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SUMMARY 

Platelet activation and aggregation are essential to limit posttraumatic blood loss at sites of 

vascular injury, but also contribute to arterial thrombosis, leading to myocardial infarction and 

stroke. Thrombus formation is the result of well-defined molecular events, including agonist-

induced elevation of intracellular calcium ([Ca2+]i) and series of cytoskeletal rearrangements. 

With the help of genetically modified mice, the work presented in this thesis identified novel 

mechanisms underlying the process of platelet activation in hemostasis and thrombosis. 

Store-operated calcium entry (SOCE) through Orai1 was previously shown to be the main Ca2+ 

influx pathway in murine platelets. The residual Ca2+ entry in the Orai1-deficient platelets 

suggested a role for additional non-store-operated Ca2+ (non-SOC) and receptor operated Ca2+ 

entry (ROCE) in maintaining platelet calcium homeostasis. Canonical transient receptor potential 

channel 6 (TRPC6), which is expressed in both human and murine platelets, has been attributed 

to be involved in SOCE as well as in diacylglycerol (DAG)-triggered ROCE. In the first part of the 

study, the function of TRPC6 in platelet Ca2+ signaling and activation was analyzed by using the 

TRPC6 knockout mice. In vitro agonist-induced Ca2+ responses and in vivo platelet function 

were unaltered in Trpc6-/- mice. However, Trpc6-/- mice displayed a completely abolished 

DAG-mediated Ca2+-influx but a normal SOCE. These findings identified TRPC6 as the major 

DAG-operated ROC channel in murine platelets, but DAG-mediated ROCE has no major 

functional relevance for hemostasis and thrombosis. 

In the second part of the thesis, the involvement of the PDLIM family member CLP36 in the 

signaling pathway of the major platelet collagen receptor glycoprotein (GP) VI was investigated. 

The GPVI/FcRγ-chain complex initiates platelet activation through a series of tyrosine 

phosphorylation events downstream of the FcRγ-chain-associated immunoreceptor tyrosine-

based activation motif (ITAM). GPVI signaling has to be tightly regulated to prevent uncontrolled 

intravascular platelet activation, but the underlying mechanisms are not fully understood. The 

present study reports the adaptor protein CLP36 as a major inhibitor of GPVI-ITAM signaling in 

platelets. Platelets from mice expressing a truncated form of CLP36, (Clp36ΔLIM) and platelets 

from mice lacking the entire protein (Clp36-/-) displayed profound hyper-activation in response to 

GPVI-specific agonists, whereas GPCR signaling pathways remained unaffected. These 

alterations translated into accelerated thrombus formation and enhanced pro-coagulant activity 

of Clp36ΔLIM platelets and a pro-thrombotic phenotype in vivo. These studies revealed an 

unexpected inhibitory function of CLP36 in GPVI-ITAM signaling and established it as a key 

regulator of arterial thrombosis.  
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Zusammenfassung 

Die Aktivierung und die Aggregation von Thrombozyten (Blutplättchen) sind essentielle 

Prozesse, um Blutverluste nach Verletzungen zu begrenzen, sie spielen jedoch auch eine Rolle 

bei der arteriellen Thrombose, die zu Herzinfarkt und Schlaganfall führen kann. Die 

Thrombusbildung ist das Ergebnis wohldefinierter molekularer Vorgänge, die die Agonisten-

induzierte Konzentrationserhöhung von intrazellulärem Kalzium ([Ca2+]i) und eine Reihe von 

Umlagerungen des Zytoskeletts mit einschließen. Die Ergebnisse dieser Arbeit, die mit Hilfe 

genetisch veränderter Mauslinien erzielt wurden, decken neue Mechanismen der 

Thrombozytenaktivierung in Thrombose und Hämostase auf. 

Es wurde bereits gezeigt, dass der durch Orai1 vermittelte Store-operated calcium entry (SOCE) 

den Haupteintrittsweg für Ca2+ in Mausthrombozyten darstellt. Der verbleibende Ca2+ Einstrom 

führte zur Annahme, dass zusätzlich non-store-operated Ca2+ (non-SOC) und receptor operated 

Ca2+ entry (ROCE) eine Rolle in der Aufrechterhaltung der Ca2+ Homöostase spielen. Dem 

Canonical transient receptor potential channel 6 (TRPC6), der in Thrombozyten des Menschen 

als auch der Maus exprimiert wird, wurde eine Rolle in dem SOCE und diacylglycerol (DAG)-

vermitteltem ROCE zugeschrieben. Im ersten Teil dieser Arbeit wurde die Funktion von TRPC6 

im Ca2+ Signaling und der Aktivierung von Thrombozyten mit Hilfe der TRPC6 defizienten 

Mauslinie untersucht. Die Funktion der Trpc6-/- Thrombozyten waren in vitro (z.B. Agonisten-

induzierte Ca2+-Antworten) als auch in vivo unverändert. Jedoch zeigten Thrombozyten von 

Trpc6-/- Mäusen einen komplett fehlenden DAG-vermittelten Kalziumeinstrom, aber normalen 

SOCE. Diese Ergebnisse identifizierten TRPC6 als den Haupt-DAG-aktivierten ROC Kanal in 

Mausthrombozyten. Jedoch hatte diese DAG-vermittelte ROCE keine größere funktionelle 

Relevanz für Thrombose und Hämostase. 

Im zweiten Teil dieser Arbeit wurde die Rolle von CLP36, einem Mitglied der PDLIM 

Proteinfamilie, im Signalweg des Haupt-Kollagenrezeptors, Glykoprotein (GP) VI, auf 

Thrombozyten untersucht. Der GPVI/FcRγ−Kette Komplex initiiert die Thrombozytenaktivierung 

durch eine Reihe von Tyrosinphosphorylierungen, die dem FcRγ-Kette-assoziiertem 

immunoreceptor tyrosine based activation motif (ITAM) nachgeschaltet sind. GPVI-vermittelte 

Signale müssen sorgfältig reguliert sein, um eine unkontrollierte intravaskuläre 

Thrombozytenaktivierung zu verhindern. Jedoch sind die zugrunde liegenden Mechanismen 

nicht komplett verstanden. Die vorliegende Arbeit zeigt, dass das Adapterprotein CLP36 als ein 

wichtiger Inhibitor des GPVI-ITAM Signalwegs wirkt. Thrombozyten von Mäusen, welche eine 

trunkierte Form von CLP36 exprimieren, der die LIM-Domäne fehlt (Clp36ΔLIM), als auch von 

Mäusen, denen das komplette Protein fehlt (Clp36-/-), zeigten eine deutlich verstärkte Aktivierung 

als Antwort auf GPVI-spezifische Agonisten. Andere Signalwege aber waren nicht beeinflusst. 
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Diese Veränderungen resultierten in einer schnelleren Thrombusbildung und erhöhten 

prokoagulatorischen Aktivität von Clp36ΔLIM Thrombozyten, welche sich letztendlich als 

prothrombotischer Phänotyp in vivo bemerkbar machten. Diese Ergebnisse deckten eine 

unerwartete inhibitorische Funktion von CLP36 im GPVI-ITAM Signalweg auf und etablierten 

CLP36 als einen wichtigen Regulator der arteriellen Thrombose. 
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1 INTRODUCTION 

1.1 Platelets 

Anucleated and discoid-shaped platelets represent the smallest cells of the blood system with a 

diameter of 2-4 µm in humans and 1-2 µm in mice. Platelets are released into the circulation by 

fragmentation of their precursor cells, the megakaryocytes. According to a current hypothesis, 

the mature megakaryocytes in the bone marrow expand pseudopodial protrusions, called 

proplatelets. The tips of these proplatelets become continuously shed and fragmented into 

platelets by the shear forces in the blood circulation.1,2 Platelets circulate in a resting state at a 

concentration of 150,000-300,000/mL in humans for 8-10 days and approximately 1,000,000/mL 

in mice for approximately 5 days, before they are cleared by the reticulo-endothelial system in 

the spleen and liver. Platelets have the ability to rapidly respond upon disruption of the vessel 

wall. Under these conditions, exposed components of the extracellular matrix (ECM) trigger 

initial platelet adhesion and activation. This event is further reinforced by soluble mediators 

released from activated platelets together with locally produced thrombin which results in 

recruitment of further platelets from the circulation, thus resulting in aggregation and finally 

leading to thrombus formation. The process of platelet activation and final aggregate formation 

is important for normal hemostasis after vascular injury and thus prevents posttraumatic blood 

loss. However, under pathological conditions, such as after the rupture of an atherosclerotic 

plaque in stenosed vessels, platelet aggregation may also lead to uncontrolled thrombus 

formation causing vessel occlusion. This arterial occlusion results in tissue ischemia3 if 

occurring in the brain or myocardial infarction if occuring in coronary arteries. These two 

diseases are among the most common causes of mortality in the developed nations.4 Therefore, 

a selective inhibition of platelet activation has emerged as a major antithrombotic treatment to 

prevent or treat ischemia and cardiovascular diseases. 

This two-faced function of platelets indicates that their activation requires a well-defined and 

tightly regulated signaling machinery to allow efficient sealing of a wound. At the same time 

uncontrolled platelet adhesion and excessive platelet activation has to be limited to prevent 

undesired vessel occlusion. To achieve this equilibrium under physiological conditions, platelets 

express different activation/adhesion and inhibitory receptors combined with complex signaling 

machinery. 

Apart from the major well defined function of platelets in hemostasis and thrombosis, platelets 

also play important roles in wound healing, inflammatory processes, tumor metastasis and 

embryonic development.5,6 
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1.2  Platelet Activation and Thrombus Formation 

Platelet activation and thrombus formation at sites of vascular wall injury is a multistep process 

which can be divided into three major steps: (1) Platelet tethering, (2) activation and (3) firm 

adhesion and aggregation. The first step of platelet adhesion involves interactions of platelet 

surface receptors with the exposed sub-endothelial matrix which comprises adhesive 

macromolecules such as fibronectin, collagens, laminins and von Willebrand Factor (vWF). 

Platelet adhesion mechanisms are largely governed by the rheological conditions prevailing in 

the vasculature. Blood flows with a higher velocity in the center of the vessel than near the wall, 

thus generating shear forces between the adjacent layers. Platelets experience maximal 

opposing shear forces at the vessel wall.7 Under high shear flow conditions, found in arterioles 

or stenosed arteries, the initial platelet tethering with the ECM is mediated by the platelet 

receptor glycoprotein (GP)Ib-V-IX and vWF immobilized on exposed collagen.8 However, this 

interaction is not stable enough to mediate stable adhesion of the platelets to the injury site, but 

rather induces platelet deceleration and their rolling on the vessel wall.9  The deceleration 

facilitates interaction of the platelet specific immunoglobulin superfamily receptor GPVI with 

collagen fibers of the ECM. While GPVI binds to collagen with low affinity and by itself is unable 

to mediate firm adhesion, it triggers an intracellular signaling cascade that induces an inside-out 

activation of integrin αIIbβ3 and α2β1, which change from a low- to high affinity binding state 

and induce the release of the “second wave” mediators adenosine diphosphate (ADP), 

thromboxane A2 (TxA2) and epinephrine. These agonists, together with the locally produced 

thrombin, contribute to platelet activation by stimulating receptors that couple to heterotrimeric G 

proteins (Gq, G12/G13, Gi) to further activate downstream signaling cascades and this 

subsequently results in full platelet activation3,10,11 (Figure 1). 

Activated integrins, in turn, bind their ligands; α2β1 binds to collagen, α6β1 to laminin and α5β1 

to fibronectin. Integrin αIIbβ3, the major platelet integrin involved in the adhesion process binds 

to collagen-bound vWF immobilized on the ECM and it is a critical mediator of platelet 

aggregation by linking platelets via fibrinogen and vWF. Finally, thrombus growth is reinforced 

by recruitment and activation of additional platelets from the blood stream by the released 

mediators ADP and TxA2 and subsequent clustering of platelets via plasma fibrinogen and vWF 

bound to αIIbβ3.  

The platelet activating machinery can be divided into two major receptor classes: G protein 

coupled-receptors (GPCRs) and immunoreceptor tyrosine-based activation motif (ITAM) 

signaling receptors. Soluble agonists like thrombin, ADP, TxA2 or serotonin all lead to the 

activation of phospholipase Cβ (PLCβ) downstream of Gq-induced signaling. G12/13 stimulation 

results in a Rho/Rho kinase-mediated regulation of myosin light chain (MLC) phosphorylation 
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and consequently induction of platelet shape change.12 In contrast, Gi/z proteins triggers subunit-

specific adenylyl cyclase (AC) inhibition and phosphatidylinositol 3-kinase (PI3K) activation.13 

 

Figure 1: Model of platelet activation, adhesion and aggregation at the site of vascular wall injury. 
The GPIbα-vWF interaction mediates platelet deceleration and tethering on the exposed ECM thus 
allowing the interaction of GPVI with exposed collagen. This subsequently triggers the shift of integrins 
(notably αIIbβ3) from a low affinity state to a high affinity state and to the release of secondary mediators 
such as ADP and TXA2. Together with the locally produced tissue factor (TF) -induced thrombin 
formation, soluble mediators enhance platelet activation and contribute to the recruitment of further 
platelets into a growing thrombus. (Taken from: 9). 

The second important pathway of platelet activation involves GPVI and C-type lectin-like 

receptor 2 (CLEC-2) and results in the activation of the other PLC isoform, PLCγ2. Upon 

activation, both PLC isoforms hydrolyze phosphatidylinositol-4, 5-bisphosphate (PIP2) to 

inositol-1, 4, 5-trisphoshate (IP3) and diacylglycerol (DAG). IP3 in turn activates IP3 receptors on 

the endoplasmatic reticulum (ER) and triggers Ca2+ mobilization from the ER and subsequently 

results in opening of Ca2+ channels in the plasma membrane, leading to a process called store 

operated Ca2+ entry (SOCE).9,14 Apart from that, DAG activates protein kinase C (PKC) and 

contributes to Ca2+ influx by non-SOCE mechanisms.15 The elevations in the [Ca2+]I are 

indispensable for platelet activation and essential for granule release, firm adhesion, stable 

aggregate formation,16 cytoskeletal remodeling and externalization of phosphatidylserine (PS) 

on the platelet surface, which is necessary for the local generation of thrombin17 (Figure 2). 
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Figure 2: Scheme of platelet receptors and main signaling pathways. Receptor activation leads to 
stimulation of different intracellular signaling molecules. Signaling via G protein-coupled 
receptors (GPCRs) involves the corresponding G proteins. Soluble agonists such as ADP, TXA2, 
thrombin, serotonin and epinephrine act via specific GPCRs involving G12/13, Gq and Gi/z stimulation. G12/13 
leads to Rho/Rho kinase-mediated cytoskeleton rearrangements, Gq activates phospholipase (PL) Cβ 
and Gi/z induces inhibition of the adenylyl cyclase (AC). Adhesion receptor signaling induced by GPVI, 
CLEC-2 and integrins results in PLCγ2 activation. PLCs generate inositol-1,4,5-trisphosphate (IP3) and 
diacylglycerol (DAG) from phosphatidylinositol-4,5-bisphosphate (PIP2). IP3 then mediates elevation of 
the intracellular Ca2+ concentration [Ca2+]I, a process crucial for full platelet activation. TXA2, thromboxane 
A2; PAR, protease activated receptor; Rho-GEF, Rho-specific guanine nucleotide exchange factor; 
PI-3-K, phosphatidylinositol 3-kinase; PIP3, phosphatidylinositol-3,4,5-trisphosphate; Fg, fibrinogen 
(Taken from: 18). 

1.2.1 The GPVI/FcRγ-chain complex 

GPVI is a type I transmembrane receptor of 62 kDa composed of two immunoglobulin (Ig)-like 

domains in its extracellular region, a mucin-like stalk, a transmembrane region and a short 

51-amino acid long cytoplasmic tail (Figure 3). GPVI is expressed exclusively in platelets and 

megakaryocytes.19 The positively charged arginine residue in the transmembrane region of 

GPVI is non-covalently associated with the FcRγ-chain.20 The association of GPVI with the 

γ-chain is essential for expression of GPVI on the platelet surface and also critical for 

signaling.21-23 
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Figure 3: Structure of the GPVI/FcRγ-chain complex. Upper panel: GPVI contains two extracellular 
immunoglobulin domains that are coupled to a mucin-like stalk rich in O-glycosylation sites. The 
transmembrane domain has an arginine group (R) which mediates the association with the 
disulphide-linker homodomain FcRγ-chain through a salt bridge. Tyrosine residues (Y) in the ITAMs are 
indicated. Lower panel: amino acid sequence of the cytosolic tail of GPVI with the indicated regions of 
interaction with the FcRγ-chain, calmodulin and SH3 recognition domain (proline-rich region). (Taken 
from: 24) 

The FcRγ-chain contains an ITAM sequence which represents the signaling subunit of the 

receptor complex. GPVI exists as a dimer on resting platelets25 and is shed from the surface of 

the activated platelets as a way of regulating the signaling.26-28 GPVI triggers signaling by ligand 

mediated clustering29,30 of the receptor which is induced by physiological ligands like collagen 

and laminin31 and non-physiological ligands like the collagen-derived synthetic peptide collagen 

related peptide (CRP)32 and the snake venom toxin convulxin.33 Apart from these agonists, in 

vivo administration of rat monoclonal anti-GPVI antibodies (JAQ1, 2, 3), which bind to the 

extracellular domain of GPVI, has been shown to induce a transient thrombocytopenia and 

downregulation of the receptor in circulating platelets leading to a “knock-out like” phenotype in 

mice.34 This GPVI deficiency resulted in long term protection from mortality in a model of 

collagen-dependent lethal pulmonary thromboembolism.34 JAQ1 treated mice were also 

protected in models of arterial thrombosis and ischemic stroke, but displayed mildly prolonged 

tail bleeding times.34-37 Due to all of these intriguing findings, GPVI is considered as a potential 

anti-thrombotic target.26,34,35,38 It was shown that JAQ1 induced GPVI down-regulation can occur 

via two different ways, either through receptor internalization38 or metalloproteinase-dependent 

ectodomain shedding.27,39,40 Furthermore, it was demonstrated that GPVI cleavage in vitro is 

mediated by two different sheddases, a disintegrin and metalloproteinase (ADAM) 10 and 



Introduction 

      

6 

ADAM 17, depending on the shedding-stimulating experimental conditions. However, the study 

suggested that either both or a not yet identified third sheddase in platelets may be responsible 

for GPVI-cleavage under in vivo conditions.26 

1.2.1.1 The GPVI Signaling Pathway 

Upon ligand binding to the extracellular domain of GPVI, the conserved ITAM tyrosine residues 

defined by the consensus motif Yxx(L/I)x6-12Yxx(L/I) on the FcRγ-chain are phosphorylated by 

Src family kinases (SFKs). Studies using mutant mice have identified Fyn and Lyn as the two 

major Src kinases inducing the FcRγ-chain phosphorylation.41,42 However, a residual level of 

activation was also found in mice deficient in the two Src kinases indicating the involvement of 

one or more other SFKs.42 Fyn and Lyn associate by their SH3 domains with the proline rich 

region of the cytoplasmic tail of GPVI placing them proximal to their substrate. Mutations in 

these regions resulted in inhibition of GPVI mediated signaling.43-45 The phosphorylated ITAM 

tyrosine residues on GPVI serve as a docking site for the tandem SH2 domains of Syk tyrosine 

kinase. Platelets from Syk-deficient mice are unresponsive to GPVI agonists, confirming the 

essential role of Syk kinase in platelet activation.21 In addition, mutagenesis studies have shown 

that both ITAM tyrosine residues and also both SH2 domains of the Syk kinase are required for 

signaling; hence indicating that Syk binds to the dually phosphorylated ITAM.46,47 

GPVI mediated activation of Syk leads to phosphorylation of a number of downstream proteins 

including linker for activation of T-cells (LAT). Upon phosphorylation on the nine conserved 

tyrosine residues, LAT serves as a docking site for a range of SH2 domain-containing proteins 

like growth factor receptor bound protein 2 (Grb2), Grb2 related adaptor protein downstream of 

Shc (Gads) and most importantly PLCγ2.48 Other adaptor proteins like SH2 domain containing 

leucocytes protein of 76 kDa (SLP-76) are further recruited by its interaction with Gads and 

PLCγ249 and these associations have been shown to be critical for PLCγ2 activity.50-52 SLP-76 

binds to Tec family kinase, Bruton’s tyrosine kinase (Btk) and Tec, which phosphorylate and 

activate PLCγ2.50 Platelets from mice deficient in both Btk and Tec exhibit a loss in signaling 

through GPVI.53 Nevertheless, due to the complexity of the LAT signalosome it is unclear 

whether additional protein kinases also mediate phosphorylation of PLCγ2 (Figure 4). Upon 

activation, PLCγ2 hydrolyzes its substrate PIP2 into secondary messengers, IP3 and DAG, which 

release Ca2+ from the intracellular stores and activate protein kinase C (PKC), respectively. 

Mice deficient in PLCγ2 display defective GPVI signaling54 whereas, the gain of function 

mutation in PLCγ2 leads to platelet hyperactivity and a pro-thrombotic phenotype.55 
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Figure 4: The GPVI signaling cascade. Upon ligand binding, crosslinking of GPVI initiates tyrosine 
phosphorylation of the FcR γ-chain by the Src family kinases Fyn and Lyn, followed by a Syk-dependent 
signaling cascade in which various adapter proteins and kinases are involved. This pathway culminates in 
activation of PLCγ2 and the release of DAG and IP3. DAG/ DG, 1,2-diacylglycerol; IP3, 
inositol-3,4,5-trisphosphate; PIP2, phosphatidylinositol-4,5-bisphosphate; PIP3, phosphatidylinositol-3,4,5-
trisphosphate; SH, Src homology domain; Syk, spleen tyrosine kinase; LAT, linker for activation of T cells; 
Gads, Grb2-related adapter downstream of Shc; SLP76, SH2-domain containing leukocyte protein of 
76 kDa; Btk, Bruton's tyrosine kinase (Modified from: 20). 

1.3 Calcium Signaling in Platelets 

A central event in agonist induced platelet activation involves an increase in the cytosolic Ca2+ 

concentration. The increase in intracellular Ca2+ induced a number of structural and functional 

changes including reorganization of the actin cytoskeleton which is necessary for shape 

change,56 granule secretion and inside-out activation of αIIbβ3 integrins, leading to platelet 

activation and aggregation.57 Elevations in the intracellular Ca2+ concentration ([Ca2+]i) can 

originate from two major sources: the release of compartmentalized Ca2+ and the entry of 

extracellular Ca2+ through the plasma membrane (PM). Although the process of Ca2+ release 

from the intracellular stores has been well described for several years, the mechanisms 

underlying Ca2+ entry remained largely unknown, until recently. 

The Ca2+ channels expressed on the platelet plasma membrane include:  

1. Store-operated Ca2+ (SOC) channels: these channels are regulated by the filling state of 

the intracellular stores. 
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2. Receptor-operated Ca2+ (ROC) channels: these channels are activated upon ligand 

binding including the non-SOC channels activated by DAG (Figure 5). 

SOCE has been established as the major Ca2+ entry pathway in platelets. Receptor activation 

results in release of Ca2+ from the intracellular stores which in turn leads to an opening of 

plasma membrane SOC channels and entry of extracellular Ca2+ into the cytoplasm. Stromal 

interaction molecule 1 (STIM1) has been shown to be the major Ca2+ sensor in the ER 

membrane, which upon store release activates Orai1, the major SOC channel in the plasma 

membrane. Mice lacking either STIM1 or Orai1 show severely reduced – though not completely 

abolished – Ca2+ influx in response to all major platelet agonists resulting in the formation of 

unstable thrombi in vivo. Interestingly, these platelets were still able to perform many of their 

functions in vitro, suggesting that Ca2+ from the intracellular stores and Ca2+ influx through ROC 

and non-SOC channels provide a sufficient increase in [Ca2+]I.58,59 In human platelets, the non-

selective Canonical transient receptor potential (TRPC) channels, TRPC1 and TRPC6 have 

been proposed to mediate SOCE and non-SOCE, respectively. Rosado et al. used an anti-

human TRPC1 blocking antibody to propose reduced SOCE in human platelets upon store 

depletion. They further proposed a conformational coupling model where Ca2+ store release 

upon thrombin or thapsigargin stimulation resulted in a de novo coupling of IP3─R2 with TRPC1, 

thus activating TRPC1 as a SOC channel in the PM.60,61 However, platelets from Trpc1-/- mice 

exhibited normal functional responses, Ca2+ store release and SOCE.62 Moreover, low 

expression levels of TRPC1 in platelets and megakaryocytes underscore the importance of 

Orai1 mediated SOCE in platelet physiology. Another interesting study performed by Bousquet 

et al. demonstrated PKC mediated phosphorylation of TRPC6 lead to downregulation of the 

channel activity. They further showed an increased TRPC6 mediated Ca2+ entry in the presence 

of a PKC inhibitor, thus proposing a negative feedback mechanism operated by PKC to regulate 

TRCP6 activity.63 Although it is widely accepted that TRPC6 is expressed in human and murine 

platelets and contributes to store-independent Ca2+ entry, the physiological significance of this 

calcium flux for platelet biology is not known. 
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Figure 5: Platelet calcium signaling mechanisms. Agonist-receptor interaction activates phospholipase 
isoforms to hydrolyze phosphatidylinositol-4,5-bisphosphate (PIP2) to inositol-1,4,5-trisphosphate (IP3) 
and diacylglycerol (DAG). IP3 releases Ca2+ from intracellular stores and STIM1 opens the Orai1 channels 
in the plasma membrane, resulting in store-operated calcium entry (SOCE). DAG mediates non-SOCE 
through canonical transient receptor potential channel 6 (TRPC6). Additionally, a direct receptor-operated 
calcium (ROC) channel, P2X1, and a Na+/ Ca2+ exchanger (NCX) contribute to the elevation in [Ca2+]i. 
Sarcoplasmic/endoplasmic reticulum Ca2+ ATPases (SERCAs) and plasma membrane Ca2+ ATPases 
(PMCAs) pump Ca2+ back into the stores or out of the cell, respectively. IP3R, InsP3-receptor; ATP, 
adenosine triphosphate; ADP, adenosine diphosphate; GPVI, glycoprotein VI; FcRγ, Fc receptor γ chain; 
FcRIIa, Fc receptor IIa; CLEC-2, C-type lectin-like receptor 2; PI3-K, phosphatidylinositol 3-kinase; Syk, 
spleen tyrosine kinase. (Modified from: 17) 

1.3.1 The TRPC6 Channel 

TRPC6 has been characterized as a receptor-operated but not store-regulated cation channel 

though recent findings suggested the sensitivity of TRPC6 to store-depletion. Agonist induced 

TRPC6 activation can be blocked by the PLC inhibitor, U73122, indicating a PLC-dependent 

activation mechanism. TRPC6 activity was found to be increased by 1-oleoyl-1-acetyl-sn-

glycerol (OAG), a membrane-permeable analogue of DAG and 1-stearoyl-2-arachidonyl-sn-

glycerol (SAG).64 Regulation of TRPC6 channel activity was suggested to occur through many 

ways; tyrosine phosphorylation by the Src kinase, Fyn and Ca2+/calmodulin acting from the 

intracellular side were found to increase channel activity,65 while PKC-dependent Ser448 and 

PKG-dependent Thr69 phosphorylation contributed to channel inactivation.63,66. In cultured 

neurons, TRPC6 was shown to be involved in brain-derived neurotrophic factor (BDNF) induced 
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neuronal outgrowth and transferrin-independent iron uptake.67,68 TRPC6 expression was 

observed in synaptosomes and excitatory postsynaptic sites indicating a role in synaptic and 

behavioural plasticity. Overstimulation of TRPC6 in cardiac myocytes led to pathological cardiac 

remodeling.69 Other functions of TRPC6 include regulation of myogenic tone of cerebral 

arteries, where knockdown of the channel resulted in attenuated depolarization and constriction 

of cerebral arteries induced by intraluminal pressure.70 Paradoxically, the myogenic response in 

Trpc6-/- mice was increased but a compensatory upregulation of TRPC3 was also observed.71 

Transgenic mice over-expressing TRPC6 were more sensitive to pressure overload and agonist 

induced cardiac hypertrophy accompanied by decreased systolic function.72 The TRPC6 

transgenic mice developed cardiomegaly, interstitial fibrosis, and ventricular dilatation with 

congestive heart failure.72  

1.4 The PDZ and LIM Domain Protein Family 

PDZ/LIM genes encode a group of proteins that play diverse biological roles like cytoskeletal 

organization, neuronal signaling, organ development and oncogenesis. All PDZ/LIM family 

members exhibit at least one PDZ and one LIM domain. Originally, PDZ domains were 

recognized in the postsynaptic density protein PSD-95,73 the septate junction protein 

Discs-large of Drosophila melanogaster,74 and the epithelial tight junction protein ZO-1.75 PDZ 

domains play an important role in organizing cell signaling assemblies76 and are found in plants, 

yeast, bacteria, and a variety of metazoans.77,78 PDZ domains interact with short C-terminal 

peptide motifs, internal sequences resembling a C-terminus, and have further been shown to 

bind to phospholipids.76,79 The LIM domains consist of 50-60 amino acids and are defined by a 

cysteine rich consensus, which forms the basis for two closely associated zinc fingers. The term 

‘LIM’ is the abbreviation of three homeodomain proteins in which LIM domains were originally 

identified, namely Linl-1, Isl-1, and Mec-3.80,81 The two zinc fingers that constitute a LIM domain 

contain eight conserved residues, mostly cysteines and histidines, which coordinately bind to 

two zinc atoms. Despite zinc fingers being typical DNA binding structures, there is little evidence 

supporting the observation that LIM domains can bind DNA directly. The LIM domain proteins 

are established as protein adaptors in the cytoplasm. They associate with 

cytoskeleton-associated structures, such as actin filaments, focal adhesions, growth cones, 

intercalated discs and Z-lines of muscle cells. Through these interactions, LIM domain proteins 

are involved in many cellular physiological activities, such as cell shape modulation, cell motility 

and integrin-dependent adhesion and signaling. PDLIM proteins have been suggested to act as 

adaptors between kinases and the cytoskeleton,82,83 which is based on studies showing that on 

the one hand PDZ-LIM proteins associate with the actin cytoskeleton via their PDZ domain82-85 

and on the other hand to the kinases via their LIM domains.83,86-88 
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PDZ as well as LIM domain proteins often contain multiple copies of these interaction domains. 

A combination of PDZ and LIM domains has been discovered in ten genes in the mammalian 

genome that share similar domain architecture. These ten genes are: actinin-associated LIM 

protein (ALP, PDLIM3), CLP36 (Elfin, CLIM1, PDLIM1), Enigma (LMP-1, PDLIM7), Enigma 

homologue (ENH, PDLIM5), reversion-induced LIM protein (RIL, PDLIM4), Mystique (PDLIM2, 

SLIM), Z-band associated protein (ZASP, cyper, Oracle, PDLIM6), the two LIM domain kinases 

(LIMK1, LIMK2), and LIM-domain only 7 (LMO7, FBXO20) that, despite its name, also contains 

a PDZ domain.  

The PDZ/LIM genes can be divided into four different subgroups based on their gene structures 

and phylogenetic relationships: 

1.  The ALP subfamily – ALP, RIL, CLP36 and Mystique 

2.  The Enigma subfamily – Enigma, ENH and ZASP 

3.  The LIM kinases – LIMK1 and LIMK2 

4.  LMO7 

1.4.1 The ALP subfamily 

The four mammalian ALP subfamily proteins─ ALP, CLP36, Mystique and RIL are characterized 

by the presence of a N-terminal PDZ domain followed by a C-terminal LIM domain, and are 

postulated to play a role in actin anchorage in muscle as well as nonmuscle cells.85,89-93 All 

genes in the ALP subfamily encode a N-terminal PDZ and a single C-terminal LIM domain with 

the smallest member RIL encompassing 7 exons in humans, Clp36 (Elfin) contains 7 exons and 

Mystique, contains 11 exons. ALP subfamily members at exon 5 (8 for Mystique) have the 

coding sequence for a conserved ALP-like motif.94 Alp and Clp36 both encode two and one 

ZASP-like motif (ZM) protein domain, respectively.76,78 

1.4.1.1 Physiological function of ALP subfamily proteins 

All the ALP subfamily members are widely expressed in mammalian tissues. Ablation of ALP in 

mice leads to selective right ventricle (RV) cardiomyopathy without any obvious alterations in 

skeletal muscles.95,96 ALP was found to play an important role in the development of RV as 

ALP-deficiency resulted in a decrease trabeculation, irreversible chamber dilation and 

dysmorphogenesis of the embryonic RV.96 Studies with intact myocardium revealed the co-

localization of ALP with both α-actinin and β-catenin at the intercalated disc. Moreover, these 

studies found that ALP enhanced the ability of α-actinin to crosslink actin filaments, suggesting 

ALP to serve as a genetic modifier of embryonic ventricular muscle to biomechanical stress that 
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accompanies exposure to normal workload in utero.96 In response to hypoxic stress, ALP-

deficient mice were shown to exhibit an altered regional RV function and abrogated hypertrophic 

remodeling.97 

Gene Expression, Molecular Interactions, and Role of ALP Subfamily Proteins in 
Development and Disease 

Protein Domain Interaction Complex Expression Development / 

disease 

Ref. 

 
ALP 
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ZM 
LIM 

α-actinin 2 
 
 

α-actinin 2 
-- 

Sarcomeres Cardiac and 

skeletal 
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Heart 

development, 
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85,95,96,98-
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-- 
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epithelial 
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89,91,93,100-

103 

 
Mystique 

PDZ 
 
 

LIM 

α-actinin 
 
 

-- 

Nucleus, 

cytoskeleton 

Heart, 

spleen, testis 

Migration of breast 

cancer cells 

 
100,104 

 
RIL 

PDZ 
 
 
 
 

LIM 

α-actinin 2 
 
 
 
 

AMPA 
receptor, 
PTP-BL 

Cytoskeleton Brain Neuronal 

development, 

bone 

development, 

tumor progression 

 
90,100,105-

107 

 

Mystique has shown to play a role in epithelial cell migration.104 Small interfering 

(si)RNA-mediated silencing of Mystique resulted in loss of cell migration and adhesion.104 

Mystique mostly has a nuclear location where it is proposed to promote degradation of 

phosphorylated STAT1 and STAT4 transcription factors. Interestingly, cells from Mystique 

knockout mice showed increased expression of STAT proteins.108 Mystique was also shown to 

promote nuclear degradation of the p65 subunit of the NF-kB family to promyelocytic leukemia 

protein (PML) nuclear bodies for ubiquitination and subsequent degradation.109 RIL has been 

well studied for its role in tumor growth and neuronal signaling.110,111 
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CLP36 has been implicated in regulation of actin stress fibers in different cell types.91,101 In situ 

hybridization in mouse embryos revealed expression of CLP36 during early heart 

development.93 However, the function of CLP36 in the heart remains to be elucidated. Recently, 

CLP36 has been studied in the nervous system, where it was found to be expressed in sensory 

ganglia but not in the central nervous system (CNS) of adult rats. CLP36 was up-regulated in 

dorsal root ganglion (DRG) neurons and facial motor-neurons after nerve injury, thus suggesting 

CLP36 to serve as a scaffold forming a multi-protein complex that regulates actin cytoskeleton 

dynamics and plays a role in controlling neurite outgrowth.112 

1.4.1.2 CLP36 function and its interactions  

The human homolog of CLP36 (hCLP36) was initially shown to interact with α-actinin 2 by yeast 

two-hybrid screening similar to the other PDLIM family members. The initial studies done by 

Kotaka et.al 93 suggested that this interaction was mediated by the C-terminal LIM domain of 

hCLP36. To study the subcellular localization of CLP36 in cell lines of non-muscle origin, Myc 

epitope-tagged CLP36 was expressed into the U2OS osteosarcoma cell line. Double 

fluorescence analysis with anti–Myc and rhodamine-labeled phalloidin from transfected cells 

indicated co-localization of CLP36 with actin filaments resembling stress fibers. A significant 

amount of CLP36 was found to be associated with stress fibers even after treatment of cells 

with the microfilament formation inhibitor cytochalasin B.89 Interestingly, CLP36-knock-down 

studies performed using short hairpin (sh) RNAs led to prominent morphological changes in 

transfected cells. The transfected cells developed a ruffled membrane and displayed a round 

shape, in contrast to the fibroblast-like shape of wild-type cells. The phalloidin staining revealed 

that actin stress fibers were absent in CLP36-knockdown cells. Furthermore, replenishment with 

exogenous CLP36 in these cells resulted in the restoration of stress fibers leading to reversion 

from ruffled to fibroblast-like cell morphology.113 Interaction of CLP36 with palladin was studied 

using yeast two-hybrid screening.114 Palladin is an important structural element of the actin 

cytoskeleton and associates with α-actinin. This interaction was dependent on the PDZ domain 

of CLP36 and the C-terminus of palladin.114 Characterization of a novel, ubiquitously expressed 

kinase, Clik1 by yeast two hybrid screening indicated a highly specific interaction between Clik1 

and CLP36. The association was mediated by the C-terminal LIM domain of CLP36 and was 

unique to CLP36. Furthermore, the association of CLP36 with Clik1 led to the relocalization of 

the otherwise nuclear Clik1 to actin stress fibers.102 

1.4.1.3 CLP36 in platelets 

The role of CLP36 in platelets was studied for the first time in the year 2000 by Bauer et al.115 

Double immunofluorescence microscopy on human platelets revealed the co-localization of 



Introduction 

      

14 

CLP36 and F-actin. CLP36 was found to be associated with actin filaments in long 

pseudopodia, short filopodia and lamellipodia. Furthermore, in spread platelets CLP36 

concentrated along the radially outgrowing actin filaments without being present in the region 

where the secretory granules are concentrated. In the later stages of spreading, CLP36 was 

observed along actin stress fibers in a regular dotted pattern. CLP36 was found to be absent in 

focal adhesions that co-localized with the tips of actin stress fibers. The interaction between 

F-actin and CLP36 was also confirmed in endothelial cells, where in resting confluent 

endothelial cells CLP36 co-localized with the peripheral actin filaments beneath the plasma 

membrane. Upon thrombin stimulation, these cells exhibited a dramatic reorganization of their 

actin cytoskeleton; thereby CLP36 was translocated to the newly formed actin structures. The 

immunostaining performed on endothelial cells with anti-α-actinin and anti-CLP36 antibodies 

revealed co-localization of both proteins on actin stress fibers.115 CLP36 could be co-

immunoprecipitated with α-actinin, but not with vinculin in the platelet lysates. Furthermore, 

yeast two hybrid analysis indicated that the intervening region of CLP36, but not its PDZ or LIM 

domain, interacted with the spectrin-like repeats 2 and 3 within the rod domain of the 

α-actinin-1. Depolymerization of F-actin by treating platelets with cytochalasins did not change 

the amount of α-actinin-1 co-immunoprepitated with CLP36, indicating that the binding of CLP36 

to α-actinin-1 is constitutive and independent of the α-actinin-1/F-actin interaction.115 Using 

stoichiometric analysis, two molecules of CLP36 were found to be associated with an α-actinin 

dimer.89 Another study performed by Bozulic et al. in 2007 showed that the PDZ domain of 

CLP36 associated with the plasma membrane Ca2+-ATPase (PMCA) 4b isoform in human 

platelets.103 CLP36, α-actinin and actin were immunoprecipitated with PMCA. Their study 

suggested that PMCA associated with small actin complexes comprising of CLP36, α-actinin, 

and monomeric G-actin, which remained unbound to the cytoskeleton in resting platelets. Upon 

platelet activation and cytoskeletal rearrangements, this small actin complex became associated 

with the cytoskeleton via polymerization of G-actin monomers into filamentous F-actin in 

structures such as filopods. They further speculated that interaction of PMCA to the actin 

cytoskeleton via CLP36 regulates intracellular Ca2+ levels. This process may play a role in 

regulation of clot retraction and maintenance of thrombus integrity on platelet activation.103 
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2 AIM OF THE STUDY 

Platelet activation essentially involves an increase in the cytosolic Ca2+ concentration and the 

cytoskeletal rearrangements. These two events play a crucial role during platelet shape change, 

secretion and spreading. The major Ca2+ entry pathway in platelets involves the receptor 

mediated release of intracellular Ca2+ followed by subsequent influx from outside, mediated by 

different Ca2+ channels present on the platelet plasma membrane. These channels include 

Orai1 (CRACM1), the major Ca2+ SOC channel in platelets. Apart from this, other channels like 

TRPC6 are also thought to mediate the Ca2+ influx. However, the function of TRPC6 in platelet 

physiology was unknown. Thus, the first aim of this thesis was to analyze the function of Ca2+ 

channel TRPC6 in platelets. For this purpose, TRPC6-deficient platelets were analyzed using 

in vitro and in vivo models of platelet function, thrombosis and hemostasis. 

Cytoskeletal rearrangements upon platelet activation result in the formation of a platelet plug. 

The process of actin reorganization involves the coordinated action of a large number of 

proteins and signaling pathways. The PDZ/LIM domain family member, CLP36, has been 

reported to play an important role in stress fiber assembly, but its exact role in platelet signaling 

and actin organization was not known. The second aim of the thesis was to investigate the 

function of CLP36 and role of its LIM domain in platelet signaling. For this purpose, Clp36ΔLIM 

mice, lacking the C-terminal LIM domain and Clp36-/- mice, lacking the whole protein were 

generated and analyzed for CLP36 function in platelets.  
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3 MATERIALS AND METHODS 

3.1 Materials 

3.1.1 Kits and chemicals 

Reagent      Company  

Acetic acid      Roth (Karlsruhe, Germany) 

ADP        Sigma (Deisenhofen, Germany)  

Agarose      Roth (Karlsruhe, Germany) 

Alexa Fluor 488  Invitrogen (Karlsruhe, Germany) 

Ammonium peroxodisulphate (APS)   Roth (Karlsruhe, Germany) 

Apyrase (grade III)      Sigma (Deisenhofen, Germany) 

Atipamezole      Pfizer (Karlsruhe, Germany) 

ATP release kit     Roche Diagnostics (Mannheim, Germany) 

Avertin® (2,2,2-tribromoethanol)   Sigma (Deisenhofen, Germany) 

β-mercaptoethanol     Roth (Karlsruhe, Germany) 

Bovine serum albumin (BSA)    AppliChem (Darmstadt, Germany) 

Calcium chloride     Roth (Karlsruhe, Germany) 

Chrono-Lume® (d-luciferase/luciferin reagent + 

ATP standard)      Probe & go (Osburg, Germany) 

Complete mini protease inhibitors (+EDTA)  Roche Diagnostics (Mannheim, Germany) 

Convulxin      Alexis Biochemicals (San Diego, USA) 

Disodiumhydrogenphosphate    Roth (Karlsruhe, Germany)  

Dry milk, fat-free     AppliChem (Darmstadt, Germany) 

dNTP mix      Fermantas (St. Leon-Rot, Germany) 

Dylight-488      Pierce (Rockford, IL, USA) 

EDTA        AppliChem (Darmstadt, Germany) 

Enhanced chemoluminiscence (ECL)-   
detection substrate     PerkinElmer LAS (Boston, USA) 

Ethanol      Roth (Karlsruhe, Germany) 

Ethidium bromide     Roth (Karlsruhe, Germany) 
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Fentanyl  Janssen-Cilag GmbH (Neuss, Germany) 

Fibrillar type I collagen (Horm)   Nycomed (Munich, Germany) 

Flumazenil  Delta Select GmbH (Dreieich, Germany) 

Fluorescein-isothiocyanate (FITC)    Molecular Probes (Oregon, USA) 

Forene® (isoflurane)     Abott (Wiesbaden, Germany) 

Fura-2/AM      Molecular Probes/Invitrogen (Germany) 

GeneRuler 1kb DNA Ladder    Fermentas (St. Leon-Rot, Germany) 

Glucose      Roth (Karlsruhe, Germany) 

Glutaraldehyde     Roth (Karlsruhe, Germany) 

Glycerol      Roth (Karlsruhe, Germany) 

HEPES      Roth (Karlsruhe, Germany) 

High molecular weight heparin    Sigma (Deisenhofen, Germany) 

Human fibrinogen     Sigma (Deisenhofen, Germany) 

Igepal CA-630      Sigma (Deisenhofen, Germany) 

Indomethacin      Sigma (Deisenhofen, Germany) 

IP1 ELISA kit      Cisbio (Paris, France) 

Iron-III-chloride hexahydrate (FeCl3 6H2O)  Roth (Karlsruhe, Germany) 

Isopropanol      Roth (Karlsruhe, Germany) 

Loading Dye solution, 6x    Fermentas (St. Leon-Rot, Germany) 

Magnesium chloride     Roth (Karlsruhe, Germany) 

Magnesium sulfate     Roth (Karlsruhe, Germany) 

Medetomidine (Dormitor)    Pfizer (Karlsruhe, Germany)  

Midazolam (Dormicum)  Roche (Grenzach-Wyhlen, Germany) 

MOPS       AppliChem (Darmstadt, Germany) 

Naloxon      Delta Select GmbH (Dreieich, Germany) 

4-12% NuPage Bis-Tris gradient gels   Invitrogen (Karlsruhe, Germany) 

Oleoyl-2-acetyl-sn-glycerol (OAG)   Sigma (Deisenhofen, Germany) 

PageRuler Prestained Protein Ladder  Fermentas (St. Leon-Rot, Germany) 

Paraformaldehyde (PFA)    Roth (Karlsruhe, Germany) 
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Phalloidin-rhodamine     Invitrogen (Karlsruhe, Germany) 

Phalloidin-Atto647N     AttoTec GmbH (Siegen, Germany) 

Phenol/chloroform/isoamylalcohol   AppliChem (Darmstadt, Germany) 

Phorbol-12-myristate-13-acetate   Sigma (Deisenhofen, Germany) 

PKC inhibitor Gö6983     Calbiochem (Bad Soden, Germany) 

Pluronic F-127      Invitrogen (Karlsruhe, Germany) 

Potassium acetate     Roth (Karlsruhe, Germany) 

Potassium chloride     Roth (Karlsruhe, Germany) 

Prostacyclin       Calbiochem (Bad Soden, Germany) 

Protein G-Sepharose     GE Healthcare (Uppsala, Sweden) 

QIAquick gel extraction kit    Qiagen (Hilden, Germany) 

RNeasy Mini Kit      Qiagen (Hilden, Germany) 

R-phycoerythrin (PE)     EUROPA (Cambridge, UK) 

Rotiphorese Gel 30 (PAA)    Roth (Karlsruhe, Germany) 

Sodium chloride     AppliChem (Darmstadt, Germany) 

Sodium citrate      AppliChem (Darmstadt, Germany) 

Sodiumdihydrogenphosphate    Roth (Karlsruhe, Germany) 

Sodium hydroxide     AppliChem (Darmstadt, Germany) 

TEMED      Roth (Karlsruhe, Germany) 

Thrombin       Roche Diagnostics (Mannheim, Germany) 

Titan One Tube RT-PCR-Kit    Roche (Ingelheim, Germany) 

TRIS ultra      Roth (Karlsruhe, Germany) 

Triton X-100      AppliChem (Darmstadt, Germany) 

U46619       Alexis Biochemicals (San Diego, USA) 

Vectashield hardset mounting medium  Vector Laboratories (Burlingame, USA) 

Collagen-related peptide (CRP) was kindly provided by Paul Bray (Baylor College, USA). 

Rhodocytin was a generous gift from J. Eble (University Hospital Frankfurt, Germany). 

Annexin V- Dylight 488 was generously provided by Jonathan F. Tait, Medical Center, University 

of Washington. All enzymes were purchased from Fermentas (St. Leon-Rot, Germany) or 
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obtained from Invitrogen (Karlsruhe, Germany). Primers were purchased from Metabion 

(Planegg-Martinsried, Germany) or MWG-Eurofins (Ebersberg, Germany). All non-listed 

chemicals were obtained from AppliChem (Darmstadt, Germany), Sigma (Deisenhofen, 

Germany) or Roth (Karlsruhe, Germany). 

3.1.2 Antibodies 

3.1.2.1 Purchased primary and secondary antibodies 

Antibodies      Source 

Anti-phosphotyrosine 4G10    Millipore (CA, USA) 

Rat anti-mouse IgG-HRP    DAKO (Hamburg, Germany) 

Rabbit anti-CLP36 antibody (ab64971)  Abcam (Cambridge, UK) 

Goat anti-CLP36 antibody (ab17022)   Abcam (Cambridge, UK) 

Rabbit anti-rat IgG-FITC    DAKO (Hamburg, Germany) 

Rabbit anti-TRPC6 antibody    Almone labs (Jerusalem, Israel) 

Rat anti-tubulin IgG     Millipore (CA, USA) 

Rabbit anti-α-actinin antibody (H-300)  Santa Cruz Biotechnology (Germany) 

Goat anti-rabbit IgG-Alexa-488   Invitrogen (Karlsruhe, Germany) 

3.1.2.2  Monoclonal antibodies (mAbs) 

 mAbs generated and modified in our laboratory 

Antibody Isotype Antigen Described in 

DOM2 IgG1 GPV 116 

INU1 IgG1κ CLEC-2 117 

JAQ1 IgG2a GPVI 34 

JON/A IgG2b GPIIb/IIIa 118 

JON1 IgG2a GPIIb/IIIa 116 

p0p4 IgG2b GPIbα 116 

p0p6 IgG2b GPIX 116 

ULF1 IgG2a CD9 116 

WUG1.9 IgG1 P-selectin unpublished 

12C6 IgG2b α2 integrin unpublished 
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3.1.3 Buffers and media 

All buffers were prepared and diluted in double-distilled water (ddH2O). 

Acid-citrate-dextrose (ACD) buffer, pH 4.5 
Trisodium citrate dehydrate     85 mM 

Anhydrous citric acid      65 mM 

Anhydrous glucose      110 mM 

Blocking solution for immunoblotting 
BSA or fat-free dry milk      5% 
in PBS or washing buffer 

Blotto B 
BSA        1% 

Fat-free dry milk      1% 

Tween 20       0.05% 

Blotting buffer A for immunoblotting 
TRIS, pH 10.4        0.3 M 

Methanol       20% 

Blotting buffer B for immunoblotting 
TRIS, pH 10.4        25 mM 

Methanol        20% 

Blotting buffer C for immunoblotting 

ε-amino-n-caproic acid, pH 7.6     4 mM 

Methanol       20% 

Coomassie staining solution 
Acetic acid        10% 

Methanol        40% 

Coomassie Brilliant blue      0.01% 

Coomassie destaining solution 
Acetic acid        10% 

Methanol        40%  
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Immunoprecitation (IP) buffer, pH 8.0 
TRIS/HCl, pH 8.0      15 mM 

NaCl         155 mM 

EDTA         1 mM  

NaN3         0.005% 

Laemmli buffer for SDS-PAGE 
TRIS         40 mM 

Glycine        0.95 M 

SDS         0.5% 

Lysis buffer (DNA isolation), pH 7.2 
TRIS base        100 mM 

EDTA        5 mM 

NaCl         200 mM 

SDS         0.2% 

Proteinase K (20 mg/ mL)      100 µg/mL 

Lysis buffer (tyrosine phosphorylation), pH 7.5  
NaCl        300 mM 

TRIS        20 mM 

EGTA        2 mM 

EDTA        2 mM 

Na3VO4        2 mM 

Igepal CA-630       2% 

add complete mini protease inhibitors 

PHEM, pH 7.2 
PIPES        60 mM  

HEPES        25 mM  

EGTA        10 mM 

MgSO4                                    2 mM  
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PHEM complete pH 7.2 

PHEM buffer  

PFA                                             1% 

NP-40                             0.005% 

Phosphate buffered saline (PBS), pH 7.14 
NaCl         137 mM  

KCl         2.7 mM  

KH2PO4        1.5 mM 

Na2HPO4       8 mM 

SDS sample buffer, 2x 
β-mercaptoethanol (for reduced conditions)    10% 

TRIS buffer (1.25 M), pH 6.8      10% 

Glycerine        20% 

SDS         4% 

Bromophenolblue       0.02%  

Separating gel buffer (Western Blot), pH 8.8 
TRIS/HCl       1.5 M 

Stacking gel buffer (Western Blot), pH 6.8 
TRIS/HCl       0.5 M 

Stripping buffer (Western Blot), pH 6.8 
TRIS/HCl       62.5 mM 

SDS        2% 

β-mercaptoethanol      100 mM 

TAE buffer, 50x, pH 8.0 
TRIS        0.2 M 

Acetic acid        5.7% 

EDTA (0.5 M, pH 8)      10% 

TE buffer, pH 8 
TRIS base       10 mM 

EDTA        1 mM 
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Tris-buffered saline (TBS), pH 7.3 
NaCl        137 mM (0.9%) 

TRIS/HCl        20 mM 

Tyrode´s buffer, pH 7.3 
NaCl        137 mM (0.9%) 

KCl        2.7 mM  

NaHCO3       12 mM 

NaH2PO4        0.43 mM 

CaCl2       1 mM 

MgCl2       1 mM 

HEPES       5 mM 

BSA        0.35% 

Glucose       0.1% 

Washing buffer (western blot) 
Tween 20        0.1%  

in PBS, pH 7.2 

3.2 Methods 

3.2.1 RNA isolation and Polymerase chain reaction 

For platelet RNA isolation, 2 x 106 platelets/µL were washed in PBS/EDTA and the pellet was 

resuspended in 200 µL IP buffer with 1% NP-40. 800 µL of Trizol reagent was added and 

samples were incubated for 60 min at 4°C. After incubation, 200 µL of chloroform was added 

and samples were incubated again for 15 min at 4°C. Samples were then centrifuged at 

10,000 rpm for 10 min and the upper phase was incubated with three volumes of 70% ethanol 

with 10% sodium acetate (pH 5.2) for 1 h at -20°C. After centrifugation at maximal speed for 

15 min, the pellet was washed with 70% ethanol, then centrifuged again and dried at 37°C. The 

pellet was resuspended in 30-40 µL of RNase free water and concentration was determined by 

absorbance readings at 260 nm, whereas the ratio of absorbance at 260/280 and 260/230 was 

used to assess purity. Samples with 260/280 readings of >1.8 and 260/230 readings of >1.9 

were subsequently used to prepare cDNA. 1-2 µg RNA were incubated with 1 µL Oligo dNTP 

(0.5 µg/µL) in a total volume of 11.9 µL at 70°C for 5 min and afterwards transferred on ice. 2 µL 

DTT (0.1 M), 1 µL dNTPs ( 10 mM), 0.5 U RNase inhibitor, 4 µL 5x first strand buffer and 200 U 
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Super Script Reverse Transcriptase were added. The total volume was adjusted to 40 µL by 

adding RNase-free water and the sample were incubated at 42°C for 1 h. A gradient PCR was 

performed with Taq polymerase to determine the correct annealing temperature. Following this, 

a Polymerase chain reaction (PCR) with the appropriate annealing temperature was performed. 

The following primers were used to study TRPC family members:  

Trpc1 Trpc1for.:  5´-catggagcatcgtatttcac-3´ 
 Trpc1rev.:  5´-gagtcgaaggtaactcagaa-3´ 

Trpc2 Trpc2for.:  5´-cctgccagaaggacctgtatg-3´  

Trpc2rev.:  5´-cacatgcccagcaactcgaag-3´ 

Trpc3 Trpc3for.:  5´-tgtctggtcgtgttggtcgtg-3´ 

 Trpc3rev.:  5´-tgaacgcggcgatgaagatgg-3´ 

Trpc4 Trpc4for.:  5´-gggctaagctgcaaaggcatc-3´ 

 Trpc4rev.:  5´-caccaggttcctcatcacctc-3´ 

Trpc5 Trpc5for.:  5´-tgtgggatggtggattcacgg-3´ 

 Trpc5rev.:  5´-gcagcactaccagggagatg-3´ 

Trpc6 Trpc6for.:  5´-acgcggttctcccatgatgtg-3´ 

 Trpc6rev.:  5´-cgagcagccccaggaaaatg-3´ 

Trpc7 Trpc7for.:  5´-gagggcgttaagactctgcc-3´ 

 Trpc7rev.:  5´-cgagatgacctcagacaagcc-3´ 

Actin Actinfor.:  5´-gtgggccgctctaggcaccaa-3´ 

 Actinrev.:  5´-ctctttgatgtcacgcacgatttc-3´ 

To study the expression of different PDLIM family members in mouse platelets, following primer 

sequences were used as depicted below. 

Alp ALP/For :  5´-taaagcagegtcctaccagt-3´  

     ALP/Rev :  5´-tgagggggcactgaagctgt-3´ 

Ril     Ril/For :  5´-taaaggctgccacgatcatc-3´          

     Ril/Rev :  5´-caggtctaccctgcagtccc-3´ 

Clp36     CLP36/For :  5´-caagggctgcgcagacaaca-3´    

     CLP36/Rev :  5´-cttgtcaatgataaggctgc-3´    
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Mystique    Mystique/For :  5´-ccgacagagcgcctcacccc-3´   

     Mystique/Rev :  5´-ttcctccagatccaaactgc-3` 

Enh1     Enh1/For :  5´-cacttcatcacatgcttccc-3´    

      Enh1/Rev :  5´-aactccgtgttgcgctccac-3´ 

Enigma     Enigma/For:  5´-atattgacggtgagaacgcg-3´    

     Enigma/Rev:  5´-gcaactgtccattctgccgc-3´ 

Zasp     Zasp/For :  5´-agaggctctgcgaaggtcaa-3´   

     Zasp/Rev :  5´-ctcgctgtagctggtatggg-3´ 

3.2.2 Generation of mice 

3.2.2.1 Generation of Clp36ΔLIM mice 

Clp36ΔLIM chimeric mice were generated by microinjection of embryonic stem (ES) cell clone XC 

262 (BayGenomics) into C57Bl/6 blastocysts. After germ line transmission, heterozygous and 

knockin animals were genotyped by PCR using mouse tail DNA and Western blotting detecting 

different domains of CLP36. 

3.2.2.2 Generation of Clp36-/- mice 

Clp36-/- chimeric mice were generated by microinjection of embryonic stem (ES) cell clone 

IST12013D3 (TIGM) into C57Bl/6 blastocysts. After germ line transmission, heterozygous and 

knockout animals were genotyped by PCR using mouse tail DNA and Western blotting detecting 

different domains of CLP36. 

3.2.2.3 Bone marrow mice generation 

For the generation of bone marrow chimeras, 5-6 week-old Wt and Clp36ΔLIM mice were 

irradiated with a single dose of 10 Gy, and bone marrow cells from 3 week-old Wt and Clp36ΔLIM 

mice from the same litter were injected intravenously into the irradiated Clp36ΔLIM and Wt mice 

(4 x 106 cells/mouse) for crisscross transplantation experiments. Water supplemented with 2 g/L 

neomycin was provided to the mice for 2 weeks. Bone marrow chimerism was confirmed by 

Western blot of platelet lysates from the chimeric mice using the antibody against the LIM 

domain of CLP36.  
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3.2.3 Mouse Genotyping 

3.2.3.1 Mouse DNA isolation 

5 mm2 of ear tissue was digested in 500 μL DNA digestion buffer at 56°C overnight under 

shaking conditions. Samples were mixed (1:1 vol) with Phenol/chloroform, then vortexed for 5 

min and centrifuged at 14,000 rpm for 10 min. The upper aqueous phase containing the DNA 

was transferred to a fresh tube containing isopropanol (1:1 vol) and was mixed well. After 

centrifugation at 14,000 rpm for 10 min, the DNA pellet was washed twice with ice cold 70% 

ethanol. The DNA pellet was left to dry at 37°C and finally resuspended in 50 μL of H2O. 

3.2.3.2 Trpc6-/- mice PCR genotyping 

Two separated reactions with different primer pairs were performed to amplify the wild-type 

(Trpc6 Wt For and Trpc6 Wt Rev) or the knockout allele (Trpc6 KO For and Trpc6 KO Rev). The 

mice were termed heterozygous if a PCR band was amplified in both of the reactions. 

PCR primers: 

Trpc6 Wt For:  5´-atcatctctgaaggtctttatgc-3´ 

Trpc6 Wt Rev:   5´-gaatgcttcattctgttttgcgcc-3´ 

Trpc6 KO For:   5´-agactagtgagacgtgctacttcc-3´ 

Trpc6 KO Rev:   5´-tttaatgtctgtatcactaaagcctcc-3´ 

PCR program:  

Wild-type allele: 1) 96°C 3 min; 2) 94°C 30 s; 3) 51.5°C 30 s; 4) 72°C 1 min; 5) repeat step 2.-

4. 30 cycles; 6) 72°C 10 min; 7) 4°C hold. 

Knockout allele: 1) 96°C 3 min; 2) 94°C 30 s; 3) 55°C 30 s; 4) 72°C 1 min; 5) repeat step 2.-4. 

30 cycles; 6) 72°C 10 min; 7) 4°C hold. 

3.2.3.3 Genetrap PCR genotyping for Clp36ΔLIM and Clp36-/- mice 

Genetrap PCR was performed to differentiate the Wt from the heterozygous or homozygous 
mice. A band of 680 bp was amplified in genetrap PCR. 

PCR primers: 

Genetrap For: 5´-ttatcgatgagcgtggtggttatg-3´ 

Genetrap Rev: 5´-gcgcgtacatcgggcaaataatat-3´ 
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PCR program:  

1) 96°C 3 min; 2) 94°C 30 sec; 3) 51.4°C 30 sec; 4) 72°C 1 min; 5) repeat step 2.-4. 35 cycles; 

6) 72°C 10 min; 7) 4°C hold 

3.2.4 Immunoprecipitation and immunoblotting 

3.2.4.1 Immunoprecipitation 

For co-immunoprecipitation of proteins, washed platelets (0.5x106 platelets/µL) were prepared 

and were solubilized in an equal volume of IP buffer containing protease inhibitors and Igepal 

added to 1% f.c. Cell debris was removed by centrifugation (15,000x g, 10 min). Following pre-

cleaning (1 h) with 10 µL of protein G-Sepharose, 10 µg antibody were added and allowed to 

incubate with protein lysates for 2 h at 4°C. Precipitation was carried out o/n at 4°C by addition 

of 25 µL protein G-Sepharose to the above incubated lysates. Samples were separated on 

SDS-PAGE (10%) along with a molecular weight marker and transferred onto a polyvinylidene 

difluoride (PVDF) membrane. Western blotting was performed as described below. 

3.2.4.2 Immunoblotting   

For Western blot analysis, platelet rich plasma (prp) was prepared and centrifuged at 2,800 rpm 

for 5 min. Platelets were washed twice in PBS containing 5 mM EDTA. The platelet pellet was 

resuspended in IP buffer containing protease inhibitors to a final concentration of 

0.5x106 platelets/µL and Igepal was added to 1% f.c. After incubation for 10 min at 4°C and 

centrifugation at 14,000 rpm for 5 min, the supernatant was mixed with an equal amount of 2x 

SDS sample buffer and incubated at 95°C for 5 min. Samples were separated by 10% SDS-

PAGE and transferred onto a PVDF membrane. To prevent non-specific antibody binding, 

membranes were blocked in specific blocking buffer for 2 h at RT depending on the primary 

antibody. Membranes were incubated with the required primary antibody (5 μg/mL) o/n with 

gentle shaking at 4°C. Afterwards, membranes were washed three times with washing buffer for 

15 min at RT. Next, membranes were incubated with appropriate HRP-labeled secondary 

antibodies for 1 h at RT. After three washing steps, proteins were visualized by ECL. 

3.2.4.3 Tyrosine phosphorylation assay  

For tyrosine phosphorylation studies, 0.7x106 platelets/µL were activated with 5 µg/mL CRP, 

0.1 µg/mL CRP and 0.01 U/mL thrombin under constant stirring conditions (1,000 rpm) at 37°C. 

Stimulation was stopped by the addition of an equal volume of ice-cold lysis buffer after the 

indicated time points. For whole-cell tyrosine-phosphorylation, 4x NuPage sample buffer 

(Invitrogen) was added. Samples were incubated at 70°C for 10 min and separated by SDS-
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PAGE on 4-12% NuPage Bis-Tris gradient gels under reducing conditions followed by transfer 

onto a PVDF membrane. Membranes were blocked for 1 h at RT in 5% BSA in PBS and then 

incubated with the primary α-phosphotyrosine antibody 4G10 o/n at 4°C. The membranes were 

then washed 4x 15 min in washing buffer before incubation with secondary α-mouse 

horseradish peroxidase-conjugated antibody in washing buffer (1:2,000). Following extensive 

washing, proteins were visualized by ECL.  

3.2.5 Blood cell analysis by FACS 

100 µL blood was collected from the retro-orbital plexus in 300 µL heparin from 10 mice of each 

group and centrifuged at 2,800 rpm for 5 min to remove plasma. The cells were resuspended in 

1.5 mL of ACK buffer for 2 min followed by centrifugation at 2,800 rpm for 5 min. Finally cells 

were suspended in 250 µL of FACS buffer. 100 µL of the samples were aliquoted twice in 

96 well plates and volume was made up to 200 µL with ACK buffer. Cells were again 

centrifuged at 1,500 rpm for 3 min. The supernatant was discarded and 25 µL of 2.4G2 blocking 

antibody (10 μg/mL f.c.) was added to the cells. Further, in one of the sets, Gr1 (1:500) and 

CD11b antibody (1:200) were added to stain granulocytes and the other set of cells were 

stained against TcRβ, CD4, CD8 and B220 to stain T and B lymphocytes. The cells were 

incubated for 15 min with the antibody followed by addition of 100 µL of FACS buffer and 

centrifuged at 1,500 rpm for 3 min. The cell pellet was finally resuspended in 300 µL of FACS 

buffer. The samples were then transferred to FACS tubes and cells were measured on 

FACSCalibur instrument (Becton Dickinson, Heidelberg, Germany) 

3.3 In vitro analysis of platelet function 

3.3.1 Platelet preparation and washing 

Mice were bled under isofluran anesthesia from the retroorbital plexus. 700 µL blood were 

collected in a reaction tube containing either 300 μL heparin in TBS (20 U/mL, pH 7.3) or 300 µL 

acid citrate dextrose (ACD). Blood was centrifuged at 1,800 rpm for 5 min at RT. Supernatant 

and buffy coat were transferred into a new tube and centrifuged at 800 rpm for 6 min at RT to 

obtain platelet rich plasma (prp). To prepare washed platelets, prp was centrifuged at 2,500 rpm 

for 5 min at RT and the pellet was resuspended in 1 ml Ca2+-free Tyrode’s buffer containing 

apyrase (0.02 U/mL) and PGI2 (0.1 μg/mL). After 10 min incubation at 37°C the sample was 

centrifuged at 2,500 rpm for 5 min. After a second washing step, the platelet pellet was 

resuspended in the appropriate volume of Tyrode’s buffer containing apyrase (0.02 U/mL, 

0.5x106 platelets/µL) and left to incubate for at least 30 min at 37°C before analysis. 
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3.3.2 Platelet counting 

For determination of platelet count and size, 50 µL blood were drawn from the retroorbital 

plexus of anesthetized mice using heparinized microcapillaries and collected into a reaction 

tube containing 300 μL heparin in TBS (20 U/mL, pH 7.3). Platelet count and size were 

determined using a Sysmex KX-21N automated hematology analyzer (Sysmex Corp., Kobe, 

Japan). 

3.3.3 Aggregometry 

To determine platelet aggregation, light transmission was measured using washed platelets in 

Tyrode’s buffer without Ca2+ adjusted to a concentration of 0.5x106 platelets/µL. Alternatively, 

heparinized prp was used and diluted 1:3 in Tyrode’s buffer. For determination of aggregation, 

agonists or reagents (100-fold concentrated) were added and light transmission was recorded 

over 10 min on a Fibrintimer 4 channel aggregometer (Apact 4-channel optical aggregation 

system, APACT, Hamburg, Germany). For calibration, Tyrode’s buffer (for washed platelets) or 

1:3-diluted plasma (for prp) was set as 100% aggregation and washed platelet suspension or 

prp was set as 0% aggregation. For activation with thrombin, washed platelets were diluted in 

Tyrode’s buffer containing 2 mM Ca2+, for all other agonists platelets were diluted in the same 

buffer in presence of 70 µg/mL human fibrinogen. 

3.3.4 Measurement of inositol 1 phosphate (IP1) 

Washed platelets were adjusted to the final concentration of 0.6x106/μL in a modified 

phosphate-free Tyrode-HEPES buffer containing 50 mM LiCl2 and 2 mM Ca2+. Indomethacin (10 

μM) and apyrase (2 U/mL) were also added. Platelets were activated with the indicated agonists 

for 5 min at 37°C with constant shaking at 450 rpm. After stimulation, platelets were lysed in the 

buffer supplied with the kit. 50 μL of lysed platelets were used for the IP1 ELISA assay 

according to the manufacturer’s protocol (Cisbio, Cedex, France). 

3.3.5 Flow cytometry 

For determination of basal glycoprotein expression levels, washed platelets (1x106) were 

stained for 10 min at RT with saturating amounts of fluorophore-conjugated antibodies. The 

reaction was stopped by addition of 500 µL PBS, and samples were analyzed directly on a 

FACSCalibur instrument (Becton Dickinson, Heidelberg, Germany). For activation studies, 

platelets were activated with the indicated agonists or reagents for 15 min at RT in the presence 

of saturating amounts of phycoerythrin (PE)-coupled JON/A and fluorescein isothiocyanate 
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(FITC)-coupled α-P-selectin antibody. The reaction was stopped by addition of 500 μl PBS and 

samples were analyzed. For a two-color staining, the following settings were used: 

Detectors/Amps: 

Parameter Detector Voltage 

P1 FSC E01 

P2 SSC 380 

P3 Fl1 650 

P4 Fl2 580 

P5 Fl3 150 

Threshold: 

Value Parameter 

253 FSC-H 

52 SSC-H 

52 Fl1-H 

52 Fl2-H 

52 Fl3-H 

Compensation: 

Detector Setting 

Fl1 2.4% of Fl2 

Fl2 7.0% of Fl1 

Fl2 0% of Fl3 

Fl3 0% of Fl2 

 

3.3.6 Measurement of ATP release 

ATP secretion was measured using CHRONO-LUME reagent according to the manufacturer’s 

protocol on a Chronolog aggregometer (Chrono-Log Corp. Philadelphia, PA, USA). 5μL of 

luciferase reagent was directly added to the platelets (0.5x106 platelets/μL) under constant 

stirring and indicated concentrations of various agonists were added to study ATP release. The 

luminescence intensity was measured at a setting of ×0.01.  
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3.3.7 Adhesion under flow conditions 

Rectangular coverslips (24 x 60 mm) were coated with 0.2 mg/mL fibrillar type I collagen (Horm, 

Nycomed) o/n at 37°C and blocked for 1 h with 1% BSA in H2O. Blood (700 μL) was collected 

into 300 μL heparin (20 U/mL in TBS, pH 7.3) or ACD-buffer (for studies under non-

anticoagulated conditions). Platelets were labeled with a Dylight-488 conjugated α-GPIX Ig 

derivative (0.2 μg/mL) for 5 min at 37°C. Whole blood was diluted 2:1 in Tyrode’s buffer 

containing Ca2+ and filled into a 1 mL syringe. Transparent flow chambers with a slit depth of 

50 µm, equipped with the coated coverslips, were connected to the syringe filled with diluted 

whole blood. Perfusion was performed using a pulse-free pump under high shear stress 

equivalent to a wall shear rate of 1,000 s-1 or 1,700 s-1 (for 4 min). Thereafter, coverslips were 

washed for 1 min by perfusion with Tyrode’s buffer at the same shear stress and phase-contrast 

and fluorescent images were recorded from at least five different microscopic fields (40x 

objective). Image analysis was performed off-line using MetaVue® software. Thrombus 

formation was expressed as the mean percentage of total area covered by thrombi and as the 

mean integrated fluorescence intensity per mm2. 

3.3.8 Determination of phosphatidylserine exposing platelets after perfusion 

Adhesion experiments under flow conditions (1000 s-1) were performed with heparinised whole 

blood. Rectangular coverslips were coated with type I collagen (Nycomed) overnight at 37°C, 

rinsed with PBS and blocked with 1% bovine serum albumin (BSA). To prevent coagulation, 

chamber and tubing were prewashed extensively with HEPES buffer supplemented with heparin 

(5 U/mL). The blood was perfused through the flow chamber with 1 mL syringe and a pulse-free 

pump at a shear rate of 1700 s-1 for 4 min. The flow chamber was perfused with HEPES buffer 

containing heparin (5 U/mL), 1 mM CaCl2 and 250 ng/mL of Annexin V- Dylight 488 for 4 min 

followed by washing with HEPES buffer for 2 min to remove unbound Annexin V-Dylight 488. 

Phase-contrast and fluorescent images were obtained from at least 10 different collagen-

containing microscopic fields, which were randomly chosen (40X/0.75 NA objective; Carl Zeiss, 

Heidelberg, Germany). Image analysis was performed off-line using Metavue software (Visitron, 

Munich, Germany). 

3.3.9 Determination of phosphatidylserine-exposing platelets by flowcytometry 

The washed platelets were incubated with Annexin V-Dylight 488 after activation with different 

agonists for 15 min at 37°C and the percentage of fluorescently labeled platelets were detected 

by flow cytometry. 
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3.3.10 Intracellular calcium measurements 

Platelets isolated from blood were washed and suspended in Tyrode’s buffer without Ca2+. The 

washed platelets were loaded with fura-2/AM (5 μM) in the presence of Pluronic F-127 

(0.2 μg/mL; Molecular Probes) for 30 min at 37°C. After 30 min platelets were washed and 

resuspended in Tyrode’s buffer containing no (for measurement of store release) or 1 mM Ca2+ 

(for measurement of influx). Stirred platelets were activated with different agonists, and 

fluorescence was measured with a PerkinElmer LS 55 fluorimeter (Waltham, MA). Excitation 

was alternated between 340 and 380 nm, and emission was measured at 509 nm. Each 

measurement was calibrated using Triton X-100 and EDTA. 

3.3.11 Spreading assay 

Platelets were isolated from blood and washed as described above. Washed platelets were 

resuspended in Tyrode’s buffer and adjusted to a concentration of 0.2 x 106 platelets/μL. 60 µL 

of the platelet suspension was stimulated with 0.01 U/mL thrombin and immediately placed on 

coverslips (24 x 60 mm) that had been coated overnight with 100 µg/mL human fibrinogen 

(Sigma, Germany) and blocked for 1 h with 1% BSA (Sigma, Germany). Coverslips were 

mounted on an inverted microscope Zeiss HBO 100 (Zeiss, Germany). Time-lapse images were 

recorded (every 5 seconds for 20 min) with a 40x objective and analyzed using MetaVue® 

software. Starting points and percentages of adhered and completely spread platelets were 

considered as indicators of platelet adhesion and spreading dynamics. 

3.3.12 Immunofluorescence microscopy of platelets 

Washed platelets were allowed to spread on fibrinogen after thrombin (0.01 U/mL) stimulation 

and were fixed in PHEM complete buffer for 20 min at 4°C, blocked with 5% BSA and 1% goat 

serum for 2 h at 37°C. Spread platelets were stained with rabbit anti-CLP36 antibody (ab64971, 

Abcam, Cambridge, UK) for 2 h followed by 4x washing with PBS and incubation of 1 h with 

secondary Alexa 488- labeled anti-rabbit antibody (Invitrogen) and phalloidin-Atto647N (Sigma-

Aldrich, Deisenhofen, Germany). Then, samples were washed again with PBS, mounted using 

Vectashield mounting medium and finally left to dry o/n at 4°C. Samples were visualised on a 

Leica SP5 confocal microscope with a 100x oil objective (Leica Microsystem GmH, Wetzlar, 

Germany). Images were further processed using Image J software (National Institute of Health, 

USA) 
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3.3.13 Determination of platelet filamentous (F)-actin content 

Washed platelets were prepared and the platelet count was adjusted to approximately 

0.2x106 platelets/µL in Tyrode’s buffer without Ca2+. Platelets were diluted 1:10 in Tyrode’s 

buffer in a final volume of 50 μL per sample and incubated for 3 min at 37°C after addition of 

5 μL Dylight 649-conjugated anti-GPIX Ig derivatives. Then, platelets were stimulated with 

different agonists for 2 min at 37°C (400 rpm) and fixed for 10 min by addition of 0.55% volume 

10% PFA in PBS. Samples were finally centrifuged for 5 min at 2,500 rpm, the pellet was 

resuspended in 55 μL Tyrode’s buffer containing 0.1 volume-percentage Triton-X 100 and 

phalloidin-FITC at a final concentration of 10 μM. Samples were incubated for 30 min at RT in 

the dark and the reaction was stopped by addition of 500 μL PBS. After centrifugation for 5 min 

at 2,500 rpm the supernatant was discarded and the pellet was resuspended again in 500 μL 

PBS. Samples were immediately analyzed on a FACSCalibur. 

3.4 In vivo analysis of platelet function 

3.4.1 Platelet life span  

Circulating platelets were labeled in vivo by i.v. injection in the retro-orbital plexus of 5 μg 

Dylight-488-anti-GPIX Ig derivative in 200 μL PBS. 30 min after antibody injection (and every 

24 hours for 5 days) 50 μL blood was taken from the retro-orbital plexus of the treated mice and 

as the percentage of the whole PE-Cy5 positive population was determined by flow cytometry. 

3.4.2 Tail bleeding time assay 

Mice were anesthetized by intraperitoneal injection of the substances dormitor, dormicum and 

fentanyl, and a 1 mm segment of the tail tip was ablated with a scalpel. Tail bleeding was 

monitored by gently absorbing the drop of blood with a filter paper in 20 s intervals without 

interfering with the wound site. When no blood was observed on the paper, bleeding was 

determined to have ceased. The experiment was manually stopped after 20 min by 

cauterization.  

Alternatively, tail bleeding times were determined in 37°C warm saline (0.9% NaCl). Upon 

amputation, the tail was placed in a plastic tube containing 4 mL saline, bleeding was observed 

and determined to have ceased when stopped for >1 min. Lost blood volume was determined 

via weight against a saline filled reference tube and increased weight of the tube was multiplied 

by the density of blood.  
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3.4.3 Intravital microscopy of thrombus formation in FeCl3-injured mesenteric 
arterioles 

3- to 4-week old mice were anesthetized i.p. with ketamine/xylazine (100/5 mg/kg; Parke-Davis, 

Berlin, Germany and Bayer, Leverkusen, Germany) and the mesentery was exteriorized through 

a midline abdominal incision. Endothelial damage was induced by application of a 3 mm2 filter 

paper saturated with 20% FeCl3. Arterioles were visualized using a Zeiss Axiovert 200 inverted 

microscope equipped with a 100-W HBO fluorescent lamp source and a CoolSNAP-EZ camera 

(Visitron). Digital images were recorded and analyzed using the Metavue software. Adhesion 

and aggregation of fluorescently labeled platelets (Dylight-488 conjugated anti-GPIX antibody 

derivative) in arterioles was monitored for 40 min or until complete occlusion occurred (blood 

flow stopped for >1 min).  

3.4.4 Intravital microscopy of thrombus formation in the abdominal aorta 

Mice were anesthetized i.p. with ketamine/xylazine (100:5 mg/kg; Parke-Davis, Berlin, Germany 

and Bayer, Leverkusen, Germany). A longitudinal incision was used to open the abdominal 

cavity of the anesthetized mice and abdominal aorta was exposed. An ultrasonic flow probe was 

placed around the vessel and thrombus formation was induced by a single firm compression 

with a forceps. Blood flow was monitored until complete occlusion of vessel; or experiments 

were stopped manually after an observation period of 30 min. 

3.4.5 Intravital microscopy of thrombus formation in FeCl3-injured carotid artery  

Mice were anesthetized i.p. with ketamine/xylazine (100:5 mg/kg; Parke-Davis, Berlin, Germany 

and Bayer, Leverkusen, Germany) and the right carotid artery was exposed through a vertical 

midline incision in the neck. An ultrasonic flow probe (0.5PSB699 Transonic System, Ithaca, 

NY) was placed around the vessel and thrombosis was induced by topical application of a 0.5 

mm by 1 mm filter paper saturated with 10% FeCl3 for 2 min and 30 s. Blood flow was monitored 

with an ultrasonic flow probe until full occlusion of the vessel occurred for 30 min. All the above 

mentioned thrombosis models were performed by Martina Morowski or Ina Thielmann in the 

group of Prof. Bernhard Nieswandt. 

3.4.6 Transient middle cerebral artery occlusion (tMCAO) model 

Experiments were conducted on 6-to 8-week old male mice according to published 

recommendations for research in mechanism-driven basic stroke studies.119 Transient middle 

cerebral artery occlusion (tMCAO) was induced under inhalation anesthesia using the 

intraluminal filament (6021PK10; Doccol Company) technique.36 After 60 min, the filament was 
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withdrawn to allow reperfusion. For measurements of ischemic brain (infarct) volume, animals 

were sacrificed 24 h after induction of tMCAO and brain sections were stained with 2% 2,3,5-

triphenyltetrazolium chloride (TTC; Sigma-Aldrich, Germany). Brain infarct volumes were 

calculated and corrected for oedema as described.36 Neurological function and motor function 

were assessed 24 h after tMCAO. This work was performed by and in collaboration with 

Dr. Peter Kraft in the group of Prof. Guido Stoll, Department of Neurology, University Hospital, 

Würzburg. 

3.5 Data analysis  

The results presented in this thesis are mean ± SD from at least three independent experiments 

per group, if not otherwise stated. Differences between the groups were statistically analyzed 

using the Mann-Whitney-U-test. P-values <0.05 were considered as statistically significant (*), P 

<0.01 = (**) and P <0.001 was taken as the level of highest significance (***). 
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4 RESULTS 

4.1 Diacylglycerol-induced Ca2+ entry by TRPC6 is dispensable for murine 
platelet function 

To investigate the role of canonical transient receptor potential channel 6 (TRPC6) in platelet 

physiology, TRPC6 deficient mice71 kindly provided by Dr. Alexander Dietrich (Ludwig-

Maximilians University, Munich, Germany) were analyzed. TRPC6 deficient mice were referred 

as Trpc6-/- and their littermate wildtype (referred as Wt) served as control animals. This part of 

the study was conducted together with Gajalakshmi Ramanathan (Medical University of Vienna, 

Austria). 

4.1.1 Protein and mRNA expression of TRPC family members in Trpc6-/- platelets 

Western blot analysis of Wt platelets showed a strong band at the expected protein size of 

TRPC6 of about 110 kDa, while the protein was absent in Trpc6-/- platelets (Figure 6A). Since an 

upregulation of Trpc3 mRNA has been observed in the vascular smooth muscle cells of thoracic 

aortas and cerebral arteries of Trpc6-/- mice,71 the mRNA expression of other TRPC family 

members known to be expressed in mouse platelets was analyzed using RT-PCR.120 

Interestingly, only Trpc1 mRNA was detected in Wt and Trpc6-/- murine platelets, whereas other 

Trpc mRNAs isoforms, including Trpc3 were absent (Figure 6B). These results indicated that the 

lack of TRPC6 cannot be compensated by other TRPC isoforms in murine platelets.  

 

 

Figure 6: Western Blot analysis and mRNA expression profile of the TRPC family members of 
Trpc6-/- platelets. (A) Western blot analysis of Wt platelets shows the TRPC6 protein migrating at 110 
kDa whereas no TRPC6 protein was detected in Trpc6-/- platelets. Tubulin (55 kDa) was used as loading 
control. (B) mRNA was isolated from Wt and Trpc6-/- platelets and RT-PCR was performed. mRNA 
isolated from spleen cells served as control. 
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4.1.2 TRPC6 is the major diacylglycerol activated Ca2+ channel in murine platelets 

TRPC6 and its closest relative, TRPC3, have been shown to be receptor operated calcium 

(ROC) channels activated by the secondary messenger diacylglycerol (DAG). PLC activation in 

response to platelet activation leads to hydrolysis of PIP2 to DAG and IP3.121 To determine the 

contribution of TRPC6 function in DAG-activated ROCE, Wt and Trpc6-/- platelets were 

stimulated with the 150 µM of membrane permeable DAG analogue, 1-oleoyl-2-acetyl-sn-

glycerol (OAG) and the change in intracellular Ca2+ [Ca2+]i was measured. Wt platelets exhibited 

a transient increase in [Ca2+]i with a maximal change of 65 ± 7.6 nM in [Ca2+]i. In sharp contrast, 

virtually no Ca2+ influx was observed in Trpc6-/- platelets (Figure 7A). These findings established 

TRPC6 as the major DAG activated Ca2+ channel in murine platelets. Apart from that, studies 

performed by Bousquet et al. have shown that PKC mediated phosphorylation of TRPC6 

regulates channel activity.63 To study whether PKC phosphorylation regulates TRPC6 mediated 

Ca2+ influx, platelets were activated with 150 µM OAG in presence of protein kinase C (PKC) 

inhibitor, Gö6983 (300 nM). Interestingly, in presence of Gö6983, Ca2+ influx was further 

elevated in Wt platelets whereas, Trpc6-/- platelets did not display any effect on OAG-induced 

Ca2+ entry in (92 ± 9.4 nM for Wt and 18.5 ± 3.7 nM for Trpc6-/- ; P< 0.001, Figure 7B). These 

results revealed that PKC regulates TRPC6 activity in platelets. 

 

Figure 7: Abolished DAG activated ROCE in Trpc6-/- platelets. (A) DAG activated ROCE was 
measured in fura-2 loaded platelets using the DAG analogue, OAG (150 µM), in the presence of 1 mM 
CaCl2. Statistical analysis of Ca2+ concentration upon stimulation with OAG. (B) DAG mediated ROCE was 
measured in fura-2 loaded platelets using OAG (150 µM) in the presence of the PKC inhibitor Gö6983 
(300 nM) and 1 mM CaCl2. Platelets were incubated with the inhibitor for 50 s followed by stimulation with 
OAG. ** P<0.01; *** P<0.001 as compared to Wt values. 
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4.1.3 TRPC6 is dispensable for store operated calcium entry and agonist induced 
Ca2+ mobilization in platelets 

Earlier studies on human platelets have indicated a regulatory role of TRPC6 in the activation of 

SOCE122 via functional coupling of the Ca2+ channel to the IP3 receptor123 and to the 

STIM1-Orai1 complex.124 To investigate the role of TRPC6 in regulation of SOCE, Wt and 

Trpc6-/- platelets were incubated with SR/ER Ca2+ ATPase (SERCA) inhibitor thapsigargin (TG) 

for 5 min followed by addition of Ca2+ to extracellular medium. Store release and resulting SOCE 

were found to be comparable in Wt and Trpc6-/- platelets (∆[Ca2+]i 868 ± 123 nM for Wt and 

814 ± 127 nM for Trpc6-/- ; P=0.95, Figure 8), thus confirming that TRPC6 is dispensable for 

regulation of SOCE in murine platelets. 

 

 

Figure 8: Normal SOCE in Trpc6-/- platelets. (A) SOCE was measured by incubating platelets with 
thapsigargin (TG) (5 µM) for 5 min followed by the addition of CaCl2 (1 mM). (B) Statistical analysis of 
Ca2+ concentrations before TG addition, after TG mediated store depletion and SOCE upon addition of 
Ca2+ for Wt and Trpc6-/- mice. 

Furthermore, to investigate the impact of deficiency of TRPC6 on agonist induced Ca2+ 

mobilization in platelets, [Ca2+]i was measured in response to different agonists, like thrombin, 

ADP, CRP and the TxA2 analogue U46619 in combination with ADP. Unexpectedly, Trpc6-/- 

platelets displayed normal Ca2+ influx indicating that loss of TRPC6 mediated ROCE could be 

compensated by other ROC channels or by SOCE (Figure 9A). Apart from that, Ca2+ release 

from the intracellular stores, measured in absence of Ca2+, was also comparable between 

Trpc6-/- and Wt platelets (Figure 9B). 
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Figure 9: Normal calcium influx and store release in Trpc6-/- platelets. (A) Calcium influx measured 
upon stimulation with thrombin (0.1 U/mL), CRP (10 µg/mL), ADP (10 µM) and U46619 (3 µM) in the 
presence of extracellular Ca2+ (1 mM). (B) Calcium store release measured upon stimulation with the 
above agonists in calcium free buffer. The maximal change in [Ca2+]i (mean ± SD, n = 4-6) of Wt and 
Trpc6-/- platelets are shown.  

4.1.4 Trpc6-/- mice display a normal platelet life span  

Mouse platelets exhibit a life span of approximately 5 days in the circulation which is internally 

controlled by the balance of their apoptotic machinery at steady state.125,126 Activation of ion 

channels has been implicated in the regulation of platelet life span and apoptosis;127 therefore 

the platelet life span in Trpc6-/- and Wt mice was analyzed in vivo. Circulating platelets were 

labeled with a fluorescent non-toxic anti-GPIX antibody derivative, injected i.v. and the 

percentage of labeled platelet population was monitored by flow cytometry over time. One hour 

after antibody treatment, >90% of circulating platelets were labeled in mice and this platelet 

population constantly declined over 5 days in both Wt and Trpc6-/- mice (Figure 10A). 

Additionally, platelet counts, platelet size and expression of major surface glycoproteins in 

Trpc6-/- platelets were also comparable to Wt (Figure 10B, C and D). These findings 

demonstrated that TRPC6 is dispensable for platelet production and for the regulation of platelet 

turnover in vivo. 
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Figure 10: Unaltered platelet life span and platelet membrane glycoprotein expression in Trpc6-/- 
platelets. (A) Platelet life span was determined as the percentage of fluorescently labeled platelets in Wt 
and Trpc6-/- mice over a 5 day period after i.v. injection of a Dylight-488 anti-GPIX antibody derivative (0.5 
mg/kg). (B and C) Platelet count (x103)/µL and size expressed as forward scatter (FSC) signal in flow 
cytometry of Wt and Trpc6-/- mice. (D) Diluted whole blood was incubated with saturating concentrations of 
FITC-labeled antibodies of the indicated specificity for 15 min and analyzed by flow cytometry. Results are 
shown as mean fluorescence intensity (MFI) ± SD of 4-6 mice per group. 

4.1.5 Normal agonist-induced integrin activation and granule release in Trpc6-/- 

platelets 

To study the effect of the TRPC6-deficiency on platelet activation, agonist–induced activation of 

the major platelet integrin αIIbβ3 and degranulation-dependent P-selectin exposure were 

analyzed by flow cytometry. In this experimental setting, the use of highly diluted platelet 

suspension excludes the accumulation of released secondary messengers and thus allows 

conclusions about the primary platelet signaling response. Trpc6-/- platelets displayed integrin 

activation and degranulation similar to that of Wt controls in response to all tested agonists at 

different concentrations (Figure 11). 
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Figure 11: Agonist-induced integrin activation and degranulation of Trpc6-/- mice. (A, B) Flow 
cytometric analysis of integrin αIIbβ3 activation and P-selectin exposure in Wt and Trpc6-/- platelets (n=4). 
Diluted whole blood was incubated with saturating concentrations of FITC-labeled antibodies for 15 min 
after stimulation with indicated agonists and analyzed by flow cytometry for integrin activation and 
degranulation. 

Apart from DAG mediated ROCE by TRPC6, DAG also activates PKC resulting in granule 

secretion and platelet activation. To test whether TRPC6 influences PKC mediated signaling, 

phorbol-12-myristate-13-acetate (PMA) was used to activate PKC.121 At both higher and lower 

doses of PMA, integrin αIIbβ3 activation and P-selectin exposure were comparable between Wt 

and Trpc6-/- platelets (Figure 12). 
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Figure 12: Normal PKC mediated platelet activation in Trpc6-/- mice. Washed platelets were activated 
by different concentrations of PMA to induce PKC mediated platelet activation. (A) Integrin activation and 
(B) degranulation was measured using flow cytometry. Results are shown as mean fluorescence intensity 
(MFI) ± SD of Wt and Trpc6-/-mice of 4 mice per group. 

Platelet aggregation requires both inside-out and outside-in signaling of integrins which is 

strengthened by secondary mediators and strongly dependent on increased intracellular Ca2+ 

concentrations. To study the role of TRPC6 in this process, standard aggregometry was 

performed. The loss of DAG dependent Ca2+ entry mediated by TRPC6 did not interfere with 

platelet aggregation responses to different agonists at all tested concentrations (Figure 13). 

 

 

Figure 13: Unaltered aggregation of Trpc6-/- platelets. Aggregation curves of Wt and Trpc6-/-platelets in 
response to the indicated agonist concentrations over a time span of 10 min. (Representative curves of 4 
independent measurements). 
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4.1.6 Trpc6-/- platelets display normal spreading on fibrinogen 

Another process requiring Ca2+ dependent outside-in signaling of integrins is spreading of 

platelets on extracellular matrix proteins. To investigate the role of TRPC6 in this process, Wt 

and Trpc6-/- platelets were allowed to spread on a fibrinogen coated surface in presence of 

thrombin (0.01 U/mL). Interestingly, Trpc6-/- platelets were able to form filopodia and lamellipodia 

to the same extent and with similar kinetics as Wt platelets (Figure 14). Both groups of platelets 

could spread fully within 20 min and overall morphological structure of spread Trpc6-/- platelets 

appeared similar to Wt platelets. These results showed that Ca2+ influx through TRPC6 does not 

play a crucial role for outside-in integrin signaling and for the reorganization of the actin 

cytoskeleton. 

 

 

Figure 14: Trpc6-/- platelets display normal spreading on fibrinogen. Washed platelets of Wt and 
Trpc6-/- mice were stimulated with 0.01 U/mL thrombin and allowed to spread on fibrinogen (200 µg/mL). 
Representative differential interference contrast (DIC) images of 3 individual experiments from the 
indicated time points (left) and statistical evaluation of the percentage of platelets at different stages of 
spreading (right). 1: roundish, 2: only filopodia, 3: filopodia and lamellipodia, 4: fully spread. 

4.1.7 Unaltered thrombus formation under flow and procoagulant activity of 
Trpc6-/- platelets 

The experiments described above showed normal platelet activation responses and aggregation 

in vitro despite the loss of DAG mediated ROCE. Under high shear flow conditions in blood 

vessels, modest differences in Ca2+ homeostasis could, however, become a limiting factor, as 

agonist concentrations can drop rapidly by dilution and weak platelet interactions can result in 

reduced thrombus stability. Therefore, the ability of Trpc6-/- platelets to form platelet aggregates 

on a collagen-coated surface was analyzed in a whole blood perfusion system. At a shear rate 

of 1000 s-1, mimicking flow conditions in large arteries, Wt and Trpc6-/- platelets formed large and 

stable three-dimensional aggregates that covered similar surface areas at the end of perfusion 
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time (53.2 ± 5.6% for Wt platelets and 48.3 ± 6.0% Trpc6-/- platelets; P=0.77). The relative 

thrombus volume was also similar between the two groups. These finding indicated that TRPC6 

does not play an essential role in thrombus formation under flow conditions (Figure 15A). 

Impaired agonist-induced Ca2+ responses may influence phosphatidylserine (PS) exposure and 

interfere with platelet-dependent coagulation. To address the role of TRPC6 in maintaining 

procoagulant activity in murine platelets, PS exposure was analyzed in Trpc6-/- platelets by 

Annexin V-Dylight488 binding to PS exposed surfaces on platelets upon agonist stimulation. 

Percentages of annexin V positive platelets were found to be similar in Wt and Trpc6-/- platelets, 

indicating that the Ca2+ influx through TRPC6 is not essential for procoagulant responses (Figure 

15B). 

 

 

Figure 15: Flow adhesion assay and procoagulant activity of Trpc6-/- mice. (A) Trpc6-/- platelets form 
stable thrombi on a collagen-coated surface (0.2 mg/ml) in whole blood perfusion assay at a shear rate of 
1000 s-1 over a run time of 4 min. Representative phase contrast images and statistical mean surface 
coverage and relative thrombus volume (A, lower panel) are shown (n=8) for Wt and Trpc6-/-mice. (B) 
procoagulant activity was analyzed using Annexin V-Dylight 488 binding to negatively charged PS. 
Platelets were activated with 0.1 U/mL thrombin, 10 µg/mL CRP, 1 µg/mL CVX or 1.2 µg/mL of RC and 
percentage of Annexin V-Dylight 488 positive platelets were analyzed by FACS.  

4.1.8 Normal arterial thrombus formation and primary hemostasis in Trpc6-/- mice  

To study in vivo thrombus formation, arterial thrombosis was induced using three different 

models. These experiments were done together with Ina Thielmann from our laboratories. In the 

first experiment, mechanical injury was induced on the abdominal aorta by a firm compression 
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followed by monitoring the blood flow with an ultrasonic flow probe for up to 30 min. Under these 

conditions, Wt as well as Trpc6-/- mice formed irreversible occlusive thrombi within the 

observation period (mean occlusion time of 217 ± 73 s (Wt) and 153 ± 4 s (Trpc6-/-), P=0.95; 

Figure 16A).  

 

Figure 16: Trpc6-/- mice display normal thrombosis. (A) Vessel occlusion times for Wt and Trpc6-/- mice 
after mechanical injury of the abdominal aorta. (B) Thrombus formation in FeCl3-injured carotid artery as 
monitored by ultrasonic flow probe. (C and D) Thrombus formation in FeCl3-injured mesenteric arterioles 
was monitored for adhesion and thrombus formation of fluorescently labeled platelets by intravital 
microscopy. Representative images and time to complete vessel occlusion are shown. Each symbol 
represents one individual.  

In a second set of experiments, the carotid artery injury model was used. Chemical injury was 

induced by application of 10 % ferric-chloride (FeCl3) and the time to occlusion was monitored 

using an ultrasonic flow probe. In this injury model, 11 out of 13 Wt mice could form occlusive 
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thrombi in comparison to 8 out of 13 Trpc6-/- mice within the observation period of 30 min (mean 

occlusion time of 370.62 ± 111.7 s for Wt and 342.72 ± 67.55 s for Trpc6-/- mice; P=0.87; Figure 

16B). Furthermore, in vivo thrombus formation was also analyzed in FeCl3 injured mesenteric 

arterioles using intravital fluorescence microscopy. The kinetics of initial adhesion and 

accumulation of fluorescently labeled platelets over time was found to be comparable in Wt and 

Trpc6-/- animals and also the mean time to complete vessel occlusion was also similar between 

the two groups (15.7 ± 3.5 vs 14.2 ± 4.0 min, respectively; Figure 16C and D).  

To determine the hemostatic function of Trpc6-/- platelets, tail bleeding assay was performed. 

1 mm of the mouse tail tip was amputated and the tails were immediately immersed into saline 

at 37°C and the bleeding time was defined as time until cessation of blood flow (Figure 17). No 

significant hemostatic defect was observed in Trpc6-/- mice (mean tail bleeding time of Trpc6-/- 

was 218 ± 315 s (n=14), Wt was 114 ± 168 s (n=14); P=0.16).  

 

 

Figure 17: Trpc6-/- mice display normal hemostasis. Tail bleeding times of Wt and Trpc6-/- mice were 
analyzed by cutting a 1 mm of tail tip and immersion in saline at 37°C. Each symbol represents one 
individual.  

Together, these results demonstrated that the absence of TRPC6-mediated Ca2+ signaling in 

platelets has no major effect on primary hemostasis and arterial thrombus formation in mice. 
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4.2 The PDLIM domain family member CLP36 is a crucial mediator of 
platelet activation in hemostasis and thrombosis 

To study the role of CLP36 and its different domains in platelets, a genetrap approach was 

used.  

• Mice carrying the intronic genetrap insertion in the Clp36 gene after exon 5 were 

referred to as Clp36∆LIM. These mice expressed truncated CLP36 protein where the 

C-terminal LIM domain was replaced by the β-Geomycin cassette. Clp36∆LIM mice 

expressed the chimeric CLP36 protein termed as CLP36ΔLIM-β-GEO protein. 

• Mice carrying the intronic gentrap insertion in the Clp36 gene after exon 1 were denoted 

as Clp36-/- . In these mice the CLP36 protein was absent.  

For both mouse lines, respective wildtype littermates (referred as Wt) served as control animals. 

This part of the study was done together with Dr. Attila Braun from our group. 

4.2.1 CLP36 is expressed in mouse platelets 

The partially overlapping expression profile of PDLIMs in different mouse tissues and the similar 

domain structure of ALP, RIL and CLP36101 indicated that the biological function of these 

proteins may be redundant in vivo. To assess the expression of various members of the PDLIM 

family in platelets, RT-PCR was performed. Interestingly, only clp36 mRNA but no other PDLIM 

mRNAs, was found to be expressed in platelets (Figure 18). The unique expression of CLP36 in 

murine platelets suggested that disruption of CLP36 function cannot be compensated by other 

members of PDLIMs and thus CLP36 might play an important role in platelet physiology. 

 

4.2.2 CLP36 colocalizes with the actin cytoskeleton in spread mouse platelets 

To study protein expression and subcellular localization of CLP36, immunofluorescence 

confocal microscopy was performed on Wt platelets that were allowed to spread on fibrinogen 

after stimulation with thrombin (0.01 U/mL). CLP36 was found to be abundantly expressed with 

Figure 18: mRNA expression profile 
of PDLIM family members in 
platelets. mRNA was isolated from Wt 
platelets (plt.) and RT-PCR was 
performed. mRNA isolated from Wt 
thymus cells served as a positive 
control. Actin was used as loading 
control. 
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dotted appearance throughout the platelet cytoskeleton (Figure 19). Interestingly, CLP36 was 

absent in the central granule body of platelets where actin fibers are absent. 

 

Figure 19: Subcellular localization of CLP36 in platelets. Washed platelets of Wt mice were spread on 
200 µg/mL of immobilized fibrinogen after stimulation with 0.01 U/mL thrombin. Platelets were allowed to 
spread for 20 min and were then stained with phalloidin Atto647N and CLP36-PDZ antibody to detect 
CLP36 protein. Representative confocal microscopy images are shown. Scale bar: 3 μm. 

4.2.3 Generation of the Clp36ΔLIM knockin mice 

To study the function CLP36 in platelets, ES cells (XC 262, BayGenomics) were injected into 

the C57Bl/6 blastocysts to generate chimeric mice. In these ES cells the Clp36 gene was 

disrupted by insertion of an intronic β-Geomycin gene-trap cassette into intron 5 located 

upstream of exons encoding the LIM domain (Figure 20). Insertion of the cassette in the intronic 

region between exon 5 and 6 resulted in expression of a chimeric CLP36ΔLIM-β-GEO fusion 

protein. Chimeric mice were backcrossed with C57Bl/6 and subsequent progenies were 

intercrossed to obtain homozygous mutant animals. The mice, homozygously expressing this 

truncated CLP36 variant, are further referred to as Clp36ΔLIM mice. Clp36ΔLIM mice were born 

following the Mendelian distribution and developed normally. Histological analysis of different 

hematopoietic organs of Clp36ΔLIM mice revealed no obvious hematological diseases or other 

developmental alterations until the age of 12 months (data not shown). 

 

Figure 20: Targeting strategy of Clp36ΔLIM mice. Genetrap cassette β-Geomycin (GEO) is indicated. 
Exon-intron structure of Clp36 gene is denoted as black box and line, respectively. Translated Wt and 
putative chimeric CLP36ΔLIM-β-GEO fusion proteins are indicated. (XC 262, BayGenomics) 
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4.2.4 Genotyping of Clp36ΔLIM knockin mice  

A two-step approach was followed to genotype the mice. In the first step, the genetrap PCR was 

performed which could detect the insertion of the β-Geomycin gene-trap cassette. The mice 

negative for the genetrap PCR were referred as Wt controls. Mice found to be positive for the 

genetrap PCR were termed as either heterozygote (Clp36+/ΔLIM) or knockin (Clp36ΔLIM) (Figure 

21A). To further distinguish between the Clp36+/ΔLIM and Clp36ΔLIM, Western blot was performed 

on platelet lysates. The fusion of β-GEO cassette to the C terminus of CLP36 resulted in 

expression of the chimeric CLP36ΔLIM-β-GEO fusion protein of 130 kDa. Two commercial 

antibodies were available that recognized different domains of CLP36. One of the antibodies 

recognized the N-terminal PDZ domain and the other antibody detected the C-terminal LIM 

domain of CLP36. Western blotting with the CLP36 N-terminal PDZ specific antibody detected 2 

bands for Clp36+/ΔLIM mice; one at 36 kDa, corresponding to the Wt protein and another at ~130 

kDa, corresponding to the CLP36ΔLIM-β-GEO protein. Western blot of platelet lysate from 

Clp36ΔLIM mice detected a single band at ~130 KDa (Figure 21B). Western blot, using the 

second antibody recognizing the C-terminal LIM domain, detected Wt protein of 36 kDa in 

Clp36+/ΔLIM mice but could not detect any band of similar size for Clp36∆LIM mice (Figure 21B). 

 

Figure 21: Detection of the insertion of the β-Geomycin genetrap cassette and Western blot 
detection of the CLP36ΔLIM-β-GEO chimeric protein. (A) The genetrap PCR was performed to 
distinguish between Wt and Clp36+/ΔLIM or Clp36ΔLIM mice. (B) In the next step, Western blot analysis with 
anti-PDZ domain of CLP36 and anti-LIM domain of CLP36 specific antibodies was performed to 
differentiate between Clp36+/ΔLIM and Clp36ΔLIM mice. In Wt platelets, the CLP36 protein migrated at 
36 kDa; in the Clp36ΔLIM platelets a chimeric protein was detected at ~130 kDa. 

4.2.5 Clp36ΔLIM platelets spread normally on fibrinogen and display an unaltered 
subcellular localization of the chimeric protein 

CLP36 binds to α-actinin in resting platelets and translocates as the CLP36-α-actinin complex to 

the actin cytoskeleton upon platelet activation.115 This interaction is mediated by the PDZ region 

of the CLP36 protein. To test whether the LIM domain of CLP36 was required for actin 

rearrangements in platelets, Wt and Clp36ΔLIM platelets were allowed to spread on 
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fibrinogen-coated coverslips in the presence of thrombin (0.01 U/mL). Clp36ΔLIM platelets formed 

filopodia and lamellipodia with similar kinetics as Wt platelets. After 20 min, the number of fully 

spread platelets was also comparable between the two groups (Figure 22A). To determine 

whether Clp36ΔLIM platelets have the capability to assemble actin filaments, flow cytometric 

analyses were performed to measure F-actin assembly after agonist stimulation. In these 

measurements, the amount of F-actin in resting and after stimulation with different agonists was 

found to be similar in Wt and Clp36ΔLIM platelets (Figure 22B). These results suggested that the 

LIM domain of CLP36 is dispensable for actin rearrangements in murine platelets. 

 

 

Figure 22: Clp36ΔLIM platelets can spread on fibrinogen and display unaltered F-actin assembly. (A) 
Washed platelets of Wt and Clp36ΔLIM mice were stimulated with 0.01 U/mL thrombin and were allowed to 
spread on fibrinogen (200 µg/mL). Representative differential interference contrast (DIC) images of 4 
individual experiments from the indicated time points and statistical evaluation of the percentage of 
spread platelets at different spreading stages. 1: no filopodia, 2: only filopodia, 3: filopodia and 
lamellipodia, 4: full spreading. (B) Quantification of F-actin assembly in Clp36ΔLIM platelets. After activation 
of washed platelets with thrombin (1 U/mL), CRP (10 µg/mL and 1 µg/mL) for 2 min at 37°C, platelets 
were fixed, permeabilized, stained with phalloidin-FITC and analyzed by flow cytometry. The mean 
fluorescence intensity (MFI) of resting control platelets was set to 1. MFI of resting and activated platelets 
was measured. The ratio of polymerized actin in activated versus resting platelets was determined. 
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Furthermore, confocal immunofluorescence microscopy of Wt and Clp36ΔLIM platelets at 

different spreading stages was performed to visualize the actin cytoskeleton and the localization 

of the chimeric CLP36. Interestingly, localization of chimeric CLP36 in Clp36ΔLIM platelets was 

similar to that of Wt platelets (Figure 23). The localization of α-actinin-1 was also found to be 

unaltered (data not shown).  

 

Figure 23: Localization of the chimeric CLP36 in Clp36ΔLIM platelets. Washed platelets of Wt and 
Clp36ΔLIM mice were allowed to spread on 200 µg/mL of immobilized fibrinogen after stimulation with 0.01 
U/mL thrombin. Platelets were allowed to spread for 10 or 20 min and were stained with phalloidin 
Atto647N and CLP36-PDZ antibody to detect Wt (left panel) and Clp36ΔLIM (right panel) protein. 
Representative confocal microscopy images are shown. Scale bar: 3 μm. 

4.2.6 CLP36ΔLIM protein co-immunoprecipates with α−actinin-1 in Clp36ΔLIM 

platelets 

To study if the chimeric CLP36 protein could still interact with α-actinin-1, immunoprecipitation 

studies were performed. The chimeric CLP36 protein was immunoprecipitated from platelet 

lysates using an antibody specific for the N-terminal PDZ domain. Western blot analysis showed 

that α-actinin-1 specifically co-immunoprecipitated with CLP36 in both Wt and Clp36ΔLIM platelet 

lysates (Figure 24). 
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4.2.7 Clp36ΔLIM platelets display normal clot retraction 

Upon ligand binding, integrin αIIbβ3 can also mediate clot retraction which is governed by 

outside-in signaling by the integrin along with cytoskeletal contractibility of platelets.128 CLP36 

has been proposed to be important for actin stress fiber formation; therefore to study if CLP36 

has a role in clot formation, coagulation of platelet rich plasma (prp) of Wt and Clp36ΔLIM mice 

was induced by high doses of thrombin (3 U/mL) in the presence of high Ca2+-concentrations 

(20 mM) and clot retraction was monitored under non-stirring conditions for 4 h (Figure 25). Clot 

formation and retraction was comparable in both of Wt and Clp36ΔLIM prp, with partial and 

complete retraction after 1h and 4h, respectively. This result indicated that CLP36 does not play 

an essential role in integrin mediated clot retraction. 

 

Figure 25: Clp36ΔLIM platelets show normal integrin-dependent clot retraction. Clot retraction of Wt 
and Clp36ΔLIM prp upon activation with 3 U/mL thrombin in presence of 20 mM CaCl2 at the indicated time 
points. Representative images of 3 different experiments are depicted. 

4.2.8 Blood cell analysis in Clp36ΔLIM mice  

To study whether the absence of the LIM domain of CLP36 affected the biogenesis of other 

blood cells including granulocytes and lymphocytes, different cell populations were analyzed. 

Light scatter characteristics in combination with specific staining of surface markers were used 

to identify different blood cell populations by flow cytometry. These experiments were performed 

together with Timo Vögtle in our laboratories. Granulocytes were prepared from mouse blood 

Figure 24: Chimeric CLP36ΔLIM protein 
associates with α-actinin-1 in mouse 
platelets. Co-immunoprecipitation of α-actinin-1 
in anti-CLP36 immunoprecipitates from Wt and 
Clp36ΔLIM platelet lysates. The fractions were 
resolved by SDS-PAGE, blotted and probed with 
anti-α-actinin-1 antibody. Tubulin was used as 
loading control. 
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and stained with the neutrophil-specific marker combination CD11b and Gr1. CD11b+/Gr1+ 

double-positive neutrophils represented a clearly defined population in the FSC/SSC dot plots, 

and therefore could be identified by FSC/SSC characteristics and CD11b expression in the 

following experiments. Under these experimental settings, no differences were observed for 

different granulocyte populations which were termed as Gr1+/CD11+ and Grlow/CD11+. In the 

next experimental setting, cells were stained for different lymphocyte populations which included 

antibodies against CD4, CD8 and B220. No differences were observed in population of T cells 

(CD4+ and CD8+) and B cells (B220+) from Clp36ΔLIM mice in comparison to Wt controls thus 

indicating normal blood cellularity in these mice (Figure 26).  

 

 

4.2.9 Clp36ΔLIM platelets display normal surface glycoprotein expression and an 
unaltered life span in vivo 

The mean platelet volume (MPV) and surface expression of major surface receptors including 

GPIb-V-IX, GPVI, and β1 and β3 integrins were analyzed using flow cytometry in Wt and 

Clp36ΔLIM platelets. The abundance of major platelet surface receptors was normal except for a 

slight but significant elevation of CD9 surface expression. Apart from that, platelet count and 

platelet size were measured using Sysmex KX-21N automated hematology analyzer (Sysmex 

Corp., Kobe, Japan). Clp36ΔLIM mice displayed decreased platelet counts and mildly increased 

mean platelet volumes (Figure 27A). 

To study whether CLP36 plays a role in megakaryopoiesis, platelet life span in Clp36ΔLIM and Wt 

mice was determined. A fluorescent non-cytotoxic anti-GPIX platelet labeling antibody was 

injected into mice and the labeled platelet population was monitored by flow cytometry over 

time. One hour after antibody treatment, >90% of circulating platelets were fluorescently labeled 

Figure 26: Normal granulocyte and 
lymphocyte populations in 
Clp36ΔLIM mice. Blood cells were 
isolated and different cell populations 
were stained with antibodies against 
different lineage specific markers. 
The populations were analyzed by 
flow cytometry. 
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in both Clp36ΔLIM and Wt mice and this platelet population constantly declined over 5 days in 

both groups (Figure 27B). These findings demonstrated that the LIM domain of CLP36 is 

dispensable for platelet production. 

 

 

Figure 27: Normal surface glycoprotein expression and platelet life span in Clp36ΔLIM mice.  
(A) Expression levels of prominent glycoproteins were determined by flow cytometry. Diluted whole blood 
from the indicated mice was incubated with FITC-labeled antibodies at saturating concentrations for 15 
min at RT and analyzed directly. Results are expressed as mean fluorescence intensity ± SD (n=5) and 
are representative of 4 individual experiments. Platelet count and platelet size were determined using a 
Sysmex automated cell analyzer. *P<0.05. (B) The platelet life span was determined by percentage of 
fluorescently labeled platelets in Wt and Clp36ΔLIM mice over a 5 day period after i.v. injection of a Dylight-
488 anti-GPIX Ig derivative (0.5 mg/kg), (n=5). 

4.2.10 Enhanced GPVI signaling in Clp36ΔLIM platelets 

Platelet activation involves a shift of integrin αIIbβ3 from low affinity “off” state to the active 

conformation, which results in fibrinogen/vWF-binding and platelet aggregation followed by 

release of granule contents that in turn further potentiate platelet activation. To test the 

functional consequences of the absence of the LIM domain for platelet activation, flow 

cytometric analysis of integrin αIIbβ3 activation using the JON/A-PE antibody118 and of 

P-selectin surface exposure as a marker of α-granule release were analyzed upon agonist 

stimulation. This experimental setting involves use of highly diluted platelet suspension and 

thus, largely excludes the accumulation of released secondary mediators and thereby allows 

conclusions about the primary platelet signaling responses. Clp36ΔLIM platelet activation was 

found to be normal in response to the G protein-coupled receptor (GPCR) agonists ADP, 

thrombin and stable TxA2 analogue U46619 (Figure 28A, B). In contrast, upon stimulation of 
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Clp36ΔLIM platelets with GPVI agonists (CRP, convulxin) markedly increased integrin αIIbβ3 

activation and α-granule release were observed. This effect was most evident at low agonist 

concentrations (Figure 28C, D). 

 

 

Figure 28: Increased integrin activation and α-granule release in Clp36ΔLIM platelets upon GPVI 
stimulation. (A and B) Flow cytometric analysis of integrin αIIbβ3 activation (binding of JON/A-PE) and 
degranulation-dependent P-selectin exposure in Wt and Clp36ΔLIM platelets in response to the indicated 
G-protein coupled receptor agonists and (C and D) in response to GPVI agonists. Results are given as 
mean fluorescence intensities (MFI) ± SD of 5 mice per group and are representative of 4 individual 
experiments. *P<0.05, **P<0.01. 
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To assess whether the enhanced granule secretion was restricted only to α-granules, release of 

ATP from dense granules was measured upon agonist stimulation. The enhanced GPVI 

signaling was also associated with an increased dense-granule secretion as shown by faster 

and increased ATP release in response to low concentrations of CRP or collagen. In contrast, 

no differences in ATP release between Wt and Clp36ΔLIM platelets were detectable in response 

to thrombin or at high concentrations of GPVI agonists (Figure 29). These observations 

confirmed that Clp36ΔLIM platelets have unaltered granule content, but display a selectively 

increased granule release in response to GPVI stimulation. 

 

 

Figure 29: Enhanced dense granule release in Clp36ΔLIM mice. Washed platelets from Wt (black line) 
or Clp36ΔLIM (red line) (240 μl with 0.3x106 platelets/μL) were incubated with Luciferase-Luciferin reagent, 
followed by agonist addition. (A) ATP release and aggregation were measured simultaneously on a Lumi-
Aggregometer. (B) The concentration (nM) of released ATP is given. Mean % of maximal aggregation ± 
SD of each group **P<0.01, ***P<0.001. 

 

4.2.11 Enhanced GPVI-induced aggregation of Clp36ΔLIM platelets 

CLP36 has been implicated in actin stress fiber formation and knockdown of CLP36 resulted in 

altered morphology of BeWo cells.113 To investigate the role of CLP36 in platelet shape change 

and to define the functional consequences of increased αIIbβ3 integrin activation and 

degranulation in Clp36ΔLIM platelets, aggregation studies were performed. Clp36ΔLIM platelets 

aggregated normally in response to GPCR agonists (thrombin, ADP, U46619) at all tested 

concentrations (Figure 30A). In contrast, upon stimulation with GPVI agonists (collagen, CRP, 

CVX), an enhanced aggregation response were observed in Clp36ΔLIM platelets. This effect was 

best detectable at threshold concentrations of these agonists that did not induce aggregation of 

Wt platelets (Figure 30B). 
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In contrast, at higher concentrations of GPVI agonists, no significant difference in aggregation 

was detected between Wt and mutant platelets. Notably, Clp36ΔLIM platelets did not aggregate 

spontaneously or upon stimulation with epinephrine (data not shown), indicating that the 

platelets were not per se in a pre-activated state. Taken together, these findings demonstrated 

that CLP36 plays a critical role in GPVI mediated platelet activation, especially at lower 

concentrations of GPVI agonists which mimics physiological conditions. 

 

 

Figure 30: Enhanced GPVI-induced aggregation and ATP release in Clp36ΔLIM platelets. (A,B) 
Washed platelets from Wt (black line) or Clp36ΔLIM (grey line) were stimulated with the indicated agonists 
and light transmission was recorded on a Fibrintimer 4-channel aggregometer. ADP measurements were 
performed in prp. Representative aggregation curves traces of 4 individual experiments are shown. 

4.2.12 Increased Ca2+ mobilization in Clp36ΔLIM platelets  

Agonist induced platelet activation and aggregation requires an increase in the intracellular Ca2+ 

concentration [Ca2+]i that occurs through release of Ca2+ from intracellular stores followed by the 

Ca2+ entry through the plasma membrane. To test whether the observed GPVI-ITAM-induced 

activation response of Clp36ΔLIM platelets was based on altered Ca2+ signaling, agonist-induced 

changes in [Ca2+]i were studied fluorimetrically. Store release in the absence of extracellular 

Ca2+ in response to CRP (1 mg/mL) was significantly elevated in Clp36ΔLIM platelets compared 

to Wt controls (Wt: 30 ± 12 nM; Clp36ΔLIM: 60 ± 10 nM; P<0.05, Figure 31A). As a result, the 

subsequent Ca2+ influx was also markedly increased in the presence of extracellular Ca2+ in 
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Clp36ΔLIM platelets (Wt: 180 ± 20 nM; Clp36ΔLIM: 380 ± 35 nM, P<0.01, Figure 31B). In addition, 

Ca2+ mobilization was measured upon stimulation with thrombin and ADP. No differences were 

observed in Ca2+ store release or Ca2+ influx in response to the GPCR signaling agonists. 

(Figure 31A, B). These data pointed towards a selective defect in GPVI signaling pathway in 

Clp36ΔLIM platelets. 

 

 

Figure 31: Enhanced GPVI-induced Ca2+ mobilization in Clp36ΔLIM platelets. (A) Fura-2–loaded Wt 
(black line) or Clp36ΔLIM (grey line) platelets were stimulated with 0.1 U/mL thrombin, 10 μM ADP or 
1 μg/mL CRP in the presence of 0.5 mM EGTA or (B) in the presence of 1 mM Ca2+ and changes in 
[Ca2+]i were monitored fluorimetrically. Representative measurements and maximal increase in [Ca2+]i 
compared with baseline levels before stimulus (Δ[Ca 2+]i) ± SD (n = 5 mice per group) are shown. 
*P<0.05, **P<0.01. 
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4.2.13 Increased GPVI-induced tyrosine phosphorylation and IP3 production in 
Clp36ΔLIM platelets 

GPVI signaling involves a series of tyrosine phosphorylation events that finally culminate in 

PLCγ2 activation and subsequent hydrolysis of PIP2 into IP3 and DAG. IP3 in turn is responsible 

for emptying of intracellular Ca2+ stores. Increased Ca2+ store depletion in response to GPVI 

agonists suggested a modulating function of CLP36 in GPVI signaling upstream of IP3 

receptors. Hence, changes in tyrosine phosphorylation patterns upon GPVI stimulation were 

analyzed in Wt and Clp36ΔLIM platelets. At low concentrations of CRP (0.1 µg/mL), Wt platelets 

displayed only a small increase in tyrosine phosphorylation whereas a marked increase of 

tyrosine phosphorylation of numerous platelet proteins, including those co-migrating with PLCγ2, 

Fyn, Lyn and the FcRγ-chain was observed in Clp36ΔLIM platelets (Figure 32A). At high 

concentrations of CRP (5 µg/mL) the increases in tyrosine phosphorylation was similar in Wt 

and mutant platelets (data not shown). To confirm that the enhanced phosphorylation of 

signaling molecules in Clp36ΔLIM platelets resulted in an increased PLCγ2 activity, we measured 

the amount of IP3 indirectly using an IP1 ELISA.129 The half-life of IP3 in cells is very short before 

it is degraded to IP2 and IP1. The IP1 can accumulate in the cell after addition of Li+ which 

inhibits its further degradation to myo-inositol. We quantified IP1 concentration upon platelet 

activation with thrombin (1 U/mL), CRP (1 μg/mL and 0.1 µg/mL) in presence of indomethacin 

(10 µM) and apyrase (2 U/mL). While IP1 production in response to thrombin was similar in Wt 

and Clp36ΔLIM platelets (Wt: 1551 ± 307 vs Clp36ΔLIM : 1742 ± 186, P=0.42), the response to 

CRP at both tested concentrations was markedly elevated in Clp36ΔLIM platelets compared to Wt 

controls (Wt: 427 ± 45 vs Clp36ΔLIM : 842 ± 197, P<0.001 for CRP 1 µg/mL and Wt: 311 ± 99 vs 

Clp36ΔLIM: 1049 ± 493, P<0.01 for CRP 1 µg/mL , Figure 32B), suggesting an enhanced activity 

of PLCγ2 in mutant platelets. Taken together, these results suggested that the LIM domain of 

CLP36 acts as a negative regulator of GPVI signaling that controls PLCγ2 activity. 
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Figure 32: Enhanced GPVI-induced tyrosine phosphorylation in Clp36ΔLIM platelets. (A) 
Determination of whole cell tyrosine phosphorylation. Washed platelets from Wt and Clp36ΔLIM mice were 
stimulated with 0.1 μg/mL CRP under stirring conditions at 37°C. 50 μL aliquotes were taken at the 
indicated time points. Samples were blotted onto a PVDF membrane and immunoblotted with the anti-
phosphotyrosine antibody 4G10. GPIIIa protein levels served as loading controls. (B) Quantification of 
produced IP1 upon platelet activation. Washed platelets from Wt and Clp36ΔLIM mice were stimulated with 
the indicated agonists (thrombin (Thr.): 1 U/mL; CRP: 1 µg/mL and 0.1 µg/mL) for 5 min at 37°C (450 
rpm). Platelets were lysed and IP1, a specific metabolite of IP3, was quantified using an ELISA assay. 
Results are given as the mean IP1 concentration (nM) ± SD (n=4 per group). **P<0.01, ***P<0.001. 

4.2.14 Clp36ΔLIM platelets display increased thrombus formation on collagen under 
flow 

At sites of vessel wall injury, secondary mediators released from activated platelets play an 

essential role in the recruitment of other platelets to promote thrombus growth. GPVI-collagen 

interaction plays a major role in the process of thrombus formation under flow conditions. To 

study the effect of enhanced GPVI induced αIIbβ3 integrin activation and degranulation of 

Clp36ΔLIM platelets on thrombus formation under flow, whole anti-coagulated blood was 

perfused over collagen at physiological shear rates. At the high shear rates of 1700 s-1, that 

modeled flow conditions in arterioles, no significant difference in surface coverage was 

observed between the two groups but increased thrombus volumes were observed for 

Clp36ΔLIM platelets compared to Wt platelets (data not shown). In contrast, at intermediate 

shear rates of 1000 s-1, which models flow conditions in large arteries, Clp36ΔLIM platelets 

displayed an increased platelet surface coverage and thrombus volumes when compared to 

the Wt controls. (Wt: 31.4 ± 4 % vs Clp36ΔLIM : 46.5 ± 5 %, P<0.001, Figure 33). 
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Figure 33: Increased thrombus formation of Clp36ΔLIM platelets on collagen under flow. Heparinized 
whole blood from Wt and Clp36ΔLIM was perfused over 0.2 mg/mL of immobilized collagen at a shear rate 
of 1000 s-1 (4 min) followed by 1 min perfusion with Tyrode HEPES buffer at the same shear rate. 
Representative phase contrast images (upper panel) and fluorescent images (platelets stained with anti-
GPIX-DyLight488; lower panel) are shown (bar: 50 µm). Right panel: mean surface coverage and relative 
thrombus volume ± SD (n=10 per group). **P<0.01, ***P<0.001. 

4.2.15 Clp36ΔLIM platelets display increased procoagulant activity on collagen 

Activated αIIbβ3 integrin and increased Ca2+ mobilization have been implicated in the coagulant 

activity of platelets130,131 achieved by a Ca2+-activated scramblase mechanism. The activation of 

scramblase in turns leads to disturbed phospholipid asymmetry in the plasma membrane, which 

results in the exposure of phosphatidylserine (PS) at the outer membrane surface.132,133 

Exposed PS provides high affinity binding sites for key coagulation factors and thus facilitates 

the assembly of tenase and prothrombinase complexes, which are then responsible for the 

formation of factor Xa and thrombin, respectively.132 To determine the role of CLP36 in this 

process, anti-coagulated whole blood from Wt or Clp36ΔLIM mice was perfused over a collagen 

coated surface at the shear rate of 1700 s-1 in presence of high dose of heparin (5 U/ml) to 

inhibit thrombin. The shear rate of 1700 s-1 was used to perform these experiments as in these 

conditions no differences in surface coverage were observed in Wt or Clp36ΔLIM blood. PS 

exposure was determined using Annexin V-Dylight488 staining which specifically binds to 

platelets exposing PS at their outer surface. The numbers of PS positive platelets were 

significantly increased in Clp36ΔLIM blood samples compared to Wt controls (Figure 34). These 

results indicated that the enhanced GPVI-mediated Ca2+ store release and subsequent Ca2+ 

influx were responsible for the elevated procoagulant activity of Clp36ΔLIM platelets. 
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Figure 34: Increased procoagulant activity of Clp36ΔLIM platelets on collagen under flow. Clp36ΔLIM 
platelets display enhanced procoagulant activity. Whole blood was perfused over a collagen-coated 
(0.2 mg/mL) surface at a shear rate of 1700 s–1 for 4 min. Adherent platelets were stained with 
Annexin V-Dylight488 (0.25 µg/mL). Representative phase contrast (upper panel) and fluorescence 
images (lower panel) are shown (Bar: 50 µm). Mean percentage of Annexin V positive platelets ± SD (n
3) for the indicated shear rates. *P<0.05. 

4.2.16 Accelerated arterial thrombus formation, but normal bleeding times in 

Clp36ΔLIM bone marrow chimeric mice  

To rule out the possibility that deficiency of the LIM domain in cells of the vessel wall might 

influence thrombus formation and hemostatic function, the mutation of the LIM domain was 

restricted to the hematopoietic system by transferring bone marrow cells from Clp36 ΔLIM donor 

mice into lethally irradiated Wt recipient mice and vice versa. Thrombus growth was studied in 

an arterial thrombosis model, where the abdominal aorta is mechanically injured and blood flow 

is monitored by an ultrasonic perivascular Doppler flowmeter. While irreversible occlusion of the 

aorta occurred with similar kinetics to wild-type controls and Clp36Wt bone marrow chimeras 

(mean time to occlusion for wild type control: 260 ± 59 s vs Clp36Wt: 350 ± 131 s, P=0.07). 

Whereas, occlusion times were markedly reduced in Clp36ΔLIM bone marrow chimeras (mean 

time to occlusion for wild type control: 260 ± 59 s vs Clp36ΔLIM: 132 ± 56 s, P<0.001; Figure 35A).  

Finally, tail bleeding times were measured to determine hemostatic function of Clp36ΔLIM 

platelets in the bone marrow chimeric mice. No significant hemostatic defect was observed in 

bone marrow chimeric mice transplanted with Clp36wt or Clp36ΔLIM cells (mean bleeding time: 

47 ± 22 s (Clp36wt) vs 57 ± 54 s (Clp36ΔLIM) P=0.48; (Figure 35B)) 
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Figure 35: Accelerated thrombotic occlusion of the aorta but normal bleeding times in Clp36ΔLIM 
chimeric mice (A) The abdominal aorta of Wt and Clp36ΔLIM bone marrow chimeric mice was injured by 
tight compression with a forceps and blood flow was monitored for 30 min with an ultrasonic flow probe. 
The time to stable vessel occlusion is shown. Each symbol represents one individual. (B) Normal 
hemostasis in Clp36ΔLIM bone marrow chimeric mice. Tail bleeding times of Wt and Clp36ΔLIM bone 
marrow chimeric mice were measured in saline at 37°C. Each symbol represents one individual. The 
white dots represent Wt mice, the black dots and grey dots represent Wt and Clp36ΔLIM bone marrow 
chimeric mice respectively. ***P<0.001. 

4.2.17 Clp36ΔLIM mice, but not BMCs, are protected from ischemic brain infarction 

Cerebral ischemia is the second leading cause of death and disability in developed nations4 and 

has been proposed to be a complex thrombo-inflammatory disease.134 Cerebral ischemia 

involves the disturbance in microvascular integrity but the signaling events involved in formation 

of intravascular thrombus formation in the brain are still not understood. To determine whether 

the observed thrombus instability and prolonged occlusion times observed in Clp36ΔLIM mice 

also affect the outcome in this experimental setting, mice were challenged in a tMCAO model, 

performed in collaboration with Dr. Peter Kraft, Department of Neurology, University Clinic, 

Würzburg, Germany. To initiate transient cerebral ischemia, a thread was advanced through the 

carotid artery into the middle cerebral artery to reduce cerebral blood flow by >90% 36 and 

allowed to remain for one hour after which reperfusion was allowed. The extent of infraction was 

quantified 24h after reperfusion on 2, 3, 5-triphenyltetrazolium chloride (TTC)-stained brain 

slices. In Clp36ΔLIM mice, brain infract volumes were reduced by about 50 % of the infract 

volumes in Wt mice (infarct volume for Wt: 107 ± 36 mm3 vs Clp36ΔLIM: 50 ± 25 mm3 ; P<0,001; 

Figure 36A, C). This reduction in Clp36ΔLIM mice in ischemic lesions of Clp36ΔLIM mice also 

resulted in significantly less neurological deficits compared to Wt, determined as Bederson 

score assessing the global neurological function (3.0 ± 0.2 vs 1.5 ± 0.5; P<0.001; Figure 36B) 
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and grip test which indicates motor function and coordination of the mice (2.3 ± 0.83 vs 3.6 ±0.8; 

P<0.05; Figure 36D). Again, to study the role of Clp36ΔLIM platelets in development of stroke, 

lethally irradiated Wt mice were reconstituted with Clp36ΔLIM bone marrow cells and vice versa 

for Clp36ΔLIM mice. Interestingly, Wt mice transfused with Clp36ΔLIM bone marrow showed infarct 

volumes, Bederson score and grip test similar to that of Wt control mice (Figure 36E, F, G). The 

stroke results indicated towards the role of CLP36 in other cell types including the cells lining 

the vessel walls. 

 

 

Figure 36: Clp36ΔLIM mice but Clp36ΔLIM bone marrow chimeric mice are protected in a model of 
tMACO. Formation of cerebral brain infarction and consequential neurological defects were investigated 
in a murine stroke model. (A) Brain infract volumes (B) Bederson score and (D) grip test in Wt and 
Clp36ΔLIM mice presented as mean ± SD. (C) Representative images of the three corresponding coronal 
sections from Wt and Clp36ΔLIM mice stained with TTC 24 h after tMCAO. (E) Brain infracts volumes in 
Wt, Clp36Wt bone marrow and Clp36ΔLIM bone marrow chimeric mice presented as mean SD, (F) 
Bederson score and (G) grip test, determined 24 h after tMCAO *P<0.05, **P<0.01.
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4.3 Analysis of Clp36 knockout mice 

4.3.1 Generation of Clp36-/- mice 

The function of the N-terminal PDZ domain of CLP36 has been studied by different groups as 

discussed in detail in the introduction. All studies performed pointed towards an essential role of 

the N-terminal PDZ domain and its intermediate region in actin rearrangements and stress fiber 

formation by mediating interaction with actin reorganizing proteins like α-actinin111 and 

palladin.114,115 To study the physiological function of the CLP36 protein in platelet signaling, 

especially in platelet actin dynamics, we generated mice in which the Clp36 gene was disrupted 

by insertion of an intronic β-Geomycin gene-trap cassette into intron one located upstream of 

exon 2 (ES cells source: IST12013D3, TIGM) (Figure 37). This insertion resulted in a frame shift 

mutation and premature termination of the transcription of the CLP36 protein.  

 

 

Figure 37: Targeting strategy of Clp36-/- mice. The β-Geomycin genetrap cassette (GEO) is indicated. 
The exon-intron structure of the Clp36 gene is depicted with black boxes and lines. (IST12013D3, TIGM) 

4.3.2 Genotyping of Clp36-/- mice  

A genetrap PCR was performed to detect the insertion of β-Geomycin gene-trap cassette into 

intron one. Mice negative for the genetrap PCR served as Wt (Clp36+/+) controls. To further 

distinguish between the heterozygous (Clp36+/-) and homozygous (Clp36-/-) knockout mice, 

western blot was performed with platelet lysates using the antibody recognizing the LIM domain 

of CLP36. The antibody detected a Wt protein of 36 kDa in Clp36+/- but could not detect any 

band of similar size in Clp36-/- platelet samples (Figure 38). 

 

Figure 38: Genotyping of Clp36-/- mice by 
Western blotting: Western blot analysis with 
an anti-LIM domain of CLP36 specific antibody 
was performed to differentiate between Clp36+/- 
and Clp36-/- mice. In Wt and Clp36+/- platelets, 
CLP36 protein migrated at 36 kDa whereas; in 
Clp36-/- platelets the protein was absent. 
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4.3.3 Clp36-/- platelets spread normally on fibrinogen and exhibit normal clot 
retraction 

The N terminal PDZ domain of the CLP36 binds to α-actinin in resting platelets and translocates 

as the CLP36-α-actinin complex to the actin cytoskeleton upon platelet activation.115 To directly 

test the role of CLP36 especially its PDZ domain in platelet actin rearrangements upon agonist 

stimulation, Wt and Clp36-/- platelets were allowed to spread on fibrinogen-coated coverslips in 

the presence of thrombin (0.01 U/mL). Surprisingly, Clp36-/- platelets could form filopodia and 

lamellipodia and could spread after 20 min. The kinetics of spreading was similar in Clp36-/- 

platelets in comparison to Wt control platelets. The numbers of fully spread platelets after the 

observation period of 20 min were similar between the two groups (Figure 39). 

 

 

Figure 39: Clp36-/- platelets can spread on fibrinogen upon thrombin stimulation. Washed platelets 
of Wt and Clp36-/- mice were stimulated with 0.01 U/mL thrombin and were allowed to spread on 
200 µg/mL of immoblized fibrinogen coated coverslips. Representative differential interference contrast 
(DIC) images of 4 individual experiments from the indicated time points (right) and statistical evaluation of 
the percentage of spread platelets at different spreading stages (left). 1: no filopodia, 2: only filopodia, 
3: filopodia and lamellipodia, 4: full spreading. 

Clot formation and retraction requires outside-in signaling of integrins along with cytoskeletal 

contractibility of platelets.128 Therefore clot formation in prp of Wt and Clp36-/- mice was induced 

by high doses of thrombin (3 U/mL) in the presence of high Ca2+ concentrations (20 mM) and 

clot retraction was monitored under non-stirring conditions over time (Figure 40). Consistent 

with the results of the spreading assay, no differences were observed in the beginning of clot 

formation and also at the later time points clot retraction was found to be similar between Wt 

and Clp36-/-. The above results indicated that CLP36 is dispensable for actin rearrangements 

and stress fiber formation upon platelet activation. 
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Figure 40: Clp36-/- platelets show normal clot retraction. Clot retraction of Wt and Clp36-/- prp upon 
activation with 3 U/mL thrombin in the presence of 20 mM CaCl2 at the indicated time points. 
Representative images of 3 different experiments are depicted 

4.3.4 Clp36-/- mice display unaltered platelet life span and normal platelet surface 
glycoprotein expression  

Platelet biogenesis and proplatelet formation are mediated by a microtubule extension but also 

requires reorganization of the actin-spectrin cytoskeleton.135 To study whether CLP36 plays a 

role in actin rearrangements during megakaryopoesis, platelet life span in Clp36-/- and Wt was 

determined in vivo. Circulating platelets were labeled with a fluorescent non-cytotoxic anti GPIX 

antibody derivative injected into mice and the labeled platelet population was monitored by 

flow-cytometry over time. One hour after antibody treatment, >90% of circulating platelets were 

labeled in both Clp36-/- and Wt mice and this platelet population constantly declined over 5 days 

in both groups (Figure 41A). To further investigate Clp36-/- platelets in more detail, the mean 

platelet volume, and surface expression of major surface receptors like GPIb-V-IX, GPVI, Clec-2 

and β1 and β3 integrins were analyzed. The abundance of these platelet surface receptors was 

found to be normal (Figure 41B). Thus, these findings demonstrated that CLP36 is dispensable 

for platelet production and the absence of CLP36 does not interfere with platelet production and 

expression of major platelet receptors. 
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Figure 41: Normal surface glycoprotein expression and platelet life span in Clp36-/- mice. 
(A) Platelet life span was determined by percentage of fluorescently labeled platelets in Wt and Clp36-/- 
mice over a 5 day period after i.v. injection of a Dylight488 anti-GPIX Ig derivative (0.5 mg/kg), (n=5). 
(B) Expression levels of prominent glycoproteins were determined by flow cytometry. Diluted whole blood 
from the indicated mice was incubated with FITC-labeled antibodies at saturating concentrations for 
15 min at RT and platelets were analyzed directly. Results are expressed as mean fluorescence intensity 
± SD (n=5) and are representative of 3 individual experiments. Platelet count and platelet size were 
determined using a Sysmex automated cell analyzer. 

4.3.5 Enhanced GPVI signaling in Clp36-/- platelets 

Platelet activation involves inside out activation of αIIbβ3 integrin and release of granule content 

with both the processes requiring actin rearrangements. To test the functional consequences of 

the absence of CLP36 on platelet activation, flow cytometric analysis of integrin αIIbβ3 

activation using the JON/A-PE antibody118 and P-selectin surface exposure as a marker of 

α-granule release were analyzed for Wt and Clp36-/- platelets upon agonist stimulation. This 

experimental setting involved the use of highly diluted platelet suspension and thus the 

accumulation of released secondary mediators is largely excluded. Activation of Clp36-/- 

platelets was normal in response to the GPCR agonists ADP, thrombin and U46619. In contrast, 

in response to GPVI agonist CRP, Clp36-/- platelets displayed a markedly increased integrin 

activation and degranulation. This effect was most evident at lower agonist concentrations and 

was similar to the aggregation responses observed in Clp36ΔLIM platelets (Figure 42).  
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Figure 42: Increased integrin activation and α-granule release in Clp36-/- platelets upon GPVI 
stimulation. (A) Flow cytometric analysis of integrin αIIbβ3 activation (binding of JON/A-PE) and 
(B) degranulation-dependent P-selectin exposure in Wt and Clp36-/- platelets in response to the indicated 
agonists. Results are given as mean fluorescence intensities (MFI) ± SD of 4 mice per group and are 
representative of 3 individual experiments. **P<0.01, ***P<0.001.  

4.3.6 Clp36-/- platelets display enhanced aggregation in response to GPVI 
activation and display an increased thrombus formation on collagen under 
flow  

Platelet shape change and aggregation upon agonist stimulation requires actin reorganization 

which is mediated by complex signaling machinery. CLP36 has been implicated in actin stress 

fiber formation and loss of the PDZ domain of CLP36 has been shown to result in altered cell 

morphology. To further investigate the role of the PDZ domain of CLP36 in actin 

rearrangements leading to platelet shape change and aggregation, platelet aggregation was 

performed using different agonists. Clp36-/- platelets aggregated normally in response to GPCR 
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agonists (thrombin, ADP) at all tested concentrations. In contrast, upon stimulation with the 

GPVI agonist, CRP, a markedly enhanced aggregation response at low doses of the agonist 

was observed in Clp36-/- platelets which were comparable to that observed for Clp36∆LIM 

platelets. At higher concentrations of GPVI agonists, no significant difference in aggregation 

was detected between Wt and Clp36-/- platelets (Figure 43). Notably, Clp36-/- platelets did not 

aggregate spontaneously or upon stimulation with epinephrine (data not shown), indicating that 

the platelets were not per se in a pre-activated state.  

 

 

Figure 43: Enhanced GPVI-induced aggregation in Clp36-/- platelets. Washed platelets from Wt (black 
line) or Clp36-/- (grey line) mice were stimulated with the indicated agonists and light transmission was 
recorded on a Fibrintimer 4-channel aggregometer. Bar graphs representations of results obtained by 
aggregometry. Results are given as the mean percent of aggregation ± SD. 

GPVI-collagen interaction plays a major role in the process of thrombus formation under flow 

conditions. To study the effect of enhanced αIIbβ3 integrin activation and degranulation of 

Clp36-/- platelets in response to GPVI signaling on thrombus formation under flow, whole anti-

coagulated blood was perfused over collagen at physiological shear rates. At intermediate shear 

rate of 1000 s-1 which modeled flow conditions in large arteries, Clp36-/- platelets displayed an 

increased platelet surface coverage when compared to the Wt controls. The increased ability to 

form aggregates correlated with enhanced three dimensional thrombus volumes observed 

under flow conditions. These results reveal a significant influence of CLP36 on the negative 

regulation of the GPVI signaling in platelets under flow. (Wt: 38.4± 4.1 % , Clp36-/-: 60.5± 9.8 %, 

P<0.001: Figure 44). Interestingly, the result obtained for Clp36-/- platelets was similar to that of 

Clp36ΔLIM platelets, thus indicating on the one hand that CLP36 might act as a negative 
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regulator of GPVI signaling and on the other hand that this regulation is achieved by its 

C-terminal LIM domain. 

 

 

Figure 44: Increased thrombus formation of Clp36-/- platelets on collagen under flow. Heparinized 
whole blood from Wt and Clp36-/- was perfused over immobilized collagen (0.2 mg/mL) at a shear rate of 
1000 s-1 (4 min) followed by 1 min perfusion with Tyrode HEPES buffer at the same shear rate. 
Representative phase contrast images (upper panel) and fluorescent images (platelets stained with anti-
GPIX-DyLight488; lower panel) are shown (bar: 50 µm). Right panel: mean surface coverage and relative 
thrombus volume ± SD (n=10 per group). 

4.3.7 Clp36-/- mice are protected from ischemic brain infarction 

To determine whether the increased thrombus formation in vitro observed in CLP36-/- mice also 

affects the outcome in in vivo experimental settings; mice were challenged in a tMCAO model 

as described in result section for Clp36ΔLIM mice. The experiments were performed in 

collaboration with Dr. Peter Kraft from the Department of Neurology, Würzburg. 

To initiate transient cerebral ischemia, a thread was advanced through the carotid artery into the 

middle cerebral artery to reduce cerebral blood flow by >90%36 and allowed to remain for one 

hour (tMCAO) after which reperfusion was allowed. The extent of infarction was quantified 24h 

after reperfusion on 2, 3, 5-triphenyltetrazolium chloride (TTC)-stained brain slices. In Clp36-/- 

mice, brain infract volumes were reduced by 50% of the infract volumes in Wt mice (Clp36-/- : 62 

± 42 mm3 vs Wt: 113 ± 20 mm3; P<0.001; Figure 45A). This reduction in Clp36-/- mice in 

ischemic lesions also resulted in significantly fewer neurological deficits compared to Wt, 

determined by the Bederson score assessing the global neurological function (Clp36-/-: 1.5 ± 0.5 

vs Wt: 3.1 ± 0.2; P<0.001; Figure 45B) and grip test which measures motor function and 

coordination of these mice (Clp36-/-: 3.6 ± 0.8 vs Wt: 2.3 ± 0.8; P<0.05; Figure 45C). These data 

were in contrast to the observed in vitro data where the Clp36-/- mice displayed an increased 
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thrombus formation under static and flowing conditions. As CLP36 is widely expressed including 

its expression in endothelium vascular wall lining. The observed protection in tMCAO could be 

due to the fact that CLP36 might be required for the proper morphology of the endothelial lining 

and this might affect thrombus formation in brain vessels.  

 

 

Figure 45: Clp36-/- mice are protected in the tMACO model. Formation of cerebral brain infarction and 
consequential neurological defects were investigated in a murine stroke model. (A) Brain infarct volumes 
in Wt and Clp36-/- mice presented as mean ± SD. (B) Bederson score, and (C) Grip test determined 24 h 
after tMCAO. (D) Representative images of the three corresponding coronal sections from Wt and Clp36-/- 
mice stained with TTC 24 h after tMACO. The infarct areas are white in color. *, P<0.05, ***, P<0.001. 
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5 DISCUSSION 

Platelets represent an essential component of the blood system as they safeguard the 

vasculature at the sites of injury. However, under pathological conditions, uncontrolled platelet 

activation and aggregation may also lead to full vessel occlusion or embolism resulting in life 

threatening diseases like myocardial infarction or stroke. These cardiovascular diseases are a 

leading cause of mortality worldwide.136 Therefore, anti-platelet therapy using agents such as 

aspirin, clopidogrel and integrin αIIbβ3 antagonists have been beneficial in the prophylaxis and 

treatment of cardiovascular diseases137 but their use is limited because they often induce 

increased bleeding complications. Thus, a comprehensive analysis of platelet activation and 

their respective signaling pathways has emerged as an essential and developing field in 

cardiovascular research.  

In recent years, the mouse model has become an essential tool for platelet research. The 

manipulation of the mouse genome by gene targeting approaches has proven as a milestone in 

thrombosis research. The analysis of genetically modified mice in different in vivo models of 

thrombosis and ischemic stroke has been instrumental for the identification of potential 

antithrombotic therapeutical targets. It is important to note that some differences in the 

expression or function of platelet proteins between humans and mice exist. Therefore, the 

results obtained in mice cannot be directly transferred to the human situation.138 Nevertheless, 

the knowledge obtained from the mouse system may serve as the basis for the development of 

new antithrombotic strategies. 

In this study, the role of DAG activated ROCE channel TRPC6 in platelet function and thrombus 

formation was investigated by using knockout mice. The results presented here establish 

TRPC6 as the only relevant DAG activated Ca2+ channel to be expressed in murine platelets. 

Loss of TRPC6 did not affect major platelet functions. Further, the role of PDLIM family member 

CLP36 was analyzed using a knockin and a knockout approach. Our results reveal a critical role 

of CLP36 in the regulation of GPVI signaling that is mediated by the C-terminal LIM domain of 

the protein. 

5.1 Defective diacylglycerol-induced Ca2+ entry but normal agonist-
induced activation responses in TRPC6-deficient mouse platelets 

Agonist induced platelet activation results in the release of Ca2+ from intracellular stores followed 

by Ca2+ influx mediated by various channels present on the platelet plasma membrane. These 

channels include SOC channel- calcium-release activated calcium modulator 1 (CRACM1) or 

Orai1, channels of the TRP family (TRPC1 and TRPC6) and the purinergic receptor, P2X1. 
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Studies on Stim1-/- and Orai1-/- platelets established these two proteins as key players of store 

operated calcium entry (SOCE) in platelets, with STIM1 being responsible for the detection of 

Ca2+ depletion of the intracellular stores and for the regulation of Orai1, the major SOC channel 

on the platelet surface.58,59 The reduced Ca2+ responses in platelets from knockout mice resulted 

in a significant protection in different in vivo models of thrombotic diseases due to reduced 

thrombus stability and profound protection against ischemia/reperfusion induced brain injury. 

Interestingly, despite the reduced Ca2+ responses to both PLCβ and PLCγ activating platelet 

agonists, both Stim1-/- and Orai1-/- platelets showed unaltered αIIbβ3 activation, aggregation and 

degranulation through the GPCR/PLCβ pathway and only a mild defect in response to GPVI/ 

PLCγ2 agonists in the absence of flow in vitro,58,59 indicating the role of alternative Ca2+ entry 

mechanisms mediated by so far unknown Ca2+ channels in platelets. Trpc1 knockout mice 

showed no significant defects in platelet Ca2+ homeostasis or function.62 Studies performed on 

P2X1-/- platelets showed decreased aggregation and granule release in response to low doses 

of the GPVI agonist collagen whereas these platelets responded normally to GPCR agonists. 

Platelets from P2X1-/- mice showed reduced thrombus formation at higher shear rates both in 

vitro and in vivo.139 Conversely, over-expression of the receptor in mice resulted in a pro-

thrombotic phenotype.140  

TRPC6 was found to be expressed in megakaryocytes and platelets of both humans and murine 

mice.141-143 Upon receptor stimulation, DAG produced by different PLC isoforms was shown to 

activate TRPC6 directly in the plasma membrane121 and TRPC6 was proposed to be the major 

DAG activated ROC channel in human platelets.141 The exact role of the DAG-operated ROC 

channel TRPC6 in platelet activation and thrombus formation remained elusive. The present 

study used TRPC6-deficient mice to investigate the contribution of TRPC6-mediated Ca2+ entry 

in PLC-DAG mediated signaling and the impact of TRPC6 deficiency on platelet function in vitro 

and in vivo. Trpc6-/- platelets displayed unaltered integrin αIIbβ3 activation, degranulation, 

aggregation, adhesion and occlusive thrombus formation in vivo in comparison to Wt controls. 

Cytoskeletal reorganization and kinetics of spreading were also similar between Wt and Trpc6-/- 

platelets.  

Using the membrane permeable DAG analogue OAG, the present study established TRPC6 as 

the major DAG activated ROCE channel to be expressed on murine platelets. In accordance 

with earlier reports, OAG induced a change in [Ca2+]i of approximately 50-80 nM in Wt 

platelets.144 Interestingly, this transient elevation of [Ca2+]i was abolished in Trpc6-/- platelets 

(Figure 7A). Furthermore, Jardin et al. suggested a role for TRPC6 in the regulation of SOCE.145 

They reported that human platelets upon incubation with an anti-human TRPC6 antibody 

resulted in a reduced TG or 2,5-di-(tert-butyl)-1,4-hydroquinone (TBHQ) induced Ca2+ influx.122 

The study showed that in human platelets, upon Ca2+ store depletion, TRPC6 rapidly interacted 
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with the STIM1-Orai1 complex and this association was displaced by human TRPC3 following 

stimulation with the DAG analogue, OAG.145 The proposed model of dynamic coupling of TRPC6 

with components of the SOCE and non-SOCE pathways suggested an essential role of TRPC6 

in Ca2+ signaling and regulation of SOCE. However, this coupling mechanism cannot be 

extrapolated to murine platelets due to the lack of TRPC3 expression. Studies by DeHaven et al. 

suggested that activation of TRPC6 channel occurs by mechanisms dependent on PLC and 

does not involve its interactions with STIM1. They further demonstrated that TRPC6 and 

STIM1/Orai signaling occurred in different PM domains.146 Interestingly, in the present study TG-

induced SOCE was found to be unaltered in Trpc6-/- platelet and TRPC6 dependent Ca2+ influx 

in Stim1-/- and Orai1-/- platelets was found to be unaltered (data not shown). Therefore, the 

physiological significance of TRPC6 coupling to the SOC complex, if there is any, remains 

elusive. PKC isoforms have been shown to play an important role in platelet function by 

regulating many diverse signaling events.144,147,148 Platelets deficient in PKCα or PKCβ displayed 

reduced Ca2+ signaling, but in the absence of PKCθ isoform these responses were found to be 

enhanced.144,148 Studies performed by Bousquet et al. and Kawasaki et al. proposed 

PKC-mediated phosphorylation of TRPC6 and Orai1 in mammalian cells which resulted in the 

inhibition of these channels.63,149 To study whether PKC mediated phosphorylation regulates 

TRPC6 channel activity, OAG-induced Ca2+ entry was measured in presence of the broad 

spectrum PKC inhibitor, Gö6983. Interestingly, the Ca2+ entry was further potentiated in Wt 

platelets, but this effect was found to be absent in Trpc6-/- platelets, indicating that PKC 

negatively regulates TRPC6 function (Figure 7B). The functional consequences of the TRPC6 

phosphorylation mediated by PKC isoforms (PKCα, PKCβ and PKCθ) needs to be addressed. 

PMA activates PKC and has been shown to enhance purinoreceptor-activated ROCE150 and 

non-capacitive Ca2+ entry151 thereby stimulating platelet activation. The molecular identity of the 

Ca2+ channels involved in this process is still unclear. Interestingly, PMA induced integrin αIIbβ3 

activation and P-selectin exposure was found to be unaltered in Trpc6-/- platelets compared to 

Wt controls. 

To study the role of TRPC6 in intravascular thrombus formation, Trpc6-/- mice were subjected to 

different in vivo thrombosis models. The kinetics of thrombus formation were studied in different 

vascular beds, and types of injury including mechanical injury of the abdominal aorta as well as 

FeCl3 induced injury on mesenteric arterioles and carotid artery. No differences in initiation of 

thrombus formation and complete vessel occlusion were observed between Wt and Trpc6-/- mice 

(Figure 16). Moreover, the hemostatic function in these mice was also comparable to Wt 

controls. Interestingly, Paez Espinosa et al.152 recently demonstrated a significant hemostatic 

defect and protection from arterial thrombus formation in the in vivo model of FeCl3 induced 

chemical injury on the carotid artery in Trpc6-/- mice. Their results stand in contrast to the 
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observation reported in the presented thesis. These discrepancies are difficult to explain, but 

they are most likely due to differences in the experimental conditions. The severity of the injury 

induced may vary depending on the used FeCl3 concentration, application method via liquid drop 

or filter paper and the exposure time of the vessel to the applied chemical. Similarly, tail bleeding 

times, a measure of hemostatic function, can vary depending on the size of the injury as well as 

external conditions used while determining the bleeding times. Further studies will be required to 

address these questions directly. TRPC6 is highly expressed in vascular smooth muscle cells 

and Trpc6-/- mice displayed enhanced agonist-induced smooth muscle contractility.71 This was 

later found to be due to upregulated expression of the TRPC3 channel in TRPC6 deficient 

vascular smooth muscle cells.71 However, since murine platelets do not express TRPC3142 

(Figure 6B) loss of TRPC6 function cannot be compensated by this channel. Recently, 

Weissmann et al. proposed an important role played by TRPC6 in development of lung ischemia 

after lung ischemia reperfusion induced oedema (LIRE). Lung endothelial cells of Trpc6-/- mice 

showed attenuated ischemia and were protected in the LIRE model.153 Based on expression 

profiling,154 and the analysis of STIM1 and Orai1 function in platelets59,130,155 it is concluded that 

STIM1-Orai1 mediated SOCE is the dominant Ca2+ entry pathway which may dominate the role 

of TRPC6 mediated Ca2+ influx. Alternatively, other so far unknown Ca2+ channels could also 

compensate for the lack of TRPC6. However, these channels – if existent - are not members of 

the TRPC family and cannot be activated by DAG.  

Ca2+ is a central and common second messenger downstream of most signaling pathways in 

virtually all cells. Thus, regulators of Ca2+ signaling might be interesting targets for platelet 

inhibition.156 Indeed, studies performed on mice lacking molecules like STIM1, Orai1 and P2X1 

displayed a strong antithrombotic protection in vivo with only a mild hemostatic defect. Both 

Stim1-/- and Orai1-/- bone marrow chimeras were found to be largely protected against 

ischemia/reperfusion induced brain injury without any detectable tendency towards intracranial 

hemorrhage.58,59 This protection was clinically relevant, because the global motor and 

neurological function of these animals were significantly better after ischemia than those of 

control mice. The ROC channel, P2X1 is another attractive antithrombotic candidate molecule. 

Mice deficient in the protein were found to be protected in models of laser-induced arterial 

thrombosis, and collagen/epinephrine-induced pulmonary thromboembolism, whereas their 

hemostatic capacity was normal.139 Since many of the Ca2+ signaling molecules are widely 

expressed, a cell–specific targeting of platelets would be required to achieve selective 

antithrombotic therapy. The presented study revealed clear evidence for the central role of 

TRPC6 in DAG-activated ROCE in murine platelets. Furthermore, it was shown that platelet 

SOCE occurs independently of TRPC6 channel function. But, the lack of TRPC6 had no effect 

on arterial thrombus formation and hemostasis. It will be of interest to study TRPC6 function 

under pathological conditions or in case of gain of function mutations.  
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5.2 CLP36 as a negative regulator of GPVI signaling in mouse platelets 

Platelet activation by multiple signaling pathways leads to shape change, release of 

intracellularly stored granules, and spreading on immobilized ligands. The molecular basis and 

the key regulators of actin dynamics essential for stress fiber formation and platelet shape 

change are an area of active research. Studies performed in our lab on Rho family GTPases like 

Rac1, Cdc42 and RhoA using conditional knockout approaches has allowed novel insights into 

their role in platelet function and contribution to thrombus formation under in vivo conditions. We 

demonstrated that Rac1 is essential for platelet lamellipodia formation, but also for PLCγ2 

activation downstream of the collagen receptor GPVI.129 The signaling defect resulted in a 

profound protection of Rac1-deficient mice from arterial thrombosis. On the other hand, platelets 

from Cdc42-deficient mice showed that the protein is not per se required for filopodia formation 

upon platelet activation. Interestingly, these platelets displayed an increased granule release 

after activation that translated into accelerated thrombus formation in vivo.157 RhoA has been 

implicated as a critical mediator of stress fiber formation in numerous cell types.158-160 A recent 

study from our group by Pleines et al. indicated that RhoA deficient platelets could spread upon 

thrombin stimulation and RhoA was only partially involved in stress formation and proper granule 

centralization. However, the study revealed a role of RhoA in the organization of microtubule 

structures in spread platelets. These results suggested that microtubule assembly may be 

regulated by the Rho/ROCK pathway upon platelet activation (Figure 46A, B). Interestingly, 

RhoA deficiency resulted in protection from irreversible thrombus formation in vivo caused 

mainly by impaired degranulation-dependent release of soluble mediators.161 

The actin-depolymerizing factor (ADF)/cofilin family consists of F-actin severing proteins like 

ADF and non-muscle cofilin. The studies done by Bender et al. demonstrated that Adf-/- platelets 

spread with the same kinetics as control platelets. In contrast, n-cofilin platelets displayed a 

profoundly delayed filopodia and subsequent lamellipodia formation. Stimulated emission 

depletion (STED) microscopy revealed normal actin cytoskeleton reorganization (Figure 46C). 

Deletion of both the proteins in platelets led to severely impaired actin rearrangements.162 
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Figure 46: (A) Analysis of filamentous actin (red) and tubulin (green) structure in spread (30 min) RhoA-/- 
and Wt platelets by confocal microscopy. Scale bar represents 5 µm. (B) Visualisation of actin 
cytoskeleton of RhoA-/- and Wt platelets by STED microscopy 30 min after spreading. Scale bar 
represents 5 µm (C) STED microscopy of Wt, Adf-/-, cofilin-null and Adf-/-/cofilin-null platelets spread for 20 
and 60 min on fibrinogen and stained with phalloidin. Scale bar represents 3 µm. 

Members of the PDLIM family have been well characterized for their association with actin stress 

fibers and to the focal adhesion complex via α-actinin.89,101,115,163 PDLIMs were proposed to play 

critical roles in stress fiber formation164 and integrin mediated focal adhesion.113 The PDLIM 

protein family contains muscle specific and ubiquitously expressed proteins that associate with 

actin cytoskeletal proteins (β-tropomyosin, α-actinin) and different kinases (Src, Clik, PKC) to 

stress fibers and focal adhesion complexes. Muscle specific PDLIM proteins are associated with 

Z-disc structures via α-actinin and their loss leads to cardio- and skeletal myopathies in 

mice.96,165 In the presented thesis, the expression pattern of different PDLIM family members in 
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platelets was analyzed. Interestingly, only CLP36 was found to be expressed in platelets, 

indicating a unique role played by this protein in integrin mediated adhesion and stress fiber 

formation. Moreover, immunofluorescence confocal microscopy on spread mouse platelets 

showed CLP36 to be localized throughout the body of the platelet along the actin stress fibers 

with dotted appearance as previously described in human platelets by Bauer et al..115 CLP36 

was found to be absent from the central core of the platelet where the granules are localized 

(Figure 19). In order to study the function of CLP36 and its C-terminal LIM domain in platelets, 

Clp36-/- and Clp36ΔLIM mice, respectively, were generated and analyzed. The targeting strategy 

used to generate Clp36ΔLIM mice did not ablate CLP36 expression but resulted in the expression 

of a truncated CLP36 protein fused with β-GEO protein (termed as CLP36ΔLIM). Clp36ΔLIM 

platelets expressing the chimeric protein displayed normal spreading, unaltered F-actin 

polymerization and stress fiber formation. Interestingly, the subcellular localization of the 

CLP36ΔLIM protein in spread platelets was similar to Wt platelets (Figure 23). This could be 

attributed to the intact N-terminal PDZ domain of the chimeric CLP36 protein, which could still 

associate to the actin cytoskeleton. These data indicated that at least the LIM domain of CLP36 

is not required for this association and CLP36 may regulate actin dynamics independently of its 

LIM domain. Surprisingly, Clp36-/- platelets could also form filopodia, lamellipodia and finally 

spread with similar kinetics as Wt platelets (Figure 39). Altogether, these findings indicated that 

CLP36 is dispensable for actin rearrangements in platelets. Bozulic et al. proposed CLP36 to be 

involved in the regulation of Ca2+ homeostasis in human platelets.103 It was shown that the PDZ 

domain of CLP36 interacts with plasma membrane Ca2+-ATPase (PMCA4b) and the authors 

speculated that this association might regulate late events during platelet activation, such as clot 

retraction and stability. Interestingly, no impairment of clot formation and retraction was 

observed in Clp36∆LIM and Clp36-/- platelets (Figure 25, Figure 40), indicating that CLP36 and its 

interaction with PMCA4b does not play an essential role in regulation of actin rearrangements, 

clot retraction and stability. 

This is the first study describing the role of CLP36 and its LIM domain in platelet physiology 

using genetically modified mice. Clp36ΔLIM and Clp36-/- mice developed normally without any 

obvious defects. Moreover, both mouse lines showed an unaltered platelet life span, platelet 

counts and glycoprotein expression profiles with a slightly but significantly increased platelet size 

thus indicating that CLP36 is dispensable for platelet production. These results stand in contrast 

to other actin organizing protein family members like RhoA, Cdc42 and Cofilin whose absence 

resulted in thrombocytopenia and altered platelet production.157,161,162  

Further characterization of Clp36ΔLIM and Clp36-/- platelets displayed enhanced integrin αIIbβ3 

activation and α− and dense−granule secretion in response to GPVI agonists. This selective 

hyperresponsiveness of the GPVI-ITAM- PLCγ2 cascade in Clp36ΔLIM and Clp36-/- platelets was 
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mapped to abnormal function of downstream signaling molecules of GPVI that are not required 

for GPCR signaling. It is known that the activating signal of PLCγ2 is different from that of 

PLCβ based on structural differences. Amino acid sequences of PLCγ2 and PLCβ diverged 

during evolution. PLCγ2 contains two SH2 domains, a single SH3 domain and PH domain which 

are absent in PLCβ.166 SFKs bind and phosphorylate these domains and thereby regulate 

subcellular localization and enzymatic activity of PLCγ2, but not of PLCβ. The increased 

activation also resulted in enhanced aggregation under stirring conditions in response to various 

GPVI agonists, and the formation of larger aggregates on collagen under flow conditions. Of 

note, the surface expression of GPVI on both Clp36-/- and Clp36ΔLIM platelets was not altered 

when compared to Wt controls excluding the possibility of enhanced signaling due to higher 

receptor number on platelet surface. 

Clp36ΔLIM platelets displayed an enhanced IP3 production upon GPVI activation that further on 

led to a faster and enhanced Ca2+ release from the intracellular stores which subsequently 

increased store-operated Ca2+ entry (SOCE). This altered Ca2+ signaling was more pronounced 

at lower agonist concentrations where the Wt platelets failed to respond. Notably, passive store 

depletion with thapsigargin (TG) did not lead to any differences in the kinetics of store release or 

SOCE between Wt and Clp36ΔLIM platelets (data not shown). These results demonstrated that 

the LIM domain of CLP36 has no direct effect on the regulation of Ca2+ store depletion or on the 

assembly and activation of SOC complex. Based on the integrin activation and degranulation 

results, obtained for Clp36-/- platelets, similar IP3 production and Ca2+ mobilization are expected 

but further experiments are required to clarify the role of CLP36 protein in these processes. 

GPVI signaling upon activation involves a series of tyrosine phosphorylation cascades that 

finally culminate in PLCγ2 activation and subsequent hydrolysis of PIP2 into IP3 and DAG. IP3 in 

turn is responsible for emptying of intracellular Ca2+ stores. Increased integrin activation, 

degranulation, aggregation and enhanced Ca2+ mobilization in response to the GPVI agonists 

collagen and CRP observed in Clp36ΔLIM platelets suggested a modulating role of the LIM 

domain of CLP36 in platelet signaling downstream of GPVI receptor. Interestingly, an increased 

degree of phosphorylation was observed for Clp36ΔLIM platelets at very low concentrations of 

CRP, while Wt platelets displayed only a weak or no tyrosine phosphorylation profile at such low 

doses. The tyrosine phosphorylation blot of Clp36ΔLIM platelets displayed phosphorylation of 

numerous platelet proteins, including proteins that co-migrated with PLCγ2, Fyn, Lyn and the 

FcRγ-chain (Figure 32). Since the whole GPVI signaling was found to be phosphorylated in the 

tyrosine phosphorylation blots, CLP36 may be a regulator of the GPVI signalosome at the top of 

the signaling cascade. Several proteins have been identified by knockout approaches to 

negatively regulate GPVI-ITAM-PLCγ2 signaling, such as PECAM,167 TULA-2168 and 

CEACAM1.169 Mice lacking these proteins, like Clp36∆LIM mice, display platelet hyperreactivity 
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towards GPVI agonists and a prothombotic phenotype in vivo, demonstrating the (patho-) 

physiological importance of the negative feedback loop that controls GPVI signaling in platelets. 

The identification of the phosphorylated proteins upon GPVI stimulation in Clp36ΔLIM platelets 

remains to be determined.  

The presented study proposed the LIM domain of CLP36 may regulate the localization and/or 

activity of tyrosine kinases in the GPVI signalosome, but the identity of these kinases remains 

yet to be determined. Using Expasy (Swiss Institute of Bioinformatics) a putative active binding 

site on the LIM domain of CLP36 was identified which could be phosphorylated by SFKs (Figure 

47). The bioinformatic analysis indicated a possible interaction of CLP36 with SFKs that may 

influence signaling downstream of GPVI. This hypothesis was further strengthened by the 

previous observation that PDLIMs act as adapters between kinases and the actin cytoskeleton 

by associating on one hand to actin cytoskeleton via α-actinin or β-tropomyosin with their PDZ 

domain and on the other hand, to different kinases via their LIM domains.  

 

 

Figure 47: Putative active phosphorylation sites of the LIM domain of CLP36. P1: Src/SH2 binding 
site, P2: Anaplastic lymphoma kinase (ALK) phosphorylation site P3: CLIK1 kinase phosphorylation site, 
P4: Src kinase phosphorylation site identified by mass spectrometry; Expasy, Proteome database. 

The analysis of Clp36ΔLIM platelets showed their hyperactivation specific to GPVI signaling. But 

surprisingly, Clp36ΔLIM and Clp36-/- mice displayed a significant protection from ischemic stroke. 

Previous studies performed by other groups show a wide expression of CLP36 in different cell 

types and tissue. In order to study the cause of contradictory in vitro and in vivo results and a 

possible role of CLP36 in maintaining vascular endothelial wall integrity, criss-cross bone 

marrow chimeras were generated. Interestingly, the in vivo analysis of the Wt mice transplanted 

with Clp36ΔLIM bone marrow displayed significantly faster occlusive thrombus formation when 

compared to the Wt and Clp36ΔLIM mice transplanted with Wt bone marrow. In contrast, tail 

bleeding times were not altered in these mice suggesting that the negative regulation of GPVI 

signaling may be particularly important to prevent intravascular occlusive thrombus formation. 
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The contrasting in vivo tMCAO results obtained for the Clp36ΔLIM mice indicates the importance 

of CLP36 in other cell types including the cells lining the vascular endothelium. These results 

indicated the important role played by CLP36 in maintaining the vessel wall integrity which is 

essential for a stable thrombus formation. This mouse model thus may serve as an important 

tool to improve the understanding of the mechanisms that regulate thrombus formation in vivo. 

Taken together, this study for the first time demonstrated a role of CLP36 in thrombosis and 

hemostasis. The results presented in the thesis showed that absence of CLP36 in platelets does 

not interfere with actin rearrangements. But, the loss of the LIM domain of CLP36 in platelets 

leads to increased PLCγ2 activity downstream of GPVI and thereby accelerates Ca2+ store 

release and Ca2+ influx, which in turn induces faster α− and dense granule secretion and integrin 

activation. During the last years, GPVI has been established as an attractive antithrombotic 

target.34,37 This is particularly due to the observation that injection of anti-GPVI antibodies 

(JAQ1-3) into mice induces specific downregulation of the receptor from the surface of 

circulating platelets, resulting in a long-term antithrombotic protection but only a minimal 

hemostatic defect.34,37,38,170,171 All these observation have made the downstream signaling 

cascade of GPVI an interesting target for inhibition. Therefore, the pathway involving CLP36 

downstream of GPVI might be an attractive target for new anti-platelet agents to prevent 

thrombotic events. These findings establish CLP36 as an important regulator of platelet 

activation and might be effective in the prophylaxis or treatment of ischemic cerebro- or 

cardiovascular diseases. 

5.3 Concluding remarks and future plans 

Historically, most of the understanding about platelet function was derived from the diagnosis of 

patients suffering from bleeding or thrombotic disorders and the subsequent identification and 

characterization of the involved proteins. In recent years, the advent of gene targeting and 

transgenic techniques in mice has proved to be a powerful in vitro and in vivo approach to 

manipulate and study platelets. Nearly all known adhesion molecules, receptors and many 

signaling molecules involved in platelet function have been knocked out, mutated, or 

overexpressed in mice. As a consequence, mice are frequently used as a model to explore the 

molecular mechanisms underlying hemorrhagic and thrombotic disorders. Although the 

relevance of mouse studies to human pathology may not always be straightforward, mice have 

already been proven to provide an excellent model to study thrombosis. However, great care 

should be taken in selecting a particular thrombosis model, conclusions drawn, and the 

limitations of each model need to be taken into account. Interestingly, gene deletions to study 

platelet function are sometimes associated with compensatory changes or additional new 
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findings. For example, in the current study with Clp36ΔLIM and Clp36-/- mice, the protection 

observed in tMCAO model gave new insights into the role of CLP36 in maintaining endothelium 

vessel wall integrity. Similarly, recent studies performed by Weissmann et al. extended our 

knowledge about TRPC6 function in endothelium. Trpc6-/- mice were protected in lung ischemia–

reperfusion-induced oedema (LIRE), a condition that causes pulmonary oedema induced by 

endothelial dysfunction.172 Thus, manipulation of mouse genetics in combination with upcoming 

in vivo models can serve as a useful practical tool for identifying and validating novel targets for 

therapeutic intervention.   

The presented thesis established TRPC6 as the only DAG activated Ca2+ channel in murine 

platelets. Loss of TRPC6 function in murine platelets cannot be compensated by other 

DAG-operated channels. Since Orai1 is already established as the major Ca2+ channel in 

platelets but its absence does not affect GPCR signaling, it will be interesting to study the 

consequences of lack of function of both the Ca2+ channels on platelet signaling and also on the 

process of megakaryopoiesis and platelet production. For this part of the study double mutant 

mice lacking Orai1 and TRPC6 will be generated and analyzed for in vitro and in vivo platelet 

function. Additionally, to study the functional relevance of Trpc6-/- platelets in cerebral ischemia, 

Trpc6-/- mice will be analyzed in the tMCAO model of ischemic stroke in collaboration with the 

Department of Neurology, University Hospital, Würzburg. It will be interesting to study the role 

played by TRPC6 in vascular endothelium in the development of ischemic stroke and in the 

model of collagen/epinephrine-induced pulmonary thromboembolism. 

In the second part of the thesis, further studies are planned in our group to investigate the role of 

CLP36 in different in vivo models of thrombosis. The contrasting tMCAO results obtained for 

both Clp36ΔLIM and Clp36-/- mice makes them a useful model to study the mechanism of 

thrombus formation and various factors apart from platelets, decide thrombus formation at the 

sites of injury. This mouse model can provide useful insights in the study of thrombus formation 

and stroke development. In another set of experiments, the proteins involved in the regulation of 

the GPVI signalosome with special emphasis on CLP36 will be analyzed. The studies are 

planned to decipher the binding partners of CLP36 and how CLP36 regulates the GPVI 

signaling. The preliminary analysis has shown an association of CLP36 with the GPVI 

signalosome. Further experiments are planned in our group to study if the calpain-mediated 

cleavage of CLP36 regulates GPVI signaling upon platelet activation. In addition, it will be 

interesting to study if absence of CLP36 also has an impact on another ITAM signaling 

pathways, especially the Clec-2 signaling pathway in mouse platelets. 
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7  APPENDIX 

7.1 Abbreviations 

α alpha 

β beta 

γ gamma 

μ micro 

AA Amino acid 

ACD Acid-citrate-dextrose 

ADAM A disintegrin and metalloproteinase 

ADF Actin depolymerizing factor 

ADP Adenosine diphosphate 

ATP Adenosine triphosphate 

BMC Bone marrow chimeric 

BSA Bovine serum albumin 

BTK Bruton’s tyrosine kinase 

Ca2+ Calcium 

oC Degree Celsius 

[Ca2+]i intracellular calcium concentration 

CLEC-2 C-type lectin receptor 2 

CLP36 C-terminal LIM domain protein of 36 kDa 

CRACM Calcium release activated calcium modulator 

CRP Collagen-related peptide 

CVX Convulxin 

DAG Diacylglycerol 

ECM Extracellular matrix 

ELISA enzyme-linked immunosorbent assay 

et al. et alteri 

F-actin filamentous actin 
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FACS Fluorescence-activated cell sorting 

FcR Fc receptor 

FeCl3 Ferric(III)chloride 

FITC Fluorescein isothiocyanate 

FSC Forward scatter 

g gram 

GP Glycoprotein 

GPCR G protein-coupled receptors 

GTP guanosine triphosphate 

h hour(s) 

H2O water 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

IFN Interferon 

Ig Immunoglobulin 

IFI integrated fluorescence intensity 

IP Immunoprecipitation 

IP3 Inositol-1,4,5-trisphosphate 

IP3R IP3 receptor 

ITAM Immunoreceptor tyrosine-based activating motif  

l liter 

LAT Linker of activated T cells 

M molar 

MFI Mean fluorescence intensity 

min minute(s) 

MRI Magnetic resonance imaging 

MK megakaryocyte 

mL milliliter 

mm2 square millimeter 
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NaCl sodium chloride 

o/n overnight 

OAG 1-oleoyl-2-acetyl-sn-glycerol 

PA Phosphatidic acid 

PAGE Polyacrylamide gel electrophoresis 

PC Phosphatidylcholine 

PE Phycoerythrin 

PGI2 Prostacyclin 

PH Pleckstrin homology 

PI3K Phosphoinositide-3-kinase 

PIP2 Phosphatidylinositol-4,5-bisphosphate 

PIP3 Phosphatidylinositol-3,4,5-triphosphate  

PKC Protein kinase C 

PL Phospholipase 

PM plasma membrane 

prp Platelet-rich plasma 

PS Phosphatidylserine 

Rho Ras homolog gene family 

RT Room temperature; in case of RT-PCR, RT indicates reverse transcription 

s second(s) 

SD standard deviation 

SDS Sodium dodecyl sulfate 

SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SERCA Sarco/endoplasmic reticulum Ca2+-ATPase 

SFK Src family kinases  

SH2 Src homology domain 2 

SLP-76 SH2 domain containing leukocyte protein of 76 kDa 

SOCE Store-operated calcium entry 
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SSC Sideward scatter 

STIM Stromal interaction molecule 

TAE TRIS acetate EDTA buffer 

TBS TRIS-buffered saline 

TE TRIS EDTA buffer 

TF Tissue factor 

TG Thapsigargin 

TM Transmembrane 

tMCAO Transient middle cerebral artery occlusion 

TP Thromboxane A2 receptor 

TRIS Tris(hydroxymethyl)aminomethane 

TRPC Transient receptor potential channel 

TTC 2,3,5-triphenyltetrazolium chloride 

TxA2 Thromboxane A2 

U units 

vWF Von Willebrand factor 

Wt Wildtype 
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7.2.2 Oral Presentations 

CLP36 is the negative regulator of GPVI signaling in mouse platelets. XXIIIrd Congress of 
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LIM domain of CLP36 is the negative regulator of GPVI signaling. 55th Gesellschaft für 
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(Germany)  

7.2.3 Poster Presentations 

CLP36 is a negative regulator of GPVI signaling in mouse platelets. Bio Bang, VIth 
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Dynamism of cytoskeleton in mouse platelets. Vth International Symposium. The Graduate 
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