly the aforesaid theorem 2.4.1
and is well stated in the chapter of interpolation on the page 47 of [36]. The
idea of this very analytic representability is referred to the historic publication
[58] of Weierstrass (in German language).

The very justification for replacing a given (univariate) function by a poly-
nomial or by a finite trigonometric series rests on these two theorems
proved by Weierstrass.

Remark 2.4.3 (Brief description of the statement of the theorem
2.4.1). Let the degree of the polynomial Pǫ(y) (in y) be denoted by the
natural number N(ǫ). This natural number N(ǫ) depends on the
predeterminately arbitrarily chosen small positive number ǫ (> 0).

The expression of the approximating polynomial Pǫ(y) of degree N(ǫ), where
the coefficients of yi are denoted by λi for i ∈ {0, 1, 2, . . . , N(ǫ)}, is there-



2.4. EFFICIENCY OF THE EXPONENTIAL POLYNOMIAL DISTRIBUTION43

fore defined as

Pǫ(y) =

N(ǫ)∑

i=0

λiy
i (2.14)

So, the theorem 2.4.1 says that for any arbitrarily predeterminately cho-
sen small positive number ǫ (> 0), there exists a natural number N(ǫ),
such that

|g(y) − Pǫ(y)| < ǫ for every y ∈ [a, b]

and that is, by (2.14),
∣∣∣∣∣∣
g(y) −

N(ǫ)∑

i=0

λiy
i

∣∣∣∣∣∣
< ǫ for every y ∈ [a, b] (2.15)

Remark 2.4.4. Notably, the real valued coefficients λi of yi, such that
i ∈ {0, 1, 2, . . . , N(ǫ)} depend on the following:

• the predeterminately assigned value of ǫ and subsequently on the natural
number N(ǫ).

• the choice of the end points of the closed and the bounded interval,
namely a and b (such that a < b).

• the behavior of g(y), i.e. how often g(y) fluctuates within y ∈ [a, b].

Remark 2.4.5. The goodness of the approximation of g(y) by the approxi-
mating polynomial Pǫ(y) is understandably given by the smallness of the
predetermined ǫ.

With this, we proceed to prove our principally targeted proposition.

Proposition 2.4.2. Let XY = {y | a ≤ y ≤ b}, such that a < b.

In this continuous case of fY (y), we shall go by the continuity (and thereby
the boundedness) of the density function (i.e. of fY (y)) as well as by the
strict positivity fY (y) > 0 throughout the interval [a, b].

Then, in that case, fY (y), y ∈ XY is approximatively representable as follows:

fY (y) ≈ e

n∑
i=0

λiy
i

, y ∈ [a, b] (2.16)

where the natural number n is determined by the predeterminately chosen
degree of accuracy of the aforesaid approximation.
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Proof of the proposition 2.4.2. In order to justify the replacement of the
function g(y), a ≤ y ≤ b stated in (2.8) by a polynomial, we need to refer to
the Weierstrass’s theorem 2.4.1.

Accordingly, since g(y) = log (fY (y)) is continuous in [a, b], for every arbi-
trarily preassigned ǫ > 0, there exists a positive integer N(ǫ), such that

∣∣∣∣∣∣
g(y) −

N(ǫ)∑

i=0

λiy
i

∣∣∣∣∣∣
< ǫ (2.17)

Thus, (2.17) necessarily implies that

fY (y) = eg(y) ≈ e

N(ǫ)∑
i=0

λiy
i

(2.18)

and thereby the very fact that e

N(ǫ)∑
i=0

λiy
i

can approximate fY (y) to any desired
level of accuracy. This level of accuracy is determined by the value of ǫ.

This proves our proposition 2.4.2.

Remark 2.4.6 (Representation for the continuous case is well ap-

proximated). The probability density function e

N(ǫ)∑
i=0

λiy
i

, which can approx-
imate the existing but unknown probability density function fY (y) to any
desired degree of accuracy (in the continuous case), is inexact to a predeter-
mined degree of smallness. In plain words, this degree of smallness can be
arbitrarily chosen.

Remark 2.4.7 (The natural number N(ǫ)). The reader of this disserta-
tion may say that the natural number N(ǫ) is an optimal choice of the num-
ber of moments needed to approximate the probability density fY (y), y ∈ [a, b]
optimally.

By (2.18), it is clear that from the mathematical point of view the prob-
ability density fY (y), y ∈ [a, b] is well approximated by the probability density

e

N(ǫ)∑
i=0

λiy
i

, y ∈ [a, b]. This very mathematical point of view serves purely as
the justification of this aforesaid way of approximation.

But, from the statistical point of view, as already discussed, fY (y) is
generally unknown. Therefore, because of this very unknownness, the
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predetermination of ǫ is not possible and hence there is no question of
the determination of N(ǫ). So, in this very regard (i.e. with regard to the
statistical point of view), the question of N(ǫ) being acceptable as the
aforesaid optimal choice is rather vague.

However, from the statistical point of view, the moments of the probabil-
ity distribution of Y given by the probability density fY (y), y ∈ [a, b] may
be correctly estimable by means of good estimation procedures. In this very
regard, as a brief note, the aforesaid optimal choice is given by consideration
of certain characteristic properties of these moments. These moments do
fulfill certain optimality conditions, the formal discussions of which are
given in the coming chapter 5).

Remark 2.4.8 (The important role of the natural number N(ǫ)).

It is only intuitively assertible that the e

N(ǫ)∑
i=0

λiy
i

, y ∈ [a, b] is a consistent
density estimator of fY (y), y ∈ [a, b] (see the proposition 3.4.2 of the
subsection 3.4.4 for the formal treatment.). However, it has not been
specifically proved here that N(ǫ) increases strictly monotonically with the
strict monotonic decrease in ǫ (qualitatively speaking, it remains to be for-
mally proved that the largeness of N(ǫ) is solely directly proportional to
the smallness of ǫ).

2.4.3 Short summary of discrete and continuous rep-
resentations

Purely for the sake of clarity, let us give a short summary of both the discrete
and continuous representations of fY (y), y ∈ XY .

If Y happens to be discrete, we know that the exact representation of

fY (y), y ∈ XY is e

N−1∑
i=0

λ
(D)
i yi

j

, XY = {y1, y2, . . . , yN}. Here, λ
(D)
0 is uniquely

determinable by the values of λ
(D)
i with i ∈ {1, 2, . . . , N − 1}.

By taking m = N − 1, the representation of fY (y) for a discrete Y can

be rewritten as e

m∑
i=0

λ
(D)
i yi

j

. Here, m is the number of key moments of the
probability distribution. Therefore, the representation of fY (y), y ∈ XY in
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the discrete case is restated as:

e

m∑
i=0

λ
(D)
i yi

j

, j ∈ {1, 2, . . . , N} (2.19)

where, λ
(D)
0 being uniquely determinable by the values of λ

(D)
i with i ∈

{1, 2, . . . ,m}.

The first m moments of the probability distribution (2.19) shall be usually

denoted by µ
(i,D)
Y , i ∈ {1, 2, . . . ,m}.

If Y happens to be continuous, we know that the approximative repre-

sentation of fY (y), y ∈ XY is e

m∑
i=0

λ
(C)
i yi

, XY = [a, b]. Here, λ
(C)
0 is uniquely

determinable by the values of λ
(C)
i with i ∈ {1, 2, . . . ,m}.

Therefore, the representation of fY (y), y ∈ XY in the continuous case is
restated as:

e

m∑
i=0

λ
(C)
i yi

, a ≤ y ≤ b (2.20)

The first m moments of the probability distribution (2.20) shall be usually

denoted by µ
(i,C)
Y , i ∈ {1, 2, . . . ,m}.

2.4.4 Continuous case as the case of approximation

We have seen that the probability distribution of Y represented by either
a probability mass function in case of a discrete Y or by a probability den-
sity function in case of a continuous Y can be represented by a exponential
polynomial function. As we know, in a given situation, this probability dis-
tribution of Y denoted by fY (y) is existing, but generally unknown.

In this subsection, we shall briefly discuss, in which cases, the existing and
(unknown) probability distribution of Y can be chosen to be continuous.

In plain words, this is precisely to say that, if the number of elements of
the support of the discrete probability distribution of Y is large enough,
the probability distribution of Y may be chosen to be a continuous one.
In this regard, the continuous case of Y is regarded as the case of ap-
proximation of the discrete case of Y . Keeping this in mind, we shall
proceed.
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The number of extremal points of the probability distribution of Y rep-
resented either by its probability mass function (if Y is discrete) or by its
probability density function (if Y is continuous) is the basic character-
istic property for the choice of the type of the probability distribution.
With reference to the subsequently stated definition 3.3.1 (of the subsec-
tion 3.3.4), this characteristic property is basically described by the λi

(i ∈ {1, 2, . . . ,m}) values. In this very regard, these λi values must remain
the same for both the discrete and continuous cases of Y .

So, referring to the subsequently shown result (3.95) belonging to the
proposition 3.3.3 (of the subsection 3.3.4), for any fixedly chosen m,
such that m ≤ N − 1, by taking

• y1 = a and yN = b

• λ
(D)
i = λ

(C)
i , i ∈ {1, 2, . . . ,m}

to be fixed, we arrived at lim
N→∞

µ
(i,D)
Y = µ

(i,C)
Y for i ∈ {1, 2, . . . ,m}.

Even if m is not fixedly chosen, but is allowed to increase with N with subject
to m = N−1, we can establish the following statement: for a sufficiently large
value of N , almost all the moments of both the discrete and the continuous
probability distributions tend to coincide with each other.

Exactly, the other way around, that is conversely, if we fix

• y1 = a and yN = b

• µ
(i,D)
Y = µ

(i,C)
Y , i ∈ {1, 2, . . . ,m}

then we put the following intuitively clear statement: λ
(D)
i → λ

(C)
i as N → ∞

for every i ∈ {1, 2, . . . ,m} (this is also referred to the given statement 3.3.2

of the subsection 3.3.4). In this sense, λ
(C)
i is the limiting value of λ

(D)
i

for every i ∈ {1, 2, . . . ,m}.

Thus, in this very limiting sense, the probability distribution described by

the probability density function e

m∑
i=0

λ
(C)
i yi

, a ≤ y ≤ b is the approximated
continuous probability distribution of the probability distribution de-

scribed by the probability mass function e

m∑
i=0

λ
(D)
i yi

j

, j ∈ {1, 2, . . . , N}.
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Conclusively, the exact representation of the discrete probability distribu-

tion described by the probability mass function e

m∑
i=0

λ
(D)
i yi

j

, j ∈ {1, 2, . . . , N},
the exactness being described by m = N − 1, can be alternatively well rep-
resented by the aforesaid approximated continuous probability distribution,
provided N is sufficiently or at least reasonably high.

Moreover, cases may arise, when it is not possible to take m = N − 1 for
practical reasons, but we need to restrict the value of m to a certain value
with subject to m < N − 1. In such cases, the representation of fY (y) in
the discrete case however may become inexact to a small degree. This means
nothing but the very that, the probability mass function given by (2.19),

namely e

m∑
i=0

λ
(D)
i yi

j

, j ∈ {1, 2, . . . , N} becomes theoretically inexact to a
small degree.

In such cases (of m < N −1) nothing changes or anything is even expected
to change, except the aforesaid fact that the representation may become in-
exact to a certain negligible degree, provided the most important aforesaid
characteristic property is kept unchanged after the value of m being con-
veniently reduced. This is to say that, even in such cases, if N is sufficiently
high, the aforesaid approximated continuous probability distribution
remains good usable as the replacement of the discrete probability dis-
tribution in the sense that, as already stated above, corresponding to the
fixedly chosen µ

(i,D)
Y = µ

(i,C)
Y , i ∈ {1, 2, . . . ,m}, we have λ

(D)
i → λ

(C)
i as

N → ∞ for every i ∈ {1, 2, . . . ,m}, but for a fixed value of m.

This very assertion shall be handled subsequently once again and shall be
illustrated by two simple numerical examples in the chapter 3.

2.4.5 An informatory observation

We have seen that the approximative continuous probability distribution de-

scribed by the probability density function e

m∑
i=0

λ
(C)
i yi

, a ≤ y ≤ b can be a
reasonably good alternative to an exact discrete probability distribution

described by the probability mass function e

m∑
i=0

λ
(D)
i yi

j

, j ∈ {1, 2, . . . , N} with
m = N − 1, provided N is reasonably large. For this, we have principally
assumed that all the individual probabilities of the discrete probability dis-
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tribution are different from zeros.

For the construction of this approximative continuous probability distribu-
tion, basically λ

(D)
i (i ∈ {1, 2, . . . ,m}) are replaced by λ

(C)
i (i ∈ {1, 2, . . . ,m})

with subject to the maintenance of µ
(i,D)
Y ≈ µ

(i,C)
Y (i ∈ {1, 2, . . . ,m}) so as to

get the probability density function e

m∑
i=0

λ
(C)
i yi

, a ≤ y ≤ b.

So, in this particular regard, there cannot be any reason to assume that
the probability density function can either be zero or be discontinuous at
any point within the interval [a, b]. In other words, this probability density
function needs to be non-zero as well as continuous within the entire
interval [a, b].

2.4.6 Conclusive points

This approximative continuous probability distribution of Y given by its

density fY |{dY }(y) = e

m∑
i=0

λ
(C)
i yi

, a ≤ y ≤ b ( fY |{dY }(y) being uniquely de-
terminable by dY ) has therefore certain well known characteristic prop-
erties, which are stated as follows:

1. fY |{dY }(y) > 0 for every y ∈ [a, b].

(2.21)

2. fY |{dY }(y) continuous and bounded in [a, b].

(2.22)

3. fY |{dY }(y) is derivable of any order in [a, b].

4. fY |{dY }(y) certainly cannot have uncountably many relative ex-
tremal points in [a, b]. This is precisely the idea, which we have used
to classify the different types of probability distributions in
continuous cases previously.

5. Even if m is fixedly chosen with subject to m < N − 1, but N is
reasonably large, this very density fY |{dY }(y), y ∈ [a, b] can be made
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to replace the discrete probability distribution described by e

m∑
i=0

λ
(D)
i yi

j

,
j ∈ {1, 2, . . . , N} comfortably.

For the construction of families of different types of probability distributions
of Y , the fulfillment of the characteristic properties (1), (2), (3) and (4) are
evident.

Among these characteristic properties, the characteristic properties (1) (i.e.
(2.21)) and (2) (i.e. (2.22)) are of primary importance.

Moreover, we propose to state the following for the sake of our future ref-
erences:

Statement 2.4.1 (Differentiation between the discrete and the con-
tinuous cases). In course of our discussions, we shall normally use λi,

i ∈ {1, 2, . . . ,m} instead of λ
(D)
i or λ

(C)
i , unless and until the differentiation

between discrete and continuous cases is of absolute necessity.

Statement 2.4.2 (Indexing of moments). In course of our discussions,
we shall use the indices m, i and n for the following purposes:

• the index m stands for the exact number of moments to be used to
construct the approximating probability distribution of Y .

• the index i stands principally for ranking every moment of Y
starting from 1 to m, i.e. i ∈ {1, 2, . . . ,m}. Certain minor excep-
tions are however present in this dissertation.

• the index n serves to set the rankings of the moments under considera-
tion, but not necessarily being restricted by m. For eg.: we shall use
n ∈ N, i = 2 n, i = 2 n + 1 or even i = n. That is, n stands for
any natural number meant for proper indexation of a moment of Y .

Before we draw our discussions of this section to a close, we need to mention
one more important property of the well known theoretical beta distribution.
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Remark 2.4.9 (The beta distribution). If fB
X|{d}(x), 0 ≤ x ≤ 1 denotes

the probability density function of the well known beta-distribution, we are
well aware of the following:

• fB
X|{d}(x) = 0 both at x = 0 and x = 1, when the probability density

fB
X|{d}(x) is uni-modal within x ∈ [0, 1].

This violates the aforesaid characteristic property (1) given by (2.21),
namely fB

X|{d}(x) > 0 for every x ∈ [0, 1].

• fB
X|{d}(x) is infinitely discontinuous either at x = 0 or at x = 1 or

both, when the probability density fB
X|{d}(x) is either monotone or

bathtub within x ∈ [0, 1].

This violates the aforesaid characteristic property (2) given by (2.22),
namely fB

X|{d}(x) is continuous and bounded for every x ∈ [0, 1].

Therefore, for this very reason, the beta distribution cannot be re-
garded as the approximative continuous probability distribution
of any discrete probability distribution with non-zero individual
probabilities.

However, it can be regarded as a theoretical probability distribution.

Now, we proceed to discuss the different families of probability distributions
of Y .
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2.5 The families of probability distributions

A partition of the set P of probability distributions in disjoint families
is given in (2.6). Nextly, the different families must be characterized by
means of easily verifiable properties. The families are defined by means of
the probability mass or probability density function and, therefore, it makes
sense to characterize the families by qualitative properties of these functions,
which can be understood and verified without any specific expertise.

In general, we symbolize the compact support of the probability distribution
as XY ({dY }) = {y1, y2, . . . , yN} in the discrete case and as
XY ({dY }) = [a, b] in the continuous case.

The elements of P are the probability mass functions or probability density
functions (according as Y is discrete or continuous) in form of exponential
polynomial functions only. So, if Y is continuous, then its probability
density

• is continuous in [a, b]

• and its derivatives of all orders exist in [a, b]

So, let us discuss the important families of probability distributions one by
one:

2.5.1 The constant family: P : TDY
(DY ) → P0

The members of the family P0 (stated in the page 167 of [54]) are charac-
terized by a constant probability mass or a probability density function and,
therefore, this family is called the constant family.

The constant family constitutes the simplest family of probability distribu-
tions. Nevertheless, it has been proved to be of great importance for the
development of the probability theory. It was taken as an appropriate de-
scription for the structure of randomness in the case of a game of chance,
which marked the beginning of probability theory. Each member fY |{dY } of
the constant family is solely determined by the range of variability XY ({dY }).

Definition 2.5.1 (The constant family P0). As we know, XY ({dY }) is
predeterminately given, the probability mass or density function can be im-
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mediately specified as:

fY |{dY }(y) =
1

|XY ({dY })|
for y ∈ XY ({dY }) (2.23)

where

|XY ({dY })| =

{
N in the discrete case

b − a in the continuous case
(2.24)

Remark 2.5.1 (Representation of a constant probability distribu-
tion). In the view of the representation (2.7), for any natural number n, we
have:

fY |{dY }(y) = e

n∑
i=0

λi(dY )yi

=





1
N

in the discrete case

1
b−a

in the continuous case
(2.25)

Remark 2.5.2 (λi values of a constant probability distribution).
From (2.25), we easily obtain:

λi(dY ) = 0 for i ∈ {1, 2, . . . , n}

λ0(dY ) =

{
− log N for the discrete case
− log(b − a) for the continuous case

(2.26)

2.5.2 The monotone family: P : TDY
(DY ) → P1

This is the family P1 (stated in the page 168 of [54]) of probability distribu-
tions with monotone probability mass or probability density functions, i.e.,
with boundary extremes and without a relative extreme. Obviously, there
are two subfamilies to be considered, which shall be characterized in this
subsection.

Moreover, in continuous cases of Y , as already mentioned, the following
must be importantly stated: for every point y ∈ [a, b], f

′

Y |{dY }(y) 6= 0 must
necessarily hold. This makes sure that, the endpoints y = a and y = b are
principally not considered as extremal points.
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Definition 2.5.2 (Monotone increasing subfamily of P1). In the dis-
crete case, the probability mass function giving the probability of occurrence
of {y} ⊂ XY ({dY }) is said to be monotonically increasing, if

fY |{dY }(y1) < fY |{dY }(yN) (2.27)

fY |{dY }(yi) ≤ fY |{dY }(yi+1) for i = 1, . . . , N − 1 (2.28)

In the continuous case, the probability density function describing the prob-
ability distribution of Y is said to be monotonically increasing, if for every
y1,y2 ∈ [a, b],

fY |{dY }(y1) ≤ fY |{dY }(y2) whenever y1 < y2 (2.29)

together with

fY |{dY }(a) < fY |{dY }(b) and (2.30)

f
′

Y |{dY }(y) > 0 for every y ∈ [a, b] (2.31)

Definition 2.5.3 (Monotone decreasing subfamily of P1). In the dis-
crete case, the probability mass function giving the probability of occurrence
of {y} ⊂ XY ({dY }) is said to be monotonically decreasing, if

fY |{dY }(y1) > fY |{dY }(yN) (2.32)

fY |{dY }(yi) ≥ fY |{dY }(yi+1) for i = 1, . . . , N − 1 (2.33)

In the continuous case, the probability density function describing the prob-
ability distribution of Y is said to be monotonically decreasing, if for every
y1,y2 ∈ [a, b],

fY |{dY }(y1) ≥ fY |{dY }(y2) whenever y1 < y2 (2.34)

together with

fY |{dY }(a) > fY |{dY }(b) and (2.35)

f
′

Y |{dY }(y) < 0 for every y ∈ [a, b] (2.36)

Importantly, in this case of the monotone family the range of variability
XY ({dY }) alone is not enough to determine the probability measure PY |{dY }
or the probability density fY |{dY } (as the case may be) uniquely and, there-
fore, additional appropriate information must be available for selecting the
probability measure or density. This information must be unambiguously
specified for any given situation.
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2.5.3 The uni-extremal family: P : TDY
(DY ) → P2

This is the family P2 (stated in the page 169 of [54]) of probability distribu-
tions with exactly one relative extreme. Just as in the case of the monotone
family, there are two distinct subfamilies to be considered. The first one has
exactly one relative maximum, called the uni-modal family and the sec-
ond has exactly one relative minimum, called the bathtub family.

Moreover, in uni-extremal continuous cases, as already mentioned, the
following two statements must be duly importantly put:

Statement 2.5.1 (Clear difference between the uni-extremity and
monotonicity). If either of the following happens to hold

1. f
′

Y |{dY }(a) = 0 and f
′′

Y |{dY }(a) 6= 0

or in general, if the extreme point is at y = a, then, at y = a, all the
odd order derivatives of fY |{dY }(y) are individually zero and at least
one even order derivative of fY |{dY }(y) is nonzero

2. f
′

Y |{dY }(b) = 0 and f
′′

Y |{dY }(b) 6= 0

or in general, if the extreme point is at y = b, then, at y = b, all the
odd order derivatives of fY |{dY }(y) are individually zero and at least
one even order derivative of fY |{dY }(y) is nonzero

then the probability distribution of Y given by the probability density fY |{dY }(y)
is principally not considered to be a monotone probability distribution, as
the extreme point lies within [a, b].

Statement 2.5.2 (Uniqueness of the extremal point). There can be
exactly one point y = y0 ∈ [a, b], at which all the odd order derivatives of
fY |{dY }(y) are individually zero and at least one even order derivative of the
same is nonzero, for eg. f

′

Y |{dY }(y0) = 0 and f
′′

Y |{dY }(y0) 6= 0.

Now, we proceed to elaborately define the uni-modal and bathtub families
as follows:
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Definition 2.5.4 (Uni-modal subfamily of P2). In the discrete case,
the probability mass function fY |{dY }(y) giving the probability of occurrence
of {y} ⊂ XY ({dY }) is said to be uni-modal, if fY |{dY }(y) increases first,
reaches its maximum value at one point only, say for i = i0, such that
1 < i0 < N and decreases thereafter, i.e.

fY |{dY }(y1) < fY |{dY }(yi0) > fY |{dY }(yN) (2.37)

fY |{dY }(yi) ≤ fY |{dY }(yi+1) for i = 1, 2, . . . , i0 − 1 (2.38)

fY |{dY }(yi) ≥ fY |{dY }(yi+1) for i = i0, i0 + 1, . . . , N − 1 (2.39)

In the continuous case, the probability density function fY |{dY }(y) describ-
ing the probability distribution of Y is said to be uni-modal, if fY |{dY }(y)
increases first, reaches its maximum value at one point only, say at
y = y0, such that y0 ∈ [a, b] and decreases thereafter. In that case, for
every y1,y2 ∈ [a, b],

fY |{dY }(a) ≤ fY |{dY }(y0) for a ≤ y0 (2.40)

fY |{dY }(y0) ≥ fY |{dY }(b) for y0 ≤ b (2.41)

fY |{dY }(y1) ≤ fY |{dY }(y2) whenever y1 < y2 ≤ y0 (2.42)

fY |{dY }(y1) ≥ fY |{dY }(y2) whenever y0 ≤ y1 < y2 (2.43)

fY |{dY }(a) = fY |{dY }(b)

⇒ fY |{dY }(a) < fY |{dY }(y0) > fY |{dY }(b) (2.44)

Importantly, we should take care of the validity of the possible

• maximality at y = y0 = a represented by f
′

Y |{dY }(a) = 0

• maximality at y = y0 = b represented by f
′

Y |{dY }(b) = 0
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Definition 2.5.5 (Uni-bathtub subfamily of P2). In the discrete case,
the probability mass function fY |{dY }(y) giving the probability of occurrence
of {y} ⊂ XY ({dY }) is said to be of bathtub shaped, if fY |{y}(y) decreases
first, reaches its minimum value at one point only, say for i = i0, such
that 1 < i0 < N and increases thereafter, i.e.

fY |{dY }(y1) > fY |{dY }(yi0) < fY |{dY }(yN) (2.45)

fY |{dY }(yi) ≥ fY |{dY }(yi+1) for i = 1, 2, . . . , i0 − 1 (2.46)

fY |{dY }(yi) ≤ fY |{dY }(yi+1) for i = i0, i0 + 1, . . . , N − 1 (2.47)

In the continuous case, the probability density function fY |{dY }(y) describ-
ing the probability distribution of Y is said to be bathtub shaped, if fY |{dY }(y)
decreases first, reaches its minimum value at one point only, say at
y = y0, such that y0 ∈ [a, b] and increases thereafter. In that case, for
every y1,y2 ∈ [a, b],

fY |{dY }(a) ≥ fY |{dY }(y0) for a ≤ y0 (2.48)

fY |{dY }(y0) ≤ fY |{dY }(b) for y0 ≤ b (2.49)

fY |{dY }(y1) ≥ fY |{dY }(y2) whenever y1 < y2 ≤ y0 (2.50)

fY |{dY }(y1) ≤ fY |{dY }(y2) whenever y0 ≤ y1 < y2 (2.51)

fY |{dY }(a) = fY |{dY }(b)

⇒ fY |{dY }(a) > fY |{dY }(y0) < fY |{dY }(b) (2.52)

Importantly, we should take care of the validity of the possible

• minimality at y = y0 = a represented by f
′

Y |{dY }(a) = 0

• minimality at y = y0 = b represented by f
′

Y |{dY }(b) = 0
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Remark 2.5.3 (Increased complexity in uni-extremal cases). In com-
parison to the monotone family, the uni-extremal family exhibits an in-
creased complexity and, therefore, a larger amount of knowledge is needed
for the selection of an appropriate probability distribution from the uni-extremal
family than the same for the selection of a probability distribution from the
monotone family.

2.5.4 A multi-extremal family: P : TDY
(DY ) → Pm

with m > 2

The multi-extremal families (the family of type Pm, m > 2 is stated in the
page 171 of [54]) are characterized by two or more relative extreme points of
the probability mass or density function. m − 1 gives the exact number of
relative extremes. For each family, two subfamilies can be distinguished. The
first subfamily is characterized by the fact that the first relative extreme
is a maximum, while the extremes of the second subfamily start with a
minimum.

Principally, only the families P0, P1 and P2 concern this thesis for detailed
discussions, as they basically concern the science of stochastics. Therefore,
the multi-extremal families shall not be discussed here.



Chapter 3

The minimum information and
the maximum entropy

Before the computer code for the function λ = λ(dY ) is developed, the selec-
tion principle of minimum information is revisited by comparing it with
another universal principle for modelling the randomness.

There is an interesting connection between the minimum information
principle developed here and the maximum entropy principle (MEP )
proposed by E. T. Jaynes in the year 1957 [24]. Before this relation can be
established, the concept of stochastic entropy has been introduced.

Referring to the page 1 of [25], every probability distribution has some “un-
certainty“ associated with it. The stochastic entropy gives a quantitative
measure of this uncertainty.

3.1 The stochastic entropy

The uncertainty of the occurrence an event with respect to a given random
variable Y is described by the randomness, which in turn is described by
the probability measure (or the probability density) of Y . This probability
measure (or probability density) assigns to each possible event a particular
probability.

The structure of the probability of an event with regard to the random vari-
able Y is basically originated by dY .

59
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Let us consider the probability measure PY |{dY }({y}) for y ∈ XY ({dY }) =
{yj | j = 1, 2, . . . , N}. Then, the question arises, how to quantify the uncer-
tainty associated with PY |{dY }, i.e. to find out the entropy of the probability
distribution of Y described by PY |{dY }. This problem was solved by Claude
Shannon, who introduced the following stochastic entropy:

Definition 3.1.1 (Shannon’s entropy). Starting with a number of nec-
essary properties termed as Shannon’s postulates, Claude Shannon suc-
ceeded to show that there is an essentially unique function H which meets all
these desired properties:

H : P → R (3.1)

H
(
PY |{dY }

)
=

N∑

i=1

PY |{dY }({yi}) log

(
1

PY |{dY }({yi})

)
(3.2)

In physical systems the function H had been introduced by Boltzmann [30]
as a measure of disorder. In communication systems, the uncertainty
about the actual message to be transmitted, is called entropy of the source.

Moreover, let us define the differential entropy as follows:

Definition 3.1.2 (Differential entropy). If PY |{dY } is replaced by a con-
tinuous density1 with range of variability XY ({dY }) = {y | a ≤ y ≤ b} where
a = y1 and b = yN and density function fY |{dY }, then the stochastic entropy
may be represented by

H
(
fY |{dY }

)
=

b∫

a

fY |{dY }(y) log

(
1

fY |{dY }(y)

)
dy (3.3)

Nextly, we shall proceed to discuss the Shannon’s entropy, the proof of which
necessitates the usage of four postulates (referred to [33], pages 547 and 548).

1The entropy with regard to a continuous density has many of the properties of the
discrete entropy. But, unlike the entropy of a discrete probability distribution, the same of
a continuous probability may be positive, infinitely large or even negative [2]. The entropy
of a discrete distribution remains invariant with respect to a transformation of a random
variable. However, with subject to a continuous random variable, the entropy does not
necessarily remain invariant. This is one of the existing difficulties in continuous cases.
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3.2 The Shannon’s measure of entropy

3.2.1 The Shannon’s postulates

Let EN be the representation of a discrete probability distribution with a
finite and bounded support XY = {y1, y2, . . . , yN} given by

EN = (p1, p2, . . . , pN) with pi = PY |{dY } ({yi}) ∈ [0, 1], N ∈ N (3.4)

then the uncertainty of the probability distribution PY |{dY } denoted by H(EN)
must meet the following four postulates (referred to [33], pages 547 and 548):

Statement 3.2.1 (Postulate I). The entropy H(EN) depends only on the
probability distribution denoted by EN , consequently, it will be denoted by
H(p1, p2, . . . , pN). Additionally, H(p1, p2, . . . , pN) is a symmetric function of
its arguments p1, p2, . . . , pN .
(Note, that the probability distribution denoted by EN contains exactly N
probability elements.)

Statement 3.2.2 (Postulate II). H(p, 1 − p) is a continuous function of
p (0 ≤ p ≤ 1).

Statement 3.2.3 (Postulate III). H
(

1
2
, 1

2

)
= logc 2, such that c > 1.

(Note, that, referred to the page 548 of [33], the value of c has been taken
to be 2. But, we shall go for the general case for c > 1.)

Statement 3.2.4 (Postulate IV).

H(p1, p2, . . . , pN)

= H(p1 + p2, p3, p4, . . . , pN) + (p1 + p2)H

(
p1

p1 + p2

,
p2

p1 + p2

)

In the year 1948, Claude E. Shannon derived the aforesaid function H and
showed that its expression is essentially unique. He called it entropy. This
very assertion proposed by Shannon can be formulated in form of a theorem
termed as Shannon’s theorem, namely the theorem 3.2.2 stated and
proved in the subsection 3.2.3.

The proof of the Shannon’s theorem necessitates the need to state and
prove the theorem 3.2.1 (this theorem happens to be the stated and proved
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theorem 2 given in pages 544 - 546 of [33] 2). This theorem 3.2.1 we shall
term as the lemma for the Shannon’s theorem, which is discussed as
follows:

3.2.2 The lemma for the Shannon’s theorem

Theorem 3.2.1 (The lemma for Shannon’s theorem). The function
H(EN) = log2 N (i.e. function of the natural number N) is the only function,
which satisfies the following postulates (A∗), (B∗) and (C):

• (A∗): If the natural numbers N and M are prime to each other, then
H(ENM) = H(EN) + H(EM)

• (B∗): lim
N→∞

(H(EN+1) − H(EN)) = 0.

• (C): H(E2) = 1

Proof of the theorem 3.2.1. At the very first step, we must introduce a
trivially taken concept, which shall be unavoidably of use: Hypothetically
speaking, N = 0 can only be interpreted as the nonexistence of any prob-
ability distribution and hence there cannot be any question of any uncer-
tainty of the nonexistent probability distribution. This can be interpreted as
H(EN) = H(E0) = 0.

Let a natural number S > 1 be either any prime number or any integral
power of any prime number and f(N) = H(EN) a function (of N) satisfying
the postulates (A∗), (B∗) and (C). Obviously, the following must hold:

f(0) = 0 (3.5)

Let us construct a function g(N) (of N) in the following manner:

g(N) = f(N) − f(S)LOG2N

log2 S
(3.6)

such that

LOG2N =





log2 N, if N > 0

0, if N = 0
(3.7)

2the proof of this theorem 2 is not presented with enough clarity in the pages 544 - 546
of [33]
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Thus, with subject to (3.5) and (3.7), the special case for (3.6) is given as

g(0) = 0 (3.8)

Clearly, for N > 0, the function g(N) fulfills the postulate (A∗), as

g(NM) = f(NM) − f(S) log2(NM)

log2 S

= f(N) + f(M) − (log2 N + log2 M)

log2 S
f(S)

= g(N) + g(M)

(3.9)

Now, for N > 0, let us put

ǫN = g(N + 1) − g(N) = f(N + 1) − f(N) − f(S)

log2 S
log2

(
1 +

1

N

)
(3.10)

Clearly, for N > 0, g(N) fulfills B∗, simply because f(N) fulfills B∗, which
is presented as

lim
N→∞

ǫN = lim
N→∞

(f(N + 1) − f(N)) − f(S)

log2 S
log2 (1 + 0) = 0 (3.11)

Here, we see that

g(S) = f(S) − f(S) log2 S

log2 S
= 0 (3.12)

Now, for any N > 0, let us define a natural number N (1) by

N (1) =





[
N
S

]
, if GCF

([
N
S

]
, S

)
= 1

[
N
S

]
− 1, if GCF

([
N
S

]
, S

)
> 1

(3.13)

such that GCF (k1, k2) denotes the greatest common factor of the two natural
numbers k1 and k2.

Clearly, N (1) ≤ N
S

< N (1) + 2 and therefore let us define ℓ(1) = N − N (1)S.

Therefore, N (1)S + 2S > N = N (1)S + ℓ(1) gives

2S > ℓ(1) ≥ 0 (3.14)
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Thus, by (3.9),

g(N (1)S) = g(S) + g(N (1))

= 0 + g(N (1)) (by 3.12)

= g(N (1))

(3.15)

which leads us to

g(N) = g(N) + g(N (1)) − g(N (1)S)

= g(N (1)) +
(
g(N) − g(N (1)S)

)

= g(N (1)) + [{g(N) − g(N − 1)} + {g(N − 1) − g(N − 2)}
+ . . . +

{
g(N (1)S + 1) − g(N (1)S)

}]

= g(N (1)) +
N−1∑

k=N(1)S

ǫk

︸ ︷︷ ︸
ℓ(1) terms < 2S terms (by 3.14)

(3.16)

Precisely, the finite sum contained in (3.16), namely
N−1∑

k=N(1)S

ǫk contains

ℓ(1) terms with ℓ(1) < 2S.

Again, by defining the natural number N (2) exactly in the similar manner as
in the case of N (1), viz

N (2) =





[
N(1)

S

]
, if GCF

([
N(1)

S

]
, S

)
= 1

[
N(1)

S

]
− 1, if GCF

([
N(1)

S

]
, S

)
> 1

(3.17)

so that N (2) ≤ N(1)

S
< N (2) + 2 and consequently N (2) ≤ N(1)

S
≤ N

S2

(because of N (1) < N
S
) and let us similarly define ℓ(2) = N (1) − N (2)S.

In the same way, by N(1)

S
< N (2) + 2, N (2)S + 2S > N (1) = N (2)S + ℓ(2) gives

2S > ℓ(2) ≥ 0 (3.18)

Exactly in the same way we derived the relation between g(N) and g(N (1)),
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namely (3.16), we get the relation between g(N (1)) and g(N (2)) as

g(N (1)) = g(N (2)) +
N(1)−1∑

k=N(2)S

ǫk

︸ ︷︷ ︸
ℓ(2) terms < 2S terms (by 3.18)

(3.19)

Precisely, the finite sum contained in (3.19), namely
N(1)−1∑

k=N(2)S

ǫk contains

ℓ(2) terms with ℓ(2) < 2S.

Therefore, by applying the expression of g(N (1)) in (3.19) on (3.16), we get

g(N) = g(N (2)) +
N−1∑

k=N(1)S

ǫk

︸ ︷︷ ︸
< 2S terms

+
N(1)−1∑

k=N(2)S

ǫk

︸ ︷︷ ︸
< 2S terms

(3.20)

with subject to N (2) ≤ N(1)

S
≤ N

S2 .

Proceeding exactly in the same way, we get in the very next step

g(N) = g(N (3)) +
N−1∑

k=N(1)S

ǫk

︸ ︷︷ ︸
< 2S terms

+
N(1)−1∑

k=N(2)S

ǫk

︸ ︷︷ ︸
< 2S terms

+
N(2)−1∑

k=N(3)S

ǫk

︸ ︷︷ ︸
< 2S terms

(3.21)

with subject to N (3) ≤ N(2)

S
≤ N

S3 .

Proceeding exactly in the same way, we get in the jth step

g(N) = g(N (j)) +
N−1∑

k=N(1)S

ǫk

︸ ︷︷ ︸
< 2S terms

+
N(1)−1∑

k=N(2)S

ǫk

︸ ︷︷ ︸
< 2S terms

+ . . . +
N(j−1)−1∑

k=N(j)S

ǫk

︸ ︷︷ ︸
< 2S terms

(3.22)

with subject to N (j) ≤ N
Sj .

Now, at this point, we must have a close look at the following: For every
natural number N (obviously N > 0), there exists a natural number j, such
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that N
Sj < 1. In that case, N (j) = 0 and thereby with the reference to (3.8),

we have
g(N (j)) = 0 (3.23)

At the same time, N
Sj < 1 ⇔ logS N < j necessarily means that N (j) = 0

is reached after at most [logS N ] + 1 procedural steps described immediately
above, i.e. when j reaches the value [logS N ] + 1.

(3.24)

Therefore, by applying (3.23) on (3.22), we get

g(N) =
N−1∑

k=N(1)S

ǫk

︸ ︷︷ ︸
< 2S terms

+
N(1)−1∑

k=N(2)S

ǫk

︸ ︷︷ ︸
< 2S terms

+ . . . +
N(j−1)−1∑

k=N(j)S

ǫk

︸ ︷︷ ︸
< 2S terms

(3.25)

and with subject to (3.24), the expression of g(N), viz. (3.25) can contain
at most (in fact strictly less than) 2S([logS N ] + 1) terms.

Moreover, if ǫN,max and ǫN,min are the maximum and the minimum values
among all the above ǫ values present in (3.25) respectively, then three cases
do arise and in each of these three cases, by (3.11) we shall make use of
lim

N→∞
ǫN,max = lim

N→∞
ǫN,min = 0:

• Case 1: (ǫN,min ≥ 0 and ǫN,max ≥ 0):

Here, 0 ≤ g(N) ≤ 2S([logS N ] + 1)ǫN,max

• Case 2: (ǫN,min ≤ 0 and ǫN,max ≥ 0):

Here, 2S([logS N ] + 1)ǫN,min ≤ g(N) ≤ 2S([logS N ] + 1)ǫN,max

• Case 3: (ǫN,min ≤ 0 and ǫN,max ≤ 0):

Here, 2S([logS N ] + 1)ǫN,min ≤ g(N) ≤ 0

Thus, by considering each of the above three cases, we can easily arrive at

lim
N→∞

g(N)

log2 N
= 0 (3.26)
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and hence by (3.6), we get

lim
N→∞

f(N)

log2 N
=

f(S)

log2 S
(3.27)

which necessarily means that the constant f(S)
log2 S

is independent of S and

therefore let us take f(S)
log2 S

= c0.

Thus,
f(S) = c0 log2 S (3.28)

Now, for any natural number N with N > 1, which is a composition in form
of a product of S1, S2, . . . , Sr, namely N = S1S2 . . . Sr, such that each Si,
i = 1, 2, . . . , r is either a prime number or an integral power of a prime
number, we have

f(N) = f(S1S2 . . . Sr)

=
r∑

i=1

f(Si) ( since f(Si) = H(ESi
) satisfies the postulate (A∗) )

=
r∑

i=1

c0 log2 Si ( by (3.28) )

= c0 log2 N
(3.29)

Again, by postulate (C∗), f(2) = H(E2) = 1 and thus by (3.29), we have
f(2) = 1 = c0 log2 2, which brings us to c0 = 1.

Hence, (3.29) is rewritten as

f(N) = log2 N (3.30)

and this completes the proof of the theorem 3.2.1.
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3.2.3 The Shannon’s theorem

Theorem 3.2.2 (Shannon’s theorem). :

With subject to the fulfillment of the postulates (I), (II), (III) and (IV ) as
stated in the subsection 3.2.1, H is uniquely given by

H(EN) =
N∑

i=1

pi logc

(
1

pi

)
for pi = PY |{dY }({yi}) ∈ [0, 1] , N ∈ N (3.31)

such that the logarithmic base, namely c, is any fixed real value strictly greater
than 1.

In other words, the expression of H given by (3.31) is the only expression,
which fulfills the postulates (I), (II), (III) and (IV ).

Proof of the theorem 3.2.2. The formal derivation of the Shannon’s En-
tropy (3.31) necessitates the usage of postulates (I), (II), (III) and (IV )
as well as the usage of the theorem 3.2.1 (belonging to the subsection
3.2.2). This formal derivation shall be given in six broad steps:

Step 1:

At first, we shall show that H(1) = H(E1) = 0, i.e. the entropy of a single
point probability distribution is zero.

For N = 2 and together with p1 = 1, p2 = 0, by the postulate (IV ), we have

H(1, 0) = H(1 + 0) + (1 + 0)H

(
1

1 + 0
,

0

1 + 0

)
= H(1) + H(1, 0)

which gives

H(1) = 0 (3.32)

Then, we shall show that the zero probability elements do not change the
entropy of the probability distribution.

By postulate (I) subjecting to the symmetric property of the entropy, we
have

H(p1, p2, . . . , pN , 0) = H(0, p1, p2, . . . , pN) (3.33)
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and by postulate (IV ),

H(0, p1, p2, . . . , pN) = H(0 + p1, p2, p3, . . . , pN) + (0 + p1)H

(
0

0 + p1

,
p1

0 + p1

)

= H(p1, p2, . . . , pN) + p1H(0, 1)
(3.34)

Now, let us make a careful observation of the following: Basically, the degen-
erated probability distribution defined by E1 : {p1 = 1} is completely identi-
cal with the degenerated probability distribution defined by
E2 : {p1 = 0, p2 = 1}. This necessarily means that the corresponding en-
tropies H(E1) = H(1) and H(E2) = H(0, 1) must be identically the same,
i.e. H(1) = H(0, 1) and therefore by (3.32), we conclude

H(0, 1) = 0 (3.35)

and therefore (3.34) can be rewritten with subject to (3.35) as

H(0, p1, p2, . . . , pN) = H(p1, p2, . . . , pN) (3.36)

Of course, by (3.36) and (3.33), we can also write

H(p1, p2, . . . , pN , 0) = H(p1, p2, . . . , pN) (3.37)

which proves that the zero probability elements do not contribute to
the Shannon’s entropy.

Step 2:

In this step, we shall generalize the recursiveness stated in the postulate (IV )
by proving the following relation:

H(p1, p2, . . . , pN1 , pN1+1, . . . , pN1+N2)

= H(sN1 , pN1+1, pN1+2, . . . , pN1+N2) + sN1H

(
p1

sN1

,
p2

sN1

, . . . ,
pN1

sN1

)

such that sN1 =

N1∑

j=1

pj

(3.38)

We shall give the proof of (3.38) by the mathematical induction with respect
to the natural number N1.
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Clearly, the relation (3.38) is fulfilled for N1 = 2, which can be easily shown
by rewriting the very postulate (IV ) for 2+N2 probability elements, so that
s2 = p1 + p2, in the following way

H(p1, p2, . . . , p2+N2) = H(s2, p2+1, . . . , p2+N2) + s2H

(
p1

s2

,
p2

s2

)
(3.39)

Now, for the purpose of the induction step, we shall assume that the relation
(3.38) is valid for N1−1 at the place of N1, after which shall be in a position to
prove that (3.38) holds for N1. Here, the said validity holds for the N1+N2−1
probability elements p1 + p2, p3, p4, . . . , pN1+N2 can be expressed as

H(p1 + p2, p3, . . . , pN1 , pN1+1, . . . , pN1+N2)

= H


(p1 + p2) + p3 + . . . + pN1︸ ︷︷ ︸

=sN1

, pN1+1, . . . , pN1+N2




+ sN1H

(
p1 + p2

sN1

,
p3

sN1

, . . . ,
pN1

sN1

)
(3.40)

Now, by using the postulate (IV ), we have the following two relations:

H(p1, p2, . . . , pN1+N2)

= H((p1 + p2), p3, . . . , pN1+N2) + (p1 + p2)H

(
p1

p1 + p2

,
p2

p1 + p2

)
(3.41)

and

H

(
p1

sN1

,
p2

sN1

, . . . ,
pN1

sN1

)

= H

(
p1 + p2

sN1

,
p3

sN1

, . . . ,
pN1

sN1

)
+

(
p1

sN1

+
p2

sN1

)
H

( p1

sN1

p1

sN1
+ p2

sN1

,

p2

sN1

p1

sN1
+ p2

sN1

)

= H

(
p1 + p2

sN1

,
p3

sN1

, . . . ,
pN1

sN1

)
+

(
p1 + p2

sN1

)
H

(
p1

p1 + p2

,
p2

p1 + p2

)

(3.42)
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Now, by replacing the expression H ((p1 + p2), p3, . . . , pN1+N2) existing in
(3.41) by the same given by (3.40), we rewrite (3.41) as

H(p1, p2, . . . , pN1+N2)

= H(sN1 , pN1+1, . . . , pN1+N2) + sN1H

(
p1 + p2

sN1

,
p3

sN1

, . . . ,
pN1

sN1

)

+ (p1 + p2)H

(
p1

p1 + p2

,
p2

p1 + p2

) (3.43)

Now, for the sake of convenience, let us rewrite (3.42) in the following way:

sN1H

(
p1 + p2

sN1

,
p3

sN1

, . . . ,
pN1

sN1

)

= sN1H

(
p1

sN1

,
p2

sN1

, . . . ,
pN1

sN1

)
− (p1 + p2)H

(
p1

p1 + p2

,
p2

p1 + p2

) (3.44)

and hence, by replacing the expression of sN1H
(

p1+p2

sN1
, p3

sN1
, . . . ,

pN1

sN1

)
existing

in (3.43) by the same given by (3.44), we finally rewrite (3.43) as

H(p1, p2, . . . , pN1+N2)

= H(sN1 , pN1+1, . . . , pN1+N2)

+ sN1H

(
p1

sN1

,
p2

sN1

, . . . ,
pN1

sN1

)
− (p1 + p2)H

(
p1

p1 + p2

,
p2

p1 + p2

)

+ (p1 + p2)H

(
p1

p1 + p2

,
p2

p1 + p2

)

= H(sN1 , pN1+1, . . . , pN1+N2) + sN1H

(
p1

sN1

,
p2

sN1

, . . . ,
pN1

sN1

)

(3.45)

which is precisely our relation (3.38). In other words, by mathematical in-
duction, our assertion (3.38) is proved.
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Step 3:

In this step, we shall generalize the recursiveness of postulate (IV ) still fur-
ther by proving the following relation:

H(p
(1)
1 , . . . , p

(1)
N1

, p
(2)
1 , . . . , p

(2)
N2

, . . . , p
(M)
1 , . . . , p

(M)
NM

)

= H(s1, s2, . . . , sM) +
M∑

j=1

sjH

(
p

(j)
1

sj

,
p

(j)
2

sj

, . . . ,
p

(j)
Nj

sj

)

such that sj =

Nj∑

k=1

p
(j)
k together with

M∑

j=1

sj = 1

(3.46)

For this, by using (3.38), the expression on the left hand side of (3.46) can
be written as (purely for the sake of convenience we shall proceed from the
next page):
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H(p
(1)
1 , . . . , p

(1)
N1

, p
(2)
1 , . . . , p

(2)
N2

, . . . , p
(M)
1 , . . . , p

(M)
NM

)

= H(s1, p
(2)
1 , . . . , p

(2)
N2

, . . . , p
(M)
1 , . . . , p

(M)
NM

)

+ s1H

(
p

(1)
1

s1

,
p

(1)
2

s1

, . . . ,
p

(1)
N1

s1

)

= H(p
(2)
1 , . . . , p

(2)
N2

, . . . , p
(M)
1 , . . . , p

(M)
NM

, s1)

+ s1H

(
p

(1)
1

s1

,
p

(1)
2

s1

, . . . ,
p

(1)
N1

s1

)

(by postulate I with regard to the symmetry)

= H(s2, p
(3)
1 , . . . , p

(3)
N2

, . . . , p
(M)
1 , . . . , p

(M)
NM

, s1)

+ s2H

(
p

(2)
1

s2

,
p

(2)
2

s2

, . . . ,
p

(2)
N2

s2

)
+ s1H

(
p

(1)
1

s1

,
p

(1)
2

s1

, . . . ,
p

(1)
N1

s1

)

(by using (3.38) again)

= H(p
(3)
1 , . . . , p

(3)
N2

, . . . , p
(M)
1 , . . . , p

(M)
NM

, s1, s2)

+ s1H

(
p

(1)
1

s1

,
p

(1)
2

s1

, . . . ,
p

(1)
N1

s1

)
+ s2H

(
p

(2)
1

s2

,
p

(2)
2

s2

, . . . ,
p

(2)
N2

s2

)

(by postulate I with regard to the symmetry once again)

(3.47)

Proceeding exactly in this way, we shall get the following expression in the
final step of (3.47) as

H(s1, s2, . . . , sM) +
M∑

j=1

sjH

(
p

(j)
1

sj

,
p

(j)
2

sj

, . . . ,
p

(j)
Nj

sj

)

and this is precisely the proof of our relation (3.46).
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Step 4:

Here, if UN represents a discrete uniform distribution with N probability
elements, then by setting

f(N) = H(UN) = H

(
1

N
, . . . ,

1

N

)

︸ ︷︷ ︸
N elements

(3.48)

our objective shall be to show that

f(NM) = f(N) + f(M), for all N,M ∈ N (3.49)

In order to do this, we shall use the derived relation (3.46) by putting Nj = N
for every j ∈ {1, 2, . . . ,M}. In that case,

• p
(j)
k = 1

NM
for every k ∈ {1, 2, . . . , N}

• sj = s =
N∑

k=1

p
(j)
k = N 1

NM
= 1

M

and therefore by (3.46),

H

(
1

NM
, . . . ,

1

NM

)

︸ ︷︷ ︸
NM elements

= H (s, . . . , s)︸ ︷︷ ︸
M elements

+
M∑

j=1

sH

( 1
NM

s
, . . . ,

1
NM

s

)

︸ ︷︷ ︸
N elements

= H

(
1

M
, . . . ,

1

M

)

︸ ︷︷ ︸
M elements

+M
1

M
H

(
1

N
, . . . ,

1

N

)

︸ ︷︷ ︸
N elements

= H

(
1

M
, . . . ,

1

M

)

︸ ︷︷ ︸
M elements

+H

(
1

N
, . . . ,

1

N

)

︸ ︷︷ ︸
N elements

= f(M) + f(N)

(3.50)

which proves nothing, but the very asserted relation (3.49).
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Step 5:

In this step, we shall show at first the following recursive relation

f(N) = H

(
1

N
, 1 − 1

N

)
+

(
1 − 1

N

)
f(N − 1) (3.51)

where the definition of f(N) is subjected to (3.48). Only after that, by
setting

dN = f(N) − f(N − 1) (3.52)

we shall proceed to show that

lim
N→∞

dN = 0 (3.53)

Now, by setting

• N1 = N − 1, N2 = N

• pj = 1
N

for every j ∈ {1, 2, . . . , N2}

• and therefore, sN1 =
N1∑
j=1

1
N

= 1 − 1
N

and

• f(N) = H (p1, p2, . . . , pN1 , pN2)

in the relation (3.38), we get

H (p1, p2, . . . , pN1 , pN2)

= H(sN1 , pN2) + sN1H

(
p1

sN1

,
p1

sN1

, . . . ,
pN1

sN1

)

= H

(
1 − 1

N
,

1

N

)
+

(
1 − 1

N

)
H

( 1
N

1 − 1
N

, . . . ,
1
N

1 − 1
N

)

︸ ︷︷ ︸
N−1 elements

= H

(
1

N
, 1 − 1

N

)
+

(
1 − 1

N

)
f(N − 1)

(by postulate I with regard to the symmetry)

(3.54)

and thus our asserted relation (3.51) is proved.
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Now, we proceed to prove (3.53). At first, we set

δN = H

(
1

N
, 1 − 1

N

)
(3.55)

which gives

• lim
N→∞

δN = H(0, 1) = 0 by the postulate (II) saying about the continu-

ity of H(p, 1 − p) for 0 ≤ p ≤ 1 as well as by (3.35)

• δ1 = H(1, 0) = H(0, 1) = 0 by postulate (I) with regard to the sym-
metry as well as by (3.35)

• by postulate (II), δN is continuous for every N ∈ N \ {0}

and this can only mean that |δN | is purely a function of N and is bounded
above. Thus, |δN | has to have a global maximum value within the range of
1 ≤ N < ∞.

So, let us take

δmax = max
N∈N

|δN | (3.56)

Notably, δmax = 0 would trivially mean that H
(

1
N

, 1 − 1
N

)
= 0 for every

n ∈ N, which is absurd. Thus, we will have to conclude that δmax > 0.

Now, by the definition (3.52) of dN ,

d2 + d3 + . . . + dN−1

= (f(2) − f(1)) + (f(3) − f(2)) + . . . + (f(N − 1) − f(N − 2))

= f(N − 1) − f(1)

= f(N − 1) − H(1)

= f(N − 1) ( by (3.32) )

(3.57)

which is rewritten as

f(N − 1) = d2 + d3 + . . . + dN−1 (3.58)

Again, by using the definition (3.55) of δN , the recursive relation (3.51) can
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be rewritten as

δN = f(N) −
(

1 − 1

N

)
f(N − 1)

= dN +
1

N
f(N − 1) ( by (3.52) )

= dN +
1

N
(d2 + d3 + . . . + dN−1) ( by (3.58) )

(3.59)

which is again conveniently rewritten as

NδN = NdN + d2 + d3 + . . . + dN−1 (3.60)

Before we go ahead, we make a note of the following: With regard to (3.5)
and (3.32), we have f(0) = 0 and f(1) = H(1) = 0 and this brings us to

d1 = f(1) − f(0) = 0 (3.61)

So, with regard to (3.60) and (3.61), we calculate

N∑

j=2

jδj =
N∑

j=2

(jdj + d1 + d2 + d3 + . . . + dj−1)

= (2d2 + d1) + (3d3 + d2) + (4d4 + d2 + d3)

+ . . . + (NdN + d2 + d3 + . . . + dN−1)

= (2d2 + (N − 2)d2) + (3d3 + (N − 3)d3) + (4d4 + (N − 4)d4)

+ . . . + (NdN + (N − N)dN)

= N(d2 + d3 + . . . + dN)
(3.62)

which in turn is equivalently and conveniently can be rewritten as

2

N + 1

N∑

k=2

dk =

N∑
j=2

jδj

N∑
j=1

j

(3.63)
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Our immediately next step will be to show that the limiting value of right
hand side of (3.63) for N → ∞ is equal to zero, i.e.

lim
N→∞

N∑
j=2

jδj

N∑
j=1

j

= 0 (3.64)

For this, because of lim
N→∞

δN = H(0, 1) = 0 (by (3.35)), we conclude:

For an arbitrarily small ǫ > 0, there exists a natural number Nǫ, such that
0 ≤ |δN | < ǫ

2
for every N > Nǫ and therefore,

N∑
j=2

j |δj|

N∑
j=1

j

≤

Nǫ∑
j=2

j |δj| + ǫ
2

N∑
j=Nǫ+1

j

N(N+1)
2

(3.56)
≤ δmax

1
2
Nǫ(Nǫ + 1) + ǫ

2

(
1
2
N(N + 1) − 1

2
Nǫ(Nǫ + 1)

)

N(N+1)
2

= δmax
Nǫ(Nǫ + 1)

N(N + 1)
+

ǫ

2

(
1 − Nǫ(Nǫ + 1)

N(N + 1)

)

︸ ︷︷ ︸
<1 for N>Nǫ

< δmax
Nǫ(Nǫ + 1)

N(N + 1)
+

ǫ

2

(3.65)

Again, as δmax is a fixed positive number, there exists a natural number N
′

ǫ

such that Nǫ(Nǫ+1)
N(N+1)

< ǫ
2δmax

for every N > N
′

ǫ and thus we proceed with the

inequality (3.65) as

N∑
j=2

j |δj|

N∑
j=1

j

< δmax
Nǫ(Nǫ + 1)

N(N + 1)
+

ǫ

2

< δmax
ǫ

2δmax

+
ǫ

2

= ǫ

(3.66)
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Hence, for an arbitrarily chosen ǫ, we have found that

∣∣∣∣∣∣

N∑
j=2

jδj

N∑
j=1

j

∣∣∣∣∣∣
≤

N∑
j=2

j|δj |

N∑
j=1

j

< ǫ

for every N > N
′

ǫ . This proves limit stated by our assertion (3.64).

Therefore, by applying the assertion (3.64) on (3.63), we get

lim
N→∞

2

N + 1

N∑

k=2

dk = 0 (3.67)

and this helps us to conclude the following by rewriting (3.60) at first and
then by using lim

N→∞
δN = 0 subsequently:

2

1 + 1
N

(δN − dN) =
2

1 + 1
N

N∑
k=2

dk

N

⇒ lim
N→∞

2

1 + 1
N

(δN − dN) = lim
N→∞

2

N + 1

N∑

k=2

dk

⇒2 lim
N→∞

δN − 2 lim
N→∞

dN = 0

⇒0 − 2 lim
N→∞

dN = 0 ⇔ lim
N→∞

dN = 0

(3.68)

which ultimately proves our assertion (3.53).

At this very point, we observe that the function f(N)

• fulfills the postulate (A∗) because of (3.49) belonging to the step 4

• fulfills the postulate (B∗) because of (3.53) (i.e. (3.68)) proven
immediately above

• fulfills the postulate (C), which can be shown as follows:

By setting N = 2 in the definition of f(N) given in (3.48), we get
f(2) = H

(
1
2
, 1

2

)
and by postulate (III) by setting c = 2, we get

H
(

1
2
, 1

2

)
= 1, thereby giving f(2) = H(U2) = 1

and hence, with regard to the proven theorem 3.2.1, we arrive at

f(N) = log2 N (3.69)
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Step 6:

Let us consider the expression H
(

Na

Nb
, 1 − Na

Nb

)
, such that Na and Nb are

natural numbers with Na < Nb.

Now, by considering the derived relation (3.46) in the step 3 with subject to
the following setting

• M = 2

• N1 = Na

• N2 = Nb − Na (i.e. = NM)

• p
(1)
1 = p

(1)
2 = . . . = p

(1)
Na

= p
(2)
1 = p

(2)
2 = . . . = p

(2)
Nb−Na

= 1
Nb

• s1 = Na

Nb
and s2 = Nb−Na

Nb

and thus, by using (3.69) on (3.46) we get

log2 Nb = H
(
p

(1)
1 , p

(1)
2 , . . . , p

(1)
Na

, p
(2)
1 , p

(2)
2 , . . . , p

(2)
Nb−Na

)

= H (s1, s2) + s1H

(
1

Nb

s1

, . . . ,
1

Nb

s1

)

︸ ︷︷ ︸
Na elements

+s2H

(
1

Nb

s2

, . . . ,
1

Nb

s2

)

︸ ︷︷ ︸
Nb−Na elements

= H

(
Na

Nb

, 1 − Na

Nb

)

+
Na

Nb

log2 Na +
Nb − Na

Nb

log2(Nb − Na)

(by using (3.69) once again)

(3.70)

which can be easily conveniently rewritten as
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H

(
Na

Nb

, 1 − Na

Nb

)
=

Na

Nb

log2 Nb −
Na

Nb

log2 Na

+

(
1 − Na

Nb

)
log2 Nb −

(
1 − Na

Nb

)
log2(Nb − Na)

= −Na

Nb

log2

(
Na

Nb

)
−

(
1 − Na

Nb

)
log2

(
1 − Na

Nb

)

(3.71)
Now, by postulate (II), since H(p, 1 − p) is a continuous function of p for
every real value of p ∈ [0, 1], we can be allowed to extend the relation (3.71)
for any real valued p, which means

H(p, 1 − p) = −p log2 p − (1 − p) log2(1 − p) (3.72)

At this very point, we can well see that (3.72) shows that the expression of
the Shannon’s entropy given by (3.31), namely

H(p1, p2, . . . , pN) =
N∑

i=1

pi logc

(
1

pi

)
for pi ∈ [0, 1] , N ∈ N (3.31)

is valid for N = 2 (and of course for c = 2).

(It can be noted that the validity of (3.31) for N = 1 is rather trivial)

Our objective shall be to prove the Shannon’s entropy by mathematical in-
duction with respect to N .

For performing the induction step, i.e. to show that (3.31) is valid for the
natural number N + 1 at the place of N , we start with the very fact that
H(p1, p2, . . . , pN , pN+1) = H(p1, pN+1, p2, p3, . . . , pN) with subject to the us-
age of the postulate (I) with regard to the symmetry.

After this, we use the postulate (IV ) to arrive at

H(p1, pN+1, p2, p3, . . . , pN)

= H(p1 + pN+1, p2, p3, . . . , pN) + (p1 + pN+1)H

(
p1

p1 + pN+1

,
pN+1

p1 + pN+1

)

(3.73)
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Now, we see that

• by assumption, (3.31) is valid for N probability elements implies

H(p1+pN+1, p2, p3, . . . , pN) = −(p1+pN+1) log2(p1+pN+1)−
N∑

i=2

pi log2 pi

(3.74)

• by using (3.72), we get

H

(
p1

p1 + pN+1

,
pN+1

p1 + pN+1

)

= − p1

p1 + pN+1

log2

(
p1

p1 + pN+1

)
− pN+1

p1 + pN+1

log2

(
pN+1

p1 + pN+1

)

(3.75)

Therefore, by applying (3.74) and (3.75) on (3.73), we get

H(p1, p2, . . . , pN , pN+1) = H(p1, pN+1, p2, p3, . . . , pN)

= −(p1 + pN+1) log2(p1 + pN+1) −
N∑

i=2

pi log2 pi

− p1 log2

(
p1

p1 + pN+1

)
− pN+1 log2

(
pN+1

p1 + pN+1

)

= −
N∑

i=2

pi log2 pi − p1 log2 p1 − pN+1 log2 pN+1

=
N+1∑

i=1

pi log2

(
1

pi

)

(3.76)

and this proves the Shannon’s entropy for N + 1 probability elements and
hence the required ultimate proof of the Shannon’s entropy (3.31) for c = 2.

In order to cope with the postulate (III), the logarithmic base of the loga-
rithmic expression in (3.31) is generalized to any real value of c with c > 1.
This completes the generalized proof of the expression (3.31), i.e. the
proof of the theorem 3.2.2.
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3.2.4 Role of Shannon’s four postulates

Since we have used the Shannon’s postulates, namely postulates (I), (II),
(III) and (IV ), for deriving the Shannon’s Entropy, it is however important
for us to discuss, why these postulates have been at all used or precisely,
which individual roles have each of these postulates have played. Before we
go ahead, we need to state an important thing: The entropy of a probability
distribution can also be interpreted as the amount of information con-
tained in the probability distribution (or rather the information content
of the probability distribution). We shall discuss this concept of infor-
mation content in the subsequent subsection briefly. We shall discuss the
importance of each of the Shannon’s postulates one by one as follows:

1. For a discrete probability distribution with a finite support defined by
the probabilities pi, i ∈ {1, 2, . . . , N}, we all know that the probability
distribution is not changed, if the presentation of the finite sequential
order of pi is changed, i.e. if the order of presentation of the values pi is
changed. Therefore, since the measure of entropy is referred exclusively
to the probability distribution and not the aforesaid order, we princi-
pally need to establish the very idea that the Shannon’s entropy should
to be independent of this aforesaid order. In other words, Shannon’s
entropy has to be a symmetric function of the arguments pi, thereby
the role of the postulate (I) is established.

2. The continuity of the entropy function H(p, 1 − p), p ∈ [0, 1] (with
the only exception of H(p, 1 − p) being removable discontinuous at
p = 0) postulated by the postulate (II) basically makes sure that the
entropy of a probability distribution is principally not allowed to be
unbounded above under no circumstances. Since H(p1, p2, . . . , pN)

for N ≥ 2 with subject to
N∑

i=1

pi = 1 can be made recursively related

to H(p, 1 − p) for a certain value of p, p ∈ [0, 1] under the postulate
(IV ), we can be assured that H(p1, p2, . . . , pN) must be bounded
above for every set of values of pi, pi ∈ [0, 1] and i ∈ {1, 2, . . . , N}.
This boundedness enables us to derive a probability distribution with
maximum entropy. Therefore, the role of the postulate (II) is clear.

3. The postulate (III) solely sets the base of the logarithm involved in
the entropy function H(p1, p2, . . . , pN).
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4. The role of the postulate (IV ) is described as follows: Let us suppose
that an event E of a random experiment with its probability PE can be
decomposed into two mutually exclusive events E1 and E2 with their re-
spective probabilities PE1 and PE2 , such that PE = PE1+PE2 . Then, if we
are informed concretely about the probabilities of these two subsets of
the event E (i.e of these subsets E1 and E2), the amount of information
obtained as a result is equal to the information content of the prob-

ability distribution defined by the two probabilities
PE1

PE
and

PE2

PE
mul-

tiplied with the weight PE , which is thereby given as PEH
(

PE1

PE
,

PE2

PE

)
.

Basically, the postulate (IV ) describes the weighting of different in-
formation contents as well as the additivity of information contents
simultaneously.

3.2.5 A property of a Shannon’s postulate

The following Shannon’s postulate (could be termed as the postulate (V ) is
referred to the page 2 of [25]):

Statement 3.2.5 (Postulate V). The entropy turns out to be zero, if one
of the probability elements happens to represent a certain event, i.e. if pi = 1
and pj = 0 for every j 6= i, then the entropy reduces to zero, i.e. H(EN) = 0

As an important property of this postulate (V ), it can be easily deduced
by using the postulates (I) and (IV ).

Notably, at the end of the step 1 of the proof of the Shannon’s theorem
3.2.2, we have seen that the zero probability elements do not contribute
to the Shannon’s entropy.

With this, keeping the postulate (I) in mind with regard to the symmetry
of the Shannon’s entropy expression and by using the postulate (IV )
successively, we get H(1, 0, . . . , 0︸ ︷︷ ︸

N zeros

) = NH(0, 1) (= 0) (by (3.35)). This is noth-

ing, but the proof of the postulate (V ) and thereby the desired important
property is established.
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3.2.6 Shannon’s entropy as the information content

In this subsection, we shall briefly introduce the application of the Shannon’s
entropy on the information theory. In the information theory, the Shannon’s
entropy is interpreted as the information content of the data meant for the
transmission of information. In this case, the logarithmic base is appropri-
ately chosen as c = 2. As a matter of fact, this logarithmic base c = 2 refers
to the very fact that every information as a message is to be encoded as a
sequence of zeros and ones (referred to the page 540 of [33]).

Let CN define the set of all the characters, namely z1, z2, . . . , zN contained
in the data to be transmitted with individual probabilities of occurrences
p1, p2, . . . , pN respectively. CN is thereby called the source of data.

In that case, we need to state and prove the following theorem referred to
the page 79 of [7]:

Theorem 3.2.3 (The information content of a single character). The
information content of the character zi, i = 1, 2, . . . , N , i.e. the number of
digits necessary to encode the character zi can be derived to be

Ii = log2

(
1

pi

)
(3.77)

Proof of the theorem 3.2.3. The proof of the expression of the information
content defined by (3.77) is rather simple and takes only few steps.

Let us start with the consideration of the independence of the events of
occurrences of two characters zi and zj for i 6= j.

Accordingly, pi,j = pipj and because the information contained jointly in
both zi and zj is equal to the sum of the information contents of zi and zj

individually, we have Ii,j = Ii + Ij, which can only bring us to Ii = k log2(pi),
such that k is an arbitrary constant.

Now, under the consideration of a special case for N = 2, the characters
(namely digits) 0 and 1 with their individual probabilities of occurrences
p1 = 0.5 and p2 = 0.5 do correspond each of them to an information content
of 1 bit only.

This leads to 1 = k log2(pi), for i = 1, 2 and thereby giving k = −1.
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Thus, Ii = k log2(pi) = log2

(
1
pi

)
, which proves the theorem 3.2.3.

Definition 3.2.1 (Information content of a source code, the Shan-
non’s formula). By generalizing, the information content3 of the entire
source of data denoted by EN is basically the expected value of Ii. It is given
by the weighted arithmetic mean of all the information contents Ii with pis
as weights, namely

IEN
=

N∑

i=1

pi log2

(
1

pi

)
(3.78)

which gives us the average number of bits necessary to encode each of the
elements of EN (referred to the page 80 of [7]).

This information content of the aforesaid data source defined by (3.78) is
also called (referred to the page 546 [33]) Shannon’s formula.

Definition 3.2.2 (Hartley’s formula). As a special case for pi = 1
N

for
every i = 1, 2, . . . , N , the Shannon’s formula reduces to IEN

= log2 N , which
is known as Hartley’s formula (referred to the page 547 of [33]) and gives
the number of bits necessary to code every character zi, i = 1, 2, . . . , N .

In the information theory, this figure log2 N is also interpreted as the num-
ber of binary decisions4 (referred to the page 78 of [7]).

Understandably, log2 N is the maximum value of IEN
, simply because the

entropy expressed by log2 N of the discrete uniform probability distribution is
maximum.

A well known coding technique of the aforesaid characters is called the pro-
cedure of Shannon and Fano, which we shall state briefly as follows:

Proposition 3.2.1 (Coding procedure of Shannon and Fano). The
procedure (referred to the page 83 of [7]) says that the number of bits denoted
by Si needed to code the character zi is determined by the constraint

log2

(
1

pi

)
≤ Si ≤ log2

(
1

pi

)
+ 1 (3.79)

Remark 3.2.1 (The concluding remark). We can well see that the Shan-
non’s entropy has a good usage in the information theory.

3The German word for information content is Informationsgehalt, referred to the
page 80 of [7].

4The German word for this figure log2 N is Entscheidungsgehalt.
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3.3 The principle of maximum entropy

Probabilities are used to cope with the real aspect of randomness. However,
randomness is only one source of uncertainty. The other source of uncertainty,
which is even more severe, is the ignorance of the initial condition {dY }, which
not only refers to the ignorant (parameter) space, but also to the structure
of randomness. In the preceding section, the random structure as a function
of {dY } was handled by the principle of minimum information, by means
of which the necessary amount of information in a given situation can be
specified.

It has to be noted, that the minimum information principle determines the
amount of qualitative information, which must be known in a given situation.
These qualitative facts are gathered from certain experimental results (say
from the drawing of samples).

In the year 1957, Edwin Jaynes investigated a somewhat related problem of
selection of an appropriate probability distribution with subject to a given
information about the initial conditions. It has to be noted, that there is a
difference between Jaynes’s problem and our problem. The minimum
information principle answers the question of the necessary amount of
information, whereas Jaynes starts with a given amount of information.
Jaynes solved the problem based on the concept of stochastic entropy. For
a given amount of information, he developed a selection principle for the
probability distribution called the principle of maximum entropy.

According to the maximum entropy principle (referred to the page 1 of [25]),
given some partial knowledge about Y (i.e. for eg. knowledge about the
moments of Y ), we should choose that particular probability distribution
of Y , which is consistent or compatible with the given knowledge, but has
otherwise maximum uncertainty associated with it.

Thus, the principle of maximum entropy starts with the assumption that
only the confirmed knowledge can be used to develop a model, i.e., the prob-
ability distribution PY |{dY }. Any unconfirmed knowledge used to build
a stochastic model would lead to an unspecified risk. Any risk must have
been generated by uncertainty and, therefore, in a given situation with only
partial knowledge about the initial condition, that particular probability dis-
tribution should be selected which is compatible with the available knowledge
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and exhibits the maximum stochastic uncertainty. Any different selection of
PY |{dY } would be tantamount to the assumption of some unconfirmed knowl-
edge resulting in an unknown risk (i.e. the risk that is not easily quantifiable).
The maximum entropy probability measures (MEP -probability measures) as
well as the maximum entropy probability densities are obtained by solving a
constraint optimization problem.

Before we proceed, we would like to revisit the important (already stated)
concepts of type and information, which are referred to a probability dis-
tribution of Y :

• The (specified) type of a probability distribution is described (given) by
the number of extremal points of the probability distribution. All the
probability distributions of a specified type are therefore qualitatively
of the same type (or sort).

• The information needed to construct (or select) a probability distribu-
tion is described (given) by

– the support of the probability distribution (absolutely necessary)

– a certain number of moments, say m, m ≥ 0 (no moments are
necessary for a constant probability distribution)

3.3.1 The maximum entropy probability distribution

The derived statement giving the maximum entropy probability distribution
with the help of Kullback-Leibler divergence (or relative entropy) hap-
pens to be the theorem 12.1.1 given in the page 410 of the book [11] that
has been published in the year 2006. This particular derivation is given in
the appendix A.1 for the reader’s ready reference.

In this subsection, we shall give our own derivation in a skillful manner.
However, this derivation cannot be regarded as a complicated one and can
be given by using variously different mathematical means. It has to be
notably stated that I derived this very expression completely in my own
way by using certain natural logarithmic properties in the year 2002.
The derivation is hereby given step by step as follows:

Let Ω be a bounded Borel subset of R, A be a suitably chosen σ- algebra
on Ω and ν be a σ- finite measure on (Ω,A), viz. ν(Ω) < ∞.
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Let F(m) be the set of all the probability distributions PY |{dY } on (Ω,A),
such that each of the elements of F(m), namely PY |{dY } possesses a density
fY |{dY } with respect to ν and has the k th moment equal to a fixed number

µ
(k)
Y , for k = 0, 1, 2, . . . ,m, i.e.

∫

Ω

ykPY |{dY }(dy) =

∫

Ω

ykfY |{dY }(y) ν(dy) = µ
(k)
Y , k = 0, 1, 2, . . . ,m

Basically, µ
(1)
Y , µ

(2)
Y . . . , µ

(m)
Y are the numerical values of the first m moments of

Y representing the available knowledge denoted by dY = (µ
(1)
Y , µ

(2)
Y . . . , µ

(m)
Y ).

Notably, µ
(0)
Y = 1.

The entropy of PY |{dY } is hereby denoted by

H(PY |{dY }) = −
∫

Ω

fY |{dY }(y) log
(
fY |{dY }(y)

)
ν(dy) (3.80)

which is invariant with respect to the dominating measure ν.

The maximum entropy principle says that PY |{dY } should be selected having
maximum entropy and meeting the moment requirements simultaneously.
Thus, we arrive at the following theorem:

Theorem 3.3.1 (Theorem of maximum entropy). Corresponding to
arbitrarily chosen real valued constants λ1, λ2, . . . , λm, we set

fY |{dY }(y) = e

m∑
k=0

λkyk

, y ∈ Ω (3.81)

such that

eλ0 =
1

∫
Ω

e

m∑
k=1

λkyk

ν(dy)

where Ω is a bounded Borel subset of R and ν is a σ- finite measure on the
Borel σ-algebra of Ω. Moreover, we define

∫

Ω

ykfY |{dY }(y) ν(dy) = µ
(k)
Y , k = 0, 1, 2, . . . ,m; µ

(0)
Y = 1 (3.82)
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Then the probability distribution PMEP
Y |{dY } possessing the ν- density fY |{dY } has

the maximum entropy among all the elements of the set F(m). This class
F(m) of probability distributions, with subject to the fulfillment of

∫

Ω

ykfY |{dY }(y) ν(dy) = µ
(k)
Y , k = 0, 1, 2, . . . ,m; µ

(0)
Y = 1 (3.83)

can be defined as

F(m) =
{
fY |{dY } : Ω → [0,∞)

∣∣∣fY |{dY } is Borel measurable under (3.83)
}

Consequently, PMEP
Y |{dY } ∈ F(m) and H

(
PMEP

Y |{dY }

)
= sup

PY |{dY }∈F(m)

H
(
PY |{dY }

)

hold good. Moreover, H
(
PMEP

Y |{dY }

)
= −

m∑
k=0

λkµ
(k)
Y .

Proof of the theorem 3.3.1. Clearly, PMEP
Y |{dY } ∈ F(m).

For any arbitrarily chosen PY |{dY } ∈ F(m) with a ν- density fY |{dY }, we shall
have to solve the following constraint optimization problem:

With subject to the fulfillment of the constraints (3.83), the expression (3.84)
can be globally maximized. This maximization is equivalent to the maxi-
mization of the entropy H(PY |{dY }). Here,

H(PY |{dY }) + λ0 + 1 + λ1µ
(1)
Y + λ2µ

(2)
Y + . . . + λmµ

(m)
Y (3.84)

where the coefficients λi and the moments µ
(i)
Y for i ∈ {0, 1, 2, . . . ,m} are

described by (3.81) and (3.83) respectively.

Starting with (3.84) we get
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H
(
PY |{dY }

)
+ λ0 + 1 + λ1µ

(1)
Y + . . . + λmµ

(m)
Y

=

∫

Ω

fY |{dY }(y) log

(
1

fY |{dY }(y)

)
ν(dy)

+(λ0 + 1)

∫

Ω

fY |{dY }(y) ν(dy)

+λ1

∫

Ω

yfY |{dY }(y) ν(dy) + . . . + λm

∫

Ω

ymfY |{dY }(y) ν(dy)

=

∫

Ω

fY |{dY }(y)

[
log

(
1

fY |{dY }(y)

)
+ log

(
eλ0+1

)
+ log

(
eλ1y

)

+ . . . + log
(
eλmym)]

ν(dy)

=

∫

Ω

fY |{dY }(y) log

(
eλ0+1+λ1y+λ2y2+...+λmym

fY |{dY }(y)

)
ν(dy)

=

∫

Ω

fY |{dY }(y) log




e
1+

m∑
i=0

λiy
i

fY |{dY }(y)


 ν(dy)

=

∫

Ω

e
1+

m∑
i=0

λiy
i




fY |{dY }(y)

e
1+

m∑
i=0

λiyi

log




e
1+

m∑
i=0

λiy
i

fY |{dY }(y)





 ν(dy)

By the plain and simple fact that the function x log
(

1
x

)
of x having the

domain of definition described by 0 < x ≤ 1 has its global maximum value
e−1 log

(
1

e−1

)
= e−1 at the point x = e−1, the least upper bound (l.u.b.) for

the above expression within the first brackets is obtained, thereby yielding
the following result:

∫

Ω

e
1+

m∑
i=0

λiy
i




fY |{dY }(y)

e
1+

m∑
i=0

λiyi

log




e
1+

m∑
i=0

λiy
i

fY |{dY }(y)





 ν(dy)

≤
∫

Ω

e
1+

m∑
i=0

λiy
i [

e−1
]

ν(dy) =

∫

Ω

e

m∑
i=0

λiy
i
j

ν(dy)

(3.85)
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The l.u.b. on the right hand side of (3.85) is actually adopted at the point,
where

fY |{dY }(y)

e
1+

m∑
i=0

λiyi

= e−1 (3.86)

holds. From (3.86) the functional form of the probability density of the
MEP -probability distribution is obtained at the point, when

fY |{dY }(y) = fY |{dY }(y) = e

m∑
i=0

λiy
i

(3.87)

With (3.87), it is therefore been shown that on applying the maximum en-
tropy principle to the case where the numerical values of the first m moments
of Y |{dY } are exactly known, the desired minimum information probability
distribution is obtained. Each minimum information ( i.e. the minimum
available information necessary to construct the probability distribution of
the desired type ) probability distribution is an element of a given assigned
co-domain of P. Each such co-domain defines a distribution family that has
been discussed previously.

Because of the very fact that fY |{dY } given by (3.87) gives a probability distri-
bution, by the derived result (3.85) as a result of the global maximization
of the expression (3.84), we get

H
(
PMEP

Y |{dY }
)
+λ0+1+λ1µ

(1)
Y +λ2µ

(2)
Y +. . .+λmµ

(m)
Y =

∫

Ω

e

m∑
i=0

λiy
i

dy = 1 (3.88)

implying that the maximum stochastic entropy is given by:

H
(
PMEP

Y |{dY }
)

= Γ(λ1, λ2, . . . , λm) = −
m∑

i=0

λiµ
(i)
Y (3.89)

Thus, the entropy of the (m−1)- extremal minimum information probability
distribution is therefore given by the functional given by (3.89). Clearly,

H
(
PY |{dY }

)
≤ H

(
PMEP

Y |{dY }

)
holds and this proves our theorem 3.3.1.

Remark 3.3.1. In contrast to the maximum entropy principle, the
minimum information principle guarantees that the selected probability
distribution, which describes, in general, the given situation, sufficiently
well.
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As special cases of the theorem 3.3.1, the following two corollaries are
discussed to consider the discrete and continuous cases of Y individually:

Corollary 3.3.1 (Y is discrete). By taking Ω = {y1, y2, . . . , yN} and ν
to be a counting measure on Ω, i.e. ν({yj}) = j ≤ N , the corollary is
described as follows:

Discussion of the corollary 3.3.1. Let FD(m) be the set of all the proba-
bility mass functions with the support {y1, y2, . . . , yN}, such that y1 < y2 <
. . . < yN and the k th moment of each of the elements of FD(m) is a fixed

number µ
(k)
Y , for k = 0, 1, 2, . . . ,m. Symbolically,

FD(m) =

{
(p1,p2, . . . ,pN) ∈ [0, 1]N :

N∑

j=1

yk
j pj = µ

(k)
Y , 0 ≤ k ≤ m,

}

with µ
(0)
Y = 1

The probability mass function chosen from FD(m), which maximizes the

entropy H(p1,p2, . . . ,pN) = −
N∑

j=1

pj log(pj) at the point, when

pj = pj = PY |{dY }({yj}) = e

m∑
k=0

λkyk
j

, 1 ≤ j ≤ N (3.90)

which describes the discrete case of Y .

The entropy of the maximum entropy discrete probability distribution of Y
is accordingly given as

H
(
PY |{dY }

)
= −

m∑

k=0

λkµ
(k)
Y (3.91)

and this completes the corollary 3.3.1.

Corollary 3.3.2 (Y is continuous). By taking Ω = [a, b] to be a closed
interval in R and ν to be a Lebesgue measure on [a, b], the corollary is
described as follows:

Discussion of the corollary 3.3.2. Let FC(m) be the set of all the proba-
bility density functions with the support [a, b], such that the k th moment of
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each of the elements of FC(m) is a fixed number µ
(k)
Y , for k = 0, 1, 2, . . . ,m.

Symbolically,

FC(m) =



fY |{dY } : [a, b] → [0,∞) :

b∫

a

ykfY |{dY }(y)dy = µ
(k)
Y , 0 ≤ k ≤ m





with µ
(0)
Y = 1.

Now, by rewriting the statement of the theorem in this special case, we state:

With subject to the existence of the real valued constants
λ0, λ1, λ2 . . . , λm, if

fY |{dY }(y) = e

m∑
k=0

λkyk

, a ≤ y ≤ b (3.92)

fulfills the condition

b∫

a

ykfY |{dY }(y) dy = µ
(k)
Y , k = 0, 1, 2, . . . ,m; µ

(0)
Y = 1

then fY |{dY } maximizes the entropy within FC(m) and this describes the
continuous case of Y (the special case for a = 0, m = 2 in this regard can
be referred to the page 71 of [25]).

The entropy of the maximum entropy continuous probability distribution of
Y is accordingly given as

H
(
fY |{dY }

)
= −

m∑

k=0

λkµ
(k)
Y (3.93)

by replacing the argument PY |{dY } of H by the argument fY |{dY } in this
continuous case. This completes the corollary 3.3.2

3.3.2 The Kullback-Leibler measure of deviation

With respect to a fixedly given support, namely {y1, y2, . . . , yN} (where
for a finite N number of support elements, a = y1 < y2 < . . . < yN = b)
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in case Y is discrete or [a, b] in case Y is continuous, the uniform probabil-
ity distribution followed by Y has understandably the maximum entropy
compared to any other probability distribution followed by Y .

The deviation (or divergence) of a probability distribution followed by
Y from the uniform probability distribution followed by Y is measured by
the Kullback-Leibler divergence (or in other words, relative entropy).
This particular kind of deviation measured by the relative entropy is an
alternative way of interpreting the entropy of the probability distribution
of Y .

In our discussion, we shall select that particular probability distribution of
Y , which is determinable by its first m moments, namely determinable by

dY =
(
µ

(1)
Y , µ

(2)
Y , . . . , µ

(m)
Y

)
.

Without any loss of generality, let us take a = 0 and b = 1 in case of a
continuous Y and 0 = y1 < y2 < . . . < yN = 1 in case of a discrete Y . We
shall discuss the continuous case at first and then the discrete case in
form of the following two propositions.

Proposition 3.3.1 (The Kullback-Leibler deviation in the continu-
ous case of Y ). The Kullback-Leibler deviation between the maximum en-

tropy probability distribution of Y determined by dY =
(
µ

(1)
Y , µ

(2)
Y , . . . , µ

(m)
Y

)

and the uniform probability distribution of Y , both having the exactly the
same support [0, 1], is minimum and is equal to −H

(
fY |{dY }

)
.

Proof of the proposition 3.3.1. Here, if fY |{dU} is the probability density
function of the uniform continuous probability distribution (dU gives the
moments of the uniform continuous distribution) and fY |{dY } be any other
probability distribution belonging to FC(m), then by Gibbs’ inequality,

1∫

0

fY |{dY }(y) log

(
fY |{dY }(y)

1

)
dy ≥ 0

⇔H
(
fY |{dY }

)
=

1∫

0

fY |{dY }(y) log

(
1

fY |{dY }(y)

)
dy ≤ 0

(3.94)

which clearly shows that the entropy of any continuous probability distribu-
tion with support [0, 1], with the exception of the uniform continuous proba-
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bility distribution is always negative (the entropy of the uniform continuous
probability distribution being zero).

Therefore, with regard to the support [0, 1] and any fixedly chosen dY , the
entropy of the probability distribution described by the density fY |{dY } of Y is
maximum precisely means that the Kullback-Leibler deviation between
fY |{dY } and fY |{dU} is understandably minimum in comparison with all
other probability distributions fY |{dY } belonging to FC(m).

Thus, this Kullback-Leibler deviation between fY |{dY } = fY |{dY } and fY |{dU},
namely

−H
(
fY |{dY }

)
=

1∫

0

fY |{dY }(y) log
(
fY |{dY }(y)

)
dy

gives the measure of the minimum deviation of the probability distribu-
tion of Y determined by dY (i.e. determined by the first m moments), where
the probability density function fY |{dY } has been described by (3.92).

The probability distribution fY |{dU} having zero as the entropy with re-
spect to the support [0, 1] may be termed as the probability distribution
representing the complete unknownness.

This completes the discussion as well as the proof of the proposition 3.3.1.

The discussions about the discrete cases of Y is more or less the same, except
the number of elements of the support denoted by N is of importance.

Proposition 3.3.2 (The Kullback-Leibler deviation in the discrete
case of Y ). The Kullback-Leibler deviation between the maximum entropy

probability distribution of Y determined by dY =
(
µ

(1)
Y , µ

(2)
Y , . . . , µ

(m)
Y

)
and

the uniform probability distribution of Y , both having the exactly the same
support {y1, y2, . . . , yN}, is minimum and is equal to −H

(
PY |{dY }

)
+log N .

Proof of the proposition 3.3.2. If PY |{dU} is the probability mass function
of the uniform discrete probability distribution (dU gives the moments of the
uniform discrete distribution) and PY |{dY } be any other probability distribu-
tion belonging to FD(m) for any fixedly chosen N , then exactly by the same



3.3. THE PRINCIPLE OF MAXIMUM ENTROPY 97

argument as in the continuous case of Y , the Kullback - Leibler deviation
between PY |{dY } = PY |{dY } and PY |{dU} is given by

N∑

j=1

PY |{dY }({yj}) log

(
PY |{dY }({yj})

1
N

)

=
N∑

j=1

PY |{dY }({yj}) log
(
PY |{dY }({yj})

)
+ log N = −H

(
PY |{dY }

)
+ log N

which gives the measure of the minimum deviation of the probability
distribution of Y determined by dY (i.e. determined by the first m moments),
where the probability mass function PY |{dY } has been described by (3.90).

This completes the discussion as well as the proof of the proposition 3.3.2.

Now, let us formulate the concept of complete information in the following
way:

Remark 3.3.2 (The complete information). Conclusively, in this
very particular sense, the probability distribution of Y ( PY |{dY } in the
discrete case of Y or fY |{dY } in the continuous case of Y ), which gives the
minimum deviation (i.e. the minimum Kullback - Leibler devia-
tion), contains the complete information of the existing but unknown
probability distribution of Y determined by dY (i.e. the probability distribu-
tion determined by its first m moments).

Before we draw this very subsection to a close, we would like to give a brief
note about the moments and supports of the probability distributions of
both Y and X for our future references:

Remark 3.3.3. Regardless of whether the random variable Y is discrete

or continuous, we shall express the ith moment of Y , namely µ
(i)
Y for our

references in the coming chapters and sections as

µ
(i)
Y =

∫
Ω

yie

m∑
j=1

λjyj

ν(dy)

∫
Ω

e

m∑
j=1

λjyj

ν(dy)

=

∫

Ω

yie

m∑
j=0

λjyj

ν(dy)
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by using the statements (3.81) and (3.82).

In particular, if Y is linearly transformed as Y = y1 + (yN − y1)X in the

discrete case or Y = a + (b − a)X in the continuous case, then the ith

of the transformed random variable X, namely µi shall be expressible as

µi =

∫
ΩX

xie

m∑
j=1

βjxj

νX(dx)

∫
ΩX

e

m∑
j=1

βjxj

νX(dx)

=

∫

ΩX

xie

m∑
j=0

βjxj

νX(dx)

where, as a result of this linear transformation, the transformations of Ω and
ν are symbolized by ΩX and νX respectively.

However, in course of our discussions, we shall use XY instead of Ω and XX

instead of ΩX .

3.3.3 A preliminary statement pertaining to the char-
acteristic properties of λi, i ∈ {0, 1, 2, . . . , m} val-
ues

In the subsequent subsection 3.3.4, we shall discuss about the characteristic
properties of λi, i ∈ {0, 1, 2, . . . ,m} values pertaining to both discrete and
continuous cases of Y . We must state the following prior to the aforesaid
discussions:

Statement 3.3.1 (The basic assumption). The value of m is always
arbitrarily but fixedly chosen in advance. Only with respect to this fixed
choice of m, N is allowed to vary within the range m + 1 ≤ N < ∞.

In fact, the characteristic properties of λi, i ∈ {0, 1, 2, . . . ,m} values are
ascribed to the discussions about the exponential polynomial probability
distributions of Y having at most m − 1 extremes.

Throughout the subsection 3.3.4, we shall go by the statement 3.3.1.
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3.3.4 Characteristic properties of λi, i ∈ {0, 1, 2, . . . , m}
values

Definition 3.3.1 (The desired property of a probability distribu-
tion). The number of extreme points of the probability distribution of Y
is the basic desired characteristic property for the selection of the proba-
bility distribution of Y .

This property is exclusively determined by the λi, i ∈ {0, 1, 2, . . . ,m} values.

Statement 3.3.2 (The basic characteristic property). If N is made
to be extremely large, then the random variable Y may be taken for a
continuous, instead of being discrete. Even in cases, when Y is taken for
a continuous, the λi, i ∈ {1, 2, . . . ,m} values must be kept unchanged.

Meaning of the statement 3.3.2. The term continuous probability distri-
bution of the random variable Y |{dY } means that the probability distribu-
tion of Y |{dY } is describable by its probability density function rather than
its probability mass function, if N happens to be extremely large, i.e. math-
ematically speaking, if N → ∞. In other words, only if N happens to be
sufficiently large, the probability distribution of Y |{dY } could be taken
for a continuous one instead of a discrete one. As a matter of fact, it is
extremely important to state that the values of λ1, λ2, . . . , λm contained in
the probability mass function of Y |{dY } must remain unchanged if Y |{dY }
happens to be taken for a continuous random variable, simply because these
λi values determine the essential characteristics of the probability distribu-
tion, especially the local extrema. The continuous probability distribution
(of Y |{dY }) therefore should not lead to any change in the essential charac-
teristics of the probability distribution.

This aforesaid largeness of N is therefore the specific condition for choos-
ing the probability distribution of Y to be continuous, instead of discrete.

This ends the discussion of the statement 3.3.2.

In view of the definition 3.3.1 as well as the statement 3.3.2, we shall
assume in this very subsection, that the λi, i ∈ {1, 2, . . . ,m} values for
both the discrete and the continuous cases of Y are exactly the same.
By keeping this in mind, let us examine, how the moments of Y in both the
discrete and the continuous cases behave.
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Proposition 3.3.3 (Behavior of moments of Y ). If N is sufficiently

large for any fixedly chosen m, then in the limiting sense, the ith moment
(i ∈ {1, 2, . . . ,m}) of Y in the continuous case (denoted by µ

(i,C)
Y ) can be

taken to be equal to the ith moment of Y in the discrete case (denoted by

µ
(i,D)
Y ).

Proof of the proposition 3.3.3. Let us restate the the maximum entropy
probability distribution of the random variable Y |{dY } in the discrete case
(in case of the Shannon’s entropy) as well as in the continuous case (in
case of the differential entropy 5). For a discrete Y |{dY }, its maximum
entropy probability distribution is given as

fY |{dY }(yj) = e

m∑
i=0

λiy
i
j

for j = 1, . . . , N

the value of its entropy being −
m∑

i=0

λiµ
(i,D)
Y , where each moment µ

(i,D)
Y

symbolized for showing the discrete case is given as

µ
(i,D)
Y =

N∑
j=1

yi
je

m∑
k=1

λkyk
j

N∑
j=1

e

m∑
k=1

λkyk
j

and for a continuous Y |{dY }, its maximum entropy probability dis-
tribution is given as

fY |{dY }(y) = e

m∑
i=0

λiy
i

for a ≤ y ≤ b

the value of its entropy being −
m∑

i=0

λiµ
(i,C)
Y , where each moment µ

(i,C)
Y

symbolized for showing the continuous case is given as

µ
(i,C)
Y =

b∫
a

yie

m∑
k=1

λkyk

dy

b∫
a

e

m∑
k=1

λkyk

dy

5the definition of the differential entropy is also referred to the page 44 of [25]
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With this 6, for δmax = max
1≤j≤N−1

(yj+1 − yj) → 0 ⇔ N → ∞,

lim
N→∞

µ
(i,D)
Y = lim

N→∞




N∑
j=1

yi
je

m∑
k=1

λkyk
j

N∑
j=1

e

m∑
k=1

λkyk
j




= lim
N→∞




N∑
j=1

δmaxy
i
je

m∑
k=1

λkyk
j

N∑
j=1

δmaxe

m∑
k=1

λkyk
j




=

lim
δmax→0

N∑
j=1

δmaxy
i
je

m∑
k=1

λkyk
j

lim
δmax→0

N∑
j=1

δmaxe

m∑
k=1

λkyk
j

by keeping a = y1 and b = yN fixed

=

b∫
a

yie

m∑
k=1

λkyk

dy

b∫
a

e

m∑
k=1

λkyk

dy

= µ
(i,C)
Y (3.95)

Thus, for a sufficiently large value of N , µ
(i,D)
Y ≈ µ

(i,C)
Y and this completes

the proof of the proposition 3.3.3.

Consequently, we immediately arrive at the following corollary:

Corollary 3.3.3. −
m∑

i=1

λiµ
(i,D)
Y ≈ −

m∑
i=1

λiµ
(i,C)
Y for a sufficiently large N .

Basically, for exactly the same values of λ1, λ2, . . . λm, the values of the mo-
ments, namely µ

(1)
Y , µ

(2)
Y , . . . µ

(m)
Y can be kept almost unchanged by increasing

N arbitrarily, however with subject to the fixed values of a = y1 and yN = b.

6Notably, the differential entropy
b∫

a

fY |{dY }(y) log
(

1
fY |{dY }(y)

)
dy assumes its global

maximum value, when fY |{dY }(y) = e

m∑
i=0

λiy
i

for a ≤ y ≤ b.
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But, as a matter of fact the value of λ0 cannot be kept unchanged and
therefore needs careful investigation.

Keeping this in mind, we arrive at the following proposition:

Proposition 3.3.4. Purely for the sake of simplicity and convenience,
we shall assume that δj values defined by δj = yj+1 − yj, j = 1, 2, . . . , N − 1
are not significantly distinct. In other words, δj ≈ δ = b−a

N−1
for every

j = 1, 2, . . . , N − 1 always holds for a reasonably large N .

With this, let the values of λ0 in discrete and continuous cases be denoted by
λ

(D)
0 and λ

(C)
0 respectively. Then, for a sufficiently large value of N , λ

(C)
0

differs from λ
(D)
0 approximately by the expression log

(
b−a
N−1

)
, where a and b

have their usual meanings.

Proof of the proposition 3.3.4. Notably, if N is not reasonably large,
then one should not opt for choosing Y |{dY } to be a continuous random
variable.

Therefore, with regard to the defined δj values, namely δj = yj+1 − yj, j =
1, 2, . . . , N − 1, together with δ = b−a

N−1
, we set

1 ≈
N∑

j=1

δje
λ
(C)
0 +

m∑
i=1

λiy
i
j ≈ b − a

N − 1

N∑

j=1

e
λ
(C)
0 +

m∑
i=1

λiy
i
j

(3.96)

for a large N , which on further simplification gives

N∑

j=1

δje

m∑
i=1

λiy
i
j ≈ b − a

N − 1

N∑

j=1

e

m∑
i=1

λiy
i
j

(3.97)

after having taken δN = 0. Notably, the derivation of (3.95) assumed
that m is not made to change with N for eg. m = N − 3. This
meant, m has been assumed to be independent of N .

So, by keeping this in mind, let us find out a concrete relationship between
λ

(D)
0 and λ

(C)
0 .

With subject to the very following fact

λ
(D)
0 = − log

(
N∑

j=1

e

m∑
i=1

λiy
i
j

)
(3.98)
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we get

λ
(C)
0 = − log




b∫

a

e

m∑
i=1

λiy
i

dy




= − log

(
lim

N→∞

N∑

j=1

δje

m∑
i=1

λiy
i
j

)

≈ − log

(
N∑

j=1

δje

m∑
i=1

λiy
i
j

)

≈ − log

(
b − a

N − 1

N∑

j=1

e

m∑
i=1

λiy
i
j

)
= − log

(
b − a

N − 1

)
+ λ

(D)
0

(3.99)

which means

λ
(C)
0 ≈ − log

(
b − a

N − 1

)
+ λ

(D)
0 (3.100)

This completes the proof of the proposition 3.3.4.

Purely for the sake of a possible clarity, we restate the immediately above
statement in form of the following corollary:

Corollary 3.3.4. The derived (3.100) basically means nothing different from

the very fact that − log
(

b−a
N−1

)
+ λ

(D)
0 → λ

(C)
0 , if N → ∞.

Consequently, there are certain corollaries, which relevantly arise:

Corollary 3.3.5 (The selection criterion). The word selection is referred
to the choice, whether to choose the discrete probability distribution of Y or
rather the continuous of the same.

If the positive real number

∣∣∣∣λ
(C)
0 + log

(
b − a

N − 1

)
− λ

(D)
0

∣∣∣∣ (3.101)

is sufficiently small (because of the largeness of N), then the contin-

uous probability distribution of Y with λ
(C)
0 , λi, i ∈ {1, 2, . . . ,m} could be

selected for usages, instead of the discrete probability distribution of Y
with λ

(D)
0 , λi, i ∈ {1, 2, . . . ,m}, provided the λi, i ∈ {1, 2, . . . ,m} values for

both continuous and the discrete cases of Y are practically the same.
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Before we go ahead to establish the next corollary, we need to state a very
important theorem that connects the Shannon’s entropy and the differential
entropy7, which states that

Theorem 3.3.2 (Theorem of Shannon’s and the differential entropy).
If the density fY (y) of the continuous random variable Y is Riemann inte-
grable, such that fY (yj) δ, j ∈ Z is taken for a probability element in case
Y is taken for a discrete, then

the Shannon’s entropy + log(δ) → the differential entropy, as δ → 0
( δ > 0 ).

This theorem is referred to the theorem 8.3.1 in the page 248 of [11].
With this, we are in a position to come to the next corollary, which is given
as follows:

Corollary 3.3.6 (Validity of the theorem 3.3.2 in our case). We know

that the Shannon’s entropy is equal to −λ
(D)
0 −

m∑
i=1

λiµ
(i,D)
Y and the differential

entropy is equal to −λ
(C)
0 −

m∑
i=1

λiµ
(i,C)
Y . For a large N , µ

(i,D)
Y ≈ µ

(i,C)
Y holds.

So, by combining the preceding corollaries 3.3.3 and 3.3.4, we get

−(− log
(

b−a
N−1

)
+ λ

(D)
0 ) −

m∑
i=1

λiµ
(i,D)
Y → −(λ

(C)
0 ) −

m∑
i=1

λiµ
(i,C)
Y as N → ∞

i.e. log

(
b − a

N − 1

)

︸ ︷︷ ︸
=log(δ)

−λ
(D)
0 −

m∑
i=1

λiµ
(i,D)
Y → −λ

(C)
0 −

m∑
i=1

λiµ
(i,C)
Y as N → ∞

since in our case, δ = b−a
N−1

. Notably, if the elements y1, y2, . . . , yN of the

support XY are equidistant, then δj = δ = b−a
N−1

, j ∈ {1, 2, . . . , N − 1}.

Hence, the theorem 3.3.2 gets verified here.

Importantly, in the next corollary we shall see trivially, how exactly λ
(D)
0

behaves with N → ∞.

Corollary 3.3.7 (λ
(D)
0 → −∞ as N → ∞). By rewriting (3.100), that is

λ
(C)
0 + log

(
b − a

N − 1

)
≈ λ

(D)
0 (3.102)

7Notably, the usage of the term differential entropy has also been referred to the
page 247 of [11]
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we can easily see that, since λ
(C)
0 is independent of N , then if N → ∞,

then λ
(D)
0 understandably tends to −∞.

That is, N → ∞ =⇒ λ
(D)
0 → −∞ and this establishes this corollary.

This brings us to the following important statement regarding higher values
of N :

Statement 3.3.3 (High values of N). For a very high value of N , say

10000, if we still decide to stick to the discrete case, λ
(D)
0 is ought to be a

negative value of a very high magnitude, which evidently means the following:

1. Entropy of the discrete probability distribution under consideration,

namely −λ
(D)
0 −

m∑
i=1

λiµ
(i)
Y , is expectedly very high, because of the positive

value of −λ
(D)
0 of high magnitude.

2. The individual probabilities, namely e
λ
(D)
0 +

m∑
i=1

λiy
i
j

become undoubtedly
individually smaller.

3. Even for large values of N , the value λ
(C)
0 = − log( b−a

N−1
) + λ

(D)
0 , is not

really expected to be a value of a very high magnitude as log(N − 1)

(> 0) neutralizes the magnitude of λ
(D)
0 to a considerable extent.

Conclusively, in this very subsection, we have achieved the following:

• If Y |{dY } is to be continuous, there does not seem to be any harm in
stating its differential entropy defined by the pure and simple Rie-

mann integral
b∫

a

fY |{dY }(y) log
(

1
fY |{dY }(y)

)
dy = −λ

(C)
0 −

m∑
i=1

λiµ
(i)
Y to be

the information content of its probability distribution, its probability

density function being given by fY |{dY }(y) = e
λ
(C)
0 +

m∑
i=1

λiy
i

for a ≤ y ≤ b.

• We have established a clear relationship between the λi values for
i ∈ {0, 1, 2, . . . ,m} of the probability density function of Y |{dY } (in
case of a continuous Y |{dY }) and the same of the probability mass
function of Y |{dY } (in case of a discrete Y |{dY }) with regard to the
largeness of N .

• With subject to the largeness of N , the user may decide, whether to
take the random variable Y |{dY } for discrete or rather continuous.
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3.3.5 Supporting numerical examples

If N is sufficiently high, we shall illustrate by two numerical examples that,
corresponding to the fixedly chosen µ

(i,D)
Y = µ

(i,C)
Y , i ∈ {1, 2, . . . ,m}, we have

λ
(D)
i → λ

(C)
i as N → ∞ for every i ∈ {1, 2, . . . ,m}, but for a fixed m.

These numerical examples have been set with the help of certain developed
software programs belonging to this thesis, such that the support of a discrete
probability distribution is always assumed to be the elements in arithmetic
progression for simplicity’s sake. The first example is an example of uni-
modal probability distribution of Y and the second example is of bathtub
probability distribution of Y . These are illustrated as follows:

Example 3.3.1. Here, we take a = −20, b = 20, m = 2, µ
(1)
Y = 3.29 and

µ
(2)
Y = 16.5741.

In accordance with the above data, the continuous approximated density func-
tion is given by

fY |{dY } = e−2.734764547565833+0.5721739130434783y−0.08695652173913045y2
,

−20 ≤ y ≤ 20.

So, corresponding to the discrete support

1. {y1 = −20,−15,−10,−5, 0, 5, 10, 15, 20 = y9} (here, N = 9)

and with subject to µ
(1)
Y = 3.29 and µ

(2)
Y = 16.5741, the probability mass

function is given by

fY |{dY } = e−1.0684537582577533+0.7640712614003418y−0.12706332034025078y2
,

y ∈ {y1, y2, . . . , y9}.
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2. {y1 = −20,−16,−12,−8,−4, 0, 4, 8, 12, 16, 20 = y11} (here, N = 11)

and with subject to µ
(1)
Y = 3.29 and µ

(2)
Y = 16.5741, the probability mass

function is given by

fY |{dY } = e−1.3377442247303293+0.5645861247447859y−0.08613916616052139y2
,

y ∈ {y1, y2, . . . , y11}.

3. {y1 = −20,−18,−16, . . . , 16, 18, 20 = y21} (here, N = 21)

and with subject to µ
(1)
Y = 3.29 and µ

(2)
Y = 16.5741, the probability mass

function is given by

fY |{dY } = e−2.0416173670052853+0.5721739130434783y−0.08695652173913045y2
,

y ∈ {y1, y2, . . . , y21}.

and thus, it is evidently clear that for N = 21, λ
(D)
i are as good as equal to

λ
(C)
i for i ∈ {1, 2}, together with λ

(C)
0 +log

(
20−(−20)

21−1

)
= −2.734764547565833

+ log(2) = −2.0416173670058875 ≈ −2.0416173670052853 = λ
(D)
0 .

Example 3.3.2. Here, we take a = −20, b = 20, m = 2, µ
(1)
Y = 3.29 and

µ
(2)
Y = 235.824.

In accordance with the above data, the continuous approximated density func-
tion is given by

fY |{dY } = e−4.884382768986512+0.014231592159239137y+0.006393082832198655y2
,

−20 ≤ y ≤ 20.

So, corresponding to the discrete support

1. {y1 = −20,−15,−10,−5, 0, 5, 10, 15, 20 = y9} (here, N = 9)

and with subject to µ
(1)
Y = 3.29 and µ

(2)
Y = 235.824, the probability mass

function is given by

fY |{dY } = e−2.80460516166883+0.014264940940220572y+0.002924326285777068y2
,

y ∈ {y1, y2, . . . , y9}.
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2. {y1 = −20,−16,−12,−8,−4, 0, 4, 8, 12, 16, 20 = y11} (here, N = 11)

and with subject to µ
(1)
Y = 3.29 and µ

(2)
Y = 235.824, the probability mass

function is given by

fY |{dY } = e−3.090436143898487+0.014259657999991682y+0.0034088485135887973y2
,

y ∈ {y1, y2, . . . , y11}.

3. {y1 = −20,−18,−16, . . . , 16, 18, 20 = y21} (here, N = 21)

and with subject to µ
(1)
Y = 3.29 and µ

(2)
Y = 235.824, the probability mass

function is given by

fY |{dY } = e−3.9441237993721243+0.014247348475374011y+0.004621656553159281y2
,

y ∈ {y1, y2, . . . , y21}.

4. {y1 = −20,−19.5,−19, . . . , 19, 19.5, 20 = y81} (here, N = 81)

and with subject to µ
(1)
Y = 3.29 and µ

(2)
Y = 235.824, the probability mass

function is given by

fY |{dY } = e−5.503197448004097+0.014235948442220536y+0.005872522698977092y2
,

y ∈ {y1, y2, . . . , y81}.

5. {y1 = −20,−19.75,−19.5, . . . , 19.5, 19.75, 20 = y161} (here, N = 161)

and with subject to µ
(1)
Y = 3.29 and µ

(2)
Y = 235.824, the probability mass

function is given by

fY |{dY } = e−6.232165394628131+0.014233809818243154y+0.006124663159506933y2
,

y ∈ {y1, y2, . . . , y161}.

6. {y1 = −20,−19.875,−19.75, . . . , 19.75, 19.875, 20 = y321} (here,
N = 321)

and with subject to µ
(1)
Y = 3.29 and µ

(2)
Y = 235.824, the probability mass

function is given by

fY |{dY } = e−6.944210924671172+0.014232711146443755y+0.006256722226090568y2
,

y ∈ {y1, y2, . . . , y321}.
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7. {y1 = −20,−19.9375,−19.875 . . . , 19.875, 19.9375, 20 = y641} (here,
N = 641)

and with subject to µ
(1)
Y = 3.29 and µ

(2)
Y = 235.824, the probability mass

function is given by

fY |{dY } = e−7.647072575058029+0.014232154227746513y+0.006324349319136263y2
,

y ∈ {y1, y2, . . . , y641}.

8. {y1 = −20,−19.9688,−19.9375 . . . , 19.9375, 19.9688, 20 = y1281} (here,
N = 1281)

and with subject to µ
(1)
Y = 3.29 and µ

(2)
Y = 235.824, the probability mass

function is given by

fY |{dY } = e−8.345145788890813+0.014231873841696413y+0.006358575763627603y2
,

y ∈ {y1, y2, . . . , y1281}.

and thus, it is evidently clear that for N = 1281, λ
(D)
i are well close to λ

(C)
i

for i ∈ {1, 2}, together with λ
(C)
0 + log

(
20−(−20)
1281−1

)
= −4.884382768986512

− log(32) = −8.35011867178624 ≈ −8.345145788890813 = λ
(D)
0 .
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3.3.6 The existing classical moment problems

Let us state the existing moment problems with reference to [18] as well as to
the page 2 of [59] by taking the random variable Y principally for continuous.

These moment problems, each of which deals with a sequence of moments
of Y for the purpose of determining the probability distribution of Y ,
are hereby described as:

• the Hamburger moment problem, where the probability distribu-
tion of Y is supported by (−∞, +∞)

• the Stieltjes moment problem, where the probability distribution
of Y is supported by [0, +∞)

• the Hausdorff moment problem, where the probability distribution
of Y is supported by [a, b] (a, b ∈ R). Without any loss of gen-
erality, the support of the probability distribution of Y can be taken
for [0, 1]. This particular moment problem is subdivided to two sub-
problems, namely the finite moment problem (referred to a finite
sequence of moments of Y ) and the infinite moment problem (re-
ferred to a infinite sequence of moments of Y ).

Though the Hamburger moment problem and the Stieltjes moment
problem do not concern this dissertation in any way, we shall briefly state
that the solvability of the Hamburger moment problem and Stieltjes moment
problem with regard to the availability of a finite sequence of moments of Y
has been discussed intensively in the paper [15]. This is briefly to say, that
the solvability in this regard is theoretically possible.

The Hausdorff’s finite moment problem with regard to the availability
of a finite sequence of moments of Y is correlated to this dissertation
(especially, a finite sequence of two moments for continuous cases of Y 8).
The Hausdorff’s infinite moment problem is totally uncorrelated to this
dissertation, except a kind of its simplicity is worth mentioning.

8the discrete cases of Y have a difficulty
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3.4 The consistent density estimator

3.4.1 The background

Let us take the reference of the page 1 of [14], which says the following:

The idea of maximum entropy is simply to choose the probability density,
which maximizes a particular entropy-measure with subject to a given set of
moment constraints. The two desirable features of this methodology are

1. existence of such a maximum entropy density given by first m assigned
moments (the uniqueness of the maximum entropy density needs to be
guaranteed).

2. the maximum entropy density should converge to the unknown density
as the number of given moments increases.

Notably,

1. The first feature precisely says that

• the probability mass function fY |{dY }(yj) = e
λ
(D)
0 +

m∑
i=1

λiy
i
j

,
j ∈ {1, 2, . . . , N} of the discrete random variable Y is uniquely

determinable by its first m moments µ
(1,D)
Y , µ

(2,D)
Y , . . . , µ

(m,D)
Y

• the probability density function fY |{dY }(y) = e
λ
(C)
0 +

m∑
i=1

λiy
i

,
a ≤ y ≤ b of the continuous random variable Y is uniquely
determinable by its first m moments µ

(1,C)
Y , µ

(2,C)
Y , . . . , µ

(m,C)
Y

This particular feature shall be discussed in due course.

2. The second feature, which has been duly stated in [14], shall be inten-
sively focussed in this section. To the best of my understanding, this
feature has not been established so far.

Our objective in this section is to prove that the probability density
function of the exponential polynomial distribution happens to be the con-
sistent density estimator of the situation oriented need based unknown
probability density function fY (y), a ≤ y ≤ b. The formal statement of
this consistency character shall be given in due course.
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In due course, it shall be shown that the exponential polynomial probability
distribution of the random variable Y (the polynomial being of a finite degree
m, m ∈ N) can be determined uniquely by the first predetermined m
moments of the probability distribution of Y . This applies both in cases of
discrete and continuous Y .

We have already seen that the probability density function fY (y), y ∈ [a, b]
of Y is well approximately representable by an exponential polynomial den-
sity function denoted by epY (y), y ∈ [a, b], referred to (2.18), established by
the proposition 2.4.2. In fact, (2.18) tells us that epY (y), a ≤ y ≤ b ap-
proximates fY (y), a ≤ y ≤ b good enough. Basically, we are to discuss the
very issue that this approximation can always be bettered by increasing the
value of m, with regard to the fact, that the first m moments of both the
probability densities fY (y), a ≤ y ≤ b and epY (y), a ≤ y ≤ b are identically
the same.

The aforesaid consistency is ascribed to the very fact that the goodness of
this approximation can be increased arbitrarily by increasing m arbi-
trarily.

The derivation (3.95) belonging to the proposition 3.3.3 (with regard to the

very fact that the moment µ
(i,D)
Y approaches the moment µ

(i,C)
Y in the limiting

sense for every i ∈ {1, 2, . . . ,m}, when N is made to be arbitrarily large) did
not assume that m increases proportionately with N , for eg. m = N − 1, N
being taken for the number of elements of XY in case Y is taken for discrete.

That is, in contrary to the statement 3.3.1 our present discussion involves
the case, when the number of elements of XY in case Y is taken for discrete
is N − 1 and m = N − 2 (i.e. our present discussion is independent of
the manner, in which we have deduced the relation (3.95). That is, we shall
ignore the statement 3.3.1 here). Precisely, in our present discussion in
this section 3.4, m does increase proportionately with the increase in N .

3.4.2 The first lemma for the consistency

This lemma of this subsection described by the subsequent proposition
3.4.1 necessitates the targeted usage of the first mean value theorem
for integrals, which is well stated and proved in the page 169 of [17]. The
statement of this very theorem is hereby given as follows:
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Theorem 3.4.1 (First mean value theorem for integrals). Let fY (y)
and φY (y) be two Riemann integrable bounded functions in the closed interval
[c, d]. Moreover, let φY (y) keep the same sign in [c, d]. Then, there exists a
real number kY , such that

d∫

c

fY (y) φY (y) dy = kY

d∫

c

φY (y) dy (3.103)

where lY ≤ kY ≤ uY with lY = inf
y∈[c,d]

fY (y), uY = sup
y∈[c,d]

fY (y)

With this, we arrive at the following proposition:

Proposition 3.4.1 (Targeted application of the first mean value the-
orem for integrals 3.4.1). Let the support of the probability density func-
tion fY (y) of the continuous random variable Y be the closed interval [a, b]
as usual.

Now, if the interval [a, b] is subdivided into a finite number of subintervals
and if Y is taken for a discrete random variable, then the probability mass
function of Y can be expressible as an exponential polynomial function.

Proof of the proposition 3.4.1. In our case, since fY (y) is continuous in
[a, b] (and understandably bounded in [a, b]), by setting

• δ = b−a
N−1

• for any fixedly chosen j, j ∈ {1, 2, . . . , N − 1},

– c = a + (j − 1)δ

– d = a + jδ

• φY (y) = 1, c ≤ y ≤ d

it is evidently clear that there exists at least one point yj ∈ [a+(j−1)δ, a+jδ],
such that fY (yj) = kY .

Therefore, for every j ∈ {1, 2, . . . , N−1}, by using the theorem 3.4.1 stated
by (3.103), we arrive at

a+jδ∫

a+(j−1)δ

fY (y)dy = fY (yj) (a + jδ − (a + (j − 1)δ)) = fY (yj)δ (3.104)
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which give the individual probability elements fY (yj)δ =
a+jδ∫

a+(j−1)δ

fY (y)dy

ranging from j = 1 to j = N − 1, but with subject to
N−1∑
j=1

fY (yj)δ = 1.

Therefore, by the exact representation of the probability mass function
fY (yj)δ, j ∈ {1, 2, . . . , N − 1} referred to (2.9) established by the proposi-
tion 2.4.1, we get

fY (yj)δ = fY (yj)

(
b − a

N − 1

)
= eλ

(D)
0 +λ1yj+λ2y2

j +...+λN−2y
N−2
j (3.105)

and this completes the proof of the proposition 3.4.1.

3.4.3 The second lemma for the consistency

The lemma of this subsection describes the targeted usage of the stated
theorem 3.3.2. This theorem however does not specifically say, whether
the support of the probability distribution of Y is closed or bounded.

We shall write a corollary of the theorem 3.3.2 as a special case for our use,
where the probability distribution of Y has a compact support as follows:

Corollary 3.4.1 (The special case of the theorem 3.3.2 of Shan-
non’s and differential entropy). If the probability density function of the
continuous random variable Y denoted by fY (y) is Riemann integrable, then

Shannon’s entropy of fY (yj)δ + log(δ)
δ→0−→ Differential entropy of fY (y)

(3.106)
where in our case, since the distributional support XY of Y is compact,
we shall put the following to usages:

• δ = constant subinterval length belonging to the distributional support

• fY (yj)δ is the probability mass function of Y , if Y is discrete

• fY (y) is the probability density function of Y , if Y is continuous

and in contrary to the statement 3.3.1 (as we have already mentioned),
we shall use m = N − 2.

With this, we shall proceed.
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3.4.4 The consistency character

Referring to the page 11 of the paper [14], this consistency has been conjec-
tured strongly. We shall go for the proof of the said consistency step by step.
Let us state this consistency character formally at first.

Proposition 3.4.2 (Consistency of the density estimator). The prob-

ability density function of Y defined by eλ
(C)
0 +λ1y+λ2y2+...+λNyN

, a ≤ y ≤ b,
N ∈ N is the consistent density estimator of the existing but unknown
probability density function of Y defined by fY (y), a ≤ y ≤ b.

Proof of the proposition 3.4.2. With subject to the consideration of the
discrete probability distribution given by (3.105) ( of the proposition 3.4.1
as an usage of the mean value theorem (3.103) ), namely

fY (yj)δ = eλ
(D)
0 +λ1yj+λ2y2

j +...+λN−2y
N−2
j

⇔fY (yj) = eλ
(D)
0 −log(δ)+λ1yj+λ2y2

j +...+λN−2y
N−2
j , j ∈ {1, 2, . . . , N − 1}

(3.107)

if δ is made infinitesimally smaller, then the following are to be carefully
noted:

• yj gets infinitesimally closer to yj from right and to yj+1 from left for
every j ∈ {1, 2, . . . , N − 1}. In particular,

– y1 gets infinitesimally closer to a = y1 from right

– yN−1 gets infinitesimally closer to yN = b from left

• the number of λj values, i.e. for j ∈ {1, 2, . . . , N − 2}, namely N − 2,

gets arbitrarily larger. This happens because of δ = b−a
N−1

N→∞−→ 0.

• each of the probability elements p
(δ)
j = eλ

(D)
0 −log(δ)+λ1yj+λ2y2

j +...+λN−2y
N−2
j ,

j ∈ {1, 2, . . . , N−1} gets arbitrarily smaller individually, but with sub-

ject to
N−1∑
j=1

p
(δ)
j = 1.

Now, with regard to the consideration of (3.107), if fY (y), y1 ≤ y ≤ yN−1

is taken for a probability density function of the continuous random
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variable Y , we shall have to write

fY (y) = eλ
(C)
0 +λ1y+λ2y2+...+λN−2yN−2

, y1 ≤ y ≤ yN−1

where e−λ
(C)
0 =

yN−1∫

y1

eλ1y+λ2y2+...+λN−2yN−2

dy
(3.108)

Again, with regard to

1. infinitesimal smallness of δ = b−a
N−1

2. continuity of fY (y), a ≤ y ≤ b throughout the interval [a, b]

for any arbitrarily small ǫ, ǫ > 0, there exists a N1 ∈ N, such that
∣∣∣eλ

(D)
0 −log(δ)+λ1yj+λ2y2

j +...+λN−2y
N−2
j − eλ

(C)
0 +λ1yj+λ2y2

j +...+λN−2y
N−2
j

∣∣∣ < ǫ

(3.109)
for every N > N1 and for every j ∈ {1, 2, . . . , N − 1}.

This principally says the following:

•
λ

(D)
0 − log(δ)

δ→0−→ λ
(C)
0 (3.110)

or equivalently

λ
(D)
0 − log(δ)

N→∞−→ λ
(C)
0 (3.111)

and this happens to be affirmative to the well established (3.100)

•

eλ
(C)
0 +λ1yj+λ2y2

j +...+λN−2y
N−2
j

δ→0−→fY (yj)

= eλ
(D)
0 −log(δ)+λ1yj+λ2y2

j +...+λN−2y
N−2
j

for every j ∈ {1, 2, . . . , N − 1}
(3.112)

or equivalently

eλ
(C)
0 +λ1yj+λ2y2

j +...+λN−2y
N−2
j

N→∞−→ fY (yj)

= eλ
(D)
0 −log(δ)+λ1yj+λ2y2

j +...+λN−2y
N−2
j

for every j ∈ {1, 2, . . . , N − 1}
(3.113)



3.4. THE CONSISTENT DENSITY ESTIMATOR 117

Again, with regard to the very established statements yj
δ→0−→ yj+ and

yj
δ→0−→ yj+1− for every j ∈ {1, 2, . . . , N − 1} especially y1

δ→0−→ a+ and

yN−1
δ→0−→ b−, together with the relation (3.108) giving the definition of

fY (y), y1 ≤ y ≤ yN−1 as a probability density function of the continuous Y ,
both (3.112) and (3.113) can be remodified to the following

eλ
(C)
0 +λ1y+λ2y2+...+λN−2yN−2 δ→0−→ fY (y) for every y ∈ [a, b] (3.114)

or equivalently

eλ
(C)
0 +λ1y+λ2y2+...+λN−2yN−2 N→∞−→ fY (y) for every y ∈ [a, b] (3.115)

Exactly at this point, we shall make use of the corollary 3.4.1 and in fact,

1. The Shannon’s entropy of the probability distribution of the discrete
Y defined by the probability mass function fY (yj)δ,

j ∈ {1, 2, . . . , N − 1} is given by the expression −λ
(D)
0 − λ1µ

(1,D)
Y −

λ2µ
(2,D)
Y − . . .− λN−2µ

(N−2,D)
Y , µ

(i,D)
Y for i ∈ {1, 2, . . . , N − 2} being the

first N − 2 moments of the discrete probability distribution.

2. The differential entropy of the probability distribution of the contin-
uous Y defined by the probability density function fY (y), y ∈ [a, b] is

given by the expression −λ
(C)
0 −λ1µ

(1,C)
Y −λ2µ

(2,C)
Y − . . .−λN−2µ

(N−2,C)
Y ,

µ
(i,C)
Y for i ∈ {1, 2, . . . , N − 2} being the first N − 2 moments of the

continuous probability distribution.

So, by the corollary 3.4.1, we get

− λ
(D)
0 − λ1µ

(1,D)
Y − λ2µ

(2,D)
Y − . . . − λN−2µ

(N−2,D)
Y + log(δ)

δ→0−→ −λ
(C)
0 − λ1µ

(1,C)
Y − λ2µ

(2,C)
Y − . . . − λN−2µ

(N−2,C)
Y

(3.116)

and with subject to the statement (3.110) (or equivalently of (3.111)), namely

λ
(D)
0 − log(δ)

δ→0−→ λ
(C)
0 , (3.116) can be further simplified as

λ1µ
(1,D)
Y + λ2µ

(2,D)
Y + . . . + λN−2µ

(N−2,D)
Y

δ→0−→ λ1µ
(1,C)
Y + λ2µ

(2,C)
Y + . . . + λN−2µ

(N−2,C)
Y

(3.117)

Therefore, by (3.117), in the limiting sense, the moments µ
(i,D)
Y are indi-

vidually the same as the moments µ
(i,C)
Y , i ∈ {1, 2, . . . , N − 2}. Notably, we
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were not allowed to use the corollary 3.3.3, simply because this corollary
refers to the statement 3.3.1 that contradicts the assumption m = N −2.

Hence, by (3.115), we conclude that

eλ
(C)
0 +λ1y+λ2y2+...+λN−2yN−2 N→∞−→ fY (y) for every y ∈ [a, b]

such that λ1, λ2, . . . , λN−2 are uniquely determinable by the moments

µ
(1,C)
Y , µ

(2,C)
Y , . . . , µ

(N−2,C)
Y , as already stated before.

This proves the desired consistency of the probability density estimator

eλ
(C)
0 +λ1y+λ2y2+...+λN−2yN−2

, y ∈ [a, b] of the unknown situation oriented
need based probability density function fY (y), y ∈ [a, b] of the continuous
random variable Y . This proves the proposition 3.4.2.

Note:

Remark 3.4.1 (The consistency character). We need to state that the
consistency character of the exponential polynomial distribution in con-
tinuous cases of Y duly elaborated in this section (the section 3.4) as well as
the entropy convergence character stated in (3.118) (of the remark 3.4.3)
are purely theoretical derivations meant for establishing the principle
characteristic properties of the exponential polynomial distribution.

From the practical or rather from the stochastic point of view, only
the first two moments of Y have basic practical significance.

Remark 3.4.2. The realizations of this consistency character is duly
demonstrated in form of graphical representations in the coming chapter
8 of Illustrations of M.I. Probability Distributions

Remark 3.4.3 (Convergence in entropy). An immediate consequence
of the (as established) consistency of the probability density esti-
mator is the entropy convergence or in other words, the convergence
in entropy. The entropy convergence (defined in the page 8 of [41]) says
that, if H(f

Y |{d(n)
Y

}(y)) is the differential entropy of the probability density

f
Y |{d(n)

Y
}(y) = eλ

(C)
0 +λ1y+λ2y2+...+λnyn

, a ≤ y ≤ b, such that

d
(n)
Y =

(
µ

(1)
Y , µ

(2)
Y , . . . , µ

(n)
Y

)
, then the sequence defined by

{
H(f

Y |{d(n)
Y

}(y))
}

n∈N

converges to the limit H(fY (y)), the limit being the differential entropy of the
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unknown but existing probability density fY (y) having identically the same

moments µ
(1)
Y , µ

(2)
Y , . . . , µ

(n)
Y .

In fact, the following has been established (in the paper [41])

H(f
Y |{d(0)

Y
}(y)) ≥ H(f

Y |{d(1)
Y

}(y)) ≥ H(f
Y |{d(2)

Y
}(y)) ≥ . . .

≥ H(f
Y |{d(n)

Y
}(y)) ≥ . . . ≥ H(fY (y))

(3.118)

Remark 3.4.4. In cases of Stieltjes and Hamburger’s moment problems (re-
ferred to the page 8 of [15]), as in the above case, the sequence of maximum
entropy approximating densities converge in entropy to the density char-
acterized by its moments. This convergence problem has also been treated
widely in the Hausdorff’s moment problem in [9].
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3.5 The minimum information selection prin-

ciple

There are many methods developed in probability theory and statistics for
selecting a probability distribution in a given situation. A majority of them
uses highly adaptable probability measures which are fitted to the observed
data. Without aiming at the completeness, below a list of frequently applied
methods is given.

• Combinatorial methods based on equiprobability.

• Asymptotic methods based on limits.

• Empirical methods based on data.

• Fitting methods based on universal distributions.

• Maximum Entropy methods based on the available knowledge.

Note, that none of these methods is explicitly based on the results of a sci-
entific investigation of the process under consideration. Apart from these
above stated methods, our method for selecting a suitable probability dis-
tribution is based on the minimum information principle, which targets
exclusively the scientific need and the observation of the empirical value of
dY . In a plain language, our method is based on the scientific investigation
of the process under consideration.

In the following course of discussions, an alternative method to the tradi-
tional methods, which has been proposed in [54], is outlined. It starts with
identifying minimum requirements with respect to the necessary information
for describing a situation appropriately.

For determining the minimum amount of information needed to select
an appropriate probability measure PY |{dY } in case of a discrete Y (or an ap-
propriate probability density fY |{dY }, in case of a continuous Y ), it is assumed
that enough experience is made or enough knowledge is available about the
process in question and the random variable of interest Y for deciding the
question about the co-domain of the random structure function P. If this
necessary knowledge is not available, a meaningful description of the random
structure of Y is impossible and no attempts should be made to describe the



3.5. THE MINIMUM INFORMATION SELECTION PRINCIPLE 121

same, but must be postponed until enough experience has been gathered.
Thus, the following function P (as discussed) has to be structured as:

P : TDY
(DY ) → Pm (3.119)

With subject to the description (3.119) of P, as we have already mentioned,
the domain of P, namely TDY

(DY ) is assumed (for the sake of simplicity
only) to contain the singletons denoted by {dY } only, i.e. dY ∈ DY . In the
section 4.3 of the chapter 4, it has been shown that each dY determines an
element of Pm (i.e. a probability distribution) uniquely.

We shall however confine our detailed discussions to m ≤ 2. In other words,
the co-domain of P, namely Pm is either the constant family, the mono-
tone family or the uni-extremal family.

3.5.1 Constant family: P : TDY
(DY ) → P0

If P({dY }) ∈ P0, then the minimum amount of information necessary for
describing the situation coincides with the complete knowledge, which is
given by the range of variability XY ({dY }) of the random variable Y |{dY }.

P : TDY
(DY ) → P0 (3.120)

P({dY }) = fY |{dY } with (3.121)

fY |{dY }(y) =
1

|XY ({dY })|
for y ∈ XY ({dY }) (3.122)

3.5.2 Monotonic family: P : TDY
(DY ) → P1

If P({dY }) ∈ P1 holds, it is known, that the probability mass or density
function is a monotonic decreasing or a monotonic increasing function,

and the same holds for the series
∞∑
i=0

λi(dY )yi. Thus, the question arises,

how many terms of the series
∞∑
i=0

λi(dY )yi are necessary for describing the

monotone random structure in the given situation.

The above question cannot be answered without having further information
about the situation. However, the question of the minimum number of
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terms necessarily needed to meet the property of monotonicity can be easily
answered. The simplest monotonic function is a linear function of y, i.e.

λ0(dY ) + λ1(dY )y with λ1(dY ) 6= 0 (3.123)

Consequently, (3.123) is selected to be the power of e, yielding a random
structure function P({dY }) with the following probability mass or probability
density function:

fY |{dY }(y) = eλ0(dY )+λ1(dY )y for y ∈ XY ({dY }) (3.124)

In a monotone situation, let the search for an appropriate element of P1 be
restricted to the probability mass or probability density function of the form
(3.124). This search demands a minimum amount of information necessary
to determine the coefficients λ0(dY ) and λ1(dY ). Therefore, the selection
criterium applied above is called minimum information principle.

Of course, in addition to the monotonic property, if other properties of the
probability mass or probability density function are known, these properties
should be taken into account.

3.5.3 Uni-extremal family: P : TDY
(DY ) → P2

If P({dY }) ∈ P2 holds, it is known, that the probability mass or probability
density function has exactly one relative extremum, implying that the series
∞∑
i=0

λi(dY )yi too has exactly one relative extremum. Thus, in a similar manner

as in the previous case, the minimum information principle yields a quadratic
function

λ0(dY ) + λ1(dY )y + λ2(dY )y2 with λ2(dY ) 6= 0 (3.125)

as the power of e. Therefore, the random structure function P({dY }) is
selected accordingly and thereby yielding the following probability mass or
probability density function:

fY |{dY }(y) = eλ0(dY )+λ1(dY )y+λ2(dY )y2

for y ∈ XY ({dY }) (3.126)

with λ2(dY ) 6= 0.
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3.5.4 The basis of the computation of λi, i ∈ {1, 2, . . . , m}
values

The computation of λi, i ∈ {1, 2, . . . ,m} values in my dissertation is based
exclusively on the minimum information principle. This means that the
probability distribution of the desired type (i.e. the type being defined by
the number of extremes, namely m − 1 number of extremes in this case)
shall exclusively be the starting point for the computation of λ1, λ2, . . . , λm.

In other words, the user of my software programs has to say specifically,
which probability distribution type he wishes.

This is precisely to say that the amount of available quantitative information
given by the number of moments shall not be the starting point of the
same. This amount shall be put under consideration, only after the type of
the desired probability distribution is specifically known.

Notably, for stochastic procedures, m ≤ 2. This means, the multi-extremal
probability distributions, under normal circumstances, are not asked for.

3.6 Conclusive remarks

3.6.1 The monotone and uni-extremal probability dis-
tributions

Understandably, the monotone and the uni-extremal probability distribu-
tions given by (3.124) and (3.126) respectively are of simplest forms. Now,
let us consider the following probability density functions:

fY |{dY }(y) = e−1.3024282635577977+2y+ 1
3
y3

, 0 ≤ y ≤ 1 (3.127)

fY |{dY }(y) = e0.07357162236102023− 1
2
y+ 1

2
y2− 1

6
y3+ 1

4
y4

, 0 ≤ y ≤ 1 (3.128)

and represent them graphically as follows:

The graphical representation of the probability density function (3.127) given
by the figure (3.1) clearly shows a continuous monotonic character within
its support 0 ≤ y ≤ 1. This is an example of a probability distribution be-
longing to the family P1, though this is not a continuous monotonic minimum
information probability distribution. By minimum information principle,
only the first moment would have been necessary as the needed information
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Figure 3.1: The Probability Density fY |{dY }(y), 0 ≤ y ≤ 1 referred to (3.127)

for the construction of this probability distribution, apart from the predeter-
mined support [0, 1]. In fact, the first three moments have been needed as
the information here.

The graphical representation of the probability density function (3.128) given
by the figure (3.2) clearly shows a continuous uni-extremal character
within its support 0 ≤ y ≤ 1. This is an example of a probability distribution
belonging to the family P2, though this not a continuous uni-extremal min-
imum information probability distribution. By minimum information prin-
ciple, only the first and the second moment would have been necessary as
the needed information for the construction of this probability distribution,
apart from the predetermined support [0, 1]. In fact, the first four moments
have been needed as the information here.

Conclusively, in each of the two above illustrated examples, bigger amount
of numerical work as well as longer program running time was needed for the
construction of the probability distributions. This is precisely to conclude
that the usage of the minimum information principle basically minimizes the
amount of numerical work for solving the equations involving moments
as well as the amount of program running time.

Importantly, it has to be mentioned that, if the probability distribution of
Y needs to be uni- extremal, then the second moment of Y is ought not to
be within certain bounds, otherwise the desired uni- extremal character
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Figure 3.2: The Probability Density fY |{dY }(y), 0 ≤ y ≤ 1 referred to (3.128)

will be violated. This particular point has been intensively elaborated in
the subsection 6.3.15 principally for continuous cases. The discussions
about the discrete cases are largely similar.

3.6.2 A general important remark

Each additional relative extreme of a probability mass or density function
signals a more complicated situation demanding additional information.

In practice, the exact values of moments are never available, but estimated
values of the same. Therefore, if additional information (namely additional
moments) are used to construct a probability distribution, then there is an
every possibility that the desired type of the probability distribution is hope-
lessly violated, because the number of extremes (of the probability distribu-
tion) is different from the same of the desired type. This difference is solely
due to errors in estimations.

From this point of view, the maximum entropy principle speaks about the
theory, but the minimum information principle speaks about the practice.
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3.7 The simplicity in the Hausdorff’s infinite

moment problem

In case the readers of this dissertation ask about the case, if infinite number
of moments of a random variable, say X, may be taken into consideration, we
shall consider this case briefly. We shall also include few important comments
in this regard.

This very consideration may be a part of an abstract mathematical analysis,
but does have any part in the science of stochastics, simply because the
concept of infinity is purely a mathematical concept and does not have
any significance in the real world, as far as realistic sizes are concerned.
Therefore, this discussion has no relevance in this dissertation.

The mathematician Felix Hausdorff (1868 - 1942) established the infinite
moment problem. The statement of this theorem is given as follows:

Theorem 3.7.1 (Hausdorff’s infinite moment problem). Correspond-
ing to a sequence of moments given by {µm}m∈N0 there exists a distribution
function Ψ(x), 0 ≤ x ≤ 1, such that

µm =

x=1∫

x=0

xmdΨ(x) (3.129)

if and only if the sequence is completely monotonic, where {µm}m∈N0 is com-
pletely monotonic means

(−1)k∆kµm ≥ 0, k ∈ N0 (3.130)

The theorem 3.7.1 is referred to the Hausdorff’s theorem 1 given in the
page 193 of [29].

Definition 3.7.1 (Brief introduction of the ∆ symbol).

∆0µm = µm, ∆1µm = µm+1 − µm

∆kµm = ∆k−1µm+1 − ∆k−1µm, k ≥ 1

=
k∑

p=0

(−1)p

(
k

p

)
µm+k−p

(3.131)
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3.7.1 The simplicity of Hausdorff’s moment problem

With subject to the consideration of the discrete case of X, the Hausdorff’s
theorem 1 (i.e. the theorem 3.7.1) primarily says about the bounds of
the moments as far as the existence of a probability distribution of X is
concerned. It does not however say that the existence of the (discrete)
probability distribution of X is possible for every predetermined range of
variability XX = {0 = x1, x2, . . . , xN = 1}. It only says that if the sequence
of moments of X, namely if the sequence {µm}m∈N0 is completely monotonic
(Hausdorff’s condition (3.130)) then there exists a XX , such that a discrete
probability distribution of X exists.

Basically, the theorem 3.7.1 states the necessary and the sufficient condition
of the existence for the continuous probability distribution of X.

Now, let us prove the following proposition:

Proposition 3.7.1. The theorem 3.7.1 defined by the Hausdorff’s condi-
tional statement (3.130) is completely deducible with the help of the fol-
lowing underlying condition (3.132) named as the condition of complete
monotonicity addressed to all the moments of X, i.e. the moments
µn, such that

µn+1 < µn for every n ∈ N0 (3.132)

In other words, the (Hausdorff’s) theorem 3.7.1 defined by the conditional
statement (3.130) is implied by the (aforesaid) condition (3.132).

Proof of the proposition 3.7.1. In accordance with the condition (3.132)
as well as by the definition of the difference operator ∆, i.e. ∆µn = µn+1−µn,
n ∈ N0, we arrive at

−∆µn = µn − µn+1 = E[Xn(1 − X)] > 0

−∆µn+1 = µn+1 − µn+2 = E[Xn+1(1 − X)] > 0

from which, we can easily get

−∆µn − (−∆µn+1) = −∆(µn − µn+1) = (−∆)2µn = E[Xn(1 − X)2] > 0

such that (−∆)2µn means that the operator −∆ is operated on (−∆)µn.

Again, by using the very rule (−∆)2µn = E[Xn(1 − X)2], n ∈ N0 we get

(−∆)2µn = E[Xn(1 − X)2] > 0

(−∆)2µn+1 = E[Xn+1(1 − X)2] > 0
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from which, exactly in the similar manner, we can easily get

(−∆)2µn − ((−∆)2µn+1) = (−∆)2(µn − µn+1) = (−∆)3µn

= E[Xn(1 − X)2] − E[Xn+1(1 − X)2] = E[Xn(1 − X)3] > 0

which basically concludes that (−∆)3µn = E[Xn(1 − X)3] > 0.

Proceeding exactly in this manner, for any arbitrarily chosen k ∈ N0, we
finally arrive at

(−∆)kµn = (−1)k∆kµn = E[Xn(1 − X)k] > 0, which gives (3.130)

Hence, the desired proof of the proposition 3.7.1.

Remark 3.7.1. This aforesaid condition (3.132) is rather obvious and there-
fore is purely trivial and this triviality is precisely the simplicity of the
Hausdorff’s infinite moment problem. In other words, this trivial con-
dition (3.132) is enough to describe the condition for the existence of the
probability distribution of X.

Remark 3.7.2. Clearly, the violation of condition (3.132) for any value
of n, n ∈ N0 makes sure that the existence of the probability distribution of
X is completely ruled out.

As a brief remark, I would like to address my readers to take a note of the
following statement: My first former supervisor misguided me to use this
Hausdorff’s statement (3.130) for finding out the bounds of the moments of
X for my dissertational work, though probably unintentionally. Only at a
later point of time I could find out that this very Hausdorff’s statement is
not relevant for my work.



Chapter 4

General m. i. probability
distributions

4.1 Introductory statements

In this chapter we shall discuss about the nature of the minimum information
probability distributions (with compact supports).

Before we go ahead, we state that, purely for the sake of simplicity, we
shall use the symbols such as DY (symbolizing the ignorance space with
regard to Y ); Y shall be mostly used instead of Y |{dY }, X instead of
X|{d}; λi instead of λi(dY ) in the coming course of discussions. Moreover
the frequently used symbols XY , XX , a and b stand purely for XY ({dY }),
XX({d}), a(dY ) and b(dY ) respectively, unless any clarity in this regard is
of utmost importance.

Each of the moments of a probability distribution has a bounded range, i.e.
bounded both above and below, the details of these lower and the upper
bounds of each of such moments shall be discussed in due course. Impor-
tantly, the entire course of this chapter assumes that each of these mo-
ments lies between its greatest lower bound and its least upper bound.

Therefore, we restate that the approximating probability distribution is
constructed by means of the following:

• the given compact support

• the available moments of the random variable

129
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With this, in the light of the approximating efficiency of the exponen-
tial polynomial probability distribution discussed in the section 2.4, let us
give the following statements describing the approximating (for continu-
ous cases) or exact (for discrete cases) probability distribution of a random
variable Y :

Statement 4.1.1. If Y is a discrete random variable, whose range of vari-
ability is XY ({dY }) = {a = y1, y2, . . . yN = b}, then its approximating or
exact probability mass function fY |{dY } is given by

fY |{dY }(yj) = eλ0+λ1yj+λ2y2
j +...+λmym

j , j = 1, 2, . . . , N

such that dY = (µ
(1)
Y , µ

(2)
Y , . . . , µ

(m)
Y ). Here, the polynomial

m∑
i=0

λiy
i
j in yj can

have the highest allowable power of yj to be N − 1, because the range of
variability of Y (i.e. the support of the probability distribution of Y ) consists
of exactly N elements.

That is, m ≤ N − 1 must hold, otherwise the unique determination of
λ0, λ1, λ2, . . . , λm is not possible ( where m stands for the number of avail-
able moments of Y ) and this very fact we shall prove formally subsequently.
Notably, if m = N − 1, then the probability distribution of Y defined by
the probability mass function fY |{dY }, as we have already discussed, becomes
exact.

Statement 4.1.2. If Y is a continuous random variable, whose range of
variability is XY ({dY }) = [a, b], then its approximating probability density
function fY |{dY } is given by

fY |{dY }(y) = eλ0+λ1y+λ2y2+...+λmym

such that dY = (µ
(1)
Y , µ

(2)
Y , . . . , µ

(m)
Y ).

In each of the above cases, the probability distribution of Y has, as we have
already discussed, the maximum entropy.

Our primarily next objective shall be to show that the moments of Y , namely
1 = µ

(0)
Y , µ

(1)
Y , µ

(2)
Y , . . . , µ

(m)
Y , (m ∈ N) determine its probability distribution

(both in discrete and continuous cases), uniquely.
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4.2 The systems of simultaneous equations

involving moments

With subject to the given range of variability XY ({dY }) and the deterministic

variable dY = (µ
(1)
Y , µ

(2)
Y , . . . , µ

(m)
Y ),

we shall proceed to prove that the probability distribution of Y (i.e. proba-
bility mass function in case Y is discrete or probability density function in
case Y is continuous), described by

fY |{dY }(y) = eλ0+λ1y+λ2y2+...+λmym

, y ∈ XY ({dY }) (4.1)

can be determined uniquely, i.e. the solution of the following system of
equations in λ1, λ2, . . . , λm is unique:





µ
(1)
Y =

∫
XY

y eλ1y+λ2y2+...+λmym
ν(dy)

∫
XY

eλ1y+λ2y2+...+λmym
ν(dy)

µ
(2)
Y =

∫
XY

y2 eλ1y+λ2y2+...+λmym
ν(dy)

∫
XY

eλ1y+λ2y2+...+λmym
ν(dy)

...

µ
(m)
Y =

∫
XY

ym eλ1y+λ2y2+...+λmym
ν(dy)

∫
XY

eλ1y+λ2y2+...+λmym
ν(dy)

(4.2)

Note, that the above integral notation stands for a finite summation
if Y is a discrete random variable or for a Riemann integral within the
finite limits a and b if Y is a continuous random variable.

In order to discuss the uniqueness of the solution of (4.2), we conveniently
need to introduce another random variable X|{d}, defined by

X = X|{d} =
Y |{dY } − a

b − a
=

Y − a

b − a
(4.3)

which necessarily means that the range of variability of X|{d} is compact as
well. It is symbolized and given by XX({d}) = {0 = x1, x2, . . . , xN = 1} (for
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a discrete X) or XX({d}) = [0, 1] (for a continuous X), is bounded by the
limits 0 and 1.

The first m (m ∈ N) moments of the transformed random variable X are the
components of the deterministic variable d, viz.

d = (µ1, µ2, . . . , µm)

where 1 = µ0, µ1, µ2, . . . , µm are the corresponding moments of X up to the
order of m.

It is clear that the uniqueness of the solution of (4.2) is tantamount to
the uniqueness of the solution of the following system (4.4) of equations
in β1, β2, . . . , βm:





µ1 =

∫
XX

x eβ1x+β2x2+...+βmxm
νX(dx)

∫
XX

eβ1x+β2x2+...+βmxm
νX(dx)

µ2 =

∫
XX

x2 eβ1x+β2x2+...+βmxm
νX(dx)

∫
XX

eβ1x+β2x2+...+βmxm
νX(dx)

...

µm =

∫
XX

xm eβ1x+β2x2+...+βmxm
νX(dx)

∫
XX

eβ1x+β2x2+...+βmxm
νX(dx)

(4.4)

Note, that the above used integral notation, as usual, stands for a finite
summation, if X|{d} is a discrete random variable or for a bounded integral
within the limits 0 and 1, if X|{d} is a continuous random variable.

Therefore, the probability distribution of X is given by

fX|{d}(x) = eβ0+β1x+β2x2+...+βmxm

, x ∈ XX({d}) (4.5)

with subject to

β0 = − log




∫

XX

eβ1x+β2x2+...+βmxm

νX(dx)


 (4.6)
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Thus, from the practical point of view, the computed solution of (4.2)
is not yielded directly, but by solving (4.4) for (β1, β2, . . . , βm) at first
and then finding the values of λ1, λ2, . . . , λm uniquely by comparing the coef-
ficients of all the positive integral powers of y of both the sides of the following
relation:

λ1y + λ2y
2 + . . . + λmym = β1

(
y − a

b − a

)
+ β2

(
y − a

b − a

)2

+ . . . + βm

(
y − a

b − a

)m

(4.7)
Therefore, it is clearly evident, that the uniqueness of the solution of (4.4) is
tantamount to the uniqueness of the solution of (4.2).

The uniqueness of the solution of (4.2) can be proven directly. Equivalently,
the uniqueness of the solution of (4.4) can be proven to prove the uniqueness
of (4.2). That is, both are possible. As a matter of fact, the uniqueness
of the solution of (4.2) can be proven directly by means of the well known
Gibbs’ inequality 1 ( i.e. without the usage of the system (4.4) of equations)
in a more simpler way. So, before we go ahead to prove the same in the
very next section, we state the Gibbs’ inequality at first:

Proposition 4.2.1 (Gibbs’ inequality). If two probability distributions
described by fY and gY have the identically common bounded support XY ,
then the Gibbs’ inequality states that the Kullback-Leibler divergence is always
non-negative, i. e.

∫

XY

fY (y) log

(
fY (y)

gY (y)

)
ν(dy) ≥ 0 (4.8)

Moreover, the equality in (4.8) holds according to the following rule:

∫

XY

fY (y) log

(
fY (y)

gY (y)

)
ν(dy) = 0 ⇔ fY (y) = gY (y) ν − almost everywhere

(4.9)

The proof of the proposition 4.2.1 by means of Jensen’s inequality is re-
ferred to the page 562 of [33].

1established by J. Willard Gibbs in the nineteenth century
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4.3 Uniqueness of the solution of the equation-

system for m ∈ N

For every m ∈ N0, the solution of the system of simultaneous equations (4.2),
if exists, is unique, provided N ≥ m + 1 in cases when Y happens to be
discrete. This is the statement, which we shall establish in this very section
by using (4.8) of the Gibb’s inequality together with the consequential
special case of equality in (4.8) stated by (4.9).

Notably, alternatively, this aforesaid uniqueness can also be established by
minimizing the functional Γ(λ1, λ2, . . . , λm) defined by (3.89) globally. The
statement of this very uniqueness are duly given by some authors ( referred
to the pages 2 to 3 of [41] as well as to the page 3 of [59] ).

The formal statement is hereby given as follows:

Theorem 4.3.1 (Uniqueness of the solution of the simultaneous sys-
tem of equations of moments). The solution of the system of m simul-
taneous equations given in (4.2), namely





µ
(1)
Y =

∫
XY

y eλ1y+λ2y2+...+λmym
ν(dy)

∫
XY

eλ1y+λ2y2+...+λmym
ν(dy)

µ
(2)
Y =

∫
XY

y2 eλ1y+λ2y2+...+λmym
ν(dy)

∫
XY

eλ1y+λ2y2+...+λmym
ν(dy)

...

µ
(m)
Y =

∫
XY

ym eλ1y+λ2y2+...+λmym
ν(dy)

∫
XY

eλ1y+λ2y2+...+λmym
ν(dy)

(4.2)

is unique, provided N ≥ m + 1 holds in discrete cases.

Proof of the theorem 4.3.1. For the sake of definiteness, corresponding to
a fixedly given range of variability XY of the random variable Y , let Y have
two probability distributions described by fY |{dY }(y) and gY |{dY }(y) having

the identically same moments µ
(1)
Y , µ

(2)
Y , . . . , µ

(m)
Y .
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So, if we set

fY |{dY }(y) = eλ0+λ1y+λ2y2+...+λmym

(4.10)

gY |{dY }(y) = eλ
′

0+λ
′

1y+λ
′

2y2+...+λ
′
mym

(4.11)

such that

eλ0 = 1∫
XY

eλ1y+λ2y2+...+λmym
ν(dy)

(4.12)

eλ
′

0 = 1
∫

XY

e
λ
′
1

y+λ
′
2

y2+...+λ
′
mym

ν(dy)
(4.13)

Therefore, according to the given condition, we have

µ
(i)
Y =

∫

XY

yifY |{dY }(y)ν(dy) =

∫

XY

yigY |{dY }(y)ν(dy), i = 0, 1, 2, . . . ,m (4.14)

where µ
(0)
Y = 1.

Now, by taking the relative entropy of fY |{dY } with respect to gY |{dY }, in
accordance with the (4.8) of the Gibbs’ inequality, we get

∫

XY

fY |{dY }(y) log

(
fY |{dY }(y)

gY |{dY }(y)

)
ν(dy) =

∫

XY

fY |{dY }(y)
m∑

i=0

(
λi − λ

′

i

)
yiν(dy)

=
m∑

i=0

(
λi − λ

′

i

)
µ

(i)
Y

≥ 0
(4.15)

Again, by taking the relative entropy of gY |{dY } with respect to fY |{dY }, in
accordance with the (4.8) of the Gibbs’ inequality, exactly in the same
way, we get

∫

XY

gY |{dY }(y) log

(
gY |{dY }(y)

fY |{dY }(y)

)
ν(dy) =

∫

XY

gY |{dY }(y)
m∑

i=0

(
λ

′

i − λi

)
yiν(dy)

=
m∑

i=0

(
λ

′

i − λi

)
µ

(i)
Y

≥ 0
(4.16)
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From (4.15) and (4.16) we can solely conclude that

m∑

i=0

(
λi − λ

′

i

)
µ

(i)
Y =

m∑

i=0

(
λ

′

i − λi

)
µ

(i)
Y = 0 (4.17)

which means nothing, but the relative entropy of fY |{dY } with respect to
gY |{dY } and/or vice versa is zero. Hence, by the (4.9) of the Gibbs’ equality,

fY |{dY }(y) = gY |{dY }(y) ν − almost everywhere (4.18)

This basically implies that

m∑

i=0

(
λi − λ

′

i

)
yi = 0 ν − almost everywhere

⇒λi = λ
′

i for i = 0, 1, 2, . . . ,m

(4.19)

by the fundamental theorem of Algebra.

Hence, the two probability distributions of Y , namely fY |{dY } and gY |{dY } are
not distinct and therefore the solution of the system (4.2) is unique. This
completes the proof of the theorem 4.3.1.

Subsequently, our next step shall be to discuss the (unique) existence
of the solution of the system (4.2) by means of certain Hankel matrices.

4.4 Existence of the solution of the equation-

system for m ∈ N

Obviously, the existence of the solution of (4.4) is tantamount to the
existence of the solution of (4.2). Our principle aim shall be to state
the necessary and the sufficient condition for the existence of the solution of
(4.2). This shall therefore be fulfilled by confining ourselves to the system of
equations (4.4) only, without any loss of generality.

Since the dissertation primarily concerns the developments and the character
analysis of probability distributions of standard types only, the formal
rigorous proofs of the existence of the solution of (4.4) for m = 1 and m = 2
are given in subsections 6.2.3 and 6.3.10. Otherwise, the formal statements
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for the existence of the solution of (4.4) for m ≥ 3 are given without a
rigorous proof.

Again, since the solution of the solution of the system of equations (4.2)
has already been shown to be unique with subject to its existence, the
solution of the system of equations (4.4) is equivalently unique as well
with subject to its existence.

In other words, with regard to the existence of the unique solution, both the
systems of equations (4.2) and (4.4) have the same characteristic property.

Keeping this in mind, let us discuss the Hausdorff’s finite moment prob-
lem as the immediate next course of our action.

4.4.1 Hausdorff’s finite moment problem

The Hausdorff’s finite moment problem (defined in the page 2 of [60]) is
precisely the problem of the determination of a probability density function
fX(x), 0 ≤ x ≤ 1 with subject to the given moment constraints, namely

µi =

1∫

0

xifX(x)dx, for i ∈ {0, 1, 2, . . . ,m} (4.20)

Even a brief discussion of the Hausdorff’s finite moment problem (the prob-
lem may be appropriately abbreviated as HFMP) necessitates the introduc-
tion of the moment space. The moment space (defined in the page 3 of [41])
is a set of points, each of which has m components. The definition of the
moment space reads as follows:

Definition 4.4.1 (Moment space). Let Dm ⊂ R
m
+ be the convex hull of

the closed and bounded set {(x, x2, . . . , xm)|0 ≤ x ≤ 1}. Then, Dm is
called the m- moment space and is a convex set.

In that case, the following three definitional propositions, which are duly
elaborated in [20], are hereby given as:

Definition and Proposition 4.4.1 (No solution exists). If the point
−→µ = (µ1, µ2, . . . , µm) is outside Dm, then the HFMP does not admit any
solution.
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Definition and Proposition 4.4.2 (A solution exists uniquely on the
boundary). If the point −→µ = (µ1, µ2, . . . , µm) ∈ ∂Dm (∂Dm is the boundary
of Dm), then the HFMP admits only one probability distribution 2 having
µ1, µ2, . . . , µm as the first m moments. In this regard, this unique probability
distribution is not of continuous type represented by the density function
fX(x), 0 ≤ x ≤ 1, but a discrete probability distribution with a finite support.

Definition and Proposition 4.4.3 (Infinitely many solutions exist).
If the point −→µ = (µ1, µ2, . . . , µm) ∈ intDm (intDm is the interior of Dm),
then the HFMP admits infinitely many probability distributions.

4.4.2 The necessary and sufficient condition

Theorem 4.4.1 (Hausdorff’s necessary and sufficient condition for
the finite moment problem). The necessary and sufficient condition for
the existence of a solution to the HFMP, namely a solution of the system
of equations (4.20) is stated equivalently in the two following ways:

• the point −→µ = (µ1, µ2, . . . , µm) is an interior point of the moment
space Dm ( as stated in the definition and proposition 4.4.3 )

• By taking i ∈ {1, 2, . . . ,m}, such that i ∈ {2n, 2n + 1} according as i
is even or odd with regard to 2n ≤ m as well as 2n + 1 ≤ m, each of
the Hankel matrices 3, namely H2n (defined by (4.23)), H2n+1 (defined
by (4.27)), H2n (defined by (4.30)) and H2n+1 (defined by (4.33)) is
individually positive definite.

The statement of the theorem 4.4.1 is referred to the theorem 3.1 given in
the page 7 of [41] as well as to the page 2 of [60]. The proof of the theorem
4.4.1 is referred to [20]. The statement of the theorem 4.4.1 is shall be
elaborately explained, but a formal general proof shall not be given.

Nextly, these aforesaid Hankel matrices H2n, H2n+1, H2n and H2n+1 (with
subject to n ∈ N, but 2n ≤ m, 2n+1 ≤ m), whose positive definiteness is the
necessary and sufficient condition for the existence of a solution of the
system of equations (4.20), shall be elaborately defined (the indexation of
moments of X contained in these Hankel matrices is in accordance with the
statement 2.4.2).

2The probability distribution in this regard is representable probabilistically
3Definitions of Hankel matrices are referred to the page 3 of [41] & to the page 2 of [60]
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Firstly, we state the Hankel matrices, whose positive determinants give the
exact greatest lower bounds of the moments µi, i ∈ {1, 2, . . . ,m}:

Definition 4.4.2 (Hankel matrix for the determination of the great-
est lower bound of µi for an even i).

H2 =

(
1 µ1

µ1 µ2

)
(4.21)

H4 =




1 µ1 µ2

µ1 µ2 µ3

µ2 µ3 µ4


 (4.22)

By proceeding exactly in this way, for any i = 2n, such that
n ∈ {1, 2, . . . , ⌊m

2
⌋}, we arrive at

H2n =




1 µ1 µ2 . . . µn

µ1 µ2 µ3 . . . µn+1

µ2 µ3 µ4 . . . µn+2

...
...

...
. . .

...

µn µn+1 µn+2 . . . µ2n




(4.23)



140 CHAPTER 4. GENERAL M. I. PROBABILITY DISTRIBUTIONS

Definition 4.4.3 (Hankel matrix for the determination of the great-
est lower bound of µi for an odd i).

H1 = µ1 (4.24)

H3 =

(
µ1 µ2

µ2 µ3

)
(4.25)

H5 =




µ1 µ2 µ3

µ2 µ3 µ4

µ3 µ4 µ5


 (4.26)

By proceeding exactly in this way, for any i = 2n + 1, such that
n ∈ {0, 1, 2, . . . , ⌊m−1

2
⌋},we arrive at

H2n+1 =




µ1 µ2 µ3 . . . µn+1

µ2 µ3 µ4 . . . µn+2

µ3 µ4 µ5 . . . µn+3

...
...

...
. . .

...

µn+1 µn+2 µn+3 . . . µ2n+1




(4.27)
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Secondly, we state the Hankel matrices, whose determinants give the exact
least upper bounds of the moments µi, i ∈ {1, 2, . . . ,m}:

Definition 4.4.4 (Hankel matrix for the determination of the least
upper bound of µi for an even i).

H2 = µ1 − µ2 (4.28)

H4 =

(
µ1 − µ2 µ2 − µ3

µ2 − µ3 µ3 − µ4

)
(4.29)

By proceeding exactly in this way, for any i = 2n, such that
n ∈ {1, 2, . . . , ⌊m

2
⌋}, we arrive at

H2n =




µ1 − µ2 µ2 − µ3 µ3 − µ4 . . . µn − µn+1

µ2 − µ3 µ3 − µ4 µ4 − µ5 . . . µn+1 − µn+2

µ3 − µ4 µ4 − µ5 µ5 − µ6 . . . µn+2 − µn+3

...
...

...
. . .

...

µn − µn+1 µn+1 − µn+2 µn+2 − µn+3 . . . µ2n−1 − µ2n




(4.30)
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Definition 4.4.5 (Hankel matrix for the determination of the least
upper bound of µi for an odd i).

H1 = 1 − µ1 (4.31)

H3 =

(
1 − µ1 µ1 − µ2

µ1 − µ2 µ2 − µ3

)
(4.32)

By proceeding exactly in this way, for any i = 2n + 1, such that
n ∈ {0, 1, 2, . . . , ⌊m−1

2
⌋}, we arrive at

H2n+1 =




1 − µ1 µ1 − µ2 µ2 − µ3 . . . µn − µn+1

µ1 − µ2 µ2 − µ3 µ3 − µ4 . . . µn+1 − µn+2

µ2 − µ3 µ3 − µ4 µ4 − µ5 . . . µn+2 − µn+3

...
...

...
. . .

...

µn − µn+1 µn+1 − µn+2 µn+2 − µn+3 . . . µ2n − µ2n+1




(4.33)
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The elaborate explanation of the statement of the necessary and sufficient
condition of the existence of the solution of the system (4.20) (i.e. the formal
description of the statement of the theorem 4.4.1) for any finitely fixed
m ∈ N is thereby complete. As we have already mentioned, the formal
rigorous proof of the theorem 4.4.1 for any m ∈ N shall not be given in
this dissertation.

However, the formal rigorous proof of the theorem 4.4.1 in the individ-
ual cases for m ∈ {1, 2}, which are just relevant for this dissertation,
are duly given in the subsections (6.2.3) and (6.3.10). In course of proving
the same, both the geometrical and the analytical side of the problems
are intensively discussed and are of extreme importance for the charac-
ter analysis of standard minimum information probability distri-
butions.

Remark 4.4.1. As a brief note, the name addressed to the above stated
theorem 4.4.1 can be precisely put as the Hausdorff’s condition for
the finite moment problem.

This Hausdorff’s condition is basically addressed to the continuous case
of the random variable X only. If X happens to be discrete, this Hausdorff’s
condition needs to be handled a bit differently.

Remark 4.4.2. The Hausdorff’s finite moment problem, in general,
refers to probability distributions of any kind. The exponential polynomial
probability distribution is only one of such kinds of probability distribu-
tions, which HFMP refers to.

Remark 4.4.3 (Contextual realization of the Hausdorff’s finite mo-
ment problem). Let us take the exponential polynomial probability density
function fX|{d(n)}(x) = eβ0+β1x+β2x2+...+βnxn

, 0 ≤ x ≤ 1 determined by means
of the first n moments, namely µ1, µ2, . . . , µm, µm+1, . . . , µn, (i.e. n ≥ m).
Here, the definition and proposition 4.4.3 basically says that, if the
first m moments, namely µ1, µ2, . . . , µm are fixed, then there are infinitely
many such probability densities fX|{d(n)}(x) when the rest n − m moments,
namely µm+1, µm+2, . . . , µn vary.

Corollary 4.4.1 (The unique existence of the system of equations
(4.4)). By the theorem 4.3.1, if a solution of the system of equations
(4.4), at all exists, then the solution is unique.
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Again, by the theorem 4.4.1, the necessary and sufficient condition
for the existence of a solution of the system of equations (4.4) is the positive
definiteness of each of the Hankel matrices (4.23), (4.27), (4.30), and (4.33).

Hence, conclusively, with subject to the above stated positive definiteness,
the probability density function fX|{d}(x) = eβ0+β1x+β2x2+...+βmxm

, 0 ≤ x ≤ 1

( β0 = − log

(
1∫
0

eβ1x+β2x2+...+βmxm

dx

)
) is uniquely determinable, which

gets proved by the proof of the unique existence of β1, β2, . . . , βm as the
solution of the system of equations (4.4) with subject to the predetermined
moments µ1, µ2, . . . , µm of the random variable X.

4.5 The necessary criterion for the solvability

4.5.1 The question addressed to the solvability

An extremely important question arises, whether the system of equations
(4.4) is at all generally solvable by the Newton-Raphson method, with
subject to the fulfillment of the Newton-Raphson’s convergence cri-
terion ( duly stated and rigorously proved in the subsection 12.3.3 ) is ful-
filled. The answer is yes and we need to establish this assertion formally.

This establishment of our assertion lies solely on the positive definiteness
of a particular m × m square matrix.

The establishment of the solvability criterion necessitates a remodification of
the system of equations (4.4) by setting

−→
β =




β1

β2
...

βm


 ∈ R

m (4.34)

and subsequently by defining the function
−→
f as

−→
f (

−→
β ) =

−→
f




β1

β2
...

βm


 =




f1(
−→
β )

f2(
−→
β )
...

fm(
−→
β )




=
−→
0 (4.35)



4.5. THE NECESSARY CRITERION FOR THE SOLVABILITY 145

such that




f1(
−→
β ) =

∫
XX

x eβ1x+β2x2+...+βmxm
νX(dx)

∫
XX

eβ1x+β2x2+...+βmxm
νX(dx)

− µ∗
1 = 0

f2(
−→
β ) =

∫
XX

x2 eβ1x+β2x2+...+βmxm
νX(dx)

∫
XX

eβ1x+β2x2+...+βmxm
νX(dx)

− µ∗
2 = 0

...

fm(
−→
β ) =

∫
XX

xm eβ1x+β2x2+...+βmxm
νX(dx)

∫
XX

eβ1x+β2x2+...+βmxm
νX(dx)

− µ∗
m = 0

(4.36)

where µ∗
1, µ

∗
2, . . . , µ

∗
m are the user-given predetermined values of the moments

of the random variable X and therefore are purely constants with respect
to the variables β1, β2, . . . , βm. Here, we needed to use these new sym-
bols, namely µ∗

1, µ
∗
2, . . . , µ

∗
m, because we simply need to differentiate between

µi =

∫
XX

xi eβ1x+β2x2+...+βmxm
νX(dx)

∫
XX

eβ1x+β2x2+...+βmxm
νX(dx)

and µ∗
i for i ∈ {1, 2, . . . ,m} here.

However, this clear differentiation between µi and µ∗
i is not always necessary

for every task. If the meanings and interpretations are completely un-
ambiguous, then we can easily write µi instead of µ∗

i , i ∈ {1, 2, . . . ,m}.
In fact, we shall do this in course of our coming discussions.

Clearly, apart from the consideration of this aforesaid differentiation, the
systems of equations (4.4) and (4.36) are exactly the same. So, we shall
focus our immediate present discussions on the solvability of the system of
equations (4.36) equivalently.

Let the (unique) solution of (4.4) ( or equivalently of (4.36) ) be denoted by

−→
β ∗ =




β∗
1

β∗
2
...

β∗
m


 ∈ R

m (4.37)

which means,
−→
f (

−→
β ∗) =

−→
0 .
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Again, let the (initial) starting solution of (4.36) be denoted by

−→
β 0 =




β
(0)
1

β
(0)
2
...

β
(0)
m


 ∈ R

m (4.38)

which has to be feeded to the Newton-Raphson procedure, provided
−→
β 0 lies

within the convergence radius of
−→
β ∗, the intensive discussions of which

have been given in the subsection 12.3.3.

Each procedural step of the Newton-Raphson procedure (referred to (12.57))
is restated as

−→
β k+1 =

−→
β k −

(−→
f

′

(
−→
β k)

)−1 −→
f (

−→
β k) for every k ∈ N0

Exactly at this point, we are in a position to state that the solvability of the

Newton-Raphson necessitates the existence of the quantity
(−→

f
′
(
−→
β k)

)−1

or in other words, the invertibility of
−→
f

′
(
−→
β k).

With this, before we could finally arrive at the formal statement of the solv-
ability criterion, we need to state and prove two important lemmas. Before

this, let us give the expression of
−→
f

′
(
−→
β ) in the following way:

Definition and Proposition 4.5.1 (
−→
f

′
(
−→
β )). The derivative of

−→
f (

−→
β ) for

any arbitrarily chosen
−→
β ∈ R

m, namely
−→
f

′
(
−→
β ) is

−→
f

′

(
−→
β ) =




∂µ1

∂β1

∂µ1

∂β2
. . . ∂µ1

∂βm

∂µ2

∂β1

∂µ2

∂β2
. . . ∂µ2

∂βm

...
...

. . .
...

∂µm

∂β1

∂µm

∂β2
. . . ∂µm

∂βm




(4.39)

Proof. The proof follows immediately by deriving each µi with respect
to βj partially for i, j ∈ {1, 2, . . . ,m} in accordance with the system of
simultaneous equations (4.36).
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4.5.2 The first lemma addressed to a covariance matrix

Definition 4.5.1 (A special covariance matrix). The square matrix,
denoted by Cov[X(m)], is the covariance matrix of the m- dimensional random
vector defined by

X(m) =
(
X,X2, . . . , Xm

)
(4.40)

In this subsection, we shall show that
−→
f

′

(
−→
β ) happens to be equal to the

covariance matrix Cov[X(m)] of the random vector X(m) = (X,X2, . . . , Xm).

Therefore, we shall state and prove the following proposition accordingly:

Proposition 4.5.1.
−→
f

′

(
−→
β ) = Cov[X(m)] for every

−→
β ∈ R

m

Proof of the proposition 4.5.1. Since the partial derivative ∂µi

∂βj
is the ele-

ment of the ith row and jth column of the matrix
−→
f

′

(
−→
β ), we need to prove

that it is also the same of that of the covariance matrix Cov[X(m)].

The element of the ith row and jth column of Cov[X(m)] is the covariance of
X i and Xj denoted by Ai,j = E [(X i − µi)(X

j − µj)], where 1 ≤ i, j ≤ m.
This element E [(X i − µi)(X

j − µj)] shall also be denoted by σi,j, though the
same is normally symbolized by µi,j (referred to the page 155 of [13]).

All what we need, is basically to prove the expression of σi,j stated in (4.44),
namely

σi,j =
∂µi

∂βj

=
∂µj

∂βi

= µi+j − µiµj, such that i, j ∈ {1, 2, . . . ,m} (4.44)

By the system (4.4), for every i ∈ {1, 2, . . . ,m}, we have

µi =

∫
XX

xi eβ1x+β2x2+...+βmxm

νX(dx)

∫
XX

eβ1x+β2x2+...+βmxmνX(dx)
(4.41)

Now, the question arises, whether we can at all interchange the opera-
tions of integration

∫
XX

and the partial differentiation ∂
∂βj

in the process

of differentiating µi partially with respect to βj, for i, j ∈ {1, 2, . . . ,m} with
regard to the above relation (4.41) or not. The answer is yes. Now, let us
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distinguish the two cases, namely when the random variable X is discrete
and continuous one by one:

If X is discrete, then each of the two integrals
∫
XX

xi eβ1x+β2x2+...+βmxm

νX(dx)

and
∫
XX

eβ1x+β2x2+...+βmxm

νX(dx) having continuous integrands belonging

to (4.41) is a finite sum. Here, the the integration operation
∫
XX

is a finite

summation
N∑

j=1

. Hence, the operations
N∑

j=1

and ∂
∂βj

are interchangeable.

Again, if X is continuous, then each of the two integrals∫
XX

xi eβ1x+β2x2+...+βmxm

νX(dx) and
∫
XX

eβ1x+β2x2+...+βmxm

νX(dx) having

continuous integrands belonging to (4.41) is a Riemann integral. In
this case, let us refer to the Theorem 2 titled by Differentiation of the
Integral of page 306 of [17]. This theorem of differentiation of the integral
states that

Let φ(y) =
b∫

a

f(x, y)dx, where f(x, y) is a continuous function of (x, y) in the

rectangle R : {a ≤ x ≤ b, c ≤ y ≤ d} and fy(x, y) exists and is continuous in

R. Then φ
′
(y) = d

dy

{
b∫

a

f(x, y)dx

}
exists and is equal to

b∫
a

(
∂
∂y

f(x, y)
)

dx

In our case, the integrand eβ1x+β2x2+...+βmxm

is continuous for every βj,
j ∈ {1, 2, . . . ,m} and −∞ < βj < ∞. So, the theorem of differentiation

of the integral is well applicable here. In other words, the operations
1∫
0

and ∂
∂βj

are interchangeable here as well.

Thus, by keeping this interchangeability in both discrete and contin-
uous cases of X in mind, by taking pX(x) = β1x + β2x

2 + . . . + βmxm, we
have for every j ∈ {1, 2, . . . ,m}
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∂µi

∂βj

=

(
∫

XX

epX (x)νX(dx)

)(
∫

XX

xi+jepX (x)νX(dx)

)
−

(
∫

XX

xiepX (x)νX(dx)

)(
∫

XX

xjepX (x)νX(dx)

)

(
∫

x∈XX

epX (x)νX(dx)

)2

= µi+j − µiµj = σi,j 2

(4.42)
and thereby proving our proposition 4.5.1.

4.5.3 The second lemma addressed to the positive def-
initeness of Cov[X(m)]

We shall state and prove the following proposition in this subsection:

Proposition 4.5.2 (The positive definiteness). For every m ∈ N, the
covariance matrix Cov[X(m)] is positive definite, provided N ≥ m+1 in cases,
when X happens to be discrete.

Proof of the proposition 4.5.2. The covariance (symmetric) matrix of
X(m) = (X,X2, . . . , Xm), being symbolized by Cov[X(m)], is given by

Cov[X(m)] =
(
E

[
(X i − µi)(X

j − µj)
])

1≤i , j≤m
=




A1,1 A1,2 . . . A1,m

A2,1 A2,2 . . . A2,m

...
...

. . .
...

Am,1 Am,2 . . . Am,m




Obviously, Cov[X(m)] shall also be denoted by (σi,j)1≤i , j≤m
and is expressed

as

(σi,j)1≤i , j≤m
=




∂µ1

∂β1

∂µ1

∂β2
. . . ∂µ1

∂βm

∂µ2

∂β1

∂µ2

∂β2
. . . ∂µ2

∂βm

...
...

. . .
...

∂µm

∂β1

∂µm

∂β2
. . . ∂µm

∂βm




(4.43)
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whose symmetry is well established by using (4.4) and by the very fact that

σi,j =
∂µi

∂βj

=
∂µj

∂βi

= µi+j − µiµj = σiσjρi,j, such that i, j ∈ {1, 2, . . . ,m}.
(4.44)

such that σi, σj, σi,j and ρi,j are the symbols of variance of X i, variance
of Xj, covariance of X i and Xj and correlation coefficient of X i and Xj

respectively.

Therefore, keeping these things in mind, we give the proceed as follows:

The very fact that every covariance matrix is positive semi-definite has
been well stated and proven in the page T.11.3, theorem number T.11.1.4
of [12].

Thus, for m ∈ N, Cov[X(m)] could either be positive semi definite or positive
definite.

Now, in order to prove the positive definiteness of Cov[X(m)], we necessarily
need to make use of the following result (referred to the proven theorem
T.11.1.5 in the page T.11.4 of [12]):

The Cov[X(m)] is not positive definite, i.e. positive semi definite

⇐⇒ (4.45)

∃ scalars α1, α2, . . . , αm and α̂ with respect to α2
1 + α2

2 + . . . + α2
m 6= 0, i.e.

not all αis (i = 1, 2, . . . ,m) are simultaneously zero, such that

PX|{d}
({

x|α1x + α2x
2 + . . . αmxm = α̂

})
= 1 (4.46)

To go ahead with our operation by using the immediately stated above proven
result, we shall treat the discrete and continuous cases separately:

Discrete Case: X is discrete:

In this case, the range of variability of X containing N elements is
XX({d}) = {0 = x1, x2, . . . , xN = 1}

Accordingly, with subject to the hypothetical assumption that Cov[X(m)] is
not positive definite, we would arrive at the following system of N equations
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in α1, α2, . . . , αm:





α1x1 + α2x
2
1 + . . . + αmxm

1 = α̂

α1x2 + α2x
2
2 + . . . + αmxm

2 = α̂

α1x3 + α2x
2
3 + . . . + αmxm

3 = α̂

...
...

...
...

...
...

α1xN + α2x
2
N + . . . + αmxm

N = α̂

(4.47)

Now, with subject to x1 = 0, by the first equation of the above system of
equations, we get

α1(0) + α2(0) + . . . + αm(0) = α̂ ⇒ α̂ = 0 (4.48)

and with subject to xN = 1, by the last equation of the above system of
equations, we get

α1 + α2 + . . . + αm = α̂ = 0 (4.49)

and thus the above system of N equations with m unknowns (4.47) basically
reduces to the following system of N − 1 equations with m unknowns:





α1 + α2 + . . . + αm = 0

α1x2 + α2x
2
2 + . . . + αmxm

2 = 0

α1x3 + α2x
2
3 + . . . + αmxm

3 = 0

...
...

...
...

...
...

α1xN−1 + α2x
2
N−1 + . . . + αmxm

N−1 = 0

(4.50)

So, the question arises, whether the system of equations (4.50) is solvable for
α1, α2, . . . , αm non trivially or not.

To answer this question, we simply need to subdivide this very discrete case
into three subcases:



152 CHAPTER 4. GENERAL M. I. PROBABILITY DISTRIBUTIONS

Subcase: N = m + 1:

In this case, the system of equations (4.50) can be rewritten in the following
matrix form as follows:




1 1 1 . . . 1

x2 x2
2 x3

2 . . . xm
2

x3 x2
3 x3

3 . . . xm
3

...
...

...
. . .

...

xm x2
m x3

m . . . xm
m







α1

α2

α3

...

αm




=




0

0

0

...

0




(4.51)

It is clearly seen that the left hand side of the above matrix relation contains
a non singular Vandermonde matrix of order m×m. This proves that there
exists solely the trivial solution of (4.50), namely




α1

α2

α3

...

αm




=




0

0

0

...

0




which shows that, according to the result (4.45), since no non trivial solution
of (4.50) exists, Cov[X(m)] is positive definite.

Subcase: N > m + 1:

In this case, the system of equations (4.50) has more number of equations
than the number of unknowns. Moreover, x2, x3, . . . , xN−1 are all non zero
real numbers.

This can only lead to the conclusion that the solution of (4.50) is just one
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and the solution is trivial, namely




α1

α2

α3

...

αm




=




0

0

0

...

0




which again shows that, according to the result (4.45), since no non trivial
solution of (4.50) exists, Cov[X(m)] is positive definite.

Subcase: N < m + 1:
In this case, the system of equations (4.50) has more number of unknowns
than the number of equations. Moreover, x2, x3, . . . , xN−1 are all non zero
real numbers.

This can only lead to the conclusion that the number of non trivial solutions
of (4.50) are infinitely many.

We shall show that Cov[X(m)] is not positive definite in this case by a simple
counter example:

Let us take N = 3,m = 3 for X(3) = (X,X2, X3) and XX({d}) = {0, 1
2
, 1}.

Therefore, one of the solutions of

{
α1 + α2 + α3 = 0

α1

(
1
2

)
+ α2

(
1
2

)2
+ α3

(
1
2

)3
= 0

(4.52)

is 


α1

α2

α3


 =




1
8

−3
8

1
4


 6=




0

0

0




which rather shows that

PX|{d}
({

x|α1x + α2x
2 + . . . αmxm = 0

})
= 1
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and thus Cov[X(m)] is not positive definite in this case.

Continuous Case: X is continuous:

In this case, the range of variability of X is XX({d}) = [0, 1], which contains
infinitely many non zero real values of x.

Therefore, we can safely conclude that for any given value of m ∈ N, there
can only be trivial solutions of (4.50), simply because the non zero values of
x are infinitely many.

This only proves that, in accordance with the result (4.45), since no non triv-
ial solution of (4.50) exists, Cov[X(m)] is positive definite in this continuous
case.

So, by summarizing everything, we conclude:

1. If X is discrete, then Cov[X(m)] is positive definite for N ≥ m + 1

2. If X is continuous, then Cov[X(m)] is always positive definite 2

Notably, the positive definite covariance matrix Cov[X(m)] (for N ≥ m+1
in the discrete cases) has been symbolized alternatively (abbreviated for the
sake of better clarity) by (σi,j)1≤i,j≤m described by (4.43).

Whence, with the formal proof of the positive definiteness of

f
′

(
−→
β ) = Cov[X(m)] for every

−→
β ∈ R

m the proposition 4.5.2 is thereby
proved.

4.5.4 The formulation of the solvability criterion

Proposition 4.5.3 (The solvability criterion). The criterion for solv-

ability is plainly the invertibility of the matrix
−→
f

′
(
−→
β ) for every

−→
β ∈ R

m.

In other words, the matrix
(−→

f
′
(
−→
β )

)−1

must exist for every
−→
β ∈ R

m.

Equivalently, this solvability criterion is basically nothing, but the non-
singularity of the matrix Cov[X(m)].

Proof of the proposition 4.5.3. Notably, any covariance matrix is posi-
tive semi-definite anyway and therefore the non-singularity of the covari-
ance matrix Cov[X(m)] necessitates the positive definiteness of the same.
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The proof of this proposition took exactly two steps and in fact by proving the
proposition 4.5.1 (given in the subsection 4.5.2), namely−→
f

′

(
−→
β ) = Cov[X(m)] for every

−→
β ∈ R

m at first and then proving the
proposition 4.5.2 (given in the subsection 4.5.3), namely the positive
definiteness of Cov[X(m)] thereafter. The proof of this very positive defi-
niteness therefore proves the proposition 4.5.3.

Corollary 4.5.1 (Usability of the Newton Raphson procedure). Be-

cause of the positive definiteness of Cov[X(m)] for every
−→
β ∈ R

m,
−→
f

′

(
−→
β )

is invertible anyway and thus, the
(−→

f
′
(
−→
β )

)−1

is determinable any-

way and thereby establishing the solvability criterion for the usage of the
Newton Raphson procedure.

Remark 4.5.1. Notably, the Banach’s fixed point theorem (the elabo-
ration and the statement of the theorem are referred to the pages from 148 to
150 of [5]) for the determination of a zero of a multivariate function (denoted

by
−→
f in our case), which describes the convergence radius of the solution

−→
β

∗
, necessitates this very solvability criterion as well.
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4.5.5 Special consideration of the cases for m ∈ {0, 1, 2}
These special cases, viz. m ∈ {0, 1, 2}, as we know, are of special importance,
as far as the consideration of the standard minimum information probability
distributions are concerned. However, the case for m = 0 is too trivial and
therefore does not require any needful discussion.

The solvability criteria, namely the positive definiteness of both the matrices
Cov[X(1)] and Cov[X(2)] play a principle role in programming the computation
procedures of minimum information monotone and uni- extremal probability
distributions.

In this subsection, we shall basically consider the very fact that the prob-
lems arising out of programming an algorithm differs from a theoretical
problem to a certain degree and how the possible programming difficulties
can be effectively resolved by using the aforesaid solvability criterion.

So, let us consider both the monotone and the uni- extremal cases one by
one as follows:

Firstly, in minimum information monotone cases,

∆β = det
(
Cov[X(1)]

)
=

dµ1

dβ
= µ2 − µ2

1 > 0

with reference to the subsection 6.2.1, we have set µi = µ
(β)
i as a function of

β (6= 0) for i ∈ {1, 2}, as described in (12.105).

In each Newtonian step of the Newton Raphson procedure, β is incremented
by a quantity h = −µ1−µ∗

1

µ2−µ2
1
.

Purely from the theoretical point of view, which shall be established in due
course, µ2 − µ2

1 = 0 ⇔ |β| = +∞.

Though the solvability criteria theoretically says that µ2−µ2
1 > 0 for every

finite value of β, the programming difficulty is not completely unresolved,
if a numerical computation of µ2−µ2

1 coincidentally turns out to be 0, which
would not enable the computation of h finitely. This could happen, only if
|β| unluckily turns out to be abnormally large in any computational process.
As a programmer, I do advise my users to keep the input value of µ∗

1 restricted
to 0.00001 ≤ µ∗

1 ≤ 0.9999, though 0 < µ∗
1 < 1 is particularly the theoretical

restriction for µ∗
1.
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In discrete cases, I would advise my users to restrict N preferably to N ≤
10000 in general. Should the user intends to input µ∗

1 = 0.9999, then I would
advise the restriction of N to N ≤ 2500.

The trivial case of β = 0 implies and implied by µ1 = 1
2

and therefore no
Newton Raphson procedure is of necessity then.

Secondly, in minimum information uni-extremal cases,

∆βγ = det
(
Cov[X(2)]

)
=

∣∣∣∣∣∣

∂µ1

∂β

∂µ1

∂γ

∂µ2

∂β

∂µ2

∂γ

∣∣∣∣∣∣
= (µ4−µ2

2)(µ2−µ2
1)−(µ3−µ1µ2)

2 > 0

with reference to the subsection 6.3.9, we have set µi = µ
(β,γ)
i as a function

simultaneously of β and γ (6= 0) for i ∈ {1, 2, 3, 4}, as described in (12.107).

For programming (practical) reasons, the system of equations (4.4) for m = 2
is conveniently equivalently rewritten, as described in (12.95) and (12.96),
as 




∫
XX

(x − µ∗
1)e

βx+γx2
νX(dx) = 0

∫
XX

(x2 − µ∗
2)e

βx+γx2
νX(dx) = 0

for the purpose of solving for (β, γ).

In each Newtonian step, β and γ are incremented by h and k respectively
(the description is referred to (12.111)).

The theoretical positivity of ∆βγ is hereby utilized to make sure that, the
real value of the denominator Ψ given in (12.114) is ought to be non-zero,
thereby enabling h and k to be finitely computable.

The derivation of Ψ given in (12.114) in terms of ∆βγ can be easily shown as

Ψ =

∣∣∣∣∣
µ2 − µ∗

1µ1 µ3 − µ∗
1µ2

µ3 − µ1µ
∗
2 µ4 − µ∗

2µ2

∣∣∣∣∣

= ∆βγ + µ1

∣∣∣∣∣
µ1 − µ∗

1 µ3 − µ1µ2

µ2 − µ∗
2 µ4 − µ2

2

∣∣∣∣∣ + µ2

∣∣∣∣∣
µ2 − µ∗

2 µ3 − µ1µ2

µ1 − µ∗
1 µ2 − µ2

1

∣∣∣∣∣
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Therefore, the legitimate smallness of both the expressions |µ1 − µ∗
1| and

|µ2 − µ∗
2| ensures the strict positivity of Ψ (because of the strict positivity

of ∆βγ) and thereby resolving the possible (practical) programming problem.

Though the debugging of both the software programs meant for computing
the uni- extremal probability distributions (i.e. in both discrete and contin-
uous cases) has never shown that Ψ could ever be computationally zero
(viz. Ψ = 0), the issue with regard to the programming quality must be kept
in mind. As a programmer, I have imperatively taken care of this aforesaid
smallness skillfully.

Even if a particular course of computation of h or k encounters Ψ = 0, still
the Newton Raphson procedure would not cease to continue, but may delay
delivering the final result to a marginally negligibly small extent only.

The special case of γ = 0 regards to the immediately discussed preceding
minimum information monotone case.

4.6 The special Hankel matrix

Another name of a Hankel matrix is Hankel kernel. In this section, we
principally intend to show that the positive definiteness of the Hankel
matrix (4.23), namely the matrix




1 µ1 µ2 . . . µn

µ1 µ2 µ3 . . . µn+1

µ2 µ3 µ4 . . . µn+2

...
...

...
. . .

...

µn µn+1 µn+2 . . . µ2n




(4.23)

plays a predominant role in the following:
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1. The aforesaid solvability criterion. The positive definiteness of the
Hankel matrix (4.23) implies and implied by the positive definiteness
of the covariance matrix Cov[X(n)] = (σi,j)1≤i , j≤n

given by (4.43) for
n ∈ N.

2. Proving the uniqueness of the solution of the system of equations (4.4)
(or equivalently of 4.2). The uniqueness of the solution of (4.4) has been
reproved in the appendix B by using the positive definiteness of the
Hankel matrix (4.23).

Therefore, let us prove the positive definiteness of the Hankel matrix (4.23) by
using the positive definiteness of the covariance matrix Cov[X(n)] for n ∈ N.

Proposition 4.6.1. The Hankel matrix (4.23) is positive definite.

Proof of the proposition 4.6.1. The determinant of the Hankel matrix (4.23)
is equal to

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 µ1 µ2 . . . µn

µ1 µ2 µ3 . . . µn+1

µ2 µ3 µ4 . . . µn+2

...
...

...
. . .

...

µn µn+1 µn+2 . . . µ2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 µ1 µ2 . . . µn

µ1 − µ1(1) µ2 − µ1(µ1) µ3 − µ1(µ2) . . . µn+1 − µ1(µn)

µ2 − µ2(1) µ3 − µ2(µ1) µ4 − µ2(µ2) . . . µn+2 − µ2(µn)

...
...

...
. . .

...

µn − µn(1) µn+1 − µn(µ1) µn+2 − µn(µ2) . . . µ2n − µn(µn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

where the ith modified row R
′

i

= ithoriginal row Ri − (µi−1 × first row R1) for i ∈ {2, 3, . . . , n + 1}
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=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 µ1 µ2 . . . µn

0 µ2 − µ1(µ1) µ3 − µ1(µ2) . . . µn+1 − µ1(µn)

0 µ3 − µ2(µ1) µ4 − µ2(µ2) . . . µn+2 − µ2(µn)

...
...

...
. . .

...

0 µn+1 − µn(µ1) µn+2 − µn(µ2) . . . µ2n − µn(µn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

µ2 − µ1(µ1) µ3 − µ1(µ2) . . . µn+1 − µ1(µn)

µ3 − µ2(µ1) µ4 − µ2(µ2) . . . µn+2 − µ2(µn)

...
...

. . .
...

µn+1 − µn(µ1) µn+2 − µn(µ2) . . . µ2n − µn(µn)

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂µ1

∂β1

∂µ1

∂β2
. . . ∂µ1

∂βn

∂µ2

∂β1

∂µ2

∂β2
. . . ∂µ2

∂βn

...
...

. . .
...

∂µn

∂β1

∂µn

∂β2
. . . ∂µn

∂βn

∣∣∣∣∣∣∣∣∣∣∣∣∣

( by (4.42) )

= det
(
Cov[X(n)]

)
> 0

2

which proves the positive definiteness of the Hankel matrix (4.23) (i.e. the
proposition 4.6.1) and thereby establishing our aforesaid two assertions.



Chapter 5

Suitable simple bounds of
moments

Since this dissertation is confined to the probability distributions of compact
supports only, any moment of such a probability distribution must have a
bounded range of variability. In this chapter, we shall discuss about the
importance of such bounds.

For the sake of simplicity, as usual, without any loss of generality, we
shall basically confine our discussions to the bounds of every moment µn of
the random variable X (i.e. for every n ∈ N), by keeping the statement
2.4.2 in mind (the statement describing the indexing of moments). We
shall discuss about the bounds of the standard moments of the random
variable Y thereafter, which are relevant for this dissertation.

5.1 Basic statements for the moments of X

Statement 5.1.1 (The statement on insignificance). Referring to our
joint paper [39], the higher moments of X do not really deliver any ad-
ditional needful quantitative information for the purpose of constructing
the targeted approximating probability distribution (namely fX|{d}(x), x ∈
XX) of X. In this very sense, these higher moments of X are insignif-
icant. This insignificance of the moment µn, n ∈ N is ascribed to the
smallness of the range of variability (referred to the definition 5.2.5)
of µn. However, for practical reasons, the smallness of the bounded range
(referred to the definition 5.2.6) of µn is under our consideration.

161
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Statement 5.1.2 (The restrictions on moments of X). If X happens
to be continuous, then the least upper bound (denoted by lub(µi)) and

the greatest lower bound (denoted by glb(µi)) of the ith moment µi (of
X) for each and every i ∈ {1, 2, . . . ,m} can be determined by the usage of
the positive definiteness of Hankel matrices defined in the subsection
(4.4.2) and in fact,

• the positive definiteness of the Hankel matrices given by (4.23) and
(4.30) determines the greatest lower and least upper bounds of µi

for an even i (= 2n), n ∈ {1, 2, . . . , ⌊m
2
⌋}

• the positive definiteness of the Hankel matrices given by (4.27) and
(4.33) determines the greatest lower and least upper bounds of µi

for an odd i (= 2n + 1), n ∈ {0, 1, 2, . . . , ⌊m−1
2

⌋}
This aforesaid positive definiteness is obviously a severe restriction im-
posed on the variability of µi.

In fact, for the discrete case of X, the aforesaid restriction on mo-
ments of X is even severer. This severeness of the restriction of the
range of variability of µi is well explained by the very fact that the sup-
port XX = {x1, x2, . . . , xN} is predetermined and therefore the range of
variability of µi depends additionally on the choice of XX .

The number of moments of X needed to construct the approximating prob-
ability distribution of X is importantly a big question with regard to the
practicability. A subsequent statement in this very regard is given as fol-
lows:

Statement 5.1.3 (Practicability pertaining to the number of mo-
ments). Every additional moment of X needed to construct the exponential
polynomial probability distribution of X means that the amount of numer-
ical mathematical work as well as the amount of programming work
increases exponentially.

Therefore, even if the exact values of the moments of X are hypotheti-
cally assumed to be known, barely from the practical point of view,
one must make sure that only the needed number of moments of X should
be included, which are unavoidably necessary.

We shall discuss both the discrete and the continuous cases of X, starting
with the continuous case though.
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5.2 The formulation of the first target

The formulation of the first target pertains to the continuous case of the
random variable X.

5.2.1 The background

In the subsection 3.4, we have already established that the probability density

fX|{d(n)}(x) = e
β0+

n∑
i=1

βix
i

, 0 ≤ x ≤ 1, n ∈ N is a consistent density estimator
of the unknown situation oriented need based probability density fX(x),
0 ≤ x ≤ 1, with

• β0 = log

(
1∫
0

e

n∑
i=1

βix
i

dx

)

• d(n) = (µ1, µ2, . . . , µn)

In other words, the goodness of the approximation of the aforesaid
probability density fX(x) (approximated by the aforesaid probability den-
sity fX|{d(n)}(x)) can be improved arbitrarily, by increasing the number of
moments n.

Therefore, the question arises, how exactly the moments do behave for to
contribute to the desired goodness of this approximation? This very question
is the question of insignificance of certain moments ( referred to the state-
ment 5.1.1 ). It is well intuitively assertible the range of variability
of µn defined by the open interval (glb(µn), lub(µn)) becomes smaller and
smaller with the increase in n.

So, the moment µn with a smaller range of validity has understandably a
lesser strength of being informative, if the length lub(µn) − glb(µn) of
the open interval (glb(µn), lub(µn)) happens to be smaller.

This smallness of lub(µn)−glb(µn) principally says that the inclusion of the
moment µn for the purpose of constructing the approximating probability
density fX|{d}(x) improves the approximation of the probability density
fX(x) only to a negligible extent.

In other words, if this interval length lub(µn) − glb(µn) is insignificant
enough, then it hardly matters, whether the approximating probability
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density could be accepted as fX|{d(n−1)}(x) (by taking d(n−1) = (µ1, µ2, . . . , µn−1)
by excluding the moment µn) or could be accepted as fX|{d(n)}(x) (by taking

d(n) = (µ1, µ2, . . . , µn) by including the moment µn).

So, the smallness of lub(µn)−glb(µn) particularly becomes a decision mak-
ing factor, whether the inclusion of µn really matters or not.

5.2.2 The first target

The core of the discussion is about the very fact that only a finite number
of moments of X are enough to construct the targeted probability den-
sity function fX|{d}(x), x ∈ [0, 1] of X appropriately. Now, by targeting
the smallness of lub(µn) − glb(µn), we must find out a method of choos-
ing an optimal value1 of n, so that a predeterminately chosen legitimate
smallness2 of lub(µn) − glb(µn) is duly achieved? In other words, if the
predeterminate choice of the said smallness is denoted by a small positive
number ǫ, what should be the minimum value of n, so as to fulfill the
condition lub(µn) − glb(µn) ≤ ǫ?

Unfortunately, the exact determination of glb(µn) (by means of the posi-
tive definiteness of the Hankel matrices defined by (4.23) or (4.27)) and of
lub(µn) (by means of the positive definiteness of the Hankel matrices defined
by (4.30) or (4.33)) for every n ∈ N happens to be extremely cumber-
some.

So, we shall have to look for an alternative method giving an optimally
chosen value of n. This optimal value of n, with regard to the statement
5.1.3, should be as small as possible.

Accordingly, we shall choose a legitimate lower bound of µn (denoted by
lb(µn)), such that lb(µn) ≤ glb(µn) for every n ∈ N) as well as a legitimate
upper bound of µn (denoted by ub(µn)), such that ub(µn) ≥ lub(µn) for
every n ∈ N) with subject to the following two legitimate prerequisites:

1. Since each of glb(µn) and lub(µn) depends on the lower ordered mo-
ments namely µ1, µ2, . . . , µn−1, then each of lb(µn) and ub(µn) must
depend on µ1, µ2, . . . , µn−1 as well.

1Optimality in this regard is referred to minimality.
2the legitimacy of this smallness is regarded to the problem-related issue.



5.2. THE FORMULATION OF THE FIRST TARGET 165

In other words, both lb(µi) and ub(µi) must depend at least on µi−1,
for every i ∈ {2, 3, . . .}.

2. For the standard cases, namely for the minimum information mono-
tone cases (i.e. cases for n = 1) and for the minimum infor-
mation uni-extremal cases (i.e. cases for n = 2), we must have
lb(µn) = glb(µn) and ub(µn) = lub(µn).

Obviously, the minimum value of n, which fulfills lub(µn)− glb(µn) ≤ ǫ is
smaller than that which fulfills ub(µn) − lb(µn) ≤ ǫ.

But, as already discussed, because of the complexities of the expressions
of both glb(µn) and lub(µn), we do not have any better choice at the
moment other than determining suitable expressions of lb(µn) and ub(µn)
that are simpler in nature.

Accordingly, on defining the suitably chosen expressions of lb(µn) and ub(µn),
we shall denote the optimally smallest possible value (i.e. the optimal
value) of n fulfilling the condition ub(µn) − lb(µn) ≤ ǫ as Noptimal.

In order to make sure that Noptimal is actually the smallest value of n
described by

ub(µNoptimal
) − lb(µNoptimal

) ≤ ǫ (5.1)

ub(µNoptimal−1) − lb(µNoptimal−1) > ǫ (5.2)

we must prove that the sequence {ub(µn) − lb(µn)}n∈N must be strictly
monotonically decreasing and converges to 0 (the proof is referred to
the proposition 5.4.1). This is the first target of this chapter, after having
defined lb(µn) and ub(µn) suitably, for the purpose picturing the value of
Noptimal (the value of Noptimal regards mainly to the continuous cases of
X only).

So, by keeping the above stated arguments in mind, we introduce the follow-
ing definitions:

Definition 5.2.1 (The lb(µn), n ∈ {1, 2, . . . ,m}). lb(µn) =
µ2

n−1

µn−2

Notably, it shall be established in due course that, theoretically µ−1 = ∞ for
both discrete and continuous cases, so as to establish lb(µ1) = 0.

Definition 5.2.2 (The ub(µn), n ∈ {1, 2, . . . ,m}). ub(µn) = µn−1.
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Definition 5.2.3 (Optimal value of n). As we have already discussed, the
optimal value of n is defined to be the minimum value of n, which fulfills
the condition ub(µn) − lb(µn) ≤ ǫ. As in (5.1), the optimal value of n is
symbolized as Noptimal

Definition 5.2.4 (Optimal choice of m). As we know, the index m stands
for the exact number of moments needed to construct the approximating
probability distribution of X.

The consideration of (5.1) says that, the inclusion of the moment µNoptimal

( because of the inadmissible smallness of ub(µNoptimal
) − lb(µNoptimal

) )
is simply unjustified. Therefore µNoptimal

becomes redundant.

But, the consideration of (5.2) says that, ub(µNoptimal−1)− lb(µNoptimal−1) is
just not small enough for the moment µNoptimal−1 to be redundant.

Hence, the optimal choice of m is Noptimal − 1, i.e. m = Noptimal − 1.

Definition 5.2.5 (Range of variability). The range of variability of the
moment µn is the open interval (glb(µn), lub(µn)). The necessary and the
sufficient condition for the existence of the probability distribution of X has
been stated by the theorem 4.4.1 given in the subsection 4.4.2 says that
glb(µn) < µn < lub(µn) for every n ∈ {1, 2, . . . ,m} implies and implied by
the existence of the probability distribution of X.

Definition 5.2.6 (Bounded range). The bounded range of the moment
µn is the open interval (lb(µn), ub(µn)). The necessary condition for the
existence of the probability distribution of X is given by lb(µn) < µn < ub(µn)
for every n ∈ {1, 2, . . . ,m}. Thus, if µn exceeds its upper bound ub(µn) or
falls below its lower bound lb(µn), then the existence of the probability
distribution of X (i.e. the existence of the solution of the system of
equations (4.4)) is completely ruled out.

Remark 5.2.1. The bounded range of µn is undoubtedly the superset of
the range of validity of µn.

Remark 5.2.2. Throughout this dissertation, we shall assume that any choice
of m shall be dependent on the choice of n.
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5.3 The formulation of the second target

The formulation of the second target pertains to the discrete case of the
random variable X.

5.3.1 The background

The expressions of lb(µn) and ub(µn) proposed by the definitions 5.2.1 and
5.2.2 are taken for discussions in the discrete cases of X as well (i.e. as
that of the continuous cases of X). We shall show that

• glb(µ1) = lb(µ1) holds, but glb(µ2) = lb(µ2) does not necessarily
hold and in fact glb(µ2) ≥ lb(µ2).

• lub(µn) = ub(µn) holds for n ∈ {1, 2}.

Unlike the continuous cases of X, the theorem 4.4.1 does not nec-
essarily apply for the discrete cases of X, simply because in certain cases
glb(µ2) > lb(µ2) = µ2

1 must hold. That is, the glb(µn), in general, is not
determinable by the positive definiteness of the Hankel matrices defined
in (4.23) (or (4.27)). However, the lub(µn) seems to be determinable by
the positive definiteness of the Hankel matrices defined in (4.30) (or (4.33)).
This very issue, which refers to the statement 5.1.2, shall be discussed in
this chapter.

Unlike the continuous cases of X, with reference to the exact represen-
tation of the probability mass function of X (in the discrete cases of X)
stated by (2.9), the optimal value Noptimal − 1 of m can never be greater
than N − 1 (N being the number of (discrete) elements of the support of the
probability distribution of X).

In other words, m = Noptimal − 1 ≤ N − 1, i.e. Noptimal ≤ N .

Thus, with subject to any predeterminate choice of ǫ (as in the continuous
case of X), the condition ub(µn)− lb(µn) ≤ ǫ may or may not be fulfilled,
if the value Noptimal is constrained to Noptimal ≤ N .

5.3.2 The second target

Therefore, for a discrete X, we shall have to take care of the following:
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• the detailed discussions about glb(µ1) = lb(µ1) = 0 and lub(µ1) =
ub(µ1) = 1 are relatively easy and are carried out in the subsection
6.2.3 concerning the existence of the discrete monotonic probability
distribution of X.

• the detailed discussions about glb(µ2) ≥ lb(µ2) = µ2
1 and lub(µ2) =

ub(µ2) = µ1 need a very careful attention. So, this leads us to
think that glb(µn) for every n ∈ N is not determinable by the positive
definiteness of the Hankel matrices 4.23 (or 4.27). Establishing this
picture is the second target of this chapter.

• the discussions about lb(µn) and ub(µn) for n ≥ 3 with the aim of
evaluating the Noptimal may be largely analogous to the same for
the continuous cases of X. These detailed discussions, i.e. for the
higher moments, namely µ3, µ4, . . . etc. are avoided in this chapter.

As a matter of fact, the higher moments µ3, µ4, . . . have, as we have
already mentioned, no practical relevance in the field of stochastic
science. Obviously, these discussions are rather complicated.

As the next step, we shall establish the significance of the definitions 5.2.1
and 5.2.2 in form of proving the inequality lb(µn) < µn < ub(µn) for every
n ∈ N.

5.4 Essential role of the bounded range

In this section, we shall discuss the most deciding role of the bounding range
defined by the interval (lb(µn) , ub(µn).

In case X happens to be discrete, the trivial cases for N ≤ 2 could be trivially
kept out of consideration as these trivial cases basically refer to degenerated
or bernoulli probability distributions. The consideration of the same shall
however be carried out in due course.

The proof of the theorem 5.4.2 meant for establishing the inequalities
lb(µn) < µn and µn < ub(µn) (in accordance with the definition 5.2.6
of the bounded range), the usage of the well known and well used Cauchy-
Schwarz inequality in the probability theory is necessary and is there-
fore introduced as follows:
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Theorem 5.4.1 (Cauchy-Schwarz inequality). If X1 and X2 be the two
random variables, each having the same range of variability, then

|E [X1X2]| ≤
√

E [X2
1 ]

√
E [X2

2 ] (5.3)

whereas |E [X1X2]| =
√

E [X2
1 ]

√
E [X2

2 ] holds, if X1 and X2 are correlated
in a way that ∃ κ ∈ R, such that X1 = κX2.

The proof of the theorem 5.4.1 is referred to [8].

5.4.1 The inequality defining the bounded range

Theorem 5.4.2 (The bounding inequality). For every moment of X
denoted by µn, n ∈ N the following inequality holds:

lb(µn) =
µ2

n−1

µn−2

< µn < µn−1 = ub(µn), n ∈ N (5.4)

In case X happens to be discrete, then the above inequality (5.4) is principally
taken for N ≥ 3.

Proof of the theorem 5.4.2. For the general proof of the theorem 5.4.2,
namely the proof of the inequality (5.4), let us examine the particular cases
for n ∈ {1, 2} at first.

Only after this, we shall proceed to prove the theorem for any n ∈ N , i.e.
including the cases n ≥ 3.

By taking
pX(x) = β0 + β1x + β2x

2 + . . . + βmxm (5.5)

we can prove the above inequality for n ∈ {1, 2} trivially as follows:

The theoretical calculation of µ−1 shows that

• for X being discrete, µ−1 =
N∑

j=1

x−1
j epX(xj) = ∞, as x1 = 0

• for X being continuous, µ−1 =
1∫
0

x−1epX(x)dx = ∞, as for the aforesaid

polynomial pX(x), the integral
1∫
0

x−1epX(x)dx diverges. This diver-

gence can be easily shown by a test named µ-test for converge or
divergence of improper integrals (referred to the page 254 of [17])
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This brings us to the very fact that, for µ0 = 1,

0 =
µ2

0

µ−1

< µ1 < µ0 = 1

which was our basic assumption right from the beginning. This proves the
inequality (5.4) for n = 1.

Notably, as we have already discussed, glb(µ1) = lb(µ1) = 0 and lub(µ1) =
ub(µ1) = 1 do hold for both continuous and discrete cases of X.

Again, for n = 2, we have nothing, but our already proven following result

µ2
1 =

µ2
1

µ0

< µ2 < µ1

which therefore proves the inequality (5.4) for n = 2.

Notably, glb(µ2) = lb(µ2) = µ2
1 and lub(µ2) = ub(µ2) = µ1 do hold for

continuous cases of X. But, as we have already mentioned, we shall show
in this very chapter that glb(µ2) ≥ lb(µ2) = µ2

1 and lub(µ2) = ub(µ2) = µ1

do hold for discrete cases of X.

Now, for the sake of proving the aforesaid inequality (5.4) that includes the
cases for n ≥ 3 with the help the theorem 5.4.1, we proceed as follows:

By taking the range of variability of X1 and X2 to be XX , such that X1 = X
n
2

and X2 = X
n
2
−1, by the inequality (5.3), we easily get

∣∣E
[
Xn−1

]∣∣ ≤
√

E [Xn]
√

E [Xn−2]

=⇒ |µn−1| ≤
√

µn

√
µn−2

(5.6)

Here, with subject to

• N ≥ 3, if X is discrete

• or if X is continuous

there cannot exist such κ for the validity of the equality relationship
present in the inequality (5.6) and therefore the said inequality (i.e. (5.6))
can be generally (i.e. also for n ≤ 2) is to be conveniently remodified as
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µ2
n−1

µn−2

< µn for every n ∈ {1, 2, . . . ,m} (5.7)

(i.e. excluding the possibility
µ2

n−1

µn−2
= µn)

Again, with subject to

• N ≥ 3, if X is discrete

• or if X is continuous

we know well that the following holds good:

1 > µ1 > µ2 > . . . > µn > . . . (5.8)

and this very thing establishes the following:

µn < µn−1 for every n ∈ N (5.9)

Whence, by combining (5.7) and (5.9), we the desired inequality (5.4) gets
proven and thereby the theorem 5.4.2 is proved.

5.4.2 The monotonic character of the bounded range

The bounded range of the moment µn, n ∈ N0 defined by the definition

5.2.6 is nothing but the open interval (lb(µn), ub(µn)) =
(

µ2
n−1

µn−2
, µn−1

)
.

In this subsection we shall prove that the length of the interval of the bounded
range of the moment µn, n ∈ N decreases strictly monotonically with
the monotonic increase in n. In order to prove this, we arrive at the following
proposition:

Proposition 5.4.1. The sequence {ub(µn)− lb(µn)}n∈N is strictly mono-
tonic decreasing and converges to 0.

Proof of the proposition 5.4.1. By rewriting the inequality (5.7), we have

µ2
n−1

µn−2

< µn ⇔ µn−1

µn−2

<
µn

µn−1

⇔ 1− µn−1

µn−2

> 1− µn

µn−1

for every n ∈ N (5.10)
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Thus, by combining the inequalities (5.9) and (5.10), namely µn−1 > µn and
1 − µn−1

µn−2
> 1 − µn

µn−1
we arrive at

µn−1

(
1 − µn−1

µn−2

)

︸ ︷︷ ︸
=ub(µn)−lb(µn)

> µn

(
1 − µn

µn−1

)

︸ ︷︷ ︸
=ub(µn+1)−lb(µn+1)

i.e.ub(µn) − lb(µn) > ub(µn+1) − lb(µn+1) for every n ∈ N

(5.11)

and hence the confirmation of the strictly monotonic decreasing charac-
ter of the sequence {ub(µn) − lb(µn)}n∈N .

Moreover, since ub(µn) − lb(µn) < ub(µn) = µn−1 → 0 as n → ∞, that very
fact that the sequence {ub(µn) − lb(µn)}n∈N converges to 0. This proves
the proposition 5.4.1.

Corollary 5.4.1 (Optimal value of m). As an immediate consequence of
the proposition 5.4.1 establishing principally the strict monotonic decreasing
character of the bounded range of the moment µn, n ∈ N , we reaffirm and
restate that m = Noptimal − 1 is the optimal value of m fulfilling the
conditions (5.1) and (5.2).

Corollary 5.4.2 (Insignificant moments of X). With subject to a pre-
determinately given ǫ (ǫ > 0) and in the light of the fulfillment of the
conditions (5.1) and (5.2) the insignificant moments of X are therefore
µNoptimal

, µNoptimal+1, µNoptimal+2, . . . etc. (the concept of insignificance is
referred to the statement 5.1.1).

Remark 5.4.1 (Infinitesimal character of µn for increasing n). Triv-
ially, the very fact that µn → 0 as n → ∞ can be easily proved by means
of the Holder’s inequality (see the stated theorem C.1.1 belonging to the ap-
pendix section C.1) by taking the functions f(x) = xn and g(x) = fX(x)

present in the given expression µn =
1∫
0

xnfX(x)dx and then by taking the

note of
1∫
0

f(x)dx = 1
n+1

→ 0 as n → ∞ thereafter.

Remark 5.4.2 (Infinitesimal character of the range of variability).
The range of variability of the moment µn, n ∈ N0 defined by the defi-
nition 5.2.5 is nothing but the open interval (glb(µn), lub(µn)).
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Since, we know that 0 ≤ lub(µn) − glb(µn) ≤ ub(µn) − lb(µn) and by the
proposition 5.4.1, {ub(µn)− lb(µn)}n∈N is a null sequence 3, it is obviously
clear that {lub(µn) − glb(µn)}n∈N is too a null sequence.

This shows that the range of variability can be made infinitesimally small.

Remark 5.4.3 (The needfulness of the bounded range). The very
fact that the length lub(µn) − glb(µn) (of the range of variability of µn)
is strictly monotonically decreasing with the increase in n (n ∈ N), is well
intuitively assertible, but certainly not easily provable.

This basically leads us to use the length ub(µn) − lb(µn) (of the bounded
range of µn), which is strictly monotonically decreasing with the increase in
n (as shown in the proposition 5.4.1), instead.

Precisely, because of this established strictly monotonically decreasing char-
acter of ub(µn)−lb(µn), we can conclusively state that all the moments µn for
n ≥ Noptimal (n ∈ N) are insignificant with subject to the predeterminately
given ǫ (ǫ > 0).

Remark 5.4.4. However, it remains to be stated that, if we had proven
the strictly monotonic decreasing character of lub(µn) − glb(µn), then the
optimal choice of m could have been much lesser than Noptimal − 1.

Remark 5.4.5 (Role of a finite number of moments of X). As a very
general statement, this very strictly monotonically decreasing character
of the bounded range ub(µn) − lb(µn) proven by the proposition 5.4.1
is not only the case of an exponential polynomial probability density of
X, but also applicable to the case of any other probability density of X that
is uniquely determinable by a finite number of moments of X. Thus, for a
given smallness of ǫ (ǫ > 0) only a finite number of moments is simply
enough to determine a probability density of a random variable.

5.5 The targeted smallness of the bounded

range

Our discussions in this section shall be principally confined to the contin-
uous cases of X. As we have already mentioned, the analogous arguments

3a null sequence is defined to be the sequence that converges to zero.
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may apply for the discrete cases of X largely, but these arguments are
certainly very difficult (in these discrete cases).

The smallness of the length of the strictly monotonic decreasing bounded
range ub(µn) − lb(µn) (of the moment µn) (the targeted smallness being
described by ǫ) is used to determine the Noptimal (especially in the continuous
cases of X).

We have already seen that the n = Noptimal is uniquely determinable by
appropriate choices of µn−2, µn−1 as well as of ǫ.

Now, the question arises, with subject to a given chosen value of µn−2, what
could be the worst choice of µn−1, as a result of which the condition

ub(µn) − lb(µn) = µn−1 − µ2
n−1

µn−2
≤ ǫ may or may not be fulfilled? How does

this worst choice affects the choice of m?

In order to handle this question in the right way, we arrive at the following
proposition:

Proposition 5.5.1 (The worst choice of m). With subject to a predeter-
mined ǫ and with reference to the statement 5.1.3, m should be as small as
possible. The worst possible choice of m is dependent exclusively on the
worst possible choice of µn−1 given by µn−1 = 1

2
µn−2, provided the usage of

µn−1 = 1
2
µn−2 does not endanger the (unique) existence of the probability

distribution of X (i.e. the probability distribution uniquely determined by the
solution of the system of equations (4.4) on taking m = n − 1).

Proof of the proposition 5.5.1. Let us examine the difference between the
upper (ub(µn)) and the lower (lb(µn)) bounds of µn handled by the proven
inequality (5.4), namely the expression

µn−1 −
µ2

n−1

µn−2

=
µn−1

µn−2

(
1 − µn−1

µn−2

)

︸ ︷︷ ︸
≤ 1

4
for every n∈N\{1}

µn−2

≤ 1

4
µn−2

(5.12)

This shows that, the least upper bound of ub(µn) − lb(µn) = µn−1 − µ2
n−1

µn−2
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with respect to all possible legitimate choices of µn−1, is nothing but 1
4
µn−2

and this very least upper bound is attained, when µn−1 = 1
2
µn−2.

Now, let us consider the two following points:

• If µn−1 − µ2
n−1

µn−1
≤ ǫ is made to be fulfilled for the least possible

value of n, we have already denoted this very minimum value of n as
Noptimal.

• Again, if 1
4
µn−2 ≤ ǫ is made to be fulfilled for the least possible

value of n, let us denote this very minimum value by Nultimate, i.e.

– 1
4
µNultimate−2 ≤ ǫ

– 1
4
µNultimate−3 > ǫ

Understandably, the minimum value of n needed to fulfill 1
4
µn−2 ≤ ǫ is

greater than (or possibly equal to) the minimum value of n needed to

fulfill µn−1 − µ2
n−1

µn−1
≤ ǫ.

That is, Noptimal − 1 ≤ Nultimate − 1, which means

Noptimal ≤ Nultimate (5.13)

the equality of which holds, if µn−1 = 1
2
µn−2 legitimately holds.

In that case, it is conclusively clear that the worst possible value of m
shall be Nultimate − 1. This is precisely to say that, with reference to the
statement 5.1.3, any value of m chosen that is higher than Nultimate − 1 is
completely unpracticable or unjustified.

Remark 5.5.1. Notably, µn being the nth moment of X, the insignificance
of µn (X being discrete or continuous), increases monotonically with the
increase in n.

5.6 Existing difficulties in the discrete cases

of X

In this section, we shall briefly discuss about the existing difficulties about
the discussions of the smallness of the bounding range ub(µn) − lb(µn)
of the moment µn, in case X happens to be discrete.
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In order to discuss the same, the smallness of ub(µn)−µn and of µn − lb(µn)
shall be discussed separately. For this, the expressions of ub(µn) − µn and
µn − lb(µn) are deduced.

Here, the predetermined support XX = {0 = x1, x2, . . . , xN = 1} of the
probability distribution of the discrete X is subjected to 0 = x1 < x2 < x3 <
. . . < xN = 1.

Let us reconsider and reestablish both the inequalities

µn < µn−1 = ub(µn) (i.e. (5.9)) and lb(µn) =
µ2

n−1

µn−2
< µn (i.e. (5.7)) for the

discrete X briefly one by one as follows:

5.6.1 The restatement of the inequality µn < µn−1 for a
discrete X

The inequality µn < µn−1 for any n ∈ N can be conveniently modified to the
give the following proposition:

Proposition 5.6.1 (The upper bound of µn+1 for any n ∈ N0). The
inequality reads µn+1 < µn = ub(µn+1).

Elaboration of the proposition 5.6.1.

ub(µn+1) − µn+1 = µn − µn+1 =
N∑

j=1

xn
j (1 − xj)e

pX(xj) (5.14)

the polynomial pX(x) in x is being defined by (5.5).

Because of 0 = x1 < x2 < . . . < xN−1 < xN = 1, the (5.14) can be rewritten
as

µn − µn+1 =
N−1∑

j=2

xn
j (1 − xj)e

pX(xj) > 0 for n ∈ N0 (5.15)

which implies nothing but µn−1 > µn for every n ∈ N and thereby the
inequality (5.9) gets reestablished.



5.6. EXISTING DIFFICULTIES IN THE DISCRETE CASES OF X 177

5.6.2 The reestablishment of the inequality µn >
µ2

n−1

µn−2

for a discrete X

The inequality µn >
µ2

n−1

µn−2
for any n ∈ N can be conveniently modified to the

give the following proposition:

Proposition 5.6.2 (The lower bound of µn+2 for any n ∈ N0). The

inequality reads µn+2 >
µ2

n+1

µn
= lb(µn+2).

Reestablishment of the proposition 5.6.2.

µn+2 − lb(µn+2) = µn+2 −
µ2

n+1

µn

(5.16)

the polynomial pX(x) in x is being defined by (5.5).

Therefore, by using the (5.16), we get

µn+2µn − µ2
n+1 =

N∑

j=1

xn+2
j epX(xj)

N∑

j=1

xn
j e

pX(xj) −
(

N∑

j=1

xn+1
j epX(xj)

)2

=
N∑

j=1

x2n+2
j

(
epX(xj)

)2
+

∑

j<k

(
xn+2

j xn
k + xn

j x
n+2
k

)
epX(xj)epX(xk)

−
(

N∑

j=1

x2n+2
j

(
epX(xj)

)2
+ 2

∑

j<k

xn+1
j xn+1

k epX(xj)epX(xk)

)

=
∑

j<k

(
xn

j xn
k

(
x2

j + x2
k

)
epX(xj)epX(xk)

− 2xn
j x

n
k (xjxk) epX(xj)epX(xk)

)

=
∑

j<k

(
xn

j xn
k (xj − xk)

2 epX(xj)epX(xk)
)

> 0

(5.17)
the polynomial pX(x) in x is being defined by (5.5).

Obviously, (5.17) leads us to

µn+2 >
µ2

n+1

µn

(5.18)
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which implies nothing but µn >
µ2

n−1

µn−2
for every n ∈ N \ {1} and thereby the

inequality (5.7) gets reestablished.

5.6.3 General remarks

Remark 5.6.1. Clearly, the judgement of the smallness of the finite sums
N−1∑
j=2

xn
j (1 − xj)e

pX(xj) > 0 (given by 5.15) and

∑
j<k

(
xn

j x
n
k (xj − xk)

2 epX(xj)epX(xk)
)

> 0 (given by 5.17)

for judging the smallness of ub(µn+1)−µn+1 and µn+2 − lb(µn+2) respectively
is certainly not simple. The principle problem lies with the very fact
that the smallness of both these expressions depends additionally on the
predetermined values of xj’s (j ∈ {2, 3, . . . , N − 1}) and obviously on N .
This is unlike the continuous case of X.

Remark 5.6.2. From the stochastic point of view or even from the
programming point of view, in discrete cases, as far as the determination
of the greatest lower bound of the second moment µ2 of X ( or equivalently

the same of the second moment µ
(2)
Y of Y ) is concerned, a more careful inves-

tigation is necessary, because in certain cases (as we have already mentioned)
lb(µ2) < glb(µ2) holds, unlike in continuous cases of X. However, we shall
see that, for the least upper bound of µ2, ub(µ2) = lub(µ2) always holds.

So, for discrete cases of X (as we have already mentioned), let us confine our
coming discussions about the greatest lower bound and the least upper
bound of µn to n = 2 only and avoid the discussions about the same for
n ≥ 3.
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5.7 Bounds of µ2 for a discrete X

5.7.1 The lub(µ2) for a discrete X

We arrive at the following proposition

Proposition 5.7.1 (lub(µ2) = ub(µ2) holds for a discrete X). Our propo-
sition says that

lub(µ2) − µ2 = µ1 − µ2 =
N∑

j=1

xj(1 − xj)e
pX(xj) (5.19)

can be made infinitesimally small for any predetermined support XX =
{0 = x1, x2, . . . , xN = 1}, where the polynomial pX(x) in x is defined by
(5.5).

Proof of the proposition 5.7.1. In order to reason the statement (5.19)
saying that XX does not affect the infinitesimal nature of lub(µ2) − µ2,
we present the two following arguments:

• The finite sum (5.19) is basically equal to the following finite sum
N−1∑
j=2

xj(1 − xj)e
pX(xj), simply because of x1 = 0 and xN = 1.

• The second moment µ2 of X can always be chosen sufficiently close
to the first moment µ1 of X from left, so that the sum of the two
individual probabilities epX(x1) and epX(xN ) on the extreme ends i.e. the
sum epX(x1) + epX(xN ) can be made can be made infinitesimally close
to 1 from left, with the restriction of epX(x1) < 1 and epX(xN ) < 1.
This necessarily means that the sum of the other individual probabil-

ities, i.e.
N−1∑
j=2

epX(xj) = 1 − (epX(x1) + epX(xN )) can be made infinites-

imally small. This means, because of xj(1 − xj) < 1, the finite sum
N−1∑
j=2

xj(1 − xj)e
pX(xj) = µ1 − µ2 can be made infinitesimally small

and thereby proving our proposition (5.7.1) confirming lub(µ2) = ub(µ2).
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5.7.2 The glb(µ2) for a discrete X

We arrive at the following proposition

Proposition 5.7.2 (glb(µ2) ≥ lb(µ2) holds for a discrete X). Our propo-
sition says that

µ2 − lb(µ2) = µ2 − µ2
1 =

∑

j<k

(
(xj − xk)

2 epX(xj)epX(xk)
)

(5.20)

cannot be made infinitesimally small for any predetermined support
XX = {0 = x1, x2, . . . , xN = 1}, where the polynomial pX(x) in x is defined
by (5.5).

Proof of the proposition 5.7.2. For a discrete X, the predetermined XX =
{0 = x1, x2, . . . , xN = 1} plays a role. We shall show that the infinitesimal
nature of µ2−glb(µ2) is affected by XX and the existence of the probability
distribution of X is possible with subject to the fulfillment of a condition
imposed on XX .

Contrarily, in cases when X is continuous, then the infinitesimal nature of
µ2 − glb(µ2) is not affected by the predetermined XX = [0, 1] at all.

Here, we intend to show that µ2
1 can be the greatest lower bound of µ2 for a

discrete X, only if XX fulfills a specific condition.

The basic content of our discussion would be about what exactly happens to
the existence of probability distribution of X, if µ2 is made to approach close
to µ2

1 from the right. We shall see that the existence of this probability
distribution has basically to do with the position of the first moment µ1

within XX , principally because µ1 is regarded as the center of mass or the
position parameter of any probability distribution of X for practical use.

For this, by using the inequality (5.17) for the special case of n = 0, we have

µ2µ0 − µ2
1 =

∑

j<k

(
(xj − xk)

2 epX(xj)epX(xk)
)

> (xs − xs+1)
2 epX(xs)epX(xs+1) > 0

⇒ µ2 > µ2
1

(5.21)

such that xs and xs+1, s ∈ {1, 2, . . . , N − 1} are the two successive elements
of XX = {0 = x1, x2, . . . , xN = 1}, within which µ1 lies, i. e. xs ≤ µ1 ≤ xs+1.
Moreover, the inequality (5.7) gets reconfirmed here in this case.
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Trivially, for µ0 = 1, the inequality (5.21) gets rewritten as:

µ2 − µ2
1 =

∑

j<k

(
(xj − xk)

2 epX(xj)epX(xk)
)

> (xs − xs+1)
2 epX(xs)epX(xs+1)

(5.22)

Therefore, if µ2 is made to approach closer to µ2
1 from the right, then the

expression (xs − xs+1)
2 epX(xs)epX(xs+1), which is a function of s, is obviously

the most deciding term determining the infinitesimal nature of the
aforesaid finite sum (5.21), namely

∑

j<k

(
(xj − xk)

2 epX(xj)epX(xk)
)

simply because, due to the very fact that at least one of the two elements xs

and xs+1 (if not both) is the element closest to µ1, at least one of the two
individual probabilities epX(xs) and epX(xs+1) (if not both) must be signifi-
cantly more important than all the other N − 1 (or N − 2) probability
elements belonging to the discrete probability distribution of X.

In fact, in that case, at least one of these two individual probabilities epX(xs)

and epX(xs+1) (if not both) must be significantly larger than all the other
N − 1 (or N − 2) probability elements of the probability distribution of X.

Now, because of 0 < µ1 < 1, the following two cases do arise:

•
xs < µ1 < xs+1 for a particular s ∈ {1, 2, . . . , N − 1} (5.23)

Here, both the individual probabilities epX(xs) and epX(xs+1) are signif-
icantly larger than all the other N − 2 probabilities belonging to the
probability distribution of X.

•
µ1 = xs for a particular s ∈ {2, 3, . . . , N − 1} (5.24)

Here, the probability epX(xs) is significantly larger than all the other
N − 1 probabilities belonging to the probability distribution of X.

Thus, if we have a close look at the inequality part of (5.22), it is well
observable that, if µ2 is to be chosen arbitrarily close to µ2

1 from right, then
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the expression (xs − xs+1)
2 epX(xs)epX(xs+1) must be in a position to be made

arbitrarily small.

Therefore, by setting ∆s = xs+1−xs, the arbitrary smallness of the expression
(xs − xs+1)

2 epX(xs)epX(xs+1) with regard to µ2 → µ2
1 from right necessitates

an intensive investigation:

This is the situation, where the predetermined mean (µ1) and the
predetermined second moment (µ2) (or equivalently the variance
(σ2 = µ2 − µ2

1)) should determine the desired uni- extremal proba-
bility distribution of X.

In fact, as our current problem says, if µ2 is made to be sufficiently close to
its lb(µ2) = µ2

1, this is the case of an uni-modal probability distribution
of X.

The discussion of this uni-modality must be divided into two following cases:

Case 1: xs < µ1 < xs+1 for a particular s ∈ {1, 2, . . . , N − 1} (referred to
(5.23)):

Here, we can well observe that neither the probability epX(xs), nor the
probability epX(xs+1) can be arbitrarily small and hence for any fixedly cho-
sen ∆s = xs+1−xs, the expression ∆2

se
pX(xs)epX(xs+1) cannot be arbitrarily

small.

That is, by (5.22), the expression µ2 − µ2
1 = σ2 cannot be arbitrarily small,

simply because µ2 − µ2
1 > ∆2

se
pX(xs)epX(xs+1) > 0.

So, the problem demands that we must impose a condition on ∆s. If this
condition fails to be fulfilled, the probability distribution of X cannot exist.
In other words, with subject to every predetermined XX involving ∆s and
the predetermined moments µ1, µ2, the probability distribution of X will not
exist, unless we give the following condition imposed on ∆s:

For any given arbitrarily small ǫ > 0, there exists a δ > 0 such that

σ2 = µ2 − µ2
1 < ǫ for every ∆s < δ (5.25)

which means, for every choice of µ2 with regard to the fulfillment of µ2 >
µ2

1, the choice being described by ǫ, XX must fulfill a condition for the
existence of the probability distribution of X in form of ∆s < δ.
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Hence in this case 1, we have glb(µ2) > lb(µ2).

In particular, if the elements of XX are equidistant, then ∆s = 1
N

and in
that case, the condition imposed on XX would be 1

N
< δ.

Case 2: µ1 = xs for a particular s ∈ {2, 3, . . . , N − 1} (referred to (5.24)):

Here, we can well observe that the probability epX(xs) can be arbitrarily
close to 1 and the probability epX(xs+1) can be arbitrarily close to 0,
i. e. arbitrarily small. Hence, for any fixedly chosen ∆s = xs+1 − xs, the
expression ∆2

se
pX(xs)epX(xs+1) can be arbitrarily small unconditionally.

Thus, in this case, for any arbitrary choice of µ2 with subject to µ2 > µ2
1,

the probability distribution of X does always exist with subject to the
predetermined XX .

That is, no condition needs to be imposed on XX in this case.

Hence in this case 2, we have glb(µ2) = lb(µ2).

Conclusive statement: Hence, by the cases 1 and 2, our proposition
(5.7.2) gets proved and thereby confirming glb(µ2) ≥ lb(µ2).

5.8 Summary pertaining to the bounds of µ2

To summarize everything regarding the bounds of µ2, the inequality (5.4)
gives the following:

• µ1 is the least upper bound of µ2, both in discrete and continuous cases,
but

• µ2
1 is the greatest lower bound of µ2 in continuous cases unconditionally,

but only with subject to the fulfillment of a condition, namely (5.25)
imposed on XX in discrete cases

Notably, since the discussion about the greatest lower bound of µ2 for a
discrete X is complicated enough, the discussions about the greatest lower
bounds of µn, n ≥ 3 for a discrete X are even more complicated.
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5.9 Bounds of the first two moments of Y

For programming purposes, the upper bound and the lower bound of

• the first two moments of Y

• the second central moment of Y , namely of the variance of Y

are necessary guidelines addressed to the users, especially for the continuous
cases.

5.9.1 Upper and lower bounds of the first and the sec-
ond moment of Y

Let us consider the following well known inequalities once again, which are
the upper bounds and lower bounds of the first two moments of the random
variable X:

0 < E[X] < 1 (5.26)

(E[X])2 < E[X2] < E[X] (5.27)

For µ1 and µ2 being E[X] and E[X2] respectively, the above relations (5.26)
and (5.27) can also be written as

0 < µ1 < 1 (5.28)

µ2
1 < µ2 < µ1 (5.29)

and as a result, for X = Y −a
b−a

, we have

0 <
E[Y ] − a

b − a
< 1 and (5.30)

(
E[Y ] − a

b − a

)2

<
E [Y 2] − 2aE[Y ] + a2

(b − a)2
<

E[Y ] − a

b − a
(5.31)
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which concludes to the following relations, which are the upper the lower
bound of the first two moments of the random variable Y :

a < E[Y ] < b (5.32)

(E[Y ])2 < E[Y 2] <
(
a + b

)
E[Y ] − ab

(5.33)

Again, for µ
(1)
Y and µ

(2)
Y being E[Y ] and E[Y 2] respectively, the above in-

equalities can also be written as:

a < µ
(1)
Y < b (5.34)

(
µ

(1)
Y

)2

< µ
(2)
Y <

(
a + b

)
µ

(1)
Y − ab (5.35)

Hence, (5.34) and (5.35) give the upper bound and the lower bound of the
first and the second moment of Y |{dY } respectively.

Important remark: As a matter of fact, although µ2 <
√

µ3µ1 < µ1, the
least upper bound of µ2 is µ1. This is because any upper bound of µ2 has to
consist of moment(s) of order less than 2. This explains why we could term
this l.u.b as the conditional l.u.b.

5.9.2 Upper and the lower bound of the second central
moment of Y

By taking V ar[X] = E [X2]−(E[X])2, we get the l.u.b. and g.l.b. of V ar[X]
as

0 < V ar[X] < E[X]
(
1 − E[X]

)
(5.36)

which leads us to

0 < V ar

[
Y − a

b − a

]
<

(
E[Y ] − a

b − a

) (
b − E[Y ]

b − a

)
(5.37)

and therefore
0 < V ar[Y ] <

(
E[Y ] − a

)(
b − E[Y ]

)
(5.38)
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For σ2
Y to be the V ar[Y ], we get

0 < σ2
Y <

(
µ

(1)
Y − a

)(
b − µ

(1)
Y

)
(5.39)

Hence, (5.39) gives the upper bound and the lower bound of the second
central moment of Y .

For our future references, if σ2 be the V ar[X], we shall make use the following
relation

σ =
σY

b − a
(5.40)
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5.10 A preliminary note on the random vari-

able X

Before we give elaborated discussions about the standard minimum informa-
tion probability distributions of the random variable Y (or equivalently of
the random variable X = Y −y1

yN−y1
in the discrete case or X = Y −a

b−a
in the

continuous case) in the very next chapter, let us state briefly the discuss
about the most frequently used moments of X preliminarily.

The probability distributions of monotonic type and of uni-extremal type
are principally discussed in this thesis and therefore, in accordance with the
minimum information principle, the construction of the following probability
distribution types:

Definition 5.10.1 (Recapitulation of a monotone probability dis-
tribution type). A monotonic probability distribution of X necessitates,
in addition to the support XX , the knowledge of the first moment only,

where µ1 =

∫
XX

xeβxνX(dx)

∫
XX

eβxνX(dx)
. The first moment µ1 is restricted within the region

Rµ1 = {µ1 | 0 < µ1 < 1}. The relationship between β and µ1 is of extreme
importance and is rather simple.

Definition 5.10.2 (Recapitulation of a uni-extremal probability dis-
tribution type). A uni-extremal probability distribution of X necessi-
tates, in addition to the support XX , the knowledge of the first and the

second moment only, where µk =

∫
XX

xkeβx+γx2
νX(dx)

∫
XX

eβx+γx2
νX(dx)

, k ∈ {1, 2} .

The first moment µ1 and the second moment µ2 are restricted within the re-
gion Rµ1,µ2 = {(µ1, µ2) | 0 < µ1 < 1, µ2

1 < µ2 < µ1}. The relationship between
(β, γ) and (µ1, µ2) is (especially, when X is continuous, the picture is more
or less similar, when X is discrete) of extreme importance and is presented
graphically4 in the very next page.

4This graphical representation of the region Rµ1,µ2
is basically needed for the discus-

sions of the subsection 6.3.10. Because of technical difficulties, this graphical representa-
tion is given in this very chapter.
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Chapter 6

Characteristic properties of
standard m. i. probability
distributions

For the sake of simplicity, without any loss of generality, we shall confine
our discussions to the probability distributions of X only and not the same
of Y in this chapter.

The discussions regarding the probability distributions of Y would mean a
very simply linear transformation, namely Y = a+(b−a)X and that should
not be an issue for intensive considerations at all.

We shall therefore discuss about the characteristic properties of standard
minimum information probability distributions of the random variable X.
As we know, standard minimum information probability distribution may be
a constant, monotone or an uni-extremal one. The constant cases are too
trivial and therefore the discussions in this regard are omitted here. In other
words, we shall analyze the characters of the standard minimum probability
distributions of X.

189
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6.1 Preliminaries

6.1.1 The basic idea

In the system of equations (4.4), by setting β1 = β, β2 = γ and βi = 0 for
every i ≥ 2, we shall write µi (i ∈ {1, 2}) in form of the following statement
in the following way:

Statement 6.1.1 (Recapitulation of µ1 and µ2).

µi =

∫
XX

xieβx+γx2
νX(dx)

∫
XX

eβx+γx2νX(dx)
=





N∑
j=1

xi
je

βxj+γx2
j

N∑
j=1

e
βxj+γx2

j

: X is discrete

1∫
0

xieβx+γx2
dx

1∫
0

eβx+γx2
dx

: X is continuous

(6.1)

such that

• XX = {0 = x1, x2, . . . , xN = 1}, if X is discrete and

• XX = [0, 1], if X is continuous

As we have already mentioned, we shall go by the two following statements:

Statement 6.1.2. The discussions of the minimum information mono-
tone probability distributions are subjected to the usage of µ1 only, i.e.
i = 1 only

Statement 6.1.3. The discussions of the minimum information uni-
extremal probability distributions are subjected to the usage of two mo-
ments µ1 and µ2 only, i.e. i ∈ {1, 2} only

6.1.2 The fulfillment’s plausibility check

For the sake of a simple plausibility check, we shall show that the necessary
and sufficient condition given in the subsection 4.4.2 for the existence of
the probability distribution of X determined by the solution of the system
of equations (4.4) is fulfilled in cases for m ∈ {1, 2}.
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The fulfillment of the aforesaid necessary and sufficient condition in cases
for m ∈ {1, 2} necessitates the usage of 0 < µ1 < 1 and µ2

1 < µ2 < µ1 (i.e.
because of σ2 = µ2 − µ2

1 > 0), we arrive at the two following propositions:

Proposition 6.1.1 (Plausibility check for monotone cases). In mono-
tone cases, the given finite sequence of moments, namely the set {µ0, µ1}
of moments, which is involved in finding the value of β for the determination
of each of the monotonic probability distributions of X in both discrete and
continuous cases, fulfills the condition for the existence of the solution of
(6.2)

Establishing the proposition 6.1.1. Here,

• by (4.24), det(H1) = µ1 > 0

• by (4.31), det(H1) = 1 − µ1 > 0

which gives 0 < µ1 < 1

Proposition 6.1.2 (Plausibility check for uni-extremal cases). In
uni-extremal cases, the given finite sequence of moments, namely the
set {µ0, µ1, µ2} of moments, which is involved in finding the values of β and
γ for the determination of each of the uni- extremal probability distributions
of X in continuous cases, fulfills the condition for the existence of the
solution of (6.8)

Establishing the proposition 6.1.2. Here,

• by (4.21), det(H2) =

∣∣∣∣∣
1 µ1

µ1 µ2

∣∣∣∣∣ = µ2 − µ2
1 > 0

• by (4.28), det(H2) = µ1 − µ2 > 0

which gives µ2
1 < µ2 < µ1 in additional to the proven 0 < µ1 < 1.

However, if X happens to be discrete, then the existence of the probability
distribution of X is not possible for every predetermined XX consisting of a
finite number of elements, despite fulfillment of the aforesaid necessary and
sufficient condition involving moments only (i.e. not involving XX).
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Importantly, for our analysis, we shall have to give the formal proof of
the existence of the (unique) solution of the system of equations
(4.2) (or equivalently of (4.4) ) in cases for m ∈ {1, 2}.

Notably, the uniqueness of the solutions of both (6.2) and (6.8) have already
been established.

Obviously, as we have already mentioned, for our convenience, we shall use
the system (4.4) instead of (4.2) equivalently.

Our analysis necessitates the introductions of certain important lemmas,
which shall be duly presented.
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6.1.3 Dealing with the special cases

Now, for the sake of the completeness of our analysis, the discussions
about the nature of the probability distributions of X corresponding to the
following is a must:

• 0 ≤ µ1 ≤ 1 for monotone cases, where the special cases are referred
to µ1 = 0 and µ1 = 1.

• 0 ≤ µ1 ≤ 1, µ2
1 ≤ µ2 ≤ µ1 for uni-extremal cases, where the special

cases are referred to

1. µ2 = µ2
1, 0 < µ1 < 1

2. µ2 = µ1, 0 < µ1 < 1

3. µ2 = µ1 = 0

4. µ2 = µ1 = 1

Each of these above stated special cases representing boundaries of the
moment spaces D1 and D2 respectively (denoted by ∂D1 and ∂D2 re-
spectively). These boundaries ∂D1 and ∂D2 represent two special forms of
probability distributions of X, namely degenerated probability distribu-
tions or Bernoulli probability distributions. So, the probability mass
function fX|{d}(x) of X describing the probability distribution of X has one
of the following four supports:

1. XX = {0}

2. XX = {1}

3. XX = {µ1}

4. XX = {0, 1}

Therefore, by keeping these things in mind, we proceed as the subsequent
subsections follow.
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6.2 M. i. monotone probability distributions

If the random variable Y |{dY } follows a monotonic probability distribution,

such that dY = (µ
(1)
Y ) or equivalently d = (µ1), then the computation of

λ(dY ) = (λ1) necessitates the solution of the following equation

µ1 =

∫
XX

xeβxνX(dx)

∫
XX

eβxνX(dx)
(6.2)

whose solution is unique, provided N ≥ 2 holds in discrete cases. Here, the
first moment E[X], namely µ1, is expressed as a function of β.

6.2.1 Lemma for the monotonicity

Proposition 6.2.1 (The derivative of µ1 with respect to β). It is
absolutely clear by (6.2) that

dµ1

dβ
=

1
(

∫
XX

eβxνX(dx)

)2

[
∫

XX

x2eβxνX(dx)
∫

XX

eβxνX(dx)−
(

∫
XX

xeβxνX(dx)

)2
]

= µ2 − µ2
1 = σ2 > 0 (6.3)

which evidently clarifies the very fact that µ1 is a strictly monotonically in-
creasing function of β, even in discrete cases for N ≥ 2. This is simply
because, a discrete case corresponding to N = 1 necessarily means that the
probability distribution is degenerated, for which σ2 = 0.

Remark 6.2.1. The interchangeability of the operations
∫
XX

and ∂
∂β

have

already been discussed previously.

6.2.2 The restatement subjecting to the uniqueness

Remark 6.2.2 (Uniqueness of the solution of the system (6.2)). The
strict positiveness of dµ1

dβ
(referred to (6.3)), ( i.e. the strict monotonicity of

µ1 with respect to β ) leads to the very fact that, for any fixed value of µ1,
there can exist only one value of β.

Hence, the solution of the equation (6.2) is unique. 2
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Remark 6.2.3. Importantly, this aforesaid uniqueness of the solution of
(6.2) is tantamount to the uniqueness of the solution of each of the equations
(11.17) and (11.24) belonging to monotone cases, together with the unique-
ness of the solution of (4.2) for m = 1. 2

6.2.3 The existence of the solution of equation-system
for m = 1

Theorem 6.2.1 (Existence for m = 1). For the sake of convenience, let
us take X for a continuous random variable at first. In that case, we get
(6.2) as

µ1 =

1∫
0

xeβxdx

1∫
0

eβxdx

= 1 +
1

eβ − 1
− 1

β
(6.4)

Then, the solution of (6.4) exists and the same is the case for a discrete
X as well.

Proof of the theorem 6.2.1. Right now, by taking β → ∞, we get by using
L’ Hospital’s rule

lim
β→∞

{
1 +

1

eβ − 1
− 1

β

}
= lim

β→∞

βeβ − eβ + 1

β(eβ − 1)

(∞
∞

)

= lim
β→∞

eβ + βeβ − eβ

eβ + βeβ − 1

= lim
β→∞

βeβ

eβ + βeβ − 1

(∞
∞

)

= lim
β→∞

eβ + βeβ

eβ + eβ + βeβ

= lim
β→∞

1
β

+ 1
2
β

+ 1
= 1

(6.5)

Again, by taking β → −∞, we get

lim
β→−∞

{
1 +

1

eβ − 1
− 1

β

}
= lim

β→−∞

{
eβ

eβ − 1
− 1

β

}

=
0

0 − 1
− 0 = 0

(6.6)
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Thus, by (6.6) and (6.5), it is evidently clear that, if β is made to run
from −∞ to ∞, then µ1 runs from 0 to 1. In other words, by putting

µ
(β)
1 =

1∫
0

xeβxdx

1∫
0

eβxdx

, the co-domain of the function µ
(β)
1 (of β) spans the

entire region Rµ1 = {µ | 0 < µ1 < 1} for all β ∈ R.

In other words (i.e. conversely), for every µ1 ∈ Rµ1 there exists an unique
β ∈ R. This proves the existence of the solution of (6.4) (or equivalently
of (11.24)).

Now, let us draw our attention to the discrete case, i.e. let now us take X for
a discrete random variable. In this case, the proof of the aforesaid existence
is rather simple and can be given by considering a basic characteristic

property of the probability mass function of X, viz. fX|{d}(xj) = e
βxj

N∑
j=1

e
βxj

,

j ∈ {1, 2, . . . , N} for 0 = x1 < x2 < . . . < xN = 1 in a very simpler manner.
This characteristic property is described as

• If µ1 → 0 ⇔ β → −∞, then the probability element fX|{d}(x1) tends
infinitesimally closer to 1 and all other probability elements, namely
fX|{d}(x2), fX|{d}(x3), . . . , fX|{d}(xN) tend infinitesimally closer to 0.

• If µ1 → 1 ⇔ β → ∞, then the probability element fX|{d}(xN) tends
infinitesimally closer to 1 and all other probability elements, namely
fX|{d}(x1), fX|{d}(x2), . . . , fX|{d}(xN−1) tend infinitesimally closer to 0.

So, even in the discrete case, it is evidently clear that, all the possible real
values of β (i.e. β ∈ R) span the entire region Rµ1 = {µ | 0 < µ1 < 1}.

In other words (i.e. conversely), for every µ1 ∈ Rµ1 there exists an unique
β ∈ R. This proves the existence of the solution of (11.18) (or equivalently
of (11.17)).

Whence, by combining both the discrete and the continuous cases of X, we
conclude that the solution of (6.2) exists for every µ1 ∈ Rµ1 .

This ultimately proves the existence of the solution of the system of equa-
tions (4.2) for m = 1.
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6.2.4 Characteristics of the density curves

As already shown with the help of (6.3), µ1 increases strictly with the increase
in β. In this regard, in the continuous case of X, by (6.4), the following
conclusion can be easily drawn:

µ1 <
1

2
⇔ β < 0

µ1 =
1

2
⇔ β = 0

µ1 >
1

2
⇔ β > 0

(6.7)

This aforesaid conclusion (6.7) shall be used to prove the existence of
the solution of the system of equations (6.8).

By (6.7), it is evidently clear that the probability density curve

fX|{d}(x) = eβx

1∫
0

eβxdx

, 0 ≤ x ≤ 1 has the following characteristics:

• it is strictly monotone increasing, if µ1 > 1
2

• it is strictly monotone decreasing, if µ1 < 1
2

• it is a constant curve, if µ1 = 1
2

and thereby representing a constant
probability distribution.

6.2.5 Probability distributions represented by bound-
ary points defined by µ1 ∈ ∂D1

Let us discuss the special cases referred to the monotonic probability distri-
butions of X one by one

1. Case for µ1 = 1 ⇔ β = +∞:

fX|{d}(x) can be defined to represent a discrete degenerated prob-
ability distribution defined by fX|{d}(x) = 1 for x = 1

2. Case for µ1 = 0 ⇔ β = −∞:

fX|{d}(x) can be defined to represent a discrete degenerated prob-
ability distribution defined by fX|{d}(x) = 1 for x = 0

This fulfills the completeness of our analysis of monotonic minimum in-
formation probability distributions.
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6.3 M. i. uni-extremal probability distribu-

tions

If the random variable Y |{dY } follows an uni-extremal probability distri-

bution, such that dY = (µ
(1)
Y , µ

(2)
Y ) or equivalently d = (µ1, µ2), then the

computation of λ(dY ) = (λ1, λ2) necessitates the solution of the following
system of two simultaneous equations





µ1 =

∫
XX

xeβx+γx2
νX(dx)

∫
XX

eβx+γx2
νX(dx)

µ2 =

∫
XX

x2eβx+γx2
νX(dx)

∫
XX

eβx+γx2
νX(dx)

(6.8)

whose solution is unique, provided N ≥ 3 holds in discrete cases. Here, each
of the first two moments E[X] and E[X2], namely µ1 and µ2 respectively,
are expressed as functions of β and γ.

6.3.1 First lemma for the uni-extremity

This lemma enlists the the partial derivatives of µ1 and µ2 with respect to
β and γ respectively by using the system of equations (6.8). Additionally,
the positivity of each of these partial derivatives shall be briefly and well
established.

Here, the list of the statements are given as follows:

Statement 6.3.1 (The partial derivative ∂µ1

∂β
).

∂µ1

∂β
=

∫
XX

x2eβx+γx2
νX(dx)

∫
XX

eβx+γx2
νX(dx)−

(
∫

XX

xeβx+γx2
νX(dx)

)2

(
∫

XX

eβx+γx2
νX(dx)

)2

= µ2 − µ2
1 = V ar[X] > 0

(6.9)
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Statement 6.3.2 (The partial derivative ∂µ2

∂γ
).

∂µ2

∂γ
=

∫
XX

x4eβx+γx2
νX(dx)

∫
XX

eβx+γx2
νX(dx)−

(
∫

XX

x2eβx+γx2
νX(dx)

)2

(
∫

XX

eβx+γx2
νX(dx)

)2

= µ4 − µ2
2 = V ar[X2] > 0

(6.10)

and

Statement 6.3.3 (The partial derivative ∂µ1

∂γ
= ∂µ2

∂β
).

∂µ1

∂γ
=

∂µ2

∂β

=

∫
XX

x3eβx+γx2
νX(dx)

∫
XX

eβx+γx2
νX(dx)−

∫
XX

xeβx+γx2
νX(dx)

∫
XX

x2eβx+γx2
νX(dx)

(
∫

XX

eβx+γx2
νX(dx)

)2

= µ3 − µ1µ2

>
µ2

2

µ1

− µ1µ2 ( by using the inequality (5.4) )

=
µ2

µ1

(µ2 − µ2
1) =

µ2

µ1

V ar[X] > 0

(6.11)

Remark 6.3.1. The interchangeability of the operations
∫
XX

and ∂
∂β

( or ∂
∂γ

) have already been discussed previously.
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6.3.2 Second lemma for the uni-extremity

This lemma shall state and prove the following proposition:

Proposition 6.3.1 ( dµ2

dγ

∣∣∣
µ1=µ∗

1

> 0). For any arbitrarily fixedly chosen value

of µ1, say µ∗
1, such that 0 < µ∗

1 < 1, the inequality dµ2

dγ

∣∣∣
µ1=µ∗

1

> 0 holds.

Proof of the proposition 6.3.1. We shall start by taking the differentials
of µ1 and µ2 by using the system of simultaneous equations (6.8) at first,
which is given as follows:





dµ1 = ∂µ1

∂β
dβ + ∂µ1

∂γ
dγ

dµ2 = ∂µ2

∂β
dβ + ∂µ2

∂γ
dγ

(6.12)

For this, let the value of µ1 be kept fixed, say µ1 = µ∗
1 with regard to

0 < µ∗
1 < 1 and µ2 be allowed to vary within the range µ∗

1
2 < µ2 < µ∗

1.

Therefore, with subject to µ1 = µ∗
1 = constant (i.e. dµ1 = 0), the system

(6.12) takes the form




0 = ∂µ1

∂β
dβ + ∂µ1

∂γ
dγ

dµ2 = ∂µ2

∂β
dβ + ∂µ2

∂γ
dγ

(6.13)

from which, by (6.9), (6.10) and (6.11), we get




0 = (µ2 − µ∗
1
2)dβ + (µ3 − µ∗

1µ2)dγ

dµ2 = (µ3 − µ∗
1µ2)dβ + (µ4 − µ2

2)dγ
(6.14)

which gives
dβ

dγ
= −µ3 − µ∗

1µ2

µ2 − µ∗
1
2 (6.15)

and consequently

dµ2

dγ
= (µ3 − µ∗

1µ2)
dβ

dγ
+ (µ4 − µ2

2) = (µ4 − µ2
2) −

(µ3 − µ∗
1µ2)

2

µ2 − µ∗
1
2

= (µ4 − µ2
2)

(
1 − ρ2

X,X2

)∣∣
µ1=µ∗

1

= σ2
X2

(
1 − ρ2

X,X2

)∣∣
µ1=µ∗

1

> 0
(6.16)

simply because of the following:
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1. The variance of the random variable X2, namely σ2
X2 = µ4 − µ2

2, is
ought to be positive, because the probability distribution of X or of
X2 is not degenerated.

2. ρX,X2 being the correlation coefficient between the random variables X
and X2, we must necessarily have ρ2

X,X2 ≤ 1.

Now, X2 could be linear function of X, if XX({d}) would have at
most two elements, implying N ≤ 2, which would necessarily mean
ρ2

X,X2 = 1. But, since we are given with N ≥ 3, we must conclude that

X2 is not a linear function of X and therefore

ρ2
X,X2 < 1 (6.17)

and consequently by

ρ2
X,X2 =

{E [(X − µ1)(X
2 − µ2)]}2

V ar[X] V ar[X2]
< 1 (6.18)

we got

{
E

[
(X − µ1)(X

2 − µ2)
]}2

< V ar[X] V ar[X2]

⇔
{
E

[
X3 − Xµ2 − X2µ1 + µ1µ2

]}2

<
(
E[X2] − (E[X])2

) (
E[X4] − (E[X2])2

)

⇔{µ3 − µ1µ2 − µ1µ2 + µ1µ2}2 < (µ2 − µ2
1)(µ4 − µ2

2)

⇔ 1 − (µ3 − µ1µ2)
2

(µ4 − µ2
2)(µ2 − µ2

1)
= 1 − ρ2

X,X2 > 0

(6.19)

Thus, we have established the following targeted inequality:

dµ2

dγ

∣∣∣∣
µ1=µ∗

1

> 0 (6.20)

and thereby establishing the proposition 6.3.1.
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6.3.3 Third lemma for the uni-extremity

The uniqueness of the solution of the system of simultaneous equations (6.8)
follows immediately from the inequality (6.20) (i.e. directly from the es-
tablished proposition 6.3.1) and this can be reestablished in two simple
steps. We shall perform these steps in the following proposition:

Proposition 6.3.2 (Uniqueness of the solution of the system (6.8)).
The solution of system of equations (6.8) is unique.

Proof of the proposition (6.3.2). First Step: In the first step, we shall
show that for any arbitrarily fixed values of µ1 and µ2, say µ∗

1 and µ∗
2 respec-

tively with regard to 0 < µ∗
1 < 1 and µ∗

1
2 < µ∗

2 < µ∗
1, the value of γ can be

determined uniquely, say γ = γ∗.

Here, since µ∗
1 has been an arbitrarily chosen value of µ1 within the interval

range (0, 1), the inequality (6.20) leads us to the following:

µ2 is a strictly monotonically increasing function of γ, with subject to

an arbitrarily fixed µ1 = µ∗
1 within (0, 1)

(6.21)
This is to say that, for any arbitrarily fixed µ1 = µ∗

1 within (0, 1) and for
any given µ2 = µ∗

2 ∈ (µ∗
1
2, µ∗

1), there can exist only an unique value of γ, say
γ = γ∗.

In other words, for any two fixed values of µ1 and µ2, namely µ∗
1 and µ∗

2

respectively, there can exist only an unique value of γ, namely γ∗.

Second Step: In the second and the final step, we shall show that the value
of β contained in the system (6.8) is unique too. Immediately after this, the
targeted uniqueness follows conclusively.

Here, by (6.9), we have ∂µ1

∂β
= µ2 − µ2

1 = σ2 > 0, which necessarily means
that for the chosen fixed value of γ, namely γ∗ and for the fixed value of µ1,
namely µ∗

1, the following equation is solvable uniquely for β:

µ∗
1 =

∫
XX

xeβx+γ∗x2
νX(dx)

∫
XX

eβx+γ∗x2νX(dx)
(6.22)

Let this unique solution (for β) be β = β∗.
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This is nothing, but to say conclusively that the following equality holds for
the value β∗ of β:

µ∗
2 =

∫
XX

x2eβ∗x+γ∗x2
νX(dx)

∫
XX

eβ∗x+γ∗x2νX(dx)
(6.23)

where β∗ has been uniquely determined by (6.22) saying that the following
equality must hold

µ∗
1 =

∫
XX

xeβ∗x+γ∗x2
νX(dx)

∫
XX

eβ∗x+γ∗x2νX(dx)
(6.24)

Hence, in other words, for given values of µ1 and µ2, namely µ∗
1 and µ∗

2

respectively, {β = β∗, γ = γ∗} is the only solution of the system (6.8).

Whence, the uniqueness of the solution of (6.8) has been proved and thereby
establishing the proposition 6.3.2.

Remark 6.3.2. Importantly, this aforesaid uniqueness of the solution of
(6.8) is tantamount to the uniqueness of the solution of each of the systems of
simultaneous equations (11.36) and (11.57) belonging to uni-extremal cases,
together with the uniqueness of the solution of (4.2) for m = 2. 2

6.3.4 Fourth lemma for the uni-extremity

This lemma shall establish the following proposition:

Proposition 6.3.3 ( dβ

dγ

∣∣∣
µ1=µ∗

1

< 0). For any arbitrarily fixedly chosen value

of µ1, say µ∗
1, such that 0 < µ∗

1 < 1, the inequality dβ

dγ

∣∣∣
µ1=µ∗

1

< 0 holds.

Proof of the proposition 6.3.3. By (6.11), the statement
µ3 − µ1µ2 > µ2

µ1
(µ2 − µ∗

1) > 0 has already been established and therefore, by

(6.15), for any fixed µ1 = µ∗
1, the value of γ increases monotonically with

the monotonic decrease in the value of β and vice versa, which is implied
by

dβ

dγ

∣∣∣∣
µ1=µ∗

1

= −µ3 − µ∗
1µ2

µ2 − µ∗
12

< 0 (6.25)

thereby proving our proposition 6.3.3.
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Remark 6.3.3. Notably, this very characteristic of dβ

dγ

∣∣∣
µ1=µ∗

1

< 0 is used

to generate the data consisting of different tables, such that each such table,
which is constructed for a fixed value of µ1, say µ∗

1, consists of records. Each
such record consisting of 4 values is displayed as (γ, β, µ∗

1, µ2). These data
consisting of several tables are meant for the storage of the starting values
for the solution of (6.8) in the continuous case1. The generation of the said
data was performed by using the program Mathematica. The description
of the said starting values is treated in full detail subsequently in course of
discussions of numerical algorithms.

1As an alternative to the classification of the entire date into several tables, the entire
data is alternatively stored in a long mysql table named as mep2. This mysql table has
been made to belong to the database named as Stochastikon. But for our present work,
we shall not use this mysql table, but several text-file tables instead. Each such text-file
table is categorized according to the specified µ∗

1
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6.3.5 Fifth lemma for the uni-extremity

For the sake of simplicity, let us take X to be a continuous random variable
here (a discrete random variable X may cause a problem). This lemma takes
care of proving the following proposition:

Proposition 6.3.4. If µ∗
1 be any fixedly chosen value of µ1 (0 < µ∗

1 < 1) the
first equation belonging to the system of equations (6.8) is given to be

µ∗
1 =

1∫
0

xeβx+γx2
dx

1∫
0

eβx+γx2dx

(6.26)

Then, β in this case is uniquely determined for any fixed value of γ and
conversely.

Proof of the proposition 6.3.4. By (6.9) of the statement 6.3.1, since we
have ∂µ1

∂β
> 0, it is clear that for the fixed value of γ, µ1 strictly increases

monotonically with the strict increase of β (or equivalently, µ1 strictly
decreases monotonically with the strict decrease of β). Thus, for every chosen
value of µ1 there exists an unique value of β.

By exactly the analogous argument, by (6.11) of the statement 6.3.3,
since we have ∂µ1

∂γ
> 0, it is clear that for any fixed value of β, µ1 strictly

increases monotonically with the strict increase of γ (or equivalently, µ1

strictly decreases monotonically with the strict decrease of γ). Thus, for
every chosen value of µ1 there exists an unique value of γ.

Whence, for the fixed µ∗
1, (6.26) is uniquely solvable for β for a given

fixedly chosen γ and conversely, (6.26) is uniquely solvable for γ for a given
fixedly chosen β. This confirms our proposition 6.3.4.
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6.3.6 Sixth lemma for the uni-extremity

A similar lemma as the preceding one is given here. This lemma takes
care of proving the following proposition:

Proposition 6.3.5. If µ∗
2 be any fixedly chosen value of µ2 ((µ∗

1)
2 < µ∗

2 < µ∗
1)

the second equation belonging to the system of equations (6.8) is given to be

µ∗
2 =

1∫
0

x2eβx+γx2
dx

1∫
0

eβx+γx2dx

(6.27)

Then, β in this case is uniquely determined for any fixed value of γ and
conversely.

Proof of the proposition 6.3.5. If γ has to be computed for a fixedly cho-
sen β, then by (6.10) of the statement 6.3.2, since we have ∂µ2

∂γ
> 0, for

every chosen value of µ2 there exists an unique value of γ.

If β has to be computed for a fixedly chosen γ, then by (6.11) of the state-
ment 6.3.3, since we have ∂µ2

∂β
> 0, for every chosen value of µ2 there exists

an unique value of β.

Whence, for the fixed µ∗
2, (6.27) is uniquely solvable for β for a given

fixedly chosen γ and conversely, (6.27) is uniquely solvable for γ for a given
fixedly chosen β. This confirms our proposition 6.3.5.

6.3.7 Seventh lemma for the uni-extremity

In this lemma, we shall prove that, with subject to the consideration of the
system of simultaneous equations (6.34) (i.e. the continuous case of X for
the system (6.8)), the necessary and the sufficient condition for µ1 = 1

2
is

β + γ = 0.

In other words, we need to prove the following proposition:

Proposition 6.3.6 (The necessary and sufficient condition for µ1 = 1
2
).

In the light of the system of simultaneous equations (6.34),

β + γ = 0 ⇐⇒ µ1 =
1

2
(6.28)



6.3. M. I. UNI-EXTREMAL PROBABILITY DISTRIBUTIONS 207

Proof of the proposition 6.3.6. For to show that µ1 = 1
2
⇐= β + γ = 0,

we have

E[X] =

1∫
0

xeβx−βx2
dx

1∫
0

eβx−βx2dx

( by setting γ = −β)

=

(
eβx

∫
xe−βx2

dx − β
∫

eβx 1
−2β

e−βx2
dx

)∣∣∣
x=1

x=0
1∫
0

eβx−βx2dx

=

(
eβx

(
1

−2β
e−βx2

))∣∣∣
x=1

x=0
+ 1

2

1∫
0

eβx−βx2
dx

1∫
0

eβx−βx2dx

=
1

2
= µ1

(6.29)

and for to show that, µ1 = 1
2

=⇒ β + γ = 0 the argument is rather simple:

By the proposition 6.3.4, for any fixed value of µ1, say µ1 = µ∗
1, the

equation (6.26) is uniquely solvable for β corresponding to any fixedly
predetermined value of γ.

Accordingly, corresponding to µ∗
1 = 1

2
and by choosing γ = γ0, β must be

uniquely determinable.

Hence, since β = −γ0 already satisfies (6.29), β = −γ0 is the unique solution
of (6.26) with subject to the given γ = γ0 corresponding to µ∗

1 = 1
2
.

Thus, µ1 = 1
2

=⇒ β + γ = 0.

Whence, µ1 = 1
2
⇐⇒ β + γ = 0 and our proposition 6.3.6 thereby gets

proved.
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6.3.8 Eighth lemma for the uni-extremity

This lemma shall show that for the continuous case of X, the following propo-
sition holds:

Proposition 6.3.7 (Condition for the symmetry). The necessary and
sufficient condition for the probability density curve for X to be symmet-
ric (about the middle point of the support, namely x = 1

2
) is µ1 = 1

2
(or

equivalently β + γ = 0)

Proof of the proposition 6.3.7. This assertion can be proved by taking the
probability density function of X to be fX|{( 1

2
,µ2)}(x) = Keβx+γx2

, 0 ≤ x ≤ 1.

By the symmetric property of the probability density curve fX|{( 1
2
,µ2)}(x)

about the middle point x = 1
2
, we get

fX|{( 1
2
,µ2)}

(
1

2
+ ξ

)
= fX|{( 1

2
,µ2)}

(
1

2
− ξ

)
, ξ ∈

[
0,

1

2

]

⇔ β

(
1

2
− ξ

)
+ γ

(
1

2
− ξ

)2

= β

(
1

2
+ ξ

)
+ γ

(
1

2
+ ξ

)2

⇔ β(−ξ − ξ) = γ(ξ + ξ)

⇔ β = −γ

and by the very assertion µ1 = 1
2
⇐⇒ β + γ = 0 of the proposition 6.3.6,

we establish that the necessary and sufficient condition for the symmetry of
the probability density curve of X is µ1 = 1

2
or equivalently β + γ = 0.

This completes the proof of our proposition 6.3.7.
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6.3.9 Ninth lemma for the uni-extremity

As a special case for m = 2, this lemma reestablishes the uniqueness of
the solution of the system (6.8) is tantamount to the positive definiteness of
the following symmetric matrix




∂µ1

∂β

∂µ1

∂γ

∂µ2

∂β

∂µ2

∂γ


 (6.30)

The symmetry of this positive definite matrix, with subject to
0 < µ1 < 1 and µ2

1 < µ2 < µ1, is evident by the very facts that are pre-
sented as follows:

• With the help of (6.9), we get ∂µ1

∂β
= µ2 − µ2

1 > 0, simply because of

µ2 − µ2
1 = σ2 > 0 (6.31)

• With the help of (6.9), (6.10) and (6.11) on the established inequality,
namely

(µ4 − µ2
2)(µ2 − µ2

1) − (µ3 − µ1µ2)
2

=(µ4 − µ2
2)(µ2 − µ2

1)

(
1 − (µ3 − µ1µ2)

2

(µ4 − µ2
2)(µ2 − µ2

1)

)

=σ2
X2σ2

(
1 − ρ2

X,X2

)
> 0

(6.32)

we get

∣∣∣∣∣∣

∂µ1

∂β

∂µ1

∂γ

∂µ2

∂β

∂µ2

∂γ

∣∣∣∣∣∣
= (µ4 − µ2

2)(µ2 − µ2
1) − (µ3 − µ1µ2)

2 > 0 and

• With the help of (6.11), ∂µ1

∂γ
= ∂µ2

∂β
= µ3 − µ1µ2 > 0

Owing to the very fact that the inequalities (6.31) and (6.32) do fulfill the
basically needed requirement for the proof of the uniqueness of the solution
of the system (6.8), we arrive at the following conclusion

the positive definiteness of the matrix (6.30) is simply

an equivalent statement to the uniqueness of the

solution of the system (6.8).

(6.33)
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6.3.10 The existence of the solution of equation-system
for m = 2

Theorem 6.3.1 (Existence for m = 2). Even in this case for m = 2, for
the sake of convenience, let us take X for a continuous random variable at
first. In that case, we get (6.8) as





µ1 =

1∫
0

xeβx+γx2
dx

1∫
0

eβx+γx2
dx

µ2 =

1∫
0

x2eβx+γx2
dx

1∫
0

eβx+γx2
dx

(6.34)

Then, the solution of (6.34) exists and the same is not fully the case for
a discrete X.

Proof of the theorem 6.3.1. Basically, our objective is to show that the
images corresponding to all the possible real values of β and γ (i.e. β, γ ∈ R)
span the entire region

Rµ1,µ2 = {(µ1, µ2) | 0 < µ1 < 1, µ2
1 < µ2 < µ1}

where the geometrical figure of the region Rµ1,µ2 is given in the section
5.10. This figure Rµ1,µ2 has also been referred to the page 74 of [25].

The positivity of the partial derivatives (6.9), (6.10) and (6.11) belonging to
the statements 6.3.1, 6.3.2 and 6.3.3 (of lemma 1) respectively, namely

∂µ1

∂β
= µ2 − µ2

1 = σ2 > 0 (6.35)

∂µ2

∂γ
= µ4 − µ2

2 = σ2
X2 > 0 (6.36)

∂µ1

∂γ
=

∂µ2

∂β
= µ3 − µ1µ2 = Cov[X2, X] > 0 (6.37)

are basically explained by the covariances between X i and Xj for
i, j ∈ {1, 2}. In other words, the covariances are bound to be positive.



6.3. M. I. UNI-EXTREMAL PROBABILITY DISTRIBUTIONS 211

These restatements (6.35), (6.36) and (6.37) shall play an important in our
subsequent steps.

The very assertion with regard to the fact that the images corresponding to
the values (β, γ) ∈ R

2 span the entire Rµ1,µ2 shall be proved in a few steps:

Step 1:

In this step, we shall show the following:

1. the change of µ2 is strict monotonic both with the changes of β and γ
individually.

2. as µ2 approaches its greatest lower bound µ∗
1
2, then

γ → −∞ and β → +∞ and vice versa, i.e.

µ2 → µ∗
1
2 ⇐⇒ (γ → −∞& β → +∞) (6.38)

In other words, the parabolic arc OR1QP of the geometrical figure
of Rµ1,µ2 described by the equation µ2 = µ2

1, with the exception of
the points O and P , represents the points (β = +∞, γ = −∞).

3. as µ2 approaches its least upper bound µ∗
1, then

γ → +∞ and β → −∞ and vice versa, i.e.

µ2 → µ∗
1 ⇐⇒ (γ → +∞& β → −∞) (6.39)

In other words, the line segment OR2RP of the geometrical figure of
Rµ1,µ2 described by the equation µ2 = µ1, with the exception of the
points O and P , represents the points (β = −∞, γ = +∞).

Now, by (6.25), for any fixed value µ∗
1 of µ1, we already have

dβ

dγ

∣∣∣∣
µ1=µ∗

1

= −µ3 − µ∗
1µ2

µ2 − µ∗
12

< 0 (referred to the previous (6.25))

which clearly shows that the increase of β is strict monotonic with the
strict monotonic decrease in γ for any fixed µ∗

1.

Again, by (6.16) for the fixed µ∗
1, namely

dµ2

dγ

∣∣∣∣
µ1=µ∗

1

= σ2
X2

(
1 − ρ2

X,X2

)
> 0 (referred to the previous (6.16))



212 CHAPTER 6. STANDARD M. I. PROBABILITY DISTRIBUTIONS

we get by combining (6.25) and (6.16) for the fixed µ∗
1 as

dµ2

dβ

∣∣∣∣
µ1=µ∗

1

=

dµ2

dγ

∣∣∣
µ1=µ∗

1

dβ

dγ

∣∣∣
µ1=µ∗

1

< 0 (6.40)

and thus, for the fixed µ∗
1, we have the following

• by (6.16), the increase of µ2 is strict monotonic with the strict
monotonic increase in γ and vice versa.

• by (6.40), the decrease of µ2 is strict monotonic with the strict
monotonic increase in β and vice versa.

thereby proving our first assertion of this step.

Now, we shall analyze the two cases µ2 → µ∗
1
2 and µ2 → µ∗

1 geometrically.
Additionally, with reference to the Definition and Proposition 4.4.2,
the probability distributions subjecting to the two cases of µ2 = µ∗

1
2 and

µ2 = µ∗
1 are pure and simple discrete probability distributions. As a matter

of fact, these discrete probability distributions are well conventionally known
degenerated and Bernoulli probability distributions.

The Case of µ2 → µ∗
1
2 (from right):

By referring to the knowledge of the standard normal probability distribution
that has been discussed in (11.28), we have

1√
2π

1∫

0

e
− 1

2

(
x−µ∗

1
σ

)2

dx =
1√
2π

1−µ∗
1

σ∫

−µ∗
1

σ

e−
x2

2 dx
σ→0−→ 1

and therefore with subject to

1 =

1∫

0

eα+βx+γx2

dx ≈ 1√
2π

1∫

0

e
− 1

2

(
x−µ∗

1
σ

)2

dx (6.41)

by comparing the coefficients of x and x2 situated in the power of e of both
sides of the above relation (6.41), we get β ≈ µ∗

1

σ2 and γ ≈ − 1
2σ2 .
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Notably, the values of
1∫
0

eα+βx+γx2
dx = 1 and 1√

2π

1∫
0

e
− 1

2

(
x−µ∗

1
σ

)2

dx stated in

(6.41) get infinitesimally closer to each other, if the value of σ is made to
get infinitesimally closer to 0.

This is to say that β and γ get infinitesimally closer to the values
µ∗

1

σ2 and

− 1
2σ2 respectively, if the value of σ =

√
µ2 − µ∗

1
2 is decreased arbitrarily.

This proves nothing, but the very fact that µ2 → µ∗
1
2 implies and implied by

β → +∞ and γ → −∞, thereby proving our second assertion of this step.
Notably, the behavior, in which β → +∞ and γ → −∞, strictly depends on
the value of µ∗

1.

Geometrically, this aforesaid behavior is described by the fact that the
peakedness of the bell shaped probability density curve gets arbitrarily higher
(i.e. the ordinate of the probability density function at the point x = µ∗

1

gets arbitrarily larger). In the limiting sense for µ2 → µ∗
1
2, the probability

distribution is discrete, the probability mass function of which being given
by fX|{(µ∗

1,µ∗
1
2)}(x) = 1, x = µ∗

1 and thereby affirming the Definition and
Proposition 4.4.2.

From the analytical angle, for the fixed µ∗
1, under the consideration of

the following:

• corresponding to each input (µ∗
1, µ2), (β, γ) can only be uniquely de-

termined as a solution of (6.34) (referred to the proposition 6.3.2 (of
lemma 3)).

• the strict monotone decrease of µ2 for µ2 → µ∗
1
2+ with

– strict monotone decrease of γ confirmed by (6.20), i.e. by
dµ2

dγ

∣∣∣
µ1=µ∗

1

> 0

– strict monotone increase of β confirmed by (6.40), i.e. by
dµ2

dβ

∣∣∣
µ1=µ∗

1

< 0

for any given arbitrarily small ǫ (ǫ > 0) there exist two positive numbers
Gβ and Gγ, such that

∣∣µ2 − µ∗
1
2
∣∣ < ǫ for every β > Gβ and γ < −Gγ , but

with subject to the fulfillment of (6.26).
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Now, since by the proposition 6.3.4 (of lemma 5), for the fixed µ1 = µ∗
1,

β is uniquely determinable by γ (or conversely) and by the proposition

6.3.3 (of lemma 4), namely dβ

dγ

∣∣∣
µ1=µ∗

1

< 0, it is evidently clear that the

arbitrariness of the largeness of β (β > 0) implies and implied by the
arbitrariness of the largeness of −γ (−γ > 0).

In other words, the closeness of µ2 to µ∗
1
2 implies and implied by the

arbitrariness of the largeness of the positivity of β (or equivalently of −γ).
This means nothing, but µ2 → µ∗

1
2 ⇐⇒ (γ → −∞& β → +∞) and thereby

establishing the assertion (6.38).

The Case of µ2 → µ∗
1 (from left):

We have already proved that if µ2 is made to increase monotonically, then β
monotonically decreases and γ monotonically increases.

So, the question arises, what could happen to the decrease of β and the
increase of γ, if µ2 is made to increase to bring arbitrarily close to µ∗

1.

As a matter of fact, if µ2 made to get close to µ∗
1 from left beyond a limit, the

probability density function of X becomes a bathtub shaped (this point shall
be discussed in full details in due course). Geometrically, this bathtub
shaped probability density curve of X becomes flatter and flatter and
tend to take the shape of a rectangular geometrical trough with
two bottom-edges (i. e. arbitrarily flatter) with the infinitesimal
closeness of µ2 to µ∗

1 from left and this happens, purely when β → −∞ and
γ → +∞.

This proves nothing, but the very fact that µ2 → µ∗
1 implies and implied by

β → −∞ and γ → +∞, thereby proving our third assertion of this step.
Even in this case, notably, the behavior, in which β → −∞ and γ → +∞,
strictly depends on the value of µ∗

1. In the limiting sense for µ2 → µ∗
1,

the probability distribution is discrete, the probability mass function

of which being given by fX|{(µ∗
1,µ∗

1)}(x) =

{
1 − µ∗

1 : x = 0
µ∗

1 : x = 1
and thereby

affirming the Definition and Proposition 4.4.2.

From the analytical angle, for the fixed µ∗
1, under the consideration of
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the following:

• corresponding to each input (µ∗
1, µ2), (β, γ) can only be uniquely de-

termined as a solution of (6.34) (referred to the proposition 6.3.2 (of
the lemma 3)).

• the strict monotone increase of µ2 for µ2 → µ∗
1− with

– strict monotone increase of γ confirmed by (6.20), i.e. by
dµ2

dγ

∣∣∣
µ1=µ∗

1

> 0

– strict monotone decrease of β confirmed by (6.40), i.e. by
dµ2

dβ

∣∣∣
µ1=µ∗

1

< 0

for any given arbitrarily small ǫ (ǫ > 0) there exist two positive numbers
Gβ and Gγ, such that |µ2 − µ∗

1| < ǫ for every β < −Gβ and γ > Gγ, but with
subject to the fulfillment of (6.26).

Now, since by the proposition 6.3.4 (of lemma 5), for the fixed µ1 = µ∗
1,

γ is uniquely determinable by β (or conversely) and by the proposition

6.3.3 (of lemma 4), namely dβ

dγ

∣∣∣
µ1=µ∗

1

< 0, it is evidently clear that the

arbitrariness of the largeness of γ (γ > 0) implies and implied by the
arbitrariness of the largeness of −β (−β > 0).

In other words, the closeness of µ2 to µ∗
1 implies and implied by the

arbitrariness of the largeness of the positivity of γ (or equivalently of −β).
This means nothing, but µ2 → µ∗

1 ⇐⇒ (γ → +∞& β → −∞) and thereby
establishing the assertion (6.39).
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The conclusive statement of this first step:

Conclusively, if µ2 is made to increase strictly monotonically from µ∗
1
2 to µ∗

1,
then

• β decreases strictly monotonically from +∞ to −∞

• γ increases strictly monotonically from −∞ to +∞

Step 2:

Elementarily, with subject to the defined relationship (6.34) between (µ1, µ2)
and (β, γ), the evaluated values of (µ1, µ2) for every given (β, γ) ∈ R

2 must
be contained in Rµ1,µ2 .

In this step, we shall show that, for all the images (µ1, µ2) of (β, γ) defined
by (6.34) falling within the bounded region Rµ1,µ2 , for the fixedly chosen µ∗

1,

1. β + γ < 0 for µ∗
1 < 1

2

2. β + γ = 0 for µ∗
1 = 1

2

3. β + γ > 0 for µ∗
1 > 1

2

Basically, with the help of the very established proposition 6.3.6 (of the
lemma 7), namely

µ∗
1 =

1

2
⇐⇒ β + γ = 0 (6.42)

we shall go ahead to prove that µ∗
1 ≶ 1

2
according as β + γ ≶ 0. This can

be proved in two ways and we shall give both these proofs for the sake
of completeness and complete transparency. Of course, each of these
proofs is small enough to be presented beautifully and transparently.

For this, we shall set β +γ = ǫ, ǫ being any real value. With this, we proceed
as follows:
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• By (6.35), namely ∂µ1

∂β
> 0, µ1 is strictly monotonic increasing (or

decreasing) with respect to β for any fixedly chosen value of γ, say
for γ = γ0.

therefore, by β + γ0 = ǫ, i. e. by putting β = −γ0 + ǫ, we arrive at

µ1 =

1∫
0

xe(−γ0+ǫ)x+γ0x2
dx

1∫
0

e(−γ0+ǫ)x+γ0x2dx

>
1

2
, if ǫ > 0, by monotonic increasing

<
1

2
, if ǫ < 0, by monotonic decreasing

=
1

2
, if ǫ = 0, by (6.42)

• Alternatively, by (6.37), namely ∂µ1

∂γ
> 0, µ1 is strictly monotonic

increasing (or decreasing) with respect to γ for any fixedly chosen
value of β, say for β = β0.

therefore, by β0 + γ = ǫ, i. e. by putting γ = −β0 + ǫ, we arrive at

µ1 =

1∫
0

xeβ0x+(−β0+ǫ)x2
dx

1∫
0

eβ0x+(−β0+ǫ)x2dx

>
1

2
, if ǫ > 0, by monotonic increasing

<
1

2
, if ǫ < 0, by monotonic decreasing

=
1

2
, if ǫ = 0, by (6.42)

This makes evidently clear that β + γ > 0 for µ∗
1 > 1

2
and β + γ < 0 for

µ∗
1 < 1

2
, thereby proving our assertion of this step, which formally reads

µ∗
1 ≶ 1

2
according as β + γ ≶ 0 (6.43)

The conclusive statement of this second step:

We have therefore proved that all the possible signs of the expression β+γ
(i.e. ⋚ 0) are included for our present consideration. This is to say that the
clear relationship between β + γ and µ∗

1 is thereby established.
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Step 3:

The two important two-dimensional curves denoted by Cβ=0 and Cγ=0, which
lie fully within the region Rµ1,µ2 , play decisive roles.

Our objective in this step shall be to examine, how do these curves Cβ=0

and Cγ=0 behave with different values of µ∗
1, thereby the geometrical

side of the behaviors of both Cβ=0 and Cγ=0 lying within Rµ1,µ2 can
be well described analytically.

In view of the geometrical figure giving the region Rµ1,µ2 given in the
last page of the previous chapter, let us define the curves Cβ=0 and Cγ=0 as
follows:

Definition 6.3.1 (The curve Cβ=0). The curve Cβ=0, which is a dashed
curve, is denoted by OB2R0B1P .

With regard to the equation-system (6.34), the curve Cβ=0 represents the set
of (µ1, µ2) values corresponding to β = 0, γ ∈ R, whose parametric represen-
tation is given as 




µ1 =

1∫
0

xeγx2
dx

1∫
0

eγx2
dx

µ2 =

1∫
0

x2eγx2
dx

1∫
0

eγx2
dx

(6.44)

Definition 6.3.2 (The curve Cγ=0). The curve Cγ=0, which is a lined
curve, is denoted by OC2R0C1P .

With regard to the equation-system (6.34), the curve Cγ=0 represents the set
of (µ1, µ2) values corresponding to β ∈ R, γ = 0, whose parametric represen-
tation is given as 




µ1 =

1∫
0

xeβxdx

1∫
0

eβxdx

µ2 =

1∫
0

x2eβxdx

1∫
0

eβxdx

(6.45)
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These two curves Cβ=0, Cγ=0 and the line segment R2R0R1 divide the
closed region Rµ1,µ2 (the region Rµ1,µ2 includes the boundary points of
Rµ1,µ2) broadly into eight subdivisions.

These subdivisions are termed as subregions, in each of which the signs of
β, γ and β + γ are individually specified. The detailed description of
these subregions are given individually in the step 4.

For the study of the geometrical behaviors of Cβ=0 and Cγ=0 (the behav-
iors are already presented in the geometrical figure of Rµ1,µ2), we need to
distinguish the three cases, namely

• µ∗
1 < 1

2

• µ∗
1 > 1

2
and

• µ∗
1 = 1

2

Before we proceed to discuss these three cases one by one, let us denote
β0 and γ0 in the following way:

• β0 denotes the unique solution of µ∗
1 =

1∫
0

xeβxdx

1∫
0

eβxdx

.

Note, for the fixed γ = 0, by (6.35), β0 is unique.

Furthermore, let µ
(γ=0)
2 =

1∫
0

x2eβ0xdx

1∫
0

eβ0xdx

• γ0 denotes the unique solution of µ∗
1 =

1∫
0

xeγx2
dx

1∫
0

eγx2
dx

.

Note, for the fixed β = 0, by (6.37), γ0 is unique.

Furthermore, let µ
(β=0)
2 =

1∫
0

x2eγ0x2
dx

1∫
0

eγ0x2
dx
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The case of µ∗
1 < 1

2
:

By considering the curve Cγ=0, by (6.7), we get (β0 < 0, γ = 0) at the point

B2 : (µ∗
1, µ

(γ=0)
2 ).

Again, by considering the curve Cβ=0 at the point C2 : (µ∗
1, µ

(β=0)
2 ), the

corresponding value of (β, γ) is (β = 0, γ0). The question is, what should be
the sign of γ0?

We see very clearly, that for the fixed µ∗
1, if µ2 is made to change from µ

(γ=0)
2

to µ
(β=0)
2 (namely from the position B2 to the position C2), then β would

change itself from β0(< 0) to 0.

This means, β has increased from β0(< 0) to 0, while µ2 has changed itself

from µ
(γ=0)
2 to µ

(β=0)
2 .

Therefore,

• by (6.40), µ2 has decreased from µ
(γ=0)
2 to µ

(β=0)
2 , i.e. µ

(γ=0)
2 > µ

(β=0)
2

• and by (6.25), γ has decreased from 0 to γ0, i.e. γ0 < 0

Thus, it is evidently and conclusively clear that, within the range of µ∗
1 < 1

2
,

the curve Cγ=0 lies above the curve Cβ=0.
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The case of µ∗
1 > 1

2
:

By considering the curve Cγ=0, by (6.7), we get (β0 > 0, γ = 0) at the point

B1 : (µ∗
1, µ

(γ=0)
2 ).

Again, by considering the curve Cβ=0 at the point C1 : (µ∗
1, µ

(β=0)
2 ), the

corresponding value of (β, γ) is (β = 0, γ0). The question is, what should be
the sign of γ0?

We see very clearly, that for the fixed µ∗
1, if µ2 is made to change from µ

(γ=0)
2

to µ
(β=0)
2 (namely from the position B1 to the position C1), then β would

change itself from β0(> 0) to 0.

This means, β has decreased from β0(> 0) to 0, while µ2 has changed itself

from µ
(γ=0)
2 to µ

(β=0)
2 .

Therefore,

• by (6.40), µ2 has increased from µ
(γ=0)
2 to µ

(β=0)
2 , i.e. µ

(γ=0)
2 < µ

(β=0)
2

• and by (6.25), γ has increased from 0 to γ0, i.e. γ0 > 0

Thus, it is evidently and conclusively clear that, within the range of µ∗
1 > 1

2
,

the curve Cγ=0 lies below the curve Cβ=0.
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The case of µ∗
1 = 1

2
:

By considering the curve Cγ=0, by (6.7), we get (β0 = 0, γ = 0) at the point

R0 : (1
2
, µ

(γ=0)
2 ).

Trivially, in this case, µ
(γ=0)
2 = µ

(β=0)
2 = 1

3
and thus the curves Cγ=0 and

Cβ=0 intersect each other at the point R0 : (1
2
, 1

3
).

The summarized conclusion of this third step:

• Within the range of µ∗
1 < 1

2
, the curve Cγ=0 lies above the curve Cβ=0

• Within the range of µ∗
1 > 1

2
, the curve Cγ=0 lies below the curve Cβ=0

• At µ∗
1 = 1

2
, the curves Cγ=0 intersects the curve Cβ=0 (at the point

R0 : (1
2
, 1

3
))

This completes the discussions of the curves Cγ=0 and Cβ=0 with subject to

the cases µ∗
1 S 1

2
.

Step 4:

In this step, we shall discuss about the signs of β, γ and β + γ in different
(bounded) subregions of Rµ1,µ2 with the exception of the corner points
O and P . For this,

• we shall use the monotonic character of µ2 with respect to γ and β
individually for the fixed µ∗

1, namely the (6.20) saying dµ2

dγ
> 0 and the

(6.40) saying dµ2

dβ
< 0

• we shall use the deduced statements in the step 1, namely

– the (6.38) saying µ2 → µ∗
1
2 ⇐⇒ (γ → −∞& β → +∞)

– the (6.39) saying µ2 → µ∗
1 ⇐⇒ (γ → +∞& β → −∞)

Moreover, it has to be kept in mind that

• any point of the curve Cγ=0 is the point of change in sign of γ.

• any point of the curve Cβ=0 is the point of change in sign of β.
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With this, we proceed to discuss the different subregions one by one:

1. The subregion for β ≤ 0, γ ≤ 0, β + γ ≤ 0:

This subregion OB2R0C2O is bounded by the curves Cγ=0 and Cβ=0.

Since the curve Cγ=0 lies above the curve Cβ=0 in this case, by the monotonic
character of µ2, namely (6.20) and (6.40),

• any point lying below Cγ=0 must correspond to γ < 0

• any point lying above Cβ=0 must correspond to β < 0

This shows that the interior of this subregion consists of points
corresponding to β < 0, γ < 0 and β + γ < 0.

2. The subregion for β ≥ 0, γ ≥ 0, β + γ ≥ 0:

This subregion PB1R0C1P is bounded by the curves Cγ=0 and Cβ=0.

Since the curve Cγ=0 lies below the curve Cβ=0 in this case, by the monotonic
character of µ2, namely (6.20) and (6.40),

• any point lying above Cγ=0 must correspond to γ > 0

• any point lying below Cβ=0 must correspond to β > 0

This shows that the interior of this subregion consists of points
corresponding to β > 0, γ > 0 and β + γ > 0.
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3. The subregion for β ≤ 0, γ ≥ 0, β + γ ≤ 0:

This subregion OR2R0B2O is bounded by the line segments OR2 and R2R0

and the curve Cγ=0.

In this case, by the monotonic character of µ2, namely (6.20) and (6.40),

• any point lying above Cγ=0 must correspond to γ > 0

• any point lying above Cβ=0 must correspond to β < 0

This shows that the interior of this subregion consists of points
corresponding to β < 0, γ > 0 and β + γ < 0.

Moreover, by the statement (6.39), the line segment OR2 of this subregion,
with the exception of the point O, consists of points corresponding to
β = −∞, γ = +∞, but β + γ ≤ 0.

Conclusively, the points of this subregion, with the exception of the
point O, basically correspond to −∞ ≤ β ≤ 0, 0 ≤ γ ≤ +∞, but β + γ ≤ 0.

4. The subregion for β ≥ 0, γ ≤ 0, β + γ ≤ 0:

This subregion OR1R0C2O is bounded by the line segment R1R0, the curve
Cβ=0 and the arc OR1.

In this case, by the monotonic character of µ2, namely (6.20) and (6.40),

• any point lying below Cγ=0 must correspond to γ < 0

• any point lying below Cβ=0 must correspond to β > 0

This shows that the interior of this subregion consists of points
corresponding to β > 0, γ < 0 and β + γ < 0.

Moreover, by the statement (6.38), the curve OR1 of this subregion, with the
exception of the point O, consists of points corresponding to
β = +∞, γ = −∞, but β + γ ≤ 0.

Conclusively, the points of this subregion, with the exception of the
point O, basically correspond to 0 ≤ β ≤ +∞,−∞ ≤ γ ≤ 0, but β + γ ≤ 0.
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5. The subregion for β ≤ 0, γ ≥ 0, β + γ ≥ 0:

This subregion PR2R0C1P is bounded by the line segments PR2 and R2R0

and the curve Cβ=0.

In this case, by the monotonic character of µ2, namely (6.20) and (6.40),

• any point lying above Cγ=0 must correspond to γ > 0

• any point lying above Cβ=0 must correspond to β < 0

This shows that the interior of this subregion consists of points
corresponding to β < 0, γ > 0 and β + γ > 0.

Moreover, by the statement (6.39), the line segment PR2 of this subregion,
with the exception of the point P , consists of points corresponding to
β = −∞, γ = +∞, but β + γ ≥ 0.

Conclusively, the points of this subregion, with the exception of the
point P , basically correspond to −∞ ≤ β ≤ 0, 0 ≤ γ ≤ +∞, but β + γ ≥ 0.

6. The subregion for β ≥ 0, γ ≤ 0, β + γ ≥ 0:

This subregion PR1R0B1P is bounded by the line segment R1R0, the curve
Cγ=0 and the arc PR1.

In this case, by the monotonic character of µ2, namely (6.20) and (6.40),

• any point lying below Cγ=0 must correspond to γ < 0

• any point lying below Cβ=0 must correspond to β > 0

This shows that the interior of this subregion consists of points
corresponding to β > 0, γ < 0 and β + γ > 0.

Moreover, by the statement (6.38), the curve PR1 of this subregion, with the
exception of the point P , consists of points corresponding to
β = +∞, γ = −∞, but β + γ ≥ 0.

Conclusively, the points of this subregion, with the exception of the
point P , basically correspond to 0 ≤ β ≤ +∞,−∞ ≤ γ ≤ 0, but β + γ ≥ 0.
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7. The subregion for β ≤ 0, γ ≥ 0, β + γ = 0:

This subregion is simply the line segment R2R0. At the point R0, we have
β = γ = 0.

In this case, by the monotonic character of µ2, namely (6.20) and (6.40),

• any point lying above Cγ=0 (i.e. above the point R0) must correspond
to γ > 0

• any point lying above Cβ=0 (i.e. above the point R0) must correspond
to β < 0

This shows that the interior of this subregion consists of points
corresponding to β < 0, γ > 0 and β + γ = 0.

Moreover, by the statement (6.39), the point R2 of this subregion consists of
points corresponding to β = −∞, γ = +∞, but β + γ = 0.

Conclusively, the points of this subregion basically correspond to
−∞ ≤ β ≤ 0, 0 ≤ γ ≤ +∞, but β + γ = 0.

8. The subregion for β ≥ 0, γ ≤ 0, β + γ = 0:

This subregion is simply the line segment R1R0. At the point R0, we have
β = γ = 0.

In this case, by the monotonic character of µ2, namely (6.20) and (6.40),

• any point lying below Cγ=0 (i.e. below the point R0) must correspond
to γ < 0

• any point lying below Cβ=0 (i.e. below the point R0) must correspond
to β > 0

This shows that the interior of this subregion consists of points
corresponding to β > 0, γ > 0 and β + γ = 0.

Moreover, by the statement (6.38), the point R1 of this subregion consists of
points corresponding to β = +∞, γ = −∞, but β + γ = 0.

Conclusively, the points of this subregion basically correspond to
0 ≤ β ≤ +∞,−∞ ≤ γ ≤ 0, but β + γ = 0.
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This completes the discussions subjecting to the signs of β, γ and β + γ
in the aforesaid 8 subregions of Rµ1,µ2 of this step 4.

Step 5:

In this step, we shall discuss about the points O and P of the region Rµ1,µ2 ,
the discussions of which we have not carried out so far.

Obviously, the points O and P picture the cases of µ1 = µ2 = 0 and
µ1 = µ2 = 1 respectively.

Now, by considering the system of equations (6.34), we conclude that for
µ1 = µ2 we must have either of the following situations:

• eβx+γx2
= 0 for x being within [0, 1] with the probable exception of

x = 0.

• eβx+γx2
= +∞ for x being within [0, 1] with the probable exception

of x = 0.

Moreover, we have already seen in the previous steps that

• (β = −∞, γ = +∞) is the only case, if the point (µ1, µ2) lies on the
line segment OR2P described by the equation µ2 = µ1 with the
exception of the points O and P .

• (β = +∞, γ = −∞) is the only case, if the point (µ1, µ2) lies on the
parabolic arc OR1P described by the equation µ2 = µ2

1 with the
exception of the points O and P .

Therefore, both (β = −∞, γ = +∞) and (β = +∞, γ = −∞) are ruled out
possible solutions of both eβx+γx2

= 0 and eβx+γx2
= +∞. So, we are left

with the only possibilities (β = −∞, γ = −∞) and (β = +∞, γ = +∞) to
fulfill both eβx+γx2

= 0 and eβx+γx2
= +∞.

Here, the relations (6.35), (6.36) and (6.37), namely ∂µ1

∂β
> 0, ∂µ2

∂γ
> 0 and

∂µ1

∂γ
= ∂µ2

∂β
> 0 principally say the following:

• if both µ1 and µ2 acquire their minimum values, i.e.
µ1 = µ2 = 0, then both β and γ must also acquire their minimum
values, i.e. β = γ = −∞, so as to make eβx+γx2

= 0 for x being within
[0, 1] with the probable exception of x = 0.
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• if both µ1 and µ2 acquire their maximum values, i.e.
µ1 = µ2 = 1, then both β and γ must also acquire their maximum
values, i.e. β = γ = +∞, so as to make eβx+γx2

= +∞ for x being
within [0, 1] with the probable exception of x = 0.

Hence, as the concluding statement of this step 5, we arrive that

• the point O corresponds to (β = −∞, γ = −∞).

• the point P corresponds to (β = +∞, γ = +∞).

Step 6:

Thus, we have seen that all the possible images of (β, γ) ∈ R
2 with regard to

the described relationship (6.34) are contained in the region Rµ1,µ2 .

Additionally, all the boundaries (i.e. boundary points) of Rµ1,µ2 are also
covered by (β = ±∞, γ = ±∞).

Conclusively, by putting µ
(β,γ)
1 =

1∫
0

xeβx+γx2
dx

1∫
0

eβx+γx2
dx

and µ
(β,γ)
2 =

1∫
0

x2eβx+γx2
dx

1∫
0

eβx+γx2
dx

, the

co-domain of the vector function
(
µ

(β,γ)
1 , µ

(β,γ)
2

)T

( of two variables, i.e

of (β, γ) ) spans the entire region Rµ1,µ2 for all (β, γ) ∈ R
2.

In other words (i.e. conversely), for every (µ1, µ2) ∈ Rµ1,µ2 , there exists an
unique pair (β, γ) ∈ R

2. This proves the existence of the solution of (6.34)
(or equivalently of (11.57)).

Step 7:

Now, let us draw our attention to the discrete case, i.e. let now us take
X for a discrete random variable. In this case, the proof of the aforesaid
existence can be given by considering certain basic characteristic prop-

erties of the probability mass function of X, viz. fX|{d}(xj) = e
βxj+γx2

j

N∑
j=1

e
βxj+γx2

j

,

j ∈ {1, 2, . . . , N} for 0 = x1 < x2 < . . . < xN = 1 in a simpler manner. For
a discrete X, the discussions are somewhat similar, especially for a large
value of N . These characteristic properties are described as
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1. If µ1 tends to 0 from right infinitesimally (i.e. µ1 → 0+), then µ2

is compelled to tend infinitesimally close to 0, simply because of
µ2

1 < µ2 < µ1. In that case, the probability element fX|{d}(x1) tends
infinitesimally close to 1 and thereby all other N − 1 probability ele-
ments fX|{d}(x2), fX|{d}(x3), . . . , fX|{d}(xN) individually tend infinites-
imally close to 0.

2. If µ1 tends to 1 from left infinitesimally (i.e. µ1 → 1−), then µ2

is compelled to tend infinitesimally close to 1, simply because of
µ2

1 < µ2 < µ1. In that case, the probability element fX|{d}(xN) tends
infinitesimally close to 1 and thereby all other N − 1 probability
elements fX|{d}(x1), fX|{d}(x2), . . . , fX|{d}(xN−1) individually tend in-
finitesimally close to 0.

3. For any fixedly chosen 0 < µ1 < 1, if µ2 made to tend infinitesimally
close to its least upper bound µ1 from left (i.e. µ2 → µ1−), then
the sum of the two extreme probability elements fX|{d}(x1) +
fX|{d}(xN) tends infinitesimally close to 1 and all other probability
elements fX|{d}(x2), fX|{d}(x3), . . . , fX|{d}(xN−1) individually tend in-
finitesimally close to 0. This has been fully elaborated in the subsec-
tion 5.7.1 (of the chapter 5).

4. For any fixedly chosen 0 < µ1 < 1, µ2 cannot be made to tend
infinitesimally to its lower bound µ2

1 from right (i.e. µ2 → µ2
1+ is

not possible) for every given N ∈ N or for every XX . In that case, µ2

has to be meaningfully chosen, otherwise the probability distribution
of X will not exist. This very problem has been handled in full details
in the subsection 5.7.2 (of the chapter 5).

However, µ2 always has a greatest lower bound glim(µ2, µ1,XX)
greater or equal to µ2

1, above which (or equal to which) the value of
µ2 ensures the existence of the probability distribution of X.

This lower bound glim(µ2, µ1,XX) of µ2 depends on µ1 as well as on
the support XX . Precisely, µ2 ≥ glim(µ2, µ1,XX) must necessarily
hold in this case, such that glim(µ2, µ1,XX) ≥ µ2

1.

Conclusively, in the discrete case, it is evidently clear that, all the possible
pairs (β, γ) ∈ R

2, with the exception of the cases that correspond to
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µ2 < glim(µ2, µ1,XX)), span the entire region Rµ1,µ2 . This exception takes
place in discrete cases of X, when glim(µ2, µ1,XX) > µ2

1 happens to hold.

In other words (i.e. conversely), for every (µ1, µ2) ∈ Rµ1,µ2 , with the (above
stated) exception of the cases of µ2 < glim(µ2, µ1,XX)) in the discrete
cases of X, there exists an unique pair (β, γ) ∈ R

2. This proves the exis-
tence of the solution of (11.37) (or equivalently of (11.36)).

Whence, by summarizing both the discrete and the continuous cases of X,
we conclude that the solution of (6.8) exists for every (µ1, µ2) ∈ Rµ1,µ2 , with
the (above stated) exception of the discrete case of X.

This ultimately proves the existence of the solution of the system of equa-
tions (4.2) for m = 2.

6.3.11 Classification of types of probability distribu-
tions

The character analysis of probability distributions of standard types, namely
of constant, monotone and uni-extremal types, necessitates the exact
classification of these types. Precisely, the question is, how these types are
exactly determined with subject to the predeterminately given first two
moments of the probability distribution.

For our discussions in this regard, the variance σ2
Y

2 of the random variable Y

is allowed to vary within it’s variability range 0 < σ2
Y < (µ

(1)
Y −a)(b−µ

(1)
Y ) with

respect to the fixedly chosen first moment µ
(1)
Y of the random variable Y .

In fact, we shall show that the variability of σ2
Y is pictured by the inequality

0 < σ2
Y,U ≤ σ2

Y,L < (µ
(1)
Y − a)(b − µ

(1)
Y ), such that σ2

Y,U and σ2
Y,L are the

marginal variances of Y for uni-modal and bathtub-shaped nature of the
probability distribution of Y respectively. Depending on the values of σ2

Y,U

and σ2
Y,L, the probability distribution of Y is uni-modal, bathtub-shaped,

strictly monotonic increasing, strictly monotonic decreasing or constant.

For the sake of simplicity, our discussions in this regard shall be confined to
the continuous cases of the random variable of Y (or equivalently, of the
continuous cases of the random variable X). Nextly, we proceed to find the
expressions of σ2

Y,U and σ2
Y,L.

2equivalently, the second moment µ
(2)
Y could be chosen in place of σ2

Y
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6.3.12 Marginal variances of probability distributions

It has to be noted that the determination of (local) maximum and mini-
mum points of a graphically represented probability distribution by means
of differential calculus is only possible in continuous cases. Of course, the
same rule can be applied in discrete cases as well, provided the value of N
is large enough.

With subject to fixedly given range of variability XY = [a, b] and the first

moment µ
(1)
Y of the random variable Y , we shall primarily focus on the

evaluations of the following, the descriptions of which are given elaborately
in the subsection 6.3.13):

• The limiting (or marginal) variance σ2
Y,U , such that the probability

distribution of Y shall be uni-modal, if σ2
Y ≤ σ2

Y,U

• The limiting (or marginal) variance σ2
Y,L, such that the probability

distribution of Y shall be bathtub-shaped, if σ2
Y ≥ σ2

Y,L

where σ2
Y = µ

(2)
Y −

(
µ

(1)
Y

)2

is the user given variance of Y .

Corresponding to the usual linear transformation X = Y −a
b−a

, we have

• σ2
X,U =

σ2
Y,U

(b−a)2
is the limiting variance for the uni-modality of the

probability distribution of X.

For uni-modality, σ2
X,U ≤ σ2.

• σ2
X,L =

σ2
Y,L

(b−a)2
is the limiting variance for the bathtub-shapeliness

of the probability distribution of X.

For bathtub-shapeliness, σ2
X,L ≥ σ2.

In this subsection, our objective shall be to derive the expressions of σ2
X,U

and σ2
X,L and illustrate them graphically.

In course of our present discussions, for the sake of simplicity, we shall
principally stick to the continuous case of X.

So, we shall proceed to analyze the uni-extremal nature (either uni-
modality nature or the bathtub-shapeliness nature) of the probability
density function of X by means of σ2

X,U and σ2
X,L.
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For this, the study of the extreme point of the probability density function
of X is of absolute necessity in the form of the following proposition:

Proposition 6.3.8. The probability density function of X being, as usual,
given by

fX|{d}(x) =
eβx+γx2

1∫
0

eβt+γt2dt

(6.46)

such that d = (µ1, µ2), XX({d}) = [0, 1] and σ2 = µ2−µ2
1, then the extreme

value of the probability density fX|{d}(x) at the point x = −β

2γ
is maximum

or minimum according as γ ≶ 0.

Proof of the proposition 6.3.8. Here, by

f
′

X|{d}(x) = fX|{d}(x)(β + 2γx) and

f
′′

X|{d}(x) = f
′

X|{d}(x)(β + 2γx) + 2γfX|{d}(x)
(6.47)

and by keeping fX|{d}(x) > 0 for every x ∈ [0, 1] in mind, we can easily see
the following:

• only at x = −β

2γ
the derivative f

′

X|{d}(x) vanishes, i.e. f
′

X|{d}

(
−β

2γ

)
= 0

• f
′′

X|{d}

(
−β

2γ

)
= 2γfX|{d}

(
−β

2γ

)
≷ 0 according as γ ≷ 0

which clearly shows that the probability density function fX|{d}(x) can have

at most one extremal value at x = −β

2γ
and hence the probability density

curve is uni- extremal, provided

• γ 6= 0

• 0 ≤ −β

2γ
≤ 1

Therefore, irrespective of whether the extremal point −β

2γ
of the

probability density curve fX|{d}(x) lies within the interval [0, 1] or

not, it is conclusively clear that the extreme value fX|{d}

(
−β

2γ

)
of

fX|{d}(x) is maximum or minimum according as

γ ≶ 0 (6.48)
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As the next step, we shall give two statements pertaining to the marginality
of the uni-extremal nature of the probability density curve fX|{d}(x). This
uni-extremal nature is understandably controlled by the position of the
extremal point x = −β

2γ
of the probability density curve fX|{d}(x).

Statement 6.3.4 (Marginal and pure uni-extremal nature for µ1 6= 1
2
).

If 0 < −β

2γ
< 1, then the probability density curve fX|{d}(x) is purely of uni-

extremal nature.

If either −β

2γ
= 0 or −β

2γ
= 1, then the uni-extremal nature of the probability

density curve fX|{d}(x) is marginal.

That is, either −β

2γ
< 0 or −β

2γ
> 1 would mean that the probability density

curve fX|{d}(x) is not uni-extremal anymore.

Statement 6.3.5 (Role of β and γ for the marginal uni-extremal
nature). The marginality (or the limiting case) of the uni-extremal na-
ture of any of the probability density curves (i.e. curve of either uni-modal
shaped or bathtub-shaped) necessitates either of the following three con-
ditions:

• x = 0 = −β

2γ
⇐⇒ β = 0

• x = 1 = −β

2γ
⇐⇒ β = −2γ

• x = 1
2

= −β

2γ
⇐⇒ β = −γ

Exactly at this point, we are in a position to show that both these two
above statements shall be utilized for determining the marginal variances
for both uni-modal and bathtub shaped curves for µ1 S 1

2
.

So, we shall proceed to analyze the cases for µ1 S 1
2

one by one. However,
these cases can be conveniently categorized into the two following cases:

• µ1 = 1
2
. The marginality of the uni-extremal nature of the density

function fX|{d}(x) corresponds to the point x = 1
2
.

• µ1 ≶ 1
2
. The marginality of the uni-extremal nature of the density

function fX|{d}(x) corresponds to the points x ∈ {0, 1}.
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Proposition 6.3.9 (Marginally uni-extremal nature at x = 1
2
, i.e.

β = −γ). For µ1 = 1
2
, the probability density function fX|{d}(x) is either

symmetric uni-extremal or uniform. The marginal variances are given
by σ2

X,L = σ2
X,U = 1

12
.

Proof of the proposition 6.3.9. For µ1 = 1
2
, let us consider the following

two points:

• by the proposition 6.3.6 (of lemma 7), µ1 = 1
2
⇔ β = −γ.

• by the proposition 6.3.7 (of lemma 8), the necessary and sufficient
condition for the probability density curve for X to be symmetric is
µ1 = 1

2
or equivalently β = −γ.

Here, it is intuitively clear that the marginal variances for both uni-modal
and bathtub shaped curves merge to a common marginal variance. Here,
the limiting (common) variance is nothing different from the variance of the
uniform distribution, where µ1 = 1

2
, σ2

X,L = σ2
X,U = 1

12
(or equivalently, when

β = γ = 0). The proof of this very assertion is rather trivial, but still we
must give a complete analysis of this picture of µ1 = 1

2
.

By the proposition 6.3.8 of rather by (6.48), the density curve for X remains

• symmetric uni-modal, so long γ = −β < 0 holds

• symmetric bathtub- shaped, so long γ = −β > 0 holds

Again, by the proposition 6.3.1 (of lemma 2), the second moment µ2 (or
equivalently the variance σ2 = µ2 − 1

4
) strictly monotonically increases

with γ ( of course for the fixed µ1 = 1
2

). This evidently proves the following:

• at µ2 = 1
3
, γ = 0 and the density curve of X is neither uni-modal nor

bathtub shaped

• when µ2 < 1
3
, γ < 0 and the density curve of X is uni-modal

• when µ2 > 1
3
, γ > 0 and the density curve of X is bathtub-shaped

and this brings us to conclude that σ2
X,L = σ2

X,U = 1
3
− 1

22 = 1
12

is the marginal
variance of both uni- modal and the bathtub- shaped density curves of X.
This completes the proof of the proposition 6.3.9 (referring to µ1 = 1

2
).
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Now, let us come to the cases for µ1 6= 1
2
. In that case, by the proposition

6.3.6 (of lemma 7), we must have β 6= −γ.

Again, as we have discussed, since the marginality of the uni-modal nature or
the bathtub-shaped nature of the density curve fX|{d}(x) correspond to either
β = 0 or β = −2γ, in either of these two cases, only γ 6= 0 can therefore be of
interest. Thus, by keeping this in mind, the marginality of the uni-extremal
cases for µ1 6= 1

2
are described in form of propositions as follows:

Proposition 6.3.10 (Marginally uni-extremal nature at x = 0, i.e.
when β = 0). Here,

• µ1 < 1
2

(⇔ γ < 0) signifies that the uni-modal density curve fX|{d}(x)
has its maximal point at x = 0.

• µ1 > 1
2

(⇔ γ > 0) signifies that the bathtub shaped density curve
fX|{d}(x) has its minimal point at x = 0.

Proof of the proposition 6.3.10. Here, µ1 =

1∫
0

xeγx2
dx

1∫
0

eγx2
dx

= eγ−1

2γ
1∫
0

eγx2
dx

and for

a given µ1 6= 1
2
, we must have µ1 ≷ 1

2
⇔ γ ≷ 0, simply because

1∫

0

eγxdx ≷
1∫

0

eγx2

dx according as γ ≷ 0

⇔eγ − 1

γ
≷

1∫

0

eγx2

dx according as γ ≷ 0

⇔µ1 =
eγ − 1

2γ
1∫
0

eγx2dx

≷ 1

2
according as γ ≷ 0

(6.49)

But, by the proposition 6.3.4 (of lemma 5) the equation µ1 =

1∫
0

xeγx2
dx

1∫
0

eγx2
dx

is

uniquely solvable for γ for the fixedly given β = 0.

Thus, by the proposition 6.3.8, the very fact γ ≷ 0 ⇔ f
′′

X|{d}

(
−β

2γ

)
≷ 0 leads

us to the following conclusion:
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• µ1 > 1
2
⇔ γ > 0 means that the point x = 0 is the minimal point of

the bathtub-shaped density curve.

• µ1 < 1
2
⇔ γ < 0 means that the point x = 0 is the maximal point of

the uni-modal density curve.

This completes the proof of the proposition 6.3.10.

Proposition 6.3.11 (Marginally uni-extremal nature at x = 1, i.e.
when β = −2γ). Here,

• µ1 > 1
2

(⇔ γ < 0) signifies that the uni-modal density curve fX|{d}(x)
has its maximal point at x = 1.

• µ1 < 1
2

(⇔ γ > 0) signifies that the bathtub shaped density curve
fX|{d}(x) has its minimal point at x = 1.

Proof of the proposition 6.3.11. Here, µ1 =

1∫
0

xe−2γx+γx2
dx

1∫
0

e−2γx+γx2
dx

= 1− eγ−1

2γ
1∫
0

eγx2
dx

⇔

1 − µ1 = eγ−1

2γ
1∫
0

eγx2
dx

.

Analogously (as in the case of the proposition 6.3.10), we can easily show
in this very case that µ1 ≶ 1

2
⇔ γ ≷ 0.

Exactly by the analogous arguments as in the case of the proposition
6.3.10, we arrive at the following conclusion:

• 1 − µ1 > 1
2
⇔ µ1 < 1

2
⇔ γ > 0 means that the point x = 1 is the

minimal point of the bathtub-shaped density curve.

• 1 − µ1 < 1
2
⇔ µ1 > 1

2
⇔ γ < 0 means that the point x = 1 is the

maximal point of the uni-modal density curve.

This completes the proof of the proposition 6.3.11.

Hence, with subject to the above propositions 6.3.10 and 6.3.11,
let us proceed to give the working rules for computations of the marginal
variances of uni-modal and bathtub-shaped probability densities one by one
as follows:
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Proposition 6.3.12 (Working rule for the computation of σ2
X,U for

a uni-modal density function in case of µ1 < 1
2
). For the marginal

uni-modal density function corresponding to µ1 < 1
2
, the equation

µ1 =
eγ − 1

2γ
1∫
0

eγx2dx

(6.50)

is solved uniquely for γ and subsequently the probability density function of
X is given by

fX|{d}(x) =
eγx2

1∫
0

eγt2dt

, for 0 ≤ x ≤ 1 and d = (µ1, σ
2
X,U + µ2

1) (6.51)

and the marginal variance σ2
X,U (i.e. the least upper bound of the variance

of X) is given by

σ2
X,U =

1∫
0

x2eγx2
dx

1∫
0

eγx2dx

− µ2
1 (6.52)

The proof of the proposition 6.3.12, namely the very fact that σ2
X,U is

actually the marginal variance for the uni-modality for µ1 < 1
2
, is followed

by the proposition 6.3.18 (of the subsection 6.3.13).

Remark 6.3.4. Conclusively, if σ2 ≤ σ2
X,U , then the probability density

fX|{d}(x) is uni-modal and if σ2 > σ2
X,U , then fX|{d}(x) is either strictly

monotonic decreasing or bathtub-shaped.
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Proposition 6.3.13 (Working rule for the computation of σ2
X,U for

a uni-modal density function in case of µ1 > 1
2
). For the marginal

uni-modal density function corresponding to µ1 > 1
2
, the equation

1 − µ1 =
eγ − 1

2γ
1∫
0

eγx2dx

(6.53)

is solved uniquely for γ and subsequently the probability density function of
X is given by

fX|{d}(x) =
e−2γx+γx2

1∫
0

e−2γt+γt2dt

, for 0 ≤ x ≤ 1 and d = (µ1, σ
2
X,U + µ2

1) (6.54)

and the marginal variance σ2
X,U (i.e. the least upper bound of the variance

of X) is given by

σ2
X,U =

1∫
0

x2e−2γx+γx2
dx

1∫
0

e−2γx+γx2dx

− µ2
1 =

1∫
0

x2eγx2
dx

1∫
0

eγx2dx

− (1 − µ1)
2 (6.55)

The proof of the proposition 6.3.13, namely the very fact that σ2
X,U is

actually the marginal variance for the uni-modality for µ1 > 1
2
, is followed

by the proposition 6.3.19 (of the subsection 6.3.13).

Remark 6.3.5. Conclusively, if σ2 ≤ σ2
X,U , then the probability density

fX|{d}(x) is uni-modal and if σ2 > σ2
X,U , then fX|{d}(x) is either strictly

monotonic increasing or bathtub-shaped.
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Proposition 6.3.14 (Working rule for the computation of σ2
X,L for a

bathtub-shaped density function in case of µ1 < 1
2
). For the marginal

bathtub-shaped density function corresponding to µ1 < 1
2
, the equation

1 − µ1 =
eγ − 1

2γ
1∫
0

eγx2dx

(6.56)

is solved uniquely for γ and subsequently the probability density function of
X is given by

fX|{d}(x) =
e−2γx+γx2

1∫
0

e−2γt+γt2dt

, for 0 ≤ x ≤ 1 and d = (µ1, σ
2
X,L + µ2

1) (6.57)

and the marginal variance σ2
X,L (i.e. the greatest lower bound of the

variance of X) is given by

σ2
X,L =

1∫
0

x2e−2γx+γx2
dx

1∫
0

e−2γx+γx2dx

− µ2
1 =

1∫
0

x2eγx2
dx

1∫
0

eγx2dx

− (1 − µ1)
2 (6.58)

The proof of the proposition 6.3.14, namely the very fact that σ2
X,L is

actually the marginal variance for the bathtub-shapeliness for µ1 < 1
2
, is

followed by the proposition 6.3.18 (of the subsection 6.3.13).

Remark 6.3.6. Conclusively, if σ2 ≥ σ2
X,L, then the probability density

fX|{d}(x) is bathtub-shaped and if σ2 < σ2
X,L, then fX|{d}(x) is either

strictly monotonic decreasing or uni-modal.
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Proposition 6.3.15 (Working rule for the computation of σ2
X,L for a

bathtub-shaped density function in case of µ1 > 1
2
). For the marginal

bathtub-shaped density function corresponding to µ1 > 1
2
, the equation

µ1 =
eγ − 1

2γ
1∫
0

eγx2dx

(6.59)

is solved uniquely for γ and subsequently the probability density function of
X is given by

fX|{d}(x) =
eγx2

1∫
0

eγt2dt

, for 0 ≤ x ≤ 1 and d = (µ1, σ
2
X,L + µ2

1) (6.60)

and the marginal variance σ2
X,L (i.e. the greatest lower bound of the

variance of X) is given by

σ2
X,L =

1∫
0

x2eγx2
dx

1∫
0

eγx2dx

− µ2
1 (6.61)

The proof of the proposition 6.3.15, namely the very fact that σ2
X,L is

actually the marginal variance for the bathtub-shapeliness for µ1 > 1
2
, is

followed by the proposition 6.3.19 (of the subsection 6.3.13).

Remark 6.3.7. Conclusively, if σ2 ≥ σ2
X,L, then the probability density

fX|{d}(x) is bathtub-shaped and if σ2 < σ2
X,L, then fX|{d}(x) is either

strictly monotonic increasing or uni-modal.
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6.3.13 Characteristic behavior of the extremal point

The movement of the extremal point − β

2γ
of the probability density curve

fX|{d}(x) = eβx+γx2

1∫
0

eβt+γt2dt

, 0 ≤ x ≤ 1, d = (µ1, µ2) plays a predominant role

in the classification of probability density types. Exactly this is what we are
going to discuss in this subsection and for this discussion, we shall include
the cases, when γ = 0.

Trivially, the probability density curve fX|{d}(x) represents a constant
probability distribution, if β = γ = 0 and this does not need any elab-
oration. So, we proceed to discuss the nontrivial cases, i.e. when β and γ
are not both simultaneously zero.

In the last subsection, we have been discussing about the marginal vari-
ances σ2

X,U and σ2
X,L. We also know that this marginality is precisely the

case, when the extremal point − β

2γ
is either 0 or 1.

Now, the following question legitimately arises: How does the change in σ2

has the control over the movement of the extremal point − β

2γ
for any fixedly

chosen µ1, so that we can control the monotonicity or uni-extremity of
the probability density function fX|{d}(x) ? Exactly this is our main task.

So, if σ2 ( = µ2 − µ2
1) is made to move from 0 (it’s greatest lower bound)

to µ1(1 − µ1) (it’s least upper bound), then the following statements are
restated for the sake of our convenience:

1. By the proposition 6.3.1 (of lemma 2) and by σ2 = µ2 − µ2
1,

dµ2

dγ

∣∣∣∣
µ1 is fixed

=
dσ2

dγ

∣∣∣∣
µ1is fixed

> 0 (6.62)

which evidently pictures that γ increases with the increase in σ2.

2. By the proposition 6.3.3 (of lemma 4)

dβ

dγ

∣∣∣∣
µ1 is fixed

< 0 (6.63)

which evidently pictures that β decreases with the increase in γ and
vice versa.
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3. By (6.40) belonging to the step 1 of the theorem 6.3.1

dµ2

dβ

∣∣∣∣
µ1 is fixed

=
dσ2

dβ

∣∣∣∣
µ1 is fixed

< 0 (6.64)

which evidently pictures that β decreases with the increase in σ2.

4. By (6.38) and (6.39) belonging to the step 1 of the theorem 6.3.1,

σ2 → 0+ ⇐⇒ (γ → −∞& β → +∞) (6.65)

and

σ2 → µ1(1 − µ1)− ⇐⇒ (γ → +∞& β → −∞) (6.66)

5. With reference to the step 2 of the theorem 6.3.1,

β + γ S 0 according as µ1 S 1

2
(6.67)

6. If σ2 is made to tend to 0 from right (i.e. if σ2 → 0+) for a fixedly

chosen µ1, both the probability densities e
−

(x−µ1)2

2σ2

1∫
0

e
−

(t−µ1)2

2σ2 dt

, 0 ≤ x ≤ 1 and

eβx+γx2

1∫
0

eβt+γt2dt

, 0 ≤ x ≤ 1 converge to a limiting probability distribution

that is nothing different from the discrete degenerated probability
distribution about the point µ1.

In this regard, if σ2 → 0+, then by (6.65), β → +∞ and γ → −∞,
but we have

− β

2γ
→ µ1 (6.68)

However, if σ → µ1(1 − µ1)−, then by (6.66), we have β → −∞ and
γ → +∞, but limiting value of − β

2γ
shall not be investigated for this

dissertation. For the sake of definiteness, let us assume − β

2γ
→ µ1,1.
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With this, let us arrive at two important propositions with regard to µ1 6= 1
2
,

the formal proofs of which are rather difficult at the moment. So, only the
proof-ideas instead of formal rigorous proofs are given.

Proposition 6.3.16 (Behavior of the abscissa of the extremal point
for µ1 < 1

2
). If σ2 is made to move from 0 to µ1(1 − µ1), then the abscissa

− β

2γ
of the extremal point moves from right to left, provided either γ < 0

or γ > 0 is strictly maintained.

The proof-idea of the proposition 6.3.16. Having − β

2γ
= −β+γ

2γ
+ 1

2
, by

(6.67), we have −(β + γ) > 0.

Now, by (6.63), β increases with the decrease in γ and vice versa and in
fact, the magnitude of β increases with the increase in the magnitude of
γ, if they (β and γ) are of opposite signs.

So, the magnitude of the positive sum −(β + γ) does not change rapidly
with the increase in σ2.

But, since by (6.62), γ increases with the increase in σ2 and since 1
γ

is

a decreasing function because of d
d γ

( 1
γ
) = − 1

γ2 < 0, it is well intuitively

assertible that −(β+γ)
2γ

is a decreasing function.

Therefore, − β

2γ
= −β+γ

2γ
+ 1

2
is a decreasing function of σ2 and hence − β

2γ

moves from right to left with the increase in σ2.

This completes the proof-idea of the proposition 6.3.16.

Proposition 6.3.17 (Behavior of the abscissa of the extremal point
for µ1 > 1

2
). If σ2 is made to move from 0 to µ1(1 − µ1), then the abscissa

− β

2γ
of the extremal point moves from left to right, provided either γ < 0

or γ > 0 is strictly maintained.

The proof-idea of the proposition 6.3.17. In this case, by (6.67), we have
−(β + γ) < 0.

Exactly in the similar manner as the proposition 6.3.16 has been sketched,
− β

2γ
= −β+γ

2γ
+ 1

2
is a increasing function of σ2 and hence − β

2γ
moves from

left to right with the increase in σ2

This completes the proof-idea of the proposition 6.3.17.
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Remark 6.3.8 (The case of γ = 0). The reader of this dissertation may
legitimately ask, why the case of γ = 0 is not handled in the above propositions
6.3.16 and 6.3.17. The question is precisely about the extremal point − β

2γ
.

Before we go ahead, we would like to make another thing importantly clear:
The case of β = γ = 0 is completely ruled out, otherwise µ1 = 1

2
would be

the case, which does not correspond to the propositions 6.3.16 and 6.3.17.
Thus, β 6= 0 shall be the case here.

So, the question arises, whether − β

2γ
= +∞ or − β

2γ
= −∞. Logically, this

depends on the following:

• The sign of β (since β 6= 0).

• Whether γ is made to approach 0 from left or from right.

Thus, we arrive at the following statements:

• If µ1 < 1
2

then by (6.7), −β > 0.

Here, if γ → 0−, then − β

2γ
= −∞ and if γ → 0+, then − β

2γ
= +∞.

• If µ1 > 1
2

then by (6.7), −β < 0.

Here, if γ → 0−, then − β

2γ
= +∞ and if γ → 0+, then − β

2γ
= −∞.

In general, we know very well that − β

2γ
= ±∞ says that the probability

distribution of X is a minimum information monotonic probability dis-
tribution.

Remark 6.3.9 (The case of γ = −∞). In this case, the probability distri-
bution of X is simply a degenerated probability distribution and this special
case shall be discussed in this very chapter. This special case is ascribed to
the attainment of σ2 its greatest lower bound, namely σ2 = 0.

Remark 6.3.10 (The case of γ = +∞). In this case, the probability dis-
tribution of X is simply a bernoulli probability distribution and this special
case shall be discussed in this very chapter. This special case is ascribed to
the attainment of σ2 its least upper bound, namely σ2 = µ1(1 − µ1).
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With this, after excluding the trivial cases of µ1 ∈ {0, 1}, we shall prove
another set of propositions by keeping principally the following restate-
ments in mind:

• With the increase in σ2 from 0 to µ1(1− µ1), γ increases (stated by
(6.62)) and in fact, γ moves from −∞ to +∞ (referred to both (6.65)
and (6.66)).

• With the increase in σ2 from 0 to µ1(1−µ1), β decreases (stated by
(6.64)) and in fact, β moves from +∞ to −∞ (referred to both (6.65)
and (6.66)).
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Proposition 6.3.18 (For any fixed µ1 < 1
2
, the probability densities

are classified into uni-extremal and monotonic decreasing types).

Proof of the proposition 6.3.18. In the course of change of σ2 from 0 to
µ1(1− µ1), the changing behaviors of β, γ and − β

2γ
are described in four

disjoint subintervals of the interval (0, µ1(1 − µ1)) individually:

1. The subinterval given by 0 ≤ σ2 ≤ σ2
X,U : Correspondingly, within this

subinterval, we have the following:

• +∞ ≥ β ≥ 0, where β = 0 corresponds to the left end point x = 0 of
the support [0, 1].

• −∞ ≤ γ ≤ γ0, where by the proposition 6.3.4 (of lemma 5), γ0 is

uniquely determinable by solving µ1 =

1∫
0

xeγ0x2
dx

1∫
0

eγ0x2
dx

for the given β = 0.

• µ1 ≥ − β

2γ
≥ 0

which says that, at σ2 = σ2
X,U , we have β = 0, γ = γ0 and − β

2γ
= 0.

Here, 0 ≤ − β

2γ
≤ µ1 < 1 means that the probability density must necessarily

be uni-extremal.

Moreover, by the proposition 6.3.10 referring to the left end point of the
support [0, 1], namely x = 0, µ1 < 1

2
⇔ γ0 < 0 means that the extremal point

− β

2γ0
= 0 is the maximal point of the uni-modal probability density.

Again, by the proposition 6.3.16, any slight increase of the value of σ2

higher than σ2
X,U would mean − β

2γ
< 0 implying that the probability den-

sity is not uni-extremal anymore. This means nothing, but the very fact
that the uni-modality is retained, if σ2 ≤ σ2

X,U and the uni-modality is
marginal, if σ2 = σ2

X,U .

Conclusively, the probability density is uni-modal within this subinterval.
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2. The subinterval given by σ2
X,U < σ2 ≤ σ2

β0
: Correspondingly, within

this subinterval, we have the following:

• 0 > β ≥ β0, where by the proposition 6.3.4 (of lemma 5), β0 is

uniquely determinable by solving µ1 =

1∫
0

xeβ0xdx

1∫
0

eβ0xdx

for the given γ = 0,

which is followed by σ2
β0

=

1∫
0

x2eβ0xdx

1∫
0

eβ0xdx

− µ2
1.

Obviously, β0 < 0 and this gets reconfirmed by (6.7), namely

µ1 < 1
2
⇔ β0 < 0.

• γ0 < γ ≤ 0. Obviously, γ0 < 0 and γ may attain the value 0 from left
only.

• 0 > − β

2γ
≥ −∞

which says that, at σ2 = σ2
β0

, we have β = β0, γ = 0 and − β

2γ
= −∞

(Notably, − β

2γ
= −∞ at σ2 = σ2

β0
is well explained by the very fact that

β = β0 < 0 & by taking γ → 0−).

Here, by taking the values of γ and β, such that γ0 < γ < 0 and 0 > β > β0

and thereby 0 > − β

2γ
> −∞, by using the proposition 6.3.8 for γ < 0, it

is clear that the extremal point − β

2γ
is the maximal point lying on the left

of x = 0. Evidently, the probability density is monotonic decreasing.

Moreover, the case of γ = 0, β = β0 < 0 represents a minimum informa-
tion monotonic decreasing probability density.

Conclusively, the probability density is monotonic decreasing within this
subinterval.
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3. The subinterval given by σ2
β0

< σ2 < σ2
X,L: Correspondingly, within

this subinterval, we have the following:

• β0 > β > −2γ1, where by the proposition 6.3.4 (of lemma 5), γ1

is uniquely determinable by solving µ1 =

1∫
0

xe−2γ1x+γ1x2
dx

1∫
0

e−2γ1x+γ1x2
dx

⇔ 1 − µ1 =

1∫
0

xeγ1x2
dx

1∫
0

eγ1x2
dx

, i.e. γ1 is uniquely determinable by solving 1−µ1 =

1∫
0

xeγ1x2
dx

1∫
0

eγ1x2
dx

,

which is followed by σ2
X,L =

1∫
0

x2e−2γ1x+γ1x2
dx

1∫
0

e−2γ1x+γ1x2
dx

− µ2
1.

Obviously, γ1 > 0 and this gets reconfirmed by (6.49), namely

1 − µ1 ≶ 1
2
⇔ γ1 ≶ 0 (⇔ µ1 ≷ 1

2
).

• 0 < γ < γ1. Obviously, γ1 > 0 and γ may attain the value 0 from
right only.

• +∞ > − β

2γ
> 1

which says that, at σ2 = σ2
X,L, we have β = −2γ1, γ = γ1 and − β

2γ
= 1

(Notably, − β

2γ
= +∞ at σ2 = σ2

β0
is well explained by the very fact that

β = β0 < 0 & by taking γ → 0+).

Here, by taking the values of γ and β, such that 0 < γ < γ1 and β0 > β >
−2γ1 and thereby +∞ > − β

2γ
> +1, by using the proposition 6.3.8 for

γ > 0, it is clear that the extremal point − β

2γ
is the minimal point lying

on the right of x = 1. Evidently, the probability density is monotonic
decreasing.

Moreover, the case of γ = 0, β = β0 < 0 represents a minimum informa-
tion monotonic decreasing probability density.

Conclusively, the probability density is monotonic decreasing within this
subinterval.
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4. The subinterval given by σ2
X,L ≤ σ2 ≤ µ1(1 − µ1): Correspondingly,

within this subinterval, we have the following:

• −2γ1 ≥ β ≥ −∞, where β = −2γ1 corresponds to the right end point
x = 1 of the support [0, 1].

• γ1 ≤ γ ≤ +∞, where by the proposition 6.3.4 (of lemma 5), γ1

is uniquely determinable by solving µ1 =

1∫
0

xe−2γ1x+γ1x2
dx

1∫
0

e−2γ1x+γ1x2
dx

⇔ 1 − µ1 =

1∫
0

xeγ1x2
dx

1∫
0

eγ1x2
dx

, i.e. γ1 is uniquely determinable by solving 1−µ1 =

1∫
0

xeγ1x2
dx

1∫
0

eγ1x2
dx

,

which is followed by σ2
X,L =

1∫
0

x2e−2γ1x+γ1x2
dx

1∫
0

e−2γ1x+γ1x2
dx

− µ2
1.

Obviously, γ1 > 0 and this gets reconfirmed by (6.49), namely

1 − µ1 ≶ 1
2
⇔ γ1 ≶ 0 (⇔ µ1 ≷ 1

2
).

• 1 ≥ − β

2γ
≥ µ1,1

which says that, at σ2 = µ1(1 − µ1), we have β = −∞, γ = +∞ and
− β

2γ
= µ1,1.

Here, 0 < µ1,1 ≤ − β

2γ
≤ 1 means that the probability density must necessarily

be uni-extremal.

Moreover, by the proposition 6.3.11 referring to the right end point of
the support [0, 1], namely x = 1, µ1 < 1

2
⇔ γ1 > 0 means that the extremal

point − β

2γ1
= − (−2γ1)

2γ1
= 1 is the minimal point of the bathtub-shaped

probability density.

Again, by the proposition 6.3.16, any slight decrease of the value of σ2

lower than σ2
X,L would mean − β

2γ
> 1 implying that the probability density

is not uni-extremal anymore. This means nothing, but the very fact that
the bathtub-shapeliness is retained, if σ2 ≥ σ2

X,L and the bathtub-
shapeliness is marginal, if σ2 = σ2

X,L.
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Conclusively, the probability density is bathtub-shaped within this subin-
terval.

This completes the proof of the proposition 6.3.18.

Remark 6.3.11. For µ1 < 1
2
, in course of the movement of σ2 from 0 to

µ1(1 − µ1), then the following are therefore the cases:

• If γ < 0, then − β

2γ
is made to move from µ1 to −∞.

• If γ > 0, then − β

2γ
is made to move from +∞ to µ1,1.

In each of the above cases, − β

2γ
is made to move from right to left, as stated

by the proposition 6.3.16.
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Proposition 6.3.19 (For any fixed µ1 > 1
2
, the probability densities

are classified into uni-extremal and monotonic increasing types).

Proof of the proposition 6.3.19. In the course of change of σ2 from 0 to
µ1(1− µ1), the changing behaviors of β, γ and − β

2γ
are described in four

disjoint subintervals of the interval (0, µ1(1 − µ1)) individually:

1. The subinterval given by 0 ≤ σ2 ≤ σ2
X,U : Correspondingly, within this

subinterval, we have the following:

• +∞ ≥ β ≥ −2γ1, where β = −2γ1 corresponds to the right end point
x = 1 of the support [0, 1].

• −∞ ≤ γ ≤ γ1, where by the proposition 6.3.4 (of lemma 5), γ1

is uniquely determinable by solving µ1 =

1∫
0

xe−2γ1x+γ1x2
dx

1∫
0

e−2γ1x+γ1x2
dx

⇔ 1 − µ1 =

1∫
0

xeγ1x2
dx

1∫
0

eγ1x2
dx

, i.e. γ1 is uniquely determinable by solving 1−µ1 =

1∫
0

xeγ1x2
dx

1∫
0

eγ1x2
dx

,

which is followed by σ2
X,U =

1∫
0

x2e−2γ1x+γ1x2
dx

1∫
0

e−2γ1x+γ1x2
dx

− µ2
1.

Obviously, γ1 < 0 and this gets reconfirmed by (6.49), namely

1 − µ1 ≶ 1
2
⇔ γ1 ≶ 0 (⇔ µ1 ≷ 1

2
).

• µ1 ≤ − β

2γ
≤ 1

which says that, at σ2 = σ2
X,U , we have β = −2γ1, γ = γ1 and − β

2γ
= 1.

Here, 0 < µ1 ≤ − β

2γ
≤ 1 means that the probability density must necessarily

be uni-extremal.

Moreover, by the proposition 6.3.11 referring to the right end point of
the support [0, 1], namely x = 1, µ1 > 1

2
⇔ γ1 < 0 means that the extremal

point − β

2γ0
= 0 is the maximal point of the uni-modal probability density.

Again, by the proposition 6.3.17, any slight increase of the value of σ2

higher than σ2
X,U would mean − β

2γ
> 1 implying that the probability den-

sity is not uni-extremal anymore. This means nothing, but the very fact
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that the uni-modality is retained, if σ2 ≤ σ2
X,U and the uni-modality is

marginal, if σ2 = σ2
X,U .

Conclusively, the probability density is uni-modal within this subinterval.

2. The subinterval given by σ2
X,U < σ2 ≤ σ2

β0
: Correspondingly, within

this subinterval, we have the following:

• −2γ1 > β ≥ β0, where by the proposition 6.3.4 (of lemma 5), β0

is uniquely determinable by solving µ1 =

1∫
0

xeβ0xdx

1∫
0

eβ0xdx

for the given γ = 0,

which is followed by σ2
β0

=

1∫
0

x2eβ0xdx

1∫
0

eβ0xdx

− µ2
1.

Obviously, β0 > 0 and this gets reconfirmed by (6.7), namely

µ1 > 1
2
⇔ β0 > 0.

Moreover, by the proposition 6.3.4 (of lemma 5), γ1 is uniquely

determinable by solving µ1 =

1∫
0

xe−2γ1x+γ1x2
dx

1∫
0

e−2γ1x+γ1x2
dx

⇔ 1 − µ1 =

1∫
0

xeγ1x2
dx

1∫
0

eγ1x2
dx

,

i.e. γ1 is uniquely determinable by solving 1− µ1 =

1∫
0

xeγ1x2
dx

1∫
0

eγ1x2
dx

, which is

followed by σ2
X,U =

1∫
0

x2e−2γ1x+γ1x2
dx

1∫
0

e−2γ1x+γ1x2
dx

− µ2
1.

Obviously, γ1 < 0 and this gets reconfirmed by (6.49), namely

1 − µ1 ≶ 1
2
⇔ γ1 ≶ 0 (⇔ µ1 ≷ 1

2
).

• γ1 < γ ≤ 0. Obviously, γ1 < 0 and γ may attain the value 0 from left
only.

• 1 < − β

2γ
≤ +∞



6.3. M. I. UNI-EXTREMAL PROBABILITY DISTRIBUTIONS 253

which says that, at σ2 = σ2
β0

, we have β = β0, γ = 0 and − β

2γ
= +∞

(Notably, − β

2γ
= +∞ at σ2 = σ2

β0
is well explained by the very fact that

β = β0 > 0 & by taking γ → 0−).

Here, by taking the values of γ and β, such that γ1 < γ < 0 and −2γ1 >
β > β0 and thereby 1 < − β

2γ
< +∞, by using the proposition 6.3.8 for

γ < 0, it is clear that the extremal point − β

2γ
is the maximal point lying

on the right of x = 1. Evidently, the probability density is monotonic
increasing.

Moreover, the case of γ = 0, β = β0 > 0 represents a minimum informa-
tion monotonic increasing probability density.

Conclusively, the probability density is monotonic increasing within this
subinterval.

3. The subinterval given by σ2
β0

< σ2 < σ2
X,L: Correspondingly, within

this subinterval, we have the following:

• β0 > β > 0, where by the proposition 6.3.4 (of lemma 5), β0 is

uniquely determinable by solving µ1 =

1∫
0

xeβ0xdx

1∫
0

eβ0xdx

for the given γ = 0,

which is followed by σ2
β0

=

1∫
0

x2eβ0xdx

1∫
0

eβ0xdx

− µ2
1.

Obviously, β0 > 0 and this gets reconfirmed by (6.7), namely

µ1 > 1
2
⇔ β0 > 0.

• 0 < γ < γ0, where by the proposition 6.3.4 (of lemma 5), γ0 is

uniquely determinable by solving µ1 =

1∫
0

xeγ0x2
dx

1∫
0

eγ0x2
dx

for the given β = 0.

Obviously, γ0 > 0 and γ may attain the value 0 from right only.

• −∞ < − β

2γ
< 0
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which says that, at σ2 = σ2
X,L, we have β = 0, γ = γ0 and − β

2γ
= 0

(Notably, − β

2γ
= −∞ at σ2 = σ2

β0
is well explained by the very fact that

β = β0 > 0 & by taking γ → 0+).

Here, by taking the values of γ and β, such that 0 < γ < γ0 and β0 > β > 0
and thereby −∞ < − β

2γ
< 0, by using the proposition 6.3.8 for γ > 0, it

is clear that the extremal point − β

2γ
is the minimal point lying on the left

of x = 0. Evidently, the probability density is monotonic increasing.

Moreover, the case of γ = 0, β = β0 > 0 represents a minimum informa-
tion monotonic increasing probability density.

Conclusively, the probability density is monotonic increasing within this
subinterval.

4. The subinterval given by σ2
X,L ≤ σ2 ≤ µ1(1 − µ1): Correspondingly,

within this subinterval, we have the following:

• 0 ≥ β ≥ −∞, where β = 0 corresponds to the left end point x = 0 of
the support [0, 1].

• γ0 ≤ γ ≤ +∞

• 0 ≤ − β

2γ
≤ µ1,1

which says that, at σ2 = µ1(1 − µ1), we have β = −∞, γ = +∞ and
− β

2γ
= µ1,1.

Here, 0 ≤ − β

2γ
≤ µ1,1 < 1 means that the probability density must necessarily

be uni-extremal.

Moreover, by the proposition 6.3.10 referring to the left end point of the
support [0, 1], namely x = 0, µ1 > 1

2
⇔ γ0 > 0 means that the extremal

point − β

2γ0
= 0 is the minimal point of the bathtub-shaped probability

density.

Again, by the proposition 6.3.17, any slight decrease of the value of σ2

lower than σ2
X,L would mean − β

2γ
< 0 implying that the probability density

is not uni-extremal anymore. This means nothing, but the very fact that
the bathtub-shapeliness is retained, if σ2 ≥ σ2

X,L and the bathtub-
shapeliness is marginal, if σ2 = σ2

X,L.
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Conclusively, the probability density is bathtub-shaped within this subin-
terval.

This completes the proof of the proposition 6.3.19.

Remark 6.3.12. For µ1 > 1
2
, in course of the movement of σ2 from 0 to

µ1(1 − µ1), then the following are therefore the cases:

• If γ < 0, then − β

2γ
is made to move from µ1 to +∞.

• If γ > 0, then − β

2γ
is made to move from −∞ to µ1,1.

In each of the above cases, − β

2γ
is made to move from left to right, as stated

by the proposition 6.3.17.
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Proposition 6.3.20 (For µ1 = 1
2
, the probability densities are classi-

fied into symmetric uni-extremal and constant types).

Proof of the proposition 6.3.20. By the proposition 6.3.6 (of lemma
7), µ1 = 1

2
⇔ β + γ = 0, i.e. β = −γ is the case here and therefore the

extremal point in this case is no different from − β

2γ
= 1

2
.

This means, − β

2γ
does not change with σ2.

So, the case of β = −γ = 0 for a particular value of σ2 is necessarily the case
that cannot to be left out of consideration. Obviously, the case of β = γ = 0
for µ1 = 1

2
and σ2 = 1

12
is nothing different from the representation of the

constant probability distribution.

By keeping this in mind, the course of change of σ2 from 0 to µ1(1 − µ1) =
1
4
, the changing behaviors of β and γ (= −β) are described in three

disjoint subintervals (one of which is a singleton subset) of the interval
(0, 1

4
) individually:

1. The subinterval given by 0 ≤ σ2 < σ2
X,U = 1

12
: Correspondingly,

within this subinterval, we have the following:

• +∞ ≥ β > 0.

• −∞ ≤ γ (= −β) < 0.

• − β

2γ
= 1

2

which says that, at σ2 = σ2
X,U = 1

12
, we must necessarily have β = 0, γ = 0.

Here, 0 < µ1 = 1
2

= − β

2γ
< 1 means that the probability density must

necessarily be uni-extremal.

Moreover, by the propositions 6.3.8 and 6.3.9 with regard to γ < 0, the
extremal point − β

2γ
= 1

2
is the maximal point of the uni-modal probability

density.

Again, any slight increase of the value of σ2 higher than σ2
X,U = 1

12
would

mean that the probability density is not uni-modal anymore. This means
nothing, but the very fact that the uni-modality is retained, if σ2 < σ2

X,U

and the uni-modality is marginally violated, if σ2 = σ2
X,U or γ = 0.
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Conclusively, the probability density is uni-modal within this subinterval.

2. The singleton subset given by σ2 = σ2
X,U = σ2

X,L = 1
12

: Correspond-
ingly, we have the following:

• β = 0.

• γ (= −β) = 0.

which says that the probability is constant at this singleton point subset
described by σ2 = 1

12
.

3. The subinterval given by 1
12

= σ2
X,L < σ2 ≤ 1

4
: Correspondingly,

within this subinterval, we have the following:

• 0 > β ≥ −∞.

• 0 < γ (= −β) ≤ +∞.

• − β

2γ
= 1

2

which says that, at σ2 = 1
4
, we have β = −∞, γ = +∞ and − β

2γ
= 1

2
.

Here, 0 < µ1 = 1
2

= − β

2γ
< 1 means that the probability density must

necessarily be uni-extremal.

Moreover, by the propositions 6.3.8 and 6.3.9 with regard to γ > 0, the
extremal point − β

2γ
= 1

2
is the minimal point of the bathtub-shaped

probability density.

Again, any slight decrease of the value of σ2 lower than σ2
X,L = 1

12
would

mean that the probability density is not bathtub-shaped anymore. This
means nothing, but the very fact that the bathtub-shapeliness is retained,
if σ2 > σ2

X,L and the bathtub-shapeliness is marginally violated, if
σ2 = σ2

X,L or γ = 0.

Conclusively, the probability density is bathtub-shaped within this subin-
terval.

This completes the proof of the proposition 6.3.20.
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6.3.14 Graphical illustrations

Example 6.3.1 (An example for µ1 = 0.45 < 1
2
). In that case, we must

have

• σ2
X,U = 0.0784466 and corresponding to d = (µ1, σ

2
X,U + µ2

1) we have

fX|{d}(x) = 1.2129e−0.629682x2

• σ2
X,L = 0.0850579 and corresponding to d = (µ1, σ

2
X,L + µ2

1) we have

fX|{d}(x) = 1.4502e−1.16163x+0.580817x2
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Uni-modal p.d.f. 1.2129e−0.629682x2
for µ1 = 0.45
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Bathtub-shaped p.d.f. 1.4502e−1.16163x+0.580817x2
for µ1 = 0.45
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Example 6.3.2 (An example for µ1 = 0.65 > 1
2
). In that case, we must

have

• σ2
X,U = 0.0602757 and corresponding to d = (µ1, σ

2
X,U + µ2

1) we have

fX|{d}(x) = 0.189806e4.43272x−2.21636x2

• σ2
X,L = 0.0786525 and corresponding to d = (µ1, σ

2
X,L + µ2

1) we have

fX|{d}(x) = 0.492934e1.7033x2
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Uni-modal P.d.f. 0.189806e4.43272x−2.21636x2
for µ1 = 0.65
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Bathtub-shaped P.d.f. 0.492934e1.7033x2
for µ1 = 0.65
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This completes our discussions about the determinations of the marginal
variances of X. Just for the sake of complete clarity, let us come to the
following summarized statement:

Statement 6.3.6 (The summary for the role of marginal variances).
Let us recapitulate the most important points that we have discussed in this
very subsection

• For every µ1 ∈ (0, 1), we have µ
(1)
Y = a+(b−a)µ1 ∈ (a, b) and uniquely

determined variances σ2
X,U and σ2

X,L, such that σ2
Y,U = (b−a)2σ2

X,U and
σ2

Y,U = (b − a)2σ2
X,U

• For µ1 6= 1
2
, σ2

X,U < σ2
X,L and henceforth σ2

Y,U < σ2
Y,L, which corresponds

to the case of uni- extremal distributions

• For µ1 = 1
2
, σ2

X,U = σ2
X,L = 1

12
and henceforth σ2

Y,U = σ2
Y,L = (b−a)2

12
,

which corresponds to the merged case of uniform distribution

• The uni-modal nature of the probability distribution necessitates
γ < 0 and the bathtub-shapeliness nature of the probability distribution
necessitates γ > 0.

However, none of these conditions with regard to the sign of γ is
sufficient.

• In case γ 6= 0 and at the same time, the probability distribution is not
uni- extremal, then it is undoubtedly a monotonic probability distribu-
tion and in that case, −β

2γ
/∈ (0, 1).
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6.3.15 The monotonic character as special cases

For any given value of µ1 lying strictly between 0 and 1, the probability
density curve of X defined by of the probability density function denoted by

fX|{d}(x) = eβx+γx2

1∫
0

eβt+γt2dt

for d = (µ1, µ2) could be either strictly monoton-

ically increasing or strictly monotonically decreasing under certain
conditions.

This monotonicity takes place, when the variance σ2 = µ2 − µ2
1 happens to

lie strictly between σ2
X,U and σ2

X,L, i.e. when

σ2
X,U < σ2 < σ2

X,L (6.69)

Our objective in this subsection shall be to examine, when the density curve is
strictly monotonically increasing and when strictly monotonically decreasing.

For this, let state and prove the following proposition:

Proposition 6.3.21 (The monotonicity of the density function fX|{d}(x)).
If the probability density function fX|{d}(x) happens to be monotonic, then the
following hold:

• fX|{d}(x) is strictly monotonic increasing, if µ1 > 1
2

• fX|{d}(x) is strictly monotonic decreasing, if µ1 < 1
2

Proof of the proposition 6.3.21. In order to prove the proposition, we shall
discuss the four possible cases that arise.

Case 1: The density curve fX|{d}(x) is strictly monotonically decreasing,
when

• the extremal point −β

2γ
happens to be the left of 0, i.e. −β

2γ
< 0 and

• by (6.48), γ < 0 implies that the extremal point situated on the left
of 0 is maximum.
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and therefore, by simultaneous consideration of −β

2γ
< 0 and γ < 0, we get

−β > 0 ⇒ β < 0

⇒ β + γ < γ

⇒ β + γ < γ < 0 (∵ γ < 0)

⇒ β + γ < 0

⇔ µ1 <
1

2
( by the step 2 of the theorem 6.3.1 )

(6.70)

Case 2: The density curve fX|{d}(x) is strictly monotonically decreasing,
when

• the extremal point −β

2γ
happens to be the right of 1, i.e. −β

2γ
> 1 and

• by (6.48), γ > 0 implies that the extremal point situated on the right
of 1 is minimum.

and therefore, by simultaneous consideration of −β

2γ
> 1 and γ > 0, we get

−β > 2γ ⇒ β < −2γ

⇒ β + γ < −γ

⇒ β + γ < −γ < 0 (∵ γ > 0)

⇒ β + γ < 0

⇔ µ1 <
1

2
( by the step 2 of the theorem 6.3.1 )

(6.71)

Case 3: The density curve fX|{d}(x) is strictly monotonically increasing,
when

• the extremal point −β

2γ
happens to be the left of 0, i.e. −β

2γ
< 0 and

• by (6.48), γ > 0 implies that the extremal point situated on the left
of 0 is minimum.

and therefore, by simultaneous consideration of −β

2γ
< 0 and γ > 0, we get

−β < 0 ⇒ β > 0

⇒ β + γ > γ

⇒ β + γ > γ > 0 (∵ γ > 0)

⇒ β + γ > 0

⇔ µ1 >
1

2
( by the step 2 of the theorem 6.3.1 )

(6.72)
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Case 4: The density curve fX|{d}(x) is strictly monotonically increasing,
when

• the extremal point −β

2γ
happens to be the right of 1, i.e. −β

2γ
> 1 and

• by (6.48), γ < 0 implies that the extremal point situated on the right
of 1 is maximum.

and therefore, by simultaneous consideration of −β

2γ
> 1 and γ < 0, we get

−β < 2γ ⇒ β > −2γ

⇒ β + γ > −γ

⇒ β + γ > −γ > 0 (∵ γ < 0)

⇒ β + γ > 0

⇔ µ1 >
1

2
( by the step 2 of the theorem 6.3.1 )

(6.73)

Conclusively, in cases, when (6.69) holds, i.e. if σ2
X,U < σ2 < σ2

X,L, then
the probability density curve of X is strictly monotonically increasing or
decreasing according as

µ1 ≷ 1

2
(6.74)

and hence our proposition 6.3.21 gets proved.
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6.3.16 Summary of probability density curves

The characteristics of the probability density curves of X can be briefly
summarized with respect to the availability of moments one or two moments.
In other words, assuming X to be continuous only, in monotone cases, the
knowledge of µ1 is necessary, whereas in uni- extremal cases, the knowledge
of µ1 and µ2 is necessary.

It is a well known fact that, in general, any construction of a probability
density function necessitates, at the very least, the following:

• the range of variability of the random variable

• a certain number m ∈ N0 of moments

As we have already mentioned, we shall however confine ourselves to the
cases for m ∈ {0, 1, 2}, because we are principally interested in the cases of
uniform, monotonic and uni- extremal probability distributions.

Without any loss of generality, we shall confine ourselves to the usage of
the random variable X only (for the time being, we confine ourselves to the
continuous X only), as the random variable Y is basically nothing,
but a linear transformation of X. We trivially know that if no moments
of probability distribution is available, i.e. m = 0, then the constructed
probability distribution cannot be anything different from the well known
uniform distribution.

In this subsection, we shall summarize the following cases that have been
already discussed:

1. The range of variability of X being [0, 1], how can the value of the
first moment of X, namely µ1, determine the type of the probability
distribution ?

2. The range of variability of X being [0, 1], how can the values of the
first and the second moment of X, namely µ1 and µ2, determine the
type of the probability distribution ?
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Now, let us discuss the above two cases one by one:

Case 1:
Here, we must have d = (µ1), thereby giving fX|{d}(x) = eβx

1∫
0

eβtdt

and thus

1. if 0 < µ1 < 1
2
, then β < 0 and thus the probability distribution is

strictly monotonically decreasing.

2. if µ1 = 1
2
, then β = 0 and thus the probability distribution is uniform.

3. if 1
2

< µ1 < 1, then β > 0 and thus the probability distribution is
strictly monotonically decreasing.

Case 2:

Here, we must have d = (µ1, µ2), thereby giving fX|{d}(x) = eβx+γx2

1∫
0

eβt+γt2dt

and

thus

1. For µ1 6= 1
2
,

• if µ2
1 < µ2 ≤ σ2

X,U + µ2
1, then the probability distribution is uni-

modal.

• if σ2
X,U + µ2

1 < µ2 < σ2
X,L + µ2

1, then the probability distribution is
monotonic and in fact

– if µ1 < 1
2

then it is strictly monotonically decreasing

– if µ1 > 1
2

then it is strictly monotonically increasing

• if σ2
X,L + µ2

1 ≤ µ2 < µ1, then the probability distribution is
bathtub- shaped.

2. For µ1 = 1
2
,

• if 1
4

< µ2 < 1
12

+ 1
4

= 1
3
, then the probability distribution is

symmetric uni- modal and is symmetric about x = 1
2
.

• if µ2 = 1
3
, then the probability distribution is uniform.

• if 1
12

+ 1
4

= 1
3

< µ2 < 1
2
, then the probability distribution is

symmetric bathtub- shaped and is symmetric about x = 1
2
.
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A Brief Note: Now, we shall come to the discrete case of X. If X happens
to be a discrete random variable, then the same rules may be applied. These
rules may be probably better applicable for large values of N . However, the
rules cannot be derived exclusively with the help of derivatives, with the help
of which the extrema values could be determined.

6.3.17 The characterizing expression

Till now, we have characterized the probability distributions of X with sub-
ject to the moments, mainly with regard to the probability density curves
of a continuous X. Trivially, the characterization of the probability distri-
butions of Y with subject to the moments means nothing more than a pure
and simple linear transformation X = Y −a

b−a
, such that a = y1 and b = yN

in case Y happens to be discrete for XY = {y1, y2, . . . , yN}.

We know that

• the probability mass function or the probability density function of Y
is denoted by fY |{dY } = eλ0+λ1y+λ2y2

, y ∈ XY

• the probability mass function or the probability density function of
X = Y −a

b−a
is denoted by fX|{d} = eα+βx+γx2

, x ∈ XX

Cases may arise, when the users, who use the software programs accepting the
moments of the random variable Y = a + (b− a)X as inputs and deliver the
λ0, λ1 and λ2 as outputs, wish to have the characterization of the probability
distribution of Y with subject to the coefficients λ0, λ1 and λ2.

In this subsection, we shall characterize the probability distributions of Y
when its first two moments are given as inputs, with subject to the
output values of λ0, λ1 and λ2.

The function fY |{dY }(y), y ∈ XY , (with regard to x = y−a

b−a
) is therefore

rewritten in the following form, denoted as the characterizing expression,
the characterizing elements being λ̃ and µ̃ ( here, notably, K > 0 and
σ2

Y = V ar[Y ] > 0 ):
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fY |{dY }(y) = Ae
β

b−a
(y−a)+ γ

(b−a)2
(y−a)2

=
K

σY

√
2π

e
λ̃
(

y−µ̃
σY

)2

, y ∈ XY (6.75)

such that

1

A
=





N∑
j=1

eβxj+γx2
j , : Y is discrete, such that xj =

yj−a

b−a

(b − a)
1∫
0

eβx+γx2
dx : Y is continuous, such that x = y−a

b−a

(6.76)
Notably,

• f
′

Y |{dY }(µ̃) = 0

• f
′′

Y |{dY }(µ̃) = 2λ̃K

σ2
Y

√
2π

≷ 0 according as λ̃ ≷ 0

Therefore, the utility of this very characterizing expression (6.75) is that it
enables us to see the following immediately:

• if λ̃ = 0, then the probability distribution of Y is uniform.

• if λ̃ < 0, together with µ̃ < a, then the probability distribution of Y is
strictly monotonically decreasing.

• if λ̃ > 0, together with µ̃ > b, then the probability distribution of Y is
strictly monotonically decreasing.

• if λ̃ < 0, together with µ̃ > b, then the probability distribution of Y is
strictly monotonically increasing.

• if λ̃ > 0, together with µ̃ < a, then the probability distribution of Y is
strictly monotonically increasing.

• if λ̃ < 0, together with a ≤ µ̃ ≤ b, then the probability distribution of
Y is uni- modal.

• if λ̃ > 0, together with a ≤ µ̃ ≤ b, then the probability distribution of
Y is bathtub- shaped.
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However, if the probability distribution is multi-extremal, then the above
form has absolutely no sense.

Here, for to evaluate the values of λ̃ and µ̃ in terms of λ0, λ1 and λ2 so as to
give the characterizing expression, we proceed as follows:

γx2 + βx =
γ

(b − a)2
(y − a)2 +

β

b − a
(y − a)

=
γ

(b − a)2

{
(y − a)2 +

β

γ
(b − a)(y − a)

}

=
γ

(b − a)2

{
y2 − 2ay + a2 +

β

γ
(b − a)y − β

γ
a(b − a)

}

=
γ

(b − a)2

{
y2 − 2

(
a − β

2γ
(b − a)

)
y + a2 − β

γ
a(b − a)

}

=
γ

(b − a)2

{
y −

(
a − β

2γ
(b − a)

)}2

− β2

4γ
(6.77)

Therefore, with the help of the following relation

fY |{dY }(y) = Ae
γ

(b−a)2
[y−(a− β

2γ
(b−a))]

2−β2

4γ =
K

σY

√
2π

e
λ̃
(

y−µ̃
σ

)2

(6.78)

by comparing the coefficients of y in the expansion of the expressions of the
power of e, we arrive at

• µ̃ = a − β

2γ
(b − a) = µ

(1)
Y + δM .

If Y is continuous, then µ̃ is the extremum of the curve fY |{dY }(y) and

in that case, µ̃ is the mode of the probability distribution of Y , if λ̃ < 0.
δM gives the difference between µ

(1)
Y and the extremum.

• K = AσY

√
2πe−

β2

4γ

• λ̃ =
γσ2

Y

(b−a)2
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Finally, the values of λ0, λ1 and λ2 are given as follows:

• λ0 = log
(

K

σY

√
2π

)
+ λ̃ µ̃2

σ2
Y

• λ1 = −2λ̃ µ̃

σY

• λ2 = λ̃
σ2

Y
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6.3.18 Probability distributions represented by bound-
ary points defined by (µ1, µ2) ∈ ∂D2

Let us discuss the special cases referred to the uni-extremal probability dis-
tributions of X one by one

1. Case for (µ2 = µ2
1, 0 < µ1 < 1) ⇔ (β = +∞, γ = −∞):

fX|{(µ1,µ2
1)}(x) can be defined to represent a discrete degenerated

probability distribution defined by fX|{(µ1,µ2
1)}(x) = 1 for x = µ1

2. Case for (µ2 = µ1, 0 < µ1 < 1) ⇔ (β = −∞, γ = +∞):

fX|{(µ1,µ1)}(x) can be defined to represent a bernoulli probability
distribution defined by

fX|{(µ1,µ1)}(x) = 1 − µ1 for x = 0

= µ1 for x = 1

3. Case for (µ2 = µ1 = 0) ⇔ (β = −∞, γ = −∞):

fX|{(0,0)}(x) can be defined to represent a discrete degenerated prob-
ability distribution defined by fX|{(0,0)}(x) = 1 for x = 0.

This is the special case of the bernoulli distribution for µ1 = 0.

4. Case for (µ2 = µ1 = 1) ⇔ (β = +∞, γ = +∞):

fX|{(1,1)}(x) can be defined to represent a discrete degenerated prob-
ability distribution defined by fX|{(1,1)}(x) = 1 for x = 1.

This is the special case of the bernoulli distribution for µ1 = 1.

Notably, these special cases are basically referred to

• degenerated probability distributions (i.e. for µ2 = µ2
1), each of which

have a minimum variance, i.e. σ2 = 0

• bernoulli probability distributions (i.e. for µ2 = µ1), each of which
have a maximum variance, i.e. σ2 = µ2 − µ2

1 = µ1(1 − µ1)

This fulfills the completeness of our analysis of uni-extremal minimum
information probability distributions.



6.3. M. I. UNI-EXTREMAL PROBABILITY DISTRIBUTIONS 271

6.3.19 Usages of uni-extremal probability distributions

The minimum information probability distributions did have two important
usages in the field of the science of stochastics so far. In fact, as on date
(March 2012), the existing limited company, named Stochastikon GmbH
situated in Würzburg, GERMANY did make use of

• the software program developed by me, which computes λ0, λ1 and λ2

values in uni- extremal discrete cases as well as

• the software program developed by me, which computes λ0, λ1 and λ2

values in uni- extremal continuous cases

The development of both these above stated software programs, together
with the development of the software programs for monotone cases is the
principle aim of this dissertation. The two important usages of the uni-
extremal case based software programs, as stated above, are hereby listed as
follows:

1. the continuous case based software program for the computation of
λ0, λ1 and λ2 has been intensively used to develop the software pack-
age named LEXPOL and the development took place in the year 2006.
The description of LEXPOL is referred to ([42]). This software package
computes the optimal prediction intervals of maximum rotor load
on the rotor blades of a wind turbine. This rotor load is due to the
blast caused by the natural wind.

This optimal prediction interval in each case is computable by the re-
peated and multiple usages of the continuous case based software
program developed by me.

2. both the discrete and the continuous case based software programs
( for the computation of λ0, λ1 and λ2 ) have been used to develop
further software programs in form of Java classes by me to compute
optimal prediction intervals in cases when both the first and the
second moment are estimated by interval estimation methods. That
is, the interval estimations of both the first and the second moment
are predetermined and given as inputs, after which optimal prediction
intervals are given by my software programs as outputs.
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Importantly, the utility of the software programs for uni- extremal cases in
cases of both discrete and continuous lies principally on the very fact that

• the bell shape or the bathtub shape can be shifted to the left or to
the right by adjusting the first moment carefully.

The first moment, which is known to be the position parameter,
is therefore can be used to predetermine the position of the bell
shaped or of the bathtub shaped probability distribution curve.

• the broadness of the bell shapeliness or the bathtub shapeliness can
be adjusted by adjusting the variance (or equivalently the second
moment) carefully.

The second moment, which is known to be the shape parameter, is
therefore can be used to predetermine the shape (i.e the thickness
or the thinness) of the bell shaped or of the bathtub shaped probability
distribution curve.



Chapter 7

Standard parameters of
standard m. i. probability
distributions

As already mentioned, this dissertation aims primarily at developing a com-
puter code for solving the problem of determination of an appropriate prob-
ability distribution fY |{dY }(y), y ∈ XY ({dY }) in cases, when the co-domain
of the random structure function belongs to the constant, the minimum in-
formation monotone and the minimum information uni-extremal family re-
spectively.

It may be however for important use to learn about the standard parameters
of these probability distributions, notably the quantile functions that are
rigorously used for prediction procedures.

A feature size of a probability distribution may be equivalently termed as
a probability function or a parameter1 of a probability distribution.

With regard to the uni-extremal cases, as discussed, I have developed the
software programs for the computations of λ0, λ1 and λ2, both in
discrete and continuous cases. Further software Java classes have
been developed by me meant for computing the quantile functions.
The software Java classes for computing quantile functions together with
the software Java classes meant for computing these aforesaid λ0, λ1, λ2 val-

1The German word for parameter (of a probability distribution) could be given
as Kenngröße (einer Wahrscheinlichkeitsverteilung)
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ues are combined together to develop the software Java classes to give
prediction intervals as program outputs.

In fact, the computed standard minimum information probability distribu-
tions do basically serve to determine the situation based prediction in-
tervals.

However, the construction of constant probability distributions are rather
trivial and the discussions regarding this are therefore avoided. Not only
this, any programming work is too unnecessarily trivial. In fact, a constant
probability distribution and a constant minimum information probability
distribution have absolutely no difference.

In this chapter, in order to outline the relevant properties of the standard
minimum information probability distributions, we shall briefly restate an
important fact that the boundedness of the moments of Y is basically the
result of the compactness of the range of variability of Y , namely XY ({dY }).

Because of this compactness of the range of variability XY ({dY }) of Y , special
cases do arise, when the elements of XY ({dY }) in case of a discrete Y are
in an arithmetic progression with a common difference ∆. In that case, if
XY ({dY }) = {y1, y2, . . . , yN}, then

yj = y1 + (j − 1)∆ with ∆ ∈ R \ {0} and j ∈ {1, 2, . . . , N} (7.1)

where ∆ denotes the increment or the decrement according as ∆ is positive
or negative. With the help of this particular choice of XY ({dY }) in a given
situation, the essential feature sizes, namely the probability functions and
the moments of special interests can be derived.
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For the purpose of carrying out the derivations in cases when the discrete
elements of XY ({dY }) are in arithmetic progression as stated in (7.1), a linear
transformation is introduced by an introduction of the random variable Z,
such that Y = y1 +∆Z. The following expressions are deduced with the help
of solving certain difference equations:

E[Z] =
1

N

N∑

k=1

(k − 1) =
1

2
(N − 1) (7.2)

E[Z2] =
1

N

N∑

k=1

(k − 1)2 =
1

6
(N − 1)(2N − 1) (7.3)

E[Z3] =
1

N

N∑

k=1

(k − 1)3 =
1

N

(
N

2
(N − 1)

)2

(7.4)

E[Z4] =
1

N

N∑

k=1

(k − 1)4 =
1

5
(N − 1)

(
N3 − 3

2
N2 +

1

6
N +

1

6

)

(7.5)

In course of discussions in this chapter, there shall be certain defini-
tions and corollaries, which are too trivial to be elaborated or be formally
proven. In such cases, such elaborations or probably proofs are unneces-
sary and therefore ignored.

However, the important deductions of sizable lengths of this chapter are
formally presented in form of propositions.
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7.1 Monotone probability distribution

7.1.1 Discrete monotone probability distribution

As usual, we assume that the range of variability of Y |{dY }

XY ({dY }) = {y1, y2, . . . , yN} (7.6)

is known, the elements of which are arranged in the ascending order, i.e.,
y1 < y2 < . . . < yN . In this case, the minimum information probability dis-
tribution is, in general, an approximation. For obtaining it, besides the range
of variability, the actual value dY = (µ

(1)
Y ) (i.e. the numerical value of the

first moment) is additionally needed. The minimum information distribution
is given by the following probability mass function of Y |{dY }:

fY |{dY }(y) = eλ0+λ1y for y ∈ XY ({dY }) (7.7)

with λ0 and λ1 6= 0 uniquely determined by the solution of the following two
equations:

N∑

j=1

eλ0+λ1yj = 1 (7.8)

N∑

j=1

yje
λ0+λ1yj = µ

(1)
Y (7.9)

If

• λ1 > 0, then the probability distribution has a monotonic increasing
probability mass function,

• λ1 < 0, then the probability distribution has a monotonic decreasing
probability mass function

The probability distribution (7.7) has the following characteristic properties:

Definition 7.1.1 (Probability mass function for j = 1, 2, . . . , N).

fY |{dY }(yj) =
eλ1yj

N∑
k=1

eλ1yk

(7.10)
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Definition 7.1.2 (Distribution and survival functions).

FY |{dY }(yj) =

j∑
k=1

eλ1yk

N∑
k=1

eλ1yk

(7.11)

F Y |{dY }(yj) =

N∑
k=j

eλ1yk

N∑
k=1

eλ1yk

(7.12)

Definition 7.1.3 (Quantile functions). For z ∈ (0, 1], the upper and the
lower quantile functions are given as:

Q
(u)
Y |{dY }(z) = yj1 (7.13)

such that j1 is given by

•
j1−1∑
k=1

eλ1yk

N∑
k=1

eλ1yk

< z ≤
j1∑

k=1
eλ1yk

N∑
k=1

eλ1yk

and
Q

(ℓ)
Y |{dY }(z) = yj2 (7.14)

such that j2 is given by

•
N∑

k=j2+1
eλ1yk

N∑
k=1

eλ1yk

< z ≤
N∑

k=j2

eλ1yk

N∑
k=1

eλ1yk

Definition 7.1.4 (Failure intensity function).

aY |{dY }(yj) =
fY |{dY }(yj)

F Y |{dY }(yj)
=

eλ1yj

N∑
k=j

eλ1yk

(7.15)

Definition 7.1.5 (Moments).

E[(Y |{dY })i] =

N∑
k=1

yi
ke

λ1yk

N∑
k=1

eλ1yk

(7.16)
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Definition 7.1.6 (Central moments).

Ec[(Y |{dY })i] = E

[(
Y |{dY } − E[Y |{dY }]

)i
]

=

N∑
k=1

(
yk − E[Y |{dY }]

)i

eλ1yk

N∑
k=1

eλ1yk

(7.17)

Definition 7.1.7 (Standardized moments).

Es[(Y |{dY })i] = E

[(
Y |{dY } − E[Y |{dY }]

σ

)i
]

=

N∑
k=1

(
yk−E[Y |{dY }]

σ

)i

eλ1yk

N∑
k=1

eλ1yk

(7.18)

such that σ =
√

Ec[(Y |{dY })2]

Definition 7.1.8 (Median).

Me[Y ] =
Q

(u)
Y (0.5) + Q

(ℓ)
Y (0.5)

2
(7.19)

Definition 7.1.9 (Stochastic entropy).

H
(
PY |{dY }

)
= −

(
λ0 + λ1µ

(1)
Y

)
= −


λ0 + λ1

N∑
k=1

yke
λ1yk

N∑
k=1

eλ1yk


 (7.20)
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If the elements of the range of variability of Y |{dY } follow an arithmetic
progression described by (7.1), the probability functions are given as fol-
lows:

Statement 7.1.1 (Important summations).

N∑

k=1

eλ1yk =
N∑

k=1

eλ1(y1+(k−1)∆) = eλ1y1
1 − eλ1∆N

1 − eλ1∆
(7.21)

j∑

k=1

eλ1yk = eλ1y1
1 − eλ1∆j

1 − eλ1∆
(7.22)

N∑

k=j+1

eλ1yk =eλ1y1
1 − eλ1∆N −

(
1 − eλ1∆j

)

1 − eλ1d
=eλ1y1

eλ1∆j − eλ1∆N

1 − eλ1∆
(7.23)

With this, we arrive at the following corollaries and propositions:

Corollary 7.1.1 (Probability mass function for j = 1, 2, . . . , N).

fY |{dY }(yj) =
eλ1yj

N∑
k=1

eλ1yk

=
eλ1y1eλ1∆(j−1)

eλ1y1 1−eλ1∆N

1−eλ1∆

=
eλ1∆(j−1)

(
1 − eλ1∆

)

1 − eλ1∆N
(7.24)

Corollary 7.1.2 (Distribution and survival functions).

FY |{dY }(yj) =

j∑
k=1

eλ1yk

N∑
k=1

eλ1yk

=
1 − eλ1∆j

1 − eλ1∆

1 − eλ1∆

1 − eλ1∆N
=

1 − eλ1∆j

1 − eλ1∆N
(7.25)

F Y |{dY }(yj) =

N∑
k=j

eλ1yk

N∑
k=1

eλ1yk

=
eλ1∆(j+1) − eλ1∆N

1 − eλ1∆

1 − eλ1∆

1 − eλ1∆N

=
eλ1∆(j+1) − eλ1∆N

1 − eλ1∆N

(7.26)
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Corollary 7.1.3 (Quantile functions). For every given z ∈ (0, 1], the
upper and lower quantiles are given as

Q
(u)
Y |{dY }(z) = yj1 = y1 + (j1 − 1)∆ (7.27)

with subject to the inequality

1 − eλ1∆(j1−1)

1 − eλ1∆N
< z ≤ 1 − eλ1∆j1

1 − eλ1∆N
(7.28)

and

Q
(ℓ)
Y |{dY }(z) = yj2 = y1 + (j2 − 1)∆ (7.29)

with subject to the inequality

eλ1∆j2 − eλ1∆N

1 − eλ1∆N
< z ≤ eλ1∆(j2−1) − eλ1∆N

1 − eλ1∆N
(7.30)

As a matter of fact, the above two inequalities (7.30) and (7.28) follow directly
by using (7.21), (7.22) and (7.23) on (7.14) and (7.13).

Corollary 7.1.4 (Failure intensity function).

aY |{dY }(yj) =
eλ1yj

N∑
k=j

eλ1yk

= eλ1∆(j−1) 1 − eλ1∆

eλ1∆(j+1) − eλ1∆N

=
eλ1(j−1)∆(1 − eλ1∆)

eλ1∆(j+1) − eλ1N
(7.31)

Proposition 7.1.1 (Moments).

E[(Y |{dY })i] =

(
eλ1∆−1

eλ1∆N−1

) i∑

j=0

(
i

j

)
yi−j

1 ∆j

(
N∑

k=1

(k−1)jeλ1∆(k−1)

)

=

(
eλ1∆−1

eλ1∆N−1

) i∑

j=0

(
i

j

)
yi−j

1 ∆j dj

dξj

{
eNξ − 1

eξ − 1

}∣∣∣∣
ξ=λ1∆

(7.32)
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Proof of the proposition 7.1.1.

E[(Y |{dY })i] = µ
(i)
Y =

N∑
k=1

yi
ke

λ1∆(k−1)

N∑
k=1

eλ1∆(k−1)

=

N∑
k=1

(y1 + (k − 1)∆)i eλ1∆(k−1)

N∑
k=1

eλ1∆(k−1)

=

N∑
k=1

i∑
j=0

(
i

j

)
yi−j

1 {(k − 1)∆}j eλ1∆(k−1)

N∑
k=1

eλ1∆(k−1)

=

(
1 − eλ1∆

1 − eλ1∆N

) i∑

j=0

(
i

j

)
yi−j

1

(
N∑

k=1

{(k − 1)∆}j eλ1∆(k−1)

)

=

(
eλ1∆ − 1

eλ1∆N − 1

) i∑

j=0

(
i

j

)
yi−j

1 ∆j

(
N∑

k=1

(k − 1)jeλ1∆(k−1)

)
(7.33)

=

(
eλ1∆ − 1

eλ1∆N − 1

) i∑

j=0

(
i

j

)
yi−j

1 ∆j d

dξ

{
N∑

k=1

(k − 1)j−1e(k−1)ξ

}∣∣∣∣∣
ξ=λ1∆

...

=

(
eλ1∆ − 1

eλ1∆N − 1

) i∑

j=0

(
i

j

)
yi−j

1 ∆j dj

dξj

{
N∑

k=1

e(k−1)ξ

}∣∣∣∣∣
ξ=λ1∆

=

(
eλ1∆ − 1

eλ1∆N − 1

) i∑

j=0

(
i

j

)
yi−j

1 ∆j dj

dξj

{
eNξ − 1

eξ − 1

}∣∣∣∣
ξ=λ1∆

(7.34)

and this completes the deduction proposed by the proposition 7.1.1.

As a special case for i = 1,

Proposition 7.1.2 (The first moment).

E[Y |{dY }] = µ
(1)
Y = y1 + ∆

(
N−1+

N

eλ1∆N−1
− 1

eλ1∆−1

)
(7.35)
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Proof of the proposition 7.1.2.

E[Y |{dY }] = µ
(1)
Y = eλ1∆−1

eλ1∆N−1

[
y1

eλ1∆N−1

eλ1∆−1
+∆ d

dξ

(
eξN−1

eξ−1

)∣∣∣∣
ξ=λ1∆

]

= y1 + ∆ eλ1∆−1

eλ1∆N−1


 (eξ−1)(NeNξ)−(eNξ−1)eξ

(eξ−1)
2




∣∣∣∣∣∣
ξ=λ1∆

= y1 + ∆ eλ1∆−1

eλ1∆N−1


 NeNξ

eξ−1
−(eNξ−1)eξ

(eξ−1)
2




∣∣∣∣∣∣
ξ=λ1∆

(7.36)

= y1 + ∆

(
eλ1∆ − 1

)
Neλ1∆N − eλ1∆

(
eλ1∆N − 1

)

(eλ1∆ − 1) (eλ1∆N − 1)

= y1 + ∆

(
Neλ1∆N

eλ1∆N − 1
− eλ1∆

eλ1∆ − 1

)

= y1 + ∆

(
N

(
eλ1∆N − 1 + 1

)

eλ1∆N − 1
− eλ1∆ − 1 + 1

eλ1∆ − 1

)

= y1 + ∆

(
N − 1 +

N

eλ1∆N − 1
− 1

eλ1∆ − 1

)
(7.37)

and this completes the deduction proposed by the proposition 7.1.2.

Corollary 7.1.5 (Central moments). By setting
Y |{dY } = y1 + ∆Z|{dY }, we write

Ec[(Y |{dY })i] = µ
(c)
i = E

[(
Y |{dY } − µ

(1)
Y

)i
]

= E

[(
y1 + ∆Z|{dY } − y1 − ∆E[Z|{dY }]

)i
]

= ∆iEc[(Z|{dY })i] (7.38)

where

E[(Z|{dY })p] =

(
eλ1∆ − 1

eλ1∆N − 1

)
dp

dξp

{
eNξ − 1

eξ − 1

}∣∣∣∣
ξ=λ1∆

(7.39)

As a special case for i = 2, we arrive at the following proposition.

Proposition 7.1.3 (Variance (the second central moment)).

Ec
[
(Y |{dY })2

]
= σ2

Y

= ∆2

(eλ1∆−1)
2
(eλ1∆N−1)

2

{
eλ1∆(eλ1∆N−1)

2−N2eλ1∆N(eλ1∆−1)
2
}
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Proof of the proposition 7.1.3.

Ec[(Y |{dY })2] = µ
(c)
2 = σ2 = ∆2

{
E

[
Z|{dY }2

]
− (E[Z|{dY }])2}

= ∆2

{
eλ1∆−1

eλ1∆N−1

d2

dξ2

(
eNξ−1

eξ−1

)∣∣∣∣
ξ=λ1∆

−(E[Z|{dY }])2
}

= ∆2





eλ1∆−1

eλ1∆N−1

d
dξ


 NeNξ

eξ−1
−

eξ(eNξ−1)
(eξ−1)

2




∣∣∣∣∣∣
ξ=λ1∆

−(E[Z|{dY }])2





= ∆2





eλ1∆−1

eλ1∆N−1

d
dξ


 (N−1)eNξ+1

eξ−1
− eNξ−1

(eξ−1)
2




∣∣∣∣∣∣
ξ=λ1∆

−(E[Z|{dY }])2





= ∆2





eλ1∆−1

eλ1∆N−1


 (eξ−1)(N(N−1)eNξ)−((N−1)eNξ+1)eξ

(eξ−1)
2

−(eξ−1)
2
(NeNξ)−2(eNξ−1)(eξ−1)eξ

(eξ−1)
4




∣∣∣∣∣∣
ξ=λ1∆

−(E[Z|{dY }])2





= ∆2





eλ1∆−1

eλ1∆N−1


 N(N−1)eNξ

eξ−1
−

eξ((N−1)eNξ+1)
(eξ−1)

2 − NeNξ

(eξ−1)
2

+
2eξ(eNξ−1)
(eξ−1)

3




∣∣∣∣∣∣
ξ=λ1∆

−(E[Z|{dY }])2





= ∆2





eλ1∆−1

eλ1∆N−1


 N(N−1)eNξ

eξ−1
−(eξ−1+1)((N−1)eNξ+1)

(eξ−1)
2

− NeNξ

(eξ−1)
2 +

2(eξ−1+1)(eNξ−1)
(eξ−1)

3




∣∣∣∣∣∣
ξ=λ1∆

−(E[Z|{dY }])2





= ∆2





eλ1∆−1

eλ1∆N−1


 N(N−1)eNξ

eξ−1
− (N−1)eNξ+1

eξ−1
− (N−1)eNξ+1

(eξ−1)
2

− NeNξ

(eξ−1)
2 +2

(eNξ−1)
(eξ−1)

2 +2
(eNξ−1)
(eξ−1)

3




∣∣∣∣∣∣
ξ=λ1∆

−(E[Z|{dY }])2





= ∆2





eλ1∆−1

eλ1∆N−1


 (N−1)2eNξ−1

eξ−1
+

(3−2N)eNξ−3

(eξ−1)
2

+
2(eNξ−1)
(eξ−1)

3




∣∣∣∣∣∣
ξ=λ1∆

−(E[Z|{dY }])2





= ∆2





(N−1)2eλ1∆N−1

eλ1∆N−1
+

(3−2N)eλ1∆N−3

(eλ1∆−1)(eλ1∆N−1)
+ 2

(eλ1∆−1)
2

−
(
N−1+ N

eλ1∆N−1
− 1

eλ1∆−1

)2
}
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= ∆2

{
(N−1)2(eλ1∆N−1+1)−1

eλ1∆N−1
+

(3−2N)(eλ1∆N−1+1)−3

(eλ1∆−1)(eλ1∆N−1)

+ 2

(eλ1∆−1)
2 −


(N−1)2+ N2

(eλ1∆N−1)
2 + 1

(eλ1∆−1)
2

+
2N(N−1)

eλ1∆N−1
− 2(N−1)

eλ1∆−1
− 2N

(eλ1∆−1)(eλ1∆N−1)

)}

= ∆2

{
(N−1)2+

(N−1)2

eλ1∆N−1
− 1

eλ1∆N−1
+ 3−2N

eλ1∆−1

− 2N

(eλ1∆N−1)(eλ1∆−1)
+ 2

(eλ1∆−1)
2 −


(N−1)2+ N2

(eλ1∆N−1)
2

+ 1

(eλ1∆−1)
2 +

2N(N−1)

eλ1∆N−1
− 2(N−1)

eλ1∆−1
− 2N

(eλ1∆−1)(eλ1∆N−1)








= ∆2

{
(N−1)2−2N(N−1)−1

eλ1∆N−1
+

3−2N+2(N−1)

eλ1∆−1

+ 1

(eλ1∆−1)
2 − N2

(eλ1∆N−1)
2





= ∆2





1

eλ1∆−1
+ 1

(eλ1∆−1)
2 − N2

eλ1∆N−1
− N2

(eλ1∆N−1)
2





= ∆2





eλ1∆

(eλ1∆−1)
2 −

N2(eλ1∆N−1)+N2

(eλ1∆N−1)
2





= ∆2





eλ1∆

(eλ1∆−1)
2 − N2eλ1∆N

(eλ1∆N−1)
2





= ∆2

(eλ1∆−1)
2
(eλ1∆N−1)

2

{
eλ1∆(eλ1∆N−1)

2−N2eλ1∆N(eλ1∆−1)
2
}

(7.40)

and this completes the deduction proposed by the proposition 7.1.3.

Corollary 7.1.6 (Standardized moments).

Es[(Y |{dY })i] = µ
(s)
i = E

[(
Y |{dY } − E[Y |{dY }]

σ

)i
]

(7.41)

=

(
∆

σ

)i

Ec
[
(Z|{dY })i

]
(7.42)

=
{
(eλ1∆ − 1)(eλ1∆N − 1)A

}i
Ec

[
(Z|{dY })i

]

(7.43)
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such that

A =
±1√

eλ1∆(eλ1∆N − 1)2 − N2eλ1∆N(eλ1∆ − 1)2
(7.44)

where A ≷ 0 according as ∆ ≷ 0.

As special cases for i ∈ {3, 4}, the following corollaries for skewness and
kurtosis are given without proofs:

Corollary 7.1.7 (Skewness (the third standardized moment)).

Es
[
(Y |{dY })3

]
= µ

(s)
3 = A3{eλ1∆(1+eλ1∆)(1−e3λ1∆N)

−N3eλ1∆N(1+eλ1∆N)(1−e3λ1∆)

+3(N3−1)eλ1∆(N+1)(1−eλ1∆(N+1))

+3(N3+1)eλ1∆(N+1)(eλ1∆N−eλ1∆)}
(7.45)

Corollary 7.1.8 (Kurtosis (the fourth standardized moment)).

Es
[
(Y |{dY })4

]
= µ

(s)
4 = A4{eλ1∆(1+e4λ1∆N)(1+7eλ1∆+e2λ1∆)

−N4eλ1∆N(1+e4λ1∆)(1+eλ1∆N+e2λ1∆N)

−6(N4+4N2−7)e2λ1∆(N+1)

+2(2N4+6N2+3)eλ1∆(N+1)(1+e2λ1∆)

−2(3N4−6N2+14)eλ1∆(N+2)(1−e2λ1∆N)

+(4N4−6N2−4)eλ1∆(N+1)(1+e2λ1∆)(1+e2λ1∆N)}
(7.46)

Corollary 7.1.9 (Median).

Me[Y ] =
Q

(u)
Y |{dY }(0.5) + Q

(l)
Y |{dY }(0.5)

2

= y1 +
(u − 1)∆ + (l − 1)∆

2
= y1 +

(
u + l

2
− 1

)
∆

(7.47)

such that

1

1 − eλ1∆N
≤

(
1

1 − eλ1∆N
− 0.5

)
e−λ1∆u <

e−λ1∆

1 − eλ1∆N
(7.48)

eλ1∆

1−eλ1∆N
<

(
0.5 +

eλ1∆N

1 − eλ1∆N

)
e−λ1∆l≤ 1

1 − eλ1∆N
(7.49)
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Proposition 7.1.4 (Stochastic Entropy).

H(PY |{dY }) = log

(
1 − eλ1∆N

1 − eλ1∆

)
− λ1∆

(
N − 1 +

N

eλ1∆N − 1
− 1

eλ1∆ − 1

)

(7.50)

Proof of the proposition 7.1.4.

H(PY |{dY }) = −(λ0 + λ1E[Y |{dY }])

= − log




1
N∑

k=1

eλ1yk




−λ1

{
y1 + ∆

(
N − 1 +

N

eλ1∆N − 1
− 1

eλ1∆ − 1

)}

= log

(
eλ1y1

1 − eλ1∆N

1 − eλ1∆

)

−λ1y1 − λ1∆

(
N − 1 +

N

eλ1∆N − 1
− 1

eλ1∆ − 1

)

= log

(
1 − eλ1∆N

1 − eλ1∆

)

−λ1∆

(
N − 1 +

N

eλ1∆N − 1
− 1

eλ1∆ − 1

)
(7.51)

and this completes the deduction proposed by the proposition 7.1.4.
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7.1.2 Continuous monotone probability distribution

A considerable simplification is obtained, if the usage of the discrete mono-
tone probability distribution is replaced by the usage of the continuous mono-
tone probability distribution. Most of the probability functions of the con-
tinuous monotonic probability distribution are rather elementary and there-
fore are given simply in form of definitions and their associated corollaries.

Definition 7.1.10 (Probability density function for a ≤ y ≤ b).

fY |{dY }(y) =
λ1e

λ1y

eλ1b − eλ1a
(7.52)

Definition 7.1.11 (Distribution and survival functions for a ≤ y ≤ b).

FY |{dY }(y) =
eλ1y − eλ1a

eλ1b − eλ1a
(7.53)

F Y |{dY }(y) =
eλ1b − eλ1y

eλ1b − eλ1a
(7.54)

Definition 7.1.12 (Quantile functions for 0 < z ≤ 1).

Q
(u)
Y |{dY }(z) = yz (7.55)

with

yz = a +
1

λ1

log
[
1 + z

(
eλ1(b−a) − 1

)]
(7.56)

simply because FY |{dY }(yz) =
eλ1yz − eλ1a

eλ1b − eλ1a
= z

and
Q

(ℓ)
Y |{dY }(z) = yz (7.57)

with

yz = b +
1

λ1

log
[
1 − z

(
1 − e−λ1(b−a)

)]
(7.58)

simply because F Y |{dY }(yz) =
eλ1b − eλ1yz

eλ1b − eλ1a
= z
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Definition 7.1.13 (Failure intensity function).

aY |{dY }(y) =
fY |{dY }(y)

F Y |{dY }(y)
=

λ1

eλ1(b−y) − 1
(7.59)

Definition 7.1.14 (Moments).

E[(Y |{dY })i] =

b∫

a

yi λ1e
λ1y

eλ1b − eλ1a
dy (7.60)

Corollary 7.1.10 (Recursive relation between moments). From (7.60),
the general recursive relation between the moments can be deduced (for every
i ∈ N) as

E[(Y |{dY })i] =
bieλ1b − aieλ1a

eλ1b − eλ1a
− i

λ1

E[(Y |{dY })i−1] (7.61)

As a special case of (7.60) for i = 1,

Corollary 7.1.11 (The first moment).

E[Y |{dY }] =
beλ1b − aeλ1a

eλ1b − eλ1a
− 1

λ1

(7.62)

Definition 7.1.15 (Central moments).

Ec[(Y |{dY })i] = E[(Y |{dY } − E[Y |{dY }])i] (7.63)

=

b∫

a

(y − µ)i λ1e
λ1y

eλ1b − eλ1a
dy (7.64)

Corollary 7.1.12 (Recursive relation between central moments).
From (7.64), the general recursive relation between the central moments can
be deduced (for every i ∈ N) as

Ec[(Y |{dY })i] =
(b − µ)ieλ1b − (a − µ)ieλ1a

eλ1b − eλ1a
− i

λ
Ec[(Y |{dY })i−1]

=

(
1
λ
− (b−a)eλ1a

eλ1b−eλ1a

)i

eλ1b−
(

1
λ
− (b−a)eλ1b

eλ1b−eλ1a

)i

eλ1a

eλ1b − eλ1a

− i

λ
Ec[(Y |{dY })i−1]

(7.65)
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As a special case of (7.60) for i = 2, (of course Ec[Y |{dY }] = 0)

Corollary 7.1.13 (Variance (the second central moment)).

V [Y |{dY }] = Ec[(Y |{dY })2]

=

(
1
λ
− (b−a)eλ1a

eλ1b−eλ1a

)2

eλ1b−
(

1
λ
− (b−a)eλ1b

eλ1b−eλ1a

)2

eλ1a

eλ1b − eλ1a

=

{
(eλ1b − eλ1a) −λ1(b − a)eλ1a

}2
eλ1b

λ2
1(e

λ1b − eλ1a)3

−
{
(eλ1b − eλ1a) −λ1(b − a)eλ1b

}2
eλ1a

λ2
1(e

λ1b − eλ1a)3

=
1

λ2
1

− (b − a)2eλ1(a+b)

(eλ1b − eλ1a)2 (7.66)

Therefore, the standard deviation (σY ) of Y |{dY } is given by

Corollary 7.1.14 (The standard deviation).

σY =

√
(eλ1b − eλ1a)2 − λ2

1 (b − a)2 eλ1(a+b)

λ1 (eλ1b − eλ1a)
=

∆

λ1 (eλ1b − eλ1a)
(7.67)

by putting

∆ =

√
(eλ1b − eλ1a)2 − λ2

1 (b − a)2 eλ1(a+b) (7.68)

Definition 7.1.16 (Standardized moments).

Es[(Y |{dY })i] =

b∫

a

(
y − µ

(1)
Y

σY

)i

λ1e
λ1y

eλ1b − eλ1a
dy (7.69)

Corollary 7.1.15 (Recursive relation between standardized moments).
From (7.69), (7.67) and (7.68) the general recursive relation between the
standardized moments can be deduced (for every i ∈ N) as

Es[(Y |{dY })i] =

(
eλ1b−eλ1a−λ1(b−a)eλ1a

∆

)i

eλ1b

eλ1b − eλ1a

−

(
eλ1b−eλ1a−λ1(b−a)eλ1b

∆

)i

eλ1a

eλ1b − eλ1a

−i
(
eλ1b − eλ1a

)

∆
Es[(Y |{dY })i−1] (7.70)
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As a special cases of (7.60) for i ∈ {3, 4}, (of course Es[Y |{dY }] = 0)

Proposition 7.1.5 (Skewness (the third standardized moment)).

Sk[Y |{dY }] =
1

∆3

{
λ3

1(b − a)3eλ1(a+b)
(
eλ1b + eλ1a

)
− 2

(
eλ1b − eλ1a

)3
}

(7.71)

Proof of the proposition 7.1.5.

Sk[Y |{dY }] = Es
[
(Y |{dY })3

]

=

(
eλ1b−eλ1a−λ1(b−a)eλ1a

∆

)3

eλ1b −
(

eλ1b−eλ1a−λ1(b−a)eλ1b

∆

)3

eλ1a

eλ1b − eλ1a

− 3

∆
(eλ1b − eλ1a)

=
1

∆3(eλ1b − eλ1a)

[
(eλ1b − eλ1a)3(eλ1b − eλ1a)

+3(eλ1b − eλ1a)
{
λ2

1(b − a)2e2λ1a+λ1b − λ2
1(b − a)2e2λ1b+λ1a

}

−
{
λ3

1(b − a)3e3λ1a+λ1b − λ3
1(b − a)3e3λ1b+λ1a

}]

− 3

∆
(eλ1b − eλ1a)

=
(eλ1b − eλ1a)3 − 3(eλ1b − eλ1a)

{
λ2

1(b − a)2eλ1(a+b)
}

∆3

+
λ3

1(b − a)3eλ1(a+b)
(
eλ1b + eλ1a

)

∆3
− 3

∆
(eλ1b − eλ1a)

=
1

∆3

[
(eλ1b − eλ1a)3 − 3(eλ1b − eλ1a)

{
λ2

1(b − a)2eλ1(a+b)
}

+λ3
1(b − a)3eλ1(a+b)

(
eλ1b + eλ1a

)

−3
(
eλ1b − eλ1a

) {(
eλ1b − eλ1a

)2 − λ2
1(b − a)2eλ1(a+b)

}]

=
1

∆3

{
λ3

1(b − a)3eλ1(a+b)
(
eλ1b + eλ1a

)
− 2

(
eλ1b − eλ1a

)3
}
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and this completes the deduction proposed by the proposition 7.1.5.

Proposition 7.1.6 (Kurtosis (the fourth standardized moment)).

Ku[Y |{dY }] =
1

∆4

{
9
(
eλ1b − eλ1a

)4 − 6λ2
1(b − a)2eλ1(a+b)

(
eλ1b − eλ1a

)2

−λ4
1(b − a)4eλ1(a+b)

[
e2λ1b + eλ1(a+b) + e2λ1a

]}
(7.72)

Proof of the proposition 7.1.6.

Ku[Y |{dY }] = Es
[
(Y |{dY })4

]

=

(
eλ1b−eλ1a−λ1(b−a)eλ1a

∆

)4

eλ1b −
(

eλ1b−eλ1a−λ1(b−a)eλ1b

∆

)4

eλ1a

eλ1b − eλ1a

− 4

∆

(
eλ1b − eλ1a

)
Es[Y 3]

=
1

∆4 (eλ1b − eλ1a)

{(
eλ1b − eλ1a

)4 (
eλ1b − eλ1a

)

+6
(
eλ1b − eλ1a

)2
[{

λ1(b − a)eλ1a
}2

eλ1b

−
{
λ1(b − a)eλ1b

}2
eλ1a

]

−4
(
eλ1b − eλ1a

) [{
λ1(b − a)eλ1a

}3
eλ1b

−
{
λ1(b − a)eλ1b

}3
eλ1a

]

+
[{

λ1(b − a)eλ1a
}4

eλ1b −
{
λ1(b − a)eλ1b

}4
eλ1a

]}

− 4

∆

(
eλ1b − eλ1a

) 1

∆3

{
λ3

1(b − a)3eλ1(a+b)
(
eλ1b + eλ1a

)

−2
(
eλ1b − eλ1a

)3
}
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=
1

∆4

{(
eλ1b − eλ1a

)4 − 6
(
eλ1b − eλ1a

)2
λ2

1(b − a)2eλ1(a+b)

+4
[
λ3

1(b − a)3eλ1(a+b)
{
e2λ1b − e2λ1a

}]

−λ4
1(b − a)4eλ1(a+b)

[
e2λ1b + eλ1(a+b) + e2λ1a

]}

−4
(
eλ1b − eλ1a

)

∆4

[
λ3

1(b − a)3eλ1(a+b)
(
eλ1b + eλ1a

)

−2
(
eλ1b − eλ1a

)3
]

=
1

∆4

{
9
(
eλ1b − eλ1a

)4 − 6λ2
1(b − a)2eλ1(a+b)

(
eλ1b − eλ1a

)2

−λ4
1(b − a)4eλ1(a+b)

[
e2λ1b + eλ1(a+b) + e2λ1a

]}

and this completes the deduction proposed by the proposition 7.1.6.

Definition 7.1.17 (Median).

Me[Y ] =
Q

(u)
Y (0.5) + Q

(l)
Y (0.5)

2

=
a + 1

λ1
log

[
1 + 1

2

(
eλ1(b−a) − 1

)]

2

+
b + 1

λ1
log

[
1 − 1

2

(
1 − e−λ1(b−a)

)]

2

=
a + b

2
+

1

λ1

log

[
cosh

(
λ1

2
(b − a)

)]

Definition 7.1.18 (Stochastic entropy). By using (7.62), the stochastic
entropy can be easily defined as follows:

H
(
fY |{dY }

)
= −λ0 − λ1E[Y |{dY }]

= 1 + log

(
eλ1b − eλ1a

λ1

)
− λ1

(
beλ1b − aeλ1a

eλ1b − eλ1a

)
(7.73)
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7.2 Uni-extremal probability distribution

7.2.1 Discrete uni-extremal probability distribution

As usual, we assume that the range of variability of Y |{dY }
XY ({dY }) = {y1, y2, . . . , yN} (7.74)

is known, the elements of which are arranged in the ascending order, i.e.,
y1 < y2 < . . . < yN . In this case, the minimum information probability dis-
tribution is, in general, an approximation. For obtaining it, besides the range
of variability, the actual value dY = (µ

(1)
Y , µ

(2)
Y ) (i.e. the numerical values of

the first and the second moment) are needed. The minimum information
distribution is given by the following probability mass function of Y |{dY }:

fY |{dY }(y) = eλ0+λ1y+λ2y2

for y ∈ XY ({dY }) (7.75)

with λ0, λ1 and λ2 6= 0 uniquely determined by the solution of the following
three equations:

N∑

j=1

eλ0+λ1yj+λ2y2
j = 1 (7.76)

N∑

j=1

yje
λ0+λ1yj+λ2y2

j = µ
(1)
Y (7.77)

N∑

j=1

y2
j e

λ0+λ1yj+λ2y2
j = µ

(2)
Y (7.78)

Here,

• λ2 > 0 is the necessary condition for the probability distribution to
be a bathtub-shaped probability mass function.

• λ2 < 0 is the necessary condition for the probability distribution to
be a uni-modal probability mass function.

Let us put M = − λ1

2λ2
. Then, it is evidently clear that fY |{dY }(M) could

be the global extremum value of the probability mass function, provided
M ∈ XY ({dY }).

The probability distribution (7.75) has the following characteristic properties:
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Definition 7.2.1 (Probability mass function for j = 1, 2, . . . , N).

fY |{dY }(yj) =
eλ2(yj−M)2

N∑
k=1

eλ2(yk−M)2

(7.79)

Definition 7.2.2 (Distribution and survival functions).

FY |{dY }(yj) =

j∑
k=1

eλ2(yk−M)2

N∑
k=1

eλ2(yk−M)2

(7.80)

F Y |{dY }(yj) =

N∑
k=j

eλ2(yk−M)2

N∑
k=1

eλ2(yk−M)2

(7.81)

Definition 7.2.3 (Quantile functions). For z ∈ (0, 1], the upper and the
lower quantile functions are given as:

Q
(u)
Y |{dY }(z) = yj1 (7.82)

such that j1 is given by

•
j1−1∑
k=1

eλ2(yk−M)2

N∑
k=1

eλ2(yk−M)2
< z ≤

j1∑
k=1

eλ2(yk−M)2

N∑
k=1

eλ2(yk−M)2

and
Q

(ℓ)
Y |{dY }(z) = yj2 (7.83)

such that j2 is given by

•
N∑

k=j2+1
eλ2(yk−M)2

N∑
k=1

eλ2(yk−M)2
< z ≤

N∑
k=j2

eλ2(yk−M)2

N∑
k=1

eλ2(yk−M)2

Definition 7.2.4 (Failure intensity function).

aY |{dY }(yj) =
fY |{dY }(yj)

F Y |{dY }(yj)
=

eλ2(yj−M)2

N∑
k=j

eλ2(yk−M)2

(7.84)
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Definition 7.2.5 (Moments).

E[(Y |{dY })i] =

N∑
k=1

yi
ke

λ2(yk−M)2

N∑
k=1

eλ2(yk−M)2

(7.85)

Definition 7.2.6 (Central moments).

Ec[(Y |{dY })i] = E

[(
Y |{dY } − E[Y |{dY }]

)i
]

=

N∑
k=1

(
yk − E[Y |{dY }]

)i

eλ2(yk−M)2

N∑
k=1

eλ2(yk−M)2

(7.86)

Definition 7.2.7 (Standardized moments).

Es[(Y |{dY })i] = E

[(
Y |{dY } − E[Y |{dY }]

σ

)i
]

=

N∑
k=1

(
yk−E[Y |{dY }]

σY

)i

eλ2(yk−M)2

N∑
k=1

eλ2(yk−M)2

(7.87)

such that σY =
√

Ec[(Y |{dY })2]

Definition 7.2.8 (Median).

Me[Y ] =
Q

(u)
Y (0.5) + Q

(ℓ)
Y (0.5)

2
(7.88)

Definition 7.2.9 (Stochastic entropy).

H
(
PY |{dY }

)
= −

(
λ0 + λ1E[Y |{dY }] + λ2E[(Y |{dY })2]

)

= −


λ0 + λ1

N∑
k=1

yke
λ2(yk−M)2

N∑
k=1

eλ2(yk−M)2

+ λ2

N∑
k=1

y2
ke

λ2(yk−M)2

N∑
k=1

eλ2(yk−M)2




(7.89)
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If the elements of the range of variability of Y |{dY } follow an arithmetic
progression, the probability functions and the moments of special interest do
not yield any spectacular simplified results in this case.

Therefore, the same formulae as above should be used for that.
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7.2.2 Continuous uni-extremal probability distribution

Unlike continuous monotone probability distribution, a continuous uni-
extremal probability distribution demands numerical integrations for
the calculation of probability functions and moments of Y |{dY }.

For the sake of convenience of calculating the oncoming expressions, we make
use of λ1 = β

b−a
− 2aγ

(b−a)2
and λ2 = γ

(b−a)2
. Obviously λ2 6= 0 ⇔ γ 6= 0, which

shall be our basic assumption throughout this subsection. So, with subject
to the usage of β, γ, a and b, we proceed to define the parameters of the
continuous uni-extremal probability distribution as follows:

Definition 7.2.10 (Probability density function for a ≤ y ≤ b).

fY |{dY } =
eβ( y−a

b−a )+γ( y−a
b−a )

2

(b − a)
1∫
0

eβt+γt2dt

, a < y < b (7.90)

It should be noted, that

eλ0 =
eγ( a

b−a)
2−β( a

b−a)

(b − a)
1∫
0

eβt+γt2dt

⇒ λ0 = γ

(
a

b − a

)2

− β

(
a

b − a

)
− log

(
(b − a)

1∫

0

eβt+γt2dt
)

(7.91)

Definition 7.2.11 (Distribution and survival functions for a ≤ y ≤ b).

FY |{dY }(y) =

y−a
b−a∫
0

eβt+γt2dt

1∫
0

eβt+γt2dt

(7.92)

F Y |{dY }(y) =

1∫
y−a
b−a

eβt+γt2dt

1∫
0

eβt+γt2dt

(7.93)
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Definition 7.2.12 (Quantile functions for 0 < z ≤ 1).

Q
(u)
Y |{dY }(z) = yz (7.94)

for which
yz−a
b−a∫

0

eβt+γt2dt = z

1∫

0

eβt+γt2dt (7.95)

and
Q

(ℓ)
Y |{dY }(z) = yz (7.96)

for which
1∫

yz−a
b−a

eβt+γt2dt = z

1∫

0

eβt+γt2dt (7.97)

Remark 7.2.1 (On quantiles). We can very well see, that the computation
of upper and lower quantiles require a numerical solution of the above integral
equations (7.95) and (7.97) (equations in yz for given values of z), where
numerical treatment on integrations are necessary.

Definition 7.2.13 (Failure intensity function).

aY |{dY }(y) =
fY |{dY }(y)

F Y |{dY }(y)
=

eβ( y−a
b−a )+γ( y−a

b−a )
2

(b − a)
1∫

y−a
b−a

eβt+γt2dt

(7.98)

Right at this point, we need to mention a very important thing regarding
the moments of Y : For evaluation of moments of Y |{dY } in this case, the
introduction of the transformed random variable X|{d} is necessary at first.
So, utilizable expressions of the moments of X|{d} are of absolute ne-
cessity.

The transformed random variable X|{d} = Y |{dY }−a

b−a
, whose range of vari-

ability is [0, 1], must have the following probability density function

fX|{d} =
eβx+γx2

1∫
0

eβt+γt2dt

(7.99)
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With this, we proceed to give a utilizable deduction of the first moment
of X|{d}
Proposition 7.2.1 (The first moment of X). For γ 6= 0,

µ1 =
1

2γ





eβ+γ − 1
1∫
0

eβx+γx2dx

− β





=
1

2γ





1 − e−(β+γ)

1∫
0

eβ(x−1)+γ(x2−1)dx

− β





Proof of the proposition 7.2.1.

µ1 =

1∫
0

xeβx+γx2
dx

1∫
0

eβx+γx2dx

=

(
eβx 1

2γ
eγx2

)∣∣∣
x=1

x=0
− β

2γ

1∫
0

eβx+γx2
dx

1∫
0

eβx+γx2dx

=

1
2γ

(
eβ+γ − 1

)
− β

2γ

1∫
0

eβx+γx2
dx

1∫
0

eβx+γx2dx

=
1

2γ





eβ+γ − 1
1∫
0

eβx+γx2dx

− β





(7.100)

=
1

2γ





1 − e−(β+γ)

1∫
0

eβ(x−1)+γ(x2−1)dx

− β





(7.101)

and this completes the deduction proposed by the proposition 7.2.1.

Therefore, with the help of the first moment of X|{d}, we proceed to give
an utilizable deduction of the second moment of X|{d} as follows:
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Proposition 7.2.2 (The second moment of X). For γ 6= 0,

µ2 =
1

2γ





eβ+γ

1∫
0

eβx+γx2dx

− 1 − βµ1





=
1

2γ





1
1∫
0

eβ(x−1)+γ(x2−1)dx

− 1 − βµ1





Proof of the proposition 7.2.2.

µ2 =

1∫
0

x2eβx+γx2
dx

1∫
0

eβx+γx2dx

=

(
xeβx 1

2γ
eγx2

)∣∣∣
x=1

x=0
−

1∫
0

(eβx + βxeβx) 1
2γ

eγx2
dx

1∫
0

eβx+γx2dx

=

1
2γ

eβ+γ − 1
2γ

1∫
0

eβx+γx2
dx − β

2γ

1∫
0

xeβx+γx2
dx

1∫
0

eβx+γx2dx

=
1

2γ





eβ+γ

1∫
0

eβx+γx2dx

− 1 − βµ1





(7.102)

=
1

2γ





1
1∫
0

eβ(x−1)+γ(x2−1)dx

− 1 − βµ1





(7.103)

and this completes the deduction proposed by the proposition 7.2.2.

Therefore, on the basis of the these first two moments of X|{d}, the
higher order moments of X|{d} greater than 2 (i.e for n > 2) can be deduced
recursively as follows:
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Proposition 7.2.3 (The nth moment of X, n ∈ N). For γ 6= 0,

µn =
1

2γ





eβ+γ

1∫
0

eβx+γx2dx

− βµn−1 − (n − 1)µn−2





=
1

2γ





1
1∫
0

eβ(x−1)+γ(x2−1)dx

− βµn−1 − (n − 1)µn−2





Proof of the proposition 7.2.3.

µn =

1∫
0

xneβx+γx2
dx

1∫
0

eβx+γx2dx

=

(
xn−1eβx 1

2γ
eγx2

)∣∣∣
x=1

x=0
−

1∫
0

(
βxn−1 + (n − 1)xn−2

)
eβx 1

2γ
eγx2

dx

1∫
0

eβx+γx2dx

=

1
2γ

eβ+γ − β

2γ

1∫
0

xn−1eβx+γx2
dx − n−1

2γ

1∫
0

xn−2eβx+γx2
dx

1∫
0

eβx+γx2dx

=
1

2γ





eβ+γ

1∫
0

eβx+γx2dx

− βµn−1 − (n − 1)µn−2





(7.104)

=
1

2γ





1
1∫
0

eβ(x−1)+γ(x2−1)dx

− βµn−1 − (n − 1)µn−2





(7.105)



302 CHAPTER 7. STANDARD DISTRIBUTIONAL PARAMETERS

and this completes the deduction proposed by the proposition 7.2.3.

Remark 7.2.2 (Recursive computation of moments of X and han-
dling of the overflow error problem). With the help of (7.100) and
(7.102), any higher order moment of X|{d} (for n > 2) can be computed
recursively by (7.104).

As far as our programming work is concerned, cases often arise when
the value of the real number eβ+γ is too large for the execution of the pro-
gram resulting in overflow errors. Only in such cases, as an alternative
approach, the formulae (7.101), (7.103) and consequently (7.105) should be
used instead.

Remark 7.2.3 (Skillful handling of numerical integration). A very
important thing to be noted is, that for the computation of a moment of X|{d}
of any order, the numerical integration is needed exactly once.

That is, either the integral
1∫
0

eβx+γx2
dx or the integral

1∫
0

eβ(x−1)+γ(x2−1)dx (as

the case may be) needs to be computed during the computational procedure
just once and no more numerical integrations are necessary for that.

Remark 7.2.4 (Moments of Y ). Therefore, with the help of (7.100),
(7.102) and (7.104) or alternatively with the help of (7.101), (7.103) and
(7.105), the computation of a moment of Y |{dY } of any order (i.e. for any
i ∈ N) is possible by

E[(Y |{dY })i] = ai + iai−1(b − a)E[X|{d}]

+

(
i

2

)
ai−2(b − a)2E[(X|{d})2]

+ . . . + (b − a)iE[(X|{d})i] (7.106)

Remark 7.2.5 (Skillful utility of the random variable X). For the
computation of a moment of Y |{dY } of any order described in (7.106), it

has to be noted, that the numerical computation of either
1∫
0

eβx+γx2
dx

or
1∫
0

eβ(x−1)+γ(x2−1)dx is needed only.
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The introduction of the transformed random variable X|{d} and the real num-
bers β and γ for the purpose of computation of the moments of Y |{dY } makes
sense, simply because the direct procedure defined by

E[(Y |{dY })i] =

b∫
a

yieλ1y+λ2y2
dy

b∫
a

eλ1y+λ2y2dy

is undoubtedly more complicated, time consuming and unprotected
against overflow errors.

For our coming discussions, we shall make use of the notations E[X|{d}] = µ1

and E[(X|{d})2] = µ2.

Definition 7.2.14 (The first moment of Y ). For i = 1,

E[Y |{dY }] = µ
(1)
Y = a + (b − a)E[X|{d}] = a + (b − a)µ1 (7.107)

Definition 7.2.15 (Central moments of Y ). For i ∈ N,

Ec[(Y |{dY })i] = (b − a)iE[(X|{d} − µ1)
i]

= (b − a)i
{

E[(X|{d})i] − iE[(X|{d})i−1]µ1

+

(
i

2

)
E[(X|{d})i−2]µ2

1 + . . . + (−1)iµi
1

}

(7.108)

and as a special case for i = 2, we have

Corollary 7.2.1 (Variance (the second central moment of Y )).

V [Y |{dY }] = Ec[(Y |{dY })2] = (b − a)2(µ2 − µ2
1) (7.109)

and

Corollary 7.2.2 (Standard deviation of Y ). Therefore, the standard de-
viation (σY ) of Y |{dY } is given by

σY = (b − a)
√

µ2 − µ2
1 = (b − a)σ (7.110)
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Definition 7.2.16 (Standardized moments). We know, that the stan-
dardized moments of Y and X are the same. So, for i ∈ N,

Es[(Y |{dY })i] =

(
1

σ

)i

E[(X|{d} − µ1)
i]

=

(
1

σ

)i {
E[(X|{d})i] − iE[(X|{d})i−1]µ1

+

(
i

2

)
E[(X|{d})i−2]µ2

1 + . . . + (−1)iµi
1

}

(7.111)

By taking µ3 = E[(X|{d})3] and µ4 = E[(X|{d})4] as special cases, for
i ∈ {3, 4}, we have

Corollary 7.2.3 (Skewness (the third standardized moment)).

Sk[Y |{dY }] = Es[(Y |{dY })3]

=

(
1

σ

)3 {
µ3 − 3µ2µ1 + 2µ3

1

} (7.112)

Corollary 7.2.4 (Kurtosis (the fourth standardized moment)).

Ku[Y |{dY }] = Es[(Y |{dY })4]

=

(
1

σ

)4 {
µ4 − 4µ3µ1 + 6µ2µ

2
1 − 3µ3

1

} (7.113)
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Definition 7.2.17 (Median).

Me[Y ] =
Q

(u)
Y (0.5) + Q

(ℓ)
Y (0.5)

2
(7.114)

such that

• Q
(u)
Y (0.5) is determined by

Q
(u)
Y

(0.5)−a

b−a∫

0

eβt+γt2dt =
1

2

1∫

0

eβt+γt2dt (7.115)

• Q
(ℓ)
Y (0.5) is determined by

1∫

Q
(ℓ)
Y

(0.5)−a

b−a

eβt+γt2dt =
1

2

1∫

0

eβt+γt2dt (7.116)
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Proposition 7.2.4 (Stochastic entropy).

H
(
fY |{dY }

)
= log

(
(b − a)

1∫

0

eβx+γx2

dx
)
− βµ1 − γµ2 (7.117)

Proof of the proposition 7.2.4. By using (7.91) and the given relations of
λ1 and λ2, we get the expression of the stochastic entropy as

H
(
fY |{dY }

)
= −

(
λ0 + λ1E[Y |{dY }] + λ2E[(Y |{dY })2]

)

= β

(
a

b − a

)
− γ

(
a

b − a

)2

+ log
(
(b − a)

1∫

0

eβx+γx2

dx
)

−
(

β

b − a
− 2aγ

(b − a)2

) (
a + (b − a)µ1

)

− γ

(b − a)2

(
V [Y |{dY }] + (E[Y |{dY }])2

)

= log
(
(b − a)

1∫

0

eβx+γx2

dx
)

−γ

(
a

b − a

)2

− βµ1 +
2a2γ

(b − a)2
+

2aγ

b − a
µ1

− γ

(b − a)2

[
(b − a)2(µ2 − µ2

1) +
(
a + (b − a)µ1

)2
]

= log
(
(b − a)

1∫

0

eβx+γx2

dx
)

−βµ1 +
a2γ

(b − a)2
+

2aγ

b − a
µ1 − γ(µ2 − µ2

1)

−γ

(
a

b − a
+ µ1

)2

= log
(
(b − a)

1∫

0

eβx+γx2

dx
)
− βµ1 − γµ2 (7.118)

and this completes the deduction proposed by the proposition 7.2.4.



Chapter 8

Illustrations of standard m. i.
probability distributions

In this chapter, we shall hypothetically picture a probability distribution
in a given situation (though a situation based probability distribution is
generally unknown) and see how the corresponding minimum information
probability distributions having exactly the same moments does fit into
the situation.

This (aforesaid) hypothetical picture is purely for the sake of exemplified
illustrations.

We shall basically confine ourselves to the continuous probability distri-
butions for the very simple reason that the graphical representations of the
same are clearer.

This is to say, that it is easier to read the lined density curves than the
dotted curves representing probability distributions.

Nevertheless, we shall illustrate both the cases of discrete and continuous
probability distributions graphically.
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8.1 Examples of minimum information prob-

ability distributions

We shall basically analyze the compatibility of given constructed minimum
information probability distributions. However, our analysis shall be re-
stricted to the standard minimum information probability distributions, as
discussed. In other words, as far as our cases are concerned, the availability
of the number of moments is at most two. The numerical methods applied
for the construction of minimum information probability distributions are
already discussed in full details in the second part of this dissertation. So,
the numerical examples, which are given here, are the results obtained by
running the software programs developed by numerical methods.

From the theoretical point of view, it is absolutely clear, that the better-
ment of the construction of the probability distributions is directly propor-
tional to the availability of the moments higher moments. But, in reality,
the exact values of moments are never known, but the estimated values
of the same. In our illustrated examples, we shall hypothetically assume
the theoretical exactness of the moments. Importantly, that the availabil-
ity of higher moments means higher running times of algorithms as well as
higher costs. This is precisely the reason, why we use the minimum informa-
tion principle. This minimum information principle with regard to uniform,
monotonic and uni-extremal is recapitulated in the following way:

1. For the construction of a minimum information uniform probability
distribution, the minimum information principle says, the range of vari-
ability XX of the random variable X is necessary to construct the uni-
form probability distribution of X.

However, if an additional information with regard to the knowledge of
µ1 is available, it becomes more than the minimum information
than what was at all necessary. This additional information would
be undesirable, if, owing to a possible estimation error, µ1 6= 1

2
,

because the usage of µ1 in that case does not enable the probability
distribution of X to be uniform anymore.

2. For the construction of a minimum information monotonic probability
distribution of X, the minimum information principle says that the
following information is necessary:
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• XX

• µ1

However, if an additional information with regard to the knowledge of
µ2 is available, it becomes again more than the minimum informa-
tion than what was at all necessary. Even in this case, this additional
information would be undesirable, if, owing to a possible estima-
tion error, the condition µ2

1 + σ2
X,U < µ2 < µ2

1 + σ2
X,L is not fulfilled,

because the usage of µ2 in that case does not enable the probability
distribution to be monotone anymore.

In this case, if the probability distribution of X has to be specifically
monotone decreasing or monotone increasing, then one must pay
a special attention to the different ranges of µ1.

3. For the construction of a minimum information uni-extremal probabil-
ity distribution of X, the minimum information principle says that the
following information is necessary:

• XX

• µ1

• µ2

Again, exactly by the same argument, as above, the additional infor-
mation of µ3 is not utilized.

In this case, if the probability distribution of X has to be specifically
uni-modal or bathtub-shaped, then one must pay a special attention
to the different ranges of µ2.

Now, we shall illustrate certain minimum information probability distribu-
tions in both discrete and continuous cases.

As in discrete cases the overlapping of the two dotted curves cannot be made
apparent very easily, the judgement about the goodness of fit of the minimum
information probability distributions to the originally existing probability
distribution is possible by joining the dots of the probability mass curves to
give lined probability mass curves.
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8.1.1 Discrete cases

Example 8.1.1 (A monotonic probability distribution). Let the origi-
nally given monotonic probability mass function of the random variable Y be
given by

fY (y) = fY (yj) =
y3

j

50∑
i=0

i3
, yj = j = 0, 1, . . . , 50 i.e. y ∈ {y0, y1, . . . , y50}

(8.1)
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whose dotted probability mass curve is given as

10 20 30 40 50

0.02

0.04

0.06

The monotonic dotted probability mass curve fY (y)

the lined probability mass curve of which is given as

10 20 30 40 50

0.02

0.04

0.06

The monotonic lined probability mass curve fY (y)

and the computed first two moments of the probability distribution are µ
(1)
Y =

40.3947 and µ
(2)
Y = 1699.665088 (or equivalently σ2

Y = 67.9333) respectively.
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Now, the probability mass function of Y , viz. fY |{(40.3947)}(y) giving com-
puted the minimum information probability distribution with subject to dY =
(40.3947) is given as

fY |{(40.3947)}(yj) = e−7.154126509998741+(0.09527296175581258)∗yj ,

yj = j = 0, 1, . . . , 50
(8.2)

whose dotted probability mass curve is given as

10 20 30 40 50

0.02

0.04

0.06

0.08

The constructed monotonic dotted probability mass curve fY |{(40.3947)}(y)

the lined probability mass curve of which is given as

10 20 30 40 50

0.02

0.04

0.06

0.08

The constructed monotonic lined probability mass curve fY |{(40.3947)}(y)
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Clearly, fY |{(40.3947)}(y) approximates fY (y) fairly well and this can be easily
seen by plotting the corresponding lined mass curves simultaneously as follows

10 20 30 40 50

0.02

0.04

0.06

0.08

Simultaneous representation of the lined fY |{(40.3947)}(y)
and the lined fY (y)

Moreover, according to Weierstrass, the approximation of fY (y) can still be

improved by a further introduction of the knowledge of µ
(2)
Y .

This means, the probability mass function of Y , viz. fY |{(40.3947,1699.665088)}(y)
computed with subject to dY = (40.3947, 1699.665088) is given as

fY |{(40.3947,1699.665088)}(yj)

= e−9.110326677351692+(0.2201694347430269)∗yj+(−0.0018069380724544065)∗y2
j ,

yj = j = 0, 1, . . . , 50

(8.3)
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whose dotted probability mass curve is given as

10 20 30 40 50

0.01

0.02

0.03

0.04

0.05

0.06

0.07

The constructed monotonic dotted probability mass curve
fY |{(40.3947,1699.665088)}(y)

the lined probability mass curve of which is given as

10 20 30 40 50

0.01

0.02

0.03

0.04

0.05

0.06

0.07

The constructed monotonic lined probability mass curve
fY |{(40.3947,1699.665088)}(Y )

Clearly, fY |{(40.3947,1699.665088)}(y) is a much better approximation of fY (y)
than fY |{(40.3947)}(y),
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which can be easily shown by plotting both the lined mass curves of fY |{(40.3947,1699.665088)}(y)
and fY (y) simultaneously as

10 20 30 40 50

0.02

0.04

0.06

Simultaneous representation of the lined fY |{(40.3947,1699.665088)}(y)
and the lined fY (y)

Thus, from the example 8.1.1, we conclude,

• Every additional knowledge of a higher distributional moment con-
tributes to the improvement of the construction of the probability dis-
tribution of Y , which verifies the statement given by Weierstrass.

• Even though the probability mass function fY |{(40.3947,1699.665088)}(y) is
a better approximation of the originally given probability mass func-
tion fY (y) than that of fY |{(40.3947)}(y), according to our definition,
fY |{(40.3947)}(y) gives the minimum information probability distribu-

tion that does not utilize the knowledge of the second moment µ
(2)
Y =

1699.665088.

• Because of the very fact that the equivalence of µ
(2)
Y = 1699.665088,

namely σ2
Y = 67.9333 ( = µ

(2)
Y − (µ

(1)
Y )2 = 1699.665088 − 40.39472) lies

between the limits σ2
Y,U and σ2

Y,L of monotonicity, i.e.
σ2

Y,U = 52.6189 < σ2
Y = 67.9333 < σ2

Y,L = 108.315, in this case,
fY |{(40.3947,1699.665088)}(y) preserves the monotonic character of the prob-
ability distribution.
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• Because N = 51 is more or less large, the probability distribution of
Y may be approximated to a continuous probability distribution and
hence the usage of the rules for computing σ2

Y,U and σ2
Y,L meant for

characterizing the probability distribution of Y is more or less appro-
priate.

• The entropy of the uniform probability distribution with the same sup-
port is log 51 = 3.93183

• The entropy of the probability distribution given by the density fY |{(40.3947)}
is given as

− (−7.154126509998741 + 0.09527296175581258µ
(1)
Y )

= 3.3056

which is clearly less than log 51.

• Lastly, the entropy of the probability distribution given by the density
fY |{(40.3947,1699.665088)} is given as

− (−9.110326677351692 + 0.2201694347430269µ
(1)
Y

− 0.0018069380724544065µ
(2)
Y ) = 3.28784

which is clearly less than log 51.

Example 8.1.2 (A binomial probability distribution). The graphically
represented binomial distribution is a very commonly known bell- shaped dot-
ted figure and due to its bell- shapeliness, it is an uni- extremal and in fact
an uni- modal probability distribution. Thus, the construction of the fitting
appropriate minimum information probability distribution understandably ne-
cessitates the availability of at least two moments.

Let the binomial probability mass function of the random variable Y be given
by

fY (y) = fY (yj) =
(
40
j

)
(0.6)j (0.4)40−j, yj = j = 0, 1, . . . , 40

i.e. y ∈ {y0, y1, . . . , y40} (8.4)
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whose dotted probability mass curve is given as

10 20 30 40

0.02

0.04

0.06

0.08

0.1

0.12

The binomial dotted probability mass curve fY (y)

the lined probability mass curve of which is given as

10 20 30 40

0.02

0.04

0.06

0.08

0.1

0.12

The binomial lined probability mass curve fY (y)

and the computed moments of the probability distribution are
µ

(1)
Y = 24 and µ

(2)
Y = 585.6 (or equivalently σ2

Y = 9.6) respectively.
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Now, the probability mass function of Y , viz. fY |{(24,585.6)}(y) giving the com-
puted minimum information probability distribution with subject to dY =
(24, 585.6) is given as

fY |{(24,585.6)}(yj)

= e−32.04982003800298+(2.5)∗yj+(−0.052083333333333336)∗y2
j ,

yj = j = 0, 1, . . . , 40

(8.5)
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whose dotted probability mass curve is given as

10 20 30 40

0.02

0.04

0.06

0.08

0.1

0.12

The constructed binomial dotted probability mass curve fY |{(24,585.6)}(y)

the lined probability mass curve of which is given as
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The constructed binomial lined probability mass curve
fY |{(24,585.6)}(y)
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Clearly, fY |{(24,585.6)}(y) approximates fY (y) excellently, which can be easily
shown by plotting both the lined mass curves of fY |{(24,585.6)}(y) and fY (y)
simultaneously as
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Simultaneous representation of the lined fY |{(24,585.6)}(y)
and the lined fY (y)

Thus, from the example 8.1.2, we conclude,

• Because of the very fact that the equivalence of µ
(2)
Y = 585.6, namely

σ2
Y = 9.6 ( = µ

(2)
Y − (µ

(1)
Y )2 = 585.5− 242) lies well below σ2

Y,U = 113.05
i.e. σ2

Y = 9.6 < σ2
Y,U = 113.05, in this case, fY |{(24,585.6)}(y) preserves

the uni- modal character of the probability distribution.

• Because N = 41 is more or less large, the probability distribution of
Y may be approximated to a continuous probability distribution and
hence the usage of the rules for computing σ2

Y,U and σ2
Y,L meant for

characterizing the probability distribution of Y is more or less appro-
priate.

• The entropy of the uniform probability distribution with the same sup-
port is log 41 = 3.71357

• Lastly, the entropy of the probability distribution given by the density
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fY |{(24,585.6)} is given as

− (−32.04982003800298 + 2.5µ
(1)
Y

− 0.052083333333333336µ
(2)
Y ) = 2.54982

which is clearly less than log 41.
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Example 8.1.3 (A truncated poisson distribution). Even graphically
represented truncated poisson distribution is a commonly known bell- shaped
dotted figure and due to its bell- shapeliness, the fitting of an appropriate
minimum information probability distribution understandably necessitates the
availability of at least two moments as well.

Let the truncated poisson probability mass function of the random variable Y
be given by

fY (y) = fY (yj) =
12j

j!
40∑

i=0

12i

i!

, yj = j = 0, 1, . . . , 40

i.e. y ∈ {y0, y1, . . . , y40} (8.6)
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whose dotted probability mass curve is given as
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The truncated poisson dotted probability mass curve fY (y)

the lined probability mass curve of which is given as
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The truncated poisson lined probability mass curve fY (y)

and the computed moments of the probability distribution are
µ

(1)
Y = 12 and µ

(2)
Y = 156 (or equivalently σ2

Y = 12) respectively.
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Now, the probability density function of Y , viz. fY |{(12,156)}(y) giving the
computed minimum information probability distribution with subject to dY =
(12, 156) is given as

fY |{(12,156)}(yj)

= e−8.147693845476917+(0.9977335224603812)∗yj+(−0.04157918112705276)∗y2
j ,

yj = j = 0, 1, . . . , 40

(8.7)

whose dotted probability mass curve is given as
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The constructed truncated poisson dotted probability mass curve
fY |{(12,156)}(y)
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the lined probability mass curve of which is given as
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The constructed truncated poisson lined probability mass curve
fY |{(12,156)}(y)

Clearly, fY |{(12,156)}(y) approximates fY (y) wonderfully, which can be easily
shown by plotting both the lined mass curves of fY |{(12,156)}(y) and fY (y)
simultaneously as
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0.1

Simultaneous representation of the lined fY |{(12,156)}(y)
and the lined fY (y)

Thus, from the example 8.1.3, we conclude,
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• Because of the very fact that the equivalence of µ
(2)
Y = 156, namely

σ2
Y = 12 ( = µ

(2)
Y − (µ

(1)
Y )2 = 156 − 122) lies well below σ2

Y,U = 76.8806
i.e. σ2

Y = 12 < σ2
Y,U = 76.8806, in this case, fY |{(12,156)}(y) preserves

the uni- modal character of the probability distribution.

• Because N = 41 is more or less large, the probability distribution of
Y may be approximated to a continuous probability distribution and
hence the usage of the rules for computing σ2

Y,U and σ2
Y,L meant for

characterizing the probability distribution of Y is more or less appro-
priate.

• The entropy of the uniform probability distribution with the same sup-
port is log 41 = 3.71357

• Lastly, the entropy of the probability distribution given by the density
fY |{(12,156)} is given as

− (−8.147693845476917 + 0.9977335224603812µ
(1)
Y

− 0.04157918112705276µ
(2)
Y ) = 2.66124

which is clearly less than log 41.
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8.1.2 Continuous cases

Example 8.1.4 (A monotonic probability distribution). Let the mono-
tonic probability density function of the random variable X be given by

fX(x) = 3(1 − x)2, 0 ≤ x ≤ 1 (8.8)

whose the probability density curve, which is a monotonic curve, is given as
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The monotonic probability density curve fX(x)

and the computed first two moments of the probability distribution are µ1 =
0.25 and µ2 = 0.1 respectively.

Now, the probability density function of X, viz. fX|{(0.25)}(x) giving computed
the minimum information probability distribution with subject to d = (0.25)
is given as

fX|{(0.25)}(x) = 3.6951339770855713e−3.593511969447428x, 0 ≤ x ≤ 1 (8.9)

whose density curve is given as
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The constructed monotonic probability density curve fX|{(0.25)}(x)

Clearly, fX|{(0.25)}(x) is a fairly good approximation of fX(x), which can be
shown by plotting both of them simultaneously as
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Simultaneous representation of fX|{(0.25)}(x) and fX(x)

Moreover, the approximation of fX(x) can still be improved by a further in-
troduction of the knowledge of E[X2], in case the cost of the acquirement of
this knowledge is affordable.

This means, the probability density function of X, viz. fX|{(0.25,0.1)}(x) com-
puted by means of the maximum entropy principle with subject to the known
d = (µ1, µ2) = (0.25, 0.1) is given as

fX|{(0.25,0.1)}(x) = 2.7553146976923863e−0.783542712820377x−3.892192210257011x2

,

0 ≤ x ≤ 1
(8.10)
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whose density curve is given as
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The constructed monotonic probability density curve fX|{(0.25,0.1)}(x)

Clearly, fX|{(0.25,0.1)}(x) is a better approximation of fX(x) than fX|{(0.25)}(x),
which can be easily shown by plotting both of them simultaneously as
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Simultaneous representation of fX|{(0.25,0.1)}(x) and fX(x)

Thus, from the example 8.1.4, we conclude,

• Every additional knowledge of a higher distributional moment con-
tributes to the improvement of the construction of the probability dis-
tribution of X, which verifies the statement given by Weierstrass.

• Even though the probability mass function fX|{(0.25,0.1)}(x) is a better
approximation of the originally given probability density function fX(x)
than that of fX|{(0.25)}(x), according to our definition, fX|{(0.25)}(x) gives
the minimum information probability distribution that does not utilize
the knowledge of the second moment µ2 = 0.1.
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• Because of the very fact that the equivalence of µ2 = 0.1, namely
σ2 = 0.0375 ( = µ2 −µ2

1 = 0.1−0.252) lies between the limits σ2
X,U and

σ2
X,L of monotonicity, i.e.

σ2
X,U = 0.0350331 < σ2 = 0.0375 < σ2

X,L = 0.0594589, in this case,
fX|{(0.25,0.1)}(x) preserves the monotonic character of the probability
distribution.

• The entropy of the probability distribution given by the density fX|{(0.25)}
is given as

− (1.3070168127646282 − 3.593511969447428µ1)

= −0.408639

• Lastly, the entropy of the probability distribution given by the density
fX|{(0.25,0.1)} is given as

− (1.013531663918902 − 0.783542712820377µ1

− 3.892192210257011µ2) = −0.428427
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Example 8.1.5 (A parabolic uni-extremal probability distribution).
Let the uni- extremal probability density function of the random variable X
be given by

fX(x) = 0.6(1 + 3x − 2.5x2), 0 ≤ x ≤ 1 (8.11)

whose probability density curve, which is a parabolic bell- shaped curve, is
given as
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The parabolic probability density curve fX(x)

and the computed first two moments of the probability distribution are µ1 =
0.525 and µ2 = 0.35 respectively.

As a matter of fact, due to the bell- shapeliness of the density curve, it is
an uni- extremal and in fact an uni- modal probability distribution. Thus,
the construction of the fitting appropriate minimum information probability
distribution understandably necessitates the availability of at least two mo-
ments.

Now, even if the knowledge of µ1 only (i.e. without the knowledge of µ2) is
not enough to construct the probability density function of X, we shall see
here, how the constructed probability of X with subject to d = (µ1) = (0.525)
behaves:

The probability density function of X viz. fX|{(0.525)}(x) computed with subject
to d = (0.525) is given as

fX|{(0.525)}(x) = 0.8572857448518301e0.30045106346983064x, 0 ≤ x ≤ 1 (8.12)

whose density curve is given as
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0.2 0.4 0.6 0.8 1
0.85

0.9

0.95

1

1.05

1.1

1.15

The constructed probability density curve fX|{(0.525)}(x)

Clearly, fX|{(0.525)}(x) is undoubtedly a bad approximation of fX(x) and there-
fore an introduction of the further knowledge of µ2 is imperatively necessary.

Therefore, the probability density function of X, viz. fX|{(0.525,0.35)}(x) giving
the computed minimum information probability distribution with subject to
d = (µ1, µ2) = (0.525, 0.35) is given as

fX|{(0.525,0.35)}(x)

= 0.6387466516222691e1.951702233911951x−1.6165863220869872x2

, 0 ≤ x ≤ 1
(8.13)

whose density curve is given as
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The constructed parabolic probability density curve fX|{(0.525,0.35)}(x)

Clearly, fX|{(0.525,0.35)}(x) is undoubtedly a vastly better approximation of
fX(x) than fX|{(0.525)}(x), which can be easily shown by plotting both of them
simultaneously as
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Simultaneous representation of fX|{(0.525,0.35)}(x) and fX(x)

Thus, from the example 8.1.5, we conclude,

• A minimum number of distributional moments of X is direly necessary
for the purpose of an acceptable construction of it’s probability dis-
tribution. In this example, we have demonstrated the very fact that
the minimum information probability distribution demands minimum
number of distributional moments.

• Because of the very fact that the equivalence of µ2 = 0.35, namely σ2 =
0.074375 ( = µ2 − µ2

1 = 0.35 − 0.5252) lies well below σ2
X,U = 0.081274

i.e. σ2 = 0.074375 < σ2
X,U = 0.081274, in this case, fX|{(0.525,0.35)}(x)

preserves the uni-modal character of the probability distribution.

• Lastly, the entropy of the probability distribution given by the density
fX|{(0.525,0.35)} is given as

− (−0.44824737955660204 + 1.951702233911951µ1

− 1.6165863220869872µ2) = −0.0105911
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Example 8.1.6 (A non-parabolic uni-extremal probability distribu-
tion). Let the uni-extremal probability density function of the random vari-
able X be given by

fX(x) =
4

459
(100 + 135x − 96x2 − 71x3 − 15x4), 0 ≤ x ≤ 1 (8.14)

whose probability density curve, which is a non-parabolic bell-shaped curve,
is given as
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The non-parabolic probability density curve fX(x)

and the computed first two moments of the probability distribution are µ1 =
0.473203 and µ2 = 0.295487 respectively.

As a matter of fact, due to the bell- shapeliness of the density curve, it is
an uni- extremal and in fact an uni- modal probability distribution. Thus,
the construction of the fitting appropriate minimum information probability
distribution understandably necessitates the availability of at least two mo-
ments.

In our immediately preceding example we have illustratively demonstrated that
at least two moments of X are necessary for the construction of the proba-
bility distribution of X. Exactly the same is the case, in this very illustrated
example as well. Keeping this in mind, the probability density function of
X, viz. fX|{(0.473203,0.295487)}(x) giving the computed minimum information
probability distribution with subject to d = (0.473203, 0.295487) is given as

fX|{(0.473203,0.295487)}(x)

= 0.8248284075199338e1.7961285412633676x−2.1692651859053607x2

, 0 ≤ x ≤ 1
(8.15)
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whose density curve is given as
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The constructed non-parabolic probability density curve
fX|{(0.473203,0.295487)}(x)

Clearly, fX|{(0.473203,0.295487)}(x) is undoubtedly a very good approximation of
fX(x), which can be easily shown by plotting both of them simultaneously as
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Simultaneous representation of fX|{(0.473203,0.295487)}(x) and fX(x)

Thus, from the example 8.1.6, we conclude,

• Because of the very fact that the equivalence of µ2 = 0.295487, namely
σ2 = 0.0715659 ( = µ2 − µ2

1 = 0.295487 − 0.4732032) lies well below
σ2

X,U = 0.081096 i.e.
σ2 = 0.0715659 < σ2

X,U = 0.081096, in this case, fX|{(0.473203,0.295487)}(x)
preserves the uni- modal character of the probability distribution.
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• Lastly, the entropy of the probability distribution given by the density
fX|{(0.473203,0.295487)} is given as

− (−0.19257990516548862 + 1.7961285412633676µ1

− 2.1692651859053607µ2) = −0.016363

Note: In the next few examples we shall handle the well known beta dis-
tribution for different parametric values. We shall denote the parameters of
the beta distribution by k1 and k2.
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Example 8.1.7 (A beta distribution with k1 < 1 and k2 < 1). With
subject to k1 = 0.49 and k2 = 0.66, the beta distribution as a uni-extremal
bathtub-shaped probability density function of the random variable X is given
by

fX(x) =
0.377735

(1 − x)0.34x0.51
, 0 ≤ x ≤ 1 (8.16)

and the computed first two moments of the probability distribution are µ1 =
0.426087 and µ2 = 0.295288 respectively.

As a matter of fact, due to the bathtub- shapeliness of the density curve, it
is an uni- extremal probability distribution.

Thus, the construction of the fitting appropriate minimum information prob-
ability distribution understandably necessitates the availability of at least two
moments.

Keeping this in mind, the probability density function of X, viz.
fX|{(0.426087,0.295288)}(x) giving the computed minimum information probabil-
ity distribution with subject to d = (0.426087, 0.295288) is given as

fX|{(0.426087,0.295288)}(x)

= e1.1420835823040651−6.299235717069621x+5.664887467832139x2

, 0 ≤ x ≤ 1
(8.17)

Clearly, fX|{(0.426087,0.295288)}(x) is undoubtedly a very good approximation of
fX(x), which can be easily shown by plotting both of them simultaneously as
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Simultaneous representation of fX|{(0.426087,0.295288)}(x) and fX(x)

The very fact that, unlike the curve fX|{(0.426087,0.295288)}(x), both the left and
the right branches of the curve fX(x) shoot infinitely upwards, is purely due
to the singularities of the curve fX(x) at both the extreme points x = 0 and
x = 1.

Thus, we conclude,

• Because of the very fact that the equivalence of µ2 = 0.295288, namely
σ2 = 0.0113738 ( = µ2 − µ2

1 = 0.295288 − 0.4260872) lies well above
σ2

X,L = 0.0847275 i.e.
σ2 = 0.113738 > σ2

X,L = 0.0847275, fX|{(0.426087,0.295288)}(x) preserves
the bathtub shapeliness character of the probability distribution in this
case.

• Moreover, the differences in the values of the distribution functions
with regard to the two above probability distributions, namely the dif-
ferences FBeta(x) − FX(x) for different values of x ∈ (0, 1), such that

FBeta(x) =
x∫
0

fX(t)dt and FX(x) =
x∫
0

fX|{(0.426087,0.295288)}(t)dt, are plot-

ted simultaneously as follows:
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Representation of the difference of FX|{(0.426087,0.295288)}(x) and FX(x)

which evidently shows that the aforesaid maximum difference is roughly
4% and therefore fX|{(0.426087,0.295288)}(x) approximates fX(x) well enough.

• Lastly, the entropy of the probability distribution given by the density
fX|{(0.426087,0.295288)} is given as

− (1.1420835823040651 − 6.299235717069621µ1

+ 5.664887467832139µ2) = −0.130834
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Example 8.1.8 (A beta distribution with k1 < 1 and k2 > 1). With
subject to k1 = 0.83 and k2 = 3.29, the beta distribution as a strictly mono-
tone decreasing probability density function of the random variable X is given
by

fX(x) =
2.32477(1 − x)2.29

x0.17
, 0 ≤ x ≤ 1 (8.18)

and the computed first two moments of the probability distribution are µ1 =
0.201456 and µ2 = 0.0720049 respectively.

As a matter of fact, due to the monotonic decreasing character of the density
curve, it is a monotonic probability distribution.

Thus, the construction of the fitting appropriate minimum information prob-
ability distribution understandably necessitates the availability of at least one
moment. But for the sake of a better accuracy, we shall make use of two
moments.

Keeping this in mind, the probability density function of X, viz.
fX|{(0.201456,0.0720049)}(x) giving the computed minimum information probabil-
ity distribution with subject to d = (0.201456, 0.0720049) is given as

fX|{(0.201456,0.0720049)}(x)

= e1.4597752077817678−3.5341373793580133x−1.864903007677731x2

, 0 ≤ x ≤ 1
(8.19)

Clearly, fX|{(0.201456,0.0720049)}(x) is undoubtedly a very good approximation of
fX(x), which can be easily shown by plotting both of them simultaneously as
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Simultaneous representation of fX|{(0.201456,0.0720049)}(x) and fX(x)
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The very fact that, unlike the curve fX|{(0.201456,0.0720049)}(x), the left branch
of the curve fX(x) shoots infinitely upwards, is purely due to the singularity
of the curve fX(x) at the extreme point x = 0.

Thus, we conclude,

• Because of the very fact that the equivalence of µ2 = 0.0720049, namely
σ2 = 0.0314204 ( = µ2 − µ2

1 = 0.0720049 − 0.2014562) lies in between
σ2

X,U = 0.0231267 and σ2
X,L = 0.0461303 i.e.

σ2
X,U = 0.0231267 < σ2 = 0.0314204 < σ2

X,L = 0.0461303,
fX|{(0.201456,0.0720049)}(x) preserves the monotonic character of the prob-
ability distribution in this case.

• Moreover, the differences in the values of the distribution functions
with regard to the two above probability distributions, namely the dif-
ferences FBeta(x) − FX(x) for different values of x ∈ (0, 1), such that

FBeta(x) =
x∫
0

fX(t)dt and FX(x) =
x∫
0

fX|{(0.201456,0.0720049)}(t)dt, are

plotted simultaneously as follows:
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Representation of the difference of FX|{(0.201456,0.0720049)}(x) and FX(x)

which evidently shows that the aforesaid maximum difference is roughly
2% and therefore fX|{(0.201456,0.0720049)}(x) approximates fX(x) well enough.

• Lastly, the entropy of the probability distribution given by the density
fX|{(0.201456,0.0720049)} is given as

− (1.4597752077817678 − 3.5341373793580133µ1

− 1.864903007677731µ2) = −0.61352
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Example 8.1.9 (A beta distribution with k1 > 1 and k2 < 1). With
subject to k1 = 2.15 and k2 = 0.72, the beta distribution as a strictly mono-
tone increasing probability density function of the random variable X is given
by

fX(x) =
1.30879x1.15

(1 − x)0.28
, 0 ≤ x ≤ 1 (8.20)

and the computed first two moments of the probability distribution are µ1 =
0.749129 and µ2 = 0.609756 respectively.

As a matter of fact, due to the monotonic increasing character of the density
curve, it is a monotonic probability distribution.

Thus, the construction of the fitting appropriate minimum information prob-
ability distribution understandably necessitates the availability of at least one
moment. But for the sake of a better accuracy, we shall make use of two
moments.

Keeping this in mind, the probability density function of X, viz.
fX|{(0.749129,0.609756)}(x) giving the computed minimum information probabil-
ity distribution with subject to d = (0.749129, 0.609756) is given as

fX|{(0.749129,0.609756)}(x)

= e−2.2750656018479605+3.5834317748920568x−0.006347275972631056x2

, 0 ≤ x ≤ 1
(8.21)

Clearly, fX|{(0.749129,0.609756)}(x) is undoubtedly a very good approximation of
fX(x), which can be easily shown by plotting both of them simultaneously as
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Simultaneous representation of fX|{(0.749129,0.609756)}(x) and fX(x)

The very fact that, unlike the curve fX|{(0.749129,0.609756)}(x), the right branch
of the curve fX(x) shoots infinitely upwards, is purely due to the singularity
of the curve fX(x) at the extreme point x = 1.

Thus, we conclude,

• Because of the very fact that the equivalence of µ2 = 0.609756, namely
σ2 = 0.0485617 ( = µ2 − µ2

1 = 0.609756 − 0.7491292) lies in between
σ2

X,U = 0.0352582 and σ2
X,L = 0.0596767 i.e.

σ2
X,U = 0.0352582 < σ2 = 0.0485617 < σ2

X,L = 0.0596767,
fX|{(0.749129,0.609756)}(x) preserves the monotonic character of the proba-
bility distribution in this case.

• Moreover, the differences in the values of the distribution functions
with regard to the two above probability distributions, namely the dif-
ferences FBeta(x) − FX(x) for different values of x ∈ (0, 1), such that

FBeta(x) =
x∫
0

fX(t)dt and FX(x) =
x∫
0

fX|{(0.749129,0.609756)}(t)dt, are plot-

ted simultaneously as follows:
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Representation of the difference of FX|{(0.749129,0.609756)}(x) and FX(x)

which evidently shows that the aforesaid maximum difference is roughly
4% and therefore fX|{(0.749129,0.609756)}(x) approximates fX(x) well enough.

• Lastly, the entropy of the probability distribution given by the density
fX|{(0.749129,0.609756)} is given as

− (−2.2750656018479605 + 3.5834317748920568µ1

− 0.006347275972631056µ2) = −0.405517
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Example 8.1.10 (A beta distribution with k1 > 1 and k2 > 1). With
subject to k1 = 8.27 and k2 = 9.75, the beta distribution as a uni-extremal
bell-shaped probability density function of the random variable X is given by

fX(x) = 208136(1 − x)8.75x7.27, 0 ≤ x ≤ 1 (8.22)

and the computed first two moments of the probability distribution are µ1 =
0.458935 and µ2 = 0.223676 respectively.

As a matter of fact, due to the bell- shapeliness of the density curve, it is an
uni- extremal probability distribution and in fact an uni- modal probability
distribution.

Thus, the construction of the fitting appropriate minimum information prob-
ability distribution understandably necessitates the availability of at least two
moments.

Keeping this in mind, the probability density function of X, viz.
fX|{(0.458935,0.223676)}(x) giving the computed minimum information probabil-
ity distribution with subject to d = (0.458935, 0.223676) is given as

fX|{(0.458935,0.223676)}(x)

= e−6.816501847244142+35.15486400876463x−38.30048264870258x2

, 0 ≤ x ≤ 1
(8.23)

Clearly, fX|{(0.458935,0.223676)}(x) is undoubtedly a very good approximation of
fX(x), which can be easily shown by plotting both of them simultaneously as
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Thus, we conclude,

• Because of the very fact that the equivalence of µ2 = 0.223676, namely
σ2 = 0.0130478 ( = µ2 − µ2

1 = 0.223676 − 0.4589352) lies well below
σ2

X,U = 0.0795451 i.e.
σ2 = 0.0130478 < σ2

X,U = 0.0795451, fX|{(0.458935,0.223676)}(x) preserves
the uni- modal character of the probability distribution in this case.

• Moreover, the differences in the values of the distribution functions
with regard to the two above probability distributions, namely the dif-
ferences FBeta(x) − FX(x) for different values of x ∈ (0, 1), such that

FBeta(x) =
x∫
0

fX(t)dt and FX(x) =
x∫
0

fX|{(0.458935,0.223676)}(t)dt, are plot-

ted simultaneously as follows:
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Representation of the difference of FX|{(0.458935,0.223676)}(x) and FX(x)

which evidently shows that the aforesaid maximum difference is roughly
1% and therefore fX|{(0.458935,0.223676)}(x) approximates fX(x) well enough.

• Lastly, the entropy of the probability distribution given by the density
fX|{(0.458935,0.223676)} is given as

− (−6.816501847244142 + 35.15486400876463µ1

− 38.30048264870258µ2) = −0.750661
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8.1.3 Conclusive remarks

• If the probability distribution of a random variable is not known, the
corresponding minimum information probability distribution can be
used for the given purpose. For this, the knowledge of the desired
nature of the probability distribution (for eg. if the probability dis-
tribution is monotonic or uni-extremal, etc.) of the random variable
under consideration is of utmost importance.

This minimum information probability distribution can be constructed
by means of maximum entropy principle with subject to the avail-
able moments of the random variable and the goodness of fit of these
constructed maximum entropy probability distributions (as we have
already illustrated by examples) are remarkably high.

In order to summarize the essential points with regard to the construc-
tion of minimum information probability distributions, we have the
following observations from the illustrated examples:

– If the probability distribution is known to be monotonic before
hand, we can conclude, that, apart from the range of variability
of the random variable, the availability of the first moment is of
absolute necessity.

– If the probability distribution is known to be uni-extremal before
hand, then, apart from the range of variability of the random
variable, the availability of the first two moments is of absolute
necessity.

• It is absolutely clear (from the theoretical point of view), that the
availability of the moments of higher orders ensures the improvement
of the probability distribution of the random variable, provided the
additionally introduced moments are contained within certain bounds.

• As far as the example 8.1.5 of the continuous case is concerned, we
know from our algebraic knowledge that the necessary and sufficient
requirement for fitting a parabolic curve is the knowledge of two pa-
rameters. This explains, why the fitting of our parabolic density curve
is almost perfect on usage of the first two moments of the random
variable.



350CHAPTER 8. ILLUSTRATIONS OF M. I. PROBABILITY DISTRIBUTIONS

This degree of perfectness of the fitting of the same leads us to make a
further examination with fitting a non-parabolic density curve as in the
example 8.1.6 of the continuous case, which too resulted an extremely
good fitting of the maximum entropy distribution.

• In both discrete and continuous cases, the results show that the fitting
of maximum entropy distribution gives excellently good approximations
of the original probability distributions.

• However, in case of approximating the beta distribution with the help
of the maximum entropy distribution, we are not allowed to ignore the
singularities at the end points of the probability density function of the
Beta distribution, namely x = 0 and x = 1. Because of these singu-
larities, the fitting of maximum entropy distribution for two moments
could be a big problem, if µ1 is chosen closer to 0 or 1. In such cases,
the story of fitting an approximating maximum entropy probability dis-
tribution is different. We shall examine this very fact in the subsequent
chapter.



Chapter 9

Comparative studies of beta
distributions

In this chapter, we shall make a brief comparative study of beta distribu-
tions and uni-extremal minimum information probability distribu-
tions.

9.1 The beta distribution

9.1.1 A brief introduction

With subject to the definition of the beta function B(k1, k2) = Γ(k1)Γ(k2)
Γ(k1+k2)

for
positive values of both k1 and k2, the beta distribution of the random variable
X is defined by its probability density function f

(B)
X (x), x ∈ [0, 1] as

f
(B)
X (x) =

Γ(k1 + k2)

Γ(k1)Γ(k2)
xk1−1(1 − x)k2−1, 0 ≤ x ≤ 1 (9.1)

We all know that the continuous beta distribution can be uniform (constant)
or monotone (increasing or decreasing) or even an uni-extremal (uni-modal
or bathtub shaped) probability distribution. This very fact can be stated as
follows for our clarity:

• If k1 = k2 = 1, then the beta distribution is uniform

• If k1 < 1 and k2 ≥ 1, then the beta distribution is strictly monotone
decreasing

351
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• If k1 ≥ 1 and k2 < 1, then the beta distribution is strictly monotone
increasing

• If k1 < 1 and k2 < 1, then the beta distribution is bathtub-shaped

• If k1 > 1 and k2 > 1, then the beta distribution is uni-modal

9.1.2 The distributional moments

Just like an uni-extremal minimum information probability distribution, a
beta distribution is also uniquely determinable by its first two moments. We
shall establish this very fact in this subsection. However, unlike a monotone
minimum information probability distribution, which necessitates the avail-
ability of the first moment only, the construction of a beta distribution even
for monotone cases necessitates the availability of its first two moments. As
usual, let us symbolize the first two moments by µ1 and µ2 here.

Now, if the function f(k1,k2) : (0, +∞)2 → (0, 1)2 be defined by

f(k1,k2)(k1, k2) =




k1

k1+k2

k1(k1+1)
(k1+k2)(k1+k2+1)


 =




µ1

µ2


 (9.2)

then with subject to µ2
1 < µ2 < µ1, f(k1,k2) becomes bijective and is easily

invertible to f−1
(k1,k2) = f(µ1,µ2), so that f(µ1,µ2) : (0, 1)2 → (0, +∞)2 is defined

by

f(µ1,µ2)(µ1, µ2) =




µ1−µ2

µ2−µ2
1
µ1

µ1−µ2

µ2−µ2
1
(1 − µ1)


 =




k1

k2


 (9.3)

Therefore, we can very well see that for every predetermined pair of moments,
namely (µ1, µ2), there exists an uniquely determined pair of beta distribution
parameters, namely (k1, k2). This establishes our assertion.

9.1.3 The entropy

In order to derive the entropy of the beta distribution, we need to define the
digamma function at first. The digamma function denoted by ψ(t) is the first
derivative of the natural logarithm of the gamma function denoted by Γ(t)
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with respect to the parameter t. This digamma function ψ(t) is therefore
given as

ψ(t) =
Γ

′
(t)

Γ(t)
=

d

dt
(log Γ(t)) (9.4)

As the next step, by Γ(k1)Γ(k2)
Γ(k1+k2)

=
1∫
0

xk1−1(1− x)k2−1dx, we can easily see that

∂

∂k1

(
Γ(k1)Γ(k2)

Γ(k1 + k2)

)
=

1∫

0

xk1−1(1 − x)k2−1 log x dx (9.5)

∂

∂k2

(
Γ(k1)Γ(k2)

Γ(k1 + k2)

)
=

1∫

0

xk1−1(1 − x)k2−1 log(1 − x) dx (9.6)

Therefore, by using the definition (9.4) on (9.5), we get

1∫

0

xk1−1(1 − x)k2−1 log x dx

=
Γ(k1 + k2)Γ

′
(k1) − Γ(k1)Γ

′
(k1 + k2)

(Γ(k1 + k2))
2 Γ(k2)

=
Γ(k1 + k2)Γ(k1)ψ(k1) − Γ(k1)Γ(k1 + k2)ψ(k1 + k2)

(Γ(k1 + k2))
2 Γ(k2)

=
Γ(k1)Γ(k2)

Γ(k1 + k2)
(ψ(k1) − ψ(k1 + k2))

= B(k1, k2) (ψ(k1) − ψ(k1 + k2))

(9.7)

Exactly in the same way, by using the definition (9.4) on (9.6), we get

1∫

0

xk1−1(1 − x)k2−1 log(1 − x) dx = B(k1, k2) (ψ(k2) − ψ(k1 + k2)) (9.8)

Hence, by using the deductions (9.7) and (9.8), we arrive at the expression
of the entropy of the beta distribution with subject to the natural logarithm
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without any serious loss of generality, denoted by EBeta as

EBeta =

1∫

0

xk1−1(1 − x)k2−1

B(k1, k2)
log

(
B(k1, k2)

xk1−1(1 − x)k2−1

)
dx

= log(B(k1, k2)) −
k1 − 1

B(k1, k2)

1∫

0

xk1−1(1 − x)k2−1 log x dx

− k2 − 1

B(k1, k2)

1∫

0

xk1−1(1 − x)k2−1 log(1 − x) dx

= log(B(k1, k2)) − (k1 − 1)
(
ψ(k1) − ψ(k1 + k2)

)

− (k2 − 1)
(
ψ(k2) − ψ(k1 + k2)

)

= log(B(k1, k2)) − (k1 − 1)ψ(k1) − (k2 − 1)ψ(k2)

+ (k1 + k2 − 2)ψ(k1 + k2)

(9.9)

Note: In the language of Calculus, the natural logarithm is often denoted
by log and the common logarithm is often denoted by log10. Therefore, there
should not be any confusion in this regard.
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9.2 Generalities

Let FX(x), 0 ≤ x ≤ 1 denote the distribution function of the random vari-
able X (X may follow either a beta distribution or a minimum information
distribution). With subject to the transformation Z = 1 − X, let FZ(z),
0 ≤ z ≤ 1 denote the distribution function of the random variable Z.

Therefore, if fX(x) and fZ(z) denote probability densities of X and Z re-
spectively, then the probability differentials of both X and Z, namely dFX(x)
and dFZ(z), must be the same in terms of magnitude, i.e.

|dFX(x)| = |dFZ(z)|

which gives
|fX(x)dx| = |fZ(z)dz|

⇔fX(x) = fZ(z)

∣∣∣∣
dz

dx

∣∣∣∣
⇔fX(x) = fZ(z) = fZ(1 − x)

(9.10)

Obviously, it is clear that, if E[X] = µ1 and V ar[X] = σ2 then E[Z] = 1−µ1

and V ar[Z] = σ2.

Before we proceed, we need to state importantly that we need to denote
the probability densities particularly of the beta- and the minimum informa-
tion probability distributions explicitly. They are denoted by fBeta

X|{d}(x) and

fMEP
X|{d}(x) respectively for 0 ≤ x ≤ 1, where d = (µ1, µ2) specifies the moments

of the probability distribution individually. In the same way, FBeta
X|{d}(x) and

FMEP
X|{d} denote the distribution functions of the two probability distributions

respectively.

However, in general (i.e without any consideration of whether the probabil-
ity distribution is beta or minimum information), the notations fX(x) and
FX(x) stand for the probability density function and the distribution function
respectively.

Thus, by keeping these things in mind, we proceed to perform our compar-
ative studies. It has to be unforgettably stated that we shall need to use
our software programm referred to the continuous uni-extremal
cases for our course of comparative studies. Apart from this software
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program, we also need to use the program Mathematica for the construction
of graphics.

Our comparative studies shall be in terms of graphical representations, where
in each such graphical figure, different statistical sizes (i.e. parameters) are
plotted against different values of σ2 within the permissible range given by
0 < σ2 < µ1(1 − µ1), such that µ1 is fixedly chosen each time in form of
µ1 ∈ {0.01, 0.05, 0.10, 0.15, 0.20, . . . , 0.95, 0.99}. These graphical figures are
individually addressed to

1. the difference of entropies between the two probability distributions
for different values of σ2 = V ar[X] = V ar[z]. That is, the difference
between the entropy of fMEP

X|{d}(x) and the same of fBeta
X|{d}(x) is plotted

against σ2.

2. skewness of both the probability distributions fMEP
X|{d}(x) and fBeta

X|{d}(x)

are simultaneously plotted against σ2.

3. left and right kurtosis of both the probability distributions. For the

probability density fX(x), they are defined by
µ1∫
0

(x−µ1

σ
)4fX(x)dx and

1∫
µ1

(x−µ1

σ
)4fX(x)dx respectively. Each of the left and the right kurtosis

of both the probability distributions fMEP
X|{d}(x) and fBeta

X|{d}(x) are simul-

taneously plotted against σ2.

4. maximum difference between the distribution functions of the two prob-
ability distributions is plotted against σ2.

5. minimum difference between the distribution functions of the two prob-
ability distributions is plotted against σ2.
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9.3 The entropy

At first we shall show that the entropies of the probability distributions of
X and Z are equal. For this, with subject to (9.10) we simply get

1∫

0

fX(x) log

(
1

fX(x)

)
dx =

1∫

0

fZ(1 − x) log

(
1

fZ(1 − x)

)
dx

=

z=0∫

z=1

fZ(z) log

(
1

fZ(z)

)
d(1 − z) =

1∫

0

fZ(z) log

(
1

fZ(z)

)
dz

(9.11)

Therefore, it is conclusively clear that, if the entropies of the probability
distributions of X and Z with respective probability densities fX and fZ

be denoted by Entropy(fX) and Entropy(fZ) respectively, then we have
Entropy(fX) = Entropy(fZ).

Importantly, we need to repeat that we must have Entropy(fX) < 0, each
time when the probability density fX is different from 1 (i.e probability den-
sity of the constant probability distribution). Moreover, as we already know,
Entropy(fMEP

X|{(µ1,σ2+µ2
1)}) is obviously larger than Entropy(fBeta

X|{(µ1,σ2+µ2
1)}

).

Therefore, the difference Entropy(fMEP
X|{(µ1,σ2+µ2

1)}) − Entropy(fBeta
X|{(µ1,σ2+µ2

1)}),

which is positive, is plotted against σ2 for a fixed value of µ1 (or 1−µ1) each
time.
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Figure 9.1: Entropy difference against σ2 for µ1 = 0.01 or 0.99
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Figure 9.2: Entropy difference against σ2 for µ1 = 0.05 or 0.95
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Figure 9.3: Entropy difference against σ2 for µ1 = 0.10 or 0.90
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Figure 9.4: Entropy difference against σ2 for µ1 = 0.15 or 0.85
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Figure 9.5: Entropy difference against σ2 for µ1 = 0.20 or 0.80
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Figure 9.6: Entropy difference against σ2 for µ1 = 0.25 or 0.75
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Figure 9.7: Entropy difference against σ2 for µ1 = 0.30 or 0.70
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Figure 9.8: Entropy difference against σ2 for µ1 = 0.35 or 0.65
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Figure 9.9: Entropy difference against σ2 for µ1 = 0.40 or 0.60
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Figure 9.10: Entropy difference against σ2 for µ1 = 0.45 or 0.55
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Figure 9.11: Entropy difference against σ2 for µ1 = 0.50
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Observations:

1. The sharp bend on each of these curves, each time when the curve
gets abruptly steeper from a particular value of σ2, has only to do
with the unavoidable technical difficulties in constructing these curves
graphically. These curves are basically continuous interpolated curves
and these sharp bends are merely the results of interpolating techni-
cal difficulties that therefore do not represent any picture of any non-
smoothness.

2. The curves for all the considered values of µ1 have the same character-
istics, i.e. the entropy difference rises mildly up to a certain value of
σ2, after which it rises steeply.

3. The curves for values of µ1 closer to 0.5 show lower values of the entropy
difference for higher values of σ2.

For eg., for µ1 = 0.45, the entropy difference for a value of σ2 closer to
µ1(1 − µ1) is about 55, whereas for µ1 = 0.05, the entropy difference
for a value of σ2 closer to µ1(1 − µ1) is about 600.

This enables us to conclude that, if µ1 is allowed to increase from a low
value close to 0 to 0.5, then the entropy difference for high values of
σ2 (especially values closer to µ1(1 − µ1)) has the tendency to reduce
itself.
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9.4 Skewness

Let us denote the skewness of the probability distribution of X defined by
its probability density fX by SkfX

[X]. Before we go ahead, we shall at
first show that the skewness is negatived by the transformation X = 1 − Z,
namely SkfX

[X] = −SkfZ
[Z] (i.e. the curve turns itself vertically upside

down), which can be shown elementarily with the help of (9.10) as

SkfX
[X] =

1∫

0

(
x − µ1

σ

)3

fX(x)dx

= −
1∫

0

(
1 − x − (1 − µ1)

σ

)3

fZ(z)dx

= −
0∫

1

(
z − (1 − µ1)

σ

)3

fZ(z)(−dz)

=

1∫

0

(
z − (1 − µ1)

σ

)3

fZ(z)dz

= −SkfZ
[Z]

(9.12)

In course of our comparative study, the skewness of each of the two proba-
bility distributions are plotted against σ2 for a fixed µ1. These two curves
are presented simultaneously in the same graphical picture in a way that the
plotting of the skewness SkfMEP

X
[X] against σ2 is thick-lined whereas the

skewness SkfBeta
X

[X] is thin-lined. This makes clear, which curve refers to
which probability distribution.

For the sake of simplicity, we shall denote the skewness by ζ1 in our graphs.

The skewness of both the probability distributions are 0 for µ1 = 0.5 anyway
and therefore the graphical illustration in this case is fruitless and therefore
understandably avoided.

With this, we proceed to give the graphical illustrations for different values
of µ1.
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Figure 9.12: Simultaneous curves for the skewness against σ2 for µ1 = 0.01
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Figure 9.13: Simultaneous curves for the skewness against σ2 for µ1 = 0.99
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Figure 9.14: Simultaneous curves for the skewness against σ2 for µ1 = 0.05
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Figure 9.15: Simultaneous curves for the skewness against σ2 for µ1 = 0.95
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Figure 9.16: Simultaneous curves for the skewness against σ2 for µ1 = 0.10
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Figure 9.17: Simultaneous curves for the skewness against σ2 for µ1 = 0.90
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Figure 9.18: Simultaneous curves for the skewness against σ2 for µ1 = 0.15
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Figure 9.19: Simultaneous curves for the skewness against σ2 for µ1 = 0.85
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Figure 9.20: Simultaneous curves for the skewness against σ2 for µ1 = 0.20
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Figure 9.21: Simultaneous curves for the skewness against σ2 for µ1 = 0.80
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Figure 9.22: Simultaneous curves for the skewness against σ2 for µ1 = 0.25
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Figure 9.23: Simultaneous curves for the skewness against σ2 for µ1 = 0.75
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Figure 9.24: Simultaneous curves for the skewness against σ2 for µ1 = 0.30
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Figure 9.25: Simultaneous curves for the skewness against σ2 for µ1 = 0.70
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Figure 9.26: Simultaneous curves for the skewness against σ2 for µ1 = 0.35
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Figure 9.27: Simultaneous curves for the skewness against σ2 for µ1 = 0.65
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Figure 9.28: Simultaneous curves for the skewness against σ2 for µ1 = 0.40
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Figure 9.29: Simultaneous curves for the skewness against σ2 for µ1 = 0.60
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Figure 9.30: Simultaneous curves for the skewness against σ2 for µ1 = 0.45
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Figure 9.31: Simultaneous curves for the skewness against σ2 for µ1 = 0.55
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Observations:

1. Even in these cases, the sharp bend in each of the curves is unavoidable
because of the said technical difficulties.

However, this problem is not really difficult in cases for the curves,
when µ1 is taken closer to 0.5.

2. In each of the curves, the skewness of both the probability distributions
are almost the same for either low or high values of σ2. That is, for
intermediate values of σ2, the difference between the skewness of the
minimum information distribution and the same of the beta distribu-
tion is bit high.

However, this difference in skewness of the two probability distributions
gets gradually lowered as µ1 is taken closer and closer to 0.5.

3. The curves of both the probability distributions of a given graphical
illustration shall understandably come arbitrarily closer to one another,
if the fixed value of µ1 is chosen to be arbitrarily closer to 0.5.
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9.5 Kurtosis

Let us denote the left and the right kurtosis of the probability distribution of
X defined by its probability density fX by Kuleft,fX

[X] and Kuright,fX
[X] re-

spectively. Before we go ahead, we shall show that Kuleft,fX
[X] = Kuright,fZ

[Z]
and Kuright,fX

[X] = Kuleft,fZ
[Z] as a result of the transformation X = 1−Z.

This can be shown elementarily with the help of (9.10) as

Kuleft,fX
[X] =

µ1∫

0

(
x − µ1

σ

)4

fX(x)dx

=

µ1∫

0

(
1 − x − (1 − µ1)

σ

)4

fZ(z)dx

=

1−µ1∫

1

(
z − (1 − µ1)

σ

)4

fZ(z)(−dz)

=

1∫

1−µ1

(
z − (1 − µ1)

σ

)4

fZ(z)dz

= Kuright,fZ
[Z]

(9.13)

and

Kuright,fX
[X] =

1∫

µ1

(
x − µ1

σ

)4

fX(x)dx

=

1∫

µ1

(
1 − x − (1 − µ1)

σ

)4

fZ(z)dx

=

0∫

1−µ1

(
z − (1 − µ1)

σ

)4

fZ(z)(−dz)

=

1−µ1∫

0

(
z − (1 − µ1)

σ

)4

fZ(z)dz

= Kuleft,fZ
[Z]

(9.14)
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For the sake of simplicity, we shall denote the left and the right kurtosis by
ζ21 and ζ22 respectively in our graphs.

With this, we proceed to give the graphical illustrations for different values
of µ1.

However, we must unforgettably state a very important thing: In course of
plotting the simultaneous curves for the left kurtosis against variance for
µ1 = 0.01 and µ1 = 0.05, we had to face technical difficulties in plotting the
curves for the entire allowable variance, namely σ2 < µ1(1 − µ1). In those
cases, we had restrict the ranges to σ2 < 0.0003 and σ2 < 0.025 respectively.
However, these restrictions did not hamper our comparative study at all.
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Figure 9.32: Simultaneous curves for the left kurtosis against σ2 ≤ 0.0003
for µ1 = 0.01 as well as the same for the right kurtosis for µ1 = 0.99
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Figure 9.33: Simultaneous curves for the left kurtosis against σ2

for µ1 = 0.99 as well as the same for the right kurtosis for µ1 = 0.01
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Figure 9.34: Simultaneous curves for the left kurtosis against σ2 ≤ 0.025 for
µ1 = 0.05 as well as the same for the right kurtosis for µ1 = 0.95

0.01 0.02 0.03 0.04
Σ2

10

20

30

40

50

Ζ21

Figure 9.35: Simultaneous curves for the left kurtosis against σ2

for µ1 = 0.95 as well as the same for the right kurtosis for µ1 = 0.05



9.5. KURTOSIS 381

0.02 0.04 0.06 0.08
Σ2

0.1

0.2

0.3

0.4

0.5

Ζ21

Figure 9.36: Simultaneous curves for the left kurtosis against σ2

for µ1 = 0.10 as well as the same for the right kurtosis for µ1 = 0.90
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Figure 9.37: Simultaneous curves for the left kurtosis against σ2

for µ1 = 0.90 as well as the same for the right kurtosis for µ1 = 0.10



382CHAPTER 9. COMPARATIVE STUDIES OF BETA DISTRIBUTIONS

0.02 0.04 0.06 0.08 0.1 0.12
Σ2

0.2

0.4

0.6

0.8

1

1.2

1.4

Ζ21

Figure 9.38: Simultaneous curves for the left kurtosis against σ2

for µ1 = 0.15 as well as the same for the right kurtosis for µ1 = 0.85

0.02 0.04 0.06 0.08 0.1 0.12
Σ2

2

4

6

8

Ζ21

Figure 9.39: Simultaneous curves for the left kurtosis against σ2

for µ1 = 0.85 as well as the same for the right kurtosis for µ1 = 0.15
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Figure 9.40: Simultaneous curves for the left kurtosis against σ2

for µ1 = 0.20 as well as the same for the right kurtosis for µ1 = 0.80
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Figure 9.41: Simultaneous curves for the left kurtosis against σ2

for µ1 = 0.80 as well as the same for the right kurtosis for µ1 = 0.20
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Figure 9.42: Simultaneous curves for the left kurtosis against σ2

for µ1 = 0.25 as well as the same for the right kurtosis for µ1 = 0.75
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Figure 9.43: Simultaneous curves for the left kurtosis against σ2

for µ1 = 0.75 as well as the same for the right kurtosis for µ1 = 0.25



9.5. KURTOSIS 385

0.05 0.1 0.15 0.2
Σ2

0.2

0.4

0.6

0.8

1.2

1.4

Ζ21

Figure 9.44: Simultaneous curves for the left kurtosis against σ2

for µ1 = 0.30 as well as the same for the right kurtosis for µ1 = 0.70
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Figure 9.45: Simultaneous curves for the left kurtosis against σ2

for µ1 = 0.70 as well as the same for the right kurtosis for µ1 = 0.30
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Figure 9.46: Simultaneous curves for the left kurtosis against σ2

for µ1 = 0.35 as well as the same for the right kurtosis for µ1 = 0.65
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Figure 9.47: Simultaneous curves for the left kurtosis against σ2

for µ1 = 0.65 as well as the same for the right kurtosis for µ1 = 0.35
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Figure 9.48: Simultaneous curves for the left kurtosis against σ2

for µ1 = 0.40 as well as the same for the right kurtosis for µ1 = 0.60
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Figure 9.49: Simultaneous curves for the left kurtosis against σ2

for µ1 = 0.60 as well as the same for the right kurtosis for µ1 = 0.40
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Figure 9.50: Simultaneous curves for the left kurtosis against σ2

for µ1 = 0.45 as well as the same for the right kurtosis for µ1 = 0.55

0.05 0.1 0.15 0.2 0.25
Σ2

0.8

1.2

1.4

Ζ21

Figure 9.51: Simultaneous curves for the left kurtosis against σ2

for µ1 = 0.55 as well as the same for the right kurtosis for µ1 = 0.45
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Figure 9.52: Simultaneous curves for the left (or right) kurtosis against σ2

for µ1 = 0.50
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Observations:

1. The technical problems giving rise to a sharp bend in a curve did per-
sist. However, for the curves corresponding to the values of µ1 closer
to 0.5 do not have this problem.

2. The difference in the left kurtosis of the probability distributions pre-
sented by the curves corresponding to the values of µ1 significantly
lower than 0.5 (or equivalently the difference in the right kurtosis of
the probability distributions presented by the curves corresponding to
the values of µ1 significantly higher than 0.5) are high.

This difference gets gradually lowered as µ1 is taken closer to 0.5.

3. The kurtosis basically describes the degree of peakedness of a probabil-
ity distribution. Understandably the increase in variance of a probabil-
ity distribution reduces the peakedness of the probability distribution.
Exactly this phenomenon has been studied here, in fact both the left
and the right kurtosis have shown to have got reduced with the increase
in variance.
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9.6 Maximum and minimum differences

This section shall involve the maximum and the minimum differences between
FBeta

X|{d}(x) and FMEP
X|{d} (x) for d = (µ1, σ

2 + µ2
1), such that µ1 is fixed but σ2

varies within its own range of validity.

The relationship between the maximum and the minimum of these differences
necessitates the establishment of a relationship between FBeta

X|{d}(x)−FMEP
X|{d} (x)

and FBeta
Z|{dz}(z) − FMEP

Z|{dz}(z), such that dz = (1 − µ1, σ
2 + (1 − µ1)

2).

Let us see to the following result at first, which necessitates the use of (9.10):

FX(x) =

x∫

0

fX(t)dt =

x∫

0

fZ(1 − t)dt

=

u=1−x∫

u=1

fZ(u)(−du)

= −
1−x∫

1

fZ(u)du

= −




0∫

1

fZ(u)du +

1−x∫

0

fZ(u)du




= − (−1 + FZ(1 − x))

= 1 − FZ(z)

(9.15)

which brings us to the following relationship:

FBeta
X|{d}(x) − FMEP

X|{d} (x) = −
(
FBeta

Z|{dz}(z) − FMEP
Z|{dz}(z)

)
(9.16)

and consequently,

max
(
FBeta

X|{d}(x) − FMEP
X|{d} (x)

)
= min

(
FBeta

Z|{dz}(z) − FMEP
Z|{dz}(z)

)
(9.17)

and this necessarily means that the minimum difference curve corresponding
to 1− µ1 is simply the negative (i.e. the curve turns itself vertically upside
down) of the maximum difference curve corresponding to µ1.

With this, we proceed to give the graphical illustrations.
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Figure 9.53: Maximum difference against σ2 for µ1 = 0.01
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Figure 9.54: Minimum difference against σ2 for µ1 = 0.99
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Figure 9.55: Maximum difference against σ2 for µ1 = 0.05
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Figure 9.56: Minimum difference against σ2 for µ1 = 0.95
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Figure 9.57: Maximum difference against σ2 for µ1 = 0.10
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Figure 9.58: Minimum difference against σ2 for µ1 = 0.90
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Figure 9.59: Maximum difference against σ2 for µ1 = 0.15
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Figure 9.60: Minimum difference against σ2 for µ1 = 0.85
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Figure 9.61: Maximum difference against σ2 for µ1 = 0.20
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Figure 9.62: Minimum difference against σ2 for µ1 = 0.80
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Figure 9.63: Maximum difference against σ2 for µ1 = 0.25
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Figure 9.64: Minimum difference against σ2 for µ1 = 0.75
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Figure 9.65: Maximum difference against σ2 for µ1 = 0.30
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Figure 9.66: Minimum difference against σ2 for µ1 = 0.70



9.6. MAXIMUM AND MINIMUM DIFFERENCES 399

0.05 0.1 0.15 0.2
Σ2

0.1

0.2

0.3

0.4

0.5

MaxF

Figure 9.67: Maximum difference against σ2 for µ1 = 0.35
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Figure 9.68: Minimum difference against σ2 for µ1 = 0.65
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Figure 9.69: Maximum difference against σ2 for µ1 = 0.40
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Figure 9.70: Minimum difference against σ2 for µ1 = 0.60
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Figure 9.71: Maximum difference against σ2 for µ1 = 0.45
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Figure 9.72: Minimum difference against σ2 for µ1 = 0.55
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Figure 9.73: Maximum difference against σ2 for µ1 = 0.50
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Figure 9.74: Minimum difference against σ2 for µ1 = 0.50
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Figure 9.75: Maximum difference against σ2 for µ1 = 0.55
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Figure 9.76: Minimum difference against σ2 for µ1 = 0.45
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Figure 9.77: Maximum difference against σ2 for µ1 = 0.60
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Figure 9.78: Minimum difference against σ2 for µ1 = 0.40
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Figure 9.79: Maximum difference against σ2 for µ1 = 0.65
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Figure 9.80: Minimum difference against σ2 for µ1 = 0.35
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Figure 9.81: Maximum difference against σ2 for µ1 = 0.70

0.05 0.1 0.15 0.2
Σ2

-0.2

-0.15

-0.1

-0.05

MinF

Figure 9.82: Minimum difference against σ2 for µ1 = 0.30
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Figure 9.83: Maximum difference against σ2 for µ1 = 0.75
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Figure 9.84: Minimum difference against σ2 for µ1 = 0.25
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Figure 9.85: Maximum difference against σ2 for µ1 = 0.80
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Figure 9.86: Minimum difference against σ2 for µ1 = 0.20
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Figure 9.87: Maximum difference against σ2 for µ1 = 0.85
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Figure 9.88: Minimum difference against σ2 for µ1 = 0.15
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Figure 9.89: Maximum difference against σ2 for µ1 = 0.90
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Figure 9.90: Minimum difference against σ2 for µ1 = 0.10
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Figure 9.91: Maximum difference against σ2 for µ1 = 0.95
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Figure 9.92: Minimum difference against σ2 for µ1 = 0.05
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Figure 9.93: Maximum difference against σ2 for µ1 = 0.99
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Figure 9.94: Minimum difference against σ2 for µ1 = 0.01
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Observations:

1. Before we go ahead, it must be unforgettably stated that the singulari-
ties of the density function of the beta distribution at x = 0 and x = 1
play a deciding role in this particular comparative study. In fact, for
higher values of the chosen variance σ2, the probabilities of the events
given by the intervals (0, ǫ1] and [ǫ2, 1) are significantly high, even for
small values of ǫ1 > 0 and ǫ2 > 0.

2. Exactly in this course of studying the behavior of the maximum or
minimum differences against variance, the presence of these singulari-
ties make a huge difference between the two probability distributions.

3. Since we have already seen that a maximum difference curve corre-
sponding to µ1 is simply the minimum difference curve corresponding
to 1 − µ1 that is simply vertically upside down, without any loss of
generality, we can confine our discussions to the maximum difference
curves only.

4. In general, the maximum values of the maximum differences tend to
decrease when µ1 is chosen to be closer to 1. This can be well ex-
plained by the very fact that the problem caused by the singularity at
x = 0 of the beta distribution density curve becomes more and more
insignificant.

In other words, this very phenomenon can be explained in the following
way: By keeping in mind that µ1 is the position parameter, for a high
value of σ2, the difference FBeta

X|{d}(x) − FMEP
X|{d} (x) is larger for a smaller

values of x, because the singularity of the density function of the beta
distribution at x = 0 contributes a higher probability value. On the
other hand, because of this singularity, for any particular value of x,
the difference FBeta

X|{d}(x) − FMEP
X|{d} (x) is larger for smaller values of µ1.

5. Broadly speaking, there is no real monotonicity in the maximum dif-
ference curves, but a lot depends on the value of the chosen µ1.

6. Now, let us explain the behavior of a maximum difference curve briefly:
In general, for any given value of µ1, if σ2 is made to increase gradually
from its lowest possible presentable value, say 0.0001, we know that
the density curve of the beta distribution is expectedly uni-modal. For
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this value of σ2, the maximum difference is understandably very small
(i.e. of a small magnitude).

Now, by increasing the σ2 corresponding to that µ1, this uni-modal
nature slowly fades and slowly turns out to be of monotonic nature.
Consequently, the maximum difference increases rapidly because of the
aforesaid singularities at x = 0 or x = 1. This rapidness is even more
severe, if µ1 < 0.5 (i.e. in this case, the monotonic nature is ascribed to
the monotonic decreasing nature), for which the aforesaid singularity
at x = 0 plays a predominant role.

By continuing to increase the value of σ2, a stage is reached, when
the maximum difference reaches its maximum value. The reason for
this is, the aforesaid monotonic nature discontinues and the density
curve of the beta distribution begins to be of bathtub nature. Con-
sequently, because of this bathtub nature, the aforesaid singularity at
x = 1 starts to play its role and subsequently the maximum difference
decreases with the further increase in σ2. This is because, the probabil-
ity part generated by the singularity at x = 1 increases. This character
is particularly visible for µ1 > 0.5 (i.e. in this case, the monotonic
nature, which was present, is ascribed to the monotonic increasing na-
ture). This decreasing takes place up to a certain point, after which
the maximum difference increases again with the increase in σ2. This
increase is simply explained by the very fact that the probability part
generated by the aforesaid singularity at x = 1 increases rapidly. This
character is again particularly visible for µ1 > 0.5 cases.

Obviously, this increasing of the maximum difference continues, till the
plotting of the curve is discontinued at a point, say σ2 = µ1(1 − µ1) −
0.0001.
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General remarks:

1. Unlike a uni-extremal minimum entropy information probability distri-
bution, beta distribution possesses important characteristics because of
its singularities at points x = 0 and x = 1 of its density curves in cases
for k1 < 0, k2 < 0.

2. Because of these singularities, the calculated probabilities even within
small neighborhoods of x = 0 and x = 1 are significantly high, for eg.
the beta distribution with parameters k1 = 0.03 and k2 = 2.97, where
0.0001∫

0

fX|{d}dx ≈ 0.8, such that d = (µ1, µ2) = (0.01, 0.002575).

In fact, in monotone and bathtub cases, the beta distribution has a
tendency to have higher probability values of events given by even
small right neighborhoods of x = 0 and small left neighborhoods of
x = 1. This is the case, that happens frequently for higher values of
variances and therefore the choice of a suitable probability distribution
is severely handicapped.

So, if the probabilities of events given by neighborhoods of x = 0
and x = 1 are relatively high, then the beta distribution can be well
simplified and approximated by a simple Bernoulli distribution with
the support {0, 1}.

3. In uni-modal cases of beta distribution for k1 > 0 and k2 > 0, i.e. the
cases when the variances are relatively small, the maximum differences
are more or less insignificant and enables the usage an appropriate
usage of either beta distribution or minimum information distribution
for a given set of two moments.

However, it has to be pointed out that the density function of the beta
distribution has zeros (i.e. meets the horizontal axis) at both x = 0
and x = 1. This is a severe restriction to the generality, as any density
function, which should approximate an unknown but existing density
function, should not meet the horizontal axis at its two ends by a
strict rule. This loss of generality may not be desirable.
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Chapter 10

Needlessness of moments more
than two

The amount of quantitative information used to determine the prob-
ability distribution of a random variable is defined by a finite sequence
of moments of the random variable. This very definition of quantitative
information has been clearly given and used by several authors, for eg. by
the authors of the published papers [3], [4], [59]. However, these authors have
not taken the following unforgettably important relevant question under con-
sideration: Do the moments of higher order (owing to the smallness of their
ranges of variabilities (referred to the definition 5.2.5) contained by the
given quantitative information really contribute to the information neces-
sary for the determination of the probability distribution? This very question
shall be discussed in this chapter with a set of numerical examples. To my
knowledge, not only these authors, there are several other authors, who did
seem to have overlooked this question and the relevancy of this question.
In other words, this question of contributiveness shall be discussed in this
chapter by illustrating a set of numerical examples.

We shall discuss this contributiveness, principally by making use of the
statement of the abstract of our joint paper (our paper [39]) for to show
that, from the stochastic point of view, the usage of the moments of
third or higher order are basically useless. The smaller bounded
ranges of third and fourth moments, as pictured by the example 10.0.1,
speak for themselves.

We know that the class of uni-modal probability distributions is a subclass

417
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of the class of uni-extremal probability distributions. In fact, uni-modal
probability distributions are very commonly used. We shall therefore
put our assertions by simple numerical examples of uni-modal probability
distributions.

10.0.1 A restatement regarding higher moments

In accordance with the minimum information principle, construction of any
multi-extremal minimum information probability distribution necessitates
the number of moments not less than three. Another word for a multi-
extremal minimum information probability distribution is a non-
standard minimum information probability distribution.

From the stochastic point of view, the usage of a multi-extremal min-
imum probability distribution is rather infrequent and therefore rather
insignificant, though it could be a part of a purely mathematical problem.

In this chapter, we shall basically show that we do not need more than two
moments to construct a uni-extremal probability distribution, especially from
the stochastic point of view. In fact, the utility of the usage of more than
two moments is basically needless and useless.

We know that the class of uni-modal probability distributions is simply a
subclass of the class of uni-extremal probability distributions. In fact, since
uni-modal probability distributions are very commonly used in Stochas-
tics, it is therefore basically enough for us to show by simple numerical
examples that the construction of uni-modal probability distributions does
not necessitate the usage of more than the first two moments. Not only
this, the construction of an uni-modal probability distribution by means of
three or more moments is contrary to the minimum information
principle.

However, it may be important to state that the usage of a probability distri-
bution from a stochastic point of view may be somewhat different from
any mathematical point of view.
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10.0.2 Revisiting the restriction
µ2

n−1

µn−2
< µn < µn−1, n ∈ N

This inequality has already been discussed before in the chapter 5. Here,
we shall put this inequality to another significant use.

Let us take the reference of our joint paper [39], whose abstract had been
given as:

Any random variable X describing a real phenomenon has necessarily
a bounded range of variability implying that the values of the mo-
ments determine the probability distribution uniquely. In fact, the
range of variability of a random variable restricts the range of the first
moment; the value of the first moment limits considerably the range
of the second moment; etc. Thus, any knowledge about the val-

ues of lower moments may be used without a further sample

for drawing inference on the higher moments. In this paper we
assume without loss of generality that the range of variability of the
random variable X is given by the unit interval. Subsequently, the
arising restrictions for the three first moments are derived and the im-
plications with respect to uni- modal random variables is investigated
and it is shown that for uni- modal probability distributions the

third moment yields only marginal additional information.

The main substance of this abstract has to be interpreted in form of the
following statement:

Statement 10.0.1 (Controlled boundedness of the bounded range
of µn, n ∈ N). We shall restate that the bounded range of µn, n ∈ N is
controlled by the moments of lower order, namely µ1, µ2, . . . , µn−1 in the
following way:

• the bounded range of variability of X, namely the interval [0, 1] restricts
the bounded range of the first moment µ1, the restriction being described
by the constraint 0 < µ1 < 1.

• the value of the first moment µ1 restricts the bounded range of the
second moment µ2, the restriction being described by the constraint µ2

1 <
µ2 < µ1.

• in turn, the values of the first µ1 and the second moment µ2 restrict the
bounded range of the third moment µ3, the restriction being described

by the constraint
µ2

2

µ1
< µ3 < µ2.
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• in turn, the values of the first µ1, the second µ2 and the third moment
µ3 restrict the bounded range of the fourth moment µ4, the restriction

being described by the constraint
µ2

3

µ2
< µ4 < µ3.

• Proceeding exactly in this way, the values of the first n − 1 moments,
namely µ1, µ2, . . . , µn−1 restrict the bounded range of the nth moment
µn, the restriction being described by the constraint

µ2
n

µn−1
< µn+1 < µn.

For exemplifying our immediately preceding statement numerically, we pro-
ceed as follows:

Example 10.0.1 (Exemplification of the controlled boundedness of
the bounded range of µn, n ∈ N). The following simple numerical example
is made to start with µ1 = 0.6

• if we take µ1 = 0.6, then the bounded range of µ2 would accordingly be
(0.36, 0.6).

• again, if we take µ1 = 0.6 and µ2 = 0.48, then the bounded range of µ3

would accordingly be (0.384, 0.48).

• again, if we take µ1 = 0.6, µ2 = 0.48 and µ3 = 0.432, then the bounded
range of µ4 would accordingly be (0.3888, 0.432).

• again, if we take µ1 = 0.6, µ2 = 0.48, µ3 = 0.432 and µ4 = 0.4104 then
the bounded range of µ5 would accordingly be (0.38988, 0.4104).

• again, if we take µ1 = 0.6, µ2 = 0.48, µ3 = 0.432, µ4 = 0.4104
and µ5 = 0.40014 then the bounded range of µ6 would accordingly be
(0.390136, 0.40014), etc. etc.

So, we can well see that the bounded ranges of the moments get strictly
monotonically smaller and thereby exemplifying our statement 10.0.1 and
at the same time exemplifying our previously proven proposition 5.4.1. In
fact, these bounded ranges get smaller rather fast.
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10.0.3 Numerical examples

The handled numerical examples in this subsection are exclusively referred
to our joint paper [39]. In each of these examples, the following are performed:

• An uni-modal probability density is suitably constructed by means
of the first three moments, only after making absolutely sure that
the third moment does not violate the uni-modal nature of
the probability density. This probability density shall be denoted by
fX|{d}(x), 0 ≤ x ≤ 1.

• The uni-modal probability density is constructed thereafter by the first
two moments of the above case. This probability density shall be de-
noted by fX|{d}(x), 0 ≤ x ≤ 1.

In each of the numerical illustrated examples, we have used the following
notations:

• µ
(U)
2 = σ2

X,U +µ2
1 as the limiting second moment for the uni- modality

of the probability distribution of X,

i.e. if µ2 of the probability distribution exceeds µ
(U)
2 , then the proba-

bility distribution is no longer uni- modal.

• µ
(L)
2 = σ2

X,L + µ2
1 as the limiting second moment for the bathtub-

shapeliness of the probability distribution of X,

i.e. if µ2 of the probability distribution falls below µ
(L)
2 , then the

probability distribution is no longer bathtub- shaped.

• µ3L =
µ2

2

µ1
as the deduced greatest lower bound of µ3 by the positive

definiteness of the Hankel matrix (4.25).

• µ3U = µ2 − (µ1−µ2)2

1−µ1
as the deduced least upper bound of µ3 by the

positive definiteness of the Hankel matrix (4.32).

• the third central moment (known to be the skewness) of the proba-
bility distributions with the probability densities fX|{d}(x), 0 ≤ x ≤ 1

and fX|{d}(x), 0 ≤ x ≤ 1 are denoted by ζ̃ and ζ respectively.

Five numerical examples are taken based on different values of µ1 belonging
to the different regions of the open interval (0, 1).
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Example 10.0.2 (µ1 ≈ 0.5). We proceed as follows:

Usage of three moments:

Corresponding to d = (µ1, µ2, µ̃3) = (0.577305, 0.336507, 0.198052), the prob-
ability density is given by

fX|{d}(x) = e−100.754+445.2x−613.35x2+260.5x3

, 0 ≤ x ≤ 1 (10.1)

Here,

• ζ̃ = 0.325139

• Obviously, µ̃3 = 0.198052

Usage of two moments:

Corresponding to d = (µ1, µ2) = (0.577305, 0.336507), the probability density
is given by

fX|{d}(x) = e−49.7041435320758+178.9468012849878x−154.9846279566155x2

, 0 ≤ x ≤ 1
(10.2)

Here,

• ζ = −1.8767951326058845 × 10−11

• µ
(U)
2 = 0.407801 > µ2 = 0.336507 and therefore the probability density

curve is uni- modal.

• µ
(L)
2 = 0.417901

• (µ3L; µ3U) = (0.196148; 0.199331)

• µ3 = 0.197992

The common variance of the two stated probability density curves
= µ2 − µ2

1 = σ2 = 0.00322613.
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Example 10.0.3 (µ1 ≈ 0.7). We proceed as follows:

Usage of three moments:

Corresponding to d = (µ1, µ2, µ̃3) = (0.663605, 0.441038, 0.293562), the prob-
ability density is given by

fX|{d}(x) = e−772.3106+3005.79x−3774.42x2+1514.35x3

, 0 ≤ x ≤ 1 (10.3)

Here,

• ζ̃ = 0.160539

• Obviously, µ̃3 = 0.293562

Usage of two moments:

Corresponding to d = (µ1, µ2) = (0.663605, 0.441038), the probability density
is given by

fX|{d}(x) = e−327.6352787696126+995.6919954296214x−750.2143560021559x2

, 0 ≤ x ≤ 1
(10.4)

Here,

• ζ = −7.612236047794894 × 10−11

• µ
(U)
2 = 0.49747 > µ2 = 0.441038 and therefore the probability density

curve is uni- modal.

• µ
(L)
2 = 0.51714

• (µ3L; µ3U) = (0.293118; 0.293783)

• µ3 = 0.29356

The common variance of the two stated probability density curves
= µ2 − µ2

1 = σ2 = 0.000666476.
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Example 10.0.4 (µ1 ≈ 0.3). We proceed as follows:

Usage of three moments:

Corresponding to d = (µ1, µ2, µ̃3) = (0.331225, 0.110203, 0.0368292), the
probability density is given by

fX|{d}(x) = e−145.002+1005.79x−2024.57x2+1014.45x3

, 0 ≤ x ≤ 1 (10.5)

Here,

• ζ̃ = 0.0669201

• Obviously, µ̃3 = 0.0368292

Usage of two moments:

Corresponding to d = (µ1, µ2) = (0.331225, 0.110203), the probability density
is given by

fX|{d}(x) = e−108.38720239285139+671.9046009907327x−1014.2721729801988x2

, 0 ≤ x ≤ 1
(10.6)

Here,

• ζ = −1.1712146443357637 × 10−11

• µ
(U)
2 = 0.165568 > µ2 = 0.110203 and therefore the probability density

curve is uni- modal.

• µ
(L)
2 = 0.1857

• (µ3L; µ3U) = (0.036666; 0.0371579)

• µ3 = 0.0368285

The common variance of the two stated probability density curves
= µ2 − µ2

1 = σ2 = 0.000492964.
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Example 10.0.5 (µ1 ≈ 0.03). We proceed as follows:

Usage of three moments:

Corresponding to d = (µ1, µ2, µ̃3) = (0.0339408, 0.0014847, 0.000075476), the
probability density is given by

fX|{d}(x) = e1.88237+75.3226x−1259.85x2+814.794x3

, 0 ≤ x ≤ 1 (10.7)

Here,

• ζ̃ = 0.411687

• Obviously, µ̃3 = 0.000075476

Usage of two moments:

Corresponding to d = (µ1, µ2) = (0.0339408, 0.0014847), the probability den-
sity is given by

fX|{d}(x) = e1.910147349535794+71.87155673715307x−1158.2761849087049x2

, 0 ≤ x ≤ 1
(10.8)

Here,

• ζ = 0.393576

• µ
(U)
2 = 0.00180952 > µ2 = 0.0014847 and therefore the probability

density curve is uni- modal.

• µ
(L)
2 = 0.00241263

• (µ3L; µ3U) = (0.0000649462; 0.000394289)

• µ3 = 0.0000753659

The common variance of the two stated probability density curves
= µ2 − µ2

1 = σ2 = 0.000332719.
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Example 10.0.6 (µ1 ≈ 0.84). We proceed as follows:

Usage of three moments:

Corresponding to d = (µ1, µ2, µ̃3) = (0.840583, 0.712421, 0.608714), the prob-
ability density is given by

fX|{d}(x) = e−224.507+760.8x−846.15x2+310.5x3

, 0 ≤ x ≤ 1 (10.9)

Here,

• ζ̃ = 0.0985569

• Obviously, µ̃3 = 0.608714

Usage of two moments:

Corresponding to d = (µ1, µ2) = (0.840583, 0.712421), the probability density
is given by

fX|{d}(x) = e−51.07566311252618+124.45872541366826x−73.50426482517058x2

, 0 ≤ x ≤ 1
(10.10)

Here,

• ζ = −0.264148

• µ
(U)
2 = 0.721086 > µ2 = 0.712421 and therefore the probability density

curve is uni- modal.

• µ
(L)
2 = 0.739675

• (µ3L; µ3U) = (0.6038; 0.609387)

• µ3 = 0.608552

The common variance of the two stated probability density curves
= µ2 − µ2

1 = σ2 = 0.0058417.
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Moreover, it has to be importantly stated that in each of these above exam-
ples, the principally important stochastic procedure, namely the prediction
procedure (i.e. the procedures for computing reliable and accurate predic-
tions), which has been modelled by means of both the densities fX|{d}(x),
0 ≤ x ≤ 1 and fX|{d}(x), 0 ≤ x ≤ 1 remains almost identically the same.
This very thing has been an important concluding statement of our pa-
per [39]) too. So, it is not at all incorrect to say that the usages these two
densities hardly make any noticeable difference.

10.0.4 Conclusions

The following conclusive points follow immediately from the examples:

1. The exemplified probability density curves fX|{d}(x), 0 ≤ x ≤ 1 and
fX|{d}(x), 0 ≤ x ≤ 1 almost overlap. So, the differences in their char-
acteristic properties are expectedly barely marginal.

2. The difference between the third moments of both the cases (i.e. the
cases of three moments and that of two moments) is hardly signifi-
cant. Therefore, the third moment does not give any significant
additional information addressed to the probability distribution, as
far as the uni- modality is concerned.

3. The usage of the third moment for the purpose of constructing a uni- ex-
tremal or rather a uni- modal probability distribution would mean noth-
ing, but an unnecessary additional exponentially higher amount
of the following tasks:

• Numerical mathematical work and

• Programming work

However, if it is a question of constructing a bi- extremal probabil-
ity distribution, then, in accordance with the minimum information
principle, this work is unavoidable.

4. One should unforgettably consider the following important points, if
one thinks of using the third or higher moments for computing a uni-
extremal probability distribution:
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• As we have already seen, the bounded range of µ3 is significantly
smaller than the same of µ2.

• From the stochastic point of view, i.e. for the practical appli-
cations, the true value of µ3 is, in general, never known. There-
fore, an appropriate estimation of µ3 is necessary and since the cu-
bic powers are needed to be computed for this, the computation
of an estimated empirical value of µ3 is significantly more sensi-
tive to estimation errors than the same of µ2. So, even a slightest
estimation error in course of estimating µ3 may cause the viola-
tion of the desired uni- extremal property (for eg. the desired uni-
modal property) of the probability distribution, the probability
distribution becomes likely to be bi- extremal. The usage of µ3 is
therefore well beyond practicability.

• The higher moments, as we have seen, have still smaller bounded
ranges. The practicability of the usage of higher moments for
computation of a uni- extremal probability distribution is there-
fore well beyond question.

5. The measure of skewness is principally commonly addressed to the uni-
modal probability distributions. With regard to this, the third central
moment is not a good measure of skewness, as the differences
between ζ̃ and ζ are alarmingly high. The third central moment
seems to be overly sensitive to the following:

• The smallness of the variance.

• Even insignificantly small changes of the third moment.

The monotonic as well as the uni- extremal (especially the uni- modal) min-
imum information probability distributions constructed by means of one or
two moments are the most essential resources for modelling the stochastic
procedures.
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Chapter 11

The formulation of the ultimate
problem

In this dissertation, corresponding to each empirical value of the deterministic
variable dY , our task shall be to determine the probability distribution of the
random variable Y , with subject to the given XY ({dY }). This probability
distribution is given exclusively by λ(dY ), which gives λ1, λ2, . . . , λm and of
course λ0 as distributional coefficients for computer codes.

The derivation of an appropriate probability distribution of Y is based on

• the knowledge about the actual member of the family of probability
distributions Pm,

• the minimum information principle, and

• the moments-related representation of the deterministic variable
dY = (E[Y ], E[Y 2], . . . , E[Y m]), provided m > 0. Notably, m = 0
means that no information regarding moments is available and the value
of λ0 is solely trivially given without any computational procedure.

The programming work is restricted to the cases of m ≤ 2. Thus, the for-
mulation of the ultimate problem of developing computer codes is
the strategy for determining the coefficients λi = λi(dY ) with i = 1, 2, . . . ,m
for a empirically given range of variability XY ({dY }) and a given empirical

value of the deterministic variable dY = (µ
(1)
Y , µ

(2)
Y , . . . , µ

(m)
Y ) belonging to the

parameter space DY for 0 < m ≤ 2. This is the task of this very chapter.
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This problem has been addressed in various authors like [25] in the context
of MEP -distributions. The computer programs do yield results in most of
the cases. However, only in very small cases, the programs may not give the
desired solutions. The reason for the arising difficulties will be discussed in
due course.

In the subsequent step the applied transformation of the random variable
will be discussed. That is, we shall discuss the utility of using the random
variable X once again.

11.1 Standardization of the variability

Any random variable Y |{dY } describing a real-world aspect has necessar-
ily a finite range of variability implying that any continuous approximation
should have a bounded range of variability. It follows that any continuous
approximation with unbounded range of variability violates the reality and,
therefore, is not considered in this dissertation.

Clearly, in view of developing algorithms, it would be beneficial to have only
one pre-determined range of variability. Therefore, not the true random
variable Y , but a transformed random variable X is used for the specified
algorithmic procedures.

We shall denote

a = a(dY ) = min{y | y ∈ XY ({dY })}
b = b(dY ) = max{y | y ∈ XY ({dY })} (11.1)

Then, the transformed random variable is defined by:

• X|{d} = Y |{dY }−a(dY )
b(dY )−a(dY )

or equivalently

• Y |{dY } = a(dY ) +
(
b(dY ) − a(dY )

)
X|{d}.

For the range of variability of the transformed random variable X|{d}, we
immediately obtain

XX({d}) =

{
{0 = x1, x2, . . . , xn = 1} : for discrete cases
{x | 0 ≤ x ≤ 1} : for continuous cases

(11.2)
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By the transformation (11.1), a random variable is obtained with a range of
variability standardized to an unit interval.

This transformation has the following advantages:

1. For the purpose of programming, we need not work with the input vari-
ables a(dY ) and b(dY ) more than twice: Once during the transforma-

tion X|{d} = Y |{dY }−a(dY )
b(dY )−a(dY )

and lastly during the reverse transformation

Y |{dY } = a(dY ) + (b(dY ) − a(dY ))X|{d} in the final step, after which
the results are delivered.

2. Because of the very fact that for µi (i = 1, 2, . . . ,m), we already have
1 > µ1 > µ2 > . . . > µm > 0, the computation work for the purpose of
computing the λ(dY ) is made simpler.

The transformation (11.1) of the random variable does not only affect the
variability function, but also the deterministic variable and the other com-
ponents of the Bernoulli Space.

11.2 The transformed deterministic variable

The deterministic variable dY is represented by the first m moments of Y .
The deterministic variable d of the transformed random variable is analo-
gously given by the corresponding moments of X.

d =
(
E[X], E[X2], . . . , E[Xm]

)
(11.3)

or

d = (µ1, µ2, . . . , µm) (11.4)

It is understood, that the influences of d on the random variable X is tan-
tamount to the influence of dY on the random variable Y . Therefore, while
keeping the following in mind

E[(X|{d})i] and E[(Y |{dY })j], i, j ∈ {1, 2, . . . ,m} are connected (11.5)

the relations between the components of dY and d for (0 < m ≤ 2) are given
as
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E[Y |{dY }] = a(dY ) +
(
b(dY ) − a(dY )

)
E[X|{d}] (11.6)

E[(Y |{dY })2] = a(dY )2 + 2a(dY )
(
b(dY ) − a(dY )

)
E[X|{d}]

+
(
b(dY ) − a(dY )

)2

E
[
(X|{d})2

]
(11.7)

and

E[X|{d}] =
1

b(dY ) − a(dY )

(
E[Y |{dY }] − a(dY )

)
(11.8)

E[(X|{d})2] =
1

(
b(dY ) − a(dY )

)2

(
E[(Y |{dY })2] − 2a(dY )E[Y |{dY }]

+a(dY )2
)

(11.9)

From (11.8) and (11.9), we immediately obtain:

µ1 =
1(

b(dY ) − a(dY )
)

[
µ

(1)
Y − a(dY )

]
(11.10)

µ2 =
1

(
b(dY ) − a(dY )

)2

[
µ

(2)
Y − 2µ

(1)
Y a(dY ) + a(dY )2

]
(11.11)

Finally, the frequently used real number λ0 is explained in the following way,
the details of which follow immediately in the next section:

• if m > 0, then λ0 is an uniquely determined by an empirical value of
dY and the range of variability XY ({dY })

• if m = 0, then λ0 is uniquely determined by the range of variability
XY ({dY }) only

11.3 The computation strategy

As described so far, the problem is to develop a computer code for the deter-
mination of λ(dY ), where dY is the moments-related deterministic variable.
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To this end λ(dY ) is presented as the solution of a system of simultaneous
equations. Basically, there are three cases that are covered.

Moreover, for the sake of simplicity, we shall symbolize λi = λi(dY ), such that
i = 0, 1, . . . ,m. This basically says that, in our cases we have λ0 = λ0(dY ),
λ1 = λ1(dY ) and λ2 = λ2(dY ).

Keeping this in mind, the individual families of probability distributions are
described as follows:

• constant family with fY |{dY }(y) = 1
N

for discrete cases, but 1
b−a

for
continuous cases,

• monotone family with dY = (µ
(1)
Y ) and fY |{dY }(y) = eλ0+λ1y,

• uni-extremal family with dY = (µ
(1)
Y , µ

(2)
Y ) and fY |{dY }(y) = eλ0+λ1y+λ2y2

.

Now, both for monotone and uni-extremal cases, λ(dY ) can be computed by
finding the solutions of (11.17), (11.24), (11.36) and (11.57). In this chapter,
we shall discuss about the strategy for solving these equations. Each of these
stated equations does have an unique solution. This uniqueness of each of
these solutions have been well established.

As a matter of fact, the first theorem of the German mathematician named
Felix Hausdorff (stated in [29]) has well supported the existence of the solu-
tion of each of the respective systems (11.18), (11.25), (11.37) and (11.58).

Again, it is shown in [19] the range of variability and the values of the mo-
ments of a random variable exhibit some strong relations. This have to be
taken into account for developing solution algorithms for the above systems
of equations.

The formal numerical treatment of solving these equations shall be discussed
in the subsequent chapter of Numerical Algorithms in full details.

At the very first step for our strategy for finding the solutions of the aforesaid
equations, the following transformation is used:

• xj =
yj−a

b−a
in discrete cases, j = 1, 2, . . . , N , such that

y1 = a and yN = b

• x = y−a

b−a
in continuous cases
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where, for the sake of simplicity, we have used a = a(dY ) and b = b(dY ).

Subsequently,

• in discrete cases, 0 ≤ xj ≤ 1 ⇔ a ≤ yj ≤ b, where the ranges of
variability of X|{d} and Y |{dY } are XX({d}) = {x1, x2, . . . , xN} and
XY ({dY }) = {y1, y2, . . . , yN} respectively. Here, x1 = 0 and xN = 1

• in continuous cases, 0 ≤ x ≤ 1 ⇔ a ≤ y ≤ b, where the ranges of
variability of X|{d} and Y |{dY } are XX({d}) = [0, 1] and
XY ({dY }) = [a, b] respectively.

Therefore, corresponding to a given empirical value of dY and the given XY ,
the computation of λ(dY ) can be strategically carried out case by case as
follows.

11.4 Discrete uniform probability distribution

11.4.1 The general case with N > 1

In this case of the constant family, λ0 is readily available:

λ0 = − log N (11.12)

11.4.2 Special case: N = 1

This is simply a trivial case, where λ0 = 0. Notably, the variance σ2
Y acquires

its minimum possible value, i.e. σ2
Y = 0

11.5 Continuous uniform probability distri-

bution

Even in this case of the constant family, λ0 is readily available:

λ0 = − log(b − a) (11.13)
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11.6 Discrete monotonic probability distribu-

tion

11.6.1 The general case with N > 2

For a discrete Y |{dY }, such that dY = (µ
(1)
Y ) or equivalently d = (µ1), then

the probability mass functions of Y |{dY } and X|{d} are

fY |{dY }(y) =
eλ1y

N∑
j=1

eλ1yj

, y ∈ XY ({dY }) = {y1, y2, . . . , yN}

and fX|{d}(x) =
eβx

N∑
j=1

eβxj

, x ∈ XX({d}) = {x1, x2, . . . , xN}
(11.14)

respectively.

In order to perform this, the following system of two simultaneous equations
must to be solved for λ(dY ) = (λ1):

N∑

j=1

eλ0+λ1yj = 1 (11.15)

N∑

j=1

yje
λ0+λ1yj = µ

(1)
Y (11.16)

which is equivalent to the solution of the following equation in λ1:

µ
(1)
Y =

N∑
j=1

yje
λ1yj

N∑
j=1

eλ1yj

(11.17)

Therefore, in order to compute the desired λ(dY ) = (λ1), the solution of
(11.17) is yielded by the solving the following equation in β at first:

µ1 =

N∑
j=1

xje
βxj

N∑
j=1

eβxj

(11.18)
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and only thereafter we arrive at

• λ1 = β

b−a

• λ0 = − log

(
N∑

j=1

eλ1yj

)

11.6.2 The case for constancy

In case µ
(1)
Y =

N∑
j=1

yj

N
( or equivalently µ1 =

N∑
j=1

xj

N
), then the probability

distribution is an uniform distribution, such that

• λ0 = − log N

• λ1 = 0

11.6.3 The trivial case: N = 1

In this case, the input of µ
(1)
Y is either redundant or inconsistent. The program

therefore gives the result that is independent of the given µ
(1)
Y , so that

• λ0 = 0

• λ1 = 0

11.6.4 Special case: N = 2

Here, XY ({dY }) = {a, b} ⇔ XX({d}) = {0, 1} and therefore with subject to
0 < µ1 < 1, we get

PX|{d}({0}) = 1 − µ1

PX|{d}({1}) = µ1

which leads us to

PX|{d}({x}) = eα+βx for x ∈ XX({d}) (11.19)

such that
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• α = log(1 − µ1) and

• β = − log
(

1
µ1

− 1
)

Now, by comparing the coefficients of y in the following to get λ0 and λ1,

eλ0+λ1y = eα+βx = eα+β( y−a
b−a )

we easily get
PY |{dY }({y}) = eλ0+λ1y for y ∈ XY ({dY }) (11.20)

such that

• λ0 = log

(
b−µ

(1)
Y

b−a

)
+ a

b−a
log

(
b−µ

(1)
Y

µ
(1)
Y

−a

)
and

• λ1 = − 1
b−a

log

(
b−µ

(1)
Y

µ
(1)
Y

−a

)

Notably, the variance σ2
Y acquires its maximum possible value,

i.e. σ2
Y = (µ

(1)
Y − a)(b − µ

(1)
Y )

11.7 Continuous monotonic probability dis-

tribution

11.7.1 The general case

For a continuous Y |{dY }, such that dY = (µ
(1)
Y ) or equivalently d = (µ1),

then the probability density functions of Y |{dY } and X|{d} are

fY |{dY }(y) =
eλ1y

b∫
a

eλ1ydy

, y ∈ XY ({dY }) = [a, b]

and fX|{d}(x) =
eβx

1∫
0

eβxdx

, x ∈ XX({d}) = [0, 1]

(11.21)

respectively.
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In order to perform this,, the following system of two simultaneous equations
must to be solved for λ(dY ) = (λ1):

b∫

a

eλ0+λ1ydy = 1 (11.22)

b∫

a

yeλ0+λ1ydy = µ
(1)
Y (11.23)

which is equivalent to the solution of the following equation in λ1:

µ
(1)
Y =

b∫
a

yeλ1ydy

b∫
a

eλ1ydy

(11.24)

Therefore, in order to compute the desired λ(dY ) = (λ1), the solution of
(11.24) is yielded by the solving of the following equation in β at first:

µ1 =

1∫
0

xeβxdx

1∫
0

eβxdx

(11.25)

and only thereafter we arrive at

• λ1 = β

b−a

• λ0 = − log

(
b∫

a

eλ1ydy

)

11.7.2 The case for constancy

This is the case, when µ
(1)
Y = a+b

2
or equivalently µ1 = 1

2
.

Here,

• λ1 = 0

• λ0 = − log(b − a)



11.8. USAGE OF THE STANDARD NORMAL DENSITY 441

11.8 Usage of the standard normal density

Soon we shall come across through certain cases, when the probability density
function

f
X|{d̃}(x) =

e−
1
2(

x−µ1
σ )

2

1∫
0

e−
1
2(

t−µ1
σ )

2

dt

, 0 ≤ x ≤ 1, 0 < µ1 < 1, 0 < σ <
√

µ1(1 − µ1)

(11.26)

determined by d̃ = (µ̃1, µ̃2) (such that σ̃2 = µ̃2 − µ̃2
1) of the continuous

random variable X can be used as an utilizable approximation of the

probability density function fX|{d}(x) = eβx+γx2

1∫
0

eβt+γt2dt

, 0 ≤ x ≤ 1 determined

by d = (µ1, µ2) where µ1 and σ =
√

µ2 − µ2
1 are the user-given mean and

standard deviation respectively. µ̃1 and σ̃ are denoted as the actual mean and
the standard deviation of the probability density (11.26). Quite obviously,
µ1 6= µ̃1 and σ 6= σ̃ are the cases, in general.

This approximative approach investigates the cases, how the conditions
µ1 ≈ µ̃1 and σ ≈ σ̃ help to to make sure that the probability density of X
given by (11.26) approximates the minimum information probability den-
sity fX|{d}(x) of X with respect to the predetermined mean µ1 and variance
σ2 well enough.

In this section, with the help of the probability density function of the stan-
dard normal distribution (i.e. (11.26)), we shall find out that condition,
under which

• the usage of the approximated probability distribution (11.26) of X is
justified.

• the expressions |µ1 − µ̃1| and |σ − σ̃|, which are formally derived in one
of the subsequent subsections, decrease rapidly with the decrease in
σ. Therefore, the goodness of the aforesaid approximation increases
with the decrease in σ.

According to the knowledge of the standard normal probability density func-
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tion, we have

1√
2π

ℓ∫

−ℓ

e−
x2

2 dx = 1 − ǫ(ℓ) (11.27)

where ǫ(ℓ) is a function of ℓ, which tends to zero rapidly with the increase in
ℓ. As a matter of fact, for ℓ = 3, ǫ(ℓ) = 0.0027 & for ℓ = 4, ǫ(ℓ) = 0.00006,
etc.

By rewriting the integral
1∫
0

e−
1
2(

x−µ1
σ )

2

dx (which is a part of (11.26)) and by

the knowledge of the standard normal probability distribution, with regard
to 0 < µ1 < 1, we get

1

σ
√

2π

1∫

0

e−
1
2(

x−µ1
σ )

2

dx =
1√
2π

1−µ1
σ∫

−µ1
σ

e−
x2

2 dx
σ→0−→ 1 (11.28)

Therefore, it is evidently clear, that our approximation improves with the
decrease in σ.

Keeping this in mind, by comparing the right hand side integral of the (11.28)

with the left hand side integral of the (11.27), we can use 1√
2π

ℓ∫
−ℓ

e−
x2

2 dx as a

reliable lower bound of 1√
2π

1−µ1
σ∫

−µ1
σ

e−
x2

2 dx. This leads us to lead the following:

• ℓ < 1−µ1

σ

• −ℓ > −µ1

σ

which means

• σ < 1−µ1

ℓ

• σ < µ1

ℓ

and therefore, by taking µD = min (µ1, 1 − µ1), we get the required approx-
imating condition as

σ <
µD

ℓ
(11.29)
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Furthermore, cases may arise, when X must be a discrete random variable
instead of being continuous. Even in such cases, we can make use of the stan-
dard normal distribution effectively. This is done in the following manner:

Let the bounded interval [0, 1] be divided into N parts by means of the finite
set of points x1, x2, . . . , xN , such that 0 = x1 < x2 < . . . < xN = 1. Then by
taking δr = xr+1 − xr, where r = 1, 2, . . . , N − 1, for a large N , we get the
expression of the probability that X lies in between c and d (0 ≤ c < d ≤ 1)
as

d∫

c

f
X|{d̃}(x)dx =

d∫
c

e−
1
2(

x−µ1
σ )

2

dx

1∫
0

e−
1
2(

x−µ1
σ )

2

dx

=

xk∫
xj

e−
1
2(

x−µ1
σ )

2

dx

1∫
0

e−
1
2(

x−µ1
σ )

2

dx

=

lim
δ→0

k∑
i=j

δie
− 1

2(
xi−µ1

σ )
2

lim
δ→0

N∑
i=1

δie
− 1

2(
xi−µ1

σ )
2

=

lim
(k−j)→∞

k∑
i=j

δie
− 1

2(
xi−µ1

σ )
2

lim
N→∞

N∑
i=1

δie
− 1

2(
xi−µ1

σ )
2

≈

k∑
i=j

δe−
1
2(

xi−µ1
σ )

2

N∑
i=1

δe−
1
2(

xi−µ1
σ )

2

=

k∑
i=j

e−
1
2(

xi−µ1
σ )

2

N∑
i=1

e−
1
2(

xi−µ1
σ )

2
(11.30)

such that

• we have taken c = xj and d = xk where 1 ≤ j < k ≤ N

• δ is called the norm of subdivision, defined by δ = max
r∈{1,2,...,N−1}

δr.

Therefore N → ∞ ⇔ δ → 0
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It is absolutely clear, that in the penultimate step, the proposed approxi-
mation is only admissible, if N is sufficiently large and δ is sufficiently
small.

In particular, if δr is constant for all values of r, then subsequently we have
Nδ =1 for every choice of N . This is just the case, when x1, x2, . . . , xN are
in arithmetic progression.

This leads us to assert our probability mass function of X, with subject to
the user-given mean µ1 and standard deviation σ, as

f
X|{d̃}(xj) =

e
− 1

2

(
xj−µ1

σ

)2

N∑
j=1

e
− 1

2

(
xj−µ1

σ

)2
, j = 1, 2, . . . , N (11.31)

such that 0 = x1 < . . . < xN = 1, 0 < µ1 < 1, 0 < σ <
√

µ1(1 − µ1).

Obviously, for large values of N , the same approximating condition (11.29)
can be harmlessly used, in cases, when x1, x2, . . . , xN are in arithmetic pro-
gression.

Moreover, my programming experience clearly shows, that the quality ap-
proximating discrete probability distribution becomes good, if N ≥ 100 and
δ is relatively small.

In the discrete case, the derived expressions |µ̃1 − µ1| and |σ̃ − σ| given in
one of the subsequent subsections show, that they decrease speedily with
the decrease in σ in many cases. However, the decreasing nature of |σ̃ − σ|
with the monotonic decrease in σ is additionally heavily dependent on the
predeterminately given finite support {0 = x1, x2, . . . , xN = 1} as an input.

When X is continuous, the fulfillment of the approximating condition
(11.29) confirms the the smallness simultaneously of both the expressions
of |µ̃1 − µ1| and |σ̃ − σ| . But, if X is discrete, the condition (11.29) may not
be enough to confirm smallness simultaneously of both |µ̃1 − µ1| and |σ̃ − σ|.

The simultaneous smallness of both the expressions |µ̃1 − µ1| and |σ̃ − σ|
is decisive for the justification of usage of the approximating probabil-
ity mass function (11.31) in case of the discrete X and of usage of the
approximating probability density (11.26) in case of the continuous X.
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So, by keeping the smallness of both |µ̃1 − µ1| and |σ̃ − σ| in mind (i.e. by
keeping µ1 ≈ µx and σ ≈ σx in mind), the user has to decide, whether
to opt for inputting µ̃1 and σ̃ as input values instead of µ1 and σ
respectively or not. Of course, the programmer has the respon-
sibility to structure his programs in terms of the feasibilities in
this regard (i.e. with regard to this aforesaid smallness) and this
shall be discussed in the coming subsections (both in discrete and
continuous cases), both of which are named as Uni-extremal prob-
ability distribution with a small variance belonging to the coming
chapter of Numerical algorithms.
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11.9 Discrete uni-extremal probability distri-

bution

11.9.1 The general case with N > 3

For a discrete Y |{dY }, such that dY = (µ
(1)
Y , µ

(2)
Y ) or equivalently d = (µ1, µ2),

then the probability mass functions of Y |{dY } and X|{d} are

fY |{dY }(y) =
eλ1y+λ2y2

N∑
j=1

eλ1yj+λ2y2
j

, y ∈ XY ({dY }) = {y1, y2, . . . , yN}

and fX|{d}(x) =
eβx+γx2

N∑
j=1

eβxj+γx2
j

, x ∈ XX({d}) = {x1, x2, . . . , xN}
(11.32)

respectively.

In order to perform this, the following system of three simultaneous equations
must to be solved for λ(dY ) = (λ1, λ2):

N∑

j=1

eλ0+λ1yj+λ2y2
j = 1 (11.33)

N∑

j=1

yje
λ0+λ1yj+λ2y2

j = µ
(1)
Y (11.34)

N∑

j=1

y2
j e

λ0+λ1yj+λ2y2
j = µ

(2)
Y (11.35)

which is equivalent to the solution of the following system of simultaneous
equations in λ1 and λ2:





µ
(1)
Y =

N∑
j=1

yje
λ1yj+λ2y2

j

N∑
j=1

e
λ1yj+λ2y2

j

µ
(2)
Y =

N∑
j=1

y2
j e

λ1yj+λ2y2
j

N∑
j=1

e
λ1yj+λ2y2

j

(11.36)
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Therefore, in order to compute the desired λ(dY ) = (λ1, λ2), the solution
of (11.36) is yielded by the solving of the following simultaneous system of
equations in β and γ at first:





µ1 =

N∑
j=1

xje
βxj+γx2

j

N∑
j=1

e
βxj+γx2

j

µ2 =

N∑
j=1

x2
je

βxj+γx2
j

N∑
j=1

e
βxj+γxij2

(11.37)

and only thereafter we arrive at

• λ1 = β(b−a)−2aγ

(b−a)2

• λ2 = γ

(b−a)2

• λ0 = − log

(
N∑

j=1

eλ1yj+λ2y2
j

)

For the purpose of handling the overflow computing errors, λ0 is
computed according to the following rule:

– if (β + γ < 709) then

λ0 = − βa

b−a
+ γa2

(b−a)2
− log

(
N∑

j=1

eβxj+γx2
j

)

– if (β + γ ≥ 709) then

λ0 = −β − γ − βa

b−a
+ γa2

(b−a)2
− log

(
N∑

j=1

eβ(xj−1)+γ(x2
j−1)

)
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11.9.2 The case for constancy

In case µ
(1)
Y =

N∑
j=1

yj

N
and µ

(2)
Y =

N∑
j=1

y2
j

N
occur simultaneously ( or equivalently

µ1 =

N∑
j=1

xj

N
and µ2 =

N∑
j=1

x2
j

N
occur simultaneously ), then the probability

distribution is an uniform distribution, such that

• λ0 = − log N

• λ1 = 0

• λ2 = 0

11.9.3 The monotonic case

Let β0 be the (unique) solution of the following equation in β:

µ1 =

N∑
j=1

xje
βxj

N∑
j=1

eβxj

Then, if so happens that β0 fulfills the following equality:

µ2 =

N∑
j=1

x2
je

β0xj

N∑
j=1

eβ0xj

then the probability distribution is a monotonic probability distribution,
which means

• λ0 = − log

(
N∑

j=1

e
β0

b−a
yj

)

• λ1 = β0

b−a

• λ2 = 0

Notably, if β0 = 0 then the probability distribution is uniform.
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11.9.4 The trivial cases: N = 1 and N = 2

Subcase 1: N = 1. In this case, each of the inputs of µ
(1)
Y and µ

(2)
Y (or equiv-

alently σ2
Y can be given instead of µ

(2)
Y ) is either redundant or inconsistent.

The program therefore gives the result that is independent of both the given
µ

(1)
Y and µ

(2)
Y , so that

• λ0 = 0

• λ1 = 0

• λ2 = 0

Subcase 2: N = 2. In this case, the input of µ
(1)
Y is necessary, but the input

of µ
(2)
Y (or equivalently σ2

Y ) is either redundant or inconsistent. The program

therefore gives the result that is consistent with the predetermined µ
(1)
Y , but

is independent of the given µ
(2)
Y , so that

• λ0 = log

(
b−µ

(1)
Y

b−a

)
+ a

b−a
log

(
b−µ

(1)
Y

µ
(1)
Y

−a

)
and

• λ1 = − 1
b−a

log

(
b−µ

(1)
Y

µ
(1)
Y

−a

)

• λ2 = 0

11.9.5 Uni-extremal probability distribution with a small
variance

Let µ
(1)
Y and σ2

Y be the respective user-given mean and variance of the uni-
extremal probability distribution of Y with the given finite support {y1, y2, . . . , yN}.

Let the random variable Y be assumed to follow an approximated proba-
bility distribution with the support {y1, y2, . . . , yN}, whose probability mass

function f
Y |{d̃Y }(yj), j = 1, 2, . . . , N determined by d̃Y = (µ̃

(1)
Y , µ̃

(2)
Y ), such
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that σ̃2
Y = µ̃

(2)
Y − (µ̃

(1)
Y )

2
, is given by

f
Y |{d̃Y }(yj) =

e
− 1

2

(
yj−µ

(1)
Y

σY

)2

N∑
j=1

e
− 1

2

(
yj−µ

(1)
Y

σY

)2 , a = y1 < y2 < . . . < yN = b

=
K

σY

√
2π

e
− 1

2

(
yj−µ

(1)
Y

σY

)2

, j = 1, 2, . . . , N (11.38)

By the linear transformation X = Y −a
b−a

, the probability mass function
f

X|{d̃}(xj), j = 1, 2, . . . , N of the random variable X is given by

f
X|{d̃}(xj) =

K

σY

√
2π

e
− 1

2

(
xj−µ1

σ

)2

, 0 = x1 < x2 < . . . < xN = 1 (11.39)

(
∵ yj−µ

(1)
Y

σY
=

xj−µ1

σ
, for j ∈ {1, 2, . . . , N}

)
, such that for xj =

yj−a

b−a
, together

with f
X|{d̃}(xj) = f

Y |{d̃Y }(yj), j = 1, 2, . . . , N , we have

• µ1 =
µ

(1)
Y

−a

b−a

• σ = σY

b−a

• K = σY

√
2π

N∑
j=1

e

− 1
2


 yj−µ

(1)
Y

σY




2 = σY

√
2π

N∑
j=1

e
− 1

2

(
xj−µ1

σ

)2 = (b−a)σ
√

2π

N∑
j=1

e
− 1

2

(
xj−µ1

σ

)2

We shall make use of the values of µ1 and σ to judge, whether the uni-
extremal probability distribution (11.38) of Y can be taken for the approx-
imating probability distribution of Y with small variance (having mean µ̃Y

and standard deviation σ̃Y , such that µ̃Y ≈ µY and σ̃Y ≈ µY ).

Therefore, let us derive and examine the smallness (in terms of magni-
tude) of the values of ǫµ1 = µ̃1 − µ1 and ǫσ = σ̃ − σ, where µ̃1 and σ̃ are the
mean and standard deviation of the probability mass function of X given by
(11.39) respectively. Here,
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µ̃1 =

N∑
j=1

xje
− 1

2

(
xj−µ1

σ

)2

N∑
j=1

e
− 1

2

(
xj−µ1

σ

)2
=

N∑
j=1

(xj − µ1)e
− 1

2

(
xj−µ1

σ

)2

N∑
j=1

e
− 1

2

(
xj−µ1

σ

)2
+ µ1

=
K

σY

√
2π

N∑

j=1

(xj − µ1)e
− 1

2

(
xj−µ1

σ

)2

+ µ1

(11.40)

giving

ǫµ1 = µ̃1 − µ1 =
K

σY

√
2π

N∑

j=1

(xj − µ1)e
− 1

2

(
xj−µ1

σ

)2

(11.41)

σ̃2 =

N∑
j=1

(xj − µ̃1)
2e

− 1
2

(
xj−µ1

σ

)2

N∑
j=1

e
− 1

2

(
xj−µ1

σ

)2
=

N∑
j=1

(xj − µ1 + µ1 − µ̃1)
2e

− 1
2

(
xj−µ1

σ

)2

N∑
j=1

e
− 1

2

(
xj−µ1

σ

)2

=

N∑
j=1

(xj − µ1 − ǫµ1)
2e

− 1
2

(
xj−µ1

σ

)2

N∑
j=1

e
− 1

2

(
xj−µ1

σ

)2

=

N∑
j=1

{
(xj − µ1)

2 − 2ǫµ1(xj − µ1) + ǫ2
µ1

}
e
− 1

2

(
xj−µ1

σ

)2

N∑
j=1

e
− 1

2

(
xj−µ1

σ

)2

=
K

σY

√
2π

N∑

j=1

(xj − µ1)
2e

− 1
2

(
xj−µ1

σ

)2

− ǫ2
µ1

(11.42)
giving

ǫσ =

√√√√ K

σY

√
2π

N∑

j=1

(xj − µ1)2e
− 1

2

(
xj−µ1

σ

)2

− ǫ2
µ1

− σ (11.43)
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Hence, the expressions (11.41) and (11.43) of ǫµ1 and ǫσ respectively can also
be written as

ǫµ1 =

N∑
j=1

(xj − µ1)e
− 1

2

(
xj−µ1

σ

)2

N∑
j=1

e
− 1

2

(
xj−µ1

σ

)2
(11.44)

ǫσ =

√√√√√√√√

N∑
j=1

(xj − µ1)2e
− 1

2

(
xj−µ1

σ

)2

N∑
j=1

e
− 1

2

(
xj−µ1

σ

)2
− ǫ2

µ1
− σ (11.45)

and thus, ǫµ1 and ǫσ are expected to decrease rapidly with the decrease in σ.

As we have already discussed before, apart from the fact that N must be rea-
sonably large and δ = max

j∈{1,2,...,N−1}
(xj+1 − xj) must be reasonably small, the

additional probable approximating condition, for which (11.39) is accept-
able as the probability distribution of X with subject to the user-given mean
µ1 and the standard deviation σ reads σ < µD

ℓ
, where µD = min(µ1, 1− µ1).

Our above usage of the word probable means, the aforesaid approximating
condition may be of a big help, but not the sufficient condition to ensure the
simultaneous smallness of ǫµ1 and ǫσ.

Consequently, this probable approximating condition leads to the acceptance
of (11.38) to be the probability distribution of Y , with subject to the user-
given mean µY and the standard deviation σY .

Therefore, we can come to the following conclusion:

(11.38) is accepted to be the approximated probability distribution of Y , if
the following cases are under consideration:

• σ < µD

ℓ
. In our cases, ℓ is made to range from 3.5 to 4.5 for a sufficiently

large N . This helps a lot, but not the sufficient condition

• for a preassigned positive number ǫ, if we have |ǫµ1 | < ǫ and |ǫσ| < ǫ.
In our cases, ǫ is made to range from 10−10 to 10−9. This is the usable
condition
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Now, let us come to the determination of λ values. They read as follows:

• λ0 = log
(

K

σY

√
2π

)
− 1

2

(
µY

σY

)2

• λ1 = µY

σ2
Y

• λ2 = − 1
2σ2

Y

11.9.6 Special case: N = 3

Here, XY ({dY }) = {a, ŷ, b} ⇔ XX({d}) = {0, x̂, 1} and therefore with subject
to 0 < µ1 < 1 and µ2

1 < µ2 < µ1 (i.e. equivalently 0 < σ2 < µ1(1 − µ1)), we
set

PX|{d}({0}) = 1 − p − q

PX|{d}({x̂}) = p

PX|{d}({1}) = q

Therefore, we need to solve the following system of simultaneous equations
in p and q, namely

µ1 = x1(1 − p − q) + x2p + x3q

µ2 = x2
1(1 − p − q) + x2

2p + x2
3q

Because of x1 = 0, x2 = x̂ and x3 = 1, the above system of simultaneous
equations gets simplified to

µ1 = x̂p + q

µ2 = x̂2p + q

and on solving it, we get the following

•
1 − p − q = 1 − µ1 −

µ1 − µ2

x̂
(11.46)

•
p =

µ1 − µ2

x̂(1 − x̂)
(11.47)
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•
q =

µ2 − µ1x̂

1 − x̂
(11.48)

which leads us to

PX|{d}({x}) = eα+βx+γx2

for x ∈ XX({d}) (11.49)

such that

• eα = 1 − p − q

• eα+βx̂+γx̂2
= p and

• eα+β+γ = q

thereby giving

• α = log(1 − p − q)

• β =
log( p

1−p−q )−x̂2 log( q
1−p−q )

x̂(1−x̂)
and

• γ =
x̂ log( q

1−p−q )−log( p
1−p−q )

x̂(1−x̂)

Now, by comparing the coefficients of y in the following to get λ0, λ1 and λ2,

eλ0+λ1y+λ2y2

= eα+βx+γx2

= eα+β( y−a
b−a )+γ( y−a

b−a )
2

we easily get

PY |{dY }({y}) = eλ0+λ1y+λ2y2

for y ∈ XY ({dY }) (11.50)

such that

• λ0 = α − βa

b−a
+ γa2

(b−a)2

• λ1 = β

b−a
− 2aγ

(b−a)2
and

• λ2 = γ

(b−a)2
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Now, as we have already discussed about the existence of certain dis-
crete probability distributions in certain cases with subject to the pre-
determined XY ({dY }) (or equivalently XX({d})). This is exactly one of such
cases in which the existence is in question. This is a typical analytical exam-
ple of this, which we shall discuss here.

The existence imperatively necessitates the simultaneous fulfillment of the
following:

p > 0, q > 0, and 1 − p − q > 0 (11.51)

Here, we see that

1. By (11.47), p > 0 ⇔ µ1 > µ2, which always holds true.

2. By (11.48), q > 0 ⇔ µ2 > µ1x̂ ⇔ µ2 > µ2
1 + µ1(x̂ − µ1)

3. By (11.46), 1−p−q > 0 ⇔ 1−µ1 > µ1−µ2

x̂
⇔ µ2 > µ2

1+(1−µ1)(µ1− x̂)

and therefore, by summarizing all the necessities of the aforesaid existence, we
arrive at the following condition for the existence imposed on XY ({dY })
(or equivalently on XX({d})):

µ2 > max
{
µ2

1 + µ1(x̂ − µ1) , µ2
1 + (1 − µ1)(µ1 − x̂)

}
(11.52)

Hence, we arrive at the following conclusions:

1. For µ1 > x̂,

• The probability distribution does not exist, if
µ2

1 < µ2 ≤ µ2
1 + (1 − µ1)(µ1 − x̂) or equivalently, if

0 < σ2 ≤ (1 − µ1)(µ1 − x̂)

2. For µ1 < x̂,

• The probability distribution does not exist, if
µ2

1 < µ2 ≤ µ2
1 + µ1(x̂− µ1) or equivalently, if 0 < σ2 ≤ µ1(x̂− µ1)

3. For µ1 = x̂,

• The probability distribution exists anyway, because the condition
(11.52) simplifies itself to µ2 > µ2

1
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11.10 Continuous uni-extremal probability dis-

tribution

11.10.1 The general case

For a continuous Y |{dY }, such that dY = (µ
(1)
Y , µ

(2)
Y ) or equivalently d =

(µ1, µ2), then the probability density functions of Y |{dY } and X|{d} are

fY |{dY }(y) =
eλ1y+λ2y2

b∫
a

eλ1y+λ2y2dy

, y ∈ XY ({dY }) = [a, b]

and fX|{d}(x) =
eβx+γx2

1∫
0

eβx+γx2dx

, x ∈ XX({d}) = [0, 1]

(11.53)

respectively.

In order to perform this, the following system of three simultaneous equations
has to be solved for λ(dY ) = (λ1, λ2):

b∫

a

eλ0+λ1y+λ2y2

dy = 1 (11.54)

b∫

a

yeλ0+λ1y+λ2y2

dy = µ
(1)
Y (11.55)

b∫

a

y2eλ0+λ1y+λ2y2

dy = µ
(2)
Y (11.56)

which is equivalent to the solution of the following system of simultaneous
equations in λ1 and λ2: 




µ
(1)
Y =

b∫
a

yeλ1y+λ2y2
dy

b∫
a

eλ1y+λ2y2
dy

µ
(2)
Y =

b∫
a

y2eλ1y+λ2y2
dy

b∫
a

eλ1y+λ2y2
dy

(11.57)
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Therefore, in order to compute the desired λ(dY ) = (λ1, λ2), the solution
of (11.57) is yielded by the solving of the following simultaneous system of
equations in β and γ at first:





µ1 =

1∫
0

xeβx+γx2
dx

1∫
0

eβx+γx2
dx

µ2 =

1∫
0

x2eβx+γx2
dx

1∫
0

eβx+γx2
dx

(11.58)

and only thereafter we arrive at

• λ1 = β(b−a)−2aγ

(b−a)2
and

• λ2 = γ

(b−a)2

• λ0 = − log

(
b∫

a

eλ1y+λ2y2
dy

)

For the purpose of handling the overflow computing errors, λ0 is
computed according to the following rule:

– if (β + γ < 709) then λ0=− βa
b−a

+ γa2

(b−a)2
−log

(
1∫
0

eβx+γx2
dx

)

– if (β + γ ≥ 709) then λ0=−β−γ− βa
b−a

+ γa2

(b−a)2
−log

(
1∫
0

eβ(x−1)+γ(x2−1)dx

)

11.10.2 The cases for symmetry and constancy

This is the case, when µ
(1)
Y = a+b

2
or equivalently µ1 = 1

2
. Subsequently,

β = −γ.

Here, the probability distribution is symmetric but not constant, if µ1 = 1
2

and µ2 6= 1
3
. In that case,

• λ1 = β

b−a
+ 2aβ

(b−a)2

• λ2 = − β

(b−a)2
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• λ0 = − log(b − a) − log

(
1∫
0

eβx−βx2
dx

)
− βa

b−a
− βa2

(b−a)2

Again, the probability distribution is constant (namely uniform), if µ1 = 1
2

and µ2 = 1
3
. In this case, β = γ = 0, so that

• λ1 = 0

• λ2 = 0

• λ0 = − log(b − a)

11.10.3 The monotonic case

Let β0 be the (unique) solution of the following equation in β:

µ1 =

1∫
0

xeβxdx

1∫
0

eβxdx

= 1 +
1

eβ − 1
− 1

β
(provided β 6= 0)

Then, if so happens that β0 fulfills the following equality:

µ2 =

1∫
0

x2eβ0xdx

1∫
0

eβ0xdx

= 1 +
1

eβ − 1
− 2µ1

β
(provided β0 6= 0)

then the probability distribution is a monotonic probability distribution,
which means

• λ0 = − log(b − a) − log

(
1∫
0

eβ0xdx

)
− β0

(
a

b−a

)

• λ1 = β0

b−a

• λ2 = 0

Notably, if β0 = 0 then the probability distribution is uniform.

Otherwise, if we are sure that β0 6= 0, then we can easily rewrite

λ0 = log
(

β0

(b−a)(eβ0−1)

)
− β0

(
a

b−a

)
, λ1 = β0

b−a
and λ2 = 0.
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11.10.4 Uni-extremal probability distribution with a
small variance

Let µY and σ2
Y be the respective user-given mean and variance of the uni-

extremal probability distribution of Y with the given compact support [a, b].

Let the random variable Y be assumed to follow a truncated normal
distribution with the compact support [a, b], whose probability density

function f
Y |{d̃Y }(y), a ≤ y ≤ b determined by d̃Y = (µ̃

(1)
Y , µ̃

(2)
Y ), such that

σ̃2
Y = µ̃

(2)
Y − (µ̃

(1)
Y )

2
, is given by

f
Y |{d̃Y }(y) =

e
− 1

2

(
y−µY

σY

)2

(b − a)
1∫
0

e−
1
2(

x−µ1
σ )

2

dx

, a ≤ y ≤ b

=
K

σY

√
2π

e
− 1

2

(
y−µY

σY

)2

, a ≤ y ≤ b (11.59)

such that µ1 = µY −a

b−a
and σ = σY

b−a
.

By the linear transformation X = Y −a
b−a

, the probability density function
f

X|{d̃}(x), 0 ≤ x ≤ 1 of the random variable X is given by

f
X|{d̃}(x) =

e−
1
2(

x−µ1
σ )

2

1∫
0

e−
1
2(

x−µ1
σ )

2

dx

, 0 ≤ x ≤ 1 (11.60)

such that

• K = σY

√
2π

(b−a)
1∫
0

e
− 1

2(
x−µ1

σ )
2

dx

and e−α̃ =
1∫
0

e−
1
2(

x−µ1
σ )

2

dx

• for x = y−a

b−a
, f

X|{d̃}(x) = (b − a)f
Y |{d̃Y }(y)

We shall make use of the values of µ1 and σ to judge, whether the uni-
extremal probability distribution (11.59) of Y is acceptable as the approxi-
mating probability distribution of Y with small variance (having mean µ̃Y

and standard deviation σ̃Y , such that µ̃Y ≈ µY and σ̃Y ≈ µY ).
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Therefore, let us derive and examine the smallness of the values of ǫµ1 =
µ̃1 − µ1 and ǫσ = σ̃ − σ, where µ̃1 and σ̃ being the mean and the standard
deviation of the probability distribution of X given by (11.60) respectively.

At first, ǫµ1 is derived as

ǫµ1 = eα̃

1∫

0

xe−
1
2(

x−µ1
σ )

2

dx − µ1 by putting α̃ = − log




1∫

0

e−
1
2(

x−µ1
σ )

2

dx




= eα̃

1∫

0

(x − µ1)e
− 1

2(
x−µ1

σ )
2

dx

= eα̃
(
σ
√

2
)2

1∫

0

(
x − µ1

σ
√

2

)
e−

1
2(

x−µ1
σ )

2 1

σ
√

2
dx

= eα̃σ2
[
−e−

1
2(

x−µ1
σ )

2∣∣∣
x=1

x=0

]

= eα̃σ2

[
e−

µ2
1

2σ2 − e−
(1−µ1)2

2σ2

]

= σ2 e−
µ2
1

2σ2 − e−
(1−µ1)2

2σ2

1∫
0

e−
1
2(

x−µ1
σ )

2

dx

= σ
e−

µ2
1

2σ2 − e−
(1−µ1)2

2σ2

1−µ1
σ∫

−µ1
σ

e−
x2

2 dx

= σ
e−

µ2
1

2σ2 − e−
(1−µ1)2

2σ2

√
2π 1√

2π

1−µ1
σ∫

−µ1
σ

e−
x2

2 dx

=
σ√
2π

e−
µ2
1

2σ2 − e−
(1−µ1)2

2σ2

Φ
(

1−µ1

σ

)
− Φ

(−µ1

σ

) (11.61)

In addition to this, we shall need the following result

ǫµ1

σ
=

1√
2π

e−
µ2
1

2σ2 − e−
(1−µ1)2

2σ2

Φ
(

1−µ1

σ

)
− Φ

(−µ1

σ

) (11.62)
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As the next step, by making use of the following indefinite integral

∫
(x − µ1) e−

1
2(

x−µ1
σ )

2

dx = −σ2e−
1
2(

x−µ1
σ )

2

(11.63)

on integrating by parts, we get

∫
(x − µ1)

2 e−
1
2(

x−µ1
σ )

2

dx = −(x − µ1)σ
2e−

1
2(

x−µ1
σ )

2

+ σ2

∫
e−

1
2(

x−µ1
σ )

2

dx

(11.64)
which leads us to

1∫
0

(x−µ1)
2e

− 1
2(

x−µ1
σ )

2

dx = σ2

{
1∫
0

e
− 1

2(
x−µ1

σ )
2

dx−(1−µ1)e
− 1

2(
1−µ1

σ )
2

−µ1e
− 1

2(
µ1
σ )

2
}

= σ2

(
e−α̃−µ1e

− 1
2(

µ1
σ )

2

−(1−µ1)e
− 1

2(
1−µ1

σ )
2
)

(11.65)
Therefore, by using (11.65) we shall derive the variance σ̃2 of X as the next
step as follows:

σ̃2 = E[(X − µ̃1)
2] = E[(X − µ1 − ǫµ1)

2] = E[(X − µ1)
2] − ǫ2

µ1

= eα̃

1∫

0

(x − µ1)
2 e−

1
2(

x−µ1
σ )

2

dx − ǫ2
µ1

= eα̃σ2
(
e−α̃ − µ1e

− 1
2(

µ1
σ )

2

− (1 − µ1)e
− 1

2(
1−µ1

σ )
2)

− ǫ2
µ1

= σ2


1 − (1 − µ1)e

− 1
2(

1−µ1
σ )

2

+ µ1e
− 1

2(
µ1
σ )

2

1∫
0

e−
1
2(

x−µ1
σ )

2

dx


 − ǫ2

µ1

= σ2 −
σ

[
(1 − µ1)e

− 1
2(

1−µ1
σ )

2

+ µ1e
− 1

2

µ2
1

σ2

]

√
2π 1√

2π

1−µ1
σ∫

−µ1
σ

e−
x2

2 dx

− ǫ2
µ1

= σ2 − σ√
2π

µ1e
− µ2

1
2σ2 + (1 − µ1)e

− (1−µ1)2

2σ2

Φ
(

1−µ1

σ

)
− Φ

(
−µ1

σ

) − ǫ2
µ1

(11.66)
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which gives

σ̃2 − σ2 = −ǫ2
µ1

− σ√
2π

µ1e
− µ2

1
2σ2 + (1 − µ1)e

− (1−µ1)2

2σ2

Φ
(

1−µ1

σ

)
− Φ

(−µ1

σ

) (11.67)

In the final step, ǫσ can be derived by using (11.66) and (11.62) as follows

ǫσ = σ̃ − σ

=



σ2 − σ√

2π

µ1e
− µ2

1
2σ2 + (1 − µ1)e

− (1−µ1)2

2σ2

Φ
(

1−µ1

σ

)
− Φ

(
−µ1

σ

) − ǫ2
µ1





1
2

− σ

= σ



1 − 1√

2π

(
µ1

σ

)
e−

µ2
1

2σ2 +
(

1−µ1

σ

)
e−

(1−µ1)2

2σ2

Φ
(

1−µ1

σ

)
− Φ

(
−µ1

σ

) −
(ǫµ1

σ

)2





1
2

− σ

= σ



1 − 1√

2π

(
µ1

σ

)
e−

µ2
1

2σ2 +
(

1−µ1

σ

)
e−

(1−µ1)2

2σ2

Φ
(

1−µ1

σ

)
− Φ

(
−µ1

σ

)

− 1

2π


 e−

µ2
1

2σ2 − e−
(1−µ1)2

2σ2

Φ
(

1−µ1

σ

)
− Φ

(
−µ1

σ

)




2




1
2

− σ (11.68)

= σ



−1

2

1√
2π

(
µ1

σ

)
e−

µ2
1

2σ2 +
(

1−µ1

σ

)
e−

(1−µ1)2

2σ2

Φ
(

1−µ1

σ

)
− Φ

(
−µ1

σ

)

− 1

4π


 e−

µ2
1

2σ2 − e−
(1−µ1)2

2σ2

Φ
(

1−µ1

σ

)
− Φ

(
−µ1

σ

)




2

+ O

((
θ

σ

)2

e−( θ
σ )

2

)



, 0 < θ < 1

= − 1

2
√

2π

µ1e
− µ2

1
2σ2 + (1 − µ1) e−

(1−µ1)2

2σ2

Φ
(

1−µ1

σ

)
− Φ

(
−µ1

σ

) − σ

4π


 e−

µ2
1

2σ2 − e−
(1−µ1)2

2σ2

Φ
(

1−µ1

σ

)
− Φ

(
−µ1

σ

)




2

+O
(
ℓ̃2

)
(11.69)

where ℓ̃ =
(

θ
σ

)
e−

1
2(

θ
σ )

2

in this case, such that θ ∈ {µ1, 1−µ1} for 0 < µ1 < 1

and the remainder O
(
ℓ̃2

)
gives the terms containing powers of ℓ̃ higher

than one.
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Therefore, for smaller values of σ, it can be easily seen, that

• µ2
1

σ2 and (1−µ1)2

σ2 have larger values and therefore e−
µ2
1

2σ2 or e−
(1−µ1)2

2σ2 have
extreme smaller values

• The values of ℓ̃ tend to be smaller with the decrease in σ and in fact,

lim
σ→0

(
θ
σ

)
e−

1
2(

θ
σ )

2

= 0

• Φ
(

1−µ1

σ

)
− Φ

(−µ1

σ

)
≈ 1 and in fact, lim

σ→0

{
Φ

(
1−µ1

σ

)
− Φ

(−µ1

σ

)}
= 1

This leads us to justify the usage of the truncated normal probability
distribution as a good approximation to the desired continuous approxi-
mated minimum information uni-extremal probability distribution. In other
words, the reason for this justification is nothing different from the small-
ness of the values of ǫµ1 and ǫσ, the detailed description of which are given
in (11.61) and (11.69) (or in (11.68) for the sake of exactness) respectively.

However, for the sake of programming simplicity, my java language
code meant for the computation of ǫσ uses the following formula:

ǫσ = σ̃ − σ =
√

ǫσ2 + σ2 − σ (11.70)

such that ǫ2
σ = σ̃2 − σ2 is given by (11.67).

As we have already discussed before, the approximating condition, for which
(11.60) is accepted to be the probability distribution of X with subject to
the user-wished mean (µ1) and the standard deviation (σ), reads σ < µD

ℓ
,

where µD = min(µ1, 1 − µ1).

Obviously, a particular extent of the smallness of the expressions ǫµ1 and ǫσ

contribute to the fulfillment of the aforesaid approximating condition.

Consequently, this approximating condition is also valid for assuming (11.59)
to be the probability distribution of Y , with subject to the user-wished mean
(µY ) and the standard deviation (σY ).

Therefore, we can come to the following conclusion:

(11.59) is assumed to be the approximated probability distribution of Y , if
the following case arises
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• σ < µD

ℓ
. In our cases, ℓ is made to range from 2.08699 to 3.5

Now, let us come to the determination of λ values. They read as follows:

• λ0 = log
(

K

σY

√
2π

)
− 1

2

(
µY

σY

)2

• λ1 = µY

σ2
Y

• λ2 = − 1
2σ2

Y

11.11 The overflow and underflow errors

The software programs, which are to be developed so as to fulfill the main
target of this dissertation, are developed in the object oriented programming
language named Java.

Like any program executer, the Java executer does not admit any arbitrarily
large number or any arbitrarily small number in terms of magnitude.

Therefore, we enlist the maximum and the minimum allowable real num-
bers (in terms of their magnitudes) with their natural logarithmic values as
follows:

• The maximum allowable number reads
Double.MAX V ALUE = 1.7976931348623157 × 10308, whose natural
logarithm is log(Double.MAX V ALUE) = 709.782712893384.

So, if a computed number exceeds Double.MAX V ALUE, then would
be an overflow error.

• The minimum allowable number reads
Double.MIN V ALUE = 4.9 × 10−324, whose natural logarithm is
log(Double.MAX V ALUE) = −744.4400719213812.

So, if a computed number falls below Double.MIN V ALUE, then
there would be an underflow error.

In course of my programming work, I had to take care to handle and resolve
the problems, in the cases when the exponential power of e exceeded 709
or fell below −744.

Such problems were well resolvable by using certain mathematical tricks.



Chapter 12

Numerical algorithms

In order to determine the minimum information probability distribution,
where the numerical values of the first m moments are given, the coefficients
λ0, λ1, . . . , λm are to be computed numerically by solving a System of (m+1)
simultaneous equations. As a matter of fact, a solution to every system of
equations corresponding to an arbitrary set of given values of the moments
µ1, . . . , µn does not exist, because the moments have definite regions of valid-
ity and cannot assume arbitrary real values. These regions of validity must
be determined for each given value of m. Therefore, individual considerations
for different values of m are absolutely necessary.

As we have already discussed, our numerical algorithms shall be confined to
m ≤ 2. Moreover, in cases for m ≤ 2, a minimum information probability
distribution is based on a maximum entropy probability distribution (MEP -
probability distribution) for m ≤ 2 moments. However, no numerical treat-
ments are necessary in trivial cases for m = 0.

The determination of a minimum information probability distribution de-
mands a numerical solution to an equation or the same of a system of simul-
taneous equations. This numerical solution is the heart of the problem. So
far, the Newton Raphson procedure is the most ideal procedure for the nu-
merical solutions of our problems. However, the Newton Raphson procedure
demands a predetermined approximated solution, without which the proce-
dure generally turns out to be a failure. Keeping this in view, the numerical
solutions are discussed in the coming two sections.

465
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12.1 Numerical integration by Weddle’s rule

12.1.1 The plan of action

This dissertation handles the numerical integrations of certain continuous
functions only. The Weddle’s rule of the numerical integration, which
belongs to one of the Newton-Cotes-Formulae (these formulae are well
stated in the page 116 of [40]), happens to be one of the best numerical
integration procedures for handling these kinds of continuous integrands,
both in terms of speed and accuracy.

In a plain and simple language, the Newton-Cotes-formula with subject to
n = 6 is the aforesaid Weddle’s rule, where n is the degree of the interpo-
lating polynomial f0(x) used for deriving the preliminary Weddle’s integral

(12.5), namely the integral
x6∫
x0

f0(x)dx, such that the difference xi+1 − xi is

constant for every i ∈ {0, 1, 2, 3, 4, 5}. After this, with subject to a suitable
choice of a natural number n as a multiple of 6, these Weddle’s integrals

of the form
x6(i+1)∫
x6i

f0(x)dx, i ∈ {0, 1, 2, . . . , n−6
6
} are therefore summed up

together to give the final Weddle’s rule of numerical integration (12.6), namely

the integral
xn∫
x0

f0(x)dx for our programming work. The technique of how to

choose this particular n shall be discussed in due course.

This interpolating polynomial f0(x) of degree 6 is calculated by means of the
well known Newton’s forward interpolation formula (referred to the
pages 56 - 58 of [36]).

A reader of this dissertation may put a very logical question: Why should the
degree of the interpolating polynomial be limited to 6? In accordance with
a clear statement given in the page 116 of [40], the answer is, any value of n
higher than 6 would make the coefficients of the Weddle’s formula negative
and thereby making the Weddle’s formula completely useless.

Before we proceed to discuss the Weddle’s numerical integration procedure in
the full details, we wish to introduce our readers to the forward difference
operator ∆ and the shift operator E (these operators are well explained
in the pages 33 - 37 of [35]). These operators and their related useful results
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shall be used for our coming derivations and hence their introductions are
absolutely needed for the sake of clarity.

Let a continuous function f(x) be defined in a closed interval [a, b], which is
divided into n ( n ∈ N

+ ) sub-intervals [xi, xi+1], ( i = 0, 1, . . . , n ) of equal
length h, where a = x0, b = xn and h = xi+1 − xi (i = 0, 1, . . . , n).

In that case, there are exactly (n + 1) equidistant arguments xi and (n + 1)
entries yi = f(xi) ( i = 0, 1, . . . , n ).

At first we shall introduce two important operators, namely the forward
difference operator ∆ and the shift operator E :

• ∆ is defined by

∆yi = yi+1 − yi = f(xi+1) − f(xi) = f(xi + h) − f(xi)

• and E is defined by

Eyi = yi+1 = f(xi+1) = f(xi + h)

Next we shall introduce four important results:

1.

E ≡ 1 + ∆, since Eyi = yi+1 = yi+1 − yi + yi = ∆yi + yi = (1 + ∆)yi

2.

∆2yi = ∆(∆yi) = ∆(yi+1 − yi) = (yi+2 − yi+1) − (yi+1 − yi)

= yi+2 − 2yi+1 + yi

⇒ ∆3yi = ∆(∆2yi) = ∆(yi+2 − 2yi+1 + yi)

= (yi+3 − yi+2) − 2(yi+2 − yi+1) + (yi+1 − yi)

= yi+3 − 3yi+2 + 3yi+1 − yi

...

⇒ ∆pyi = yp+i − pyp−1+i +

(
p

2

)
yp−2+i −

(
p

3

)
yp−3+i + · · · + (−1)pyi

for any p ∈ N
+.
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3.
E2yi = E(Eyi) = E(yi+1) = yi+2

⇒ E3yi = E(E2yi) = E(yi+2) = yi+3

...

⇒ Epyi = yp+i , (p ∈ N
+)

4. Under the assumption that the derivatives of f(x) with respect to x

exist at least upto the pth order,

∆pyi = ∆p−1(yi+1 − yi) = ∆p−1(f(xi + h) − f(xi))

= ∆p−1hf
′

(xi + θ1h) , 0 < θ1 < 1

= ∆p−2h(f
′

(xi + h + θ1h) − f
′

(xi + θ1h))

= ∆p−2h2f
′′

(xi + θ1h + θ2h) , 0 < θ2 < 1

= ∆p−2h2f
′′

(xi + (θ1 + θ2)h)

= ∆p−3h3f
′′′

(xi + (θ1 + θ2 + θ3)h) , 0 < θ3 < 1

...

= hpf (p)(xi + (θ1 + θ2 + . . . + θp)h) , 0 < θj < 1 , j = 1, 2, . . . , p

= O(hp)

However, it has to be clearly stated that the usage of the ordered nota-
tion, namely O(hp), happens to be meaningful, only when 0 < h < 1,
otherwise meaningless in this regard.

So, for the sake of the best degree of this dissertation’s clarity, the Newton’s
forward interpolation formula (referred to the pages 56 to 58 of [36]) is derived
at first and subsequently the Weddle’s rule of numerical integration is derived.

The derivation of the estimation of error in the Weddle’s integral (the state-
ment of this derived estimation can also be refereed to the page 116 of [40])
has included thereafter. The smallness of this estimation of error shows
the justification of the usage of the Weddle’s rule of numerical integration
for our programming works.
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Therefore, by keeping these points in mind, we shall proceed to derive the
Newton’s forward interpolation formula by finite mathematical induction
formally and rigorously, as already mentioned. This formula has been briefly
outlined in the pages 56 - 58 of [36], but without being proved rigorously.

This interpolation formula refers to the evaluation of the function f(x) at a
given value x, where x is any value lying between x0 and xn

(i.e. x ∈ [x0, xn]), completely disregarding the form of f , but with the help
of the given equidistant arguments xi and the corresponding given entries
yi = f(xi), i = 0, 1, . . . , n.
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12.1.2 Newton’s forward interpolation formula:

Since the values of the function f(x) are known at the equidistant points
xi (i = 0, 1, . . . , n), f(x) can be approximated to a polynomial f0(x) of
degree n as f(x) ≈ f0(x), such that

f(xi) = f0(xi) for i = 0, 1, . . . , n

f(x) ≈ f0(x) for x ∈ [x0, xn]
(12.1)

f0(x) is said to be the interpolating polynomial of f(x), which is given by

f0(x) = a0+a1(x−x0)+a2(x−x0)(x−x1)+. . .+an(x−x0)(x−x1) . . . (x−xn−1)
(12.2)

which means, f0(x) is thus an expression with (n+1) arguments and (n+1)
unknowns ai (i = 0, 1, . . . , n). These ai can be calculated as follows:

y0 = f0(x0) = a0

y1 = f0(x1) = a0 + a1(x1 − x0) = y0 + ha1 ⇒ a1 =
∆y0

h

y2 = f0(x2) = a0 + a1(x2 − x0) + a2(x2 − x0)(x2 − x1)

= y0 + 2h
∆y0

h
+ a2(2h)(h) = y0 + 2∆y0 + 2h2a2 = y0 + 2(y1 − y0) + 2h2a2

⇒ 2h2a2 = y2 − 2y1 + y0 = ∆2y0 ⇒ a2 =
∆2y0

2h2

At this point we shall assert ai =
∆iy0

hi i!
, i = 0, 1, . . . , n which needs be proved

by finite mathematical induction. We have already shown that the result is
valid for i = 0, 1, 2. Thus we have only to show the induction step i → i + 1,
which means that assuming that the result is valid for i, we need to prove
the validity of the result for i + 1:
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The induction step i → i + 1:

yi+1 = f0(xi+1) = y0 + (xi+1 − x0)
∆y0

h
+ (xi+1 − x0)(xi+1 − x1)

∆2y0

h22!

+ . . . + (xi+1 − x0)(xi+1 − x1) . . . (xi+1 − xi−1)
∆iy0

hii!
+ ai+1(xi+1 − x0)(xi+1 − x1) . . . (xi+1 − xi)

= y0 + (i + 1)h
∆y0

h
+ (i + 1)(i)h2∆

2y0

h22!
+ . . . + (i + 1)(i) . . . 2 hi∆

iy0

hii!
+ ai+1(i + 1)(i) . . . 1 hi+1

= y0 +

(
i + 1

1

)
∆y0 +

(
i + 1

2

)
∆2y0 + . . . +

(
i + 1

i

)
∆iy0 + ai+1h

i+1(i + 1)!

= y0 +

(
i + 1

1

)
∆y0 +

(
i + 1

2

)
∆2y0 + . . . +

(
i + 1

i + 1

)
∆i+1y0 −

(
i + 1

i + 1

)
∆i+1y0

+ ai+1h
i+1(i + 1)!

=

[
1 +

(
i + 1

1

)
∆ +

(
i + 1

2

)
∆2 + . . . +

(
i + 1

i + 1

)
∆i+1

]
y0 − ∆i+1y0

+ ai+1h
i+1(i + 1)!

= (1 + ∆)i+1y0 − ∆i+1y0 + ai+1h
i+1(i + 1)!

= Ei+1y0 − ∆i+1y0 + ai+1h
i+1(i + 1)!

= yi+1 − ∆i+1y0 + ai+1h
i+1(i + 1)!

⇐⇒ ai+1 =
∆i+1y0

hi+1(i + 1)!
2

Hence, the proved result ai =
∆iy0

hi i!
, i = 0, 1, . . . , n are the derived coefficients



472 CHAPTER 12. NUMERICAL ALGORITHMS

of the constructed polynomial (12.2) and thus the interpolating polynomial
f0(x) of degree n with known coefficients is given as follows:

y = f(x) ≈ f0(x) = y0 + (x − x0)
∆y0

h
+ (x − x0)(x − x1)

∆2y0

h22!
+ . . .

+ (x − x0)(x − x1) . . . (x − xn−1)
∆ny0

hnn!
(12.3)

which is the Newton’s forward interpolation formula.

Now, in the final step, we shall derive Weddle’s rule of numerical inte-
gration using Newton’s forward interpolation formula:

12.1.3 Weddle’s rule of numerical integration

Let [c, d] be a closed interval, where f(x) is continuous and is approximated
by a polynomial of degree n = 6 by using Newton’s forward interpolation
formula as:

y ≈ f0(x) = y0 + (x − x0)
∆y0

h
+ (x − x0)(x − x1)

∆2y0

h22!
+ . . .

+ (x − x0)(x − x1) . . . (x − x5)
∆6y0

h66!

so that, x0 = c, x6 = d = c + 6h and x0, x1, . . . , x6, y0, y1, . . . , y6 are all
known.

Taking x = x0 + sh, we get the interpolating polynomial f0(x) of degree 6 as

y ≈ f0(x) = y0 + s∆y0 + s(s − 1)
∆2y0

2!
+ . . . + s(s − 1) . . . (s − 5)

∆6y0

6!

Here,

d∫

c

f0(x) dx =

x6∫

x0

f0(x) dx =

s=6∫

s=0

f0(x)(h ds) = h

6∫

0

f0(x) ds

= h

6∫

0

[
y0 + s∆y0 + s(s − 1)

∆2y0

2!
+ . . . + s(s − 1) . . . (s − 5)

∆6y0

6!

]
ds
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Now, this integral has to be evaluated part by part. It is to be noted that,
if the original function f(x) is a polynomial of degree at most 6, then the
numerical integral would give the exact results. We have:

6∫

0

s ds =
62

2
= 18

6∫

0

s(s − 1) ds =
63

3
− 62

2
= 54

6∫

0

s(s − 1)(s − 2) ds =

6∫

0

(s3 − 3s2 + 2s) ds =
64

4
− 3.63

3
+ 62 = 144

6∫

0

s(s − 1)(s − 2)(s − 3) ds =

6∫

0

(s4 − 6s3 + 11s2 − 6s) ds

=
65

5
− 6.64

4
+

11.63

3
− 6.62

2
=

1476

5
6∫

0

s(s − 1)(s − 2)(s − 3)(s − 4) ds =

6∫

0

(s5 − 10s4 + 35s3 − 50s2 + 24s) ds

=
66

6
− 10.65

5
+

35.64

4
− 50.63

3
+

24.62

2
= 396

6∫

0

s(s − 1)(s − 2)(s − 3)(s − 4)(s − 5) ds

=

6∫

0

(s6 − 15s5 + 85s4 − 225s3 + 274s2 − 120s) ds

=
67

7
− 15.66

6
+

85.65

5
− 225.64

4
+

274.63

3
− 120.62

2
=

1476

7

Thus, using the values of these individual integrals, we obtain the value of
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the integral
x6∫
x0

f0(x) dx = h
6∫
0

f0(x) ds as follows:

x6∫

x0

f0(x) dx

= h

[
6y0+18∆y0+54

∆2y0
2!

+144
∆3y0

3!
+ 1476

5
∆4y0

4!
+396

∆5y0
5!

+ 1476
7

∆6y0
6!

]

= h[6y0+18∆y0+27∆2y0+24∆3y0+ 123
10

∆4y0+ 33
10

∆5y0+
41
140

∆6y0]

(12.4)

= h[6y0+18(y1−y0)+27(y2−2y1+y0)+24(y3−3y2+3y1−y0)

+ 123
10

(y4−4y3+6y2−4y1+y0)+ 33
10

(y5−5y4+10y3−10y2+5y1−y0)

+ 41
140

(y6−6y5+15y4−20y3+15y2−6y1+y0)]

= h[(6−18+27−24+ 123
10

− 33
10

+ 41
140)y0

+(18−54+72− 492
10

+ 165
10

− 246
140)y1+(27−72+ 738

10
−33+ 615

140)y2

+(24− 492
10

+33− 820
140)y3+( 123

10
− 165

10
+ 615

140)y4+( 33
10

− 246
140)y5

+ 41
140

y6]

= h

[
41

140
y0 +

216

140
y1 +

27

140
y2 +

272

140
y3 +

27

140
y4 +

216

140
y5 +

41

140
y6

]

=
h

140
(41y0 + 216y1 + 27y2 + 272y3 + 27y4 + 216y5 + 41y6)

(12.5)

It has to be noted that, these values of the coefficients of yi, i = 0, 1, . . . , 6
existing in the above Weddle’s integral (12.5) are well stated in the page 116
of [40], but without any proof though.
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Exactly in the same way as above, we obtain the following

x12∫

x6

f0(x) dx =
h

140
(41y6 + 216y7 + 27y8 + 272y9 + 27y10 + 216y11 + 41y12)

Hence, taking n to be a multiple of 6, we arrive at

xn∫

x0

f0(x) dx

=

x6∫

x0

f0(x) dx +

x12∫

x6

f0(x) dx + . . . +

xn∫

xn−6

f0(x) dx

=
h

140
[41y0 + 216(y1 + y7 + y13 + . . . + yn−5)

+ 27(y2 + y8 + y14 + . . . + yn−4) + 272(y3 + y9 + y15 + . . . + yn−3)

+ 27(y4 + y10 + y16 + . . . + yn−2) + 216(y5 + y11 + y17 + . . . + yn−1)

+ 82(y6 + y12 + y18 + . . . + yn−6) + 41yn]

=
h

140


41y0 + 216

n−6
6∑

i=0

y6i+1 + 27

n−6
6∑

i=0

y6i+2 + 272

n−6
6∑

i=0

y6i+3 + 27

n−6
6∑

i=0

y6i+4

+216

n−6
6∑

i=0

y6i+5 + 82

n−6
6∑

i=1

y6i + 41yn




=
h

140


41f(x0) + 216

n−6
6∑

i=0

f(x6i+1) + 27

n−6
6∑

i=0

f(x6i+2) + 272

n−6
6∑

i=0

f(x6i+3)

+27

n−6
6∑

i=0

f(x6i+4) + 216

n−6
6∑

i=0

f(x6i+5) + +82

n−6
6∑

i=1

f(x6i) + 41f(xn)




(12.6)
which is the Weddle’s rule of numerical integration.
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12.1.4 Estimation of error in the Weddle’s integral

The exact value of the integral
x6∫
x0

f(x) dx is given as:

x6∫

x0

f(x) dx = Φ(x6) − Φ(x0) = Φ(x0 + 6h) − Φ(x0), where
d

dx
Φ(x) = f(x)

= 6hf(x0) +
(6h)2

2!
f

′

(x0) +
(6h)3

3!
f

′′

(x0) + . . . +
(6h)9

9!
f (8)(x0) + O(h10)

(applying the Taylor’s theorem for f(x), assuming that f(x) at the point x0

has derivatives at least up to the eighth order)

=6hy0 + 18h2y
′

0 + 36h3y
′′

0 + 54h4y
′′′

0 +
648

10
h5y

(4)
0 +

648

10
h6y

(5)
0 +

3888

70
h7y

(6)
0

+
2916

70
h8y

(7)
0 +

1944

70
h9y

(8)
0 + O(h10)

(12.7)
Again, the right hand side of the Weddle’s formula (12.4) for the integral
x6∫
x0

f(x) dx ≈
x6∫
x0

f0(x) dx = W (x0, x6) reads:

W (x0, x6) =
h

140
[41y0 + 216y1 + 27y2 + 272y3 + 27y4 + 216y5 + 41y6]

=
h

140
[41y0

+ 216

(
y0 + hy

′

0 +
h2

2!
y

′′

0 +
h3

3!
y

′′′

0 + . . . +
h8

8!
y

(8)
0

)

+ 27

(
y0 + (2h)y

′

0 +
(2h)2

2!
y

′′

0 +
(2h)3

3!
y

′′′

0 + . . . +
(2h)8

8!
y

(8)
0

)

+ 272

(
y0 + (3h)y

′

0 +
(3h)2

2!
y

′′

0 +
(3h)3

3!
y

′′′

0 + . . . +
(3h)8

8!
y

(8)
0

)

+ 27

(
y0 + (4h)y

′

0 +
(4h)2

2!
y

′′

0 +
(4h)3

3!
y

′′′

0 + . . . +
(4h)8

8!
y

(8)
0

)

+ 216

(
y0 + (5h)y

′

0 +
(5h)2

2!
y

′′

0 +
(5h)3

3!
y

′′′

0 + . . . +
(5h)8

8!
y

(8)
0

)

+ 41

(
y0 + (6h)y

′

0 +
(6h)2

2!
y

′′

0 +
(6h)3

3!
y

′′′

0 + . . . +
(6h)8

8!
y

(8)
0

)
+ O(h9)
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(In each of the above steps, yi (i = 1, 2, . . . , 6) has been expanded in form of
the following finite Taylor’s series:

f(xi) = f(x0+ih) = yi = y0+(ih)y
′

0+
(ih)2

2!
y

′′

0 + (ih)3

3!
y

′′′

0 +. . .+ (ih)8

8!
y

(8)
0 +O(h9),

O(h9) being the remainder after the ninth term). Hence, we get

W (x0, x6) =
h

140
[{41 + 216 + 27 + 272 + 27 + 216 + 41}y0

+ {216 + (27)2 + (272)3 + (27)4 + (216)5 + (41)6}hy
′

0

+ {216 + (27)22 + (272)32 + (27)42 + (216)52 + (41)62}h2

2
y

′′

0

+ {216 + (27)23 + (272)33 + (27)43 + (216)53 + (41)63}h3

6
y

′′′

0

+ {216 + (27)24 + (272)34 + (27)44 + (216)54 + (41)64}h4

24
y

(4)
0

+ {216 + (27)25 + (272)35 + (27)45 + (216)55 + (41)65} h5

120
y

(5)
0

+ {216 + (27)26 + (272)36 + (27)46 + (216)56 + (41)66} h6

720
y

(6)
0

+ {216 + (27)27 + (272)37 + (27)47 + (216)57 + (41)67} h7

5040
y

(7)
0

+ {216 + (27)28 + (272)38 + (27)48 + (216)58 + (41)68} h8

40320
y

(8)
0

+O(h9)
]

= h

[
6y0 + 18hy

′

0 + 36h2y
′′

0 + 54h3y
′′′

0 +
648

10
h4y

(4)
0 +

648

10
h5y

(5)
0

+
3888

70
h6y

(6)
0 +

2916

70
h7y

(7)
0 +

3888.9

140
h8y

(8)
0

]
+ O(h10)

= 6hy0 + 18h2y
′

0 + 36h3y
′′

0 + 54h4y
′′′

0 +
648

10
h5y

(4)
0 +

648

10
h6y

(5)
0

+
3888

70
h7y

(6)
0 +

2916

70
h8y

(7)
0 +

3888.9

140
h9y

(8)
0 + O(h10)

(12.8)

Thus, using (12.7) and (12.8), we get the following error ǫWeddle as the differ-
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ence between Weddle’s formula W (x0, x6) and the true value of the integral
x6∫
x0

f(x) dx as follows:

ǫWeddle = W (x0, x6) −
x6∫

x0

f(x) dx =

(
3888.9

140
− 1944

70

)
h9y

(8)
0 + O(h10)

=
9

1400
h9y

(8)
0 + O(h10) =

9

1400
h9f (8)(x0) + O(h10)

(12.9)
This very expression ǫWeddle giving the estimation of error is well stated in
the page 116 of [40], but without any proof though.

Hence, an allowable error of O(h9) makes Weddle’s rule of numerical integra-
tion to be extremely useful and reliable. Of course, it is extremely important
that h must be chosen to be less than 1 for each step of calculation of an in-
tegral, i.e h < 1, otherwise, the entire process of numerical integration would
be useless.

This process of numerical integration with subject to Weddle’s rule has been
used to program the solution of a nonlinear system of two equations involving
Riemann integrations, the descriptions of this system is given in the subse-
quent sections. Basically, this system involves the first two moments of the
continuous random variable X having the range of variability [0, 1].
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12.2 Numerical solution of an equation

The equations or a system of simultaneous equations, to which we shall have
to do with, do not have more than one solution each time. Therefore, our
discussions will be confined to those equations, which do have only single
solutions. Moreover, the functions involved in our cases are continuous, or
thy have at most a finite number of removable discontinuities. A function
f(x) is removable discontinuous at x = a means

lim
x→a+

f(x) = lim
x→a−

f(x) = l

For our convenience, we shall take each such l as the value of f(x) at x = a,
so as to remove all the discontinuities.

The two important relevant numerical methods for solving equations are the
iterative procedure and the Newton Raphson procedure. In course of our
discussions we shall see, how the iterative procedure is important for the
derivation of convergence conditions for the Newton Raphson procedure.

12.2.1 Iterative procedure

Let ξ be the true value of the root of the following equation

f(x) = 0 (12.10)

which can be rewritten in the following form

x = φ(x) (12.11)

such that the function φ(x) is derivable within a given neighborhood I of
ξ. The description of I will be given later. Then, if x0 ∈ I be the first
approximated value of ξ, then x1 will be the second approximated value of ξ
given by

x1 = φ(x0) (12.12)

Without any loss of generality, we can assume that x0 < ξ. Accordingly, since
ξ = φ(ξ), by the Lagrange’s mean value theorem of differential calculus, there
exists at least one ξ0 such that

ξ − x1 = φ(ξ) − φ(x0) = (ξ − x0)φ
′

(ξ0), ξ0 ∈ (x0, ξ) (12.13)
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Exactly in the same way, if x2 be the third approximated value of ξ, then

ξ − x2 = φ(ξ) − φ(x1) = (ξ − x1)φ
′

(ξ1), ξ1 ∈ (x1, ξ) (12.14)

...
Proceeding exactly in this way, if xn+1 be the (n + 2)th approximated value
of ξ (n ∈ N0), then

ξ − xn+1 = φ(ξ) − φ(xn) = (ξ − xn)φ
′

(ξn), ξn ∈ (xn, ξ) (12.15)

= (ξ − xn−1)φ
′

(ξn−1)φ
′

(ξn)
...

= (ξ − x0)φ
′

(ξ0)φ
′

(ξ1)φ
′

(ξ2) . . . φ
′

(ξn) (12.16)

It has to be noted, that in each step (ie n ∈ N0), xn+1 was computed with
the help of xn, by the following relation:

xn+1 = φ(xn) (12.17)

Now, by taking

• ℓ = sup
n∈N

∣∣φ′
(ξn)

∣∣ < 1

• ǫn+1 = |ξ − xn+1| = error in the (n + 2)th approximation of the root,
which means that by using (12.15) we conclude

ǫn+1 = |ξ − xn+1| = |ξ − xn|
∣∣∣φ′

(ξn)
∣∣∣ = ǫn

∣∣∣φ′

(ξn)
∣∣∣ (12.18)

we get the following relations

•

|ξ − xn+1| = |ξ − x0|
∣∣∣φ′

(ξ0)φ
′

(ξ1) . . . φ
′

(ξn)
∣∣∣ < |ξ − x0| ℓn+1 (12.19)

•
ǫn+1 is linearly related to ǫn (12.20)

Therefore, the inequality (12.19) clearly shows, that the sequence defined
by {xn}n∈N0

converges and converges to ξ, provided ℓ < 1. In other words,
xn → ξ as n → ∞, provided ℓ < 1.
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12.2.2 Condition for the convergence of the iterative
procedure

By careful consideration of the following relations

xn → ξ as n → ∞
ξ − xn+1 = (ξ − xn)φ

′

(ξn)

we can only conclude, that
∣∣φ′

(ξn)
∣∣ < 1 for every n ∈ N0, since it is evident

that

• xn+1 is closer to ξ than that of xn

Therefore, we can condition the convergence of the sequence {xn}n∈N0
by

asserting ℓ < 1.

Therefore, since x0 is undoubtedly the farthest point from ξ than that of the
other iterated points x1, x2, . . . , xn, . . ., we conclude:

The sequence {xn}n∈N0
can be made to converge and converge to ξ, if we set∣∣φ′

(x0)
∣∣ < 1.

Whence, the condition for convergence for the iterative procedure is given as

∣∣∣φ′

(x0)
∣∣∣ < 1 (12.21)

and the required neighborhood I of ξ be defined as

I =
{

x :
∣∣∣φ′

(x)
∣∣∣ < 1

}
(12.22)

which is at the same time, the interval of convergence for the iterative pro-
cedure. This is referred to the page 212 of [36].

12.2.3 Rate of convergence of the iterative procedure

The relation (12.15) shows the linearity of the relationship between errors in
two successive approximations of the root ξ and (12.20) confirms the same.
This shows that the iterative procedure has a convergence of first order or a
linear convergence.
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12.2.4 Newton Raphson procedure

If h be the error in the root ξ of the equation (12.10), such that x + h = ξ,
then we get

f(x + h) = 0 (12.23)

Now, the Newton’s assumptions say, that

• There exists a θ ∈ (0, 1), such that f(x+h) can be expanded by Taylor’s
theorem about x as

f(x + h) = f(x) + hf
′

(x) +
h2

2
f

′′

(x + θh) (12.24)

• The first approximated value x0 of ξ, such that x0 + h = ξ, is chosen
sufficiently close to ξ in the sense, that the term h2

2
f

′′
(x0 + θh) is small

enough to make sure, that the Newton Raphson procedure ensures the
success of finding the solution of (12.10). This smallness is explainable
by the convergence condition derived in next subsection. This brings
us to

0 = f(x0 + h) ≈ f(x0) + hf
′

(x0) ⇒ h ≈ − f(x0)

f ′(x0)
(12.25)

With the help of the approximated value of h given in (12.25), the second
approximated value x1 of ξ is given as

x1 = x0 −
f(x0)

f ′(x0)
(12.26)

Exactly in the same way, the third approximated value x2 of ξ is given as

x2 = x1 −
f(x1)

f ′(x1)
(12.27)

...
Proceeding exactly in this way, if xn+1 be the (n + 2)th approximated value
of ξ (n ∈ N0), then

xn+1 = xn − f(xn)

f ′(xn)
(12.28)
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Thus, the procedure of determination of such xn+1, which is a sufficiently
good approximation of the true solution of (12.10) is known as the Newton
Raphson procedure

(12.29)

Now, the question arises, whether the usage of the Newton Raphson pro-
cedure (12.29) really leads us to our desired result xn → ξ as n → ∞ or
not.

For this, we shall have to derive the condition of the convergence of the
Newton Raphson procedure.

12.2.5 Condition for the convergence of the Newton
Raphson procedure

By comparing the relations (12.17) and (12.29), viz

{
xn+1 = xn − f(xn)

f
′ (xn)

xn+1 = φ(xn)

we get φ(xn) = xn − f(xn)

f
′ (xn)

which leads us to

φ(x) = x − f(x)

f
′
(x)

(12.30)

⇒ φ
′
(x) = f(x)f

′′
(x)

(f
′
(x))

2 (12.31)

With the help of (12.21), the last relation leads us to conclude the following:

The condition for convergence for the Newton Raphson procedure is given as

∣∣∣φ′

(x0)
∣∣∣ =

∣∣f(x0)f
′′
(x0)

∣∣
(f ′(x0))

2 < 1 (12.32)

The fulfillment of the above condition ensures the necessary smallness of the
said h2

2
f

′′
(x0 + θh) in (12.24). In other words, the degree of smallness of

h2

2
f

′′
(x0 + θh) determined by the fulfillment of condition (12.32) enabled us

to neglect this term (i.e. h2

2
f

′′
(x0 + θh)) before we proceeded from (12.24).
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12.2.6 Rate of convergence of the Newton Raphson
procedure

By putting x = xn and h = ξ − xn in (12.23) and (12.24), we get

0 = f(xn+ξ−xn)=f(xn)+(ξ−xn)f
′
(xn)+ 1

2
(ξ−xn)2f

′′
(xn+θ(ξ−xn))

⇒ − f(xn)

f ′(xn)
= (ξ − xn) +

1

2
(ξ − xn)2f

′′
(xn + θ(ξ − xn))

f ′(xn)

⇒ xn − f(xn)

f ′(xn)
= ξ +

1

2
(ξ − xn)2f

′′
(xn + θ(ξ − xn))

f ′(xn)
(12.33)

Then, by putting xn+1 = xn − f(xn)

f
′
(xn)

in the above relation, we get

xn+1 = ξ +
1

2
(ξ − xn)2f

′′
(xn + θ(ξ − xn))

f ′(xn)

⇒ xn+1 − ξ =
1

2
(ξ − xn)2f

′′
(xn + θ(ξ − xn))

f ′(xn)
(12.34)

Again, by using the definition of the error in the (n + 2)th approximation of
the root ξ given by ǫn+1 = |xn+1 − ξ|, we get the above relation as

ǫn+1 =
1

2
ǫ2
n

∣∣∣∣
f

′′
(xn + θ(ξ − xn))

f ′(xn)

∣∣∣∣ (12.35)

This shows, that the Newton Raphson procedure has a convergence of second
order or quadratic convergence. This means, as ǫn+1 is connected with the

square of ǫn, the smallness determined by ǫn in the nth has been squared to

give a squared smallness in the n + 1th step.

It is clear, that the convergence speed of the Newton Raphson procedure is
undoubtedly higher than the same of the iterative procedure. This justifies
the usage of the Newton Raphson procedure for solving an equation with
subject to the fulfillment of the condition (12.32).

12.2.7 Complete solution of the equation f(x) = 0

Before we actually use the Newton Raphson procedure to solve the equa-
tion (12.10), we need to find an appropriate x0 which satisfies the condition
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(12.32). In other words, in order to find a reasonably accurate value of ξ, we
must find the first approximated value x0 of ξ satisfying the (12.32). For to
do that, we shall have to go through the following algorithmic steps:

1. Location of ξ needs to be found at first and for that,

• let z1 = z2 = 0 and calculate the value of f(0)

• while (f(z1)f(z2) ≥ 0)
{
z1 = z1 − 1 ; z2 = z2 + 1
}

2. A suitable x0 satisfying the Newton’s convergence condition must be
found by the method of bisection in the following manner,

• let z0 = z1+z2

2
and x0 = z1;

compute φ
′
(x0) as stated in (12.32) and examine it’s fulfillment.

• while (x0 does not fulfill the convergence condition (12.32))
{
if f(z1)f(z0) <= 0 then { z2 = z0; z0 = z1+z2

2
};

if f(z2)f(z0) <= 0 then { z1 = z0; z0 = z1+z2

2
};

x0 = z1;
compute φ

′
(x0) as stated in (12.32) and examine it’s fulfillment.

}
x0 is the final first approximation of ξ, fulfilling the convergence
conditions.

3. For any arbitrarily chosen ǫ > 0 and by using this x0, the value of ξ to
the desired level of accuracy stated by |xn − ξ| < ǫ is reached by the
successive usage of the Newton Raphson rule (12.29)

(12.36)

Remarks:

• Referring to the first step of our above procedure for the solution, we
have initialized the variables z1 and z2 with zero: z1 = z2 = 0. Instead
of zero, if we are in a position to initialize the same with another real
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number ξ such that
∣∣ξ − ξ

∣∣ < |ξ|, then we can undoubtedly lower the
running time of the program. The only question is of the availability
of such ξ.

• Our programming outputs show, that if |x0 − ξ| < 10−10 is fulfilled,
then the Newton’s convergence condition for solving the equations rel-
evant for our interests is fulfilled.
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12.3 Numerical solution of a system of two

equations

We have seen in the previous section, that the Newton Raphson procedure
for solving an equation with a single unknown has a speedy convergence. In
this section, our problem will be to solve a simultaneous system of two equa-
tions with two unknowns. For to solve this problem, the Newton Raphson
procedure can be extended to two unknowns.

12.3.1 Newton Raphson procedure

Let (x0 + h, y0 + k) be the true solution of the following system of equations
{

f(x, y) = 0
g(x, y) = 0

(12.37)

such that (x0, y0) is the first approximated solution of the system (12.37) and
the values h and k are the errors in the first and the second components of
the true solution respectively.

Now, the Newton’s assumptions say, that

• By expanding both the functions f(x, y) and g(x, y) by Taylor’s theo-
rem about (x0, y0), we get
{

f(x0 + h, y0 + k) = f(x0, y0) + hfx(x0, y0) + kfy(x0, y0) + Tf (h, k) = 0
g(x0 + h, y0 + k) = g(x0, y0) + hgx(x0, y0) + kgy(x0, y0) + Tg(h, k) = 0

(12.38)
where Tf (h, k) and Tg(h, k) are the expressions containing the terms in
h or k (or both) of powers higher than or equal to two and fx, gx, fy

and gy are partial derivatives having their usual meanings.

• The first approximated solution (x0, y0) is chosen sufficiently close to
(x0+h, y0+k) in the sense, that the terms Tf (h, k) and Tg(h, k) are small
enough to ensure, that the Newton Raphson procedure ensures the
success of finding the solution of (12.37). This smallness is explainable
by convergence conditions stated in the next subsection. This brings
us to {

hfx(x0, y0) + kfy(x0, y0) ≈ −f(x0, y0)
hgx(x0, y0) + kgy(x0, y0) ≈ −g(x0, y0)
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Therefore, the approximated values of h and k can be found out by solving
the following system of linear equations

{
hfx(x0, y0) + kfy(x0, y0) = −f(x0, y0)
hgx(x0, y0) + kgy(x0, y0) = −g(x0, y0)

(12.39)

With the help of the approximated values of h and k, namely h0 and k0 as a
result of the solution of the system (12.39), the second approximated solution
(x1, y1) of the system (12.37) is given as

{
x1 = x0 + h0

y1 = y0 + k0
(12.40)

Exactly in the same way, the third approximated solution (x2, y2) of the
system (12.37) is given as

{
x2 = x1 + h1

y2 = y1 + k1
(12.41)

where h1 and k1 are the approximated values of h and k respectively as a
result of the solution of the system

{
hfx(x1, y1) + kfy(x1, y1) = −f(x1, y1)
hgx(x1, y1) + kgy(x1, y1) = −g(x1, y1)

(12.42)

...
Proceeding exactly in this way, the (n+2)th approximated solution (xn+1, yn+1)
of the system (12.37) is given as

{
xn+1 = xn + hn

yn+1 = yn + kn
(12.43)

where hn and kn are the approximated values of h and k respectively as a
result of the solution of the system

{
hfx(xn, yn) + kfy(xn, yn) = −f(xn, yn)
hgx(xn, yn) + kgy(xn, yn) = −g(xn, yn)

(12.44)

Expectedly, (xn+1, yn+1) is supposed to go arbitrarily near to the true solution
of (12.37) with the increase in n ∈ N.
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Thus, the procedure of determination of such (xn+1, yn+1), which is a suffi-
ciently good approximation of the true solution of (12.37) is known as the
Newton Raphson procedure.

Hence the Newton Raphson procedure for two unknowns can be for-
mally given by rewriting the system of equations (12.44) in the matrix nota-
tion as follows:




h

k


 = −




fx(xn, yn) fy(xn, yn)

gx(xn, yn) gy(xn, yn)




−1 


f

g


 (12.45)

Moreover, situations may arise, when the Newton Raphson procedure de-
scribed by (12.45) may need a suitable refinement to ensure the security of
the direction of convergence. For this, a damping factor t, 0 < t ≤ 1 is
introduced to (12.45), so that




h

k


 = −t




fx(xn, yn) fy(xn, yn)

gx(xn, yn) gy(xn, yn)




−1 


f

g


 (12.46)

In that case, the Newton Raphson procedure described by (12.46) is known
as the damped Newton Raphson procedure for two unknowns.

Now, the question arises, what could be the conditions, under which the de-
scribed Newton Raphson procedure (12.45) or the described damped Newton
Raphson procedure (12.46) with subject to suitably chosen t really leads us
to the solution of the system (12.37).

For this, we shall have to take the necessary conditions of the convergence of
the Newton Raphson procedure into our account.

With subject to the consideration of the systems (11.37) and (11.58), we shall
refer to the theorem 5.3.2, which is well stated and proved in the pages
249 - 253 of [40]. This theorem 5.3.2 gives the necessary and sufficient
condition for the convergence of the Newton Raphson procedure (i. e. the
general Newton Raphson’s convergence criterion) in case of n (n ∈ N)
unknowns. For the sake of the very best degree of clarity, we shall state
and prove this theorem 5.3.2 formally and rigorously, before we go
ahead to discuss the role of Newton Raphson procedure in our systems of
simultaneous equations (11.37) and (11.58).
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This rigorous proof of the necessary and the sufficient condition of conver-
gence necessitates the proof of a lemma at first.

12.3.2 The lemma for the convergence of the Newton
Raphson procedure

The statement of the lemma for the Newton Raphson’s convergence

criterion: If the derivative of the function
−→
f (−→x ), namely

−→
f

′
(−→x ), exists for

every −→x ∈ D0, such that D0 is a convex set with D0 ⊆ R
n and there exists

a real valued constant c so that
∥∥∥−→f ′

(−→x +
−→
hx) −

−→
f

′

(−→x )
∥∥∥ ≤ c‖−→hx‖ for every −→x ,−→y ∈ D0,

such that −→y = −→x +
−→
hx

(12.54)

holds, then an upper bound of the expression

∥∥∥−→f (−→x +
−→
hx) −

−→
f (−→x ) −−→

f
′

(−→x )
−→
hx

∥∥∥

can be suitably given by the following inequality:

∥∥∥−→f (−→x +
−→
hx) −

−→
f (−→x ) −−→

f
′

(−→x )
−→
hx

∥∥∥ ≤ c

2
‖−→hx‖2 (12.47)

Proof of the lemma: By defining a differentiable function
−→
φ : [0, 1] → R

n

within it’s domain of definition [0, 1] by
−→
φ (t) =

−→
f (−→x + t

−→
hx), we get by

using the chain rule of differentiation the derivative of
−→
φ (t) as:

−→
φ

′

(t) =
−→
f

′

(−→x + t
−→
hx)

−→
hx (12.48)

(in plain words, we have differentiated
−→
φ (t) with respect to t, 0 ≤ t ≤ 1 by

keeping −→x ,−→x +
−→
hx ∈ D0 in mind.)

In that case, by using the above definition of
−→
φ

′
(t), namely by (12.48), we

get −→
φ

′

(t) −−→
φ

′

(0) =
−→
f

′

(−→x + t
−→
hx)

−→
hx −−→

f
′

(−→x )
−→
hx

=
(−→

f
′

(−→x + t
−→
hx) −

−→
f

′

(−→x )
) −→

hx

(12.49)
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Here, by using the above expressions of both
−→
φ (t) and

−→
φ

′
(t), we arrive at

−→
f (−→x +

−→
hx) −

−→
f (−→x ) −−→

f
′

(−→x )
−→
hx =

−→
φ (1) −−→

φ (0) −−→
φ

′

(0)

=

1∫

0

(−→
φ

′

(t) −−→
φ

′

(0)
)

dt
(12.50)

and consequently

∥∥∥−→f (−→x +
−→
hx) −

−→
f (−→x ) −−→

f
′

(−→x )
−→
hx

∥∥∥

=

∥∥∥∥∥∥

1∫

0

(−→
φ

′

(t) −−→
φ

′

(0)
)

dt

∥∥∥∥∥∥

≤
1∫

0

∥∥∥−→φ ′

(t) −−→
φ

′

(0)
∥∥∥ dt

=

1∫

0

∥∥∥
(−→

f
′

(−→x + t
−→
hx) −

−→
f

′

(−→x )
) −→

hx

∥∥∥ dt

( by using (12.49) )

≤
1∫

0

∥∥∥
(−→

f
′

(−→x + t
−→
hx) −

−→
f

′

(−→x )
)∥∥∥

∥∥∥−→hx

∥∥∥ dt

≤
1∫

0

c
∥∥∥t
−→
hx

∥∥∥
∥∥∥−→hx

∥∥∥ dt

(by using (12.54), where −→x +
−→
hx ∈ D0 ⇒ −→x + t

−→
hx ∈ D0 for 0 ≤ t ≤ 1)

=

1∫

0

c t ‖−→hx‖2dt =
c

2
‖−→hx‖2

2

and this proves the lemma stated by (12.47).
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12.3.3 Condition for the convergence of the Newton
Raphson procedure

The statement of the Newton Raphson’s convergence criterion: Let
D be an open subset of R

n (D ⊆ R
n with n ∈ N) and let D0 be a convex

set, such that D0 ⊆ D. Let the function
−→
f : D 7→ R

n be derivable for every
−→x ∈ D0 and be continuous for every −→x ∈ D.

In that case, if for a vector −→x 0 ∈ D0, there exist certain positive constants
r, a, b, c and h with the following properties:

Sr(
−→x 0) =

{−→x
∣∣‖−→x −−→x 0‖ < r

}
⊆ D0 (12.51)

h =
ab c

2
< 1 (12.52)

r =
a

1 − h
(12.53)

and if
−→
f (−→x ) happens to have the following properties:

• (a)
∥∥∥−→f ′

(−→x +
−→
hx) −

−→
f

′
(−→x )

∥∥∥ ≤ c‖−→hx‖ for every −→x ,−→y ∈ D0,

such that −→y = −→x +
−→
hx

(12.54)

• (b)
(−→

f
′
(−→x )

)−1

exists and

∥∥∥∥
(−→

f
′
(−→x )

)−1
∥∥∥∥ ≤ b for every −→x ∈ D0

(12.55)

• (c)

∥∥∥∥
(−→

f
′
(−→x 0)

)−1 −→
f (−→x 0)

∥∥∥∥ ≤ a

(12.56)

then the following do hold good and are required to be proved:
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• (A) Starting with −→x 0, every vector −→x k+1 = −→x k−
(−→

f
′
(−→x k)

)−1 −→
f (−→x k)

is well defined and −→x k ∈ Sr(
−→x 0) holds for every k ∈ N0.

(12.57)

• (B) lim
k→∞

−→x k =
−→
ξ exists, such that

−→
ξ ∈ Sr(

−→x 0), for which
−→
f (

−→
ξ ) =

−→
0

(12.58)

• (C) for every k ∈ N0,
∥∥∥−→x k −

−→
ξ

∥∥∥ < a h2k−1

1−h2k

(12.59)

It should be well noted that, because of the very fact that 0 < h < 1, the
speed of the convergence of the Newton Raphson procedure, at the very least,
is quadratic.

The proof of the Newton’s convergence criterion, namely (A), (B) and (C),

i.e. the fulfillments of (12.57), (12.58) and (12.59) by the function
−→
f (−→x )

necessitate the proof of the lemma (12.47). With this, we shall go ahead to
prove the Newton Raphson’s convergence criterion.
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Proof : According to (A), namely (12.57) with subject to k ∈ N0, we have

−→x k+1 = −→x k −
(−→

f
′

(−→x k)
)−1 −→

f (−→x k) ⇔
−→
f

′

(−→x k)(
−→x k+1 −−→x k) = −−→

f (−→x k)

(12.60)
from which we easily get

∥∥∥−→h k

∥∥∥ =
∥∥−→x k+1 −−→x k

∥∥ =

∥∥∥∥
(−→

f
′

(−→x k)
)−1 −→

f (−→x k)

∥∥∥∥

≤
∥∥∥∥
(−→

f
′

(−→x k)
)−1

∥∥∥∥
∥∥∥−→f (−→x k)

∥∥∥

≤ b
∥∥∥−→f (−→x k)

∥∥∥ ( by using the property (b), namely (12.55) )

= b
∥∥∥−→f (−→x k) −

−→
f (−→x k−1) +

−→
f (−→x k−1)

∥∥∥

= b
∥∥∥−→f (−→x k) −

−→
f (−→x k−1) −

−→
f

′

(−→x k−1)(
−→x k −−→x k−1)

∥∥∥

( by using the right hand side of (12.60) ), but for k ≥ 1

≤ b
c

2

∥∥−→x k −−→x k−1

∥∥2
=

bc

2

∥∥∥−→h k−1

∥∥∥
2

( by using the established lemma, namely (12.47) )

=
h

a

∥∥∥−→h k−1

∥∥∥
2

( by using the property (12.52) )
(12.61)
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So, we have established that
−→
h k, being defined by

−→
h k = −→x k+1 − −→x k, is

related to
−→
h k−1 recursively and therefore by using the immediately aforesaid

recursive relationship, namely (12.61), we get

∥∥∥−→h k

∥∥∥ ≤ h

a

∥∥∥−→h k−1

∥∥∥
2

≤ h

a

(
h

a

∥∥∥−→h k−2

∥∥∥
2
)2

=

(
h

a

) (
h

a

)2 ∥∥∥−→h k−2

∥∥∥
22

≤
(

h

a

)(
h

a

)2 (
h

a

)22 ∥∥∥−→h k−3

∥∥∥
23

...

≤
(

h

a

)(
h

a

)2 (
h

a

)22

. . .

(
h

a

)2k−1 ∥∥∥−→h k−k

∥∥∥
2k

=

(
h

a

)1+2+22+23+...+2k−1 ∥∥∥−→h 0

∥∥∥
2k

=

(
h

a

)2k−1 ∥∥−→x 1 −−→x 0

∥∥2k

=

(
h

a

)2k−1 ∥∥∥∥−
(−→

f
′

(−→x 0)
)−1 −→

f (−→x 0)

∥∥∥∥
2k

( by using the left hand side of (12.60) ), for k = 0

=

(
h

a

)2k−1 ∥∥∥∥
(−→

f
′

(−→x 0)
)−1 −→

f (−→x 0)

∥∥∥∥
2k

≤
(

h

a

)2k−1

a2k

( by using the property (c), namely (12.56) )

= ah2k−1

(12.62)
which evidently proves that the Euclidean distance between the vectors
−→x k+1 and −→x k, namely the quantity

∥∥∥−→h k

∥∥∥ (i.e. the magnitude of the distance

between −→x k+1 and −→x k) is bounded above for every k ∈ N0, because of the
very fact that 0 < h < 1.

At this very point, we are in a position to prove that the point (i.e. the
vector) −→x k+1 belongs to the stated neighbourhood of −→x 0, namely the set
Sr(

−→x 0).
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Keeping this in mind, we proceed to prove this very assertion by making use
of (12.62) as follows:

∥∥−→x k+1 −−→x 0

∥∥ =
∥∥−→x k+1 −−→x k + −→x k −−→x k−1 + . . . + −→x 1 −−→x 0

∥∥
≤

∥∥−→x k+1 −−→x k

∥∥ +
∥∥−→x k −−→x k−1

∥∥ + . . . +
∥∥−→x 1 −−→x 0

∥∥

≤ ah2k−1 + ah2k−1−1 + . . . + ah22−1 + ah21−1 + ah20−1

( by using (12.62) for all the terms )

= a
(
h20−1 + h21−1 + h22−1 + . . . + h2k−1−1 + h2k−1

)

< a
(
1 + h + h2 + h3 + . . .∞

)

( since, by the property (12.52), 0 < h < 1 )

=
a

1 − h
= r

( by the statement (12.53) )

which means nothing, but
∥∥−→x k+1 −−→x 0

∥∥ < r for every k ∈ N0 (12.63)

and this proves our very assertion that −→x k+1 belongs to the neighbourhood
Sr(

−→x 0) of −→x 0. In other words,

−→x k+1 ∈ Sr(
−→x 0) for every k ∈ N0 (12.64)

and thereby proving the statement (A) fully, namely (12.57).

Nextly, we show that the sequence {−→x k}k∈N0 is a Cauchy sequence, i.e. a
convergence sequence. So, for every n, k ∈ N0, we get
∥∥−→x n+k −−→x n

∥∥
=

∥∥−→x n+k −−→x n+k−1 + −→x n+k−1 −−→x n+k−2 + . . . + −→x n+1 −−→x n

∥∥
≤

∥∥−→x n+k −−→x n+k−1

∥∥ +
∥∥−→x n+k−1 −−→x n+k−2

∥∥ + . . . +
∥∥−→x n+1 −−→x n

∥∥

=
∥∥∥−→h n+k−1

∥∥∥ +
∥∥∥−→h n+k−2

∥∥∥ + . . . +
∥∥∥−→h n

∥∥∥

=
∥∥∥−→h n

∥∥∥ +
∥∥∥−→h n+1

∥∥∥ + . . . +
∥∥∥−→h n+k−1

∥∥∥

≤ ah2n−1 + ah2n+1−1 + ah2n+2−1 + . . . + ah2n+k−1−1

( by using (12.62) for all the terms )

=
a

h

(
h2n

+ h2n 2 + h2n 4 + h2n 8 + . . . + h2n 2k−1
)
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and consequently

∥∥−→x n+k −−→x n

∥∥ ≤ a

h

(
h2n

+ h2n 2 + h2n 4 + h2n 8 + . . . + h2n 2k−1
)

<
a

h

(
h2n

+ h2n 2 + h2n 3 + h2n 4 + h2n 5 + . . . + ∞
)

( by using h > 0 )

=
a

h

h2n

1 − h2n = a
h2n−1

1 − h2n

( by using (12.52), namely 0 < h < 1 )

and that precisely leads us to

∥∥−→x n+k −−→x n

∥∥ < a
h2n−1

1 − h2n (12.65)

Here, for any arbitrarily chosen small positive number ǫ, there exists a natural
number N(ǫ), such that

a
h2n−1

1 − h2n < ǫ for every n > N(ǫ) (12.66)

and in fact, by

a
h2n−1

1 − h2n < ǫ ⇔ n > log2

(
log

(
a
hǫ

+ 1
)

log
(

1
h

)
)

(12.67)

such that a > 0 and 0 < h < 1 are kept in mind and thereby the positivity
of both the expressions log

(
a
hǫ

+ 1
)

and log
(

1
h

)
are ensured, the choice of

N(ǫ) can be easily made by

N(ǫ) =

[
log2

(
log

(
a
hǫ

+ 1
)

log
(

1
h

)
)]

+ 1 (12.68)

where the above expression

[
log2

(
log( a

hǫ
+1)

log( 1
h)

)]
is the integral part of the

expression log2

(
log( a

hǫ
+1)

log( 1
h)

)
.

Therefore by combining (12.65) and (12.66), we get
∥∥−→x n+k −−→x n

∥∥ < ǫ for every n > N(ǫ) and for every k ∈ N0 (12.69)
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where the natural number N(ǫ) is given by (12.68).

Thus, by the necessary and sufficient Cauchy’s convergence criterion
for a sequence, the sequence {−→x n}n∈N0 converges and converges to a point,

say
−→
ξ and this means

lim
k→∞

−→x k =
−→
ξ (12.70)

So, by combining (12.64) and (12.70), which say that −→x k+1 ∈ Sr(
−→x 0) for

every k ∈ N0 and lim
k→∞

−→x k =
−→
ξ respectively, it is conclusively clear that

−→
ξ ∈ Sr(

−→x 0) (12.71)

Again, by taking k → ∞ on both the sides of (12.65), we get

lim
k→∞

∥∥−→x n+k −−→x n

∥∥ ≤ lim
k→∞

a
h2n−1

1 − h2n = a
h2n−1

1 − h2n

⇒
∥∥∥−→ξ −−→x n

∥∥∥ ≤ a
h2n−1

1 − h2n ( by using (12.70) )

⇔
∥∥∥−→x n −−→

ξ
∥∥∥ ≤ a

h2n−1

1 − h2n

(12.72)

and thereby proving the statement (C) fully, namely (12.59).

Notably, the statement (C) stated by (12.59) or equivalently by (12.72) and

the very fact a h2n−1

1−h2n < ǫ for every n > N(ǫ) stated by (12.66) do reconfirm

the convergence of the sequence {−→x n}n∈N0 to the point
−→
ξ , because

∥∥∥−→x n −−→
ξ

∥∥∥ ≤ a
h2n−1

1 − h2n < ǫ for every n > N(ǫ)

In our final step, we need to show that
−→
ξ is a zero of the function

−→
f (−→x ),

i.e.
−→
f (

−→
ξ ) =

−→
0 .

In order to show this, at first we restate that the statement (12.64), namely
the statement −→x k ∈ Sr(

−→x 0) for every k ∈ N0 implies that
∥∥−→x k −−→x 0

∥∥ < r for every k ∈ N0 (12.73)

In that case, with the help of the established lemma, i.e. the duly proven
statement (12.54) with regard to −→x 0 ∈ Sr(

−→x 0) and
∥∥−→x k −−→x 0

∥∥ < r for
every k ∈ N0 (i.e. the very statement (12.73) ), we get
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∥∥∥−→f ′

(−→x k) −
−→
f

′

(−→x 0)
∥∥∥ =

∥∥∥−→f ′

(−→x 0 + −→s k) −
−→
f

′

(−→x 0)
∥∥∥

≤ c
∥∥−→s k

∥∥ = c
∥∥−→x k −−→x 0

∥∥ < c r

( by putting −→s k = −→x k −−→x 0 )

⇒
∥∥∥−→f ′

(−→x k)
∥∥∥ −

∥∥∥−→f ′

(−→x 0)
∥∥∥ ≤

∥∥∥−→f ′

(−→x k) −
−→
f

′

(−→x 0)
∥∥∥ ≤ c r

⇒
∥∥∥−→f ′

(−→x k)
∥∥∥ ≤

∥∥∥−→f ′

(−→x 0)
∥∥∥ + c r = a constant = K ( say )

(12.74)

Therefore, by using (12.60), namely by using
−→
f

′
(−→x k)(

−→x k+1−−→x k) = −−→
f (−→x k),

we get

∥∥∥−→f (−→x k)
∥∥∥ =

∥∥∥−→f ′

(−→x k)(
−→x k+1 −−→x k)

∥∥∥ ≤
∥∥∥−→f ′

(−→x k)
∥∥∥

∥∥−→x k+1 −−→x k

∥∥

≤ K
∥∥−→x k+1 −−→x k

∥∥
( by using (12.74) )

(12.75)

and therefore by taking limits on both the sides of (12.75) for k → ∞, we
finally arrive at

lim
k→∞

∥∥∥−→f (−→x k)
∥∥∥ ≤ K lim

k→∞

∥∥−→x k+1 −−→x k

∥∥

⇒
∥∥∥−→f (

−→
ξ )

∥∥∥ ≤ K
∥∥∥−→ξ −−→

ξ
∥∥∥ = 0

( by using (12.70) )

⇒ −→
f (

−→
ξ ) =

−→
0

(12.76)

which eventually proves that
−→
ξ is a zero of the function

−→
f (−→x ).

Hence, (12.70), (12.71) and (12.76) are established and thereby proving the
statement (B), namely (12.58). This completes the proof of the con-
vergence criterion of the Newton Raphson procedure. 2

An important remark: In the context of the m×m system of simultane-

ous equations (4.36), it has been shown that
−→
f

′
(−→x ) happens to be a posi-

tive definite matrix denoted by
−→
f

′
(−→x ) = Cov[X(m)] described by (4.39).

Cov[X(m)] is called the covariance matrix of the m dimensional random vec-
tor X(m) = (X,X2, . . . , Xm) (referred to (4.40)). The positive definiteness
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of Cov[X(m)] has been already proved in the subsection 4.5.3 referred to
the positive definiteness of the covariance matrix of X(m). Thus,(−→

f
′
(−→x )

)−1

exists for every −→x ∈ R
m and hence the convergence crite-

rion of the Newton Raphson procedure is generally applicable in
case of the system of equations (4.36).

12.3.4 Role of the Newton Raphson’s convergence cri-
terion in special cases

In this subsection, we shall confine our discussions about the convergence
of the Newton Raphson procedure to the systems of equations (11.37) and
(11.58) only. Each of these systems (11.37) and (11.58) are to be solved
for β and γ. In this very subsection, just for the sake of a better degree of
clarity (as per conventionally used symbols), we shall use the symbols x and
y to denote the unknowns of the systems of equations instead of β and γ
respectively.

In the light of solving the systems of equations (11.37) or (11.58),
it has to be unforgettably stated that (12.95) and (12.96) already give the

definition of our function
−→
f (−→x ). However, as we have already mentioned, we

shall use (x, y) instead of (β, γ) to define the function
−→
f (−→x ) =

−→
f (x, y) =

−→
0

in this very subsection only, after having denoted
−→
f =




f

g


.

In order to do so, we shall additionally use the symbol t instead of x and
therefore, we shall denote the support of the probability distribution of a
discrete X as {t1, t2, . . . , tN} instead of {x1, x2, . . . , xN}.

By keeping this in mind, we derive and thereafter enlist the partial derivatives
of f and g of the first order as

fx(x, y) =





(µ2 − µ2
1)

N∑
j=1

extj+yt2j : X is discrete

(µ2 − µ2
1)

1∫
0

ext+yt2dt : X is continuous

(12.77)
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fy(x, y) =





(µ3 − µ1µ2)
N∑

j=1

extj+yt2j : X is discrete

(µ3 − µ1µ2)
1∫
0

ext+yt2dt : X is continuous

(12.78)

gx(x, y) =





(µ3 − µ1µ2)
N∑

j=1

extj+yt2j : X is discrete

(µ3 − µ1µ2)
1∫
0

ext+yt2dt : X is continuous

(12.79)

gy(x, y) =





(µ4 − µ2
2)

N∑
j=1

extj+yt2j : X is discrete

(µ4 − µ2
2)

1∫
0

ext+yt2dt : X is continuous

(12.80)

In our cases,
−→
f

′
(−→x ) =

(
fx(x, y) fy(x, y)

gx(x, y) gy(x, y)

)
is a proven positive definite

covariance matrix for every −→x = (x, y) ∈ D = R
2 and therefore the

inverse of the same, namely
(−→

f
′
(−→x )

)−1

, exists for every −→x ∈ D (the positive

definiteness of the matrix
−→
f

′
(−→x ) for every −→x ∈ D is implied and implied

by the well established positive definiteness of the symmetric covariance
matrix (6.30), the strict positiveness of the principal minors of which were
duly established by (6.31) and (6.32)).

Before we proceed to discuss the utility of this aforesaid stated theorem
5.3.2, we need to state beforehand that, in every beginning of the course of
an execution of the program for solving the system (11.37) or (11.58), the
following things are to be duly pictured:

1. The vector −→x 0 is computed preliminarily on the basis of the user given
inputs of µ1 and µ2. The word preliminarily is referred to the very
fact that the starting vector −→x 0 may or may not fulfill the sufficient
condition for convergence of the Newton Raphson procedure.

2. The existing complexity of the programming work is not restricted
to a single user given input (µ1, µ2) only, but the programmer has to
make sure that the preliminary value of −→x 0 is computable for almost
every (µ1, µ2) belonging to the input space
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I(µ1,µ2) = {(µ1, µ2) | 0 < µ1 < 1 , µ2
1 < µ2 < µ1}

The word almost is referred to the important cases only, which do
span more than 98 % of the input space I(µ1,µ2), as far as the stochastic
point of view of the solutions of these aforesaid systems of equations is
concerned. The unimportant cases are referred to the stochastically
irrelevant cases, when µ2 is unrealistically closer to µ1 from left.

3. With this value of −→x 0, the preliminary values of the sizes

a =

∥∥∥∥
(−→

f
′
(−→x 0)

)−1 −→
f (−→x 0)

∥∥∥∥ and b =

∥∥∥∥
(−→

f
′
(−→x 0)

)−1
∥∥∥∥ are computable.

Subsequently, the preliminary values of the sizes c, h, r are D0 are
consecutively computable.

Therefore, the sizes a, b are computable and subsequently the sizes c, h, r
are D0 are computable after every stage of improvement of −→x 0 (obviously
referred to the systems (11.37) and (11.58)). This improvement of −→x 0 is

well examinable by whether
∥∥∥−→f (−→x 0)

∥∥∥ has become actually smaller than its

previous value or not. In other words, an improvement of −→x 0 must cause the

quantity
∥∥∥−→f (−→x 0)

∥∥∥ to get closer to 0 to an extent.

The procedures for the improvement of −→x 0 is well programmable and the
procedures for the computations of these six sizes, namely a, b, c, h, r and
D0, are theoretically programmable too.

These six sizes are meant to be duly computed after each and every
improvement stage of −→x 0 and this computation has to be repeatedly con-
tinued till −→x 0 fulfills the convergence conditions for the Newton Raphson
procedure stated in the aforesaid theorem 5.3.2 and this should be carried
out in a way that D0 could be an appropriate circular neighbourhood

containing the point
−→
ξ , within which any point would fulfill the necessary

as well as the sufficient convergence condition of the Newton Raphson pro-
cedure.

However, it has to be unavoidably stated that the execution of the compu-
tations of all these six sizes, after each and every improvement stage of −→x 0,
is rather time consuming and is bound to prolong the running time of
the entire program for solving (11.37) or (11.58) unnecessarily. Long running
times of these software programs are principally undesirable and as matter of
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fact, a long running time would worsen one of the basic quality characteristics
of a software program.

One thing is quite apparent that an effective programming of the procedures
for computations of these six sizes is unavoidably hampered by the repeated
usage of the time consuming subroutines, namely

• the summation procedure, for the cases of large values of N (for
N > 2000), in case X happens to be discrete (referred to the system
(11.37))

• the numerical integration procedure, especially for the cases when
µ2 is chosen to close to µ2

1 from right or to close to µ1 from left, in case
X happens to be continuous (referred to the system (11.58))

Therefore, we could well point out, that at every improvement stage of −→x 0,
the computations of a, b and c necessitate the computation of a 2×2 matrix

of the form
−→
f

′
(−→x ), each of the elements of which involve either (aforesaid)

summation procedures or numerical integration procedures. As we have al-
ready seen, these procedures could be well time consuming in many cases.

Additionally, programming an appropriate procedure for the computation of
c with subject to the fulfillment of

•
∥∥∥−→f ′

(−→x +
−→
hx) −

−→
f

′
(−→x )

∥∥∥ ≤ c‖−→hx‖ for every −→x ,−→y ∈ D0,

with −→y = −→x +
−→
hx

• as well as h = abc
2

< 1

with regard to the systems (11.37) and (11.58) is rather cumbersome. In
fact, about a given suitably chosen neighbourhood of the point −→x = −→x 0 =
(x0, y0), any suitable utilizable computation of c demands additional com-
putations of at least either four time consuming numerical integrations or

four time consuming summations in form of computations of
−→
f

′
(x0 + h, y0),−→

f
′
(x0 − h, y0),

−→
f

′
(x0, y0 + k) and

−→
f

′
(x0, y0 − k), h and k being suitably

chosen increments (or decrements) of x0 and y0 respectively.

Apart from this, let us view an important characteristic property of both the
systems of equations (11.37) and (11.58),
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• the rate of change of
−→
f (−→x ) with respect to −→x is inconsiderably small

in most of the cases. This means, −→x needs to be changed drastically

towards the direction of
−→
ξ for making only inconsiderably small

changes of
−→
f (−→x ) towards the direction of

−→
0 .

This is particularly the case, when

– µ2 is chosen close to µ2
1 from left or close to µ1 from right.

– µ1 is chosen close to 0 from right or close to 1 from left.

• only in few cases, the rate of change of
−→
f (−→x ) with respect to −→x is

considerably high, which is good.

This precisely means that the programmer has to handle the size of

‖−→x k+1 − −→x k‖ =

∥∥∥∥
(−→

f
′
(−→x k)

)−1 −→
f (−→x k)

∥∥∥∥ with a good amount of care, so

as to make sure that the appropriate computation of a, with respect to the

fulfilment of

∥∥∥∥
(−→

f
′
(−→x 0)

)−1 −→
f (−→x 0)

∥∥∥∥ ≤ a, actually takes place. This basi-

cally means that the number of stages of improvement of −→x 0 is quite
high in most of the cases, which in turn implies that the number of
times that these six sizes a, b, c, h, r and D0 are needed to be computed is
quite high too.

Hence, we arrive at the conclusion that the programming of the procedures
for the computation of the six sizes a, b, c, h, r and D0 is basically not
worthy at all, because

• the computations of these six sizes after each and every improvement
stage of −→x 0 are time consuming and therefore prolong the running
time of the entire program.

• the number of times that these computations are to be carried out,
is high in most of the cases.

• the cumbersomeness of the programming, as we have seen, is not
avoidable.

Therefore, with subject to the consideration of these aforesaid arising dif-
ficulties, the software programs designed to solve the systems (11.37) and
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(11.58), we conclusively find that the programming of this necessary and
sufficient condition for the convergence of the undamped Newton Raphson
procedure is completely unworthy.

This existing programming problem is effectively and elegantly resolvable
by an alternative approach consisting of broadly two steps, without ham-
pering the convergence behavior or any convergence characteristic
of the sequence of improved values of −→x 0. Thus, this is alternative approach
is in no way a bad idea, as far as the essential quality characteristics
of a software program is concerned. These two steps are given as follows:

1. Step 1: For the solution of an equation having a single unknown,
namely (12.10), we have already seen, that the Newton’s condition for
the convergence is given by (12.32). The extension of the condition for
the convergence in case of two unknowns can be given to be

|f(x0, y0)fxx(x0, y0)|
{fx(x0, y0)}2 < 1 (12.81)

|f(x0, y0)fyy(x0, y0)|
{fy(x0, y0)}2 < 1 (12.82)

|g(x0, y0)gxx(x0, y0)|
{gx(x0, y0)}2 < 1 (12.83)

|g(x0, y0)gyy(x0, y0)|
{gy(x0, y0)}2 < 1 (12.84)

The simultaneous fulfillment of all the four conditions would certainly
leads to the fulfillment of the necessary condition for the desired con-
vergence of Newton Raphson procedure and ensures the correctness
of the direction of convergence of the sequence of improved values
of −→x 0.

Importantly, because of

• by (6.35), V ar[X] = µ2 − µ2
1 > 0

• by (6.36), V ar[X2] = µ4 − µ2
2 > 0 and

• by (6.37), µ3−µ1µ2 > 0 (as a consequence of the proven inequality
(5.4))
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we easily conclude that the partial derivatives of the first order, namely
(12.77), (12.78), (12.79) and (12.80) are always positive and hence all
the fractions belonging to the constraints (12.81), (12.82), (12.83) and
(12.84) are finitely computable (i.e. the denominators of these
fractions do not vanish). Hence, there are no mathematical difficul-
ties in this regard.

Practical experience shows that the fulfillment of all the four conditions
stated above may not be stringently necessary, at least as far as our
programming work is concerned.

Let R be a two-dimensional region containing all the possible first
approximated solutions (x0, y0) fulfilling all the four above relations.
Therefore, the area of R describes the smallness of expressions Tf (h, k)
and Tg(h, k).

2. Step 2: Only after the vector −→x 0 = (x0, y0) has fulfilled the necessary
conditions for the convergence, further intermediate procedures with
regard to the further improvements of −→x 0 are programmed prior to the
programming of the damped Newton Raphson procedure.

Importantly, it has to be clearly mentioned that these aforesaid de-
veloped software programs can always be improved to any desired
degree of goodness, as far as the most desired quality characteristics
are concerned.
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12.3.5 Iterative procedure for two special equation-
systems

Here, we shall discuss about two important systems of simultaneous equa-
tions, which shall be relevant for our present numerical work in the subse-
quent subsections.

For this, we define the first two moments of a random variable X having the
range of variability [0, 1] as functions of two real variables namely β and γ
as follows

E[X] = µ
(β,γ)
1 =





N∑
j=1

xje
βxj+γx2

j

N∑
j=1

e
βxj+γx2

j

: X is discrete

1∫
0

xeβx+γx2
dx

1∫
0

eβx+γx2
dx

: X is continuous

(12.85)

E[X2] = µ
(β,γ)
2 =





N∑
j=1

x2
je

βxj+γx2
j

N∑
j=1

e
βxj+γx2

j

: X is discrete

1∫
0

x2eβx+γx2
dx

1∫
0

eβx+γx2
dx

: X is continuous

(12.86)

where the random structure of X is defined by

• fX|{d}(xj) = e
βxj+γx2

j

N∑
j=1

e
βxj+γx2

j

, 0 = x1 < x2 < . . . < xN = 1,

in case X is a discrete random variable

• fX|{d}(x) = eβx+γx2

1∫
0

eβx+γx2
dx

, 0 ≤ x ≤ 1,

in case X is a continuous random variable

Now, if µ∗
1 and µ∗

2 be the preassigned values of the first two moments of
X, then our problem will be to solve the following system of simultaneous
equations (for β and γ) for the purpose of determining the random structure
function of X {

µ
(β,γ)
1 − µ∗

1 = 0

µ
(β,γ)
2 − µ∗

2 = 0
(12.87)
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Let (β∗, γ∗) be the solution to the system (12.87). Here, we shall introduce
an iterative procedure for getting close to the solution of the system (12.87),
if not a complete solution is possible. However, our experience shows, that
the iterative procedure

• is rather a time consuming procedure, especially when X is continuous
where the running times for the numerically computed integrations are
too long.

• is a tentative process. This means, it may or may not lead to the
desired solution (β∗, γ∗), but helps the intermediately computed vector
(β, γ) to get closer to the solution vector (β∗, γ∗) reasonably well.

This closeness is described by the smallness of an introduced factor named
e distance, which is defined as

e distance =

√
(µ

(β,γ)
1 − µ∗

1)
2 + (µ

(β,γ)
2 − µ∗

2)
2 (12.88)

This means, if e distance gets smaller and smaller, then (β, γ) gets closer
and closer to the solution (β∗, γ∗) gradually. In this regard, the iterative
procedure is of immense help, though the speed of convergence in certain
cases may not be high enough. For our numerical procedures, we hold (β, γ)
for a solution, if e distance < 10−16 or at least e distance < 10−10.

Before we give the formal algorithm of the iterative procedure, besides
e distance, we would like to introduce two more procedures and a variable:

•
SolveForBeta(γ, βs) (12.89)

is the procedure, which determines the value of β as the solution of the
equation µ

(β,γ)
1 − µ∗

1 = 0 for a fixed value of γ and βs as the starting
value. This solution can be achieved by means of the numerical pro-
cedure (12.36), the running time of which can be considerably reduced
by the introduction of βs.

•
SolveForGamma(β, γs) (12.90)

is the procedure, which determines the value of γ as the solution of the
equation µ

(β,γ)
2 − µ∗

2 = 0 for a fixed value of β and γs as the starting



12.3. NUMERICAL SOLUTION OF A SYSTEM OF TWO EQUATIONS509

value. This solution can be achieved by means of the numerical pro-
cedure (12.36), the running time of which can be considerably reduced
by the introduction of γs.

• The iterative procedure consists of a finite number of iterative steps,
where the vector (β, γ) changes it’s value after each such step. This
change in each step is expected to lead to the direction of (β∗, γ∗). For
to ensure the correctness of this direction, a boolean variable named
becomes smaller has been introduced.

The variable becomes smaller can have only two values, namely true
and false. becomes smaller has the value true after the completion of
an iterative step, only if e distance does not become larger as a result
of that iterative step, otherwise false.

Therefore, the algorithm for the iterative procedure is described as:

Let βs and γs be the starting values of β and γ respectively. In case, these
starting values are not available, they are assumed as zeros.

We initialize β = βs, γ = γs, becomes smaller =true,

Compute e distance updated = e distance with respect to β and γ;

while ((e distance updated > ǫ) ∧ becomes smaller) {
βreserve = β; γreserve = γ;
β = SolveForBeta(γ, β);
γ = SolveForGamma(β, γ)
e distance current = e distance with respect to β and γ;

if (e distance updated < e distance current) then {
β = βreserve; γ = γreserve;
becomes smaller = false;
}
else e distance updated = e distance current
}

(12.91)

(β, γ) is the final output as a result of the iterative procedure, ǫ being a given
preassigned positive number ranging between 10−16 and 10−10.



510 CHAPTER 12. NUMERICAL ALGORITHMS

It has to be noted, that the iterative procedure ceases to be executed further,
if a wrong direction is detected by becomes smaller at the point at which
the while-loop is broken.

It can be very well seen, that depending on the nature of the random variable
X (ie. discrete or continuous) there are two different systems of simultaneous
equations (in β and γ) of the form (12.87). Therefore, the iterative procedures
for solving (12.87) in both the cases (X is discrete or continuous) are needed
to be handled differently but in a similar manner.

12.3.6 Conditions for the convergence in cases of the
two special systems

The necessary conditions for convergence corresponding to the vector (β, γ)
shall be derived with the aim, that the Newton Raphson procedure is in a
position to use this (β, γ) for reaching the solution (β∗, γ∗) to the system
(12.87).

By rewriting the expressions µ
(β,γ)
1 − µ∗

1 and µ
(β,γ)
2 − µ∗

2 in the following way

µ
(β,γ)
1 − µ∗

1 =





N∑
j=1

(xj−µ∗
1)e

βxj+γx2
j

N∑
j=1

e
βxj+γx2

j

: X is discrete

1∫
0

(x−µ∗
1)eβx+γx2

dx

1∫
0

eβx+γx2
dx

: X is continuous

(12.92)

µ
(β,γ)
2 − µ∗

2 =





N∑
j=1

(x2
j−µ∗

2)e
βxj+γx2

j

N∑
j=1

e
βxj+γx2

j

: X is discrete

1∫
0

(x2−µ∗
2)eβx+γx2

dx

1∫
0

eβx+γx2
dx

: X is continuous

(12.93)

the equation system (12.87) is equivalent to the following equation system

{
f(β, γ) = 0
g(β, γ) = 0

(12.94)
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such that

f(β, γ) =





N∑
j=1

(xj − µ∗
1)e

βxj+γx2
j : X is discrete

1∫
0

(x − µ∗
1)e

βx+γx2
dx : X is continuous

(12.95)

and

g(β, γ) =





N∑
j=1

(x2
j − µ∗

2)e
βxj+γx2

j : X is discrete

1∫
0

(x2 − µ∗
2)e

βx+γx2
dx : X is continuous

(12.96)

Since the systems (12.87) and (12.94) are equivalent with respect to their
existing common solution (β∗, γ∗), we shall make use of the functions f(β, γ)
and g(β, γ) for deriving the conditions of convergence. For this, we shall
enlist their following partial derivatives:

fβ(β, γ) =





N∑
j=1

xj(xj − µ∗
1)e

βxj+γx2
j : X is discrete

1∫
0

x(x − µ∗
1)e

βx+γx2
dx : X is continuous

(12.97)

fββ(β, γ) =





N∑
j=1

x2
j(xj − µ∗

1)e
βxj+γx2

j : X is discrete

1∫
0

x2(x − µ∗
1)e

βx+γx2
dx : X is continuous

(12.98)

gγ(β, γ) =





N∑
j=1

x2
j(x

2
j − µ∗

2)e
βxj+γx2

j : X is discrete

1∫
0

x2(x2 − µ∗
2)e

βx+γx2
dx : X is continuous

(12.99)

gγγ(β, γ) =





N∑
j=1

x4
j(x

2
j − µ∗

2)e
βxj+γx2

j : X is discrete

1∫
0

x4(x2 − µ∗
2)e

βx+γx2
dx : X is continuous

(12.100)
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Accordingly, as already discussed in the previous subsection, the necessary
conditions for the desired convergence with the help of (12.95), (12.98),
(12.97) and (12.96), (12.100), (12.99) are given as

|f(β, γ)fββ(β, γ)|
{fβ(β, γ)}2 =

∣∣∣
(
µ

(β,γ)
1 − µ∗

1

) (
µ

(β,γ)
3 − µ∗

1µ
(β,γ)
2

)∣∣∣
(
µ

(β,γ)
2 − µ∗

1µ
(β,γ)
1

)2 < κ (12.101)

|g(β, γ)gγγ(β, γ)|
{gγ(β, γ)}2 =

∣∣∣
(
µ

(β,γ)
2 − µ∗

2

) (
µ

(β,γ)
6 − µ∗

2µ
(β,γ)
4

)∣∣∣
(
µ

(β,γ)
4 − µ∗

2µ
(β,γ)
2

)2 < κ (12.102)

where

• κ is a chosen positive real number lying between zero and one. Closer
is κ to zero, stricter is the convergence condition

• µ
(β,γ)
n = E[Xn] with subject to the given values of β and γ for every

n ∈ N. From the programming point of view, the two cases, namely
β +γ < 709 and β +γ ≥ 709 must be handled separately, since the real
value e709 exceeds the allowable upper limit of the java variable double.
In the language of Java, β + γ ≥ 709 means an overflow. On the other
hand, an underflow as a result of the execution of a program is taken
as a harmless zero. Keeping this in mind, we get

– If X is discrete, then

µ(β,γ)
n =





N∑
j=1

xn
j e

βxj+γx2
j

N∑
j=1

e
βxj+γx2

j

: β + γ < 709

N∑
j=1

xn
j e

β(xj−1)+γ(x2
j
−1)

N∑
j=1

e
β(xj−1)+γ(x2

j
−1)

: β + γ ≥ 709

(12.103)

– If X is continuous, then µ
(β,γ)
n can be computed recursively as

discussed before. This case will be thoroughly handled in this
very subsection itself.
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Our experience shows, that the introduction of the other two convergence
conditions as discussed in the previous subsection, are not really necessary
from the convergence point of view. Moreover, the introduction of the other
two conditions mean a lot more computational time which is absolutely un-
necessary.

Before we draw this subsection of convergence conditions to a close, we would
like to introduce one more important thing, which will be absolutely neces-
sary for programming our numerical procedural work in cases when X is a
continuous random variable. Since we know, that the numerical integration
is a time consuming procedure, it should be used only when it is absolutely
necessary. For this, we have taken the following steps to ensure, that the
computation of µ

(β,γ)
n for a given value of n involves the numerical integra-

tion just once, in cases when γ 6= 0. This very problem has already been
discussed in the chapter 7 before.

The different cases involving the computation of µ
(β,γ)
n are therefore enlisted

as

1. Case 1 γ = 0, β = 0:

µ(β,γ)
n =

1

n + 1
(12.104)

In particular, µ
(β,γ)
1 = 1

2
and µ

(β,γ)
2 = 1

3

2. Case 2 γ = 0, β 6= 0:

µ(β,γ)
n =

{
1 + 1

eβ−1
− 1

β
: n = 1

1 + 1
eβ−1

− n
β
µ

(β,γ)
n−1 : n > 1

(12.105)

In particular,

µ
(β,γ)
2 = 1 +

1

eβ − 1
− 2

β
µ

(β,γ)
1 =

2(eβ − 1) − β(2 − β)eβ

β2(eβ − 1)
(12.106)
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3. Case 3 γ 6= 0:

• β + γ < 709:
By using (7.100), (7.102) and (7.104), we get

µ(β,γ)
n =





1
2γ




eβ+γ−1
1∫
0

eβx+γx2
dx

−β


 : n = 1

1
2γ




eβ+γ

1∫
0

eβx+γx2
dx

−1−βµ
(β,γ)
1


 : n = 2

1
2γ




eβ+γ

1∫
0

eβx+γx2
dx

−βµ
(β,γ)
n−1 −(n−1)µ

(β,γ)
n−2


 : n > 2

(12.107)

In particular, if γ = −β, we can easily derive the following from
the above relations

µ
(β,γ)
1 =

1

2
(12.108)

µ
(β,γ)
2 = − 1

2β




1
1∫
0

eβx(1−x)dx

− 1


 +

1

4
(12.109)

• β + γ ≥ 709:
By using (7.101), (7.103) and (7.105), we get

µ(β,γ)
n =





1
2γ




1−e−(β+γ)

1∫
0

eβ(x−1)+γ(x2−1)dx

−β


 : n = 1

1
2γ




1
1∫
0

eβ(x−1)+γ(x2−1)dx

−1−βµ
(β,γ)
1


 : n = 2

1
2γ




1
1∫
0

eβ(x−1)+γ(x2−1)dx

−βµ
(β,γ)
n−1 −(n−1)µ

(β,γ)
n−2


 : n > 2

(12.110)
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An important remark:

It is absolutely important to note, that the computations of the moments
µ

(β,γ)
n (n ∈ N) of X (wherever necessary) require the usage of

• (12.103) in cases when X is discrete and

• – (12.107) or (12.110), if γ 6= 0

– (12.105), if β 6= 0 but γ = 0

– (12.104), if β = γ = 0

in cases when X is continuous

This helps the systematic computations of

• e distance (given by 12.88) at every procedural step of the iterative
procedure (12.91)

• e distance (given by 12.88), together with the values of h and k (given
in (12.114)) at every procedural step of the Newton Raphson procedure
(12.115). This will be discussed in details in the very next subsection

12.3.7 Newton Raphson procedure for the two special
equation-systems

The usefulness of the iterative procedure lies in the fact, that it brings the
intermediately computed vector (β, γ) closer to the solution (β∗, γ∗). The
chance, that the output vector (β, γ) as a result of the iterative procedure
really fulfills the convergence conditions (12.101) and (12.102), becomes un-
doubtedly bigger. However, iterative procedure cannot be used as the proce-
dure for the solution of any system of equations unless and until the solution
could be reached easily, because it is a rather time consuming procedure.
The Newton Raphson procedure should be used as a the procedure for the
solution of a system instead, since it’s running time is optimal.

In addition to the iterative procedure, there are other procedures for im-
proving the vector (β, γ) in terms of it’s closeness to (β∗, γ∗), which shall
be discussed in the subsequent subsections. Our java programs are designed
in a way, that the stated convergence conditions are fulfilled in most of the
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cases with the help of the such improving procedures before forwarding the
vector (β, γ) for the Newton Raphson solution procedure.

Therefore, for the purpose of designing our general algorithm for the solution
of the system (12.94), the formal application of the stated theory of the
(damped) Newton Raphson procedure (12.45) or even (12.46) with subject
to an available (β0, γ0) as the first approximated solution of the (12.94) in
both discrete and continuous cases, is imperatively necessary.

For this, we shall have to have a close look at the general procedural step of
Newton Raphson:

For every (n + 2)th (n ∈ N0) procedural step of Newton Raphson, the com-
putation of the (n + 2)th approximated solution of (12.94), as described in
(12.45), requires the computation of increments (or decrements) of β and
γ given by h and k respectively as described in (12.44). That is, h and k
for the (n + 2)th step can be found by solving the two following equations
simultaneously:

hfβ(β, γ) + kfγ(β, γ) = −f(β, γ)

hgβ(β, γ) + kgγ(β, γ) = −g(β, γ)

which gives

h = fγ(β,γ)g(β,γ)−f(β,γ)gγ(β,γ)

Ψh,k

k =
f(β,γ)gβ(β,γ)−fβ(β,γ)g(β,γ)

Ψh,k
such that

Ψh,k = fβ(β, γ)gγ(β, γ) − fγ(β, γ)gβ(β, γ)

(12.111)

such that the expressions of f(β, γ), fβ(β, γ), g(β, γ) and gγ(β, γ) are de-
scribed in (12.95), (12.97), (12.96) and (12.99) respectively, together with

fγ(β, γ) =





N∑
j=1

x2
j(xj − µ∗

1)e
βxj+γx2

j : X is discrete

1∫
0

x2(x − µ∗
1)e

βx+γx2
dx : X is continuous

(12.112)
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and

gβ(β, γ) =





N∑
j=1

xj(x
2
j − µ∗

2)e
βxj+γx2

j : X is discrete

1∫
0

x(x2 − µ∗
2)e

βx+γx2
dx : X is continuous

(12.113)

Therefore, by (12.95), (12.96), (12.97), (12.112), (12.113) and (12.99) we get

h =

(
µ

(β,γ)
3 −µ∗

1µ
(β,γ)
2

)(
µ

(β,γ)
2 −µ∗

2

)
−

(
µ

(β,γ)
1 −µ∗

1

)(
µ

(β,γ)
4 −µ∗

2µ
(β,γ)
2

)

Ψ

k =

(
µ

(β,γ)
1 −µ∗

1

)(
µ

(β,γ)
3 −µ∗

2µ
(β,γ)
1

)
−

(
µ

(β,γ)
2 −µ∗

1µ
(β,γ)
1

)(
µ

(β,γ)
2 −µ∗

2

)

Ψ
such that

Ψ =
(
µ

(β,γ)
2 −µ∗

1µ
(β,γ)
1

)(
µ

(β,γ)
4 −µ∗

2µ
(β,γ)
2

)
−

(
µ

(β,γ)
3 −µ∗

1µ
(β,γ)
2

)(
µ

(β,γ)
3 −µ∗

2µ
(β,γ)
1

)

(12.114)
Hence, at each procedural step of Newton Raphson, (12.114) gives a clear
picture about the increments (or decrements) of the values of β and γ, which
are h and k respectively. Quite obviously, the values of h and k are said to
be increments or decrements, according as they are positive or negative. If
zero, then the corresponding value of β or γ is said to be unchanged.

The changed values of β and γ, which are β + h and γ + k respectively as
a result of a given procedural step, take a step ahead in the direction of the
aimed solution (β∗, γ∗).

However, importantly, the aforesaid addition of h and k to the values of β
and γ respectively may mislead the direction of convergence to (β∗, γ∗), i.e
the value of e distance may be largened as a result of these additions of h
and k. As a remedy, h and k can be damped by the factor t, 0 < t < 1
before being added to β and γ respectively.

At first, each procedural step is started with t = 1. If e distance gets largened
in the process, then the (same) procedural step is repeated with t being
halved, i.e. with t = 1

2
, after which it is examined by the program whether

e distance really gets smaller. If not, then t is halved again and this process is
repeated. In this way, this process is repeated, till e distance is really smaller.
This is precisely the idea of damping the Newton Raphson procedure by the
factor t.

Having this, the formal algorithm for the (damped) Newton Raphson
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numerical procedure for the solution of (12.94), with subject to it’s first
approximated solution (β0, γ0), is developed as follows:

We initialize β = β0, γ = γ0; Select an ǫ, such that ǫ ∈ [10−16, 10−10];

Compute µ
(β,γ)
1 and µ

(β,γ)
2 with respect to β and γ;

e distance =

√(
µ

(β,γ)
1 − µ∗

1

)2

+
(
µ

(β,γ)
2 − µ∗

2

)2

as described in (12.88);

while {( e distance > ǫ ) ∧ (additional criteria)}
{
Compute µ

(β,γ)
3 and µ

(β,γ)
4 with respect to β and γ;

f̂ = µ
(β,γ)
1 − µ∗

1;

f̂β = µ
(β,γ)
2 − µ∗

1µ
(β,γ)
1 ; f̂γ = µ

(β,γ)
3 − µ∗

1µ
(β,γ)
2 ;

ĝ = µ
(β,γ)
2 − µ∗

2;

ĝβ = µ
(β,γ)
3 − µ∗

2µ
(β,γ)
1 ; ĝγ = µ

(β,γ)
4 − µ∗

2µ
(β,γ)
2 ;

Ψ = f̂β ĝγ − f̂γ ĝβ;

Compute h and k according to (12.114), i.e h = t f̂γ ĝ−f̂ ĝγ

Ψ
& k = t

f̂ ĝβ−f̂β ĝ

Ψ
;

β+= h;

γ+= k;

Compute µ
(β,γ)
1 and µ

(β,γ)
2 with respect to β and γ;

e distance =

√(
µ

(β,γ)
1 − µ∗

1

)2

+
(
µ

(β,γ)
2 − µ∗

2

)2

}
(β, γ) is the final solution on breaking of the above while-loop (12.115)

Notably, at any stage of the execution of the Newton Raphson procedure, if the condition

additional criteria is not fulfilled, then the execution of Newton Raphson procedure is

halted prematurely. The need of this additional criteria is left to the judgement of the

programmer, otherwise it can also be omitted if not necessary.
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12.4 Determination of a monotonic probabil-

ity distribution

12.4.1 Algorithmic steps

A point of the ignorance space DY is represented as dY = (µ
(1)
Y ). The range

of variability XY ({dY }) of the random variable Y |{dY } is a finite set of dis-
crete real values. With this, the necessary steps for the computation of the
probability distribution are:

1. Input of data and check of compatibility:

• Cardinality of XY ({dY }) = |XY ({dY })| = N . Make sure,
that N ∈ N \ {0}

• XY ({dY }) = {y1, y2, . . . , yN}. Make sure, that all these yjs are
distinct. Then, if not already sorted, then rearrange them, so
that

a = min
XY ({dY })

yj = y1 < y2 < . . . < yN = max
XY ({dY })

yj = b

• Only if N ≥ 2, then input Mean = µ
(1)
Y and make sure that

y1 < µ
(1)
Y < yN

2. Linear transformation for N ≥ 2 only: xi = yi−a

b−a
, such that

• fX|{d}(xj) = fY |{dY }(yj)

• fX|{d}(xj) = e
βxj

N∑
j=1

e
βxj

• fY |{dY }(yj) = e

βyj
b−a

N∑
j=1

e

βyj
b−a

= fX|{d}(xj)

• 0 = x1 < x2 < x3 < . . . < xN = 1

• µ∗
1 =

µ
(1)
Y

−a

b−a
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3. Execution for N ∈ {1, 2} only: These are the special cases, which
are handled without any numerical methods:

(a) Subcase 1: N = 1

This is the case for a degenerated probability distribution, where
the inputs of both Mean and Variance are not allowable. In this
case, we simply have fY |{dY }(y1) = 1.

(b) Subcase 2: N = 2

This is the case for a two- point probability distribution, where
the the input of Variance is not allowable. In this case, a = y1

and b = y2 and hence

fY |{dY }(yj) = (1 − µ∗
1)e

−
(

log

(
1

µ∗
1
−1

))(
yj−a

b−a

)

(j = 1, 2)

4. Numerical execution for N > 2 only: Solve for β, the following
equation numerically:

µ∗
1 =

N∑
j=1

xje
βxj

N∑
j=1

eβxj

The above equation can be rewritten as

f(β) =

N∑
j=1

xje
βxj

N∑
j=1

eβxj

− µ∗
1 = 0 (12.116)

which says, that f(β) is continuous for all real values of β and therefore
can be easily solved by the procedure (12.36) described before.

Let β∗ be the solution of f(β) = 0. Thus, λ(dY ) = (λ1(dY )) =
(

β∗

b−a

)
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5. Final result for the user:

fY |{dY }(yj) =





1 : N = 1

(1 − µ∗
1)e

−
(

log

(
1

µ∗
1
−1

))(
yj−a

b−a

)

: N = 2

1
N

: µ∗
1 =

N∑
j=1

xj

N
, N > 2

e
β∗(

yj
b−a)

N∑
j=1

e
β∗(

yj
b−a)

: µ∗
1 6=

N∑
j=1

xj

N
, N > 2

j = 1, 2, . . . , N

12.4.2 The subfamily

Corresponding to the case, when µ∗
1 =

N∑
j=1

xj

N
, we would arrive at the following

discrete uniform distribution of Y described by

fY |{dY }(yj) =
1

N
, j = 1, 2, . . . , N
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12.5 Determination of a continuous monotonic

probability distribution

12.5.1 Algorithmic steps

A point of the ignorance space DY is represented as dY = (µ
(1)
Y ). The range of

variability XY ({dY }) of the random variable Y |{dY } is a closed and bounded
real interval. With this, the necessary steps for the computation of the
probability distribution are:

1. Input of data and it’s compatibility:

• XY ({dY }) = {y|a ≤ y ≤ b}. Make sure, that a < b, so that
|XY ({dY })| = b − a

• Mean = µ
(1)
Y . Make sure, that a < µ

(1)
Y < b

2. Linear transformation: x = y−a

b−a
, such that

• fX|{d}(x) = (b − a)fY |{dY }(y) = eβx

1∫
0

eβxdx

• x ∈ [0, 1]

• µ∗
1 =

µ
(1)
Y

−a

b−a

3. Execution: Solve for β the following equation:

µ∗
1 = 1 +

1

eβ − 1
− 1

β
(12.117)

The above equation can be rewritten as

f(β) = 1 +
1

eβ − 1
− 1

β
− µ∗

1 = 0 (12.118)

which says, that f(β) is continuous for all nonzero real values of β, but
is removable discontinuous at β = 0, which means

lim
β→0−

(
1 +

1

eβ − 1
− 1

β
− µ∗

1

)
= lim

β→0+

(
1 +

1

eβ − 1
− 1

β
− µ∗

1

)
= 0.5−µ∗

1

(12.119)
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It has to be noted, that the right hand side of the relation (12.117)
has been derived as the expression of E[X] which has been shown in
(12.105).

The relation (12.119) describes the removable discontinuity of f(β) at
the point β = 0. On removal of this discontinuity, the function f(β) is
redefined to make it a continuous function as follows:

f(β) = 0 =

{
0.5 − µ∗

1 : β = 0
1 + 1

eβ−1
− 1

β
− µ∗

1 : β 6= 0
(12.120)

which makes sure, that f(β) = 0 can be easily solved by the numerical
procedure (12.36). As a result, the first moment of X denoted by

µ1 =
∫ 1
0 xeβxdx∫ 1
0 eβxdx

= 1 + 1
eβ−1

− 1
β

can be plotted against β as follows:

Figure 12.1: µ1 against β

Let β∗ be the solution of the equation f(β) = 0.

Therefore, λ(dY ) = (λ1(dY )) =
(

β∗

b−a

)

4. Final result for the user:

fY |{dY }(y) =





β∗e

(
β∗

b−a

)
y

(b−a)(eβ∗−1)e
aβ∗

b−a

: µ∗
1 6= 0.5

1
b−a

: µ∗
1 = 0.5

(12.121)

a ≤ y ≤ b
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12.5.2 The subfamily

Corresponding to the case, when µ∗
1 = 0.5, we have

fY |{dY }(y) =
1

b − a
, a ≤ y ≤ b

which is a continuous uniform distribution of Y .
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12.6 Determination of a discrete uni-extremal

probability distribution

12.6.1 Algorithmic steps

A point of the ignorance space DY is represented as dY = (µ
(1)
Y , µ

(2)
Y ). The

range of variability XY ({dY }) of the random variable Y |{dY } is a finite set
of discrete real values. With this, the necessary steps for the computation of
the probability distribution are:

1. Input of data and it’s compatibility:

• Cardinality of XY ({dY }) = |XY ({dY })| = N . Make sure, that
N ∈ N \ {0}.

• XY ({dY })= {y1, y2, . . . , yN}. Make sure, that all these yjs are
distinct. Then, if not already sorted, then rearrange them, so
that

a = min
XY ({dY })

yj = y1 < y2 < . . . < yN = max
XY ({dY })

yj = b

• Only if N ≥ 2, then input Mean = µ
(1)
Y and make sure that

y1 < µ
(1)
Y < yN

• Only if N ≥ 3, then input Variance = σ2
Y and make sure that

0 < σ2
Y < (µ

(1)
Y − a)(b − µ

(1)
Y ).

The user is given a choice to give the second moment µ
(2)
Y of the

probability distribution instead of the variance σ2
Y = µ

(2)
Y −(µ

(1)
Y )2,

if he wishes. In that case, the user has to make sure, that
(
µ

(1)
Y

)2

< µ
(2)
Y < (a + b)µ

(1)
Y − ab and then compute σ2

Y
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2. Linear transformation for N ≥ 2 only: xi = yi−a

b−a
, such that

• fX|{d}(xj) = fY |{dY }(yj)

• fX|{d}(xj) = e
βxj+γx2

j

N∑
j=1

e
βxj+γx2

j

• fY |{dY }(yj) = e
β

(
yj−a

b−a

)
+γ

(
yj−a

b−a

)2

N∑
j=1

e
β

(
yj−a

b−a

)
+γ

(
yj−a

b−a

)2 = fX|{d}(xj)

• 0 = x1 < x2 < x3 < . . . < xN = 1

• µ∗
1 =

µ
(1)
Y

−a

b−a

• µ∗
2 = µ∗

1
2 +

σ2
Y

(b−a)2

3. Execution for N ∈ {1, 2, 3} only: These are the special cases, which
are handled without any numerical methods:

(a) Subcase 1: N = 1

This is the case for a degenerated probability distribution, where
the inputs of both Mean and Variance are not allowable. In this
case, we simply have fY |{dY }(y1) = 1.

(b) Subcase 2: N = 2

This is the case for a two- point probability distribution, where
the input of the Mean is allowable, but the input of the Variance
is not allowable. In this case, a = y1 and b = y2 and hence

fY |{dY }(yj) = (1 − µ∗
1)e

−
(

log

(
1

µ∗
1
−1

))(
yj−a

b−a

)

(j = 1, 2)

(c) Subcase 3: N = 3

This is the case for a three- point probability distribution, where
the inputs of both Mean and Variance are allowable. In this case,
a = y1 and b = y3. However, the input Variance cannot be chosen
arbitrarily small.

In this case, at first the following system of equations is solved for
p1, p2 and p3, by keeping x1 = 0, x2 = x̂, x3 = 1 in mind:
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1 = p1 + p2 + p3

µ∗
1 = x1p1 + x2p2 + x3p3 = x̂p2 + p3

µ∗
2 = x2

1p1 + x2
2p2 + x2

3p3 = x̂2p2 + p3

and only the feasible solution, i.e. p1 > 0, p2 > 0 and p3 > 0 is
taken. If a feasible solution does not exist, then µ∗

2 is increased
till the feasibility of the solution is marginally reached.

After this, the values of α∗, β∗ and γ∗ are computed as follows:

• α∗ = log(p1)

• β∗ =
log

(
p2
p1

)
−x̂2 log

(
p3
p1

)

x̂(1−x̂)

• γ∗ =
x̂ log

(
p3
p1

)
−log

(
p2
p1

)

x̂(1−x̂)

and thereby giving the required probability distribution as

fY |{dY } = e
α∗+β∗

(
yj−a

b−a

)
+γ∗

(
yj−a

b−a

)2

, (j = 1, 2, 3)

4. Numerical execution for N > 3 only: Let (β∗, γ∗) be the solution
of the following system of simultaneous equations in β and γ:





µ∗
1 =

N∑
j=1

xje
βxj+γx2

j

N∑
j=1

e
βxj+γx2

j

µ∗
2 =

N∑
j=1

x2
je

βxj+γx2
j

N∑
j=1

e
βxj+γx2

j

(12.122)

which signifies λ(dY ) = (λ1(dY ), λ2(dY )) =
(

β∗(b−a)−2aγ∗

(b−a)2
, γ∗

(b−a)2

)
.

Now, for the purpose of getting (β∗, γ∗) with subject to the minimiza-
tion of the running time of the program, we shall have to go through
the following steps where different cases are handled sequentially, rather
than designing a generalized algorithm for finding a solution to (12.122)
without any consideration for the special cases:
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(a) case 1 (Uniformity may hold): If the following two relations
hold

µ∗
1 =

1

N

N∑

j=1

xj (12.123)

µ∗
2 =

1

N

N∑

j=1

x2
j (12.124)

then β∗ = 0 and γ∗ = 0 and the probability distribution of Y is
a discrete uniform distribution, whose probability mass function
fY |{dY }(yj), j = 1, 2, . . . , N as the final result is given as

fY |{dY }(yj) =
1

N
(j = 1, 2, . . . , N) (12.125)

after which the further execution of the program has to be stopped.
Otherwise, if this is not the case, then proceed to the next case

(b) case 2 (Monotonicity may hold): At first, solve the following
equation in β numerically

µ∗
1 =

N∑
j=1

xje
βxj

N∑
j=1

eβxj

and let β0 be it’s solution. This β0 is determined by rewriting
the above equation exactly in the same way as (12.116) and then
solving it by the procedure (12.36) as described before. Then, if
the following

µ∗
2 =

N∑
j=1

x2
je

β0xj

N∑
j=1

eβ0xj

(12.126)

holds true, then β∗ = β0 and γ∗ = 0 and the probability distribu-
tion of Y is a discrete MEP - monotonic probability distribution,
whose probability mass function fY |{dY }(yj), j = 1, 2, . . . , N as the
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final result is given as

fY |{dY }(yj) =
eβ0(

yj
b−a)

N∑
j=1

eβ0(
yj

b−a)
(j = 1, 2, . . . , N) (12.127)

after which the further execution of the program has to be stopped.
Otherwise, if this is not the case, then proceed to the next case

(c) case 3 (Probability distribution with a small variance):
With subject to a given approximating condition, when the given
variance σ2

Y is treated to be small enough with respect to the

given value of mean µ
(1)
Y , the probability distribution of Y is ap-

proximated to the truncated discrete normal distribution whose
mean and variance are approximately µ

(1)
Y and σ2

Y respectively,
the probability mass function being

fY |{dY }(yj) =
e
− 1

2

(
yj−µ

(1)
Y

σY

)2

N∑
j=1

e
− 1

2

(
yj−µ

(1)
Y

σY

)2 (j = 1, 2, . . . , N) (12.128)

If the approximating condition holds, then stop the further execu-
tion of the program at this point, giving the final result (12.128).
Otherwise, proceed to the next case.

The details of achieving this approximated probability distribution
are given in one of the following subsequent subsections.

(d) case 4 (None of the above cases): Lastly, if none of the above
is the case, then solve the system of the given simultaneous equa-
tions (12.122) numerically, which corresponds to a general discrete
MEP - uni- extremal probability distribution.

For the purpose of finding the solution (β∗, γ∗) of (12.122) by
the Newton- Raphson method (described in [36]), a suitable first
approximated solution of (12.122) is absolutely necessary.

However, it has to be pointed out that the solution (β∗, γ∗) does
not exist corresponding to every pair (µ∗

1, µ
∗
2) in cases when µ∗

2 is
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too close to µ∗
1
2. In such cases, the program attempts to give the

solution (β∗, γ∗) corresponding to the smallest possible µ̃2 ≥ µ∗
2.

The details of solving this general case are discussed in one of the
following subsequent subsections.

The final results of all the cases are summarized in the following step.

5. Final result for the user:

fY |{dY }(yj)

=





1 : N = 1

(1 − µ∗
1)e

−
(

log

(
1

µ∗
1
−1

))(
yj−a

b−a

)

: N = 2

e
α̃+β̃

(
yj−a

b−a

)
+γ̃

(
yj−a

b−a

)2

: N = 3

1
N

: µ∗
1 =

N∑
j=1

xj

N
, µ∗

2 =

N∑
j=1

x2
j

N
, N > 3

e
β∗(

yj
b−a)

N∑
j=1

e
β∗(

yj
b−a)

:µ∗
1, µ

∗
2 for monotonicity, N > 3

e

− 1
2


 yj−µ

(1)
Y

σY




2

N∑
j=1

e

− 1
2


 yj−µ

(1)
Y

σY




2 :for a small variance, N > 3

e
λ∗
1yj+λ∗

2y2
j

N∑
j=1

e
λ∗
1

yj+λ∗
2

y2
j

: N > 3, the non special case

j = 1, 2, . . . , N

such that in the above stated non special case,

• λ∗
1 = β∗(b−a)−2aγ∗

(b−a)2

• λ∗
2 = γ∗

(b−a)2
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12.6.2 The subroutine for non special uni-extremal cases

The solution of the system of equations (12.122), where X is a discrete ran-
dom variable with the range of variability {x1, x2, . . . , xN}, is identical with
the solution of the system of equations (12.94) for the discrete case. This
justifies the usage of the designed Newton Raphson numerical procedure
(12.115) for the solution of the system (12.122) as well.

Therefore, the non special case algorithm, which aims to solve the system
(12.122) step by step, is described by the following sequential steps:

1. Solve the following equation (in β) by the procedure for the complete
solution (12.36) after resetting the equation into f(β) = 0 form:

µ∗
1 =

N∑
j=1

xje
βxj

N∑
j=1

eβxj

Let the yielded solution be βs

2. By taking the starting vector (β0, γ0) for β0 = βs and γ0 = 0, the
iterative procedure (12.91) is executed for ǫ = 10−10 in a way, that
the simultaneous fulfillment of the convergence conditions described by
(12.101) and (12.102) are examined for κ =0.5 at every iterative step.

If these convergence conditions are fulfilled simultaneously at any such
step, then the iterative procedure must be discontinued after that par-
ticular step immediately. Otherwise the iterative procedure must be
continued as described.

Let the final resulting vector be (β, γ) at the end of this iterative pro-
cedure

3. Using this (β, γ) as the first approximated solution of the system (12.94),
apply the Newton Raphson procedure (12.115) in the following way:

(a) e distance (described in (12.88)) is computed before and after the
execution of the (n + 2)th Newton Raphson procedural step each
time, such that n ∈ N0. Let these two e distances be named
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as e distance previous and e distance current respectively. This
(n + 2)th step corresponds to the computation of the (n + 2)th

approximated solution by the Newton Raphson procedure. If
e distance current ≤ e distance previous then the boolean vari-
able becomes smaller = true, otherwise becomes smaller = false.

(b) The Newton Raphson procedure must be discontinued immedi-
ately, if at least one of the following conditions are violated:

• becomes smaller = true

• e distance current ≥ 10−12

• n < 100000

In this case, ǫ = 10−12. The simultaneous fulfillment of the condi-
tions, namely becomes smaller = true and n < 100000 is equiva-
lent to the programmer-constructed condition additional criteria
(as described in the procedure (12.115) previously).

Let the final resulting vector be (β, γ) at the end of this Newton Raph-
son procedure

4. If e distance > 10−10 still happens to be true corresponding to (β, γ),
then the iterative procedure (12.91) corresponding to the starting vec-
tor (β, γ) is executed once again for ǫ = 10−10 and for at most 100000
iterations.

Let the final resulting vector be (β, γ) at the end of this iterative pro-
cedure

5. If e distance > 10−10 still happens to be true corresponding to (β, γ),
then by using this (β, γ) as the first approximated solution of the system
(12.94), apply the Newton Raphson procedure (12.115) once again.
The execution of this procedure is continued, till one of the following
situations is reached:

• e distance < 10−10 is reached corresponding to the current values
of β and γ at a particular procedural step

• number of procedural steps reaches 10000

In this case, ǫ = 10−12 and n < 10000 is taken to be the condition
additional criteria.
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Additionally, throughout the entire Newton Raphson procedure, that
particular intermediate vector (β, γ) is taken as the final resulting vec-
tor, corresponding to which the e distance is minimum. Let such (β, γ)
be (β∗, γ∗).

At this juncture, there are two possibilities, namely

• e distance < 10−10 is reached: This means (β∗, γ∗) is the desired
solution of (12.122).

• e distance ≥ 10−10 holds still: This means (β∗, γ∗) is not the
desired solution of (12.122) and in other words, the solution of
(12.122) does not exist in this case.

Evidently, (β∗, γ∗) is the solution of the following system:





µ∗
1 =

N∑
j=1

xje
βxj+γx2

j

N∑
j=1

e
βxj+γx2

j

µ̃2 =

N∑
j=1

x2
je

βxj+γx2
j

N∑
j=1

e
βxj+γx2

j

such that µ̃2 > µ∗
2 and µ̃2 is a computed value of the second

moment of X.

Thus, the computed (β∗, γ∗) 1 in the final step is either the desired solution of
(12.122) or a possible utilizable value of the desired vector for the construction
of our probability distribution of X.

Whence, by using (6.75) too, fY |{dY }(yj) is finally expressed as

fY |{dY }(yj) =
e

β∗
(

yj−a

b−a

)
+γ∗

(
yj−a

b−a

)2

N∑
j=1

e
β∗

(
yj−a

b−a

)
+γ∗

(
yj−a

b−a

)2
=

K

σY

√
2π

e
λ̂
(

yj−M

σY

)2

, j = 1, 2, . . . , N

(12.129)

1The difference between µ̃2 and µ∗
2 says that the numerical solution of (12.122) does

not exist and this is beyond programmer’s control. However, µ̃2 is sometimes the
smallest possible value of the second moment of X
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12.7 Determination of a continuous uni-extremal

probability distribution

12.7.1 Algorithmic steps

A point of the ignorance space DY is represented as dY = (µ
(1)
Y , µ

(2)
Y ). The

range of variability XY ({dY }) of the random variable Y |{dY } is a closed and
bounded real interval. With this, the necessary steps for the computation of
the probability distribution are:

1. Input of data and it’s compatibility:

• XY ({dY }) = {y|a ≤ y ≤ b}. Make sure, that a < b

• Mean = µ
(1)
Y . Make sure, that a < µ

(1)
Y < b

• Variance = σ2
Y . Make sure, that 0 < σ2

Y < (µ
(1)
Y −a)(b−µ

(1)
Y ). The

user is given a choice to give the second moment (µ
(2)
Y ) of the prob-

ability distribution instead of the variance (σ2
Y ), if he wishes. In

that case, the user has to make sure, that
(µ

(1)
Y )2 < µ

(2)
Y < (a + b)µ

(1)
Y − ab and only after that compute

σ2
Y = µ

(2)
Y − (µ

(1)
Y )2

2. Linear transformation: x = y−a

b−a
, such that

• fX|{d}(x) = (b − a)fY |{dY }(y) = eβx+γx2

1∫
0

eβx+γx2
dx

• x ∈ [0, 1]

• µ∗
1 =

µ
(1)
Y

−a

b−a

• µ∗
2 = µ∗

1
2 +

σ2
Y

(b−a)2

3. Execution: Let (β∗, γ∗) be the solution of the following system of
simultaneous equations in β and γ:





µ∗
1 =

1∫
0

xeβx+γx2
dx

1∫
0

eβx+γx2
dx

µ∗
2 =

1∫
0

x2eβx+γx2
dx

1∫
0

eβx+γx2
dx

(12.130)
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which signifies λ(dY ) = (λ1(dY ), λ2(dY )) =
(

β∗(b−a)−2aγ∗

(b−a)2
, γ∗

(b−a)2

)
.

Now, for the purpose of getting (β∗, γ∗) with subject to the minimiza-
tion of the running time of the program, we shall have to go through
the following steps where different cases are handled sequentially, rather
than designing a generalized algorithm for finding a solution to (12.130)
without any consideration for the special cases:

(a) case 1 (µ∗
1 = 0.5, µ∗

2 = 1
3
): β∗ = 0, γ∗ = 0. The probability

distribution of Y is the continuous uniform distribution, whose
probability density function fY |{dY }(y), a ≤ y ≤ b as the final
result is given as

fY |{dY }(y) =
1

b − a
, a ≤ y ≤ b (12.131)

after which the further execution of the program has to be stopped.
Otherwise, if this is not the case, then proceed to the next case

(b) case 2 (µ∗
1 = 0.5, µ∗

2 6= 1
3
): β∗ = −γ∗ is the solution of the

following equation in β

µ∗
2 +

1

2β




1
1∫
0

eβt(1−t)dt

− 1


 = 0.25 (12.132)

which is the result of the usage of (12.109). β∗ can be easily
determined by means of the numerical procedure (12.36). The
probability distribution of Y is a symmetric continuous MEP -
uni- extremal probability distribution, whose probability density
function fY |{dY }(y), a ≤ y ≤ b as the final result is given as

fY |{dY }(y) =
e

β∗(y−a)(b−y)

(b−a)2

(b − a)
1∫
0

eβ∗t(1−t)dt

, a ≤ y ≤ b (12.133)

after which the further execution of the program has to be stopped.
Otherwise, if this is not the case, then proceed to the next case.
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(c) case 3 (µ∗
1 6= 0.5 and the monotonicity may hold): At first,

solve the following equation in β numerically

µ∗
1 = 1 +

1

eβ − 1
− 1

β

and let β0 be it’s solution. This β0 is determined exactly in
the identical manner as the equation (12.117) was rewritten in
the form of (12.120) and then solved by means of the procedure
(12.36). Then, if the following holds true

µ∗
2 =

2(eβ0 − 1) − β0(2 − β0)e
β0

β2
0(e

β0 − 1)
(12.134)

then by using (12.106), we conclude β∗ = β0 and γ∗ = 0. The
probability distribution of Y is a continuous MEP - monotonic
probability distribution, whose probability density function
fY |{dY }(y), a ≤ y ≤ b as the final result is given as

fY |{dY }(y) =
β0e

( β0
b−a)y

(b − a) (eβ0 − 1) e
aβ0
b−a

a ≤ y ≤ b (12.135)

after which the further execution of the program has to be stopped.
Otherwise, if this is not the case, then proceed to the next case.

(d) case 4 (Probability distribution with a small variance):
With subject to a given approximating condition, when the given
variance σ2

Y is treated to be small enough with respect to the given

value of mean µ
(1)
Y , the probability distribution of Y is approxi-

mated to the truncated normal distribution whose mean and vari-

ance are approximately µ
(1)
Y and σ2

Y respectively. By µ∗
1 =

µ
(1)
Y

−a

b−a

and σ = σY

b−a
, the probability density function is given as

fY |{dY }(y) =
1

(b − a)
∫ 1

0
e
− 1

2

(
x−µ∗

1
σ

)2

dx

e
− 1

2

(
y−µ

(1)
Y

σY

)2

, a ≤ y ≤ b

(12.136)

If the approximating condition holds, then stop the further ex-
ecution of the program at this point, giving the result (12.136).
Otherwise, proceed to the next case.
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The details of achieving this approximated probability distribution
are given in one of the following subsequent subsections.

(e) case 5 (None of the above cases): Lastly, if none of the above is
the case, then solve the system of the given simultaneous equations
(12.130) numerically, which corresponds to a general continuous
MEP - uni- extremal probability distribution.

For the purpose of finding the solution (β∗, γ∗) of (12.130) by
the Newton- Raphson method (described in [36]), a suitable first
approximated solution of (12.130) is absolutely necessary.

The details of solving this general case are discussed in the subse-
quent subsections.

The final results of all the cases are summarized in the following step.

4. Final result for the user:

fY |{dY }(y) =





1
b−a

: µ∗
1 = 0.5, µ∗

2 = 1
3

e

β∗(y−a)(b−y)

(b−a)2

(b−a)
1∫
0

eβ∗t(1−t)dt

: µ∗
1 = 0.5, µ∗

2 6= 1
3

β∗e

(
β∗

b−a

)
y

(b−a)(eβ∗−1)e
aβ∗

b−a

:µ∗
1, µ

∗
2 for monotonicity

e

− 1
2


 y−µ

(1)
Y

σ
(1)
Y




2

(b−a)
∫ 1
0 e

− 1
2

(
x−µ∗

1
σ

)2

dx

:for a small variance

1
b−a

exp
(
β∗( y−a

b−a )+γ∗( y−a
b−a )

2
)

1∫
0

eβ∗t+γ∗t2dt

: the non special case

(12.137)
a ≤ y ≤ b
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12.7.2 The input- and the solution space

As we have already discussed in the subsection of algorithmic steps, the first
two moments of the desired minimum information probability distribution
are given as inputs. Effectively, the first two moments as inputs necessary
for the numerical solution of the system (12.130) are µ∗

1 and µ∗
2 respectively.

Only on finding the numerical solution of the system (12.130), our primary
objective of determining the desired minimum information probability dis-
tribution will be served. On the other hand, any numerical solution to the
given system of simultaneous equations necessitates the complete knowledge
of

• the input space, which consists of all possible pairs (µ∗
1, µ

∗
2), for which

the aforesaid numerical solutions do exist

• the solution space, which consists of the possible solutions achievable
as a result of inputs belonging to the input space

Since the uniqueness of the solution of (6.8) has already been established, the
unique solution of (12.130) will be (β∗, γ∗) corresponding to the given input

(µ∗
1, µ

∗
2). This means, by the definitions of µ

(β,γ)
1 (from 12.85) and µ

(β,γ)
2 (from

12.86), we have µ
(β∗,γ∗)
1 = µ∗

1 and µ
(β∗,γ∗)
2 = µ∗

2. It is also known, that for
every µ∗

1, we must have 0 < µ∗
1 < 1 and for that,

• µ∗
1
2 < µ∗

2 < µ∗
1 and

• −∞ < β∗ < ∞ & −∞ < γ∗ < ∞

which means, that

• the input space symbolized by Rµ∗
1,µ∗

2
, the geometrical figure of which

is given in the section 5.10, is an open and bounded set, which is geo-
metrically represented by a finite area on the following two dimensional
µ1 −µ2 plane, such that µ1 stands for µ∗

1 on the horizontal axis and µ2

stands for µ∗
2 on the vertical axis.

This finite area containing all the possible input points is fully contained
in the square on the µ1−µ2 plane described by the corner points (0,0),
(1,0), (1,1) and (0,1)
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Figure 12.2: µ1 against µ2

• the solution space symbolized by S(β∗,γ∗) is an open and unbounded
set, which can be geometrically represented by a two dimensional β−γ
plane, where β stands for β∗ on the horizontal axis and γ stands for γ∗

on the vertical axis, such that (β∗, γ∗) ∈ R
2

In the above figure, the curved line joining the points (0,0) and (1,1),
which lies between the straight line segment ”µ2 = µ1” and the parabolic
arc ”µ2

2 = µ1”, represents the relationship between µ1 and µ2 in cases,
where γ = 0

Our imminent discussions will be based on the fact, that every user-given
input (µ∗

1, µ
∗
2) in the input space has an unique solution (β∗, γ∗) as it’s image

in the solution space.

12.7.3 Characteristics of the outputs with respect to
the inputs

The inputs are basically the first two user-given moments, namely µ∗
1 and µ∗

2,
whereas the outputs meant for the determination of the desired probability
distribution are basically β∗ and γ∗.

The solution (β∗, γ∗) of the system (12.130) can only be achieved by choosing
a suitable first approximated solution (β0, γ0) of (12.130) meant for the New-
ton Raphson numerical procedure at first. The choice of a suitable (β0, γ0)
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becomes extremely decisive in most of the cases. Though the Newton Raph-
son procedure is extremely robust, a wrong choice of (β0, γ0) may lead to a
hopeless malfunctioning of this numerical procedure.

Before we go for the procedures for finding a (β0, γ0) and judge it’s suit-
ability, we shall have a look at certain important characteristics of the sys-
tem (12.130). For this, we consider a two dimensional γ − µ2 curve, where

µ2 = µ
(β,γ)
2 (on the vertical axis) is plotted against γ (on the horizontal axis)

for a fixed value of µ
(β,γ)
1 = µ∗

1. The fixed value of µ∗
1 (0 < µ∗

1 < 1) determines
the value of β for a given value of γ uniquely.

A γ−µ2 curve for any fixed value of µ
(β,γ)
1 = µ∗

1 clearly shows, that there are
two points of inflection on it. For the sake of clarification of the same, let us
take an example of the γ − µ2 curve for µ∗

1 = 0.525

Figure 12.3: γ against µ2

The horizontal lines µ2 = 0.525 and µ2 = 0.5252 = 0.275625 in the above
figure are the asymptotes of the curve.

The figure clearly shows, that the two points of inflection, namely one for
γ > 0 called the upper point of inflection and the other for γ < 0 called the
lower point of inflection, play a predominant role in the determination of the
rate of change of µ2 with respect to γ in different sections of the curve. There
are three such sections, which we shall discuss right now.

Generally, for every µ∗
1 (0 < µ∗

1 < 1), if the upper and the lower points of
inflection are symbolized by (γlow, µ2low) and (γupp, µ2upp) respectively, then
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we arrive at the following characteristics

• within the range of µ2 > µ2upp, γ tends to ∞ rapidly with the increase
in µ2. In fact, γ → ∞ for µ2 → µ∗

1

• within the range of µ2 < µ2low, γ tends to −∞ rapidly with the decrease
in µ2. In fact,γ → −∞ for µ2 → µ∗

1
2

• within the range of µ2low ≤ µ2 ≤ µ2upp, γ changes slowly

Analytically, for a given µ∗
1, γupp and γlow are the roots of the following

equation
d2

dγ2

{
µ

(β,γ)
2

}
= 0 (12.138)

such that β is a function of γ and is connected by µ
(β,γ)
1 = µ∗

1 implicitly.

It can be easily seen, that the computations of γupp and γlow require numerical
differentiation, which involves a good amount of numerical work. Only if the
following sufficient conditions

d3

dγ3

{
µ

(β,γ)
2

}∣∣∣∣
β=βupp,γ=γupp

6= 0 (12.139)

d3

dγ3

{
µ

(β,γ)
2

}∣∣∣∣
β=βlow,γ=γlow

6= 0 (12.140)

hold such that
µ

(βupp,γupp)
1 = µ

(βlow,γlow)
1 = µ∗

1 (12.141)

then we can compute

µ2upp = µ
(βupp,γupp)
2 & µ2low = µ

(βlow,γlow)
2 (12.142)

For our work, the exact numerical computations of (γlow, µ2low) and (γupp, µ2upp)
are not really necessary, though rough estimations of the same would always
be of a big guidance for the programmers, as far as the choice of a suitable
(β0, γ0) for a given (µ∗

1, µ
∗
2) is concerned.

This is to say, that, if µ∗
2 > µ2upp or µ∗

2 < µ2low, then the choice of (β0, γ0)
needs to be handled carefully, otherwise the Newton Raphson procedure can-
not be successfully executed. This is simply because, within these ranges of
µ∗

2, the variability range of γ0 is expectedly big.
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However, in certain cases of µ∗
2 < µ2low, if the the variance σ2 = µ∗

2 − µ∗
1
2

fulfills the following condition

σ <
µD

ℓ
, µD = min{µ∗

1, 1 − µ∗
1} (12.143)

which means

µ∗
2 < µ∗

1
2

(
1 +

1

ℓ2

)
, if µ∗

1 ≤ 0.5 (12.144)

µ∗
2 < µ∗

1
2

(
1 +

1

ℓ2

)
+

1 − 2µ∗
1

ℓ2
, if µ∗

1 > 0.5 (12.145)

then no choice of (β0, γ0) is necessary anymore, since an approximating trun-
cated normal probability distribution for a small variance (as already dis-
cussed in one of the preceding subsections) will be the final result for the
user.

But, if µ2low ≤ µ∗
2 ≤ µ2upp, then the choice of a suitable (β0, γ0) is relatively

simple and the Newton Raphson procedure takes only seconds to compute
the final (β∗, γ∗).

Lastly, it must be unforgettably stated, that for any fixed value of µ
(β,γ)
1 = µ∗

1,
the following holds: β → ±∞ ⇔ γ → ∓∞. This fact has already been
established by dβ

dγ
< 0 for a fixed µ1 in (6.25).

12.7.4 An useful transformation Z = 1 − X

My programming trials have shown, that in certain sectional areas of Rµ∗
1,µ∗

2
,

the user-given input (µ∗
1, µ

∗
2) cannot be processed or processed very easily

by the program to give the final (β∗, γ∗). This very problem mainly exists,
when the variance σ2 = µ∗

2 −µ∗
1
2 is small but not small enough for truncated

normal approximations in the areas where µ∗
1 exceeds 0.875. Additionally,

even if µ1 ∈ (0.5, 0.875), then the computing speed as a result of this useful
transformation is considerably increased in certain areas.

It has to be clearly noted, that the existence of this problem must also be
adjudged on the basis of the running speed of the program corresponding to
the particular user-given input (µ∗

1, µ
∗
2). With reference to the experienced

computing speeds of the program together with the knowledge of the other
inevitable problems, these sectional areas are enlisted as follows:
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• {(µ∗
1, µ

∗
2) | µ∗

1 > 0.99}

• {(µ∗
1, µ

∗
2) | 0.5 < µ∗

1 < 0.875 , σ2 < 0.04}

• {(µ∗
1, µ

∗
2) | 0.875 ≤ µ∗

1 ≤ 0.99 , σ2 < 0.00128}

• {(µ∗
1, µ

∗
2) | 0.95 < µ∗

1 < 0.975 , 0.9025 < µ∗
2 < 0.9628125}

• {(µ∗
1, µ

∗
2) | 0.975 < µ∗

1 < 0.99 , 0.950625 < µ∗
2 < 0.98505}

(12.146)

In such cases, if the random variable X is transformed to the random variable
Z = 1 − X, such that

• E[X] = µ∗
1 and

• E[X2] = µ∗
2 & V ar[X] = µ∗

2 − µ∗
1
2,

we must have

• E[Z] = 1 − µ∗
1 and

• E[Z2] = 1 − 2µ∗
1 + µ∗

2 & V ar[Z] = µ∗
2 − µ∗

1
2

The purpose of this transformation is to feed the program with the input
dZ = (1 − µ∗

1, 1 − 2µ∗
1 + µ∗

2) instead of the input d = (µ∗
1, µ

∗
2). That is, the

program uses the first two moments of the random variable Z instead of
the same of the random variable X, but achieve exactly the desired output
(β∗, γ∗) finally.

Experimentally it has been found, that this transformation is not necessary
or rather harmful in the rest of the areas of Rµ∗

1,µ∗
2
.

Now, our objective in this subsection will be to derive the theory of this
transformation, with the help of which our program shall be developed for
the aforesaid affected subareas of Rµ∗

1,µ∗
2
.

The probability density functions of X and Z, which are fX|{d}(x), 0 ≤ x ≤ 1
and fZ|{dZ}(z), 0 ≤ z ≤ 1 respectively, are given as

fX|{d}(x) = B∗eβ∗x+γ∗x2

, 0 ≤ x ≤ 1 (12.147)

fZ|{dZ}(z) = B∗eβ∗z+γ∗z2

, 0 ≤ z ≤ 1 (12.148)
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which leads us to the following

B∗ =
1

1∫
0

eβ∗x+γ∗x2dx

& B∗ =
1

1∫
0

eβ∗x+γ∗x2dx

(12.149)

fZ|{dZ}(z) = fX|{d}(x)

∣∣∣∣
dx

dz

∣∣∣∣ = fX|{d}(x) (12.150)

Therefore, the program, which accepts (1 − µ∗
1, 1 − 2µ∗

1 + µ∗
2) as the input,

gives (β∗, γ∗) as the output. In other words, the program solves the following
equation at first:





1∫
0

xeβx+γx2
dx

1∫
0

eβx+γx2
dx

= 1 − µ∗
1

1∫
0

x2eβx+γx2
dx

1∫
0

eβx+γx2
dx

= 1 − 2µ∗
1 + µ∗

2

(12.151)

and gives (β∗, γ∗) as the solution of the same. Only after this, (β∗, γ∗), which
is the solution of (12.130), is given as the final output by the procedure of
the reverse transformation described by X = 1 − Z.

Hence, in order to find the theoretical rule for this reverse transformation,
our aim will be to derive the expressions of β∗, γ∗ and B∗ in terms of the
known values of β∗, γ∗ and B∗ yielded by the program.

By using (12.150), we get

B∗eβ∗z+γ∗z2

= B∗eβ∗x+γ∗x2

= B∗eβ∗(1−z)+γ∗(1−z)2

= B∗eβ∗+γ∗−(β∗+2γ∗)z+γ∗z2

= B∗eβ∗+γ∗

e−(β∗+2γ∗)z+γ∗z2

(12.152)

and therefore by comparing the coefficients of z on both the sides of the
above relation, we get

B∗ = B∗eβ∗+γ∗

β∗ = −(β∗ + 2γ∗)

γ∗ = γ∗
(12.153)
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which gives in turn

B∗ = B∗eβ∗+γ∗

β∗ = −(β∗ + 2γ∗)

γ∗ = γ∗

(12.154)

Formally, in order to cover the possibilities of overflow errors, B∗ is computed
by the following rule

B∗ =





B∗eβ∗+γ∗
: β∗ + γ∗ < 709

1
1∫
0

eβ∗(x−1)+γ∗(x2−1)dx

: β∗ + γ∗ ≥ 709

Whence, (12.154) gives us our desired solution (β∗, γ∗) and subsequently the
desired probability distribution fX|{d}(x), 0 ≤ x ≤ 1.
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12.7.5 The data structure

A data access is absolutely necessary for the computation of the start vector
(β0, γ0) for an user-given input (µ∗

1, µ
∗
2) in cases, when 0.01 ≤ µ∗

1 ≤ 0.99 and
the condition (11.29) is not fulfilled. This means, if

(µ∗
1, µ

∗
2) ∈

{
(µ1, µ2) | 0.01 ≤ µ1 ≤ 0.99 , µ2 ≥ µ2

1 +
min{µ1, 1 − µ1}

ℓ

}

(12.155)
then the subroutine of the program, which computes the solution (β∗, γ∗) in
these cases, needs to access a programmer generated data.

It must be unforgettably stated, that ℓ does not have a fixed value, but varies
with different ranges of µ∗

1. These different values of ℓ are carefully chosen
to make sure, that the best possible results could be yielded. These values
of ℓ shall be given in due course.

Our database2 consists of about twenty-six thousand records. Each record
contains four fields (columns), namely γ, β, µ

(β,γ)
1 and µ

(β,γ)
2 , the symbols

of which have their usual meanings. In this very context, accessing the
database means, that the subroutine accesses records ,with subject to certain
programmer specified access rules. These records (four, two or one at a time,
as the case maybe) shall be accessed by our software program.

Corresponding to certain specified values of µ
(β,γ)
1 = µ1, i.e.

µ1 ∈ mepcategory = {0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05,

0.055, 0.06, 0.065, 0.07, 0.075, 0.08, 0.085, 0.09, 0.095,

0.1, 0.125, 0.15, 0.175, 0.2, 0.225, 0.25, 0.275, 0.3,

0.325, 0.35, 0.375, 0.4, 0.425, 0.45, 0.475, 0.5

0.525, 0.55, 0.575, 0.6, 0.625, 0.65, 0.675, 0.7

0.725, 0.75, 0.775, 0.8, 0.825, 0.85, 0.875, 0.9,

0.925, 0.95, 0.975, 0.99}

the records contained in the entire database are divided into several categories
in a way, that each category Cµ1 is keyed by µ1, ie. one of the values of

2In our context, database means the complete set of files containing all the start vectors.
This complete set shall be termed as the complete data or precisely database by us.
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mepcategory. As for example, the category C0.6 is a set of the records given by
the following description:

C0.6 =





(
γ, β, 0.6, µ

(β,γ)
2

)
∣∣∣∣∣∣∣∣∣

1∫
0

xeβx+γx2
dx

1∫
0

eβx+γx2dx

= 0.6 &

1∫
0

x2eβx+γx2
dx

1∫
0

eβx+γx2dx

= µ
(β,γ)
2





It can be easily noted, that there are 55 categories altogether.

Therefore, we symbolize

mep2 =
⋃

µ1∈mepcategory

Cµ1

In the subsequent subsection, we shall discuss about the procedures, by which
mep2 should be accessed (i.e. the procedures for the database access). An
mep2 access gives an access vector (βa, γa), the further processing of which
yields the starting vector (β0, γ0) meant for the Newton Raphson procedure.

12.7.6 Database access procedures for start vectors

Under the assumption, that the database access is necessary corresponding to
the user-given input (µ∗

1, µ
∗
2) with subject to the fulfillment of the condition

(12.155), the mep2 access procedure (which shall be eventually categorized
into certain subcases) has been developed with the reference to the picture
of the bounded input space (figure 12.2).

Within the input space, the user-given (µ∗
1, µ

∗
2) fulfilling (12.155) is enclosed

by a smallest possible quadrilateral PQRS in a way, that the coordinates of
the points P , Q, R and S are the real numbers saved in the third and the
fourth field of some of the chosen available records belonging to mep2.

The quadrilateral 2PQRS is a trapezium, whose the segments SP and QR
parallel to each other. Obviously, the enveloping trapezium 2PQRS is com-
pletely contained in the input space, the picture of whose is given in the
figure 12.4.

It is important to note, that (µ∗
1, µ

∗
2) may be an interior point or a boundary

point (may lie on the segment SP ) of 2PQRS.
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Figure 12.4: Enveloping Trapezium 2PQRS

Now, our immediate problem will be to find out a meaningful procedure of
choosing our 2PQRS, with subject to the user-given input (µ∗

1, µ
∗
2), so that

an useful access vector (βa, γa) can be yielded eventually.

At the very first step, corresponding to the given µ∗
1, two values of the first

moment µ1, namely µ
(Q)
1 , µ

(P )
1 ∈ mepcategory are selected in a way, that

• µ
(Q)
1 = inf

µ1≥µ∗
1

µ1

• µ
(P )
1 = sup

µ1≤µ∗
1

µ1



12.7. CONTINUOUS UNI-EXTREMAL PROBABILITY DISTRIBUTION549

Here, two possible cases do arise, namely µ
(Q)
1 = µ

(P )
1 or µ

(Q)
1 > µ

(P )
1 :

1. µ
(Q)
1 = µ

(P )
1

This means, µ
(Q)
1 = µ

(P )
1 = µ∗

1 ∈ mepcategory. In the next step of

this case, select two records (γ(S), β(S), µ∗
1, µ

(S)
2 ) and (γ(P ), β(P ), µ∗

1, µ
(P )
2 )

from Cµ∗
1

in a way, that

• µ
(S)
2 = inf

µ2≥µ∗
2

µ2

• µ
(P )
2 = sup

µ2≤µ∗
2

µ2

Again, this very case must be necessarily subdivided into two subcases,
namely µ

(S)
2 = µ

(P )
2 or µ

(S)
2 > µ

(P )
2 :

(a) µ
(S)
2 = µ

(P )
2 : In this case, the records (γ(P ), β(P ), µ∗

1, µ
(P )
2 ) and

(γ(S), β(S), µ∗
1, µ

(S)
2 ) are identical.

Therefore, we simply take βa = β(P ) and γa = γ(P ) and thereby
our access vector will be (βa, γa).

This is the case, where only one record is needed to be accessed
for choosing our access vector, where 2PQRS turns out to be a
single point P

(b) µ
(S)
2 > µ

(P )
2 : In this case, the records (γ(P ), β(P ), µ∗

1, µ
(P )
2 ) and

(γ(S), β(S), µ∗
1, µ

(S)
2 ) are distinct.

Therefore, our access vector will be yielded according to the fol-
lowing rule:

• if (µ
(S)
2 − µ∗

2) ≥ (µ∗
2 − µ

(P )
2 ) then βa = β(P ) and γa = γ(P )

• if (µ
(S)
2 − µ∗

2) < (µ∗
2 − µ

(P )
2 ) then βa = β(S) and γa = γ(S)

This is the case, where only two records are needed to be accessed
for choosing our access vector, where 2PQRS turns out to be a
segment SP parallel to the vertical axis
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2. µ
(Q)
1 > µ

(P )
1

This means, µ∗
1 /∈ mepcategory. In the next step of this case, since it is

clearly known that

• µ
(left)
1 = µ

(P )
1 = µ

(S)
1 and

• µ
(right)
1 = µ

(Q)
1 = µ

(R)
1 ,

the two categories C
µ

(P )
1

and C
µ

(Q)
1

can be presented in the following
way

• C(left) = C
µ

(P )
1

= C
µ

(S)
1

• C(right) = C
µ

(Q)
1

= C
µ

(R)
1

after which two records (γ(left), β(left), µ
(S)
1 , µ

(left,max)
2 ) ∈ C(left) and

(γ(right), β(right), µ
(Q)
1 , µ

(right,min)
2 ) ∈ C(right) are selected in the following

way

• µ
(left,max)
2 = sup

µ1∈C(left)

µ2 and is slightly smaller than µ
(left)
1

• µ
(right,min)
2 = inf

µ1∈C(right)
µ2 and is slightly greater than µ

(right)
1

2

The geometrical view of the input space (figure 12.2) clearly tells us,
that for every chosen (µ∗

1, µ
∗
2),

• µ
(left,max)
2 < sup

µ1∈C(right)

µ2 and

• µ
(right,min)
2 > inf

µ1∈C(left)
µ2

This explains, why we have constructed our 2PQRS (figure 12.4) in a
way, that

• ordinate of S = ordinate of S
′
< ordinate of R

• ordinate of Q = ordinate of Q
′
> ordinate of P

For our further course of discussions, the introduction of a vectorial
rule, named counter clockwise rule, is vitally important.
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This rule determines the position of a point (on a plane) with respect
to a given directed line. This directed line is determined by two points
belonging to it. By position of the point we mean, whether the point is
on the left or on the right side of the directed line or on the line itself:

Assuming that the points A and B have the coordinates (a1, a2) and
(b1, b2) respectively, then the point D : (d1, d2) is said to be on the left

or the right side of the directed line containing
−→
AB according as

CCW (A,B,D) =

∣∣∣∣∣∣

a1 a2 1
b1 b2 1
d1 d2 1

∣∣∣∣∣∣
≷ 0 (12.156)

Additionally, D is said to lie on the directed line containing
−→
AB, if

CCW (A,B,D) = 0

At this point, the coordinates of P , Q, R and S can be chosen to
be (µ

(left)
1 , µ

(P )
2 ), (µ

(right)
1 , µ

(Q)
2 ), (µ

(right)
1 , µ

(R)
2 ) and (µ

(left)
1 , µ

(S)
2 ) respec-

tively, with the help of which a suitable construction of 2PQRS would
be made possible by means of a proper choice of four records, namely
(γ(P ), β(P ), µ

(left)
1 , µ

(P )
2 ), (γ(Q), β(Q), µ

(right)
1 , µ

(Q)
2 ), (γ(R), β(R), µ

(right)
1 , µ

(R)
2 )

and (γ(S), β(S), µ
(left)
1 , µ

(S)
2 ) by database access.

The development of this database access algorithmic rule necessitates
the subdivision of the case (µ

(Q)
1 > µ

(P )
1 ) into three subcases, namely

• µ∗
2 ≤ µ

(right,min)
2

• µ∗
2 ≥ µ

(left,max)
2

• µ
(right,min)
2 < µ∗

2 < µ
(left,max)
2

Before we discuss the above subcases individually, we must keep in
mind, that the quantities, namely µ

(left)
1 , µ

(right)
1 , µ

(left,max)
2 and µ

(right,min)
2

are already known.

Since the selection of the abscissae, namely µ
(left)
1 and µ

(right)
1 of the

points P , Q, R and S has already taken place, only the ordinates of
the same are needed to be suitably chosen. The procedures for the
selection of these ordinates are different in different subcases, which
are discussed step-by-step as follows:
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(a) µ∗
2 ≤ µ

(right,min)
2

• Select the record (γ(Q), β(Q), µ
(right)
1 , µ

(Q)
2 ) ∈ C(right) such that

µ
(Q)
2 = µ

(right,min)
2

The selected record is therefore (γ(Q), β(Q), µ
(right)
1 , µ

(right,min)
2 ),

the coordinates of the point Q being (µ
(right)
1 , µ

(right,min)
2 )

• At first, the selection of a record
(γ(P ), β(P ), µ

(left)
1 , µ

(P )
2 ) ∈ C(left) must be subjected to the fact,

that the point (µ∗
1, µ

∗
2) must lie on the left of the ray

−→
PQ. This

means, by the rule (12.156),

det−−→
PQ

=

∣∣∣∣∣∣

µ
(left)
1 µ

(P )
2 1

µ
(right)
1 µ

(Q)
2 1

µ∗
1 µ∗

2 1

∣∣∣∣∣∣
> 0 (12.157)

⇔
∣∣∣∣∣

µ
(left)
1 − µ∗

1 µ
(P )
1 − µ∗

2

µ
(right)
1 − µ∗

1 µ
(Q)
1 − µ∗

2

∣∣∣∣∣ > 0

⇔ (µ
(left)
1 − µ∗

1)(µ
(Q)
2 − µ∗

2) > (µ
(right)
1 − µ∗

1)(µ
(P )
2 − µ∗

2)

⇔ µ
(P )
2 < µ∗

2 +
(µ

(left)
1 − µ∗

1)(µ
(Q)
2 − µ∗

2)

µ
(right)
1 − µ∗

1

= µ2 (12.158)

with subject to the fact, that µ
(right)
1 > µ∗

1.

The selected record is therefore (γ(P ), β(P ), µ
(left)
1 , µ

(P )
2 ), such

that
µ

(P )
2 = sup

µ2< µ2

µ2 = sup
det−−→

PQ
> 0

µ2,

the coordinates of the point P being (µ
(left)
1 , sup

det−−→
PQ

> 0
µ2)

• Select the record (γ(R), β(R), µ
(right)
1 , µ

(R)
2 ) ∈ C(right) such that

µ
(R)
2 = inf

µ2>µ
(Q)
2

µ2

The selected record is therefore (γ(R), β(R), µ
(right)
1 , inf

µ2>µ
(Q)
2

µ2),

the coordinates of the point R being (µ
(right)
1 , inf

µ2>µ
(Q)
2

µ2)
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• Select the record (γ(S), β(S), µ
(left)
1 , µ

(S)
2 ) ∈ C(left) such that

µ
(S)
2 = inf

µ2>µ∗
2

µ2

The selected record is therefore (γ(S), β(S), µ
(left)
1 , inf

µ2>µ∗
2

µ2),

the coordinates of the point S being (µ
(left)
1 , inf

µ2>µ∗
2

µ2)

This completes the construction of 2PQRS in case of µ∗
2 ≤ µ

(right,min)
2

(b) µ∗
2 ≥ µ

(left,max)
2

• Select the record (γ(S), β(S), µ
(left)
1 , µ

(S)
2 ) ∈ C(left) such that

µ
(S)
2 = µ

(left,max)
2

The selected record is therefore (γ(S), β(S), µ
(left)
1 , µ

(left,max)
2 ),

the coordinates of the point S being (µ
(left)
1 , µ

(left,max)
2 )

• At first, the selection of a record
(γ(R), β(R), µ

(right)
1 , µ

(R)
2 ) ∈ C(right) must be subjected to the

fact, that the point (µ∗
1, µ

∗
2) must lie on the right of the ray−→

SR. This means, by the rule (12.156),

det−→
SR

=

∣∣∣∣∣∣

µ
(left)
1 µ

(S)
2 1

µ
(right)
1 µ

(R)
2 1

µ∗
1 µ∗

2 1

∣∣∣∣∣∣
< 0 (12.159)

⇔
∣∣∣∣∣

µ
(left)
1 − µ∗

1 µ
(S)
1 − µ∗

2

µ
(right)
1 − µ∗

1 µ
(R)
1 − µ∗

2

∣∣∣∣∣ < 0

⇔ (µ
(left)
1 − µ∗

1)(µ
(R)
2 − µ∗

2) < (µ
(right)
1 − µ∗

1)(µ
(S)
2 − µ∗

2)

⇔ µ
(R)
2 > µ∗

2 +
(µ

(right)
1 − µ∗

1)(µ
(S)
2 − µ∗

2)

µ
(left)
1 − µ∗

1

= µ2 (12.160)

with subject to the fact, that µ
(left)
1 < µ∗

1.

The selected record is therefore (γ(R), β(R), µ
(right)
1 , µ

(R)
2 ), such

that
µ

(R)
2 = inf

µ2> µ2

µ2 = inf
det−→

SR
< 0

µ2,

the coordinates of the point R being (µ
(right)
1 , inf

det−→
SR

< 0
µ2)
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• Select the record (γ(P ), β(P ), µ
(left)
1 , µ

(P )
2 ) ∈ C(left) such that

µ
(P )
2 = sup

µ2<µ
(S)
2

µ2

The selected record is therefore (γ(P ), β(P ), µ
(left)
1 , sup

µ2<µ
(S)
2

µ2),

the coordinates of the point P being (µ
(left)
1 , sup

µ2<µ
(S)
2

µ2)

• Select the record (γ(Q), β(Q), µ
(right)
1 , µ

(Q)
2 ) ∈ C(right) such that

µ
(Q)
2 = sup

µ2<µ∗
2

µ2

The selected record is therefore (γ(Q), β(Q), µ
(right)
1 , sup

µ2<µ∗
2

µ2),

the coordinates of the point Q being (µ
(right)
1 , sup

µ2<µ∗
2

µ2)

This completes the construction of 2PQRS in case of µ∗
2 ≥ µ

(left,max)
2

(c) µ
(right,min)
2 < µ∗

2 < µ
(left,max)
2

• Select the record (γ(R), β(R), µ
(right)
1 , µ

(R)
2 ) ∈ C(right) such that

µ
(R)
2 = inf

µ2≥µ∗
2

µ2

The selected record is therefore (γ(R), β(R), µ
(right)
1 , inf

µ2≥µ∗
2

µ2),

the coordinates of the point R being (µ
(right)
1 , inf

µ2≥µ∗
2

µ2)

• Select the record (γ(Q), β(Q), µ
(right)
1 , µ

(Q)
2 ) ∈ C(right) such that

µ
(Q)
2 = sup

µ2≤µ∗
2

µ2

The selected record is therefore (γ(Q), β(Q), µ
(right)
1 , sup

µ2≤µ∗
2

µ2),

the coordinates of the point Q being (µ
(right)
1 , sup

µ2≤µ∗
2

µ2)
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• Select the record (γ(S), β(S), µ
(left)
1 , µ

(S)
2 ) ∈ C(left) such that

µ
(S)
2 = inf

µ2≥µ∗
2

µ2

The selected record is therefore (γ(S), β(S), µ
(left)
1 , inf

µ2≥µ∗
2

µ2),

the coordinates of the point S being (µ
(left)
1 , inf

µ2≥µ∗
2

µ2)

• Select the record (γ(P ), β(P ), µ
(left)
1 , µ

(P )
2 ) ∈ C(left) such that

µ
(P )
2 = sup

µ2≤µ∗
2

µ2

The selected record is therefore (γ(P ), β(P ), µ
(left)
1 , sup

µ2≤µ∗
2

µ2),

the coordinates of the point P being (µ
(left)
1 , sup

µ2≤µ∗
2

µ2)

This completes the construction of 2PQRS in case of
µ

(right,min)
2 < µ∗

2 < µ
(left,max)
2 .

It has to be noted, that in this case, the ordinate of R may be
smaller than or equal to the same of that of S (or S

′
) i.e µ

(R)
2 ≤ µ

(S)
2

and the ordinate of P may be greater than or equal to the same
of that of Q (or Q

′
) i.e µ

(P )
2 ≥ µ

(Q)
2 .

Therefore, the combination of the individual subroutines of the above
three subcases constitute the subroutine of the database access rule for
µ

(right)
1 = µ

(Q)
1 > µ

(P )
1 = µ

(left)
1 .

This completes the selection of the required trapezium 2PQRS for
µ

(Q)
1 > µ

(P )
1 . However, the determination of the access vector, which

still remains pending, can therefore be performed in the next step.

Within the 2PQRS, by using the rule (12.156), the point (µ∗
1, µ

∗
2) lies

• within the triangle ∆SRQ, but not on the segment SQ

• exactly on the segment SQ

• within the triangle ∆SPQ, but not on the segment SQ
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according as

det−→
SQ

= CCW (S,Q, T ) =

∣∣∣∣∣∣

µ
(left)
1 µ

(S)
2 1

µ
(right)
1 µ

(Q)
2 1

µ∗
1 µ∗

2 1

∣∣∣∣∣∣
T 0 (12.161)

where the point T : (µ∗
1, µ

∗
2), which is termed as the target vector in

the input space, has the coordinates (µ∗
1, µ

∗
2).

Again, the procedures for the determination of the access vector (βa, γa)
are different in the different cases, namely

det−→
SQ

T 0

since the 2PQRS is needed to be divided into two triangles, namely
∆SRQ and ∆SPQ.

These procedures are therefore discussed one by one as follows:

Case 1 ((µ∗
1, µ

∗
2) ∈ ∆SRQ \ SQ):

The vector (µ∗
1, µ

∗
2) is expressible as a convex combination of the vectors

S : (µ
(left)
1 , µ

(S)
2 ), R : (µ

(right)
1 , µ

(R)
2 ) and Q : (µ

(right)
1 , µ

(Q)
2 ) in a way, that

(µ∗
1, µ

∗
2) = a1

(
µ

(left)
1 , µ

(S)
2

)
+ a2

(
µ

(right)
1 , µ

(R)
2

)
+ a3

(
µ

(right)
1 , µ

(Q)
2

)

such that (12.162)

a1 + a2 + a3 = 1 and a1, a2, a3 ≥ 0

These non-negative values a1, a2 and a3 can be evaluated by solving the
following system of linear equations by crammer’s rule of determinants

µ
(left)
1 a1 + µ

(right)
1 a2 + µ

(right)
1 a3 = µ∗

1

µ
(S)
2 a1 + µ

(R)
2 a2 + µ

(Q)
2 a3 = µ∗

2

a1 + a2 + a3 = 1

(12.163)

Therefore, with subject to µ
(R)
2 > µ

(Q)
2 and µ

(right)
2 > µ

(left)
2 , we get the
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solution of (12.163) as follows:

a1 =

∣∣∣∣∣∣

µ
(right)
1 µ

(Q)
2 1

µ
(right)
1 µ

(R)
2 1

µ∗
1 µ∗

2 1

∣∣∣∣∣∣
(
µ

(R)
2 − µ

(Q)
2

)(
µ

(right)
1 − µ

(left)
1

) =
CCW (Q,R, T )(

µ
(R)
2 − µ

(Q)
2

)(
µ

(right)
1 − µ

(left)
1

)

> 0, since T is on the left of
−→
QR (12.164)

a2 =

∣∣∣∣∣∣

µ
(left)
1 µ

(S)
2 1

µ
(right)
1 µ

(Q)
2 1

µ∗
1 µ∗

2 1

∣∣∣∣∣∣
(
µ

(R)
2 − µ

(Q)
2

)(
µ

(right)
1 − µ

(left)
1

) =
CCW (S,Q, T )(

µ
(R)
2 − µ

(Q)
2

)(
µ

(right)
1 − µ

(left)
1

)

> 0, since T is on the left of
−→
SQ (12.165)

a3 =

∣∣∣∣∣∣

µ
(right)
1 µ

(R)
2 1

µ
(left)
1 µ

(S)
2 1

µ∗
1 µ∗

2 1

∣∣∣∣∣∣
(
µ

(R)
2 − µ

(Q)
2

)(
µ

(right)
1 − µ

(left)
1

) =
CCW (R,S, T )(

µ
(R)
2 − µ

(Q)
2

)(
µ

(right)
1 − µ

(left)
1

)

≥ 0, since T is on the left of
−→
RS or on RS itself (12.166)

If T is found to lie exactly on RS, it is clear, that RS must be parallel
to the horizontal axis of the input plane, where µ

(R)
2 = µ

(S)
2 .

As a result of the solution of (12.163), by using the selected records
(γ(S),β(S),µ

(left)
1 ,µ

(S)
2 ) , (γ(R),β(R),µ

(right)
1 ,µ

(R)
2 ) and (γ(Q),β(Q),µ

(right)
1 ,µ

(Q)
2 ) the access

vector is given as (βa, γa), such that

βa = a1β
(S) + a2β

(R) + a3β
(Q)

γa = a1γ
(S) + a2γ

(R) + a3γ
(Q) (12.167)
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Case 2 ((µ∗
1, µ

∗
2) ∈ SQ):

The vector (µ∗
1, µ

∗
2) is expressible as a linear combination of the vectors

S : (µ
(left)
1 , µ

(S)
2 ) and Q : (µ

(right)
1 , µ

(Q)
2 ) in the following way

(µ∗
1, µ

∗
2) = a1

(
µ

(left)
1 , µ

(S)
2

)
+ a2

(
µ

(right)
1 , µ

(Q)
2

)
(12.168)

which means
µ

(left)
1 a1 + µ

(right)
1 a2 = µ∗

1

µ
(S)
2 a1 + µ

(Q)
2 a2 = µ∗

2

(12.169)

Here, if µ
(left)
1 µ

(Q)
2 = µ

(right)
1 µ

(S)
2 , then the access vector is given as

(βa, γa), such that

βa =
(
β(S) + β(Q)

)
/2

γa =
(
γ(S) + γ(Q)

)
/2 (12.170)

Otherwise, by

a1 =
µ∗

1µ
(Q)
2 − µ

(right)
1 µ∗

2

µ
(left)
1 µ

(Q)
2 − µ

(right)
1 µ

(S)
2

a2 =
µ

(left)
1 µ∗

2 − µ∗
1µ

(S)
2

µ
(left)
1 µ

(Q)
2 − µ

(right)
1 µ

(S)
2

(12.171)

the access vector is given as (βa, γa), such that

βa = a1β
(S) + a2β

(Q)

γa = a1γ
(S) + a2γ

(Q) (12.172)

Case 3 ((µ∗
1, µ

∗
2) ∈ ∆SPQ \ SQ):

The vector (µ∗
1, µ

∗
2) is expressible as a convex combination of the vectors

S : (µ
(left)
1 , µ

(S)
2 ), P : (µ

(left)
1 , µ

(P )
2 ) and Q : (µ

(right)
1 , µ

(Q)
2 ) in a way, that

(µ∗
1, µ

∗
2) = a1

(
µ

(left)
1 , µ

(S)
2

)
+ a2

(
µ

(left)
1 , µ

(P )
2

)
+ a3

(
µ

(right)
1 , µ

(Q)
2

)

such that (12.173)

a1 + a2 + a3 = 1 and a1, a2, a3 ≥ 0
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These non-negative values a1, a2 and a3 can be evaluated by solving the
following system of linear equations by crammer’s rule of determinants

µ
(left)
1 a1 + µ

(left)
1 a2 + µ

(right)
1 a3 = µ∗

1

µ
(S)
2 a1 + µ

(P )
2 a2 + µ

(Q)
2 a3 = µ∗

2

a1 + a2 + a3 = 1

(12.174)

Therefore, with subject to µ
(S)
2 > µ

(P )
2 and µ

(right)
2 > µ

(left)
2 , we get the

solution of (12.174) as follows:

a1 =

∣∣∣∣∣∣

µ
(left)
1 µ

(P )
2 1

µ
(right)
1 µ

(Q)
2 1

µ∗
1 µ∗

2 1

∣∣∣∣∣∣
(
µ

(S)
2 − µ

(P )
2

) (
µ

(right)
1 − µ

(left)
1

) =
CCW (P,Q, T )(

µ
(S)
2 − µ

(P )
2

) (
µ

(right)
1 − µ

(left)
1

)

≥ 0, since T is on the left of
−→
PQ or on PQ itself (12.175)

a2 =

∣∣∣∣∣∣

µ
(right)
1 µ

(Q)
2 1

µ
(left)
1 µ

(S)
2 1

µ∗
1 µ∗

2 1

∣∣∣∣∣∣
(
µ

(S)
2 − µ

(P )
2

) (
µ

(right)
1 − µ

(left)
1

) =
CCW (Q,S, T )(

µ
(S)
2 − µ

(P )
2

) (
µ

(right)
1 − µ

(left)
1

)

> 0, since T is on the left of
−→
QS (12.176)

a3 =

∣∣∣∣∣∣

µ
(left)
1 µ

(S)
2 1

µ
(left)
1 µ

(P )
2 1

µ∗
1 µ∗

2 1

∣∣∣∣∣∣
(
µ

(S)
2 − µ

(P )
2

) (
µ

(right)
1 − µ

(left)
1

) =
CCW (S, P, T )(

µ
(S)
2 − µ

(P )
2

) (
µ

(right)
1 − µ

(left)
1

)

> 0, since T is on the left of
−→
SP (12.177)

If T is found to lie exactly on PQ, it is clear, that PQ must be parallel
to the horizontal axis of the input plane, where µ

(P )
2 = µ

(Q)
2 .
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As a result of the solution of (12.174), by using the selected records
(γ(S),β(S),µ

(left)
1 ,µ

(S)
2 ) , (γ(P ),β(P ),µ

(left)
1 ,µ

(P )
2 ) and (γ(Q),β(Q),µ

(right)
1 ,µ

(Q)
2 ), the access

vector is given as (βa, γa), such that

βa = a1β
(S) + a2β

(P ) + a3β
(Q)

γa = a1γ
(S) + a2γ

(P ) + a3γ
(Q) (12.178)

Therefore, the consideration of the entire case
(
µ

(Q)
2 > µ

(P )
2

)
comes to

the end, where four records are needed to be accessed for choosing our
access vector

Hence, we have covered both the cases, namely µ
(Q)
2 = µ

(P )
2 and µ

(Q)
2 > µ

(P )
2 ,

where the procedures for yielding the access vector (βa, γa) are different.

The access vector is therefore just the starting point of the ultimate solution
(β∗, γ∗) immediately after the database access. However, the question of it’s
compatibility for the Newton Raphson procedure or even for the iterative
procedure still remains open.

It requires subsequent processing for the sake of the improvement of it’s
compatibility .

12.7.7 Algorithm for subsequent processing of access
vectors

The execution of the subsequent processing of the access vector (βa, γa)

is actually meant for the cases, when µ
(Q)
1 > µ

(P )
1 and at the same time(

(µ∗
1, µ

∗
2) ∈ ∆SRQ \ SQ

)
or

(
(µ∗

1, µ
∗
2) ∈ ∆SPQ \ SQ

)
.

The idea will be to make subsequent individual considerations of the three
smaller triangles having T : (µ∗

1, µ
∗
2) as their common vertex, which came

into being as a result of the subdivision of the triangle ∆SRQ or ∆SPQ
according as T belongs to ∆SRQ \ SQ or ∆SPQ \ SQ.

For the purpose of the algorithmic construction, the relevant points of both
the triangles ∆SRQ and ∆SPQ must necessarily be renamed. That is,
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• in ∆SRQ, the points S, R , Q and T are renamed as A, B , C and D
respectively. The diagrammatic representation of ∆SRQ is given as

Figure 12.5: Renamed ∆SRQ

• in ∆SPQ, the points S, P , Q and T are renamed as A, B , C and D
respectively. The diagrammatic representation of ∆SPQ is given as

Figure 12.6: Renamed ∆SPQ

Till now, in order to yield the access vector (βa, γa), the det−→
SQ

= CCW (S,Q, T )

has already been computed by means of (12.161) in order to reach one of the
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following conclusions: T ∈ ∆SRQ \ SQ or T ∈ ∆SPQ \ SQ according as
det−→

SQ
≷ 0.

Immediately on finding the access vector (βa, γa), as already described in the
previous subsection, the process of renaming the points P , Q, R and S is
carried out in the following way

• if det−→
SQ

> 0, then S, R and Q are renamed as A, B and C respectively
as shown in the figure 12.5

• if det−→
SQ

< 0, then S, P and Q are renamed as A, B and C respectively
as shown in the figure 12.6

After this, the values of µ
(βa,γa)
1 and µ

(βa,γa)
2 , which are subjected to the

definitions given in (12.85) and (12.86) respectively, are computed by means
of (12.107) or (12.110).

Then, it is examined, whether (βa, γa) fulfills both the convergence conditions
(12.101) and (12.102) simultaneously or not. Computations of the moments
of higher orders (up to the moments of sixth order) in this regard are carried
out by means of (12.107) or (12.110) successively. Therefore,

• If these conditions are fulfilled, then the execution of this procedure is
not necessary anymore and the current access vector is forwarded for
the next procedure

• Otherwise, then the execution of this procedure needs to be started by

choosing the point D to be D :
(
µ

(βa,γa)
1 , µ

(βa,γa)
2

)
instead of D : (µ∗

1, µ
∗
2).

This is done by replacing it’s previously defined coordinates by the
newly computed coordinates.

The basic idea of choosing this new D is, that the image of the new

point D :
(
µ

(βa,γa)
1 µ

(βa,γa)
2

)
in the input space, which is (βa, γa) in the

solution space, is known at the very moment.

Of course, our ultimate aim (our aim in the long run) is to determine
the image of (µ∗

1, µ
∗
2) in the solution space.

Before, we proceed further, we initialize our start vector (βs, γs) with the
help of the existing access vector (βa, γa) as
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• βs := βa and γs := γa

Thereafter, the final part of this procedure is programmed within a while
loop, which is broken, if any one of the following situations is reached:

• The start vector (βs, γs) fulfills both the convergence conditions (12.101)
and (12.102) simultaneously at the end of any cycle

• The number of cycles of the while loop exceeds 10

• A given conditional breakage of the loop, if T is found to lie on one of
the segments AD, BD or CD at the end of any cycle

Therefore, keeping in mind, that our start vector (βs, γs), which turns up as
a result of the processing of the access vector feeded to the procedure as the
input, the while loop containing the rest of the desired procedure is described
as

while( none of the above three stated situations are reached )

{

1. Compute CCW (A,D, T ), CCW (B,D, T ) and CCW (C,D, T ) by the
rule (12.156)

2. If ((CCW (A,D, T ) = 0)∨(CCW (B,D, T ) = 0)∨(CCW (C,D, T ) = 0))
then as the case may be, i.e. V ∈ {A,B,C},
{

• T : (µ∗
1, µ

∗
2) is expressed as a linear combination of A and V as

described in (12.168)

• the output start vector (βs, γs) is derived exactly in the identical
manner as described in (12.172)

• the while loop must be broken at this point with the result of
this procedure as (βs, γs).

This necessarily meant, that T lies on one of the segments AD,
BD or CD

}
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3. If otherwise, ( i.e. if T is not found to lie on one of the segments AD,
BD or CD )
then it is clear, that T must lie within only one of the triangles ∆ABD,
∆BCD or ∆CAD (i.e. no two of these triangles can contain T jointly),
then

{

• By the rule (12.156), compute the following

– CCW (A,B, T ), CCW (B,D, T ), CCW (D,A, T )

– CCW (B,C, T ), CCW (C,D, T ), CCW (D,B, T )

– CCW (C,A, T ), CCW (A,D, T ), CCW (D,C, T )

• if det−→
SQ

> 0, then

– if
(CCW (A,B, T )<0∧CCW (B,D, T )<0∧CCW (D,A, T )<0)
then, since T must lie within the triangle ∆ABD,

{
∗ T : (µ∗

1, µ
∗
2) is expressed as a convex combination of A, B

and D as described in (12.162)

∗ The point D is renamed as C and thereby the ∆ABD is
renamed as ∆ABC

∗ The vector (βs, γs) is derived exactly in the identical man-
ner as described in (12.167) and is named as D

∗ The values of the moments up to the sixth order, i.e.
µ

(βs,γs)
n (n ∈ {1, 2, . . . , 6}), are computed successively by

means of (12.107) or (12.110)

∗ Then, it is examined, whether (βs, γs) fulfills both the con-
vergence conditions (12.101) and (12.102) simultaneously

}
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– if
(CCW (B,C, T )<0∧CCW (C,D, T )<0∧CCW (D,B, T )<0)
then, since T must lie within the triangle ∆BCD,

{
∗ T : (µ∗

1, µ
∗
2) is expressed as a convex combination of B, C

and D as described in (12.162)

∗ The points B, C and D are renamed as A, B and C re-
spectively and thereby the ∆BCD is renamed as ∆ABC

∗ The vector (βs, γs) is derived exactly in the identical man-
ner as described in (12.167) and is named as D

∗ The values of the moments up to the sixth order, i.e.
µ

(βs,γs)
n (n ∈ {1, 2, . . . , 6}), are computed successively by

means of (12.107) or (12.110)

∗ Then, it is examined, whether (βs, γs) fulfills both the con-
vergence conditions (12.101) and (12.102) simultaneously

}
– if

(CCW (C,A, T )<0 ∧CCW (A,D, T )<0 ∧CCW (D,C, T )<0)
then, since T must lie within the triangle ∆CAD,

{
∗ T : (µ∗

1, µ
∗
2) is expressed as a convex combination of C, A

and D as described in (12.162)

∗ The points C, A and D are renamed as A, B and C
respectively and thereby the ∆CAD is renamed as ∆ABC

∗ The vector (βs, γs) is derived exactly in the identical man-
ner as described in (12.167) and is named as D

∗ The values of the moments up to the sixth order, i.e.
µ

(βs,γs)
n (n ∈ {1, 2, . . . , 6}), are computed successively by

means of (12.107) or (12.110)

∗ Then, it is examined, whether (βs, γs) fulfills both the con-
vergence conditions (12.101) and (12.102) simultaneously

}
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• if det−→
SQ

< 0, then

– if
(CCW (A,B, T )>0∧CCW (B,D, T )>0∧CCW (D,A, T )>0)
then, since T must lie within the triangle ∆ABD,

{
∗ T : (µ∗

1, µ
∗
2) is expressed as a convex combination of A, B

and D as described in (12.173)

∗ The point D is renamed as C and thereby the ∆ABD is
renamed as ∆ABC

∗ The vector (βs, γs) is derived exactly in the identical man-
ner as described in (12.178) and is named as D

∗ The values of the moments up to the sixth order, i.e.
µ

(βs,γs)
n (n ∈ {1, 2, . . . , 6}), are computed successively by

means of (12.107) or (12.110)

∗ Then, it is examined, whether (βs, γs) fulfills both the con-
vergence conditions (12.101) and (12.102) simultaneously

}
– if

(CCW (B,C, T )>0∧CCW (C,D, T )>0∧CCW (D,B, T )>0)
then, since T must lie within the triangle ∆BCD,

{
∗ T : (µ∗

1, µ
∗
2) is expressed as a convex combination of B, C

and D as described in (12.173)

∗ The points B, C and D are renamed as A, B and C re-
spectively and thereby the ∆BCD is renamed as ∆ABC

∗ The vector (βs, γs) is derived exactly in the identical man-
ner as described in (12.178) and is named as D

∗ The values of the moments up to the sixth order, i.e.
µ

(βs,γs)
n (n ∈ {1, 2, . . . , 6}), are computed successively by

means of (12.107) or (12.110)

∗ Then, it is examined, whether (βs, γs) fulfills both the con-
vergence conditions (12.101) and (12.102) simultaneously

}



12.7. CONTINUOUS UNI-EXTREMAL PROBABILITY DISTRIBUTION567

– if
(CCW (C,A, T )>0 ∧CCW (A,D, T )>0 ∧CCW (D,C, T )>0)
then, since T must lie within the triangle ∆CAD,

{
∗ T : (µ∗

1, µ
∗
2) is expressed as a convex combination of C, A

and D as described in (12.173)

∗ The points C, A and D are renamed as A, B and C
respectively and thereby the ∆CAD is renamed as ∆ABC

∗ The vector (βs, γs) is derived exactly in the identical man-
ner as described in (12.178) and is named as D

∗ The values of the moments up to the sixth order, i.e.
µ

(βs,γs)
n (n ∈ {1, 2, . . . , 6}), are computed successively by

means of (12.107) or (12.110)

∗ Then, it is examined, whether (βs, γs) fulfills both the con-
vergence conditions (12.101) and (12.102) simultaneously

}

}

}
This is the end of the execution of the while loop and thereby the end of
the desired procedure for the first stage processing of the access vector. The
output delivered by the procedure is the vector (βs, γs).

It has to be noted, that the triangle ∆ABC containing the point D : (βs, γs)
becomes gradually smaller after each cycle of the while loop. At the end of
each cycle, (βs, γs) comes a step undoubtedly closer to the solution (β∗, γ∗).
However, the maximum number of cycles is limited to ten, within which
(βs, γs) can fulfill the necessary convergence conditions. Fulfillment of these
convergence conditions for the sake of the compatibility of (βs, γs) for the
Newton Raphson procedure is the core idea of this procedure, since the com-
patibility of (βa, γa) for the same was still a question. In the bulk of the
cases, this fulfillment takes place. Only in cases, when the user-given µ∗

2 has
extreme values (i.e. values closer to either µ∗

1 or µ∗
1
2), this fulfillment may not

take place within ten cycles. But this is not a serious problem. The modified
iterative procedures introduced in the immediately next subsection handles
these cases.
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Therefore, we conclude, that (βs, γs) is not the start vector, which can be
forwarded to Newton Raphson procedure right at this stage. This vector
must necessarily be processed further to ensure the perfect functioning of the
Newton Raphson procedure. This processing handled by the two modified
iterative procedures, which shall be discussed in the next subsection, shall
be the second stage processing or rather the final stage processing before the
Newton Raphson procedure.

In this procedure, the programmer has wilfully limited the number of cycles
of the while loop to ten, because this is a time consuming procedure in
certain cases and total allotted time meant for running the entire program
was always needed to be kept in mind.

As a matter of fact, the compatibility of the access vector for the Newton
Raphson procedure arising out of the cases, when µ

(Q)
1 = µ

(P )
1 never seemed

to be a big concern.

However, it should not be assumed, that the cases involving µ
(Q)
1 > µ

(P )
1

and (µ∗
1, µ

∗
2) ∈ SQ are not within consideration. The modified iterative

procedures discussed in the immediately next subsection handles such cases
anyway.
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12.7.8 Modified iterative procedures

Referring to the subsection Characteristics of the outputs with respect to
the inputs, it is already known, the proper choice of a suitable start vector
(βs, γs), in cases when µ2 > µ2upp or µ2 < µ2low is difficult in general.

The introduction of the modified iterative procedures is essentially meant for
cases, when the user-given variances are too large or too small.

In other words, since the extreme largeness and extreme smallness of the
user-given variances are directly linked with the cases, when µ2 > µ2upp

or µ2 < µ2low respectively, modified iterative procedures are the suitable
procedural measures to ensure the proper choice of a start vector (βs, γs)

The modified iterative procedures are no less useful, even for cases, when
µ2low ≤ µ2 ≤ µ2upp. They can only improve a given start vector in terms of
it’s closeness to the solution (β∗, γ∗) and never the opposite.

The two modified iterative procedures are distinguished by the two cases,
namely µ2 > µ2upp and µ2 < µ2low. Both these procedures are somewhat
similar to the designed iterative procedure (12.91), but changed in certain
ways conveniently.

Therefore, the algorithms for both the modified iterative procedures are given
by

Both the following introduced procedures begin with the following
pre-computations,

• e distance (as described in (12.88)) is computed with respect to the

values of βs and γs by computing the values of µ
(βs,γs)
1 and µ

(βs,γs)
2 by

means of (12.107) or (12.110)

• we initialize β = βs, γ = γs, µ1 = µ
(βs,γs)
1 and µ2 = µ

(βs,γs)
2 together

with becomes smaller = true

• a suitably chosen fixed integer n ∈ Z

• a small positive number ǫ is suitably chosen
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Therefore, with subject to the above data,

1. Specially for (µ2 > µ2upp) cases:

while ((γ > 10n) ∧ (e distance > ǫ) ∧ becomes smaller)

{
γreserve = γ; βreserve = β; µ1reserve = µ1; µ2reserve = µ2;

γ− = 10n; (means, γ is decremented by 10n)

β = SolveForBeta(γ, β); (as described in (12.89))

Compute the values of µ
(β,γ)
1 and µ

(β,γ)
2 by means of (12.107) or (12.110)

with subject to the newly updated values of β and γ. Then update the
values of µ1 and µ2 as µ1 = µ

(β,γ)
1 and µ2 = µ

(β,γ)
2 ;

e distance current = Computed e distance with respect to β and γ;

if (e distance≥e distance current) then e distance=e distance current

else

{
becomes smaller = false;
(means, deterioration of the start vector & while loop must be broken
immediately on resetting with the previous values in the following step)

γ = γreserve; β = βreserve; µ1 = µ1reserve; µ2 = µ2reserve;

}

}

becomes smaller = true;

Set γs = γ; βs = β;

(βs, γs) is the improved start vector as a result of the procedure

(12.179)
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2. Specially for (µ2 < µ2low) cases:

while ((γ < 10−n) ∧ (e distance > ǫ) ∧ becomes smaller)

{
γreserve = γ; βreserve = β; µ1reserve = µ1; µ2reserve = µ2;

γ+ = 10n; (means, γ is incremented by 10n)

β = SolveForBeta(γ, β); (as described in (12.89))

Compute the values of µ
(β,γ)
1 and µ

(β,γ)
2 by means of (12.107) or (12.110)

with subject to the newly updated values of β and γ. Then update the
values of µ1 and µ2 as µ1 = µ

(β,γ)
1 and µ2 = µ

(β,γ)
2 ;

e distance current = Computed e distance with respect to β and γ;

if (e distance≥e distance current) then e distance=e distance current

else

{
becomes smaller = false;
(means, deterioration of the start vector & while loop must be broken
immediately on resetting with the previous values in the following step)

γ = γreserve; β = βreserve; µ1 = µ1reserve; µ2 = µ2reserve;

}

}

becomes smaller = true;

Set γs = γ; βs = β;

(βs, γs) is the improved start vector as a result of the procedure

(12.180)

These modified iterative procedures help to reduce the running time of the
program considerably.
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12.7.9 The subroutine for non special uni-extremal cases

The solution of the system of equations (12.130), where X is a continuous
random variable with the range of variability {x|0 ≤ x ≤ 1}, is identical
with the solution of the system of equations (12.94) for the continuous case.
This justifies the usage of the designed Newton Raphson numerical procedure
(12.115) for the solution of the system (12.130) as well.

Therefore, the algorithm for non special cases, which aims to solve the system
(12.130) step by step, is described by the following sequential steps:

1. At the very first step of the execution of the program, the Z = 1 − X
transformation is carried out, if the user-given input (µ∗

1, µ
∗
2) lies within

the specified areas of the input space described in (12.146).

In such cases, the program shall work with the moments of Z as it’s
input instead of the moments of X and therefore the yielded (β0, γ0)
before being processed by the Newton Raphson procedure will become
the final first approximated solution of the equation system (12.151)
instead of the equation system (12.130).

2. if µ∗
1 < 0.01 or µ∗

1 > 0.99, then the determination of the final start
vector (β0, γ0) meant for forwarding to the Newton Raphson procedure
is not possible by database access, but only by the iterative procedure
(12.91). However, the running time of the program is well beyond the
programmer’s control and therefore beyond any estimation.

In this case, we go by the following steps:

• If µ∗
1 < 0.01, then solve the following equation (in β) by the solu-

tion procedure (12.36) after resetting the equation into f(β) = 0
form:

µ∗ =

{
0.5 : β = 0
1 + 1

eβ−1
− 1

β
: β 6= 0

Let βs be the yielded solution

• If µ∗
1 > 0.99, then since the usage of the Z = 1−X transformation

is necessary, solve the following equation (in β) by the solution
procedure (12.36) after resetting the equation into f(β) = 0 form:

1 − µ∗ =

{
0.5 : β = 0
1 + 1

eβ−1
− 1

β
: β 6= 0
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Let βs be the yielded solution

• We initialize β = βs and γ = 0

• Compute the final start vector (β0, γ0) by the iterative procedure
(12.91) with subject to ǫ = 10−5. Immediately after this, go to
the step (8.) for the Newton Raphson procedure

3. if 0.01 ≤ µ∗
1 ≤ 0.99, then the database will be accessed within the

specified area (12.155) of the input space. Here, the values of ℓ ranging
from 2.08699 to 3.5 have been chosen carefully by the programmer to
ensure the yield of the best possible results in terms of their accuracies.

4. Compute the access vector (βa, γa) on accessing 1, 2 or 4 records from
the database (as the case may be), as discussed

5. Compute the improved start vector (βs, γs), if the access vector (βa, γa)
can be processed subsequently (i.e. in cases for det−→

SQ
> 0 or det−→

SQ
< 0)

6. Using this start vector (βs, γs) or the access vector (βa, γa) (in case
a further processing was not possible), execute the modified iterative
procedure (12.179) with respect to n = 3, 2, 1, 0,−1 successively to
yield an even better (improved) start vector (βs, γs).

The program-control recognizes the need of this procedure and executes
it intensively when the value of µ∗

2 is rather high.

Immediately after this, the control uses this (βs, γs) to execute the
iterative procedure (12.91) with respect to ǫ = 10−3 for a maximum
number of 6 iterations, provided γs > 0 still holds

7. In this step, the cases will be considered, when either both the user-
given mean (µ∗

1) and the user-given variance (σ2 = µ∗
2 − µ∗

1
2) are rel-

atively small or σ2 is small but not enough to ensure the resulting
probability density function of Y denoted by fY |{dY }(y) to be accepted
as the expression given in (12.136). These cases arise, when either of
the following happens:

• 0.01 < µ∗
1 ≤ 0.025 and σ2 < 0.0012

• 0.025 < µ∗
1 < 0.05 and σ2 < 0.001

• γs < −1000
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• 0.01 < µ∗
1 < 0.05 and γs < 0

In either of the above cases, execute the modified iterative procedure
(12.180) with respect to n = 5, 3, 0.69879, 0 successively to yield an
even better (improved) start vector (βs, γs).

The program-control recognizes the need of this procedure and executes
it intensively when the value of µ∗

2 is rather low.

Obviously, n = 0.69879 was made to be a slight exception to the modi-
fied iterative procedural rule (12.180), where n /∈ Z. This solely means,
that γ has been incremented by 5 in each cycle of the while loop.

Immediately after this, the control uses this (βs, γs) to execute the
iterative procedure (12.91) with respect to ǫ = 10−5. This procedure is
continued till the e distance is reduced at the very least.

8. The Newton Raphson procedure described by (12.115) is executed with
subject to

• ǫ = 10−16

• the number of additional criteria are restricted to one only. This
criterion is, that the maximum number of Newton Raphson pro-
cedural cycles is limited to 10000

• the first approximated solution (β0, γ0), which is

– of the equation system (12.130), if the program has to work
with the moments of X

– of the equation system (12.151), if the program has to work
with the moments of Z

As a result of the execution of the Newton Raphson procedure, the
final solution of the equation system (12.130) is yielded as (β∗, γ∗) or
the same of the equation system (12.151) is yielded as (β∗, γ∗) according
as the program had worked with the moments of X or of Z

9. The reverse transformation, namely X = 1−Z will be necessary, if the
program had worked with the moments of Z.

In that case, with the help of (β∗, γ∗), final desired solution (β∗, γ∗)
shall be computed as described in (12.154)
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Thus, the computed (β∗, γ∗) in the final step is the desired solution of
(12.130).

Whence, by using (6.75) too, fY |{dY }(y) is finally expressed as

fY |{dY }(y) =
1

b − a

eβ∗( y−a
b−a )+γ∗( y−a

b−a )
2

1∫
0

eβ∗t+γ∗t2dt

=
K

σY

√
2π

e
λ̂
(

y−M
σY

)2

, a ≤ y ≤ b

(12.181)
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12.8 Limitations

12.8.1 Probable limitations of my software programs
in monotone cases

In this subsection, we state briefly, for which input parameters both the
software programs (referred to the discrete and continuous monotone cases)
may not be successfully executable.

The program may not deliver an output, if µ
(1)
Y happens to be too large or

too small, i.e. if µ
(1)
Y is chosen to be too close to a from right or too close to

b from left.

From the stochastic point of view, such inputs may legitimately taken for
simple degenerated probability distributions, as already discussed.

12.8.2 Probable limitations of my software program in
discrete uni-extremal cases

In this subsection, we state briefly, for which input parameters the software
program (referred to the discrete uni-extremal cases) may not be successfully
executable.

The program may not deliver an output, if µ
(1)
Y happens to be too large or

too small, i.e. if µ
(1)
Y is chosen to be too close to a from right or too close to

b from left. In other words, the user may think of not choosing µ
(1)
Y in one

of the following ways:

• a < µ
(1)
Y < a + 0.01(b − a)

• b > µ
(1)
Y > b − 0.01(b − a)

Of course, such cases of failure are extremely rare. Such inputs may not be
legitimately justified either, especially from the stochastic point of view.

12.8.3 Limitations of my software program in contin-
uous uni-extremal cases

In this subsection, we state briefly, for which input parameters the software
program (referred to the continuous uni-extremal cases) cannot be properly
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executed. Of course, such cases, when the input parameters are not accept-
able by the software program, are extremely few.

We shall cite such cases one by one as follows:

1. The program does not give the desired results, if µ
(2)
Y (or equivalently

the variance σ2
Y = µ

(2)
Y +

(
µ

(1)
Y

)2

can be given as input) is chosen too

close to µ
(1)
Y from left, after µ

(1)
Y has been input by the user.

As for examples,

(a) for a = 4.5, b = 10.7, µ
(1)
Y = 6.6, µ

(2)
Y must be theoretically re-

stricted to 43.56 < µ
(2)
Y < 52.17. If µ

(2)
Y = 52.1 is given as input,

the program does not deliver the output result, because for this
particular high value of µ

(2)
Y the database cannot deliver the cor-

rect records for the computation of the start vector. However, this
problem gets fruitfully resolved, if µ

(2)
Y is chosen to be µ

(2)
Y = 51.5

instead.

(b) for a = 20.4, b = 55.48, µ
(1)
Y = 42.62, σ2

Y must be theoretically
restricted to 0 < σ2

Y < 285.7492. If σ2
Y = 285.2 is given as input,

the program does not deliver the output result for the same reason
as stated immediately above. However, this problem gets fruitfully
resolved, if σ2

Y is chosen to be σ2
Y = 284.5 instead.

2. The execution of the program can take unusually or even indefinitely
long time, if µ

(1)
Y is chosen to be too close to either a or b. Precisely, this

happens, if either a < µ
(1)
1 < a+0.01(b−a) or b−0.01(b−a) < µ

(1)
1 < b

is the case.

However, this problem gets resolved, if µ
(2)
Y (or equivalently σ2

Y ) is small
enough for the delivery of appropriate approximative results with the
help of the standard normal distribution (as already discussed). As

for eg. for a = 20.4, b = 55.48, µ
(1)
Y = 20.6, the programm delivers

the result for σ2
Y = 0.001 quickly. A higher value of σ2

Y can be a big
problem, as far as the time of the program execution is concerned
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12.9 Operating instructions

The four software programs developed in the object oriented program-
ming language, Java can be run in any personal computer, where Java is
installed. These four software programs have already been compiled. Both
the source files and the compiled object (class) files and burnt into the sup-
plied CD ROM.

The main folder burnt in the CD ROM named SurathTextMIP contains
another folder named ProjektInformal. This folder ProjektInformal con-
tains five folders, whose description are given as follows:

1. The folder auxiliarydata: This folder contains all the tables in form
of text files that are accessible by particular java class file. These tables
contain the necessary starting values for running one of the four the
developed java programs.

2. The folder bin contains all the compiled .class files that are related
to the two java programs involving the continuous random variable
Y (i.e. when the random variable Y is continuous).

3. The folder binDiscrete contains all the compiled .class files that
are related to the two java programs involving the discrete random
variable Y (i.e. when the random variable Y is discrete).

4. The folder Sources contains all the java classes, i.e. the complete java
source code in form of .java files involving the continuous random
variable Y .

5. The folder SourcesDiscrete contains all the java classes, i.e. the
complete java source code in form of .java files involving the discrete
random variable Y .

If the compiled class files burnt in the CD ROM match the java-compiler
installed in the PC, then the software programs can be run on the CD ROM
itself in the PC automatically. If this is not the case, then the entire
folder SurathTextMIP needs to be copied into the PC and the user needs
to recompile the java source programs thereafter before running them.

The compilation and the running of the java source programs are described
as follows:
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• For the computation of a monotonic discrete probability distribution
of Y , the java class MonotonicDiscrete.java needs to be

– (re)compiled by double clicking the batch file
compileMonotonicDiscrete situated in
SurathTextMIP\ProjektInformal\sourcesDiscrete

– run by double clicking the batch file
runMonotonicDiscrete situated in
SurathTextMIP\ProjektInformal\binDiscrete

• For the computation of a uni-extremal discrete probability distribution
of Y , the java class UniExtremalDiscrete.java needs to be

– (re)compiled by double clicking the batch file
compileUniExtremalDiscrete situated in
SurathTextMIP\ProjektInformal\sourcesDiscrete

– run by double clicking the batch file
runUniExtremalDiscrete situated in
SurathTextMIP\ProjektInformal\binDiscrete

• For the computation of a monotonic continuous probability distribution
of Y , the java class MonotonicContinuous.java needs to be

– (re)compiled by double clicking the batch file
compileMonotonicContinuous situated in
SurathTextMIP\ProjektInformal\sources

– run by double clicking the batch file
runMonotonicContinuous situated in
SurathTextMIP\ProjektInformal\bin

• For the computation of a uni-extremal continuous probability distribu-
tion of Y , the java class UniExtremalContinuousTEXT.java needs
to be

– (re)compiled by double clicking the batch file
compileUniExtremalContinuous situated in
SurathTextMIP\ProjektInformal\sources
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– run by double clicking the batch file
runUniExtremalContinuous situated in
SurathTextMIP\ProjektInformal\bin

The copyrights of these java source codes are reserved by the University of
Würzburg as well as by the developer of these java codes, Mr. Surath SEN.



Appendix A

The maximization of the
stochastic entropy

A.1 The expression of the maximum entropy

probability distribution

Referring to the subsection 3.3.1, we shall use identically the same notations
in this section. In fact, for the sake of a brief restatement, let F(m) be
the set of all the probability distributions PY |{dY } on (Ω,A), such that each
of the elements of F(m), namely PY |{dY } possesses a density fY |{dY } with

respect to ν and has the k th moment equal to a fixed number µ
(k)
Y , for

k = 0, 1, 2, . . . ,m. Here, dY = (µ
(1)
Y , µ

(2)
Y , . . . , µ

(m)
Y ).

In this section, we shall show that the exponential polynomial probability dis-
tribution (denoted by PMEP

Y |{dY }) of the random variable Y determined uniquely

by its first m moments µ
(k)
Y , k = 0, 1, 2, . . . ,m, has the maximum entropy

among all other probability distributions having identically the same sup-
port as well as identically the same first m moments.

This proof, which is the theorem 12.1.1 given in the page 410 of the book
[11], is basically given by means of Kullback-Leibler divergence (or rel-
ative entropy). This proof is given as follows:

Proof of the aforesaid theorem 12.1.1. i.e. the proof of the theorem 3.3.1.
Clearly, PMEP

Y |{dY } ∈ F(m). We shall make use of the very fact that the rela-
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tive entropy
∫
Ω

fY |{dY } log
(

fY |{dY }

fY |{dY }

)
dν (i.e. the entropy of PY |{dY } relative to

PMEP
Y |{dY }) is always nonnegative. This nonnegativity is referred to the Gibbs’

inequality.

For any arbitrarily chosen PY |{dY } ∈ F(m) with a ν- density fY |{dY }, we have

H
(
PY |{dY }

)
− H

(
PMEP

Y |{dY }
)

=

∫

Ω

fY |{dY } log
(
fY |{dY }

)
dν −

∫

Ω

fY |{dY } log
(
fY |{dY }

)
dν

=

∫

Ω

(
fY |{dY } log

(
fY |{dY }

)
− fY |{dY } log

(
fY |{dY }

) )
dν

−
∫

Ω

fY |{dY } log

(
fY |{dY }
fY |{dY }

)
dν

︸ ︷︷ ︸
≥0

( Gibbs’ Inequality )

≤
∫

Ω

(fY |{dY } − fY |{dY }) log
(
fY |{dY }

)
dν

=

∫

Ω

(fY |{dY } − fY |{dY })

(
m∑

k=0

λky
k

)
ν(dy)

=
m∑

k=0

λk

∫

Ω

yk
(
fY |{dY } − fY |{dY }

)
ν(dy)

=
m∑

k=0

λk

(
µ

(k)
Y − µ

(k)
Y

)

= 0

which clarifies the very fact that H
(
PY |{dY }

)
≤ H

(
PMEP

Y |{dY }

)
and this proves

our theorem 3.3.1.
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The role of the Hankel matrix

In this chapter, we shall reprove the uniqueness of the solution of the system
of equations (4.2) (or equivalently the system of equations (4.4)), just for
the sake of showing that the positive definiteness of the Hankel matrix proves
uniqueness of of the system of equations (4.2).

Before we go ahead, just for the sake of clarity, we restate that the positive
definiteness of the Hankel matrix implies and implied by the positive
definiteness of the matrix (σi,j)1≤i , j≤n for n ∈ N.

B.1 The important lemma

Definition B.1.1. In general, µn (n ∈ N0) is defined by

µn =

∫
XX

xneβ1x+β2x2+...+βmxm

νX(dx)

∫
XX

eβ1x+β2x2+...+βmxmνX(dx)
(B.1)

Proposition B.1.1. With regard to the definition B.1.1, for the special
case of n = 1, β1 is uniquely determinable for a fixedly chosen µ1 = µ∗

1 and
fixedly chosen β2 = β∗

2 , β3 = β∗
3 , . . . , βm = β∗

m.

Proof of the proposition B.1.1. With subject to n = 1,

dµ1 =
∂µ1

∂β1

dβ1 +
∂µ1

∂β2

dβ2 + . . . +
∂µ1

∂βm

dβm (B.2)

583
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In that case, for any fixed values of β2, β3, . . . , βm, namely β∗
2 , β

∗
3 , . . . , β

∗
m

respectively, thereby implying dβ2 = dβ3 = . . . = dβm = 0, the above
relation (B.2) reduces to

dµ1 =
∂µ1

∂β1

dβ1 (B.3)

and thus, we get nothing different from

dµ1

dβ1

=
∂µ1

∂β1

= µ2 − µ2
1 > 0 (B.4)

where in the special case for β2 = β∗
2 , β3 = β∗

3 , . . . , βm = β∗
m, the moments µ1

and µ2 are defined by (B.1) as usual.

This means nothing different from the very fact that for any arbitrarily fixed
set of values β2 = β∗

2 , β3 = β∗
3 , . . . , βm = β∗

m, µ1 is a strictly monotonically
increasing function of β1, implying that,

If any fixed value of µ1, say µ∗
1, is taken, then the value of β1 contained in

the right hand side of the expression of µ1 defined by (B.1) for n = 1

can be uniquely determined, provided that the values of β2, β3, . . . , βm

are kept fixed.
(B.5)

Conclusively, for a given µ1 = µ∗
1, this unique value of β1, namely β∗

1 , is given
by

µ∗
1 =

∫
XX

xeβ∗
1x+β∗

2x2+...+β∗
mxm

νX(dx)

∫
XX

eβ∗
1x+β∗

2x2+...+β∗
mxm

νX(dx)
(B.6)

and this proves the proposition proposition B.1.1.
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B.2 Uniqueness of the solution of the equation-

system for m ∈ N0

Finally, we arrive at the general statement of our theorem, i.e. for every
m ∈ N0, provided N ≥ m + 1 in discrete cases:

Theorem B.2.1 (Uniqueness of the solution of the simultaneous
system of equations of moments). The solution of the system of m si-
multaneous equations given in (4.4), namely





µ1 =

∫
XX

x eβ1x+β2x2+...+βmxm
νX(dx)

∫
XX

eβ1x+β2x2+...+βmxm
νX(dx)

µ2 =

∫
XX

x2 eβ1x+β2x2+...+βmxm
νX(dx)

∫
XX

eβ1x+β2x2+...+βmxm
νX(dx)

...

µm =

∫
XX

xm eβ1x+β2x2+...+βmxm
νX(dx)

∫
x∈XX

eβ1x+β2x2+...+βmxm
νX(dx)

(4.4)

is unique, provided N ≥ m + 1 holds in discrete cases.

Proof of the theorem B.2.1. By taking the differential of µi, i = 1, 2, . . . ,m
with respect to β1, β2, . . . , βm, we get

dµi =
∂µi

∂β1

dβ1 +
∂µi

∂β2

dβ2 + . . . +
∂µi

∂βm

dβm (B.7)

which leads us to the following matrix relation:




∂µ1

∂β1

∂µ1

∂β2
. . . ∂µ1

∂βm

∂µ2

∂β1

∂µ2

∂β2
. . . ∂µ2

∂βm

...
...

. . .
...

∂µm

∂β1

∂µm

∂β2
. . . ∂µm

∂βm







dβ1

dβ2

...

dβm




=




dµ1

dµ2

...

dµm




(B.8)
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At this point, we state that the proof of the aforesaid uniqueness can be
given broadly in three steps:

First Step: In the first step, we shall show that for any fixed values of
µ1, µ2, . . . , µm, say µ∗

1, µ
∗
2, . . . , µ

∗
m respectively, the value of βm can be deter-

mined uniquely, say βm = β∗
m:

For this, let the values of µ1, µ2, . . . , µm−1 be kept fixed, say µ1 = µ∗
1,

µ2 = µ∗
2, . . . , µm−1 = µ∗

m−1 and µm be allowed to vary.

Therefore, by rewriting the above matrix (B.8) for a given fixed set of values
of µ1, µ2, . . . , µm−1, i.e. dµ1 = dµ2 = . . . = dµm−1 = 0, we get




∂µ1

∂β1

∂µ1

∂β2
. . . ∂µ1

∂βm−1

∂µ1

∂βm

∂µ2

∂β1

∂µ2

∂β2
. . . ∂µ2

∂βm−1

∂µ2

∂βm

...
...

. . .
...

...

∂µm−1

∂β1

∂µm−1

∂β2
. . . ∂µm−1

∂βm−1

∂µm−1

∂βm

∂µm

∂β1

∂µm

∂β2
. . . ∂µm

∂βm−1

∂µm

∂βm







dβ1

dβ2

...

dβm−1

dβm




=




0

0

...

0

dµm




(B.9)

and thus by using the Cramer’s rule for determinants, we get
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dβm =

det




∂µ1

∂β1

∂µ1

∂β2
. . . ∂µ1

∂βm−1
0

∂µ2

∂β1

∂µ2

∂β2
. . . ∂µ2

∂βm−1
0

...
...

. . .
...

...

∂µm−1

∂β1

∂µm−1

∂β2
. . . ∂µm−1

∂βm−1
0

∂µm

∂β1

∂µm

∂β2
. . . ∂µm

∂βm−1
dµm




det




∂µ1

∂β1

∂µ1

∂β2
. . . ∂µ1

∂βm−1

∂µ1

∂βm

∂µ2

∂β1

∂µ2

∂β2
. . . ∂µ2

∂βm−1

∂µ2

∂βm

...
...

. . .
...

...

∂µm−1

∂β1

∂µm−1

∂β2
. . . ∂µm−1

∂βm−1

∂µm−1

∂βm

∂µm

∂β1

∂µm

∂β2
. . . ∂µm

∂βm−1

∂µm

∂βm




=
det(σi,j)1≤i , j≤m−1

det(σi,j)1≤i , j≤m

dµm

(B.10)
which leads us to

dµm

dβm

=
det(σi,j)1≤i , j≤m

det(σi,j)1≤i , j≤m−1

> 0 (B.11)

simply because we know from our lastly established positive definiteness of
the matrix (σi,j)1≤i , j≤n for n ∈ N, but N ≥ n + 1 in case X happens to be
discrete, implying det(σi,j)1≤i , j≤n > 0 for n ∈ {m − 1,m}.

Thus, in the language of differential calculus, µm is strictly monotonically
increasing with respect to the increase in βm for any given fixed values of
µ1, µ2, . . . , µm−1.

This necessarily means, for a given value of µm, say µm = µ∗
m, there is an

unique value of βm, say βm = β∗
m with subject to the given arbitrarily fixed

µ1 = µ∗
1, µ2 = µ∗

2, . . . , µm−1 = µ∗
m−1 within their individual valid ranges.

In other words, for any chosen fixed values of µ1, µ2, . . . , µm, namely
µ∗

1, µ
∗
2, . . . , µ

∗
m respectively, there can exist only an unique value of βm, namely

β∗
m.
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Second Step: In the second step, we shall show that for the aforesaid
fixed values of µ1, µ2, . . . , µm, namely µ∗

1, µ
∗
2, . . . , µ

∗
m respectively, the values

of β2, β3, . . . , βm−1 can be determined uniquely, say β∗
2 , β

∗
3 , . . . , β

∗
m−1:

We have already established that βm = β∗
m is a part of the unique solution of

(4.4) with subject to the given fixed values µ∗
1, µ

∗
2, . . . , µ

∗
m. At this point, with

regard to the knowledge of the fixed µm = µ∗
m and βm = β∗

m, we can actually
proceed to work by reducing the system of m simultaneous equations (B.9)
to a system of m − 1 simultaneous equations with respect to the unknowns
β1, β2, . . . , βm−1, where only µ1, µ2, . . . , µm−1 are contained.

With subject to the consideration of this new system of m− 1 simultaneous
equations, exactly in the same way as before, by considering the fixed values
µ1 = µ∗

1, µ2 = µ∗
2, . . . , µm−2 = µ∗

m−2, but by allowing µm−1 to vary, we get

dµm−1

dβm−1

=
det(σi,j)1≤i , j≤m−1

det(σi,j)1≤i , j≤m−2

> 0 (B.12)

after having kept the following under consideration:

• dβm = 0, as βm = β∗
m is taken for fixed and therefore not considered

as a variable in the system of m− 1 simultaneous equations mentioned
immediately above.

• with subject to i = 1, 2, . . . ,m − 1 the expression of the differential of
dµi given in (B.7) is reduced to

dµi =
∂µi

∂β1

dβ1 +
∂µi

∂β2

dβ2 + . . . +
∂µi

∂βm−1

dβm−1 (B.13)

• for µ1, µ2, . . . , µm−2 being fixed, dµ1 = dµ2 = . . . dµm−2 = 0

• the very proven assertion stating that det(σi,j)1≤i , j≤n > 0 for n ∈ N,
but N ≥ n + 1 for n ∈ {1, 2, . . . ,m − 1} in case X happens to be
discrete

which again leads us to conclude that µm−1 is strictly monotonically in-
creasing with respect to the increase in βm−1 for the given fixed values of
µ1, µ2, . . . , µm−2.
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This again necessarily means, for a given value of µm−1, say µm−1 = µ∗
m−1,

there is an unique value of βm−1, say βm−1 = β∗
m−1 with subject to the given

fixed µ1 = µ∗
1, µ2 = µ∗

2, . . . , µm−2 = µ∗
m−2 within their individual valid ranges.

In other words, for the aforesaid chosen fixed values of µ1, µ2, . . . , µm−1,
namely µ∗

1, µ
∗
2, . . . , µ

∗
m−1 respectively, there can exist only an unique value

of βm−1, namely β∗
m−1.

Thus, we have additionally established that βm−1 = β∗
m−1 is too a part of the

unique solution of (4.4).

Proceeding exactly in this manner as above, we arrive at

For the aforesaid chosen fixed values of µ1, µ2, namely µ∗
1 and µ∗

2 respectively,
there can exist only an unique value of β2, namely β∗

2 .

Therefore, till this point, we have established the very fact that, with sub-
ject to µ1 = µ∗

1, µ2 = µ∗
2, . . . , µm = µ∗

m, the values of β2, β3, . . . , βm can be
uniquely determined, namely β∗

2 , β
∗
3 , . . . , β

∗
m respectively, thereby leading us

to conclude that {β2 = β∗
2 , β3 = β∗

3 , . . . , βm = β∗
m} is too a part of the unique

solution of (4.4).

Third Step: In the third and the final step, we shall show that the value
of β1 contained in the system (4.4) is unique too, namely β∗

1 . Immediately
after this, the targeted uniqueness follows conclusively.

Here, by using (B.5) (of the proposition B.1.1), for the uniquely determined
β2 = β∗

2 , β3 = β∗
3 , . . . , βm = β∗

m we can undoubtedly conclude that the value
of β1 is unique, which satisfies

µ∗
1 =

∫
XX

xeβ1x+β∗
2x2+...+β∗

mxm

νX(dx)

∫
XX

eβ1x+β∗
2x2+...+β∗

mxm
νX(dx)

(B.14)

for say β1 = β∗
1 .

This is nothing, but to say that

µ∗
i =

∫
XX

xieβ∗
1x+β∗

2x2+...+β∗
mxm

νX(dx)

∫
XX

eβ∗
1x+β∗

2x2+...+β∗
mxm

νX(dx)
, for i ∈ {2, 3, . . . ,m} (B.15)
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where β∗
1 is uniquely determined by

µ∗
1 =

∫
XX

xeβ∗
1x+β∗

2x2+...+β∗
mxm

νX(dx)

∫
XX

eβ∗
1x+β∗

2x2+...+β∗
mxm

νX(dx)
(B.16)

Hence, in other words, for given values of µ1, µ2, . . . , µm, namely µ∗
1, µ

∗
2, . . . , µ

∗
m

respectively, {β1 = β∗
1 , β2 = β∗

2 , . . . , βm = β∗
m} is the only solution of the sys-

tem (4.4).

Whence, the uniqueness of the solution of (4.4) has been proved and thus
the theorem B.2.1 gets duly proved.

Importantly, this uniqueness of the solution of (4.4) is tantamount to the
uniqueness of the solution of the system of equations (4.2).

Remark B.2.1 (Concluding remark). Therefore, it is conclusively clear
that the uniqueness of the solution of the system of m equations (4.4) or the
uniqueness of the solution of the system of m equations (4.2), is basically
proved by the positive definiteness of the symmetric matrix (σi,j)1≤i , j≤m

.



Appendix C

Miscellaneous

C.1 Inequalities

Theorem C.1.1 (Holder’s inequality). If 1
p

+ 1
q

= 1 for p and q being

two positive real numbers and if f(x) and g(x) are two real valued functions,
then

∣∣∣∣∣∣

b∫

a

f(x) g(x) dx

∣∣∣∣∣∣
≤





b∫

a

|f(x)|p dx





1
p




b∫

a

|g(x)|q dx





1
q

Referred to the page 139 of [34].

Remark C.1.1. Understandably, 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞ must hold,
after having additionally defined the following:





b∫

a

|f(x)|r dx





1
r

= sup
x∈[a,b]

|f(x)| in case r = ∞

Corollary C.1.1 (Cauchy-Schwarz inequality). In the special case of
p = q = 2, the Holder’s inequality becomes the Cauchy-Schwarz inequality,
which is given as follows:

∣∣∣∣∣∣

b∫

a

f(x) g(x) dx

∣∣∣∣∣∣
≤





b∫

a

|f(x)|2 dx





1
2




b∫

a

|g(x)|2 dx





1
2
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