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VIETNAMESE MATHEMATICAL SIGNS 

Vietnamese Style Mathematical Meaning 

Segment AB Segment AB 

Straight line AB Straight line AB 

Straight line l Straight line l 

 Vector AB 

AB The length of segment AB 

AB = CD 
The length of segment AB is equal to the length of 

segment CD 

AB > CD (AB < CD) 
The length of segment AB is greater (smaller) than 

the length of segment CD 

AB = CD Segment AB is congruent to segment CD 

AB // CD 
Segment (straight line) AB is parallel to segment  

(straight line) CD 

AB  CD 
Segment (straight line) AB is perpendicular to 

segment (straight line) CD 

AB =// CD Segment AB is equal and parallel to segment CD 

AB CD 
Segment (straight line) AB is coincident with 

segment (straight line) CD 

 Straight line  is coincident with straight line   

 Straight line  is perpendicular to straight line   

//  Straight line  is parallel to straight line   

;  

;  

Angle A 

Angle ABC 

 Angle A is congruent to angle B 

 The measure of angle A is  

 
The measure of angle A is equal to the measure of 

angle B 

 Triangle ABC is congruent to triangle A‟B‟C‟ 

 A circle with center O and radius R 
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 Point A lies on the straight line BC 

 Point A lies on the segment BC 

 
Point A is the intersection of the straight line  and 

the straight line  

 
Point A‟ is an image of point A under the point 

reflection (central symmetry) with respect to point O 

 
The straight line a‟ is an image of the straight line a 

under the point reflection with respect to point O 

 
Point A‟ is an image of point A under the line 

reflection with respect to the straight line l 

 
Point A‟ is an image of point A under the line 

reflection with respect to the straight line BC 

 
Point A‟ is an image of point A under the translation 

through vector  

 
Point A‟ is an image of point A under the translation 

through vector  

 
The straight line a‟ is an image of the straight line a 

under the translation through vector  

 
The straight line a‟ is an image of the straight line a 

under the translation through vector  

 
Point A‟ is an image of point A under the rotation 

through angle  about point C 

 
The straight line a‟ is an image of the straight line a 

under the rotation through angle  about point C 

 The perimeter of triangle ABC 

 The area of triangle ABC 
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ABSTRACT 

 Argumentation and proof have played a fundamental role in mathematics 

education in recent years. Much of the research that has been conducted on the proving 

process has been aimed at clarifying the functions and the need of proofs in teaching 

and learning mathematics, especially its role in the current mathematical curriculum. In 

particular, a strand of the research has thoroughly studied the impact new technologies 

on supporting students overcoming their difficulties in proof-related problems. The 

author of this dissertation would like to investigate the development of the proving 

process within a dynamic geometry environment in order to support tertiary students 

understanding the proving process. The strengths of this environment stimulate students 

to formulate conjectures and produce arguments during the proving process. 

Nevertheless, there are many tertiary students who are not able to write a formal proof. 

This barrier may stem from the lack of understanding in the proving strategy using 

geometric transformations which was considered in this dissertation. Through empirical 

research, we classified different levels of proving and proposed a methodological model 

for proving. Based on this model, we designed an interactive HELP SYSTEM in order to 

bridge the gaps between different phases of the proving process. This methodological 

model makes a contribution to improve students‟ levels of proving and develop their 

dynamic visual thinking. The findings of the research have also revealed that a dynamic 

geometry environment provides data and „observed facts‟ for formulating conjectures. 

As a result, students can realize some geometric invariants by using dragging mode and 

these invariants would be a key factor in generating new ideas for proofs. Then students 

can use previously produced arguments and reverse the abductive structure to write a 

deductive proof. We used TOULMIN model of argumentation as a theoretical model to 

analyze the relationship between argumentation and proof. This research also offers 

some possible explanation so as to why students have cognitive difficulties in 

constructing proofs and provides mathematics educators with a deeper understanding on 

the proving process at the tertiary level. Moreover, the research may open a valuable 

discussion on the cognitive development of the proving process among mathematics 

teachers. In particular, we have also analyzed the role of abduction in transition from 

conjecturing to proving modality within a dynamic geometry environment. 
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Chapter 1 

INTRODUCTION 

1.1. STATEMENT OF THE PROBLEM 

 Proving is a crucial activity within mathematical classrooms at the different 

educational levels. It provides a way of thinking that deepens mathematical 

understanding, broadens the nature of human reasoning, and fosters students‟ creativity. 

The NCTM standards (2000) emphasized in a particular section the importance of 

developing students‟ reasoning and proving abilities, formulating conjectures, 

producing arguments, and using various methods of approaching proofs. POLYA (1954) 

has also claimed that understanding is a necessary condition for proving because when 

students have reassured themselves that a theorem is true, they will start proving it. 

However, many researchers have argued that teaching students the key idea of proofs is 

not an easy task (e.g. HANNA, 2000; MARIOTTI, 2007). Therefore, mathematics 

teachers are usually faced with the difficult task of teaching students how to understand 

the proving process in mathematics classroom. In addition, the different forms of proofs 

(such as verbal, visual, formal, informal, etc) may also directly influence the students‟ 

understanding of proofs and the proving process. In this dissertation, we concentrate on 

a formal proof at the tertiary level. In order to offer a situation for the construction of a 

formal proof, EDWARDS (1997) proposed the term “conceptual territory before proof”. 

It was defined by demonstrating that conjecturing, reasoning, exploration, explanation, 

and validation constitute the essential elements (or steps) before formulating a proof. It 

also considered the basis of understanding the proving process. Thus, in this research, 

we propose a methodological model concerning this area in order to support students in 

realizing each element or step before a formal proof. This model was utilized to design 

an interactive HELP SYSTEM that was embedded in a dynamic geometry environment 

aimed at improving the student‟s level of proving. In order to achieve this goal, we must 

classify student‟s level of proving and build the corresponding level of hints in the 

interactive HELP SYSTEM with the purpose of guiding the student in constructing 

diagrams, realizing geometric invariants, formulating and validating conjectures, 

producing arguments, and writing a formal proof. 

http://www.nctm.org/
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 Working within a dynamic geometry environment, such as GeoGebra, students 

would gain their understanding through verifying conjectures and transforming 

understanding into an explanation as to “why” the statement is valid. Moreover, the 

students are able to see and accept the truth of the conjectures easily by dragging in this 

environment; thereby they may have no need for further verification (see e.g. HÖLZL, 

2001). As a result, a dynamic geometry environment may prevent students from 

understanding the need and function of proofs in school mathematics (see e.g. 

YEUSHALMY, CHAZAN & GORDON, 1990). Therefore, our task is to provide enough 

open-ended questions and explorative tasks in the interactive HELP SYSTEM so that 

students can construct proofs on their own. Simultaneously, this system should also 

provide students with an opportunity to develop a sense of proof and improve their 

geometric intuition during the proving process. 

In the mathematics teacher training universities, it is important to improve 

students‟ proving skills within a dynamic geometry environment. These students also 

need to understand the development of the proving process in order to provide their 

students at a secondary school with a suitable strategy in approaching proofs. This 

means that the prospective teachers should learn how to design instructional and 

methodological interventions to support their students in overcoming cognitive 

difficulties, enhancing proof techniques, and properly understanding mathematical 

proofs. For that reason, our interactive HELP SYSTEM should also provide tertiary 

students with some strategies to bridge the cognitive and structural gaps between the 

different phases of the proving process such as conjecture and argumentation, 

argumentation and proof. At the end of the experimental teaching, we evaluated the 

effects of the interactive HELP SYSTEM on the improvement of proving levels and the 

development of geometric thinking. In particular, we also studied the influence of 

dynamic visual thinking on enhancing students‟ geometrical intuition and revealing 

geometric invariants. Furthermore, we investigated the discussion among students while 

they used the interactive HELP SYSTEM to support proof-related problems. Through 

group discussion, we analyzed the students‟ structure of argumentation and examined 

the role of abduction during the process of realizing geometric invariants and writing a 

formal proof. The relationship between the students‟ level of proving and level of 
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realizing geometric invariants was also taken into consideration aimed at illuminating 

the impact of realizing geometric invariants in the proving process. 

1.2. PURPOSE OF THE RESEARCH 

Mathematics educators have shown increasing interest in improving students‟ 

levels of proving in mathematics classroom. Proving activities exist in a variety of 

contexts in mathematics and proof construction involves some techniques where 

conjectures arise through the combination of exploration, argumentation, and validation. 

The main purpose of this research is to design a methodological model within a 

dynamic geometry environment. This model was utilized to design the interactive HELP 

SYSTEM and investigate cognitive processes while students are constructing proofs. In 

order to employ this orientation in the period of experimental teaching, the specific 

purposes of this research are: 

a) to classify student‟s proving level in transformational geometry; 

b) to develop an interactive HELP SYSTEM in which seven developmental phases 

of the proving process are contained with respect to the student‟s proving level; 

c) to investigate the effect of using the interactive HELP SYSTEM on different 

phases of the proving process; 

d) to provide a deeper understanding of the development of the proving process 

within a dynamic geometry environment; 

e) to investigate students‟ behaviors and cognitive difficulties in constructing a 

formal proof; 

f) to use TOULMIN basic model of argumentation which represents the structural 

gap between abductive argumentation and deductive proof; 

g) to study the methods of constructing cognitive unity in the process of validating 

conjectures; 

h) to classify students‟ levels of realizing geometric invariants within a dynamic 

geometry environment; 

i) to examine the role of abduction in realizing geometric invariants and generating 

the ideas of proofs; 

j) to examine the concept of dynamic visual thinking and its role in the proving 

process. 
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At the tertiary level, proofs involve understanding and the use of formal 

definitions in combination with previously established theorems. Proofs also tend to be 

longer, more complex, and more rigorous than those at earlier educational levels 

(SELDEN, 2010). Therefore, teachers should increasingly use the students‟ original 

proof constructions as a means of assessing their understanding of the proving process, 

especially the transition from realizing geometric invariants and formulating conjectures 

to writing a deductive proof. Therefore, in this research, we have designed task-based 

activities to encourage students to produce arguments and write formal proofs on a 

piece of paper. Throughout this research, we provided students with opportunities to 

think visually and dynamically, to look for geometric invariants, to formulate 

conjectures, to produce arguments, and to pose and answer the explorative questions on 

their own. A dynamic geometry environment, such as GeoGebra (HOHENWARTER & 

JONES, 2007), can serve as a context for realizing geometric invariants, formulating 

conjectures about geometric objects, and consequently lead to proof-generating 

situations. In particular, the dragging mode can play the role of a mediator in the 

transition from argumentation to proof. We also utilized the concept of cognitive unity 

(e.g. BOERO et al., 1996) to reveal students‟ difficulties in bridging the gap between 

conjecture and argumentation, also the gap between argumentation and proof. 

1.3. RESEARCH QUESTIONS 

Proofs and proving activities are important in mathematics education. However, 

there have been some difficulties in the teaching and learning of proofs in schools. 

Therefore, mathematics educators have carried out lots of research aimed at supporting 

students in overcoming these difficulties. In our research, we focused on the difficulties 

of producing valid arguments and writing a formal proof. Some researchers see 

argumentation
1
 and mathematical proof

2
 as parts of a continuum, whereas the others see 

this relation as a dichotomy (see e.g. BALACHEFF, 1991). The aim of argumentation is 

to obtain an agreement of the partner of the interaction, but not to necessarily establish 

the truth of some statement; whereas the aim of a mathematical proof is to fit the 

requirement for the use of knowledge taken from a body of knowledge that a 

                                                 
1
 Argumentation is a reasoned discourse that is not necessarily deductive but uses arguments of 

plausibility. 
2
 Mathematical proof is a chain of well-organized deductive inferences that uses arguments of necessity. 
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community of mathematicians agrees upon. Therefore, argumentation and mathematical 

proofs are not of the same nature. As a result, understanding the relationship between 

them may help students manage effectively their produced arguments in writing proofs. 

Therefore, in the period of experimental teaching, we took some challenges in 

constructing a formal proof into consideration. For instance, HEALY & HOYLES (2000) 

claimed that there exist students‟ divergent perceptions of what constitutes as a proof. 

For that reason, we designed the interactive HELP SYSTEM in a dynamic geometry 

environment to provide students with some elements which are used to construct proofs. 

Moreover, a dynamic geometry environment has an enormous potential to encourage 

exploration, explanation, argumentation, and proof because this environment makes it 

easier to pose and test conjectures (HANNA, 2000). These activities also make a 

noteworthy contribution to the connection between explorations with deductive 

reasoning. On the basis of the specific purpose of our research, the interactive HELP 

SYSTEM was utilized to conduct experimental teaching and answer the following 

leading research questions: 

 Question 1. What is the role of the interactive HELP SYSTEM in constructing a 

formal proof? 

 Question 2. Does the interactive HELP SYSTEM improve the student‟s level of 

proving? 

 Question 3. What are a student‟s difficulties in constructing a formal proof at 

the tertiary level? 

 Question 4. How can the gap be bridged between conjecture and proof in the 

proving process? 

 Question 5. What is the role of abduction in the proving process within a 

dynamic geometry environment? 

 Question 6. What is the relationship between a student‟s level of realizing 

geometric invariants and level of proving? 

 Question 7. What is the role of dynamic visual thinking in realizing geometric 

invariants? 

In order to clarify and answer these research questions, we collected the 

empirical data during the period of experimental teaching and then analyzed all of these 
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materials by using qualitative and quantitative methods such as observations, 

questionnaires, semi-structured interviews, and hypotheses testing. The main results of 

these analyses will be reported in chapter three. The research questions will be clearly 

answered throughout the empirical data analyses. 

1.4. SIGNIFICANCE OF THE RESEARCH 

The results of this research have both theoretical and practical significance. At 

the theoretical level, the methodological model can be used to improve students‟ level of 

proving and develop their dynamic visual thinking. It also provides students with a 

strategy for solving proof-related problems and illuminates the basic ideas for proofs. At 

the practical level, some task-based activities were designed to support students in 

producing arguments and constructing a deductive proof. In order to analyze student‟s 

arguments, TOULMIN model (TOULMIN, 1958) was used to represent the abductive 

structure in realizing geometric invariants and producing supportive arguments for 

writing formal proofs. This research also lays a theoretical framework for understanding 

the development of the proving process within a dynamic geometry environment in a 

non-traditional (computer-supported) teaching context. Furthermore, it can change the 

goal of teaching proofs in the classroom with explorative group-based activities such as 

experimenting, visualizing, measuring, reasoning, and writing a formal proof. The 

outcomes of this research may amplify the scholarly discussion on strategic intervention 

while students are proving and can inspire enthusiasm for exploring new knowledge in 

mathematics students. This research also classifies a student‟s level of proving and level 

of realizing geometric invariants. Based on this classification, mathematics teachers can 

easily evaluate students‟ proving abilities and geometric thinking before making an 

appropriate teaching plan in geometry courses.  

The prospective mathematics teachers may also enormously benefit from the 

methodological model and some cognitive strategies gained throughout this research. It 

broadens the students‟ scope of proof understanding, and provides some detailed 

explanations on how they can overcome the cognitive difficulties in constructing a 

formal proof at the tertiary level. The outcomes of the research have also an ample 

amount of evidence to suggest that existing knowledge and beliefs of authoritarian (like 

textbooks, teachers) can hinder students‟ motivation in validating conjectures which 
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lead to proof-generating situations. However, the „observed facts‟ in a dynamic 

geometry environment and reasonable suggestions in the interactive HELP SYSTEM 

may stimulate students to find data and evidence for verification. This behavior lays the 

foundation for possible connections between conjecture and proof in the proving 

process. In the secondary level mathematical textbooks in some countries, proofs were 

dogmatically presented and students were not given the opportunity to appreciate the 

proving process, especially the development of logical reasoning. Thus, in order to 

enhance the quality of teaching this topic in secondary schools, proofs should be taught 

as a process of guided reinvention, where students can perceive actively and recapitulate 

the learning process of the mathematicians. That is also a strategy for prospective 

mathematics teachers to understand and then support their students in solving proof-

related tasks in the secondary school classroom. 

1.5. STRUCTURE OF THE RESEARCH 

There are four chapters in the dissertation. Chapter one states the problem, the 

purpose, the significance, and the structure of the research. It also poses some leading 

research questions aimed at looking for a means of understanding the proving process 

within a dynamic geometry environment. These research questions were used to design 

an experimental teaching plan and to collect empirical data for qualitative and 

quantitative analyses. 

Chapter two provides a literature review of the recent research on proof and 

proving within a dynamic geometry environment from different perspectives. A 

historical perspective presents the functions and the role of proofs in teaching and 

learning mathematics. The cognitive perspective delineates some difficulties in realizing 

invariants, validating conjectures, and writing a formal proof. The pedagogical 

perspective introduces some strategies and methods using geometric transformation 

within the GeoGebra environment to formulate and validate conjectures. These 

strategies are represented in the methodological model as well as in the interactive 

HELP SYSTEM during the proving process. This chapter also presents the role of 

abduction in realizing geometric invariants and writing a formal proof. A TOULMIN 

basic model of argumentation was also introduced to analyze a structural gap between 

argumentation and proof. This chapter proposes four basic conditions for understanding 
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the development of the proving process within a dynamic geometry environment. These 

conditions are the criteria in determining whether tertiary students understand the 

proving process. This chapter also addresses some cognitive difficulties in teaching 

proofs using geometric transformations and provides some suggestions for learning and 

teaching proofs at the tertiary level. 

Chapter three determines and describes comprehensively methodologies of 

analyzing the collected data from the period of experimental teaching, which consist of 

typical methods usually used in educational researches such as observations, 

questionnaires, semi-structured interviews, and hypotheses testing. This chapter also 

presents comprehensive qualitative and quantitative analyses of the leading research 

questions in chapter one. The methodological model and its role in assisting students 

constructing formal proofs were also thoroughly analyzed in this chapter. 

Chapter four draws the final conclusions from a thorough analysis in chapter 

three. The main part of this chapter is to present the findings of the research which give 

implications for prospective mathematics teachers in Vietnam and recommend some 

issues for further research. This chapter deals also with the discussion of the preliminary 

findings in which the development of the proving process within a dynamic geometry 

environment has been brought to light. 

1.6. SUMMARY 

There has been growing concern about teaching mathematical proof as a 

process, not as a product with the support of new technologies such as dynamic 

geometry software. Thus the findings of this research can shed light on how students 

learn mathematical proofs at the tertiary level and secondary level. Indeed, a better 

understanding of the development of the proving process may assist prospective 

mathematics teachers in identifying ways to improve their problem-solving abilities. 

The research has also revealed that a suitable interference of proving activities will 

encourage students to make conjectures and produce arguments on their own. Results 

from the qualitative analysis show students‟ positive attitudes towards the interactive 

HELP SYSTEM and its far-reaching effect on the processes of exploration and 

validation. Furthermore, this research has addressed the problem of applying abductive 
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argumentation to support students in shifting between ascending control and descending 

control (see e.g. GALLO, 1994) in order to write a deductive proof. It also represents the 

role of dynamic visual thinking in realizing geometric invariants and generating the 

ideas of a proof. In general, this research has revealed some necessary aspects such as 

invariance, conjecture, cognitive unity, argumentation, and dynamic visual thinking in 

relation to formal proofs in order to support tertiary students in understanding the 

development of the proving process. 
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Chapter 2 

LITERATURE REVIEW 

2.1. THE FUNCTIONS OF PROOFS 

In mathematics, proofs contain logical chains of inference that follow rules of 

deduction by using formal notation, syntax, and laws of manipulation. They also 

provide a long-term link with the discipline of proofs shared by mathematicians and 

play an important role both in mathematics and mathematics education. Therefore, it is 

useful to consider the vast range of functions that proofs play in the mathematical 

practice. DE VILLIERS (1990; 2003; 2007) has proposed and extended the different 

functions of proofs as follows: verification (concerned with the truth of a statement), 

explanation (providing insight into why it is true), systematization (the organization of 

various results into a deductive system of axioms, major concepts, and theorems), 

discovery (the discovery or invention of new results), communication (the transmission 

of mathematical knowledge), and intellectual challenge (the self-realization/fulfillment 

derived from constructing a proof). These functions of proofs can potentially be utilized 

in the mathematics classroom to make proofs a more meaningful activity. They also 

provide students with a chance to communicate mathematical knowledge and 

systematize mathematical statements into an axiomatic system (e.g. KNUTH, 2002a; 

2002b). Traditionally from a strict logical viewpoint, the function of proofs has been 

seen almost exclusively in terms of its verification function, but in mathematics 

education the verification function is far less important than other functions. For 

instance, HERSH (1993) and HANNA & JAHNKE (1993; 1996) claimed that the 

functions of proofs should promote students‟ understanding by explaining. From this 

point of view, they differentiated between two kinds of proofs: proofs that convince and 

proofs that explain. They also distinguished the differences between the functions of 

proofs in mathematics (justification and verification) and those in mathematics 

education (exploration and explanation). Therefore, some functions of proofs 

(especially, verification and explanation) should be taught when students start facing the 

concept of proofs because these functions can promote a way of thinking (e.g. HANNA, 

2000; HANNA & BARBEAU, 2008). Proofs also provided students with an opportunity 
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to shift from being dependent upon a teacher‟s authority to trusting the authority of 

mathematical reasoning. This is an important transformation in students‟ thinking, such 

as ways of thinking and perceiving, ways of reasoning, etc. 

In this research, we consider proofs as the final product of the proving process. 

Hence, this process has been used to explicate the functions of proofs in mathematics 

education. Specifically, HAREL & SOWDER (1998) defined proving as a process that is 

employed by an individual to remove or create doubts about the truth of an observation. 

It contains two sub-processes: ascertaining and persuading. Ascertaining is a process 

that an individual employs to remove her or his own doubts (refers to proofs that 

convince). Persuading is a process that an individual employs to remove others‟ doubts 

about the truth of an observation (refers to proofs that explain). Therefore, 

understanding the development of the proving process contributes in gaining insight 

into the understanding of the invention of mathematical ideas and the nature of proofs. 

That is the reason why tertiary students should learn how to write, read, understand, and 

construct proofs, even though the functions of proofs are not fulfilled in the teaching of 

proofs in schools and remain hidden in some mathematics textbooks (see e.g. HANNA, 

2000; DE VILLIERS, 2003). 

2.2. THE TEACHING OF PROOFS 

At the secondary school level, numerous researchers have recently approached 

proving with different forms and teaching methods (ICMI3 19). The reasons for teaching 

proofs are to develop logical and intuitive abilities; to recognize logical concepts and 

rules in argumentative and proving contexts; to prove mathematical properties and 

theorems; and to make sense of formal mathematical symbols and notations. NCTM4 

(2000) has also laid stress on proofs and proving in mathematics curriculum: 

“Reasoning and proof are not special activities reserved for special times or special 

                                                 
3
 ICMI (International Commission on Mathematical Instruction) study concentrates on an issue of 

prominent current interest in mathematics education. Based on an international conference, it is 
directed towards the preparation of a published volume intended to promote large discussion and 
research action at the international, regional or institutional level. 
4
 NCTM (The National Council of Teachers of Mathematics) was founded in 1920. It has supported 

teachers to ensure equitable mathematics learning of the highest quality for all students through vision, 
leadership, professional development, and research. In 2000, NCTM released the new Principles and 
Standards for School Mathematics. 

http://www.nctm.org/
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topics in the curriculum but should be a natural, ongoing part of classroom discussion, 

no matter what topic is being studied”. Therefore, proofs at the secondary school level 

should be taught in a way that develops students‟ thinking and reasoning. Particularly, 

in geometry, teachers should offer their students a chance to „see‟ a dynamic object, to 

recognize relationships between objects, and to construct a logically connected chain of 

reasoning. For that reason, a reformation of mathematics curricula has recently paid 

attention to the teaching of proofs and its relation to other forms of explanation, 

illustration, reasoning, and justification. For instance, MOGETTA, OLIVERO & JONES 

(1999) designed some classroom tasks that stimulate the proving process, like activating 

mental processes involved in the „dynamic‟ exploration of a problem, provide 

opportunities for students to explain why they obtain a particular result, and stimulate 

the different kinds of reasoning processes associated with the transition from 

argumentation to proof. In geometry, JONES & RODD (2001) implemented 

experimental research on the teaching and learning of geometric proofs. They have 

revealed that proofs and proving can provide a way of thinking that deepens 

mathematical understanding and broadens the nature of human reasoning. Additionally, 

it is also worthwhile to examine the design of textbooks with the intentions of 

uncovering the „opportunities for proofs‟. For example, the exercises predominately in 

mathematics textbooks in England, France, and Germany made few connections 

between the practiced concepts and students were encouraged to explore, question, and 

autonomize (e.g. PEPIN & HAGGARTY, 2001); contemporary textbooks in Scotland and 

Japan also provided opportunities for the development of students‟ deductive reasoning 

through teaching proofs using various approaches (see e.g. FUJITA & JONES, 2003). 

However, there were some mathematics textbooks that did not concentrate on the role of 

proofs and reasoning. For instance, the exercises in a selection of ongoing mathematics 

textbooks in Australia have a low procedural complexity with considerable repetition 

and they are also absent of deductive reasoning (VINCENT & STACEY, 2008). 

Therefore, it is necessary to reform mathematics curriculum and textbooks with a rich 

opportunity for proving so that students can learn mathematics through more 

meaningful activities.  

At the tertiary level, a proof involves creativity and insight as well as knowledge 

understanding and using formal definitions. The teaching of a formal proof at secondary 
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school was also attempted but was not successful (see CLEMENTS & BATTISTA, 1992). 

However, tertiary students are able to understand the meaning of a proving activity and 

the approach to formal proof. Proofs at the tertiary level tend to be longer, more 

complex, and more rigorous than those at earlier educational levels. Hence, learning to 

understand proofs is actually a daunting task (SELDEN, 2010). Moreover, the transition 

from the experimental and intuitive habits of school mathematical reasoning to the 

requirements of a formal proof is also not smooth. This obstacle originates from the 

divergence of perceptions of what constitutes as a proof that students made before 

entering university (e.g. HEALY & HOYLES, 2000; RECIO & GODINO, 2001). 

Therefore, to understand the tertiary students‟ writing of a formal proof, teachers should 

use their original proof constructions as a means of assessing their understanding as 

well as arrange individual interviews with their students about the proof writing. Other 

problems involving the teaching of proofs include tertiary students sometimes 

mistakenly thinking proofs are constructed from the “top down” because they usually 

have seen this structure presented to them in a university lecture. Students usually 

transit to proofs by evaluating and judging the correctness of a conjecture (SELDEN & 

SELDEN, 2003). Consequently, the normative way to construct proofs is to always give 

a reason for each statement in a two-column proof before continuing with the next rows 

in the process of writing proofs (WEISS, HERBST & CHEN, 2009). Moreover, the 

traditional definition-theorem-proof style of lecture presentation may not convey the 

content in the most efficient way because it does not enable students to gain more 

insight into proofs. Some students do not even correctly differentiate the meaning of the 

required words in each proof-related problem such as: “explain”, “demonstrate”, 

“show”, “justify”, and “prove”. In particular, at the tertiary level, students are required 

to move flexibly between representations (e.g., a function can be given symbolically; it 

can also be described as a graph, as a table or even as an element of an algebraic 

structure). In other words, students often use multiple representations in order to 

imagine and describe a mathematical object. This is also an indication of the richness of 

students‟ understanding of a concept (e.g. EVEN, 1998). Furthermore, tertiary students 

need to approach the axiomatic method so that they can interpret some abstract 

mathematical concepts (such as algebraic structures, vector space, different geometries 
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structure, topological space, measurable space, etc) and develop their own advanced 

mathematical thinking (see e.g. TALL, 2002). 

 In mathematics education, it is important to investigate how the teaching of 

proofs in school and at the tertiary level supports students in perceiving mathematical 

knowledge and developing mathematical thinking. In this research, we concentrated on 

the students‟ understanding of the development of the proving process and proposed 

some basic conditions for this understanding as well. Mathematics teachers should 

provide their students with opportunities, both in a traditional classroom and online 

courses that aim to realize these conditions for approaching formal proofs. 

2.3. BASIC CONDITIONS FOR UNDERSTANDING THE 

DEVELOPMENT OF THE PROVING PROCESS 

The proving process is a sequence of mental and physical actions, such as 

writing or thinking a line of a proof, drawing or visualizing a diagram, reflecting on the 

results of some earlier actions, or trying to remember an example. This process in 

mathematics education is more than validation (e.g. DE VILLIERS, 1990; HANNA & 

JAHNKE, 1996). Therefore, understanding the development of the proving process is 

very important, but it is also elusive. For instance, the process of proving a theorem may 

take years and include various approaches but the final product is written in the form of 

formal proofs. For that reason, it is not sufficient to show only the final product while 

learning proofs. Students should be focused on the proving process itself and realize the 

different phases in the transition from formulating conjectures to writing a formal proof. 

Moreover, students have to determine the conceptual territory before a proof (see e.g. 

EDWARDS, 1997) such as conjecturing, verification, exploration, and explanation. 

These activities constitute necessary components that precede a formal proof. It also 

refers to a “space” of exploring for proofs, such as a way of thinking, communicating, 

producing arguments, and acting that support students in looking for mathematical 

certainty. In other words, it encompasses a range of activities, which students may be 

engaged in, that are aimed at constructing a formal proof. On the basis of this territory, 

we proposed four basic conditions in determining whether students understand the 

development of the proving process:  
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 Realizing the geometric invariants for generating ideas for proofs. This is an 

important phase in the development of the proving process. Realizing geometric 

invariants supports students in getting more data for proving and searching for 

the ideas of proofs by using geometric transformations. 

 Constructing a cognitive unity in the transition from conjecture to proof. This 

construction produces arguments for validating conjectures and writing proofs. 

Therefore, students need to know how to construct an unbroken cognitive unity 

in the transition from conjecture to proof so that they can collect and select some 

valuable arguments for writing formal proofs. 

 Understanding the relationship between argumentation and proof. Students 

have difficulties in constructing proofs and fail in writing proofs because they do 

not determine the continuity and gap between argumentation and proof. So 

understanding this relationship helps students bridge the gap and effectively 

utilize the continuity between them. This understanding includes the ability of 

using different kinds of inferences during the proving process such as deduction, 

induction, and abduction. 

 Organizing arguments in order to write a formal proof. This is one of the most 

difficult phases in the proving process because students have to use formal 

language, symbols, and notations. They also need to organize produced 

arguments as a chain of logical arguments to form a formal proof. 

Throughout this dissertation some basic conditions for understanding the 

development of the proving process will be clarified and thoroughly analyzed under 

mathematics teacher‟s perspective. 

2.3.1. Realizing geometric invariants for generating ideas for 

proofs 

 Invariance is a key concept in geometry, especially in modern geometry that is 

taught at the tertiary level. It is also used in other areas of mathematics such as topology 

and algebra. In this research, we define the geometric invariant of a geometric 

transformation as follows: “A geometric invariant is a property or relation of a class of 

mathematical objects that does not change under a geometric transformation”. For 

example, the sum of the internal angles of a planar triangle is an invariant as the triangle 
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changes shape. In geometry, there are transformations that keep shapes the same size, 

known as isometries. The characteristic of an isometry is distance-preserving. Invariant 

under an isometry produces an equivalent relation „is congruent to‟. It means that a 

geometric object is always congruent to its image under an isometry such as reflection, 

translation, rotation, glide-reflection, etc. In contrast, there are some transformations 

which preserve shape but not necessarily size, known as similarities (dilation, for 

instance). Invariance under a similarity also produces an equivalent relation „is similar 

to‟ (in the mathematical sense). A figure and its image under a similarity are similar 

figures. Therefore, the invariance is a crucial idea in the process of classifying 

mathematical objects and looking for ideas for proofs. 

 One of the difficulties with geometric proving in school mathematics is due to 

the fact that some geometric invariants are easily recognizable for mathematics teachers 

but are not so intuitive for students because intuition depends on previous experience 

(e.g. TALL, 2002). Moreover, one of the breakthroughs in modern mathematics was to 

characterize geometric transformations in terms of what they leave invariant, rather than 

thinking about what they change (see e.g. JOHNSTON-WILDER & MASON, 2005). 

Consequently, teachers should provide students with a rich opportunity to realize 

invariants of a geometric transformation, especially at the upper secondary level and 

tertiary level. The properties are preserved under both isometry and similarity such as 

collinearity, parallelism, perpendicularity, concurrence, measurement of angles, etc. 

Parallelism, for instance, is called an invariant that is preserved under a transformation 

if two lines are parallel then their images are also parallel. A collection
5
 of geometric 

transformation is a group under the operation of composition of transformation, called 

group of transformations. This conception was proposed in the Erlangen Program by 

KLEIN (1872). The Erlangen program aimed at classifying geometries by their 

underlying symmetry groups and studying the properties of a space whose invariants are 

under a given group of transformation. He claimed that the essential properties of a 

given geometry could be represented by the group of transformations that preserve those 

properties. The extended notion of invariant developed by KLEIN has become one of 

                                                 
5
 This set of transformation under the operation of composition satisfies three axioms: a) the 

composition of transformations is closed and associative; b) there is an identity element (identity 
transformation); c) each geometric transformation has an inverse because it is always a bijection. 
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the fundamental concepts in mathematical thinking: “to every group of transformations 

there corresponds a kind of geometry or theory of invariants, dealing with those 

properties of geometrical or analytical configurations, which are unaltered by the 

group”. 

 In short, students need to realize invariants before determining the geometric 

transformations that are used as the ideas for proofs. Therefore, students must 

concentrate on some geometric invariants of a specific group of transformation with the 

support of a dynamic geometry environment. The following examples describe how 

students realize geometric invariants by using a dynamic geometry software and the role 

of these invariants in the proving process (see e.g. NGUYEN, 2011). 

Example 2.1. (School Problem) People living in the neighborhood of town 

A and working at company B are to drive their children to school on their 

way to work. Where on highway l should they build school C in order to 

minimize their driving? 

 In this problem, firstly, students used the GeoGebra software to construct lots of 

drawings with different corresponding positions for point A and for point B. Secondly, 

they dragged point C until the sum (AC + CB) is minimal. Thirdly, students made 

observation and made conjectures about invariants by generating different cases as the 

figures below. After that, students realized that if the sum (AC + CB) is minimal then 

two angles at point C are equal. Finally, they made a guess about a geometric 

transformation which preserves angle measurement. The existence of a fixed line l (the 

highway) leads students to argue that the realized invariant in this case is an invariant of 

a line reflection and also suggested them to use a line reflection as an idea of proof. 

 

Figure 2.1: Realizing geometric invariants for generating ideas for proof 
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 In fact, different students might discern different aspects of the same geometrical 

figure. Some of them focus on the shapes (two equal angles, two equal sides, two 

congruent shapes, and two similar shapes), some students pay attention to perceivable 

properties (two lines are parallel, three points are collinear, three lines are concurrent, 

two lines are perpendicular, etc) and the others tend to use properties to reason (an 

isosceles triangle has two equal sides in length, so it has two equal angles, for instance). 

Therefore, teachers should offer students various strategies to „see‟ geometric invariants 

both in traditional (the use of paper and pencil) and non-traditional (the use of a 

computer) environment. 

Example 2.2. (One-Bridge Problem) A river has straight parallel sides and 

cities A and B lie on opposite sides of the river. Where should we build a 

bridge in order to minimize the travelling distance between A and B (a 

bridge, of course, must be perpendicular to the sides of the river)? 

 In this problem, students used the GeoGebra software to model two cities A, B 

and construct a movable point G on the upper line, representing the bank of the river. 

Then the students moved point G until the sum (AG + GH + HB) is minimal. They 

realized that if the sum (AG + GH + HB) is minimal then two straight lines AG and HB 

are parallel. Finally, they made a conjecture about a geometric transformation which 

preserves parallelism. The existence of a fixed vector  suggested that the students 

realized the invariant of a translation and they argued that the straight line HB is an 

image of the straight line AG under a translation in the vector  direction. Therefore, 

it can also be said that the revealed invariant makes a contribution by generating another 

idea for a proof. 

 

Figure 2.2: Realizing invariants for determining geometric transformations 
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 In this problem, the students realized the first invariant (sub-invariant) “two 

straight lines AG and HB are parallel when the sum (AG + GH + HB) is minimal”. 

Based on this sub-invariant, they continued to realize the key invariant, “the straight line 

HB is an image of the straight line AG under a translation in the vector  direction”. In 

the interview protocol (see Section 3.2.3), the students said that they created a lot of 

„dynamic‟ mental pictures in their minds in order to realize this geometric 

transformation. Their final work is to select plausible arguments and combine these 

arguments into a logical chain of reasoning for writing a deductive proof. 

2.3.2. Constructing a cognitive unity in the transition from    

conjecture to proof 

In the development of the proving process, the transition from argumentation to 

proof was taken into special consideration. BOERO, GARUTI & MARIOTTI (1996) 

underlined that the proving process should be started with argumentative activities and 

the validation of produced arguments for the conjecture. Therefore, it is necessary to 

consider the connection between conjecturing and proving in the process of approaching 

proofs. For that reason, the concept of “cognitive unity” was introduced with the aim of 

interpreting the transition from conjecture to proof and the students‟ cognitive 

difficulties in the proving process: 

“During the production of the conjecture, the student progressively works out 

his/her statement through an intensive argumentative activity functionally 

intermingled with the justification of the plausibility of his/her choices. During the 

subsequent statement-proving stage, the student links up with this process in a 

coherent way, organizing some of previously produced arguments according to a 

logical chain” (BOERO et al., 1996, p.124). 

In other words, cognitive unity is a situation or phenomenon where some 

arguments, which are produced for the plausibility of the conjecture during the 

conjecture production phase, become ingredients for the construction of a proof. The 

following diagram shows the cognitive unity as a crucial factor in the process of 

constructing proofs: 
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Figure 2.3: Constructing a cognitive unity in the proving process 

In a traditional school, students often struggle with theorems in mathematics 

textbooks because they do not know how to construct a cognitive unity (BOERO et al., 

1996). Moreover, theorems in textbooks are introduced in the form of a “prove that” 

kind of task. In this case the process of conjecturing is not demanded and the cognitive 

unity is broken. The unity can only be restored by reconstructing the following cycle: 

exploring, producing a conjecture, coming back to the exploration, and reorganizing it 

into a formal proof. The following examples accompanied with discussions from a 

group of students might illuminate whether a cognitive unity exists or is broken. 

Example 2.3. (Parallelogram Problem) Let ABCD be a parallelogram. The 

bisectors of angles A, B, C, and D intersect each other forming a 

quadrilateral MNPQ. What are special characteristics of this quadrilateral? 

          

Figure 2.4: A cognitive unity in the parallelogram problem 
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The following dialogue was extracted from students‟ audio recording in the 

group discussion during the process of producing arguments: 

12. Student 1: I think this quadrilateral is a rectangle [posing a conjecture]. 

14. Student 2: It means that we have to prove this quadrilateral has four 90-degree angles 

[seeking for the way to validate the conjecture]. 

15. Student 3: That‟s right! Suppose that we prove AMD = 90
0
. This requirement is 

equivalent to proving the sum DAM + ADM = 90
0 
[producing arguments]. 

26. Student 2: In a parallelogram we have BAD + CDA = 180
0
. Moreover, according to 

supposition, we derive that DAM + ADM = ( BAD + CDA)/2 = 180
0
/2 = 90

0 
[producing 

arguments]. 

Some produced statements support students in producing arguments like “a 

rectangle has four 90-degree angles”, “this requirement is equivalent to proving the sum 

DAM + ADM = 90
0
”, “in a parallelogram we have BAD + CDA = 180

0
”, “we 

derive that DAM + ADM = ( BAD + CDA)/2 = 180
0
/2 = 90

0
”, etc. Therefore, in 

this case, we interpret this phenomenon as the existence of a cognitive unity. In general, 

the concept of cognitive unity, which addresses the link between spontaneous arguments 

and mathematically acceptable arguments, may provide a powerful tool for 

understanding different phases of the proving process. We speak of a broken cognitive 

unity if: 

 Changing mathematical frame or external representation. Students formulate a 

conjecture within a synthetic geometry frame and validate it within an analytic 

geometry frame (using algebraic language). It means that most arguments 

produced in the conjecturing phase are not recyclable (unavailable in the case of 

changing external representation) in the proving phase. 

Example 2.4. (Right Triangle Problem) Let ABC be a right triangle at 

point A. Let M be the midpoint of segment BC. Compare the lengths of three 

segments AM, CM, and BM. 

In this example, students argued that the circle with center M and radius MB 

goes through point A, therefore MA = MB = MC (radius of the circle). However, in 

order to prove this conjecture, students used algebraic language and did not refer to the 
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circle in the proving process at all. They used the following arguments in order to write 

a formal proof: 

“Suppose that point A = (0, 0), point B = (b, 0), 

and point C = (0, c). According to the formula 

of calculating the distance between two points, 

we have the length of segment  

 . Since M 

is the midpoint of segment BC then we derived 

that  and then we obtained the length 

of the segment

”. 

          Figure 2.5: A cognitive unity is broken (case 1) 

This proof did not use the arguments from production of initial conjectures that 

related to the circle. Therefore, in this case, we see the cognitive unity as broken. 

 Changing explorative strategies and heuristics. Produced arguments which are 

relevant in a given exploration during the conjecturing phase may become 

useless, or even forgotten, in another kind of exploration: 

Example 2.5. (Hexagon Problem) Let ABC be a triangle. We take six points 

on the sides of the triangle A1, A2  BC; B1, B2  CA; C1, C2  AB such that 

BA1 = A1A2 = A2C, CB1 = B1B2 = B2A, AC1 = C1C2 = C2B. Six straight lines 

AA1, AA2, BB1, BB2, CC1, and CC2 intersect each other forming a hexagon 

MNPQRS. What is characteristic of three diagonals of this hexagon? 
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Figure 2.6: A cognitive unity is broken (case 2) 

27. Student 2: I think three diagonals of this hexagon are concurrent [posing a conjecture].  

31. Student 3: I realize that no matter how triangle ABC changes, three diagonals of the 

hexagon are still concurrent. 

38. Student 1: Concurrency is an affine property (concurrency is preserved under an affine 

transformation). Therefore, our hypothesis is also true in the case of an equilateral triangle 

[producing arguments]. 

44. Student 2: It means that we only need to prove this property for the case of an equilateral 

triangle and then that result implies the initial requirement [producing arguments]. 

 

Figure 2.7: A cognitive unity is broken when changing explorative strategy 

According to above dialogue, to confirm that three diagonals are concurrent, 

students must show that these diagonals coincide with three perpendicular bisectors of 

triangle ABC. Therefore, we see the cognitive unity as broken in this case because 
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produced arguments support only in revealing the idea of proofs, not in writing formal 

proofs. 

To sum up, cognitive unity concerns the arguments that create the continuity in 

the transition from conjecturing to proving. During this transition, an argumentation 

activity is developed for validating a conjecture. When the statement expressing the 

conjecture is made true in a mathematical theory, it is said that a proof is produced. 

Therefore, cognitive unity is also a concept that can clarify the difference between 

argumentation activity in the conjecturing phase and the proving phase, which also 

supports students in understanding the development of the proving process. 

2.3.3. Understanding the relationship between argumentation 

and proof 

 An argument is defined as a sequence of mathematical statements with the chief 

aim of convincing, whereas an argumentation
6
 consists of one or more logically 

connected arguments. KRUMMHEUER (1995) views an argument as either a specific 

sub-structure within a complex argumentation or the outcome of an argumentation. In 

this dissertation, we consider argumentation as a process and argument as a product. 

During the proving process, an argumentation activity is developed by producing 

arguments for the validation of a conjecture. The connective arguments produced in a 

conjecture become proofs if they are valid in a mathematical theory. It is also said that 

proofs are particular arguments but arguments are not necessarily proofs. Moreover, 

argumentation and mathematical proofs are not of the same nature because the aim of 

argumentation is to obtain the agreement of the partner of the interaction. However, the 

aim of a mathematical proof is to obtain the agreement of the mathematics community. 

To understand this complex relationship, PEDEMONTE (2001) analyzed and compared 

argumentation supporting a conjecture and its subsequent proof in solving practical 

problems in geometry. Departing from some initial results of these empirical analyses, 

                                                 
6
 TOULMIN (1958) differentiated three terms argumentation, reasoning, and argument. Argumentation 

refers to the whole activity of making claims, challenging them, backing them up by producing reasons, 
criticizing those reasons, rebutting those criticisms. Reasoning has more narrow meaning than 
argumentation and it is used for the central activity of presenting the reasons in support of a claim, so as 
to show how those reasons succeed in giving strength to the claim. An argument, in the sense of a train 
of reasoning, is the sequence of interlinked claims and reasons that, between them; establish the 
content and force of the position for which a participating in an argument shows its rationality. 
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PEDEMONTE (2007; 2008) concentrated on the continuity and the gap (or distance) 

between argumentation and proof. She considered the relationship between two points 

of view: the referential system and the structure. The referential system contains the 

representation system (the language, the heuristic, and the drawing) and the knowledge 

system (conceptions and theorems). The structure considers different kinds of 

inferences between statements (abduction, induction, and deduction). 

At first glance there seems to be no natural mediator between argumentation and 

proof, however PEDEMONTE (2007) has showed that there is “natural” continuity 

between them in the referential system. Indeed, some words, arguments, drawings, 

theorems, etc. used in the proof have also been used in the proof-supporting 

argumentation. There is also a structural continuity between argumentation and proof if 

some deductive or abductive steps used in the argumentation are present once again in 

the proof. However, according to DUVAL (1991), there is also a gap between 

argumentation and proof even if they use very similar linguistic forms and connective 

propositions. He also claimed that the conclusion of a step, in a proof, serves as an input 

condition to the next step. On the contrary, in argumentation, inferences are based on 

the contents of the statement. For that reason, the gap between proof and argumentation 

is not only logical but is also cognitive. PEDEMONTE (2007) also confirmed that this 

gap appears when argumentation is abductive and proof is deductive. Because of the 

existence of this “distance”, even tertiary students sometimes do not cover it and 

produce incorrect proofs. It also means that students are not able to transform the 

structure of argumentation into the structure of proof. Concentrating on some elements 

of connection, BALACHEFF (1991) realized that the relationship between argumentation 

and proof is strictly connected to the relationship between conjecture and valid 

statement. Experimental research on cognitive unity (BOERO et al., 1996; GARUTI et 

al., 1998; MARIOTTI, 2000) also showed that a proof is more “accessible” to students if 

an argumentation activity is developed for the construction of a conjecture. Therefore, 

mathematics teachers should stimulate their students to formulate and validate 

conjectures during argumentation. Nevertheless, the teachers must also pay attention to 

the process of producing arguments because sometimes a conjecture could be provided 

without any argumentation. A conjecture can be an “observed fact”, derived directly 

from a dynamic/static drawing, from an intuition, and the like. 
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Another point of view, BALACHEFF (1991) & DUVAL (1992) showed that 

argumentation as an obstacle to mathematical proof learning, since argumentation is 

used in everyday life. Therefore, students might show high degrees of ability in 

reasoning in social situations but they do not naturally grasp the concept of 

mathematical proof and deductive reasoning. For that reason, teachers must help 

students reason deductively and to recognize some proof-generating situations, 

especially with the support of a dynamic geometry software. This environment can play 

the role of a mediator in the transition between argumentation and proof through the 

dragging mode, thanks to the drawings that appeared on the screen as a result of the 

dragging movements. Moreover, while dragging, students switch back and forth from 

drawings to concepts which helps them transition from the empirical to the theoretical 

level (see e.g. DUVAL, 1992; MARIOTTI, 2000). In general, doing experiments, 

producing deductive arguments towards a proof, writing proofs based on experimental 

results will be helpful in bridging students‟ perceptual gaps between proof in 

mathematics and argumentation in everyday life. 

2.3.4. Organizing arguments in order to write a formal proof 

In order to investigate the students‟ work of writing proofs and explicate the 

cognitive development of proofs, BALACHEFF (1998) determined four levels of proofs: 

naive empiricism, crucial experiment, generic example, and thought experiment. Naive 

empiricism (level 1) consists of asserting the truth of a result after verifying several 

cases. Crucial experiment (level 2) is the process of verifying a proposition on an 

instance and validating by choosing some particular cases. Generic example (level 3) 

involves making explicit the reasons for the truth of an assertion by choosing 

representatives of its class. Thought experiment (level 4) invokes action by internalizing 

it and detaching itself from a particular representation. 

 One of the difficulties in writing a formal proof is that students do not 

understand the meaning of a formal proof (e.g. SOWDER & HAREL, 1998). As a result, 

many students request for the reason why they need to do formal proofs in the 

classroom. They consider doing proofs just as verifying and restating theorems or 

statements that are obviously true. Therefore, they have made some mistakes in writing 

proofs. For instance, a lot of students believed the truth of a statement on the basis of a 
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few examples (they attained level 1 according to BALACHEFF‟s classification) and did 

not understand the function of a counterexample. This result was supported by 

GALBRAITH (1981). He has also contended that a single exception disproves a 

generalization is not accepted by some students. This misunderstanding stems from the 

fact that they often confuse the conditions with the conclusion of a mathematical 

statement. To elucidate these real situations, WEBER (2001) determined students‟ 

difficulties with proofs, especially in reading given information from diagrams. Students 

always find confusion and difficulties in distinguishing embedded or overlapping 

figures in a static/dynamic diagram. As a result, diagrams sometimes inaccurately 

provide the content and the relationship between objects and then mislead students in 

writing a proof. Moreover, students are sometimes unable to write down what they have 

in their minds and organize produced arguments in a logical way. This situation was 

also recognized by HEALY & HOYLES (1998). They argued that although students are 

capable of conjecturing and arguing using everyday language, and most of them realize 

that an empirical justification is not enough, but they still do not know how to provide a 

formal argument. 

 HANNA (1995) showed that students would realize that writing proofs are 

difficult when they get used to working with different patterns of arguments and with 

the formal structure of proofs. To interpret possible insights gained from proofs, 

HAREL & SOWDER (1998) mapped students‟ cognitive schemes of mathematical proof 

and offered developmental models on the concept of proofs within mathematics. The 

notion of a proof scheme was proposed and aimed at representing a cognitive stage in 

the proving process: “A person‟s proof scheme consists of what constitutes ascertaining 

and persuading for that person”. It is the collection of arguments that students use to 

convince themselves or others of the validity of a mathematical statement. The class of 

a proof scheme is constituted by three main categories: external conviction proof 

schemes (justification depends on the word of an authority such as a mathematician, a 

teacher or a textbook, on the of the strictly argument presentation or on the symbolic 

form of the argument), empirical proof schemes (conjectures are validated, impugned, 

or subverted by appeals to physical facts or sensory experiences), and analytical proof 

schemes (conjectures are validated by means of logical deductions). Therefore, in order 

to write a formal proof, students need to understand proof schemes and be flexibly in 
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transition from one schema to another by using reasonable language, symbols, 

notations, and rules of logical reasoning. It means that they must know how to select 

and combine produced arguments (the products of constructing a cognitive unity) in 

order to organize/arrange these arguments forming a formal proof. 

2.4. SUGGESTIONS FOR TEACHING A FORMAL PROOF 

2.4.1. Using TOULMIN basic model of argumentation 

TOULMIN (1958) argued that the abstract and formal criteria of mathematical 

logic have little applicability to the methods of assessing arguments. Therefore, he built 

a model to represent the structures of arguments in different fields. According to 

TOULMIN, in any argumentation the first step is expressed by a claim (an assertion, an 

opinion or a conjecture). The second step consists of the production of data supporting 

it. It is important to provide justification or warrant for using the concerned data as 

support for the data-claim relationships. The warrant can be expressed as a principle, a 

rule or a theorem. The warrant acts as a bridge which connects the data and the claim. 

Claim, data, and warrant form the basic structure of argumentation. Besides these basic 

elements, TOULMIN supplemented three auxiliary elements of argumentation; they are 

qualifier, rebuttal, and backing. Qualifier is a word or phrase that expresses the 

speaker‟s degree of force or certainty concerning the claim such as „necessarily‟, 

„probably‟, „possible‟ or „presumably‟. Rebuttal is a statement that recognizes the 

restrictions which may legitimately be applied to the claim. Backing must be introduced 

when the warrant itself is not convincing enough to the readers or the listeners. 

This dissertation uses the following basic model of argumentation to represent 

the structure of arguments (e.g. deductive and abductive structure) that are produced in 

the proving process. This model was utilized throughout our observation analyses in 

order to interpret students‟ reasoning and proving strategies. It consists of the following 

elements: 

C (claim): the statement of the speaker 

D (data): data justifying the claim C 

W (warrant): the inference rule that allows data to be connected to the claim 
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Figure 2.8: TOULMIN basic model of argumentation 

For example, the following 

TOULMIN model describes the structure 

of argumentation which proves that 

ABC is a right triangle by using the 

converse of Pythagorean Theorem. 

Based on this model, students may know 

how to find the data in order to validate 

the claim (the given conclusion). 

 

Figure 2.9: TOULMIN model describes how to prove a right triangle 

The most important role of TOULMIN model is to analyze the relationship 

between argumentation and proof, especially the gap between them. In TOULMIN 

model, a step appears as a deductive structure because data and warrants lead to a claim. 

Therefore, it is useful to represent a chain of logical deduction. However, it is also a 

powerful tool to represent an abductive structure, which can be used to explicate the 

role of abduction in the proving process (PEDEMONTE & REID, 2011). In particular, 

the students can reverse abductive structure in order to write a deductive proof and 

understand logical reasoning produced in the proving process. Using this model 

mathematics teacher can understand the argumentation structure in students‟ thinking as 

well as the root of their proof ideas. On the basis of this understanding, teachers can also 

provide their students with suitable strategy during the proving process. 
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2.4.2. Exploring proof-related problems within a dynamic 

geometry environment 

Learning geometry within a dynamic geometry environment involves transitions 

in the learning process between figures and concepts, between perceptual activity and 

mathematical knowledge. Typically, a geometrical problem cannot be solved while 

remaining only at the perceptual level of figures on the screen. Conceptual control is 

needed and this requires explicit knowledge. The use of the dragging function validates 

procedures and is the crucial instrument of mediation between figure and concepts, 

perception and knowledge. In particular, ARZARELLO et al (1998) presented some 

features of such transitions in the move from conjecturing to proofs in geometry when 

using a dynamic geometry software. He also reports on students‟ elevating the use of 

the language of mathematical argumentation, particularly when justifying constructions, 

and when students were working with the dragging mode. 

LABORDE & STRÄSSER (1990) proclaimed that a dynamic geometry software 

provides an interactive learning environment and a helpful instrument for proving 

geometric theorems. As a role of an instrument, it offers students the means to articulate 

and test hypotheses (e.g. CONNELL, 1998) and also provide students with opportunities 

to discover uncertainties. These suspicious results require students to search for 

explanations. However, students easily believe in the truth of a conjecture by visually 

seeing geometric objects and their relationship on the screen (see e.g. DE VILLIERS, 

1990; 2003; 2007). For instance, PANDISCIO (2002) has showed that prospective 

teachers believe that high school students may not see the need for proofs after using a 

dynamic geometry software. This conviction might also be the source of explanation as 

to why some educational researchers claimed that this software could lead to the 

“further dilution of the role of proofs in the high school geometry” (see CHAZAN, 

1993). However, in some cases, despite obtaining a conviction by dragging, students 

still have a strong cognitive need to explain the results. Furthermore, this need was also 

re-confirmed by HOYLES & HEALY (1999). They indicated that using a dynamic 

geometry software to explore geometrical concepts could motivate students to discover 

geometrical properties, explain their empirical conjectures, produce arguments for a 

formal proof, and then improve students‟ proof writing abilities (e.g. MARRADES & 
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GUTIÉRREZ, 2000; JONES, 2000a). It also promotes the link between empirical and 

deductive reasoning that is supported by “what if” and “what if not” questions 

(HOYLES & JOHNES, 1998). Exploring a proof-related problem within a dynamic 

geometry environment helps students construct a figure and trace the trajectory of an 

object for conjecturing, gain insight into proof and intuition, discover new patterns and 

relationships, and graph to expose mathematics principles (see e.g. BORWEIN & 

BAILEY, 2004). 

There is a lot of dynamic geometry software that encourage students to actively 

participate in the proving activities. However, the GeoGebra software
7
 was chosen for 

our research because it is freely available on-line, and supplemented with a variety of 

dynamic worksheets. This software also allows students to make and test assertions and 

prepare for more formal proof writing (see e.g. EDWARDS & JONES, 2006; 

HOHENWARTER & JONES, 2007). Students can build a geometric construction and 

simultaneously observe how changes in a formula in the algebra window are affected by 

the manipulation of the construction and vice versa. Teachers can use this software to 

construct interactive applets on the internet to improve students‟ proving abilities. By 

participating in these explorative tasks, the student will engage in realizing geometric 

invariants and formulating conjectures activities. As a result, students take produced 

arguments for granted that support to construct formal proofs. 

 In short, the development of dynamic geometry software provides students with 

many opportunities to explore and discover mathematics concepts according to their 

own individual needs and pace (LABORDE et al., 2006). This dynamic environment 

could motivate students to explain their empirical conjectures using formal proofs and 

provide an opportunity to link empirical and deductive reasoning together. A dynamic 

geometry software can also be utilized to gain insight into a deductive argument, 

support experimentation, and thus lead to conviction. Therefore, the main objective of 

our research is to find effective ways to use a dynamic geometry software in order to 

give students a chance to verify, formulate conjectures, generalize, communicate, prove, 

and make connections between the properties of the drawings. 

                                                 
7
 This software can be downloaded freely at the following website: http://www.geogebra.org. 

http://www.geogebra.org/


 45 

2.4.3. Using abduction during the proving process 

The term “abduction” was introduced by PEIRCE (1960) to differentiate this 

type of reasoning from deduction and induction. Abduction is an inference which allows 

the construction of a claim starting from an observed fact (see e.g. PEIRCE, 1960; 

POLYA, 1962; MAGNANI, 2001). Deduction is an inference allowing the construction 

of a claim starting with some data and a rule. Induction is an inference which allows the 

construction of a claim generalized from some particular cases (see e.g. POLYA, 1954; 

FANN, 1970). In other words, abduction plays the role of generating new ideas or 

hypotheses; deduction functions as evaluating the hypotheses; and induction is 

justifying the hypothesis with empirical data (e.g. STAAT, 1993). At the tertiary level, 

students tend to use abduction in producing arguments and searching for ideas for 

proofs because the logic of abduction contributes to the conceptual understanding of a 

phenomenon. Therefore, our research will also focus on the role of abduction in the 

proving process: 

“By using abduction as a tool for a better understanding and for the 

reconstruction of the generation of ideas in the mathematical classroom, the 

social processes of knowledge construction became analyzable. Nevertheless the 

consideration of the abduction cannot capture the individual cognitive processes 

of constructing new knowledge, but it provides insight into those processes” 

(MEYER, 2008, p.50). 

ECO (1983) identified three kinds of abduction (overcoded, undercoded, and 

creative) based on the research of PEIRCE (1878). Overcoded abduction occurs when 

the arguer is aware of only one rule from which the conclusion would follow. 

Undercoded abduction occurs when the arguer is aware of more than one selectable 

rule. MAGNANI (2001) combined these two kinds of abduction and called it “selective 

abduction”. He defined selective abduction as the process of finding the right 

explanatory hypothesis from a given set of possible explanations. Creative abduction 

occurs when there is no general rule known to the arguer that would imply the 

conclusion. Thus, the arguer must invent a new rule. Based on the scheme of abduction 

as a plausible reasoning
8
 (see POLYA, 1962) and the classification of abduction (ECO, 

                                                 
8
 As a plausible reasoning, abduction can be modeled as follows: If A then B, B true  A more credible. 



 46 

1983), PEDEMONTE & REID (2011) presented three kinds of abduction in TOULMIN 

basic model of argumentation as follows: 

 

Figure 2.10: Overcoded abduction in TOULMIN model 

  

Figure 2.11: Undercoded abduction in TOULMIN model 

 

Figure 2.12: Creative abduction in TOULMIN model 

For example, overcoded abduction in TOULMIN model is used to represent the 

following situation: students need to validate the claim (C: ABC is a right triangle) and 

they know only one rule or a theorem (W: Converse of Pythagorean Theorem) to justify 

the claim. The rest of students‟ work is to determine the supported data which need to 

be collected or found in this case (  where a is the length of the hypotenuse; b 

and c are the lengths of the remaining two sides of that right triangle, for instance). 

 

Figure 2.13: Overcoded abduction for proving a right triangle 
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In the case if students know more than one rule to follow such as converse of 

Pythagorean Theorem, measure of angle A is equal 90
0
, and scalar product of two 

vectors  and  is equal 0; they have to choose the most appropriate rule to solve 

the problem. Using the following TOULMIN model for undercoded abduction, students 

might know how to find suitable data in order to validate the claim (C). 

 

Figure 2.14: Undercoded abduction for proving a right triangle 

In the case if students do not know any rule to 

follow; they have to invent a new means. For example, 

students are required to calculate the following infinite 

sum  and they have not yet learned to 

apply the basic formula 
-

.  

 

Figure 2.15: Creative abduction for calculating the sum of infinite series 

To tackle this problem, students have to „invent‟ a new method (see the unit 

square in Fig. 2.15 above). They might think the number  is the same to  of unit 

square, and they divide the square into four squares and repeat this process forever. 

They can realize that this infinite sum is equal to , which is the total areas of the black 

unit squares and verify this result by sketching the construction of these squares (or 

using visual proof). 
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The term „abductive argumentation‟ is also frequently used in this dissertation. 

This kind of argumentation originated from abduction. It has been considered as a type 

of „backwards‟ reasoning and as an „inference to the best explanation‟ because it starts 

from the observed facts and probes backwards into the reasons or explanations for these 

facts (WALTON, 2001). Abductive argumentation also supports the transition from 

conjecturing to proving modality (PEIRCE, 1960; ARZARELLO et al., 1998). It was 

used to analyze students‟ interactions and proving styles while they were discovering 

mathematical knowledge or generating ideas of a proof. Therefore, it supports 

explanatory conjectures and the subsequent related proof. In geometry, proofs are 

normally deductive, but the discovering and conjecturing processes is often 

characterized by abductive argumentation. Particularly, in a dynamic geometry 

environment like GeoGebra, the produced data might sow the seeds of generating 

abductive argumentation. Its strength depends on all evidence and data which are 

collected by dragging, observing, measuring, conjecturing, and checking the 

relationship between the objects. However, abductive argumentation is sometimes an 

obstacle for students in constructing a deductive proof because they are not able to 

convert these argumentations into deductive proofs (see e.g. PEDEMONTE, 2007). 

According to PEDEMONTE & REID (2011), in the case of using overcoded 

abduction, the structural gap between abductive argumentation and deductive proof is 

shorter because students must merely look for data to justify the claim; the rule and the 

claim are already present. In the case of undercoded abduction where several plausible 

rules are known, it is important to select a useful and correct rule in order to produce a 

proof. Using this kind of abduction, students have to take more time to choose a right 

rule for proving but this obstacle makes students more flexible in thinking and solving 

problems. Creative abduction is probably the most difficult kind of abduction to use 

when writing deductive proofs because a great deal of irrelevant information may be 

confused and then creates disorder in the student‟s thought process. In this case, the 

student could construct an incorrect “proof” if they are not able to invent a new rule for 

validating the claim. However, this kind of abduction encourages students to think 

actively and creatively while solving a difficult problem. Another approach examining 

the role of abduction in the proving process, ARZARELLO et al. (1998; 2011) showed 

that abduction plays an essential role in the process of transitioning from ascending 
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control
9
 to descending control

10
. In other words, abduction might conduct the transition 

from exploring-conjecturing to validating-proving modality. In this process, the 

conjectures are produced and written in a logical form „if ... then‟. It means that the 

results of exploration are transformed into conjectures (e.g. PEIRCE, 1960; MAGNANI, 

2001). Then abduction is used to explore data, find and choose a pattern, and explain 

plausible hypotheses, which aim to determine the methods of solving problems and 

producing arguments for proofs. Students are also used this kind of inference to 

recognize and understand the structure of writing formal proofs. Therefore, mathematics 

teachers should provide their students with an opportunity to use this strategy during the 

proving process. 

2.4.4. Developing dynamic visual thinking in geometry 

 “Geometry takes place in a world of forms and images” (see JOHNSTON-

WILDER & MASON, 2005, p.111). Therefore, it is a prosperous territory for students to 

improve their geometric thinking through the power of mental pictures, reasoning based 

on dynamic images, and communication with the others. There are four key aspects of 

geometric thinking: invariance, language and points of view, reasoning, visualizing and 

representing. In past two decades, with the appearance of dynamic geometry software, 

the role of visualization and analysis of visual information as steps to formal 

argumentation and as means of proof have been a significant trend in teaching and 

learning mathematics (see e.g. BLUM & KIRSH, 1991; NOSS, HEALY & HOYLES, 1997; 

PINTO & TALL, 2002). CHAZAN (1993) identified students‟ view of empirical and 

deductive reasoning which are associated with given diagrams or figures. Moreover, 

dynamic geometry software (such as GeoGebra, Geometry Cabri, Cabri 3D, Geometer‟s 

Sketchpad, Cinderella, etc) provides new possibilities for visual experiences. This 

visualization helps students transcend the limitations of the mind (e.g. dynamic visual 

imagery, short-term memory span) in geometric thinking activities (e.g. PEA, 1987; 

MARIOTTI, 2000; STRÄSSE, 2001). For example, when seeing a dynamic diagram, 

                                                 
9
 Ascending control is the modality according to which the solver ‘read’ the figure in order to make 

conjectures. The stream of thought goes from the figure to the supporting theory that related to the 
initial situation (GALLO, 1994). 
10

 Descending control occurs when conjectures have already been produced and the solver seeks for a 
validation. The solver refers to the supporting theory in order to justify what she/he has previously 
‘read’ in the figure and validate the produced conjectures (GALLO, 1994). 
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students may conjure up a „dynamic‟ picture and be engaged in mental activities 

(imagining and expressing, conjecturing, and reasoning). These activities produce 

mental images that express what has been visualized in the students‟ thoughts. These 

pictures also create a sense of geometric reasoning because reasoning in geometry is not 

only based on words or symbols, but also on drawings and students‟ mental images. 

However, they only encourage students to produce arguments and find the ideas of 

proofs, but not to substitute the proof itself. 

 According to ARNHEIM (1970), visual thinking is “an active exploration, 

selection, grasping of essentials, simplification, specialization, visualization, 

abstraction, generalization, analysis and synthesis, completion, correction, comparison, 

analogy, problem solving, as well as arguing, combining, separating, differentiating, 

representing, imagining, recognizing, putting in a certain context,…”, i.e., visual 

thinking
11

 is a powerful tool which can be applied in many situations. It involves visual 

imagination or visual perception of external diagrams (see e.g. GIAQUINTO, 2007; 

PREIßING, 2008). Visualization is also an important process supporting visual thinking 

in mathematics. SENECHAL (1991) proposed the definition of visualization and its 

relationship to the general framework of visual thinking: visualization is any process 

producing images (pictures, objects, graphs, diagrams, etc) in the service of developing 

visual thinking. In particular, the mathematicians EULER and VENN are well-known 

for their development of diagrammatic tools for solving mathematical problems, and the 

logician PEIRCE (1878) developed an extensive diagrammatic calculus to generate a 

reasoning tool for comprehension. BARWISE & ETCHEMENDY (1999) also developed 

the Hyperproof computer program which allows students to solve deductive reasoning 

tasks using an integrated combination of sentences and diagrams. 

 Additionally, visualization, diagrammatic tools, and visual thinking have been 

understood more widely when dynamic geometry software appeared. This environment 

is the most powerful tool for helping students develop their power to imagine and 

                                                 
11

 In other words, visual thinking is a way to organize your thoughts and improve your ability to think 
and communicate. It is a way to expand your range and capacity by going beyond the linear world of the 
written word, list and spreadsheet, and entering the non-linear world of complex spatial relationships, 
networks, maps, and diagrams (e.g. ARNHEIM, 1970; SENECHAL, 1991; NELSEN, 1993; GIAQUINTO, 

2007). 
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express what they imagine in movement, pictures, and words. In order to enhance 

visualizing ability, students should try to imagine a figure before sketching it, to sketch 

it before using dynamic geometry software, to make a conjecture as to what will happen 

before actually doing it (dragging, constructing a new figure), thus creating an 

imagination. This imagination may give students a strong grasp of properties and 

relationships between objects and support reasoning on the basis of perceived 

properties. These are features of dynamic visual thinking, a type of visual thinking that 

usually is referred in a dynamic geometry environment. It can be defined as follows: 

Dynamic visual thinking is a mental manipulation that involves visual 

imagination of dynamic diagrams in dynamic geometry environment. It 

supports students to see the „movement‟ of geometric objects with different 

flexible perspectives, recognizing relationships, differentiating static and 

moving invariants, especially in the context of determining geometric 

transformations for proving. It also refers to the ability of seeing and 

visualizing the „movement‟ of geometric objects without a dynamic 

geometry environment.  

 In general, developing this type of thinking may help students not only see 

geometric invariants in a „dynamic‟ drawing or diagram, but also in a „static‟ one of 

paper-and-pencil environment. Therefore, dynamic visual thinking plays a facilitating 

role in realizing geometric invariants during the proving process. Especially, at the 

tertiary level, students need to differentiate between geometric invariants of various 

transformations (isometries and similarities) as well as invariants of different 

geometries
12

 (Euclidean geometry, affine geometry, and projective geometry). 

Therefore, this type of thinking should be taken into consideration in the mathematics 

classroom with the aim of providing students a flexible way of thinking in problem 

solving as well as the proving process. 

                                                 
12

 In the teacher training universities in Vietnam, students are required to differentiate the distinction 
between invariants of different geometries such as Euclidean geometry, affine geometry, and projective 
geometry. 
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2.5. AN INTERACTIVE HELP SYSTEM FOR PROVING 

2.5.1. Introduction 

BALACHEFF (1998) classified four levels of a proof to understand students‟ 

cognitive development in writing proofs such as naive empiricism, crucial experiment, 

generic example, and thought experiment (see Section 2.3.4). These levels are not 

enough to determine how students understand the development of the proving process. 

For that reason, in this research we classified seven levels of proving that represent the 

developmental phases in the proving process. These level are proposed as follows: 

information (level 0), construction (level 1), invariance (level 2), conjecture (level 3), 

argumentation (level 4), proof (level 5), and delving (level 6). In order to check the 

validity of this classification and support students in understanding the development of 

the proving process, we built an interactive HELP SYSTEM that is embedded in the 

GeoGebra environment. The system contains seven levels of proving which provides 

students with hints from understanding to delving into the problem. Based on the 

interactive HELP SYSTEM and students‟ solution of tasks, we can estimate their 

knowledge understanding and proving levels as well.  

Research on the help system was conducted several decades ago. For instance, 

SELZ (1935) formulated the principle of minimal help in assisting students with 

problem solving. It implies a gradual increase in the level of specificity of the help 

needed, thereby aiming at the greatest mental activity possible. POLYA (1973) & 

WICKELGREN (1974) also conducted research on hints and gave a listing of general 

heuristic hints. They offered no empirical data about the effectiveness of different types 

of general heuristic hints. Therefore, extensive research in application was done by 

TRISMEN (1981; 1982). He experimented with various forms of hints and used two 

main formats, the open-ended and the multiple-choice form. He developed hints 

intuitively; afterwards the relation to general principles. In order to determine how 

effective a stimulating hint is on the process of problem solving, TRISMEN showed that 

hints have two functions: to direct thought and to convey information; the first is of 

primary importance and the form of hint best suited for the directing of thought is the 

question-form. He also claimed that initial misconceptions about a problem by students 
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are extremely difficult to correct with hints and the particular nature of a problem 

dictates the kinds of hints which will be most relevant. 

 During the process of working with the interactive HELP SYSTEM, we always 

keep the well-known heuristic principles of POLYA in the back of our mind. The 

interactive HELP SYSTEM consists of open-ended questions and explorative tasks 

which were designed so that students can use them as they needed. These questions (or 

tasks) should be direct thought and suitable for students to explore the problem on their 

own. An open-ended question (to direct thought) is used to find geometric invariants 

and connect arguments forming a formal proof. An explorative task (to convey 

information) is used to help students explore the problem on their own. By answering 

open-ended questions or completing explorative tasks, the idea of proofs may also 

emerge gradually. After apparently unsuccessful trials and a period of hesitation, it may 

occur suddenly, in a flash, as a “bright idea” or “seeing the light”. Bright idea is a 

colloquial expression describing a sudden advance towards the problem solution. Each 

proof-related problem needs some auxiliary or supplementary elements such as 

diagrams, auxiliary lines, geometric transformations, supporting theorems, deductive 

rules, etc. Sometimes, we consider a static/dynamic diagram as a hint for generating 

ideas of proofs. For instance, the following diagram might be a hint/suggestion for the 

solution of the orthic problem: “The orthic triangle
13

 of an acute-angled triangle has the 

minimum perimeter among all triangles inscribed within the given triangle”. In reality, 

Let ABC be a triangle with altitudes AQ, BR, and CP. The triangle PQR formed by the 

feet of the altitudes is the orthic triangle. In this problem, a diagram (see Fig. 2.16 

below) reveals the translation that used to solve this problem. We may realize that the 

length of segment PP‟ is twice the perimeter of orthic triangle PQR. Moreover, the 

length of broken line MM‟ is twice the perimeter of arbitrary triangle MJK that inscribed 

about a given triangle ABC. Clearly, the segment PP‟ is smaller than the broken line 

MM‟. This diagram is also called to illustrate a visual proof. In mathematics classroom, 

teachers should sometimes provide their students with a visual proof (as a hint towards 

the solution of the problem) aimed at developing students‟ logical reasoning based on 

figures or diagrams. 

                                                 
13

 An orthic triangle has three vertices that coincide with three feet of the altitudes of a certain triangle. 
It has the smallest perimeter among all triangles inscribed within a given triangle. 
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Figure 2.16: A hint for generating proof ideas in the orthic problem 

 In order to highly motivate students when they are working with the interactive 

HELP SYSTEM, open-ended questions or explorative tasks should satisfy the following 

characteristics: 

1. Should be suitable to students‟ understanding level: The question or task is not 

too easy, not too difficult, and stimulates the students‟ thinking. It means that the 

hints must be suitable to students‟ level and are given as they needed. 

2. Should be heuristic: There should be a gap between the help and solution of the 

problem. If the help is understood, it gives the whole secret away, very little 

remains for the student to do.  

3. Should be instructive and natural: Student may perceive naturally the ideas of 

proof through exploring the problem with help and get into the habit of using 

these methods. In other words, students may definitely profit by using the 

methodological model from this system. 

 We consider the following example as a way to describe our interactive HELP 

SYSTEM to support students in transition from the lowest proving level to the highest 

proving level by using some appropriate hints. It also makes a contribution to bridge the 

students‟ cognitive gaps during the proving process: 
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Example 2.6. (Parallelogram Problem) Let ABCD be a parallelogram. 

Draw four internal bisectors of angles of the parallelogram. These lines cut 

each other forming a new quadrilateral EFGH. Determine the shape of the 

quadrilateral EFGH. 

 

Figure 2.17: An interactive HELP SYSTEM in the parallelogram problem (level 2) 

2.5.2. Level 0. Information 

 In order to solve a problem, students should understand it. If they are lacking 

understanding or interest, they are not motivated and cannot successfully tackle the 

problem. Thus the interactive HELP SYSTEM should give information clearly aimed at 

pointing out the principal parts of the problem, the unknown, the data, and the 

condition. At this level, the interactive HELP SYSTEM also introduces suitable notation, 

gives names to the objects, and guides students in knowing what they need to do next. 

For instance, in example 2.6, the help system provides students some information of the 

problem as follows: 

 Given data. 

(1) ABCD is a parallelogram: AD = a; AB = b; ADC = 2 ; ;  

(2) lA, lB, lC, lD are internal bisectors of the respective angles DAB, ABC, 

BCD, and CDA; 
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(3) Let E = lA  lD, F = lC  lB, G = lB  lC, and H = lB  lA be intersections of 

internal bisectors; 

Exploration. Determine the shape of the quadrilateral EFGH and prove it. 

2.5.3. Level 1. Construction 

 Students should construct the figure on their own by using the GeoGebra 

software. In this case, the interactive HELP SYSTEM shows students how to construct 

the drawing
14

 step by step. For instance, in example 2.6, students have to: 

- Construct a parallelogram ABCD; 

- Draw internal bisectors of the angles DAB, ABC, BCD, and CDA; 

- Construct the intersections E, F, G, and H of four internal bisectors. 

 

Figure 2.18: Construction level in the parallelogram problem 

To attain this level, students need some basic construction skills. Thanks to 

construction functions of the GeoGebra software, students can construct their drawings 

easily such as: intersect of two objects, midpoint of a segment, a line through two 

points, parallel/perpendicular lines, angle bisector, perpendicular bisector, tangents, 

segment with given length, angle with given measure, polygon, circle, conic, etc. 

However, students often have some difficulties in constructing drawings as well as 

some auxiliary figures because of the lack of basic construction skills and knowledge. 

                                                 
14

 In our research, we differentiate two terms ‘figure’ and ‘drawing’. Drawing is a figure which can 
change its shape by dragging. It is a dynamic figure, not only a static figure. 
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2.5.4. Level 2. Invariance 

 This phases aims to search for invariants supporting the proving process. To 

attain this level, students need only to apply an invariance principle to realize geometric 

invariants. Some helpful questions can be used to support students throughout this 

phase: What property is preserved by dragging? Which figures do not change their 

shapes as they move? Which figures are congruent or similar while moving? When the 

students get stuck on a geometrical problem, they usually try to use a familiar problem 

or specialize it in some way and then look for something familiar. However, the 

interactive HELP SYSTEM will help students consider the problem from different sides 

and aspects. It contains two phases of looking for invariants. Firstly, the students guess 

the transformations appearing in the problem. These can be realized by some signs: 

there exist constant angles, constant distances, constant directions, equal distances, 

equal angles, equal figures, regular polygon, fixed lines, fixed points, parallel lines, and 

so on. Secondly, students need to find geometric invariants by using the dragging mode. 

Invariants of a geometric transformation may be: measurement of angle, length of 

segment, parallelism, concurrency, perpendicularity, betweenness, collinearity, ratio of 

two segments, shape of a figure, etc. Realizing geometric invariants when dragging will 

provide students with more data for the proving process. For instance, in example 2.6, 

the interactive HELP SYSTEM will guide the students to discover the problem on their 

own: 

- An explorative task. Drag vertices of the parallelogram and observe the change 

of the quadrilateral EFGH. 

- An open-ended question. Which objects do not change in shapes, the 

measurement or the relationship between objects? 

 With the support of dragging mode, students realize some geometric invariants 

such as the straight lines EF and GH are parallel, the straight lines EH and FG are also 

parallel, and four angles of the quadrilateral EFGH are right angles. They might realize 

some other static invariants such as AB = CD, AD = BC, A + D = 180
0
, etc. From 

this realization of the invariants, students will formulate conjectures and move on to the 

next level of proving. 
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2.5.5. Level 3. Conjecture 

A conjecture is a statement strictly connected with an argumentation and a set of 

conceptions (see BALACHEFF, 1994) where the statement is potentially true because 

some conceptions allow the construction of an argumentation that justifies it. It is the 

postulation that something ought to be true or false. Conjectures often originate from 

experimentation, numerical investigations, and measurements. During the process of 

formulating conjectures, students work with arguments to construct a proof. As 

mentioned above, after revealing the invariants, students make a conjecture with the 

support of some GeoGebra functions such as measure the area; check the relation 

between two objects; calculate the angle measure, the distance between two objects; and 

check the locus of the moving objects. For instance, in example 2.6, the students explore 

the problem by: 

- Calculating the lengths of the segments EF, FG, GH, and HE; 

- Measuring the measurement of the angle HGF; 

- Using an open-ended question in the interactive HELP SYSTEM: What are 

special characteristics of the quadrilateral EFGH, e.g. (the measurements of 

angles, the length of sides, etc)? 

 

Figure 2.19: Conjecture level in the parallelogram problem 

Then they formulated a conjecture “The quadrilateral EFGH is a rectangle”. In 

order to formulate the conjecture, the students need to realize that EF = HG, EH = FG, 

and HGF = 90
0
 by measuring and using some initial reasoning. As soon as the 
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conjecture is formulated, some arguments are produced for validating this conjecture. 

When students are able to provide some valid arguments during the process of 

formulating and validating conjectures, they may attain a new level of proving.  

2.5.6. Level 4. Argumentation 

 At this level, the interactive HELP SYSTEM supports students in producing and 

collecting arguments by guiding them to answer some open-ended questions or explore 

some tasks. The data and arguments, which are not necessary for a proof writing, have 

also been reduced or omitted. For instance, in example 2.6, the following spontaneous 

arguments were produced by some students in the experimental group: 

Data – Warrants. 

(4) AB = CD = b; AD = BC = a;                                (1) 

(5) ADE = CDE = ; ABG = CBG = ;        (1) 

(6) ADC + DAB = 180
0
;                                       (1) 

(7) ADE + DAE + AED = 180
0
     (the sum of angles in a triangle) 

(8) EF = DF – DE; HG = BH – BG;  

       EH = AH – AE; FG = CF – CG;                           (3) 

Claims – Warrants. 

(9) AED = 180
0
 – ( ADE + DAE)                     (7) 

(10)  ADE + DAE =  = 90
0
       ((2), (6)) 

(11)   AED = BGC = DFC = AHB = 90
0
         ((9), (10)) 

(12)   DE = BG = ; DF = BH =               ((4), (5), (11)) 

(13)   AE = CG = ; AH = CF =                  ((4), (5), (11)) 

(14)   EH = FG =                                        ((8), (12)) 

(15)   EF = GH =                                      ((8), (13)) 

(16)   EFGH is a rectangle                                            ((11), (14), (15) 
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Figure 2.20: Argumentation level in the parallelogram problem 

 The argument is a major part of proofs, so it is necessary to produce it. For 

teaching and learning purposes, argumentation is a fruitful means to control the validity 

of reasoning. There are two levels of argumentation: as a part of the proving tasks, 

especially for producing and organizing arguments; and in discussing procedures, as a 

means to assimilate and master the elements of the proving process. Therefore, 

argumentation is the most important phase of the proving process and it provides 

valuable data for writing proofs at the next level. 

2.5.7. Level 5. Proof 

 Based on produced arguments, at this level, the interactive HELP SYSTEM 

guides students in writing proofs. Students have to select some helpful arguments, 

connect them to form a chain of reasoning. The use of mathematical language and 

logical laws are essential for students in this phase of the proving process. Therefore, 

the interactive HELP SYSTEM will provide a logical rule to connect arguments or 

suggest some open-ended questions aimed at producing deductive arguments. In some 

cases, this system can provide students with a solution diagram aimed at engaging them 

in writing a logical chain of arguments. In general, at this level, students will be guided 

in writing their formal proof and the interactive HELP SYSTEM takes the responsibility 

for supporting students in organizing their arguments and encourages them to overcome 

some difficulties in writing proofs such as choosing valid arguments; using statements, 

notations, logical rules, etc. 
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2.5.8. Level 6. Delving 

 Delving into a problem by reconsidering, expanding the result, students could 

not only consolidate their knowledge but also develop their ability to solve problems. At 

this level, the interactive HELP SYSTEM suggests that students use some mathematical 

thinking strategies in the process of delving, such as generalization, expansion, 

specialization, analogy, decomposing and recombining, etc. Delving into a problem also 

means that the students should try to make their proofs as simple as possible. For 

instance, in example 2.6, when the students drag vertices of the parallelogram, in some 

cases, the quadrilateral EFGH is a square or a point. So the interactive HELP SYSTEM 

suggests to students to specialize the problem as follows: 

- If ABCD is a rectangle then : 

 

      Hence, the quadrilateral EFGH is a square. 

- If ABCD is a rhombus then a = b  EF = EH = 0 or the quadrilateral EFGH is 

degenerated into a point.  

      

Figure 2.21: Delving level in the parallelogram problem 

 At this level, the interactive HELP SYSTEM will give students some open-ended 

questions or explorative tasks in order to discover new problems or find other shorter 

solutions. Sometimes, it will also propose a related problem aimed at helping students 

form a habit of thinking whenever they finish solving a proof-related problem. In 

general, each of abovementioned levels has its own role in the proving process. Some 



 62 

students can ignore one of these levels if the idea of a proof suddenly appears. Then 

students can jump and go straight to the solution of the problem. Based on the levels of 

proving, we can also estimate the students‟ knowledge understanding and proof writing 

ability. 

 

Figure 2.22: The interactive HELP SYSTEM as a methodological model 

 On the basis of these levels of proving we realized that students spend most of 

their time in four phases of the proving process such as invariance, conjecture, 

argumentation, and proof. Therefore, throughout this dissertation, we concentrate on the 

basic aspects of these phases. In the variance phase, students realize sub-invariants as 

well as a key invariant so as to generate the ideas for proofs. The ability to realize these 

invariants depends on the students‟ level of dynamic visual thinking. In the transition 

from the conjecture to the argumentation phase, there is a cognitive gap between them. 

Students must produce valuable arguments or construct a cognitive unity in the process 

of validating conjectures. Moreover, in the argumentation phase, students use different 

strategies in explaining „observed facts‟ and constructing proofs. We also used 

abduction to analyze students‟ explaining methods. Our hypothesis is that students have 

difficulties in writing a formal proof because of the existence of the cognitive and 

structural gaps between argumentation and proof. Therefore, this research reveals the 

gaps and determines some fundamental aspects that influence the proving process. 

These aspects are described in the following model: 
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(*) The interactive HELP SYSTEM 

Figure 2.23: Some fundamental aspects that influence the proving process 

2.6. SUMMARY 

This chapter summarizes some research and studies involving proofs and 

proving in mathematics education. Most of these works have confirmed that proving 

activities give students the opportunity to enhance their better understanding of 

mathematics knowledge. In this chapter, we propose a methodological model in 

accordance with seven levels of proving, on which the interactive HELP SYSTEM 

based. Through students‟ activities with this system and the original solutions of tasks, 

we can estimate their knowledge understanding and develop their „habits of mind‟ in 

solving a problem. We also give some suggestions for teaching a formal proof at the 

tertiary level such as using TOULMIN model to analyze the structure of argumentation, 

applying abduction to interpret the way students think, using a dynamic geometry 

software to realize geometric invariants, developing dynamic visual thinking to support 

in generating idea of proof, etc. From these suggestions, mathematics teachers should 

provide students with explorative strategies to assist them during the proving process. 

This chapter also determines some basic conditions for understanding the development 

of the proving process and fundamental aspects that influence the proving process 

within a dynamic geometry environment. We will clarify each condition and analyze the 

role of each aspect during the process of constructing a formal proof in chapter three. 
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Chapter 3 

DATA COLLECTION AND ANALYSIS 

3.1. DATA COLLECTION PROCEDURES 

3.1.1.  Research design 

The data were collected during the summer semester 2010. The participants 

were enrolled in a required elementary geometry classes for a teacher training course. 

The raw materials were firstly checked, coded, edited, entered into a computer, and 

subsequently analyzed. These materials consist of transcripts from the video and audio 

recordings, students‟ solution worksheets, questionnaires, semi-structured interviews, 

hypotheses, and teacher‟s field-notes. Because of the large amount of data during the 

period of experimental teaching, we have used the method of data reduction. It refers to 

the process of selecting, focusing, simplifying, abstracting, and transforming the data 

that appears in the transcriptions, students‟ worksheets, and teacher‟s field-notes. The 

process of data analysis was oriented by research questions and hypotheses formulated 

at the beginning of the research from the students‟ perspective. The aim of this analysis 

is to understand the development of students‟ proving processes and the interactions 

between students in the group and the interactive HELP SYSTEM (see Section 2.5). It 

also determines students‟ difficulties during the proving process and proposes some 

pedagogical strategies for improving the way of teaching proofs in both secondary level 

and tertiary level. 

Participants. Proofs and proving are crucial issues in mathematics curricula and 

textbooks in the secondary schools in Vietnam. Therefore, these topics are also 

important contents for students at the teacher training universities. Students who 

become mathematics teachers at the secondary school level need to be trained on how to 

sow the seeds of enhancing problem-solving and proving skills in different mathematics 

subjects. In particular, understanding the development of the proving process is one of 

the most fundamental parts of mathematics teacher training programs because it helps 

students better understand mathematical ideas and mathematics itself. In order to enter 

the mathematics teacher training university, after graduating the upper secondary 
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school, students are required to pass the entrance examination (including three subjects: 

mathematics, physics, and chemistry). The prerequisite for this entrance differs from 

university to university and is based on the total points of three subjects. Once entering 

university, one of the difficulties which first-year students face is methods of teaching 

and learning mathematics at the tertiary level because these methods are different from 

those at the secondary level. According to NGUYEN (2005) and LE (2006), the 

methods in a secondary school in Vietnam emphasize lecturing, memorization, and 

preparation for final examinations. The examinations are highly competitive with a low 

cognitive goal and stress the students‟ achievement. Therefore, students usually take 

solving-problem strategies and rote learning into their consideration. As a result, they 

may not possess a deep level of knowledge understanding and do not necessarily 

understand the development of the proving process as well. To improve this real 

situation, the methods and strategies of teaching proofs at the teacher training 

universities should encourage students to find their own solution to the problems by 

exploring and conjecturing. That is a reason we chose mathematics teacher students in 

our empirical data collection. These difficulties in teaching and learning proofs at the 

secondary level and tertiary level are also presented in Section 2.2 and Section 2.4. 

All of the 132 participants involved in our research were second-year students of 

Thai Nguyen University of Education
15

. The participants were divided randomly into 

two sample groups (i.e. an experimental group with 67 students and a control group 

with 65 students). At the start of summer semester 2009/2010 the experimental group 

and control group took a preliminary test (pre-test) to determine the equivalency of the 

two groups‟ background and at the end of the semester there was a post-test to check the 

formulated hypotheses. All the tests were taken using the paper and pencil format (the 

use of computer was not allowed). The students‟ test worksheets were used to evaluate 

the increase in the students‟ proving levels and levels of realizing geometric invariants 

in the experimental group. These worksheets were also utilized in a semi-structured 

interview in order to understand how tertiary students tackle proof-related problems 

within a dynamic geometry environment. 

                                                 
15

  The author of this dissertation has been teaching elementary geometry at mathematics faculty of 
Thai Nguyen University of Education since 2004. This is one of largest teacher training universities in the 
north of Vietnam. Website: http://www.dhsptn.edu.vn. 

http://www.dhsptn.edu.vn/
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Elementary Geometry Course. Elementary geometry is a fundamental subject 

which is integrated into the mathematics curriculum at the teacher training universities 

in Vietnam. This subject contains rich contents for improving a student‟s proving level. 

The reason for choosing this subject in the period of experimental teaching is due to our 

work experience with elementary geometry in both secondary schools and universities. 

In particular, the topic of geometric transformation and its application in solving 

geometric problems could be exploited effectively within a dynamic geometry 

environment like GeoGebra or Geometer‟s Sketchpad. Furthermore, in all branches of 

mathematics, transformation is a key concept and provides a powerful tool for both 

discovering and proving new mathematical theorems. 

The elementary geometry course is taught within four credit contact hours per 

week and includes the following contents: the basis for Euclidean geometry; some 

methods, strategies and techniques for proving; geometric transformations and their 

applications; locus and construction. The objectives of this course provide students with 

some methods for proving, improving proving skills, developing geometric thinking, 

and enhancing the ability to use advanced geometry for solving problems in elementary 

geometry. This course was taught by the author of this dissertation in a period of four 

months during the summer semester 2009/2010. In particular, in this course we also 

referenced groups of geometric transformations that preserved some geometric 

concepts, axioms, and theorems, for example, a group of similartities which contains 

angle-preserving transformations. An important case of similarities is isometry. This is 

a length-preserving transformation such as a point reflection, line reflection, rotation, 

and translation. These transformations are at the basis of the familiar idea of 

congruence, “two figures are congruent if and only if one can be transformed into the 

other by an isometry”. One of crucial objectives in teaching geometry at the upper 

secondary school levels in Vietnam is to introduce students with the idea of congruence 

and thereafter they can easily understand some congruent objects in their real-world life. 

Moreover, through this topic, we offer students the opportunity to study the geometric 

invariants in groups of transformations. These invariants provide important insight for a 

deeper understanding of geometry and the structure of transformation groups as well as 

the differentiation between various types of geometries such as Euclidean geometry, 

affine geometry, and projective geometry (as shown in Section 2.3.1). 
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Computer Laboratory. There are two computer laboratories at the Thai 

Nguyen University of Education. They facilitate approximately 60 computers connected 

to the internet and serve as a space for students learning computer science as well as 

doing „mathematics experiments‟. In a computer laboratory, students were divided into 

groups of three, who sat together at one computer. Each computer was installed with the 

GeoGebra software in order to create a dynamic environment for group-based activities. 

The reason for this division is the fact that working in groups positively affected the 

development of the proving process (see e.g. OLIVERO, 2002). Especially, in the 

group-based activities, open-ended questions and explorative tasks in the interactive 

HELP SYSTEM were sought out and were jointly considered. These may have been 

challenged and counter-challenged, but these challenges were justified and alternative 

conjectures were offered. Throughout the group-based discussion, a debate is publicly 

arisen and arguments are produced. During the process of using the computer, groups of 

students drag the point, measure the length, check the relationship, and formulate 

conjectures. These activities could take a step toward addressing discussion and 

reasoning. We also installed Wink  software on each computer in order to capture and 

audio-record of all the group discussions. 

Moreover, in order to provide rich opportunities for students outside of the 

computer laboratory, we have also designed an online corresponsive course using the 

Moodle platform at the following website: http://www.daotaotructuyen.org. The 

students‟ participation in the e-lessons was not mandatory, it was optional and selective. 

We offered some further exercises in the form of GeoGebra applets with the interactive 

HELP SYSTEM aimed at helping students gain experience in proving activities while 

creating a center of debate on the online forums of the course. With online courses, 

students could deepen their knowledge beyond the traditional classroom and manipulate 

some applets with a dynamic geometry environment. These manipulative-based 

exercises provide students with an opportunity to grow accustom to using of the 

interactive HELP SYSTEM throughout the proving process and effectively strengthen 

applet-student interaction. 

Variables. During the period of experimental teaching, we differentiated 

dependent and independent variables aimed at investigating the cause-effect relationship 

http://www.daotaotructuyen.org/
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between them in the hypotheses. Environmental factors (including a dynamic geometry 

environment in which students could use the GeoGebra software to support proving 

activities and the paper-and-pencil environment) are the independent variables while the 

students‟ scores on tests are the dependent variables. Thus, at the beginning of the 

experimental research design, we determined the following dependent variables which 

were collected from each group in various environments: mean scores for the pre-test 

and post-test, students‟ level of proving, proof-writing ability, and students‟ level of 

realizing geometric invariants. We also considered gender as another independent 

variable for the purpose of comparing the attained results of male and female students. 

Before experimental teaching, we were concerned about the students‟ priori knowledge 

as a variable and how this can influence the results of the two groups. However, by 

formulating and testing the null hypothesis, we can conclude that two groups have 

equivalent backgrounds. Thus, the data from the dependent variables were collected 

from each environment, as well as the gender factor, in order to test the hypotheses that 

were formulated at the beginning of the empirical research. 

Instrumentation. In order to produce data for the testing hypotheses, we need to 

measure students‟ levels of proving and levels of realizing geometric invariants. 

Therefore, we have determined two ordinal-data scales as follows: seven levels of 

proving (information, construction, invariance, conjecture, argumentation, proof, and 

delving); five levels of realizing geometric invariants (no invariant, static invariants, 

dynamic or „moving‟ invariants, invariants of geometric transformation, and invariants 

of different geometries). We also designed exercises in the pre-test and post-test (see 

Appendix E and F) as the tools for investigating the differences between „inputs‟ and 

„outputs‟. Some group-based and individual-based tasks (see Appendix A, B, and C) 

were also designed to determine and evaluate the level of proving, level of realizing 

geometric invariants and proof-writing ability as well. The solutions to the problems in 

these tasks also were used in the semi-structured interviews. Based on the students‟ 

explanations about their work, we classified levels of proving and determined students‟ 

difficulties during the proving process. A questionnaire was designed and modified to 

investigate students‟ attitudes towards the dynamic environment in support for proving 

and classifying levels of realizing geometric invariants. All the students‟ responses were 

coded and then analyzed using SPSS 17.0 statistics packages. Comments on issues of 
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the open-ended questions were selected and summarized to supplement the findings of 

the SPSS outputs. Furthermore, we used teacher‟s field notes which recorded some 

remarkable activities and reasonable arguments that emerge from discussions in order to 

interpret the students‟ thinking and behavior during the process of constructing a 

cognitive unity. 

3.1.2.   Methodology 

With the purpose of understanding the students‟ proving process, we used both 

qualitative and quantitative methods in analyzing empirical data. Each method has its 

own strengths and weaknesses. Thus, in order to effectively utilize these methods, we 

have triangulated the gathered data. Firstly, we observed students‟ behaviors associated 

with audio and snapshot video recordings. This method of observation is a powerful 

tool that offers us the chance to gather live data from the students‟ discussion, get inside 

situations and observe directly what is happening, thus collect more valid and authentic 

data. However, observations might have difficulties and weaknesses as well. On the one 

hand, observations demand a lot of time, effort, resources, and they are vulnerable to the 

observer‟s bias. In particular, audio and video recordings would reduce the validity 

since the informants might behave differently in the presence of such devices. As a 

supplement, we would clarify the ambiguity in the semi-structured interviews with the 

students in order to increase the validity and illuminate the students‟ understanding of 

the proving process. 

A semi-structured interview schedule is an instrument that can be used to gather 

in-depth personal information about participants‟ thoughts, knowledge, reasoning, 

perceptions, and experiences about a certain topic. The advantages of a semi-structured 

interview are that they are flexible and applicable to many different types of questions. 

This kind of interview involves a number of pre-determined questions or several topics, 

which are typically asked in a systematic and consistent order, but to some degree allow 

freedom for modification. A semi-structured interview permits us to examine far beyond 

the answer to our prepared standardized questions and obtain more information. 

Specifically, throughout the interview, we asked reasons or explanations for the 

students‟ solutions based on five open-ended questions. These questions were designed 

to gather in-depth information and conducted by us after completing the task-based 
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activities. Each interview lasted from 20 to 30 minutes. It was conducted in the 

students‟ mother tongue (Vietnamese) and recorded using an audio recorder and later 

transcribed. The participants in the interview were the students from the experimental 

group, selected using purposeful sampling (15 students were divided into five groups of 

three). The selection was based on their levels of proving and regular attendance during 

the period of experimental teaching. The purpose of the interview was to investigate the 

influence of the use of dynamic geometry software on the students‟ proof-writing 

abilities. During five individual interviews we also took field notes aimed at providing 

more detailed information for the data analysis. A questionnaire survey was also 

designed to investigate the students‟ attitudes towards the role of the interactive HELP 

SYSTEM in the proving process and their perceptions on visual proofs within a dynamic 

geometry environment. The reason we used a questionnaire is that it is time-saving, low 

cost, and a deeper understanding, because some students find it more difficult to express 

their private opinion in the semi-structured interview. 

In addition, in order to answer the quantitative questions, we used hypotheses 

testing, correlation between variables, and ANOVA analysis. The experimental research 

design attempted to investigate the cause-effect relationship between the use of the 

interactive HELP SYSTEM during the proving process and students‟ test scores and 

proving abilities. All statistical analyses were conducted using the statistical package 

SPSS 17.0. Firstly, determined independent and dependent variables that influence on 

students‟ test scores (test performance) as well as their proving levels. Then we 

formulated a null hypothesis in order to confirm that two groups of students are 

equivalent backgrounds. Consequently, the same pre-test was given to the two groups 

before conducting the experiment teaching. This was followed by a teaching course on 

proving strategies (approximately 20 credit contact hours), geometric transformations 

and their applications (approximately 20 credit contact hours). The experimental group 

was taught these topics in the computer lab and control group was taught the same 

content but with the paper and pencil format. After the experimental teaching course, 

the same post-test was given to the two groups in order to verify the effect of using a 

dynamic geometry environment with the interactive HELP SYSTEM in supporting 

students constructing a formal proof. 
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3.2. DATA ANALYSIS 

3.2.1. Observations 

In order to analyze students‟ thinking and behavior during the proving process, 

we used an effective analysis method, called “frame analysis method” (see e.g. 

MCDOUGALL & KARAGAD, 2008) combined with an audio-taped method, to monitor 

and track the students‟ proving process without distracting the students while they were 

working on their tasks with the interactive HELP SYSTEM. The method was based on 

recording students‟ manipulation and discussion in the computer environment by using 

a screen-casting Wink  software
16

 and allowed us to capture not only what, but how 

they did on the GeoGebra worksheets. During the observation we chose to adopt the 

role of the observers as participants. Adopting this role was particularly helpful for the 

data collection. It was possible for us to observe from a distance, take notes and help 

students who faced difficult problems. A camera was also used to videotape the whole 

classroom scene. 

In this research, we divided 67 students in experimental group into twenty one 

groups of three
17

 and two groups of two. They were required to formulate conjectures 

and write a formal proof. The interactive HELP SYSTEM provided students with a 

scaffold to bridge the gap between argumentation and proof (see Section 2.3.3) and to 

realize geometric invariants. We analyzed students‟ task-based activities by comparing 

each frame
18

 of record and tracking every movement of mouse and entry of keyboard. 

The recording software was set to record one frame per two seconds. After collecting 

the data, all of the videos, audio clips and snapshots were watched and listened to 

several times, so as to understand the students‟ thinking and behavior while they used 

the interactive HELP SYSTEM to support proving activities. Students‟ discussions in 

these materials were annotated, transcribed on paper and finally translated into English. 

                                                 
16

 This software also allowed us to zoom into any frame recorded and to annotate it. This feature 
delivered our messages and jotted our notes down on the desired frames. It also made the 
communication easier because we can easily navigate the frames, describe the moment of action, and 
deliver the message in order to provide opportunity of just-in-time commenting. You can free download 
this application at the following website: http://www.debugmode.com. 
17

 The students were grouped in threes because they can produce arguments better in the process of 
argumentation and proof. Furthermore, participant observation is particularly useful in studying small 
groups for a short time. The data, which is derived from the discussion, is ‘strong on reality’. 
18

 A frame is defined as the snapshots of the computer screen at a specified moment. 

http://www.debugmode.com/
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We also used TOULMIN model of argumentation as a tool to analyze continuity and 

structural gaps between argumentation and proof (see Section 2.4.1). On the basis of the 

functions of proofs (see Section 2.1) in the mathematics classroom and investigation on 

how tertiary students understood the development of the proving process within a 

dynamic geometry environment, some following questions were involved during our 

observation: 

1. How do students realize geometric invariants?  

2. How do students formulate a conjecture?  

3. What do they use to validate their conjectures?  

4. How do students produce and collect arguments for the proving process? 

5. How do students combine their arguments to form a valid proof? 

6. What would students like to do after finishing their proof? 

7. How do students interact with the interactive HELP SYSTEM and with each 

other in their groups? 

We have designed four group-based tasks to observe some acts of proving, 

students‟ behavior as well as their interactions when they were using the interactive 

HELP SYSTEM. 

Task 1. (School Problem) People living in the neighborhood of town A and 

working at company B are to drive their children to school on their way to 

work. Where on highway l should they build school C in order to minimize 

their driving? (When the site C for the school is chosen, the roads AC and 

CB will be built). 

For task 1, we chose the discussion of group 4 to analyze the way students used 

abductive argumentation and also to reveal the role of abduction during the proving 

process. In addition, overcoded abudction in TOULMIN model (see Section 2.4.1) was 

also used to interpret the gap between abductive argumentation and deductive proof. We 

may see how students realize geometric invariants, formulate conjectures, validate 

conjectures, produce arguments, collect arguments, and organize these arguments in 

order to write formal proof. The discussion was transcribed based on captured snapshots 

and audio clips as follows: 
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03. Student 1: The problem requires finding 

the minimal value. Therefore, we can firstly 

use the functions in GeoGebra to measure the 

length.  Now we have to construct the figure. 

04. Student 2: Yes, we can try it. But how we 

can draw the figure? 

05. Student 3: Why don‟t you use 

construction level in interactive HELP 

SYSTEM? 

06. Student 2: That‟s right! 

10. Student 2: Now drag point C and observe 

what‟s happening with the sum and the figure? 

11. Student 3: But you have to measure the 

length of broken line ACB! 

12. Student 1: Exactly! 

15. Student 2: Drag point C more slowly 

please! I realize that this position satisfies the 

broken line ACB is minimal. Oh this point... 

can you do it again! 

 
 

16. Student 1: That‟s right! I find that at this 

position the sum (AC + CB) is minimal because 

the red point representing this sum is a 

minimum point of a parabola. 

17. Student 3: Yes, the school should be built 

at this point. But is there anything special at 

this position? I cannot see anything! 

18. Student 1: Yeah, I cannot see anything 

either! We can use invariance level in the 

interactive HELP SYSTEM in order to get more 

Students read information and the requirements of the 

task. Firstly, they faced difficulties in modeling the 

situation and they used the Construction level in the 

interactive HELP SYSTEM as follows: 

- Draw a straight line l that representing the highway. 

- Take two points A and B on the same side of the 

straight line l.  

- Draw a movable point, C, on the straight line l 

which represents position of the school. 

- Construct two segments AC and CB. 

 

Students measured the length of broken line ACB and 

dragged point C, slowly moving on the line l. They 

determined the position that the length of broken line 

ACB is minimal but they could not realize any 

invariants.  

 

This is the students‟ difficulty in realizing geometric 

invariants. Therefore, they used more support from 

the Invariance level in the interactive HELP SYSTEM 

as follows:  

- Determine point C‟, which would be a position to 

build the school. 

- Draw a straight line passing through the two points 
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support. 

21. Student 3: What are the invariants in this 

case? 

24. Student 2: Wait a moment! Two angles 

(C‟B; l) and (C‟A; l) seem to be equal? 

Measure two angles, please! 

25. Student 3: That‟s right! They may be 

equal because measure of one angle is 38
0
13‟ 

and measure of the other is 38
0
02‟.  

28. Student 1: They are almost equal! I guess 

that they really are equal. This error may be 

due to the fact that we cannot move point C on 

the exact position! But if they were equal, what 

would be happened? 

29. Student 2: Please be calm! Which data we 

have got until now? I mean which invariants, 

do we have: a fixed line representing the 

highway; two fixed points A, B; and perhaps 

two angles C‟1, C‟2 are equal. Therefore, the 

problem is which geometric transformation 

should we use in this case? 

30. Student 1: I think there are more 

invariants such as: distances from points A and 

B to the line l; distance between these points 

and the like.  

31. Student 3: Exactly! But we know the 

following geometric transformations: line 

reflection, point reflection, translation, rotation, 

glide translation, and maybe the product of 

these transformations. So which transformation 

can we choose? 

33. Student 1: In my opinion, there exists a 

fixed line l, so probably in this case we use line 

reflection to tackle this problem? What do you 

think? 

35. Student 2: Yes, suppose that we use line 

A and C‟ and take notes. 

- Change the positions of points A, B and repeat this 

process. 

 

Students changed the position of points A and B in 

order to affirm this invariant. They realize that this 

phenomenon is the same. As a result, they realized a 

sub-invariant. Students made the first conjecture after 

checking the hypothesis by using GeoGebra. This 

conjecture is constructed by generalization based on 

inductive observation
19

. 

Students started collecting their invariants. They 

determined some invariants of geometric 

transformations in order to choose a suitable one. 

From this phase, students started using abductive 

argumentation. 

“Which data?                        Line reflection” 

 

Students formulated the second conjecture about the 

                                                 
19

 Inductive observation is a process of discovering based on several different cases while observation of 
movements within a dynamic geometry environment. 
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reflection to solve this problem, what kind of 

data may we receive in the next step? 

36. Student 1: That‟s right! We need to 

consider it thoroughly. Look! Because two 

angles C‟1 and C‟2 seem to be equal, probably 

the line C‟A is image of the line C‟B under a 

line reflection . What do you think? 

38. Student 3: It is suitable reasoning! It 

means that in order to construct point C‟ we 

have to construct the image line of C‟B, but we 

do not know point C‟ yet! 

39. Student 2: We have only two fixed points 

A and B. Hey, since the line C‟A is image of 

C‟B so C‟A must contain image of point B! 

Thus, we can construct point B‟ =  (B) and 

point C‟ is the intersection of the line AB‟ and 

the line l. 

40. Student 1: That great! That is a good 

idea! Now we can click on conjecture to get 

more guidance. 

41. Student 3: We are on the right track! Now 

we have to construct the point C‟ and prove 

that C‟ is the position to build the school. Until 

now we have the data: (B) = B‟ and C1 = 

C2. 

44. Student 1: We can measure to get more 

data by using GeoGebra. I found that two 

segments C‟B and C‟B‟ are also equal! 

46. Student 2: I agree with you. Since (B) = 

B‟ so we could derive directly the following 

equalities: C‟B = C‟B‟ and CB = CB‟. 

49. Student 3: Yeah, but I think the most 

important thing now is that we must show that 

C‟ is best position to build the school! 

50. Student 2: How can we prove it?  

51. Student 1: I think we have to compare the 

length of sum (C‟A + C‟B) with the length of 

sum (CA + CB) by measuring them. This result 

transformation used to solve the problem and utilized 

deductive argumentation in order to construct point 

C‟. As a result, students could have made a conjecture 

in this case before they used the support from 

Conjecture level in the interactive HELP SYSTEM: 

- Investigate the relationship between two lines C‟A 

and C‟B. 

- Make a conjecture about this relationship.  

Students collected the arguments and wrote them on a 

piece of paper. Then they used abductive 

argumentation in order to validate conjectures. 

C1: C‟1 = C‟2   

The structure of the argumentative step is an 

abduction:  

D1 = ?                          C1 

             W1: Property of line reflection 

D1: (C‟B) = C‟A 

C2: C‟B = C‟B‟ and CB = CB‟ 

D2 = ?                           C2 

              W2: Property of line reflection 

D2: (B) = B‟ 

Students had a need to proof but they got stuck in this 

stage and used Argumentation level in the interactive 

HELP SYSTEM: 

- Compare the length of the sum (C‟A + C‟B) with the 

length of the sum (CA + CB). 

- Write your arguments on a piece of paper. 

Students collected empirical data by measuring two 

broken lines AC‟B and ACB: 

C3: C‟A + C‟B ≤ CA + CB 

Students began collecting the data and combining the 
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will lead us to answer the question. 

53. Student 1: Generally, we can realize that 

the sum (C‟A + C‟B) is always smaller than the 

sum (CA + CB) and we can conclude again that 

point C‟ is the position where we can build the 

school.  

54. Student 2: Now I think we should list all 

our collected data as follows:   

i) (B) = B‟ so we have CB‟ = C‟B‟ and CB = 

CB‟. 

ii) C‟A + C‟B = C‟A + C‟B‟ (because C‟B = 

C‟B‟). 

iii) CA + CB = CA + CB‟ (because CB = CB‟). 

Finally, we must prove the following 

inequality:  C‟A + C‟B‟ ≤ CA + CB‟. 

56. Student 3: Because A, C‟, B‟ are 

collinear, we derive C‟A + C‟B‟ = AB‟. It 

means that we have to prove the inequality: 

AB‟ ≤ CA + CB‟! 

57. Student 1: This will lead us to the end of 

this problem! 

58. Student 3: Why? Can you explain more 

details to me! 

59. Student 1: Because we can use triangle 

inequality for the last inequality! This 

inequality is always true, it is a theorem. 

60. Student 2: Yes, so we have strategy for 

tackling this problem already. Now we have to 

write the valid proof. Where should we start? 

 

63. Student 1: Let me look back all of the 

process of analyzing. I think we have to prove 

the sequence of inequalities:  

      AB‟ ≤ CA + CB‟  

 C‟A + C‟B‟ ≤ CA + CB‟ 

 C‟A + C‟B‟ ≤ CA + CB.  

Therefore, we can start proving from the last 

inequality! 

data by using deduction to produce sub-arguments. 

Students continued using abductive argumentation in 

the next step of the proving process: 

D3 = ?                             C3 

                 W3: C2 

D3 = C4: C‟A + C‟B‟ ≤ CA + CB‟ 

D4 = ?                             C4 

                 W4: A, C‟, B‟ are collinear 

D4 = C5: AB‟ ≤ CA + CB‟ 

D5 = ?                             C5 

                 W5: Triangle inequality 

D5 is a mathematical theorem.  

Students had difficulties in writing a proof and they 

used abductive argumentation in order to combine 

produced arguments into a formal proof by reversing 

the structure of abduction. 
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Students wrote a formal proof on their paper as follows: 

Let B‟ =  (B) and C‟ = AB‟   l. From that we have equalities CB = CB‟ and C‟B = C‟B‟. 

We derive: CA + CB = CA + CB‟ 

                  C‟A + C‟B‟ = C‟A + C‟B 

Therefore, CA + CB = CA + CB‟  B‟A = C‟A + C‟B (since three points A, C‟, B‟ are collinear). 

Equality occurs when and only when C  C‟. 

Task 2 is an expansion on task 1 as two points A and B lie on different sides of 

the highway. This task was designed to understand students‟ arguments with their priori 

knowledge from the previous task. 

Task 2. (One-Bridge Problem) A river has straight parallel sides and cities 

A and B lie on opposite sides of the river. Where should we build a bridge in 

order to minimize the traveling distance between A and B (a bridge, of 

course, must be perpendicular to the sides of the river)? 

For the task 2, we chose the discussion of group 9. It was transcribed based on 

their snapshots and audio clips as follows: 

03. Student 2: Now we draw two parallel lines 

representing two banks of the rivers and then 

determine the position where we can build the 

bridge!  

05. Student 1: Hey, these lines are not parallel! 

You move a point on the one line and look two 

lines. I think they are no longer parallel! 

06. Student 3: That‟s right! I think you must 

use the parallel function of GeoGebra to 

construct these lines. 

08. Student 2: But how can we know where 

point D should be situated?  

10. Student 3: You can measure the length of 

sum the (AD + DE + EB) and observe the figure 

until the sum has a minimal value! 

11. Student 1: I agree with you. 

13. Student 2: Drag the point slowly please! In 

my opinion, this point is the position where we 

Students read information and requirements of the 

task. This group had an idea to model the situation 

but they had a habit of drawing a figure in the 

paper and pencil environment. Thus, they did not 

use the parallel function of GeoGebra and they 

drew two arbitrary lines that seem to be parallel. 

After moving a point they realized that they failed 

in modeling the situation and they had to use the 

Construction level in the interactive HELP 

SYSTEM as follows: 

- Draw two parallel lines representing two banks 

of the river using the parallel function of 

GeoGebra. 

- Draw two points A and B representing two cities.  

- Draw movable point D on the straight line l1. 

- Draw a straight line passing through point D 

and perpendicular to the straight line l1, cut the 

straight line l2 at a point E. Construct three 
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can build the bridge! 

14. Student 1: Let me see. Yes, the red point 

which represents the sum (AG + GH + HB) is in 

the minimum point of the parabola. But what are 

the special characteristics in this case? 

16. Student 3: Yeah, it is too difficult to see 

anything at the moment! 

 

19. Student 2: I think these two lines seem to 

be parallel? Look at the figure! 

20. Student 3: You can check it again by 

moving point A, point B or both to the new 

positions! 

23. Student 1: Yes, the situation is the same in 

the new case! I think we have one more sub-

invariant in this problem: When the length of 

the broken line AGHB is minimal, two straight 

lines AG and HB are always parallel. 

24. Student 2: That‟s right! We have also two 

parallel lines representing two banks of the 

river, they are fixed lines; the points A and B are 

also fixed, therefore the distances from A and B 

to the lines l1, l2 are constant numbers. Can you 

see something more? 

25. Student 1: But is it more important now, to 

show what kind of geometric transformations 

we use to solve this problem based on realized 

invariants? They are line reflection, point 

reflection, translation or rotation? 

26. Student 3: I think the transformation in 

this case is line reflection but which line is 

chosen as a line of reflection? And how can we 

explain the two parallel lines l1 and l2 under a 

segments AD, DE, and EB. 

 

Students dragged point D but cannot determine 

where the distance from city A to city B minimal 

is. 

 

In order to justify this hypothesis, students used 

the Invariance level in the interactive HELP 

SYSTEM: 

- Draw two straight lines passing through A, G 

and H, B. You can change the position of points A, 

B and realize the invariants. 

- Write your realized invariants on a piece of 

paper. 

Students named the points, whose lengths are 

minimal, G and H. They moved point G to and fro 

many times but they could not see anything. 

Finally, they decided to use the Conjecture level in 

the interactive HELP SYSTEM:  

- What is the relationship between two lines AG 

and HB? 

- Write your conjectures on a piece of paper. 
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line reflection? 

27. Student 2: Exactly! These two lines cannot 

be images of each other under a line reflection. 

But they also can be images of each other under 

a translation! 

28. Student 1: That is a reasonable argument 

but how we can determine the vector of this 

translation? 

29. Student 2: You can imagine that if the line 

l1 moved a distance towards the line l2, you will 

realize the vector of translation. In my opinion, 

this vector has a length equal to the distance 

between two banks of the river (vector ).  

30. Student 3: So we have: The line l1 is an 

image of the line l2 under the translation of 

vector . But how can we construct point G? 

31. Student 1: Since  point G 

must have lain on the line  passing 

through point A and point . 

32. Student 2: So now we have to prove that 

G, H are two points we can build two ends of 

the bridge. It means that the distance from A to 

B passing through the points G, H is minimal. 

33. Student 3: It is obvious that the length of 

the broken line AGHB is smaller the length of 

broken line ADEB. How can we prove this 

inequality? 

34. Student 1:  We already have the following 

data: HG = BB‟ = ED = constant; HB = GB‟, 

DB‟ = ED, and HB // AB‟. 

38. Student 3: So we may start from the 

following inequality: 

AG + GH + HB ≤ AD + DE + EB         (1) 

But how can we prove this inequality? 

40. Student 1: We use the collected data to 

derive that: 

AF + FG + GB = AF + BB‟ + FB‟             (2)  

AD + DE + EB = AD + DB‟ + BB‟            (3)  

 

Students formulate a conjecture: If two lines AG 

and GB are parallel then the sum of broken line 

AGHB is minimal. 

 

We realized that some groups of students could 

not discover key invariant, so they could not solve 

the problem. Therefore, recognizing invariant is 

one of the most important phases in the proving 

process. Students formulated one more conjecture: 

The line l1 is image of the line l2 under the 

translation of vector . Then, they used 

abductive argumentation so as to find a way to 

construct point G. In the next step, students had 

difficulties in validating a conjecture. Thus, they 

use the Argumentation level in the interactive 

HELP SYSTEM as follows:  

- Compare the length of broken line ADEB and 

broken line AGHB.  

- Write all of your arguments on a piece of paper. 

The following steps are abductive argumentation: 
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41. Student 2: Look! We have BB‟ as a 

common summand, so we need only to prove 

that:  

AF + FB‟ = AB‟ ≤ AD + DB‟                    (4) 

 
44. Student 3: That is a triangle inequality! So 

now we can write a formal proof. 

47. Student 2: But where can we start to prove 

this problem?  

48. Student 1: I think we must construct point 

B‟, point G and point H. After that we can 

derive the target inequality (4) from the 

departing inequality (1). 

 

C1: ED = HG = BB‟; HB = GB‟ and EB = DB‟ 

D1 = ?                         C1 

             W1: Property of translation 

D1: ; ; and  

C2: AG + GH + HB ≤ AD + DE + EB 

D2 = ?                           C2     

               W2: C1 

D2 = C3: AG + GB‟ + B‟B 

            ≤ AD + DB‟ + B‟B 

D3 = ?                           C3 

              W3: BB‟ is common summand 

D3 = C4: AG + GB‟ ≤ AD + DB‟ 

D4 = ?                            C4 

               W4: A, G, B‟ are collinear 

 

The conclusion C4 of the previous step is the data 

needed to apply the inference to the next step. 

D4 = C5: AB‟ ≤ AD + DB‟ 

 

D5 = ?                              C5     

                W5: Triangle inequality 

D5 is a mathematical theorem. 

Students wrote a formal proof as follows: 

Let  and . We have following equalities: ED = HG = BB‟; 

                                                                                                            EB = DB‟, HB = GB‟ 

Therefore:  AD + DE + EB = (AD + DB‟) + BB‟  AB‟ + BB‟ = AF + FG + GB 

Equality occurs when only when three points A, D, B‟ are collinear. 

Task 3. (Two-Bridge Problem) Where would you build two bridges over 

the two sleeves of a river with parallel straight sides to minimize the length 

of the path between the cities A and B? (Bridges have to perpendicular to 

the sides of the river). 

The problem in task 3 is an expansion on task 2. The purpose of designing task 3 

is to increase the difficulty of the proving activities such as realizing geometric 

invariants, formulating conjectures, producing arguments, and writing proofs. We chose 

the discussion of group 9 in order to investigate how these students deal with more 
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difficult tasks in the proving process. This discussion was transcribed based on their 

snapshots and audio clips as follows:  

02. Student 2: Firstly, we have to draw four 

lines representing the banks of two rivers. Take 

two arbitrary points A, B representing two cities.  

 

03. Student 3: It looks like problem in task 

3.2. Can we apply something from the previous 

problem to this case? 

04. Student 1: Exactly!  I think we should 

draw the figure and find some invariants. 

05. Student 1: Now we move point L and point 

O in order to find the best position. But which 

point moves first? 

07. Student 2: Now we measure the length of 

the sum (AL + LN + NO + OM + MB) and move 

the points! 

09. Student 3: Look! I think these points 

satisfy the condition where the sum of the 

broken line ALNOMB is minimal (the sum is 

equal to 11.22) and the red point lies on the 

minimal position of the parabola. 

13. Student 2: Yes, but what are the special 

characteristics in this situation? Or what are 

invariants in this case? 

14. Student 1: I cannot see anything that is 

special here! 

20. Student 2: They are probably parallel! 

Students read the information and requirements of 

the task in the interactive HELP SYSTEM. They also 

realized that this situation is the same as previous 

problem but in a higher level. They used the 

Construction level in the interactive HELP SYSTEM 

as follows:  

- Draw two pairs of parallel lines (l1 // l2) & (l3 // l4) 

representing two sleeves of the river.  

- Draw two points A, B representing two cities. 

Construct two points L, O moving on the line l1 and 

the line l3. 

- Construct two straight lines: one passing through 

point L, perpendicular to l1, cut l2 at point N and 

another passing through point O, perpendicular to 

l3, cut l4 at point M.  

- Draw four segments: AL, LN, NO, OM, and MB. 

 
Students moved point L and point O but they do not 

know how to determine the positions of L and O so 

as to distance between two cities is minimal.  

They used Invariance level in the interactive HELP 

SYSTEM as follows: 

- Fix one point and move the other. Repeat this 

process until the length of broken line ALNOMB is 

minimal. Find the invariants in this case. You can 

change the position of point A (or point B) and do it 

again. 

- Write realized invariants on a piece of paper. 
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Three lines AL‟, BM‟ and N‟O‟ are parallel. 

23. Student 3: Yes, may be! Now we can 

change the position of point A (or point B) in 

order to confirm this invariant. What do you 

think?  

24. Student 1: I think it is true! They are 

parallel again! 

25. Student 2: Suppose that they are parallel, 

so which geometric transformation can we use 

in this case?  

26. Student 3: Let‟s consider thoroughly! We 

have more two pairs of parallel lines (l1 // l2 and 

l3 // l4); two fixed points A, B; and the distances 

between two banks of each river are also 

constant numbers.  

27. Student 1: But point reflection, line 

reflection, translation and even rotation are 

preserved parallel lines. 

28. Student 2: In my opinion, like the previous 

problem (task 2), we also have two fixed vectors 

 and . So we can use translation in this 

case? 

29. Student 1: We can derive that 

 and .  

33. Student 3: What I think is important now 

is how we can construct points L‟ and M‟ so that 

we can determine the positions of two bridges.   

34. Student 2: You mean that we have to 

construct two points N‟ and O‟?  

35. Student 1: That‟s right! We can construct a 

straight line passing through N‟ and O‟ because 

it also contains two points   

and . 

 

 

Students had difficulty in recognizing invariants so 

they could not make any conjecture. They used the 

Conjecture level in the interactive HELP SYSTEM: 

- What is the relationship between the three lines 

AL‟, BM‟ and N‟O‟?  

- Write your conjectures on a piece of paper. 

They formulated a conjecture: If three straight lines 

AL‟, BM‟ and N‟O‟ are parallel then the length of 

the broken line ALNOMB is minimal. 

They used abductive argumentation to find the 

transformation used to solve this problem. 
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41. Student 1: We find that the broken line 

AL‟N‟O‟M‟B is always smaller than the broken 

line ALNOMB. 

42. Student 3: So we need to prove following 

inequality:  

   AL‟ + L‟N‟ + N‟O‟ + O‟M‟ + M‟B  

≤ AL + LN + NO + OM + MB                    (1) 

 

44. Student 2: We will use some properties of 

geometric translation such as: AA‟ = L‟N‟ = LN, 

BB‟ = M‟O‟ = MO, AL = A‟N, AL‟ = A‟N‟, BM 

= B‟O, BM‟ = B‟O‟. 

 

48. Student 2: We have: 

   (AL‟ + L‟N‟ + N‟O‟ + O‟M‟ + M‟B)  

= (A‟N‟ + AA‟ + N‟O‟ + B‟B + O‟B‟)  

= (AA‟ + A‟B‟ + B‟B)                               (2)  

   (AL + LN + NO + OM + MB)  

= (A‟N + AA‟ + NO + B‟B + OB‟)  

= (AA‟ + A‟N + NO + OB‟ + B‟B)           (3) 

51. Student 1: From (2) and (3) we have to 

prove this inequality: A‟B‟ ≤ A‟N + NO + OB‟. 

But I think this inequality is always true!  

52. Student 2: I agree with you. So now we 

have to write a formal proof. First, I think we 

have to construct four points L‟, N‟, O‟, M‟. 

Then we start from the inequality (1) 

combination with the inequalities (2), and (3). 

 

They made the second conjecture and started 

collecting more invariants. Students used abductive 

argumentation in order to determine the geometric 

transformation which can be used to tackle this 

problem. Students also used abductive 

argumentation to construct points which satisfy the 

requirement of problem. 

They used the Argumentation level in the interactive 

HELP SYSTEM:  

- Compare the length of broken line AL‟N‟O‟M‟B 

and the length of broken line ALNOMB. 

- Write all your arguments on a piece of paper. 

Students started collecting arguments and used 

abductive argumentation in order to produce a proof. 

C1: AA‟ = L‟N‟ = LN, BB‟ = M‟O‟ = MO, AL = 

A‟N, AL‟ = A‟N‟, BM = B‟O, and BM‟ = B‟O‟ 

D1 = ?                                C1  

               W1: Property of translation 

 

D1:  and  

C2: AL‟ + L‟N‟ + N‟O‟ + O‟M‟ + M‟B  

      ≤ AL + LN + NO + OM + MB 

 

D2 = ?                                C2 

               W2: C1 

D2 = C3: AA‟ + A‟N‟ + N‟O‟ + O‟B‟ + B‟B 
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            ≤ AA‟ + A‟N + NO + OB‟ + B‟B  

D3 = ?                                  C3 

               W3: (AA‟ + B‟B) are common summand  

D3 = C4: A‟N‟ + N‟O‟ + O‟B‟  

            ≤ A‟N + NO + OB‟ 

D4 = ?                                  C4 

                W4: A‟, N‟, O‟, B‟ are collinear 

D4 = C5: A‟B‟ ≤ A‟N + NO + OB‟ 

D5 = ?                                  C5 

                W5: Theorem 

D5 is a true statement. 

Students wrote their formal proof as follows: 

Let point A‟ be an image of point A under the translation of vector  and point B‟ be image of point B 

under the translation of vector  and connect A‟ and B‟ by a segment. 

Let N‟, O‟ be the intersections of A‟B‟ and l2, l3, respectively. We derive that: 

AA‟ = L‟N‟ = LN, BB‟ = M‟O‟ = MO; 

AL = A‟N, AL‟ = A‟N‟, BM = B‟O, and BM‟ = B‟O‟. 

Therefore: AL + LN + NO + OM + MB = AA‟ + A‟N + NO + OB‟  

                                                                 AA‟ + A‟B‟ + B‟B  

                                                                = AA‟ + A‟N + N‟O‟ + O‟B‟ + B‟B 

Equality occurs when and only when four points A‟, N‟, O‟, B‟ are collinear. 

During the process of working with three tasks, the students try to transform 

abductive argumentation (in invariance and conjecture phases) into deductive 

argumentation in the proof-writing phase. The extractions of the proof in three tasks 

described the abductive argumentation made by the students. A structural gap seems to 

be evident in constructing a deductive proof. But these students did not cover this gap. 

All of the arguments are still an abductive step, so we can observe a structural 

continuity between argumentation and proof (see PEDEMONTE, 2001). There are some 

students who solved the problem but they were not able to construct the proof. The 

strength of the deductive chain seems to be so strong that they are not able to construct 

continuity in the referential system (as shown in Section 2.3.3) with the argumentation. 

It means that they lost the connection with the referential system. We have also found 

that there are continuities or gaps between argumentation and proof and the use of these 
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conceptions relates to the ability of realizing geometric invariants, especially some key 

geometric invariants
20

. 

A transition from an abductive argumentation into a proof needs to be reversed 

in the structure and may demand relevant changes concerning structures. In our 

research, we tried to clarify the nature of abductive argumentation (particularly in the 

invariance and conjecture phases) in order to find other analogies or differences in 

proofs. Indeed, students use sub-arguments both in the argumentation and proofs in 

order to combine the statements. Words and expressions used in the two processes are 

often of the same format. But looking more carefully through three tasks, we can 

observe a gap between the structures of the two processes: sometimes students collected 

enough arguments but they did not know how to combine them logically. In this case it 

seems that the students have not faced difficulties in the passage from an abductive 

argumentation to a deductive proof. This is also difficult for students in writing a formal 

proof. But with the support of the interactive HELP SYSTEM, they can bridge the gap 

on their own (see Section 2.3.3). 

In the following situation, the combination of inductive and deductive 

argumentation supports the students in producing valid arguments. This situation also 

showed a link of three main components of proof writing such as observation, 

conjecture, and then deduction. We chose the discussion of group 4 in task 2 to 

investigate students‟ behavior and the acts of proving. This group tends to use deduction 

instead of abduction during the proving process. Students in this group also attained a 

high proving level. This discussion was transcribed based on their snapshots and audio 

clips as follows: 

02. Student 2: Now we need to draw two 

parallel lines representing two banks of the 

rivers. Then determine two points, A and B.  

03. Student 1: We have to find the position 

of point D (or point E) such that the length of 

broken line ADEB is minimal. If we leave the 

line l1 out, this problem is the same situation 

In this example, they did not use the interactive 

HELP SYSTEM to solve this problem. Instead, they 

used a lot of deductive argumentation during their 

proving process. 

They used some ideas of proofs from the previous 

problem in task 1. 

                                                 
20

 Key geometric invariants play an crucial role in generating ideas for proofs. Almost students cannot 
tackle the problem because they do not realize these invariants. 
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in problem in task 3.1. 

05. Student 3: Now we need to find a point 

A‟ such that A‟E = AD. 

06. Student 2: You mean that we have to 

find a geometric transformation that can move 

segment A‟E to segment AD? 

07. Student 1: I think we can use translation 

of vector  and line reflection l1 or l2.  

08. Student 3: But I want the two points A‟ 

and B to lie on the same side of the line l2, so I 

can use the result of problem in task 1.  

09. Student 2: Yeah, you can draw the line  

equidistant from the two lines l1 and l2. We 

can construct point .  

10. Student 1: That‟s right! We have 

also . 

13. Student 3:  and  so 

we have ADEA‟ is an isosceles trapezoid. 

Therefore, we have AD = A‟E.  

 

15. Student 2: Is the sum (AD + DE + EB) 

equal to the sum (A‟E + DE + EB)? 

16. Student 1: That‟s right! Since the length 

of the segment DE is a constant number so we 

need to find the position of point E such that 

A‟E + EB is minimal. 

18. Student 3: Now we can use the result 

 

 

Students used deductive argumentation. 

D1:                            C1: AD =A‟E 

                                  W1: Property of line reflection 

They put t = AD + DE + EB 

D2: t                           C2: t =  A‟E + DE + EB  

                W2: C1 

D3:                           C3: EB = EB‟ 

                                   W3: Property of line reflection 

 

D4 = C2:                        C4: t = A‟E + DE + EB‟ 

                     W4: C3 

D5 = C4:                        C5: t ≥ A‟B‟ + DE 

                    W5: Triangle inequality 
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from the problem in task 1! 

19. Student 1: That is true! We construct 

point   and we have EB = EB‟. 

Then we derive that A‟E + EB = A‟E + EB‟. 

22. Student 3: Exactly! This sum is always 

smaller than A‟B‟.  

23. Student 2: But how can we determine 

the position where we can build a bridge? 

25. Student 1: The sum (A‟E + EB) is 

minimal when and only when A‟, E, B‟ are 

collinear.  

29. Student 2: It means that the first place to 

build the bridge is at the intersection of the 

line A‟B‟ and the line of reflection l2? 

32. Student 1: That‟s right! We can say that 

C2 is intersection of the line A‟B‟ and the line 

l2. We must show that C2 is the best position 

to build the bridge. From that we can construct 

point C1 (C1 is the intersection of the line l1 

and the line which passing through C2, 

perpendicular to l1). 

36. Student 3: We put t = AD + DE + EB. 

Because three points A‟, C2, B‟ are collinear so 

we have: 

t ≥ A‟C2 + C2B‟ + DE. 

39. Student 2: Since  so we 

have C2B = C2B‟. From that, we derive: 

t ≥ A‟C2 + C2B + C1C2  (C1C2 = DE). 

42. Student 1: t ≥ AC1 + C1C2 + C2B (since 

A‟C2 = AC1). Therefore, C1 and C2 are two 

points that we can build the bridge.     

43. Student 3: Now we must to deductively 

write a formal proof. 

 

The argumentation‟s step is an abduction: 

D6 = C5:                       C6: t ≥ A‟C2 + C2B‟ + DE 

                  W6: A‟, C2, B‟ are collinear 

D7:                       C7: C2B = C2B‟ 

                                   W7: Property of line reflection 

 

D8 = C6:                       C8: t ≥ A‟C2 + C2B + C1C2       

                  W8: DE = C1C2 and C7 

D9 = C8:                       C9: t ≥ AC1 + C1C2 + C2B       

                      W9: AC1C2A‟ is isosceles trapezoid   

Students wrote a formal proof as follows: 

Let  be a line equidistant from two lines l1 and l2. Let be  and , we have:  

AD + DE + EB = A‟E + DE + EB‟ (since AD = A‟E and EB = EB‟)                 (1)  

On the one hand, (A‟E + EB‟) + DE  A‟B‟ + DE = A‟C2 + C2B‟ + C1C2        (2)  
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(since A‟, C2, B‟ are collinear and DE = C1C2). 

On the other hand, A‟C2 + C2B‟ + C1C2 = AC1 + C1C2 + C2B                           (3)  

(since A‟C2 = AC1 and C2B‟ = C2B). 

Finally, from (1), (2), and (3), we derive that: 

AD + DE + EB  AC1 + C1C2 + C2B 

Equality occurs when and only when D  C1 and E  C2. 

In this example, we have also found that high proving-level students do not want 

to use the computer with a simple problem, but they effectively use the computer to 

tackle another difficult problem. During the process of realizing geometric invariants, 

an argumentation activity is developed in order to produce a conjecture. After the 

statement expressing the conjecture is validated, a valid proof is produced partly, thus 

laying the groundwork for deductive proof. This proof is a particular kind of 

argumentation
21

 based on the process of producing a conjecture and proof. It can be said 

that, students constructed cognitive unity (as shown in Section 2.3.2) during the process 

of validating their conjectures. The produced arguments are used to write proofs. Some 

groups who could not construct a cognitive unity could also write a formal proof. 

Therefore, constructing this unity is one condition for understanding the proving 

process. Furthermore, in order to prove a problem using geometric transformations, 

dynamic visual thinking (see Section 2.4.4) is also a very important factor within a 

dynamic geometry environment. It helps students by producing more relevant 

conjectures, fewer false conjectures, and by allowing the students‟ convictions in all 

conjectures to be significantly greater when compared to the conjectures formed in the 

static environment (e.g. GILLIS, 2005). 

ROTH (2005) has also affirmed the crucial role of dynamic visual thinking in 

argumentation and proof. This kind of thinking also supports students in solving 

problems and exploring for generalization: 

Welche Fähigkeit war notwendig, um diesen Beweis führen zu können? THALES 

VON MILET musste in ein statisches Phänomen, hier den Kreis mit 

eingezeichnetem Durchmesser, eine Bewegung hineinsehen und damit 

                                                 
21

 In this dissertation, we distinguish the differences between argumentation as producing a conjecture 
(that produces spontaneous arguments) and argumentation as forming a proof (that produces 
helpful/valid arguments for writing proofs). 
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argumentieren können. Allein die Fähigkeit, sich eine Bewegung vorstellen zu 

können, reicht offensichlich nicht aus, um Problem zu können, Zusammenhänge zu 

entdecken und ganz allgemein (mathematische) Phänomene zu erforschen. Man 

muss vielmehr mit der hineingesehenen Bewegung auch argumentieren können (see 

ROTH, 2005, p.21). 

Mathematical “conjectures”” are formed by observing data, recognizing 

patterns, and making generalizations. These generalizations are unproven statements 

based on inductive reasoning (see e.g. SERRA, 2008). It was also found that most 

students could not make conjectures after they constructed the figure; they needed to 

drag the dynamic figure and measure some distances, angles, or check some 

relationships before they could formulate their conjectures. However, they could make a 

conjecture after they realized some initial geometric invariants. So we can use the 

following schema: 

 

(*) The interactive HELP SYSTEM 

Figure 3.1: The role of the interactive HELP SYSTEM in the proving process 

We think abduction may bring the structure of constructing a cognitive unity to 

light and simultaneously illuminate the importance of initial arguments which are 

generated during the process of modifying the understanding and the constructing of a 

proof. In our research, we have shown that three kinds of inferences play an essential 

role in different consecutive phases of the proving process: realizing invariants, 

formulating conjectures, producing arguments, validating conjectures, and writing 

deductive proofs. Each kind of inference is used in a certain phase of the proving 

process, but sometimes the combination of these kinds of inferences (induction, 

deduction, and abduction) plays a fundamental role in realizing geometric invariants and 

formulating conjectures from „observed facts‟ or writing a formal proof from produced 

arguments. This combination can be described in the following diagram: 

IHS
* 

Intuitive  

Observation 
Dragging and 

Measuring 

Invariants 

Recognition 

Making 

Conjectures 

Validating 

Conjectures 
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Figure 3.2: Three kinds of inferences in the proving process 

From our observations, the interactive HELP SYSTEM supported students in 

formulating and checking their conjectures. Their behaviors during the process of 

constructing their mathematical knowledge using GeoGebra software are described 

below: 

- Drag some points to and fro for a short distance and distort the given figures; 

- Modify the given figures by adding some auxiliary figures; 

- Try to find the relationships between the figures by reading diagrams and using 

the support from the interactive HELP SYSTEM; 

- Sometimes they make some mistakes when they manipulate with GeoGebra 

software; 

- Write down some sub-arguments during the proving process on a piece of 

paper; 

- Interact (making a plan, looking for geometric invariants, making conjectures, 

collecting arguments, combining produced arguments, and writing a formal 

proof) with partners in their groups. They also discuss with others after using 

the interactive HELP SYSTEM. 

In general, deforming the figure by dragging allows students to directly observe 

how various components of geometric figures and their measures are affected by 

dynamic changes. By generalizing the patterns that emerge during these explorations 

and observing changes in the figures and their measures, students may be able to form 

their own mathematical conjectures (see e.g. GLASS et al., 2001). The use of dynamic 

software enables students to examine many cases, thus extending their ability to 

formulate and explore conjectures. Although students seemed to have gone through a 

similar process of making conjectures, there were some differences in their behavior. It 
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seems that students were quite hesitant to drag the figure because most of them only 

dragged some points to and fro for a short distance. It seems that they are not used to 

having an exploratory activity in a dynamic environment. It was also found that many 

students could not prove their conjectures on their own or even in collaboration with 

their partners. They all needed some hints or guidelines from the interactive HELP 

SYSTEM, especially in the invariance phase. We also found that, realizing geometric 

invariants plays a crucial role in solving the problem in the three tasks because it not 

only supports in formulating conjectures but also in generating ideas of proof. Thus 

realizing invariants is also a condition for understanding the development of proving 

process (as shown in Section 2.3). 

We can see more clearly this development through the following proving profile 

charts. They facilitate the efficiency of the students‟ invariance recognition, data 

collection, conjecturing, deductive reasoning, arguments combining, proof writing, and 

the level of proving required by students. By focusing on invariance and the overall 

structure of a proof, that is, on conjecturing and the proving process, the proving profile 

can provide valuable insight into how students approach problem-solving tasks by using 

geometric transformations: 

 

Figure 3.3: Time distribution during the proving process (in minutes) 

In this research, students followed the open-ended questions and explorative 

tasks of the interactive HELP SYSTEM. It is a necessary factor in the proving process, 

e.g., for the recognition of geometric invariants, the exploration of the problem 

0% 20% 40% 60% 80% 100%

Task 1
Task 2
Task 3

Task 1 Task 2 Task 3

Information 1 2 2

Construction 3 2 4

Invariance 3 6 7

Conjecture 5 5 6

Argumentation 5 6 8

Proof 4 4 6

Delving 0 1 1
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situation, and the collection of additional data (especially valid arguments). In the 

snapshots, the first exploration phase (including finding invariants, formulating 

conjectures) consists mainly of constructing drawings, measuring the segments or 

angles, checking the relationships between figures, lines, angles, etc. The students spent 

almost all of their time on invariance, conjecture, argumentation, and proof phases. In 

this analysis, the proving process was separated into chucks, which include different 

levels of proving. We analyzed based on students‟ discussion and movements on the 

screen. We considered any period of time with “no change” or “no sound” as silence 

time (or thinking). 

 

Figure 3.4: Typical time-line graph in the proving process (task 2) 

The graph showed that, in the proving process, students‟ level of proving moved 

from one to another continuously. After they found a geometric invariant, they made a 

conjecture and produced sub-arguments. They continued drawing some auxiliary figures 

and found more invariants, and formulated new conjectures, and so on. Finally, they 

combined the arguments which were collected in previous phases to write a formal 

proof. The graph also presented a surprised situation that students spent little time 

delving into the problem. This phenomenon explained that students were satisfied with 

their solution or lack of time. 

We will use time-based analysis to clearly understand the time during the 

proving process. Fig. 3.4 gives an overview of the time portion (in percent) of each level 
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in the proving process. One can see that most of the time is spent on the third, fourth 

and fifth level, which is the recognition invariants, formulation conjectures, and 

organization of arguments in a deductive chain. The second and third level, the 

experimental stage, which mainly consists of drawing, measurements and check 

conjectures, takes about one third of the time. The third phase, in which the exploration 

of the invariants and producing of sub-arguments take place, comprises of 15 to 23% of 

the proof time. Therefore, we can argue that students used a lot of time to construct a 

cognitive unity or produce arguments (as shown in Section 2.3.2) in the transition from 

the conjecture to the proof phase. 

 

Figure 3.5: Amount of time during the proving process (in percent) 

This diagram reflects the typical process of dealing with proof problems in the 

captured snapshots lessons. First of all, the students have to draw a geometrical figure 

and make some observations on an invariance level. Afterwards a conjecture is 

discussed and formulated (level 3). If the students are not able to generate a proof idea, 

then they can use the assistance of the interactive HELP SYSTEM. The writing on the 

piece of paper is frequently a collection of sub-arguments as expected in fourth level of 

proving. For students who attain level 2, 3 of proving, this help system may bridge the 

gap between conjecture and argumentation. These students do not know how to produce 

arguments until they answer open-ended questions or discover some explorative tasks in 

the system. 
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Figure 3.6: Time distribution with the support of the interactive HELP SYSTEM 

Based on this distribution of time, we can affirm that invariance, conjecture, 

argumentation, and proof are important phases in the proving process and for the 

learning of geometric proofs. However, realizing geometric invariants seems to be the 

most crucial phase for generating ideas for proofs in the proving process. Students with 

a high proving level can easily recognize invariant elements when they are observing or 

dragging within a dynamic geometry environment. Finally, through our observation 

analysis, we can partly answer research question 1, research question 4, and research 

question 5 as follows: 

- The interactive HELP SYSTEM supports students in realizing geometric 

invariants, producing and collecting arguments, and combining arguments to 

write a formal proof; 

- Students realize geometric invariants by dragging some points, measuring 

segments or angles, checking relationships, or even using dynamic visual 

thinking in a static environment; 

- Students formulate a conjecture after they discover invariants. They usually use 

„backwards‟ strategy (like abduction) to analyze the way to make conjectures. 

This strategy also helps students write a deductive proof by reversing the 

abductive structure, which is sketched when producing arguments. Therefore, 

abduction is considered as a tool in bridging the structural gap between 

argumentation and proof; 
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- Students validate their conjectures by using sub-arguments that were produced 

as they were dragging and discovering geometric invariants. Thus, dragging 

modality in a dynamic geometry software and hints in the help system may 

bridge the gap between conjecture and argumentation. They usually discuss in 

their groups, take notes to remember their arguments and write proofs; 

- Normally, students produce, collect, and combine their arguments by using 

abductive argumentation. However, some students, who have a high level of 

proving, tend to use deductive argumentation during the proving process. This 

different behaviors show that it is easier for high level students to connect the 

structural gap between argumentation and proof. 
 

3.2.2. Questionnaires 

 The first questionnaire survey was designed and administered only to the 

experimental group as a whole after the period of experimental teaching. The survey 

includes twenty close-ended questions and two open-ended questions. The main 

purpose of this questionnaire was an investigation on the influence of the use of the 

interactive HELP SYSTEM on the students‟ proving process in the learning of geometric 

transformations. Respondents were required to indicate their choices (the extent to 

which they agree or disagree) to each item in a 5-point LIKERT type scale: strongly 

disagree, disagree, not sure, agree, and strongly agree. For coding purposes, the 

response options were coded 1, 2, 3, 4, or 5 from strongly disagree to strongly agree. 

This survey was divided into seven categories: attitudes towards the interactive HELP 

SYSTEM, difficulty in constructing drawings, realizing geometric invariants, 

formulating conjectures, collecting and organizing arguments, writing formal proofs, 

and delving into the problem. 

 The second questionnaire survey consists of ten items aimed at classifying 

different levels of realizing geometric invariants while proving. The same questionnaire 

was administered during the pre- and post-test to reveal whether the interactive HELP 

SYSTEM impacts the development of the proving process during the period of 

experimental teaching or not. The first version of the questionnaire was conducted after 

two weeks of experimental teaching to access the suitability and clarity of items. The 

feedback obtained from students in this survey was used to modify identified 
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weaknesses in the items. The reliability of the questionnaires was also considered. It 

means consistency of the research instruments used to measure particular variables. The 

same results, as the instruments are administered again in a stable condition, guarantee 

reliable instruments (see e.g. MAKGATO, 2003). Therefore, reliability coefficients 

(Cronbach’s alpha) were calculated using the SPSS 17.0 statistical software to determine 

the reliability of the measuring instruments in the pre-test and in the post-test. Finally, 

four questions (3, 6, 7, and 8) are preserved and the remaining questions are modified 

with more reliability to form the final version of the questionnaire. In this questionnaire, 

students had to fill their name and self-assess about their corresponding levels of 

realizing geometric invariants. The data obtained from the respondents were analyzed 

statistically: 

Table 3.1: Descriptive statistics of questionnaire 

No Mean Std. Deviation N 

Question 1 3.79 .946 67 

Question 2 3.30 .718 67 

Question 3 3.72 .966 67 

Question 4 3.76 .818 67 

Question 5 3.55 1.063 67 

Question 6 3.36 .980 67 

Question 7 4.06 .795 67 

Question 8 3.28 .901 67 

Question 9 3.67 .877 67 

Question 10 4.07 .942 67 

Question 11 4.01 .826 67 

Question 12 3.60 1.045 67 

Question 13 4.04 .944 67 

Question 14 3.39 .920 67 

Question 15 3.21 .946 67 

Question 16 3.64 .933 67 

Question 17 4.03 .904 67 

Question 18 3.72 .918 67 

Question 19 3.33 .824 67 

Question 20 3.21 .845 67 

The first part of the output gives a summary of the responses by the participants 

to individual questions, and provides information regarding the Mean and Standard 
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Deviations for responses to each question, and a report stating how many participants 

completed the question. We can see that 67 participants answer all the questions. We 

can also see which questions elicited a wide variety of responses, as shown by the larger 

standard deviations. Higher mean scores therefore indicate questions where participants 

were at the agreement end of the rating scale. 

The data from question 1 have showed that students enjoy working with the 

interactive HELP SYSTEM since the mean values of students‟ responses was close to „4‟ 

(Mean = 3.79). Responses for question 7 were relatively high (Mean = 4.06) showed 

that the students have difficulty in constructing auxiliary figures in the proving process. 

Auxiliary figures also play a very crucial role in finding the relationships among figures. 

In question 3, the students slightly agreed (Mean = 3.72) that working with the 

interactive HELP SYSTEM makes them believe more in the success of the proving 

process. In this case, the system played the role of an authoritative factor. These 

findings are also supported by many researchers who found that the authoritative factor 

helps students become more confident with their problem-solving success. 

Students also highly agreed that discovering invariants helps them find more 

ideas for proofs (Mean = 4.07). It means that after they realized invariants and perhaps 

the relationship, they could „flash‟ the ideas of proofs in their minds. Therefore, in their 

opinion, realizing geometric invariants is the most crucial phase in the proving process 

(Mean = 4.01). In fact, almost all students, who could not solve the problem, did not 

recognize these crucial invariants. During the proving process, the students produced 

sub-arguments when formulating a conjecture (Mean = 4.04). As a result, it is important 

for argumentation and proof phases to collect all sub-arguments and combine them in a 

logical way. There have been a lot of students who could not combine these arguments 

to form a proof without the interactive HELP SYSTEM (Mean = 4.03). Hence, this 

system supported them in arranging their arguments and using reasonable rules of 

inference. This difficulty
22

 was confirmed in question 18 (Mean = 3.72) “writing a 

formal proof is the most difficult phase of the proving process” and showed the 

                                                 
22

 Students’ difficulties in the proving process were classified into different categories in the semi-
structured interviews analyses. 
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cognitive gap between argumentation and proof in the proving process. This gap can be 

connected if students know how to use their arguments in order to write proofs. 

Table 3.2: Summary item statistics 

 Mean Minimum Maximum Range 
Maximum/ 

Minimum 
Variance N of Items 

Item 

Means 
3.637 3.209 4.075 .866 1.270 .091 20 

Item 

Variances 
.827 .516 1.130 .614 2.191 .023 20 

 

Table 3.3: Scale statistics 

Mean Variance Std. Deviation N of Items 

72.75 88.435 9.404 20 

The total scores of the questionnaire were examined. Participants scored a mean 

of 72.75, with a variance 88.435, and a standard deviation of 9.404. This small standard 

deviation thus indicates that there are no wide variations in the scores of our participants 

for the overall total score on the questionnaire. The Item Means row details descriptive 

statistics for a response on individual questions. As we can see from table 3.2, the mean 

score of the items is 3.637. This mean score shows a positive attitude towards the 

interactive HELP SYSTEM in the proving process. The Minimum and Maximum values 

are the two most extreme scores selected by participants; these are 3.209 and 4.075, 

which indicates that no questions selected by all of respondents were from the most 

extreme ends of the scale. The Item Variances row shows the variance in scores when 

looking at individual items. 

Table 3.4: Item-total statistics 

 
Scale Mean if 

Item Deleted 

Scale Variance 

if Item Deleted 

Corrected Item-

Total Correlation 

Squared 

Multiple 

Correlation 

Cronbach's 

Alpha if Item 

Deleted 

Question 1 68.96 76.377 .675 .714 .839 

Question 2 69.45 79.281 .676 .785 .842 

Question 3 69.03 77.999 .557 .763 .844 
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Question 4 68.99 80.803 .473 .557 .848 

Question 5 69.19 79.795 .395 .528 .852 

Question 6 69.39 79.908 .432 .464 .850 

Question 7 68.69 81.643 .428 .469 .850 

Question 8 69.46 79.919 .478 .621 .848 

Question 9 69.07 78.131 .615 .614 .843 

Question 10 68.67 78.557 .538 .491 .845 

Question 11 68.73 77.836 .681 .644 .841 

Question 12 69.15 78.856 .457 .444 .849 

Question 13 68.70 78.910 .515 .472 .846 

Question 14 69.36 79.658 .483 .546 .848 

Question 15 69.54 77.252 .619 .595 .842 

Question 16 69.10 85.580 .115 .275 .862 

Question 17 68.72 84.327 .198 .202 .859 

Question 18 69.03 85.575 .119 .223 .862 

Question 19 69.42 84.883 .189 .297 .858 

Question 20 69.54 83.071 .302 .388 .854 

The Corrected Item-Total Correlation column shows the relationship between the 

responses on individual questions and the overall total score of the questionnaire. All of 

questions in the questionnaire are reliable questions because they have a positive 

relationship with the overall total (ideally being above 0.3), and only four questions (16, 

17, 18, 19), with positive relationship, were smaller than 0.3. The effects that individual 

questions can have on the overall reliability of the questionnaire are highlighted by the 

inverse relationship between the Corrected Item-Total Correlation and the Alpha If Item 

Deleted columns. The importance of the weak relationship, for example, between 

question 16 and the overall total score on the questionnaire, is reflected by an increase 

in the Alpha score for the questionnaire if this item is omitted. Cronbach’s Alpha is the 

most popular method of examining reliability. The calculation of Cronbach’s Alpha is 

based on the number of items and the average inter-item correlation (see e.g. HINTON, 

2004). A high correlation between different items in this questionnaire indicates that it 

would measure the same thing if there would have been only small values for the error. 

Table 3.5: Reliability statistics 

Cronbach's Alpha Cronbach's Alpha Based on Standardized Items N of Items 

.856 .858 20 
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Table 3.5 shows the overall Alpha value for our questionnaire. The reliability 

coefficient for all twenty items in the questionnaire is displayed as a simple Alpha, and a 

Standardized Alpha. The Alpha score of this questionnaire is 0.856. It is generally taken 

to indicate a scale of high reliability. In general, from the responses of the 20 questions 

we realized that the help system provides a strategy for students during the proving 

process. They would like to work with this system in order to approach proof-related 

problem easier. As a supplement, two open-ended questions were given at the end of the 

questionnaire aimed at gaining validity for our report and determining students‟ barriers 

in the proving process. 

Open-ended questions analysis. There are two open-ended questions in the 

first questionnaire. The aims of these questions are to investigate the students‟ 

difficulties and the role of interactive HELP SYSTEM in the proving process: 

1. Where do you usually meet difficulties in the proving process? 

2. Which stages in the proving process does the interactive HELP SYSTEM 

support you? 

The comments from the students indicate that most of them had a positive view 

towards the interactive HELP SYSTEM. They also suggested that the teacher provided 

more tasks with this system on the official website for the online course so that they can 

do these exercises at home. Most of the students also perceived that they usually met 

difficulties in realizing invariants, validating conjectures, and writing a formal proof. It 

means that they did not know what to do until they discovered some invariants. More 

importantly, they had to draw auxiliary lines in order to establish new relationship, new 

conjectures. They also did not „flash‟ the idea of proof until they revealed some crucial 

invariants, especially „moving‟ invariants
23

. Some students wrote that they could have 

not realized invariants, made conjectures, collected arguments, and combined arguments 

to form a formal proof without the interactive HELP SYSTEM. It depends on the 

students‟ levels of proving. Students also said that this system made them believe more 

and could be a strategic scaffolding in the proving process (Mean = 3.76). They also 

                                                 
23

 In this dissertation, we differentiate between ‘static’ invariants and ‘moving/dynamic’ invariants. 
Moving/dynamic invariants required high level of visualization and dynamic visual thinking. We will 
explain more clearly in the second survey. 
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suggested that the system was a tool which extended their zone of proximal 

development
24

 (see e.g. NEWMAN & HOLZMAN, 1993). The students also commented 

on the methodological structure of this system. It helped them get used to a method of 

proof or proving strategy while solving a geometric problem by using geometric 

transformations: 

Invariance  Conjecture  Argumentation  Proof 

The second survey is the ten-item questionnaire. It aimed at classifying different 

levels of realizing geometric invariants while proving. The same questionnaire was 

administered during the pre- and post-test in order to investigate whether or not the 

interactive HELP SYSTEM has an impact on the increase of these levels during the 

period of experimental teaching. The first version of the questionnaire was conducted 

after two weeks of experimental teaching to access the suitability and clarity of the 

items. The feedback obtained from the students in this survey was used to modify 

identified weaknesses in the items. Finally, four questions (3, 6, 7, and 8) are preserved; 

the remaining questions were modified with more reliability in order to form the final 

version of the questionnaire. In this questionnaire, students had to fill their name and 

self-assess about their corresponding levels of realizing geometric invariants. 

Table 3.6: Levels of realizing geometric invariants 

 Mean Std. Deviation 

Question 1 4.14 .714 

Question 2 3.46 .628 

Question 3 3.31 .719 

Question 4 3.58 .920 

Question 5 3.86 1.046 

Question 6 3.17 .890 

Question 7 2.31 .908 

Question 8 2.19 .926 

Question 9 3.17 1.120 

Question 10 3.66 .843 

Post-test 7.19 1.719 

                                                 
24

 The zone of proximal development in this case was defined as a conceptual distance between what 
the students can do on their own and what they can grasp with the support of the interactive HELP 

SYSTEM. 
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Table 6 shows the results of the students‟ responses to all items which were 

categorized into five levels. In terms of level 1, most of the students agreed that they 

had a high rank in level 1 because the mean values for several items (like question 1, 

question 2, and question 3) for this level are also high. These findings are supported by 

the increased mean values in level 2 (question 4, question 5). This also indicates that 

almost all of the students attained level 2. This means that they can realize static 

invariants (especially some given invariants) and some moving invariants by using the 

dragging mode in dynamic geometry environment. Table 6 also suggested that a lot of 

students attained level 4 (question 9), but only some students got a high rank in level 3 

(question 6, question 7, and question 8). This is also their difficulty in the proving 

process. Data from question 10 show that students slightly agree that dynamic 

visualization played an important role in developing a sense of proof in geometric 

transformations (Mean = 3.66). 

Table 3.7: Inter-item correlation matrix of the 10 questions 

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 
Post-

test 

Q1 1.000 .645 .550 .583 .474 .649 .647 .655 .559 .535 .706 

Q2 .645 1.000 .672 .727 .668 .740 .720 .754 .700 .611 .765 

Q3 .550 .672 1.000 .650 .659 .650 .753 .744 .653 .629 .765 

Q4 .583 .727 .650 1.000 .705 .820 .731 .740 .785 .607 .772 

Q5 .474 .668 .659 .705 1.000 .835 .710 .731 .770 .574 .709 

Q6 .649 .740 .650 .820 .835 1.000 .816 .815 .841 .596 .809 

Q7 .647 .720 .753 .731 .710 .816 1.000 .822 .797 .716 .840 

Q8 .655 .754 .744 .740 .731 .815 .822 1.000 .854 .632 .830 

Q9 .559 .700 .653 .785 .770 .841 .797 .854 1.000 .733 .820 

Q10 .535 .611 .629 .607 .574 .596 .716 .632 .733 1.000 .698 

Post-

test 
.706 .765 .765 .772 .709 .809 .840 .830 .820 .698 1.000 

 

Data from table 7 also indicate that the items in the questionnaire have a 

relatively high correlation, especially in question 8 and question 9. It shows that 

students can realize a geometric transformation by visualizing the movement of the 

picture or figure in their minds, they can better differentiate invariants in different types 

of geometry (coefficient correlation r = 0.854, at p < 0.05). It also indicates that if 

students can realize moving invariants (level 2), they can also easily realize a geometric 
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transformation (level 3) in a proof-related problem (r = 0.835). Coefficient correlation 

in the last row indicates that levels of realizing geometric invariants highly affect 

students‟ achievements in the post-test, especially students who attained level 3 (r > 

0.8). For the question 3, question 6, question 7, and question 8, the data showed that 

mean values for all items significantly increased in the post-test differently. This data 

indicates that the interactive HELP SYSTEM did support students in improving the 

students‟ levels of realizing geometric invariants. 

Table 3.8: Ranks in question 3 of questionnaire 

  N Mean Rank Sum of Ranks 

Question 3 Pre-test – 

Question 3 Post-test 

Negative Ranks 31
a
 17.03 528.00 

Positive Ranks 2
b
 16.50 33.00 

Ties 34
c
   

Total 67   

 

Table 3.9: Test statistics
b
 

 Question 3 Pre-test – Question 3 Post-test 

Z -5.000
a
 

Asymp. Sig. (2-tailed) .000 
a. Based on positive ranks. 

b. Wilcoxon Signed Ranks Test. 

Table 3.8 summarizes the changes in the students‟ levels after the post-test. It 

shows that 31 students increased their levels while only 2 students had a decrease in 

their levels. From table 3.9 it can be seen that Z = -5.000. A two-tailed analysis was 

carried out by default, which is significant at p < 0.01. From this we can conclude that a 

student‟s level rates before and after the experimental teaching significantly differed 

and the level on the post-test being significantly higher than one on the pre-test. 

Table 3.10: Ranks in question 6 of questionnaire 

  N Mean Rank Sum of Ranks 

Question 6 Pre-test – 

Question 6 Post-test 

Negative Ranks 39
a
 20.53 800.50 

Positive Ranks 1
b
 19.50 19.50 

Ties 27
c
   

Total 67   
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Table 3.11: Ranks in question 7 of questionnaire 

  N Mean Rank Sum of Ranks 

Question 7 Pre-test – 

Question 7 Post-test 

Negative Ranks 33
a
 17.52 578.00 

Positive Ranks 1
b
 17.00 17.00 

Ties 33
c
   

Total 67   

Table 3.12: Ranks in question 8 of questionnaire 

  N Mean Rank Sum of Ranks 

Question 8 Pre-test – 

Question 8 Post-test 

Negative Ranks 22
a
 13.00 286.00 

Positive Ranks 3
b
 13.00 39.00 

Ties 42
c
   

Total 67   
 

The findings of the Wilcoxon test continued to validate the above results: 

student‟s level of realizing geometric invariants significantly differed after a period of 

the experimental teaching (specifically, question 6: Z = -5.892, N = 67, p < 0.01; 

question 7: Z = -5.425, N = 67, p < 0.01; and question 8: Z = -3.800, N = 67, p < 0.01). 

Students’ levels of realizing geometric invariants. On the basis of obtained 

results from the second questionnaire, five students (S0, S1, S2, S3, and S4) who attained 

different levels of realizing geometric invariants were chosen for the next study. The 

researcher required these students to do four explorative tasks. While the students tried 

tackling the tasks, the researcher observed and made notes of their workings. At last, 

their solutions were classified into the five described levels of realizing geometric 

invariants (as shown in Section 2.3.1). Their behaviors and solutions of the tasks were 

summarized as follows: 

Task 4. (Parallelogram Problem) Let ABCD be a parallelogram. The 

bisectors of four angles A, B, C, and D intersect each other forming 

a quadrilateral MNPQ. What are special characteristics of this 

quadrilateral? 
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Figure 3.7: Parallelogram problem in task 4 

Task 5. (Area Comparison) Let ABC be a triangle. Construct three squares 

ABEF, BCMN, ACPQ outwards the triangle. Compare the areas of four 

triangles ABC, BNE, CMP, and AFQ. 

 

Figure 3.8: Area comparison problem in task 5 

First of all, we consider some following invariants in geometry: equal segments, 

equal angles, equal figures, collinearity of points, parallelism of lines, concurrency, 

orthogonality, constant measurement, measurement ratio of segments, similar figures, 

other fixed factors, and so on. Some of them are also invariants of geometric 
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transformations such as: line reflection, point reflection, translation, rotation, and 

dilation. We described different levels of realizing these invariants as follows: 

Level 0. Cannot realize any geometric invariants 

Student S0 drew the figures but could not realize any invariant, even given 

invariants or some static invariants (properties of parallelogram in task 4, for example) 

because he said that he did not remember these properties. Finally, he concluded that the 

quadrilateral was a square, but he gave no explanation. In task 5, he also could not 

realize that the areas of the four triangles are equal even though he used GeoGebra 

software to interact with the figures. Of course, he also could not solve other tasks. We 

concluded that he attained level 0 of realizing geometric invariants. 

Task 6. (Square Problem) Let ABCD be a quadrilateral. Construct four 

squares ABEF, BCMN, CDPQ, ADRS outwards the quadrilateral. Let O1, 

O2, O3, O4 be the centers of these four squares. Prove that four midpoints of 

the diagonals of two quadrilaterals ABCD and O1O2O3O4 forming a square 

A1B1C1D1. 

  

Figure 3.9: Square problem in task 6 
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Task 7. (Hexagon Problem) Let ABC be a triangle. We take six points A1, 

A2  BC; B1, B2  CA; C1, C2  AB such that: BA1 = A1A2 = A2C, CB1 = 

B1B2 = B2A, and AC1 = C1C2 = C2B. Suppose that six straight lines AA1, 

AA2, BB1, BB2, CC1, CC2 intersect each other forming a hexagon MNPQRS. 

Prove that three diagonals of this hexagon are concurrent. 

                                                                                

Figure 3.10: Hexagon problem in task 7 

Level 1. Realize static invariants 

Before dragging some points student S1 realized some static invariants such as: 

AB =// CD, AD =// BC, A = C, B = D and A + D = B + C = 180
0
. He 

dragged to change the shape of parallelogram and realized that the quadrilateral is a 

rectangle. He checked the measures of angle M and N. Finally, he claimed that: 

M = 180
0
 – ( ADM + DAM)  

                                                    = 180
0
 – 90

0
 = 90

0
 

N = 180
0
 – ( CDN + DCN)  

                                                    = 180
0
 – 90

0
 = 90

0
 

Clearly, his ability to recognize static invariants helped him to tackle this 

problem easily step by step. The reason he realized static invariants is that he 

remembered some properties of the parallelogram. Therefore, when he drew the figure 
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he could write some initial data on a piece of paper. Then he measured the angles of the 

new quadrilateral to make conjectures and write proofs. 

 

Figure 3.11: Realizing static invariants in the parallelogram problem 

 

In task 5, he saw that the areas of four triangles are equal. He also knew the 

equality BC = CM, but he could not realize that AH = PI or AHC = PIC. He could 

not see these „moving/dynamic‟ invariants and therefore not tackle the problem in task 6 

and task 7. Therefore, we can conclude that he only attained level 1 of realizing 

geometric invariants. 

Level 2. Realize moving/dynamic invariants 

Student S2 drew the figure and dragged to change the shape of triangle ABC. She 

tried to look for invariants. After a short time for thinking, she guessed that the areas of 

these four triangles are equal. She checked this conjecture by measuring them. She 

knew that BC = CM so it is necessary to show that AH = PI in order to derive the area 

of triangle ABC equal to the area of triangle CMP. From that she realized the moving 

invariant: ACH is always congruent to PCI. Moreover, she knew that ACH is an 

image of PCI under a rotation of 90 degrees about point C but she could not prove it. 

It means that she realized these invariants but could not prove her conjectures. 
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Figure 3.12: Realizing moving invariants in the area comparison problem 

A similar situation occurred in task 6 when she knew that , 

 and  but she could not show that there exists a 

rotation of degrees about point , preserving the shape of these triangles. We say 

that this student could not realize invariants of a geometric transformation and she 

attained level 2 of realizing geometric invariants. 

Level 3. Realize invariants of a geometric transformation  

In task 5, student S3 showed that   AH = PI  the area 

of triangle ABC is equal to area of triangle PCM. Similarly, she proved for the other 

cases. In task 6, she started solving the problem by drawing the figure, adding some 

auxiliary lines and measuring some segments. She used  as a symbol for the image 

under a rotation of degrees about point P. She noted that  

so she finds the following geometric invariants:  and derived at 

. It also means that . Similarly, she 

proved that .  
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Figure 3.13: Realizing invariants of a geometric transformation 

Student S3 was able to explain her arguments in written words and also realized 

that . Then she continued using 

similar arguments to show that . From (1) and (2) she concluded 

that the quadrilateral A1B1C1D1 is a square. However, in task 7, she could not see affine 

properties in the problem. So she tried to prove them with an arbitrary triangle ABC but 

she failed at her final challenge. It means that she could not realize the invariants of 

affine geometry (and invariants of projective geometry). We say that she attained level 3 

of realizing geometric invariants. 

Level 4. Realize invariants of different geometries 

Student S4 dragged the triangle ABC and focused on the hexagon. He seemed to 

perceive that no matter how triangle ABC changed, diagonals of the hexagon are always 

concurrent. From his notes, he realized that the concurrence of the three diagonals is an 

affine invariant, so this conclusion can easily prove with the case of an equilateral 

triangle in Euclidean geometry. 
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Figure 3.14: Realizing invariants of different geometries 

He supposed that ABC was an equilateral triangle. First of all, he realized the 

following invariants: BB1C = CC2B and BB2C = CC1B  QBC = QCB, 

MBC = MCB  QB = QC, MB = MC  Q, M lay on perpendicular bisector of 

segment BC. Similarly, he proved that R, N and P, S lay on a perpendicular bisector of 

segments AC, AB, respectively. Finally, he concluded that MQ, NR, PS are concurrent at 

point O. In this problem, he proved a special case in Euclidean geometry and came to a 

general case in affine geometry. We conclude that he attained level 4 of realizing 

geometric invariants. However, there was a surprise; he could not completely solve the 

problem in task 6. He failed to show that  . It means that 

he did not have a high rank in level 3. This finding is also represented in table 6, the 

mean values of question 9 (Mean = 3.17) is higher than the mean values of question 6, 

7, 8 (level 3). It shows that some students attain a high rank of level 4 but a lower rank 

of level 3. 

To sum up, the students‟ realizing geometric invariants improved from level 1 to 

level 3 (or level 4). But the relationship between level 3 and level 4 is not necessarily a 

hierarchical order. Students can attain a high rank in level 4 but a low rank in level 3. 

Progressing to level 3 (or level 4), the students were able to produce arguments by 
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transforming from visualizing into writing of a formal proof. This ability is a 

characteristic of dynamic visual thinking (see Section 2.4.4). This kind of thinking plays 

an important role in the process of realizing geometric invariants, especially in realizing 

„moving‟ invariants. Students who have high levels of dynamic visual thinking can 

easily see particular movements, equal figures, moving directions, geometric 

transformations, etc. Furthermore, these students can imagine „the movement‟ within a 

paper-and-pencil environment. It means that they are able to manipulate dynamically 

with different objects (like segments, lines, angles, figures, diagrams, symbols, and 

words) in their minds and then write out their thoughts. In our research, we only refer to 

the role of dynamic visual thinking during the proving process such as realizing 

geometric invariants, looking for ideas of proofs, and manipulating by thoughts with 

produced arguments. 

3.2.3. Semi-structured interviews 

The first part of the interview was conducted after classifying the students‟ level 

of proving
25

. We aimed at understanding how students proved the problems from the 

original solutions they provided. The purpose of this interview was to investigate the 

influence of the interactive HELP SYSTEM on the students‟ proving process such as: 

finding the invariants, making conjectures, validating conjectures, collecting arguments, 

combining arguments, writing a formal proof and delving into the geometric problems. 

From this interview, we noticed the differences in students‟ abilities in writing proofs. 

The second part of the interview identified the students‟ difficulties in writing a 

formal proof. It was based mainly on their conception of proofs, acquired knowledge 

and strategies employed in the proving process. The revealed difficulties were compared 

with the checklist prepared by us. They also continued exploring and investigating. 

When suggesting students to answer interview questions, we took field notes on what 

they said about their difficulties. If a mistake was found, we offered hints to help them 

recognize and correct it. After the interview, we made an analysis of the students‟ 

understanding as well as misunderstandings, which depended on the response of some 

on-going controlling activities. Subsequently, we tried to identify their difficulties 

                                                 
25

 Levels of proving that are proposed in this dissertation: information (level 0), construction (level 1), 
invariance (level 2), conjecture (level 3), argumentation (level 4), proof (level 5), and delving (level 6). 
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which lead to mistakes and summarize the difficulties into different categories. 

Modifications that had been made to the categories originated from a better 

understanding of the students‟ barriers in writing proofs. 

The third part of the interview was to determine the students‟ perception of 

visual proofs. Some researchers have pointed out the danger using a dynamic geometry 

software, saying it may limit the mathematical work of the majority to only empirical 

arguments and pattern spotting. This conviction can be obtained easily because of the 

dragging mode in the dynamic geometry environment. Therefore, this environment may 

prevent students from understanding the need and functions of proofs (see e.g. HADAS 

et al., 2000). On the contrary, in our empirical research, a suitable strategy with 

thought-provoking situations might motivate the students to prove the problem aimed at 

explaining their valuable queries. The different behaviors of students after a visual proof 

were also analyzed in order to recognize the role of visualization in producing a 

deductive proof. 

In this research, we chose five groups of students who attained different levels of 

proving respectively for a semi-structured interview: construction level, invariance 

level, conjecture level, argumentation level, and proof level. These interviews are based 

on the student‟s solutions of three tasks 1, 2, and 3 (as shown in Section 3.2.2). 

Group A. Construction level 

The students in this group could not see the invariants when they dragged the 

figures. Even with the interactive HELP SYSTEM, they could not realize the static or 

dynamic invariants. They could construct the figures or model the situation by using 

construction functions of GeoGebra. However, they could not make a conjecture even 

although they used dragging mode to check the relationship between geometric objects. 

This group could also not produce any arguments because they only wrote down some 

given information and considered this information as their arguments. It means that in 

this case, these students could not read any information/data from the static/dynamic 

diagrams or figures. 
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Figure 3.15: Construction level in task 3 

In task 3, these students also could not determine the position of the bridges. It 

means that they were unable to realize any geometric invariant and could not formulate 

a conjecture: 

“We dragged point O1 on the line s1 and point O4 on the line s2. By measuring the 

length of the broken line AO1O2O3O4B, we knew the position (only relatively on the 

screen) but we could not realize its special characteristics of the figure and 

therefore could also not realize geometric invariants”. 

“We used support from the interactive HELP SYSTEM but could not find any 

invariant. As a result, we were not able to make any conjecture and failed in 

looking ideas for proofs”. 

In general, the students in this group said that they could not find geometric 

invariants because they did not remember some characteristics of geometric 

transformations as well as their invariants. They also could not differentiate the 

geometric invariants of different transformations like isometry and similarity. As a 

result, they could not realize the appearance of two translations in this problem. 
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Group B. Invariance level 

In this interview, we asked students in this group in some ways to recognize 

geometric invariants. They said that by experimenting, the peculiarities of the figures 

were retained and they gradually realized these invariants: 

 

Figure 3.16: Invariance level in task 2 

“We dragged point D on the line  and we observed the change of measurement of 

the broken line ADEB at the same time. Then we changed the positions A, B, as 

well as the distance between the banks of the river. We repeated the same 

procedure and realized that this measurement is minimal when the straight line AD 

is parallel to the straight line EB”. 

During the proving process, the students tried to understand the problem in 

different viewpoints. All of them said that it would be very difficult for them to find 

geometric invariants and new geometric properties without the interactive HELP 

SYSTEM. Sometimes they realized some initial invariants but not the key invariant 

which generates the idea of a proof. So they could not formulate a suitable conjecture 

for proving. 

“After constructing the figure, we tried to find geometric invariants by using the 

interactive HELP SYSTEM. We have also used the GeoGebra software to check 

some invariants but we really did not know their role in the proving process. We 
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could only formulate some initial conjectures until the use of the help-system. 

However, we could not validate our conjectures. For that reason we left the 

problem and moved on to the next one”. 

“In order to realize the eclipsed properties, we scrutinized the diagram. It might be 

faster to manipulate the figures because we were also well-versed in using the 

GeoGebra software. By dragging we recognized some properties which did not 

change while moving to a certain point. These „non-change‟ properties supported 

us by eliciting some thinking directions on how to get geometric invariants”. 

The availability of dynamic geometry software has enabled the realization of the 

vision of proving. It allows students to do experiments (the ability to drag objects and 

manipulate them dynamically) as well as control visualization. The dragging mode 

enables them to alter the conditions by maintaining the invariants (e.g. GOLDENBERG 

& CUOCO, 1998). The strength of dynamic geometry software facilitates conjecturing 

and more inductive approaches to geometric knowledge, as students can argue about the 

generality of their hypotheses for several cases (e.g. KAPUT, 1992). Also by dragging, 

the students utilized their epistemological sense by discovering „dependent‟ or 

„independent‟ factors in a certain diagram. The dynamic diagram enlightens where the 

key invariant might be. These discoveries also brought „the idea of proof‟ to light and 

sowed the seeds of proof completion. Students said that geometric pictures also played 

an important role in discovering geometric invariants and provided leverage for their 

on-going effort. 

Group C. Conjecture level 

Before this group made the conjectures, they had already discovered the 

invariants. The students said that they looked deeper into the diagram and visualized the 

properties of the figures to overcome the initial challenges: 

 “We were certain that if the straight line AE and the straight line BF are parallel 

then the length of the broken line AEFB is minimal. These positions were named A” 

and B”. After that, we imagined that the line BB” moved towards the line AA” until 

they coincide with the same line. We also recognized this displacement was a 

geometric transformation. Moreover, the distance between two banks of the river is 
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also a constant. So we thought that there was a translation in the vector  

direction”. 

 

Figure 3.17: Conjecture level in task 2 

Clearly, in the above-mentioned situation, the students used visualization (iconic 

images) to generate some speculative situations and formulated a crucial conjecture. We 

also realized that group C made less mistakes and encountered fewer difficulties than 

group B. They would consider a proof problem difficult if auxiliary figures (lines, 

segments, etc) were needed in order to tackle the problem. Writing an assumption was 

another difficult task for them and they did not know how to do it from start. Sometimes 

they jumped to the conclusion at once without providing the reason for it. However, 

when the interactive HELP SYSTEM appeared, the students could follow the steps and 

validate conjectures. Yet again they insisted that if the interactive HELP SYSTEM was 

not given, the problem would have been difficult (to understand some difficulties in 

teaching formal proofs, see Section 2.2). 

It was found that almost all of students could not make their own conjectures 

right after constructing the figure, but they usually dragged some points, measured some 

segments or angles and thoroughly observed the dynamic diagram. The following 

processes describe students‟ development in the process of formulating conjectures: 
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intuitive observation  dragging, measuring, and checking the relationships  making 

inductive hypothesis  formulating conjectures. 

 

Figure 3.18: Formulating a conjecture in task 2 

“Formulization of conjectures” is a good thing for mathematics, and an inevitable 

thing, as mathematical theories grow larger (e.g. MAZUR, 1997). It might take a step 

toward addressing the need to prove. Hence, in a drill-and-practice approach of 

geometric teaching, more attention is paid to make conjectures before constructing a 

formal proof by means of analysis and synthesis. 

“The hints of the interactive HELP SYSTEM allowed us to construct figures easily 

and measure angles, segments accurately, so we could concentrate our efforts on 

finding the common properties between the figures in order to make and prove 

conjectures”. 

Although some students seemed to have gone through a similar process of 

formulating a conjecture, there were still a lot of differences in their thinking and 

behavior. They said that they were quite hesitant to drag the figure because most of 

them only dragged some points to and fro for a short distance. This was also a center of 

debate on how the students should validate their conjectures. But we found that there 

were a few students who could prove their conjectures on their own or in collaboration 

with other partners. Most of them needed some hints from the interactive HELP 
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SYSTEM, so their proving process was more or less the same among groups. We have 

also taken conjecture formulization into account for the sake of collecting reasonable 

arguments and writing a formal proof. 

Another result from this interview is that strategies the students used in 

validating the conjectures were slightly different. They often added and modified some 

lines in the figure; found new relationships according to some theorems, axioms or 

definitions; and wrote down the proofs systematically. Validating conjecture is also an 

explanation-building process. Throughout this process, the students have a chance at to 

deepen the understanding of their tasks, which might appear to be ideas for proofs 

because each conjecture might provide students with a certain proof method. As DE 

VILLIERS (2003) points out, it is of utmost importance that while students are 

investigating a geometric conjecture through continuous variation with a dynamic 

geometry software, they are asked why they think a particular result is true and 

challenge them to explain: 

“We got a sense of satisfaction whenever we proved our conjectures. This result 

also increased our confidence and motivated us to prove other problems”. 

Group D. Argumentation level 

This group made minor mistakes such as giving the wrong reasons and getting 

confused with properties of different figures, invariants of different transformations or 

geometries. They realized that sometimes they had to use a „backward‟ strategy to 

explain some „observed facts‟ and then approach a formal proof. 

“We sometimes used the strategy: suppose the results were proved, what would we 

have to find to support the inference. In order to make the proving process more 

clear, we drew a solution diagram. From that we could understand what needed to 

be proved and sometimes we followed an inverse procedure”. 

Group D could solve most of the problems in the test except problems in task 3. 

They knew how to construct a proof and could write statements with reasons in a 

logical way by using a „backwards‟ strategy (in this dissertation, we considered this 

strategy as an abductive argumentation). In reality, during the process of realizing 

geometric invariants and formulating conjectures, they used abductive argumentation to 
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look for data or rules for validating their conjectures (see more how students use 

abduction in the proving process in Section 3.2). However, this group could not reverse 

the abductive structure in order to write a formal proof.  

 

Figure 3.19: Argumentation level in task 2 

Through argumentation, the students had to modify their understanding. The 

students collect their valid arguments and these collective arguments were used in 

writing a formal proof. But sometimes they did not realize the arguments obtained in the 

previous tasks could be used to solve the next. The discussion within the groups also 

improved the students‟ reasoning ability and cemented their relationship. They had an 

amalgamation of ideas for proving during an active disputation even though there were 

lots of arguments pros and cons. When two members had an irreconcilable 

disagreement, the third person had to supplement the tenable arguments as to why they 

can produce valid arguments. Finally they came to an individually-accepted consensus 

with well-understood argumentation. 

The objective of the interview with this group was to know how deep the 

arguments develop through interaction in the group-based activities. The students said 

that they usually discussed with other partners while proving. Especially, throughout 
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this stage they may improve their proving skills rather than understanding. They also 

explained that: 

“Because we had two partners to work with, if one made a mistake or did not know 

how to do it, the others could help, so we were not so afraid to try. In particular, 

each member of the group can supplement and correct other arguments. We think it 

is the best way to collect and modify our arguments for the proving process”. 

In fact, some other groups had their own computer to utilize, but they tended to 

work in the paper and pencil environment. This difference in students‟ behavior may be 

due to their background, personalities and habits of solving geometric problems. In this 

research, we see argumentation and proof as parts of a continuum rather than as a 

dichotomy because we focus on the production of arguments in the context of problem 

solving, experimentation, and exploration. In order to breed a formal proof, the students 

must organize collected arguments in an appropriately logical order. This strategy 

makes proofs more meaningful and constructive. 

The interactive HELP SYSTEM (with carefully designed tasks and motivated 

questions) also supports the inductive and experimental approaches (like conjecture 

formulation and deductive justification) that are so prevalent in the activity of 

mathematicians. HOYLES & JONES (1998) cautioned that when students can generate 

their own empirical evidence, it means that they have motivation to appreciate the 

importance of the logical argument and to produce a proof. Some empirical studies also 

suggested that a dynamic geometry environment could play an important role in 

enabling students to develop deductive reasoning (see e.g. JONES, 2000a; HEALY & 

HOYLES, 2000; MARIOTTI, 2000; 2007). In our research, we have found that the role 

of dynamic environment in supporting students‟ reasoning may depend upon their 

proving levels. For instance, the groups, who attained argumentation level, showed a 

preferred use of empirical argument over deductive reasoning. However, the groups, 

who attained proof level, tended to use deductive reasoning in the process of producing 

arguments. Therefore, in the teaching of geometry, mathematics teachers should predict 

or classify students‟ levels of proving in order to effectively support them in producing 

empirical arguments or deductive reasoning. 
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Group E. Proof level 

EDWARDS (1997) wrote that proving a theorem is often a difficult task which 

requires mathematics teachers to give some guidance to the learners. HOYLES & JONES 

(1998) also stated that: “It is central that teachers design novel activities that enable 

students to make links between empirical and deductive reasoning while investigating a 

given problem”. Therefore, during the interview, we tried to discover how students 

collect and combine their arguments with the support of the interactive HELP SYSTEM. 

This group performed well in the test and had in-depth understanding in the given data. 

They could precisely explain their steps in writing the proofs. They said that some 

problems were easy and straightforward such as task 1, task 2. However, task 3 was 

quite difficult. It needed more time and effort. Based on the proof idea and selected 

arguments, they combined these arguments into a deductive chain that constituted a 

formal proof. It means that they made a transition from empirical reasoning to a 

deductive proof. However, they sometimes gave wrong reasons for a statement and 

mixed up the invariants of different transformations. They tried to break down the 

problem into basic elements of the problem and found the relation between the given 

data and the target. The problem was simplified or reformulated. In our research, 

organizing arguments in order to write a formal proof is one basic condition for 

understand the development of the proving process (see Section 2.3.4). Therefore, 

examining how students choose and connect their arguments in a logical way was taken 

into consideration during the interview: 

“If we have some new data or sometimes if we must explain some „facts‟ we usually 

write them down as our arguments. We check again the validity of these arguments, 

and then draw some diagram to link the discovered data to the conclusion. In 

particular, we sometimes start from the conclusion in order to find the supported 

data for validating. Finally, we combine these valid arguments in order to write a 

formal proof”. 

In general, their discussion was also directed by any new idea and strategy 

popping up through trial-and-error method. They validated conjectures by using some 

data they had found before. The emphasis was on the strategy that combined the steps to 

solve the problem. In fact, students used the „backwards‟ strategy (abductive 
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argumentation) during the process of getting new data and then reversed the abductive 

structure for writing proofs. For instance, in the two-bridge problem, students reversed 

abductive structure (Fig. 3.20 below) in order to write formal proofs. They started from 

a mathematical theorem (see Section 3.2.1, Task 3) and find data D5 for validating claim 

C5, find data D4 for validating claim C4, and so on. This strategy would be the best way 

to support the students in understanding the meaning of proving activities and 

understanding formal proofs as well. 

 

Figure 3.20: Abductive structure of argumentation in the two-bridge problem 

In the second interview, we determined and classified students‟ difficulties in the 

proving process. Their solutions of the problems in the three tasks were kept and used as 

a source to identify their difficulties, and as the tool for interviewing students. There are 

a lot of difficulties in learning a formal proof, so even the students who excel at 

geometry could not solve all of the proof-related problems (as shown in Section 2.2). 

Through observations (using teacher‟s field notes) and semi-structured interviews 

(using students‟ original solutions of four tasks), we classified students‟ difficulties in 

the proving process into the following different categories:  

Category 1. Explorative strategy 

Students have a poor conceptual understanding and an ineffective explorative 

strategy. They did not see the relationship between exploration and proof as well as did 

not know how to exploit the data collecting from this relationship. As a result, whenever 

they solved the problems, some students tended to find familiar problems or similar 

methods for proving. They looked for priori knowledge or previous results which could 

apply in the present situation: 

Dissertation%202.0_Nam.docx#task3
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“When we read the requirement of the task, we always thought about a familiar 

problem or found the similar idea for proving. If we could not search for any 

further information we always got stuck on the next strategy. The problem is that 

we usually did not use explorative strategies because we reckoned there was not 

enough time to carry it out in the classroom”. 

“We read the information and analyzed the problem in the task. But at that time, we 

had no strategy to solve the problem. Finally, we used some hints from the 

interactive HELP SYSTEM”. 

They also did not recognize the role of exploration in the proving process. In the 

explorative approach, the students must formulate conjectures, verification, refutation, 

and they have to gain insight into the problem. They used inductive exploration which 

was appropriate to the deductive structure of geometrical proofs. These processes 

produced arguments and generated the ideas for proofs. However, a lot of students 

could not bridge the gap between inductive argumentation and deductive proof. They 

failed in solving the problem since they had an inappropriate exploration strategy. This 

difficulty usually leads to divergent interpretations while proving. 

Some tasks required the students to use previous knowledge and add auxiliary 

lines to solve the problem. In such cases, the students usually spent quite a lot of time to 

think about an auxiliary factor, but they could not handle it. Therefore, the strategy of 

the interactive HELP SYSTEM should intrigue students into thinking and helping them 

internalize the methods of proof into their memories. To sum up, students could not 

determine the territory before proof (as shown in Section 2.3.1). As a result, they did not 

know how to start with each proof-related problem, especially as they worked with a 

dynamic geometry environment. That is the reason why they could not solve an open 

problem which often originates from their real-world life. 

Category 2. Reading diagram ability 

Students have difficulties in reading a dynamic diagram. This ability depends on 

the students‟ levels of realizing geometric invariants and the levels of diagrammatic 

thinking (see e.g. DÖRFLER, 2005). Through this interview, we can affirm that some 

students, who had high levels of realizing geometric invariants could understand the 
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diagram better than lower level ones, especially with an immature version of the 

diagram. Otherwise, some students could not create appropriate diagrams because they 

did not know how to model the real-life situation in an open problem: 

“When we read the information in task 3, we did not know how to draw the figure 

with two rivers and two bridges. That was a really embarrassing situation. We only 

had a clear picture when we referred to the interactive HELP SYSTEM”. 

“We usually faced some mistakes and confusion when the figures contained a lot of 

lines, segments, or angles. We could not realize equal figures, similar figures, or 

invariants in the diagram. Because of this embarrassment we failed to produce 

arguments as well as discover new data for the proving process”. 

In fact, a dynamic diagram makes something more intuitive and helps students 

seize the opportunity to explore and do experiments. Students also said that it is easier 

to see the simple invariants such as equal sides, angles or triangles from the static 

diagram than moving a diagram (when dragging). Students found a diagram confusing 

if there were lots of lines and angles. For that reason, they found difficulties in 

distinguishing embedded or overlapping figures and they preferred separate diagrams 

for separate parts of the task. Actually, not all of the information from the problem is 

shown on the diagram. Therefore, auxiliary lines have to be added to solve the problem. 

Using this strategy was very difficult for many students unless a hint
26

 was given. 

Besides, students could not know exactly what was required for proving just by looking 

at the diagram. If students used the perceived information from a diagram to write a 

proof, it might be misleading. Notwithstanding, some students accepted a figure in only 

one particular way, e.g. the vector of translation has a horizontal direction, the angle of 

rotation moved in a counterclockwise way, etc. Visualization also plays an important 

role in argumentation and proof because there is a link between visualization and 

argumentation. Thus students have to look deep into the diagram from different points 

of view in order to produce arguments for proving. In addition, „dynamic‟ diagram
27

 

reading abilities contribute to the realization of „moving‟ invariants and geometric 

                                                 
26

 A hint in the interactive HELP SYSTEM is an open-ended question or an explorative task which 
motivates and suggests students to think about the problem. 
27

 Dynamic diagram is a diagram in a dynamic geometry environment. It contains some ‘moving’ objects 
which hide some invariants and geometric relationships. 
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transformation. Developing dynamic visual thinking (see Section 2.4.4) would be a 

suitable approach to improve students‟ ability of reading such diagrams. 

Category 3. Transition from invariance to argumentation 

The restriction of reading the diagram makes it too difficult for students to 

realize geometric invariants. This barrier also made students more unconfident of 

making new conjectures: 

“When we looked into the diagram and even dragged the figure, we could not 

realize any geometric invariants. Only after referring to the interactive HELP 

SYSTEM and checking lots of information; finally, we could make some conjectures 

but we could not validate them”. 

During the process of discovering geometric invariants, students also blossomed 

out the idea of formulating their conjectures. These conjectures lead to proof-generating 

situations and play the role of mediator in the transition between argumentation and 

proof through the “dragging” mode. The students used this mode to switch from 

abductive to deductive argumentation and then deductive proof. According to 

ARZARELLO at el. (1998), this process includes the three following stages: ascending 

control (read the figure to make conjectures), abduction (exploration is transformed into 

conjectures), descending control (validate conjectures). Abduction also plays an 

essential role in the process of transition from ascending to descending control, from 

exploring-conjecturing to proving. Therefore, explorative conjectures and abduction are 

the necessary factors in transitioning from invariance to argumentation. We have also 

found that conjecture-formulating and conjecture-validating activities bridge the gap 

between conjecture and argumentation in the proving process. These activities lead to 

argument-generating situations and these arguments are used to write proofs. However, 

some students also got confused with the argumentation and proof. Thus, they did not 

see the connection between argumentation in an empirical situation and mathematical 

proof. Some students also made a mistake in the logic of writing an argument. On the 

one hand, they got confused with properties of different geometric transformations and 

the conditions for existence of corresponding transformation; while on the other hand, 

they could not memorize the implication of some geometric invariants: 
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“We could not make conjectures after realizing geometric invariants. It was very 

difficult to us. As a result, we could not formulate any conjecture as well as 

produce arguments for proving. But sometimes we found that it was not necessary 

to validate conjectures because it was obviously true or an indubitable truth”. 

Therefore, we have found that students were able to realize geometric invariants 

but they could not realize the role of these invariants or could not produce arguments for 

validating conjectures. It means that students had difficulty in shifting from a priori 

knowledge (non-empirical) to a posteriori knowledge (empirical) or they could not 

generate reasoning based on realized invariants. 

Category 4. Reasoning in writing proofs 

Some researchers have demonstrated that students at all levels have great 

difficulty in constructing formal proofs (see e.g. MOORE, 1994; HAREL & SOWDER, 

1998; SELDEN & SELDEN, 2003). Some students did not understand the concept and 

the meaning of proofs. They had a frequent obstacle in the conception of procept
28

 with 

an inadequate cognitive development. They also lacked the knowledge and skills in 

writing proofs. They usually had to grapple with difficulties during the proving process.  

“We could validate our conjectures but we wrote these arguments separately and 

we did not know how to combine them to write proofs. We could not differentiate 

necessary arguments for proving from a set of arguments”. 

There seems to be no mediator between argumentation and proof because 

students were able to produce arguments but they could not write a formal proof. It 

means that students did not know how to combine the selected valid arguments for 

proving. As a result, they just wrote some arguments down in an inappropriate way. 

Some others could write the correct statement but not the reasons. They said that it was 

easy to get the invariants from the diagram but difficult to explain with reasons. Most of 

the time, they just put down „given‟ as the reason. 

                                                 
28

 A procept is an amalgam of three components: a process which produces a mathematical object and a 
symbol which is used to represent either process or object. It derives from the work of E. GRAY and D. 

TALL, and is a much recently used construct in mathematics education research. The notion was first 
published in a paper in the Journal for Research in Mathematics Education in 1994, and is part of the 
process-object literature. 

http://en.wikipedia.org/wiki/David_O._Tall
http://en.wikipedia.org/wiki/David_O._Tall
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“We could make some conjectures but then we could not realize the ideas of proofs. 

Therefore, we only wrote the given information as our arguments. When we wrote a 

statement down, we tried to reason it as true or false but we really did not know 

about the validity of the proof”. 

Students are also unfamiliar with the terms used in the proving process such as 

assumption, conjecture, statement, generalization, transformation, argument, and formal 

proof. Besides, they may not have a full understanding of the theorems used in 

constructing proofs. They just memorize the theorems by rote learning and have 

difficulty in applying the correct theorems in writing proofs. Other difficulties 

encountered by students are that they were unable to write down verbal reasoning and 

what they had in mind. Students could explain some steps to us verbally in the interview 

but claimed that it was difficult to write the statement and reason in words. The reason 

for this difficulty is due to the fact that giving reasons for statements needs to use a lot 

of symbols, vocabularies, abbreviations, and terms in a strict way which was not an easy 

task for some students. It can be said that the language used in proof writing is difficult 

for students. We think that a mediator between argumentation and proof within a 

dynamic geometry environment might be the „dragging‟ mode in the following 

procedure:  

Exploring  Dragging  Conjecturing  Validating (Arguing)  Proving 

Using logical chain of reasoning in writing a proof has also been a student‟s 

barrier. Some of them know the procedures of writing a proof yet cannot present the 

steps in a logical way. They may write down all the correct information and steps but in 

an illogical order. Another common weakness of students was that they also got 

confused with the condition and conclusion of a statement. Some students use the 

concluding statement to write a proof, or cite the definitions, properties or theorems to 

be proved in the steps of proving or they did not understand the deductive method of 

writing a proof. Students said that it is easier to write statements than arguments and it 

seems meaningless to prove something that was obviously true. That is the reason why 

they could omit some steps and jump to the conclusion. This problem is involved in the 

concept of visual proof that will be considered in the next part. 
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The third part of the interview investigated student‟s perception of visual proofs 

as well as the role of dynamic visualization in the proving process. In dynamic 

geometry environment, a conviction can be obtained easily by using dragging mode. 

Therefore, it may prevent students from understanding the need and function of proof 

(see e.g. HADAS et al., 2000). However, in our empirical research, we have found that 

with an appropriate strategy in thought-provoking situations might motivate the students 

to prove the problem aimed at explaining their conjectures. They could realize 

geometric invariants and make some conjectures by using dynamic geometry software, 

but they did not know how to verify these „phenomena‟. This means that some 

„observed facts‟ in dynamic geometry environment inspire students with a need of 

proof. For that reason, we suggested that motivation would also be a function of proof 

(see Section 2.1): 

“Before this task, we felt it was not necessary to prove some theorems, since 

mathematicians had done that already! We should apply them to solve problems by 

rote learning like formula using. So we preferred spending more time doing 

exercises or easier problems. But in this task (e.g. task 2), we become very eager to 

find the proof because we have a need to find an explanation for our conjectures. 

Moreover, visualization within a dynamic geometry environment plays an 

important role in producing arguments for proof”. 

Furthermore, we have also realized that the students who attain low levels of 

proving would find it easier to accept a visual proof than those who attain high levels. 

However, some high-level students tend to use deductive argumentation in the proving 

process instead of abductive argumentation. The following example illustrates two 

different approaches in tackling a problem: 

Equilateral Triangle Game. Let ABC be an equilateral triangle with side 

length 5. Mark and Mike play the following game under the control of a 

referee: The referee chooses an arbitrary point, X, on the side AC, then 

Mark chooses a point, Y, on the side BC, and finally Mike chooses a point, Z, 

on the side AB. Suppose that Mike‟s aim is to obtain a triangle XYZ with the 

smallest possible perimeter, while Mark‟s aim is to get triangle XYZ with the 

largest possible perimeter. Find a strategy helping them achieve their goal?  
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We have organized this game for three-student groups (they took in turn the part 

of Mark, Mike, and a referee). Each group played the game in 15 minutes. The first 

group that found the solution (a strategy for achieving the goal) would be the winner. 

There were two groups with different strategies as follows: 

Group 1. Using deductive argumentation and visual proof 

Firstly, a student (as a referee) chose an arbitrary point X on the segment AC. By 

experience, they said that the best strategy for Mark is to choose Y  B or Y  C. Put 

 and . Clearly, if X and Y are already chosen, Mike has to 

choose Z as the intersection point of AB and X‟Y. For such a choice of Z they derived 

the equality: 

XY + YZ + ZX = XY + YX‟ = XY + YX” 

 

Since Y lies on BC, the latter sum will be a maximum when Y  B or Y  C, 

depending on the position of the segment XX”. After that they gave a new proposition: 

 There exists point E on AC such that such that 2BE = CE + C‟E                 (*) 

      
Figure 3.21: Visual proof in the equilateral triangle game 

They proved the proposition (*) by the following arguments: 

“Let . Construct a circle . Let  be 

intersections of the circle  and the line . Let  be the midpoint of the segment . 

When we drag point X on the line , we can see that the circle  changes and two 

points  also moving. We consider two following cases : 
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Clearly, when  or  then we have . They 

explained the above result as follows ( :  is approaching  when dragging):                                

 and :  such 

that . 

  and :  such 

that  ”. 

If the referee chose the point X on the segment AE, Mark must choose Y  C; if 

the referee chose point X on the segment CE, Mark must choose Y  B. 

 

Figure 3.22: Deductive argumentation in the equilateral triangle game 

Next, if Mark chooses Y  B, then Mike will choose Z  B, and the perimeter of 

∆XYZ will be 2XB. In case Mark takes Y  C, John will put Z at the intersection point of 

X‟C and AB, and then the perimeter of ∆XYZ will be XC + X‟C = XC + XC‟, as desired. 

Group 2. Using abductive argumentation and experimentation 

* Case 1 (Mike‟s strategy): Suppose points D and E are chosen. The problem is 

determining point F on segment AB such that the perimeter of triangle DEF ( ) is 

minimal. Let be . From that we have following equalities , and 

. Therefore:  
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The equality occurs:  

* Case 2 (Mark‟s strategy): By experimenting they realized that if 

 then  is maximal. Suppose that . Let  be a parallel line to the line 

BC. We realized that the quadrilateral BFMC is isosceles trapezoid. Then derived that 

BF = MC and CF = BM. Therefore: 

BF + BD = MC + BD  MC + DM + BM = DC + BM = DC + FC  

 

Now we must show that   

We have the inequality: . On the one hand, 

we have  (where  denoted by area of triangle EFM). 

Since point  lies on the segment , therefore: 

  

    (4) 

Figure 3.23: Abductive argumentation in the equilateral triangle game 

From (3) and (4) we derive:  (2). The equality occurs 

when and only when point . Similarly, we prove if  then we choose 

point . From the third part of the interview, we have revealed so far that some 



 133 

high proving-level students, who have intimate knowledge, tend to use deductive 

argumentation. However, they sometimes accepted visual proof as a means of 

producing arguments for deductive proof. On the contrary, some medium proving-level 

students, who would like to carry out explorative experiments within a dynamic 

geometry environment, tend to use abductive argumentation for explaining and 

interpreting the organization of the proving process. These students could not write a 

formal proof until they reversed the abductive structure of argumentation. 

In general, a lot of students in these interviews said that it would be very 

difficult for them to find the invariants without the interactive HELP SYSTEM. Since it 

allowed students to construct figures easily and measure angles accurately, so they 

could concentrate their efforts on finding the common properties between figures. We 

have also posed lots of thought-experiment tasks in order to encourage students to prove 

in an active way. This process permeates gradually through the students‟ proving ability 

and creates a didactical cycle for proving (see Fig. 3.24 below), which should be 

implanted in students‟ thought. Therefore, our methodological model should be a well-

established framework as well as an articulation between theory and practice. It will be 

a better-developed instrument in order to orchestrate didactic situations in the teaching 

of geometry. A hint in the interactive HELP SYSTEM must set students‟ curiosity and 

effectively support them during the proving process. After the interviews, we have a 

basic understanding of the difficulties encountered by each of the five groups of 

students. Comparing students‟ difficulties with their proving levels, it was obvious that 

students with lower proving levels were less capable in writing geometric formal proofs 

and faced more difficulties. Furthermore, some categories of difficulties, such as 

discovering invariants, reasoning in writing proofs, were common to all students. Other 

categories, such as reading diagram ability and showing logic in writing proofs, were 

only encountered by students of higher proving levels. 

Finally, all of the students in the interviews have also said that some explorative 

tasks and open-ended questions in the interactive HELP SYSTEM stimulated them to 

think about the ideas of proofs. After discovering some initial invariants, the students 

had a chance to gain insight into invariant elements (sub-invariants, key invariants). 

Some arguments were produced based on these realized invariants and these arguments 
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were used to write a formal proof. This process seems to be a circle of proving 

activities: understanding, constructing, conjecturing, arguing, proving, delving, and 

new problem. Therefore, we described the students‟ proving process corresponding with 

seven levels of proving in a didactical circle. This circle may provide tertiary students 

with a strategy for proving within a dynamic geometry environment: 

 

 

 

 

 

 

 

 

Figure 3.24: Didactical circle for the proving process 

3.2.4. Hypotheses testing 

A pre-test was designed to investigate the equivalence of the experimental and 

control groups. This was administered to the students in both the experimental and 

control group prior to the experiment. If the means of the performances of the two 

groups do not differ significantly, it can be assumed that the two groups are comparable. 

A post-test was also designed and administered at the end of the experiment to students 

in both the experimental and control groups. If the mean performance of the 

experimental group is significantly different from the mean performance of the control 

group, it can be assumed that students‟ performance must have been influenced by the 

methodological model within a dynamic geometry environment. 
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 The same pre-test was given to the two groups before conducting a treatment
29

 

in order to investigate the equivalence of the experimental and control groups. The null 

hypothesis  was formulated: 

: There is no significant difference between the students‟ mean scores 

in the experimental and control groups before the treatment. 

 During the four-month teaching course, the experimental group was taught in the 

computer laboratory and the control group was taught using the paper-and-pencil format 

with the same content. At the end of the period of experimental teaching, the same post-

test was designed and administered to students in both groups. In order to determine 

whether the use of the interactive HELP SYSTEM has an effect on the students‟ 

performance and the improvement of proving levels, the null hypothesis  was 

formulated: 

: The students‟ mean scores in the experimental group are higher than 

ones in the control groups after the treatment. 

 The data collected in the pre-test and post-test were analyzed using a t-test for 

independent groups to determine whether there is a significant difference between the 

mean scores and variance of the experimental and the control groups. The following 

table shows the mean scores and standard deviations of the two groups before and after 

the treatment: 

Table 3.13: Group statistics for pre-test and post-test 

Group N Mean Std. Deviation Std. Error Mean 

Pre-test 
Control Group 65 5.97 1.131 .140 

Experimental Group 67 5.93 1.418 .173 

Post-test 
Control Group 65 6.11 1.715 .213 

Experimental Group 67 6.58 1.519 .186 

 

 

                                                 
29

 To support tertiary students writing a formal proof by using the GeoGebra software with the 
interactive HELP SYSTEM. 
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Table 3.14: Independent samples t-test 

Dependent 

variables 

Statistics 

Levene's Test for 

Equality of Variances 
t-test for Equality of Means 

95% Confidence Interval of the Difference 

F Sig. t df 
Sig.  

(1-tailed) 

Mean 

Difference 

Std. Error 

Difference 
Lower Upper 

Pre-

test 

Equal 

variances 

assumed 

2.273 .134 .196 130 .423 .044 .224 -.399 .486 

Post

-test 

Equal 

variances 

assumed 

.534 .466 -1.684 130 .048 -.474 .282 -1.032 .083 

 The criterion for using a parametric t test is to have both samples with equal 

variances. The Levene‟s test was used to verify whether two variances do differ 

significantly. It can be seen that (Table 3.14): F = 2.273, p > 0.05. Therefore, we can 

accept the equal variances assumption for the independent samples t-test as the 

variances are not significantly different. For the pre-test, we have the following values: 

t(130) = 0.196, p > 0.05. It means that there is no significant difference between 

experimental and control group. However, for the post-test, we have the following 

values: t(130) = -1.684, p < 0.05. So we reject the null hypothesis and conclude that two 

groups are significantly different. In Table 3.13, we can also see that the experimental 

group attaining a higher mean score and smaller standard deviation (Mean = 6.58; SD = 

1.519) than the control group (Mean = 6.11; SD = 1.715). This data also indicates that 

the experimental group was performed better than the control one after the treatment. 

Boxplots were used to illustrate normal distribution of students‟ scores in the 

pre- and post-test. In Fig. 3.25, we can realize mean scores, extreme scores, and 

variances in two groups. It seems to be symmetrical in the pre-test. The median lines are 

in the center of the boxes and the whiskers extending from the top and bottom half of 

the boxes have equal lengths. But the scores have a little change in the post-test. The 

number of students with high scores in the experimental group is more than that in the 

control one. At the same time, the number of students with low scores in the 

experimental group has actually decreased. 
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Figure 3.25: Boxplots for independent samples t-test 

 In general, we have found evidence that our experimental treatment has a 

statistically significant effect. The means of the performances of the experimental group 

do differ significantly after the treatment. 

: There is no significant difference between the students‟ mean scores in 

the experimental group before and after the treatment. 

In order to test this hypothesis, a paired sample t-test was used to test for 

significant achievement differences of the experimental group with p < 0.05. 

Table 3.15: Paired sample statistics for experimental group 

 Mean N Std. Deviation Std. Error Mean 

Sample 
Experimental Group Pre-test 5.93 67 1.418 .173 

Experimental Group Post-test 6.58 67 1.519 .186 

Table 3.16: Paired sample correlations for experimental group 

 N Correlation Sig. 

Sample 
Experimental Group Pre-test & 

Experimental Group Post-test 
67 .330 .006 

 Table 3.16 shows the Pearson correlation coefficient and its significance value. 

We have found that r = 0.330, p < 0.05, which is found to be significant. This test is 

conducted to show if the results found are consistent. We are predicting that the 

treatment have the same effect on all students. There will be a consistent effect on them. 
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It means that a student who performed better than average on the pre-test would still do 

better than average in the post-test and someone near the bottom of the group in the pre-

test would still be near the bottom of the group in the post-test). Therefore, the students 

are behaving consistently as their scores in the pre-test indicated because they are 

significantly correlated with their scores in the post-test. The results of paired samples t 

test (see Table 3.17 below) t(66) = -3.159,  p < 0.05 shows that there is significant 

difference between the students‟ mean scores and variance in the experimental groups 

before and after the treatment.  

Table 3.17: Paired samples test for experimental group 

 

Paired Differences 

t df 
Sig.  

(2-tailed) Mean 
Std. 

Deviation 

Std. Error 

Mean 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Experimental Group 

Pre-test & 

Experimental Group 

Post-test 

-.657 1.702 .208 -1.072 -.242 -3.159 66 .002 

 Besides the change in the students‟ mean scores and variance, we have also 

concentrated on the change of students‟ level of proving after period of experimental 

teaching. Hence, the following hypothesis was formulated: 

: There is no significant difference between the students‟ level of 

proving in the experimental group and control group after the treatment. 

 The student‟s level of proving is a rating scale. This scale includes seven levels 

of proving based on the students‟ solution of a problem. It is usually treated as ordinal 

data. Therefore, we used the Mann-Whitney U test which is a nonparametric equivalent 

of the independent samples t test to check this hypothesis. The following data describe 

the levels of proving ranks between experimental and control group. Test statistics are 

also presented to clarify the improvement of proving levels in the experimental group in 

comparison with the control one: 
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Table 3.18: Levels of proving ranks in the post-test 

 Group N Mean Rank Sum of Ranks 

Level of 

Proving 

Control Group 65 52.09 3386.00 

Experimental Group 67 80.48 5392.00 

Total 132   

 

Table 3.19: Test statistics in the post-test 

 Level of Proving 

Mann-Whitney U 1241.000 

Wilcoxon W 3386.000 

Z -4.437 

Asymp. Sig. (2-tailed) .000 

 The results of the Mann-Whitney U test are presented as follows: U = 1241.000, 

Z = -4.437, p < 0.01. We can conclude that there is a high significant difference 

between the level of proving in the control and experimental group after the treatment. 

The students in the experimental group (Mean Rank = 80.48) have attained higher level 

of proving than the control one (Mean Rank = 52.09). However, there is also another 

question that needs to be answered: Have the students‟ levels of proving in the 

experimental group really changed after the treatment? 

: There is no significant difference between students‟ levels of proving 

in the experimental group before and after the treatment. 

Firstly, we have recorded the students‟ level of proving in the pre-test and post-

test and determined whether the two sets of levels of proving come from the same 

distribution. To carry out this work, the one sample Kolmogorov-Smirnov test (more 

commonly known as the K-S test) was used. It took the observed cumulative 

distribution of levels of proving and compared them to the theoretical cumulative 

distribution for a normally-distributed population. 
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Table 3.20: One-sample Kolmogorov-Smirnov test 

 Pre-test Level of Proving Post-test Level of Proving 

N 67 67 

Normal Parameters
a,,b

 
Mean 3.73 4.27 

Std. Deviation .963 1.009 

Most Extreme Differences 

Absolute .207 .214 

Positive .179 .164 

Negative -.207 -.214 

Kolmogorov-Smirnov Z 1.694 1.748 

Asymp. Sig. (2-tailed) .006 .004 

a. Test distribution is Normal. 

b. Calculated from data. 

From Table 3.20, we have obtained the following results: Z = 1.694, p < 0.05 (in 

the pre-test) and Z = 1.748, p < 0.05 (in the post-test). This indicates the observed 

distribution corresponds to a theoretical distribution. That is, the data are not 

significantly different to a normal distribution at the p < 0.05 level of significance. 

Secondly, we used the Wilcoxon signed-ranks test to analyze the initial situation. This 

test is the nonparametric equivalent of the related t test. 

Table 3.21: Levels of proving ranks in the experimental group 

  N Mean Rank Sum of Ranks 

Post-test Levels of Proving 

& 

Pre-test Levels of Proving 

Negative Ranks 15
a
 21.80 327.00 

Positive Ranks 36
b
 27.75 999.00 

Ties 16
c
   

Total 67   

a. Post-test Levels of Proving < Pre-test Levels of Proving. 

b. Post-test Levels of Proving > Pre-test Levels of Proving. 

c. Post-test Levels of Proving = Pre-test Levels of Proving. 
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Table 3.22: Wilcoxon test statistics
b 

 
Post-test Levels of Proving  

& Pre-test Levels of Proving 

Z -3.269
a
 

Asymp. Sig. (2-tailed) .001 

a. Based on negative ranks. 

b. Wilcoxon Signed Ranks Test. 

The results of the Wilcoxon test are as follows: Z = -3.269, N = 67, p < 0.01. 

Therefore, we can conclude that the students‟ levels of proving do differ significantly 

after the treatment. There are 36 students increasing their levels of proving, 15 students 

decreasing their levels while 16 students having the same levels in the post-test. To sum 

up, this result shows the positive effect of the interactive HELP SYSTEM in the proving 

process. The data has also showed that using a methodological model like the 

interactive HELP SYSTEM during the proving process really improves the student‟s 

level of proving. Moreover, we have also taken gender as an independent variable into 

account by the following hypothesis: 

 : Males and females do not differ in students‟ mean scores and variance 

in the experimental group after the treatment. 

An independent samples t test was used to see whether there is a difference 

between the performances of the two groups. 

Table 3.23: Group statistics in the post-test 

 Sex N Mean Std. Deviation Std. Error Mean 

Experimental 

Group 

Male 17 5.94 1.478 .358 

Female 50 6.80 1.485 .210 

 

Table 3.24: Independent samples t test in the post-test 

 

Levene's Test 

for Equality of 

Variances 

t-test for Equality of Means 

95% Confidence Interval of the Difference 
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F Sig. t df 
Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 
Lower Upper 

Experimental 

Group 

Equal variances 

assumed 
.018 .894 -2.063 65 .043 -.859 .416 -1.690 -.027 

Equal variances 

not assumed 
  -2.068 27.796 .048 -.859 .415 -1.710 -.008 

From the Levene‟s test for equality of variances: F = 0.18, p > 0.05, we can 

accept the equal variances assumption for the independent samples t test. The results are 

as follows: t(65) = -2.063, p < 0.05. It has revealed that, there is significant difference 

between males and females after the treatment. However, the results of the 

crosstabulation and Pearson Chi-Square test have shown that there is no difference in 

the males and females‟ attitude towards the interactive HELP SYSTEM: 

 

It means that the students would like to use this system during the proving 

process, but the females have better strategies in solving the problem than males. This 

behavior stems from different factors that need further research. 

Table 3.25: Towards to the interactive HELP SYSTEM by crosstabulation 

 
Sex 

Total 
Male Female 

Towards to the interactive 

HELP SYSTEM 

Disagree 

Count 2 4 6 

Expected Count 1.5 4.5 6.0 

% within Sex 11.8% 8.0% 9.0% 

Neutral 

Count 3 7 10 

Expected Count 2.5 7.5 10.0 

% within Sex 17.6% 14.0% 14.9% 

Agree 

Count 12 39 51 

Expected Count 12.9 38.1 51.0 

% within Sex 70.6% 78.0% 76.1% 

Total 

Count 17 50 67 

Expected Count 17.0 50.0 67.0 

% within Sex 100.0% 100.0% 100.0% 
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Table 3.26: Chi-Square tests 

 Value df Asymp. Sig. (2-sided) 

Pearson Chi-Square .405
a
 2 .817 

Likelihood Ratio .391 2 .822 

Linear-by-Linear 

Association 
.391 1 .532 

N of Valid Cases 67   

a. 3 cells (50.0%) have expected count less than 5. The minimum expected count is 1.52. 

In order to deeply interpret the students‟ satisfaction with the interactive HELP 

SYSTEM, we have divided 30 students in the experimental group into 3 groups with 

different performance in the post-test. Then they were asked to rate their satisfaction on 

a 10-point scale while they worked with this system. We chose the Kruskal-Wallis test 

because there are more than two independent samples (three groups: poor, average, and 

good performance in the post-test). 

Table 3.27: Kruskal-Wallis ranks test 

 Group of Student N Mean Rank 

Level of 

Satisfaction 

Poor 10 11.80 

Average 10 19.10 

Good 10 15.60 

Total 30  

 

Table 3.28: Kruskal-Wallis test statistics
a,b 

 Levels of Satisfaction 

Chi-Square 3.564 

df 2 

Asymp. Sig. .168 

a. Kruskal Wallis Test. 

b. Grouping Variable: Group of Student. 
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The results of the Kruskal-Wallis Chi-Square are shortly presented as follows: 

. So we can conclude that the difference between the 

ratings of the three groups is not significant. 

In our research, one factor that may influence the proving process is the levels of 

realizing geometric invariants. This plays a crucial role in invariance phase and we 

would like to understand the relationship between the students‟ levels of realizing 

geometric invariants and their levels of proving by checking the following hypothesis: 

 : There is no relationship between the students‟ levels of realizing 

geometric invariants and their levels of proving after the treatment. 

The Spearman correlation (rs) was used to correlate data because two variables 

are ordinal. The Spearman correlation uses exactly the same calculations as the Pearson 

but performs the analysis on the tied ranks of the scores instead of on the actual data 

values. 

Table 3.29: Spearman correlation in the post-test 

 Score Level of Proving 

Spearman's rho 

Score 

Correlation Coefficient 1.000 .850
**

 

Sig. (2-tailed) . .000 

N 67 67 

Level of Proving 

Correlation Coefficient .850
**

 1.000 

Sig. (2-tailed) .000 . 

N 67 67 

**. Correlation is significant at the 0.01 level (2-tailed). 

The results of the Spearman correlation are as follows: . This 

finding shows that there is a strong relationship between the students‟ levels of realizing 

geometric invariants and their levels of proving. This relation is highly statistically 

significant. We have continued using Kendall tau-b correlation to examine more 

thoroughly the above-mentioned relationship. The Kendall tau-b correlation is a 

measure of the association between two ordinal variables and takes ranks into account, 

so it can be used for small data sets with a large number of tied ranks. It assesses how 
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well the rank ordering on the second variable matches the rank ordering on the first 

variable. 

Table 3.30: Kendall‟s tau-b correlations in the post-test 

   
Levels of Realizing 

Invariants 
Levels of Proving 

Kendall's 

tau_b 

Levels of Realizing 

Invariants 

Correlation Coefficient 1.000 .544
**

 

Sig. (1-tailed) . .000 

N 67 67 

Levels of Proving  

Correlation Coefficient .544
**

 1.000 

Sig. (1-tailed) .000 . 

N 67 67 

**. Correlation is significant at the 0.01 level (1-tailed). 

The Kendall tau-b correlation output: Kendall tau-b = 0.544, N = 67, p < 0.01. 

This value shows that the data is positively correlated. It indicates the students who 

have high levels of realizing geometric invariants, also high levels of proving and vice 

versa. The results of the post-test show a significant correlation between students‟ 

proving levels and their test scores. However, we have decided a third variable, level of 

realizing geometric invariants, could be influencing the correlation. To answer this 

question we used partial correlations. 

Table 3.31: Partial correlations in the post-test 

Control Variables 
Levels of 

Proving 
Score 

Levels of Realizing 

Geometric Invariants 

Levels of Proving 

Correlation 1.000 .748 

Significance (1-tailed) . .000 

df 0 64 

Score 

Correlation .748 1.000 

Significance (1-tailed) .000 . 

df 64 0 
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The correlation test statistic r = 0.748, df = 64, p < 0.01. These results indicate 

that as the level of proving increases, scores on test also increases, when the effects of 

realizing geometric invariants have been controlled for. This is a positive correlation. So 

the relationship between levels of proving and test scores (performance) is not the result 

of the levels of realizing geometric invariants. 

Finally, we have investigated the effects of open-ended questions and 

explorative tasks in the interactive HELP SYSTEM on a student‟s proof-writing ability. 

The same problem was given to 20 students in four conditions. These students were 

chosen and five randomly allocated to each condition (variance, conjecture, 

argumentation, and proof). We used ANOVA test to support our verification. 

Table 3.32: Descriptive statistics 

Group N Mean 
Std. 

Deviation 
Std. Error 

95% Confidence Interval 

for Mean 
Minimum Maximum 

Lower 

Bound 

Upper 

Bound 

Invariance 5 6.00 .791 .354 5.02 6.98 5 7 

Conjecture 5 6.80 .570 .255 6.09 7.51 6 8 

Argumentation 5 7.10 .742 .332 6.18 8.02 6 8 

Proof 5 7.40 .652 .292 6.59 8.21 7 8 

Total 20 6.83 .832 .186 6.44 7.21 5 8 

Levene‟s test of homogeneity of variances results are as follows: Levene‟s test = 

0.153, df1 = 3, df2 = 16, p > 0.05. This result is not significant so we can assume that 

the variances of the groups are approximately equal. 

Table 3.33: Test of homogeneity of variances 

Levene Statistic df1 df2 Sig. 

.153 3 16 .926 
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Table 3.34: ANOVA test 

 Sum of Squares df Mean Square F Sig. 

Between Groups 5.438 3 1.813 3.766 .032 

Within Groups 7.700 16 .481   

Total 13.138 19    

ANOVA test result as follows: F(3,16) = 3.766; p < 0.05. This indicates that 

there is a significant difference between the four groups. The following post hoc test 

shows all the possible pairwise comparisons for our four groups of students: 

Table 3.35: Post hoc test multiple comparisons 

Dependent Variable: Score. 

Tukey HSD. 

(I) Group of 

Student 

(J) Group of 

Student 

Mean 

Difference (I-J) 
Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Invariance 

Conjecture -.800 .439 .299 -2.06 .46 

Argumentation -1.100 .439 .097 -2.36 .16 

Proof -1.400
*
 .439 .026 -2.66 -.14 

Conjecture 

Invariance .800 .439 .299 -.46 2.06 

Argumentation -.300 .439 .902 -1.56 .96 

Proof -.600 .439 .536 -1.86 .66 

Argumentation 

Invariance 1.100 .439 .097 -.16 2.36 

Conjecture .300 .439 .902 -.96 1.56 

Proof -.300 .439 .902 -1.56 .96 

Proof 

Invariance 1.400
*
 .439 .026 .14 2.66 

Conjecture .600 .439 .536 -.66 1.86 

Argumentation .300 .439 .902 -.96 1.56 

*. The mean difference is significant at the 0.05 level. 

In each comparison, one group is given the identifier „I‟ and the second „J‟. This 

is evident in the Mean Difference column, which gives the resulting figure when the 

mean of one group (J) has been subtracted from the mean of another group (I). We can 

see that the difference between invariance and proof is significant at the 0.05 level of 
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significance. This indicates the gap between realizing geometric invariants and writing a 

formal proof in the proving process. 

The results of this research provide a strategy for using the interactive HELP 

SYSTEM in the proving process. The treatment in this research has a positive effect and 

increases students‟ levels of proving. From the results of testing the hypotheses, it can 

be concluded that there is positive correlation between students‟ levels of proving and 

their performance. This correlation is actually influenced by the students‟ levels of 

realizing geometric invariants. It was also found that there is a difference performance 

among groups which attained different levels of proving. This distinction shows the 

structural gap between argumentation and proof. Furthermore, it has also been found the 

difficulty in transitioning from the invariance phase to the proof phase in learning 

geometry at the tertiary level (as shown in Section 3.2.3). 

3.3. SUMMARY 

 This chapter deals with the design of the research, methods by which the data 

was gathered and analyzed. It also reports briefly some results obtained from the 

analyses of observations, questionnaires, semi-structured interviews, and hypotheses 

testing.  These analyses contribute in answering some research questions which were 

posed at the beginning of the research. Through these analyses, we can understand how 

students use the interactive HELP SYSTEM as well as their behaviors during the proving 

process. The students‟ positive attitude towards this system represents its role of support 

for students in different phases of the proving process. Furthermore, through this 

investigation, the gap between conjecture and argumentation as well as the gap 

argumentation and proof were also revealed. Some appropriate strategies used to cover 

these gaps were recognized in this chapter. We also examined students‟ difficulties and 

concentrated on some aspects which related to generating ideas of proofs, especially the 

role of realizing geometric invariants in the proving process. In particular, some results 

from this chapter showed that our methodological model improves students‟ levels of 

proving as well as levels of realizing geometric invariants. In general, these results have 

not only statistically but also pedagogically significance in the proving process. These 

findings will be reported concisely in chapter four. 
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Chapter 4 

FINDINGS AND RECOMMENDATIONS 

4.1. FINDINGS OF THE RESEARCH 

 A proof as a final product of the proving process in mathematics textbooks does 

not feel satisfactory to students because this proof quite often does not provide 

understanding of the process of proving itself. The essence of learning proofs is to 

understand the proving process and use appropriate strategies and tools as a means of 

exploration, discovery, and invention. For that reason, there should also be a distinction 

between understanding a proof as product and a proof as process. In other words, there 

should be a distinction between understanding proofs logically and understanding the 

central ideas of a proof. For tertiary students, in order to realize the ideas of proof in 

solving open problems, they need to understand the development of the proving process. 

This understanding does not solely consist of knowing how each phase logically follows 

the previous phases. It includes the process of constructing cognitive unity during 

conjecture validation and the transition from abductive argumentation to deductive 

proof. Therefore, organizing the proving process in terms of different phases was a 

useful tool for building an understanding of it. Based on these arguments, we have 

determined students‟ levels of proving with respect to the corresponsive phases of the 

proving process. According to our classification, there are seven levels of proving: level 

0 (information), level 1 (construction), level 2 (invariance), level 3 (conjecture), level 4 

(argumentation), level 5 (proof), and level 6 (delving). In order to verify the validity and 

reliability of this classification, we built an interactive HELP SYSTEM which was 

embedded in a dynamic geometry environment (GeoGebra). This help system includes 

open-ended questions and explorative tasks that correspond with different levels of 

proving. On the basis of the students‟ performance at the end of experimental teaching 

we have found that this system improves students‟ level of proving and makes a 

contribution in developing their geometric thinking. 

 In addition, throughout our experimental teaching, we classified different 

difficulty categories that students met during the proving process such as: lack of 
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explorative strategy, difficulty in reading diagram, producing arguments, and organizing 

valid arguments to write a formal proof. These difficulties also reveal the gap between 

conjecture and argumentation and the gap between argumentation and proof. It means 

that some students could not the construct cognitive unity during the process of 

validating a conjecture. In other words, they have difficulty in producing „valuable 

arguments‟ for proofs. The gaps between argumentation and proof are structural and 

cognitive. After producing arguments, because of these gaps students could not 

differentiate valuable arguments from a set of collected arguments and could also not 

reverse the structure of abductive argumentation in writing a deductive proof. However, 

with the support of the interactive HELP SYSTEM, some students can bridge these gaps 

in writing a formal proof. They tend to use abductive argumentation during the process 

of realizing invariants, validating conjectures and writing proofs. This research has also 

revealed that realizing geometric invariants is a crucial element in generating ideas for 

proofs. To interpret this element, we have also classified levels of realizing geometric 

invariants and investigated the relationship between the level of proving and the level of 

realizing geometric invariants. Based upon the empirical results, we proposed five 

levels of realizing geometric invariants: level 0 (realize no invariant), level 1 (realize 

static invariants), level 2 (realize moving invariants), level 3 (realize invariants of a 

geometric transformation), and level 4 (realize invariants of different geometries). 

Hypothesis testing has also confirmed that there is a „positive linear‟ relationship 

between level of proving and level of realizing geometric invariants. It means that 

students who attain high levels of realizing geometric invariants also attain high levels 

of proving and vice versa. 

In this research, we have also defined the concept of dynamic visual thinking and 

realized its role in the proving process. This kind of thinking supports students in 

improving the level of realizing geometric invariants and revealing the ideas of proof. 

Developing students‟ dynamic visual thinking would provide them with the ability to 

observe the static and moving invariants, realize the properties of shapes, interpret the 

diagram, and transform from the diagram into a chain of arguments. Dynamic visual 

thinking has also improved students‟ logical skills by linking the geometric objects. In 

particular, a link between dynamic visual diagrams and formal arguments is an essential 

aspect in the transition from argumentation to proof. 
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The most significant contribution to improvements in proof teaching will be 

made by the development of good models of methodology, supported by carefully 

designed activities and resources. For that reason, our methodological model – the 

interactive HELP SYSTEM – would provide tertiary students with a strategy to solve 

proof-related problems and enhance the level of proving. Working with this model, 

students could clearly understand the development of the proving process within a 

dynamic geometry environment. During our experimental teaching, we also realized and 

proposed basic conditions for understanding the proving process. These conditions 

determine the territory before a proof, realize different levels of proving, realize 

geometric invariants for generating ideas for proofs, construct a cognitive unity in the 

transition from conjecture to proof, understand the relationship between argumentation 

and proof, use different kinds of argumentation during the proving process, and 

organize arguments to write a formal proof. It means that to understand the proving 

process, every student needs to know how to work and experience these conditions 

during the proving process with the support of dynamic geometry software. This 

dynamic environment creates collaborative activities to explore open problems and 

provides useful elements to explain why and how this tool can be a support for proving 

activities. It also appears the interplay between the spatio-graphical field (including 

geometric objects, paper drawings, etc) and the theoretical field (including geometrical 

properties, relationship, theorems, etc) occurs as students interact with a dynamic 

geometry environment. Therefore, the findings of this research can be used to enhance 

the quality of learning and teaching proof both at the tertiary level and the secondary 

level. 

4.2. RECOMMENDATIONS 

In some countries, a lot of crucial aspects of mathematics including proofs and 

proving have been reduced in importance or eliminated from the mathematics 

curriculum and basic requirements of secondary school. However, proofs and proving 

have also played an important role in the Vietnamese curriculum of mathematics in 

secondary schools, especially in upper secondary school (as shown in Section 2.2). 

Through proving activities, students can realize the meaning of mathematics in their 

real-world life. Therefore, they should understand the development of the proving 
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process not only in the geometry field but also in other fields of mathematics, especially 

in algebra. The further research question is whether or not the classification of proving 

levels in this dissertation is suitable for the proving process in algebra. Thus, it is 

important to determine the differences between the development of the proving process 

in geometry and algebra. This means we have to consider the appropriation of the basic 

conditions for understanding the development of the proving process in algebra.  The 

meaning of the invariant concept in the interactive HELP SYSTEM model needs to be 

redefined and evaluated concerning its role in algebraic problems. In particular, the 

relationship between argumentation and proof in the algebra is different from that in 

geometry. The reason for this difference in the algebra field is due to the fact that “it 

often appears unbroken cognitive unity in the transition from conjecture to proof”. 

Therefore, it is also necessary to examine how to construct a cognitive unity in algebraic 

proof-related problems. Finally, it should also be investigated the role of computer 

algebra systems during the proving process and scrutinize how to use this environment 

to support students in understanding algebraic proofs. 

In our research, the participants who took part in the experimental teaching are 

second-year students from the teacher training university. We have found that our 

interactive HELP SYSTEM, as well as basic conditions for understanding the 

development of proving process, is suitable for tertiary students. However, a problem 

that may arise from this research is how to apply this model to support students in 

learning of proof and whether or not the basic conditions have appropriately remained 

for understanding the proving process at the secondary school. It should also determine 

which level of proving the students need to be supported from dynamic geometry 

software. For instance, the student attains level 2 of proving needs to use dynamic 

geometry software to realize moving geometric invariants. In addition, in the teaching 

of proof in secondary schools, mathematics teachers should focus on the pedagogical 

tasks which contain typical mathematical processes to work in depth with. Teachers 

should also provide students with a rich opportunity to make a conjecture during the 

proving process because once students have formulated a conjecture; the conflict is not 

that they do not know how to prove it, but to understand that they need a proof. 

Otherwise, in geometry, when students validate their conjectures, they often visualize 

and collect data from diagrams and figures to produce arguments. These arguments may 
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provide a few clues for the proving process, although do not produce an instant proof. 

Therefore, teachers should design visualizing activities to support students at the 

secondary school in transforming from figural into conceptual aspect to produce 

arguments during the proving process. 

Dynamic visual thinking is also an important concept which was introduced in 

this research. We have realized that it plays a crucial role in proofs using geometric 

transformations. Indeed, it provides students with „a vision‟ of realizing geometrical 

facts, internalizing specific facts, learning to reason, shifting attention from specific 

relationships to properties, and then reasoning on the basis of realized and then 

perceiving properties. Through these activities students‟ powers are engaged and 

developed, such as the power to imagine, to express what is imagined in figures, 

diagrams, movements, invariants, and symbolic objects. These powers are emphasized 

both before and after using dynamic geometry software; especially the ability of 

imagining or re-imagining what changed and what invariants remained the same 

without dynamic geometry software. It is also important to describe (to „say what you 

see‟) accurately what objects are related after imagining. For instance, to imagine a 

parallelogram, students‟ attention may be attracted to many different features: vertices, 

sides, angles, parallelism, equality of length, equality of angles, but also size and 

orientation. Some features are useful mathematically, others are not; some features are 

to be discerned, others are relationships to be recognized; others are properties that are 

being exemplified. Therefore, in order to work with images and use effective visual 

dynamic thinking during the proving process, teachers should encourage their students 

to experience reasoning by using the strategy “say what you see and write what you 

imagine”. To achieve this goal, the teachers‟ job in setting up this situation is to provide 

the scaffolding for discussing what is seen, but also to fade this scaffolding as the 

discussion, aimed at enhancing students‟ sense of geometric seeing and reasoning, 

progresses. The further research on dynamic visual thinking would make a significant 

contribution to improve students‟ proving levels and develop geometric thinking. 

 As a result, the mathematics curriculum at the secondary school should pay 

special attention to the role of geometric transformations in solving geometric problems 

and developing students‟ dynamic visual thinking. Students need to realize invariants 
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for different transformations such as point reflection, line reflection, rotation, 

translation, and similarity. This is a basis for approaching the group of transformations, 

which is an important concept in building geometry in a modern point of view. 

Therefore, the group of transformation should be focused on solving geometric 

problems at the teacher training universities. Mathematics students should be trained to 

develop the sense of realizing invariants of transformations and the ability of reasoning 

based on geometric invariants. A further research on this issue within a dynamic 

geometry environment would make a contribution to develop students‟ reasoning and 

proof. This topic also relates to logical thinking and dynamic visual thinking in 

geometry. Thus, we would like to recommend this topic to other researchers aimed at 

creating a discussion forum about learning and teaching geometric invariants at the 

secondary school.  

4.3. FINAL CONCLUSIONS 

 The current trend of mathematics education is towards mathematical problem 

solving and non-routine mathematical tasks because the use of drill-and-practice alone 

might not be sufficient. Therefore, a mathematics teacher needs to be trained both with 

the pedagogical skills and sufficient mathematical content knowledge. In order to 

achieve this goal, more effort should be taken by the teacher training universities to 

allow opportunities for trainee teachers to improve their mathematical content 

knowledge. With our experiences in teaching elementary geometry for second-year 

students at the Thai Nguyen University of Education in Vietnam, we did our research on 

geometric proving process aimed at improving student‟s proving level and the quality of 

teaching proofs at the secondary school as well. Some proofs in the Vietnamese 

mathematics textbooks are usually presented as already-made products. In this situation, 

students are only „users‟ and not allowed to participate in the process of the construction 

of knowledge. Therefore, it is necessary to make students explain why a conjecture 

holds and how to validate the conjecture. There is also a need to introduce proofs in the 

classroom in a way that allows students to face and overcome the difficulties, especially 

the difficulty of distinguishing and using appropriate empirical and deductive 

arguments. It means that students need to know how to transform from empirical 

arguments into deductive arguments and then a deductive proof. This transition shows 
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the relationship between proof and argumentation on which is focused in our research. 

However, the transition to proof is abrupt when students enter university because they 

need not understand only proof as product but proof as process at the tertiary level. 

Therefore, our objectives in this research is providing prospective mathematics teachers 

strategic and pedagogical techniques both in tackling proving-related problems and 

teaching geometric proofs in the secondary school. 

The general objectives of the mathematics curriculum at the tertiary level related 

to proving are: developing logical and intuitive abilities; recognizing logical concepts 

and rules in argumentative and proving contexts; proving geometric properties; making 

sense of formal mathematics symbols. Therefore, the proving process relies on a range 

of „habits of mind‟ such as looking for geometric invariants, formulating and validating 

conjectures, organizing logical arguments, and writing a formal proof. However, 

students usually do not understand the meaning of these acts of proving and when they 

are asked to prove a theorem; they cannot really make sense of it. These cognitive 

difficulties lead to the fact that students prefer empirical arguments over deductive 

arguments when presented the results of the act of proving. As a result, students are 

capable of conjecturing and arguing using everyday language and most of them 

recognize that an empirical justification is not enough, but they do not know how to 

provide a formal proof. For that reason, we have designed a methodological model, on 

which the interactive HELP SYSTEM is based, for supporting tertiary students in 

understanding the proving process. This model encourages students to formulate 

conjectures and to engage them in abductive argumentation activities. The findings of 

this research have also confirmed that this model makes a contribution to improving the 

students‟ levels of proving and developing their dynamic visual thinking. In particular, 

this methodological model within a dynamic geometry environment also promotes that 

students realize geometric invariants so as to „flash‟ ideas of proofs and encourages 

them to construct a proof for what they discover. It also acts as a potential environment 

for exploring and promoting links between empirical and deductive arguments. 

Therefore, we suggest two different approaches in using a dynamic geometry 

environment: one is moving, related to invariants, and the other is static, related to 

diagrams, words, and symbols. Students need to focus on invariants rather than focus on 

details which suppress the overall impression of a drawing in its concentration on local 
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relationships between parts of a figure. The idea of focusing on geometric invariants 

during the proving process relates well to the idea of developing the „geometrical eye‟
30

. 

It is the power of seeing geometrical properties detaching themselves from a figure and 

supporting students in making new conjectures. Some spontaneous arguments which are 

produced during the process of validating these conjectures may be utilized to write a 

formal proof.  

Teachers should also provide students TOULMIN model of argumentation as a 

means of producing and analyzing arguments during the proving process. It supports 

students in the transition from abductive argumentation to deductive proofs by reversing 

the abductive structure in the process of validation of conjectures. Moreover, during the 

proving process, lots of interplay between, transitions from-to, transformations of-into 

would take place. Therefore, in order to understand the proving process, students must 

consider the relationships between different activities which are related to proofs, i.e. 

experimenting, realizing geometric invariants, conjecturing, arguing, and proving. That 

is the reason why we proposed some basic conditions for understanding the proving 

process within a dynamic geometry environment. On the basis of these conditions, 

mathematics teachers could evaluate their students‟ understanding of proofs and the 

proving process in the mathematics classroom. Consequently, they could provide each 

student with appropriate learning methods and strategies to construct a formal proof. 

  

                                                 
30

 GODFREY (1910) defined the ‘geometrical eye’ as the power of seeing geometrical properties detach 
themselves from a figure. This notion might be a potent tool for building effectively on geometrical 
intuition and solving geometrical problems. 
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APPENDICES 

Appendix A (Students‟ attitudes towards the interactive HELP SYSTEM in 

the proving process) 

Below are a series of statements. There are no correct answers to these 

statements. They are designed to permit you to indicate the extent to which you agree or 

disagree with the ideas expressed. Place a checkmark in the space under the label 

indicating which is closest to your agreement or disagreement with the statements. 

Table A.1: Questionnaire for investigating students‟ attitudes 

Item 

No.  
Items 

Strongly 

Disagree 
Disagree Unsure Agree 

Strongly 

Agree 

1 
I would enjoy working with the 

interactive HELP SYSTEM 
     

2 

Task-based activities in the 

interactive HELP SYSTEM stimulate 

my proving 

     

3 

Working with the interactive HELP 

SYSTEM  make me believe more in 

the proving process 

     

4 

I think the interactive HELP 

SYSTEM could be a strategic 

scaffolding in the proving process 

     

5 

The interactive HELP SYSTEM 

offers opportunities to discuss with 

the others while proving 

     

6 

I make less mistakes when 

constructing the figures with the 

interactive HELP SYSTEM 

     

7 

It is difficult for me to draw auxiliary 

figures without the interactive HELP 

SYSTEM 

     

8 

It takes shorter time when 

constructing a figure with the 

interactive HELP SYSTEM 

     

9 

I can recognize geometric invariants 

when dragging the figures with the 

interactive HELP SYSTEM 

     

10 
The recognized invariants help me 

discover the ideas for proving 
     

11 I think realizing geometric invariants      
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is the most crucial phase for the 

proving process 

12 

I cannot make a conjecture on my 

own until I use the interactive HELP 

SYSTEM 

     

13 
I produce small arguments when 

formulating a conjecture 
     

14 

I do not know how to produce 

arguments without the interactive 

HELP SYSTEM 

     

15 

I can collect all arguments after 

validating conjectures with the 

interactive HELP SYSTEM 

     

16 
I usually use wrong rules of 

inference in argumentation 
     

17 

I do not know how to combine 

arguments in order to construct a  

proof without the interactive HELP 

SYSTEM 

     

18 

I think writing a formal proof is the 

most difficult phase of the proving 

process 

     

19 

I do not know how to delve into the 

problem without the interactive 

HELP SYSTEM 

     

20 

The interactive HELP SYSTEM 

stimulates me to look back upon the 

problem after finishing proof writing 

     

Open-ended Questions. 

1. Where do you usually meet difficulties in the proving process? 

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

…………………………………………………………………………………… 

2. Which stages of the proving process does the interactive HELP SYSTEM support 

you? 

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

…………………………………………………………………………………… 
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Appendix B (Students‟ levels of realizing geometric invariants) 

Below are a series of statements. They are levels of realizing geometric 

invariants in the proving process. Place a checkmark in the space under the label which 

is closest to your levels (from the lowest level 1 to the highest level 5). Statement 10 

aims at investigating your assessment on the role of dynamic visualization in developing 

a sense of proof, especially proof by using geometric transformations method: 

1 = Strongly Disagree 

2 = Disagree 

3 = Unsure 

4 = Agree 

5 = Strongly Agree 

Note. Mark the number that you think of first, do not spend long time thinking 

about any one statement. It is important that you answer each statement. Do not worry 

about what you think your teachers or anyone else might want you to say. Your answers 

are CONFIDENTIAL. Thank you for your cooperation! 

Table A.2: Questions for classifying levels of realizing geometric invariants 

Item 

No. 
Items 1 2 3 4 5 

1 I can see given geometric invariants      

2 
I can distinguish embedded or overlapping figures in 

a diagram 
     

3 I can realize static invariants      

4 
I can differentiate invariants of different geometric 

transformations 
     

5 

I can realize moving invariants by dragging, 

measuring, and checking the relationships in a 

dynamic geometry environment 

     

6 
I can realize an image of the figure under a certain 

geometric transformation 
     

7 
I can realize moving invariants in a static 

environment 
     

8 
I can realize a geometric transformation by 

visualizing the movement with the picture in mind 
     

9 
I can differentiate geometric invariants in different 

types of geometry 
     

10 
I think dynamic visualization helps me develop a 

sense of proof in geometric transformations 
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Appendix C (Student interview questions) 

You will need about 30 minutes to finish this interview. The aim of this 

interview is to try and find out how you solve a problem using geometric 

transformations and not to know about your achievement in the subject. It will not be 

counted on any of your examination. Therefore, you can relax when replying to all the 

following questions: 

Table A.3: Questions for understanding the proving process  

No. Questions Supplementary Questions 

1 
How did you start solving the 

problem? 

 How did you get the information? 

 What was your proof strategy? 

2 
How did you realize the geometric 

invariants? 

 Where did you get a key invariant, from 

previous experiences or from the diagram? 

 What did you do in order to discover the 

invariants (dragging, measuring, checking the 

relationships, discussing with the others or 

working alone with paper and pencil)? 

 Did you produce some preliminary arguments 

while discovering invariants? 

3 
How did you formulate a 

conjecture? 

 Did you make a conjecture as soon as 

recognizing invariants? 

 Did you enjoy making conjectures? Were you 

interested in proving your conjectures? 

4 
How did you validate your 

conjectures? 

 Did you gather some arguments while 

discovering invariants and formulating 

conjectures? 

 Why did you need to prove your conjectures? 

 What was in your mind when you proved the 

conjectures? 

5 
How did you collect your 

arguments? 

 Did you usually justify every reason in the 

chains of reasoning? 

 Did you take notes while discussing with the 

others? 

 Did you look into your arguments as a 
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process? 

6 
How did you arrive at the formal 

proof? 

 Where did your ideas of the proof come from? 

 Did you combine your arguments into a 

formal proof? 

7 
How did you get a generalization 

in the proving process? 

 Did you have enough time to do the tasks? 

 What kind of thinking manipulation did you 

use to delve into the problem? 

 What kind of inferences did you use? 

8 

What did you think about the 

group-of-three interactions while 

proving? 

 Did it raise your argumentation? 

 What did you do when you had difficulty in 

the proving process? 

 Did you come to agreement during the 

discussion? Why did you change your 

mind/insist your own point of view? 

9 
What are your difficulties in the 

proving process? 
 

10 

Could you pick out embedded or 

overlapping figures from the given 

diagram? 

 How did you read your diagram? 

 Could you see any invariant? Static or 

moving invariants? 

11 
Did you know what constitutes as 

a formal proof? 
 

12 
Could you write down what you 

had in mind? 

 How did you validate your conjectures? 

 Could you sort out the arguments in a logical 

way? 

 Did you discuss with your group members? 
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Appendix D (Tasks for Semi-structured Interviews) 

Task D1. (School Problem) People living in the neighborhood of town A and 

working at company B are to drive their children to school on their way to work. Where 

on highway l should they build school C in order to minimize their driving? (When the 

site C for the school is chosen, the roads AC and CB will be built). 

Task D2. (One-Bridge Problem) A river has straight parallel sides and cities A 

and B lie on opposite sides of the river. Where should we build a bridge in order to 

minimize the traveling distance between A and B (A bridge, of course, must be 

perpendicular to the sides of the river)? 

Task D3. (Two-Bridge Problem) Where would you build two bridges over the 

two sleeves of a river with parallel straight sides to minimize the length of the path 

between the cities A and B? (Bridges have to perpendicular to the sides of the river). 

Task D4. (Equilateral Triangle Game) Let ABC be an equilateral triangle with 

side length 5. Mark and Mike play the following game under the control of a referee: 

The referee chooses an any point, X, on the side AC; then Mark chooses a point, Y, on 

the side BC; and finally Mike chooses a point, Z, on the side AB. Suppose that Mike‟s 

aim is to obtain a triangle XYZ with the smallest possible perimeter, while Mark‟s aim is 

to get triangle XYZ with the largest possible perimeter. Find a strategy helping them 

achieve their goal? 

-------------------------------------------------------------------------------------------------------- 

Solutions. 

Task D1. Draw the symmetric image point B‟ of point B with respect to the 

straight line l (representing the highway) and the straight line B‟A. 

We have the following equality: CA + CB = CA + CB‟ (since CB = CB‟) 

                                                                                 B‟A = C‟A + C‟B‟  

                                                                                            = C‟A + C‟B (since we apply 

the triangle inequality CA + CB  B‟A). Therefore, the intersection C‟ of the straight 

line B‟A and the straight line l is the site for the school S. 
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Figure A.1: Determining a place for building a school 

 Task D2. Draw the image point B‟ of point B under the translation through 

vector ED  toward the river and the perpendicular to it, and connect point A and point B‟ 

by a segment. 

 

Figure A.2: Determining a place for building one bridge 

The intersection G of the straight line AB‟ with the upper side of the river 

(representing by the line l1) is the best place to build the bridge, since: 

AD + DE + EB = (AD + DB‟) + B‟B (since DE = BB‟, and EB = DB‟) 

                          AB‟ + BB‟ = AG + GH + HB (inequality AD + DB‟  AB‟).  

Therefore, we always have the following inequality: 
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AD + DE + EB  AG + GH + HB 

 Task D3. Draw the image point A‟ of point A under the translation through 

vector LN  and image point B‟ of point B under the translation through vector MO  

(toward the rivers and the perpendicular to them), and connect point A‟ and point B‟ by 

a segment. 

The intersection N‟ and O‟ of the straight line A‟B‟ with the sides of the river 

(the lines l2 and l3) are the best places to build the bridges, since: 

AL + LN + NO + OM + MB = AA‟ + A‟N + NO + OB‟  

                                     AA‟ + A‟B‟ + B‟B 

                                                           = AA‟ + A‟N + N‟O‟ + O‟B‟ + B‟B 

 

Figure A.3: Determining two places for building two bridges 

Task D4. Firstly, we will show that the best strategy for Mark is to choose point 

Y  B or point Y  C. If the referee chooses a point, X, on the segment AC, we consider 

its reflection X‟ in the line AB and the reflection X” of point X‟ in the line BC. Clearly, 

if X and Y are already chosen, Mike has to choose Z as the intersection point of AB and 

X‟Y. For such a choice of Z we have: 

XY + YZ + ZX = XY + YX‟ = XY + YX” 
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Since Y lies on BC, the latter sum will be a maximum when Y  B or Y  C, 

depending on the position of the segment XX”. 

 

 

Figure A.4: Mark‟s and Mike‟s strategies in the equilateral triangle game 

 Next, if Mark chooses Y  B, then Mike will choose Z  B, and the perimeter of 

∆XYZ will be 2XB. Let point C‟ be the reflection of point C in the line AB. In case Mark 

takes Y  C, Mike will put Z at the intersection point of X‟C and AB, and then the 

perimeter of ∆XYZ will be XC + X‟C = XC + XC‟. Let D be midpoint of the segment 

AC. Clearly, Mike has to choose X on the segment DC. There exists a point, E, on DC 

such that 2BE = CE + C‟E and then Mike has to choose X  E. 
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Appendix E (Tasks for classifying levels of realizing geometric invariants) 

Task E1. (Parallelogram Problem) Let ABCD be a parallelogram. The bisectors 

of four angles A, B, C, and D intersect each other and forming a quadrilateral 

MNPQ. What are special characteristics of this quadrilateral? 

Task E2. (Area Comparison Problem) Let ABC be a triangle. Construct three 

squares ABEF, BCMN, ACPQ outwards of the triangle. Compare the areas of four 

triangles ABC, BNE, CMP, and AFQ. 

Task E3. (Square Problem) Let ABCD be a quadrilateral. Construct four squares 

ABEF, BCMN, CDPQ, ADRS outwards of the quadrilateral. Let O1, O2, O3, O4 be the 

centers of these four squares. Prove that four midpoints of diagonals of two quadrilateral 

ABCD and O1O2O3O4 form a square A1B1C1D1. 

Task E4. (Hexagon Problem) Let ABC be a triangle. We take six points A1, A2  

BC; B1, B2  CA; C1, C2  AB such that: BA1 = A1A2 = A2C, CB1 = B1B2 = B2A, and 

AC1 = C1C2 = C2B. Six straight lines AA1, AA2, BB1, BB2, CC1, CC2 intersect each other 

forming a hexagon MNPQRS. Prove that three diagonals of this hexagon are concurrent 

at a point. 

-------------------------------------------------------------------------------------------------------- 

Solutions. 

Task E1. Since ABCD is a parallelogram, we derive that:  

A + D = D + C = 180
0
 

We calculate the measure of two angles M and N as follows: 

M = 180
0
 – ( ADM + DAM) = 180

0
 – ( A + D) = 180

0
 – 90

0
 = 90

0
 

N = 180
0
 – ( CDN + DCN) = 180

0
 – ( D + C) = 180

0
 – 90

0
 = 90

0
 

Similarly, we can prove that P = Q = 90
0
. In general, we can conclude that 

the quadrilateral MNPQ is a rectangle. 
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Figure A.5: A constructed rectangle in the parallelogram problem 

Task E2. We denoted  by the area of the triangle ABC. We have: 

 

Moreover, we realize that point H is an image of point I under the rotation of 90
0
 

about point C or . Therefore, we have AH = PI. Since BC = CM, so we can 

conclude that . 

 

Figure A.6: A rotation in the area comparison problem 
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Similarly, we prove that . It follows that the areas of 

four triangles ABC, BNE, CMP, and AFQ are equal. 

Task E3. We denoted  by the rotation of angle 90
0
 about point B. It is 

evident that , so it follows that .  

 

Figure A.7: A rotation in the square problem 

From this assertion, we obtain . It is easily verified 

that . Additionally, from the above reasoning we can also find 

that . It is also clear that  and 

 (1). We repeat the same reason as before, we can show that 

 (2). From (1) and (2), it is straightforward to verify that the 

quadrilateral A1B1C1D1 is a square, as claimed. 

Task E4. Firstly, we can realize that this problem contains affine concepts such 

as concurrency, triangle, hexagon, division of a segment, and so on. Therefore, we can 

conclude that this problem is an affine problem. It means that if the assertion of the 

problem is valid in the case of equilateral triangle then it is also valid in the case of (an) 

arbitrary triangle which is affine equivalent to an equilateral triangle. 
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Figure A.8: Affine invariants in the hexagon problem 

For simplicity we consider the case of an equilateral triangle ABC. It is a simple 

matter to show that BB1C = CC2B and BB2C = CC1B  QBC = QCB, MBC 

= MCB  QB = QC, MB = MC  Q, M lay on a perpendicular bisector of the 

segment BC. 

 

Figure A.9: Equilateral triangle in the hexagon problem 
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In such a manner, we proved that R, N and P, S lay on a perpendicular bisector 

of segments AC, AB, respectively. This implies that MQ, NR, PS are concurrent at point 

O which is the center of circumcircle of triangle ABC, as desired.  
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Appendix F (Pre-test problems and solutions) 

Exercise F1. Let ABCD is a parallelogram, and suppose that squares are 

constructed externally on the four sides of the parallelogram. Then the centers of these 

squares also form a convex quadrilateral. What are special characteristics of this 

quadrilateral? 

Exercise F2. (Triangle Translation Problem) Let D, E, and F be the midpoints 

of sides AB, BC, and CA, respectively, of triangle ABC. Let O1, O2, and O3 denote the 

centers of the circles circumscribed about triangles ADF, BDE, and CEF, respectively, 

and let Q1, Q2, and Q3 be the centers of the circles inscribed in these same triangles. 

What is the relationship between the triangle O1O2O3 and the triangle Q1Q2Q3? 

Exercise F3. (Inscribed Quadrilateral Problem) Let ABCD be a quadrilateral 

inscribed about a circle with the center O. Let M, N, P, Q be the midpoints of the sides 

AB, BC, CD, and DA of the quadrilateral. Prove that the four straight lines, which pass 

through M, N, P, Q, respectively and are perpendicular to the opposite sides of the 

quadrilateral, are concurrent. 

-------------------------------------------------------------------------------------------------------- 

Solutions. 

Task F1. Suppose the centers of the squares that constructed externally on the 

four sides of the parallelogram form the quadrilateral M1M2M3M4. We can easily show 

that the diagonals M1M3 and M2M4 are equal and mutually perpendicular (in a manner 

entirely analogous to the result of the previous task E3). 

Further, since the point O of the intersection of the diagonals of the 

parallelogram ABCD is its center of symmetry. In particular, it is the center of symmetry 

for the quadrilateral M1M2M3M4 (which must, therefore, be a parallelogram – since the 

parallelogram is the only quadrilateral that has a center of symmetry). But a 

parallelogram whose diagonals are equal and perpendicular must be a square. 
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Figure A.10: The quadrilateral that has a center of symmetry 

Task F2. Observe that triangle BDE is obtained from triangle DAF by a 

translation (in the direction AB through a distance AD); thus the line segments joining 

pairs of corresponding points in these two figures are equal and parallel to one another. 

Therefore, we obtain O1O2 = Q1Q2 and O1O2  // Q1Q2.  

 

Figure A.11: Illustrating a translation of a triangle 
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Similarly, we indicate that O2O3 = Q2Q3 and O2O3 // Q2Q3; O3O1 = Q3Q1 and 

O3O1 // Q3Q1. Therefore, two triangles O1O2O3 and Q1Q2Q3 are congruent (in fact, 

their corresponding sides are parallel, that is, the triangles are obtained from the other 

by a translation). 

Task F3. Since O is the center of circle then we have four straight lines OM, ON, 

OP, OQ perpendicular to four sides of the quadrilateral AB, BC, CD, DA, respectively. 

Otherwise, M, N, P, Q are midpoints of the sides of the quadrilateral, we derive that 

MNPQ is a parallelogram. Let point I be the intersection of two diagonals of the 

parallelogram MNPQ. We denoted  by the central symmetry (point reflection) I. 

Clearly, (M) = P, (N) = Q, (P) = M, (Q) = N. Therefore, four straight 

lines MM‟, NN‟, PP‟, QQ‟, which pass through M, N, P, Q and perpendicular to the 

opposite sides of the quadrilateral, are the images of the lines OM, ON, OP, OQ, 

respectively by . 

 

Figure A.12: Central symmetry in the inscribed quadrilateral problem 

Since OM, ON, OP, OQ are concurrent at point O, yielding four straight lines 

MM‟, NN‟, PP‟, QQ‟ that are concurrent at point O‟ = (O), as claimed. 
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Appendix G (Post-test problems and solutions) 

Exercise G1. (Orthic Triangle Problem) Inscribe a triangle with a minimal 

perimeter in a given acute-angled triangle ∆ABC. 

Exercise G2. (Electronic Transformer Station) There are three villages A, B, C 

forming a triangle ABC. Find the position X, lying inside the triangle, in order to build 

an electronic transformer station such that the sum of distance from the station to the 

villages is minimal. 

Exercise G3. (Mine-Finding Problem) A solider has to check for mines in a 

region having the form of an equilateral triangle. The radius of activity of the mine 

detector is half the altitude of the triangle. Assuming that the solider starts at one of the 

vertices of the triangle, find the shortest path he could use to carry out his task. 

-------------------------------------------------------------------------------------------------------- 

Solutions. 

 Exercise G1. Let ABC be the given triangle. We want to find points M, N, and P 

on the sides BC, CA, and AB, respectively, such that the perimeter of ∆MNP is minimal. 

First, we consider a simpler version of this problem. Fix an arbitrary point, P, on 

the side AB. We are now going to find points M and N on the sides BC and CA, 

respectively, such that ∆MNP has a minimal perimeter (this minimum, of course, will 

depend on the choice of point P). Let P‟ be the reflection of the point P in the line BC 

and P” the reflection of P in the line AC. Then CP‟ = CP = CP”, P‟CB = PCB, and 

P”CA = PCA. Setting  = BCA, we then have P‟CP” = 2 . Furthermore, we 

obtain 2  < 180
0
, since  < 90

0
 by the assumption. Consequently, the line segment 

P‟P” intersects the sides BC and AC of ∆ABC at some points, M and N, respectively, 

and the perimeter of ∆MNP is equal to P‟P”. 

In a similar way, if X is any point on BC and Y is any point on AC, the perimeter 

of ∆XPY equals the length of the broken line P‟XYP”, which is greater than or equal to 

P‟P”. So, the perimeter of ∆PXY is greater than or equal to perimeter of ∆PMN, and 

equality holds precisely when X  M and Y  N. 



 196 

 

 

Figure A.13: Minimal perimeter in the orthic triangle problem 

Thus, we have to find a point, P, on the side AB such that the line segment P‟P” 

has minimal length. Notice that this line segment is the base of an isosceles triangle 

P”P‟C with constant angle 2  at point C and sides CP‟ = CP” = CP. So, we have to 

choose P on AB such that CP‟ = CP is minimal. Obviously, for this to happen, P must 

be the foot of the altitude through C in ∆ABC. 

 

Figure A.14: An orthic triangle with the smallest perimeter 

Note now that if P is the foot of the altitude of ∆ABC through point C, then point 

M and point N are the feet of the other two altitudes. To prove this, denote by M1 and N1 
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the feet of the altitudes of ∆ABC through A and B, respectively. Then BM1P‟ = 

BM1P = BAC = CM1N1, which shows that the point P‟ lies on the line M1N1. 

Similarly, point P” lies on the line M1N1 and therefore M  M1, N  N1. Hence, of all 

triangles inscribed in ∆ABC, the one with vertices at the feet of the altitudes of ∆ABC 

has a minimal perimeter. The triangle has its vertices at the feet of the altitudes of a 

certain triangle is called an orthic triangle. 

  Exercise G2. We consider the reflection point X‟ of point X on the line AB. We 

have AX‟ = AX, BX‟ = BX. Also, the line segment CX intersects the line AB at some 

point Y, and XY = X‟Y‟. Putting t(X) = AX + BX + CX. Now the triangle inequality is 

given: 

CX‟ < CY + X‟Y = CY + XY = CX  t(X‟) < t(X) 

         

 

Figure A.15: Determining a place for building an electronic transformer station 

Let  and  be the angles of ∆ABC. Without the loss of generality we will 

assume that . Then  and  are both acute angles. 
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Denote by  the rotation through 60
0
 counterclockwise about A. For any 

point M in the plane let M‟ = (M). Then AMM‟ is an equilateral triangle. In 

particular, ∆ACC‟ is equilateral. 

Consider an arbitrary point, X, in ∆ABC. Then AX = XX‟, while (X) = X‟, 

and (C) = C‟, imply CX = C‟X‟. Consequently, t(X) = BX + XX‟ + X‟C‟, i.e., t(X) 

equals the length of the broken line BXX‟C‟. We now consider three cases: 

Case 1. 
0120 . Then we obtain BCC‟ =  + 60

0
 < 180

0
. Since, we have 

BAC‟ < 180
0
, the line segment BC‟ intersects the side AC at some point D. Denoted by 

X0 the intersection point of BC‟ with circumcircle of ∆ACC‟. Then X0 lies in the interior 

of the line segment BD and X0‟ lies on C‟X0 since AX0C‟ = ACC‟ = 60
0
. 

Moreover, we have: 

t(X0) = BX0 + X0X0‟ + X0‟C‟ = BC‟  t(X0)  t(X) 

Equality occurs only of both X and X‟ lie on BC‟, which is possible only when X 

 X0. Notice that the constructed point X0 above satisfies: 

AX0C = AX0B = BX0C = 120
0 
 

Case 2. 
0120 . In this case the line segment BC‟ contains C and: 

t(X) = BX + XX‟ + X‟C‟ = BC‟, precisely when X  C. 

Case 3. 
0120 . Then the line BC‟ has no common points with the side AC. If 

AX  AC then the triangle inequality gives: 

t(X) = AX + BX + CX  AC + BC, 

If AX < AC then X‟ lies in ∆ACC‟ and t(X) = BX + XX‟ + X‟C‟  AC + BC, since 

C lies in the rectangle BC‟X‟X. In both cases equality occurs precisely when X  C. 

Exercise G3. Let h be the length of the altitude of the given equilateral ∆ABC. 

Assume that the soldier‟s path starts at the point A. We consider the circles k1 and k2 

with centers B and C, respectively, both with radius . In order to check the points B and 

C, the soldier‟s path must have common points with both k1 and k2. Assume that the 
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total length of the path is t and it has a common point M with k2 first and then a common 

point N with k1. Denoted by D, the common point of k2 and the altitude through C in 

∆ABC and by l the line through D parallel to AB. Adding the constant  to t and using 

the triangle inequality, one gets: 

 AM + MN + NB = AM + MP + PN + NB  AP + PB, 

where P is the intersection point of the straight line MN and the straight line l. On the 

other hand, Heron‟s problem shows that AP + PB  AD + DB, where equality occurs 

precisely when P  D. This implies that  AD + DB, i.e.,  , where E 

is the point of intersection of DB and k1. 

The above argument shows that the shortest path of the soldier that starts at point 

A and has common points first with k2 and then with k1 is the broken line ADE. It 

remains to show that moving along this path, the soldier will be able to check the whole 

region bounded by ∆ABC. 

 

Figure A.16: Determining a path for finding mine 

Let F, Q, and L be the midpoints of the sides AB, AC, and BC, respectively. 

Since , it follows that the disk with the center D and radius  contains the whole 

∆QLC. In other words, from position D the soldier will be able to check the whole 

region bounded by ∆QLC. When the soldier moves along the line segment AD he will 
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check all points in the region bounded by the quadrilateral AFDQ; while moving along 

DE, he will check all points in the region bounded by FBLD. 

Thus, moving along the path ADE, the soldier will be able to check the whole 

region bounded by ∆ABC. Therefore, ADE is one solution of the problem. Another 

solution is given by the path symmetric to ADE with respect to the line CD. The above 

arguments also show that there are no other solutions starting at point A. 
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