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Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Untersuchung verschiedener Aspekte der
Chaos Synchronisation von Netzwerken mit zeitverzögerten Kopplungen. Ein Netz-
werk aus identischen chaotischen Einheiten kann vollständig und isochron synchro-
nisieren, auch wenn der Signalaustausch einer starken Zeitverzögerung unterliegt.

Im ersten Teil der Arbeit werden Systeme mit mehreren Zeitverzögerungen be-
trachtet. Dabei erstrecken sich die verschiedenen Zeitverzögerungen jeweils über
einen weiten Bereich an Gröÿenordnungen. Es wird gezeigt, dass diese Zeitverzöge-
rungen im Lyapunov Spektrum des Systems auftreten; verschiedene Teile des Spek-
trums skalieren jeweils mit einer der Zeitverzögerungen. Anhand des Skalierungs-
verhaltens des maximalen Lyapunov Exponenten können verschiedene Arten von
Chaos de�niert werden. Diese bestimmen die Synchronisationseigenschaften eines
Netzwerkes und werden insbesondere wichtig bei hierarchischen Netzwerken, d.h.
bei Netzwerken bestehend aus Unternetzwerken, bei welchen Signale innerhalb des
Unternetzwerkes auf einer anderen Zeitskala ausgetauscht werden als zwischen ver-
schiedenen Unternetzwerken. Für ein solches System kann sowohl vollständige als
auch Unternetzwerksynchronisation auftreten. Skaliert der maximale Lyapunov Ex-
ponent mit der kürzeren Zeitverzögerung des Unternetzwerkes dann können nur die
Elemente des Unternetzwerkes synchronisieren. Skaliert der maximale Lyapunov Ex-
ponent allerdings mit der längeren Zeitverzögerung kann das komplette Netzwerk
vollständig synchronisieren. Dies wird analytisch für die Bernoulli Abbildung und
numerisch für die Zelt Abbildung gezeigt.

Der zweite Teil befasst sich mit der Attraktordimension und ihrer Änderung am
Übergang zur vollständiger Chaos Synchronisation. Aus dem Lyapunov Spektrum
des Systems wird die Kaplan-Yorke Dimension berechnet und es wird gezeigt, dass
diese am Synchronisationsübergang aus physikalischen Gründen einen Sprung haben
muss. Aus der Zeitreihe der Dynamik des Systems wird die Korrelationsdimension be-
stimmt und anschlieÿend mit der Kaplan-Yorke Dimension verglichen. Für Bernoulli
Systeme �nden wir in der Tat eine Diskontinuität in der Korrelationsdimension. Die
Stärke des Sprungs der Kaplan-Yorke Dimension wird für ein Netzwerk aus Ber-
noulli Einheiten als Funktion der Netzwerkgröÿe berechnet. Desweiteren wird das
Skalierungsverhalten der Kaplan-Yorke Dimension sowie der Kolmogoroventropie in
Abhängigkeit der Systemgröÿe und der Zeitverzögerung untersucht. Zu guter Letzt
wird eine Verstimmung der Einheiten, d.h., ein �parameter mismatch�, eingeführt
und analysiert wie diese das Verhalten der Attraktordimension ändert.
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Im dritten und letzten Teil wird die lineare Antwort eines synchronisierten chao-
tischen Systems auf eine kleine externe Störung untersucht. Diese Störung bewirkt
eine Abweichung der Einheiten vom perfekt synchronisierten Zustand. Die Vertei-
lung der Abstände zwischen zwei Einheiten dient als Maÿ für die lineare Antwort
des Systems. Diese Verteilung sowie ihre Momente werden numerisch und für Spezi-
alfälle auch analytisch berechnet. Wir �nden, dass im synchronisierten Zustand, in
Abhängigkeit der Parameter des Systems, Verteilungen auftreten können die einem
Potenzgesetz gehorchen und dessen Momente divergieren. Als weiteres Maÿ für die
lineare Antwort wird die Bit Error Rate einer übermittelten binären Nachricht ver-
wendet. The Bit Error Rate ist durch ein Integral über die Verteilung der Abstände
gegeben. In dieser Arbeit wird sie vorwiegend numerisch untersucht und wir �nden
ein komplexes, nicht monotones Verhalten als Funktion der Kopplungsstärke. Für
Spezialfälle weist die Bit Error Rate eine �devil's staircase� auf, welche mit einer
fraktalen Struktur in der Verteilung der Abstände verknüpft ist. Die lineare Ant-
wort des Systems auf eine harmonische Störung wird ebenfalls untersucht. Es treten
Resonanzen auf, welche in Abhängigkeit von der Zeitverzögerung unterdrückt oder
verstärkt werden. Eine bi-direktional gekoppelte Kette aus drei Einheiten kann eine
Störung vollständig heraus �ltern, so dass die Bit Error Rate und auch das zweite
Moment verschwinden.
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Abstract

In this thesis we study various aspects of chaos synchronization of time-delayed
coupled chaotic maps. A network of identical nonlinear units interacting by time-
delayed couplings can synchronize to a common chaotic trajectory. Even for large
delay times the system can completely synchronize without any time shift.

In the �rst part we study chaotic systems with multiple time delays that range
over several orders of magnitude. We show that these time scales emerge in the
Lyapunov spectrum: Di�erent parts of the spectrum scale with the di�erent delays.
We de�ne various types of chaos depending on the scaling of the maximum expo-
nent. The type of chaos determines the synchronization ability of coupled networks.
This is, in particular, relevant for the synchronization properties of networks of net-
works where time delays within a subnetwork are shorter than the corresponding
time delays between the di�erent subnetworks. If the maximum Lyapunov exponent
scales with the short intra-network delay, only the elements within a subnetwork
can synchronize. If, however, the maximum Lyapunov exponent scales with the long
inter-network connection, complete synchronization of all elements is possible. The
results are illustrated analytically for Bernoulli maps and numerically for tent maps.

In the second part the attractor dimension at the transition to complete chaos
synchronization is investigated. In particular, we determine the Kaplan-Yorke di-
mension from the spectrum of Lyapunov exponents for iterated maps. We argue
that the Kaplan-Yorke dimension must be discontinuous at the transition and com-
pare it to the correlation dimension. For a system of Bernoulli maps we indeed �nd
a jump in the correlation dimension. The magnitude of the discontinuity in the
Kaplan-Yorke dimension is calculated for networks of Bernoulli units as a function
of the network size. Furthermore the scaling of the Kaplan-Yorke dimension as well
as of the Kolmogorov entropy with system size and time delay is investigated. Fi-
nally, we study the change in the attractor dimension for systems with parameter
mismatch.

In the third and last part the linear response of synchronized chaotic systems to
small external perturbations is studied. The distribution of the distances from the
synchronization manifold, i.e., the deviations between two synchronized chaotic units
due to external perturbations on the transmitted signal, is used as a measure of the
linear response. It is calculated numerically and, for some special cases, analytically.
Depending on the model parameters this distribution has power law tails in the
region of synchronization leading to diverging moments. The linear response is also
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quanti�ed by means of the bit error rate of a transmitted binary message which
perturbs the synchronized system. The bit error rate is given by an integral over the
distribution of distances and is studied numerically for Bernoulli, tent and logistic
maps. It displays a complex nonmonotonic behavior in the region of synchronization.
For special cases the distribution of distances has a fractal structure leading to a
devil's staircase for the bit error rate as a function of coupling strength. The response
to small harmonic perturbations shows resonances related to coupling and feedback
delay times. A bi-directionally coupled chain of three units can completely �lter out
the perturbation. Thus the second moment and the bit error rate become zero.
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Chapter 1

Introduction

Dynamical systems which are coupled in some way can synchronize their properties
[1]. Oscillators, for example, can synchronize their periodic motion, i.e., their phase
and/or their frequency.

Synchronization of coupled oscillators was �rst described and investigated by
Huygens in the 17th century. While observing two clocks which were suspended at the
same wooden beam he realized that they synchronized their phases and frequencies.
The wooden beam served as a connection which transmitted the tiny oscillations of
the clocks, hence coupling the clocks.

Synchronization is ubiquitous in nature. It occurs in all kind of subjects, from
chemistry over biology and medicine to physics and engineering. For example the cir-
cadian rhythm of mammals including human beings is synchronized to the Earth's 24
hour period. In engineering synchronization is often deliberately used for frequency
stabilization in electric circuits. Even in �nance it plays a role in the synchronization
of economic activities. Synchronization also typically occurs in complex networks as
a collective behavior of the network elements [2�7]. Complex networks are present
in nature as well as in technology and are of very much importance especially in our
highly interconnected world. Typical examples are food webs, the internet and so-
cial networks with millions of di�erent elements. These elements can form subgroups
with a hierarchy, yielding a complex structure. The dynamical units of such networks
can synchronize giving rise to a collective behavior. For example, in neuroscience it
is well known that neurons can synchronize their �ring patterns. The natural pace-
maker cells of the human heart, controlling the electrical signals causing the heart to
pump, also synchronize. In Southeast-Asia �re�ies synchronize the phases of their
�ashes until eventually a whole population of �re�ies �ashes in unison.

There exists various types of synchronization. Besides phase and frequency syn-
chronization, complete synchronization where all system properties are synchronized
is also possible. If the states of the systems are identical at all times one speaks of
identical synchronization, whereas for generalized synchronization the states of the
systems are related by some functional form. For many applications the coupling
signals are transmitted with a time delay which is much larger than the internal time
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1. Introduction

scales of the individual oscillators. Nevertheless it is possible for the dynamical sys-
tems to synchronize without any time shift (isochronal or zero-lag synchronization).
If the states of the synchronized systems do not coincide at the same time, but one
systems lags behind the other system one speaks of achronal or lag synchronization.

It is surprising that not only oscillating system can synchronize but that syn-
chronization is also possible for chaotic systems [8, 9]. Chaos was �rst observed
in numerical simulations by Lorenz who studied a simpli�ed mathematical model
for atmospheric convection in 1963 [10]. He discovered that the deterministic sys-
tem, which he was investigating, showed an irregularly oscillating behavior for a
wide range of parameters. The trajectories settled onto a strange attractor. For the
Lorenz equations this attractor is called Lorenz attractor and it resembles the two
wings of a butter�y. The characteristic property of chaos is the sensitive dependence
of the system's dynamics on the initial conditions which is also popularly referred to
as butter�y e�ect. The sensitive dependence on initial conditions was already men-
tioned by Henri Poincaré in a particular case of the three-body problem in 1890 [11].
Small deviations are exponentially ampli�ed leading to an unpredictable dynamics
on long time scales in practice. Hence, one would naively think that synchronization
cannot occur in chaotic systems. However, it is possible for coupled chaotic systems
that deviations transversal to the synchronization manifold are reduced while devia-
tions within the manifold are ampli�ed, leading to a synchronized chaotic dynamics.
This was �rst shown by Pecora and Carroll in 1990 [12].

Chaos synchronization is of fundamental interest in nonlinear dynamics, with ap-
plications in neural networks, coupled lasers, electronic networks, tra�c dynamics,
genetic circuits and secure communication to name a few [13�18]. A particularly
interesting phenomenon in this context is the zero lag synchronization of chaotic
units, despite the long interaction delays [19�23]. This phenomenon can be applied
for chaos based cryptography [24]. Communication by synchronized chaotic elec-
tronic circuits [25�27] as well as by synchronized chaotic lasers [28, 29] have been
demonstrated in the laboratory. Secure communication with chaotic lasers has even
been realized in a commercial �ber-optic network over a 120 km distance [30]. The
standard devices used in optical chaos synchronization are semiconductor lasers with
optical feedback. By re-injecting parts of the output light back into the cavity, with
the help of an external mirror, the laser can become chaotic, i.e., the amplitude and
phase show a chaotic dynamics. The dynamics of the chaotic laser intensity can,
to a good approximation, be described by a system of delayed coupled di�erential
equations, the so-called Lang-Kobayashi equations [31]. Many of the e�ects which
occur for coupled lasers modeled by the Lang-Kobayashi equations, also occur for
much simpler systems described by coupled maps. In this thesis we study such maps
and try to obtain generic results for chaos synchronization which are also valid for
more complex systems such as chaotic lasers.
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1.1 Outline

1.1 Outline

The thesis is divided into two sections. In Chapters 2 and 3 the background theory is
presented. It is then applied in Chapters 4, 5 and 6 to investigate various aspects of
chaos synchronization of time-delayed coupled chaotic maps. No special knowledge
of chaos theory is assumed. All concepts of chaos theory which are of relevance in
this context are introduced in the two theory chapters.

In Chapter 2, the basic concepts of chaos theory are presented. The mathemat-
ical/physical meaning of the term "chaos" is de�ned. Lyapunov exponents, as a
quantitative measure of chaos, are explained and a chaotic attractor and its dimen-
sion is de�ned. Also, some simple chaotic systems are presented.

Chapter 3 deals with more advanced concepts of chaos theory focusing on chaos
synchronization of networks. In particular, the master stability function method,
the main tool for analyzing the synchronization properties of a chaotic network, is
presented. The theory is illustrated by a simple system of two coupled maps for
which analytical as well as numerical results are shown.

In Chapter 4, chaotic systems with multiple delays on di�erent time scales are
studied. A single Bernoulli map with di�erent self-feedback is analyzed analytically
and the obtained insights are then applied to a network of networks with di�erent
delays between subnetworks and within a subnetwork. A network of tent maps is
investigated numerically.

Chapter 5 discusses the attractor dimension at the transition to complete chaos
synchronization. Two de�nitions of the dimension of a chaotic attractor are studied.
The Kaplan-Yorke dimension is determined from the spectrum of Lyapunov expo-
nents and is compared to the correlation dimension, which is obtained from analyzing
the systems dynamics. For Bernoulli networks the scaling of the Kaplan-Yorke di-
mension as well as of the Kolmogorov entropy with system size and time delay is
investigated. The investigations of the attractor dimension are �nally extended to
systems with parameter mismatch.

In Chapter 6 the linear response of synchronized chaotic systems to small ex-
ternal perturbations is studied. On the basis of two coupled chaotic units di�erent
quantities for measuring the linear response to noisy signals, such as the second mo-
ment and the bit error rate, are de�ned and studied. Thereafter the investigation of
the linear response is extended to more complicated models, in particular to a chain
of three units and a four units network.

Finally, Chapter 7 gives a summary of the results and discusses potential topics
for future research.
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Chapter 2

Basic Theory � Introduction to

Chaos Theory

In this chapter we aim to derive some of the basic concepts of chaos theory which
we can build on in later chapters.

In the �rst section we give a de�nition of a chaotic system. In the following sec-
tions some basic notions are introduced. In particular, the Lyapunov exponent, which
gives a quantitative measure of chaos, is explained and a strange or chaotic attractor
and its dimension is de�ned. Also, some simple chaotic systems are presented.

This chapter is a very condensed review about the main important principles of
chaos theory. A more comprehensive introduction to the basic concepts can be found
in the book of Strogatz [32] and, on a more advanced level, in the book of Schuster
and Just [8].

2.1 De�nition of Chaos

In contrast to everyday language a chaotic system is by no means a "messy" system
which cannot be handled or investigated mathematically. It is rather a dynamical
system which mathematical treatment is quite complicated and for which one cannot
make any long term predictions. There is no universally accepted mathematical
de�nition but a mathematical not rigorous de�nition of chaos which captures the
three key ingredients is the following:

"Chaos is aperiodic long-term behavior in a deterministic system that exhibits
sensitive dependence on initial condition." [32]

Even though the system is deterministic in principle, i.e., the system's future
is fully determined by its initial conditions with no random elements involved, in
practice its behavior cannot be predicted accurately in the long term. This is due
to the nonlinearities which cause the system to be highly sensitive to the initial
conditions such that small initial di�erences eventually yield very di�erent outcomes.
In more mathematical terms, two initially close-by trajectories separate exponentially
fast with time. By aperiodic behavior it is meant that the system will not settle down

5



2. Basic Theory � Introduction to Chaos Theory

to a �xed point nor will eventually repeat its dynamics. This will be explained in
more detail in the section about chaotic attractors, see Section 2.3. These properties
of chaotic systems are making long term-predictions impossible in general.

2.2 Lyapunov Exponents

The sensitive dependence on initial conditions of chaotic systems, which causes two
initially nearby trajectories to separate exponentially fast with time, can be described
in a more quantitative way.

Consider two trajectories which are initially separated by a distance δ(0). An
exponentially fast separation means that the distance for future times δ(t) evolves
according to

|δ(t)| ∼ |δ(0)|eλt , (2.1)

where the exponent λ is usually called the (largest) Lyapunov exponent (LE). For
λ > 0 the trajectories separate exponentially fast and the system has a chaotic
behavior.

For higher dimensional systems there is not only one LE but for each system's
dimension there is a corresponding LE. This set of LEs is called LE spectrum. Thus
an in�nitesimal sphere in phase space describing the initial uncertainty of a state
will become distorted into an ellipsoid with the k-th LE determining the evolution
of the k-th principle axis of the ellipsoid. In most cases the evolution of the ellipsoid
is dominated by the largest LE and it is therefore su�cient to only consider this
exponent and neglect the smaller ones when investigating the stability of a system.

In the following we will derive an analytical expression for the LE in case of maps.
Analytically computing the largest LE or the whole spectrum of LEs can only be
done in a few, very rare cases. In general we have to rely on numerical simulations to
compute a system's LEs spectrum. An algorithm to accomplish this task is presented
subsequently.

2.2.1 Lyapunov Exponents of Iterated Maps

We start with a discrete map which reads as

xt+1 = f(xt) , (2.2)

and consider an initial perturbation δx0 such that it is

x1 + δx1 = f(x0 + δx0) . (2.3)

Linearizing equation (2.3) we �nd for the pertubation

δx1 = f ′(x0)δx0 . (2.4)

6



2.2 Lyapunov Exponents

Iterating this equation further we eventually obtain

δxt = f ′(xt−1) f
′(xt−2) . . . f

′(x0) δx0 =

t−1∏
t=0

f ′(xt) δx0 . (2.5)

The LE is de�ned as the mean exponential divergence or convergence of a sequence

|δxt| ≈ eλ t |δx0| , (2.6)

with t→∞ and |δx0| → 0. Hence we �nd for the LE

λ = lim
t→∞

1

t

t−1∑
i=0

ln |f ′(xi)| . (2.7)

If the probability distribution ρ(x) of state x is know the LE can be obtained from
following formula:

λ =

∫
ln |f ′(x)| ρ(x) dx . (2.8)

2.2.2 Numerical Computation of Lyapunov Exponents

In general we do not know the probability distribution ρ(x) and therefore have to
rely on numerical simulations to obtain the LE. Also, the computation of the whole
LE spectrum of a system has usually to be done by means of numerical simulations.

To numerically obtain the spectrum of LEs of a dynamical system of the form1

d

dt
x(t) = f(x) , (2.9)

which has the following variational equation

d

dt
δx(t) = Df(x) δx(t) , (2.10)

a Gram-Schmidt orthonormalization procedure according to Farmer can be used [33].
In presenting the algorithm I closely follow the PhD thesis of Flunkert [34].

The Gram-Schmidt procedure is depicted in Figure 2.1 for a system of dimension
two. In order to compute the nmany leading LEs n orthonormalized initial perturba-
tions must be chosen (black arrows in left sketch). These perturbations are subjected
to the system's dynamics and evolve according to the LEs of the (eigen-)directions
(red arrows) the perturbations have components in. This evolution of the perturba-
tions is dominated by the largest LE2. Thus eventually most of the perturbations

1The algorithm is presented for the more general case of di�erential equation but is the same for
iterated maps. For maps simply replace the di�erential equation and the variational equation with
its discrete counterparts, equations (2.2) and (2.4).

2To be more precise for all perturbations which have a component in the direction of the largest
LE.
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Figure 2.1: Illustration of the Gram-Schmidt procedure.

will align in the direction of the largest LE (black solid arrows in right sketch). After
an appropriate time the perturbation vectors have to be realigned (so that they will
eventually align in the directions of the n leading LE) and renormalized (so that
they do not become in�nity). The blue arrows have been orthogonalized with re-
spect to the upper black solid arrow and have eventually been normalized. With
these new perturbation vectors the procedure is repeated. After su�cient iterations
the perturbation vectors will eventually align in the (eigen-)directions of the LEs.
Keeping track of the growth rate of the perturbation vectors between succeeding
orthonormalization processes yields the LEs.

The precise algorithm for numerically computing the spectrum of LEs is as follow
[35]:

1. In order to obtain the �rst n LEs, choose i = 1, 2, · · · , n orthonormal pertur-
bation vectors δ~xi(0)

2. Simulate the system equation (2.9) and the variational equation (2.10) for each
δ~xi(0) over an appropriate period t

3. Orthogonalize the resulting perturbation vectors δ~xi(t) using a Gram-Schmidt
procedure to obtain the vectors δ~xi(t) (no normalization).

4. An estimate for the i-th LE is given by λi = 1
t ln |δ~xi(t)||δ~xi(0)| = 1

t ln |δ~xi(t)|

5. Normalize δ~xi(t) and start from 2 with these vectors

6. Calculate the mean for each λi

2.3 Chaotic Attractor and its Dimension

The long-term behavior of a dynamical system is determined by the type of the
attractor of the system (in case that the trajectories are not going to in�nity). After a
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transient phase the state of a system will approach an attractor which has a dimension
which is in general smaller than the initial phase space. An attractor is loosely
speaking a region in phase space which attracts all system's trajectories in its vicinity.
A mathematical more precise de�nition can, for example, be found in reference [36]
or [37].

As classical attractors there exist �xed points, limit cycles and quasiperiodic at-
tractors. In contrast to these classical attractors, on a strange or chaotic attractor3

the trajectories exhibits sensitive dependence on initial conditions. Nevertheless all
neighboring trajectories converge to the strange attractor. Thus the trajectories are
con�ned to a bounded region of the phase space, the attractor, yet they separate
exponentially fast (at least initially) without being periodic. This seemingly con-
tradiction is explained by a stretching and folding mechanism.4 Since trajectories
cannot intersect in the phase space the dimension of the phase space must be larger
than two in order for this stretching and folding mechanism to happen. Thus chaos
can only occur in dynamical systems with a phase space dimension larger than two.
Note that this restriction is not valid for maps where trajectories are not lines in
phase space but where the points can "jump around" wildly in phase space.

A dimension can be assigned to these various attractors. A �xed point has the
dimension zero, a limit cycle the dimension one and a quasiperiodic attractor the
dimension two or larger. Chaotic attractors do not have an integer dimension but a
fractal dimension. There exists numerous de�nitions for the dimension of a chaotic
attractor which should all yield the correct integer dimension for classical problems.
These de�nition can be mainly split in two groups the so-called metric dimensions

and the dimension of the natural measure.
For the metric dimensions some kind of metric is needed, i.e., a de�nition of space

where the distance of two points is de�ned. The dimension of the natural measure
needs beyond that some kind of probability distribution which weights the density
of trajectories in the di�erent regions of the attractor. The most common metric di-
mensions are the box (or capacity) and the Hausdor� dimension. Typical dimensions
of the natural measure are information, pointwise and correlation dimension.

Another de�nition of dimension which conceptually neither �ts to the metric
dimension nor the dimension of the natural measure is the Kaplan Yorke (KY)

dimension. Sometimes it is also referred to as Lyapunov dimension. It focuses
on the dynamical properties of the attractor (temporal mean values of the diver-
gence/convergence of nearby trajectories) whereas the former two de�nitions focus
on the statistical properties (spatial mean values in the phase space). They are
related by the ergodic theory.

3The term strange attractor was �rst introduced by Ruelle and Taken in 1971 [38].
4A simple example illustrates the separation of an initially dense set onto a vast but limited

region very well. Imagine a dough with a small blob of food coloring. The dough gets �atten,
folded over and rolled out again. This process is repeated several times until eventually the blob
is spread out over the whole dough. A similar mechanism causes the trajectories on the chaotic
attractor to be separated exponentially fast while at the same time being con�ned to a bounded
region.

9
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The practical meaning of the dimension of an attractor is that it characterizes
the attractor and its underlying dynamics (periodic, chaotic...) and that it yields
the number of necessary parameters to describe the system.

In the following we will explain the information, correlation and the KY dimen-
sion in more detail since we will use these de�nitions later in this work. A good and
more comprehensive review of the various de�nitions of dimension can be found in
reference [39].

2.3.1 Information Dimension

The information dimension DI is a generalization of the box dimension DB. The box
dimension is de�ned by the scaling of the number of boxes N(ξ) of n-dimensional
cubes, which are needed to cover the entire attractor, with its edge length ξ. It is
N(ξ) ∼ ξ−DB .

The information dimension takes into account the relative probability pi of the
cubes used to cover the attractor, i.e., the natural measure of the attractor. First,
we introduce the information function

I(ξ) =

N(ξ)∑
i=1

pi log
1

pi
, (2.11)

which in information theory is "the amount of information necessary to specify the
state of a system to within an accuracy ξ, or equivalently, it is the information
obtained in making a measurement that is uncertain by an amount ξ" [39]. The
information dimension is then de�ned as

DI = lim
ξ→0

I(ξ)

log 1/ξ
. (2.12)

Note, for equal probabilities pi = 1
N(ξ) it follows I(ξ) = logN(ξ) and henceDI = DB.

Whereas in general it is DI ≤ DB.

2.3.2 Correlation Dimension

The correlation dimension was introduced by Grassberger and Procaccia [40, 41] and
is the de�nition which is generally used in practical applications. Unless most other
de�nitions which are mostly of theoretical use this de�nition o�ers a feasible method
for computing the attractor dimension numerically.

The correlation function C(ξ) gives the probability that two arbitrary points of
a given time series x have a spatial distance less or equals ξ. It is given by

C(ξ) =
2

N(N − 1)

N∑
i=1

N∑
j=i+1

Θ(ξ − |xi − xj |) , (2.13)

where Θ is the Heaviside step function and xi and xj are two arbitrary points of the
time series of length N .

10



2.3 Chaotic Attractor and its Dimension

The correlation function scales like a power law for small ξ, C(ξ) ∼ ξDC , and
de�nes the correlation dimension DC by

DC = lim
ξ→0

lim
N→∞

∂ lnC(ξ,N)

∂ ln ξ
. (2.14)

The correlation dimension sets a lower bound on the di�erent de�nitions of the
attractor dimension. In particular, it is

DC ≤ DI ≤ DB . (2.15)

2.3.3 Kaplan-Yorke Dimension

Almost every initial condition in the basin of an attractor has the same LEs λi, thus
the spectrum of LEs can be seen as a property of the attractor. Therefore we can
associate the spectrum of LEs of an attractor with its dimension. Kaplan and Yorke
were the �rst who draw this connection between the LE spectrum and the dimension
of an attractor [42].

Considering a discrete spectrum λ1 ≥ λ2 ≥ . . ., the KY dimension5, DKY , is
de�ned as the largest number M for which the sum of LEs is still positive plus an
interpolation term which yields the fractal part of the dimension,

DKY = M +

∑M
k=1 λk
|λM+1|

. (2.16)

In their original work Kaplan and Yorke conjectured that the KY dimension is
equals the capacity dimension which has later on be disproved by means of some
counterexamples. Nowadays it is conjectured that for a typical attractor the KY
dimension is equals the information dimension [43, 44], i.e.,

DKY = DI , (2.17)

which is commonly referred to as the Kaplan-Yorke conjecture. Note that "typical"
is used since there exists non-generic examples for which the KY conjecture does not
hold [40]. But the validity of the KY conjecture is generally restored when small
perturbations are added to these non-generic examples.

Kolmogorov entropy

From the Lyapunov spectrum we can also calculate the Kolmogorov entropy, K,
which quanti�es the predictability of the system [45]. It is de�ned as the sum over
all positive LEs

K =
∑
i

λi forλi > 0 . (2.18)

5The KY dimension is sometimes also called Lyapunov dimension.
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Figure 2.2: Bernoulli map with a = 1.5

The smaller the Kolmogorov entropy, the more predictable the system. In other
words, K is a measure for the chaoticity of the system. The more chaotic the system
is the shorter the time span is for which accurate prediction can be made. The
prediction time is t ∼ 1/K.

2.4 Simple Chaotic Systems

In the following we will present some simple chaotic systems, namely discrete maps
of the form

xt+1 = f(xt) . (2.19)

The huge advantage of a map is that its simulation needs much less computational
power than the simulation of continuous �ows. The current state is mapped to a
future state by a simple rule, whereas for �ows di�erential equations have to be inte-
grated by, for example, a Runge-Kutta method which is a computationally intensive
task.

2.4.1 The Bernoulli Map

The Bernoulli map is given as

f(x) = (a x) mod 1 , (2.20)

and is chaotic for a > 1. A plot of the map is shown in Figure 2.2.
The Bernoulli map is a very popular chaotic model because of its simplicity.

In the derivation of its derivative the discontinuity can be neglected and hence the
derivative can be considered as constant [46]

f ′(x) = a . (2.21)

This allows for an analytical treatment in contrast to most other chaotic models.
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Figure 2.3: Tent map with a = 0.4

The LE of the map is obtained from equation (2.7) and yields

λ = ln a . (2.22)

Thus the LE is positive, and hence the Bernoulli map becomes chaotic, for a > 1.
A convenient choice for the parameter a for the Bernoulli map is a = 1.5 since for
small values of a the map is only weakly chaotic and for values a > 2 there is more
than one discontinuity in the interval [0, 1].

2.4.2 The Tent Map

The tent map is given as

f(x) =

{
1
a x for 0 ≤ x < a
1

1−a (1− x) for a ≤ x ≤ 1
. (2.23)

For the map to be chaotic we have to choose the parameter a to be 0 < a < 1. A
typical plot of the map is shown in Figure 2.3.

For a single Tent map the values of x are uniformly distributed among all possible
values 0 ≤ x ≤ 1. Therefore, with the probability of a we are on the left branch of
the map, which increases with a constant slope of value a, and with the probability
a − 1 on the right branch, which decreases with a constant slope of value a − 1.
Substituting this probability distribution ρ(x) for the tent map into equation (2.8)
we obtain the following LE,

λ = −a ln a− (1− a) ln (1− a) . (2.24)

It is positive for 0 < a < 1.

2.4.3 The Logistic Map

The logistic map is given as

f(x) = a x(1− x) , (2.25)
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Figure 2.4: Logistic map with a = 4
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Figure 2.5: Probability distribution ρ(x) for the logistic map with a = 4 (dashed
red curve) together with a normalized histogram of the map for l = 106 time steps.

where the parameter a is typical set to a = 4 to ensure that the map is chaotic.
For other choices of a we might run into one of the various periodic windows of the
logistic map.

For a = 4 an analytical expression for the probability density ρ(x) of the state x
can be derived which reads [45]

ρ(x) =
1

π
√
x(1− x)

. (2.26)

Figure 2.4 shows a plot of the map and Figure 2.5 shows the distribution ρ(x)
together with a histogram obtained from simulations of the dynamics of the logistic
map.
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Chapter 3

Advanced Theory � Chaos

Synchronization

After having introduced some basic concepts of chaos theory and some simple chaotic
systems we focus on chaos synchronization in this chapter.

We start by presenting a general model of a network consisting of identical chaotic
units. This is the basic model which will be considered in di�erent aspects throughout
the thesis. A network of identical units can in principle completely synchronize.
The stability of synchronization is analyzed mainly by means of the master stability
function method. It is also shown how the synchronization of a network can be
measured in numerical simulations. These methods are then applied to a system
of coupled maps to illustrate the theory. Finally, sub Lyapunov exponents and the
concept of weak and strong chaos are introduced.

3.1 Networks

A network is composed of nodes and links connecting these nodes. Since we are
interested in chaos synchronization the nodes represent chaotic units such as the
ones presented in the previous chapter. The topology of the network is given by the
adjacency matrix. Its eigenvalues determine the synchronization properties of the
network, as we will see later in this chapter.

The systems which we investigate in this work are networks composed of identical
units which can send signals via links, i.e., they are coupled in some way. One can for
example think of lasers which are connect via glass �bers [30]. The coupling strength
shall be adjustable and is described by some coupling parameters. The signal which
is sent from one unit to another generally has a �nite travel time. Thus there is
usually a time delay present in the system.

The dynamics of the ith unit with the dynamical variable xi(t) in such a network
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composed of N units is given by the following di�erential equation

ẋi(t) = η0 F [xi(t)] + ηs F [xi(t− τs)] + σ
N∑
j

Gij H[xj(t− τc)] . (3.1)

The dynamic variable xi(t) can in general be multi-dimensional. The function F [x]
speci�es the internal dynamics of the units and the function H[x] couples the time-
delayed variable of the connected units. The topology of the network, i.e., which
units are coupled and their coupling strength, is given by the adjacency matrix Gij .
We choose the row sum of Gij to be constant,

∑
j Gij = 1, with Gii = 0 and all

other entries non negative. Thus the adjacency matrix only de�nes the coupling
between di�erent units and every unit normalizes its input from all other units. The
�rst part on the left hand side of equation (3.1) describes the local dynamics of the
unit and is weighted with the parameter η0, the second part gives the self-feedback
with strength ηs and the third part the external coupling where σ determines the
strength of the coupling. In this way we are able to adjust the delay times and the
coupling strength of the external- and the self-coupling independently. All external
delay times, τc, and all self-feedback times, τs are identical, respectively.

Equation (3.1) is motivated from systems of coupled chaotic semiconductor lasers.
A laser with delayed feedback is modeled by the Lang-Kobayashi equations [31]
which, for a network of lasers, can be written in the form of equation (3.1). The
systems variable xi(t) is then a three dimensional vector containing the real and
imaginary part of the electric �eld and the charge carrier inversion of the ith laser.

Figure 3.1 shows a ring network of four coupled units with self-feedback which is
described by equation (3.1) and for which the adjacency matrix looks as follows

G =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 . (3.2)

A matrix with nonnegative entries and row sum equals one is called stochastic

matrix and has some speci�c properties.

Perron-Frobenius-Theorem Every stochastic square matrix with real nonnega-
tive entries has the real eigenvalue γ0 = 1 and for every other eigenvalue, γi, it is
|γi| ≤ 1 [47].

3.2 Synchronization in Networks

The various interacting units of a network can synchronize [1, 7, 9]. There exists nu-
merous kinds of possible synchronization patterns such as complete synchronization
where all states of the system coincides or cluster synchronization where the system is
clustered in groups which are synchronized independently from one another. We can
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Figure 3.1: Ring network of four identical units with uni-directional coupling and
self-feedback.

also distinguish between isochronal (equal in time) and achronal (di�erent in time)
synchronization and di�erent synchronization types such as identical or generalized
synchronization. For identical synchronization the states of the synchronized units
are identical whereas for generalized synchronization there is a functional relation
between the states.

In the following we will focus on complete isochronous synchronization. A net-
work of identical chaotic units with time-delayed couplings can synchronize to a
common chaotic trajectory without any time shift between these units which in this
case is also referred to as zero lag synchronization [48�52].

The completely synchronized state s(t) = x1(t) = x2(t) = . . . is a solution of
the system's equations (3.1) of the network presented in the previous section. The
dynamics of the completely synchronized system is reduced to the dynamics of a
single unit and is given by

ṡ(t) = η0 F [s(t)] + ηs F [s(t− τs)] + σH[s(t− τc)] . (3.3)

In other words the dynamics of the synchronized system is con�ned to the synchro-
nization manifold (SM) and is independent of the topology of the network, e.g., the
number of units and their couplings. We consider only networks where this equation
has chaotic solutions for su�ciently large values of σ, i.e., equation (3.3) yields at
least one positive LE.

Note that the coupling scheme with
∑

j Gij 6= 0 which we have chosen is called
invasive coupling since in case of complete synchronization the system's dynamics
is still rendered by the coupling of the units. The in�uence of the coupling terms
with time delay τc is present in the synchronized case due to the non vanishing
sum of

∑
j Gij 6= 0. Hence the dynamics of the synchronized system di�ers from

the dynamics of a single isolated unit of the network. In contrast, for a di�usive
coupling, where

∑
j Gij = 0, the dynamics of the synchronized system is identical to

the dynamics of an isolated unit of the system.
The existence of a synchronized solution does not necessarily mean that the
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system synchronizes or keeps synchronized in practice. Therefore the stability of the
synchronized state is of much importance. The synchronization is stable if small
perturbations to the synchronized state do not a�ect the synchronization of the
system, i.e., if small perturbations from the SM are damped. The synchronization
is unstable if small perturbations increases with time and eventually destroy the
synchronization. The stability of the synchronization of networks of identical units,
in particular with regard to coupling strengths, can be analyzed by means of a master
stability function.

3.2.1 Master Stability Function

The master stability function method was introduced by Pecora and Carroll [53] to
determine the stability of a completely synchronized state of a system in a general
approach, without having to de�ne the details of the setup or the particular coupling.
The idea is to do a linear stability analysis of the system around the SM and decouple
the resulting equations by diagonalizing the coupling matrix. Eventually a single
equation for each eigenmode of the system is obtained determining its stability. It
was originally applied to networks of identical units without any delays but has in
the meantime been extended to systems with delayed couplings [54] and with non
identical units [55, 56].

In order to investigate the stability of the completely synchronized state we ex-
amine how small perturbations, δxi(t), from the synchronized state evolve with time,
whether they will decay, such that the synchronized state is stable or whether the
perturbations will grow, such that the system eventually desynchronizes, i.e., the
synchronization is unstable.

Linearizing the system's equations (3.1) around the synchronized state, s, i.e.,
for xi(t) = s(t) + δxi(t), we obtain

δẋi(t) = η0DF [s(t)] δxi(t) + ηsDF [s(t− τs)] δxi(t− τs)

+σ

N∑
j

Gij DH[s(t− τc)] δxj(t− τc) . (3.4)

This is a system of N coupled linear di�erential equations with time delayed feedback
and time dependent coe�cients. The adjacency matrix, G, can be diagonalized such
that the set of equations decouple. Each of the resulting equations is associated with
an eigenvector, ~yl, of the adjacency matrix and its corresponding eigenvalue γl, with
l = 1, . . . , N .

Any arbitrary in�nitesimal perturbation δ~x of the synchronized trajectory can
be decomposed into the eigenvectors of the system, i.e., δ~x =

∑
k ξk ~yk with ξk being

the amplitude in the direction of the kth mode. The equations for the amplitudes
read

ξ̇k(t) = η0DF [s(t)] ξk(t) + ηsDF [s(t− τs)] ξk(t− τs)
+σ γkDH[s(t− τc)] ξk(t− τc) . (3.5)
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Figure 3.2: Synchronization manifold with eigenmodes of a system of two mutually
coupled units.

This is know as the master stability function where the coupled system equations
have been transformed to uncoupled equations by diagonalizing the coupling matrix.
Each of the resulting equations describes a perturbation in the direction of one of
the eigenmodes of the system. Choosing the row sum of the coupling matrix as∑

j Gij = 1 ensures that the largest eigenvalue of G is γ1 = 1 corresponding to the

so-called longitudinal eigenmode of form ~y = (1, 1, . . . , 1)T describing perturbation
within the SM. All other eigenmodes with eigenvalues γl, l = 2, ..., N correspond to
perturbations transversal to the SM and are therefore called transversal eigenmodes.

Example: A network of two mutually coupled units has the adjacency matrix

G =

(
0 1
1 0

)
with the eigenvalues γ1 = 1 and γ2 = −1 and the corresponding eigen-

vectors ~y1 =

(
+1
+1

)
and ~y2 =

(
+1
−1

)
. A perturbation in the direction of the �rst

mode, ~y1, perturbs both units in the same way and therefore the system stays syn-
chronized. Whereas a perturbation in direction of the second mode, ~y2, destroys the
synchronization since the units are perturbed in opposite directions, i.e., perpendic-
ular to the SM. This is depicted in Figure 3.2 where the diagonal line is the SM on
which it is x1 = x2.

Solving the master stability function, equation (3.5), for example by a Gram-
Schmidt orthonormalization procedure as described in Section 2.2.2, it yields a whole
spectrum of LEs for each eigenvalue γk of G. For time continuous chaotic systems
with time delayed couplings (including self-feedback for a single unit) the system is
in�nite dimensional and has a continuous spectrum of LEs. In the chaotic regime,
perturbations within the SM increase exponentially fast, i.e., the linearized dynamics
has to be unstable for γ1 = 1. Thus a chaotic system has (at least) one positive
longitudinal LE. For the synchronization to be stable, all perturbations transversal
to the SM must decay exponentially fast, i.e., the master stability function must
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yield only negative LEs for all transversal eigenvalues. Thus the maximum LEs of
each mode k determines whether a perturbation in the direction of this mode decays
or grows, i.e., whether the synchronization is stable or not.

For systems with constant coe�cients in equation (3.5), i.e., DF [x], DH[x] =
const, a polynomial equation of degree τ + 1 (with τ = max(τs, τc)) can be derived.
For these systems the LE spectrum can be obtained analytically by �nding the roots
of the polynomial equation. A typical example is the Bernoulli map where f ′(x) =
a. The derivation of the polynomial equation for Bernoulli systems is discussed in
Section 3.4.

In general we consider networks where the delay times, τs and τc, are much larger
than any other time scale of the system [57]. In this limit, τs = τc → ∞, one can
show that the SM of the network, described by equation (3.1), is stable for

|γmax| < exp(−λmax τ) , (3.6)

with |γmax| the transversal eigenvalue of G with the largest absolute value and λmax
the maximum LE of the SM, equation (3.3) [58, 59]. Equation (3.6) relates the
network's ability to synchronize to an eigenvalue gap, 1−|γmax|, between the largest
eigenvalue of the coupling matrix G, γ1 = 1, and the largest absolute transversal
eigenvalue. In case of |γmax| < 1 the system can synchronize if the chaos is su�ciently
small, that is, in the limit λmax → 0. Since λmax depends on the coupling strength
σ, equation (3.6) determines the critical coupling σc where chaos synchronization
appears.

Note that although the master stability method is a universal stability standard
it is a weak criteria for the stability of synchronization. Unstable periodic orbits
or locally unstable areas on the attractor can cause the system to be temporally
unsynchronized, when there is noise or parameter mismatch, by burst away from the
SM known as attractor bubbling [60�64].

3.3 Quantifying Synchronization in Simulations

In the previous chapter we derived a method to compute the stability of the syn-
chronized state analytically. All LEs corresponding to perturbations transversal to
the SM were required to be negative in order for the synchronization to be stable.
The master stability function method is primarily a theoretical method to determine
the stability and it is mainly important because it relates the stability properties to
the network's topology, i.e., the eigenvalues of the adjacency matrix. In most cases
we are unfortunately not able to solve the master stability equation due to the time
dependent coe�cients. Only for simple systems we can determine the stability by
applying the master stability function method, as we will see in Section 3.4. For
more complex systems we have to rely on numerical simulation and therefore need
to develop other criteria for the stability of the synchronized state. In principle we
could determine the LE spectrum of the system numerically, as described in Section
2.2.2, but this is a rather computationally powerful task. In the following we will
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present two simple criteria to measure the synchronization of two units numerically,
namely the cross correlation and the synchronization probability.

3.3.1 Cross Correlation

One measure for the synchronization of two units is their cross correlation. Com-
puting cross correlations is a standard method from time series analysis to estimate
the degree to which two time series, xt and yt with t = 0, . . . , n, are correlated. It is
de�ned as the mean of the product of the deviation of the two quantities from their
means, normalized by their standard deviations such that it becomes a dimensionless
quantity, i.e,

Cτ =
〈(xt − 〈x〉) (yt−τ − 〈y〉)〉

σxσy
=
〈xtyt−τ 〉 − 〈x〉〈y〉

σxσy
, (3.7)

with the standard deviation σx =
√
〈x2〉 − 〈x〉2 and an optional shift τ between

the two time series. For C = 1 the units are completely synchronized, for C = −1
completely anti-synchronized and for C = 0 totally uncorrelated.

3.3.2 Synchronization Probability

Another measure for the synchronization of two units is the synchronization prob-
ability, φ. It measures the fraction of time for which the two trajectories, xt and
yt, are closer than some threshold Θ, i.e., |dt| = |yt − xt| < Θ. The synchronization
probability is normalized by the total length n of the time series and reads

φ =
# |dt| < Θ

n
. (3.8)

Thus φ = 1 means that the trajectories of the two units are closer than the threshold,
Θ, for all times and are therefore considered as completely synchronized. In contrast
for φ = 0 the units are completely unsynchronized since the trajectories never get
closer than the threshold.

A reasonable choice for the threshold, Θ, is crucial for obtaining correct results.
Choosing the threshold too large will yield synchronization where the system is
not actually synchronized. The synchronization probability is in particular a good
synchronization criterion for systems with noise or small parameter mismatch. In
such systems the trajectories never coincide perfectly but deviate approximately by
the magnitude of the noise or the parameter mismatch, respectively. Setting the
threshold to around the strength of the noise or parameter mismatch, respectively,
will suppress this e�ect when investigating the synchronization.

3.3.3 Numerical Simulations � General Remarks

When simulating chaotic systems we start from random initial conditions. In general
the system goes through a transient phase until it settles into its long term behavior.
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When computing di�erent quantities of the system such as the cross-correlation, the
synchronization probability or the LE spectrum, we have to discard the transient
behavior in order to obtain accurate results. If not stated otherwise we choose the
initial conditions to be random but close together δ < 10−6 such that the system is
nearly synchronized. This ensures that the transient phase and hence the run time
before the system settles into its long term behavior is short. In principle, completely
arbitrary initial conditions can be used but the transient phase can, in this case, be
rather long. For all simulations, if not stated otherwise, the �rst 106 iterations are
discarded which from experience is more than su�cient to ensure that the system
has settled to its long term behavior.

3.4 Chaos Synchronization of Coupled Iterated Maps

In Section 3.1 we presented networks of continuous systems described by coupled
di�erential equations. For a numerical investigation we need to integrate the di�er-
ential equation, for example, by a Runge-Kutta method which is a computationally
intensive task. Iterated maps, in contrast, are much easier to analyze numerically.
The current state is mapped to a future state by a simple iterative rule. Therefore
we will in general investigate networks of iterated maps with time-delayed coupling
rather than coupled di�erential equations in this work. Note that in some respects
chaotic maps have di�erent properties compared to chaotic �ows, for example for
phase synchronization [65], but with regard to complete synchronization maps and
�ows are very similar. Many of the results, presented in this thesis, are also observed
in numerical simulations of chaotic di�erential equations.

Similarly to equation (3.1) which describes a network of continuous units, we can
state an equation for networks of iterated maps such as these presented in Section 2.4.
The dynamics of such a unit i in state xit at time t in a network composed of N units
is given by

xit+1 = (1− ε)f(xit) + εκf(xit−τs) + ε(1− κ)

N∑
j

Gijf(xjt−τc) . (3.9)

The function f(x) speci�es the internal chaotic dynamics of the units. We either
choose the Bernoulli, tent or logistic map, described in Section 2.4. Gij is the ad-
jacency matrix, de�ned as before. The coupling constants are chosen such that the
dynamics of the units is con�ned to the unit interval, where ε weights the internal
dynamics to the delayed dynamics and κ determines the ratio between self-feedback
and external interaction. For example, by setting κ = 0 the self-feedback in the
system is turned o� and by setting κ = 1 all units become decoupled.

The synchronized state

st+1 = (1− ε)f(st) + εκf(st−τs) + ε(1− κ)f(st−τc) , (3.10)

is a solution of the system's equations and determines the SM. Similar to Sec-
tion 3.2.1, perturbations of the SM can be associated with the eigenvalues γk of the
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coupling matrix G determining the topology of the network. The amplitude ξkt of
each mode obeys the linear master stability function

ξkt+1 = (1− ε)f ′(st) ξkt + εκf ′(st−τs) ξ
k
t−τs + ε(1− κ) γkf

′(st−τc) ξ
k
t−τc . (3.11)

In general, this equation cannot be solved analytically due to the time dependent
coe�cients. But for Bernoulli maps, where f ′(x) = a = const, we can do further
analytics.

Note that by construction the system is chaotic for all values of ε since the largest
LE of the longitudinal spectrum, the spectrum determining the dynamics of the SM,
is always positive.

3.4.1 Analytical Results

We assume that the perturbation in direction of the eigenmodes, i.e. the amplitudes
ξkt , are either exponentially decaying or increasing. Thus we use as an ansatz

ξkt = ztk ξ
k
0 , (3.12)

with zk a complex number of the form

zk = eλk+iωk . (3.13)

A perturbation in direction of the kth eigenmode decays exponentially fast if

|zk| < 1 , (3.14)

or equivalent

λk = ln |zk| < 0 , (3.15)

where λk is the LE corresponding to the kth eigenmode.
Substituting f ′(x) = a into the master stability equation (3.11) and using the

ansatz (3.12) we obtain the polynomial equation

zτc+1
k − (1− ε) a zτck − εκ a zτc−τsk − ε(1− κ) a γk = 0 , (3.16)

where τc > τs was assumed. We are able to (numerically) solve this polynomial
equation with respect to zk for di�erent eigenvalues γk. For each γk equation (3.16)
yields τc + 1 many solutions for zk. Hence, we obtain a spectrum of LEs for each
eigenvalue.

For the simple cases of τc = τs = 0 and τc = τs = 1 and also in the limit τ →∞
the roots of the polynomial can be obtained analytically [49, 66, 67]. Hence the
parameter space (ε, κ) for which all transversal LEs associated with the eigenvalue
γk are negative, λk = ln |zk| < 0, can be determined. Complete synchronization is
stable if the transversal LE spectra are negative for all eigenvalues γk, k = 2, ..., N . If
only a few LE spectra are negative there can occur stable sub-lattice synchronization
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depending on the structure of the eigenmodes [67]. Results for systems with multiple
delay times can be found in [58].

In the following we assume identical delay times, τc = τs = τ . In the limit
τ →∞, the critical coupling, for which the kth LE spectrum is negative, is given by

−1− a ε+ a− aεγk
aε(1− γk)

< κ <
1 + a ε− a− aεγk

aε(1− γk)
, (3.17)

see reference [46]. Solving this expression for ε we obtain (in case that γk ∈ R)

εc =

{
a−1

aκ(1−γk)+a(1+γk) for κ ≤ γk
γk−1

a−1
a(1−γk)(1−κ) for κ > γk

γk−1 .
(3.18)

Without any self-feedback, κ = 0, this reduces to

εc =
a− 1

a(1− |γk|)
, (3.19)

such that the critical coupling is directly related to the eigenvalue gap 1 − |γk|.
εc becomes smaller for larger eigenvalue gaps. For ε > εc the corresponding LE
spectrum is negative and perturbations in this direction are exponentially damped.

Figure 3.3 shows the area of negative LE spectrum for di�erent eigenvalues γ.
All tuples (ε, κ) which lie within the area determined by the two lines (lower and
upper bound on κ, see equation (3.17)) yield a negative LE spectrum.

Note, a network of two mutually coupled chaotic units has the transversal eigen-
value γ = −1 and can never synchronize without self-feedback, i.e., for κ = 0. A
master-slave setup of two uni-directional coupled units, however, has the transversal
eigenvalue γ = 0 and can always synchronize without self-feedback for a su�ciently
large coupling constant ε. The adjacency matrix of three mutually coupled units has
the two-fold degenerated eigenvalue γ = −0.5. Hence, the system can synchronize
without self-feedback only if the units are not too chaotic, i.e., if the parameter a is
small enough, compare Figure 3.3(a) and Figure 3.3(b).

In the limit τ = 0, the coupling constants of the system's equations (3.9), ε and
κ, can be reduced to a single parameter. Using the substitution α = ε(1 − κ) the
systems equations become

xit+1 = (1− α)f(xit) + α
N∑
j

Gijf(xjt ) , (3.20)

which corresponds to setting κ = 0 in the original equations. By this reduction of
parameters it is su�cient to discuss this simple case with only one coupling constant
to cover all possible combinations of ε and κ. The coupling for which all perturbations
in the k-th eigendirection are damped is determined by

a− 1

a(1− γk)
< α <

a+ 1

a(1− γk)
, (3.21)

see reference [46].
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Figure 3.3: Analytical results for the parameter range where the associated LE
spectrum is negative in the limit τ →∞ for di�erent eigenvalues γ and two di�erent
parameters a of the Bernoulli map.

3.4.2 Numerical Results

For systems consisting of tent or logistic maps we are not able to solve the master
stability function analytically due to the �uctuating coe�cients. Hence, we have to
rely on numerical simulations to determine the region of stable synchronization.

Figure 3.4 and Figure 3.5 show the cross correlation and synchronization prob-
ability for two mutually coupled tent maps and for three all-to-all coupled logistic
maps, respectively. The region of synchronization is in both cases similar to the one
of coupled Bernoulli maps, compare Figure 3.3 where γ = −1 corresponds to two
mutually coupled units and γ = −0.5 to three all-to-all coupled units. For the logistic
maps there exists, besides the main synchronization area, a region of synchronization
at ε ≈ 0.18. This represents periodic windows of the logistic map.

By comparing the analytical results for Bernoulli maps, which were obtained in
the limit of large delays τ → ∞, with results from numerical simulations we �nd
that the numerical results resemble the analytical ones very well already for τ = 50.
In general we choose τ = 100, which is a good approximation for the large delay
limit. This is depicted in Figure 3.6 which shows C and Φ obtained from simulations
together with the analytical results for the synchronization region.

3.5 Lyapunov Exponents � Advanced Topics

In the previous chapter we introduced the LE as a quanti�er for the chaoticity of a
system. If the LE is positive two nearby trajectories separate exponentially fast and
the system is chaotic. In general, a system has a whole spectrum of LEs, in particu-
lar a system with time delays. In terms of chaos synchronization all transversal LEs
must be negative in order for the SM to be stable. Very often it is useful to con-
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Figure 3.4: Synchronization region for two mutually coupled tent maps with a =
0.86 and τ = 100. Threshold for the computation of the synchronization probability
was set to Θ = 0.001.
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Figure 3.5: Synchronization region for three all-to-all coupled logistic maps with
a = 4 and τ = 100. Threshold for the computation of the synchronization probability
was set to Θ = 0.001.
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Figure 3.6: Synchronization region for two mutually coupled Bernoulli maps with
a = 1.5. Shown are the numerically obtained cross correlation C and synchronization
probability Φ for τ = 100 together with the analytical results for the limit τ → ∞
(red line). Threshold for the synchronization probability was set to Θ = 0.001.

sider di�erent parts of the system and their contributions to the stability of the SM
separately by the so-called sub-LE. This concept enables us to distinguish between
so-called strong and weak chaos in networks and to classify the synchronizability of
coupled chaotic units.

3.5.1 Lyapunov Spectrum

For networks of coupled units described by equations (3.1) and (3.9), respectively,
the master stability function method, presented in Section 3.2.1, yields a method to
determine the evolution of perturbations associated to the di�erent eigenvalues γk
of the adjacency matrix G. For Bernoulli maps it is possible to derive a polynomial
equation of degree τ + 1 (equation (3.16)). Finding the roots of this equation one
obtains τ + 1 many LEs for each eigenmode. But in general we cannot solve the
master stability function due to the non-constant coe�cients. Instead, we have to
use a numerical orthogonalization method according to Gram-Schmidt, as described
in Section 2.2.2. The system's equations (3.1) and (3.9), respectively, are linearized
around the chaotic trajectory and simulated for a set of orthogonal perturbation
vectors which have to be re-orthogonalized after an appropriate amount of time. The
Lyapunov spectrum is computed from the change in magnitude of the perturbation
vectors.

Figure 3.7 shows an example for a triangle of all-to-all coupled Bernoulli units
with γ1 = 1 and γ2 = γ3 = −1/2. The transversal spectrum is two-fold degenerated
since the transversal eigenvalue has the multiplicity two. The system is chaotic for all
values of ε since the largest LE of the γ1 spectrum is always positive. The transition
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Figure 3.7: Lyapunov spectra vs. coupling strength ε for a system of three all-to-
all coupled Bernoulli maps with the parameters a = 1.5, κ = 0 and τ = 10. The
blue crosses show the longitudinal spectrum associated with γ1 = 1 and the red
dots show the transversal spectrum associated with γ2 = γ3 = −1/2. Both spectra
were obtained by solving the polynomial equations derived from the master stability
function. The black solid lines show the Lyapunov spectrum computed by Gram-
Schmidt from simulations of the full system. The vertical dashed line indicates εc
where to its right the system is synchronized.

to chaos synchronization occurs at εc where the maximum LE of the transversal
γ2,3 spectrum crosses the value zero. The spectra are obtained from solving the
polynomial equation derived from the master stability function as well as by a Gram-
Schmidt method from simulations of the full system. Both methods compute the
spectrum in completely di�erent ways but yield the same results.

The LE spectrum clusters into bands for ε-values close to 1. This can be un-
derstood as follows. For ε = 1 and κ = 0, the systems equations (3.9) are given
by

xit+1 =
N∑
j=1

Gijf(xjt−τ ) . (3.22)

Since the state at time t+ 1 is only in�uenced by the state at time t− τ , the system
is e�ectively given by τ + 1 uncoupled identical systems of the form

x̃lθ+1 =
∑
j

Gljf(x̃jθ) . (3.23)

Each of these τ + 1 systems is N -dimensional and gives rise to N LEs. Since there
are τ + 1 identical systems, each of these N exponents is τ + 1 times degenerated.
This holds as long as each e�ective system evolves on the same chaotic attractor,
and thus does not rely on synchronization. For ε < 1 the �rst term in equation (3.9)
leads to a coupling between these e�ective systems and thus removes the degeneracy.
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Approximated Master Stability Function

When numerically computing the LEs with the Gram-Schmidt method from the full
system's equations we cannot distinguish between the spectra corresponding to dif-
ferent eigenvalues γk. Depending on the number j of di�erent initial perturbations
we obtain the largest j many LEs of the system. Only with the master stability
function method it is possible to decompose the system into its various eigenmodes
and compute the respective LE spectra separately, such that the LEs can be grouped
into bands according to the eigenvalues. But the master stability function, equation
(3.5) and (3.11), is only de�ned in the synchronized regime xit = xjt = ss where all
derivatives, f ′(xl) with l = 1, . . . , N , yield the same value, f ′(s). For the unsyn-
chronized system we generally need to evaluate the linearized equations of the full
system.1 However, we can use the master stability function as a �rst approximation.
Instead of substituting st, as in the synchronized case, we substitute the dynamics
of a single unit, such that st and st−τ are replaced by xit and x

i
t−τ , respectively. For

the coupling term we can either substitute the dynamics of the same unit - option 1
- or of a di�erent unit - option 2. Hence for a system of two coupled units we obtain2

(1) ξkt+1 = (1− ε)f ′(x1t ) ξkt + εκf ′(x1t−τs) ξ
k
t−τs + ε (1− κ) γkf

′(x1t−τc) ξ
k
t−τc ,
(3.24)

(2) ξkt+1 = (1− ε)f ′(x1t ) ξkt + εκf ′(x1t−τs) ξ
k
t−τs + ε (1− κ) γkf

′(x2t−τc) ξ
k
t−τc .
(3.25)

We, now, use these equations, instead of the linearized equations of the full sys-
tem, to compute the LE spectrum with a Gram-Schmidt procedure. Close to the
transition we expect the spectra obtained from these approximated master stability
functions to resemble the true spectra very well. Surprisingly, the results obtained
from equation (3.24) (option 1) are in good agreement with the true spectra not only
close to the synchronization transition but for all values of ε. In contrast, the spectra
obtained from equation (3.25) (option 2) agree with the true spectra only close to
the synchronization transition (and for complete synchronization). A comparison
of the di�erent spectra is shown for the tent map in Figure 3.8. The blue and red
lines are obtained using the Gram-Schmidt procedure from simulating the master
stability function which is strictly only valid for the synchronized regime. The black
line is obtained using the Gram-Schmidt procedure on the full system's equations
and therefor yields the correct results not only for the synchronized but also for the
unsynchronized regime. Within the synchronized regime the results match up to nu-
merical accuracy, whereas outside of synchronization the results of the two methods
deviate since the master stability function approach is no longer valid.

1Only for Bernoulli networks, where the coe�cients are constant and in particular independent
of the systems trajectory, the master stability function still holds in the desynchronized regime.

2Instead of using the dynamics of the �rst unit, f ′(x1), we can also use the dynamics of the
second unit. Both versions yield the same LE spectrum.
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Figure 3.8: Lyapunov spectra vs. coupling strength ε for a system of two mutually
coupled tent maps with the parameters a = 0.4, κ = 0.4 and τ = 5. The blue
crosses show the longitudinal spectrum associated with γ1 = 1 and the red dots
show the transversal spectrum associated with γ2 = −1 computed by Gram-Schmidt
from simulations of the master stability function. The black solid lines show the
Lyapunov spectrum computed by Gram-Schmidt from simulations of the full system.
The vertical dashed line indicates εc where to its right the system is synchronized.

3.5.2 Sub Lyapunov Exponents

A perturbation from the SM of system (3.1) evolves according to the linearized
equations (3.4). These linearized equations determine the stability of the SM and
yield the system's spectrum of LEs.

As we will see in the following section, it is useful to consider a reduced form
of these equations which only consist of the instantaneous part. The sub-LE λ0 is
de�ned as the LE describing the evolution of a perturbation δx0i (t) according to the
reduced equation

δẋ0i (t) = η0DF [s(t)] δx0i (t) . (3.26)

Since there is is no delay term present the sub-LE is sometimes also called local or
instantaneous exponent [58, 59].

The sub-LE should not be confused with the LE of a single isolated unit. Al-
though, there does not appear a delayed coupling term in equation (3.26), it includes
the synchronized state s(t) of the full system determined by equation (3.3). The syn-
chronized system's trajectory is a�ected by the coupling of the units and is di�erent
to the one of a single unit due to the invasive coupling scheme of the system. Hence,
the in�uence of the network is present in the synchronized trajectory and is, in
particular, imprinted on the sub-LE.

For a network of Bernoulli units the linearized equations do not depend on the
trajectory since f ′(x) = a. In this case, the sub-LE is identical to the LE of the
corresponding isolated units. Consider, for example, a network of Bernoulli units
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described by

xit+1 = (1− ε)f(xit) + εκf(xit−τ ) + ε(1− κ)
N∑
j

Gijf(xjt−τ ) . (3.27)

The sub-LE is determined from the reduced linearized equation

δxit+1 = (1− ε)f ′(st)δxit , (3.28)

and it yields

λ0 = ln |(1− ε) a| . (3.29)

Note that for this setup in the limit τ → ∞, the sub-LE agrees with the true
maximum system's LE for ε < εcrit = 1−1/a. In this parameter range the sub-LE is
positive. For ε > εcrit the sub-LE becomes negative and deviates from the maximum
system's LE 3.

Using the sub-LE it is possible to characterize the chaotic behavior and the
synchronizability of a network by distinguishing between weak and strong chaos, as
explained in the following section.

3.5.3 Strong and Weak Chaos

Strong and weak chaos is de�ned in the limit of large time delays by the scaling
behavior of the maximum LE, λmax, of the system. For strong chaos the maximum
LE is independent of the delay whereas for weak chaos it scales inversely with the
delay, λmax ∼ 1/τ [59]. In both cases, all other exponents scale inversely with the
delay.

The type of chaos determines the synchronization properties of the system. A
necessary condition for chaos synchronization is that the system is in the regime
of weak chaos. A network can synchronize for weak chaos if the eigenvalue gap of
the coupling matrix is su�ciently large compared to the product of the maximum
LE and the delay time, compare equation (3.6). Synchronization is not possible for
strong chaos.

Strong/weak chaos is determined by the sign of the sub-LE. In case of strong
chaos the sub-LE is positive, λ0 > 0, and a good approximation for the maximum
LE, λmax ≈ λ0. For weak chaos the sub-LE is negative, λ0 < 0.

In the previous section we derived the sub-LE for a network of Bernoulli maps,
see equation (3.29). It is independent of τ and approximates the true maximum
exponent very well for ε < εcrit = 1 − 1/a where it is positive. In this parameter
range the system is in the regime of strong chaos, whereas for ε > εcrit the sub-LE
is negative and the system is in the weak chaos regime.

Note that Lepri was the �rst who investigated the scaling of the LE spectrum
for time delayed systems using iterative maps [68]. He studied a similar equation to
equation (3.27) and reported the existence of a maximum LE which is independent
of the delay for certain parameters and referred to it as anomalous exponent.

3For a derivation of the maximum LE of this system see reference [66].
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Chapter 4

Chaotic Networks with Multiple

Time Delays

So far we have only considered networks with an identical time delay between all
units. However, in realistic systems various di�erent time delays may be present.
Therefor we focus on systems with multiple delays in this chapter. In particular, we
investigate networks of chaotic maps with multiple delays on di�erent time scales
and extend the concepts of weak and strong chaos of systems with a single delay
to such hierarchical networks. The scaling behavior of the system's LE spectrum is
explained and it is related to the synchronization properties of hierarchical networks.

The investigation is restricted to systems of chaotic maps. But the obtained
results on the extension of strong/weak chaos to multiple delays should also be valid
for chaotic �ows, since strong/weak chaos occurs in continuous as well as in discrete
time-delayed systems.

We start by discussing a single unit with multiple delays, where analytic results
are derived for the Bernoulli map and the tent map is studied numerically. The
investigation is then extended to hierarchical networks with multiple delays such as
a network of a network, where the delay within the subnetworks is smaller than the
delay between di�erent subnetworks.

The discussion on chaotic networks with multiple delays presented here is based
on reference [69] and closely follows the structure of this paper.

4.1 Single Unit with Multiple Delays

As explained in the previous chapter, the LEs give a quantitative measure for the
chaos in a network. We can, in particular, classify a chaotic system with a large
time delay τ into strong and weak chaos by the scaling behavior of its maximum
LE λmax. For strong chaos the maximum LE is independent of the delay and it
approaches a positive constant, whereas for weak chaos it scales inversely with the
delay, λmax = 1/τ . A chaotic network with a large time delay can only synchronize
if it is in the weak chaos regime and if equation (3.6) is ful�lled, i.e., if the eigenvalue
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gap of the coupling matrix (determined by the topology of the network) is su�ciently
large compared to τ · λmax. For strong chaos complete chaos synchronization is not
possible.

In the following we extend the concepts of weak and strong chaos of systems
with a single delay to systems with multiple delays which di�er by several orders of
magnitude. We particularly focus on the scaling of the full LE spectrum, in contrast
to the single delay system where we mainly studied the maximum exponent.

Let us start by investigating the simplest chaotic system with multiple delays,
a single chaotic map with N feedback delays of di�erent orders of magnitudes 1 �
τ1 � τ2 � . . .� τN , which is given by

xt+1 = (1− ε)f(xt) + ε

N∑
k=1

κkf(xt−τk) . (4.1)

The coupling strength ε weights the instantaneous dynamics to the delayed dynamics
and the coupling κ gives the strength of the various self-feedbacks. In order for the
system dynamics to be con�ned to the range [0, 1] we put the following constraints
on the coupling constant: ε ∈ [0, 1] and

∑N
k=1 κk = 1.

A perturbation δxt along the trajectory st evolves according to the linearized
equation

δxt+1 = (1− ε)f ′(st)δxt + ε

N∑
k=1

κkf
′(st−τk)δxt−τk , (4.2)

from which the LE spectrum can be calculated, see Section 2.2. Similar to the
linearized equation of the SM discussed in the previous chapter, equation (3.11),
the coe�cients f ′(st) are generally time dependent, such that we cannot evaluate
equation (4.2) further but have to rely on numerical simulations for determining the
LE spectrum. Only for Bernoulli maps with f ′(xt) = a the coe�cients are constant
and analytical results can be obtained.

4.1.1 Constant Coe�cients

The results on constant coe�cients presented in this section, were mainly obtained
by Otti D'Huys and were published in reference [69]. They show the basic principles
which also occur for �uctuating coe�cients discussed in the following section and are
included here for the sake of completeness.

For Bernoulli maps we can derive a polynomial equation from which the LEs
can be computed. Similar to Section 3.4.1, by substituting f ′(xt) = f ′ (= a) into
equation (4.2) and using the ansatz

δxt = zt δx0 , (4.3)

for the growth or decay of a perturbation, we obtain

z = (1− ε)f ′ + εf ′
N∑
k=1

κkz
−τk . (4.4)
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4.1 Single Unit with Multiple Delays

The characteristic multipliers z determine the system's LEs by

λ = ln |z| . (4.5)

A whole spectrum of exponents denoted by Λ is obtained due to the delay which
renders the system high dimensional.

For a single delay system in the long-delay limit the maximum multiplier is
independent of the delay for strong chaos, while the remaining multipliers scale with
the delay. The delay-independent multiplier is approximated by the �rst term of
equation (4.4)

z0 = (1− ε)f ′ , (4.6)

with |(1− ε)f ′| > 0. For further details see Section 3.5.3. For systems with multiple
delays of di�erent orders of magnitudes we can assume the di�erent multipliers to be
related to di�erent delays. That means, the multipliers can be grouped in a strongly
unstable multiplier which is independent of the delay, a spectrum of multipliers
scaling approximately with τ1, a spectrum scaling with τ2 and so on.

In analogy to the approximation of the strongly unstable multiplier we can derive
the multipliers which approximately scale with τ1 by inserting the ansatz

z = eiω+γ1/τ1 , (4.7)

with γ1 > 0 into equation (4.4) and neglecting all terms of order e−γ1τ2/τ1 and higher.
The characteristic polynomial for the τ1-multipliers yields

eiω = (1− ε)f ′ + εκ1f
′e−iωτ1−γ1 , (4.8)

with the roots of this equation being located on the curve

γ1(ω) = ln |εκ1f ′| − ln |eiω − (1− ε)f ′| . (4.9)

The number of roots increases linearly with τ1 since the imaginary parts of these
roots di�er by approximately ∆ω ≈ 2π/τ1. In the following we refer to the spectrum
of LEs associated with these multipliers as the τ1-spectrum or Λ1. Note that the τ1-
spectrum corresponds to the pseudo-continuous spectrum for steady states of single-
delay systems [70].

To obtain the multipliers (approximately) scaling with τ2 we use a similar ansatz
as before

z = eiω+γ2/τ2 , (4.10)

with γ2 > 0. Substituting this into equation (4.4) and neglecting all terms of order
e−γ2τ3/τ2 and higher, the characteristic polynomial for the τ2-multipliers yields

eiω = (1− ε)f ′ + εκ1f
′e−iωτ1 + εκ2f

′e−iωτ2+γ2 . (4.11)
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Figure 4.1: The spectrum of characteristic multipliers of a Bernoulli map sub-
ject to three feedback delays. The di�erent panels are zooms. Red dots are results
obtained form numerically solving equation (4.4) and the black lines are the ana-
lytic approximations for long delays γ1(ω)/τ1 (panel (b)), γ2(ω)/τ2 (panel (c)) and
γ3(ω)/τ3 (panel (d)). Parameters are a = 3, ε = 0.63, κ1 = 0.3, κ2 = 0.6, κ3 = 0.1,
τ1 = 40, τ2 = 500 and τ3 = 6000. Courtesy of Otti D'Huys.

The roots of this equation lie on the curve

γ2(ω) = ln |εκ2f ′| − ln |eiω − (1− ε)f ′ − e−iωτ1εκ1f ′| . (4.12)

and are associated with the τ2-spectrum of LE. This spectrum scales inversely with
the delay τ2 and the number of exponents in this spectrum scales linearly with τ2.

In an analogous way, we can obtain higher order spectra Λk scaling inversely
with τk. For each delay of the system we obtain a corresponding spectra. Only the
spectra ΛN related to the longest delay time τN can have stable multipliers, all other
spectra consist of only unstable ones.

The spectrum of LEs obtained from numerically solving equation (4.4) is com-
pared to the analytical long delay approximations γk(ω) in Figure 4.1. The LE
spectra are well approximated by the analytical curves for the long-delay limit and
we can clearly distinguish the di�erent scaling properties of the LEs, including one
strongly unstable multiplier. Moreover, the shorter delay τ1 appears as a modula-
tion parameter in the τ2-spectrum, while the τ3-spectrum shows oscillations with
periodicities of both 2π/τ1 and 2π/τ2.
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4.1 Single Unit with Multiple Delays

4.1.2 Fluctuating Coe�cients

We showed in the previous section that the LE spectrum of a Bernoulli system, for
which the coe�cients in the linearized equation (4.2) are constant, is composed of
various partial spectra related to di�erent delays. In the general case the coe�cients
are time-dependent since f ′(x) usually depends on the trajectory x. An analytical
treatment is therefor not possible. However, the LE spectrum can be computed
numerically from the linearized equation using a Gram-Schmidt orthogonalization
procedure, as explained in Section 2.2.2. We �nd that the LE spectrum of systems
with �uctuating coe�cients shows the same scaling behavior as the Bernoulli system.

In analogy to weak and strong chaos discussed in the previous chapter, the LE
spectra of the di�erent orders τk are numerically obtained from integrating a reduced
form of the linearized equation (4.2). The sub-LE, λ0, is de�ned by the evolution of
the auxiliary perturbation δx0 according to

δx0t+1 = (1− ε)f ′(st)δx0t , (4.13)

and the λ1-spectrum is obtained from the evolution of a perturbation according to

δx1t+1 = (1− ε)f ′(st)δx1t + εκ1f
′(st−τ1)δx1t−τ1 , (4.14)

where an additional term containing the τ1 dependency is present. In both equations
st denotes the dynamics of the full system determined by equation (4.1). By adding
further delay terms this can be continued computing the τ2- ... τN -spectrum.

Note that when computing the τk-spectrum from the reduced linearized equation
according to a Gram-Schmidt procedure, we also obtain all positive exponents of
the partial spectra with smaller order, i.e., all positive exponents of the τl-spectra
with l < k. That is because the additional terms in the reduced equation are each
separated by a time scale from its preceding order and for the exponential explosion
of a perturbation, which dynamics is on the time scale of τi, any terms on a longer
time scale τj with j > i is negligible. In the de�nition of the τk-spectrum we exclude
all positive exponents already included in spectra of smaller order. Hence, the partial
spectra do not overlap and each τk-spectrum scales inversely with its distinct delay
τk.

τk-chaos

The most important quantity describing a chaotic system is the maximum LE, λmax.
It de�nes the type of chaos in the system. If it does not vary with any of the system's
time delays we speak of strong chaos. In the strong chaos regime the sub LE λ0 is
positive and a good approximation for λmax. While the maximum LE exponent is
independent of the delays, all delay times may be present in the total LE spectrum
for systems in strong chaos, i.e., the �rst few positive exponents vary with τ1, the
following few positive exponents with τ2 and so on.

If λmax scales with any of the delays we speak of weak chaos and λ0 is negative.
We can further sub-divide weak chaos into τ1-chaos where the maximum LE scales
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Figure 4.2: Lyapunov exponents of a tent map in the strong chaos regime for
di�erent feedback delays τ1 and �xed feedback delay τ2 = 500. Shown are the two
largest LEs of the full spectrum (λ), the maximum exponent of the τ1-spectrum
(λ1,max) as well as the sub LE λ0. The other parameters are a = 0.4, ε = 0.4,
κ1 = 0.7 and κ2 = 0.3.

with 1/τ1. For τ1-chaos (at least) the maximum LE of the τ1-spectrum is positive,
i.e., it is λ1,max > 0, and λ1,max is a good approximation for λmax. If λmax ∝ 1/τ2
we speak of τ2-chaos and it is λ1,max < 0 but λ2,max > 0. For τ2-chaos the maximum
LE is approximated by λ2,max. Consequently τk-chaos is de�ned by the scaling of
λmax with 1/τk.

Note that although the maximum LE scales with 1/τk for τk-chaos, the total
spectrum may be composed of several other positive LEs scaling with a di�erent, i.e,
longer, delay.

Tent Map System

In the following we demonstrate the separation of the total LE spectrum into di�erent
partial spectra for a tent map subject to two di�erent feedbacks. The dynamics of
this setup is given by

xt+1 = (1− ε)f(xt) + ε κ f(xt−τ1) + ε (1− κ)f(xt−τ2) . (4.15)

For the strongly chaotic regime, Figure 4.2 compares the total LE spectrum with
the sub-LE and the maximum LE of the τ1-spectrum for varying time delays τ1 but
�xed delay τ2. For a large enough τ1 the maximum LE λmax is well approximated by
the sub-LE λ0 and both exponents are independent of the delay τ1. In contrast, the
second largest LE of the total spectrum, λ(2), scales inversely with τ1. This exponent
is perfectly approximated by the maximum exponent of the τ1-spectrum, λ1,max.

For the same setup, the �rst k = 25 LEs of the total spectrum together with LEs
of the τ1-spectrum and the sub-LE are shown in Figure 4.3. λmax is well separated
from the rest of the spectrum and is approximated by λ0. The next few positive
exponents of total spectrum λ(2), · · · , λ(7) coincide with the τ1-spectrum. As the
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Figure 4.3: Lyapunov exponents of a tent map with two feedbacks τ1 = 60 and
τ2 = 500 in the strong chaos regime. Shown are the �rst k = 25 LEs of the full (λ)
and the sub (λ1) Lyapunov spectra as well as the sub LE λ0. The other parameters
are a = 0.4, ε = 0.4, κ1 = 0.7 and κ2 = 0.3.

exponents of the full spectrum approaches zero the τ1-spectrum starts to deviate
from the full spectrum.

The scaling behaviour of the LE spectrum of a system in strong chaos is depicted
in Figure 4.4. The largest exponents (except for the maximum one) scale inversely
with τ1 and coincide with the τ1-spectrum. For a discrete system the total number
of LEs increases linearly with the delay. Hence the number of exponents scaling in-
versely with τ1 also increase linearly with the delay. By plotting λkτ1 vs. k/τ1, where
k denotes the kth exponent of the spectrum, for di�erent delays τ1 the spectrum con-
verges to a curve for all exponents scaling inversely with τ1, see Figure 4.4(a). The
curves diverge when the exponents no longer scale with τ1. These smaller exponents
are approximated by the τ2-spectrum and scale inversely with 1/τ2. This scaling
can be highlighted, similar to the τ1-scaling, by plotting λkτ2 vs. k/τ2 for varying
τ2. When plotting the total LE spectra in this way, all smaller exponents of the
spectra converge to a curve and, hence, scale inversely with τ2. This is depicted in
Figure 4.4(b).

4.2 Networks with Multiple Delays

When studying the synchronization properties of networks of networks the concepts
of strong and various τk-chaos typically become relevant. In these networks at least
two di�erent time scales are generally present. Typically, signals are exchanged with
a short time delay τ1 between the nodes within a subnetwork, whereas a signal needs
a much larger time τ2 to travel between the di�erent subnetworks.

Systems with multiple delays and their synchronizations properties have been
studied extensively. For a network where the di�erent time delays have a special
integer ratio, resonances occur which, depending on the ratio, either stabilize or
inhibit chaos synchronization [52] and for networks with a distribution of delays
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Figure 4.4: Lyapunov spectrum of a tent map with two delayed feedbacks. Shown
are the LEs λk with k = 2− 100 for di�erent values of the feedback delays. The left
panel shows the scaling of positive exponents with τ1 for �xed τ2 = 500. The curves
diverge as the smaller exponents scale with τ2. The right panel shows the τ2-scaling
of the smaller exponents for �xed τ1 = 30. Other parameters are a = 0.4, ε = 0.4,
κ1 = 0.8 and κ2 = 0.2.

complex behavior is expected to be suppressed [71�73].

Here we study hierarchical networks of chaotic units where the time scales be-
tween the inter-subnetwork connections are separated from the intra-subnetwork
dynamics. Such hierarchical networks can be described by

xjmt+1 = (1− ε)f(xjmt ) + εκ
∑
l

A
(m)
jl f(xlmt−τ1) + ε(1− κ)

∑
sk

B
(ms)
jk Cmsf(xkst−τ2) ,

(4.16)

where matrix A(m) gives the coupling topology within the m-th subnetwork and
matrix C gives the coupling topology of the total network, i.e., the matrix component
Cms determines whether the m-th subnetwork is coupled to the s-th subnetwork.
Matrix B(ms) describes the type of coupling between the subnetworks, i.e., which
unit of the m-th subnetwork is coupled to which unit of the s-th subnetwork. In the
following we assume all matrices to have a row sum equal to 1, such that all units
receive the same amount of input, both within and from outside the subnetwork.
This restriction ensures that complete synchronization is a solution of the system's
equations (4.16). Moreover, we restrict the B-matrices to have identical rows, so that
each node within a subnetwork receives the same input from outside the subnetwork.

Example: Figure 4.5 shows a network of four globally coupled identical subnet-
works. Each subnetwork consists of four units which are bidirectionally coupled with
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Figure 4.5: Network of four globally coupled subnetworks consisting of four nodes
each.

their nearest neighbors in a ring setup such that matrix A(m) yields

A(m) =
1

2


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 , (4.17)

for all subnetworks m. The coupling between di�erent subnetworks is of mean �eld
type and is given by

B(ms) =
1

4


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 , (4.18)

for all combinations of m and s. The all-to-all coupling of the subnetworks is de-
scribed by

C =
1

3


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 . (4.19)

The network equation (4.16) gives rise to stable complete synchronization if the
coupling parameters are chosen correctly. The stability is determined by a master
stability approach similar to Section 3.2.1. The master stability function reads

δxt+1 = (1− ε)f ′(st)δxt + εκf ′(st−τ1)δxt−τ1 + σCε(1− κ)f ′(st−τ2)δxt−τ2 ,
(4.20)

with σC the eigenvalues of the coupling matrix C and st the completely synchronized
state. Complete synchronization is only possible if all corresponding LEs are nega-
tive. In the previous section we showed that, for a system with two di�erent time

41



4. Chaotic Networks with Multiple Time Delays

scales, all transversal LEs may be negative in the τ2-chaotic regime only. The system
completely synchronizes only for τ2-chaos, if the necessary condition |σC | ≤ e−λmaxτ2

is ful�lled.
Besides complete synchronization, where all units of the network are synchro-

nized, cluster synchronization, where all units of a single subnetwork are synchronized
but not the di�erent subnetworks with each other, is also possible. The stability of
a cluster synchronized state smt is determined by the master stability function of a
subnetwork, which reads

δxt+1 = (1− ε)f ′(smt )δxt + σ
(m)
A κεf ′(smt−τ1)δxt−τ1 , (4.21)

with σk(m) the eigenvalues of the connection matrix A(m) of the m-th subnetwork.
Since we only investigate networks for which all nodes within a subnetwork receive the
same input from outside the subnetwork, equation (4.21) has no explicit dependency
on the inter-subnetwork delay τ2 and it resembles the master stability function of
a network with a single delay. But, in contrast to a network with a single delay,
the dynamics of the cluster synchronized state smt depends on the units outside the
subnetwork. Thus the synchronization properties of a subnetwork still implicitly
depend on the long delay τ2. For stable cluster synchronization all transversal LEs
of equation (4.21) must be negative. In the strongly chaotic regime equation (4.21)
yields at least one positive transversal LE and hence no cluster synchronization is
possible. We can illustrate this without any calculations. For strong chaos the
maximum transversal LE of the full system is positive and roughly equals λ0. λ0 is
approximately obtained when neglecting the last term in equation (4.21), compare
equation (4.13). Hence, the master stability function of a subnetwork yields a positive
maximum exponent approximately equals λ0 for strong chaos, see discussion in the
previous section. In the τ1-chaotic regime stable cluster synchronization is possible
and the �rst exponents of the total LE spectrum are approximately obtained from
equation (4.21). Stable synchronization in the m-th subnetwork depends on the

coupling architecture A(m) and occurs if |σ(m)
A | < e−λmaxτ1 . For τ2-chaos all nodes of

a subnetwork synchronize completely irrespective of the coupling topology.
In summary, in the τ1-chaotic regime the short delay connections determine the

synchronization pattern in a subnetwork, while there is no synchronization induced
by the long delay connections. In the τ2-chaotic regime each subnetwork acts as a
single node, and the synchronization pattern between these nodes is determined by
the long delay connectivity.

Simulations of a network of four globally coupled subnetworks, introduced in the
example above and depicted in Figure 4.5, have been performed using tent maps
for the dynamics of the individual units. Results for the cross correlation of several
di�erent network elements and the di�erent (sub-) LE λmax, λ1,max and λ0 are shown
in Figure 4.6 as a function of the coupling strength ε. With increasing coupling ε
the system undergoes a transition from strong to τ1- to τ2-chaos. For strong chaos
all cross correlations are small. As ε increases, the correlations increase and the
maximum LE decreases. When λ0 becomes negative, i.e., in the τ1-chaotic regime,
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Figure 4.6: Cross correlations (left) and Lyapunov exponents (right) for a hierar-
chical network of tent maps depicted in Figure 4.5 as a function of the total coupling
strength ε. Shown are the cross correlations between nodes A and B, B and C and
A and D and the maximum LE λmax together with λ1,max as well as the sub-LE
λ0. The dashed lines indicate the synchronization transitions. The parameters are
a = 0.4, κ = 0.5, τ1 = 50, and τ2 = 500.

sublattice synchronization occurs within the subnetworks. The diagonal elements of
the ring in a subnetwork, node B and C in Figure 4.5, synchronize, having a cross
correlation CBC = 1. Note that the small di�erence between the transition points
λ0 = 0 and CBC = 1 in Figure 4.6 is caused by numerical inaccuracy. Sublattice
synchronization is governed by equation (4.21), with a transversal eigenvalue σA = 0.
This equation also determines complete cluster synchronization in a subnetwork.
The maximum LE determining complete cluster synchronization is obtained for the
transversal eigenvalue σA = −1. When λ1,max becomes negative the subnetwork
completely synchronizes and it is CAB = CBC = 1. As the inset in Figure 4.6 shows
these two points agree perfectly in the simulations. Increasing the coupling ε further
the whole network eventually synchronizes and it is CAD = CAB = CBC = 1.
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Chapter 5

Attractor Dimension at the

Synchronization Transition

In this chapter we apply the theoretical knowledge on chaotic attractors and chaos
synchronization of coupled units which we have gained in the previous chapters.
In particular, we investigate the attractor dimension at the transition to complete
synchronization in a network of chaotic units with time-delayed couplings. We de-
termine the KY dimension from the spectrum of LEs for iterated maps and for two
coupled semiconductor lasers.

Various systems display a change or discontinuity in their statistical properties,
e.g. information transfer and statistical complexity, at the emergence of collective
behavior such as the transition to chaos synchronization [74]. But, typically the
LEs are continuous when crossing the transition to synchronization. Hence quan-
tities derived from the spectrum of LEs seem to be continuous. However, in this
chapter we show that the attractor dimension of a chaotic system with time delay is
discontinuous at the transition to synchronization.

In the �rst section we state the problem and argue that the KY dimension must
be discontinuous at the transition. The KY dimension is computed for iterated
maps and compared to the correlation dimension in the following section. Section 3
shows results for two coupled semiconductor lasers. Networks of chaotic units are
investigated in Section 4. The magnitude of the discontinuity in the KY dimension
is calculated as a function of the network size. Furthermore the scaling of the KY
dimension as well as of the Kolmogorov entropy with system size and time delay
is investigated. Finally, the KY dimension for systems with parameter mismatch is
computed.

Parts of the research presented in this chapter have been published in refer-
ence [75]. The numerical simulations on semiconductor lasers presented in Section
5.3 have been conducted by Thomas Dahms (TU Berlin).
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5.1 Discontinuous Kaplan-Yorke Dimension

As discussed in Chapter 3 a network of identical units can, for an appropriate cou-
pling strength, synchronize to a common chaotic trajectory without any time shift
between the units. In this chapter we are mainly interested in the transition to syn-
chronization and how the dimension of the system's chaotic attractor is changed at
the transition. We consider a network of N identical nonlinear units similar to equa-
tion (3.1) presented in Section 3.1. For simplicity we neglect the self-feedback. This
does not change the problem which we want to illustrate in the following but it im-
proves the readability and prevents of focusing the readers attention to unimportant
technical details.

The system equations are given by the time delayed di�erential equations

ẋi(t) = F [xi(t)] + σ

N∑
j=1

Gij H[xj(t− τ)] . (5.1)

As before, the SM xi(t) = s(t) given by

ṡ(t) = F [s(t)] + σH[s(t− τ)] , (5.2)

is a solution of this network and its stability is determined by the following master
stability function

ξ̇k(t) = DF [s(t)] ξk(t) + σγkDH[s(t− τ)] ξk(t− τ) . (5.3)

The master stability function determines the systems's LEs. For each eigenvalue γk
a whole spectrum of LEs is obtained. All parameters and variables have the same
meaning as in Chapter 3.

By changing the control parameter of the system, i.e., the coupling strength σ,
the system exhibits a transition from an unsynchronized to a synchronized state. At
the synchronization transition the dynamics becomes restricted to the SM. For a
synchronized system the systems's trajectories only explore the phase space associ-
ated with the SM. The attractor is therefor embedded in the SM and all dimensions
of the phase space perpendicular to the SM do not contribute to the attractor dimen-
sion. Figure 5.1 depicts the contraction of the attractor to the SM for an increasing
coupling strength.

The dimension of a chaotic attractor is not uniquely de�ned. The various de�ni-
tions have been introduced and have been explained in Section 2.3. In the following
we consider the KY dimension, DKY , and the correlation dimension, DC . The KY
dimension is computed from the full system's LE spectrum which is composed of the
spectra of all eigenvalues γk. It is given by

DKY = M +

∑M
l=1 λl
|λM+1|

. (5.4)
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Figure 5.1: Sketch of the system's attractor for two coupled units for increasing
coupling strength (from left to right). The high dimensional space due to the time
delay is projected into the plane where the diagonal x1 = x2 denotes the synchro-
nization manifold.
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Figure 5.2: Sketch of the Lyapunov exponent spectrum close to the synchronization
transition. Each bar represents a Lyapunov exponent. The spectrum is grouped into
a longitudinal and a transversal part.

where the LE are ordered in decreasing order andM is de�ned as the largest number
for which the sum of LEs is still positive.

For stable synchronization the LE spectrum associated with the longitudinal
eigenvalue γ1 = 1 has in general positive as well as negative LEs, but all transversal
eigenvalues yield only negative LEs. Close to the synchronization transition the
maximum LE of (at least) one of these transversal Lyapunov spectra approaches
the value zero, as it is depicted in Figure 5.2 and also in Figure 3.7. Consequently,
close to the transition these spectra contribute to the KY dimension since negative
exponents close to zero are counted as well.

However, this cannot be true. In case of stable synchronization the trajectory of
the network, determined by equation (5.2), is completely restricted to the SM. Two
neighboring trajectories inside the SM deviate solely from each other according to
equation (5.3) with γ1 = 1. No transversal eigenvalue contributes to the system's
dynamics. By taking all LEs into account when computing the KY dimension,
we would consider the phase space outside the SM as well. But this space is not
explored by any systems's trajectory and hence does not contribute to the attractor

47



5. Attractor Dimension at the Synchronization Transition

dimension. We suggest that in case of complete synchronization the de�nition of the
KY dimension, which was originally not meant for such complex systems, needs to be
adjusted. The sum in equation (5.4) must only run over the LEs of the γ1 spectrum
since only the longitudinal LE spectrum can contribute to the KY dimension.

In contrast, for the unsynchronized system the phase space perpendicular to the
SM is explored as well and the attractor generally stretches across this space. Thus,
in the desynchronized regime all eigenvalues contribute to the attractor dimension
and all LEs must be taken into account when computing the KY dimension. In this
case, the perturbations cannot be decomposed into the eigenmodes of the coupling
matrix G since the coe�cients of the linearized equations of equation (5.1) depend
on each single node. But close to a supercritical transition we expect that the LEs
are continuous as a function of σ and the structure of the LEs is still similar to the
one inside the SM, as it is for example the case in Figure 3.7.

This implies that the KY dimension must be discontinuous at the transition to
chaos synchronization, since for the unsynchronized regime all LEs whereas for the
synchronized regime only the longitudinal spectrum needs to be taken into account.

From the LE spectrum we can also calculate the Kolmogorov entropy which has
been explained in detail in Section 2.3. It is de�ned as the sum over all positive LEs

K =
∑
l

λl , forλl > 0 . (5.5)

Since only positive LEs contribute, the entropy is always de�ned with the complete
spectrum of LEs, hence it does not show a jump at the transition to chaos syn-
chronization. Nevertheless, at the transition at least one additional band of LEs
contributes to the entropy and we expect a discontinuous derivative of K(σ)

The jump in the dimension of the chaotic attractor and the kink in the entropy are
general results which should hold for any chaotic network at the transition to chaos
synchronization. In the following section the attractor dimensions DKY and DC as
well as the entropy K are calculated for networks of iterated maps. Both dimensions
are compared with each other to check whether our theoretical arguments, which
lead to the conclusion that the attractor dimension must jump at the transition,
hold.

5.2 Iterated Maps

The previous general statement holds not only for di�erential equations but also for
networks of iterated maps with time-delayed coupling. In the following, we inves-
tigate the system of coupled maps presented in Section 3.4. We assume the self-
feedback and the coupling delay to be identical, τs = τc = τ , such that the system's
equations read

xit+1 = (1− ε)f(xit) + εκf(xit−τ ) + ε(1− κ)

N∑
j

Gijf(xjt−τ ) . (5.6)
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The synchronized state is given by

st+1 = (1− ε)f(st) + εf(st−τ ) . (5.7)

and its stability is determined by the master stability function

ξkt+1 = (1− ε)f ′(st) ξkt + [εκ+ ε(1− κ) γk] f
′(st−τ ) ξkt−τ . (5.8)

All variables and parameters have the usual meaning.
For each mode with eigenvalue γk one obtains τ + 1 many LEs. The spectrum

is in general obtained by a Gram-Schmidt orthogonalization method. In addition,
for Bernoulli maps the LE spectrum can also be obtained by solving the according
polynomial equation derived from the master stability function due to the constant
coe�cients. For more details see Section 3.4.1 and 3.5.1.

5.2.1 2 Units System

For the beginning we restrict our investigations to a system of two mutually coupled
maps, such that equation (5.6) reduces to

xit+1 = (1− ε)f(xit) + εκf(xit−τ ) + ε(1− κ)f(xjt−τ ) , (5.9)

with i, j ∈ {1, 2}. This setup has the transversal eigenvalue γ1 = 1 and the longitu-
dinal eigenvalue γ2 = −1, as it was shown in Section 3.4.

Kaplan-Yorke Dimension

The KY dimension for two mutually coupled Bernoulli and tent maps, respectively,
is shown in Figure 5.3. The upper curve shows the KY dimension obtained from
the complete set of LEs, i.e., the transversal as well as the longitudinal spectrum is
taken into account when evaluating equation (5.4). The lower curve uses only the LE
spectrum of the SM which is obtained from simulating a single unit. As discussed in
the previous section, for physical reasons the lower curve is valid in the synchronized
region whereas in the desynchronized region the upper curve is valid. Thus the KY
dimension jumps to a lower value when the parameter ε is increased above εc. Note
that the total system's dimension gives an upper bound to the KY dimension. If the
dynamics is highly chaotic the full phase space is explored by a typical trajectory on
the attractor and hence the chaotic attractor stretches out over the full phase space.
For the desynchronized system it is 2(τ + 1) and for the SM it is τ + 1.

So far the discontinuous behavior depends merely on theoretical arguments and
their interpretation, namely that we have to neglect the transversal LE spectrum in
the synchronized regime. With the method used above it is not possible to decide
whether in the synchronized case the physically meaningful KY dimension is obtained
from the full or only from the longitudinal spectrum. But the qualitative prediction
- a jump in the attractor dimension at the synchronization transition - should be
valid for any measure of the dimension of the chaotic attractor. Thus, we compute
the correlation dimension of the system in the following to compare it to the KY
dimension and to check whether the dimension indeed jumps as we argue.
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Figure 5.3: KY dimension DKY with respect to the coupling strength ε for a
system of two mutually maps. The upper blue line shows DKY of the full system,
the lower red line shows DKY of the SM. The vertical dashed line indicates εc where
to its right the system is synchronized. The parameters are κ = 0.25, τ = 20, a = 1.5
for the Bernoulli map and a = 0.4 for the tent map, respectively.

Time series analysis � Correlation dimension

The Correlation dimension is computed from a time series of the system, i.e., from the
system's trajectories x1t and x

2
t . The transient phase is discarded by only recording

the values of the time series after some �xed initial time. For analyzing the time
series the TISEAN package of Kantz and Schreiber is used [76]. In particular, the
correlation function C(ξ) is computed which scales as a power law C(ξ) ∝ ξDC with
the exponent being the correlation dimension (see Section 2.3).

Figure 5.4 shows a typical plot for the correlation function C(ξ,m) and the
correlation dimension DC where m is the embedding dimension of the auxiliary
phase space. For not too small and not too large values of ξ, the correlation function
scales clearly according to a power law. To obtain the dimension a straight line is
�tted to di�erent correlation functions of di�erent embedding dimensions in a double-
logarithmic plot and at the same time the results are cross-checked in plots of the
local slopes of the correlation function d(ξ) = ∂ lnC(ξ)/∂ ln ξ in which the power
law behavior corresponds to a plateau. Fitting a horizontal line to the plateau in
the local slope is the more reliable approach even though the plateau can be hard to
determine. In any case, the correlation function and the local correlation dimension
have to be interpreted very carefully and the authors of the TISEAN package strongly
discourage from using automatic tools for evaluating the data. For more details on
how to compute the correlation dimension the reader is referred to reference [76, 77].

Note that this method allows a reliable calculation of the correlation dimension
for small attractor dimensions, i.e., for small values of the delay τ , only - at least for
a feasible amount of computation time. For larger system's attractors a longer time
series is needed in order for the correlation dimension to be correctly determined. A

50



5.2 Iterated Maps

10
−3

10
−2

10
−1

10
0

10
−10

10
−5

10
0

d=4.1

ξ

C
(ξ

,m
)

10
−3

10
−2

10
−1

10
0

0

2

4

6

8

d=4.1

ξ

d
(ξ

,m
)

Figure 5.4: Correlation function C(ξ) (left) and local slope d(ξ) (right) for di�erent
embedding dimensions m (di�erent curves) computed from a time series of a system
of two mutually coupled tent maps. The time delay is τ = 5, the length of the time
series is l = 106 and the other parameters are a = 0.4, ε = 0.45 and κ = 0.35.
Vertical dashed lines indicate the range which was used for the �t.

longer time series increases the computational time and the needed memory capacity
for its analysis enormously. The dimension D which can be accurately computed
scales approximately with the length N of the time series by D < 2 logN which
means that for an attractor of dimension D = 20 a time series of length N = 1010

has to be analyzed. Hence, systems with large delays, such as τ = 50, become
impractical to solve.

As Figure 5.4 shows, the extrapolation of the slope to low values of the radius
ξ is di�cult. Hence our values for the correlation dimension give a lower bound to
the actual correlation dimension; due to the limited computational power it was not
possible to analyze very small values of the distance ξ with an appropriate accuracy.

It is convenient to plot the dimension as a function of κ since the SM, given by
equation (5.7), is independent of κ and only changes with the coupling strength ε.
Thus, the longitudinal LE spectrum and the quantities computed from it such as
the Kolmogorov entropy and the KY dimension of the SM are also independent of
κ. Figure 5.5 shows results for the correlation as well as the KY dimension. The
KY dimension is larger than the correlation dimension in agreement with known
theoretical inequalities. For the Bernoulli map the correlation dimension displays a
clear jump at the transition to synchronization, in agreement with our theoretical
prediction. For the tent map, however, the discontinuity is not clearly visible from
our results. As stated above, for small distances ξ the correlation function C(ξ)
shows large �uctuations due to the limited statistics. From our results of Figure 5.4
we cannot rule out that the local slopes might not be saturated yet. Thus the
obtained results only serve as a lower bound which, according to our results, seems
to increase with longer trajectories and better statistics. Consequently, the results
of Figure 5.5 do not rule out a discontinuous behavior of the attractor dimension. In
any case, the synchronization transition is clearly visible in the discontinuous slope
of the correlation dimension.
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Figure 5.5: Attractor dimension vs. coupling strength κ for a system of two mu-
tually coupled units. The time delay is τ = 5. The upper blue line shows DKY of
the full system, the lower red line shows DKY of the SM corresponding to γ1 and
the green curve in between shows DC . The vertical dashed lines indicate κc. The
parameters are τ = 5, ε = 0.45, a = 1.5 for the Bernoulli map and a = 0.4 for the
tent map, respectively.

One may argue, that the KY dimension only describes the dimension of typical
attractors, see reference [39], and that the sensitivity of the SM to detuning points
towards a non-typical attractor. But our theoretical argument - that for synchro-
nization only the transversal spectrum must contributes to the KY dimension - is
further con�rmed by the fact that for the synchronized system the correlation dimen-
sion follows closely the KY dimension only if the transversal spectrum is omitted.
Otherwise the KY dimension yields much larger results. The correlation dimension
is well de�ned for the SM and it seems that the corrected KY dimension describes
the SM correctly. Hence on top of our theoretical reasoning our numerical results
show that in order for the two di�erent de�nitions of an attractor dimension to co-
incide we have to exclude the transversal LE spectrum from contributing to the KY
dimension for the synchronized state. The completely synchronized state is in some
way special.

Note that, in general it may not be obvious which LEs contribute to the KY
dimension. For example, if we distort the SM by a nonlinear transformation of
one unit the dimension does not change but we do not know which LE have to be
omitted in this case. Also, in the case of generalized synchronization the dynamics
is restricted to a low dimensional manifold which rules out the majority of LEs. But
again, we do not know in advance which LEs have to be omitted from the de�nition
of the KY dimension.
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Figure 5.6: Kolmogorov entropy K vs. coupling strength κ for a system of two mu-
tually coupled units with delay τ1 = 10 and τ2 = 20, respectively. K is independent
of τ and thus both curves, τ1 and τ2, coincide. The vertical dashed lines indicate κc.
The parameters are ε = 0.6, a = 1.5 for the Bernoulli map and a = 0.4 for the tent
map, respectively.

Kolmogorov Entropy

The Kolmogorov entropy, computed from equation (5.5), is continuous at the syn-
chronization transition. In the synchronized region, only the γ1 band has positive
LEs which contribute to the Kolmogorov entropy. Whereas at the synchronization
transition the LEs from the other bands suddenly contribute as well and cause a kink
in the entropy as a function of feedback strength.

The Kolmogorov entropy for a pair of Bernoulli and tent maps, respectively, is
shown in Figure 5.6 for two di�erent delays. As one can see, the Kolmogorov entropy
is independent of τ . In Section 3.5 we mentioned that the number of LEs scales with
τ (and therefore the number of positive exponents also scales with τ) and that the
magnitude of the LEs scales with 1

τ (apart from the anomalous component in case
of strong chaos). Both e�ects cancel each other such that the Kolmogorov entropy
does not scale with τ .

In contrast, the KY dimension and therefore the jump of the attractor dimen-
sion at the synchronization transition scales with τ since the KY dimension mainly
depends on the number of LEs. For more details see Section 5.4.

Cross Correlations

For both maps, Bernoulli and tent, the results for the attractor dimension as well as
for the Kolmogorov entropy are very similar. But a qualitative di�erence between the
two models is visible in the cross-correlations, C, and the synchronization probability,
φ. Figure 5.7 shows C and φ with respect to the coupling strength κ for �xed ε.
At the critical coupling κc, i.e., at the synchronization transition both quantities, C
and φ, jump from a very low level to complete synchronization, C = φ = 1, for a
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Figure 5.7: Cross-correlation C (blue squares) and synchronization probability φ
(red dots) vs. coupling strength κ for a system of two mutually coupled units. The
step size is ∆κ = 10−3 and the other parameters are τ = 20, ε = 0.6, a = 1.5 for the
Bernoulli map and a = 0.4 for the tent map, respectively. The threshold for φ was
set to Θ = 0.01, i.e., the trajectories were assumed to be synchronized when they
were closer together than 1% of their maximum distance.

system of Bernoulli maps, whereas for the tent map C and φ increase continuously
to C = φ = 1.

The numerical results indicate that the synchronization transition for the
Bernoulli map is of subcritical type whereas for the tent map it is of supercriti-
cal type [1]. For the Bernoulli map there is at least one stable attractor a good
distance away from the SM which becomes unstable at the synchronization transi-
tion when the SM becomes stable. For the tent map there is a stable trajectory
close to the SM for the nearly synchronized case which merge into the SM at the
synchronization transition. Thus, we observe a sudden transition for the Bernoulli
map and a smooth transition for the tent map system. Figure 5.8 shows the system's
attractor for both models very close to the synchronization transition to display the
di�erences. Note that in both cases, a jump of the KY dimension is predicted due
to the bands of LEs.

5.3 Coupled Lasers

An important application of equation (5.1) is the modeling of semiconductor lasers
which are coupled by their mutual laser beams. The work presented in this section,
in particular the simulations of the laser equations, was mainly performed by Thomas
Dahms and is taken from reference [75] with only minor changes. It is a nice extension
to the work on iterated maps and relates this work to more realistic systems.

The dynamics of the laser intensity can, to a good approximation, be described
by the Lang-Kobayashi rate equations [31]. The Lang-Kobayashi equations describe
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(a) Bernoulli maps (b) Tent maps

Figure 5.8: Attractor for a system of two mutually coupled units very close to the
synchronization transition. The parameters are τ = 20, ε = 0.6, κ = 0.73, a = 1.5
for the Bernoulli map and a = 0.4 for the tent map, respectively.

Parameter Symbol Value
Linewidth enhancement factor α 4
Time-scale separation of
carrier and photon lifetimes T 200
Injection current p 0.1
Coupling strength σ 0.12
Coupling delay time τ 100

Table 5.1: Parameters for the simulation of the Lang-Kobayashi equations.

the dynamics of a laser with delayed feedback (or delayed coupling) in terms of a
slowly varying complex electric �eld E(t) and a population inversion n(t). For our
network of coupled lasers, the corresponding equations of Lang-Kobayashi type in
dimensionless form are given by

Ėi(t) =
1

2
(1 + iα)ni(t)Ei(t) + σ

∑
j

GijE
j(t− τ)

T ṅi(t) = p− ni(t)−
[
1 + ni(t)

] ∣∣Ei(t)∣∣2 , (5.10)

where Ei(t) is the envelope of the complex electric �eld and ni(t) is the renormalized
population inversion of the charge carriers of laser i. The model parameters are
summarized in Table 5.1. The dimensionless delay time of τ = 100 translates to a
delay time of the order of magnitude 1 ns.

A network of coupled lasers modeled by the Lang-Kobayashi equations can be
written in the form of equation (5.1), where xi(t) = (ni, Re

{
Ei
}
, Im

{
Ei
}

) is now
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Figure 5.9: (a) KY dimension and (b) Kolmogorov entropy of two coupled semi-
conductor lasers with respect to the relative self-feedback strength κ. The dashed
blue and solid green lines are obtained using the complete spectrum and only using
the spectrum of the SM, respectively.

three-dimensional and contains the real and imaginary part of the electric �eld Ei

and the charge carrier inversion ni of the i-th laser. A single laser is not chaotic,
but the delayed feedback and/or coupling renders the system chaotic. The linear

coupling function H is represented by the matrix H =
(

0 0 0
0 1 0
0 0 1

)
, corresponding to all-

optical coupling as in equation (5.10). In the following we consider a pair of lasers
with overall coupling strength σ and self-feedback strength κ, such that the coupling
matrix is given by

G =

[
κ 1− κ

1− κ κ

]
. (5.11)

Similar to the iterated maps discussed before, the spectrum of LEs, from which
the KY dimension and the Kolmogorov entropy can be computed, is obtained from
a Gram-Schmidt orthonormalization procedure. Figure 5.9 shows the KY dimension
and the Kolmogorov entropy as a function of κ. The dashed blue curve was obtained
using the complete spectrum, while the solid green curve uses only the spectrum of
the SM, given by equation (5.2). The vertical gray lines denote the boundary of
stable synchronization of the two lasers with the given parameters; synchronization
is stable between the two lines.

The results are very similar to the maps. The KY dimension also jumps from a
high (dashed blue) to a lower value (solid green) at the synchronization transition.1

Unfortunately, we are not able to calculate the correlation dimension of the laser
rate equations. Due to the delay term which makes the system high-dimensional,
the available algorithms do not produce reliable results, to our knowledge. As for
the maps, the derivative of the Kolmogorov entropy K(κ) is discontinuous at the
transition. This is due to the fact that in the desynchronized region, the band of the

1Under the assumption that only the spectrum of the SM has to be used when computing the
KY dimension for chaos synchronization, whereas outside the synchronization region the complete
spectrum has to be used.
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5.4 Networks

longitudinal LEs crosses zero and, hence, suddenly contributes to the Kolmogorov
entropy.

5.4 Networks

In this section, we investigate the transition to chaos synchronization in large net-
works. We are particularly interested in the scaling of the jump in the KY dimension
and in the scaling of the Kolmogorov entropy with system size N . For simplicity, we
restrict the investigations to networks of N all-to-all coupled Bernoulli units with-
out self-feedback (κ = 0). The system is described by equation (5.6) where the
eigenvalues of the adjacency matrix G, for a network with all-to-all coupling, are de-
generated. G has the eigenvalue γ1 = 1 and the N − 1 times degenerated eigenvalue
γl = −1/(N − 1), with l = 2, . . . , N . Thus the transversal LE spectrum is N − 1
times degenerated.

The region of synchronization for an all-to-all coupled network changes with the
number of units. In the limit of large delay times, τ →∞, we �nd the critical value
at which the transition to synchronization occurs to be (see equation (3.19))

εc = (a− 1)/[a(1− 1/(N − 1))] . (5.12)

With increasing system size εc decreases monotonically towards its limit of ε = 1−1/a
for N →∞, as it is depicted in Figure 5.12(a) by the dashed line. Note that without
self-feedback an all-to-all coupled network must comprise at least three units in order
for complete synchronization to occur.2 It is not possible for two mutually coupled
units to synchronize without self-feedback, as it is shown in Section 3.4. Figure 5.10
shows the spectrum of LEs as a function of ε for a system of three all-to-all coupled
Bernoulli maps. The transversal spectrum is two-fold degenerated.

The transition from strong to weak chaos is independent of the number of units
and occurs at εcrit = 1− 1/a. It is de�ned by the scaling behavior of the maximum
LE, as shown in Section 3.5.1. For ε < εcrit the system is in the regime of strong
chaos, otherwise in the regime of weak chaos. Hence, the transition from strong
to weak chaos does generally not coincide with the synchronization transition. The
synchronization transition usually occurs for a larger coupling strength. Only in the
limit of N →∞ both transitions coincide.

For strong chaos the maximum LE is of order one whereas for weak chaos it scales
as 1/τ . Since each mode of the network has τ many LEs of the order of 1/τ , the KY
dimension increases linearly with the delay time τ whereas the Kolmogorov entropy
K is independent of τ . For an unsynchronized system the LEs of the degenerated
transversal spectrum contribute to the KY dimension. By adding another all-to-all
coupled unit to the system, another identical band of LEs is added which contributes
to the KY dimension as well as to the Kolmogorov entropy. Hence, we expect the
dimension and entropy to increase with the system size N . On the other hand, for a

2The synchronization depends of course on the coupling strength as well as on the chaoticity of
the units.
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Figure 5.10: Lyapunov spectra vs. coupling strength ε for a system of three all-to-
all coupled Bernoulli maps with the parameters a = 1.5 and τ = 20. The blue dashed
lines show the longitudinal spectrum associated with γ1 = 1 and the red solid lines
show the transversal spectrum associated with the two-fold degenerated eigenvalue
γ2 = −1/2. The vertical dotted line indicates the transition between strong and
weak chaos and the vertical dashed line indicates εc where to its right the system is
synchronized.

su�cient coupling strength ε such that the system is synchronized, the KY dimension
and the Kolmogorov entropy are determined solely by the SM, i.e., only the γ1 band
contributes to the KY dimension and the entropy, and therefore both quantities are
independent of the number of units. In particular, the KY dimension cannot exceed
a value larger than the delay time of a single unit for the synchronized system.

Figure 5.11 shows the KY dimension and the Kolmogorov entropy as a function
of the system size N in the regime of strong chaos for di�erent delay times τ . It is
clearly visible that for large delay times the di�erent plots of DKY /τN corresponding
to di�erent delays nearly coincide. Thus the KY dimension scales linearly with τ
whereas the Kolmogorov entropy is independent of τ . Both, entropy as well as
dimension increase with system size N and it seems that for large N both quantities
scale linearly with N .

Since the KY dimension scales with N for the desynchronized case but it is
independent of N for the synchronized case, we expect the jump of the attractor
dimension at the synchronization transition to be of the order N . Figure 5.12 shows
the jump of the KY dimension at the transition as well as the critical coupling
strength εc at which the jump occurs as a function of network size N for di�erent
delay times. The theoretical value for εc in the limit τ → ∞ is plotted as well
(dashed line). For increasing τ the obtained results for εc move towards the limiting
case. The jump ∆D has a nonmonotonic behavior since the critical coupling εc at
which ∆D is evaluated depends on N . For large enough network sizes the jump ∆D
scales indeed linearly with the number of units. The slope of this linear relation is
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Figure 5.11: KY dimension and Kolmogorov entropy with respect to the number of
all-to-all coupled Bernoulli maps N for di�erent delay times τ . It starts from τ = 80
(uppermost curve) and increases in steps of ∆τ = 40 up to τ = 200 (lowermost
curve). The other parameters are a = 1.5 and ε = 0.2.

approximately two for small N , ∆D/N ≈ 2, and approximately one for large N ,
∆D/N ≈ 1. The transition between the two di�erent slopes is related to the dip in
the critical coupling strength εc(N) which is due to the fact that the system is not
yet in the limit τ → ∞. The slope ∆D/N depends on the order of limits. If we
take the limit τ → ∞ �rst the jump ∆D scales linearly with the number of units
N with a slope of two. If we however take the limit N → ∞ �rst it scales with a
slope of one for any value of τ . In Figure 5.12(c) the same data as in panel (b) is
plotted as ∆D/N versus N/τ leading to data-collapse. This shows that the jump in
the Kaplan-Yorke dimension is in the limit of large τ determined by the scaling law

∆D ≈ Nψ(N/τ) , (5.13)

where ψ is the scaling function depicted in panel (c).

5.5 Parameter mismatch

In this section we investigate systems of two mutually coupled non-identical units.
These units are either Bernoulli or tent maps with a small parameter mismatch ∆a.
The system's equations are similar to equation (5.9) and read

xit+1 = (1− ε)fi(xit) + εκfi(x
i
t−τ ) + ε(1− κ)fj(x

j
t−τ ) , (5.14)

with i, j ∈ {1, 2}. Due to the parameter mismatch the dynamics of the two units,
given by f(xt), di�er slightly. Hence, identical synchronization is impossible.

A parameter mismatch destroys the SM such that the dynamics of the system
is, in contrast to a synchronized system with identical units, never restricted solely
to the SM. It does not make sense to speak of a longitudinal and a transversal LE
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Figure 5.12: (a) Critical coupling strength εc and (b,c) jump of the KY dimension
∆DKY with respect to the system size N of all-to-all coupled Bernoulli maps. The
di�erent curves correspond to di�erent delay times, τ . Lowest curve is for τ = 40 and
increases by steps of ∆τ = 20 up to τ = 160 (upper curve). For εc the theoretical
value in the limit of τ → ∞ is plotted as well (upper dashed line). The parameter
of the Bernoulli map is a = 1.5.

spectrum anymore. For systems with parameter mismatch we always need to take the
full spectrum into account when computing the KY dimension from equation (5.4).
Hence, the dimension should not show any discontinuity. Although we cannot group
the LEs, they may nevertheless still be clustered in di�erent bands, similar to a
desynchronized network of identical units, as discussed earlier. In this case the
Kolmogorov entropy shows kinks when some band of negative LEs crosses zero.

The parameter mismatch prevents the system from synchronizing perfectly and
gives rise to attractor bubbling, intermittent bursting or basin riddling [60�64, 78, 79].
Depending on the strength of the mismatch, the former synchronized trajectories are
usually still nearly synchronized, i.e., they are very close together (in the order of
the size of the mismatch), although not identical. But for short periods of time there
occur bursts where the system becomes completely desynchronized. The di�erence of
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Figure 5.13: Time series of the di�erence ∆x = x1−x2 for a system of two mutually
coupled Bernoulli maps with parameter mismatch ∆a. The parameters are a = 1.5,
ε = 0.6, κ = 0.4 and τ = 20.
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Figure 5.14: Time series of the di�erence ∆x = x1 − x2 for a system of two
mutually coupled tent maps with parameter mismatch ∆a. The parameters are
a = 0.4, ε = 0.6, κ = 0.3 and τ = 20. Note the di�erent scaling of the ∆x axis.

the trajectories, ∆xt = xjt − xit, shows an intermittent behavior. The period length
between successive bursts decreases with increasing parameter mismatch, i.e., the
stronger the mismatch the more frequently bursts occur.

We �nd that for a Bernoulli system the amplitude of the bursts is independent
of the strength of the mismatch whereas for the tent map the amplitude scales
with the strengths of the mismatch, in the region where the system with identical
units is synchronized. Bernoulli maps show a hard transition whereas tent maps
show a soft transition, similar to the super-critical and sub-critical behavior at the
synchronization transition of a system without parameter mismatch, as discussed
in Section 5.2. A typical time series of a Bernoulli and tent map system is shown
in Figure 5.13 and 5.14, respectively, for a set of parameters such that the system
without parameter mismatch is completely synchronized.
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Figure 5.15: KY dimension with respect to the coupling strength κ for a system of
two mutually coupled maps for various parameter mismatches ∆a. The parameters
are a = 1.5, ε = 0.45 and τ = 5.

The parameter mismatch does not change the system's LE spectrum signi�cantly.
The KY dimension and the Kolmogorov entropy of a system with parameter mis-
match are obtained from the full LE spectrum and are very similar to a system with
identical units (when using the full LE spectrum). Only for an extreme parameter
mismatch, such as ∆a = 0.1, the dimension and the entropy deviate distinctly. The
KY dimension for two mutually coupled Bernoulli and tent maps, respectively, is
shown in Figure 5.15 for various parameter mismatches. We �nd the KY dimen-
sion of the system with parameter mismatch to be slightly higher than of a system
without parameter mismatch, with the di�erence depending on the strengths of the
mismatch. But the overall shape remains similar. Note that there occurs an outlier
in the attractor dimension for coupled tent maps at the symmetric coupling κ = 0.5
which is due to numerical artifacts. The Kolmogorov entropy for the two systems is
shown in Figure 5.16. For Bernoulli maps the Kolmogorov entropy is slightly higher
for the system with parameter mismatch, similar to the KY dimension, but follows
closely the behavior of the system without mismatch. In particular, the kink in the
entropy is still clearly visible. However, for the tent map system the results are not
as smooth. The entropy shows quite some �uctuations and can surprisingly, for some
parameters, be smaller for a system with mismatch than without mismatch. This
behavior is not yet understood. It seems very peculiar since it means that a system
with mismatch is more predictable. Most likely the data points which are smaller
than the reference system without mismatch are due to random �uctuations caused
by the mismatch and numerical inaccuracies. A closer investigation of this problem
should be done in the future. The kink in the Kolmogorov entropy is not as distinct
as for Bernoulli maps and vanishes for larger parameter mismatches, so that the
transition to synchronization is no longer visible.

Figure 5.17 shows the correlation dimension for two mutually coupled maps for
various parameter mismatches. The correlation dimension changes drastically for a
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Figure 5.16: Kolmogorov entropy with respect to the coupling strength κ for a
system of two mutually coupled maps for various parameter mismatches ∆a. The
parameters are ε = 0.45 and τ = 5.
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Figure 5.17: Correlation dimension with respect to the coupling strength κ for a
system of two mutually coupled maps for various parameter mismatches ∆a. The
parameters are ε = 0.45 and τ = 5. The dashed line shows the KY dimension of
a system without parameter mismatch, for a better comparison of the correlation
dimension with the KY dimensions.
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5. Attractor Dimension at the Synchronization Transition

system with parameter mismatch. Without parameter mismatch it follows the KY
dimension of the SM in the regime of synchronization, but for an increasing parameter
mismatch it more and more follows the KY dimension of the full system (and not
the SM). In particular the discontinuity in the correlation dimension vanishes. As we
reasoned above, the system with parameter mismatch cannot completely synchronize
and hence the dimension of the attractor is determined by the full spectrum.
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Chapter 6

Linear Response of Synchronized

Chaotic Systems

In this chapter the linear response of synchronized time-delayed chaotic systems to
small external perturbations is investigated for iterated maps. We mainly focus
on a phenomenon from chaos communication called �chaos pass �lter�. The external
perturbation causes the dynamics of the synchronized chaotic units to deviate leading
to a distribution of distances. This distribution is analyzed by means of its moments
and is used as a measure of the linear response. The linear response is also quanti�ed
by the bit error rate of a transmitted binary message which perturbs the synchronized
system.

In the �rst section the e�ect of chaos pass �lter is explained and the model of
two coupled chaotic units is introduced. This model and its response to noisy signals
is studied extensively in the following sections. The moments of the distribution of
distances are de�ned and investigated in the second section. In the third section
the bit error rate of a transmitted signal is analyzed. In the following two sections
we discuss the response of the system to harmonic signals and the relation of the
system's Lyapunov spectrum to its response. Finally the linear response of small
networks, such as a chain of three units and a ring of four units, is investigated.

Most of the research presented in this chapter has been published in reference [80]
and the presentation here follows closely this paper but also contains some additional
results and �gures.

6.1 Chaos Pass Filter

We showed in Chapter 3 that coupled chaotic systems can synchronize completely
without any time shift even if the couplings, i.e., the exchanged signals, have a
large time delay. This phenomenon can be applied for chaos based cryptography
[81]. Communication by synchronized chaotic electronic circuits [25�27] as well as
by synchronized chaotic lasers [28] have been demonstrated in the laboratory. Even
in a commercial �ber-optic network, secure communication has been realized with
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6. Linear Response of Synchronized Chaotic Systems

synchronized chaotic semiconductor lasers over a distance of 120 km [30].

Secure chaos communication is based on the fact that the secret message is en-
coded in the exchanged chaotic signal such that only the synchronized receiver can
reconstruct the message from the transmitted signal. Several methods have been
suggested, e.g. chaos modulation where the message modulates the dynamics of the
sender or chaos masking where the message is added on top of the transmitted signal
[18]. Chaos masking utilizes a phenomenon which was coined �chaos pass �lter� and
hence is also sometimes referred to as chaos pass �lter [82, 83]. A chaotic receiver
which is driven by the chaotic trajectory of a sender plus a (small) message responds
essentially to the trajectory but not to the message. Thus the chaotic system �lters
out any perturbation and it is possible for the receiver to recover the message by
subtracting its own dynamics from the incoming chaotic signal.

Chaos pass �lter is observed in experiments on electronic circuits and lasers and
in simulations of chaotic systems. But the underlying physical process is still not well
understood. The dynamics of a stable completely synchronized state is restricted to
the SM and any random perturbation perpendicular to the manifold exponentially
decays to zero. However, the added secret message represents a permanent pertur-
bation of the system which is not necessarily damped but potentially destroys the
synchronization. In the following we investigate the phenomenon of chaos pass �lter,
i.e. the linear response of synchronized chaotic systems to an external perturbation.
The linear response is analyzed by means of the moments of the distribution of dis-
tances, i.e., the deviations between two synchronized chaotic units, the bit error rate
of a transmitted random message and resonances of harmonic perturbations.

Research on linear response of general chaotic systems has been done before,
mainly in the context of linear stochastic systems with multiplicative and additive
noise [84, 85]. Here, we use iterated maps in order to derive analytical results. Many
of the e�ects discussed in this chapter are also observed in numerical simulations of
chaotic di�erential equations.

6.1.1 The Model

The simplest model for the chaos masking setup is a system of two chaotic units
which are either uni- or bi-directionally coupled by a function of their internal vari-
ables, similar to the system presented in Section 3.4. The secret message m, which
represents an external perturbation, is added to the transmitted chaotic signal at
the sender as depicted in Figure 6.1. These setups have been realized with chaotic
semiconductor lasers in a laboratory [48, 86, 87]. The message is small compared
to the carrier signal and for our purpose its content may be considered as random
noise. Hence we are, in the following, interested in the linear response of the receiver
to noise.
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m

1 2

- m~

τ ττ

Figure 6.1: Setup of two coupled chaotic units with either uni- or bi-directional
(dashed line) coupling. A perturbation m is added to the exchanged signal at unit 1,
i.e., the sender, and is recovered as m̃ at the receiver. The transmitted signal has a
time delay τ .

Uni-directional Setup

The dynamics of the uni-directional setup is given by

x1t+1 = (1− ε)f(x1t ) + εf(x1t−τ )

x2t+1 = (1− ε)f(x2t ) + εκf(x2t−τ ) + ε(1− κ)f(x1t−τ +mt−τ ) , (6.1)

where the parameters have the usual meaning and the chaotic dynamics f(x) is either
given by a Bernoulli, tent or logistic map.

The e�ect of small noise can be calculated by linearizing equation (6.1) in the
vicinity of the SM st = x1t = x2t . The noise leads to a small deviation dt = x2t − x1t
which is determined by the linear equation

dt+1 = (1− ε)f ′tdt + εκf ′t−τdt−τ + ε(1− κ)f ′t−τmt−τ , (6.2)

where f ′t is the derivative of f(x) at the synchronized trajectory st.
This equation determines the region of synchronization. Without noise dt decays

to zero for stable synchronization and increases exponentially otherwise. Note that
without any noise present, mt = 0, this equation can be solved analytically for
Bernoulli units, where f ′t = a = const, in the limit of large delay, τ →∞, similar to
Section 3.4.1. One obtains the system's LE spectrum and hence the phase diagram
of synchronization can be determined. The parameter range for which the Bernoulli
system in the stationary state synchronizes completely, i.e., x1t = x2t , is given by the
inequality

κ <
1− a(1− ε)

aε
, (6.3)

and is shown in Figure 6.2. For the uni-directional setup stable synchronization
exists in region II and III.

Bi-directional Setup

The system's equations of the bi-directional setup are very similar to the uni-
directional one. The only di�erence is that the receiver's dynamics is injected into
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Figure 6.2: Phase diagram for two coupled Bernoulli units with a = 1.5. The
uni-directional setup synchronizes completely in regions II + III (- -) and the bi-
directional setup in regions I + II (-), see equation (6.3) and (6.6).

the sender. The equations read

x1t+1 = (1− ε)f(x1t ) + εκf(x1t−τ ) + ε(1− κ)f(x2t−τ )

x2t+1 = (1− ε)f(x2t ) + εκf(x2t−τ ) + ε(1− κ)f(x1t−τ +mt−τ ) , (6.4)

and the linearized equations for a small deviation is given by

dt+1 = (1− ε)f ′tdt + εκf ′t−τdt−τ + ε(1− κ)f ′t−τ (mt−τ − dt−τ )

= (1− ε)f ′tdt + (2κ− 1)εf ′t−τdt−τ + ε(1− κ)f ′t−τmt−τ . (6.5)

Without noise, mt = 0, we can also compute the synchronization region for a
Bernoulli system analytically and obtain the following inequality

a− 1

2aε
< κ <

1 + 2aε− a
2aε

. (6.6)

This region is shown in Figure 6.2, where stable synchronization for the bi-directional
setup exists in region I and II.

6.1.2 Recovering a Secret Message

As explained earlier, for chaos masking the message m is modulated onto the chaotic
carrier signal. The combined signal ct = x1t + mt is �nally transmitted. The chaos
masks the secret message such that a potential eavesdropper only sees a random
signal. Only the receiver which is synchronized to the sender can recover the message
by subtracting its own state from the received signal. The recovered message m̃t is
then given by

m̃t = ct − x2t = mt − dt , (6.7)
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Figure 6.3: Encoding and decoding of a message in a chaotic signal using chaos
masking. System consists of two bi-directionally coupled logistic maps with a = 4,
ε = 0.6, κ = 0.4 and τ = 100. The message m is modeled as a periodic signal with
amplitude M = 10−8 and frequency ω = 5 · 2π/τ .

where x1t and x2t denotes the sender's and the receiver's dynamics, respectively. If
both units were perfectly synchronized, i.e., dt = 0, the original message would be
perfectly recovered by the receiver.

To illustrate the principle of chaos masking, Figure 6.3 shows a typical trans-
mitted signal, i.e., the chaotic carrier signal with a message added, and the original
periodic message of the form mt = M sinωt together with the recovered message.
The periodic structure of the message is not apparent in the transmitted signal,
which looks like random noise, but is clearly visible in the recovered message.

Note that for the security of the communication it is crucial that the system is
high dimensional. For low dimensional chaotic systems tools have been developed
to analyze the chaotic signal and extract information from it, such as the technique
of return maps [88] or parameter estimation of chaotic equations [89, 90]. Even for
high dimensional chaos tools for reconstructing the chaotic attractor exist [91�93].
In particular a uni-directional setup is not secure since an eavesdropper who, for
example, knows all the details can use an identical copy of the receiver, synchronize
it as well and extract the message. In contrast, two chaotic units which interact
by bi-directional transmission have an advantage over an attacker driven by a uni-
directional signal [94�98].

6.1.3 Numerical Di�culties

The additional noise in the argument of f(x) in the system equations (6.1) and
(6.4), for example in the term f(xt−τ + mt−τ ), can cause the argument, and hence
the system's dynamics, to leave the allowed range [0, 1]. But the system with its
coupling constants is constructed such that the dynamics must be restricted to the
range [0, 1]. If a unit is not restricted to the unit interval the system's dynamics
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Figure 6.4: Periodic continuation of the maps.

can quickly diverge to in�nity. There are di�erent possibilities to circumvent the
problem that the argument can take on values outside the allowed unit interval.
To name a few: re�ecting boundaries, periodic boundaries, periodic continuation or
arguments which are not in the desired range can be rejected and a new random
number can be drawn instead, until it �nally is in the desired range. In the following
periodic continuation was chosen, as it is shown in Figure 6.4. If the argument
exceeds the allowed range, the function f(x) is periodically repeated such that the
unit's dynamics is restricted to the unit interval.

6.2 Moments of the Distribution of Distances

The linear response of the synchronized system to a small perturbation m, such
as noise or a transmitted message, can be studied by investigating the stationary
distribution of the distance dt which develops after a transient time and which is
caused by the transversal LEs. Without an external perturbation the coupled system,
equation (6.1) and (6.4), can synchronize completely, see Figure 6.2. However, for
a slightly perturbed system the deviation from the SM dt does not decay to zero
but has a distribution ρ(d) around zero. This distribution is characterized by its
moments which are de�ned as

χn = lim
〈|m|〉→0

〈|d|n〉
〈|m|n〉 , (6.8)

where 〈. . .〉 means an average over the distribution of m and d, respectively and n
denotes the order of the moment. In the following we will mainly focus on the second
moment χ2 which is also known as susceptibility. The susceptibility is a measure for
the response of the synchronized system to an external perturbation. The larger the
system's susceptibility, the stronger is its response to a perturbation.

For our general investigations of the moments of ρ(d) we model the perturbation
mt as random numbers with a uniform distribution in the interval [−M,M ]. If
not stated otherwise, the presented results were obtained using a maximum noise
strength of M = 10−8. Simulations have also been performed for other maximum
noise strengths. We found that the linear response does not change much up to
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M = 10−2. In particular, all observed phenomena which are presented in this work
occur up to this maximum noise strength.

6.2.1 Systems without Time Delay

We start by discussing systems without time delay, τ = 0, in order to obtain ana-
lytical results. In particular, we can derive an expression for the second moment for
such systems. In contrast, systems with time delay are much more complex and we
have to rely on numerical simulations.

Uni-directional Setup

Let us consider the simplest of all cases, the uni-directional setup without time delay.
Using the substitution α = ε(1−κ) the system reduces to a simple master-slave setup
without self-feedback and the linearized equation (6.2) takes the form

dt+1 = (1− α)f ′t dt + αf ′tmt . (6.9)

From this equation we see immediately that the perturbed system cannot syn-
chronize completely since the noise term prevents d from decaying to zero. But the
perturbed system can still synchronize approximately (having a distance of around
the strength of the noise) if the �rst term in equation (6.9) decays to zero expo-
nentially fast, i.e., when the largest transversal LE of the unperturbed system, λmt,
becomes negative. This LE is given by

λmt = ln (1− α) + 〈ln |f ′|〉 , (6.10)

and, hence, the critical coupling for the synchronization transition is

αc = 1− e−〈ln |f ′|〉 . (6.11)

The linear response can also be derived from equation (6.9). Squaring this equa-
tion and using the fact that d, m and f ′ are uncorrelated, one �nds for the second
moment

〈d2〉
〈m2〉 =

α2〈f ′2〉
1− (1− α)2〈f ′2〉 . (6.12)

The second moment diverges when the denominator becomes zero which occurs at
the critical coupling

α2 = 1±
√

1

〈f ′2〉 . (6.13)

A distribution with diverging moments has typically a power law tail. This implies,
in our case, that rare but large excursions from the SM occur. If the factor (1−α)|f ′t |
in equation (6.9) takes on values larger than one dt can temporarily explode, such
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Figure 6.5: Distribution of |d| for two uni-directionally coupled logistic maps with-
out time delay τ = 0. ρ(|d|) is shown for two di�erent coupling strengths α = 0.6
and α = 0.8, respectively, in a log-log plot. The other parameters are a = 4 and
M = 10−8. The dashed red line shows a power law �t with µ = 1.5. The additive
noise prevents the system from perfectly synchronizing and therefore the distribu-
tions have a maximum at d ≈ 10−8.

that a nearly synchronized system can indeed have short periods of extreme de-
synchronization. For example, let us consider logistic maps with a = 4, for which
the distribution of f ′ is given by

ρ(f ′) =
1

π
√

16− f ′2
. (6.14)

The maximum slope is |f ′| = 4 and hence we expect to �nd large excursions of dt
for α < 3

4 .
The simulations show that the distance |d| indeed follows a power law of the form

ρ(|d|) ∼ 1

|d|µ , (6.15)

for a small enough coupling strength. For logistic maps two typical distributions
ρ(|d|) are shown in Figure 6.5. Both distributions have a peak at values slightly
larger than the maximum noise strength M , since the additive noise in the systems
prevents it from being perfectly synchronized. For α = 0.6 the distribution follows,
to a good approximation, a power law, whereas for α = 0.8 the distance |d| is
distributed di�erently.

For the logistic and the tent map the second moment diverges already inside the
region of synchronization. For the logistic map with a = 4 and the mean values
〈f ′2〉 = 8 and 〈ln |f ′|〉 = ln 2, which can be analytically computed from the distribu-
tion given by equation (6.14), we �nd the synchronization transition to be at αc = 1

2
and the second moment to diverge at α2 = 1 − 1√

8
≈ 0.646. For the tent map with

a = 0.4 where 〈f ′2〉 = 1/a+1/(1−a) = 25
6 and 〈ln |f ′|〉 = −a ln |a|−(1−a) ln |1− a| ≈
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Figure 6.6: Second moment χ2 (blue points) and cross correlation C (red squares)
for two uni-directionally coupled maps without time delay τ = 0 as a function of
the coupling strength α. The maximum noise strength is M = 10−8. Dashed curve
shows analytical results for χ2 whereas other results were obtained from simulations.

0.67, we �nd αc ≈ 0.49 and α2 = 1 −
√

6
25 ≈ 0.51. In contrast, for Bernoulli maps,

where the coe�cients f ′ in equation (6.9) are constant, the transition from a �nite
to a diverging second moment coincides with the synchronization transition, which
takes place at αc = α2 = 1

3 for a = 1.5.
The second moment χ2 is shown in Figure 6.6 together with the cross-correlation

C for a system of coupled Bernoulli, tent and logistic maps as a function of the
coupling strength. The numerically obtained results for the second moment and
the synchronization transition agree well with the analytical results obtained from
equation (6.10) and (6.12). For Bernoulli maps the second moment diverges at
the synchronization transition whereas for tent as well as logistic maps the second
moment already diverges in the region of synchronization.

Figure 6.7 shows a trajectory of dt for tent maps where the coupling parameters
are once chosen such that the second moment exists and once that it diverges. In
both cases the system is synchronized, i.e., C = 1, but in case of a diverging second
moment large excursions from the SM occur. The trajectory shows an intermittent
behavior similar to the one in Section 5.5 where systems with parameter mismatch
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Figure 6.7: Trajectory of dt for two uni-directionally coupled tent maps without
time delay τ = 0 and two di�erent coupling strengths α. Other parameters are
a = 0.4 and M = 10−8. In both cases the cross-correlation is C = 1 but for (a)
large excursions from the SM occur and the second moment diverges, χ2 = 275127,
whereas for (b) the second moment is �nite, χ2 = 8. Inset in (b) shows that the
deviations from the SM is in the order of the magnitude of the noise.

were discussed. On the contrary, for a �nite second moment the deviations from
synchronization are mainly determined by the additive noise term in equation (6.9)
and are of the magnitude of M . Note that when plotting the distribution ρ(|d|) of
the trajectories we obtain similar results to Figure 6.5. The intermittent trajectory
has a power law distribution whereas the other trajectory is distributed di�erently.
On the other hand, we �nd similar results to Figure 6.7 for typical trajectories of a
logistic map setup.

The linear equation (6.9) also determines higher moments of ρ(d). By taking the
nth power of equation (6.9) we �nd that χn diverges at a coupling αn given by

1 = (1− αn)n〈f ′n〉 . (6.16)

Hence, for Bernoulli maps all moments diverge at the synchronization threshold αc,
whereas for tent and logistic maps all moments diverge at di�erent coupling strengths
αn. In case of logistic maps this critical coupling is given by

αn = 1− 1

4

(
n
√
π Γ(n2 )

2 Γ(n+1
2 )

) 1
n

, (6.17)

and it is shown in Figure 6.8. Starting from a highly synchronized state and de-
creasing α the distribution ρ(d) broadens and eventually follows a power law. The
di�erent moments of the distribution successively start to diverge starting with the
highest one χ∞ and continuing with lower and lower ones until �nally for n→ 0 the
synchronization threshold is reached, where 〈ln |d|〉 diverges.
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Figure 6.8: The threshold αn below which χn diverges for two uni-directionally
coupled logistic maps without time delay τ = 0 and a = 4, see equation (6.17).

The broadening of the distribution with decreasing α is related to a decreasing
power law exponent µ. The linear equation (6.9) can approximately be related to a
stochastic equation with multiplicative and additive noise. For chaotic maps, such
as the logistic and the tent map, and without time delay present, we can approx-
imately assume f ′t to be an uncorrelated random number. Using this assumption,
equation (6.9) becomes a discrete linear stochastic equation with multiplicative and
additive noise of the form

xt+1 = γtxt + ηt . (6.18)

In the theory of discrete linear stochastic equation it is well known that such an
equation may lead to stationary distributions which have a power law of the form
given by equation (6.15) and the exponent µ being determined by [85, 99, 100]

〈γµ−1〉 = 1 . (6.19)

Comparing equation (6.16) and (6.19) we see that µ is related to the order of the
moment n by µ = n + 1. This relation determines the smallest value nc for which
all higher moments n > nc diverge. Note that the zero correlation assumption only
holds approximately. When comparing the exponent µ obtained from simulations
(see Figure 6.5) with equation (6.19) we �nd small deviations. But the approxi-
mation of uncorrelated random numbers shows qualitatively how power law tails
emerge from time dependent chaotic coe�cients and, in particular, illustrates that
large excursions from the SM are closely related to multiplicative noise. The zero cor-
relation assumption and the stochastic equation approximation is discussed further
in Section 6.2.3.

Power law tails of the distribution of a stochastic process with multiplicative and
additive noise have been discussed in the context of chaos synchronization, before
[1]. In the vicinity of the synchronization transition this phenomenon has been called
�on-o� intermittency�. Here the phenomenon is triggered by the message transmitted
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via the chaotic signal, and it is observed deep inside the region of synchronization.
Similar to a parameter mismatch, external noise leads to attractor bubbling which
prevents the system from synchronizing perfectly and gives rise to an intermittent
bursting [61, 101].

Bi-directional Setup

So far we have discussed the uni-directional setup only. The linearized equations for
the bi-directionally coupled system without time delay are very similar. With the
substitution α = ε(1− κ), they read

dt+1 = (1− 2α)f ′tdt + αf ′tmt . (6.20)

From this equation the second moment can be derived and it yields

〈d2〉
〈m2〉 =

α2〈f ′2〉
1− (1− 2α)2〈f ′2〉 , (6.21)

which only di�ers by the factor of 2 in the denominator compared to the second
moment of the uni-directional setup (compare equation (6.12)). For the critical
coupling at which the second moment diverges we obtain the following expression

α2 =
1

2

(
1±

√
1

〈f ′2〉

)
. (6.22)

The maximum transversal LE of the unperturbed system, which determines the
stability of synchronization, is given by

λmt = ln |1− 2α|+ 〈ln |f ′|〉 . (6.23)

Due to the additional factor of 2 in ln |1− 2α| we have to distinguish the two cases,
α < 0.5 and α > 0.5. We �nd for the critical coupling at which the synchronization
transition occurs

αc =
1

2

(
1± e−〈ln |f ′|〉

)
. (6.24)

In the synchronized case, the system's dynamics is restricted to the SM and corre-
sponds to the dynamics of a single unit. Hence, for the synchronized system with-
out time delay the distribution of a single isolated unit can be used for computing
the mean values 〈f ′2〉 and 〈ln |f ′|〉. They yield the same values as for the uni-
directional setup. A typical distribution ρ(f ′) for the receiver of two synchronized
bi-directionally coupled logistic maps without time delay is shown in Figure 6.9(a). It
indeed agrees with the distribution of a single logistic map given by equation (6.14).

The second moment for a Bernoulli, tent and logistic maps system is shown in
Figure 6.10. Plotted are results obtained from numerical simulations together with
analytical results which were obtained using ρ(f ′) of a single unit. Only for logistic
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Figure 6.9: Probability distribution ρ(f ′) of the receiver of coupled synchronized
logistic maps for an undelayed bi-directional setup (a) with ε = 0.4 and τ = 0 and a
time-delayed uni-directional setup (b) with ε = 0.7 and τ = 100. Other parameters
are a = 4, κ = 0 and M = 10−8. Dashed red line shows the distribution of a single
logistic map given by equation (6.14).

maps, the simulations deviate slightly from the analytical results at the transition
from �nite to diverging second moments. The deviation can be explained by the
fact, that for the simulations there is a cut o� at the maximum distance of d = 1,
whereas for the analytical expressions the distance d can be arbitrarily large.

As for the uni-directional setup, the second moment already diverge within the
region of synchronization for logistic and tent maps whereas for Bernoulli maps the
second moment diverges at the synchronization transition. With increasing coupling,
the in�uence of the noise term becomes stronger and, hence, the susceptibility is not
symmetric around α = 0.5.

6.2.2 Systems with Time Delay

In the general case described by the linear equations (6.2) and (6.5) for the uni
and bi-directional setup, respectively, a time delay τ is present. The trajectory dt
exhibits distinct auto-correlations at integer multiples of τ , as it is exemplary shown
in Figure 6.11 for a uni-directional setup. Hence dt and dt−τ cannot be considered
independent but are related by the auto-correlation factor Aτ such that

〈dtdt−τ 〉 = Aτ 〈d2〉 . (6.25)

Using this factor the second moment yields

• uni-directional setup

〈d2〉
〈m2〉 =

ε2(1− κ)2〈f ′2〉
1− 2κ(ε− ε2)Aτ 〈f ′〉2 − ((1− ε)2 + ε2κ2) 〈f ′2〉 , (6.26)
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Figure 6.10: Second moment χ2 (blue points) and cross correlation C (red squares)
for two bi-directionally coupled maps without time delay τ = 0 as a function of α.
The maximum noise strength isM = 10−8. Dashed curve shows analytical results for
χ2 where the single unit approximation has been used. Other results were obtained
from simulations.
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Figure 6.11: Auto correlation A(τ) of dt for two uni-directionally coupled maps
with ε = 0.7, κ = 0.4, τ = 1000 and M = 10−8.

• bi-directional setup

〈d2〉
〈m2〉 =

ε2(1− κ)2〈f ′2〉
1− 2(2κ− 1)(ε− ε2)Aτ 〈f ′〉2 − ((1− ε)2 + ε2(2κ− 1)2) 〈f ′2〉 .

(6.27)

Unfortunately, we generally do not know the factor Aτ , i.e., the magnitude of the
correlation between dt and dt−τ , which also changes for varying coupling parameters.
Additionally, the distribution of f ′ is altered tremendously for a time delayed system
compared to the distribution of a single unit, see Figure 6.9(b). Hence, we cannot
evaluate equations (6.26) and (6.27) further (not even for Bernoulli maps) but have
to rely on numerical simulations for computing the second moment.

A numerical investigation of the time delayed system shows that the behavior
of the moments is similar to a system without time delays. For Bernoulli maps all
moments diverge at the synchronization threshold whereas for logistic and tent maps
the second moment already diverges inside the region of synchronization. Numerical
results for systems of two uni-directionally and bi-directionally coupled Bernoulli,
tent and logistic maps, respectively, are shown in Figure 6.12. The results are pre-
sented in a binary plot, where the system is assumed to be synchronized when the
cross correlation exceeds some threshold θc, and the second moment is assumed to
be �nite when it is smaller than some threshold θ2.

6.2.3 Simulations of the Linearized Equations with Logistic Dis-

tributed Noise

In the previous sections we approximately assumed the variable f ′ in the linearized
equations (6.2) and (6.5) to be an uncorrelated random number with a speci�c
probability distribution. Using this approximation the linearized equations become
stochastic equations with multiplicative and additive noise, see equation (6.18), which
can lead to a power law behavior. Rare but large events, which scale according to a
power law, are indeed observed for a certain range of coupling strengths.

The simplest coupling scheme, a uni-directionally coupled system without self-
feedback, is a master-slave setup. In case of synchronization the receiver follows the
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Figure 6.12: Phase diagram for two uni-directionally (upper row) and bi-
directionally (lower row) coupled maps with τ = 100 and M = 10−8. Red shows
the region where the system is synchronized and has a �nite second moment, i.e.,
C is larger than a threshold θc = 0.999 and χ2 smaller than a threshold θ2 = 50.
Blue shows the region where the system is synchronized but has a diverging second
moment, i.e., C > θc and χ2 > θ2.
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Figure 6.13: Second moment χ2 for two uni-directionally coupled logistic maps
obtained from simulations of the full systems equations and of the linearized equa-
tions. For the linearized equations f ′ was approximated as a random number with
the distribution ρ(f ′) according to equation (6.14). The parameters are a = 4 and
M = 10−8.

dynamics of the sender whereas for the unsynchronized case both units are hardly
correlated. Thus, the distribution of f ′ of both units is essentially the one of a single
isolated unit. For a single logistic unit the distribution ρ(f ′) is known and is given
by equation (6.14).

In this section we simulate the linearized equations (6.2) and (6.5) but substitute
f ′ by random numbers which are distributed according to equation (6.14). For
more information on how to obtain random numbers with a desired distribution
see Appendix A. The results of these simulations are compared to results from
simulations of the full system. If our assumption, that the variable f ′ in the linearized
equations is an uncorrelated random number, holds we expect the results of the
di�erent simulations for the master-slave setup to coincide perfectly. For the general
case where the units are in�uenced by a delayed (mutual) interaction we expect the
results of the simulations to deviate, since in this case the distribution ρ(f ′) is altered
and does not correspond to the one of a single isolated unit.

Figure 6.13 shows results for a uni-directional setup. For τ = 0 the results
from simulations of the linearized equation match well with the results from the
full equations whereas for a system with delayed feedback the curves deviate, as we
expected.

Figure 6.14 shows results for a bi-directional setup. As stated earlier and as
it is shown in Figure 6.9, the distribution ρ(f ′) of an undelayed synchronized bi-
directionally coupled system corresponds to the distribution of a single unit. As the
plots show, for τ = 0 the results from simulations of the linearized equation match
reasonably well with the results from the full equations. However for a time delayed
system the distribution is altered completely and the zero correlation assumption is
no longer valid. For τ 6= 0 the results of the simulations deviate strongly, similar to
the uni-directional setup.
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Figure 6.14: Second moment χ2 for two bi-directionally coupled logistic maps
obtained from simulations of the full systems equations and of the linearized equa-
tions. For the linearized equations f ′ was approximated as a random number with
the distribution ρ(f ′) according to equation (6.14). The parameters are a = 4 and
M = 10−8.

6.3 Bit Error Rate

In this section we mainly focus on the external perturbation being a transmitted
message. Hence, it is not modelled as uniform distributed noise but as discrete
binary noise of the form mt = ±M with M � 1 and 〈m〉 = 0. The quality of the
transmission and reconstruction of a binary message is measured by the bit error
rate (BER).

As mentioned in Section 6.1.2, for a proper reconstruction of the transmitted
message it is crucial that the system is synchronized. However, the message is an
external perturbation to the system that potentially destroys the synchronization.
Hence the BER tells us how an external perturbation in�uences the synchronization,
i.e., it is an indirect measure of the linear response.

The BER r is de�ned as the the number of incorrectly recovered bits normalized
by the total number of received bits,

r =
# incorrectly recovered bits

# received bits
. (6.28)

In order to reconstruct a binary message successfully it is su�cient that the recovered
messages m̃t has the same sign as the original message, i.e., mtm̃t > 0. Note that by
just guessing the bits we would be correct in half of the cases on average and hence
obtain r = 0.5.

The BER is related to the distance d by an integral over the distribution ρ(d),
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according to

r =
1

2

 −M∫
−∞

ρ(d) dd+

∞∫
M

ρ(d) dd

 =
1

2

1−
M∫
−M

ρ(d) dd

 . (6.29)

It is the probability for the absolute value of the distance to be larger than the binary
signal, i.e., |d| > M , normalized by the factor 1/2. If |d| > M , the distance will be in
the direction ofM in half of the cases and in the opposite direction in the other half.
Thus the sign of the recovered signal is changed in half of the cases. This amounts
for the factor 1/2. If the distance is smaller than M , the sign is not changed and
thus the signal can be recovered correctly with probability 1.

Note that this de�nition of the BER assumes that the system has relaxed to a
stationary distribution ρ(d). In fact, this de�nition may be only an upper bound
since lower BERs may be achievable if one uses additional information about the
transmitted signals [102].

For computing the BER analytically by evaluating equation (6.29) we need to
know the probability distribution of the distances, ρ(d). Unfortunately ρ(d) is only
known in a few special cases. In general we have to rely on computer simulations to
determine the BER.

6.3.1 Systems without Time Delay

The BER for systems without time delay is shown in Figure 6.15. It shows results
obtained from simulations of Bernoulli, tent and logistic maps for the uni- as well as
the bi-directional setup.

For an unsynchronized system the BER is at its maximum r = 0.5. In contrast
to the second moment which becomes �nite at the synchronization transition only
for Bernoulli maps, the BER drops down to smaller values for all maps as soon as
the system synchronizes. That means that the BER is smaller than r = 0.5 although
d has large excursions from the SM and the second moment diverges. Hence the sign
of the deviation has correlations to the original message even though its amplitude
has still a broad distribution. In this parameter range information can already be
successfully transmitted. Although the BER is very high, one may apply methods
from information theory to derive the message. For the bi-directional Bernoulli setup
without time delay it is shown in Appendix B that the absolute values of the distances
are smaller than the message amplitude, |d| < M , in the interval 1

3 ≤ ε ≤ 5
9 and

hence the BER becomes zero, see Figure 6.15 (a).
In case of Bernoulli as well as tent maps the BER shows a staircase structure

for some couplings. As derived in Appendix B this devil's staircase is related to a
fractal structure of the distribution ρ(d).

Distribution ρ(d)

The distribution ρ(d) is generally not know analytically and in the following it is
investigated by means of computer simulations. The obtained distributions for the
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Figure 6.15: Bit error rate r for uni- and bi-directionally coupled maps. Parameters
are τ = 0, κ = 0 and M = 10−8. The synchronization transition is indicated by εc
and the transition to a �nite second moment by ε2.
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Figure 6.16: Probability distribution ρ(d) for uni-directionally coupled Bernoulli
maps for di�erent couplings ε. Parameters are a = 1.5, τ = 0, κ = 0 and M = 10−8.

uni- and bi-directional setup have very similar properties. Therefor we restrict the
presented graphs for Bernoulli, tent and logistic maps to either one of the setups in
the following.

For Bernoulli maps, the simulations show that close to the synchronization tran-
sition ρ(d) is rather broad with a Gaussian-like shape, see Figure 6.16(a). Changing
the coupling ε such that the system move towards a more strongly synchronized
regime, the distribution obtains a fractal structure, see Figure 6.16(b), until it even-
tually becomes heavily peaked, see Figure 6.16(c). As it is derived in Appendix B,
for the uni-directional setup the peaked distribution occurs for ε > 2

3 whereas for the
bi-directional setup the distribution is peaked for 1

3 ≤ ε ≤ 2
3 . For a peaked distribu-

tion the BER locks into rational values r = k
2q with k and q being natural numbers.

Note that the fractal properties of the distribution ρ(d) are related to the theory of
iterated function systems [103]. For Bernoulli maps, equation (6.9) and (6.20) give
iterations of two linear functions due to mt = ±1. Iterating a few randomly chosen
functions can lead to fractal distribution, see Appendix B for more details.

In contrast to Bernoulli maps, the distribution for the tent map system can
have very long tails, see Figure 6.17(a). As discussed in the previous section the
distribution can follow a power law. We �nd these long tails in the parameter range
where the system is synchronized but the second moment diverges. The time series
dt shows an intermittent behavior with occasional bursts. For Bernoulli maps there is
no such parameter range since both transitions take place at the same point. Slightly
increasing the coupling such that the moments become �nite, the distribution shows
a Gaussian-like shape and it drops to zero at a few multiples of the noise strength, see
Figure 6.17(b). Apart from the heavy tails close to the synchronization transition,
the distribution ρ(d) for coupled tent maps has a similar behavior as the one for
Bernoulli maps. It also shows a peaked structure which is related to a staircase in
the BER, see Figure 6.17(c).

For logistic maps the distribution ρ(d) also has power law tails, as long as there
exists diverging moments, see Figure 6.18(a). Once all moments are �nite the heavy
tails vanish, see Figure 6.18(b). But unlike to Bernoulli and tent maps ρ(d) does not
show a strongly peaked structure. The distribution has always a connected support
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Figure 6.17: Probability distribution ρ(d) bi-directionally coupled Tent maps for
di�erent couplings ε. Parameters are a = 0.4, τ = 0, κ = 0 and M = 10−8.

−1.5 −1 −0.5 0 0.5 1

x 10
−3

0

2

4

6

8

10
x 10

5

d

ρ
(d

)

−1 −0.5 0 0.5 1

x 10
−7

(a) ε = 0.6

−2 −1 0 1 2

x 10
−7

0

2000

4000

6000

8000

10000

d

ρ
(d

)

(b) ε = 0.8

−1 −0.5 0 0.5 1

x 10
−7

0

1000

2000

3000

4000

5000

6000

d

ρ
(d

)

(c) ε = 0.9

Figure 6.18: Probability distribution ρ(d) uni-directionally coupled Logistic maps
for di�erent couplings ε. Parameters are a = 4, τ = 0, κ = 0 and M = 10−8.

due to the broad distribution of the multiplicative noise f ′, see Figure 6.18(b) and
6.18(c). Note that when zooming in around the peak of the heavy tailed distribution,
we �nd its shape to be similar to the one of the distribution for �nite moments.

6.3.2 Systems with Time Delay

The BER for systems with large time delays are obtained from numerical simulations.
Results for uni- as well as the bi-directionally coupled Bernoulli, tent and logistic
maps are shown in Figure 6.19. The synchronization transition is also indicated
in the plots and illustrates that the BER, similar as for the undelayed system, is
reduced as soon as the system synchronizes.

Note that our results show that the integral over the distribution of distances,
equation (6.29), which determines the BER, is insensitive to long tails of ρ(d). Al-
though the responses χn diverge at di�erent coupling strengths εn, the BER is smooth
as a function of ε.

In our model the BER is rather high compared to reported values of analog and
other digital systems. Hence our investigation just gives a qualitative explanation
of chaos pass �lter. But note, that we are using bits of length L = 1 for our
investigation. The BER can be exponentially reduced by increasing L.
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Figure 6.19: Bit error rate r for two uni-directionally (upper row) and bi-
directionally (lower row) coupled maps with delay τ = 100 as a function of the
couplings ε and κ. The solid red line indicates the synchronization transition, i.e., the
boundary for which all cross correlations are larger than a threshold, C ≥ θc = 0.999.
The maximum noise strength is M = 10−8.
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6.4 Resonances � Response to Harmonic Perturbations

In the previous sections we investigated the linear response of a synchronized chaotic
system to an external perturbation by means of the BER and the moments of the
distribution of the distance. The distance d is given by the linearized equations (6.2)
and (6.5) for the uni and bi-directional setup, respectively.

For Bernoulli maps these linear equations have constant coe�cients and hence
any arbitrary perturbation can be decomposed into its Fourier modes. In this special
case it is su�cient to investigate the linear response of the system to a harmonic per-
turbation of the form mt = M exp(−iω0t). The system responds with the identical
frequency dt = D exp(−iω0t) and the amplitude of the recovered signal m̃ = mt− dt
is given by

|m̃| = |M −D| . (6.30)

The complex amplitude D can be derived analytically and we obtain the following
results

• uni-directional case

D = M
ε(1− κ)a

e−iω0(τ+1) − (1− ε)ae−iω0τ − εκa (6.31)

• bi-directional case

D = M
ε(1− κ)a

e−iω0(τ+1) − (1− ε)ae−iω0τ − ε(2κ− 1)a
. (6.32)

Figure 6.20 shows |m̃| as a function of ω0 close to the phase boundary of syn-
chronization. The amplitude of the reconstructed signal shows peaks (resonances)
separated by a distance 2π/(τ + 1) which are caused by the �rst term of the denomi-
nator in equation (6.31). If the external perturbation matches these speci�c system's
eigen frequencies, the response can be very large. The magnitude of the peaks is mod-
ulated due to the discrete nature of the system's equations. The resonances diverge
at the synchronization boundary.

For the logistic and tent map the coe�cients of the linear equations (6.2) and
(6.5) depend on time. Thus an exact Fourier decomposition of the transmitted
signal is not possible. But we can numerically investigate the response of these
systems to a harmonic perturbation by means of the power spectrum S(ω) of the
recovered message m̃t. S(ω) exhibits a clear peak at the frequency ω0 of the harmonic
perturbation but, surprisingly, it shows no higher harmonics, see Figure 6.21. Hence,
the system essentially responds with the excitatory frequency only.

These results show that a chaotic system can function as a sharp harmonic �lter.
The transmitted signal is irregular and the harmonic perturbation is arbitrarily small.
Nevertheless, the receiver can �lter out this perturbation with high precision. This
is a surprising result which deserves further investigation. In particular, it would be
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Figure 6.20: Amplitude of the reconstructed signal m̃ for di�erent signal frequen-
cies ω0. Bernoulli map, uni-directional coupling with a = 1.5, ε = 0.8, κ = 0.55 and
τ = 50.
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arithmic plot. Original message is of form mt = M sinω0t with M = 10−8 and
ω0 = 5 · 2π/τ . Tent map, uni-directional coupling with a = 0.4, ε = 0.6, κ = 0.4
and τ = 100. Note that the underlying periodic structure is due to the sampling
frequency.
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6. Linear Response of Synchronized Chaotic Systems

interesting to examine this harmonic �lter with respect to secret communication. The
response of synchronized chaotic semiconductor lasers to a harmonic perturbation
has been investigated in reference [104].

6.5 The Transversal Lyapunov Spectra

For stable chaos synchronization the distance dt decays to zero such that the system's
dynamics is restricted to the SM. An external perturbation, however, drives the
system away from this manifold. The competition between these two mechanisms
results in the linear response investigated in the previous sections.

The relaxation to the SM is described in terms of transversal LEs. For stable
synchronization all transversal exponents are negative whereas in the unsynchronized
case positive exponents exist. Close to the transition the maximum transversal ex-
ponent becomes very small until it eventually crosses zero at the transition. This
results in a slowing down of the relaxation to synchronization and in a divergence of
the response close to the transition. Diverging moments and power law tails are in
particular related to local positive transversal LEs. Although the transversal expo-
nents are negative in the synchronized case there can occur positive local ones which
lead to temporary large excursions away from the SM. These positive transversal
�nite-time exponents may be caused by unstable periodic orbits or invariant subjects
of the chaotic manifold [79, 105].

The Lyapunov spectrum, as well as the response functions χn and the BER r
are average quantities describing the system. The maximum LE of the transversal
spectrum, λmt, determines the synchronization properties of the system and one
might expect that the qualitative behavior of χn and r is related to this exponent.
However, it is not as simple as that. The response of the system is determined
by the full Lyapunov spectrum in a non-trivial way and not only by the maximum
transversal exponent.

For example, consider the driven system without delay nor feedback, equa-
tion (6.9), for which the transversal LE is given by equation (6.10), λmt = ln(1−ε)+
〈ln |f ′|〉. It decreases monotonically with increasing coupling strength ε, whereas the
bit error rate r �rst decreases with ε to a minimum value before it increases again,
see Figure 6.15.

For a Bernoulli system with delay τ the spectra of LEs can be calculated by solv-
ing polynomial equations of order τ , as it was explained in Section 3.4. We can group
the LEs according to the eigenvalues of the adjacency matrix into a transversal and
a longitudinal spectrum. For chaotic maps which do not have constant coe�cients in
the master stability function, such as the tent and logistic map, it is not possible to
solve the polynomial equation but we have to rely on numerical simulations, see Sec-
tion 3.5. Figure 6.22 shows the Lyapunov spectrum as a function of ε for a Bernoulli
as well as a tent map system. The qualitative behavior of the maximum transversal
LE and the BER is in both cases, apart from the synchronization transition, not
obviously related. At the synchronization transition the maximum transversal LE
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Figure 6.22: Lyapunov spectrum and bit error rate for uni-directionally coupled
maps with κ = 0.3, τ = 20 and binary noise M = 10−8. Note that the Lapunov
exponent spectrum for the Bernoulli maps were obtained by solving polynomial equa-
tions, such that we can divide the spectrum in its transversal (red solid line) and
longitudinal (dashed blue line) part. For tent maps we have to rely on numerical
simulation where we cannot group the spectrum. Vertical dashed line indicates the
synchronization transition.

becomes negative and the BER starts to decrease from its maximum of r = 0.5.

6.6 Small Networks

Having discussed the linear response of a coupled two units system at length in the
previous sections, we investigate the linear response of more complicated setups such
as a chain of three units and a network of four units in this section. As before the
linear response is investigated by means of the second moment χ2 of the distribution
ρ(d) and the BER r. The motivation stems again from chaos communication. Hence,
in all setups the external perturbation is added to the signal of the sender and can
be thought of as a secret message which shall securely be transmitted to the other
units - the receivers.

The systems in this section are generally too complicated for an analytical discus-
sion of the moments χn or the BER r. Hence we mainly rely on numerical simulations
in the following.

We de�ne the second moment for di�erent units by χij where the index stands
for the combination of unit i and j, i.e., the distance dij = xjt − xit is used when
evaluating equation (6.8). Similar, for the BER rij the signals of units i and j are
compared. Due to the zero-lag synchronization the signals should be compared at
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m

1 2 3τ τ

τ

τ

Figure 6.23: Setup of three coupled chaotic units with either uni- or bi-directional
(dashed line) coupling. A perturbation m is added to the exchanged signal at unit 1,
i.e., the sender. The transmitted signal has a time delay τ between adjacent units.

the same time t when evaluating χij or rij , although the exchanged signals generally
have di�erent time delays for di�erent receivers.

6.6.1 Chain of Three Units

We start by investigating a chain of three chaotic units. The units are arranged in
a line such that the �rst unit is coupled to the second and the second to the third.
The coupling can either be uni- or bi-directional and has a time delay. Optionally
the units are subjected to a self-feedback with the same delay time. This setup is
depicted in Figure 6.23.

Uni-directional Setup

For the uni-directional setup the system's equations read

x1t+1 = (1− ε)f(x1t ) + εf(x1t−τ )

x2t+1 = (1− ε)f(x2t ) + εκf(x2t−τ ) + ε(1− κ) f(x1t−τ +mt−τ )

x3t+1 = (1− ε)f(x3t ) + εκf(x3t−τ ) + ε(1− κ)f(x2t−τ ) , (6.33)

where the parameters have the usual meaning.
For Bernoulli units without noise, mt = 0, the synchronization properties can

be analyzed analytically by a master stability function method, as explained in Sec-
tion 3.4. In the limit of large delays we �nd that for this setup only complete
synchronization between the three units can occur. Unit 1 imposes its chaotic be-
havior onto unit 2 which in turn imposes its behavior onto unit 3. The region of
stable synchronization in the parameter space (ε, κ) is identical to the one of two
uni-directionally coupled units. It is the region II + III in the phase diagram shown
in Figure 6.2.

Simulations show that, similar to Bernoulli maps, for tent as well as for logistic
maps only complete synchronization is possible. All three units synchronize with
each other at the same coupling strength ε, although in the unsynchronized case the
cross correlations are highest between unit 1 and 2. Numerical results for the cross
correlation together with the second moment and the BER, respectively, are shown
in Figure 6.24 for systems of Bernoulli, tent and logistic maps. χ2 was obtained using
uniformly distributed noise and r using binary noise. As we expect, the response,
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(a) Bernoulli maps, a = 1.5
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(c) Logistic maps, a = 4

Figure 6.24: Chain of three uni-directionally coupled chaotic maps with parameters
κ = 0.3, τ = 100 andM = 10−8. Left hand side shows second moment χij (thick blue
curves) and cross correlation Cij (thin red curves) for uniformly distributed random
noise, right hand side shows bit error rate rij (thick blue curves) and cross correlation
Cij (thin red curves) for binary random noise as a function of ε. Solid (dashed) line
shows the respective results for the combination of units ij = 12 (ij=13).
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i.e., χ as well as r, is generally smallest for the combination of unit 1 and 2. Similar
to the two units setup, the BER decreases for both combinations, r12 and r13, at the
synchronization transition. The second moments χ12 and χ13 diverge at di�erent
coupling strengths: in general χ12 diverges closer to the synchronization transition.
For Bernoulli maps we �nd, in contrast to the two units setup, that the second
moment χ13 diverges already inside the synchronized region. Note that the logistic
maps system shows for small coupling ε strong correlation which are most likely due
to some periodic windows, compare Figure 3.5 where these strong correlations can
also be seen for the two units setup. In the synchronized region, we �nd a dip in
χ13 as well as in r13 for logistic maps which we cannot explain and which deserves
further investigation.

Bi-directional Setup

For the bi-directional setup the system's equations read

x1t+1 = (1− ε)f(x1t ) + εκf(x1t−τ ) + ε(1− κ)f(x2t−τ )

x2t+1 = (1− ε)f(x2t ) + εκf(x2t−τ ) + ε(1− κ)
(
1/2 f(x1t−τ +mt−τ ) + 1/2 f(x3t−τ )

)
x3t+1 = (1− ε)f(x3t ) + εκf(x3t−τ ) + ε(1− κ)f(x2t−τ ) . (6.34)

As for the uni-directional setup, we can analyze the synchronization properties
analytically for Bernoulli maps without noise. In the limit of large delays we �nd
that complete and sub-lattice synchronization exists [67]. The region of complete
synchronization is denoted by II in Figure 6.2, whereas in region III only unit 1 and
3 are synchronized.

The sub-lattice synchronization for a bi-directional setup is a generic phenomenon
which also occurs in simulations of tent and logistic maps. We �nd unit 1 and 3 to
synchronize perfectly and, hence, the distance d13 and also the second moment χ13

to be zero. A perturbation of the signal which unit 1 sends to unit 2 is completely
�ltered out and does not a�ect unit 3. This can easily be seen in the system's
equations (6.34). Unit 1 and 3 obtain the same external input from unit 2 and
since the units are identical they synchronize perfectly. Note that unit 2 does not
necessarily need to be synchronized in order for perfect synchronization between
unit 1 and 3 to occur. It acts as a relay which transmits the signals between the
two units such that they can synchronize. Comparing the outgoing signal of unit 1,
i.e. its internal dynamics plus the message m, with the outgoing signal of unit 3, the
message can be recovered perfectly without any errors, thus the BER is r13 = 0.

Figure 6.25 shows the second moment and the BER together with the cross
correlations for systems of Bernoulli, tent and logistic maps as a function of the
coupling ε. The coupling constant κ was chosen such that sub-lattice synchronization
occurs for some values of ε. Sub-lattice synchronization exists in the region where
C13 = 1 but C12, C23 < 1. At the transition to sub-lattice synchronization χ13 and r13
becomes zero. At the transition to complete synchronization the BER r12 decreases
whereas the second moment χ12 still diverges close to the boundary (except for
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Figure 6.25: Chain of three bi-directionally coupled chaotic maps with parameters
κ = 0.3, τ = 100 andM = 10−8. Left hand side shows second moment χij (thick blue
curves) and cross correlation Cij (thin red curves) for uniformly distributed random
noise, right hand side shows bit error rate rij (thick blue curves) and cross correlation
Cij (thin red curves) for binary random noise as a function of ε. Solid (dashed) line
shows the respective results for the combination of units ij = 12 (ij=13).
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Figure 6.26: Setup of a star like con�guration with unit 2 in the middle. Unit
2 obtains the unperturbed signal of unit 3, and the signal of unit 1 and 4 where a
message m and w, respectively, is added. Unit 1, 3 and 4 can synchronize perfectly.
Hence unit 2 can obtain m and w by subtracting the (unperturbed) signal of unit 3
from the signal of unit 1 and 4, respectively.

Bernoulli maps where χ12 diverges directly at the synchronization transition). But
neither the BER r12 nor the second moment χ12 become zero. The external noise
prevents the trajectories, x1 = x3 and x2, of perfectly synchronizing. It causes the
trajectories to deviate by a factor of the noise strength. Note that the logistic maps
system shows strong correlations for small coupling ε and exhibits a dip in χ13 for a
larger coupling ε, similar to the uni-directional setup.

In terms of chaos communication, unit 2 which obtains the signal of unit 1 and
3 can recover a message, which is added on top of the transmitted signal of unit 1,
without any errors. In the same fashion more units can be added to the system in
a star like setup with unit 2 being the relay. The additional units can also add a
secret message on top of their transferred signals. Figure 6.26 shows the setup for a
system with four units, but in principle an arbitrary number of units can be added.
All units of the star, apart from unit 2, synchronize perfectly since they receive an
identical driving signal. Unit 2 compares the signal from unit 3 with the incoming
signals of units 1 and 4 and perfectly recovers both secret messages. Thus the hub
of the star can simultaneously decode any number of secret messages.

E�ect of Parameter Mismatch

In contrast to simulations, in experiments the units are never perfectly identical. In
general there is some parameter mismatch present which could in principle destroy
complete synchronization between unit 1 and 3 in the bi-directionally coupled chain
discussed before, hence increasing the BER rate.

We investigated the e�ect of a parameter mismatch on the BER for this setup
by detuning the parameter of all units by a factor of ∆a. We �nd that the BER
rate is very insensitive towards a parameter mismatch, as long as it is smaller than
the amplitude of the transmitted message by approximately an order of magnitude,
i.e., ∆a ≤ 0.1M . The deviations from perfect synchronization are of the order of the
parameter mismatch and hence the message can be recovered almost perfectly if it
is larger than the typical distance d from the SM. The BER as a function of ∆a/M
is exemplarily shown for a tent map system in Figure 6.27. The BER is plotted for
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Figure 6.27: Bit error rate r13 vs. parameter mismatch of the units ∆a for a
chain of bi-directionally coupled tent maps shown for two di�erent couplings ε. The
parameters are a = 0.4, κ = 0.3, τ = 100 and M = 10−3.

two di�erent couplings ε. Closer to the synchronizations transition, i.e. for ε = 0.6,
the BER is slightly more sensitive to a parameter mismatch.

6.6.2 Four Units Network

In the following we investigate a ring of four coupled units. For Bernoulli maps the
synchronization properties for the unperturbed system can be calculated analytically.
The stability of synchronization is determined by the eigenvalues of the adjacency
matrix which describes the coupling of the units. For an adjacency matrix with
row sum equals one, meaning that all incoming signals are normalized, and in the
limit of large delays one �nds that a spectral gap between the largest eigenvalue of
γ1 = 1 and the second largest eigenvalue γ2 is crucial for the stability. Complete
synchronization is only possible in the limit of weak chaos if the spectral gap is
nonzero (compare Section 3.4). For a simple ring network without any self-feedback,
where all eigenvalues are γ = 1, no eigenvalue gap exists and it cannot synchronize.
Adding an additional link with the coupling strength σ changes the eigenvalues such
that a gap occurs so that the system is able to synchronize [106].

The perturbed system, where a noise m is added onto all outgoing signals of
unit 1, is depicted in Figure 6.28 and is described by following equations

x1t+1 = (1− ε)f(x1t ) + εf(x4t−τ )

x2t+1 = (1− ε)f(x2t ) + εf(x1t−τ +mt−τ )

x3t+1 = (1− ε)f(x3t ) + ε
(
σ f(x1t−τ +mt−τ ) + (1− σ) f(x2t−τ )

)
x4t+1 = (1− ε)f(x4t ) + εf(x3t−τ ) . (6.35)

For such a network the eigenvalue gap in the unperturbed case, and therefor the
synchronization ability, is maximal for σ ≈ 5/8 = 0.625. But even for an optimal
eigenvalue gap complete synchronization in this network is, without any additional
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m
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Figure 6.28: Ring network of four units plus an additional link of strength σ in
order for the network to synchronize. A perturbation m is added to the outgoing
signals of unit 1.

self-feedback, only possible if the chaoticity of the single units is very small, i.e. if
each isolated unit has a small LE. For tent as well as logistic maps the network
hardly synchronize completely and therefor we restrict the discussion to Bernoulli
maps in the following.

For Bernoulli maps we �nd for the critical coupling at which synchronization
occurs

εc ≥
1− 1/a

1− |γ2|
, (6.36)

with a the parameter of the Bernoulli map, see equation (3.19). Thus for the max-
imum eigenvalue gap with σ = 0.625, the system synchronizes for a ≤ 1.16. For
Bernoulli maps with a = 1.1, the second moment χ1j and the BER r1j for combi-
nation of unit 1 with unit j = 2, 3, 4 are shown in Figure 6.29 together with the
respective cross-correlations. Surprisingly the combination of unit 1 and 2 has the
highest second moment and BER, whereas unit 4, which is only indirectly driven by
unit 1, has the lowest second moment and BER.
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Figure 6.29: Panel (a) shows second moment χ1j (thick blue curves) and cross
correlation C1j (thin red curves) for uniformly distributed random noise, panel (b)
shows bit error rate r1j (thick blue curves) and cross correlation C1j (thin red curves)
for binary random noise as a function of ε. Combination of units ij as indicated in the
legend. Network of four coupled Bernoulli maps with parameters a = 1.1, τ = 100,
σ = 0.625 and M = 10−8.
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Chapter 7

Conclusion

7.1 Summary and Discussion

A system of time-delayed coupled chaotic units can synchronize to a collective chaotic
behavior with zero time lag. In this thesis we studied the synchronization properties
of networks of chaotic maps and looked into di�erent aspects of chaos synchronization
with the focus on time-delayed interaction. In particular, we investigated systems
with multiple delays, where we could relate the scaling of the Lyapunov spectrum
to the synchronization ability of hierarchical networks. Additionally, we studied
the transition to chaos synchronization and the change in the attractor dimension
at the transition. Finally, the e�ect of a perturbation onto the synchronization
was analyzed, where we particularly investigated the linear response of synchronized
systems to a small perturbation.

In Chapter 4 we studied systems with multiple delays on di�erent time scales.
These time scales appear in the Lyapunov spectrum and characterize its scaling.
Depending on the scaling of the leading component of the spectrum with one of the
delays, one can distinguish strong chaos or τk-chaos. We showed the di�erent scaling
behavior for a single unit with multiple delays. For a Bernoulli unit it was possible
to derive analytical results whereas for a tent map system the scaling behavior was
obtained numerically.
The results and insights obtained from studying a single unit system were �nally
applied to a network of networks, where time delays within a subnetwork are shorter
than the time delays between the di�erent subnetworks. We showed by means of
numerical simulations of tent map systems, that in such a case, chaos synchronization
is only possible if strong chaos is absent. Depending on the scaling of the maximum
exponent either complete or subnetwork synchronization occurs. If the maximum
Lyapunov exponent scales with the shorter delay, i.e., the delay of the intra-network
connection, only the elements within a subnetwork can synchronize. If, however, the
whole spectrum (including the maximum Lyapunov exponent) scales with the longer
delay, i.e., the delay of the inter-network connection, complete synchronization of all
elements of all subnetworks is possible.
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7. Conclusion

The synchronization transition of networks with focus on the attractor dimen-
sion was studied in Chapter 5. We argued that for a synchronized system not all
exponents of the total Lyapunov spectrum contribute to the Kaplan-Yorke dimen-
sion. This argument predicts a jump in the attractor dimension when the network
synchronizes. In addition, the Kolmogorov prediction entropy should show a discon-
tinuous slope. We tested these general predictions for a setup of two coupled iterated
maps and compared the Kaplan-Yorke dimension to the correlation dimension. For
Bernoulli maps, our numerical results show a clear discontinuous behavior of the at-
tractor dimension. The Kaplan-Yorke as well as the correlation dimension jump to a
low value at the synchronization transition. For tent maps, the numerical results of
the correlation dimension are not so clear due to large statistical �uctuations caused
by limited computational power. Nevertheless, our results indicate a jump in the
attractor dimension, too. In both cases the Kolmogorov entropy shows a discontin-
uous slope.
For networks of Bernoulli maps we numerically calculated the Kaplan-Yorke dimen-
sion as a function of system size N and delay time τ in the region of strong chaos.
We found that the dimension scales with Nτ and the jump of the dimension at the
synchronization transition scales with N .
Our argument of omitting bands of negative transversal Lyapunov exponents for the
calculation of the Kaplan-Yorke dimension relies on the fact that the dynamics is
restricted to the synchronization manifold. A tiny detuning of the nonlinear units
leads to imperfect synchronization and our argument is no longer valid. We studied
the e�ect of parameter mismatch and found that the correlation dimension continu-
ously increases, towards the Kaplan-Yorke dimension which we would expect when
taking all Lyapunov exponents into account, for an increasing mismatch.

In Chapter 6 we investigated the linear response of a time-delayed chaotic system
to small external perturbations. This investigation is motivated by chaos commu-
nication, where a secret message is added on top of an exchanged signal between
synchronized chaotic units, thus perturbing the system. This mechanism has been
named chaos pass �lter since the receiver is able to �lter out any external pertur-
bation. Thus, the receiver can recover the secret message by subtracting its own
chaotic trajectory from the incoming signal.
We studied the linear response of iterated maps analytically as well as numerically
and found that the mechanism of chaos pass �lter is very complex. Perturbations
are not just damped, instead the response of the receiver to the perturbation of the
sender can be very large. Close to the synchronization transition it diverges. Even
deep inside the region of synchronization huge excursions away from the synchroniza-
tion manifold occur. The external perturbation causes attractor bubbling and gives
rise to an intermittent bursting. This results in a power law behavior and diverging
moments of the distribution of deviations between the sending and receiving unit.
Mathematically, this is a consequence of multiplicative and additive noise appearing
in the equations of linear response.
The bit error rate of a transmitted binary message is used as an additional quantity
to investigate the linear response. It is given by an integral over the distribution of
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7.2 Future Directions

deviations between the trajectories of sender and receiver. For the unsynchronized
system the bit error rate is at its maximum of 50%. Directly at the synchronization
transition the bit error rate decreases and inside the region of synchronization it
shows a complex nonmonotonic behavior which cannot be related to the properties
of the maximum transversal Lyapunov exponent. The bit error rate was computed
numerically for Bernoulli, tent and logistic map systems. For Bernoulli as well as tent
maps the bit error rate shows a devil's staircase as a function of model parameters
related to a fractal distribution of deviations.
The linear response to a periodic perturbation was also investigated. It shows reso-
nances due to the delayed feedback of the sending unit. Depending on parameters
and frequency, those resonances can be very large but the response can also be sup-
pressed.
Finally, we studied the linear response of a chain of three units and of a network
of four units. We found that for a bi-directionally coupled chain of three units the
perturbation is completely �ltered out by the unit in the middle and both outer units
can synchronize perfectly. Thus the second moment and the bit error rate becomes
zero. Applying these results to a star network we showed that the central element
can receive simultaneously any number of secret messages without any error.

In this thesis we restricted our investigations to chaotic maps which in some
respects have di�erent properties than chaotic �ows. But for the relevant aspects
studied here, namely strong/weak chaotic behavior and complete as well as sublattice
synchronization, maps and �ows are very similar. Many of the presented results can
also be observed in numerical simulations of chaotic di�erential equations. Hence
we believe that our �ndings will contribute to a general understanding of chaos
synchronization.

7.2 Future Directions

We only studied symmetric networks throughout this thesis, i.e., networks with a con-
stant row sum in the adjacency matrix, in particular symmetric networks of networks.
The symmetry is a necessary condition in order to have identical synchronization.
But in a lot of cases the networks are of an asymmetric kind. It would be interesting
to analyze which conclusions are still valid for these more general networks.

When studying systems with multiple delays, we restricted the investigations
to delays of di�erent order of magnitude. Another aspect would be to investigate
the scaling behavior of the Lyapunov spectrum for systems with di�erent delays of
the same order of magnitude. Is it possible to �nd similar, general results for such
systems?

The results for the discontinuity in the attractor dimension for the tent map sys-
tem are not clear without ambiguity. The correlation dimension is determined from
the correlation function C(ξ). This function shows large statistical �uctuations for
small distances ξ and an extrapolation of the slope to small values of ξ is di�cult.
One would need to analyze longer time series in order to have a better statistic and to
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7. Conclusion

obtain a clear result whether the correlation dimension of a tent map system behaves
continuously or discontinuously at the synchronization transition. Unfortunately, a
longer time series increases the computational time and the needed memory capac-
ity for its analysis enormously and was not doable with the computational power
available. Besides a more thorough analysis of the tent map system, it would also
be interesting to investigate other systems, for example the logistic map or chaotic
�ows. So far, only the Bernoulli map shows a clear discontinuity in the correlation
dimension. This system is of a very special kind since the coe�cients in the linearized
equations are constant, whereas for the other systems they �uctuate.

While studying the linear response of synchronized systems we found that the
response can be very large close to the synchronization transition. The distribution
of deviations has a power law tail and its moments diverge. In reference [107] coupled
chaotic oscillators that display extreme events were investigated. The authors found
sharp peaks in the tails of the distribution which deviate from an exact power law
behavior. They argue that "attractor bubbling in riddled basins of attraction is a
generic mechanism" for these peaks which they coined dragon kings, and conjectured
that this mechanism applies "to a large class of spatially extended deterministic and
stochastic nonlinear systems". Attractor bubbling also occurs in the systems we
investigated. It would be interesting to study the tail of the distribution of distances,
as shown in Figure 6.5, more thoroughly to check whether such peaks occur in this
system as well.

The linear response to a periodic perturbation shows a clear resonance at the
frequency of the harmonic perturbation but, surprisingly, it shows no higher har-
monics. The chaotic system acts as a sharp harmonic �lter that can �lter out the
perturbation with high precision. This e�ect is still not understood and deserves
further investigation.

For the linear response of a chain of three units and of a network of four units we
only presented numerical results in this thesis. We also tried to derive an analytical
formula for the second moment for these systems, in a similar way to the two units
setup. Unfortunately we did not succeed in doing so, mainly because we end up
with cross terms such as 〈d12d23〉. Assuming that in the synchronized state it is
d12 = −d23 yields incorrect results. Another way to evaluate expressions such as
〈d12d23〉 could be using a Laplace transformation. Due to time restraints we were
not able to check this idea.

In general, it would be interesting to investigate the linear response of synchro-
nized chaotic networks further. Of importance is particularly the problem how a
(harmonic) signal travels through a network, and, related to it, the question whether
the network structure can be deduced from the network's response.
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Appendix A

Random Numbers with an

Arbitrary Distribution

In Section 6.2 we could approximately relate the undelayed linearized system's equa-
tions (6.9) and (6.20) to stochastic equations with multiplicative and additive noise
by assuming the variable f ′ in the linearized system's equations to be uncorrelated
random numbers with a speci�c probability distribution. In Section 6.2.3 we checked
the approximation for logistic maps, for which we know the distribution ρ(f ′) of a
single unit. We simulated the linearized equations (6.9) and (6.20) but substituted
f ′ by random numbers distributed according to the desired ρ(f ′).

There exists libraries for random numbers distributed according to commonly
used distributions such as the uniform distribution. However, for random numbers
with an desired arbitrary distribution there generally do not exist any libraries but
we have to create it from existing distributions.

To create random numbers with a desired arbitrary distribution ρ(x) from uni-
formly distributed random numbers u ∈ [0, 1] we can use the so-called transformation
method.

The distributions are related according to

|ρ(x) dx| = |δ(u) du| , (A.1)

where δ(u) is the uniform distribution with

δ(u) du =

{
const 0 ≤ 1
0 otherwise

(A.2)

Integrating equation (A.1) gives∫ x

−∞
ρ(x) dx =

∫ u(x)

−∞
δ(u) du , (A.3)

which is

u(x) =

∫ x

−∞
ρ(x) dx = P (x) . (A.4)
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A. Random Numbers with an Arbitrary Distribution

Now we are only left with �nding the inverse of u(x). The inverse x(u) yields the
desired transformation to obtain random numbers x with a distribution ρ(x) from
the uniformly distributed random number u.

Example Random numbers with a logistic distribution

The distribution of f ′ for the logistic map f(x) = 4x(1− x) is given as

ρ(f ′) =

{
1

π
√

16−f ′2
−4 ≤ f ′ ≤ 4

0 otherwise
(A.5)

Thus

u(x) =

∫ x

−4

1

π
√

16− f ′2
df ′ =

1

π

[
arcsin

f ′

4

]x
−4

=
1

π
arcsin

x

4
+

1

2
. (A.6)

The inverse is

x(u) = 4 sin

(
π

(
u− 1

2

))
. (A.7)

This is the desired transformation in order to obtain random numbers x, from uni-
formly distributed random numbers u, distributed according to equation A.5.
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Appendix B

Analytic Results For The Bit

Error Rate

In Section 6.3 the BER was introduced as a way to quantify the quality of the
reconstruction of a binary message and as an indirect measure of the linear response
of a synchronized system to an external perturbation.

In general we cannot compute the BER analytically but have to rely on numerical
simulations. Only for some special cases it can be calculated analytically. These
analytic calculations are shown in the following. They were performed by Johannes
Kestler and have been published in [80].

B.1 Logistic map, uni-directional setup, τ = 0, ε = 1,
κ = 0

In the case of the uni-directional setup with logistic maps and no time delay the
BER can be calculated for the point ε = 1. The dynamics is given by

xt+1 = f(xt) (B.1)

yt+1 = f(xt−1 +mt−1) , (B.2)

from which follows that

dt+1 = f ′tmt . (B.3)

From the facts that (1) f ′t and mt are uncorrelated, (2) the probability distribution
of f ′ is symmetric about f ′ = 0 and (3) mt = ±M , follows that d has basically the
same probability distribution as f ′. Therefore, the BER can easily be calculated, see
equation (6.29) and (6.14):

r =
1

2

1−
M∫
−M

p(d) dd

 =
1

2

1−
1∫
−1

ρ(f ′)df ′

 =
arcsec(4)

π
≈ 0.4196 .

(B.4)
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This is in agreement with the numerical simulations.

B.2 Logistic map, bi-directional setup, τ = 0, ε = 1
2, κ = 0

Similarly, in the bi-directional case the BER can be calculated for ε = 1
2 . The

dynamics is given by

xt+1 =
1

2
f(xt) +

1

2
f(yt) (B.5)

yt+1 =
1

2
f(yt) +

1

2
f(xt +mt) , (B.6)

from which follows that

dt+1 =
1

2
f ′tmt . (B.7)

Comparing this with equation (B.3) leads to

r =
1

2

1−
2∫
−2

ρ(f ′)df ′

 =
1

3
, (B.8)

which is also in agreement with the numerical simulations.

B.3 Bernoulli map, τ = 0

In Figure 6.15(a) one can discover a staircase structure for the BER. For the uni-
directional setup this is true for ε ≥ 2

3 , while for the bi-directional setup this is valid
for 1

3 ≤ ε ≤ 2
3 . For these regions the BER can be calculated analytically. If one

takes a closer look at the staircases, Figure B.1, it becomes apparent that they have
in�nitely many steps, i.e., they are a kind of devil's staircase.

B.3.1 Uni-directional coupling

This staircase structure should be explained here for the case of uni-directional cou-
pling. The equation for the distance can be written in the following way, see also
equation 6.9:

dt =


d−t =

3

2
(1− ε)dt−1 −

3

2
εM

d+t =
3

2
(1− ε)dt−1 +

3

2
εM

(B.9)

The two equations represent the two di�erent bits. If dt is plotted versus dt−1,
then d−t and d+t are two parallel straight lines, see Figure B.2. The values of this
iteration dt(dt−1) generate the distribution p(d) from which, in principle, the BER
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B.3 Bernoulli map, τ = 0

Figure B.1: Bit error rate r for uni-directionally coupled Bernoulli maps with τ = 0
and κ = 0. Zooming in the staircase structure reveals more and more steps.

can be calculated. The dashed boxes (� �) in Figure B.2 represent the interval
which dt is bounded to (due to the attracting �xed points). For ε < 2

3 the two
maps d−t and d+t have a certain overlap in their co-domain, see Figure B.2(a) (the
co-domains are indicated by gray stripes). This fact makes the distribution p(d)
complicated. However, for ε > 2

3 the two maps have no overlap, see Figure B.2(c),
and the distribution is manageable analytically. As a result of the gap in the co-
domain (indicated by a zigzag pattern), a gap in the domain emerges in the next
time step. The latter gap produces two further gaps in the co-domain which become
gaps in the domain in the next time step. The result of this iterative process is that
the distribution p(d) has a fractal support. The �rst and largest gaps are shown in
Figure B.3. The �rst gap is called G. The gaps produced by G are G− and G+. The
gaps coming from G+ are called G−+ and G++; the gaps coming from G− are called
G−− and G+− and so on.

Now we want to calculate the exact position of the gaps. The �xed points of d−

and d+ are called d−∗ and d+∗ . One can easily calculate that

d−∗ = − 3εM

3ε− 1
and d+∗ = +

3εM

3ε− 1
. (B.10)

From Figure B.2(c) it can be seen that

G =
]
d−(d+∗ ), d+(d−∗ )

[
=

]
−3ε(3ε− 2)M

3ε− 1
,
3ε(3ε− 2)M

3ε− 1

[
, (B.11)

which is about ]−0.19M, 0.19M [ for ε = 0.7, see Figure B.3.
The gap G+ is generated by applying d+ to G, i.e.

G+ =
]
d+(d−(d+∗ )), d+(d+(d−∗ ))

[
=

]
3ε(5− 12ε+ 9ε2)M

2(3ε− 1)
,−3ε(5− 12ε+ 9ε2)M

2(3ε− 1)

[
, (B.12)
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Figure B.2: The iteration dt(dt−1) = d±t (dt−1) of the distances for di�erent cou-
pling parameters ε. The dashed boxes represent the interval which d is bounded to
due to the �xed points. Additionally, the bisecting line dt(dt−1) = dt−1 is plotted.
The gray stripes show the co-domains of d− and d+.

Figure B.3: Gaps in the domain/co-domain/distribution of d− and d+ for di�erent
recursion depths k. ε = 0.7 .
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B.3 Bernoulli map, τ = 0

which is about ]0.96M, 1.14M [ for ε = 0.7, see Figure B.3.
Then the gap G−+, for example, is generated by applying d− to G+, i.e.

G−+ =
]
d−(d+(d−(d+∗ ))), d−(d+(d+(d−∗ )))

[
, (B.13)

and so on.
Due to the constant and equal slope of d− and d+, and due to the fact that there

is no overlap between the co-domains of d− and d+, the relative frequency of all
distances d which occur (i.e. which are not inside a gap) are equal. This means that
Figure B.3 can also be seen as the corresponding histogram; all bars have the same
height.

The BER is related to the integral from −M to +M over the distribution of the
distances, see equation (6.29). FromFigure B.3 it can be seen that for ε = 0.7 this
integral exactly equals 1

2 ; thus, the BER equals 1
4 , which is in agreement with Figure

B.1.
If ε is changed, then the positions of the gaps are changed, too. As long as the

gap G+ contains the value +M (= as long as the gap G− contains the value −M),
the integral yields 1

2 and the BER is 1
4 . This explains the plateau AB in Figure B.1.

With the aid of equation B.12 we can calculate the exact position of this plateau:

A: ε =
2

3
= 0.6 and B: ε =

1

3
(1 +

√
2) ≈ 0.804738 . (B.14)

Similarly, one gets the point C of Figure B.1. The BER becomes 1
2 when the

integral starts to be 0. This is when the gap G is as large as (or larger than) the
interval [−M,M ]. Considering equation B.11 yields:

C: ε =
1

6
(3 +

√
5) ≈ 0.872678 . (B.15)

The plateau DE, which has the value 3
8 , can be calculated considering the gap

G+−. One gets:

D: ε ≈ 0.837266 and E: ε ≈ 0.866386 , (B.16)

All other plateaus can be calculated with the aid of smaller gaps.

B.3.2 Bi-directional coupling

The calculations for the case of bi-directional coupling are very similar to the ones
for the uni-directional case. Here, only few results should be shown.

For

0.3 =
1

3
≤ ε ≤ 5

9
= 0.5 , (B.17)

the BER is 0.
For

0.5749 ≈ 1

6
+

1√
6
≤≤ 2

3
= 0.6 , (B.18)

the BER is 1
4 .

111





Bibliography

[1] Arkady Pikovsky, Michael Rosenblum, and Jürgen Kurths. Synchronization: A
Universal Concept in Nonlinear Sciences. Cambridge University Press, 2001.

[2] Steven H. Strogatz. Exploring complex networks. Nature, 410:268�276, 2001.

[3] Réka Albert and Albert-László Barabási. Statistical mechanics of complex
networks. Rev. Mod. Phys., 74:47�97, 2002.

[4] M. Newman. The structure and function of complex networks. SIAM Review,
45:167�256, 2003.

[5] Duncan J. Watts. The �new� science of networks. Annual Review of Sociology,
30:243�270, 2004.

[6] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang. Complex
networks: Structure and dynamics. Physics Reports, 424:175 � 308, 2006.

[7] Alex Arenas, Albert Díaz-Guilera, Jurgen Kurths, Yamir Moreno, and Chang-
song Zhou. Synchronization in complex networks. Physics Reports, 469:93 �
153, 2008.

[8] Heinz Georg Schuster and Wolfram Just. Deterministic Chaos: An Introduc-

tion. John Wiley & Sons, 4 edition, 2005.

[9] S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, and C. S. Zhou. The
synchronization of chaotic systems. Physics Reports, 366:1�2, 2002.

[10] E. N. Lorenz. Deterministic Nonperiodic Flow. Journal of Atmospheric Sci-

ences, 20:130�148, 1963.

[11] June Barrow-Green. Poincare and the Discovery of Chaos. Icon Books, 2005.

[12] L. M. Pecora and T. L. Carroll. Synchronization in chaotic systems. Phys.

Rev. Lett., 64:821�824, 1990.

[13] K. Aihara, T. Takabe, and M. Toyoda. Chaotic neural networks. Physics

Letters A, 144(6�7):333 � 340, 1990.

113



[14] Junji Ohtsubo. Semiconductor Lasers: Stability, Instability and Chaos.
Springer, 2 edition, 2007.

[15] Leon O. Chua and Maciej J. Ogorzalek. Chaos and Complexity in Nonlinear

Electronic Circuits. World Scienti�c Pub Co, 1997.

[16] G. Orosz, R. E. Wilson, R. Szalai, and G. Stépan. Exciting tra�c jams: Non-
linear phenomena behind tra�c jam formation on highways. Phys. Rev. E,
80(4):046205, 2009.

[17] L. Chen and K. Aihara. Stability of genetic regulatory networks with time
delay. IEEE Trans. Circuits Syst. I, 49:602, 2002.

[18] W. Kinzel and I. Kanter. Secure communication with chaos synchronization. In
E. Schöll and H.G. Schuster, editors, Handbook of Chaos Control. Wiley-VCH,
Weinheim, second edition, 2008.

[19] S. Sivaprakasam, J. Paul, P. S. Spencer, P. Rees, and K. A. Shore. Nulli�ed
time-of-�ight lead-lag in synchronization of chaotic external-cavity laser diodes.
Opt. Lett., 28:1397�1399, 2003.

[20] I. Fischer, R. Vicente, J. M. Buldu, M. Peil, C. R. Mirasso, M. C. Torrent, and
J. García-Ojalvo. Zero-lag long-range synchronization via dynamical relaying.
Phys. Rev. Lett., 97:123902, 2006.

[21] M. W. Lee, J. Paul, C. Masoller, and K. A. Shore. Observation of cascade
complete-chaos synchronization with zero time lag in laser diodes. J. Opt. Soc.
Am. B, 23:846�851, 2006.

[22] T.E. Murphy, A.B. Cohen, B. Ravoori, K.R.B. Schmitt, A.V. Setty, F. Sor-
rentino, C.R.S. Williams, E. Ott, and Roy R. Complex dynamics and syn-
chronization of delayed-feedback nonlinear oscillators. Phil. Trans. R. Soc. A,
368:343366, 2010.

[23] Bhargava Ravoori, Adam B. Cohen, Jie Sun, Adilson E. Motter, Thomas E.
Murphy, and Rajarshi Roy. Robustness of optimal synchronization in real
networks. Phys. Rev. Lett., 107:034102, Jul 2011.

[24] L. Kocarev and S. Lian. Chaos-based Cryptography: Theory, Algorithms and

Applications. Springer, 2011.

[25] U. Parlitz, L.O. Chua, Lj. Kocarev, K.S. Halle, and A. Shang. Transmission of
digitial signals by chaotic syncrhonization. International Journal of Bifurcation
and Chaos, 02:973�977, 1992.

[26] K. M. Cuomo and A. V. Oppenheim. Circuit implementation of synchronized
chaos with applications to communications. Phys. Rev. Lett., 71:65�68, 1993.

114



[27] K.M. Cuomo, A.V. Oppenheim, and S.H. Strogatz. Synchronization of lorenz-
based chaotic circuits with applications to communications. IEEE Transactions

on Circuits and Systems II, 40:626�633, 1993.

[28] G. D. VanWiggeren and R. Roy. Communication with chaotic lasers. Science,
279:1198�1200, 1998.

[29] Atsuchi Uchida. Optical Communication with Chaotic Lasers. Wiley-VCH,
2012.

[30] A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer,
J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore. Chaos-based
communications at high bit rates using commercial �bre-optic links. Nature,
438:343�346, 2005.

[31] R. Lang and K. Kobayashi. External optical feedback e�ects on semiconductor
injection laser properties. Quantum Electronics, IEEE Journal of, 16:347 �
355, 1980.

[32] Steven H. Strogatz. Nonlinear Dynamics And Chaos: With Applications To

Physics, Biology, Chemistry, And Engineering. Westview Press, 1 edition,
2000.

[33] J. Doyne Farmer. Chaotic attractors of an in�nite-dimensional dynamical sys-
tem. Physica D: Nonlinear Phenomena, 4:366 � 393, 1982.

[34] Valentin Flunkert. Delayed Complex Systems and Applications to Lasers. PhD
thesis, Technische Universität Berlin, 2010.

[35] Giancarlo Benettin, Luigi Galgani, Antonio Giorgilli, and Jean-Marie Strelcyn.
Lyapunov Characteristic Exponents for smooth dynamical systems and for
hamiltonian systems; a method for computing all of them. Part 1: Theory.
Meccanica, 15:9�20, 1980.

[36] John Guckenheimer and Philip Holmes. Nonlinear Oscillations, Dynamical

Systems, and Bifurcations of Vector Fields . Springer, 1983.

[37] John Milnor. On the concept of attractor. Comm. Math. Phys., 99:177�195,
1985.

[38] David Ruelle and Floris Takens. On the nature of turbulence. Comm. Math.

Phys., 20:167�192, 1971.

[39] J.Doyne Farmer, Edward Ott, and James A. Yorke. The dimension of chaotic
attractors. Physica D: Nonlinear Phenomena, 7:153 � 180, 1983.

[40] Peter Grassberger and Itamar Procaccia. Measuring the strangeness of strange
attractors. Physica D: Nonlinear Phenomena, 9:189 � 208, 1983.

115



[41] Peter Grassberger and Itamar Procaccia. Characterization of strange attrac-
tors. Phys. Rev. Lett., 50:346�349, 1983.

[42] J. Kaplan and J. Yorke. Chaotic behavior of multidimensional di�erence equa-
tions. In H. O. Peitgen and H. O. Walther, editors, Functional Di�erential
Equations and Approximation of Fixed Points. Springer, Heidelberg-New York,
1979.

[43] Paul Frederickson, James L. Kaplan, Ellen D. Yorke, and James A. Yorke. The
liapunov dimension of strange attractors. Journal of Di�erential Equations,
49:185 � 207, 1983.

[44] P. Grassberger and I. Procaccia. Dimensions and entropies of strange attractors
from a �uctuating dynamics approach. Physica D: Nonlinear Phenomena, 13:34
� 54, 1984.

[45] John Argyris, Gunter Faust, Maria Haase, and Rudolf Friedrich. Die Er-

forschung des Chaos. Springer, 2 edition, 2010.

[46] J. Kestler. Synchronisation chaotischer Bernoulli-Einheiten in einfachen Net-
zwerken mit zeitverzögerter Kopplung. Master's thesis, Universität Würzburg,
2007.

[47] Carl D. Meyer. Matrix analysis and applied linear algebra. Society for Industrial
and Applied Mathematics, 2000.

[48] Einat Klein, Noam Gross, Michael Rosenbluh, Wolfgang Kinzel, Lev
Khaykovich, and Ido Kanter. Stable isochronal synchronization of mutually
coupled chaotic lasers. Phys. Rev. E, 73:066214, 2006.

[49] W. Kinzel, A. Englert, G. Reents, M. Zigzag, and I. Kanter. Synchronization of
networks of chaotic units with time-delayed couplings. Phys. Rev. E, 79:056207,
2009.

[50] M. Zigzag, M. Butkovski, A. Englert, W. Kinzel, and I. Kanter. Zero-lag syn-
chronization of chaotic units with time-delayed couplings. EPL (Europhysics

Letters), 85:60005, 2009.

[51] Meital Zigzag, Maria Butkovski, Anja Englert, Wolfgang Kinzel, and Ido Kan-
ter. Zero-lag synchronization and multiple time delays in two coupled chaotic
systems. Phys. Rev. E, 81:036215, 2010.

[52] A. Englert, W. Kinzel, Y. Aviad, M. Butkovski, I. Reidler, M. Zigzag, I. Kanter,
and M. Rosenbluh. Zero lag synchronization of chaotic systems with time
delayed couplings. Phys. Rev. Lett., 104:114102, 2010.

[53] Louis M. Pecora and Thomas L. Carroll. Master stability functions for syn-
chronized coupled systems. Phys. Rev. Lett., 80:2109�2112, 1998.

116



[54] Mukeshwar Dhamala, Viktor K. Jirsa, and Mingzhou Ding. Enhancement of
neural synchrony by time delay. Phys. Rev. Lett., 92:074104, 2004.

[55] J. Sun, E. M. Bollt, and T. Nishikawa. Master stability functions for coupled
nearly identical dynamical systems. EPL (Europhysics Letters), 85:60011, 2009.

[56] Juan G. Restrepo, Edward Ott, and Brian R. Hunt. Spatial patterns of desyn-
chronization bursts in networks. Phys. Rev. E, 69:066215, 2004.

[57] V. Flunkert, S. Yanchuk, T. Dahms, and E. Schöll. Synchronizing distant
nodes: A universal classi�cation of networks. Phys. Rev. Lett., 105:254101,
2010.

[58] A. Englert, S. Heiligenthal, W. Kinzel, and I. Kanter. Synchronization of
chaotic networks with time-delayed couplings: An analytic study. Phys. Rev.
E, 83:046222, 2011.

[59] Sven Heiligenthal, Thomas Dahms, Serhiy Yanchuk, Thomas Jüngling,
Valentin Flunkert, Ido Kanter, Eckehard Schöll, and Wolfgang Kinzel. Strong
and weak chaos in nonlinear networks with time-delayed couplings. Phys. Rev.
Lett., 107:234102, 2011.

[60] A S Pikovsky and P Grassberger. Symmetry breaking bifurcation for coupled
chaotic attractors. Journal of Physics A: Mathematical and General, 24:4587,
1991.

[61] Peter Ashwin, Jorge Buescu, and Ian Stewart. Bubbling of attractors and
synchronisation of chaotic oscillators. Physics Letters A, 193:126 � 139, 1994.

[62] Shankar C. Venkataramani, Brian R. Hunt, Edward Ott, Daniel J. Gauthier,
and Joshua C. Bienfang. Transitions to bubbling of chaotic systems. Phys.

Rev. Lett., 77:5361�5364, 1996.

[63] Shankar C. Venkataramani, Brian R. Hunt, and Edward Ott. Bubbling tran-
sition. Phys. Rev. E, 54:1346�1360, 1996.

[64] Yu. L. Maistrenko, V. L. Maistrenko, A. Popovich, and E. Mosekilde. Role of
the absorbing area in chaotic synchronization. Phys. Rev. Lett., 80:1638�1641,
1998.

[65] Michael G. Rosenblum, Arkady S. Pikovsky, and Jürgen Kurths. Phase syn-
chronization of chaotic oscillators. Phys. Rev. Lett., 76:1804�1807, 1996.

[66] Johannes Kestler, Wolfgang Kinzel, and Ido Kanter. Sublattice synchronization
of chaotic networks with delayed couplings. Phys. Rev. E, 76:035202, 2007.

[67] Johannes Kestler, Evi Kopelowitz, Ido Kanter, and Wolfgang Kinzel. Patterns
of chaos synchronization. Phys. Rev. E, 77:046209, 2008.

117



[68] S. Lepri, G. Giacomelli, A. Politi, and F. T. Arecchi. High-dimensional chaos
in delayed dynamical systems. Physica D: Nonlinear Phenomena, 70:235 � 249,
1994.

[69] O. D'Huys, S. Zeeb, T. Jüngling, S. Yanchuk, and W. Kinzel. Synchronization
and scaling properties of chaotic networks with multiple delays. ArXiv e-prints,
2013. Paper accepted for publication at EPL.

[70] Matthias Wolfrum and Serhiy Yanchuk. Eckhaus instability in systems with
large delay. Phys. Rev. Lett., 96:220201, 2006.

[71] Arturo C. Martí, Marcelo Ponce C., and Cristina Masoller. Chaotic maps
coupled with random delays: Connectivity, topology, and network propensity
for synchronization. Physica A: Statistical Mechanics and its Applications,
371:104 � 107, 2006.

[72] C. Masoller and A. C. Martí. Random delays and the synchronization of chaotic
maps. Phys. Rev. Lett., 94:134102, 2005.

[73] Fatihcan M. Atay. Distributed delays facilitate amplitude death of coupled
oscillators. Phys. Rev. Lett., 91:094101, 2003.

[74] M. Escalona-Morán, G. Paredes, and M. G. Cosenza. Complexity, information
transfer and collective behavior in chaotic dynamical networks. Int. J. App.

Math. Stat., 26:58, 2012.

[75] Ste�en Zeeb, Thomas Dahms, Valentin Flunkert, Eckehard Schöll, Ido Kanter,
and Wolfgang Kinzel. Discontinuous attractor dimension at the synchroniza-
tion transition of time-delayed chaotic systems. Phys. Rev. E, 87:042910, 2013.

[76] R. Hegger, H. Kantz, and T. Schreiber. Practical implementation of nonlinear
time series methods: The TISEAN package. CHAOS, 9:413, 1999.

[77] Holger Kantz and Thomas Schreiber. Nonlinear Time Series Analysis. Cam-
bridge University Press, 2 edition, 2005.

[78] J. F. Heagy, N. Platt, and S. M. Hammel. Characterization of on-o� intermit-
tency. Phys. Rev. E, 49(2):1140�1150, Feb 1994.

[79] J. F. Heagy, T. L. Carroll, and L. M. Pecora. Desynchronization by periodic
orbits. Phys. Rev. E, 52:R1253�R1256, 1995.

[80] Ste�en Zeeb, Johannes Kestler, Ido Kanter, and Wolfgang Kinzel. Chaos
pass �lter: Linear response of synchronized chaotic systems. Phys. Rev. E,
87:042923, 2013.

[81] L. Kocarev and U. Parlitz. General approach for chaotic synchronization with
applications to communication. Phys. Rev. Lett., 74:5028�5031, 1995.

118



[82] A. Murakami and K. A. Shore. Chaos-pass �ltering in injection-locked semi-
conductor lasers. Phys. Rev. A, 72:053810, 2005.

[83] I. Fischer, Y. Liu, and P. Davis. Synchronization of chaotic semiconductor
laser dynamics on subnanosecond time scales and its potential for chaos com-
munication. Phys. Rev. A, 62:011801, 2000.

[84] Bruno Cessac and Jacques-Alexandre Sepulchre. Linear response, susceptibility
and resonances in chaotic toy models. Physica D, 225:13�28, 2007.

[85] Hiroya Nakao. Asymptotic power law of moments in a random multiplicative
process with weak additive noise. Phys. Rev. E, 58:1591�1600, 1998.

[86] Michael Rosenbluh, Yaara Aviad, Elad Cohen, Lev Khaykovich, Wolfgang
Kinzel, Evi Kopelowitz, Pinhas Yoskovits, and Ido Kanter. Spiking optical
patterns and synchronization. Phys. Rev. E, 76:046207, 2007.

[87] Ido Kanter, Noam Gross, Einat Klein, Evi Kopelowitz, Pinhas Yoskovits, Lev
Khaykovich, Wolfgang Kinzel, and Michael Rosenbluh. Synchronization of
mutually coupled chaotic lasers in the presence of a shutter. Phys. Rev. Lett.,
98(15):154101, 2007.

[88] Gabriel Pérez and Hilda A. Cerdeira. Extracting messages masked by chaos.
Phys. Rev. Lett., 74:1970�1973, 1995.

[89] U. Parlitz. Estimating model parameters from time series by autosynchroniza-
tion. Phys. Rev. Lett., 76:1232�1235, 1996.

[90] John B. Geddes, Kevin M. Short, and Kelly Black. Extraction of signals from
chaotic laser data. Phys. Rev. Lett., 83:5389�5392, 1999.

[91] Rainer Hegger, Martin J. Bünner, Holger Kantz, and Antonino Giaquinta.
Identifying and modeling delay feedback systems. Phys. Rev. Lett., 81:558�
561, 1998.

[92] Kevin M. Short and Andrew T. Parker. Unmasking a hyperchaotic communi-
cation scheme. Phys. Rev. E, 58:1159�1162, 1998.

[93] Changsong Zhou and C.-H. Lai. Extracting messages masked by chaotic signals
of time-delay systems. Phys. Rev. E, 60:320�323, 1999.

[94] E. Klein, , R. Mislovaty, I. Kanter, andW. Kinzel. Public-channel cryptography
using chaos synchronization. Phys. Rev. E, 72:016214, 2005.

[95] Einat Klein, Noam Gross, Evi Kopelowitz, Michael Rosenbluh, Lev
Khaykovich, Wolfgang Kinzel, and Ido Kanter. Public-channel cryptography
based on mutual chaos pass �lters. Phys. Rev. E, 74:046201, 2006.

119



[96] I. Kanter, E. Kopelowitz, J. Kestler, and W. Kinzel. Chaos synchroniza-
tion with dynamic �lters: Two-way is better than one-way. Europhys. Lett.,
83:50005, 2008.

[97] Ido Kanter, Evi Kopelowitz, and Wolfgang Kinzel. Public channel cryptog-
raphy: Chaos synchronization and hilbert's tenth problem. Phys. Rev. Lett.,
101:084102, 2008.

[98] W. Kinzel, A. Englert, and I. Kanter. On chaos synchronization and secure
communication. Philosophical Transactions of the Royal Society A: Mathemat-

ical,Physical and Engineering Sciences, 368:379�389, 2010.

[99] Didier Sornette. Multiplicative processes and power laws. Phys. Rev. E,
57:4811�4813, 1998.

[100] Yoshiki Kuramoto and Hiroya Nakao. Scaling properties in large assemblies of
simple dynamical units driven by long-wave random forcing. Phys. Rev. Lett.,
78:4039�4042, 1997.

[101] V. Flunkert, O. D'Huys, J. Danckaert, I. Fischer, and E. Schöll. Bubbling in
delay-coupled lasers. Phys. Rev. E, 79:065201, 2009.

[102] Liat Ein-Dor and Ido Kanter. Con�dence in prediction by neural networks.
Phys. Rev. E, 60:799�802, 1999.

[103] M.F. Barnsley. Fractals Everywhere. Academic Press, San Diego, 1988.

[104] T. Heil, I. Fischer, W. Elsässer, J. Mulet, and C. R. Mirasso. Chaos synchro-
nization and spontaneous symmetry-breaking in symmetrically delay-coupled
semiconductor lasers. Phys. Rev. Lett., 86:795�798, 2001.

[105] Daniel J. Gauthier and Joshua C. Bienfang. Intermittent loss of synchroniza-
tion in coupled chaotic oscillators: Toward a new criterion for high-quality
synchronization. Phys. Rev. Lett., 77:1751�1754, 1996.

[106] I. Kanter, M. Zigzag, A. Englert, F. Geissler, and W. Kinzel. Synchronization
of unidirectional time delay chaotic networks and the greatest common divisor.
EPL (Europhysics Letters), 93:60003, 2011.

[107] H. L. D. de Souza Cavalcante, M. Oria, D. Sornette, and D. J. Gauthier.
Predictability and control of extreme events in complex systems. ArXiv e-

prints, 2013.

120



Acronyms

KY Kaplan Yorke

LE Lyapunov exponent

SM synchronization manifold

BER bit error rate

121


