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Summary 

Platelet activation and aggregation at sites of vascular injury are essential processes to limit 

blood loss but they also contribute to arterial thrombosis, which can lead to myocardial 

infarction and stroke. Stable thrombus formation requires a series of events involving platelet 

receptors which contribute to adhesion, activation and aggregation of platelets. Regulation of 

receptor expression by (metallo-)proteinases has been described for several platelet 

receptors, but the molecular mechanisms are ill-defined. 

The signaling lymphocyte activation molecule (SLAM) family member CD84 is expressed in 

immune cells and platelets, however its role in platelet physiology was unclear. In this thesis, 

CD84 deficient mice were generated and analyzed. In well established in vitro and in vivo 

assays testing platelet function and thrombus formation, CD84 deficient mice displayed 

phenotypes indistinguishable from wild-type controls. It was concluded that CD84 in platelets 

does not function as modulator of thrombus formation, but rather has other functions. In line 

with this, in the second part of this thesis, a novel regulation mechanism for platelet CD84 

was discovered and elucidated. Upon platelet activation, the N-terminus of CD84 was found 

to be cleaved exclusively by the a disintegrin and metalloproteinase 10 (ADAM10), whereas 

the intracellular part was cleaved by calpain. In addition, regulation of the platelet activating 

collagen receptor glycoprotein VI (GPVI) was studied and it was shown that GPVI is in 

contrast to CD84 differentially regulated by ADAM10 and ADAM17. A novel role of CD84 

under pathophysiological conditions was revealed as CD84 deficient mice were protected 

from ischemic stroke in the model of transient middle cerebral artery occlusion and this 

protection was based on the lack of CD84 in T cells.  

Ca2+ is an essential second messenger that facilitates activation of platelets and diverse 

functions in different eukaryotic cell types. Store-operated Ca2+ entry (SOCE) represents the 

major mechanism leading to rise in intracellular Ca2+ concentration in non-excitable cells. 

The Ca2+ sensor STIM1 (stromal interaction molecule 1) and the SOC channel subunit 

protein Orai1 are established mediators of SOCE in platelets. STIM2 is the major STIM 

isoform in neurons, but the role of the SOC channel subunit protein Orai2 in platelets and 

neurons has remained elusive. In the third part of this thesis, Orai2 deficient mice were 

generated and analyzed. Orai2 was dispensable for platelet function, however, Orai2 

deficient mice were protected from ischemic neurodegeneration and this phenotype was 

attributed to defective SOCE in neurons. 
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Zusammenfassung 

Die Aktivierung und Aggregation von Blutplättchen sind wichtige Prozesse um Blutverlust 

nach Gefäßverletzungen zu vermeiden. Diese Prozesse spielen aber auch eine Rolle in der 

arteriellen Thrombose, die zu Herzinfarkt und Schlaganfall führen kann. Die Bildung stabiler 

Thromben setzt eine Reihe von Vorgängen voraus, an denen Blutplättchenrezeptoren 

beteiligt sind, welche zur Adhäsion, Aktivierung und Aggregation der Blutplättchen beitragen. 

Für einige Blutplättchenrezeptoren wurde eine Regulation der Expression durch 

(Metallo-)Proteinasen beschrieben, jedoch sind die molekularen Mechanismen weitgehend 

unbekannt. 

CD84, ein Protein das zur signaling lymphocyte activation molecule (SLAM) Familie gehört, 

wird sowohl in Immunzellen als auch in Blutplättchen exprimiert. Jedoch war die Rolle von 

CD84 in der Physiologie der Blutplättchen unklar. In der vorliegenden Arbeit wurden CD84 

defiziente Mäuse generiert und analysiert. In etablierten in vitro und in vivo Test, welche die 

Blutplättchenfunktion und Thrombusbildung untersuchen, war der Phänotyp von CD84 

defizienten Mäusen unverändert gegenüber Wildtyp-Kontrollen. Es wurde die 

Schlussfolgerung gezogen, dass CD84 in Blutplättchen nicht als Modulator der 

Thrombusbildung fungiert, sondern eher andere Funktionen hat. Im Einklang damit wurde im 

zweiten Teil dieser Arbeit ein neuer Regulationsmechanismus entdeckt und aufgeklärt. 

Infolge von Blutplättchenaktivierung wurde der N-terminale Teil von CD84 ausschließlich von 

a disintegrin and metalloproteinase 10 (ADAM10) geschnitten, während der intrazelluläre 

Anteil durch Calpain prozessiert wurde. Weiterhin wurde die Regulation des Blutplättchen-

aktivierenden Kollagenrezeptors Glykoprotein VI (GPVI) untersucht. Es konnte gezeigt 

werden, dass GPVI, im Gegensatz zu CD84, einer differenziellen Regulation durch ADAM10 

und ADAM17 unterliegt. Unter pathophysiologischen Bedingungen wurde eine neue Rolle 

von CD84 aufgedeckt, da CD84 defiziente Mäuse vor ischämischem Schlaganfall im 

transient middle cerebral artery occlusion Modell geschützt waren. Dieser Schutz beruhte auf 

dem Fehlen von CD84 auf T Zellen. 

Ca2+ ist ein wichtiger sekundärer Botenstoff, der die Aktivierung von Blutplättchen ermöglicht 

sowie diverse Funktionen in verschiedenen eukaryotischen Zellen erfüllt. Store-operated 

Ca2+ entry (SOCE) stellt den Hauptmechanismus dar, der zum Anstieg der intrazellulären 

Ca2+ Konzentration in nicht-erregbaren Zellen führt. Der Ca2+ Sensor STIM1 (stromal 

interaction molecule 1) und das SOC-Kanal Protein Orai1 sind als Vermittler des SOCE in 

Blutplättchen bekannt. STIM2 stellt die Hauptisoform der STIM Moleküle in Neuronen dar, 

jedoch war die Rolle des SOC-Kanal Proteins Orai2 in Blutplättchen und Neuronen 

weitgehend unbekannt. Im dritten Teil dieser Arbeit wurden Orai2 defiziente Mäuse generiert 

und analysiert. Orai2 war nicht essentiell für die Funktion von Blutplättchen, jedoch waren 
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Orai2 defiziente Mäuse vor ischämischer Neurodegeneration geschützt. Dieser Phänotyp 

wurde auf einen defekten SOCE in Neuronen zurückgeführt.  
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1 Introduction 

1.1 Platelets 

Blood platelets are discoid-shaped anucleate cell fragments that are produced by 

megakaryocytes (MKs) in the bone marrow. Thrombopoietin (TPO) is the primary regulator of 

MK differentiation and platelet production.1 The exact mechanism of platelet formation from 

MKs is not fully understood. According to a current model, protrusions, called proplatelets, 

are released from the MK body into microvessels, where they are further fragmented into 

platelets,2 and this concept is also supported by recent findings from in vivo studies in bone 

marrow.3 Platelets are the smallest cellular components circulating in the blood stream, with 

a diameter of 1-2 µm in mice and 3-4 µm in humans.4 Normal platelet counts range between 

150,000-400,000 per µL blood in humans, whereas mice have platelet counts that are on 

average around 1,000,000 per µL. Mouse platelets have a short lifespan of about 4.5–5.5 

days,5 whereas human platelet life span reaches 10 days. Due to the lack of a nucleus, 

platelets are only to a limited extent capable of de novo protein synthesis, using MK-derived 

mRNA and translational machinery.6 The bilamellar plasma membrane of platelets extends 

through interconnected channels of the open canalicular system (OCS), representing a 

source of membrane for surface increase after platelet activation and shape change.7 The 

dense tubular system derives from the endoplasmatic reticulum of the parent MK. 

Mitochondria, glycogen stores and three different major types of granules (α-granules, dense 

granules and lysosomes) are found in platelets.8 Dense granules contain small molecules 

such as serotonin, adenosine di- or triphosphate (ADP, ATP), playing a role as amplifiers of 

platelet aggregation. α-granules store adhesion molecules and coagulation factors such as 

fibronectin, von Willebrand factor (vWF), thrombospondin-1, P-selectin, fibrinogen, 

plasminogen, factors V, VII, XI and XIII as well as mitogenic factors like platelet derived 

growth factor (PDGF) and vascular endothelial growth factor (VEGF). Throughout their life, 

most platelets never undergo activation and are finally removed from the blood stream by the 

reticuloendothelial system in the spleen and liver. The pivotal primary hemostatic function of 

platelets is only retrieved upon injury, when platelets in the flowing blood come into contact 

with the exposed subendothelial extracellular matrix (ECM), which leads to their rapid 

activation and the formation of a hemostatic plug. This lifesaving function of platelets limits 

blood loss following injury. On the other hand, under pathological conditions, like rupture of 

an atherosclerotic plaque, platelet aggregation may lead to formation of occlusive thrombi 

resulting in vessel occlusion and infarction of vital organs.9 Therefore, platelet activation has 

to be tightly regulated, which requires a complex interplay of adhesion and activation 

receptors,10 release of soluble mediators, inhibitory receptors,11 as well as cleavage and 
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inactivation of receptors,12 in order to facilitate stable aggregate formation to seal lesions, 

while preventing excessive thrombus formation. 

 

1.2 Thrombus formation 

Platelet adhesion and subsequent thrombus formation are multistep processes which can be 

divided into three main steps: adhesion/tethering, activation and aggregation (Figure 1). The 

first step requires interactions of platelet surface receptors with the exposed ECM, which 

comprises macromolecules such as fibronectin, collagens and laminins. Upon injury of the 

vessel wall, initial adhesion of platelets is facilitated by the GPIb-V-IX complex, which 

functions irrespective of cellular activation. Interaction of GPIb on circulating platelets 

tethers platelets to the damaged vessel wall under high shear conditions, such as found in 

arterioles, by interacting with collagen-bound von Willebrand Factor (vWF).13,14 These 

interactions are only transient and do not mediate firm adhesion, but facilitate the contact 

between GPVI and collagen. The GPVI-collagen interaction induces intracellular signaling 

cascades, leading to platelet activation, followed by a conformational change of integrins 

(most importantly α2β1 and αIIbβ3) to a high affinity state, and the release of second-wave 

mediators like ADP and thromboxane A2 (TxA2).
15 These soluble agonists along with locally 

produced thrombin contribute to full platelet activation through G protein coupled receptors 

(GPCRs).16 Consequently, platelet activation is amplified, resulting in thrombus growth by 

recruiting and activating more platelets from flowing blood.17  

 

Figure 1. Steps of platelet adhesion, activation, and aggregation at the site of vascular wall 

injury. The GPIb-vWF interaction mediates platelet deceleration and tethering on the exposed ECM 
thus allowing the interaction of GPVI with exposed collagen. This subsequently triggers the shift of 

integrins (notably IIb3) from a low affinity state to a high affinity state and to the release of 
secondary mediators such as ADP and TxA2. Together with the locally produced tissue factor (TF) -
induced thrombin generation, soluble mediators enhance platelet activation and contribute to the 
recruitment of further platelets into a growing thrombus. (Taken from: Varga-Szabo et al., ATVB, 
2008)

10
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Activated integrin α2β1 mediates direct adhesion to collagen and αIIbβ3 binds to collagen 

indirectly via vWF. Importantly, activated αIIbβ3 also facilitates the formation of platelet 

aggregates by binding to fibrinogen or vWF, which cross-links newly activated platelets and 

leads to incorporation of activated platelets into the growing thrombus. Only under conditions 

of extremely high shear (>10,000 s-1), conditions comparable to those occurring in stenotic 

coronary arteries, platelets have been shown to adhere and aggregate irrespectively of 

cellular activation and GPIb-vWF interaction is sufficient to trigger formation of large but 

unstable aggregates.18,19 Under lower shear conditions, platelet responses like inside-out 

activation of integrins or coagulant activity, are determined by rise of the intracellular calcium 

level [Ca2+]i. Elevations in [Ca2+]i can originate from two major sources: the release of 

compartmentalized Ca2+ and the entry of extracellular Ca2+ through the plasma membrane 

(PM). The major Ca2+ entry pathway across the PM in platelets is store-operated calcium 

entry (SOCE). This process involves receptor mediated release of Ca2+ from intracellular 

stores, which then triggers Ca2+ influx across the PM via store-operated calcium (SOC) 

channels.20 SOCE can be initiated by activation of two major platelet signaling pathways - 

Phospholipase (PL)C activated by soluble agonists like thrombin, ADP or TxA2, which 

stimulate receptors coupled to the heterotrimeric G-protein Gq, and PLC2, which is activated 

downstream of GPVI or CLEC-2.21 Activated PLC isoforms hydrolyze the membrane 

phospholipid phosphatidylinositol-4,5-biphosphate (PIP2) to inositol-1,4,5-trisphosphate (IP3) 

and diacylglycerol (DAG). DAG activates protein kinase C (PKC), and IP3 directly induces 

Ca2+ release from the intracellular stores. This leads to moderate elevation of [Ca2+]i. The 

reduced store content is sensed by the calcium sensor protein STIM1,22 which then triggers 

profound Ca2+ influx across the plasma membrane through SOC channels. Orai1 was 

recently identified as the major SOC channel in platelets.23 

Together, these mechanisms lead to thrombus formation and growth. Platelet-platelet 

contacts in thrombi need to be stabilized by further mechanisms, like integrin outside-in 

signaling24 and other contact dependent signaling. The concept of the “platelet synapse” is 

based on the assumption that boundaries between adjacent platelets are populated by 

signaling and adhesion molecules, thereby creating a prothrombotic environment.25,26 Among 

these molecules is CD40L, which was identified as a ligand for αIIbβ3, supporting stable 

formation of arterial thrombi.27 Additionally, Gas6 (stored in α-granules and secreted 

following activation) binds to the receptor tyrosine kinases Tyro3, Axl, and Mer, thereby 

stimulating tyrosine phosphorylation of the β3 integrin, and thus amplifying outside-in 

signaling via αIIbβ3.28 Interactions of ephrins and Eph kinases on adjacent platelet surfaces 

in platelet aggregates contribute to high-affinity platelet-platelet contacts.29 SLAM (CD150) 
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and CD84, two members belonging to the CD2 family of homophilic adhesion molecules, are 

expressed on the surface of platelets and may contribute to stabilization of thrombi.30 

 

1.3 GPVI 

1.3.1 Structure and signaling of GPVI 

GPVI is a type I transmembrane receptor of 62 kDa belonging to the immunoglobulin (Ig) 

superfamily that is exclusively expressed in platelets and MKs.31,32 Two Ig domains are 

followed by a mucin like stalk that contains O-glycosylation sites, a transmembrane region 

and a 51 amino acid cytoplasmic tail. Mouse GPVI contains only 27 amino acids in its 

cytoplasmic tail, because it is lacking the C-terminal region downstream of the proline-rich 

region. The positively charged arginine residue in the transmembrane region of GPVI 

interacts with the FcR chain via a salt bridge33 (Figure 2). GPVI expression on the platelet 

surface was demonstrated to strictly depend on its association with the FcR chain.34  

 

 

Figure 2. The GPVI/Fc receptor -chain complex. (A) GPVI contains 2 extracellular Ig domains, 
followed by a mucin-rich region containing O-glycosylation sites. The transmembrane domain has an 

arginine (R) group that is required for the association with the FcR-chain through a salt bridge. The 

FcR -chain is present as a disulphide-linked homodimer and has 2 tyrosines in a conserved 
sequence known as an ITAM. Tyrosine residues (Y) in the ITAM are indicated. (B) Amino acid 

sequence of the cytosolic tail of GPVI showing the sites that interact with FcR -chain, calmodulin, and 
SH3 recognition domain (proline-rich region). (Adapted from Nieswandt and Watson, Blood, 2003)

15
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The FcR chain contains an immunoreceptor tyrosine based activation motif (ITAM) 

sequence which represents the signaling subunit of the receptor complex.35 Further, GPVI 

dimerization on platelets was shown to be operative in the process of ligand binding.36,37 

Collagen is the most important physiological ligand for GPVI. Many collagen isoforms are 

expressed in the vessel wall, with fibrillar type I and III being the major constituents of the 

ECM of blood vessels. Approximately 10% of the collagen amino acid composition consists 

of GPO (glycine-proline-hydroxyproline) repeats, which are essential for GPVI binding.15 

Powerful GPVI activation can also be triggered by non-physiological ligands: the GPO-rich 

synthetic peptide CRP (collagen-related peptide) or by the snake venom toxin convulxin.38 

In response to ligand binding to the extracellular domain of GPVI, the conserved ITAM motif 

tyrosine residues located in the consensus sequence Yxx(L/I)x6-8Yxx(L/I) in the FcR chain 

are phosphorylated by the Src family kinases Fyn and Lyn, which are constitutively bound to 

the proline-rich region in the GPVI cytosolic tail.33 The phosphorylated ITAM tyrosine 

residues in the FcR chain then serve as binding site for the two SH2 domains of the tyrosine 

kinase Syk.39 Activation of Syk leads to formation of the linker of activated T cells (LAT) 

signalosome, comprising multiple adaptor and signaling proteins, finally resulting in activation 

of PLC2. Activated PLC2 hydrolyzes PIP2 into the secondary messengers, IP3 and DAG, 

which lead to Ca2+ release from intracellular stores and activation of PKC, respectively. This 

elicits the physiologic responses essential for platelet activation, like integrin activation, 

platelet degranulation and aggregation.40 Since GPVI is critically involved in pathological 

thrombus formation upon exposure to thrombogenic surfaces, therapeutical downregulation 

of GPVI may provide a novel therapeutic strategy. 

 

1.3.2 GPVI as potential antithrombotic target 

Treatment of mice with the monoclonal anti-GPVI antibody JAQ1 results in specific depletion 

of the receptor from circulating platelets. JAQ1-treated mice were completely protected for at 

least two weeks in a model of lethal thromboembolism, but tail bleeding times in JAQ1-

treated mice were only moderately increased.41 Another study showed that “therapeutical” 

downregulation of GPVI was independent of targeting of the collagen binding site of the 

receptor, because other antibodies (JAQ2 and JAQ3), which bind to different epitopes on 

GPVI, were also effectively depleting GPVI from the platelet surface.42 JAQ1-treated mice 

were also protected in models of arterial thrombosis43,44 and ischemic stroke.45 These 

findings suggested that targeting of GPVI by antibodies might be a safe future option to 

prevent or treat thrombotic diseases. 
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Observations made in patients support this idea. Already in 1989, Moroi et al. described a 

patient deficient in GPVI. This patient showed only a mild bleeding time prolongation.46 

Boylan et al. found that plasma of another patient contained an autoantibody that bound 

specifically to GPVI.47 Importantly, also in this patient only a mild bleeding disorder and a 

moderately reduced platelet count occurred, and platelets failed to become activated in 

response to collagen or CRP and inefficiently adhered to immobilized collagen under 

conditions of arterial shear. The amount of GPVI platelet mRNA and the nucleotide sequence 

of the GPVI gene were found to be normal but surface expression of GPVI and the FcR 

chain was dramatically reduced. Collectively, this argues for antibody-mediated GPVI 

depletion in this patient.  

As antibody-induced GPVI loss was demonstrated in both humans and mice, and these 

findings might serve as basis for the development of safe antithrombotic therapeutics, a 

better understanding of the molecular mechanisms of GPVI downregulation is desirable. In 

mice, downregulation of GPVI in response to JAQ1 antibody injection has been shown to be 

mediated by two independent mechanisms: internalization and metalloproteinase-dependent 

ectodomain shedding.48 However, no in vivo evidence was available at that time, which could 

determine the GPVI-cleaving enzyme(s). 

 

1.4 SLAM family receptors 

Signaling lymphocyte activation molecule (SLAM) family members are recognized as 

important immunomodulatory receptors, regulating both innate and adaptive immune 

responses.49 The SLAM family of cell surface receptors belongs to the CD2 subset of the Ig 

superfamily of molecules.50 Most studies carried out on SLAM family receptors were 

performed on immune cells. 

Interestingly, expression of two members of the SLAM family has been demonstrated in 

platelets: CD150 and CD84.51 Both receptors were tyrosine phosphorylated in response to 

platelet aggregation. Further, CD150 deficient mice displayed a defect in platelet aggregation 

in vitro and a delayed arterial thrombotic process in vivo.51 Thus, these two SLAM family 

members were proposed as novel targets for antithrombotic drug discovery.26 

The SLAM family comprises nine members, SLAMF1-SLAMF9: CD150 (SLAM(F1)), CD48 

(SLAMF2), Ly9 (SLAMF3), 2B4 (SLAMF4), CD84 (SLAMF5), NTB-A (SLAMF6, Ly108), 

CRACC (SLAMF7), BLAME (SLAMF8), and SF2001 (SLAMF9).52 All genes encoding SLAM 

related receptors are located in humans on chromosome 1. Seven genes cluster in a 

contiguous genomic region (NTB-A, CD84, CD150, CD48, CRACC, Ly9 and 2B4). BLAME 

and SF2001 are located outside this region.53 In mice, all genes encoding SLAM related 
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receptors are likewise located on chromosome 1H3.54 Figure 3 illustrates the organization of 

mouse and human SLAM family gene clusters. The location of SLAM related genes in a 

genomic segment on chromosome 1 in humans and mice implies that they evolved by serial 

gene duplication.55 

 

 

Figure 3. Genomic organization of the mouse and human SLAM family cluster. The genes 
encoding members of the SLAM receptor family (SLAM locus) are located in human and mouse on 
chromosome 1, clustered in a genomic segment of 359 kb in humans and 392 kb in mice. SLAMF8 
and SLAMF9 are located in the same chromosome region, but outside of the SLAM locus. Human 
SH2D1B (EAT2) as well as mouse Sh2d1b (Eat2a) and Sh2d1c (Eat2b) are also located close to the 
SLAM locus. The arrangement of the SLAM gene family is identical in mouse and human genomes 
with the exception of the gene orientation relative to the centromere. Black arrows signify the 
transcriptional direction of these genes. (Adapted from Cannons et al., Annu. Rev. Immunol 2011)

49
 

 

SLAM related receptors exhibit a common N-terminal ectodomain structure with a 

membrane-distal immunoglobulin variable domain (V) lacking an Ig disulfide bond, and a 

membrane-proximal immunoglobulin constant-2 domain (C2), stabilized by disulfide bonds. 

An exception is CD229 (Ly9), which contains a tandem repeat of the IgV-IgC2 motif. The 

extracellular region is followed by a transmembrane domain, and an intracellular tyrosine-rich 

region. Several alternatively spliced isoforms of SLAM, CD84, CRACC, Ly108, Ly9 and 2B4 

have been identified that differ in the length of their cytoplasmic domain.49 SLAM family 

receptors are capable of homotypic association, mediated by their external Ig-like domains.56 

Heterotypic interaction occurs between CD244 and CD48.57 The intracellular regions of the 

receptors differ in length and amino acid composition. Six members contain one or more 

copies of the immunoreceptor tyrosine-based switch motif (ITSM).49 The ITSM bearing the 

consensus sequence TxYxxI/V differs from the ITAM, which contains two YxxI/L motifs. The 

ITSM motif shows similarities to the immunoreceptor tyrosine-based inhibition motif (ITIM), 
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(I/V)xYxx(L/V).58 Both motifs contain tyrosines that can be phosphorylated by protein tyrosine 

kinases, such as Src family members, following activation of corresponding receptors by 

ligand-binding or antibody-induced receptor clustering.59 A phosphorylated ITSM can recruit 

Src homology 2 (SH2) domain-containing proteins, such as the phosphotyrosine 

phosphatase 2 (SHP-2) or the inositol phosphatase SHIP, depending on receptor type and 

cellular context.60 Furthermore, the adaptor proteins SAP (SLAM-associated protein, 

encoded by SH2D1A gene), EAT-2 (Ewing’s sarcoma activated transcript 2, encoded by 

SH2D1B gene), ERT (Eat-2-related transducer) and the p85 subunit of phosphatidylinositol-3 

kinase are able to bind to an ITSM.61,62 While the interaction of SLAM (CD150) and the 

adaptor protein SAP is constitutive, the interactions between SAP and other receptors 

require tyrosine phosphorylation.63,64 The ITSM transduces activating or inhibiting signals, 

depending on the particular cell type.58 In natural killer (NK) cells, for instance, SAP appears 

to enhance, whereas EAT-2 has been shown to suppress cytotoxicity and IFN-secretion.65 

SAP binds directly to both Src-like kinases FynT and Lck, and this was shown to be required 

for SLAM and Ly9 phosphorylation in thymocytes and peripheral T cells.66  

SLAM family members are differentially expressed in a variety of cell types.67 SLAM is 

expressed in double-positive thymocytes, activated T cells, B cells, platelets, and mature 

dendritic cells (DCs). Ly-9, CD84 and CRACC are expressed in macrophages.55 NTBA is 

expressed in NK, T and B cells.68 CD48, Ly-9, CD84, NTBA, CRACC and SF2001 are 

present on the surface of T and B cells. Expression profiles of the SLAM family members led 

to their establishment as markers of hematopoietic stem cells among progenitor cells.69 

Differential expression of SLAM family receptors has been detected in human hematopoietic 

stem and progenitor cells.70 SLAM proteins are supposed to be critical for fine-tuning of 

lymphocyte responses.71 

During the last years, critical roles of the SLAM family of receptors and the SAP family of 

adaptor molecules have been established in lymphocyte development, differentiation, and 

effector functions.50 Severe immune disorders result from disturbance or alteration of SLAM 

related receptor function. X-linked lymphoproliferative (XLP) disease, a human 

immunodeficiency characterized by an extreme sensitivity and inadequate immune response 

to Epstein-Barr virus (EBV) infection, is the most prominent example.72 XLP patients carry a 

mutated SH2D1A gene, resulting in inactivated SAP adaptor molecule. Studies in SAP 

deficient mice showed immunoglobulin E (IgE) deficiency and low serum IgG levels before 

and after viral infections, which were associated with impaired CD4+ T-helper function.73 

Another example is systemic lupus erythematosus (SLE), an antibody-mediated chronic 

autoimmune disease. Loss of B cell tolerance is characteristic of SLE. In mice, the 

susceptibility locus Sle1z/Sle1bz for this autoimmune disease is located on chromosome 1 
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and associated with production of autoantibody to chromatin. The main candidate for Sle1bz 

is the Ly108.1 isoform of the Ly108 gene, which is highly expressed in immature B cells from 

lupus-prone Sle1z mice. The normal Ly108.2 allele, but not the lupus-associated Ly108.1 

allele, was found to sensitize immature B cells to deletion.74 SLAM molecules may function 

as regulators that shape the stringency with which self-reactive B cells are suppressed 

during early development, which in the end protects from autoimmunity. So far, the 

understanding of the contribution of individual SLAM family members to complex processes 

like immune responses and other biological processes is still limited. 

 

1.5 CD84 

1.5.1 Gene and protein structure 

As illustrated above in Figure 3, the CD84 gene is located in the SLAM locus in humans on 

chromosome 1q24, and in mice on chromosome 1H3 at 93.3 cM. It was originally discovered 

in 1997 by isolation of cDNA from a Raji human Burkitt lymphoma cell line library.75 A 

genomic characterization published by Palou et al. revealed five isoforms of CD84 that differ 

only in the length of the predicted cytoplasmic tail. These isoforms arise from alternative 

splicing of different exons, and use of a cryptic splice site.76 According to recent genome 

browser data (http://www.ensembl.org), human CD84 comprises 7 exons, which are 

translated into a 328 amino acid protein, whereas mouse Cd84 contains 9 exons, which give 

rise to a 329 amino acids. In addition, protein database analysis (http://www.uniprot.org) 

reveals two mouse CD84 protein isoforms that differ from the canonical sequence, which is 

due to the existence of alternatively spliced transcripts. For human CD84, six additional 

isoforms are listed in the database. Mouse CD84 shares 58% amino acid identity with human 

according to sequence alignment using BLAST (http://blast.ncbi.nlm.nih.gov) and similar 

domain organization (Uniprot accession no. Q9UIB8 and Q18PI6). Figure 4 schematically 

depicts the murine Cd84 exon structure, and the corresponding protein domains. 

Like other SLAM family members, CD84 is a type-I transmembrane glycoprotein. In both 

human and mice, the 21 amino acid (aa) signal peptide is cleaved before integration of the 

mature protein into the plasma membrane. The extracellular domain containing an IgV and 

an IgC2 domain comprises 199 aa in mice. The extracellular N-terminus is followed by a 25 

aa transmembrane region and an 83 aa C-terminal intracellular region.75 CD84 has a 

calculated mass of 39 kDa but shows a higher apparent molecular weight in SDS page, as it 

is highly glycosylated.75,77 Crystal structure analysis recently revealed orthogonal homophilic 

interaction of CD84 mediated by the IgV domains.56 Figure 5A depicts the model of CD84 

homophilic interaction.  
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Figure 4. Genomic structure of mouse Cd84 and corresponding protein domains. Exon-intron 
structure was drawn according to sequence information from the Ensembl genome browser. Filled red 
boxes represent translated exons. Protein domains were derived from the canonical sequence 
published in the UniProt protein database. Exon 1 and part of exon 2 are nontranslated regions (5´ 
UTR), exon 2 encodes the signal peptide, exon 3 the V (variable) Ig-like domain, exon 4 the C2 
(constant) Ig-like domain, exon 5 the transmembrane domain and exons 6, 7, 8 encode the 
cytoplasmic domain with at least 2 ITSMs.  

 

1.5.2 CD84 in platelets and other cell types 

CD84 is expressed in platelets and different immune cell populations, including T and B cells, 

monocytes/macrophages, granulocytes, DCs and mast cells.26,67,75,78 The expression of 

CD84 is upregulated during differentiation from pluripotent stem cells to committed progenitor 

cells, suggesting that it may be used as a marker of hematopoietic cell differentiation.78 CD84 

was found at higher levels on memory than naive B cells, but its expression was 

downregulated on memory B cells following activation in vitro, and falls progressively with 

each cell cycle.79 CD84 was found to function as a homophilic adhesion molecule. Cross-

linking of CD84 on anti-CD3 mAb-stimulated T cells increases proliferation,80 and another 

study showed that this treatment results in enhanced IFN- secretion in human leukocytes.81 

This was not achieved by solely crosslinking CD84, suggesting that CD84 acts as a 

costimulatory molecule. An earlier study revealed a role of another SLAM family member, 

CD150, in IFN- production by T cells.82 Recently, a role for CD84 in LPS-induced cytokine 

secretion by macrophages was discovered.83  

The signaling cascade downstream of CD84 is only partly understood. Crosslinking of CD84 

by antibodies leads to phosphorylation of ITSMs and recruitment of the intracellular adaptor 

protein SAP in T cells and platelets.51,80 Phosphorylation is thought to be facilitated by Src 

kinases, such as Lck and Fyn. In T cells, FynT was shown to be indispensable for SLAM 

tyrosine phosphorylation, which was drastically enhanced by SAP. A dual functional role for 

SAP was revealed in SLAM signaling, by acting both as an adaptor for FynT and an inhibitor 

to SHP-2 binding.60 CD84 phosphorylation in activated T cells involves the Src-family kinase 

Lck.80 However, phosphorylation of CD84 can also occur in SAP-deficient cell lines and T 
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cells from XLP patients, where SAP is mutated,79,80 raising the possibility that CD84 does not 

require SAP mediated Fyn recruitment for receptor tyrosine phosphorylation, while still 

requiring SAP for downstream signal transduction.84 Tyrosine phosphorylation has been 

detected in B cells after crosslinking with antibodies, even though they do not express SAP, 

and therefore EAT-2 was proposed to serve as a functional homolog of SAP.79,85 The SH2 

domain containing adaptor EAT-2 was shown to be expressed in macrophages and B 

lymphocytes, to bind to phosphorylated CD84, and to interfere with recruitment of the 

tyrosine phosphatase SHP-2.85 Figure 5B shows a model of signal transduction by CD84. 

 

 

Figure 5. CD84 structure and signaling. (A) Model of CD84 homophilic interaction, adapted from 
Yan et al.

56
 (B) CD84 signaling (hypothetic model): Tyr phosphorylation of the membrane proximal 

ITSM of CD84 is essential for recruitment of adaptors like SAP. SAP in turn binds to the tyrosine 
kinase Fyn and/or other protein tyrosine kinases leading to downstream signal transduction.

52
 Binding 

of SAP to phosphorylated ITSM inhibits SHP-2 binding.
60

 Phosphorylation of CD84 also occurs in SAP 
deficient T cells. Phosphorylation is mediated by Src kinase Lck,

80
 but Fyn is required for downstream 

signaling.  

 

In resting platelets, CD84 is in a nonphosphorylated state.51 Phosphorylation of Y290 and 

Y310 occurs upon platelet aggregation in response to collagen, thrombin and thrombin 

receptor activating peptide (TRAP) but can be inhibited by IIb3 antagonists (platelet 

aggregation blocker). Only Y310 lies within an ITSM motif, but not Y290. Platelet spreading 
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on the immobilized CD84 extracellular domain was shown to be dependent on SAP. EAT-2 

was also found in murine platelets, but its functional relevance remained unclear.51 These 

findings pointed towards a role of CD84 as a receptor on the platelet surface that signals via 

tyrosine phosphorylation induced by platelet aggregation. This occurs subsequently to 

integrin-mediated platelet-platelet contacts, possibly enhancing platelet aggregate formation 

and stability. 

The first mice deficient in CD84, which were recently described, show no overt phenotype, 

but display a specific defect in germinal center formation and T cell:B cell interactions.84 Early 

T cell:B cell interactions were found to be dependent on integrins, and sustained interaction 

required SAP and CD84. Platelets of these mice have not been studied. Even though CD84 

is highly expressed in platelets77 and tyrosine phosphorylation of the cytoplasmic tail in 

response to aggregation has been demonstrated, the role of this receptor in platelet function 

is unclear. Nanda et al.51 suggested a role for CD84 in thrombus stabilization, based on the 

observation that CD84 is tyrosine phosphorylated in response to platelet aggregation, like 

CD150. However, in this study, only CD150 deficient mice were studied and thus CD84 

function in platelets remained elusive. The model of the immune synapse was proposed to 

be applicable to platelets. According to this model, primary cell-cell interactions are mediated 

by integrins, but secondary signaling by additional receptors is initiated by cell proximity.26 

CD84 might be a novel receptor that exerts its function at the “platelet synapse” or “gap” 

between platelets in a growing thrombus.26,30 Theoretically, also a negative role of CD84 in 

platelets is conceivable. In human mast cells for example, CD84 was shown to dampen 

FcRI-mediated Ca2+ signaling, and this process involved the inhibitory kinase Fes and the 

phosphatase SHP-1.86 Nevertheless, no platelet activation studies on CD84 deficient mice 

have been reported in the literature yet. 

 

1.6 Downregulation of platelet receptor expression 

Platelet receptors can be downregulated from the platelet surface by internalization,48,87 or 

intracellular, or extracellular proteolytic cleavage. The latter mechanism, termed ectodomain 

shedding, has been described for a number of major receptors, including GPIb88 GPVI,89,90 

GPV,91,92 Semaphorin 4D,93 P-Selectin,87 JAM-A,94 or CD40L.95 A mass spectrometric study 

recently provided evidence that many more surface proteins, including CD84, might be 

proteolytically downregulated in activated platelets, but the underlying mechanisms were not 

addressed in detail in that study.96 Members of the a disintegrin and metalloproteinase 

(ADAM) family have been identified to be involved in the proteolysis of some prominent 

platelet receptors with ADAM17 mediating the cleavage of GPIb88 whereas shedding of 
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GPV can occur through either ADAM10 or ADAM17.97 A role for both metalloproteinases was 

also shown for JAM-A shedding.94 ADAM10 was implicated in cleavage of a GPVI-based 

synthetic peptide,97 but it was unclear whether other metalloproteinases are also capable of 

GPVI cleavage.  

To study platelet receptor regulation, ectodomain shedding can be induced in vitro by 

treatment of platelets with carbonyl cyanide m-chlorophenylhydrazone (CCCP),89 which 

induces mitochondrial injury by uncoupling oxidative phosphorylation, or by the calmodulin 

inhibitor W7, which blocks the interaction of receptors and calmodulin.90 N-ethylmaleimide 

(NEM) treatment provides a mechanism for directly inducing shedding without accompanying 

platelet activation12 (see also 1.6.1). Treatment of platelets with physiological agonists may 

also lead to metalloproteinase-dependent shedding. Stimulation of human platelets in vitro 

with different GPVI agonists led to loss of GPVI from the platelet surface, but the identity of 

the metalloproteinase that cleaves GPVI has been unclear.90 In contrast to human platelets, 

mouse platelets did not lose GPVI from their surface after stimulation with physiological 

agonists in vitro.89 However, the same study showed that CCCP induced shedding of GPVI 

from the platelet surface by a metalloproteinase-dependent mechanism. As illustrated above 

in Figure 2, calmodulin binds the basic region of GPVI.98 Metalloproteinase-dependent GPVI 

shedding in vitro was also demonstrated in response to platelet treatment with the calmodulin 

inhibitor W7. GPVI can be experimentally downregulated in vivo in mice by injection of the 

monoclonal antibody JAQ1.41 This occurs by two independent mechanisms: internalization 

and ectodomain shedding,48 but detailed studies on the identity of the GPVI sheddase(s) 

were lacking. 

 

1.6.1 Metalloproteinases of the ADAM family 

The ADAM family has been implicated in diverse biological processes like control of 

membrane fusion, cytokine, growth factor and receptor shedding, cell migration, as well as 

processes such as fertilization and cell fate determination.99 ADAM17 (TNF--converting 

enzyme, TACE) and ADAM10 are the best characterized members of that family.100 Both are 

expressed in platelets and one or both have been shown to act as sheddases of platelet 

receptors, most notably GPIb88 GPV,91 or GPVI.89 ADAM10 and ADAM17 share a modular 

domain structure: a propeptide domain, a catalytic metalloproteinase domain containing a 

metal ion-coordination motif, a disintegrin domain, a cysteine-rich domain, a transmembrane 

domain, and a cytoplasmic tail (Figure 6). Removal of the propeptide domain produces the 

active form of the enzyme. The prodomain of ADAM10 and ADAM17 contains a cysteine 

switch, a free sulfydryl maintaining the metalloproteinase in an inactive form. Activation of the 
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enzyme occurs after proteolytic removal of the prodomain or upon modification by the thiol-

modifying reagent NEM.12,101 

Proteins of the TIMP (tissue inhibitor of metalloproteinases) family are established as 

endogenous ADAM inhibitors.102 Tight regulation of ADAM function appears to be essential, 

illustrated by the observation that for example TIMP3 deficient mice exhibit increased TNF- 

levels and chronic hepatic inflammation.103 The fact that ADAMs exert critical functions 

during embryonic development is emphasized by the observations that Adam10-/- mice die 

during embryonic development104 and ADAM17 deficiency leads to perinatal lethality.105 

Minimal expression of ADAM17 appears to be sufficient for survival, as recently shown in 

Adam17ex/ex mice by Chalaris et al.106 

 

 

Figure 6. Domain structure of ADAM10/ADAM17. The modular organization consist of a propeptide 
(Pro) domain, a metalloproteinase catalytic domain containing the Zn

2+
-coordination motif (grey bar), a 

disintegrin domain, and a Cys-rich domain. The free thiol (Cysteine-switch) within the prodomain 
regulates catalytic activity. (Adapted from Andrews et al., ATVB, 2007)

12
 

 

Shedding of platelet receptors through metalloproteinases probably represents a negative 

feedback loop to limit platelet activation and thrombus growth. It provides a mechanism for 

downregulating surface expression resulting in loss of ligand binding, decreasing signaling 

and generation of proteolytic fragments that may be functional or provide platelet-specific 

biomarkers.107 Therefore, a more detailed understanding of platelet receptor cleavage is not 

only required for insights into the complex biological functions of this regulatory process, but 

may be relevant with respect to development of potential antithrombotic therapies. 

 

1.6.2 Calpain 

Another mechanism to regulate platelet receptor signaling is proteolytic cleavage of the 

receptor by intracellular proteases like calpain.108 Calpain is a cysteinyl protease that is in 

part regulated by intracellular Ca2+ levels and cleaves a number of proteins, many of them 

involved in the regulation of the cytoskeleton.109 Several studies have demonstrated that 

calpain cleaves the intracellular part of 3 integrin,110 FcRIIa,111 and PECAM-1.112 Platelets 

express calpain-1, which accounts for ~80% of calpain protease activity in these cells, and 
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calpain-2, mediating ~20% calpain protease activity.113 Deficiency of calpain-1 in platelets 

resulted in impaired platelet aggregation and clot retraction, which could be attributed to 

enhanced PTP1B activity, but tail bleeding times of calpain-1 deficient mice were 

unaltered.113,114 More recently, Kuchay et al.. discovered that calpain-1 regulates platelet 

spreading on collagen and fibrinogen through Rho GTPases.115 Importantly, calpain activity 

can be induced under the same conditions that activate metalloproteinases in platelets (e.g. 

in response to calmodulin inhibitors),12,111 suggesting that intra- and extracellular cleavage 

events might be simultaneously operative in the downregulation of receptor signaling in 

platelets. 

 

1.7 Thrombotic diseases 

Venous thromboembolism constitutes a leading cause of cardiovascular death and consists 

of deep vein thrombosis (DVT), and its complication, pulmonary embolism.116 A recent study 

in mice underscored the role of platelets in DVT, as they initiate and propagate venous 

thrombosis, by interaction with monocytes and neutrophils, supporting neutrophil 

extracellular trap (NET) formation, which in turn triggers FXII-dependent thrombus 

propagation.117 Novel oral anticoagulants like Rivaroxaban are in clinical use for treatment of 

DVT.118 On the other hand, platelets are established as central players in arterial 

thrombosis.119,120 Undesired platelet activation and thrombus formation, e.g. upon exposure 

of thrombogenic surfaces after rupture of an atherosclerotic plaque, can lead to stenosis or 

complete occlusion of vessels and infarction of organs distal from the occlusion site.121 If 

coronary arteries are affected, this can result in myocardial infarction, a leading cause of 

death in industrialized countries.122 Thrombi might also embolize and block blood flow in 

smaller arteries, leading to infarction of various organs. Ischemic stroke, resulting from 

blockade of cerebral arteries is a major cause of disability and the second leading cause of 

death worldwide.123 Several antiplatelet drugs are currently applied to prevent stroke or 

myocardial infarction in high risk patients. Aspirin, a cyclooxygenase inhibitor, or clopidogrel, 

an antagonist of the P2Y12 ADP receptor are among the established oral antiplatelet drugs in 

clinical use.124 Despite the common use of platelet inhibitors, ischemic stroke is still among 

the most devastating cardiovascular events, due to the high risk of disability or death. Thus, 

there is a strong need to discover novel molecular targets in order to develop new drugs for 

safe therapeutic intervention. 

Around 80% of strokes are caused by cerebral ischemia as a result of arterial occlusion, 

whereas the remaining 20% are due to intracerebral hemorrhages.125 Thromboembolism in 

the brain might originate from atherosclerotic plaque rupture or from the heart, especially in 

patients with atrial fibrillation. Occlusion of major or multiple smaller intracerebral arteries by 
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embolized thrombi leads to focal impairment of the blood flow and to secondary thrombus 

formation within the cerebral microvasculature.125 Treatment options are limited to early 

thrombolysis using recombinant tissue plasminogen activator (t-PA).126  

In the acute phase of ischemic stroke, oxygen and glucose deprivation leads to energy 

failure, consequently ion gradients cannot be maintained in neurons within the ischemic 

territory.127 The membrane potential is lost, thus neurons and glia depolarize. The excitatory 

amino acid glutamate accumulates and leads to activation of N-methyl-D-aspartate (NMDA) 

receptors and metabotropic glutamate receptors, resulting in Ca2+ overload, leading to 

glutamate excitotoxicity.127 Prolonged elevation of intracellular Ca2+ induced by cerebral 

ischemia leads to activation of Ca2+-dependent enzymes, mitochondrial damage, activation 

of prooxidant pathways, and finally to neuronal death by either necrosis or apoptosis.128  

Paradoxically, despite successful vessel recanalization, many patients show secondary 

infarct growth, a phenomenon referred to as reperfusion injury.129 Breakdown of the 

endothelial cell permeability barrier, edema formation, expression of endothelial cell-

leukocyte adhesion receptors and the resulting microvascular obstruction by platelet-

leukocyte and platelet-fibrin aggregates, as well activation of coagulation foster this 

process.130 Considerable knowledge of the contribution of platelets and immune cells has 

been obtained through studies in mice, using the stroke model of transient middle cerebral 

artery occlusion (tMCAO).131 Inhibition of platelet adhesion and activation receptors, GPIb 

and GPVI, respectively, resulted in protection of mice from infarct progression in that 

model.45 In contrast, blockade of IIb3-mediated platelet aggregation was not protective 

and increased intracerebral hemorrhage. These studies indicated that inhibition of early 

steps of platelet adhesion to the ischemic endothelium and the subendothelial matrix may 

offer a safe treatment strategy in acute stroke.45 Platelets contribute to activation of the 

coagulation cascade by phosphatidylserine exposure, thereby binding coagulation factors 

and facilitating assembly of tenase and prothrombinase complexes.132 In addition, platelets 

release negatively charged polyphosphates, which activate coagulation factor XII (FXII).133 

Activated FXII also triggers inflammation by activation of the kallikrein-kinin system, which 

results in production of the proinflammatory mediator bradykinin.134 Furthermore, it is well 

known that ischemic stroke induces inflammatory responses, including recruitment of 

granulocytes, as well as T cells and macrophages.135 These findings revealed the 

relationship between platelets and inflammation in ischemic stroke and led to the novel 

concept of ischemic stroke as a “thrombo-inflammatory disease”.129 The infiltration of 

different immune cell types into the ischemic regions follows distinct temporal and spatial 

dynamics.136 Proinflammatory cytokines like TNF are produced by mast cells, microglia, 

perivascular macrophages or T cells during early phases of brain ischemia.137 During the last 
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years, especially T cells received attention. Mice lacking T cells were protected from infarct 

progression following tMCAO.138 Reconstitution of T cell deficient mice with normal T cells 

restored susceptibility to cerebral ischemia, and these effects were antigen-independent.139 A 

very recent study revealed that among T cells also regulatory T cells lead to impaired tissue 

reperfusion by interaction with endothelium and platelets in the early course of tMCAO.140  

In light of the complex processes acting in concert to promote infarct development in 

ischemic stroke, it appears conceivable that targeting receptors or signaling pathways in 

diverse cell types may represent promising options for future treatment. These may include 

antiplatelet strategies, as well as immune cell- or neuron-specific pharmacological 

intervention. Therefore, there is a strong need to identify potential novel molecular targets in 

either of these cell types. 

 

1.8 Store-operated calcium entry (SOCE) 

Ca2+ is an ubiquitous messenger in eukaryotic cells, controlling diverse cellular functions 

such as contraction, secretion, gene transcription, cell growth, or cell death.141 Activation of 

PLC isoforms can lead to increased Ca2+ entry from the extracellular space by receptor-

operated channels (ROC).142 More importantly, the store-operated Ca2+ entry (SOCE, also 

called capacitive calcium entry) pathway has been established as the major Ca2+ influx 

mechanism in mammalian cells.143 SOCE comprises the IP3-induced release of Ca2+ from 

intracellular stores and concomitant activation of Ca2+ entry through store operated Ca2+ 

(SOC) channels in the PM. For many years, the identity of the SOC channels remained 

unknown. Also the mechanism that senses the store depletion and communicates store 

depletion to the SOC channels in the PM was elusive. Only a few years ago, the EF hand 

containing protein STIM1144,145 was found to be the calcium sensor residing in the ER that 

activates Orai1, the pore forming subunit of the SOC channel.146,147 According to current 

models, STIM1 proteins sense the depletion of Ca2+ from the ER, cluster rapidly, and 

translocate to junctions adjacent to the PM, where they organize Orai channels into clusters 

and open these channels to achieve SOC entry.148 

In platelets, SOCE is the major Ca2+ entry pathway across the PM. Upon agonist stimulation, 

activated PLC and PLC2 isoforms hydrolyze the membrane phospholipid PIP2 to IP3 and 

DAG. IP3 directly induces Ca2+ release from the intracellular stores. This leads to moderate 

elevation of [Ca2+]i. The reduced store content is sensed by the Ca2+ sensor protein STIM1,22 

which then triggers profound Ca2+ influx across the PM through Orai1.23 SOCE is also known 

as the major Ca2+ influx mechanism in lymphocytes,149 essential for the activation of and 

cytokine gene expression by T and B cells. A mutation in ORAI1 was identified as genetic 
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defect responsible for one form of hereditary severe combined immune deficiency (SCID) 

syndrome in human patients.146 

The Orai protein family comprises three homologs: Orai1, Orai2 and Orai3. The active pore 

consists of four Orai molecules150 and it is likely that the three Orai homologs can form 

heteromeric channels with distinct properties151. 

The role of another Ca2+ sensor protein, STIM2, is less clear. Besides activating SOCE upon 

smaller decreases of ER Ca2+, STIM2 was shown to regulate basal cytosolic and ER calcium 

levels in eukaryotic cells.152 Until recently, no clear data have been available on the presence 

and functional role of SOC channels in neurons, which are activated in response to Ca2+ 

store depletion to allow capacitive Ca2+ entry and store replenishment. In 2009, Berna-Erro et 

al. could show that SOCE plays a critical role in neurons, since mice deficient in the Ca2+ 

sensor STIM2 were protected from ischemia-induced neuronal damage.153 However, the 

identity of the major SOC channel in neurons remained unknown. 

 

1.9 Orai2 

The human ORAI2 gene is located on chromosome 7, whereas in mice Orai2 is located on 

chromosome 5. Genome browser data (http://www.ensembl.org) revealed 4 exons for human 

and 3 exons for the mouse gene. In both species, only two of these exons are protein coding 

exons. The human Orai2 protein consists of 254 amino acids (28.6 kDa), whereas the murine 

Orai2 protein contains 250 amino acids (28.2 kDa) (Uniprot accession no. Q96SN7 and 

Q8BH10). Figure 7 illustrates the murine Orai2 genomic and protein domain organization. 

Sequence alignment (http://blast.ncbi.nlm.nih.gov) revealed 95% identity between the human 

and the murine amino acid sequences. Orai2 is a membrane protein containing 4 

transmembrane protein domains. The N- and C- termini face the cytoplasm.151  

The current knowledge of Orai2 function is still limited. Orai2 can form heteromultimers with 

Orai1, but in contrast to Orai1, it is not glycosylated.154 Like other Orai homologs, Orai2 

contains conserved acidic residues located in the extracellular loop between the first and 

second transmembrane domains, which are associated with Ca2+ binding.151 Overexpression 

of Orai2 together with STIM1 in HEK293 cells enhanced SOCE, but to a lesser extent than 

Orai1.155 Differences between SOC channels formed by Orai1 and Orai2 reside in their 

sensitivity to inactivation by internal Ca2+ and their functional expression seems to be cell 

type dependent.156  
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Figure 7. Genomic structure of mouse Orai2 and corresponding protein domains. Sequence 
information was obtained from the Ensembl genome browser. Filled black boxes represent translated 
exon sequences (coding region). Protein domains were derived from the sequence published in the 
UniProt protein database. Exon 3 codes for the major part of the 250 amino acid Orai2 protein. The 
Orai2 protein contains 4 transmembrane (TM) domains. 

 

Mouse thymocytes and T cells were found to express more Orai2 than Orai1 and Orai3, thus 

suggesting that murine T cell SOC channels might use Orai2, whereas human T cells require 

Orai1.157 In mouse dendritic cells, Orai2 was recently shown to interact selectively with 

STIM2 upon store depletion.158 Northern blot studies have shown prominent Orai2 

expression in several organs of mice, whereas Orai1 and Orai3 appeared to be more broadly 

expressed.156 Nothing is known about the functional relevance of Orai2 in platelets and 

neurons. Low expression was found in platelets,23 whereas in brain tissue high expression of 

Orai2 has been detected.159 

 

1.10 Aim of the study 

Given the key role of platelets in normal hemostasis as well as in thrombotic events, 

progress in understanding of platelet receptor function is required in order to find potential 

new targets for antithrombotic therapy. The SLAM family member CD84 is expressed in 

platelets and immune cells. This receptor has been proposed to stabilize thrombi, but no 

experimental data to support this hypothesis have been available so far. Studying CD84 also 

appeared interesting in the context of ischemic stroke, where platelets and immune cells play 

critical pathogenic roles in infarct progression. The first aim of this thesis was to generate a 

CD84 deficient mouse line and analyze the role of CD84 in platelet function in vitro and in 

vivo, and in addition, in “thrombo-inflammatory” disease states like ischemic stroke. 

For several platelet surface receptors including GPVI, tight regulation by (metallo-) 

proteinases has been described, but it was completely unclear whether and if yes, how CD84 

levels in platelets are regulated. Therefore, the second aim of this study was to identify 

potential mechanisms of CD84 receptor regulation, and in addition, to study detailed 

regulation mechanisms for the platelet collagen receptor GPVI in vitro and in vivo. 
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Store operated Ca2+ entry (SOCE) is an essential mechanism to allow Ca2+ entry and full 

activation of platelets. The Ca2+ sensor STIM1 and the SOC channel subunit protein Orai1 

are critically involved in this process in platelets. STIM2 is the major STIM isoform in 

neurons, but the role of the SOC channel subunit protein Orai2 in platelets and neurons has 

remained elusive. The third aim of this study was to generate and analyze Orai2 deficient 

mice to reveal the physiological relevance of Orai2 in platelets and neurons. 
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2 Materials and Methods 

2.1 Materials  

2.1.1 Chemicals and reagents 

3,3,5,5-tetramethylbenzidine  (TMB)   Becton Dickinson (Heidelberg, Germany) 

6x Loading Dye Solution    Fermentas (St. Leon-Rot, Germany) 

Acetic acid      Roth (Karlsruhe, Germany) 

ADP       Sigma (Schnelldorf, Germany) 

Agar       Roth (Karlsruhe, Germany) 

Agarose      Roth (Karlsruhe, Germany) 

Alexa Fluor 488 reactive dye    Molecular Probes (Karlsruhe,  

       Germany) 

ALLN       Calbiochem (Bad Soden, Germany) 

Ammonium peroxodisulphate (APS)   Roth (Karlsruhe, Germany) 

Ampicillin      Roth (Karlsruhe, Germany) 

Apyrase       Sigma (Schnelldorf, Germany) 

Atipamezole      Pfizer (Karlsruhe, Germany) 

Avertin® (2,2,2-tribromoethanol)   Sigma (Deisenhofen, Germany) 

-mercaptoethanol     Roth (Karlsruhe, Germany) 

Bovine serum albumin (BSA)    AppliChem (Darmstadt, Germany) 

Calcium chloride     Roth (Karlsruhe, Germany) 

Carbonyl cyanide m-chlorophenylhydrazone Sigma (Schnelldorf, Germany) 

Chloramphenicol     Roth (Karlsruhe, Germany) 

Collagen related peptide (CRP)    prepared in our laboratory 

Complete Mini protease inhibitors (+EDTA)  Roche Diagnostics (Mannheim, Germany) 

Convulxin (CVX)     Enzo (Lörrach, Germany) 

Disodiumhydrogenphosphate   Roth (Karlsruhe, Germany) 

dNTP mix      Fermentas (St. Leon-Rot, Germany) 

ECL solution      GE Healthcare (Freiburg, Germany) 

EDTA        AppliChem (Darmstadt, Germany) 

Ethanol      Roth (Karlsruhe, Germany) 

Ethidium bromide     Roth (Karlsruhe, Germany) 

EZ-Link sulfo-NHS-LC-biotin    Pierce (Rockford, IL,USA) 

Fat-free dry milk     AppliChem (Darmstadt, Germany) 

Fentanyl      Janssen-Cilag (Neuss, Germany) 
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Fibrilar type I collagen (Horm)    Nycomed (Munich, Germany) 

Flumazenil      Delta Select (Dreieich, Germany) 

Fluoresceine-5-isothiocyanate (FITC)  Molecular Probes (Karlsruhe, 

   Germany) 

Forene® (isoflurane)     Abott (Wiesbaden, Germany) 

GeneRuler 1kb DNA Ladder    Fermentas (St. Leon-Rot, Germany) 

Glucose      Roth (Karlsruhe, Germany) 

Glycerol      Roth (Karlsruhe, Germany) 

Glycine      AppliChem (Darmstadt, Germany) 

GM6001      Calbiochem (Bad Soden, Germany) 

Hematoxylin       Sigma (Schnelldorf, Germany) 

High molecular weight heparin    Sigma (Schnelldorf, Germany) 

horseradish peroxidase-conjugated streptavidin Dianova (Hamburg, Germany) 

Human fibrinogen      Sigma (Schnelldorf, Germany) 

Igepal CA-630      Sigma (Schnelldorf, Germany) 

Immobilon-P transfer membrane   Millipore (Schwalbach, Germany) 

Indomethacin      Calbiochem (Bad Soden, Germany) 

Isopropanol      Roth (Karlsruhe, Germany) 

Kanamycin sulfate     Roth (Karlsruhe, Germany) 

Magnesium sulfate     Roth (Karlsruhe, Germany) 

MDL28170      Calbiochem (Bad Soden, Germany) 

Medetomidine (Dormitor)    Pfizer (Karlsruhe, Germany)  

Midazolam (Dormicum)    Roche (Grenzach-Wyhlen, Germany) 

Naloxon      Delta Select (Dreieich, Germany) 

N-ethylmaleimide (NEM)    Calbiochem (Bad Soden, Germany) 

Nonidet P-40      Roche (Mannheim, Germany) 

PageRuler Prestained Protein Ladder  Fermentas (St. Leon-Rot, Germany) 

PD-10 column      GE Healthcare (Freiburg, Germany) 

Peptone (pancreatic digested)   Roth (Karlsruhe, Germany) 

Phenol/chloroform/isoamylalcohol   AppliChem (Darmstadt, Germany) 

Potassium chloride     Roth (Karlsruhe, Germany) 

Prostacyclin (PGI2)     Sigma (Schnelldorf, Germany) 

Protease-Inhibitor cocktail tabs  Roche Diagnostics (Mannheim, 

Protein G sepharose      GE Healthcare (Freiburg, Germany) 

Rotiphorese Gel 30 Acrylamide   Roth (Karlsruhe, Germany) 

Salmon sperm DNA     Sigma (Schnelldorf, Germany) 

Sodium azide      Roth (Karlsruhe, Germany) 
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Sodium chloride     AppliChem (Darmstadt, Germany) 

Sodium hydroxide     AppliChem (Darmstadt, Germany) 

Sodium Orthovanadate    Sigma (Schnelldorf, Germany) 

Sodiumdihydrogenphosphate   Roth (Karlsruhe, Germany) 

TEMED      Roth (Karlsruhe, Germany) 

Thrombin       Roche Diagnostics (Mannheim) 

TRIS ultra      Roth (Karlsruhe, Germany) 

Tris/HCL      Roth (Karlsruhe, Germany) 

Trizol reagent      Invitrogen (Karlsruhe, Germany) 

Tween 20      Roth (Karlsruhe, Germany) 

U46619       Alexis Biochemicals (San Diego, USA) 

Western Lightning Chemiluminescence (ECL) PerkinElmer LAS (Boston, USA) 

Yeast extract      AppliChem (Darmstadt, Germany) 

 

Restriction endonucleases were purchased from Fermentas (St. Leon-Rot, Germany). Highly 

concentrated BamHI and EcoRV were obtained from New England Biolabs (Frankfurt am 

Main, Germany). Rhodocytin was a generous gift from J. Eble (University Hospital Frankfurt, 

Germany). All other non-listed chemicals were obtained from AppliChem (Darmstadt, 

Germany), Sigma (Schnelldorf, Germany) or Roth (Karlsruhe, Germany). 

 

2.1.2 Kits 

o DNA Purification : 

PureYield Plasmid Midiprep System   Promega (Mannheim, Germany) 

NucleoSpin Extract II Kit    Macherey-Nagel (Düren, Germany) 

o Electrophoresis 

NuPAGE® Pre-cast gel system  

NuPAGE® MOPS SDS Running Buffer (20X) Invitrogen (Karlsruhe, Germany) 

NuPAGE® Bis-Tris 10% Gel, 1.0mm   Invitrogen (Karlsruhe, Germany) 

NuPAGE® LDS Sample Buffer (4X)   Invitrogen (Karlsruhe, Germany) 

SeeBlue® Plus2 Pre-Stained Standard  Invitrogen (Karlsruhe, Germany) 

o PCR: 

PCR Extender System    5 PRIME (Hamburg, Germany) 

GeneAmp XL PCR Kit    Applied Biosystems (New Jersey, US) 

VenorGeM Mycoplasma Detection Kit  Sigma (Schnelldorf, Germany) 

o Proteinbiochemistry 

Peroxidase Labeling Kit    Roche (Mannheim, Germany) 
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Pierce BCA Protein Assay Kit   Thermo (Schwerte, Germany) 

 

2.1.3 Cell culture material 

70 µm or 40 µm nylon cell strainer   BD Falcon (Heidelberg, Germany) 

Cryotubes      Roth (Karlsruhe, Germany) 

DMEM + GlutaMAX-I     Gibco (Karlsruhe, Germany) 

D-PBS       Gibco (Karlsruhe, Germany)  

Dimethylsulfoxide (DMSO)    AppliChem (Darmstadt, Germany) 

Fetal Calf Serum (FCS)    Gibco (Karlsruhe, Germany) 

Ganciclovir      Invitrogen (Karlsruhe, Germany) 

Geneticin G-418 sulphate    Gibco (Karlsruhe, Germany) 

Leukaemia Inhibitory Factor (LIF)   Chemicon (Hampshire, UK) 

Nonessential amino acids    Gibco (Karlsruhe, Germany) 

Penicillin-Streptomycin     Gibco (Karlsruhe, Germany) 

Stem cells R1 male 129/Sv    kindly provided by Nagy A.160  

Steritop Bottle Top Filter 0.22 µm   Millipore (Schwalbach, Germany) 

Tissue culture dishes (100x20 mm)   BD Falcon (Bedford, USA) 

Tissue culture flasks (25 or 175 cm2)  BD Falcon (Bedford, USA) 

Trypsin-EDTA      Gibco (Karlsruhe, Germany) 

Well plates (6-well, 24-well or 96-well)  BD Falcon (Bedford, USA) 

 

2.1.4 Radioactive labeling 

Probequant G 50 Microcolumns   GE Healthcare (Freiburg, Germany) 

Rediprime DNA Labelling Kit    GE Healthcare (Freiburg, Germany) 

Redivue- 32P-dCTP; 250 µCi   GE Healthcare (Freiburg, Germany) 

 

2.1.5 Buffers and media 

All buffers were prepared in deionized water obtained from a MilliQ Water Purification 

System (Millipore, Schwalbach, Germany). pH was adjusted with HCl or NaOH. 

 

o Biotinylation buffer, pH 9.0  

NaHCO3       50 mM  

NaCl        0.9%  

 



Materials and Methods 

  

 25 

o Blocking solution for immunoblotting 

BSA or fat-free dry milk      5% in TBS or TBS-T 

 

o Blotting buffer A for immunoblotting 

TRIS, pH 10.4       0.3 M 

Methanol       20% 

 

o Blotting buffer B for immunoblotting 

TRIS, pH 10.4       25 mM 

Methanol        20% 

 

o Blotting buffer C for immunoblotting 

-amino-n-caproic acid, pH 7.6    4 mM 

Methanol        20% 

 

o Church buffer for Southern blot 

Phosphate buffer (0.5 M; pH 7.2)   50% 

SDS (20%)      33% 

EDTA (0.5 M, pH 8.0)     0.1% 

Salmon sperm DNA     1% 

BSA       10 g/l 

 

o Church wash buffer for Southern blot 

Phosphate buffer (0.5 M; pH 7.2)   4% 

SDS (20%)      5% 

 
o Coating buffer, pH 9.5  

NaHCO
3         

100 mM  

 

o Coomassie staining solution 

Acetic acid       10% 

Methanol        40% 

Coomassie Brilliant blue      1 g 

 

o Coomassie destaining solution 

Acetic acid       10% 

Methanol        40%  
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o Coupling buffer, pH 8.3 

NaHCO3       0.2 M 

NaCl       0.5 M 

 

o Denaturation buffer for Southern blot 

NaCl       1.5 M 

NaOH       0.5 M 

 

o EF medium 

DMEM  

FCS       10% 

 

o ES medium 

DMEM  

FCS       20% 

Nonessential amino acids    1% 

-mercaptoethanol     3.5 µL 

LIF        1,000 U/mL 

 

o ES+G-418 medium 

DMEM  

FCS       20% 

Nonessential amino acids    1% 

-mercaptoethanol     3.5 µL 

LIF        1,000 U/mL 

Geneticin (G-418)      400 µg/mL 

 

o FACS buffer 

PBS (1x) 

FCS       1% 

NaN3       0.02% 

 

o Freezing medium 

DMEM  

FCS       50% 

DMSO       10% 



Materials and Methods 

  

 27 

 

o IP buffer 

TRIS/HCl (pH 8.0)     15 mM 

NaCl        155 mM 

EDTA        1 mM  

NaN3        0.005% 

 

o Laemmli buffer for SDS-PAGE 

TRIS        40 mM 

Glycine       0.95 M 

SDS        0.5% 

 

o LB medium 

Peptone (pancreatic digested)    10 g/l 

Yeast extract      5 g/l 

NaCl       10 g/l 

Agar       15 g/l 

 

o Lysis buffer for DNA sample preparation from mouse tissue 

TRIS base       100 mM 

EDTA (0.5 M)      5 mM 

NaCl        200 mM 

SDS        0.2% 

add Proteinase K (20 mg/ mL)     100 µg/mL 

 

o Neutralisation buffer for Southern blot 

NaCl       1.5 M 

TRIS base       0.5 M 

HCl (37%) until pH 7.2 

 

o Phosphate buffer (0.5 M; pH 7.2)  

68.4% Solution A (1 M) 

Na2HPO4 x 2 H20      1 M 

31.6% Solution B (1 M) 

NaH2PO4 x 2 H20      1 M 

 

o Phosphate buffered saline (PBS), pH 7.14 



Materials and Methods 

  

 28 

NaCl        137 mM (0.9%) 

KCl        2.7 mM  

KH2PO4        1.5 mM 

Na2HPO4 x 2H2O       8 mM 

 

o RIPA lysisbuffer pH 8 

Tris-HCl       50 mM 

NaCl        150 mM 

SDS        0.1% 

Natriumdoxycholat      1% 

TritonX-100      1% 

 

o SDS sample buffer, 2x 

-mercaptoethanol (for reduced conditions)   10% 

TRIS buffer (1.25 M), pH 6.8     10% 

Glycerine        20% 

SDS        4% 

Bromophenolblue      0.02%  

 

o Separating gel buffer 

TRIS/ HCl (pH 8.8)     1.5 M 

add H2O 

 

o Solution I for Mini Plasmid DNA purification 

Glucose       50 mM 

TRIS base       25 mM 

EDTA       10 mM 

 

o Solution II for Mini Plasmid DNA purification 

NaOH       0.2 M 

SDS       1% 

 

o Solution III for Mini Plasmid DNA purification (pH 4.8) 

Potassium acetate     3 M 

 

o Stacking gel buffer 

TRIS/HCl (pH 6.8)     0.5 M 



Materials and Methods 

  

 29 

 
o Storage buffer, pH 7.0  

Tris        20 mM  

NaCl        0.9%  

BSA        0.5%  

NaN
3        

0.09%  

 

o Stripping buffer, pH 2.0 

PBS (1x) 

glycine       25 mM 

SDS       1% 

 

o 10x SSC for Southern blot 

NaCl       1.5 M 

Na-citrate       0.25 M 

 

o 50x TAE 

TRIS base       0.2 M 

Acetic acid       5.7% 

EDTA (0.5 M, pH 8)     10% 

 

o TE buffer (pH 8) 

TRIS base       10 mM 

EDTA       1 mM 

 

o Tyrodes buffer pH 7.3 

NaCl        137 mM (0.9%)  

KCl        2.7 mM  

NaHCO3       12 mM  

NaH2PO4        0.43 mM  

Glucose       0.1%  

Hepes        5 mM  

BSA        0.35%  

CaCl2       2 mM  

MgCl2        1 mM  

 
o Washing buffer for Western blot (PBS-T) 
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Tween 20        0.1% in PBS 

 

2.1.6 Oligonucleotides 

All primer sequences presented in 5´ 3´ direction: 

 

CD84 external probe amplification 

Cd84-Extp-for1: GGA GAA CTG ATA TTG AGA TA 

Cd84-Extp-rev1: GGA TCC CTG ACA AAA TGA GT 

 

CD84 mouse genotyping 

CD84intr1.4f: CAG AGT GGG TCT TGG GGT GCT CA 

CD84intr1.4r: CAG TGT GGT GTT TCC GGA GCT GGA G 

GentrapF: TTA TCG ATG AGC GTG GTG GTT ATG C 

GentrapR: GCG CGT ACA TCG GGC AAA TAA TAT C 

 

Orai2 external probe amplification 

Orai2Extp3F: 5’ ATGCCCCAGCCTCATCATAC 3’ 

Orai2Extp3R: 5’ GTAGCTGAAGACCGGCTACA 3’ 

 

Orai2 5´arm amplification 

Orai2/5F1: AAGCGGCCGCACTTCTGATAGACTGTCTTGA 

Orai2/5R1: AAGCGGCCGCGAGGTGACTGTAGATCACTGA 

 

Orai2 5´arm sequencing 

Orai2/5fSeq1: TGCAGACTATGTTTACCACT 

Orai2/5fSeq2: GTGCCTGAGAAGGGTGGAAC 

Orai2/5fSeq3: CCT CAT GAT TGC ATA GCA GA 

Orai2/5fSeq4: CCACAAGTGTGCTCAGTTGT 

Orai2/5fSeq5 :GCACGAGGCATGATGTCACA 

Orai2/5fSeq6: GGATCCTGGCCTTGAGACCA 

 

Orai2 3´arm amplification 

Orai2/3F1: AAGTCGACGGGAGGCCGTTGCGATTTGCT 

Orai2/3R1: AACTCGAGCTTCGCCAAGGTGGTACAGCT 

 

Orai2 3´arm sequencing 
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Orai2/3fSeq1: GCTGCTTGAGTGTGCAGAGG 

Orai2/3fSeq2: CATGCATACTGTGCTATACC 

Orai2/3fSeq3: CAAGCCTGGAGACCTGAGTT 

Orai2/3fSeq4: CATCCCACAGCTTTGTCAGGA 

Orai2/3fSeq5: GAGAAGTGTGTACCATGGTT 

Orai2/3fSeq6: GCTCAGGAAGTAGCACTATT 

Orai2/3fSeq7: GCTAAGCAGTGACTGTCTGG 

Orai2/3fSeq8: CGCATGCAGATGAAGCATCT 

 

Orai2 mouse genotyping 

O2GenF: CAG GCT ACC ATT CAG AC 

O2GenR: CCT AGT ATG TCC ATG GAT CT 

PGKrev2: TGTGCGAGGCCAGAGGCCACT 

 

RT-PCR 

mOrai2RTf: CTTCGCCATGGTGGCCATGG 

mOrai2RTr: ACCAGGGAACGGTAGAAGTG 

mActinf: GTGGGCCGCTCTAGGCACCAA 

mActinr: CTCTTTGATGTCACGCACGATTTC 
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2.1.7 Antibodies 

Monoclonal antibodies were either generated and modified in our laboratory or purchased: 

Antibody Clone Isotype Antigen Source/description 

p0p4 15E2 IgG2b GPIb 
161 

p0p6 56F8 IgG2b GPIX 161 

DOM2 89H11 IgG2a GPV 161 

ULF1 96H10 IgG2a CD9 161 

JAQ1 98A3 IgG2a GPVI 41 

JAQ3 0E3 IgG2a GPVI 42 

JON6 14A3 IgG2b IIb3 unpublished 

LEN1 12C6 IgG2b 2 
162 

Anti-integrin β1 

chain (CD29) 
9EG7 IgG2a 1 BD Pharmingen 

INU1 11E9 IgG1 CLEC-2 163 

JER1 10B6 IgG2a CD84 164 

Anti-CD16/32 2.4G2 IgG2b FcRII,IIIa 
165 

JON/A 4H5 IgG2b IIb3 166 

WUG 1.9 5C8 IgG1 P-Selectin unpublished 

EDL-1 57B10 IgG2a 3 integrin 
161 

Anti-CD4-PE RM4-5 IgG2a CD4 BD Pharmingen 

Anti-CD8-PE-Cy5 53-6.7 IgG2a CD8 BD Pharmingen 

Anti-B220 (CD45R)-

Alexa 647 
RA3-6B2 IgG2a B220 BD Pharmingen 

Anti-MAC1 

(CD11b)-PE 
M1/70 IgG2b CD11b BD Pharmingen 

Anti-F4/80-PE-Cy5 BM8 IgG2a F4/80 eBioscience 

Biotin anti-mouse 

CD84 
mCD84.7 IgG CD84 Biolegend 

Anti-human CD84- 

Biotin 
2G7 IgG1 human CD84 eBioscience 

Anti-human CD84-

FITC 

MZ18-

21F6 
IgG1 human Cd84 Miltenyi 

Anti-human CD84 Max.3 IgG1 human Cd84 77 

Table 1. Monoclonal antibodies used in this thesis, including clone names and sources. 
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Polyclonal antibodies and secondary reagents were purchased: 

M130 (rabbit anti-mouse CD84)  Santa Cruz Biotech (Heidelberg, Germany) 

Donkey anti-rat IgG (-HRP)   Dianova (Hamburg, Germany) 

Goat anti-rabbit IgG (-HRP)   Cell Signaling (Frankfurt/Main, Germany) 

Goat anti-rat IgG/M (H+L)    Dianova (Hamburg, Germany) 

Rabbit anti-mouse IgG (-HRP)  DAKO (Hamburg, Germany) 

Rabbit anti-rat IgG-FITC   DAKO (Hamburg, Germany) 

Streptavidin-FITC    DAKO (Hamburg, Germany) 

Streptavidin-horseradish peroxidase  DAKO (Hamburg, Germany) 

 

2.1.8 Other materials 

Vivaspin 6 centrifugal concentrators  Sartorius stedim (Aubagne, France) 

Miccra D1 homogenizing drive  ART Labortechn. (Mülheim, Germany) 

 

2.1.9 Plasmids 

TOPO XL     Invitrogen (Karlsruhe, Germany) 

pBluescriptKS     Stratagene (La Jolla, CA, USA) 

pSP72      Promega (Mannheim, Germany) 

 

2.1.10 Bacteria 

XL10-Gold     Stratagene (La Jolla, CA, USA) 

DH5      Invitrogen (Karlsruhe, Germany) 
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2.2 Methods 

2.2.1 Molecular biology 

2.2.1.1 PCR 

o Standard PCR with Taq-Polymerase (Fermentas) 

100 ng  forward primer 

100 ng  reverse primer 

1 µL   10 mM dNTP 

5 µL   10x Taq-buffer (+ KCl, - MgCl2) 

20 ng  DNA template 

1-5 U  Taq-Polymerase 

5 µL   25 mM MgCl2 

H2O was added to a final volume of 50 µL. 

 

Program: (product < 2 kb) 

96°C 3 min 

94°C  30 s 

60°C  30 s      35 cycles 

72°C  30 s 

72°C 10 min 

4°C Stop 

 

o Gradient PCR with Extender Kit (5 PRIME)  

PCR cycler: Mastercycler gradient (Eppendorf) 

100 ng  Primer forward 

100 ng  Primer reverse 

20 ng   DNA template 

5 µL   Extender buffer 

1 µL   10 mM dNTP 

0.5 µL   Enzyme TH 

H2O was added to a final volume of 50 µL. 

 

Program 1: (product < 2 kb) 

96°C  3 min 

94°C  30 s 

x°C  30 s      35 cycles 

68°C  45 s 
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68°C  10 min 

4°C  Stop 

 

Program 2: (product > 2 kb) 

96°C  3 min 

94°C  30 s 

x°C  30 s        35 cycles 

68°C  2-5 min 

68°C  10 min 

4°C  Stop 

 

x°C: PCR reaction was performed with increasing annealing temperatures: 

sample 1: 50°C; sample 2: 50.3°C; sample 3: 51.4°C; sample 4: 53.2°C; sample 5: 55.5°C; 

sample 6: 58°C; sample 7: 60.8°C; sample 8: 63.5°C 

 

2.2.1.2 Agarose gel electrophoresis 

Agarose was dissolved in 1x TAE buffer. Depending on the length of DNA fragments to be 

separated, different amounts of agarose were used (0.8-1.5%). Subsequently, the agarose in 

TAE buffer was heated in a microwave. When the temperature had decreased to approx. 

60°C, 5 µL ethidiumbromide (2 mg/mL) per 100 mL were added, and the fluid was poured 

into a tray with a comb. This tray was positioned in an electrophoresis chamber containing 1x 

TAE buffer. DNA samples were diluted in 6x loading buffer and loaded into the slots of the 

gel. For size-separation according to their electrophoretic mobility, DNA samples were run at 

about 120 kV. In one slot a 1 kb ladder was loaded to determine the size of the DNA bands 

under UV light later on.  

 

2.2.1.3 DNA extraction from agarose gels 

DNA extraction was performed using the NucleoSpin Extract II Kit (Macherey-Nagel, Düren, 

Germany). Under UV light, DNA bands were excised from an agarose gel. 700 µL NT buffer 

was added to the isolated agarose piece and shaken at 55°C for several min until the gel 

was completely dissolved. The DNA solution was applied onto the column and centrifuged at 

11,000 x g for 30 s. Next, the column was washed twice with 750 µL NT3 buffer containing 

ethanol at 11,000 x g for 1 min. To dry the membrane the empty column was centrifuged at 

11,000 x g for 2 min. Ethanol was removed by air-drying the tube with open lid for 3-5 min. 

Finally, 30 µL H2O were added onto the membrane and incubated for 2-4 min. DNA was 

eluted by centrifugation at 11,000 x g for 2 min. 
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2.2.1.4 Digestion of plasmid DNA 

All samples were digested for at least 45 min at 37°C.  

1-10 U  restriction enzyme per sample 

2 µL  10x enzyme buffer 

0.5-2 µg DNA 

H2O was added to a final volume of 20 µL. 

To perform a double digestion, additional 2-10 U of a second enzyme were added, if the 

reaction was possible under same buffer and temperature conditions.  

 

2.2.1.5 Ligation of insert and vector 

The target vector was digested with the desired enzyme for 1.5 h at 37°C. Then the reaction 

was stopped at 60°C for 10 min. After cooling of the sample, 1µL CIAP (calf intestinal 

alkaline phosphatase) was added and incubated at 37°C for 30 min to prevent religation of 

the vector. This step was repeated. Gel electrophoresis was performed, bands were cut and 

DNA was purified as described above.  

Purified insert and vector were mixed in a ratio of 2:1 and ligated using Ready-to-go T4 DNA 

ligase (GE Healthcare): 

5 µL vector, 10 µL insert, and 5 µL H20 were mixed in 1 vial of T4 Ligase by pipetting up and 

down. Then samples were incubated for 45 min at 16 °C and then inactivated for 10 min at 

70 °C. Then 1 µL was used to transform 50 µL (one vial) of One Shot® TOP10 bacteria 

(Invitrogen). 

 

2.2.1.6 TOPO cloning 

For cloning of long PCR products, ligation into TOPO XL vectors (Invitrogen) was performed 

according to the manufacturer’s protocol. 

The PCR product was run on an agarose gel. Then the gel was stained with Crystal Violet 

and purified using the supplied columns of the TOPO XL kit. For ligation, 2-4 µL of purified 

PCR product and 1 µL pCR-XL-TOPO vector were mixed. After 10 min at room temperature 

(RT) the reaction was stopped with 1 µL 6x TOPO Cloning Stop. Transformations were 

performed with competent cells provided with the kit. Therefore, 2 µL of the TOPO Cloning 

reaction were added to one vial of chemically competent cells and incubated on ice for 30 

min. The cells were heat-shocked at 42°C for 30 seconds. The tubes were transferred on ice 

for 2 min. Following addition of 250 µL S.O.C. medium, the samples were shaken at 37°C for 

one h. 150 µL were plated on an LB plate containing 50 µg/mL kanamycin and incubated at 

37°C o/n. 
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2.2.1.7 Transformation 

1 µL plasmid DNA (approx. 20-50 ng) was added to 100 µL chemically competent E. coli 

cells (DH5 or XL10Gold) and incubated on ice for 45 min. Heat shock was performed for 

90 s at 42°C. Then, cells were incubated on ice for 2 min. 1 mL LB medium without 

antibiotics was applied to the cells and incubated for 30 min at 37°C. After centrifugation for 2 

min at 5,000 x g, the cells were plated onto a LB plate containing 50 µg/ mL ampicillin or 25 

µg/ mL kanamycin. The plate was incubated at 37°C o/n.  

 

2.2.1.8 Mini Plasmid DNA purification 

3 mL LB medium containing the selective antibiotic (50 µg/mL ampicillin or kanamycin) and a 

picked single colony were shaken for 12-16 h at 37°C. The cells were spun down at 11,000 

rpm for 30 seconds and the pellet was resuspended in 200 µL solution I. 300 µL of solution II 

were used to lyse the cells for about 5 min at RT. Then, 300 µL of solution III were added 

and the sample was incubated for 5 min at RT. Subsequently, the tube was centrifuged at 

11,000 rpm for 5 min. The supernatant was transferred into a new tube and mixed with 700 

µL isopropanol and incubated on ice for 5 min. After centrifugation at 14,000 rpm for 10 min 

at 4°C, the pellet was washed with 500 µL 70% ethanol and incubated for 8 min at RT. The 

sample was centrifuged at 14,000 rpm for 8 min at 4°C and finally the dried DNA pellet was 

dissolved in 30 µL TE buffer containing 0.1 µg/µL RNaseA. 

 

2.2.1.9 Midi Plasmid DNA purification 

DNA purification was performed using the PureYield Plasmid Midiprep System from 

Promega (Mannheim, Germany). 

A picked single colony was added to 100 mL LB medium containing the selective antibiotic 

(50 µg/mL ampicillin or 25 µg/mL kanamycin). The medium was shaken at 37°C o/n. 

Bacterial cells were pelleted by centrifugation at 6,000 x g for 10 min at RT. The bacterial 

pellet was resuspended in 3 mL cell suspension solution. Then, 3 mL cell lysis solution were 

added, the tube was inverted 4-6 times and incubated for 3 min at RT. 5 mL neutralization 

solution were poured to the sample, inverted and incubated for 3 min at RT. Next, the sample 

was centrifuged at 15,000 rpm for 8 min in a Multifuge 3 S-R (Heraeus). The supernatant 

was poured onto the blue PureYield Clearing Column, soaked through onto the white 

PureYield Binding Column and was removed by vacuum. Next, 5 mL endotoxin removal 

wash were added onto the white column and removed by vacuum. Then 20 mL column wash 

solution was added to the binding column, holding up the vacuum for 60 s after flow through. 

The column tip was tapped onto a paper towel to remove the remaining solution. The binding 

column was put into an empty 50 mL tube, loaded with 600 µL nuclease free water and 
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incubated for 5 min at RT. The DNA was eluted by centrifugation at 2,000 x g for 5 min and 

DNA concentration was measured at OD260. 

 

2.2.1.10 Sequencing of DNA 

Sequencing of DNA (PCR product or plasmid DNA) was performed by MWG Biotech 

(Ebersberg, Germany). 3 µg DNA was diluted in TE buffer to a final volume of 20 µL. Either 

standard primers from the company were chosen or own primers were sent with the 

template.1 µg of the respective primer was diluted in TE buffer to a final volume of 13 µL. 

An NCBI online search tool was used to analyze the sequencing results: 

http://www.ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cgi 

 

2.2.2 Stem cell work 

2.2.2.1 Feeder cells 

For culturing of murine embryonic stem cells, irradiated feeder cells containing a neomycin 

resistance gene were used. Feeder cells were obtained from E18 embryos heterozygous for 

a collagen IX null allele which contains a neomycin-resistant cassette167. Feeder cells were 

prepared in our laboratory. 

2.2.2.2 Electroporation 

Five to seven days prior to starting the electroporation, stem cells (R1 clone, 129/Sv, 

passage number 17)160 were cultured. Therefore, half a pellet of one cryotube with feeder 

cells and 0.5 mL stem cells were cultured in a 25 cm2 tissue culture flask containing 5 mL ES 

medium. Every day medium was changed. After the second day, stem cells were trypsinized 

and transferred into a 175 cm2 tissue culture flask. In each 175 cm² flask a new feeder cell 

layer was required. Thus, 2 mL feeder cells were centrifuged and the pellet was resuspended 

in 2.5 mL ES medium. The feeder cells and the trypsinized stem cells resuspended in 5 mL 

ES medium were transferred into a 175 cm2 flask and diluted with additional 25 mL ES 

medium. Cells were electroporated when an optimal density was reached. 

For electroporation, either 100 µg DNA of the Cd84 targeting vector plasmid DNA were 

linearized by digestion with NotI, or 100 µg DNA of the Orai2 targeting vector plasmid DNA 

were linearized by digestion with XhoI, at 37 °C for 2 h. 

 

100 µg DNA  

10x enzyme buffer 

200 U enzyme (NotI or XhoI) 

add H2O to a final volume of 300 µL 
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To confirm linearization of the vector, same DNA amounts of digested and undigested vector 

were compared on a 0.7% agarose gel. To precipitate the digested DNA, phenol/chloroform 

was added to the sample in the ratio 1:1 and inverted several times. After centrifugation at 

14,000 x g for 10 min at RT, the upper phase was transferred into a new 1.5 mL tube. Then, 

chloroform was added in a ratio of 1:1 and the sample was shaken and spun down. 10% 3 M 

sodium acetate pH 5.2 and three volumes 100% ethanol were added to the supernatant and 

DNA was precipitated. In a sterile reaction tube the DNA was washed twice with 800 µL of 

70% ethanol. The pelleted DNA was dried under sterile conditions, resuspended in 700 µL 

sterile 1x PBS and mixed well.  

Stem cells in the 175 cm2 tissue culture flask were trypsinized and diluted in 10 mL ES 

medium. Next, cells were centrifuged and resuspended in 10 mL sterile 1x PBS. Then cells 

were spun down again and supernatant was removed. The linearized plasmid DNA in PBS 

was added to the stem cells, resuspended, and electroporated in a cuvette (Bio-Rad, 

Munich, Germany) with 0.8 kV (Gene Pulser II from Bio-Rad). The electroporated stem cells 

were diluted with 8 mL ES medium and distributed to eight beforehand prepared 10 cm 

tissue culture dishes. Therefore, 0.75 mL feeder cells per dish were suspended in ES 

medium and pelleted. After discarding the supernatant, cells were diluted in ES medium. 1 

mL feeder cells in ES medium and additional 10 mL ES medium were used for each tissue 

culture dish. Cells were cultured at 37°C and 5% CO2. 

 

2.2.2.3 Selection of ES cells 

On the first day after electroporation the selection was started by treatment with the antibiotic 

Geneticin (G418). Therefore, the ES-Medium was removed and 10 mL ES-Medium with 

Geneticin was added. This change of medium was done daily for 5-7 days depending on the 

cell growth. Every day each tissue culture dish was checked for contamination with bacteria 

or yeast. 

 

2.2.2.4 Picking of Geneticin-resistant ES cell clones 

1 mL feeder cells were used for one 24 well plate. Therefore, ES+G418 Medium was added 

to the feeder cells and spun down. Afterwards, the pellet of feeder cells was diluted with 24 

mL ES+G418 Medium and evenly distributed to each well of a 24 well plate and stored at 

37°C until use. 

The picking of stem cell clones with a pipette was performed under a LEICA MS5 

microscope (setting: 0.63x magnification). Surviving clones which had the appropriate size 

and shape were picked. Cells looking differentiated or necrotic were not picked. The picked 
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clones were transferred into a well of a 96 well plate containing three drops of trypsin. After 

incubation for three min at 37°C and 5% CO2 each clone was resuspended in the well with 

trypsin and added to one well of the beforehand prepared 24 well plate. The cells were 

incubated at 37°C o/n and then the ES+G418 Medium was changed. After this treatment the 

cells grew 2-4 days without changing medium. Every day each well plate was checked on 

contamination with bacteria or yeast. 

 

2.2.2.5 Freezing of picked stem cells 

The cells in the 24 well plates were trypsinized and then 1 mL freezing medium was added to 

each well. After resuspension, 600 µL of the sample were transferred to a labeled cryotube 

and immediately stored at –80°C.  According to the cryotube the well was labeled with the 

same number. The remaining 400 µL were filled up with ES+G418 Medium and incubated for 

12-16 h at 37°C. Then, the medium was replaced by new ES+G418 Medium. 

 

2.2.2.6 Lysis of stem cells 

Under normal cell growth usually after 3-4 days of culturing, the color of medium turned 

yellow, indicating cell growth by a shift in pH. The medium was removed from the wells and 

cells were lysed. Therefore, 0.5 mL lysis buffer containing Proteinase K was added per well 

and the ES cells were lysed for at least 24 h and not longer than five days at 37°C and 5% 

CO2.  

 

2.2.2.7 Precipitation of stem cell DNA 

Following lysis of the ES cells, DNA was precipitated by adding one mL isopropanol per well. 

Thereby, sterile conditions were not required anymore. To enhance the precipitation of 

genomic DNA, the samples were slightly agitated on a shaker for 6 h at RT. Meanwhile, 1.5 

mL reaction tubes were labeled with the corresponding numbers to the 24-well plate and 

filled with 150 µL TE buffer. Precipitated DNA fibers were transferred by a stick into the 

corresponding tube. The samples were mixed for 1 min and DNA was incubated for 12-16 h 

at 55°C. Then, the samples were mixed again and were ready for analysis.  

 

2.2.2.8 Analysis of stem cell DNA by Southern blot 

 Digestion of the stem cell DNA 

Each sample of stem cell DNA was digested in order to distinguish a positive clone that 

integrated the electroporated DNA via homologous recombination and a negative clone that 
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could not integrate the electroporated DNA homologously. The genomic stem cell DNA was 

digested o/n at 37°C: 

 

20 µL stem cell DNA 

4 µL 10x BamHI buffer (for CD84) /  4 µL EcoRV buffer (for Orai2) 

25 U BamHI enzyme (High conc., for CD84) / 25 U EcoRV enzyme (High conc, for Orai2) 

add H2O to a final volume of 40 µL 

 

 Southern blot 

The digested DNA samples were run on a 1% agarose gel for at least 2-3 h at 150 kV. Then 

a photo was taken from the gel with a ruler to estimate the size of the bands after 

development. The gel was incubated two times in denaturation buffer for 20 min and two 

times in neutralization buffer for 20 min. Afterwards, the DNA was blotted from the agarose 

gel on a membrane o/n at room temperature. DNA transfer was performed by capillary forces 

in 20 x SSC buffer on Hybond-XL membranes (GE Healthcare). Membranes were air-dried. 

Gel slots were labeled on the membrane. Then DNA was crosslinked with the membrane 

with 120 mJ/cm2 (HL-2000 HybriLinker from UVP).  

For probe labeling and hybridization the following steps were performed in an isotope lab: 

The external probe (10–100 ng) was diluted in 35 µL TE buffer and incubated for three min at 

96°C. When the DNA was resuspended in the Rediprime DNA Labeling Kit,  32P-dCTP was 

added to the DNA and incubated for 20 min at 37°C. In the meantime, buffer of the 

Probequant G 50 Microcolumns was removed via centrifugation and the membrane was 

briefly preincubated in Church wash buffer. The DNA with the radioactive substance was 

loaded on the column and centrifuged for 1 min at 2,000 rpm (Biofuge A from Haereus). The 

flow-through containing the radioactive-labeled DNA was incubated for 3 min at 96°C and 

then added to the membrane in Church buffer. The membrane was shaken in Church buffer 

o/n at 68°C. Then the membrane was washed twice with Church wash buffer for 20 min at 

68°C. Subsequently, a film was placed on the membrane and stored at –80°C. The film was 

developed after 4-7 days. 

 

2.2.2.9 Reculturing of positive stem cells 

According to the southern blotting, positive frozen clones (cryotube) were thawn and added 

to one well of a 6-well plate containing feeder cells and ES medium supplemented with 

50 U/mL penicillin and 50 µg/mL streptomycin (P/S). After one or two days growing at 37°C 

and 5% CO2 the cells were trypsinized and cultured in a 25 cm2 flask. Two days later the 

cells were trypsinized again and transferred into a 175 cm2 tissue culturing flask.  
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Supernatants were tested for contamination with Mycoplasma (VenorGeM Mycoplasma 

Detection Kit). Cells were trypsinized when grown to 90% confluence, washed, and then 

freezing medium was added to the stem cell pellet and separated into 4 cryotubes. Four 

cryotubes were stored at –80°C. 

A small amount of each positive clone was further cultured and tested again by Southern blot 

for homologous recombination. Afterwards, one tube with ES cells was sent to “Transgenic 

Service” at the Max Planck Institute of Neurobiology (Munich, Germany), where blastocyst 

injection was performed. 

 

2.2.3 Isolation of DNA 

5 mm2 of ear tissue was digested in 500 μL DNA lysis buffer with Proteinase K at 56°C 

overnight under shaking conditions. Samples were mixed (1:1 vol) with phenol/chloroform, 

and centrifuged at 14,000 rpm for 10 min. The upper phase containing the DNA was 

transferred to a fresh tube containing isopropanol (1:1 vol) and mixed. After centrifugation at 

14,000 rpm for 10 min, the DNA pellet was washed with 70% ethanol. The DNA pellet was 

left to dry at 37°C and finally resuspended in 50 μL of H2O. 

 

2.2.4 Genotyping of Cd84-/- mice by PCR 

wt PCR: 

 1 µL genomic DNA (50 – 100 ng) 

 1 µL  CD84intr1.4f 1:10 (100 ng) 

 1 µL CD84intr1.4r 1:10 (100 ng) 

 1 µL dNTPs (10 mM each) 

 5 µL Taq-buffer (10x) 

 4 µL MgCl2 

 0.2 µL Taq-Polymerase (Fermentas) 

 add H2O 

---------------------------- 

 50 µL 

 

Program  “CD84wt”: 

Temp (°C) Time 

96  3 min  

94  30 s  

63,5  30 s  

72  1 min  
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GOTO 2 REP 37  

72  5 min  

HOLD 22°C   

 

Cd84 ko-PCR: 

 1 µL genomic DNA (50 – 100 ng) 

 1 µL  GentrapF (100 ng) 

 1 µL GentrapR (100 ng) 

 1 µL dNTPs (10 mM each) 

 5 µL Taq-buffer (10x) 

 5 µL MgCl2 

 0.2 µL Taq-Polymerase 

 add H2O 

---------------------------- 

 50 µL 

 

Program 

Temp (°C) Time 

96  3 min  

94  30 s  

51,4  30 s  

72  45 s  

GOTO 2 REP 35   

72  5 min  

HOLD 22°C   

Result (expected band sizes): 

wt/wt: 672 bp  

wt/ko: 672 bp and 750 bp 

ko/ko: 750 bp 

 

2.2.5 Genotyping of Orai2-/- mice by PCR 

wt PCR: 

 1 µL genomic DNA (50 – 100 ng) 

 1 µL O2genF 1:10 (100 ng) 

 1 µL O2genR 1:10 (100 ng) 

 1 µL dNTP’s (10 mM each) 
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 5 µL Taq-buffer (10x) 

 4 µL MgCl2 

 0,2 µL Taq-Polymerase 

 add H2O 

---------------------------- 

 50 µL 

 

Program “Or2” (for both wild-type and ko PCR) 

Temp (°C) Time 

96  3 min  

94  30 s  

51  30 s  

72  1 min  

GOTO 2 REP 37  

72   5 min  

HOLD 22°C   

 

Orai2 ko PCR: 

 1 µL genomic DNA (50 – 100 ng) 

1 µL O2genF: 1:10 (100 ng) 

1 µL PGKrev2: 1:10 (100 ng) 

1 µL dNTP’s (10 mM each) 

5 µL Taq-buffer (10x) 

4 µL MgCl2 

0,2 µL Taq-Polymerase 

 add H2O 

---------------------------- 

 50 µL 

 

Result (expected band sizes): 

wt/wt: 400 bp  

wt/ko: 400 bp and 500 bp 

ko/ko: 500 bp 
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2.2.6 RNA isolation and RT-PCR 

For platelet RNA isolation, platelets from 3 mice per group were washed in PBS/EDTA and 

the pellet was resuspended in 250 µL IP buffer with 1% NP-40. 800 µL of Trizol reagent was 

added, samples were vortexed and incubated for 60 min at 4°C.  

Alternatively, tissue samples of different organs were cut into small pieces and homogenized 

in 1 mL Trizol reagent, using a Miccra D1 homogenizing drive (ART Labortechnik, Mülheim, 

Germany). Samples were incubated for 60 min at 4°C. 

After incubation, 250 µL of chloroform was added and samples were incubated again for 15 

min at 4°C. Samples were then centrifuged at 10,000 rpm for 10 min and the upper phase 

was incubated with three volumes of 70% ethanol with 10% sodium acetate (pH 5.2) for 1 h 

at -20°C. After centrifugation at maximal speed for 15 min, the pellet was washed with 70% 

ethanol, then centrifuged again and dried at 37°C. The pellet was resuspended in 20-40 µL 

of RNase free water and concentration was determined by absorbance readings at 260 nm, 

whereas the ratio of absorbance at 260/280 and 260/230 was used to assess purity. 

Samples with 260/280 readings of >1.8 and 260/230 readings of >1.9 were subsequently 

used to prepare cDNA. 1 µg RNA was incubated with 2 µL Oligo dT primers (0.5 µg/µL) in a 

total volume of 20 µL at 70°C for 10 min and afterwards transferred on ice. 2 µL DTT (0.1 M), 

1 µL dNTPs (10 mM), 0.1 µL RNasin, 4 µL 5x first strand buffer and 1 µL Super Script 

Reverse Transcriptase (Invitrogen) were added. The total volume was adjusted to 40 µL by 

adding RNase free water and the samples were incubated at 42°C for 1 h. Then, the reaction 

was stopped by incubation at 70°C for 10 min.  

A gradient PCR was performed with Taq polymerase to determine the correct annealing 

temperature. Following this, a Polymerase chain reaction (PCR) with the appropriate 

annealing temperature was performed. For Orai2 RT-PCRs, annealing temperature of 56°C 

and 40 cycles with 30s reaction time were appropriate. The following primers were used: 

mOrai2RTf: CTTCGCCATGGTGGCCATGG 

mOrai2RTr: ACCAGGGAACGGTAGAAGTG 

mActinf: GTGGGCCGCTCTAGGCACCAA 

mActinr: CTCTTTGATGTCACGCACGATTTC 

 

2.2.7 Adoptive transfer of T cells 

Single-cell suspensions of spleens and lymph nodes of wt or Cd84-/- donor mice were 

generated by mashing the organs through a 40 μm cell strainer (Becton Dickinson). Red 

blood cells were lysed with ACK buffer (0.15 M NH4Cl, 10 mM KHCO3, 0.1 mM EDTA). 

Isolated myeloid immune cells and lymphocytes were washed in MACS buffer (1xPBS, PAA 

Laboratories, supplemented with 0.5% BSA and 2 mM EDTA, Sigma Aldrich). CD4+ T cells 
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were magnetically separated (CD4+ T cell Isolation Kit II, Miltenyi Biotec). Cells were 

resuspended to 750,000 cells in 100 μl 1 x PBS and intravenously injected in Rag1-/- or 

Cd84-/- recipient mice 24 h before tMCAO. These transfer experiments were performed at the 

Department of Neurology, Würzburg, in the group of Prof. Dr. Guido Stoll. 

 

2.2.8 Preparation of lysates from different organs 

50 µg tissue from the desired organ was homogenized in 1 mL ice cold RIPA lysisbuffer 

using a Miccra D1 homogenizing drive (ART Labortechnik, Mülheim, Germany). The lysate 

was incubated at 4°C on a rotor for 1 h, followed by centrifugation at 14,000 rpm for 30 min 

at 4°C. Supernatants were frozen at -80°C. For Western Blot analysis, lysates were 

incubated with reducing or nonreducing sample buffer and boiled for 5 min at 95°C. 

 

2.2.9 Biochemistry 

2.2.9.1 Western blotting (Immunoblotting) 

Platelets were washed twice in Tyrodes buffer and solubilized in IP buffer containing 1% NP-

40. For the separation of proteins by SDS-PAGE, polyacrylamide gels were prepared with 

either a 10% or a 12% separating part and a 4% stacking part. 5-20 µL of protein samples 

per lane were loaded on the gel, previously assembled in a chamber filled with Laemmli 

buffer. The gel ran at 15 mA until the bands reached the separating part. Then the current 

was raised to 25 mA. After separation, gels were removed from the chamber and subjected 

to immunoblotting. 

For semidry immunoblotting the stacking part of the gel was removed and the gel was put 

into blotting buffer B to soak. A polyvinylidene difluoride (PVDF) membrane (Millipore, 

Schwalbach, Germany) was soaked first in methanol and then in blotting buffer B. The 

transfer was achieved as follows: Whatman paper was soaked in blotting buffers A and B (3 

sheets each) and placed on the blotting apparatus, followed by the PVDF membrane, the gel 

and another three sheets of paper soaked in blotting buffer C. Blotting was performed for 1 h 

with 65 mA per gel. The membrane was blocked in blocking solution for 1 h at RT, or o/n at 

4°C. The membrane was incubated with the primary antibody, diluted in blocking solution for 

1 h at RT, followed by washing 4 x 15 min in washing buffer and incubated with the 

secondary antibody for 1 h. After this, membranes were washed 4 x 15 min in washing buffer 

and proteins were visualized using ECL.  
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2.2.9.2 HRP-labeling of antibodies 

HRP-labeling of monoclonal antibodies was performed with the Peroxidase labeling Kit 

(Roche, Mannheim, Germany) according to the manufacturer’s manual.  

 

2.2.9.3 FITC-labeling of antibodies 

4 mg of antibody was dialyzed against coupling buffer overnight at 4°C. FITC was dissolved 

in anhydrous DMSO to a final concentration of 1 mg/mL. 50 μL of this solution was added to 

the antibody and left to incubate at RT for 4 h and then o/n at 4°C on a rotor. The reaction 

was stopped by addition of 100 μL of 1 M NH4Cl. FITC-labeled antibody was separated from 

unbound FITC by gel filtration on a PD-10 column. The antibody was diluted in storage buffer 

to the desired concentration. 

 

2.2.9.4 Biotinylation of antibodies 

3 mg of antibody was dialyzed against coupling buffer over night at 4°C. Then EZ-link sulfo-

NHS-LC-biotin was added to a final concentration of 300 µg/mL for 30 min at RT with 

rotation. The reaction was stopped by addition of 100 µL of 1 M NH4Cl and the antibody was 

finally dialyzed against PBS over night at 4°C. To check the efficiency of the biotinylation, 

washed platelets were incubated with the biotinylated antibody (2, 5 and 10 µg/mL) for 10 

min at RT, then centrifuged (2,800 rpm, 5 min) to remove unbound antibody, and 

subsequently incubated with FITC-labeled streptavidin (1.5 µg/mL; 10 min, RT). Samples 

were analyzed by flow cytometry. 

 

2.2.9.5 sCD84 ELISA 

Soluble mouse CD84. Washed platelets were resuspended at a concentration of 3 x 108 

platelets/mL in Tyrodes-HEPES buffer containing 2 mM CaCl2 and 0.02 U/mL apyrase. To 

induce CD84 shedding, platelets were treated in the presence or absence of the broad range 

metalloproteinase inhibitor GM6001 (100 µM, 15 min, 37°C) for 1 h with CCCP (100 µM), W7 

(150 µM), or for 20 min with NEM (2 mM) at 37°C. Alternatively, platelets were treated for 1 h 

with convulxin (1 µg/mL), CRP (40 µg/mL), rhodocytin (2 µg/mL), thrombin (0.5 U/mL) or 

PAR4 peptide (NH2-AYPGKF; 1-4 mM). Platelets were centrifuged (2800 rpm) and 

supernatants were incubated on JER1-coated (10 µg/mL) ELISA plates for 2 h at RT. After 

extensive washing, plates were incubated with biotinylated antibody mCD84.7 (10 µg/mL) for 

1 h at RT. After extensive washing, plates were incubated with HRP-labeled streptavidin for 

45 min at RT and developed using 3,3,5,5-tetramethylbenzidine (TMB). The reaction was 

stopped by addition of 2N H2SO4 and absorbance at 450 nm was recorded on a Multiskan 
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Ascent (Thermo Scientific). Alternatively, plasma or serum samples were applied to JER1-

coated ELISA plates. 

Soluble human CD84. Human platelet samples were treated as described above for mouse 

platelets. MAX.3 (10 µg/mL) was used as coating antibody and biotinylated 2G7 (5 µg/mL) as 

secondary antibody. 

 

2.2.9.6 sGPVI ELISA 

In vitro GPVI ELISA. Washed platelets were resuspended in Tyrodes-HEPES buffer without 

CaCl2 containing PGI2 (0.1 µg/mL) and apyrase (0.02 U/mL). Biotinylated JAQ1 antibody (10 

µg/mL) was added and incubated for 5 min at RT. After centrifugation, platelets were 

resuspended in Tyrodes-HEPES buffer containing 2 mM CaCl2 and 0.02 U/mL apyrase. To 

induce GPVI shedding, the cells were treated with CCCP (100 µM) or W7 (150 µM) for 1 h at 

37°C. Platelets were centrifuged and supernatants were incubated on JAQ3-coated 

(10 µg/mL) ELISA plates for 1 h at 37°C. After extensive washing, plates were incubated with 

HRP-labeled streptavidin for 45 min at 37°C and developed using 3,3,5,5-

tetramethylbenzidine (TMB). The reaction was stopped by addition of 2 N H2SO4 and 

absorbance at 450 nm was recorded on a Multiskan (Thermo Scientific). 

Ex vivo GPVI ELISA. Plasma of mice treated with 100 µg biotinylated JAQ1 or vehicle was 

incubated on JAQ3-coated (10 µg/mL) plates for 1 h at 37°C and further processed as 

described above. 

 

2.2.10 Generation of bone marrow chimeric mice 

For the generation of bone marrow chimeric mice, 5-6 week old mice were irradiated with a 

single dose of 10 Gy, and bone marrow cells from donor mice of the desired genotype were 

injected intravenously into the irradiated mice (4 x 106 cells diluted in 150 µL DMEM/mouse). 

Water supplemented with 2 g/l neomycin was provided to the mice for 6 weeks.  

 

2.2.11 Isolation and analysis of immune cells 

Peritoneal macrophages were flushed out of the peritoneal cavity of mice with 10 mL PBS 

without Ca2+, centrifuged at 480 g for 5 min and resuspended in FACS buffer. Cells from 

thymus, spleen and lymph nodes were isolated from 8 week-old mice as follows. Organs 

were isolated, placed inside a 70 µm cell strainer with ice-cold PBS/1% FCS and gently 

smashed with a piston from a 10 mL syringe. Spleen cell suspensions were further subjected 

to hypo-osmotic shock for red blood cell depletion using ACK buffer. The suspensions were 

then centrifuged at 480 g for 5 min. Cells were resuspended in FACS buffer for counting. 
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Cells counts were determined using a Sysmex KX-21N automated hematology analyzer 

(Sysmex, Norderstedt, Germany). 

For FACS analysis, stainings were performed with 1x106 cells in a v-bottom 96 well plate. 

FcRs were blocked with 25 µL FACS buffer supplemented with 10 µg/mL 2.4G2 antibody at 

4°C. Cells were stained with appropriately diluted antibodies in 25 µL FACS buffer in the dark 

for 15 min at 4°C. Cells were washed again in FACS buffer, resuspended, transferred into 

FACS tubes and analyzed. Measurements were performed on a FACSCalibur flow cytometer 

using Cell Quest software (BD Biosciences, Heidelberg, Germany). Data were analyzed 

using FlowJo v7 (TreeStar, Ashland, OR, USA).  

 

2.2.12 In vitro analysis of platelets 

2.2.12.1 Platelet preparation and washing 

Mice were bled under isofluran anesthesia from the retroorbital plexus. Blood was collected 

in a tube containing 20 U/mL heparin in TBS, and platelet rich plasma (prp) was obtained by 

centrifugation twice at 300 g for 6 min at room temperature. For preparation of washed 

platelets, prp was washed twice at 1000 g for 5 min at RT and the pellet was resuspended in 

Tyrodes-HEPES buffer in the presence of prostacyclin (0.1 µg/mL) and apyrase (0.02 U/mL). 

Platelets were then resuspended in Tyrodes-HEPES buffer containing 2 mM CaCl2 and 

0.02 U/mL apyrase. 

Human platelets. Blood (9 volumes) from healthy volunteers was collected in sodium citrate 

(1 volume) and PRP was obtained by centrifugation at 300 g for 20 min. PRP was 

centrifuged at 380 g in the presence of prostacyclin (0.1 µg/mL), apyrase (0.02 U/mL) and 

2 mM EDTA (ethylenediaminetetraacetic acid) for 20 min at RT. After two washing steps, 

pelleted platelets were resuspended in Tyrode-HEPES buffer containing 2 mM CaCl2 and 

0.02 U/mL apyrase. 

 

2.2.12.2 Platelet counting 

For determination of platelet counts, blood (50 µL) was drawn from the retroorbital plexus of 

anesthetized mice using heparinized microcapillaries and diluted 1:20 in PBS and analyzed 

in a Sysmex cell counter. 

 

2.2.12.3 Flow cytometry 

For determination of basal glycoprotein expression levels, washed platelets (1 x 106) or 

diluted blood was stained for 10 min at RT with saturating amounts of fluorophore-conjugated 

antibodies. The reaction was stopped by addition of 500 µL PBS, and samples were 
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analyzed directly on a FACSCalibur instrument (BD, Heidelberg, Germany). For activation 

studies, platelets were activated with the indicated agonists or reagents for 15 min at RT in 

the presence of saturating amounts of phycoerythrin (PE)-coupled JON/A and fluorescein 

isothiocyanate (FITC)-coupled α-P-selectin antibody. The reaction was stopped by addition 

of 500 μl PBS and samples were analyzed. For a two-color staining, the following settings 

were used: 

Detectors/Amps: 

Parameter Detector Voltage 

P1 FSC E01 

P2 SSC 380 

P3 Fl1 650 

P4 Fl2 580 

P5 Fl3 150 

Threshold: 

Value Parameter 

253 FSC-H 

52 SSC-H 

52 Fl1-H 

52 Fl2-H 

52 Fl3-H 

Compensation: 

Detector Setting 

Fl1 -2.4% of Fl2 

Fl2 -7.0% of Fl1 

Fl2 -0% of Fl3 

Fl3 -0% of Fl2 

 

2.2.12.4 Aggregometry 

To determine platelet aggregation, light transmission was measured using washed platelets 

in Tyrode’s buffer without Ca2+ adjusted to a concentration of 0.16 x 108 platelets/mL. 

Alternatively, heparinized prp was used and diluted 1:3 in Tyrode’s buffer. For determination 

of aggregation, agonists or reagents (100-fold concentrated) were added and light 

transmission was recorded over 10 min on a Fibrintimer 4 channel aggregometer (Apact 4-
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channel optical aggregation system, APACT, Hamburg, Germany). For calibration, Tyrode’s 

buffer (for washed platelets) or 1:3-diluted plasma (for prp) was set as 100% aggregation and 

washed platelet suspension or prp was set as 0% aggregation. For activation with thrombin, 

washed platelets were diluted in Tyrode’s buffer containing 2 mM Ca2+, for all other agonists 

platelets were diluted in the same buffer in presence of 70 µg/mL human fibrinogen. 

 

2.2.12.5 Spreading assay 

Washed platelets were resuspended in Tyrode’s buffer and adjusted to a concentration of 

0.2 x 106 platelets/μL. 60 µL of the platelet suspension was stimulated with 0.01 U/mL 

thrombin and immediately placed on coverslips (24 x 60 mm) that had been coated overnight 

with 100 µg/mL human fibrinogen and blocked for 1 h with 1% BSA. For statistical analysis, 

bound platelets were fixed with 4% PFA in Tyrode´s buffer at the indicated time points and 

counted using an inverted microscope Zeiss HBO 100 (Zeiss, Germany). Images were 

recorded with a 100x objective and analyzed using MetaVue® software and ImageJ (NIH). 

 

2.2.12.6 Adhesion under flow 

Rectangular coverslips (24 x 60 mm) were coated with 0.2 mg/mL fibrillar type I collagen 

(Horm, Nycomed) o/n at 37°C and blocked for 1 h with 1% BSA in H2O. Blood (700 μl) was 

collected into 300 μl heparin (20 U/mL in TBS, pH 7.3) or ACD-buffer (for studies under non-

anticoagulated conditions). Platelets were labeled with a Dylight-488 conjugated anti-GPIX Ig 

derivative (0.2 μg/mL) for 5 min at 37°C. Whole blood was diluted 2:1 in Tyrode’s buffer 

containing Ca2+ and filled into a 1 mL syringe. Transparent flow chambers with a slit depth of 

50 µm, equipped with the coated coverslips, were connected to the syringe filled with diluted 

whole blood. Perfusion was performed using a pulse-free pump under high shear stress 

equivalent to a shear rate of 1,000 sec-1 or 1,700 sec-1 (for 4 min). Thereafter, coverslips 

were washed for 1 min by perfusion with Tyrode’s buffer at the same shear stress and 

phase-contrast and fluorescent images were recorded from at least five different microscopic 

fields (40x objective). Image analysis was performed off-line using MetaVue® software. 

Thrombus formation was expressed as the mean percentage of total area covered by 

thrombi and as the mean integrated fluorescence intensity per mm2. 

 

2.2.12.7 Clot retraction 

For clot retraction studies, platelets were adjusted to a concentration of 3x108 platelets/mL in 

platelet poor plasma (ppp). 250 μl of the platelet suspension was mixed with 1 μl erythrocyte 

suspension (to contrast the clot), obtained during platelet isolation from whole blood, and 

20 mM CaCl2. Clotting was induced by addition of high thrombin concentrations (3 U/mL). 



Materials and Methods 

  

 52 

Subsequent clot retraction was monitored at 37°C under non-stirring conditions and 

documented with a digital camera at different time points. 

 

2.2.12.8 Shedding of glycoproteins from the platelet surface 

Washed platelets resuspended at a concentration of 3 x 108 platelets/mL in Tyrodes-HEPES 

buffer containing 2 mM CaCl2 and 0.02 U/mL apyrase were treated in the presence or 

absence of the broad range metalloproteinase inhibitor GM6001 (100µM, 15 min, 37°C) for 1 

h with CCCP (100 µM), W7 (150 µM) or for 20 min with NEM (2 mM) at 37°C and 

immediately analyzed on a FACSCalibur. Where indicated, platelets were pretreated with the 

calpain inhibitors calpeptin (5 µg/mL), ALLN (50 µM) or MDL28170 (50 µM) for 15 min at 

37°C. Alternatively, platelets were treated for 1 h with convulxin (1 µg/mL), CRP (40 µg/mL), 

rhodocytin (2 µg/mL), thrombin (0.5 U/mL) or PAR4 peptide (NH2-AYPGKF; 1-4 mM). Where 

indicated, aggregation of mouse platelets was inhibited with saturating concentrations of the 

integrin IIb3 blocking antibody JON/A F(ab)2 
166. 

For Western blot analysis, platelets were lysed in 4x Laemmli buffer containing 

1% Nonidet P-40. Proteins were separated by SDS-PAGE and blotted onto polyvinylidene 

difluoride membranes. After blocking with 5% fat free milk in TBS-T, the membrane was 

incubated with either polyclonal anti-CD84 antibody M-130 over night at 4°C or peroxidase-

conjugated monoclonal antibody JER1 (or peroxidase conjugated JAQ-1 for GPVI detection). 

As secondary antibody for polyclonal M-130, goat anti-rabbit IgG HRP (1 h at room 

temperature) was used. Bound antibodies were visualized by ECL. 

 

2.2.13 In vivo studies 

2.2.13.1 Platelet life span 

Circulating platelets were labeled in vivo by intravenous injection in the retro-orbital plexus of 

5 μg Dylight-488-anti-GPIX Ig derivative in 200 μL PBS. 30 min after antibody injection (and 

every 24 h for 5 days) 50 μL blood was taken from the retro-orbital plexus of treated mice 

and as the percentage of the positive population was determined by flow cytometry. 

 

2.2.13.2 Intravital microscopy of FeCl3-injured mesenteric arterioles 

Mice (4-5 weeks of age, weight 15-18 g) were anesthetized with 2.5% avertin and the 

mesentery was exteriorized through a midline abdominal incision. Arterioles (35-60 µm in 

diameter) were visualized with a Zeiss Axiovert 200 inverted microscope (10x objective) 

equipped with a 100-W HBO fluorescent lamp source, and a CoolSNAP-EZ camera (Visitron, 

Munich, Germany). Digital images were recorded and analyzed off-line using MetaVue® 
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software. Injury was induced by topical application of a 3 mm2 filter paper saturated with 

FeCl3 (20%). Adhesion and aggregation of fluorescently labeled platelets (Dylight-488 

conjugated anti-GPIX Ig derivative) in arterioles was monitored for 40 min or until complete 

occlusion occurred (blood flow stopped for >1 min). This experiment was performed by 

Martina Morowski in the group of Prof. Dr. Bernhard Nieswandt. 

 

2.2.13.3 Mechanical injury of the abdominal aorta 

The abdominal cavity of anesthetized mice (~6 weeks of age) was opened by a longitudinal 

incision and the abdominal aorta was exposed. A Doppler ultrasonic flow probe (Transonic 

Systems, New York, USA) was placed around the aorta and thrombosis was induced by 

mechanical injury with a single firm compression with forceps upstream of the flow probe. 

Blood flow was monitored until complete occlusion occurred or up to 30 min. This experiment 

was performed by Martina Morowski in the group of Prof. Dr. Bernhard Nieswandt. 

 

2.2.13.4 Bleeding time assay 

Mice were anesthetized with a triple anesthesia (medetomidine 0.5 μg/g, midazolam 5 μg/g, 

and fentanyl 0.05 μg/g body weight) and a 1 mm segment of the tail tip was removed with a 

scalpel. Tail bleeding was monitored by gently absorbing the drop of blood with a filter paper 

in 20 sec intervals without directly contacting the wound site. When no blood was observed 

on the paper, bleeding was determined to have ceased. The experiment was manually 

stopped after 20 min by cauterization. Alternatively, tail bleeding times were determined in 

37°C warm saline (0.9% NaCl). Upon ablation, the tail tip was placed in a plastic tube 

containing 4 mL saline, bleeding was observed and determined to have ceased when 

stopped for >1 min.  

 

2.2.13.5 Transient middle cerebral artery occlusion (tMCAO) model 

Experiments were conducted in 6-8 week old male mice according to published 

recommendations for research in mechanism-driven basic stroke studies.168 Transient middle 

cerebral artery occlusion (tMCAO) was induced under inhalation anesthesia using the 

intraluminal filament (6021PK10; Doccol, Redlands, CA) technique.45 After 60 min, the 

filament was withdrawn to allow reperfusion. For measurements of ischemic brain (infarct) 

volume, animals were sacrificed 24 h after induction of tMCAO and brain sections were 

stained with 2% 2,3,5-triphenyltetrazolium chloride (TTC; Sigma-Aldrich, Germany). Brain 

infarct volumes were calculated and corrected for edema. Neurological function and motor 

function were assessed 24 h after tMCAO using Bederson score169 and the grip test.170 This 
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work was performed by Dr. Peter Kraft in the group of Prof. Dr. Guido Stoll, Department of 

Neurology, University Hospital, Würzburg. 

 

2.2.14 Isolation and culture of neurons, Ca2+ imaging 

For Ca2+ measurements, primary neuronal cultures were obtained from newborns at 

postnatal day 0. Tissue was collected from whole cortices and cells were cultured in 

Neurobasal-A medium (Gibco, Invitrogen, Germany) containing 2% B27 supplement, 1% 

GlutaMAX-I and 1% penicillin/streptomycin (Gibco, Germany). Cells were plated in a density 

of 50.000 cells/cm2 on poly-L-lysine coated coverslips in 24-well plates (Sarstedt, USA) and 

cultured for up to 24 days. 

Measurements of [Ca2+]i in single cortical neurons were carried out using the fluorescent 

indicator fura-2 AM in combination with a monochromator-based imaging system (T.I.L.L. 

Photonics, Germany) attached to an inverted microscope (BX51WI, Olympus, Germany). 

Emitted fluorescence was collected by a CCD camera. Cells were loaded with 5 µM fura-2-

AM (Molecular Probes, The Netherlands) supplemented with 0.01% Pluronic F127 for 35 min 

at 20-22°C in a standard bath solution containing: 140 mM NaCl, 5 mM KCl, 1 mM MgCl2, 

2 mM CaCl2, 10 mM glucose and 10 HEPES, adjusted to pH 7.4 with NaOH. For 

measurements of [Ca2+]i, cells were held in standard bath solution and fluorescence was 

excited at 340 and 380 nm. Fluorescence intensities of single cells were acquired in intervals 

of 2s or 20s. After correction for the individual background fluorescence, the fluorescence 

ratio R = F340/F380 was calculated. Quantities for [Ca2+]i were then calculated by the equation: 

[Ca2+]i = KD β(R - Rmin)/(Rmax - R), with KD = 224 nM, β = 2.64, Rmin = 0.272 and Rmax = 1.987 

obtained from single dye-loaded cells in the presence of 5 µM ionomycin added to standard 

bath solution or to a solution containing 10 mM EGTA instead of 2 mM CaCl2. For oxygen-

glucose deprivation (OGD) experiments, cells were immediately transferred to a sealed, N2-

purged (~2 l/min) chamber continuously superfused with a N2-bubbled solution containing 

(mM): 140 NaCl, 5 KCl, 1 MgCl2, 2 CaCl2 and 10 HEPES, adjusted to pH 7.4. All experiments 

were carried out at 20-22°C. All chemicals were obtained from Sigma (Germany). These 

experiments were performed by Dr. Robert Kraft, University of Leipzig. 

 

2.3 Data analysis 

If not stated otherwise, the results shown in this thesis are mean ± SD from at least three 

independent experiments. When parametric conditions were fulfilled, differences between 

two groups were statistically analyzed using a modified t-test (Welch’s test, also applicable 

for unequal variances). For Bederson score and grip tests analysis, Mann-Whitney-U-test 

was applied. For analysis of more than two groups, one-way Anova and Bonferroni multiple 
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comparison post-hoc test was applied. When parametric conditions were not fulfilled, Kruskal 

Wallis test and the appropriate post-hoc test were applied. Microsoft Excel or IBM SPSS 

were used for analysis. P-values <0.05 were considered as statistically significant (*), 

p<0.01 (**), and p<0.001 (***). 
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3 Results 

3.1 Generation CD84 deficient mice 

To explore the relevance of CD84 in platelet biology and beyond, CD84 deficient mice 

(Cd84-/-) were generated. The cloning of the targeting vector for disruption of the mouse 

Cd84 gene has been already described in the thesis “Construction of a targeting vector for 

the generation of CD84 deficient mice” by Rastislav Pozgaj in our research group. All further 

steps in the process of Cd84-/- mouse generation, starting with the electroporation of 

embryonic stem cells are described in the following chapters.  

 

3.1.1 Targeting strategy and electroporation of murine ES cells 

This chapter illustrates the targeting strategy to disrupt the Cd84 gene in murine embryonic 

stem (ES) cells. Since CD84 expression is known to be restricted mainly to the 

hematopoietic system, the intention was to generate constitutive knockout mice. Parts of 

exon 1, intron 1, and a critical part exon 2 were replaced by a cassette containing a 

neomycin resistance gene, allowing for selection of recombinant clones (Figure 8A). In the 

targeting vector, partially deleted exon 1, the selection cassette, as well as partially deleted 

exon 2 were fused together (Figure 8B). Homologous arms facilitate site specific 

recombination. By means of this strategy, the 5´ UTR of the mRNAs and the coding 

sequence of the signal peptide are deleted. Deletion of the 5´ UTR of the mRNA causes 

inhibition of ribosome binding and therefore protein synthesis is abolished. If still alternatively 

spliced CD84 isoforms were translated from mRNAs, these isoforms without signal peptide 

could not be transported to the plasma membrane in the cells, inducing a loss of function 

mutation. Test digestions of the targeting construct with different restriction endonucleases 

revealed the expected restriction lengths (Figure 8C). The targeting vector was linearized 

with NotI, purified and electroporation of ES cells was performed as described in the 

methods section. 
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Figure 8. Targeting strategy and test digestion of the final vector. (A) The mouse Cd84 gene 
comprises 9 exons. The scheme displays the strategy for the generation of a CD84 knockout allele. A 
neomycin resistance cassette (WH9 cass) replaces intron 1 of CD84 and fuses together remaining 
parts of exon 1 and exon 2. The signal peptide (exon 2) was deleted. IRES: Internal ribosomal entry 
site; R: resistance. (B) Scheme of the final targeting vector containing recognition sites for the 
indicated restriction endonucleases. (C) Test digestions of the targeting vector showed the expected 
restriction fragment lengths. 

 

3.1.2 Screening of recombinant stem cell clones and generation of chimeric 

mice 

432 and 443 stem cell clones, which survived the Geneticin selection process, were picked. 

ES cell DNA was digested with BamHI and screened for homologous recombination by 

Southern blot analysis (see Figure 9A for Southern blot strategy). According to the strategy, 

the radioactively labeled external probe binds to a sequence in intron 2, located downstream 

of the 3’ arm of the targeting vector. Homologous recombination introduces a new BamHI 

site into the targeted allele, allowing for detection of a 3.5 kb ko allele, whereas the wt allele 

will appear as a 15 kb fragment. In total, four homologous-recombinant stem cell clones were 
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detected. These clones (Cd84+/-) showed the wt band at 15 kb and the expected knockout 

band at 3.5 kb (Figure 9B). 

 

 

Figure 9 Detection of homologous-recombinant clones. (A) This scheme illustrates the detection 
of wt and CD84 knockout (targeted) alleles. The external probe (EP) recognizes a sequence 
downstream of 3´ arm in intron 2. The wt band between the two BamHI sites is approximately 15 kb in 
size. The WH9 cass contains an additional BamHI site. The mutant band is approximately 3.5 kb in 
size. (B) Representative Southern blot pictures showing each one homologous-recombinant stem cell 
clone (+/-). 

 

Cd84+/- ES cells were recultured, retested in Southern blot, and injected into C57BL/6 

blastocysts in collaboration with Dr. Michael Bösl (Max Planck Institute of Neurobiology, 

Martinsried), to generate chimeric mice. Three of these ES cell clones gave rise to seven 

chimeric mice (Table 2).  
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chimeric mice derived from ES cell clone # chimerism (%) germline transmission 

male 185 100 Yes 

male 346 95 Yes 

male 346 30 Yes 

male 346 25 No 

female 346 90 No 

female 219 80 No 

female 346 25 No 

Table 2 Chimeric mice obtained after blastocyst injection of Cd84
+/-

 ES cells. Germline 
transmission was obtained where indicated. 

 

3.1.3 Breeding of homozygous Cd84-/- mice 

The chimerism of mice obtained after blastocyst injection is determined according to their 

coat color. The injected stem cells were from a 129/Sv ES cell line160 and the blastocyst was 

obtained from C57BL/6J mice. Therefore, a high percentage of brown coat color indicates 

high chimerism, implicating a high chance of germline transmission. Chimeric male mice 

were backcrossed with female C57BL/6J and chimeric females were backcrossed with male 

C57BL/6J mice.  

 

 

Figure 10. Homozygous Cd84 ko mice. (A) Southern blot and (B) PCR strategy to detect wt (+/+), 
heterozygous (+/-) and ko (-/-) mice. (C) Western blot confirming absence of CD84 in platelets of -/- 
mice. GPIIIa was used as loading control. (D) Flow cytometric measurement of wt, heterozygous, and 
ko mouse platelets. (E) Western blot detecting absence of CD84 in spleen, lymph nodes and thymus 
of -/- mice. 40 µg protein (determined by BCA assay) from organ lysates was loaded per lane. 
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Germline transmission occurred only in chimeric males. Their heterozygous offspring 

(Cd84+/-) mice were intercrossed to finally obtain Cd84-/- mice (Figure 10A). Mouse 

genotypes were determined by Southern blot and by PCR (Figure 10B). 

 

3.2 Basal analysis of CD84 deficient mice 

To determine whether loss of CD84 caused any obvious deficits in mice, like impairment of 

reproduction, or alterations at blood cell level, initial data on heterozygous mating statistics 

and hematologic parameters were assessed. 

 

3.2.1 CD84 deficient mice are born in Mendelian ratio and develop normally 

Following heterozygous matings, Cd84-/- (ko) and Cd84+/+ (wt) mice were born approximately 

in Mendelian ratio (Table 3). Therefore, it was concluded that loss of CD84 does not severely 

affect embryonic development. 

Genotype Cd84 number of mice percentage expected percentage 

+/+ 34 27.0 % 25 % 

+/- 67 53.2 % 50 % 

-/- 25 19.8 % 25 % 

total 126 100 % 100 % 

Table 3 Cd84
-/-

 mice were born in Mendelian ratio after intercrossing of heterozygous animals. 

 

Cd84-/- mice developed normally and were morphologically indistinguishable from wt mice. 

Intercrossing of ko mice yielded approximately same litter sizes as intercrossing of wt mice. 

Litters from ko mouse intercrossing also developed normally, indicating that ko females had 

no deficit in bearing and feeding their offspring. A first analysis of basal hematologic 

parameters (Table 4) did not show a significant difference between wt and Cd84-/- mice. 

 

Genotype Cd84 WBC RBC HGB HCT 

+/+ 6.30 ± 2.66 8.33 ± 0.85 13.93 ± 1.30 44.03 ± 3.78 

-/- 6.58 ± 3.05 7.90 ± 1.56 12.74 ± 2.21 41.37 ± 6.83 

p n.s. n.s. n.s. n.s. 

Table 4. Normal hematologic parameters in Cd84
-/-

 mice. White blood cell count (WBC; x10
3
/µL), 

erythrocytes (RBC; x10
6
/µL), hemoglobin (HGB; g/dl) and hematocrit (HCT; %) as determined by a 

hematologic analyzer (Sysmex) were unaltered in CD84 deficient mice. n=10. n.s.: not significant. 
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3.2.2 Proof of CD84 deficiency at cellular level 

CD84 expression in humans has been documented on various cell types, including 

monocytes, macrophages, B cells, T cells, granulocytes and platelets.77,78 In addition to the 

above mentioned proof of CD84 loss by Western blot analysis (Figure 10), different immune 

cells from spleen, lymph nodes and thymus were analyzed with regard to CD84 expression 

by flow cytometry. The different cell populations were identified by scatter properties in 

combination with specific surface markers. In all cell types of wt (Cd84+/+) mice, CD84 was 

clearly detectable by the anti CD84 antibody, JER1-FITC. This is in accordance with 

published data on human CD84, which is broadly expressed on leukocytes.67,78 As expected, 

the antibody did not bind to the same cell types from Cd84-/- mice. 

 

 

Figure 11. Determination of CD84 expression in leukocytes and platelets by flow cytometry. 
Histograms represent CD84 levels, as detected by JER1-FITC. In wt mice (solid lines), CD84 was 
detected in all tested cell types: T cells and thymocytes (CD4

+
, CD8

+
, CD4

+
/CD8

+
, CD4

-
/CD8

-
), B cells 

(B220
+
), granulocytes and monocytes (CD11b

+
) cells, peritoneal macrophages (F4/80

+
) and platelets. 

CD84 was absent in ko mice (dashed lines). 

 

The data in Figure 11 clearly demonstrated the lack of CD84 protein in all tested cell types of 

the Cd84-/- mouse line. This confirmed that the strategy for generation of a Cd84 knockout 



Results 

  

 62 

was successful. For wt leukocytes, mean fluorescence intensities (MFI) detected with JER1-

FITC were between 25 and 43, whereas MFIs for Cd84-/- were between 3 and 6 (CD4+ 

lymphocytes: wt: 27.2 ± 2.03; Cd84-/-: 3.12 ± 0.31; CD8+ lymphocytes: wt: 25.29 ± 1.38; 

Cd84-/-: 3.02 ± 0.47; splenic B-cells: wt: 32.3 ± 0.10; Cd84-/-: 4.49 ± 0.26; peritoneal 

macrophages: wt: 43.41 ± 6.08; Cd84-/-: 5.76 ± 0.84). It remains unclear why JER1-FITC 

signals on Cd84-/- platelets were higher than on other cell types (wt: 36.4 ± 0.58; Cd84-/-: 12.8 

± 0.31). Elevated background values might be due to a certain degree of unspecific binding, 

nevertheless residual expression of CD84 on platelets can be excluded because Western 

blots from platelet lysates clearly demonstrated complete absence of CD84 in ko platelets 

(Figure 10C). 

 

3.2.3 Unaltered lymphocyte populations in CD84 deficient mice 

As shown in 3.2.2, CD84 is broadly expressed in wt mice in cells of primary and secondary 

lymphoid organs. To clarify whether CD84 deficiency alters lymphocyte subsets, thymocyte 

subsets in thymus, as well as T and B cell compositions in spleen and lymph nodes were 

analyzed. Flow cytometric measurements of thymocytes revealed that Cd84-/- mice displayed 

normal subset distributions for CD4+ cells (wt: 7.55 ± 1.01 %; Cd84-/-: 9.18 ± 3 %; p≥0.05), 

CD8+ cells (wt: 2.25 ± 0.28 %; Cd84-/-: 2.54 ± 1.04 %; p≥0.05), CD4-CD8- cells (wt: 1.25 ± 

0.52 %; Cd84-/-: 2.08 ± 0.55 %; p≥0.05), and CD4+CD8+ cells (wt: 88.57 ± 1.69 %; Cd84-/-: 

85.3 ± 4.8 %; p≥0.05). These data (Figure 12) indicate unaltered maturation of CD84 

deficient T cells in thymus. 

 

 

Figure 12. Unaltered distribution of cell populations in thymus. (A) Representative dot plots of 
CD4 vs CD8 expression in thymocytes of wt (left) or Cd84

-/-
 (right) mice as measured by flow 

cytometry. (B) Frequencies of CD4
+
, CD8

+
, double negative, or double positive thymocytes in wt (black 

bars) or Cd84
-/-

 mice (gray bar). Numbers represent percentages of total thymocyte numbers, 4 mice 

per group, p≥0.05. 
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Lymphocyte and splenocyte subset distributions were also studied by flow cytometry, using 

CD4 and CD8 antibodies for detection of T cells, or B220 antibodies for B cells. No 

significant differences were found for T and B cells in lymph nodes (CD4+ cells: wt: 42.2 ± 

3.41 %; Cd84-/-: 43.29 ± 1.31 %; p≥0.05. CD8+ cells: wt: 24.3 ± 3.9 %; Cd84-/-: 29.08 ± 1.95 

%; p≥0.05. B220+ cells: wt: 23.83 ± 0.12 %; Cd84-/-: 19.30 ± 1.82 %; p≥0.05; see Figure 

13A). Splenic T and B cell composition was also comparable in wt and CD84 deficient mice 

(CD4+ cells: wt: 19.73 ± 1.45 %; Cd84-/-: 17.89 ± 0.96 %; p≥0.05. CD8+ cells: wt: 11.9 ± 0.43 

%; Cd84-/-: 11.47 ± 1.29 %; p≥0.05. B220+ cells: wt: 47.2 ± 3.49 %; Cd84-/-: 40.99 ± 1.01 %; 

p≥0.05; see Figure 13B).  

 

 

Figure 13. Unaltered distributions of cell populations in lymph nodes and spleen in Cd84
-/-

 
mice. (A) Representative dot plots of CD4 vs CD8 expression in lymph nodes of the indicated mice as 
measured by flow cytometry. Bar graphs show frequencies of CD4+, CD8+, and B cells (B220+) in wt 
or Cd84

-/-
 mice. (B) Dot plots and bar graphs showing frequencies of spleen cells, as described in A. 

Numbers represent percentage of total lymphocyte or splenocyte numbers, 4 mice per group, p≥0.05. 

 

Together, these data suggested normal B and T cell development in Cd84-/- mice, which is in 

line with recently published immunological studies from Cannons et al.,84 who also reported 

normal thymic, lymph node and splenic cellularity in their own CD84 deficient mouse line. 
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3.3 Platelet function and thrombus formation in CD84 deficient mice 

3.3.1 Platelet production 

Western blot analysis and flow cytometric measurements verified that CD84 is expressed in 

wt, but not in Cd84-/- platelets (Figure 10). To study whether CD84 deficiency had an 

influence on platelet formation, platelet counts, size and expression of prominent 

glycoproteins were measured by a hematologic analyzer (Sysmex) and by flow cytometry 

(Figure 14A-C), respectively. 

 

 

Figure 14. Cd84
-/-

 mice display normal platelet production but slightly increased platelet size. 
(A) Platelet counts (platelets x 10

6
/µL) and (B) platelet volumes (femtoliters) were determined by a 

hematologic analyzer (Sysmex). Values are mean ± SD, n≥8 per group, *p<0.05. (C) Expression 
levels of prominent platelet surface receptors were measured by flow cytometry and expressed as 
mean fluorescence intensity ± SD, n=5 per group. (D) wt and Cd84

-/-
 mice were injected with a DyLight 

488-conjugated anti-GPIX Ig derivative to label platelets in vivo. Percentage of fluorescently labeled 
platelets determined by flow cytometry at the indicated days after injection is illustrated. Values are 
mean ± SD of 5 mice per group. 

 

Platelet counts in CD84 deficient mice were unaltered (wt: 653 ± 87.8 x103  plt/µL blood; 

Cd84-/-: 692 ± 158 x103  plt/µL blood; p≥0.05). However, CD84 deficient platelets displayed a 

slightly increased size (wt: 5.15 ± 0.24 fL; Cd84-/-: 5.46 ± 0.29 fL; p<0.05). Expression levels 
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of prominent platelet receptors were found to be normal. To determine whether the slightly 

elevated platelet size in CD84 deficient mice was due to altered platelet turnover, platelet life 

span was determined in Cd84-/- and wt mice in vivo. For this, circulating platelets were 

labeled by injecting mice with a fluorescently labeled, non-cytotoxic anti-GPIX antibody 

derivative and the labeled platelet population was monitored by flow cytometry during the 

next 5 days. One h after antibody injection, >95% of circulating platelets were labeled in both 

wt and Cd84-/- mice and this platelet population constantly declined over the next 5 days 

(<2% at day 5) in both groups, without a statistically significant difference (Figure 14D). 

Taken together, Cd84-/- mice display normal platelet production and life span, with a slight 

increase in platelet size. 

 

3.3.2 Agonist induced activation and degranulation in vitro 

To study the effect of CD84 deficiency on platelet activation, agonist-induced activation of the 

major platelet integrin IIb3 and degranulation-dependent P-selectin exposure were 

measured by flow cytometry. PE-conjugated JON/A antibody specifically detects only the 

activated form of integrin IIb3.166 Since P-selectin is stored in -granules of unactivated 

platelets and is not present on the platelet surface under resting conditions, detection of P-

selectin on the platelet surface after agonist-induced activation is a measure for 

degranulation. CD84 deficient platelets became fully activated in response to thrombin, 

ADP/U46619 (stable TxA2 analogue), collagen related peptide (CRP), convulxin (CVX, a 

snake venom protein activating GPVI) and rhodocytin (RC, a snake venom protein activating 

CLEC-2). Therefore, loss of CD84 does not alter integrin activation and degranulation in 

response to G-protein coupled or ITAM coupled receptor stimulation (Figure 15). 
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Figure 15. Activation and α-granule release of Cd84
-/-

 platelets in vitro. Flow cytometric analysis 

of (A) IIb3 integrin activation (binding of JON/A-PE) and (B) degranulation-dependent P-selectin 
exposure in response to the indicated agonists. Values are mean fluorescence intensity (MFI) ± SD; 5 
mice per group. U46=U46619, Thr=thrombin. 

 

3.3.3 Aggregation, spreading on fibrinogen and clot retraction 

CD84 has been shown to become tyrosine phosphorylated in activated platelets, but only 

when aggregation was allowed to occur.51 Therefore, CD84 might act as an aggregation-

induced co-receptor supporting stable aggregate formation.26 To test the impact of CD84 loss 

on platelet aggregate formation in vitro, washed platelets from Cd84-/- mice and wt mice were 

stimulated with various agonists in the presence of 2 mM extracellular Ca2+. Aggregometry 

light transmission traces reached similar maximal aggregation rates for Cd84-/- as for wt 

platelets. Also at intermediate and low concentrations of all tested agonists (CVX, collagen, 

CRP, thrombin, U46619, ADP) no obvious alteration of aggregation was detectable (Figure 

16A). Thus, in vitro aggregation results indicate that loss of CD84 does not affect aggregate 
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formation or stability, at least during the typical observation period of 10 min. However, an 

effect on long term thrombus stability cannot be excluded based on these data. 

 

 

Figure 16. Unaltered aggregation and spreading of Cd84
-/-

 platelets in vitro. (A) Washed platelets 
were stimulated with the indicated agonists and light transmission was recorded in an aggregometer. 
ADP measurements were performed in prp. Representative aggregation curves for wt (black line) and 
Cd84

-/-
 platelets (grey line) of 3 independent measurements. Thr=thrombin, U46=U46619. (B) 

Platelets were allowed to spread on fibrinogen (100 µg/mL) after stimulation with 0.01 U/mL thrombin. 
Representative differential interference contrast (DIC) images of 3 individual experiments from the 
indicated time points. (C) Statistic evaluation of the percentage of spread platelets at different 
spreading stages at the indicated time point. 1: roundish, 2: only filopodia, 3: filopodia and 
lamellipodia, 4: fully spread. 

 

Aggregation of platelets requires inside-out as well as outside-in activation of integrins. 

Another process requiring integrin mediated adhesion, outside-in signaling, and subsequent 

rearrangements of the cytoskeleton is spreading of platelets on extracellular matrix proteins, 

like fibrinogen.171 To study the role of CD84 in this process, washed platelets were allowed to 

spread on a fibrinogen-coated surface in vitro, after prestimulation with 0.01 U/mL thrombin. 
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Cd84-/- platelets formed filopodia and lamellipodia to the same extent and with kinetics similar 

to wt platelets, resulting in ~50% fully spread platelets after 30 min in both groups, whereas 

less than 10% of all platelets were in stages with only adhesion or filopodia formation (Figure 

16B, C). Hence, absence of CD84 does not influence the ability of platelets to perform 

integrin IIb3-mediated adhesion and the reorganization of the actin cytoskeleton to 

facilitate shape change and spreading. 

Upon ligand binding, integrin IIb3 also mediates clot retraction, a process relying on 

outside-in signaling. Through the process of clot retraction, platelets generate force to 

contract the fibrin mesh, decrease the clot size, and pull together the edges of damaged 

tissue to form a mechanically stable clot.172 To study whether loss of CD84 alters clot 

retraction, clot formation was induced in prp of Cd84-/- and wt mice by addition of a high dose 

of thrombin (5 U/mL) in presence of 20 mM Ca2+ and clot retraction was monitored over time. 

Clot retraction started as early as 30 min after activation with thrombin and progressed to its 

maximum at 4 h (Figure 17). The excess fluid extruded during clot retraction was 86.4 ± 1.53 

% for wt and 85.8 ± 1.80 % for Cd84-/- (in % of initial prp volume). These data show that 

CD84 has no essential role in integrin-dependent clot retraction. 

 

Figure 17. Cd84
-/-

 platelets facilitate integrin-dependent clot retraction. Wt and CD84 deficient prp 
was activated with 5 U/mL thrombin in the presence of 20 mM CaCl2. Pictures were taken at the 
indicated time points. 

 

3.3.4 Procoagulant responses and thrombus formation under flow 

Elevation in cytosolic [Ca2+]i upon strong platelet activation leads to exposure of 

phosphatidylserine (PS) at the outer surface of the membrane.132 This process contributes to 

coagulant activity of platelets, supporting blood coagulation at sites of platelet activation. To 

test whether CD84 is involved in PS exposure, wt and Cd84-/- platelets were activated with 

different agonists and the percentage of Annexin-V-DyLight488 positive platelets was 
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determined by flow cytometry. Whereas CRP or CVX alone only evoked a submaximal 

percentage of Annexin-V-DyLight488 positive platelets in both groups, a combined activation 

with thrombin and CRP led to 77.6 ± 3.21 % positive wt and 77.0 ± 3.74 % positive Cd84-/- 

platelets (Figure 18). Therefore, loss of CD84 does not influence procoagulant activity of 

platelets. 

 

 

Figure 18. Unaltered procoagulant activity of 
Cd84

-/-
 platelets. Procoagulant activity was 

determined by Annexin-V-DyLight 488 binding to 
activated platelets after stimulation with the 
indicated concentrations of CRP, thrombin (Thr), a 
combination of CRP (20µg/mL) and thrombin 
(0.1 U/mL), or CVX. The percentage of Annexin-V-
DyLight 488 positive platelets was determined by 
flow cytometry (n=5 mice per group). 

 

 

 

In flowing blood, adhesion of platelets to the exposed subendothelial matrix and subsequent 

thrombus growth are influenced by shear forces. Under such conditions, lack of receptors 

that potentially modify platelet aggregate stability could become functionally evident. To test 

the consequence of CD84 deficiency on aggregate formation under flow, anti-coagulated 

whole blood was perfused over collagen-coated surfaces in an ex vivo flow chamber system, 

at intermediate (1000 s-1) and high (1700 s-1) shear rates (Figure 19A and B). As in wt 

controls, platelets from CD84 deficient mice rapidly adhered to collagen and formed three-

dimensional thrombi under both intermediate and high shear rates. Evaluation of surface 

coverage in phase contrast images and relative thrombus volumes, determined by 

fluorescence intensity measurements, did not reveal statistically significant differences 

between Cd84-/- and wt (Figure 19). These findings indicate that CD84 is not essential for 

growth and stabilization of platelet rich thrombi under intermediate and high shear ex vivo. 
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Figure 19. Normal thrombus formation under flow ex vivo in Cd84
-/-

 blood. Anticoagulated whole 
blood was perfused over a collagen-coated surface at the indicated shear rates. (A) Representative 
phase contrast images at the end of the perfusion time of 4 min (1000 s

-1
) and mean surface coverage 

± SD of at least 5 mice are shown (left). Representative fluorescence images obtained by platelet 
labeling with an anti-GPIX DyLight488 derivative and mean integrated fluorescence intensities (IFI± 
SD of at least 5 mice) are shown on the right. (B) Surface coverage and fluorescence intensities for a 
shear rate of 1700s

-1
 as described in A. 

 

3.3.5 Thrombus formation in vivo 

To study thrombus formation in vivo, the mice were subjected to two different arterial 

thrombosis models. These experiments were performed in collaboration with Martina 

Morowski in our laboratory. Female and male Cd84-/- mice were tested separately, to explore 

whether sex-specific factors may lead to divergent results, as described for SLAM deficient 

mice by Nanda et al.51 In the first thrombosis model, application of 20% ferric-chloride (FeCl3) 

was used to elicit chemical injury in mesenteric arterioles. Thrombus formation was 

monitored by intravital fluorescence microscopy. The time to beginning of thrombus 

formation, characterized by adhesion and accumulation of fluorescently labeled platelets, 

was found to be similar between wt and Cd84-/- mice in either sex (Figure 20A, B). The mean 
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time to complete vessel occlusion was also similar in both groups (males: wt 15.74 ± 3.32 

min vs. Cd84-/- 15.19 ± 3.69 min; females: wt 17.04 ± 3.15 min vs. Cd84-/-
 18.47 ± 4.78 min).  

 

 

Figure 20. Unaltered arterial thrombus formation in mesenteric arterioles. Mesenteric arterioles 
were injured by application of FeCl3 and thrombus formation was monitored by intravital fluorescence 
microscopy. Time to beginning of thrombus formation (left) and to complete vessel occlusion (right) 
are shown for male (A) and female (B) mice. Horizontal lines represent mean values. Each symbol 
represents one arteriole. (C) Representative pictures acquired at the indicated time points. Asterisks 
indicate complete vessel occlusion. 

 

In a second arterial thrombosis model, mechanical injury was induced in abdominal aortae by 

firm compression of the vessel. Blood flow was monitored with an ultrasonic flow probe for up 

to 30 min. In the male animal group, 8 out of 8 wt and 7 out of 8 Cd84-/- mice formed 

irreversible occlusive thrombi within the observation period (mean occlusion time wt: 325 ± 

99 vs Cd84-/-: 271 ± 72 s; p=0.25). In the female animal group, 9 out of 10 wt and 9 out of 10 

Cd84-/- mice formed irreversible occlusive thrombi (mean occlusion time wt: 392 ± 217 vs 

Cd84-/-: 345 ± 148 s; p=0.60; Figure 21).  
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Figure 21. Unaltered occlusion times after mechanical injury of the abdominal aorta. The 
abdominal aorta was injured by a single firm compression using forceps. Thrombus formation was 
monitored by blood flow measurements. Occlusion time denotes the time until irreversible occlusion of 
the vessel. Each symbol represents one individual. 

These data, generated in one model of microvascular and one model of macrovascular 

arterial thrombosis, suggest that absence of CD84 has no major effect on experimentally 

induced arterial thrombus formation in mice.  

 

3.3.6 Normal hemostasis in Cd84-/- mice 

Bleeding times were determined by cutting a two millimeter segment from the tail tip and 

gently absorbing the blood with a filter paper, without making contact with the wound site. 

Time until arrest of bleeding was not significantly altered in CD84 deficient mice (wt 418 ± 

206 s; Cd84-/-:347 ± 201 s; p=0.29; Figure 22). When data for female and male mice were 

analyzed separately, it became evident that females occluded faster than males in general. 

However there was neither a significant difference between wt and Cd84-/- males (wt 532 ± 

214 s; Cd84-/- 451 ± 173 s; p=0.39) nor between wt and Cd84-/- females (wt 316 ± 141 s; 

Cd84-/- 254 ± 184 s; p=0.41). Another bleeding time model, where the tail tip was immersed 

in 37°C warm saline did also not reveal alterations in bleeding time (data not shown). These 

data suggest that CD84 is not an essential player in primary hemostasis in mice.  
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Figure 22. Unaltered tail bleeding times in Cd84
-/-

 mice. A 
2 mm segment from mouse tail tips was cut with a scalpel and 
blood was gently absorbed with a filter paper in 20 s intervals. 
Time until bleeding has ceased is expressed as bleeding 
time. Each symbol represents one individual (n=20 mice per 
group). 

 

 

 

 

 

 

3.4 Regulation of CD84 receptor levels in platelets 

Even though the definite function of CD84 in platelet biology remained elusive, a recent study 

on human platelets suggested that platelet CD84 may be downregulated in a 

metalloproteinase-dependent manner,96 but the underlying mechanism remained unclear. 

Therefore, detailed studies on the regulation of CD84 receptor levels were performed in 

human and mouse platelets in collaboration with Timo Vögtle from our research group, in 

order to shed light on the mechanism of CD84 receptor regulation. 

 

3.4.1 Ectodomain shedding of CD84 by metalloproteinases in human and 

murine platelets 

Fong et al. identified soluble CD84 (sCD84) in the supernatant of activated human platelets 

in a mass spectrometric approach,96 suggesting that the receptor can be downregulated from 

the platelet surface by proteolytic cleavage. To study this process in more detail, washed 

human platelets were stimulated with thrombin or the GPVI agonist collagen related peptide 

(CRP) and surface expression of CD84 was measured by flow cytometry (Figure 23A). 

Indeed, substantial downregulation of CD84 surface levels in response to CRP and 

moderate, non-significant, downregulation in response to thrombin were detected and these 

effects were inhibited in the presence of the broad range metalloproteinase inhibitor 

GM6001. These data confirmed that CD84 surface expression in human platelets is 

downregulated in response to agonist stimulation in a metalloproteinase-dependent manner. 
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Total surface levels of CD84, as measured by flow cytometry, may also be influenced by 

receptor internalization or exposure of additional CD84 proteins originating from intracellular 

pools. To circumvent this limitation, an ELISA system was established, using two monoclonal 

antibodies directed against distinct epitopes on the extracellular domain of the receptor to 

directly measure soluble human CD84 in the platelet supernatant. As shown in Figure 23B 

the release of soluble human CD84 from thrombin- and CRP-stimulated human platelets was 

confirmed by this approach. 

 

Figure 23. Agonist-induced shedding of CD84 from human platelets is metalloproteinase- 
dependent. Washed human platelets were incubated with CRP (40 µg/mL) or thrombin (0.5 U/mL) for 
1 h at 37°C in the presence or absence of the broad range metalloproteinase inhibitor GM6001 
(100 µM). (A) Platelets were stained with FITC-labeled anti-CD84 antibody for 15 min and analyzed 
directly by flow cytometry. (B) Supernatants were applied on a MAX.3-coated ELISA plate. sCD84 was 
detected using 2G7-biotin as secondary antibody, followed by HRP-conjugated streptavidin. Results of 
all experiments are mean ± SD (n = 3 individuals), *p<0.05, **p<0.01, ***p<0.001. (Hofmann, Vögtle et 

al., JTH 2012)
164

 

 

Next, CD84 regulation was studied in murine platelets. Again, an ELISA system was 

developed to study CD84 ectodomain shedding. Washed mouse platelets were stimulated 

with thrombin, CRP, convulxin (CVX) or the CLEC-2 activating snake venom protein 

rhodocytin (RC), and release of sCD84 was determined with the new ELISA system, 

designed to detect the cleaved extracellular domain of mouse CD84 (sCD84). High levels of 

sCD84 were measured in the supernatant of wt platelets in response to stimulation with each 

of these agonists, compared to the untreated control (Figure 24A). In contrast, virtually no 

sCD84 was detected when the experiments were performed in the presence of GM6001, 

strongly suggesting that CD84 cleavage was mediated by metalloproteinases. The ELISA 

yielded only background signals when the same experiments were performed with platelets 

from Cd84-/- mice, confirming the specificity of the system. When platelet aggregation was 

blocked by inhibiton of integrin IIb3 with F(ab)2 fragments of the JON/A antibody,166 less 

sCD84 was detected after CRP and thrombin stimulation. This indicated that cleavage of 
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CD84 was, at least in part, dependent on platelet aggregation (Figure 24B). Addition of 

JON/A F(ab)2 after the agonist incubation period did not reduce the sCD84 signal in ELISA, 

excluding that the F(ab)2 interfered with the signal (data not shown).  

 

 

Figure 24. Metalloproteinase-dependent shedding of CD84 from mouse and human platelets. 
(A) Washed mouse platelets were incubated with the indicated agonists in the presence or absence of 
GM6001. sCD84 was detected by ELISA as described in materials and methods. n.d. = not detectable 
(B) Washed mouse platelets were incubated with the indicated agonists in presence or absence of 
25 µg/mL JON/A F(ab)2 and ELISA was performed. (C) Washed mouse platelets were incubated with 
CCCP (100 µM) or W7 (150 µM) for 1 h at 37°C or NEM (2 mM) for 20 min at 37°C in the presence or 
absence of GM6001. ELISA was performed. DMSO treatment served as control. Results are mean ± 
SD (n = 4 mice per group). (D) Washed human platelets were incubated with CCCP (100 µM) or W7 
(150 µM) for 1 h at 37°C or NEM (2 mM) for 20 min at 37°C in the presence or absence of GM6001. 
sCD84 was detected by ELISA as described in material and methods (n=3). (Hofmann, Vögtle et al., 
JTH 2012)

164
 

 

To further assess the mechanisms of CD84 ectodomain shedding, washed mouse platelets 

were treated with different agents that are known to induce shedding of multiple platelet 

membrane receptors by distinct mechanisms12 and CD84 cleavage from the platelet surface 

was measured by sCD84 ELISA. The calmodulin inhibitor W7 induces dissociation of 
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calmodulin from receptors, thereby facilitating ectodomain shedding, e.g. of GPIb97,173 and 

GPV92 by ADAM17 and GPVI shedding by ADAM10.97,173 N-ethylmaleimide (NEM) is a thiol-

modifying reagent which induces shedding by directly activating ADAM10 and ADAM17 

independently of platelet activation.12 Both reagents induced marked ectodomain shedding of 

CD84 as revealed by detection of high levels of sCD84 in the platelet supernatant compared 

to untreated control and this effect was virtually abolished in the presence of GM6001 (Figure 

24C). Carbonyl cyanide m-chlorophenylhydrazone (CCCP) induces mitochondrial injury by 

uncoupling oxidative phosphorylation and triggers receptor shedding mainly in an ADAM17 

dependent manner.88,173 Compared to W7 and NEM, CCCP induced only a mild GM6001-

sensitive increase in sCD84 in the platelet supernatant. Similar results were obtained with 

human platelets (Figure 24D). 

 

3.4.2 Calpain and metalloproteinases cleave CD84 

To further analyze the mechanisms underlying CD84 regulation in platelets, CD84 

processing in response to shedding inducing agents was assessed by Western blotting using 

two different antibodies: JER1 (anti-CD84N-term) and the polyclonal antibody M-130, that was 

raised against the intracellular C-terminal part of CD84 (anti-CD84C-term). The band of the full 

length CD84 protein appeared between 55 and 72 kDa under non-reducing conditions as 

previously reported by others.51,77 While in unstimulated platelets, M-130 detected only the 

full length protein, an additional band at a size of approximately 15 kDa appeared in NEM-

treated platelets (Figure 25A, lower left). As simultaneously the band intensity of the full 

length protein decreased, it was hypothesized that this 15 kDa band represents the C-

terminal remnant of CD84 that is generated by shedding of the receptor ectodomain. This 

assumption was confirmed by the finding that GM6001 abrogated the appearance of this 

additional band in the lysate of NEM treated platelets (Figure 25A, lower left). 

Figure 24 shows that W7, and to a lower extent, also CCCP can trigger GM6001-sensitive 

release of sCD84 into the supernatant. Thus, it was surprising that the C-terminal remnant 

could not be detected in W7 and CCCP treated platelets although the band of the full length 

protein was clearly reduced in intensity compared to untreated control, or even absent after 

W7 treatment (Figure 25, lower left). One possible explanation was that CD84, in addition to 

ectodomain shedding, may be cleaved in the C-terminal region and that this cleavage 

interferes with binding of the anti-CD84C-term antibody, M-130. This assumption was also 

supported by the fact that a shift in the molecular weight of CD84 was detectable with the 

anti-CD84N-term antibody, JER1, in the lysates of platelets treated with W7 or CCCP. 

Moreover, this shift, as well as the lack of binding of the anti-CD84C-term antibody was not 

influenced by GM6001. 
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One candidate enzyme for mediating this intracellular cleavage was calpain, because 

shedding by metalloproteinases often occurs concomitantly with activation of calpains12 and 

calmodulin-binding proteins are frequently substrates for calpains.174 This hypothesis was 

further supported by the analysis of the CD84 C-terminus with an online prediction tool 

(http:// calpain.org),175 which identified a potential cleavage site for calpain in murine CD84, 

between amino acids 268 and 272 (sequence: V-S-R-N-A), as well as in human CD84. 

To test whether calpain indeed mediated the cleavage of the CD84 C-terminus, the calpain-

inhibitor calpeptin was used. Strikingly, preincubation of platelets with calpeptin abolished the 

shift in the molecular weight of CD84 seen in W7 and CCCP treated platelets with the anti-

CD84N-term antibody, JER1, (Figure 25A, upper right) and also allowed the detection of the C-

terminal remnant with the anti-CD84C-term antibody, M-130 (Figure 25A, lower right). The band 

intensity for this remnant was strong after W7 and NEM treatment, and weak for CCCP-

treated platelets. Importantly, all bands detected by M-130 and JER1 were specific because 

no signal was obtained when the experiments were performed with Cd84-/- platelets (data not 

shown). These results were in full agreement with the results obtained with the newly 

established sCD84 ELISA system. When platelets were preincubated with calpeptin and 

GM6001, both the appearance of the 15 kDa remnant (anti-CD84C-term) as well as the shift in 

molecular weight and the decrease in band intensity, detected by anti-CD84N-term were 

abolished, showing additive effects of the two inhibitors (Figure 25A, right). To corroborate 

the findings using calpeptin and to exclude that its effects on the shift of the CD84 full length 

band in Western blotting with the anti-CD84N-term antibody were caused by inhibition of other 

enzymes than calpain176, two structurally different membrane-permeable calpain inhibitors, 

MDL28170 and ALLN were used. Calpeptin, MDL28170 and ALLN exerted the same effects 

on CD84 cleavage (data not shown) confirming the role of calpain in this process. To 

estimate whether CD84 ectodomain shedding was affected by calpain inhibition, ELISA 

measurements were performed. Soluble CD84 levels were unaltered in presence of calpeptin 

(Figure 25B). 

These results demonstrated that CD84 is proteolytically regulated by two independent 

mechanisms: ectodomain shedding by metalloproteinase(s) and intracellular cleavage by 

calpain. Apparently, metalloproteinase-dependent shedding was functional under calpain-

inhibiting conditions and vice versa.  
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Figure 25. Dual regulation of CD84 by intra- and extracellular cleavage. (A) Washed platelets 
from wt mice were preincubated in the presence or absence of GM6001 and/or calpeptin. Shedding 
was induced with CCCP, W7, or NEM. DMSO or buffer served as control. CD84 was detected by 
Western blotting with anti-CD84 C-term antibody M-130 and anti-CD84 N-term antibody JER-1. GPIIIa 
was used as a loading control. (B) Washed platelets from wt mice were preincubated in presence or 
absence of calpeptin. Shedding was induced with W7 or NEM. sCD84 was detected by ELISA. 
Results are mean ± SD (n = 4 mice per group, representative of 3 individual experiments). (Hofmann, 
Vögtle et al., JTH 2012)

164
 

 

3.4.3 ADAM10 is the principal sheddase for CD84 in murine platelets 

ADAM10 and ADAM17 are both expressed in platelets12 and therefore represented potential 

candidates to mediate CD84 shedding. To test this directly, platelets from Adam17ex/ex bone 

marrow chimeric mice, which exhibit an almost complete loss of ADAM17 protein in 

hematopoietic cells including platelets,106,173 were studied. While shedding of GPIb in 

response to CCCP, W7 and NEM was abolished in Adam17ex/ex platelets (data not shown), 

levels of released sCD84, as determined by ELISA, were indistinguishable between wt and 

Adam17ex/ex platelets, excluding a major role of ADAM17 in CD84 ectodomain shedding 

under these experimental conditions (Figure 26A). To investigate the role of ADAM10 in this 

process, platelets from mice with a megakaryocyte- and platelet-specific deficiency of 

ADAM10 (Adam10fl/fl, PF4-Cre mice, referred to as Adam10-/-)173 were studied. In sharp contrast 

to wt and Adam17ex/ex platelets stimulated with either agent, sCD84 was virtually 

undetectable in the supernatant of stimulated Adam10-/- platelets (Figure 26B).  
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Figure 26. ADAM10 is the principal sheddase for CD84 in murine platelets. Washed platelets 
from (A) wt and Adam17

ex/ex
 BMc mice or (B) wt and Adam10

-/-
 mice were treated with CCCP, W7, 

NEM, or DMSO as a vehicle control. sCD84 in the supernatants was detected by ELISA. Results are 
mean ± SD (n=4 mice per group, representative of 2 individual experiments). (C,D) Western Blot 
detection of CD84 in the lysates of platelets from mice with the indicated genotype (A10: Adam10

-/-
; 

A17: Adam17
ex/ex

; wt are the respective wt controls). Platelets were incubated with calpeptin or vehicle 
control and shedding was induced as described above. (2 mice pooled per group, representative of 2-
3 individual experiments). (Hofmann, Vögtle et al., JTH 2012)

164
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These findings were confirmed by Western blot analysis, where no C-terminal remnant was 

detected in lysates of Adam10-/- platelets treated with NEM, W7 and CCCP in presence or 

absence of calpeptin (Figure 26C). Again, the results from Adam17ex/ex platelets did not differ 

from those obtained with wt platelets (Figure 26D).  

Taken together, these data established ADAM10 as the principal sheddase that cleaves 

CD84 in murine platelets, while ADAM17 is not significantly involved in this process. 

 

3.4.4 ADAM10 and calpain regulate surface expression of CD84 in response to 

agonist receptor stimulation 

To investigate whether ADAM10 is also the principal sheddase for CD84 cleavage in 

response to agonist receptor stimulation, wt and Adam10-/- platelets were activated with CVX, 

CRP, thrombin or RC. Remarkably, none of these agonists induced significant ectodomain 

shedding of CD84 in the mutant platelets, in contrast to wt platelets (Figure 27A). To exclude 

that thrombin directly cleaved CD84 in wt platelets by its protease activity, platelets were also 

stimulated by PAR-4 activating peptide. This led to generation of soluble CD84 similar to 

thrombin, confirming that thrombin receptor signaling induced loss of CD84 (Figure 27B). 

Similar results were obtained with TRAP-6 in human platelets (data not shown). To confirm 

the results obtained by ELISA, and to get information on shedding kinetics, lysates from wt 

and Adam10-/- platelets that had been stimulated for different times were tested by Western 

blotting. These experiments were performed in the presence or absence of calpeptin to also 

detect intracellular cleavage of CD84. Shedding, visualized by detection of the 15 kD 

remnant with the anti-CD84C-term antibody M-130 occurred within 5 min in response to all 

agonists and the band intensity increased over time (Figure 27C). RC induced also strong 

activation of calpain, as indicated by the observation that the remnant was only detectable in 

the presence of calpeptin as well as by the shortened CD84 protein detected by the anti-

CD84N-term antibody JER1 in the absence but not in the presence of calpeptin. In contrast to 

RC, the other agonists only moderately activated calpain. No C-terminal remnant was 

detected in lysates of platelets deficient in ADAM10, while calpain activity was unaffected by 

the absence of the metalloproteinase.  
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Figure 27. ADAM10 cleaves CD84 in response to platelet receptor stimulation. (A) Washed 
mouse platelets from wt and Adam10

-/-
 mice were incubated with CVX, CRP, rhodocytin or thrombin 

for 1 h at 37°C. sCD84 was detected by ELISA. Results are mean ± SD (n=4 mice per group, 
representative of 3 individual experiments). (B) Washed mouse platelets from wt and Adam10

-/-
 mice 

were incubated with thrombin or PAR4 activating peptide (PAR4p, 4mM) for 1 h at 37°C. sCD84 was 
detected by ELISA. Results are mean ± SD (n=4 mice per group) (C) Washed platelets from wt and 
Adam10

-/-
 mice were preincubated with calpeptin or vehicle control, prior to stimulation for 5 min, 15 

min or 1 h with the indicated agonists. Platelet lysates were subjected to Western Blotting. (platelets 
from 4 mice were pooled per group, representative of 3 individual experiments).  
(Hofmann, Vögtle et al., JTH 2012)
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3.4.5 High concentrations of sCD84 in plasma of wild-type mice 

To test whether CD84 shedding occurs in vivo, sCD84 levels were measured in mouse 

plasma. Indeed, significant levels of sCD84 could be detected in plasma of wt mice, while the 

ELISA yielded only background signals with plasma from Cd84-/- mice (Figure 28A). 

Remarkably, sCD84 plasma levels in Adam10-/- mice were reduced by >50% compared to wt 

mice, demonstrating that shedding by platelet ADAM10 occurs in vivo and accounts for 

approximately half of the total sCD84 protein found in the plasma of healthy mice. To 

investigate whether ADAM17 plays a role in CD84 shedding in platelets in vivo and thus may 

be responsible for the sCD84 levels observed in Adam10-/- mice, sCD84 levels were 

measured in the plasma of bone marrow chimeras with platelets double-deficient in ADAM10 

and ADAM17 (Adam10-/-/Adam17ex/ex).173 As depicted in Figure 28B, levels of sCD84 were 

not further reduced in the plasma of double-deficient bone marrow chimeras compared to 

ADAM10 single-deficient mice, thus excluding a role for ADAM17 in regulating plasma levels 

of sCD84 in vivo. In consistence, plasma levels of wt and Adam17ex/ex bone marrow chimeras 

were indistinguishable (data not shown).  

To test whether CD84 shedding occurs during normal blood clotting, non-anticoagulated 

whole blood was allowed to clot in vitro and sCD84 levels were measured in the obtained 

serum. Indeed, in wt mice levels of sCD84 increased approximately two-fold in serum 

compared to plasma (Figure 28A). In sharp contrast, sCD84 concentrations in serum of 

Adam10-/- mice did not differ from those found in plasma, demonstrating that ADAM10 is the 

only proteinase that triggers shedding of CD84 during blood clotting. 

 

 

Figure 28. CD84 levels in mouse plasma and serum. (A) sCD84 levels in the plasma and serum of 
wt, Adam10

-/-
 and Cd84

-/-
 mice were measured by ELISA. Serum and plasma samples were obtained 

from the same animals and analyzed within a single experiment. (B) sCD84 levels in the plasma of 
Adam10

-/-
 and Adam10

-/-
/Adam17

ex/ex
 mice and their respective controls as determined by ELISA are 

depicted. Results of all experiments are mean ± SD (n=4 mice per group representative of 3 individual 
experiments). (Hofmann, Vögtle et al., JTH 2012)
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3.5 Regulation of GPVI receptor levels in platelets mechanistically 

differs from CD84 regulation 

The collagen receptor GPVI facilitates platelet activation and subsequently firm adhesion 

upon platelet contact with subendothelial collagen. Metalloproteinases can mediate GPVI 

downregulation and recent evidence suggested that ADAM10 plays a major role in GPVI 

cleavage.97 In vivo downregulation of GPVI receptor levels can be induced experimentally in 

mice by injection of the monoclonal antibody JAQ1, as reported earlier,41 making GPVI 

downregulation a potential approach for antithrombotic therapy. However, the mechanism of 

GPVI cleavage is not fully understood. In collaboration with Dr. Markus Bender from our 

research group, genetically modified mice were studied to gain deeper insight into the 

mechanism of GPVI downregulation in vitro and in vivo. 

 

3.5.1 GPVI is differentially regulated by ADAM10 and ADAM17 in vitro 

Downregulation of GPVI can be mediated by internalization as well as proteolytic 

cleavage.41,89 ADAM10 has been proposed to be the metalloproteinase responsible for 

ectodomain cleavage, based on observations that this enzyme cleaved GPVI-based 

synthetic peptides.97 To test this directly, Adam10-/- and wt control platelets were treated with 

the calmodulin inhibitor W7 and GPVI downregulation was monitored. In wt, this led to almost 

complete loss of GPVI expression on the platelet surface as shown by flow cytometric 

analysis (Figure 29A). However, GPVI expression of Adam10-/- platelets remained high after 

W7 treatment, comparable to untreated platelets. As internal control, the expression of 

GPIb, which is known to be regulated by ADAM17, was also measured. GPIb levels were 

downregulated in controls, as well as in Adam10-/- platelets, demonstrating that W7 treatment 

was effective (data not shown). Consistent with these observations, ELISA measurements 

demonstrated absence of soluble GPVI (sGPVI) in supernatants of Adam10-/- platelets 

treated with W7, whereas strong signals were detectable with wt platelets (Figure 29B). 

Additionally, Western blot analysis confirmed loss of intact GPVI in wt platelets after W7-

treatment, but not in Adam10-/- platelets (Figure 29C). These findings provided direct 

evidence that ADAM10 is responsible for GPVI shedding after calmodulin inhibition, and 

support earlier findings by Gardiner et al.97 Unexpectedly, however, different results were 

obtained when receptor shedding was induced by the mitochondrial damage-inducing 

reagent CCCP.88 This treatment resulted in comparable downregulation of GPVI in wt and in 

Adam10-/- platelets (Figure 29A). ELISA measurements confirmed cleavage of GPVI from the 

platelet surface by detection of sGPVI in the supernatant of wt and Adam10-/- platelets 
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(Figure 29B), and Western blots revealed almost complete absence of intact GPVI (Figure 

29C).  

These data show that ADAM10 cleaves GPVI after W7-treatment, but probably another 

proteinase triggers GPVI downregulation in response to mitochondrial damage induced by 

CCCP. Because ADAM17 is a well-described sheddase of platelet receptors GPIb88 and 

GPV,92 platelets from Adam17ex/ex bone marrow chimeric mice, which exhibit an almost 

complete loss of ADAM17 protein in hematopoietic cells,106,173 were studied with regard to 

GPVI shedding. Compared to wt controls, downregulation of GPVI from the platelet surface 

was nearly unaltered for Adam17ex/ex platelets in response to W7 treatment, but almost 

completely abrogated in response to CCCP (Figure 29D). ELISA measurements supported 

these findings, with low amounts of sGPVI in supernatants of Adam17ex/ex platelets and high 

amounts for wt controls (Figure 29E), whereas intact GPVI was still found in lysates from 

Adam17ex/ex platelets in Western blots (Figure 29F). Together, these data revealed that GPVI 

is differentially regulated by ADAM10 or ADAM17 in vitro, depending on the stimulus. 

 

 

Figure 29. Abrogated GPVI shedding in Adam10
-/-

 platelets after W7 treatment and in 
Adam17

ex/ex
 platelets after CCCP treatment. (A, D) Washed platelets were treated with W7 or CCCP 

for 1 h at 37°C, stained with FITC-labeled anti-GPVI antibody and analyzed by flow cytometry. (B, E) 
Washed platelets were incubated with biotinylated JAQ1 and then treated with CCCP or W7 for 1 h at 
37°C. Supernatants were applied on a JAQ3-coated ELISA plate and GPVI-JAQ1-biotin complexes 
were detected with HRP-conjugated streptavidin. (C, F) Western blot detection of intact GPVI (JAQ1-
HRP) in CCCP, W7, or vehicle treated platelets. GPIIIa served as loading control. Results are mean ± 
SD (n = 4 mice per group, representative of 3 experiments). (Bender, Hofmann et al., Blood 2010)

173
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3.5.2 GPVI shedding in vivo is unaltered in Adam10-/- and Adam17ex/ex mice 

Mice were injected with biotinylated JAQ141 to test the roles of ADAM10 and ADAM17 in 

antibody-induced GPVI shedding in vivo and the associated transient thrombocytopenia. 

JAQ1 injection led to a comparable transient thrombocytopenia in wt, Adam10-/-, and 

Adam17ex/ex mice (Figure 30A) with a maximal drop of platelet counts after 30 min (down to 

~20% of vehicle treated mice) and the platelet count returned to normal levels at later time 

points. GPVI downregulation from the platelet surface occurred in all mice (Figure 30B). It is 

likely that ectodomain shedding was responsible for this downregulation, as comparably high 

levels of sGPVI were detected in plasma of wt and mutant mice by ELISA measurements 

30 min and 3 h after JAQ1 injection (Figure 30C). These data demonstrated that JAQ1-

induced GPVI shedding in vivo and the associated transient thrombocytopenia is unaltered in 

the absence of ADAM10 or ADAM17 suggesting that neither ADAM10 nor ADAM17 is the 

GPVI cleaving sheddase in vivo. 

 

 

Figure 30. GPVI is cleaved in Adam10
-/-

 and Adam17
ex/ex

 mice in vivo. Wt and mutant mice were 
injected i.v. with 100 µg of biotinylated anti-GPVI (JAQ1) antibody. (A) Flow cytometric analysis of 
platelet count and (B) GPVI surface expression (indirectly with streptavidin-FITC) was performed. As 
positive control in (B), wt platelets from untreated mice were incubated with 10 µg/mL biotinylated-
JAQ1 in vitro and stained with streptavidin-FITC. (C) Mice were injected with 100 µg biotinylated-JAQ1 
and plasma was collected at the indicated time points. Levels of GPVI-JAQ1-biotin complexes in 
plasma were determined by ELISA. Results of all experiments are mean ± SD (n = 4 mice per group, 
representative for 3 individual experiments). (Bender, Hofmann et al., Blood 2010)

173
. 
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3.5.3 Abrogated GPVI shedding in Adam10-/-/Adam17ex/ex double-mutant 

platelets in vitro 

Platelets from Adam10-/-/Adam17ex/ex bone marrow chimeric mice were treated with W7 or 

CCCP to study the effect of ADAM10/ADAM17 double-deficiency. In contrast to wt platelets, 

double-deficient platelets were not able to downregulate GPVI from their surface (Figure 

31A). This was expected based on the results obtained with the single mutant mice (Figure 

29). Accordingly, no cleaved GPVI was detectable by ELISA in supernatants of W7- or 

CCCP-treated double-mutant platelets (Figure 31B) and levels of intact GPVI were unaltered 

in platelet lysates (Figure 31C). 

 

 

Figure 31. GPVI shedding is abolished in Adam10
-/-

/Adam17
ex/ex

 platelets in vitro. (A) Washed 
platelets were treated with W7 (150 µM) or CCCP (100 µM) for 1 h at 37°C, stained with FITC-labeled 
anti-GPVI antibody and analyzed by flow cytometry. (B) Washed platelets were incubated with 
biotinylated JAQ1 and then treated with CCCP (100 µM) or W7 (150 µM) for 1 h at 37°C. Supernatants 
were applied on a JAQ3-coated ELISA plate and incubated with HRP-conjugated streptavidin. (C) 
Western blot detection of intact GPVI (JAQ1-HRP) in CCCP (100 µM), W7 (150 µM) or vehicle treated 
platelets. GPIIIa served as loading control. Results of experiments (A, B) are mean ± SD (n = 4 mice 
per group, representative for 3 individual experiments). (Bender, Hofmann et al., Blood 2010)

173
. 

 

3.5.4 Unaltered JAQ1-induced GPVI shedding in Adam10-/-/Adam17ex/ex mice 

Adam10-/-/Adam17ex/ex BMc mice were injected with biotinylated JAQ1 in order to test the 

effect of the metalloproteinase double-deficiency on antibody-induced GPVI ectodomain 

shedding and the associated thrombocytopenia in vivo. Platelet counts, GPVI surface 

expression and soluble GPVI levels in plasma were determined. The transient 

thrombocytopenia induced by JAQ1 injection was comparable in wt and double-mutant mice 

(Figure 32A). Surprisingly, GPVI was downregulated from the surface of Adam10-/-

/Adam17ex/ex platelets with the same kinetics and to the same extent as in wt (Figure 32B). 

Further, similar levels of soluble GPVI were detected in plasma of both groups of mice 

(Figure 32C). 
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Hence, antibody-induced ectodomain shedding of GPVI in vivo occurs independently of the 

two major ADAM sheddases which are responsible for shedding of the receptor in vitro. 

These experimental data suggested the existence of a third metalloproteinase, which is able 

to shed GPVI from the platelet surface in vivo. 

 

 

Figure 32. JAQ1-induced GPVI shedding occurs in Adam10
-/-

/Adam17
ex/ex

 double-mutant mice. 
Wt and Adam10

-/-
/Adam17

ex/ex
 BMc mice were injected i.v. with 100 µg biotinylated JAQ1. Flow 

cytometric analysis of platelet count (A) and GPVI expression (B) (indirectly: streptavidin-FITC) was 
performed. As positive control in (B), wt platelets from untreated mice were incubated with 10 µg/mL 
biotinylated JAQ1 and stained with streptavidin-FITC. (C) Plasma was collected at the indicated time 
points from mice after injection of 100 µg biotinylated-JAQ1. GPVI levels were determined by ELISA. 
Results of all experiments are mean ± SD (n = 4 mice per group, representative for 3 individual 
experiments). (Bender, Hofmann et al., Blood 2010)

173
 

 

3.5.5 Differential effects of JER1 antibody administration compared to JAQ1 in 

vivo 

Inducible GPVI downregulation and the associated thrombocytopenia by in vivo 

administration of JAQ1 antibody in mice is an established process, as mentioned in the 

previous paragraphs. To study whether CD84 downregulation in platelets can be induced 

experimentally by in vivo administration of an anti-CD84 antibody, JER1 was injected 

intravenously into wt mice. Four mice per group received either 20 µg/mL JER1 or PBS. After 

injection, platelet counts were monitored daily. Mice injected with JER1 became 

thrombocytopenic, with a platelet count of approximately 50% of initial value after 24 h, 

whereas platelet counts in controls remained unaltered. This thrombocytopenia was 

transient, since platelet counts returned to normal values after 5 days (Figure 33A). Injection 

of 100 µg JER1 induced a more pronounced and longer lasting thrombocytopenia (~40% of 

initial value), with platelet counts turning back to normal values at day 7 (data not shown). To 

study whether CD84 becomes downregulated from the platelet surface after JER1 injection, 
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platelets were stained with JER1-FITC or anti rat-IgG-FITC at different time points. JER1-

FITC did not bind to platelets isolated after 1 h or 24 h but binding capacity increased over 

time before it reached its maximal value after 5 days (Figure 33B). Platelets from JER1-

injected mice stained with anti rat-IgG-FITC (washed blood) displayed MFIs which almost 

reached values of in vitro stained positive controls, after 1 h or 24 h. MFIs decreased over 

the following days until they reached background signals (Figure 33C). These data 

demonstrated that CD84 is neither cleaved, nor internalized after JER1 injection, but remains 

occupied by the injected antibody. In conclusion, JER1 injection induces transient 

thrombocytopenia upon in vivo administration, but does not trigger CD84 downregulation. 

 

Figure 33. CD84 is not cleaved upon injection of JER1 in vivo. Mice were injected with 20 µg 
unlabeled anti-CD84 antibody (JER1) and platelet count was determined at different time points by 
flow cytometry (A). (B) Platelets were stained with JER1 FITC. (C) Platelets were stained with anti rat-
IgG-FITC to detect JER1-occupied platelets. Untreated platelets preincubated with 10 µg/mL JER1 
served as in vitro controls. (n=4 mice per group). 

 

In summary, different mechanisms are operative in CD84 and GPVI ectodomain shedding in 

mouse platelets. While GPVI is differentially regulated by ADAM10 and ADAM17, CD84 is 

exclusively regulated by ADAM10. In addition, intracellular cleavage of CD84 is mediated by 

calpain. GPVI can be depleted by JAQ1 antibody administration in vivo, a process that 

probably involves ectodomain shedding, however the responsible metalloproteinase(s) 

remain to be identified. In contrast, in vivo cleavage of CD84 cannot be induced by injection 

of the monoclonal antibody JER1. 
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3.6 CD84 deficient mice are protected from ischemic stroke 

Stroke is the second leading cause of death and disability worldwide123 and is mostly caused 

by focal cerebral ischemia subsequent to arterial occlusion.125 Ischemic stroke can be 

described as a complex thrombo-inflammatory disease,129,177 with platelets and immune cells 

essentially contributing to the severity of stroke outcome in experimental mouse models.45,139 

However, the signaling and adhesion events involved in microvascular thrombus formation 

and immune cell activation in the ischemic brain are still not fully understood. Since CD84 

exhibits a broad expression in platelets and immune cells (see 3.2.2), we wanted to study 

whether CD84 deficiency would influence ischemic stroke outcome in mice. Thus, mice were 

challenged in the tMCAO (transient middle cerebral artery occlusion) model,131 an 

experimental model for ischemic stroke. Stroke experiments were conducted by 

Dr. Peter Kraft in the research group of Prof. Dr. Guido Stoll at the Neurology Department of 

the University of Würzburg. To induce transient cerebral ischemia, a thread was advanced 

through the carotid artery into the middle cerebral artery. This leads to a local reduction of 

cerebral blood flow by approximately 95%.45 After one h the filament was removed to allow 

reperfusion for 24 h. Then brains were harvested, sectioned and 2,3,5-triphenyltetrazolium 

chloride (TTC) staining was performed to analyze infarct sizes. In CD84 deficient mice, 

infarct volumes were significantly reduced (wt: 94.44 ± 20.98 mm3; Cd84-/-: 65.53 ± 24.73 

mm3; p=0.01; Figure 34A). This reduction in ischemic lesions also resulted in significantly 

less neurological deficits compared to wt mice, as determined by the Bederson score169 

assessing global neurological function (wt median 3.0 vs Cd84-/- median 2.0; p=0.02; Figure 

34B) and the grip test170 which indicates motor function and coordination of the mice (wt 

median 3.0 vs Cd84-/- median 4.0; p=0.019; Figure 34B). 

The platelet adhesion receptors GPIb and GPVI have been shown to essentially contribute to 

infarct growth, because their inhibition confers protection in the tMCAO model.45 For CD84 

deficient mice, the results are more difficult to interpret, as it is unclear whether lack of CD84 

in platelets or other cell types exerts protective effects. Smaller infarct sizes in Cd84-/- mice 

could be due to reduced immune cell adhesion to the endothelium or reduced infiltration into 

the brain parenchyma following ischemia. However, no significant differences in number of 

neutrophils or CD11b+ leukocytes were found in brain sections of wt and Cd84-/- mice (data 

not shown). Reduced infarct sizes in CD84 deficient mice could also be explained by 

reduction of necrotic or apoptotic brain cells. Inflammatory cytokines like TNF- and IFN- 

might lead to apoptosis in cells of the ischemic brain.178 Therefore, RT-PCR studies were 

performed to determine the expression of inflammatory cytokines in brains from wt and 

Cd84-/- mice 24 h after tMCAO. Strikingly, in brain cortices of Cd84-/- mice, expression of 
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TNF- as well as IFN- was significantly reduced as compared to wt controls (Figure 34C,D). 

In basal ganglia, levels of these cytokines also showed a tendency towards reduction. 

 

Figure 34. CD84 deficient mice are protected from ischemic stroke. tMCAO was performed and 
neurological defects were investigated. (A) Representative images of three corresponding TTC-
stained coronal brain sections from wt and Cd84

-/-
 mice 24 h after tMCAO (left). Brain infarct volumes 

in wt and Cd84
-/-

 mice (n=10) presented as mean ± SD (right). Infarct areas are stained white and non-
infarcted tissue in red. (B) Bederson score and grip test, determined 24 h after tMCAO of wt and 
Cd84

-/-
 mice; horizontal bar indicates the median. (C) RNA was isolated from basal ganglia (BG) or 

cortices 24h after tMCAO and relative gene expression of TNF- as well as IFN- were determined by 
RT-PCR. Figure C was kindly provided by Dr. P. Kraft; *p<0.05; **p<0.01. 
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Inflammatory cytokines can be produced by various immune cells, but especially T cells have 

become the focus of attention in stroke studies, because recent findings demonstrated their 

detrimental contributions to infarct development.138,139 To study whether CD84 in T cells has 

a role in experimental stroke, wt or Cd84-/- CD4+ T cells were transferred into Rag1-/- mice,179 

which lack T and B lymphocytes. Remarkably, 24 h after tMCAO, Rag1-/- mice reconstituted 

with Cd84-/- T cells displayed significantly lower infarct volumes than Rag1-/- mice 

reconstituted with wt T cells (Cd84-/- CD4+
Rag1-/-: 62.96 ± 49.76 mm3; wt CD4+

Rag1-/-: 

122.93 ± 13.03 mm3; p=0.009; Figure 35A). 

 

 

Figure 35. CD84 on T cells determines ischemic stroke outcome. (A-B) Rag1
-/-

 mice were 
reconstituted with wt or Cd84

-/-
 CD4

+
 T cells. Untreated Rag1

-/-
 mice served as control. The tMCAO 

model was performed and neurological defects were investigated. (A) Representative images of three 
corresponding coronal brain sections from the indicated groups of mice stained with TTC 24 h after 
tMCAO (left). Brain infarct volumes from the indicated groups of mice (n=10) presented as mean ± SD 
(right). (B) Bederson score and grip test, determined 24h after tMCAO. (C-D) Wt or Cd84

-/-
 T cells 

were transferred into Cd84
-/-

 mice and tMCAO was performed. (C) Representative images of three 
corresponding coronal brain sections from the indicated groups of mice stained with TTC 24 h after 
tMCAO (left). Brain infarct volumes from the indicated groups of mice (n=8) presented as mean ± SD 
(right). (D) Bederson score and grip test was determined 24h after tMCAO. *p<0.05; **p<0.01, 
***p<0.001. 
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Noteworthy, 4 out of 10 Rag1-/- mice reconstituted with wt T cells, but only one mouse 

reconstituted with Cd84-/- T cells died within 24 h after tMCAO, an observation also pointing 

towards ameliorated stroke outcome when CD84 is absent in T cells. The reduction in 

ischemic lesions also led to a tendency towards reduced neurological deficits and better 

motor function in Rag1-/- mice reconstituted with Cd84-/- T cells, compared to those 

reconstituted with wt T cells (Figure 35B). The findings from the T cell transfer experiment 

into Rag1-/- mice strongly suggested that CD84 in T cells significantly influenced ischemic 

stroke outcome. It was not clear whether CD84 in other cell types, e.g. in platelets, was 

required as (homophilic) ligand for CD84 in wt T cells in this setting. Thus, CD84 deficient 

mice were transplanted with wt or Cd84-/- CD4+ T cells. In this experimental setup, the 

transplanted wt T cells are the only cell type expressing CD84, since the recipient mice are 

lacking CD84 in all their cells. Transfer of Cd84-/- T cells into Cd84-/- mice served as control. 

Surprisingly, transfer of wt T cells restored susceptibility to ischemic stroke in Cd84-/- mice, 

whereas controls (Cd84-/- mice + Cd84-/- T cells) displayed smaller infarct volumes. (109.00 ± 

52.56 mm3 vs. 60.43 ± 41.03 mm3; p=0.04; Figure 35C). The increased ischemic lesions 

after wt T cell transfer also led to a tendency towards higher neurological deficits and 

reduced motor function than in Cd84-/- mice + Cd84-/- T cells (Figure 35D). 

In summary, CD84 deficient mice were protected from ischemic stroke and reduced 

inflammatory cytokine expression might be mechanistically linked to the observed protection. 

T cell transfer experiments have demonstrated that presence of CD84 in T cells contributes 

to detrimental outcome of ischemic stroke. As presence of CD84 in T cells alone was 

sufficient to induce large infarcts, the question remains which ligand CD84 binds to in this 

setting, because homophilic binding to CD84 in other cell types can be excluded. 

 

 

3.7 Generation of Orai2 deficient mice 

Recent studies from our research group established STIM1 and Orai1 as crucial Ca2+ sensor 

and store operated Ca2+ (SOC) channel subunit in platelets,22,23 respectively. However, low 

expression of Orai2 has also been detected in platelets.23 Another study from our laboratory 

demonstrated that the Ca2+ sensor STIM2 is the major STIM isoform in brain, which mediates 

Ca2+ influx in neurons in response to ischemia, but the corresponding SOC channel 

remained unknown.153 To explore the relevance of Orai2 for platelet function, as well as in 

experimental brain ischemia, Orai2 mice deficient were generated and analyzed in this 

thesis. 
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3.7.1 Cloning of a targeting vector for disrupting the Orai2 gene 

According to bioinformatics analysis, the murine Orai2 gene contains 3 exons, two of which 

are translated into a 250 aa protein (http://www.ensembl.org; transcript ID 

ENSMUST00000041048). The start codon (ATG) lies within exon 2, which codes only for the 

N-terminal part of Orai2 and a part of the first transmembrane domain. Exon 3 contains the 

majority of the coding sequence for Orai2 (Figure 36A). Together with Dr. Attila Braun a 

targeting strategy was developed, which aimed at the disruption of exon 3 of the Orai2 gene, 

by replacement with a neomycin resistance cassette. According to this strategy, no functional 

Orai2 mRNA can be produced in the mutant animals.  

Briefly, physical mapping of the Orai2 gene was performed to find restriction enzyme sites 

flanking exon 3. EcoRV endonuclease restriction sites were chosen, in order to distinguish 

between the wt and targeted allele in Southern blot, because the newly introduced gene 

targeting sequence introduces an additional EcoRV restriction site (Figure 37A). To generate 

the targeting construct, a modified pBluescriptKS vector was used, which contains a Neo 

resistance cassette under the PGK promoter, flanked by loxP sites and two multiple cloning 

sites for insertion of the homologous arms. 5´ and 3´ arms were generated and inserted into 

this targeting vector (Figure 36B). These arms (flanking regions) contain 4.5 and 4.9 kb long 

homologous sequences identical to the corresponding upstream and downstream sequences 

of the protein coding region of Orai2 exon 3. To amplify the homologous arms by long range 

PCR from 129/Sv ES cell DNA, primers containing additional restriction enzyme sites for 

insertion into the vector backbone were designed. NotI site-containing primers were chosen 

for amplification of the 5´arm, and SalI- and XhoI-containing primers for the 3´ arm. After 

purification, the homologous arms were subcloned into the TOPO XL vectors. Competent 

cells were transformed and DNA test digestions using several restriction endonucleases 

were performed. Bacteria exhibiting DNA with the correct restriction patterns were chosen. 

The purified DNA was sent for sequencing (MWG Eurofins, Ebersberg). All sequencing 

results were aligned with the mouse genome using UCSC Blat search 

(http://genome.ucsc.edu/) to check for correctness. Next, the 5´ arm and the Neo vector were 

ligated, and competent cells were transformed. Clones with correct insert orientation of the 5´ 

were also checked by sequencing. Finally, the 3´ flanking was inserted into the vector 

already containing the 5´ flanking, which was linearized before using the XhoI endonuclease. 

According to this method, the correct orientation of the insert was easily detected in test 

digestions, because a SalI/XhoI site at the 5´end of the 3´arm was eliminated after correct 

ligation. Test digestions of the final vector showed the correct restriction pattern (Figure 

36C).
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Figure 36. Targeting strategy and test digestion of the final vector. (A) The mouse Orai2 gene 
contains 3 exons. Only exon 2 and a part of exon 3 are translated into a 250 aa protein containing 4 
transmembrane (TM) domains. (B) The scheme depicts the strategy for the generation of an Orai2 ko 
allele. A neomycin resistance cassette (Neo+MCS) replaces the protein coding part of exon 3. The 
majority of the protein coding region of Orai2 is deleted by this strategy. (C) Test digestions of the 
targeting vector showed the expected restriction fragment lengths. 

 

3.7.2 Electroporation of Orai2 targeting vector and analysis of recombinant 

clones 

The final targeting vector was linearized with XhoI and electroporated into 129/Sv ES cells.160 

After electroporation, 448 stem cell clones, which had survived the Geneticin selection 

process, were picked. DNA samples of all ES cell clones were digested with EcoRV and 

screened for homologous recombination in Southern blot (see Figure 37A for Southern blot 

strategy). According to the strategy, the radioactively labeled external probe binds to a DNA 

sequence downstream of exon 3, located downstream of the 3’ arm (flanking). Homologous 

recombination will introduce a new EcoRV site into the targeted allele, allowing for detection 

of a 7.8 kb ko allele, whereas the wt allele will appear as a 11.7 kb fragment. Southern blot 

screening of all 448 ES cell clones that had survived Geneticin selection, revealed three 

homologous-recombinant stem cell clones. These clones (Orai2+/-) showed the wt band at 

11.7 kb and the knockout band at the expected size of 7.8 kb (Figure 37B). 
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Figure 37. Detection of homologous-recombinant ES cell clones by Southern blot. (A) The 
scheme illustrates the detection of wt and Orai2 knockout (targeted) alleles. The external probe (EP) 
recognizes a sequence downstream of 3´ flanking. The wt band between the two EcoRV restriction 
sites is approx. 11.7 kb. The Neo resistance cassette contains an additional EcoRV site. The mutant 
band is approx. 7.8 kb. (B) Southern blot pictures showing 3 different homologous-recombinant stem 
cells clones (+/-). 

 

3.7.3 Breeding of homozygous Orai2-/- mice 

The three homologous-recombinant clones were recultured and retested by Southern blot 

analysis. ES cells were then injected into C57Bl/6J blastocysts in collaboration with Dr. 

Michael Bösl (Max Planck Institute of Neurobiology, Martinsried), to generate chimeric mice. 

Only one (#400) of three ES cell clones gave rise to chimeric mice (Table 5. 

 

chimeric mice derived from ES cell clone # chimerism (%) germline transmission 

male 400 60 Yes 

male 400 60 No 

male 400 50 No 

female 400 80 No 

female 400 50 No 

Table 5. Chimeric mice obtained after blastocyst injection of Orai2
+/-

 ES cells. Germline 
transmission was obtained in one mouse, as indicated. 

 

The chimerism of mice obtained after blastocyst injection was estimated according to their 

coat color. Since the injected stem cells were from a 129/Sv ES cell line160 and the blastocyst 

was from C57BL/6J mice, a high percentage of brown coat color indicates high chimerism, 

and thus a high chance of germline transmission. Chimeric male mice were crossed with 

female C57BL/6J and chimeric females were crossed with male C57BL/6J mice. Germline 

transmission occurred only in one chimeric male, i.e. offspring with brown coat color was 
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obtained. Subsequently, Orai2+/- mice were intercrossed to finally obtain Orai2-/- mice. Mouse 

genotypes were determined by Southern blot (Figure 38A) and by PCR (Figure 38B). Loss of 

Orai2 gene expression was detected on mRNA level by semiquantitative RT-PCR. Primers 

were designed, which cannot anneal to cDNA when exon 3 is deleted. Therefore, no band 

will be obtained in homozygous Orai2-/- mice. In wt mice, high Orai2 mRNA expression was 

detected in brain tissue and spleen, weak expression was found in heart, and only a faint 

band occurred in platelets. None of these RNA samples of Orai2-/- mice contained Orai2 

mRNA (Figure 38C). This demonstrates that the targeting strategy was successful. 

 

 

Figure 38. Successful generation of homozygous Orai2 ko mice. (A) Southern blot and (B) PCR 
strategy to detect wt (+/+), heterozygous (+/-) and ko (-/-) mice. (C) RT-PCR detecting absence of 
Orai2 in platelets, brain, heart, and spleen of Orai2

-/-
 mice. In wt, expression of Orai2 was detected in 

brain>spleen>heart>platelets. Actin served as loading control. 

 

3.8 Analysis of Orai2 deficient mice 

3.8.1 Orai2 deficient mice are born in Mendelian ratio and develop normally 

Among offspring from heterozygous matings, Orai2-/- (ko) and Orai2+/+ (wt) mice were born 

approximately in Mendelian ratio (Table 6). Therefore it was concluded that loss of Orai2 

does not severely impair embryonic development. 

 

Genotype Orai2 number of mice percentage expected percentage 

+/+ 43 27% 25% 

+/- 81 51% 50% 

-/- 34 22% 25% 

total 158 100% 100% 

Table 6. Orai2
-/-

 mice were born in Mendelian ratio after intercrossing of heterozygous animals 
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In contrast to Stim2-/- mice, which die spontaneously starting at the age of 10 weeks,153 in 

Orai2-/- mice spontaneous death was not observed. Orai2-/- mice developed normally, did not 

show any signs of illness and were indistinguishable from wt mice. Intercrossing of Orai2-/- 

mice yielded approximately same litter sizes as intercrossing of wt mice. Litters from ko 

mouse intercrossing also developed normally, indicating that ko females had no deficit in 

feeding their offspring. An analysis of basal hematologic parameters (Table 7) did not reveal 

significant differences between wt and Orai2-/- mice. 

 

Genotype Orai2 WBC RBC HGB HCT 

+/+ 7.45± 3.46 9.09± 0.96 14.45±1.66 46.33±4.77 

-/- 5.15± 2.20 8.32±1.21 13.62±2.20 44.42±6.82 

p n.s. n.s. n.s. n.s. 

Table 7. Normal hematologic parameters in Orai2
-/-

 mice. White blood cell count (WBC; x10
3
/µL), 

erythrocytes (RBC; x10
6
/µL), hemoglobin (HGB; g/dl) and hematocrit (HCT; %) as determined by a 

hematologic analyzer (Sysmex) were unaltered in Orai2 deficient mice. n=10. n.s.: not significant. 

 

3.8.2 Normal platelet function and hemostasis in Orai2 deficient mice 

Orai1 has been shown to be the major SOC channel subunit in platelets and to be critically 

involved in pathological thrombus formation.23 Interestingly, weak Orai2 expression was 

detected in platelets23. Orai2-/- mice were analyzed to study whether lack of Orai2 has an 

impact on platelet activation in vitro or (pathological) thrombus formation in vivo. 

Platelet count (wt: 898 ± 159 x103 plt/µL; Orai2-/-: 915 ± 199 x103 plt/µL; p≥0.05) and platelet 

size (FSC wt: 286.6 ± 20.6; FSC Orai2-/-: 298.8± 20.7; p≥0.05) in Orai2-/- mice were unaltered 

as compared to wt control mice (Figure 39A, B). The expression of prominent platelet 

receptors was measured by flow cytometry and also found to be comparable to control mice 

(Figure 39C). 

 



Results 

  

 98 

 

Figure 39. Normal platelet count, size, and glycoprotein expression in Orai2
-/-

 platelets. (A) 
platelet counts (platelets x 10

6
/µL) and (B) platelet size (expressed as forward scatter) were 

determined either by a hematologic analyzer (Sysmex) or flow cytometry. Values are mean ± SD, n≥8 
per group. (C) Expression levels of prominent platelet surface receptors were measured by flow 
cytometry and expressed as mean fluorescence intensity ± SD, n=5 per group.  

 

To study whether lack of Orai2 leads to altered platelet activation in vitro, platelets were 

stimulated with various agonists, and activated platelet integrin IIb3, as well as 

degranulation-dependent P-selectin exposure were measured by flow cytometry. Orai2 

deficient platelets showed normal activation in response to thrombin, ADP/U46619, CRP, 

convulxin and rhodocytin. Therefore, Orai2 is dispensable for platelet integrin activation and 

degranulation in response to G-protein coupled or ITAM coupled receptor stimulation (Figure 

40). 

 

 

Figure 40. Flow cytometric analysis of IIb3 integrin activation (binding of JON/A-PE, left) and 
degranulation-dependent P-selectin exposure (right) in response to the indicated agonists. Values are 
mean fluorescence intensity (MFI) ± SD; 5 mice per group. U46=U46619, Thr=thrombin, 
CVX=convulxin, RC=rhodocytin. 
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Next, potential effects of Orai2 deficiency on thrombosis were studied in vivo. Arterial 

thrombosis was analyzed in collaboration with Martina Morowski in our laboratory. To elicit 

chemical injury, 20% ferric-chloride (FeCl3) was applied to mesenteric arterioles and 

thrombus formation was monitored by intravital fluorescence microscopy. The time to 

beginning of thrombus formation, characterized by adhesion and accumulation of 

fluorescently labeled platelets, was found to be similar between wt and Orai2-/- mice (Figure 

41A). The mean time to complete vessel occlusion was not significantly different between the 

two groups (wt 15.6 ± 2.8 min vs. Orai2-/- 19.3 ± 4.2 min; p>0.05).  

Bleeding times were determined by cutting a two millimeter segment from the tail tip and 

gently absorbing the blood with a filter paper, without making contact with the wound site. 

Time until arrest of bleeding was not significantly altered in Orai2 deficient mice (wt 618.6 ± 

221.4 s; Orai2-/- 566.7 ± 296.2 s; p>0.05.; Figure 41B). These data suggest that Orai2 is 

neither essential for (pathological) arterial thrombus formation, nor for primary hemostasis. 

 

 

Figure 41. Unaltered arterial thrombus formation in mesenteric arterioles and normal 
hemostasis in Orai2

-/-
 mice. (A) Mesenteric arterioles were injured by application of FeCl3 and 

thrombus formation was monitored by intravital fluorescence microscopy. Time to beginning of 
thrombus formation (left) and to complete vessel occlusion (right) are shown. Horizontal lines 
represent mean values. Each symbol represents one arteriole. p>0.05. (B) A 2 mm segment from 
mouse tail tips was cut with a sharp scalpel and blood was gently absorbed with a filter paper in 20 s 
invervals. Time until bleeding has ceased is expressed as bleeding time [s]. Each symbol represents 
one individual. p>0.05. 

 

In conclusion, Orai2 is dispensable for platelet activation in vitro and thrombus formation in 

vivo. In accordance with previously published data,23 Orai1 is the most critical Orai isoform in 

platelets. 
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3.8.3 Orai2 deficient mice are protected from ischemic stroke and show 

reduced SOCE in neurons 

High expression of Orai2 has been shown in brain.156 Recently, Berna-Erro et al. 

demonstrated that the Ca2+ sensor STIM2 is the major STIM isoform in the brain and lack of 

STIM2 led to protection from ischemic stroke in mice that were challenged in the tMCAO 

model.153 Therefore we hypothesized that Orai2 and STIM2 could be mechanistically linked 

to facilitate SOCE in neurons. Orai2 deficient mice were therefore studied in the tMCAO 

model. Stroke experiments were performed by Dr. Peter Kraft in the research group of 

Prof. Guido Stoll at the Department of Neurology at the University of Würzburg.  

Orai2-/- mice were protected from ischemic stroke, as infarct volumes were significantly 

reduced (wt: 104.58 ± 27.96 mm3; Orai2-/-: 57.0 ± 32.68 mm3; p=0.007; Figure 42A). This 

reduction in ischemic lesions also resulted in significantly reduced neurological deficits 

compared to wt, as determined by the Bederson score169 assessing global neurological 

function (wt median 3.0 vs Orai2-/- median 2.0; p=0.04; Figure 42B) and the grip test170 which 

indicates motor function and coordination of the mice (wt median 3.0 vs Orai2-/- median 4.0; 

p=0.021; Figure 42B).  

Since Orai2 is also expressed in immune cells,158,180 it was unclear whether the observed 

protection of Orai2-/- mice in the tMCAO model was immune cell- or rather neuron-intrinsic. 

To address this, wt and Orai2-/- mice were lethally irradiated and afterwards bone marrow 

cells from donor mice were injected intravenously into the irradiated mice, in order to 

generate bone marrow chimeras (BMc). Orai2-/- mice were injected with wt BM, wt mice were 

injected with Orai2-/- BM, and as control group, wt mice were injected with wt BM. After 8 

weeks, these mice were subjected to tMCAO.  

Orai2-/- mice transplanted with wt BM developed significantly smaller infarct sizes than wt 

mice with Orai2-/- BM cells, which displayed normal infarct sizes as compared to the wt 

control group with wt BM (Orai2-/- + wt BM: 47.40 ± 25.83 mm3; wt + Orai2-/- BM: 109.31 ± 

35.02 mm3, p=0.004; wt + wt BM: 95.30 ± 41.83 mm3; p=0.016; p-values as compared to 

Orai2-/- + wt BM, Figure 42C). The reduction in ischemic lesions in Orai2-/- + wt BM mice also 

resulted in significantly less neurological deficits compared to the two control groups, 

determined as Bederson score and grip test. Details on statistical evaluation are summarized 

in Figure 42D. 
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Figure 42. Orai2 deficient mice are protected from neuronal damage after cerebral ischemia. 
The tMCAO model was performed and neurological defects were investigated. (A) Representative 
images of three corresponding coronal brain sections from wt and Orai2

-/-
 mice stained with TTC 24 h 

after tMCAO (left). Brain infarct volumes in wt and Orai2
-/-

 mice (n=8) presented as mean ± SD (right). 
Infarct areas are stained white and non-infarcted tissue in red. (B) Bederson score and grip test, as 
assessed 24 h after tMCAO for wt and Orai2

-/-
 mice. (C) Representative images of three 

corresponding TTC stained coronal brain sections from BMc mice of the indicated genotype 
transplanted with BM from the indicated donor mice, 24 h after tMCAO. Brain infarct volumes of the 
indicated BMc mice (n=8 to 10 mice per group) are presented as mean ± SD. One-way ANOVA, 
Bonferroni post hoc test for comparison between groups. (D) Bederson score and grip test, as 
assessed 24 h after tMCAO in the indicated BMc mice. Kruskal-Wallis, Dunns multiple comparison 
post hoc test for comparison between groups. Horizontal bars indicate the median.  *p<0.05; **p<0.01. 
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The stroke experiments using BMc mice clearly demonstrated that protection was not blood 

cell intrinsic, because wt mice transplanted with Orai2-/- BM cells were not protected. Further, 

Orai2-/- mice that received wt BM cells were significantly protected. Loss of Orai2 in several 

non-hematopoietic cells, e.g. endothelial cells, could mediate this protection. In light of similar 

observations made in Stim2-/- BMc mice,153 it appeared more likely that Orai2 plays a critical 

role in neurons. To study this in more detail, Ca2+ measurements were performed in cortical 

neurons isolated from Orai2-/- mice and controls, in collaboration with Dr. Robert Kraft, 

University of Leipzig. Remarkably, Ca2+ influx was significantly impaired in Orai2 deficient 

cortical neurons. Further, store depletion with the sarcoendoplasmic reticulum Ca2+ 

adenosine-5´-triphosphatase (SERCA) pump inhibitor cyclopiazonic acid (CPA) in the 

absence of extracellular Ca2+ suggested that Orai2-/- neurons had reduced store content of 

Ca2+ (Figure 43A). To study the role of Orai2-mediated SOCE under ischemic conditions, 

Ca2+ imaging experiments on neuronal cultures under conditions of oxygen-glucose 

deprivation (OGD) were performed. OGD led to a robust increase in intracellular Ca2+ levels 

([Ca2+]i) in the wt neurons, but significantly smaller increase in [Ca2+]i after 90 min of OGD in 

Orai2-/- neurons (Figure 43B).  

 

 

Figure 43. Reduced calcium influx in cortical neurons. (A) Neuronal cultures were loaded with 
fura-2 and averaged [Ca

2+
]i responses in Orai2

−/−
 neurons were compared to those in cells from wt 

(Orai2
+/+

) littermates. Cells were treated with CPA (20 µM) followed by replacement of 1 mM EGTA 

with 2 mM Ca
2+

. Increases in [Ca
2+

]i ([Ca
2+

]i) were calculated by subtracting basal [Ca
2+

]i from peak 
[Ca

2+
]i prior to and after re-addition of extracellular Ca

2+
, respectively. (B) Neurons were exposed to 

oxygen-glucose deprivation (OGD) conditions (a glucose-free bath solution continuously bubbled with 
N2) and changes in [Ca

2+
]i were determined from [Ca

2+
]i measured 0 min and 90 min after start of 

OGD, respectively. Figure was kindly provided by Dr. Robert Kraft, Leipzig. *p<0.05. 

 

These data argue for a critical role of Orai2 as SOC channel component in neurons, because 

mice deficient in Orai2 were significantly protected from ischemia-induced neuronal damage, 

and Ca2+ influx was impaired in isolated neurons. Neurological studies are currently ongoing 

in collaboration with the above mentioned research groups and will provide new insights into 

this novel, previously unidentified role of Orai2. 
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4 Discussion 

Arterial thrombosis and the resulting ischemic cardio- and cerebrovascular events are major 

causes of death and disability worldwide.123 However, the use of established antithrombotic 

drugs has always been associated with elevated bleeding risk.124 Therefore, the development 

of new therapeutic options is highly desirable. Advances in understanding of platelet receptor 

signaling and regulation may lead to discovery of novel targets for antithrombotic drug 

development. In recent years, genetic methods that enable targeted manipulations of the 

mouse genome have opened new ways to study protein function and to unravel signaling 

pathways in platelets both in vitro and in vivo.181 It is important to point out that some 

differences in expression or function of platelet proteins exist between humans and mice. 

Nevertheless the knowledge obtained from the mouse system may serve as a basis for the 

development of new antithrombotic therapies for humans. 

In this thesis, function and regulation of the SLAM family member CD84 were studied. Since 

CD84 was known to be expressed in platelets and immune cells, studying this receptor 

appeared not only interesting in the context of its function in thrombus formation, but also in 

its role in the development of ischemic stroke. In this pathophysiological disease state, earlier 

studies using the tMCAO model in mice have revealed pivotal roles of platelets and immune 

cells for infarct progression.125,139 In the work presented here, CD84 deficient mice were 

generated and analyzed. The novel data revealed that, surprisingly, CD84 does not play a 

critical role in thrombosis and hemostasis but is of pathophysiological relevance in ischemic 

stroke. Additionally, novel regulatory mechanisms involving extra- and intracellular cleavage 

were shown to facilitate downregulation of CD84 from platelets in response to platelet 

activation. The presence of cleaved CD84 in murine plasma indicated an in vivo relevance of 

the newly discovered CD84 regulation in platelets.  

The platelet collagen receptor GPVI has been proposed as a promising antithrombotic target, 

since “immunodepletion” of the receptor by administration of the monoclonal anti-GPVI 

antibody JAQ1 leads to protection from arterial thrombosis in mice without severe side 

effects.41 Earlier studies demonstrated that depletion of GPVI is mediated by internalization 

as well as metalloproteinase-dependent ectodomain shedding,48 but the identity of the 

metalloproteinase(s) remained elusive. Results from the current study showed that GPVI 

shedding is differentially regulated by two metalloproteinases in vitro. Shedding of GPVI still 

occurred in vivo upon injection of the monoclonal anti-GPVI antibody JAQ1 in mice that 

carried a double-deficiency of these two metalloproteinases in their platelets, suggesting the 

involvement of a third, unidentified (metallo-)proteinase in this process.  
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Store-operated calcium entry is established as the most ubiquitous way of regulated Ca2+ 

entry in mammalian cells. Previous studies established STIM1 as an essential Ca2+ sensor 

and Orai1 as the major store SOC channel in platelets.22,23 The Ca2+ sensor STIM2 is the 

main STIM isoform in brain, but the corresponding SOC channel was unknown.153 In the last 

part of this thesis, Orai2 deficient mice were generated and analyzed. The novel data 

demonstrated that Orai2 is dispensable in platelets, but revealed for the first time a role of 

Orai2 for SOCE in neurons. Further data indicated that Orai2 may represent a future target 

for stroke therapy. 

 

4.1 Analysis of CD84 deficient mice 

In the present study, CD84 deficient mice were generated by targeting of the Cd84 gene in a 

129/Sv ES cell line. Loss of the CD84 protein was confirmed by Western blot (Figure 10) and 

flow cytometry (Figure 11). CD84 deficient mice were born in Mendelian ratio, were fertile, 

and did not display any obvious abnormalities. Basal hematologic parameters were unaltered 

compared to wt controls, and cell fractions in thymus, lymph nodes and spleen were also 

unaltered (Figure 12, Figure 13). This is in line with another recent study by Cannons et al. 

reporting on the generation of CD84 deficient mice, where a different ES cell line (C57BL/6) 

was used for ko mouse generation.84 These mice also did not display abnormalities in 

development or cellularity of lymphoid organs. 

4.1.1 CD84 is dispensable for platelet function in thrombosis and hemostasis 

CD84 expression in platelets has been reported in earlier studies,51,77 but its role in platelet 

activation and thrombus formation has been elusive. Nanda et al. detected tyrosine 

phosphorylation of CD84 in response to platelet aggregation.51 One of the two 

phosphorylated cytoplasmic tyrosines was found in an ITSM motif, a putative recognition 

motif for the adaptor proteins SAP and EAT-2. These adaptor molecules were both detected 

in mouse platelets by Western blot. When aggregation was blocked using an αIIbβ3 inhibitor, 

no tyrosine phosphorylation of CD84 was detected. Consequently, CD84 was proposed as 

aggregation-induced signaling receptor that synergizes with integrins to mediate platelet 

thrombosis. In the same study, Nanda et al. detected tyrosine phosphorylation of CD150 

(SLAM) in response to platelet aggregation. As for CD84, this CD150 phosphorylation was 

prevented in presence of an integrin blocker. In addition, the authors reported that CD150 

deficient female mice displayed a delay in thrombus formation in a FeCl3-induced thrombosis 

model in mesenteric arteries. Tail bleeding times were normal, but CD150 deficient platelets 

displayed weaker aggregation in response to collagen and a thrombin receptor activating 

peptide. Nanda et al. then proposed CD84 and CD150 as novel receptors in their new 
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concept of the “platelet synapse”. This is initiated by platelet-platelet proximity, mediated by 

αIIbβ3-induced aggregation, in analogy with the lymphocyte synapse induced during immune 

responses.26 Importantly, CD84 has recently been demonstrated to be crucial for sustained 

B cell: T cell interaction, which is also primarily integrin dependent.84 Taken together, CD84 

and CD150 were proposed to stabilize thrombi in response to platelet aggregation.51 SLAM 

family members were also suggested to represent novel targets for antithrombotic drug 

discovery.26 However, Nanda et al. only reported on the phenotype of mice deficient in 

CD150 in their study, and mice deficient in CD84 were not available at that time.51 

The current thesis provides the first analysis of CD84 deficient platelets. Except a slightly 

elevated platelet size, Cd84-/- platelets did not display any abnormalities. Platelet production, 

as well as activation parameters in response to various agonists were unaltered (Figure 15). 

CD84 was proposed as an aggregation-induced co-receptor which may stabilize thrombi,26 

but aggregation of washed Cd84-/- platelets in vitro did not reveal any defect (Figure 16), 

indicating that CD84 has no major role in platelet aggregation in vitro. This was different from 

CD150 deficient platelets, which displayed defective aggregation in response to collagen or 

TRAP in the study by Nanda et al.51 Spreading of platelets on ECM proteins requires integrin 

outside-in signaling.171 This was obviously not affected in Cd84-/- platelets, because they 

were able to fully spread. Thrombus formation at different shear rates under flow ex vivo 

(Figure 19) indicated that lack of CD84 does not affect platelet aggregate stability, even 

under conditions of high shear. This was also observed for thrombus formation in vivo, where 

Cd84-/- mice formed stable occlusive thrombi (Figure 21 and Figure 20). This differs in part 

from the observations that were made by Nanda et al. in CD150 deficient mice. Female 

Cd150-/- mice displayed a defect in stable aggregate formation in vivo and this sex-specific 

defect was attributed to differences in the vasculature between male and female mice.51 

Unaltered tail bleeding times (Figure 22) indicated that CD84 is not essentially involved in 

primary hemostasis. 

In conclusion, CD84 is of minor relevance for thrombus formation, at least under the 

conditions studied here. It is conceivable that there is a potential redundancy between the 

SLAM family members CD84 and CD150. Lack of CD84 may be fully compensated by 

CD150. In light of the study by Nanda et al.,51 who found weaker aggregation of CD150 

deficient platelets, CD150 might be more important for thrombus formation than CD84. 

Potential cooperation of SLAM family members has also been shown for stabilization of 

T cell:B cell contacts, where both CD84 and Ly108 participate,84 however both appeared to 

participate equally in this setting. The generation of CD84/CD150 double-deficient mice to 

study the effect of lack of both of these SLAM family members in platelets, however, is hardly 

feasible. As depicted in Figure 3, CD84 and CD150 are localized in a syntenic genomic 
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region closely together on the same chromosome. Obtaining double-deficient mice by 

intercrossing of CD84 deficient and CD150 deficient mice would require a very unlikely 

chromosomal crossing over. On the other hand, it is also conceivable that CD84 acts as a 

negative regulator of thrombus formation. In mast cells, homophilic interaction of CD84 has 

been shown to negatively regulate FcRI signaling.182 Later, this inhibitory mechanism was 

found to be independent of SAP and EAT-2, but dependent on the inhibitory kinase Fes.86 

Whether there is a SAP and EAT-2 independent role of CD84 in platelets has not been 

addressed. It cannot be completely ruled out that CD84 negatively influences thrombus 

stability, because the effect of CD84 deficiency might be rather weak and hardly detectable. 

One example of an inhibitory receptor that signals through an ITIM is PECAM-1, but 

deficiency of this receptor was found to have only minimal effects on platelet activity.183 

Potentially also a compensation by other inhibitory signaling receptors may occur in CD84 

deficient mice. 

In summary, the data from this thesis indicate that CD84 in platelets is dispensable for 

thrombosis and hemostasis. CD84 in platelets may serve other, yet unidentified functions. 

Given the fact that CD84 is broadly expressed in immune cells and platelets, it is tempting to 

speculate that interaction of platelets with immune cells via CD84 plays a role at sites of 

inflammation. There are several prominent examples of platelet receptors that have been 

described to mediate interaction with leukocytes, thereby assisting and modulating 

inflammation.184 The interaction of platelet P-selectin with PSGL-1 (P-selectin glycoprotein 

ligand-1), contributes to recruitment of neutrophils and other immune cells to inflamed 

tissue.185 Platelet CD40L can bind to CD40, which is expressed on B cells, monocytes, 

macrophages and dendritic cells. This interaction induces inflammatory and immune 

responses.186 The platelet receptor GPIbcan bind to a variety of ligands, including Mac-1 

(CD11b/CD18) in leukocytes. This interaction may lead to recruitment of leukocytes to 

thrombotic sites.187 The complex process of atherosclerotic lesion formation involves 

lymphocyte infiltration and several lines of evidence suggest that platelet adhesion to the 

arterial wall initiates this process.188 Recent experimental data showed that multiple platelet 

adhesion molecules contribute to lymphocyte adhesion under arterial flow conditions.189 It 

remains to be addressed, whether CD84 on platelets is among the molecules that contribute 

to recruitment of immune cells to sites of inflammation or vascular injury, but in light of its 

broad expression on immune cells, this appears to be possible. 
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4.1.2 Loss of CD84 provides protection from ischemic stroke 

Stroke is a major cause of death and disability worldwide.123 Arterial occlusion resulting in 

focal cerebral ischemia accounts for approximately 80% of strokes.125 Since platelets as well 

as immune cells represent critical cell types that influence stroke outcome in experimental 

mouse models,45,139 ischemic stroke has recently been proposed to be a complex thrombo-

inflammatory disease.129,177 The signaling and adhesion events that are involved in 

microvascular thrombus formation and immune cell activation in the ischemic brain are still 

incompletely understood. CD84 is broadly expressed in platelets and immune cells, but the 

role of the receptor in the development of ischemic stroke has been unclear. 

Remarkably, deficiency of CD84 in mice led to significant protection from infarct progression 

in the tMCAO model (Figure 34A and B). Earlier studies revealed the involvement of platelet 

adhesion receptors GPIb and GPVI in the development of ischemic lesions. Inhibition of 

these receptors by in vivo administration of Fab fragments or antibodies, respectively, led to 

protection in the tMCAO model.45 The interpretation of the novel tMCAO data on CD84 

deficient mice was more complex, as it was unclear whether deficiency of CD84 in platelets 

or other cell types led to the protective effect. The smaller infarct sizes in Cd84-/- mice could 

be caused by impaired immune cell adhesion to the endothelium or reduced infiltration into 

brain parenchyma following ischemia. Notably, no significant differences in number of 

neutrophils or CD11b+ leukocytes were found in brain sections of wt and Cd84-/- mice 

(Dr. Peter Kraft, data not shown). Smaller infarct sizes in Cd84-/- mice can also be due to 

reduction of necrotic or apoptotic brain cells. Inflammatory cytokines, such as TNF- and 

IFN- can lead to apoptosis in cells of the ischemic brain.178 Importantly, significantly reduced 

expression of these inflammatory cytokines was revealed in cortices of Cd84-/- mice 24 h 

after tMCAO, compared to controls (Figure 34C). Less TNF- and IFN- gamma production 

in absence of CD84 is in agreement with findings by several authors. Cannons et al.84 

detected reduced IFN- gamma production in stimulated Cd84-/- T cells. Another study 

demonstrated reduced TNF- production after LPS stimulation when CD84 was knocked 

down in bone marrow derived macrophages.83 Accordingly, Martin et al. found that CD84 

ligation enhances IFN- secretion in lymphocytes.81 In the setting of ischemic stroke, reduced 

levels of proinflammatory cytokines may lead to reduced tissue necrosis,138 reduced 

apoptosis, but also less activated cerebrovascular endothelium.178 The beneficial effects of 

weaker endothelial activation may also include less platelet adhesion. IFN- has been 

described as a mediator of inflammatory and thrombogenic responses in the postischemic 

brain microvasculature.138 TNF- can be produced by mast cells and macrophages, but also 

by T cells137 and there is increasing evidence in the literature that T cells exert detrimental 

effects in ischemic stroke.139,178 In the acute phase of ischemic stroke, unprimed T cells 
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contribute to damage in an antigen-independent manner.137 Adoptive transfer experiments of 

wt or Cd84-/- CD4+ T cells into Rag1-/- mice revealed that CD84 in T cells significantly 

influenced ischemic stroke outcome. Since it has remained unclear whether CD84 in other 

cell types, e.g. in platelets, was required as ligand for CD84 in wt T cells, adoptive transfer 

experiments with Cd84-/- mice as recipients were performed. Unexpectedly, wt T cells 

restored susceptibility to ischemic stroke after tMCAO in Cd84-/- mice, whereas Cd84-/- T cells 

induced smaller infarcts (Figure 35). 

Taken together, a T cell intrinsic phenotype was revealed in CD84 deficient mice in ischemic 

stroke. However, adoptive transfer experiments suggested that homophilic interaction of 

CD84 on platelets and T cells appeared not to be functionally relevant in the setting of 

ischemic stroke. CD84 in T cells might bind to another, yet unidentified ligand on platelets, 

and this interaction is disrupted by T cell-specific CD84 deficiency. As another explanation, 

an unknown ligand of CD84 might be present on endothelial cells. Absence of CD84 in 

T cells may lead to abolished interaction with this postulated ligand, and therefore T cells 

may be less stimulated and less cytokines might be produced. This is, however, highly 

speculative and must be proved experimentally by cytokine measurements in mice with 

transferred T cells. In light of recently published findings that also regulatory T cells (Tregs) 

are detrimental in experimental ischemic stroke,140 it will be interesting to study whether 

CD84 is relevant in Tregs. Lymphocytes adhere to platelets but also to endothelial cells 

during the reperfusion phase after tMCAO. These interactions can lead to obstruction of 

blood flow in cerebral microvessels. The recent study on the role of regulatory T cells in 

ischemic stroke demonstrated that blockade of LFA-1 interaction with ICAM-1 on the 

endothelium leads to less adhesion of Tregs under ischemic conditions, reduced 

intravascular thrombosis and improved tissue reperfusion.140 Whether CD84 is involved in 

such processes remains to be determined and the question remains, whether T cell CD84, 

which has been described to undergo homophilic interaction, can bind to other unknown 

ligands present in platelets or endothelial cells. 

It is tempting to speculate that pharmacological blockade of CD84 may become a future 

option for treatment of ischemic stroke. At least loss of CD84 on T cells was found to provide 

protection from ischemic stroke in the tMCAO model. It is unclear whether CD84 binds to an 

unknown ligand on the endothelium or on platelets, but blockade of this postulated 

interaction might be protective. Blockade of the platelet receptor GPIb by injection of mice 

with p0p/B Fab fragments led to 60% reduction of infarct size in the tMCAO model,45 and this 

effect was preserved even when GPIb blockade was induced 1 h after tMCAO. GPIb has 

several binding partners besides vWF (Mac-1, Factor XII, P-selectin)187 and the relevance of 

different binding partners in ischemic stroke is not fully understood yet. Mice deficient in 
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Mac-1 were also less susceptible to cerebral ischemia/reperfusion injury.190 Therefore, it was 

speculated that the interaction of platelet GPIb with Mac-1 might recruit leukocytes to sites of 

thrombosis after cerebral ischemia.125  

Even though the molecular interactions of CD84 in ischemic stroke are not fully understood, 

therapeutic blockade of CD84 might provide protection from ischemic stroke, comparable to 

the observed protection in CD84 deficient mice. Therefore, CD84 rather seems to be a target 

for stroke therapy than a target for antithrombotic therapy, which was originally proposed by 

Nanda et al.26 Given that the CD84 deficient mice generated in this thesis did not display 

obvious abnormalities, short term pharmacological blockade of CD84 might be feasible for 

stroke therapy. The findings from Cannons et al., who also reported that their CD84 deficient 

mice were healthy and only displayed a specific defect in long term immunity,84 support the 

notion that short term CD84 blockade may be applicable without inducing perturbing effects 

on immunity. Even though data gained in the mouse stroke model cannot be directly 

transferred to the human situation, these findings may serve as a basis for the development 

of novel stroke therapeutics. 

 

4.2 Regulation of CD84 in platelets by ADAM10 and calpain 

A recent study on human platelets provided first evidence that platelet CD84, among several 

other platelet receptors, is regulated in a metalloproteinase-dependent manner.96 However, 

the mechanism of CD84 receptor regulation remained unknown. Here, studies on human and 

mouse platelets were performed to elucidate the mechanism of CD84 receptor regulation. 

The experimental data revealed that CD84 is regulated by two distinct proteolytic 

mechanisms in platelets: metalloproteinase-dependent ectodomain shedding and calpain-

mediated cleavage of the intracellular C-terminal domain. ADAM10 was established as the 

principal sheddase to mediate CD84 cleavage under all tested conditions, whereas ADAM17 

did not play a significant role in this process (Figure 26). This was surprising, since other 

studies have shown that prominent platelet receptors are either cleaved only by ADAM17 

(GPIb, semaphorin 4D)88,93 or by ADAM10 and ADAM17, depending on the shedding-

inducing stimulus (GPV, GPVI).97,173 Importantly, ADAM10 also appeared to be the only 

protease to mediate CD84 ectodomain shedding in clotting blood suggesting that even under 

conditions of maximal agonist receptor stimulation no other proteinase can cleave the 

receptor, at least in mouse platelets. In contrast, Fong et al. observed a significant reduction 

of CD84 shedding in human platelets in the presence of a putatively selective ADAM17 

inhibitor, but it was not analyzed in detail whether ADAM10 activity was also affected by this 
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inhibitor.96 Additional studies are necessary to elucidate whether there are minor differences 

in the substrate selectivity of ADAM family sheddases between mouse and human platelets. 

Furthermore, consistently low amounts of sCD84 were detected in the supernatant of 

unstimulated wt, but not Adam10-/- or GM6001-treated platelets. Together with the elevated 

sCD84 plasma levels of wt compared to Adam10-/- mice, this strongly suggests that CD84 is 

continuously shed from the platelet surface by ADAM10, similar to the described constitutive 

shedding of GPIb by ADAM17.88 Residual sCD84 levels in plasma of Adam10-/- mice might 

be due to shedding from other cell types or trans-shedding of platelet CD84 by non-platelet 

ADAM10. The high basal sCD84 levels in plasma of wt mice indicated that its use as a 

marker of thrombotic/inflammatory activity might be limited. Additional sCD84, which might 

be locally generated upon platelet activation in vivo, e.g. during thrombotic events, might not 

lead to a significant elevation in the systemic plasma concentration above the basal level. 

Measurements of sCD84 in murine plasma after local thrombotic events, e.g. after injury of 

the abdominal aorta, did not reveal elevated levels as compared to sham-treated mice (data 

not shown). The use of sCD84 as a biomarker in ischemic stroke is still questionable. In 

plasma samples of healthy human volunteers, no significant levels of CD84 in plasma could 

be detected. It is important to mention that factors in human plasma might mask sCD84, at 

least in the ELISA system used here, since supernatant of NEM-stimulated platelets yielded 

lower ODs when diluted in plasma, compared to buffer (data not shown). One receptor which 

may serve as diagnostic biomarker in the future is GPVI, because it is cleaved from human 

platelets after its stimulation.90 Elevated levels of sGPVI were detected in patients with 

ischemic stroke191 and another study revealed elevated levels of sGPVI in response to 

pathologic shear.192 It will be interesting to study whether sCD84 is elevated in patients with 

thrombotic events, but this requires the establishment of a new sensitive ELISA system for 

human sCD84. 

As mentioned above, high basal levels of sCD84 were detected in plasma of wt mice. 

Glycocalicin, the shed extracellular fragment of GPIb, is another platelet receptor fragment 

that has likewise been detected in considerable amounts in plasma of normal healthy mice193 

and is also not a sensitive marker of platelet activity. In addition, it cannot be excluded that 

sCD84 in plasma is just derived from aging platelets, with CD84 being cleaved from the 

platelet surface, before old platelets are cleared from the blood stream. However, this is just 

speculative and further experiments on CD84 levels during platelet aging are required to 

answer this question. Earlier studies from our laboratory demonstrated that GPIb levels 

decrease during platelet aging in vitro and proposed GPIb surface levels as a marker for 

quality of human platelet concentrates for transfusion.194 Similarly, CD84 surface expression 
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on human platelet concentrates might represent a potential quality marker for transfusion, but 

this remains to be addressed in future studies. 

Treatment of platelets with the calmodulin inhibitor W7 induced strong shedding and calpain-

dependent degradation of the C-terminal part of CD84, indicating that CD84 is a calmodulin-

binding protein. The platelet receptors GPVI,98 GPIb and GPV195 bind calmodulin by their 

positively charged, membrane-proximal sequences within their cytoplasmic domains. By 

analyzing sequence data of the murine as well as the human CD84 C-terminus, positively 

charged, membrane-proximal sequences were also found, further supporting the hypothesis 

that CD84 is a calmodulin-binding protein. Calpain-mediated cleavage of the C-terminus may 

attenuate or completely terminate signaling. Calpain-mediated intracellular receptor 

downregulation in platelets has been described for PECAM-1,112 FcRIIa111 and the 3 

integrin subunit.110 This study clearly shows a dual regulation of CD84 by ADAM10 and 

calpain and both processes can occur independently of each other (Figure 25). Calpain was 

able to cleave both the full length protein, as well as the C-terminal remnant that is generated 

by ADAM10 activity. Although it is recognized that stimuli inducing extracellular shedding 

also have the potential to activate intracellular calpain cleavage12,196 this is the first study 

showing that a single platelet receptor is simultaneously targeted by calpain and a 

metalloproteinase in response to a single stimulus (W7 or RC). It has been shown in cell 

culture experiments, e.g. for IL6R,197 that -secretase-mediated cleavage of the C-terminal 

protein remnant can occur subsequent to ADAM-mediated ectodomain shedding, leading to 

degradation of the remnant. The data in the current thesis indicate, however, that this 

mechanism does not play a role for the degradation of the C-terminal remnant of platelet 

CD84, since calpeptin, an inhibitor of calpain, was sufficient to inhibit the degradation.  

Platelet receptor shedding has been proposed as a mechanism to regulate principal platelet 

functions, e.g. by modulation of adhesive properties or modification of receptor signaling, 

thereby regulating thrombus growth and stability.196 Ectodomain cleavage could limit the 

response to agonists, and concomitantly release soluble receptor fragments into the plasma, 

which may have a role as regulators of distinct biological functions.12 Shedding of CD84 

could be of specific relevance in this context, because of its broad expression on platelets 

and immune cells and its ability to undergo homophilic interaction.56 As recently shown, 

CD84 stabilizes B cell:T cell interaction.84 Therefore, it is tempting to speculate that sCD84 of 

platelet origin might have the potential to modulate immune cell interactions, but this needs 

further investigation.  

Several functional roles are conceivable for extracellular CD84 cleavage. First, ectodomain 

shedding may downregulate platelet reactivity by lowering surface density of receptors, thus 
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attenuating signaling and decreasing platelet-matrix contacts.12 For CD84 this may be true, 

as it might be a receptor that contributes to thrombus stability, acting in concert with other 

stabilizing receptors. However, loss of CD84 may not become evident in thrombosis and 

hemostasis models, since loss of this receptor might be compensated by other receptors. 

The data from the first part of this thesis support this notion. On the other hand, soluble 

receptor fragments generated by shedding may have stimulatory or antagonistic functions. 

An antagonistic role of receptor ectodomains was shown for Sema4D, because the soluble 

bioactive fragment impaired monocyte migration.93 Similarly, soluble JAM-A exhibited 

antagonistic effects, by blocking migration of endothelial cells and reducing transendothelial 

migration of neutrophils.94 Stimulatory effects of soluble receptor fragments have been 

described, e.g. for Sema4D, which can evoke angiogenetic responses of endothelial cells.93 

Whether soluble CD84 acts in a stimulatory or antagonizing manner on other cell types 

remains to be determined. Shedding of platelet receptors may also downregulate the 

inflammatory potential of platelets, as proposed for P-Selectin.87 Similarly, ectodomain 

shedding of CD84 in platelets may also play a role in resolution of inflammation. It could be 

that homophilic interaction of CD84 on platelets and leukocytes promotes initial phases of 

platelet-immune cell interaction. Shedding of CD84 on platelets might subsequently dampen 

these processes, providing a layer of regulation that prevents overshooting immune 

reactions. Since CD84 is expressed in neutrophils,78 shedding of platelet CD84 may dampen 

platelet-neutrophil interaction, a process wherein platelets have been described as amplifiers 

of acute inflammation.185 

In summary, the surface expression of the SLAM family receptor CD84 is tightly regulated by 

two proteolytic mechanisms involving ADAM10 and calpain and ectodomain shedding of 

CD84 constitutively occurs in vivo through ADAM10. Several functional roles of CD84 

shedding are conceivable. It appears possible that the receptor is of functional importance in 

platelet-immune cell rather than in platelet-platelet interactions. Shedding of CD84 on 

platelets might therefore represent a novel mechanism to regulate such interactions. Future 

studies on platelet-immune cell interaction in Cd84-/- mice will be required to better 

understand the role of this receptor in thrombotic, inflammatory, and/or immunologic 

processes.  

 

4.3 Regulation of GPVI by ADAM10 and ADAM17 

Metalloproteinase-dependent shedding has been established as a mechanism to regulate 

surface expression of the central platelet-activating collagen receptor GPVI. Based on recent 

experimental evidence, ADAM10 was proposed as the GPVI-cleaving enzyme.97 

Downregulation of GPVI occurs in mice after injection of the monoclonal antibody JAQ1,41 
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and antibody-induced loss of GPVI has also been reported in human patients with 

autoantibodies.46,47 Importantly, in JAQ1-treated mice, as well as in patients with 

autoantibodies against GPVI, only a mild bleeding disorder was observed. Further, JAQ1-

treated mice were protected from intravascular thrombosis,41 making GPVI downregulation a 

potential antithrombotic approach. Alternatively, selective activation of platelet 

metalloproteinases might result in reduction of GPVI levels and lead to protection from 

undesired platelet activation. So far, it was unclear whether only one or several platelet 

metalloproteinases mediate GPVI ectodomain cleavage.  

To explore GPVI shedding in platelets, different metalloproteinase deficient mice were used. 

The novel findings indicated complex regulation of GPVI involving differentially activated 

metalloproteinases, which may represent novel molecular targets for therapy in patients with 

increased risk of thrombosis. In response to W7 treatment of platelets in vitro, GPVI was 

found to be cleaved by ADAM10, confirming previous data on GPVI-based peptides by 

Gardiner et al.97 In addition, ADAM17-dependent shedding occurred after treatment with 

CCCP (Figure 29), providing the first evidence that GPVI can be differentially regulated by 

two different metalloproteinases. In contrast, CD84 ectodomain shedding was exclusively 

mediated by ADAM10 (Figure 26) and in addition, calpain-mediated intracellular cleavage of 

CD84 was revealed. However, it is unlikely that GPVI is also regulated by calpain, since in 

contrast to CD84, Western blots using an antibody against the N-terminus of GPVI (JAQ1) 

did not reveal a shift in the molecular weight of GPVI in response to different stimuli (e.g. 

Figure 29C). Studies on platelets that lack both ADAM10 and ADAM17 revealed that these 

two metalloproteinases are the only enzymes that mediate GPVI ectodomain shedding in 

vitro (Figure 31). Unexpectedly, however, in vivo administration of JAQ1 induced GPVI 

downregulation from the surface of Adam10-/-/Adam17ex/ex platelets which was comparable to 

the downregulation of GPVI in wt controls. Similar levels of soluble GPVI were detected in 

plasma of both groups of mice (Figure 32). In conclusion, antibody-induced ectodomain 

shedding of GPVI in vivo requires other or additional mechanisms, compared to GPVI 

shedding in vitro.  

ADAM10 and/or ADAM17 present in other cell types might cleave GPVI from the platelet 

surface (trans-shedding). This possibility cannot be excluded since mice with a platelet-

specific ADAM10 deficiency and lack of functional ADAM17 only in the hematopoietic system 

were used. However, given the high numbers of platelets in the blood stream of mice (~106 / 

µL) and the rapid time course and high efficiency of antibody-induced GPVI shedding in vivo, 

this can be considered rather unlikely. As an alternative explanation, another unidentified 

metalloproteinase in platelets may cleave GPVI in vivo and this process requires further 

signals which are not present in isolated platelets in vitro. This notion is supported by the 
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observation that the kinetics and the extent of JAQ1-induced GPVI shedding in the double-

mutant mice were comparable to the wt control, indicating that neither ADAM10 nor ADAM17 

play a major role in this process. ADAM9 in platelets is a candidate enzyme which might be 

able to shed GPVI, since it is a catalytically active metalloproteinase which is expressed in 

various tissues and highly conserved between species.198 However, platelets also express 

many other proteases, including matrix metalloproteinases, which could potentially mediate 

GPVI cleavage. Notably, JAQ1-induced GPVI downregulation in murine platelets occurs 

efficiently in vivo,41 but not in vitro. Comparable observations have been reported for human 

platelets in a NOD/SCID mouse model.199 These observations indicate that the antibody-

induced activation of the GPVI sheddase(s) requires a costimulus that is present in vivo but 

not in vitro. On the other hand, studies from our research group previously showed that the 

GPVI signaling pathway via LAT and PLC2 is required for JAQ1-induced GPVI shedding in 

vivo and this is associated with a transient thrombocytopenia.48 It is still unclear whether the 

activation of metalloproteinases is mechanistically linked to the thrombocytopenia but the 

data shown here clearly exclude a role of ADAM10 or ADAM17 in this process. 

Taken together, our data demonstrated that GPVI can be differentially regulated in vitro by 

ADAM10 and ADAM17 depending on the shedding-inducing stimulus. Additionally, indirect 

evidence for the existence of a third GPVI cleaving enzyme in platelets that has the capacity 

to efficiently mediate antibody-induced “therapeutic” GPVI downregulation in vivo has been 

provided. These data may provide a basis for development of anti-GPVI agents, which may 

be used for treatment of thrombotic and inflammatory diseases.200  

Notably, differential effects of antibodies against CD84 or GPVI were observed upon in vivo 

administration, demonstrating that not all platelet receptors are amenable to antibody-

induced downregulation. While JAQ1 injection induced rapid downregulation of GPVI from 

the platelet surface, injection of JER1 antibody did not lead to downregulation of CD84. 

Instead, the receptor was occupied by the antibody for several days, as detected by anti rat-

IgG-FITC ex vivo. On the other hand, considerable amounts of sCD84 were detected in 

plasma of untreated wt mice, but sCD84 levels were lower in mice with a platelet specific 

ADAM10 deficiency. Thus, constitutive shedding of CD84 by ADAM10 in vivo was proposed. 

These findings underscore that for each regulated platelet receptor, several factors synergize 

that determine their usefulness as antithrombotic or anti-inflammatory target, like 

metalloproteinase selectivity, constitutive shedding, and amenability to selective depletion by 

specific antibodies. 
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4.4 Orai2 deficiency protects from ischemia-induced neuronal damage 

SOCE is established as the most ubiquitous way of regulated Ca2+ entry in mammalian cells 

and is not only important for replenishment of ER Ca2+ stores, but also controls diverse 

processes like lymphocyte activation and cell proliferation.143 With the identification of STIM1 

as the principal ER Ca2+ sensor144,145 and Orai1146,147 as critical SOC channel pore subunit in 

several independent studies in 2005 and 2006, great progress in understanding the 

molecular mechanisms of SOCE has been made. STIM2 is another Ca2+ sensor residing in 

the ER. It was shown to activate SOCE upon smaller decreases of ER Ca2+ levels and to 

regulate basal cytosolic and ER Ca2+ levels in eukaryotic cells.152 In contrast, the function of 

Orai2 is not well explored, with only a few data on immune cell expression being available. 

While Orai1 was described as essential SOC channel component in human T cells,146 

studies by Vig et al.157 indicated that rather Orai2 and Orai3 might be essential in mouse 

thymocytes. In contrast, Gwack et al.180 revealed an essential role for Orai1 in mouse T cell 

SOCE. However, in the same study, Orai2 was supposed to be able to compensate to a 

certain degree for the loss of Orai1, since SOCE was not completely abolished in Orai1 

deficient T cells. In a recent study, Orai2 was shown to interact selectively with STIM2 upon 

store depletion in mouse dendritic cells,158 indicating a cell type specific use of Orai 

molecules. However, studies published so far have used either transfection methods in 

cultured cells or semiquantitative methods to investigate channel properties or expression 

levels of Orai2 in cells and on tissue level. No in vivo studies have been available so far. 

This thesis provides the first description of Orai2 deficient mice. Orai2-/- mice were born in a 

Mendelian ratio, developed normally, and were healthy and fertile. Deficiency of Orai2 was 

proved on mRNA level (Figure 38), since antibodies available were unsuitable for Western 

blot (not shown). In contrast to STIM2 deficiency, where mice had a reduced life expectancy, 

due to unknown reasons and female mice displayed lactation problems,201 Orai2 deficient 

mice did not display any of these abnormalities. Further, in Stim2-/- mice a pronounced 

cognitive defect became apparent.153 Whether subtle differences in cognitive abilities exist 

between wt and Orai2-/- mice, needs to be tested in behavioral studies. Tests like the Morris 

Water Maze Task,202 a standard test for hippocampus-dependent spatial memory, will be 

performed in the future. 

Orai1 is essential for SOCE in platelets,23 but residual Ca2+ influx was detected in Orai1 

deficient platelets, suggesting Orai2 to be a candidate that facilitates this residual Ca2+ influx. 

Orai2 has been shown to be expressed at low levels in platelets from mice and humans, 

however the studies performed in this thesis indicated that Orai2 does not to play an 

essential role in platelets. Platelets from Orai2 deficient mice were normal in number and 

size and had normal expression of prominent platelet glycoproteins (Figure 39). In vitro, 
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Orai2-/- platelets displayed normal activation and degranulation induced by different G-protein 

coupled and (hem)ITAM receptor coupled agonists (Figure 40). This is in sharp contrast to 

Orai1-/- platelets, which displayed defective activation and degranulation in response to ITAM 

coupled receptor stimulation.23 Further, Orai2 deficient mice displayed unaltered arterial 

thrombus formation and hemostasis was also not impaired (Figure 41). Thus the relevance of 

SOCE through Orai2 in platelets is negligible, and/or the observed residual Ca2+ influx in 

Orai1 deficient platelets23 may be due to non-SOCE, which for example can be triggered by 

TRPC6 channel activation by DAG.203 In conclusion, Orai2 is not required for platelet 

activation in vitro and thrombus formation in vivo. This supports previous studies,23 which 

concluded that Orai1 is the most relevant Orai isoform in platelets.  

However, Orai2 deficient mice were protected from ischemic stroke, since infarct volumes 

were significantly smaller and overall neurological functions were significantly better as 

compared to wt controls (Figure 42A,B). The mechanisms that contribute to neuronal 

damage in response to ischemic stroke are complex and only partly understood. Ca2+ 

overload is a common mechanism contributing to neurodegeneration in ischemia. 

Mechanisms that lead to Ca2+ overload include excessive release of the neurotransmitter 

glutamate, referred to as glutamate excitotoxicity.127 Glutamate is the major excitatory 

neurotransmitter in the mammalian central nervous system. Following glutamate release, 

postsynaptic responses occur through both metabotropic and ionotropic receptors, like the N-

methyl-D-aspartate (NMDA) receptor and some 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl) 

proprionate receptors (AMPAR). Metabotropic receptors mediate their actions through GTP-

binding-protein-dependent mechanisms that cause mobilization of Ca2+ from internal 

stores.204 Ca2+ release from the ER can occur in neurons via IP3 receptors, which are 

ubiquitously expressed, and via ryanodine receptors (RyR), which are found in neurons and 

muscle cells.205 So far, most knowledge about SOCE has been gained from non-excitable 

cells. SOCE, frequently referred to as CCE (capacitive calcium entry) also plays an important 

physiological role in many, but not all excitable cells where it is important for the generation 

of cytoplasmic Ca2+ signals with cell-specific functions.206 A recent study from our laboratory 

provided first compelling evidence that SOCE in neurons significantly contributes to neuronal 

cell death under ischemic conditions, as STIM2 deficient mice were shown to be protected 

from ischemic stroke and isolated neurons displayed reduced Ca2+ influx and elevated 

survival upon conditions of oxygen-glucose deprivation, as compared to wt.153 In light of the 

findings of the current thesis and the previously published data on STIM2, it appears likely 

that STIM2 and Orai2 form the Ca2+ sensor-SOC channel unit in neurons. This idea is 

supported by early studies from Parvez et al., already providing evidence that the Ca2+ 

sensor STIM2 can also couple to Orai2 and Orai3.207 The protection of Orai2-/- mice from 
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ischemic stroke in the tMCAO model (Figure 42A,B) strongly suggested that SOCE is 

significantly involved in pathological Ca2+ accumulation in ischemic neurons. In accordance, 

Ca2+ measurements performed in collaboration with Dr. Robert Kraft (University of Leipzig) 

clearly demonstrated that Orai2 significantly contributes to SOCE in neurons. In addition, 

Orai2 deficient neurons displayed significantly less Ca2+ influx in response to oxygen-glucose 

deprivation (Figure 43). Interestingly, store depletion with the SERCA pump inhibitor CPA in 

cortical neurons in the absence of extracellular Ca2+ suggested that Orai2-/- neurons had 

reduced Ca2+ store content. This implies the question whether Orai2 also facilitates the Ca2+ 

store filling or whether it is involved in controlling the filling state. 

Experiments with bone marrow chimeric (BMc) mice were performed to study whether the 

protection of Orai2-/- mice from ischemic stroke was attributed (in part) to Orai2 deficiency in 

blood cells. Orai2 expression has been described in immune cells, e.g. T and B cells180 and 

during the last years especially T cells were described to play a detrimental role in ischemic 

stroke progression.139,178 The stroke experiments using BMc mice clearly demonstrated that 

protection was not blood cell intrinsic (Figure 42C,D). Also alterations in brain vasculature 

which may affect brain sensitivity to ischemia can be excluded since experiments using ink 

perfusion did not reveal significant differences in the Circle of Willis and major brain arteries 

(Dr. Peter Kraft, University of Würzburg, personal communication). These findings, together 

with Ca2+ measurements on isolated neurons (Figure 43) strongly suggest that protection 

from ischemic stroke in Orai2-/- mice is primarily or even exclusively neuron-intrinsic. 

Therapeutic blockade of Orai2 in acute cerebral ischemia might be safer than interference 

with STIM2, because Stim2-/- mice exhibited severe abnormalities, like reduced life 

expectancy,153 and lactation problems in females whereas Orai2-/- mice did not show these 

abnormalities. Further, Orai2 is expressed in the plasma membrane and thus may be more 

easily accessible to pharmacological inhibition than STIM2 to prevent or treat ischemic 

stroke. The healthier status of Orai2-/- mice in comparison to Stim2-/- mice under normal 

conditions implies that other Orai isoforms, e.g. Orai3, might contribute to physiological 

SOCE in neurons. First evidence has been provided that STIM2 also couples to Orai2 and 

Orai3.207 Also formation of Orai heteromultimers was proposed to facilitate SOC channel 

formation.154 Therefore, Orai2 may be a SOC channel component in neurons that is essential 

for excessive Ca2+ influx in ischemia, but its lack may be compensated for by other SOC 

channels under healthy conditions. Nevertheless, deficiency of Orai2 was neuroprotective in 

mice under ischemic conditions and therefore administration of Orai2 blockers may provide a 

future medication to treat patients suffering from acute ischemic stroke. To inhibit excessive 

Ca2+ accumulation in the ischemic territory, blockade of Orai2 might be more suitable than 

glutamate receptor antagonists, which due to massive psychotic side effects and a short 
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therapeutic time window have not proven clinically useful.208 It is tempting to speculate that 

short term inhibition of Ca2+ accumulation in ischemic neurons via blockade of Orai2 in 

combination with established platelet inhibitors might provide effective therapeutic means to 

restrict neuronal damage in stroke patients. It is obvious that comprehensive further studies 

will be required to address the feasibility of this concept. 

 

4.5 Concluding remarks and future plans 

In the work presented here, CD84 deficient mice were generated and characterized. Further, 

new insights into the regulation of the glycoproteins CD84 and GPVI in platelets were 

provided. In addition, insights into the biological role of Orai2 were obtained by generation 

and initial analysis of Orai2 deficient mice. 

Studies on CD84 deficient mice revealed that, in contrast to what was expected before, 

CD84 does not play a critical role in thrombus formation. However, the novel findings 

demonstrated tight regulation of CD84 in platelets by ADAM10 and calpain and pointed 

towards a role of platelet CD84 in biological processes other than thrombus formation. CD84 

might be involved in platelet-immune cell interaction in inflammatory processes and it is 

tempting to speculate that shedding of CD84 on platelets may regulate such processes. 

Future studies will be performed to gain deeper insights into platelet-immune cell interaction.  

In contrast to CD84, which was found to be shed exclusively by ADAM10, GPVI was shown 

to be differentially regulated by both ADAM10 and ADAM17 in vitro. Unexpectedly, shedding 

of GPVI in ADAM10/ADAM17 deficient mice still occurred in vivo upon injection of the 

monoclonal anti GPVI antibody JAQ1. It remains to be addressed in the future, which 

additional mechanisms drive extracellular cleavage of GPVI in vivo.  

Ischemic cardio- and cerebrovascular diseases are leading causes of death and disability 

worldwide.123 Clinical use of antithrombotic drugs has always been inevitably connected with 

increased bleeding risk. That is why alternative therapeutic options are strongly required. A 

series of complex processes involving diverse cell types act in concert to promote infarct 

development in ischemic stroke. CD84 deficiency was found to provide protection from 

ischemic stroke and this was further attributed to CD84 deficiency in T cells. Additional 

studies are required to unravel the molecular mechanism how CD84 on T cells contributes to 

neuronal damage. In addition, this thesis demonstrates for the first time that Orai2 is an 

essential player in SOCE in neurons and proposes the concept that Orai2 may represent a 

promising target for pharmacological intervention in the pathophysiological context of 

ischemic stroke. To further delineate how Orai2 and SOCE influence neuronal processes, 

behavioral studies and neuronal cell culture studies will be performed together with 
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collaboration partners in the field of neurology. Taken together, CD84 and Orai2 may 

represent novel pharmacological targets for future treatment of ischemic stroke. 
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6 Appendix 

6.1 Abbreviations 

[Ca2+]i intracellular Ca2+ concentration 

°C degree Celsius 

µ micro 

aa amino acid(s) 

ADAM a disintegrin and metalloproteinase 

APC antigen-presenting cell 

APS  ammonium peroxodisulphate  

bidest. double distilled  

BM bone marrow 

BMc bone marrow chimeric 

bp base pair 

BSA  bovine serum albumin  

CD40L CD40 ligand 

cm² square centimeter 

CPA cyclopiazonic acid 

CRP collagen related peptide 

CVX convulxin 

DMEM Dulbecco's Modified Eagle's Medium 

DMSO dimethylsulfoxide 

EAT-2 Ewing’s sarcoma activated transcript 2 

ECL enhanced Chemiluminescence 

ECM extracellular matrix 

EDTA ethylenediaminetetraacetic acid 

EF embryonic feeder (cells) 

EGTA ethylene glycol tetraacetic acid 

ERT Eat-2-related transducer 

ES (cell) embryonic stem (cell) 

et al. et alteri 

f femto 

Fab fragment, antigen binding 

Fc fragment, crystallizable 

FCS fetal calf (bovine) serum 

FITC Fluorescein isothiocyanate 
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FSC forward scatter 

g gram 

G-418 Geneticin 

GP glycoprotein 

h hour(s) 

H2O water 

HCl hydrogen chloride 

HRP horseradish peroxidase 

Ig immunoglobulin 

IP immunoprecipitation 

IP3 inositol-1,4,5-trisphosphate 

IRES internal ribosome entry site 

ITAM Immunoreceptor tyrosine based activation motif 

ITIM Immunoreceptor tyrosine based inhibition motif 

ITSM Immunoreceptor tyrosine based switch motif 

kb kilo base (pair) 

kDa kilo Dalton 

ko knockout 

L liter 

LB medium Luria Bertani Medium 

LIF Leukaemia inhibitory factor 

LPS Lipopolysaccharide 

M Molar 

mA milliampere 

MFI mean fluorescence intensity 

min minute(s) 

mL milliliter 

mm millimeter 

n nano 

NaCl sodium chloride 

NaOH sodium hydroxide 

NCBI National Center for Biotechnology Information 

Neo neomycin 

o/n overnight 

OGD oxygen-glucose deprivation 

PBS phosphate buffered saline 

PBS phosphate-buffered saline 
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PCR polymerase chain reaction 

PE phycoerythrin 

PFA paraformaldehyde 

PKC protein kinase C 

PL phospholipase 

PRP platelet-rich plasma 

RC rhodocytin 

rpm rounds per minute 

RT room temperature 

s second 

SAP SLAM-associated protein 

sCD84 soluble CD84 

SD standard deviation 

SDS sodium dodecyl sulfate  

SDS-PAGE sodiumdodecylsulfate polyacrylamide gel electrophoresis 

sGPVI  soluble GPVI 

SH2 Src homology 2 

SLAM signaling lymphocyte activation molecule 

SOC(E) store operated calcium (entry) 

SSC side scatter 

TAE TRIS acetate EDTA buffer 

TBS Tris buffered saline 

TE TRIS EDTA buffer 

tMCAO transient middle cerebral artery occlusion 

TNF Tumor necrosis factor 

TRAP Thrombin receptor activating peptide 

TRIS Tris(hydroxymethyl)-aminomethane 

TTC 2,3,5-triphenyltetrazolium chloride 

TxA2 thromboxane A2 

U units 

Uniprot Universal Protein Resource 

vWF von Willebrand factor 

wt wild-type 
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