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The scattering characteristics of the II-VI semiconductors were analyzed by a method
which combines the second-order finite-element method withthe rigorous mode matching
procedure. The method avoids the difficulty of solving the complex transcendental
equation introduced in the multimode network method and calculates all the eigenvalues
and eigenfunctions simultaneously which are needed for the mode matching treatment -
in the longitudinal direction. As a result, the whole solution procedure is significantly -
simplified. A comparison is given between the experimental data and the calculated
results obtained with this analysis and the network method. Very good agreement has
been achieved, the accuracy and efficiency of the present method are thus verified.
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I. INTRODUCTION | .

Recently, II-VI semiconductors have become increasingly imporant in material science and
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Fig. 1
Scheme of a discontinuity structure formed
by semiconductor sample.

engineering because of their inherent advantages for applications in optoelectronic, infrared and
millimeter wave techniques. For these purposes, the exact knowledge of their electric properties, e.g.,
conductivity, is of essential significance. However, poorly conducting I[-VI semiconductors have
always created problems. In many cases, it is extremely difficult or even impossible to obtain good
ohmic contacts to the sample. For characterizing [I-VI compounds under these circumstances, 2
contactless conductivity measurement [1] has been developed employing a microwave bridge
technique. The basic idea of this method is that the determination of property parameters of a
semiconductor sample is transferred to the measurement of the scattering characteristics of the
corresponding sample. The key point of realizing thisidea is to determine theoreticaily the relationship
between the property parameters of the semiconductor and scattering parameters of the corresponding
sample. This is a complex boundary problem of elcctromagncnc field. The complexity of the problem
consists of the following two aspects.

1) The conductivity of the epitaxial layer may vary in a wide range from several tens to some
thousands (mho/cm) to satisfy the practical requirements of different devices. As a result, the real and
imaginary parts of the corresponding complex dielectric constants may be very large; in particular, the
imaginary part may vary from several hundreds to some millions. If the calculating method is not
chosen properly, it may suffer from a convergence problem. In addition, because the epitaxial layer
_is neither an ideal dielectric nor ideal conductor, some assumptions for these two extreme
circumstances cannot be used; forinstance, onecannot simplify the problem with approxxmatc methods
such as perturbation theory.

2) Although the epitaxial layer is very thin (only 1 to 5 pm, or even less than 1 xm), it cannot
be assumed t0 be zero. Investigating the effect of the thickness on scattering characteristics is one of
the tasks of this paper. Therefore, it may also cause a convergence problem if the method is not
correctly adopted. The problem was solved by a method which combined the multimode network
theory with rigorous mode matching procedure [2]. However, in this method, the analysis of the
eigenvalue problem of the waveguide is transferred to the solution of the complex transcendental
equation. Toaccurately calculate more than twenty roots of this equation consecutively without missing
one root, it is needed to search for the roots many times. Obviously, this is time-consuming. In
particular, this is a very difficult job for those who have little éxperiencc in secking roots for the
complex transcendental equation.

Alternatively, the problem is solved in this article by a method which combmcs the finite element
method with the rigorous mode matching procedure, The method not only avoids the difficulty of
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Table 1
Parameters of different semiconductor samples.
____ Sample €. Ep d, (mm) dp (pm)
CMT78 (HgCdTe) - 11.-j0.8 —41.-j1816 1.0 2.0
CMT76(HgTe) 11.-j0.45 ~198.-j7779 1.0 1.2
Q154 (HgCdTe) 11.-0.5 -358.-j13538 1.0 2.2
Q114 (HgCdTe) 11.-j0.5 -2861.-j103052 1.0 5.2
Q107 (HgCdTe) . 11.-511 -6254.-j223684 1.0 2.9
Q105 (HgCdTe) 11.-j0.5 ~8285.-j296801 1.0 1.6

solving the complex transcendental equation, but calculates all the eigenvalues and eigenfunctions
simultaneously needed for the mode matching treatment in the longitudinal direction, sothe procedure
is greatly simplified, and the efficiency of calculations is increased. A comparison is given between
the experimental data and the calculated results obtained with this analysis and the network method.
Very good agreement has been achieved, and the accuracy and efficiency of the method are thus
verified. '

II. METHOD OF ANALYSIS

Figure 1 shows the cross section of the stratified dielectric discontinuity structure under
consideration. Here the dielectric constants of the epitaxial layer and the substrate are complex with
real and imaginary parts. Table 1 shows the thicknesses and the dielectric constants of the epitaxial
layers and the substrates for several samples. For our semiconductor samples we assume the relative
permeability x4 = 1, thus excluding semimagnetic samples. In the standard rectangular waveguide, the
dominant mode is the TE,, mode, of which the fields are invariant in the y-direction. Since the
discontinuity is uniform in the same direction both in geometrical dimensions and in dielectric
distributions, only the TE,,, mode can be excited in the empty and in the partially filled waveguides.
Therefore, the scattering problem is two dimensional. The solution procedure for this problem may
be divided into two steps. _

1) We must analyze the eigenvalue problem of the two waveguides, respectively, inthe transverse
Cross section. .

2) We must calculate the scattering characteristics of the discontinuity in the longitudinal cross
section. : : :

Asthe eigenvalues and the eigenfunctions for the empty waveguide are well known, the key point
to the eigenvalue problem in the first step is the determination of the eigenvalues and the

. eigenfunctions in the partially filled waveguide. According to the fact that only TE,, mode is excited,
a one-dimensional functional formulation is derived, and the corresponding variational problem is
solved with the finite-element method.

It is well known that the eigenfunctions and eigenvalues of TE,, modes in the empty rectangular
waveguide are, respectively, as follows, omitting phase factors like exp[j(wt — X 2)]:

Pm = Am Sin(KngY), {1

Kom = mz/Xa, | @
K?m = Kg - Kgm; _ 3)
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Coordinate relation in the second order line elcmem
where X, is the free space wavenumber and the amplitude of the m-th eigenmode is 4,,, which can be
obtained, with the orthonormal relation, as:
Am=+/2/X4 | )

The transverse clectmmégneu’c fields in the empty waveguide may be cxpresscd- in terms of the
superposition of the complete set of the eigenmode functions as:

o0
E,= Z VintPm, : : )
m

H,= ;Imcpm. | ©)

It is easy to derive that the electric field E, of each H,, modes in the partially filled waveguide
satisfies the following ordinary differemial equation:
dzE
dz?

% 4 (K3er(e) - KDE, =0, | m

where ¢£,(x) is uniform in each segment, i.e., &,, &,, & and g, for their respective different segments.

as shown in Fig. 1.
It has been proved that the above complex exgenvaluc problem is equivalent to the variational

problem of the following functional:

F(E,) = fx [(%)2—(%5,-;{3)33] dz. B

When the finite-element method is applied to solve the above-mentioned variational problem, the
unknown function in each element is interpolated from the nodal parameters. Here the second-order
finite-element method is used. Therefore, the function E, in each element can be expressed as:

i=1 . 4
with )
Ni(§) = 66~ 1), ; (10

Na(€) =1 - €2, | an
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N3(¢) = -lz-f(f +1), (12)
 _ 2 Ti+T;
£-Zj—1’¢ (x— 2 J)' (13)

According to the variational principle, substituting Egs. (9) into (8), we obtain the followmg
eigenvalue problem:

[A)(E,) - KZ[C)(Ey) + KA{B)(Ey) = 0. (14)

Equation (14) can be written as the following generalized algebraic eigenvalue equation:

[D](Ey) = Kzle](Ey)§ (15)
with |
[A] = f(N,)(N,)Td:L’. (16)
WIZﬂmm%n _ an
(C1= Ter [Nz as)
D] = K3[C] - [4], (19)
where (N.) = 3(N)/ax. The integrals in Eqs. (17), (18), (19) are calculated by:
- 7 -8 1
/ (N2)(N2)Tdz = -8 16 -8 |,
( t) 1 -8 7 (20)
' -z | & 2 -1
Jnwyae=E=B ] 5 16 o |
011 2 4 @y

From the generalized algebraic eigenvalue equation, the eigenvalue X, of the H,, modes and
corresponding eigenvector (E,) are obtained, and the nth eigenfunction in a pamally filled wavegmde
can be expressed as: :

P = -MZZM’EZM-: @2)
e =]
where E}, is the i-th nodal value in the e-th element for the eigenvector (£,,). The amplitude 4, of the
n-th eigenmode can be obtained with the orthonormal relation:

T4 —2 . .
./o gndzr = 1. Q@3)

Also, the transverse electromagnetic fields in the partially filled waveguide may be expressed in
terms of the superposition of the complete set of the eigenmode functions as:



206 Chinesé Journal of Infrared and Millimeter Waves

E, = ivnza,,, (24)
e
ﬁ = Z 1 n-‘p.n' (25)

At the dxsconunmty interface plane 4-4’ (z = 0), the tangential fields E, and H, must be
continuous, i.c.,

E, =E,, 28
H, = Hz; @n
or
Z: = z nanv . (28)
"0 oo
2 tmom =3 I 29

These equations hold for any x in the z = 0 plane. By scaler multiplication of these equations with
either ¢, or @, and making use of the orthonormal relation: -

fo o ondT = bmms | | (30)
/0 = PmPndT = Oma; @3h
we then have
(V) = [Q(V), (32)
(n=RIM; " (33)

where (V), (D), (V) and (J) are the column voltage and current vectors formed by the factors V,, /,,
¥, and I,, respectively, representing the amplitudes of the electric field E, and the magnetic field H
outside and inside the discontinuity region. [Q] is the coupling matnx its typ:cal element Q,,, is given
by :

4 z4
Qmn = /0 ‘PmGndx’ ' _ (34)
It can be proved that

[Ql[Ql =,~E; (35)

where "1" stands for "transpose” and £ is the unit matrix. According to the definition of the impedance
of a multimode network, we have
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Symmetrical consideration of the structure
in the longitudinal direction.
(V) =12}(I), (36)
V) = 2)(D); 67

and then we can obtain the relation . .

2] = [QI[Z](Ql:; (38)

where [Z] and [Z] are, respectively, the input impedance on two sides of the discontinuity plane A4-A"
(z = 0). This is actually an impedance transformation formula from which the rcﬂecnon coefficient
of each guide mode at z = 0 plane can be determined [3-5].

It is worthwhile to note that the present structure is symmetrical in the longmxdmal Cross section
as shown in Fig. 3. The scattering of a guided mode by such a symmetrical structure may be analyzed
interms of the symmetrical and anti-symmetrical excitations for which we have the open-circuit (0.C.)
and short-circuit (S.C.) bisections, respectively, as indicated in Fig. 2.

The reflection coefficient for each guide mode at the symmetry plane z = W/2 (0-O' plane) is
1.0 for the O.C. bisection or —1.0 for the S.C. bisection. Let [R,] and [R,] be the reflection coefficient
matrices at z = 0 plane for the O.C. and the S.C. bisections, respectively; the guided mode reflection
coefficient matrix [R] (at z = O plane) and the transmission matrix [T] (at 2 = Wplane) of the entire
symmetrical structure are then given by: .

[RBl= (Rl + [RoD/2, LG9
[T] = ([Ro] - [Ru))/2 @
where [R,], [R,] can be obtained from the following formulas: |

[Ro} = ([Zo] + [Z])~*([20] - [Zc)), (41)
[Rs] = ((Z,]) + [Z))~H((2s] - [2Ze)); 42)
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: Table 2
A comparison of transmission coefficients between theoretical and
experimental results for different II-VI semiconductor samples.

| S+ ](dB) e(®)
Sample "
Test Ref. [2] This artcle Test Ref. 2] This article
CMT78 -3.25 -3.33 -3.32 -63.2 -63.75 ' -63.01
CMTT76 -5.30 -5.19 =5.17 -56.2 ° ~55.77 ~56.76
Q154 -8.90 -9.44 -9.44 -28.2 ~27.41 ~27.20
Qii4 -10.65 -10.28 -10.53 31.7 39.22 40.74
Q107 -10.50 - ~-10.47 -10.64 36.8 38.74 39.08
Q105 -10.90 -10.32 -10.51 - 31.8 38.32 38.20
with (2o} = [QI[Zo][QIes ' (43)
' [Zs} = [Q][ESHQIH e

The matrices [Z,], [Z] and [Z,] are all in the diagonal form and their typical elements are given as
follows:

Zon = —j2nctg(K2nW/2), 45

Zon = jZn tan(Ka,W/2). : L 46)
Zn=Wu/Ran, (47
Zen = Wu/Kan; _ . (48)

For the dominant mode, the scattering parameters S, = §), and §,, = S., are determined ffom
the first row and the first column of the {R] and (7] matrices, respectively, as:

1 o
311 = R(lq 1) = E[RO(I’ ) + Rs(lv 1)]1 (49)
Snu=T(,1)= EIRO(I’ ) — R,(1, 1)]. - (50)
III. NUMERICAL RESULTS

Inorder to verify the reliability and efficiency of the present method, we calculated the scattering
characteristics of different II-VIsemiconductor samples. Table 2 presents'acomparison oftransmission
coefficients between the experimental data and the calculated results obtained with the present method
and the network method. Very good agreement has been achieved. In our calculation, the number of
nodes used is 83, and less than 30 seconds of CPU times are needed for one calculation point on a
VAX8700 computer. This demonstrates that the present method has the advantages of accuracy,
generality and high efficiency.
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