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Chapter 1

Introduction

Radiation therapy today allows precise treatment of static tumors inside the human body
due to improvements in treatment procedures over the last 60 years. However, irradiation
of moving tumors is still a challenging task as moving tumors often leave the treatment
beam and the radiation dose delivered to the tumor reduces simultaneously increasing that
in healthy tissue. In order to enable precise treatment of moving tumors, which benefits
patients in various ways, this work aims to push the frontiers of radiation therapy by
technical innovations to accommodate for that need. The focus of this work is to create a
unique real-time system enabling active motion compensation through robotic means for
the application of tumor motion compensation.

1.1 Historical Review

On November 8th, 1895, Prof. Dr. Wilhelm Conrad Röntgen made a discovery at the
Department of Physics of the University of Würzburg, which was about to have a deep
impact on history. In his publication “Über eine neue Art von Strahlen” (“About a new
kind of radiation”) [1] he phrased the term x-rays for the newly discovered rays. His
research triggered a revolution in medicine and medical technology for which he received
the first Nobel Prize in Physics in 1901.
Apart from imaging and diagnostic capabilities of x-rays, their therapeutic effect was

soon investigated by several scientists. However, applications were at first mainly limited
to superficial treatments of skin diseases. The discovery of radioactivity by Henri Becquerel
in 1896 and of radium by Marie Curie in 1898 lead to research about treating cancer and
tumors by radiation. Inspired by these findings, Niels Finsen continued his work on the use
of ultraviolet light for medical purposes. With further technical advances and the creation
of linear accelerators, this ultimately resulted in the first radiation therapy using a linear
accelerator in 1953. Apart from particle therapy, radiation therapy today is mainly carried
out using photons, i.e. megavoltage x-rays.
Since the 1950’s, treatment delivery has been considerably improved by several inno-

vations [2]. The availability of computed tomography (CT) revolutionized the planning
of radiation therapy as tumors could be better visualized and separated from other tis-
sue, thus moving from 2D to 3D planning. The introduction of 3D conformal radiation
therapy allowed to shape the treatment beam to fit to the contours of the tumor by employ-
ing a multi-leaf collimator (MLC), thus enabling more precise treatments and improved
dose distribution while reducing radiation toxicity in the surrounding tissue. Further im-
provements could be achieved with intensity-modulated radiation therapy where beam
intensities are controlled on a fine-granular level, such that different parts of the beam
deliver different doses. Together with 3D conformal radiation therapy and varying beam
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Chapter 1 Introduction

angles for each field, this allows even concave tumors to be irradiated while preserving
the surrounding tissue as much as possible. Since treatment planning and delivery involve
errors and uncertainties from various sources, image-guided radiation therapy tries to re-
duce them in order to achieve improved targeting accuracy. This is accomplished by first
visualizing the tumor region by an imaging modality such as fluoroscopy or cone-beam CT
[3], which is available in the treatment room. The acquired images are then registered to
the planning CT and eventual corrections such as offsets can be accounted for just before
the beginning of treatment or in between different radiation fields during one fraction.

1.2 Treatment Planning

Normally treatments are delivered during one session per day, which is referred to as
a fraction for which a prescribed dose is to be delivered to the tumor according to the
outcome of treatment planning. Each fraction may consist of multiple radiation fields
for which, for example in intensity-modulated radiotherapy, the gantry (arm holding the
linear accelerator) angle is varied in order to change the angle of the treatment beam
relative to the patient. The isocenter refers to a fixed point in space of a linear accelerator
through which the center of the treatment beam passes irrespective of the chosen gantry
angle. The point is usually visualized in treatment rooms with an orthogonal setup of
lasers in order to aid in patient setup. The isocenter serves also as a reference point and
is defined within the tumor during treatment planning.
Another major step in treatment planning consists of the definition of different volumes

according to ICRU report 50 [4] about “Prescribing, recording, and reporting photon beam
therapy”. The gross tumor volume (GTV) consists of the tumor volume as seen in the
planning images. The GTV is encompassed by the clinical target volume (CTV), which
is rather an anatomical concept. It additionally includes possibly malignant tissue which
should be irradiated as well to achieve the goal of radiotherapy. The planning target
volume (PTV), being a geometrical concept, includes the CTV as well as all errors and
uncertainties arising from patient and beam setup, patient movement and organ motion
such as respiration, heart beat or fillings of the bladder. Essentially, the PTV is defined in
such a way to ensure that the prescribed dose will be delivered to the CTV. Furthermore,
the treated volume, containing at least the PTV, is defined using a certain isodose line
(line of constant dose) if limitations of the irradiation hardware lead to application of
prescribed doses in a larger volume than the PTV. Finally, the irradiated volume consists
of all previously defined volumes and additionally contains the volume which will absorb
significantly more dose than the tolerance dose of the affected tissue. With advancing
technologies such as image-guided radiotherapy, the general definitions from ICRU report
50 were supplemented by ICRU report 62 [5] published in 1999. The concept of the internal
target volume (ITV) was introduced, containing the CTV plus an internal margin. The
internal margin is thereby chosen to specifically account for variations in size, position
and shape of the CTV as a result of physiological processes such as organ motion. The
definition of the PTV was altered to include the ITV in addition to setup margins, which
occur due to positioning uncertainties from all related hardware devices.
Ultimately, the goal of radiation therapy is to deliver a prescribed dose to the CTV in or-

der to reach a certain treatment goal, usually the destruction of malignant cells. However,
in order to avoid side effects any healthy tissue and organs at risk should be simultaneously
avoided as much as possible. With previously described improvements, state-of-the-art

2



1.3 Treatment of Moving Tumors

imaging technologies and also further advanced treatment variations, precise treatment
delivery is already achievable for static tumors. With image-guided radiation therapy,
even the effects of inter-fraction motions such as loss of weight or different filling levels of
the bladder can be eliminated.

1.3 Treatment of Moving Tumors

However, difficulties arise in the treatment of moving tumors where the motion is consid-
erably large during the course of a fraction. Especially lung tumors move regularly with
large speeds and amplitudes, where their motion is mainly induced by respiration and
heart beat. Also other tumors such as prostate or liver tumors are known to move intra-
fractionally due to bowel movements or changing of filling levels of bladder or stomach [6].
Immobilization devices can help to reduce motions, however certain motion amplitudes
will always remain, especially for lung tumors.
To illustrate the consequences of moving lung tumors on the treatment volumes, Fig-

ure 1.1 shows the CTV of a lung tumor as the red contour when the patient had completely
inhaled. The image depicts the tumor inside the lung (large dark area) on three orthogo-

Figure 1.1: CTV of lung tumor on three orthogonal slices in extreme position when
patient had completely inhaled

nal slices, which were gained by reconstructing CT scans according to different respiratory
phases [7]. Similarly, Figure 1.2 visualizes the CTV as the yellow contour when the patient
had completely exhaled. As a reference, the contour of the other extreme location of the

Figure 1.2: CTV of lung tumor in extreme position when patient had completely exhaled

3
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CTV is additionally shown in both figures. Generally, the goal of radiation therapy in this
example would ideally be to just irradiate the CTV and deliver a prescribed dose to this
volume. If only that volume is treated without motion management, the actual dose de-
livered to the CTV would be significantly less than the prescribed dose because the beam
only partially covers the CTV. In order to deal with this issue, the CTVs from different
respiratory phases are combined to form the ITV, so that it includes the uncertainties due
to organ motion according to its definition. Furthermore, the ITV is augmented by the
security margin. In the example 5mm were added around the ITV, which finally forms
the PTV shown in Figure 1.3. As can be seen, the PTV is considerably larger than the

Figure 1.3: PTV of lung tumor combined

actual CTV, resulting in the irradiation of a large volume of healthy tissue. Taking into
account all relevant physiological and technical factors including the choice of treatment
type, beam form and field sizes, the CT-based planning results in a dose distribution, in-
dicating the dose to be delivered to the patient’s tissue. This is exemplified in Figure 1.4,
showing the calculated isodose lines (lines of equal dose). The brown and blue isodoses
in the form of tubes result from different treatment fields where the beam angle is var-
ied. From this example, it can also be observed that the volume receiving a considerable
amount of radiation is relatively large compared to the CTV and PTV, where the PTV is
enclosed by the 37.5Gy isodose (orange).
Due to the fact that healthy tissue is also irradiated, the prescribed dose is usually

limited by tolerance dose of healthy tissue or organs at risk in order to reduce side effects
and tissue toxicity. However, clinical studies suggest that improved tumor control can be
achieved with higher treatment doses [8, 9]. These can only be applied if margins can be
reduced, ideally limited to the CTV.

1.4 Approaches to Tumor Motion Compensation

Several approaches have been developed up to now in order to improve treatment delivery
to moving tumors. They can be roughly distinguished into two groups. The first group
summarizes procedures and systems which focus on the minimization of the impact of
tumor motion implying a motion management strategy [10], whereas the second group
deals with tumor motion compensation systems.
Respiration gating [11–15] and active or voluntary breathing control [16–19] belong

to the group of tumor motion management systems. For respiratory gating, radiotherapy
takes place only in certain breathing phases when the tumor passes a small window around
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Figure 1.4: Exemplified planning CT showing isodose lines and corresponding doses

the center of the beam. Consequently this prolongs radiation treatment due to the fact
that the beam is switched off for a considerable amount of time during a breathing cycle.
Using active breathing control the patient’s respiration is constrained through external
devices, therefore it is not acceptable by many patients. Voluntary breath-hold requires
the cooperation of patients which is not always feasible in such a way that patients are
sometimes not capable of controlling their breathing to the required extend despite trying
hard.
A compensation system which actively tries to keep the tumor in the isocenter of the

radiation beam can be laid out in different ways. One method uses a multi-leaf collimator
to adapt the beam parameters so that the beam is directed and displaced according to the
tumor motion. MLC-based tumor tracking is still in the research phase and pursued by
several groups worldwide [20–29]. Major issues in dynamic MLC tracking involve different
tracking performances when the tumor is either moving into or perpendicular to the leafs
travel direction and limitations due to leaf width and leakage effects of radiation [30].
Different from this strategy, robotic motion compensation monitors tumor motion during

treatment and compensates for it in real-time using robotic motion. The most prominent
example of this type of compensation system is the CyberKnife® system (Accuray, Inc.,
Sunnyvale, CA, USA) [31–39], which is currently the only robotic compensation system
employed in clinical treatments so far. Within CyberKnife, a small linear accelerator is
mounted onto an industrial manipulator (KUKA Roboter GmbH, Augsburg, Germany).
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Tumor position information is usually acquired by continuous x-rays and tracking of the
tumor (either with or without implanted markers). The manipulator is moved according
to the tumor position in order to compensate for that motion.
A similar system is the VERO system from BrainLAB (BrainLAB AG, Feldkirchen,

Germany) and MHI (Mitsubishi Heavy Industries, Tokyo, Japan) [40–45]. A small linear
accelerator is mounted on a O-ring gantry with two orthogonal gimbals. The gimbals allow
pan and tilt motion of the linear accelerator by which compensation of tumor motion is
enabled due to their distance to the isocenter.
Unlike these systems, it is also possible to move the patient using a robotic treatment

couch [46–48]. In order to achieve motion compensation, the treatment couch is directed
into the opposite tumor motion direction. While [46, 49] uses a standard Elekta table stand
as treatment couch by accessing the hardware of the joystick interface directly, [47, 50]
and our group [48, 51] make use of the HexaPOD treatment couch. Further survey of
these systems is given in [52].

1.5 Innovations
This work emerged from the research project “Intra-fractional tumor tracking and compen-
sation using an automated treatment couch”, which was carried out in collaboration with
the Department of Radiation Oncology of the University of Würzburg as clinical partner
and industrial participation by Medical Intelligence GmbH, Schwabmünchen, Germany
(now belonging to Elekta AB, Stockholm, Sweden). The project was supported by a grant
from the Bavarian Research Foundation.
The main goal of the project was to develop an adaptive tumor tracking system (ATTS)

to enable real-time motion compensation of intra-fractional tumor motion. It seeks to bring
a number of innovations to the field of radiation therapy:

Reduction of Safety Margins and Treatment Time

By realizing real-time motion compensation, reduction of safety margins becomes possible,
such that irradiated volumes can be further reduced compared to conventional techniques
and healthy tissue can be spared as much as possible. Simultaneously, reduction of the
margins allow more efficient adaptation of radiation doses, so that with higher radiation
doses improved local tumor control and therapeutic ratios can be achieved.
By applying higher radiation doses, the desired dose distribution within the tumor can

be reached earlier and treatment time can be reduced. Also, treatment time compared
to other approaches such as gating is generally smaller. Thus, treatment becomes more
cost-efficient and higher daily patient throughput can be achieved on the linear accelerator.

Non-invasive Therapy

A further goal of the research project was the usage of the treatment beam to derive the
tumor position, allowing for completely non-invasive therapy. Compared to other methods
which use markers implanted within the tumor followed by x-rays, no implementation
of markers or additional radiation exposure is necessary. In addition to cost benefits
by omitting implementation costs, little or no investment on more hardware and lower
operating costs, better tolerance by patients can also be achieved. After all, in some cases,
the position of a tumor is in-accessible to implement a marker.
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Inherent Compensation of Baseline-Shifts

Physicians often require the compensation of baseline-shifts, i.e. the compensation of slow
changes, which are inherently built-in into the ATTS. Compensation of fast changes
(e.g. respiratory induced motion) includes the compensation of slow motions. Further
applications of the ATTS are also possible, e.g. radiation of prostate cancer, where changes
in the filling level of the bladder lead to slow shifts of the target volume which are already
becoming noticeable during the course of a fraction.

Flexible and Cost-effective Treatment System

The presented approach makes use of only medically certified hardware, most of it being
already standard in state-of-the-art treatment rooms. Since no modifications are intro-
duced in any hardware device, a flexible system results which can be easily integrated into
existing treatment rooms. Furthermore, the adoption of the ATTS imposes no constraints
on existing treatment procedures of any kind in terms of compatibility. Also any type of
radiation therapy remains possible irrespective of the employed technology such as photon
and electron beam therapy or particle therapy. This stands in contrast to other approaches
such as CyberKnife or VERO where the linear accelerators need to be compatible with
the overall system. For these systems, the main constraint is the mass and size of the
accelerator, especially within CyberKnife. This results in the limitation that only the
treatment types supported by these systems can be used. Specifically, since an MLC is a
heavy construction it is not supported by CyberKnife. However, with the ATTS, flexibil-
ity is even improved by adding the option of tumor motion compensation to an existing
system.
Since no specialized hardware needs to be additionally developed for the ATTS, the

costs when updating an existing treatment room are expected to be minor compared to
fully integrated systems such as CyberKnife or VERO. More than 2500 linear accelerators
are located in the USA and about 400 are used in Germany, thus making a certain eco-
nomic potential of this approach apparent.

In order to realize these innovations and extended treatment possibilities, several tech-
nical innovations are necessary, which are the focus of this work. Simultaneously, these
contributions form the outline of the work:

Real-Time Tumor Motion Compensation System

For achieving real-time tumor motion compensation, a properly designed real-time system
is required, which is fully described in Chapter 2. Real-time aspects are thereby included
in several ways. First of all, a real-time operating system is employed to achieve certain
guarantees with respect to maximum scheduling latencies and uninterrupted execution
of application code in order to adopt features not available in general purpose operating
systems. More importantly, all data referring to physical quantities such as sensor mea-
surements of respiratory or tumor position is associated with timestamps using a single
clock source. For the adopted measurement devices, measurement latencies are determined
with which timestamps are corrected to achieve best possible timing accuracy. Generally,
the true time of all sensor data and generated data is taken into account throughout the
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whole system consistently. Furthermore, all sensor latencies as well as all software-induced
latencies occurring during each calculation cycle are adaptively compensated for.
Chapter 2 further highlights the complete hardware and software setup of the ATTS,

detailing all employed devices for this work as well as the most important aspects of the
developed software. Including discussions about patient safety features, this chapter lays
the foundation for the rest of the work.

Breathing and Tumor Motion Prediction

As with any mechanical system, the HexaPOD which actually enables motion compen-
sation possesses certain dynamics including latencies. In order to deal with these effects,
knowledge about tumor motion in the near future is required. Approaching the problem
of motion prediction, an in-depth analysis of breathing and associated lung tumor motion
as well as their correlation is first performed in Chapter 3 to acquire their general charac-
teristics. This enables design and investigation of breathing and tumor motion prediction
strategies. Tumor position determination based on the treatment beam as it is pursued in
this work, imposes hard constraints on the quality of tumor position information. Several
methods are developed to perform predictions even under these relatively harsh conditions.

Control Schemes for the HexaPOD

With the knowledge how the tumor will further move in the near future, a reference tra-
jectory can be generated, specifying to which locations the HexaPOD needs to move at
which time in order to realize motion compensation. To make the HexaPOD follow the
reference trajectory, control schemes need to be employed ensuring that the HexaPOD
maintains the reference trajectory as close as possible by applying appropriate inputs to
the HexaPOD. The way how the HexaPOD responds to these inputs is a question of the
dynamics. Hence, to learn more about the dynamics, dynamic models are presented and
evaluated in the beginning of Chapter 4. Based on these models, a first controller is de-
rived by optimization techniques. With an assumption about the HexaPOD, a second
controller is proposed and its performance evaluated in hardware-in-the-loop tests. Com-
bining both controllers to a third one to eliminate arising problems in some scenarios with
the other ones, it is shown that tumor motion compensation is ultimately possible with
the HexaPOD, not only by achieving sufficient tracking accuracy but also with decent
patient comfort which is a major concern in this work. Patient comfort is crucial for a
compensation system which affects patient’s position as any harsh motion exhibited by
the HexaPOD can have an impact on patient’s breathing patterns. Irregularities might
arise in these which can in turn challenge the compensation system. In order to avoid
human-in-the-loop feedback effects, it is important for the compensation system to make
the HexaPOD move on a smooth trajectory.

Finally, Chapter 5 concludes with a summary of the work and addresses future direc-
tions.
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Chapter 2

Motion Compensation System Design

For performing robotic motion compensation, a technical system needs to be developed
which is able to realize motion compensation in real-time. The main objective of the
robotic system is to incorporate existing standard hardware devices already present in
treatment rooms to allow flexible treatment possibilities and simple integration into ex-
isting treatment rooms. To approach this problem, several types of motion compensation
modes are identified which are to be supported by the compensation system. The hard-
ware and software designs of this system are explained in detail and insights on basic
software features are given. The system will provide the general environment to allow
the development of tumor prediction methods and the derivation of control methods for
the treatment couch. Special emphasis is put on real-time aspects to allow true real-time
operation of the whole system. Patient safety features of the compensation system are
further discussed in order to enable a safe treatment.

2.1 Modes of Motion Compensation
Depending on the medical requirements of tumor motion compensation, the question that
has to be answered for each patient and treatment is what mode of motion compensa-
tion should be applied. The distinct feature of each mode mainly affects the shape of
the reference trajectory which defines the desired trajectory of the tumor leading to the
requested compensation. Three different modes, their possible applications and technical
requirements are identified and discussed in the following subsections, which cover a broad
range of tumor motion compensation scenarios.

2.1.1 Recent Displacement Compensation
The recent displacement compensation (RDC) mode is the simplest mode. It uses the
last known displacement from the tumor to its desired position in order to determine the
control input for the HexaPOD to compensate for this displacement. So the reference
trajectory boils down to a single value or a set-point which can be regarded as desired
value in the current sampling instant. Of course, this mode cannot compensate for any
latencies such as processing and transmission delays in the software and hardware as well
as the measurement delay (occurring during the determination of the tumor displacement
itself). But the advantage is that no predictions of future tumor positions are necessary
for the generation of the reference trajectory. This type of motion compensation can be
used, when an approximate tracking of tumor motion is sufficient and either no prediction
is possible yet or no prediction is possible at all. The former case usually happens during
the initialization of a prediction algorithm, e.g. the minimum number of samples have not
been acquired yet or the learning phase is not finished yet. The latter case occurs if the
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tumor motion itself is unpredictable, for example with prostate motions or if the motion
does not contain any repeatable pattern whose dynamics can be captured by a prediction
model. In this mode, the compensation system tries to follow all measured displacements
as fast as possible, even if a larger displacement persists only during a short time span.

2.1.2 Drift Motion Compensation
The drift motion compensation (DMC) mode can either be based solely on past values or in
combination with predictions of tumor motion. Since drift is generally a slowly changing
quantity, using past values in the calculation is usually sufficient. In any case, some
method is used here to determine the drift or the baseline shift which is a displacement
from the desired position. Depending on the shape of the tumor motion signal, this
task can be accomplished by sliding window filtering or other filtering mechanisms which
calculate a mean position of the motion. Similar to RDC, the current moving average
is then used in the calculation of the reference trajectory which also becomes a desired
value or a set-point. Drift compensation can be used when only the drift or the baseline
shift of the tumor motion should be compensated. Compared to RDC, larger temporary
displacements are damped due to filtering and compensation of only the long term trend of
the signal. Possible applications of this mode include unpredictable tumor motions within
prostates as well as quasi-periodic motions of lung tumors.

2.1.3 Full Motion Compensation
The full motion compensation (FMC) mode is the most advanced but also the most
natural mode when one thinks of motion compensation. The goal here is to compensate
for any displacement that occurs between current and desired positions of the tumor.
The actuators of any motion compensation system possess a dynamic behavior including
certain time delays of different orders between the input and the output of the system.
Additionally there are usually other time delays in the motion compensation system such
as those induced by measurement, transmission and processing. Because of all these
delays, a full motion compensation is only feasible if the future behavior of the tumor
motion is known up to a certain horizon whose minimum value is characterized by the
sum of the delays. Thus, a prediction algorithm has to be employed for this task. But for
this to work, the tumor motion has to be predictable which is the case, for example, with
quasi-periodically moving lung tumors. From the predicted tumor motion, a reference
trajectory can then be generated which should be followed by the actuators of the motion
compensation system.
Basically, the RDC and FMC modes differ mainly in the data used for the generation of

the reference trajectory, but have similar goals. Thus, FMC mode can be ideally combined
with RDC mode during the beginning of a treatment as long as no predictions are possible.

2.2 Hardware and Software Setup
In order to realize the motion compensation modes mentioned in the previous section, a
motion compensation system has been built. The adaptive tumor tracking and motion
compensation system called ATTS only consists of standard hardware equipment and
in-house made software packages which were developed at the Department of Radiation
Oncology at the University Hospital in Würzburg and at the Department of Robotics and
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Telematics at the University of Würzburg. A schematic overview depicting the information
flow inside the system is sketched in Figure 2.1.
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Figure 2.1: Schematic overview over the complete tumor tracking and compensation
system

The main working principle is described in the following: Without compensation the
tumor moves relative to the fixed treatment beam which is emitted by an Elekta Synergy®

S linear accelerator with a multi-leaf collimator (the leaves are used to define the shape of
the treatment beam). An image of the tumor, denoted as portal image, is captured by an
electronic portal imaging device (EPID) using the treatment beam for visualization. The
in-house made software package PortalTrack (developed by the Department of Radiation
Oncology) tracks the tumor in subsequent images and delivers a 2D projection of the
tumor position orthogonal to the treatment beam. Depending on the gantry angle (the
gantry, carrying the collimator of the linear accelerator, can be rotated in order to irradiate
tumors from different directions), a transformation of the tumor position takes place into
a room fixed reference frame. Since this position information represents the true tumor
position, it is referred to as the primary signal. The secondary signal in the system is
measured by a stereo infrared camera which delivers the breathing motion of a patient.
Using the in-house made software package PolarisServer, infrared tools carrying a number
of infrared markers are localized by the stereo camera and the acquired coordinates of tools
which are placed on the patient’s abdomen and the HexaPOD are transformed into the
room fixed reference frame.
Both the primary and the secondary signals are sent to the in-house made software

package HexGuide where the intelligence of the system is concentrated. Based on these
signals, predictions of future tumor positions are derived. Depending on the chosen mo-
tion compensation mode, a reference trajectory for the HexaPOD is generated. Using
a control scheme with the reference trajectory as an input, the HexaPOD should follow
this trajectory as close as possible in order to realize the mode-dependent goal of motion
compensation. HexGuide also takes care of time synchronization between all software
components and correct timing of incoming data. Incoming and generated data (e.g.
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predictions) are stored in files for further analysis, evaluation or recording duties.

2.2.1 Hardware and Software Components
The following subsections explain each hardware and software component individually.
The complete system described in the following was setup at the Department of Radiation
Oncology at the University Hospital in Würzburg and is depicted in Figure 2.2. A subset

Figure 2.2: Clinical setup of treatment room

of the components was installed in parallel at the Department of Robotics and Telematics
at the University of Würzburg to serve as testbed for research and development of tumor
prediction methods and control schemes of the HexaPOD which is the focus of this work.

2.2.1.1 HexaPOD and HexaPOD evo

One of the main components of the tumor tracking system is the robotic treatment couch
HexaPODTM RT CouchTop originally from Medical Intelligence GmbH, Schwabmünchen,
Germany (now belonging to Elekta AB, Stockholm, Sweden), on which the patient lies
during treatment. In normal clinical routine the HexaPOD is only used for correction of
patient setup errors [53] and was initially not intended for dynamic and sustained mo-
tion during radiotherapy. Nevertheless, feasibility of using a HexaPOD for tumor motion
compensation has been shown by preliminary studies [47, 54]. The original and clinically
certified version of the HexaPOD showed a slow acceleration behavior which accounts for
patient comfort during patient setup when the patient’s tumor is moved into the isocenter
either manually or automatically after the cone-beam CT. A special research firmware was
installed along with the original firmware at the Department of Radiation Oncology by
Medical Intelligence GmbH. This allowed both the certified clinical mode and a research
mode where the ramps in the acceleration profile were reduced so that the HexaPOD could
exhibit a better dynamic behavior, but still not exceeding the maximum speed of 8mm/s.
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The HexaPOD is a parallel manipulator, alternatively called Stewart platform [55] with
six degrees of freedom (three translational and three rotational). Six independently actu-
ated prismatic legs determine position and orientation of an end-effector mounted on top
of the legs. With this construction, the HexaPOD can perform highly accurate motion
(positioning accuracy of 0.1mm) within a small range fulfilling the requirements of tumor
motion compensation [56]. Besides, it also possesses high stiffness, low inertia and large
payload capacity of 185kg. Actuation of the individual legs including inverse kinematics
and speed control is realized by a built-in controller which is delivered by the manufacturer
and cannot be affected directly.
The HexaPOD itself is mounted onto a standard Elekta table stand (cf. Figure 2.2)

which can be rotated around a vertical axis (w.r.t. the room) and which can be moved
along translational axes to account for required position displacements during patient
setup which would be outside the workspace of the HexaPOD in its default position.
The HexaPOD is used in this setup to counteract tumor motion in order to keep the

tumor fixed w.r.t. the beams-eye-view of the accelerator. For achieving tumor motion
compensation within the ATTS, the treatment couch HexaPOD has to be controlled to
appropriately adapt the tumor position during treatment delivery. Since the built-in con-
troller is not directly accessible, the only way to control the HexaPOD is to use a predefined
communication protocol which accepts positioning commands through a serial interface.
Each positioning command “MOV” consists of a 6D position (c3, c2, c1, r1,−r2,−r3) in the
operational range for positions cj ∈ R with j = 1, 2, 3 (corresponding to x-, y- and z-axis,
respectively) of ±30mm, ±30mm and 0-80mm along the x-, y- and z-axis, respectively,
and rotations rj ∈ R with j = 1, 2, 3 of ±3◦ around all axes and of a normalized max-
imum speed sc ∈ R in the range 0-1. The individual axes of the HexaPOD are aligned
with the human body when a patient is lying on it. The x-axis denotes the lateral axis
of a patient, i.e. left-right (LR). The y-axis is aligned longitudinally in the human body
and describes the superior-inferior (SI)-direction ranging from feet to head. The z-axis
complements the reference frame and is aligned in back to front direction, alternatively
called anterior-posterior (AP)-direction.
Not all points within the operational range are accepted as target positions by the Hexa-

POD. Especially for c3 along AP-direction between 0mm and 31mm, the positions along
the other axes are constrained leading to a reduced workspace as shown in Figure 2.3(a).
This low position range in height can be considered as an entry region, so that a pa-
tient can more easily climb onto the table. Because of this reduction, a new reference
frame is defined in the developed software where the zero position of the HexaPOD is
located at 55.5mm in AP- direction. Then the treatment range in AP-direction becomes
±24.5mm with maximized LR- and SI-range when the patient’s tumor has been placed
in the isocenter and the HexaPOD is located at position (55.5, 0, 0, 0, 0, 0). If orientation
angles different from zero are used, then the workspace reduces depending on these angles
which have to be considered in the developed software. Figure 2.3(b) visualizes the re-
duced workspace in one of the worst cases if all orientation angles are 3°. In this work only
translational motion corrections with static orientation angles are used. So it is assumed
that for each orientation angle the corresponding workspace limits are known.
During the course of this work the HexaPOD was exchanged at the Department of

Radiation Oncology with a new version called “HexaPODTM evo RT”. The requirements
for the new version were: same control interface as the original HexaPOD, flatter design
so that the HexaPOD occupies less space in height, larger operational range and support
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(a) orientation angles set to zero (b) orientation angles set to 3° (maximum)

Figure 2.3: Workspace of the HexaPOD RT CouchTop in different orientation settings

of higher loads. Additionally it was built with dynamics in mind which allows for faster
reactions with double the speed of 16mm/s. The software interface specification of the
HexaPOD evo highlights a dedicated entry channel from 0-40mm in AP-direction. Posi-
tions along all other axes, including orientations, have to be set to zero. This restricts the
treatment range from 40mm to 100mm, effectively covering the range of ±30mm when the
zero position is defined at 70mm along AP-direction at position (70, 0, 0, 0, 0, 0). Table 2.1
provides a comparison of the main specifications of both HexaPOD types. Some parts
of this work were performed using the original HexaPOD whereas other parts were done
using the HexaPOD evo. Throughout this work, it is pointed out whenever the HexaPOD
evo was used; otherwise the original HexaPOD is implied.

Type Operational range Max. speed Max. load
lateral (LR) ±30mm
longitudinal (SI) ±30mm
vertical (AP) 0-80mm
treatment range in AP ±24.5mm

HexaPOD

yaw, pitch, roll ±3°

8mm/s 185kg

lateral (LR) ±30mm
longitudinal (SI) ±30mm
vertical (AP) 0-100mm
treatment range in AP ±30mm

HexaPOD evo

yaw, pitch, roll ±3°

16mm/s 250kg

Table 2.1: Specifications of the HexaPOD and HexaPOD evo treatment couch

2.2.1.2 Electronic Portal Imaging Device – EPID

Historically, x-ray sensitive film cassettes were employed for radiotherapy treatments to ac-
quire portal images of irradiated regions with a mega-voltage treatment beam, also called
mega-voltage imaging. Localization films were used at the beginning of each treatment for
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detection of patient setup errors using a low radiation dose, whereas with verification films
the dose delivery during treatment was recorded. With the disadvantage that films had to
be developed, which usually requires several minutes, it is a pure offline technology. For
localization films the patient might move again while film development and information
gained from it might become invalid. For verification imaging, the technology of film cas-
settes prohibits the assessment of targeting accuracy during treatment. This motivated the
research on electronic portal imaging devices which already began in the late 1950’s. First
commercially available products using different imaging technologies emerged in the 1980’s
and have evolved to useful systems with adequate imaging capabilities allowing imaging
in digitally available form, also in real-time [57, 58]. Apart from real-time imaging, this
also opened new application possibilities, such as simplified quality assurance of radiation
beams, geometric verification of field sizes and MLC positioning as well as tumor tracking
in real-time [59]. With these increased possibilities in conjunction with an improved cost
situation [60] as opposed to films, EPID has become widely accepted in radiation sys-
tems. Research in applying this technology is ongoing, e.g. in-vivo measurements of dose
distributions [61] which is a main concern in radiotherapy.
The EPID installed at the Department of Radiation Oncology in Würzburg is an Elekta

iViewGTTM consisting of an amorphous silicon (a-Si) flat panel detector which can be
unfolded and rotated so that the panel is oriented perpendicular to the radiation beam
in order to capture the exiting radiation which passes through the patient. This enables
imaging of the irradiated region with the tumor inside as a 2D projection onto the plane
of the panel. With knowledge of the gantry angle, this projection can be transformed into
the room-fixed reference frame.
The research group at the Department of Radiation Oncology developed the software

package PortalTrack [48] which reads every available portal image from the hardware
and processes it to locate the tumor inside the image and track it in subsequent images.
Previous research [62] demonstrated the feasibility of tracking moving objects with EPID
by comparing different algorithms for finding an object in portal images. In the beginning
of a treatment, a single shot image of the irradiated region is taken with PortalTrack using
a lower radiation dose than during treatment delivery. Then a physician creates a mask by
drawing an arbitrary formed shape into the portal image which should contain a certain
area outside the tumor as well as an area inside the tumor. The masked area, shown as
the green contour in the portal image in Figure 2.4, is then used for locating the relative
pixel distance of the tumor mask in subsequent portal images. With knowledge of the
pixel width, in case of the Elekta iViewGTTM it is 0.251mm, the relative pixel distance in
relation to the reference image (with which the mask was defined) is then converted into
length units. Applying the coordinate transformation matrix resulting from the gantry
angle, the 2D projection of the tumor position onto the image plane is finally transformed
into the room-fixed reference frame. As soon as this information becomes available, it
is sent via transmission control protocol / internet protocol (TCP/IP) to the software
package HexGuide.
However, due to hardware limitations, this version of the EPID only delivers a sampling

rate of about 2Hz. Using this information alone for motion compensation of lung tumors
is not enough for decent compensation, although the maximum moving frequency of lung
tumors is with about 0.5Hz lower than the Nyquist frequency of 1Hz. But the moving
frequency is close to the Nyquist frequency and sampling with EPID is not very equidis-
tant resulting in temporarily lower effective sampling rates. Furthermore, a much higher
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Figure 2.4: Image with tumor acquired from EPID including mask for tumor tracking
with PortalTrack

sampling rate is needed to provide good predictions of tumor motion, which is an essential
part of the motion compensation system.

2.2.1.3 Infrared Positioning System

To overcome the limited sampling rate of the EPID in motion determination, an infrared
(IR) positioning system with higher data rate is introduced to measure respiratory motion.
Such a system is also standard equipment in treatment rooms. It usually aids in patient
setup where a rough patient positioning is accomplished by placing a tool with IR-sensitive
markers at a predefined position on the patient body and moving the patient with the
standard table stand and the HexaPOD to the same coordinates of the IR tool which were
determined during treatment planning.
For this work the positioning system NDI Polaris® depicted in Figure 2.5(a) was em-

ployed which is mounted on the ceiling in the treatment room. It is manufactured and
distributed by Northern Digital Inc. located in Waterloo, Ontario, Canada. The posi-
tioning system is equipped with two arrays of IR light-emitting diodes that illuminate
the surrounding environment and two CCD (charge coupled device) cameras which col-
lect the reflected infrared light. Infrared markers (coated plastic spheres of a diameter of
1cm), which possess a high reflectance of infrared light, are located in the acquired im-
ages from both cameras and their 3D positions are determined by triangulation methods
relative to a camera-specific reference frame. The geometric properties of the IR tools,
i.e. the distances between each of the markers located on one tool, are uploaded to the
system along with information of a local reference frame defined w.r.t. the tool. With
this information the positioning system can robustly determine 3D positions (origin of
the local reference frame) and 3D orientations of the local reference frame relative to the
camera-specific reference frame. The system delivers transformations of up to 9 passive
tools inside a pyramid-shaped measurement volume which ranges from a perpendicular
distance of 0.95m up to about 2.4m.
The Polaris system can be connected to a PC via RS-232 or RS-485 with a maximum

serial speed of 115200bps. During the course of this work, the Polaris system was replaced
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(a) NDI Polaris stereo infrared camera
mounted on the ceiling in the treat-
ment room

(b) IR tool for placement on patient’s
abdomen

(c) C-shaped bridge
with IR markers

Figure 2.5: NDI Polaris IR positioning system and IR tools used for tracking the pa-
tient’s abdomen and the HexaPOD

by its successor NDI Polaris® Spectra® at the Department of Radiation Oncology. In
contrast to the previous version, it is connected via a universal serial bus (USB) to serial
interface, permitting higher serial transmission speeds of up to 1.2Mbps. Furthermore,
the tracking accuracy was improved to less than 0.3mm RMS (according to the datasheet)
and it comes with the option of an extended measurement volume ranging to a maximum
distance of 3m.
The sampling rate of the system can be set to 20Hz, 30Hz or 60Hz. The sampling

instants are distributed very equidistant with a low jitter. Using the maximum update
rate of 60Hz (corresponding to a sampling period of 16.667ms) with the Polaris Spectra, the
standard deviation of the sampling period was determined with a non-real-time operating
system as 0.475ms. In tests with static IR tools, it was observed that the measurement
noise of is approximately normally distributed with small standard deviations of less than
0.02mm along each axis and maximum deviations from the mean of about ±0.06mm.
Two IR tools are needed for this work: one is placed on the patient’s abdomen (cf.

Figure 2.5(b)) to get its position and the other is placed on the HexaPOD. The latter is
a C-shaped bridge (cf. Figure 2.5(c)) under which the patient lies and which is spanned
over the LR-direction of the HexaPOD. Since the HexaPOD is intended to move together
with the patient during the course of treatment, the breathing motion of the patient is
calculated by the difference between these tool positions.

2.2.1.4 Software Package PolarisServer

The software package PolarisServer, developed at the Department of Robotics and Telem-
atics, interfaces directly with the Polaris positioning system through a serial port interface.
It implements the full communication protocol in order to fulfill the following tasks:

• Initialization of the positioning system
– Update rate setting (20Hz, 30Hz, 60Hz)
– Upload of ROM-files containing tool definitions and their geometric properties
– Activation of port handles to enable used tools

• Periodic requests of tool transformation with the selected update rate (using polling)
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• Monitoring and adaptation of the timing to prevent over- and undersampling

• Calibration of a transformation between camera-specific reference frame and room-
fixed reference frame

• Sending of 6D tool position information to HexGuide through a TCP/IP socket

• Reading diagnostic information (e.g. temperature too low)

The positioning system only supports a polling mode to retrieve tool transformations.
In order to get these, a request has to be sent to the positioning system through the serial
interface. Then the positioning system delivers the last acquired tool transformations at
the next internal sampling interval. But the internal sampling interval is independent of
the used sampling rate and fixed to 60Hz. This leads to the behavior that depending on
the time of request in relation to the internal sampling intervals, the corresponding answer
arrives within a response time of 16.667ms (1/60Hz), regardless of the selected update rate
(20Hz, 30Hz or 60Hz). In the case of 20Hz or 30Hz, subsequent polls without any wait
states in between would lead to an “oversampling” where the same positions would be
returned two or three times, respectively. In the case of 60Hz, occasionally, a sampling
interval would be missed leading to an “undersampling”. Due to small latencies (such as
serial transmission time and processing delays) response times change and a request to get
the information of the corresponding sampling interval is sometimes sent too late. Because
of this behavior, the timing of the request has to be managed and monitored. Depending
on the selected update rate, the request time has to be kept at a certain distance to the
next internal sampling interval. This task is achieved in PolarisServer by using a simple
proportional controller (P-controller) with a manually tuned gain where the response time
can be specified as the desired value. The best value for the desired response time is, with
8ms, about half the internal sampling period. This setting enables robust compensation
of unpredictable timing variations in both directions as the request time is furthest away
from the preceding and succeeding answers. This procedure ensures best possible timing
and fastest availability of sensor data which is immediately sent to HexGuide through a
TCP/IP socket after transformation into the room-fixed reference frame.
Not only are the 6D positions of the tools sent, but also a timestamp, which is acquired as

soon as the answer of the positioning system has fully arrived through the serial interface.
To improve precision of timestamps, serial transmission time is subtracted from both
timestamps which can be easily calculated from the serial speed, the number of data and
stop bits and the amount of transferred data. Additionally the timestamps are corrected
by measurement latencies in order to make the timestamps reflect the true time of physical
measurement. Latency measurements of the Polaris system are discussed in Section 2.2.3.
Another important task is calibration of a transformation matrix (represented as a

quaternion) to transform measurements within the camera-specific reference frame to the
room-fixed reference frame. Details on this topic are covered in Section 2.2.2.5.

2.2.1.5 Software Package HexGuide

HexGuide is the heart of the ATTS. Its primary tasks are:

• Synchronization of incoming data,

• Peak detection in either the breathing or the tumor signal,
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• Calculation of moving average of breathing and tumor signal,

• Calculation of tumor motion predictions,

• Generation of a reference trajectory for the HexaPOD based on predictions,

• Implementation of a control scheme to allow the HexaPOD to follow the reference
trajectory and

• Logging of incoming and all generated data.

The whole functionality of PolarisServer has additionally been integrated into HexGuide
as well to simplify the use of a real-time operating system (discussed later in Sec-
tion 2.2.2.6) and to minimize software-induced latencies resulting from thread scheduling.
Figure 2.6 sketches the information flow and the major elements in HexGuide to fulfill

aforementioned tasks in the standard configuration. Each processing cycle is started by an

Figure 2.6: Block diagram of the information flow and main elements of HexGuide in
the standard configuration; dashed lines point out options depending on the
compensation mode

internal trigger, configurable to an arbitrary frequency which determines the fundamen-
tal sampling rate used in HexGuide. Samples of IR tool positions (either received from
PolarisServer or acquired by the integrated Polaris interface) are linearly interpolated to
past sampling instants of the trigger. Since no newer Polaris samples can be received than
the current trigger sampling instant, the last Polaris sample can at best only be used to
interpolate to the previous trigger sampling instant (if the timestamp in the last Polaris
sample refers to a time later than the previous trigger sampling instant). If the Polaris
sample should be older (i.e. when a sampling has been missed), then the interpolation is
only performed up to the last trigger sampling instant before the timestamp of the Polaris
sample. Ideally the trigger frequency and Polaris update rate should be set to the same
value. Due to the equidistant nature of Polaris samples, HexGuide synchronizes the trigger
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sampling instants to the arrival of Polaris samples in such a way that on each reception the
trigger is instructed to fire, even if its timeout period has not expired. The timeout period
is thereby set to the Polaris sampling period plus a short grace time of a few milliseconds.
If no Polaris sample arrives in between the timeout period, the trigger fires. This scheme
guarantees that even in case of missing samples, the trigger still fires and in case a valid
sample arrives the trigger immediately fires which avoids unnecessary software-induced
latencies. After the interpolation and transformation of the IR tool positions into the
room-fixed reference frame, the breathing position is calculated by the difference between
patient and HexaPOD tool positions. Then, peaks are detected in the breathing signal
(or in the tumor signal, depending on the compensation mode) to enable the calculation
of the moving average present in the breathing signal. Using information from the peak
detector, the moving average of the tumor position w.r.t. the HexaPOD is also determined.
The tumor position is determined by first transforming the tumor position coming from
PortalTrack into the room-fixed reference frame (if a gantry angle different from zero is
used), afterwards an interpolation to the trigger sampling instants is performed. Then the
tumor position relative to the HexaPOD is calculated by subtracting the position of the
HexaPOD. The moving averages of the breathing and tumor signals as well as the signals
themselves are the inputs to a prediction algorithm. From current and past input data
samples, future tumor position predictions are calculated. The predicted positions have
to be negated, i.e. multiplied by −1 (given an adequate initialization in the zero position
or the consideration of the proper offset), since compensation of tumor motion is targeted
here. Depending on the motion compensation mode (RDC, DMC or FMC), a reference
trajectory for the HexaPOD is calculated from the inverted predicted tumor position, from
the moving average of the tumor position or from the tumor position signal directly. The
reference trajectory and the position signal of the HexaPOD form the input of the control
scheme whose task is to determine the control input to the HexaPOD allowing it to follow
the reference trajectory. This calculation cycle is repeated when the trigger fires again.
In general, HexGuide takes great care of timing. Apart from the interpolation of sen-

sor data to trigger sampling instants, several software-induced latencies are compensated
within HexGuide. The gap between the latest interpolated breathing or tumor motion in-
formation of a minimum length of one sampling period is bridged by adaptively increasing
the prediction horizon (cf. Section 2.2.2.2). Necessary calculations within HexGuide like
transformations, interpolation, peak detection, moving average and the execution of the
prediction scheme require a certain amount of time. In order to eliminate the effect of
these processing latencies, an estimation of the “current” HexaPOD position is performed
right before the control scheme is executed. The estimation is based on a linear extrap-
olation which takes into account the latest measured position of the HexaPOD, the time
difference between that position information and “now”, and the last command sent to
the HexaPOD, from which an estimation of the motion velocity is made. Finally, the esti-
mated HexaPOD position refers to the point in time, right before the control scheme starts
its work. Using the estimated HexaPOD position requires a time shift in the reference
trajectory as well. This is accomplished by linear interpolation of the reference trajectory
to appropriate timestamps relative to “now”. This requires the predictor to perform one
additional forecast.
Possible realizations of the blocks “Prediction Algorithm” and “Control Scheme” are the

main concern of this work and are discussed in Chapter 3 and Chapter 4, respectively. De-
tails on interpolation, peak detection, calculation of moving average and reference frames
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and their calibration are explained in Section 2.2.2. These aspects found the basis of the
rest of the work.
HexGuide and the included prediction algorithms were developed in a flexible way in

order to additionally permit extended configuration possibilities. For example, they can
also be applied in scenarios where only breathing motion is acquired, resulting in com-
pensation of the breathing motion of a volunteer who is lying on the HexaPOD. This is
especially useful for tests and evaluation purposes, which was frequently done in this work.
Additionally, the prediction algorithms also work when no breathing motion is acquired,
but only information about tumor motion is available. This can be the case if other tumor
motion determination systems are used, e.g. the Calypso® system from Calypso Medical
Technologies Inc., Seattle, Washington, USA. Then, the internal trigger directly drives
the interpolation of the tumor motion signal as depicted in Figure 2.7. In contrast to
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Figure 2.7: Block diagram of the information flow and main elements of HexGuide in
an alternative configuration with no determination of the breathing motion;
dashed lines point out options depending on the compensation mode

previously discussed configuration, peak detection is then solely based on tumor motion
information. Since no direct measurement of the HexaPOD’s position is available in this
configuration, the position information is directly retrieved from the HexaPOD using its
communication protocol. This option also exists in the standard configuration, but it is
not favored since the position has to be requested using a serial command and together
with the answer about 50 Bytes have to transferred through the serial connection. This
is running at a fixed rate of 57600bps (8,N,1) leading to a serial transmission time of
8.68ms. This time is compensated within HexGuide by interpolation of the predictions
as described above. Nevertheless, the additional time spent for retrieving the HexaPOD’s
position restricts the overall sampling rate of the system and consequently this option can
only be activated with lower sampling rates like 20Hz or 30Hz. This reduction occurs due
to the fact that the duration from sending the “MOV” command (which is sent during
every sampling instant) until arrival of the answer from the HexaPOD is in the range of
several milliseconds (for the HexaPOD evo this is approx. 15ms), but the total time of the
sampling period is not allowed to be exceeded (e.g. 16.667ms for a sampling rate of 60Hz)
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during the whole cycle. Of course, when this configuration is used, it has to be ensured
that the information contained in the tumor motion signal is sufficient for reaching the
mode-dependent goal of motion compensation.

2.2.1.6 Testing Software

For testing and evaluation purposes of single features or parts of presented system, several
testing software packages were developed to simulate individual system components.
First, there is a simulator which simulates every hardware component used in the stan-

dard configuration. This program can be supplied with generated or pre-recorded breath-
ing or tumor trajectories which are sent to HexGuide as primary and secondary signals.
It also receives commands from HexGuide to reposition the simulated HexaPOD. The
position of the HexaPOD is thereby superimposed on the primary and secondary sig-
nal to simulate the effect of a moving HexaPOD. The simulator program also takes care
about timing issues so that pre-determined trajectories remain in sync with their time
specification.
Another simulator program was developed which interfaces with the infrared positioning

system and superimposes a pre-recorded breathing signal on the actual measurement of
the IR camera which measures only the position of the HexaPOD. The superimposed
signal is then sent as secondary signal to HexGuide. As an option of this simulator, a pre-
defined tumor trajectory can also be supplied which is used for the primary signal. In this
configuration, the real HexaPOD is used. So it is possible with this simulator to use pre-
recorded breathing and tumor trajectories from real patients or pre-calculated artificial
signals as a replacement for breathing and tumor signals, instead of having volunteers
lying on the HexaPOD, but still using most of the real hardware.

2.2.1.7 Testbeds

All components of the new tumor tracking system previously described were developed
during the course of this work and installed at the Department of Radiation Oncology
in Würzburg. Here, the same hardware components are used for the ATTS which are
currently used for actual treatment of patients. This fact emphasizes the simplicity of
presented approach to the problem of tumor motion compensation, solely using existing
hardware.
Comprehensive studies and tests have also been accomplished in diverse aspects includ-

ing image acquisition and processing of the EPID subsystem [59, 62], EPID performance
evaluation with real patient data [63], sensor data fusion of EPID and the infrared sensor
for tumor position determination and prediction [64, 65]. In [48], integration and test
results of the tracking system were presented with a 4D phantom (6-DoF manipulator
arm) simulating the tumor motion with real pre-recorded data from lung tumor patients.
A subset of the hard- and software components have also been installed at the De-

partment of Robotics and Telematics at the University of Würzburg for development and
testing purposes. The testbed shown in Figure 2.8 consists of an earlier version of the
HexaPODTM RT CouchTop and of the successor of the Polaris IR positioning system
named Polaris® Spectra®.
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Figure 2.8: Testbed setup consisting of early version of the HexaPOD RT CouchTop and
Polaris Spectra IR camera

2.2.2 Basic Software Features
Several basic aspects of the developed software are discussed in this section in order to pro-
vide common features supporting the creation of the tumor motion compensation system.
After the considerations regarding sensor data timing, interpolation of tumor position
is addressed. Then, the developed method of online peak detection for determination of
breathing or tumor motion frequencies is presented which is the basis for the determination
of breathing and tumor moving averages. Reference frames for sensors and actuators and
their calibration based on an optimization technique are detailed as well as implementation
specific issues concerning operating systems and their real-time capabilities.

2.2.2.1 Timing of Sensor Data

A very crucial issue in a motion compensation system is timing. Especially during sensor
data acquisition, e.g. assessment of IR camera measurements or tumor position measure-
ment, timing errors should be compensated. An overview of relevant points in time during
sensor data acquisition using the example of a polled sensor is depicted in Figure 2.9. In
this scenario, a sensor is connected to a computer or some kind of programmable device
able to communicate with the sensor. The first step on the computer, starting at times-
tamp τ requestprepare ∈ R, is to prepare the request (note: all following timestamps denoted in this
form are elements of R). That is transmitted at τ requesttransmit to the sensor where it is received
at time τ requestreceived. Then it is processed on the sensor. Some sensors acquire measurements
during a certain time interval, taking from time τmeasurestart to τmeasurestop . Then, measurements
are usually processed on the sensor, requiring some more time until the measurement is
transmitted to the computer at τmeasuretransmit. There it is fully received at τmeasurereceived . Finally,
parsing the data sent by the sensor requires a certain time, so that after τmeasureparsed the
sensor information is available for further processing.
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Figure 2.9: Overview about timing between polled sensor devices and computer

Depending on the capabilities of the individual devices, several possibilities arise con-
cerning available timing information and its quality:
First, in the best case, measurements already contain a timestamp and an estimation

of their age. The age is a time difference between the point in time when the physical
measurement took place and the point in time when the timestamp was acquired. Then,
timestamps can be corrected by the age and a good estimate of the timestamp of physical
measurement can be gained which should lie in between τmeasurestart and τmeasurestop . Of course, a
calibration of the offset between the sensor’s clock and the clock of the receiving computer
needs to be arranged before the acquisition process. If the acquisition process lasts for a
longer time, checks of the calibration and an eventual recalibration should be performed
in regular intervals. Modern techniques also allow to estimate a drift between the clocks
which can be taken into account during runtime, so that timing accuracy can be improved
without the necessity of too many recalibrations.
Second, measurements only contain a timestamp. Then the same considerations apply

as before, but the age needs to be estimated. Here, the age is bounded by the duration of
the last sampling period (assuming a serial procedure of sensor data acquisition, which is
usually the case). A better estimation of the age can be eventually gained by knowing, how
the measurement process works in detail. Then, this age can be used in the calculation of
the timestamp or eventually neglected if it is very small.
Third, measurements consist of pure data without timestamps. Then, each measurement

has to be timestamped by the software. It should be implemented in such a way that
a timestamp is acquired at the earliest possibility to avoid or at least reduce program
execution delays or scheduling latencies on the receiving computer. Also here, the upper
bound of the age is usually the duration of the last sampling period.
In any of the previous groups, it can be possible to account for transmission delays (time

difference between τmeasuretransmit and τmeasurereceived ). When using for example a serial transmission,
the lower bound on the transmission time can be calculated very accurately using the
length of received data, number of data and stop bits, parity setting and serial transmission
speed. When using a transmission control protocol (TCP) or user datagram protocol
(UDP) connection, an estimation of the one-way delay is possible either using simple
assumptions that the one-way delay is half the round-trip time or more sophisticated
methods [66] can be used to estimate one-way delay. If the sensor is operating in polling
mode, then the time for sending and transmitting measurement requests to the sensor can
be considered as well (time difference between τ requesttransmit and τ

request
received).

To summarize, all used sensors in motion compensation systems should be analyzed
and appropriate time stamping mechanism selected in order to realize best possible timing
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information. For the used hardware in this work, the following can be stated: The Polaris
IR stereo camera belongs to group three, but with the addition of an equidistant sampling
rate. Acquired timestamps of arrived data are corrected by the serial transmission time as
well as by the measured latency as discussed in Section 2.2.3. EPID processing is entirely
done in software, so the acquisition software already determines a timestamp at the earliest
possibility. Technically it belongs to group three, but HexGuide already receives timestamp
information, so that from the perspective of HexGuide it rather belongs to the group two.
The Calypso system for example belongs to group one. There, all timing information as
well as the age are transmitted to HexGuide.

2.2.2.2 Interpolation of Sensor Data

Since most prediction algorithms and control methods require equidistant sampling inter-
vals, HexGuide provides the option to interpolate the tumor position signal to a constant
sampling rate. The choice between different interpolation types is thereby mainly influ-
enced by the average sampling rate and the main characteristics of the tumor position
signal. Furthermore, the positions of the patient’s abdomen and HexaPOD, determined
by the Polaris system, need to be interpolated as well to trigger sampling intervals as
described before.
When continuous time signals are discretized using a certain sampling rate fs ∈ R,

then sampling errors can occur. In case of quasi-periodically moving lung tumors, their
trajectory can be roughly approximated with a sine. Motion frequencies of lung tumors,
where their maximum main motion frequency is determined by the corresponding breath-
ing frequency, usually do not exceed 0.6Hz (cf. Section 3.1.2). Hence, this can be regarded
as an upper bound fmax ∈ R on breathing frequencies, leading to the tumor motion
approximation

f(τ) = a sinx(2πfmaxτ) ,

where f(τ) ∈ R indicates the one-dimensional tumor position at time τ ∈ R and a > 0
represents the motion amplitude. The exponent x ∈ N accounts for closer approximation
of real motions by incorporating hysteresis compared to a pure sine. The first peak of
f(τ) is located at one quarter of the signal’s period Tmax = 1

fmax
at time

τpeak = 1
4Tmax = 1

4fmax
.

Maximum sampling errors occur, if this signal is sampled in such a way that the sampling
interval is equally distributed around τpeak so that half of the interval is located on the
left side of τpeak and the other half on the right side. Then, the peak value is not captured
by the sampling process and the sampling error maximized. Figure 2.10 illustrates this
situation in case of fmax = 0.5Hz and fs = 1

Ts
= 2Hz for a pure sine, i.e. x = 1. If linear

interpolation is used with this sampling rate, then the interpolation error is equal to the
sampling error between the value at the sampling points adjacent to the peak and the
peak value which is cut off. These sampling points relative to the peak are given by

τ1 = τpeak −
Ts
2 = 1

4fmax
− 1

2fs
and

τ2 = τpeak + Ts
2 = 1

4fmax
+ 1

2fs
.
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Figure 2.10: Maximum sampling error emax of a sine with frequency fmax = 0.5Hz when
sampling with fs = 1

Ts
= 2Hz

Thus, the maximum error emax is given by

emax(fs) = |f(τpeak)− f(τ1)| = |f(τpeak)− f(τ2)| = a

(
1− cosx

(
π
fmax
fs

))
. (2.1)

Its shape is mainly determined by the ratio between the signal’s frequency fmax and the
sampling rate fs. From Eq. (2.1) the limits of emax in terms of fs are

lim
fs→∞

emax(fs) = 0 and

lim
fs→2fmax

emax(fs) = a .

So the error decreases as the sampling rate increases and tends to zero as fs approaches
infinity. If fs approaches its lower bound 2fmax (the Nyquist rate), the error increases
and becomes as large as the absolute value of the amplitude |a|. In this case, the signal
f(τ) would be sampled at sampling points τ with f(τ) = 0, leading to the maximum error
of |a|. Note that the Nyquist rate should not be used as sampling frequency because the
sine cannot be reconstructed from the samples f(τ) = 0 since the amplitude information
is missing. This is coherent with the Nyquist-Shannon sampling theorem which states
that the sampling frequency of a system has to be strictly greater and not equal to the
bandwidth of the system or the main frequency component, so that the original signal
can be reconstructed from samples without any information loss. Furthermore, the error
is proportional to the amplitude a, which is set to 1 for the following considerations to
deliver the error relative to the signal’s amplitude. Figure 2.11 shows the interpolation
error from Eq. (2.1) in the worst case (fmax = 0.6Hz) over the sampling rate relative to
the amplitude a of the original signal f(t) for x = 1, 2, 4. From that three major intervals
can be distinguished from each other:

• Worst case error is between 1 (100% of the amplitude a) and 0.1 (10%) if low sampling
rates up to about 4.1Hz for x = 1, 5.8Hz for x = 2 and 8.2Hz for x = 4 are used.

• Worst case error between 0.1 and 0.05 (5%) appears with medium sampling rates
up to 5.9Hz for x = 1, 8.4Hz for x = 2 and 11.8Hz for x = 4.
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Figure 2.11: Relative linear interpolation error when sampling sinx with x = 1, 2, 4 of
maximum breathing frequency of 0.6Hz in terms of sampling rate fs

• Worst case error is lower than 5% for higher sampling rates.

Note, that here the worst case error was observed. If the phase shift between the actual
signal and the sampling process is smaller, then lower values of interpolation or sampling
errors can be expected. Also note, that other measures of this error might be used as well
for this consideration, e.g. integral error between original and linearly interpolated signal.
Several conclusions can be drawn from these considerations: If the sampling rate is

large enough assuming a certain motion approximation (choice of x), then linear interpo-
lation can be used for a quasi-periodic tumor motion resulting in a worst case sampling
error smaller than a defined limit. If the sampling rate is lower, then higher-order in-
terpolation techniques can be used such as quadratic or cubic polynomial interpolation,
trigonometric interpolation or cubic spline interpolation in order to decrease interpolation
errors compared to linear interpolation in some situations. These techniques help to better
approximate the signal’s shape in between given sampling points as they assume a certain
shape by estimating parameters of an appropriate function in order to fit the function to
the sampling points.
However, if the tumor signal does not contain any periodicity for which a higher-order

interpolation would make sense because assumptions on the shape of the fitting functions
are not applicable to the signal, then the linear interpolation method is preferable as this
method only assumes a straight line in between two sampling points and thus can average
possible interpolation errors. Linear and quadratic polynomial interpolation methods have
been implemented in HexGuide which are described below:
Assume that successive measurements of a one-dimensional real-valued signal y are

taken at arbitrary timestamps τ(t) ∈ R with t ∈ N, leading to a sequence of measurement
samples y(t) ∈ R. Let the latest measurement be the one with index t. Further let the
timestamp to which the signal should be interpolated be τi ∈ R with τ(t− 1) ≤ τi ≤ τ(t)
and τ(t− 1) < τ(t), where τi is determined by the trigger (cf. Section 2.2.1.5). The linear
first-order interpolation function f1 : R 7→ R to be fitted to the data points at τ(t) and
τ(t− 1) is

fi1(τ) = c1τ + c0 ,

where parameters c1 ∈ R and c0 ∈ R need to be estimated from the conditions f1(τ(t −
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1)) = y(t − 1) and f1(τ(t)) = y(t). The slope c1 of the linear function can thus be easily
calculated from sampling points at t and t− 1:

c1 = y(t)− y(t− 1)
τ(t)− τ(t− 1) . (2.2)

Based on c1, the parameter c0 in the constant part of the interpolation function can be
derived as

c0 = y(t− 1)− τ(t− 1)c1 .

Function f1 can finally be evaluated at τi to find the interpolated value corresponding to
the timestamp.
The quadratic interpolation uses a second-order polynomial as fitting function f2 : R 7→

R
f2(τ) = c2τ

2 + c1τ + c0 .

In order to estimate the parameters c0, c1 and c2 ∈ R, three sampling points must be
taken into account with τ(t − 2) < τ(t − 1) < τ(t) and τ(t − 2) ≤ τi ≤ τ(t). These
parameters can be found from the equalities f2(τ(t − 2)) = y(t − 2), f2(τ(t − 1)) =
y(t − 1) and f2(τ(t)) = y(t) by solving a system of linear equations similar to first-order
interpolation. Evaluation of function f2 at τi delivers the interpolated value of quadratic
interpolation. This method was chosen as a higher-order addition to the linear method
because it shows good performance when applied to lung tumor trajectories and it requires
only three samples until the first interpolation can be calculated, thus reducing startup
time. For the initialization of polynomial-based interpolation methods, the number of
required tumor samples is generally the order of the polynomial plus one.
Consecutive sampling timestamps τ(t − 1) and τ(t) or τ(t − 2) and τ(t − 1) do not

need to be equidistantly spaced for the interpolation to work. However, in order to avoid
numerical problems in the implementation, a certain distance between them needs to be
ensured so that the differences in the denominator in Eq. (2.2) and in the corresponding
equations for quadratic interpolation do not grow too small.
The determination of the coefficients can also be done in more efficient ways, e.g. with

Newton interpolation or Neville’s algorithm [67] which compute the coefficients recursively.
These are especially useful, if many coefficients need to be calculated. However, the
interpolation here is of low order and is performed online, moving from one sampling
instant to the next. During calculation, common intermediate results occur within one
sampling instant which can be used in the next, so that the iterative computation of these
equations becomes efficient enough.
Figure 2.12 provides a comparison between linear and quadratic interpolation on a

tumor position signal which was recorded by the ATTS during a radiotherapy session using
tumor tracking with the EPID. The original samples (represented by blue dots) possess
an average sampling rate of 1.77Hz with a standard deviation of 0.37Hz. The blue curve
depicts the linear interpolation and the red one shows the quadratic interpolation, both at a
sampling rate of 20Hz. It can be estimated that in some situations a potential improvement
over the linear interpolation is reached, e.g. at 9.2 seconds, whereas in other situations,
e.g. at 3.1 and 41.8 seconds, larger or smaller overshoots can be observed. Generally,
tumor position samples should be analyzed before the usage of an interpolation method
is decided. Ideally, separate reference system with a larger sampling rate is required to
quantitatively compare the outcomes of different interpolation methods.
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Figure 2.12: Comparison of linear and quadratic interpolation on tumor position signal
gained from the EPID of the ATTS

Of course, when employing any interpolation method, a delay is introduced into the
system until the last arriving data sample can be processed further. The worst case delay
is thereby depending only on the interpolating sampling rate. This case becomes apparent,
if right after the last interpolating sampling instant a new data sample arrives. Then it
takes until the next interpolating sampling instant before that data sample can be used
in an interpolation. Hence, the time delay ∆Ti ∈ R in the worst case is bounded by the
interpolating sampling rate ftrigger:

∆Ti ≤
1

ftrigger
= Ttrigger , (2.3)

where Ttrigger ∈ R is the corresponding interpolating sampling period. The larger this
sampling frequency, the smaller the time delay ∆Ti.
Table 2.2 subsumes the results from this section to aid in deciding which interpolation

method is appropriate when taking into account the sampling rate of the tumor position
signal and its general shape. Wherever quadratic interpolation is appropriate, higher-order
methods are in general applicable as well.

hhhhhhhhhhhhhhhhhSignal Type
Sampling Rate Low Medium High

Random, non-predictable
e.g. prostate tumor

Linear Linear Linear

Quasi-periodic, predictable Quadratic Linear Linear
e.g. lung tumor Higher-Order Quadratic Quadratic

Higher-Order Higher-Order

Table 2.2: Recommendations for interpolation methods depending on sampling rate and
shape of tumor position signal

The previously discussed interpolation guarantees that an equidistant sampling rate of
the tumor position signal can be reached regardless of the behavior of the underlying
sensor. However, it does not handle the availability of the sensor data. Figure 2.13
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Figure 2.13: Illustration of timing condition between sensor and computer which need
to be handled properly

exemplifies a problematic situation, where the time of sensor data acquisition τmeasure

(depicted as the average time between τmeasurestart and τmeasurestop ) is lying in the past with a
time shift of more than one interpolating sampling instant relative to time τmeasurereceived (when
sensor data is fully received by the computer). Suppose that the sensor data contains an
exact timestamp and an exact age, then the time point τmeasure, when the physical sensor
observation was performed, can be derived accurately. In this situation, an interpolation of
tumor position can be performed up to τ triggert−3 , of course using older tumor samples, too.
However, the current sampling point, whose time is considered as “now” for the prediction
and control algorithms, is τ triggert . This gap can be compensated by using prediction
algorithms whose prediction horizon can be adjusted online. So if a tumor position sensor
is used with which the delay between sensor data acquisition and availability in HexGuide
is more than one sampling interval, then the prediction horizon for the current sampling
instant needs to be increased. The amount of increase is determined by the number of
past sampling instants during which no new tumor position information was available.
This property of an adaptable prediction horizon will become one of the requirements for
prediction algorithms discussed later in Section 3.2.2, so that prediction algorithms can
be applied in any situation. The same procedure is also followed during interpolation of
the Polaris samples. Due to high sampling rate, a linear interpolation is used for these
kind of data.

2.2.2.3 Online Peak Detection

HexGuide is equipped with an online peak detector, which can detect peaks in either
the interpolated breathing or the interpolated tumor positions, depending on the chosen
configuration. Peak information aids in the estimation of current breathing or tumor
motion frequency and in the detection of a phase shift. The calculation of breathing or
tumor moving average also benefits from the knowledge of peaks.
Usually, an easy way to detect peak values of a function is to equate its derivative to

zero and to solve for the free parameters. This general idea can also be applied to the
discretized breathing and tumor position signal, but with the addition of several checks
to gain a certain robustness against measurement noise, measurement errors and high
frequency oscillations with small amplitude changes.
Let y(t) ∈ R be a discretized, eventually interpolated (cf. Section 2.2.2.2) breathing or
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tumor position signal of length n ∈ N with equidistant sampling timestamps τ(t) with
1 ≤ t ≤ n. The discrete derivative in terms of time at a certain sampling instant t of the
signal is obtained from the difference equation

∆y
∆τ (t) = y(t)− y(t− 1)

τ(t)− τ(t− 1) .

In order to achieve a robust estimation of the time derivative in the presence of noise, it
is averaged over a certain number wP of derivatives in a sliding window manner. Hence,
it becomes

∆y
∆τ (t) = 1

wP

wP∑
i=1

∆y
∆τ (t− i+ 1) .

Since it is unlikely for a discretized derivative to become zero, the zero crossing of the
derivative, which indicates a peak point in the signal, can be determined by comparing
the signs of two consecutive averaged derivatives. Let the sign function be defined as

sgn(x) =


−1 if x < 0
0 if x = 0
1 if x > 0

for x ∈ R. If the condition

sgn
(

∆y
∆τ (t− 1)

)
6= sgn

(
∆y
∆τ (t)

)
(2.4)

is fulfilled, then a zero-crossing either between or at t− 1 and t has occurred.
However, this condition can be regarded as necessary for the presence of a peak, but

it might not be sufficient. Let the actual peaks of the signal be denoted as the “global
peaks”, whereas undesired peaks in between those are referred to as “local peaks” (global
in the sense of unique during one breathing cycle). The local peaks can occur when in
between two global peaks in the breathing or tumor signal, the patient eventually relaxes
the breathing process, so that a plateau occurs (or even a temporary move in reverse
direction) for a short time after which the patient continues breathing normally. Or they
arise when the input signal is noisy, so that the sliding window filtering cannot filter the
noise completely. Then, additional local peaks might be detected during a short interval
which still belong to the same part of the breathing cycle. Therefore a procedure needs to
be developed to distinguish between local and global peaks. Doing this in retrospect turns
out to be quite easy. Then a properly sized sliding window can be used to filter most of the
noise and adjacent peak candidates can be compared and checked for plausibility, whereby
possible future peaks can also be taken into account. However, when implementing such
a feature in an online fashion, the decision needs to be done as fast as possible without
introducing too much delay and without knowledge from the future. The sliding window
filtering with a filter size of wP already introduces a delay of dwP /2e sampling instants.
Note that sliding window filters are in general suitable for this purpose since they are
linear phase filters (the phase shift between output and input signal is a linear function of
signal frequency) with a constant group delay of wP /2 samples. From experiments using
the previously described hardware, values for wP between 3 and 5 offer a good trade-off
between delay and filtering performance for noise suppression.
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The rest of the decision process after applying condition (2.4) was therefore designed to
be computable in constant time. For the process described in the following, two lists are
built in the course of the peak detection process storing amplitude and timestamp of each
peak (after the decision process is successfully completed). The list Lmax contains the
maximum peaks and Lmin the minimum peaks. The type of the last peak is also stored.
For each potential peak the following decision process is applied:

1. If a zero-crossing is detected according to condition (2.4), then proceed, else stop
decision process.

2. If type of peak detected at last and type of potential peak are the same and if
amplitude of potential peak is larger (in case of maximum peak) or is lower (in case
of minimum peak) than amplitude of last peak of the same type, then overwrite the
last peak information with the potential peak and proceed with step 6.

3. If the difference between peak time to time of last maximum / minimum peak is
larger than or equal to Tmin, then the potential peak is considered further. The
minimum peak period Tmin has to be chosen in such a way that it is not too small
to let an early local peak be identified as global peak, nor too large to skip a global
peak if the actual breathing frequency rises.

4. If step 3. failed, the potential peak is granted another chance: If difference between
peak time to time of last maximum / minimum peak is smaller than T globalmin , then
the potential peak is ultimately refused and the decision process is stopped. Oth-
erwise the peak is checked further. T globalmin represents the minimum of all previously
detected breathing periods gained by this process of peak detection. It brings in
more robustness in case the duration of breathing cycles show a larger variation
throughout a fraction.

5. If the difference between the last minimum / maximum peak value and the potential
peak value is smaller than Pmin, then the potential peak is ultimately discarded.
Pmin constrains the minimum amplitude difference between two different peak types.

6. Finally, when reaching here, the potential peak is considered a valid one. Now, the
lists containing the minimum and maximum peaks are updated.

7. The peak detector contains an option to automatically adapt the parameters. If this
option is enabled, then the value for Pmin is updated in such a way that this is set
to a configurable fraction between 0 and 1 of the amplitude difference between the
current peak and the last peak of the opposite type if that value is smaller than the
current value of Pmin. Tmin is updated in the same way where the reference is the
length of the last detected breathing period. If the last breathing period including
the peak is shorter than T globalmin , then T globalmin is set to the last breathing period (which
is the shortest so far).

The flow chart in Figure 2.14 summarizes these steps and gives an overview of the indi-
vidual decision steps during peak detection.
If the peak detector is running without the adaptation option, then step 4. can be

omitted because it is not required. In any case, initial values for all conditions need to be
found. Reasonable values can be extracted from extreme and average cases of breathing or
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Figure 2.14: Flow chart describing the individual decision steps during peak detection

tumor motion, see also Section 3.1. In combination with the knowledge of the algorithm’s
working principle, initial values can be estimated. Then these values should be tested
using as many as real patient datasets as possible. If some peak is skipped or a false peak
identified, then these values should be tuned. However, with adaptation enabled, the need
to find precise values is not critical as these values adapt to the current situation. In this
case only the fractions of the breathing period need to be chosen with which the minimum
times are calculated.

2.2.2.4 Determination of Moving Average

The moving average of either interpolated breathing or tumor positions can be determined
within the ATTS for the realization of two functionalities: First, when using drift com-
pensation mode (cf. Section 2.1.2) information about the current drift must be available,
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which can be derived from the moving average and second, some prediction algorithms can
perform better predictions, if their input signals are centered around their mean. Here,
the corresponding moving average is removed from the input signal, which is fed into the
predictor. Then the predictor calculates a prediction from the mean-centered input sig-
nal and finally, the current moving average is added to the prediction to undo the initial
removal of the moving average.
In general, the moving average can be derived using a sliding window of size wM ∈ N

applied to an equidistantly discretized breathing or tumor position signal y(t) of length
n ∈ N with sampling timestamps τ(t) with 1 ≤ t ≤ n. The output d(t) ∈ R at sampling
instant t of the sliding window can then be determined by

d(t) = 1
wM

wM∑
i=1

y(t− i+ 1) , (2.5)

using the same weight of 1
wM

of each contributing sample of y.
In the case of a non-periodic signal, e.g. prostate motion, wM should be chosen large

enough to filter short-term peaks in the motion, but small enough to capture current signal
trends. If it is too large, then older samples have a stronger impact than newer samples
which might lead to over- or underestimation of the current trend.
For periodic signals, wM should be set to the corresponding number of samples for the

duration of one period to avoid estimation errors. Thereby it is not important to start and
stop the calculation exactly at a peak or zero-crossing, but to use the correct number of
samples. However, breathing motion in humans is subject to amplitude changes and phase
shifts, so that the peak detection discussed in the previous section can help to choose the
most up-to-date value for the window size wM .
Two versions of moving average determination were implemented in HexGuide. The first

version updates the moving average described by Eq. (2.5) in each sampling instant. This
accommodates the fact that drift changes occur continuously during a breathing cycle.
Nevertheless, the window size wM is updated as soon as a peak is detected to account
for phase changes in the breathing. The second version updates the moving average only
during the sampling instant when a peak was detected. The moving average is then kept
constant similar to a zero-order hold until the next peak is detected. A disadvantage
compared to the first version is that this leads to more discontinuities in the moving
average, which can have an effect on the smoothness of the prediction. However, this
scheme does not introduce new dynamics during a breathing cycle because the moving
average stays constant in this interval.
An example of the first variant is shown in Figure 2.15(a). The upper diagram shows

a breathing trajectory together with detected maximum (red crosses) and minimum (blue
crosses) peaks. The moving average (blue line) depicts a quite smooth behavior. A few
slight discontinuities in the moving average can be observed when a peak is detected and
changes in duration of the last breathing period compared to the previous one is larger. In
the lower diagram, the modified breathing trajectory is shown in which the moving average
was removed. One can observe, that it is much better centered around the baseline at zero.
However, if a peak is offset due to breathing irregularities, e.g. occurring at second 47, then
larger changes of the moving average can be observed afterwards which are compensated
after a few seconds. Figure 2.15(b) depicts the results on the same breathing trajectory
of the second version with updates of the moving average only performed during a peak.
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(a) Moving average continuously updated at every
sampling instant
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(b) Moving average updated only when peak was de-
tected

Figure 2.15: Example of moving average determination: In the upper diagram green de-
picts a breathing signal with detected maximum (red crosses) and minimum
(blue crosses) peaks; Moving average is shown as solid blue line; in lower
diagram the breathing signal with eliminated moving average is shown

This clearly introduces discontinuities which can only occur when a peak is detected. Of
course, they also lead to more discontinuities in the modified breathing signal in the lower
diagram, but this scheme can average errors present in the first version, for example the
ones at second 47. The moving average stays constant and the height of it is less influenced
by the offset peak as in the first version.
There is also another method [68] to track the mean position of respiratory motion

based on ellipse fits and estimation of ellipse center. Unlike the baseline method against
the method was compared, which also uses a moving average but with a fixed window
size, the moving average method as presented here uses an adaptive window size, which is
determined by robust detection of the peaks in the motion signal. For the purpose of this
work, the presented method was deemed to deliver a satisfactory performance by visual
inspection on all available datasets.

2.2.2.5 Reference Frames and Calibration

Central tasks for calibration are to find the mappings between the sensor reference frames
to the HexaPOD reference frame, so that measurements given relative to the sensors’
reference frames can be transformed into the HexaPOD frame. The choice of the HexaPOD
frame as ultimate reference frame is thereby arbitrary, but natural for the given problem.
If the individual axes of the HexaPOD frame are aligned perpendicular to the axes of the
isocenter reference frame, then the calibration process finds the mapping simultaneously
to the HexaPOD and the isocenter frame. This is assumed in the following.
The mapping between two frames can be described by a homogeneous transformation
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matrix T srcdest ∈ R4×4 of the form

T srcdest =

 R ~p

0 0 0 1


where R ∈ R3×3 is an orthonormal rotation matrix defining the orientation of the frame
src in relation to the reference frame dest and ~p ∈ R3×1 is the translational displacement
of the origin of frame src to dest.

The calibration process needs to be performed for each sensor separately. In order to
find the mapping between a sensor’s frame S and the isocenter frame I several measure-
ments of certain points ~pi ∈ R3×1 with i = 1, 2, . . . need to be taken which are known in
both reference frames. Then, a procedure is applied to estimate the best homogeneous
transformation matrix TSI fulfilling the equation[

[~pi]I
1

]
= TSI

[
[~pi]S

1

]
(2.6)

for all pairs of acquired points [~pi]I (relative to isocenter I) and [~pi]S (relative to sensor
frame S). In order to derive a solution for the transformation matrix, at least three
non-collinear points must be measured. More points can be used to reduce the effect of
measurement errors. Point pairs can be acquired by placing a measurable entity on the
HexaPOD, then moving the HexaPOD to certain known locations w.r.t. the HexaPOD
(delivering [~pi]I) and taking the corresponding measurement by the sensor (delivering
[~pi]S). Using the HexaPOD, some points should also be acquired close to operational
range limits in order to get a good coverage of the whole range and to decrease effects of
positioning errors. For example, this would mean placing an IR tool on the HexaPOD for
the Polaris system or fixing the beacons of the Calypso system on the HexaPOD.

Both systems actually also deliver an orientation in addition to a position measurement.
In this case, the formulation of Eq. (2.6) can be extended to

TSM
I,i = TSI T

SM
S,i (2.7)

where TSM
I,i describes the i-th measurement of position and orientation of the moveable

entity as homogeneous transformation matrix relative to frame I, and TSM
S,i is the i-th

measurement of the moveable entity with respect to the sensor frame S as transformation
matrix. Since this also involves orientation, another local reference frame SM needs to
be introduced, which coincides with S if the entity is located at the origin of S with
zero orientation. If we apply the calibration process in the manner of Eq. (2.7) with an
arbitrarily oriented measured entity, then we would perform the calibration with respect
to the orientation of the entity’s axes given by frame SM which are present during the
time of calibration. This means that an orientation of zero around all axes in frame I is
measured (rotation matrix in TSM

I,i becomes identity matrix), when the entity’s axes are
aligned with the same orientation as during calibration. If the orientation should also be
correctly calibrated, then the axes of the measured entity (frame SM ) would need to be
aligned coincident with the isocenter or HexaPOD frame during calibration. However, this
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is an inconvenient requirement because it can hardly be ensured that for example the axes
of an IR tool are perfectly coinciding with the HexaPOD axes. Therefore, the calibration
problem can be reformulated to make the approach more flexible.
The problem of calibration in this situation is that the transformation matrix T ISM ,0

is unknown which describes the position and orientation of the isocenter or HexaPOD
frame I in relation to the local reference frame SM of the measured entity during the
time of calibration (index 0 indicates one measurement taken during calibration). Post-
multiplying this transformation matrix to both sides of Eq. (2.7) results in

TSM
I,i T

I
SM ,0 = TSI T

SM
S,i T

I
SM ,0 .

Relating this to a certain displacement of the HexaPOD during the calibration which is
given by T IM

I,0 where IM denotes the mobile frame moving along with the HexaPOD leads
to

TSM
I,i T

I
SM ,0T

IM
I,0 = TSI T

SM
S,i T

I
SM ,0T

IM
I,0 .

T IM
I,0 is completely determined by the position and orientation information in one specific

HexaPOD’s command during calibration (assuming the HexaPOD has moved already into
the given position and orientation). Combining the transformations with index 0 yields

TSM
I,i T

IM
SM ,0 = TSI T

SM
S,i T

IM
SM ,0 . (2.8)

Since the effect of change of the HexaPOD’s position and orientation on the measured
entity at an arbitrary sampling instant i is already contained in TSM

I,i and T IM
SM ,0 = T IM

SM ,i

is not varying with time, the left-hand side of Eq. (2.8) can be reduced to T IM
I,i describing

the position and change w.r.t. the isocenter frame when the HexaPOD moved:

T IM
I,i = TSI T

SM
S,i T

IM
SM ,0 . (2.9)

This information is immediately known from the HexaPOD’s command, whereas TSM
S,i is

directly measured by a sensor. T IM
SM ,0 can be determined using information gathered during

calibration:
T IM
SM,0 = TSSM ,0T

I
ST

IM
I,0 . (2.10)

TSSM ,0 =
(
TSM
S,0

)−1
is the inverse of a single sensor measurement TSM

S,0 of the moveable entity
during calibration, T IM

I,0 is the corresponding position and orientation of the HexaPOD and
T IS is the inverse of the calibrated transformation matrix TSI from Eq. (2.7).
The whole calibration procedure can be summarized as follows:

1. Place the measured entity on the HexaPOD with an arbitrary orientation of SM .

2. Assume that SM = IM in Eq. (2.7) and record at least three point pairs of the entity
measured by the sensor (TSM

S,i ) and by the HexaPOD (T IM
I,i ).

3. Apply the calibration process to determine TSI , resulting in the calibration of the
origin of I in the location of the origin of SM as well as in the calibration of the
orientation of I in the same orientation as SM due to the assumption.

4. Use T IS =
(
TSI

)−1
and one point pair to calculate T IM

SM ,0 from Eq. (2.10).
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T IM
SM ,0 can be regarded as an orientation correction matrix in order to determine the correct

rotation. However, this does not apply to the position, since the origin of I is still located
in the origin of SM at the time of calibration. If the HexaPOD does not need to be
rotated during motion compensation, this restriction does not impose any limitation on
the feasibility of this approach. If rotations also need to be calibrated, basically the same
approach still applies, however the HexaPOD needs to be rotated during calibration when
the point pairs are acquired. Additionally, the calculation of the position in TSI needs to
be extended by an approximation of the origin of the HexaPOD reference frame.

Having obtained the homogeneous transformation matrices TSI and T IM
SM ,0 through the

calibration process, a new sensor measurement TSM
S,i needs to be multiplied with these

matrices according to Eq. (2.9) in order to be mapped into the isocenter reference frame
I.

The mentioned calibration process used in this work is based on a method [69] for fitting
two 3D point sets using a least squares approach for optimizing the mapping between the
point sets with a quadratic error criterion summarized as follows: Suppose that n ≥ 3
non-collinear measurements of the point pairs [~pi]I and [~pi]S at different locations have
been acquired. Then the mapping of Eq. (2.6) between the two reference frames can be
written using the orthonormal rotation matrix RSI and the origin displacement ~pSI between
frames S and I as

[~pi]I = RSI [~pi]S + ~pSI .

RSI and ~pSI are optimized by a least squares approach, minimizing the quadratic error

1
n

n∑
i=1

(
[~pi]I −RSI [~pi]S + ~pSI

)T (
[~pi]I −RSI [~pi]S + ~pSI

)
(2.11)

between the point set [~pi]I and the result of mapping the point set [~pi]S into frame I.
With the mean vectors

[~p]I = 1
n

n∑
i=1

[~pi]I and [~p]S = 1
n

n∑
i=1

[~pi]S ,

origin displacement can be eliminated from the minimization problem yielding

1
n

n∑
i=1

(
[~pi]I − [~p]I −RSI

(
[~pi]S − [~p]S

))T (
[~pi]I − [~p]I −RSI

(
[~pi]S − [~p]S

))
.

It can be shown that this is equivalent to maximizing

1
n

n∑
i=1

(
[~pi]I − [~p]I

)T
RSI

(
[~pi]S − [~p]S

)
= tr

(
RS

T

I C
)
, (2.12)

where the matrix C is

C = 1
n

n∑
i=1

(
[~pi]I − [~p]I

) (
[~pi]S − [~p]S

)T
.
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Calculating the singular value decomposition of C given by

C = UWV T

with orthogonal matrices U and V and a diagonal matrixW containing the singular values,
Eq. (2.12) is maximized if RSI = UV T . However, according to [70] and also confirmed
after implementation of the calibration approach, sometimes maximization results in a
reflection of the point sets, characterized by det

(
RSI

)
= −1. But a rotation matrix needs

to be orthonormal with a determinant of +1. To account for this, [70] proposes to modify
the approach to

RSI = U

1 0 0
0 1 0
0 0 det

(
UV T

)
V T ,

where the smallest singular value is assumed to correspond to the last element of W .
Having obtained the rotation matrix, the origin displacement can be determined by

~pSI = [~p]I −RSI [~p]S ,

thus completing all required information for the calibration process. More sophisticated
methods exist, some of them are compared in [71], which are better capable of dealing with
ill-conditioned data. The approaches differ in the way, how Eq. (2.11) is minimized. How-
ever, since input data is well defined for this application, the described method produces
very similar results in comparison to other methods such as [72].

2.2.2.6 Implementation Issues

All in-house made software packages were developed using C++. Algorithms were proto-
typed and tested primarily in MATLAB® whenever possible before they were implemented
in C++. The programs are written in a platform-independent manner. This allows them
to be compiled on Microsoft® Windows® operating systems (version 2000 or above) using
the Microsoft® Visual Studio® development environment, on Linux-based operating sys-
tems with the GNU compiler collection GCC and on Linux-based operating systems using
the hard real-time framework Xenomai.
The software package HexGuide needs to provide a stable and predictable environment

with respect to timing, so that prediction algorithms and control methods can rely on
equidistant sampling intervals to avoid timing errors. Furthermore, the application it-
self should constrain introduced latencies as much as possible. Therefore some general
guidelines were followed during the development:

• No memory allocation during runtime: Memory allocation is quite a time consuming
task and is performed completely during program initialization. This also enables
the immediate compatibility with the Xenomai real-time system where no memory
allocation is allowed in the real-time domain.

• Independent of the operating system, the program is run with higher scheduling pri-
ority in order to supersede the scheduling needs of normal applications. If HexGuide
or a thread of it is runnable and the scheduler of the operating system decides which
thread is granted some CPU time, then higher prioritized threads or processes are
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preferred. This improves the responsiveness of the application to external events,
e.g. sensor data arrival.

• Faster code is favored over smaller code in order to constrain software-induced la-
tencies to a minimum. All compiler settings and optimizations are configured to this
end.

Each operating system possesses its own peculiarities which can affect the scheduling
and timing of the application [73]. These are discussed below:

Windows Like any non-real-time operating system, Windows does not guarantee any
timing or scheduling constraints. However, some improvements can be achieved by in-
creasing the timer resolution. The standard timer resolution on most PC hardware is
usually 10ms or 15ms. The highest resolution on PC systems is about 1ms. The exact
value depends on the underlying hardware, where values of 0.9765ms, 0.9766ms and 1.0ms
have been observed on different CPUs. The timer resolution determines the minimum
time, the so-called quantum, for which a thread may execute without any interruptions by
the scheduler (nevertheless hardware or software interrupts are still handled). Reducing
the quantum to the minimum time (in which case the maximum resolution is achieved),
makes the system more responsive to events because threads can be scheduled at a much
finer timing granularity. This reduces the average latency between arrival of new sensor
data and handling of that data. However, the system load system rises a little due to more
frequent context switches between several other threads sharing one CPU.
Windows does not directly allow locking all current and future memory pages of a

process to physical memory. However, it allows to define a process working set size which
is the number of bytes of the process’ memory the memory manager tries to keep in
physical memory without swapping it out into the page file. This still gives no guarantees
but at least reduces the chances of memory page faults whose handling negatively affects
the timing of applications.

Linux In the same way as Windows, Linux per se also does not provide any scheduling
or timing guarantees. Improvements can be gained in a similar way. The timer resolution
can unfortunately not be influenced during run-time, but can be configured into the kernel
(the resolution is given in terms of frequency, usually in the range between 100Hz (10ms)
and 1000Hz (1ms). As a consequence of this, the kernel has to be manually compiled on
a Linux system as distributions usually have a lower default frequency value set in the
kernel.
The memory manager in Linux can be instructed to lock all current and future memory

pages of a process to stay in physical memory rather than being moved to the swap
filesystem. In contrast to Windows, this behavior is guaranteed in Linux.

Linux with Xenomai for Hard Real-Time Capabilities Xenomai1 [74] is a free real-time
framework, that brings hard real-time support to GNU/Linux. It is based on the ADEOS
(Adaptive Domain Environment for Operating System) nanokernel which is injected into
a standard Linux kernel by an appropriate kernel patch. It introduces multiple domains
with different priorities which share the same hardware resources. The domains are used to

1http://www.xenomai.org
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shield interrupts from being handled by the Linux kernel. This allows that the Linux kernel
does not preempt real-time tasks, so that timing constraints can be met. Xenomai provides
various interfaces, called skins, so that porting already existing real-time or non-real-time
applications to Xenomai is simplified without rewriting the whole application. This feature
made it attractive to adopt Xenomai here, since most of the existing code was already
POSIX compliant which is a supported skin in Xenomai. Xenomai not only provides real-
time support in kernel-mode, but also in user-space applications. Furthermore, it supports
the real-time driver model which allows development of drivers for hardware interfaces
that can be used in real-time applications. Up to now, a 16550A universal asynchronous
receiver/transmitter (UART) serial driver, a hard real-time network protocol stack called
RTnet2 supporting popular network cards and real-time driver for interfacing with the
CAN-bus have been implemented.
Within one application, real-time (RT) tasks and non real-time (NRT) tasks can coexist

simultaneously. A real-time task is normally executed within the primary domain, meaning
that it is scheduled by the real-time scheduler without any interference by the Linux kernel
or its scheduler. If a real-time task issues a system call which cannot be handled by the
primary domain (e.g. memory allocation, input or output of devices with non-real-time
drivers behind), then the task is switched to the secondary domain, in which also the
normal Linux kernel is executed. In this case, the task can be preempted by the Linux
kernel and no scheduling guarantees can be met. In order to avoid that, it has to be ensured
that only appropriate system calls are used and for the situation that a communication
between RT and acNRT task needs to be established, appropriate methods for inter-process
communication need to be used which are supported by the real-time driver model.
Within HexGuide, each complete cycle of the control loop is executed within one RT

task (the task containing the trigger of the system). This involves the prediction of future
tumor positions, generation of the reference trajectory and the calculation of the control
input to the HexaPOD. The serial transmission of the control input to the HexaPOD
is performed within the RT domain as well because of the RT-capable serial driver of
Xenomai. The RT task is executed in a special mode, which locks the RT scheduler,
guaranteeing that this task is not preempted by the scheduler for executing any other
runnable task until the scheduler lock has been released or the task begins to wait for
a condition. This specific feature enables HexGuide, once all available sensor data has
been acquired for the current sampling instant, to perform a full control cycle without
any interruptions by the scheduler (except the handling of hardware interrupts within the
RT domain). Compared to standard Linux or Windows where the preemption is reduced
due to above mentioned means, Xenomai can guarantee it, leading to a more predictable
system in which timing latencies introduced by the operating system can be minimized.
The timing accuracy becomes apparent when a thread needs to be scheduled in regularly

spaced intervals like the internal trigger in HexGuide. Therefore HexGuide was configured
to use the internal trigger at different rates and executed on the various operating systems
in the same way. During this experiment measurements of the internal trigger’s interval
time were acquired. Table 2.3 shows exemplary results of mean and standard deviations
of the interval time during a test run on the same hardware. While Windows XP already
provides good timing accuracy, Linux shows more precise timing. The mean is located
closer to the desired value of either 50ms, 33.33ms or 16.66ms and the standard deviation
(STD) is lower. With Xenomai the mean interval time possesses an accuracy in the

2http://www.rtnet.org
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Rate of internal trigger
20Hz 30Hz 60HzOperating system

MEAN STD MEAN STD MEAN STD
Windows XP 50.00033 0.39107 33.33312 0.33214 16.66688 0.24320

Linux 50.00003 0.13235 33.33336 0.15544 16.66672 0.18773
Linux+Xenomai 50.00000 0.00177 33.33333 0.00178 16.66666 0.00126

Table 2.3: Timing comparison of interval time of internal trigger between different op-
erating systems measured on the same hardware; all values are given in mil-
liseconds

nanosecond range and a standard deviation of less than two microseconds which is two
orders of magnitude lower than for the NRT operating systems.
Because of the timing accuracy in combination with the scheduler lock, Xenomai pro-

vides a well-suited environment for the tasks of HexGuide. Thus, Linux with Xenomai is
the preferred environment.
However, Xenomai currently does not possess a working support for USB. In order to

make use of the full RT capabilities of Xenomai when using the Polaris Spectra IR camera,
which comes only with USB support, an additional interface is required to convert from
USB to a standard serial interface. Since the camera needs to be connected to a USB
host controller, standard USB to serial adapters are not usable as they only possess a
USB device controller. Therefore, a small Arduino-sized development board VNCLO-
MB1A from Future Technology Devices International Ltd., Glasgow, United Kingdom
equipped with Vinculum-II (VNC2), clocked at 48MHz, is employed (see Figure 2.16).
Apart from an USB host controller integrated into the VNC2, it also possesses a standard
UART interface up to 6Mbps to which a MAX13433E RS-485 transceiver from Maxim
Integrated Products Inc., San Jose, California, USA, with a maximum communication

Figure 2.16: Arduino-sized development board VNCLO-MB1A with Vinculum-II
(VNC2) chip and customized stack with RS-485 transceiver
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speed of 16Mbps is connected. This combination enables connecting the Polaris camera
using its maximum transfer rate of 1.2Mbps to the integrated USB host controller while
the developed device itself can be connected to a RS-485 serial board located in a PC. For
this work, the MOXA CP-134U serial card from Moxa Inc., Brea, California, USA is used
on the PC side which can be accessed using the Xenomai RT serial drivers. Apart from
two RS-485 ports, it supports two additional RS-232 ports. The maximum transfer rate
of the MOXA card is, with 921.6Kbps, slightly lower than the one of the Polaris camera.
The firmware, which was written for the VNC2 using an RT operating system specifically
designed for VNC2, takes this into account by allowing interleaved sending and receiving
on both the UART and USB host controller with different rates to minimize the effect of
induced latencies.

2.2.3 Latency Determination and Compensation
In order to quantify the latency of the Polaris Spectra IR camera and the HexaPOD,
several experiments were conducted. A microcontroller board (cf. Figure 2.17) based
on a Crumb128 module from chip45.com, Linden, Germany was used, which was initially
developed for a different project. The Crumb128 module carries an Atmel ATmega128 mi-
crocontroller from Atmel Corporation, San Jose, California, USA, running at 14.7456MHz
and provides a MAX3221 RS-232 transceiver from Maxim Integrated Products Inc. for
enabling RS-232 communication between the integrated UART and a serial port of a PC
which is connected to the Sub-D-9 connector.

Figure 2.17: Microcontroller board with Atmel ATmega128, IR light detector and con-
nector for linear potentiometer used for latency measurements

For measuring latency of the Polaris camera, the board was equipped with a Honey-
well SDP8600 optoschmitt detector from Honeywell International Inc., Morristown, New
Jersey, USA. The SDP8600, which is connected to an input pin of the microcontroller,
consists of a photodiode sensitive to infrared light, a transistor and a Schmitt trigger.
The latency of the HexaPOD was estimated using a linear sliding potentiometer which

is connected to an analog to digital converter (ADC) input of the microcontroller.
All latency measurements were performed in the following setup: The microcontroller

board was connected with a serial cable to one of the RS-232 ports of the MOXA serial
card on the PC. In order to reduce transmission delays, the serial port was configured to
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operate at a rate of 460.8kpbs (as opposed to the maximum of 115.2kbps for a standard
16550A compatible UART normally found integrated into PCs), with which reliable RS-
232 communication is still possible using a short cable. The software developed for the
ATmega128 sends either a one byte packet (for Polaris latency determination) or two
bytes (for HexaPOD latency estimation) to the PC when a measurement is complete.
HexGuide, running with Xenomai on the PC, was extended in order to timestamp (using
the most precise clock available) and to log the incoming measurements. Simultaneously,
it interfaces with the Polaris camera to timestamp and log the tool transformations or
it connects to the HexaPOD to send a series of predefined commands and to log the
associated timestamps. For all timestamps acquired during latency determination, it is
important to use the same clock source in order to enable comparisons of the timestamps.

2.2.3.1 Latency Measurement of the Polaris Spectra IR camera

The pin to which the SDP8600 optoschmitt detector is connected, triggers an interrupt
either on falling or rising edge, enabling detection when the IR emitting diodes of the Po-
laris camera are switched on and off. Using an interrupt additionally guarantees the least
possible latencies induced by the microcontroller. The total latency of the measurement
system itself from detection of IR light to reception of the measurement packet from the
microcontroller on the PC is as follows: The SDP8600 possesses a typical propagation
delay of 5.0µs and an output rise time of 60ns (the output fall time is 15ns). The micro-
controller triggers an interrupt when the pulse of the output of the SDP8600 is at least one
clock cycle in duration. The execution of the code from the jump to the interrupt service
routine to the start of the serial transmission of the one byte packet takes 111 clock cycles
(determined by summing up the clock cycles of the instructions found in the assembler
listing of the relevant code parts), corresponding to 7.53µs. The transmission of 10bits
(one byte plus start and stop bit) at 460.8kbps is 21.70µs. The total latency of 34.36µs is
assumed to be constant, by which the acquired timestamps on the PC are corrected.
Calculating the time difference between consecutive samples associated to IR light on

and off delivers the illumination time depicted in Figure 2.18(a). With a mean value of
0.5253ms and a standard deviation of 0.0012ms the illumination time is quite constant.
The measurement latency is the difference between the timestamp of transmission-start of
the Polaris samples (calculated from the timestamp on reception subtracted by the serial
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Figure 2.18: Results for latency measurements of Polaris Spectra IR camera
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transmission time) and the timestamp of the physical measurement (the mean timestamp
between IR on and off). The latency of the Polaris system (excluding serial transmission),
exemplified in Figure 2.18(b), has a mean value of 19.9561ms in the range from 19.4510ms
to 20.6638ms and a standard deviation of 0.2791ms. The latency variation of about 1ms
is a result of the behavior of the USB host controller which reads data only in a timed
fashion using a latency timer which defaults to 16ms. In this work it is set to the minimum
value of 1ms, so that the smallest possible latency is introduced.
If the Polaris update rate is set to 20Hz or 30Hz, the latency measurements deliver

unique values, which can additionally be verified when the tracking mode of the Polaris
camera is immediately deactivated after one Polaris measurement. Since the average
latency is larger than the smallest sampling period of 16.667ms, latency measurements are
not unique for an update rate of 60Hz. In this setting, acquired latency values move in
the range of 2.7843ms to 3.9971ms. Due to the fact that latencies are the same for 20Hz
and 30Hz, it is assumed that they do not depend on the used update rate. Furthermore,
when adding the duration of one sampling period of 16.667ms to the acquired latencies
in the low millisecond range, the resulting latency values are in the same range as for an
update rate of 20Hz or 30Hz. Hence, for 60Hz, the Polaris camera works in an interleaved
mode in which the scene is illuminated already while the previous measurement is still
processed. When assuming this operation mode, the Polaris camera possesses a constant
measurement latency irrespective of the selected update rate (apart from the USB-induced
variations of less than 1ms).

2.2.3.2 Latency Estimation of the HexaPOD

Precise measurements of the HexaPOD’s latency are difficult to realize, especially with
low-cost equipment. While the point in time of sending a command from a control PC
can be determined accurately, estimation of point in time when the HexaPOD starts
moving in response to that command is a challenging problem. This stems from the
fact that sufficient resolution both in time and in terms of the measured quantity needs
to be provided by the employed sensor. In order to achieve sufficient timing accuracy,
time resolution of the sensor should be considerably smaller than 1ms. For position-based
sensors, resolution in position should be at least in the µm range to reduce resolution-
induced timing errors. Several types of sensors, such as inertial measurement units and
acceleration sensors, have been considered for the purpose of latency estimation of the
HexaPOD. They either suffered from insufficient timing resolution or insufficient sensitivity
to recognize even sharp changes of motion. Hence, latency estimation was performed as
described below.
The overview of the setup for latency estimation is shown in Figure 2.19(a). A wooden

bar was rigidly attached to the HexaPOD’s tabletop with three screws. An aluminum bar
with quadratic holes was fixed to the wooden bar. The size of the holes is big enough to
support the cone-shaped slider of the linear potentiometer without backlash as depicted
in Figure 2.19(b). The potentiometer is held by a clamp screwed to a heavy metal stand.
By rotating the complete stand or the wooden bar by 90° the latencies along all three
translational axes can be measured.
The potentiometer EWAQ1 from Panasonic Corporation, Osaka, Japan, with a travel

distance of 60mm is connected to a 10bit ADC input of the microcontroller. If the slider
of the potentiometer is in one of the extreme positions, the smallest ADC value observed
is 15. The largest ADC value of 1023 is reached if the slider is 3.5mm before the other
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(a) Overview during measurements along the x-
axis

(b) Close view during measurements along the y-axis

Figure 2.19: Setup for estimation of the HexaPOD’s latency

extreme position. This leaves an effective measurement range of 56.5mm which is covered
by 1009 ADC values, hence resulting in a position resolution of 56.00µm.
On the microcontroller one ADC conversion takes 13 ADC clock cycles, where the ADC

is clocked at 115.200kHz, corresponding to 112.85µs. Half of that duration (56.43µs) is
taken into account for measurement latency. The execution of the code from the jump to
the interrupt service routine of the ADC complete interrupt to the start of serial trans-
mission of the two byte packet takes 151 clock cycles, corresponding to 10.24µs. The
transmission of 20bits (two bytes plus start and stop bits) at 460.8kbps is 43.40µs. Also
here, acquired timestamps on the PC are corrected by the total latency of 110.07µs. Each
ADC conversion is started using a timer of the microcontroller which is executed at a rate
of 6kHz in order to achieve a good time resolution of 166.667µs.
For determining latency of the HexaPOD along one axis, the HexaPOD was moved

within the effective measurement range along the chosen axis by “MOV” commands. The
timestamps, when these commands were sent, were logged as well as all digitized voltages
of the potentiometer which correspond to a certain position of the HexaPOD. Both logged
values are depicted in Figure 2.20(a) which exemplifies the measured results along the x-
axis for latency estimation. The raw ADC measurements converted to voltage are shown
in blue. Due to the high frequency polling, ADC delivers quite noisy measurements.
However, these are represented by discrete values where most of the noisy measurements
are characterized by outliers which only last for one sampling period, so that the discrete
values before and after an outlier are equal. Exploiting this characteristic, a simple and
effective filtering method can be established by comparing the current sample value to the
previous and next ones. If the current and previous values differ from each other but the
previous and next values are equal, the current one is set to that value. Applying this
filter results in the curve shown in red in Figure 2.20. From this, the point in time was
manually chosen when the HexaPOD was deemed to show a change in the filtered ADC
values as depicted in Figure 2.20(b). The difference in time from the chosen timestamp
to the logged timestamp of the command corresponds to the latency of the HexaPOD. Of
course this manual process is subject to errors in judgment. Hence, each complete trial
like the one shown was repeated three times and performed along all translational axes.
Furthermore, two different set of trials were used. In the first set, the first command is one
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Figure 2.20: Examples of results for HexaPOD latency determination

with minimum velocity of 0.0011mm/s as shown in Figure 2.20(a). The second command
makes the HexaPOD move into the same direction but with a larger speed of 8mm/s. In
the second set, the initial command with minimum velocity is not executed, so that the
first command already sets the HexaPOD in motion.
The individual results for each of these trials on the HexaPOD are given in Table 2.4.

Column C1 specifies the latency for the first command with larger velocity than the mini-

HexaPOD resting HexaPOD minimum velocityAxis Trial
C1 [ms] C2 [ms] C3 [ms] C1 [ms] C2 [ms] C3 [ms]

1 211.7 36.6 29.5 247.1 27.8 24.9
2 213.9 27.3 26.6 242.7 30.9 26.9X
3 207.6 38.2 27.2 207.1 30.5 26.5
1 145.1 24.0 24.5 137.1 23.2 24.0
2 138.7 23.7 23.4 145.0 23.1 24.6Y
3 137.8 23.2 22.4 140.9 23.9 23.1
1 104.2 23.3 21.3 103.2 26.3 21.7
2 116.0 23.9 22.9 121.3 24.7 23.1Z
3 111.0 26.5 21.9 111.0 24.7 24.8

Table 2.4: Results of HexaPOD latency estimation

mum one, i.e. the latency of the initial command with minimum velocity is not evaluated
as it cannot be seen in the data (cf. Figure 2.20(a)). Column C2 gives the latency for
the second command which makes the HexaPOD change direction while the HexaPOD is
moving with maximum speed. Finally column C3 results as latency to the third command
which makes the HexaPOD move into its zero position, also moving with maximum speed
before. Column C1 specifies the latency for the first command with larger velocity than
the minimum one, i.e. the latency of the initial command with minimum velocity is not
evaluated as it cannot be seen in the data (cf. Figure 2.20(a)). Column C2 gives the
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latency for the second command which makes the HexaPOD change direction while the
HexaPOD is moving with maximum speed. Finally column C3 results as latency to the
third command which makes the HexaPOD move into its zero position, also moving with
maximum speed before.
Observed latencies reveal that there is no significant difference in the latencies when the

HexaPOD is initially at rest or initially moving with minimum velocity as the latencies for
C1 are located in a similar range. However, they are about an order of magnitude larger
for the x-axis and about half an order of magnitude larger for the y- and z-axis compared
to C2 and C3 when the HexaPOD is moving with maximum velocity. Of course, given a
position resolution of 56µm it is harder to estimate from the data when the HexaPOD has
started its motion if the HexaPOD is initially at rest or moving with minimum velocity,
in comparison to the maximum velocity case. Nevertheless, the latencies are significantly
different in both cases. Furthermore, the latencies for C1 also differ depending on the axes,
where rising latencies are found for the z-, y- and x-axis in that order. For C2 and C3,
the latencies are rather independent of the axis, with slightly larger latencies for C2 along
the x-axis. Mainly, the latencies when the HexaPOD is already in motion are distributed
in the range 21ms to 29ms.
A different situation is observed when the same measurements are performed on the

HexaPOD evo. The results given in Table 2.5 indicate slightly larger latencies when the
HexaPOD is in motion where most of them are distributed in the range between 25ms
to 39ms for the x- and z-axis, whereas for the y-axis different latencies of about 52ms
are observed for C2 alone. However, when comparing the latencies with and without

HexaPOD evo resting HexaPOD evo minimum velocityAxis Trial
C1 [ms] C2 [ms] C3 [ms] C1 [ms] C2 [ms] C3 [ms]

1 1488.8 32.5 35.2 64.0 34.1 38.5
2 1485.1 36.9 39.3 67.3 32.4 35.8X
3 1492.0 34.8 39.7 68.3 32.8 37.7
1 1491.5 52.2 29.2 71.8 53.8 31.6
2 1493.4 52.1 29.1 70.4 50.1 29.5Y
3 1492.8 52.3 28.2 72.2 51.3 28.9
1 605.9 27.3 26.2 46.9 24.6 27.4
2 606.3 29.3 27.2 49.3 27.0 25.4Z
3 606.5 29.4 28.4 49.1 29.6 26.9

Table 2.5: Results of HexaPOD evo latency estimation

initial command the most noticeable difference is seen for C1. Without initial commands,
latencies of about 1490ms are observed for the x- and y-axes, with latencies of about 606ms
for the z-axis. With initial commands, latencies reduce to about 66ms for x-axis, 71ms for
y-axis and 48ms for z-axis. The reason for this huge difference is originating from brakes
which were introduced into the HexaPOD evo. Without an initial command with slow
velocity, the brakes have to be released before the HexaPOD can start moving, taking 0.5s
up to 1.5s. However, with an initial command the latencies when the HexaPOD evo is
moving with minimum velocity are significantly smaller than for the previous HexaPOD
version. As a consequence of this, if the HexaPOD evo is used, an initial command
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with minimum velocity must be sent to the HexaPOD evo prior to any other positioning
command. The same command can be used for the HexaPOD as well, however, this does
not influence the latencies.
To summarize, latency estimation of the HexaPOD was successfully performed. General

latencies when the HexaPOD is in motion fall into the range between 21ms to 39ms
depending on the actuated axis and version of the HexaPOD. Increased latencies need to
be expected, when the HexaPOD is moving with minimum velocity (or if the HexaPOD
is resting with zero velocity).

2.2.3.3 Latency Compensation

In order to realize a true real-time system, the known latencies should be compensated for.
Therefore the following procedure is applied within HexGuide to compensate for almost
all soft- and hardware-induced latencies: The timestamp of each sensor measurement for
either breathing or tumor position determination is corrected by the measured or estimated
age of the measurement (if the timestamp does not include this information already). In
case of the Polaris IR camera, the timestamp acquired when a measurement has been
fully received on the computer is corrected by 19.9561ms plus the serial transmission
time (cf. Section 2.2.3.1). After reception of the sensor data, several processing steps are
undertaken such as interpolation, peak detection, moving average determination. The
duration of these as well as the computational time for the selected prediction method
(computational times are given in Section 3.7) is measured with the most precise clock
available. After the predictor has finished its work, this latency is compensated for by an
estimation of the current (where current refers to the actual point in time right when the
estimation is performed) position of the HexaPOD since the HexaPOD has moved on in
between the physical measurement of its position and the actual time. Hence, the whole
latency from physical sensor measurement to computations of predictions is compensated
for. The following computation time of the control scheme (which is usually less than
1ms) is ignored. Furthermore, the latency of the HexaPOD is not compensated for due
to its varying characteristics, although it can be smaller and larger than the duration of
one sampling time. Variations of the treatment and consequences of latencies are also
depending on the requirements and flexibility of controllers. These are covered during the
discussion of the individual controllers presented in Section 4.2.

2.3 Patient Safety Features

In order to ensure safe treatment for the patient, the ATTS can be equipped with safety
features as described below:

Phase-dependent Tumor Location Region The ATTS requires monitoring of tumor
positions using some sensor system such as EPID or Calypso during the course of a whole
fraction. With this information available, a region can be defined in which the tumor is
allowed to move. If the tumor leaves this region, i.e. the error compared to the desired
position of the tumor becomes too large, then irradiation can be shut off. However, since
any motion compensation method requires a certain time for convergence, the region
should be defined in terms of time. One approach is to define four phases of motion
compensation in which the maximum allowed error is reduced so that medical requirements
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are still met. The first phase starts with the beginning of a fraction at a time where no
tumor position measurement is available. As long as this measurement is not available,
the motion compensation system cannot perform any action. This phase should last only
for a very short time, ideally a fraction of a second and it ends when the first measurement
has arrived. In the second phase, the initialization of prediction algorithms is started, but
no prediction is available yet, so that no reference trajectory can be generated for use by a
control method. But the negated tumor position measurements can be treated as set-points
for the HexaPOD and the selected control method can be instructed to move the HexaPOD
to this set-point. As long as the system is in the second phase, this can be repeated each
time a new measurement arrives. The HexaPOD then follows a trajectory which neglects
the system latencies and dynamics of the HexaPOD, but still allows the best possible
compensation strategy with a significant reduction of tumor motion given the available
information. In the third phase, starting when a tumor prediction becomes available for the
first time (initialization or learning phase of prediction algorithm is finished), a transition
takes places depending on the convergence properties of the prediction algorithm and of
the control method. After the transition phase, the final phase is entered in which the
algorithms have converged (except when phase or amplitude changes occur which might
require a short re-convergence time).
Obviously, in the first phase no constraints on the maximum allowed error of tumor

motion can be stated. During the second phase, the maximum errors can be significantly
constrained, however transition errors when the HexaPOD starts to move have to be taken
into account here. In the third phase, the maximum allowed errors can be further reduced,
whereas the maximum allowed errors are minimal during the fourth phase. In this way, a
quality assurance method of the tumor motion compensation system can be realized which
is constantly monitored during the course of a treatment field. Thus, the treatment can
be interrupted any time the defined tumor location region is violated.

Status Monitoring Using a watchdog mechanism, status of the activated sensors and
HexaPOD can be monitored. A timeout is defined for each sensor after which a new sample
needs to arrive. This can be performed using hard constraints where a single violation of
the timeout leads to an error or using soft constraints which need to be violated a certain
number of times before an error condition is raised. The HexaPOD can be handled in the
same way as it gives a response to each command after a certain amount of time. If the
HexaPOD fails to respond with an answer before the timeout expires, HexGuide can enter
an error state.
Actually, the whole processing in HexGuide can be monitored and timeouts can be

defined between important steps like the prediction or the computation of the control
input. It is thereby important that the watchdog, usually realized as a separate process,
is running with a higher priority than all other processes in the system in order to avoid
starvation of the watchdog process even when other processes put the system under more
load.

Plausibility Checks All incoming sensor data as well as all generated data like tumor
prediction and control input should be checked for plausibility. This can be achieved by
defining constraints on maximum movement velocities of breathing or tumor motion. In
this respect, from one sampling instant to the next only a certain limited change of each
variable can be expected. This can be realized using either hard or soft constraints, where
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the latter can be violated a certain number of times consecutively.

2.4 Summary
The ATTS is a classical robotic system [75]. It possesses sensors to characterize the
environment (acquisition of breathing and tumor motion information). It contains a pro-
cessing unit which interprets and processes sensor data (motion prediction). Based on this,
closed-loop control decides on the control input which is applied to an actuator (Hexa-
POD) which interacts with the physical world in order to achieve a defined task (motion
compensation).
By inclusion of the HexaPOD, EPID and an IR camera, the architecture of the pre-

sented tumor motion compensation system allows using standard hardware devices instead
of specialized expensive designs as in other fully integrated approaches. This enables flex-
ible treatments by imposing no constraints on established treatment procedures and beam
types. Simple and cost-efficient updates of existing treatment rooms are possible with
this system, where the important functionalities for motion compensation and the intel-
ligence of the system is realized through software components. As real-time operation
of the system is a key feature for successful motion compensation, a real-time operating
system is employed to realize timing guarantees within the software applications. The
measurement latencies of the sensor systems were determined to acquire the true time of
the physical measurement. This enables precise timing of all data acquired and generated
by the system. In turn, this allows compensation of software-induced latencies to fur-
ther improve timing conditions. This is especially important for a motion compensation
system since the software interacts with the physical world by actuating the HexaPOD.
Any non-compensated latency can therefore induce positioning errors thereby reducing
overall system performance. Several important aspects of the software were discussed for
supporting the development of prediction methods and control algorithms. Patient safety
features complement the system to enable safe treatment procedures.
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Chapter 3

Breathing and Tumor Motion Prediction

As any mechanical robotic system such as the HexaPOD possesses a dynamic response
including latencies, successful motion compensation can only be achieved if the near future
of the motion trace to be compensated is known. Therefore predictors are developed to
accommodate for that need. Furthermore, this knowledge also enables the adoption of
advanced control methods for the HexaPOD which explicitly take into account future
horizons to perform optimizations.
In order to approach breathing and tumor motion prediction, breathing and tumor mo-

tions are characterized in terms of amplitudes, frequencies and speeds based on a large
number of clinical datasets. The correlation between breathing and tumor motion is
analyzed, laying the foundation for tumor motion prediction in the presence of an un-
dersampled tumor motion signal. The prediction problem is stated along with a detailed
description of several metrics for prediction algorithms serving as performance measures.
Three different classes of prediction algorithms are identified, where each class refers to
available inputs in terms of breathing and/or tumor motion signals. It is shown, how the
correlation analysis can be exploited to setup prediction algorithms making use of both
signals. Several prediction algorithms are presented along with a detailed description and
analysis how their free parameters can be chosen in order to achieve reliable predictions.
Where applicable, extensions to prediction algorithms are proposed and evaluated fusing
both breathing and tumor motions to enable improved tumor predictions compared to the
developed correlation schemes. This chapter concludes with a comparison of the presented
prediction algorithms detailing the main characteristics of achieved predictions.

3.1 General Properties of Breathing and Tumor Trajectories

Apart from sources like heartbeat and spontaneous muscular or patient motions, lung
tumor motion is mainly determined by breathing, which appears as a quasi periodic pattern
[36, 76]. Tumor motion amplitudes reported in literature are usually below 10mm [77], in
extreme cases up to 50mm [78] with breath-by-breath frequencies between 6 to 31 breaths
per minute [79] (corresponding to 0.1Hz and 0.52Hz, respectively). The shape of motion
traces often depend on the relative location of the tumor to internal organs [80].
During a period of about two years, breathing and tumor motions were simultaneously

recorded by the sensors of the ATTS described in Section 2.2.1 in order to gain knowledge
about motion properties and to elaborate its characteristics. Live data from 24 patients
were recorded during normal treatments, usually with several fractions where each fraction
consists of several fields (for each field the gantry angle was varied). Respiratory data was
gathered by the Polaris IR camera from an IR tool which was placed on an arbitrarily
chosen free space on the patient’s abdomen and patients were asked to perform abdominal
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breathing. Tumor motion data was acquired by recording portal images and performing
automated tracking of manually defined masks with PortalTrack. Obtained 2D projections
of tumor motion were then rotated by the gantry angle to match the same reference system
as the calibrated reference system for respiratory data. Thus, tumor motion data originates
from 2D projections, although it is given in a 3D reference system. Note that all tumor
motion data used in this work does not contain information about tumor motion in the
beam’s direction. Further note, that this data was acquired before this work started, so
that no influence on the measurement and recording process could be taken. Hence, this
work uses the data as it is. A total number of 200 breathing and tumor motion datasets
were obtained, whereby for three patients only one field is available. The duration of these
datasets varies between 16.9s and 124.7s with an average of 54.2s.

Typical examples of breathing and tumor motions are depicted in Appendix A, in Fig-
ures A.1 – A.4. From visual inspection, periodicity of breathing motion - and with it also
tumor motion - becomes obvious, but with hysteresis effects [80]. These result from the
fact that resting humans possess longer exhalation than inhalation phases. Additionally,
the beginning of exhalation progresses faster than its ending and inhalation is usually
faster than exhalation with different speeds.

From amplitude spectra, obtained by the discrete fast Fourier transform (DFFT) and
exemplified in Figure 3.1 for one dataset (taken from Figure A.1), a main frequency com-
ponent of 0.35Hz can be observed which corresponds to the main breathing frequency
(cf. Figure 3.1(a)). This is also the main frequency component in the tumor amplitude
spectrum (cf. Figure 3.1(b)), leading to the conclusion of a close relationship between
breathing and tumor motion. Additionally, a lower contribution of about 0.025Hz found
in both spectra suggests slower periodic changes which might be caused by whole body mo-
tion or other anatomical motions apart from breathing. Compared to the larger breathing
frequencies, these slow motions appear as drift or baseline-shift overlaid on the periodic
breathing or tumor signal. An example of such a motion with larger drift can be observed
in Figure A.1.
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(b) Tumor amplitude spectrum

Figure 3.1: Breathing and tumor amplitude spectrum of patient 1, fraction 081205,
gantry angle 190°
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3.1 General Properties of Breathing and Tumor Trajectories

3.1.1 Maximum Amplitudes
Regarding breathing amplitudes along different axis, the z-axis (AP) can be inferred from
spectrum as dominant axis with largest amplitudes, followed by the y-axis (SI) with slightly
lower amplitudes. The x-axis (LR) contributes the least. A different picture arises from the
tumor amplitude spectrum, where the y-axis possesses the largest amplitudes compared
to x- and z-axis. This is a general property among most patient data supported by the
amplitude metrics of all datasets summarized in Tables 3.1 and 3.2. For each dataset,
the maximum amplitude range (including an eventual drift which causes larger amplitude
values) was calculated along each axis as the difference between the largest and smallest

MEAN STD MAX MIN RMS
x (LR) range [mm] 0.805 0.623 3.901 − 0.180
y (SI) range [mm] 1.941 1.308 7.459 − 0.465
z (AP) range [mm] 5.873 3.097 16.759 − 1.406
Frequency [Hz] 0.313 0.072 0.582 0.172 −

Table 3.1: Main properties of breathing motion

MEAN STD MAX MIN RMS
x (LR) range [mm] 2.578 1.736 7.819 − 0.580
y (SI) range [mm] 6.705 4.564 29.056 − 1.714
z (AP) range [mm] 2.262 1.441 7.203 − 0.517
Frequency [Hz] 0.309 0.070 0.548 0.170 −

Table 3.2: Main properties of tumor motion

sample values. From them, the average maximum amplitude, its standard deviation, root-
mean-square and maximum were determined. With an average maximum amplitude of
about 5.87mm and a maximum of 16.76mm, the z-axis is also identified as dominant axis
for breathing motion from the amplitude metrics. Similarly, for tumor motions these
metrics show the y-axis to be the dominant axis with a mean amplitude of 6.71mm and a
maximum of 29.06mm. On average, the maximum tumor amplitudes are larger than the
maximum breathing amplitudes. But when evaluating this individually for each dataset, it
turns out that this only occurs for 93 datasets. For the remaining 107 datasets, maximum
breathing amplitudes exceed maximum tumor amplitudes (regardless of axes). In contrast
to the maximum, the root-mean-square (RMS) value, calculated from the mean-centered
signal, is a measure of all amplitudes over the signal’s duration, proportional to the signal’s
integral. It is a useful metric since with ideal motion compensation, the RMS value would
become zero. The ratios of the RMS values along the different axes are similar to the
ratios of the maximum amplitudes, so that the latter already give a good idea of the
overall amplitudes to be compensated.

3.1.2 Main Frequencies
Statistical metrics of the main frequency were determined by the DFFT applied to the
mean-centered breathing and tumor signal of each dataset. The frequency with largest
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amplitude from the resulting amplitude spectrum was selected as main frequency. In
accordance to the values from literature, the minimum frequency is about 0.17Hz, the
maximum about 0.58Hz for breathing motion and 0.55Hz for tumor motion. The aver-
age frequency is approximately 0.31Hz (cf. Tables 3.1 and 3.2). Note that the maximum
frequency resolution ∆fmax of the DFFT, which is the expected single-sided error during
determination of the main frequency, is constrained by the duration Tdata of the input
signal in such a way that ∆fmax = 1/Tdata. For the recorded patient data, ∆fmax conse-
quently varies between 0.059Hz and 0.008Hz. The distribution of the main frequencies in
terms of the relative frequency (in relation to a total of 200 datasets) is visualized in Fig-
ure 3.2. The distributions for breathing and tumor frequencies are similar to each other,
having lower relative frequencies near the minimum and maximum breathing frequencies
and the majority in the range between 0.225Hz and 0.375Hz.
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Figure 3.2: Breathing and tumor frequency distribution among 200 patient datasets

3.1.3 Maximum Speeds

Aside of maximum amplitudes and frequencies, but closely connected to them, the max-
imum speed of breathing and tumor motion is also of great importance for tumor com-
pensation systems. Therefore recorded patient data were analyzed to find the maximum
absolute breathing and tumor speed of each dataset. The raw signal data was discretized
to 50ms intervals. Since it is subject to noise effects, the problem of outliers during speed
determination occurs for which discrete derivatives are necessary. In order to reduce this
effect and to prevent overestimation of maximum speeds, breathing and tumor signals
were filtered with a low-pass filter. The filter was designed with approximately 0dB at-
tenuation in the passband so that amplitudes of pure breathing and tumor motion are not
distorted. A Butterworth filter is especially suitable for that purpose since its magnitude
response is maximally flat in the passband. A 10th-order Butterworth filter with a cut-off
frequency of 1.2Hz was found to be feasible for the patient data. The magnitude response
is shaped very flat for frequencies up to 1Hz and for frequencies smaller than 0.8Hz the
absolute magnitude is well below 0.005dB. However, a drawback of this filter is its large
phase response even at smaller frequencies. To account for this, the filter is applied in
forward and reverse direction, effectively resulting in a zero-phase filter. Additionally, ini-
tial conditions of the filter’s delay elements are estimated before each filtering process to
reduce transient effects at the beginning and at the end of the data sequence [81]. With
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this method the filtered sequence is of the same length as the input sequence (with cor-
rect transients) which is important for velocity estimation. If the filter is applied only in
forward direction as it is usually done, then the filtered sequence is cut by a number of
samples equivalent to the filter order, thus omitting the last samples. After the filtering
process using the zero-phase filtering method, the discrete-time derivative of the resulting
output sequence is calculated to deliver the signal speed.
Maximum absolute speeds of breathing and tumor motion of all recorded patient

datasets are summarized in the box plot in Figure 3.3(a) for each axis. All box plots
in this work stick by the following convention: The lower and upper limits of each box
are determined by the 25th and 75th percentiles, where the central mark is the median
value. The lower and upper whisker extend at maximum by 1.5 times the inter quartile
range (IQR), the range between the 25th and 75th percentiles. Data points outside the
whiskers are considered outliers and are marked individually. Since breathing and tumor
motion occurs synchronously along different axes with the same frequency, a similar obser-
vation for speed can be made as for maximum amplitudes. For breathing, the dominant
axis is clearly the z-axis (AP) whereas for tumor motion larger maximum speeds can be
generally observed for the y-axis (SI). For both motions the median speed of the dominant
axis is always larger than for the minor axes. Additionally the lower quartiles of the dom-
inant axis are either larger than the upper quartiles of the minor axes or approximately
in the same region, so that at least 50% of the maximum speeds along the dominant axes
are larger than 50% of the minor axes speeds. Comparing the speed distributions of the
dominant axis between breathing and tumor motion, it can be observed on the one hand, a
similar median, and on the other, much larger maximum speeds. While the lower quartiles
are located closely together, the upper quartile of the tumor motion is larger than the one
for breathing, suggesting that a significant number of datasets possess larger tumor mo-
tion speeds than breathing motion speeds. However, an individual analysis of each dataset
reveals that for only 107 out of 200 datasets the maximum tumor motion speed is faster
than breathing. Averaging this information with the same information from amplitudes
(93 out of 200 datasets had larger tumor than breathing amplitudes), it follows that 50%
of the datasets have either larger tumor amplitudes or larger tumor speeds, whereas for
the remaining 50% breathing motion is either larger or faster.
Maximum tumor speed is one of the main factors constraining the performance of the
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Figure 3.3: Maximum breathing and tumor speeds
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ATTS from the perspective of full motion compensation. The speed limits of the used
HexaPOD versions are either 8mm/s (HexaPOD RT) or 16mm/s (HexaPOD evo). For
breathing motion, it can be observed from Figure 3.3(a), that the speed limit of the
HexaPOD evo is never reached, regardless of the axes, so that the performance of breathing
motion compensation would not be constrained by the speed limit. The limit of 8mm/s
is not exceeded along the minor x-axis, only for one dataset along the y-axis and for 70
datasets (35% of the datasets) along the dominant z-axis. Note that this exceedance only
occurs during the progression from inhalation to exhalation or vice versa and is taking place
only during a certain amount of time during breathing cycles, so that exceedance duration
is usually significantly less than the duration of the dataset. In order to get a better
picture of the quality of exceedance, the cumulative distribution function (CDF) of the
relative speed exceedance duration (RSED) (the ratio between the number of samples with
exceedance of the limit and the total number of dataset samples) is shown in Figure 3.3(b).
The determination of the RSED for each dataset is thereby performed in such a way that
it is first calculated along each axis separately and then the maximum of these values is
used as RSED in order to consider the worst case. The blue line represents the CDF of
RSEDs for breathing over all datasets. The maximum RSED is found to be about 32%
(here the value of the CDF becomes one) and the average RSED is 8.3%, which means
that if breathing speeds exceed 8mm/s, the average duration of exceedance is 8.3%. In the
worst case, the maximum exceedance duration that can be expected is about one third
of the dataset’s length. Due to the high slope of the CDF for lower values of the RSED,
most datasets with exceedance have a relatively low exceedance duration. For example
the CDF reveals that 95% of the datasets have a RSED of less than 23.3% or that 66%
of the datasets have a RSED of less than 9.2%. This suggests, that exceedance caused
by breathing is not considered severe, although a certain performance degradation is to
be expected if breathing motion is compensated by the ATTS using the HexaPOD RT.
If the HexaPOD evo is used, then performance of breathing motion compensation is not
constrained by its’ speed limit.
A different picture arises for the tumor speeds. Here, the limit of 8mm/s is exceeded for

92 datasets (46%) and the limit of 16mm/s for 24 datasets (12%). Among the last, only five
datasets (2.5%) exceed 24mm/s with a maximum of 34.4mm/s. With y being the dominant
tumor axis, the largest and most frequent exceedance can be observed for this axis. Along
the x- and z-axes, exceedance of 8mm/s is only observed for some datasets (along z-axis a
lesser number than along x-axis) and 16mm/s is slightly exceeded for two datasets along
the x-axis, but not any more for the z-axis. As it is obvious from Figure 3.3(a), tumor
motion exceedance is larger than breathing exceedance and is of a different quality, as
seen in Figure 3.3(b). The initial slope and values of the red line in the CDF for the
8mm/s limit are similar to breathing motion (blue line), especially until a CDF value of
0.5 which is reached for RSED ≤ 8.1% (half the datasets with exceedance have a RSED
of less than 8.1%). However, since the slope reduces until the maximum RSED of 66.9%,
the 8mm/s limit cannot be considered appropriate for a high performance tumor motion
compensation system. Nevertheless, significant reduction of tumor amplitudes, eventually
clinically sufficient, might be possible with the HexaPOD RT even in such a scenario. But
for the limit of 16mm/s (green line), the slope is initially very large (70% of the datasets
have a RSED of less than 3.5%) and approximately approaches the one for breathing with
the limit at 8mm/s. In this case the maximum RSED is 24.8%.
To summarize, with the HexaPOD RT (8mm/s) breathing and tumor motion compen-

58



3.1 General Properties of Breathing and Tumor Trajectories

sation is in general constrained by the speed limit for less than half of the datasets but still
feasible (according to RSED). A better performance can be expected for breathing than
for tumor motion compensation. With the HexaPOD evo (16mm/s), breathing motion
compensation is not constrained by the limit and tumor motion compensation is affected
in only 12% of the datasets with low RSEDs, so that a decent compensation performance
can be expected.

3.1.4 Breathing to Tumor Correlation

For the development of breathing-induced tumor motion prediction algorithms, informa-
tion about correlation between between breathing and tumor motion is required. Previous
considerations on breathing and tumor motion already suggested the existence of a close
relationship between these motions for lung tumors, which is analyzed in more detail
below.
The first step was the calculation of the correlation coefficient between breathing and

tumor motions along different axes. Let a sample of a breathing signal at sampling instant
t ∈ N be denoted by pBj (t) ∈ R (assuming equidistantly spaced samples) and the corre-
sponding tumor sample be denoted by pTj (t) ∈ R where j = 1, 2, 3 corresponds to the x-,
y- and z-axis, respectively. Then the empirical correlation coefficient between breathing
axis l and tumor axis m is defined as

Rl,m =
∑n
t=1

(
pBl (t)− pBl

) (
pTm(t)− pTm

)
√∑n

t=1

(
pBl (t)− pBl

)2
√∑n

t=1

(
pTm(t)− pTm

)2
, (3.1)

where n is the total number of samples and

pBl = 1
n

n∑
t=1

pBl (t) and pTm = 1
n

n∑
t=1

pTm(t)

are the arithmetic means of the breathing and tumor signal, respectively.
For all available datasets the correlation coefficient Rl,m between breathing and tumor

motion was calculated for all combinations of axes l and m. Resulting statistical metrics
of the correlation coefficient are given in Table 3.3. One might intuitively assume that
the correlation between breathing and tumor motion of the same axis is stronger than for
different axes. However, when analyzing the correlation coefficients it turns out that this is
only partially true. The strongest correlation can be found for the z7→y axes (this notation
first states the breathing axis and after the arrow the tumor axis is given). Since these
axes are the dominant axes of the breathing and tumor motion, respectively, this result is
expected given previous considerations regarding amplitudes and frequencies of breathing
and tumor motions. The less-dominant y-axis of breathing also correlates well with the
dominant y-axis of tumor motion. An interesting observation from Table 3.3 is, that the
largest three correlations (both in median and mean) are comprised of one of the breathing
axis to only the dominant y-axis of tumor motion, in the order of maximum breathing
amplitudes per axis. Hence, the significance of breathing motion observed along an axis
mainly determines the correlation of this axis with the tumor y-axis. For all correlations,
the median is always larger than the corresponding mean, where the difference is approx-
imately proportional to the median or mean value. This results in correlation coefficients

59



Chapter 3 Breathing and Tumor Motion Prediction

MEDIAN MEAN STD MAX MIN # in best
R3,2: z7→y 0.7964 0.7265 0.2131 0.9847 0.0083 85
R2,2: y7→y 0.7476 0.6829 0.2157 0.9507 0.0296 45
R1,2: x7→y 0.6397 0.5837 0.2500 0.9637 0.0046 24
R3,3: z7→z 0.6322 0.5817 0.2477 0.9642 0.0087 14
R3,1: z7→x 0.6266 0.5736 0.2458 0.9642 0.0087 10
R2,3: y7→z 0.5784 0.5398 0.2574 0.9241 0.0036 6
R2,1: y7→x 0.5717 0.5283 0.2541 0.9249 0.0032 6
R1,1: x7→x 0.4868 0.4619 0.2634 0.9285 0.0054 5
R1,3: x7→z 0.4648 0.4604 0.2581 0.9271 0.0045 5
best7→y 0.8370 0.8015 0.1289 0.9847 0.2564 -

Table 3.3: Correlation coefficients of breathing to tumor motion over all patient datasets

being distributed in left-skewed distributions (more occurrences at larger values) if gener-
ally larger correlation coefficients arise or being uniformly distributed for correlations with
smaller coefficients. This can also be inferred from the box plot in Figure 3.4(a) which
gives a quick overview of the distributions of correlation coefficients. Noticeable is also
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Figure 3.4: Correlation analysis

that for the z7→y and y7→y correlation, only a few datasets possess correlation coefficients
smaller than 0.3. However, all correlations possess similar values for minimum coefficients
(mostly in the vicinity of 0.08, suggesting no correlation between breathing and tumor mo-
tion) as well as for maximum coefficients (between 0.9241 and 0.9847, implying a strong
relationship of breathing and tumor motion).
All this leads to the conclusion, that in general for each patient the best matching

correlation needs to be determined individually, since only expectations can be given from
this analysis. However, this determination could already be assessed during treatment
planning, if for example 4D-CT is used with which a reconstruction of CT images in
relation to the position in the breathing cycle is possible. Having once obtained the
best correlating axes of breathing and tumor motion, this information can then be used
in the configuration of tumor motion prediction methods which are based on breathing
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information. The last row in Table 3.3 gives the statistical metrics of the correlation
coefficient if only the correlation with largest coefficient is taken into account for the
tumor y-axis. The last column represents the number of datasets of the corresponding
correlation contributing to best7→y. Against the background of previous discussion, it is
of no surprise, that most of the datasets with best correlation originate from z 7→y and
y7→y. Clearly, all metrics of the best correlation supersede the other correlations. As
can be seen from Figure 3.4(a), more than 75% of the datasets among best7→y possess a
correlation coefficient larger than 0.75. Only 8 outliers with coefficients lower than 0.53
are found, so that for most of the dataset a correlation can be found with reasonably large
correlation coefficient.
A still open question concerns significance of the derived correlation coefficients. The

significance can be tested with a t-test on the null hypothesis that two datasets are not
correlating, i.e. possess a correlation coefficient of 0. The probability to accept the null
hypothesis over all computed correlation coefficients is shown in Figure 3.4(b) by a scatter
plot. Introducing a significance level of 95%, i.e. a probability of at maximum 5%, it
can be seen that all correlation coefficients larger than 0.1 are to be treated as significant
(except for one), since the p-values for these coefficients are well below the significance
limit. With this limit it turns out that only a few correlation coefficients (74 out of 1800)
are not significant, but anyway with a very low correlation coefficient. If the significance
level would be set to 99%, then only 89 out of 1800 correlation coefficients would be
not significant. This demonstrates that most of the computed correlation coefficients are
significant. If the best matching correlation is chosen, then all correlation coefficients are
significant (minimum correlation coefficient for best 7→y is 0.256 and all coefficients larger
than 0.1 are significant).
The correlation coefficient from Eq. (3.1) assumes a linear relationship between breath-

ing and tumor motion, described by the first-order linear model

pTm(t) = c1l,m
pBl (t) + c0l,m

with 1 ≤ t ≤ N and coefficients c1l,m
and c0l,m

. In this case it is equivalent to the
square root of the coefficient of determination R2. In the linear regression problem to
find appropriate coefficients (i.e. fitting a straight line to the data), the coefficient of
determination is the proportion of variance which is explained by the model and is a
useful measure for the goodness of fit. The general regression problem described by

pTm(t) = f
(
pBl (t)

)
+ e(t) (3.2)

with f : R 7→ R where f includes q parameters cil,m with 0 ≤ i ≤ q (linearly or nonlinearly)
is to determine these parameters so that errors e(t) are minimized for 1 ≤ t ≤ n. In this
scenario the coefficient of determination is defined as

R2
l,m = 1−

∑n
t=1

(
f
(
pBl (t)

)
− pTm(t)

)2

∑n
t=1

(
pTm(t)− pTm

)2 = 1−
∑n
t=1 (e(t))2∑n

t=1

(
pTm(t)− pTm

)2 ,

where the numerator represents the residual sum of squares and the denominator is the
total sum of squares (which is proportional to the sample variance). Since neither the
correlation nor the coefficient of determination by itself reveal how exactly the relationship
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Chapter 3 Breathing and Tumor Motion Prediction

between breathing and tumor motion should be formed using f , one possibility is to fit
the parameters of various functions f with a different shape and to evaluate R2 using
f . This was done extensively with a lot of linear and nonlinear functions f (linearity in
parameters). Major improvements of R2 or its square-rooted value could be observed for
polynomial functions of the form

fl,m
(
pBl (t)

)
=

q∑
i=0

cil,m

(
pBl (t)

)i
. (3.3)

The corresponding square-rooted value of R2 is depicted in Figure 3.5 for polynomial orders
up to 5 when using best7→y. This conversion was chosen to have it scaled to previously
discussed correlation coefficients for better comparison. It can be observed that for orders
higher than one the median of

√
R2 becomes larger. With this, the interquartile range

reduces and shifts slightly to larger values whose lower quartile value rises significantly.
Especially for orders higher than three, outliers with lowest values are eliminated and
the lower whisker value rises. As a consequence, the fitting function between breathing
and tumor motion can be better approximated with higher order polynomials than with
a simple first order linear polynomial. Nevertheless the gain for orders larger than three
reduces, so that a fitting polynomial of order three can be considered sufficient for the
used data.
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Figure 3.5: Square-rooted coefficient of determination for best 7→y when polynomial re-
lationship between breathing and tumor motion is used

In general, one might expect larger correlation coefficients or coefficients of determina-
tion between breathing and tumor motion since the main part of tumor motion is caused
by breathing and lung tumors physically move according to breathing. One limiting factor
in the calculation of the correlation coefficient is a possible phase shift between breathing
and tumor motion. Phase shifts can occur due to anatomical reasons or be caused by
timing differences or variations during sensor data acquisition (here breathing and tumor
motion was recorded using two independent systems). Phase shifts are not reflected by the
correlation coefficient and can reduce it, although there might be a very strong correlation.
To illustrate that, consider two periodic functions of the form

x(τ) = a1 sin (2πfτ) + x0 and y(τ) = a2 sin (2πfτ + φ) + y0 ,
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3.1 General Properties of Breathing and Tumor Trajectories

where τ ∈ R represents continuous time, a1 ∈ R and a2 ∈ R are the amplitudes of the
sines, x0 ∈ R and y0 ∈ R represent an offset or DC gain, f ∈ R is their common frequency
and φ ∈ R is the phase shift between the sines x(τ) ∈ R and y(τ) ∈ R. If there is no phase
shift, the scatter plot of x(τ) over y(τ) shows a straight line through the point (x0, y0)T ,
where the slope is determined by the ratio of the amplitudes a2

a1
. In this case, the value of

the correlation coefficient is one and the correlation can be perfectly described by a linear
first-order model identified with the parameters of the straight line. Thus, the correlation
coefficient is invariant with respect to changes of the amplitudes and the offset. However,
it is not invariant under changes of the phase shift φ. A phase shift of 90° leads to a
correlation coefficient of 0 and a phase shift of 180° results in −1. In fact, the correlation
coefficient for phase shifted sinusoidal signals is given by cos (φ).
A phase shift φ different from zero causes the plot to change from a straight line to an

ellipse which can be described in parametric form in the x-y-plane by[
x
y

]
=
[
xc
yc

]
+R(α)

[
a cosϕ
b sinϕ

]
(3.4)

with
R(α) =

[
cosα − sinα
sinα cosα

]
.

xc = x0 and yc = y0 locate the center of the ellipse in the x-y-plane, a ∈ R is the length
of the semi-major axis, b ∈ R denotes the length of the semi-minor axis, α ∈ [0, 2π]
determines the tilt angle of the ellipse w.r.t the x-axis and ϕ ∈ [0, 2π] is the free parameter
in the ellipse equation. Enlarging the phase shift φ from 0° to 180° effects the following
changes of the ellipse:

• The tilt angle α can vary in the interval
[
arctan

(a2
a1
)
,− arctan

(a2
a1
)]
, becoming zero

for φ = 90°. If and how α varies depends on the amplitude ratio. If the amplitude
ratio is one, α takes only the value zero or the limits of the interval, which are in
this case 45° and −45°.

• Starting from the maximum

amax = max (|a1| , |a2|)
cos

(
arctan

(
min(|a1|,|a2|)
max(|a1|,|a2|)

)) ,
the length of the semi-major axis a decreases to its minimum given by amin =
max (|a1| , |a2|), which is reached for φ = 90°. After that it approaches the maximum
again which is reached for φ = 180°.

• The length of the semi-minor axis b increases from bmin = 0 to its maximum defined
by bmax = min (|a1| , |a2|) for φ = 90° and approaches zero again as φ tends to 180°.

• With varying a and b, the numerical eccentricity

e =
√
a2 − b2
a

changes as well. Starting with a maximum eccentricity of 1, e reaches the minimum
emin = 1

amin

√
a2
min − b2max at φ = 90°. An eccentricity of zero, resulting in a circle
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Chapter 3 Breathing and Tumor Motion Prediction

instead of an ellipse, can only be achieved with equal amplitudes a1 and a2.

In the extreme case when the semi axes are amax and bmin = 0 exactly, ellipse equation
(3.4) reduces to the representation of a straight line with slope α. So the ellipse equation
is a generalization of the straight line, given in the case of no phase shift. To summarize,
phase shifts of two sinusoidal signals of the same frequency determine the shape of resulting
ellipse when both signals are plotted against each other. Fitting an ellipse to the given
data allows then to deal with the phase shift and establishes a perfect correlation between
two ideal phase-shifted sinusoids. This can even be extended to sinusoids of the form

x(τ) = a1 sin2 (2πfτ) + x0 and y(τ) = a2 sin2 (2πfτ + φ) + y0

or
x(τ) = a1 cos2 (2πfτ) + x0 and y(τ) = a2 cos2 (2πfτ + φ) + y0 .

which can better approximate hysteresis effects as discussed before. The only necessary
change is attributed to the correlation coefficient which becomes cos (2φ).
A detailed visual inspection of scatter plots between breathing and corresponding tu-

mor motion of all possible combinations of axes revealed that for a significant number of
datasets an elliptic correlation between breathing and tumor motion was observed rather
than a pure linear correlation. Examples of both cases from the datasets are visualized
in Figure 3.6(a) for a linear correlation and in Figure 3.6(b) for an elliptic correlation.
It can be seen from Figure 3.6(a) that the fitted straight line (green) is well suited to
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(b) Example of elliptic correlation

Figure 3.6: Examples of different correlation types

describe linear correlation between breathing along z-axis and tumor motion along y-axis.
But this is not the case in Figure 3.6(b), where the residuals between data points (blue
dots) and fitted ellipse (shown in red) are lesser than to the fitted line (in green color). In
such a case, which occurs due to phase shifts between breathing and tumor signals, the
correlation can be better described by an ellipse.
Note that residuals of an ellipse can be defined in different ways. For example a residual

could be defined as the orthogonal distance from a data point to the closest point on the
ellipse, yielding the geometric distance further denoted as dg. Alternatively it could be
seen as the vertical distance dv (along the y-axis) between the y-component of the data
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3.1 General Properties of Breathing and Tumor Trajectories

point and the closest point on the ellipse having the same x-component as the data point.
The latter is the same as calculating the points of intersection between the ellipse and a
vertical line defined by the x-component. If two intersections result, the intersection point
with minimum distance to the data point is used. If no intersection is found, a point of the
ellipse with maximum or minimum (whichever lies closer to the data point) x-component
is taken. This residual type is chosen here since it also better reflects the purpose of the
correlation: Given a breathing sample (x-component), derive the corresponding tumor
sample (y-component).
Fitting ellipses to sampled data is a research topic of its own. For this work, several fit-

ting algorithms described and compared in [82] and [83] were considered in a preliminary
analysis. Fitting ellipses can either be performed by minimizing the algebraic distance
da in a least-squares sense or the geometric distance dg (Euclidean distance to closest
point on ellipse). The former means minimizing an algebraic quantity included in the
representation of an ellipse in conic form (as opposed to parametric form) and results in
a constrained linear least-squares problem which can be solved efficiently. Methods min-
imizing the geometric distance dg need to solve nonlinear least-squares problems whose
computational effort is one to two orders of magnitude larger. Since observed results on
methods performing the algebraic fit produce useful results on the given data, these meth-
ods were favored here. Several available methods were compared by the number of ellipses
found and by statistical metrics of the residuals. The method which was found to perform
well on the given data was developed by Bookstein [84]. It is based on eigenvalue decom-
position in combination with solving a system of linear equations. It is computationally
inexpensive, enabling the online usage of this method.
In order to quantify the goodness of fit for ellipse fits, which is comparable for different

ellipses and also invariant under Euclidean transformations, a similar measure like the
coefficient of determination is required. Several measures [85] exist, but none of them
can be used for generalized comparisons. Thus, the following procedure was performed to
quantify the improvement of elliptic correlation: On each dataset of length n, an attempt
is made to fit ellipses to breathing and tumor signals along each combinations of axes.
If an ellipse can be fitted, the residuals dv

(
pBl (t), pTm(t)

)
are computed for all discrete

sampling instants t ∈ N according to previous description. Then a linear first-order fit
according to Eqn. (3.2) and (3.3) with q = 1 was performed on the same data and the
residuals e(t) = f

(
pBl (t)

)
− pTm(t) between fitted model and data points were determined.

Based on these residual measures, the residual ratio

rr =
√
SSRe
SSRl

=

√√√√∑n
t=1

(
dv
(
pBl (t), pTm(t)

))2∑n
t=1 e

2(t)

was defined, where SSRe is the sum of the squared residuals of the ellipse and SSRl is
the sum of the squared residuals of the straight line. If rr is between zero and one, the
elliptic correlation leads to lesser residuals than the linear correlation. The distribution
of the residual ratios are visualized in Figure 3.7, in which 14 outliers with residual ratios
above 3.0 (most of them occurring along axis with weaker correlation) are omitted for
better visibility. From the totally possible 1800 axis combinations for 200 datasets, 81 are
neglected because either the projection on the x-axis or the z-axis of the tumor motion is
zero due to the used gantry angle, leading to a total number of 1719 combinations. From
these, ellipses could be fitted in 1325 cases (77%). It can be observed that for almost all
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Figure 3.7: Improvement of elliptic correlation in relation to linear first-order correlation.
A few outliers with residual ratios above 3 are omitted for better visibility.

axis combinations, the residual ratio improves substantially using the elliptical correlation.
In total, 81.8% (1084 out of 1325) of the residual ratios are below 1.0. Note, that in this
analysis only one ellipse was fitted to a complete dataset, thereby performing a kind of
averaging over the dataset. As can be seen in Figure 3.6(b), the path through the scatter
plot approximately follows the fitted ellipse but also deviates from it as the underlying
breathing and tumor motion progresses with time. This is due to variability in breathing
patterns and could be accounted for by continuously updating the ellipse fit as time moves
on. Nevertheless, even for the static case using one ellipse, the improvement is already
significant.
However, some cases remain, where neither the linear correlation nor the elliptic corre-

lation is useful. Most of these cases occur along the axes which anyway possess only small
amplitudes. This can be seen from scatter plots, showing a rather random distribution for
some datasets. Reasons for this are subject to limited sensor resolution both in position
and time, e.g. the used EPID possesses a resolution of 0.251mm with a sampling frequency
of about 2Hz. In contrast to the higher sampling rate of the breathing signal, this leads to
interpolation errors (cf. Section 2.2.2.2) which can further reduce the correlation coefficient
or residual ratios. Considering these effects, the achieved correlation between breathing
and tumor motion can be considered large enough to assume a useful relationship, either
as elliptic or linear correlation whichever performs better. This can be exploited during
the development of tumor prediction algorithms which partially rely on breathing signals
in addition to tumor motion. In extreme cases, tumor motion prediction could be solely
based on breathing signals in such a way that breathing serves as a surrogate. However,
larger deviations between predictions and true values should be expected in this case.

Inter-Field and Intra-Fraction Correlation An interesting question arises about variabil-
ity of breathing patterns of a single patient in between several fields. This can be analyzed
by comparing either each available field (resulting in the inter-field correlation) or all fields
of a single fraction (leading to the intra-fraction correlation). Since recording of patient
data started at an arbitrary point in the breathing cycle, the start time of each dataset
has to be synchronized for the comparison of a pair of fields by the correlation coefficient.
If this is omitted, then an unknown phase shift in the data could lead to useless correla-
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3.1 General Properties of Breathing and Tumor Trajectories

tion coefficients. This was achieved here using the peak detection where either the first
maximum or minimum peak was chosen, whichever occurred first in both datasets.
For the inter-field correlation, correlation coefficients were calculated for each available

pair of fields from a single patient. This was done individually for breathing motion with
data from the dominant z-axis (AP) and for tumor motion with data from the y-axis (SI).
The corresponding absolute correlation coefficients for each patient (three patients with
only one field available are not shown) for breathing motion are depicted in the box plot in
Figure 3.8(a) and their p-values are visualized in Figure 3.8(b). In general the correlation
coefficients take small values below 0.5 with their median being usually less than 0.2.
This is also reflected by the overall statistics given in the first part of Table 3.4. Mean
and median correlation coefficient are quite small and the coefficients themselves have a
large spread (see STD) in the same magnitude as the median or mean value. Only a few
outliers with larger values suggest a good correlation. But in general a useful correlation
between different fields of a patient cannot be established in a reliable way by using the
correlation coefficient. A similar picture emerges fory tumor motion. The associated box
plot in Figure 3.8(c) and corresponding scatter plot of p-values in Figure 3.8(d) are similar
to the respective plots for breathing, resulting in the conclusion that inter-field correlation
of breathing and tumor motion along their dominant axes are similar to each other.
Since inter-field comparisons include data from several fractions recorded on different

days, one might assume that comparisons of fields belonging to the same fraction yield
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(a) Inter-field correlation of breathing motion along dominant z-axis
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(b) Correlation significance
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(c) Inter-field correlation of tumor motion along dominant y-axis
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(d) Correlation significance

Figure 3.8: Inter-field correlation analysis
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MEDIAN MEAN STD MAX MIN #
Inter-field, breathing (AP) 0.1426 0.1867 0.1659 0.9357 0.0001
Inter-field, tumor (SI) 0.1461 0.1868 0.1567 0.8464 0.0005

1292

Intra-fraction, breathing (AP) 0.1728 0.2340 0.2035 0.9269 0.0018
Intra-fraction, tumor (SI) 0.1788 0.2214 0.1752 0.8309 0.0007

307

Table 3.4: Statistics of inter-field and intra-fraction correlation coefficients

substantially larger correlation coefficients because fields of the same fraction are close
together in time. However, statistical results stated in the lower part Table 3.4 about
the intra-fraction correlation coefficient suggest a slightly improved correlation compared
to the inter-field correlation, but still with small values in general. A conclusion can
be drawn from this that even for fields within one fraction, the variability of the main
breathing and tumor motion is too large for a linear first-order relationship to be derived.
This is supported when individual motions are compared visually between several fields.
It can be seen that even during one field, breathing and tumor motions are subject to
amplitude and phase changes which do not occur again in the same way, either in the field
itself or in another field. Despite these nonlinear changes, the shape of observed hysteresis
during each breathing cycle seems similar for each patient. But this alone does not lead
to a large correlation coefficient. In general, there is too much variability in breathing,
significantly reducing the possibility of reaching a good correlation.

3.2 Prediction Problem Formulation

3.2.1 Goal

The goal pursued by a predictor is to overcome the bounds imposed by causality in order
to gain information about the future. This information can be used in the present to
influence a process, so that future behavior can be determined to a certain extent. If a
process is subject to unknown influences for which no mathematical formulation is given
or is hard to derive, one can use past outputs and/or inputs to the process to approximate
the underlying process dynamics and assume that the dynamics will still hold in the near
future. Naturally, this scheme is only feasible, if input to output behavior is not purely
random but is based on either a trend or some recurring pattern. Clearly, breathing and
lung tumor motion fulfills this condition, so that, for example in contrast to erratic and
spontaneous prostate motions, these should be reasonably predictable.
For tumor motion prediction, the prediction problem can be stated as follows: Denote

the 3D breathing position along all translational axes at a discrete sampling instant t ∈
N as ~pB(t) =

[
pB1 (t), pB2 (t), pB3 (t)

]T
and the corresponding tumor position as ~p T (t) =[

pT1 (t), pT2 (t), pT3 (t)
]T

. Further denote the timestamps, which are acquired from a single
clock, associated with each discrete sampling instant t with τ(t) ∈ R. Given nB past
samples of breathing motion ~pB(t), . . . , ~pB(t − nB + 1) and nT past samples of tumor
motion ~p T (t), . . . , ~p T (t−nT +1) at instant t, the predictor f computes a k-step prediction
of the 3D tumor position ~̂p T (t+ k|t):

~̂p T (t+ k|t) = f
(
~pB(t), . . . , ~pB(t− nB + 1), ~p T (t), . . . , ~p T (t− nT + 1)

)
. (3.5)
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The notation (t + k|t) explicitly shows that an item was computed at sampling instant
t but refers to a future sampling instant t + k. k is usually referred to as the prediction
horizon. For any predictor in the context of this work, it is assumed that all inputs and
outputs are equidistantly spaced in time with a constant sampling period ∆τ , so that
τ(t + k) = τ(t) + k∆τ for any t, k ∈ N. Depending on available data or constraints (e.g.
certain correlations between different axes or limitations of the prediction method), the
inputs to the predictor from Eq. (3.5) might be reduced. For example only certain axes
of breathing or tumor motion might be used or the calculation might be solely based on
either the breathing or the tumor motion. Similarly, the output might be restricted to one
or two axes of tumor motion, if only motions along these axes should be compensated.
In discrete systems, in which measurements of signal values are available at every sam-

pling instant, more up-to-date predictions can be achieved by performing multistep pre-
dictions. That is, in each sampling instant t, not only is the k-step ahead prediction
calculated, but also the predictions from t + 1 to t + k − 1 are determined which were
already calculated at earlier sampling instants but with larger prediction horizon. In this
way, the most recent input values are used by the predictor, so that the effective prediction
horizon (between age of the input data and current sampling instant to be predicted) is
varying from one to k. In doing so can serve to achieve higher prediction accuracy because
accuracy degrades with rising prediction horizon.

3.2.2 Requirements and Metrics of Prediction Algorithms

Certain demands arise on how predictors should work and how their output should be
shaped in order to achieve high overall system performance. Where applicable, corre-
sponding metrics are given with which a requirement can be quantified. These are used
in the remainder of this chapter for comparison between various prediction algorithms.

Adaptivity From previous discussion about the nature of breathing and tumor data and
also stated in [86], especially in terms of variability, it is obvious that predictors should
be laid out in an adaptive way so that they can deal with changing breathing or tumor
motion patterns.

Accuracy In order to achieve a high-performance tumor motion compensation, the pre-
dictor should deliver accurate predictions: Given a k-step ahead prediction ~̂p(t|t − k) of
either the breathing ~̂pB(t|t − k) or tumor motion ~̂p T (t|t − k), the 3D k-step prediction
error

~ek(t) = ~p(t)− ~̂p(t|t− k) (3.6)

between the true value ~p(t) in sampling instant t (assuming that the true value can be
precisely determined) and the predicted position should be as small as possible over all
sampling instants k < t ≤ nk, where nk ∈ N is the latest sampling instant for which
a prediction and an actual position are available simultaneously. In the following it is
assumed that each time series of prediction errors is of length n ∈ N and starts with
sampling instant t = 1.
The worst case error along a single axis j is obtained by the maximum absolute error

MAX (ej,k) = max {|ej,k(t)| | 1 ≤ t ≤ n} .
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A unified measure for this along several axes is given by taking the maximum of the
maximum absolute errors along the individual axes

MAX (~ek) = max {MAX (ej,k) | 1 ≤ j ≤ 3} . (3.7)

Since maximum errors do not occur permanently for all sampling instants, a similar
measure is of interest, which delivers an upper limit of error for a certain amount of
sampling instants. This can be seen in statistical terms as a single-sided confidence interval
such that absolute prediction errors for a given percentage of sampling instants are below
the upper limit of the interval. The 95% confidence interval (CI95) is adopted here,
yielding an upper limit of absolute errors so that 95% of the prediction errors belonging to
a dataset are less than that limit. Practically this metric is easily obtained by first sorting
the prediction errors ej,k(t) along axis j with 1 ≤ t ≤ n in ascending order into a list and
then choosing the element at list index bn · 95%c as the upper limit. Along several axes
the maximum of this metric along the individual axes is chosen in the same way as for the
absolute maximum error in Eq. (3.7), that is

CI95 (~ek) = max {CI95 (ej,k) | 1 ≤ j ≤ 3} . (3.8)

Note that the 100% confidence interval is equivalent with the maximum absolute error.
Another common error measure is the mean-square error (MSE) defined by

MSE (ej,k) = 1
n

n∑
t=1

(ej,k(t))2

along an axis j with j = 1, 2, 3. The MSE can be seen as the average quadratic error per
sample. For better interpretation, it is converted back to the same units as the measured
items with the RMS

RMS (ej,k) =

√√√√ 1
n

n∑
t=1

(ej,k(t))2 ,

yielding a measure of the average error per sample. For multiple axes, the maximum of
the RMS errors along the individual axis is chosen as unified metric:

RMS (~ek) = max {RMS (ej,k) | 1 ≤ j ≤ 3} . (3.9)

In contrast to the RMS, the mean absolute error (MAE)

MAE (ej,k) = 1
n

n∑
t=1
|ej,k(t)| ,

which is another measure of the average error per sample, does not scale the errors ac-
cording to their magnitude. In the RMS error, errors larger than one contribute more
to the measure, whereas errors smaller than one contribute less. The maximum of the
metric along all axes is used as a measure for more axes in order to deliver the worst case
performance:

MAE (~ek) = max {MAE (ej,k) | 1 ≤ j ≤ 3} . (3.10)

Based on the RMS, an intuitively interpretable measure, called the prediction ratio
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(PR), is defined. Along a single axis j it is obtained from

PR (pj , ej,k) =
(

1− RMS (ej,k)
RMS (pj)

)
· 100% , (3.11)

relating the RMS of the prediction error to the RMS value of the signal pj to be predicted.
If no prediction errors are present, the PR takes the value of 100%. Note that the PR might
become negative in case prediction fails or is unstable. Failure is thereby characterized by
smaller negative values down to about -100%, whereas instabilities lead to larger negative
values. In these cases, the RMS of prediction errors in the numerator of Eq. (3.11) is
larger than the RMS of actual signal values in the denominator. Deriving the PR along
several axis simultaneously is achieved with a weighted average

PR (~p,~ek) =
∑3
j=1 RMS (pj) PR (pj , ej,k)∑3

j=1 RMS (pj)
, (3.12)

where PRs of the individual axes are weighted according to the RMS value of the desired
signal for the corresponding axes. This takes into account different overall amplitudes
along the single axes, so that the prediction errors are scaled accordingly. Substituting
Eq. (3.11), Eq. (3.12) can be simplified to

PR (~p,~ek) =
∑3
j=1 RMS (pj)− RMS (ej,k)∑3

j=1 RMS (pj)
· 100% .

Smoothness An important property of predictions, but sometimes ignored in related
works, is smoothness. A sequence of predictions, especially if multistep predictions are
used, should be as smooth as possible because they are used for the generation of a reference
trajectory which constitutes the input to the control system. If smooth trajectories can
be generated, the control effort for following the given trajectory usually reduces. This in
turn enhances patient comfort and might also help to achieve better tracking accuracy.
Smoothness can be measured in different ways. However, to the knowledge of the

author no “optimal” smoothness measure quantifying what is intuitively understood by
smoothness has been found. Hence, several measures are used, defined as follows.
Especially when considering position signals along an axis j, smoothness can be defined

using jerk, the time derivative of acceleration. Using the difference quotient (in forward
orientation)

p̂
′
j(t|t− k) = ∆p̂j(t|t− k)

∆τ = p̂j(t|t− k)− p̂j(t− 1|t− k − 1)
τ(t)− τ(t− 1)

or the notationally simplified but equivalent form

p̂
′
j(t) = ∆p̂j(t)

∆τ = p̂j(t)− p̂j(t− 1)
τ(t)− τ(t− 1) ,

where τ(t) represents the timestamp in seconds of sampling instant t and j is the transla-
tional axis, the third-order difference equation, yielding jerk, can be determined recursively
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for discretized signals:

∆3p̂j(t|t− k)
∆τ3 = ∆3p̂j(t)

∆τ3 =
∆2p̂

′
j(t)

∆τ2 =
∆p̂′′j (t)

∆τ . (3.13)

If all samples of p̂j are perfectly equidistant with sampling period ∆τ , then all denomina-
tors in Eq. (3.13) become ∆τ and the equation can be simplified to

∆3p̂j(t)
∆τ3 = p̂j(t)− 3p̂j(t− 1) + 3p̂j(t− 2)− p̂j(t− 3)

∆τ3 .

Various jerk-based smoothness measures have been proposed so far (e.g. integrated squared
jerk or root mean square jerk; see e.g. [87] for an overview). For this application the
following smoothness measure SJ is deemed to be useful:

SJ (p̂j) = log
(

1 + a

(n− 2) (max (p̂j)−min (p̂j))

n∑
t=3

∣∣∣∣∣∆3p̂j(t|t− k)
∆τ3

∣∣∣∣∣
)
. (3.14)

Basically it consists of the mean absolute jerk which is scaled to an amplitude range of one,
so that the measure is independent of signal amplitudes. max (p̂j) and min (p̂j) determine
the maximum and minimum of p̂j , respectively. Instead of the often used squared jerk,
the absolute jerk is adopted here to make the measure less sensitive to larger jerk values,
as the jerk itself is already very sensitive. In order to further mitigate this effect, the
logarithm is applied to the resulting values plus one (to avoid negative values). Constant
a is introduced to balance Eq. (3.14). Thus it should have the same unit as ∆τ3 with
value of one.
Another method purely based on time series data for smoothness determination [88] is

relating differences between two consecutive samples to differences between a sample value
and its mean p̂j by evaluating

STS (p̂j) =
1

n−1
∑n
t=2 |p̂j(t|t− k)− p̂j(t− 1|t− k − 1)|

1
n

∑n
t=1

∣∣∣p̂j(t|t− k)− p̂j
∣∣∣ . (3.15)

The index TS is short for “time series” and denotes the formulation on which the calcu-
lation of smoothness is based.
A different approach is motivated from frequency domain by realizing that smoothness

is influenced by high-frequency contributions in signals in relation to low-frequency con-
tributions. Following that idea, a measure of smoothness can be derived similar to the
signal-to-noise ratio (SNR), given an appropriate definition of “signal” and “noise”. For
the application of breathing or tumor motion prediction, it can be safely assumed (cf.
Section 3.1) that frequencies below 0.8Hz can be devoted to the signal whereas frequencies
above that limit are considered noise. The limit is chosen to be slightly larger than the
observed maximum breathing or tumor motion frequency. Then the smoothness measure
SSNR along axis j can be defined in units of dB by

SSNR (p̂j) = 10 log Psignal (p̂j)
Pnoise (p̂j)

, (3.16)

where Psignal (p̂j) is computed from the DFFT of p̂j as sum of contributions to the power
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spectrum whose frequencies are below 0.8Hz and Pnoise (p̂j) is determined accordingly from
the same power spectrum but using frequencies larger than 0.8Hz.
The last smoothness measure discussed here is based on digital filters. When low-pass

filters are applied to signals, the goal is to remove contributions with larger frequencies
from the signal in order to smooth the signal. When comparing the filtered and unfiltered
signals, the difference between them can be considered a measure of smoothness. This
difference is what the filter has removed from the original signal. If the overall difference
is small, then the filtered and unfiltered signal are similar and consequently the unfiltered
signal is smooth. If the difference is larger, the filter has removed more contributions from
the signal, leading to the conclusion that the unfiltered signal is less smooth. However,
filtered and unfiltered signals can only be compared if filters introduce no phase shift
and if the discretized signals are of the same length. To account for this constraint,
zero-phase filters based on low-pass Butterworth filters (see Section 3.1) are used here.
However, the filter has to be properly designed in terms of order and cut-off frequency
so that it behaves in the desired way. Having once determined the filter parameters, this
smoothness measure cannot be applied generically as it is possible with SJ or STS , but it
is limited to certain input signals. However, the properties of breathing and tumor signals
are restricted to a narrow range in terms of amplitudes and frequencies, allowing for the
design of a unique filter which enables the feasibility of the smoothness measure based
on filtering. For the determination of the smoothness of tumor predictions (sampled at a
rate of 20Hz) a 9-th order Butterworth filter with a cut-off frequency at 2Hz yielded a flat
response in the passband and sufficiently large dampening in the stopband. If the filtered
position prediction signal along axis j is denoted by f̂j , the smoothness measure can be
defined by

SF (p̂j) = 1
n (max (p̂j)−min (p̂j))

n∑
t=1

∣∣∣f̂j(t)− p̂j(t|t− k)
∣∣∣ . (3.17)

Similar to SJ , the smoothness measure SF is scaled to an amplitude of one and incorporates
the mean absolute difference between the filtered and the unfiltered signal.
If smoothness needs to be determined for more than one axis simultaneously, then several

possibilities arise: If the worst case is of interest, one could use the maximum (for STS ,
SJ and SF ) or the minimum (for SSNR) of the measures applied to each axis individually.
However, this might lead to unfair comparisons among the individual axes due to different
overall signal amplitudes. To account for this, a unified smoothness measure S for multiple
axes is derived in the same way as the multidimensional prediction ratio in Eq. (3.12).
The one dimensional smoothness measures for each individual axis are weighted by the
RMS value of the signal:

S
(
~̂p, ~p
)

=
∑3
j=1 RMS (pj)S (p̂j)∑3

j=1 RMS (pj)
, (3.18)

Smoother input signals are indicated either by larger values of SSNR or by smaller values
of STS , SJ and SF . All considered smoothness measures have the drawback that no abso-
lute limit for ideal values can be stated, as their magnitude highly depends on the signal
shape, even for smooth signals such as linear combinations of ideal sine or cosine signals of
different frequencies. Additionally they yield different changes in values for phase shifted
or biased signals. Appendix B demonstrates the sensitivity of the smoothness measures
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and infers a rating of them. In general the smoothness measure SF is the least sensitive
to phase shifts or drifts in the signal compared to non-smooth signals. Nevertheless, all
measures are used to have a profound basis for the assessment of smoothness.

Short Learning Time Any predictor starting with no knowledge about the process to
predict needs a certain learning time, similar to a dead time, until the first prediction is
available. This time is usually used either to capture the initial dynamics of the underlying
process or to perform some kind of learning process. Naturally, it is desirable to keep this
time as short as possible, so that predictions can be gained as early as possible in the
treatment process. Especially for short fields with durations of 30 seconds or less, it is
important to reach short learning times of not more than a few seconds. Normally, the
learning time depends on one or more parameters of prediction methods. Since working
parameter sets will be determined for the application of tumor motion compensation for
each method, the learning time can either be precisely pre-computed or at least constrained
to a narrow range.

Fast Convergence After the learning time, the predictor should exhibit fast convergence
behavior so that predictions approach true values as fast as possible in order to achieve
high accuracy. Since predictors should work adaptively, convergence also plays a role after
changes in breathing or tumor motion patterns. In this case, fast convergence can help to
limit the temporary loss in accuracy.
Usually convergence is quantified using the prediction error in such a way that conver-

gence is reached if the prediction error tends to approach zero. A useful measures can be
derived, for example, which defines a limit on the first-order derivative of the prediction
error. If the absolute value of the derivative falls below that limit the first time, then
convergence can be assumed. However, such measures cease to work with periodic signals.
Then the prediction error is also usually periodic and its absolute value or the one of
its derivative become small only during short time intervals but reaches larger values in
between. One way to alleviate this problem is to perform averaging in a sliding window
manner, both on the prediction error and the predictions. Given a window size w, the
“convergence coefficient” C (pj , p̂j , t) at sampling instant t can be defined as the ratio be-
tween the averaged prediction errors and the averaged tumor amplitudes inside the sliding
window:

C (pj , p̂j , t) =
1
w

∑w−1
i=0 |p̂j(t− i|t− i− k)− pj(t− i)|

1
w

∑w−1
i=0 |pj(t− i)|

=
∑w−1
i=0 |ej,k(t− i)|∑w−1
i=0 |pj(t− i)|

. (3.19)

Essentially, Eq. (3.19) represents the windowed version of the absolute percent error∣∣∣∣∣ej,k(t− i)pj(t− i)

∣∣∣∣∣ · 100% .

Thus, the decision about convergence is not evaluated based on the data of a single sam-
pling instant alone but over a larger horizon which results in a more robust criterion,
especially if it is applied to periodic signals. Of course, robustness is mainly influenced by
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the choice of the window size w which is given in terms of the used sampling rate. If w
is chosen smaller, then it is similar to the evaluation of the first-order derivative and the
current error gains more impact in the coefficient which might lead to robustness prob-
lems. If w is chosen larger, then the coefficient (regarded as signal over time) becomes
smoother and hence more robust. On the other hand, errors from the past have a larger
influence and cause the coefficient to decay slower (in case convergence takes place). Due
to these facts, w should be chosen in accordance with signal properties, especially w.r.t
its dominant frequency. From empirical investigations it was concluded that w should
not be less than 1/7 of the period of the main frequency (corresponding to the length
of one breathing cycle) but also not larger than one average breathing cycle. Given a
sampling rate of 20Hz (corresponding to a period of 50ms), w = 15 was chosen here which
corresponds to about 1/4.44 of the period of an average breathing frequency of 0.3Hz.
Based on the convergence coefficient, the convergence time can be expressed by

tj,cmax = min {t | C (pj , p̂j , t) ≤ cmax } , (3.20)

where cmax is the limit in percentage and tj,cmax represents the sampling instant when
the convergence coefficient first dropped below the limit for axis j. This can be converted
into time with τj,cmax = τ(tj,cmax). In this work, two limits were chosen as 25% and 10%
for cmax and both of them evaluated for each prediction algorithm. Of course, choosing
different limits will lead to different convergence times, so that the use of the convergence
time has to be treated in such a way that it gives a rough idea.
The unified measure for convergence time along multiple axes simultaneously is derived

by taking the maximum of the measures of the individual axes:

tcmax = max { tj,cmax | 1 ≤ j ≤ 3} . (3.21)

Computationally Fast The tumor motion compensation system is triggered with a cer-
tain sampling rate which highly depends on the capabilities of the sensors and actuators.
Given the system described in Section 2.2.1, possible sampling rates fall into the range
from 10Hz to 60Hz (smaller rates than 10Hz might lead to larger sampling and tracking
errors, cf. Section 2.2.2.2). Consequently, all computations have to be finished within one
sampling period in the range from 16.667ms to 100ms. Depending on the computational
time of other components (e.g. moving average, peak detection, control scheme), the pre-
dictor can only use a certain fraction of the complete duration. In order to build a motion
compensation system being able to operate in real-time, the predictor should only use a
certain maximum computation time of about several milliseconds. The maximum allow-
able time depends on the selected sampling rate and the computational times of the other
system components. The computational time is assessed for this work by measuring the
execution time of the prediction algorithm on a standard state-of-the-art PC.

Flexible Prediction Horizons As already discussed before, the predictor should provide
multistep predictions to shorten effective prediction horizons and to improve accuracy.
Simultaneously the ability of multistep predictions brings flexibility to the predictor, which
is especially important if the tumor position signal needs to be interpolated. Flexible
horizons guarantee the ability to calculate the required number of predictions, even when
tumor motion is sampled with a different sampling rate (cf. Section 2.2.2.2). In such a
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case, the prediction horizon can be increased or decreased according to the difference in
the number of samples between the predictors update rate and the tumor sampling rate.

3.2.3 Prediction Schemes

Depending on the capabilities of prediction algorithms, they can be grouped into two
different classes. The algorithms of class I are constrained in such a way that they can
only perform predictions of a single input signal (cf. Figure 3.9). Most of the commonly

Prediction

Algorithm

Prediction 

Algorithm

Tumor Signal Tumor Prediction

Prediction 

Algorithm

Breathing Signal Breathing Prediction

Breathing Signal

Tumor Signal

Tumor Prediction

Class I

Class II

Figure 3.9: Basic classes of prediction algorithms

employed prediction algorithms fall into this class. In that respect, they can either output
breathing or tumor motion predictions which are based on either breathing or tumor
signals, respectively. Therefore the prediction problem according to Eq. (3.5) becomes

~̂p T (t+ k|t) = fk
(
~p T (t), . . . , ~p T (t− nT + 1)

)
for tumor motion prediction and

~̂pB(t+ k|t) = fk
(
~pB(t), . . . , ~pB(t− nB + 1)

)
for breathing motion prediction. For tumor motion compensation, the algorithms in class
I can consequently only be used (without modification) in the alternative configuration
of HexGuide (cf. Section 2.2.1.5 and Figure 2.7), which purely relies on direct measure-
ments of tumor motion (without additional breathing information). As discussed in Sec-
tion 2.2.2.2, a sufficient sampling rate of the tumor motion sensor needs to be used in order
to reduce sampling errors which can seriously decrease system performance. For example,
this condition is fulfilled for the Calypso system but not for the EPID. It is assumed that
an equidistant sampling rate is either provided by the sensor or achieved by interpolation.
Algorithms in class II can make use of direct and indirect measurements of the tumor po-

sition, where the latter is represented by the breathing signal in this work (see Figure 3.9).
The indirect measurements are assumed to be sampled with a sufficient and equidistant
sampling rate (which is the case for the breathing signal acquired by the Polaris system),
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whereas the sampling rate of the direct measurement can be lower. If the sampling rates
differ, then the direct measurements needs to be interpolated to the rate of the indirect
measurement using the interpolation techniques described in Section 2.2.2.2.
The fact that signals interpolated at a larger sampling rate are still less informative

than those sampled at a larger rate in the first place (even if higher order interpolations
are used), does not bring any advantage to class I algorithms when applied to interpolated
EPID data. Delays introduced by interpolation aggravate the situation (see Eq. (2.3)).
To overcome the limitations of class I algorithms, a cascaded prediction scheme sketched
in Figure 3.10 is proposed. A class I algorithm is thereby employed to deliver a breathing

Prediction 

Algorithm

Tumor Signal

Tumor Prediction
Regression

Breathing Signal

Breathing

Prediction

Figure 3.10: Cascaded prediction scheme, Class III

position prediction which is fed as input to a regression algorithm. Given a regression
function and corresponding parameters describing the relationship between breathing and
tumor motion based on correlation, the tumor position prediction can be derived from the
breathing position prediction. A prediction algorithm of class I extended by a regression
scheme will be referred to as class III algorithm. This is essentially an extrapolation as the
determined relationship from the past is assumed to be valid for the near future as well.
Based on past measurements of breathing and tumor motion, the regression algorithm
continuously updates regression parameters so that the adaptivity requirement is fulfilled.
For realizing regression, the correlation analysis performed in Section 3.1.4 is exploited,
in which a useful correlation was found to be either represented by a linear polynomial or
by an ellipse.

Linear Regression According to Eq. (3.2), the linear regression problem to be solved
online in each sampling instant t is as follows: Given wR pairs of past breathing and
tumor motion samples{(

pBl (t− wR + 1), pTm(t− wR + 1)
)
, . . . ,

(
pBl (t), pTm(t)

)}
, (3.22)

the parameters cul,m
∈ R need to be determined from the equation

pTm(t− i) = fl,m
(
pBl (t− i)

)
+ e(t− i) =

q∑
u=0

cul,m

(
pBl (t− i)

)u
+ e(t− i) (3.23)

for all i ∈ {0, . . . , wR − 1} with wR ≥ q+ 1, while minimizing the errors e(t− i) in a least-
squares sense. This can be achieved efficiently using various numerical algorithms (see e.g.
[89]) for larger q. If q = 1, the least-squares optimization of the linear first-order function
possesses a closed form solution and can thus be easily performed. Having obtained the
parameters of the function fl,m, it can be used with a breathing prediction p̂Bl (t+ k|t) to
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estimate the corresponding tumor prediction p̂Tm(t+ k|t) as:

p̂Tm(t+ k|t) = fl,m
(
p̂Bl (t+ k|t)

)
. (3.24)

If the data points are badly conditioned, for example if the resulting regression line
would be almost parallel to the y-axis (associated with tumor motion), then the linear
regression fails as the underlying system of linear equations is close to a singularity. This
case is handled by a fallback solution, replacing Eq. (3.24) with

p̂Tm(t+ k|t) = pTm(t) + k
(
pTm(t)− pTm(t− 1)

)
, (3.25)

that is, performing a linear extrapolation which is purely based on tumor motion data,
where the difference between the last two samples of tumor motion is assumed to hold for
future values as well.

In order to assess an optimal window size wR, the following procedure was per-
formed on all available datasets with best 7→y axes using different prediction horizons
k ∈ {1, 3, 5, 7, 9, 11}: Denote the number of samples in a dataset with n. In each iteration
t, starting from wR up to n− k, the linear regression according to Eq. (3.23) is performed
and the resulting regression parameters are used in fl,m to calculate the prediction with
Eq. (3.24) using pBl (t + k). Since future values are available in pre-recorded datasets,
future breathing positions pBl (t+k) as well as future tumor positions pTm(t+k) are known.
This reflects the case when perfect breathing predictions are available, which is applicable
for this analysis. Hence, the prediction error can be derived by the difference between
p̂Tm(t + k|t) and pTm(t + k). Finally, the RMS and maximum of the prediction error as
well as the CI95 confidence interval and the smoothness measure SF were determined and
averaged over all datasets for several wR in the range 2-1000. These metrics are depicted
in Figure 3.11 for selected values of k. Note that some datasets contain less than 1000
samples. These are excluded from the average metrics if the length of the dataset is smaller
than the current value of wR. The RMS and CI95 metrics possess a peak for window sizes
in the range between 15 to about 50 which result when the window size is in the range of
the number of samples corresponding to about one fourth to one breathing cycle, where
the peak is reached for smaller k at smaller wR. If k < 7, minimum RMS and CI95 metrics
are achieved for wR = 2, whereas for k ≥ 7 minimum values result from wR ≥ 75. In
general errors approach a stable value for increasing wR where the absolute errors become
larger for increasing k. This gives rise to the conclusion that regression should be per-
formed at least over the length of a breathing cycle. Similar observations can be made on
the maximum errors as well, except that the minimum for k ≥ 3 is found for larger wR
and the maximum errors slightly decrease continuously with increasing wR. The averaged
smoothness metric SF in Figure 3.11(d) indicates that regardless of the prediction horizon
k, best smoothness is reached for 50 ≤ wR ≤ 250. Furthermore, this justifies the use
of a larger wR for k = 1 where lowest RMS and maximum (MAX) errors are found for
wR = 2. To summarize, in order to achieve both small errors and smoother trajectories,
it is recommended to use a value of wR in the range 75-250 for any prediction horizon
k. Choosing larger values for wR results in similar error metrics with slightly decreased
smoothness. Additionally, large wR means more averaging over a past horizon of data,
limiting the adaptivity of the regression in case of changing motion patterns. Therefore it
is useful to keep wR as low as possible given small errors and small smoothness metrics.
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(c) Average CI95

2 100 250 500 750 1000
0.01

0.015

0.02

0.025

0.03

0.035

0.04

Window size w
R

S
m

oo
th

ne
ss

 S
F

 

 

k=1
k=3
k=5
k=7
k=9
k=11

(d) Average smoothness SF

Figure 3.11: Online linear regression depending on window size wR

The shown results were achieved using the polynomial order q = 1 in Eq. (3.23). The
analysis in Figure 3.5 suggested an improved correlation for q = 3. This is also evaluated
with the following modifications to the previous first-order regression: At first an attempt
is made to fit a cubic polynomial to the given wR data points. If a singularity occurs,
a quadratic polynomial is tried next. If that also leads to singularity, the first-order
polynomial is used. If there is a singularity as well, finally the fallback solution from
Eq. (3.25) is taken. In polynomial regression the minimum value of wR is given by q + 1.
Comparing the corresponding results in Figure 3.12 to the previous case, similar results
are obtained. Cubic polynomial regression leads to slightly smaller average RMS errors
whereas average maximum errors are larger especially for wR < 500. While a performance
increase on CI95 can be observed for k ≤ 5, first-order regression performs better on that
metric for k > 5. The metric SF clearly shows an increase of smoothness values for the
whole range of wR and for any k.
Due to the fact that during normal operation, usually larger k are of interest (because

of the time difference between the latest breathing and tumor position information), the
first-order linear regression is favored here. Despite the improved correlation using cubic
polynomials, the first-order online regression shows a slightly improved performance. One
reason is that the correlation analysis reflects the static state in which the whole dataset
is already known and in which the residuals between the data points and the regression
curve is taken as a metric. In online regression, the dataset is only known up to the
current sampling instant and as opposed to the static case, an extrapolation according to

79



Chapter 3 Breathing and Tumor Motion Prediction

2 100 250 500 750 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Window size w
R

R
M

S
 e

rr
or

 [m
m

]

 

 

k=1
k=3
k=5
k=7
k=9
k=11

(a) Average RMS errors

2 100 250 500 750 1000
0

2

4

6

8

Window size w
R

M
A

X
 e

rr
or

 [m
m

]

 

 

k=1
k=3
k=5
k=7
k=9
k=11

(b) Average MAX errors

2 100 250 500 750 1000
0

0.5

1

1.5

2

2.5

3

3.5

Window size w
R

C
I9

5 
[m

m
]

 

 

k=1
k=3
k=5
k=7
k=9
k=11

(c) Average CI95

2 100 250 500 750 1000
0.01

0.015

0.02

0.025

0.03

0.035

0.04

Window size w
R

S
m

oo
th

ne
ss

 S
F

 

 

k=1
k=3
k=5
k=7
k=9
k=11

(d) Average smoothness SF

Figure 3.12: Online cubic polynomial regression depending on window size wR

the prediction horizon k is performed and the residuals between the extrapolated point
and the “future” data point is used as a metric. Therefore the results from the static
analysis can differ to the online regression using extrapolation.
If the extrapolation based on linear regression is tested with two ideal sines or cosines

of the same frequency as surrogate for breathing and tumor motion, then perfect results
with no error can be achieved for arbitrary wR ≥ 2 and arbitrary k ≥ 1 as long as there is
no phase shift between both signals. However, in the presence of phase shifts, errors arise
in any case whose magnitude depends on the phase angle.

Elliptical Regression In order to deal with these effects resulting from phase shifts, the
regression scheme based on ellipse fitting, as already pointed out in Section 3.1.4, is evalu-
ated in an online version. Similar to linear regression, an ellipse is fitted in each sampling
instant t given wR pairs of past breathing and tumor motion samples, where wR ≥ 5
as the fitting algorithm requires at least five data points. The resulting ellipse is then
located in the x-y plane, in which the x-axis refers to breathing motion and y-axis to
tumor motion. A k-step ahead tumor prediction p̂Tm(t+k|t) for a corresponding breathing
prediction p̂Bl (t + k|t) is then determined in the following way: At first, the intersection
points between the ellipse Eq. (3.4) and the straight line[

x
y

]
=
[
p̂Bl (t+ k|t)

0

]
+ λ

[
0
1

]
, (3.26)
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parametrized by λ ∈ R and aligned parallel to the y-axis, are determined by equating
both the ellipse and line equation, solving for λ and back-substituting into Eq. (3.26).
The solution can be obtained more easily if a reference system is used in which the ellipse
center is located at the origin and to which the ellipse is not tilted. The ellipse can be
expressed conveniently in canonical form (as opposed to the parametric form in Eq. (3.4))
w.r.t. the transformed reference system by

x̃2

a2 + ỹ2

b2
= 1 . (3.27)

The same transformation can then be applied to the straight line to transform the rep-
resentation of the line to the same reference system, that is first shifting the line by the
ellipse center (−xc,−yc)T and then rotating with RT (α), yielding[

x̃
ỹ

]
= RT (α)

([
x
y

]
−
[
xc
yc

])
= RT (α)

([
x̂B − xc
−yc

]
+ λ

[
0
1

])

= RT (α)
([
x̂B − xc

0

]
+ λ̃

[
0
1

])
=
[

(x̂B − xc) cosα
−(x̂B − xc) sinα

]
+ λ̃

[
sinα
cosα

]

=
[
x̃l
ỹl

]
+ λ̃

[
sinα
cosα

]
, (3.28)

where x̂B = p̂Bl (t + k|t) and λ̃ = λ − yc. Eq. (3.28) can be split up into two equations,
thereby solving for x̃ and ỹ, and inserted into Eq. (3.27), leading to the quadratic equation(

sin2 α

a2 + cos2 α

b2

)
︸ ︷︷ ︸

ã

λ̃2 + 2
(
x̃l sinα
a2 + ỹl cosα

b2

)
︸ ︷︷ ︸

b̃

λ̃+ x̃2
l

a2 + ỹ2
l

b2
− 1︸ ︷︷ ︸

c̃

= 0

which needs to be solved for λ̃. Introducing

D = b̃2 − 4ãc̃ ,

a unique solution exists if D = 0. The solution is then given by

λ̃ = −b̃2ã .

Because λ = λ̃ + yc and y = λ (which follows from Eq. (3.26)), the y-component in the
original reference frame can be determined which corresponds to the tumor prediction
p̂Tm(t+ k|t):

p̂Tm(t+ k|t) = y = λ = λ̃+ yc ,

thereby implicitly reversing the transformations on the reference frame.

If D > 0, two solutions exist which are

λ̃1,2 = −b̃±
√
D

2ã .

In this case, a procedure needs to be found which selects a correct solution. A correct
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solution is characterized as being close to a point (xk, yk)T on the ellipse which would
result when the ellipse is traversed according to the prediction horizon k into the direction
leading to future estimates and starting from the point on the ellipse which is closest to
the most recent data point at sampling instant i. In order to generally determine points
on the ellipse which are closest to given points, an iterative search algorithm is employed
which uses the parametric form of the ellipse and determines the corresponding ellipse
parameter ϕ. The algorithm starts with an initial guess calculated from the coordinates
of the given point and converges to a solution usually within a few steps. In this way, the
ellipse parameters

{ϕ(t− wR + 1), ϕ(t− wR + 2), . . . , ϕ(t)} (3.29)

are determined, each of them corresponding to a point on the ellipse lying closest to the
data points (3.22), respectively. In the ideal case, e.g. when using ideal but phase-shifted
sines sampled in equidistant intervals, the differences between the angles ϕ in (3.29) are
constant, where the difference corresponds to a progression of the angle from one sampling
instant to the next. Hence, the averaged angle differences

∆ϕ = 1
wR − 1

wR−1∑
i=1

∆ϕ(t− i+ 1) = 1
wR − 1

wR−1∑
i=1

(ϕ(t− i+ 1)− ϕ(t− i))

can be used as an estimate of the average change in the angle in between two sampling
instants. In order to numerically assess the angle differences correctly in the presence of
switches from −π to π or vice versa, this can be modified to

∆ϕ = 1
wR − 1

wR−1∑
i=1

atan2 (sin ∆ϕ(t− i+ 1), cos ∆ϕ(t− i+ 1)) ,

where atan2(y, x) is the four-quadrant version of arctan
( y
x

)
. With this information avail-

able, the point (xk, yk)T can finally be determined by substituting

ϕ(t+ k) = ϕ(t) + k∆ϕ

into the ellipse Eq. (3.4). Then the appropriate solution λ̃1 or λ̃2 can be selected: If

dg

([
x̂B

λ̃1 + yc

]
,

[
xk
yk

])
< dg

([
x̂B

λ̃2 + yc

]
,

[
xk
yk

])

the solution
p̂Tm(t+ k|t) = λ̃1 + yc

is chosen, otherwise
p̂Tm(t+ k|t) = λ̃2 + yc .

If D < 0 there is no intersection between the straight line and the ellipse. This can
for example happen due to variability in breathing or tumor motion. Several options
are available to deal with this case. One might select the point on the ellipse which is
closest to the straight line Eq. (3.26). However, that point would not be determined using
the prediction horizon k and thus can be far away from (xk, yk)T , so that this option is
discouraged. Another option might be to select the point (xk, yk)T itself as solution, with
the justification being the fact that this could be an appropriate extrapolation according
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to the ellipse fit. On the other hand, this point is definitely far away from the straight
line as their x-components differ. In tests it was found that the best option in this case
is to fall back to linear regression. For that, wR = 250 is chosen here according to
previous discussion of useful ranges for wR in first-order linear regression. Since regression
is performed online, there are not enough data points for the first 250 samples in case the
linear fallback solution needs to be taken. In this case, the linear regression is computed
over the number of available data points up to the maximum of wR = 250.
Testing elliptical regression with ideal phase shifted sines yields optimal results with

no error. This supersedes the linear regression which is not able to handle phase shifts.
However, if signals do not possess a phase shift, the elliptical regression method needs
to be adapted to handle this as a special case. This can be done easily by using linear
regression instead. Linear regression is also incorporated if no ellipse can be fitted at all.
Then the data points are usually arranged anyway in a line-shape.
While elliptical regression with these updates works very well on ideal data, either phase-

shifted or not, some problems arise when applying it to the pre-recorded datasets which
are not perfectly conditioned such as the ideal data. Applying the same test procedure
as with linear regression discussed before, results in the situation depicted in Figures 3.13
and 3.14. At first, in Figure 3.13 the relative frequency (frequency of occurrence) of the
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Figure 3.13: Elliptical regression solution types

solution type due to two fallback possibilities other than the ellipse solution is analyzed.
With low values of the window size wR, ellipses cannot be fitted frequently as fewer data
points are usually arranged in a way that fits better to linear solutions (red line). With
increasing wR, the number of ellipse solutions (blue line) rises until about 750. This is due
to the fact that with more data points, the chance of fitting an ellipse rises. At about a
window size of 60, corresponding to the length of an average breathing cycle, the number
of ellipse solutions converges. Including more data points in the fit consequently does
not increase the chance of more ellipse fits. In fact, for wR > 750 the relative number
of ellipse fits reduces to approximately 0.5, which can be attributed to a non ellipse-like
distribution of the regression points, making it impossible for the chosen fitting algorithm
to find an appropriate ellipse. In about 1% of the cases the last fallback (green line) is
used (see Eq. (3.25)) which occurs even when the linear first-order fallback solution fails.
The results of the error metrics shown in Figures 3.14(a) – 3.14(c) generally follow the
same pattern as polynomial regression. The errors for smaller wR are less than the ones
for linear regression because the linear fallback solution is used more frequently with the
maximum available data points (up to 250). Comparing the RMS error between first-
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(b) Average MAX errors
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(c) Average CI95
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Figure 3.14: Online elliptical regression depending on window size wR

order linear and elliptical regression, it turns out that linear regression performs better
only for k = 1 and wR < 350, otherwise the elliptical regression leads to less average RMS
errors. However, the performance increase is minor as can be seen by comparing absolute
values of the RMS errors. Opposed to that, maximum errors are in general smaller for
linear regression, especially for wR = 250 which is in the range of recommended values
for linear regression. The CI95 metric yield slightly improved results on the elliptical
regression for k ≤ 5 and degraded results for k > 5. The smoothness metric for the
elliptical regression clearly shows larger smoothness values, i.e. less smoothness than for
linear regression. The reason is that often ellipses cannot be fitted on the given data
and the fallback solution is taken instead (cf. Figure 3.13). During switching it is not
guaranteed that two consecutive solutions lie closely together, so that better smoothness
can be achieved when no switching occurs as for example in linear regression alone. Even
when switching does not occur during several sampling instants, ellipses fitted to the real
data are not very stable as time progresses. Often the center of the ellipses as well as their
semi axes a and b are changing significantly from one sampling instant to the next, leading
to strongly changing extrapolations and consequently to degraded smoothness. However,
as already outlined before, an alternative approach needs to be used in conjunction with
elliptical regression in order to provide a solution in every sampling instant.

Choice of Regression Method for Class III Algorithms Given the improved smoothness
for first-order linear regression, the generally similar performance of linear and elliptical
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regression on the error metrics but with better performance on the maximum errors for
the linear regression, the first-order linear regression with wR = 250 is chosen for the
subsequent prediction algorithms which are formulated as class III. Note that this choice
is based on the given datasets. Using other datasets having a different characteristics
might lead to different conclusions on the regression method yielding the best results.
This can occur due to the fact that available datasets of breathing and tumor motions
are not completely synchronized. Apart from unknown timing offsets, they may possess
unknown temporary phase shifts caused by varying latencies in the acquisition systems.
Additionally, the extremely low sampling rate of the EPID system introduces further
difficulties in establishing a good correlation, which can be used in online regression.
To summarize the issue of discussed online regression methods used to derive tumor

predictions from breathing predictions: Given ideal data, the elliptical regression is pre-
ferred because it can naturally deal with phase-shifted as well as with non phase-shifted
data. Linear regression works well on non phase-shifted data but fails on phase-shifted
data. However, applying these methods to real pre-recorded data in an online fashion,
that is, only a certain window reaching into the past of the data history is considered, it
turns out that among these methods the first-order linear regression slightly supersedes
the others especially when smoothness is taken into account. Polynomial as well as ellipti-
cal regression applied statically on the whole dataset suggested an improvement over the
first-order linear regression. However, this improvement is present merely in mild form
in the online regression due to the performed extrapolation on which the error criteria is
based instead of the residuals between the data points from which the fit is determined
in the static case. Additionally, the online linear regression supersedes the static version,
leading to the conclusion that given the pre-recorded datasets the relationship between
breathing and tumor motion has to be continuously updated. Therefore it is also useful to
limit the size of the sliding window in order to adapt to changing motion patterns within
an appropriate time.
Other correlation models are also available. [90] uses several linear models whose pa-

rameters are fitted offline. Consequently, as presented, the model can only be used in
retrospect. [91] proposes a physical model with a several springs and dashpots to model
the correlation. The CyberKnife system uses an approach similar to the linear method
presented here, with adjustable polynomial orders and a distinction between inhalation
and exhalation phase [92]. As will become clear during the course of this work, the cor-
relation model based on regression will mostly serve as baseline method to which others
will be compared.

3.2.4 Prediction Methods

Various prediction methods for different purposes ranging from industrial applications,
e.g. [93], to respiratory or tumor motion prediction have been proposed already in liter-
ature. Among model-free (in the sense of no dynamical model describing the motion in
physical terms) prediction methods, often autoregressive (AR) models are applied in dif-
ferent variants, where their parameters are updated by various algorithms. AR models are
formulated over a certain past signal history, where current or future values can be pre-
dicted by a linear combination of past observations with a parameter vector. For example,
[94–96] apply the least-mean-square (LMS) algorithm [97] to update the parameters of a
linear AR model from which breathing predictions are determined. [50, 96] additionally
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apply the recursive least-squares (RLS) algorithm for parameter updates, which is found
to provide a higher prediction accuracy and faster convergence than the LMS algorithm.
Furthermore, [96] applies a wavelet-based LMS algorithm for updating parameters. Other
works incorporate autoregressive moving average (ARMA) models [98] together with the
RLS algorithm, where the model additionally includes an estimation of future prediction
error. [99] based the breathing prediction onto a seasonal autoregressive integrated moving
average model, which is deemed more suitable to deal with instationarities of breathing
motion. Rather than incorporating past observations directly into the model, it is re-
gressed over discrete differentiations of the breathing signal. [100] introduces a periodic
ARMA model for prediction, which estimates both periodic and non-periodic components
of breathing motion.
Other model free prediction methods include simple linear extrapolation filters as in

[28, 101], usually showing larger prediction errors when the prediction horizon increases.
Often they are merely used as baseline methods for comparison with other prediction
methods. Quite often, prediction methods based on artificial neural networks (ANNs) [102]
are found in literature with various structures or variations. For example, [94] compares
the LMS algorithm to an ANN. [103] uses an ANN approach with offline training of a single
layer perceptron with linear and nonlinear output functions. [29, 101] propose multilayer
perceptrons with a single layer of hidden neurons and a linear output function. [104]
compares several variants of ANNs with different training algorithms to other prediction
methods for respiratory motion prediction. Furthermore, combinations of ANNs and fuzzy
logic methods [105] as well as pure fuzzy logic approaches [106] are found. One of the main
drawbacks of the ANNmethods is the need for a relatively long training phase, either online
or offline. Newer model free prediction methods make use of a support vector machine,
usually employed for classification tasks. These can be reformulated to perform support
vector regression, which also updates parameters of an AR-like model or other nonlinear
models based on the chosen kernel. Predictors based on support vector regression are often
found to supersede others, as in [107, 108]. Often Gaussian kernels are employed instead of
linear kernels. Another interesting approach [109] introduces a family of linear predictors
based on the assumption that the difference between original and delayed breathing signal
is constant. By expanding the prediction error to account for changes of higher order
derivatives, predictions can be improved, when the assumption does not hold anymore.
Similar to that idea, [110] proposes a local dynamic model formulated in an augmented

space. Since a dynamic model is introduced describing the motion in physical terms,
this method belongs to the class of model-based predictors. In this method, the original
breathing signal and the delayed signal are used to span an augmented space in which
the respiratory motion describes a circular or elliptical path. An extended Kalman filter
estimates the states of the dynamic model which includes the angular velocity of the
circular motion into the states apart from position and linear velocities. A more simplistic
approach is given in [104, 111], which assume a constant velocity and constant acceleration
model to describe tumor motion. The models are formulated as state-space models where
the states are estimated by a linear Kalman filter. An interacting multiple model approach
is used to fuse both filters to improve prediction accuracy. [112] models the motion with
a spring-mass model, where the states are estimated with an extended Kalman filter. In
[101] an initial guess of a state transition matrix of a state-space model is used to describe
the motion. The state transition matrix is then continuously updated by an expectation
maximization algorithm. Efforts have also been done to fit a sinusoidal model [113] in time
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domain representation to past measurements. Predictions are hereby determined from the
fitted sinusoidal model.
Different from these methods, in [114–116] breathing stages like exhalation and in-

halation are modeled by states of a finite state machine. Transitions of states are then
analyzed using a hidden Markov model. The states are associated with observables like
tumor position and velocity from which predictions are generated. Motivated from fre-
quency domain, [117, 118] propose a Fourier linear combiner for breathing prediction
which builds a Fourier series model and continuously updates the Fourier coefficients.
This was applied for real-time compensation of tremor during percutaneous needle inser-
tion in robot-assisted microsurgery. [119] introduces a kernel density estimation approach
for breathing prediction, in which probability distributions of future breathing positions
are estimated.
Other methods are based on the idea to find current breathing patterns in past ones

and to determine the prediction from best matching patterns. [120] proposes the concept
of subsequence similarity matching where piecewise linear parts of breathing motion are
associated with finite states. [121] constructs an augmented space from past respiratory
motion measurements and additionally performs a local regression in the augmented space.
[92, 122] introduce a pattern matching approach based on sliding windows of past data,
which is integrated into the Synchrony® Respiratory Tracking System, a subsystem of
CyberKnife. [123] use the concept of embedding vectors to search for best matching
breathing patterns in past data which are defined by the embedding vectors. This method
was successfully employed for motion compensation in beating heart surgery.
This work investigates several of the aforementioned prediction methods in the following

sections where preliminary results are given in [64] and [124].

3.3 Adaptive Filters
Assuming a real-valued signal y is sampled at equidistantly spaced sampling points, where
the current one is denoted with index t, the resulting time series y(t), y(t−1), ..., y(t−na)
is said to be a realization of an AR process [125] of order na if it fulfills the model equation

A(q)y(t) = e(t) (3.30)

in which y(t) ∈ R is considered the current output of the model in sampling instant t. q−1

is the backward shift operator
q−1y(t) = y(t− 1) ,

A(q) is a polynomial of degree na of the form

A(q) = 1 + a1q
−1 + a2q

−2 + · · ·+ anaq
−na

with model parameters ai ∈ R, i = 1, 2, . . . , na and e(t) ∈ R is a disturbance drawn from
white noise. Rearranging Eq. (3.30) to

y(t) = −
na∑
i=1

aiy(t− i) + e(t) (3.31)

relates the current output y(t) to past samples of signal y by a linear combination with
the model parameters ai plus the noise term e(t). Since the model is expressed in the
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form of a regression model and y(t) is regressed on past values of itself, the model is called
“autoregressive”.

Assuming the parameters of the model in Eq. (3.31) are already known from information
up to time t− 1, the undisturbed version of this model can serve as a one-step predictor
in the case of unmeasured disturbances, yielding

ŷ(t|t− 1) = −
na∑
i=1

aiy(t− i) . (3.32)

Shifting by one sampling instant and using the latest measurement y(t), Eq. (3.32) can be
rewritten to

ŷ(t+ 1|t) = −
na∑
i=1

aiy(t− i+ 1) . (3.33)

Introducing the parameter vector θ = [a1, a2, . . . , ana ]T and the vector of observations
ϕ(t) = [−y(t),−y(t− 1), . . . ,−y(t− na + 1)]T , Eq. (3.33) can be simplified to

ŷ(t+ 1|t) = θTϕ(t) = ϕT (t)θ . (3.34)

Based on the one-step prediction, the general k-step predictor with k ∈ N can be derived
by iteratively replacing the newest element in ϕ(t) with its prediction performed in the
previous step. Since a prediction is “plugged-in” into the observation vector instead of an
observation which is not available yet, the predictor is commonly referred to as plugin-
predictor [126] and can be described in general by

ŷ(t+ k|t) = ϕT (t)Θk−1θ (3.35)

with
Θ =

[
θ

Ina−1
0Tna−1

]
and Θ0 = Ina , where Ina is the na×na identity matrix and 0Tna−1 is a row vector of na− 1
zeros.

Instead of iterating over the AR model, it is also possible to acquire a k-step predictor
in a direct approach similar to Eq. (3.34) by

ŷ(t+ k|t) = ϕT (t)θk , (3.36)

where θk refers to a parameter vector with which only k-step predictions can be performed.
In order to perform multistep predictions with the direct predictor, it is therefore necessary
to use separate parameter vectors θi for i = 1, 2, . . . , k.

When modeling either breathing or tumor motion by means of an AR model, y(t) repre-
sents the current one-dimensional measurement (or interpolation) of either the breathing
or tumor motion signal, respectively. Due to the variability in motion patterns, model pa-
rameters ai need to be updated continuously in order to adapt to changes in momentary
frequency and amplitude, essentially making the parameter vector θ and the AR model
time-variant. Several methods exist in order to estimate the model parameters from past
samples of signal y, which will be outlined in the following subsections.
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3.3.1 Least-Mean-Square Algorithm

At first, the class I formulation is presented which can be applied to a single breathing
or tumor motion signal. The following subsection discusses the influence of the free pa-
rameters of the least-mean-square algorithm on various performance metrics when using
breathing signals and provides insights on how optimal parameter settings can be selected.
With known parameters, the next subsection shows the achievable tumor prediction per-
formance when employing the developed regression scheme based on breathing predictions,
i.e. the class III variant. Next, an extension is proposed to achieve a class II formulation,
thereby fusing breathing and tumor motions. Value ranges of the free parameters of the
class II extension are derived and the resulting tumor prediction metrics are compared to
the ones from the class III variant.

3.3.1.1 Class I Formulation

One popular method to estimate model parameters of an AR model online is the LMS
algorithm originally developed by Widrow and Hoff [127]. It is the stochastic analogue of
the method of steepest descent which solves an optimization problem by minimizing the
mean square error. The algorithm [125] can be summarized for the direct predictor ac-
cording to Eq. (3.36) as follows: Starting from an initial estimate of the model parameters
θ̂k(0) ∈ Rna at time t = 0, the estimated parameters θ̂k(t) (as opposed to the true but
unknown model parameters θk(t)) are recursively updated in each sampling instant by

θ̂k(t) = θ̂k(t− 1) + µ
(
y(t)− θ̂Tk (t− 1)ϕ(t− k)

)
ϕ(t− k) . (3.37)

For the computation of the prediction error

ek(t) = y(t)− θ̂Tk (t− 1)ϕ(t− k) (3.38)

in Eq. (3.37) at sampling instant t, the latest measurement y(t) is compared with
the k-step ahead predicted value computed from the estimated parameters θ̂Tk (t −
1) from the previous sampling interval and na past observations ϕ(t − k) =
[−y(t− k),−y(t− k − 1), . . . ,−y(t− k − na + 1)]T shifted by k sampling intervals. The
shift is necessary since with θ̂k, the k-step prediction for the current sampling interval t
needs to be computed, which can only be achieved using ϕ(t−k). The increment in model
parameters in Eq. (3.37) is proportional to the prediction error modified by a small step-
size parameter µ > 0 which can be used to control the amount of adaption in each update
in order to make the algorithm more robust to noise or to avoid instabilities. For the
“direction” of the adaption in terms of the steepest-descent idea of the algorithm, ϕ(t−k)
is chosen. The term ϕ(t − k)ek(t) actually is the simplest form of an unbiased estimator
for E [ϕ(t− k)ek(t)] (with E [·] being the expectation operator), which minimizes the cost
function underlying in the LMS algorithm.
Having obtained the updated parameter vector, the k-step prediction is computed by

ŷ(t+ k|t) = θ̂k(t)ϕ(t) . (3.39)

The standard LMS algorithm suffers from one major deficiency known as the gradient
noise amplification problem which occurs especially for large ϕ(t − k). Additionally the
choice of µ is not invariant to scaled input data. Therefore the normalized LMS was
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proposed by Nagumo and Noda [128], in which the adaptation increment is scaled by the
1-norm of ϕ(t − k). Later this was extended to a general p-norm [129]. Here the usually
employed 2-norm was chosen, leading to the parameter update

θ̂k(t) = θ̂k(t− 1) + µ

α+ ‖ϕ(t− k)‖2
(
y(t)− θ̂Tk (t− 1)ϕ(t− k)

)
ϕ(t− k) . (3.40)

Normalization introduces a numerical problem when ϕ(t− k) becomes small. In order to
avoid division by zero, a small constant α > 0 is introduced in the denominator with a
value of 10−5 in this work.
Convergence of the LMS algorithm (either standard or normalized) depends on the

choice of the step-size parameter µ and the correlation matrix of the input vector ϕ(t−k).
For stationary input signals, the coefficients θ̂k converge to the optimal weights of the
Wiener filter [125]. In the standard LMS algorithm, an approximate upper bound for the
step-size parameter µ can be found from the inverse power of the input signal, whereas in
the normalized LMS algorithm, it can be shown that 0 < µ < 2 [130, 131] in order for it
to converge in the mean square error. The smaller µ is chosen, the smaller the adaptation
increment becomes, which in turn reduces the convergence rate. Since a feedback of the
measured output y(t) is introduced in Eq. (3.40) for the update of the parameters, these can
become unstable if the input signal changes too fast in comparison with the convergence
rate. In such a case, µ can be reduced in an attempt to mitigate this problem, thereby
constraining convergence at the same time.
The dead time or “learning time” of the LMS algorithm before the first prediction can

be performed is at least lower-bounded by the number of samples na which need to be
acquired for the construction of ϕ(t) in prediction equation (3.39). However, the first
parameter updates can be performed at t = na+k because ϕ(t−k) needs to be defined in
Eq. (3.40), resulting in a different dead time depending on k for the direct predictor. For
the plugin predictor only a one-step prediction is necessary, from which a k-step prediction
is iteratively determined, leading to a dead time of t = na + 1 sampling intervals being
independent of k.
For the LMS prediction of breathing or tumor motion, the choice of

θ̂k(0) =
[
−1 0 0 . . . 0

]T
as initial estimate of the parameter vector θ̂k(0) is suitable as it brings the early predictions
close to the recent value, especially for smaller values of k, thus enabling fast convergence.

3.3.1.2 Class I Parameter Selection

Applying the LMS algorithm on an AR model of order na while having an one-dimensional
input signal, two design parameters na and µ need to be found. Therefore exhaustive sim-
ulations on 200 pre-recorded breathing datasets were performed, which were interpolated
to a sampling time of 50ms (20Hz). The parameter na was varied between 2 and 150
with different step sizes of 1, 2, 5 and 10, depending on the range of na itself. Values for
the parameter µ were: 0.001, 0.005, 0.01, 0.025, and the range between 0.05 and 1.0 in
steps of 0.05. For each parameter setting, the LMS predictor determined predictions up
to a horizon of k = 11 (corresponding to 550ms) in all three translational axes. For each
dataset, the following 3D criteria were computed: prediction ratio (PR), 95% confidence
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interval (CI95), mean absolute error (MAE), root-mean-square error (RMS), maximum
error (MAX), smoothness criteria (SF , SJ , STS and SSNR) and convergence time τcmax

with cmax = 25% (CT25) and cmax = 10% (CT10).
At first, instabilities were analyzed for the plug-in and for the direct predictor. Insta-

bilities were determined by negative prediction ratios. Note that if the negative value is
small, then there is technically no instability, but the prediction failed delivering errors
large enough so that the RMS value of the errors is larger than the RMS of signal to be
predicted. Even if the LMS predictor was able to successfully predict one or two axes
without instabilities, if an instability occurred on the remaining axes, the complete trial
is thereby counted as unstable. For k = 1, no instabilities occurred in both predictors.
However with increasing prediction horizon, the number of instabilities rises as can be
inferred from Figure 3.15 for the direct predictor and from Figure 3.16 for the plug-in
predictor. Naturally, a dependency between instabilities and parameter settings can be
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Figure 3.15: Number of unstable trials among 200 datasets of the direct LMS predictor
in relation to parameters na and µ
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Figure 3.16: Number of unstable trials among 200 datasets of the plug-in LMS predictor
in relation to parameters na and µ

observed. For small values of na more instabilities occur as for larger values. A similar
observation can be made for µ as well, however with a weaker impact. Especially for
larger prediction horizons a “valley” emerges for values for µ between 0.005 to 0.01 with
a low number of instabilities for both predictors. The location of the valley changes with
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increasing na, moving to values for µ between 0.025 to 0.1. It can be seen that choosing µ
too small (i.e. less than 0.005 for small na or less than 0.025 for larger na) is not beneficial
in terms of instabilities. Furthermore, the choices of parameters leading to none or only a
few instabilities become confined to an increasingly narrow region with increasing predic-
tion horizon. This behavior can be attributed to “instationarities” in the signal caused by
changing breathing patterns, such that the model in Eq. (3.36), which is applied to the
latest past of the signal described by ϕ(t), matches lesser than several sampling instants
before, leading to the necessity of adapting the parameters even more, thereby increasing
the chances of instabilities. Comparing the plug-in to the direct predictor, it turns out
that even for lower prediction horizons, instabilities occur more frequently for small values
of na, but for larger na the surface in Figure 3.16 stay flatter at a lower level. Therefore the
parameters for the plug-in predictor can be chosen more freely for low prediction horizons
without leading to instabilities. For larger prediction horizons, the constraints equal the
ones found for the direct predictor.
In order to find suitable parameter settings which work well on the majority of the pre-

recorded datasets, the average prediction ratio (averaged over the results for each dataset
while neglecting unstable trials) is considered as a major criterion, which is depicted in
Figure 3.17 for the direct predictor and in Figure 3.18 for the plug-in predictor. As
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Figure 3.17: Mean prediction ratio of 200 datasets of the direct LMS predictor in relation
to parameters na and µ

already stated before, the plug-in predictor equals the direct predictor for k = 1, which
can also be seen by comparing the result plots. In this case, the effect of both na and
µ on the average prediction ratio is minor, especially for the region given by na ≥ 50
and µ ≥ 0.025, in which large average prediction ratios of 90.0% to 91.29% are reached
irrespective of the parameter values. For small values of µ < 0.025, the step size in the
LMS adaption is in general too small, resulting in slower convergence of parameters and
thus in degraded overall prediction performance. Similarly, for na < 50 (which is slightly
less than the length of an average breathing cycle) and especially for na ≤ 5, the order
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Figure 3.18: Mean prediction ratio of 200 datasets of the plug-in LMS predictor in re-
lation to parameters na and µ

of the AR process is chosen too small in order for the AR model to sufficiently capture
the dynamics of the motion. For prediction horizons k > 1, the region of parameters with
maximum PRs gradually move to a narrow band with 0.025 ≤ µ ≤ 0.1 and 60 ≤ na ≤ 100.
Comparing the maximum PRs for each depicted prediction horizon, it turns out that the
maximum average PR decreases approximately linearly starting from k = 1 with 91.29%
to k = 11 with 40.49% using the direct predictor and 42.25% using the plug-in predictor.
This performance degradation as the prediction horizon increases is expected. Given
information about a signal until time t, it is more difficult for a predictor to come close
to a future value at time t+ k as k is increased because signal characteristics can change.
Additionally, when using a linear predictor as in the case of an AR model, it is especially
hard to acquire good predictions in the vicinity of peaks when direction of the motion
changes.
A closer inspection of the regions with maximum PRs and the regions with a small

number of instabilities reveals that these regions have a huge overlap, leading to the con-
clusion that useful parameter sets can be found which lead to only a few instabilities and
for which the average PR is maximized. However, an individual parameter set should be
chosen for each k, as the region of maximum PRs changes with k for both the direct and
plug-in predictor. This can be accommodated for the direct predictor easily by running
each instance for a separate k with different parameter settings. However, this necessi-
tates the plug-in predictor to run separate instances with appropriate parameter settings
whereas normally only one instance would be sufficient.
Analyzing plots of the remaining averaged prediction accuracy criteria (MAE, RMS,

MAX, CI95) over the parameter settings, a similar (but inverted) “landscape” can be
observed as in the PR plots in Figures 3.17 and 3.18 in which minimum criteria values can
be found for the same regions as in the PR plot, hence supporting the choice of parameters
from the corresponding regions. This is further supported when analyzing these criteria in
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terms of the standard deviation instead of the average, which is a measure of the spread
of the criteria values among the datasets in relation to the parameter settings. In these
plots, lower values for standard deviations of the criteria can be observed for the same
regions as well.
Representative for the various smoothness criteria considered, Figures 3.19 and 3.20

depict the smoothness measure SF in relation to the LMS parameters for the direct and
plug-in predictor, respectively. The smoothness measures STS and SJ yield similar plots,
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Figure 3.19: Mean smoothness metric SF of 200 datasets of the direct LMS predictor in
relation to parameters na and µ

whereas SSNR results in a logarithmic version of these plots due to its definition. In
general, small values for µ lead to smoother predictions, especially for small k. This is
attributed to the fact that a small µ decreases the amount of adaptation in the parameter
update equation of the LMS and consequently predictions become smoother. Using the
plug-in predictor, smoothness is approximately linearly dependent on µ, where small values
for µ lead to similar smoothness measures for each k. For larger µ, the smoothness value
rises with increasing k. The behavior is quite different with the direct predictor, especially
for k > 3 where the smoothness surface is generally flatter with slightly smaller values.
This suggests that the direct predictor leads to smoother predictions than the plug-in
predictor. Additionally, there is a significant decrease in smoothness in both predictors
for small values of na irrespective of µ, where the limit of na when the smoothness value
starts to increase is in the range 8-10. This behavior results from the low-pass filtering
characteristics of the underlying AR model for which larger orders of na lead to more
filtering and consequently to smoother predictions.
Plots of the convergence time (not shown here) have a structure similar to the ones of

the smoothness measure SF for both plug-in and direct predictors. The major difference
between them is that a significant increase in average convergence time is observed for
na < 60 whereas the dependence of µ approximately follows the inverted PR plots. As
the convergence time measure is based on errors, the smallest convergence times can be
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Figure 3.20: Mean smoothness metric SF of 200 datasets of the plug-in LMS predictor
in relation to parameters na and µ

observed for regions of parameter settings with maximum PR.
The results discussed so far were based on data averaged over all datasets. However, the

question remains if the selection of best parameters based on average criteria is also useful
for each individual dataset. In order to approach this question, the parameter settings
leading to the 20 largest PRs were determined for each dataset individually and then
accumulated over all datasets, so that for each k the distribution of the 20 best parameter
settings can be visualized as in Figure 3.21 for the direct predictor. Since the plot for the
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Figure 3.21: Distribution of 20 parameter settings of the direct predictor with largest
PR for each dataset and accumulated over all datasets

plug-in predictor is quite similar, it is omitted here. Comparing the region in the vicinity
of peaks to the plots of maximum PR for each k separately, it turns out that the largest

95



Chapter 3 Breathing and Tumor Motion Prediction

parts of the regions are overlapping. Thus it can be stated that choosing the parameters
from the averaged PR is feasible in order to simultaneously reach satisfactory performance
for each individual dataset as well.
To summarize, best parameter settings for the LMS predictor should be chosen for each

prediction horizon individually. It is thereby feasible to acquire useful parameter values
from regions with maximum PR. As discussed before, the remaining mean metrics and
especially the averaged standard deviation of the PR also showed best performance in
these regions. Since the 200 breathing datasets were acquired from 24 patients which
show a broad range of different characteristics, the results can be generalized in statistical
terms so that for the same regions of best parameter settings, similar performance can be
expected when predicting other patient’s breathing. Judging from the prediction accuracy
metrics given the best parameter settings, the plug-in predictor possesses a slightly higher
performance than the direct predictor. But in terms of instabilities and smoothness, the
plug-in predictor lags behind. Since also smooth trajectories are an important requirement
for predictions, the direct predictor will be considered further.
In order to deal with the imminent problem of instabilities, the idea from [95] seems

reasonable if the LMS predictor is employed. Parallel instances of LMS predictors are
executed with different parameter settings simultaneously, where the parameter settings
are determined by a rule based on initial settings. Based on prediction accuracy, the
predictor with the smallest errors is then chosen to deliver the final predictions.
Having obtained parameter settings for each k by choosing the one with maximum PR

for each k, it is interesting to determine the prediction performance of the direct LMS
predictor applied to all datasets. Figure 3.22 depicts box plots of all criteria, each of them
showing the distribution of criteria values for prediction horizons between 1 and 11 in steps
of 2 among all 200 datasets. In order to fuse the various metrics together in one single plot,
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Figure 3.22: Scaled breathing prediction metrics of parameter setting with largest aver-
age PR determined for each k separately using the direct LMS predictor;
metric values are visualized by box plots for different k

their values are scaled by the maximum of each criteria (irrespective of k). The absolute
values of the main characteristics visualized qualitatively in the figure, can be drawn from
Table 3.5, which lists the minimum, mean, median and maximum value for each metric
and for each prediction horizon. The standard deviation is omitted here, since the box
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Prediction PR CI95 MAE RMS MAX SF SJ ST S SSNR CT25 CT10
horizon Type [%] [mm] [mm] [mm] [mm] [s] [s]

min 78.9 0.01 0.00 0.00 0.02 0.35 1.82 0.07 1.48 8.75 8.75
mean 92.4 0.19 0.06 0.09 0.52 1.34 2.39 0.13 15.59 8.76 9.04
median 93.3 0.18 0.06 0.09 0.45 1.27 2.40 0.12 16.14 8.75 8.751

max 97.5 0.41 0.14 0.20 2.28 3.34 2.88 0.27 23.51 9.70 19.20
min 38.3 0.03 0.01 0.02 0.06 0.32 1.64 0.07 -0.93 8.75 8.75
mean 78.6 0.56 0.21 0.28 1.17 1.29 2.24 0.12 14.08 9.15 14.43
median 81.7 0.51 0.20 0.26 1.05 1.22 2.24 0.12 14.64 8.75 10.503

max 90.9 1.50 0.57 0.69 4.13 3.23 2.71 0.26 22.25 14.95 52.45
min 27.3 0.05 0.02 0.03 0.09 0.22 1.60 0.06 -1.45 8.75 8.75
mean 66.8 0.90 0.35 0.45 1.59 0.96 2.20 0.12 15.57 9.93 19.28
median 70.7 0.82 0.31 0.41 1.46 0.88 2.20 0.11 16.35 9.22 14.285

max 84.2 2.20 1.02 1.22 5.32 2.42 2.69 0.24 23.89 20.55 60.45
min 9.3 0.07 0.03 0.04 0.11 0.23 1.61 0.06 -2.25 8.75 8.75
mean 56.1 1.21 0.47 0.61 2.04 0.95 2.20 0.12 15.56 11.30 24.41
median 61.5 1.09 0.42 0.55 1.90 0.88 2.20 0.11 16.41 9.77 21.057

max 78.9 3.14 1.36 1.66 6.11 2.40 2.66 0.25 23.92 52.45 78.95
min -2.4 0.08 0.03 0.04 0.13 0.24 1.63 0.06 -1.03 8.75 8.75
mean 47.5 1.43 0.58 0.73 2.32 0.99 2.21 0.12 15.81 11.92 29.46
median 53.7 1.33 0.52 0.66 2.19 0.90 2.20 0.11 16.63 10.30 28.259

max 71.1 3.64 1.71 2.06 7.57 2.48 2.66 0.24 23.61 39.45 90.05
min -12.1 0.09 0.04 0.05 0.14 0.23 1.65 0.06 0.74 8.75 8.75
mean 40.4 1.64 0.66 0.84 2.64 0.98 2.20 0.12 15.84 12.87 32.34
median 46.7 1.56 0.60 0.78 2.51 0.88 2.20 0.11 16.82 10.80 30.8011

max 67.3 4.27 1.97 2.38 8.92 2.52 2.66 0.25 23.60 49.45 100.30

Table 3.5: Minimum, mean, median and maximum breathing prediction metrics of pa-
rameter setting with largest average PR determined for each k separately;
metrics are given for different k using the direct LMS predictor

plots give a clearer picture of the distribution. From all prediction accuracy metrics (PR,
CI95, MAE, RMS, MAX), the performance decrease with increasing prediction horizon
k becomes obvious. With decreasing median, the IQR simultaneously increases, leading
to a larger spread of the metric values among the 200 datasets. That is, the prediction
accuracy becomes more and more different for the datasets as k increases. As can be seen
from the whiskers of the PR box plots for k ≥ 9, there are some datasets which yield a low
prediction performance, eight of them resulting in a negative PR down to -12.1% (two for
k = 9 and six for k = 11). That means, these datasets possess at least one axis where the
LMS prediction failed. Given the PR value and from inspection of the individual dataset,
it can be seen that there is no instability but the prediction did not converge to the true
signal, with predictions being either far away or phase-shifted. Due to the fact that the
CI95 is significantly less than MAX errors (whereas the difference between them are only
5% of the largest errors), it can be seen that most of the absolute errors are on average less
than 1mm for k ≤ 5 and less than 1.7mm for k ≤ 11. All smoothness metrics (SF , SJ , STS ,
SSNR) indicate smoother predictions for k > 3. The reason for this behavior originates
from the choice of parameters which differ for each k, where the difference between the
parameter settings is lesser for increasing k, leading to the observed results. From the
convergence time metrics (CT25 and CT10), an increase of median convergence time as
well as broader spread of it can be observed with increasing k.
Instead of computing statistics of the direct LMS predictor from parameter settings with

largest PR which were determined for each k individually, they can also be computed from
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parameter settings determined for each dataset and each k with largest PR, yielding the
best achievable performance per dataset with the LMS predictor (of course given certain
constraints on the parameters such as maximum µ and step sizes of the parameters).
Given these individual parameter choices for each dataset, the metrics given in Table 3.6
result. Obviously negative PRs do not occur anymore, nevertheless there are still a few
datasets with poor prediction performance, especially for larger k. When comparing this
table of best achievable performance to Table 3.5, it becomes evident that there is a visible
performance increase of 2%-4% in the mean PR when choosing the parameter setting with
largest PR for each dataset individually. On the other hand the reduction in maximum
errors is smaller than one might expect. Therefore choosing a separate parameter setting
for each k and keeping it constant for that k is a feasible approach.

Prediction PR CI95 MAE RMS MAX SF SJ ST S SSNR CT25 CT10
horizon Type [%] [mm] [mm] [mm] [mm] [s] [s]

min 80.1 0.01 0.00 0.00 0.02 0.38 1.96 0.06 1.61 8.75 8.75
mean 92.6 0.18 0.06 0.09 0.51 1.26 2.37 0.12 15.81 8.76 9.04
median 93.4 0.18 0.06 0.09 0.45 1.16 2.36 0.11 16.33 8.75 8.751

max 97.7 0.40 0.13 0.19 2.29 2.98 2.80 0.30 23.94 9.65 19.20
min 47.1 0.03 0.01 0.02 0.05 0.55 1.75 0.07 -0.85 8.75 8.75
mean 80.3 0.51 0.19 0.25 1.12 1.34 2.28 0.13 14.45 9.09 14.30
median 82.6 0.49 0.18 0.24 1.01 1.16 2.26 0.12 15.14 8.75 10.533

max 91.2 1.24 0.45 0.60 3.85 3.58 2.89 0.31 23.16 14.20 56.10
min 31.1 0.05 0.02 0.03 0.09 0.35 1.68 0.07 -2.60 8.75 8.75
mean 69.5 0.82 0.31 0.40 1.54 1.33 2.30 0.13 13.81 10.43 21.09
median 73.0 0.78 0.30 0.38 1.45 1.13 2.29 0.11 14.81 9.22 15.135

max 86.9 2.04 0.77 0.98 4.84 3.69 2.91 0.34 22.61 35.10 90.05
min 19.1 0.06 0.03 0.03 0.10 0.23 1.61 0.06 -0.04 8.75 8.75
mean 59.3 1.10 0.44 0.55 1.91 1.24 2.27 0.13 14.08 13.38 27.26
median 63.2 1.04 0.40 0.52 1.83 1.08 2.26 0.11 15.15 10.22 23.157

max 82.1 2.68 1.09 1.36 5.82 4.06 2.75 0.32 23.19 57.30 105.60
min 8.4 0.07 0.03 0.04 0.11 0.22 1.62 0.06 0.49 8.75 9.00
mean 51.1 1.32 0.53 0.67 2.23 1.21 2.25 0.13 14.31 15.28 30.62
median 55.6 1.25 0.49 0.63 2.11 1.03 2.25 0.11 15.31 10.75 27.479

max 77.0 3.19 1.29 1.60 6.94 4.47 2.94 0.46 23.19 90.05 105.60
min 2.4 0.08 0.03 0.04 0.12 0.23 1.63 0.06 0.67 8.75 8.75
mean 44.5 1.50 0.61 0.77 2.48 1.12 2.23 0.13 14.78 16.35 32.22
median 49.0 1.45 0.57 0.73 2.44 0.98 2.23 0.11 15.60 11.50 28.8011

max 72.4 3.65 1.49 1.84 8.45 4.03 2.83 0.45 23.58 90.05 105.60

Table 3.6: Minimum, mean, median and maximum breathing prediction metrics of pa-
rameter setting with largest PR determined for each dataset and each k indi-
vidually; metrics are given for different k using the direct LMS predictor

3.3.1.3 Class III Evaluation

As outlined in Section 3.2.3, the direct LMS predictor in class I formulation with different
parameter settings for each prediction horizon k, can be extended to a class III algorithm
by including the first-order linear regression with a sliding window size wR = 250. For this
evaluation, 11-step (multi-step) predictions are determined for the breathing motion from
which corresponding tumor predictions are determined according to the mapping given by
the linear regression function. This is updated as soon as new tumor position information
becomes available. For each dataset the breathing axes with largest correlation coefficient
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to the tumor y-axis was determined, so that the best 7→y correlation was used in the
regression. Metrics of the results on tumor prediction based on online regression are given
in Table 3.7.

Prediction PR CI95 MAE RMS MAX SF SJ ST S SSNR CT25 CT10
horizon Type [%] [mm] [mm] [mm] [mm] [s] [s]

min -80.2 0.33 0.10 0.15 0.55 0.28 1.79 0.01 1.36 8.75 8.75
mean 34.6 2.19 0.89 1.12 3.70 1.12 2.31 0.12 15.65 15.19 27.93
median 36.6 1.48 0.61 0.76 2.39 1.10 2.32 0.11 16.51 10.92 23.801

max 81.7 15.84 5.45 6.53 23.69 2.93 2.78 0.31 25.06 49.50 107.40
min -82.8 0.32 0.10 0.15 0.55 0.24 1.70 0.01 1.17 8.75 8.75
mean 33.4 2.22 0.90 1.14 3.69 0.91 2.16 0.11 15.46 15.23 27.98
median 35.5 1.58 0.65 0.80 2.46 0.87 2.16 0.11 16.44 10.97 23.053

max 79.3 16.06 5.52 6.60 23.94 2.92 2.64 0.29 25.15 56.05 101.85
min -84.0 0.31 0.10 0.15 0.54 0.23 1.68 0.01 1.66 8.75 8.75
mean 32.1 2.24 0.91 1.15 3.67 0.86 2.16 0.11 15.77 15.36 27.99
median 33.4 1.68 0.70 0.85 2.61 0.80 2.16 0.10 16.81 11.15 24.855

max 75.1 16.20 5.53 6.62 24.18 2.65 2.65 0.29 26.07 56.05 107.40
min -86.3 0.31 0.10 0.14 0.55 0.22 1.66 0.01 2.13 8.75 8.75
mean 29.8 2.30 0.94 1.19 3.72 0.86 2.16 0.11 15.85 15.68 28.28
median 31.8 1.76 0.72 0.90 2.65 0.81 2.16 0.10 16.76 11.20 24.387

max 69.7 16.34 5.53 6.66 24.41 2.67 2.64 0.29 26.68 55.85 91.95
min -86.2 0.30 0.10 0.14 0.54 0.21 1.64 0.01 2.36 8.75 8.75
mean 27.9 2.33 0.96 1.21 3.71 0.89 2.17 0.11 16.13 16.52 30.57
median 29.2 1.91 0.77 0.97 2.72 0.82 2.17 0.10 16.96 11.28 27.089

max 66.8 16.11 5.54 6.63 24.66 3.04 2.65 0.29 27.64 56.05 107.40
min -88.0 0.30 0.10 0.14 0.55 0.19 1.62 0.01 2.65 8.75 8.75
mean 25.2 2.43 0.99 1.25 3.78 0.88 2.17 0.11 16.19 16.89 30.22
median 25.7 2.00 0.81 1.02 2.73 0.81 2.17 0.10 16.99 11.72 27.5711

max 64.4 15.99 5.53 6.63 24.89 2.98 2.64 0.29 28.13 56.05 101.85

Table 3.7: Minimum, mean, median and maximum tumor prediction metrics given for
different k of the direct LMS class III predictor based on breathing predictions

In general, minimum and maximum metrics are relatively far away from each other
resulting in a large spread of each metric’s values. As a consequence, there are some
datasets yielding good metric values while there are also other datasets with worse metric
values. Median and mean values lie closer together than for the LMS class I predictor
applied on breathing motion. As can be inferred by comparing Table 3.7 to Table 3.5
all performance metrics of class I algorithms and breathing motion result in significantly
improved metric values than for the class III version, although this is directly based on the
class I algorithm applied on breathing motion. One reason is that the regression does not
always fit well all the time and its goodness-of-fit is changing with time. Another reason
is that the effective prediction horizon in terms of the latest tumor prediction information
is usually much larger than k. Depending on the characteristics of the test datasets, the
size of the gap between latest tumor and latest breathing information varies between one
and 44 sampling instants with an average maximum of 17 per dataset, which needs to be
added to k to get the effective prediction horizon. Therefore the average time from the
latest tumor information with which the regression was updated to the actual k is usually
much larger than k. Then the correlation might also have changed already, resulting in
larger errors here. Nevertheless, these results will serve as a baseline to which results, e.g.
from the following class II extension will be benchmarked.
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3.3.1.4 Class II Extension

An AR model for predicting breathing motion can be naturally extended to perform tumor
motion prediction based on available breathing predictions by employing an autoregressive
model with exogenous input (ARX) model

A(q)y(t) = B(q)u(t− h) + e(t)

which extends the AR model by an external input signal u(t) ∈ R. This can be shifted by
h sampling instants to account, for example, for a certain dead time to pass between the
input shows an effect on the output. In analogy to A(q), B(q) is a polynomial of degree
nb

B(q) = b0 + b1q
−1 + b2q

−2 + · · ·+ bnb−1q
−nb+1

with model parameters bi ∈ R, i = 0, 1, . . . , nb − 1. Extending the parameter vector to

θ = [a1, a2, . . . , ana , b0, b1, . . . , bnb−1]T

and the vector of observations to

ϕ(t) = [−y(t), . . . ,−y(t− na + 1), u(t− h), u(t− h− 1), . . . , u(t− h− nb + 1)]T , (3.41)

the predictor takes the same form as in Eq. (3.34) for the pure AR model. The model
parameters in θ can be determined by the LMS algorithm without any modification if the
additional inputs u(t− h), u(t− h− 1), . . . , u(t− h− nb + 1) are known.

For tumor motion prediction, the output signal y(t) of the ARX model describes the
tumor motion to be predicted. If the input signal u(t) represents respiratory motion, the
resulting ARX model fuses both tumor and respiratory motion in order to perform tumor
motion predictions without the need of using regression models based on correlation anal-
ysis. Therefore the structure is consistent with class II algorithms. Especially when using
the EPID as source of tumor motion information, there is often a large gap in the recent
past between respiratory and tumor motion signals, in which the latest tumor position
information is several sampling instants older than the latest respiratory position infor-
mation. As already discussed before, this problem is circumvented by adaptively changing
the prediction horizon k according to the size of the gap. So from the perspective of the
latest tumor position information, there are usually measurements of the respiratory mo-
tion available originating from newer sampling instants. Assuming a correlation between
respiratory and tumor motion, especially the respiratory information which is newer than
tumor position information can help improve tumor motion prediction by including this
information into the ARX model. Essentially, this means to have h < 0 in Eq. (3.41)
assuming that sampling instant t refers to the time of the latest tumor position informa-
tion. Note that normally h < 0 leads to an acausal model if t refers to the latest sampling
instant. The size of the gap in units of sampling instants imposes a lower bound on h
(with h < 0). However, the size of the gap varies during runtime which would necessi-
tate an adaptation of the model structure, order and parameters, rendering this approach
infeasible. But if in a prior step the breathing motion is predicted by an AR model, the
missing values of breathing motion for a fixed h, for which no measurements are available
yet, can be replaced by its prediction. Similar to the k-step predictor in Eq. (3.39), the
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predictor of the ARX model can be stated by

ŷ(t+ k|t) = θ̂k(t)ϕk(t) ,

where the choice of the observation vector ϕk(t) additionally includes either measurements
of breathing motion or breathing predictions, depending upon their availability. In the
case of k = 1, the one-step prediction is to be computed for tumor motion. Since either the
breathing position information u(t) or its one-step prediction û(t+1|t) is already available
for t+ 1, it can be included into ϕ1(t):

ϕ1(t) = [−y(t), . . . ,−y(t− na + 1), û(t+ 1|t), u(t), u(t− 1), . . . , u(t− nb + 2)]T ,

which is equivalent to letting h = −1. For the two-step prediction, ϕ2(t) can be defined
by

ϕ2(t) = [−y(t), . . . ,−y(t− na + 1), û(t+ 2|t), û(t+ 1|t), u(t), . . . , u(t− nb + 3)]T ,

resulting in h = −2. Therefore, let h = −k for arbitrary k which includes breathing
position information up to sampling instant t+ k for the prediction of tumor position to
the same sampling instant. Thus in general, ϕk(t) becomes

ϕk(t) = [−y(t), . . . ,−y(t− na + 1), û(t+ k|t), . . . û(t+ 1|t), u(t), . . . , u(t− nb + k + 1)]T ,

with a dimension of na + nb. If nb < k + 1, then only predictions û are included in ϕk(t).

3.3.1.5 Class II Parameter Selection

The class II extension of the direct LMS predictor requires breathing predictions using
the class I direct predictor, where its parameters na and µ were determined for each
prediction horizon separately. The predictor using the ARX model necessitates choice of
model parameters na, nb and µ. The parameter na was selected to equal the one from
the class I predictor, thereby using as many tumor position samples in the ARX model
as breathing position samples in the AR model. The remaining parameters nb and µ are
determined by exhaustive simulations over the same domain as for the class I predictor.
Similar to that, instabilities can occur in the ARX model as well, as depicted in Fig-

ure 3.23. In contrast to the LMS predictor applied on breathing motion, a small number of
instabilities are found for k = 1, especially with increasing µ and decreasing nb. Generally
the number of instabilities increases as k becomes larger. There are also several trials with
very small values of µ which result in a small negative PR, shown here as instabilities.
As the prediction horizon increases, a valley of a small number of instabilities emerges
which is located at values of µ between 0.025 to 0.1. For k = 11 the minimum is found
for nb in the range 16-60, thereby constraining the choice of adequate parameters. For
smaller prediction horizons, the valley broadens so that nb and µ can be chosen from a
wider range.
As can be inferred from Figure 3.24 which displays the mean prediction ratio for the

direct LMS predictor of the ARX model applied on all datasets, the regions with maximum
PR are covered by the regions with lowest instabilities. In particular, these are found for
µ between 0.025 to 0.1 and for nb between 6 to 60, for larger k the parameter nb can reach
up to 100. All other metrics, RMS, CI95, MAX, MAE, SF , STS , SSNR, SJ , CT25 and
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Figure 3.23: Number of unstable trials among 200 datasets of the direct LMS ARX
predictor in relation to parameters nb and µ
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Figure 3.24: Mean prediction ratio of 200 datasets of the direct LMS ARX predictor in
relation to parameters nb and µ

CT10, show best metric values in exactly the same region. It is interesting to note that
this choice is especially supported by the smoothness criteria, since in the LMS predictor,
smoothness needed to be traded-off with the prediction accuracy criteria. Additionally,
the averaged standard deviations possess smallest values in a similar region. Thus, the
choice of parameters for the direct LMS ARX predictor can be narrowed to a small region
in which best possible metrics on all datasets are located.
Choosing the parameter setting with best PR for each prediction horizon k individually

(according to Figure 3.24 they lie closely together) and applying this on every dataset
using the dominant y-axis of tumor motion, yield the results summarized in Table 3.8.
Comparing these results to Table 3.7, it can be seen that there is a significant performance
increase in all prediction accuracy and convergence time criteria in contrast to the class
III algorithm. Opposed to that, the ARX model parameters of the class II algorithm are
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Prediction PR CI95 MAE RMS MAX SF SJ ST S SSNR CT25 CT10
horizon Type [%] [mm] [mm] [mm] [mm] [s] [s]

min -5.7 0.33 0.08 0.14 0.56 0.74 2.19 0.05 2.06 8.75 8.75
mean 57.2 1.40 0.47 0.67 2.97 2.08 2.63 0.14 12.23 9.87 14.61
median 59.0 1.10 0.38 0.54 2.16 1.98 2.63 0.13 12.57 9.30 11.551

max 82.1 5.00 1.65 2.34 11.78 4.36 3.02 0.27 20.22 19.65 52.90
min -23.7 0.38 0.11 0.17 0.53 0.71 2.22 0.05 1.53 8.75 8.75
mean 48.8 1.63 0.60 0.80 3.13 2.09 2.65 0.15 11.88 10.49 18.68
median 52.0 1.29 0.48 0.64 2.24 2.00 2.66 0.14 12.36 9.58 15.103

max 80.2 6.00 2.12 2.83 13.33 3.87 3.00 0.30 20.29 29.30 55.90
min -28.4 0.39 0.12 0.18 0.65 0.72 2.22 0.05 1.75 8.75 8.75
mean 43.0 1.81 0.69 0.90 3.28 2.09 2.66 0.14 11.99 11.57 22.38
median 45.9 1.42 0.56 0.74 2.44 2.01 2.66 0.14 12.56 10.10 17.055

max 77.4 6.61 2.35 3.09 15.40 4.21 3.03 0.30 19.93 35.50 91.30
min -30.6 0.42 0.14 0.20 0.59 0.70 2.21 0.06 1.56 8.75 8.75
mean 38.2 1.96 0.76 0.99 3.55 1.99 2.65 0.15 11.97 11.92 25.61
median 41.3 1.58 0.63 0.82 2.58 1.94 2.65 0.14 12.56 10.40 21.907

max 76.6 7.08 2.95 3.66 18.80 3.73 3.00 0.32 20.21 35.55 110.00
min -24.8 0.42 0.15 0.20 0.63 0.69 2.15 0.06 1.88 8.75 8.75
mean 33.9 2.11 0.82 1.06 3.71 1.91 2.58 0.15 12.16 12.52 25.41
median 36.9 1.74 0.68 0.90 2.78 1.82 2.58 0.14 12.74 11.05 22.339

max 75.2 8.28 3.33 4.10 20.85 4.03 2.99 0.31 20.38 37.95 60.65
min -20.7 0.38 0.15 0.19 0.72 0.70 2.16 0.06 1.88 8.75 8.75
mean 30.4 2.24 0.88 1.13 3.83 1.87 2.57 0.15 12.21 13.01 27.55
median 33.0 1.79 0.72 0.95 2.86 1.76 2.57 0.14 12.69 11.25 25.4211

max 72.2 9.38 3.66 4.58 22.87 4.11 2.99 0.32 20.09 39.70 110.00

Table 3.8: Minimum, mean, median and maximum tumor prediction metrics of parame-
ter setting with largest average PR determined for each k separately; metrics
are given for different k using the direct LMS ARX predictor

updated based on more information about the breathing motion, which is not the case for
the class III algorithm. There, the determination of tumor motion is only based on regres-
sion which is only updated to the latest available tumor motion information. Introducing
newer breathing information (either measured or determined by the LMS AR breathing
predictor) enables the ARX predictor to achieve more precise tumor position predictions.
Naturally, overall performance decreases with increasing prediction horizon k and the dif-
ference between class II and class III results become smaller as well. When comparing the
absolute values of the prediction accuracy metrics to the ones from the class I predictor of
breathing motion in Table 3.6, a noticeable drop in performance can be observed for tumor
predictions. This behavior emerges from a larger effective prediction horizon for tumor
motion because the varying gap between latest available tumor position information and
latest available breathing position information needs to be bridged (cf. Section 3.3.1.3).
Although class III predictions are smoother, the improved prediction accuracy and con-
vergence time performance of the class II predictor outweigh the smoothness, so that the
class II predictor in form of the LMS ARX predictor should be preferred over the class III
predictor.

3.3.2 Recursive Least-Squares Algorithm

The presentation of the recursive least-squares algorithm is organized in the same way as
the LMS algorithm: class I formulation and parameter selection, class III evaluation and
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class II extension including parameter selection. Throughout the following evaluations,
the performance metrics are gradually compared to the ones of the LMS algorithm.

3.3.2.1 Class I Formulation

Given an autoregressive model, its parameters can also be updated by the recursive RLS
algorithm [125]. In contrast to the LMS algorithm, it solves a linear least-squares problem
to estimate the model parameters. The RLS algorithm requires an initial estimate of
the model parameters θ̂k(0) ∈ Rna and an initial estimate of a matrix P (0) ∈ Rna×na at
time t = 0. For the direct predictor, the RLS algorithm can be summarized according to
Eq. (3.36) for an arbitrary sampling instant t as follows:
Given the vector of na past observations

ϕ(t− k) = [−y(t− k),−y(t− k − 1), . . . ,−y(t− k − na + 1)]T ,

where k is the prediction horizon, at first a gain vector K ∈ Rna is computed from the
matrix P at the previous sampling instant t− 1 by

K = λ−1P (t− 1)ϕ(t− k)
1 + λ−1ϕT (t− k)P (t− 1)ϕ(t− k) . (3.42)

Using K, an update of P for the current sampling instant t is derived from the previous
sampling instant with

P (t) = λ−1P (t− 1)− λ−1KϕT (t− k)P (t− 1) . (3.43)

Since P is updated recursively, the RLS predictor contains a memory carrying information
from the time of initialization of the algorithm through the whole prediction process. A
parameter λ ∈ R is usually chosen from the interval ]0; 1] to be close to the nominal
value of one. Due to the fact that P is divided by λ in every sampling instant, it has
the effect of an exponential forgetting factor, limiting the influence from past updates and
increasing emphasis on newer information. With the gain vector K, the model parameters
are recursively updated by

θ̂k(t) = θ̂k(t− 1) +K
(
y(t)− θ̂Tk (t− 1)ϕ(t− k)

)
. (3.44)

Equivalent to the LMS algorithm, the parameter update is proportional to the (a priori)
prediction error ek(t) from Eq. (3.38) and to the observation vector ϕ(t − k), which is
included in K. The major contrast to the LMS algorithm is the adoption of P in the
numerator and denominator of K. Since K partially takes over a similar function as µ
in the LMS algorithm, the RLS algorithm continuously adapts the step-size parameter
according to P .
From the derivation of the RLS algorithm, P can be identified as the inverse of the

autocorrelation matrix of the observation vector. This inverse is used in the minimization
of a cost function (which is formulated over the squared prediction error) to solve for the
optimal parameter vector θ̂k. Therefore P (0) needs to be chosen in such a way to render
the initial autocorrelation matrix nonsingular. If there are no data samples available at
the start of the RLS algorithm to compute the inverse autocorrelation matrix, it can be
initialized with P (0) = δ−1Ina , where δ is a positive constant. This variant of initialization
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is known as soft constrained initialization [132]. According to [133], δ should be chosen
depending on the SNR of the observations. For medium and high SNR, δ should be small
and for low SNR larger. For initialization of the RLS algorithm, the initial parameter
vector needs to be chosen as well. It is customary to start with parameter values of zero.
Indeed, in preliminary analysis using the available datasets, no other initial parameter
values could be found performing better than the zero vector as opposed to the LMS
algorithm.
The RLS algorithm was formulated for the direct predictor. Equivalent to the LMS

algorithm, the plug-in predictor is derived in the same way by letting k = 1 and itera-
tively substituting unavailable observations by predictions in order to achieve multi-step
predictions. The considerations for dead time hold for the RLS in the same way.

3.3.2.2 Class I Parameter Selection

In order to find suitable values for the parameters na, λ and δ, simulations were performed
on all pre-recorded datasets similar to the parameter selection procedure of the LMS
algorithm. The parameter na was varied between 2 and 150 with different step sizes of
2, 4, 10 and 20, depending on the range of na itself. Values for the parameter λ were:
0.8, 0.9, 0.95, 0.975, 0.99, 1.0, 1.01, 1.025, 1.05 and 1.1 with smaller steps in the vicinity
of 1.0. Simultaneously the parameter δ was varied between 10−3 and 10 in powers of 10.
The analysis on the results was performed in exactly the same way as for the class I LMS
algorithm.
At first, instabilities were analyzed which are depicted in Figure 3.25 for the direct

predictor whereas Figure 3.26 shows the instabilities for the plug-in predictor. Since the
RLS algorithm incorporates three parameters, a reduction of dimensions is necessary to
enable visual analysis with 3D plots. For the shown graphs, the dimension for parameter
δ was reduced in such a way that for fixed values of na and λ, the maximum number
of instabilities was used which was determined from all available values of the parameter
δ. For both types of RLS predictors, it can be seen that the choice of the exponential
forgetting factor λ mainly determines the number of instabilities, which increase the most
with decreasing λ but also if λ is chosen larger than 1.0. Generally, more instabilities
arise if the prediction horizon k is increased, constraining suitable choices for λ to a small
valley around 1.0. There is also a significant dependency on the parameter na, which
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Figure 3.25: Number of unstable trials among 200 datasets of the direct RLS predictor
in relation to parameters na and λ
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Figure 3.26: Number of unstable trials among 200 datasets of the plug-in RLS predictor
in relation to parameters na and λ

becomes apparent for large k. Therefore, na should be chosen less than 60 for the direct
predictor. In fact, no instabilities arise for all k ≤ 11 if na ≤ 30 and λ = 1. For the plug-in
predictor the choices of parameters with no instabilities are slightly more constrained with
an additional lower bound of na ≥ 8. This improves upon the LMS algorithm for which
no parameter setting could be found for k = 11 with no instabilities.
To further study the influence of parameters, the average prediction ratio of the plug-in

RLS predictor is shown in Figure 3.27, in which the reduction of the dimension for δ was
performed by averaging over that dimension. The same plot for the direct predictor is
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Figure 3.27: Mean prediction ratio of 200 datasets of the plug-in RLS predictor in rela-
tion to parameters na and λ

quite similar except that slightly less PRs are achieved; therefore it is omitted here. For
k = 1, maximum PRs can be found for λ = 0.99 where the influence of na plays only a
minor role. Nevertheless, the peak value is reached for na = 8. For k > 1, maximum PRs
result only for λ = 1, where the best choices for na move to larger values for increasing k
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up to na = 60. While for smaller k parameter settings can be found with maximum PRs
and no instabilities, a trade-off is required for larger k. However, choosing na between 8
and 30 to avoid instabilities still results in PRs close to the maximum ones.
In order to visualize the influence of the parameter δ, the dimension for na was eliminated

from the data by reducing it with its average as na showed only a minor impact on the
PRs. Figure 3.28 shows the resulting PRs of the plug-in predictor in relation to the
remaining parameters λ and δ. It can be inferred that δ has only a weak impact, given
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Figure 3.28: Mean prediction ratio of 200 datasets of the plug-in RLS predictor in rela-
tion to parameters λ and δ

the logarithmic scaling. This is consistent with theory, as δ is only used for initializing
the inverse autocorrelation matrix P (0) and the fast convergence of the RLS algorithm
constrains an inappropriate choice of δ to only a short time until P is similar compared to
a case if δ is chosen more appropriately. However, from these plots slightly improved PR
result when choosing δ in between 0.01 and 0.1 irrespective of the prediction horizon k.
In order to get a full picture of all parameters of the RLS algorithm, similar plots with

a reduction along the dimension for λ would be required. When analyzing these, they
do not bring any new information and so are omitted here. Furthermore, the remaining
prediction accuracy metrics like RMS, CI95, MAX and MAE support the results discussed
so far on the PR, so plots of these are omitted here, too.
However, interesting observations can be made from the smoothness metrics, represented

by the metric SF shown in Figure 3.29, where the data was reduced by the dimension
along δ. Note that the unstable trails are not included in these plots. Therefore the
smoothness values for λ ≤ 0.9 have to be excluded completely from analysis because for
these values, almost all datasets showed instabilities, especially for k > 3. Similarly, the
region for λ ≥ 1.025 showed a considerable amount of instabilities, where these increased
with increasing na. For k ≤ 3 and λ ≈ 1.0 a small improvement of smoothness can
be observed for smaller values of na. For larger k and λ ≈ 1.0, larger values of na
are beneficial for the average smoothness. However, the smoothness values for λ ≈ 1.0
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Figure 3.29: Mean smoothness metric SF of 200 datasets of the plug-in RLS predictor
in relation to parameters na and λ

are located closer to the minimum for smaller k than for larger values. Nevertheless,
the regions with maximum PR still lead to the best possible smoothness values given
the constraints due to instabilities. When comparing smoothness metrics between direct
and plug-in predictors, it turns out that the plug-in predictor generally delivers better
smoothness values. Together with larger PRs, the RLS plug-in predictor is hence favored
over the direct predictor.
So far, the analysis was based on metric values which were averaged over all datasets.

When selecting the 20 best parameter settings with maximum PR for each dataset in-
dividually and accumulating them over all datasets, the distribution of parameters with
respect to λ and na shown in Figure 3.30 results for the plug-in predictor (while reducing
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the dimension for δ by averaging). The region of parameters with maximum occurrence
is the same as the one which resulted when averaging over all datasets (cf. Figure 3.27).
Also here, the shift to larger values of na for increasing k can be observed as well as the
sharp increase of occurrences for λ = 1. Comparing the ranges for na with maximum
occurrence to the ones for the LMS predictor (c.f. Figure 3.21), it becomes obvious that
the LMS predictor generally requires higher orders of na in the AR model in order to reach
maximum PRs. Hence, the RLS algorithm can start its predictions earlier than the LMS
algorithm (when choosing parameter settings with maximum PR) as na determines the
lower bound of samples needed to fill the observation vector before one calculation cycle
of the predictors based on AR models can be completed.
When choosing the parameter setting with maximum PR for each k separately from

the averaged metrics over all datasets and displaying all the prediction metrics as a scaled
box plot (under the same conditions as for the LMS predictor in Figure 3.22), the plot in
Figure 3.31 results, showing the distribution of each metric for all datasets and for k from
1 to 11 in steps of 2. The corresponding minimum, maximum and median values for each k

PR CI95 MAE RMS MAX S_F S_J S_TS S_SNR CT25 CT10

0

0.2

0.4

0.6

0.8

1

S
ca

le
d 

cr
ite

ria
 v

al
ue

 

 

k=1

k=3

k=5

k=7

k=9

k=11

Figure 3.31: Scaled breathing prediction metrics of parameter setting with largest aver-
age PR determined for each k separately using the plug-in RLS predictor;
metric values are visualized by box plots for different k

and for each metric are given in Table 3.9. Similar to the box plot of the LMS algorithm,
the one for the RLS algorithm shows degradation of prediction accuracy as prediction
horizon increases, associated with an increasing spread of the metric values. In contrast
to the LMS predictor, the smoothness decreases here with increasing k for all smoothness
metrics. k = 9 and k = 11 show a small negative PR as minimum metric value. A detailed
inspection revealed that these occurred only for one of the 200 datasets. Compared to the
LMS, this is a significant improvement as eight datasets possessed a negative PR there
with an even lower value. In general, when comparing the prediction accuracy metrics to
the ones of the LMS given in Table 3.5, a small improvement can be observed for k = 1
and major improvement is found for the RLS algorithm for k > 1. The absolute values
of mean PR increases by 2.7%-7.8%, the mean CI95 reduces by 0.11mm-0.21mm and the
mean RMS reduces by 0.05mm-0.12mm. Although the minimum, mean and median of the
maximum error metric are smaller for RLS, the maximum of it is larger. Since no averaging
is performed on the maximum of the MAX metric, higher values can be caused by just
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Prediction PR CI95 MAE RMS MAX SF SJ ST S SSNR CT25 CT10
horizon Type [%] [mm] [mm] [mm] [mm] [s] [s]

min 80.8 0.01 0.00 0.00 0.02 0.37 1.95 0.07 1.85 8.75 8.75
mean 93.1 0.17 0.06 0.08 0.49 1.21 2.49 0.13 15.92 8.76 9.13
median 93.9 0.16 0.06 0.08 0.44 1.12 2.50 0.12 16.53 8.75 8.751

max 97.9 0.37 0.12 0.17 2.30 2.97 2.90 0.32 23.74 9.65 17.65
min 45.5 0.02 0.01 0.01 0.04 0.67 2.15 0.08 1.33 8.75 8.75
mean 81.9 0.45 0.17 0.23 1.07 1.67 2.60 0.15 14.01 9.02 15.47
median 83.9 0.43 0.16 0.22 0.93 1.48 2.60 0.13 14.55 8.75 10.603

max 92.4 1.10 0.45 0.57 4.65 3.50 2.99 0.41 22.45 13.75 75.55
min 33.1 0.04 0.02 0.02 0.07 0.71 2.24 0.08 1.54 8.75 8.75
mean 72.5 0.72 0.27 0.36 1.59 1.99 2.67 0.17 12.76 10.09 19.89
median 76.5 0.64 0.24 0.32 1.35 1.83 2.66 0.15 13.57 9.25 13.755

max 88.5 2.07 0.77 1.00 8.32 4.81 3.04 0.41 20.49 31.00 90.05
min 12.6 0.05 0.02 0.03 0.10 0.73 2.31 0.09 2.07 8.75 8.75
mean 63.0 1.00 0.37 0.50 2.06 2.09 2.72 0.19 11.93 11.23 25.19
median 69.0 0.89 0.34 0.44 1.80 1.88 2.71 0.16 12.92 9.65 18.837

max 85.2 2.76 1.12 1.46 11.95 4.92 3.08 0.41 19.25 52.45 92.55
min -0.9 0.07 0.03 0.04 0.12 0.70 2.08 0.09 1.34 8.75 8.75
mean 54.9 1.24 0.47 0.62 2.43 2.04 2.69 0.18 11.64 12.17 28.61
median 60.9 1.13 0.41 0.55 2.12 1.91 2.67 0.16 12.68 10.15 24.609

max 82.0 3.63 1.47 1.88 13.97 4.74 3.06 0.37 19.27 56.60 102.15
min -8.3 0.08 0.03 0.04 0.13 0.69 2.09 0.08 2.69 8.75 8.75
mean 48.2 1.45 0.54 0.72 2.72 1.99 2.67 0.19 11.63 12.65 31.46
median 54.0 1.31 0.49 0.65 2.46 1.89 2.68 0.17 12.20 10.45 28.5511

max 78.5 4.53 1.75 2.23 16.05 4.47 3.03 0.40 19.81 56.60 104.20

Table 3.9: Minimum, mean, median and maximum breathing prediction metrics of pa-
rameter setting with largest average PR determined for each k separately;
metrics are given for different k using the plug-in RLS predictor

one dataset with a short-term but large error. Judging from the smoothness metrics, RLS
results in generally lower smoothness metrics, except for k = 1. The majority of the
metric values for convergence time, especially the ones for CT25, are slightly smaller for
the RLS predictor. In stationary environments, RLS is known to converge about an order
of magnitude faster than the LMS algorithm. However, given the differentiated picture of
the CT25 and CT10 metrics, the difference in convergence time when applied to breathing
motions is not that large. A reason is the rather non-stationary nature of breathing motion
slowing down the convergence of the RLS algorithm.
Choosing the parameter setting with largest PR for each dataset and for each k indi-

vidually results in the metrics given in Table 3.10. No negative PR occur anymore and
the increase in mean PR lies in between 0.2%-3.2%. Despite this small improvement of
the PR, the maximum of the MAX error metric is cut down by half for larger k. That is,
there is at least one dataset for which the parameter setting with largest PR, determined
by averaging over all datasets for a single k, leads to degraded performance compared to
the parameter setting with largest PR chosen for that dataset specifically. However, the
CI95 metrics lie closer together as well as the minimum, mean and median of MAX, so
that the difference in overall performance is constrained as only the maximum of MAX
would indicate. Additionally, the impact on smoothness and convergence time is minor.
As a consequence, it is still feasible to select a single parameter setting for each k from
the averaged PR metric, however accepting some outliers on the maximum errors for a
few datasets.
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Prediction PR CI95 MAE RMS MAX SF SJ ST S SSNR CT25 CT10
horizon Type [%] [mm] [mm] [mm] [mm] [s] [s]

min 81.8 0.01 0.00 0.00 0.02 0.37 1.96 0.07 1.61 8.75 8.75
mean 93.3 0.16 0.06 0.08 0.49 1.18 2.45 0.13 16.03 8.76 9.06
median 94.0 0.16 0.06 0.08 0.43 1.08 2.46 0.12 16.66 8.75 8.751

max 98.0 0.38 0.12 0.17 2.25 2.75 2.86 0.29 23.88 9.70 18.45
min 52.3 0.02 0.01 0.01 0.04 0.60 2.12 0.08 -0.20 8.75 8.75
mean 82.6 0.44 0.16 0.22 1.05 1.56 2.55 0.14 14.38 9.04 15.56
median 84.7 0.41 0.15 0.20 0.96 1.42 2.54 0.13 15.08 8.75 10.473

max 92.5 1.07 0.40 0.52 3.93 3.50 2.95 0.31 22.71 13.25 57.70
min 33.1 0.04 0.01 0.02 0.06 0.67 2.14 0.08 -1.41 8.75 8.75
mean 73.8 0.68 0.26 0.34 1.48 1.91 2.61 0.16 13.07 10.35 21.40
median 77.3 0.63 0.24 0.31 1.34 1.71 2.59 0.14 13.76 9.22 13.655

max 89.3 1.70 0.67 0.84 5.72 4.11 3.02 0.36 21.89 31.00 99.35
min 24.9 0.05 0.02 0.03 0.09 0.82 1.75 0.08 -1.62 8.75 8.75
mean 64.9 0.93 0.36 0.47 1.89 2.00 2.64 0.17 12.40 12.35 25.22
median 70.0 0.88 0.32 0.43 1.79 1.79 2.64 0.15 13.56 9.70 18.177

max 86.7 2.26 0.95 1.20 5.27 4.63 3.12 0.45 20.97 52.75 105.60
min 17.7 0.07 0.03 0.03 0.13 0.30 1.57 0.09 -2.62 8.75 8.75
mean 57.4 1.15 0.44 0.58 2.19 1.97 2.61 0.18 12.13 13.93 28.91
median 62.3 1.07 0.40 0.54 2.07 1.80 2.65 0.15 13.34 10.03 24.109

max 84.2 2.82 1.19 1.46 6.42 5.05 3.13 0.44 20.03 71.60 105.60
min 12.7 0.08 0.03 0.04 0.15 0.11 1.03 0.08 -0.59 8.75 8.75
mean 51.4 1.33 0.51 0.67 2.44 1.90 2.56 0.18 12.14 14.61 31.03
median 56.1 1.27 0.46 0.63 2.30 1.81 2.64 0.15 12.90 10.53 27.7711

max 81.9 3.16 1.38 1.70 7.82 5.12 3.13 0.45 21.11 71.55 105.60

Table 3.10: Minimum, mean, median and maximum breathing prediction metrics of pa-
rameter setting with largest PR determined for each dataset and each k
individually; metrics are given for different k using the plug-in RLS predic-
tor

When analyzing the distribution of the best parameter setting for each dataset individ-
ually (using a similar plot as in Figure 3.30), most occurrences are located at λ = 1 but
with a varying na, so that for some datasets small values of na lead to best performance
whereas for other datasets larger values of na up to about 60 yield better results. The
fact that λ = 1 generally leads to best achievable prediction performance for most of the
datasets, means that the exponential forgetting feature is not required. However, it is in-
teresting to note that for a few datasets, best performance is observed for λ > 1, which is
not complying with theory as λ should be one at maximum. This finding was also reported
in [134]. A closer inspection revealed that for these datasets, the well-known problem of
estimator windup [135] is present in a mild form, which can occur if the input to the RLS
algorithm, in this case the breathing motion, is not properly excited. This happens for
some datasets in which the breathing is only changing very slowly and is almost constant
for several seconds. Since P is divided in each update recursion in Eq. (3.43) by the expo-
nential forgetting factor λ, it can grow exponentially if λ < 1 and the input is not exciting
enough. However, if λ > 1 is chosen in such a case, it can effectively avoid the problem
of estimator windup since then P cannot become unstable anymore. There are also other
methods like conditional updating or constant-trace algorithms [135] in order to prevent
estimator windup. The latter of them was also evaluated on all datasets by scaling the
matrix P in each update recursion by its trace. However, an overall performance degrada-
tion can be observed compared to previously discussed results on the RLS algorithm with
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exponential forgetting, so this scheme is not further pursued.

3.3.2.3 Class III Evaluation

Based on the class I RLS predictor, performing breathing predictions, the class III form is
analyzed in the following, which makes use of linear regression to establish a relationship
between breathing and tumor motion. The evaluation is performed under exactly the same
conditions as for the LMS predictor from Section 3.3.1.3. The corresponding results are
given in Table 3.11 using the plug-in RLS predictor for which a single parameter setting
was determined for each k separately by choosing the one with largest PR on average
over all datasets. The performance metrics of the underlying breathing predictions can be
drawn from Table 3.9.

Prediction PR CI95 MAE RMS MAX SF SJ ST S SSNR CT25 CT10
horizon Type [%] [mm] [mm] [mm] [mm] [s] [s]

min -80.5 0.33 0.10 0.15 0.55 0.27 1.73 0.02 1.33 8.75 8.75
mean 34.8 2.18 0.88 1.12 3.68 1.01 2.34 0.12 15.90 15.30 26.88
median 36.9 1.48 0.61 0.76 2.40 0.93 2.35 0.11 16.77 10.97 22.901

max 81.9 15.83 5.45 6.53 23.70 2.90 2.76 0.32 25.07 55.70 92.05
min -81.9 0.32 0.10 0.15 0.55 0.31 1.74 0.02 0.57 8.75 8.75
mean 33.5 2.21 0.90 1.14 3.76 1.36 2.43 0.14 14.51 15.53 30.52
median 35.4 1.55 0.63 0.78 2.44 1.19 2.42 0.12 15.31 11.13 25.723

max 80.6 15.72 5.51 6.59 23.93 3.66 2.89 0.40 24.13 55.85 107.40
min -83.4 0.32 0.10 0.15 0.54 0.35 1.78 0.02 1.03 8.75 8.75
mean 31.9 2.24 0.91 1.16 3.87 1.63 2.50 0.15 13.32 16.08 30.95
median 33.6 1.62 0.66 0.83 2.56 1.47 2.50 0.13 13.96 11.70 27.205

max 78.3 15.82 5.54 6.64 24.17 3.75 2.93 0.38 23.30 55.85 107.40
min -84.8 0.32 0.10 0.15 0.56 0.36 1.79 0.02 2.30 8.75 8.75
mean 30.2 2.29 0.93 1.18 3.95 1.71 2.55 0.16 12.64 16.29 32.09
median 32.2 1.71 0.70 0.88 2.81 1.54 2.56 0.15 13.40 11.85 28.057

max 74.9 15.86 5.52 6.67 24.42 4.24 2.98 0.37 22.83 55.85 103.45
min -86.3 0.31 0.10 0.14 0.55 0.36 1.79 0.02 3.44 8.75 8.75
mean 28.3 2.34 0.96 1.21 3.96 1.71 2.54 0.16 12.34 16.58 33.16
median 29.9 1.78 0.74 0.91 2.87 1.60 2.55 0.15 13.01 11.97 30.009

max 70.7 15.90 5.48 6.70 24.79 4.16 3.00 0.34 22.48 55.85 107.40
min -88.0 0.30 0.10 0.14 0.56 0.35 1.78 0.02 3.78 8.75 8.75
mean 26.4 2.40 0.98 1.24 4.00 1.67 2.53 0.16 12.33 16.17 32.84
median 27.5 1.90 0.75 0.95 2.95 1.62 2.55 0.15 12.61 12.03 29.3311

max 66.6 15.80 5.46 6.71 24.90 3.96 3.01 0.35 22.31 55.85 107.40

Table 3.11: Minimum, mean, median and maximum tumor prediction metrics given for
different k of the plug-in RLS class III predictor based on breathing predic-
tions

Comparing tumor motion prediction results from the class III RLS predictor to the class
III LMS predictor, it turns out that the metric values, especially the prediction accuracy
metrics, are similar with a slight improvement for RLS, i.e. the impact of the improvement
observed between the class I breathing predictors on the class III predictors is minor.
Additionally, the major effects on smoothness are inherited from the class I predictor in
that RLS predictions are generally less smoother than LMS predictions. Furthermore, a
minor increase in convergence time can be observed for the class III RLS predictor.
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3.3.2.4 Class II Parameter Selection

In order to enable direct tumor motion predictions, the class I RLS predictor using an AR
model can be extended to incorporate an ARX model in the same way as for the LMS
predictor as discussed in Section 3.3.1.4. In this scheme, at first a class I RLS predictor
performs breathing predictions. These are input to the ARX model which is regressed over
tumor position samples. Note that the effective prediction horizon is usually larger than
k in the class I predictor. However, in the following discussion about parameter settings
and results of the class II RLS predictor, k denotes the effective prediction horizon.
The ARX model incorporates the parameters na, nb, λ and δ for which suitable values

need to be found. Due to the similar characteristics of breathing and tumor motion, the
parameter na is chosen to equal na from the class I predictor, which is determined by the
parameter setting with largest PR on average for each k separately. For the parameters
nb (denoting the number of breathing position samples or predictions fed as external
input into the ARX model), the exponential forgetting factor λ and δ, simulations were
performed. The ranges for nb and λ were selected to be the same as the ranges of na and
λ for the class I predictor, respectively. The range for δ was changed to 10−1 to 104 since
preliminary analysis revealed a different dependency than for the class I predictor.
At first, instabilities were analyzed in terms of the parameters nb and λ (while reduc-

ing the dimension for δ by taking the maximum along that dimension). Judging from
Figure 3.32, the lowest number of instabilities arise for λ = 1 and for nb ≤ 50. If the

2
75

150

0.811.1

0

50

100

150

200

λ

plug−in RLS ARX, k=1

n
b

2
75

150

0.811.1

0

50

100

150

200

λ

plug−in RLS ARX, k=3

n
b

2
75

150

0.811.1

0

50

100

150

200

λ

plug−in RLS ARX, k=7

n
b

2
75

150

0.811.1

0

50

100

150

200

λ

plug−in RLS ARX, k=11

n
b

Figure 3.32: Number of unstable trials among 200 datasets of the plug-in RLS ARX
predictor in relation to parameters nb and λ

prediction horizon increases, the upper bound on nb decreases, so that the choice for nb
becomes more constrained. The effect of δ (not shown here) on instabilities is minor since
δ is only used during initialization of the RLS algorithm.
Next, the prediction ratio is analyzed in view of the parameters nb and λ. Here, the

reduction of the dimension δ is performed by averaging over that dimension. The resulting
plots in Figure 3.33 clearly indicate that λ = 1 yields maximum PRs. Irrespective of the
prediction horizon, the optimum value for nb is found at 30, about half the duration of
an average breathing cycle. These results fit well to the instabilities which are still low in
this region of λ and nb. In order to acquire the dependence on the parameter δ, reduction
of the results was performed along the dimension for nb due to the smaller impact of nb
compared to λ. The influence of δ and λ can be observed in Figure 3.34. Maximum PRs
are found for δ = 100 irrespective of the prediction horizon k. As a consequence, δ should
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Figure 3.33: Mean prediction ratio of 200 datasets of the plug-in RLS ARX predictor in
relation to parameters nb and λ
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Figure 3.34: Mean prediction ratio of 200 datasets of the plug-in RLS ARX predictor in
relation to parameters λ and δ

be selected about three to four magnitudes larger than for the class I predictor. The other
prediction accuracy metrics like CI95, MAE, RMS and MAX follow the same parameter
dependency as the PR in such a way that they result in smaller metric values in the same
regions when PR is maximized.
Having obtained separate parameter settings for the ARX-based plug-in RLS predictor

for each k individually by finding the parameter setting with largest PR averaged over all
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datasets, the metrics presented in Table 3.12 result. Comparing these to results of the LMS
ARX predictor given in Table 3.8, generally an improvement on all metrics can be observed.
All mean and median prediction accuracy metrics thereby improve more with increasing
prediction horizon. The mean PR shows absolute increases in the range 7.5%-15.5%,
mean CI95 reduces by 0.38mm-0.51mm, mean RMS drops by 0.12mm-0.26mm and mean
MAX reduces by 0.29mm-0.53mm. Except for two metrics for k = 1 (maximum SF and
minimum SSNR), all smoothness metrics show a considerable improvement. Additionally
in improvement is visible for the convergence time criteria with a few exceptions especially
for k = 1 and k = 3. Despite the general performance increase in PR, one dataset results
in worse PR values for k ≥ 9 than the LMS ARX predictor. However, the RLS ARX
predictor clearly shows better general performance.

Prediction PR CI95 MAE RMS MAX SF SJ ST S SSNR CT25 CT10
horizon Type [%] [mm] [mm] [mm] [mm] [s] [s]

min 27.1 0.22 0.07 0.11 0.41 0.56 2.05 0.05 -0.31 8.75 8.75
mean 64.7 1.12 0.39 0.55 2.70 1.57 2.47 0.13 13.90 9.95 14.67
median 67.2 0.89 0.33 0.45 1.80 1.38 2.45 0.13 14.25 9.15 12.671

max 85.6 5.21 1.55 2.19 16.58 4.39 2.97 0.27 23.01 22.65 50.60
min 10.0 0.26 0.08 0.13 0.45 0.33 1.91 0.03 2.88 8.75 8.75
mean 59.3 1.26 0.47 0.63 2.66 1.16 2.36 0.12 16.28 10.61 17.03
median 61.6 1.02 0.39 0.54 1.84 1.03 2.34 0.11 16.55 9.30 14.083

max 83.5 5.12 1.86 2.46 11.78 2.64 2.81 0.23 27.50 68.35 91.95
min -5.1 0.27 0.08 0.13 0.46 0.36 1.95 0.03 3.64 8.75 8.75
mean 55.5 1.39 0.52 0.70 2.78 1.17 2.38 0.12 16.23 11.01 18.41
median 58.2 1.13 0.44 0.60 2.01 1.02 2.37 0.12 16.72 9.50 14.835

max 82.3 5.77 2.01 2.65 12.01 3.31 2.88 0.23 28.30 68.30 91.95
min -18.7 0.27 0.08 0.13 0.47 0.38 1.91 0.03 4.50 8.75 8.75
mean 52.1 1.51 0.57 0.76 2.92 1.21 2.40 0.13 15.96 11.00 20.34
median 55.5 1.24 0.48 0.67 2.11 1.07 2.40 0.12 16.52 9.70 15.637

max 81.6 6.64 2.31 3.05 12.04 3.51 2.91 0.24 28.20 29.80 93.65
min -41.8 0.27 0.08 0.13 0.48 0.35 1.74 0.03 5.32 8.75 8.75
mean 48.5 1.62 0.62 0.82 3.14 1.22 2.41 0.13 15.51 11.49 22.88
median 52.4 1.38 0.53 0.70 2.27 1.08 2.41 0.12 16.25 9.78 16.459

max 81.5 6.81 2.55 3.28 15.14 3.06 2.86 0.27 26.80 37.30 105.30
min -40.7 0.26 0.08 0.13 0.51 0.39 1.94 0.03 4.73 8.75 8.75
mean 45.9 1.73 0.66 0.87 3.25 1.28 2.44 0.14 15.19 11.90 24.40
median 50.4 1.45 0.56 0.75 2.35 1.17 2.44 0.12 16.04 10.20 19.0211

max 81.2 7.15 2.90 3.62 17.97 3.19 2.87 0.30 24.98 37.40 110.00

Table 3.12: Minimum, mean, median and maximum tumor prediction metrics of pa-
rameter setting with largest average PR determined for each k separately;
metrics are given for different k using the plug-in RLS ARX predictor

3.3.3 Extended Recursive Least-Squares Algorithm

According to Haykin [125], the standard RLS algorithm with exponential forgetting can
be reformulated as a special case of a Kalman filtering problem [136]. The standard
formulation for Kalman filters can be based on a discrete state-space model. The following
single-input single-output (SISO) state-space model is considered here:

x(t+ 1) = Ax(t) +Bu(t) + w(t)
y(t) = Cx(t) + v(t)

(3.45)
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with the state x(t) ∈ Rn, system matrix A ∈ Rn×n, input matrix B ∈ Rn, output matrix
C ∈ R1×n, input vector u(t) ∈ R, output y(t) ∈ R where n is the model order. The
random variable w(t) ∈ Rn models process noise, assumed to be white and following a
normal distribution with zero mean and variance of Q ∈ Rn, whereas the random variable
v(t) ∈ R is the measurement noise, also white with zero mean and variance of R ∈ R.
Furthermore, both noise terms are assumed to be independent of each other.
The correspondence between the RLS algorithm and a Kalman filter can be setup by

employing the state-space model [137]

x(t+ 1) = 1√
λ
x(t)

y(t) = ϕT (t− 1)x(t) + v(t)
(3.46)

which describes an unforced dynamic motion. The model is called “unforced” because of
the lack of an input u(t). The system matrix is a diagonal matrix with element values
of 1/

√
λ, where λ represents the exponential forgetting factor. Furthermore, no process

noise w(t) is present. In contrast to the assumption on the measurement noise v(t) of the
general model (3.45), v(t) is drawn from a normal distribution with zero mean and unit
variance. The output matrix C is replaced here by the observation vector ϕ(t− 1), which
is multiplied to the state vector x(t). Comparing this to Eq. (3.34), x(t) can be associated
with the parameter vector θ(t) of an AR model. Thus the order n can be identified with
the order na of the AR model. Note that by using ϕ(t − 1) instead of ϕ(t), the model is
expressed as a prediction model performing a one-step prediction by multiplying with the
parameters contained in x(t).
By inserting this model into the common Kalman filter equations (described in Sec-

tion 3.4), the same equations as the ones for the RLS algorithm result on simplification,
which is possible due to the special structure of the unforced dynamical model. Since in
the resulting equations the covariance matrix is propagated from one sampling instant to
the next, this variant of the Kalman filter is called covariance filtering algorithm [125]. The
benefit of this rewriting emerges when adapting the unforced dynamical model in order to
generate extended versions of the RLS algorithm. For example, a process noise w(t) could
be introduced into that model. Since there is no obvious way to determine the process
noise given the unforced dynamical model in the context of breathing or tumor motion
modeling, this approach is neglected here. As can be seen from the output equation of the
model (3.46), the standard RLS algorithm already includes the measurement noise v(t),
but it is assumed to be normally distributed with zero mean and unit variance. Since
the distribution of measurement noise can actually be determined because breathing or
tumor position is measurable, an extended recursive least-squares (ERLS) algorithm can
be derived using Kalman filter theory which introduces a known variance R of the mea-
surement noise. After performing all the required calculations, it turns out that the only
change compared to the standard RLS equations is found in Eq. (3.42) which becomes

K = λ−1P (t− 1)ϕ(t− k)
R+ λ−1ϕT (t− k)P (t− 1)ϕ(t− k) . (3.47)

That is, the augend in the denominator with a value of one is identified with the variance
R of the measurement noise, which coincides with the assumption of unit variance of the
measurement noise.
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As already mentioned, it is possible to determine the noise of breathing or tumor motion.
This was performed in preliminary experiments showing small improvements on the pre-
diction metrics. However, treating the variance R as a parameter, thereby introducing an
additional degree of freedom into the algorithm, enables tuning of all parameters including
the measurement noise R. Due to temporary or permanent deviations from assumptions
like normally distributed noise or due to time-varying distributions, a value of R different
from the determined one can lead to improved results. In addition to parameters λ, na
and δ, R was varied between 10−3 and 101 in simulations with the ERLS algorithm (class
I). When choosing the parameter setting with largest average PR for each k individually,
the metrics summarized in Table 3.13 result. In comparison with the corresponding table

Prediction PR CI95 MAE RMS MAX SF SJ ST S SSNR CT25 CT10
horizon Type [%] [mm] [mm] [mm] [mm] [s] [s]

min 80.9 0.01 0.00 0.00 0.02 0.37 1.85 0.07 1.85 8.75 8.75
mean 93.1 0.17 0.06 0.08 0.49 1.20 2.48 0.13 15.93 8.76 9.17
median 93.9 0.16 0.06 0.08 0.44 1.11 2.49 0.12 16.53 8.75 8.751

max 97.9 0.37 0.12 0.17 2.30 2.96 2.89 0.32 23.76 9.65 17.65
min 45.5 0.02 0.01 0.01 0.04 0.58 1.99 0.08 1.34 8.75 8.75
mean 81.9 0.45 0.17 0.23 1.07 1.65 2.59 0.15 14.03 9.01 15.31
median 83.9 0.43 0.16 0.22 0.93 1.47 2.59 0.13 14.58 8.75 10.423

max 92.4 1.10 0.45 0.57 4.65 3.50 2.98 0.41 22.49 13.75 75.55
min 33.1 0.04 0.02 0.02 0.07 0.66 2.00 0.08 1.58 8.75 8.75
mean 72.5 0.72 0.27 0.36 1.58 1.95 2.64 0.17 12.82 10.02 19.80
median 76.5 0.64 0.24 0.32 1.35 1.81 2.64 0.14 13.59 9.25 13.455

max 88.5 2.07 0.77 1.00 8.30 4.75 3.01 0.40 20.60 31.00 90.05
min 12.6 0.05 0.02 0.03 0.10 0.72 2.06 0.08 2.10 8.75 8.75
mean 63.0 1.00 0.37 0.50 2.05 2.05 2.70 0.18 12.01 11.17 24.73
median 69.0 0.89 0.34 0.44 1.79 1.85 2.68 0.16 13.06 9.60 17.927

max 85.2 2.75 1.12 1.46 11.92 4.87 3.06 0.41 19.37 52.45 92.55
min -0.9 0.07 0.03 0.04 0.12 0.64 1.97 0.08 1.38 8.75 8.75
mean 54.9 1.24 0.47 0.62 2.42 2.02 2.67 0.18 11.70 12.05 27.99
median 60.9 1.13 0.41 0.55 2.13 1.87 2.66 0.16 12.72 10.17 23.759

max 82.0 3.64 1.47 1.88 13.92 4.71 3.04 0.37 19.30 56.60 102.15
min -8.2 0.08 0.03 0.04 0.13 0.66 1.98 0.08 2.71 8.75 8.75
mean 48.2 1.45 0.54 0.72 2.71 1.97 2.65 0.18 11.69 12.68 31.39
median 54.0 1.31 0.49 0.65 2.45 1.87 2.66 0.17 12.28 10.45 28.5511

max 78.6 4.55 1.75 2.23 15.97 4.43 3.02 0.39 19.83 56.60 104.20

Table 3.13: Minimum, mean, median and maximum breathing prediction metrics of pa-
rameter setting with largest average PR determined for each k separately;
metrics are given for different k using the plug-in ERLS predictor

of the standard class I RLS algorithm (cf. Table 3.9) it can be seen that almost all predic-
tion accuracy metrics are equal (up to the given precision), except for small improvements
for min. PR for k = 1, max. PR for k = 11 and max. CI95 for k = 7 as well as small
degradations for max. CI95 for k = 9 and k = 11. Additionally, for almost all MAX values
for k ≥ 5, the ERLS algorithm shows slightly better results. Despite these small improve-
ments in prediction accuracy, all smoothness metrics clearly demonstrate improvements
over all values. Furthermore, there is also a small improvement on some convergence time
values.
As a consequence, by extending the RLS algorithm in order to include a specific noise

variance instead of assuming unit variance as in the standard RLS algorithm, it is possible
to achieve the same prediction accuracy with an improved smoothness. This result can
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also be intuitively understood by realizing that in making an algorithm aware of improved
knowledge about noise, it inherits the ability to reduce noise effects in predictions.

3.4 Kalman Filters

Kalman filters, often employed for smoothing or filtering, are especially suitable for per-
forming predictions by virtue of the fact that they already include a one-step prediction.
As already mentioned, the formulation of the Kalman filters in the context of this work
is based on the state-space model (3.45), including process and measurement noise with
known variances of Q and R, respectively.
For the purpose of breathing or tumor motion prediction the state-space model should

somehow describe the dynamics of that motion for a single axis. Hence, the output y(t) of
the model refers either to breathing or tumor motion. Before several motion models are
introduced in the following subsections, the update recursion of the linear Kalman filter
is summarized, which is common to all linear formulations irrespective of the underlying
state-space model.
Essentially the Kalman filter performs an estimation x̂ ∈ Rn of the true state x ∈ Rn

of the state-space model and its covariance matrix P ∈ Rn×n based on past observations
of the output y. Thereby, the estimated state x̂ is the mean of the state distribution and
the covariance matrix P is associated with the variance of the state distribution, which is
normally distributed if the process noise and measurement noise are normally distributed
with zero mean.
As starting point, the Kalman filter requires an initial guess of x̂(0) and P (0). The

first step in the Kalman filter recursion, referred to as the time update, consists of the
projection of the estimated state at the previous sampling instant one step ahead to the
current sampling instant using the state equation

x̂−(t) = Ax̂(t− 1) +Bu(t− 1) , (3.48)

where A and B are the system and input matrices of the state-space model. This delivers
the a priori state estimate x̂−(t) for sampling instant t which is computed using information
up to time t−1. Similarly, the covariance matrix P (t−1) is also projected one step ahead
to the current sampling instant based on the state transition matrix A and the variance
Q of the process noise:

P−(t) = AP (t− 1)AT +Q . (3.49)

In order to proceed with the measurement update step, a measurement y(t) needs to be
obtained for the current sampling instant t. Then, the Kalman gain K is computed by

K = P−(t)CT
CP−(t)CT +R

. (3.50)

Note the correspondence with Eq. (3.47) from the ERLS algorithm when substituting P−(t)
by λ−1P (t − 1), which is a direct result from Eq. (3.49) obtained by inserting 1/

√
λ as

system matrix A and setting Q = 0. The Kalman filter recursion proceeds by determining
the a priori error e−(t), also referred to as innovation,

e−(t) = y(t)− Cx̂−(t) ,
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3.4 Kalman Filters

by using the output equation from the state-space model applied to the a priori state
estimate x̂−(t). Together with the Kalman gain K, the innovation is used to derive the
a posteriori (after obtaining a noisy measurement of the system’s output) state estimate
x̂(t):

x̂(t) = x̂−(t) +Ke−(t) . (3.51)

Note the equivalent structure of Eq. (3.51) with the parameter update Eq. (3.44) of the
RLS algorithm. The update of the covariance matrix P (t) with

P (t) = P−(t)−KCP−(t) .

completes the measurement update step and the update recursion of the Kalman filter.
Substituting the a posteriori state estimate x̂(t) into the output equation of the (undis-

turbed) state-space model, the filtered output of the system can be obtained, showing the
filtering property of this approach. However, the goal here is to generate predictions which
are readily available by continuing with time update equation (3.48). Shifting this by one
sampling instant, the a priori state estimate x̂−(t+ 1) for the next sampling instant t+ 1
is obtained by

x̂−(t+ 1) = Ax̂(t) +Bu(t) , (3.52)

assuming that the input u(t) is known. Using the output equation, the one-step prediction
ŷ(t+ 1|t) is derived from Eq. (3.52) with

ŷ(t+ 1|t) = Cx̂−(t+ 1) . (3.53)

Further iterations over Eqn. (3.52) – (3.53) enable multi-step predictions. These occur
in the form of a plug-in predictor since further predictions are derived based on pre-
dicted states. Note that in general, direct predictors cannot be developed when relying
on state-space models since the state equation only establishes a relationship between two
consecutive sampling instants.

3.4.1 Linear Kalman Filter with Constant Velocity Model

One popular linear model, which is often used in conjunction with Kalman filters, is the
constant velocity model [138]. It can be applied if the variable to be predicted can be stated
in terms of the physical properties position and velocity, which is feasible for breathing
or tumor motions. The corresponding state-space model with a similar structure as in
Eq. (3.45) is:

x(t+ 1) =
[
1 ∆τ
0 1

]
x(t) +

[
∆τ2

2
∆τ

]
a(t)

y(t) =
[
1 0

]
x(t) + v(t)

,

where the state x(t) = (xp(t), xv(t))T is composed of the position xp(t) ∈ R and velocity
xv(t) ∈ R. ∆τ denotes the sampling time in seconds in between two consecutive sampling
instants. The inclusion of the sampling time introduces an interesting feature into the
model, which is not available with AR models, in that it can seamlessly deal with variable
sampling times, if required. Generally, the model assumes a constant velocity in between
two sampling instants which can be seen from the second state equation involving xv(t+
1) = xv(t) + ∆τa(t). Following the idea of [139], the process noise a(t) ∈ R allows for a
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change of velocity, given in units of acceleration. Furthermore, it reduces the number of
design parameters as two would normally be required for the process noise (one for each
state). The first state equation for xp(t+ 1) simply integrates the velocity once and adds
the change in position due to the acceleration given by a(t). The output equation selects
the first state since the position refers to the breathing or tumor position, to which the
measurement noise v(t) ∈ R is added.
The process noise a(t) is not directly added to each state variable as in Eq. (3.45). When

substituting w(t) =
(
∆τ2/2,∆τ

)T
a(t) and assuming that a(t) is normally distributed with

zero mean and variance S ∈ R, it follows from the displacement theorem that the variance
Q of w(t) is

Q =
[

∆τ2

2
∆τ

]
S
[

∆τ2

2 ∆τ
]

=
[

∆τ4

4
∆τ3

2
∆τ3

2 ∆τ2

]
S ,

which can then be included into the Kalman filter equations.
From preliminary analysis it was found that fast convergence is observed when setting

the first state variable xp(0) of the initial state to the first measurement and the second
state variable xv(0) to the linear velocity in between the second and first position measure-
ment. In an online system this would require two measurements which is usually at least
an order of magnitude smaller than for AR models, where the minimum number of samples
required to start the first prediction cycle is lower-bounded by na. With this nearly exact
initialization of the initial state, the choice of the initial covariance matrix P (0) plays only
a minor role. For convenience, it can be initialized with the identity matrix I2.
Employing the constant velocity (CV) model in a Kalman filter, further denoted as

Kalman CV, leaves two design parameters which need to be selected prior to operation:
the variance R of measurement noise and the variance S of the acceleration. In analogy to
the ERLS algorithm, R can be determined from the data, however treating it as a design
parameter allows for tuning and observing the influence of this parameter on prediction
metrics. For the simulation trials in the class I formulation of this approach, R was varied
between 10−3 and 102 with different step sizes and S was varied between 10−8 and 108 in
powers of 10.
At first, instabilities were analyzed which are depicted in Figure 3.35 for several pre-

diction horizons k. For k = 1 the valley with no instabilities is constrained by the ratio
between acceleration noise S and measurement noise R. If 102 ≤ S

R ≤ 109, then no in-
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Figure 3.35: Number of unstable trials among 200 datasets of the Kalman CV predictor
in relation to parameters R and S
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3.4 Kalman Filters

stabilities are found on any of the datasets. For increasing prediction horizon, the valley
becomes smaller. For k = 3, still no instabilities are possible with 104 ≤ S

R ≤ 107. But for
k = 5 (not shown in the figure), the minimum number of instabilities is found to be three
and constrained to S

R ≈ 105. This constraint is maintained at least until k = 11, but as
can be seen from the figure with a strongly increasing minimum number of instabilities:
27 for k = 7, 56 for k = 9 and 127 for k = 11. It is interesting to note that the number of
instabilities is exactly the same if the ratio S

R is kept constant. Comparing the number of
instabilities to the previously discussed approaches, a large increase of instabilities can be
observed, especially for k ≥ 5.
The dependency on the noise ratio is also revealed by plots of the average PR as shown

in Figure 3.36. Note that white regions in the plots are caused by parameter settings
which lead to instabilities (or negative PRs) for all 200 datasets as depicted in Figure 3.35.
Consequently there is no value available for these regions which are to be removed from the
allowed parameter ranges. The ratios of SR with maximum PR are found to approximately
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Figure 3.36: Mean prediction ratio of 200 datasets of the Kalman CV predictor in rela-
tion to parameters R and S

be: 106 for k = 1 and 105 for k ≥ 3. Hence, the parameter settings leading to best average
PRs are nearby. Unlike other prediction methods, one can observe a quite strong impact
of the parameter S on the PR. If it is chosen too small (given in relation to the parameter
R), PRs near zero or smaller results. The reason is that the acceleration enters the model
in form of process noise and a certain minimum acceleration, which is determined by the
noise variance, needs to be present, driving the motion of breathing or tumor signals.
Equivalent to the number of instabilities, exactly the same PR value can be found for
each k for a constant ratio S

R . That is, from a given variance for one of the noises, the
variance of the other one can be determined which leads to maximum average PRs (and
simultaneously to least number of instabilities). A reason for the dependency on this ratio
can also be given from Eqn. (3.49) and (3.50), showing that the Kalman gain K (from
which the state update is determined) is approximately proportional to this ratio. Since Q
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(which is directly depending on S), enters mainly in the numerator, a too small S effects
a too small Kalman gain. Therefore, the state update is too small. When observing the
predictions on individual datasets directly, the amplitudes of the predicted motion are
always considerably smaller if S is chosen too small.
However, in this case, quite smooth predictions result, which can be seen from the

corresponding smoothness plots, represented by the ones for SF shown in Figure 3.37. The
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Figure 3.37: Mean smoothness metric SF of 200 datasets of the Kalman CV predictor
in relation to parameters R and S

regions with poor PR (cf. Figure 3.36) are found to yield an exceptionally good smoothness
metric SF close to zero, irrespective of the prediction horizon k. A too small variance in
these regions simultaneously leads to smooth predictions because the maximum change in
velocity and position is upper-bounded by the maximum acceleration, which is specified as
variance. Similar to the previous plots, a constant ratio S

R results in the same smoothness
values, which is another indication for yielding the same predictions as long as the noise
ratio is the same. The line with maximum PR is approximately coinciding with the line
for which the change in smoothness is the largest, i.e. where the hill in the smoothness
plot is the steepest. This line can be also seen as a contour line of a topographic map.
Table 3.14 summarizes the prediction metrics when choosing the parameter setting with

largest average PR for each k individually. In comparison with Table 3.9 including the
metrics of the plug-in RLS predictor, it becomes obvious that comparable results are
only achieved for k = 1, although the RLS predictor is superior on all metrics except
for maximum STS . With increasing prediction horizon, the metrics show an increasing
difference to the ones of the RLS predictor, especially for the prediction accuracy metrics.
The only exception is the metric SJ which slightly improves with Kalman CV predictor
for k ≥ 3. However, the remaining smoothness metrics generally show lesser smoothness
for the Kalman CV predictor. When inspecting the predictions of individual datasets, an
overshoot in the vicinity of the peaks of the breathing motion can be observed, where the
amount of overshoot increases with rising prediction horizons. This increase is also present
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Prediction PR CI95 MAE RMS MAX SF SJ ST S SSNR CT25 CT10
horizon Type [%] [mm] [mm] [mm] [mm] [s] [s]

min 77.1 0.01 0.00 0.00 0.02 0.42 1.97 0.07 1.66 8.75 8.75
mean 91.8 0.20 0.06 0.10 0.54 1.60 2.53 0.14 15.24 8.76 9.15
median 92.8 0.20 0.06 0.09 0.48 1.54 2.54 0.13 15.80 8.75 8.751

max 97.6 0.47 0.14 0.21 2.70 4.09 3.02 0.31 22.69 9.65 19.25
min 15.7 0.03 0.01 0.02 0.05 0.61 1.96 0.08 -0.15 8.75 8.75
mean 75.7 0.63 0.22 0.30 1.32 2.25 2.52 0.16 12.57 9.17 14.87
median 79.3 0.61 0.22 0.30 1.22 2.19 2.54 0.15 13.28 8.78 10.753

max 89.7 1.64 0.48 0.70 5.82 5.45 2.93 0.36 19.72 19.25 107.95
min -46.6 0.06 0.03 0.03 0.10 0.81 2.08 0.10 -0.99 8.75 8.75
mean 58.5 1.15 0.37 0.53 2.35 2.86 2.63 0.20 10.51 10.66 26.88
median 64.5 1.08 0.36 0.51 2.19 2.84 2.66 0.19 11.29 9.35 22.255

max 82.0 3.13 0.91 1.32 10.00 5.99 3.00 0.47 17.37 55.55 107.95
min -111.2 0.09 0.04 0.05 0.16 0.95 2.15 0.11 -1.50 8.75 9.00
mean 36.6 1.79 0.59 0.82 3.41 3.23 2.69 0.23 9.14 13.92 38.76
median 45.8 1.70 0.57 0.79 3.21 3.30 2.71 0.22 10.02 10.50 36.507

max 72.6 4.40 1.43 2.00 14.18 6.13 3.04 0.55 16.12 100.50 107.95
min -171.3 0.12 0.06 0.07 0.23 0.72 1.94 0.11 -0.75 8.75 9.85
mean 12.0 2.57 0.86 1.18 4.22 2.59 2.51 0.19 9.52 16.86 44.72
median 22.4 2.44 0.82 1.12 4.03 2.64 2.53 0.18 10.30 11.75 43.809

max 61.1 5.84 2.18 2.77 13.11 5.09 2.90 0.41 16.84 107.95 124.75
min -234.3 0.16 0.07 0.08 0.29 0.95 2.10 0.12 -1.31 8.75 10.35
mean -12.9 3.22 1.13 1.51 5.42 3.19 2.64 0.23 8.29 22.88 49.71
median -0.9 3.06 1.08 1.44 5.25 3.27 2.66 0.22 8.97 17.10 48.1211

max 48.6 7.12 2.85 3.44 19.31 5.70 3.01 0.53 15.69 107.95 124.75

Table 3.14: Minimum, mean, median and maximum breathing prediction metrics of pa-
rameter setting with largest average PR determined for each k separately;
metrics are given for different k using the Kalman CV predictor

in other predictors, however the effect is more profound with the Kalman CV predictor.
When the breathing motion is more linear (in between inhalation and exhalation), the
prediction accuracy is better than during the peaks where the motion is rather nonlinear.
The adoption of a linear model in the form of the CV model, cannot deal with the nonlinear
effects in the vicinity of peaks. Hence, there are temporary deviations between predictions
and true values, which are growing with increasing prediction horizon.
Of course, the situation improves when selecting the parameter setting with largest

PR for each dataset and each k separately, but the resulting metrics (not shown here)
still show lesser performance than the RLS metrics with parameter settings chosen from
average PR. Therefore, even when choosing the parameter setting with best possible PR,
the performance of the RLS predictor is not reached by the Kalman CV approach on any
metric.
Furthermore, this approach cannot be extended to a class II predictor like how an AR

model was extended to an ARX model. Although it would be possible from the structure
of state-space models to include an input through the term Bu(t) in the state equation, to
the knowledge of the author there is no obvious way available how to select or derive the
input matrix B which would describe the physical influence of (future) breathing position
predictions on tumor motion position and velocity, leading to an acausal model. However
it could be fused together with an ARX model in such a way that at first breathing
predictions are performed with the Kalman CV approach and then, these are fed as input
to an ARX model. The parameter vector of the ARX model can then be updated by
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the RLS or ERLS algorithm in order to perform tumor predictions. Since the breathing
prediction performance of the Kalman CV approach does not reach the one of the RLS
predictor, this step was omitted. Instead, an extension to the CV model was tested, which
is followed up in the next subsection.

3.4.2 Linear Kalman Filter with Constant Acceleration Model

The constant acceleration model [138] is a direct extension of the constant velocity model.
As the name suggests, it assumes a constant acceleration between two sampling instants.
It can be derived in a straight forward way by augmenting the state of the constant velocity
model with an additional state variable xa(t) ∈ R representing acceleration. Performing
the required adaptions from physical relationships on how acceleration affects position and
velocity, the following state-space model results:

x(t+ 1) =

1 ∆τ ∆τ2

2
0 1 ∆τ
0 0 1

x(t) +

∆τ2

2
∆τ
1

 a(t)

y(t) =
[
1 0 0

]
x(t) + v(t)

,

where the state x(t) is defined as x(t) = (xp(t), xv(t), xa(t))T . The process noise in the
form of acceleration a(t) still affects the first two state variables (position and velocity)
in the same way as in the constant velocity model. It is directly added to the last state
variable as this is already an acceleration, thereby respecting the physical units in the
overall model. The variance Q can be derived in analogy to the constant velocity, yielding

Q =

∆τ2

2
∆τ
1

S [∆τ2

2 ∆τ 1
]

=


∆τ4

4
∆τ3

2
∆τ2

2
∆τ3

2 ∆τ2 ∆τ
∆τ2

2 ∆τ 1

S .

The same simulations as for the CV model were performed on the Kalman filter with the
constant acceleration (CA) model, further denoted as Kalman CA. The arising instabilities
in terms of the noise variances R and S are depicted in Figure 3.38. The structure of the
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Figure 3.38: Number of unstable trials among 200 datasets of the Kalman CA predictor
in relation to parameters R and S
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instability plots in terms of the noise ratio S
R is approximately similar to the CV model

except that there is no increase in instabilities for larger noise ratios (at least not in
the chosen intervals for R and S). For k = 1, no instabilities are found for S

R ≥ 10−2.
For k = 3 there are parameter settings available leading to no instabilities if S

R ≥ 101.
For k = 5 the minimum is found to be 3 at S

R ≈ 102, which is equal to Kalman CV.
With instabilities of 32, 66 and 115 for prediction horizons of 7,9, and 11, respectively,
the Kalman CA predictor results in slightly more instabilities than Kalman CV. In these
cases, the minimum number of instabilities is reached if S

R ≈ 102, which is constant for
3 ≤ k ≤ 11.
The average PR is displayed in Figure 3.39. In these plots, the dependency on the noise
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Figure 3.39: Mean prediction ratio of 200 datasets of the Kalman CA predictor in rela-
tion to parameters R and S

ratio S
R is also clearly visible with the same properties as for the CV model. However, a

major difference is that if the maximum value is reached by a sufficiently large ratio, a
certain height of the resulting plateau is kept which is located at slightly smaller value
than the maximum. The difference in height between the plateau and the maximum
increases moderately with increasing prediction horizon. The noise ratios with maximum
PR, extracted from the figure result approximately in: 103 for k = 1, 102 for 3 ≤ k ≤ 9
and 101 for k = 11. Thus, the noise ratios should be chosen about three to four orders of
magnitude smaller than for the CV model.
Figure 3.40 shows the metric SF as a representative for smoothness measures. Similar

to the CV model, the general structure of this plot is equivalent to the PR plot. However,
regions with maximum PR are located in the upper third before reaching the plateau. The
considerations for smoothness can be analogously transferred from the CV model. The
corresponding numerical metrics are given in Table 3.15. It is interesting to compare this
table to the equivalent table of the CV model (cf. Table 3.14). As can be seen, the CA
model leads to small improvements on some prediction accuracy metrics (mainly PR) for
k = 1 and a few improvements for the maximum of MAX for k > 1. However, on the
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Figure 3.40: Mean smoothness metric SF of 200 datasets of the Kalman CA predictor
in relation to parameters R and S

Prediction PR CI95 MAE RMS MAX SF SJ ST S SSNR CT25 CT10
horizon Type [%] [mm] [mm] [mm] [mm] [s] [s]

min 77.1 0.01 0.00 0.00 0.02 0.40 1.96 0.07 1.64 8.75 8.75
mean 91.9 0.20 0.06 0.10 0.54 1.56 2.52 0.14 15.26 8.76 9.12
median 92.9 0.19 0.06 0.09 0.47 1.50 2.53 0.12 15.82 8.75 8.751

max 97.6 0.46 0.13 0.20 2.63 4.02 3.01 0.30 22.79 9.65 19.25
min 13.8 0.03 0.01 0.02 0.05 0.61 1.96 0.08 -0.18 8.75 8.75
mean 75.2 0.65 0.22 0.31 1.35 2.25 2.53 0.16 12.47 9.24 15.75
median 78.9 0.63 0.22 0.31 1.24 2.19 2.54 0.15 13.16 8.80 10.903

max 89.5 1.70 0.49 0.72 6.00 5.37 2.93 0.36 19.59 19.25 107.95
min -53.3 0.06 0.03 0.03 0.11 0.70 1.98 0.09 -0.88 8.75 8.75
mean 56.6 1.23 0.39 0.56 2.37 2.55 2.54 0.18 10.77 10.83 27.38
median 63.1 1.14 0.38 0.54 2.20 2.53 2.57 0.17 11.49 9.35 21.055

max 81.6 3.32 0.99 1.42 9.04 5.31 2.92 0.41 17.71 55.65 107.95
min -122.8 0.10 0.04 0.05 0.17 0.82 2.05 0.11 -1.38 8.75 9.30
mean 32.9 1.92 0.63 0.88 3.47 2.89 2.60 0.21 9.45 14.13 40.66
median 42.5 1.83 0.61 0.84 3.23 2.93 2.62 0.19 10.25 10.65 39.437

max 71.0 4.82 1.57 2.16 13.14 5.47 2.97 0.47 16.57 100.50 110.70
min -194.4 0.13 0.06 0.07 0.25 0.91 2.09 0.12 -1.32 8.75 10.30
mean 6.3 2.68 0.91 1.24 4.70 3.09 2.64 0.23 8.57 19.30 47.85
median 18.6 2.51 0.87 1.18 4.42 3.15 2.65 0.21 9.33 13.73 47.459

max 58.8 6.36 2.26 2.95 17.40 5.59 3.01 0.52 15.93 107.95 124.75
min -258.4 0.17 0.07 0.09 0.31 0.59 1.82 0.10 0.13 8.75 10.35
mean -26.8 3.64 1.32 1.72 5.52 2.15 2.40 0.17 9.49 25.01 49.66
median -15.1 3.42 1.24 1.64 5.35 2.17 2.41 0.16 10.17 18.23 48.1211

max 43.4 7.88 3.46 4.08 15.67 4.22 2.81 0.35 16.99 107.95 124.75

Table 3.15: Minimum, mean, median and maximum breathing prediction metrics of pa-
rameter setting with largest average PR determined for each k separately;
metrics are given for different k using the Kalman CA predictor
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majority of the metrics, a degradation of performance is visible except for most of the
smoothness metrics, where the CA model generally results in an improved performance.

Consequently, in a trade-off between the CV and CA model, one would rather choose
the CV model given the resulting performance. However, as demonstrated in [138] and
[139], an improvement can be realized by combining both predictors into an interacting
multiple model approach [140, 141]. By using a Markov chain, transitions between different
models, in this case CV and CA models, can be realized with a certain probability, which
is updated according to the likelihood of the Kalman filters, which itself is derived from the
covariances matrices computed by the underlying Kalman filters. The final estimated state
is formed by a linear combination of all the model states with weights proportional to each
model’s probability. Since the prediction effectively varies in between the predictions from
the CV and CA models, the performance increase by adopting an interacting multiple
model approach is not expected to outperform the RLS predictor, especially for large
prediction horizons.

3.4.3 Extended Kalman Filter with Spring-Mass Model

Another interesting approach based on a physical model in order to perform predictions
of quasi periodic motions is based on a simple spring-mass model [112], in which a mass
m is attached to a spring with constant k. The spring is assumed to be massless and fixed
on the remaining side. Additionally, the effects of gravity are neglected and the mass can
only perform a one-dimensional motion. In continuous time τ , the unforced spring-mass
model can be expressed by the differential equation

d2

dτ2 p(τ) = − k
m
p(τ) ,

where p(τ) is the deviation in position of the mass m from the equilibrium.

From the solution of the differential equation in the form

p(τ) = A cos (ωτ) +B sin (ωτ) ,

ω can be identified as the natural frequency of the spring-mass system given by ω =
√
k/m.

The coefficients A and B ∈ R would need to be determined from given initial conditions.
With ω, the differential equation can be simplified to

d2

dτ2 p(τ) = −ω2p(τ) .

Further substituting d = ω2(τ) yields

d2

dτ2 p(τ) = p̈ = −dp(τ). (3.54)

With ṗ = v, where v is the velocity of the mass and the state x(τ) = (p, v)T , the
second-order continuous time state-space model of the spring-mass system is obtained
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from Eq. (3.54):

ẋ(τ) =
[

0 1
−d 0

]
x(τ)

p(τ) =
[
1 0

]
x(τ)

(3.55)

with an initial state x(0) = (y0, v0) where y0 is the initial position and v0 denotes initial
velocity of the mass.
In order to incorporate this model into a discrete Kalman filter, the continuous time

model needs to be discretized. Based on the analytical solution of the state equation
(from the continuous time model) incorporating the system matrix Ac, the discrete time
equivalent of the system matrix Ad is generally given by the matrix exponential

Ad = eAcTs ,

where Ts denotes the sampling time of the discrete system [142]. There are several ways
(e.g. rectangular method, trapezoidal method) [143] to approximate the matrix exponen-
tial, leading to system matrices of different complexities. In order to keep the complexity
low, the polynomial method [144] is chosen, which is essentially a Taylor expansion of the
matrix exponential

Ad = eAcTs = I +
n∑
i=1

T is
i! A

i
c ,

where n denotes the order of the expansion. Unlike [112], a higher order of n = 3 is chosen
here. To simplify the resulting model further, Ts = 1 is used. Then, physical quantities
of the discrete time system including the notion of time cannot be interpreted in terms of
the original units any more, but in terms of normalized time. For example, the velocity
included in the state vector of a continuous time model is converted into increments in
position during one sampling period. Performing the required calculations, the following
system matrix results for the discrete model:

Ad = eAc = I +
3∑
i=1

1
i!A

i
c =

[
1− d

2 1− d
6

1
6d

2 − d 1− d
2

]

with Ac being the system matrix of the state-space model (3.55).
The model is intended to follow the quasi-periodic breathing or tumor motion. To

describe the dynamics of motion, the parameter d, associated with the ratio between
the spring constant k and mass m, is the only choice to accommodate for the dynamics;
specifically it represents the square of the motion frequency, whereas the amplitude is
determined by the initial condition. Due to variability and hysteresis effects, the parameter
d needs to be constantly adapted to make the model follow the motion trace as close as
possible. Hence, d is further denoted explicitly depending on time. Furthermore, the first
state variable, i.e. the position p(t), was defined as the deviation of the mass’s position
from the equilibrium when the spring is at rest. If the signal to be predicted is initially
not free from the mean position or if the baseline (the position of the equilibrium) changes
as time progresses, an estimation of the level of the baseline is required. Augmenting the
state vector by the unknowns d(t) and the baseline b(t), a Kalman filter can estimate
these unknowns. In total the state vector of the discrete system is finally given by x(t) =
(p(t), v(t), d(t), b(t))T . The fact that the system matrix Ad depends on the third state
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variable d(t) renders the initially linear state-space model nonlinear. The complete model
including process wP (t) ∈ R4 and measurement noise wM (t) ∈ R is as follows:

x(t+ 1) =


p(t+ 1)
v(t+ 1)
d(t+ 1)
b(t+ 1)

 =


(
1− d(t)

2

)
p(t) +

(
1− d(t)

6

)
v(t)(

1
6d

2(t)− d(t)
)
p(t) +

(
1− d(t)

2

)
v(t)

d(t)
b(t)

+ wP (t)

︸ ︷︷ ︸
f(x(t),wP (t))

y(t) =
[
1 0 0 1

]
x(t) + wM (t)︸ ︷︷ ︸

h(x(t),wM (t))

, (3.56)

with f(x(t), wP (t)) representing the nonlinear state transition matrix. The first two rows
of f(x(t), wP (t)) are given by the product Ad and the reduced state (p(t), v(t)). The last
two rows contain the previous values for d(t) and b(t), thus the undisturbed model assumes
them to be constant. However, in presence of process noise, they are allowed to change.
h(x(t), wM (t)) is the output function, which for this model remains linear. As indicated
in the output function, the final output is derived by the sum of the baseline b(t) and
deviation from that baseline given by the position p(t).
In order to adopt this model into a standard Kalman filter, linearization around

the current working point is necessary, which is achieved by the Jacobian matrices for
f(x(t), wP (t)) and h(x(t), wM (t)), leading to the extended Kalman filter (EKF) [145].
Since the realization of the noise terms is not known at each sampling instant, it is substi-
tuted with zero for the Jacobian matrices, which is justified by assuming their distribution
to be of zero mean. Computing the Jacobian matrices, the system matrix A(t) for the
linear discrete system results in

A(t) = ∂

∂x
f(x(t), 0) =


1− d(t)

2 1− d(t)
2

v(t)
6 −

p(t)
2 0

1
6d

2(t)− d(t) 1− d(t)
2

d(t)p(t)
3 − p(t)− v(t)

2 0
0 0 1 0
0 0 0 1

 , (3.57)

which becomes time varying due to the dependence on the first three state variables. Since
the output function is linear, the resulting output matrix

C = ∂

∂x
h(x(t), 0) =

[
1 0 0 1

]
is time invariant, which can directly be used in the Kalman filter Eqn. (3.50) – (3.53).
Note that the Jacobian matrices of the noise terms become identity matrices, hence the
same noise terms appear as additives in the linearized model. The process noise wP (t)
and the measurement noise wM (t) are assumed to be normally distributed with zero mean
and variance Q ∈ R4×4 and variance R ∈ R, respectively. The system matrix A(t) from
Eq. (3.57), which needs to be updated at each sampling instant according to the current
state is inserted into Eq. (3.49) for the projection of the covariance matrix during the
time update step, whereas the projection of the state given in Eq. (3.48) and the one-step
prediction from Eq. (3.52) is completely replaced by the state equation of the undisturbed
nonlinear model (3.56) (i.e. substituting the noise terms with zero).
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The EKF with spring-mass model requires in total five parameters to be selected: one
variance of the measurement noise R and four process noise variances qp, qv, qd and
qb ∈ R associated with each of the four state variables. The measurement noise was
determined from the datasets to reduce the number of free parameters to four by the
following procedure: All datasets were filtered using a properly designed Butterworth filter
with a cut-off frequency of 1.2Hz together with a zero-phase filter in order to eliminate
phase delay. The difference between the filtered and original signal then delivers the noise
signal. Histograms of the noise signals revealed that the noise is approximately normally
distributed with a mean close to zero. This procedure was applied to all axes separately.
For each dataset and each axis, the variance of the noise signal was determined and
averaged over all datasets, resulting in 3.69 × 10−4, 1.86 × 10−3 and 1.279 × 10−2 given
in mm2 for the x-, y-, and z-axis, respectively. These values were substituted for the
parameter R for the corresponding axes. The remaining four parameters describing the
process noise were varied in the range 10−6 to 106 in steps of 102.
Due to the dimensionality, the influence of the parameters cannot be shown similar to

previously discussed predictors. Instead, common values of individual parameters were
determined, leading to the maximum PRs. It was observed that for almost all k, the
variance parameter qb was 1.0 for the parameter setting with maximum average PR. In a
further attempt, the assumption was tested if there are constant parameter ratios, which
result in maximum PR. For that purpose, the 20 parameter settings which lead to max-
imum PR were scaled by qb, resulting in the parameter ratios between the qp, qv and qd
in relation to qb. The number of occurrences were determined for each parameter ratio
over all k from 1 to 11 in steps of 2, leading to a total of 120 occurrences. These are
depicted in Figure 3.41. Naturally, qb possesses the maximum number of occurrences with
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Figure 3.41: Number of occurrences of parameter values among the 20 parameter set-
tings with largest average PR shown in relation to qb

a value of 1 (shown in green color). The narrow distribution of the parameters qv and qd
between 10−2 to 1 and 10−6 to 10−4 shows that among the 20 best parameter settings the
ratio between qv, qd and qb is approximately constant. Conversely, the distribution of qp is
rather uniform but constrained to about 10−6 to 1 (there are no occurrences for qp ≥ 102).
Consequently, when choosing the ratio between qv and qd to qb as indicated in the figure,
qp can be selected from a larger range between 10−6 to 1.
The resulting metrics when choosing the parameter setting with largest average PR for

each k individually are given in Table 3.16. When comparing this to the results of the
CV and CA model, a considerable increase in almost all metrics can be observed. The
increment in PR rises approximately quadratic with increasing k from 0.5% to 39.1%, so
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Prediction PR CI95 MAE RMS MAX SF SJ ST S SSNR CT25 CT10
horizon Type [%] [mm] [mm] [mm] [mm] [s] [s]

min 77.5 0.01 0.00 0.01 0.02 0.35 1.81 0.07 1.42 8.75 8.75
mean 92.3 0.19 0.06 0.09 0.52 1.33 2.37 0.13 15.47 8.76 9.01
median 93.2 0.18 0.06 0.09 0.44 1.26 2.38 0.12 16.08 8.75 8.751

max 97.4 0.40 0.13 0.19 2.34 3.41 2.87 0.28 23.53 9.70 12.10
min 31.4 0.03 0.01 0.02 0.05 0.56 2.03 0.08 -0.63 8.75 8.75
mean 78.7 0.53 0.19 0.26 1.18 2.12 2.59 0.17 12.58 9.07 15.79
median 81.7 0.51 0.19 0.26 1.06 2.02 2.61 0.15 13.25 8.75 10.533

max 91.1 1.29 0.43 0.58 6.52 4.92 3.02 0.38 20.04 12.20 65.60
min -7.0 0.06 0.02 0.03 0.09 0.71 2.13 0.09 -1.89 8.75 8.75
mean 66.1 0.86 0.32 0.42 1.93 2.67 2.70 0.21 10.28 10.40 28.05
median 70.9 0.82 0.31 0.42 1.78 2.65 2.72 0.19 10.92 9.22 22.175

max 85.2 2.17 0.77 1.00 12.06 5.56 3.07 0.49 17.14 38.60 107.95
min -33.9 0.08 0.04 0.05 0.14 0.76 2.09 0.10 -2.90 8.75 8.85
mean 51.7 1.25 0.48 0.62 2.48 2.74 2.64 0.22 9.00 14.07 39.06
median 57.9 1.16 0.46 0.60 2.29 2.74 2.64 0.20 9.67 10.37 35.357

max 78.9 2.98 1.10 1.39 15.06 5.70 3.08 0.54 16.27 62.70 107.95
min -50.3 0.11 0.05 0.06 0.20 0.91 2.16 0.12 -4.09 8.75 10.10
mean 37.2 1.60 0.63 0.81 3.22 3.13 2.69 0.27 7.32 19.83 47.37
median 44.0 1.49 0.60 0.78 2.96 3.15 2.70 0.25 7.89 12.45 45.409

max 71.9 3.74 1.38 1.72 24.10 6.35 3.14 0.67 14.40 100.45 122.65
min -53.6 0.13 0.06 0.07 0.26 0.84 2.12 0.12 -2.21 8.75 10.30
mean 26.2 1.87 0.77 0.96 3.66 2.96 2.67 0.27 7.22 22.64 49.92
median 32.4 1.76 0.73 0.92 3.46 2.99 2.68 0.25 7.62 16.00 48.3011

max 65.2 4.83 1.77 2.19 30.15 5.97 3.11 0.63 14.28 100.55 122.80

Table 3.16: Minimum, mean, median and maximum breathing prediction metrics of pa-
rameter setting with largest average PR determined for each k separately;
metrics are given for different k using the EKF predictor with spring-mass
model

that especially for large prediction horizons, the spring-mass model delivers a significantly
improved prediction accuracy. Also the other prediction accuracy metric like the CI95
improve in a similar way with decrements between 0.01mm for k = 1 and 1.35mm for
k = 11. The only exceptions are a few maximum MAX errors for k ≥ 5 which are
slightly larger for the spring-mass model. The smoothness metrics also show an increase in
smoothness except STS for k ≥ 9. When comparing the differences between the individual
smoothness measures between mass-spring and CV model, it additionally turns out that
STS shows smaller differences than the other smoothness metrics, so that STS seems
to be less reliable. Furthermore, the convergence time criteria show smaller times for
the spring-mass model, except for some CT10 values. Despite the overall improvements
compared to the CV and CA models, the spring-mass model does not outperform the RLS
or ERLS predictor, but comes close. There are a few individual values of some metrics
which indicate an improvement for only a few datasets. For smaller prediction horizons
the general performance difference is smaller but increases with the prediction horizon.

3.5 Nonlinear Prediction Algorithm

Firstly, the class I formulation of a nonlinear prediction algorithm based on a fundamental
theorem from nonlinear time series analysis is presented followed by a detailed analysis
of the free parameters’ influence. Then, it is shown how the algorithm can be rewritten
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to a class II formulation to enable breathing-based tumor motion predictions. For both
variants, performance metrics are given in a comparative manner in relation to previously
discussed prediction methods.

3.5.1 Class I Formulation

A very interesting strategy for organ-motion prediction has been proposed in [123] in
the context of minimally invasive robotic cardiac surgery. The methodology is motivated
by nonlinear time series analysis based on Takens’ Reconstruction Theorem [146]. The
reconstruction theorem is stated in literature in a more general form [147], but can be
adapted quite well to the formulation of nonlinear dynamical systems. In the following
it is assumed that a single axis of breathing or tumor motion is observed in regular time
intervals, resulting in a sequence of observations y(t) ∈ R with 0 ≤ t ≤ n. Furthermore
it is assumed that the breathing or tumor motion is caused by an unforced nonlinear
dynamic system of the form

x(t+ 1) = f(x(t))
y(t) = g(x(t))

(3.58)

with state transition function f(x(t)) and output function g(x(t)). Since the model’s state
is not directly observable, the model is said to possess an inner state x(t) ∈ Rd, where d
is the dimension of the state vector. The functions f and g are further considered to be
unknown. However, it is known that the time series of observations[

y(0) y(1) . . . y(n)
]

=
[
g(x(0)) g(x(1)) . . . g(x(n))

]
is generated by the model (3.58) based on the output function g(x(t)), the corresponding
state x(t) and the state transition f(x(t)) which describes how the state for the next
sampling instant evolves from the current one. Takens’ reconstruction theorem states
that the map

x 7→
(
g(x), g(f(x)), . . . g(fp−1(x))

)
(3.59)

with x ∈ Rd is an embedding of the state-space Rd into the space Rp for the pair (f, g)
provided that f and g are continuously differentiable and that

p > 2d . (3.60)

Given the dynamical model (3.58), the elements of the map (3.59) can be simply identified
as the observations y(t) of the output of the dynamic process during p consecutive sam-
pling instants. Using this map, a unique relationship between the unknown d-dimensional
state and the p-dimensional embedding vector can be established just by incorporating
corresponding observations into the embedding vector. However, this relationship is not
expressed explicitly, but according to the reconstruction theorem, the evolution of the
system according to the dynamics in state-space as time progresses is equivalent to the
evolution of the map in Rp. In other words, having enough knowledge about the history
of the system, it is possible to reconstruct the dynamics of the nonlinear system based on
past measurements, where the number of past measurements needs to be sufficiently large
according to condition (3.60). An embedding vector, also called reconstruction vector, is
defined for the current sampling instant t similar to the map (3.59) by incorporating p
past observations with a time delay of h sampling instants between subsequent components
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[123]:
D(t) =

[
y(t) y(t− h) . . . y(t− h(p− 1))

]T
. (3.61)

This variant of an embedding vector uses uniformly distributed sampling points, whereas
also non-uniform embeddings are possible [148, 149].
The prediction algorithm proceeds as follows: In each sampling instant t with t ≥

hp an embedding vector D(t) is acquired. For accomplishing predictions, the current
embedding vector D(t) is compared to all previously collected embeddings D(i) with
hp ≤ i < t by determining the Euclidean distances δ(i) = ‖D(t) − D(i)‖2. The M
best matching embeddings (i.e. with smallest distances) D(t̃1), D(t̃2), . . . D(t̃M ) from the
sampling instants t̃j) with 1 ≤ j ≤M are used to calculate a k-step prediction ŷ(t+ k|t):

ŷ(t+ k|t) =
M∑
j=1

wjy(t̃j + k) (3.62)

with the weights
wj = 1

N

1
δ(t̃j)

(3.63)

and

N =
M∑
j=1

1
δ(t̃j)

. (3.64)

Because y(t̃j + k) is required to be present already, it is necessary to demand t̃j ≤ t − k
for 1 ≤ j ≤ M . That is, depending on k eventually some t̃j need to be excluded if they
do not fulfill this condition and the search needs to be continued until M valid samples
have been acquired. To summarize, first the algorithm searches the points in time with
the best matching embedding vectors. Then a k-step prediction is determined as a linear
combination of the observations at these points in time advanced by k sampling instants.
The rationality of this procedure lies in the assumption that points in time with similar
embedding vectors lead to similar k-step predictions because the state of the underlying
state-space model is also assumed to be similar. The weighting for each sampling instant
depends on the Euclidean distance, so that samples with a larger distance to the current
embedding vector have a smaller contribution to the prediction.
Generally, p defines the number of components in an embedding vector. The choice of p

has to be seen in terms of condition (3.60), such that p needs to be at least twice as large
as the order d of the underlying state-space model driving the breathing or tumor motion.
If p is much larger than d it adds redundancy to the approach and causes unnecessarily
high computational effort. If p is too small, the method may not be able to cover enough
information of the signal’s history because the order of the dynamics can be larger than p/2.
However, d is unknown and therefore p will be treated as a parameter of this approach for
which suitable values will be derived. h decides the time period between the components
of an embedding vector. If h is too small, the components are almost identical and not
much new information is gained. On the other hand, a large h might deliver uncorrelated
data in the embeddings. According to the reconstruction theorem, the nominal value for
h is one. However, like p, also h is given in terms of the sampling rate for which other
values than the nominal ones might deliver better performance of the prediction method.
Hence, h is also treated as a parameter. Furthermore, there is also the parameterM which
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decides on the number of best matching embeddings to be included into the prediction.
The main purpose of M is to introduce an additional degree of freedom to be less prone
to noisy data by averaging the effects of noise from different samples.

3.5.2 Class I Parameter Selection
In preliminary evaluations, the parameter ranges were initially set larger but then confined
to a smaller region because performance gradually degraded with increasing parameter
values. Also p = 1 was excluded which actually shows a severe performance degradation,
complying with theory because p would need to be at least 2 in order to cover first-order
dynamics. Finally, the parameter ranges were selected as follows: p ∈ 2, 3, 5, 7, 9, 11, h
was selected from 1 to 11 in steps of 2 and M was chosen from 2 to 30 in steps of 2.
From the prediction equation (3.62), it is obvious that the prediction method is inher-

ently stable (if the input signal remains bounded) because predictions are directly derived
from linear combinations of previous samples without any feedback. Conversely, all pre-
viously discussed prediction methods adapted their parameters based on errors between
predictions and observations, thus introducing feedback bearing potential of instabilities.
In this respect, these methods behave like infinite impulse response filters whereas the
Takens predictor can be associated with a finite impulse response filter. If one of the Eu-
clidean distances in Eq. (3.63) or Eq. (3.64) is close to zero, then numerical problems can
arise, effectively leading to instabilities. However, this can be easily accounted for in the
algorithm by checking each distance against a small limit which should be a few orders
of magnitude larger than the smallest representable number of the floating point unit,
e.g. 10−10. If the distance is smaller than the limit, then the prediction can be directly
acquired from the corresponding sample alone. It was observed that this situation never
occurred in practice so far, but in any case the algorithm should be protected against this
unnecessary instability.
Similar to the previously discussed prediction methods, the average PR is analyzed at

first. Since there are three parameters, a reduction of one dimension is necessary to enable
visualization. When reducing the dimension along M by averaging, the influence of p and
h can be seen from Figure 3.42. Compared to other prediction methods, the parameters
generally have a small influence on the PR. Maximum average PR is achieved for small
values of both p and h except for p = 2 and h = 1. With increasing prediction horizon,
the quite small region of maximum PR shifts to slightly larger values for p and h, but
always less than 5. The maximum average PR for k ≤ 11 is always found for p = 2 with
h ∈ 1, 3, 5. When reducing the dimension along h, the influence of the parameters M and
p can be analyzed in Figure 3.43. As can be seen, the impact of M is relatively weak
compared to h and p. However, there is a small performance decrease ifM is too small. It
can be inferred that M should be larger than the prediction horizon k. Optimal values for
M increase approximately linearly with rising prediction horizon from 4 for k = 1 to 28
for k = 11. Consequently there is a certain minimum averaging necessary which depends
on the prediction horizon in order to reach a more optimum performance in terms of the
prediction ratio. The influence of p can be observed in the same way as in the previous
figure. The parameters M , p and h have the same influence on the remaining prediction
accuracy metrics.
The smoothness measure SF is depicted representatively for the smoothness in Fig-

ure 3.44, showing the results when reducing the dimension along M . p has generally a
stronger impact than h, in such a way that smoothness improves with increasing p and
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Figure 3.42: Mean prediction ratio of 200 datasets of the Takens predictor in relation to
parameters p and h
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Figure 3.43: Mean prediction ratio of 200 datasets of the Takens predictor in relation to
parameters p and M

slightly with increasing h. Since p is the dimension of the embedding vector, with in-
creasing p, more past observations are taken into account. When these are compared
to previous embedding vectors, a small Euclidean distance of a past embedding vector
means that the current embedding vector fits well to the past one. If that is the case, it
is more likely that predictions which are based on that will also fit better and will lead
to smaller acceleration in the predicted signal and consequently to smoother predictions.
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Figure 3.44: Mean smoothness metric SF of 200 datasets of the Takens predictor in
relation to parameters p and h
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Figure 3.45: Mean smoothness metric SF of 200 datasets of the Takens predictor in
relation to parameters p and M

Small smoothness values are generally found for h = 2 especially for small prediction
horizon. As can be inferred from Figure 3.45, showing the smoothness in terms of M and
p, the parameter M has a stronger impact on smoothness than p. When increasing M ,
more samples enter the prediction equation (3.62) so that noise effects and differences in
sample values average and lead to smoother predictions. Comparing the influences of M
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and p on both smoothness and PR, it turns out that with these parameters, a trade-off
between tracking accuracy and smoothness can be achieved. Since p has a stronger impact
on the PR than M , first p should be chosen to achieve a good PR. Then, smoothness
can be tuned using M without a severe loss of PR. Of course, smoother predictions can
be realized if p is treated as a free parameter, but due to its influence on the prediction
accuracy, this trade-off is required.
When determining the 15 parameter settings with maximum PR for each dataset and

displaying the parameters’ distribution, Figures 3.46 and 3.47 result, showing the distri-
bution in terms of p and h as well as in terms of M and p (with reduction of the corre-
spondingly missing dimension). The regions with the most frequent occurrences can be
identified to be the similar to the ones which possess maximum average PR in Figures 3.42
and 3.43, demonstrating that the parameter setting chosen from maximum average PR
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Figure 3.46: Distribution of 15 parameter settings of the Takens predictor with largest
PR for each dataset and accumulated over all datasets in relation to pa-
rameters p and h

generally also leads to good performance for each dataset. The regions with most frequent
occurrences are found for small p and h ≤ 5. For increasing prediction horizons, the land-
scape of occurrences flattens but leaving a peak at p = 3 and h = 7. Regions for M with
maximum occurrences move from 2-12 for k = 1 to 18-30 for k = 11.
When choosing the parameter setting with maximum average PR for each k separately,

the metrics given in Table 3.17 result for breathing motion. Comparing these to previously
presented prediction methods, it turns out that there is a considerable improvement on all
prediction metrics for the Takens predictor as opposed to the model-based approaches and
the LMS algorithm. However, the RLS and ERLS algorithm perform slightly better in
terms of prediction accuracy, but the performance difference is minor. When comparing
the individual metric values to the results of the ERLS algorithm given in Table 3.13,
the following small performance differences exist on the mean prediction accuracy metrics
where the ERLS algorithm performs slightly better: difference of mean PR is less than
2.1%, difference of mean CI95 is less than 0.13mm, difference in mean RMS is less than
0.03mm and difference in mean MAX is less than 0.37mm. Given these differences, it
is quite interesting to note that the MAE is generally smaller for the Takens predictor
if k ≥ 5. The difference in mean MAE then varies between 0.02mm and 0.04mm for
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Figure 3.47: Distribution of 15 parameter sSettings of the Takens predictor with largest
PR for each dataset and accumulated over all datasets in relation to pa-
rameters p and M

Prediction PR CI95 MAE RMS MAX SF SJ ST S SSNR CT25 CT10
horizon Type [%] [mm] [mm] [mm] [mm] [s] [s]

min 79.6 0.01 0.00 0.01 0.03 0.34 1.97 0.07 1.64 8.75 8.75
mean 91.1 0.22 0.07 0.11 0.66 1.27 2.48 0.13 16.20 8.77 9.33
median 92.1 0.22 0.08 0.11 0.58 1.18 2.48 0.12 16.78 8.75 8.951

max 95.9 0.84 0.20 0.32 3.62 3.24 2.97 0.26 23.68 9.65 22.10
min 57.2 0.03 0.01 0.02 0.06 0.58 2.06 0.07 1.23 8.75 8.75
mean 79.8 0.53 0.17 0.26 1.44 1.58 2.53 0.13 14.76 9.05 12.83
median 82.0 0.48 0.17 0.24 1.28 1.39 2.50 0.12 15.47 8.75 10.223

max 91.1 1.99 0.56 0.92 5.23 4.18 3.07 0.27 21.83 12.85 57.35
min 39.6 0.06 0.02 0.03 0.10 0.76 2.17 0.08 1.05 8.75 8.75
mean 70.5 0.82 0.25 0.38 1.92 2.01 2.63 0.15 13.29 9.59 16.66
median 73.1 0.74 0.23 0.35 1.71 1.78 2.61 0.13 14.18 9.00 11.555

max 88.8 2.70 0.83 1.31 6.29 5.48 3.16 0.33 20.10 31.05 107.95
min 28.7 0.08 0.03 0.04 0.14 0.89 2.27 0.08 -0.59 8.75 8.75
mean 61.4 1.10 0.34 0.51 2.35 2.31 2.70 0.16 12.15 10.25 21.01
median 63.8 1.00 0.32 0.47 2.13 2.07 2.67 0.15 12.89 9.30 13.707

max 85.2 3.62 1.06 1.65 8.63 5.63 3.17 0.40 18.99 39.55 107.95
min 15.9 0.11 0.04 0.05 0.18 0.98 2.29 0.07 -3.40 8.75 8.75
mean 53.4 1.37 0.43 0.63 2.73 2.24 2.66 0.15 11.71 10.03 21.29
median 55.2 1.25 0.39 0.57 2.51 2.06 2.63 0.14 12.43 9.40 14.429

max 81.9 4.57 1.29 1.97 10.98 5.25 3.15 0.37 19.84 24.95 107.95
min 8.1 0.12 0.04 0.06 0.19 1.01 2.34 0.08 -5.61 8.75 8.75
mean 46.5 1.58 0.50 0.73 3.02 2.37 2.69 0.16 11.14 10.48 22.23
median 48.5 1.42 0.46 0.65 2.81 2.18 2.67 0.14 11.75 9.50 15.6711

max 80.4 4.71 1.52 2.16 12.18 5.55 3.19 0.38 19.34 39.55 107.95

Table 3.17: Minimum, mean, median and maximum breathing prediction metrics of pa-
rameter setting with largest average PR determined for each k separately;
metrics are given for different k using the Takens predictor

different k. There are also a few other minimum and maximum metrics for which the
Takens predictor shows an improved performance: min. PR for k ≥ 3, max. PR for
k = 5, 7, 11 and max. MAX for k ≥ 5. The improvement, especially on the max. MAX
error, demonstrates that the Takens predictor can better handle difficult cases in which
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large prediction errors can be expected, especially for increasing prediction horizon. This
can be partially attributed to the stable nature of the Takens predictor, which will always
yield stable predictions, even for larger prediction horizons.
Looking at the remaining metrics for smoothness and convergence time, a considerable

performance increase can be observed for the Takens predictor on most of these metrics
(the only exception is SF for k ≥ 7). That is, the Takens predictor generally produces
smoother measurements which additionally exhibit a faster convergence time (in terms of
the CT25 and CT10 metrics). Additionally, from the influence of the tuning parameters
p, h and M on the PR and smoothness depicted in Figures 3.42 – 3.45 it can be seen
that the PR is rather insensitive to a change of these parameters. But it possesses a
more profound impact on smoothness. Together with the fact that the metric values in
Table 3.17 all resulted from p = 2 which is located at rather large smoothness values, a
further improvement in smoothness can be achieved by increasing p without much loss
in prediction accuracy. Hence, the Takens predictor provides more degrees of freedom
to tune the predictions, allowing a reasonable trade-off between prediction accuracy and
smoothness.
The metrics of the best achievable performance in terms of the PR (i.e. selecting the

parameter setting with largest PR for each dataset and each k individually) are given in
Table 3.18. As already estimated from the distribution of the 15 best parameter settings,
the metrics compared to the case when choosing the parameter setting with largest average
PR for each k individually (given in Table 3.17) are similar, however with a visible increase

Prediction PR CI95 MAE RMS MAX SF SJ ST S SSNR CT25 CT10
horizon Type [%] [mm] [mm] [mm] [mm] [s] [s]

min 81.0 0.01 0.00 0.01 0.03 0.40 2.07 0.07 1.56 8.75 8.75
mean 91.3 0.22 0.07 0.11 0.63 1.16 2.45 0.12 16.34 8.77 9.36
median 92.3 0.22 0.08 0.11 0.58 1.06 2.44 0.12 16.78 8.75 8.901

max 96.0 0.64 0.21 0.29 3.57 2.76 2.86 0.24 24.62 9.65 30.05
min 60.3 0.03 0.01 0.02 0.05 0.65 2.05 0.07 0.79 8.75 8.75
mean 80.5 0.51 0.17 0.25 1.37 1.55 2.53 0.13 14.95 9.07 12.68
median 82.3 0.48 0.16 0.24 1.23 1.38 2.50 0.12 15.55 8.75 10.333

max 91.4 1.70 0.55 0.87 4.53 3.50 3.00 0.25 22.88 12.90 49.15
min 44.1 0.05 0.02 0.03 0.10 0.81 2.20 0.07 0.40 8.75 8.75
mean 71.9 0.78 0.25 0.37 1.86 1.83 2.60 0.14 13.79 9.44 15.71
median 73.8 0.70 0.23 0.34 1.63 1.66 2.59 0.13 14.75 9.00 11.555

max 88.8 2.70 0.83 1.31 6.28 4.11 2.97 0.27 22.01 16.65 81.05
min 29.7 0.07 0.03 0.03 0.13 0.68 2.16 0.07 -0.17 8.75 8.75
mean 63.7 1.04 0.33 0.49 2.25 1.99 2.63 0.15 13.03 9.77 18.62
median 66.1 0.91 0.30 0.43 1.95 1.89 2.64 0.14 13.81 9.30 13.057

max 86.6 3.70 1.06 1.65 8.70 4.76 3.05 0.31 21.84 17.95 71.20
min 18.5 0.08 0.03 0.04 0.12 0.63 2.10 0.07 -4.18 8.75 8.75
mean 56.9 1.26 0.40 0.59 2.57 2.03 2.62 0.15 12.73 10.08 20.03
median 58.5 1.07 0.36 0.51 2.28 1.93 2.64 0.14 13.31 9.47 13.629

max 85.2 4.12 1.26 1.91 10.75 5.06 3.09 0.37 21.51 22.45 92.75
min 11.4 0.08 0.03 0.04 0.12 0.37 1.93 0.07 -4.10 8.75 8.75
mean 51.2 1.44 0.46 0.67 2.80 1.97 2.60 0.15 12.78 10.43 19.62
median 52.8 1.22 0.41 0.58 2.53 1.91 2.63 0.14 13.29 9.60 14.1311

max 84.3 4.37 1.42 2.04 12.56 4.56 3.02 0.35 21.77 28.65 92.75

Table 3.18: Minimum, mean, median and maximum breathing prediction metrics of pa-
rameter setting with largest PR determined for each dataset and each k
individually; metrics are given for different k using the Takens predictor
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in prediction accuracy. For example the increment in mean PR rises from 0.2% for k = 1
to 4.7% for k = 11, which is approximately comparable (though slightly better) to the
increase observed for the RLS algorithm, which was 0.2%-3.2%. Comparing the results
(Table 3.18) to the ERLS algorithm with the parameter setting chosen from average PR
for each k individually (cf. Table 3.13), a performance increase can be observed for the
Takens predictor in several prediction accuracy metrics (especially minimum and mean
PR, a few MAX PRs, some CI95 values, most of the MAE values, all RMS values for
k ≥ 9) and in almost all smoothness and convergence time metrics. On the other hand,
when comparing the best achievable performance between the Takens predictor and the
RLS algorithm (c.f. Table 3.10), the improvements of the Takens predictor can be observed
on almost the same metric values when comparing the parameter setting determined from
average PRs for both methods.

3.5.3 Class II Extension

Another interesting feature of the Takens predictor is that it can naturally be modified to
seamlessly perform tumor motion predictions based on breathing predictions. Assuming
the correlation l 7→ m between breathing axis l and tumor axis m, the Takens predictor
first determines the elements of the embedding vector from breathing samples pBl :

D(t) =
[
pBl (t) pBl (t− h) . . . pBl (t− h(p− 1))

]T
,

with which the Euclidean distances δ(i) are determined with hp ≤ i < t, where t refers
to the latest available interpolated tumor position information. The sampling instants t̃j
of the M best matching embeddings with 1 ≤ j ≤ M (which are determined based on
breathing axis l) are used in the prediction equation

p̂Tm(t+ k|t) =
M∑
j=1

wjp
T
m(t̃j + k) ,

where the weights wj are determined according to Eq. (3.63).

3.5.4 Class II Parameter Selection

For the following analysis, the gap between latest available tumor position and latest
available breathing position (which is considered as the current sampling instant) is bridged
by adapting the prediction horizon according to the gap size. Hence, the prediction horizon
k represents the effective prediction horizon relative to the current sampling instant.
In the class II variant, the Takens predictor always yields stable predictions. As can

be inferred from Figures 3.48 and 3.49, showing the influence of the parameters p and h
as well as M and p on the average PR, the general influence of the parameters are the
same as in the class I variant applied to breathing motion. However, the regions with
maximum PR are found at slightly larger values for all of M , p and h. For all depicted
prediction horizons, the maximum PR in terms of p and h can be found for p = 3 and
h = 7, whereas optimal values for M vary between 22 to 30, increasing with growing
prediction horizon. This is consistent with the trend already discovered in the class I
formulation, where M increased with k. Since the effective prediction horizon in the class
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Figure 3.48: Mean tumor prediction ratio of 200 datasets of the Takens predictor in
relation to parameters p and h
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Figure 3.49: Mean tumor prediction ratio of 200 datasets of the Takens predictor in
relation to parameters M and p

II formulation is always larger than the prediction horizon relative to the current sampling
instant, M should consequently be larger in the class II formulation.
The parameters’ influence on the remaining prediction accuracy metrics is the same

as on the PR. Similarly, the influence on smoothness and convergence time metrics is
analogous to the class I formulation.
When choosing the mentioned parameter settings leading to the maximum average PR,
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the metrics in Table 3.19 result for tumor motion predictions. Comparing these to the

Prediction PR CI95 MAE RMS MAX SF SJ ST S SSNR CT25 CT10
horizon Type [%] [mm] [mm] [mm] [mm] [s] [s]

min -14.7 0.30 0.07 0.13 0.51 0.55 1.97 0.06 4.05 8.75 8.75
mean 48.7 1.73 0.60 0.84 3.44 1.62 2.44 0.13 14.04 10.19 16.05
median 52.2 1.34 0.48 0.66 2.26 1.35 2.39 0.12 14.45 9.33 11.851

max 82.9 14.15 4.01 5.90 18.60 4.91 3.00 0.26 21.69 29.80 55.85
min -17.8 0.30 0.07 0.13 0.51 0.57 1.93 0.06 3.84 8.75 8.75
mean 45.8 1.84 0.63 0.88 3.55 1.71 2.46 0.13 13.62 10.39 16.86
median 48.3 1.43 0.51 0.72 2.40 1.49 2.42 0.12 13.97 9.53 12.303

max 82.4 14.86 4.23 6.12 20.45 5.20 3.02 0.26 21.15 29.80 55.85
min -19.2 0.30 0.07 0.13 0.54 0.64 1.99 0.06 4.07 8.75 8.75
mean 43.0 1.96 0.67 0.93 3.67 1.79 2.48 0.13 13.29 10.59 17.57
median 45.6 1.57 0.54 0.76 2.66 1.62 2.45 0.12 13.82 9.65 12.675

max 81.3 15.77 4.41 6.27 21.14 4.93 3.00 0.26 20.50 29.80 55.85
min -22.2 0.32 0.08 0.13 0.52 0.73 2.09 0.05 2.36 8.75 8.75
mean 40.2 2.08 0.71 0.98 3.84 1.91 2.51 0.14 12.67 11.06 18.71
median 41.1 1.62 0.57 0.79 2.77 1.77 2.50 0.12 13.04 9.65 13.037

max 78.8 14.90 4.44 6.32 22.13 5.00 3.03 0.26 20.38 50.60 91.95
min -25.5 0.32 0.08 0.13 0.65 0.67 2.03 0.06 4.59 8.75 8.75
mean 37.3 2.19 0.75 1.03 3.95 1.86 2.50 0.13 12.96 10.89 18.82
median 39.0 1.73 0.61 0.86 2.93 1.73 2.49 0.12 13.34 9.75 12.929

max 76.8 15.67 4.79 6.56 22.51 5.07 3.02 0.28 19.93 29.80 91.95
min -30.8 0.32 0.08 0.13 0.61 0.50 1.89 0.05 4.95 8.75 8.75
mean 34.3 2.32 0.77 1.07 4.03 1.65 2.45 0.13 13.31 10.92 17.56
median 35.6 1.87 0.67 0.90 2.97 1.58 2.46 0.12 13.36 9.72 12.1011

max 76.7 15.79 4.65 6.55 23.49 3.85 2.88 0.23 20.68 29.80 55.85

Table 3.19: Minimum, mean, median and maximum tumor prediction metrics of param-
eter setting with lowest PR applied to all datasets for different k using the
Takens predictor

results of the class III LMS and RLS predictors (cf. Tables 3.7 and 3.11), an obvious
performance increase can be observed for the Takens predictor on almost all prediction
accuracy metrics and on all convergence time metrics. The increment in PR ranges between
7.9% to 14.1%. However, the class II Takens predictor generally delivers less smooth
predictions. When comparing with the class II LMS ARX predictor (cf. Table 3.8), a
different picture emerges. For small prediction horizons, the Takens predictor results
in less prediction accuracy whereas for larger prediction horizons, the Takens predictor
generally performs better, especially on the mean, median and max. PR metric. However,
on most values of MAX, the LMS ARX predictor shows smaller maximum errors even for
larger k. On the other hand, the class II Takens predictor leads to smoother predictions
with generally lesser convergence time. Comparing the class II Takens predictor to the
RLS ARX predictor with the metrics given in Table 3.12, the latter performs better on
almost all prediction accuracy metrics (except min. PR for k = 9, 11) as well as on almost
all smoothness metrics. The increment in the mean PR moves in between 11.2% and
16.0%, where the increment becomes smaller with increasing prediction horizon. Despite
these improvements for the RLS ARX predictor, the Takens predictor possesses a smaller
convergence time, especially for increasing prediction horizons. From the trend that the
performance increase becomes smaller as the prediction horizons becomes larger, it can be
estimated that for some value of the prediction horizon, the Takens predictor will deliver
approximately similar prediction accuracy. This can be attributed to the stable nature of
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the Takens predictor, whereas the RLS ARX predictor is challenged by more instabilities
with increasing prediction horizon.

3.6 Nonlinearly extended Recursive Least-Squares Algorithm
Essentially the Takens predictor performs a pattern matching by comparing the latest
pattern, i.e. an embedding vector, to previously acquired patterns from the signal’s past.
A prediction is then generated using the best matching patterns by a linear combination
of corresponding sample values. When inspecting individual datasets in terms of the
prediction error when applying the RLS or ERLS predictor, a certain pattern arises in
such a way that the evolution of the errors approximately follows the breathing motion.
That is, prediction errors from a certain breathing phase are sometimes similar to the
same breathing phase of another breathing cycle. With this in mind, the ERLS can be
improved by estimating the future prediction error based on past prediction errors, and
correcting for them during current predictions. The Takens predictor is especially useful
for this purpose as it can estimate the prediction error based on best matching breathing
patterns.
Therefore, the fusion of the ERLS predictor and the Takens predictor is proposed in the

following way for the class I formulation, resulting in the nonlinearly extended recursive
least-squares (NERLS) predictor: At first the ERLS predictor performs multi-step predic-
tions up to the prediction horizon k according to Eqn. (3.35), (3.43), (3.44) and (3.47).
The predictions of the ERLS predictor will further be noted by ŷRLS(t + k|t). In each
sampling instant t > k, the prediction errors

ek(t) = ŷRLS(t|t− k)− y(t)

are determined for each k from the k-step prediction for the current sampling instant
(performed k sampling instants before) and the latest observation y(t). Then, the Takens
predictor is used to estimate the prediction error as follows. Since the prediction error
depends on the breathing phase, the embedding vectorD(t) is acquired from y(t) according
to Eq. (3.61). Also the determination of the M best matching embeddings according to
the Euclidean distances δ(i) remains unchanged. However, the estimates for the prediction
error are now derived from past prediction errors ek(t):

ek(t+ k|t) =
M∑
j=1

wjek(t̃j + k) ,

where the weights wj are given by Eqn. (3.63) and (3.64). Since the prediction errors differ
with respect to k, a separate error estimate is calculated for each k. This is removed from
RLS predictions to produce the final predictions

ŷ(t+ k|t) = ŷRLS(t+ k|t)− γek(t+ k|t) .

The parameter γ ∈ [0; 1] is introduced to adjust the contribution of the error estimate on
the final predictions due to uncertainties in the error estimation. If γ = 0, the presented
approach reduces to the ERLS algorithm.
When performing simulations over the whole parameter range of γ, it is possible to

determine if the approach improves upon the RLS algorithm if γ > 0 is found to result in
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maximized PRs. Apart from γ, simulations were extended to the parameters for the error
estimator, i.e. M , p and h. Since the ERLS predictor is included without modification,
the parameter setting for the ERLS algorithm was selected to lead to maximized average
PRs. For the variable parameters of the NERLS predictor it was found that maximized
average PRs are reached with M = 15 for all inspected prediction horizons, whereas p
and h range from 5 to 9. However, the product of p and h varies in between 25 and 45,
depending on the prediction horizon. Values for γ leading to maximized average PR are
found in between 0.4 and 0.5, hence resulting in an improvement of the NERLS approach
over the ERLS predictor. The corresponding breathing metrics are given in Table 3.20.
Comparing these results to the ones of the ERLS predictor summarized in Table 3.9, a

Prediction PR CI95 MAE RMS MAX SF SJ ST S SSNR CT25 CT10
horizon Type [%] [mm] [mm] [mm] [mm] [s] [s]

min 81.9 0.01 0.00 0.00 0.02 0.39 1.98 0.07 1.81 8.75 8.75
mean 93.2 0.16 0.06 0.08 0.49 1.25 2.51 0.13 15.95 8.76 9.14
median 94.0 0.16 0.06 0.08 0.43 1.16 2.52 0.12 16.54 8.75 8.751

max 98.0 0.36 0.12 0.17 2.30 3.01 2.92 0.32 23.59 9.70 17.50
min 51.4 0.02 0.01 0.01 0.04 0.69 2.15 0.08 1.01 8.75 8.75
mean 82.6 0.44 0.16 0.22 1.07 1.69 2.60 0.15 14.05 9.07 14.10
median 84.4 0.41 0.15 0.20 0.91 1.55 2.60 0.13 14.61 8.75 10.803

max 92.7 1.09 0.44 0.56 4.65 3.40 2.96 0.40 22.19 13.45 57.35
min 34.7 0.04 0.02 0.02 0.06 0.73 2.24 0.09 1.28 8.75 8.75
mean 73.5 0.70 0.25 0.35 1.58 1.97 2.67 0.17 12.84 9.85 19.20
median 77.1 0.62 0.23 0.31 1.34 1.83 2.66 0.14 13.59 9.25 13.705

max 88.9 2.02 0.80 1.04 8.24 4.67 3.03 0.39 20.39 29.75 90.05
min 16.0 0.05 0.02 0.03 0.09 0.73 2.31 0.09 1.33 8.75 8.75
mean 64.3 0.98 0.35 0.48 2.07 2.07 2.72 0.18 12.10 10.87 24.27
median 69.8 0.86 0.32 0.42 1.78 1.88 2.70 0.16 13.12 9.83 18.727

max 85.9 2.78 1.19 1.53 11.84 4.83 3.08 0.38 19.25 29.85 104.20
min -1.7 0.07 0.03 0.03 0.12 0.72 2.28 0.10 1.22 8.75 8.75
mean 56.1 1.24 0.44 0.60 2.49 2.04 2.71 0.19 11.81 11.48 27.12
median 61.9 1.08 0.38 0.52 2.15 1.92 2.70 0.17 12.85 10.45 23.459

max 83.1 3.67 1.48 1.92 13.83 4.59 3.06 0.36 18.49 28.20 99.55
min -7.4 0.08 0.03 0.04 0.12 0.72 2.25 0.10 3.11 8.75 8.75
mean 49.8 1.44 0.51 0.69 2.80 2.02 2.70 0.19 11.84 11.63 30.11
median 55.1 1.26 0.45 0.61 2.44 1.93 2.70 0.17 12.34 10.70 27.5511

max 81.1 4.51 1.77 2.28 15.96 4.38 3.03 0.35 19.71 25.05 105.60

Table 3.20: Minimum, mean, median and maximum breathing prediction metrics of pa-
rameter setting with largest average PR determined for each k separately;
metrics are given for different k using the nonlinearly ERLS predictor

performance increase can be observed on almost all prediction accuracy metrics except
for some max. CI95, max. MAE and mean and median MAX values with only a small
difference in between. The mean PR improves by 0.1%-1.6%, where the increase becomes
larger for rising prediction horizons. While smoothness slightly degrades except for most
of the maximum smoothness metrics, a clear benefit is observed for convergence time.
The class II RLS ARX predictor can also be extended by the error estimator based on the

Takens predictor in a similar way. Since in the class II variant a complete set of breathing
predictions is performed first, the NERLS approach can be adopted in the same way in
order to deliver breathing predictions which are corrected by breathing prediction error
estimates. These breathing predictions are then fed as external input into an ARX model,
where its parameters are also updated by an RLS algorithm. The ARX model delivers
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tumor predictions for which a separate instance of the error estimator is additionally
incorporated, estimating the tumor prediction error. Finally, the tumor prediction error
is removed from the tumor predictions of the RLS ARX predictor. The achieved results
when compared with the metrics of the RLS ARX predictor given in Table 3.12 are similar
to the ones of the NERLS predictor applied to breathing motion: the PR and most of the
prediction accuracy and convergence time metrics show a slight improvement, while the
smoothness drops a little.
To summarize, the NERLS approach improves upon the ERLS algorithm in terms of

prediction accuracy and convergence time of breathing predictions, where the ERLS algo-
rithm has so far delivered the most precise predictions among all discussed predictors. A
similar improvement can also be achieved for tumor predictions by employing an additional
tumor prediction error estimator based on Takens predictor.

3.7 Comparison of Prediction Algorithms
While the analysis of previously discussed prediction methods was based on quantitative
measures, it is worthwhile to extend the analysis also in a qualitative manner as this can
reveal general characteristics of predictions which cannot be extracted from the metrics.
Therefore two patient datasets were selected for which 3D breathing predictions are shown
in the following for each prediction method (except the LMS predictor). The first dataset
of patient 1, depicted in Figure A.1, is a rather regular one, whereas the second dataset
of patient 40, visualized in Figure A.4, contains some irregularities in the form of baseline
shifts and amplitude variations. For each prediction method, the parameter setting was
selected as the one maximizing the average PR for the displayed prediction horizons, i.e.
one of them which was used in the tables giving the quantitative metrics.
Figures 3.50 – 3.51 show the predictions of the plug-in ERLS predictor for patient 1 and

40, respectively. Each figure contains the 3D breathing predictions while for each axis the
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Figure 3.50: Multi-step predictions of plug-in ERLS predictor for patient 1
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Figure 3.51: Multi-step predictions of plug-in ERLS predictor for patient 40

one-, five- and eleven-step predictions (displayed in red, green and orange color, respec-
tively) are overlaid on the true signal in blue color. Additionally, each figure shows the
complete predictions as time progresses including the dead time for which no predictions
can be performed (prediction values are set to zero during this time) and the transition
phase during which the predictions converge.
The dead time of the ERLS predictor is clearly visible in the figures and depends on the

order na of the underlying AR model in addition to the prediction horizon. The predictions
in the figures were gained with na = 50, corresponding to a dead time of 2.5s plus the
prediction horizon. It can be observed that the one-step prediction converges within one
sampling instant to the true signal along all axes and stays close to it, even during the
irregularities of patient 40 at time 20s and 32s. With increasing prediction horizon, the
transition phase prolongs which can be seen by larger deviations from the true signal.
Especially for patient 1, temporary deviations extend by more than one amplitude for
several seconds. It is also interesting to observe the behavior during irregularities of patient
40. While the one-step predictions are close to the true signal, deviations become larger
with increasing prediction horizon. The eleven-step predictions are shaped in a way that
would be expected if the signal had continued regularly as before. After the irregularities,
deviations slowly converge again in a time frame of several seconds, depending on the
severeness of the irregularity. This is illustrated by the second irregularity for which the
transition phase is much shorter than for the first one which is longer in duration. In
terms of smoothness, it can be seen that predictions become less smooth as the prediction
horizon increases which is supported by the smoothness metrics given in Table 3.13. When
comparing both patients, it turns out that patient 1 can be predicted more accurately than
patient 40 because patient 1 possesses a more regular breathing pattern whereas patient
40 shows more variability.
The predictions of the Kalman CV predictor presented in Figures 3.52 and 3.53 are

quite different from the ones of the ERLS predictor. While the one-step predictions are
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Figure 3.52: Multi-step predictions of Kalman CV predictor for patient 1
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Figure 3.53: Multi-step predictions of Kalman CV predictor for patient 40

still close to the true signal, larger deviations are found for increasing prediction horizons.
The largest deviations occur during the peaks of breathing motion which originate from the
assumption of constant velocity. In the vicinity of the peaks, the signal dynamics become
nonlinear, thus violating the linear assumption. Consequently, deviations are larger than
for the RLS predictor. Additionally, the predictions of patient 40 are less smooth which
can be attributed to a suboptimal setting of the process noise variance S, which needs to
account for the acceleration present in the true signal. Hence, the Kalman CV predictor is
sensitive to the choice of the process noise, where the optimal setting may vary depending
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on the dynamics of the breathing pattern. However, a clear advantage of the method is
that all multi-step predictions can be performed as soon as a first sample is available, a
feature which is not found in other methods. Corresponding predictions for the Kalman
CA predictor are similar, hence their display is omitted.
During the comparison of metrics between the Kalman CV predictor and the EKF with

spring-mass model, a performance increase was observed, which is exemplified by inspect-
ing Figures 3.54 and 3.55, showing the predictions of EKF predictor. It can be seen that
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Figure 3.54: Multi-step predictions of EKF predictor for patient 1
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Figure 3.55: Multi-step predictions of EKF predictor for patient 40
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predictions are closer to the true signal compared to the Kalman CV or CA predictor, es-
pecially during the peaks for smaller prediction horizons. Due to the underlying nonlinear
model, which is linearized to the latest past of the signal, the predictor can deal better
with the nonlinear effects in the vicinity of peaks. However, as the prediction horizon
increases, linearization does not hold anymore, leading to larger deviations. Nevertheless,
performance is generally better than the Kalman CV predictor but less than the RLS
predictor.
The multi-step predictions of the Takens predictor are shown in Figures 3.56 and 3.57.

The dead time depends on the product of the parameters h and p. Since moderate values of
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Figure 3.56: Multi-step predictions of Takens predictor for patient 1

h and p were identified as optimal ones, it can usually be kept rather short as opposed to the
LMS or RLS predictors. However, at least one complete breathing cycle is necessary, for
patient 40 even two to three, in order to get reliable predictions. Nevertheless, prediction
amplitudes stay constrained during the transition phase as opposed to the RLS predictor.
Compared to the previously discussed predictors, the predictions are smoother even for
larger prediction horizons, which was also observed on the quantitative metrics. Unlike
other predictors, sometimes one-step predictions deviate from the true signal, for example
during the peak at time 32s for patient 1 on the y- and z-axis. Since the predictor searches
for a breathing pattern (the embedding vector) in the signal’s past and performs a linear
combination of the best matching embeddings to generate a prediction, it can only predict
something which already occurred in the past. When comparing the height of this peak to
the previous ones present in the signal, it can be seen that the amplitude was never reached
in the signal before. Hence, the resulting predictions deviate from the true signal. This
is also observable for patient 40 where the variability challenges the predictor. Although
predictions are relatively close to the true values, the variability of breathing patterns
results in less smoothness compared to patient 1. Due to the pattern matching principle
of the Takens predictor, difficulties arise during the irregularities of patient 40. Because
of the inherent stability of the predictor, the predictions stay constrained but oscillating
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Figure 3.57: Multi-step predictions of Takens predictor for patient 40

around the true value. However, an advantage of this predictor when compared to the
others is the short convergence time after irregularities which result from the pattern
matching principle, in which no parameters need to converge again.
The performance benefit of the NERLS predictor is rather difficult to estimate from

the figures, therefore they are omitted. The resulting figures are very similar to the ones
of the ERLS predictor, where the predictions are slightly closer to the true signal during
some phases of the breathing motion.
Table 3.21 summarizes the most important metrics of the various prediction methods

in a qualitative way. An assessment of the predictor’s accuracy is given which is based on

Prediction Accuracy Smooth- Dead Transition Convergence Computation
method (PR) ness time phase time CT10 time [µs]
LMS − ++ na +/− + 52.398±3.886
RLS + + na −− + 1946.079±28.582
ERLS + + na −− + 1946.079±28.582

Kalman CV −− −− 0 + −− 45.515±3.664
Kalman CA −− −− 0 + −− 48.169±3.315
Kalman EKF − −− 0 + −− 48.361±3.532

326.121±98.698Takens + ++ h · p − ++
increase by 9.808µs/s
2309.237±125.496NERLS ++ + na −− +

increase by 9.893µs/s

Table 3.21: Qualitative comparison of class I prediction methods

the mean PRs. Furthermore, the smoothness is relatively categorized based on the mean
smoothness metrics. The dead time is given in multiples of sampling instants and in terms
of parameters of the corresponding prediction methods. The transition phase is a qualita-
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tive assessment on how the predictions are shaped after the dead time until the predictions
have converged, i.e. how reliable they are, which can be derived from Figures 3.50 – 3.57.
The mean convergence time metric CT10 is used to assess the convergence time addition-
ally to how predictions converge during the transition phase. The computation time was
measured using the C++ implementation of each prediction method on an Intel® Pentium
4 processor with 3.0GHz running the hard real-time framework Xenomai as described in
Section 2.2.2.6. The computation time is given as average time in microseconds of a cal-
culation cycle during one sampling instant and its standard deviation. For each method,
the parameter setting was chosen from the ones with maximum average PR, which leads
to the largest computation time. So the computation time can be regarded to be close to
the worst case. All prediction methods were configured to perform multi-step predictions
in each sampling instant with a horizon of 1-11.
As can be inferred from Table 3.21, each prediction method possesses its own strength

and weaknesses. While the LMS predictor is less accurate than the RLS, ERLS, Takens
and NERLS predictor, it shows one of the best results in terms of smoothness. Addi-
tionally, the computation time is low, even with larger model orders na. Since the order
needs to be selected much larger for the LMS predictor (60-150) than for the RLS variants
(8-30), the dead time is usually 2-5 times as large. The RLS variants show an improved
prediction accuracy associated with a slight loss in smoothness, where the smoothness of
the ERLS predictor is improved compared to the RLS predictor. The cost for this im-
provement is a relatively large computation time, where most of the time is spent during
update of the inverse autocorrelation matrix P (t). Another drawback of the RLS vari-
ants is unreliable predictions during the transition phase, especially for larger prediction
horizons. The model-based Kalman predictors are less accurate and smooth as other pre-
diction methods, however they possess no dead time, relatively reliable predictions during
the transition phase and the lowest computation times. The Takens predictor, delivering
acceptable accuracy and good smoothness, has a relatively small dead time (since optimal
parameter values for p and h are small compared to the model orders na of the LMS and
RLS predictors) and a fast convergence time. The computation time is moderate (due
to a highly optimized implementation), where most of the time is required for the search
for the best matching embeddings. Unlike other predictors where the computation time
is constant (given constant parameters), the computation time here is increasing linearly
with time because in each sampling instant a new embedding vector is added. If the av-
erage increase of about 10µs/s should lead to a loss of the real-time property of the whole
compensation system for exceptionally long datasets, the history of embedding vectors
can be limited. Then the Takens predictor also possesses a constant computational time.
Note that the Takens predictor is the only one of the discussed predictors which is inher-
ently stable. Since the NERLS predictor is based on the ERLS and Takens predictor, its
computation time is larger than both together and also increases with time. It showed the
most accurate predictions with smoothness comparable to the other RLS variants, while
inheriting the properties for transition and convergence time of the RLS predictors.
In order to reduce the transition phase, several of the discussed predictors can be run

in parallel and their predictions used for a certain time. In the beginning of a treatment
fraction, the predictions of EKF predictor with spring-mass model can be used for all
prediction horizons to bridge the dead time of other predictors, since the EKF predictor
possesses no dead time and produces better predictions than the Kalman CV or CA
predictors. As soon as the dead time of the ERLS or NERLS predictor has passed,
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their predictions can be used. However, due to the irregular behavior of predictions
with larger prediction horizons during the transition phase, it is advisable to restrict the
adoption of predictions from ERLS or NERLS predictors to small prediction horizons, e.g.
smaller than five. Usually these predictions converge after a few breathing cycles, so that,
depending on a defined number of breathing cycles (determined by the online peak detector
discussed in Section 2.2.2.3), the NERLS predictions can be used also for larger prediction
horizons. Since the NERLS predictor also incorporates the Takens predictor, breathing
predictions can be acquired by the Takens part of that predictor almost without additional
computation time. Due to the stable nature of the Takens predictor, its predictions can
serve as fallback in case the underlying ERLS predictions become unstable for larger
prediction horizons. To summarize, this scheme exploits the advantages of each predictor
to serve several goals simultaneously by eliminating dead time, realizing reliable predictions
during the transition phase and achieving accurate predictions after convergence while
retaining the possibility of always stable predictions.

3.8 Summary

Based on analysis of the general characteristics of breathing and tumor motion, several
correlation models were developed to establish a relationship between these motions, which
is important for compensation of respiration-induced motion of lung tumors. Especially in
the context of the poor quality of EPID-based tumor position information, the correlation
enables more reliable predictions of tumor motions than without breathing information.
Several prediction methods were presented to enable both breathing and tumor motion
predictions. Ranges of the free parameters for each prediction method were determined
by comparing their performances on a large number of pre-recorded clinical datasets from
real patients using 11 performance metrics representing prediction accuracy, smoothness
and convergence time. It was shown that for all prediction methods narrow ranges of the
parameters can be found which are able to deal with a wide variety of patient motion
characteristics.
Unique extensions to the prediction methods in the form of ARX models were proposed

which considerably improve prediction performance by fusing both breathing predictions
and past tumor motion information. Simultaneously, they implicitly incorporate the cor-
relation in the model eliminating the use of explicit correlation schemes. Despite the goal
of tumor motion compensation being pursued, results of breathing motion prediction was
also presented. These results can be generalized to tumor motion prediction if tumor
positions are determined by a sensor with higher update rates (e.g. the Calypso system)
than the EPID-based system. Therefore, the prediction methods and developed predic-
tion schemes are flexible in terms of the choice of the underlying sensors. The obtained
results based on the EPID for tumor position determination can be seen as a worst case
which can be improved upon by the availability of other sensor systems. However, since
predictions even under these challenging conditions are feasible, they lay the foundation
for non-invasive tumor position determination.
By fusing several predictors together, it was shown that the individual advantages of

each can be exploited to realize reliable multi-step predictions right from the beginning
of the first sampling instant throughout the whole treatment process. Thus, the dead
time of predictors can be eliminated completely and transition phases can be improved,
which is especially useful for intensity-modulated radiotherapy where treatment fractions
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3.8 Summary

usually range from about 40 seconds to two minutes. While other predictors implemented
for tumor motion prediction require a considerable amount of training time (e.g. the pre-
dictor based on support vector regression used in [30] requires 30 seconds), the benefit of
elimination of dead times is obvious.
The obtained multi-step predictions can now be used to generate a reference trajectory

for the HexaPOD (cf. Section 2.2.1.5), serving as input to a control scheme which makes
the HexaPOD follow that trajectory. The development of appropriate control schemes is
the goal of the following chapter.
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Chapter 4

Modeling and Control of the HexaPOD

For realizing motion compensation, the actuator of the presented robotic system, i.e. the
HexaPOD, needs to be controlled to follow the reference trajectory generated from tumor
motion predictions. For the sake of model-based control schemes, a dynamic model of the
HexaPOD is required which describes the position response in terms of the commands
sent to the HexaPOD, i.e. the control input. Hence, dynamic modeling of the HexaPOD
is discussed. A simple linear model is proposed to describe the dynamic response. The
model’s parameters are gained by system identification methods. A more realistic nonlin-
ear extension to the linear model is presented in order to deal with nonlinear effects in the
HexaPOD’s position response.
Based on these models, a model predictive controller is derived, enabling the HexaPOD

to follow a given desired reference trajectory. A second controller is proposed based on one
assumption of the working principle of the internal controller of the HexaPOD. Finally, a
third controller is derived as combination of the first and second one. For each of these
controllers, comparative results with real hardware experiments and humans in the loop
as well as choices of free parameters are presented and discussed.

4.1 Modeling the HexaPOD
The control interface of the HexaPOD uses positions as set points in commands (cf. Sec-
tion 2.2.1.1). In response to a positioning command, the HexaPOD exhibits a certain dy-
namic behavior which determines how the desired position given in a command is reached
by exerting appropriate accelerations which are integrated over time to velocities and
positions. Thus, a dynamic model needs to describe the position-position response. This
deviates from the usual problem of dynamic modeling where normally the input is given as
torque or voltage which results in a certain velocity and position response. To the knowl-
edge of the author there is no description available which models the position-position
response in physical terms. Hence, modeling the dynamic response of the HexaPOD
proceeds by assuming a certain model structure and acquiring its parameters by system
identification methods.

4.1.1 Linear ARX Models
As a first approach, the HexaPOD is considered a black box and its response will be
modeled by an ARX model. For a single translational axes j = 1, 2, 3, the input uj(t) ∈ R
to the model can be identified with the desired position present in the current command
to the HexaPOD whereas the output yj(t) ∈ R represents the actual position of the
HexaPOD. Since each axis can be actuated independent of the others, a separate model
is setup for each axis.
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Chapter 4 Modeling and Control of the HexaPOD

For convenience of presentation, the model is stated as a SISO system representing the
dynamics of the HexaPOD treatment couch for a single axis. Generally the model is given
by

Aj(q)yj(t) = Bj(q)uj(t− nk) + ej(t) . (4.1)

q is the delay operator with

Aj(q) = 1 + a1,jq
−1 + · · ·+ ana,jq

−na ,

Bj(q) = b0,jq
0 + b1,jq

−1 + · · ·+ bnb−1,jq
−nb+1 ,

such that

Aj(q)yj(t) = yj(t) + a1,jyj(t− 1) + · · ·+ ana,jyj(t− na) , (4.2)
B(q)juj(t− nk) = b0,juj(t− nk) + b1,juj(t− nk − 1) + · · ·+ bnb−1,juj(t− nk − nb + 1) ,

(4.3)

include the information from the past nb samples of the input shifted backward by nk
samples as well as the past na samples of the output signal. Thus, the order of the model
is given by the tuple (na, nb, nk).
Rearranging Eqn. (4.1) – (4.3) to

yj(t) = ϕTj (t)θj + ej(t)

with the vectors

ϕj(t) = [yj(t− 1), . . . , yj(t− na), uj(t− nk), . . . , uj(t− nk − nb + 1)]T , (4.4)
θj = [a1,j , . . . , ana,j , b0,j , . . . , bnb−1,j ]T , (4.5)

the problem statement of modeling is to find the best parameter vector θj minimizing the
error ej(t) from input/output samples of an identifying dataset. Having once obtained the
parameters, the model can be used for simulation using a test dataset for model validation.
Starting from an initial condition ϕj(0), the undisturbed model

yj(t) = ϕTj (t)θj (4.6)

is consecutively fed with a new input sample uj(t−nk) and the last model output yj(t−1)
in each sampling instant by updating ϕj(t).

4.1.1.1 System Identification

System identification [150] refers to the procedures carried out to find the parameters of
the model. Given a set of equidistantly sampled inputs and outputs of the ARX model,
its parameters are identified by the least-squares method, which finds the minimum of the
squared errors ej(t) with respect to the model parameters θj . Naturally, the choice of the
input signal affects the dynamic response which can be observed on the output. That is,
the dynamic response varies with different input signals. Hence, for a certain application
of the system to be modeled, it is important to design the input to the system in such a
way to make the system exhibit all the dynamics, especially the ones which are required
for the application, so that these dynamics are reflected by the identified parameters.
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4.1 Modeling the HexaPOD

In the context of this work, the HexaPOD will be used to compensate for quasi-periodic
breathing and tumor motions. In this case, the HexaPOD will perform approximately
the same motion in the opposite direction. The main characteristics of these motions
were analyzed in Section 3.1. It was found that main frequencies range from 0.17Hz to
about 0.6Hz, where most of the patients show dominant motion frequencies in between
0.225Hz and 0.375Hz. Maximum amplitudes differ depending on the axis. On average, the
maximum amplitude range (peak to peak) moves in between 0.805mm to 6.705mm, where
its maximum value lies in between 3.901mm and 29.056mm. This amplitude limit has
been reported to be exceeded only in rare cases [78]. Furthermore, it was discussed that
for tumor motion compensation the HexaPOD will have to operate, during some phases,
at its maximum velocity with good coverage of the main phases still possible.
Since patients have different and varying motion characteristics, the design of input

signals suitable for system identification needs to take the full range of these characteristics
into account. Chirp signals with a constant amplitude can cover the whole frequency range
because frequencies are varied with time. With linear chirp signals, the instantaneous
frequency f(τ) ∈ R is varied linearly with time τ according to

f(τ) = f0 + cτ ,

where f0 ∈ R is the starting frequency being active at time τ = 0 and c ∈ R is the chirp
rate, which determines how fast the frequency rises with time. A specific value of the
linear chirp signal is given by

uj(τ) = a sin
(

2π
∫ τ

0
f(τ ′)dτ ′

)
= a sin

(
2π
(
f0τ + c

2τ
2
))

, (4.7)

where a is the amplitude of the chirp. To cover the frequency range in a single identifying
dataset, the starting frequency was chosen to be f0 = 0.01Hz, the chirp rate was set to
c = 0.01, so that at a maximum time τ = 60s the instantaneous frequency of 0.6Hz is
reached. Three datasets with different amplitudes were created, where the amplitude was
constant in each dataset. The datasets are referred to as C1, C2 and C3, for which the
amplitude a was chosen as 1mm, 2mm and 5mm, respectively (leading to peak-to-peak
amplitudes of 2mm, 4mm and 10mm, respectively) to cover the main range of amplitudes.
The datasets were generated by sampling Eq. (4.7) with a rate of 33Hz and using the
corresponding values for all translational axes.
Apart from the ability of chirps to cover necessary frequency and partially also amplitude

ranges, they additionally fulfill the persistent excitation condition [151] which is essential
for system identification. The order of persistent excitation of an input signal generally
imposes an upper limit on the order of the model to be identified. If the order of the model
is n, then the input needs to be at least persistently exciting of the same order n to reliably
identify its parameters. Essentially this condition guarantees that the autocorrelation
matrix stays non-singular throughout the identification process. This is important because
its inverse is required for the least-squares solution of the model’s parameters. Since step
inputs are persistently exciting of order 1, they are suitable for identification of first-
order systems only. Sine signals with one frequency component are persistently exciting of
order 2. For each frequency component added to a sine signal which produces a separate
spectral line, the order increases by two. However, a chirp signal combines many frequency
components together so that the design of an input signal remains straightforward. The
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Chapter 4 Modeling and Control of the HexaPOD

order of persistent excitation was evaluated with MATLAB for the generated discrete
datasets. Using the standard threshold of 10−9 for the algorithm which determines the
order of persistent excitation, the chirp sampled at 33Hz shows an order of 12 while the
same chirp sampled at 20Hz is persistently exciting of order 14. Thus, it will be possible
to identify models with orders at least up to 10.
The experiments for system identification were carried out at the Department of Radi-

ation Oncology in Würzburg. For this experiment, the HexaPOD was loaded with 100kg
and equipped with a C-shaped bridge (cf. Figure 2.5(c)) with IR markers mounted on
it. With this IR tool, the actual position of the HexaPOD was measured by the Polaris
Spectra infrared camera at a rate of 20Hz. On the control PC the testing software package
(cf. Section 2.2.1.6) was instructed to send the samples of the datasets as desired positions
to the HexaPOD. It was ensured that the timing accuracy of the application is well be-
low 1ms to avoid timing errors being the reason for position displacements. The control
PC also interfaces with Polaris IR camera, so that a common clock source can be used
for timestamping both the Polaris measurements and sending of desired positions to the
HexaPOD. For evaluation, both datasets were interpolated to a common sampling rate of
20Hz.
Figures 4.1(a) and 4.1(b) depict the results along the z-axis for the chirp signals C2

and C3, respectively. The red line shows the desired positions for the z-axis which were
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Figure 4.1: Exemplary chirp signals C2 and C3 used for model identification, red: desired
position (input, command), blue: actual position (output, measurement)

sent to the HexaPOD using a command. The blue line depicts the actual position of
the HexaPOD which was measured by the Polaris camera. As time progresses, i.e. the
instantaneous frequency of the chirp signal rises, the actual position of the HexaPOD does
not reach the desired one any more for the chirp C2 in Figure 4.1(a). This behavior occurs
due to the velocity limit of the HexaPOD. The chirp C3 possesses a larger amplitude and
the same frequencies as C2, so that the linear velocities of C3 are larger. Consequently
velocity saturation has a stronger impact on the actual position of the HexaPOD, which
can be clearly observed in Figure 4.1(b). The plots exemplify the results obtained for the
z-axis. For the x- and y-axes, similar results were obtained. Table 4.1 gives an overview of
all chirp signals and a qualitative assessment, if velocity saturation occurred, that is, if the
desired amplitude was not reached on the output. This data consisting of input samples
originating from the chirp datasets and output samples obtained by measurements of the
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4.1 Modeling the HexaPOD

ID a [mm] f0 [Hz] c fe [Hz] saturation
C1 1 0.01 0.01 0.6 no
C2 2 0.01 0.01 0.6 minor
C3 5 0.01 0.01 0.6 yes

Table 4.1: Chirp datasets with starting frequency f0, chirp rate c and end frequency fe
used for system identification

HexaPOD’s position is used to perform parameter identification of ARX models.
Furthermore, several test datasets with two superimposed sine signals of different fre-

quencies f1 and f2 and amplitudes a1 and a2 were used for validating already identified
models. They were generated by sampling

uj(τ) = a1 sin (2πf1τ) + a2 sin (2πf2τ)

with a rate of 33Hz. These are summarized in Table 4.2. While the sine datasets S1 to S4

ID f1 [Hz] a1 [mm] f2 [Hz] a2 [mm] saturation
S1 0.1 1 0.4 2 no
S2 0.1 2 0.4 1 no
S3 0.05 4 0.25 3 no
S4 0.05 3 0.25 4 no
S5 0.1 10 0.4 20 yes
S6 0.1 20 0.4 10 yes

Table 4.2: Sine datasets with frequencies f1, f2 and amplitudes a1, a2 used for system
identification validation tests

show no velocity saturation because the linear velocity of the superimposed sines is smaller
than the HexaPOD’s velocity limit, an almost permanent velocity saturation is observed
for the sine datasets S5 and S6, where the HexaPOD continuously moves at maximum
speed.
The criterion for model validation along an axis j in this analysis is the RMS error

RMS(yMj , yj) =

√√√√ 1
n

n∑
t=1

(
yMj (t)− yj(t)

)2
, (4.8)

where yj(t) ∈ R is the measured position of the HexaPOD along axis j and yMj (t) ∈ R is
the output of the simulated model (4.6). Before the RMS error can be determined, both
time series need to be interpolated to the same sampling times, resulting in a common
length n ∈ N. Since all datasets start at position zero along all axis with the HexaPOD
initially resting, the initial vector of observations and commands ϕj(0) is set to the zero
vector. Note that for the validation tests, the model is completely simulated. No updates
with actual positions of the real HexaPOD are performed. Instead when moving from one
sampling instant to the next, ϕj is updated accordingly with the previous output of the
model. As a consequence of this, errors can accumulate in the model due to parameter
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Chapter 4 Modeling and Control of the HexaPOD

mismatch as opposed to the real HexaPOD.

4.1.1.2 Model Order

The orders of the ARX model, i.e. the tuple (na, nb, nk), are the free parameters in the
problem of system identification. They will be estimated by a grid search in a range
of suitable order values using the identifying datasets C1 and C2. In addition to the
datasets S1 to S4, C1 or C2 (the one which is not used for identification) is also used
for model validation. These datasets have in common that no or only minor velocity
saturation occurs, so that they result in linear behavior. If C3 is used for identification,
the resulting model would capture the saturation present in the output of the identifying
dataset and would lead to large errors during model validation using datasets with no
velocity saturation. Due to the order of persistent excitation of the chirp datasets, na, nb
and nk were varied between 1 and 10. Note that the ARX model is expressed in terms of
the backward shift operator, so that for nb > na the resulting model is still causal even
if nk is increased. For each model order (na, nb, nk) the following procedure was applied:
An ARX model of the chosen order was identified using the dataset C1. Then the model
was simulated with the datasets C2 and S1 to S4 and for each simulation trial the RMS
error according to Eq. (4.8) was recorded. After that, the procedure was repeated with
C2 as identifying dataset and C1 was included in the model validation datasets instead of
C2. Finally, the mean value was determined from all acquired RMS errors.
These average RMS errors are depicted in Figure 4.2 for the z-axis. Each plot shows the

results for a single nk in the range 1-6 over na and nb. Almost identical plots are found
for the x- and y-axis as well, so that following considerations can be applied to these axes,
too. Additionally the location of the three smallest RMS errors is highlighted with a red
dot. In general it can be concluded irrespective of nk that smallest RMS errors are found
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Figure 4.2: Average RMS error along z-axis when identifying ARX models with C1 and
C2 and applying them to test datasets C1, C2, S1 to S4
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4.1 Modeling the HexaPOD

for nb ≤ 5. In this case na has a minor impact, however RMS errors are slightly increasing
with rising na. For most values of nk it can be seen that na = 1 and nb = 1 results in
increased errors, so that this order should not be chosen. For nk ≤ 4, the most frequent
occurrences of the three smallest RMS errors are found for nb = 2 or nb = 3 with na ≤ 2.
This suggests that the HexaPOD can be modeled as a second-order system for one axis.
For rising model orders, measurement errors and disturbances which are of higher order
are also incorporated into the model leading to larger RMS error. Hence, a smaller model
order simultaneously acts as a low pass filter, rendering the model less sensitive to noise.
Figure 4.3 visualizes the average of the three smallest RMS errors for each nk individually

in order to elaborate the dependency on nk. Generally small values of nk ≤ 4 lead to the
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Figure 4.3: Average RMS error along the translational axes of the three parameter sets
(na,nb) with smallest RMS errors shown for each nk

smallest RMS errors where the minimum is found at nk = 3 for the x- and y-axis and at
nk = 4 for the z-axis. However, choosing smaller values is also a feasible approach as RMS
errors are still close to the ones for nk = 3. On the other hand, increasing nk to values
larger than 6 results in rising RMS errors (they were included in the simulation but are not
shown here). While the best model orders are similar for the different axes, the RMS errors
show a small difference. Part of this difference is subject to noise effects of the Polaris
system, where the noise power is different along each axis (cf. Section 3.4.3). Another part
of this error can be the caused by small deviations during calibration (which is performed
with noisy measurements of the Polaris system), rendering the axes of the Polaris IR
camera and the HexaPOD system to not perfectly coincide. Furthermore, slightly different
dynamics of the HexaPOD along each axis can also be a reason. During the estimation
of the HexaPOD’s latency (cf. Table 2.4), latencies between 103ms and about 240ms
were observed when the HexaPOD was initially at rest or moving with minimum velocity,
where the largest latencies were found for the x-axis. When the HexaPOD was moving
faster, then latencies drop down to approximately 24ms to 38ms. In the identifying chirp
datasets both slow and fast motions are present. Combining both observations of the
latencies approximately matches the choice for nk = 3 which corresponds to 150ms. If the
HexaPOD is mostly moving fast, also the choice of nk = 1 is valid, which comes closer to
the reduced latencies.
When the HexaPOD is instructed to change its position given a certain command, it

accelerates, then reaches a phase with constant velocity and finally decelerates again until
the desired position has been reached. Using step inputs, the typical second-order behavior
with two delay elements can be observed on the actual position. Hence, the model order
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Chapter 4 Modeling and Control of the HexaPOD

should be selected as two (for both na and nb), consistent with the results from Figure 4.2.

4.1.1.3 Model Validation

For model validation, three models of order (2,2,3) were identified with datasets C1, C2
and C3, respectively. Each model was simulated with the inputs from datasets S1 to
S4 and C1 to C3 excluding the one used for identification. The resulting RMS errors
obtained by averaging over the translational axes are summarized in Table 4.3. It is seen

Test dataset RMS ID C1 [mm] RMS ID C2 [mm] RMS ID C3 [mm]
S1 0.0614 0.0607 0.5819
S2 0.0418 0.0416 0.5578
S3 0.0653 0.0648 1.6018
S4 0.0774 0.0794 1.2802
C1 - 0.0343 0.2557
C2 0.0540 - 0.5055
C3 1.0068 0.9977 -
Sum 1.3068 1.2786 4.7829

Table 4.3: Model validation results of ARX model identified with datasets C1, C2 and
C3 and applied to test datasets S1 to S4 and C1 to C3; smallest RMS errors
are typeset in bold for each test dataset

from the first two columns (except the row for C3) that the models identified with C1 and
C2 show similar and small RMS errors. These are the datasets with almost no velocity
saturation. In contrast to that, the model identified with C3 (with velocity saturation) in
the third column shows RMS errors more than one magnitude larger. The same behavior
results for the models identified with C1 or C2 and applied to C3 (found in row for
C3). Consequently, the identification dataset should contain no velocity saturation to
allow small errors when applied to test datasets without velocity saturation. Of course,
if the test dataset shows saturation, then larger errors are to be expected because the
dampening induced by velocity saturation is not captured by the model. Conversely, if
the identifying dataset contains saturation, then large errors are found for test datasets
without saturation. In this case the model parameters reflect the damped response from
the identifying dataset which is different for datasets without saturation possessing no
dampening. Additionally, when identifying with a dataset showing saturation (e.g. C3)
and applying this to a dataset also containing saturation but with different amplitudes,
the dampening will change because saturation is a nonlinear effect. Due to this reason,
large errors will occur in this situation. Hence, useful results can only be achieved when
identifying with a dataset without saturation. Since the RMS errors are smallest for
the identifying dataset C2 except for test dataset S4, C2 is used for identification in the
following.
Figure 4.4 exemplifies these results for the z-axis when identifying the ARX model with

C2. Figure 4.4(a) shows the error when applying the model to C1, where both datasets do
not contain saturation. Most of the errors stay below 0.1mm, however with slight increase
when the HexaPOD moves faster towards the end of the dataset. Figure 4.4(b) depicts
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(b) Applied to dataset C3 (with velocity saturation)

Figure 4.4: Error along z-axis of linear ARX model identified with C2 (without velocity
saturation) and applied to two different datasets

the errors when applied to C3 containing large saturation. It can be observed that as soon
as velocity saturation occurs at around 28s, model errors start to increase rapidly.
From previous discussion it becomes evident that linear ARX model are sufficient to

capture the dynamics of the HexaPOD as long as it operates below its speed limit. How-
ever, if the limit is reached, the system becomes nonlinear and the dynamics do not follow
the ARX model any more. As a consequence of this, linear ARX models can merely be
used as a first approximation to the problem.

4.1.2 Nonlinear Extension of ARX-Model

The nonlinear velocity saturation gives rise to an extension of the linear ARX model
which explicitly takes saturation into account. The extension is based on the idea that
the HexaPOD’s dynamics follow the ARX model as long as no saturation takes place, so
that the output of the ARX model can be used as it is. If the occurrence of saturation
is detectable, then the output of the ARX model can be modified accordingly to reflect
saturation.
In order to accomplish this, the preliminary output ỹMj (t) along axis j of the model is

calculated in accordance with Eq. (4.6) by

ỹMj (t) = ϕTj (t)θj .

Given a constant and sufficiently small sampling time ∆τ and a position yMj (t− 1) of the
simulated HexaPOD at the previous sampling instant, the linear velocity ṽMj (t) can be
derived as

ṽMj (t) =
ỹMj (t)− yMj (t− 1)

∆τ
which would be applied according to the model as a result of a certain input value uj(t).
Note, that the acceleration can be neglected for small ∆τ .
The potential velocity ṽMj (t) is then bounded by the maximum velocity vmax of the
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HexaPOD, yielding the constrained velocity

vCj (t) =
{
ṽMj (t), if |ṽMj (t)| ≤ vmax
sgn(ṽMj (t))vmax, if |ṽMj (t)| > vmax

.

Since vCj (t) is always less or equal to the maximum velocity, it can be realized by
the HexaPOD. To complete the calculation cycle, vCj (t) is integrated to the final output
position yMj (t) with respect to time as

yMj (t) = yMj (t− 1) + vCj (t)∆τ.

In case the HexaPOD operates below the maximum velocity, the output of the extended
model is the same as the one from the original ARX model. Thus, it behaves according to
the dynamics captured by its model parameters obtained during system identification. As
soon as the velocity limit would need to be exceeded, the constraint bounds the velocity to
its allowed range, so that only realizable velocities are exhibited by the extended model.
In total, this scheme can incorporate linear behavior as long as the maximum velocity is
not exceeded and is simultaneously able to deal with the nonlinearity imposed by velocity
saturation.

Model Validation Since nonlinearly extended ARX model contains the linear ARX
model, all considerations with respect to model order are valid here, too.
The same model validation tests as for the linear ARX model was performed on the

extended ARX model. Additionally, the test datasets S5 and S6 are included in this
analysis. The resulting RMS errors are given in Table 4.4. The RMS errors of the datasets

Test dataset RMS ID C1 [mm] RMS ID C2 [mm] RMS ID C3 [mm]
S1 0.0609 0.0605 0.5819
S2 0.0418 0.0416 0.5578
S3 0.0651 0.0647 1.6018
S4 0.0770 0.0790 1.2312
S5 0.1947 0.1556 7.1588
S6 0.2590 0.2001 3.4432
C1 - 0.0343 0.2557
C2 0.0540 - 0.5055
C3 0.1068 0.0974 -
Sum 0.8593 0.7333 15.3359

Table 4.4: Model validation results of nonlinearly extended ARX model identified with
datasets C1, C2 and C3 and applied to test datasets S1 to S6 and C1 to C3;
smallest RMS errors are typeset in bold for each test dataset

S1 to S4, C1 and C2 with almost no velocity saturation (and identified with C1 or C2)
are either the same or slightly smaller than the ones of the linear ARX model given in
Table 4.3. For these datasets the saturation component of the extended model plays only
a minor role because the velocity limit is mostly not reached. In this case, the solutions of
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the linear ARX model are used for the final model output. However, the RMS error for the
test dataset C3 with velocity saturation improved by an order of magnitude and is almost
in the same range as the other test datasets. Also the test datasets S5 and S6, representing
extreme cases with a large amplitude range of 57.3mm on the input, show relatively small
RMS errors (compared to the input amplitudes) which would not be realizable with the
linear model alone. The errors, shown in Figures 4.5(a) and 4.5(b) are found to be two
orders of magnitude smaller than the maximum amplitudes in the desired signal.
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Figure 4.5: Error along z-axis of nonlinearly extended ARX model identified with C2
(without velocity saturation) and applied to datasets S5 and S6

Of course, identification has to be performed using datasets containing no saturation.
As can be seen from the last column of Table 4.4, large RMS errors result if identification
is done with C3. Thus, datasets with velocity saturation such as C3 should not be used
for identification of the underlying linear ARX model as the saturation part is covered by
the nonlinear extension. In analogy to the results for the linear model, C2 should be used
as identifying dataset since the RMS errors are the smallest for each test dataset except
for S4.
Figure 4.6 shows the results for the z-axis when identifying the ARX model with C2.

Comparing this to the case of the linear ARX model (cf. Figure 4.4), the error of the test
dataset C1 depicted in Figure 4.6(a) is very similar. However, most of the errors of the
test dataset C3 shown in Figure 4.6(b) are less than 0.3mm which is an order of magnitude
smaller than the errors of the linear model. Thus, the nonlinearly extended ARX model is
capable of dealing with the HexaPOD’s dynamics even in the case of velocity saturation.
Furthermore, these results, also given in [56], demonstrate that the velocity saturation is
the nonlinearity which dominates the response of the HexaPOD.

4.1.3 Related Modeling Approaches
To the knowledge of the author, so far one different modeling attempt has been done
to setup a dynamic model for the HexaPOD. In [152], a second-order dynamic model
was selected for the treatment couch where its model parameters were identified by using
a single step input as position command. Then an internal model control scheme was
adopted for motion compensation. Depending on the dead time embedded in the model,
the controller has shown different performance in simulation compared to hardware tests
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Figure 4.6: Error along z-axis of nonlinearly extended ARX model identified with C2
(without velocity saturation) and applied to two different datasets

and it was found that the HexaPOD behaved even worse than motion compensation with-
out feedback control, in which desired positions were sent to the HexaPOD as positioning
commands resulting in open-loop control.
After the presented modeling approach discussed in this work, the observed behavior can

be caused by the following reasons: At the time of the writing of [152] inherent dead time
of the HexaPOD was unknown and could not be compensated for by the internal model
controller, in which an inverse model of the HexaPOD is used to eliminate the HexaPOD’s
dynamics. Another reason is shown by the nonlinearly extended model, demonstrating
that the HexaPOD’s dynamics become nonlinear if the maximum speed of the HexaPOD is
reached. The modeling of the HexaPOD revealed that a linear second order model can be
used for representing the dynamics, but larger errors are to be expected when a test signal
is faster than the speed limit. Furthermore, the model parameters were identified using a
single step input which does not fulfill the persistent excitation condition, implying higher
order dynamics of the HexaPOD cannot be stimulated by this input and therefore are not
identified. To aggravate this even more, it was found in tests with the HexaPOD that step
inputs deliver different responses depending on the current position, desired position and
also the normalized velocity specification in the HexaPOD’s command. These differences
prohibited the use of a single dynamic model which is not able to deal with all tested step
inputs simultaneously. Additionally, no conclusive relationship between the normalized
velocity specification and the responses to step inputs could be identified. For this reason,
identification was based on position-position responses while using the maximum velocity
specification in combination with appropriately designed input signals covering similar
behavior as during compensation.

4.2 Control of the HexaPOD

A control scheme is applied to the HexaPOD in order to enable tumor motion compen-
sation within the ATTS. The main task of a controller is to provide appropriate control
input to the HexaPOD which makes the HexaPOD follow the given reference trajectory.
Since the ATTS is a discrete system, controllers are implemented in software in a dis-
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crete way. After the problem formulation of controlling the HexaPOD has been stated,
several metrics are discussed with which control methods are compared and their perfor-
mance assessed. The remainder of this section discusses three developed controllers and
evaluates their performance in several scenarios using hardware- and human-in-the-loop
experiments.

4.2.1 Problem Formulation

Depending on the target application, usually three different goals are to be realized by a
controller:

• Disturbance rejection: Any disturbance acting on the system or on sensor measure-
ments should be canceled as fast as possible by the controller so that the system
remains at a predefined operation point.

• Set-point regulation: When the set-point or the desired value changes, the system
output should be regulated to the set-point, usually obeying some performance spec-
ification such as settling time and maximum overshoot.

• Reference tracking: The system output should follow a given reference trajectory as
close as possible; this can be viewed as permanently changing the “set-point” with
time.

The problem of lung tumor motion compensation clearly aims at reference tracking since
lung tumors are continuously changing their position intra-fractionally, which requires
appropriate adaptation of the desired position of the HexaPOD. This is generally the case
in all compensation modes of RDC, DMC and FMC (cf. Section 2.1) when compensating
lung tumor motions. However, with DMC the rate of change is smaller, so that the desired
position of the HexaPOD also needs to change at a slower rate. When compensating
prostate tumors in RDC or DMC, the problem rather shifts to set-point regulation as
changes in the desired position occur more infrequently. In this situation disturbance
rejection becomes more important than with reference tracking as the impact of noise
effects increases due to a larger ratio to the traveled distance of the HexaPOD. It has to
be ensured that disturbances and noise are sufficiently damped by the controller, so that
they are not amplified thereby rendering the closed-loop system instable. Nevertheless,
a certain disturbance rejection is also required within reference tracking to account for
patient comfort as any harsh motions by the HexaPOD are directly transmitted to the
patient.
In any compensation mode it is assumed in the following that for each translational

axis j a future reference trajectory rj(t + k|t) ∈ R with 1 ≤ k ≤ nr is available at each
sampling instant t. The finite horizon length nr depends on the requirements of the chosen
controller. The main task of a controller is to make the HexaPOD follow the reference
trajectory as close as possible. Furthermore, the actual trajectory of the HexaPOD should
be smooth enough so that patients feel comfortable.
It is further assumed that the calibration of the HexaPOD and all sensor systems was

performed such that the origin of the HexaPOD’s reference frame coincides with the
isocenter of the treatment beam. In FMC mode, the reference trajectory is obtained
by negating corresponding predictions acquired from the chosen prediction method from
Chapter 3. Negation is necessary for compensation to make the HexaPOD move into the
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opposite direction as the tumor. In DMC mode, the reference trajectory is generated by
using the current negated value of the moving average. If a controller requires more than
one future reference, i.e. nr > 1, successive values of the reference are kept constant. The
same procedure is followed in RDC mode where the reference trajectory is formed by the
last negated measurement of the tumor position.
In the following sections, several controllers are presented to achieve the goal of motion

compensation. These are possible realizations of the block “control scheme” depicted in
Figures 2.6 and 2.7.

4.2.2 Performance Metrics

Generally, the same performance metrics as for the predictors are of interest for assessing
the performance of controllers. Since reference tracking is one of the main goals to be
achieved by a controller, the 3D tracking error

~e(t) = ~r(t|t− 1)− ~pH(t) (4.9)

between the reference position ~r(t|t − 1) = [r1(t|t− 1), r2(t|t− 1), r3(t|t− 1)]T and the
actual position ~pH(t) of the HexaPOD at sampling instant t is an important measure to
describe tracking accuracy. Based on the tracking error, the following metrics are used in
the remainder of this chapter to assess tracking accuracy: maximum absolute tracking error
MAX (~e) (Eq. (3.7)), 95% confidence interval of absolute tracking error CI95 (~e) (Eq. (3.8)),
root-mean-square tracking error RMS (~e) (Eq. (3.9)) and mean absolute tracking error
MAE (~e) (Eq. (3.10)).
Equivalently to the prediction ratio from Eq. (3.11), compensation ratio (CR) is defined

for a single axis j as

CR (rj , ej) =
(

1− RMS (ej)
RMS (rj)

)
· 100%

and along multiple axes as

CR (~r,~e) =
∑3
j=1 RMS (rj) CR (rj , ej)∑3

j=1 RMS (rj)
=
∑3
j=1 RMS (rj)− RMS (ej)∑3

j=1 RMS (rj)
· 100% .

The smoothness metrics SF , SJ , STS and SSNR from Eqn. (3.14) – (3.17) are also
adopted. Since the smoothness of the resulting trajectory exhibited by the HexaPOD
is of interest, all the smoothness measures are determined from the actual positions of
the HexaPOD ~pH(t). The multiple axes pendant in Eq. (3.18) is consequently computed
as S(~pH(t), ~r(t|t − 1)), thus weighting the smoothness metrics along the individual axes
according to the RMS value of the corresponding reference trajectory (where the one-step
trajectory rj(t|t− 1) is the desired trajectory for the HexaPOD along axis j).
Finally, the convergence time metrics according to Eqn. (3.20) and (3.21) are employed

in the CT25 and CT10 variant. The difference in computation is that the convergence
coefficient is determined as C

(
rj(t|t− 1), pHj

)
for an axis j.

Depending on suitability to the control method, additional metrics are also introduced
during the following discussion of control schemes.
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4.2.3 Model Predictive Control of ARX-Model

Generally, the availability of a model describing the HexaPOD’s dynamics is a prerequisite
to enable model-based control of the HexaPOD. The nonlinearly extended ARX model
which takes into account the velocity limit of the HexaPOD, demonstrated that this model
supersedes the linear ARX model. However, to the knowledge of the author, so far no con-
vincing way has been determined to build a controller based on the nonlinearly extended
model due to saturation. However, it is possible to use the underlying linear ARX model
in combination with a model predictive controller (MPC) [153]. Of course, performance
reduction is then to be expected in the presence of speed limit violations.
The linear ARX model with identified parameters can be transformed to a discrete state-

space model which is common to the formulation of the MPC problem and used in the
remainder of this work. MPC of the identified ARX model is further denoted as IMPC.
MPC was chosen here for the following reasons: First, it explicitly takes into account
a model of the plant, i.e. the HexaPOD, which is already available. Second, it derives
the control input based on optimization of the future system output and control effort
given a future reference trajectory, thus allowing to optimize for both tracking accuracy
and patient comfort. And third, it simultaneously respects actuator limits. Since the
underlying model incorporates the position-position response, only the operational range
of the HexaPOD can be used as actuator limits. Especially the optimizing character is
useful in this context because velocity saturation cannot be taken into account explicitly
and therefore deviations between the model and the real HexaPOD are to be expected.
Hence, MPC in combination with the model results in a straightforward way to answer
the question which positioning commands need to be sent to the HexaPOD in order to
enable reference tracking.

4.2.3.1 MPC Formulation

The basis of a model predictive controller in this work is a linear, time-invariant, discrete
and proper SISO state-space model of the form

xj(t+ 1) =Axj(t) +B(uj(t− 1) + ∆uj(t))
yj(t) =Cxj(t)

(4.10)

with state xj(t) ∈ Rn, system matrix A ∈ Rn×n, input matrix B ∈ Rn, output matrix
C ∈ R1×n, input vector uj(t) = uj(t − 1) + ∆uj(t) ∈ R, output yj(t) ∈ R where n is the
model order and j represent a translational axis. In contrast to the standard formulation
of a state-space model, the control increment ∆uj(t) appears explicitly in model (4.10).
The advantage of this formulation will become apparent soon.
This SISO model can be applied to only one of the translational axes. Since the desired

positions for the individual axes in the HexaPOD’s command are independent from each
other, the MPC is applied to each axis separately. The matrix A and vectors B and C
are derived from the ARX model, specifically from the elements of the parameter vector
θj from Eq. (4.5) for a single axis j. The resulting model order n of the state-space model
is generally given by n = max (na, nb + nk − 1) because for increasing nk additional states
have to be introduced to realize an appropriate number of zero-order hold elements for
the propagation of the delayed input.
Based on the goal of MPC (disturbance rejection, set-point regulation, reference track-
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ing), a quadratic cost function incorporating future control inputs ûj(t + k|t) or future
control increments ∆ûj(t + k|t) with 0 ≤ k ≤ Nu − 1 (computed at time t) up to the
control horizon Nu is chosen. It will be minimized to deliver a sequence of optimal control
increments

∆Û∗j = {∆ûj(t|t),∆ûj(t+ 1|t), . . . ,∆ûj(t+Nu − 1|t)}

while constraints on the output yj(t) and input uj(t) are fulfilled at all times t ≥ 0:

yminj ≤ yj(t) ≤ ymaxj (4.11)
uminj ≤ uj(t) ≤ umaxj (4.12)

Since the output yj(t) and input uj(t) are both positions in terms of the HexaPOD,
their limits are coherent with the operational range defined in Section 2.2.1.1.
The MPC makes use of the so-called receding horizon strategy. This means that the

minimization of the cost function is carried out in each sampling instant t, but only the
optimal control input ûj(t|t) = uj(t− 1) + ∆ûj(t|t) using the first element ∆ûj(t|t) from
the sequence ∆Û∗j is applied to the physical system, thereby becoming the current control
input uj(t). In the next sampling instant this control input becomes uj(t − 1) which is
needed for the calculation of next control input. The remaining control increments in the
sequence ∆Û∗j are ignored. However, they can be used in case of failures such as when the
MPC problem is infeasible in the next sampling instant or when a sensor for breathing or
tumor position was temporarily not able to perform a measurement.
Since lung tumor motion compensation is a reference tracking problem, the following

cost function was chosen for this purpose:

J(t) =1
2

 Np∑
k=1

(ŷj(t+ k|t)− rj(t+ k|t))2Q(k) +
Nu−1∑
k=0

∆ûj(t+ k|t)2T (k)

 . (4.13)

The first sum in Eq. (4.13) penalizes deviations of the predicted system output ŷj(t+ k|t)
at time t from the reference trajectory rj(t+ k|t) up to the prediction horizon Np in order
to achieve the goal of reference tracking. The first sum in Eq. (4.13) penalizes deviations
of the predicted system output ŷj(t+k|t) at time t from the reference trajectory rj(t+k|t)
up to the prediction horizon Np in order to achieve the goal of reference tracking. The
second sum keeps the control effort low as larger deviations from the control input at the
previous sampling instant have a stronger influence on the cost function. Frequently the
control input ûj(t+k|t) is used in the cost function instead of the control increments. Since
the control input refers to a position rather than voltage or forces, using ûj(t+k|t) for the
determination of control effort would result in an undesirable dependence of it from the
location in the operational range of the HexaPOD. Thus, only the difference between two
control inputs, i.e. the control increment, is useful in the definition of the cost function as
it is independent from the location. For that reason, the formulation of model (4.10) was
chosen, making the control increment ∆uj(t) explicit. Both sums incorporate weighting
factors Q(k) > 0 and T (k) ≥ 0 to influence the impact of each sum to the value of the
cost function.
Combining the state-space model (4.10), the constraints (4.11), (4.12) and the cost
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function (4.13), the optimization problem can be formulated as

min
∆Ûj,{∆ûj(t),...,∆ûj(t+Nu−1)}

{J(t)}

s.t. x̂j(t+ k + 1|t) = Ax̂j(t+ k|t) +B (ûj(t+ k − 1|t) + ∆ûj(t+ k|t)) , k ≥ 0,
ŷj(t+ k|t) = Cx̂j(t+ k|t), k ≥ 0,
x̂j(t|t) = xj(t),
ûj(t− 1|t) = uj(t− 1),
ûj(t+ k|t) = ûj(t+ k − 1|t), Nu ≤ k < Np,

uminj ≤ ûj(t+ k|t) ≤ umaxj , k = 0, . . . , Np,

yminj ≤ ŷj(t+ k|t) ≤ ymaxj , k = 1, . . . , Np .

(4.14)

The minimization of the cost function w.r.t. the sequence of control inputs in Eq. (4.14)
is carried out obeying the constraints on the output and input defined by yminj , ymaxj

and uminj , umaxj , respectively. It is assumed that full knowledge of the state xj(t) in the
current sampling instant t is available, represented by the constraint x̂j(t|t) = xj(t), which
is needed as the start point in the optimization. If the state is not known completely, a
state observer can be used to estimate the current state. The start point of the control
input ûj(t− 1|t) is set to the last control input uj(t− 1) at the previous sampling instant
which was applied to the system. Furthermore, the state-space model is directly included
into the optimization problem in the form of two constraints. One of these results from
the state equation of the model, which computes predictions of the state x̂j(t + k + 1|t)
given future control increments, whereas the other originates from the output equation
determining the predicted output ŷj(t + k|t). Naturally, the control horizon Nu in the
cost function cannot exceed the prediction horizon Np, but it might be chosen smaller. So
for Nu ≤ k < Np, the future control inputs ûj(t + k|t) are held constant resulting in the
constraint ûj(t+ k|t) = ûj(t+ k − 1|t).

4.2.3.2 MPC Computation

In order to make the MPC problem (4.14) computable it has to be transformed into a
quadratic program which is shown next.
The state-space model incorporated into the MPC problem can be iterated over multiple

sampling instants starting from a known state x̂j(t|t) and a known control input ûj(t−1|t)
to calculate predictions of the state and of the output. This is expressed by the state
propagation equation

x̂j(t+ k|t) = Akx̂j(t|t) +
k−1∑
h=0

Ak−1−hB

(
ûj(t− 1|t) +

h∑
i=0

∆ûij(t+ i|t)
)
. (4.15)

Using the output equation of the state-space model (4.10), the system output can be
directly calculated by substituting the state with Eq. (4.15):

ŷj(t+ k|t) = CAkx̂j(t|t) + C
k−1∑
h=0

Ak−1−hB

(
ûj(t− 1|t) +

h∑
i=0

∆ûj(t+ i|t)
)
. (4.16)
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Introducing the augmented vectors

Ŷj =
[
ŷj(t+ 1|t) ŷj(t+ 2|t) . . . ŷj(t+Np|t)

]T
, (4.17)

Rj =
[
rj(t+ 1|t) rj(t+ 2|t) . . . rj(t+Np|t)

]T
, (4.18)

∆Ûj =
[
∆ûj(t|t) ∆ûj(t+ 1|t) . . . ∆ûj(t+Nu − 1|t)

]T
(4.19)

and applying Eq. (4.16), the cost function (4.13) can be rewritten in matrix form as

J(t) = 1
2

((
Ŷj −Rj

)T
Q(Ŷj −Rj) + ∆ÛTj T∆Ûj

)
, (4.20)

where Q and T are positive (semi-)definite matrices of proper dimensions and contain the
weighting factors Q(k) and T (k) on their diagonals. Using Eq. (4.16) the output prediction
vector Ŷj can be formulated as

Ŷj = Sx̂j(t|t) + Vuûj(t− 1|t) + V∆∆Û j (4.21)

with

S =

 CA
...

CANp

 , Vu =


CA0B

...∑Np−1
h=0 CAhB

 ,

V∆ =


CA0B · · · 0

... . . . 0∑Np−1
h=0 CAhB · · ·

∑Np−Nu

h=0 CAhB

 ,
separating the predicted control increments ∆Ûj from the already known state x̂j(t|t) =
xj(t) and last input ûj(t− 1|t) = uj(t− 1). Defining

Ej(t) = Rj − Sx̂j(t|t)− Vuûj(t− 1|t) ,

the cost function (4.20) can be rewritten (omitting the argument t) to:

J(t) = 1
2

((
V∆∆Ûj − Ej

)T
Q
(
V∆∆Ûj − Ej

)
+ ∆Ûj

T
T∆Ûj

)
= 1

2
((

∆ÛTj V T
∆ − ETj

)
Q
(
V∆∆Ûj − Ej

)
+ ∆ÛTj T∆Ûj

)
(4.22)

= 1
2

ETj QEj︸ ︷︷ ︸
const

+∆ÛTj
(
V T

∆QV∆ + T
)

∆Ûj − 2∆ÛTj V T
∆QEj

 .
Since the first part in Eq. (4.22) is independent of ∆Ûj , it is constant for the optimization
with respect to ∆Ûj . Thus, the reduced cost function

J̃(t) = 1
2∆ÛTj G∆Ûj + ∆ÛTj g0 (4.23)
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can be used instead for the optimization with

G = V T
∆QV∆ + T ,

gj(t) = −V T
∆QEj

= V T
∆QSx̂j(t|t) + V T

∆QVuûj(t− 1|t)− V T
∆QRj .

The matrix G is constant for a time-invariant state-space model and constant weighting
matrices Q and T and can be precomputed for the solution of the MPC problem if these
values are not changed during runtime. gj(t) depends on the current state x̂j(t|t), the
last control input ûj(t − 1|t) and the future reference trajectory Rj . Thus, it must be
recomputed in each sampling instant. With all these computations, the state-space model
is now directly incorporated into the reduced cost function (4.23) of the optimization
problem, rather than still present as part of the constraints. In that way, no explicit
computations need to be made for the future system states or outputs. Instead, these are
resolved in the cost function.

During the optimization process using the reduced cost function the constraints on the
input and output must still be obeyed. The output constraint

yminj ≤ ŷj(t+ k|t) ≤ ymaxj

must be fulfilled for all output predictions over the whole prediction horizon for k =
1, . . . , Np. Using Eq. (4.17) these constraints can be combined into matrix form



−1 0 0 · · · 0
1 0 0 · · · 0
0 −1 0 · · · 0
0 1 0 · · · 0
... · · · . . . . . . 0
0 0 0 · · · −1
0 0 0 · · · 1


︸ ︷︷ ︸

Cy∈R2Np×Np

Ŷj ≤



−yminj

ymaxj

−yminj

ymaxj
...

−yminj

ymaxj


︸ ︷︷ ︸
Y lim

j ∈R2Np

. (4.24)

Inserting Eq. (4.21) into Eq. (4.24) leads to

Cy
(
Sx̂j(t|t) + Vuûj(t− 1|t) + V∆∆Ûj

)
≤ Y lim

j ,

which can be rearranged to

−CyV∆︸ ︷︷ ︸
Cy∆∈R2Np×Nu

∆Ûj −CySx̂j(t|t)− CyVuûj(t− 1|t) + Y lim
j︸ ︷︷ ︸

Cyj∈R2Np

≥ 0, (4.25)

where Cy∆ is multiplied with the predicted control increments ∆Ûj and Cyj is constant
in the optimization problem as it is independent of ∆Ûj . For convenience Eq. (4.25) is
rewritten as

Cy∆∆Ûj + Cyj ≥ 0 (4.26)

which describes all constraints on the predicted outputs over the prediction horizons.
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The constraints on the control inputs can be handled in a similar way. Here, the input
constraint

uminj ≤ ûj(t+ k|t) ≤ umaxj

must be fulfilled for all future control inputs over the whole control horizon for k =
0, . . . , Nu − 1 which can be written in matrix form

−1 0 0 · · · 0
1 0 0 · · · 0
0 −1 0 · · · 0
0 1 0 · · · 0
... · · · . . . . . . 0
0 0 0 · · · −1
0 0 0 · · · 1


Ûj ≤



−uminj

umaxj

−uminj

umaxj
...

−uminj

umaxj


︸ ︷︷ ︸
U lim

j ∈R2Nu

(4.27)

with
Ûj =

[
ûj(t|t) ûj(t+ 1|t) . . . ûj(t+Nu − 1|t)

]T
.

Ûj can be formulated in terms of ∆Ûj :

Ûj =


ûj(t− 1|t)
ûj(t− 1|t)

...
ûj(t− 1|t)

+


∑0
k=0 ∆ûj(t+ k|t)∑1
k=0 ∆ûj(t+ k|t)

...∑Nu−1
k=0 ∆ûj(t+ k|t)

 =


ûj(t− 1|t)
ûj(t− 1|t)

...
ûj(t− 1|t)

+


1 0 0 · · · 0
1 1 0 · · · 0
...

... . . . ...
1 1 1 · · · 1

∆Ûj .

(4.28)
Inserting Eq. (4.28) into Eq. (4.27) leads to

−1 0 0 · · · 0
1 0 0 · · · 0
−1 −1 0 · · · 0
1 1 0 · · · 0
... · · · . . . . . . 0
−1 −1 −1 · · · −1
1 1 1 · · · 1


︸ ︷︷ ︸

Cu0∈R2Nu×Nu

∆Ûj +



−ûj(t− 1|t)
ûj(t− 1|t)
−ûj(t− 1|t)
ûj(t− 1|t)

...
−ûj(t− 1|t)
ûj(t− 1|t)


− U limj

︸ ︷︷ ︸
Cu1∈R2Nu

≤ 0 . (4.29)

With Cu∆ = −Cu0 and Cuj = −Cu1 , Eq. (4.29) becomes

Cu∆∆Ûj + Cuj ≥ 0

which has the same form as the output constraints described by Eq. (4.26). Thus, both
constraints can be combined into the inequality[

Cu∆
Cy∆

]
︸ ︷︷ ︸

C∆∈R2(Np+Nu)×Nu

∆Ûj +
[
Cuj
Cyj

]
︸ ︷︷ ︸

Cj∈R2(Np+Nu)

≥ 0. (4.30)
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C∆ is only depending on constant parameters (for an underlying time-invariant state-space
model) whereas Cj needs to be recalculated in each sampling instant from known values
such as x̂j(t|t) and ûj(t− 1|t).
Eqn. (4.23) and (4.30) represent a strictly convex quadratic program (QP) with a set

of inequality constraints and no equality constraints. This can be solved online through
interior point methods or active-set dual methods ([154]), thus delivering the optimal
control increments ∆Ûj , where the first one is used to determine the control input which
is sent to the HexaPOD.

4.2.3.3 Experimental Tests and Results

The goal of the following experimental tests was to determine useful ranges of the free
parameters within the IMPC approach. The setup for the experimental tests was as
follows: The Polaris IR camera measured the position of two calibrated IR tools, both
attached rigidly to the HexaPOD. One of the tools was used to acquire the actual position
of the HexaPOD. The measurements of the other one were modified by the simulator
program (cf. Section 2.2.1.6) which overlays predefined trajectories to simulate a breathing
patient. The software package HexGuide was configured to predict that breathing motion
using the Takens predictor. The prediction horizon k in the predictor was chosen equal
to the prediction horizon Np used in MPC. Predictions along each translational axis were
negated at each sampling instant to deliver the reference trajectory Rj (cf. Eq. (4.18)) for
axis j. The system is hardware-triggered at a rate of 20Hz. All considerations in terms
of specific values of horizon parameters have to be seen w.r.t. the corresponding sampling
time of 50ms.
For each translational axis, a separate instance of the MPC was executed. The derived

control input from each instance, uj(t) = uj(t−1)+∆ûj(t|t) was applied to the HexaPOD
by sending the appropriate command where uj(t) is the position for the corresponding axis
in the command.
For these experiments, the ARX model along one translational axis of the HexaPOD

was derived as discussed in Section 4.1.1. The order of the ARX model was chosen as
(2, 2, 1), leading to a second-order state-space model. Note that this identified model of
the HexaPOD is of non-minimum phase as a zero is located outside of the unit circle in
the z-plain. Thus, the MPC is not always feasible for prediction horizon Np = 1. Hence,
Np = 1 was excluded from the experimental tests. Since only the first state of the two
states in xj(t) is directly measurable, an observer is employed to estimate the other state.
The cost function incorporates two horizon parameters Np and Nu which have an impact

on the performance. For optimization, the absolute value of the cost function is not of
interest, so that Q = INp (identity matrix) is fixed and T , the influence of the control
increments, is used as tuning parameter.
For all the free parameters Np, Nu and T , exhaustive tests in a defined parameter range

were run on four different “breathing” trajectories (annotated with maximum speed): three
sines (±3mm, 0.2Hz (3.77mm

s ); ±5mm, 0.2Hz (6.28mm
s ); ±2.5mm, 0.4Hz (6.28mm

s )) and
one recorded patient dataset (> 8mm

s ). Note that the patient dataset already exceeds the
maximum speed of the HexaPOD in parts of each breathing cycle. The last two sines are
also close to the maximum speed whereas the first sine is an example of a slow dataset
compared to the maximum speed.
Since the impact of the parameters on the controller performance is the objective in these

following tests, the RMS metric was considered representative of the tracking accuracy
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metric and the smoothness metric SF was used to assess the smoothness.

Horizon Parameters Figure 4.7 depicts the RMS of the tracking error of combinations
(Np, Nu) up to 10 (corresponds to 0.5 seconds) of all four test datasets (with T = 0.1).
For each dataset the RMS errors are located in a narrow band (except for Np = 2) where
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Figure 4.7: RMS errors of four test datasets at various settings of horizon parameters
Np and Nu of the IMPC scheme

the “height” of the band or the average RMS error correlates with the maximum speed
of the dataset in such a way that a slower maximum speed results in a smaller RMS
error. An inspection of individual trials (not shown here) reveals that the maximum
errors either occur in the vicinity of peaks (for slower datasets) or (for faster datasets) in
regions with too high velocities where reference tracking is constrained by the maximum
speed of the HexaPOD. For each dataset an increasing Np (irrespective of Nu) generally
improves tracking error because with an increased prediction horizon the IMPC can adjust
the current control input with respect to future behavior of the reference. The RMS errors
for Np ≥ 7 show only a minor difference, so that an increase above 10 does not provide a
justifiable advantage in contrast to a higher computational load.
Nu plays only a minor role as the RMS errors of different settings of Nu for one dataset

lie closely together. However, one can observe a slight reduction of the RMS errors for
smaller values of Nu. In order to find a useful range of Nu, Figure 4.8 shows the occurrence
of the 10 best combinations (Np,Nu) in terms of smallest RMS tracking error (note that
each combination can occur at maximum four times). The most frequent combinations
are clearly observed for Np ≥ 7 and 2 ≤ Nu ≤ 3. Larger values for Nu can also be used
(cf. Figure 4.7), but then a slight increase of the tracking error occurs.

Control Increment Weighting The influence of control increment weighting T was stud-
ied on the best combination of (Np, Nu) from the previous test for each dataset. For almost
all datasets, it can be observed in Figure 4.9(a) that with rising T , the error norm reaches
a minimum and then slightly increases again. The increase of the error norm at higher
values of T is caused by the stronger weighting of the control increments in contrast to the
tracking error contribution inside the cost function, thus decreasing the tracking ability.
The location of the minimum and the slope of the increase depends on the maximum speed
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Figure 4.9: Influence of control increment weighting T on tracking error and smoothness
in the IMPC scheme

of the dataset. For slower datasets, the minimum can be found at smaller values, but the
slope of increase is slightly larger. For faster datasets, the opposite is true. However,
T = 0.1 is a good compromise for all four datasets.
A rising T also has the effect of smoothing the control inputs by penalizing larger de-

viations from the last control input. With small values of T , one can actually hear the
HexaPOD changing direction several times in a short interval (this occurs especially in the
vicinity of peaks) and these sharp changes dramatically decrease patient comfort. There-
fore, smoothness of the control input is an important aspect of the system. Figure 4.9(b)
gives an impression of the smoothness metric SF of the resulting HexaPOD’s trajectory
in terms of the control increment weighting T . With increasing T , smoothness improves
until it reaches an almost constant value at about T = 0.1. Similar observations can be
made using other smoothness metrics as well. Generally, any of the tracking accuracy
metrics and smoothness metrics can be used to trade-off a value for T , taking into account
patient comfort, too.
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For T = 0.1, the maximum errors and the maximum errors in relation to the amplitude
of the best (Np, Nu) of each dataset are: sine ±3mm: 0.19mm (3.2%), sine ±5mm: 0.29mm
(2.9%), sine ±2.5mm: 0.52mm (10.5%), patient: 3.49mm (35.2%). Judging from the error
norms and maximum errors, a significant compensation of motion can be achieved using
the IMPC approach.
These results are published as well in similar form in [155]. It is interesting to note in

this context, that within the same session on the same conference, [156] published their
results with a different MPC approach using the standard Elekta table stand for motion
compensation in radiotherapy.
The results obtained demonstrate the general feasibility of MPC in combination with a

model obtained by system identification methods to achieve motion compensation using
the HexaPOD. Further results of this method will be given in the next section, where the
results of the MPC approach are compared to a different controller.

4.2.4 Velocity-Based Position Control

As mentioned in Section 2.2.1.1, the HexaPOD can be controlled by positioning commands
sent through a serial connection. Each command consists of a 6D-position within the
operational range and a normalized speed specification sc(t). In Section 4.1.3 it was stated
that no conclusive relationship between sc(t) and the response of the HexaPOD could be
found. However, it is assumed for the following considerations, that the allowed range of
sc(t) between 0 and 1 maps linearly into the range between 0 and the maximum speed vmax
of the HexaPOD. The consequence of this assumption is that the response to step inputs
can still not be described in terms of sc(t), but this is anyway not the intended purpose. For
tumor motion compensation it is rather important to allow reference tracking, requiring
permanent adaptation of the speed specification sc(t). Essentially, this summarizes the
main idea of the velocity-based position control (VPC) scheme, in which sc(t) is computed
in such a way that the HexaPOD exhibits appropriate velocities to match those on the
reference trajectory.
Given a momentary speed s(t) > 0 along the reference trajectory, the appropriate sc(t)

in the HexaPOD’s commands is derived by

sc(t) = 1
vmax

sat
vmax

(s(t)) , (4.31)

where

sat
vmax

(s(t)) =
{
|s(t)| if |s(t)| ≤ vmax
vmax if |s(t)| > vmax

, (4.32)

constrains the speed s(t) to the maximum speed vmax. This actuator saturation renders
the controller nonlinear.
For the following considerations, it is assumed for now that the HexaPOD shall be moved

along a single axis j only. For reference tracking the goal of a controller is to adjust the
actual speed of the HexaPOD so that the desired position at the next sampling instant is
reached (if the maximum speed limit is not already reached). Since the speed specification
does not carry direction information, the upper limit lUj or the lower limit lLj of the
operational range for axis j can be used in the 6D-position of the command for guiding the
HexaPOD in the right direction. Given the current position pj(t) along axis j at sampling
instant t and the desired position at the next sampling instant pj(t+ 1) = rj(t+ 1|t), the
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position cj(t) for axis j in the command can be determined as

lj(t) =
{
lUj if pj(t+ 1) ≥ pj(t)
lLj if pj(t+ 1) < pj(t)

, (4.33)

so that cj(t) = lj(t). Note that the choice for cj(t) has to be made in such a way to
keep a certain minimum distance to the reference. If the actual position of the HexaPOD
comes too close to the desired one specified in the command, the HexaPOD either slows
down or even stops at the desired position, preventing the HexaPOD from maintaining
the necessary speed on the reference trajectory (unless the reference trajectory becomes
constant in which case the HexaPOD should stop). Choosing the operational limit always
guarantees the constraint on distance. The speed s(t) has to be calculated in such a way
that using the remaining time ∆τ (the time difference between the next sampling instant
and the current time captured right before this calculation, see also the latency analysis
in Section 2.2.3.3)

s(t) = |pj(t+ 1)− pj(t)|
∆τ (4.34)

is the absolute value of the linear speed which has to be linearly normalized into the range 0
and 1 by Eq. (4.31). The normalized value sc(t) is then sent together with the 6D position
to the HexaPOD as a new command. The case when only motions along axis j are used
but currently no motion is required, i.e. pj(t + 1) = pj(t), has to be handled separately.
Then s(t) in Eq. (4.34) would become 0, but this would be rejected by the HexaPOD with
an error response. Instead, s(t) has to be set to the minimum allowed speed of 1.008µm/s
and the position for axis j in the command is one of the limits of the operational range;
here lUj was already chosen in Eq. (4.33). This procedure results in a very slow movement
of the HexaPOD towards lUj . For this application the traveled distance with this slow
speed is very small and can be neglected since this condition should last only for a few
moments, if at all, and the minimum speed is more than two magnitudes smaller than in
normal operation mode.
The approach discussed so far is applicable to one axis at a time as only one speed

specification is provided in the HexaPOD’s command. For realizing reference tracking
along two or all three translational axes simultaneously, the only solution is to choose one
speed and somehow adapt the position specifications in the command. The basic idea is
to calculate a 3D-vector

∆~p(t) = ~p(t+ 1)− ~p(t) =

∆p1(t)
∆p2(t)
∆p3(t)


specifying the movement direction of the HexaPOD from the current position ~p(t) and
the desired position ~p(t + 1) in the next sampling instant t + 1. If ∆~p(t), starting from
~p(t), is extended, it will at some point ~c(t) intersect with exactly one of the six limiting
planes of the cuboid spanned by the upper limits lU1 , lU2 , lU3 and lower limits lL1 , lL2 , lL3 of
the operational range along all three translational axes. This situation is exemplified in
Figure 4.10. From the plane of intersection, the axis with the most significant motion, the
main axis, can be determined as the axis where its upper or lower limit was hit by the
extended vector. Then, projections of the intersection point on each axis are calculated.
These projections are directly used in the command for the HexaPOD as cj with j = 1, 2, 3.
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Figure 4.10: Geometric representation of position control approach

For calculating the intersection point ~c(t), it is convenient to introduce the vector form
of a straight line

g : ~a = ~p(t) +K ∆~p(t) (4.35)

with ~a ∈ R3 representing a point on the line for a certain scalar K ∈ R. Finding the plane
of intersection can be simplified by using Eq. (4.33) as this takes into account the direction
along each axis, so that only three planes need to be checked for intersection instead of
six. Let the planes Pj with j = 1, 2, 3 be given by the Hesse normal form

Pj : ~a~ij − lj(t) = 0 (4.36)

where ~a ∈ R3 is a point on the plane and~ij is the j-th unit vector used as a normal vector
of the plane. Substituting Eq. (4.35) into Eq. (4.36), solving for K and inserting that
value in Eq. (4.35) determines the point of intersection of g with Pj . Let Kj denote the
resulting K when calculating the intersection of g with Pj , then

Kj = lj(t)− pj(t)
∆pj(t)

. (4.37)

If ∆pj(t) = 0 in Eq. (4.37) then g is parallel to the plane Pj and no intersection occurs,
i.e. no motion should occur along axis j. This case has to be handled as a special case in
a similar way as for the considerations for only one axis above. Assuming that ∆pj(t) 6= 0
for j = 1, 2, 3, then three Kj exist, each of them representing an intersection with the
plane Pj , either inside or outside the cuboid defined by the operational range. Since the
movement direction for each axis is already covered in Eq. (4.33), Kj is always positive.
As the cuboid is convex and both points ~p(t) and ~p(t + 1) are located inside, g can only
intersect one of the planes Pj . The plane Pm of intersection is determined by the minimum
of Kj :

m = arg min
j∈{1,2,3}

Kj .
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Inserting Km into Eq. (4.35), the point of intersection ~c(t) can finally be calculated by

~c(t) =

c1(t)
c2(t)
c3(t)

 = ~p(t) +Km ∆~p(t) ,

where its projections on the translational axes are depicted in Figure 4.10 as filled circles
in red with black borders. These are sent to the HexaPOD as part of the MOV command.
For the determination of the speed in the command, two possible methods were identified

which the HexaPOD could use to reconstruct the desired velocities along each axis from
the information given in a single command:

1. Speed is to be specified as linear speed along the path to travel:

s(t) = ‖∆~p(t)‖∆τ =
√

∆p1(t)2 + ∆p2(t)2 + ∆p3(t)2

∆τ (4.38)

The assumption on the behavior of the internal controller of the HexaPOD would be
that the desired velocities along each axis are reconstructed from the specified speed
in the command and from the ratio of the corresponding element of ∆~p(t) and the
length of ∆~p(t).

2. The speed s(t) is given as the desired speed along the main axis m:

s(t) = |∆pm(t)|
∆τ (4.39)

Then, the controller of the HexaPOD could reconstruct the desired velocities along
each axis from the speed s(t) and from the ratio of the projection for the correspond-
ing axis to the projection for the main axis.

The main difference between these two methods is that with method 1 the observable
speed along each axis might be less than vmax if more than one axis is actuated. Let all
three elements of ∆~p (implicitly depending on time) be of the same magnitude d = ∆p1 =
∆p2 = ∆p3, i.e. the difference between current and desired position is the same along each
axis, and let them be just as large to result in s = vmax, then the velocity along each axis
j is reconstructed in the internal controller as

vj = d

|∆~p|s = d√
3d2

s = ± 1√
3
s = ± 1√

3
vmax ≈ ±0.5774vmax .

This means that if the internal controller works with method 1, the maximum achievable
speed along each axis when actuating all three translational axes in the same way is
constrained to less than 0.5774vmax. If the controller uses method 2, then the choice of
the main axis is arbitrary in this situation with s = vmax and the reconstruction of the
velocity along each axis j in the controller is

vj = d

|d|
s = ±vmax.

Thus, the HexaPOD would be able to exhibit a speed of vmax along each axis. The
speed reconstruction method the controller follows can be determined experimentally by
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using a test signal with maximum speeds between 0.5774vmax and vmax. If the controller
uses method 2, reference tracking with this test signal should be successful; otherwise a
saturation of the speed would be observable and a deviation from the reference would
occur.
Irrespective of the speed reconstruction method, a speed gain λ with 0 < λ ≤ 1 is intro-

duced into Eq. (4.31) to influence the control effort, e.g. for adjusting the aggressiveness
of the controller:

sc(t) = 1
vmax

sat
vmax

(λs(t)) , (4.40)

which trades-off tracking accuracy and patient comfort.
In this approach, position control is achieved by deriving the velocity specification in

the HexaPOD’s command from the desired velocity along the reference trajectory and
appropriately adapting the position specifications in the command. Hence, this approach
is further referred to as velocity-based position control (VPC).

4.2.4.1 Experimental Tests and Results

Several experimental tests were conducted to assess the performance of the VPC approach.
With the first experiment, the velocity reconstruction method is determined which will be
used for the following experiments. The second experiment demonstrates the influence of
speed gain λ on tracking performance, so that adequate parameter values can be found.
The following three experiments compare control performance between IMPC and VPC
approaches using several metrics in three distinct scenarios: ideal sinusoidal trajectories,
pre-recorded breathing trajectories and human volunteers lying on the HexaPOD whose
breathing motion was compensated.

Experiment 1: Velocity Reconstruction in VPC The first experiment aims at deter-
mining which method the HexaPOD uses for reconstructing the desired velocities along
each axis, given a certain command for the velocity-based position control approach. To
determine this method, a predetermined breathing trajectory in the form of a sinusoidal
signal with a frequency of 0.2Hz and an amplitude of ±6mm was injected into the system
using λ = 1. The sinusoidal signal (possessing a maximum speed of about 7.54mm/s
which exceeds the required limit of about 0.5774vmax ≈ 4.62mm/s but is still lower than
the maximum of vmax = 8mm/s) was used as the desired position along all translational
axes simultaneously. The reconstruction method can be determined by inspection of the
tracking error. If the controller uses method 2, a minor tracking error would result,
whereas with method 1, a significant tracking error would be observable as the maximum
achievable velocity along three axis simultaneously would be constrained to a maximum
of 4.62mm/s.
The results for the decision of the type of velocity reconstruction for the position control

approach is depicted in Figures 4.11(a) and 4.11(b) along the z-axis for methods 1 and
2, respectively. For the x- and y-axes, similar plots are obtained. In the upper part of
both figures, the desired position (red) is shown as the sinusoidal signal with ±6mm and
0.2Hz. Also, the actual position (blue) of the HexaPOD can be seen which approaches
the desired position after a short transition phase with a duration of about 1.8s. After
that, the controller keeps tracking the desired position and enters a steady state. When
applying method 1, Figure 4.11(a) shows a maximum periodic tracking error of 0.122mm.
For method 2, the tracking error observed in Figure 4.11(b) is less than 0.022mm, which
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(a) Application of reconstruction method 1 lead-
ing to maximum steady state tracking error of
0.122mm where actual position precedes desired
position
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(b) Application of reconstruction method 2 lead-
ing to maximum steady state tracking error of
0.022mm

Figure 4.11: Results of velocity reconstruction methods: Upper part: Actual position of
the HexaPOD (blue) reaches desired position (red) after transition phase
with a steady state tracking error (green); commanded position (scaled by
1/10) and speed (lower part) form the control input sent to the HexaPOD

is well within the measurement noise range of the IR camera. Judging from these track-
ing errors, the controller clearly uses method 2 for velocity reconstruction. Otherwise
larger tracking errors caused by the potential velocity limitation to 4.62mm/s would have
resulted. Furthermore, it is interesting to note that the actual position for method 1
precedes the desired position. Because the internal controller uses method 2 for velocity
reconstruction but the commands are determined with method 1, the speed sc(t) originat-
ing from Eq. (4.38) is always too large. Hence, a phase shift between actual and desired
position occurs. This can also be seen by comparing the lower parts of Figures 4.11(a)
and 4.11(b), showing the speed s(t). For method 1, the speed profile contains more high
frequency oscillations than for method 2. These result from the closed-loop behavior when
the controller tries to reduce the tracking error in presence of the too large speed s(t).
The control input in VPC is split up into a commanded position part (shown as the

dash-dot line in the upper parts of the figures and scaled by 1/10 to fit into the diagram)
and a speed part (lower part of the figures). This additionally demonstrates the working
principle of the controller. The commanded position only takes minimum and maximum
values of the operational range along the z-axis and thus defines the movement direction
while speed controls the position to be reached.
For the remaining experiments, velocity reconstruction method 2 was used for the VPC

approach.

Experiment 2: Influence of Speed Gain λ The second experiment determines the in-
fluence of speed gain λ introduced in Eq. (4.40). For that purpose, λ was varied inside
its allowed range ]0; 1] starting from 0.1 in steps of 0.1. Several pre-calculated sinusoidal
trajectories covering slow to fast motions with small and large amplitudes as well as sinu-
soidal trajectories which exceed the maximum speed of 8mm/s were used for each value of
λ. The following sines were selected with maximum speeds given in parentheses: ±3mm
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with 0.2Hz (3.77mm/s), ±5mm with 0.2Hz (6.28mm/s), ±2.5mm with 0.4Hz (6.28mm/s),
±7mm with 0.2Hz (8.80mm/s) and ±5mm with 0.3Hz (9.42mm/s). These sinusoidal tra-
jectories were injected into the system as desired positions for the HexaPOD along all
three translational axes simultaneously. The evaluation was performed with respect to
the maximum absolute tracking error to deliver the worst case performance.
The speed gain λ in Eq. (4.40) influences the control effort by reducing the speed

in commands which would be necessary to achieve best possible tracking. This effects
an increasing maximum tracking error with decreasing λ as seen in Figure 4.12. The
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Figure 4.12: Maximum tracking errors for several ideal sine reference trajectories for
different speed gains λ between 0 and 1 in steps of 0.1

determination of the maximum tracking error started after a transition time of 2.5s after
which the transient behavior (cf. Figure 4.11) is almost zero for all used datasets. The
advantage of a lower control effort is the ability to avoid small overshoots of the controller
which are caused by unknown timing variations in the system, measurement noise and
non-smoothness of predicted tumor positions. Smaller values of λ help to reduce frequent
direction changes of the HexaPOD which can degrade patient comfort.
A strong dependency between the maximum tracking error and maximum speed of the

desired trajectory can also be observed from Figure 4.12. For the sine trajectories below
8mm/s (±2.5mm with 0.4Hz, ±3mm with 0.2Hz and ±5mm with 0.2Hz), the maximum
errors are located in the same region and become very small for λ = 1. The maximum
errors for faster trajectories lie apart from the slower ones. Here, the maximum error is
determined by the amount and duration of speed exceedance of the trajectory compared
to the HexaPOD’s speed limit. In this case, the HexaPOD cannot keep the same tracking
performance but still tries to compensate as much as possible.
Independent of the maximum speed, the shapes of the exponentially decreasing curves

of the maximum tracking error are similar, where the slope decreases with increasing λ.
For λ > 0.5, the slope decreased in such a way, that differences to λ near one are lesser
compared to smaller values for λ. Therefore choosing λ > 0.5 seems reasonable.

Experiment 3: IMPC vs. VPC with Ideal Trajectories In order to get a clear picture of
the performance of IMPC in comparison to VPC, experiment 3 was carried out on ideal
trajectories using the sines from experiment 2. Also here, the trajectories were injected
through the simulator program which overlays them on the actual IR measurements along
all three translational axes. For IMPC, HexGuide performed a prediction of the trajectory
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up to a horizon of 7 (because of the prediction horizon of Np = 7) whereas for the position
control approach, a horizon of 1 is sufficient. Note that the prediction algorithm was
configured to deliver a multi-step prediction, i.e. in sampling instant t all predictions for
t + 1 up to t + Np are calculated, so that the most up-to-date information is used for
predictions.
The evaluation aims at a comparison of IMPC and VPC under almost ideal circum-

stances with respect to important metrics of the tracking error such as compensation ra-
tio (CR), 95% confidence interval (CI95), mean absolute error (MAE), root-mean-square
(RMS) error and maximum absolute error (MAX). Table 4.5 shows the results of these
metrics of the tracking error using ideal sine trajectories as desired positions for both
IMPC and VPC (with λ = 1). Although IMPC exhibits an acceptable performance, espe-

max. IMPC VPC
Dataset speed CR CI95 MAE RMS MAX CR CI95 MAE RMS MAX

[mm/s] [%] [mm] [mm] [mm] [mm] [%] [mm] [mm] [mm] [mm]
Sine ±3mm 0.2Hz 3.77 96.2 0.145 0.079 0.088 0.193 98.3 0.050 0.032 0.035 0.052
Sine ±5mm 0.2Hz 6.28 90.2 0.709 0.273 0.347 0.841 99.7 0.015 0.008 0.009 0.024
Sine ±2.5mm 0.4Hz 6.28 79.9 0.692 0.297 0.360 0.841 98.7 0.036 0.020 0.022 0.074
Sine ±7mm 0.2Hz 8.80 76.2 2.110 0.988 1.219 2.293 94.0 0.617 0.190 0.298 0.712
Sine ±5mm 0.3Hz 9.42 65.6 2.140 1.180 1.343 2.282 88.4 0.783 0.285 0.409 0.822

Table 4.5: Comparison of IMPC and VPC in terms of various metrics of the tracking
error when using ideal sine trajectories as reference trajectories where two
trajectories possess maximum speeds above the speed limit of the HexaPOD

cially for slower trajectories, VPC outperforms it on all metrics. The maximum tracking
error is reduced by an order of magnitude to almost zero for trajectories below the speed
limit of the HexaPOD. This performance is further emphasized by the fact that even the
maximum errors are within the measurement noise range of the IR camera. Consequently,
CI95, MAE and RMS errors are also significantly smaller for VPC. A value of 100% for
CR would result in perfect tracking with no tracking errors, which is almost reached for
VPC on the slower trajectories. However, in the presence of measurement errors, this
value cannot be reached, so the achieved CRs can be seen as near perfect. Also for faster
trajectories, VPC possesses a significantly larger CR. In general, VPC can follow the
trajectories much closer than IMPC. Since the ideal input trajectories are smooth, no
reduction of λ was needed here to trade-off patient comfort. The resulting trajectories of
the HexaPOD in this experiment were smooth, as seen quantitatively from Figure 4.11
and heard qualitatively from the noises of the HexaPOD’s motors during motion.

Experiment 4: IMPC vs. VPC with Pre-recorded Patient Trajectories In the same
setup as for experiment 3, this experiment uses 30 pre-recorded breathing trajectories from
18 different patients (for some patients, several fractions were used) along all three trans-
lational axes to estimate the performance of both control methods under more realistic
conditions. Almost all patient datasets show the z-axis (AP) to be the dominant axis, the
less dominant y-axis (SI) and the x-axis (LR) with minor motion amplitudes. Note that
within tumor trajectories, the dominant axis is usually aligned with the superior-inferior
direction. However, since control algorithms are capable of handling each axis independent
of the others in the same way, a switch of the dominant axis does not affect the tracking
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performance of the HexaPOD.
Pre-recorded breathing motions from real patients were used to drive the system in

the fourth experiment. For VPC, a value of λ = 1 would cause significant and frequent
direction changes for many datasets which would be unacceptable for patients. Therefore
this experiment was conducted using the values 0.6, 0.7 and 0.8 for λ in VPC.
Apart from the tracking accuracy metrics (CR, CI95, MAE, RMS and MAX), the

metrics SF , SJ , STS and SSNR as well as CT25 and CT10 were determined to assess
smoothness and convergence time. Except for the convergence time metrics, the metrics
were determined after a startup time of 15s for each dataset. Figure 4.13 shows the distri-
bution of the metric values as compact box plots for each controller setting. Before the box
plots were drawn, the data for each metric was scaled to the maximum of that metric (over
all controller settings), so that all metrics fit into one diagram. The corresponding value
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Figure 4.13: Qualitative comparison of IMPC and VPC performance during compensa-
tion of 30 pre-recorded patient trajectories

ranges associated with each box plot and the mean and median values are summarized in
Table 4.6.
In analogy to the results of experiment 3, any of the VPC variants outperform IMPC on

all metrics simultaneously. The huge performance increase in terms of tracking accuracy
can be observed on the CR metric. The minimum CR for any of the VPC variants is
larger than the upper quartile of the CR for IMPC. Additionally, the median values are
larger than the upper whisker of the IMPC box plot. Also the spread of the CR values
is constrained to a more narrow region between 76.7% to 98.0%. This is supported by
the remaining tracking accuracy metrics in a similar way. While most of CI95 values
for IMPC are larger than 1mm, all VPC variants show CI95 values of usually less than
1mm. Furthermore, the maximum CI95 values for the VPC variants are smaller than the
corresponding mean and median values for IMPC. The same is true for the MAE, RMS
and MAX metrics. Typical RMS errors for the VPC variants are about 0.20mm with
average maximum errors of about 0.92mm. Thus, VPC allows precise reference tracking
where most of the worst case errors are smaller than 1mm.
In terms of smoothness, the performance difference between IMPC and VPC is smaller.

According to SF and STS , smoother trajectories of the HexaPOD are obtained only for
VPC with λ = 0.6 (VPC6) whereas VPC with λ = 0.7 (VPC7) leads to similar smoothness
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CR CI95 MAE RMS MAX SF SJ ST S SSNR CT25 CT10Controller Type [%] [mm] [mm] [mm] [mm] [s] [s]
min 33.7 0.12 0.05 0.06 0.26 0.42 1.85 0.08 10.38 1.15 1.40
mean 64.6 1.73 0.47 0.73 2.78 0.80 2.18 0.13 16.80 4.46 13.94
median 65.9 1.63 0.45 0.69 2.54 0.71 2.16 0.12 16.87 3.22 7.34IMPC

max 86.6 3.98 1.00 1.62 6.59 1.95 2.78 0.22 22.37 35.96 96.73
min 76.7 0.11 0.04 0.06 0.18 0.32 1.77 0.08 10.50 1.05 1.20

VPC mean 88.7 0.47 0.15 0.22 0.92 0.72 2.15 0.11 18.00 1.72 3.37
λ = 0.6 median 88.5 0.37 0.12 0.18 0.85 0.62 2.10 0.11 18.03 1.60 2.07

max 96.9 1.34 0.36 0.57 2.87 1.82 2.74 0.21 24.85 3.35 33.76
min 77.5 0.10 0.03 0.05 0.15 0.34 1.79 0.08 10.40 1.00 1.20

VPC mean 90.3 0.43 0.12 0.20 0.89 0.77 2.17 0.12 17.85 1.58 2.55
λ = 0.7 median 90.3 0.33 0.09 0.15 0.79 0.66 2.14 0.11 17.95 1.52 1.92

max 97.5 1.29 0.34 0.55 2.81 1.86 2.77 0.22 24.47 3.25 15.88
min 78.1 0.07 0.02 0.03 0.13 0.37 1.78 0.08 9.53 0.95 1.20

VPC mean 91.5 0.39 0.10 0.18 0.85 0.82 2.17 0.12 17.79 1.57 2.55
λ = 0.8 median 91.8 0.30 0.07 0.13 0.73 0.70 2.16 0.12 17.86 1.48 1.85

max 98.0 1.27 0.32 0.53 2.76 1.78 2.72 0.21 24.32 3.15 15.88

Table 4.6: Quantitative comparison of IMPC and VPC performance during compensa-
tion of 30 pre-recorded patient trajectories

as IMPC. VPC with λ = 0.8 (VPC8) results in less smooth trajectories. SJ shows similar
smoothness for IMPC and VPC6 (with a preference for VPC6) and a larger spread of
the metrics for VPC7 and VPC8 towards larger metric values. According to SSNR, the
smoothness of the VPC variants is similar and better than in IMPC. Generally, it can
be inferred that VPC6 results in improved smoothness compared to the other controllers.
Most of the smoothness metrics indicate that VPC8 leads to less smoothness than IMPC.
With increasing λ, smoothness generally deteriorates within VPC as was intended by the
introduction of λ.
In opposition to deterioration of smoothness, tracking accuracy improves with increasing

λ according to all tracking accuracy metrics. The medians as well as the upper and lower
whiskers of these metrics shift to improved metric values. The spread of metrics slightly
reduces, too. Between VPC6 and VPC8, improvements of the average metrics are as
follows: 2.8% for CR, 0.08mm for CI95, 0.05mm for RMS and 0.07mm for MAX. Hence,
tracking accuracy and smoothness can be traded-off using the parameter λ.
Along with improved tracking accuracy for VPC variants, convergence time significantly

improves for the VPC variants both in terms of absolute metric values and spread. With
increasing λ, convergence time slightly reduces further.
Further analysis of these results in terms of a per dataset comparison using a subset of

the tracking accuracy metrics is detailed in [157].
Figure 4.14 exemplifies the tracking errors of a dataset when using IMPC, VPC6 and

VPC8. The CR metrics of this dataset resulted in 38.8%, 86.5% and 88.7%, respectively.
The associated RMS errors were 1.21mm, 0.28mm and 0.24mm. Each diagram shows
the amplitudes along z-axis (dominant) against the y-axis (less dominant) with and with-
out compensation as well as the histograms for these axes in these situations depicting
the relative frequency of the amplitudes. The amplitudes without compensation (blue)
differ slightly between each trial because they are tumor predictions (corresponding to
the negated desired position in the reference tracking problem) which can change due to
measurement noise and feedback effects. The shown dataset has high slopes especially
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Figure 4.14: Results of experiment 4 for a pre-recorded patient dataset: diagrams show
the amplitudes of dominant z-axis against less dominant y-axis along with
histograms depicting the relative frequencies of the amplitude ranges for
both z- and y-axes. Each diagram depicts the situation without compensa-
tion (blue) and with active compensation (red) using one method of IMPC,
VPC6 and VPC8.

during inhalation phases which exceed the maximum speed of the HexaPOD. For IMPC,
a considerable reduction of amplitudes can be observed in this case. However, VPC6 and
VPC8 further decrease the residual amplitudes due to their ability to accelerate faster and
to follow the desired trajectory more closely.
The histograms provide an intuitive comparison between the methods. Without com-

pensation, amplitudes are distributed according to a quasi-periodic signal with a hysteresis
due to different paths during inhalation and exhalation. This can be seen from the blue
histograms in Figure 4.14 which show a higher frequency of the amplitudes during exha-
lation than inhalation because the exhalation phase is usually longer than the inhalation
phase, especially when approaching the end of the exhalation phase. Thus, amplitudes
at the end of the exhalation phase have similar values and occur during a longer period
of time, as a consequence of which the frequency of these amplitudes rises. With active
compensation, the red histograms change their shape. For all three variants, the largest
frequency can be observed for amplitudes in the vicinity of zero, which means that the
goal of motion compensation is generally fulfilled. The VPC variants show a significant
improvement over IMPC for this dataset. The corresponding distributions approximately
become normal distributions with zero mean and small standard deviation. For VPC8 the
amplitudes of the z-axis are located closer to zero in a more narrow region than for VPC6
which demonstrates a slight but measurable improvement concerning tracking error.

Experiment 5: IMPC vs. VPC with Volunteers The last experiment was performed for
both control methods using 17 healthy volunteers who were lying unconstrained on the
HexaPOD. An IR tool, attached to a belt, was placed on their abdomen as in Figure 4.15
to measure breathing position. Another IR tool was rigidly attached to the HexaPOD
to acquire its position. Compensation was performed along the dominant z-axis and less
dominant y-axis.
Volunteers were asked to breathe normally. On startup of the system, the first complete
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Figure 4.15: Volunteer with attached IR tool lying unconstrained on the HexaPOD

breathing cycle was used to determine the desired set-point position for motion compensa-
tion as the mean position between the last minimum and maximum peak (This procedure
is necessary since the system is started at an arbitrary point during a breathing cycle but
for better comparison the desired position should be similar). With the volunteer on the
HexaPOD, the IMPC, VPC6 and VPC8 methods were used for breathing compensation in
an arbitrary and varying order. Between each method the system was reconfigured for the
next method which resulted in a small pause of less than one minute. Since the results of
this experiment do not rely on the same trajectory for each volunteer, they are not directly
comparable in contrast to the previous experiments. In fact, there are some volunteers
whose breathing trajectories for the methods differ quite a lot in terms of amplitude and
frequency.
However, the same metrics as in the previous experiment were used. Qualitative com-

parison of the metrics for the controller settings are shown in Figure 4.16 as box plots
scaled to the maximum value for each metric. The corresponding minimum, maximum,
mean and median values for each metric and controller setting is given in Table 4.7.
Due to the unconstrained positioning of the volunteers on the HexaPOD during this
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Figure 4.16: Qualitative comparison of IMPC and VPC performance during compensa-
tion of 18 volunteer’s breathing trajectories
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CR CI95 MAE RMS MAX SF SJ ST S SSNR CT25 CT10Controller Type [%] [mm] [mm] [mm] [mm] [s] [s]
min 53.9 1.39 0.46 0.73 2.00 0.20 1.52 0.05 14.94 0.70 2.25
mean 67.7 3.41 1.14 1.61 5.20 0.54 1.91 0.10 22.17 3.55 8.45
median 68.9 2.69 0.81 1.23 4.83 0.47 1.91 0.08 21.94 2.30 7.39IMPC

max 79.6 9.47 3.18 4.16 11.70 1.21 2.30 0.17 31.02 13.38 23.97
min 49.3 0.50 0.21 0.26 1.12 0.23 1.62 0.04 6.94 0.70 1.60

VPC mean 75.0 2.52 0.92 1.26 3.86 1.13 1.96 0.13 20.38 2.20 19.88
λ = 0.6 median 75.9 2.09 0.72 0.97 3.14 0.66 1.92 0.11 21.06 1.75 6.49

max 93.2 7.58 3.72 4.44 9.78 4.75 2.73 0.41 27.92 5.10 98.58
min 56.4 0.80 0.26 0.37 1.35 0.39 1.71 0.05 11.59 0.70 2.35

VPC mean 72.9 2.72 0.87 1.28 4.39 1.42 2.07 0.13 19.93 4.72 21.95
λ = 0.8 median 71.8 2.63 0.82 1.20 3.82 1.00 2.08 0.12 19.55 2.40 4.70

max 91.8 8.24 2.04 3.47 9.96 3.03 2.47 0.30 30.07 36.70 105.62

Table 4.7: Quantitative comparison of IMPC and VPC performance during compensa-
tion of 18 volunteer’s breathing trajectories

experiment, their breathing patterns are distributed over a wide spectrum in terms of
frequencies and amplitudes. While some volunteers showed peak-to-peak amplitudes of
8mm, others exhibited 20mm. For these volunteers, the HexaPOD continuously operated
with its maximum speed while sill leaving larger residual amplitudes. Hence, compensation
for volunteers with fast and/or deep breathing resulted in smaller CRs and increased
tracking errors. A detailed table enabling direct comparison of each volunteer’s results is
given in [157].
As can be seen from the distribution of tracking accuracy metrics shown in Figure 4.16,

the performance increase for VPC compared to IMPC is less with volunteers than with pre-
recorded patient trajectories. Major improvements according to the CR can be observed
for VPC6 and VPC8 compared to IMPC. However, there are a few datasets yielding worse
tracking accuracy than with IMPC since the lower whisker for the CR of VPC6 extends
further than the one for MPC. Following the CI95, MAE, RMS and MAX metrics, VPC6
generally performs better than IMPC. According to the upper whiskers of VPC8 for these
metrics, there are also some datasets which perform worse compared to IMPC. From
all tracking accuracy metrics it can be further inferred that VPC8 shows less tracking
accuracy with a much wider spread of the metrics.
All smoothness metrics show the best smoothness for IMPC. With VPC smoothness

deteriorates, especially with increasing λ the smoothness metrics spread more with worse
median metric values. The convergence time metrics deliver a differentiated picture. Ac-
cording to the mean and median of CT25 metric, there is a small benefit for VPC6 com-
pared to IMPC and VPC8, whereas for CT10, VPC8 possesses smaller convergence times
(apart from the larger outliers).
Comparing the results of this experiment with volunteers to the previous one with

pre-recorded patient trajectories, in which VPC outperformed IMPC, a different overall
performance results with volunteers. The main difference in the experiment setup is the
placement of the IR tool which measures breathing motion. For pre-recorded patient
trajectories, the IR tool was rigidly attached to the HexaPOD whereas with volunteers it
was placed on the soft part of the abdomen underneath the diaphragm. In combination
with unconstrained volunteers on the HexaPOD, this setup allows the IR tool to oscillate.
When the HexaPOD changed its movement direction along one axis relatively sharp,
oscillations of the abdominal area could be observed during the compensation experiments.
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These oscillations can be triggered by another effect which is more likely to happen in VPC
than in IMPC, especially with increased λ. This was observed during a closer inspection of
the individual datasets which revealed that the oscillations usually occurred in the vicinity
of peaks where the HexaPOD needs to slow down. Thus, oscillations are actually small
overshoots where the desired position is reached but the HexaPOD could not slow down
fast enough, so that it needs to change direction at least for the next sampling instant.
Because of the closed-loop system, a small oscillation can introduce feedback effects which
can sustain for several sampling instants. However, it is interesting to note that the trials
with volunteers having a higher breathing velocity and with a shorter exhalation phase
suffered less from these oscillation effects. In these cases, the HexaPOD always lags behind
the reference trajectory which is not completely reached, effectively preventing oscillations.
This is also the reason for the observation that oscillations occurred more frequently along
the minor axes, especially the y-axis, which has only a peak-to-peak amplitude of less
than 2mm for some volunteers. Additionally, measurement noise of the IR camera plays a
more significant role and can be another cause for oscillations apart from non-compensated
system latencies.
The experiment setup with human volunteers lying completely unconstrained on the

HexaPOD is more challenging than in normal clinical routine, where the patient is con-
strained by a fixation system. Such a system, for example the BodyFIX® system constrains
the patients motions relative to the HexaPOD so that practically no whole-body motions
are possible. Furthermore, the evacuation of the system puts pressure on the whole human
body which can significantly damp or even prevent oscillations [158].
As could be seen, the oscillation effects can cause worse performance of VPC8 in com-

parison to VPC6. This situation is exemplified in Figure 4.17. Even though the amplitudes
of breathing motion are slightly smaller along the z- and y-axis for VPC8 as opposed to
VPC6, the residual amplitudes after compensation are larger for VPC8 than for VPC6,
especially along the y-axis where the peak-to-peak breathing amplitude range is about
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Figure 4.17: Results of experiment 5 for a volunteer: diagrams show the amplitudes of
dominant z-axis against less-dominant y-axis along with histograms show-
ing the relative frequencies of certain amplitude ranges for both z- and
y-axes. Each diagram depicts the situation without compensation (blue)
and with active compensation (red) using one method of IMPC, VPC6 and
VPC8.
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1.5mm. This is also reflected by the smoothness metric SF : for VPC6 it is 0.458 whereas
it doubled for VPC8 to 0.997. Nevertheless, the performance metrics of tracking error still
show an improvement for VPC8 over the ones for IMPC which can also be seen by more
narrow histograms along the dominant z-axis. The breathing pattern of VPC6 shows a
more varying character than for VPC8 or IMPC (there is a small baseline-shift along the
y-axis), however residual amplitudes are lower for the y- and z-axes and the distribution
is more narrow.

4.2.4.2 Discussion

During the tests with VPC, no instability has been observed so far. The controller always
tries to follow the reference trajectory as close as possible by computing the necessary con-
trol input to reach the desired position at the next sampling instant and to simultaneously
keep the velocity of the reference. If the reference is faster than the speed limit, larger
deviations from the reference trajectory occur, but the resulting velocity of the HexaPOD
is then at maximum, thereby still trying to follow the trajectory as much as possible. Due
to the way the positions in the command are derived, they will never exceed the opera-
tional range limits, so that the position of the HexaPOD is constrained within that range,
effectively resulting in a stable control loop as long as the reference is constrained to the
operational range. Since the non-compensated latencies as discussed in Section 2.2.3.3 are
small, they can be assumed to pose no threat to stability.
In IMPC, stability is achieved by appropriate choices of the free parameters. Also for

this controller, during all preliminary tests as well as during all experiments, no insta-
bility has been observed. However, due to constraints, the MPC could become infeasible
especially for non-minimum phase models. Therefore the implementation checks at each
sampling instant if MPC was infeasible and reports this condition. During all the tests no
infeasibility has occurred (except if Np = 1). If an infeasibility occurs, the second control
input from the sequence of optimal control increments is chosen, which was computed
during the previous sampling instant. This procedure can be repeated Nu − 1 times in
case of persistent infeasibilities. If no more control increments are available, treatment
would need to be stopped. However, this condition never occurred so far.
In Experiment 1, a sine trajectory with an appropriate maximum speed was used as

a reference trajectory along all three translational axes in order to make the internal
controller of the HexaPOD exhibit the type of velocity reconstruction by observing its
output trajectory. Results demonstrated that the velocity specification in the HexaPOD’s
command has to be chosen as the absolute value of the desired velocity along the main
axis, the axis with the largest difference between desired and actual position.
Experiment 2 pointed out the influence of speed gain λ in VPC with useful settings for

trading-off tracking performance and patient comfort.
Using ideal sine trajectories as reference trajectories the third experiment compared the

tracking performance of IMPC and VPC with λ = 1. If the maximum speed of trajectories
is smaller than the speed limit of the HexaPOD, an already large tracking performance
can be achieved with IMPC whereas with VPC near perfect tracking with almost no
tracking error is reached. These results additionally validate the negligence of the non-
compensated latencies. Faster trajectories result in larger tracking errors but VPC still
outperforms IMPC.
A more realistic scenario is to use real pre-recorded patient trajectories which are over-

laid on actual measurements of the IR camera as in Experiment 4. Depending on the
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maximum speed of the reference, larger tracking errors can be observed. Still, VPC clearly
outperformed IMPC for every patient dataset whereby larger speed gains λ resulted in
less tracking errors but also in less smooth trajectories.
If the system is used with real humans in the loop, the closed-loop nature of the system

can lead to feedback effects degrading performance in terms of both tracking and smooth-
ness as becomes apparent in the fifth experiment. Nevertheless, VPC with a sufficiently
low λ provides a better tracking performance than the IMPC variant. The generally lesser
performance of IMPC can be attributed to several aspects: Firstly, there are modeling un-
certainties in the parameters, arising in any model based on system identification methods.
Possibly, a change of the identifying datasets for example to real patient data could lead to
improved models. Secondly, measurement noise of the IR camera can further worsen the
situation during identification. And thirdly, since IMPC is based on a model describing
the position-position response, it only adapts the position parameters in the HexaPOD’s
command, whereas the velocity parameter is set to the constant 1. In VPC, control is
realized over velocity, allowing a fine granular adaptation of position.
Due to unconstrained positioning of volunteers on the HexaPOD and the placement of

the IR tool on soft tissue, one sharp change in direction can cause the IR tool to oscillate
for a short moment which can induce more direction changes. As the HexaPOD system
is itself inherently stable and the occurring oscillations of the IR tool are quickly damped
by the human body, instability is of no concern here but patient comfort is. Despite
considerable tracking performance achieved with both controllers (with improved tracking
errors for VPC), some volunteers experienced a “shaky ride” on the HexaPOD. Some even
felt uncomfortable during the compensation of their breathing motion. Both controllers
possess means of reducing control effort leading to smoother trajectories of the HexaPOD,
however at the cost of tracking performance. Hence, the question arose if VPC can be
combined with MPC to further improve upon the VPC approach, especially in terms of
smoothness. The combined approach is discussed in the following section.

4.2.5 Model Predictive Control of Velocity Model

In VPC, control is mainly achieved by determining the appropriate velocity required for
reference tracking along the main axis using Eq. (4.34). The non-absolute version of this
in the form

s(t) = pj(t+ 1)− pj(t)
∆τ

can be regarded as the inverse of a simple linear velocity model along axis j given by

pj(t+ 1) = pj(t) + ∆τs(t) . (4.41)

Identifying the position pj(t) with the state xj(t) of a first-order state-space model with
n = 1 of the form Eq. (4.10), the elements of it can be chosen as A = 1, B = ∆τ and
C = 1 in order to reflect Eq. (4.41). Note that ∆τ represents the uniform sampling
time unlike in Eq. (4.34). The input uj(t) corresponds to the linear velocity (which is
specified in normalized form in the HexaPOD’s command) whereas the output yj(t) is the
actual position of the HexaPOD along one axis j. Essentially, the model is expressed as
an undisturbed constant velocity model, where its disturbed version was already used in
Section 3.4.1 for motion prediction.
This state-space model, originating from the VPC approach, can be incorporated into
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a MPC similar to the identified model of the HexaPOD from Section 4.2.3. The output
yj(t) still represents the position of the HexaPOD. Thus, the constraint on the output

lLj ≤ yj(t) ≤ lUj (4.42)

ensures the position of the HexaPOD lies within the operational range limits lLj and lUj
for an axis j. The constraint on the input uj(t) forces the velocity of the HexaPOD to be
smaller than vmax, that is

−vmax ≤ uj(t) ≤ vmax . (4.43)

In that respect, the constant velocity model in combination with MPC enables the con-
troller to simultaneously take care of the operational limits of the HexaPOD as well as of
the velocity saturation which was first observed during model identification.

With the state-space model (4.10), the output constraint (4.42), input constraint (4.43)
and cost function (4.13) which is adopted in the same way from the IMPC approach, the
optimization problem can be written as

min
∆Ûj,{∆ûj(t),...,∆ûj(t+Nu−1)}

{J(t)}

s.t. x̂j(t+ k + 1|t) = Ax̂j(t+ k|t) +B (ûj(t+ k − 1|t) + ∆ûj(t+ k|t)) , k ≥ 0,
ŷj(t+ k|t) = Cx̂j(t+ k|t), k ≥ 0,
x̂j(t|t) = xj(t),
ûj(t− 1|t) = uj(t− 1),
ûj(t+ k|t) = ûj(t+ k − 1|t), Nu ≤ k < Np,

− vmax ≤ ûj(t+ k|t) ≤ vmax, k = 0, . . . , Np,

lLj ≤ ŷj(t+ k|t) ≤ lUj , k = 1, . . . , Np .

Since a full measurement of the state xj(t) is available (xj(t) equals the current position
of the HexaPOD along axis j measured by the IR camera), no state observer needs to be
employed.

In effect, one instance of MPC including the velocity model determines a desired velocity
increment ∆vj(t) = ∆ûj(t|t) for a single axis j as the input refers to the HexaPOD’s
velocity along an axis. If more axes need to be actuated, additional instances of the MPC
can be executed in parallel to deliver the velocity increments for the remaining axes.

Adding the desired velocity increments to the previous control inputs uj(t − 1) for
corresponding axis j, the 3D vector ~v(t) of desired velocities is formed:

~v(t) =

u1(t− 1) + ∆v1(t)
u2(t− 1) + ∆v2(t)
u3(t− 1) + ∆v3(t)

 ,

which the HexaPOD is supposed to realize until the next sampling instant. Since the
HexaPOD can be supplied only with one velocity specification, the VPC approach is
expressed in terms of velocities in the following to accommodate for that need. Inserting

∆~p(t) = ~v(t)∆τ
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into Eq. (4.35) and substituting
K ′ = K∆τ

yields
g : ~a = ~p(t) +K ′ ~v(t) .

Then, Eq. (4.37) becomes
K ′j = lj − pj(t)

vj(t)
from which the point of intersection is derived as

~c(t) = ~p(t) +K ′m ~v(t)

in analogy to the VPC approach. Eq. (4.39) simplifies to

s(t) = |vm(t)|,

completing the MPC approach including the velocity model, further referred to as VMPC.
Prediction accuracy normally degrades with the prediction horizon Np. Therefore pa-

rameters Q(k) in the cost function are chosen as Q(k) = 2Np−k for k = 1, . . . , Np, re-
ducing the contribution of tracking errors for higher prediction horizons in the cost func-
tion. Future control increments should be weighted equally, so that T (k) = T (j),∀k, j ∈
{1, . . . , Nu}. The value of the cost function is not of interest, but the ratio γ of both sums
is. Using

γ =
∑Nu
i=1 T (i)∑Np

i=1Q(i)
= NuT

2Np − 1

the tuning parameter T can be derived from a given γ by T =
(
2Np − 1

)
γ/Nu. Setting

Nu = Np for this work, VMPC possesses only two tuning parameters Np and γ.

4.2.5.1 Experimental Tests and Results

The same experimental tests as for the comparison between IMPC and VPC were per-
formed to compare VPC to VMPC. Therefore the same experimental setup applies as
described in Section 4.2.4.1.
From experience with the IMPC approach, where the model of the HexaPOD was ob-

tained by system identification methods, useful values for Np were observed in the range
of 5-10, where performance gain reduces exponentially with larger prediction horizons.
Thus, Np = 7 was used for the VMPC approach with Nu = Np. Various values for γ were
tested in preliminary tests. It was found that the values 0.01, 0.025, 0.05, 0.075 and 0.1
cover an adequate range from emphasis on tracking accuracy to patient comfort.

Experiment 1: VPC vs. VMPC with Pre-recorded Patient Trajectories In the first
experiment, the simulator program used 30 pre-recorded breathing trajectories from 18
different patients (the same were already used in experiment 4 comparing IMPC to VPC).
Compensation using real hardware was performed along all three translational axes for
both control methods with all specified parameter settings.
The analysis of results is performed in terms of the previously used prediction accuracy,

smoothness and convergence time metrics. Additionally, both VPC and VMPC methods
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give rise to the adoption of another metric representing the control effort (CE). The CE
can be computed from the saturated control input s(t) according to Eq. (4.32) with

CE =
n∑
t=2

1
∆τ

(
sat
vmax

(s(t))− sat
vmax

(s(t− 1))
)

= vmax
∆τ

n∑
t=2

sc(t)− sc(t− 1) ,

which represents the desired acceleration given in mm/s2 to follow the reference trajectory
(if not saturated). The results in terms of applied metrics (calculated after a startup
time of 15s for each dataset) of the tracking error, smoothness and convergence time are
depicted in Figures 4.18 and 4.19 as box plots, each of them showing the distribution of
a criterion for a specified controller setting. Before the box plots were drawn, data for
each criterion was first scaled to the maximum of that criterion, so that all criteria fit into
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one diagram. The corresponding value ranges associated with each box plot as well as the
mean and median values are summarized in Table 4.8.

CR CI95 MAE RMS MAX CE SF SJ ST S SSNR CT25 CT10Controller Type [%] [mm] [mm] [mm] [mm] [mm
s2 ] [s] [s]

min 66.7 0.17 0.06 0.08 0.24 6.92 0.45 1.82 0.08 10.55 0.70 0.70
VPC mean 84.5 0.73 0.24 0.35 1.54 16.02 0.91 2.17 0.12 17.65 1.55 8.36
λ = 0.6 median 86.6 0.65 0.21 0.33 1.28 16.52 0.80 2.13 0.12 18.06 1.05 4.17

max 94.3 1.88 0.64 0.92 4.49 21.81 2.24 2.81 0.24 21.73 8.49 91.29
min 74.2 0.12 0.04 0.06 0.21 8.92 0.58 1.87 0.09 9.73 0.70 0.70

VPC mean 86.5 0.67 0.19 0.31 1.51 18.70 1.12 2.20 0.13 16.96 1.30 7.31
λ = 0.8 median 87.6 0.63 0.18 0.29 1.22 19.38 1.02 2.16 0.12 17.51 0.82 4.07

max 95.0 1.81 0.59 0.86 4.47 25.67 2.20 2.76 0.25 21.28 7.29 34.21
min 75.0 0.12 0.05 0.06 0.23 5.31 0.45 1.76 0.08 9.91 0.70 0.70

VMPC mean 87.7 0.66 0.18 0.30 1.55 13.08 0.93 2.10 0.12 16.95 1.38 8.71
γ = 0.01 median 89.3 0.56 0.15 0.28 1.37 13.45 0.82 2.06 0.12 17.43 1.17 2.25

max 95.5 1.99 0.66 0.95 4.29 17.91 2.03 2.73 0.23 21.19 5.15 99.03
min 70.5 0.18 0.06 0.08 0.28 4.35 0.36 1.73 0.08 10.22 0.70 0.70

VMPC mean 86.5 0.72 0.19 0.32 1.63 10.92 0.74 2.08 0.12 17.27 1.72 8.52
γ = 0.025 median 88.7 0.62 0.18 0.31 1.44 11.40 0.63 2.02 0.11 17.58 1.07 2.90

max 94.6 1.98 0.62 0.90 4.43 14.94 1.91 2.76 0.23 21.74 10.29 99.03
min 64.6 0.21 0.07 0.10 0.31 3.75 0.28 1.70 0.08 10.47 0.70 0.70

VMPC mean 84.6 0.80 0.22 0.36 1.72 10.01 0.62 2.06 0.12 17.31 2.14 8.49
γ = 0.05 median 86.9 0.71 0.21 0.35 1.47 10.49 0.49 2.00 0.11 17.79 1.57 5.69

max 93.7 2.13 0.74 1.03 4.75 14.31 1.95 2.78 0.23 22.06 11.94 50.29
min 60.6 0.24 0.08 0.11 0.35 3.54 0.26 1.71 0.08 10.57 0.70 0.70

VMPC mean 83.2 0.86 0.25 0.39 1.79 9.60 0.56 2.06 0.12 17.37 2.24 9.27
γ = 0.075 median 85.7 0.81 0.23 0.38 1.54 10.14 0.45 2.01 0.11 17.67 1.62 5.74

max 93.0 2.22 0.77 1.07 4.99 13.94 1.91 2.80 0.23 22.27 11.74 52.49
min 58.1 0.25 0.09 0.12 0.36 3.37 0.25 1.70 0.08 10.45 0.70 0.70

VMPC mean 82.0 0.91 0.27 0.42 1.86 9.36 0.53 2.06 0.12 17.41 2.30 11.58
γ = 0.1 median 84.8 0.88 0.25 0.41 1.64 9.92 0.43 2.00 0.11 17.77 1.70 5.89

max 92.4 2.29 0.81 1.12 5.22 13.79 1.88 2.79 0.23 22.77 12.13 93.24

Table 4.8: Quantitative comparison of VPC and VMPC performance during compensa-
tion of 30 pre-recorded patient trajectories

The metrics resulting from VPC for this experiment (cf. Table 4.8) and the ones for
experiment 4 (comparing VPC to IMPC, cf. Table 4.6) differ although they represent the
same experiment with the same datasets. This difference stems from a different implemen-
tation of the VPC methods. While in experiment 4, the actual position of the HexaPOD
was derived from the HexaPOD directly (by sending a command to the HexaPOD to ac-
quire its position), the actual position of the HexaPOD was acquired by measurements
of an IR tool. When acquiring the position from the HexaPOD directly, the resulting
trajectories are smoother because no measurement noise of the IR camera is introduced.
However, the change in implementation was done to allow for a fair comparison between
VPC and VMPC, which only makes use of the positions acquired by the IR camera.
As can be seen in Figure 4.18, improvements of tracking accuracy according to the CR

can be achieved with VMPC for smaller values of γ. With increasing γ, the spread of
the CR metric increases, even beyond the range of CR values for VPC6 and VPC8. This
is supported in the same way by the CI95, MAE, RMS and MAX metrics. For small
γ, emphasis in the cost function is placed on tracking accuracy rather than on control
increments. With increasing γ, emphasis shifts towards small control increments. Hence,
tracking accuracy decreases with increasing γ.
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According to the CE metric displayed in Figure 4.18, control effort decreases with in-
creasing γ due to the fact that smaller control increments are favored by the optimization
in VMPC. It is interesting to note that the control effort is smaller for any of the VMPC
variants than for VPC, despite improved tracking accuracies for small γ in VMPC com-
pared to VPC. This behavior can be attributed to the optimizing character of VMPC,
taking into account a future horizon rather than just the next sampling instant as in VPC.
The same results are furthermore supported by other smoothness metrics SF , SJ , STS and
SSNR.

Similar to the decrease in tracking performance with increasing γ, the convergence time
metric CT25 shows an increase in convergence time. While similar convergence times
are observed for VPC and VMPC with small γ, VPC8 possesses the smallest average
convergence times. With CT10 the picture changes with smallest average convergence
times for VMPC with γ = 0.01, however associated with a larger spread.

Generally, the best overall performance can be observed for γ = 0.01. If γ ≥ 0.025
the improvement in smoothness is considerably larger than the average loss in tracking
accuracy (cf. median CRs of box plot and mean CRs in Tab 4.8). Hence, suitable values
for γ range in between 0.01 to 0.05. Average compensation ratios of 84.6% to 87.7% can
be expected with average CI95 values of less than 0.8mm and average RMS errors of less
than 0.36mm. Simultaneously, smoothness and with it patient comfort is considerably
improved compared to VPC.

As an example, Figure 4.20 shows the results for a patient dataset when using VPC8,
VMPC with γ = 0.01 and VMPC with γ = 0.05. While with VPC8, tracking errors
(shown in red) are considerably reduced as opposed to the motion to be compensated
(shown in blue), VMPC with γ = 0.01 improves tracking errors further which can be seen
by the red histograms. Even when using VMPC with γ = 0.05, resulting in a smoother
trajectory, yields smaller tracking errors than VPC8, especially along the y-axis.
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Experiment 2: VPC vs. VMPC with Volunteers The second experiment was also per-
formed for both control methods along all three translational axes (note that in experiment
4 comparing IMPC to VPC only motions along the y- and z-axis were compensated) us-
ing 18 healthy volunteers who were lying unconstrained on the HexaPOD. An IR tool,
attached to a belt, was placed on their abdomen to measure the 3D breathing position
(using a second IR tool rigidly attached to the HexaPOD). The volunteers were asked to
breathe normally.
The same evaluation as for experiment 1 was performed on the last 60s of each trial.

Although the results for each volunteer are not directly comparable as for experiment 1,
the box plots in Figures 4.21 and 4.22 show the distribution of scaled metric values. The
corresponding minimum, maximum, mean and median values are given in Table 4.9.
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CR CI95 MAE RMS MAX CE SF SJ ST S SSNR CT25 CT10Controller Type [%] [mm] [mm] [mm] [mm] [mm
s2 ] [s] [s]

min 27.9 0.35 0.13 0.18 0.70 10.54 0.68 1.86 0.09 5.45 1.30 4.25
VPC mean 66.1 1.95 0.72 0.96 3.39 22.27 2.38 2.32 0.22 15.27 20.94 54.17
λ = 0.6 median 67.0 2.01 0.70 1.00 3.44 24.53 1.93 2.40 0.20 14.32 4.07 61.72

max 89.7 4.05 1.53 2.02 5.64 33.49 5.58 2.70 0.41 25.69 94.23 94.79
min 28.4 0.42 0.12 0.20 1.53 8.26 0.74 1.90 0.10 7.52 1.30 1.90

VPC mean 62.7 2.11 0.76 1.03 3.76 21.35 2.64 2.37 0.22 14.37 21.17 54.81
λ = 0.8 median 61.7 2.02 0.69 1.00 3.86 21.67 2.61 2.43 0.23 12.86 4.32 69.22

max 88.1 3.99 1.54 1.99 7.35 35.21 6.38 2.74 0.43 25.43 94.79 95.28
min 42.5 0.18 0.06 0.09 0.58 11.02 0.88 1.85 0.08 2.99 1.10 2.15

VMPC mean 73.2 1.85 0.76 0.95 2.97 25.29 2.50 2.16 0.21 14.32 22.97 51.31
γ = 0.01 median 74.7 2.09 0.86 1.08 3.01 26.89 2.12 2.14 0.19 15.65 2.42 58.93

max 93.4 3.35 1.44 1.78 5.22 35.67 6.57 2.58 0.43 21.79 93.24 93.24
min 60.1 0.21 0.07 0.10 0.56 7.51 0.30 1.69 0.05 8.84 1.00 5.29

VMPC mean 81.6 1.13 0.40 0.54 2.00 18.44 1.44 2.04 0.16 16.87 8.28 34.53
γ = 0.025 median 83.3 0.96 0.33 0.48 2.11 15.57 1.16 2.07 0.14 16.84 2.27 13.88

max 97.4 2.75 1.30 1.53 3.71 32.05 3.09 2.26 0.28 25.77 90.74 93.24
min 75.0 0.25 0.08 0.12 0.59 6.81 0.27 1.67 0.06 15.52 1.70 2.15

VMPC mean 88.3 0.74 0.22 0.34 1.56 9.91 0.52 1.94 0.10 19.53 5.72 24.68
γ = 0.05 median 90.8 0.48 0.13 0.21 1.08 9.60 0.51 2.00 0.09 19.31 2.27 11.04

max 93.2 3.53 1.14 1.71 7.35 13.51 0.96 2.19 0.14 26.01 39.00 94.63
min 71.1 0.27 0.09 0.13 0.57 7.39 0.23 1.66 0.06 12.82 1.45 1.70

VMPC mean 86.7 0.89 0.28 0.41 1.61 9.92 0.48 1.96 0.11 18.50 3.08 14.99
γ = 0.075 median 89.0 0.56 0.15 0.24 1.08 9.57 0.47 2.00 0.10 18.04 2.55 6.99

max 93.5 3.90 1.42 1.93 6.10 13.16 0.74 2.24 0.15 23.40 6.34 78.45
min 64.5 0.33 0.10 0.15 0.63 7.45 0.23 1.68 0.06 13.28 1.40 2.30

VMPC mean 84.9 0.96 0.31 0.44 1.65 9.76 0.44 1.96 0.10 18.89 3.39 12.10
γ = 0.1 median 86.2 0.62 0.18 0.27 1.29 9.56 0.42 1.99 0.10 18.11 2.70 8.24

max 92.0 4.78 1.79 2.35 5.37 13.58 0.68 2.28 0.15 24.94 8.59 41.05

Table 4.9: Quantitative comparison of VPC and VMPC controller performance during
compensation of 18 volunteer’s breathing trajectories

This experiment includes VPC6 and VPC8 when performing motion compensation for
all three translational axes whereas the results in experiment 5 for IMPC vs. VPC covered
compensation along the y- and z-axis only. As can be inferred by comparing the perfor-
mance metrics for VPC in these two cases (cf. Tables 4.7 and 4.9), tracking accuracy
and smoothness are considerably reduced in this experiment. This further demonstrates
the problems of the VPC approach where induced oscillations reduce overall performance.
Since compensation along the minor x-axis was additionally performed in this experiment,
the oscillation behavior became worse compared to experiment 5, which is well described
by the smoothness metrics. The results from experiment 5 can be observed here as well,
that is, VPC6 delivers both improved tracking accuracy and smoothness compared to
VPC8. However, for some volunteers, performance with VPC was not acceptable in terms
of comfort.
As can be seen from the tracking accuracy metrics shown in Figure 4.21, tracking

accuracy for VMPC with γ = 0.01 improves compared to the VPC trials, however the
metrics still show a large spread comparable to VPC. A similar situation can be observed
in this case for the smoothness metrics depicted in Figure 4.21. In terms of CE, this
controller setting exhibits even a larger control effort than the VPC variants.
All the performance metrics improve simultaneously if γ is increased to 0.025. Along

with an improvement of the mean and median values of each metric, the spread of each
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criteria reduces. Among the trials with this controller setting, there were already some for
which no oscillations were introduced so that the volunteers felt comfortable (supported
by metric values). However, this was not reached for all of them.
Increasing γ to 0.05 finally solved the comfort issues as can be seen by all tracking

accuracy and smoothness metrics. This setting not only results in the best tracking ac-
curacy metrics but also shows the smallest spread of these metrics. Simultaneously the
smoothness metrics result in improved metric values with a small spread compared to the
previously discussed controller settings. As can be inferred from the CE metric, overall
improvement is achieved with considerably less control effort. This fact substantiates the
origin of the oscillation problem, which is caused by a too large control effort making the
HexaPOD change directions sharply and thus introducing oscillations which are amplified
by the closed-loop system.
Increasing γ further slightly reduces tracking accuracy as can be seen by all tracking

accuracy metrics. Then, the cost function emphasizes control effort stronger than tracking
accuracy. Simultaneously, some of the smoothness metrics indicate slight improvements.
However, the smoothness gain is considerably less than the loss in tracking accuracy, so
that γ should be selected as small as possible.
During inspection of the individual datasets, it turned out that in all datasets for VPC

and VMPC with γ = 0.01 and in some datasets for VMPC with γ = 0.025, strong oscilla-
tions with large amplitudes on the x-axis and smaller ones on the y-axis were introduced,
which was already observed for VPC along two axes (experiment 5). Nevertheless, most
of the amplitude along the dominant z-axis was still compensated. In these settings the
controllers are too aggressive and cause the HexaPOD to change direction too often and
too fast, so that the patients and the soft part of the abdomen on which the IR tool is
placed starts oscillating, thereby strongly degrading patient comfort and tracking accuracy
especially along the x- and y-axis. VMPC with γ ≥ 0.05 is able to deal with these ef-
fects in order to account for patient comfort while maintaining good CR average of 88.3%
with average RMS errors of 0.34mm and CI95 of less than 0.74mm when applying the
system on real humans for 3D compensation of breathing motion. The oscillation effects
could be reduced in VPC as well by decreasing λ, but then average CR would be less
than the ones achievable with VMPC. Another important aspect also visible in the box
plots is the spread of the criteria values depicted by the upper and lower whiskers which
is very small for VMPC with γ ≥ 0.05 compared to the other controller settings. These
settings resulted in similar criteria values for all volunteers, suggesting that when applied
to other volunteers or patients, the range of criteria values will be similar as well, so that
a somewhat patient-independent controller setting can be found. Most of the volunteers
actually enjoyed the tests with γ ≥ 0.05, some of them were almost falling asleep, so that
also according to the volunteers judgment after the tests, these controller parameters are
acceptable.
Figure 4.23 depicts the individual compensation results of a volunteer in terms of track-

ing error (shown in red) and motion to be compensated (shown in blue) for VPC6, VMPC
with γ = 0.05 and VMPC with γ = 0.1. Despite motion amplitudes are smaller for VPC6
than during the other trials, tracking errors are larger. As can be seen from the motion
to be compensated, the trace in the y-z plane is more irregular than for the trials with
VMPC. This stems from induced oscillations which the volunteer was exposed to during
compensation with VPC6. Furthermore, feeling uncomfortable during motion compensa-
tion can also change the breathing pattern of a volunteer. In sum, this leads to larger
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Figure 4.23: Results of experiment 2 for a volunteer: diagrams show the amplitudes of
dominant z-axis against less-dominant y-axis along with histograms show-
ing the relative frequencies of certain amplitude ranges for both z- and
y-axes. Each diagram depicts the situation without compensation (blue)
and with active compensation (red) using VPC6 and VMPC.

residual tracking errors for this volunteer. For VMPC with γ = 0.05 the motion to be
compensated follows a regular trace. As indicated by the histograms, only small tracking
errors remain while the HexaPOD followed a smooth trajectory, having no negative im-
pact on the motion. For VMPC with γ = 0.1, the resulting trajectory became smoother,
however with a small loss in tracking accuracy as indicated by the red histograms. Both
VMPC variants are possible for this volunteer, where γ can be used to trade-off patient
comfort and tracking accuracy.

4.2.5.2 Discussion

Comparative results from hardware-in-the-loop tests of VPC and VMPC approaches were
given in which 3D breathing motion of 30 pre-recorded patient trajectories and 18 volun-
teers was compensated, which is also found in [159]. The test scenario was more difficult
than in normal treatment sessions, in which patients are constrained by a fixation system.
This makes it harder for them to move, thus also damping oscillations unlike when lying
unconstrained on the HexaPOD.
In VPC patient comfort can be accounted for by reducing the speed gain λ, however at

the cost of tracking accuracy. While for ideal trajectories or even pre-recorded breathing
trajectories, performance in terms of smoothness is still acceptable, it becomes worse when
VPC is used with humans-in-the-loop. Then, oscillation effects seriously reduce patient
comfort and often even tracking performance.
The adoption of VPC by MPC allows to better account for patient comfort while si-

multaneously preserving the tracking capabilities. Especially, with volunteers lying on
the HexaPOD, tracking performance could be even improved with VMPC. Note that the
achieved results reported in Table 4.9 were achieved by the HexaPOD with a speed limit
of 8mm/s. Most of the volunteers’ trajectories possess maximum speeds exceeding the
limit (especially during exhalation), effectively constraining tracking performance. Hence,
the results with already large compensation ratios have to be interpreted in terms of this
constraint. Thus, most of the remaining tracking errors are actually caused by the con-
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straint. Using a faster HexaPOD, such as the HexaPOD evo, can further reduce tracking
errors.
Neglecting the prediction and control horizon to be chosen for VMPC, the parameter

γ is the only one to realize the trade-off between tracking accuracy and patient comfort,
i.e. smoothness of the HexaPOD’s trajectory. It was found that with this parameter
the trade-off can be controlled on a fine-granular level. Similar to IMPC, stability is
achieved by appropriate choice of the MPC parameters, specifically γ. Since supplied
reference trajectories have constrained characteristics in terms of amplitude and frequency
variations (cf. Section 3.1), a sufficiently large range can be expected to be found γ, to avoid
instabilities of the constrained MPC problem for any breathing or tumor motion. In fact,
quantitative comparisons revealed that a single choice for γ is applicable to all volunteers
in order to reach a certain performance in terms of smoothness and tracking accuracy.
Infeasibilities were not encountered in all tests using VMPC. In case of infeasibilities they
can be handled as discussed in the IMPC approach. If that fails, too, VPC could be
used any time as fallback solution, rendering the control scheme robust. This additionally
makes the method more appealing and easy to apply.

4.3 Overall Performance Analysis

Overall performance analysis in this section focuses on the overall error, comprised of
prediction and tracking errors. The relationship between these errors is established and
exemplified in experiments with volunteers. Furthermore, it is shown how the transition
phase after system startup can be reduced to allow for a short startup time with small
tracking and overall errors. The timing within the software package HexGuide demon-
strates real-time aspects of the ATTS. Appropriate timing bounds are stated for the
sampling time to allow operation of the ATTS in hard real-time. Additionally, an outlook
using the HexaPOD evo treatment couch is given.

4.3.1 Overall Error Analysis

So far, analysis of control methods has been performed in terms of tracking error. However,
the error of interest for characterizing the whole system is the overall error, i.e. the non-
compensated residual motion amplitudes.
Both prediction and tracking errors contribute to overall error, where their relationship

is derived as follows: Denote a measurement of the actual tumor or breathing position
as ~p T (t) ∈ R3, which is measured in relation to a room-fixed reference frame with the
coordinate axes coinciding with the HexaPOD reference frame. In order to predict the
tumor or breathing motion, it needs to be stated relative to the HexaPOD as the HexaPOD
changes tumor position with respect to the room-fixed reference frame. Hence, the actual
position ~pH(t) ∈ R3 of the HexaPOD is removed from tumor or breathing position, yielding
the relative position ∆~p T (t) ∈ R3 given by

∆~p T (t) = ~p T (t)− ~pH(t) . (4.44)

Based on the relative position, the chosen predictor computes k-step predictions ∆~̂p T (t+
k|t) of the tumor or breathing position relative to the actual position of the HexaPOD.
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According to Eq. (3.6), the k-step prediction error is

~e Pk (t) = ∆~p T (t)−∆~̂p T (t|t− k) , (4.45)

since the desired value for the predicted position is given by the measurement and the ac-
tual value is the prediction. The predictions are negated to deliver the reference trajectory
~r(t|t+ k) ∈ R3 of the HexaPOD

~r(t|t+ k) = −∆~̂p T (t|t+ k) , k = 1, 2, . . . , nr . (4.46)

Negation is required to make the HexaPOD move in direction opposite to tumor or breath-
ing motion in order to achieve motion compensation. The reference trajectory, specifically
the reference position ~r(t|t+1) at the next sampling instant, defines the desired position of
the HexaPOD. It’s difference from the actual position of the HexaPOD yields the tracking
error

~eT (t) = ~r(t|t− 1)− ~pH(t) (4.47)

according to Eq. (4.9). Thus, tracking error is determined by negated one-step predictions
of the tumor or breathing position.
Subtracting Eq. (4.45) with k = 1 from Eq. (4.47) yields

~eT (t)− ~e P1 (t) = ~r(t|t− 1)− ~pH(t)−∆~p T (t) + ∆~̂p T (t|t− 1) . (4.48)

By inserting Eq. (4.46), Eq. (4.48) reduces to

~eT (t)− ~e P1 (t) = −∆~p T (t)− ~pH(t) . (4.49)

In terms of overall error, describing the residual positions after compensation, the first term
−∆~p T (t) of the right-hand side of Eq. (4.49) defines the desired position of the HexaPOD
which would be necessary to achieve full compensation in accordance with Eq. (4.46).
Since the second term describing the actual position of the HexaPOD is subtracted, the
right-hand side of Eq. (4.49) states the overall error ~eO(t). Thus, the overall error is
determined by the difference between tracking and prediction errors. Expanding

~eO(t) = ~eT (t)− ~e P1 (t) = −∆~p T (t)− ~pH(t) (4.50)

by inserting Eq. (4.44), yields
~eO(t) = −~p T (t) .

Hence, overall error is alternatively represented by the negated tumor or breathing position
measurement. As this measurement is performed with respect to a room-fixed reference
frame, this quantity can be observed from room-fixed reference point, thus matching overall
error.
The relationship between these errors can also be seen by following the information flow

within HexGuide (cf. Figures 2.6 and 2.7). Note that the sum of absolute prediction and
tracking errors is always an upper limit of the absolute overall error. Thus, if prediction
and tracking error point into the same direction, they can reduce overall error.
The analysis of results from experiment 2 (comparison of VPC and VMPC with volun-

teers) was extended to the overall error for VMPC with γ = 0.05. All accuracy metrics
for each volunteer’s trial are given in Table 4.10. The overall compensation ratio (OCR)
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Vo- Overall errors Prediction errors Tracking errors
lun- OCR CI95 MAE RMS MAX PR CI95 MAE RMS MAX CR CI95 MAE RMS MAX
teer [%] [mm] [mm] [mm] [mm] [%] [mm] [mm] [mm] [mm] [%] [mm] [mm] [mm] [mm]
V1 71.6 0.85 0.30 0.40 1.56 84.9 0.52 0.19 0.25 0.99 79.6 0.49 0.16 0.22 1.10
V2 71.5 0.78 0.29 0.40 1.79 80.0 0.51 0.19 0.26 1.27 84.2 0.50 0.15 0.22 0.96
V3 81.7 0.76 0.24 0.34 1.37 86.0 0.49 0.17 0.23 0.97 92.3 0.39 0.10 0.16 0.74
V4 83.7 0.51 0.17 0.24 1.40 88.0 0.33 0.11 0.16 1.07 91.0 0.33 0.09 0.15 0.89
V5 78.8 0.77 0.21 0.34 1.85 83.6 0.55 0.16 0.25 1.40 92.1 0.28 0.08 0.13 0.96
V6 82.2 0.62 0.21 0.29 1.39 87.1 0.43 0.16 0.21 0.86 90.9 0.34 0.10 0.15 0.87
V7 72.3 2.67 1.08 1.36 3.66 87.2 1.05 0.37 0.50 2.22 79.7 2.36 0.82 1.13 3.22
V8 82.4 0.60 0.23 0.29 1.20 85.8 0.44 0.17 0.22 0.88 93.0 0.27 0.09 0.12 0.59
V9 80.9 0.89 0.29 0.40 1.97 85.6 0.58 0.20 0.28 1.37 91.4 0.47 0.12 0.20 1.12
V10 82.4 1.12 0.40 0.55 2.53 87.0 0.73 0.27 0.37 1.65 92.3 0.62 0.16 0.28 1.73
V11 66.5 4.21 1.50 2.05 7.35 85.8 1.53 0.52 0.72 2.92 75.0 3.53 1.14 1.71 7.35
V12 81.7 0.86 0.28 0.38 1.50 89.1 0.40 0.15 0.20 0.86 88.7 0.60 0.16 0.25 1.07
V13 75.8 0.79 0.28 0.38 1.60 81.6 0.54 0.19 0.26 1.19 89.2 0.41 0.12 0.19 1.28
V14 78.8 0.73 0.27 0.36 1.73 85.9 0.47 0.17 0.23 1.09 87.3 0.50 0.14 0.22 1.16
V15 77.7 0.40 0.13 0.19 0.70 84.4 0.24 0.09 0.11 0.46 87.0 0.28 0.08 0.12 0.61
V16 77.1 1.49 0.44 0.64 3.45 83.0 0.97 0.32 0.46 2.50 90.7 0.65 0.18 0.28 1.62
V17 83.9 1.52 0.52 0.71 3.09 89.1 0.81 0.33 0.43 2.19 91.8 1.01 0.23 0.41 1.97
V18 84.8 0.49 0.18 0.25 1.23 87.9 0.35 0.13 0.18 0.98 93.2 0.25 0.08 0.12 0.76
min 66.5 0.40 0.13 0.19 0.70 80.0 0.24 0.09 0.11 0.46 75.0 0.25 0.08 0.12 0.59
mean 78.5 1.11 0.39 0.53 2.19 85.7 0.61 0.22 0.30 1.38 88.3 0.74 0.22 0.34 1.56
med. 79.9 0.79 0.28 0.38 1.66 85.8 0.52 0.18 0.25 1.14 90.8 0.48 0.13 0.21 1.08
max 84.8 4.21 1.50 2.05 7.35 89.1 1.53 0.52 0.72 2.92 93.2 3.53 1.14 1.71 7.35

Table 4.10: Quantitative comparison of overall, prediction and tracking performance
during compensation of 18 volunteer’s breathing trajectories of VMPC with
γ = 0.05

is derived similarly to the CR, except that the RMS of the desired trajectory is computed
from negated breathing positions stating the desired values in terms of overall error.
When multiplying the achieved PRs and CRs for each volunteer, the result expressed

in percent is found to be slightly smaller than the corresponding OCR. In fact, for all
volunteers from Table 4.10, the relationship between PR and CR to OCR is found to be

OCR = PR ·CR + ε ,

where ε ∈ [1.7%; 4.2%]. This indicates that an approximate relationship between the
ratios may exist in such a way that the product of PR and CR constitutes a lower bound
for OCR where the difference between the bound and the actual OCR is small. However,
more trials are necessary to consolidate this potential relationship. Nevertheless, it can
provide a thumb rule to estimate the average OCR when average PRs are known for a
predictor and average CRs are available for a control method.
As can be seen in Table 4.10, RMS prediction errors are smaller or equal than 0.5mm

except for volunteer V11. The associated CI95 limits are mostly smaller than 1mm (except
for V7 and V11) and absolute MAX errors are smaller than 3mm. As seen by the median
MAX errors, half of the maximum absolute errors are smaller than 1.14mm. On average,
CI95 limits of 0.61mm and RMS errors of 0.30mm result for the prediction errors. Thus,
predictions of the Takens predictor (which was used in the experiments) lead to small
one-step prediction errors with PRs in the range 80.0% to 89.1%. As became apparent
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during comparison of predictors, slightly increased prediction accuracy can be achieved
with the ERLS or NERLS predictor, however with a loss in smoothness.
CI95 limits of tracking errors are smaller than 1.1mm with RMS errors smaller than

0.5mm except for volunteers V7 and V11. Absolute maximum tracking errors are smaller
than 2mm in these cases. On average, CI95 limits of 0.74mm and RMS errors of 0.34mm
with MAX errors of 1.56mm are found. Thus, tracking errors are also small for most
volunteers with CRs in the range 75.0% to 93.2%.
Both tracking and prediction errors result in the overall error according to Eq. (4.50).

Since the absolute overall error is always less than the sum of absolute prediction and
tracking errors, the same is true for each of the error metrics shown in Table 4.10. CI95
limits of the overall error are smaller than 1.6mm with RMS errors smaller than 0.71mm
and absolute maximum errors smaller than 3.45mm except for V7 and V11. On average,
CI95 limits of 1.11mm, RMS errors of 0.53mm and MAX errors of 2.19mm result in terms
of the overall error. Hence, both prediction and tracking errors contribute to the overall
error, however their contribution depends on their sign. Because of that, they partially
reduce the overall error as becomes obvious from all error metrics.
As seen in this error analysis, errors for volunteers V7 and V11 are larger than for

the others. In order to derive the reason for this result, several characteristics of each
volunteer’s breathing trajectory are given in Table 4.11. The first four columns state the

CI95 MAE RMS MAX Range x Range y Range zVolunteer [mm/s] [mm/s] [mm/s] [mm/s] [mm] [mm] [mm] Remarks

V1 6.43 3.61 4.08 8.10 3.63 1.18 6.69
V2 5.46 2.57 3.09 8.12 0.42 1.16 7.06
V3 6.00 3.42 3.80 7.14 0.44 1.79 8.13
V4 5.66 3.40 3.74 5.89 0.39 0.78 6.90
V5 4.59 2.49 2.84 4.93 1.10 1.52 9.09
V6 5.97 2.85 3.47 6.48 0.67 1.52 6.19
V7 10.10 5.63 6.30 11.54 2.05 3.10 16.61 fast, deep
V8 4.78 2.12 2.66 5.23 0.47 1.31 6.89
V9 5.24 2.57 2.97 4.95 0.76 0.92 7.10
V10 5.98 3.61 3.89 7.01 0.83 1.60 12.15
V11 10.02 5.26 6.11 13.22 2.89 2.29 19.91 fast, irreg.
V12 7.99 4.24 4.77 9.45 0.47 1.06 7.82
V13 3.80 1.98 2.25 4.66 1.10 3.16 6.82
V14 5.92 3.95 4.25 6.55 0.49 1.06 7.77
V15 3.38 2.08 2.27 3.69 0.68 0.39 4.10
V16 6.23 3.70 4.13 9.85 1.17 5.66 14.63 irregularity
V17 7.54 4.20 4.73 8.62 1.28 3.29 15.97 regular, deep
V18 5.31 3.27 3.57 6.11 0.73 0.73 7.04

Table 4.11: Speed metric results and amplitude ranges along three translational axes
from 18 volunteer’s breathing trajectories during compensation by VMPC
with γ = 0.05

CI95, MAE, RMS and MAX metric values of observed speeds along breathing trajectories.
The speeds were obtained by first performing a zero-phase filtering with a Butterworth
filter as described in Section 3.1.3 and then computing the discrete derivative of filtered
output. Speeds from multiple axes were combined by taking the maximum metric along
each translational axis. The following three columns show the amplitude ranges along
each translational axis of breathing motion, including drifts and baseline shifts, so that the
effective periodic amplitude range is usually smaller than the indicated range. In the last
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column qualitative remarks about the motion traces are given for volunteers with either
large speed metrics or large ranges. The CI95, MAE and RMS speed metrics for volunteer
V7 are the largest among all volunteers, where the MAX speed metric value comes close
to the one of volunteer V11. Especially the large CI95 metric indicates generally larger
speeds throughout the whole dataset. Additionally, the amplitude range of V7 belongs
to one of the largest. As verified by visual inspection of the dataset, V7 exhibits fast
and deep breathing motion traces. Similarly, volunteer V11 shows fast motions as well
with a large amplitude range. However, an irregularity is found in the motion trace with
larger amplitudes than during normal breathing. This irregularity stems from the curiosity
of the volunteer who was interested to see the system’s reaction to a single deeper and
faster breath. V16 shows rather moderate motion speeds and amplitudes during normal
breathing but also exhibits an intended irregularity being the reason of the large amplitude
range along the y- and z-axes. V17 is an example of a volunteer with regular but deep
breathing with moderate speeds.
When comparing speed metrics from Table 4.11 to metrics of the tracking error given in

Table 4.10, a correlation between tracking error metrics and speed metrics is obvious. This
is especially prominent for V7 and V11 in such a way that exceptionally large tracking
errors result when the largest CI95 speeds which are larger than the HexaPOD’s speed
limit, are observed. To support this, each scatter plot in Figure 4.24 connects one of the
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Figure 4.24: Correlation between speed metrics of breathing motion to tracking error
metrics of 18 volunteer’s breathing trajectories during compensation by
VMPC with γ = 0.05

speed metrics RMS, MAE, CI95 and MAX to the corresponding tracking error metric
for each volunteer. From each plot, the same observation can be made: Small speed
metric values lead to small corresponding error metric values, where approximately a
linear correlation can be fitted. After a certain limit for each speed metric, the associated
tracking error metric value is much larger. The outliers in the scatter plots correspond
to volunteers V7 and V11. Thus, the tracking error to be expected is mainly determined
by the speed of the trajectory to be compensated. If the speed is above the HexaPOD’s
speed limit, larger tracking errors will result.
Apart from V7 and V11, larger MAX overall errors are found for V16 and V17. While

V17 is a regular but deep motion trace with large amplitudes, the PR at 89.1% is rela-
tively high because the large MAX error in relation to the large absolute motion range
of 15.97mm along the z-axis appears reduced. Because of the regular nature of the tra-
jectory and moderate speeds, the OCR for V17 still belongs to one of the largest among
all volunteers. With V16, an irregularity is found, which moderately decreased prediction
performance and to a certain extent also tracking performance. However, the speeds of
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the motion trace are mainly below the HexaPOD’s speed limit so that the irregularity can
be partially compensated for. In contrast to V16, the speed introduced by the irregularity
of V11 was too large to make the HexaPOD track the reference trajectory, resulting in a
large MAX tracking error.
Since irregularities were partially predictable, maximum prediction errors were still con-

strained to less than 3mm and decent prediction performance of more than 80% PR was
achieved. If speed of the trajectory to be compensated for is below the HexaPOD’s speed
limit, tracking errors remained small even in the case of irregularities. If speed increases
above the limit, then larger tracking errors are to be expected. Nevertheless, even with
a speed limit of 8mm/s with which the experimental test was performed, most of the
predicted motion could be compensated by the ATTS. If a faster HexaPOD is employed,
tracking errors will reduce further.
Note that tracking errors in VMPC are not only influenced by one-step predictions but

by all predictions up to the prediction horizon Np due to the optimization using the future
reference trajectory defined by predictions. Hence, the tracking errors cannot be seen to be
completely independent from prediction errors, so that overall errors result as difference
between tracking and prediction errors with an interaction between the tracking errors
and predictions as well as associated prediction errors.

4.3.2 Transition Phase and Real-Time Considerations

The transition phase when the system is switched on was not discussed yet. To illustrate
the overall error including the transition phase when the system is started, an experiment
was performed using a custom-made phantom (cf. Figure 4.25) which was placed on top
of the HexaPOD. The phantom possesses a plexiglass plate which is connected by six
dampers including springs to a wooden base plate. Up to three servo motors are used to

Figure 4.25: Custom-made breathing phantom for exhibiting regular 3D trajectories in-
cluding hysteresis is placed onto the HexaPOD
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displace the plexiglass plate while the springs counteract that motion. An IR tool was
attached to the phantom to measure the displacement. If only two servos are used, the
IR tool follows the motion trace depicted by a red line in Figure 4.26. The resulting 3D
trajectory is regular and includes hysteresis similar to real breathing or tumor motion. A
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Figure 4.26: 3D compensation of phantom motions showing early-startup capabilities
by combination of several predictors and VMPC

second IR tool was fixed to the HexaPOD for acquiring its position. The very first position
measurement received from the IR camera after system startup defines timestamp 0. The
sequence of applied predictors within HexGuide followed the recommendations given in
Section 3.7. At first, the EKF predictor with spring-mass model is employed which is able
to deliver a full set of multi-step predictions right from the beginning. Simultaneously,
acquired measurements are used to initialize the NERLS predictor. With the detection of
the peak at time 11.25s, the predictions from the NERLS predictor are used to generate
the reference trajectory which is fed to the VMPC. Thus, the initialization and transition
phase of the NERLS predictor can be completely bridged. Due to the fact that predictions
are available from the beginning of compensation, VMPC enables the HexaPOD to quickly
converge to the desired position shown as a red line in Figure 4.26 (which is the negated
difference between the measurements of the IR tool on the phantom and on the HexaPOD,
i.e. the motion to be compensated relative to the HexaPOD). The blue line represents the
actual position measurement of the IR tool attached to the HexaPOD. The difference be-
tween desired and actual position forms the overall error shown in green. In the depicted
situation, convergence is reached at approximately 1.6s after system startup. This time
depends on initial displacement at system startup, speed and direction of the trajectory,
accuracy of predictions as well as on maximum acceleration of the HexaPOD. However,
it can be safely estimated that for most common breathing and tumor trajectories, con-
vergence takes place in a matter of a few seconds given accurate short-term predictions
and trajectory speeds less than the HexaPOD’s speed limit. Under these conditions, the
example additionally demonstrates achievable overall performances by the combination of
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several predictors and VMPC.
In order to ensure overall system performance, real-time conditions have to be respected

within the ATTS. Therefore, timings are constantly monitored within HexGuide by acquir-
ing timestamps at certain processing steps. Figure 4.27 exemplifies the resulting timings
of the compensation test shown in Figure 4.26. The first diagram depicts the measurement
latency of 19.99ms (including serial transmission time) of the Polaris IR camera, which
was determined in Section 2.2.3.1. Upon arrival of a measurement sample, acquired times-
tamps are corrected for measurement latency. After arrival of the measurements, some
preprocessing steps such as determination of moving average and peak detection are un-
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Figure 4.27: Timing diagrams of important processing steps within HexGuide demon-
strating real-time operation
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dertaken, requiring less than 50µs according to the second diagram. After that, the chosen
predictor is executed to deliver multi-step predictions. Initially, the EKF with spring-mass
model is used, taking about 40µs. At the detected peak at time 11.25s the NERLS pre-
dictor is used instead of the EKF, requiring about 1.80ms. Since this includes the Takens
predictor, the computational time is slightly rising with time as seen in the third diagram.
Note that all these latencies until the predictor finished its work is compensated within
HexGuide as outlined in Section 2.2.3.3. The next diagram shows the computational time
of the chosen control method, in this case VMPC was used. The average computational
time is, at about 26µs, quite small for solving three MPC problems online (one for each
translational axis). When the calculation of the control input is finished, it is sent to the
HexaPOD via a serial connection. Due to the limited transmission speed of 57600bps, this
takes about 9.425ms, thus, being a major timing limit as opposed to other computational
times of the ATTS. Sending the control input, technically concludes each calculation cycle,
however, the HexaPOD responds to each command. As can be seen in the sixth diagram,
this takes about 2ms to 3ms, where the response time seems to periodically vary along
with the HexaPOD’s trajectory. Reception of the response is handled asynchronously, so
that a new calculation cycle can already begin right after the control input has been sent.
The sums of computational delays from reception of a breathing or tumor position mea-
surement sample (triggering the start of a calculation cycle) until the control input has
been sent, are well below 16ms (even for the HexaPOD evo). Even the response time of the
HexaPOD could be included into this limit. Thus, the system can still be operated safely
at a rate of 60Hz. In case of a longer treatment session, the history of the Takens predictor
eventually needs to be limited to achieve a constant prediction time. Once a calculation
cycle has been started, it will never be interrupted by other tasks in the real-time system,
as the scheduler is locked until the calculation cycle finishes. After a calculation cycle is
complete, the system waits until the next sampling instant. Given a specific setting of the
overall sampling rate, the real-time system has to ensure that a new calculation cycle is
started. This is performed in a protected manner as described in Section 2.2.1.5, such that
a calculation cycle is started after a configurable timeout period in case no measurement
has been received from sensors within that timeout. The corresponding interval times
are depicted in the last diagram of Figure 4.27. Ideally, the time difference between two
sampling instants would be 50ms due to a sampling rate setting of 20Hz. However, there
are deviations from this, mainly within ±0.5ms which are caused by the internal working
principle of the USB host controller on the PC (cf. Section 2.2.3.1). Nevertheless, the
mean value of the interval time is 50.000ms, thus demonstrating that in each sampling
instant, a calculation cycle is started. During all tests in the context of this work, the
timing limit of 16ms was never violated (even though 50ms is enough for the employed
update rate of 20Hz), so that the overall system can operate in a safe way, guaranteeing
a proper response in the required amount of time.

The computational times of control methods IMPC, VPC and VMPC running on the
real-time operating system are given in Table 4.12 in terms of average time and standard
deviation when performing 3D breathing motion compensation. For IMPC and VMPC,
computational time is exemplified for the prediction horizons Np = 5 and Np = 10 with
Nu = Np. Since the number of constraints for both IMPC and VMPC is 2(Np + Nu),
computational time increases with horizon parameters. Computational time additionally
depends on the current state and on the reference trajectory, such that varying compu-
tational times need to be anticipated. This can, for example, be seen during the first
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Computational time [µs]Control Method
Horizon Np = 5 Horizon Np = 10

IMPC 37.616±4.830 49.432 ±11.381
VPC 11.789 ±0.688
VMPC 26.155±1.701 33.536 ±1.040

Table 4.12: Computational time of control methods

few seconds in the previous example with VMPC, where computational times are larger
during the transition phase. However, for any IMPC and VMPC variant, computational
time never exceeded 500µs. Since VMPC deals with a one-dimensional problem for one
axis and IMPC includes two dimensions, the computational times for VMPC are smaller
than for MPC based on an identified second-order model. The computational time for
VPC is constant as it does not depend on any parameter or input data. With an average
of 11.789µs, computational time is small enough to be neglected in the overall system. The
same is true for VMPC and IMPC with Np = 5, where the average computational times
are about two to three times larger than for VPC. The standard deviations become larger
as computational time increases, however they remain constrained to a few microseconds.

4.3.3 Outlook on HexaPOD evo

The HexaPOD evo possesses the same control interface as the HexaPOD but its speed
limit is, with 16mm/s, twice as large. Therefore, a significant increase in tracking accuracy
can be expected in situations where tracking accuracy is constrained by the speed limit of
8mm/s of the HexaPOD.
To illustrate the possibilities, the following preliminary experiment was conducted with

the HexaPOD evo. A small 6-DoF robotic manipulator depicted in Figure 4.28 was placed
on the HexaPOD evo. An extended arm was attached to the robot’s flange carrying an
IR tool (not seen in the figure). A separate IR tool was attached to the HexaPOD. The
robot was instructed to perform a sinusoidal motion of ±3mm along the x-axis (LR) and
±6mm along the y-axis (SI, pointing towards the gantry) with a frequency of 0.25Hz. The
maximum speed of 9.42mm/s exceeds the limit of the HexaPOD. The Takens predictor was
used for this test in combination with VMPC. Figure 4.29 shows the relevant quantities
during compensation. The desired position (red line) is the negated difference between
measurements of the IR tool on the manipulator and the IR tool on the HexaPOD (i.e.
the displacement relative to the HexaPOD to be compensated). The blue line shows the
actual position of the HexaPOD and the green line resembles the overall error between
desired and actual positions which could not be compensated for.
Compensation was started at time 0s, although no motion was exhibited by the manip-

ulator. Until motion begins, the controller sufficiently damps measurement noise, keeping
the HexaPOD evo at the desired location. After the manipulator starts moving at time
3.7s, a phase shift between actual and desired positions is observed persisting until time
8.8s. This stems from the Takens predictor, which needs at least one full motion period to
produce better matching predictions. The transition phase can be eliminated by employ-
ing additional predictors as discussed in the previous section. After that, the controller
maintains tracking with small overall residual errors on both axes. When the manipulator
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Figure 4.28: 6-DoF robotic manipulator with an extended arm including tumor phantom
standing on the HexaPOD evo
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Figure 4.29: 2D motion compensation result of a fast sinusoidal trajectory with Hexa-
POD evo where motion was exhibited by a small robotic manipulator

stops moving at time 43.7s, a short-term increase of the error occurs. The duration of
this increase is determined by the amount of time the predictor takes to adapt to the new
situation without motion.
Although the manipulator follows a smooth sinusoidal trajectory along both axes, high

frequency oscillation can be observed on the red line along the x-axis, i.e. the difference
between the measurement of both IR tools. Since these oscillations are not present on the
direct measurements of the HexaPOD (represented by the blue line), they originate from
the IR tool attached to the manipulator. As stiffness of serial manipulators is known to
be less than for parallel manipulators, this manipulator showed a significant backlash in
the last three joints which mainly acts along the x-axis. Hence, a moving HexaPOD evo
introduces these oscillations. However, as demonstrated by the achieved results, VMPC
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does not amplify these oscillations in its feedback loop, thus maintaining tracking. When
the manipulator stopped its motion, small oscillations can be observed in Figure 4.29 also
along the y-axis. These oscillations decay within a few seconds, thus demonstrating a
stable controller even under the rather difficult condition of a manipulator with backlash.

4.4 Summary
Initial modeling of the HexaPOD’s dynamic response was performed using linear ARX
models. It was seen that these models, when identifying their parameters from appropri-
ately designed input signals, are capable of describing the dynamics as long as the velocity
of the HexaPOD is not saturated. If that is the case, then the nonlinearly extended ARX
model is able to cover resulting nonlinearities. The importance of properly performed
system identification procedures in order to gain successful models became obvious in
comparison to related modeling approaches.
As a first approach for controlling the HexaPOD, the identified ARX model was incor-

porated into an MPC with which reference tracking was shown to be feasible. However,
the VPC approach outperformed the MPC approach in several scenarios. With VPC, near
perfect tracking of ideal sinusoidal trajectories was realized. With pre-recorded breathing
trajectories tracking performance was still acceptable, however with limited smoothness
and patient comfort. With compensation of breathing motions of volunteers lying un-
constrained on the HexaPOD, patient comfort became more constrained for some of the
volunteers. While tracking performance was still better than with IMPC, the achieved
smoothness in VPC was not acceptable for some volunteers. To further improve the VPC
approach, it was realized that the approach already contained a simple inverse model of
the HexaPOD. This was rewritten as a state-space model, enabling the adoption of it into
an MPC which allows optimization over a future horizon. The resulting VMPC approach
was then evaluated in the same scenarios as the VPC approach. It was observed that with
VMPC, tracking accuracy and smoothness can be traded-off at a fine granular level. While
sufficient smoothness could be achieved to make all volunteers feel comfortable, VMPC
additionally showed improved tracking performance compared to other methods.
To summarize, with the development of the VMPC approach a unique and powerful con-

trol method is available for the HexaPOD, solving patient comfort issues of other methods.
Test scenarios were chosen to be more challenging than during normal treatments, where
fixation systems help to reduce oscillation and feedback effects. Even under these more
difficult conditions, VMPC showed exceptionally good performance so that motion com-
pensation by the HexaPOD is ultimately realized with small residual tracking errors. The
adoption of the HexaPOD evo promises further reduction of tracking errors due to a larger
speed capabilities covering almost all observable breathing and tumor motions.
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Conclusions

This work faced three major challenges: the realization of a simple, cost-efficient and
flexible real-time motion compensation system, predictors for gaining breathing and tumor
motion information about the near future and appropriate control methods to actuate the
HexaPOD in order to achieve motion compensation.
The simple, cost-efficient and flexible architecture of the real-time tumor motion com-

pensation system was realized by adopting standard hardware device often found in treat-
ment rooms. The intelligence of the system is concentrated in the developed software,
which interfaces with all necessary hardware devices for breathing and tumor position
determination. The software fuses the hardware devices in a new way for enabling motion
compensation. Real-time capabilities were achieved by employing a real-time operating
system, guaranteeing that all required calculations during each sampling time are fin-
ished before the next sampling instant. Furthermore, the actual time of all acquired
and generated data is respected and taken into account in the adaptive tumor tracking
system (ATTS). Additionally, system-induced latencies are completely compensated for.
This allows for proper interaction and timing between the software and physical world in
order to lay the foundation for real-time motion compensation.
The ATTS is not restricted to the employed devices used for breathing and position

determination in this work. It is built in a flexible way to be open to other devices as
well. For example during the work for comparing our approach to a MLC-based tracking
system as outlined in [30], the Calypso system was used to acquire tumor position in-
formation. With an appropriate time stamping mechanism, generally any tumor position
determination system can be adopted by the ATTS which delivers measurements regularly
or quasi-regularly.
The supported compensation modes (recent displacement compensation, drift motion

compensation and full motion compensation) allow compensation for any moving tumor,
whether its motion is predictable (e.g. for lung tumors) or unpredictable (e.g. for prostate
tumors). The only requirement is some means to acquire tumor position information
online. Hence, the ATTS in its current implementation possesses all the necessary pre-
requisites to compensate motions of tumors other than lung tumors as well. With the
ATTS our group demonstrated recently in [160], that motion compensation of prostate
tumors is possible with submillimeter geometric accuracy and high dosimetric accuracy.
Nevertheless, breathing-induced lung tumor motion compensation is considered to be the
most challenging problem due to relatively large speeds and amplitudes found for lung
tumors.
In order to tackle this problem, short-term predictions of breathing and tumor motion

are required. Therefore, several prediction methods were investigated and their perfor-
mance compared under equal conditions by various metrics. It was shown that each pre-
dictor possesses different advantages and disadvantages in terms of prediction accuracy,
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smoothness, dead time and transition phases, making each of them applicable in different
situations or in different phases during the course of a treatment field. It was discussed
which sequence of predictors can be used to eliminate the dead time completely, that is to
have a full set of predictions already available within the very first sampling instant. This
is especially useful for the relatively short treatment fields encountered in the treatment
of lung tumors. Furthermore, it was shown how some of the predictors can be combined
to deliver improved and stable predictions. A unique way of fusing breathing and tumor
position measurements without the need of correlation models was presented to allow for
tumor motion predictions especially under the difficult conditions of EPID-based tracking.
To complete the ATTS, the last challenge was the creation of control methods to make

the HexaPOD follow the reference trajectory which is formed by tumor motion predictions.
With the IMPC controller based on a model gained by system identification methods, con-
siderable tracking performance could already be achieved. The major breakthrough was
the development of the VPC method with which near-perfect tracking of ideal reference
trajectories is possible. However, when compensating motions of humans lying on the
HexaPOD, severe problems in terms of patient comfort were encountered, which simul-
taneously constrained tracking accuracy. By realizing that the VPC approach actually
contained a simple inverse model of the HexaPOD, VPC could be incorporated into a
MPC, resulting in the VMPC method. With the optimization characteristics of IMPC,
the VMPC approach ultimately solved the oscillations and feedback problems. Thus, pre-
cise and smooth tracking of human motion was achieved even in difficult scenarios where
human volunteers lay unconstrained on the HexaPOD. It was found that VMPC can be
used with a single parameter setting to reach these goals, so that an easily applicable
controller resulted. As could be seen, tracking performance is mainly limited by the max-
imum speed of the HexaPOD. But even with the HexaPOD variant (which was initially
not intended to perform continuous motion), considerable motion compensation could be
achieved. With the HexaPOD evo, this speed limitation became less severe, so that for
almost all observed tumors the HexaPOD evo is able to follow their trajectories.
However, the main limitation in this approach as well as in others are still prediction

accuracies. While short-term predictions of a few sampling times are achievable with high
accuracy, prediction performance degrades with increasing prediction horizon. Since in
this work, the controller computes the current control input to the HexaPOD also based
on mid-term predictions, an improvement of these would further benefit overall system
performance. Hence, the topic of more advanced predictors is subject of future work.
The integration of EPID-based real-time tumor tracking is currently pursued by the De-

partment of Radiation Oncology of the University of Würzburg. While offline tracking is
already possible, the online version would complement the ATTS to have a mean of tumor
position determination available which allows for completely non-invasive treatments with-
out implanted markers or additional x-rays for imaging the tumor. Furthermore, current
activities also include investigations towards ultrasound-based tumor tracking systems ap-
plicable to prostate tumors. If they become available, they can be easily integrated into
the ATTS to open up further treatment possibilities.
Further steps also include the adoption of motion compensation in treatment planning

by physicians, to complete the work flow for treatments. This will enable phantom as
well as clinical studies to evaluate the effectiveness of the approach regarding achievable
reduction of margins and resulting dose distributions in the treatment volume.
Initial investigations [158] with the ATTS in various scenarios using breathing-correlated
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as well as breathing-uncorrelated motions indicate that continuous motion is generally
tolerated well by volunteers and irregular breathing patterns are limited. However, more
investigations need to be performed to elaborate on the impact of continuous HexaPOD
motions on patient’s breathing patterns, which is a concern [30, 36] often raised in the
context of couch-based tumor motion compensation. Especially, the advanced controllers
developed in this work need to be evaluated in depth in terms of patient tolerance on a
larger scale.
Despite the increase of the absolute five year survival rate of patients suffering from

lung tumors between 1984 and 2008 from 7% to 14% [161], [2] describes the survival rate
of patients suffering from lung tumors as “still frustrating”. In a study [162] from 2012
carried out in Germany, relative five year survival rates for 2007-2008 are specified as
19% for females and 15% for males. In 2009, 225000 females and 256000 males fell ill
with cancer in Germany in total [163]. From them, lung cancer was newly diagnosed
for 15000 females and 34000 males. Apart from breast cancer in females and prostate
cancer in males, lung cancer is the third most frequent cancer diagnosis in Germany. The
importance is further supported by the high mortality rates. From 100000 females and
112000 males dying from cancer in 2010 in Germany, 14000 females and 29000 males died
from lung cancer [163]. Most recent European mortality predictions [164] for 2013 state
that “in a few years lung cancer will likely become the first cause of cancer mortality in
women as well, overtaking breast cancer”.
Despite an increasing number of cancer patients is surviving due to improved and more

precise treatments [165], further improvements are necessary – and possible – especially
for moving tumors. This work paved the way for realizing a tumor motion compensation
system which is easy to implement into existing treatment rooms due to sole use of standard
hardware, thus providing a competitive system as an alternative to other fully integrated
treatment systems.
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Appendix A

Patient Data Examples

The following figures exemplify four breathing and tumor motion datasets to visualize
certain characteristics of these datasets. The data was acquired by the ATTS from patients
while they were undergoing regular radiation therapy treatments. In each figure the first
three plots depict breathing motion along the x- (LR), y- (SI) and z- (AP) axes. The
maximum amplitude range in the data is annotated in each plot’s title. The last three
plots correspond to the linearly interpolated tumor motion acquired by the EPID and
transformed to the same reference system as the breathing motion by appropriate rotation
with the gantry angle.

• Figure A.1 shows a rather regular breathing and tumor motion trace with only little
drift included.

• The traces seen in Figure A.2 are similarly regular. However, tumor motion data at
seconds 10-13 and 30-33 show the effect of the low (and not equidistant) sampling
rates. The linearly interpolated signal then follows a different path as the actual
tumor (as suggested by previous motion paths and assumed correlation to breathing).

• Figure A.3 depicts one of the longer datasets. Motion traces are found to be more
irregular with several short-term phase and amplitude variations.

• The traces given in Figure A.4 show a varying and slowly oscillating drift in combi-
nation with larger amplitude variations before and after second 27.
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Figure A.1: Breathing and tumor motion of patient 1 during one field with gantry angle
of 190°
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Figure A.2: Breathing and tumor motion of patient 4 during one field with gantry angle
of 35°
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Figure A.3: Breathing and tumor motion of patient 32 during one field with gantry angle
of 215°
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Figure A.4: Breathing and tumor motion of patient 40 during one field with gantry angle
of 225°
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Appendix B

Smoothness Measures

The smoothness measures defined in Section 3.2.2 are compared in various scenarios below.
All the considered smoothness measures are sensitive to phase shifts and certain kinds of
drifts, i.e. the measures result in different values when applied to an ideal smooth trajectory
and either a phase shifted or drifting version of it. In order to avoid misjudgment of
smoothness, the influence of phase changes and drifts is studied here and compared to the
case of a noisy signal, thus considering the non-smooth case. The forthcoming analysis
assumes a smooth cosine signal

ys(τ) = a cos (2πfτ)

defined over the finite time 0 ≤ τ ≤ 60. The phase-shifted version uses the same amplitude
and frequency but introduces a phase shift of 45°:

yp(τ) = a cos
(

2πfτ + π

4

)
.

A small linear drift is superimposed on the smooth signal, yielding

yd1(τ) = a cos (2πfτ) + 0.1τ ,

whereas a periodic drift is incorporated by adding a cosine with a low frequency:

yd2(τ) = a cos (2πfτ) + 2 cos (2π · 0.01 · τ) .

The noisy reference signal yn(τ) is gained by adding a pseudo-random noise n(τ) drawn
from the standard normal distribution:

yn(τ) = a cos (2πfτ) + 0.5n(τ) .

For two different settings, both of the amplitude a and frequency f , all smoothness criteria
were evaluated on the discretized test signals ys(τ), yp(τ), yd1(τ) and yd2(τ), yielding
certain smoothness values S (ys), S (yp), S (yd1) and S (yd2). These values were then set
in relation to the noisy case S (yn) by calculating

s = S (y)
S (yn) · 100% , (B.1)

where y is one of ys, yp, yd1 or yd2 . Note that for the calculation of s for SSNR, the
numerator and denominator in Eq. (B.1) have to be exchanged because larger values
indicate smoother signals here. Ideally, the ratio s should be zero or at least as small as
possible, meaning that the measure is not sensitive to phase shifts or drifts. Table B.1
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shows s for the considered measures and scenarios. From each measure applied on the ideal
signal ys it is obvious, that none of the criteria can be used for comparing different signals,
as varying amplitudes or frequencies lead to significantly different smoothness measures
even in the case of already smooth signals. A similar situation arises for phase shifted
signals or signals with drifts. All measures show varying smoothness values which also
depend on amplitude and frequency of the underlying signal. Nevertheless, the measures
exhibit ratios in a certain range of values. As can be seen, the average ratios decrease
from SSNR to STS to SJ and to SF , in which the ratios for SF are very small compared
to the rest of the measures. This means that SF is insensitive to phase shifts or drifts, so
that this measure has the potential to describe smoothness in a way which comes closest
to what is intuitively understood by smoothness.

a f Ideal Phase Linear PeriodicMeasure
[mm] [Hz] [%] Shift [%] Drift [%] Drift [%]

Rating

4 0.49 68.4 54.9 44.6 76.1
SSNR 4 0.28 52.4 60.2 49.6 64.7

8 0.49 86.2 69.2 71.7 92.6(Eq. (3.16))
8 0.28 71.1 81.6 50.0 81.1

+

4 0.49 58.6 58.3 53.2 54.8
STS 4 0.28 37.7 37.1 34.7 35.0

8 0.49 83.8 83.4 81.7 82.4(Eq. (3.15))
8 0.28 64.2 63.3 63.1 63.0

++

4 0.49 32.5 32.5 25.9 27.5
SJ 4 0.28 14.0 14.0 9.8 10.7

8 0.49 35.1 35.1 31.0 32.1(Eq. (3.14))
8 0.28 15.2 15.1 12.5 13.1

+++

4 0.49 0.2 0.2 0.1 0.1
SF 4 0.28 0.1 0.1 0.0 0.0

8 0.49 0.3 0.3 0.2 0.3(Eq. (3.17))
8 0.28 0.1 0.1 0.1 0.1

++++

Table B.1: Comparison of different smoothness measures in terms of signal variations
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