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1 Abstract 

 

Recent development of proteomic approaches and generation of large-scale proteomic datasets 

calls for new methods for biological interpretation of the obtained results. Systems biological 

approaches such as integrated network analysis and functional module search have become an 

essential part of proteomic investigation. Proteomics is especially applied in anucleate cells such 

as platelets. The underlying molecular mechanisms of platelet activation and their 

pharmacological modulation are of immense importance for clinical research. Advances in 

platelet proteomics have provided a large amount of proteomic data, which has not yet been 

comprehensively investigated in a systems biological perspective.  

To this end, I assembled platelet specific data from proteomic and transcriptomic studies by 

detailed manual curation and worked on the generation of a comprehensive human platelet 

repository for systems biological analysis of platelets in the functional context of integrated 

networks (PlateletWeb) (http:/PlateletWeb.bioapps.biozentrum.uni-wuerzburg.de). I also added 

platelet-specific experimentally validated phosphorylation data and generated kinase predictions 

for 80% of the newly identified platelet phosphosites. The combination of drug, disease and 

pathway information with phosphorylation and interaction data makes this database the first 

integrative platelet platform available for platelet research. PlateletWeb contains more than 5000 

platelet proteins, which can also be analyzed and visualized in a network context, allowing 

identification of all major signaling modules involved in platelet activation and inhibition.  

Using the wealth of integrated data I performed a series of platelet-specific analyses regarding the 

platelet proteome, pathways, drug targets and novel platelet phosphorylation events involved in 

crucial signaling events. I analyzed the statistical enrichment of known pathways for platelet 

proteins and identified endocytosis as a highly represented pathway in platelets. Further results 

revealed that highly connected platelet proteins are more often targeted by drugs.  

Using integrated network analysis offered by PlateletWeb, I analyzed the crucial activation 

signaling pathway of adenosine diphosphate (ADP), visualizing how the signal flow from 

receptors to effectors is maintained. My work on integrin inside-out signaling was also based on 

the integrated network approach and examined new platelet-specific phosphorylation sites and 

their regulation using kinase predictions. I generated hypothesis on integrin signaling, by 

http://plateletweb.bioapps.biozentrum.uni-wuerzburg.de/
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investigating the regulation of Ser
269

 phosphorylation site on the docking protein 1 (DOK1). This 

phosphorylation site may influence the inhibiting effect of DOK1 on integrin 2b3. 

Extending the integrated network approach to further cell lines, I used the assembled human 

interactome information for the analysis of functional modules in cellular networks. The 

investigation was performed with a previously developed module detection algorithm, which 

finds maximum-scoring subgraphs in transcriptomic datasets by using assigned values to the 

network nodes. We extended the algorithm to qualitative proteomic datasets and enhanced the 

module search by adding functional information to the network edges to concentrate the solution 

onto modules with high functional similarity. I performed a series of analyses to validate its 

performance in small-sized (virus-infected gastric cells) and medium-sized networks (human 

lymphocytes). In both cases the algorithm extracted characteristic modules of sample proteins 

with high functional similarity. 

The functional module search is especially useful in site-specific phosphoproteomic datasets, 

where kinase regulation of the detected sites is often sparse or lacking. Therefore, I used the 

module detection algorithm in quantitative phosphoproteomic datasets. In a platelet 

phosphorylation dataset, I presented a pipeline for network analysis of detected phosphorylation 

sites. In a second approach, the functional module detecting algorithm was used on a 

phosphoproteome network of human embryonic stem cells, in which nodes represented the 

maximally changing phosphorylation sites in the experiment. Additional kinases from the human 

phosphoproteome in PlateletWeb were included to the network to investigate the regulation of the 

signal flow. Results indicated important phosphorylation sites and their upstream kinases and 

explained changes observed in embryonic stem cells during differentiation.  

This work presents novel approaches for integrated network analysis in cells and introduces for 

the first time a systematic biological investigation of the human platelet proteome based on the 

platelet-specific knowledge base PlateletWeb. The extended methods for optimized functional 

module detection offer an invaluable tool for exploring proteomic datasets and covering gaps in 

complex large-scale data analysis. By combining exact module detection approaches with 

functional information data between interacting proteins, characteristic functional modules with 

high functional resemblance can be extracted from complex datasets, thereby focusing on 

important changes in the observed networks. 
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2 Zusammenfassung 

 

Jüngste Entwicklungen der Proteomik und die damit einhergehende Erzeugung großer Datensätze 

erfordern neue Methoden zur biologischen Interpretation der gewonnenen Ergebnisse. 

Systembiologische Ansätze wie die integrierte Netzwerkanalyse sowie die funktionelle 

Modulsuche sind zu einem wesentlichen Bestandteil bei der Untersuchung von Proteinen 

geworden. Die Proteomik wird vor allem in kernlosen Zellen wie den Blutplättchen angewandt. 

Die zu Grunde liegenden molekularen Mechanismen bei der Aktivierung von Thrombozyten und 

deren pharmakologische Modulation sind von immenser Bedeutung für die klinische Forschung. 

Aktuelle Studien in der Proteomforschung haben insbesondere bei Thrombozyten große Mengen 

an Daten erzeugt, die bisher noch nicht umfassend systembiologisch untersucht wurden.  

Zu diesem Zweck stellte ich manuell thrombozyten-spezifische Daten aus Proteom- und 

Transkriptomstudien zusammen und arbeitete an der Entwicklung einer umfassenden 

menschlichen Thrombozytendatenbank für die systembiologische Analyse der Funktion von 

Blutplättchen mittels integrierter Netzwerkanalyse (PlateletWeb) 

(http:/PlateletWeb.bioapps.biozentrum.uni-wuerzburg.de). Zusätzlich habe ich plättchen-

spezifische, experimentell validierte Phosphorylierungsinformationen hinzugefügt und generierte 

Kinasenvorhersagen für 80% der neu identifizierten Phosphorylierungsstellen. Die Kombination 

aus Medikamenten,  assoziierten Krankheiten und Signalweginformation zusammen mit 

Phosphorylierungs- und Interaktionsdaten macht diese Datenbank zu einer ersten und 

umfassenden Anlaufstelle für Thrombozytenforschung. PlateletWeb enthält mehr als 5000 

Plättchenproteine, die in einem Netzwerk analysiert und dargestellt werden können. Dabei ist die 

Identifizierung aller wichtigen Signalmodule zur Plättchenaktivierung und -inhibierung möglich. 

Mit der Fülle an verfügbaren Daten führte ich eine Reihe thrombozyten-spezifischer Analysen 

am Plättchenproteom, an Signalwegen, pharmakologischen Wirkstoffzielen und 

Phosphorylierungsreaktionen in grundlegenden Signalprozessen durch. Ich analysierte die 

statistische Anreicherung bekannter Signalwege für Plättchenproteine und identifizierte 

Endozytose als einen sehr repräsentativen Signalweg in Thrombozyten. Weitere Ergebnisse 

zeigten, dass stark vernetzte Plättchenproteine häufiger Ziel von Medikamenten sind. 

http://plateletweb.bioapps.biozentrum.uni-wuerzburg.de/
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Mittels der Netzwerkanalyse von PlateletWeb untersuchte ich den grundlegenden 

Signalaktivierungspfad von Adenosindiphosphat (ADP), und veranschaulichte den Signalfluss 

von Rezeptor zu Effektor. Meine Arbeit an der Integrin-Inside-Out-Signalisierung beinhaltete 

zudem die Untersuchung neuer thrombozyten-spezifischer Phosphorylierungsstellen und ihre 

Regulation durch Kinasenvorhersagen mit Hilfe des integrierten Netzwerkanalyseansatzes. Durch 

die Untersuchung der Regulation bei der Phosphorylierungsstelle Ser
269

 im Docking-Protein 

(DOK1) stellte ich eine neue Hypothese zur Integrinsignalisierung auf. Diese 

Phosphorylierungsstelle könnte den inhibitorischen Effekt von DOK1 auf integrin 2b3 

beeinflussen.  

Ich erweiterte den integrierten Netzwerkanalyseansatz für andere Zelllinien, indem ich die 

gesammelten Informationen aus dem menschlichen Interaktom für die Analyse von funktionellen 

Modulen in zellulären Netzen nutzte. Die Untersuchung wurde mit einem zuvor entwickelten  

Algorithmus zur Modulerkennung durchgeführt, der maximal bewertete Teilgraphen in 

Transkriptomdatensätzen anhand zugewiesener Werte für Netzwerkknoten findet. Wir 

erweiterten den Algorithmus zur Anwendung auf qualitative Proteomdatensätze und optimierten 

die Modulsuche durch Integration funktioneller Informationen in die Netzwerkkanten. Dies 

fokussierte die Optimierung auf Proteinmodule mit hoher funktioneller Ähnlichkeit. Ich führte 

eine Reihe von Analysen durch, um die Effizienz des Algorithmus in kleinen (durch Viren 

infizierte Magenzellen) und mittelgroßen Netzwerken (menschliche Lymphozyten) zu 

überprüfen. In beiden Fällen extrahierte der Algorithmus charakteristische Module der 

untersuchten Proteine mit hohen funktionellen Ähnlichkeiten.  

Die funktionelle Modulsuche ist besonders bei positionsspezifischen 

Phosphoproteomikdatensätzen nützlich, in denen die Kinasenregulation der detektierten 

Phosphorylierungsstellen nur spärlich oder gar nicht vorhanden ist. Daher habe ich den 

Algorithmus der Moduldetektion auf quantitative Phosphoproteomikdatensätze angewandt. 

Anhand eines Datensatzes bestehend aus phosphorylierten Plättchenproteinen habe ich eine 

Vorgehensweise zur Netzwerkanalyse von Phosphorylierungsstellen entwickelt. In einer zweiten 

Studie wurde der Algorithmus der Moduldetektion auf ein phosphoproteomisches Netzwerk 

menschlich embryonaler Stammzellen angewandt, in dem Phosphorylierungsstellen mit 

maximaler Veränderung durch Netzwerkknoten repräsentiert wurden. Um die Regulation des 

Signalflusses zu untersuchen wurden weitere Kinasen aus dem menschlichen Phosphoproteom 

beziehungsweise PlateletWeb integriert. Ergebnisse wiesen auf wichtige 
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Phosphorylierungsstellen und ihre Upstream-Kinasen hin und verdeutlichten Vorgänge, die 

während der Differenzierung in den embryonalen Stammzellen stattgefunden haben.  

Diese Arbeit bietet neue Vorgehensweisen der integrierten Netzwerkanalyse in Zellen und 

präsentiert zum ersten Mal eine systembiologische Untersuchung des menschlichen Proteoms mit 

Hilfe der Trombozytendatenbank PlateletWeb. Die erweiterten Methoden zur verbesserten 

Erkennung funktioneller Module bieten ein wertvolles Werkzeug für die Erforschung 

proteomischer Datensätze und vervollständigen die komplexe und umfangreiche Datenanalyse.  

Charakteristische Module, die große Ähnlichkeit auf funktioneller Ebene aufweisen, können 

durch die Kombination von exakten Modulerkennungsansätzen mit funktionellen Daten 

extrahiert werden. Dabei werden wichtige Änderungen besonders bei der Analyse komplexer 

Netzwerke hervorgehoben. 
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3 Introduction 

 

3.1 The role of proteomics and phosphoproteomics in systems biology 

 

The most advanced research arises from fundamental questions: How is a cell defined? How does 

one analyze cell signaling? These central issues are the main focus of systems biology today. 

Every biological entity is a complex system of a variety of processes, each coupled to one another 

in an admirable harmony. When this harmony is disrupted defects appear causing the outbreak of 

disease. Medicine has fought for years to understand the biological mechanisms of disease, yet 

full comprehension was achieved mainly on genetic diseases and diseases associated with a 

single dysfunction. Complex diseases with multiple causes such as diabetes and atherosclerosis 

are only to be interpreted in the context of systems biology, as there are often multiple factors and 

imbalances causing these diseases (Dempfle, Scherag et al. 2008).It has been increasingly 

recognized in recent years that the understanding of changes and properties that arise from 

whole-cell function require integrated analysis of the relationships between different cellular 

components (Albert 2005). To deepen our understanding in the complex cellular mechanisms one 

cannot merely focus on the single-protein or receptor level (reductionist view) but should rather 

concentrate on the cell system as a whole (wholist view)(Junker and Schreiber 2008). The entire 

set of components with a particular characteristic is described with terms ending with “ome” 

(genome, proteome), while the techniques to identify the set acquires the ending “omics” 

(genomics, proteomics). In this sense, the term “proteome” represents the set of all proteins 

expressed and measured in a cell and from it the word interactome is derived to illustrate all 

physical interactions found in a cell. The word "interactome" was originally introduced in 1999 

by a group of French scientists headed by Bernard Jacq (Sanchez, Lachaize et al. 1999). Further 

fields also developed presenting more characteristics such as metabolomics (Fiehn, Kopka et al. 

2000) and the human diseasome (Goh, Cusick et al. 2007) etc. 

The central change in systems biology has been the switch from bottom-up to top-down 

approaches (Katagiri 2003). The beginning of systems biology as a field has been marked by 



Introduction 

 

20 
 

different efforts. In the first half of the 20
th

 century, enzyme kinetics focused only on kinetics and 

interactions. Then, Ludwig von Bertalanffy proposed his systems theory in 1968 (Bertalanffy 

1968). In the following years the interest for this field has increased immensely. Hiroaki Kitano 

defined systems biology in his book “Foundations of Systems Biology” as “systems biology is a 

new field in biology that aims at system-level understanding of biological systems” (Kitano 

2001). Subsequently, a whole new world has been revealed paving the way for systems biologists 

to investigate the intricate signaling events in human cells. Systems biological approaches gain 

importance, because reductionists’ methods lack the needed complexity to explain changes 

observed in cell behavior under a predefined set of conditions. Beginning from the sequencing of 

the human genome in 2001 (Lander, Linton et al. 2001; Venter, Adams et al. 2001), the genomics 

field flourished along with technical advances and computational power consequently solving the 

previously unthinkable task of creating a guiding map to the human gene repertoire. Thus, a first 

big collaborative step was made towards decoding the complicated processes hidden in human 

cells and a new way of thinking was introduced to scientists, demanding a whole array of novel 

approaches to solve the newly arisen challenges. Genome investigation led to the realization that 

the set of mRNAs available in a cell (transcriptome) can be used to create a first glimpse of the 

changes induced by external stimuli. The dynamic changes of the transcriptome became the focus 

of a whole new line of techniques, starting with the microarray (McGall and Christians 2002) and 

the subsequently developed RNA sequencing (Wang, Gerstein et al. 2009). Nonetheless, RNA 

and corresponding protein levels have been known to correlate poorly (Pascal, True et al. 2008; 

Olsen, Vermeulen et al. 2010). Soon enough the realization came that objective comprehension 

of what is really happening in a cell can be achieved only by measuring the protein expression at 

a given time under specific conditions.  

The proteomics era began, opening a wave of opportunities to track, analyze and interpret cell 

responses. The development of proteomics was facilitated by a huge leap in the field of mass 

spectrometry. The basic principle of mass spectrometry analysis lies in the digestion of a protein 

probe and consequent ionization of the obtained peptides using an ionization source. Due to their 

positive charge, the ionized peptides can be accelerated using an electrical field in the mass 

spectrometer. Each ion is detected according to the mass-to-charge ratio and identified peptides 

are finally mapped to known proteins using bioinformatical approaches and software. Proteome 

studies have become an established and widely used method for the analysis of protein samples 
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and investigation of signaling pathways under different conditions (Preisinger, von Kriegsheim et 

al. 2008; Choudhary and Mann 2010). Various strategies have been developed to investigate 

different aspects of the cell proteome. The most widespread methods for analysis of global 

protein expression are based on two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) 

allowing the resolution of large proteomic samples comprised of thousands of proteins. High 

precision and accuracy can be achieved by liquid chromatography coupled to tandem mass 

spectrometry (LC-MS/MS), which has been established as a high-throughput technique (Rotilio, 

Della Corte et al. 2012).  

Soon it was not sufficient only to measure the presence or absence of proteins in a particular 

probe, but also their posttranslational modifications (PTMs). These alterations in protein structure 

are caused by adding or removing chemical groups and induce a change in the tertiary protein 

structure triggering changes in the protein function. One such modification, which plays a key 

role in cell signaling, is protein phosphorylation. During phosphorylation a special enzyme called 

“kinase”, adds a phosphate group to a protein, thus either activating or inhibiting its main 

biological function. The counteracting enzyme, called “phosphatase”, removes the added 

phosphorylation group to stop the induced signal (Figure 1).  

 
 

Figure 1. Phosphorylation and dephosphorylation 

Kinases and phosphatases are counterplayers in signaling events. Kinases add a phosphate group (PO4) extracted 

from adenosine triphosphate (ATP) to a Serine, Threonine or Tyrosine residue of the substrate, which are then 

removed by phosphatases. 

 

It is believed that one-thirds of the eukaryotic proteome is modified by phosphorylation of mainly 

serine, threonine or tyrosine residues (Mann, Ong et al. 2002). Phosphorylation is one of the best 
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characterized protein modifications due to its participation in signal transduction pathways, 

which have been thoroughly analyzed biochemically. In some anucleate cell types, such as 

platelets, protein modifications and especially phosphorylation are critically involved in 

maintaining cellular functions and responses. Once proteins in a single probe could be identified 

along with their PTMs, the question arose whether one could measure these changes precisely in 

the concept of abundance. Thus, quantitative proteomics methods paved the way for a new 

understanding of cellular functions based on quantitative data. The most common quantitation 

methods are label-free approaches or isotopic labelling methods: i) stable isotope labelling by 

amino acids in cell culture (SILAC, metabolic labelling)(Mann, Ong et al. 2002) and ii) isobaric 

tags for relative and absolute quantitation (ITRAQ, chemical labeling)(Barnouin 2012). 

Quantitative analysis has been developed in a series of cell lines (Brill, Xiong et al. 2009), 

investigating cellular subcompartments (Malik, Lenobel et al. 2009) and various cellular 

conditions (Daub, Olsen et al. 2008; de Godoy, Olsen et al. 2008; Boisvert, Lam et al. 2010; 

Zhong, Krawczyk et al. 2010). The impact of quantitative proteomics in systems biology and in 

cellular signaling analysis in particular, has been immense as measuring of protein abundance is a 

direct marker for changes on the cellular level and can improve the understanding of complex 

network dynamics (Preisinger, von Kriegsheim et al. 2008; White 2008; Jorgensen and Locard-

Paulet 2012). 
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3.2 Integrated network analysis 

 

A network in biological sense is a simplified model that describes a set of molecules, e.g. proteins 

or genes, which are connected with each other through well-defined relationships. Graph 

properties allow the investigation of complex biological interactions using mathematical and 

computational approaches through simplifying the representation of these interactions in a 

network context to reveal regulation patterns often difficult to measure experimentally. The 

various application fields of networks include the representation of metabolites in metabolic 

networks, gene regulation in regulatory networks, protein-protein interactions in PPI networks, 

genetic interactions in gene networks or visualization of Gene Ontology terms of proteins in a 

directed acyclic graph (DAG).  Network properties of biological networks share a lot of common 

properties with other natural or man-made systems. For instance, previous reports conclude that 

protein-protein interaction networks are scale-free (Barabasi and Albert 1999; Albert 2005), 

small-world (Aloy and Russell 2004) and disassorted (Khor 2010). Furthermore, it was suggested 

that highly connected proteins in these networks (hubs) are more likely to be essential for cell 

survival (Albert, Jeong et al. 2000). Networks possess inherent topological properties, which are 

also transferrable to biological systems, such as functional robustness (Barabasi and Oltvai 2004). 

Biological networks can be constructed in different ways (Merico, Gfeller et al. 2009). One 

possibility is to assemble the network de novo from direct experimentally validated interactions. 

This particular option has been used throughout all network analysis steps in this thesis. Another 

option is presented by applying known interactions to an –omic dataset, either manually or 

systematically using pathway-analysis software (e.g., Ingenuity Pathways Analysis), which can 

be useful for hypothesis-generating experiments. The third possibility is by reverse engineering to 

generate a subset of networks ab initio which can predict the dynamics of the system, given that 

sufficient data are compiled across a number of perturbations to enable network modeling (e.g. 

drug concentrations, enzyme kinetics). This option is often used in quantitative pharmacology 

and clinical pharmacology studies (Khalil, Brewer et al. 2010). Additionally, networks can 

include heterogeneous information such as drug-target networks (Yildirim, Goh et al. 2007), 

where the drug targets are connected only if they are influenced by the same drug or disease 

networks (Goh, Cusick et al. 2007), where disease genes associated with similar genetic diseases 

are clustered together. Association of genes with diseases can be achieved using protein 
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interaction networks (Navlakha and Kingsford 2010). Furthermore, the value of PPI networks for 

the investigation of novel drug targets has been underlined in a number of reviews in recent years 

(Ruffner, Bauer et al. 2007; Vidal, Cusick et al. 2011). 

Network analysis turns into integrated network analysis when network algorithms allow the 

visualization of different existing interactions, newly discovered relationships, activation and 

inhibition and superimposition of additional properties beyond the known components (Merico, 

Gfeller et al. 2009). Nodes or edges can be weighted with qualitative or quantitative information 

to integrate multiple sources of high-throughput data and connect datasets with seemingly 

different origins into a refined systems biological dataset ready for in-depth investigation (Sauer, 

Heinemann et al. 2007). Integrated network analysis then allows the investigation of topological 

modules, when only the structure in the network is considered (Figure 2a). Further applications 

are the search for functional modules, consisting of proteins with similar function and similar 

regulation which change in a similar way after stimulation (Figure 2b). Disease modules of 

proteins expressed in a similar fashion during the course of disease can also be investigated after 

gene expression experiments (Figure 2c). 

 

Figure 2. Network module types 

Topological modules (a) are based purely on the network structure. They correspond to local neighbouring clusters, 

where the nodes of the module show a higher connectivity within the module when compared to nodes outside the 

module. Functional modules (b) are comprised of nodes (genes or proteins) with a related function. Functional 

module rely on the hypothesis that nodes involved in closely related functions tend to interact more often with each 

other and are therefore located in the same network cluster. A disease module (c) represents nodes the changes of 
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which (mutations, deletions, expression changes) are associated with a disease phenotype, shown here as red nodes. 

Thus, different characteristics of the nodes lead to different interpretation of the network analysis results. The Figure 

was extracted from Barabasi et al (Barabasi, Gulbahce et al. 2011) 
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3.3 Protein-Protein Interaction (PPI) Networks 

 

The most immediate effectors of cellular changes are the regulated activities of proteins (e.g., 

enzymes, receptors, transcription factors, etc.). Therefore, the analysis of their interactions 

presents a systematic approach to understanding signaling mechanisms at the crucial final level of 

cell response: the proteome. Protein-protein interaction networks comprise of nodes consisting of 

proteins and edges representing physical binding interactions between the proteins (Pieroni, de la 

Fuente van Bentem et al. 2008). Two proteins are connected by an undirected edge if there is 

enough experimental support available that they physically bind to each other. Genomic-based 

studies such as genome-wide profiling for mutations, microarray, RNA sequencing and genome-

wide association studies can define genes and loci associated with disease and provide targets for 

further analysis (Altshuler, Daly et al. 2008; Woollard, Mehta et al. 2011). However, they have 

limited prospects for creating clinical prognosis or influencing the discovery of new drug targets, 

as the correlation between DNA, RNA and protein expression is poor (MacKay, Li et al. 2004; 

Maier, Guell et al. 2009). Due to changes on mRNA level, such as RNA degradation or silencing 

and other conditions such as RNA structure or ribosome density and occupancy, it is not always 

possible to predict the results of particular cell stimuli on the whole cell system (Maier, Guell et 

al. 2009). With evolving new technologies for high-dimensional screens of the proteome it is now 

possible to detect important changes in thousands of proteins with differential expression during 

the course of disease. On the other hand, the proteome of particular cells, tissues and organisms 

has been assembled and improved over time so that the confidence in the measured interactions 

can also be ascertained.  

PPI networks have been assembled for a wide range of organisms, for bacteria such as 

Escherishia coli (Butland, Peregrin-Alvarez et al. 2005), for the yeast Saccharomyces cereveisiae 

(Uetz, Giot et al. 2000; Ito, Chiba et al. 2001),  the fruitfly Drosophila melanogaster (Giot, Bader 

et al. 2003; Uetz and Pankratz 2004), worm Caenorhabditis elegans (Li, Armstrong et al. 2004) 

and human (Persico, Ceol et al. 2005; Rual, Venkatesan et al. 2005; Gandhi, Zhong et al. 2006). 

PPI networks allow a smooth integration of multiple data types and their coupling with 

topological graph properties to create more accurate models of cellular interactions. Nonetheless, 

there are still many present challenges such as the incompleteness of the human interactome both 

regarding the interactions that occur in a specific context and their regulation.  
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The large-scale analysis of protein interactions is mainly achieved by using two complementary 

technologies: yeast two-hybrid (Y2H) and affinity-purification mass-spectrometry (AP-MS). The 

Y2H method is based on the observation that transcription factor activity can be regained from 

physically separated activation domainst (AD) and binding domains (BD). Both BD and AD are 

bound to bait and prey proteins, respectively, and the interaction between the proteins is tested by 

tracing the expression of a reporter gene activated by the fused transcription factor in an yeast 

cell (Fields and Song 1989). The reporter gene is transcribed only if the AD and BD domains of 

the transcription factor come in close proximity after interaction of their fused bait and prey 

proteins (Figure 3). Large-scale analysis is achieved by mating different yeast strains each 

expressing a different bait and prey protein (Chien, Bartel et al. 1991).  

 

 

 

Figure 3. Yeast-two-hybride method 

The DNA-binding domain (DBD) of a transcription factor is bound to the bait protein, whereas the activation domain 

(AD) is bound to the prey-protein. The promoter of the reporter gene is only activated when both DBD and AD bind 

to it after interaction between the bait and prey proteins. 
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In contrast to this approach, AP-MS is based on biochemical purification of protein complexes 

using affinity columns and subsequent identification of complex proteins using mass-

spectrometry (Collins and Choudhary 2008) (Figure 4). A bait protein is fused with a tag, which 

is recognized by an antibody bound on the wall of the affinity column. When the protein is eluted 

through the column, it binds to the antibody via its tag. All other complex members bind to the 

initial bait as well and are maintained on the affinity column after a washing step. Then, the 

proteins can be separated according to their molecular weight using gel electrophoresis and 

identified with a mass spectrometer. Thus, AP-MS enables the detection of protein complexes 

under approximately physiological conditions with high sensitivity and precision.  

 

Figure 4. Affinity purification coupled to mass-spectrometry 

The AP-MS method comprises of a purified bait protein coupled to an antibody-tag. When the protein runs on an 

affinity column, the tag binds to its antibody and all proteins involved in the same complex as the bait protein are 

also immobilized on the column. After a gel electrophoresis step (SDS-Page: sodium dodecyl sulfate polyacrylamide 

gel electrophoresis), the proteins are separated according to their molecular weight. Subsequently, the protein probe 
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is analyzed using a mass spectrometer, which identifies all complex proteins based on their mass-to-charge (m/z) 

ratio and intensity spectrum. 

While Y2H approach is more adapted to the detection of binary protein interactions, MS-AP has 

been established mainly for the investigation of protein complexes. Both methods are prone to 

errors by detecting false positive and false negative interactions. Estimations of the number of 

interactions occurring in specific cell types have already been proposed. The size of the human 

interactome has been estimated between 154,000 and 369,000 (Hart, Ramani et al. 2006) or as 

large as 650,000 interactions (Stumpf, Thorne et al. 2008). Surely, not all interactions are present 

at all times and many interactions are specific to specific cell types and cell conditions. Several 

groups have focused on overcoming the challenges of incompleteness in current interactome 

maps by using various approaches for creating more optimal and objective interaction detection 

strategies (Lappe and Holm 2004; Schwartz, Yu et al. 2009). Nonetheless, incomplete as the 

interactome is, it still presents the only way to integrate information on a systems biological level 

and investigate cell signaling under different conditions. 

 

3.4 Functional modules in biological networks 

 

The availability of high-throughput data such as DNA microarray experiments and proteomics, 

make it easier to provide large amounts of data for systems biological analysis. Constant 

development of the proteomics field has led to advances such as quantitative proteomics and 

phosphoproteomics, but their high costs and complicated analytical procedures are the main 

reason for ongoing use of qualitative approaches, producing only a list of proteins identified in a 

sample. The interpretation of these lists is often complicated and data is usually fractionated and 

lacking some important signaling players due to experimental limitations and outer conditions. 

Single proteins or subsets of interest are then being selected for further analysis based on 

predefined pathway data or pre-knowledge from other experiments. A backbone of the 

interactions between these proteins is crucial for understanding the network context of the 

analyzed sample. This backbone is supplied by the PPI network of the analyzed organism, which 

naturally also contains pathway information. Creating a biological network from the data and 

further exploring functional modules inside this network is a very comprehensive approach for 
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systems biological analysis of transcriptome and proteome data. A functional module is defined 

as a group of proteins with a similar biological function. Based on this definition, their regulation 

and expression changes are also similar. Subsequent experimental testing for functional 

enrichment can provide more insights into the important biological processes overrepresented in 

the analyzed network. Although a lot of effort has been invested in developing methods for 

improving the quality of measurements, functional analysis methods have just started to gain 

attention in the systems biological field. Bioinformatics has helped immensely for developing 

unbiased data-driven approaches for focusing on small subsets of interesting functionally relevant 

proteins in large-scale datasets (Ideker, Thorsson et al. 2001; Scott, Perkins et al. 2005; Dittrich, 

Klau et al. 2008; Beisser, Klau et al. 2010; Zheng and Zhao 2011). Among the algorithms for 

searching functional modules, there are two distinguishable groups: heuristic approaches and 

exact approaches (Wu, Zhao et al. 2009). Both approaches use an integrated PPI network as a 

backbone for their analysis and a weight for nodes and/or edges of the network. While heuristic 

approaches search for high-scoring subnetworks using a high number of iterations and never 

reach an optimal solution, exact approaches focus on developing an optimization model and 

algorithm which then searches for optimal and suboptimal solutions in the pre-defined network. 

Since the problem of finding high score responsive functional modules from a large interaction 

network is NP-hard (Ideker, Ozier et al. 2002; Dittrich, Klau et al. 2008) regarding its 

computational complexity, most computational methods are heuristic approaches. The extracted 

modules are never optimal and are thus prone to false interpretation, furthermore, the resulting 

subnetworks can’t be reproduced in the exact same way in a second run. One of the first 

developed heuristic approaches based on the simulated annealing algorithm was proposed by 

Ideker et al (Ideker, Thorsson et al. 2001; Ideker, Ozier et al. 2002), followed by a number of 

heuristic algorithms (Scott, Perkins et al. 2005; Scott, Ideker et al. 2006; Guo, Wang et al. 2007; 

Liu, Liberzon et al. 2007; Nacu, Critchley-Thorne et al. 2007; Ulitsky and Shamir 2007; Ulitsky 

and Shamir 2009). By contrast, exact approaches such as mathematical programming based 

methods proposed in (Dittrich, Klau et al. 2008; Wang 2008; Qiu, Zhang et al. 2009) identify 

maximally-scoring subgraphs in reasonable time from real molecular networks.  

Identification of functional modules can be optimized by adding functional information to the 

edges in the PPI network. Often during analysis it is important to explore not only the similarity 

of expression patterns of these proteins, but also their functional similarity, which can be 
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calculated based on Gene Ontology (GO) (Frohlich, Speer et al. 2007). During this thesis the GO 

term annotations of proteins along with the module detection algorithm proposed by (Dittrich, 

Klau et al. 2008) will be taken into consideration for the functional module search in various 

networks. 

 

3.5 Systems biology of cell networks: human platelets 

 

Platelets play a key role in hemostasis and represent a central target for research in many 

pathophysiological processes, including cardiovascular diseases, inflammation, host immune 

response and metastasis (Varga-Szabo, Pleines et al. 2008; Leslie 2010). These anucleate 

blood cells originate from megakaryocytes and have a short life span of about 10 days. They 

are activated by injury of the vessel wall, which causes platelets to adhere to the injured 

surface, aggregate and build a firm thrombus with the help of surface-adhesion molecules 

primarily from the family of integrins (Varga-Szabo, Pleines et al. 2008). By secretion of 

factors such as thromboxane A2 (TXA2) and ADP more platelets are gathered at the damaged 

endothelium (Broos, Feys et al. 2011). In a tight balance, platelets control the initial steps of 

hemostasis and thrombus formation and play a key role in pathological processes such as 

atherosclerosis. The balance between platelet activation and inhibition ensures the optimal 

functionality of hemostatic mechanisms. Disturbances of this system are involved in the most 

common cardiovascular diseases: thrombosis, stroke and myocardial infarction (Furie and 

Furie 2008). Furthermore, many key platelet receptors are associated with genetic diseases 

and the investigation of the phenotype of diseases patients helped to identify the role of each 

receptor in platelet signaling (Lambert 2011). Some examples are the Bernard-Soulier 

syndrome associated with the vWF-binding receptor GPIBA (Pham and Wang 2007), which 

is responsible for initial platelet adhesion to the damage endothelial wall and Glanzmann 

throbasthenia, where patients suffer from severe bleeding periods due to the mutation in the 

ITGB3 integrin in platelets (George, Caen et al. 1990). Investigation of platelet signaling has 

been one of the main focus of cardiovascular research for decades but only in recent years 

advances in covering the platelet proteome and investigating qualitative and quantitative 

changes in platelet proteins (Senzel, Gnatenko et al. 2009). Platelets have not been the only 
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blood cell line which has been investigated using proteomic approaches. Recently, the red 

blood cell proteome and interactome was detected (D'Alessandro, Righetti et al. 2010) along 

with separate proteome analysis of all six blood constituents: plasma, T-cells, monocytes, 

platelets, neutrophils, erythrocytes (Haudek, Slany et al. 2009). Further analyses include the 

monocyte proteome (Castagna, Polati et al. 2012) and the T-cell proteome under different 

conditions (Wollscheid, Watts et al. 2004). 

Proteomic analysis is crucial in platelets because genetic manipulations are excluded due to 

the anucleate nature of these cells. However, they contain a pool of mRNA which can be 

spliced and translated in a regulated manner (Denis, Tolley et al. 2005; Dittrich, Birschmann 

et al. 2006; Schwertz, Tolley et al. 2006; Rowley, Oler et al. 2011).  

1 satz noch das transcriptome mit proteome verbindet  

Protemic analyses of platelet signaling have thrived as an effect of the development of new 

proteomic technologies for proteomics and phosphoproteomics (Walther and Mann 2010). A 

number of investigations on platelet subcompartments have already been published 

(microparticles, alpha granules, membranes and the secretome (Senzel, Gnatenko et al. 

2009)). Additional studies have concentrated on the platelet phosphorproteome as an 

important guideline to changes in platelet signaling (Zahedi, Lewandrowski et al. 2008). 

However, signaling events have not yet been investigated in a network context. Research 

studies have been focusing on unraveling platelet signaling but mostly on the level of specific 

molecules and subparts of pathways rather than the platelet proteome as a whole (Purvis, 

Chatterjee et al. 2008). With the number of performed studies constantly growing, there is a 

need for a database combining multiple sources of platelet data. This was achieved during this 

thesis by the development of a platelet-specific knowledge base called PlateletWeb. 

Integrating information on known platelet studies with human PPI and phosphorylation data, 

network analysis of platelets is now possible. 
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3.6 Aim of this work 

 

This thesis is mainly focused on a broad analysis of the platelet proteome and phosphoproteome, 

platelet signaling events and developing approaches for systems biological analysis of proteomic 

datasets. 

The first topic is the assembly of a platelet-specific platform: PlateletWeb. In this database, the 

human PPI network was established, based on interaction and phosphorylation information from 

literature. Platelet-specific proteomic and transcriptomics studies were manually collected. Drug 

and disease information along with information on phosphorylations offer various opportunities 

for systems biological analysis of platelets. This allowed new insights on platelet activation and 

signaling leading to a first author publication in Blood (Boyanova, Nilla et al. 2012). 

I used the assembled platelet-specific information to analyze platelet signaling in a network 

context by using integrated network analysis. With the help of kinase predictions for 

experimentally validated platelet phosphosites, I introduced hypothesis for new drug targets and 

mechanisms of activation in human platelets. I analyzed different aspects of platelet signaling 

such as integrin signaling (DOK1) and ADP signaling and systematically investigated the 

networks obtained from PlateletWeb.    

The third topic includes the search for optimal functional modules in proteomic data a module 

detection algorithm enhanced with functional information as network edge values and the curated 

human interactome as a backbone for integrated network analysis. I performed the validation of 

this method by investigating small and medium-sized protein networks of various cell types and 

testing the biological importance of the obtained functional modules for these cells.  

Finally, I was involved in transferring the module detection algorithm from qualitative to 

quantitative phosphoproteomics data. At first tested on platelet phosphoproteomics information, 

the algorithm was further applied to a site-specific phosphoproteomic dataset from human 

embryonic stem cells to obtain a kinase-substrate network revealing the regulation of 

differentiation in these cells.  
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4 Materials and Methods 

4.1 Human proteome, interactome and phosphoproteome assembly 

 

Data from various mass spectrometry studies published in recent years together with a first 

catalogue of the platelet proteome (Dittrich, Birschmann et al. 2008) were used as sources for a 

new comprehensive platelet proteome. Studies of unfractionated platelets were included along 

with studies of specific platelet sub-compartments such as plasma membrane, secretome and 

microparticles. Furthermore, literature-curated information was extracted from the NCBI 

GeneRifs (Maglott, Ostell et al. 2007) and filtered for new platelet proteins using the keyword 

“platelet”. Platelet transcriptome data included a previously performed SAGE (Serial Analysis of 

Gene Expression) analysis of human platelets (Dittrich, Birschmann et al. 2006). Additionally, 

information about platelet-specific proteins was extracted from main databases such as Uniprot 

and HPRD, where tissue-specific information for some proteins is given in a separate Table. 

A detailed listing of all platelet data sources used is available in Supplementary Materials 

(Supplemental Table 1).  

Information on human protein-protein interactions (PPI) was retrieved from the Human Proteome 

Reference Database (HPRD) (version 9.0, 04/2010) (Keshava Prasad, Goel et al. 2009) and the 

Entrez Gene NCBI server (Maglott, Ostell et al. 2007) (accessed 12/2010). The NCBI server 

provided interaction information from BioGRID and BIND additionally. 

The interaction data was combined with data on protein phosphorylation from HPRD (version 

9.0) (Keshava Prasad, Goel et al. 2009)  and PhosphoSite (accessed 01/2011) (Hornbeck, Chabra 

et al. 2004) along with  kinase predictions for platelet-specific phosphoproteome data (Zahedi, 

Lewandrowski et al. 2008) using the NetworKIN algorithm (Linding, Jensen et al. 2007; Miller, 

Jensen et al. 2008). An interaction network was created using data for interacting proteins 

retrieved from all these multiple sources. Similarly, a phosphorylation network consisting of all 

kinases and their substrates (which may also be kinases) has been assembled where the degree of 

each kinase equals the number of substrates it phosphorylates.  

After careful annotation, the complete human PPI network consists of 54,218 simple interactions, 

4,406 phosphorylation events and 135 dephosphorylation events between 10,916 human proteins. 
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4.2 Kinase and phosphatase information 

 

The list of human kinases was extracted from Manning et al (Manning, Whyte et al. 2002) and 

used for reference and validation of the HPRD phosphorylation data. This study has been 

acknowledged as a golden standard for human kinase annotations and used as reference in a 

number of studies (Munoz, Low et al. 2011; Hennig, Mikula et al. 2012; Konig, Nimtz et al. 

2012).  

The catalogue of human phosphatases was acquired in a multi-step procedure. At first all human 

phosphatases were obtained from the Human Protein Phosphatases PCR Array (Qiagen; 82 

phosphatases) and additionally complemented by protein tyrosine phosphatases from a human 

genome phosphatase study (Alonso, Sasin et al. 2004) (103 phosphatases). The rest of the 

available phosphatases were manually extracted from the PlateletWeb knowledgebase filtered for 

proteins with the term “protein phosphatase” in their description. Thus, the total number of 

human protein phosphatases reached 181, with 39 phosphatases associated with a substrate 

according to HPRD protein modification data. The platelet phosphatases sum up to 39 with 24 of 

them containing substrate information. 

 

4.3 Experimentally-validated phosphorylation sites and kinase predictions 

 

Platelet-specific, experimentally validated phosphorylation sites were assembled from a recent 

mass spectrometry analysis of resting human platelets (533 phosphosites) (Zahedi, Lewandrowski 

et al. 2008), while the rest of the phosphosites were extracted from experiments described in 

literature (73,734 phosphosites). These sites were mapped to their positions in the original 

peptide using a perl script. Kinase information for these sites were extracted using a special 

bioinformatical algorithm NetworKIN (Miller, Jensen et al. 2008). The NetworKIN algorithm 

combines two different approaches for phosphorylation predictions  - consensus sequence motif 

search (Miller, Jensen et al. 2008) and protein association networks (a network context of kinase 

and phosphoproteins which makes up to 60-80% of computational capability to assign in vivo 

substrate specificity) (Linding, Jensen et al. 2007; Linding, Jensen et al. 2008) -  in order to 
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generate a full, realistic and statistically more probable prediction of the involved kinase. Two 

different scores (a motif score and a context score) are calculated for each algorithm and 

presented in the final results. Specificity is further enhanced by using information on subcellular 

compartmentalization, colocalization via anchoring proteins and scaffolds, substrate capture by 

noncatalytic domains, temporal coexpression and kinase-docking motifs. The algorithm consists 

of two crucial stages. In the first stage neural networks and position-specific scoring matrices are 

used for phosphosite assignment to one or more kinases using consensus substrate motifs. In a 

second stage a probabilistic protein network is extracted from the STRING database, where 

networks are generated using interaction and pathway databases, literature mining, mRNA 

expression studies and genomic context (von Mering, Jensen et al. 2005). The nearest member of 

the relevant kinase family in the thus generated network is identified for each phosphorylation 

site.  

To use NetworKIN all protein sequences were identical starting with the sign “>” and the Protein 

ID (gene name and ID from NCBI, ID from HPRD with the assigned number for different 

splicing variants, ID from SwissProt). The position of the phosphorylation sites, obtained with 

the program were also inserted with the according IDs. 

For this study, two different versions of the NetworKIN software were used. The two versions 

use slightly different motifs for the kinase motif search, which is the reason for discrepancies in 

some predictions. Nevertheless, by combining the two versions of the algorithms, we were able to 

gain a full view on the kinase predictions regarding specific sites. 
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4.4 Drugs and disease information  

 

Drug data were downloaded from DrugBank Version 3.0 (Knox, Law et al. 2011), which 

includes detailed information on both drugs and drug targets. There are two main types of drug 

categories, according to their stage of development: approved and experimental. Approved drugs 

have already been introduced in the market, while experimental drugs are still under 

development. The database contains 4311 human drugs, which have a human drug target in the 

PlateletWeb knowledge base (approved, 1195; experimental, 3015) and act on 2106 distinct 

human proteins. There are 950 platelet proteins among these drug targets. Notably, drug-protein 

interactions are not only physical interactions but may also include indirect functional effects. 

Genetic disease information for 701 platelet proteins was extracted from HPRD. 

 

4.5 Pathway information 

 

KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways were downloaded from the 

KEGG database (Release 57.0, January 1, 2011) (Kanehisa 2002). It contains information on 

signaling, enzymatic reactions and biochemical metabolic transformations. The Advanced 

Pathway Painter v2.26 was used for the visualization of KEGG pathways in the PlateletWeb 

knowledge base. Enrichment analysis of pathways was performed using Fisher’s exact test 

comparing the number of platelet proteins in the pathway against the number of all platelet 

proteins annotated in KEGG pathways. 

 

4.6 Transmembrane domain prediction 

 

Transmembrane domains have been predicted using the TMHMM Server, Version 2.0 (Krogh, 

Larsson et al. 2001) yielding a total of 5107 transmembrane proteins, of which 1158 are platelet 

proteins. 
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4.7 Functional gene annotations for platelet-specific analysis 

 

Gene Ontology (GO) information was extracted from the GO database (Ashburner, Ball et al. 

2000) (website accessed December 2010) and used for functional enrichment analysis. There are 

4,728 platelet proteins annotated with a GO function, which accounts for a coverage of 94%. 

GO Enrichment analysis was performed by the BINGO plug-in v2.44 (Maere, Heymans et al. 

2005) of the network analysis software Cytoscape (Shannon, Markiel et al. 2003). For the full 

GO annotation comparison, all platelet proteins with a GO functional annotation in the network 

were considered (Biological Process (BP): 3,263; Molecular Function (MF): 3,412; Cellular 

Component (CC): 3,394 of total 5,025 platelet proteins). 

  

4.8 Module detection algorithm extended with functional information 

 

4.8.1 Gene Ontology (GO) functional enrichment 

 

Gene Ontology information was obtained from the GO database (Ashburner, Ball et al. 2000) 

(accessed May 2011). This is a hierarchically clustered database which annotates biological terms 

for each known gene into three main categories: Biological Process (BP), Molecular Function 

(MF) and Cellular Component (CC). The tree-like structure allows ordering the terms according 

to their functional specificity with the most specific terms found at the far end of each branch. 

The GO enrichment analyses in this study were performed with the BINGO plug-in (Maere, 

Heymans et al. 2005) of the visualisation software Cytoscape (Shannon, Markiel et al. 2003). 

Statistically significant overrepresented terms were selected according to their p-value using a 

hypergeometric test (Maere, Heymans et al. 2005). All p-values were adjusted for multiple 

testing using the Benjamini and Hochberg correction (Benjamini and Yekutieli 2001).  
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4.8.2 GO semantic similarity 

 

Semantic similarity describes the similarity between two GO ontology terms based on various 

criteria and assigns a value for each two GO term pairs. In this case, scores for the GO semantic 

similarity were initially calculated based on the predefined method by Schlicker et al (Schlicker, 

Domingues et al. 2006) where the probability of the most informative common ancestor (MICA) 

is used for calculating the score. This algorithm was further extended by Frohlich et al  (Frohlich, 

Speer et al. 2007) to calculate functional similarity between “two genes” (GOSim). The 

getGeneSim function in the GOSim package along with the funSimAvg as similarity measure 

(Schlicker, Domingues et al. 2006) determines the average of best matching GO term similarity 

for both genes. The semantic measurement was calculated for all the three ontologies on all the 

interactions which are listed in the interactome. These results were then combined together for 

each of the interaction into one composite score using the BioNet package in R (Beisser, Klau et 

al. 2010). 

 

4.8.3 Module detection algorithm 

 

For network analysis we applied a recently devised algorithm (heinz, heaviest induced subgraph), 

which computes provably optimal and suboptimal solutions to the maximal-scoring subgraph 

(MSS) problem in reasonable running time using integer linear programming (ILP) (Dittrich, 

Klau et al. 2008). The algorithm is based on the software dhea (district heating) from Ljubi´c et 

al. (Ljubi?, Weiskircher et al. 2006). We have extended the C++ code in order to generate 

suboptimal solutions and have created several Python scripts to control the transformation to a 

Steiner tree problem, the use of dhea and the retransformation to a PPI subnetwork. The dhea 

code uses the commercial CPLEX callable library version 9.030 by ILOG, Inc. (Sunnyvale,CA) 

The analysis of a network obtained by combining data from expression profiling study of 

lymphoma patients with the comprehensive interactome data from HPRD was performed 

previously by Dittrich et al (Dittrich, Klau et al. 2008). In this prospect, the p-values are derived 

from the analysis of differential expression between two tumor subtypes as well from the analysis 

of survival data by cox regression for each node in the interaction network. The main idea is to 
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identify functional modules in the PPI network, sharing common cellular functions. In order to 

achieve this, a maximally scoring network is devised along with the scoring of the nodes in the 

network to be identified. 

This algorithm was applied to various proteomic datasets individually to extract functional 

modules based on previously calculated node and edge scores. When no edge scores are 

introduced, proteins in the sample are assigned a constant positive node score, while the rest of 

the interactome proteins obtain a constant negative score. 

 

4.8.4 Score transformation of network edges 

 

To obtain an overview of the functional information in the PPI network and test the proportion of 

signal in the calculated GO scores (for BP, MF and CC) we compared the GO-similarity 

measures in the actual PPI with that measured on the background sets created by rewiring the 

edges in the network. The human PPI interactome was randomized twice, keeping the number of 

occurrences for each gene constant. We calculated the empirical p-values for each GO score (of 

each interaction) based on the performed randomization. The obtained p-values were then used 

for fitting a BUM model to the interactome, which divides the scores into a signal and a noise 

component. The -upper value represents the proportion of signal in the network. In a further 

step, scores for the module detection algorithm were calculated based on the BUM model. This 

procedure was performed on the BP, MF and CC semantic similarity scores separately and the 

obtained algorithm scores were assigned to the interactions and used in further analysis.  

 

4.8.5 Calculation of functional interaction scores 

 

To investigate the network from all aspects simultaneously, a combination of the three main 

ontology scores was needed. Therefore we used a method of p-value aggregation, previously 

applied in microarray analysis to combine different sets of data (Dittrich, Klau et al. 2008) . The 

calculated empirical p-values for all three ontologies were thus combined into a single p-value. 

The aggregated p-values from the BUM model were converted to network edge scores (= protein 
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scores) using the BioNet package (scoreFunction)(Beisser, Klau et al. 2010). We calculated a 

threshold p-value (FDR), which controls the false discovery rate for the positively scoring p-

values. P-values below this threshold are considered to be significant and will score positively 

whereas those above the threshold are assumed to have arisen from the null model and will be 

assigned negative scores. The edges missing all three ontology annotations (2456 edges) were 

assigned the background distribution of the interactome network (=average of all edge scores). 

 

4.8.6 Generation of network node scores 

 

The network node scores were calculated based on the presence or absence of a protein in the 

measured proteome sample and the interactome edge scores. All proteins from the sample were 

assigned a positive value, calculated as follows: Node score (sample) = -avg (scores of 

connecting edges), while the rest of the interactome proteins are given the following value: Node 

score (rest of interactome nodes) = - avg (all edge scores).  All node scores of the sample and 

the rest of the interactome are put together to form a single node score file. 

 

4.8.7 Constraints of the algorithm solution 

 

The module detection algorithm can ensure that all proteins in a sample are found in the resulting 

network. This is achieved by adding a constant value to the protein score. In the case when the 

algorithm was used without functional interaction scores, there was no score applied to the edges 

and all proteins from the sample were given a constant value (“+5” to the H9N2-virus infected 

cells network and “+10” to the T-cells proteome network) to assure that they all appear in the 

final solution. The rest of the interactome was assigned a negative value of -1.  
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4.9 Proteomic studies for identification of functional modules 

 

Data for the module detection analysis was extracted from two main studies, including datasets of 

different size to optimally test the module identifying algorithm enhanced with GO functional 

information. One of the datasets was from H9N2 virus infected human gastric cells (Liu, Song et 

al. 2008), where 22 proteins were identified using mass spectrometry. The second dataset 

consisted of blood constituents (Haudek, Slany et al. 2009), from which the fraction of T-cells 

was chosen for the analysis. The study contained 970 T-cell proteins. 

 

4.10 Functional module analysis of quantitative phosphoproteomic data 

 

The used dataset originated from a human embryonic stem cell (hESC) study (Rigbolt, 

Prokhorova et al. 2011). A total of 6521 proteins were identified in the original dataset using 

Stable Isotope Labeling by Amino acids in Cell culture (SILAC) method, of which 5765 proteins 

were mapped in the PlateletWeb database. From these, 205 were found to be kinases identified in 

the study. Site-specific phosphorylation changes were measured at four times points after 

stimuliation with non-controlled medium (NCM) (30 minutes, 1 hour, 6 hours, 24 hours). 

Embryonic stem cells were stimulated to differenciate using NCM, which is lacking the needed 

factors to sustain a pruripotent state. The SILAC ratios were calculated to obtain a value for the 

differential phosphorylation between the treated and the control cells. The SILAC ratios were 

then transformed into site-specific node scores and the functional module detecting algorithm 

was used to identify the time-specific response module of phosphorylation signaling during the 

hESCs differentiation. 

 

4.11 Statistical analyses 

 

Fisher’s exact test (two-sided for kinase enrichment) was used for all enrichment analyses. All p-

values were adjusted for multiple testing families using the Benjamini & Hochberg approach 
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(Benjamini and Yekutieli 2001). Adjusted P-values lower than 0.05 were considered significant. 

All statistical analyses were performed with the statistical analysis software R version 2.13.0 (R 

Development Core Team 2011).  

Wilcoxon rank sum test was used for drug enrichment analysis after splitting the drug targets into 

three separate groups according to the drug type affecting them. 

Functional enrichment analysis was performed with the Cytoscape plug-in BINGO. BINGO 

(Biological Network Gene Ontology Tool) is a plugin for Cytoscape. It helps to determine which 

Gene Ontology categories are statistically over- or underrepresented in a set of genes by using a 

hypergeometric test. Gene enrichment analysis was performed by the BINGO plug-in v2.44 of 

the network analysis software Cytoscape 2.8.  

 

4.12 Network visualization 

 

Throughout the study, the visualization of subnetworks is performed by Cytoscape (version 

2.8.2). Cytoscape is an open source platform for complex network analysis and visualization 

(Shannon, Markiel et al. 2003). It is a java based tool and can be run as standalone software on 

the local computer. 

 

4.13 PlateletWeb database search 

 

The analysis of the platelet database was performed using MySQL – a relational database 

management system. The data was extracted from multiple sources and saved as tables in the 

database. Gene Identifiers were used for cross-mapping of tables, therefore they were kept 

unique. Further programs for analyzing and parsing the data include Notepad++, Microsoft Word 

and Excel. The script language Perl (Practical Extraction and Reporting Language) was applied 

for parsing annotations and preparing data for inclusion to the database. 
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5 Results 

5.1 Analysis of the platelet proteome 

 

Mass spectrometry is currently a very powerful protemic tool for large-scale analysis of the cell 

proteome. During recent years proteome analysis on a cell and tissue scale has been increasingly 

applied (Kanehisa 2002; Hornbeck, Chabra et al. 2004; Keshava Prasad, Goel et al. 2009). 

Interaction measured between two proteins under specific conditions such as yeast-two-hybrid or 

affinity chromatography coupled with mass spectrometry, can be a strong indication that these 

proteins also interact in vivo. This information can then be used to create a network, where nodes 

represent the proteins in the interactome and edges stand for the interactions between them. Thus, 

a whole new perspective of the proteome is gained and methods typically used in statistical 

network analysis can be applied to investigate biological networks.  

Platelets are fitting targets for a protemic approach because they lack a nucleus and they can be 

obtained in high yield. Furthermore, they are easy to separate from other blood cells. A platform 

combining the known proteomics and transcriptomics information about platelet protein detection 

has been missing in the field. Therefore, we introduced a knowledge base (PlateletWeb) which 

integrates a various large-scale datasets yielding a comprehensive catalogue of human platelet 

proteins and their specific regulation mechanisms (Boyanova, Nilla et al. 2012). For example 

membrane proteins are difficult to extract because they are usually masked by other peripheral 

proteins and they are low-abundant. Therefore, a large-scale analysis on membrane proteins 

complemented the platelet proteome information in the knowledge base. Platelet source data 

includes references, which enable the evaluation of data quality while the various query modes 

allow data integration, thus providing insights on multiple options such as pharmacological 

modulation and network analysis. The integrative view on platelet signaling allows a deeper 

understanding of the signaling mechanisms in human platelets.  
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During the development of the PlateletWeb database, I was involved in gathering platelet-specific 

information from proteomic studies, filling and validating the database structure of the database 

and interpreting biological results in reference to disease and drug target associations. My main 

focus was the mapping of phosphorylation sites and analyzing the regulatory mechanisms of 

platelet phosphorylation and dephosphorylation events. Experimental data on platelet 

phosphorylations obtained from a collaborator mass-spectrometry lab of Sickmann et al (Zahedi, 

Lewandrowski et al. 2008) was additionally analyzed to obtain kinase predictions for the 

measured sites, which additionally enhanced the regulatory information available in the 

PlateletWeb. Furthermore, I performed an enrichment analysis of platelet drug targets and 

disease-associated genes and analyzed in detail targets of approved and experimental drugs. 

This research was originally published in Blood. All figures in this chapter have been extracted 

from the publication by (Boyanova, Nilla et al. 2012). 
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5.1.1 Data assembly of the platelet proteome and interactome information 

 

Investigation of the platelet proteome was performed based on multiple studies available in 

literature. Data sources were classified into three main categories: proteome studies (21), 

transcriptome studies (SAGE (Dittrich, Birschmann et al. 2006)) and database information 

(Uniprot, Generifs NCBI, Global Proteome Machine Database GPMDB, HPRD). Proteins were 

analyzed individually depending on the source of platelet information (proteome and 

transcriptome). Detailed annotation resulted in a set of 5,025 platelet proteins creating a 

comprehensive and reliable backbone for platelet-specific information. Platelet proteins were 

detected in multiple fractions depending on the type of study. Most studies included whole 

platelet lysates or membrane proteome analysis. The platelet secretome was also well covered in 

proteomic studies (Figure 5). One interesting aspect was to analyze which proteins are identified 

in most studies. Fibrinogen was found most often, followed by filamin A and actinin. Fibrinogen 

is a plasma glycoprotein, which was probably measured along with the platelet lysates because of 

its high abundance. Filamin A is involved in actin filament assembly and is therefore critically 

involved in platelet shape changes, it also links actin filaments to the cytosolic domain of many 

membrane glycoproteins in platelets through its C-terminal region (Garcia and Jay 2006). Actinin 

also plays a role in microfilament assembly and has been indicated to play a potential role in 

setting integrins to a default low-affinity ligand-binding state in resting platelets and regulating 

α2bβ3 activation by inside-out signaling in platelets (Tadokoro, Nakazawa et al. 2011). 

  

http://gpmdb.thegpm.org/
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Figure 5. Platelet fractions 

Platelet studies were analyzed for the number of proteins extracted in each fraction. Whole platelet analysis was the 

most abundant fraction, while alpha granules contained the least number of identified proteins. The number of 

membrane proteins is also quite big, given the difficulty of extracting pure membrane lysates (Boyanova, Nilla et al. 

2012). 

 

In a previous study (Dittrich, Birschmann et al. 2008), the platelet proteome and transcriptome 

data was combined with human protein-protein interactions (PPI) to obtain a first overview of the 

platelet interactome. The PPI information has been extended, by adding new data from manually 

curated human protein reference database (HPRD), thereby ensuring high quality of annotations. 

Further information for interactions was added by including phosphorylation events into the 

PlateletWeb database from two major quality databases: HPRD and Phosphosite. The site-

specificity and kinase association of each measured phosphorylation site was kept, so that the 

regulation of the site can also be examined (where known). These phosphorylations are measured 

in various human cells and information can be extracted in vivo or in vitro, but they are still a 

very good indicator for existing modifications in human platelets. If a phosphorylation event is 

known to take place in another cell type and both the kinase and protein are present in platelets, 

then there is a high chance that this modification also occurs in platelets. To increase platelet-

specificity, a platelet phosphoproteome study by Zahedi et al (Zahedi, Lewandrowski et al. 2008) 

was included to the database, where phosphorylation sites were measured with mass spectrometry 
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in platelets. These 533 phosphorylation sites were especially important to our analysis, as they 

were measured under basal conditions in resting platelets. Mapping of these sites to the 

corresponding proteins to identify the exact position represents an important part of my work 

during the master thesis. During this thesis, I included these phosphorylation sites and their 

kinase predictions into a network context, made freely accessible with the PlateletWeb 

knowledge base. 

To allow systems biological analysis of the newly gathered interactome and phosphoproteome 

information, information of available kinases and phosphatases was crucial for understanding the 

regulation of phosphorylation sites in a network context. Acting kinases were assembled from 

HPRD and Phosphosite but to achieve a comprehensive analysis, more kinase information was 

included from studies of the human kinome. Manning et al (Manning, Whyte et al. 2002) first 

introduced a standard list of human kinases in 2002 and proteins in the database were defined as 

kinases if they were available in this study. Phosphatase data was also added to the knowledge 

base as dephosphorylation is also a well-established mechanism in cell signaling, triggering either 

activation or inhibition of the dephosphorylated protein. Again, a reliable source for phosphatases 

was considered from the Human Protein Phosphatases PCR Array (Quiagen; 82 phosphatases) 

and the assembly of protein tyrosine phosphatases in the human genome (Alonso, Sasin et al. 

2004) (103 phosphatases). Further manual curation of phosphatases was performed using a search 

in the protein summary for the term “protein phosphatases” yielding a total of 191 phosphatases. 

The full list of platelet phosphatases is available in Supplemental Table 2. 

To allow investigation of pharmacological modulation options, drug information was retrieved 

from the drug repository DrugBank. Each platelet and non-platelet protein is now available with 

its targeting drug. Another important aspect of platelet proteins is whether they are associated 

with genetic diseases therefore data from HPRD on genetic diseases was also included in the 

database. Functional information added from the Gene Ontology database contributed to the 

wealth of data available on a single-protein level. Further valuable information included protein 

domains and transmembrane predictions. To ensure a comprehensive signaling analysis of 

platelet function, KEGG pathways are also introduced in the database and all contained platelet 

proteins are additionally highlighted in the KEGG visualization. The integrative information 

sources can be seen in Figure 6. 
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Figure 6.  PlateletWeb database sources 

Integrated information on interactions and protein modifications (phosphorylations and dephosphorylations), 

functional data, domains, drug and disease association and pathways was added to platelet-specific proteomic data 

extracted from multiple proteome studies and complemented by kinase and phosphatase information, site-specific 

phosphorylation sites and kinase predictions for experimentally validated platelet phosphosites. Thus, a 

comprehensive backbone for the platelet systems biological investigation is now available. 

 

All data is available online on a website (http://PlateletWeb.bioapps.biozentrum.uni-

wuerzburg.de) with a broad and intuitive interface for functional network analysis including 

advanced data mining capabilities and the visualization of subnetworks with integrated 

information on phosphorylations and interactions. 

  

http://plateletweb.bioapps.biozentrum.uni-wuerzburg.de/
http://plateletweb.bioapps.biozentrum.uni-wuerzburg.de/
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5.1.2 PlateletWeb knowledgebase 

 

The PlateletWeb knowledgebase was created by integrating multiple sources of data, which 

allows a first systematic overview of the platelet proteome network with its phosphorylation 

events and drug regulation. Using the platform it is possible to extract information on a single 

protein level as well as network context level. A query search for a protein of interest yields 

results about its interaction partners and physical characteristic. Each interaction is supported 

with evidence from literature allowing the user to trace back the original source of the interaction. 

Furthermore, characteristic features from the functional and network context of the protein along 

with the technique for its identification in platelets (level of detection) are available, representing 

also the number of studies the protein has been identified in and the fraction from which it was 

isolated. Information on physical properties such as isoform-specific sequence information, 

transmembrane domains, isoelectric point and molecular weight are additionally provided. 

Advanced search for any of these characteristics allows the user to look for a protein of a 

particular isoelectric point range or a particular weight, making this tool especially useful in the 

analysis of Western Blot and 2D Gel experiments, where the weight, size and isoelectric point are 

crucial for identifying proteins from the experiment. Special focus is given to site-specific 

phosphorylation and dephosphorylation sites, with kinase/phosphatase data if it is available for 

the given site. Thus, the phosphorylation status of all proteins can be investigated, distinguishing 

between phosphorylations derived from published literature and those directly measured in 

human platelets. Additional information on the source study for these modifications enables the 

user to verify the reliability of the platelet proteomic sources. Advanced search for particular 

features of interest can also be performed, including combinational search for proteins with 

specific phosphorylated residues detected on proteome or transcriptome level and containing 

particular domain information along with functional annotation for a particular GO term. Drug 

information provides additional insights about platelet proteins associated with specific drugs. As 

an example, results on pharmacological modification by inhibiting prostacyclin receptors retrieve 

analogues of prostacyclin (Epoprostenol, Iloprost, Treprostinil). A key-word search in the 

description of proteins can be used to find associations with diseases. The knowledge base thus 

allows a comprehensive analysis of the platelet on a single protein level as well as on the scale of 
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network regulation and functional association of signaling components. The main page of the 

PlateletWeb website is represented in Figure 7. 

 

 

Figure 7. Screenshot of the main page of the PlateletWeb knowledge base 

The screenshot represents the title page of the PlateletWeb knowledge base, with available information on the basic 

concept of the website and links to advanced search. The option for extracting subnetworks of a given list of proteins 

is also available from the main page. Additionally, links to the tutorial, publications and contact are readily 

accessible along with an available legend, explaining the color coding of various visualizations in PlateletWeb. The 

main network presented, shows the vWF signaling pathway as an example for an integrated network, with all 

available phosphorylations, dephosphorylations, interactions and the the phosphorylation state of the proteins (blue 

for platelet proteins phosphorylated in the platelet, red for platelet protein phosphorylated in human cells and yellow 

for unphosphorylated platelet proteins). Beside the network information, there are also statistics on the content of the 

database.  
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5.1.3 Analysis of the platelet phosphoproteome 

 

The first step in analyzing the platelet phosphoproteome was to determine the distribution of 

serine, threonine and tyrosine phosphorylation sites of platelet proteins, either from literature 

documentations in other human cells or from the experimentally validated platelet phosphosites. 

The residue-specific distribution showed a clear majority of serine phosphorylated sites in both 

human (57.2%) and platelet sites (82.7%), but the amount of tyrosine phosphorylations measured 

in platelets were lower than the overall distribution (4% when compared to 21.3%). A possible 

explanation for this has been proposed by (Olsen, Blagoev et al. 2006) where it is mentioned that 

tyrosine phosphorylations are often found in low abundant proteins. Additionally, their lower 

stability in phosphoamino acid analysis makes them harder to detect. The amount of serine 

phosphorylations in the experimental set is a lot higher than in the overall distribution (Figure 8).  

 

 

Figure 8. Distribution of experimentally validated phosphorylation sites in platelet 

proteins 

Distribution of serine, threonine and tyrosine phosphorylation sites among platelet proteins. The percentage of each 

phosphorylation fraction is represented in brackets (Boyanova, Nilla et al. 2012). 
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Phosphorylations can only be fully understood and investigated in a network if information on 

the phosphorylating kinase is available. Thus, we first analyzed the number of phosphorylated 

platelet proteins associated with a kinase, representing only 23% (814) of all phosphorylated 

platelet proteins (3,532). For investigating proteins in the network context, it was essential to 

extract also data about the regulation of their phosphorylation sites.  On the scale of phosphosites, 

kinase and phosphatase information was available for a total of 3,080 sites. When limiting the 

study only to phosphosites measured in platelets, information was available for only 69 

phosphosites. Therefore, we used a novel network-based algorithm for prediction of potential 

kinases responsible for the phosphorylation of these sites (Linding, Jensen et al. 2007; Miller, 

Jensen et al. 2008), which yielded kinase predictions for further 436 sites. The total kinase 

annotation for experimentally validated phosphosites was thereby extended to 505 sites 

associated with a kinase (94.5%). When the whole platelet phosphoproteome was taken into 

consideration, these predictions contributed to 16% of all modifications with available kinase or 

phosphatase information (Figure 9). 

 

 

Figure 9. Distribution of modificated sites associated with a kinase/phosphatase. 

The number of modificated sites is presented as a fraction of all modificated sites with known kinase or phosphatase 

(3080). The dephosphorylated sites with known regulation represent the smallest fraction. Kinase predictions for 

experimentally validated platelet phosphosies account for 16,4% of all sites associated with a kinase, thereby 

increasing the amount of sites with known regulation (Boyanova, Nilla et al. 2012). 
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From the overall 526 kinases 229 were found in platelets (43,5%). Not all kinases are supplied 

with substrate information, only about 162 (70.7%) have well-described substrates in the platelet 

proteome but nearly all (216, 94%) have documented phosphorylation sites. On the side of 

phosphatases, 73 (38.2 % of 191 total human phosphatases) phosphatases are identified in 

platelets and 24 of them have characterized substrates. Interestingly, when comparing the number 

of available platelet kinases and phosphatases, kinases build a clearly larger group, indicating that 

dephosphorylation is achieved by fewer enzymes, which have a broad range of activity. 

Focusing further on the kinase predictions for experimentally validated phosphosites in platelets, 

we predicted 96 kinases based on the kinaseprediction algorithm (see methods) and 69 of them 

were identified in platelets. The top 8 kinases with most platelet targets are all detected in the 

platelet and depicted in Table 1. CDK2 was predicted to phosphorylate 119 distinct proteins on 

183 unique sites. The ubiquitously acting casein kinase was listed also among the top predicted 

kinases with the most substrates. The high number of MAP kinases can be explained by the 

specificity of the algorithm itself and its bias towards phosphorylation motifs in MAP kinase 

substrates. 

 

Gene 

ID 

Gene 

Symbol 
Substrates Phosphosites 

1017 CDK2 119 183 

5599 MAPK8 91 133 

1459 CSNK2A2 87 143 

1457 CSNK2A1 87 143 

2932 GSK3B 75 102 

1432 MAPK14 61 77 

5600 MAPK11 60 79 

5603 MAPK13 59 75 

Table 1. The top 8 kinases predicted by the NetworKIN algorithm 

The kinase predicted most often is CDK2, followed by the MAP kinase MAPK8 and the broad specificity casein 

kinases. MAP kinases are the predominant kinases predicted by the Networkin algorithm. 
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Protein kinase A (PKA), a kinase which plays an important role for maintaining platelet balance 

by inhibiting platelets in their resting state, was also predicted to phosphorylate a number of sites. 

There are 20 proteins with predictions for the alpha subunit PRKACA and 30 proteins with 

predictions for the beta subunit PRKACB.  On the level of phosphorylation sites, there are 40 

sites with predictions for either subunit and only 3 of them overlap with already known regulation 

by PKA from literature (either extracted from HPRD or Phosphosite). For the remaining 37 sites, 

there is information available only from the predicting algorithm. For instance, the two sites 

belong to the proteins cyclin Y and syntaxin binding protein 5 (tomosyn). Tomosyn is one of the 

many components of the neurotransmitter release machinery and binds to syntaxin (Fujita, 

Shirataki et al. 1998). Syntaxin belongs to the group of t-SNARE proteins. In platelets SNARE 

proteins mediate the membrane fusion events required for granule cargo release (Graham, Ren et 

al. 2009). Therefore, tomosyn might play a role in endocytosis of platelets needed after activation 

and the granule release of transmitters such as ADP. Phosphosites potentially regulated by PKA 

may be involved in in inhibiting the function of tomosyn while platelets are inactive.  
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5.1.4 Platelet transmembrane domain proteins 

 

Membrane proteins perform key roles in cell-cell signaling and facilitate the initial steps in cell 

signaling activation. It is estimated that more than half of all proteins interact either directly or 

indirectly with cellular membranes (Almen, Nordstrom et al. 2009; Zhang, Naslavsky et al. 

2012). From a clinical perspective approximately 70% of all known drug targets are 

transmembrane plasma membrane proteins (Hopkins and Groom 2002) and therefore predictions 

for transmembrane (TM) domains  were performed for all human proteins in the database. 

Results from predictions indicated that 23% of the platelet proteome (1158 proteins) have a 

transmembrane domain, which is in accordance with the number of all human transmembrane 

proteins constituting 26% of the human interactome. These results correlate well with the study 

by Almen et al, where 27% of the human genome was estimated to code for transmembrane 

proteins (Almen, Nordstrom et al. 2009). The next step was to test whether there is an enrichment 

of a particular group of transmembrane proteins for drug targets according to the number of 

transmembrane domains they contain. 

Comparisons between the number of transmembrane domains of platelet proteins and TM 

domains of non-platelet proteins showed an underrepresentation of seven transmembrane domain 

receptors and four transmembrane domain receptors in platelet proteins. A closer overview of 

these receptors in non-platelet proteins revealed that they are mainly part of neuronal pathways 

and are therefore missing in platelet cells (Figure 10). 
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Figure 10. The top functional categories of proteins containing four transmembrane 

domains 

Proteins were categorized into functional classes, which they belong to, and visualized according to the number of 

proteins with four transmembrane domains contained in each functional group. Most of the functional categories are 

neuronal receptors missing in platelet, which explains their underrepresentation. 

In a second approach the number of identified platelet proteins in membrane fractions was 

compared with the number of platelet proteins with predicted transmembrane domains. In total, 

there were 1304 proteins identified in the membrane fraction with membrane proteomics. 

Interestingly, transmembrane prediction yielded further 532 platelet proteins which were not yet 

identified in a membrane-specific mass spectrometry study. Out of these, 303 were found on the 

proteome level with other mass spectrometry studies and among them were many receptors and 

proteins associated with membrane such as ATPases, cadherins, EPH receptors and integrins. 

Filtering those proteins for the word “membrane” in their description, yielded 10 platelet proteins 

identified on the proteome level (Table 2). These proteins consist of channels or outer 

mitochondrial-membrane proteins associated with transport. Thus, analysis of transmembrane 

domains using PlateletWeb gives indications about yet unidentified potential membrane proteins. 
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Gene 

ID 

Gene 

Symbol 
Description 

Number of 

predicted 

TM domains 

117532 TMC2 transmembrane channel-like 2 9 

7108 TM7SF2 transmembrane 7 superfamily member 2 7 

2206 MS4A2 

membrane-spanning 4-domains, 

subfamily A, member 2 (Fc fragment of 

IgE, high affinity I, receptor for; beta 

polypeptide) 

4 

10067 SCAMP3 secretory carrier membrane protein 3 4 

10507 SEMA4D 

sema domain, immunoglobulin domain 

(Ig), transmembrane domain (TM) and 

short cytoplasmic domain, (semaphorin) 

4D 

2 

93380 MMGT1 membrane magnesium transporter 1 2 

80863 PRRT1 proline-rich transmembrane protein 1 2 

8720 MBTPS1 
membrane-bound transcription factor 

peptidase, site 1 
1 

9804 TOMM20 
translocase of outer mitochondrial 

membrane 20 homolog (yeast) 
1 

51024 FIS1 
fission 1 (mitochondrial outer membrane) 

homolog (S. cerevisiae) 
1 

  

Table 2. Proteins with predicted transmembrane domains, which were not identified in 

membrane studies 

The top 10 platelet proteins with the highest number of predicted TM domains are represented with their gene id, 

gene symbol and description and their number of predicted domains they contain.  
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5.1.5 Pathway enrichment in platelets 

 

To characterize a cell type, one has to consider also the various pathways, which most likely play 

a role in its signaling. After performing a Gene Ontology enrichment analysis on all platelet 

proteins (Boyanova, Nilla et al. 2012), we tested whether some of the known KEGG pathways 

contain an increased number of platelet proteins and whether it is significantly different than 

expected by chance. Pathway information was downloaded from KEGG and platelet proteins 

were mapped to the KEGG database. A Fisher test was used to determine whether there is a 

significant enrichment of particular pathways in the platelet proteome by comparing the number 

of platelet proteins in a given pathway to the number of all platelet proteins found in all 

pathways. Thus, a higher abundance of platelet proteins would indicate an involvement of this 

pathway in platelet signaling. Figure 11 represents the top 25 pathways identified and presented 

according to the significance of their p-values. The most enriched pathway was “endocytosis” (p-

value = 2.35 × 10
-14

), followed by “regulation of cytoskeleton” (p-value = 1.82 × 10
-12

) and “Fc 

gamma receptor-signaling” (p-value = 3.28 × 10
-12

). Further pathways connected to endocytosis 

are the “SNARE interactions in vesicular process”. Integrin signaling as part of the focal 

adhesion pathway was also overrepresented, indicating its importance in platelet activation. 

Pathways associated with inflammation (“Leukocyte transendothelial migration” and 

“Chemokine signaling pathway”) were enriched for platelet proteins as well. Interestingly, many 

of the pathways associated with infection and pathogenic entrance were also found in the study: 

“pathogenic E.coli infection”, “Epithelial cell signaling in Helicobacter pylori infection” and 

“Shigellosis” as well as disease-facilitating pathways such as “Alzheimer’s disease” and 

“Parkinson’s disease”. 

On the other hand, signaling pathways specific to other tissues such as “Neuroactive ligand-

receptor interaction” (P-value = 2.06 × 10
-15

) and “Olfactory transduction” were strongly 

underrepresented in the platelet proteome (Supplemental Table 3). 
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Figure 11. KEGG enrichment of platelet proteins 

The top 25 enriched pathways are represented on the x-axis showing the –log10 value of the obtained p-values from 

the Fisher-test. Endocytosis and regulation of cytoskeleton are highly enriched in human platelets, followed by a 

number of pathways associated with phagocytosis and disease processes (Boyanova, Nilla et al. 2012). 
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5.1.6 Drug target and disease gene enrichment in platelets 

 

 

A comprehensive systems biological analysis includes investigation of the pharmacological 

modulation of proteins. We therefore created an extensive platelet drug target network using data 

on human drugs and drug targets from the DrugBank database (Knox, Law et al. 2011), including 

both approved (1195) and experimental (3015) drugs. Approved drugs are FDA-approved 

pharmaceuticals, available on the market and used in patient therapy, while experimental drugs 

are predominantly chemical molecules in development which still haven’t reached clinical 

application. The extracted drug dataset consists of 4311 human drugs, half of which (2706) act on 

platelet proteins. On the side of human proteins, there are 2106 human proteins associated with 

drugs, from which 950 are platelet drug targets (19% of all platelet proteins). The general statistic 

showed that 23 % of platelet drug targets are targeted by both approved and experimental drugs, 

but there is also a large group of targets affected by each drug type individually (Figure 12). 

Detailed analyses of these drug targets in relation to their topological (platelet interactome) and 

chemical properties (kinases) may elucidate how well platelet proteins are pharmacologically 

modulated and what tendencies are followed by the current drug development studies. 

 

 

Figure 12. Numbers of platelet drug targets affected by different drug types 

The figure represents the proportion of drug targets affected by the two types of drugs: approved and experimental. 

The two types affect 23% of all drug targets, while the rest is targeted by only one drug type (Boyanova, Nilla et al. 

2012). 
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Topological exploration of platelet drug targets included the investigation of their connectivity in 

the network. We grouped platelet proteins in the interactome by degree of interaction into non-

overlapping intervals (from less than 5 to above 40 interaction partners) and calculated the 

fraction of drug targets in each group.  

The resulting distribution showed an overall increase of drug targets among highly connected 

proteins in the network (Figure 13A). A Wilcoxon rang test revealed differences in the mean of 

each group (drug target vs. non drug targets). The number of interactors of drug affected proteins 

(mean = 11.6) were significantly higher than those not associated with drugs (mean = 6.8; p-

value = 1.84 × 10
-10

, Figure 13B). 

 

 

Figure 13. Dependancy of platelet drug targets from their degree 

(A) Topological network analysis of drug targets reveals an increase in the number of drug targets among highly-

connected platelet proteins. (B) Drug targets and non-drug targets are presented in box-plots according to their 

number of interactors. The median is higher in the group of drug targets, indicating enrichment of highly connected 

proteins in drug targets (Boyanova, Nilla et al. 2012). 
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To investigate the effect of each drug type to the observed enrichment among hub proteins, all 

drug targeted proteins were separated into three groups: proteins affected by experimental drugs, 

proteins targeted by approved drugs and proteins affected by both drug types. All three groups of 

proteins were consequently compared to the proteins without any drug association and a 

Wilcoxon rank test was applied to evaluate significant differences between these groups. 

Experimental drug targets were found significantly more often among well connected proteins 

(mean = 13.1; p-value = 5.79 × 10
-12

, Figure 14). This tendency decreased when drug targets 

affected by both drug types were tested (mean = 13.3; p-value = 0.0016). No significant 

difference could be detected for proteins targeted by approved drugs exclusively (mean = 8.0; p-

value = 0.1575). 

 

 

 

Figure 14. Boxplots of platelet drug targets according to the type of drug 

Analysis of drug targets distinguished by the type of targeting drug. Proteins associated exclusively with 

experimental drugs are more likely to have many interactors when compared to targets of approved drugs or both 

approved and experimental drugs (Boyanova, Nilla et al. 2012). 
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These results suggest that experimental drugs under development are more often influencing 

highly connected proteins in the platelet interactome. For further clarification, we performed a 

functional enrichment analysis on experimental drug targets. There was an overrepresentation of 

the process “phosphorylation” and “phosphorus metabolic process” among biological processes 

(Figure 15A) and “kinase activity” was the top enriched term in molecular functions (Figure 

15B). This indicates that proteins targeted only by experimental drugs are in most cases kinases. 

We suggested that the observed effect of hubs associated with developmental drugs is 

predominantly due to targeted kinases in the platelet interactome.  

 

Figure 15. GO enrichment analysis of proteins affected by experimental drugs 

 

(A) The top significant biological process terms and (B) molecular functions of proteins only targeted by 

experimental drugs are presented according to the –log (p-value) on the x-axis. The terms are grouped according to 

the parent Gene Ontology term. Phosphorylation processes and kinase activity are enriched. Overrepresented cellular 
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components are not shown (mitochondrion, proteasome core complex, alpha-subunit complex and Arp2/3 protein 

complex)(Boyanova, Nilla et al. 2012). 

 

Kinase involvement could be further validated with topological analysis performed analogously 

on the kinase drug targets in the platelet phosphorylation network (Figure 16). Integrative 

analysis of the phosphoproteome included only kinases and their direct substrates. In this case, 

we tested whether kinases with a high number of substrates were significantly more often 

targeted by drugs. We additionally identified what type of drug (approved, experimental or both) 

was involved. Then, kinases were tested against kinases without drug association. Overall, drug 

targets were enriched among well connected kinases (Figure 16A, B; mean = 15.9; p-value = 

3.015 × 10
-5

), consistent with results for the whole platelet interactome (Figure 14). When the 

two types of drugs were tested (experimental and approved), kinases affected by experimental 

drugs were significantly more often connected with multiple substrates (mean=14; p-value = 

0.0001135) when compared to approved drug targets (mean = 13.5; p-value = 0.08372) and 

kinases targeted by both drug types (mean = 22.8; p-value = 0.008618) (Figure 16C). These 

results underline the impact of kinases with a high number of substrates as predominant targets of 

experimental drugs in the platelet interactome. 
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Figure 16. Kinases as drug targets  

(A) Kinases were tested for enrichment of drug targets in dependence of the number of substrates. There are more 

drug targets found among highly connected kinases. (B) When tested for enrichment using Wilcoxon rank sum test, 

kinases with many substrates were significantly more often associated with drugs. (C) Kinase drug targets were also 

separated according to the type of drug targeting them (approved, experimental, both) and the group of experimental 

targets showed a high significance for drug target enrichment when compared to the other two groups(Boyanova, 

Nilla et al. 2012). 

  



Analysis of the platelet proteome 

 

67  
 

Investigation of drug targets was only one of the clinically relevant analyses of platelet proteins. 

Genetic diseases can also be mapped to platelet proteins according to the known gene 

information. Thus, analysis of important genes in the platelet interactome can be performed based 

on their association with disease. Genetic disease associations were extracted from HPRD for 701 

platelet proteins from a total of 1933 human genes with available information. Similarly to the 

drug target proteins, disease proteins were separated into groups according to the number of their 

interaction partners. Subsequent topological investigation suggested that the products of these 

genes interact more often with other proteins and represent important hubs in the platelet network 

(Figure 17; p-value = 1.49 × 10
-4

). When the similar analysis was performed for kinases in the 

phosphoproteome network, no significant increase was found with a higher number of substrates 

(Figure 18; mean = 10.4; p-value = 0.8836). 

 
 

Figure 17. Dependency of platelet disease genes from their degree 

(A) Proteins were grouped into intervals according to the number of their interactions. There is a higher number of 

disease-associated genes among well-connected proteins in the platelet interactome. (B) Datasets of disease and non-

disease proteins are presented in box plots. The number of interactors is depicted on the y-axis. Their median is 

significantly higher in the group of disease proteins (Boyanova, Nilla et al. 2012). 
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Figure 18. Dependency of platelet disease-associated kinases from the number of their 

substrates 

(A) Kinases were grouped into intervals according to the number of their substrates. There is no change of number of 

disease-associated kinases among well-connected kinases in the platelet phosphoproteome. (B) Datasets of disease 

and non-disease kinases are presented in box plots. The number of substrates is depicted on the y-axis. Their median 

is not significantly changed between the two groups (Boyanova, Nilla et al. 2012). 
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5.2 Analysis of signal transduction in platelets 

 

Signal transduction in platelets plays a key role in exerting platelet function. An anucleate cell 

can only regulate cell function through posttranslational modification of protein targets and fine-

tuned signaling of downstream effectors. Therefore, systems biological investigation including 

network analysis can systematically pursue changes in platelets during activation and inhibition. 

The role of network analysis for drug development and disease biomarkers has already been 

discussed (Erler and Linding 2010). Understanding cellular networks has become a prerequisite 

to understanding complex diseases. 

Platelet activation is a sophisticated process involving many specific receptors on the platelet 

surface. Platelet circulate in the blood flow in an inactivated state, maintained by inhibitory signal 

transmitted through nitric oxide (NO) secretion from the surrounding endothelium and 

prostaglandins, which bind to the prostaglandin receptors and cause cyclic adenosine 

monophosphate (cAMP) increase and platelet inhibition (Broos, Feys et al. 2011) . When a 

microinjury of the vessel occurs, platelets adhere to the injured surface in response to factors 

secreted from the exposed extracellular matrix. One of these factors, VWF, binds to GPIBA on 

the platelet surface and triggers transient platelet adhesion to the vessel wall (Varga-Szabo, 

Pleines et al. 2008). Further activation includes collagen binding to GP6 receptors, which triggers 

activation of PLC2 through complex signaling via downstream tyrosine kinases and production 

of diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3), which in turn lead to increase in 

intracellular calcium concentrations and platelet activation. Calcium concentrations in platelets 

are maintained either in calcium intracellular stores such as the endoplasmatic reticulum, 

governed by receptors controlling the Ca
2+

 influx (ITP3R) or by influx of extracellular Calcium 

through P2RX1 receptor (Stegner and Nieswandt 2011). Furthermore, degranulation of platelet 

granules and secretion of mediators such as ADP and serotonin induce further assembly of 

platelets to the injured site. ADP stimulation is achieved through the ADP receptors P2Y1 and 

P2Y12 on the platelet surface and causes additional platelet activation and aggregation. Firm 

platelet adhesion and aggregation is achieved by integrins, mainly by the 2b3 integrin, which 

is activated through inside-out signaling and facilitates thrombus formation by binding to 
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fibrinogen and to other platelets through fibrinogen links (Anthis and Campbell 2011). The 

extraction of signaling pathways from the platelet interactome is visualized in Figure 19. 

 

Figure 19. Signaling cascades in human platelets. 

 

(A) Graphical representation of three main platelet signaling pathways: vWF signaling (red), integrin signaling (blue) 

and ADP signaling (yellow), platelet proteins (grey). The common proteins for two or more pathways are shown 

with different colors - vWF_integrin (violet), vWF_ADP (orange), ADP_integrin (green), ADP_vWF_integrin 

(white). For illustration of subnetworks we show the topology and key nodes of the following subnetworks: (B) 

subnetwork, of ADP signaling (C) subnetwork of the integrin signaling pathway and (D) subnetwork containing 

vWF-signaling proteins (Boyanova, Nilla et al. 2012). 
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Combining knowledge from literature phosphorylations, interactions and drug data and disease 

associations allows integrated network analysis in platelets based on experimentally validated 

data. By using this approach, I created a network model of ADP signaling to complement a 

developed Boolean ADP model by Mischnik et al. Furthermore, I analyzed integrin signaling in 

platelets in the context of experimentally validated phosphorylations from a collaborating group 

(Zahedi, Lewandrowski et al. 2008) and developed a new hypothesis of integrin inside-out 

signaling including a newly identified phosphorylation site (Ser
269

) on the integrin inhibiting 

docking protein 1 (DOK1). In a further approach, I used integrated network analysis to reveal the 

network context of experimentally measured SH2 domain binding proteins and elucidate their 

role during platelet activation. 

 

5.2.1 Modeling ADP signaling 

 

In this part of the analysis, I focused on platelet activation and inhibition during thrombosis. Drug 

development is mainly concentrated on the tight balance between platelet activatory and 

inhibitory signals and up-to-date there have been successful applications of combinational drugs 

acting on these pathways. Besides the cyclooxygenase 1 and 2 (COX1/2) inhibition and 

attenuation of TXA2 formation by acetylsalicylic acid (aspirin) (Patrono and Rocca 2012), 

receptor inhibitors such as Clopidogrel (inhibitor of the P2RY12 receptor) (Dorsam, Murugappan 

et al. 2003) and Ridogrel (inhibitor of the thromboxane receptor and thromboxane synthesis 

inhibitor) (Heinisch, Holzer et al. 1996) have been administered successfully for reduction of 

atherosclerotic events and thrombolysis. Nonetheless, antithrombotic therapies still need 

improvement mainly for reducing the risks of drug side effects. Therefore, modeling some of the 

most important pathways can considerably increase the chance of finding novel targets for drug 

development.  

One of the main activatory pathways in platelets, which have been the focus of pharmacological 

development, is the adenosine diphosphate (ADP) signaling pathway. ADP acts as an autocrin 

ligand for platelets, which is released upon platelet binding to injured endothelium of blood 

vessels, where the extracellular matrix has been exposed. ADP as signaling trigger induces only 
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weak reversible effects. Nonetheless, it is a crucial second messenger in platelet signaling when 

released from dense granules in the platelet at high concentrations (Konig, Nimtz et al. 2012).  

P2 receptors in platelets are the main targets for ADP and ATP. While P2Y1 and P2Y12 bind to 

ADP, P2X1 is a receptor for ATP (Cattaneo and Gachet 2001). I will focus here mainly on the 

ADP receptors and their downstream signal transduction. The P2Y1 receptor is coupled to a Gq 

protein, which activates PLC in platelets, and thereby mediates the mobilization of ionized 

calcium from intracellular stores, eventually facilitating platelet shape change and reversible 

aggregation (Figure 20). The P2Y212 receptor is coupled to adenylate cyclase through an 

inhibitory Gi protein and triggers ADP-induced aggregation without former shape change.  

Additionally, this receptor mediates downstream events, which eventually lead to the 

upregulation of PI3K and platelet secretion from - and dense granules. Full platelet aggregation 

response after ADP stimulation can only be achieved with a combined action of P2Y1 and 

P2RY12 receptors (Liu, Pestina et al. 2004). 

Reduction of cAMP levels facilitates inhibition of PKA, as cAMP binds to the regulatory 

subunits of type I and II PKA, thus activating the kinase. The activity of PKA in platelets causes 

downstream phosphorylation of protein targets and inhibition of platelets in general. These 

inhibitory effects are regulated by cAMP-phosphodiesterases, which degrade cAMP to 5'-AMP, 

thereby attenuating effects of agonist increasing cAMP levels (Feijge, Ansink et al. 2004).  
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Figure 20. Signaling of P2 receptors in platelets 

The figure represents a scheme of downstream receptor signaling of P2 receptors in platelets. The P2X1 receptor, 

which binds to ATP, causes a quick influx of extracellular Calcium, leading to platelet shape change without platelet 

activation. P2Y1 is coupled to a Gq protein, which mediates the activation of the membrane bound PLC, followed 

by an increase in Calcium concentration due to Calcium release from the intracellular stores. The calcium increase 

causes platelet shape change and activation of GPIIB/IIIA inside-out activation after a number of reactions. P2Y12 

receptor is responsible for inducing platelet aggregation, it is coupled to a Gi protein, which facilitates platelet 

aggregation by reducing the cAMP level in platelets and thus preventing the inhibitory action of PKA. On the other 

hand, PI3K is activated, which ultimately leads to platelet secretion after granule release and activation of firm 

platelet adhesion and aggregation by inducing Akt kinase activity. Inhibitors of P2Y12 receptor (Ticlopidine and 

Clopidogrel) are also shown. Figure adapted with modifications from (Joo 2012). 

 

Here, we present a model for ADP signaling in platelets, enriched with information from 

literature on human and platelet phosphorylation events, interactions as well as kinase 

predictions. The network analysis and network model was part of a bigger project for generating 

a Boolean Model of platelet ADP-dependent activation. This model aims to demonstrate how 
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receptor signals are carried out to process activation information. Furthermore, the model shows 

different steps of platelet activation and potential threshold behavior in accordance with 

experimental observations. Using Boolean logic, the ADP signaling model is presented in four 

different phases of activation. Each of these phases can be visualized as a network, including 

phosphorylation and interaction information extracted from literature studies. A detailed analysis 

of these networks then allows better understanding of observed changes during activation. The 

main network model is shown in Figure 21.  

According to the model, P2 receptors (P2RY1 and P2RY12) transduce ADP signal to coupled G-

proteins (e.g. the inhibitory Gi protein GNAI2 for P2RY12), which then further inhibit adenylate 

cyclase function and thus reduce cAMP levels in platelets. Central kinases involved in 

downstream signaling such as the activatory kinases Src and PKC and the inhibitory kinase PKA 

can be further analyzed in a network context along with their phosphorylated substrates. The 

downstream effects of platelet activation such as shape change, triggered by the activation of 

integrins, are also included in the model. Phosphorylations were extracted from literature and 

additional linking proteins were added to maintain the network integrity. Thus, the network 

represents phosphorylation events, which were indeed measured in the human or platelet system 

and creates a realistic representation of the signal flow during ADP signaling. 

In a second approach, the activation level of each protein during the four Boolean model phases 

was mapped to the ADP signaling network and visualized with different colors. Furthermore, 

interesting kinase-substrate relationships of the proteins with changed activation level were 

extracted from the network and analyzed in detail according to the experimental information 

available in literature (data not shown).  
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Figure 21. ADP signaling model 

The network represents ADP signaling starting from the receptors and following the signal flow to the changes 

induced in platelets such as shape change. All shown interactions (grey lines), site-specific phosphorylation events 

(red arrows with labeled sites) and dephosphorylation events (green lines) were extracted from literature studies 

based on the PlateletWeb knowledge base. Kinase predictions (blue lines) were additionally added to the model. 

Kinases are presented as triangles and proteins as circles. Phosphorylated proteins are depicted in red and proteins 

from the initial Boolean model network are shown with blue labels. The rest of the proteins were added for 

maintaining the network structure and improving the visualization of the signal flow (for example G-proteins). 

Metabolites and small molecules such as NO and Ca
2+

 are presented in light blue circles. A large size of the nodes 

denotes that the protein is associated with a genetic disease. Following the signal from receptors to phosphorylation 

events downstream, triggered by the activity of key kinases such as SRC and PKC, the model presents the release of 

calcium flux from the endoplasmatic reticulum and associated changes of a number of protein targets such as RAB1, 

integrins (e.g.ITGA2), CalDAG and Talin, which are crucial for irreversible aggregation caused by inside-out 

activation of the ITGB3 integrin. 
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5.2.2 SH2 domain binding proteins 

 

The tight balance of platelet activation can only be achieved by a very precise signaling 

regulation. Signaling during platelet activation is mainly triggered through the interaction of 

receptors with their ligands and the downstream transduction of the signal flow through second 

messengers and signaling protein domains.   

The SH2 domains, Src homology 2 domains, are important signal transducers as they bind to 

tyrosine phosphorylated proteins and thus mediate signal responses.  Protein tyrosine kinases 

(PTKs) and their substrates play a critical role in the regulation of cell processes such as 

proliferation, differentiation, movement and immune responses, as well as pathological 

conditions such as cancer (Hunter 2000). Tyrosine kinases also play a major role in platelet 

activation by phosphorylating a large number of substrates (222 platelet substrates (Boyanova, 

Nilla et al. 2012)), ultimately leading to platelet shape change, aggregation and thrombus 

formation. SH2 domains were found enriched among platelet proteins (p-value = 4,73 x 10
-

5
)(Boyanova, Nilla et al. 2012), which furthermore indicates their importance in signaling 

processes. Therefore, a closer look on SH2 domains can elucidate how platelets initiate the 

activating response. 

In a previous study, Machida et al developed a method which identifies tyrosine phosphorylation 

sites by the use of SH2 domains and a far-western blot technique (Machida, Thompson et al. 

2007). Thus, the global tyrosine phosphorylation state of the cell can be analyzed with a single 

experiment. They further extended their approach to platelet proteins and obtained tyrosine 

phosphorylations for 19 proteins binding to two separate SH2 domains (EAT2 and ABL2). 

Working in collaboration with this group and their results on the platelet response, I focused on 

the network analysis of the identified SH2 domain targets in the context of ADP signaling. At 

first, the size of the obtained protein bands was analyzed to assign them to known proteins. Then, 

a bioinformatical step was added including the determination and validation of the identified 

proteins according to their molecular weight, an interactome analysis of the detected SH2 domain 

binding proteins and their position in the ADP signaling network. The experimental design was 

predefined to identify proteins with tyrosine phosphorylation, but the responsible kinase couldn’t 

be determined using far-western techniques.  By the integration of kinase data from the 
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PlateletWeb database, coupled with site-specific phosphorylations and dephosphorylations, 

interactions and platelete-specific information, the network around the SH2-binding proteins 

could be constructed and visualized along with the ADP signaling pathway, explained in detail in 

the previous chapter (5.2.1 ADP signaling). As the exact tyrosine phosphorylation sites were not 

yet determined in the lab experiment, phosphosites from known literature sources were added to 

the signaling network, thus giving indication about the phosphosite responsible for binding of the 

SH2 domains to these proteins. Figure 22 summarizes all available kinase and site-specific 

information in a single network. 

 

 

Figure 22. ADP model with SH2 domain proteins 

The figure represents the 16 SH2 binding proteins in the context of ADP signaling. Yellow: ADP model proteins, 

Red large circle: SH2 domain binding proteins, Blue: added kinases which target SH2 binding proteins, White: 
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additional proteins which hold the ADP model network structure, Grey line: protein interaction, Red arrow: 

literature-derived phosphorylation, Blue arrow: kinase prediction for experimentally-validated phosphorylation site 

in platelets, Green line: literature-derived dephosphorylation ,Circle: protein, Triangle: kinase, Thick circle line: 

the protein is phosphorylated on a tyrosine residue according to literature studies 

 

Results reveal well-known signaling players during platelet activation, such as PECAM-1 and 

FYB. Notably, 14 out of the 16 SH2-binding proteins have a known tyrosine phosphorylation in 

literature studies, which provides additional confirmation for the indicated tyrosine 

phosphorylation of these proteins. Kinase-substrate data extracted from the PlateletWeb 

knowledgebase revealed six tyrosine kinases, known to phosphorylate some of the identified 

proteins (LCK, BTK, FER, ABL1, TEC, PTK2). The Bruton tyrosine kinase (BTK) mediates 

platelet responses during the initial steps of platelet adhesion and activation, which takes place 

after binding of platelets to vWF on the injured surface (Liu, Fitzgerald et al. 2006). Analogously 

to BTK, the Src family kinases FYN and LYN phosphorylates downstream targets and thus 

mediates platelet responses triggering platelet activation and integrin activation (Yin, Liu et al. 

2008). The resulting network, integrating multiple sources of information, not only visualizes the 

functional network context of the SH2-binding proteins identified in the study, but also allows 

kinase predictions to be added to the network. The intricate balance of the platelet activation state 

can therefore be analyzed in a global interaction network context, which sheds light on possible 

phosphorylation events, already described in literature. The site-specific annotations can be 

further extracted and used for analysis of platelet tyrosine substrates. For example, the 

phosphorylation of PECAM-1 by LCK is well described in literature (Newman, Hoffman et al. 

2002). 

This analysis serves as a first step towards a full integrative approach for the investigation of SH2 

binding protein studies in the future. Nonetheless, the interpretation is only limited due to the lack 

of substantial evidence for these candidate proteins. To achieve a full and comprehensive 

network analysis, the identified candidates must be further analyzed using mass spectrometry to 

ensure that the mapping of the western blot bands can be assigned to these proteins in particular. 

 

  



Analysis of signal transduction in platelets 

 

79  
 

5.2.3 DOK1 phosphorylation and integrin activation 

 

Integrin activation is an important later step in platelet activation, because it facilitates firm 

adhesion and thrombus formation (Varga-Szabo, Pleines et al. 2008). Integrins are bidirectional 

molecules which require a conformational change for achieving their active state. This process, 

called inside-out signaling, is mediated by various signaling cascades inside the activated platelet. 

Thrombus formation is mainly carried out by the integrin 2b3 which is activated from the 

inside by a number of signaling cascades ultimately activating the protein talin (Figure 23). 

Activation of platelets causes an increase of intracellular Ca2+ and DAG, both stimulating the 

activity of diacylglycerol regulated guanine nucleotide exchange factor I (CalDAG-GEFI) and 

PKC. Both signaling paths cause the activation of Rap1b to Rap1-ATP and its translocation to the 

platelet membrane using the Rap1-GTP-interacting adaptor molecule (RIAM). Then the signal is 

transmitted to talin, an integrin activating molecule. When talin binds to the 3 tail of the integrin 

via its FERM domain, a conformational change takes place and the integrin gains the ability to 

bind fibrinogen and thus connect platelet cells over fibrinogen bridges (Wegener, Partridge et al. 

2007). There are various mechanisms for integrin regulation in platelets, and it is known that a 

docking molecule DOK1, a protein containing a pleckstrin domain (PH) and a phosphotyrosine 

binding (PTB) domain (Songyang, Yamanashi et al. 2001), competitively binds to the integrin β3 

tail and thus hinders binding of talin and activation of the receptor. There have been both in vivo 

and in vitro evidence for DOK1 binding to the cytoplasmatic tail of β3 integrin 

(ITGB3)(Calderwood, Fujioka et al. 2003). The affinity of β3 increases when the tail is 

phosphorylated on the site Y773, where both DOK1 and talin bind competitively with their 

domains (Figure 23, Figure 25). 

http://www.ncbi.nlm.nih.gov/pubmed/21454517
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Figure 23. Integrin inside-out signaling 

The activation of integrin α2bβ3is achieved by signaling triggered from inside-out. When levels of Ca2+ and DAG 

are increased, this causes the stimulation of CalDAG-GEFI and PKC/PI3K activity which in turn activate Rap1. 

An “activation complex” is formed, which contains the proteins Rap1, RIAM and talin and causes cytoskeletal 

rearrangements along with conformational changes in the integrin molecules. The bent inactive form of the integrin 

turns into the activated form with exposed fibrinogen binding site. The exact mechanisms of kindlin 3 has not yet 

been described. The figure is modified from (Broos, Feys et al. 2011). 

 

Therefore, focusing on this particular regulation and following the indication of the pathway 

enrichment in platelets, where integrin signaling was overrepresented, we used the PlateletWeb 

knowledge base options for integrated analysis of the proteins from this pathway using combined 

information from the platelet interactome, phosphorylation signaling network functional and drug 

data. From the entire platelet network we extracted a subnetwork of integrin signaling near the 

α2bβ3 receptor (Figure 24). We generated an overview of signaling events in the integrin 

pathway including literature phosphorylations and kinase predictions (Linding, Jensen et al. 

2007; Miller, Jensen et al. 2008) for experimental phosphorylation sites measured in platelets 

(Zahedi, Lewandrowski et al. 2008) (Figure 24; supplemental Tables 4 and 5). The predicted 

kinase-substrate relationships in the network were supported by experiments in other human cells 

such as PKA phosphorylating SRC at Ser
17

 (Obara, Labudda et al. 2004) and SRC 

phosphorylating ITGB3 at Tyr
773 

(Datta, Huber et al. 2002) (same as Tyr
747

, new nomenclature 

from HPRD) (Figure 24). Furthermore, the assembled network contains information on 

associated drugs, most of which are in the stage of development (noted as experimental drugs). 
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Figure 24. Integrin signaling pathway with focus on DOK1 phosphorylation 

Visualization of the core integrin signaling created by integrating information on phoshorylations, 

dephosphorylations (green lines) and interactions (grey lines). Phosphorylations are depicted according to their 

source of detection: red arrows indicate phosphorylations reported from human cells (HPRD), blue arrows are used 

in the cases where a kinase prediction is assigned to an experimentally-validated phosphorylation site. The protein 

nodes are coloured according to the source of phosphorylation (red: phosphorylated in human cells, blue: 

phosphorylated in platelets, yellow: a platelet non-phosphorylated protein) and the phosphorylation site is presented 

on each directed edge. Drugs are visualized with different colours according to the type of drug: investigational 

(experimental) or approved. DOK1, a docking protein associated with integrin β3 (ITGB3) binding, is 

phosphorylated on Ser
269

 (highlighted region). By further integrating kinase prediction and drug target information, 

the platelet kinase CLK1 has been proposed and a putative therapeutical approach using the inhibitor 

debromohymenialdisine can be suggested. This figure was originally published in Blood (Boyanova, Nilla et al. 

2012). 
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During the network analysis, we focused on the direct interactors of the β3 integrin tail (ITGB3), 

a yet functionally uncharacterized phosphorylation site was detected in unstimulated human 

platelets at Ser
269

 of DOK1. The Ser
269

 phosphorylation site is in close proximity to the IRS-type 

PTB domain, which facilitates binding of DOK1 to ITGB3 (NPLY motif, Figure 25) and inhibits 

its activation (Oxley, Anthis et al. 2008). The integrin activating molecule talin competitively 

binds to the same motif, which suggests that the phosphorylation site might influence the balance 

between DOK1 and talin binding and thus regulate integrin activation. 

 

 

 

Figure 25. Structure of DOK1, Talin and Integrin 3 and their interaction 

Schematic representation of the DOK1 Ser
269

 phosphorylation site and the competitive binding between DOK1 and 

talin for the NPLY-motif of the integrin β3-tail. DOK1 binds to the integrin and prevents talin from binding and 

activating the receptor. This figure was originally published in Blood (Boyanova, Nilla et al. 2012). 
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By integrating both kinase prediction and drug data, hypothesis for analysis of the functional role 

of DOK1 phosphorylation could be generated. The applied bioinformatical prediction method 

(Linding, Jensen et al. 2007; Miller, Jensen et al. 2008) identified CLK1 as the kinase responsible 

for phosphorylating Ser
269

 on DOK1. CLK1 is a kinase found in megakaryocytes, proplatelets 

and platelets (Schwertz, Tolley et al. 2006). CLK1-dependent splicing of tissue factor (TF) pre-

mRNA in platelets is a previously unrecognized pathway to fibrin formation and stabilisation of a 

platelet thrombus (Schwertz, Tolley et al. 2006). According to the associated drug data, CLK1 is 

inhibited by the chemical compound Debromohymenialdisine (Ulitsky and Shamir 2007) (a 

marine sponge alkaloid), which has been isolated from Axinella sp. (Song, Qu et al. 2011). This 

compound was reported to act as cyclin-dependant kinase (CDK) modulator with 

pharmacological activities for treating osteoarthritis and Alzheimer’s disease (Roy and Sausville 

2001). Thus, we propose a possible mechanism of investigating the functional role of DOK1. 
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5.3 Identification of protein functional modules using functional interaction 

scores 

 

Many challenges have emerged in recent years for data analysis of large-scale proteomic datasets. 

The mere generation of gene lists is not enough to explain systematic effects and changes in 

signaling regulation. Therefore, network analysis uses the extraction of functional modules from 

a set of proteins, revealing information about the main functions regulated in the analyzed 

sample. The term “functional module” has first been presented in gene expression analysis, where 

functional modules of differentially expressed genes can be investigated for network regulation. 

The problem of transferring this idea to proteomics is that proteomics provides mostly qualitative 

and insufficient results for a large systems biological analysis. The large number of identified 

proteins makes it hard to isolate functional modules, therefore new approaches are needed. 

Including information for protein-protein interactions can be quite useful but insufficient to 

optimally solve the problem of identifying functional modules in the network and their 

connections with each other and the rest of the network. Additional functional information on the 

interacting proteins can help to focus on the connecting paths with more experimental 

confirmation and better biological interpretation of the network. Functional association 

information on the edges of the human interactome using interaction values can be calculated 

according to the functional similarity of the interacting proteins. Gene Ontology (GO) is a 

hierarchical structure containing functional terms, grouped in ontologies (Ashburner, Ball et al. 

2000). There are three main ontologies (branches) of the hierarchical tree: Biological Process 

(BP), Molecular Function (MF) and Cellular Component (CC) containing a set of terms with 

increasing specificity towards the lower branches of the tree. Proteins are assigned to specific 

biological terms according to their functionality in an either manual or automatic way. The 

comparison between two genes is therefore possible using data from their functional annotations. 

The first step for quantifying the similarity between two genes is the calculation of semantic 

similarity scores based on the similarity of their annotated terms. These scores can be provided 

by pairwise or group-wise measures according to the type of comparison used. There have been 

various approaches in recent years, aiming at optimizing the semantic similarity of GO for an 

improved biological interpretation (Lord, Stevens et al. 2003; Jain and Bader 2010; Ramirez, 
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Lawyer et al. 2012), but only few of these measures are considered best by Guzzi et al (Guzzi, 

Mina et al. 2011): Resnik (Resnik 1995), simGIC (Pesquita, Faria et al. 2008), simIC (Li, Luo et 

al. 2010) and TCSS (Jain and Bader 2010). Pairwise strategies comparing pairs of GO terms can’t 

directly be applied to genes and proteins, therefore mixing stragies for the transformation of all 

pairwise term similarities into a single value are needed. Such strategies have been introduced, 

using different options of the GO graph: average (Lord, Stevens et al. 2003), maximum (Sevilla, 

Segura et al. 2005), Best Match Average (Azuaje, Wang et al. 2005), funSim (Schlicker, 

Domingues et al. 2006), Information Theory-based Semantic Similarity (Tao, Sam et al. 2007), 

FuSSiMeG (del Pozo, Pazos et al. 2008). These approaches were further modified for ranking 

candidate disease genes based on the comparison of their functional annotations (Schlicker, 

Lengauer et al. 2010). When the semantic similarity information is transferred to a PPI network, 

proteins with high functional similarity are expected to be found in similar cellular processes and 

an interaction between them is therefore most probable. The edge score of the interactome would 

then reflect functional relevance of the particular interaction in the network. 

During the following analysis, we developed a new score based on the score by Schlicker et al 

(Schlicker, Domingues et al. 2006), assigning functional information to the edges of the human 

interactome. Using a previously developed functional module detection algoritihm (Dittrich, Klau 

et al. 2008) now enhanced with functional information as edge values, various cell lines were 

characterized functionally to test how well the algorithm performs. I was mainly involved in 

validating the accuracy of the algorithm along various small and large proteomic datasets and 

biological interpretation of the obtained results. 
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5.3.1 Concept of functional interaction scores 

 

Network analysis has become important in the field of transcriptomics and proteomics due to the 

search for functional information and relationship data in complex proteome datasets, which still 

remains elusive in many cases (Pieroni, de la Fuente van Bentem et al. 2008). Integration of 

multiple data sources into a single network context, also described as integrated network analysis, 

combines expression data with PPI information and helps to identify modules of genes with 

similar regulation (functional modules). Developed at first in the field or transcriptomics, this 

type of analysis is also gaining importance in proteomics due to its powerful methods of systems 

biological interpretation of the obtained data. Proteomics still suffers from many limitations such 

as poor data coverage and consistency, reproducibility and limited detection of low-abundance 

proteins or proteins from specific subcompartments, such as membrane proteins. Especially in the 

case of qualitative proteomics, where only the presence or absence of proteins is examined, there 

is a great need for methodologies, which allow the network analysis of obtained datasets. 

Integrated network analysis can be useful to overcome many of the challenges faced by 

proteomics today (Goh, Lee et al. 2012). Biological networks have modules with different 

functionality  (Hartwell, Hopfield et al. 1999). The components of the human interactome are 

highly connected and there are often more than one ways to connect the sample proteins. A 

method for investigating the optimal protein module from a biological sample can greatly 

improve network analysis in proteomics. One such approach is an algorithm for exact functional 

decomposition of large networks in functional modules based on scoring of nodes and finding the 

optimal maximum-scoring subgraph (Dittrich, Klau et al. 2008). It was initially developed to 

analyze microarray data and to extract optimal subnetworks using scores based on signal-noise 

decomposition from a node-weighted network. Originally, the expression values of the genes 

from a microarray experiment are transformed into p-values and these p-values are separated into 

a signal and noise component using a beta-uniform mixture model (BUM). Then, the problem of 

finding maximum weighted subnetworks is transformed into the well-known prize-collecting 

Steiner tree problem (PCST). Using this module detection algorithm, functional modules of 

similarly regulated genes could be extracted representing different tumor subtypes.  

In this thesis, the algorithm was transferred to proteomics data and complemented with functional 

similarity between interacting proteins as edge scores in the network. Nodes from the protein 
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sample were given a positive score, while the rest of the interactome was assigned a negative 

score. The optimal solution extracted from the algorithm then consists of the maximum positive 

scoring nodes (proteins) and interactions connecting them. The modules are not unique because 

there are many possibilities to connect the positive nodes into a maximum-scoring subgraph.  

Therefore, a weight on the edges would help to focus the resulting network onto paths with 

higher probability, mainly due to the functional resemblance of connected proteins in the 

solution.  

We propose a new method for investigating large proteomic datasets by weighting nodes and 

edges of the investigated network according to the functional information of the interacting 

proteins in the PPI network extracted from Gene Ontology (Figure 26). The Gene Ontology (GO) 

is a hierarchical structure, which annotates genes according to their functionality in three main 

categories: Biological Process (BP), Molecular Function (MF) and Cellular Component (CC) 

(Ashburner, Ball et al. 2000). The functional annotations are represented in a directed acyclic 

graph (DAG) with specificity of terms increasing towards the bottom of each branch. A 

prerequisite to introducing functional interaction scores is the availability of a functional 

information score, which measures the similarity of two proteins in terms of their functional 

annotation in GO - the GO semantic similarity score (Guzzi, Mina et al. 2011). The rationale 

behind a scoring system based on GO is that proteins with a high functional similarity will be 

involved in similar cellular processes, thus the interaction between them will be given a higher 

priority. In this case, the edge score would reflect functional relevance of the particular edge in 

the PPI network.  

In our method, proteins identified in a sample were mapped to a previously defined interactome 

network (10688 nodes and 55196 edges) and the existing interactions between them were 

weighted with a score based on a previously developed GO semantic similarity score by 

Schlicker et al (Schlicker, Domingues et al. 2006), which we adjusted by adapting it to a network 

context. We will further refer to these scores as functional interaction scores as they represent the 

functional similarity between each interacting pair. We assigned proteins from the biological 

sample positive values derived from the functional interactions scores (Experimental Procedures), 

whereas linking proteins from the interactome (not present in the proteome sample) were given 

the average of all interaction scores (negative score) (Figure 26B). Based on the interaction and 

protein scores, the algorithm searches for the maximally scoring subgraph, thus identifying the 
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most likely module of functionally similar proteins (Figure 26A). Highly scoring interactions 

connect proteins with a high functional resemblance, thereby improving their chance of being 

included in the extracted module. Using the functional interaction scores of interacting protein 

pairs ensures that the algorithm includes paths having high similarity over those having low 

similarity (Figure 26C). Linking proteins from the human interactome are included only if this 

increases the maximum score of the resulting subnetwork. These additional proteins might be 

important for signal transduction in the analyzed network and can be potentially present in vivo. 

As proteomic studies are often fractionated and detection of some proteins proves to be extremely 

difficult, this approach is useful for unraveling the network context of identified proteins along 

with proteins missing in the original sample due to technical difficulties.  
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Figure 26. Concept of module detection using functional similarity 

(A)A flowchart of the subnetwork extraction algorithm enhanced with functional information. Proteins identified in a 

proteomic sample by mass spectrometry are mapped to the human interactome. The human PPI network is given 

functional interaction scores based on GO semantic similarity of the interacting genes and protein scores (node 

scores) based on the interaction scores. Clusters of functionally similar genes can be extracted using the module 

detection algorithm (B) The calculation of protein scores is presented in a simplified example. Proteins identified in 
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the sample are given a score based on the number of adjacent edges, while proteins from the rest of the interactome 

are assigned the negative average value of all functional scores in the network. In the given example the score of 

each node is obtained as the negative average of the scores of all adjacent edges and the proteins forming the 

maximum-scoring subnetwork are highlighted with red borders. (C) An example for the benefits of inducing GO 

semantic similarity into the network analysis. From equally scoring graphs, preference is given to the one with a 

higher overall score, thus choosing the one including higher semantic similarity paths. Functionally similar paths are 

so chosen over other possible solutions. Proteins A and B are identified in the sample and connected over the linking 

protein C, because the functional similarity between each of the sample proteins with C is higher than any other 

connecting path.  

 

5.3.2 Extraction of network modules using qualitative proteome data 

 

Proteins obtained with proteomics analysis can be visualized in a network context, even though 

they are not directly connected with each other. Integrating functional interaction scores to the 

module detection algorithm helps to connect these proteins in an optimal way based on the 

functional context of the protein modules and the scores of the interactions connecting them.  

In order to test this, we applied the algorithm on a small biological sample from a human gastric 

cell line (AGC, originating from a gastric epithelial cell line) analyzed after infection with avian 

influenza virus (H9N2) using mass spectrometry. The study identified 22 proteins (Liu, Song et 

al. 2008). We performed two separate analyses of this protein sample to investigate the 

advantages of functional interactions scores: including and not including interaction scores in the 

module extracting algorithm (see Materials and Methods). When adding functional interaction 

scores, we used the previously described method for obtaining functional interaction scores 

(Materials and Methods) and assigned proteins from the sample a node score derived from the 

edge score (Figure 27B).  

As the functional interaction scores are based on GO annotations, which are extracted from 

literature information, we expected the algorithm including functional interaction scores to derive 

functional modules with higher functional similarity and higher number of publications available 

for each interaction. Thus, information of the edges is based on well-studied interactions, which 

are traceable experimentally and can serve as a solid basis for hypothesis generation after 

integrated network analysis. 
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The method incorporating functional interaction scores (Figure 27B) yielded 39 proteins, whereas 

the method without interaction scores extracted 37 proteins (Figure 27A). Both networks 

contained linking proteins and interactions, which partially overlap (14 interactions and 5 linking 

proteins are the same). There were 28 proteins in common for the two solutions along with 

unique proteins, which appeared only when functional scores were introduced to the edges 

(AKT1, EPB41, GNG4, HRAS, HSPA4, JAK2, KRT5, PDK1, RAF1, YWHAB). The number of 

literature citations for each interaction was very low in the network without functional scores 

(Figure 27A). In the network with scores there were five interactions with more than one citation 

(Figure 27B), indicating the algorithm chooses well-annotated interactions. 

It was important to examine in detail the exact paths chosen by the algorithm and whether the 

addition of functional information improves the biological interpretation of the observed cell 

response after virus infection. Although cytoskeletal proteins, mainly keratins, were 

overrepresented in both cases, the keratin cluster was connected to different nodes in the two 

solutions indicating that functional information influences the resulting network. The keratin 

cluster in the functional score solution also contained keratin 1 (KRT1) as part of the keratin 

module, thereby improving the keratin cluster. Proteins of interest from the original study (Liu, 

Song et al. 2008) such as Prohibitin (PHB) and cis-trans-isomerase A (PPIA) were also present 

indicating no important information had been lost by applying functional information to the 

network edges. Notably, the subgraph based on functional scores provided a more defined 

pathway connecting keratins to the rest of the proteins (over RAF1). The linking kinase RAF1 

plays a major role under stress conditions and the phosphorylation-dependent disruption of RAF1 

interaction with the keratin protein 18 (KRT18) has been previously described during stress 

response (Ku, Fu et al. 2004). The Ras GTP-ase (HRAS) found in the solution with functional 

scores activates RAF1 (Avruch, Khokhlatchev et al. 2001) in the signaling cascade and 

contributes to understanding how activation of RAF1 might have been triggered under stress 

conditions.  

 



Identification of protein functional modules 

 

92  
 

 

 

Figure 27. Comparison between networks from H9N2 virus infected human gastric cells 

extracted with (A) and without (B) functional interaction scores.  



Identification of protein functional modules 

 

93  
 

All 22 identified proteins were kept in both solutions and depicted as red circles. Linking proteins from the 

interactome are presented in grey. Triangles were used for representing linking proteins found in both solutions. 

Interactions contained in both solutions are marked in red, while interactions present only in the solution with 

functional scores are shown in blue. The edge width is proportional to the functional score of the interaction and the 

number of its source publications is marked on top. Thicker edges have a higher biological relevance and they are 

supported by a higher number of literature sources. We selected substructures based on the functional similarity of 

the module edges and their deviation from the module without edge scores (highlighted in blue). Results with 

induced GO semantic similarity show highly clustered functionally related proteins (Keratin cluster). RAF1 is a 

central player in this network (B), closely connected to the keratin cluters and the interaction between RAF1, 

YWHAB (14-3-3 protein) and KRT18 has a well-described role during cell stress.  

 

To examine the differences between the two networks in respect to their interaction scores and 

functional similarity, we further considered the functional interaction scores of the network where 

they were initially disregarded (Figure 27A) and performed a Wilcoxon rank sum test to calculate 

whether there is a significant difference between the score sets of the two networks. Results are 

presented in Figure 28. With a p-value of 0.002 (median with scores:  -1.9, without scores: -2.42; 

mean with scores:  -1.73, without scores:  -2.25) the solution with functional interaction scores 

showed a higher mean similarity score, thus, more of the interaction pairs in this solution were 

having a high functional similarity, as expected after introducing edge scores to the module 

detecting algorithm. Detailed statistics on the edge scores of both solutions can be found in 

Supplemental Tables 6 and 7. 

This example demonstrates that functional interaction scores help to include interaction partners 

with a high functional similarity, which explain the complex biological effects on cell signaling 

after viral stimulation. Thus, the module extraction algorithm with interaction scores improves 

the functional relevance of the obtained clusters and focuses the resulting network on modules 

and paths containing substantial biological information needed for interpreting cell response. 

Proteins initially missing in the measured sample, but crucial for signal transduction can be 

identified using our method (e.g. RAF1). 
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Figure 28. Boxplot of functional interactions scores 

Functional interaction scores from the two network solutions were tested using a Wilcoxon rang test score. The 

solution with edges showed a higher median of edge scores (-1.9) when compared to the solution without scores (-

2.420272). The mean in the first group (-1.73) was also higher than the mean of the second group (-2.25). The p-

value after correction was 0.002. Therefore, the solution including edge scores had significantly higher functional 

scores chosen by the algorithm than the randomly chosen edges of the second solution. 
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5.3.3 Characterization of cell specific modules: T-cells 

 

The large size of networks from proteomic analyses makes it difficult to search for a particular 

smaller functional module inside the resulting network. Therefore, we introduce a method for 

decomposing the network into smaller functional modules using the option for extracting 

suboptimal solutions contained in the module detection algorithm (Dittrich, Klau et al. 2008). 

The resulting network of T-cells from a blood constituents proteomi study (Haudek, Slany et al. 

2009) was used as example. 

From altogether 970 T-cell proteins, 861 were mapped to the human interactome. The approach 

was first used without considering functional scores. The proteins in the T-cell sample were given 

a constraint to ensure they are all present in the resulting network (as detailed in Materials and 

Methods chapter 4.9.6). The result using all T-cell proteins without applying interaction scores 

yielded a network of 1026 nodes and 3004 edges (Figure 29A). Naturally, a close look on single 

protein modules is not possible, therefore to reduce the size of relevant modules, we used an 

approach searching for the top five non-overlapping modules of a given size (in this case 50). In a 

second approach, the algorithm was performed again using functional interactions scores for 

extraction of the five size 50 modules. Finally, suboptimal solutions from both analyses (with and 

without interaction scores) were tested for functional enrichment. 

In the suboptimal solutions without the use of functional interaction scores the p-values were 

very high as expected. In the cases where there was significant enrichment (p-value <= 0.05), 

biological process terms were broad and not specific to T-cell signaling. Thus, the module 

detection algorithm without interaction scores gives a general overview of the cells signaling and 

the extraction of characteristic modules is not possible. A more detailed summary of all enriched 

GO terms and their p-values can be found in Supplemental Table 8. 

In the suboptimal solutions with functional interaction scores the optimal solution contained 

functional modules with high interaction scores, and the resulting functional modules represent 

more general biological processes such as ubiquitin/proteasome regulation (regulation of 

ubiquitin-protein ligase activity: 2.39 × 10
-6

) and mRNA processing (1.12 x 10
-5

) (Figure 29B). 

The first suboptimal solution gave a result typical for T-cells: the terms T-cell differentiation 

(2.73 × 10
-4

) and T-cell receptor signaling (2.73 × 10
-4

) were enriched when compared to the set 
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of all T-cell proteins (Figure 29C). Further enriched terms included signaling (3.81 × 10
-5

), 

intracellular protein kinase cascade (1.09 × 10
-5

) and signal transmission via phosphorylation 

event (1.09 × 10
-5

). The second suboptimal solution contained enrichment of the following terms: 

cell movement, actin cytoskeleton organization (4.33 × 10
-6

), leukocyte cell-cell adhesion (1.29 × 

10
-4

) and regulation of actin cytoskeleton organization (4.33 × 10
-6

) (Figure 29D). Thus, the 

module detecting algorithm has managed to extract functionally similar modules from the 

network. A more detailed summary of all enriched GO terms and their p-values can be found in 

the Supplementary Table 9.  

  



Identification of protein functional modules 

 

97  
 

 

 

Figure 29. Functional modules of T-cells 

A, Data was gathered from blood proteomics analysis of T-cells consisting of 972 proteins, from which 861 were 

mapped to the human interactome. Analysis without the use of functional interaction scores revealed a network of 

1026 proteins tightly connected to each other through linking proteins from the interactome (proteins from the 

sample are depicted in red and linking proteins in the resulting network in grey). To decompose the network into 

non-overlapping functional modules, the algorithm was applied enhanced with functional interaction scores to obtain 

optimal (B) and suboptimal solutions (C, D) of 50 proteins. The thickness of edges represents the interaction score. 

To investigate the characteristic functional profile of T-cells, GO enrichment analysis against all T-cell proteins was 

performed on the resulting networks. B, Results revealed significant enrichment for general terms associated with 

ubiquitin regulation (brown) and mRNA processing (light red) in the optimal solution. C, Terms characteristic for the 

T-cell type such as signaling cascades, protein phosphorylation (yellow), T-cell differentiation and T-cell receptor 

signaling (orange) were enriched in the first suboptimal solution. D, Regulation of cell movement, actin cytoskeleton 

organization (green) and leukocyte cell-cell adhesion (light green) were enriched in the second suboptimal solution. 

Thus, the network could be decomposed in its most characteristic functional modules. 
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5.4 Quantitative phosphoproteomic analysis 

 

Quantitative phosphoproteomics is a newly evolving technology in the field of mass spectrometry 

(Macek, Mann et al. 2008; Ozlu, Akten et al. 2010). The advantages analyzing phosphorylation 

sites and measuring quantitative changes in phosphorylation over time has become indispensable 

for the investigation of complicated whole cell analysis under various condition. As 

phosphorylation is one of the main signaling mechanisms in human cells, measuring 

phosphorylation changes precisely in an automatic way means sensitive measuring of cell 

responses to various types of stimuli. Furthermore, understanding network signaling through 

phosphorylation can lead to the identification of novel biological markers and the development of 

new pharmacological therapies (Erler and Linding). The link between conserved phosphorylation 

sites and their impact in multiple diseases has also been indicated in a recent study by Tan et al 

(Tan, Bodenmiller et al. 2009). Many recently published datasets investigate phosphorylation 

changes on a global scale in important cell processes such as mitosis (Nousiainen, Silljé et al. 

2006; Malik, Lenobel et al. 2009; Olsen, Vermeulen et al. 2010), signaling pathways (Choudhary 

and Mann 2010) and cellular sub-compartments (Boja, Phillips et al. 2009). These studies 

identified a large amount of proteins with changed phosphorylation but their interpretation in a 

network signaling context remains a challenge.  

While phosphorylation changes in Hela cells and embryonic stem cells have progressed in recent 

years, there has been sparse information available on quantitative phosphoproteomic changes in 

human platelets. This was finally achieved in collaboration with groups from our consortium 

(Systems biology of PGI2 and ADP P2Y12 Receptor signaling: SARA). Tight collaboration with 

the clinical biochemistry group of Prof. U. Walter and mass spectrometry analysis of Prof. A. 

Sickmann supplied a number of phosphorylations quantitatively measured in human platelets. I 

performed a detailed analysis of the platelet signaling changes by applying our module detection 

algorithm (Dittrich, Klau et al. 2008). In a further step, this algorithm has been extended for the 

investigation of large-scale quantitative phosphoproteome data using a human embryonic dataset 

(Rigbolt, Prokhorova et al. 2011). I interpreted the results biologically and optimized the 

algorithm for better performance. 
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5.4.1 Quantitative phosphoproteomics in stimulated human platelets 

 

For the following analysis, platelets were extracted from blood of patients and analyzed using 

mass spectrometry label-free quantification methods (proteomics lab of Prof. Albert Sickmann). 

Platelets were stimulated in time series by Iloprost (10s, 30s, 60s, 120s) and ADP (10s, 30s, 60s). 

Iloprost is a Prostacyclin analogue, which binds to the platelet prostaglandin I2 (prostacyclin) 

receptor (PTGIR) and causes platelet inhibition by increase of cAMP and PKA activation (Broos, 

Feys et al. 2011). In contrast, ADP binds to the platelet P2RY12 receptor and triggers 

downstream activation of platelets by inhibiting PKA (Jin, Quinton et al. 2002)(see 3.2.1 ADP 

signaling).  

At first, I added all peptides and source information to tables in MySQL for further mapping. 

Then, all identified peptides were mapped to their protein sequences in HPRD using a Perl script. 

Thus, phosphorylation sites were correctly identified with their position in the HPRD protein 

sequence. Data from the source quantitative measurements were combined with the 

phosphorylation mappings and kinase-substrate information was subsequently extracted from 

PlateletWeb based on HPRD information. Finally, each phosphorylation site had an associated 

protein sequence, kinase data, and quantitative measurements after stimulation with ADP and 

Iloprost.  

The total number of distinct identified phosphorylation sites was 596 after mapping to the human 

interactome using HPRD sequence information. Around 70% of these sites (421) were already 

known from experiments in other cell types, but 148 sites had no source information available. 

Only 40 sites were associated with a kinase (37 kinases), indicating the scarcity of available 

regulation data. As Iloprost information is connected with PKA activation, we tested for present 

PKA sites. There were 10 PKA sites found, which were already described in literature (HPRD or 

PhosphoSite) and the number of classical PKA sites found after motif search was 66. Out of 

these, only six were confirmed in literature as PKA targets, 49 were already measured in other 

studies and 17 were novel phosphorylation sites.  

Based on this basis information a module detection algorithm was used to identify functional 

modules in the given dataset (Dittrich, Klau et al. 2008). This algorithm assigns positive and 

negative values to the interacting nodes based on the priority and quantitative measurements 
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given to the proteins. Using the human PPI network as a backbone, it searches for the maximum-

scoring subnetwork in a given list of proteins (Materials and Methods). Proteins from the ADP 

model were given a high constant value of +10 to ensure that they are considered in the solution. 

All proteins from the quantitative phosphoproteomics dataset were assigned the sum of the log2 

values of all time points (sumlog2=(log2(1)*log2(1)+log2(2)*log2(2)). The log2 was calculated 

for the ratio between each time point and the control. The concept of considering the sum of all 

log values over all time points is to identify proteins with maximally changed phosphorylation 

sites. By multiplying the values we made sure that results remained independent of whether 

phosphorylation increased or decreased over time. For further investigation, the algorithm was 

also calculated for all separate time points (data not shown). 

Proteins extracted from the ADP model were given a very high score of +10 (Iloprost) and +20 

(ADP) to ensure their presence in the final subnetwork. All measured proteins were assigned the 

sumlog2 value of the most changing site over time. The rest of the interactome proteins were split 

into two groups: platelet proteins were given a constant value of the negative average of the 

sumlog2 value of all proteins measured during Iloprost stimulation. The non-platelet proteins 

were assigned a value of -1 as they have the least importance in the conducted analysis. The 

results of the analysis are presented in Figure 30 for Iloprost stimulation and Figure 31 for ADP 

stimulation.  
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Figure 30. Phosphorylation response module after platelet Iloprost stimulation 

The platelet response module after Iloprost stimulation. All four time points are taken and the sum of the logarithmic 

ratios of each time point against the control is calculated as representative of the overall phosphorylation change. 

Kinases are presented as triangles, proteins as circles and interactions are depicted with grey lines. Red arrows 

represent phosphorylation events. The scores are shown in a range from green to red with red being the highest score. 

The green proteins have a negative value because the original sumlog values are transformed into a lower range of 

numbers as the algorithm performs better with a distribution of values around the 0 point. A value of 0.5 was 

additionally substracted from the original summed logarithmic value.  

Further coloring includes blue for linking proteins from the interactome and white for ADP model proteins. A big 

node size represents proteins with classical PKA sites, which were measured in the experiment and a blue circle 

around the node is drawn when the phosphorylation site is matching a known phosphosite targeted by the depicted 

kinase in literature experiments (extracted from PlateletWeb). 
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Figure 31. Phosphorylation response module after platelet ADP stimulation 

 

The platelet response module after ADP stimulation. All four time points are taken and the sum of the logarithmic 

ratios of each time point against the control is calculated as representative of the overall phosphorylation change.  

Kinases are presented as triangles, proteins as circles and interactions are depicted with grey lines. Red arrows 

represent phosphorylation events. The scores are shown in a range from green to red with red being the highest score. 

The green proteins have a negative value because the original sumlog values are transformed into a lower range of 

numbers, because the algorithm performs better with a distribution of values around the 0 point. A value of 0.2 was 

additionally substracted from the original summed logarithmic value.  

Further coloring includes blue for linking proteins from the interactome and white for ADP model proteins. A big 

node size represents proteins with classical PKA sites, which were measured in the experiment and a blue circle 

around the node is drawn when the phosphorylation site is matching a known phosphosite targeted by the depicted 

kinase in literature experiments (extracted from PlateletWeb). 
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Ilorpost stimulation causes an overall increase in phosphorylation. The proteins with strongest 

changes in phosphorylation, Filamin A (FLNA), VASP and RAP1GAP2 (a protein activating the 

small GTPase Rap1 in platelets), are all also phosphorylated on the known PKA site, which is 

consistent with the observation after Iloprost stimulation. Filamin A and VASP are both inhibited 

by PKA phosphorylation and they are hindered in facilitating cytoskeleton organization and 

platelet activation. The ubiquitin-conjugating enzyme E2O (UBE20) shows a significant change 

in phosphorylation. The changes in the cAMP-regulated phosphoprotein (ARPP19) are also 

indicating PKA activity and are to be expected in this experimental setting. Dematin, or EPB49, 

is an actin-bundling protein originally identified in the erythroid membrane skeleton. Its actin-

bundling activity is abolished upon phosphorylation by PKA and is restored after 

dephosphorylation, which explains the changed phosphorylation after Iloprost stimulation 

(Communi, Vanweyenberg et al. 1997). The changes of phosphorylation of endosulfine 

alpha (ENSA) which belongs to the cAMP-regulated phosphoprotein (ARPP) family as well, can 

be also explained by the activation of PKA. 

In the ADP resulting network, two proteins show high change in phosphorylation: murine 

retrovirus integration site 1 homolog (MRVI1) and inositol 1,4,5-trisphosphate 3-kinase 

B (ITPKB). 

Analysis of the networks revealed an overall increase of phosphorylation after Iloprost 

stimulation. The measured enrichment of PKA sites was also consistent with the activation of 

PKA during Iloprost stimulation. The ADP results on the other hand indicated downregulation of 

phosphorylation during ADP stimulation and it is unclear, whether this finding is based on real 

facts or arises as a possible artifact from technical problems. Overall, changes in phosphorylation 

in both directions (up or down regulation) can be visualized in a network context by choosing the 

optimal solution, which links most of the measured proteins with ADP proteins from the model. 

Thus, hypothesis about putative signaling pathways and regulation arise which can then lead to 

further lab experiments.  

Unfortunately, the provided data was associated with some technical difficulties in the mass 

spectrometry detection methods. Therefore, this data could not be further used, but the analysis 

still represents a successful starting point in future quantitative phosphoproteomics investigation 

of human platelets.  
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5.4.1 Identification of functional modules in quantitative phosphoproteomic data from 

human embryonic stem cells (hESCs) 

 

The increasing amount of proteomic and phosphoproteomic data has motivated the development 

of new approaches in integrative network analysis. Differences in protein abundance and 

phosphorylation levels represent changes in cellular signaling which are fully comprehensible 

only in a systems biological manner. Embryonic stem cells are important in research due to their 

ability to differentiate into various tissues and organs (Thomson, Itskovitz-Eldor et al. 1998). 

This ability is controlled by a number of transcription factors and fascinates researchers by the 

intricate regulation during maintenance of pluripotency and lineage specification (Thomson, 

Itskovitz-Eldor et al. 1998). Phosphorylation plays a crucial role during differentiation and 

Rigbolt et al performed one of the most comprehensive phosphoproteomic studies in embryonic 

stem cells to date using stable isotope labeling by amino acids in cell culture (SILAC) (Rigbolt, 

Prokhorova et al. 2011). In the used study, phosphorylation changes were measured in human 

embryonic stem cells at four time points after stimulation with non-controlled medium (NCM) 

(see Materials and Methods). In this medium, factors needed for cell differentiation were 

removed. The study identified 6521 phosphorylated proteins and overall 23522 phosphorylation 

sites. The identified phosphorylation sites in the dataset were filtered into class 1 sites, which by 

definition were identified with a probability of at least 0.75. Considering only these sites (15,004) 

and additionally missing some due to mapping and converging IPI identifiers with Entrez gene 

identifiers, we identified 13842 distinct phosphopeptides with 156 kinases acting on these 

phosphosites. From all measured phosphosites, 641 peptides and 363 proteins were associated 

with at least one kinase. The SILAC ratios were calculated in order to obtain the differential 

phosphorylation between the treated and the controlled cells (Figure 32). Then, the dataset 

proteins were combined with the kinases targeting these sites from literature to create a 

phosphoproteome network with 343 nodes, which was visualized in Cytoscape (Shannon, 

Markiel et al. 2003). There were 262 nodes coming from the dataset, of which 39 were kinases. 

From the human interactome, we extracted additional 81 kinases targeting the measured sites. 

The network was densely connected with 285 nodes contained in the largest connected 

component (84 % of the whole network).  
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We extended our investigation of functional modules in the human proteome by including 

quantitative phosphoproteomics data and weighting nodes of the network according to the kinase 

and substrate information of each protein. Site specificity was achieved by zooming down to 

single sites representing each protein, while kinase-substrate relationships were extracted from 

the PlateletWeb repository (Boyanova, Nilla et al. 2012). Thus, all depicted phosphorylations 

have been identified previously in human cells. The module detection algorithm (Dittrich, Klau et 

al. 2008) was performed according to the scheme in Materials and Methods but in this case the 

node scores of all identified proteins represented the ratio between the phosphorylation measured 

in each time point against the zero time point. Only the maximally changing phosphorylation site 

over time was taken into consideration. Thus, the network represents single phosphorylation sites 

measured in each protein (node) and the absolute log2 transformation of the ratio for each time 

point versus the control time point of the maximally changing phosphosites was assigned to the 

nodes of the network. Kinases were additionally given a higher score, to ensure that the algorithm 

considered them with higher priority than the rest of the proteins. Kinases extracted from 

literature, which phosphorylated the measured site, obtained a constant kinase score of 0, while  

kinases measured in the experiment kept their measured values, which were also logarithmically 

transformed to build a score as explained above (by definition their value was higher than the 

value for kinases from the phosphoproteome (0)). As the algorithm searches for the maximum 

scoring subgraph, kinases are more likely to appear in the final solution and thus the network is 

by definition more concentrated on the regulatory signal flow. 
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Figure 32. Experimental design of the phosphoproteomics analysis 

The experimental design consisted in combining information from the hESC dataset with human phosphoproteome 

data for kinases, acting on the measured sites. The SILAC ratio between each time point and the control time point 

was considered as measurement of the phosphorylation change. Subsequently, time-specific response modules of 

phosphorylation signaling during hESCs differentiation were extracted using the module detection algorithm 

(Dittrich, Klau et al. 2008). 

 

Results of the module detection algorithm were presented as follows: The networks were 

superimposed as a union of all nodes extracted for each time point, thus keeping the network 

topology constant so that the changes of phosphorylation can be traced over all time points on all 

proteins (Figure 33).  Nodes represent the site with maximum changing phosphorylation over all 

four time points. The resulting networks were visualized with the node color representing the 

original ratios of all phosphorylation sites in a range from blue (phosphorylation decrease) to red 

(phosphorylation increase). The network represents site-specific events (the node depicts the 

phosphorylation ratio of the maximum changing site against the control), therefore the changing 

sites can also be investigated closely. A number of proteins increased their phosphorylation 

within the four time points.  Kinases from the experimental dataset such as MAPK1, MAPK3 and 

JUN increase their phosphorylation at particular sites, while other kinases from the dataset such 

as CDK2 decrease their phosphorylation (details in Table 3). These changes are particularly 

interesting, because these kinases have been identified in the measured sample and may be 
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responsible for the observed effects on other proteins. Listing the kinases phosphorylating the 

maximally changing phosphorylation sites of key proteins (Table 3) reveals that MAPK1, 

MAPK3 and CDK2 phosphorylate a number of substrates at the exact positions identified in the 

sample. MAPK1 and MAPK3 phosphorylation is increasing towards 24h, while JUN kinase 

phosphorylation has a significant peak at 6h. The phosphorylation site Ser
63

 on JUN has already 

been indicated to change during hESC differentiation (Van Hoof, Dormeyer et al. 2010), in our 

study we reveal a possible regulation of this event (by kinases: MAPK9, MAPK8, VRK1, 

MAPK15, PLK3).  

A number of proteins have an increase in their phosphorylation during NCM stimulation, such as 

Vimentin. This protein is a member of the intermediate filament family and it is responsible for 

maintaining cell shape, integrity of the cytoplasm and stabilizing cytoskeletal interactions 

(Goldman, Khuon et al. 1996). Vimentin phosphorylation at Ser
10

 increases after 24h and this 

phosphorylation, carried out by PKC alpha, is responsible for disassembly of the vimentin 

filament structure (Ando, Tanabe et al. 1989), which might have implications during hESC 

differentiation. 

CDK1 and CDK2 have been identified in a hESC differential phosphorylation analysis by van 

Hoof et al (Van Hoof, Dormeyer et al. 2010) and they were indicated as central in controlling 

self-renewal and lineage specification. The same study also identified the Vimentin 

phosphorylation, but not on the site Ser
10

, which might be a new site with importance for lineage 

specification in embryonic stem cells.  

The transcription factor ETV6, also known as Leukemia-Related Transcription Factor TEL, is 

phosphorylated by MAPK3 (ERK1) at Ser
213

 which inhibits the action of the transcription factor 

(Maki, Arai et al. 2004). A previous study already determined that ETV 6 is required for 

hematopoietic stem cell maintenance (Akala and Clarke 2006), which indicates that the inhibition 

of the transcription factor through phosphorylation may be preventing stem cell renewal in the 

hESC cells. However, this has to be experimentally validated.  

Another protein with upregulated phosphorylation is the Na+/H+ antiporter SLC9A1, with 

maximum phosphorylation at 24 h after triggered differentiation. 
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Some proteins show variability in phosphorylation changes, at first increasing and then 

decreasing their phosphorylation state. For example the SNW1 protein which is phosphorylated 

by CDK2 becomes phosphorylated at first and the phosphorylation of the site decreases with 

decrease of CDK2 phosphorylation, indicating CDK2 inhibition might occur due to initial 

phosphorylation decrease of its site Tyr
15

. This could be confirmed by analyzing the Tyr
15 

phosphorylation in detail. Previous studies indicate that this is an inhibitory site phosphorylated 

in higher eukaryotes during the cell cycle and the phosphorylation is carried out by the kinase 

WEE1. Their results suggest that the activity of WEE1 is regulated by phosphorylation and 

proteolytic degradation, and that WEE1 plays a role in inhibiting mitosis before M phase by 

phosphorylating cyclin B1-Cdc2 (Watanabe, Broome et al. 1995).  

Our investigation of the embryonic stem cell phosphoproteome concluded that the site-specific 

phosphorylation network, complemented by kinase regulation from the proteome study and the 

human phosphoproteome, gives a systemic view on the changes observed in the cellular system. 

The signal flow can be followed precisely, based on information from experimental data obtained 

in literature and important changes during hESC differentiation can be studied in a site-specific 

manner. Thus, this approach enhances considerably the initial analysis of top proteins found in 

the proteomic list. 
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Figure 33. ESC stimulation response modules. 

The network represents the resulting maximum-scoring subnetworks of the module detecting algorithm (Dittrich, 

Klau et al. 2008) after (A) 30 min, (B) 1h, (C) 6h and (D) 24h of stimulation for differentiation. The networks are 

superimposed as a union of all single modules extracted for each time point, thus keeping the network topology 

constant so that the changes of phosphorylation can be traced over all time points. Nodes represent the site with 

maximum changing phosphorylation over all four time points. The node color depicts the absolute logarithmic ratio 

(log2) of the phosphorylation value between the measured time point against the control (time point 0). There are 

proteins with increased or decreased phosphorylation, as well as proteins with perturbations over all four time points 

(ORC1, SNW1, both increase at first and decrease at time point 24h).  
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Protein 

Name 
Description Phosphosite Up/Downregulation Kinase 

Measured in 

dataset 

VIM Vimentin Ser
10

 ↑ (max. 24h) PRKCA no 

ETV6 ets variant 6 Ser
213

 ↑ (max. 6h) MAPK3 yes 

TOP2A 
topoisomerase (DNA) II 

alpha 170kDa 
Ser

1377
 ↑ (max. 6h) CSNK2A1 no 

JUN jun proto-oncogene Ser
63

 ↑ (max. 6h) 

MAPK9,MAPK8, 

VRK1,MAPK15,PL

K3 

no 

MAPK1 
mitogen-activated protein 

kinase 1 
Tyr

187
 ↑ (max. 24h) 

JAK2,MAP2K1,RE

T 
no 

MAPK3 
mitogen-activated protein 

kinase 3 
Tyr

204
 ↑ (max. 24h) MAP2K1 no 

SLC9A1 

solute carrier family 9 

(sodium/hydrogen 

exchanger) member 1 

Ser
785

 ↑ (max. 24h) MAPK1 yes 

FOXO4 forkhead box O4 Ser
230

 ↓ CXNK2A1 no 

RPTOR 

regulatory associated 

protein of MTOR, 

complex 1 

Ser
863

 ↓ MTOR no 

LCK 
lymphocyte-specific 

protein tyrosine kinase 
Ser

42
 ↓ PRKCA no 

PML promyelocytic leukemia Ser
530

 ↓ MAPK1, MAPK3 yes 

ANKRD17 ankyrin repeat domain 17 Ser
2045

 ↓ CDK2 yes 

GIGYF2 
GRB10 interacting GYF 

protein 2 
Ser

30
 ↓ CDK1,CDK2 yes 

BRCA1 
breast cancer 1, early 

onset 
Ser

1497
 ↓ CDK1,CDK2, ATM yes 

CTTN cortactin Ser
418

 ↓ PAK1 yes 

ANP32B 

acidic (leucine-rich) 

nuclear phosphoprotein 

32 family, member B 

Thr
244

 ↓ CSNK2A1 no 

NCBP1 
nuclear cap binding 

protein subunit 1, 80kDa 
Thr

21
 ↓ RPS6KB1 no 

ADD1 adducin 1 (alpha) Ser
747

 ↓ PKRCA no 

NSFL1C 
NSFL1 (p97) cofactor 

(p47) 
Ser

140
 ↓ CDK1 yes 

CDK2 cyclin-dependent kinase 2 Tyr
15

 ↓ WEE1 yes 

LMNB1 lamin B1 Ser
405

 ↓ PKRCB no 

ORC1 
origin recognition 

complex, subunit 1 
Ser

273
 6h↑;24h↓ CDK2 yes 

SNW1 
SNW domain containing 

1 
Ser

224
 1h↑; 24h↓ CDK2 yes 

Table 3. Differentially phosphorylated sites among all four time points of differentiation 

stimulation in human ESCs 

The table represents proteins with changed phosphorylation sites, included in the solution of the module detection 

algorithm. The exact sites are depicted along with an arrow showing up- or downregulation of the site. The last 

column on the right holds information whether the kinase responsible for phosphorylating the site was also measured 

in the dataset or originates from the human phosphoproteome information extracted from literature.
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6 Discussion 

 

This thesis established approaches for analysis of the cell proteome using integrated network 

analysis and proteomics data. The developed knowledge base PlateletWeb integrates data from 

platelet protein detection studies, literature knowledge on interactions, phosphorylations and 

protein function coupled with drug and disease associations (Boyanova, Nilla et al. 2012). The 

main aim of this website was to present platelet researchers with a tool for systems biological 

analysis of single platelet proteins or a list of platelet proteins of particular interest. The assembly 

of the Plateletweb knowledge base allowed global investigation of the platelet proteome 

revealing that platelet proteins were mainly extracted from whole platelet lysates in proteomics 

studies. A closer look on phosphorylation and dephosphorylation events suggested that only a 

few phosphatases were responsible for counteracting kinase function. An enrichment analysis for 

platelet drug targets indicated that proteins with a higher connectivity in the platelet proteome are 

more often targeted by drugs. Closely investigating this finding, we confirmed that mainly 

experimental drugs targeting proteins with kinase activity were responsible for this effect.  

In a second approach, various signaling pathways of the platelet were analyzed using integrated 

networks with interaction and phosphorylation information extracted from PlateletWeb. ADP 

signaling and SH2 domain binding proteins were analyzed in a network context for collaboration 

studies and kinase predictions for experimentally validated phosphorylation sites in platelets gave 

rise to a new hypothesis of integrin inside out signaling based on DOK1 inhibition and 

phosphorylation.  

Using the PPI interactome as backbone, an approach for functional module detection in cells was 

validated based on functional interaction scores of the interactome edges. Functional 

characterization of T-cells and analysis of small and medium-sized proteomic datasets illustrated 

the useful applications of this method.  

In a final study, my thesis presented an integrative approach to quantitative phophoproteomic 

analysis starting with a tutorial using platelet-specific phosphorylation sites measured by a 

collaboration group after platelet activation/inhibition, and further covering a detailed 
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phosphosite network analysis in embryonic stem cell dataset of site-specific phosphorylations 

after trigged differentiation. Using both datasets, I showed an improvement in identifying 

response functional modules after cell stimulation based on our algorithm (Dittrich, Klau et al. 

2008). 

In this chapter, I would like to present a discussion for all important findings in this thesis and 

underline their contribution to the fields of bioinformatics and integrated network analysis. 

 

6.1 Unraveling the platelet proteome 

 

The platelet proteome has been collected for the first time in a platelet-specific platform called 

PlateletWeb. This knowledge base gives opportunities to investigate platelet proteins in a 

network context, using integrated information from their modifications (phosphorylation and 

dephosphorylation), kinase and phosphatase regulation, drug and disease associations along with 

their functional and physical properties. The website allows the analysis of each protein 

individually or the investigation of a group of proteins with similar functions and characteristics 

using the advanced search options. Using integrated network analysis of the available 

information, researchers can generate hypothesis about new interesting phosphorylation sites 

based on the neighboring network. Experimental data from the lab can also be used directly to 

identify proteins of particular isoelectric point or molecular weight ranges. In a more advanced 

approach, physical properties can be coupled with functional annotations to limit a particular 

group of platelet proteins. Own lists of proteins can also be used and visualized in a network 

context using the subnetwork extraction option, thus rendering various opportunities for systems 

biological analysis in platelets based on experimentally validated, retractable and traceable 

information. Thus, a first insight on platelet signaling in the light of systems biology could be 

provided for the platelet community (Boyanova, Nilla et al. 2012).  

By introducing kinase predictions hypotheses for the regulation of 81,8 % of the newly 

discovered phosphorylation sites could be generated enabling analysis of the signaling regulation 

in platelets under basal conditions. Kinase predictions may therefore prove very useful in 

phosphoproteomics research as many of the identified phosphorylation sites lack kinase 
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association information at first. These predictions give indications on which kinases can be tested 

for activation and phosphorylation of the given site and thus save valuable time in experimental 

procedures. On the other hand, they are an important bioinformatical asset for the analysis of 

signaling transduction as network analysis is only achieved if proteins are connected to each 

other and the phosphorylating kinase is available. Kinase predictions can further extend our 

knowledge not only for platelet regulation but also for any other cell line, as there is not yet a 

comprehensive list of all phosphorylation regulations in human cells. When considering platelet 

phosphatases, dephosphorylation is achieved by fewer enzymes, which have a broader 

specificity. 

The other important aspect of platelet function – transmembrane domain analysis – revealed the 

presence of transmembrane protein predictions, for which experimental validation is still missing. 

As the platelet membrane proteome presents challenges during proteomics analysis, predictions 

may add some important new insights on putative receptors and transmembrane proteins in the 

platelet. Transmembrane predictions have extended the information about platelet proteins and 

revealed new proteins previously not identified in membrane-specific studies. Therefore, the use 

of such predictions enriches the platelet database, as it allows an estimation of the number of 

transmembrane proteins in the platelet proteome. Further detailed analysis can be performed 

using this information in a network context or in functional experimental studies.  

The proteome analysis of platelets continued with pathway enrichment analysis. The 

identification of endocytosis as the top significant pathway found in platelets is consistent with 

platelet involvement in inflammation and potentially in metastasis (Leslie 2010) and supported 

by experimental findings of a recent off-gel proteomics study analyzing pathways with platelet 

proteins (Krishnan, Gaspari et al. 2011). Endocytosis is the internalization of plasma membrane 

proteins, lipids, extra-cellular molecules, bacteria and viruses and actin cytoskeleton is required 

for these processes (Pelkmans and Helenius 2002). There are different mechanisms for 

endocytosis (clathrin-mediated, virus entry, caveolar-mediated endocytosis), from which the 

virus entry is an interesting topic connected to platelets. At first, it was assumed that platelets are 

only involved in hemostasis but later new functions have been revealed (Leslie 2010). There is a 

growing evidence of platelet interaction with pathogens. Various bacteria have shown capability 

of binding to platelets directly through cooperation between the IIb3 and FcIIa, for example 

(Ludwig, Schultz et al. 2004). In most cases the pathogen entry is facilitated by binding to a 
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plasma protein, which then interacts with platelet receptors such as integrins (Kerrigan and Cox 

2010).  

Unexpected over-represented pathways related to pathological conditions include Alzheimer’s 

disease pathway, mirroring the recently discovered role of platelet APP as biomarker for this 

disease (Borroni, Agosti et al. 2010). A correlation was detected between the platelet APP ratio 

and the severity of disease in an early stage of Alzheimer’s disease (Padovani, Borroni et al. 

2001). The overrepresentation of actin cytoskeleton is to be expected, as the cytoskeleton plays a 

crucial role in the shape change of platelets (Bearer, Prakash et al. 2002).  

Functional aspects of the platelet proteome and analysis of overrepresented pathways are tightly 

connected with pharmacological therapies, targeting platelet proteins. To reveal the number of 

drug targets in platelets based on the assembled proteome and drug data we performed various 

analyses with platelet drug targets. Essential proteins are well known to be highly connected hubs 

in biological network (Jeong, Mason et al. 2001) and this has also been reported for drug targets 

(Yildirim, Goh et al. 2007). Whereas most of the previous studies analyzed a ‘generic’ human 

network comprising the set of interactions known at the time of study, we examined here the cell 

type specific network of anucleate human platelets. Similar as in ‘generic’ human PPI networks 

we also observe a higher connectivity of drug targets and disease-associated genes in the PPI 

network of platelets. Concerning the disease-associated genes this effect might be due to the 

influence of essential disease-associated genes, as previous studies suggested the correlation with 

network degree could not be observed after the removal of essential genes (Goh, Cusick et al. 

2007). For platelet drug targets the separate analysis of experimental and approved drug targets 

clearly demonstrates that this association applies mainly to the experimental targets. 

To obtain a deeper understanding in how regulation patterns of the network can be modulated via 

therapeutical approaches we analyzed the connectivity of drug targets in the signaling network of 

direct kinase-substrate relationships. For this we find a similar association with higher degree (i.e. 

number of substrates) for drug targeted kinases, whereas for disease- associated kinases no 

difference in average number of substrates could be detected. Interestingly, in a previous study 

site-specific phosphorylations of substrates have been investigated and phosphorylation hubs on 

the side of the substrates were found to include more disease-related genes (Tan, Bodenmiller et 
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al. 2009). Obviously, a correlation with connectivity of disease related genes becomes apparent 

only on the side of the substrates but not on that of kinases.  

The separate analysis of experimental and approved drugs shows that highly connected kinases 

are significantly more often drug targets of experimental drugs, suggesting that current 

pharmacological efforts mainly focus on kinases with a broad specificity, having a large number 

of substrates in the platelet network. Among the drug-target platelet kinases with more than 30 

substrates over 90% are associated with experimental drugs and 50% are not yet targeted by 

approved drugs. Among these is protein kinase A (PKA), a major inhibitory kinase in platelets, 

which phosphorylates 105 platelet substrates and is targeted by 44 experimental drugs, most of 

which are kinase inhibitors such as phosphonoserine. Experimental drug targets developed for 

various applications can be an important new resource for platelet pharmacology, as targeting 

towards platelet-specific effects is in principle possible due to the specific substrate-kinase profile 

in platelets. To what extend these experimental drug candidates may have beneficial or adverse 

effects on platelets needs to be examined in experimental research. Furthermore, the integration 

of interaction information with drug data and GO terms allows the search for potential diagnostic 

markers. 

There are also many limitations still present in platelet proteomics, which have to be overcome 

with the development of more optimized approaches. The platelet proteome is not yet complete 

and some false positive or false negative interactions may cause problems in the analysis of 

integrated networks (Goh, Lee et al. 2012). 
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6.2 Signal transduction in platelets 

 

ADP modeling using integrated network analysis based on experimental phosphorylation and 

interaction data provides an integrated view on ADP signaling. The collaborative approach 

consisted of a Boolean model created by Mischnik et al and supported by experimental evidence 

from PlateletWeb interactions and phosphorylation events and the different phases could be 

represented as networks. Dynamical models of ADP signaling and cross-talk with other pathways 

has already been introduced by Wangorsch et al (Wangorsch, Butt et al. 2011). Similarly, SH2 

domain binding proteins could be analyzed in a network dependent way. Missing links and 

interaction partners were thus revealed and the analyzed proteins could be connected with a 

known pathway to overview the whole system changes. Further investigation would involve 

excluding the tyrosine kinases and analyzing how the network signals without them. 

This thesis also showed that visualizing subnetworks using the PlateletWeb knowledge base can 

be useful for creating novel hypotheses for the functional role of various aspects of the network, 

such as the case with the integrin signaling network. Integrin signaling has important clinical 

relevance and patients with functional defects in the integrin α2bβ3 receptor (Glanzmann 

thrombasthenia) may suffer severe bleeding disorders. Because of its crucial role in platelet 

activation, the α2bβ3 molecule is a well-known target for various pharmacological therapies in 

platelets and inhibitors such as abciximab are routinely involved in emergency coronary artery 

bypass grafting to reduce thrombosis risk (Seligsohn 2002). Based on the network analysis 

performed using integrated approaches and PlateletWeb data, we suggest new mechanisms for 

the regulation of the 3 cytoplasmic tail. The integrin receptor has already been introduced as a 

regulatory scaffold in previous studies (Oxley, Anthis et al. 2008; Shattil 2009). We propose a 

new putative regulatory mechanism based on the newly identified phosphorylation site Ser
269

 of 

the DOK1 molecule.  DOK1 could act negatively on platelet function, as was already shown in 

Jurkat T-cells, where it inhibits PLC1 phosphorylation, Erk1/2 activation, and Ca
2+

 mobilization 

(Nemorin, Laporte et al. 2001). Furthermore, DOK proteins are involved in negative regulation of 

B-cell and T-cell signaling (Yamanashi, Tamura et al. 2000; Nemorin, Laporte et al. 2001).  

DOK1 is closely related to the DOK3 protein, which has also been indicated in integrin signaling. 

It has been proposed that DOK1 and DOK3 are negative regulators during α2bβ3 outside in 
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signaling in the complex with SHIP-1 and Grb2 (Senis, Antrobus et al. 2009). Further 

investigation is needed to understand the functional role of DOK1 phosphorylation at Ser
269

 and 

its possible association with CLK1. Although the role of Ser
269

 phosphorylation on DOK1 and 

integrin signaling is not yet understood in detail, the predicted kinase for this site could be 

analyzed in experiments through inhibition by the chemical compound Debromohymenialdisine. 

There are reports about this kinase phosphorylating and activating the phosphatase PTPN1, which 

in turn facilitates platelet activity (Moeslein, Myers et al. 1999). Therefore, CLK1 may be 

involved in platelet activation, possibly through phosphorylating DOK1 on Ser
269

 and thus 

inhibiting the negative influence of DOK1 on the integrin receptor. Data extracted from network 

analysis is alone not enough to determine whether the DOK1 module might be a potential target 

for future antiplatelet therapy. Indeed, interest in this molecule has been raised and experiments 

on DOK1 regulation and kinetics have been already performed in platelets (Hughan and Watson 

2007). In this study Watson et al demonstrated the expression of Dok1 in mouse and human 

platelets and showed that the protein is phosphorylated on a tyrosine residue after thrombin 

stimulation but not after GPVI or integrin α2bβ3 stimulation. They also demonstrated differential 

modes of regulation of Dok1 and Dok2 in platelets and introduced the idea of a role of Dok2 in 

outside-in signaling. Nonetheless, information about a serine phosphorylation in DOK1 and its 

possible functional significance has not yet been described. Dynamical modeling approaches lead 

to new hypotheses on the role of DOK1 during outside-in signaling, but there have not yet been 

any suggestions on its possible role in integrin inside-out signaling (Geier, Fengos et al. 2011).  

Conclusive findings about the exact role of DOK1 in platelets have not yet emerged. Therefore, 

an in-depth experimental investigation of DOK1 signaling in platelets may be possible using the 

inhibitory compound of CLK1 and our resource provides required systems biological background 

for planning and evaluating such experiments. Through the analysis of integrin network with 

integrated network analysis, the advantages of using kinase predictions were emphasized in cases 

where experimental procedures are sparse or unavailable due to the lack of antibodies for 

phosphorylation analysis or an established mouse knockout model with platelet phenotype as in 

the case of DOK1(Hughan and Watson 2007). Thus, integrated network analysis coupled with 

kinase prediction can be a useful tool for functional exploration of new candidate proteins and 

phosphosites such as the phosphorylation of DOK1, which are not easily accessible 

experimentally. 
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6.3 Functional module detection based on functional similarity 

 

By using the assembled human PPI network, I examined a module detection algorithm (Dittrich, 

Birschmann et al. 2008) enhanced with functional interaction information in two different cell 

systems. In a first approach, the performance of the algorithm was tested with and without 

functional interaction scores added to the interaction edges to underline the strength and 

advantages of using functional similarity. By analyzing a virus-infected gastric cell line dataset of 

22 proteins, the algorithm extracted two different maximal scoring networks connecting the 

identified proteins. A closer look on the solution with interaction functional scores revealed that 

the module detection algorithm enhanced with functional edge scores provided connections 

between the proteins, which were confirmed by a higher number of experimental studies and 

therefore created a more reliable interpretation of the signaling changes in the whole protein 

network. Furthermore, the strengths of the algorithm were tested on a dataset from T-cells, where 

I used an additional option of extracting suboptimal solutions. The functional modules in these 

solutions represented typical functions for T-cells and confirmed that the algorithm enhanced 

with functional information can be used for characterization of various cell types and for 

decomposing a large dataset into its most relevant functional clusters.  

We first tested the performance of our method on a small dataset derived from virus infected 

human gastric cells and compared it to a previous approach not integrating functional score 

information. There were clear differences in the topology and biological interpretation of the two 

resulting networks. While the main functional complex of keratin proteins was maintained in 

both, the connecting path to the other proteins in the sample was different. Although the 

phosphorylation of KRT18 at Ser
53

 by PRKCE is already known, the functional role of this 

phosphorylation has not yet been confirmed, it is speculated that it may play an in vivo role in 

filament reorganization (Omary, Baxter et al. 1992; Ku and Omary 1994), but it doesn’t explain 

the overall pathway and network context of the changed signaling in H9N2 infected gastric cells. 

When we focused on the keratin cluster in the solution including functional scores, it was 

associated with RAF1 and YWHAY (a 14-3-3 protein). Keratin 18 is known to regulate cell 

signaling via the association with 14-3-3 proteins and thereby with Raf1 kinase (Ku, Fu et al. 
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2004). During cell stress the binding between Raf1 and the keratin cluster is disrupted (Ku, Fu et 

al. 2004), which might be a useful hint in this case, as a virus infection causes stress to the gastric 

cells. KRT18 phosphorylation is reported to regulate various keratin functions including the 

binding to 14-3-3 proteins, involvement in the modulation of cell cycle progression and 

organizing keratin filaments (Ku, Azhar et al. 2002; Ku, Michie et al. 2002) along with a role in 

keratin protein turnover by ubiquitination (Ku and Omary 2000) or during apoptosis (Ku and 

Omary 2001). There is also evidence of a possible phosphorylation of KRT18 by Raf1, which 

causes the disruption in the complex (Ku, Fu et al. 2004). Therefore, our solution including 

functional scores reflects changes in signaling more accurately than the solution without 

functional scores. Further examples from the network confirm this finding. The interaction 

between pyruvate dehydrogenase alpha 1  (PDHA1) and pyruvate dehydrogenase kinase, 

isozyme 1 (PDK1) in the functional scores network has been identified in 24 studies and is a 

well-studied mechanism of cell signaling (Korotchkina and Patel 2001), while the interaction 

between PDHA1 and eukaryotic translation initiation factor 6 (EIF6) from the other network has 

just one broad interactome study as confirmation (Stelzl, Worm et al. 2005), where nothing 

specific is mentioned regarding this interaction. A well annotated interaction between guanine 

nucleotide binding protein (G protein), beta polypeptide 1 (GNB1) and guanine nucleotide 

binding protein (G protein), gamma 4  (GNG4) has been confirmed by three separate studies 

(Goddard, Ladds et al. 2006), the other alternative path (GNB1 to guanine nucleotide binding 

protein (G protein), beta polypeptide 2-like 1 (GNB2L) (Dell, Connor et al. 2002)) is not as 

bmeaningful. For PHB, there is more information available for its interaction with RAF1 (Wang, 

Nath et al. 1999), while the interaction with SUMO4 is extracted only from a study with a list of 

proteins interacting with SMT3 suppressor of mif two 3 homolog 4 (SUMO4) (Guo, Han et al. 

2005). The same holds true for the interaction between galectin-1 (LGALS1) and HRAS which 

has been identified as direct interaction and found to play an important role in mediating Ras 

membrane anchorage and cell transformation (Paz, Haklai et al. 2001). When we compared it 

with the interaction with survival of motor neuron protein interacting protein 1 (SIP1) (Park, 

Voss et al. 2001), SIP1 was part of the bigger SNM complex that associates with galectin and 

gemin4 for pre-mRNA splicing, but the study does not explicitly find a direct interaction between 

SIP1 and LGALS1.  
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These single interactions confirmed that the functional module detection algorithm 

complemented with functional interaction scores chooses interactions with more experimental 

evidence, which better explain the changes observed in virus infected cells. 

In a second approach, the module detecting algorithm enhanced with functional information was 

tested on a T-cell dataset by using the option of extracting optimal and suboptimal solutions. 

Thus, the network could be decomposed into smaller characteristic functional modules. Focusing 

on particular functional modules helps to identify characteristic clusters for the cell type. In this 

case, specific functions to T-cells could be identified in the first suboptimal solution (“T-cell 

differentiation”, ”T-cell receptor signaling”, ”Signaling”, ”Kinase cascade”, ”Phosphorylation”). 

Using this option, large datasets can easily be split into smaller networks, which are better 

adapted for analysis. Enhancement of the module detection algorithm with semantic similarity 

data allows the detection of biologically significant and cell-specific modules from the sample. 

This method provides a smooth integration of data from various sources and is applicable to 

multiple proteome datasets for identification of functional modules. 

The advantages of using network analysis in proteomics have already been thoroughly discussed 

in (Goh, Lee et al. 2012). According to the authors, alternative approaches are needed to 

complement existing methods to increase the comprehensiveness and precision of proteome 

coverage. Furthermore, network-based methods in proteomics can reduce the number of samples 

needed in a proteomic study. Currently, it is increasingly recognized that the understanding of 

properties that arise from whole-cell function require integrated, theoretical descriptions of the 

relationships between different cellular components (Albert 2005).  An approach, which links 

exact solutions for maximum-scoring subnetworks with functional interaction data and PPI 

network background, makes analysis of qualitative proteomics much more comprehensive and 

focused on functionally relevant modules. Thus, characteristic features of the examined cell type 

can be analyzed and missing linking proteins in the network, which have not yet been identified 

due to limitations in the proteomics approaches can be added to the network solution. Although 

useful, this method also bears some limitations, as it is relying on the accuracy of the underlying 

PPI network, which may include false positive interactions (Goh, Lee et al. 2012). Other 

problems may also occur due to missing or insufficient functional annotations of the proteins in 

the Gene Ontology tree, which is then also included in the functional semantic similarity score. 
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False interpretation may therefore arise from false annotations, reflected in the final functional 

interaction score.  

Future perspectives must also be considered, such as the network topology, which will change 

with the development of more exact and improved approaches for protein complex 

measurements. Quantitative proteomics tends to become more popular than qualitative 

approaches, because quantitative changes in the cell proteome are much more suitable for 

interpreting how the system reacts over time to different types of stimulation. As 

phosphoproteomics is also a growing field, site-specific quantitative phosphoproteomic studies 

need new methods for investigation of the kinase and phosphosite regulation in these datasets. 

Our method is particularly useful in such cases and there are already first methods developed to 

adapt it to phosphoprotemics (Chapter 6.4).  

 

6.4 Response modules in quantitative phosphoproteomic data 

 

Detection of signaling modules based on qualitative proteomics data was further extended to the 

investigation of quantitative phosphoproteomics data. In this thesis, I used an algorithm to detect 

signaling modules in large-scale phoshoproteomic networks. In contrast to previous methods, 

which mainly relied on gene expression data, our approach focuses on the analysis of cell-wide 

phosphorylation patterns. The integrated analysis combines protein-protein interaction (PPI) 

networks along with phosphoproteomic data to functionally describe signaling pathways and the 

change of information flow during various states of stimulation. To this end we used quantitative 

phosphoproteome data from embryonic stem cells after stimulation for differentiation for node 

scoring in networks derived from PPI data as well as kinase-substrate relationships. 

Subsequently, we searched for the maximum-scoring subnetwork using an exact algorithm to 

identify differentially phosphorylated signaling modules in cellular networks and thus obtained 

response modules which characterize precisely the regulation patterns observed during hESC 

differentiation. 

The resulting networks enriched with both kinase-substrate information and phosphorylation sites 

illustrate the signaling flow, thereby reflecting changes during differentiation of hESCs and 
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providing new insights on signaling mechanisms in differentially phosphorylated cellular 

networks. In summary, the algorithm reveals the integration of kinases derived from the human 

phosphoproteome significantly improves the systems biological understanding of signaling 

modules in a network context. Site specificity based on the maximum change in phosphorylation 

is crucial for identifying the most prominent effects of stimulation. When comparing these results 

to the results of a previous study on embryonic stem cells by van Hoof et al where they used 

kinase predictions to explain site regulation (Van Hoof, Dormeyer et al. 2010), our method stands 

out due to the experimental background and data used in our phosphoproteome assembly coupled 

with regulatory kinases extracted from the human phosphoproteome.   

In a further analysis, I presented a tutorial for analyzing signaling modules from platelet 

quantitative phosphorylation data. Again, the algorithm proved useful for investigating the 

obtained proteins in the context of ADP signaling. Nonetheless, limitations are still present in 

platelet quantitative phosphoproteomics such as scarcity of supplied data and precision of the 

mass spectrometry methodology.  

Future aspects of using functional module detection in quantitative phosphoproteomics data 

include the addition of gene ontology semantic similarity which can be included to the edges to 

enrich the functional information of the resulting modules as was already shown in Chapter 5.3 

with qualitative proteomics data. Additionally, the algorithm can be enhanced by introducing 

directed edges to the input network for further analysis of the signal flow. Replicates can be 

considered for statistical validation of the investigated networks. 
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7 Conclusion and Outlook 

 

This thesis presents first steps in the systems biological analysis of the platelet proteome and 

novel approaches for network analysis that improve the biological interpretation of identified 

proteins. Nonetheless, there are many challenges and future perspectives to be revealed in the 

field of platelet proteomics. The platelet proteome is far from complete, but the development of 

the PlateletWeb database considerably improves the wealth of information on platelets by 

integrating the most important available information and newly added phosphorylation sites. 

Quantitation is another important field which desperately needs attention and suffers from 

technical limitations. Determination of the protein levels and stoichiometry would significantly 

contribute to the understanding of dynamical changes in posttranslational platelet protein 

modifications. Based on this new data, hypothesis-generated research, such as the analysis of 

DOK1 signaling, can be further pursued in the future with quickly evolving mass-spectrometry 

techniques and lab experiments. One aspect of future development would be the addition of 

quantitative phosphorylation information to the platelet knowledge base, which would facilitate 

the investigation of platelet changes during various conditions. Dynamic information on the 

change of various proteins and kinases can be also included. Another aspect is the extension of 

the database to mouse proteins, which would help creating a platform for cross-species network 

analysis. The main idea behind this is that interactions existing in human cells but missing in 

mouse due to the lack of experimental data can be extrapolated based on the orthology of the 

interacting proteins. The same can be applied to human networks with missing components and 

edges, which are found in the mouse interactome. Thus, a multi-scale cross-species analysis will 

be available for platelet researchers, which would improve and simplify their efforts in 

understanding platelet signaling. As the mouse is a well-established model in cardio-vascular 

research, this repository would provide the platelet community with an invaluable tool for 

systems biological analysis of mouse as well as human platelets. With upcoming technologies 

and data optimization in mass-spectrometry, the database can be further optimized and supplied 

with platelet-specific information.  
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In the fields of network analysis, there is a lot more to be expected in future developments. The 

presented approach of combining functional information with PPI network context and proteomic 

data is just a first step towards reaching a better understanding of proteomics large-scale studies. 

Nonetheless, this shows once more that integrative analysis from different biological fields is 

essential to realize the whole potential of available information in an optimal way. And while 

proteomics data is often fractionized or insufficient for statistical validation, there are still ways 

to extract valuable information from the network context. However, it has to be noted, that our 

understanding of the interactome topology will change with the refinement of measurements and 

analytical methods. The human interactome is not merely a cloud with entities interacting with 

each other in a chaotic fashion. There are tendencies of creating a more appropriate modular view 

of the interactome with strongly interconnected protein complexes, which interact with other 

protein complexes using low affinity transient interactions combined with models in which also 

the three dimensional structure are considered (Stein, Mosca et al. 2011). There are already 

efforts involved in the analysis of protein complexes by integrating proteomics mass-

spectrometry techniques with protein interaction networks, as reviewed by Stengel et al (Stengel, 

Aebersold et al. 2012), indicating that the future of network analysis also lies in understanding 

how interactions define the topology of the human interactome in a biological sense. Thus, 

network analysis will be more based on the biological and physical properties of proteins, rather 

than assuming only network characteristics. 

Finally, collaborative efforts between technology, systems biology and computer science will be 

needed in future research to overcome the challenges of sparse data, technical difficulties and 

inconsecutive data analysis. Collaborations between different groups with special expertise will 

build the foundations of strong interdisciplinary research and ultimately provide results, which 

for now seem rather impossible to achieve. To accomplish this task optimization of data analysis 

and lab techniques will be of key importance. And although network analysis may face 

skepticism in the future, it is always good to remember that great ideas are not always recognized 

at first glance. One such example is the introduction of Gene Ontology as a hierarchically 

structured graph of gene functional annotations (Ashburner, Ball et al. 2000). Although it was 

considered with doubt in the beginning, now it has become an inseparable part of numerous 

bioinformatical and systems biological analyses. Following this example, the future of network 
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analysis lies in the hands of people willing to think originally as the challenge is to comprehend 

the complex nature of cell function by analyzing all its components. 
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8 Supplementary materials 

 

Supplemental Table 1. Number of proteins extracted from all studies 

All platelet information sources are presented with the source of data, number of platelet proteins/transcripts and the 

fraction from which the proteins were extracted. 

Study/Database Number of proteins Fraction 

GPMBD 2011(Craig, Cortens et al. 2004) 2064 whole platelet 

SAGE (Dittrich, Birschmann et al. 2006) 1964 whole platelet 

Lewandrowski 2009 (Lewandrowski, Wortelkamp et al. 2009) 1269 membrane 

Piersma 2009 (Piersma, Broxterman et al. 2009) 707 secretome 

Haudek 2009 (Haudek, Slany et al. 2009) 671 whole platelet 

Martens 2005 (Martens, Van Damme et al. 2005) 608 whole platelet 

Garcia 2005 (Garcia, Smalley et al. 2005) 554 microparticles 

Uniprot 2009 (2009) 538 undefined 

Wong 2009 (Wong, McRedmond et al. 2009) 358 whole platelet 

Garcia 2004 (García, Prabhakar et al. 2004) 305 whole platelet 

Moebius 2005 (Moebius, Zahedi et al. 2005) 281 membrane 

Thon 2008 (Thon, Schubert et al. 2008) 279 whole platelet 

Zahedi 2008 (Zahedi, Lewandrowski et al. 2008) 277 phosphoproteome 

HPRD (Keshava Prasad, Goel et al. 2009) 230 undefined 

Maynard 2007 (Maynard, Heijnen et al. 2007) 206 alpha granules 

Coppinger 2004 (Coppinger, Cagney et al. 2004) 182 secretome 

Guerrier 2007 (Guerrier, Claverol et al. 2007) 176 whole platelet 

Coppinger 2007 (Coppinger, Fitzgerald et al. 2007) 132 secretome 

Gene RIF 120 undefined 

Springer 2009 (Springer, Miller et al. 2009) 119 whole platelet 

O'Neill 2002 (O'Neill, Brock et al. 2002) 116 whole platelet 

Marcus 2000 (Marcus, Immler et al. 2000) 109 whole platelet 

Garcia 2006 (Garcia, Senis et al. 2006) 77 whole platelet 

Yu 2010 (Yu, Leng et al. 2010) 77 whole platelet 

Thiele 2007 (Thiele, Steil et al. 2007) 29 whole platelet 

Glenister 2008 (Glenister, Payne et al. 2008) 16 whole platelet 
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Supplemental Table 2. List of platelet human phosphatases. 

The catalogue of human phosphatases was acquired from the Human Protein Phosphatases PCR Array (Quiagen) and 

complemented by manual search of phosphatases in our protein repository (see Materials and Methods). The total 

number of human phosphatases adds up to 191. Next, we analyzed and found that 73 phosphatases have evidence for 

expression in platelets. 

Gene Symbol Gene ID Description 

PPP3CA 5530 protein phosphatase 3, catalytic subunit, alpha isozyme 

PPP3CB 5532 protein phosphatase 3, catalytic subunit, beta isozyme 

PPP3CC 5533 protein phosphatase 3, catalytic subunit, gamma isozyme 

PTPRC 5788 protein tyrosine phosphatase, receptor type, C 

ACPP 55 acid phosphatase, prostate 

PTPN11 5781 protein tyrosine phosphatase, non-receptor type 11 

PTPN4 5775 protein tyrosine phosphatase, non-receptor type 4 (megakaryocyte) 

PTPRB 5787 protein tyrosine phosphatase, receptor type, B 

PTPN6 5777 protein tyrosine phosphatase, non-receptor type 6 

PTPRA 5786 protein tyrosine phosphatase, receptor type, A 

PTPN1 5770 protein tyrosine phosphatase, non-receptor type 1 

PTPRG 5793 protein tyrosine phosphatase, receptor type, G 

PTPN7 5778 protein tyrosine phosphatase, non-receptor type 7 

PPP2CB 5516 protein phosphatase 2, catalytic subunit, beta isozyme 

PPP6C 5537 protein phosphatase 6, catalytic subunit 

MTM1 4534 myotubularin 1 

TNS1 7145 tensin 1 

PTPN12 5782 protein tyrosine phosphatase, non-receptor type 12 

DUSP3 1845 dual specificity phosphatase 3 

PTPRO 5800 protein tyrosine phosphatase, receptor type, O 

PPP5C 5536 protein phosphatase 5, catalytic subunit 

PPP2R4 5524 protein phosphatase 2A activator, regulatory subunit 4 

PTPN9 5780 protein tyrosine phosphatase, non-receptor type 9 

PTPRJ 5795 protein tyrosine phosphatase, receptor type, J 

PPP3R1 5534 protein phosphatase 3, regulatory subunit B, alpha 

PTP4A2 8073 protein tyrosine phosphatase type IVA, member 2 

PTP4A1 7803 protein tyrosine phosphatase type IVA, member 1 

PPP2R5A 5525 protein phosphatase 2, regulatory subunit B', alpha 

PPP2R5C 5527 protein phosphatase 2, regulatory subunit B', gamma 
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Gene Symbol Gene ID Description 

PTEN 5728 phosphatase and tensin homolog 

PPP1R2 5504 protein phosphatase 1, regulatory (inhibitor) subunit 2 

PPP1R12A 4659 protein phosphatase 1, regulatory (inhibitor) subunit 12A 

PTPRK 5796 protein tyrosine phosphatase, receptor type, K 

PPP1R7 5510 protein phosphatase 1, regulatory (inhibitor) subunit 7 

DUSP2 1844 dual specificity phosphatase 2 

DUSP5 1847 dual specificity phosphatase 5 

PPP2R1B 5519 protein phosphatase 2, regulatory subunit A, beta 

PPP1R9B 84687 protein phosphatase 1, regulatory (inhibitor) subunit 9B 

PPP1R3D 5509 protein phosphatase 1, regulatory (inhibitor) subunit 3D 

CDC14B 8555 CDC14 cell division cycle 14 homolog B (S. cerevisiae) 

PPP1R12B 4660 protein phosphatase 1, regulatory (inhibitor) subunit 12B 

PPM1B 5495 protein phosphatase, Mg2+/Mn2+ dependent, 1B 

PPP2R2B 5521 protein phosphatase 2, regulatory subunit B, beta 

MTMR12 54545 myotubularin related protein 12 

PTPN18 26469 protein tyrosine phosphatase, non-receptor type 18 (brain-derived) 

PTPRT 11122 protein tyrosine phosphatase, receptor type, T 

DUSP23 54935 dual specificity phosphatase 23 

MTMR14 64419 myotubularin related protein 14 

ACP1 52 acid phosphatase 1, soluble 

PPP1CC 5501 protein phosphatase 1, catalytic subunit, gamma isozyme 

PPP2CA 5515 protein phosphatase 2, catalytic subunit, alpha isozyme 

PPP2R5E 5529 protein phosphatase 2, regulatory subunit B', epsilon isoform 

PPP2R2A 5520 protein phosphatase 2, regulatory subunit B, alpha 

PPM1G 5496 protein phosphatase, Mg2+/Mn2+ dependent, 1G 

SSH3 54961 slingshot homolog 3 (Drosophila) 

SBF2 81846 SET binding factor 2 

PPM1F 9647 protein phosphatase, Mg2+/Mn2+ dependent, 1F 

PPP3R2 5535 protein phosphatase 3, regulatory subunit B, beta 

PPP6R3 55291 protein phosphatase 6, regulatory subunit 3 

PPP1R12C 54776 protein phosphatase 1, regulatory (inhibitor) subunit 12C 

PPP1CB 5500 protein phosphatase 1, catalytic subunit, beta isozyme 

DUSP26 78986 dual specificity phosphatase 26 (putative) 

PPP1R16B 26051 protein phosphatase 1, regulatory (inhibitor) subunit 16B 

PPP1R1C 151242 protein phosphatase 1, regulatory (inhibitor) subunit 1C 
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Gene Symbol Gene ID Description 

PPP2R2D 55844 protein phosphatase 2, regulatory subunit B, delta 

PPP1CA 5499 protein phosphatase 1, catalytic subunit, alpha isozyme 

PPP2R1A 5518 protein phosphatase 2, regulatory subunit A, alpha 

PDP1 54704 pyruvate dehyrogenase phosphatase catalytic subunit 1 

PPM1A 5494 protein phosphatase, Mg2+/Mn2+ dependent, 1A 

PPP1R14A 94274 protein phosphatase 1, regulatory (inhibitor) subunit 14A 

ILKAP 80895 integrin-linked kinase-associated serine/threonine phosphatase 

PPP6R1 22870 protein phosphatase 6, regulatory subunit 1 

PPM1L 151742 protein phosphatase, Mg2+/Mn2+ dependent, 1L 
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Supplemental Table 3. Underrepresented pathways in platelets. 

The Table represents pathways, which are significantly underrepresented in platelets, as they contain fewer platelet 

proteins than would be expected by chance. The underrepresentation was tested using the Fisher’s Test for 

enrichment analysis (see Methods and Materials). Olfactory and neuronal receptors are lacking in the platelet cell, 

therefore there is a significant underrepresentation of the olfactory transduction and neuroactive ligand-receptor 

interaction pathways. 

On the side of underrepresented pathways (Table S1) we find e.g. the “Neuroactive ligand-receptor interaction” (p-

value = 2.06e-15) pathway which consists largely of neuronal  receptors (220 of 318 proteins) and olfactory 

receptors; both classes of tissue-specific receptors, which are not expressed in platelets. 

 

Pathway 
Total number of 

proteins 

Number of 

Platelet proteins 

Number of 

Non Platelet proteins 
p-value 

Olfactory transduction 388 14 374 4.36E-50 

Neuroactive ligand-receptor 

interaction 
318 46 272 2.06E-15 

Basal cell carcinoma 55 2 53 7.22E-07 

Cytokine-cytokine receptor 

interaction 
275 58 217 3.60E-06 

Basal transcription factors 37 2 35 6.25E-04 

Base excision repair 34 2 32 1.70E-03 

Folate biosynthesis 64 9 55 2.37E-03 

Aminoacyl-tRNA biosynthesis 71 11 60 2.81E-03 

Glycosphingolipid 

biosynthesis - lacto and 

neolacto series 

26 1 25 3.15E-03 

DNA replication 36 3 33 3.15E-03 

Intestinal immune network for 

IgA production 
49 6 43 3.31E-03 

Steroid hormone biosynthesis 56 8 48 4.20E-03 

Hedgehog signaling pathway 56 8 48 4.20E-03 

Autoimmune thyroid disease 54 8 46 7.10E-03 
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Supplemental Table 4. Proteins of the integrin signaling pathway. 

The phosphorylation state of each protein is depicted in the right column. 

Gene ID Gene Symbol Description 

5908 RAP1B RAP1B, member of RAS oncogene family 

5906 RAP1A RAP1A, member of RAS oncogene family 

1796 DOK1 docking protein 1, 62kDa (downstream of tyrosine kinase 1) 

5777 PTPN6 protein tyrosine phosphatase, non-receptor type 6 

5336 PLCG2 phospholipase C, gamma 2 (phosphatidylinositol-specific) 

5175 PECAM1 platelet/endothelial cell adhesion molecule 

2533 FYB FYN binding protein 

7094 TLN1 talin 1 

5781 PTPN11 protein tyrosine phosphatase, non-receptor type 11 

3690 ITGB3 integrin, beta 3 (platelet glycoprotein IIIa, antigen CD61) 

392 ARHGAP1 Rho GTPase activating protein 1 

79930 DOK3 docking protein 3 

10666 CD226 CD226 molecule 

2317 FLNB filamin B, beta 

2316 FLNA filamin A, alpha 

9046 DOK2 docking protein 2, 56kDa 

387 RHOA ras homolog gene family, member A 

6714 SRC v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (avian) 

2534 FYN FYN oncogene related to SRC, FGR, YES 

5578, 

5579, 

5580, 

5581, 

5582, 

5588, 

5590 

PRKCA, 

PRKCB, 

PRKCD, 

PRKCE, 

PRKCG, 

PRKCQ, 

PRKCZ 

protein kinase C = PKC 

1445 CSK c-src tyrosine kinase 

6093 ROCK1 Rho-associated, coiled-coil containing protein kinase 1 

1195 CLK1 CDC-like kinase 1 

6850 SYK spleen tyrosine kinase 

5566 PRKACA protein kinase, cAMP-dependent, catalytic, alpha 

5747 PTK2 PTK2 protein tyrosine kinase 2 

Supplemental Table 5. Drugs of the integrin signaling pathway. 
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Associated drugs are listed along with drug type data and targeted proteins. 

Associated drugs Drug type Associated proteins 

13-Acetylphorbol Experimental PKC 

2-Methyl-2,4-Pentanediol Experimental PRKACA 

3,5-Diiodotyrosine Experimental PRKACA 

3-pyridin-4-yl-1H-indazole Experimental PRKACA 

5-benzyl-1,3-thiazol-2-amine Experimental PRKACA 

Abciximab Approved ITGB3 

Adenosine-5'-Diphosphate Experimental PTK2 

Antithymocyte globulin Approved ITGB3 

Balanol Experimental PRKACA 

Citric Acid Experimental SRC 

Cysteine Sulfenic Acid Experimental SRC 

Dasatinib Approved FYN,SRC 

Debromohymenialdisine Experimental CLK1 

Dodecane-Trimethylamine Experimental PTPN11 

Eptifibatide Approved ITGB3 

Guanosine-5'-Diphosphate Experimental RHOA 

Hydroxyfasudil Experimental PRKACA,ROCK1 

Malonic acid Experimental SRC 

N6-Benzyl Adenosine-5'-Diphosphate Experimental SRC 

N-Octane Experimental PRKACA 

O-Phosphoethanolamine Experimental PKC 

Oxalic Acid Experimental SRC 

Pentanal Experimental PRKACA 

Phenylphosphate Experimental SRC 

Phosphatidylserine Approved PKC 

Phosphonoserine Experimental PRKACA,PKC 

Phosphonothreonine Experimental PRKACA,PKC 

Phosphonotyrosine Experimental SRC 

Purvalanol A Experimental SRC 

Staurosporine Experimental CSK,PKC,SYK 

Sti-571 Experimental SYK 

Tirofiban Approved ITGB3 

Vitamin E Approved PKC 

Myristic acid Experimental PRKACA 
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Supplemental Table 6. All interactions available in the H9N2-virus infected cells 

solution without using functional interaction scores 

 

Interactor 1 Interactor 2 Detection Method Pubmed IDs Functional Interaction Score 

ACTB PRKCD in vitro 11415434 -2.5870518039347 

ACTC1 CAPN1 yeast 2-hybrid 12358155 -2.84860074400133 

ACTC1 HSPB1 in vivo 12087068 -1.89012302481934 

ACTC1 PRKCE in vivo 11968018 -2.65903506166956 

APRT IKBKG NA 20098747 -1.58330872459433 

C1QBP PRKCD in vivo;in vitro;yeast 2-hybrid 10831594 -2.4652260164825 

CAPN1 ECHS1 yeast 2-hybrid 12358155 -2.83061924922273 

CLIC1 SUMO4 in vivo 16236267 -2.10302004720975 

GNB1 GNB2L1 in vitro 12359736 -2.68558191879177 

EIF6 PDHA1 yeast 2-hybrid 16169070 -2.76371572785384 

EIF6 GNB2L1 in vivo;in vitro;yeast 2-hybrid 14654845 -2.8006912417969 

KRT1 PRKCE in vivo 11897493 -2.75635028374924 

KRT14 TCHP yeast 2-hybrid 15731016 -1.91372994445305 

KRT15 KRT18 yeast 2-hybrid 16189514 -1.28563526173082 

KRT15 KRT19 yeast 2-hybrid 16189514 -1.10651104507118 

KRT15 KRT81 yeast 2-hybrid 16189514 -1.12553141762592 

KRT16 TCHP yeast 2-hybrid 15731018 -1.88253735642867 

KRT18 PPM1B NA 17353931 -2.84000218388119 

KRT18 PRKCE in vitro 
7523419,1374067, 

15368451 
-2.83321042541182 

KRT18 TCHP in vivo;in vitro;yeast 2-hybrid 15731014 -1.94116944361335 

RPSA SUMO4 in vivo 16236267 -2.10302004720975 

LGALS1 SIP1 NA 11522829 -2.57470679834156 

PDHA1 PDHB in vivo 7864652 -0.135635033356706 

PHB SUMO4 in vivo 16236267 -2.10302004720975 

PPIA S100A8 yeast 2-hybrid 16169070 -2.37531768105933 

PPM1B S100A8 NA 17353931 -2.68820198109401 

PPM1B IKBKG in vivo 14585847 -2.76573630495227 

PPM1B ISG15 NA 16884686 -2.87018692813316 

PRKCD GNB2L1 in vivo 11884618 -2.66714067777954 
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Interactor 1 Interactor 2 Detection Method Pubmed IDs Functional Interaction Score 

PRKCE GNB2L1 in vivo;in vitro 11956211,11709417 -2.62048881751121 

RPS12 IKBKG NA 20098747 -2.1208040568425 

S100A8 NUAK1 NA 17353931 -2.52288288299586 

SIP1 IKBKG NA 20098747 -2.13278788728704 

NUAK1 KRT77 NA 17353931 -2.10302004720975 

GNB2L1 SUMO4 in vivo 16236267 -2.10302004720975 

PRDX4 SUMO4 in vivo 16236267 -2.10302004720975 
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Supplemental Table 7. All interactions available in the H9N2-virus infected cells 

solution with functional interaction scores 

Interactor 1 Interactor 2 Detection Method Pubmed IDs 
Functional Interaction 

Score 

ACTB ACTG1 yeast 2-hybrid 16189514 -0.515204327071414 

ACTG1 SUMO4 in vivo 16236267 -2.10302004720975 

AKT1 HSPB1 NA;in vivo;in vitro 11042204 -1.91239203821897 

AKT1 PDK1 NA 15678105 -2.1270848204599 

AKT1 RAF1 in vivo;in vitro 

10576742,19058874, 

10576742,11971957, 

11997508,18669648, 

18691976,18767875, 

20230923,20068231 

-1.64350182724194 

AKT1 NUAK1 in vivo;in vitro Not available -1.76408895217485 

APRT IKBKG NA 20098747 -1.58330872459433 

C1QBP YWHAB in vivo 15324660 -2.82690595138411 

CLIC1 SUMO4 in vivo 16236267 -2.10302004720975 

ECHS1 EPB41 NA 17353931 -2.87873895850523 

EPB41 YWHAB yeast 2-hybrid 16368544 -2.81789002794067 

GNB1 GNG4 in vivo;in vitro;yeast 2-hybrid 
7665596,8636150, 

16884933 
-1.28748888738928 

GNG4 RAF1 in vivo;in vitro 7782277 -2.36931223148317 

HRAS LGALS1 in vivo;in vitro 11709720 -2.32421982072048 

HRAS RAF1 in vivo;in vitro;yeast 2-hybrid 

8530446,8911690, 

8035810,9099670, 

7730360,8332187, 

16301319,15688026, 

8332195,9154803, 

9261098 

-0.426130720732903 

HSPA4 RAF1 in vivo;in vitro 16093354 -1.78816481515568 

HSPA4 ISG15 NA 16884686 -2.80297571892739 

JAK2 PPIA in vivo 12668872 -2.60503512103199 

JAK2 RAF1 in vivo;in vitro 

8876196,10205168, 

9689060,11134016, 

10205168,8876196, 

9689060,11134016, 

-1.44417841580181 
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Interactor 1 Interactor 2 Detection Method Pubmed IDs 
Functional Interaction 

Score 

8876196 

JAK2 IKBKG NA 20098747 -2.01133811929412 

KRT1 KRT5 in vivo 11591653 -1.33826683895676 

KRT5 KRT14 in vitro 8636216 -0.279920342893604 

KRT5 KRT18 in vivo 9786957 -1.28563526173082 

KRT5 TCHP yeast 2-hybrid 15731015 -1.8215822131448 

KRT15 KRT18 yeast 2-hybrid 16189514 -1.28563526173082 

KRT15 KRT19 yeast 2-hybrid 16189514 -1.10651104507118 

KRT15 KRT81 yeast 2-hybrid 16189514 -1.12553141762592 

KRT16 TCHP yeast 2-hybrid 15731018 -1.88253735642867 

KRT18 YWHAB in vivo 9524113 -2.26154453575568 

RPSA SUMO4 in vivo 16236267 -2.10302004720975 

PDHA1 PDHB in vivo 7864652 -0.135635033356706 

PDHA1 PDK1 in vitro 
12676647,11486000, 

11485553 
-0.045461107070217 

PHB RAF1 in vivo;in vitro 10523633 -2.39681571732858 

PHB SUMO4 in vivo 16236267 -2.10302004720975 

RAF1 YWHAB in vivo;in vitro 8702721,7644510 -0.983730579335193 

RPS12 IKBKG NA 20098747 -2.1208040568425 

NUAK1 KRT77 NA 17353931 -2.10302004720975 

PRDX4 SUMO4 in vivo 16236267 -2.10302004720975 
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Supplemental Table 8. Functional enrichment analysis of T-cells solutions without the 

use of functional interaction scores 

A) BP of Optimal solution 

GO-ID p-value corr p-value x n X N Description 

51130 3.5247E-6 3.6904E-3 9 25 47 809 positive regulation of cellular component organization 

31346 1.0332E-5 5.4089E-3 5 7 47 809 positive regulation of cell projection organization 

6928 1.6382E-5 5.7174E-3 12 53 47 809 cellular component movement 

43434 2.6354E-5 6.8980E-3 5 8 47 809 response to peptide hormone stimulus 

51128 6.3573E-5 1.2332E-2 12 60 47 809 regulation of cellular component organization 

30036 7.5405E-5 1.2332E-2 10 43 47 809 actin cytoskeleton organization 

30029 9.3375E-5 1.2332E-2 10 44 47 809 actin filament-based process 

48856 9.4225E-5 1.2332E-2 19 140 47 809 anatomical structure development 

60491 1.8443E-4 2.1456E-2 3 3 47 809 regulation of cell projection assembly 

48731 2.1022E-4 2.2010E-2 17 123 47 809 system development 

44087 3.0812E-4 2.7222E-2 7 25 47 809 regulation of cellular component biogenesis 

31344 3.1200E-4 2.7222E-2 5 12 47 809 regulation of cell projection organization 

7275 3.6928E-4 2.9175E-2 18 141 47 809 multicellular organismal development 

9888 4.0810E-4 2.9175E-2 8 34 47 809 tissue development 

7010 4.1799E-4 2.9175E-2 10 52 47 809 cytoskeleton organization 

23034 4.8657E-4 3.0354E-2 13 84 47 809 intracellular signaling pathway 

50793 4.9285E-4 3.0354E-2 10 53 47 809 regulation of developmental process 

50896 6.9567E-4 3.9766E-2 23 217 47 809 response to stimulus 

45596 7.2164E-4 3.9766E-2 5 14 47 809 negative regulation of cell differentiation 
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B) BP of first Suboptimal solution 

 

GO-ID p-value corr p-value x n X N Description 

6446 2.9323E-5 1.1275E-2 5 8 48 809 regulation of translational initiation 

10468 3.3177E-5 1.1275E-2 17 105 48 809 regulation of gene expression 

44419 4.6148E-5 1.1275E-2 12 57 48 809 
interspecies interaction between 

organisms 

 

C) BP of second Suboptimal solution  

GO-ID p-value corr p-value x n X N Description 

51640 3.5241E-5 1.9669E-2 6 13 47 809 organelle localization 

6890 4.8190E-5 1.9669E-2 4 5 47 809 retrograde vesicle-mediated transport, Golgi to ER 

48193 6.2178E-5 1.9669E-2 7 20 47 809 Golgi vesicle transport 

51656 1.9027E-4 4.4762E-2 5 11 47 809 establishment of organelle localization 

16050 3.0915E-4 4.4762E-2 4 7 47 809 vesicle organization 

23033 3.2416E-4 4.4762E-2 16 115 47 809 signaling pathway 

23052 3.3460E-4 4.4762E-2 20 166 47 809 signaling 

6996 5.4909E-4 4.4762E-2 15 108 47 809 organelle organization 

50789 5.5103E-4 4.4762E-2 34 392 47 809 regulation of biological process 

280 5.9195E-4 4.4762E-2 4 8 47 809 nuclear division 

7067 5.9195E-4 4.4762E-2 4 8 47 809 mitosis 

8104 5.9436E-4 4.4762E-2 14 97 47 809 protein localization 

48194 7.0752E-4 4.4762E-2 3 4 47 809 Golgi vesicle budding 

48205 7.0752E-4 4.4762E-2 3 4 47 809 COPI coating of Golgi vesicle 

48200 7.0752E-4 4.4762E-2 3 4 47 809 Golgi transport vesicle coating 

65007 8.2297E-4 4.6794E-2 35 417 47 809 biological regulation 

15031 8.8023E-4 4.6794E-2 13 89 47 809 protein transport 

51641 9.1815E-4 4.6794E-2 14 101 47 809 cellular localization 

45184 9.8511E-4 4.6794E-2 13 90 47 809 establishment of protein localization 

87 1.0201E-3 4.6794E-2 4 9 47 809 M phase of mitotic cell cycle 

279 1.0355E-3 4.6794E-2 5 15 47 809 M phase 
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Supplemental Table 9. Functional enrichment analysis of T-cells solutions using 

interaction scores 

A) BP of Optimal solution 

GO-ID p-value 
corr p-

value 
x n X N Description 

44260 2.6174E-14 6.9100E-12 44 314 49 809 cellular macromolecule metabolic process 

43170 9.7766E-13 1.2905E-10 44 341 49 809 macromolecule metabolic process 

31145 3.7222E-8 1.6378E-6 12 31 49 809 

anaphase-promoting complex-dependent 

proteasomal ubiquitin-dependent protein 

catabolic process 

51352 3.7222E-8 1.6378E-6 12 31 49 809 negative regulation of ligase activity 

51444 3.7222E-8 1.6378E-6 12 31 49 809 
negative regulation of ubiquitin-protein 

ligase activity 

51436 3.7222E-8 1.6378E-6 12 31 49 809 
negative regulation of ubiquitin-protein 

ligase activity involved in mitotic cell cycle 

51439 5.6960E-8 1.6708E-6 12 32 49 809 
regulation of ubiquitin-protein ligase 

activity involved in mitotic cell cycle 

31397 5.6960E-8 1.6708E-6 12 32 49 809 
negative regulation of protein 

ubiquitination 

51437 5.6960E-8 1.6708E-6 12 32 49 809 
positive regulation of ubiquitin-protein ligase 

activity involved in mitotic cell cycle 

44267 1.1686E-7 2.3859E-6 32 241 49 809 cellular protein metabolic process 

51351 1.2652E-7 2.3859E-6 12 34 49 809 positive regulation of ligase activity 

51340 1.2652E-7 2.3859E-6 12 34 49 809 regulation of ligase activity 

51443 1.2652E-7 2.3859E-6 12 34 49 809 
positive regulation of ubiquitin-protein 

ligase activity 

51438 1.2652E-7 2.3859E-6 12 34 49 809 regulation of ubiquitin-protein ligase activity 

31398 1.8412E-7 3.2406E-6 12 35 49 809 positive regulation of protein ubiquitination 

31396 2.6411E-7 4.2358E-6 12 36 49 809 regulation of protein ubiquitination 

44238 2.7276E-7 4.2358E-6 44 460 49 809 primary metabolic process 

43161 3.7378E-7 5.0376E-6 12 37 49 809 
proteasomal ubiquitin-dependent protein 

catabolic process 

10498 3.7378E-7 5.0376E-6 12 37 49 809 proteasomal protein catabolic process 

278 3.8164E-7 5.0376E-6 13 44 49 809 mitotic cell cycle 

43489 6.6856E-7 8.0227E-6 5 5 49 809 RNA stabilization 

48255 6.6856E-7 8.0227E-6 5 5 49 809 mRNA stabilization 
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GO-ID p-value 
corr p-

value 
x n X N Description 

16071 9.2121E-7 1.0574E-5 11 33 49 809 mRNA metabolic process 

6397 1.0193E-6 1.1166E-5 10 27 49 809 mRNA processing 

44237 1.0574E-6 1.1166E-5 44 476 49 809 cellular metabolic process 

8380 1.3013E-6 1.3213E-5 11 34 49 809 RNA splicing 

 

B) BP of first suboptimal solution 

 

GO-ID p-value corr p-value x N X N Description 

23033 1.7584E-8 1.0661E-5 23 115 50 809 signaling pathway 

43687 2.1472E-8 1.0661E-5 19 79 50 809 
post-translational protein 

modification 

23014 5.2612E-8 1.0916E-5 9 16 50 809 
signal transmission via 

phosphorylation event 

7243 5.2612E-8 1.0916E-5 9 16 50 809 intracellular protein kinase cascade 

7166 5.4965E-8 1.0916E-5 14 44 50 809 
cell surface receptor linked 

signaling pathway 

6464 1.8282E-7 3.0257E-5 19 89 50 809 protein modification process 

43412 2.2240E-7 3.1549E-5 19 90 50 809 macromolecule modification 

23052 3.0731E-7 3.8144E-5 26 166 50 809 signaling 

30217 3.0231E-6 2.7250E-4 6 9 50 809 T cell differentiation 

30098 3.0231E-6 2.7250E-4 6 9 50 809 lymphocyte differentiation 

2429 4.2492E-6 2.7250E-4 5 6 50 809 
immune response-activating cell 

surface receptor signaling pathway 

2768 4.2492E-6 2.7250E-4 5 6 50 809 
immune response-regulating cell 

surface receptor signaling pathway 

50851 4.2492E-6 2.7250E-4 5 6 50 809 
antigen receptor-mediated 

signaling pathway 

50852 4.2492E-6 2.7250E-4 5 6 50 809 T cell receptor signaling pathway 
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C) BP of second suboptimal solution 

 

GO-ID p-value corr p-value x n X N Description 

51128 3.0575E-14 2.5805E-11 22 60 49 809 regulation of cellular component organization 

44087 8.7817E-11 3.7059E-8 13 25 49 809 regulation of cellular component biogenesis 

6928 7.7897E-10 2.1915E-7 17 53 49 809 cellular component movement 

30029 3.8848E-9 8.1969E-7 15 44 49 809 actin filament-based process 

30036 2.9241E-8 4.3279E-6 14 43 49 809 actin cytoskeleton organization 

32956 3.0767E-8 4.3279E-6 10 20 49 809 regulation of actin cytoskeleton organization 

32970 5.6111E-8 6.7654E-6 10 21 49 809 regulation of actin filament-based process 

22604 8.8259E-8 9.3113E-6 9 17 49 809 regulation of cell morphogenesis 

31346 2.4436E-7 2.2916E-5 6 7 49 809 positive regulation of cell projection organization 

51493 2.7195E-7 2.2952E-5 10 24 49 809 regulation of cytoskeleton organization 

51130 4.3293E-7 3.0926E-5 10 25 49 809 positive regulation of cellular component organization 

7010 4.4671E-7 3.0926E-5 14 52 49 809 cytoskeleton organization 

30833 4.7635E-7 3.0926E-5 8 15 49 809 regulation of actin filament polymerization 

43254 5.3068E-7 3.1993E-5 9 20 49 809 regulation of protein complex assembly 

32271 9.0920E-7 4.6299E-5 8 16 49 809 regulation of protein polymerization 

33043 9.2121E-7 4.6299E-5 11 33 49 809 regulation of organelle organization 

50769 9.3257E-7 4.6299E-5 6 8 49 809 positive regulation of neurogenesis 

31344 1.2271E-6 5.7539E-5 7 12 49 809 regulation of cell projection organization 

8064 1.6389E-6 6.5792E-5 8 17 49 809 regulation of actin polymerization or depolymerization 

30832 1.6389E-6 6.5792E-5 8 17 49 809 regulation of actin filament length 

51960 1.6389E-6 6.5792E-5 8 17 49 809 regulation of nervous system development 

65008 1.7150E-6 6.5792E-5 22 136 49 809 regulation of biological quality 

22603 2.2464E-6 8.2435E-5 9 23 49 809 regulation of anatomical structure morphogenesis 

10720 2.6693E-6 9.3870E-5 6 9 49 809 positive regulation of cell development 

7159 3.8284E-6 1.2925E-4 5 6 49 809 leukocyte cell-cell adhesion 
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