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Chapter 1

Introduction

The last decades have introduced a new approach into the theory of constrained opti-
mization, which exploits the geometrical structure of the problem and develops conve-
nient numerical strategies. Explicitly, classical constrained optimization problems can
be recast as unconstrained ones by endowing the set of restrictions with a differentiable
structure. The new approach is referred to as Riemannian optimization. Applications
of Riemannian optimization abound in engineering and areas such as numerical linear
algebra, statistics, signal processing, data compression, quantum computing and com-
puter vision. We refer, e.g., to [3, 34, 72] and the references therein. By replacing
the traditional tools from numerical optimization (directional derivatives, line search,
etc.) with their Riemannian counterparts (geodesics, Levi-Civita connection, parallel
transport, etc.), one develops intrinsic methods, which evolve on a parameter space of
a smaller dimension than the one of the environment space. Take as an example the
eigenvalue computation of a symmetric matrix A ∈ Rn×n. It is well-known that this
can be achieved by determining the critical points of the Rayleigh–quotient function
x⊤Ax with ∥x∥ = 1, see e.g. [22, 26]. The classical Lagrange multiplier rule works with
a parameter space of dimension n+ 1, whereas, the set of constraints is the unit sphere
and is a n− 1 dimensional manifold.

Let V1, . . . , Vr be finite dimensional vector spaces and let V1 ⊗ · · · ⊗ Vr denote
their tensor product space. We call as r-fold tensor product of manifolds the set of
all simple tensors X := X1 ⊗ · · · ⊗ Xr, where Xj is from a submanifold Mj of Vj , for
all j = 1, . . . , r. In this work, we propose the task of optimizing a generalization of
the Rayleigh–quotient map on a r-fold tensor product of manifolds. Special attention
is payed to the optimization task on the r-fold tensor product of Grassmannians and
on the r-fold tensor product of Lagrange–Grassmannians. The Grassmannian is the
manifold of all rank m self–adjoint projectors of Cn:

Grm,n = {P ∈ Cn×n | P 2 = P † = P, tr(P ) = m}.

The Lagrange–Grassmannian LGn is the submanifold of Grn,2n consisting of all self-
adjoint projectors that correspond to Lagrangian subspaces of C2n. By identifying the
abstract vector spaces Vj with spaces of Hermitian matrices and the tensor product
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⊗ with the matrix Kronecker product, the r-fold tensor product of Grassmannians
Gr⊗(m,n) is the set of all Kronecker products P := P1 ⊗ · · · ⊗ Pr with Pj ∈ Grmj ,nj ,
for j = 1, . . . , r. Here, (m,n) is a shortcut for the multi–index

(
(m1, n1), . . . , (mr, nr)

)
.

Similarly, the r-fold tensor product of Lagrange–Grassmannians LG⊗(n) is the set of all
Kronecker products P1 ⊗ · · · ⊗ Pr of self-adjoint projectors Pj ∈ LGnj , for j = 1, . . . , r.

The optimization task that we are interested in is given as follows:

max
P∈M

tr(AP), (1.1)

where M is either Gr⊗(m,n) or LG⊗(n) and A ∈ CN×N is Hermitian, N := n1n2 · · ·nr.
We call the map ρA(P) := tr(AP), the generalized Rayleigh–quotient (GRQ) of A
with respect to the partitioning (m,n). Depending on the structure of A and on the
partitioning (m,n), optimization problem (1.1) relates to well–known optimization
tasks in numerical linear algebra such as:

(i) the best approximation of a tensor with a tensor of lower rank,

(ii) geometric measures of pure state entanglement,

(iii) the problem of subspace reconstruction.

In the sequel, we give a short description of the applications mentioned above and
also their historical background.

(i) For Hermitian matrices of rank–one, i.e. A = vv†, problem (1.1) becomes an appli-
cation from areas such as statistics, signal processing and data compression, the best
low-rank approximation of a tensor T ∈ Cn1×···×nr , [12, 30, 46, 79]. A detailed explana-
tion on this relation is given in Section 4.2.1. Here we just mention that the matrix A
and the tensor T are related by the fact that v is obtained by arranging the elements of T
in a lexicographical order. To tackle the problem, one has to define first an appropriate
notion for the tensor rank. This can be done by noting that any tensor T ∈ Cn1×···×nr

can be decomposed in a finite sum of rank–one tensors x1 ⊗ · · · ⊗ xr with xj ∈ Cnj

and j = 1, . . . , r. Thus, one can define the rank of a tensor as the minimal number of
rank–one summands. In contrast to the rank of a matrix, for which it is known that the
column rank and the row rank are equal, for a tensor this is not necessarily true. There
are several possible rank definitions for a tensor and also corresponding singular value
decompositions (SVD), each satisfying only partly the properties of the matrix rank
and matrix SVD, see [51, 53, 66]. One of these definition which is of interest to us is the
so-called multilinear rank-(m1, . . . ,mr) of a tensor T ∈ Cn1×···×nr , which is the analog
of the row–column rank for matrices, [50]. A classical result from linear algebra, the
Eckart–Young theorem [18], asserts that the best low rank approximation to a matrix is
given by a truncated singular value decomposition. With the known definitions of rank
and SVD for tensors, there is still no available analog of the Eckart–Young theorem for
higher–order tensors. The first question that arises is if the problem of best low-rank
tensor approximation is well–posed. In [66], it is proven that this is not always the case
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since the set of all tensors of rank (minimal number of rank-one summands) less than
k with k > 1 is not always closed. But, the set of all tensors with a certain multilinear
rank is closed and hence, the problem of best approximating a tensor with a tensor
of lower multilinear rank is well-defined. We make the following remark: the set of
rank–one tensors and the set of tensors with multilinear rank-(1, . . . , 1) are identical.
From now on, whenever we discuss about the rank of a tensor we have in mind the
multilinear rank. An already classical numerical approach used to tackle the best low-
rank approximation problem is the higher-order orthogonal iteration (HOOI) [51], i.e.
an alternating least-squares algorithm that generalizes the well–known Power Method
[27]. Recently, there have been developed several new methods which exploit the ge-
ometric structure of the problem: Newton algorithms have been proposed in [20, 41],
quasi-Newton methods in [61], conjugate gradient and trust region methods in [42].

(ii) A key application in quantum computing characterizes and quantifies pure state
entanglement. The geometric measure of entanglement provides a measure from a pure
state to the set of all product states, [15, 56, 76]. Recalling that a pure state is an
element in a tensor product space and a product state is just a simple tensor, the
quantum entanglement problem is equivalent to a best rank–1 tensor approximation
problem.

(iii) The so-called “chicken–and–egg” problem in computer vision refers to the task of
recovering subspaces of possibly different dimensions from noisy data, known also as
subspace detection or subspace clustering problem [37, 73]. For a particular class of
matrices defined in (4.37), the subspace clustering task can be characterized by prob-
lem (1.1). The subspace clustering problem of estimating a mixture of linear subspaces
from sampled data points has numerous applications in computer vision (image seg-
mentation [78], motion segmentation [75], face clustering [37]), image processing (image
representation and image compression [38]) and system theory (hybrid system identi-
fication [74]). Classical iterative approaches used for the subspace clustering task, are
generalizations of the K–means algorithm [17] such as K–planes [9] and K-subspaces
algorithms [1, 70], or probabilistic methods such as Maximum Likelihood estimation
[69]. A new approach, that exploits the algebraic structure of the clustering problem,
was proposed in [73]. The method proposed in [73] gives a good starting point for
iterative methods and in the case of unperturbed data (data lying exactly in the union
of some subspaces), it computes the exact subspaces.

In this thesis we perform a thorough analysis on the critical points of the GRQ
and develop two Riemannian methods to solve problem (1.1): a Newton-like and a
conjugate gradient method. Since the convergence properties of Newton algorithms
depend on the nondegeneracy of the critical points, we present a careful analysis of the
genericity properties of generalized Rayleigh-quotient functions. As a consequence of
the Parametric Transversality Theorem [36], we conclude that for a generic Hermitian
matrix A ∈ CN×N , the critical points of ρA are nondegenerate. A similar result can be
formulated also for the GRQ on LG⊗(m) for a thin subspace of the space of Hermitian
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matrices, that we have called the space of decomposable Hermitian-Hamiltonian ma-
trices. Of particular interest from the application point of view is the situation when A
is semi–positive definite and even more interesting, when A is of rank–one. For the last
situation, we obtain that the critical points satisfying a certain condition are generically
nondegenerate and in particular, the global maximizers satisfy this property. In the
case of the best rank–one tensor approximation problem, all critical points of the gener-
alized Rayleigh–quotient except the global minimizers, are generically nondegenerate.
All these results are detailed in Section 4.4.

On a Riemannian manifold, the intrinsic Newton method is usually described by
means of the Levi–Civita connection thus, the iterations are performed along the
geodesics and we refer the reader to the works of Gabay [23] and Smith [68]. However, a
closed form for the geodesics is not always possible and even when there is such a closed
form, the computation of the exponential map can be time expensive. Thus, a more
general approach by Shub in [65] uses local coordinates to replace geodesics, Levi-Civita
connections and parallel transport by suitable approximations without losing conver-
gence properties of the algorithms. This technique has gained a lot of interest through
the works of Helmke [34] in the 1990s and later on by the work of Absil, Sepulchre
and Mahony [3]. The idea in the work of Helmke, Hüper and Trumpf [32] is to em-
ploy efficient local parametrizations which preserve local convergence. Here, we adapt
the ideas in [32] and use a pair of local parametrizations —normal coordinates for the
push-forward and QR–type coordinates or Cayley coordinates for the pull-back— sat-
isfying an additional compatibility condition to preserve quadratic convergence. In this
way, the resulting intrinsic Newton–like method has the advantage of computational
flexibility. However, for high–dimensional problems, the computation of the Hessian
and of the solution of the Newton equation remains an expensive task, both in terms
of computational complexity and memory requirements. Hence, as an alternative, we
propose a conjugate gradient method, which has the advantage of algorithmic simplic-
ity. We replace the global line-search of the classical conjugate gradient method by
a one–dimensional Newton–step. This yields a better convergence behavior near sta-
tionary points than the commonly used Armijo–rule. The two methods, tailored to the
applications described previously, are compared with other algorithms in the literature.

This work is structured as follows: In Chapter 2 we introduce the basic ingredients of
Riemannian optimization, i.e. Levi–Civita connection, geodesics, parallel transport and
the computation of the intrinsic gradient and Hessian for smooth objective functions
defined on a Riemannian manifold. Starting with Section 2.2 we address the question
when is the r−fold tensor product M1 ⊗ · · · ⊗ Mr of submanifolds Mj a Riemannian
submanifold of the tensor product vector space V1 ⊗· · ·⊗Vr. Identifying an equivalence
relation ∼ on the r−fold direct product of manifolds M1 × · · · × Mr such that M1 ⊗
· · · ⊗ Mr is in a one-to-one correspondence with the space of all equivalence classes of
∼, we give sufficient conditions for (M1 × · · · × Mr)/∼ to be a quotient manifold. In
particular, when the equivalence relation ∼ is induced by the action of a Lie-subgroup



5

of
G = {(α1, . . . , αr) ∈ Cr | α1α2 · · ·αr = 1},

then the quotient space is a Riemannian manifold. We mention that in the thesis we
have defined Lie-subgroups as closed subgroups of Lie-groups, that can be equipped
with a Lie-group structure. The one-to-one correspondence between (M1 ×· · ·×Mr)/∼
and M1 ⊗· · · ⊗Mr induces a Riemannian manifold structure on M1 ⊗· · ·⊗Mr, but the
topology is not consistent with the subspace topology of V1⊗· · ·⊗Vr. Some transversality
conditions are still necessary to guarantee the submanifold structure of M1 ⊗ · · · ⊗Mr.

The geometry of the Grassmannian and the Lagrange-Grassmannian are well stud-
ied in the literature, [4, 8, 34]. In Chapter 3, we recall the basics and generalize the
geometric structure of Grassmannian and Lagrange–Grassmannian to the r-fold ten-
sor product of Grassmannians and Lagrange–Grassmannians, respectively. Moreover,
in Proposition 3.2.3 and Proposition 3.4.2 we show that Gr⊗(m,n) and LG⊗(n) are
isometric to the direct product of Grassmannians and Lagrange–Grassmannians, re-
spectively. Beside the classical Lagrangian subspaces of R2n or C2n, we tackle also the
case of complex Lagrangian subspaces of C2n, i.e. Lagrangian subspaces of C2n defined
with respect to a sesquilinear map. It was proven in [5] that the set of all the complex
Lagrangian subspaces of C2n have a manifold structure. We give a diffeomorphism to
the set of all self-adjoint projectors P ∈ Gr(n, 2n) that satisfy PJP = 0, where J is
the standard symplectic form

J =

 0 In

−In 0

 . (1.2)

Moreover, we show that the r-fold tensor product of complex Lagrange–Grassmannians
is a submanifold of Gr⊗(n,2n) and is isometric to the direct product of complex
Lagrange–Grassmannians.

Chapter 4 is dedicated to the optimization of the generalized Rayleigh–quotient
on the r-fold tensor product of Grassmannians. We start with a comparison between
the optimization of the GRQ and the optimization of the classical Rayleigh–quotient.
The main point is that the classical Rayleigh–quotient has only global maximizers
and minimizers, while GRQ has also local ones, as we show in Example 4.1.2. We
give an explicit form of the Riemannian gradient and the Hessian of ρA and inves-
tigate in detail the critical points of the GRQ. In Section 4.2 we explicitly describe
the connection between the optimization of the GRQ and problems from various ar-
eas such as the multilinear low–rank tensor approximation, the geometric measure of
entanglement, subspace clustering problem and combinatorial problems. An impor-
tant question regarding the local extrema of GRQ is if they are nondegenerate. Using
tools from the transversality theory, we prove in Theorem 4.3.3, that the critical points
of GRQ on Gr⊗(m,n) are generically nondegenerate. Explicitly, the set of all Her-
mitian matrices A such that all the critical points of ρA are nondegenerate is open
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and dense. For the proof, we make use of a more general result stated as Theorem
4.3.2. To avoid confusion, we specify that a property holds generically if it holds on
a residual set, which is a subset of a topological space that contains the intersection
of a countable family of dense and open sets. It is obvious that if a set is open and
dense, then it is also residual. In Section 4.4, we investigate the nondegeneracy of the
critical points of ρA when the parameter is a low-rank semi-positive definite matrix,
i.e. A = XX†, X ∈ StK,N = {Y ∈ CN×K | N > K, rank Y = K}. In Theorem
4.4.2 we have emphasized an important property of ρA (A low–rank semi–positive def-
inite), which gives a necessary condition for the nondegeneracy of the critical points
of GRQ. Actually, Theorem 4.4.2 is a key tool in proving the generic nondegeneracy
of the critical points of GRQ for the restricted parameter set. In Theorem 4.4.5 we
give a lower bound for K such that the critical points of ρXX† are nondegenerate for
X in an open and dense subset of StK,N . As previously stated, the optimization of
ρxx† , x ∈ CN on Gr⊗(m,n) corresponds to the best approximation of a tensor with a
tensor of lower rank. In Theorem 4.4.10 we prove that the set of all x ∈ CN for which
all the critical points of ρxx† that satisfy some conditions, is residual. In particular,
Corollary 4.4.11 states that the global maximizers of the GRQ for the best low–rank
tensor approximation problem are generically nondegenerate.

The optimization of the generalized Rayleigh-quotient on the r-fold tensor product
of Lagrange–Grassmannians is the subject of Chapter 5. We motivate our optimization
task by specifying a relation between the optimization of the classical Rayleigh–quotient
of a Hamiltonian matrix and solutions of a matrix Riccati equation. For a Hermitian
matrix A, we show that the optimization of the classical Rayleigh–quotient LG(n) is
equivalent to the optimization of the classical Rayleigh-quotient of the Hamiltonian
part of A. By introducing the notions of decomposable Hermitian Hamiltonian Ah

and decomposable skew–Hermitian Hamiltonian As matrices for A ∈ herN we show
that when A is of the form A = Ah + As, then the optimization of ρA on LG⊗(n)
is equivalent to the optimization of ρAh on LG⊗(n). Further, we analyze the critical
points of the GRQ on LG⊗(n) and derive explicit formulas for the gradient and the
Hessian of GRQ. With a similar argumentation as in the case of GRQ on Gr⊗(m,n),
we prove that the critical points of ρA on LG⊗(n) are nondegenerate for A from an
open and dense subset of the space of Hermitian Hamiltonian matrices. In Corollary
5.3.8 we show that this result still holds even if the space of parameters is reduced to
the space of decomposable Hermitian Hamiltonian matrices.

In Chapter 6 we develop two numerical approaches for the optimization problem
(1.1): a Riemannian Newton–like and a Riemannian conjugate gradient algorithm. As
mentioned, we follow the strategy initiated in [32] and use a QR–decomposition for the
first order approximation of the matrix exponential to compute the update. The costs
are considerably cheaper than the costs needed for the matrix exponential. For the
conjugate gradient method we compute a one-dimensional Newton–step instead of the
standard Armijo step-size. This procedure has the advantage of a fast convergence rate,
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as the experimental results at the end of the chapter will show. As a consequence of a
result from [32], we specify that the sequence generated by the Newton-like algorithm
converges quadratically to a stationary point of the generalized Rayleigh–quotient,
when one starts in the neighborhood of that stationary point. Unfortunately, there
is no convergence result available for our conjugate gradient method. However, the
numerical experiments tailored to the applications show a very good behavior for the
conjugate gradient method. At the end of the chapter, we compare our algorithms with
the state of the art.

We mention that part of the results in Chapter 4 and Chapter 6 are published in
the paper [13]
“Riemannian optimization on tensor products of Grassmann manifolds: Applications
to generalized Rayleigh-quotients manifolds.”
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Chapter 2

Tensor products of Riemannian
manifolds

Applications in various research areas such as signal processing [11, 50, 71], quantum
computing [56], and computer vision [73], can be described as constrained optimization
tasks on certain subsets of tensor products of vector spaces. Here we want to make use
of techniques from Riemannian geometry and tackle constrained optimization tasks as
unconstrained ones. In this chapter, we investigate when the subsets of so-called simple
tensors can be equipped with a differentiable structure. We start with some preliminary
notions from differential geometry and refer to the broad literature for more thorough
investigation [1, 2, 3, 34, 36, 44].

By spotting an equivalence relation on the direct product of manifolds M1×· · ·×Mr,
which is consistent with the tensor product operation, we give sufficient conditions for
the quotient space to be a quotient manifold. In fact, we prove that if the equivalence
relation is induced by the action of a certain Lie-group on the direct product manifold,
then the quotient space is a manifold. And hence, the set of simple tensors has a
manifold structure induced by the one-to-one correspondence with the quotient space.
Unfortunately, this does not imply that the set of simple tensors is a submanifold of
the tensor product vector space, as Example 2.2.11 shows. In Theorem 2.2.12 we give
sufficient conditions for the set of simple tensors to have a submanifold structure.

2.1 Preliminaries
The object of this section is to familiarize the reader with the basic language of and
fundamental theorems in differential geometry, which are essential for the entire thesis.
For a detailed discussion on this topic, the reader is referred to the rich literature
[2, 3, 36].

We recall that an n-dimensional manifold M is a second countable Hausdorff space
which is locally homeomorphic to Rn. A formal definition of a manifold uses the concepts
of charts and atlases. A chart (φ,U) is a couple consisting of an open set U ⊂ M and
a homeomorphism φ : U → φ(U) ⊂ Rn. Thus, for a set M to be a manifold or a



10 2. TENSOR PRODUCTS OF RIEMANNIAN MANIFOLDS

topological manifold it is required that each point must be at least in one chart. The
collection of charts {(Uα, φα)} that cover M forms an atlas. The transition maps of the
atlas

φβ ◦ φ−1
α : φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ)

define the differentiable structure of the manifold, which allows one to do calculus on
manifolds. Hence, if the transition maps are differentiable, then we have a differentiable
manifold. If the transition maps are smooth, then we have smooth manifold, and if the
transition maps are analytic, then we have an analytic manifold. The inverse of a chart
is called a local parametrization. Every n-dimensional vector space is an n-dimensional
manifold. Manifolds naturally arise as solutions of systems of equations and as graphs
of functions. The circle and the line are one-dimensional manifolds, the n-sphere is an
n-dimensional manifold.

An important feature of a manifold M is the tangent space TpM at a point p ∈ M.
There are various ways to define tangent spaces to a manifold, and the most intuitive
one describes tangent vectors via equivalence classes of velocity vectors of curves. See
the literature also for other approaches [2, 3]. The disjoint union of all tangent spaces
of a manifold is called the tangent bundle of the manifold, that is

TM = ∪
p∈M

{p} × TpM.

A smooth section in the tangent bundle of a manifold M is called vector field, i.e.
X : M → TM, p 7→ X(p) ∈ TpM. The space of all vector fields on M is denoted with
C∞(M,TM).

Using charts, one introduces the concept of differentiability of maps between man-
ifolds. Let M1 and M2 be smooth manifolds of dimensions n1 and n2 respectively and
let F be a map from M1 to M2. If (U1, φ1) and (U2, φ2) are charts around x and
F (x) on M1 and M2, respectively, then F is differentiable at x ∈ M1 if its coordinate
representation

φ2 ◦ F ◦ φ−1
1 : Rn1 → Rn2

is smooth at φ−1
1 (x). And F is differentiable if it is differentiable at every x ∈ M1.

Moreover, F is smooth if it has derivatives of all orders. The concept of differentiability
of a map between two smooth manifolds does not depend on the choice of the charts
around x. The differential or the tangent map of F at x ∈ M1 is the linear map

TxF : TxM1 → TF (x)M2

and the rank of F at x ∈ M1 is the dimension of the image of TxF . If the rank of F
is everywhere equal to n1, then F is an immersion and if the rank of F is everywhere
equal to n2, then it is a submersion. If F is an immersion and a homeomorphism onto
its image, then it is called embedding.

A submanifold of a manifold M is a subset N ⊂ M which is a manifold with respect
to the subspace topology. Next, we recall two important results that are often used to
define submanifolds, the regular value theorem and the embedding theorem.
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Theorem 2.1.1 Let M1 and M2 be manifolds of dimension n1 and n2, respectively,
with n1 ≥ n2 and F : M1 → M2 a smooth function. If y ∈ M2 is a regular value
for F , i.e. F has rank n2 at every point in F−1(y), then F−1(y) is either empty or a
submanifold of M1 of dimension n1 − n2.

Theorem 2.1.2 A subset N of a manifold M is a submanifold if and only if there
exists an embedding F such that N is the image of F .

Quotient manifolds are other well studied objects in differential geometry. Some general
aspects related to quotient manifolds are given as follows. If R is an equivalence relation
on a set M, then the set

[x] = {y ∈ M | xRy}

is called an equivalence class for R and the set of all equivalence classes is called the
quotient space of M with respect to R and denoted M/R. The quotient topology on
M/R is defined to be the finest topology such that the canonical projection

π : M → M/R, x 7→ [x]

is continuous. If M is a manifold and M/R is a quotient space of M with respect to
an equivalence relation R, then we say that M/R is a quotient manifold if it carries a
unique manifold structure such that the canonical projection is a submersion. In this
case we say that the equivalence relation R is regular. The next result gives a necessary
and sufficient condition for an equivalence relation on a manifold to be regular (see [2],
page 209).

Theorem 2.1.3 Let R be an equivalence relation on a manifold M with graph

ΓR := {(x, y) ∈ M × M | xRy} ⊂ M × M.

Then R is regular if and only if

(i) ΓR is a closed submanifold of M × M,

(ii) π1 : ΓR → M, π1(x, y) = x is a submersion, and

Moreover, one has
dim(M/R) = 2 dimM − dim(ΓR).

Since the canonical projection π is a submersion, it follows that every [x] ∈ M/R is
a regular value for π and hence, each equivalence class [x] ⊂ M is a submanifold of M
of dimension dimM − dim(M/R). The tangent space Vy := Ty[x] of [x] at y ∈ [x] is
a subspace of TyM, called the vertical space. For every y ∈ M there exists a subspace
Hy of TyM such that Vy ⊕ Hy = TyM. We refer to Hy as a horizontal space at y.
The vectors in a horizontal space provide a convenient representation for the tangent
vectors of the quotient manifold M/R as will be explained next.
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If [x] ∈ M/R and y ∈ [x], then a representation of ξR ∈ T[x]M/R is a tangent vector
ξ ∈ TyM such that

Tyπ(ξ) = ξR. (2.1)

However, there are infinitely many such representations since ξ + η satisfies (2.1) for
all η ∈ Ty[x]. From computational considerations one would like to have a unique
representation for ξR and this is possible in terms of elements in the horizontal space.
Particularly, there exists a unique ξh

y ∈ Hy (depending on y) that satisfies (2.1) and this
will be taken as a representation for the tangent vector ξR and named the horizontal
lift of ξR.

2.1.1 Riemannian manifolds and the Levi-Civita connection

In differential geometry, a Riemannian metric g on a manifold M is a smoothly varying
family of inner products gp : TpM × TpM → R on the tangent spaces TpM, p ∈ M. A
Riemannian manifold is a pair (M, g) of a smooth real manifold M and a Riemannian
metric g. When the explicit Riemannian metric is not important, we simply say that
M is a Riemannian manifold.
If N is a submanifold of a Riemannian manifold (M, g), then (N, g̃) is a Riemannian
submanifold of M, where g̃ is the induced Riemannian metric, i.e.

g̃p(ξ, η) = gp(ξ, η), (2.2)

for all ξ, η ∈ TpN, p ∈ N.
An affine connection on a manifold M is a bilinear map

∇ : C∞(M,TM) × C∞(M,TM) → C∞(M,TM),

with the following properties:

(1) ∇fXY = f∇XY,

(2) ∇X(fY) = df(X)Y + f∇XY,

for all f : M → R smooth and X,Y ∈ C∞(M,TM).
On a Riemannian manifold (M, g), one usually chooses an affine connection ∇ that is
symmetric and compatible with the metric, i.e.

(i) symmetry: ∇XY − ∇YX = [X,Y], for any vector fields X, Y on M,

(ii) compatibility with the metric: ∇g = 0,

called the Riemannian or Levi-Civita connection. The notion of symmetry is defined
by the concept of Lie-bracket [X,Y] of two vector fields X and Y. If X and Y are vector
fields on a manifold M, then [X,Y] is the differential operator, which assigns to X and
Y another vector field defined as

[X,Y](f) := X(Y(f)) − Y(X(f)),
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for all smooth real-valued functions f on M. It is well-known that every Riemannian
manifold carries a unique Levi-Civita connection.

Let N be a Riemannian submanifold of a Riemannian manifold M and X̃ ∈ C∞(M,TM)
be a smooth extension of a vector field X on N. If ∇̃ is the Levi-Civita connection on
M, then the Levi-Civita connection on N is given by

∇ξX := ∇̃ξX̃,

for all ξ ∈ TpN. If moreover, M is an Euclidean vector space, then the Levi-Civita
connection on N is obtained by projecting the usual directional derivative of X̃ ∈
C∞(M,M) onto the tangent space TpN, p ∈ N, i.e.

∇ξX = projp(DX̃(p)(ξ)), (2.3)

for all ξ ∈ TpN, where projp is the orthogonal projection onto TpN.

Let ∇̃ be the Levi-Civita connection on a Riemannian manifold M. Then, for the
Riemannian quotient manifold M/R, the Levi-Civita connection ∇h is given by

∇h
ξR
XR := projhq (∇̃ξhXh), (2.4)

for all ξR ∈ T[p]M/R and all vector fields XR on M/R, where ξh is the horizontal lift of
ξ, X̃ ∈ C∞(M,TM) is a smooth extension of X and projhq is the orthogonal projection
onto the horizontal space Hq, q ∈ [p].

2.1.2 Parallel transport and geodesics

By means of the Levi-Civita connection ∇, one defines parallel transport and geodesics
on a Riemannian manifold M as follows. Let t 7→ X(t) be a vector field along a smooth
curve γ : I ⊂ R → M, i.e. X(t) ∈ Tγ(t)M for all t ∈ I. Then, X is parallel along γ, if
and only if

∇ d
dt

γ(t)X(t) = 0 (2.5)

for all t ∈ I. Conversely, given ξ ∈ Tγ(0)M, there exists a unique parallel vector field X

along γ such that X(0) = ξ, and the vector

X(t) ∈ Tγ(t)M

is called the parallel transport of ξ to Tγ(t)M along γ. In particular, γ is called a geodesic
on M, if d

dtγ is parallel along γ, i.e. if

∇ d
dt

γ(t)

(
d

dt
γ(t)

)
= 0 (2.6)

for all t ∈ I. From the theory of ODEs one knows that for any p ∈ M and ξ ∈ TpM

there exists a unique geodesic γ with γ(0) = p and d
dtγ(0) = ξ. These abstract con-

cepts simplify considerably if M inherits its Riemannian structure from an embedding
Euclidean space V . Thus, (2.5) and (2.6) take the explicit form

∇γ̇(t)X(t) = projγ(t)
(

d
dtX(t)

)
, ∇γ̇(t)γ̇(t) = projγ(t)

(
γ̈(t)

)
,
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where projP and projγ(t) stand for the orthogonal projection onto TPM and Tγ(t)M,
respectively.

2.1.3 The Riemannian gradient and Hessian

If (M, g) is a Riemannian manifold and f : M → R a smooth objective function on
M, then, the Riemannian gradient at p ∈ M is defined as the unique tangent vector
gradf(p) ∈ TpM satisfying

dpf(ξ) = gp(gradf(p), ξ) (2.7)

for all ξ ∈ TpM, where dpf denotes the differential (tangent map) of f at p.
The Riemannian Hessian of f at p is the self-adjoint operator Hf (p) : TpM → TpM

defined by
Hf (p)ξ = ∇ξgradf(p), (2.8)

for all ξ ∈ TpM.
When M is a Riemannian submanifold of a vector space, then the gradient and the

Hessian are given by the following:

gradf(p) = projp
(
∇f̃(p)

)
, Hf (p)ξ = projp(DX̃(p)ξ), (2.9)

where projp is the orthogonal projection onto TpM and ∇f̃ denotes the standard gra-
dient of the smooth extension f̃ of f on V .

2.2 Tensor products of manifolds
In this section we study the structure of a special subset of the tensor product of vec-
tor spaces, i.e. the set of simple tensors which satisfy some properties. In special, we
are interested when can such a set be endowed with a manifold structure and more
important with a submanifold structure of the tensor product space. We establish a
bijection between our set of simple tensors and a quotient space. From the theory
of Lie-group actions we obtain sufficient conditions such that the quotient space can
have a differentiable structure. Furthermore, by additionally imposing some transver-
sality conditions, we conclude that the set of simple tensors can be equipped with a
submanifold structure of the tensor product vector space.

2.2.1 Tensor product of vector spaces

In this section, we recall fundamental objects and concepts from multilinear algebra (see
[28, 49] for more details). Let V1, . . . , Vr be vector spaces over K (K = R or K = C). The
tensor product of vector spaces V1, . . . , Vr is defined as the pair (V1⊗K · · ·⊗KVr,⊗K) of a
K-vector space V1⊗K · · ·⊗KVr and a multilinear map ⊗K : V1×· · ·×Vr → V1⊗K · · ·⊗KVr

that satisfies the universal property:

For any K-vector space V and any multilinear map h : V1 × · · · × Vr → V, there exists

a unique linear map h̃ : V1 ⊗K · · · ⊗K Vr → V such that the diagram
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V1 × · · · × Vr
⊗K //

h

((Q
QQQQQQQQQ V1 ⊗K · · · ⊗K Vr

h̃

��
V

(2.10)

commutes, i.e., h(X1, . . . , Xr) = h̃(X1 ⊗K · · · ⊗K Xr), for all (X1, . . . , Xr) ∈ V1 × · · · × Vr.

Given bases B1, . . . , Br of V1, . . . , Vr respectively, the set

{b1 ⊗K · · · ⊗K br | bj ∈ Bj , j = 1, . . . , r}

is a basis for V1 ⊗K · · ·⊗KVr and hence the tensor product space has dimension equal to
the product of dimensions of vector spaces V1, . . . , Vr. The elements of V1 ⊗K · · · ⊗K Vr

are called tensors and the elements of the form X1 ⊗K · · · ⊗KXr are called pure tensors
or simple tensors. Any tensor X is a finite linear combination of simple ones and the
smallest number of simple tensors required to express it is called the tensor rank of X.
The tensor order refers to the number of spaces involved in the tensor product, i.e. in
our notation the order of a tensor X ∈ V1 ⊗K · · · ⊗K Vr is always r.

For simple tensors we give the following result, that we are going to use in the next
sections to define an equivalence relation on a direct product of manifolds.

Lemma 2.2.1 Let V1 ⊗K V2 be the K-tensor product of the K-vector spaces V1 and V2.
For A1, B1 ∈ V1 \ {0} and A2, B2 ∈ V2 \ {0} the following holds: A1 ⊗KA2 = B1 ⊗KB2
if and only if there exists α1, α2 ∈ K such that

B1 = α1A1, B2 = α2A2, α1 · α2 = 1.

Proof. If there exist α1, α2 ∈ K with α1α2 = 1 such that B1 = α1A1 and B2 = α2A2,
then we get immediately by the bilinearity of ⊗K that

B1 ⊗K B2 = α1A1 ⊗K α2A2 = α1α2A1 ⊗K A2 = A1 ⊗K A2.

To prove the other direction, assume that there exist A1, B1 ∈ V1 and A2, B2 ∈ V2 with
A1 ⊗A2 = B1 ⊗B2 and

(B1, B2) ̸= (α1A1, α2A2),

for all α1, α2 ∈ K with α1α2 = 1. We prove that there exists a K-vector space V and
a bilinear map h : V1 × V2 → V such that

h(B1, B2) ̸= h(α1A1, α2A2), (2.11)

for all α1, α2 ∈ K with α1α2 = 1. We distinguish the following situations.

Case 1. Let B1 ̸= α1A1, for all α1 ∈ K. If h : V1 × V2 → V is the bilinear map defined
by

h(X1, X2) = µ1(X1)µ2(X2), (2.12)
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where µ1 : V1 → V and µ2 : V2 → V are linear maps such that µ1(B1) ̸= 0 and
µ1(A1) = 0, it follows that

h(B1, B2) = µ1(B1)µ2(B2) ̸= 0 = µ1(A1)µ2(A2) = h(α1A1, α2A2).

Case 2. Similarly, it can be proved that if B2 ̸= α2A2, for all α2 ∈ K, then the bilinear
map h defined by (2.12) with µ2(A2) = 0 and µ2(B2) ̸= 0, satisfies (2.11).

From the universal property of (V1⊗KV2,⊗K) we conclude that there exists a unique
linear map h̃ : V1 ⊗K V2 → V such that the diagram (2.10) commutes. Hence,

h(B1, B2) ̸= h(α1A1, α2A2) =⇒ h̃(B1 ⊗K B2) ̸= h̃(A1 ⊗K A2)

and A1 ⊗K A2 ̸= B1 ⊗K B2, which contradicts the hypothesis. �

Remark 2.2.2 If V1 and V2 are C-vector spaces and we construct their R-tensor prod-
uct V1 ⊗R V2, then for any A1, B1 ∈ V1 \ {0} and A2, B2 ∈ V2 \ {0} we have that
A1 ⊗A2 = B1 ⊗B2 if and only if there exists α1, α2 ∈ R such that

B1 = α1A1, B2 = α2A2, α1 · α2 = 1.

The above lemma can be generalized to any number of components in the K-tensor
product: for X = (X1, . . . , Xr) and Y = (Y1, . . . , Yr) from (V1 \ {0}) × · · · × (Vr \ {0}),
X1 ⊗K · · · ⊗K Xr = Y1 ⊗K · · · ⊗K Yr if and only if

∃ α1, . . . , αr ∈ K with α1α2 · · ·αr = 1 such that Y1 = α1X1, . . . , Yr = αrYr. (2.13)

We point out some examples of tensor products over K.
1. A classical example of a tensor product over K is obtained from the K-vector space
Kmp×nq with the bilinear map

⊗K : Km×n × Kp×q → Kmp×nq,

defined as

(X,Y ) 7→ X ⊗K Y := [xijY ]m,n
i,j=1 =

 x11Y · · · x1nY
...

xm1Y · · · xmnY

 ,
where

X =

 x11 · · · x1n
...

xm1 · · · xmn

 .
This tensor product is called the matrix Kronecker product. Here we recall some of its
important properties which will be used later on. Let A ∈
Km×n, B ∈ Kp×q, C ∈ Kn×s, D ∈ Kq×t, then

(A⊗K B)(C ⊗K D) = AC ⊗K BD, tr(A⊗K B) = tr(A) tr(B).
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2. In the case when K = C, By considering Cm×n and Cp×q as real vector spaces, then

⊗R : Cm×n × Cp×q → Cmp×nq × Cmp×nq,

(X,Y ) 7→ X ⊗R Y := ([xijY ], [xij Ȳ ]),
(2.14)

defines an R-tensor product. In fact, for any C-vector spaces V1 and V2, the R-bilinear
map (2.14) defines a tensor product on the R-vector space V1 ⊗R V2.

2.2.2 Simple tensors and quotient manifolds

Let M1, . . . ,Mr real submanifolds of the finite dimensional K-inner product spaces
(V1, ⟨·, ·⟩1) . . . , (Vr, ⟨·, ·⟩r) with 0 /∈ Mj , j = 1, . . . , r. The r-fold tensor product of the
manifolds M1, . . . ,Mr is defined as the set of simple tensors

M⊗K := M1 ⊗K · · · ⊗K Mr := {X1 ⊗K · · · ⊗K Xr | Xj ∈ Mj , j = 1, . . . , r}. (2.15)

In the sequel we construct a quotient space which is in a one-to-one correspondence
with M⊗K and use basic concepts from the theory of quotient manifolds to give sufficient
conditions for the quotient space to have a differentiable structure.

On the manifold
M× := M1 × · · · × Mr, (2.16)

we naturally consider the following equivalence relation

X ∼ Y :⇐⇒ X1 ⊗K · · · ⊗K Xr = Y1 ⊗K · · · ⊗K Yr, (2.17)

for all X := (X1, . . . , Xr), Y := (Y1, . . . , Yr) ∈ M×, and denote the set of all equivalence
classes

[X] := {(Y1, . . . , Yr) ∈ M× | X1 ⊗K · · · ⊗K Xr = Y1 ⊗K · · · ⊗K Yr}

with M×/∼. According to Theorem 2.1.3, the quotient space M×/∼ carries the struc-
ture of a quotient manifold if the graph of the equivalence relation

Γ∼ = {(X,Y ) | X ∼ Y } ⊂ M× × M× (2.18)

is a closed submanifold of M× × M× and the projection onto the first component

π1 : Γ∼ → M×, (X,Y ) 7→ X (2.19)

is a submersion. Since Γ∼ is the preimage of {0} ⊂ V1 ⊗K · · ·⊗KVr under the continuous
map

M× × M× → V1 ⊗K · · · ⊗K Vr, (X,Y ) 7→ X1 ⊗K · · · ⊗K Xr − Y1 ⊗K · · · ⊗K Yr,

it is clearly a closed subset of M× × M×. However, it does not always have to be a
submanifold of M× × M×, as the following counterexample shows.
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Figure 2.1: The graph of the function γ as a submanifold of R2.

Example 2.2.3 Let M1 := R \ {0} and M2 be the one-dimensional submanifold of R2

defined by the graph of the curve

γ : R → R, γ(t) =
{
t, |t| ≥ 1

f(t), |t| < 1
, (2.20)

where f : R → R is a smooth function with f(0) = −1 such that γ is smooth, see
Figure 2.1. For X2 := (2, 2)⊤ ∈ M2, one notices that αX2 ∈ M2 for all α ∈ R with
α ≥ 1/2. On the other hand, by taking X̃2 := (0, −1)⊤ ∈ M2, one has αX̃2 ∈ M2 if
and only if α = 1. Consequently, for fixed X1 ∈ M1 the following hold:

((X1, X2), ( 1
α
X1, αX2)) ∈ Γ∼ for all α ≥ 1/2

and
((X1, X̃2), ( 1

β
X1, βX̃2)) ∈ Γ∼ if and only if β = 1.

Let φ1 : U1 ⊂ M1 → R and φ2 : U2 ⊂ M2 → R be the charts of M1 and M2 respectively.
Then, in a neighborhood of ((X1, X2), (X1, X2)) ∈ Γ∼ the map

((Y1, Y2), (Z1, Z2)) 7→
(
φ1(Y1), φ2(Y2), ⟨Z1, Y1⟩

∥Y1∥2

)

defines a homeomorphism to an open subset in R3, and in a neighborhood of ((X1, X̃2), (X1, X̃2)) ∈
Γ∼ the map

((Y1, Y2), (Z1, Z2)) 7→
(
φ1(Y1), φ2(Y2)

)
defines a homeomorphism to an open subset in R2.
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Our goal is to impose some conditions on the manifolds M1, . . . ,Mr such that Γ∼
is a submanifold of M× × M×. To this end, we reformulate the equivalence relation ∼
in terms of a Lie-group action on the vector space V1 × · · · × Vr and use a well-known
result from differential geometry due to Dieudonne ([14], page 60), stated as Theorem
2.2.4. First recall that a Lie-group G is a group which has a differentiable structure such
that the group operation and inversion are compatible with the smooth structure. A
Lie-subgroup A of a Lie-group G is a closed subgroup of G, equipped with the structure
of a Lie-group. A Lie-group G acts on a manifold M if there exists a smooth map

σ : G× M → M, (α,X) 7→ α · x (2.21)

that satisfies
α · (β ·X) = (αβ) ·X, e ·X = X, (2.22)

where e is the identity element in G. The graph map associated to σ is the map

σ̂ : G× M → M × M, (α,X) 7→ (X,α ·X). (2.23)

For a thorough discussion on Lie-groups and their actions we refer to the literature
[35, 45]. In the case of Lie-groups acting on a manifold, the statement of Theorem 2.1.3
simplifies as follows.

Theorem 2.2.4 Let M be a differentiable manifold and G a Lie-group which acts on
M. Then, there exists a unique manifold structure on M/G such that the canonical
projection π is a submersion if and only if the image of the graph map σ̂ is a closed
submanifold of M × M.

Using Lemma 2.2.1, in what follows, we rewrite the equivalence relation ∼ on M×

defined by (2.17), as the restriction of a Lie-group action on the K-vector space V1 ×
· · · × Vr. For this, we define the set

G := {α = (α1, . . . , αr) ∈ Kr | α1 · α2 · · ·αr = 1}, (2.24)

which is a Lie-group with respect to the subspace topology of Kr and the group oper-
ation

αβ = (α1β1, . . . , αrβr),

for all α = (α1, . . . , αr) and β = (β1, . . . , βr) in G. The Lie-algebra of G is given by

g = {ω ∈ Kr | ω1 + · · · + ωr = 0}. (2.25)

Furthermore, the action of G on the vector space

V × := V1 × · · · × Vr (2.26)

is given by

σG : G× V × → V ×, (α,X) 7→ α ·X = (α1X1, . . . , αrXr) (2.27)
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and it induces an equivalence relation on V × as

X ∼G Y ⇐⇒ ∃ α ∈ G such that Y = α ·X, (2.28)

for X,Y ∈ V1 × · · · × Vr. The equivalence classes of ∼G are called orbits, i.e.

OG(X) = {α ·X | α ∈ G},

and the set of all equivalence classes V ×/G is referred to as the orbit space. For any
X ∈ (V1 \ {0}) × · · · × (Vr \ {0}), the stabilizer group of X is the trivial subgroup

StabG(X) = {α ∈ G | α ·X = X} = {(1, . . . , 1)} (2.29)

of G. In this case, we say that the group action σG is free.
With the above specifications, the graph Γ∼ of the equivalence relation ∼ defined

in (2.17) can be written in terms of the graph of the equivalence relation ∼G

ΓG = {(X,α ·X) | X ∈ V ×, α ∈ G} ⊂ V × × V ×

as
Γ∼ = ΓG ∩ (M× × M×). (2.30)

There are several possible approaches one could follow to obtain conditions to ensure
that Γ∼ is a submanifold of M× × M×. One of these approaches involves the transver-
sality theory. From differential topology it is known that if two submanifolds S1 and
S2 of a manifold M intersect tranversally, i.e.

TpS1 + TpS2 = TpM, (2.31)

for all p ∈ S1 ∩ S2, then their intersection is also a submanifold (see [29, 36, 55]).
However, it is clear from Example 2.2.3 that this is not the case in our situation, i.e.
(2.30), hence we will not follow this path. Instead, we will concentrate on the situation
when the equivalence relation ∼ is induced by the action of a Lie-subgroup of G.

Next, we show that for any Lie-subgroup A of G which acts on the manifold M×

according to the group action

σA : A × M× → M×, (α,X) 7→ α ·X = (α1X1, . . . , αrXr), (2.32)

the image of the graph map σ̂A is a closed submanifold of M× × M×.

Theorem 2.2.5 Let Mj be real submanifolds of the K-inner product spaces (Vj , ⟨·, ·⟩j),
for j = 1, . . . , r and G be the Lie-group defined by (2.24). If A is a Lie-subgroup of G
which acts on M× := M1 × · · · × Mr according to σA defined by (2.32), then the graph
ΓA of the equivalence relation induced by σA is a closed submanifold of M× × M×.
Moreover, M×/A is a manifold of dimension

dim(M×/A) = dimM× − dimA.
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Proof. Since StabG(X) = {(1, . . . , 1)} for any X ∈ M× and A is a Lie-subgroup of G,
it results that the group action σA is free. To apply Theorem 2.2.4 we need to prove
that the graph map is proper. The graph map

σ̂A : A × M× → M× × M×, (α,X) = (X,α ·X)

is injective, since the group action is free. Moreover, σ̂A is a homeomorphism onto its
image, with the inverse map

φ : M× × M× → G× M×, φ(X,Y ) =
(

⟨X1,Y1⟩1
∥X1∥2

1
, . . . , ⟨Xr,Yr⟩r

∥Xr∥2
r
, X

)
,

is continuous and has the property that

φ|Im σ̂A
= σ̂−1

A .

Hence, σ̂−1
A is continuous, and moreover σ̂A is proper. From Theorem 2.2.4 it follows

that σA is a regular group action. �

From the above theorem, we can conclude that the set ΓG is a submanifold of
V × × V ×. Thus, if the group G acts on M×, then ΓG ⊂ M× × M× and thus, M×/∼ =
M×/G is a manifold. More generally, we have the following sufficient condition for the
quotient space M×/∼ to be a manifold.

Corollary 2.2.6 Let Mj be real submanifolds of the K-inner product spaces (Vj , ⟨·, ·⟩j),
for j = 1, . . . , r and G be the Lie-group defined by (2.24). If there exists a Lie-subgroup
A of G which acts on M× := M1 × · · · × Mr according to σA defined by (2.32) and

M×/∼ = M×/A,

then, the quotient space M×/∼ has a unique manifold structure such that the canonical
projection is a submersion.

We enclose this section with some examples of manifolds M1, . . . ,Mr for which
M×/∼ is a quotient manifold.

Example 2.2.7 If Mj = Vj \{0}, for all j = 1, . . . , r, then (2.27) defines a group action
of the Lie-groupG on M×. According to Theorem 2.2.5 it follows that (M1×· · ·×Mr)/G
is a manifold.

Example 2.2.8 A similar situation is encountered when the product manifold M× is
GLn1 × · · · × GLnr , where GLnj is the Lie-group of all invertible nj × nj matrices with
entries in K. Here, the restriction of the map σG to GLn1 × · · · × GLnr defines a group
action of G on GLn1 × · · · × GLnr and hence (GLn1 × · · · × GLnr )/G is a manifold.

In both examples, the graph of the equivalence relation induced by σG is equal to Γ∼
and hence, (V1 \ {0} × · · · × Vr \ {0})/∼ and (GLn1 × · · · × GLnr )/∼ are manifolds.
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Example 2.2.9 Let Mj be the manifold of all elements Xj ∈ Vj of equal norm, i.e.,

Mj = {Xj ∈ Vj | ∥Xj∥j = cj , cj > 0},

for j = 1, . . . , r.
We will show that M×/∼ is a manifold, where ∼ is the equivalence relation defined

by (2.17). On the K-vector space V1 × · · · × Vr one has the inner product

⟨X,Y ⟩ = ⟨X1, Y1⟩1 + · · · + ⟨Xr, Yr⟩r,

for all X = (X1, . . . , Xr), Y = (Y1, . . . , Yr) ∈ V1 × · · · × Vr. Moreover, for any X, Y ∈
M× one has

X ∼ Y ⇐⇒ ∃ α ∈ G, |α1| = · · · = |αr| = 1 such that Y = α ·X.

The set
A = {α ∈ Kr | |α1| = · · · = |αr| = 1, α1α2 · · ·αr = 1}

is a Lie-subgroup of G and

σA : A × M× → M×, (α,X) 7→ α ·X

is the Lie-group action which induces the equivalence relation ∼, hence, M×/∼ is a
manifold.

2.2.3 Tangent space, Riemannian metric and Levi-Civita connection
on the orbit space M×/A

Let (Vj , ⟨·, ·⟩j) be K-inner product spaces, and (Mj , gj) be Riemannian submanifolds
of Vj , i.e.

gj(ξj , ηj) = Re⟨ξj , ηj⟩j , (2.33)

for all ξj , ηj ∈ TXjMj , Xj ∈ Mj , j = 1, . . . , r. We endow the direct product manifold
M× := M1 × · · · × Mr with the Riemannian metric

gX(ξ, η) =
r∑

j=1

1
∥Xj∥2

j

gj(ξj , ηj) =
r∑

j=1

Re⟨ξj , ηj⟩j

∥Xj∥2
j

(2.34)

for all X = (X1, . . . , Xr) ∈ M×, ξ = (ξ1, . . . , ξr), η = (η1, . . . , ηr) ∈ TXM×, where
∥Xj∥2

j = ⟨Xj , Xj⟩j .

In this section, we describe the Riemannian structure of the quotient manifold
M×/A, for a Lie-subgroup A of G defined by (2.24), which acts on M× according to
the group action (2.32). The tangent vectors of M×/A have a unique representation as
vectors in the horizontal space. To avoid confusion we will use [X] to refer to elements
in the quotient manifold M×/A and OA(X) for subsets in the manifold M×. The
vertical space at Y ∈ OA(X) is the tangent space of OA(X) at Y and is given by

TY OA(X) = {ω · Y | ω ∈ a} ⊂ TY M
×, (2.35)
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where a is the Lie-algebra of A. The horizontal space at Y is the orthogonal complement
of TY OA(X) in TY M

× with respect to the Riemannian metric (2.34) and is given by

HY := {ξ ∈ TY M
× | gY (ξ, η) = 0, ∀ η ∈ TY OA(X)}

= {ξ ∈ TY M
× | gY (ξ, ω · Y ) = 0, ∀ ω ∈ a}.

(2.36)

A representation for a tangent vector ξ ∈ T[X]M
×/A is given by a vector ξh

Y in the
horizontal space HY with Y ∈ OA(X) that satisfies

TY πA(ξh
Y ) = ξ.

This representation, called horizontal lift, is unique up to a choice of a representative
Y ∈ OA(X).

The following relation between the horizontal lifts of the tangent vectors of elements
in the same equivalence class will help us to introduce a Riemannian metric on the
manifold M×/A.

Lemma 2.2.10 Let A be any Lie-subgroup of G that acts on M× according the group
action (2.32). Then, for any X ∈ M× and α ∈ A,

ξh
α·X = α · ξh

X , (2.37)

where ξh
X ∈ HX denotes the horizontal component of ξX ∈ TXM×. Moreover,

gX(ξh
X , η

h
X) = gα·X(ξh

α·X , η
h
α·X), (2.38)

for all ξh
X , η

h
X ∈ HX and α ∈ A.

Proof. Let X ∈ M× be a representative for [X] ∈ M×/A, and let ξ ∈ T[X]M
×/A.

Then, the horizontal lift ξh
X ∈ HX of ξ satisfies

TXπA(ξh
X) = ξ.

Fix α ∈ A and consider the function fα : M× → M× defined as fα(X) = α ·X. Then,
πA(fα(X)) = πA(X) and hence

ξ = TXπA(ξh
X) = TX(πA ◦ fα)(ξh

X) = Tα·XπA(TXfα(X)(ξh
X)) = Tα·XπA(α · ξh

X).

Moreover,

gα·X(α · ξh
X , ω · (α ·X)) =

r∑
j=1

1
|αj |2∥Xj∥2

j

Re⟨αjξ
h
j , ωjαjXj⟩j

=
r∑

j=1

|αj |2

|αj |2∥Xj∥2 Re⟨ξh
j , ωjXj⟩j

= gX(ξh
X , ω ·X) = 0,
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for all ω ∈ a. Hence, from the definition of the horizontal space (2.36) it follows that
α · ξh

X ∈ Hα·X . The conclusion (2.37) follows from the fact that

Tα·XπA(ξh
α·X) = ξ = Tα·XπA(α · ξh

X) and α · ξh
X ∈ Hα·X .

To prove (2.38), let ξh
α·X , η

h
α·X ∈ Hα·X . Then,

gα·X(ξh
α·X , η

h
α·X) = gα·X(α · ξh

X , α · ηh
X)

=
r∑

j=1

1
|αj |2∥Xj∥2

j

Re⟨αjξ
h
j , αjη

h
j ⟩j

=
r∑

j=1

1
∥Xj∥2 Re⟨ξh

j , η
h
j ⟩j

= gX(ξh
X , η

h
X),

where ξh
X = (ξh

1 , . . . , ξ
h
r ), ηh

X = (ηh
1 , . . . , η

h
r ) ∈ HX . �

The above lemma says that, for all [X] ∈ M×/A and all ξ, η ∈ T[X]M
×/A, the

expression gY (ξh
Y , η

h
Y ) does not depend on the choice of the representative Y ∈ OA(X).

Hence,
g̃[X](ξ, η) := gY (ξh

Y , η
h
Y ) (2.39)

defines a Riemannian metric on the orbit space M×/A. The vectors ξh
Y , η

h
Y ∈ HY

are the unique vectors in the horizontal space HY such that TY πA(ξh
Y ) = ξ and

TY πA(ηh
Y ) = η.

According to (2.3), on the Riemannian manifold (M×, g) the Levi-Civita connection
is given by

∇ξX = projX
(
DX̃1(X1)(ξ1), . . . , DX̃r(Xr)(ξr)

)
for all ξ = (ξ1, . . . , ξr) ∈ TXM× and all vector fields X = (X1, . . . ,Xr) : M× → TM×,
where X̃ = (X̃1, . . . , X̃r) is a smooth extension of X to the vector space V1 ×· · ·×Vr and
projX is the orthogonal projector onto TXM×. From (2.4) it follows that the Levi-Civita
connection on (M×/A, g̃) is defined as

∇h
ξXA = ∇ξh

X
Xh = projhX

(
DX̃h

1(X1)(ξh
1 ), . . . , DX̃h

r (Xr)(ξh
r )
)
,

for all ξ ∈ T[X]M
×/A and all smooth vector fields XA : M×/A → TM×/A, where ξh

X is
the horizontal lift of ξA and Xh is the vector field of the horizontal lift of XA. Moreover,
X̃h is a smooth extension of Xh to V1 × · · · × Vr and projhX is the orthogonal projector
onto the horizontal space HX .
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Figure 2.2: The graph of the smooth function f defined in Example 2.2.11.

2.2.4 Submanifold conditions for the r-fold tensor product of mani-
folds

Recall that M1, . . . ,Mr are Riemannian submanifolds of the K-inner product spaces
V1, . . . , Vr. Let M× denote the direct product manifold M1 ×· · ·×Mr equipped with the
Riemannian metric (2.34), and ∼ the equivalence relation on M× given by (2.17). If
the quotient space M×/∼ has a manifold structure, then the one-to-one correspondence
with M⊗ induces a manifold structure on M⊗K . The interesting question that arises is
whether M⊗

K has the structure of a submanifold of the vector space V1 ⊗K · · · ⊗K Vr.
This is not always the case, as the next example will prove.

Example 2.2.11 The graph of the function

f : R → R2, f(x) =
{

((x− 1)2, 0), x ≤ 1

(0, (x− 1)2), x > 1

is a submanifold of R3. Let M1 = R \ {0} and M2 = Γf and as before M× := M1 ×M2.
It is obvious that if X2 ∈ M2, then αX2 ∈ M2 if and only if α = 1 and hence,

M×/∼ = M×/{1}.

From Theorem 2.2.5 it follows that M×/∼ is a manifold diffeomorphic to M×. More-
over,

M1 ⊗ M2 = {α(x, f(x)) | α ∈ R \ {0}, x ∈ R} = (xOy ∪ xOz) \ (K1 ∪K2),

where K1 and K2 are cones in the plane xOy and xOz respectively. Thus, M1 ⊗M2 is
not a submanifold of R3.

Next, we give sufficient conditions for M⊗K to be a submanifold of V1 ⊗K · · · ⊗K Vr.
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Theorem 2.2.12 Let M1 ⊂ V1 \ {0}, . . . ,Mr ⊂ Vr \ {0} be compact submanifolds of
V1, . . . , Vr, ∼ be the equivalence relation (2.17) on M× := M1 × · · · × Mr and G the
Lie-group defined in (2.24) with Lie algebra g. If the map

h : M× → V1 ⊗ · · · ⊗ Vr, (X1, . . . , Xr) 7→ X1 ⊗ · · · ⊗Xr (2.40)

is open with respect to the subspace topology and if there exists a Lie-subgroup A of G
such that:

(1)
M×/∼ = M×/A,

(2)
TXOA(X) = TXM× ∩ TXOG(X), for all X ∈ M×, (2.41)

then M⊗K is a submanifold of V1 ⊗K · · · ⊗K Vr and is diffeomorphic to M×/∼.

Proof. Let [X]A ∈ M×/A with X := (X1, . . . , Xr) ∈ π−1
A ([X]A) as a representative.

We prove that the map

f : M×/A → V1 ⊗ · · · ⊗ Vr, [X]A 7→ X1 ⊗ · · · ⊗Xr

is a homeomorphism onto its image Im f = M⊗K .

The following diagram

M×/A
f // V1 ⊗ · · · ⊗ Vr

M×

πA

OO

h

88rrrrrrrr

(2.42)

commutes. For every open set W ⊂ V1 ⊗ · · · ⊗ Vr, the preimage h−1(W ) is open.
Moreover,

h−1(W ) = (f ◦ πA)−1(W ) = (π−1
A (f−1(W ))) (2.43)

it follows that f−1(W ) is open and hence, f is continuous. Since h is open, it follows
that f is open as well, and hence a homeomorphism onto its image.

Further, we will prove that if condition (2.41) is satisfied for all X ∈ M×, then
f is an embedding. We have shown that f is a homeomorphism onto its image, thus
it is left to prove that f is an immersion, i.e. T[X]Af : T[X]AM

×/A → V1 ⊗ · · · ⊗ Vr

has full rank equal to the dimension of M×/A. Let X = (X1, . . . , Xr) ∈ M× and
ξh

X = (ξh
1 , . . . , ξ

h
r ) ∈ HX be a representation for ξA ∈ T[X]AM

×/A. Then

T[X]Af(ξA) =
r∑

j=1
X1 ⊗ · · · ξh

j ⊗ · · · ⊗Xr.
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From Lemma 2.2.1 it follows that

kerT[X]Af = {ξh := (ξh
1 , . . . , ξ

h
r ) ∈ HX

∣∣ r∑
j=1

X1 ⊗ · · · ξh
j ⊗ · · · ⊗Xr = 0}

= {ξh := (ξh
1 , . . . , ξ

h
r ) ∈ HX

∣∣ ξh = ω ·X, ω ∈ g},

where g is the Lie-algebra of G defined in (2.24). Further, we have

kerT[X]Af = HX ∩ {ω ·X
∣∣ ω ∈ a⊥},

where a⊥ is the orthogonal complement of a in g, i.e. g = a ⊕ a⊥. From (2.41) it
follows that ω · X /∈ TXM× for all 0 ̸= ω ∈ a⊥ and hence, kerT[X]Af = {0}. Thus,
f is an immersion and therefore an embedding. From Theorem 2.1.2 it follows that
Im f = M⊗ is a submanifold of V1 ⊗K · · · ⊗K Vr diffeomorphic to M×/∼. �

For compact submanifolds, the map

f : M×/A → V1 ⊗ · · · ⊗ Vr, [X]A 7→ X1 ⊗ · · · ⊗Xr

describes a homeomorphism onto its image. The next result is a consequence of Theo-
rem 2.2.12 and an important tool in the next chapters, to prove that the r-fold tensor
products of Grassmann manifolds and of Lagrange Grassmann manifolds have a com-
pact submanifold structure.

Corollary 2.2.13 Let M1 ⊂ V1 \ {0}, . . . ,Mr ⊂ Vr \ {0} be compact submanifolds of
V1, . . . , Vr and ∼ the equivalence relation (2.17) on M× := M1 × · · · × Mr and G the
Lie-group defined in (2.24) with Lie algebra g. If there exists a Lie-subgroup A of G
such that M×/∼ = M×/A and the condition (2.41) holds, then M⊗K is a compact
submanifold of V1 ⊗K · · · ⊗K Vr.
Furthermore, if A = {(1, . . . , 1)} is the trivial subgroup of G and if

ω ·X /∈ TXM× (2.44)

for all X ∈ M× and 0 ̸= ω ∈ g, then M⊗K is a compact submanifold of V1 ⊗K · · · ⊗K Vr

diffeomorphic to M×.

Proof. The continuous map

h : M× → V1 ⊗ · · · ⊗ Vr, (X1, . . . , Xr) 7→ X1 ⊗ · · · ⊗Xr

is closed and proper since M× is compact. From the commutative diagram (2.42) we
obtain that the continuous map

f : M×/A → V1 ⊗ · · · ⊗ Vr, [X]A 7→ X1 ⊗ · · · ⊗Xr

is closed and proper. Furthermore, f is injective, and hence, f is a homeomorphism
onto its image. From (2.41) and the proof of Theorem 2.2.12, we conclude that f is
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an immersion and hence, an embedding. Then, Im f = Im h = M⊗K is a compact
submanifold of V1 ⊗K · · · ⊗K Vr.
The second part of the proof follows immediately from the fact that h is injective and
the condition (2.41) becomes (2.44). �

Remark 2.2.14 If the map h (2.40) is injective, i.e. A = {(1, . . . , 1)}, but the mani-
folds Mj are not compact, then M⊗K does not necessarily have a submanifold structure,
see Example 2.2.11.



Chapter 3

Tensor products of
Grassmannians and
Lagrange-Grassmannians

Important tasks in numerical linear algebra such as invariant subspace computation
or subspace tracking, can be formulated as optimization tasks on the set of all m-
dimensional subspaces of Kn (K = R or K = C) called the Grassmann manifold, see e.g.
[3, 16, 34, 77]. In this chapter, we recall the fundamental properties of the Grassmann
manifold and in particular we discuss its representation as the set of rank-m orthogonal
or self-adjoint projectors of Rn and Cn, respectively, called Grassmannian Gr(m,n).
Furthermore, we generalize the Grassmannian to a tensor product of Grassmannians
denoted by Gr⊗(m,n). With tools from the previous chapter, we prove that Gr⊗(m,n)
can be equipped with a Riemannian submanifold structure and that it is isometric to
the direct product of Grassmannians.

In this chapter, we also present the manifold of all Lagrangian subspaces of R2n

and C2n, called the Lagrangian Grassmannian [4]. The task of determining Lagrangian
subspaces of Hamiltonian matrices is important in linear optimal control, in Kalman
filtering, etc., being closely connected to solutions of an algebraic Riccati equation. For
details in this direction we refer to the literature [34, 63]. Similar to the case of the
Grassmann manifold, we give a representation of the Lagrangian Grassmannian with
orthogonal, respective self-adjoint projectors of rank n that satisfy some properties.
We will call this set Lagrange-Grassmannian LG(n). The r-fold tensor product of
Lagrange-Grassmannians LG⊗(n) is a submanifold of the Gr⊗(2n). Moreover, it is
natural to think about what happens when the symplectic form on C2n is given by a
sesquilinear map and not by a bilinear one. In [5], it was proven that in this case the
set of all complex Lagrangian subspaces has the structure of a manifold diffeomorphic
to the unitary group U(n), called the complex Lagrangian Grassmannian. Similar to
the classical cases, we characterize the complex Lagrangian Grassmannian by a subset
of the set of rank-n self–adjoint projectors of C2n and show that this set is a manifold
diffeomorphic to the direct product of complex Lagrange-Grassmannians.
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3.1 Preliminaries on the Grassmannian

Let K denote the field of real or complex numbers, i.e. K = R or K = C. Recall that
the K- Grassmann manifold is the set of all K-subspaces of dimension m from Kn and
is denoted with GrassK(m,n). Its geometric properties are well understood and we
refer the interested reader to [8, 34, 55] for specific details. There are several equivalent
identifications for GrassK(m,n), as a quotient of Kn×m [3], or as an homogeneous space
[34], etc. In our inquiry, we concentrate on the identification of the Grassmann manifold
with the set of rank-n self–adjoint projectors, see [32]. For this purpose we recapitulate
some important objects that will be used throughout the thesis.

The set of all n×n symmetric matrices symn is the subspace of matrices A ∈ Rn×n

with the property that A⊤ = A. Similar, the set of n×n Hermitian matrices hern is the
real vector subspace of matrices A ∈ Cn×n satisfying A† = A. With A⊤ we refer to the
transpose of A and with A† to the transpose conjugate of A. Fundamental for our work
with Grassmann manifolds are the Lie groups of special orthogonal matrices SO(n) and
special unitary matrices SU(n) and the Lie algebras of son and sun, respectively, i.e.

SO(n) = {Θ ∈ Rn×n | Θ⊤Θ = In, det Θ = 1}, son = {Ω ∈ Rn×n | Ω⊤ = −Ω}.

and

SU(n) = {Θ ∈ Cn×n | Θ†Θ = In, det Θ = 1}, sun = {Ω ∈ Cn×n | Ω† = −Ω, tr(Ω) = 0}.

The Grassmannian,

GrK(m,n) := {P ∈ Kn×n | P = P † = P 2, tr(P ) = m}, (3.1)

is the set of all rank m self-adjoint projection operators of Kn. In [32], the authors
have shown that GrR(m,n) and GrC(m,n) are smooth and compact real submanifolds
of symn and hern of real dimension m(n − m) and 2m(n − m), respectively. Here we
discuss only the complex Grassmannian GrC(m,n), since its geometric structure can be
transfered to the real Grassmannian GrR(m,n) just by replacing SU(n) and sun with
SO(n) and son, respectively, and transpose with transpose conjugate. From here on,
the complex Grassmannian is denoted by Gr(m,n). For further use, we denote with

Πm,n :=

 Im 0

0 0

 , (3.2)

the standard projector of rank m acting on Cn. Whenever the values of m and n are
clear from the context, we will simply write Π.

The Grassmannian Gr(m,n) is diffeomorphic to the Grassmann manifold, see [34].
It is also diffeomorphic to the homogeneous space SU(n)/StabSUn(Πm,n) according to
the map

SU(n) × Gr(m,n) → Gr(m,n), (Θ, P ) 7→ Θ†PΘ, (3.3)
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where
StabSU(n)(Πm,n) = {Θ ∈ SU(n) | Θ†Πm,nΘ = Πm,n}.

From the diffeomorphism (3.3) we derive the following representation of the elements P
in the Grassmannian and of the vectors in the tangent space TP Gr(m,n). The tangent
space at P to Gr(m,n) is given by

TP Gr(m,n) = {[P,Ω] | Ω ∈ sun}, (3.4)

where the matrix commutator is defined by

[P,Ω] = PΩ − ΩP.

Every element P ∈ Gr(m,n) and every tangent vector ξ ∈ TP Gr(m,n) can be written
as

P = Θ†

 Im 0

0 0

Θ and ξ = Θ†
[

0 Z
Z† 0

]
Θ, (3.5)

with Θ ∈ SU(n) and Z ∈ Cm×(n−m).
With respect to the Riemannian metric induced by the Hilbert-Schmidt inner prod-

uct of hern

⟨X,Y ⟩ := tr(XY ), (3.6)

the Grassmannian Gr(m,n) is a Riemannian submanifold of hern and the unique or-
thogonal projector onto TP Gr(m,n) is given by

ad2
PX = [P, [P,X]], X ∈ hern, (3.7)

see [32]. From (2.3) it follows that the Levi-Civita connection ∇ on Gr(m,n) is given
by

∇ξX(P ) = ad2
P

(
DX̃(P )(ξ)

)
, (3.8)

for any ξ ∈ TP Gr(m,n), P ∈ Gr(m,n), where X̃ is a smooth extension of the vector
field X on Gr(m,n) to a vector field on hern. It is known in the literature (see [32])
that, the curve

t 7→ γ(t) = et[ξ,P ]Pe−t[ξ,P ] (3.9)

describes the unique geodesic on Gr(m,n) with initial conditions γ(0) = P ∈ Gr(m,n)
and d

dtγ(0) = ξ ∈ TP Gr(m,n). One can check that γ(t) = et[ξ,P ]Pe−t[ξ,P ] satisfies the
equation (2.6). Similarly, it can be verified that the parallel transport of ξ ∈ TP Grm,n

to Tγ(t)Grm,n along the geodesic γ is given by

ξ 7→ et[ξ,P ]ξe−t[ξ,P ]. (3.10)

In general, parametrizations around a point P from a n-dimensional smooth manifold,
are defined as inverses of the charts, i.e. smooth maps µP from Rn to the manifold with



32 3.Grassmann and Lagrange-Grassmannians

µP (0) = P. Here, we say that a local parametrization around a point P ∈ Gr(m,n) is
a smooth map

µP : TP Gr(m,n) → Gr(m,n),

which satisfies
µP (0) = P, DµP (0) = idTP Gr(m,n). (3.11)

For the Grassmannian, the authors of [32] have introduced three types of local parametriza-
tions, one given by the exponential map and the other two given by approximations of
the exponential map:

(a) Riemannian normal coordinates

µexp
P : TP Gr(m,n) → Gr(m,n), ξ 7→ e[ξ,P ]Pe−[ξ,P ]. (3.12)

(b) QR-type coordinates

µQR
P : TP Gr(m,n) → Gr(m,n), ξ 7→ (In + [ξ, P ])Q P (In + [ξ, P ])†

Q. (3.13)

Here In + [ξ, P ] is the first order approximation of the matrix exponential e[ξ,P ] and
(In + [ξ, P ])Q denotes the Q−factor from the QR decomposition of In + [ξ, P ]. Since,
In + [ξ, P ] is similar to a matrix of the form Im −Z

Z† In−m

 ,
with Z ∈ Cm×(n−m), it follows that det(In +[ξ, P ]) = det(Im +ZZ†) > 0, i.e. In +[ξ, P ]
is invertible. Thus, the QR decomposition of In + [ξ, P ] is unique.

(c) Cayley coordinates

µCay
P : TP Gr(m,n) → Gr(m,n), ξ 7→ c([ξ, P ])Pc(−[ξ, P ]), (3.14)

where c denotes the Cayley transform of a skew-Hermitian matrix Ω, i.e.

c : sun → SU(n), Ω 7→ (2In + Ω)(2In − Ω)−1.

In [32] it is shown that the maps µexp
P , µQR

P and µCay
P are local parametrizations ac-

cording to (3.11) and moreover, that they satisfy

d2

dt2
µexp

p (tξ)|t=0 = d2

dt2
µQR

p (tξ)|t=0 = d2

dt2
µCay

p (tξ)|t=0 = Θ†
[

−2ZZ† 0

0 2Z†Z

]
Θ,

for all P ∈ Gr(m,n) and ξ ∈ TP Gr(m,n), where ξ and Z are related by (3.5).
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3.2 Riemannian structure of the tensor product of Grass-
mannians

In this section we introduce an object which arises naturally in many applications as we
will see later on, i.e. the tensor product of Grassmannians. We describe its Riemannian
structure and show that it is isometric to the direct product of Grassmannians.

Let K = R or K = C. The r−fold tensor product of Grassmannians is the subset

Gr⊗
K(m,n) := {P1 ⊗ · · · ⊗ Pr | Pj ∈ GrK(mj , nj), j = 1, . . . , r} ⊂ GrK(M,N) (3.15)

of all rank-M self-adjoint projectors P : KN → KN which have the form of a Kronecker
product P := P1 ⊗ · · · ⊗ Pr, where M := m1m2 · · ·mr and N := n1n2 · · ·nr. Here,
(m,n) denotes the multi index

(m,n) :=
(
(m1, n1), (m2, n2), . . . , (mr, nr)

)
. (3.16)

As in the previous section, we present only the case of complex Grassmannians, the real
case being easily obtained from the complex one, if not otherwise specified. To avoid
complicated notation, we will use Gr⊗(m,n) for the r-fold tensor product of complex
Grassmannians.

The r−fold tensor product of Grassmannians can be equipped with a Riemannian
submanifold structure of herN

∼= hern1 ⊗ · · · ⊗ hernr
, as we will prove next. The Rie-

mannian metric of Gr⊗(m,n) is induced by the Hilbert-Schmidt inner product (3.6)
on herN .

Remark 3.2.1 For the real case, we do not have an isomorphism between symN and
the tensor product vector space sym⊗(n) := symn1 ⊗ · · · ⊗ symnr

. On the sym⊗(n) we
define the inner product

⟨X1 ⊗ · · · ⊗Xr, Y1 ⊗ · · · ⊗ Yr⟩ := tr(X1Y1) · · · tr(XrYr), (3.17)

for all Xj , Yj ∈ symnj
, for j = 1, . . . , r.

Furthermore, the special features of the Grassmannian lead to a diffeomorphism be-
tween Gr⊗(m,n) and the direct r−fold product of Grassmannians

Gr×(m,n) := {(P1, . . . , Pr) | Pj ∈ Gr(mj , nj), j = 1, . . . , r}. (3.18)

Nothe that, Gr×(m,n) is a smooth and compact Riemannian submanifold of the prod-
uct space hern1 × · · · × hernr

with Riemannian metric induced by the inner product⟨
(X1, . . . , Xr), (Y1, . . . , Yr)

⟩
:= tr(X1Y1) + · · · + tr(XrYr), (3.19)

for all Xj , Yj ∈ hernj
and j = 1, . . . , r. The fundamental geometric objects and concepts

of Gr×(m,n) are trivial extensions of the corresponding ones on the Grassmannian. We
give the following property of elements in Gr×(m,n) that we will use in the proof of
Proposition 3.2.3 and further on in Chapter 4.
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Lemma 3.2.2 Let P = (P1, . . . , Pr) ∈ Gr×(m,n) and (ξ1, . . . , ξr) ∈ TP Gr×(m,n).
Then,

⟨P1 ⊗ · · · ξj ⊗ · · · ⊗ Pr, P1 ⊗ · · · ξk ⊗ · · · ⊗ Pr⟩ = 0, (3.20)

for all j ̸= k, j, k = 1, . . . , r. The inner product considered is given by (3.6).

Proof. From (3.6) and the properties of the trace function, it follows that

⟨X1 ⊗ · · · ⊗Xr, Y1 ⊗ · · · ⊗ Yr⟩ = tr(X1Y1) · · · tr(XrYr),

for all Xj , Yj ∈ hernj
and j = 1, . . . , r. Without loss of generality, in (3.20) we assume

that j = 1 and k = 2. Since tr(ξjPj) = 0 for all ξj ∈ TPj Grmj ,nj , then

⟨ξ1 ⊗ · · · ⊗ Pr, P1 ⊗ ξ2 ⊗ · · · ⊗ Pr⟩ = tr(ξ1P1) tr(P2ξ2) · · · tr(Pr) = 0.

�

Proposition 3.2.3 The r−fold tensor product of Grassmannians Gr⊗(m,n) is a smooth
and compact submanifold of herN , diffeomorphic to Gr×(m,n), i.e. the map

φ : Gr×(m,n) → Gr⊗(m,n) , (P1, . . . , Pr) 7→ P1 ⊗ · · · ⊗ Pr (3.21)

defines a diffeomorphism. Furthermore, φ is a global Riemannian isometry if the inner
product (3.19) on hern1 × · · · × hernr

is scaled as follows

⟨(X1, . . . , Xr), (Y1, . . . , Yr)⟩ = M1 tr(X1Y1) + · · · +Mr tr(XrYr), (3.22)

with Mj :=
r∏

k=1, k ̸=j

mk, for Xj , Yj ∈ hernj
, j = 1, . . . , r.

Proof. First we prove that the map

φ : Gr×(m,n) → herN , (P1, . . . , Pr) 7→ P1 ⊗ · · · ⊗ Pr

is injective. Let (P1, .., Pr), (Q1, . . . , Qr) ∈ Gr×(m,n) such that

P1 ⊗ · · · ⊗ Pr = Q1 ⊗ · · · ⊗Qr.

From Lemma 2.2.1 it follows that there exist α1, . . . , αr ∈ C with α1α2 · · ·αr = 1 such
that

P1 = α1Q1, , . . . , Pr = αrQr.

Since Pj and Qj have only 0 and 1 as eigenvalues it follows that αj = 1 for all
j = 1, . . . , r. Thus φ is injective. Let G denote the Lie group G := {(α1, . . . , αr) ∈
Cr | α1α2 · · ·αr = 1} and g := {(ω1, . . . , ωr) ∈ Cr | ω1 + · · ·ωr = 0} its Lie algebra.
For any P ∈ Gr×(m,n) and any ω ∈ g we have that ω · P = (ω1P1, . . . , ωrPr) /∈
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TP Gr×(m,n). Since Gr×(m,n) is compact, from Corollary 2.2.13 we conclude that
Gr⊗(m,n) is a compact submanifold of herN diffeomorphic to Gr×(m,n).

For the second part of the proposition, let (3.22) be the inner product on hern1 ×
· · · × hernr

. The tangent tangent map of φ at P is given by

TPφ : TP Gr×(m,n) → herN

(ξ1, . . . , ξr) 7→
r∑

j=1
P1 ⊗ · · · ⊗ ξj ⊗ · · · ⊗ Pr.

Then, from the properties of the trace function and the fact that tr(Pξ) = 0 for all
ξ ∈ TP Gr(m,n), we obtain

⟨TPφ(ξ), TPφ(η)⟩ =
r∑

j=1

r∑
k=1

⟨P1 ⊗ · · · ⊗ ξj ⊗ · · · ⊗ Pr, P1 ⊗ · · · ⊗ ηk ⊗ · · · ⊗ Pr⟩

=
r∑

j=1

r∑
k=1

tr
(

(P1 ⊗ · · · ⊗ ξj ⊗ · · · ⊗ Pr)(P1 ⊗ · · · ⊗ ηk ⊗ · · · ⊗ Pr)
)

=
r∑

j=1
Mj tr(ξjηj) = ⟨ξ, η⟩,

where Mj :=
r∏

k=1, k ̸=j
mk, for all ξ, η ∈ TP Gr×(m,n). Hence, φ is a global Riemannian

isometry. �

The injectivity of the map φ defined by (3.21) is very special and does not hold in
general, as can be noticed from the subsequent example

hern1 × · · · × hernr
→ herN , (X1, . . . , Xr) 7→ X1 ⊗ · · · ⊗Xr. (3.23)

Remark 3.2.4 It is a well-known fact that the Grassmannian Gr(m,n) is diffeo-
morphic to the Grassmann manifold Grass(m,n), cf.[34]. Therefore, Gr(m1, n1) ⊗
Gr(m2, n2) is diffeomorphic to

{V1 ⊗ V2 | V1 ∈ Grass(m1, n1), V2 ∈ Grass(m2, n2)} ⊂ Grass(M,N),

where M := m1m2 and N := n1n2. This allows us to use the term r-fold tensor product
of Grassmann manifolds when talking about the manifold Gr⊗(m,n).

3.3 Symplectic vector spaces and Lagrange-Grassmannians
In this section we review the notions of Lagrangian subspaces of R2n and C2n and give
a representation of these subspaces by certain orthogonal and self-adjoint projectors,
respectively. In the literature [4], the set of all Lagrangian subspaces of R2n and C2n
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is a manifold called the Lagrangian Grassmannian. We show that the set of all projec-
tors representing Lagrangian subspaces is a submanifold of the Grassmann manifold.
Naturally, one could be interested in what happens to the complex version of the real
Lagrangian Grassmannian, i.e. the set of all complex Lagrangian subspaces of C2n

with respect to a sesquilinear form. In [5], it was proved that the complex Lagrangian
Grassmannian is a manifold, which is diffeomorphic to the group of unitary matrices.
Similar to the classical cases, we characterize the complex Lagrangian Grassmannian
by a subset of rank-n self-adjoint projectors of C2n show that this subset is a manifold.
We start with basic notions from symplectic geometry.

Definition 3.3.1 A symplectic vector space is a pair (V, ω), where V is a finite di-
mensional vector space over K (K = C or K = R) and ω : V × V → K is a bilinear
form, which satisfies the following:

(i) nondegeneracy
ω(u, v) = 0 for all v ∈ V ⇒ u = 0,

(ii) skew-symmetry
ω(u, v) = −ω(v, u),

for all u, v ∈ V .

A complex symplectic vector space is a complex vector space V endowed with a sesquilin-
ear form ω : V × V → C, that is nondegenerate and

(ii’) skew-Hermitian
ω(u, v) = −ω(v, u),

for all u, v ∈ V .

If (V, ω) is a symplectic vector space (or complex symplectic vector space) and
W ⊂ V a subspace (resp. complex subspace), then the symplectic complement (resp.
complex symplectic complement) of W is

Wω = {v ∈ V | ω(v, w) = 0, for all w ∈ W}.

Moreover, from the nondegeneracy of the bilinear form (resp. sesquilinear form) ω, it
follows that

dimW + dimWω = dimV and (Wω)ω = W. (3.24)

In contrast to the case of the orthogonal complement of a linear subspace, in general
W ∩Wω ̸= {0}. The following instances may occur:

(a) W ∩Wω = {0} and say that W is a symplectic subspace (resp. complex symplectic
subspace);

(b) W ⊂ Wω and say that W is an isotropic subspace (resp. complex isotropic
subspace);
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(c) Wω ⊂ W and say that W is a coisotropic subspace (resp. complex coisotropic
subspace);

(d) W = Wω and we say that W is a Lagrangian subspace (resp. complex Lagrangian
subspace).

As a consequence of (3.24) it follows that a Lagrangian subspace (resp. complex La-
grangian subspace) W ⊂ V is an isotropic subspace (resp. complex isotropic subspace)
of dimension (dimV )/2.

Classical examples of symplectic spaces are given by the spaces K2n, equipped with
standard symplectic form

ω(u, v) = u⊤Jv, u, v ∈ K2n, (3.25)

where J is the skew-symmetric, nonsingular matrix

J :=
[

0 In

−In 0

]
, (3.26)

and In is the n× n identity matrix.
The space C2n can be endowed also with a sesquilinear form that we call the standard
complex symplectic form

ω(u, v) = u†Jv, u, v ∈ C2n. (3.27)

In what follows, we recall standard results for the classical cases of Lagrangian
subspaces of the standard symplectic spaces R2n and C2n as well as for the case of
complex Lagrangian subspaces of C2n. To this extent, we present some basics on the
structure of symplectic groups, compact symplectic groups and their Lie-algebras. For
a detailed inquiry we refer to the literature [31, 45].

The symplectic group Sp(2n,K) is defined as

Sp(2n,K) = {Θ ∈ GL2n(K) | ΘJΘ⊤ = J},

and has as Lie-algebra the space of Hamiltonian matrices,

sp(2n,K) = {X ∈ gl2n(K) | JX = −X⊤J}.

An easy computation will reveal the following block structure for matrices Θ and X in
the symplectic group and in its Lie-algebra, respectively:

Θ =
[
Q R

S T

]
, X =

[
A B

C −A⊤

]
, (3.28)

where Q,R, S, T,A,B,C ∈ Kn×n, with Q⊤T − S⊤R = In, Q
⊤S = S⊤Q, T⊤R = R⊤T ,

B⊤ = B and C⊤ = C. We give also the compact version of the symplectic group, i.e.
the orthogonal symplectic group for K = R

OSp(n) = SO2n ∩ Sp(2n,R) = {Θ ∈ SO2n | ΘJΘ⊤ = J}
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and the unitary symplectic group for K = C

Sp(n) = SU2n ∩ Sp(2n,C) = {Θ ∈ SU2n | ΘJΘ⊤ = J}.

The Lie algebras of OSp(n) and Sp(n) are

osp(n) = {X ∈ so2n | JX = XJ}

and
sp(n) = {X ∈ su2n | JX = X̄J},

respectively. Similar to the case of symplectic groups and their Lie-algebras, one obtains
the following block-structure for their compact version. Thus, Θ ∈ OSp(n) and X ∈
osp(n) are given by

Θ =
[

Q R

−R Q

]
, X =

[
A B

−B A

]
, (3.29)

with R,Q,A,B ∈ Rn×n and A = −A⊤, B = B⊤. For Θ ∈ Sp(n) and X ∈ sp(n) we
have

Θ =
[

Q R

−R̄ Q̄

]
, X =

[
A B

−B̄ Ā

]
, (3.30)

where R,Q,A,B ∈ Cn×n and A⊤ = −Ā, B⊤ = B.
We know from the literature [4], that the set of all Lagrangian subspaces of R2n and

C2n is a manifold diffeomorphic to U(n)/O(n) and Sp(n)/U(n), respectively, called the
Lagrangian Grassmannian. The notation U(n) stands for the unitary group and O(n)
for the orthogonal group. In what comes, we identify the Lagrangian subspaces with
orthogonal and self-adjoint projectors of R2n and C2n, respectively.

Proposition 3.3.2 ([32]) There is a one-to-one correspondence between the set of La-
grangian subspaces W ⊂ K2n and the set of all self-adjoint projectors P of K2n of
rank-n which satisfy P⊤JP = 0.

Proof. We give the proof in the case K = C and mention that for K = R it is similar.
Let S denote the set S := {P ∈ C2n×2n | P † = P, P 2 = P, P⊤JP = 0} and let
P ∈ S. Then P⊤JP = 0 and hence, ImP is a Lagrangian subspace of C2n. Now, let
W ⊂ C2n be a Lagrangian subspace and B ∈ C2n×n with B†B = In a basis for W , i.e.
B⊤JB = 0. Since any Θ ∈ Sp(n) is of the form

Θ =
[

Θ11 Θ12

−Θ12 Θ11

]
,

with Θ11,Θ12 ∈ Cn×n such that

Θ11Θ⊤
12 − Θ12Θ⊤

11 = [Θ11 Θ12]J
[

Θ⊤
11

Θ⊤
12

]
= 0.



3.3. Symplectic vector spaces and Lagrange-Grassmannians 39

Hence, it is always possible to extend B to a basis Θ = [B B⊥] ∈ Sp(n) of the
symplectic vector space C2n and thus, there exist P = BB† such that W = ImR.

�

The Lagrange–Grassmannian is the set of all self-adjoint projectors of rank n with
the property that P⊤JP = 0, denoted by LGK(n), i.e.

LGK(n) = {P ∈ K2n×2n | P = P †, P = P 2, trP = n, P⊤JP = 0}.

It is clear that, the Lagrange–Grassmannians is diffeomorph to the Lagrangian Grass-
mannian. The Lagrange-Grassmannians LGR(n) and LGC(n) are smooth, compact and
connected submanifolds of the Grassmann manifolds GrR(n, 2n) and GrC(n, 2n), with
dimension n(n+ 1)/2 and n(n+ 1), respectively. They are the orbit σ(Π) of the group
actions

σ : OSp(n) × GrR(n, 2n) → GrR(n, 2n), (Θ,Π) 7→ Θ⊤ΠΘ

and
σ : Sp(n) × GrC(n, 2n) → GrC(n, 2n), (Θ,Π) 7→ Θ⊤ΠΘ,

for LGR(n) and LGC(n), respectively. We remind that Π is the standard projector of
K2n (3.2). The tangent spaces of LGR(n) and LGC(n) at P are

TP LGR(n) = {[P, Ω] | Ω ∈ osp(n)} and TP LGC(n) = {[P, Ω] | Ω ∈ sp(n)},

respectively. Moreover, every element P ∈ LGK(n) and every tangent vector ξ ∈
TP LGK(n) has the structure

P = Θ⊤
[
In 0
0 0

]
Θ, ξ = Θ⊤

[
0 Z
Z 0

]
Θ, (3.31)

where Θ ∈ OSp(n), Z ∈ symn and Θ ∈ Sp(n), Z ∈ hern, for K = R and K = C,
respectively. The projection operator onto TP LGK(n), P ∈ LGK(n) is

πP : TP GrK(n, 2n) → TP GrK(n, 2n), ξ 7→ ξ + Jξ⊤J

2
. (3.32)

Since, OSp(n) and Sp(n) are subgroups of SO(n) and SU(n), respectively, the geodesics,
the exponential map and the parallel transport on the Lagrange-Grassmannians LGK(n)
are restrictions of the same object on the Grassmann manifold GrK(n, 2n). Further-
more, in [32] it was shown that this is still true for the proposed approximations of the
exponential map, i.e. the QR-coordinates and the Cayley-coordinates.

We know that the set of complex Lagrangian subspaces of the complex symplectic
space C2n has a manifold structure diffeomorphic to U(n). In the sequel, we use the
same techniques as in the case of classical Lagrangian subspaces of K2n to define a
geometric structure for the set of complex Lagrangian subspaces by means of certain
self-adjoint projectors of C2n. First, we introduce the Lie-group

Ŝp(2n,C) = {Θ ∈ GL2n(C) | ΘJΘ† = J},
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and call it the complex symplectic group. Its Lie-algebra is

ŝp(2n,C) = {X ∈ gl2n(C) | JX = −X†J}.

and we call it the space of complex Hamiltonian matrix. The block-structure of Θ ∈
Ŝp(n) and X ∈ ŝp(2n,C) is

Θ =
[

Q R

−R Q

]
, X =

[
A B

C −A†

]
, (3.33)

where Q,R,A,B,C ∈ Cn×n, with B† = B and C† = C. Thus, the space of complex
Hamiltonian matrices is a real vector space of dimension 4n2. The compact complex
symplectic group is the Lie-group

Ŝp(n) = SU2n ∩ Ŝp(2n,C) = {Θ ∈ SU2n | ΘJΘ† = J}

with Lie-algebra
ŝp(n) = {X ∈ su2n | XJ = JX}.

The matrices Θ ∈ Ŝp(n) and X ∈ ŝp(n) have the following block structure

Θ =
[

Q R

−R Q

]
, X =

[
A B

−B A

]
, (3.34)

where Q,R,A,B,C ∈ Cn×n, with A† = −A and B† = B.
Next, we prove that complex Lagrangian subspaces can be represented by self-

adjoint projectors of C2n with some properties.

Proposition 3.3.3 There is a one-to-one correspondence between the set of complex
Lagrangian subspaces W ⊂ C2n and the set of all self-adjoint projectors P of C2n of
rank-n which satisfy PJP = 0.

Proof. First we show that, for every self-adjoint projector P ∈ C2n×2n of rank n with
PJP = 0, the subspace ImP is a Lagrangian subspace. Since dimC ImP = rankP = n,
we have to prove only that ImP is an isotropic subspace, i.e.

u†Jv = 0, for all u, v ∈ ImP.

From PJP = 0, for u = Px, v = Py, it follows that u†Jv = x†PJPy = 0, for all
x, y ∈ C2n. Second, we show that for every complex Lagrangian subspace W ⊂ C2n

there exists a self-adjoint projector P ∈ C2n×sn with PJP = 0 such that W = ImP.
There exists a rank n self-adjoint projector P of C2n such that W = ImP . Hence, it
remains to show that PJP = 0. Since W = Wω it follows that

u†Jv = 0, for all u, v ∈ ImP

and thus, x†PJPy = 0, for all x, y ∈ C2n. Hence, PJP = 0. �
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We denote with L̂G(n) the set of all complex Lagrangian subspaces of C2n and call it
the complex Lagrange-Grassmannian, i.e.

L̂G(n) := {P ∈ C2n×2n | P † = P, P = P 2, trP = n, PJP = 0}.

In the subsequent statement we show that L̂G(n) is indeed a manifold.

Theorem 3.3.4 The complex Lagrange-Grassmannian L̂G(n) is a smooth, compact
and connected real submanifold of the Grassmann manifold GrC(n, 2n) and has dimen-
sion n2.

Proof. The manifold L̂G(n) is given as the orbit of the standard projector Π of C2n

with respect to the group action

σ : Ŝp(n) × GrC(n, 2n) → GrC(n, 2n), (Θ,Π) 7→ Θ†ΠΘ.

�

The tangent space of L̂G(n) at P is given by

TP L̂G(n) = {[P,Ω] | Ω ∈ ŝp(n)}

and each P ∈ L̂G(n) and ξ ∈ TP L̂G(n) can be represented as

P = Θ†
[
In 0
0 0

]
Θ, ξ = Θ†

[
0 Z
Z 0

]
Θ, (3.35)

with Θ ∈ Ŝp(n) and Z ∈ hern. The tangent vectors of L̂G(n) at P can be obtained
from the tangent vectors in TP GrC(n, 2n) with the following projection

π̂P : TP GrC(n, 2n) → TP GrC(n, 2n), ξ 7→ ξ + JξJ

2
. (3.36)

Since L̂G(n) is generated by the action of a subgroup of SU(n) on the complex Grass-
mannian, it follows that the geodesics, the exponential map and the parallel transport
are the restrictions of the same objects from the Grassmannian GrC(n, 2n). In the same
way as for the classical real Lagrange-Grassmannians it can be shown that also the QR-
coordinates and the Cayley-coordinates on L̂G(n) are restrictions of the QR-coordinates
and Cayley-coordinates, respectively, from the Grassmann manifold GrC(n, 2n).

3.4 Riemannian structure of the tensor product of Lagrange-
Grassmannians

In this section, we extend the classical Lagrange-Grassmannians LGK(n) and the com-
plex Lagrange-Grassmannian L̂G(n) to a tensor product of Lagrange-Grassmannians
and complex Lagrange-Grassmannians, respectively. We will prove that these tensor
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products are smooth and compact manifolds. Furthermore, we specify an isometry
with the direct product of Lagrange-Grassmannians.

Let J1, . . . , Jr denote the standard symplectic forms (3.26) on K2n1 , . . . ,K2nr re-
spectively. For simplicity we use the following notations:

N := 2n1 · · · 2nr, n := (n1, . . . , nr), (n,2n) := ((n1, 2n1), . . . , (nr, 2nr)). (3.37)

If r is odd then, the skew-symmetric nondegenerate matrix J1 ⊗ · · · ⊗ Jr defines a
symplectic bilinear form on KN ∼= K2n1 ⊗ · · · ⊗ K2nr as

ω : KN × KN → R, ω(x, y) = x⊤(J1 ⊗ · · · ⊗ Jr)y. (3.38)

If J denotes the standard symplectic form on KN , then there exists a permutation
matrix Γ ∈ KN×N such that

J = Γ(J1 ⊗ · · · ⊗ Jr)Γ⊤. (3.39)

If r is even, then J1 ⊗ · · · ⊗ Jr is symmetric and hence it does no longer define a
symplectic bilinear form on KN . Thus, from now on, when discussing about symplectic
spaces, we will consider r odd.

If P1 ∈ LGK(n1), . . . , Pr ∈ LGK(nr) are orthogonal projectors corresponding to
Lagrangian subspaces W1, . . . ,Wr in K2n1 , . . . ,K2nr , then, the Kronecker product P1 ⊗
· · · ⊗Pr is an orthogonal projector that corresponds to an isotropic subspace W of KN .
From the rank of P1 ⊗ · · · ⊗ Pr it is evident that W is not a Lagrangian subspace of
KN nor with respect to J1 ⊗ · · · ⊗ Jr, nor with J . We introduce the following notion.

Definition 3.4.1 A subspace W ⊂ KN is decomposable Lagrangian subspace of KN

if it is the image of a projector of the form P1 ⊗ · · · ⊗ Pr with Pj ∈ LGK(nj), for
j = 1, . . . , r.

We show that the set of all decomposable Lagrangian subspaces of KN that we call
r−fold tensor product of Lagrange-Grassmannians

LG⊗
K(n) := {P1 ⊗ · · · ⊗ Pr | Pj ∈ LGK(nj), j = 1, . . . , r} (3.40)

has a manifold structure. In fact LG⊗
K(n) is a Riemannian submanifold of Gr⊗

K(n,2n).
The Riemannian metric on LG⊗

R (n) and LG⊗
C (n) is induced by the inner product (3.17)

and (3.6) on sym2n1 ⊗ · · · ⊗ sym2nr
and herN , respectively.

Theorem 3.4.2 The r−fold tensor product of Lagrange-Grassmannians LG⊗
K(n) is a

smooth and compact submanifold of Gr⊗
K(n,2n) with

dim LG⊗
R (n) =

r∑
i=1

ni(ni + 1)
2

and dimR LG⊗
C (n) =

r∑
i=1

ni(ni + 1). (3.41)

Moreover, the map

φ : LG×
K(n) → LG⊗

K(n), (X1, . . . , Xr) 7→ X1 ⊗ · · · ⊗Xr,

defines a global Riemannian isometry.
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Proof. The map

φ̃ : Gr×
K(n,2n) → Gr⊗

K(n,2n), (P1, . . . , Pr) 7→ P1 ⊗ · · · ⊗ Pr

is injective, it follows that also its restriction to the set LG×
K(n) remains injective. More-

over, the Lagrange-Grassmannians LGK(nj) are compact manifolds and also αjPj /∈
TPj LGK(nj), for all 1 ̸= α ∈ K and all j = 1, . . . , r. From Corollary 2.2.13 it follows
that LG⊗

K(n) is a submanifold of Gr⊗
K(n,2n). Since φ̃ is a Riemannian global isometry,

then φ as well is a global isometry. The dimension of LG⊗
K(n) is equal to the dimension

of LG×
K(n). �

For r odd, we define the symplectic sesquilinear form

ω̂ : CN × C2n → C, ω̂(x, y) = x†(J1 ⊗ · · · ⊗ Jr)y.

A subspace W ⊂ CN is decomposable complex Lagrangian subspace if it is the image of
of a projector of the form P1 ⊗ · · · ⊗ Pr with Pj ∈ L̂G(nj), for j = 1, . . . , r.

Analogous to the r-fold tensor product of classical Lagrange-Grassmannians, we
show that the set of all decomposable complex Lagrangian subspaces of C2n, called the
r-fold tensor product of complex Lagrange-Grassmannians

L̂G
⊗

(n) := {P1 ⊗ · · · ⊗ Pr | Pj ∈ L̂Gnj , j = 1, . . . , r}

is a submanifold of Gr⊗
C (n,2n). Moreover, L̂G

⊗
(n) is isometric to the r-fold direct

product of complex Lagrange-Grassmannians

L̂G
×

(n) := {(P1, . . . , Pr) | Pj ∈ L̂Gnj , j = 1, . . . , r}.

Theorem 3.4.3 The set L̂G
⊗

(n) is a smooth and compact real submanifold of Gr⊗
C (n,2n)

of dimension

dim L̂G
⊗

(n) =
r∑

i=1
n2

i .

Moreover, the map

φ : L̂G
×

(n) → L̂G
⊗

(n) , (P1, . . . , Pr) 7→ P1 ⊗ · · · ⊗ Pr

describes a Riemannian isometry between L̂G
⊗

(n) and L̂G
×

(n).

The proof is similar to the proof of Theorem 3.4.2.
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Chapter 4

Generalized Rayleigh-quotient on
Grassmannians

Several applications in signal processing, data compression, quantum computing, image
processing, etc., have a natural description as optimization tasks on the tensor product
of Grassmannians. In particular, we show that a certain generalization of the classi-
cal Rayleigh-quotient map relates to important optimization problems from numerical
linear algebra, which will be detailed in section 4.2. The isometry between the r-fold
tensor product of Grassmannians and the direct product of Grassmannians enables
to formulate any optimization task on the tensor product equivalently on the direct
product of Grassmannians.

The structure of this chapter is as follows: Section 4.1 is dedicated to the problem of
optimizing the generalized Rayleigh-quotient ρA, including a detailed discussion on the
computation of its Riemannian gradient and its Hessian, as well as necessary conditions
for the nondegeneracy of its critical points. Moreover, we make an analogy to the
classcial Rayleigh-quotient and show by some examples, that unlike the classical case,
the generalized Rayleigh-quotient has also local optima.

In section 4.2, we discuss in detail several applications for the optimization task of
the generalized Rayleigh-quotient: (i) the best approximation of a tensor with a tensor
of lower rank from signal processing, statistics, and pattern recognition [50, 66]; (ii) the
Euclidean entanglement measure from quantum computation [15, 56]; (iii) a "chicken-
and-egg" problem in computer vision, namely the problem of determining subspaces
from noisy data [73]; (iv) a combinatorial problem, which is a generalization of the
well-known Brockett matching problems [10].

Using techniques from the transversality theory, we prove in section 4.3 that, the
critical points of the generalized Rayleigh-quotient ρA are nondegenerate when the
parameter A is taken generically in the space of Hermitian matrices. Furthermore, we
extend the result to handle also situations when one would like to exclude some of the
critical points from the genericity quest. Such a problem is encountered in applications
from computer vision, signal processing, image processing, quantum information, which
can be expressed as optimizations of ρA, where A is only from a thin subset of the space
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of Hermitian matrices.
The optimization of the generalized Rayleigh-quotient of semi-positive matrices is

the topic of section 4.4. An important result in this section underlies a particular prop-
erty of the Hessian of ρA for A semi-positive definite, and is given in Theorem 4.4.2.
An immediate corollary of Theorem 4.4.2 states necessary conditions for the nondegen-
eracy of the critical points of ρA. Moreover, we compute a lower bound for the rank of
the parameters, such that the critical points of the generalized Rayleigh-quotient are
generically nondegenerate. Another key point of section 4.4 concerns the critical points
of ρA when A is semi-positive definite and of rank-1, i.e. problems (i) and (ii). The
result stated in Theorem 4.4.10 says that the critical points of the generalized Rayleigh-
quotient satisfying a certain property are generically nondegenerate, and in particular,
the global maximizers are generically nondegenerate. As a consequence of Theorem
4.4.10, for problem (ii) we have a complete characterization, i.e. the critical points
except the global minimizers are generically nondegenerate and the global minimizers
are always degenerate.

4.1 The generalized Rayleigh-quotient
In this section, we introduce the central task of our work, i.e. the optimization of a
generalization of the classical Rayleigh-quotient on the r-fold tensor product of Grass-
mannians. We motivate our optimization task by the large area of applications and
stress its difficulty by pointing out crucial differences to the optimization of the classical
Rayleigh-quotient.

Let Gr⊗(m,n) be the r−fold tensor product of Grassmannians with (m,n) as in
(3.16) and let A ∈ herN , N = n1n2 · · ·nr,M = m1m2 · · ·mr. In the following, we
analyze the constrained optimization problem

max
P∈Gr⊗(m,n)

tr(AP). (4.1)

For this purpose, we define the generalized Rayleigh-quotient of a matrix A as

ρA : Gr⊗(m,n) → R, P 7→ tr(AP). (4.2)

We justify the term “generalized Rayleigh-quotient" for the map (4.2) by pointing out
that for only one Grassmannian in the tensor product we obtain the classical Rayleigh-
quotient ρA(P ) = tr(AP ), P ∈ Gr(m,n). The generalized Rayleigh-quotient can also be
regarded as the restriction of the classical Rayleigh-quotient on Gr(M,N) to the subset
Gr⊗(m,n). In the sequel, we discuss about the similarities and differences between the
generalized and the classical Rayleigh-quotient.

Since Gr⊗(m,n) is a compact manifold, it follows that the optimization problem
(4.1) is well-defined and

max
P∈Gr⊗(m,n)

tr(AP) ≤ max
P∈Gr(M,N)

tr(AP). (4.3)

The next example will show that the inequality (4.3) can be strict.
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Example 4.1.1 We take a matrix A ∈ her8 of the form A = diag(1 2 3 7 8 4 5 6). We
want to compare the maximal value of tr(AP) on Gr(2, 8) with the maximal value of
tr(AP) on Gr(2, 4) ⊗ Gr(1, 2). It is know that

max
P∈Gr(2,8)

tr(AP) = 7 + 8.

Hence, there exists P = diag(0 0 0 1 1 0 0 0) ∈ Gr(2, 8) such that ρA(P) = 15. However,
there exist no matrices of the form P1 = diag(1 1 0 0) and P2 = diag(1 0) and any
possible permutation of the 0s and 1s in P1 and P2, such that P = P1 ⊗ P2. Thus, the
maximal value of the generalized Rayleigh-quotient is strictly smaller than 15.

It is well known that under the assumption that there is a spectral gap between
the eigenvalues of A ∈ herN , there is a unique maximizer and a unique minimizer
of the classical Rayleigh-quotient of A. Unfortunately, this is no longer the case for
the generalized Rayleigh-quotient ρA. Global maximizers and global minimizers exist
since the generalized Rayleigh-quotient is defined on a compact manifold, but unlike
the classical case, it admits also local extrema as we will show in the next example.
Because we do not want to enter into too many details in order to be able to give the
example, we have to clarify first some relations between the objects we work with.

Problem (4.1) comprises problems from different areas, such as multilinear low-rank
approximations of a tensor, geometric measures of entanglement, subspace clustering
and combinatorial optimization. These applications are naturally stated on a tensor
product space. However, for the special case of the Grassmannian they can be refor-
mulated on a direct product space. By abuse of notation we will define the map

ρA : Gr×(m,n) → R, ρA(P1, . . . , Pr) := tr
(
A(P1 ⊗ · · · ⊗ Pr)

)
(4.4)

and call it as well the generalized Rayleigh-quotient of A. From now on, whenever we
discuss about the generalized Rayleigh-quotient, we have in mind the map (4.4). Based
on the isometry (3.21) between Gr⊗(m,n) and Gr×(m,n), the optimization problem
(4.1) has the equivalent statement

max
(P1,...,Pr)∈Gr×(m,n)

ρA(P1, . . . , Pr). (4.5)

Now, we can give our example to prove that the generalized Rayleigh-quotient has
also local extrema. For the case when A is of rank-1 we refer to Example 3 in [51].

Example 4.1.2 Let A = diag(λ1, λ2, λ3, λ4) ∈ her4 be a diagonal matrix with λ2 >
λ3 > λ4 > λ1 and P ∗

1 , P
∗
2 ∈ Gr1,2 of the form

P ∗
1 =

[
1 0
0 0

]
and P ∗

2 =
[

0 0
0 1

]
.

The maximum of ρA is obvious less or equal to λ2. Since ρA(P ∗
1 , P

∗
2 ) = λ2, we have

(P ∗
1 , P

∗
2 ) as the global maximizer of ρA. From (4.13) it follows that all (P1, P2) ∈
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Gr(1, 2) × Gr(1, 2) with P1 and P2 diagonal, are critical points of ρA. In particular
(P ∗

2 , P
∗
1 ) is a critical point of ρA with ρA(P ∗

2 , P
∗
1 ) = λ3 < λ2. Moreover, one can check

by computing the Hessian of ρA at (P ∗
2 , P

∗
1 ) , see (4.19), that (P ∗

2 , P
∗
1 ) is actually a

local maximizer of ρA.
This implies that the generalized Rayleigh-quotient has local extrema, unlike the classical
Rayleigh-quotient. This is a result of the fact that not all 4 × 4 permutation matrices
are of the form Θ1 ⊗ Θ2, with Θ1, Θ2 ∈ SU(2).

While for the classical Rayleigh-quotient one knows that the maximizer and mini-
mizer are orthogonal projectors onto the space spanned by the eigenvectors correspond-
ing to the largest and smallest eigenvalues of A, respectively, it is difficult to provide
an analog characterization for the global extrema of the generalized Rayleigh-quotient
for an arbitrary matrix A. Hence, in what follows, we give a detailed description of the
fundamental geometric objects necessary to develop Riemannian algorithms to tackle
the optimization problem (4.5).

4.1.1 Riemannian optimization of the generalized Rayleigh-quotient

In this section we derive clear expressions for the gradient and the Hessian of the
generalized Rayleigh-quotient of a matrix A ∈ herN on Gr×(m,n). Thus, in the fol-
lowing lemma we establish multilinear maps ΨA,j , which will help us to achieve this
purpose. As before, (m,n) stands for the multi-index ((m1, n1), . . . , (mr, nr)) and
N = n1n2 · · ·nr.

Lemma 4.1.3 Let A ∈ CN×N and (X1, . . . , Xr) ∈ Cn1×n1 × · · · × Cnr×nr . Then, for
all j = 1, . . . , r there exists a unique map ΨA,j : Cn1×n1 × · · · × Cnr×nr → Cnj×nj such
that

tr
(
A†(X1 ⊗ · · · ⊗XjZ

† ⊗ · · · ⊗Xr)
)

= tr
(
ΨA,j(X1, . . . , Xr)†Z

)
(4.6)

holds for all Z ∈ Cnj×nj . In particular, one has

tr
(
A†(X1 ⊗ · · · ⊗Xr)

)
= tr

(
ΨA,1(In1 , X2, . . . , Xr)†X1

)
= · · · = tr

(
ΨA,r(X1, . . . , Xr−1, Inr )†Xr

)
.

(4.7)

Moreover, for A := A1 ⊗ · · · ⊗Ar the maps ΨA,j exhibit the explicit form

ΨA,j(X1, . . . , Xr) =
(

r∏
k=1, k ̸=j

tr(X†
kAk)

)
Aj . (4.8)

Proof. Fix j and consider the linear functional

Z 7→ λA(Z) := tr
(
A†(X1 ⊗ · · · ⊗XjZ ⊗ · · · ⊗Xr)

)
.
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By the Riesz representation theorem, there exists a unique Bj ∈ Cnj×nj such that
λA(Z) = tr

(
B†

jZ
)

for all Z ∈ Cnj×nj . Therefore, the map ΨA,j is given by
(X1, . . . , Xr) 7→ ΨA,j(X1, . . . , Xr) := Bj . It is straightforward to show that ΨA,j is
multilinear in X1, . . . , Xr. Now, choosing Z := Xj and Xj := Inj in (4.6) immediately
yields (4.7). Moreover, (4.8) follows from the trace equality

tr
(
A†

1X1 ⊗ · · · ⊗A†
jXjZ ⊗ · · · ⊗A†

rXr
)

=
( r∏

k=1, k ̸=j

tr(A†
kXk)

)
tr(A†

jXjZ).

Thus the proof of Lemma 4.1.3 is complete. �

Remark 4.1.4 The linear maps ΨA,j constructed in the above proof are almost iden-
tical to the so-called partial trace operators — a well-known concept from multilinear
algebra and quantum mechanics (see [7]).

Next, we show how to compute ΨA,j(X1, . . . , Xr) for given (X1, . . . , Xr) ∈ Cn1×n1 ×
· · · × Cnr×nr if A is not a pure tensor product A1 ⊗ · · · ⊗Ar.

Lemma 4.1.5 Let A ∈ CN×N and (X1, . . . , Xr) ∈ Cn1×n1 × · · · × Cnr×nr . Then, the
(s, t)-entry of ΨA,j(X1, . . . , Xr) ∈ Cnj×nj is given by

nl∑
iq=1, q ̸=j
q=1,...,r

(e⊤
i1 ⊗ · · · ⊗ e⊤

s ⊗ · · · ⊗ e⊤
ir

)A†(X1 ⊗ · · · ⊗Xr)(ei1 ⊗ · · · ⊗ et ⊗ · · · ⊗ eir ), (4.9)

where {et}nl
t=1 denotes the standard basis of Cnl.

Proof. Let 1 ≤ s, t ≤ nj . Then, the element in the (s, t) position of the transpose
conjugate of the matrix ΨA,j(X1, . . . , Xr) is given by

e⊤
t (ΨA,j(X1, . . . , Xr))†es = tr

(
ΨA,j(X1, . . . , Xr)†ese⊤

t

)
= tr

(
A†(X1 ⊗ · · · ⊗Xjese⊤

t ⊗ · · · ⊗Xr)
)

= tr
(
A†(X1 ⊗ · · · ⊗Xr)(Ik1 ⊗ · · · ⊗ ese⊤

t ⊗ · · · ⊗ Ikr )
)
.

Hence, (4.9) follows from the identity Inq =
nq∑

iq=1
eiq e⊤

iq
. �

A useful property of the multilinear map ΨA,j is given in what follows.

Lemma 4.1.6 Let A ∈ herN and (X1, . . . , Xr) ∈ hern1 × · · · × hernr
. Then,

ΨA,j(X1, . . . , Inj , . . . , Xr)

is a Hermitian matrix for all j = 1, . . . , r.
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Proof. The result is a straightforward consequence of the identity

tr
(
A(X1 ⊗ · · · ⊗ Z ⊗ · · · ⊗Xr)

)†
= tr

(
A(X1 ⊗ · · · ⊗ Z† ⊗ · · · ⊗Xr)

)
, (4.10)

for all Z ∈ Cnj×nj . �

Now, we can give an explicit formula for the Riemannian gradient of ρA and derive
necessary and sufficient critical point conditions for it. For simplicity of writing, when-
ever (P1, . . . , Pr) ∈ Gr×(m,n) is understood from the context, we use the following
shortcut

Âj := ΨA,j(P1, . . . , Inj , . . . , Pr). (4.11)

Theorem 4.1.7 Let A ∈ herN , P := (P1, . . . , Pr) ∈ Gr×(m,n) and let ρA be the
generalized Rayleigh-quotient on Gr×r(m,n). Then, one has the following:

(i) The gradient of ρA at P with respect to the Riemannian metric (3.19) is

gradρA(P ) =
(
ad2

P1Â1, . . . , ad2
Pr
Âr

)
. (4.12)

(ii) The critical points of ρA on Gr×(m,n) are characterized by

[Pj , Âj ] = 0, (4.13)

for j = 1, . . . , r, i.e. Pj is the orthogonal projector onto an mj−dimensional invariant
subspace of Âj.

Proof. (i) Fix P := (P1, . . . , Pr) ∈ Gr×(m,n) and let ρ̃A denote the canonical smooth
extension of ρA to hern1 × · · · × hernr

. Then,

Dρ̃A(P )(X) =
r∑

j=1
tr
(
A(P1 ⊗ · · · ⊗Xj ⊗ · · · ⊗ Pr)

)
=

r∑
j=1

tr(ÂjXj),

for all X := (X1, . . . , Xr) ∈ hern1 ×· · ·×hernr
. From (3.19), we obtain that the gradient

of ρ̃A at P is given by
∇ρ̃A(P ) = (Â1, . . . , Âr).

Thus, according to (3.7) and (2.9),

grad ρA(P ) =
(
ad2

P1Â1, . . . , ad2
Pr
Âr

)
.

(ii) P := (P1, . . . , Pr) ∈ Gr×(m,n) is a critical point of ρA if and only if

grad ρA(P ) = 0.
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This is equivalent to
Pj [Pj , Âj ] = [Pj , Âj ]Pj , (4.14)

for all j = 1, . . . , r. By multiplying (4.14) once from the left with Pj and once from
the right with Pj , we obtain that PjÂj = PjÂjPj and ÂjPj = PjÂjPj . Hence, the
conclusion [Pj , Âj ] = 0 holds for all j = 1, . . . , r. �

As a consequence of Theorem 4.1.7, we obtain the following necessary and sufficient
critical point condition.

Corollary 4.1.8 Let A ∈ herN , P := (P1, . . . , Pr) ∈ Gr×(m,n) and let Θj ∈ SU(nj)
be such that ΘjPjΘ†

j = Πj , where Πj is the standard projector in Grmj ,nj . We write

ΘjÂjΘ†
j =

 Ψ′
j Ψ′′′

j

Ψ′′′†
j Ψ′′

j

 , (4.15)

with Ψ′
j ∈ hermj

, Ψ′′
j ∈ hernj−mj

, and Ψ′′′
j ∈ Cmj×(nj−mj). Then, P is a critical point

of ρA if and only if
Ψ′′′

j = 0, (4.16)

for all j = 1, . . . , r. Moreover, for any P ∈ Gr×(m,n) the following holds

tr(Ψ′
1) = · · · = tr(Ψ′

r) = ρA(P ). (4.17)

In the case when A ∈ herN can be diagonalized by elements in

SU(n) = {Θ1 ⊗ · · · ⊗ Θr | Θj ∈ SU(nj), j = 1, . . . , r}, (4.18)

it is possible to give an explicit characterization of the critical points of ρA. We can
assume without loss of generality that A is diagonal and distinguish two possibilities:

(1) A can be written as Λ1 ⊗ · · · ⊗ Λr, with Λj diagonal;

(2) A cannot be written as a Kronecker product of diagonal matrices

The first case arises when A = A1 ⊗ · · · ⊗ Ar, Aj ∈ hernj
, and in this instance, the

generalized Rayleigh-quotient becomes a product of r decoupled classical Rayleigh-
quotients with one maximizer and one minimizer. However, there is a dramatic change
if A cannot be written as a Kronecker product of diagonal matrices. This situation
is encountered in Example 4.1.2 and the conclusion is that the generalized Rayleigh–
qutient has also local extrema. Next, we give a sufficient critical point condition for
the case when the matrix A is diagonal. Before that, we underlie a property of the
Kronecker product that will be used to prove the mentioned critical point condition.

Lemma 4.1.9 Let X1 ∈ Cn1×n1 \ {0}, . . . , Xr ∈ Cnr×nr \ {0}. Then, X1 ⊗ · · · ⊗Xr is
diagonal if and only if X1, . . . , Xr are diagonal.
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Proof. The proof follows by induction over r. For r = 1 the conclusion is obvious.
Assume that the conclusion of the lemma holds for r and we show it for r + 1. Then,
from (X1 ⊗ · · · ⊗Xr) ⊗Xr+1 diagonal with Xr+1 ̸= 0, it follows that X1 ⊗ · · · ⊗Xr and
Xr+1 are diagonal. From the previous induction step we know that X1, . . . , Xr are also
diagonal and hence the proof. �

Corollary 4.1.10 Let A ∈ herN be diagonal. Then, (P1, . . . , Pr) ∈ Gr×r(m,n) with
Pj any permutation of the standard projector Πj , for j = 1, . . . , r, is a critical point of
ρA.

Proof. If D ∈ herN is diagonal, then

tr(D(X1 ⊗ · · · ⊗Xr)) = tr(D diag(X1 ⊗ · · · ⊗Xr)).

Moreover, from Lemma 4.1.9 it follows that X1 ⊗ · · · ⊗Xr ̸= 0 is diagonal if and only
if X1 ∈ hern1 \ {0}, . . . , Xr ∈ hernr

\ {0} are diagonal. Let P1, . . . , Pr be permutations
of the standard projectors, i.e. diagonal. Since A is diagonal, it follows that Â1, . . . , Âr

are diagoanl and hence,
[Pj , Âj ] = 0,

for j = 1, . . . , r. The conclusion follows from Theorem 4.1.7. �

For the rest of this section we are concerned with the computation of the Riemannian
Hessian of ρA and give also necessary conditions for its nondegeneracy at critical points.

Theorem 4.1.11 Let A ∈ herN and P := (P1, . . . , Pr) ∈ Gr×(m,n). Then, the Rie-
mannian Hessian of ρA at P is the unique self-adjoint operator

HρA(P ) : TP Gr×r(m,n) → TP Gr×r(m,n),

ξ := (ξ1, . . . , ξr) 7→ HρA(P )(ξ) :=
(
H1(ξ), . . . ,Hr(ξ)

)
,

(4.19)

defined by

Hj(ξ) := −adPj ad
Âj
ξj +

r∑
k=1,k ̸=j

ad2
Pj

ΨA,j(P1, . . . , Inj , . . . , ξk, . . . , Pr), (4.20)

where Âj := ΨA,j(P1, . . . , Inj , . . . , Pr).

Proof. Let (X̃1, . . . , X̃r) denote a smooth extension of gradρA to hern1 × · · · × hernr
.

According to (4.12), we can choose

P 7→ X̃j(P ) = ad2
Pj
Âj .
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Then,
DX̃j(P )(X) = adXj adPj Âj + adPj adXj Âj

+
r∑

k=1,k ̸=j
ad2

Pj
ΨA,j(P1, . . . , Inj , . . . , Xk, . . . , Pr),

for all P := (P1, . . . , Pr) and X := (X1, . . . , Xr) in hern1 × · · · × hernr
. Notice that

the derivative of the linear map Pk 7→ ΨA,j(P1, · · · , Inj , . . . , Pk, . . . , Pr) in direction
Xk ∈ hernk

(k ̸= j) is ΨA,j(P1, . . . , Inj , . . . , Xk, . . . , Pr). Applying (3.7) and (2.9), the
Riemannian Hessian of ρA at P ∈ Gr×(m,n) is given by

Hj(ξ) = −adPj ad
Âj
ξj +

r∑
k=1,k ̸=j

ad2
Pj

ΨA,j(P1, . . . , Inj , . . . , ξk, . . . , Pr),

for all ξ := (ξ1, . . . , ξr) ∈ TP Gr×r(m,n). Here, we have used the following two facts:
(i) Clearly, ad

Âj
ξj is skew-hermitian and hence

−adPj ad
Âj
ξj = adPj adξj

Âj

is in the tangent space TPj Grmj ,nj for all ξj ∈ TPj Grmj ,nj .

(ii) A straightforward computation shows that adξj
adPj Âj is in the orthogonal comple-

ment of TPj Grmj ,nj and hence

ad2
Pj

adξj
adPj Âj = 0

for all ξj ∈ TPj Grmj ,nj . �

Recall from [32] that for the classical Rayleigh-quotient, the Hessian of ρA at P ∈ Grm,n

is nondegenerate if and only if the Sylvester equation

Ψ′Z − ZΨ′′ = 0

has only the trivial solution 0 = Z ∈ Cm×(n−m). The matrices Ψ′ and Ψ′′ are defined in
(4.15) by taking into account that r = 1. Exploiting this fact, in the case of the gener-
alized Rayleigh-quotient we obtain only a necessary condition for the nondegeneracy of
the Hessian in a local maximizer or a local minimizer, as the next theorem will prove.

Theorem 4.1.12 Let A ∈ herN , and P ∈ Gr×r(m,n) be a local maximizer (local
minimizer) of ρA. If HρA(P ) is nondegenerate, then for all j = 1, . . . , r the equality

σ(Ψ′
j) ∩ σ(Ψ′′

j ) = ∅, (4.21)

holds with Ψ′
j and Ψ′′

j as in (4.15). Here, σ(X) denotes the spectrum of X.
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Proof. Let P := (P1, . . . , Pr) ∈ Gr×(m,n) be a local maximizer of ρA. Since HρA(P ) is
nondegenerate it follows that is negative definite and hence, Hj restricted to {(0, . . . , ξj , . . . , 0) | ξj ∈
TPj Grmj ,nj } is negative definite. Hence

Hj(0, . . . , ξj , . . . , 0) ̸= 0,

for all 0 ̸= ξj ∈ TPj Grmj ,nj and j = 1, . . . , r. From (4.20) it follows that

adPj ad
Âj
ξj ̸= 0, (4.22)

for all 0 ̸= ξj ∈ TPj Grmj ,nj . Now, according to Corollary 4.1.8, there exists Θj ∈ SU(nj)
for all j = 1, . . . , r such that Pj = Θ†

jΠjΘj and

ΘjÂjΘ†
j =

[ Ψ′
j 0

0 Ψ′′
j

]
, Ψ′

j ∈ hermj
, Ψ′′

j ∈ hernj−mj
.

Hence, from (3.31) it follows that (4.22) is equivalent to the fact that the Sylvester
equation

Ψ′
jZj − ZjΨ′′

j = 0 (4.23)

has only the trivial solution 0 = Zj ∈ Cmj×(nj−mj), for all j = 1, . . . , r. This, in turn,
is well-known to hold if and only if the intersection of the spectra of Ψ′

j and Ψ′′
j is

empty. �

Remark 4.1.13 If A ∈ herN can be diagonalized by elements in SU(n), then condition
(4.21) is also sufficient for the nondegeneracy of the Hessian of ρA at local extrema. In
this situation the Hessian of ρA at critical points is block-diagonal.

4.2 Applications of the generalized Rayleigh-quotient
There is a wide range of applications for problem (4.5) in areas such as signal processing,
computer vision and quantum information. We illustrate the broad potential of (4.5)
by four examples.

4.2.1 Best multilinear rank-(m1, . . . , mr) tensor approximation

The problem of best approximation of a tensor by a tensor of lower rank is important in
areas such as statistics, signal processing and pattern recognition. Unlike in the matrix
case, there are several rank concepts for a higher order tensor, [47, 51, 66]. For the
scope of this paper, we focus on the multilinear rank case.

A finite dimensional complex tensor A of order r is an element of a tensor product
V1 ⊗ · · · ⊗ Vr, where V1, . . . , Vr are complex vector spaces with dim Vj = nj . Such
an element can have various representations, a common one is the description as an
r−way array, i.e. after a choice of bases for V1, . . . , Vr, the tensor A is identified with
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[ai1...ir ]n1,...,nr
i1=1,...,ir=1 ∈ Cn1×n2×···×nr , see e.g. [66]. The j−th way of the array is referred

to as the j−th mode of A. A matrix X ∈ Cqj×nj acts on a tensor A ∈ Cn1×n2×···×nr

via mode−j multiplication ×j and the result is a tensor in Cn1×···×qj×···×nr , i.e.

(A ×j X)i1...ij−1k1ij+1...ir =
nj∑

k2=1
ai1...ij−1k2ij+1...irxk1k2 , (4.24)

cf. [50, 66]. Moreover, given A ∈ Cn1×n2×···×nr , X ∈ Cqj×nj and Y ∈ Cqk×nk , from
(4.24) one has

A ×j X ×k Y = (A ×j X) ×k Y = (A ×k Y ) ×j X. (4.25)

It is always possible to rearrange the elements of A along one or, more general,
several modes such that they form a matrix. Let l1, . . . , lq and c1, . . . , cp be ordered
subsets of 1, . . . , r such that {l1, . . . , lq} ∪ {c1, . . . , cp} = {1, . . . , r}. Moreover, consider
the products Nk := nlk+1 · · ·nlq , N

′
k := nck+1 · · ·ncp , for k = 0, . . . , q − 1 and k =

0, . . . , p− 1, respectively. Then, the matrix unfolding of A along (l1, . . . , lq) is a matrix
A(l1,...,lq) of size N0 × N ′

0 such that the element in position (i1, . . . , ir) of A moves to
position (s, t) in A(l1,...,lq), where

s := ilq +
q−1∑
k=1

(ilk − 1)Nk and t := icp +
p−1∑
k=1

(ick
− 1)N ′

k. (4.26)

As an example, for a third order tensor A ∈ C2×2×2 we obtain the following matrix
unfoldings as in [50]

A(1) =
[
a111 a112 a121 a122
a211 a212 a221 a222

]
, A(2) =

[
a111 a112 a211 a212
a121 a122 a221 a222

]
,

A(3) =
[
a111 a121 a211 a221
a112 a122 a212 a222

]
.

The multilinear rank of A ∈ Cn1×···×nr is the r−tuple (m1, . . . ,mr) such that

m1 = rank A(1) , . . . , mr = rank A(r). (4.27)

To refer to the multilinear rank of A we will use the notation rank-(m1, . . . ,mr) or
rank A = (m1, . . . ,mr). Given a tensor A ∈ Cn1×···×nr , we are interested in finding the
best rank-(m1, . . . ,mr) approximation of A (assuming that A has rank greater or equal
to (m1, . . . ,mr)), i.e.

min
rank(B)≤(m1,...,mr)

∥A − B∥. (4.28)

Here, ∥A∥ is the Frobenius norm of a tensor, i.e. ∥A∥2 = ⟨A,A⟩ with

⟨A,B⟩ = vec(A)†vec(B) =
n1,...,nr∑

i1,...,ir=1
āi1...irbi1...ir . (4.29)



56 4.Generalized Rayleigh-quotient on Grassmannians

Here, vec(A) refers to the matrix unfolding A(1,...,r) ∈ CN×1.
In the matrix case, the solution of the optimization problem (4.28) is given by a trun-
cated SVD, cf. Eckart-Young theorem [18]. What would be a good generalization of
the singular value decomposition such that one could formulate a similar Eckart-Young
result for higher order tensors? There are several types of decompositions for ten-
sors available in the literature, see [11, 50, 71], however, there is no equivalent of the
Eckart-Young theorem for the higher-order case.
According to the Tucker decomposition [71] or its generalization, the higher order sin-
gular value decomposition (HOSVD) [50], any rank-(m1, . . . ,mr) tensor can be written
as a product of a core tensor S and r Stiefel matrices X1 ∈ Cn1×m1 , . . . , Xr ∈ Cnr×mr ,
i.e.

B = S ×1 X1 ×2 · · · ×r Xr, X†
jXj = Imj , j = 1, . . . , r.

Using vec−operation and Kronecker product language, one has

vec(S ×1 X1 ×2 · · · ×r Xr) = (X1 ⊗ · · · ⊗Xr)vec(S). (4.30)

Thus, from (4.29) it follows that

∥A − B∥2 = vec(A)†vec(A) − 2 Re
(

vec(A)†vec(B)
)

+ vec(B)†vec(B)

= vec(A)†vec(A) − 2 Re
(

vec(A)†(X1 ⊗ · · · ⊗Xr)vec(S)
)

+ vec(S)†vec(S).

Let a := vec(A) ∈ Cn1n2···nr and s := vec(S) ∈ Cm1m2···mr and consider for fixed
(X1, . . . , Xr) ∈ Cn1×m1 × · · · × Cnr×mr the function

f : Cm1m2···mr → R, f(s) = ∥a∥2 − 2 Re
(
a†(X1 ⊗ · · · ⊗Xr)s

)
+ ∥s∥2.

The minimal value of f on Cm1m2···mr is

∥a∥2 − ∥a†(X1 ⊗ · · · ⊗Xr)∥2

and hence, solving (4.28) is equivalent to solving the maximization problem problem

max
X1,...,Xr

∥vec(A)†(X1 ⊗ · · · ⊗Xr)∥2,

with X†
jXj = Imj , j = 1, . . . , r. From the properties of the trace function, the best

multilinear rank-(m1, . . . ,mr) approximation problem becomes

max
(P1,...,Pr)∈Gr×(m,n)

tr
(
A(P1 ⊗ · · · ⊗ Pr)

)
, (4.31)

with A = vec(A)vec(A)† and Pj = XjX
†
j , j = 1, . . . , r.
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4.2.2 A geometric measure of entanglement

The task of characterizing and quantifying entanglement is a central theme in quantum
information theory. There exist various ways to measure the difference between entan-
gled and product states and we refer to [39, 59] for detailed reviews on quantifying
entanglement. Here, we discuss a geometric measure of entanglement, which is given
by the Euclidean distance of z ∈ CN with ∥z∥ = 1 to the set of all product states
P = {x1 ⊗ · · · ⊗ xr | xj ∈ Cnj , ∥xj∥ = 1}, i.e.

δE(z) := min
x∈P

∥z − x∥2. (4.32)

Since
∥z − x∥2 = ∥z∥2 − z†x− x†z + ∥x∥2 = ∥z∥2 − 2 Re(z†x) + 1,

it follows that any minimizer of δE is also a maximizer of

max
xj∈Cnj , ∥xj∥=1

Re
(
z†(x1 ⊗ · · · ⊗ xr)

)
, (4.33)

and vice versa. Moreover, since the maximal value is ≥ 0 and in the critical points we
have z†(x1 ⊗ · · · ⊗ xr) ∈ R it follows that (4.33) is equivalent to

max
xj∈Cnj , ∥xj∥=1

|z†(x1 ⊗ · · · ⊗ xr)|. (4.34)

Hence, computing the entanglement measure (4.32) is equivalent to solving

max
(P1,...,Pr)∈Gr×(m,n)

tr
(
A(P1 ⊗ · · · ⊗ Pr)

)
, (4.35)

with A = zz† and P1 = x1x
†
1, . . . , Pr = xrx

†
r. Note that (4.35) actually constitutes a

best rank−(1, . . . , 1) tensor approximation problem [15].

4.2.3 Subspace clustering

Subspace segmentation is a fundamental problem in many applications in computer
vision (e.g. image segmentation) and image processing (e.g. image representation and
compression), see [73, 75]. The problem of clustering data lying on multiple subspaces
of different dimensions can be stated as follows:

Given a set of data points X = {xl ∈ Rn}L
j=1 which lie approximately in r ≥ 1

distinct subspaces Sk of dimension dk, 1 ≤ dk < n, identify the subspaces Sk without
knowing in advance which points belong to which subspace.

Every dk dimensional subspace Sk ⊂ Rn can be defined as the kernel of a rank
mk = n− dk orthogonal projector Pk of Rnk , with nk = n as

Sk = {x ∈ Rn | Pkx = 0}.
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Therefore, any point x ∈
r
∪

k=1
Sk satisfies

∥P1x∥ · ∥P2x∥ · · · ∥Prx∥ = 0,

which is equivalent to

tr(xx⊤P1) tr(xx⊤P2) · · · tr(xx⊤Pr) = tr
(
(xx⊤ ⊗ · · · ⊗ xx⊤)(P1 ⊗ · · · ⊗ Pr)

)
= 0.

Thus, the problem of recovering the subspaces Sk from the data points X can be treated
as the following optimization task:

min
P ∈Gr×(m,n)

L∑
l=1

r∏
k=1

∥Pkxl∥2 = min
P ∈Gr×(m,n)

tr
(
A(P1 ⊗ · · · ⊗ Pr)

)
, (4.36)

with P := (P1, ..., Pr) and

A :=
L∑

l=1
xlx

⊤
l ⊗ · · · ⊗ xlx

⊤
l︸ ︷︷ ︸

r times

. (4.37)

We mention that here we have used the same notation Gr×(m,n) to refer to the direct
r−fold product of real Grassmannians.

4.2.4 A combinatorial problem

Let Λ = (λjk)n2,n1
j=1,k=1 be a given array of positive real numbers and let m1 ≤ n1, m2 ≤

n2 be fixed. Find m1 columns and m2 rows such that the sum of the corresponding
entries λjk is maximal, i.e. solve the combinatorial maximization problem

max
J⊂{1,...,n2}

|J|=m2

max
K⊂{1,...,n1}

|K|=m1

∑
j∈J, k∈K

λjk. (4.38)

We can permute m1 columns and m2 rows of Λ by right and left multiplication with
permutations of the standard projectors Π1 and Π2, respectively. Hence, problem (4.38)
is solved by finding permutation matrices σ1 and σ2 which maximize:∑

i,j

(Πσ2ΛΠσ1)ij , (4.39)

where
∑

i,j is the sum over all entries and Πσ1 := σ⊤
1 Π1σ1, Πσ2 := σ⊤

2 Π2σ2. The sum
in (4.39) can be written as

∑
i,j

(Πσ2ΛΠσ1)ij =
∑
i,j

(
(Πσ1 ⊗ Πσ2)vec(Λ)

)
ij

= tr
(
A(Πσ1 ⊗ Πσ2)

)
, (4.40)
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where A := diag(vec(Λ)). The last equality in (4.40) holds since Πσ1 ⊗ Πσ2 is diagonal,
too. According to Corollary 4.1.10, we have the following equivalence

max
σ1, σ2

tr
(
A(Πσ1 ⊗ Πσ2)

)
≡ max

(P1,P2)∈Gr×2(m,n)
tr
(
A(P1 ⊗ P2)

)
. (4.41)

Hence, we can embed the combinatorial maximization problem (4.38) into our con-
tinuous optimization task (4.5). The generalization of (4.38) to Λ being an arbitrary
multi-array is straight-forward.

Problems of this type arise in multi-decision processes such as the following. Assume
that a company has n1 branches and each branch produces n2 goods. If λjk denotes the
gain of the j−th branch with the k−th good, then one could be interested to reduce
the number of producers and goods to m1 and m2, respectively, which give maximum
benefit.

4.3 Generic nondegeneracy of the critical points
One could be interested in knowing with which "certainty" the critical points of a real-
valued function are nondegenerate. This type of question is common in differential
topology and the basic tool is the Morse-Sard theorem, which is used to prove various
transversality theorems, see e.g. [36]. In this subsection we derive a genericity statement
concerning the critical points of the generalized Rayleigh-quotient as a consequence of
the parametric transversality theorem [36]. We say that a property holds generically
if it holds on a residual set, i.e. on a subset of a topological space that contains the
intersection of a countable family of dense and open sets.

Let V, M, N be finite dimensional smooth manifolds and F : V ×M → N a smooth
map. Moreover, let T(A,P )F : V × TPM → TF (A,P )N denote the tangent map of F
at (A,P ) ∈ V × M. We say that F is transversal to a submanifold S ⊂ N and write
F t S if

Im T(A,P )F + TF (A,P )S = TF (A,P )N, (4.42)

for all (A,P ) ∈ F−1(S). Then, the parametric transversality theorem states the fol-
lowing.

Theorem 4.3.1 ([36]) Let V, M, N be smooth manifolds and S a submanifold of
N. Let F : V × M → N be a smooth map, let A ∈ V and define FA : M → N,
FA(P ) := F (A,P ). If F t S, then the set

{A ∈ V | FA t S} (4.43)

is residual. If moreover S is closed, then the set (4.43) is open and dense.

Now, let fA : M → R be a smooth function depending on a parameter A ∈ V and
consider the map

F : V × M → R × T∗M, F (A,P ) = (fA(P ), dfA(P )), (4.44)
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where T∗M is the cotangent bundle of M and dfA(P ) denotes the differential of fA at
P ∈ M.
The relation between the nondegenerate critical points of fA and the transversality of
F is given in the next result.

Theorem 4.3.2 Let M , V and F be as above and let S := I×M0, where I is an open
subset of R and M0 is the image of the zero section in T∗M. If F t S, then the critical
points P ∈ M of the smooth function fA : M → R for which fA(P ) ∈ I, are generically
nondegenerate.

Proof. Fix A ∈ V and define

FA : M → T∗M, FA(P ) := F (A,P ). (4.45)

From the Transversality Theorem 4.3.1 it follows that the set

R := {A ∈ V | FA t S}

is residual in V if F t S. In the following, we will prove that FA t S is equivalent to
the fact that the Hessian of fA is nondegenerate in the critical points P ∈ M for which
fA(P ) ∈ I. This will prove the theorem.

First, notice that Pc ∈ F−1
A (S) if and only if Pc ∈ M is a critical point of fA and

fA(Pc) ∈ I. Therefore, the transversality condition for FA is

Im TPcFA + TFA(Pc)S = TFA(Pc)(R × T∗M). (4.46)

To rewrite (4.46) in local coordinates, we choose a coordinate chart φ on an open subset
U ⊂ M around Pc with values in TPcM, such that φ−1(0) = Pc and Dφ−1(0) = id.
Then define

f̃A := fA ◦ φ−1 : φ(U) → R.

Moreover, φ induces a chart ψ : R×π−1(U) → R×φ(U) × T∗
Pc
M ⊂ R× TPcM× T∗

Pc
M

around FA(Pc) via

ψ(α, γ) = (α, x, (Dφ−1(x))∗(γ)), x := φ ◦ π(γ),

Here, π : T∗M → M refers to the natural projection and (Dφ−1(x))∗(γ) := γ◦Dφ−1(x).
Thus, for

F̃A := ψ ◦ FA ◦ φ−1 : φ(U) → R × φ(U) × T∗
Pc
M

one has F̃A(x) = (f̃A(x), x, df̃A(x)). Since transversality of FA to S is preserved in
local coordinates, (4.46) is equivalent to

ImDF̃A(0) + R × TPcM × {0} = R × TPcM × T∗
Pc
M. (4.47)

Since DF̃A(0) = (0, id, d2f̃A(0)) yields that (4.47) is fulfilled if and only if d2f̃A(0) is
nonsingular. Finally, the conclusion follows from the identity HessfA

(Pc) = d2f̃A(0)
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which is satisfied due to the fact that Pc is a critical point and Dφ−1(0) = id.
Here, HessfA

(Pc) denotes the Hessian form corresponding to the Hessian operator via
HessfA

(Pc)(x, y) = ⟨HfA
(Pc)x, y⟩ for all x, y ∈ TPcM. �

An immediate consequence of the above theorem we obtain that if S = R×M0 and
F t S, then the set

{A ∈ V | all critical points of fA are nondegenerate}

is open and dense, which implies that the critical points of fA are nondegenerate for
a generic A ∈ V . In this situation, the validity of Theorem 4.3.2 does not change if
instead of the map F defined in (4.44) we take the following

F : V × M → T∗M, F (A,P ) := dfA(P ).

However, if one wants to exclude certain critical points of fA, as is e.g. the case in the
problem of best low-rank tensor approximation, it is useful to have F defined by (4.44).

Now, the important conclusion about the critical points of the generalized Rayleigh-
quotient is given.

Theorem 4.3.3 The critical points of the generalized Rayleigh-quotient are generically
nondegenerate, i.e. the set

{A ∈ herN | all critical points of ρA are nondegenerate}

is open and dense.

Proof. Set M := Gr×(m,n), V := herN . For simplicity, we identify the cotangent
bundle T∗M with the tangent bundle TM and work with the map

F : V × M → R × TM, (A,P ) 7→ (ρA(P ), gradρA(P )), (4.48)

where gradρA(P ) is the Riemannian gradient of ρA at P . We show that F t S, where
S := R × M0 and M0 is now the image of the zero section in TM, i.e.

Im T(A,P )F + TF (A,P )S = TF (A,P )(R × TM), (4.49)

for all (A,P ) ∈ V × M with gradρA(P ) = 0. As in the proof of Theorem 4.3.2, we
rewrite the transversality condition (4.49) in local coordinates, i.e.

ImDF̃ (A, 0) + R × (TPM × {0}) = R × (TPM × TPM), (4.50)

where
F̃ := ψ ◦ F ◦ (id × φ−1) : V ×W → R ×W × TPM.

Here, φ : U → W ⊂ TPM is a chart around P with φ−1(0) = P and Dφ−1(0) = id and
ψ : R × π−1(U) → R × W × TPM ⊂ R × TPM × TPM is the corresponding induced
chart around F (A,P ). With this choice of charts, we obtain

F̃ (A, x) = (ρ̃A(x), x,∇ρ̃A(x)),
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where ρ̃A := ρA ◦φ−1 : W → R. Since A 7→ ρ̃A(0) is linear and ∇ρ̃A(0) = gradρA(P ) =
0, one has

DF̃ (A, 0)(X, ξ) =
(
ρ̃X(0), ξ,∇ρ̃X(0) + d2ρ̃A(0)ξ

)
.

Thus, condition (4.50) holds if and only if

Im ∇ρ̃(·)(0) + Im d2ρ̃A(0) = TPM. (4.51)

Finally, we will show that Im ∇ρ̃(·)(0) = TPM which clearly guarantees (4.51). Let
ξ := (ξ1, . . . , ξr) ∈

(
Im ∇ρ̃(·)(0)

)⊥, then we obtain

0 = ⟨∇ρ̃X(0), ξ⟩ = dρ̃X(0)ξ = dρX(P )ξ

= tr
(
X(

r∑
j=1

P1 ⊗ · · · ⊗ ξj ⊗ · · · ⊗ Pr)
)
,

for all X ∈ herN . Notice, that the equality dρ̃X(0)ξ = dρX(P )ξ follows from Dφ−1(0) =
id. Therefore,

r∑
j=1

P1 ⊗ · · · ⊗ ξj ⊗ · · · ⊗ Pr = 0 (4.52)

and this holds if and only if ξ1 = 0, . . . , ξr = 0, since according to Lemma 3.2.2, all
summands in (4.52) are orthogonal to each other. We have proven that F̃ t R×TPM×
{0} and hence F t S. From the Theorem 4.3.2 it follows immediately that the critical
points of the generalized Rayleigh-quotient are generically nondegenerate. �

From the proof of the above corollary, we extract the following equivalent formula-
tion for the transversality condition (4.49):
Let F : herN ×Gr×(m,n) → TGr×(m,n) be the map defined by (A,P ) 7→ grad ρA(P ),
and for fix P ∈ Gr×(m,n) define

FP : herN → TGr×(m,n), A 7→ grad ρA(P ).

Then, F t S if and only if

Im TAFP + Im HρA(P ) = TP Gr×(m,n), (4.53)

for all (A,P ) ∈ herN × Gr×(m,n) with grad ρA(P ) = 0. As before S is the zero section
in the tangent bundle TGr×(m,n).

4.4 Critical point discussion in the case of the best low-
rank tensor approximation problem

In the previous section we have proved that the critical points of the generalized
Rayleigh-quotient ρA are nondegenerate for A in an open and dense subset of herN .
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A key point was the fact that the generalized Rayleigh-quotient depends linearly on
the parameter A ∈ herN . However, for the problem of best approximation of a ten-
sor with a tensor of lower rank, A is a positive semidefinite matrix of rank-one, i.e.
A = xx†, x ∈ CN , and hence no longer from a vector space. With x as the new
parameter, the generalized Rayleigh-quotient is no longer linear in the parameter, but
quadratic. In what follows, we analyze the general situation when the generalized
Rayleigh-quotient depends quadratically on the parameter, particularly

ρXX†(P1, . . . , Pr) := tr
(
XX†(P1 ⊗ · · · ⊗ Pr)

)
, (4.54)

where X ∈ CN×K , K ≤ N and N := n1n2 · · ·nr.
Let StK,N := {X ∈ CN×K | rank X = K,K ≤ N} denote the noncompact Stiefel

manifold, i.e. the set of all full rank matrices X ∈ CN×K , with K ≤ N , and define the
map

F : StK,N × Gr×(m,n) → TGr×(m,n), (X,P ) 7→ grad ρXX†(P ). (4.55)

By fixing P ∈ Gr×(m,n) in F , we obtain the following map

FP : StK,N → TP Gr×(m,n), X 7→ grad ρXX†(P ), (4.56)

with the following tangent map at X ∈ StK,N

TXFP : CK×N → TP Gr×(m,n), TXFP (Y ) = grad ρXY †+Y X†(P ).

To avoid confusion, we accentuate that grad ρXX†(P ) and Hρ
XX† (P ) denote the Rie-

mannian gradient and the Hessian of ρXX† at P ∈ Gr×(m,n).
Recall the equivalent transversality condition (4.53) for the generalized Rayleigh-

quotient ρA, A ∈ herN . We prove in the sequel that, F t S if and only if Im TXFP =
TP Gr×(m,n), for all (X,P ) ∈ F−1(S), with S the zero section in the tangent bundle
of Gr×(m,n). We denote with (Im TXFP )⊥ the orthogonal complement of Im TXFP

in TP Gr×(m,n). For simplicity, we give first a characterization of the elements in
(Im TXFP )⊥.

Lemma 4.4.1 Let X ∈ StK,N , P ∈ Gr×(m,n) and let FP be the map defined by
(4.56). Then 0 ̸= ξ = (ξ1, . . . , ξr) ∈ (Im TXFP )⊥ if and only if

(
r∑

j=1
P1 ⊗ · · · ⊗ ξj ⊗ · · · ⊗ Pr)X = 0. (4.57)

Proof. On the vector space hern1 × · · · × hernr
we consider the inner product ⟨·, ·⟩

defined by (3.19). Let A ∈ herN and denote with ρ̃A a smooth extension of ρA to
hern1 × · · · × hernr

. For P ∈ Gr×(m,n) the following hold

Dρ̃A(P )(η) = tr
(
A(

r∑
j=1

P1 ⊗ · · · ⊗ Zj ⊗ · · · ⊗ Pr)
)

= ⟨∇ρ̃A(P ), η⟩ = ⟨grad ρA(P ), η⟩,
(4.58)
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for all η ∈ TP Gr×(m,n). Here, ∇ρ̃A(P ) is the gradient of ρ̃A at P and grad ρA(P ) is
the Riemannian gradient of ρA at P .

Let X ∈ StK,N , P ∈ Gr×(m,n) and ξ := (ξ1, . . . , ξr) ∈ TP (Im TXFP )⊥. From the
definition of the orthogonal complement in TP Gr×(m,n) we have that ξ := (ξ1, . . . , ξr) ∈
TP (Im TXFP )⊥ if and only if

⟨ξ, grad ρXY †+Y X†(P )⟩ = 0, (4.59)

for all Y ∈ TXStK,N = CN×K . From (4.58) and (4.59) we have that ξ ∈ TP (Im TXFP )⊥

if and only if

tr
(

(XY † + Y X†)(
r∑

j=1
P1 ⊗ · · · ⊗ ξj ⊗ · · · ⊗ Pr)

)
= ⟨ξ, grad ρXY †+Y X†(P )⟩ = 0,

for all Y ∈ CN×K , which is equivalent to

(
r∑

j=1
P1 ⊗ · · · ⊗ ξj ⊗ · · · ⊗ Pr)X = 0.

�

Theorem 4.4.2 Let X ∈ StK,N , P ∈ Gr×(m,n) and let FP be the map defined by
(4.56). Then,

(Im TXFP )⊥ ⊂ ker Hρ
XX† (P ).

Proof. Let X ∈ StK,N , P ∈ Gr×(m,n) and ξ := (ξ1, . . . , ξr) ∈ TP (Im TXFP )⊥. To
prove that ξ ∈ ker Hρ

XX† (P ), it is necessary and sufficient to show that

⟨Hρ
XX† (P )ξ, η⟩ = 0,

for all η ∈ TP Gr×(m,n). Explicitly, it is left to show that

r∑
j=1

tr
(
XX†(P1 ⊗ · · · ⊗ ([ξj , Pj ]ηj + [ηj , Pj ]ξj) ⊗ · · · ⊗ Pr

)
+

r∑
j=1

r∑
k=1, k ̸=j

tr
(
XX†(P1 ⊗ · · · ⊗ ηj ⊗ · · · ⊗ ξk ⊗ · · · ⊗ Pr)

)
= 0,

(4.60)

for all η ∈ TP Gr×(m,n). With the following notations

Aj := tr
(
XX†(P1 ⊗ · · · ⊗ [ξj , Pj ]ηj ⊗ · · · ⊗ Pr)

)
,

Bj := tr
(
XX†(P1 ⊗ · · · ⊗ [ηj , Pj ]ξj ⊗ · · · ⊗ Pr)

)
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equation (4.60) becomes

r∑
j=1

Aj +Bj = −
r∑

j=1

r∑
k=1,k ̸=j

tr
(
XX†(P1 ⊗ · · · ⊗ ηj ⊗ · · · ⊗ ξk ⊗ · · · ⊗ Pr)

)
, (4.61)

for all η ∈ TP Gr×(m,n). By multiplying (4.57) from the left with (In1 ⊗ · · · ⊗ Pj ⊗
· · · ⊗ Inr ) and substracting the new equation from (4.57), we obtain that(

P1 ⊗ · · · ⊗ (ξj − Pjξj) ⊗ · · · ⊗ Pr

)
X = 0, (4.62)

for all j = 1, . . . , r. Moreover, since ξj = Pjξj + ξjPj , from equality (4.62) we obtain(
P1 ⊗ · · · ⊗ ξjPj ⊗ · · · ⊗ Pr

)
X = 0, (4.63)

for all j = 1, . . . , r. Furthermore, from (4.57) it follows that

XX†
(

r∑
k=1

P1 ⊗ · · · ⊗ ξk ⊗ · · · ⊗ Pr

)(
In1 ⊗ · · · ⊗ Pjηj ⊗ · · · ⊗ Inr

)
= 0, (4.64)

for all j = 1, . . . , r. Hence,

Aj = tr
(
XX†(P1 ⊗ · · · ⊗ ξjPjηj ⊗ · · · ⊗ Pr)

)
= tr

(
XX†

(
r∑

k=1
P1 ⊗ · · · ⊗ ξk ⊗ · · · ⊗ Pr

)(
In1 ⊗ · · · ⊗ Pjηj ⊗ · · · ⊗ Inr

))

−
r∑

k=1,k ̸=j

tr
(
XX†(P1 ⊗ · · · ⊗ Pjηj ⊗ · · · ⊗ ξk ⊗ · · · ⊗ Pr)

)

= −
r∑

k=1,k ̸=j

tr
(
XX†(P1 ⊗ · · · ⊗ Pjηj ⊗ · · · ⊗ ξk ⊗ · · · ⊗ Pr)

)
,

for all j = 1, . . . , r. Similar to (4.64) we obtain that(
In1 ⊗ · · · ⊗ [ηj , Pj ] ⊗ · · · ⊗ Inr

)(
r∑

k=1
P1 ⊗ · · · ⊗ ξk ⊗ · · · ⊗ Pr

)
XX† = 0, (4.65)

and hence,

Bj = −
r∑

k=1,k ̸=j
tr
(
XX†(P1 ⊗ · · · ⊗ [ηj , Pj ]Pj ⊗ · · · ⊗ ξk ⊗ · · · ⊗ Pr)

)
,

for all j = 1, . . . , r. Moreover, since PjηjPj = 0 for all ηj ∈ TPj Grmj ,nj , it follows that

Bj = −
r∑

k=1,k ̸=j
tr
(
XX†(P1 ⊗ · · · ⊗ ηj , Pj ⊗ · · · ⊗ ξk ⊗ · · · ⊗ Pr)

)
,
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for all j = 1, . . . , r. Recalling that ηj = Pjηj + ηjPj for every ηj ∈ TPj Grmj ,nj , the
conclusion follows

r∑
j=1

Aj +Bj = −
∑
j=1

r
r∑

k=1,k ̸=j

tr
(
XX†(P1 ⊗ · · · ⊗ ηj ⊗ · · · ⊗ ξk ⊗ · · · ⊗ Pr)

)
.

Thus ⟨Hρ
XX† (P )ξ, η⟩ = 0 for all η ∈ TP Gr×(m,n) and hence, ξ ∈ kerHρ

XX† (P ). �

As an immediate consequence of the above theorem we have the following result
about the critical points of ρXX† , X ∈ StK,N .

Corollary 4.4.3 For X ∈ StK,N , all critical points P ∈ Gr×(m,n) of ρXX† for which
(Im TXFP )⊥ ̸= {0} are degenerate.

Another consequence of Theorem 4.4.2 is a necessary and sufficient condition for the
generic nondegeneracy of the critical points of the generalized Rayleigh-quotient (4.54).

Corollary 4.4.4 Let F be the map defined by (4.55) and S the zero section in TGr×(m,n).
Then, F t S if and only if

Im TXFP = TP Gr×(m,n), (4.66)

for all (X,P ) ∈ F−1(S), with FP defined by (4.56). Moreover, from Theorem 4.3.1 it
follows that if F t S, then the set

{X ∈ StK,N | all critical points of ρXX† are nondegenerate}

is open and dense.

Depending on the rank of the parameter X of ρXX† , we prove next that the critical
points of the generalized Rayleigh-quotient are generically nondegenerate.

Theorem 4.4.5 Let F be the map defined by (4.55) and S be the zero section in the
tangent bundle of Gr×(m,n). If

K > N − 2 min{
r∏

k=1, k ̸=j

mk | j = 1, . . . , r}, (4.67)

then F is transversal to S. Moreover, the set

{X ∈ StK,N | all critical points P ∈ Gr×(m,n) of ρXX† are nondegenerate}

is open and dense.
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Proof. We will prove that when condition (4.67) holds, then (Im TXFP )⊥ = {0}
holds for all (P,X) ∈ F−1(S). Hence, the conclusion follows from Corollary 4.4.4 and
Theorem 4.3.1.

Without loss of generality we can assume that P = (Π1, . . . ,Πr), where Πj are the
standard projectors of Cnj , j = 1, . . . , r. Let X ∈ StK,N such that (Π, X) ∈ F−1(S).
Assume that there exist 0 ̸= ξ ∈ (Im TXFP )⊥. From Lemma 4.4.1 we have

(
r∑

j=1
Π1 ⊗ · · · ⊗ ξj ⊗ · · · ⊗ Πr)X = 0. (4.68)

Next, we show that

dim ker
( r∑

j=1
Π1 ⊗ · · · ⊗ ξj ⊗ · · · ⊗ Πr

)
≤ N − 2 min{

r∏
k=1, k ̸=j

mk | j = 1, . . . , r}. (4.69)

Let 0 ̸= η ∈ TP Gr×(m,n) and denote with W :=
r∑

j=1
Π1 ⊗ · · · ⊗ ηj ⊗ · · · ⊗ Πr, then

W = Π1 ⊗
(

r∑
k=2

Π2 ⊗ · · · ⊗ ηk ⊗ · · · ⊗ Πr

)
+ η1 ⊗ Π2 ⊗ · · · ⊗ Πr

=

 Im1 ⊗
(

r∑
k=2

Π2 ⊗ · · · ⊗ ηk ⊗ · · · ⊗ Πr

)
Z1 ⊗ Π2 ⊗ · · · ⊗ Πr

Z†
1 ⊗ Π2 ⊗ · · · ⊗ Πr 0

 ,
where

η1 =

 0 Z1

Z†
1 0

 ∈ TΠ1Grm1,n1 ,

and Z1 ∈ Cm1×(n1−m1). Thus,

rank W ≥ rank η1 ⊗ Π2 ⊗ · · · ⊗ Πr.

Similar, we obtain that

rank W ≥ rank Π1 ⊗ · · · ⊗ ηj ⊗ · · · ⊗ Πr, (4.70)

for all j = 1, . . . , r.
By the Rank-Nullity Theorem we have

dim ker W = N − rank W

and by (4.70) it follows that

N − rank W ≤ N − max{rank Π1 ⊗ · · · ⊗ ηj ⊗ · · · ⊗ Πr | j = 1, . . . , r}.
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Moreover, since η ̸= 0 there exists j between 1 and r such that rank ηj ≥ 2. Thus, we
obtain that

N − rank W ≤ N − 2min{
r∏

k=1, k ̸=j

mk | j = 1, . . . , r}, (4.71)

which proves (4.69), which implies that (Im TXFP )⊥ = {0}. �

In view of applications, one is in particular interested in what can be said about the
nondegeneracy of the critical points of the generalized Rayleigh-quotient in the case
when K = 1, i.e. ρxx† with x ∈ CN . Recall from Section 4.2.1 that when K = 1, the
maximization of the generalized Rayleigh-quotient ρxx† is equivalent to finding the best
approximation of a tensor T ∈ Cn1×···×nr with a tensor of lower rank (4.28). The tensor
T and the vector x are related by the fact that x is a lexicographical representation of
T. At this point we recall some of the important notions when dealing with tensors, and
refer to Section 4.2.1 and the literature therein for details. If T is a tensor in Cn1×···×nr ,
then T(j) ∈ Cnj×Nj with Nj = N/nj denotes its matrix unfolding along the direction
j, for j = 1, . . . , r. The rank of T is rank T = (rank T(1), . . . , rank T(r)). Moreover, we
say that a tensor T has full rank if the unfoldings T(1), . . . , T(r) have full rank.

It is known that for a tensor of order 2 (matrix) the column rank and the row rank
are equal, hence a best approximation with a tensor of rank ≤ (m1,m2) is equivalent
to a best approximation with a tensor of rank (m,m), where m = min{m1,m2}. For
higher-order tensors there is no similar statement known. In the following lemma,
we give a relation between the values m1, . . . ,mr from the best (m1, . . . ,mr)-rank
approximation of a tensor, which is in a certain sense a generalization of the statement
about the best rank-(m1,m2) approximation of a matrix.

Lemma 4.4.6 Let m1 ≤ n1/2, . . . ,mr ≤ nr/2 be given natural numbers and let N :=
n1n2 · · ·nr. If there exists a permutation β ∈ Sr such that

mβ(1) > mβ(2)mβ(3) · · ·mβ(r), (4.72)

then, for any x ∈ CN , the local extrema of the generalized Rayleigh-quotient ρxx† are
degenerate.

Proof. Without loss of generality we assume that β = id, thus

m1 > m2m3 · · ·mr.

The proof is given for r = 3, as the generalization is straight-forward. Let x ∈ CN with
N := n1n2n3 and let (P1, P2, P3) ∈ Gr×(m,n) be a critical point of ρxx† . Then

tr
(
xx†(ξ1 ⊗ P2 ⊗ P3)

)
= 0 (4.73)
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for all ξ1 ∈ TP1Grm1,n1 . Let X ∈ Cn1×n2n3 be a matrix such that x = vec(X). With
the Kronecker-vec formalism we can write

(ξ1 ⊗ P2 ⊗ P3)x = vec
(
ξ1X(P2 ⊗ P3)

)
and hence (4.73) becomes

tr
(
X(P2 ⊗ P3)X†ξ1

)
= 0,

for all ξ1 ∈ TP1Grm1,n1 . Here we have used the following property of the trace function
and vec operator

tr(A†B) = vec(A)†vec(B),

for any A,B ∈ Cn×n.
Let Θ1 ∈ SU(n1) such that P1 = Θ†

1Π1Θ1. Then, from Corollary 4.1.8 it follows
that

Θ1

(
X(P2 ⊗ P3)X†

)
Θ†

1 =
[

Ψ′
1 0

0 Ψ′′
1

]
, (4.74)

where Ψ′
1 ∈ herm1 , Ψ′′

1 ∈ hern1−m1 . Since,

rank
(
X(P2 ⊗ P3)X†

)
≤ m2m3 < m1

it follows that rank Ψ′
1 < m1 and rank Ψ′′

1 < m1 and hence

{0} ⊂ σ(Ψ′
1) ∩ σ(Ψ′′

1) ̸= ∅,

where σ(Ψ′
1), σ(Ψ′′

1) denote the spectrum of Ψ′
1 and Ψ′′

1 respectively. From Theorem
4.1.12 it follows that the Hessian Hρ

xx† (P ) is degenerate. �

From the above result it can be easily noticed that for the best rank-(m1,m2)
approximation of a second order tensor, the local extrema of the generalized Rayleigh-
quotient are degenerate if m1 ̸= m2, i.e. m1 > m2 or m2 > m1. In this sense, the
relation (4.72) is a generalization of the fact that it is required the best rank-(m1,m2)
of a matrix with m1 = m2.

We enclose the analysis of the problem of best approximating a tensor by a tensor
of lower rank, with some genericity results on the critical points. We provide sufficient
conditions which guarantee that the critical points of the generalized Rayleigh-quotient
ρxx† that satisfy a certain condition are nondegenerate for x from a residual set. As
before, x is a vector representation of a tensor T. In particular, we obtain that the
global maximizers of ρxx† are nondegenerate for a generic choice of x.

We know from Corollary 4.4.4 that the map F defined by (4.55) is transversal to
the zero section in TGr×(m,n) if and only if Im TxFP = TP Gr×(m,n) or equivalent
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(Im TxFP )⊥ = {0}, for all (x, P ) ∈ F−1(S) (S is the zero section in TGr×(m,n)).
From Lemma 4.4.1 we have that ξ ∈ (Im TxFP )⊥ if and only if

(
r∑

j=1
P1 ⊗ · · · ⊗ ξj ⊗ · · · ⊗ Pr)x = 0. (4.75)

has only the trivial solution ξ = 0.
In what follows, we want to find an equivalent formulation for (4.75). To simplify

the exposure, we will present in detail the linear system of equations (4.75) in the case
when r = 3, since the general case follows straight-forwardly. Choose unitary matrices
Θj ∈ SU(nj) such that Pj and ξj have the standard representation

Pj = Θ†
jΠjΘj and ξj = Θ†

j

 0 Zj

Z†
j 0

Θj , (4.76)

respectively. Then, rewrite the system of equations (4.75) with (Z1, Z2, Z3) ∈ Cm1×(n1−m1)×
Cm2×(n2−m2) × Cm3×(n3−m3) as variables(

ζ1 ⊗ Π2 ⊗ Π3 + Π1 ⊗ ζ2 ⊗ Π3 + Π1 ⊗ Π2 ⊗ ζ3

)
x̃ = 0. (4.77)

Here, ζj =

 0 Zj

Z†
j 0

 and x̃ = (Θ1 ⊗ Θ2 ⊗ Θ3)x. If T ∈ Cn1×n2×n3 is the tensor

corresponding to x̃ (x̃ = vec(T)), then (4.77) has the equivalent formulation in terms
of tensors

T ×1 ζ1 ×2 Π2 ×3 Π3 + T ×1 Π1 ×2 ζ2 ×3 Π3 + T ×1 Π1 ×2 Π2 ×3 ζ3 = 0. (4.78)

Denote
A := T ×1 Q1 ×2 Q2 ×3 Q3 ∈ Cm1×m2×m3 ,

B := T ×1 Q
⊥
1 ×2 Q2 ×3 Q3 ∈ C(n1−m1)×m2×m3 ,

C := T ×1 Q1 ×2 Q
⊥
2 ×3 Q3 ∈ Cm1×(n2−m2)×m3 ,

D := T ×1 Q1 ×2 Q2 ×3 Q
⊥
3 ∈ Cm1×m2×(n3−m3),

(4.79)

where

Qj =

 Imj

0

 ∈ Cnj×mj and Q⊥
j =

 0

I(nj−mj)

 ∈ Cnj×(nj−mj),

for j = 1, 2, 3. Recalling that T(j) denotes the unfolding of T along direction j and that

(T ×j V )(j) = V T(j),
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for all V ∈ Ck×nj , j = 1, 2, 3, the equation (4.78) can be written in matrix form along
direction 1 as follows

ζ1(T ×2 Π2 ×3 Π3)(1) + Π1(T ×2 ζ2 ×3 Π3)(1) + Π1(T ×2 Π2 ×3 ζ3)(1) = 0.

This is equivalent to

[ 0 Z1 ] (T ×2 Π2 ×3 Π3)(1) +Q†
1(T ×2 ζ2 ×3 Π3)(1) +Q†

1(T ×2 Π2 ×3 ζ3)(1) = 0,

[
Z†

1 0
]

(T ×2 Π2 ×3 Π3)(1) = 0

and in tensor formalism to

T ×1 (Q⊥
1 )†Z1 ×2 Π2 ×3 Π3 + T ×1 Q1 ×2 ζ2 ×3 Π3 + T ×1 Q1 ×2 Π2 ×3 ζ3 = 0, (4.80)

(T ×1 Q1 ×2 Π2 ×3 Π3) ×1 Z
†
1 = 0.(4.81)

Using the same techinque for direction 2 on (4.80), we obtain

T ×1 (Q⊥
1 )†Z1 ×2 Q2 ×3 Π3 + T ×1 Q1 ×2 (Q⊥

2 )†Z2 ×3 Π3

+ T ×1 Q1 ×2 Q2 ×3 ζ3 = 0, (4.82)

(T ×1 Q1 ×2 Q2 ×3 Π3) ×2 Z
†
2 = 0. (4.83)

One more time for the direction 3 and (4.82) and it follows

T ×1 (Q⊥
1 )†Z1 ×2 Q2 ×3 Q3 + T ×1 Q1 ×2 (Q⊥

2 )†Z2 ×3 Q3

+T ×1 Q1 ×2 Q2 ×3 (Q⊥
3 )†Z3 = 0,

(T ×1 Q1 ×2 Q2 ×3 Q3) ×3 Z
†
3 = 0.

With the notation given by (4.79), the solutions (Z1, Z2, Z3) of (4.77) are solutions of
the system

A ×1 Z
†
1 = 0 (4.84)

A ×2 Z
†
2 = 0 (4.85)

A ×3 Z
†
3 = 0 (4.86)

B ×1 Z1 + C ×2 Z2 + D ×3 Z3 = 0 (4.87)
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and the other way around. Since the first three equations above have the matrix form

Z†
1A(1) = 0 (4.88)

Z†
2A(2) = 0 (4.89)

Z†
3A(3) = 0, (4.90)

it follows that if A has full rank, then the system (4.77) has only the trivial solution.
Recall the multilinear map Ψx̃x̃†,j defined by (4.6) and denote

X̂1 := Ψx̃x̃†,1(In1 ,Π2,Π3) = T(1)(Π2 ⊗ Π3)T †
(1), (4.91)

X̂2 := Ψx̃x̃†,2(Π1, In2 ,Π3) = T(2)(Π1 ⊗ Π3)T †
(2), (4.92)

X̂3 := Ψx̃x̃†,3(Π1,Π2, In3) = T(3)(Π1 ⊗ Π2)T †
(3), (4.93)

where T(j) is the matrix unfolding of T along direction j. From the notation (4.79) we
obtain that

X̂1 =

 A(1)

B(1)

 [ A†
(1) B†

(1)

]
, (4.94)

X̂2 =

 A(2)

C(2)

 [ A†
(2) C†

(2)

]†
, (4.95)

X̂3 =

 A(3)

D(3)

 [ A†
(3) D†

(3)

]†
, (4.96)

where B(1), C(2) and D(3) are the matrix unfoldings of B, C and D along direction 1, 2
and 3 respectively. With the above specifications, the critical point condition (4.1.8)
ca be equivalently given as follows.

Lemma 4.4.7 Let x ∈ CN , P ∈ Gr×(m,n) and A(1), A(2), A(3), B(1), C(2), D(3) as
defined before. If P is a critical point of ρxx†, then the critical point condition (4.1.8)
is equivalent to

B(1)A
†
(1) = 0, C(2)A

†
(2) = 0, D(3)A

†
(3) = 0. (4.97)

Moreover,
ρxx†(P ) = tr(X̂1Π1) = tr(X̂2Π2) = tr(X̂3Π3)

= tr(A(1)A
†
(1)) = tr(A(2)A

†
(2)) = tr(A(3)A

†
(3)).

(4.98)

In particular, for the best low rank approximation of a matrix X ∈ Cn1×n2 with a
matrix of lower rank, from Theorem 4.4.2 we obtain the following conclusions about
the critical points.
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Theorem 4.4.8 Let X ∈ Cn1×n2 be a full-rank matrix with the property that there
exists a spectral gap between its m-th and m + 1 singular values, and let x := vec(X).
Then, the generalized Rayleigh-quotient ρxx† has only one minimizer and only one
maximizer. The maximizer (P ∗

1 , P
∗
2 ) ∈ Gr×(m,n) of ρA is given by the orthogonal

projectors onto the space spanned by the m∗ := min{m1,m2} (m1 ≤ n1/2, m2 ≤ n2/2)
left, respective right singular vectors corresponding to the largest m∗ singular values, and
it is nondegenerate. The minimal value of ρxx† is 0 and the minimizer is degenerate.

Proof. Since x = vec(X), the generalized Rayleigh-quotient can be written as

ρxx† = tr(xx†(P1 ⊗ P2)) = tr(X†P1XP2).

Let (P1, P2) ∈ Gr(m1, n1) × Gr(m2, n2) be a critical point of ρxx† with corresponding
unitary matrices Θ1 and Θ2 and let

Θ1XΘ†
2 =

[
X11 X12

X21 X22

]
,

where X11 ∈ Cm×m, X12 ∈ Cm×(n2−m), X21 ∈ C(n1−m)×m, X22 ∈ C(n1−m)×(n2−m).
According to Theorem 4.4.2 it is desired to cancel out all those critical points P of ρxx†

for which (Im TxFP )⊥ ̸= {0}, i.e. the system (4.84)–(4.87) has only the trivial solution.
In the matrix case, this means that we are interested in those P for which the system

X12Z
†
1 + Z2X21 = 0 (4.99)

X11Z1 = 0 (4.100)

X†
11Z2 = 0 (4.101)

has only the solution Z1 = 0, Z2 = 0. If X11 is invertible, then the system (4.99) –
(4.101) has (0, 0) as the unique solution. What happens when X11 is not invertible?
In this situation, let U ∈ Ck×m with orthogonal columns span the kernel of X11 and
V ∈ Cm×k with orthogonal lines span the kernel of X†

11. From (4.100) and (4.101) it
follows that there exists Y1 ∈ Ck×(n1−m), Y2 ∈ Ck×(n2−m) such that Z1 and Z2 can be
given as

Z1 = U †Y1, Z2 = V Y2.

Moreover, since P is a critical point, from Corollary 4.1.8 it follows that

X†
12X11 = 0, X11X

†
21 = 0,

which means that there exist matrices A1 ∈ C(n1−m)×k and A2 ∈ Ck×(n2−m) such that
X12 and X21 are represented as

X12 = V A2, X21 = A1U.
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Hence, the system (4.99) – (4.101) becomes

V A2Y
†

1 U + V Y2A1U = 0 ⇐⇒ A2Y
†

1 + Y2A1 = 0,

which is an underdetermined k2 × k(n1 + n2 − 2m)−system and hence there exist
nontrivial solution Y1, Y2. Thus, the system (4.99) – (4.101) has a unique solution
(Z1, Z2) = 0 if and only if X11 is invertible. In this situation, X12 = 0 and X21 = 0.
Hence, all critical points P of ρxx† which satisfy (Im TxFP )⊥ = {0} bring X in the
form

Θ1XΘ†
2 =

[
X11 0

0 X22

]
, (4.102)

with X11 invertible. The set of all full rank matrices with this property is open and
dense in Cn1×n2 . Now, let P := (P1, P2) be a local maximizer (or local minimizer) of
ρxx† with corresponding Θ1 and Θ2 such that (4.102) holds. For which P the system

Hρ
xx† (P )ξ = 0 (4.103)

has only the trivial solution ξ = (ξ1, ξ2) ∈ TP Gr×(m,n)? From the Theorem 4.1.11 and
equations (4.102), (3.5) and (3.31), the system (4.103) becomes a system in (Z1, Z2) ∈
Cm×(n1−m) × Cm×(n2−m), i.e.

X11X
†
11Z1 −X11Z2X

†
22 = 0 (4.104)

X†
11Z1X22 −X†

11X11Z2 = 0.

Using Kronecker-vec formalism, the matrix of the system (4.104) can be written as

H =

 I(n1−m) ⊗X11X
†
11 −X22 ⊗X11

−X†
22 ⊗X†

11 I(n2−m) ⊗X†
11X11

 .
Then,

det(H) = det
(
I(n1−m) ⊗X11X

†
11

)
det
(
I(n2−m) ⊗X†

11X11 −X†
22 ⊗X†

11(I(n1−m) ⊗X11X
†
11)−1X22 ⊗X11

)
= det

(
I(n1−m) ⊗X11X

†
11

)
det
(
I(n2−m) ⊗X†

11X11 −X†
22X22 ⊗ I(n1−m)

)
.

It follows that H is invertible if and only if σ(X11) ∩ σ(X22) = ∅, where σ(X11) and
σ(X22) is the set of singular values of X11 and X22 respectively. Hence, global maxi-
mizers are nondegenerate.
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When X11 is not invertible, the critical point (P1, P2) is degenerate. In particular, the
global minimizers are degenerate and correspond to those projectors (P1, P2) that bring
the matrix X in the following form

Θ1XΘ†
2 =

[
0m X12

X21 X22

]
.

Here we have assumed that m ≤ min{n1, n2}/2. Hence, for the matrix case, the
minimal value of ρxx† is tr(X11) = 0. �

Further, we formulate a result on the nondegeneracy of the critical points of the
generalized Rayleigh-quotient in the case of rank-one tensor approximations.

Theorem 4.4.9 Let m1 = · · · = mr = 1 and N = n1n2 · · ·nr. Then, for x from a
residual subset of CN , the critical points (P1, . . . , Pr) ∈ Gr×(m,n) of ρxx† which are
not global minimizers are nondegenerate. The global minimizers of ρxx† are degenerate
for all x ∈ CN .

Proof. Set M := Gr×(m,n) and define the map

F : CN × M → R × TM, (x, P ) 7→ (ρxx†(P ), grad ρxx†(P )). (4.105)

Moreover, let S := (R \ {0}) × M0, where M0 is the zero section in the tangent bundle
of M. Since ρxx†(P ) = ∥(P1 ⊗ · · · ⊗ Pr)x∥2 ≥ 0 and there exists P ∈ M such that
ρxx†(P ) = 0, it follows that the global minimum is zero, for any x ∈ CN . Theorem 4.3.2
states that if F t S then, for a generic x ∈ CN , the critical points (P1, . . . , Pr) of ρxx†

such that ρxx†(P1, . . . , Pr) ̸= 0 different from the global minimizers are nondegenerate.
To show that F t S, we will proceed as in the proof of Corollary 4.3.3 and write the
transversality condition in local coordinates.
Let (x, P ) ∈ CN × M with grad ρxx†(P ) = 0 and ρxx†(P ) ̸= 0 and consider the
coordinates φ and ψ around P and F (x, P ) exactly as defined in the proof of Corollary
4.3.3. Then, the transversality condition in local coordinates reads as follows

ImDF̃ (x, 0) + R × (TPM × {0}) = R × (TPM × TPM), (4.106)

where
F̃ (x, t) = (ρ̃xx†(t), t,∇ρ̃xx†(t))

and ρ̃x = ρxx† ◦ φ−1. One has

DF̃ (x, 0)(y, ξ) =
(
ρ̃xy†+yx†(0), ξ,∇ρ̃xy†+yx†(0) + d2ρ̃xx†(0)ξ

)
and hence, condition (4.106) holds if and only if

Im ∇ρ̃x(·)†+(·)x†(0) + Im d2ρ̃xx†(0) = TPM. (4.107)
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We will prove that Im ∇ρ̃x(·)†+(·)x†(0) = TPM. Let ξ = (ξ1, . . . , ξr) ∈
(

Im ∇ρ̃x(·)†+(·)x†(0)
)⊥

,

then
0 = ⟨∇ρ̃xy†+yx†(0), ξ⟩ = dρ̃xy†+yx†(0)(ξ) = dρxy†+yx†(P )(ξ)

= 2x†(
r∑

j=1
P1 ⊗ · · · ⊗ ξj ⊗ · · · ⊗ Pr)y,

for all y ∈ CN . This is equivalent to

(
r∑

j=1
P1 ⊗ · · · ⊗ ξj ⊗ · · · ⊗ Pr)x = 0. (4.108)

We will give the proof for r = 3, since it can be straight-forwardly extended to the
general case. Let Θ1,Θ2,Θ3 be the unitary matrices related to P1, P2 and P3, re-
spectively according to (4.76) and let T ∈ Cn1×n2×n3 be the tensor corresponding to
x̃ := (Θ1 ⊗ Θ2 ⊗ Θ3)x. As mentioned before, solving (4.108) is equivalent to solving the
system (4.84) – (4.87). Since we are interested in rank-one approximations, it follows
that A in (4.84) – (4.86) is a scalar, i.e. A = A(1) = A(2) = A(3) = α ∈ C. If α = 0, then
from (4.98) it follows that ρxx†(P ) = 0, and this contradicts the hypothesis. Hence,
from Theorem 4.3.2 the conclusion follows. �

We generalize the above result for the problem of best approximating a tensor with
a tensor of lower rank, not necessarily rank–one. In fact, we prove that critical points of
the generalized Rayleigh-quotient that satisfy a certain property (that will be mention
next) are generically nondegenerate. For this purpose, we define the following map

F : CN × Gr×(m,n) → Rr × TGr×(m,n),

(x, P ) 7→ (det(L1), . . . , det(Lr), grad ρxx†(P )).
(4.109)

The matrices Lj are defined next. Let Ψxx†,j be the multilinear map defined by (4.6),
then

Ψ̂1 := Ψxx†,1(In1 , P2, P3), Ψ̂2 := Ψxx†,2(P1, In2 , P3), Ψ̂3 := Ψxx†,1(P1, P2, In3).

Now, the matrices Lj are given as

Lj :=
[
Imj 0

]
PjΨ̂jPj

 Imj

0

 ∈ Cmj×mj , (4.110)

for j = 1, . . . , r.

Theorem 4.4.10 Let L1, . . . , Lr be the matrices given by (4.110). If F is the defined
by (4.109) and S := (R \ {0})r × M0, where M0 is the image of the zero section in
the tangent bundle of Gr×(m,n), then F t S. In particular, the set of all x ∈ CN for
which the critical points of ρxx† with det(L1) ̸= 0, . . . , det(Lr) ̸= 0, are nondegenerate,
is residual.
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Proof. Let M := Gr×(m,n). Similar to the proof of Theorem 4.4.9, in order to prove
that F is transversal to S, we show that the equation

(
r∑

j=1
P1 ⊗ · · · ⊗ ξj ⊗ · · · ⊗ Pr)x = 0. (4.111)

has only the trivial solution ξ := (ξ1, . . . , ξr) ∈ TPM, for all (x, P ) ∈ F−1(S). As before,
we give the proof for the case r = 3, the general case follows immediately form this.
Let (x, P ) ∈ F−1(S), i.e., grad ρxx†(P ) = 0 and det (L1) ̸= 0, . . . , det (Lr) ̸= 0, with
L1, . . . , Lr given by (4.110). With the notations and technical details already given
((3.5), (4.79)), solving (4.111) is equivalent to solving the system

A ×1 Z
†
1 = 0 (4.112)

A ×2 Z
†
2 = 0 (4.113)

A ×3 Z
†
3 = 0 (4.114)

B ×1 Z1 + C ×2 Z2 + D ×3 Z3 = 0, (4.115)

for Zj ∈ Cmj×(nj−mj), j = 1, 2, 3. We are interested only in the first three equations of
the system and we write them in matrix form

Z†
1A(1) = 0 (4.116)

Z†
2A(2) = 0 (4.117)

Z†
3A(3) = 0, (4.118)

where A(j) is the matrix unfolding of the tensor A along direction j. From

det(Lj) = det(A(j)A
†
(j)) ̸= 0

it follows that A(j) has full rank mj , for j = 1, 2, 3 and hence, the system (4.112)–
(4.115) has only the trivial solution (Z1, Z2, Z3) = (0, 0, 0). Generalizing the Theorem
4.3.2 we prove that the critical points P of the generalized Rayleigh-quotient which
satisfy det (L1) ̸= 0, . . . , det (Lr) ̸= 0 are generically nondegenerate. �

It follows that the global maximizers of the generalized Rayleigh-quotient are gener-
ically nondegenerate.

Corollary 4.4.11 Let m1 ≤ n1/2, . . . ,mr ≤ nr/2 be given natural numbers such that
(4.72) holds for any permutation β ∈ Sr. For generic x ∈ CN , the global maximizers of
ρxx† are nondegenerate.

Proof. Let W ∈ Cn1×···×nr denote the tensor corresponding to x ∈ CN according to
the lexicographical order. If

Mj =
r∏

k=1, k ̸=j

mk, (4.119)
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and cj := min {nj ,Mj} for j = 1, . . . , r, then the set

T(m,n) =
r∩

j=1

{
T ∈ Cn1×···×nr | any cj columns of T(j) are linearly independent

}
(4.120)

is open and dense in Cn1×···×nr . Let x ∈ CN be such that W ∈ T(m,n) and let P be a
global maximizer for ρxx† .
Let Θj be the unitary matrices corresponding to Pj , denote x̃ := (Θ1 ⊗Θ2 ⊗Θ3)x, with
T = vec(x). Recall matrices X̂1, X̂2, X̂3 given by (4.91), (4.92) and (4.93) respectively.
Since T ∈ T(m,n), it follows that

rank X̂1 ≥ m1, rank X̂2 ≥ m2, rank X̂3 ≥ m3.

From the critical point condition (4.97) we have

X̂1 =

 A(1)A
†
(1) 0

0 B(1)B
†
(1)

 , (4.121)

X̂2 =

 A(2)A
†
(2) 0

0 C(2)C
†
(2)

 , (4.122)

X̂3 =

 A(3)A
†
(3) 0

0 D(3)D
†
(3)

 , (4.123)

where B(1), C(2) and D(3) are the matrix unfoldings of B, C and D along direction
1, 2 and 3 respectively. Moreover, recall that ρxx†(P ) = tr(A(1)A

†
(1)) = tr(A(2)A

†
(2)) =

tr(A(3)A
†
(3)). Since rank Xj ≥ mj and P is a global maximizer for ρxx† it follows

that A(j) has full rank, for j = 1, 2, 3. Thus, det L1 ̸= 0, det L2 ̸= 0,det L3 ̸= 0
and according to Theorem 4.4.10, the global maximizers of the generalized Rayleigh-
quotient are generically nondegenerate. �

Remark 4.4.12 Theorem 4.4.9 is a particular case of Theorem 4.4.10 as one notices
that for the best rank-one approximation problem det (L1) = · · · = det (Lr) = ρxx†(P )
for all x ∈ CN and all P ∈ M, when the matrices L1, . . . , Lr are defined in (4.110).



Chapter 5

Generalized Rayleigh-quotient on
Lagrange-Grassmannians

In this chapter we are studying the optimization task of the generalized Rayleigh-
quotient of a matrix A on the r-fold tensor product of Lagrange-Grassmannians. The
optimization of the classical Rayleigh-quotient is closely related to determining solu-
tions of algebraic Riccati equations with applications in linear optimal control such as
Kalman filtering, spectral factorization, etc. (see [39, 63]). Most of the numerical algo-
rithms developed to determine solutions of the algebraic Riccati equation achieve this by
computing Lagrangian subspaces of a Hamiltonian matrix, see [33, 43, 52, 54, 67]. The
results stated in this chapter hold for all Lagrange-Grassmannian types introduced in
Chapter 3, i.e. classical LGR(n), LGC(n) and complex Lagrange-Grassmannian L̃G(n).
First we stress some of the properties of the classical Rayleigh-quotient on LG(n). In
particular, we show that for a symmetric matrix A the optimization of the classical
Rayleigh-quotient is equivalent to the optimization of the classical Rayleigh-quotient
of the Hamiltonian part of A. We introduce the notions of decomposable symmet-
ric Hamiltonian Ah and decomposable skew-symmetric Hamiltonian As matrices for a
symmetric matrix A. In the case when A = Ah +As, we show that the optimization of
ρA on LG⊗(n) is equivalent to the optimization of ρAh on LG⊗

K(n). We derive explicit
formulas for the gradient and the Hessian of GRQ on LG⊗(n) and characterize the
critical points. Moreover, we prove that the critical points of ρA on LG⊗(n) are nonde-
generate for A from an open and dense subset of the space of decomposable symmetric
Hamiltonian matrices.

5.1 The generalized Rayleigh-quotient on Lagrange-Grassmannians

We recall some of the previous notations that we will use here as well

N := 2n1 · · · 2nr, n := (n1, . . . , nr), (n,2n) :=
(

(n1, 2n1), . . . , (nr, 2nr)
)
. (5.1)
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Let K denote the field of real or complex numbers and let K2nj be the standard sym-

plectic space with the symplectic form Jj =
[

0 Inj

−Inj 0

]
, for j = 1, . . . , r.

For a matrix A ∈ symN when K = R (resp. A ∈ herN when K = C ), we address
the optimization task

max
P∈LG⊗

K (n)
tr(AP) (5.2)

on the r-fold tensor product of Lagrange-Grassmannians LG⊗
K(n) which can be equiv-

alently formulated as the optimization task

max
(P1,...,Pr)∈LG×

K (n)
tr
(
A(P1 ⊗ · · · ⊗ Pr)

)
(5.3)

on the r-fold direct product of Lagrange-Grassmannians LG×
K(n). This is a restriction

of the optimization task (4.5) discussed in the previous chapter. The map

ρA : LG×
K(n) → R, (P1, . . . , Pr) 7→ tr

(
A(P1 ⊗ · · · ⊗ Pr)

)
, (5.4)

is called the generalized Rayleigh-quotient of A ∈ symN (resp. A ∈ herN ) on LG×
K(n).

If we have only one Lagrange-Grassmannian LGK(n), i.e. r = 1, then the optimiza-
tion task (5.3) determines Lagrangian invariant subspaces of A. This follows directly
from the critical point condition (5.35), i.e. AP = PA, and the fact that P is a pro-
jection operator associated to the Lagrangian subspace ImP . Computing Lagrangian
invariant subspaces of Hamiltonian matrices is a classical assignment arising in many
applications such as Kalman filtering, spectral factorization, etc. (see [39, 63]). Ex-
plicitly, the symmetric (resp. Hermitian) solutions X ∈ Kn×n of the algebraic Riccati
equation

RX +XR−XSX + S = 0, (5.5)

define Lagrangian invariant subspaces W = span
[
In

X

]
of the symmetric (resp. Her-

mitian) Hamiltonian matrix

A =
[
R S

S −R

]
∈ K2n×2n, (5.6)

where R, S ∈ symn are known. Furthermore, the projection operator P associated to
W is given by

P =
[
In

X

]
(In +X2)−1

[
In X

]
. (5.7)

We refer to the literature for a thorough discussion in this direction, [48].
We say that a matrix A ∈ K2n×2n is skew-Hamiltonian if

JA = −(JA)⊤, (5.8)
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where J is the standard symplectic form on K2n. Every matrix A ∈ K2n×2n can be
decomposed in a Hamiltonian and a skew-Hamiltonian part

A = Ah +As, Ah = A+ JA⊤J

2
, As = A− JA⊤J

2
. (5.9)

Recall that a matrix A ∈ C2n×2n is called complex Hamiltonian if

JA = (JA)†.

Moreover, we say that a matrix A ∈ C2n×2n is complex skew-Hamiltonian if

JA = −(JA)†.

Then, any matrix A ∈ C2n×2n can be given as

A = Ah +As, Ah = A+ JA†J

2
, As = A− JA†J

2
. (5.10)

For the optimization of the classical Rayleigh-quotient of a symmetric matrix on the
Lagrange-Grassmannian only the Hamiltonian part of the matrix counts, as we show
in the next lemma.

Lemma 5.1.1 Let A ∈ sym2n (resp. A ∈ her2n). Then the maximization problem

max
P ∈LGK(n)

tr(AP ) (5.11)

is equivalent to the following one

max
P ∈LGK(n)

tr
(
AhP

)
, (5.12)

where Ah =
A+ JA⊤J

2
is the Hamiltonian part of A.

Proof. Every matrix A ∈ sym2n can be written as a sum of its Hamiltonian part and
its skew-Hamiltonian part, which are both symmetric, i.e. A = Ah + As. For every
P ∈ LGK(n), a straight-forward computation shows that

JPJ = P − I2n.

Then
tr(AhP ) = 1

2 tr((JAJ +A)P ) = 1
2 tr(AJPJ) + 1

2 tr(AP )

= tr(AP ) − 1
2 tr(A).

Since tr(A) is a constant, the conclusion follows. For A ∈ her2n and LGC(n), we use
the fact that

JPJ = P⊤ − I2n
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is true for any P ∈ LGC(n), and thus, the conclusion follows. �

From the proof of the above Lemma it follows that for all P ∈ LGK(n) one has

tr(AsP ) = 1
2

tr(A),

where As is the skew-Hamiltonian part of A ∈ sym2n (resp. A ∈ her2n).
An identical result is true also for the optimization of the Rayleigh-quotient of a

Hermitian matrix on the complex Lagrange-Grassmannian, i.e.

max
P ∈L̂G(n)

tr(AP ) ≡ max
P ∈L̂G(n)

tr
(
AhP

)
,

where Ah =
A+ JAJ

2
is the complex Hamiltonian part of A. In this situation, the

critical points of the Rayleigh-quotient are complex Lagrangian invariant subspaces of
the complex Hamiltonian part Ah of A ∈ her2n.

5.2 Decomposable Hamiltonian matrices

In this section we introduce a special class of matrices that we will call decompos-
able Hamiltonian matrices. Let J1, . . . , Jr denote the standard symplectic forms on
K2n1 , . . . ,K2nr respectively. We know from Section 3.4 that for r odd, the skew-
symmetric nondegenerate matrix J1 ⊗ · · · ⊗ Jr defines a symplectic bilinear form on
KN ∼= K2n1 ⊗ · · · ⊗ K2nr as

ω : KN × KN → R, ω(x, y) = x⊤(J1 ⊗ · · · ⊗ Jr)y. (5.13)

The notions of Hamiltonian or complex Hamiltonian we consider with respect to ω, i.e.

A(J1 ⊗ · · · ⊗ Jr) = −(J1 ⊗ · · · ⊗ Jr)A⊤ (Hamiltonian)

A(J1 ⊗ · · · ⊗ Jr) = −(J1 ⊗ · · · ⊗ Jr)A† (complex Hamiltonian)
(5.14)

Definition 5.2.1 Let n1, . . . , nr ∈ N be given and N = 2n12n2 · · · 2nr. A matrix A ∈
KN×N is called decomposable Hamiltonian if it can be obtained as a summation of
Kronecker products of Hamiltonian matrices, i.e.

A =
L∑

k=1
X1k ⊗ · · · ⊗Xrk, (5.15)

where Xjk ∈ sp(2nj ,K), for j = 1, . . . , r. The space of all decomposable Hamiltonian
matrices is the tensor product space

sp⊗(2n,K) := sp(2n1,K) ⊗ · · · ⊗ sp(2nr,K). (5.16)
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Similar to decomposable Hamiltonian matrices, the decomposable skew-Hamiltonian
matrices are matrices B ∈ KN×N which can be obtained as a sum of Kronecker products
of skew-Hamiltonian matrices, i.e.

B =
L∑

k=1
Y1k ⊗ · · · ⊗ Yrk, (5.17)

where Yjk ∈ K2nj×2nj skew-Hamiltonian, for j = 1, . . . , r.

By counting dimensions

dimK sp(N,K) = N

2
(N + 1) >

r∏
j=1

nj(2nj + 1) = dimK sp⊗(2n,K),

it is clear that not every Hamiltonian matrix can be a decomposable Hamiltonian
matrix. As well we can argue that not all skew-Hamiltonian matrices are decomposable
skew-Hamiltonian matrices.
We define a finite iterative process to determine the decomposable Hamiltonian and
skew-Hamiltonian parts of a matrix A ∈ KN×N :

A1 =
(J1 ⊗ I2n2 · · · ⊗ I2nr )A⊤(J1 ⊗ I2n2 · · · ⊗ I2nr ) +A

2

A2 =
(I2n1 ⊗ J2 · · · ⊗ I2nr )A⊤

1 (I2n1 ⊗ J2 · · · ⊗ I2nr ) +A1

2
...

Ar =
(I2n1 ⊗ I2n2 · · · ⊗ Jr)A⊤

r−1(I2n1 ⊗ I2n2 · · · ⊗ Jr) +Ar−1

2
,

(5.18)

and

B1 =
A− (J1 ⊗ I2n2 · · · ⊗ I2nr )A⊤(J1 ⊗ I2n2 · · · ⊗ I2nr )

2

B2 =
B1 − (I2n1 ⊗ J2 · · · ⊗ I2nr )B⊤

1 (I2n1 ⊗ J2 · · · ⊗ I2nr )
2

...

Br =
Br−1 − (I2n1 ⊗ I2n2 · · · ⊗ Jr)B⊤

r−1(I2n1 ⊗ I2n2 · · · ⊗ Jr)
2

,

(5.19)

In conclusion, Ar is the decomposable Hamiltonian part of A and Br is the decompos-
able skew-Hamiltonian part of A.
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In contrast to the classical symplectic spaces, every complex Hamiltonian matrix
A ∈ CN×N is also a complex decomposable Hamiltonian matrix, i.e.,

A =
K∑

k=1
X1k ⊗ · · · ⊗Xrk, (5.20)

where Xjk ∈ ŝp(2nj ,C), for j = 1, . . . , r. This is straight-forward by counting dimen-
sions

dim
(
ŝp(2n1,C) ⊗ · · · ⊗ ŝp(2nr,C)

)
=

r∏
j=1

4n2
j = N2 = dim(ŝp(N,C)).

Let ĥsp(2n,C) denote the vector space of complex Hamiltonian matrices which are also
Hermitian, i.e.

ĥsp(2n,C) := ŝp(2n,C) ∩ her2n. (5.21)

Definition 5.2.2 Let r be an odd number, n1, . . . , nr ∈ N be given and denote N =
2rn1n2 · · ·nr. A matrix A ∈ ĥsp(N,C) is called decomposable Hermitian Hamiltonian
if it can be obtained as a sum of Kronecker products of Hermitian Hamiltonian matrices

A =
K∑

k=1
X1k ⊗ · · · ⊗Xrk, (5.22)

where Xjk ∈ ĥsp(2nj ,C), for j = 1, . . . , r. A matrix A is called decomposable Hermitian
skew-Hamiltonian if it can be written as

A =
K∑

k=1
Y1k ⊗ · · · ⊗ Yrk, (5.23)

where Yjk ∈ her2nj
skew-Hamiltonian, for j = 1, . . . , r.

The set of all decomposable Hermitian Hamiltonian matrices is by definition the tensor
product space

hsp⊗(2n) := ĥsp(2n1,C) ⊗ · · · ⊗ ĥsp(2nr,C). (5.24)

Unlike to the general case of complex Hamiltonian matrices, not every Hermitian Hamil-
tonian matrix is a decomposable Hermitian Hamiltonian matrix as it can be seen by
counting the dimension of the corresponding vector spaces

dim
(
hsp⊗(2n) =

r∏
j=1

dim
(
ĥsp(2nj ,C)

)
=

r∏
j=1

2n2
j ̸= N2

2 = dim ĥsp(N,C).

Now, we can formulate a similar result to Lemma 5.1.1 for the optimization of the
generalized Rayleigh-quotient of a symmetric (or Hermitian) matrix on LG×

K(n). First,
notice that any matrix A ∈ symN can be written as

A = Ah +As +R, (5.25)
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where Ah, As are the decomposable Hamiltonian and decomposable skew-Hamiltonian
parts of A and R is in the orthogonal complement of the space spanned by the space
of decomposable Hamiltonian and decomposable skew-Hamiltonian matrices.
Proposition 5.2.3 Let A ∈ symN (resp. A ∈ herN ) be of the form

A = Ah +As, (5.26)

where Ah, As ∈ symN (resp. Ah, As ∈ herN ) are the decomposable Hamiltonian and
the decomposable skew-Hamiltonian parts of A. Then, the optimization problem

max
(P1,...,Pr)∈LG×

K (n)
tr
(
A(P1 ⊗ · · · ⊗ Pr)

)
(5.27)

is equivalent to

max
(P1,...,Pr)∈LG×

K (n)
tr
(
Ah(P1 ⊗ · · · ⊗ Pr)

)
. (5.28)

Proof. The result follows from the fact that tr(XP ) = 1
2 tr(X) for all X ∈ sym2n

(resp. X ∈ her2n) skew-Hamiltonian and all P ∈ LGn. �

5.3 Riemannian gradient and Hessian of the generalized
Raleigh-quotient

In the sequel, we derive expressions for the gradient and the Hessian of the generalized
Rayleigh-quotient of a symmetric or Hermitian matrix on LG×

K(n) and L̂G
×

(n). As
in (5.1), we have N := 2n1 · · · 2nr, n = (n1, . . . , nr). Previously, we have seen that
the optimization of the classical Rayleigh-quotient (RQ) of a symmetric or Hermitian
matrix A on LGK(n) or L̂G(n) can be reduced to the optimization of the RQ of the
Hamiltonian or complex Hamiltonian part of the matrix. Since not every symmet-
ric/Hermitian matrix can be decomposed only in a decomposable Hamiltonian and a
decomposable skew-Hamiltonian part, we will analyze the optimization of the general-
ized Rayleigh-quotient (GRQ) for a symmetric/Hermitian matrix in general. We will
discuss only the optimization of GRQ on LG×

C (n) (the results are easily translated for
LG×

R (n)) and on L̂G
×

(n).
Let ρA be the generalized Rayleigh-quotient of A ∈ symN on LG×

C (n), and ρ̂A be
the generalized Rayleigh-quotient of A ∈ herN on L̂G

×
(n). Using the submanifold

structure of LG×
C (n) and L̂G

×
(n), we derive the formulas for the gradient and the

Hessian of ρA and ρ̂A by projecting the analog objects from Gr×
C (n,2n). For simplicity

and since there is no danger of confusion, we will refer to LG×
C (n) by LG×(n).

Let P := (P1, . . . , Pr) ∈ LG×(n), then the map
πP = (πP1 , . . . , πPr ) : TP Gr×

C (n,2n) → TP Gr×
C (n,2n),

(ξ1, . . . , ξr) 7→
(
J1ξ

⊤
1 J1 + ξ1

2
, . . . ,

Jrξ
⊤
r Jr + ξr

2

) (5.29)
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is the orthogonal projector onto TP LG×(n), and

π̂P = (π̂P1 , . . . , π̂Pr ) : TP Gr×
C (n,2n) → TP Gr×

C (n,2n),

(ξ1, . . . , ξr) 7→
(
J1ξ1J1 + ξ1

2
, . . . ,

JrξrJr + ξr

2

) (5.30)

is the orthogonal projector onto TP L̂G
×

(n), P ∈ L̂G
×

(n). For A ∈ CN×N , recall from
Section 4.1.1 the multilinear maps ΨA,j : her2n1 × · · · × her2nr

→ C2nj×2nj defined by

tr(A†(X1 ⊗ · · · ⊗XjZ ⊗ · · · ⊗Xr) = tr(ΨA,j(X1, . . . , Xr)†Z), (5.31)

for all Z ∈ Cnj×nj and for all j = 1, . . . , r. We know that if A ∈ herN and (P1, . . . , Pr) ∈
LG×(n), the matrix ΨA,j(P1, . . . , Inj , . . . , Pr) is also Hermitian. However, if A is Hamil-
tonian, it does not mean that ΨA,j(P1, . . . , Inj , . . . , Pr) is Hamiltonian as well. This is
true if A ∈ her is decomposable Hamiltonian, as the next lemma will show.

Lemma 5.3.1 Let A ∈ herN be decomposable Hamiltonian matrix and (P1, . . . , Pr)
an element in LG×(n). Then, ΨA,j(P1, . . . , Inj , . . . , Pr) ∈ C2nj×2nj is Hermitian and
Hamiltonian for all j = 1, . . . , r.

Proof. Without loss of generality, we can assume that A ∈ sp⊗(2n,C) is of the form
A1 ⊗ · · · ⊗Ar with Aj ∈ sp(2nj ,C) ∩ her2nj

, for j = 1, . . . , r. Then,

tr(A(P1 ⊗ · · · ⊗ Pr)) =
r∏

j=1
tr(AjPj)

and hence,

ΨA,j(P1, . . . , Inj , . . . , Pr) = Aj

r∏
i=1, i ̸=j

tr(AiPi) ∈ sp(2nj ,C).

�

Moreover, when the point P ∈ LG×(n) is understood from the context, we use the
following shortcut

Âj := ΨA,j(P1, . . . , Inj , . . . , Pr), (5.32)

for j = 1, . . . , r. Now, the gradient of the generalized Rayleigh-quotient of A on LG×(n)
or L̂G

×
(n) can be explicitly given.

Theorem 5.3.2 Let A ∈ herN and P := (P1, . . . , Pr) an element in LG×(n) (resp. in
L̂G

×
(n))). Then, one has:

(i) The gradient of ρA at P ∈ LG×(n) (resp. ρ̂A at P ∈ L̂G
×

(n)) with respect to the
Riemannian metric induced by (3.19) is

grad ρA(P ) = πP

(
ad2

P1Â1, . . . , ad2
Pr
Âr

)
, (5.33)
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(
resp. grad ρ̂A(P ) = π̂P

(
ad2

P1Â1, . . . , ad2
Pr
Âr

))
. (5.34)

(ii) The critical points of ρA on LG×(n) (resp. ρ̂A on L̂G
×

(n) ) are characterized by

[
Pj ,

JjÂ
⊤
j Jj + Âj

2

]
= 0, (5.35)

(
resp.

[
Pj ,

JjÂjJj + Âj

2

]
= 0,

)
, (5.36)

for all j = 1, . . . , r, i.e. Pj is a self-adjoint projector associated to an invariant
Lagrangian subspace of the Hamiltonian part of Âj (resp. Pj is the self-adjoint
projector associated to an invariant complex Lagrangian subspace of the complex
Hamiltonian part of Âj).

Proof. The conclusion (5.33) and (5.34) follow immediately from Theorem 4.1.7 with
the projection operators (5.29) and (5.30). Conclusions (5.35) and (5.36) can be drawn
from Theorem 4.1.7 and the equalities

J(ad2
PX)⊤J = ad2

PJX
⊤J and J(ad2

PX)J = ad2
PJXJ,

for P ∈ LG(n) and P ∈ L̂G(n), respectively. Here X ∈ her2n and J the skew-symmetric
matrix defined by (3.26). �

Next, we formulate a necessary and sufficient critical point condition.

Corollary 5.3.3 Let A ∈ herN , P := (P1, . . . , Pr) ∈ LG×(n) and chose Θj ∈ Sp(nj)
such that ΘjPjΘ⊤

j = Πj , where Πj is the standard projector of C2nj , for j = 1, . . . , r.
We write

ΘjÂjΘ⊤
j =

[ Ψ′
j Ψ′′′

j

Ψ′′′⊤
j Ψ′′

j

]
, (5.37)

with Ψ′
j , Ψ′′

j ,Ψ′′′
j ∈ hernj

and Ψ′′′
j ∈ Cnj×nj , for j = 1, . . . , r. Then, P is a critical point

of ρA if and only if
Ψ′′′

j = −Ψ′′′⊤
j , (5.38)

for all j = 1, . . . , r. Moreover, if A is decomposable Hamiltonian matrix, then

Ψ′′
j = −Ψ′

j and Ψ′′′
j = (Ψ′′′

j )⊤,

and hence, in the critical points
Ψ′′′

j = 0,

for all j = 1, . . . , r. A similar statement holds for P ∈ L̂G
×

(n) with transpose replaced
by conjugate transpose.
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Proof. Let P := (P1, . . . , Pr) ∈ LG×(n) be a critical point for ρA given in the form
ΘjPjΘ⊤

j = Πj , with Θj ∈ Sp(nj) for j = 1, . . . , r. Since (5.35) holds in the critical
point, we have that

ΘjπPj (Âj)Θ⊤
j =

[
Xj 0

0 −Xj

]
,

with Xj ∈ hernj
, for all j = 1, . . . , r. Moreover,

ΘjπPj (Âj)Θ⊤
j = ΘjJjÂjJjΘ⊤

j + ΘjÂjΘ⊤
j

= JjΘjÂjΘ⊤
j Jj + ΘjÂjΘ⊤

j

= πPj

(
ΘjÂjΘ⊤

j

)
,

for all j = 1, . . . , r and hence, Xj = Ψ′
j − Ψ′′

j and Ψ′′′
j + (Ψ′′′

j )⊤ = 0, for Ψ′
j , Ψ′′

j , Ψ′′′
j

from the block–structure (5.37), for all j = 1, . . . , r. �

Let ρ̃A : Gr×
K(n,2n) → R denote the extension of ρA and ρ̂A to Gr×

R (n,2n) and
Gr×

C (n,2n), respectively. The Hessian of ρA at P ∈ LG×(n) (resp. ρ̂A at P ∈ L̂G
×

(n))
is given as follows.

Theorem 5.3.4 Let A ∈ herN and P := (P1, . . . , Pr) ∈ LG×(n) (resp. L̂G
×

(n)).
Then, the Riemannian Hessian of ρA (resp. ρ̂A) at P is the self-adjoint operator

HρA(P ) : TP LG×(n) → TP LG×(n), (5.39)

defined by
HρA(P ) = πP ◦ Hρ̃A

(P ) ◦ i, (5.40)

where
i : TP LG×(n) → TP Gr×(n,2n), ξ 7→ ξ

is the inclusion map. If P ∈ L̂G
×

(n), then there is a corresponding result obtained by
replacing πP in (5.40) by π̂P .

Proof. We can argue as in the proof of Theorem 4.1.11. The result follows from the
fact that the geodesics on LG×(n) and on L̂G

×
(n) are restrictions of the geodesics on

Gr×(n,2n). �

For completeness, we give next the explicit formula for the Hessian of ρA at P ∈
LG×(n).

Corollary 5.3.5 With the same hypothesis as in Theorem 5.3.4, the Hessian
HρA(P ) = (H1

ρA
, . . . ,Hr

ρA
) is expressed as

Hj
ρA

(ξ) := −adPj ad(Âj)h
ξj +

r∑
k=1,k ̸=j

ad2
Pj

(
ΨA,j(P1, . . . , Inj , . . . , ξk, . . . , Pr)

)
h

, (5.41)
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for all ξ := (ξ1, . . . , ξr) ∈ TP LG×(n) and j = 1, . . . , r, where Âj is given in (5.32) and
(X)h is the Hamiltonian part of X. For P ∈ L̂G

×
(n) there is a corresponging result

obtained by the Hamiltonian part by the complex Hamiltonian part.

Proof. Let P := (P1, . . . , Pr) ∈ LG×(n) and ρ̃A be the extension of ρA to the manifold
Gr×(n,2n). Then, from (5.40) one obtains

Hj
ρA

(ξ) = πPj (Hj

ρ̃A
(ξ)) (5.42)

for all ξ ∈ TP LG×(n) and j = 1, . . . , r. Moreover, formula (5.41) follows from (4.20)
with the specifications

Jj [Pj , X]Jj = JjPjXJj − JjXPjJj

= −JjPjJjJjXJj + JjXJjJjPjJj

= −(Pj − Inj )JjXJj + JjXJj(Pj − Inj )

= [Pj , JjXJj ],

πPj (adPj ad
Âj
ξj) =

Jj [Pj , [Âj , ξj ]]Jj + [Pj , [Âj , ξj ]]
2

=
[Pj , Jj [Âj , ξj ]Jj ] + [Pj , [Âj , ξj ]]

2

=
[Pj , Jj [Âj , ξj ]Jj + [Âj , ξj ]]

2
= adPj ad(Âj)h

ξj

and
πPj (ad2

Pj
Y ) = ad2

Pj
(Y )h,

for all ξ ∈ TP LG×(n) and all X, Y ∈ her2nj
. �

Remark 5.3.6 For decomposable Hamiltonian matrices A, the given expressions of
the gradient and Hessian of ρA do no longer need to project the matrices Âj and
ΨA,j(P1, . . . , Inj , . . . , ξk, . . . , Pr) onto their Hamiltonian parts, since they are already
Hamiltonian.

Further, we give necessary conditions such that the Hessian of ρA on LG×r(n) and
on L̂G

×r
(n) is nondegenerate in local extrema.

Theorem 5.3.7 Let A ∈ herN be decomposable Hamiltonian and P ∈ LG×(n) (resp.
P ∈ L̂G

×
(n)) a local maximizer or a local minimizer of ρA (resp. ρ̂A). If HρA(P )

(resp. Hρ̂A
(P )) is nondegenerate, then, for j = 1, . . . , r the matrix Ψ′

j cannot have as
eigenvalues both λj ∈ R and −λj ∈ R. Here Ψ′

j is defined by (5.37).
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Proof. Assume that P ∈ LG×(n) is a local maximizer of ρA. If HρA(P ) is nonde-
generate, it means that HρA(P ) is negative definite. By restricting the tangent vectors
(ξ1, . . . , ξr) ∈ TP LG×(n) to the vectors of the form (0, . . . , ξj , . . . , 0), it holds

Hj
ρA

(0, . . . , ξj , . . . , 0) ̸= 0, (5.43)

for all 0 ̸= ξj ∈ TPj LGnj , for all j = 1, . . . , r. Hence, adPj ad
Âj
ξj ̸= 0, for all 0 ̸= ξj ∈

TPj LGnj , for all j = 1, . . . , r. Moreover, by the representation (5.37) of ΘjÂjΘ⊤
j in a

critical point, we obtain
Ψ′

jZj + ZjΨ′
j ̸= 0, (5.44)

for all 0 ̸= Zj ∈ hernj
, for all j = 1, . . . , r. This means that λ and −λ are not both

eigenvalues of Ψ′
j , for j = 1, . . . , r. �

As a consequence of Theorem 4.3.2, we can conclude that the critical points of
the generalized Rayleigh-quotient on LG×(n) and on L̂G

×
(n) are nondegenerate for a

generic choice of the parameter A ∈ herN ∩ sp⊗(2n,C), where N := 2n12n2 · · · 2nr.

Corollary 5.3.8 For a generic A ∈ herN ∩ sp⊗(2n,C), the critical points of ρA on
LG×(n) are nondegenerate.

Proof. Let V denote the vector space herN ∩ sp⊗(2n,C) and M := LG×(n). Moreover
define F : V × M → TM as F (A,P ) = grad ρA(P ). We want to show that F t S,
where S is the zero section in TM, i.e.,

Im T(A,P )F + TF (A,P )S = TF (A,P )(TPM),

for all (A,P ) ∈ F−1(S). It is enough to prove that FP t {0} for all P ∈ M, where
FP : V → TM, FP (A) = grad ρA(P ), for all A ∈ F−1

P ({0}). Hence, we will prove that

Im TAFP = TPM, (5.45)

for all A ∈ F−1
P ({0}) and all P ∈ M. Since

gradρ (·)(P ) : V → TPM, X 7→ grad ρX(P )

is linear, it follows that
TAFP (X) = grad ρX(P )

and, hence,
Im TAFP = Im grad ρ(·)(P ).

Let ξ := (ξ1, . . . , ξr) ∈ (Im grad ρ(·)(P ))⊥, i.e.

⟨grad ρX(P ), ξ⟩ = tr
(
X(

r∑
j=1

P1 ⊗ · · · ⊗ ξj ⊗ · · · ⊗ Pr)
)

= 0, (5.46)
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for all X ∈ sp⊗(2n,R) and hence also for X of the form X = X1 ⊗ · · · ⊗ Xr with
Xj ∈ sp(2nj ,C). Nw, (5.46) becomes

r∑
j=1

tr(X1P1) · · · tr(Xjξj) · · · tr(XrPr) = 0,

for all Xj ∈ sp(2nj ,C) and j = 1, . . . , r.
Since ξj ∈ sp(2nj ,C), by taking Xj = ξj and recalling that tr(Pjξj) = 0, it follows that
∥ξj∥ = 0 and hence ξj = 0, for j = 1, . . . , r. thus, we have proven (5.45). �

From the proof, we obtain that the set of parameters A ∈ herN ∩ sp⊗(2n,C) for which
the critical points of ρA are nondegenerate is open and dense and not only residual. A
similar result holds also for ρ̂A on L̂G

×
(n).
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Chapter 6

Riemannian numerical algorithms

Several problems in Linear Algebra (eigenvalue computation, numerical ranges, low
rank matrix approximation), Control Theory (Riccati equation), Robotics (grasping
problem), Quantum Control (entanglement measure), Computer Vision (camera esti-
mation, face recognition), etc., can be formulated as optimization tasks with the set of
constraints carrying the structure of a Riemannian manifold, see [3, 34]. In this way,
the constraint optimization problems can be solved by techniques from Riemannian
optimization as unconstrained ones. By replacing the classical objects from numerical
optimization (directional derivatives, line search) with their Riemannian counterparts
(geodesics, Levi-Civita connection, parallel transport), one obtains efficient methods
which perform on the smallest possible parameter space.

In this chapter, we develop two intrinsic methods for the optimization of the gen-
eralized Rayleigh-quotient on the r−fold direct product of Grassmannians and on the
r−fold direct product of Lagrangian Grassmannian manifolds: a Newton-like method
and a conjugate gradient method. We give suggestions for the implementation of the
two methods mentioned as well as a convergence proof in the case of Newton method.
Numerical experiments at the end of the chapter confirm the efficiency of the developed
algorithms. The above-mentioned algorithms are given in a generalized form with the
scope to determine the zeros of a smooth vector field on Gr×(m,n) or on LG×(m),
which does not have to be the gradient vector field of some real-valued function.

6.1 Newton-like method

The intrinsic approach to develop a Newton algorithm for the optimization of a smooth
real-valued function on a Riemannian manifold is described by means of the Levi-Civita
connection taking iteration steps along geodesics. In particular, if f : M → R is a
smooth function and P ∗ ∈ M is a nondegenerated critical point, then the Newton
iteration reads as

P new = expP

(
−(Hf (P ))−1(grad f(P ))

)
, (6.1)
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where P ∈ M is in the neighborhood of P ∗. We do not enter into more details, in-
stead we refer the reader to the literature, e.g. [19, 23, 68] and the references therein.
As solutions of second-order differential equations, geodesics are sometimes difficult to
determine. Even when one knows the geodesic, it is computationally expensive to de-
termine the corresponding Riemannian exponential map. Thus, we are interested in a
more general approach due to Shub [65] and further extended [3, 32], which introduces
the Newton iteration via local coordinates. More precisely, we follow the ideas intro-
duced by Helmke, Hüper and Trumpf in [32] and use two locally smooth families of
parametrizations {µP }P ∈M and {νP }P ∈M around P ∗. Then, the Newton-like iteration
reads as follows

Pnew = νP

(
−(Hf◦µP

(0))−1grad f(P )
)
, (6.2)

where P is in the neighborhood of P ∗ and Hf◦µexp
P

(P ) is the Hessian of the function
f ◦ µP : TPM → R at 0. In this way, one can develop families of numerical methods
with quadratic convergence as the intrinsic Newton method.

Further, let M denote either one of the manifolds Gr×(m,n) or LG×(m), with the
specification that in the case of the Lagrangian Grassmann manifold, nj is even and
mj = nj/2 for all j = 1, . . . , r. As before N = n1n2 · · ·nr, and (m,n) and (m) denote
the multi-index

(m,n) :=
(

(m1, n1), . . . , (mr, nr)
)
, resp. (m) := (m1, . . . ,mr).

In view of applications, we will use Riemannian normal coordinates and QR-coordinates
as parametrizations around P ∈ M. These notions of coordinates around a point
P := (P1, . . . , Pr) ∈ M can be immediately generalized from one Grassmannian (resp.
Lagrange-Grassmann manifold) to the r−fold direct product of Grassmannians (resp.
direct product of Lagrange-Grassmann manifolds) as follows: Riemannian normal co-
ordinates are given by the Riemannian exponential map

µexp
P : TPM → M, ξ 7→

(
e[ξ1,P1]P1e

−[ξ1,P1], . . . , e[ξr,Pr]Pre
−[ξr,Pr]), (6.3)

while QR-type coordinates are defined by the QR-approximation of the matrix expo-
nential, i.e.

µQR
P : TPM → M, ξ 7→

(
[X1]Q P1 [X1]†Q, . . . , [Xr]Q Pr [Xr]†Q

)
, (6.4)

where [Xj ]Q is the Q−factor from the unique QR decomposition of Xj := I + [ξj , Pj ].

In what follows, we will give the Newton-like method to determine the stationary
points of the generalized Rayleigh-quotient of a Hermitian matrix A ∈ herN

ρA : M → R, ρA(P ) = tr
(
A(P1 ⊗ · · · ⊗ Pr)

)
. (6.5)
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6.1.1 Newton-like algorithm on Gr×(m, n)

The Newton-like iteration (6.2) for the generalized Rayleigh-quotient of a Hermitian
matrix A is stated as

P new = µQR
P (ξ), (6.6)

where ξ ∈ TPM is the solution of the equation

HρA(P )ξ = −grad ρA(P ). (6.7)

For an explicit expression of the Newton direction ξ, recall first the multilinear maps
ΨA,j : hern1 × · · · × hernr

→ Cnj×nj defined by

tr
(
A†(X1 ⊗ · · · ⊗XjZ ⊗ · · ·Xr)

)
= tr

(
ΨA,j(X1, . . . , Inj , . . . , Xr)†Z

)
,

for all Z ∈ Cnj×nj and j = 1, . . . , r. To simplify the exposure, denote

Âj := ΨA,j(P1, . . . , Inj , . . . , Pr) (6.8)

and remind that Âj is Hermitian for all P ∈ Gr×(m,n) and j = 1, . . . , r.
Replacing the objects in (6.7) by their explicit form computed in Chapter 3, we get the
following:

− adPj ad
Âj
ξj +

r∑
k=1,k ̸=j

ad2
Pj

ΨA,j(P1, . . . , Inj , . . . , ξk, . . . , Pr) = −ad2
Pj
Âj , (6.9)

for all j = 1, . . . , r. Solving the system (6.9) in the embedding space hern1 × · · · × hernr

requires 2(n2
1 + · · · + n2

r) parameters. By exploiting the particular structure of the
tangent vectors

ξj = Θ†
jζjΘj = Θ†

j

 0 Zj

Z†
j 0

Θj ∈ TPj Grmj ,nj , (6.10)

where Θj ∈ SUnj and Zj ∈ Cmj×(nj−mj), the number of parameters is reduced to the
dimension of the tangent space TP Gr×(m,n), i.e. 2(m1(n1 −m1)+ · · ·+mr(nr −mr)).
Multiplying the system (6.9) from the left with Θj and from the right with Θ†

j , we
reduce it to a system in Zj ∈ Cmj×(nj−mj), i.e.

Ψ′
jZj − ZjΨ′′

j −
r∑

k=1,k ̸=j

Φj(Zk) = Ψ′′′
j . (6.11)

An explicit form for Ψ′
j , Ψ′′

j , Ψ′′′
j and Φj(Zk) is given in what follows.

Let

Θj =
[
Uj

Vj

]
∈ SUnj , (6.12)
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where Uj and Vj are mj × nj and (nj −mj) × nj matrices, respectively. Then,

Ψ′
j = UjÂjU

†
j , Ψ′′

j = VjÂjV
†

j , Ψ′′′
j = UjÂjV

†
j . (6.13)

For expressing Φj(Zk) with j < k , we introduce the multilinear operators

ΨA,j,k : hern1 × · · · × hernr
→ Cnj ·nk×nj ·nk

defined in a similar way as ΨA,j by

tr
(
A(X1 ⊗· · ·⊗XjS⊗· · ·⊗XkT⊗· · ·⊗Xr)

)
= tr

(
ΨA,j,k(X1, . . . , Xr)(S⊗T )

)
, (6.14)

for all S ∈ Cnj×nj and T ∈ Cnk×nk .

For convenience, we will use the following shortcut

Âjk := ΨA,j,k(P1, . . . , Inj , . . . , Ink
, . . . , Pr) (6.15)

and can argue similarly to Âj that Âjk is a Hermitian matrix of size njnk × njnk.
Furthermore, we partition the matrix Âjk into block form

Âjk =



â11 â12 · · · â1nj

â†
12 â22 · · · â2nj

...
...

...
...

â†
1nj

â†
2nj

· · · ânjnj


, (6.16)

where each âst is an nk × nk matrix.
Then, the linear map Φj : Cmk×(nk−mk) → Cmj×(nj−mj) is given by

Zk 7→ Φj(Zk) = Uj

[
tr(UkâstV

†
k Z

†
k + ZkVkâ†

stU
†
k)
]nj

s,t=1

V †
j . (6.17)

The squared norm of the gradient of ρA at P can be expressed as

∥grad ρA(P )∥2 = 2
r∑

j=1
∥Ψ′′′

j ∥2 (6.18)

and hence, the complete Newton-like algorithm for the optimization of ρA on the Rie-
mannian manifold Gr×(m,n) is given in Table 6.1.
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The Newton-like algorithm can be generalized to determine the zeros of the vector
field

XA : Gr×(m,n) → TGr×(m,n),

(P1, . . . , Pr) 7→ ([Ω1, P1] + [P1, [P1, S1]], . . . , [Ωr, Pr] + [Pr, [Pr, Sr]]),
(6.19)

where A ∈ CN×N is not necessarily Hermitian. Here, Sj and Ωj denote the Hermitian
and respectively the skew-Hermitian part of Âj , for j = 1, . . . , r. In this case, the
Newton-like update is given as

P new = µQR
P (ξ) with ∇ξXA(P ) = −XA(P ).

From the formula (2.3) which defines the Levi-Civita connection on a submanifold, the
Newton equation is writen in an implicit form as

ad2
Pj

adΩjξj − adPj adSjξj +
r∑

k=1,k ̸=j

ad2
Pj
Ŝjk = adPj Ωj − ad2

Pj
Sj ,

where Ŝjk is the Hermitian part of ΨA,j(P1, . . . , Inj , . . . , ξk, . . . , Pr). Following the exact
steps as in the case of the Newton-like method for the optimization of the generalized
Rayleigh-quotient, one gets

Ψ′
jZj − ZjΨ′′

j −
r∑

k=1,k ̸=j

Φj(Zk) + Λj(Zk)†

2
= −Ψ′′′′

j

where Φj(Zk) and Ψ′
j ,Ψ′′

j ,Ψ′′′
j ,Ψ′′′′

j are determined as in (6.17) and

Θ†
jÂjΘj =

 Ψ′
j Ψ′′′

j

Ψ′′′′
j Ψ′′

j

 . (6.20)

Moreover, Λj(Zk) is given similar to Φj(Zk) by

Zk 7→ Φj(Zk) = Vj

[
tr(UkâstV

†
k Z

†
k + ZkVkâ†

stU
†
k)
]nj

s,t=1

U †
j .
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ALGORITHM 1. N-like algorithm for the optimization of ρA on Gr×(m,n)

Step 1. Starting point: Given P = (P1, . . . , Pr) ∈ Gr×(m,n) choose

Θj =

 Uj

Vj

 ∈ SUnj , UjU
†
j = Imj , VjV

†
j = Inj−mj ,

such that Pj = Θ†
jΠjΘj , for j = 1, . . . , r.

Step 2. Stopping criterion: If ∥gradρA
(P )∥/ρA(P ) < err then STOP.

Step 3. Newton direction: Set

Âj := ΨA,j(P1, . . . , Inj , . . . , Pr)

and compute Ψ′
j , Ψ′′

j , Ψ′′′
j as in (6.13), for j = 1, . . . , r. Set

Âjk := ΨA,j,k(P1, . . . , Inj , . . . , Ink
, . . . , Pr)

and compute Φj(Zk) as in (6.17), for j, k = 1, . . . , r, with j < k. With Φk(Zj) =
Φj(Zk)† solve the Newton equation

Ψ′
jZj − ZjΨ′′

j −
r∑

k=1,k ̸=j

Φj(Zk) = Ψ′′′
j ,

to obtain Zj ∈ Cmj×(nj−mj), for j = 1, . . . , r.

Step 4. QR-updates:

Θnew
j =

 Imj −Zj

Z†
j Inj−mj


Q

Θj and Pnew
j = Θnew†

j ΠjΘnew
j , (6.21)

for all j = 1, . . . , r. Here [ ]Q refers to the Q part from the QR factorization.

Step 5. Set P := P new, Θ := Θnew and return to Step 2.

Table 6.1:
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6.1.2 Convergence proof and suggestions for implementation.

It was proved in [32] that under the assumption

DµP (0) = DνP (0), (6.22)

on the two families of local parametrization µP and νP , the Newton-like iteration (6.2)
converges quadratically to a critical point of the cost function, when it starts in a
sufficiently small neighborhood of this critical point. Since in the case when µP = µexp

P

and νP = µQR
P the condition (6.22) holds (we refer to [32] for the proof), we can state

the following convergence result and mention the literature [32, 40] for the proof.

Theorem 6.1.1 Let A ∈ herN and P ∗ ∈ M be a nondegenerate critical point of the
generalized Rayleigh-quotient ρA, then the sequence generated by the N-like algorithm
(Table 6.1) converges locally quadratically to P ∗.

Keeping in mind the objects and their definition from the previous section, we
will give some suggestions regarding the computational aspects of the Newton-like
algorithm. The convergence of the Newton-like method (6.2) is not guaranteed for
arbitrary starting points and even in the case of convergence the limiting point need
not be a local maximizer or local minimizer of the cost function. How could one
overcome this, in particular in the case of maximizing ρA, where there is no closed
form characterization of the stationary points of ρA available? A classical approach in
the literature combines Newton steps with gradient steps, see [25]. More precisely, one
starts in an arbitrary point and verifies if the Newton direction is ascending, else takes
the gradient as the new direction. Furthermore, one can make an iterative line-search in
the ascending direction to guarantee convergence to a local maximizer. Our numerical
experiments have proved that this is a lengthy procedure and not recommended for
large size problems. Instead of the gradient direction, we propose an alternating least
square method, i.e. at each step we perform the following optimization task to obtain
a new update (P1, . . . , Pr) ∈ Gr×(m,n)

max
Pj∈Grmj ,nj

tr(ÂjPj), (6.23)

for all j = 1, . . . , r. This procedure is a generalization of the well-known Power method
[27] use to determine the biggest eigenvalue of a matrix, and is immediately solved by
a truncated singular value decomposition (SVD) of Âj . It was proved by Golub and
Zuhang in [79] that for the best rank-one tensor approximation problem, the HOOI
method converges globally with at most linear rate to a critical point of ρA. In general,
being an alternating least square method, it converges locally, see [6, 58, 62].

Further, for given A ∈ herN and fixed P ∈ Gr×(m,n) we suggest methods that
efficiently compute Âj and Âjk given by (6.8) and (6.15) respectively. In the general
case, the computation of Âj and Âjk is performed according to formula (4.9), but this
can be notably simplified when we tackle the specified applications of the generalized
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Rayleigh-quotient on Gr×(m,n), i.e. best low-rank tensor approximation and subspace
clustering problem.

Best low-rank tensor approximation. In the first case, the matrix A ∈ herN is
of rank -1, i.e. A = vv†, with v = vec(A) and A ∈ Cn1×···×nr . From (4.25) and the
definition of matrix unfolding along the j−th direction, it follows that

(A ×1 U1 ×2 · · · ×r Ur)(j) = Uj(A ×1 U1 ×2 · · · ×j Inj ×j+1 · · · ×r Ur)(j), (6.24)

where Uj are given in (6.12), for j = 1, . . . , r.
Recall that A(j) refers to the matrix unfolding along direction j of a tensor A.
The Frobenius norm of a tensor (4.29) has the obvious property

∥A∥2 = ∥A(1)∥2 = · · · = ∥A(r)∥2. (6.25)

By denoting B := A ×1 U1 ×2 · · · ×j Inj ×j+1 · · · ×r Ur, from (6.24) and (6.25) it holds

ρA(P ) = ∥A ×1 U1 ×2 · · · ×r Ur∥2 = ∥B ×j Uj∥2 = ∥UjB(j)∥2 = tr
(
B(j) ·B†

(j)Pj

)
,

for j = 1, . . . , r. Since ρA(P ) = tr(ÂjPj) it follows that we can take

Âj = B(j) ·B†
(j) ∈ hernj

, (6.26)

for j = 1, . . . , r.

Similar, by denoting C := A ×1 U1 ×2 · · · ×j Inj ×j+1 · · · ×k Ink
×k+1 · · · ×r Ur and

recalling that C(j,k) stands for the (j, k)−th mode matrix of C,

Âjk = C(j,k) · C†
(j,k) ∈ hernjnk

, (6.27)

for j, k = 1, . . . , r with j ̸= k.

Remark 6.1.2 In a more general framework, if A ∈ herN is semipositive definite
of a certain rank K considerably smaller than N , one can use iteratively the same
procedure as in the case of rank-1 matrices to compute Âj and Âjk. Explicitly, there
exists a matrix X ∈ CN×K such that A = XX†. If xk denote the columns of X, then
A = x1x

†
1 + · · · + xKx

†
K and hence ρA(P ) = ρ

x1x†
1
(P ) + · · · + ρ

xKx†
K

(P ).

Subspace clustering. For the problem of recovering subspaces from data points
xl ∈ Cn with given L ∈ N, the matrix A has the form

A =
L∑

l=1
xlx

†
l ⊗ · · · ⊗ xlx

†
l︸ ︷︷ ︸

r times

.
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As in the previous application, one doesn’t work directly with the matrix A, but with
the data points xl. In particular, from the properties of the trace function and matrix
Kronecker product one has

Âj =
L∑

l=1

( r∏
i=1
i̸=j

∥Pixl∥2
)
xlx

†
l (6.28)

and

Âjk =
L∑

l=1

( r∏
i=1

i̸=j,i̸=k

∥Pixl∥2
)
xlx

†
l ⊗ xlx

†
l . (6.29)

Low cost QR-update. The computation of geodesics on matrix manifolds usually
requires the matrix exponential map, which is in general an expensive procedure of order
O(n3). Yet, for the particular case of the Grassmann manifold Grm,n, Gallivan et.al. [24]
have developed an efficient method to compute the matrix exponential, reducing the
complexity order to O(nm2) (m < n). Our approach, however, is based on a first
order approximation of the matrix exponential e[ζ,Π] followed by a QR-decomposition
to preserve orthogonality/unitarity. Let X denote the matrix In + [ζ,Π], i.e.

X :=

 Im −Z

Z† In−m

 (6.30)

and X = (X)Q(X)R be the QR−decomposition of X and Z = UΣV † with U ∈
SUm, V ∈ C(n−m)×m, V †V = Im and Σ ∈ Cm×m diagonal, the singular value decom-
position of Z. Since

XX† = X†X = (X)Q(X)R(X)†
R(X)†

Q = (X)†
R(X)R

=

 Im + ZZ† 0

0 In−m + Z†Z

 ,
by the singular value decomposition of Z it follows that

XX† = W


Im + ΣΣ† 0 0

0 Im + Σ†Σ 0

0 0 In−2m

W
†,

where

W :=

 U † 0 0

0 V V ′

 ∈ SUn, D :=
√
Im + Σ†Σ, (6.31)
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and [V V ′] ∈ SUn−m is an unitary completion of V . Hence, (X)Q is explicitly given
by

(X)Q = W


D−1 ΣD−1 0

−Σ†D−1 D−1 0

0 0 In−2m

W
†. (6.32)

The computational complexity of this QR-factorization is of order O((n−m)m2). To
solve the system (6.11), one can rewrite it as a linear equation on Rd (d is the dimension
of Gr×(m,n)) using matrix Kronecker products and vec−operations, then solve this
by any linear equation solver.

6.1.3 Newton-like algorithm on LG×(m)

We give the Newton-like iteration for the optimization of the generalized Rayleigh-
quotient of a matrix A ∈ herN on the direct product of complex Lagrangian Grass-
mannian manifolds LG×(m) and we mention that it can be similarly given for the
classical cases of direct product of Lagrangian Grassmannian manifolds. As a subman-
ifold of Gr×(m,n), the Newton-like algorithm on LG×(m) is a simplified version of the
Newton-like algorithm on Gr×(m,n).

Let A ∈ herN and let P ∗ ∈ LG×(m) be a nondegenerated stationary point of ρA

on LG×(m). For P ∈ LG×(m) in the neighborhood of P ∗, the Newton-like iteration is
given as

P new = µQR
P

(
−(πP HρA(P ))−1πP grad ρA(P )

)
, (6.33)

where grad ρA(P ) and HρA(P )) are the gradient and respective the Hessian of ρA at
P on Gr×(m,n) and

πP : TP Gr×(m,n) → TP Gr×(m,n),

(ξ1, . . . , ξr) 7→
(
ξ1 + J1ξ1J1

2
, . . . ,

ξr + JrξrJr

2

) (6.34)

is the orthogonal projector onto TP LG×(m). Recall from Chapter 4 that Jj is the
standard symplectic form on Cnj , for j = 1, . . . , r. As before Âj is the shortcut for
ΨA,j(P1, . . . , Inj , . . . , Pr) and Xh is the Hamiltonian part of X ∈ hernj

, i.e. Xh :=
X + JjXJj)/2. Then, the Newton equation

πP (HρA(P ))ξ = −πP grad ρA(P )

becomes

−adPj ad(Âj)h
ξj +

r∑
k=1,k ̸=j

ad2
Pj

(
ΨA,j(P1, . . . , Xj , . . . , ξk, . . . , Pr)

)
h

= −ad2
Pj

(Âj)h,
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which reduces to the task of determining Hermitian solutions Zj ∈ hermj
of

(Ψ′
j − Ψ′′

j )Zj − Zj(Ψ′′
j − Ψ′

j) −
r∑

k=1,k ̸=j

Φj(Zk) + (Φj(Zk))† = Ψ′′′
j + (Ψ′′′

j )†, (6.35)

for j = 1, . . . , r. The terms Ψ′
j ,Ψ′′

j ,Ψ′′′
j and Φj(Zk) are computed by (6.13) and (6.17)

respectively. The Newton-like algorithm for the optimization of ρA on the Riemannian
manifold LG×(m) is given in Table 6.2.
For the generalized Lagrange-Grassmannian LGn, a computational cheap QR−update
is given by  Im −Z

Z Im


Q

= W

 D−1 ΣD−1

−Σ†D−1 D−1

W †, (6.36)

where

W :=

 U † 0

0 U

 ∈ SUn, D :=
√
Im + Σ2, (6.37)

and U ∈ SUm gives the singular value decomposition Z = UΣU † with Σ ∈ Rm×m

diagonal. In this case, the numerical complexity is given only by the singular value
decomposition of Z and hence is of order O(m3), where m = n/2.

The convergence of the sequence generated by the Newton-like iteration (6.33) con-
verges quadratically to a critical point of ρA when starting in the neighborhood of that
point. For the proof, see the literature [32]. The question is how to get in the neighbor-
hood of a critical point of ρA? One idea would be to combine the Newton-like direction
with a steepest ascent direction, or one could try an alternating least square approach
as in the case of the Grassmann manifold. However, for the optimization (6.23) on the
Lagrange-Grassmannian manifold, presently there is no closed form solution for the
maximizers.
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ALGORITHM 1’. N-like algorithm for the optimization of ρA on LG×(m)

Step 1. Starting point: Given P = (P1, . . . , Pr) ∈ LG×(m) choose

Θj =

 Uj

Vj

 ∈ Ŝp(mj), UjU
†
j = Imj , VjV

†
j = Inj−mj ,

such that Pj = Θ†
jΠjΘj , for j = 1, . . . , r.

Step 2. Stopping criterion: ∥gradρA
(P )∥/ρA(P ) < ε.

Step 3. Newton direction: Set

Âj := ΨA,j(P1, . . . , Inj , . . . , Pr), (Âj)h := JjÂjJj + Âj (6.38)

and compute Ψ′
j , Ψ′′

j , Ψ′′′
j as in (6.13), for j = 1, . . . , r.

Set
Âjk := ΨA,j,k(P1, . . . , Inj , . . . , Ink

, . . . , Pr)

and compute Φj(Zk) as in (6.16) and (6.17), for j, k = 1, . . . , r, with j < k. Solve
the Newton equation

(Ψ′
j − Ψ′′

j )Zj − Zj(Ψ′′
j − Ψ′

j) −
r∑

k=1,k ̸=j

Φj(Zk) + (Φj(Zk))† = Ψ′′′
j + (Ψ′′′

j )†, (6.39)

to obtain Zj ∈ hernj
, for j = 1, . . . , r.

Step 4. QR-updates:

Θnew
j = Θj

 Imj −Zj

Zj Inj−mj


Q

and P new
j = ΘjΠjΘnew†

j (6.40)

for all j = 1, . . . , r. Here [ ]Q refers to the Q part from the QR factorization.

Step 5. Set P := P new, Θ := Θnew and go to Step 2.

Table 6.2:
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6.2 Riemannian conjugate gradient algorithm
The quadratic convergence of the Newton-like algorithm has the drawback of high
computational complexity. Solving the Newton equation (6.11) (resp. (6.35)) yields
a cost per iteration of order O(d3), where d is the dimension of Gr×(m,n) (resp.
LG×(m)). In what follows, we offer as an alternative to reduce the computational costs
of the Newton-like algorithm by a conjugate gradient method. The linear conjugate
gradient (LCG) method is used for solving large systems of linear equations with a
symmetric positive definite matrix, which is achieved by iteratively minimizing a convex
quadratic function x†Ax. The initial direction d0 is chosen as the steepest descent and
every forthcoming direction dj is required to be conjugate to all the previous ones, i.e.
d†

jAdk = 0, for all k = 0, · · · , j − 1, [21, 25, 64]. The exact maximum along a direction
gives the next iterate. Hence, the optimal solution is found in at most n steps, where n
is the dimension of the problem. Nonlinear conjugate gradient (NCG) methods use the
same approach for general functions f : Rn → R, not necessarily convex and quadratic.

The update rule reads as

xnew = x+ αd and dnew = −∇f(xnew) + βd, (6.41)

where the step-size α is obtained by a line search in the direction d

α = arg min
t

f(x+ td) (6.42)

and β is given by one of the formulas:

Fletcher − Reeves : βFR := ∇f(xnew)T ∇f(xnew)
∇f(x)T ∇f(x)

,

Polak − Ribiere : βPR := ∇f(xnew)T (∇f(xnew) − ∇f(x))
∇f(x)T ∇f(x)

,

Hestenes − Stiefel : βHS := ∇f(xnew)T (∇f(xnew) − ∇f(x))
dT (∇f(xnew) − ∇f(x))

,

or others.

Table 6.3: The Euclidean conjugate gradient method for the optimization of a function
f : Rn → R, not necessarily convex and quadratic.

We refer to [68] for the generalization of the NCG method to a Riemannian manifold.
For the computation of the step-size along the geodesic in direction ξ, an exact line
search — as in the classical case — is an extremely expensive procedure. Therefore,
one commonly approximates (6.42) by an Armijo-rule, which ensures at least that the
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step length decreases the function sufficiently. We, however, have decided to compute
the step-size by performing a one-dimensional Newton-step along the geodesic, since
in the neighborhood of a critical point one Newton step can lead very close to the
solution. Starting at a point P ∈ M and moving in the direction ξ ∈ TPM we arrive
in P new ∈ M. To compute a new direction, a “transport” of the old direction ξ from
TPM to the tangent space TP newM is required. We denote this transport with τξ and
we refer to (2.5) for an explicit formula.

In what follows, we describe the Riemannian conjugate gradient for the maxi-
mization of the generalized Rayleigh-quotient of a Hermitian matrix A ∈ herN on
M := Gr×(m,n) or M := LG×(m).

Choose P ∈ M in a neighborhood of P ∗, denote ξ := grad ρA(P ) and perform
the following update

P new := µQR
P (αξ). (6.43)

The step-size α is computed as

α = − (ρA ◦ γ)′(0)
(ρA ◦ γ)′′(0)

, (6.44)

where γ : I → M is the unique geodesic through P in direction ξ. The new
direction ξnew ∈ TP newM is given by

ξnew = grad ρA(P new) + βτξ (6.45)

with

Fletcher − Reeves : βFR := ⟨grad ρA(P new), grad ρA(P new)⟩
⟨grad ρA(P ), grad ρA(P )⟩

,

Polak − Ribiere : βPR := ⟨grad ρA(P new), grad ρA(P new) − τgrad ρA(P )⟩
⟨grad ρA(P ), grad ρA(P )⟩

,

Hestenes − Stiefel : βHS := ⟨grad ρA(P new), grad ρA(P new) − τgrad ρA(P )⟩
⟨grad ρA(P ), grad ρA(P new) − τgrad ρA(P )⟩

.

(6.46)

Table 6.4: Riemannian conjugate gradient algorithm for the maximization of ρA on
M := Gr×(m,n) or M := LG×(m).

The above algorithm can be generalized to the task of finding the zeros of a vector
filed X on M as follows. The initial direction is chosen as ξ = X(P ) and the step-size
is computed acording the formula

α = − ⟨X(P ), ξ⟩
⟨∇ξX(P ), ξ⟩

.
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Then, the new direction will be

ξnew = X(P new) + βτξ,

where P new = µQR
P (αξ), β is given via one of the formulas in (6.46) with grad ρA(P )

replaced by X(P ) and grad ρA(P new) by X(P new).

Next, we give an explicit formula for the parallel transport of a tangent vector in
our particular cases of Gr×(m,n) and LG×(m). Let Θ := (Θ1, · · · ,Θr) be such that
Θ†

kPkΘk = Πk. Furthermore, let P new := (P new
1 , · · · , P new

r ) denote the updated point
in Gr×(m,n) via the QR-coordinates as in (6.21). According to (2.5) and (6.4), the
parallel transport of ξ to TP newGr×(m,n) along the curve µQR

P (tξ) is given by the
formula

ξj 7→ Θ†
j

 Imj −Zj

Z†
j Inj−mj


Q

ΘjξjΘ†
j

 Imj Zj

−Z†
j Inj−mj


Q

Θj , (6.47)

with Zj ∈ Cmj×(nj−mj) as in (6.10), for j = 1, · · · , r. By parallel transporting ξj ∈
TPj Grmj ,nj to ξnew

j ∈ TP new
j

Grmj ,nj , the pull-back of ξj and ξnew
j to the tangent space

of the standard projector does not change, i.e.

ξnew
j = (Θnew

j )†

 0 Zj

Z†
j 0

Θnew
j . (6.48)

The complete Riemannian conjugate gradient algorithm for the optimization of the
generalized Rayleigh-quotient on Gr×(m,n) and on LG×(m) is presented in Table 6.5
and Table 6.6 respectively.

It is recommended to reset the search direction to the steepest ascent direction
after d iterations, i.e. Znew

k := gnew
k , k = 1, . . . , r, where d refers to the dimension of

the manifold.

The convergence properties of the NCG methods are in general difficult to analyze.
Yet, under moderate supplementary assumptions on the cost function one can guarantee
that the NCG converges to a stationary point [57]. It is expected that the proposed
Riemannian conjugate gradient method has properties similar to those of the NCG.
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ALGORITHM 2. RCG algorithm on Gr×(m,n)

Step 1. Starting point: Given P = (P1, . . . , Pr) ∈ Gr×(m,n) choose

Θj =

 Uj

Vj

 ∈ SUnj , UjU
†
j = Imj , VjV

†
j = Inj−mj ,

such that Pj = Θ†
jΠjΘj , for j = 1, . . . , r.

Initial direction: Set

Âj := ΨA,j(P1, . . . , Inj , . . . , Pr),

compute Ψ′
j , Ψ′′

j , Ψ′′′
j as in (6.13) and take the steepest ascent direction

Zj = gj := Ψ′′′
j ,

for j = 1, . . . , r. Denote Z := (Z1, . . . , Zr), g := (g1, . . . , gr).
Step 2. Stopping criterion: ∥gradρA

(P )∥/ρA(P ) < ε.
Step 3. QR-updates:

Θnew
j =

 αImj −αZj

αZ†
j αInj−mj


Q

Θj , Pj = Θnew†
j ΠjΘnew

j ,

with the step-size given by α = −a/(b+ c), where

a :=
r∑

j=1
tr
(

Ψ′′′
j Z

†
j

)
, b :=

r∑
j=1

tr
(

Ψ′
jZjZ

†
j − ZjΨ′′

jZ
†
j

)
,

c :=
r−1∑
j=1

r∑
k=j+1

ρA(P1, . . . , ξj , . . . , ξk, . . . , Pr),

for j = 1, . . . , r. The tangent vectors ξj are given in (6.10).
Step 4. Set P := P new and Θ := Θnew.
Step 5. New direction: Update Ψ′

j , Ψ′′
j , Ψ′′′

j as in (6.13) and compute the new
direction

Znew
j = gnew

j + β Zj , g
new
j := Ψ′′′

j ,

for j = 1, . . . , r. Here, β is given by the Polak-Ribiere formula

β = ⟨gnew, gnew − g⟩
⟨g, g⟩

Step 6. Set g := gnew, Z := Znew and go to Step 2.

Table 6.5:
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ALGORITHM 2’. RCG algorithm on LG×(m)

Step 1. Starting point: Given P = (P1, . . . , Pr) ∈ LG×(m) choose

Θj =

 Uj

Vj

 ∈ Ŝp(nj), UjU
†
j = Imj , VjV

†
j = Inj−mj ,

such that Pj = Θ†
jΠjΘj , for j = 1, . . . , r.

Initial direction: Set
Âj := ΨA,j(P1, . . . , Inj , . . . , Pr),

compute Ψ′
j , Ψ′′

j , Ψ′′′
j as in (6.13) and take the steepest ascent direction

Zj = gj := Ψ′′′
j + Ψ′′′†

j ,

for j = 1, . . . , r. Denote Z := (Z1, . . . , Zr), g := (g1, . . . , gr).
Step 2. Stopping criterion: ∥gradρA

(P )∥/ρA(P ) < ε.
Step 3. QR-updates:

Θnew
j = Θj

 αImj αZj

−αZj αInj−mj


Q

, Pj = ΘjΠjΘnew†
j ,

with the step-size given by α = −a/(b+ c), where

a := 1
2

r∑
j=1

tr
(

(Ψ′′′
j + Ψ′′′†

j )Z†
j

)
, b :=

r∑
j=1

tr
(
Zj(Ψ′

j − Ψ′′
j )Zj

)
,

c :=
r−1∑
j=1

r∑
k=j+1

ρA(P1, . . . , ξj , . . . , ξk, . . . , Pr),

for j = 1, . . . , r. The tangent vectors ξj are given in (6.10).
Step 4. Set P := P new and Θ := Θnew.
Step 5. New direction: Update Ψ′

j , Ψ′′
j , Ψ′′′

j as in (6.13) and compute the new
direction Znew

j = gnew
j + β Zj , g

new
j := (Ψ′′′

j + Ψ′′′†
j ),

for j = 1, . . . , r. Here, β is given by the Polak-Ribiere formula

β = ⟨gnew, gnew − g⟩
⟨g, g⟩

Step 6. Set g := gnew, Z := Znew and go to Step 2.

Table 6.6:
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6.3 Numerical experiments on Gr×(m, n)

In this section we run several numerical experiments suitable for the applications men-
tioned in Chapter 3.1, i.e. best rank approximation for tensors and subspace clustering,
to test the Newton-like (N-like) and Riemannian conjugate gradient (RCG) algorithms.
The algorithms were implemented in MATLAB on a personal notebook with 1.8 GHz
Intel Core 2 Duo processor.

6.3.1 Best multilinear rank-(m1, . . . , mr) tensor approximation.

To test the performance of the N-like and RCG algorithms, we have considered several
examples of tensors of order 3 and 4 with entries chosen from the standard normal
distribution and we have estimated their best low-rank approximation. We have started
with a truncated HOSVD ([50]) and run several HOOI iterates before starting the N-like
or RCG iterations. Depending on the size of the tensor, the number of HOOI iterations
necessary to reach the region of attraction of a stationary point P ∗ ∈ Gr×(m,n),
ranges from 10 to 100. As a stopping criterion we have chosen the relative norm of
the gradient ∥gradρA

(P )∥/ρA(P ) to be approximately 10−13 in machine precision, i.e.
∥gradρA

(P )∥/ρA(P ) ≈ 10−13.
Computational complexity. The computational complexity of the N-like method

is determined by the computation of the Hessian and the solution of the Newton equa-
tion (6.39). Thus, for the best rank-(m,m,m) approximation of a n × n × n tensor,
the computation of the Hessian is dominated by tensor-matrix multiplications and is
of order O(n3m). Solving the Newton equation by Gaussian elimination gives a com-
putational complexity of order O(m3(n − m)3), i.e. the dimension of the manifold to
the power of three. For the computational costs of the RCG method we have to take
into discussion only tensor-matrix multiplications, which give a cost per RCG iteration
of order O(n3m).

Experimental results and previous work. The problem of best low-rank
tensor approximation has enjoyed a lot of attention recently. Apart from the well
known higher order orthogonal iterations – HOOI ([51]), various algorithms which
exploit the manifold structure of the constraint set have been developed. We refer to
[20, 41] for Newton methods, to [66] for quasi-Newton methods and to [42] for conjugate
gradient and trust region methods on the Grassmann manifold. Similar to the Newton
methods in [20, 41], our N-like method converges quadratically to a stationary point of
the generalized Rayleigh-quotient when starting in its neighborhood.

We have compared our algorithms with the existing ones in the literature for several
tensor instances: quasi-Newton with BFGS, Riemannian conjugate gradient method
which uses the Armijo-rule for the computation of the step-size (CG-Armijo), and
HOOI. The algorithms were run on the same platform, identically initialized by a
truncated HOSVD ([50]) and having the same stopping criterion. For the BFGS quasi-
Newton and limited memory quasi-Newton (L-BFGS) methods we have used the code
available in [60].
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Figure 6.1: Convergence for multilinear rank tensor approximation: number of itera-
tions versus the relative norm of the gradient ∥gradρA

(Pn)∥/ρA(Pn) at a logarithmic
scale. Left: 100 × 100 × 100 tensor approximated by a rank-(5, 5, 5) tensor. Right:
100 × 150 × 200 tensor approximated by a rank-(15, 10, 5) tensor.

Fig. 6.1 shows convergence results for two large size tensors 100 × 100 × 100 and
100×150×200 approximated by rank-(5, 5, 5) and rank-(15, 10, 5) tensors, respectively.
In Fig. 6.2 we plot the convergence behavior of the RCG method for the best rank-
(10, 10, 10) approximation of a 200 × 200 × 200 tensor (left) and for the best rank-
(5, 5, 5, 5) approximation of a 4 order tensor 50 × 50 × 50 × 50. Due to the limited
memory space allowance, we were not able to run the N-like and BFGS quasi-Newton
algorithms for the example on the left. In this case it was still possible to run RCG,
L-BFGS, CG-Armijo and HOOI. We did not run the N-like algorithm for the example
on the right as well, but not because of memory limitation, but because of the huge
number of HOOI iterations necessary to reach the area of attraction for the N-like
iteration.

As the numerical experiments have shown, the N-like method has the advantage of
fast convergence rate. However, for very large size problems, the N-like algorithm can
not be applied, as mentioned before. Even in the cases when it is possible to apply N-
like algorithm, it needs a large amount of time per iteration. As an example, for the best
rank-(10, 10, 10) of a 180 × 180 × 180 tensor, one N-like iteration took 3 minutes. With
the same problem are confronted algorithms which explicitly compute the Hessian and
solve the Newton equation, such as [20, 41], but also the trust region method in [42],
which approximately solves the Newton equation by a truncated conjugate gradient
algorithm and does not compute explicitly the Hessian, but its action on a tangent
vector. On the other hand, the low cost iterations of the RCG method makes it a
good candidate to solve large size problems. The convergence rate is comparative to
that of the BFGS quasi-Newton method in [60], at much lower computational costs.
In the examples in which the tensor is a small perturbation of a low-rank tensor, our
RCG algorithm manifests a quadratic convergence. For a general tensor, which is not
a small perturbation of a low-rank tensor, the CG-Armijo and HOOI methods required
an extremely high number of iterations to reach a stationary point.
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Figure 6.2: Convergence for multilinear rank tensor approximation: number of itera-
tions versus the relative norm of the gradient ∥gradρA

(Pn)∥/ρA(Pn) at a logarithmic
scale. Left: 200 × 200 × 200 tensor approximated by a rank-(10, 10, 10) tensor. Right:
50 × 50 × 50 × 50 tensor approximated by a rank-(5, 5, 5, 5) tensor.

In Table 6.7 we display the average CPU times (100 trials for each instance) neces-
sary to compute a low rank best approximation for tensors of different sizes and orders
by N-like, RCG, BFGS and L-BFGS quasi-Newton methods.

Table 6.7: Average CPU Time

Tensor size and rank N-like RCG BFGS L-BFGS

50 × 50 × 50, rank-(7, 8, 5) 2 s 6 s 24 s 13 s

100 × 100 × 100, rank-(5, 5, 5) 70 s 75 s 150 s 94 s

100 × 150 × 200, rank-(15, 10, 5) 1 min/it 9 min 25 min 15 min

200 × 200 × 200, rank-(5, 5, 5) - 11 min - 14 min

50 × 50 × 50 × 50, rank-(5, 5, 5, 5) 2.5 s/it 9 min 11 min -

Conclusions. As expected, there is no guarantee that the N-like and RCG itera-
tions converge to a local maximizer of the generalized Rayleigh-quotient. However, in
the examples shown in Fig.6.1 and Fig.6.2 the limiting points are local maximizers of
the generalized Rayleigh-quotient. The RCG method has very cheap iterations as well
as a good convergence rate. Our experiments exhibit shortest CPU time for the RCG
method. In the implementation of the RCG, we have used the Polak-Ribiere strategy
for the computation of a new direction, since it turned out to be the most efficient for
these type of applications, see Figure 6.3.
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Figure 6.3: Comparison between the convergence speed of RCG method with Polak-
Ribiere, Hestens-Stiefel and Fletcher-Reeves strategies in the case of the rank-(5, 5, 5)
approximation of randomly chosen tensors of size 10×10×10 (left) and size 50×50×50
(right).

6.3.2 Subspace clustering

The experimental setup consists in choosing r subspaces in R3 (r = 2, 3 and 4) and
collections of 200 randomly chosen1 points on each subspace. Then, the sample points
are perturbed by adding zero-mean Gaussian noise with standard deviation varying
from 0% to 5% in the different experiments. Now, the goal is to detect the exact
subspaces or to approximate them as good as possible. For this purpose, we apply our
N-like and RCG algorithms to solve the associated optimization task, cf. Section 3.1.
The error between the exact subspaces and the estimated ones is measured as in [73],
i.e.

err := 1
r

r∑
j=1

arccos
( 1
m2

j

| tr(PjP̃j)|
)
, (6.49)

where Pj is the orthogonal projector corresponding to the exact subspace and P̃j the
orthogonal projector corresponding to the estimated one.

In the case of unperturbed data, we have shown that the global minimizer of ρA

yields the exact subspaces, thus we expect that for noisy data the global minimizer still
gives a good approximation. Since ρA has many local optima, for an arbitrary starting
point our algorithms can converge to stationary points which lead to a significant
error between the exact subspaces and their approximation. Thus, in what follows,
we briefly describe a method (PDA, see below) for computing a suitable initial point
which guarantees the convergence of our algorithms towards a good approximation of
the exact subspaces in our numerical experiment:

The Polynomial Differential Algorithm (PDA) was proposed in [73]. It is a purely
algebraic method for recovering a finite number of subspaces from a set of data points

1The points have been generated by fixing an orthogonal basis within the subspaces and choosing
corresponding coordinates randomly with a uniform distribution over the interval [−5, 5].
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Figure 6.4: Left: Data points drawn from the union of two subspaces of dimension 2
(through the origin) of R3. Right: Data points from the left figure slightly perturbed
by zero mean Gaussian noise with 5% standard deviation.

belonging to the union of these subspaces. From the data set finitely many homoge-
neous polynomials are computed such that their zero set coincides with the union of
the sought subspaces. Then, an evaluation of their derivatives at given data points
yields successively a basis of the orthogonal complement of subspaces one is interested
in. For noisy data, a slightly modified version of PDA [73] yields an approximation of
the unperturbed subspaces. This “first" approximation turned out to be a good start-
ing point for our iterative algorithms which significantly improved the approximation
quality.

For each noise level we perform 500 runs of the N-like and Local-CG algorithms for
different data sets and compute the mean error between the exact subspaces and the
computed approximations. As a preliminary step, we normalize all data points, such
that no direction is favored.

In Fig. 6.4, 400 randomly chosen data points which lie exactly in the union of two
2-dimensional subspaces of R3 (left) and their perturbed1 images (right) are depicted.
Moreover, the two plots display the exact subspaces (left) as well as the ones com-
puted by our N-like algorithm (right). The error between the exact subspaces and our
approximation is ca. 2◦, whereas the error for the PDA approximation is ca. 5◦.

In Fig. 6.6, we plot the mean error (left) for different noise levels and different
number of subspaces. We included also the mean error for the staring point of our
algorithms, i.e. for the PDA approximation. On the right we demonstrate the fast
convergence rate of the N-like and RCG algorithms for the case of 3 and, respectively,
4 subspaces.

Resume. Our numerical experiments have proven that (i) the minimization task
proposed in Section 3 is capable to solve subspace detection problems and (ii) our
numerical algorithms initialized with the PDA starting point yield an effective method

1Gaussian noise with 5% standard deviation
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Figure 6.5: Left: The mean error for noise levels from 0% to 5% and different num-
ber of subspaces. The disconnected symbols refer to the initial error (PDA) and the
corresponding continuous lines refer to the error estimated by our algorithms. Right:
Convergence of N-like and RCG for subspace clustering: number of iterations versus
the relative norm of the gradient ∥gradρA

(Pn)∥/ρA(Pn) at a logarithmic scale. Data
points from 3 and resp. 4 subspaces perturbed with 5% Gaussian noise. Average CPU
time: ca. 0.4 and ca. 2 seconds for the N-like and RCG algorithm, respectively (1.8
GHz Intel Core 2 Duo processor).

for computing a reliable approximation of the perturbed subspaces.
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Figure 6.6: Convergence behavior for N-like and RCG methods for finding the zeros of
the gradient vector field of ρA with A ∈ sym1000 Hamiltonian.

6.4 Numerical experiments on LG×(m)

To test the performance of the Newton-like and conjugate gradient methods on LG×(m),
we have taken a small perturbation of a symmetric Hamiltonian matrix of the form
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A1 ⊗A2 ⊗A3 with A1, A2, A3 ∈ sp(10,R) ∩ sym10, i.e.

A = A1 ⊗A2 ⊗A3 + E/∥E∥,

where E ∈ sym1000 represents the noise with elements normally distributed in the
interval [0, 1]. As a starting point we have chosen orthogonal projectors P1, P2, P3
corresponding to Lagrangian invariant subspaces of A1, A2 and A3 respectively. The
convergence behavior of the Newton-like and conjugate gradient method are displayed
in Fig. 6.6.
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