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1. Introduction 

1.1 Genotoxicity 

Genotoxicity describes a deleterious action on cellular genetic material affecting its 

integrity. Genotoxic substances are those with affinity to interact with DNA, which can 

lead to mutagenic or carcinogenic effects. The aim of genotoxicity testing is to evaluate 

whether the substance, product or environmental sample is able to induce genetic 

damage or not. With genotoxicity testing, potential hazard for human health and 

environmental organisms can be identified due to DNA damage and mutation induction. 

Many tests were reported to investigate the compounds genotoxicity such as the 

Bacterial Reverse Mutation Assay (Ames Test) which is used to investigate the ability of 

testing substance or sample to induce point mutations [1-2]. Another test is the 

SOS/umu test with Salmonella typhimurium TA1535/pSK1002, which determines the 

ability of the testing substance or sample to induce DNA damage [3].  

 

1.1.1 The Single Cell Gel Electrophoresis (Comet assay)  

The comet assay is a rapid, sensitive, versatile and economic method for detection of 

DNA single, double-strand breaks and alkali labile sites (incomplete excision repair 

sites, and apurinic or apyrimidinic sites, which are alkali labile and are translated into a 

strand break when exposed to the alkaline buffers of the comet assay), that are the 

consequences of direct DNA damage or occur as intermediates formed during the 

repair of DNA lesions. The method is appropriate for testing of the damaging effect of 

various compounds and environmental samples. Pictures of damaged (treated with 

insulin) as well as undamaged cells (treated with the solvent) measured by the comet 

assay are illustrated in figure 1. 
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Figure1. Two representative cells in the comet assay. Cells are embedded in agarose and 
exposed to an electrical field. From cells with damaged DNA (right picture), more DNA 
can migrate than from cells with intact nuclear DNA (left picture). 
 

During the past decade, the comet assay, or single-cell gel electrophoresis (SCGE) has 

become one of the standard methods for assessing DNA damage, with a wide array of 

applications in genotoxicity testing, human biomonitoring, molecular epidemiology, 

ecogenotoxicology as well as fundamental research in DNA damage and repair. It is an 

essential technique for measuring DNA breaks, the introduction of lesion-specific 

endonucleases permitting the detection of ultraviolet (UV)-induced pyrimidine dimers, 

oxidized bases, and alkylation damage [4] . 

In the 1970s, Peter Cook and colleagues [5] developed an approach for investigating 

the nuclear structure based on the lysis of cells with nonionic detergent and high-

molarity using sodium chloride. This treatment removes membranes, cytoplasm, and 

nucleoplasm, and disrupts the nucleosomes resulting in solubilization of almost all 

histones by the high salinity. The remained nucleoid consists of a nuclear matrix or 

scaffold composed of ribonucleic acid (RNA) and proteins, together with the DNA which 

is negatively supercoiled as a consequence of the turns made by the double helix 

around the histones of the nucleosome. The survival of the supercoils implies that free 

rotation of the DNA is not possible. For that, Cook et al. [5] proposed a model with the 

DNA attached to the matrix so that it is effectively arranged as a series of loops, rather 

than as a linear molecule. When the negative supercoiling was unwound by adding the 

intercalating agent ethidium bromide, the loops expanded out from the nucleoid core to 

form a “halo.” A similar effect was observed when ionizing radiation was applied to relax 

the loops-one single-strand break being sufficient to relax the supercoiling in that loop. 

The comet assay, too, in its most commonly used form involves lysis with detergent and 
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high salt after embedding cells in agarose so that the DNA is immobilized for 

subsequent electrophoresis. The first description of comet was by Östling and Johanson 

[6], who described the tails in terms of DNA with relaxed supercoiling and referred to the 

nucleoid model of Cook et al. Interestingly, the comet tail seems to be simply a halo of 

relaxed loops pulled to one side by the electrophoretic field. Östling and Johanson 

employed a pH of less than 10. Although the most common variant now employed is 

alkaline SCGE, a high pH is not essential to detect single-strand breaks. The comet 

assay is most commonly applied to animal cells, whether in culture or isolated from the 

organism (e.g. lymphocytes separated from blood, or cells from disaggregated tissues). 

However, methods have also been developed to examine the damage in the DNA of 

plant cells [7]. 

Versions of comet assay according to the purpose of the experiment  

1. Alkaline Single-Cell Gel Electrophoresis 

The procedure of Östling and Johanson was not widely adopted. A few years later, two 

research groups independently developed procedures involving treatment at high pH. 

Singh et al. [8] lysed cells at pH 10 with 2.5 M NaCl, Triton X-100, and Sarkosyl for 1 

hour, then treatment with alkali (0.3 M NaOH) and electrophoresis at the resulting high 

pH (>13). Olive et al. [9] lysed cells in weak alkali (0.03 M NaOH) for 1 hour before 

electrophoresis. Thus the idea was that the comet assay is in the same category as 

alkaline unwinding, alkaline elution, or alkaline sucrose sedimentation, where separation 

of two DNA strands around a break by alkaline denaturation is essential to reveal the 

break. The use of alkali makes comet tails more pronounced and extends the useful 

range of damage that can be detected [10], but it does not increase the sensitivity. The 

protocol introduced by Singh et al. has been simplified [11]. It is now common practice 

to embed cells in a single layer of agarose on a plain glass slide precoated with agarose 

and dried (in the original method, the cells were in the middle of three agarose layers on 

a frosted glass slide), sarkosyl is frequently omitted from the lysis solution. 
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2. Neutral Single-Cell Gel Electrophoresis 

After the example of Östling and Johanson [6], Collins et al demonstrated the ability of a 

neutral electrophoresis procedure to detect low levels of DNA breaks [10]. Olive et al. 

[12] modified the procedure to facilitate the detection of double-stranded breaks without 

interference from single-strand breaks. Their procedure employed extended treatment 

of lysed cells in agarose at 50°C. Under these conditions, it is likely that the nuclear 

matrix is disrupted so that we are truly looking at the behavior of double-stranded pieces 

of DNA (or the free ends of these fragments). 

 

3. Use of Lesion-Specific Enzymes 

Limited information is obtained from measuring the DNA strand breaks. Breaks might 

represent the direct effect of some damaging agents, but they are generally quickly 

rejoined. In fact, they might be apurinic/apyrimidinic sites (i.e., AP sites or baseless 

sugars), which are alkali labile and therefore appear as breaks. They might be also 

intermediates in cellular repair, because both nucleotide and base excision-repair 

processes cut out the damage and replace it with new nucleotides. To make the assay 

more specific as well as more sensitive, Collins group introduced the extra step of 

digesting the nucleoids with an enzyme that recognizes a particular kind of damage and 

creates a break. Thus endonuclease III is used to detect oxidized pyrimidines [13], 

formamidopyrimidine DNA glyco–sylase (FPG) for detecting the major purine oxidation 

product 8-oxoguanine as well as other altered purines [4], T4 endonuclease V to 

recognize-UV induced cyclobutane pyrimidine dimers [14], and Alk A incises DNA at 3-

methyladenines [15]. In each case, the enzyme-sensitive sites are converted to 

additional DNA breaks increasing tail intensity.  

 

4. Less common versions of comet assay 

Different modifications for the comet assay were presented, such as Bromodeoxyuridine 

Labeling [16], which detects intermediates in DNA repair [17] and FISH Comets [18]. 
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1.1.2 Micronucleus frequency test 

The in vitro micronucleus frequency test is used for detection of substances and 

samples that can cause structural and numerical chromosomal aberrations (clastogenic 

and aneugenic substances). Increased micronucleus formation can reflect the formation 

of chromosomal breaks or incorrect separation of chromosomes during the cell division. 

The in vitro micronucleus frequency test can be used as a replacement method for the 

standardized in vitro chromosomal aberration assay, especially as a screening method 

as it is cheaper and faster to perform on a wide variety  of cell lines [19]. 

A schematic picture of micronucleus formation and representative cells containing 

micronuclei are illustrated in figure 2.  

 

Figure2. A micronucleus contains a broken part of a chromosome or a whole 
chromosome which is unable to migrate toward the spindle poles during mitosis. Above 
is the schematic illustration of micronuclei formation. The lower part of the picture 
shows microscopic pictures representing the process. 
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Because formation of micronuclei only occurs when cells go through cell division, it is 

important to observe only the population of the cells which are actively dividing during or 

after the desired treatment. One possibility to achieve this goal is to perform the 

cytokinesis-block micronucleus technique using cytochalasin B. This inhibitor of actin 

polymerization blocks the separation of daughter cells but not of daughter nuclei, 

yielding binucleated cells. By limiting the analysis to such binucleated cells, it can be 

ensured that these cells have actively divided since the treatment. On the other hand, 

mononucleated cells with micronucleus can also be analyzed without cytochalasin B 

addition. 

 

1.2 Genomic damage and cancer etiology 

Cancer is a genomic disease associated with accumulation of genetic damage. The 

majority of solid tumors show a large number of complex chromosomal aberrations 

(CAs) that are not always shared by all cells of the same tumor and may be not 

necessarily linked to a particular tumor type [20]. These chromosomal alterations occur 

in benign and malignant lesions as well as in pre-neoplastic stages and include 

structural and numerical aberrations. Cancer development has been considered as 

result of the process of Darwinian evolution based on two constituent events including 

the continuous acquisition of heritable mutations and the natural selection of the 

resultant phenotype [21]. The acquisition of genomic instability is a condition that 

predisposes a cell to accumulate stable genome mutations, representing an early step 

in the process of carcinogenesis [21]. A complex interaction of cellular processes 

characterizes the maintenance of genome stability ensuring cellular homeostasis and 

consistent genetic inheritance and continuity in multicellular organisms. However, 

cellular genomes are continuously exposed to endogenous and exogenous insults 

causing structural alterations to chromosomes leading to altered gene dosage and 

expression. Mutations in tumor suppressor genes oncogenes and other genes involved 

in genome maintenance could therefore lead to a mutator phenotype that increases the 

risk of new mutations including those associated with cancer [22]. Over the last 

decades, many research groups applied different biomarker-based approaches in the 

assessment of genotoxic agents and the increases of these biomarkers are considered 
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early events, associated with the disease-related consequences. Assuming that the 

mechanisms for the induction of chromosomal damage are similar in different tissues, 

the extent of chromosomal damage evaluated in lymphocytes and other surrogate 

tissues is likely to reflect the level of damage in cancer-prone tissues and in turn cancer 

risk [23]. 

Micronucleus (MN) and other nuclear anomalies such as nucleoplasmic bridges (NPBs) 

and nuclear buds (NBUDs) are biomarkers of genotoxic events and manifestations of 

chromosomal instability that are often associated to cancer. The development of the 

cytokinesis-block micronucleus cytome (CBMNcyt) assay allowed a more accurate and 

precise measurement of these events in lymphocytes and more recently in exfoliated 

cells. The CBMNcyt assay provided deeper insights into the underlying molecular 

mechanisms contributing to those genome damage events that could increase risk of 

developmental and degenerative diseases. Genetic damage events such as MN, NPB 

or NBUDs provide valid measures of misrepaired DNA breaks, dysfunctional telomeres 

or lack of telomeres as well as defective separation of sister chromatids at anaphase 

due to failure of decatenation, DNA amplification and formation of DNA repair 

complexes [24]. The susceptibility of an individual’s cells to accumulate chromosomal 

mutations can be measured after appropriate genotoxic stress in vitro. Indirect 

measurement of individual cancer susceptibility was described as mutagen sensitivity 

phenotype and could be measured by quantifying the genotoxic events induced by 

chemical or physical agents in short-term cultures of lymphocytes. A large number of 

epidemiologic studies reported a positive association between mutagen sensitivity and 

an increased risk of major cancers, including lung, breast, prostate, bladder, colorectal, 

brain, skin, head and neck and soft tissues [25-28]. Recent studies examined the role of 

genetic and environmental factors on the mutagen sensitivity phenotype and provided 

compelling evidence that mutagen sensitivity is highly heritable [29]. Several reports are 

available in the literature evaluating the baseline frequency of MN and other end points 

of the CBMNcyt assay in subjects affected by different types of cancer, confirming the 

presence of a higher level of genetic instability in cancer patients. Similarly, the much 

higher response of cancer patients in term of MN, NPB and NBUDs to various 
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challenges is in keeping with an increased sensitivity to mutagens in these subjects [30-

31]. 

 

1.3 Free Radicals, Reactive Oxygen Species and Oxidative Stress 

A free radical is any species that is capable of independent existence (therefore called 

free) and contains one or more unpaired electrons [32]. An unpaired electron is one that 

occupies an atomic or molecular orbital by itself. The simplest free radical is atomic 

hydrogen. Since a hydrogen atom has only one electron, it must be unpaired. Many free 

radicals exist in living systems, although most molecules in vivo are non-radicals. 

Radicals can be formed by several mechanisms such as adding a single electron to a 

non-radical. They could also result  when a covalent bond is broken if one electron from 

the bonding pair remains on each atom (homolytic fission) [33].  

Another example, the O–O bond in H2O2, is readily split by exposing it to UV light, 

generating OH⋅.    

H-O-O-H          OH⋅ + OH⋅ 

Homolytic fission of one of the O–H covalent bonds in water requires more energy (γ-

rays or x-rays) and yields H⋅ and a hydroxyl radical. Formation of hydroxyl radical (OH.)  

accounts the most common reason for damage that happen to living organisms by 

ionizing radiation [34].  

Molecular oxygen (O2) is essential for the survival of all aerobic organisms. Aerobic 

energy metabolism is dependent on oxidative phosphorylation, a process by which the 

oxidoreduction energy of mitochondrial electron transport (via a multicomponent NADH 

dehydrogenase enzymatic complex) is converted to the high-energy phosphate bond of 

ATP. O2 serves as the final electron acceptor for cytochrome-c oxidase, the terminal 

enzymatic component of this mitochondrial enzymatic complex that catalyzes the four-

electron reduction of O2 to H2O. Partially reduced and highly reactive metabolites of O2 

may be formed during these and other electron transfer reactions. These O2 metabolites 

include superoxide anion (O2
.-) and hydrogen peroxide (H2O2), formed by one- and two-

electron reductions of O2, respectively. In the presence of transition metal ions, the even 

more reactive hydroxyl radical (OH.) can be formed. These partially reduced metabolites 
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of O2 are often referred to as “reactive oxygen species” (ROS) due to their higher 

reactivities relative to molecular O2. ROS from mitochondria and other cellular sources 

have been traditionally regarded as toxic by-products of metabolism with the potential to 

cause damage to lipids, proteins, and DNA [35].  

Oxidative stress is broadly defined as an imbalance between oxidant production and the 

antioxidant capacity of the cell to prevent oxidative injury. Oxidative stress has been 

described in a large number of human diseases including atherosclerosis, pulmonary 

fibrosis, cancer, neurodegenerative diseases, and aging [36-37]. The relationship 

between oxidative stress and the pathobiology of these diseases is not clear, mainly 

due to the lack of understanding the mechanisms by which ROS function in both normal 

physiological and disease states. Accumulating data suggested that ROS are not only 

injurious by-products of cellular metabolism but also essential participants in cell 

signaling and regulation [38-39]. Although this role for ROS is a relatively novel concept 

in vertebrates, there is strong evidence of a physiological role for ROS in several non-

mammalian systems [40-41]. The apparent paradox in the roles of ROS as essential 

biomolecules in the regulation of cellular functions and as toxic by-products of 

metabolism is related to differences in the concentrations of ROS produced. ROS 

elevation during a short time may cause increased DNA oxidization, like formation of the 

mutagenic base 8-oxodG, which is then present until removal by DNA-repair until 

replication. Repair attempts can lead to strand breakage, and replication may result in 

gene mutation because of mispairing of the oxidized DNA-base 8oxodG. Moreover, 

ROS can directly induce single and double strand breaks [42], which are also mutagenic 

events. The potential connection to cancer induction was recently reviewed by Kryston 

et al. [43].  

 

1.3.1 ROS sources 

The main two important sources for ROS production in the cell are mitochondria and the 

NADPH oxidase enzyme complex. Free radicals are mainly produced inside organelles, 

such as the mitochondrion, and released toward the cytosol. Mitochondria convert 

energy for the cell into a usable form, adenosine triphosphate (ATP). The process in 

which ATP is produced, called oxidative phosphorylation which involves the transport of 
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protons (hydrogen ions) via the inner mitochondrial membrane by means of the electron 

transport chain. In the electron transport chain, electrons are passed through a series of 

proteins via oxidation-reduction reactions, with each acceptor protein along the chain 

having a greater reduction potential than the previous. The last destination for an 

electron along this chain is an oxygen molecule. In normal conditions, the oxygen is 

reduced to yield water; however, in about 0.1–2 % of electrons passing through the 

chain, oxygen is instead incompletely reduced to give the superoxide radical (O2·
-), 

most well documented for Complex I and Complex III. Superoxide can inactivate 

specific enzymes or initiate lipid peroxidation in its protonated form, hydroperoxyl HO2. 

The pKa of hydroperoxyl is 4.8. Thus, at physiological pH, the majority will exist as 

superoxide [44]. 

The second important sources for ROS production are NADPH oxidase enzymes, a 

family of multi-subunit enzyme complexes that catalyze the production of reactive 

oxygen species (ROS). In addition to the first NADPH oxidase found in phagocytes, 

other non-phagocytic NADPH oxidase isoforms were identified (fig.3), which all differ in 

their catalytic subunit (Nox1-5 and DOUX1 and 2) and tissue distribution [45-46]. 

NADPH oxidases consist of membrane proteins (i.e. the catalytic flavin–heme protein); 

NOX, of which five isoforms exist (NOX1–5); and the non-catalytic 22 kDa binding 

protein, p22phox [47]. Other components of the NADPH oxidase complex can include a 

cytosolic organizer (p47phox or NOXO1), an activator (p67phox or NOXA1) and other 

proteins (p40phox and Rac). These cytosolic subunits vary with the different NOX 

isoforms [48]. Upon phosphorylation, cytosolic subunits translocate to the NOX-

containing membrane resulting in ROS formation. However, NOX4 and NOX5 may be 

independent of cytosolic subunits and constitutively active [48-51] or regulated by the 

intracellular free calcium [50]. The only known function of NADPH oxidases is to 

generate ROS making them distinct from other sources of ROS such as xanthine 

oxidase (XOD) or uncoupled NOS as these enzymes produce ROS only after 

conversion to a dysfunctional state. This is triggered by ROS derived from a primary 

source. NADPH oxidases might be the primary source of ROS, initiating oxidative stress 

and converting other enzymes into ROS producing state [52]. Nox isoforms are 

distributed unequally through the body tissues, and play different roles according to the 
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tissues need. Nox1 is predominantly present in the colon, where it contributes to the 

host defense process while Nox2 is the phagocyte NADPH oxidase which was found to 

be the clear host defense enzyme. Nox3 is localized in the inner ear, where it is 

involved in the otoconia morphogenesis but according to its localization it may also play 

a role in the auditory system. Nox4 is expressed in the kidney, vascular cells and 

osteoclasts, and it is an active enzyme regulated on the level of gene expression. Nox5, 

a calcium activated enzyme, is predominantly expressed in the lymphoid tissues and 

testis, where it may contribute in the signaling process. DOUX1 is expressed in the 

thyroid and respiratory epithelia where DOUX2 presents in the thyroid and 

gastrointestinal glandular epithelia, both DOUX enzymes are involved in the thyroid 

hormone synthesis and epithelial host defense [50, 53]. 

 

Figure 3 : Schematic representation of the NADPH oxidase enzyme and its isoforms [46]. 
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1.3.2 Cellular Defense against ROS 

Detoxification of reactive oxygen species (ROS) is important for the survival of all 

aerobic life forms.  As such a number of defense mechanisms have evolved to suits this 

need and provide a balance between the production and removal of ROS. An imbalance 

toward the pro-oxidative state is often referred to as “Oxidative stress”. 

Cells have a variety of defense mechanisms to ameliorate the harmful effects of 

ROS.  Superoxide dismutase (SOD) catalyzes the conversion of two superoxide anions 

into a molecule of hydrogen peroxide (H2O2) and oxygen (O2) [54].  In the peroxisomes 

of eukaryotic cells, the enzyme catalase converts H2O2 to water and oxygen, and thus 

completes the detoxification initiated by SOD. Glutathione peroxidase is a cluster of 

enzymes containing selenium, which also catalyze the degradation of hydrogen 

peroxide, as well as organic peroxides to alcohols. 

There are number of non-enzymatic small molecule antioxidants that play a role in the 

detoxification process.  Glutathione may be the most important intracellular defense 

against the deleterious effects of reactive oxygen species.  This tripeptide (glutamyl-

cysteinyl-glycine) provides an exposed sulfhydryl group, which serves as an abundant 

target for attack. Reactions with ROS molecules oxidize glutathione but the reduced 

form is regenerated in a redox reaction by an NADPH-dependent reductase.  Vitamin C 

or ascorbic acid is a water soluble molecule capable of reducing ROS, while vitamin E 

(a-tocopherol) is a lipid soluble molecule that has been suggested to play a similar role 

in membranes. The ratio of the oxidized form of glutathione (GSSG) and the reduced 

form (GSH) is a dynamic indicator of the oxidative stress of an organism [55].  

 

1.3.3 ROS measurement 

Establishing a precise role for ROS in vivo or in vitro requires the ability to measure 

them and the oxidative damage that they cause. Different methods were applied to 

detect and quantify ROS, some of them used in vivo and others in vitro. Whatever the 

applied method to trap ROS, it is necessary to evaluate how the method works, what is 

likely to confound and how the quantification will be achieved. 

One of the techniques that is used for ROS measurement is L-band electron spin 

resonance (ESR) with nitroxyl probes and magnetic resonance imaging spin trapping 
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which detects the presence of unpaired electrons, recently it is under development to 

measure ROS in the whole animal [56-57].  

Fluorescence-based probes are commonly used to detect the cellular production of RS 

such as dichlorofluorescin diacetate (DCFDA), which is the most popular among these 

probes. DCFDA is deacetylated by esterases to the non-fluorescent product, 

dichlorofluorescin (DCFH). DCFH is then converted by reactive species (RS) into DCF, 

which can be easily visualized by strong fluorescence at 525 nm when excited at 

around 488 nm, the drawback in DCFDA is that it is not specific for certain RS  [58]. 

Dihydrorhodamine (DHR) is a dye commonly used to detect several RS (OH., ONOO-, 

NO2
. derived species), but it is poorly sensitive to O2

., H2O2 or NO.[59]. DHR is oxidized 

to rhodamine 123, which is highly fluorescent around 536 nm when excited at about 500 

nm [58]. 

Dihydroethidium (dihydroethidine, DHE), is frequently used as an indicator probe for 

superoxide radical (O2
.-) detection. It is oxidized to a fluorescent product and the more 

generally used excitation at 520 ± 10 nm enables the detection of at least two oxidation 

products of DHE. UV excitation is thought to be rather specific for the superoxide-DHE 

reaction product [60-61]. Dihydroethidium is a reduced form of the commonly used DNA 

dye ethidium bromide. It has been applied extensively in tissue culture experiments to 

evaluate reactive oxygen species (ROS) production. Dihydroethidium (DHE), by virtue 

of its ability to freely permeate cell membranes is used extensively to monitor 

superoxide production. It had long been postulated that DHE upon reaction with 

superoxide anions forms a red fluorescent product (ethidium) that intercalates with 

DNA. However, more recent studies have suggested that the product is actually 2-

hydroxyethidium. DHE which is perhaps the most specific and least problematic dye as 

it detects essentially superoxide radicals, is retained well by cells, and may even 

tolerate mild fixation. Dihydroethidium itself is blue fluorescent in cell cytoplasm while 

the oxidized form ethidium is red fluorescent upon DNA intercalation. Many other 

techniques and probes are used for detection of RS in vivo and in vitro, according to the 

aim of the investigation [58].  
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1.4 Genotoxicity and endogenous hormones 

Increased levels of endogenous hormones such as angiotensin II and steroidal 

hormones can result in genomic damage [62-65]. One of the most important hormones 

in the body is insulin which controls different metabolic pathways and plays a critical 

role in cell proliferation [66]. 

 

1.5 Insulin  

The Latin word insula means "island", from which the name is derived. It is a 

polypeptide hormone which is synthesized and secreted by pancreatic beta cells, so 

called "island-cells". The structure of insulin structure varies slightly between species of 

animals; insulin from animal sources differs somewhat in "strength" (in carbohydrate 

metabolism control effects) from that of humans because of those variations. Porcine 

insulin is especially close to the human version. The human insulin protein is composed 

of 51 amino acids, and has a molecular weight of 5808 Da. Insulin consists of 2 

polypeptide chains A (with 21 amino acid residues) and B (with 30 amino acid residues) 

that are linked through disulfide bridges. Additionally, chain A contains an intra-chain 

disulfide bridge linking residue 6 and 11. C-chain, which connects A and B chains, is 

liberated along with insulin after breakdown of proinsulin [67].  

Insulin is synthesized in the pancreas in the form of preproinsulin and within a minute 

after synthesis, it is discharged into cisternal space of rough endoplasmic reticulum 

where it is cleaved into proinsulin by proteolytic enzymes. Proinsulin with a C-chain 

linking A and B chains is then transported by microvesicles to the Golgi apparatus. 

Proinsulin is released in vesicles. Conversion of proinsulin to insulin continues in 

maturing granules through the action of prohormone convertase 2 and 3 and carboxy 

peptidase H. Maturing granules are translocated with the help of microtubules and 

microfilaments [68]. 

Insulin is essential for appropriate tissue development, growth, and maintenance of 

whole-body glucose homeostasis. This hormone is secreted in response to increased 

circulating levels of glucose and amino acids after a meal. Insulin regulates glucose 

homeostasis at many sites, reducing hepatic glucose output (via decreased 
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gluconeogenesis and glycogenolysis) and increasing the rate of glucose uptake, 

primarily into striated muscle and adipose tissue. In muscle and fat cells, the clearance 

of circulating glucose depends on the insulin-stimulated translocation of the glucose 

transporter GLUT4 isoform to the cell surface [69]. Moreover, insulin stimulates the 

transport of potassium and magnesium into the cell. Insulin stops the use of fat as an 

energy source by inhibiting the release of glucagon. With the exception of the metabolic 

disorder diabetes mellitus and metabolic syndrome, insulin is provided within the body 

in a constant proportion to remove excess glucose from the blood, which otherwise 

would be toxic. As a central metabolic control mechanism, insulin status is also used as 

a control signal to other body systems (such as amino acid uptake by body cells). In 

addition, it has several other anabolic effects throughout the body. 

 

1.5.1 Insulin action and signaling mechanism 

Insulin is the most potent anabolic hormone known; its action begins with the binding of 

insulin to heterotetrameric receptors (insulin receptors) on the cell membrane of the 

target cells. Insulin receptors are membrane glycoproteins composed of two separate 

insulin-binding (alpha-subunits) and two signal transduction (beta-subunits) domains 

[70]. Binding of insulin to the receptors results in conformational changes in the alpha-

subunits that promote ATP binding to the intracellular domain of the beta-subunit. ATP 

binding leads to the activation of a tyrosine kinase in the beta-subunit that 

autophosphorylates the receptor, the receptor then undergoes a series of intramolecular 

transphosphorylation reaction cascades in which one β subunit phosphorylates its 

adjacent partner on specific tyrosine residues. Some evidence suggests that different 

tyrosine residues account for distinct functions. For example, phosphorylation of COOH-

terminal tyrosines mediates the mitogenic actions of insulin. The phosphorylated 

tyrosines in the juxtamembrane domain may participate in the substrate binding, 

whereas those found within the kinase domain regulate the catalytic activity of the 

insulin receptor β subunit. Activated insulin receptor phosphorylates a number of 

important proximal substrates on tyrosine, including members of the insulin receptor 

substrate family (IRS1/2/3/4), the Shc adapter protein isoforms, SIRP family members, 

Gab-1, Cbl, and APS. Tyrosine phosphorylation of the IRS proteins creates recognition 
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sites for additional effector molecules containing Src homology 2 (SH2) domains. These 

include the small adapter proteins Grb2 and Nck, the SHP2 protein tyrosine 

phosphatase and, most importantly, the regulatory subunit of the type 1A 

phosphatidylinositol 3–kinase (PI3-kinase) [70-73]. The insulin signal is further 

propagated through a phosphorylation network involving other intracellular substances. 

Through activation of these signaling pathways, insulin acts as a powerful regulator of 

metabolic function. Furthermore, insulin receptor-mediated activation of the mitogen-

activated protein (MAP) kinase pathway  has been implicated in  effects on growth and 

proliferation [73].  

Several studies have suggested that the interaction of IRS with PI3-kinase is necessary 

for the appropriate activation and/or targeting of the enzyme to a critical intracellular 

site, perhaps including its association with GLUT4 vesicles. However, expression of the 

dominantly interfering IRS PH and PTB domains completely prevents insulin-stimulated 

IRS tyrosine phosphorylation and DNA synthesis but have no significant effect on 

GLUT4 translocation [70]. The targets of PI3-kinase action are likewise controversial. 

Two classes of serine/threonine kinases are known to act downstream of PI3-kinase, 

namely the serine/threonine kinase AKT, also known as protein kinase B (PKB), and the 

atypical protein kinase C isofoms ζ and λ (PKCζ/λ). Stable expression of a constitutively 

active, membrane-bound form of AKT in 3T3L1 adipocytes results in increased glucose 

transport and persistent localization of GLUT4 to the plasma membrane [74-75]. 

Similarly, PKCζ is also activated by the formation polyphosphoinositides, which 

accumulate in insulin-treated cells; PKCζ is therefore also sensitive to pharmacologic PI 

3-kinase inhibitors, such as wortmannin [76]. Expression of PKCζ or PKCλ are also 

reported to induce GLUT4 translocation, whereas expression of a dominant-interfering 

PKCλ inhibited GLUT4 translocation [77-78]. Thus, although PI3-kinase activation is 

essential, the protein kinase targets that mediate the effects of this pathway remain 

uncertain [70]. 

Recent studies have shown that insulin can also rapidly induce the tyrosine 

phosphorylation of the Cbl proto-oncoprotein, but only in insulin-responsive cells [79]. 

This phosphorylation requires the presence of the adapter protein CAP, which 

associates with a proline-rich domain in Cbl through its COOH-terminal SH3 domain. 
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CAP appears to be important in insulin signaling, as it is markedly induced during 

adipocyte differentiation and is transcriptionally regulated by the thiazolidinedione family 

of insulin-sensitizing PPARγ agonists [80]. These data suggest that the insulin-

dependent tyrosine phosphorylation and/or compartmentalization of CAP/Cbl complex 

may provide a necessary second signal that functions in parallel with the activation of 

the PI3-kinase–dependent signaling pathway. 

 

1.5.2 Hyperinsulinemia and other diseases 

Hyperinsulinemia is a condition involving an excessively high level of insulin in the blood 

stream. Research has recently identified hyperinsulinemia in the context and as 

possible cause of several illnesses. One of the most common diseases accompanied by 

hyperinsulinemia is diabetes mellitus. Indeed, most patients with type I and type II 

diabetes are exposed to high insulin, however the physiologic and therapeutic 

conditions are very different between both types of diabetes. Because of autoimmune 

destruction of pancreatic β-cells, type I diabetic patients have an absolute requirement 

for exogenous insulin. In these patients, insulin administration cannot replace the 

physiologic insulin secretion exactly, leading to different temporal patterns and 

compartment distribution [81-82]. Circulating insulin may sometimes reach two- to five 

folds higher concentrations than its normal endogenous levels. On the contrary, in most 

type II diabetic patients, hyperglycemia is associated with endogenous 

hyperinsulinemia, a compensatory state caused by insulin resistance. This condition 

often persists for many years before the insulin production is exhausted and reduced 

insulin levels develop. Over 40% of those with Type 2 diabetes require insulin as part of 

their diabetes management plan [81]. 

Polycystic ovarian syndrome (PCOS) is a prevalent disorder affecting approximately 6% 

of women of reproductive age, and is characterized by anovulation and 

hyperandrogenism. It has also become apparent that a frequent feature of women with 

PCOS is insulin resistance accompanied by compensatory hyperinsulinemia, and 

increasing evidence suggests that hyperinsulinemia plays an important role in the 

pathogenesis of PCOS [83].  
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High baseline and continuously increasing fasting insulin levels were the independent 

determinants for future development of nonalcoholic fatty liver disease during a 5-year 

follow-up in nondiabetic healthy adults [84]. Hyperinsulinemia is linked to high blood 

pressure and arteriosclerosis and it is a bigger risk factor for cardiovascular disease 

than excess cholesterol [85]. It is also a major cause of obesity [86].  

Furthermore, epidemiological studies indicated that the risk of several types of cancer is 

increased in patients suffering from diabetes type II and obesity. This includes 

esophageal adenocarcinoma [87-88], as well as cancers of the pancreas, liver, breast, 

urinary tract, kidney and female reproductive organs [81, 89-90]. One of the most 

common cancers associated with hyperinsulinemia is colon cancer, for which an 

impressive body of epidemiological and research data collected over the past decade 

indicate that the risk is elevated in patients suffering from different diseases which are 

all characterized by hyperinsulinemia, such as metabolic syndrome, diabetes mellitus 

and obesity [91-94]. People with type II diabetes are nonetheless more likely to develop 

cancer and to die from it than members of the general population, so cancer should be 

numbered among the complications of diabetes [95]. Interestingly metformin, the first 

choice for oral pharmaceutical treatment of type II diabetes, is not only an insulin 

sensitizer [96-97] but it also seems to reduce the cancer risk associated with type II 

diabetes [98-101]. Obesity, insulin resistance, and/or increased levels of IGF-1 and 

insulin are strongly associated with most (but not all) of the diabetes-related cancers in 

the nondiabetic population [95]. Insulin and IGF-1 offer a plausible mechanistic 

explanation for the overlapping risk of cancer in the nondiabetic and diabetic 

populations. Both hormones are mitogenic and present at high levels in insulin-resistant 

states, and their receptors are over expressed on the surface of cancer cells associated 

with diabetes. They thus have the potential to act as tumor growth factors in vivo as well 

as in vitro [102-103]. Accordingly, drugs used to treat diabetes might influence the risk 

of cancer by modulating the insulin/IGF axis [95].  

 

1.5.3 Insulin and oxidative stress 

It is known that reactive oxygen species (ROS) are important mediators during insulin 

dependent cellular signaling [104-106]. One of the suggested signaling mechanisms for 
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insulin-induced ROS stimulation is the activation of NADPH-dependent H2O2 generation 

[104]. This seems to be involved in the insulin-mediated ROS production in colon cells 

[107]. Another source for insulin-dependent ROS formation seems to be mitochondria, 

which were observed to play a role in ROS production in hepatocytes [108]. In 2011, 

Aggeli et al reported that insulin-induced oxidative stress up-regulates heme 

oxygenase-1 via diverse signaling cascades in the C2 Skeletal Myoblast Cell line [109]. 

Low levels of ROS, including superoxide and H2O2, are produced in a rapid temporal 

response to cellular growth factor and cytokine stimulation and are integral to the 

regulation of a variety of intracellular signaling pathways [110-114], this is also true for 

insulin [104-106] for which many studies also reported that it stimulates the production 

of ROS [115-117]. Therefore, excess ROS may be produced under hyperinsulinemia. 

The damaging effects of excess ROS have been well described and ROS can affect 

almost all biological macromolecules of cells [118] 
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2. Objectives 

Oxidative stress, DNA damage and cancer, are three terms which have recently 

appeared to be linked strongly to each other. Oxidative stress which results from the 

imbalance between oxidant production (such as ROS) and antioxidant levels in the 

body, is observed in different diseases such as diabetes mellitus and obesity. These are 

dieases which also exhibit cancer risk. The damaging effects of ROS are reported 

frequently, varying between effects on macro and micro molecules in the cells reaching 

the DNA and resulting in DNA oxidization, chromosome aberrations, DNA single and 

double strand breaks, base modifications and other kinds of DNA damage, which can 

play a role in development and progression of malignancy. 

Many diseases such as diabetes mellitus, metabolic syndrome, obesity and polycystic 

ovarian syndrome are characterized by hyperinsulinemia, a term describing high blood 

insulin levels. Patients suffering from hyperinsulinemia are found to exhibit higher 

cancer risk than healthy individuals. 

Many studies showed that insulin in high level can stimulate ROS production causing 

oxidative stress which in turn can lead to different deleterious consequences. 

According to the previous knowledge, the aim of this study was designed to 

characterize the genomic damage induced by insulin at high levels in vitro in different 

tissues, mainly colon (represented as HT29, Caco-2  and rat primary colon cells), 

kidney (represented as LLC-PK1, HK2 and rat primary kidney cells) and lymphocytes 

(represented as cultured peripheral lymphocytes) and the pathways which lead to the 

genotoxicity of insulin in vitro.As an in vivo model kidneys from ZDF rats infused with 

insulin and peripheral lymphocytes from diabetic patients were used. 

First the genotoxicity of insulin in the cells in vitro have to be investigated by the most 

common genotoxicity tests, comet assay and micronucleus frequency test, and on the 

protein level, accumulation of p53 protein had to be investigated as a marker for DNA 

damage.  

To elucidate the link between insulin and DNA damage, stimulation of ROS production 

upon treatment of the cells with insulin had to be measured using H2DCF-DA and DHE 

staining, and the protective effect of antioxidants (tempol and apocynin) had to be 

investigated. The sources of the produced ROS (mainly mitochondria and NADPH 
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oxidase enzyme) had to be identified by using different inhibitors. The pathway which 

starts with the stimulation of the insulin receptor and insulin-like growth factor 1 

receptor, followed by activation of different proteins and ultimately resulting in the 

production of ROS had to be identified. 

In the ZDF rats kidneys, p53 level and 8-oxo-7, 8-dihydro-2´-deoxyguanosine (8-oxodG) 

had to be measured as markers for DNA damage and DHE staining was to  be used as 

indicator for oxidative stress in two groups of rats. The first group was infused with 

different insulin concentrations leading to normal postprandial and pathophysiological 

insulin levels and the second group was treated to evaluate the effect of metformin 

treatment. In the diabetic patients’ peripheral lymphocytes, micronucleus frequency had 

to be measured and compared to healthy individuals. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Materials and methods 

22 
 

3. Materials and methods 

 

3.1 Chemicals and reagents 

Bovine insulin, tempol, apocynin, plumbagin, wortmannin, rotenone, Histopaque 1077 

and Lectin/PHA L8902 and metformin D-150959 were purchased from Sigma--Aldrich 

(Munich, Germany). Basic laboratory chemicals were purchased from Sigma--Aldrich 

(Munich, Germany) and Merck Biosciences GmbH (Schwalbach, Germany). Human 

insulin and PPP (sc-204008) were purchased from Santa Cruz biotechnology 

(Heidelberg, Germany), HNMPA-(AM)3 was purchased from Enzo life sciences 

(Loerrach, Germany), FPG enzyme and FPG buffer were purchased from New England 

Biolabs (Frankfurt, Germany), VAS2870 was a gift from Vasopharm GmbH (Würzburg, 

Germany). Dihydroethidium (DHE) was purchased from Merck Biosciences GmbH 

(Schwalbach, Germany). Gel Red and Gel Green were purchased from Biotrend (Köln, 

Germany). H2DCF-DA was purchased from Invitrogen Life Technologies (Darmstadt, 

Germany), Annexin-V-Fluos Stock (Cat. 1828681) was purchased from Roche Applied 

Science (Germany). Cell culture media and reagents were obtained from PAA 

Laboratories GmbH (Pasching, Austria) and Invitrogen Life Technologies (Darmstadt, 

Germany). 

 

3.2 Antibodies 

Anti-AKT (pS473) antibody (22650) was purchased from Rockland (Gilbertsville, PA, 

USA). Anti-pIR (Tyr1150/1151) and anti pIGF-1R (Tyr1161/tyr1165/Tyr1166) were 

purchased from MerckMillipore (Darmstadt, Germany), the anti p85 (19H8) was 

purchased from Cell Signaling Technology Inc (Beverly, USA), the anti ß-actin antibody 

(T6199) was purchased from Sigma-Aldrich (Taufkirchen, Germany), the anti p53 (Pab 

240, sc-99), anti-Nox4 (3187-1) was from Epitomics (Burlingame, USA), anti-Nox1 (sc-

25545), anti-Nox2 (sc-130543) antibodies and the secondary antibodies (sc-2004, sc-

2005, sc-2020) were from Santa Cruz Biotechnology (Heidelberg, Germany). 
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3.3 siRNA oloigonucleotides 

The siRNA oloigonucleotides for Nox2 (sc-35503), Nox4 (sc-41586), Nox1 (sc-43939) 

and control siRNA (sc-37007) were purchased from Santa Cruz Biotechnology 

(Heidelberg, Germany). 

 

3.4 PCR primers 

Primers for PCR were taken from the literature or designed using the program Primer3 

(http://frodo.wi.mit.edu/primer3) and ordered from MWG Biotech (Ebersberg, Germany).  

Human Insulin receptor (IR) [119] 

Forward: 5'-AAC CAG AGT GAG TAT GAG GAT-3' 

Reverse: 5'-CCG TTC CAG AGC GAA GTG CTT-3'(125 bp) 

Annealing temperature for IR 58 °C 

Human Insulin-like growth factor1 receptor (IGF-1R)  

Forward: 5'-AGG GCG TAG TTG TAG AAG AGT TTC C-3' 

Reverse: 5'-TAC TTG CTG CTG TTC CGA GTG G-3' (101 bp) 

Annealing temperature for IGF1R 58 °C 

Sus scrofa Insulin receptor (IR) 

Forward: 5'-AGA GCG GAT CGA GTT TCT CA-3' 

Reverse: 5'-CCA TCC CAT CAG CAA TCT CT-3' (245) 

Annealing temperature for IR 52 °C 

Sus scrofa Insulin-like growth factor1 receptor (IGF-1R)[120] 

Forward: 5'-TGG AGA TCA GCA GCA TC-3' 

Reverse: 5'-TCA GCC TTG TGT CCT GAG TG-3' (199 bp) 

Annealing temperature for IGF-1R 50 °C 

Nox1 

Forward: 5'-GGA TGA TCG TGA CTC CCA CT-3' 

Reverse: 5'-AGG TTG TGG TCT GCA CAC TG-3' (458 bp) 

Annealing temperature for Nox1 59.5 °C 
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Nox2 

Forward: 5'-TGC AGC CTG CCT GAA TTT CAA C-3' 

Reverse: 5'-GAG GCA CAG CGT GAT GAC AAC-3' (391 bp) 

Annealing temperature for Nox2 56 °C  

Nox4 

Forward: 5'-CTG GTG AAT GCC CTC AAC TT-3', 

Reverse: 5'-CTG GCT TAT TGC TCC GGA TA-3' (556 bp) 

Annealing temperature for Nox4 52 °C  

Human small mitoDNA (HSM) [121] 

Forward: 5’-CCC CAC AAA CCC CAT TAC TAA ACC CA-3' 

Reverse: 5'-TTT CAT CAT GCG GAG ATG TTG GAT GG-3' (220 bp) 

Annealing temperature for HSM 58 °C 

β -actin 

Forward: 5'-CTC TTC CAG CCT TCC TTC CT-3',  

Reverse: 5'-AGC ACT GTG TTG GCG TAC AG-3' (610 bp) 

Annealing temperature 56 °C 

 

3.5 Cell lines and cell culture reagents 

LLC-PK1, a pig kidney cell line with many properties of proximal tubular cells was 

obtained from the American Type Culture Collection (ATCC, Rockville, MD;HPACC, 

Salisbury, UK). LLC-PK1 cells were cultured at 37 °C, 5% (v/v) CO2 in Dulbecco’s 

modified Eagle medium (DMEM) low glucose (1 g/L) supplemented with 10% (v/v) fetal 

bovine serum (FBS), 1% (w/v) L-glutamine, 2.5% (w/v) HEPES and 0.4% (w/v) 

antibiotics (50 U/ml penicillin, 50 mg/ml streptomycin). They were subcultured twice per 

week. 

 

HK-2, a human kidney cell line with many properties of proximal tubular cells, were 

obtained from Dr. G. Garibotto, Nephrology Division, Department of Internal Medicine 

and Urology Division, University of Genoa, Genoa, Italy and cultured in DMEM/F12 

medium supplemented with 5 % fetal calf serum, 2 mM of L-glutamine, 1 % antibiotics, 
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10 µg/l epidermal growth factor, 5 µg/l hydrocortisone, 5 µg/l sodium selenate, 5 ng/l 

bovine pituitary extract, 5 mg/l transferrin, 5 mg/l insulin and 5 ng/l T3. They were 

subcultured two times per week. 

 

HT29 (Human colon adenocarcinoma cell line) cells were obtained from the American 

Type Culture Collection (ATCC, Rockville, MD; HPACC, Salisbury, UK). HT29 cells 

were cultured at 37 °C, 5% (v/v) CO2 in DMEM high glucose (4.5 g/L) supplemented 

with 10% (v/v) fetal bovine serum (FBS), 1% (w/v) L-glutamine, and 0.4% (w/v) 

antibiotics (50 U/ml penicillin, 50 mg/ml streptomycin). They were subcultured two times 

per week. 

 

Caco-2 (Heterogeneous human epithelial colorectal adenocarcinoma cell line) cells 

were obtained from the American Type Culture Collection (ATCC, Rockville, MD; 

HPACC, Salisbury, UK). They  were cultured at 37 °C, 5% (v/v) CO2  in modified Eagle 

medium (MEM) with Earle’s salts and supplemented with 20% (v/v) fetal bovine serum 

(FBS), 1% (w/v) L-glutamine, 1% (v/v) sodium pyruvate, 1% (v/v) non-essential amino 

acids and 0.4% (w/v) antibiotics (50 U/ml penicillin, 50 mg/ml streptomycin). They were 

subcultured two times per week. 

  

HL60, a human promyelocytic cell line was kindly donated by Prof. Schinzel, 

Vasopharm, Wuerzburg, Germany. HL60 cells were cultured at 37 °C, 5% (v/v) CO2 in 

Roswell Park Memorial Institute medium (RPMI) 1640 medium, supplemented with 10% 

(v/v) fetal bovine serum (FBS), 1% (w/v) L-glutamine, and 0.4% (w/v) antibiotics (50 

U/ml penicillin, 50 mg/ml streptomycin). They were subcultured twice per week. 

 

MCF-7 (Human breast adenocarcinoma cell) cells were obtained from the American 

Type Culture Collection (ATCC, Rockville, MD; HPACC, Salisbury, UK). MCF-7 cells  

were cultured at 37 °C, 5% (v/v) CO2 in RPMI 1640 medium, supplemented with 5% 

(v/v) fetal bovine serum (FBS), 1% (w/v) L-glutamine, 1% sodium pyruvate and 0.4% 

(w/v) antibiotics (50 U/ml penicillin, 50 mg/ml streptomycin). They were subcultured 

twice per week. 



Materials and methods 

26 
 

BT-474 (Human breast carcinoma cell) cells were kindly donated by PD Dr Jörg 

Wischhusen, Frauenklinik, Wuerzburg, Germany. BT-474 cells  were cultured at 37 °C, 

5% (v/v) CO2 in RPMI 1640 medium, supplemented with 10% (v/v) fetal bovine serum 

(FBS), 1% (w/v) L-glutamine, 0.5 % sodium pyruvate and 1% (w/v) antibiotics (50 U/ml 

penicillin, 50 mg/ml streptomycin). They were subcultured twice per week. 

 

Primary rat cells, Primary rat cells were isolated from freshly obtained rat (kidney, 

colon, fatty and liver) tissues (n= 3, 12 week old female SD rats) were washed once in 

ice-cold PBS. They were transferred into 3 ml of an ice-cold medium (LLC-PK1, HT29, 

HK2 (the same medium is used for the fatty tissue), HepG2 media respectively) and 

minced on ice into small pieces very fast. The extracted primary cells were sifted 

through a cell strainer with a mesh pore size of 100 µm (BD, Heidelberg, Germany), 

centrifuged for 5 minutes at 1000 rpm and 4°C, and were finally resuspended in 1 ml of 

the above-mentioned medium. 

 

3.6 Isolation of peripheral lymphocytes 

Whole blood (10 ml) was collected into Heparin-EDTA tubes. Peripheral blood 

mononuclear cells (PBMC) were isolated by density gradient centrifugation on 

histopaque. Whole blood was added on the same amount of warmed up histopaque 

slowly and centrifuged 30 minutes, 1600 rpm at room temperature, then PBMC layer 

was placed in a tube containing 10 ml lymphocyte culture medium (RPMI 1640 medium 

and supplemented with 15% (v/v) fetal bovine serum (FBS), 1% (w/v) L-glutamine, 1% 

(v/v) sodium pyruvate, 1% (v/v) non-essential amino acids, 0.4% (w/v) antibiotics (50 

U/ml penicillin, 50 mg/ml streptomycin) and 0,1% tylosin). PBMCs were washed two 

times with fresh medium for 10 minutes, RT at 1300 rpm, and were then resuspended in 

fresh medium and transferred into a 24 well plate where PHA (final concentration 10 

µg/ml) was added to each well. After 42-44 hours at 37 °C, 5% (v/v) CO2 cells were 

treated for 24 hours with insulin for comet assay analysis and for 24 hours with insulin 

and 3 µg/ml cytochalasin B for the micronucleus frequency test (the isolation 
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procedures were done by the medical PhD student  Annekathrin Leyh and the results 

will appear also in her thesis ). 

 

3.7 Rho0 cells (cells depleted of mtDNA)  

HT29 and HK2 Rho0 cell lines were established by treating cells with low concentration 

of ethidiumbromide (0.4µg/ml). Cells were cultured at 37 °C, 5% (v/v) CO2 in Dulbecco’s 

modified Eagle medium high glucose (DMEM) (4.5 g/L) supplemented with 10% (v/v) 

fetal bovine serum (FBS), 1% (w/v) L-glutamine, 1% sodium pyruvate and 50 µg/ml 

uridine. They were subcultured two times per week. 

 

3.8 Animal model and treatment 

Rat kidneys were obtained from Dr Michael C. Kreissl (Department of Nuclear Medicine, 

University Hospital of Wuerzburg, University of Wuerzburg, Würzburg, Germany), the 

kidneys were from lean healthy rats (ZDF lean) which had been purchased from 

Charles River laboratories at 8 weeks of age. The animals were fed with a managed 

diet of Purina 5008 and were kept in an environmentally controlled room with a 12 hours 

light/dark cycles, and free tap water access. All procedures were approved by the Local 

Ethics Committee. Organ collection was made at 14 weeks of age under sodium 

pentobarbital anesthesia. The animals were sacrificed by decapitation and the kidneys 

were immediately frozen. Parts of the kidneys were used for analysis of p53 protein by 

western blot analysis and slices were prepared from the remaining tissue for DHE 

staining (ROS quantification). Before organ collection the rats were fasted for 14 hours 

and received a hyperinsulinemic euglycemic clamp, consisting of a glucose primer 

infusion followed by a continuous insulin infusion through a sterile silicon rubber 

catheter placed in the tail vein. Blood glucose levels were titrated to normal levels (5.5 

mM) in all animals using an “Accutrend” sensor (Roche, Germany). Different amounts of 

insulin were infused, resulting in normal postprandial blood insulin levels (0.28 ± 0.179; 

control) in three animals and in high blood insulin levels (1.67 ± 0.67 nM) reflecting 

pathophysiological conditions in six animals. In addition, male obese Zucker diabetic 

fatty rats (ZDF, fa/fa n=10) were purchased and at 10 weeks of age the fa/fa rats were 
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randomized in 2 groups with 5 animals in each group (ZDF fa/fa placebo; ZDF fa/fa 

metformin). The treatment consisted of 4 weeks of daily gavage feeding with either 

placebo solution (0.5% carboxymethylcellulose sodium salt solution 1ml/kg body 

weight/day) or metformin (1,1-dimethylbiguanide hydrochloride 97% SIGMA D-150959, 

dissolved in carrier solution at a concentration of 250 mg/ml to achieve a daily doses of 

250 mg/kg/day). The animals sacrificed at the age of 14 weeks after the same treatment 

(application of the same clamp procedure and preparation of organs) as the lean 

animals, parts of the kidneys were used for insulin measurement and for the isolation of 

DNA for 8-oxodG analysis, and slices were prepared from the remaining tissue for DHE 

staining (ROS quantification).  

The animals used for the study were also employed to study cardiovascular metabolism 

in ZDF rats (Kreissl et al, unpublished data). 

 

3.9 Human subjects 

During a medical thesis (Ms Katrin Hacke, not yet submitted), blood samples from 35 

type II diabetic patients and 15 control were collected. In the present study, slides 

prepared from the peripheral lymphocytes of both groups for micronucleus frequency 

analysis were used and analyzed again by the author of this thesis. Characteristics of 

the patients and control group were summarized in table 1. 

Group Number and sex Age 

Control  10 females 

 5 males 

67.10 ± 7.96 

68.4 ± 9.70 

Type II diabetic 
patients 

18 females 

17 males 

56.40 ± 9.20 

56.90 ± 9.80 

Table 1: Characteristics of the patients and control group 
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Further medications which administered by the patients were summarized in table 2. 

Medicaments  
No. of 
patients 

ACE-inhibitor, AT1-
Antagonist 

8 

Aldosterone antagonist 2 

ß-Blocker 5 

Calcium antagonist 3 

Diuretics 7 

Statins 8 

Oral anti- diabetic 14 

Insulin 3 

Acetylacetic acid (ASS) 6 

Table 2: List of the medications administered by the type II diabetic patients in the study. 

 

3.10 Apoptosis Assay 

1 x 106 cells were cultured one day before the experiment, on the day of the 

experiment, cells were treated with insulin for the desired incubation time then 

trypsinized and collected, washed one time with the 1x binding buffer (10x binding 

buffer: 0,1 M Hepes/NaOH, 140 mM NaCl, 25 mM CaCl2, pH 7,4, sterilized) followed by 

centrifugation then one time washing with PBS and centrifugation again. 100 µl 

AnnexinV/PI (propidium iodide) suspension (20 µl Annexine V-Fluos Stock, 20 µl PI 

stock (50 µg/ml), 960 µl 1x binding buffer) was added for 15 minutes in room 

temperature in dark. After staining, 900 µl 1x binding buffer were added and 10000 cells 

were examined by flow cytometry using a FACS LSR I (Becton-Dickinson, FACScan, 

USA). 
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3.11 Comet assay 

The alkaline version of the comet assay was performed in all the experiments. This 

endpoint detects single and double strand breaks as well as alkalilabile lesions on an 

individual cell basis. It is a standard test for genotoxicity testing in the development of 

substances [122]. After treatment of 1x106  cells/5ml for 2 hour with insulin (in the 6 days 

treatment experiment a daily exchange of 50% of the medium and a daily addition of 

100 nM or 10 nM fresh insulin was performed)or other test compounds (5 minutes to 4 

hour for time course experiment or 6 days  for long exposure experiment) in the case of 

cell lines, 30 minutes for the primary rat cells and 24 hours for the cultured peripheral 

lymphocytes, the cells were harvested and 20 μl of the treated cell suspension were 

mixed with 180 μl of 0.5 % low melting agarose and added to fully frosted slides that 

had been covered with a bottom layer of 1 % normal melting point agarose. The slides 

were incubated in lysis solution (2.5 M NaCl, 0.1 M EDTA, 0.01 M Tris and 10 g/l N-

lauroylsarcosine sodium adjusted to pH 10 with NaOH) with 1 % Triton X-100 and 10% 

dimethyl sulfoxid at 4 °C for at least 1 hour, when the comet assay was combined with 

bacterial FPG protein, slides were washed three times (for 5 minutes each) in enzyme 

buffer (40 mM Hepes, 100 mM KCl, 0.5 mM EDTA, 0.2 mg/ml BSA; pH 8.0) and 

covered with 1:1000 of either buffer or FPG protein in buffer, sealed with a cover slips 

and incubated for 30 minutes at 37 ◦C. After all treatment conditions, the slides were 

washed and then placed in the electrophoresis solution (300 mM NaOH, 1 mM EDTA, 

pH > 13.0) for 20 minutes. Then the electrophoresis was conducted for 20 minutes at 25 

V (1.1 V/cm) and 300 mA. The slides were neutralized in 0.4 M Tris buffer (pH 7.5) and 

then dehydrated in methanol for 10 minutes at -20 °C. The slides were then left in 37 °C 

incubator to dry and stored at room temperature afterward. Before evaluation 20 μl of 

Gel red /DABCO solution was added to each slide. Images of 50 randomly selected 

cells (25 per replicate slide) for each sample were analyzed with a fluorescence 

microscope (Labophot 2, Nikon, Germany) at 200-fold magnification using image 

analysis software (Komet 5, BFI Optilas, Germany). A representative picture of a 

damaged cell in the comet assay was showed in figure 1. The percentage of DNA in the 

tail was used to quantify DNA migration. 
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3.12 Micronucleus frequency test 

Micronuclei are small chromatin containing structures in the cytoplasm of cells which 

represent a subtype of chromosomal aberrations. This test is a standard assay in 

mutagenicity testing according to OECD guideline 487. 1x106 cells/5ml were incubated 

with insulin or other test substances in 5 ml medium. After 4 hours for cells or 24 hours 

for lymphocytes treatment, the medium was removed and replaced by fresh culture 

medium (with or without cytochalasine B) after washing with PBS. In the case of long-

term experiments with 48 hours or 6 days insulin exposure, a daily exchange of 50% of 

the medium and a daily addition of 100 nM or 10 nM fresh insulin was performed. After 

a further 20-22 hours, cells were harvested, applied onto glass slides by cytospin 

centrifugation and fixed in methanol (-20°C) for at least two hours. Before counting, cells 

were stained for 3 minutes with Gel Green (10 µl stock solution in 990µl distilled water), 

washed twice with PBS buffer and mounted for microscopy. A representative picture of 

a micronucleus containing cell was demonstrated in figure 2. From each of two slides, 

1000 cells were evaluated for micronuclei and the average was calculated. For 

substance combinations, concentrations which were described as effective in the 

literature and had been found not toxic in preliminary experiments were applied. 

 

3.13 Flow cytometric quantification of oxidative stress 

To evaluate the formation of ROS, the cell-permeable fluorogenic probe 2´,7´-

dichlorodihydrofluorescein diacetate (H2DCF-DA) was used [123]. Oxidation of this 

probe can be detected by monitoring the increase in fluorescence using a flow 

cytometer with the appropriate filter FL1 488 (band width 25). 

HT29 cells (5 x 105) were seeded one day before the experiment in 25 cm2 flasks. Cells 

were incubated at 37°C in medium containing 10 nM insulin for 30 minutes and during 

the last 20 minutes, 10 µM H2DCF-DA was added. Afterwards, the medium was 

removed, cells were rinsed with PBS and trypsinized, and 1ml of 1% BSA/PBS was 

added per flask. Fluorescence of 30000 cells was measured by flow cytometry using a 

FACS LSR I (Becton-Dickinson, FACScan, USA). 
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3.14 Microscopic analysis of the reactive oxygen species 

To evaluate the formation of ROS, the cell-permeable fluorogenic probe 

dihydroethidium (DHE) was used. One day before the experiment, 2 x 105 cells were 

seeded on 24 mm cover slips in 6-well plates in 3 ml medium. 10 μM DHE, antioxidant 

and inhibitors were added to the cells and incubated in the dark at 37°C for 30 minutes 

for all treatment. For the time course experiment, insulin was added in the time frame 

from 5 minutes to 2 hours, while 5 and 30 minutes insulin treatment was used for the 

dose response experiment with different insulin concentrations.  

For the kidney sections from the ZDF rat, cryosections (5 µm) were prepared with a 

Leica CM3050 Scryostat (Leica, Wetzlar, Germany). ROS production on cryosections 

was detected after staining the sections for 30 minutes with 10 µM DHE at 37°C in the 

dark. After washing 3 times with PBS, the cover slips and the cryosections were 

mounted and observed under an Eclipse 55i microscope (Nikon GmbH, Düsseldorf, 

Germany) and a Fluoro Pro MP 5000 camera (Intas Science Imaging Instruments 

GmbH, Göttingen, Germany) at 200-fold magnification. All images of the DHE staining 

were taken using the same exposure time. Quantification was done by measuring grey 

values of 200 cells per treatment with ImageJ 1.40g (http://rsb.info.nih.gov/ij/). 

 

3.15 Western Blot analysis 

After treatment, the cells were harvested and lysed in homogenization buffer (0.2 M 

mannitol, 50 mM saccharose, 10 mM HEPES, pH: 7.5). The homogenization process 

was facilitated by disruption of the cell membranes mechanically and the yielded 

suspension was then centrifuged at 14000 rpm for 30 minutes at 4 °C. The protein 

containing supernatant was transferred to a clean tube and the concentration of protein 

in this solution was determined using Bradford’s method. Generally, 30 μg of protein per 

sample was loaded on a discontinuous acrylamide gel. After electrophoresis the gel was 

blotted on the PVDF membrane. The membrane was blocked overnight in either 1% 

bovine serum albumin (for pIGF-1R , pAKT, p85 and GAPDH) , 5 % nonfat milk powder 

(for p53 and β-actin) or 3% milk powder (pIR) in TBS-T buffer (5 mM TRIS, 150 mM 

NaCl, 0.05 % Tween-20) and then incubated with primary antibody (pIR (1:200), pIGF-
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1R (1:200), p85 (1:500), (pAKT (1:5000) and p53 (1:1000)) . After washing of the 

excess of primary antibody, the horse radish peroxidase (HRP) conjugated secondary 

antibody was added followed by washing. After incubation with HRP substrate, the 

membrane was exposed to an X-ray sensitive film and the film was developed afterward 

or by using FluorchemQ, Alpha Innotech, Biozyme (Hessisch, oldendorf, Germany). 

For the kidney samples, a part of the kidneys was crushed in liquid nitrogen followed by 

lysation in homogenization buffer and the same procedure as mentioned before were 

applied to examine the presence of the protein in kidney.   

 

3.16 siRNA transfection 

The cells were seeded in antibiotic free medium in 6-well plates one day prior to the 

transfection. At the day of the experiment, the cells were washed with Transfection 

Medium (sc-36868, Santa Cruz Biotechnology). siRNA was diluted to 100 μM in 

Transfection Medium. This solution was named solution A. Transfection Reagent (sc-

29528, Santa Cruz Biotechnology) was also diluted to 100 μM with Transfection 

Medium and named solution B. Solution A and B were gently mixed and incubated for 

45 minutes at room temperature and then 800 μl of Transfection Medium was added to 

this mixture. The cells were then covered with this solution and incubated for 18 hours 

at 37 °C. After this time, either the medium was changed and the cells were collected or 

treated with insulin and the proteins was extracted for confirming down regulation of the 

desired target or measure the desired protein activation. 

 

3.17 Determination of insulin concentration by HPLC 

Plasma insulin level in ZDF rat was determined according to standard RIA procedures 

before and after the clamp procedure.  

From kidney tissue, tissular insulin was extracted using a minor modification of a 

published protocol [124]. Kidney tissue was lysed in homogenization buffer (0.2 M 

mannitol, 50 mM sucrose, 0.12g HEPES and Proteinase and phosphatase inhibitors, 

pH= 7.5) and centrifuged for 30 minutes at 4°C at 14.000 rpm. The protein containing 

supernatant was transferred to a clean tube and the concentration of protein in the 
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solution was determined using Bradford’s method. An aliquot equal to 500 µg total 

protein of the supernatant was mixed with double volume of 66 % acetonitrile and 

centrifuged for 1 minute at 4°C at 14.000 rpm. The supernatant was evaporated under 

nitrogen to dryness and reconstituted with 100 µl of 0.005 M HCl. 

Preparation of mobile phase: Solution A was prepared by dissolving 28.4 g of 

anhydrous Na2SO4 and 9.8 g H3PO4 in Roth water; pH was then adjusted to 2.3 and the 

volume was completed to 1 L with Roth water. Solution B was acetonitril. Solutions (A 

and B) were filtered and sonicated before being introduced into the HPLC system. 

HPLC analysis was performed using a Nucleosil 100-5 C18 (EC 250/4.6) analytical 

column (MACHEREY-NAGEL, Düren, Germany) using solutions A and B (20% MeCN: 

Na2SO4 to 80 % MeCN over 25 minutes at a flow rat 0.9 ml/min) and the detection was 

performed at 214 or 280 nm. Quantification was achieved by comparison to dilutions of 

a standard stock solution of insulin.  

 

3.18 Quantification of 8-oxodG by LC-MS/MS 

The genomic DNA was isolated from the ZDF rat kidney tissue according to a recently 

described protocol [125]. DNA concentration was measured by the absorbance at 260 

nm. Protein contamination was checked using the absorbance ratio A260/A280; an 

absorbance ratio > 1.6 was acceptable. DNA hydrolysis was performed as described by 

Chao et al.[126]. The DNA samples (~20 µg) were spiked with 2.82 pmol of [15N5] 8-

oxodG and 84.3 pmol of [15N5]-dG. Then, 10 µl of 1 U/µl nuclease P1 (in 300 mM 

sodium acetate and 1 mMZnSO4, pH 5.3) was added to the DNA solutions, and the 

DNA was incubated at 37°C for 2 hours. Thereafter, 10 µl of 10x alkaline phosphatase 

buffer (500 mMTris/HCl, pH 8, and 1mM EDTA) containing 0.2 µl of alkaline 

phosphatase was added, and the incubation was continued at 37°C for 2 hours. Finally, 

10 µl of 0.1 M HCl was added to neutralize the solution. The neutralized DNA 

hydrolysates were filtered through a cutoff filter tube (Ultrafree 5000 NMWL; Millipore, 

Schwalbach am Taunus, Germany) and centrifuged at 4°C and 7000 g for 45 minutes, 

then measured by online LC–MS/MS by Dr Oli RG. The column-switching operation 

method is described elsewhere [126-127].  100 mL of DNA samples were loaded on the 
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trap column using an auto sampler (Agilent 1100 series) and the content of 8-oxodG 

was quantified as reported elsewhere [126-127]. 

 

3.19 RNA and DNA extraction and RT-PCR 

The expression of mRNA was detected using the reverse transcription polymerase 

chain reaction (RT-PCR). Total RNA was isolated from the cells with the RNeasy Mini 

Kit (Qiagen, Hilden, Germany) and 2.0 μg of RNA was used for cDNA synthesis using 

Verso cDNA Synthesis Kit (Thermo scientific, Schwerte, Germany), while total DNA was 

isolated using DNeasy tissue kit (Qiagen, Hilden, Germany) and 500 ng of DNA was 

used for the amplification step. The previous mentioned primers were used for 

amplification of Noxs (1, 2 and 4) (40 cycles), insulin receptor (IR) (40 cycles), insulin-

like growth factor (IGF-1R) receptor (40 cycles), small mitochondrial DNA (HSM) (20 

cycles) and β-actin (18 cycles). The PCR was performed using REDTaqTM 

ReadyMixTM PCR was used. Reaction Mix (Sigma-Aldrich,Taufkirchen, Germany) as 

Taq polymerase enzyme and thermal cycler PTC 200 MJ research (Watertown, MA, 

USA).  

 

3.20 Statistics 

Statistical calculations were performed using Statistica 8 (StatSoft (Europe) GmbH, 

Hamburg, Germany). Data are shown as averages ± standard deviation of the three 

single experiments. In the single experiments, means of % tail DNA calculated from all 

50 cells per treatment were used in comet assays. Numbers of micronucleus containing 

cells per 1000 cells (derived from counting 2000 cells) were used in the micronucleus 

frequency test. Where relative values are shown, the average of all control values was 

set to 1.0, and then all individual experimental values calculated as alterations (x-fold) 

compared to that. Statistical significance among multiple groups was tested with 

Kruskal-Wallis test. Individual groups were then tested using the Mann Whitney U-test 

and results were considered significant if the p-value was ≤ 0.05. 
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4. Results 

4.1 Insulin mediated oxidative stress and genomic damage in   
              mammalian colon cells. 

 

4.1.1 Insulin-mediates DNA damage in colon cells  

The genotoxicity of insulin was investigated by two assays, the comet assay and the 

micronucleus frequency test. Accumulation of p53 protein was also investigated as an 

indication for DNA damage. 

Comet assay analysis of insulin-induced DNA damage was performed in HT29 colon 

cells treated with 10 nM insulin for different incubation times between 5 minutes and 4 

hours (fig. 4), a significant induction of DNA damage was observed after all incubation 

conditions. 

 
 
Figure 4: DNA damage (% DNA in tail) measured by comet assay analysis in the HT29 
cells treated with 10 nM insulin for different incubation times (5 min to 4 hr) (* = 
significantly different from control). 
 

Accumulation of p53 protein appears in many cellular events. One of those is DNA 

damage. P53 protein level was measured in HT29 cells treated with 10 nM insulin for 
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different times (5 minutes to 4 hours) (fig. 5). The p53 level increased after 5 minutes of 

insulin stimulation. 

 

 
 
Figure 5: p53 levels in HT29 cells treated for with 10 nM insulin for different times             
(5 min to 4 hr) and measured by Western blot analysis, (* = significantly different from 
control) 

 

To evaluate the concentration effect and to determine the concentration at which the 

DNA damage started to be measurable, HT29 cells were treated with different insulin 

concentrations ranging between 0.5 and 100 nM with a treatment duration of 2 hours 

(fig. 6), where the significant induction of DNA damage started at 5 nM insulin.  

P53 level was also determined under the same conditions (fig. 7), in this case p53 

started to accumulate after stimulation with 0.5 nM insulin. 



Results 

38 
 

 
Figure 6: DNA damage (% DNA in tail) measured by comet assay analysis in the HT29 
cells treated with different insulin concentrations for 2 hr (* = significantly different from 
control, ° = not significantly different from control). 
 

 
 

 

 
Figure 7: p53 levels in HT29 cells treated for 2 hr with different insulin concentrations (0.5 
to 100 nM) and measured by Western blot analysis (* = significantly different from 
control). 
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To evaluate the influence of both factors in the same experiment (exposure time and 

concentration); HT29 cells were treated with insulin for 6 days, the continuous exposure 

to 0.5-1 nM insulin for 6 days led to significant induction of DNA damage (fig. 8). 

 
 

Figure 8: DNA damage (% DNA in tail) measured by comet assay analysis in the HT29 cell 
line treated with different insulin concentrations for 6 days, because of daily addition of 
fresh insulin, the concentration was 0.5-1 nM, 1-2 nM and 10-20 nM in the cultures during 
the 6 day treatment time, cell counts (straight line) at the time of harvest are shown on 
the second y-axis.  (* = significantly different from control). 
 

Overall, the cells reacted with significant induction of DNA damage to 10 nM insulin 

after 5 minutes, to 5 nM after 2 hours treatment and to 0.5-1 nM after 6 days treatment. 

In parallel to all comet assay experiments, vitality tests using activation of fluoresceine 

diacetate and membrane passage of Gel Red were performed and cell number was 

used as a marker for cell proliferation. The applied treatments did not result in 

significant reduction of vitality or increase in proliferation.  

In the micronucleus frequency test, the formation of micronuclei was evaluated for an 

insulin concentration ranging between 0.5 to 100 nM in HT29 cells after treatment 

duration of 4 hours (plus an expression time of 20-22 hours (with addition of 

cytochalasin B) after treatment (fig. 9), a significant increase in micronucleus formation 

was observed at 1 nM insulin and higher. 
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Figure 9: Chromatin damage (Mn/1000 cells) measured as micronucleus frequency in the 
HT29 cell line treated with different insulin concentrations for 4 hr with cytochalasin B 
addition for 20-22 hr after that, cell proliferation (CBPI) (straight line) is shown on the 
second y-axis. (* = significantly different from control, ° = not significantly different from 
control). 
 
Experiments with insulin concentrations ranging between 0.5-1 nM to 10-20 nM insulin 

and treatment duration of 6 days (with cytochalasin B addition), plus an expression time 

of 20-22 hours after treatment was performed (fig.10).  

 
Figure 10: Chromatin damage (Mn/1000 cells) measured as micronucleus frequency in 
the HT29 cell line treated with different insulin concentrations for 6 days with 
cytochalasin B addition for the last 20-22 hr,cell proliferation (CBPI)(straight line) is 
shown on the second y-axis (* = significantly different from control). 
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The same experiment was repeated without addition of cytochalasine B (fig. 11). In both 

experiments (fig.10, 11), a concentration dependent increase in micronucleus formation 

was observed with significant difference to the control at 0.5-1 nM and higher after 

treatment with insulin for 6 days. 

 
Figure 11: Chromatin damage (Mn/1000 cells) measured as micronucleus frequency in 
the HT29 cell line treated with different insulin concentrations for 6 days plus 20-22 hr 
expression time, cell number (straight line) is shown on the second y-axis (* = 
significantly different from control). 
 

In parallel to the micronucleus frequency tests, the proliferation index and cell account 

were also assessed (fig. 9, 10) and (fig. 11) respectively. No alteration was observed 

under the tested conditions. Apoptotic cells were also quantified according to their 

nuclear morphology and no increase was observed after any of the treatments. To 

confirm further that insulin did not cause apoptosis under our treatment conditions, flow 

cytometric analysis of annexin V positive and propidium iodide negative early apoptotic 

cells was performed after treatment with 10 and 100 nM insulin. No significant increase 

compared to the control (0.05 ± 0.05 %) was observed after 8 hours treatment with 10 

nM (0.08 ± 0.04 %) and 100 nM (0.07 ± 0.02 %) and 16 hours treatment with 10 nM 

(0.09 ± 0.04 %) and 100 nM (0.08 ± 0.01 %) insulin. 
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Insulin and glucose are physiologically related. To evaluate if glucose plays a role in 

insulin genotoxicity, HT29 cells were treated with 5.5 and 25 mM glucose alone and in 

combination with 10 nM insulin for 2 hours (yielding 5.5 mM, 11 mM and 30.5 mM final 

glucose concentration because of the medium glucose) and the % DNA in tail was 

determined by comet assay. Glucose did not show any influence on insulin genotoxicity 

(fig. 12). 

 
Figure 12: DNA damage (% DNA in tail) measured by comet assay analysis in the HT29 
cell line treated with insulin for 2 hr with  addition of 5.5 mM or 25 mM of glucose to the 
culture medium. Because of the glucose content of the culture medium the final glucose 
concentration was 5.5/11/30.5 mM, (* = significantly different from control, ° = not 
significantly different from control). 
 

4.1.2 Insulin stimulates ROS production and mediates oxidative stress 

Oxidative stress and ROS production were determined in HT29 cells using H2DCF-DA, 

which has been used extensively in tissue culture experiments to evaluate reactive 

oxygen species (ROS) production, but H2DCF-DA is not specific for detection of a 

particular ROS. Cells treated with 1 nM and more insulin for 5 minutes showed a 

positive response with H2DCF-DA dye (fig. 13).  
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Figure 13: Flow cytometric oxidative stress measurement using the dye H2DCF-DA in 
HT29 cell treated for 30 min with different concentrations of insulin and 20 min       
H2DCF-DA (10 µM), (* = significantly different from control, ° = not significantly different 
from control). 
 

To focus on the superoxide radical as the probably most relevant product in insulin 

mediated oxidative stress, DHE staining with UV excitation was used with microscopic 

measurement (fig. 14).  

 

 

 Figure 14: Representative pictures for DHE staining using UV excitation. 

 

Cells which were treated with 10 nM insulin for 5 minutes and longer showed significant 

increase in superoxide production (fig. 15a) while 0.5 nM insulin and more showed a 
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significant increase in superoxide production over control within 30 minutes treatment 

time (fig. 15b). 

 

 

 

Figure 15: Microscopic detection of superoxide formation using the dye DHE in HT29 cell 
treated (a) with 10 nM insulin for different time (5 min to 2 hr) and (b) for 30 min with 
different concentrations of insulin, and 30 min DHE (10 µM); ( * = significantly different 
from control). 
 

a 

b 



Results 

45 
 

4.1.3 Insulin mediates oxidative damage and the antioxidants offer protection 

To elucidate the role of reactive oxygen species (ROS) production and oxidative stress 

in the insulin-induced DNA damage, two approaches were used; the application of    

FPG modified comet assay (fig.16) and the addition of the radical scavenger tempol 

(fig.17). 

In the FPG modified comet assay, the enzyme treatment clearly led to an increased 

DNA damage detection compared to that without FPG enzyme, with the increase being 

higher in the insulin treated cells than in the control cells. The DNA damage was 

expressed as the difference between the % DNA in tail of FPG treated cells and % DNA 

in tail of FPG non-treated cells (fig.16).  

 

 

 
Figure 16: Effect of FPG post treatment on insulin-induced DNA damage in the comet 
assay in HT29 cells treated with different insulin concentrations for 2 hr, (* = significantly 
different from control).  
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The DNA-damaging effect of insulin measured with the comet assay and micronucleus 

test was significantly reduced by combining 50 µM tempol with the insulin treatment (fig. 

17 a and b). 

 

 

 

  

Figure 17: Influence of tempol on insulin-induced alterations in HT29 cells; a) DNA 
damage (% DNA in tail) in the comet assay after a 2 hr treatment with 10 µM insulin, 50 
µM tempol and the combination, and b) micronucleus frequency after 4 hr treatment (plus 
22 hr expression time) with 10 nM insulin, 50 µM tempol and the combination,                    
(* = significantly different from control, ∆ = significantly different from insulin). 

b 

a 
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To further confirm the protective effect of antioxidants, the protection effect of the 

antioxidant and NADPH oxidase inhibitor apocynin (100 µM) was investigated in both 

comet assay and micronucleus frequency test which showed a decrease in insulin-

induced genomic damage (fig.18). 

 

 

 
 

Figure 18: Influence of apocynin on insulin-induced alterations in HT29 cells; a) DNA 
damage (% DNA in tail) in the comet assay and after a 2 hr treatment with 10 nM insulin, 
100 µM apocynin and the combination, and b) micronucleus frequency after 4 hr 
treatment (plus 22 hr expression time) with 10 nM insulin, 100 µM apocynin and the 
combination, (* = significantly different from control, ∆ = significantly different from 
insulin). 

a 

b 



Results 

48 
 

To test the effect of tempol and apocynin on insulin-stimulated superoxide production, 

cells were incubated for 30 minutes with insulin, antioxidants and the combination in the 

presence of 10 µM DHE. The results showed clearly that the combination with tempol 

and apocynin resulted in a reduction of superoxide production (fig. 19).  

 
Figure 19: Influence of tempol and apocynin on insulin-induced superoxide after 30 min 
of treatment with 10 nM insulin, 50 µM tempol, 100 µM apocynin and the combination of 
insulin with tempol and apocynin, (* = significantly different from control, ∆ = 
significantly different from insulin).  

 

4.1.4 Signaling pathway of insulin-mediates oxidative stress and DNA damage in   
           colon cells 

As a first investigation of the mechanistic pathway, the expression of the insulin receptor 

(IR) and the insulin-like growth factor 1 receptor (IGF-1R) as main targets for insulin 

binding were confirmed with RT-PCR (fig. 20). The obtained sequences were compared 

with the Genbank data base, yielding 99 % sequence similarity with IR from homo 

sapiens insulin receptor mRNA, partial cds with accession number NM 000208.2 and   

96 % sequence similarity with IGF-1R from homo sapiens insulin-like growth factor 1 

receptor precursor (IGF-1R) mRNA complete cds with accession number BC143721.1. 
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Figure 20: Expression of insulin receptor (IR) and insulin-like growth factor (IGF-1R) in 
HT29 cells.  
 

To analyze the activation of both receptors,  western blot detecting phosphorylated 

insulin receptor was performed for HT29 cells treated for different times (5 minutes to 4 

hours) with 10 nM insulin, and with different insulin concentrations (0.5 – 100 nM) for 2 

hours (figs. 21, 22). The amount of the phosphorylated insulin receptor increased after 

cell stimulation for 2 hours with 0.5 nM insulin and higher (fig. 21). 

  

 

 
Figure 21: pIR level in HT29 cells treated with different insulin concentrations (0.5 to 100 
nM) for 2 hr and measured by Western blot analysis, (* = significantly different from 
control). 
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Cells exposed for 5 minutes and longer to 10 nM insulin showed significant increase in 

insulin receptor phosphorylation (fig. 22). 

 

 

Figure 22: pIR level in HT29 cells treated with 10 nM insulin for different times (5 min to 4 
hr) and measured by Western blot analysis (* = significantly different from control, ° = not 
significantly different from control). 
 

To examine the involvement of the insulin receptor in the insulin genotoxicity pathway, 

the insulin receptor blocker HNMPA(AM)3 (50 µM) was combined with insulin in the cell 

treatment. The DNA damage that was produced by insulin was reduced, which indicates 

the involvement of the receptor in the signaling pathway (fig. 23). 
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Figure 23: Influence of insulin receptor (IR) blocker on insulin-induced alterations 
measured as DNA damage (% DNA in tail) in the comet assay for HT29 cells after a 2hr 
treatment with a) 10 nM insulin and 50 µM HNMP(AM)3 and the combination (* = 
significantly different from control, ∆ = significantly different from insulin).  
 

At high insulin level, insulin can bind to insulin-like growth factor 1 receptor (IGF-1R). To 

investigate this; phosphorylated IGF-1R was examined in HT29 treated with insulin 

under different conditions (figs. 24, 25). In the cells treated with different insulin 

concentrations (0.5 to 100 nM) for 2 hours, insulin at concentration of 1 nM and higher 

bound to the IGF-1R and led to its phosphorylation (fig. 24). 
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Figure 24: pIGF-1R level in HT29 cells treated with different insulin concentrations          
(0.5 to 100 nM) for 2 hr and measured by Western blot analysis, (* = significantly different 
from control). 
 

Cells were treated with 10 nM insulin for different time (5 minutes to 4 hours), where the 

influence appeared even with short time exposure (5 minutes) (fig. 25), and to connect 

the activation of IGF-1R with the genomic damage induced by insulin, the specific      

IGF-1R blocker (PPP) was used in combination with insulin and the effect of this 

treatment was evaluated by comet assay. Insulin combined with PPP in cell treatment 

caused less damage than alone (fig. 26).  
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Figure 25: pIGF-1R level in HT29 cells treated with 10 nM insulin for different times (5 min 
to 4 hr) and measured by Western blot analysis, (* = significantly different from control). 

 

 
Figure 26: Influence of insulin-like growth factor receptor (IGF-1R) blocker (PPP) on 
insulin-induced alterations measured as DNA damage (% DNA in tail) in the comet assay 
for HT29 cells after a 2hr treatment with 10 nM insulin , 50 nM PPP and the combination, 
(* = significantly different from control, ∆ = significantly different from insulin). 
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The binding of insulin to the insulin receptor and IGF-1R is followed by phosphorylation 

of insulin substrates, in which the latter activate PI3K, the key enzyme in the insulin 

signaling pathway. To examine the activation of PI3K under our conditions of treatment, 

phosphorylation of p85 protein, the regulatory subunit of PI3K, was investigated in cells 

treated with 10 nM insulin between 5 minutes and 4 hours (fig. 27). HT29 cells showed 

significant increase in PI3K phosphorylation after the exposure to 10 nM insulin for 30 

minutes, this increased more through the first 2 hours while at 4 hours the activation 

became lower but did not return to control level (fig. 27). 

 

 
Figure 27: Activated PI3K (p85) level in HT29 cells treated with 10 nM insulin for different 
times (5 min to 4 hr) and measured by Western blot analysis, (1 experiment). 
 
To link the activation of PI3K to the signaling pathway, the pharmacological PI3K 

inhibitor, wortmannin (100 nM) was used. Cells treated with the combination of 

wortmannin and insulin exhibited less DNA damage in comparison with cells treated 

with insulin alone (fig. 28).  
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Figure 28: Influence of PI3K inhibitor (wortmannin) on insulin-induced alterations 
measured as DNA damage (% DNA in tail) in the comet assay for HT29 cells after 2hr 
treatment with 10 nM insulin, 100 nM wortmannin and the combination (* = significantly 
different from control, ∆ = significantly different from insulin). 
 

The three inhibitors (HNMPA(AM)3, PPP and wortmannin) offered protection against 

insulin-induced micronucleus formation (fig. 29). 

 
Figure 29: Influence of different receptor blockers and enzyme inhibitor on chromatin 
damage (Mn/1000 cells) measured as micronucleus frequency in the HT29 cell line 
treated with 10 nM insulin and insulin in combination with HNMP(AM)3, PPP and 
wortmannin (with cytochalasine B addition) plus an expression time of 20-22 hours after 
treatment. Cell proliferation (CBPI) (straight line) is shown on the second y-axis, (* = 
significantly different from control, ∆ = significantly different from insulin). 
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Phosphorylation of PI3K leads to activation of AKT via phosphorylation. PAKT level was 

determined after treatment of the cells for 2 hours with different concentrations of insulin 

(0.5 to 100 nM) (fig. 30), as well as, after treatment of cells with 10 nM insulin for 

different times (fig 31). Cells showed significant increase in AKT phosphorylation after 

stimulation with 1 nM insulin and higher for 2 hours while 30 minutes exposure to 10 nM 

insulin was enough to activate AKT significantly in comparison to control (figs. 30, 31). 

 

 
Figure 30: AKT phosphorylation in HT29 cells treated with different concentrations of 
insulin (0.5 to 100 nM) for 2 hr and measured by Western blot analysis, (* = significantly 
different from control, ° = not significantly different from control). 
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Figure 31: AKT phosphorylation HT29 cells treated with 10 nM insulin for different time 
points and measured by Western blot analysis. (* = significantly different from control, ° 
= not significantly different from control). 

 

To investigate the sequence of the receptor and protein activations in the signaling 

pathway, HT29 cells were treated with insulin, receptor blockers (HNMPA(AM)3 and 

PPP) and PI3K inhibitor (wortmannin) and the previously activated receptors (IR and 

IGF-1R) and proteins (p53 and AKT) levels were measured by western blot analysis 

(fig. 32). 
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Figure 32: Influence of different receptor blockers and enzyme inhibitor on activation of 
IR, IGF1R, AKT and accumulation of p53 in HT29 cells treated for 2 hr with 10 nM insulin 
and with insulin in combination with HNMP(AM)3(50 µM), PPP (50 nM) or wortmannin (100 
nM) and measured with Western blot analyses, (* = significantly different from control, °= 
not significantly different from control, ∆ = significantly different from insulin, °° = not 
significantly different from insulin). 

 
To evaluate the role of PKC in the signaling mechanism, cells were treated with 10 nM 

sphingosine (PKC inhibitor) in combination with the insulin. The DNA damage which 

measured by the comet assay was not affected by the presence of the sphingosine, 

thus the results exclude the PCK from the signaling pathway in colon (fig. 33). 
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Figure 33: DNA damage (% DNA in tail) measured by the comet assay in HT29 treated 
with 10 nM insulin, 10 nM sphingosine and the combination for 2 hr, (* = significantly 
different from control, ∆∆ = not significantly different from insulin). 
 

To specify the source of ROS, the mitochondrial inhibitor rotenone (10 nM) was used in 

combination with insulin in cell treatment and the result showed the contribution of 

mitochondria in insulin mediated oxidative stress and genomic damage (fig. 34).   

 
Figure 34: Influence of rotenone on insulin-induced alterations in HT29 cells, DNA 
damage (% DNA in tail) in the comet assay after a 2hr treatment with 10 nM insulin, 10 nM 
rotenone and the combination (* = significantly different from control, ∆ = significantly 
different from insulin). 
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To confirm the role of mitochondria in insulin genotoxicity, HT29 rho0 cells were used. 

In this regard, mitochondria were depleted by culturing the cells in the presence of 

ethidium bromide and depletion of the mitochondria was examined by comparing 

presence of the mitochondrial DNA between rho0 cells and normal control HT29 cells 

using RT-PCR (fig.35), 10 and 100 nM insulin were applied to the cells for 2 hours, The 

application of insulin resulted in lower DNA damage in comparison to normal cells (fig. 

36).   

 
Figure 35. RT- PCR confirmation of mtDNA depletion in HT29 rho0 cells (HSM= human 
small mitoDNA). 

 
Figure 36: Influence of mitochondria depletion on insulin-induced alterations in HT29 
(normal and rho0) cells, DNA damage in the comet assay after a 2 hr treatment with 10  
and 100 nM insulin (* = significantly different from control, ∆ = significantly different from 
insulin). 
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The contribution of NADPH oxidase enzyme complex as a main source of ROS 

production in the cells was also examined by using the specific NADPH oxidase 

inhibitor VAS2870 (1µM) in combination with insulin. This provided significant protection 

from the genomic damage induced by insulin in the comet assay (fig. 37). 

 
Figure 37: Influence of VAS2870 on insulin-induced alterations in HT29 cells; DNA 
damage (% DNA in tail) in the comet assay after a 2 hr treatment with 10 µM insulin, 1 µM 
VAS2870 and the combination, (* = significantly different from control, ∆ = significantly 
different from insulin). 
 

To confirm the involvement of both sources in the oxidative stress and DNA damage 

induced by insulin. DHE staining and micronucleus test were performed using both 

inhibitors (rotenone and VAS2870) ,in which both inhibitors reduced the ROS production 

in the cells treated with 10 nM insulin and inhibitors for 30 minutes (fig 38), and lowered 

the micronucleus formation in the same cells after treatment for 4 hours (fig. 39). 
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Figure 38: Influence of rotenone and VAS2870 on insulin-induced superoxide in HT29 
after 30 min of treatment with 10 nM insulin, 50 nM rotenone, 1 µM VAS2870 and the 
combinations, (* = significantly different from control, ∆ = significantly different from 
insulin).  

 

Figure 39: Influence of rotenone and VAS2870 on insulin-induced alterations in HT29 
cells; micronucleus frequency after 4 hr treatment (plus 22 hours expression time) with 
10 nM insulin, 10 nM rotenone, 1 µM VAS2870 and the combinations, (* = significantly 
different from control, ∆ = significantly different from insulin). 
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The NADPH oxidase enzyme complex is expressed as seven isoforms with different 

tissue distribution (Nox1-5 and Duox1 and 2). In the present HT29 cells, both Nox1 and 

Nox2 are highly expressed as observed by RT-PCR (fig. 40), while the kidney cell line 

HK2 express Nox2 and Nox4.  

 
Figure 40: Expression of Nox1, Nox2 and Nox4 NADPH oxidase isoforms in kidney HK2 
and colon HT29 cells.  
 

To elucidate which Nox isoform is responsible for ROS production after insulin 

stimulation, Nox1 and Nox2 were knocked down with siRNA and the levels of the Nox1 

and Nox2 were analyzed by western blot, the transfected cells were treated with 10 nM 

insulin for 2 hours. Cells with knocked down Nox1 showed significant reduction in DNA 

damage examined by comet assay (fig.41), as well as superoxide production (fig. 42) 

compared to transfection medium and control siRNA treated cells, while cells with 

knocked down Nox2 did not show reduction in the DNA damage as evaluated by comet 

assay (fig.43). 

To confirm the previous results, the micronucleus frequency test was applied for the 

cells with knocked down Nox1 and Nox2, treated with 10 nM insulin for 4 hours (figs. 

44). The same pattern of results was observed confirming the involvement of Nox1 in 

our signaling mechanism and excluding Nox2 from the insulin mediated genotoxicity in 

colon.   
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Figure 41: DNA damage measured by the comet assay after 10 nM insulin treatment for 2 
hr in HT29 cells transfected with transfection buffer, control-siRNA and Nox1-siRNA,        
(* = significantly different from control, ° = not significantly different from control). 
 

 
 

Figure 42: Superoxide production after 30 min of treatment with 10 nM insulin in HT29 
cells transfected with transfection buffer, control-siRNA and Nox1-siRNA,                        
(* = significantly different from control, ° = not significantly different from control). 
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Figure 43: DNA damage measured by the comet assay after 10 nM insulin treatment for 2 
hr in HT29 cells transfected with transfection buffer, control-siRNA and Nox2-siRNA,                        
(* = significantly different from control). 
 

 
 
Figure 44 : Chromatin damage (Mn/1000 cells) measured as micronucleus frequency after 
10 nM insulin treatment for 4 hr in HT29 cells transfected with transfection buffer, 
control-siRNA, Nox1-siRNA and Nox2-siRNA, with cytochalasin B addition for the last 20-
22 , cell proliferation (CBPI) (straight line) is shown on the second y-axis, (* = 
significantly different from control, ° = not significantly different from control). 
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To elucidate the effect of Nox1 down regulation on AKT activation, the HT29 cells with 

knocked down Nox1 were treated with insulin and the level of pAKT was measured by 

western blot analysis, where the treated cells did not show difference in pAKT 

compared to cells transfected with the transfection buffer or control-siRNA (fig. 45). 

 
Figure 45: pAKT level after 10 nM insulin treatment for 2 hr in HT29 cells transfected with 
transfection buffer, control-siRNA and Nox1-siRNA, (* = significantly different from 
control, ∆∆= not significantly different from insulin-treated cells with transfection buffer). 
 

Although, no Nox4 had been detected by RT-PCR in HT29 cells, the Nox4 inhibitor 

plumbagin (100 nM) was applied as additional control in combination with insulin to treat 

the cells; no reduction in the DNA damage was observed (fig.46). 
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Figure 46: DNA damage (% DNA in tail) measured by the comet assay in HT29 treated 
with 10 nM insulin, 100 nM plumbagin and the combination for 2 hr, (* = significantly 
different from control, ∆∆ = not significantly different from insulin). 

 

4.1.5 Insulin mediated genotoxicity in Caco-2 cells and  primary rat colon cells 

To confirm the effect of insulin on the colon further, Caco-2 cells as another model of a 

colon derived cell line were examined. For the exposure conditions applied, 5 to 100 nM 

insulin for 2 hours, these cells exhibited a significant increase in DNA damage as 

measured by comet assay (fig.47). 
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Figure 47: Caco-2 cells treated with different insulin concentrations for 2 hr and 
examined by comet assay, (* = significantly different from control). 
 

To ascertain that the insulin effects were not only limited to permanent cell lines, 

primary cells from rat colon were treated with different concentrations of insulin (0.01, 

0.1 and 2 µM) for 30 minutes and comet assay analysis revealed an increase in DNA 

damage in comparison to the control which was treated with solvent (fig.48).  

 
Figure 48: Primary rat colon cells treated with different insulin concentrations for 30 min 
and examined by comet assay, (* = significantly different from control). 
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4.2 Insulin mediated oxidative stress and genomic damage in   
mammalian kidney cells  

4.2.1 Insulin induces genotoxicity in kidney cells 

To confirm the effect of a high insulin level on different tissues instead of being limited to 

colon cells, other cells originating from different organs were examined. First LLC-PK1, 

a pig kidney cell line with many properties of proximal tubular cells, was used. 

Comet assay characterization of insulin induced DNA damage in LLC-PK1 cells was 

evaluated in an insulin concentration ranging from 0.005 µM to 2 µM for 4 hours 

incubation time (fig 49).  

 

Figure 49: DNA damage (% DNA in tail) measured by comet assay analysis in the        
LLC-PK1 cell line treated with different insulin concentrations for 4 hr (* = significantly 
different from control, ° = not significantly different from control). 
 

With 0.1 nM insulin, treatment durations from 5 minutes to 4 hours were applied to the 

cells to evaluate the shortest time needed for the induction of DNA damage and to see if 

the damage is constant over time for several hours of treatment (fig 50). The cells 

reacted with significant induction of DNA damage starting at 0.01 µM and 5 minutes of 

insulin treatment (fig 50).  

For all further comet assay experiments with LLC-PK1 cells, 0.1 µM and 2 hours were 

used. In parallel to all comet assay experiments, vitality tests and cell number counting 
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were used as markers for cell proliferation and the applied treatments did not result in 

significant reduction in vitality or alteration of proliferation.  

 
Figure 50: DNA damage (% DNA in tail) measured by comet assay analysis in the LLCPK1 
cell line treated with 0.1 µM insulin for different times, (* = significantly different from 
control). 
 

Formation of micronuclei by DNA strand breaks was evaluated in LLC-PK1 treated with 

2 µM insulin for different incubation times (5 minutes to 4 hours) where the first 

significant increase in micronucleus formation was observed after 30 minutes 

treatments (fig.51).  

 

 



Results 

71 
 

 
Figure 51: Micronucleus frequency in LLC-PK1 treated with0.1 µM insulin for different 
time and harvested after an additional 22 hr expression time, (* = significantly different 
from control, ° = not significantly different from control). 
 
Formation of micronuclei by DNA strand breaks was evaluated for an insulin 

concentration range from 0.005 to 2 µM in LLC-PK1 cells and the treatment duration 

was 4 hours (fig. 52). A concentration dependent increase in micronucleus formation 

was observed with significant difference to the control at 10 nM and higher. 

                    
Figure 52: Micronucleus frequency in LLC-PK1 treated with different concentrations of 
insulin for 4 hr and harvested after an additional 22 hr expression time, (Mn-cell = cell 
containing one or more micronucleus/i) (* = significantly different from control, ° = not 
significantly different from control). 



Results 

72 
 

An increased formation of micronuclei was achieved by extension of the treatment 

duration to 48 hours where 5 nM insulin showed significant increase in micronuclei 

formation (fig. 53).  

 
Figure 53: Micronucleus frequency in LLC-PK1 treated with different concentrations of 
insulin for 48 hr and harvested after an additional 22 hr expression time (Mn-cell = cell 
containing one or more micronucleus/i) (* = significantly different from control). 

 

For all further micronucleus experiments with LLC-PK1 cells, 2 µM and 4 hours were 

used. In the micronucleus test, apoptotic cells were quantified according to their nuclear 

morphology and no significant increase was observed after any of the treatments. For 

confirmation, flow cytometric analysis of annexin V positive and propidium iodide 

negative early apoptotic cells was performed after treatment with 100 nM insulin. No 

significant increase compared to the control (1.85 ± 0.50 %) was observed after 8 hours 

(2.43 ± 0.37 %) and 16 hours (2.21 ± 0.66 %).  Proliferation (cell number) was also 

assessed in parallel with the MN experiments and no alteration was observed under the 

tested conditions. 

To investigate the interference of serum or medium components in the insulin-induced 

DNA damage, first the cells were treated in normal medium and serum free medium or 

PBS (fig. 54). 
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Figure 54: DNA damage (% DNA in tail) measured by comet assay in LLC-PK1 cells 
treated with 0.1 µM insulin for 2 hr a) in different media, in normal medium (NM) and 
serum free medium (SFM), (* = significantly different from control).  
 

Second, cells were treated with varying amounts of glucose (0; 5.5 mM; 25 mM) in PBS 

and in combination with insulin (fig. 55). A significant and comparable induction of 

genomic damage was observed after all treatments (figs. 54, 55).  

 

Figure 55: DNA damage (% DNA in tail) measured by comet assay in LLC-PK1 cells 
treated with 0.1 µM insulin for 2 hr in phosphate buffered saline (PBS, and PBS with 
different glucose concentrations (5.5 and 25 mM),(* = significantly different from control).  
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4.2.2 ROS production and antioxidants 

Next, ROS production in LLC-PK1 cells was measured and representative pictures were 

inserted in figure 56. Treatment with 0.1 µM insulin revealed an equal amount of ROS 

after treatment times between 5 minutes and 2 hours (fig.56).  

 

 
Figure 56: Superoxide production in LLC-PK1 cells incubated with 0.1 µM insulin for 
different time points and detected with the O2˙￣ -reactive probe DHE (10 µM); and  
quantified by the mean of gray values of DHE fluorescence (* = significantly different 
from control). 
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We chose 5 minutes for a dose response experiment (fig. 57), in which significant ROS 

production was found with all concentrations of insulin (5 nM to 2 µM). 

 

Figure 57: Superoxide production in LLC-PK1 cells incubated with different 
concentrations of insulin in normal medium for 5 min and detected with the O2˙￣-
reactive probe DHE (10 µM); and  quantified by the mean of gray values of DHE 
fluorescence (* = significantly different from control). 
 

For further confirmation of the involvement of ROS in the DNA damage, 50 µM of the 

radical scavenger tempol was combined with insulin and the effect was detected by 

comet assay and micronucleus frequency test, (fig.58 a and b).  
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Figure 58: Influence of tempol on insulin-induced alterations in LLC-PK1 cells; a) DNA 
damage (% DNA in tail) in the comet assay after a 2 hr treatment with 0.1 µM insulin, 50 
µM tempol and the combination, and b) micronucleus frequency after 4 hr treatment (plus 
22 hours expression time) with 2 µM insulin, 50 µM tempol and the combination (Mn-cell 
= cell containing one or more micronucleus/i) (* = significantly different from control,      
∆ = significantly different from insulin). 
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The antioxidant and flavoenzyme inhibitor apocynin (100 µM) was combined with insulin 

in both genotoxicity tests (fig.59 a and b). 

 

 

 
 

Figure 59: Influence of apocynin on insulin-induced alterations in LLC-PK1 cells; a) DNA 
damage (% DNA in tail) in the comet assay after a 2 hr treatment with 0.1 µM insulin, 100 
µM apocynin and the combination, and b) micronucleus frequency after 4 hr treatment 
(plus 22 hours expression time) with 2 µM insulin, 100 µM apocynin and the combination 
(Mn-cell = cell containing one or more micronucleus/i) (* = significantly different from 
control, ∆ = significantly different from insulin). 
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Both chemicals (tempol and apocynin) reduced the insulin induced genomic damage in 

the comet assay (figs.58a, 59a) and the micronucleus frequency test (figs. 58b, 59b) as 

well as the ROS production (fig. 60).  

 

Figure 60: Superoxide analysis after 5 min of treatment with 2 µM insulin, 50 µM tempol, 
100 µM apocynin, 10 µM VAS2870 and the combination of insulin with the inhibitors (* = 
significantly different from control, ∆ = significantly different from insulin). 
 

 

4.2.3 Role of insulin receptor (IR) and insulin-like growth factor (IGF-1R) receptor   

         in insulin genotoxicity 

 
The expression of insulin receptor (IR) and insulin-like growth factor 1 receptor (IGF-1R) 

as main targets for insulin binding in LLC-PK1 was confirmed with RT-PCR. The 

obtained sequences were compared with the Genbank data base, yielding 99 % Identity 

for both with Sus scrofa insulin receptor mRNA, partial cds with accession number 

AF102858.1 and Sus scrofa insulin-like growth factor 1 receptor precursor (IGF-1R) 

mRNA complete cds with accession number HQ322390.1 (fig. 61).    



Results 

79 
 

 
Figure 61: Expression of insulin receptor (IR) and insulin-like growth factor (IGF1R) in 
LLCPK1 cells.  
 

Next, cells were incubated with a combination of insulin and several antagonists or 

inhibitors. Specifically, the insulin receptor antagonist HNMPA(AM)3 (100 µM) and the 

specific IGF-1 receptor antagonist PPP (50 nM) were applied (fig.62,63), both of which 

reduced the damage induction. 

 

 

Figure 62: Influence of HNMPA(AM)3 on insulin-induced alterations in LLC-PK1 cells; 
DNA damage (% DNA in tail) in the comet assay after a 2 hr treatment with 0.1 µM insulin, 
100 µM HNMPA(AM)3 and the combination (* = significantly different from control,            
∆ = significantly different from insulin). 
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Figure 63: Influence of PPP on insulin-induced alterations in LLC-PK1 cells; DNA damage 
(% DNA in tail) in the comet assay after a 2 hr treatment with 0.1 µM insulin, 50 nM PPP 
and the combination (* = significantly different from control, ∆ = significantly different 
from insulin). 
 
 
4.2.4 Activation of PI3 kinase and AKT 

In the normal signaling pathway, activation of PI3K is following the activation of the two 

receptors. To investigate the contribution of PI3K in insulin genotoxicity, the PI3K 

inhibitor wortmannin was used in combination with insulin to treat the cells. The treated 

cells showed reduction in the DNA damage (figs. 64,65) as well as in p53 accumulation 

(fig. 66). 
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Figure 64: Influence of wortmannin on insulin-induced alterations in LLC-PK1 cells; DNA 
damage (% DNA in tail) in the comet assay after a 2 hr treatment with 0.1 µM insulin, 100 
nM wortmannin and the combination (* = significantly different from control,                      
∆ = significantly different from insulin). 
 

 

Figure 65: Influence of wortmannin on insulin-induced alterations in LLC-PK1 cells; 
chromatin damage (Mn/1000 cells) measured as micronucleus frequency in cells treated 
for 4 hr with 2 µM insulin, 100 nM wortmannin and the combination plus an expression 
time of 20-22 hr after treatment (* = significantly different from control, ∆ = significantly 
different from insulin). 
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Figure 66: p53 levels in LLC-PK treated for 30 min with 0.1 µM insulin, 100 nM 
wortmannin and the combination and measured by Western blot analysis                        
(* = significantly different from control, ∆ = significantly different from insulin). 
 

AKT activation was investigated in the LLC-PK cells treated with insulin and insulin in 

combination with wortmannin (fig. 67), treatment of the cells with insulin increased the 

pAKT level while addition of wortmennin inhibited the effect of insulin on AKT activation. 
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Figure 67: pAKT level in LLC-PK treated for 30 min with 0.1 µM insulin , 100 nM 
wortmannin and the combination and measured by Western blot analysis,                       
(* = significantly different from control, ∆ = significantly different from insulin). 
 
 

4.2.5 ROS sources 

For investigation of the involvement of the two major ROS sources, the mitochondrial 

inhibitor rotenone (10 nM) and the NADPH oxidase inhibitor VAS2870 (10 µM) were 

used (fig.68 a and b). Again, the DNA damage was reduced by the two inhibitors, and in 

figure 60, VAS2870 showed reduction of ROS production in the LLC-PK1 cells. 
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Figure 68: Influence of rotenone and VAS2870 on insulin-induced alterations in LLC-PK1 
cells; DNA damage (% DNA in tail) in the comet assay after a 2hr treatment with 0.1 µM 
insulin a) 10 nM rotenone and the combination, b) 10 µM VAS2870 and the combination,  
(* = significantly different from control, ∆ = significantly different from insulin). 
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4.2.6 Effect of insulin in primary rat kidney cells 

Primary rat kidney cells were treated with three different concentrations of insulin (0.01, 

0.1 and 2 µM) for 30 minutes and comet assay analysis revealed an increase in DNA 

damage in comparison to the solvent control for kidney cells (fig.69). 

 

Figure 69: Primary rat kidney cells treated with different insulin concentrations for 30 min 
and examined by comet assay (* = significantly different from control, º = not significantly 
different from control). 
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4.2.7 Signaling pathway of the insulin mediated genotoxicity in kidney cells using      

         the human kidney cell line HK2. 
 

To investigate the signaling pathway of insulin mediated genotoxicity in kidney. HK2 

cells were used were used as a model for human kidney cells. First the effect of insulin 

was confirmed by comet assay and micronucleus frequency test (figs. 70, 71) where 

HK2 cells showed significant increase in DNA damage after 2 hours treatment. 

 
Figure 70: DNA damage (% DNA in tail) measured by comet assay analysis in the HK2 
cells treated with different insulin concentrations for 2 hr (* = significantly different from 
control). 

 
Figure 71: Micronucleus frequency in HK2 cells treated with different insulin 
concentrations for 2 hr and harvested after an additional 22 hr expression time,                
(* = significantly different from control). 
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p53 level was used as an indicator for the DNA damage induced in HK2 cells treated 

with insulin. Different insulin concentrations (0.5-100 nM) were applied to the cells for 2 

hours (fig.72). Upon treatment of the cells with insulin, p53 accumulated at 0.5 nM 

insulin and higher. 

 

 
Figure 72: p53 levels in HK2 cells treated for 2 hr with different insulin concentrations 
(0.5 to 100 nM) and measured by Western blot analysis (* = significantly different from 
control, º = not significantly different from control). 
  

The signaling pathway usually starts when the ligand binds to its receptor. In this case, 

insulin is able to bind to both insulin receptor and insulin-like growth factor 1 receptor. In 

our study, we detected the expression of both receptors in HK2 cells using RT-PCR, 

where the cells showed the expression of both receptors (fig. 73). 

 
Figure 73: Expression of insulin receptor (IR) and insulin-like growth factor (IGF-1R) in 
HK2 cells.  
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Insulin receptors and IGF-1 receptors are phosphorylated upon binding of insulin to 

them. The binding process was detected by analyzing the phosphorylated insulin and 

IGF-1 receptors levels in the cells treated with 10 nM insulin for different times and for 2 

hours treatment with different insulin concentrations (figs. 74, 75). 

HK2 cells showed an increased level of insulin receptor phosphorylation at 0.5 nM 

concentration and higher, applying a 2 hours treatment (fig.74). 

 

 
Figure 74: Insulin receptor phosphorylation in HK2 cells treated for 2 hr with different 
insulin concentrations (0.5 to 100 nM) and measured by Western blot analysis, (* = 
significantly different from control). 
 

Investigating the time dependence, our results showed that 30 minutes treatment with 

10 nM insulin was sufficient to stimulate the insulin receptor phosphorylation to be 

significantly higher than the control (fig. 75). 
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Figure 75: Insulin receptor phosphorylation (pIR) in HK2 cells treated with 10 nM insulin 
for different time (5 min- 4 hr) and measured by Western blot analysis (* = significantly 
different from control, ° = not significantly different from control). 
 

IGF-1 receptor, the second target for insulin was, examined for its phosphorylation in 

HK2 cells, in which 0,5 nM insulin treatment induced significant increase in IGF-1 

receptor phosphorylation (fig.76). The activation of the receptor was significantly 

increased after 5 minutes of treatment with 10 nM insulin (fig. 77) 
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Figure 76: IGF-1R phosphorylation (pIGF1R) in HK2 cells treated with different insulin 
concentrations (0.5 -100 nM) and measured by Western blot analysis, (* = significantly 
different from control, x= empty lan). 
 

 

 

Figure 77: IGF-1R phosphorylation (pIGF-1R) in HK2 cells treated with 10 nM insulin for 
different time points (5 min to 4 hr), (* = significantly different from control). 
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All the previous observations indicate that insulin can bind to the insulin receptor as well 

as the IGF-1 receptor. 

In LLC-PK1 cells, we showed that inhibition of both receptors by HNMPA(AM)3 and PPP 

inhibitors reduced the DNA damage significantly (figs. 62,63). To confirm the same 

effect in HK2, cells were treated with both inhibitors and the inhibition of DNA damage 

was observed in the comet assay (fig.78), which allows the conclusion that both 

receptors are involved in the insulin genotoxicity signaling pathway in kidney cells. In 

LLC-PK1 cells, wortmannin, the PI3K inhibitor, reduced the DNA damage in both 

genotoxicity tests, comet assay and micronucleus frequency test (figs. 64, 65). In 

addition, p53 level was decreased in cells treated with insulin in combination with 

wortmannin (fig. 67). In HK2 cells, wortmannin played the same role in DNA damage 

reduction (fig.78), thus the results from LLC-PK1 and HK2 cells showed the involvement 

of PI3K in the signaling pathway. 

  
Figure 78: Influence of HNMPA(AM)3, PPP and wortmannin on insulin-induced alterations 
in HK2 cells; DNA damage (% DNA in tail) in the comet assay after a 2 hr treatment with 
10 nM insulin, and the combinations of insulin with 50 µM HNMPA(AM)3, 50 nM PPP and 
100 nM wortmannin (* = significantly different from control, ∆ = significantly different 
from insulin). 
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LLCPK1 showed an activation of AKT upon treatment with insulin (fig.66). In HK2 cells 

the phosphorylation of AKT was examined under different conditions, where 

phosphorylation of AKT increased significantly at 0.5 nM insulin and higher treatment 

(fig.79) as well as with 5 minutes and longer treatment with 10 nM insulin (fig.80). 

 

 

 
Figure 79: AKT phosphorylation in HK2 cells treated with different concentrations of 
insulin (0.5 to 100 nM) for 2 hr and measured by western blot analysis, (* = significantly 
different from control, ° = not significantly different from contro). 
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Figure 80: AKT phosphorylation in HK2 cells treated with 10 nM insulin for different time 
point (5 min to 4 hr) and measured by western blot analysis, (* = significantly different 
from control, ° = not significantly different from control). 
 

To confirm the order of AKT activation in the signaling pathway, pAKT level was 

measured in cells treated with insulin and the three previous inhibitors (HNMPA(AM)3, 

PPP and wortmannin) (fig.81), where all inhibitors decreased pAKT level in the treated 

cells, which confirm that activation of AKT follows the activation of insulin and IGF-1 

receptors as well  as PI3K activation. 
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Figure 81: Influence of HNMPA(AM)3, PPP and wortmannin on pAKT level in HK2 cells; 
after a 2hr treatment with 10 nM insulin, and the combinations of insulin with 50 µM 
HNMPA(AM)3, 50 nM PPP and 100 nM wortmannin and measured by Western blot 
analysis (* = significantly different from control, ∆ = significantly different from insulin). 
 

Next, the involvement of mitochondria was investigated by treatment of the LLC-PK1 

cells with rotenone (fig. 68) which caused reduction in the DNA damage. For further 

confirmation, HK2 rho0 cells (depleted from mtDNA, fig.82) were treated with insulin, in 

which the cells did not exhibit the same DNA damage in comparison to the normal HK2 

cells treated with the same insulin concentration and for the same time of incubation 

(fig.83). From these results, we can conclude the significant role of mitochondria in 

insulin stimulate ROS production and DNA damage. 



Results 

95 
 

 
Figure 82: PCR confirmation of mtDNA depletion in HK2 rho0 cells. 
 

 

Figure 83: Influence of mitochondria depletion on insulin-induced alterations in HK2 
(normal and rho0) cells, DNA damage in the comet assay after a 2 hr treatment with 10  
and 100 nM insulin (* = significant vs control, ∆ = significant decrease vs insulin). 

 
VAS2870, the NADPH oxidase inhibitor reduced the insulin-induced alterations in     

LLC-PK1 cells (fig.68), which indicates the involvement of NADPH oxidase as a ROS 

source in our investigation. To specify the responsible Nox isoform for ROS production, 

HK2 cells were examined for the expression of different Nox isoforms by RT-PCR, 

where the cells showed high expression of Nox2 and Nox4 (fig.84).  
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Figure 84: Expression of NADPH oxidase isoforms in HK2 and HT29 cells, the same 
photographs are shown as figure 40 in the context of HT29 cells investigations and are 
shown again here in the context of Hk2 cells investigations for easier reading.  
 

To differentiate between the two isoforms, Nox2 and Nox4 were knocked down with 

siRNA and the levels of the Nox2 and Nox4 were analyzed by western blot and the 

transfected cells were treated with 10 nM insulin for 2 hours. Cells with knocked down 

Nox4 showed significant reduction in DNA damage examined by comet assay (fig.85), 

and micronucleus frequency test (fig.86). 

 

 
 

Figure 85: DNA damage measured by the comet assay after 10 nM insulin treatment for   
2 hr in HK2 cells transfected with transfection buffer, control-siRNA and Nox4-siRNA (* = 
significantly different from control, ° = not significantly different from control). 
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Figure 86: Chromatin damage (Mn/1000 cells) measured as micronucleus frequency after 
10 nM insulin treatment for 4 hr in HK2 cells transfected with transfection buffer, control-
siRNA, Nox1-siRNA and Nox2-siRNA, and harvested after 20-22 hr, (* = significantly 
different from control, ° = not significantly different from control). 

 
HK2 cells with knocked down Nox2 did not show reduction in the DNA damage (fig.87).  

 

 
Figure 87: DNA damage measured by the comet assay after 10 nM insulin treatment for   
2 hr in HK2 cells transfected with transfection buffer, control-siRNA and Nox2-siRNA (* = 
significantly different from control, ° = not significantly different from control). 



Results 

98 
 

As a result for the stimulation of ROS production through mitochondria and Nox4 

activation, oxidation of the DNA can occur. This is demonstrated in HK2 cells by 

detection of oxidized bases in the FPG assay modification of the comet assay (fig.88).  

 

 

Figure 88: Effect of FPG post treatment on insulin-induced DNA damage in the comet 
assay in HK2 cells treated with different insulin concentrations for 2 hr (* = significantly 
different from control).  
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4.2.8 Zucker Diabetic fatty rats (ZDF) 

As an animal model for elevated insulin, lean healthy ZDF rats were subjected to a 

hyperinsulinemic euglycemic clamp (table 3, lines 1 and 2). In this regard, insulin was 

infused and glucose was added to prevent hypoglycemia. Blood glucose levels were 

adjusted to an equal and normal range in all animals, but insulin infusion was designed 

to result in normal postprandial levels in the control group and to pathophysiological 

levels in the high insulin group (table 3). ROS were analyzed with DHE staining of 

kidney slices and ROS production was significantly elevated in the high insulin group. 

Representing genomic damage, the amount of p53 was elevated in the high insulin 

group. As a model for diabetes type II, in which levels of insulin and glucose can be 

elevated, fatty diabetic ZDF rats were analyzed (table 3, line 3). Animal treatment and 

organ preparation were kept the same as in the lean rats, but glucose as well as insulin 

were elevated in these animals. In these diabetic rats, oxidative stress and amount of 

p53 were also elevated compared with the lean normal insulin animals.  

 
Table 3: Glucose and insulin concentrations measured in plasma before and after 
hyperinsulinemic euglycemic clamp, superoxide production in ZDF kidney cryosections 
incubated for 30 min with the O2˙￣-reactive probe DHE (10 µM); and quantified by the 
mean of gray values of DHE fluorescence, and p53 level measured by western blot in ZDF 
rat kidneys (* = significantly different from low insulin group, ≠ = not significantly 
different from low insulin group). 
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To evaluate the influence of treatment with insulin sensitizing medication on the 

oxidative stress and DNA oxidization in the ZDF rat, we investigated the ROS 

production and DNA oxidization in the kidney of lean ZDF, ZDF placebo and metformin 

treated ZDF rats (table 4). Before the clamp procedure, the plasma fasting glucose and 

insulin levels of the untreated placebo group and the metformin treated group were 

higher than those of the lean control group (table 4). The ROS production (DHE on 

cryosections) and the DNA oxidization (8oxdG; LC-MS/MS analysis) were also higher in 

the placebo and (to a lesser extend) in the metformin group than in the lean control. 

Due to the infusion of insulin during the hyperinsulinemic clamp procedure that these 

animals received immediately before sacrifice, the plasma insulin levels were increased 

in all three groups, but to a lesser extend in the lean group than in the two diabetic 

(fa/fa) groups (table 4). The concentration of insulin found in the kidney of the animals 

was higher in the diabetic rats than in the lean controls and the increase was more 

limited in the metformin group than in the placebo group (table 4). 

 

Table 4: Glucose and insulin concentrations measured in plasma before and after 
hyperinsulinemic euglycemic clamp, HPLC analysis for insulin concentrations in kidney 
tissue, superoxide production in ZDF kidney cryosections incubated for 30 min with the 
O2˙￣-reactive probe DHE (10 µM); and quantified by the mean of gray values of DHE 
fluorescence, and 8-oxodG level measured by LC-MS/MS in ZDF rat kidneys (* = 
significantly different from Lean group, ° = not significantly different from Lean group, ∆ 
= significantly different from placebo group, ∆∆ = not significantly different from placebo 
group). 
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4.3 Insulin mediated oxidative stress and genomic damage in cells of   
      the hematopoietic system  

4.3.1 Insulin-induces oxidative stress and DNA damage in HL60 cells 

HL60 the human premyelocytic cells were treated with different concentrations of insulin 

(0.5 to 10 nM) for 2 hours. A significant increase in the % DNA in tail and the 

micronucleus frequency was achieved in the comet assay and micronucleus frequency 

test at ≥1 nM insulin treatment (fig.89). 

 

 
Figure 89: Influence of insulin on insulin-induced alterations in HL60 cells; a) DNA 
damage (% DNA in tail) in the comet assay after 2hr treatment with different insulin 
concentrations, and b) micronucleus frequency after 4 hr treatment (plus 22 hours 
expression time) with different insulin concentrations (Mn-cell = cell containing one or 
more micronucleus/i) (* = significantly different from control,º = not-significantly different 
from control). 

a 

b 



Results 

102 
 

The HL60 cell line was found to express mainly the Nox2 isoform of the NADPH 

oxidase as detected by RT-PCR (fig.90). 

 

 

Figure 90: Expression of NADPH oxidase isoforms in HL60 cells. 

 

Using the scavengers and inhibitors; tempol (ROS scavenger), apocynin (NADPH 

oxidase inhibitor and antioxidant) and wortmannin (PI3K inhibitor) in combination with 

insulin in the HL60 cell treatment led to the reduction of the observed insulin-mediated 

DNA damage (fig.91). 

 

Figure 91: Influence of tempol, apocynin and VAS2870 on insulin-induced alterations in 
HL60 cells; DNA damage (% DNA in tail) in the comet assay after a 2hr treatment with 10 
nM insulin , 50 µM tempol and the combination, 100 µM apocynin and the combination , 1 
µM VAS2870 and the combination (* = significantly different from control, ∆ = 
significantly different from insulin). 
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4.3.2 Insulin-induces DNA damage in peripheral lymphocytes 

To further confirm the activity on primary cells, peripheral human lymphocytes were 

treated with 10 and 100 nM insulin for 24 hours in vitro after stimulation of proliferation 

with PHA and examined by the two endpoints comet assay and micronucleus frequency 

test (fig.92). In both endpoints, the cells showed significant induction of DNA damage 

over control. There was no reduction of the proliferation index (fig.92). 

 

 
Figure 92: Human peripheral lymphocytes treated in vitro with insulin for 24 hr and 
examined by comet assay (a) and treated with insulin plus cytochalasin B for 24 hr, 
analyzed in the micronucleus test (b). In (b), cell proliferation (CBPI) (straight line) is 
shown on the second y-axis (* = significantly different from control).  

a 

b 
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4.3.3 Micronucleus frequency elevation in type II diabetes mellitus patients 

To evaluate the biological relevance of the in vitro results in the cultured lymphocytes, 

peripheral lymphocytes from type II diabetes mellitus patients were isolated and 

examined for the micronucleus formation and compared with the results obtained from 

healthy individuals’ lymphocytes. The diabetic patients showed significant increase in 

micronucleus formation over the control group (fig.93).  

 
 

Figure 93: Micronucleus frequency in peripheral blood lymphocytes of healthy control 
individuals (n=15) and type II diabetic patients (n=35) (* = significantly different from 
control). 
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4.4 Insulin-mediated genomic damage in different mammalian cells 
 

Primary rat cells (hepatocytes and fatty tissues) were treated with three different 

concentrations of insulin (0.01, 0.1 and 2 µM) for 30 minutes and comet assay analysis 

revealed an increase in DNA damage in comparison to the solvent control for 

hepatocytes and fatty tissue cells (table 5). In addition, two human breast cancer cell 

lines (MCF-7 and BT-474 cells) were treated with different insulin concentrations (0.5 -

100 nM) for 2 hours and they also showed an induction of DNA damage in comet assay 

(table 5). 

 

 

Table 5: DNA damage (% DNA in tail) measured with the comet assay after treatment of 
SD rat primary cells (hepatocytes and fatty tissues)(n=3) with different concentrations of 
insulin for 30 min. and MCF-7 and BT-474 cell lines after treatment of the cells for 2 hr 
with different concentrations of insulin, (ND = non determined), (* = significantly different 
from control). 
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5. Discussion 

Oxidative stress reflects an imbalance between the systemic oxidants expressed as 

reactive species (RS) and a biological system's ability to readily detoxify the reactive 

intermediates or to repair the resulting damage. Reactive species can affect the macro 

and micro molecules in the cells such as lipids, protein and DNA. Reaction of the 

reactive species with the DNA leads to what is called genotoxicity, the term which 

describes deleterious properties of a substance, acting on cell's genetic material and 

affecting its integrity. In recent years, and between many genotoxic compounds, 

researchers highlighted the genotoxicity of endogenous hormones in high levels [62-63, 

128]. One of the most important hormones in the body is insulin, which controls different 

metabolic pathways and plays a critical role in cell proliferation [66]. The production of a 

large amount of cellular reactive oxygen species by hematopoietic phagocytic cells is 

essential for host defenses in bactericidal killing [129]. However, more recently it has 

been appreciated that low levels of cellular oxidants, including superoxide and H2O2, are 

produced in a rapid temporal response to cellular growth factor and cytokine stimulation 

and are integral to the regulation of a variety of intracellular signaling pathways [114]. 

Cellular reactive oxygen species have been shown to be elevated in response to 

epidermal growth factor, platelet-derived growth factor, transforming growth factor, and 

other growth factors [110-114] as well as after insulin stimulation [104-106]. 

Hyperinsulinemia, meaning high insulin blood levels, was reported as a risk factor in 

development and promotion of different types of cancer [130-132]. The influence of  

insulin on cancer growth has been widely studied. Observational human studies have 

reported increased cancer mortality in patients with obesity and type II diabetes, which 

might be attributable to hyperinsulinemia, elevated IGF-I, or both factors [132-135].  

A role for insulin in promoting cancer growth was first recognized by studies in 

experimental animals. Rats and mice made diabetic with streptozotocin or alloxan 

(hyperglycemic and insulin deficient) developed less aggressive tumors compared to 

control animals [136]. Insulin treatment reversed this observation [137]. This could be 

due to the well-known mitogenic effect of insulin and/or the described production of 

reactive oxygen species which might lead to genomic damage formation. 
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5.1 Insulin-mediated oxidative stress and DNA damage in mammalian  
      colon cells 
 

Colon cancer was linked to hyperinsulinemia in a rat model, as early as 1996 [138] 

when the direct promoting effect of insulin on colon carcinogenesis in F344 rats was 

tested. After azoxymethane initiation and injections of insulin given 5 times/week for 17 

weeks, the fraction of rats with colon tumors was greater in rats receiving insulin than in 

rats receiving saline and the average number of tumors/ rat was also greater. Human 

epidemiological data seem to hint in the same direction; men with high levels of C-

peptide had a 2.7-fold significantly increased the risk of colorectal cancer [139], while 

Larsson et al. reported in two different studies that diabetic patients have 1.36 and 1.29 

fold higher risk of colorectal cancer compared to controls  [140]. In 2004, Yang et al 

conducted a retrospective cohort study among  patients with a diagnosis of type II 

diabetes mellitus and found that chronic insulin therapy significantly increased the risk 

of colorectal cancer among these patients [141].  

 

Insulin-induced DNA damage in colon cells 

Several mechanisms are likely to contribute to the development of colon cancer. To 

detect whether a DNA-damaging capacity of insulin signaling derived ROS might be one 

of them, we investigated whether insulin can induce DNA damage in mammalian colon 

cells in vitro and ex vivo. In HT29 cells, an insulin concentration of 5 nM significantly 

induced DNA damage after a 2 hours exposure, and after a chronic exposure for           

6 days, 0.5-1 nM insulin was able to induce DNA damage. Increasing the insulin 

concentration to 10 nM shortened the time which required for the DNA damage 

induction to 5 minutes.  

The micronucleus test, one of the most important genotoxicity tests was applied to 

confirm the induction of DNA damage by insulin, and cells incubated with 1 nM insulin 

for 4 hours exhibited a significant increase in micronucleus formation, while longer 

exposure time (6 days) reduced the insulin concentration required for the induction of 

chromatin damage to 0.5-1 nM, all these observations allow the conclusion that insulin 

can induce DNA damage if present at sufficient concentration . 
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Tumor protein 53 (p53), can activate DNA repair proteins when DNA has sustained 

damage and can induce cell cycle arrest at the G1/S regulation point upon DNA damage  

recognition. P53 becomes activated in response to different types of stress such as 

oxidative stress. This activation is marked by two major events. First, the half-life of the 

p53 protein is increased drastically, leading to a quick accumulation of p53 in stressed 

cells [142]. Second, a conformational change forces p53 to be activated as a 

transcription regulator in these cells [143-144]. In our study, p53 accumulation as an 

indicator of DNA damage and oxidative stress was investigated. Upon treatment of the 

cells with 10 nM insulin for different durations, p53 started to accumulate after 5 minutes 

incubation time with 10 nM insulin, and after stimulation of the cells with 0.5 nM insulin 

for 2 hours, p53 accumulation also observed.  

Glucose and insulin are linked physiologically, and due to the presence of the possibility 

for glucose to interference in the insulin-mediated genotoxicity, different concentrations 

of glucose were applied to the cells. None of them showed an influence on our 

observations. 

 

Insulin stimulates ROS production   

During the last decade, it has become clearly evident that oxidative stress plays a key 

role in carcinogenesis, cancer progression, cancer therapy, and normal tissue damage 

that limits treatment efficacy during cancer therapy. We hypothesized that insulin can 

stimulate ROS production which then can cause DNA damage. To evaluate this 

hypothesis, oxidative stress and superoxide induction by insulin was examined in HT29 

cells. ROS production is stimulated in the insulin-treated cells after 5 minutes treatment 

with 10 nM insulin and at 0.5 nM insulin when the exposure time extended to 30 

minutes, in agreement with our findings, several authors showed that insulin stimulates 

ROS production in different tissues and other showed that ROS in physiological level is 

important in insulin signaling [104-106, 116, 145]. 

For evaluation of oxidative DNA-damage, a modified version of the comet assay using 

FPG enzyme was performed. This enzyme enables detection of the major purine 

oxidation product 8-oxoguanine as well as other altered purines, leading to increased 

comet formation if oxidative damage is present [4, 146], HT29 cells treated with FPG 
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enzyme showed higher DNA damage in comparison to the untreated cells, confirming 

the contribution of oxidative DNA damage. The protective effect of tempol and apocynin 

against insulin induced DNA damage and formation of a superoxide specific product 

after oxidation of the dye DHE further confirms that the genotoxicity was derived mainly 

from oxidative stress and mainly superoxide-mediated.  

Caco-2 as another models for colon cells and the primary rat colon cells which 

supporting the relevance for primary tissue as opposed to a more or less transformed 

cell line, also showed an induction of DNA damage upon treatment with insulin. 

 

5.2 Signaling pathway of insulin genotoxicity in colon cells 
 
Mechanistic pathway started from the insulin receptor 

In the investigation of the mechanistic pathway for insulin genotoxicity, we started from 

the binding of insulin to its receptor or to the insulin-like growth factor1 receptor (IGF-

1R); it is well known that insulin at high concentrations can bind to both receptors [134, 

147]. Two factors were considered in our investigations,; the insulin concentration and 

the duration of exposure. In 2005, Li et al  showed that insulin in concentrations of less 

than 5 nM binds selectively to the insulin receptor [147] which is in agreement with  our 

findings where HT29 showed an activation of the insulin receptor at 0.5 nM and higher 

after 2 hours treatments. The half-life time of the insulin receptor is a few minutes and 

the binding process starts after 1 minute of exposure to insulin [148], followed by 

internalization of the receptor-insulin complex by the surrounding membrane forming an 

endosome. Inside the cell insulin is digested by proteases and the receptors are 

recycled. The insulin bound to the receptor increases with rising concentrations of free 

hormone with a non-linear relationship [149] which explains the non-linear response in 

the pIR level measurement [149]. Thus, active insulin outside the cells has the chance 

to bind frequently to the receptor. This explains why the genotoxicity and the ROS 

production were observed over a duration of several hours. Based on observation and 

the effect of the IR blocker (HNMPA(AM)3), we can conclude that the insulin receptor is 

involved in the signaling mechanism of induction of DNA-damage by insulin. 
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Insulin-like growth factor 1 receptor interferes in the insulin-mediated genotoxicity 

Insulin concentrations higher than 5 nM enable insulin to bind to the IGF-1R receptor. 

This was observed to happen for duration of 4 hours after insulin addition as indicated 

by pIGF-1R level. The reduction in the genomic damage by using the IGF-1R blocker 

(PPP) confirmed contribution of the IGF-1 receptor in the signaling pathway. In 2010, 

Peak et al reported that activation of the IGF-1 receptor stimulates ROS production in 

colon cancer cells [150]. The link between the expression and activity of IGF-1 receptor 

and ROS was frequently discussed [151-152]. 

 

Activation of PI3 kinase and consequently AKT  

Binding of insulin to both receptors can activate PI3K either directly by binding to the 

p85 regulatory subunit, or indirectly via IRS1. The PI3K inhibitor wortmannin reduced 

the genomic damage induced by insulin, highlighting PI3K as a key enzyme in the 

signaling towards genomic damage. Insulin activates PI3K, which in turn promotes the 

synthesis of D3 PPIs. AKT binds to the plasma membrane-associated D3 PPIs via its 

PH domain, and undergoes phosphorylation at Ser473 (by PDK2) and Thr308 (by 

PDK1). Activated AKT translocates from the plasma membrane to the cytosol or to the 

nucleus, where it phosphorylates a wide array of downstream effector proteins [153]. 

The observed reduction in PI3K/AKT level after longer times of exposure could be due 

to the activation of p53 which leads to activation of PTEN the deactivator for PI3K and 

AKT [154].   

 

ROS production 

At the step of AKT activation, different succeeding pathways could lead to ROS 

production. One of them is the direct activation of mitochondria by AKT. AKT was 

shown for the first time to be localized in mitochondria; upon stimulation of different cell 

types with insulin, insulin-like growth factor-1, or stress, translocation of AKT to the 

mitochondria occur within minutes of stimulation, causing increases of nearly eight- to 

12-fold in mitochondrial AKT in its phosphorylated, active state [155]. Accordingly, we 

assumed that insulin activates AKT and enhances its translocation to the mitochondria 
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which leads to stimulation of ROS production especially in the first few minutes of 

insulin treatment. Our assumption is in agreement with the findings of other studies 

[155-156]. In fact, the mitochondrial inhibitor rotenone which reduced the insulin 

mediated effects and the reduced induction of damage in the mitochondri-deprived rho0 

cells support the contribution of the mitochondrial ROS in the signaling pathway. Rho0 

cells can be established from many cell lines to study the contribution of mitochondria, 

and have been widely used as a successful model system [157].  

On the other hand, insulin mediated ROS in cellular signaling have also been found to 

be formed by NADPH oxidase [159]. Several inhibitors of NADPH oxidases have been 

identified, although most of them so far have encountered difficulties for potential 

application in clinical practice. Apocynin, extracted from Picrorhizakurroa, prevents the 

formation of the active NADPH oxidase complex [160] and has been studied in a 

number of animal models of asthma, inflammation, and atherosclerosis [161]. However, 

apocynin is not specific for NADPH oxidases, but is rather a general flavoenzyme 

inhibitor or antioxidant [160, 162]. As described above, apocynin reduced the insulin 

induced effects. For a more specific inhibition of NADPH oxidase, 3-benzyl-7-(2-

benzoxazolyl)thio-1,2,3-triazolo[4,5-d]pyrimidine (VAS2870) was employed [163-164] , 

both inhibitors reduced the insulin induced DNA damage and both confirmed the 

involvement of NADPH oxidase enzyme in the signaling pathway. Overall, at least these 

two cellular sources (mitochondria and NADPH oxidase enzyme) contribute to the 

insulin induced elevated ROS levels.  

In a more detailed specification, Nox1 was found to be the responsible isoform for the 

insulin-induced oxidative stress leading to oxidative DNA damage in colon cells, Nox1 

can be activated by Rac1 which can be activated by AKT [59]. Another possibility which 

could be suggested in the present context is that the produced mitochondrial ROS leads 

to activation of PI3K followed by activation of AKT and Rac1 resulting in activation of 

Nox1; this suggestion would agree with findings of Lee et al [158]. 

Overall, I showed here for the first time that insulin induces genomic damage in 

mammalian colon cells through oxidative stress induction (fig. 94). 
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Figure 94:  Model of signaling pathways in insulin-induced DNA damage in colon. 
Binding of insulin to the IR and IGF-1R receptors activates PI3K followed by 
phosphorylation of AKT, resulting in activation of mitochondria and Rac1 which lead to 
activation of the Nox1 isoform endeding with production of reactive oxygen species 
which cause DNA damage.  
IR = insulin receptor, IGF-1R = insulin-like growth factor 1 receptor, PI3K = 
Phosphatidylinositide 3-kinase and AKT = protein kinase B, ROS = reactive oxygen 
species. 
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5.3 Insulin-mediated oxidative stress and DNA damage in mammalian   
      kidney cells 
 

A growing body of evidence found that having diabetes or signs of insulin resistance 

and hyperinsulinemia may lead to an increased risk of certain cancers. The connection 

is strongest among certain types of cancers, including kidney, pancreatic and colorectal 

[81, 89-90]. 

 

Insulin-induces DNA damage and oxidative stress in kidney cells 

In the present study, insulin-induced genomic damage and oxidative stress were 

investigated in kidney cells in vitro and in vivo and we found a significant induction of 

damage with ≥ 5 nM insulin in LLC-PK1 and HK2 cells. The genomic damage did not 

depend on the presence of serum in the culture medium or the amount of glucose within 

the tested glucose range. 

As mentioned before, the stimulation of ROS production can lead to deleterious effects 

on the cells and in agreement with this, superoxide radicals were produced by the 

tested cells in our investigation upon treatment with insulin. These radicals were 

scavenged by tempol, which acts mainly on superoxide anions [165]. The antioxidant 

flavoenzyme and mitochondrial inhibitor apocynin [162, 166] also reduced the ROS 

production. The damaging effects of ROS on DNA range from oxidized bases to single 

and double strand breaks [42]. Oxidized DNA bases as well as single or double strand 

breaks can result in gene or chromosomal mutations. In accordance with that, tempol 

and apocynin also prevented the genotoxicity of insulin in the comet assay and 

micronucleus frequency test, suggesting that the genotoxicity was superoxide-mediated.  

 

5.4 Signaling pathway for insulin genotoxicity in kidney cells 

Insulin at low concentrations (≤ 5 nM) is thought to react specifically with the insulin 

receptor [147] . Since we observed DNA-damage already at this concentration, it should 

be mediated by the insulin receptor. This idea was confirmed by different approaches, 

the measuring of pIR level in cells treated with insulin and the application of the insulin 

receptor antagonist HNMPA(AM)3. Both approaches revealed that insulin genotoxicity 
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starts with the activation of insulin receptor. However, this inhibitor may also interact 

with the IGF-1 receptor; since the two receptors are closely related tyrosine kinases 

[167-168].  

Insulin at high concentrations may also bind to the IGF-1 receptor [169]. Therefore, we 

measured the pIGF-1R level after insulin treatment and also applied a blocker for the 

IGF-1 receptor, PPP, which has been found to react only with the IGF-1 receptor 

specifically [170-172]. pIGF-1R level was found to be elevated and blocking of that 

receptor also reduced the observed effects. At least in vitro and at higher 

concentrations, both receptors and their pathways seem to be involved in the DNA-

damage induction.  

In both signaling pathways, PI3K is the key enzyme. The ability of the PI3K inhibitor 

wortmannin to reduce the insulin mediated ROS production and genomic damage 

further demonstrated the involvement of these pathways. In addition, insulin mediated 

phosphorylation of AKT through PI3K was demonstrated and p53 accumulation 

indicated elevated DNA-damage. 

PI3K was found to activate AKT which plays an important role in the mitochondrial ROS 

production. Mitochondria represent a cellular source of superoxide. Rotenone, a 

mitochondrial electron transport inhibitor, reduced the insulin mediated effects in LLC-

PK1 cells and the Rho0 cells showed reduction in the DNA damage upon the treatment 

with insulin. Therefore, mitochondria may also be involved in the pathway for induction 

of genotoxicity by insulin.  

One of the enzyme complexes known to produce superoxide are NADPH oxidases that 

are downstream of PI3K in the signaling pathway [115]. Again, the genotoxicity of 

insulin was reduced significantly by applying the NADPH inhibitor VAS2870.   

In kidney cells, we found that Nox4 is the responsible NADPH isoform for ROS 

production upon insulin stimulation, the same observations were reported in other 

studies [59, 173]. It is noted that there is evidence showing that NADPH oxidase, 

although a ROS producer itself, can be activated in turn by ROS molecules. In vascular 

smooth muscle cells and fibroblasts, Li et al. have demonstrated that exogenous 

hydrogen peroxide acutely activated cellular superoxide production via NADPH oxidase 
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[174]. Similar effects of hydrogen peroxide were also observed in isolated mouse 

pulmonary arteries [159, 175]. 

In this present study, it was assumed that the ROS production starts in the first few 

minutes by activation of the mitochondrial ROS production followed by activation of the 

NADPH oxidase isoform. A cross-talk between NADPH oxidase and mitochondria has 

been suggested [158]. The activation of both directions is resulting in DNA oxidization 

which was observed by the application of the FPG modification of the comet assay in 

HK2 cells. 

Treatment of primary cells with insulin in vitro also resulted in the induction of genomic 

damage, supporting the relevance for primary tissue as opposed to a more or less 

transformed cell line.  

 

5.5 Insulin-mediated oxidative stress and DNA damage in ZDF rat  
 

It is not trivial to test the influence of insulin in vivo without affecting the blood glucose 

level, because these two are physiologically corelated. However, elevated glucose level 

may also induce oxidative stress. The best way to keep glucose constant while insulin is 

elevated is to apply a hyperinsulinemic-euglycemic clamp which is considered the "gold 

standard" method for assessing insulin action in vivo. The clamp procedure was 

performed with healthy, lean ZDF rats. With normal and equal blood glucose levels in all 

animals, the high insulin animals showed higher ROS production and p53 accumulation 

in the kidneys than the normal insulin animals after the clamp procedure. This clearly 

supports the ability of insulin to induce oxidative stress and genomic stress in vivo. The 

kidney of obese diabetic ZDF rats also exhibited a similar increase in ROS and p53. In 

these diabetic rats, the increase may be due to the elevated glucose as well as to the 

increased insulin levels. Interpretation is much more difficult and effects cannot be 

attributed to insulin alone, but the model nevertheless is useful to demonstrate the 

elevation of ROS and genomic damage in diabetes type II.  

To evaluate the effect of treatment, the most common antidiabetic medication metformin 

was used to treat the ZDF placebo rat. Metformin is an insulin sensitizer to which the 

body reacts by lowering the insulin output and a decreasd insulin level is reached, as 
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well as a decreased blood sugar level. Many studies reported that metformin can 

reduce the cancer risk in diabetic and obese patients [134, 176-177], in the present 

study kidneys from ZDF rats (placebo and treated with metformin), a model for diabetes, 

obesity and hyperinsulinemia, were examined for oxidative stress and oxidized DNA 

expressed as 8-oxodG.  Many indirect informations exist indicating that oxidation of 

DNA can play a causal role in the carcinogenic process [133]. Because of its propensity 

for attack by reactive oxygen species, products of guanine oxidation have been the 

most extensively studied, and the mutagenic potential of guanine oxidation products has 

been well characterized [178]. 8-hydroxy-2-deoxyguanosine (8-oxo-dG), is the most 

prevalent promutagenic oxidation product of guanine, which can give rise to G-to-T 

transversion mutations in key genes known to be involved in the development of cancer 

[179-180]. Evidence has recently been published documenting the accumulation of 8-

oxo-dG in some tissues of knockout mice lacking 2 of the DNA glycosylases, a multifold 

increase in cancer rates in some of the tissues in which 8-oxo-dG accumulates; and a 

high frequency of occurrence, within those cancers, of the predicted G-to-T transversion 

mutations that activate an oncogene (K-ras) associated with cancer development in 

those tissues [181-182]. Collectively, these observations provide a strong basis for the 

hypothesis that the concentration of 8-oxo-dG in genomic DNA is a biomarker for 

cancer risk. The rationale underlying this hypothesis is that higher concentrations of this 

promutagenic lesion in cellular DNA favor higher rates of mutation and that higher rates 

of mutation over time increase the risk for cancer. 

In the two rat groups (ZDF placebo and ZDF treated with metformin) an elevation in the 

oxidative stress, 8-oxodG as well as the kidney tissular insulin level was observed in 

comparison to the healthy lean group. A similar insulin increase in plasma levels was 

observed in this model without the euglycemic clamp by other groups [183].  In this 

model, metformin not only reduced kidney tissular insulin levels but also reduced 

oxidative stress and oxidative DNA-damages in comparison to ZDF obese rats treated 

with placebo. The male ZDF rat model mimics the complex phenotype of patients with 

type II diabetes, meaning that these rats also presented hyperglycemia. However, no 

literature data are available for comparison of our oxidative stress or genomic damage 

results in this model while data from diabetic patients are available which showed a 
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significant increase in urine and plasma 8-oxodG level in comparison with the healthy 

individuals [184-186]. 

To sum up this part, this study showed for the first time that insulin induces genomic 

damage in kidney cells (fig. 95). The lowest tested and lowest active concentration in 

vitro was 5 nM in kidney cells. The concentration of insulin in the plasma of the rats 

under clamp reached 1.67 nM (high insulin group; up to 2.3 nM in individual animals). In 

vitro, the tested concentration was applied once, but in vivo the measured 

concentrations represent blood levels of circulating fresh insulin over some time. 

Therefore, an exact comparison between the concentrations of the in vitro and the in 

vivo situation cannot yet be made based on our experiments, but the order of magnitude 

in which the in vitro effects were observed can most likely be reached under some 

conditions of hyperinsulinemia.  
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Figure 95:  Model of signaling pathway in insulin-induced DNA damage in kidney cells. 
Binding of insulin to the IR and IGF-1R receptors activates PI3K which activates AKT and 
Nox4, AKT activation resulting in activation of mitochondria, the two pathways ending 
with production of reactive oxygen species which cause DNA damage.  
IR = insulin receptor, IGF-1R = insulin-like growth factor 1 receptor, PI3K = 
Phosphatidylinositide 3-kinase and AKT = protein kinase B, ROS = reactive oxygen 
species. 
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5.6 Insulin-induced DNA damage in HL60 , cultured peripheral   
      lymphocyte and type II  diabetic patients’ lymphocytes 
 

In the hemopoietic system, lymphocytes are the most common cells which are 

examined for the genomic damage. Many studies differentiated between healthy 

individuals and patients through examination of their peripheral lymphocytes, especially 

in cancer patients [31, 187-188],   

In this study, the effect of insulin was investigated in HL60 human premyelocytic cells as 

well as in cultured human lymphocytes. The results showed that insulin can induce 

oxidative stress and genomic damage in the hemopoietic system cells. In this study as 

well as in other studies, high frequency of micronucleus formation in the peripheral 

lymphocytes of the obese as well as the diabetic patients who exhibit both 

hyperinsulinemia and hyperglycemia was observed [189-190]. To abolish the influence 

of glucose, peripheral lymphocytes isolated from healthy persons were treated with 

insulin in vitro and a DNA damage was observed under the treatment conditions which 

agrees with observations by Djelic [191]. In humans, a condition known as polycystic 

ovarian syndrome (PCOS) is associated with elevated insulin, but the affected 

individuals exhibit normal glucose levels. A higher genomic damage in the peripheral 

lymphocytes of such patients, detected as elevated micronucleus frequency and 

hydroxydeoxyguanosine level in plasma, was found [192-193], which further supports 

our findings. 

 

Normal healthy human plasma insulin concentrations are in the order of 0.04 nM after 

overnight fasting and increase to less than about 0.2 nM after a meal. 

Pathophysiological levels can reach 1 nM and can stay above 0.2 nM for the majority of 

the daytime which is close to the active insulin concentrations determined in the present 

study. Whether the observed effects also occur in vivo and whether they actually initiate 

or promote tumor formation remains to be determined. However, if proof of that can be 

obtained, the experiments with inhibitors indicate chances for pharmacological 

intervention applying antioxidants or enzyme inhibitors. It will not be the aim to reduce 

ROS in any case or as much as possible because ROS have now been recognized as 

important signaling molecules and participants in immune defense, but a reduction to 
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physiological levels instead of pathophysiological levels in the context of a disease 

associated with ROS overproduction might be beneficial.  

Although the mechanisms of insulin mediated DNA damage still require further 

confirmation for the in vivo models or the human situation, I investigated for the first time 

that pathophysiological levels of insulin can cause oxidative stress and DNA damage 

which might render a factor in the initiation and /or promotion of malignancies. 
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6. Summary 

Hyperinsulinemia, a condition with excessively high insulin blood levels, is related to an 

increased cancer incidence. Diabetes mellitus, metabolic syndrome, obesity and 

polycystic ovarian syndrome are the most common of several diseases accompanied by 

hyperinsulinemia. Since an elevated cancer risk especially for colon and kidney 

cancers, was reported for those patients, we investigated for the first time the induction 

of genomic damage by insulin mainly in HT29 (human colon cells), LLC-PK1 (pig kidney 

cells), HK2 (human kidney cells) and peripheral lymphocytes, and to confirm the 

genotoxicity of insulin in other cells from different tissues. To ascertain that the insulin 

effects were not only limited to permanent cell lines, rat primary colon, kidney, liver and 

fatty tissue cells were also studied. To connect the study and the findings to in vivo 

conditions, two in vivo models for hyperinsulinemia were used; Zucker diabetic fatty rats 

in a lean and diabetic state infused with different insulin concentrations and peripheral 

lymphocytes from type 2 diabetes mellitus patients. 

First, the human colon adenocarcinoma cells (HT29) showed significant elevation of 

DNA damage using comet assay and micronucleus frequency analysis upon treatment 

with 5 nM insulin in standard protocols. Extension of the treatment to 6 days lowered the 

concentration needed to reach significance to 0.5-1 nM. Insulin enhanced the cellular 

ROS production as examined by the oxidation of the dyes 2´,7´-

dichlorodihydrofluorescein diacetate (H2DCF-DA) and dihydroethidium (DHE). The FPG 

modified comet assay and the reduction of damage by the radical scavenger tempol 

connected the insulin-mediatedDNA damage to ROS production. To investigate the 

sources of ROS upon insulin stimulation, apocynin and VAS2870 as NADPH oxidase 

inhibitors and rotenone as mitochondrial inhibitor were applied in combination with 

insulin and all of them led to a reduction of the genomic damage.  

Investigation of the signaling pathway started by evaluation of the binding of insulin to 

its receptor and to the IGF-1 receptor. The results showed the involvement of both 

receptors in the signaling mechanism. Following the activation of both receptors, PI3K 

activation occurs leading to phosphorylation of AKT which in turn activates two 

pathways for ROS production, the first related to mitochondria and the second through 
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activation of Rac1 , resulting in the activation of Nox1. Both pathways could be activated 

through AKT or through the mitochondrial ROS which in turn could activates Nox1. 

Studying another human colon cancer cell line, Caco-2 and rat primary colon cells in 

vitro confirmed the effect of insulin on cellular chromatin. We conclude that 

pathophysiological levels of insulin can cause DNA damage in colon cells, which may 

contribute to the induction or progression of colon cancer.  

Second, in kidney cells, insulin at a concentration of 5 nM caused a significant increase 

in DNA damage in vitro. This was associated with the formation of reactive oxygen 

species (ROS). In the presence of antioxidants, blockers of the insulin and IGF-1 

receptors, and a phosphatidylinositol 3-kinases (PI3K) inhibitor, the insulin mediated 

DNA damage was reduced. Phosphorylation of AKT was increased and p53 

accumulated. Inhibition of the mitochondrial and NADPH oxidase related ROS 

production reduced the insulin mediated damage. In primary rat cells insulin also 

induced genomic damage. 

HK2 cells were used to investigate the mechanistic pathway in the kidney The signaling 

is identical to the one in the colon cells untill the activation of the mitochondrial ROS 

production, because after the activation of PI3K activation of Nox4 occurs at the same 

time across talk between mitochondria and Nox4 activation has been suggested and 

might play a role in the observed effects.  

In the in vivo model, kidneys from healthy, lean ZDF rats, which were infused with 

insulin to yield normal or high blood insulin levels, while keeping blood glucose levels 

constant, the amounts of ROS and p53 were elevated in the high insulin group 

compared to the control level group. ROS and p53 were also elevated in diabetic obese 

ZDF rats. The treatment of the diabetic rats with metformin reduced the DNA oxidation 

measured as 8-oxodG as well as the ROS production in that group. 

HL60 the human premyelocytic cells and cultured lymphocytes as models for the 

hemopoietic system cells showed a significant induction for DNA damage upon 

treatment with insulin. The diabetic patients also exhibited an increase in the 

micronucleus formation over the healthy individuals. 

In the present study, we showed for the first time that insulin induced oxidative stress 

resulting in genomic damage in different tissues, and that the source of the produced 
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ROS differs between the tissues. If the same mechanisms are active in patients, 

hyperinsulinemia might cause genomic damage through the induction of ROS 

contributing to the increased cancer risk, against which the use of antioxidants as well 

as mitochondrial and NADPH oxidase inhibitors might exert protective effects with 

cancer preventive potential under certain conditions. 

Normal healthy human plasma insulin concentrations are in the order of 0.04 nM after 

overnight fasting and increase to less than about 0.2 nM after a meal. 

Pathophysiological levels can reach 1 nM and can stay above 0.2 nM for the majority of 

the daytime yielding condictions close to the insulin concentrations determined in the 

present study. Whether the observed effects also occur in vivo and whether they 

actually initiate or promote tumor formation remains to be determined. However, if proof 

of that can be obtained, our experiments with inhibitors indicate chances for 

pharmacological intervention applying antioxidants or enzyme inhibitors. It will not be 

the aim to reduce ROS in any case or as much as possible because ROS have now 

been recognized as important signaling molecules and participatants in immune 

defense, but a reduction to physiological levels instead of pathophysiological levels in 

the context of a disease associated with ROS overproduction might be beneficial.  
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7. Zusammenfassung 

Hyperinsulinämie, ein Zustand mit sehr hohen Blutspiegeln an Insulin, ist mit einer 

erhöhten Krebsinzidenz verbunden.  Diabetes mellitus, das metabolische Syndrom, 

Adipositas und das polyzystische Ovarialsyndrom sind die häufigsten Krankheiten, die 

mit Hyperinsulinämie einhergehen. Da ein erhöhtes Krebsrisiko insbesondere für 

Krebserkrankungen des Dickdarms und der Niere beobachtet wurde, untersuchten wir 

erstmals die Induktion von Genomschäden durch Insulin in HT29-Zellen (humane 

Dickdarmzellen), LLC-PK1-Zellen (Nierenzellen vom Schwein), HK2-Zellen (humane 

Nierenzellen) und peripheren humanen Lymphozyten. Um die Gentoxizität von Insulin 

zu bestätigen, wurden auch andere Zellen aus unterschiedlichen Geweben untersucht. 

Um sicherzustellen, dass die Effekte durch Insulin nicht auf permanente Zelllinien 

beschränkt sind, wurden außerdem primäre Rattenzellen aus Dickdarm, Niere, Leber 

und Fettgewebe untersucht. Um die Befunde auf die in-vivo-Situation übertragen zu 

können, kamen zwei Hyperinsulinämie-Modelle zum Einsatz: mit Insulin infundierte 

ZDF-Ratten (Zucker Diabetic Fatty Rats) und periphere Lymphozyten von Patienten mit 

Diabetes Typ 2. 

Zuerst konnte in humanen Adenokarzinomzellen des Dickdarms (HT29) eine 

signifikante Erhöhung des DNA-Schadens in Standard-Protokollen des Comet Assays 

und des Mikrokerntests nach Behandlung mit 5 nM Insulin gezeigt werden. Bei 

Verlängerung der Behandlungszeit auf 6 Tage wurden signifikante Effekte bereits ab 

0,5 nM beobachtet. Insulin erhöhte die zelluläre ROS-Produktion, die als Oxidation der 

Farbstoffe 2‘,7‘-Dichlorodihydrofluoresceindiacetat (H2DCF-DA) und Dihydroethidium 

(DHE) nachgewiesen wurde. Befunde aus dem FPG-modifizierten Comet Assay und 

das Ergebnis, dass der Radikalfänger Tempol  die Zellen schützte  stellen die 

Verbindung zwischen Insulin-verursachtem  DNA-Schaden und ROS produktion her.  

Um die ROS-Quelle nach Stimulation mit Insulin zu untersuchen, wurden Apocynin und 

VAS2870 als NADPH-Oxidase-Inhibitoren und Rotenon als Inhibitor der Mitochondrien 

mit Insulin kombiniert. Alle diese Stoffe reduzierten den Genomschaden. 

Zur Charakterisierung der Signalwege wurde zunächst die Bindung von Insulin an 

seinen Rezeptor und an den IGF1-Rezeptor untersucht. Beide Rezeptoren sind an der 

Signaltransduktion beteiligt. Nach Aktivierung der Rezeptoren wird die PI3K aktiviert, 
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dies führt zur Phosphorylierung von AKT. Dadurch werden zwei Wege zur ROS-

Produktion aktiviert, der erste involviert die  mitochondriale Atmungskette , der zweite 

agiert durch Rac1-Aktivierung. Letzteres resultiert in der Aktivierung der NADPH-

Oxidase Isoform Nox1.  

Der Effekt von Insulin auf zelluläres Chromatin konnte in einer weiteren humanen 

Dickdarmkrebs-Zelllinie und in primären Dickdarmzellen der Ratte in vitro bestätigt 

werden. Wir schlussfolgern aus diesen Ergebnissen, dass pathophysiologische Insulin-

Blutspiegel DNA-Schäden im Dickdarm verursachen können. Dies könnte zur Induktion 

oder Progression von Dickdarmkrebs beitragen. 

Weiterhin verursachte Insulin bei einer Konzentration von 5 nM einen signifikanten 

Anstieg von DNA-Schäden in vitro. Dies war verbunden mit der Bildung von reaktiven 

Sauerstoffspezies (ROS). Bei Anwesenheit von Antioxidantien, von Inhibitoren des 

Insulin-Rezeptors bzw. des IGF-1-Rezeptors und eines Phosphatidylinositol-3-

Kinase(PI3K)-Inhibitors war der Insulin-vermittelte DNA-Schaden reduziert. 

Phosphorylierung von AKT war erhöht und das Protein P53 akkumulierte. Inhibierung 

der ROS-Produktion der Mitochondrien bzw. der NADPH-Oxidase reduzierte den 

Insulin-vermittelten Schaden. In primären Rattenzellen induzierte Insulin ebenfalls 

Genomschaden. 

HK2-Zellen wurden zur Untersuchung der mechanistischen Signalwege in der Niere 

eingesetzt. Die Signalwege entsprechen denen der Dickdarmzellen bis zur Aktivierung 

der ROS-Produktion in den Mitochondrien. Als Folge der Aktivierung von PI3K wird 

Nox4 aktiviert. Eine Verbindung zwischen Mitochondrien und Nox4-Aktivierung wird 

vorgeschlagen.  

Als in-vivo-Modell wurden gesunde ZDF-Ratten mit Insulin infundiert, um normale bzw. 

erhöhte Insulin-Blutspiegel bei konstanten Glukose-Blutspiegeln zu erreichen. In den 

Nieren war der Gehalt an ROS und an P53 in der Gruppe mit erhöhten Insulin-

Blutspiegeln im Vergleich zur Kontrolle erhöht. ROS und P53 waren ebenfalls in den 

diabetischen und adipösen ZDF-Ratten erhöht. Die Behandlung der diabetischen 

Ratten mit Metformin reduzierte die DNA-Oxidation, die in Form von 8-oxodG bestimmt 

wurde, und die ROS-Produktion in dieser Gruppe. 
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HL60-Zellen und kultivierte Lymphozyten als Modelle für das hämatopoetische System 

zeigten eine signifikante Induktion von DNA-Schäden nach Behandlung mit Insulin. 

Diabetes-Patienten zeigten eine erhöhte Mikrokern-Bildung im Vergleich zu gesunden 

Probanden. 

In der vorliegenden Studie konnten wir erstmals zeigen, dass Insulin-induzierter 

oxidativer Stress zu Genomschaden führt, und dass in unterschiedlichen Geweben 

ROS aus verschiedenen Quellen stammten. Falls diese Mechanismen auch in 

Patienten auftreten, könnte Hyperinsulinämie durch ROS-Induktion zu Genomschaden 

führen und damit zu einem erhöhten Krebsrisiko beitragen. Unter bestimmten 

Bedingungen könnten Antioxidantien bzw. Inhibitoren der Mitochondrien oder der 

NADPH-Oxidase protektive Effekte ausüben. 
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