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INTRODUCTION 

In most areas of human development, the majority of research findings 
have been based on cross-sectional designs. Such studies focus on 
developmental differences among various age groups and ignore 
developmental changes within individuals over age, which means that 
they cannot be considered tobe truly developmental (cf. McCall, 1977; 
W ohlwill, 1980). Changes occurring over time within organisms can be 
assessed only via longitudinal approaches. 

The main theme of this chapter is a discussion of methodological 
issues of longitudinal studies in the area of motor development. In my 
view, most methodological issues related to the longitudinal assessment 
of motor development can be easily generaüzed to other areas of human 
development. Thus, the reader should keep in mind that, while the 
various methodological problems considered in this chapter are always 
ünked to topics of motor development, they are not confined to this 
area of research. 

A first general problern concems the defintion of a longitudinal 
study. As I noted elsewhere (Schneider, 1989), the term longitudinal 
does not describe a single method but a large variety of methods. The 
spectrum of methods ranges from single case studies in time-series 
arrangements to broad-band panel designs including numerous meas­
urement points and thousands of subjects. The only common denomi­
nator of longitudinal researcb is variation of time and repeated 
observation of a given entity (cf. Baltes & Nesselroade, 1979). 

A closer Iook at the contributions to this book reveals that the 
diversity of longitudinal approacbes is also well represented in tbe 
domain of motor development. For example, it seems obvious that 
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longitudinal studies on the emergence of fetal movements (cf. Prechtl, 
Chapter 3, this volume) take place within a limited period of time. 
Sirnilarly, longitudinal assessments of spoon use in small children (see 
Connolly & Dalgleish, Chapter 12, this volume) or studies on the 
development of early motor functions (cf. von Hofsten, Chapter 7, 
Woollacott, Chapter 6, this volume) usually do not span time intervals 
larger than a few months. In contrast, longitudinal studies concerning 
the irnplications of early risk factors on subsequent motor development 
typically require designs including large numbers of subjects and 
variables as weil as time schedules spanning many years (see Largo, 
Kundu & Thun-Hohenstein, Chapter 16, this volume; Michelssou & 
Lindahl, Chapter 17, Touwen, Chapter 2, this volume). 

Given these definitional problems, the methodological issues dis­
cussed in the remainder of this chapter may be relevant for some but 
not for all types of longitudinal studies. Before entering this discussion, 
I want to summarize the structure of this chapter. As a first step, 
possible rationales for longitudinal research are described briefly. 
According to these rationales, two major types of longitudinal study on 
motor development can be identified. The methodological issues 
discussed in the next sections of this chapter tap two explanatory 
statistical approaches that may not be generally weil known but that I 
consider to be relevant for longitudinal research. Illustrative examples 
from our own Munich Longitudinal Study on the Genesis of Individual 
Competencies (LOGIC; see Weinert & Schneider, 1987, 1989) will be 
used to demoostrate the advantages of these relatively new statistical 
tools, and an attempt will be made to show how these approaches can 
be applied to the longitudinal studies presented in this volume. 

BASIC RATIONALES FOR LONGITUDINAL 
RESEARCH 

According to Baltes & Nesselroade (1979), the basic goals of lon­
gitudinal enterprises concern both the description and the explanation 
of human development. There are three rationales that relate to the 
description of development: (1) identification of intraindividual change; 
(2) identification of interindividual differences in individual change, and 
(3) the identification of interrelationships among classes of behaviour 
during development. Two further goals concem the explanation of 
development: (4) analysis of causes of intraindividual change, and (5) 
the analysis of causes of interindividual differences in intraindividual 
change. I now add another goal related to the explanation issue and not 
explicitly included in this classification system, namely (6) the predic­
tion of individual differences in one domain from individual differences 
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in another domain. Studies illustrating this category include, for 
example, longitudinal projects exploring the impact of early risk factors 
(domain A) and later motor skills (domain B). These studies are clearly 
longitudinal in perspective in that the same individuals are tested 
repeatedly but do not necessarily include aspects of intraindividual 
change in a specific variable. 

There seems to be a general agreement in the developmentalliterature 
that two basic types of longitudinal enquiry can be used to reach the 
five goals listed above (cf. Appelbaurn & McCall, 1983). One ba~c 
aspect of longitudinal enquiry concerns what Wohlwill (1980) called the 
'developmental function'; that is, the average value of a dependent 
variable plotted over time. Typical examples drawn from longitudinal 
research on motor development include growth curves concerning the 
development of speed or physical strength and depicting the continuity 
versus discontinuity of these variables over time. 

The second realrn of longitudinal enquiry concerns the issue of 
individual differences: the question here is whether individual subjects 
maintain approximately the same relative rank ordering within their 
group at one age as they do at another (McCall, 1977). In this type of 
enquiry, the rnajor issue is how stable or unstable individual differences 
between individuals remain over time. Note that the issue of stability vs 
instability of individual differences over time is conceptually 
iodependem from the issue of continuity vs discontinuity of a develop­
mental function: for exarnple, it is tbeoretically possible that a monoto­
nic, linear increase in the average dependent variable over time is 
accornpanied by a high degree of instability of individual differences in 
this variable. More specifically, the fact that a linear increase in motor 
coordination skills can be found over the preschool years does not 
exclude the possibility that individual differences in performance are not 
preserved over this time interval. As noted by Appelbaum & McCall 
{1983), tbe relationship between both concepts is always an empirical 
question. Longitudinal researchers have often overlooked the fact tbat 
the developmental function and the stability of individual differences 
over time represent two separate aspects of the same problern (see 
Hopkins, Beek & Kalverboer, Chapter 21, this volume, for a more 
systematic treatment of this topic). 

IMPLICA TIONS FOR METHODOLOGY 

How do the different rationales and types of enquiry relate to the gross 
classification of longitudinal studies on motor development as described 
above? That is to say, what are the implications for the small time scale, 
microanalytical longitudinal studies typically conducted within a few 
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months as compared to !arge time scale longitudinal studies on motor 
development usually spanning several years? The answer is certainly 
unsatisfactory for those researchers dealing with the large-scale studies 
because the possible types of data analysis are more restricted and 
methodological problems are more apparent in these studies than in 
microanalytical studies. 

In principle, rationales (1) to (5) described above can be easily 
realized in the latter type of study. As these studies usually include 
identical measures assessed repeatedly over relatively short periods, 
descriptive as weil as explanatory analyses of intraindividual change 
over time (i.e. assessments of the developmental function) can be 
conducted without problems. The precondition for the analysis of 
change scores is that the same measurement instruments are used over 
time, a criterion certainly met in most microanalytical studies. Mor­
eover, analyses referring to the individual difference approach which 
emphasize the stability Iinstability issue are equally possible. 

The situation is more complicated in the case of large-scale studies 
spanning several years. Many test instruments used in longitudinal 
studies with children are designed for only a restricted age range. As a 
consequence, parallel measures tapping the same theoretical construct 
(e.g. motor coordination skills) for different age periods are usually 
included in long-term longitudinal studies. Although Goldstein (1979) 
discussed the possibility of constructing a common scale for different 
instruments by using various transformation procedures, this allows 
only for the assessment of relative change; that is, for a comparison of 
subgroups of a given population. There is no doubt that the use of 
different measures tapping the same construct severely restricts the 
analysis of the developmental function. 

But even if the same measurement instrument is used on each 
occasion, its theoretical meaning may differ (cf. Magnusson, 1981). A 
variable may appear to be the same at various ages when in fact it is not. 
For example, there is little doubt that crawling has a different meaning 
for a 9 month old child than it has for the same child at age 4 years. 
Thus, assessing long-term intraindividual change in this variable would 
not make much sense. Whereas the same instrument can be used at all 
ages with certain measurements such as height or weight, this is not true 
for the majority of measures concerning motor development in children. 

It appears, then, that large-scale longitudinal studies on motor 
development are of only limited value regarding the assessment of 
intraindividual changes over time (i.e. the developmental function). 
Researchers involved in large-scale studies need to focus on interin­
dividual differences. 

In the remainder of this chapter, I concentrate on explanatory 
approaches to the study of the developmental function as weil as to the 
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analysis of interindividual differences. The growth curve rnodels de­
scribed in the next section tap aspects of intraindividual change and are 
particularly useful for rnicroanalytical studies on motor developrnent. 
On the otber band, structural equation rnodelling procedures (to be 
discussed in tbe next section) refer mainly to tbe interindividual 
differences approach and tberefore seem particularly relevant to large­
scale studies on motor development. 

THE ANALYSIS OF INTRAINDIVIDUAL CHANGE 
OVER TIME 

As described in more detail by Rogosa (1988), there are numerous 
mytbs about longitudinal research that have been addressed and 
debunked in recent rnethodological studies. One fundamental mis­
understanding concems the measurernent of intraindividual change over 
time, a misunderstanding that has plagued tbe social sciences for rnore 
than two decades. It is necessary to surnrnarize tbis problern briefly 
before moving towards tbe analysis of intraindividual change using 
sopbisticated statistical tools. 

Problems with measuring change 

Since the dassie article by Cronbach & Furby (1970), researchers using 
longitudinal studies have been wamed repeatedly of tbe hazards of 
change scores. These warnings did not refer to the use of change scores 
in group analyses, for example, analyses of variance (ANOVAs): it can 
be demonstrated easily that repeated measures of ANOV As using 
pretest-posttest raw scores and analyses of variance based on posttest­
pretest change scores yield identical results (cf. Maxwell & Howard, 
1981; Nunnally, 1982). Rather, tbe warnings concemed tbe use of 
difference scores for tbe assessment of individual change. According to 
a widespread belief, individual change scores are unreüable, rnisleading 
and unfair ( cf. Rogosa, 1988). 

The good news for longitudinal researchers struggüng with tbe 
problern of how best to assess individual change over time is that such 
problems have been overestimated in the past. Methodological papers 
written in defence of the difference score have accumulated over tbe last 
few years (cf. Rogosa, Brandt & Zimowski, 1982; Bryk & Raudenbush, 
1987; Rogosa, 1988). In these papers, it was shown that difference 
scores represent unbiased estimates of true change, and that the 
traditional objections (e.g. unreliability, unfaimess, bias tbrough re­
gression towards the mean) do not generally hold. 

For example, Rogosa et al. (1982) demonstrated tbat traditional 
tabulations of the reüabiüty of the difference score (e.g. Linn & Sünde, 
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1977) are incomplete. More comprehensive analyses revealed that the 
reliability of the difference score is not generally low: low reliability 
scores will be obtained only when individual growth rates vary little 
across subjects. Reliability indicates the accuracy with which subjects 
can be ranked on the growth rate function on the basis of their 
difference scores, whether the estimates of the growth rate function are 
precise or not. The important implication is that low reliability does not 
necessarily indicate Iack of precision. In other words, low reliability of 
difference scores does not predude meaningful assessment of individual 
change. The reliability of the difference score is respectable when 
considerable individual differences in rates of intraindividual change are 
present (see Rogosa & Willett, 1983). 

There is little doubt that the importance of 'regression towards the 
mean' effects for the study of change has been similarly overestimated in 
the Iiterature (for critical reviews, see Nesselroade, Stigler & Baltes, 
1980; Rogosa, 1988). The traditional meaning of these effects is that, on 
average, one is doser to the mean at time 2 than at time 1. Nesselmade 
et al. (1980) however, provided evidence that the common belief that 
measurement error necessarily produces a regression effect that makes it 
impossible or very difficult to measure individual change properly is not 
correct in the case of multiwave data. 

In summary, the often cited defi.ciencies of the difference score are 
more illusory than real. lt should be noted, however, that several 
possibilities for improving the difference score do exist. The most 
common one is to supplement the information on a single individual by 
the information on all individuals in a given sample: in this case, 
between-person information is used to improve the estimate of intrain­
dividual change (see below). 

In the following, the focus will be on Bayesian methods applied to 
the estimation of individual growth curves which represent an impor­
tant component of more recent models of individual growth (for a 
detailed discussion of other improved difference scores, see Rogosa et 
al., 1982). In particular, Bryk & Raudenbush's (1987) two-stage model 
of individual growth seems to represent one of the most prornising 
approaches to the study of change. The rationale of this procedure is 
provided in the next section. 

Application of hierarchical linear models to assessing 
change 

Recent developments in the statistical theory of hierarchical linear 
modelling (HLM) enable an integrated approach for studying various 
aspects of individual change. The model presented by Bryk & Rauden­
bush (1987) allows the assessment of the structure of growth, examining 
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the reliability of instruments for measuring both initial status and 
change, exploring correlates of entry status and change, and for testing 
hypotheses about the effects of theoretically relevant backgrouod 
variables. Because of its two-stage character, this conceptuaüzation of 
growth is usually referred to as a hierarchical linear model. At stage 1, 
each individual's observed developmeotal chaoges are conceived of as a 
function of an individual growth curve or trajectory plus random error. 
At stage 2, the assumption is that the individual parameters deterrnining 
the individual growth curve vary as a function of certain characteristics 
of the individual's background or environment (e.g. sex or social dass). 

The within-subject model estimated at stage 1 can be represented as a 
polynomial of any degree. For the sake of clarity, I chose a linear 
growth rate model to illustrate the logic of the statistical estimation 
procedure of HLM. See Bryk & Raudenbush (1987) for a more detailed 
aod technical illustration. Accordingly, the within-subject model equa­
tion explaining the individual outcomes at time i becomes: 

(20.1) 

for i = 1 to n subjects observed on t occasions. The parameter a;. 

represents the age of subject i at time t, :Ir; denotes the growth curve 
parameter for subject i, and R;, is the random error, assumed to be 
normally distributed with a mean of zero and some covariance structure 
S. Note that the intercept n 0; and the linear rate of growth n 1; deterrnine 
the growth curve for each subject. 

In a next step, a between-subject model is formulated to represent the 
variation of growth parameters across individuals, thereby exploring 
whether the individual growth parameters are a function of measures of 
background characteristics. The simpüfied between-subjects model 
based on the assumpcion of linear growth rates and including just one 
background variable, X;, is then given by: 

(20.2a) 

aod 

(20.2b) 

In the equations (20.2a) aod (20.2b), the parameters U0; and U 1; 

represent random increments to the individual growth parameters. 
As Bryk & Raudenbush (1987) point out, combining equations (20.1) 

and (20.2) yields a single linear model, 

(20.3) 

with 

(20.4) 
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Equation (20.3) represents a Standard linear regression model with an 
intercept, ß00 , and three predictors, namely the between-subjects 
variable, X;; age, ait ; and the interaction term, X ;a;, . The new error 
term, e;" consists of two different components: one component depends 
on the random increments to the individual growth parameters, 
U0 ; + U 1;a;" and the other component represents the random error, R;,. 

As regards the model assumptions, it is important to note that both 
the individual outcomes, Yit, and the growth parameters, 1tJ.; are 
assumed to be normally distributed. In order to facilitate measurement 
of change, a common metric of the outcome data collected at each 
measurement point, in logits, is generated by HLM. As growth curve 
modeHing requires that the outcome data collected at each time point be 
measured on a common metric, so that changes across time reflect 
growth and not changes in measurement scale, item response theory is 
used to calculate a logit function which models the Iogs of ratios of 
multinomial probabilities. 

A detailed description of the model estimation procedure is given by 
Bryk & Raudenbush (1987). lts logic is as follows. First, an individual's 
growth rate (n1) is estimated by means of ordinary Ieast-squares 
procedures. Next, a weighted Ieast-squares regression procedure is used 
to estimate the between-subject model, yielding a second estimate of 
individual growth (n2) based on the value of each subject's background 
variable. In a last step of analysis, empirical Bayes estimation of 
individual growth curves provides a composite estimator (n3) which is 
an optimally weighted average of 1t 1 and 1t2 • The weights of this 
estimator, 

W; = T /(T +V;), 

have substantive interpretability in that they represent only the ratio of 
the parameter variance in the growth rates, T, to the total variance, 
T +V; (V; is the error variance). This ratio is analogous to a reliability 
coefficient, where the 'true score' variance (T) is compared to the 
observed score variance (T + V;). 

As pointed out by Bryk & Raudenbush (1987), the influence of an 
individual's time-series data (as captured by the within-subject model) 
on the composite Bayes estimator thus depends on the reliability of the 
individual outcome estimate. When this is highly reliable, the HLM 
estimate for an individual's growth rate will depend on the individual 
growth curve data. When this is unreliable, however, the HLM estimate 
will be based primarily on the background data. Thus, HLM uses 
whatever strength exists in the data to form its composite Bayes 
estimator, typically yielding smaller mean squared errors than do 
estimators based on data either from individuals or from groups. 
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To demoostrate the possibilities of HLM, an illustrative example that 
is based on data collected in LOGIC (cf. Weinen & Schneider, 1987, 
1989) will be presented. 

Illustrative example 

The sample of the LOGIC study consists of about 200 children who 
were first tested in late 1984 when they were almost 4 years old. Since 
then, children have been seen on a regular basis every year, with an 
average time interval between adjacent measurement points of ap­
proximately 12 months. The test instruments administered in these 
sessions include various measures of intellectual development such as 
tests of verbal and non-verbal intelügence, and experimental tasks 
assessing memory skills. Measures assessing children's social com­
petencies (e.g. social anxiety, self-concept, moral judgement, and 
role-taking abilities) were additionally included to explore possible 
interrelationships between aspects of intellectual and social com­
petencies in early childhood. 

Moreover, a test of motor abilities (MOT 4-6; see Zimmer & 
Volkamer, 1984) was also given during each of the first 3 years of the 
study, a measure of central relevance for our illustrative example. As 
emphasized by the test authors, the MOT 4-6 attempts to assess a 
broad variety of motor skills including sense of balance, agility, 
accuracy of movements, and coordination skills. The test was ad­
ministered individually, and scores of 0, 1 and 2 could be given for each 
of the 17 items, thus yielding a maximum score of 34. A total of 174 
children was tested on all three occasions, which were approximately 
equally spaced throughout the 3 years of assessment. These data are 
considered in the following analyses. 

In addition to the motor test data, a few background variables are also 
included in the growth curve analyses. First descriptive analyses 
concerning the developmental function of motor skills revealed that 
changes over time seemed to vary as a function of sex and age group 
(split according to the median of the age distribution). Fig. 20.1 shows 
the mean developmental changes over time, as a function of both sex 
and age group. As seen in Fig. 20.1, sex differences were not remarkable 
at the age of 4 years (wave 1) but seem to increase over the years, with 
girls improving at a faster rate than boys. On the other hand, mean 
differences between the subsamples of younger and older subjects (mean 
age difference: 5 months) were pronounced at the very beginning of the 
study and appeared to fade out later. 

The last variable to be considered as a background characteristic was 
verbal IQ as measured by the Hannover-Wechsler lntelügence Test for 
Preschool Children (HA WIV A; Eggen, 1978). As several items of the 
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Fig. 20.1. Developmental changes in motor task sum scores as a function of sex 
(top) and age (bottom) group. 

MOT 4-6 required very detailed instructions not easy for preschoolers 
to understand, our assumption was that verbal comprehension skills 
could influence performance on the MOT 4-6. Indeed, verbal in­
telligence (sirnilar to age and sex) bad significant bivariate relations with 
early motor skills and with invidicual change in this variable. As a 
consequence, these variables were used in the between-subjects model 
of our illustrative example. 

Examining individual growth 
First in the HLM analysis the degree of the polynomial to be fitted has 
tobe identified. For the sake of clarity, I consider only the simple linear 
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Table 20.1. Estimated mean growth parameters (/ixed effects) 

Mean growth 
parameter Standard 

Dependent variable estimator error z p 

Motor Sum Score 
lntercept 15.15 0.90 16.87 < 0.01 
Linear trend 3.70 0.57 6.49 < 0.01 

Table 20.2. Estimated variance components (random effects) 

Estimated 

Dependent variable 
par~eter 

x2 d.f vanance p 

Motor sum square 
lntercept 10.39 691.30 172 < 0.01 
Linear trend 0.41 149.22 173 < 0.10 

individual growth model described above. Next the mean growth curve 
for the entire sample is identified. Here, the interest is in determining 
the simplest mean growth model that is consistent with the data. Table 
20.1 presents the results of this analysis. A simple Z test is available by 
computing the ratio of each estimate to its Standard error. As can be 
seen from T able 20.1, results for both the intercept and growth rate 
parameters are significant, indicating that both parameters differ from 
zero and are necessary for describing the mean growth curve. 

Next, we explored the nature of the deviations of the individual 
growth curves from the mean trajectory. Results of this analysis are 
given in Table 20.2. As regards the estimated parameter variance in the 
intercept, the significant chi-squared statistic indicates that children vary 
significantly in their initial status. On the other band, the hypothesis of 
no interindividual variation in linear growth rates has to be accepted, as 
the chi-squared statistic obtained for the estimated parameter variance in 
the growth curve component only approaches significance. Thus, the 
observed variation among the individual motor skill growth rates does 
not indicate reliable interindividual differences in change rates. 

Co"elates of change and status 

A subsequent step of analysis concerned the relations among back­
ground variables, entry status, and growth rate. Table 20.3 presents 
results from this analysis. The parameters can be interpreted in exactly 
the same way as in ordinary regression analysis. Results concerning the 
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Table 20.3. Effects of sex, age group, and verbal!Q on motor growth 
parameters 

Stan-
Coeffi- dard 

Effects cient error z p 

Effect of sex on initial status 1.64 0.54 3.01 <0.01 
Effect of age group oo ioitial 

status 2.35 0.55 4.27 <0.01 
Effects of verbal IQ oo 

initial status -0.02 0.01 -2.46 <0.05 
Effects of sex on rate 

of change 0.80 0.36 2.22 <0.05 
Effects of age group oo 

rate of change -0.59 0.36 -1.61 0.11 
Effects of verbal IQ oo 

rate of change -0.002 0.005 -0.35 0.72 

impact of the three background variables on initial status are Straight­
forward: the hypothesis that sex, age and verbal intelligence do have an 
effect on the initial Ievel of motor skill can be confirmed by this 
analysis, as indicated by the significant Z statistic. There is also evidence 
that sex significantly affects children's rates of growth, whereas age 
group and verbal IQ do not. 

An interesting question is whether our model has accounted for all of 
the parameter variance in the within-unit parameters. Chi-squared tests 
were conducted to examine the hypothesis that the residual differences 
across units in a particular within-unit parameter ( e.g. initial Status), 
after taking into account the effects of the three stage 2 predictors, are 
due simply to chance (i.e. sainpling variance). Different results were 
obtained for the two within-unit parameters of interest. As regards 
initial status, a significant chi-squared coefficient of 643.74 (p = 0.001) 
revealed that even after taking into account the effects of the three 
predictor variables on Ievel of motor skill, some unexplained parameter 
variance remains in the within-unit intercepts. On the other band, the 
chi-squared coefficient conceming the growth rate parameter was no 
Ionger significant when the effects of the predictor variables was taken 
into account (X2 = 142.97, p = 0.07). Thus, the hypothesis that these 
variables account for all of the parameter variance in the growth rate 
parameters cannot be rejected. 

Reliability of assessments of initial status and change 

As noted above, the observed variance in the estimated individual 
parameters consists of parameter variance and sampling (error) variance. 
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Following classical measurement theory, the ratio of the 'true' para­
meter variance to the 'total' observed variance can be conceived of as the 
reliability of the individual data estimate. In the illustrative example, the 
reliability of the initial status estimates was 0.74, and the reliability of 
the growth rate estimates was 0.07. The result for the growth rate 
estimates indicates that there is little variation in the growth rate 
parameters over time: while children's motor skills are steadily develop­
ing, rate of development is relatively constant across individuals. This is 
obvious from Fig. 20.2 showing a selection of individual time paths 
from a random group of ten children. Although individual differences in 
entry status are considerable, individual differences in growth rates are 
negligible. 

As noted earlier, the procedures just illustrated generalize directly to 
more complex growth models. In the illustrative example based on three 
measurement points, the fit of a quadratic model to the data can also be 
examined. Results of a trend analysis revealed, however, that a linear 
trend hypothesis describes our data best, at least as far as the mean 
growth curve is concerned (cf. Weinert & Schneider, 1989). As pointed 
out by Bryk & Raudenbush (1987), it is important to note that the mean 
growth curve and the individual growth curves can have different forms. 
For example, in fitting a quadratic model to the data, one might find 
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Fig. 20.2. A configuration of randomly selected individual time paths exhibiting 
very slight individual differences in change. 
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that some individual growth curves with positive curvatures cancel out 
others with negative curvatures. In this case, a linear model would be a 
fine description for the group development but inadequate for describ­
ing individual growth. Visual examination of the individual time-series 
is thus suggested to identify models that can be fitted to the data. 

Concluding comments on HLM 

In the illustrative example, I have tried to highlight some of the specific 
strengths of HLM relevant to the study of motor development. HLM 
provides an integrated approach based on a two-stage, hierarchical 
model. This approach not only allows for studying the structure of 
individual growth and estimating statistical and psychometric properties 
of collections of growth curves, but also for assessing the adequacy of 
between-subject models by estimating the reduction in unexplained 
parameter variance as demonstrated in the illustrative example. In 
addition, HLM can be used (a) to assess the reliability of measures for 
studying both entry status and change, (b) for estimating the correlation 
between entry Status and rates of change, and (c) for predicting future 
individual growth (for details, see Bryk & Raudenbush, 1987). While 
HLM requires multiwave data, the approach is quite flexible in that the 
number and spacing of observations may differ across subjects. 

In my view, one of the most important advantages of the HLM 
programme is that it capitalizes on any strengths in the available data; 
that is, if the individual growth curve estimates are reliable, HLM will 
weight them heavily. If the individual growth curve estimates are not 
reliable, the model will rely more on information from mean growth 
curves that are conditioned on available background data. 

THE ANALYSIS OF INDIVIDUAL DIFFERENCES 
OVER TIME 

Longitudinal research focusing on individual differences is concemed 
primarily with the issue of stability and predictability over time. For 
many years, regression-type statistical models have been used to 
describe and explain the longitudinal stability or lability of individual 
differences in various domains. Multiple regression analyses are typi­
cally based on correlacion coefficients or covariance structures. The goal 
is to predict individual differences in an observed criterion variable from 

. a variety of predictors that could either consist of identical measures 
assessed at an earlier point in time or represent conceptually different 
variables. One of the basic problems with this approach has been that, 
while the underlying statistical model assumes independence of predic­
tor variables, the predictors used in regression analyses are often highly 
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intercorrelated. As a consequence, the resulting estimates are frequently 
biased. Another drawback of this statistical model is that nothing is 
known about possible interrelationships among predictor variables: they 
are all treated as having the same explanatory status. 

The latter is not true for a more sophisticated regression procedure, 
namely path analysis regression based on observed variables. The 
advantage of this procedure is that more elaborated cause-effect 
interrelationships among predictor variables can be estimated and tested. 
However, these path models can get very complex and difficult to 
interpret in the case of numerous observed variables, as is typically true 
for large-scale longitudinal studies on motor development. 

The situation changed dramatically with the publication of another 
elaboration of the regression approach; that is, structural equation 
modelling (SEM) procedures using latent variables, also called a 'second 
generation' development of causal modelling (Schneider, 1986). Com­
puter programs based on this approach bave been around since the late 
1970s and early 1980s (e.g. the linear structural equation (LISREL) 
model developed by Jöreskog & Sörbom (1984)). Causal modeHing and 
the application of SEM techniques are enjoying increasing popularity 
among behavioural scientists analysing data relevant to human develop­
ment and change. As several introductions into the SEM approach are 
available (e.g. Bentler, 1980, 1985; Jöreskog & Sörbom, 1984; Alwin, 
1988; Lohmöller, 1989; see also tbe first issue of Chüd Development 
(1987) for a detailed description and for applications of SEM proce­
dures), there is no need to discuss the principles of SEM in much detail 
in this chapter. lnstead, I focus on a short description of the rationale of 
tbe approach and its advantages over traditional regression procedures. 

Advantages of SEM procedures 

A typical feature of all SEM techniques using latent variables is the 
distinction between a measurement model and a structural model. While 
tbe measurement model defines the relationships between observed 
variables and unmeasured hypothetical constructs representing the 
observed variables, the structural equation model (i.e. 'causal' model) is 
used to specify the causal links among the latent variables. Thus, a 
factor analytical approach is used to create the latent variables, whereas 
a regression-type approach is used to analyse the structural relations 
among tbe latent variables. As general interest is more in causal/ structural 
relationships among tbeoretical constructs than in relationships among 
fallible observed variables, tbe logic behind the distinction used in the 
SEM procedures makes much sense. While SEM techniques using latent 
variables can be applied principally to cross-sectional data, they seem 
particularly promising when used witb longitudinal data. 
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In short, their major advantages- as compared to traditional regres­
sion analysis - are as follows. 

(1) A verbal theory has to be translated into a mathematical model 
that can be estimated. 

(2) Causal relationships are estimated on the Ievel of theoretical 
constructs. 

(3) The distinction between a measurement model describing the 
relationships among observed variables and a structural model 
describing interrelationships among theoretical constructs also 
allows for a separate estimation of measurement errors in the 
observable and specification errors in the structural part of the 
model: large specification errors usually indicate that the causal 
model is not completely specified and that theoretically impor­
tant predictor variables are missing. 

(4) Another advantage is that a distinction between the reliability 
of measured variables and the stability of structural relations is 
possible (for more details, see Rudinger et al., 1989). 

(5) Several so-called goodness-of-fit tests exist that detect the 
degree of fit between the causal model and the data to which it 
is applied. Causa} models are said to be confirmed when the 
goodness-of-fit parameter indicates better-than-chance fit 
between the model and the data. 

(6) Identical structural models can be specified for different samples 
( e.g. different age groups, or children at risk vs normal samples) 
to test the generalizability of a given theoretical model. 

(7) While SEM procedures generally operate on correlation or 
covariance matrices, mean structures can also be considered. 
This means that in the case of multiple group comparisons 
relative changes in the means of latent variables over time can 
also be assessed. 

Illustrative example 

The data for the illustrative example demonstrating the utility of the 
SEM approach for the study of motor development are again taken 
from the LOGIC study. The target group consisted of those 174 
children with complete data on the MOT 4-6 and two intelligence tests 
(the HA WIVA by Eggert (1978) and the Columbia Mental Maturity 
Scale (CMMS) by Burgemeister, Blum & Lorge (1972)) for the first 3 
years of the study. The research question of core relevance concerned 
the relationship between early intellectual and early motor development. 
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Verbal tbeory 

Admittedly, our knowledge concerning tbis relationship and its course 
over the preschool and kindergatten years is extremely scanty. None the 
less, there is reason to assume that young children's coordination skills 
and intellectual abilities may be related. Fine motor tasks such as 
tapping or balance are complex activities that require not only motor 
regulation skills but also cognitive information-processing abilities (cf. 
Bös, 1987). More specifically, motor coordination skills seem to be 
linked to aspects of visual perception (spatial imagination skills or 
aspects of (motor) memory). Cognitive factors seem particularly impor­
tant in preschool children's motor coordination skills: fine motor tasks 
require an enormous amount of conscious, self-regulatory actions by 3 
to 4 year olds. 

Thus the first assumption, our developmental trend hypothesis, is 
that the strength of the interrelationship between motor and intellectual 
abilities will decrease with increasing age. The ability to control 
complex movements will no Ionger depend on the amount of mental 
effort as soon as motor actions become increasingly automatized. 

A second assumption (reciprocal causality hypothesis) concerned 
mutual influences between the two theoretical constructs. Analyses of 
reciprocal effects and aspects of predorninance are typically framed as 
'does construct X cause construct Y or is it just the other way around'. 
In the illustrative example, the assumption was that the predorninant 
causal influence should be from intellectual ability to motor coordina­
tion skills, at least as far as the early measurement points are concerned. 
In line with the developmental trend hypothesis that interrelations 
between cognitive abilities and motor coordination skills should de­
crease with increasing age, the issue of reciprocal causality should be of 
minor importance when children enter elementary school. 

Model specification 

The most parsimonious model describing developmental trends in both 
constructs is depicted in Fig. 20.3. In this model, the latent variables are 
represented by circles, whereas the observed indicators are given as 
squares. There are two observed variables per construct: for each 
measurement point, indicators of verbal and non-verbal intelligence 
were combined to represent the intelligence construct. Instead of using 
the sum score of the MOT 4-6, two subcomponents representing fine 
motor coordination skills and coordination skills including an endur­
ance component were chosen for the motor skill construct. In total, the 
model thus comprised 6 latent variables and 12 observed indicators 

The 'independence model' depicted in Fig. 20.3 is parsimonious in 
that it does not assume any reciprocal causal effects (i.e. path coefficients 
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going from motor skill at time 1 to IQ at time 2 or vice versa). This 
model is equivalent to a first-order autoregressive or simplex model 
representing the IQ and motor variables as causes of themselves over 
three points in time. In this model, changes over time are assumed to be 
independent of prior changes; that is, paths ünking wave 1 and wave 3 
variables are omitted. The expectation was that the alternative model 
representing reciprocal causal effects for the first two waves should fit 
the data significantly better than the more restrictive 'independence 
model'. 

Estimation and test of the model 

Because of space restrictions, this section contains only a brief report on 
the model estimation procedure (for a more detailed account, see 
Schneider, 1988). I focus on the analyses based on EQS (Equations: see 
Bentler, 1985) because a distribution-free estimation procedure is 
available for this technique. This turned out to be essential because the 
motor test data from the third year deviated significantly from 
normality. 

In the first step of analysis, it was shown that the 'independence 
model' did not fit the data. An alternative model including the causal 
reciprocity relation for the first two waves but still maintaining the 
simplex structure depicted in Fig. 20.3 seemed to be more compatible 
with the data structure but also did not fit the data. An acceptable data 
fit was obtained only when the simplex restriction was given up; that is, 
when direct causal links between constructs measured at waves 1 and 3 
were included in the model. 

The results for the final model are given in Fig. 20.4. For the sake of 
clarity only the interrelations among latent variables are included in the 
path diagram. As can be seen from Fig. 20.4, the effects of intelligence at 
wave 1 on later motor coordination skill assessed at wave 2 almost 
doubles the corresponding effect of earlier motor skills on subsequent 
intelligence. This finding is in accord with the theoretical assumption 
concerning reciprocal effects indicating a predominance of intelligence 
over motor skills for the preschool years. Note that no reliable 
reciprocal causal effects were found for the later phase of data collection 
(i.e. the time interval between waves 2 and 3). 

The data were also compatible with our developmental trend 
hypothesis in that the correlations between the IQ and motor skill 
constructs dropped significantly over time (from 0.64 at wave 1 to 0.25 
at wave 3 ). Finally, the dotted path from motor skills at wave 1 to 
motor skills at wave 3 indicates that the inclusion of this link was 
absolutely necessary in order to obtain a sufficiently good data fit. 
Although the autoregressive path coefficients for the motor skill 
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Fig. 20.3. Strucrural equation autoregressive ('independence') model assuming 
no reciprocal causal effects between intelligence and motor skills. 

0.14 

Fig. 20.4. EQS structural equation model based on a distribution-free estima­
tion procedure that fits the data well. 
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construct tumed out to be generally !arge, they did not fully explain the 
data structure. On the other band, the direct effect of intelligence 
measured at wave 1 on intelligence assessed at wave 3 was comparably 
small. Although the omission of this path had negative consequences on 
data fit, the resulting model still fits the data according to the available 
goodness-of-fit indicators. 

Concluding comments on SEM procedures 

There seems to be broad agreement that SEM procedures represent 
powerful general tools for the analysis of longitudinal data. They seem 
particularly appropriate in large-scale longitudinal studies on motor 
development operating on !arge sample sizes where researchers typically 
struggle with a large nurober of variables assessed at different points in 
time. As noted above, tbe SEM approach includes the features of 
traditional regression approaches but is clearly superior because of its 
flexibility. lt is demanding because researchers are forced to specify 
their verbal theories and to translate them into corresponding statistical 
models. lt is not only possible to estimate causal models but also to test 
them; that is, to evaluate their data fit. Moreover, the goodness-of-fit 
coefficients for competing causal models can be directly compared. 

Recent developments further indicate that in addition to the analysis 
of correlation or covariance matrices, mean structures can also be 
integrated. For example, McArdle & Epstein (1987) illustrated the 
possibilities of a longitudinal model that included correlations, vari­
ances, and means and was described as a latent growth curve model. The 
inclusion of mean structures makes such a longitudinal structural 
equation model more similar to repeated-measures ANOVA proce­
dures. As a consequence, this type of model may also be used to assess 
the developmental function; that is, group changes in the amount of a 
latent variable over time. 

Despite the several advantages of SEM procedures, they should not 
be conceived of as panaceas. Several problems with SEM procedures 
have been addressed in the Iiterature ( e.g. Martin, 1987; Alwin, 1988; 
Rogosa, 1988). The availability of these techniques offers great potential 
for abuse. As emphasized by Alwin (1988), in the absence of a 
well-defined set of tbeoretical assumptions, in the absence of valid 
indicators of tbeoretical assumptions, in the absence of valid indicators 
of theoretical constructs, or in the absence of a careful set of procedures 
fot measurement, these methods may Iead one to meaningless conclu­
sions giving the false appearance of importance. lt represents one of the 
major difficulties for tbe responsible researcher using SEM techniques to 
assess tbis risk. 
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Undoubtedly, the HLM and SEM procedures described above have a 
wide range of appücability and seern useful for longitudinal studies 
deaüng with various aspects of rnotor developrnent. In the rernainder of 
this chapter, I try to illustrate how sorne analyses presented in this 
chapter could be complemented by these two explanatory approaches. 

Tool use by infants 
The study by Connolly & Dalgleish (Chapter 12, this volurne) 
represents a microanalytical longitudinal approach focusing on issues of 
intraindividual change. lt provides an interesting, detailed description of 
the development of spoon-using skills in four infants. The authors' 
decision to explore the developrnental patterns with a very srnall sarnple 
seerns convincing. In their view, the adequacy of nornothetic deveiop­
mental approaches assessing the 'average' child is questionable because 
pooüng data across subjects rnay obscure the underlying processes of 
change; that is, the phenornenon that different individuals can take 
different routes to reach the same developrnental end-point. Conse­
quently, the emphasis in the Connolly & Dalgleish study is on 
individual development. For each child, data on various behavioural 
categories were obtained during an interval of about half a year, 
resulting in about 20 rneasurernent points per child. 

Connolly & Dalgleish chose to analyse the data separately for each 
child by using orthogonal polynornials. This trend analysis approach 
seerns appropriate for the analysis of single case data in that it provides a 
description ofthebest-fit curve (linear, quadratic, or cubic) for the data. 
The authors correctly refer to the problern that this approach rnay be of 
questionable value in the case of non-normal data. They also pay 
attention to the problern that a number of their analyses (more than 300 
ANOVAs) are ükely to be significant by chance. Although Connolly & 
Dalgleish consider the possibility of 'significance by chance' effects 
when interpreting their findings, their decision rules seern somewhat 
arbitrary, at least as far as the ignorance of quadratic effects in the data 
is concerned. 

All in all, the single case trend analysis approach presented by 
Connolly & Dalgleish seems appropriate for a description of individual 
changes over time. However, its most apparent restriction is that results 
are difficult- if not impossible- to generaüze across subjects. Accor­
dingly, information about the representativeness of findings cannot be 
obtained. In my view, this dilernrna is solvable by using the HLM 
approach because the nomothetic and ideographic dimensions can be 
combined due to the two-stage characteristic of the model. 
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How can HLM be used to elaborate on the findings presented by 
Connolly & Dalgleish? Obviously, the HLM procedure cannot be 
meaningfully applied to data based on such a smaU sample size (i.e. four 
subjects). However, it could be used for the analysis of data reported by 
Connolly & Dalgleish (1989) for two groups of infants. The methods 
employed in this study were essentially the same as those of Connolly 
& Dalgleish (Chapter 12, this volume). Application of HLM to these 
group data could not only lead to an estimate of the 'average' child's 
skill acquisition but also give information on interindividual differences 
in intraindividual change. Background characteristics (e.g. sex) could be 
induded in the analysis to explain the interindividual differences 
observed. 

Of course, the scientific value of such an approach depends on the 
quality and significance of available background variables. The explana­
tory power of the data collected by Connolly & Dalgleish seems 
restricted in that the mother's influence on the infant's acquisition of 
tool use was not considered. It should be noted in this regard that 
Connolly & Dalgleish were not particularly interested in a com­
prehensive explanatory approach, and that their emphasis on isolated 
changes in children's behaviour seems legitimate given their specific 
research goals. None the less, I think that parameters of mother-child 
interactions should be induded in future studies on this issue in order to 
estimate the ecological validity of the laboratory approach. 

Motor development in children at risk 

As noted earlier, studies dealing with the implications of early risk on 
later motor development are usually based on large samples of subjects 
and variables and typically span several years. As a consequence, they 
represent potential candidates for the SEM approach. In the following, 
the possibility of complementing data analysis by adding explanatory 
SEM approaches is discussed briefly using the studies by Largo et al. 
(Chapter 16, this volume) and Michelsson & Lindahl (Chapter 17, this 
volume) as illustrative examples. 

In the study by Largo et al. (Chapter 16, this volume), the primary 
goal concerned the description of motor development, with a specific 
focus on issues of variability and stability in normal development, and 
on the impact of several pre- and perinatal risk factors on later motor 
development. Data from two samples of about 100 preterm and 100 
fullterm children depicting the developmental course from birth to 
school entrance were used in this study. Neurological and motor 
development during the first 2 years of life was repeatedly assessed, and 
minor congenital anomalies were measured at age 5 years. Further, data 
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conceming neurological assessment were also collected when children 
were 4 and 6 years old. 

It appears that both HLM and SEM procedures can be used in future 
analyses of this data. HLM analyses should be restricted to the first 2 
years of the study, where information on neurological and motor 
development are particularly rich; that is, based on a total of seven 
measurement points. In addition to the correlations reported by Largo 
et al., analyses of mean change and interindividual differences in 
intraindividual change could be carried out, using risk status as the 
crucial background variable. 

SEM models could be implemented to link motor and neurological 
development over the range 0 to 6 years. Information on pre-, peri- and 
postnatal factors could be used to predict minor congenital anomalies. 
Given that sample size of each subgroup is not particularly large, data of 
preterm and fullterm children could be aggregated, and a dummy risk 
variable could be introduced into the model as an explanatory factor. 

One nice aspect of the Zurich Longitudinal Studies described by 
Largo et al. (Chapter 16, this volume) is that several age cohorts are 
available. SEM approaches could make use of this advantage, comparing 
structural features of motor development for samples followed through 
different decades of this century. Such model comparisons involving 
different age cohorts could give valuable information on the generality 
or universality of findings. 

Regarding the study by Michelsson & Lindahl (Chapter 17, this 
volume), sample size does not cause any problems for SEM procedures. 
The risk group in the Helsinki Longitudinal Study included more than 
850 children followed from birth to age 9 years. In addition, a smaller 
group of normal control children was available. Comprehensive assess­
ments were carried out when children were 5 years old, including tests 
of intelligence and language skill, concentration, and gross and fine 
motor performance. Assessments at the age of 9 years focused on 
neurological examinations, including various fine and gross motor 
functions, and a comprehensive test of motor impairment. In addition, 
tests of intelligence, language skills, and the reading and spelling were 
carried out at that particular age. 

Michelsson & Lindabi tried to explain the outcomes in the five 
criterion areas of achievement (i.e. neurological assessment, motor 
function, language skill, intelligence, and school performance) by using 
·Jogistic regression analysis as statistical tool. While this tool is prin­
cipally appropriate for the kind of prediction model inherent in the 
design of the study, it is of restricted value given that it operates on 
observed variables and cannot consider more than one dependent 
variable at the same time. The advantages of SEM models seem 
immediately apparent: (a) tbe distinction between theoretical constructs 
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and observed variables representing these constructs could Iead to a 
considerable reduction in (latent) variables included in the structural 
equation models; (b) a structural equation model simultaneously 
including all five criterion areas could be specified, thus allowing for 
assessing differential effects of early risk factors on the various outcome 
domains; (c) the same structural equation model could be specified for 
different risk groups. On the basis of such an approach, multiple group 
comparisons could be carried out to explore whether the same causal 
model holds for the different risk groups. 

In summary, this short illustration of possible applications of HLM 
and SEM approaches in the area of motor development has shown that 
these two procedures can be advantageous when it comes to the 
explanation of normal and abnormal motor performance. This does not 
imply, however, that these approaches should be conceived of as 
panaceas; they certainly cannot compensate for poor-quality data, 
careless operationalization of major constructs and inappropriate 
designs. 
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