# UNTERSUCHUNGEN ZUR TYP-, REGIO- UND STEREOSELEKTIVITÄT BEI NORRISH-TYP-II-YANG-CYCLISIERUNGEN UND DI-π-METHAN-UMLAGERUNGEN IN ORGANISIERTEN MEDIEN

Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg

> vorgelegt von Kathrin Wissel aus Aschaffenburg

Würzburg 2004

| Eingereicht am:        |                        |  |
|------------------------|------------------------|--|
| bei der Fakultät für C | hemie und Pharmazie    |  |
|                        |                        |  |
| 1. Gutachter:          |                        |  |
| 2. Gutachter:          |                        |  |
| der Dissertation       |                        |  |
|                        |                        |  |
| 1. Prüfer:             |                        |  |
| 2. Prüfer:             |                        |  |
| 3. Prüfer:             |                        |  |
| des öffentlichen Prom  | notionskolloquiums     |  |
|                        |                        |  |
| Tag des öffentlichen   | Promotionskolloquiums: |  |
|                        |                        |  |
| Doktorurkunde ausge    | händigt am:            |  |

Meinen Eltern und Thomas

# INHALTSVERZEICHNIS

| INH | ALTS         | VERZEICHNIS                                                                                                                                                                                                                                             | Ι                    |
|-----|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| ERL | ÄUTE         | RUNGEN UND ABKÜRZUNGEN                                                                                                                                                                                                                                  | IV                   |
| ZUS | AMM          | ENFASSUNG                                                                                                                                                                                                                                               | VI                   |
| 1.  | EINI         | LEITUNG                                                                                                                                                                                                                                                 | 1                    |
| 2.  | KEN          | INTNISSTAND                                                                                                                                                                                                                                             | 3                    |
|     | 2.1.         | Beeinflussung der Selektivität in organisierten Medien                                                                                                                                                                                                  | 3                    |
|     |              | <ul><li>2.1.1. Vergleich von isotropen und anisotropen Medien</li><li>2.1.2. Cyclodextrine</li><li>2.1.3. Zeolithe</li><li>2.1.4. Polyaminosäuren</li></ul>                                                                                             | 3<br>5<br>6<br>8     |
|     | 2.2.<br>2.3. | Photochemie von Dibenzobarrelenen<br>Norrish-Typ-II-Yang-Cyclisierung von adamantylsubstituierten<br>Acetophenonen                                                                                                                                      | 9<br>12              |
| 3.  | PRO          | BLEMSTELLUNG                                                                                                                                                                                                                                            | 13                   |
| 4.  | ERG          | EBNISSE                                                                                                                                                                                                                                                 | 16                   |
|     | 4.1.         | Photochemie des Dibenzobarrelens 3d und dessen Derivate                                                                                                                                                                                                 | 16                   |
|     |              | <ul> <li>4.1.1. Synthese der Dibenzobarrelene 3d-g</li> <li>4.1.2. Komlexierung der organisierten Medien</li> <li>4.1.3. Untersuchung der Wechselwirkungen des Dibenzobarrelens 3d</li> </ul>                                                           | 16<br>18             |
|     |              | mit organisierten Medien und chiralen Additiven<br>4.1.4. Photochemie der Dibenzobarrelene<br>4.1.4.1. Photochemie des Dibenzobarrelens <b>3d</b>                                                                                                       | 20<br>21<br>21       |
|     |              | <ul> <li>4.1.4.1.1. Bestrahlung in Losung und im<br/>Festkörper</li> <li>4.1.4.1.2. Bestrahlung in chiralen organisierten Medien</li> <li>4.1.4.2. Photochemie des Dibenzobarrelens 3e</li> <li>4.1.4.3. Photochemie des Dibenzobarrelens 3f</li> </ul> | 21<br>23<br>26<br>27 |
|     | 4.2.         | Photochemie der Kronenetherderivate                                                                                                                                                                                                                     | 28                   |
|     |              | <ul> <li>4.2.1. Synthese der Edukte</li> <li>4.2.1.1. Synthese des Dibenzobarrelens 3c</li> <li>4.2.1.2. Synthese der Acetophenone 1b und 1c</li> </ul>                                                                                                 | 28<br>28<br>29       |

|      | 4.2.2. Tit          | trationen der Kronenether                                    | 29       |
|------|---------------------|--------------------------------------------------------------|----------|
|      | 4.2.2.1.            | Bestimmung der Bindungskonstanten                            |          |
|      |                     | über <sup>1</sup> H-NMR-spektroskopische Titrationen         | 29       |
|      | 4.2.2.2.            | Spektrophotometrische Titrationen                            | 30       |
|      | 4.2.2.3.            | Spektrofluorimetrische Titrationen                           | 30       |
|      | 4.2.3. Ko           | omplexierung der Kronenether                                 | 31       |
|      | 4.2.4. Ph           | lotochemie                                                   | 32       |
|      | 4.2.4.1.            | Photochemie des Kronenethers <b>3c</b>                       | 32       |
|      | 4.2.4.2.            | Photochemie der Kronenether 1b und 1c                        | 33       |
| DIS  | KUSSION             |                                                              | 35       |
| 5.1. | Photoche            | mie des Dibenzobarrelens 3d und dessen Derivate              | 35       |
|      | 5.1.1. Bi           | ldung des Dibenzobarrelens <b>3d</b>                         | 35       |
|      | 5.1.2. W            | echselwirkung des Dibenzobarrelens 3d                        |          |
|      | mi                  | t organisierten Medien und chiralen Additiven                | 36       |
|      | 5.1.3. Ze           | erfall der Dibenzobarrelene zu Anthracen oder Anthrachinon   | 37       |
|      | 3.1.4. Iy           | p- und Regioselektivität in den Photoreaktionen              | 20       |
|      | 5.1.5. Ste          | ereoselektivität in den Photoreaktionen der Dibenzobarrelene | 58<br>44 |
| 5.2. | Photoche            | mie der Kronenether                                          | 45       |
|      | 501 0               |                                                              | 4.5      |
|      | 5.2.1. Sy           | inthese der Kronenether Ib und Ic                            | 45       |
|      | 5.2.2. Ph           | lotochemie der Kronenether 1b und 1c                         | 45       |
|      | 5.2.3. Ph           | Otochemie der Kronenether <b>3D</b> und <b>3C</b>            | 40       |
|      | 5.2.3.1<br>5.2.3.2. | Bindungsverhältnisse des Kronenethers <b>3b</b>              | 46       |
|      |                     | im angeregten Zustand                                        | 47       |
|      | 5.2.3.3.            | Stereoselektivität bei der Bestrahlung von 3c                | 49       |
| EXI  | PERIMENT            | ΓALTEIL                                                      | 50       |
| 6.1. | Dibenzob            | arrelen 3d und dessen Derivate                               | 53       |
|      | 6.1.1. Sy           | nthese der Edukte                                            | 53       |
|      | 6.1.2. He           | erstellung der Zeolithe MY ( $M = Li, K$ )                   | 56       |
|      | 6.1.3. Ko           | omplexierung der Organisierten Medien                        | 57       |
|      | 6.1.3.1.            | Kokristallisation des Dibenzobarrelens <b>3d</b>             |          |
|      |                     | mit Polyaminosäuren                                          | 57       |
|      | 6.1.3.2             | Einlagerung des Dibenzobarrelens <b>3d</b>                   |          |
|      |                     | in Cyclodextrine                                             | 58       |
|      | 6.1.3.3.            | Einlagerung des Dibenzobarrelens 3d                          |          |
|      |                     | und chiralen Salzen in Zeolithe                              | 58       |
|      | 6.1.4. Un           | itersuchung der Wechselwirkungen von 3d                      | -        |
|      | mi                  | it organisierten Medien                                      | 60       |
|      |                     |                                                              | - •      |

5.

6.

| .1.5. Pho | otochemie                                                                                                                                                                                                                           | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| .1.5.1.   | Photochemie des Dibenzobarrelens 3d                                                                                                                                                                                                 | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6.1       | .5.1.1. Bestrahlung in Lösung und im Festkörper                                                                                                                                                                                     | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6.1       | .5.1.2. Bestrahlung in chiralen organisierten Medien                                                                                                                                                                                | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .1.5.2.   | Photochemie des Dibenzobarrelens 3e                                                                                                                                                                                                 | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .1.5.3.   | Photochemie des Dibenzobarrelens 3f                                                                                                                                                                                                 | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Kronenetl | hersubstituierte Chromophore                                                                                                                                                                                                        | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .2.1. Syı | nthese der Edukte                                                                                                                                                                                                                   | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .2.1.1.   | Synthese des Dibenzobarrelenderivats 3c                                                                                                                                                                                             | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .2.1.2.   | Synthese der Acetophenonderivate 1b und 1c                                                                                                                                                                                          | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .2.1.3.   | Synthese der chiralen Gastmoleküle                                                                                                                                                                                                  | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .2.2. Un  | tersuchungen zur Komplexierung                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ver       | schiedener Kationen durch die Kronenether 1b,3b und 3c                                                                                                                                                                              | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .2.2.1.   | <sup>1</sup> H-NMR-spektroskopische Titrationen                                                                                                                                                                                     | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .2.2.2.   | Spektrophotometrische Titrationenen                                                                                                                                                                                                 | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .2.2.3.   | Spektrofluorimetrische Titrationenen                                                                                                                                                                                                | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .2.3. Ko  | mplexierung der Kronenether                                                                                                                                                                                                         | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .2.4. Fäl | lung der Kronenether                                                                                                                                                                                                                | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .2.5. Pho | otochemie                                                                                                                                                                                                                           | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .2.5.1.   | Photochemie des Dibenzobarrelens 3c                                                                                                                                                                                                 | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .2.5.2.   | Photochemie der Acetophenonderivate 1b und 1c                                                                                                                                                                                       | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ATURV     | ERZEICHNIS                                                                                                                                                                                                                          | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           | 1.5. Pho<br>1.5. Pho<br>1.5.1.<br>6.1<br>6.1<br>1.5.2.<br>1.5.3.<br><b>Xronenet</b><br>2.1. Syn<br>2.1.1.<br>2.1.2.<br>2.1.3.<br>2.2. Un<br>ver<br>2.2.1.<br>2.2.3.<br>2.3. Ko<br>2.4. Fäl<br>2.5. Pho<br>2.5.1.<br>2.5.2.<br>ATURV | <ul> <li>1.5. Photochemie</li> <li>1.5.1. Photochemie des Dibenzobarrelens 3d</li> <li>6.1.5.1.1. Bestrahlung in Lösung und im Festkörper</li> <li>6.1.5.1.2. Bestrahlung in chiralen organisierten Medien</li> <li>1.5.2. Photochemie des Dibenzobarrelens 3e</li> <li>1.5.3. Photochemie des Dibenzobarrelens 3f</li> </ul> Kronenethersubstituierte Chromophore 2.1. Synthese der Edukte 2.1.1. Synthese der Edukte 2.1.2. Synthese der Acetophenonderivate 1b und 1c 2.1.3. Synthese der chiralen Gastmoleküle 2.2.0. Untersuchungen zur Komplexierung verschiedener Kationen durch die Kronenether 1b,3b und 3c 2.2.1. <sup>1</sup> H-NMR-spektroskopische Titrationen 2.2.2. Spektrophotometrische Titrationenen 2.3. Komplexierung der Kronenether 2.4. Fällung der Kronenether 2.5. Photochemie 2.5. Photochemie des Dibenzobarrelens 3c 2.5. Photochemie des Dibenzobarrelens 3c 2.5.2. Photochemie der Acetophenonderivate 1b und 1c |

103

7.

# DANKSAGUNG

# LEBENSLAUF

# PUBLIKATIONSLISTE

# STRUKTURTAFEL

# ERLÄUTERUNGEN UND ABKÜRZUNGEN

Oft genannte chemische Verbindungen sind im Text mit fettgedruckten arabischen Zahlen gekennzeichnet. Der Arbeit sind eine deutsche und eine englische Zusammenfassung vorangestellt, in denen die Nummerierung von der im Hauptteil verwendeten abweicht und daher mit römischen Ziffern erfolgt. Am Ende der Arbeit ist eine Falttafel mit allen vorkommenden Strukturen eingefügt.

Literaturhinweise sind mit hochgestellten arabischen Zahlen kenntlich gemacht. Das Literaturverzeichnis am Ende der Arbeit beinhaltet alle Literaturstellen. Für Fußnoten in den Tabellen werden hochgestellte arabische Buchstaben verwendet.

Im Ergebnisteil wird mit dem Kürzel "V-…" auf die entsprechenden Versuche im Experimentalteil verwiesen. Dort sind auch die entsprechenden Eintragungen im Laborjournal angegeben (z. B. III-KWA-64). Dabei gibt die römische Zahl den Laborjournalband an, KWA steht für Kathrin Wissel und die zweite arabische Zahl benennt die Versuchsnummer. Weitere verwendete Namenskürzel sind MES für Michael Schneider und MAB für Matthias Büttner.

Im Text sowie in den Schemata und Abbildungen werden folgende Abkürzungen verwendet:

| AAV              | Allgemeine Arbeitsvorschrift                               |
|------------------|------------------------------------------------------------|
| AAS              | Atomabsorptionsspektroskopie                               |
| Ar               | Aryl-                                                      |
| BETA HSC-930 NHA | Zeolith mit BEA-Struktur (durchkreuzende Kanäle)           |
| β-, γ-CD         | β-, γ-Cyclodextrin                                         |
| CD               | Circulardichroismus                                        |
| δ                | chemische Verschiebung [ppm], bezogen auf die Referenz TMS |
| de               | Diastereomerenüberschuß (diastereomeric excess)            |
| ee               | Enantiomerenüberschuß (enantiomeric excess)                |

| EI               | Elektronenstoßionisation (electron impact ionization)     |  |
|------------------|-----------------------------------------------------------|--|
| El. Anal.        | Elementaranalyse                                          |  |
| FAB              | Fast atom bombardment                                     |  |
| GC               | Gaschromatographie                                        |  |
| HPLC             | Hochleistungsflüssigkeitschromatographie                  |  |
|                  | (high performance liquid chromatography)                  |  |
| HRMS             | Hochaufgelöste Massenspektroskopie                        |  |
|                  | (high resolution mass spectroscopy)                       |  |
| IR               | Infrarotspektroskopie                                     |  |
| ISC              | Intersystemcrossing                                       |  |
| J                | Kopplungskonstante, angegeben in Hertz [Hz]               |  |
| Mb               | Massenbilanz                                              |  |
| MCM-41           | Zeolith der MCM (Mobile Crystalline Material) Familie     |  |
| MCM*             | chirale Modifikation von MCM-41 mit                       |  |
|                  | Cyclohexadiimidanbindung, hergestellt im Arbeitskreis von |  |
|                  | Prof. H. García, Universidad Politécnica de Valencia      |  |
| MS               | Massenspektrometrie                                       |  |
| MeOH             | Methanol                                                  |  |
| MX und MY        | Zeolithe des Faujasit-Typs                                |  |
| NMR              | Kernresonanzspektroskopie (Nuclear Magnetic Resonance)    |  |
| NOE              | Nuclear Overhauser Enhancement                            |  |
| NOESY            | Nuclear Overhauser Effect Spectroscopy                    |  |
| PAS              | Polyaminosäure                                            |  |
| PAS 1            | polyethylenglykolgebundenes Poly-S-leucin                 |  |
| PAS 2            | auf Silicagel gebundenes Poly-S-leucin                    |  |
| PPA              | Polyphosphorsäure (Polyphosphoric Acid)                   |  |
| $R_{\mathrm{f}}$ | Retentionsfaktor bei der Dünnschichtchromatographie       |  |
| Schmp.           | Schmelzpunkt                                              |  |
| TMS              | Tetramethylsilan                                          |  |

# ZUSAMMENFASSUNG

Gegenstand der vorliegenden Arbeit ist die Untersuchung der Typ-, Regio- und Stereoselektivität photochemischer Reaktionen in organisierten Medien. Es wird anhand ausgewählter Beispiele gezeigt, daß bei der Festkörperbestrahlung von kronenetherverknüpften Substraten sowie von photoaktiven Verbindungen, die mit Polyaminosäuren, Cyclodextrinen oder Zeolithen assoziiert sind, häufig andere Produkte gebildet und höhere Selektivitäten erreicht werden als in Lösung.

#### Norrish-Typ-II-Yang-Cyclisierung kronenethersubstituierter Acetophenonderivate

Die Reaktivität der Reaktanden Ia und Ib wird durch die Kronenetherfunktion stark herabgesetzt (Tabelle A), da die Donoreigenschaften des unkomplexierten Kronenethers

Tabelle A: Photoreaktivität<sup>a</sup> der Kronenetherkomplexe Ia(MX) und Ib(MX) in verschiedenen Medien

|    |                   | $\frac{0}{hv}$ $\frac{hv}{hv}$ $\frac{hv}{hv}$ |       | HO<br>HO<br>HO<br>Ha,b(MX) |
|----|-------------------|------------------------------------------------|-------|----------------------------|
|    | MX                | Medium                                         | t [h] | Anteil II <sup>b</sup> [%] |
| Ia | -                 | MeOH-Lösung                                    | 24    | 87                         |
|    | KPF <sub>6</sub>  | MeOH-Lösung                                    | 6     | <5                         |
|    | KBr               | MeOH-Lösung                                    | 9     | >95                        |
|    | KPF <sub>6</sub>  | Festkörper <sup>c</sup>                        | 38    | <5                         |
| Ib | -                 | MeOH-Lösung                                    | 5     | <5                         |
|    | NaBr              | MeOH-Lösung                                    | 6     | <5                         |
|    | NaPF <sub>6</sub> | Festkörper <sup>d</sup>                        | 12    | <5                         |

<sup>a</sup> Belichtet bei 25 °C,  $\lambda$  >280 nm. <sup>b</sup> Ermittelt durch <sup>1</sup>H-NMR-spektroskopische Analyse, experimenteller Fehler ±5% der angegebenen Werte. <sup>°</sup>Kristallisiert aus Methanol. <sup>d</sup> Gefällt aus Wasser.

vermutlich zu einem angeregten  $\pi,\pi^*$ -Zustand führen. Derartige  $\pi,\pi^*$ -angeregte Carbonyle sind in der Regel nicht mehr zur H-Abstraktion befähigt, welche die Norrish-Typ-II-Yang-Cyclisierung einleitet. Durch Komplexierung mit MPF<sub>6</sub> erhöht sich die Reaktionsgeschwindigkeit nicht, weil möglicherweise im angeregten Zustand eine photoinduzierte Dekomplexierung stattfindet. Wenn allerdings KBr für die Komplexbildung eingesetzt wird, erfolgt im Fall des Kronenethers **Ia** eine Beschleunigung der Reaktion. Dies ist dadurch zu erklären, daß das Bromid-Gegenion näher an den Komplex gebunden ist und deshalb eine Photoauswurfreaktion wie bei  $KPF_6$  weniger leicht erfolgen kann. Die festen Kronenetherkomplexe von **Ia** und **Ib** sind photoinert.

#### $Di-\pi$ -Methan-Umlagerung kronenethersubstituierter Dibenzobarrelenderivate

Bei Bestrahlung des Dibenzobarrelens **IIIb** im Festkörper kommt in Anwesenheit von NaBF<sub>4</sub> und KBF<sub>4</sub> ein deutlicher Kationeneffekt zum Tragen, denn es wird fast ausschließlich das Triplettprodukt, Semibullvalen **IVb**, gebildet (Tabelle B). Diese Beobachtung läßt darauf



Tabelle B: Photochemische Umsetzung<sup>a</sup> der Dibenzobarrelenkomplexe IIIb(MX)

R\*NH<sub>3</sub>Br<sup>c</sup>

<sup>a</sup> Bestrahlt bei  $\lambda = 300$  nm. <sup>b</sup> Produktverteilung, ermittelt durch <sup>1</sup>H-NMR-spektroskopische Analyse, experimenteller Fehler ±5% der angegebenen Werte. <sup>c</sup> R\*NH<sub>3</sub>Br entspricht 1-*S*-Phenylethylammoniumbromid, nichtkristalliner Festkörper erhalten durch Abdampfen einer Lösung von **IIIb** und R\*NH<sub>3</sub>Br zur Trockne. <sup>e</sup> Enantiomerenüberschuß <5%.

<5

>95<sup>e</sup>

schließen, daß die Kationen durch die Assoziation an den Kronenether in die Nähe des Chromophors gebracht werden. Durch diese Kation- $\pi$ -Wechselwirkung wird der angeregte Zustand des Dibenzobarrelens derart beeinflußt, daß ein Intersystemcrossing von S<sub>1</sub> nach T<sub>1</sub> gefördert wird. Bei der Bestrahlung des Komplexes von **IIIb** mit 1-*S*-Phenylethylammoniumbromid wird aufgrund des Schweratomeffekts des Bromidions ausschließlich das Semibullvalen **IVb** gebildet. Es findet keine asymmetrische Induktion statt, was vermutlich auf den geringen Ordnungszustand des Festkörpers zurückzuführen ist.

#### $Di-\pi$ -Methan-Umlagerung in Polyaminosäuren, Cyclodextrinen und Zeolithen

Anhand der Dibenzobarrelenderivate IIIc-e wird der Einfluß des Mediums und des Substitutionsmusters auf die Reaktivität demonstriert (Tabelle C). Bei der Bestrahlung des

|      | $\mathbf{H}$ \mathbf | hu                  | H X<br>IVc,d,e         |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------|--|
|      | Medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Umsatz <sup>a</sup> | Anteil <sup>a</sup> IV |  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [%]                 | [%]                    |  |
| IIIc | CH <sub>3</sub> CN-Lösung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | >95                 | >95                    |  |
|      | Festkörper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | >95                 | 68                     |  |
|      | MY ( $M = Li, Na, K$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | >95                 | >95                    |  |
| IIId | MeOH-Lösung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | >95                 | 90                     |  |
|      | Festkörper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                  | $10^{\mathrm{b}}$      |  |
| IIIe | MeOH-Lösung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                   | >95                    |  |
|      | Festkörper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 70                  | <5°                    |  |

Tabelle C: Photoreaktivität der Dibenzobarrelene IIIc-e in verschiedenen Medien

<sup>a</sup> Umsatz und Anteil am Semibullvalen IV, bestimmt über <sup>1</sup>H-NMR-spektroskopische Analyse, experimenteller Fehler ±5% der angebenen Werte. <sup>b</sup> Bildung des Semibullvalen IVc zu 80%. <sup>c</sup> Bildung des Dibenzobarrelens **IIIc** zu >95%.

Dibenzobarrelens IIIc in Lösung und in den Zeolithen MY entsteht ausschließlich das elektronisch bevorzugte regioisomere Semibullvalen IVc, während die Bestrahlung im Festkörper zur Bildung anderer, nicht-identifizierter Produkte führt. Auch die Photoreaktionen der Dibenzobarrelene IIId und IIIe in Lösung ergeben die entsprechenden Semibullvalene IVd bzw. IVe als Hauptprodukte. Im Festkörper findet dagegen eine photoinduzierte Hydrolyse zum Dibenzobarrelen IIIc bzw. zum Semibullvalen IVc statt.

Ansätze zur stereoselektiven Reaktionsführung der Di- $\pi$ -Methan-Umlagerung von IIIc in verschiedenen chiralen organisierten Medien werden vorgestellt (Tabelle D). Die

| Wirt                            | Т    | Umsatz <sup>b</sup> | ee <sup>c</sup> |
|---------------------------------|------|---------------------|-----------------|
|                                 | [°C] | [%]                 | [%]             |
| β-Cyclodextrin <sup>d</sup>     | 25   | 74                  | 80              |
| Polyethylenglykol-poly-S-leucin | 0    | 35                  | 22              |
| NaY/S-Prolin                    | 25   | 20                  | 10              |
| NaY/1-S-Camphansäure            | 25   | 5                   | 30              |
| MCM* <sup>e</sup>               | 25   | 11                  | 24              |

Tabelle D: Photoreaktionen<sup>a</sup> des Dibenzobarrelens 3d in chiralen organisierten Medien

<sup>a</sup> Bestrahlt im Festkörper bei  $\lambda = 300$  nm. <sup>b</sup> Bestimmt mittels GC-Analyse, experimenteller Fehler  $\pm 2\%$  der angegebenen Werte. <sup>c</sup> Bestimmt mittels HPLC-Analyse an chiraler stationärer Phase, experimenteller Fehler  $\pm 5\%$  der angegebenen Werte. <sup>d</sup> Massenbilanz 5%. <sup>e</sup> Chirale Modifikation des Zeolithen MCM-41 mit 1*R*,2*R*-Cyclohexadiimid.

Photoreaktion des Dibenzobarrelens **IIIc** als Wirt-Gast-Komplex in β-Cyclodextrin verläuft mit einem hohen Enantiomerenüberschuß von 80%. Allerdings werden hierbei nur 5% der eingelagerten Substanz extrahiert. Als Kokristall mit Poly-S-leucin reagiert das Dibenzobarrelen **IIIc** bei 0 °C mit einem Enantiomerenüberschuß von bis zu 22%. Bei der Bestrahlung von in Zeolithe eingelagertem Dibenzobarrlen **IIIc** werden sowohl bei Zeolithen, die zusätzlich mit einem chiralen Additiv beladen sind (NaY/S-Prolin: 10% *ee*; NaY/ 1-S-Camphansäure: 30% *ee*), als auch bei chiral modifizierten Zeolithen (MCM\*: 24% *ee*) nur moderate Enantiomerenüberschüsse gebildet. Trotzdem sollte darauf hingewiesen werden, daß derartige Enantiomerenüberschüsse für Photoreaktionen in eingeschränkten Systemen schon vergleichsweise hoch sind.

Fazit: Das Konzept der Komplexierung eines funktionellen Auxiliars an ein kronenethersubstituiertes Edukt ist für die Verbesserung der Typselektivität geeignet. Aufgrund der geringen Neigung der Substrate zur Kristallisation erweist sich diese Methode zur Durchführung stereoselektiver Reaktion allerdings als wenig sinnvoll. Vielversprechender ist dagegen die Anwendung von Polyaminosäuren, Cyclodextrinen und Zeolithen als chirale organisierte Medien in der Festkörperphotochemie. Mit dieser Kombination werden Enantioselektivitäten erreicht, die für photochemisch-induzierte Reaktionen verhältnismäßig hoch sind.

### SUMMARY

The subject of the present work is the investigation of the type-, regio- and stereoselectivity of photochemical reactions in organized media. Upon solid-state irradiation of selected crown-ether-substituted substrates and photoactive compounds, which are associated with polyamino acids, cyclodextrines or zeolites, it is shown that in many cases other products are formed or higher selectivities are achieved than in solution.

#### Norrish-Type-II-Yang Cyclization of Crown-Ether Substituted Acetophenone Derivatives

The reactivity of the compounds **Ia** and **Ib** is reduced significantly by the crown-ether functionality (Table A), because the donor properties of the uncomplexed crown ether lead



|    | $ \begin{array}{c} & X^{\Theta} \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ $ | $ \begin{array}{c} 0 \\ hv \\ hv$ |       | HO<br>3<br>a,b(MX)             |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------|--------------------------------|
|    | MX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Medium                                                                | t [h] | Percentage II <sup>b</sup> [%] |
| Ia | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MeOH-solution                                                         | 24    | 87                             |
|    | KPF <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MeOH-solution                                                         | 6     | <5                             |
|    | KBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MeOH-solution                                                         | 9     | >95                            |
|    | KPF <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Solid state <sup>c</sup>                                              | 38    | <5                             |
| Ib | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MeOH-solution                                                         | 5     | <5                             |
|    | NaBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MeOH-solution                                                         | 6     | <5                             |
|    | NaPF <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Solid state <sup>d</sup>                                              | 12    | <5                             |

<sup>a</sup> Irradiated at  $\lambda > 280$  nm. <sup>b</sup> Determined by <sup>1</sup>H-NMR-spektroscopic analysis, experimental error  $\pm 5\%$  of the given values. <sup>c</sup>Crystallized from methanol. <sup>d</sup> Precipitated from water.

to an excited  $\pi,\pi^*$ -state. Such  $\pi,\pi^*$ -excited carbonyl compounds are usually not capable of conducting a H-abstraction, which initiates the Norrish-Type-II-Yang cyclization. By complexation with MPF<sub>6</sub> the reaction rate is not increased, presumably due to a photoinduced decomplexation in the excited state. Nevertheless, if bromide is used as a counterion of the complexed cation, an acceleration of the reaction is induced in the case of the crown ether **Ia**. This may caused by the closer vicinity of the bromide counterion to the complex which

inhibits a rapid photoejection reaction like with KPF<sub>6</sub>. The solid crown-ether complexes **Ia** and **Ib** are photoinert.

#### $Di-\pi$ -Methane-Rearrangement of Crown-Ether Substituted Dibenzobarrelenes

Upon the solid-state irradiation of the dibenzobarrelene **IIIb** in the presence of NaBF<sub>4</sub> and KBF<sub>4</sub> a strong cation effect is observed, because the triplet-product, namely semibullvalene **IVb**, is formed almost exclusively (Table B). This indicates that the cations are located close

Table B: Photochemical Reactivity<sup>a</sup> of the dibenzobarrelene complex IIIb(MX)



<sup>a</sup> Irradiated at  $\lambda = 300$  nm. <sup>b</sup> Product distribution, determined by <sup>1</sup>H-NMR-spektroscopic analysis, experimental error ±5% of the given values. <sup>c</sup> R\*NH<sub>3</sub>Br corresponds to 1-*S*-Phenylethylammoniumbromid, not crystalline solid obtained by slow evaporation of a solution of **IIIb** and R\*NH<sub>3</sub>Br to dryness. <sup>e</sup> Enantiomeric excess <5%.

to the chromophore due to the association to the crown ether. Such cation- $\pi$  interactions perturb the excited state of the dibenzobarrelene to promote efficient intersystem crossing from S<sub>1</sub> to T<sub>1</sub> ("cation effect"). Upon irradiation of the complex of **IIIb** with 1-S-phenylethylammonium bromide only the semibullvalene **IVb** is formed because of a heavy-atom effect of the bromide counterion. An asymmetric induction does not occur presumably because of the low crystallinity of the solid.

#### $Di-\pi$ -Methane Rearrangement in Polyamino Acids, Cyclodextrines and Zeolites

With the dibenzobarrelene derivatives IIIc-e, the influence of the medium and the substitution pattern on the reactivity is demonstrated (Table C). Upon irradiation of the



Table C: Photoreactivity of the dibenzobarrelenes IIIc-e in different media

IIIc

IIId

IIIe

Solid state

MeOH-solution

Solid State70 $<5^d$ <sup>a</sup> Determined by <sup>1</sup>H-NMR-spectroscopic analysis, experimental error  $\pm5\%$  of the given values. <sup>c</sup> Formation of the<br/>semibullvalene IVc with a percentage of 80%. <sup>d</sup> Formation of the dibenzobarrelene IIIc with a percentage of<br/>>95%.

10

5

10<sup>c</sup>

>95

dibenzobarrelene **IIIc** in solution and within the zeolites MY, the electronically favoured regioisomer **IVc** is formed exclusively, whereas in the solid state other unidentified byproducts are formed as well. The photoreactions of the dibenzobarrelenes **IIId** and **IIIe** in solution also yield the corresponding semibullvalenes **IVd** and **IVe**. In the solid state, however, a photoinduced hydrolysis to the dibenzobarrelene **IIIc** or to the semibullvalene **IVc** takes place.

Approaches to achieve stereoselectivity in the di- $\pi$ -methane rearrangement of **IIIc** are presented (Table D). The photoreaction of the dibenzobarrelene **IIIc** as a host-guest

| Host                                   | Т    | Conversion <sup>b</sup> | ee <sup>c</sup> |
|----------------------------------------|------|-------------------------|-----------------|
|                                        | [°C] | [%]                     | [%]             |
| β-cyclodextrine <sup>d</sup>           | 25   | 74                      | 80              |
| polyethyleneglycolbound poly-S-leucine | 0    | 35                      | 22              |
| NaY/S-proline                          | 25   | 20                      | 10              |
| NaY/1-S-camphanic acid                 | 25   | 5                       | 30              |
| MCM* <sup>e</sup>                      | 25   | 11                      | 24              |

**Table D:** Photoreactions<sup>a</sup> of the dibenzobarrelene **IIIc** in chiral organized media

<sup>a</sup> Irradiated at 25 °C,  $\lambda = 300$  nm, in the solid state. <sup>b</sup> Determined by GC-analysis, experimental error  $\pm 2\%$  of the given values. <sup>c</sup> Determined by HPLC-analysis on a chiral stationary phase, experimental error  $\pm 5\%$  of the given values. <sup>d</sup> Mass balance 5%. <sup>e</sup> Chiral modification of the zeolite MCM-41 with 1*R*,2*R*-Cyclohexadimide.

complex in  $\beta$ -cyclodextrine proceeds with a high enantiomeric excess (*ee*) of 80%; however, only 5% of the incorporated reaction mixture are extracted. The dibenzobarrelene **IIIc** reacts as a cocrystal with poly-*S*-leucine at 0 °C with an enantiomeric excess of 22%. By irradiation of the dibenzobarrelene **IIIc** within zeolite cavities only moderate chiral inductions are obtained both by incorporation of another chiral additiv (NaY/S-proline: 10% *ee*; NaY/1-S-camphanic acid: 30% *ee*) as well as by the use of chirally-modified zeolites (MCM\*: 24% *ee*). Nevertheless, it should be emphasized that such *ee*'s are relatively high for photoreactions in constrained systems.

Conclusion: The concept of complexation of functional auxiliaries in crown-ether substituted compounds was applied successfully to achieve type-selectivity. Nevertheless, this method does not appear to be suitable for stereoselective reactions due to the low tendency of the substrates to crystallize. The application of polyamino acids, cyclodextrines and zeolites as chiral organized media in solid state chemistry is more promising. With this combination, relatively high enantioselectivities are achieved in photochemical reactions.

# 1. EINLEITUNG

Ein wichtiges Ziel in der Organischen Synthesechemie ist die Bildung eines gewünschten Produkts in hoher *Selektivität*. In biologischen Systemen erfolgen chemische Umsetzungen durch Enzyme mit einer beachtlichen Effizienz und Spezifität. Dafür ist vor allem die feste Bindung des Substrats an das aktive Zentrum des Enzyms verantwortlich, wodurch die Flexibilität des Substrats stark eingeschränkt ist.<sup>1</sup>

In der Organischen Chemie wird versucht, dieses Prinzip durch den Einsatz *organisierter Medien*, wie Micellen, Einschlußverbindungen oder den Festkörper, nachzuahmen.<sup>2</sup> Innerhalb dieser Systeme wirken, im Gegensatz zu Reaktionen in Lösung, anisotrope, d. h. richtungsabhängige Kräfte auf die Substrate. Es wird bevorzugt der Reaktionsweg eingegangen, bei dem Konformations- und Konfigurationsänderungen auf möglichst kurzem Weg und ohne Wechselwirkungen mit Nachbarmolekülen vollzogen werden (topochemisches Postulat).<sup>3</sup> Dadurch wird die Anzahl möglicher Übergangszustände eingeschränkt und damit die Zahl der Produkte minimiert. Häufig werden auch andere Produkte gebildet als in Lösung. Dies wird durch die Reaktion in Schema 1.1 veranschaulicht, in der das Edukt in Lösung eine Di- $\pi$ -Methan-Umlagerung eingeht, im Festkörper hingegen dimerisiert.<sup>4</sup>



Schema 1.1: Abhängigkeit der Photoreaktivität vom Reaktionsmedium<sup>4</sup>

Um nicht nur auf die Chemo- und Regioselektivität, sondern auch auf die Stereoselektivität von photochemischen Umsetzungen Einfluß nehmen zu können, müssen die organisierten Medien chirale Eigenschaften aufweisen. Ein bemerkenswertes Konzept zur Durchführung

#### EINLEITUNG

stereodifferenzierender Photoreaktionen im Festkörper wurde von Scheffer und seinen Mitarbeitern eingeführt.<sup>5</sup> Dabei werden ein Chromophor und eine chirale Komponente über eine Salzbildung miteinander verknüpft und bestrahlt (Schema 1.2). Dieses Prinzip ist als das



Schema 1.2: Konzept der "ionischen chiralen Hilfsreagenzien"<sup>5a</sup>

Konzept der "ionischen chiralen Hilfsreagenzien" ("ionic chiral auxiliaries") bekannt.<sup>5</sup> Im Rahmen dieser Arbeit sollten die Auxiliare über eine Komplexierung durch Kronenether

in die photoreaktiven Systeme eingeführt werden. Weiterhin sollte durch Kokristallisation mit Polyaminosäuren und durch Einlagerung in Cyclodextrine oder Zeolithe die Reaktivität der Chromophore im Festkörper beeinflußt werden. Mit Hilfe dieser Kombination aus Festkörperphotochemie und supramolekularer Chemie sollten damit einerseits Zielmoleküle synthetisiert werden, die in isotropen Medien nicht zugänglich sind, und andererseits sollte damit eine höhere Typ-, Regio- und Stereoselektivität induziert werden.<sup>6</sup>

# 2. KENNTNISSTAND

# 2.1. Beeinflussung der Selektivität in organisierten Medien

### 2.1.1. Vergleich von isotropen und anisotropen Medien

Organische Reaktionen im Festkörper unterscheiden sich häufig von solchen in isotropen oder flüssigen Medien.<sup>7</sup> In Lösung sind die Substrate frei beweglich und können von Reagenzien grundsätzlich aus allen Richtungen angegriffen werden. Lediglich stereoelektronische oder sterische Effekte sind für eine Selektivität bei der Produktbildung verantwortlich. Im Gegensatz dazu sind die Reaktanden im Kristall durch die umgebenden Moleküle in ihrer Bewegungsfreiheit, zumindest in einige Richtungen, stark eingeschränkt. Deshalb laufen häufig Reaktionen nicht ab, obwohl die Edukte den richtigen Bindungsabstand und die richtige Orientierung zueinander haben. Im Festkörper findet vorzugsweise die Reaktion statt, bei der das Maß an atomarer und molekularer Bewegung möglichst gering ist (topochemisches Postulat).<sup>3</sup>

Insbesondere im Bereich der Photochemie sind neben dem Festkörper weitere organisierte Medien zur Modifizierung von Reaktionen genutzt worden, da bei photochemischen Umsetzungen außer der Lichtanregung keine weiteren Reagenzien mehr zugesetzt werden müssen. Erwähnenswert sind dabei Micellen,<sup>8</sup> Mikroemulsionen,<sup>9</sup> Flüssigkristalle,<sup>10</sup> Einschlußverbindungen,<sup>11</sup> Monoschichten<sup>12</sup> und Festphasensysteme wie adsorbierende Oberflächen.<sup>13</sup>

Die Komplexierung eines Gastes im Hohlraum oder an den Oberflächen dieser Medien basiert dabei auf nicht-kovalenten Wechselwirkungen, wie beispielsweise Dipol-Dipol-Kräften,<sup>14</sup> Wasserstoffbrückenbindungen oder  $\pi$ - $\pi$ -Wechselwirkungen.<sup>15</sup> Findet eine Adsorption statt, so wirkt sich dies auf die Freiheitsgrade des Moleküls aus und führt zu einer verminderten Zahl an Vorzugskonformationen. Anders als in Lösung ist in den "Käfigstrukturen" der organisierten Medien die Flexibilität in bestimmte Richtungen eingeschränkt.<sup>16</sup> Dabei kann sowohl die Chemo- als auch die Regioselektivität der Reaktionen beeinflußt werden.

3

Ist die photochemische Reaktivität der untersuchten Verbindung multiplizitätsabhängig, können durch das umgebende organisierte Medium auch Schweratom<sup>17</sup>- oder Kationeneffekte<sup>18</sup> induziert werden. Dies bedeutet, daß aufgrund der räumlich fixierten Nähe eines Schweratoms oder eines Alkalimetallkations zum Chromophor Intersystemcrossing induziert wird und bevorzugt das Produkt entsteht, welches über den angeregten Triplett-Zustand gebildet wird. Obwohl Übergänge zwischen Spinzuständen unterschiedlicher Multiplizität quantenmechanisch verboten sind, kommt es mit zunehmender Ordnungszahl eines Atoms in der Nähe des Chromophors öfter zur Durchbrechung dieses Spin-Verbots (Schweratomeffekt).<sup>17</sup> Dies ist auf eine Zunahme der Spin-Bahn-Kopplung zurückzuführen, was die Wahrscheinlichkeit für einen solchen Übergang erhöht. Durch die Bindung eines Kations, das nicht notwendigerweise eine höhere Ordnungszahl haben muß, an den Aromaten des Chromophors werden die Symmetrieeigenschaften des Moleküls verringert und damit ebenfalls die Wahrscheinlichkeit für das Intersystemcrossing von S<sub>1</sub> nach T<sub>1</sub> erhöht (Kationeneffekt).<sup>18</sup>

Werden im Laufe einer Photoreaktion aus achiralen Edukten chirale Produkte gebildet, entstehen in isotropen Medien in Abwesenheit stereodifferenzierender Einflüsse immer racemische Gemische. Werden solche Reaktionen jedoch in einer asymmetrischen Umgebung durchgeführt, verlaufen sie über diastereomorphe Übergangszustände, deren Aktivierungsenthalpie verschieden ist.<sup>19</sup> Damit sollte eines der Diastereomere kinetisch bevorzugt gebildet werden, d. h. es findet eine chirale Induktion statt. Wenn die Wechselwirkungen zwischen dem Reaktanden und dem optisch-aktivem Medium relativ schwach sind, wie beispielsweise bei der Verwendung von optisch-aktiven Lösungsmitteln,<sup>20</sup> bleiben die Enantiomerenüberschüsse im Photoprodukt meist sehr gering. Werden die Reaktionen aber im chiralen kristallinen Medium durchgeführt, in dem die intermolekularen Kräfte stärker ausgeprägt sind, kann das Ausmaß der asymmetrischen Induktion sehr groß sein. Dies wurde von Scheffer *et al.* mit dem Konzept des "ionischen chiralen Hilfsreagenzes" gezeigt,<sup>5</sup> mit dem Enantiomerenüberschüsse von >95% erreicht wurden (Schema 2.1). Hierbei wird das chirale Auxiliar in Form eines optisch-aktiven Amins durch



Schema 2.1: Konzept der "ionischen chiralen Hilfsreagenzien"<sup>5a</sup>

einfache Salzbildung in das carboxylatsubstituierte Edukt eingeführt. Ein Vorteil dieser Salzbildung ist, daß Salze aufgrund ihrer hohen Gitterenergie häufig höhere Schmelzpunkte haben als kovalente organische Verbindungen mit vergleichbarem Molekulargewicht. Damit schmelzen sie bei Bestrahlung weniger leicht und die für eine topochemische Reaktion erforderliche Statik des Kristallgitters bleibt erhalten.<sup>5</sup>

### 2.1.2. Cyclodextrine

Cyclodextrine bestehen aus mehreren Glucoseeinheiten, die  $\alpha$ -1,4-glykosidisch verknüpft sind und eine cyclische Struktur ausbilden, wobei die Hydroxymethyleneinheiten nach außen stehen (Abbildung 2.1).<sup>21</sup> Man differenziert zwischen  $\alpha$ -,  $\beta$ - und  $\gamma$ - Cyclodextrinen



**Abbildung 2.1:** Struktur von β-Cyclodextrin

mit sechs, sieben bzw. acht Glucoseeinheiten. Sie bilden mit einer Vielzahl von hydrophoben Gästen in Abhängigkeit von Kriterien wie Größe, Struktur und Polarität Einschlußkomplexe. Ein Vorteil der Cyclodextrine besteht darin, daß mit ihnen einfach und effizient Chiralitätstransfer durchgeführt werden kann, da die stereochemische Information bereits durch die chiralen Glucoseeinheiten vorhanden ist. So wurden die Photoprodukte aus der Bestrahlung von Benzaldehyd mit einem Enantiomerenüberschuß von 15% erhalten (Schema 2.2).<sup>21e</sup> Da sich die Reaktionskavität während der lichtinduzierten Reaktion nicht



**Schema 2.2:** Stereoselektive Reaktion von Benzaldehyd in  $\beta$ -Cyclodextrin ( $\beta$ -CD)<sup>21e</sup>

verändert, hängt die Selektivität nicht vom Umsatz ab.

#### 2.1.3. Zeolithe

Zeolithe sind mikrokristalline Alumosilikate mit Raumnetzstruktur. Sie sind dadurch charakterisiert, daß ihre Struktur Hohlräume enthält, die den Austausch von Kationen und Wassermolekülen erlauben. (Abbildung 2.2).<sup>22</sup> Abhängig von der Kristallstruktur



Abbildung 2.2: Struktur repräsentativer Zeolithe (Faujasite)

besitzen die Zeolithe Mikroporen unterschiedlicher Größe und Form (Tabelle 2.1). Die natürlich vorkommenden Faujasite MX und MY schließen meist Natriumionen ein und

| <b>Tabelle 2.1:</b> Strukturmerkmale <sup>22c</sup> g | gängiger Zeolithe |
|-------------------------------------------------------|-------------------|
|-------------------------------------------------------|-------------------|

| Zeolithgruppe          | Beispiele        | Porenstruktur   | Porendurchmesser [Å] |
|------------------------|------------------|-----------------|----------------------|
| Faujasite <sup>a</sup> | MX, MY           | dreidimensional | 13                   |
| Pentasile              | Silikalit, ZSM-5 | zweidimensional | 5.4 × 5.6            |
| BEA                    | Beta-Zeolithe    | dreidimensional | 12                   |
| MCM                    | MCM-41           | eindimensional  | 20                   |

<sup>a</sup> Bei natürlichen Faujasiten entspricht M = Na.

besitzen einen Porendurchmesser von 13 Å und einen Fensterdurchmesser von 7.3 Å. Zeolithe der BEA-Art besitzen sich durchkreuzende Kanäle aus zwölf O-verbrückten Si-Atomen mit einem Durchmesser von 12 Å. Ein mesoporöses Alumosilikat der MCM (Mobile Crystalline Material)-Familie stellt MCM-41 mit Kanälen von 20 Å Durchmesser dar. Der Zeolith MCM\* ist eine in der Arbeitsgruppe von Prof. H. García, Universidad Politécnica de Valencia, hergestellte, chirale Modifikation vom MCM-41, in dem zwei OH-Gruppen im Zeolithen durch 1*R*,2*R*-Cyclohexadiisocyanat verknüpft wurden (Schema 2.3).<sup>23</sup>



Schema 2.3: Herstellung des chiralen Zeoliths MCM\*

Zeolithe können kleine und mittelgroße organische Verbindungen komplexieren oder adsorbieren. Die wesentliche Voraussetzung für eine effektive Wirt-Gast-Wechselwirkung besteht darin, daß die Dimensionen des Gastes kleiner als die Porengröße des Zeolithen sind. Wie mit Cyclodextrinen kann auch mit Zeolithen Chiralität induziert werden.<sup>22d-i</sup> Die asymmetrische Umgebung wird dabei durch Beladen der Zeolithe mit chiralen Additiven hergestellt. In Schema 2.4 ist gezeigt, wie in der Photoreaktion eines Tropolonethers in



Schema 2.4: Photoelektrocyclisierung eines Tropolonethers in chiral modifiziertem Zeolith NaY<sup>22i</sup>

mit Ephedrin beladenem Zeolithen NaY ein Enantiomerenüberschuß von 78% erreicht wurde.<sup>22i</sup> Die Höhe des Enantiomerenüberschusses ist abhängig von der Art des chiralen Additivs und des Zeoliths sowie von der Temperatur, bei der die Bestrahlung durchgeführt wird.

#### 2.1.4. Polyaminosäuren

Über den Einsatz von Polyaminosäuren als chirale Katalysatoren in der Epoxidierung von  $\alpha,\beta$ -ungesättigten Ketonen wurde erstmals von Juliá und Colonna berichtet (Schema 2.5).<sup>24a</sup>



Schema 2.5: Stereoselektive Epoxidierung von *trans*-Chalkon mit Poly-*S*-alanin als chiralem Katalysator<sup>24a</sup>

*Trans*-Chalkon und strukturell ähnliche Verbindungen wurden erfolgreich mit hohen Enantiomerenüberschüssen oxidiert.<sup>24b</sup> Durch experimentelle Untersuchungen und Molecular Modelling wurde gezeigt, daß für die Bindung zwischen der Polyaminosäure und dem Enon attraktive Wechselwirkungen zwischen dem N-Terminus des Peptids und dem Carbonylsauerstoff des Substrats verantwortlich sind.<sup>24c</sup> Die Epoxidkonfiguration wird dagegen durch die Helizität der Polyaminosäure bestimmt, da ein seitendifferenzierender Angriff des Hydroperoxidanions stattfindet. Durch Adsorption von Poly-*S*-leucin auf Silicagel wurde ein robuster und wiederverwendbarer Katalysator gewonnen.<sup>24d</sup> Als in vielen organischen Lösungsmitteln lösliche, aber ebenfalls abtrennbare Polyaminosäure findet das polyethylenglykolgebundene Poly-*S*-leucin Anwendung (Abbildung 2.3)<sup>24e</sup>



Abbildung 2.3: Polyethylenglykolgebundenes Poly-*L*-leucin<sup>24e</sup>

## 2.2. Photochemie von Dibenzobarrelenen

Die Photochemie des Dibenzobarrelens **3a** und dessen Derivate ist multiplizitätsabhängig.<sup>25a</sup> Daher sind sie ideale Chromophore, um die Effizienz von Schweratomeffekten oder Sensibilisatoren zu untersuchen. Bei direkter Bestrahlung reagiert beispielsweise die Stammverbindung 3a dem angeregten Singulett-Zustand aus ersten zu Dibenzocyclooctatetraen (5a),während bei der Triplett-Sensibilisierung das Dibenzosemibullvalen (4a) gebildet wird (Schema 2.6).<sup>25b</sup>



Schema 2.6: Multiplizitätsabhängige Photoreaktivität des Dibenzobarrelens 3a<sup>25b</sup>

Zimmermann *et al.* haben gezeigt, daß der Mechanismus zur Bildung eines Dibenzosemibullvalens **4** durch Bestrahlung von Dibenzobarrelen **3** in Gegenwart von Triplett-Sensibilisatoren nach dem Mechanismus der Di- $\pi$ -Methan-Umlagerung verläuft.<sup>25c,d</sup> Aus einem an der Vinyldoppelbindung disubstituierten Dibenzobarrelen **3** entstehen bei Bestrahlung Diradikale, aus welchen das Semibullvalen **4** und dessen Regioisomer **4'** gebildet werden (Schema 2.7). Zeichnet sich eines der beiden regioisomeren Diradikale



**Schema 2.7:** Di- $\pi$ -Methan-Umlagerung des Dibenzobarrelens **2** (R  $\neq$  R')<sup>25</sup>

**6** bzw. **6'** von unsymmetrisch substituierten Dibenzobarrelenen durch eine besonders gute Radikalstabilisierung aus, wird dieses in Lösung meist im Überschuß gebildet.<sup>25e</sup> In Schema 2.8 ist zur besseren Übersichtlichkeit von beiden Isomeren **4** und **4'** nur ein Enantiomer aufgezeigt, obwohl ohne asymmetrische Induktion beide Stereoisomere in gleichem Verhältnis gebildet werden. Die Bildung des Dibenzocyclooctatetraens (**5a**) verläuft über eine intramolekulare [2+2]-Cycloaddition im angeregten Singulett-Zustand, gefolgt von einer [4+2]-Retro-Diels-Alder-Reaktion zum Intermediat **9**, welches zum Cyclooctatetraen (**5a**) umlagert (Schema 2.8).<sup>25e,f</sup> Dibenzobarrelene gehen bei Bestrahlung in



**Schema 2.8:** Mechanismus der Cyclooctatetraen-Bildung<sup>24e,f</sup>

Abhängigkeit von internen und externen Einflüssen verschiedene Reaktionswege ein und eignen sich somit hervorragend als Sonden, um mit Hilfe von Produktanalysen die Parameter zu untersuchen, die die Typ-, Regio- und Stereoselektivitäten beeinflussen.<sup>5,26</sup>

Das Dibenzobarrelenderivat **3b** komplexiert aufgrund seines Kronenethers verschiedene Salze von Alkalimetallen. Im Festkörper reagiert der Kronenether **3b** in Anwesenheit von Alkalimetallkationen fast ausschließlich zum Triplettprodukt, dem Semibullvalen **4b**, d. h. es wird ein Kationeneffekt beobachtet (siehe Abschnitt 2.1.1).<sup>27</sup> Bei Bestrahlung des Dibenzobarrelens **3b** in Lösung wird hingegen auch in Anwesenheit äquimolarer Mengen an Kationen fast nur das Cyclooctatetraen **5b** gebildet (Schema 2.9). Das Ausbleiben des



Schema 2.9: Photolyse des Dibenzobarrelens 3b(MX) in Lösung und im Festkörper  $(MX = LiBF_4, NaBF_4, KBF_4)^{26}$ 

Kationeneffekts in Lösung könnte auf eine Photoauswurfreaktion im angeregten Zustand zurückzuführen sein. Dabei wird das Kation bei Bestrahlung aus dem Kronenether "geschleudert", bevor ein Intersystemcrossing zum Triplettzustand stattfinden kann (Schema 2.10).<sup>27</sup> Ein Beweis für diese Erklärung konnte bisher nicht erbracht werden.



Schema 2.10: Mögliche Photoauswurfreaktion des Dibenzobarrelens 3b in Lösung<sup>27</sup>

# 2.3. Norrish-Typ-II-Yang-Photocyclisierung von adamantylsubstituierten Acetophenonen

In der Norrish-Typ-II-Yang-Reaktion abstrahiert ein photochemisch angeregtes Keton intramolekular ein Wasserstoffatom in  $\gamma$ -Position, was auf der Basis eines energetisch bevorzugten sechsgliedrigen Übergangszustandes erklärt werden kann.<sup>28a,b</sup> Das dabei gebildete Diradikal cyclisiert anschließend unter Bildung eines Cyclobutanols. Die Yang-Cyclisierung ist auf solche Systeme beschränkt, in denen die Knüpfung der neuen C-C-Bindung mit der Spaltung der  $\beta$ , $\gamma$ -Bindung (Norrish-Typ-II-Spaltung) konkurrieren kann. Dies findet man beispielsweise bei  $\alpha$ -adamantylsubstituierten Acetophenonen 1,<sup>28c</sup> die bei Bestrahlung ausschließlich zum Cyclisierungsprodukt reagieren. Da zwei abstrahierbare enantiotope Wasserstoffatome (H<sup>a</sup> und H<sup>b</sup>) vorhanden sind, können generell zwei Enantiomere gebildet werden (Schema 2.11). Das Racemat aus 2 und *ent-*2 wird meist



Schema 2.11: Norrish-Typ-II-Yang-Cyclisierung eines Ketons<sup>28c</sup>

in Lösung gebildet, da dort beide H-Atome mit gleicher Wahrscheinlichkeit abgespalten werden und außerdem das intermediäre Diradikal frei drehbar ist. Im Festkörper hingegen bildet sich meist das Cyclobutanol aus Abstraktion des H-Atoms, das näher am Carbonylsauerstoff liegt.<sup>29</sup>

## **3. PROBLEMSTELLUNG**

Im Rahmen dieser Doktorarbeit sollte die Typ-, Regio- und Stereoselektivität von Photoreaktionen in organisierten Medien untersucht werden. Als organisierte Medien wurden adsorbierende Oberflächen wie Polyaminosäuren<sup>24</sup> oder Einschlußverbindungen wie Cyclodextrine,<sup>21</sup> Zeolithe<sup>22</sup> und Kronenetherverbindungen<sup>30</sup> in Kombination mit dem Festkörper gewählt.

Für den Einsatz von Kronenethern als supramolekulare Rezeptoreinheit sollten die Derivate des Adamantylacetophenons 1b und 1c und die Dibenzobarrelenderivate 3b und 3c als



Reaktanden dienen. Diese Systeme wurden gewählt, da die achiralen Stammverbindungen Photoreaktionen mit hohen Quantenausbeuten eingehen und die Photoprodukte chiral sind. Kronenether wurden deshalb als Wirtsysteme gewählt, da sie meist kristallin vorliegen und deshalb die Reaktivität im Festkörper untersucht werden kann. Außerdem sind die zu den Kronenethern passenden Gastmoleküle bekannt. Über die Kronenetherfunktion der Verbindungen **1b,c** und **3b,c** können verschiedene Salze in die Nähe des Chromophors gebracht werden und deren Einfluß auf das photochemische Verhalten der Reaktionssysteme in Lösung und im Festkörper ermittelt werden. Da die Photoreaktivität von Dibenzobarrelenen multiplizitätsabhängig ist,<sup>25</sup> kann am Kronenether **3c** auch ein Kationenoder Schweratomeffekt der Salze auf die Photoreaktivität untersucht werden. Ebenfalls war beabsichtigt, das Potential der Kronenetherderivate **1b**, **1c** sowie **3c** zu enantioselektiven Photoreaktionen durch Komplexierung chiraler Ammoniumsalze zu erörtern. Eine weitere Möglichkeit chirale Salze in die räumliche Nähe zum Chromophor zu bringen, ist die Komplexierung von Metallkationen mit chiralen Gegenionen, wie z. B. chiralen Carboxylaten. Da optisch-aktive Komplexe fast immer in chiralen Raumgruppen kristallisieren, kann das chirale Auxiliar im günstigsten Fall an jeder Stelle des Chromophors angebracht werden und muß nicht notwendigerweise in der Nähe des Reaktionszentrums liegen. Anhand von <sup>1</sup>H-NMR-Titrationen, spektrophotometrischen und spektrofluorimetrischen Titrationen sollten die Bindungsverhältnisse zwischen Salz und Kronenether im Grundzustand und im angeregten Zustand untersucht werden. Durch die gewonnenen Informationen sollten die Parameter, die den Reaktionsverlauf beeinflussen, weiter erörtert werden.

Es war zudem beabsichtigt, die Photochemie des Dibenzobarrelens 3d sowie von dessen Derivaten 3e, 3f und 3g zu untersuchen. Die unterschiedlichen funktionellen Gruppen der



Verbindungen ermöglichen einerseits die Durchführung von Studien über den Einfluß elektronischer Substituenteneffekte auf den Verlauf der Photoreaktionen und andererseits bieten sie Anknüpfungspunkte zu organisierten Medien. Es sollte in Lösung und im werden, den Einfluß des Festkörper bestrahlt um Mediums auf die Chemo- und Regioselektivität der Photoreaktionen zu ermitteln. Im Festkörper sollten die beobachteten Selektivitäten mit der Kristallstruktur der Edukte korreliert werden, also sogenannte Struktur-Reaktivitäts-Beziehungen aufgestellt werden.

Zur Durchführung stereoselektiver Reaktionen sollten die Dibenzobarrelene **3d** und **3e** in Cyclodextrine eingebettet und bestrahlt werden. Aufgrund des unpolaren aromatischen Grundkörpers der Dibenzobarrelene, müßte eine Einlagerung in Cyclodextrine möglich sein. Da die Gastsysteme nach erfolgter Reaktion wieder aus dem Wirt extrahiert werden können, ist mit dieser Methode ein einfacher Chiralitätstransfer möglich.

Darüber hinaus sollten die Derivate **3d** und **3e** mit chiralen Auxiliaren, wie Polyaminosäuren oder chiralen Carbonsäuren, kokristallisiert werden, da sie aufgrund ihrer Struktur gut mit diesen assoziativ wechselwirken sollten. Polyaminosäuren wurden als optisch-aktive organisierte Medien gewählt, weil mit ihnen bereits erfolgreich stereoselektive Synthesen durchgeführt wurden und sie als Katalysatoren wiederverwendet werden können. Da sie bisher jedoch ausschließlich für Epoxidierungen eingesetzt wurden, wäre die Anwendung von Polyaminosäuren in Photoreaktionen eine sinnvolle Erweiterung.

Weiterhin sollten Photoreaktionen der Dibenzobarrelene 3d und 3e in Zeolithen durchgeführt werden, da in diesen die Beweglichkeit des Gastmoleküls weniger stark eingeschränkt ist als im Festkörper, aber oft eine höhere Selektivität bei Photoreaktionen beobachtet wird als in Lösung. Das Ausmaß der Adsorption hat entscheidenden Einfluß auf die Selektivität der Photoreaktionen, weshalb Zeolithe mit hoher Bindungsaffinität zu den Dibenzobarrelenen 3d und 3e gefunden werden mußten. Durch Beladen der Zeolithe mit chiralen Additiven, die sowohl mit dem Zeolith als auch mit den Substraten 3d und 3e wechselwirken, kann die Stereoselektivität der Photoreaktionen gesteuert werden. Dabei war es nötig, einen Zeolith zu finden, dessen Hohlräume beide Komponenten aufnehmen können. Eine weitere Möglichkeit des Chiralitätstransfers ist die Einlagerung der Substrate in optisch-aktive Zeolithe, bei denen das chirale Additiv kovalent an das Silikatgerüst des Zeolithen gebunden ist. In diesem Wirtsystem ist die Wahrscheinlichkeit, daß ein Substratmolekül mit einem chiralen Molekül die gleiche Pore besetzt, größer als bei einer Doppelbeladung des Zeolithen. Schließlich sollte die optimale Reaktionsführung, unter der ein Höchstmaß an Typ-, Regio- und Stereoselektivität erreicht wird, durch Variation der Bedingungen, wie Temperatur, Typ des Zeolithen und des Zeolithkations sowie Art und Konzentration des chiralen Additivs gefunden werden.

# 4. ERGEBNISSE

# 4.1. Photochemie des Dibenzobarrelens 3d und dessen Derivate

### 4.1.1. Synthese der Dibenzobarrelene 3d–3g

Der bekannte Diester **3h** wurde durch eine Diels-Alder-Reaktion von Anthracen mit Acetylendicarbonsäuredimethylester gewonnen (Schema 4.1).<sup>31</sup> Das Dibenzobarrelenderivat



Schema 4.1: Synthese des Dibenzobarrelens 3d

**3h** wurde mit DIBAL-H und *n*-Butyllithium zum Endiol **3i** reduziert.<sup>32</sup> Dieses lagerte sich bei Zugabe katalytischer Mengen Schwefelsäure quantitativ zum Aldehyd **3d** um. Das Produkt wurde über <sup>1</sup>H- und <sup>13</sup>C-NMR-, UV-, Massen und IR-Spektroskopie, Röntgenbeugungs- und Elementaranalyse vollständig charakterisiert.

Die Umsetzung des Dibenzobarrelens **3d** mit Hydroxylamin zum Dibenzobarrelen **3e** wurde unter verschiedenen Reaktionsbedingungen durchgeführt (Schema 4.2).<sup>33</sup> Durch Zugabe von Pyridin als Base wurde das Produkt **3e** stark verunreinigt in nur 28%iger Ausbeute erhalten. Mit Kaliumcarbonat in Dichlormethan fand keine Reaktion statt. Erst die Umsetzung mit



Schema 4.2: Herstellung des Dibenzobarrelens 3e

Kaliumcarbonat in Ethanol lieferte das Dibenzobarrelen **3e** in quantitativer Ausbeute. Das Rohprodukt wurde mittels Säulenchromatographie gereinigt. Das analytisch reine Produkt wurde als weißes Pulver in 75%iger Ausbeute erhalten. Die Charakterisierung erfolgte anhand von <sup>1</sup>H- und <sup>13</sup>C-NMR-, UV-, Massen- und IR-Spektroskopie sowie Elementaranalyse.

Das Dibenzobarrelen **3f** wurde durch Reaktion des Dibenzobarrelens **3d** mit 1-*S*-Phenylethylamin und Kaliumcarbonat in Toluol in quantitativer Ausbeute erhalten (Schema 4.3).<sup>33</sup> Der Versuch der Aufreinigung des Produkts durch Kristallisation mißlang, da



Schema 4.3: Synthese des Dibenzobarrelens 3f

sich das Produkt zu Anthrachinon zersetzte, was durch <sup>1</sup>H-NMR-Spektroskopie gezeigt werden konnte. Auch unter Sauerstoffausschluß wurden keine Kristalle des Imins **3f** erhalten. Die Charakterisierung erfolgte anhand von <sup>1</sup>H-NMR, <sup>13</sup>C-NMR-, UV- und Massenspektroskopie.

Bei der Reaktion des Aldehyds **3d** mit Ethylenglykol<sup>33</sup> wurden nicht das Dibenzobarrelen **3g**, sondern die Produkte der Retro-Diels-Alder-Reaktion, Anthracen und das Acetylenderivat **10**, isoliert und <sup>1</sup>H-NMR-spektroskopisch identifiziert (Schema 4.4).



Schema 4.4: Synthese des Dibenzobarrelens 3g

### 4.1.2. Komplexierung der organisierten Medien

Die Absorptionsbande des Dibenzobarrelens **3d** in Acetonitril verschob sich bei Zugabe von Poly-*S*-leucin-polyethylenglykolmonomethylether nicht. Aufgrund der Löslichkeit dieser Polyaminosäure in den meisten organischen Lösungsmitteln, konnten jedoch Kokristalle mit dem Dibenzobarrelen **3d** hergestellt werden (V-6a). Damit auf jedes Dibenzobarrelenmolekül mindestens eine Leucineinheit kommt, wurde die Polyaminosäure in einem Molverhältnis von >1/12 eingesetzt.

Die Einlagerung des Dibenzobarrelens **3d** in Cyclodextrine erfolgte durch Rühren eines Zweiphasengemischs aus einer Lösung des Dibenzobarrelens **3d** in Dichlormethan und einer gesättigten, wäßrigen Lösung des Cyclodextrins. Eine definierte Menge des Dibenzobarrelens **3d** wurde dabei zu 80% in  $\beta$ -Cyclodextrin (V-7), jedoch nur zu 45% in  $\gamma$ -Cyclodextrin aufgenommen (V-8).

Zur Komplexierung von Zeolithen mit dem Dibenzobarrelen **3d** wurden die aktivierten Zeolithe in eine Lösung des Dibenzobarrelens **3d** in Dichlormethan gegeben und über Nacht gerührt. Nach Filtration der Suspension wurde mit Dichlormethan gewaschen und die Menge des nicht-eingelagerten Dibenzobarrelens **3d** im Filtrat gravimetrisch bestimmt. Aus Tabelle 4.1 ist ersichtlich, daß auf SiO<sub>2</sub> nur geringe Mengen des Dibenzobarrelens

|      | Wirt <sup>a</sup>             | Beladung <sup>b</sup>       |
|------|-------------------------------|-----------------------------|
|      |                               | [mg ( <b>3d</b> )/g (Wirt)] |
| V-9  | SiO <sub>2</sub> <sup>c</sup> | <0.1                        |
| V-10 | ${\rm SiO_2}^d$               | 3.3                         |
| V-11 | CsX                           | <0.1                        |
| V-12 | KX                            | <0.1                        |

 Tabelle 4.1:
 Einlagerung des Dibenzobarrelens 3d in verschiedene Wirte

| V-13 | NaY              | 13.3 – 16.7 |
|------|------------------|-------------|
| V-14 | KY               | 14.2        |
| V-15 | LiY              | 15.7        |
| V-16 | Beta HSC-930 NHA | 1.6         |
| V-17 | CBV-720          | 7.1         |
| V-18 | MCM-41           | 38.5 - 53.3 |
| V-19 | MCM*             | 0-32.5      |

ERGEBNISSE

<sup>a</sup> Die Beladung erfolgte durch Rühren einer Suspension des Wirts und Dibenzobarrelen **3d** in CH<sub>2</sub>Cl<sub>2</sub>. <sup>b</sup> Die Beladung des Zeoliths mit **3d** wurde indirekt durch Analyse der Menge an nicht-komplexierter Substanz im Filtrat bestimmt. <sup>c</sup> erworben von der BASF AG, Ludwigshafen. <sup>d</sup> erworben von der Fluka Chemie AG, Buchs, CH.

adsorbiert wurden (V-9, V-10). Die Faujasite MX (M = Cs, K) komplexierten das Substrat **3d** nicht (V-11, V-12). Von den Zeolithen MY (M = Li, Na, K) wurden ca. 15 mg des Dibenzobarrelens **3d** pro Gramm Zeolith adsorbiert (V-13-15). Der Beta-Zeolith und der saure Zeolith CBV-720 lagerten dagegen nur 1.6 bzw. 7.1 mg des Dibenzobarrelens **3d** pro Gramm Zeolith ein (V-16, V-17). Die Beladung des Zeoliths MCM-41 mit dem Dibenzobarrelen **3d** war mit 38.5 bis 53.5 mg/g sehr hoch (V-18). In den chiralen Zeolith MCM\* lagerten sich maximal 32.5 mg/g ein (V-19). Die Ergebnisse zeigen, daß die Faujasite MY weniger Dibenzobarrelen **3d** einlagern können als die Zeolithe vom MCM-Typ mit den größeren Porendurchmessern.

Die von Ramamurthy vorgeschlagene Methode zur Doppelbeladung von Zeolithen mit chiralem Induktor und Substrat,<sup>22f,h,i</sup> bei der erst das chirale Additiv und anschließend das Substrat eingelagert wird, war nicht erfolgreich (Tabelle 4.2, V-25 und V-26). Deshalb wurde

|      | 1 C          |                |                      |          |
|------|--------------|----------------|----------------------|----------|
|      | Wirt         | Gast           | Methode <sup>a</sup> | Beladung |
|      |              |                |                      | [mg/g]   |
| V-20 | NaY          | S-Prolin       | Verreibung           | 100      |
| V-21 | NaY          | S-Prolin       | Suspension           | 56       |
| V-22 | NaY          | S-Camphansäure | Suspension           | 7.7      |
| V-23 | NaY          | S-Camphansäure | Verreibung           | 83       |
| V-24 | NaY          | S-Phenylalanin | Verreibung           | < 0.1    |
| V-25 | NaY/S-Prolin | 3d             | Suspension           | < 0.1    |
| V-26 | NaY/1-S-     | 3d             | Suspension           | < 0.1    |
|      | Camphansäure |                |                      |          |
| V-27 | LiY/3d       | S-Prolin       | Verreibung           | 95       |

 Tabelle 4.2:
 Komplexierung von Zeolithen mit chiralen Additiven und dem Dibenzobarrelen 3d

| ERGEBNISSE |
|------------|
|------------|

| V-28 | NaY/ <b>3d</b> | S-Prolin            | Suspension | 51.9 - 128 |
|------|----------------|---------------------|------------|------------|
| V-29 | KY/ <b>3d</b>  | S-Prolin            | Suspension | 171        |
| V-30 | NaY/ <b>3d</b> | S-Camphansäure      | Suspension | 15         |
| V-31 | LiY/ <b>3d</b> | S-Mandelsäure       | Suspension | <0.1       |
| V-32 | NaY/ <b>3d</b> | S-Mandelsäure       | Suspension | 23         |
| V-33 | NaY/ <b>3d</b> | S-Phenylglycin      | Suspension | <0.1       |
| V-34 | NaY/ <b>3d</b> | S-Aminophenyl-      | Suspension | <0.1       |
|      |                | propanol            |            |            |
| V-35 | NaY/ <b>3d</b> | S-Ketopinsäure      | Suspension | <0.1       |
| V-36 | NaY/ <b>3d</b> | S-Phenylglycinol    | Suspension | <0.1       |
| V-37 | KY/ <b>3d</b>  | S-Phenylalanin      | Verreibung | <0.1       |
| V-38 | MCM-41/3d      | 1-S-Phenylethylamin | Suspension | 173        |
|      |                |                     |            |            |

<sup>a</sup> Im Falle der Fall der chiralen Salze wurde als Lösungsmittel Methanol verwendet, bei Beladung mit dem Dibenzobarrelen **3d** wurde in  $CH_2Cl_2$  gearbeitet.

der Zeolith erst mit dem Dibenzobarrelen **3d** und anschließend mit dem chiralen Additiv komplexiert (V-27–V-38). Die Einlagerung des chiralen Additivs erfolgte durch Rühren einer Suspension des chiralen Additivs und des Wirtzeolithen in Methanol oder durch Verreibung der beiden Komponenten und anschließendem Erhitzen. Die Menge der eingelagerten Substanz wurde wiederum indirekt durch Analyse der im Wasch-Filtrat vorhandenen Menge an Dibenzobarrelen **3d** bestimmt. Hohe Beladungsdichten an chiralem Auxiliar wurden vor allem mit *S*-Prolin erreicht (V-27–V-29). Obwohl das Dibenzobarrelen **3d** in Methanol fast unlöslich ist, hat sich bei der Untersuchung des Filtrats gezeigt, daß ein hoher Teil (ca. 95%) des Dibenzobarrelens **3d** bei der Beladung mit den chiralen Additiven herausgelöst wird.

# 4.1.3. Untersuchung der Wechselwirkungen des Dibenzobarrelens 3d mit organisierten Medien und chiralen Additiven

Die Wechselwirkung der chiralen Additive (S-Mandelsäure, S-Phenylglycinol, S-2-Amino-3phenyl-1-propanol, 1-S-Phenylethylamin, 1-S-Camphansäure, S-Prolin, S-Phenylalanin und S-Phenylglycin) mit dem Dibenzobarrelen **3d** im Grundzustand wurde durch
UV-Spektroskopie untersucht (V-39). Eine Titration des Substrats **3d** in Acetonitril mit einem bis zu 2.5 fachen Überschuß der chiralen Additive führte jeweils zu keiner Veränderung des Absorptionsspektrums.

Die Fluoreszensmessung ( $\lambda_{Ex} = 276$  nm) von **3d** in Acetonitril ergab eine Emissionsbande mit einem Maximum bei 354 nm. Da sich die Intensität des Signals jedoch ohne Zugabe von chiralen Additiven mit der Zeit erhöhte, ist eine fluoreszensspektroskopische Untersuchung der Wechselwirkung der chiralen Additive mit dem ersten angeregten Singulettzustand des Substrats **3d** nicht möglich.

Die Laserblitzphotolyseexperimente (V-40) mit dem Dibenzobarrelen **3d** wurden bei einer Anregungswellenlänge von  $\lambda_{Ex} = 300$  nm durchgeführt. Bei 500 nm trat eine Transientenabsorptionsbande mit einer Lebenszeit von 20 µs auf, die bei Sättigung der Lösung mit Sauerstoff verschwand. Wurden Lösungen der chiralen Salze *S*-Mandelsäure, 1-*S*-Phenylglycinol, *S*-2-Amino-3-phenyl-1-propanol oder 1-*S*-Camphansäure in Acetonitril zugegeben, wurde weder die Lebensdauer noch die Intensität des Triplett-Signals beeinflußt. Die Wechselwirkungen zwischen dem Dibenzobarrelen **3d** und den chiralen Additiven im

Zeolithen wurden durch IR-Spektroskopie im Festkörper untersucht. Die Carbonylbande des Substrats **3d** ( $\tilde{\nu} = 1652 \text{ cm}^{-1}$ ) verschob sich bei der Einlagerung in den Zeolith NaY ( $\tilde{\nu} = 1665 \text{ cm}^{-1}$ ). In mit S-Prolin beladenem Zeolith NaY traten zwei Carbonylbanden ( $\tilde{\nu} = 1630 \text{ cm}^{-1}$  und 1654 cm<sup>-1</sup>) auf.

#### 4.1.4. Photochemie der Dibenzobarrelene

# 4.1.4.1. Photochemie des Dibenzobarrelens **3d**

4.1.4.1.1. Bestrahlung in Lösung und im Festkörper

Bei der Bestrahlung des Dibenzobarrelens **3d** in Acetonitril wurde zu >95% das Regioisomer **4d** der Semibullvalene gebildet (Tabelle 4.3., V-43). Die Konstitution von **4d** 

|      | H<br>3d                         |      | hv<br>$(\lambda = 300 \text{ nm})$<br>Lösung ode<br>Festkörper | n)<br>er        | O H<br>4d           |                               |
|------|---------------------------------|------|----------------------------------------------------------------|-----------------|---------------------|-------------------------------|
|      | Medium                          | Т    | t                                                              | Mb <sup>a</sup> | Umsatz <sup>b</sup> | Anteil <b>4d</b> <sup>b</sup> |
|      |                                 | [°C] | [min]                                                          | [%]             | [%]                 | [%]                           |
| V-43 | CH <sub>3</sub> CN <sup>c</sup> | 25   | 10                                                             | 94              | >95                 | >95 <sup>b</sup>              |
| V-44 | MeOH <sup>c</sup>               | 25   | 7                                                              | 86              | >95                 | 85                            |
| V-45 | MeOH <sup>c</sup>               | 25   | 20                                                             | 90              | >95                 | 53                            |
| V-46 | MeOH <sup>c</sup>               | 35   | 10                                                             | 89              | >95                 | 20                            |
| V-47 | Festkörper <sup>d</sup>         | 25   | 30                                                             | 91              | >95                 | 68                            |

Tabelle 4.3: Photoreaktivität des Dibenzobarrelens 3d in Lösung und im Festkörper.

<sup>a</sup> Mb = Massenbilanz, ermittelt durch gaschromatographische Analyse, relativ zum internen Standard n-Dodekan, experimenteller Fehler ±2% der angegebenen Werte. <sup>b</sup> Umsatz und Anteil an 4d, ermittelt durch GC-Analyse, relativ zum internen Standard *n*-Dodekan, experimenteller Fehler  $\pm 2\%$  der angegebenen Werte. <sup>c</sup> Bestrahlung einer Lösung des Dibenzobarrelens **3d** im entsprechenden Lösungsmittel unter Argonatmosphäre mit dem Rayonet-Photoreaktor bei  $\lambda = 300$  nm oder mit einer Quecksilber-hochdrucklampe (Heraeus TQ 150, 150 W) bei  $\lambda > 280$  nm.<sup>d</sup> Die Kristalle wurden zwischen zwei Quarzplatten verrieben und unter Argonatmosphäre im Rayonet-Photoreaktor bei  $\lambda = 300$  nm bestrahlt.

wurde anhand von <sup>1</sup>H-NOESY-Spektroskopie bestätigt (Abbildung 4.1). Aufgrund der



Abbildung 4.1: NOE-Effekt im Semibullvalen 4d zwischen den Wasserstoffatomen der Methylgruppe und denen des Phenylrests

räumlichen Nähe zwischen der Methylgruppe und dem Phenyl-Wasserstoff, trat ein NOE-Effekt auf. Weniger selektiv verlief die Photoreaktion in Methanol (V-43). Besonders bei etwas höheren Temperaturen (35 °C) wurde eine Vielzahl nicht identifizierbarer Nebenprodukte gebildet (V-45). Wurde die Lösung des Dibenzobarrelens 3d in Methanol Nebenprodukt längere Zeit bestrahlt (20 min),auf, trat ein das sich bei säulenchromatographischer Aufreinigung umlagerte. Bei der Photoreaktion des Dibenzobarrelens **3d** im Festkörper wurden nicht-identifizierte Nebenprodukte gebildet (V-46). Die Festkörperphotoreaktivität des Dibenzobarrelens in verschiedenen Zeolithen ist in Tabelle 4.4 zusammengefaßt. In den Faujasiten MY (M = Li, Na, K) wird mit einer



 Tabelle 4.4:
 Photoreaktivität des Dibenzobarrelens 3d in verschiedenen Zeolithen

<sup>a</sup> Massenbilanz, bestimmt über GC-Chromatographie, relativ zum internen Standard *n*-Dodekan, experimenteller Fehler  $\pm 2\%$  der angegebenen Werte. <sup>b</sup> Ausbeute am Semibullvalen **4d**, bestimmt über GC-Chromatographie, relativ zum internen Standard *n*-Dodekan, experimenteller Fehler  $\pm 2\%$  der angegebenen Werte.

Selektivität von >95% das gleiche Photoprodukt **4d** wie in Lösung gebildet (V-48–V-50). In den sauren Zeolithen CBV-720 und MCM-41 war der Umsatz selbst nach 45 bzw. 50 min Bestrahlungszeit <5% (V-51 und V-52). Auch die leicht sauren Eigenschaften des Silicagels führten zu einer Herabsetzung der Reaktivität (V-53).

## 4.1.4.1.2. Bestrahlung in chiralen organisierten Medien

Zur Bestimmung der Enantioselektivität in den Photoreaktionen des Dibenzobarrelens 3d wurden die enantiomeren Semibullvalene 4d und *ent*-4d zu den diastereomeren Iminen 4f

# umgesetzt (Schema 4.5). Die diastereomeren Semibullvalene 4f sind



Schema 4.5: Überführung der enantiomeren Aldehyde 4d in die diastereomeren Imine 4f (zur besseren Übersicht wird nur eines der beiden Enantiomere gezeigt)

<sup>1</sup>H-NMR-spektroskopisch differenzierbar, da die Signale der Methyl- und der Methylengruppe aufspalten. Weiterhin wurden die beiden Enantiomeren auf einer chiralen HPLC-Säule (Chiracel ODH) getrennt und der Enantiomerenüberschuß UV-spektroskopisch detektiert. Zusätzlich wurden die beiden Enantiomere anhand eines CD-Signals eindeutig als solche identifiziert. Die absolute Konfiguration der Produkte **4d** und *ent-***4d** der stereoselektiven Reaktionen wurde nicht geklärt. Anhand der CD-Messungen, kann aber zugeordnet werden, ob bei den verschiedenen Experimenten relativ zu einem Referenzexperiment jeweils das gleiche Isomer oder das andere gebildet wurde.

Bei Bestrahlung der Komplexe des Dibenzobarrelens **3d** mit den Aminosäuren *S*-Prolin und *S*-Phenylalanin fand keine chirale Induktion statt (V-54 und V-55). Die Zugabe von polyethylenglykolgebundenem Poly-*S*-leucin (PAS 1) zu einer Lösung des Dibenzobarrelens **3d** in Acetonitril hatte keine Stereodifferenzierung bei der Photoreaktion zur Folge (Tabelle 4.5, V-56). Auch bei der Bestrahlung der Polyaminosäure-**3d**-Kokristalle trat bei

| Tabelle 4.5 | Photoreaktivität<br>Komplexe oder in  | des<br>Cyclode | Dibenzobarrelens<br>xtrinen <sup>a</sup> | 3d a | als | Aminosäure          | Polyaminosäure  |
|-------------|---------------------------------------|----------------|------------------------------------------|------|-----|---------------------|-----------------|
|             | Medium                                | T              | λ                                        | t    |     | Umsatz <sup>b</sup> | ee              |
|             |                                       | [°C]           | [nm]                                     | [h]  |     | [%]                 | [%]             |
| V-54        | Festkörper/                           | 0              | 254                                      | 16.5 |     | 10                  | <5 <sup>h</sup> |
|             | S-Phenylalanin <sup>c</sup>           |                |                                          |      |     |                     |                 |
| V-55        | Festkörper/                           | 0              | 254                                      | 13.5 |     | 31                  | $<5^{h}$        |
|             | S-Prolin <sup>d</sup>                 |                |                                          |      |     |                     |                 |
| V-56        | CH <sub>3</sub> CN/PAS 1 <sup>e</sup> | 25             | >280                                     | 3    |     | >95                 | $<5^{h}$        |

| V-57 | Festkörper/PAS 1e             | 25  | >280 | 10   | >95              | $<5^{h}$        |
|------|-------------------------------|-----|------|------|------------------|-----------------|
| V-58 | Festkörper/PAS 1e             | 0   | 254  | 4.5  | 35               | 22 <sup>i</sup> |
| V-59 | Festkörper/PAS 1e             | 0   | 254  | 10.5 | 41               | $<5^{i}$        |
| V-60 | Festkörper/PAS 1e             | -20 | 254  | 9.5  | 60               | $<5^{h}$        |
| V-60 | Festkörper/PAS 2 <sup>f</sup> | -17 | 254  | 13.5 | 38               | $< 5^{h}$       |
| V-61 | Festkörper/β-CD <sup>g</sup>  | 30  | 254  | 9.5  | >95 <sup>j</sup> | <5 <sup>i</sup> |
| V-62 | Festkörper/β-CD <sup>g</sup>  | 25  | 254  | 1.5  | 74 <sup>j</sup>  | 80 <sup>i</sup> |
|      |                               |     |      |      |                  |                 |

<sup>a</sup> Die Komplexe wurden zwischen zwei Quarzplatten zerrieben und unter Argonatmosphäre im Rayonet-Photoreaktor bei  $\lambda = 254$  nm bestrahlt. <sup>b</sup> Umsatz, ermittelt über <sup>1</sup>H-NMR-spektroskopische Analyse, experimenteller Fehler ±5% der angegebenen Werte. <sup>c</sup> Kokristalle des Dibenzobarrelens **3d** und *S*-Phenylalanin. <sup>d</sup> Verreibung von Dibenzobarrelen **3d** und *S*-Prolin. <sup>e</sup> PAS 1 = Polyethylenglykolgebundenes Poly-*S*-Leucin, Kokristalle erhalten nach **V-6a**. <sup>f</sup> PAS 2 = auf Silicagel gebundenes Poly-*S*-Leucin, Kokristalle erhalten nach **V-6b**. <sup>g</sup>  $\beta$ -CD =  $\beta$ -Cyclodextrin, Komplex erhalten nach **V-7**. <sup>h</sup> Enantiomerenüberschuß, ermittelt über <sup>1</sup>H-NMRspektroskopische Analyse der gebildeten Diasteromere, experimenteller Fehler ±5% der angegebenen Werte. <sup>i</sup> Enantiomerenüberschuß, ermittelt mittels HPLC-Analyse an chiraler stationärer Phase, experimenteller Fehler ±5% der angegebenen Werte. <sup>j</sup> Massenbilanz 5%.

Raumtemperatur kein Enantiomerenüberschuß auf (V-57). Erst durch Absenkung der Reaktionstemperatur auf 0 °C und einem geringen Umsatz von 35% wurde ein Enantiomerenüberschuß von 22% detektiert, der bei einer Steigerung des Umsatzes auf 41% auf 4% abfiel (V-58). Bei weiterem Fortschreiten der Reaktion auf 60% Umsatz fand selbst bei einer Reaktionstemperatur von –20 °C keine asymmetrische Induktion statt (V-59). Mit dem auf Silicagel adsorbierten Poly-*S*-leucin (PAS 2) wurde auch bei niedriger Temperatur und geringem Umsatz kein Enantiomer bevorzugt gebildet (V-60).

Nach der Bestrahlung der Cyclodextrinkomplexe des Dibenzobarrelens **3d** konnten lediglich 5% der eingelagerten Substanz extrahiert werden (V-61 und V-62). Der Enantiomerenüberschuß des gewonnenen Semibullvalens **4d** betrug 80% (V-62). Erst nach längerer Bestrahlungszeit sank er auf <5% (V-61).

Die Photoreaktionen des Dibenzobarrelens 3d in chiral-modifizierten Zeolithen sind in Tabelle 4.6 zusammengefaßt. Im mit S-Prolin beladenem Zeolith NaY tritt unabhängig

|      | Wirt                 | Т    | t     | Umsatz <sup>a</sup> | $ee^{b}$ |  |
|------|----------------------|------|-------|---------------------|----------|--|
|      |                      | [°C] | [min] | [%]                 | [%]      |  |
| V-64 | NaY/S-Prolin         | 25   | 35    | 20                  | 10       |  |
| V-65 | NaY/S-Prolin         | 25   | 55    | 39                  | 8        |  |
| V-66 | LiY/S-Prolin         | 25   | 15    | 5                   | 8        |  |
| V-67 | LiY/S-Prolin         | 25   | 30    | >95                 | 4        |  |
| V-68 | NaY/1-S-Camphansäure | 25   | 15    | 5                   | 30       |  |

 Tabelle 4.6:
 Photoreaktionen des Dibenzobarrelens 3d in chiral-modifizierten Zeolithen

#### ERGEBNISSE

| V-69 | NaY/1-S-Camphansäure | 0  | 30 | 9  | 8  |
|------|----------------------|----|----|----|----|
| V-70 | NaY/S-Mandelsäure    | 25 | 30 | 6  | <5 |
| V-71 | MCM*                 | 25 | 65 | 11 | 24 |

<sup>&</sup>lt;sup>a</sup> Umsatz, bestimmt über GC-Chromatographie, relativ zum internen Standard *n*-Dodekan, experimenteller Fehler  $\pm 2\%$  der angegebenen Werte. <sup>b</sup> Enantiomerenüberschuß, bestimmt mittels HPLC-Analyse an chiraler stationärer Phase, experimenteller Fehler  $\pm 5\%$  der angegebenen Werte. <sup>b</sup> Errechnet aus dem Verhältnis des eingelagerten Dibenzobarrelens **3d** und dem durchschnittlichen Gewichtsprozentanteil des chiralen Cyclohexadiimids im Zeolithen.

von den Reaktionsbedingungen ein konstanter Enantiomerenüberschuß von ca. 8–10% auf (Tabelle 4.8, V-64 und V-65). Die Art des Zeolith-Kations hat keinen Einfluß auf die Steroselektivität der Photoreaktion, denn die Enantiomerenüberschüsse in LiY entsprechen denen in NaY (V-66). Besonders hoch ist die chirale Induktion in mit Camphansäure beladenen Zeolithen. Bei einem Umsatz von 5% beträgt der Enantiomerenüberschuß 30% und bei einem Umsatz von 9% beträgt der Enantiomerenüberschuß 8% (V-68 und V-69). In allen Fällen sinkt der asymmetrische Einfluß der chiral-modifizierten Zeolithe bei höherem Umsatz (V-64–V-69). Mit Mandelsäure als chiralem Additiv wird keine chirale Induktion beobachtet (V-70). Im kovalent chiral-modifizierten Zeolithen MCM\* ist der Enantiomerenüberschuß höher als in den doppelt-beladenen Zeolithen, denn selbst bei einem Umsatz von 11% beträgt der Enantiomerenüberschuß 24% (V-71).

#### 4.1.4.2. Photoreaktivität des Dibenzobarrelens **3e**

Die Photoreaktionen des Dibenzobarrelens 3e sind in Tabelle 4.7 zusammengefaßt.



Tabelle 4.7: Photoreaktivität des Dibenzobarrelens 3e in verschiedenen Medien

| V-75 | Festkörper | 4 | 10 | 10 | 80 |
|------|------------|---|----|----|----|
|      |            |   |    |    |    |

<sup>&</sup>lt;sup>a</sup> Umsatz, ermittelt durch <sup>1</sup>H-NMR-spektroskopische Analyse, experimenteller Fehler  $\pm 5\%$  der angegebenen Werte. <sup>b</sup> Anteil an Semibullvalen **4e** und Dibenzobarrelen **3d**, ermittelt durch <sup>1</sup>H-NMR-spektroskopische Analyse, experimenteller Fehler  $\pm 5\%$  der angegebenen Werte. <sup>c</sup> Anteil an Semibullvalen **4e**; die Vielzahl der Nebenprodukte wurde nicht identifiziert.

Die Reaktion des Oxims **3e** in Lösung verlief schnell (V-73, V-74). Nach einer Stunde war der Umsatz vollständig. Bei der Reaktion in Methanol wurde zu 90% das Semibullvalen **4e** gebildet (V-73), dessen Identität durch Vergleich mit einer authentischen Probe bestätigt wurde. Die Reaktion in Acetonitril verlief unselektiv (V-74); die Vielzahl der gebildeten Produkte wurde nicht identifiziert. In der langsam ablaufenden Photoreaktion im Festkörper wurde als Hauptprodukt das Dibenzobarrelen **3d** gebildet, das Semibullvalen **4e** bildete sich dagegen nur in geringen Mengen (V-75).

#### 4.1.4.3. Photoreaktivität des Dibenzobarrelens **3f**

Die Photoreaktionen des Dibenzobarrelens **3f** in Lösung und im Festkörper sind in Tabelle 4.8 zusammengefaßt. Die Reaktivität des Imins **3f** war selbst in Lösung sehr gering. Der



 Tabelle 4.8:
 Photoreaktivität des Dibenzobarrelens 3f in verschiedenen Medien

<sup>a</sup> Umsatz, ermittelt durch <sup>1</sup>H-NMR-spekroskopische Analyse, experimenteller Fehler  $\pm 5\%$  der angegebenen Werte. <sup>b</sup> Anteil des Semibullvalens **4d** und des Semibullvalens **4f** relativ zur Gesamtausbeute an Produkt, ermittelt durch <sup>1</sup>H-NMR-spekroskopische Analyse, experimenteller Fehler  $\pm 5\%$  der angegebenen Werte. <sup>c</sup> Diastereomerenüberschuß, ermittelt durch <sup>1</sup>H-NMR-spekroskopische Analyse, experimenteller Fehler  $\pm 5\%$  der angegebenen Werte. <sup>c</sup> Diastereomerenüberschuß, ermittelt durch <sup>1</sup>H-NMR-spekroskopische Analyse, experimenteller Fehler  $\pm 5\%$  der angegebenen Werte. <sup>d</sup> eine Lösung des Dibenzobarrelens **3f** in einem Quarzgefäß wurde unter Argonatmosphäre mit einer Quecksilberhochdrucklampe bei  $\lambda > 185$  nm bestrahlt. <sup>e</sup> Vielzahl der Nebenprodukte nicht identifiziert. <sup>f</sup> Das feste, durch Abdampfen einer Lösung aus Toluol erhaltene Dibenzobarrelen **3f** wurde zwischen zwei Quarzplatten zerrieben und unter Argonatmosphäre mit einer Quecksilberhochdrucklampe bei  $\lambda > 185$  nm bestrahlt.

Umsatz nach 2.5 h Bestrahlung betrug lediglich 5% (V-77). Es wurde ausschließlich das Semibullvalen **4f** gebildet, was durch den Vergleich mit einer authentischen Probe bestätigt wurde. Die Reaktion des Dibenzobarrelens **3f** in Dichlormethan verlief weniger selektiv (V-78). Das Diastereomerenverhältnis der Semibullvalene **4f** wurde <sup>1</sup>H-NMR-spektroskopisch bestimmt. Bei Bestrahlung des Imins **3f** im Festkörper wurde ausschließlich das Semibullvalen **4d** gebildet (V-79).

# 4.2. Photochemie der Kronenetherderivate

#### 4.2.1. Synthese der Edukte

#### 4.2.1.1. Synthese des Dibenzobarrelens **3c**

Das Endiol **3i** wurde mit Phosphortribromid zur Dibromverbindung **3j** umgesetzt (Schema 4.6).<sup>34</sup> Mit Tetraethylenglykol und NaOH unter Phasentransferbedingungen reagierte



Schema 4.6: Synthese des Kronenethers 3c

diese zu dem Kronenether **3c**, der nach säulenchromatographischer Aufreinigung mit einer Ausbeute von 41% isoliert wurde. Die Verbindung **3c** zeigte im <sup>1</sup>H-NMR-Spektrum charakteristische Signale für die Polyethyleneinheit ( $\delta = 3.30-3.34$  ppm und  $\delta = 3.54-3.58$  ppm) und für die Brückenkopfprotonen des Dibenzobarrelens ( $\delta = 5.17$  ppm). Zudem wurde das Dibenzobarrelen **3c** über <sup>13</sup>C-NMR-, UV-, Massen- und IR-Spektroskopie vollständig charakterisiert.

#### 4.2.1.2. Synthese der Acetophenone **1b** und **1c**

Die Friedel-Crafts-Acylierung von Benzo-18-krone-6 (**11b**) mit Adamantylessigsäure oder dem entsprechenden Säurechlorid in Polyphosphorsäure oder mit AlCl<sub>3</sub> ergab nur einen geringen Umsatz von <5%.<sup>35</sup> Die Umsetzung wurde schließlich mit Diphosphorpentoxid in Methansulfonsäure erfolgreich durchgeführt (Schema 4.7).<sup>36</sup> Das



Schema 4.7: Synthese der Acetophenonderivate 1b und 1c

Produkt **1b** wurde nach säulenchromatographischer Aufreinigung in 76% iger Ausbeute als farbloses Öl erhalten. Eine vollständige Aufreinigung gelang allerdings erst nach Kristallisation mit Kaliumhexafluorophosphat. Der entsprechende Benzo-15-krone-5-ether **1c** wurde ebenfalls durch Reaktion in  $P_2O_5$  und Methansulfonsäure erhalten, wobei nach säulenchromatographischer Aufreinigung 65% des Produkts **1c** isoliert wurden. Die Charakterisierung von **1b** und **1c** erfolgte anhand von <sup>1</sup>H-NMR, <sup>13</sup>C-NMR-, Massen- und UV-Spektroskopie und Elementaranalyse.

#### 4.2.2. Titrationen der Kronenether

4.2.2.1 Bestimmung der Bindungskonstanten über <sup>1</sup>H-NMR-spektroskopische Titrationen Die Komplexbildungskonstanten der Wirt-Gast-Komplexe von **1b** und **3c** mit Metallkationen können über <sup>1</sup>H-NMR-Titrationen anhand der Verschiebungen der Signale der allylischen

CH2-Protonen bestimmt werden.37 Hierbei wurde bei konstanter Konzentration der Kronenether 1b und 3c die Verschiebung der <sup>1</sup>H-NMR-Signale bei Zugabe der Salze bestimmt. Die Titration des adamantylsubstituierten Kronenethers 1b mit KBF4 und NaBF4 führte lediglich zu einer Änderungen der Verschiebungen innerhalb der Fehlergrenzen, so daß eine Berechnung der Bindungskonstanten nicht möglich war. Auch bei der Extraktion von Metallbenzoatlösungen mit Kronenetherlösungen von 1b und 1c und der anschließenden Messung der Änderung des Benzoat-Arbsorptionsmaximums im UV-Spektrum konnte keine Veränderung der Signale festgestellt werden. Die <sup>1</sup>H-NMR-spektroskopische Titration des Kronenethers **3**c hingegen lieferte Bindungsisothermen, aus denen die Komplexbildungskonstanten mit KBF4 (V-85) und NaBF4 (V-86) ermittelt wurden. Die Auswertung der Kurvenanpassung ("curve fitting method") an die Datenreihe der Titration ergab,37 daß die Bindungskonstante für die Komplexierung von Kaliumkationen geringer ist  $[K_B(K^+) = 3.0 \times 10^2 \text{ M}^{-1}]$  als die des Natriumions  $[K_B(Na^+) = 1.9 \times 10^3 \text{ M}^{-1}]$ . Außerdem wurde gezeigt, daß der Kronenether **3c** mit NaBF<sub>4</sub> in einem 2:1-Komplex vorliegt.

#### 4.2.2.2. Spektrophotometrische Titrationen

Zur Untersuchung des Einflusses von Alkalimetallionen auf die Absorption des kronenetheranellierten Dibenzobarrelens **3b** wurden spektrophotometrische Titrationen mit Natrium-, Kalium- und Cäsiumionen in Acetonitril durchgeführt (V-87–V-89). Es wurden UV-Spektren bei gleichbleibender Kronenetherkonzentration und steigender Salzkonzentration bis zu Salz/Kronenetherverhältnissen von  $c(KBF_4)/c(3b) = 2:1$  und  $c(CsBF_4)/c(3b) = 1:1$  aufgenommen. Die Absorptionsmaxima liegen bei 252 nm und 273 nm. Die steigende Salzkonzentration hatte kaum Einfluß auf die Absorptionsspektren. Es wurde keine Abnahme der Absorption und keine Verschiebung der Absorption statt, was aber wahrscheinlich auf Verdünnungseffekte zurückzuführen ist.

#### 4.2.2.3. Spektrofluorimetrische Titrationen

Nachdem die Bindungskonstanten  $K_B$  des Kronenethers **3b** mit Alkalimetallionen im Grundzustand ermittelt wurden, sollten die Bindungseigenschaften im angeregten Zustand ebenfalls untersucht werden, da die Photoreaktion des Dibenzobarrelens **3b** aus dem angeregten Zustand erfolgt. Dazu wurde wie bei den spektrophotometrischen Titrationen bei konstanter Kronenetherkonzentration eine entsprechende Salzlösung titriert (V-90–V-93).



Abbildung 4.2: Stern-Volmer-Auftragung für die Integrale (280-530 nm) der Emissionsspektren von 3b bei Zugabe von NaBF<sub>4</sub>, KBF<sub>4</sub> oder CsBF<sub>4</sub>

Es wurde bei allen Titrationen eine Fluoreszenzlöschung beobachtet, die jedoch unterschiedlich stark ist (siehe Abbildung 4.2). Bei Zugabe von 0.4 Äquivalenten Salz betrug die Löschung bei NaBF<sub>4</sub> 16%, bei KBF<sub>4</sub> 27% und bei CsBF<sub>4</sub> 33%. Bereits ab einer Zugabe von 0.05 Äquivalenten Salz trat bei der Fluoreszenzlöschung eine Sättigung ein. Die Löschung fand zum größten Teil im Bereich des Emissionsmaximums um 295 nm statt. Bei einer Wellenlänge von ca. 410 nm befindet sich ein weiteres lokales Emissionsmaximum. In diesem Bereich trat ebenfalls Fluoreszenzlöschung auf. Bei den Fluoreszenzspektren der Titration mit KBF<sub>4</sub> (0-2 Äquivalente) war in diesem Bereich kein eindeutiges Verhalten zu sehen. Bei niedrigen Salzkonzentrationen sank die Fluoreszenzquantenausbeute, während sie bei höheren Konzentrationen über das Ursprungsniveau anstieg.

#### 4.2.3. Komplexierung der Kronenether

Die Kristallisation der Kronenether-Salz-Komplexe gelang in den meisten Fällen nicht (V-94). Lediglich der Kronenether **1b** wurde mit  $KPF_6$  oder  $KBF_4$  in kristalliner Form aus

Methanol erhalten. Die Kronenether sind jedoch als Feststoffe durch die Zugabe von Wasser zu einer methanolischen Lösung der Kronenether oder durch das Eintropfen einer methanolischen Lösung der Kronenether in Wasser erhältlich (V-96). Diese Methode war besonders gut geeignet, wenn die Kronenether vor der Fällung mit MPF<sub>6</sub>-Salzen komplexiert wurden (V-97).

#### 4.2.4. **Photochemie**

#### Photochemie des Kronenethers 3c 4.2.4.1.

Die Photoreaktionen des Dibenzobarrelens 3c sind in Tabelle 4.9 zusammengefaßt. Durch





3c(MX)

4c(MX)



|       | MX                                | Medium                  | t   | Umsatz <sup>a</sup> | Produktver         | teilung <sup>b</sup> [%] |
|-------|-----------------------------------|-------------------------|-----|---------------------|--------------------|--------------------------|
|       |                                   |                         | [h] | [%]                 | 4c                 | 5c                       |
| V-100 | -                                 | CH <sub>3</sub> CN      | 1.5 | >95                 | <5                 | >95                      |
| V-101 | -                                 | CH <sub>3</sub> CN/     | 1.5 | >95                 | >95                | <5                       |
|       |                                   | Aceton                  |     |                     |                    |                          |
| V-102 | -                                 | Festkörper <sup>c</sup> | 16  | 43                  | 25                 | 75                       |
| V-103 | NaBF <sub>4</sub>                 | Festkörper <sup>d</sup> | 11  | 31                  | 76                 | 24                       |
| V-104 | $\mathrm{KBF}_4$                  | Festkörper <sup>d</sup> | 11  | 38                  | 95                 | 5                        |
| V-105 | R*NH <sub>3</sub> Br <sup>e</sup> | Festkörper <sup>d</sup> | 23  | >95                 | $>95^{\mathrm{f}}$ | <5                       |

<sup>a</sup> Umsatz, ermittelt durch <sup>1</sup>H-NMR-spektroskopische Analyse, experimenteller Fehler  $\pm 5\%$  der angegebenen Werte. <sup>b</sup> Produktverteilung, ermittelt durch <sup>1</sup>H-NMR-spektroskopische Analyse, experimenteller Fehler ±5% der angegebenen Werte. <sup>c</sup> Eingedampft zur Trockne in Diethylether. <sup>d</sup> Eingedampft zur Trockne in Methanol. <sup>e</sup> R\*NH<sub>3</sub>Br entspricht 1-S-Phenylethylammoniumbromid. <sup>f</sup> Enantiomerenüberschuß <5%, ermittelt durch <sup>1</sup>H-NMR-spektroskopische Analyse des mit 1-S-Phenylethylammoniumbromid komplexierten Semibullvalens 4c, experimenteller Fehler  $\pm 5\%$  der angegebenen Werte.

#### ERGEBNISSE

direkte Bestrahlung in Acetonitril wurde das Dibenzocyclooctatetraen 5c gebildet (V-100), während unter Triplettsensibilisierung mit Aceton das Dibenzosemibullvalen 4c entstand (V-101). Das Photoprodukt **4c** zeigt die charakteristischen <sup>1</sup>H-NMR-Signale von Dibenzosemibullvalenen, wie beispielsweise das Proton des Cyclopropanrings ( $\delta = 3.21$ ) und das Proton in doppelter benzylischer Stellung ( $\delta = 4.50$ ). Das bei direkter Bestrahlung erhaltene Photoprodukt **5c** zeigt dagegen die charakteristischen <sup>1</sup>H-NMR-Signale von Dibenzocyclooctatetraenen, wie beispielsweise die Vinyl-Protonen ( $\delta = 6.83$ ) und die der Protonen in allylischer Stellung ( $\delta = 4.42$ ). Beide Photoprodukte wurden anhand von <sup>1</sup>H-NMR-Spektroskopie und exakter Masse charakterisiert. Da es nicht gelungen ist, Komplexe des Kronenethers **3c** kristallin zu erhalten, wurde die von Pederson beschriebene Methode zur Darstellung von festen Kronenetherkomplexen angewendet.<sup>30a</sup> Dabei wurden Lösungen des Kronenethers 3c und der entsprechenden Salze bei Raumtemperatur zur Trockne eingedampft. Die lösungsmittelfreien, festen Proben der Komplexe wurden jeweils für 11–23 h bestrahlt. Das Reaktionsgemisch wurde daraufhin <sup>1</sup>H-NMR-spektroskopisch analysiert. Der Umsatz sowie das Verhältnis der gebildeten Semibullvalene 4c und Cyclooctatetraene 5c wurden über die charakteristischen <sup>1</sup>H-NMR-Signale bestimmt. Bei der Bestrahlung des unkomplexierten Dibenzobarrelens 3c, welches im lösungsmittelfreien Medium ein zähflüssiges Öl ist, wurde zu 25% das Semibullvalen und zu 75% das Cyclooctatetraen gebildet (V-102). Wurden jedoch die festen, mit Natrium- oder Kalium-Salzen komplexierten Kronenether 3c bestrahlt, bildete sich hauptsächlich das Triplett-Produkt Semibullvalen 4c (V-103 und V-104). Mit NaBF<sub>4</sub>-Salz betrug der Anteil an Semibullvalen 76%, mit KBF<sub>4</sub>-Salz sogar 95%. Bei Bestrahlung des Kronenethers 3c mit 1-S-Phenylethylammoniumbromid wurde ausschließlich das Semibullvalen 4c mit einem Enantiomerenüberschuß von <5% gebildet (V-105).

#### 4.2.4.2. Photochemie der Kronenether **1b** und **1c**

Die Photoreaktionen der Kronenether **1b** und **1c** sind in Tabelle 4.10 zusammengefaßt. Bei Bestrahlung des unkomplexierten Benzo-18-kronenenethers **1b** in Methanol waren nach 24 h

|       |    | 0<br>1b(MX): n = 2<br>1c(MX): n = 1 | $ \begin{array}{c}                                     $ |     | HO<br>2b,c(MX)                |
|-------|----|-------------------------------------|----------------------------------------------------------|-----|-------------------------------|
|       |    | MX                                  | Medium                                                   | t   | Anteil <b>2b</b> <sup>a</sup> |
|       |    |                                     |                                                          | [h] | [%]                           |
| V-106 | 1b | -                                   | MeOH <sup>b</sup>                                        | 24  | 87                            |
| V-107 |    | $\mathrm{KPF}_6$                    | MeOH <sup>b</sup>                                        | 6   | <5                            |
| V-108 |    | RbBr                                | MeOH <sup>b</sup>                                        | 5   | >95                           |
| V-109 |    | KBr                                 | MeOH <sup>b</sup>                                        | 9   | >95                           |
| V-110 |    | $\mathrm{KBF}_4$                    | Festkörper <sup>c,d</sup>                                | 22  | <5                            |
| V-111 |    | $KPF_6$                             | Festkörper <sup>c,d</sup>                                | 38  | <5                            |
| V-112 | 1c | -                                   | MeOH <sup>b</sup>                                        | 5   | <5                            |
| V-113 |    | NaBr                                | MeOH <sup>b</sup>                                        | 6   | <5                            |
| V-114 |    | NaPF <sub>6</sub>                   | Festkörper <sup>c,e</sup>                                | 12  | <5                            |
|       |    |                                     |                                                          |     |                               |

Tabelle 4.10: Photoreaktivität der Acetophenone 1b und 1c in verschiedenen Medien

<sup>a</sup> Ermittelt durch <sup>1</sup>H-NMR-spektroskopische Analyse, experimenteller Fehler ±5% der angegebenen Werte. <sup>b</sup> Eine Lösung der Kronenether **1b** oder **1c** in Methanol wurde unter Argonatmosphäre mit einer Quecksilberhochdrucklampe bei  $\lambda > 280$  nm bestrahlt. <sup>c</sup> Die festen Kronenether **1b** oder **1c** wurden zwischen zwei Quarzplatten verrieben und unter Argonatmosphäre mit einer Quecksilberhochdrucklampe bei  $\lambda > 280$  nm bestrahlt. <sup>d</sup> Kristallisiert aus Methanol. <sup>e</sup> Festkörper erhalten durch Fällung einer methanolischen Lösung des Kronenethers **1c** mit NaPF<sub>6</sub> aus Wasser.

erst 87% des Edukts umgesetzt (V-106). Auch durch Zugabe von KPF<sub>6</sub> konnte die Reaktionsgeschwindigkeit in Lösung nicht erhöht werden (V-107). Erst der Komplex mit Rubidium- oder Kaliumbromid reagierte deutlich schneller (V-108 und V-109). Die kristallinen Komplexe des Kronenethers **1b** mit KBF<sub>4</sub> und KPF<sub>6</sub> waren photoinert (V-110, V-111). Das Photoprodukt **2b** wurde in 49%iger Ausbeute isoliert und anhand von <sup>1</sup>H-, <sup>13</sup>C-NMR- und Massenspektroskopie sowie Elementaranalyse vollständig charakterisiert.

Bei der Bestrahlung des unkomplexierten Kronenethers **1c** in Methanol wurde kein Umsatz beobachtet (V-112). Auch die Zugabe von Natriumbromid führte hier nicht zu einer Erhöhung der Reaktionsgeschwindigkeit (V-113). Der durch Fällung erhaltene Feststoff des Kronenethers **1c** mit NaPF<sub>6</sub> reagierte auch nach einer Bestrahlungszeit von 12 h nicht (V-114).

# 5.1. Photochemie des Dibenzobarrrelens 3d und dessen Derivate

#### 5.1.1. Bildung des Dibenzobarrelens 3d

Unter sauren Bedingungen lagert sich das Diol **3i** quantitativ zum Aldehyd **3d** um. Der Mechanismus dieser Reaktion wurde bereits diskutiert<sup>27</sup> und ist in Schema 5.1 dargestellt.



Schema 5.1: Postulierter Mechanismus zur Bildung des Dibenzobarrelens 3d<sup>27</sup>

Nach Protonierung einer Hydroxylgruppe im Endiol **3i** kann Wasser abgespalten werden, wobei das Kation **S2k** entsteht. Tritt ein Nachbargruppeneffekt durch die zweite Hydroxylgruppe auf, bildet sich als Zwischenstufe das ringförmige Intermediat **S3k**. Nach Deprotonierung entsteht aus beiden Verbindungen das hydroxysubstituierte Dien **S4k**, welches zum Aldehyd **3d** tautomerisiert. Dieser Mechanismus wird durch die Tatsache gestützt, daß lediglich katalytische Mengen an Säure nötig sind, um die Umlagerung auszulösen. Durch die Verwendung geringerer Mengen Säure als berichtet<sup>27</sup> konnte auch das Auftreten von Nebenprodukten vermieden werden.

# 5.1.2. Wechselwirkung des Dibenzobarrelens 3d mit organisierten Medien und chiralen Additiven

Bei der UV-spektroskopischen Titration des Dibenzobarrelens 3d mit den chiralen Additiven (S-Mandelsäure, S-Phenylglycinol, S-2-Amino-3-phenyl-1-propanol, 1-S-Phenylethylamin, 1-S-Camphansäure, S-Prolin, S-Phenylalanin und S-Phenylglycin und polyethylenglykolgebundenem Poly-S-leucin) trat keine Veränderung des Absorptionssignals auf. Die Fluoreszensmessung von 3d in Acetonitril ergab eine Emissionssbande mit einem Maximum bei 354 nm. Da sich die Intensität des Signals jedoch ohne Zugabe von chiralen Additiven mit der Zeit erhöhte, wird angenommen, daß das Substrat 3d unter den Meßbedingungen reagiert und das Produkt 4d mit einer höheren Quantenausbeute fluoresziert als 3d. Deshalb konnte keine Titration mit chiralen Additiven durchgeführt werden. Auch die Ergebnisse aus den Laserblitzphotolyseexperimenten könnten verfälscht sein, da die Intensität des Laserlichts sehr hoch ist und eine Reaktion des Dibenzobarrelens 3d während der Messung nicht auszuschließen ist. Bei der Zugabe der chiralen Additive hat sich weder die Intensität noch die Lebensdauer des Signals verändert. Das Auftreten einer Transientenabsorptionsbande und die Löschung in Anwesenheit von Sauerstoff zeigten jedoch eindeutig, daß sich vom Dibenzobarrelen 3d ein Triplett bildet, was auch von anderen Dibenzobarrelenen bekannt ist.<sup>25</sup>

Mit den oben genannten Methoden wurden nur die Wechselwirkungen des Substrats **3d** mit chiralen Additiven in Lösung untersucht. Im Festkörper bzw. bei Komplexierung in Zeolithen können dagegen andersartige und stärkere Kräfte zwischen den Komponenten wirken. Deshalb ist die Untersuchung der Wechselwirkungen zwischen **3d** und den chiralen Additiven im Festkörper aussagekräftiger. Da im Festkörper eine Fluoreszensmessung oder Laserflashphotolyse aufgrund der hohen Reaktivität des Dibenzobarrelens **3d** nicht möglich ist, konnte im Festkörper nur die Untersuchung mittels Infrarotspektroskopie durchgeführt werden. Die Carbonylbande des Substrats **3d** ( $\tilde{\nu} = 1652 \text{ cm}^{-1}$ ) wurde bei Einlagerung in den Zeolith NaY signifikant verschoben ( $\tilde{\nu} = 1665 \text{ cm}^{-1}$ ). In mit *S*-Prolin beladenem Zeolith NaY traten zwei Carbonylbanden ( $\tilde{\nu} = 1630 \text{ cm}^{-1}$  und 1654 cm<sup>-1</sup>) auf, was darauf hindeutet, daß das Dibenzobarrelen **3d** in zwei Formen vorliegt, vermutlich einmal mit und einmal ohne Wechselwirkungen mit Prolin.

#### 5.1.3. Zerfall der Dibenzobarrelene zu Anthracen bzw. Anthrachinon

Das Dibenzobarrelen 3g konnte nicht isoliert werden, da es zu Anthracen und dem alkinylsubstituiertes Dioxolan 10 zerfiel. Diese Produkte entstehen in einer Retro-Diels-Alder-Reaktion (Abschnitt 4.1.1, Schema 5.2). Auch bei der Aufreinigung des



Schema 5.2: Retro-Diels-Alder-Reakion des Dibenzobarrelens 3g

Dibenzobarrelens **3c** wurde Anthracen detektiert. Der Grund dafür, daß die Dibenzobarrelene **3c** und **3g** eine Retro-Diels-Alder-Reaktion eingehen, während das Dibenzobarrelen **3d** stabil ist, könnte die Ausbildung einer positiven Partialladung in  $\alpha$ -Stellung zur Vinyl-Doppelbindung bei Protonierung der Sauerstoffatome sein (Abbildung 5.1). Evans und Golob



Abbildung 5.1: Beschleunigung der Retro-Diels-Alder-Reaktion durch Ausbildung einer positiven Partialladung in α-Stellung zur Vinyldoppelbindung

haben bereits 1975 berichtet, daß die Reaktionsgeschwindigkeit der Oxy-Cope- Umlagerung durch Überführung des Alkohols in ein Alkoxid deutlich erhöht wurde.<sup>38a</sup> Ein solcher beschleunigender Effekt des Oxid-Anions wurde später auch in der Retro-Diels-Alder-Reaktion beobachtet (Schema 5.3).<sup>38b,c</sup> Der signifikante Einfluß des Oxid-



Schema 5.3: Erhöhte Reaktionsgeschwindigkeit in der Retro-Diels-Alder-Reaktion von 12b im Vergleich zu 12a<sup>38b</sup>

Substituenten auf die Reaktionsgeschwindigkeit von **12b** im Vergleich zu **12a** (>10<sup>6</sup>) ist auf eine bessere konjugative Stabilisierung des Moleküls **12b** im Übergangszustand im Verhältnis zum Grundzustand zurückzuführen, was zu einer Absenkung der Aktivierungsenthalpie ( $\Delta G^{\neq}$ ) führt. Eventuell tritt ein ähnlicher beschleunigender Effekt auch bei positiven Ladungen auf. Dies könnte eine Erklärung für die Bildung der Retro-Diels-Alder-Produkte aus den Dibenzobarrelenen **3c**(H<sup>+</sup>) und **3g**(H<sup>+</sup>) infolge einer Deprotonierung der Sauerstoffatome sein.

Das Dibenzobarrelen **3f** reagiert beim Versuch der Kristallisation zu Anthrachinon. Eine Bildung dieses Produkts durch eine Oxidation des Retro-Diels-Alder-Produkts Anthracen ist unwahrscheinlich, da keine stark oxidativen Bedingungen vorlagen und kein Anthron oder Anthracen als Nebenprodukte detektiert wurden. Es muß dabei also eine Ringöffnung mit gleichzeitiger Oxidation stattfinden. Ein Mechanismus dazu ist nicht bekannt.

# 5.1.4. Typ- und Regioselektivität in den Photoreaktionen der Dibenzobarrelene

Bei Bestrahlung des Dibenzobarrelens **3d** in Lösung wurde als Hauptprodukt das Regioisomer der Semibullvalene **4d** gebildet (Abschnitt 4.1.4). Grundsätzlich stimmt dieses Ergebnis mit den Interpretationen von Zimmermann und Scheffer überein.<sup>25</sup> Diese haben postuliert, daß die Regioselektivität in der Di- $\pi$ -methan-Umlagerung einerseits durch die Polarität der Substituenten und andererseits durch deren Fähigkeit, Radikale zu stabilisieren,

bestimmt wird. Aufgrund der bevorzugten Radikalbildung in Nachbarschaft zur spindelokalisierenden Aldehydfunktion wird deshalb in Lösung ausschließlich das Regioisomer **4d** gebildet (Schema 5.3).<sup>39</sup>



Schema 5.3: Bevorzugte Bildung des Regioisomers 4d aufgrund besserer Radikalstabilisierung von 7d im Vergleich zu 7d'

Bei Bestrahlung von Einkristallen des Dibenzobarrelens **3d** wurden andere Produkte gebildet als in Lösung. Vermutlich wird der in Lösung infolge stereoelektronischer Effekte bevorzugte Reaktionsweg zum Semibullvalen **4d** durch die sterischen Einschränkungen im Kristallgitter energetisch ungünstiger. In Abbildung 5.2 ist die Festkörperstruktur des Dibenzobarrelens **4d** 



Abbildung 5.2: Festkörperstruktur des Dibenzobarrelens 3d, wobei in (a) ein einzelnes Molekül und in (b) die Packung im Kristallgitter gezeigt ist

gezeigt. In der Abbildung 5.2 (b) erkennt man, daß die Packungsdichte im Kristallgitter des Dibenzobarrelens **3d** sehr hoch ist. Der Abstand der Methylgruppe zum Nachbarmolekül beträgt nur 2.6 Å (gestrichelte Linie). Damit könnte die Umlagerung der Dibenzobarrelene **3d** zu den Semibullvalenen **4d** durch die umgebenden Moleküle behindert sein. Auch die langsameren Reaktionszeiten im Festkörper im Vergleich zur Lösungsreaktion sind auf die sterischen Einschränkungen im Kristallgitter zurückzuführen. Zudem findet im Festkörper häufiger als in Lösung eine Selbstlöschung der Triplett-Zustände statt,<sup>40</sup> womit die Quantenausbeute der Reaktion sinkt.

Obwohl die Photoreaktionen des Dibenzobarrelens **3d** in Zeolithen im festen Zustand durchgeführt wurden, bildete sich, anders als im kristallinen Medium, sehr selektiv das Regioisomer **4d**. Durch die Käfigstruktur der Zeolithe ist das Molekül beweglicher als im hochgeordneten, starren Kristallgitter. Bezüglich der konformellen Flexibilität der Edukte **3d** nehmen Zeolithe also eine Mittelstellung zwischen Lösung und Kristall ein. Daß für die Selektivität nur die Hohlraumstruktur der Zeolithe verantwortlich ist und nicht die Assoziation an das umgebende Siliciumdioxid, wurde durch die unselektive Reaktion auf amorphem Silicagel gezeigt.

Bei den Photoreaktionen des Dibenzobarrelens **3d** wurde in keinem Fall das Singulett-Produkt, d. h. das Cyclooctatetraen **5d** gebildet. Dies ist dadurch zu erklären, daß die Aldehydgruppe im Molekül durch Spin-Bahn-Kopplung ein Intersystemcrossing vom angeregten Singulett- in den Triplett-Zustand assistiert und deshalb eine Reaktion aus dem Triplett-Zustand stattfindet.<sup>41</sup>

Aus den Dibenzobarrelenen 3e und 3f bilden sich als Hauptprodukte ebenfalls die entsprechenden Semibullvalene 4e und 4f. Anders als bei der Bestrahlung des Dibenzobarrelens 3d verlief die Reaktion allerdings in Methanol selektiver als in Acetonitril. Für diese Abhängigkeit der Produktbildung vom Solvens sind sogenannte Lösungsmitteleffekte verantwortlich.<sup>42</sup> Die relativen Energien des angeregten und des Grundzustands werden durch die Solvatation beeinflußt. Dadurch hängen die Reaktionsgeschwindigkeiten bzw. die Produktzusammensetzung konkurrierender Reaktionen von der Polarität und der Fähigkeit des Lösungsmittels, Wasserstoffbrücken auszubilden, ab.

40

In den Photoreaktionen der Dibenzobarrelene **3e** und **3f** im Festkörper wurden in beiden Fällen die Aldehyde **3d** bzw. **4d** gebildet. Es findet also eine Hydrolyse des Oxims **3e** und des Imins **3f** statt, <sup>43</sup> die schon bei der Photolyse anderer Iminderivate beobachtet wurde.<sup>44</sup> Eventuell nimmt die photochemische Anregung die Rolle des Säurekatalysators zur Aktivierung des C-Atoms für den nukleophilen Angriff ein. Ein Grund dafür, daß diese Reaktion ausschließlich im Festkörper auftritt, könnte im Kristallgitter der Dibenzobarrelene **3e** und **3f** eingelagertes Wasser sein. Durch dieses befinden sich die für die Reaktion benötigten Ausgangsstoffe in unmittelbarer Nachbarschaft zueinander.

#### 5.1.5. Stereoselektivität in den Photoreaktionen der Dibenzobarrelene

Der Kokristallen des Dibenzobarrelens 3d bei Bestrahlung von mit polyethylenglykolgebundenem Poly-S-leucin aufgetretene geringe Enantiomerenüberschuß von maximal 22% deutet darauf hin, daß zwischen den beiden Substanzen keine starken attraktiven Wechselwirkungen auftreten oder daß das reaktive Zentrum weit vom stereogenen Zentrum des Poly-S-leucins entfernt ist. Auf schwache Wechselwirkungen des Dibenzobarrelens 3d mit der Polyaminosäure in Lösung deutet auch die Tatsache hin, daß sich weder das Absorptions- noch das IR-Spektrum des Dibenzobarrelens 3d bei Zugabe der Polyaminosäure verändern. Ist das stereogene Zentrum des Poly-S-leucins zu weit vom Dibenzobarrelen 3d entfernt, so sind die Aktivierungsenthalpien der Reaktionswege zu beiden enantiomeren Semibullvalenen 4d und *ent*-4d nahezu gleich und beide werden in gleichen Mengen gebildet.<sup>5</sup> Die Tatsache, daß die chirale Induktion mit längerer Bestrahlungszeit abnimmt, ist auf eine Abnahme der Kristallinität des Festkörpers während der Reaktion zurückzuführen. Es ist bekannt, daß Festkörperreaktionen, ausgenommen sogenannter Einkristall-zu-Einkristall-Reaktionen, bei steigendem Umsatz ihre Selektivität verlieren.<sup>5</sup>

Die Photoreaktionen in  $\beta$ -Cyclodextrin verliefen mit guten Enantiomerenüberschüssen von bis zu 80%. Da hier allerdings lediglich 5% des Produkts extrahiert wurden, kann eine bevorzugte Extraktion eines Enantiomers nicht ausgeschlossen werden. Der Grund dafür, daß

offensichtlich ein Großteil des Produkts in den Cyclodextrinen verbleibt, kann zum Beispiel das Auftreten einer sogenannten "ship-in-a-bottle"-Reaktion sein.<sup>45</sup> Durch die Veränderung der Form des Gastmoleküls während der Reaktion kann der Wirt nicht mehr verlassen werden. Eine weitere Erklärung wäre die einer kovalenten Bindung des Substrats an den Wirt infolge einer photochemischen Reaktion. So könnte die Aldehydfunktion des Dibenzobarrelens **3d** im angeregten Zustand beispielsweise H-Abstraktionsreaktionen an den CH<sub>2</sub>-Gruppen des Cyclodextrins eingehen. Durch anschließende Rekombination der Radikale wäre das Dibenzobarrelen **3d** chemisch an die Wirtswand gebunden.

Nach Bestrahlung des Dibenzobarrelens **3d** in Zeolithen wurden nur ca. 50% der Substanz aus den Wirten extrahiert. Die Massenbilanzen in diesem Bereich sind jedoch für Reaktionen in Zeolithen nicht ungewöhnlich.<sup>22d-j</sup>

Die Doppelbeladung des Zeolithen MY mit dem Dibenzobarrelen **3d** und einem chiralen Additiv war nur in wenigen Fällen erfolgreich (Tabelle 4.2). Lediglich im Faujasit NaY wurden geringe Mengen des Dibenzobarrelens **3d** zusammen mit Prolin, Mandel- oder Camphansäure eingelagert (Tabelle 4.3, V-34–V-37, V-39). Durch Molecular Modelling wurde abgeschätzt, daß der Hohlraum des Zeolithen NaY schon mit dem relativ kleinen Prolin als Auxiliar dicht gefüllt ist (Abbildung 5.3). Deshalb überrascht es nicht, daß in der



Abbildung 5.3: Einschlußverbindung des Dibenzobarrelens 3d und Prolin im Käfig von NaY (berechnet mit Hyper Chem)<sup>46</sup>

Praxis die Einlagerung größerer chiraler Additive Schwierigkeiten bereitete oder unmöglich war.

Bei der Photoreaktion des Dibenzobarrelens **3d** in mit Mandelsäure beladenen Zeolithen wurde keine chirale Induktion beobachtet. Mit Prolin als chiralem Additiv wurden geringe

Enantiomerenüberschüsse erreicht (8–10%). Das höchste Maß an asymmetrischer Induktion in doppelt-beladenen Zeolithen wurde durch die Zugabe von Camphansäure erreicht (bis zu 30%). Der unterschiedliche Einfluß der verschiedenen Additive auf die Stereoselektivität der Photoreaktion hängt einerseits vom Ausmaß der Wechselwirkungen zwischen dem Additiv und dem Dibenzobarrelen **3d** und andererseits von der Entfernung der Kontaktstelle vom reaktiven Zentrum ab. Einen Hinweis auf relativ starke Wechselwirkungen zwischen dem Dibenzobarrelen **3d** und einem chiralen Additiv hat die Verschiebung der Carbonylbande von **3d** im IR-Spektrum ( $\Delta \tilde{v} = 22$  cm<sup>-1</sup>) in Anwesenheit von Prolin gegeben.

Der Grund für den moderaten asymmetrischen Einfluß doppelt-beladener Zeolithe liegt in der geringen Wahrscheinlichkeit, daß sich bei schwachen assoziativen Wechselwirkungen der Reaktand und das chirale Additiv innerhalb desselben Käfigs befinden (Abbildung 5.4).<sup>22e</sup>



Abbildung 5.4: Stark vereinfachtes Modell der statistischen Verteilung der Reaktanden und Chiralen Additiven in den Superkäfigen von Zeolithen.<sup>22e</sup>
(□ = Achirales Edukt, = Chirales Additiv; A,C = 0% *e.e.*, B = 0-100% *e.e.*, D,E,F = keine

( $\Box$  = Achirales Edukt, Z = Chirales Additiv; A, C = 0% *e.e.*, B = 0-100% *e.e.*, D, E, F = Keine Reaktion)

Das hier aufgezeigte Modell ist allerdings stark vereinfacht und berücksichtigt keine kooperativen Effekte und unterschiedlichen Assoziationskonstanten der beiden Gastmoleküle. Zudem wird die Möglichkeit, daß Edukt und Additiv aufgrund von Platzgründen nicht denselben Käfig besetzen können, außer Acht gelassen. Eine Verfälschung der Werte für die

Stereoselektivität durch die nicht vollständige Extraktion der Photoprodukte kann

ausgeschlossen werden, da bei der Extraktion des Photolysats aus dem achiralen Zeolithen NaY beide Enantiomere in gleichen Mengen erhalten wurden.

Bei Bestrahlung des Dibenzobarrelens **3d** im chiralen Zeolithen MCM\* betrug der Enantiomerenüberschuß selbst bei einem Umsatz von 20% noch 24%. Dies ist für eine Photoreaktion eines achiralen Edukts in optisch-aktiven organisierten Medien einer der höchsten bisher beobachteten Enantiomerenüberschüsse.<sup>22</sup> Mit dieser Methode wird das Problem der statistischen Verteilung von chiralem Additiv und Reaktanden in den Hohlräumen (Abbildung 5.4) umgangen, da durch die kovalente Anbindung das chirale Additiv gleichmäßig über die Hohlräume des Zeolithen verteilt wird. Die Tatsache, daß das Dibenzobarrelen **3d** nur einmal erfolgreich in den Zeolithen MCM\* inkorporiert werden konnte, ist vermutlich darauf zurückzuführen, daß Zeolithe des MCM-Typs nach Entfernung des Templats bei 300 °C sehr schnell ihre Kristallinität verlieren und eine amorphe Struktur annehmen. Dies konnte anhand eines Röntgendiffraktionsmusters gezeigt werden. Da die Synthese des Zeolithen MCM\* durch Modifizierung mit chiralem Cyclohexadiisocyanat einige Zeit in Anspruch genommen hat, war die Haltbarkeit nach Fertigstellung vermutlich auf wenige Tage beschränkt.

Der Vergleich der Photoreaktionen von **3d** in verschiedenen Medien zeigt, daß sowohl Zeolithe als auch Cyclodextrine gegenüber den Polyaminosäuren oder den Kronenethern als chirale organisierte Medien den Vorteil haben, daß eine Kokristallisation von achiralem Edukt und chiralem Wirtsystem nicht erforderlich ist. Zudem werden fast alle Arten von Substraten aufgenommen. Ein Problem stellt in beiden Fällen die geringe Extraktionsfähigkeit des Photoprodukts dar. Die Schwierigkeit der Doppelbeladung von Zeolithen kann durch die kovalente Anbindung des chiralen Additivs, wie im Fall von MCM\*, umgangen werden. Dadurch wird, ähnlich wie bei Cyclodextrinen und Polyaminosäuren, eine einheitliche chirale Umgebung geschaffen. Zudem sind in diesen Medien die Enantiomerenüberschüsse deutlich höher als in den doppelt-beladenen Zeolithen. Im Vergleich zu den Reaktionen des Dibenzobarrelens **3d** in Anwesenheit chiraler Additive in isotropen Lösungen, bei denen keine asymmetrische Induktion beobachtet wird, sind die Enantiomerenüberschüsse in festen Polyaminosäurekomplexen, Cyclodextrinen und Zeolithen signifikant.

Außerdem ist anzumerken, daß die erhaltenen Enantiomerenüberschüsse für Photoreaktionen unter moderaten Reaktionstemperaturen und moderatem Druck vergleichsweise hoch sind. Nur in wenigen Fällen wurden bessere Enantioselektivitäten erreicht, wobei allerdings oft das chirale Additiv über eine kovalente Bindung, nämlich beispielsweise eine Esterbindung, an das photoreaktive Substrat gebunden war.<sup>22d-j</sup> Anders als in Grundzustandsreaktionen, bei denen häufig eine Stereoselektivität von >95% erreicht wird,<sup>46</sup> ist eine chirale Induktion im angeregten Zustand schwierig zu erreichen. Dies liegt vor allem daran, daß das Substrat im angeregten Zustand in einer anderen Vorzugskonformationen vorliegt als im Grundzustand und sich damit die Wechselwirkungen mit chiralen Additiven nicht vorhersagen lassen.

# 5.2. Photochemie der Kronenether 1b,c und 3b,c

#### 5.2.1. Synthese der Kronenether 1b und 1c

Die Synthese der Kronenether **1b** und **1c** durch eine klassische Friedel-Crafts-Acylierung mit Säurechlorid und Aluminiumchlorid als Lewis-Säure-Katalysator<sup>34</sup> war nicht erfolgreich (Abschnitt 4.2.2). Auch bei Einsatz eines dreifachen Überschusses an Aluminiumchlorid war keine Umsetzung festzustellen. Vermutlich setzt die Kronenetherfunktion die katalytische Aktivität des Aluminiumchlorids durch Komplexierung herab. Die Rolle des Kronenethers bei der Deaktivierung des Lewissäure-Katalysators wurde dadurch bestätigt, daß 1,2-Dimethoxybenzol unter den gleichen Bedingungen quantitativ zum entsprechenden Adamantylderivat reagierte. Die Synthese der Kronenether **1b** und **1c** wurde schließlich mit Diphosphorpentoxid in Methansulfonsäure erfolgreich durchgeführt.<sup>35</sup>

#### 5.2.2. Photochemie der Kronenether 1b und 1c

Bei Bestrahlung des unkomplexierten Kronenethers **1b** in Lösung waren nach 24 h erst 87% des Edukts umgesetzt. Der Kronenether reagiert also sehr langsam im Vergleich zum nichtkronenethersubstituierten Derivat, das schon nach 45 min Bestrahlung vollständig zum Produkt umgesetzt ist.<sup>48</sup> Die Donoreigenschaften der Kronenethersubstituenten am Aromaten in **1b** und **1c** bewirken, daß diese über einen  $\pi\pi^*$ -Zustand reagieren. Dieser ist bei

H-Abstraktionsreaktionen wesentlich unreaktiver als der n $\pi$ \*-Zustand.<sup>40</sup> Eine Komplexierung des Kronenethers setzt dessen Donoreigenschaften signifikant herab und dürfte die Ausbildung eines  $n\pi^*$ -Zustandes ermöglichen. Deshalb wurde der Einfluß einer Komplexierung von **1b** durch KPF<sub>6</sub> untersucht. Allerdings erhöhte die sich Reaktionsgeschwindigkeit auch bei Zugabe eines Überschusses an Salz unwesentlich. Wahrscheinlich findet eine photoinduzierte Dekomplexierung in Lösung statt, so daß im angeregten Zustand wiederum der unkomplexierte Kronenether reagiert. Diese Auswurfsreaktion läuft beim KPF<sub>6</sub>-Salz besonders leicht ab, da das sterisch-anspruchsvolle Gegenion weit vom Komplex entfernt ist. Wurde die Photoreaktion von 1b in Methanol allerdings mit Bromid als Gegenion durchgeführt, wurde eine deutliche Steigerung der Reaktivität festgestellt. Dieses näher am Kronenether lokalisierte Gegenion wird bei Bestrahlung vermutlich weniger leicht dekomplexiert, so daß die Reaktion über einen n $\pi^*$ -Zustand ablaufen kann.

Bei der Bestrahlung des Kronenethers **1b** im Festkörper wurde kein Umsatz beobachtet. Dies ist möglicherweise auf eine dichte Packung der Moleküle im Kristallgitter zurückzuführen, die die Bildung der Photoprodukte verhindert. Eine solche photochemische Resistenz im Festkörper wurde bereits bei einigen adamantylsubstituierten Acetophenonderivaten beobachtet.<sup>28c</sup>

## 5.2.3. Photochemie der Kronenether 3b und 3c

# 5.2.3.1 Kationeneffekt bei der Bestrahlung des Kronenethers **3c**

Die Photoreaktion des Kronenethers **3c** in Acetonitril lieferte ausschließlich das über den ersten angeregten Singulett-Zustand gebildete Cyclooctatetraen **5c** (Tabelle 4.11, V-104). Bei der Bestrahlung einer Mischung aus Acetonitril und Aceton wurde dagegen ausschließlich das Semibullvalen **4c** gebildet. Im lösungsmittelfreien Medium reagierte der unkomplexierte Kronenether **3c** zu 75% über den Singulett-Zustand, denn es wurden nur 25% des Triplett-Produkts Semibullvalen **4c** gebildet. Bei den lösungsmittelfreien Photoreaktionen des Kronenethers **3c** in Gegenwart von Natrium- und Kaliumionen trat hingegen ein deutlicher

Kationeneffekt auf, und es wurde als Hauptprodukt das Semibullvalen **4c** detektiert. Diese Beobachtung ist bereits bei der Bestrahlung von **3b** gemacht worden<sup>27</sup> und legt den Schluß nahe, daß die Metallionen aufgrund der Komplexierung durch den Kronenether in der Nähe des  $\pi$ -Sytems lokalisiert sind. Nach Ramamurthy beeinflussen derartige Kation- $\pi$ -Wechselwirkungen den angeregten Zustand der Dibenzobarrelene, da sie dessen Symmetrieeigenschaften herabsetzen.<sup>18</sup> Dadurch wird ein Intersystemcrossing vom angeregten Singulett- zum Triplett-Zustand erleichtert (Kationeneffekt).

Erstaunlich ist im Vergleich dazu die Tatsache, daß bei Bestrahlung der Kronenetherkomplexe **3b** mit Natrium- oder Kaliumtetrafluoroborat in Lösung kein Kationeneffekt auftritt.<sup>27</sup> Eine Begründung hierfür sollte durch die Untersuchung der Bindungseigenschaften dieses Kronenethers im angeregten Zustand gefunden werden (Abschnitt 5.2.3.2).

#### 5.2.3.2. Bindungsverhältnisse des Kronenethers **3b** im angeregten Zustand

Die spektrofluorimetrischen Titrationen sollten Aufschluß darüber geben, warum bei Bestrahlung von **3b** in Acetonitril fast nur das Cyclooctatetraen gebildet wurde, d. h. warum der Kationeneffekt in Lösung nicht zum Tragen kommt. Anhand der Titrationen wurde festgestellt, daß über den gesamten Verlauf der Titration zwischen dem Kronenether-Kation-Verhältnis und der Fluoreszenzlöschung kein linearer Zusammenhang besteht. Die Stern-Volmer-Auftragungen (siehe Kapitel 4.2.4) haben die typische Struktur einer Bindungsisotherme,<sup>49a</sup> die in der Regel dann beobachtet wird, wenn neben der dynamischen Löschung durch diffusionskontrollierte Stöße auch eine statische Löschung durch Assoziation von Fluorophor und Löscher auftritt. Die stärkste Fluoreszenzlöschung war bei der Titration von 3b mit CsBF<sub>4</sub> zu beobachten, die schwächste mit NaBF<sub>4</sub>. Die Fluoreszenzlöschung verhält sich ähnlich wie die Bindungskonstanten im Grundzustand ( $K_B$ :  $C_S > K > Na$ ). Eine Berechnung der Bindungskonstanten im angeregten Zustand (in Kooperation mit Prof. J. P. Desvergne, Universität Bordeaux) war mit diesen Daten nicht möglich, da die Fluoreszenslöschung anscheinend nicht nur aufgrund einer Löschung im Komplex erfolgt. Eventuell könnte eine Reaktion von 3b zu den Photoprodukten die Fluoreszenzlöschung beeinflußt haben, da die Titrationen länger als eine Stunde dauerten.

Wenn die beobachtete Fluoreszenzlöschung auf einem Kationeneffekt beruht, so müßte nach dem Intersystemcrossing der Komplex **3b(MBF4)** im Triplett-Zustand vorliegen. Daher überrascht die Bildung des Singulett-Produkts **4b** bei der Bestrahlung in Lösung. Mögliche Gründe hierfür sind schneller ablaufende Konkurrenzreaktionen. Der unkomplexierte Kronenether **3b** befindet sich in einem Gleichgewicht mit dem komplexierten Kronenether **3b(MX)**. Falls das unkomplexierte Dibenzobarrelen **3b** bei Bestrahlung wesentlich schneller reagiert als das komplexierte, wird die Bildung des Semibullvalens **4b** unterdrückt (siehe Schema 5.8, Möglichkeit 1). Eine weitere Möglichkeit besteht darin, daß es im angeregten Zustand zu einem Auswurf des Kations kommt (siehe Schema 5.8, Möglichkeit 2). Infolge



Schema 5.8: Erklärung für das Ausbleiben eines Kationeneffekts in Lösung

der photochemischen Anregung könnte es durch intramolekularen Elektronentransfer vom Sauerstoff zum  $\pi$ -System zur Ausbildung einer positiven Partialladung an den Bindungsstellen des Kronenethers kommen. Aufgrund der elektrostatischen Abstoßung zwischen dieser Ladung und den positiv-geladenen Alkalimetallkationen kommt es zu einer Destabilisierung des Komplexes und damit zu der Photoauswurfreaktion. Eine derartige photoinduzierte Dekomplexierung wurde bereits an Calix[4]arentetraestern und kronenethersubstituierten Farbstoffen beobachtet.<sup>49</sup> Eine weitere Möglichkeit besteht darin, daß in Lösung das Kation zu weit vom Chromophor entfernt ist, um einen Kationeneffekt auszuüben. Ohne die konkreten Werte für die Bindungskonstanten im angeregten Zustand zu kennen, kann jedoch nicht beurteilt werden, welche der genannten Varianten tatsächlich der Grund für den beobachteten Reaktionsverlauf ist.

# 5.2.3.3. Stereoselektivität bei der Bestrahlung des Kronenethers 3c

Bei der Bestrahlung des Kronenethers **3c** mit 1-*S*-Phenylethylammoniumbromid wurde kein Enantiomerenüberschuß beobachtet. Dies ist wohl hauptsächlich darauf zurückzuführen, daß der Kronenetherkomplex nicht zur Kristallisation gebracht werden konnte und sich folglich keine chirale Raumgruppe ausbilden konnte. In dem vorliegenden Komplex ist vermutlich die Entfernung des reaktiven Zentrums zum chiralen Salz zu groß, um eine asymmetrische Induktion hervorzurufen. Außerdem weist die feste Probe, die durch Eindampfen der Lösung erhalten wird, im Gegensatz zum idealen Kristall einen geringeren Ordnungsgrad auf, was ebenfalls einen Verlust an Selektivität zur Folge hat.<sup>5</sup>

# 6. **EXPERIMENTALTEIL**

# Allgemeine Vorbemerkungen

| <sup>1</sup> H-NMR-Spektroskopie  | Bruker AC 200 (200 MHz)                               |
|-----------------------------------|-------------------------------------------------------|
|                                   | Bruker Avance 400 (400 MHz)                           |
|                                   | S 0.00                                                |
| Verschiebungen wurden geeicht auf | $\delta_{\text{Tetramethylsilan}} = 0.00 \text{ ppm}$ |
| <sup>13</sup> C-NMR-Spektroskopie | Bruker AC 200 (50 MHz)                                |
|                                   | Bruker Avance 400 (100 MHz)                           |

<sup>13</sup>C-NMR-Verschiebungen wurden auf das Lösungsmittelsignal geeicht (CDCl<sub>3</sub>:  $\delta$  = 77.0 ppm, MeOD:  $\delta$  = 49.0 ppm)

| Absorptionsspektroskopie | Hitachi U-3200                                |
|--------------------------|-----------------------------------------------|
| Schmelzpunktbestimmung   | Büchi B-545, Optische Werke C. Reichert, Wien |
|                          | Kofler Mikroheiztisch, unkorrigiert           |
| Elementaranalyse         | Mikroanalytische Abteilung des Instituts für  |
|                          | Anorganische Chemie der Universität Würzburg  |
| Massenspektroskopie      | Finnigan MAT8200 (HRMS: Finnigan MAT90)       |
| Emissionsmessung         | FS900 Edinburgh Spektrofluorimeter mit        |
|                          | Czerny-Turner Monochromator                   |
| Laserblitzphotolyse      | Surelit Nd-YAG-Laser (266 nm), Tektronix TDS  |
|                          | 640A Monochromator/Photomultiplier,           |
|                          | Monochromatorwellenlänge 800 nm,              |
|                          | Auswertung mit Mlfp 1.0                       |
| Röntgenbeugungsanalyse   | Bruker Smart-Apex Diffraktometer mit D8-      |
|                          | Goniometer, eigene Durchführung im            |

Arbeitskreis von Prof. Dr. D. Stalke,

Institut für Anorganische Chemie der Universität Würzburg

Zur Dünnschichtchromatographie (DC) wurden Kieselgel-Aluminiumfolien Polygramm SIL  $G/UV_{254}$  (40 × 80 mm), und Aluminiumoxid-Aluminiumfolien, Polygramm ALOX N/UV<sub>254</sub> (40 × 80 mm), von Macherey-Nagel, Düren, verwendet. Für säulenchromatographische Trennungen wurde Kieselgel der Korngröße 63-32 µm der Firma ICN Biomedicals GmbH, Eschwege, und Aluminiumoxid 90 aktiv neutral (Aktivitätsstufe I) der Korngröße 200-63 µm der Firma Merck, Darmstadt, verwendet. Die gaschromatographischen Untersuchungen wurden mit Hilfe eines Gaschromatographen des Typs HP 5899 A Quadrupol-Spektrometer mit 25 m Kapillarsäule aus vernetztem 5% igen Phenylmethylsilikon durchgeführt; Temperaturprofil T<sub>in</sub> = 60 °C, t<sub>in</sub> = 2 min, Rate 15 °C/min, T<sub>fin</sub> = 300 °C, t<sub>fin</sub> = 20 min. Die Trennung von Enantiomeren erfolgte mit einem JASCO J715 Spektropolarimeter mit einer Standardflußzelle, 5 mm Weglänge. Die Pumpe JASCO PU-1580 wurde durch eine ternäre Gradienteneinheit JASCO LG 980-02S versorgt. Der Online-Entgaser war vom Typ Flow Gastorr 153, das Injektionsventil von Rheodyne 7725i und das Motorschaltventil von Besta. Detektiert wurde mit einem UV-Detektor vom Typ ERC-7215. Die verwendete Säule war eine Daicel Chiracel ODH 250  $\times$  4.6, 5 $\mu$ . Als isokratisches Lösungsmittel diente 90% n-Hexan und 10% iso-Propanol, welches jeweils mit 0.05% TFA versetzt war. Der Fluß betrug 0.5 ml/min. Die CD-Spur wurde bei 233 nm detektiert, die externe UV-Spur bei 280 nm. Die Versuche der HPLC wurden mit der Software BORWIN, die der CD-Spektroskopie mit Spectra-Manager ausgewertet.

# Bestrahlungsexperimente

Es wurde mit einer Quecksilberhochdrucklampe (Heraeus TQ 150, 150 W) unter Verwendung eines Kantenfilters (Schott,  $\lambda > 280$  nm) oder im Rayonet-Photoreaktor RPR der Firma Southern New England Ultraviolet Company, Branford, CT 06405, USA mit 16 Lampen der Wellenlänge 254 nm oder 300 nm und einer Leistung von je 24 W in Quarz-Glasgefäßen bestrahlt. Bei der Durchführung von Reaktionen unter Kühlung wurden die Proben in einem Ethanolbad mit Hilfe eines Kryostaten RKT-20-D der Firma Wobser GmbH, Lauda Königshofen, auf die gewünschte Temperatur gebracht. Alle Proben wurden mit einem Abstand von ca. 10 cm vor den Lampen positioniert. Lösungen wurden durch Einleiten eines Argonstroms für ca. 20 min von Sauerstoff befreit. Feststoffe wurden zwischen zwei Quarz-Glasplatten verrieben und in einer PE-Tasche unter Argonatmosphäre eingeschweißt.

| Ultraschallbad                | Sonorex RK 514 H                             |
|-------------------------------|----------------------------------------------|
| Absorptionsmessung (Küvetten) | Hellma Quarzglasküvette 110-QS, Schichtdicke |
|                               | 10 mm                                        |
| Emissionssmessung (Küvetten)  | Hellma Quarzglasküvette 120-QS, Schichtdicke |
|                               | 10 mm                                        |

# Reagenzien und Lösungsmittel

Kommerziell erworbene Lösungsmittel wurden ohne weitere Reinigung eingesetzt. Die Reinigung und Trocknung der im Labor befindlichen Lösungsmittel erfolgte nach gängigen Methoden.<sup>50</sup> Die folgenden Reagenzien sind kommerziell erhältlich und wurden von den angegebenen Firmen bezogen: der Beta-Zeolith HSC-930 NHA und die Zeolithe CBV-720, NaX und NaY wurden von der Bayer AG, Leverkusen, erworben; Poly-S-leucin und polyethylenglykol-gebundenes Poly-S-leucin wurden von Lancaster Synthesis GmbH, Mülheim am Main, erstanden; von der Firma Wacker, Burghausen, wurden die Cyclodextrine erworben. Die Zeolithe KX, CsX, MCM-41 und der chiral-modifizierte MCM\* wurden im Arbeitskreis von Prof. Dr. H. García, Universidad Politécnica de Valencia, hergestellt und freundlicherweise zur Verfügung gestellt. Die Verbindungen 11,12-(3h).<sup>30</sup> Dimethyl-9,10-dihydro-9,10-ethenoanthracen-11,12-dicarboxylat 11.12-Di(hydroxymethyl)-9,10-dihydro-9,10-ethenoanthracen (**3i**)<sup>31</sup> und 11,12-Di(brommethyl)-9.10-dihvdro-9.10-ethenoanthracen  $(3i)^{33}$ wurden nach literaturbekannten Synthesevorschriften dargestellt. Alle Verbindungsnamen, ausgenommen 2b, wurden mit Beilstein AutoNom überprüft

# 6.1. Dibenzobarrelen 3d und dessen Derivate

# 6.1.1. Synthese der Edukte

#### V-1: 11-Formyl-12-methyl-9,10-dihydro-9,10-ethenoanthracen (3d)

IV-KWA-023, IV-KWA-034, IV-KWA-036



Eine Lösung von 4.00 g (16.2 mmol) des Dibenzobarrelens 3i in 150 ml THF wurde auf 0 °C abgekühlt. Unter Rühren wurden 3.00 ml konzentrierte Schwefelsäure zugetropft. Anschließend wurde 1 h bei 0 °C und weitere 20 h bei 21 °C gerührt. Dann wurden 150 ml Dichlormethan und 150 ml H<sub>2</sub>O zugegeben. Die organische Phase wurde abgetrennt, und die wäßrige Phase wurde mit Dichlormethan extrahiert. Die vereinigten organischen Phasen wurden solange mit gesättigter NaHCO<sub>3</sub>-Lösung extrahiert, bis keine CO<sub>2</sub>-Entwicklung mehr zu beobachten war. Die abgetrennte organische Phase wurde über Na<sub>2</sub>SO<sub>4</sub> getrocknet. Die Lösung wurde abfiltriert, und das Lösungsmittel wurde im Vakuum (40 °C, 10 mbar) abdestilliert. Dabei wurden 3.80 mg (15.4 mmol, 95%) des Aldehyds 3d als weißer Feststoff erhalten, der aus MeOH/CH2Cl2 in Form weißer Nadeln kristallisiert wurde, Schmp. 234–236 °C (MeOH/CH<sub>2</sub>Cl<sub>2</sub>). IR (KBr):  $\tilde{\nu} = 1652 \text{ cm}^{-1}$  (C=O). – UV (CH<sub>3</sub>CN):  $\lambda_{\text{max}}$  (lg  $\epsilon$ ) = 210 nm (4.37), 215 (4.36), 273 (3.38), 278 (3.42). – Fluoreszenz (CH<sub>3</sub>CN):  $\lambda_{ex}$  = 276 nm,  $\lambda_{em} = 354 \text{ nm}. - {}^{1}\text{H-NMR}$  (CDCl<sub>3</sub>, 200 MHz):  $\delta = 2.38$  (s, 3H, CH<sub>3</sub>), 4.96 (s, 1H, CH), 5.78 (s, 1H, CH), 6.99–7.07 (m, 4H, Ar-H), 7.33–7.39 (m, 4H, Ar-H), 9.87 (s, 1H, CHO). – <sup>13</sup>C-NMR (CDCl<sub>3</sub>, 50 MHz):  $\delta = 46.9$  (CH<sub>3</sub>), 59.0 (CH), 59.1 (CH), 123.4 (CH<sub>Ar</sub>), 123.5 (CH<sub>Ar</sub>), 124.8(CH<sub>Ar</sub>), 125.6 (CH<sub>Ar</sub>), 143.3 (C<sub>a</sub>), 143.9 (C<sub>a</sub>), 144.8 (C<sub>a</sub>), 167.8 (C<sub>a</sub>), 185.1 (CHO). -MS (70 eV); m/z (%): 246 (37) [M<sup>+</sup>], 217 (100) [M<sup>+</sup> - CHO], 178 (18) [C<sub>14</sub>H<sub>10</sub><sup>+</sup>]. - HRMS

ber. für  $C_{18}H_{14}O$  (M<sup>+</sup>): 246.1045, gef. 246.1046. – El. Anal. ber. (%) für  $2C_{18}H_{14}O \times 3H_2O$  (510.63): C 84.68, H 5.92, gef. C 86.39, H 6.08.

#### V-2: 11-Hydroxyimino-12-methyl-9,10-dihydro-9,10-ethenoanthracen (3e)

IV-KWA-011



In einem 50-ml Rundkolben wurden in 15 ml Ethanol 52.0 mg (740 µmol) NH<sub>2</sub>OH•HCl mit 128 mg K<sub>2</sub>CO<sub>3</sub> suspendiert und 15 min bei 20 °C gerührt. Danach wurden 120 mg (488 µmol) des Dibenzobarrelens 3d zugeben. Die Lösung wurde 12 h bei 20 °C gerührt. Anschließend wurde das Lösungsmittel im Vakuum (40 °C, 10 mbar) abdestilliert und der Rückstand in CH<sub>2</sub>Cl<sub>2</sub> aufgenommen. Dann wurden die unlöslichen Bestandteile abfiltriert, und das Filtrat wurde über MgSO4 getrocknet. Die Lösung wurde abfiltriert und das Lösungsmittel im Vakuum (40 °C, 10 mbar) abdestilliert. Dabei wurden 126 mg als Rohprodukt erhalten. Der Rückstand wurde säulenchromatographisch [SiO<sub>2</sub>, Eluent Hexan/EE (9:1)] gereinigt. Die Fraktionen mit einem R<sub>f</sub>-Wert (SiO<sub>2</sub>; Hexan/EE von 4:1) von 0.5 wurden vereinigt und ergaben 95.3 mg (365 µmol, 75%) 3e als weißen Feststoff (Pulver), der aus Methanol in Form farbloser Kuben kristallisierte, Schmp. 174-176 °C (MeOH). IR (KBr):  $\tilde{\nu} = 1620 \text{ cm}^{-1}$  (C=N). – UV (CH<sub>3</sub>CN):  $\lambda_{\text{max}}$  (lg  $\varepsilon$ ) = 275 nm (4.10), 283 (4.10). – <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 200 MHz):  $\delta = 1.98$  (s, 3H, CH<sub>3</sub>), 4.79 (s, 1H, CH), 5.59 (s, 1H, CH), 6.89–6.93 (m, 4H, Ar-H), 7.20–7.29 (m, 4H, Ar-H), 7.91 (s, 1H, HCN). - <sup>13</sup>C (CDCl<sub>3</sub>, 50 MHz):  $\delta = 16.9$  (CH<sub>3</sub>), 49.6 (CH), 58.2 (CH), 123.3 (CH<sub>Ar</sub>), 123.5 (CH<sub>Ar</sub>), 125.1 (CH<sub>Ar</sub>), 125.5 (CH<sub>Ar</sub>), 137.3 (C<sub>a</sub>), 145.1 (C<sub>a</sub>), 145.4 (C<sub>a</sub>), 146.3 (C<sub>a</sub>), 152.5 (HCN). – MS (70 eV); m/z (%): 261 (52) [M<sup>+</sup>], 244 (77) [M<sup>+</sup> – OH], 217 (16) [C<sub>17</sub>H<sub>13</sub><sup>+</sup>], 178 (100) [C<sub>14</sub>H<sub>10</sub><sup>+</sup>]. – HRMS ber. für C<sub>18</sub>H<sub>15</sub>NO (M<sup>+</sup>): 261.1154, gef. 261.1153. – El. Anal. ber. (%) für C<sub>18</sub>H<sub>15</sub>NO (261.12): C 82.73, H 5.79, N 5.36 gef. C 82.50, H 6.03, N 5.30.

# V-3: 11-S-Phenylethylimino-12-methyl-9,10-dihydro-9,10-ethenoanthracen (3f)

III-KWA-016, III-KWA-029, III-KWA-043, IV-KWA-038



Eine Lösung von 25.0 mg (102 µmol) des Dibenzobarrelens 3d in 10 ml Toluol wurde mit 36.6 µl (230 µmol) 1-S-Phenylethylamin und 30 mg K<sub>2</sub>CO<sub>3</sub> versetzt und unter Argonatmosphäre 24 h bei 22 °C gerührt. Anschließend wurde das unlösliche Salz abfiltriert und das Lösungsmittel sowie überschüssiges 1-S-Phenylethylamin im Vakuum (40 °C, 10 mbar) abdestilliert. Dabei wurden 34.0 mg (97.4 µmol, >95%) des <sup>1</sup>H-NMRspektroskopisch sauberen Imins 3f als leicht gelblicher Feststoff erhalten, Schmp. 83-84 °C. UV (CH<sub>3</sub>CN):  $\lambda_{max}$  (lg ε) = 274 nm (3.50).- <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 200 MHz): δ = 1.52 (d, J = 7 Hz, 3H, CH<sub>3 Imin</sub>), 2.11 (s, 3H, CH<sub>3</sub>), 4.40 (q, J = 7 Hz, 1H, CH<sub>Imin</sub>), 4.85 (s, 1H, CH), 6.07 (s, 1H, CH), 6.94–7.01 (m, 4H, Ar-H), 7.25–7.41 (m, 4H, Ar-H), 8.17 (s, 1H, HCN). -<sup>13</sup>C-NMR (CDCl<sub>3</sub>, 50 MHz): 15.2 (CH<sub>3</sub>), 24.1 (CH<sub>3</sub>), 47.9 (CH), 57.2 (CH), 68.6 (CH), 121.8 (CH<sub>Ar</sub>), 121.8 (CH<sub>Ar</sub>), 122.2 (CH<sub>Ar</sub>), 122.3 (CH<sub>Ar</sub>), 123.5 (CH<sub>Ar</sub>), 124.0 (CH<sub>Ar</sub>), 124.8 (CH<sub>Ar</sub>), 125.5 (C<sub>q</sub>), 125.5 (CH<sub>Ar</sub>), 125.5 (CH<sub>Ar</sub>), 125.5 (CH<sub>Ar</sub>), 125.6 (C<sub>q</sub>), 127.3 (CH<sub>Ar</sub>), 127.3 (CH<sub>Ar</sub>), 127.3 (C<sub>a</sub>), 127.3 (CH<sub>Ar</sub>), 140.8 (C<sub>a</sub>), 143.9 (C<sub>a</sub>), 144.6 (C<sub>a</sub>), 152.4 (HCN), 152.6 (C<sub>a</sub>). – MS (70 eV); m/z (%): 349 (6) [M<sup>+</sup>], 217 (18) [C<sub>17</sub>H<sub>13</sub><sup>+</sup>], 202 (11) [C<sub>16</sub>H<sub>10</sub><sup>+</sup>], 178 (41)  $[C_{14}H_{10}^{+}]$ . – HRMS ber. für  $C_{26}H_{23}N$  (M<sup>+</sup>): 349.1831, gef. 349.1832. Bei dem Versuch der Kristallisation aus Methanol zersetzte sich das Dibenzobarrelen 3f zu Anthrachinon, welches durch den Vergleich der <sup>1</sup>H-NMR-spektroskopischen Daten mit den Literaturwerten identifiziert wurde.

# 6.1.2. Herstellung der Zeolithe MY (M = Li, K)

Allgemeine Arbeitsvorschrift 1 (AAV 1): Kationenaustauschreaktion von Zeolithen

Zu 100 ml einer 1 M Lösung von MOAc (M = K, Li) in MilliQ-Wasser wurden 10.0 g des Zeolithen NaY gegeben. Dann wurde 5 h bei 80 °C gerührt. Anschließend wurde abfiltriert und mit 5 l Wasser gewaschen. Dieser Prozeß wurde noch zweimal wiederholt, und der Feststoff wurde dann 4 h auf 500 °C im Ofen erhitzt. Anschließend wurde der Kationengehalt über Atomabsorptionsspektroskopie (AAS) bestimmt.

V-4: KY

#### IV-KWA-059

Nach **AAV 1** wurden 10.0 g des Zeolithen NaY in einer Lösung von 9.81 g (100 mmol) KOAc in 100 ml Wasser suspendiert und dreimal 5 h bei 80 °C gerührt, abfiltriert und gewaschen. Dann wurde der Feststoff für 4 h auf 500 °C erhitzt. Durch AAS wurde gezeigt, daß 82% des Natriums durch Kalium ausgetauscht wurden, was dem Anteil der austauschbaren Kationen in den Superkäfigen entspricht.

V-5: LiY

IV-KWA-077

Nach **AAV 1** wurden 10.0 g des Zeolithen NaY in einer Lösung von 6.60 g (100 mmol) LiOAc in 100 ml Wasser suspendiert und dreimal 5 h bei 80 °C gerührt, abfiltriert und gewaschen. Dann wurde der Feststoff für 4 h auf 500 °C erhitzt. Durch AAS wurde gezeigt, daß 80% des Natriums durch Lithium ausgetauscht wurden, was dem Anteil der austauschbaren Kationen in den Superkäfigen entspricht.
### 6.1.3. Komplexierung der organisierten Medien

6.1.3.1. Kokristallisation des Dibenzobarrelens **3d** mit Polyaminosäuren

V-6a: Polyethylenglykolgebundenes Poly-S-leucin (PAS 1)

III-KWA-042, III-KWA-052, III-KWA-070, III-KWA-096, IV-KWA-014, IV-KWA-037



Eine Lösung von 26.0 mg (106 µmol) Dibenzobarrelen **3d** in 20 ml Dichlormethan wurde mit 52.0 mg (495 µmol bei M = 105 pro Leucineinheit) Poly-*S*-leucin-polyethylenglykolmonomethylether versetzt. Die Lösung wurde bei Raumtemperatur und Normaldruck zur Trockne eingedampft. Es wurden klare, leicht gelbliche Kristalle isoliert, die mit wenig Dichlormethan gewaschen und im Vakuum getrocknet wurden, Schmp. 250–252 °C. IR (KBr):  $\tilde{\nu} = 1652 \text{ cm}^{-1}$  (C=O von **3d**).

### V-6b: Poly-*S*-leucin auf Silicagel (PAS 2)

#### III-KWA-073, III-KWA-075, III-KWA-096

Eine Suspension von 100 mg Poly-*S*-leucin und 340 mg Kieselgel in 30 ml absolutiertem THF wurde 48 h unter Lichtausschluß gerührt. Anschließend wurde abfiltriert und mit wenig THF gewaschen. Nach Trocknung im Vakuum wurden äquimolare Mengen des so erhaltenen Katalysators und des Dibenzobarrelens **3d** in wenig THF gelöst und das Lösungsmittel bei Raumtemperatur und Normaldruck zur Trockne eingedampft. Es wurde ein weißer,

pulverförmiger Feststoff erhalten, Schmp. ab 150 °C (Zersetzung). IR (KBr):  $\tilde{\nu} = 1652 \text{ cm}^{-1}$  (C=O von 3d)

### 6.1.3.2. Einlagerung des Dibenzobarrelens **3d** in Cyclodextrine (V-7, V-8)

#### III-KWA-094, V-KWA-048

Zur Herstellung einer gesättigten wäßrigen Lösung wurden jeweils 170 mg (150  $\mu$ mol)  $\beta$ -Cyclodextrin (V-7) beziehungsweise 140 mg (126  $\mu$ mol)  $\gamma$ -Cyclodextrin (V-8) in 10 ml Wasser gelöst. Dazu wurde eine Lösung aus der äquimolaren Menge des Dibenzobarrelens **3d** (37.0 mg für  $\beta$ -Cyclodextrin, 31.0 mg für  $\gamma$ -Cyclodextrin) in jeweils 10 ml Dichlormethan gegeben. Das Zweiphasensystem wurde bei Raumtemperatur über drei Tage unter Lichtausschluß gerührt, wobei der Cyclodextrinkomplex ausfiel. Dieser wurde abfiltriert und mit wenig Dichlormethan gewaschen. Aus der Menge des noch in der organischen Phase gelösten Dibenzobarrelens **3d** wurde indirekt der im Komplex aufgenommene Anteil bestimmt. Die 170 mg des  $\beta$ -Cyclodextrins hatten 30.0 mg des Dibenzobarrelens **3d** aufgenommen (81%), während in 140 mg des  $\gamma$ -Cyclodextrins 18.0 mg (58%) des Dibenzobarrelens **3d** komplexiert waren.

# 6.1.3.3. Einlagerung des Dibenzobarrelens **3d** und chiralen Salzen in Zeolithe

Allgemeine Arbeitsvorschrift 2 (AAV 2): Beladung in Lösung

Die verschiedenen Wirtsysteme wurden durch Erhitzen im Muffelofen von eingelagertem Wasser befreit (MY, MX, CBV 720: 20 h bei 300 °C; MY•3d: 20 h bei 100 °C; Silicagel: 3 h bei 120 °C; MCM-41: 15 h bei 300 °C, MCM\*: 20 h bei 150 °C). Dann wurden jeweils 2.40 g des noch heißen Wirtsystems in eine Lösung aus 163 µmol des Gastmoleküls in 80 ml Lösungsmittel (CH<sub>2</sub>Cl<sub>2</sub> im Fall des Dibenzobarrelens 3d, MeOH im Fall der chiralen Salze) gegeben. Die Suspension wurde 20 h unter Argonatmosphäre gerührt. Anschließend wurde abfiltriert und der Komplex mit dem zur Beladung verwendeten Lösungsmittel gewaschen

und im Vakuum (25 °C, 10 mbar) getrocknet. Die Menge an eingelagerter Substanz wurde indirekt durch gravimetrische Analyse der im Waschfiltrat vorhandenen Menge an nichtkomplexierter Substanz bestimmt. Die auf diese Weise bestimmten Beladungen der Zeolithe sind in Tabelle 6.1 und 6.2 zusammengefaßt.

Allgemeine Arbeitsvorschrift 3 (AAV 3): Beladung durch Verreibung

In einer Reibschale wurde 1.00 g des aktivierten Wirtsystems mit  $350 \mu \text{mol}$  der Gastverbindung zu einer einheitlichen Masse verrieben. Anschließend wurde 2 d auf  $150 \,^{\circ}\text{C}$  im Muffelofen erhitzt. Dann wurde mit Lösungsmittel (CH<sub>2</sub>Cl<sub>2</sub> im Fall des Dibenzobarrelens **3d**, MeOH im Fall der chiralen Salze) gewaschen und nach Trocknung im Vakuum der Komplex Wirt/Gast erhalten. Die Menge der eingelagerten Substanz wurde indirekt durch gravimetrische Analyse der im Waschfiltrat vorhandenen Menge an nicht-komplexierter Substanz bestimmt. Die auf diese Weise bestimmten Beladungen der Zeolithe sind in Tabelle 6.2 zusammengefaßt.

|      | Laborjournal          | Wirt <sup>a</sup>             | Beladung <sup>b</sup>       |
|------|-----------------------|-------------------------------|-----------------------------|
|      | KWA-                  |                               | [mg ( <b>3d</b> )/g (Wirt)] |
| V-9  | IV-053                | SiO <sub>2</sub> <sup>c</sup> | <0.1                        |
| V-10 | IV-082                | ${\rm SiO_2}^{\rm d}$         | 3.3                         |
| V-11 | IV-055                | CsX                           | <0.1                        |
| V-12 | IV-056                | KX                            | <0.1                        |
| V-13 | IV-052, IV-058, V-014 | NaY <sup>e</sup>              | 13.3–16.7                   |
| V-14 | IV-074                | KY                            | 14.2                        |
| V-15 | IV-084                | LiY                           | 15.7                        |
| V-16 | IV-071                | Beta HSC-930 NHA              | 1.6                         |
| V-17 | IV-072                | CBV-720                       | 7.1                         |
| V-18 | IV-088, V-023, V-029  | MCM-4 <sup>f</sup>            | 38.5–53.3                   |
| V-19 | V-022, V-025,         | MCM*                          | 0-32.5                      |
|      | V-030,V-035           |                               |                             |

 Tabelle 6.1:
 Einlagerung des Substrats 3d in verschiedene Wirte

<sup>a</sup> Die Beladung erfolgte nach **AAV 2** in CH<sub>2</sub>Cl<sub>2</sub> als Lösungsmittel. <sup>b</sup> Die Beladung des Zeoliths mit dem Substrat **3d** wurde indirekt durch gravimetrische Analyse der Menge an nicht-komplexierter Substanz im Waschfiltrat bestimmt. <sup>c</sup> Erworben von der BASF AG, Ludwigshafen. <sup>d</sup> Erworben von der Fluka Chemie AG, Buchs, CH. <sup>e</sup> IR-Carbonylbande des Dibenzobarrelens **3d** in NaY:  $\tilde{\nu} = 1665$  cm<sup>-1</sup>. <sup>f</sup> Die Kristallinität des Zeolithen MCM-41 nach Entfernung des Templats wurde durch Aufnahme eines Röntgendiffraktionsspektrums bestätigt (Peak bei 2Theta = 2.15°).

|      | Laborjournal | Wirt              | Gast                  | Methode <sup>a</sup> | Beladung |
|------|--------------|-------------------|-----------------------|----------------------|----------|
|      | KWA-         |                   |                       |                      | [mg/g]   |
| V-20 | IV-054       | NaY               | S-Prolin              | AAV 3                | 100      |
| V-21 | IV-063       | NaY               | S-Prolin              | AAV 2                | 56       |
| V-22 | IV-064       | NaY               | S-Camphansäure        | AAV 2                | 7.7      |
| V-23 | IV-068       | NaY               | S-Camphansäure        | AAV 3                | 83       |
| V-24 | IV-054       | NaY               | S-Phenylalanin        | AAV 3                | -        |
| V-25 | IV-065, 066  | NaY/S-Prolin      | 3d                    | AAV 2                | -        |
| V-26 | IV-078       | NaY/S-            | 3d                    | AAV 2                | -        |
|      |              | Camphansäure      |                       |                      |          |
| V-27 | V-007        | LiY/3d            | S-Prolin              | AAV 3                | 95       |
| V-28 | IV-069       | NaY/ <b>3d</b>    | S-Prolin <sup>b</sup> | AAV 2                | 63.5     |
|      | V-019        |                   |                       |                      | 128      |
|      | V-021        |                   |                       |                      | 66       |
|      | V-031        |                   |                       |                      | 51.9     |
| V-29 | V-011        | KY/ <b>3d</b>     | S-Prolin              | AAV 2                | 171      |
| V-30 | IV-080       | NaY/ <b>3d</b>    | S-Camphansäure        | AAV 2                | 15       |
| V-31 | V-015        | LiY/3d            | S-Mandelsäure         | AAV 2                | < 0.1    |
| V-32 | IV-096       | NaY/ <b>3d</b>    | S-Mandelsäure         | AAV 2                | 23       |
| V-33 | IV-081       | NaY/ <b>3d</b>    | S-Phenylglycin        | AAV 2                | < 0.1    |
| V-34 | IV-095       | NaY/ <b>3d</b>    | S-Aminophenyl-        | AAV 2                | < 0.1    |
|      |              |                   | propanol              |                      |          |
| V-35 | V-003        | NaY/ <b>3d</b>    | S-Ketopinsäure        | AAV2                 | <0.1     |
| V-36 | V-004        | NaY/ <b>3d</b>    | S-Phenylglycinol      | AAV 2                | <0.1     |
| V-37 | V-008        | KY/ <b>3d</b>     | S-Phenylalanin        | AAV 3                | <0.1     |
| V-38 | V-033        | MCM-41/ <b>3d</b> | 1-S-Phenylethyl-amin  | AAV 2                | 173      |

 Tabelle 6.2:
 Komplexierung von Zeolithen mit dem chiralen Additiv und dem Substrat 3d

<sup>a</sup> Im Falle der Fall der chiralen Salze wurde als Lösungsmittel Methanol verwendet, bei Beladung mit dem Dibenzobarrelen **3d** wurde in CH<sub>2</sub>Cl<sub>2</sub> gearbeitet. <sup>b</sup> IR-Carbonylbanden des Dibenzobarrelens **3d** in NaY/S-Prolin bei 100 °C:  $\tilde{\nu} = 1630$  und 1654 cm<sup>-1</sup>, bei Raumtemperatur Überlagerung durch Wasserbande; IR-Carboxylatbande des S-Prolins in NaY:  $\tilde{\nu} = 1708$  cm<sup>-1</sup>.

### 6.1.4. Untersuchung der Wechselwirkungen von 3d mit organisierten Medien

# V-39: UV-spektroskopische Titration

**IV-KWA-087** 

Es wurde eine Stammlösung des Dibenzobarrelenaldehyds **3d** mit einer Konzentration von  $1.0 \times 10^{-4}$  M in Acetonitril hergestellt. Die  $1.0 \times 10^{-3}$  M Salzlösungen der chiralen Additive (*S*-Mandelsäure, *S*-Phenylglycinol, *S*-2-Amino-3-phenyl-1-propanol, 1-*S*-Phenylethylamin, 1-*S*-Camphansäure, *S*-Prolin, *S*-Phenylalanin und *S*-Phenylglycin) in Acetonitril wurde jeweils in 10 µl-Schritten zu 2.00 ml der Stammlösung titriert. Die Lösungen wurden nach jedem Titrationsschritt UV-spektroskopisch analysiert. In allen Fällen führte selbst ein bis zu 2.5 facher Überschuß des chiralen Additivs zu keiner Veränderung des Signals.

#### V-40: Laserblitzphotolyseexperimente

#### **IV-KWA-079**

Eine  $1.0 \times 10^{-4}$  M Lösung des Dibenzobarrelens **3d** in Acetonitril wurde in einer Küvette mit Membranverschluß mindestens 10 min im Argonstrom von Sauerstoff befreit. Bei einer Anregungswellenlänge von  $\lambda_{Ex} = 300$  nm trat eine Transientenabsorptionsbande bei  $\lambda_{Em} = 500$  nm mit einer Lebenszeit von t = 20 µs auf, welches bei Sättigung der Lösung mit Sauerstoff verschwand (Abb. 6.1). Anschließend wurde in 1, 2, 4, 8, 16, 32, 52 µl- Schritten



Abbildung 6.1: Messung des Triplett-Signals in An- und Abwesenheit von Sauerstoff

eine  $1.0 \times 10^{-3}$  M Lösung des jeweiligen chiralen Salzes (S-Mandelsäure, S-1-Phenylglycinol, S-2-Amino-3-phenyl-1-propanol, 1-S-Camphansäure) in Acetonitril zutitriert. Hierbei zeigte sich, daß weder die Lebensdauer noch die Intensität des Signals durch die Zugabe der chiralen Additive beeinflußt wird.

#### 6.1.5. Photochemie

- 6.1.5.1. Photochemie des Dibenzobarrelens **3d**
- 6.1.5.1.1. Bestrahlung in Lösung und im Festkörper

# V-41: 8b-Methyl-8b,8d-dihydro-4bH-dibenzo[*a*,*f*]cyclopropa[*cd*]pentalen-8ccarbaldehyd (4d)

V-KWA-049, V-KWA-060



Eine Lösung von 70.0 mg (284 µmol) des Dibenzobarrelens **3d** in 70 ml Acetonitril wurde 10 min unter Argonatmosphäre bestrahlt. Das Lösungsmittel wurde im Vakuum (40 °C, 10 mbar) abdestilliert und der erhaltene hellgelbe Rückstand aus MeOH/CH<sub>2</sub>Cl<sub>2</sub> kristallisiert. Dabei wurden 42.3 mg (172 µmol, 61%) des Produkts **4d** als weißes Pulver erhalten, Schmp. 63 °C (MeOH/CH<sub>2</sub>Cl<sub>2</sub>). UV (CH<sub>3</sub>CN):  $\lambda_{max}$  (lg  $\varepsilon$ ) = 269 nm (4.16), 277 (4.14). – CD (*n*-Hexan/*i*-PrOH):  $\lambda_{max}$  (mdeg) = 205 nm (20), 217 (33), 238 (20). – <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 200 MHz):  $\delta$  = 1.98 (s, 3H, CH<sub>3</sub>), 3.88 (s, 1H, CH), 5.04 (s, 1H, CH), 7.04–7.21 (m, 8H, Ar-H), 9.59 (s, 1H, CHO). – NOESY (CDCl<sub>3</sub>, 600 MHz): Kreuzpeak zwischen der Methylgruppe und Ar-CH. – <sup>13</sup>C-NMR (CDCl<sub>3</sub>, 50 MHz): 15.9 (CH<sub>3</sub>), 50.8 (CH), 51.3 (CH), 52.1 (C<sub>q</sub>), 53.6 (C<sub>q</sub>), 120.1 (CH<sub>Ar</sub>), 120.3 (CH<sub>Ar</sub>), 122.6 (CH<sub>Ar</sub>), 123.7 (CH<sub>Ar</sub>), 125.4 (CH<sub>Ar</sub>), 125.5 (CH<sub>Ar</sub>), 126.3 (CH<sub>Ar</sub>), 126.5 (CH<sub>Ar</sub>), 134.8 (C<sub>q</sub>), 137.5 (C<sub>q</sub>), 147.7 (C<sub>q</sub>), 149.1 (C<sub>q</sub>), 196.0 (CHO). – MS (70 eV); m/z (%): 246 (19) [M<sup>+</sup>], 217 (100) [M<sup>+</sup> – CHO], 202 (77) [M<sup>+</sup> – CHO, CH<sub>3</sub>], 178 (34) [C<sub>14</sub>H<sub>10</sub><sup>+</sup>]. – HRMS ber. für C<sub>18</sub>H<sub>14</sub>O (M<sup>+</sup>): 246.1047, gef. 246.1041. – El. Anal. ber. (%) für 2C<sub>18</sub>H<sub>14</sub>O × 3H<sub>2</sub>O (546.24): C 79.10, H 6.27, gef. C 79.28, H 6.22. Der Versuch einer Aufreinigung des Semibullvalens **4d** per Säulenchromatographie (SiO<sub>2</sub> oder neutrales Al<sub>2</sub>O<sub>3</sub>, Aktivitätsstufe I, variierender Gradient PE/EE von 1:0 bis 6:1) mißlang, da sich die Substanz auf der Säule zersetzt.



Abbildung 6.2: CD-Spektrum der enantiomeren Semibullvalene 4d und ent-4d

Allgemeine Arbeitsvorschrift 4 (AAV 4): Bestrahlung des Dibenzobarrelens 3d in Lösung

Eine Lösung von 5.00 mg (20.3 µmol) Dibenzobarrelen **3d** in 5 ml des entsprechenden Lösungsmittels wurde 20 min im Argonstrom von Sauerstoff befreit. Die Photoreaktionen wurden in versiegelten Quarzglasgefäßen im Abstand von 10 cm zur Lampe durchgeführt. Bestrahlt wurde mit einer Quecksilberhochdrucklampe (Heraeus TQ 150, 150 W) bei  $\lambda > 280$  nm oder im Rayonet-Photoreaktor bei  $\lambda = 300$  nm. Die Massenbilanz, der Umsatz sowie der Anteil an Semibullvalen **4d** wurden GC-analytisch relativ zu dem internen Standard *n*-Dodekan oder <sup>1</sup>H-NMR-spektroskopisch bestimmt und sind in Tabelle 6.3 zusammengefaßt.

Allgemeine Arbeitsvorschrift 5 (AAV 5): Bestrahlung des Dibenzobarrelens 3d im Festkörper

Aus Methanol/Dichlormethan (1:2) erhaltene Kristalle des Dibenzobarrelens **3d** wurden zwischen zwei Quarzplatten verrieben. Diese wurden unter Argonatmosphäre in PE-Folie eingeschweißt und im Abstand von 10 cm vor der Lampe positioniert. Anschließend wurde mit einer Quecksilberhochdrucklampe (Heraeus TQ 150, 150 W) bei  $\lambda > 280$  nm oder im Rayonet-Photoreaktor bei  $\lambda = 300$  nm bestrahlt. Der Feststoff wurde nach der Bestrahlung mit Dichlormethan von den Platten gelöst und die vereinigte Lösung im Vakuum (40 °C, 10 mbar) vom Lösungsmittel befreit. Die Massenbilanz, der Umsatz sowie der Anteil an Semibullvalen **4d** wurden GC-analytisch relativ zum internen Standard *n*-Dodekan oder über <sup>1</sup>H-NMR-spektroskopische Analyse bestimmt und sind in Tabelle 6.3 zusammengefaßt.

|         | H<br>3d                                                                                      |                                                                                                                                                                                                                                                                                                                           | hu<br>ösung oder<br>Festkörper                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                              | 4d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                       |
|---------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|
| Labor-  | Medium                                                                                       | Т                                                                                                                                                                                                                                                                                                                         | λ                                                                                                                                                                                                                                                                                                                                                                                                                         | t                                                                                                                                                                                                                                                                                                                                                            | Mb <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Umsatz <sup>a</sup>                                    | Anteil <sup>a</sup>                                   |
| journal |                                                                                              | [°C]                                                                                                                                                                                                                                                                                                                      | [nm]                                                                                                                                                                                                                                                                                                                                                                                                                      | [min]                                                                                                                                                                                                                                                                                                                                                        | [%]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [%]                                                    | 4d <sup>a</sup>                                       |
| KWA-    |                                                                                              |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        | [%]                                                   |
| III-011 | CH <sub>3</sub> CN <sup>c</sup>                                                              | 25                                                                                                                                                                                                                                                                                                                        | >280                                                                                                                                                                                                                                                                                                                                                                                                                      | 60                                                                                                                                                                                                                                                                                                                                                           | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >95                                                    | >95                                                   |
| V-060   | CH <sub>3</sub> CN <sup>c</sup>                                                              | 25                                                                                                                                                                                                                                                                                                                        | 300                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                                                                                                                                                                                                                                                                                                                                                           | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >95                                                    | >95                                                   |
| IV-     | MeOH <sup>c</sup>                                                                            | 25                                                                                                                                                                                                                                                                                                                        | 300                                                                                                                                                                                                                                                                                                                                                                                                                       | 7                                                                                                                                                                                                                                                                                                                                                            | 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >95                                                    | 85                                                    |
| 067,093 |                                                                                              |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |                                                       |
| IV-062  | MeOH <sup>c</sup>                                                                            | 25                                                                                                                                                                                                                                                                                                                        | 300                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                                                                                                                                                                                                                                                                                                                                                           | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >95                                                    | 53 <sup>e</sup>                                       |
| V-045   | MeOH <sup>c</sup>                                                                            | 35                                                                                                                                                                                                                                                                                                                        | 300                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                                                                                                                                                                                                                                                                                                                                                           | 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >95                                                    | 20                                                    |
| IV-073  | Festkörper <sup>d</sup>                                                                      | 25                                                                                                                                                                                                                                                                                                                        | 300                                                                                                                                                                                                                                                                                                                                                                                                                       | 30                                                                                                                                                                                                                                                                                                                                                           | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >95                                                    | 68                                                    |
|         | Labor-<br>journal<br>KWA-<br>III-011<br>V-060<br>IV-<br>067,093<br>IV-062<br>V-045<br>IV-073 | H         J           Journal         Medium           journal         KWA-           III-011         CH <sub>3</sub> CN <sup>c</sup> V-060         CH <sub>3</sub> CN <sup>c</sup> IV-         MeOH <sup>c</sup> 067,093         IV-062           IV-045         MeOH <sup>c</sup> V-073         Festkörper <sup>d</sup> | H       I         Juite       Juite         Juite       Medium         Journal       [°C]         KWA-       [°C]         III-011       CH <sub>3</sub> CN <sup>c</sup> V-060       CH <sub>3</sub> CN <sup>c</sup> V-060       CH <sub>3</sub> CN <sup>c</sup> IV-       MeOH <sup>c</sup> 067,093       Juite         IV-062       MeOH <sup>c</sup> V-045       MeOH <sup>c</sup> JU-073       Festkörper <sup>d</sup> | H       ho         Journal       Isource         Journal       [°C]         KWA-         III-011       CH <sub>3</sub> CN <sup>c</sup> V-060       CH <sub>3</sub> CN <sup>c</sup> V-060       CH <sub>3</sub> CN <sup>c</sup> 1V-       MeOH <sup>c</sup> 1V-062       MeOH <sup>c</sup> V-045       MeOH <sup>c</sup> 1V-073       Festkörper <sup>d</sup> | H       ho $Jd$ Lösung oder         Lösung oder       Festkörper         Labor-       Medium       T $\lambda$ journal       [°C]       [nm]       [min]         KWA-       [°C]       [nm]       [min]         III-011       CH <sub>3</sub> CN <sup>c</sup> 25       >280       60         V-060       CH <sub>3</sub> CN <sup>c</sup> 25       300       10         IV-       MeOH <sup>c</sup> 25       300       7         067,093       IV-062       MeOH <sup>c</sup> 25       300       20         V-045       MeOH <sup>c</sup> 35       300       10         IV-073       Festkörper <sup>d</sup> 25       300       30 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

O<sub>H</sub>

 Tabelle 6.3:
 Photoreaktivität des Dibenzobarrelens 3d in Lösung und im Festkörper.

0 /

<sup>&</sup>lt;sup>a</sup> Mb = Massenbilanz, Umsatz und Anteil an **4d**, ermittelt durch GC-Analyse, relativ zum internen Standard *n*-Dodekan, experimenteller Fehler  $\pm 2\%$  der angegebenen Werte. <sup>b</sup> Ermittelt durch <sup>1</sup>H-NMR-spektroskopische Analyse, experimenteller Fehler  $\pm 5\%$  der angegebenen Werte. <sup>c</sup> Bestrahlung durchgeführt gemäß **AAV 4**. <sup>d</sup> Bestrahlung durchgeführt gemäß **AAV 5**. <sup>e</sup> Bildung eines nicht-identifizierten Nebenprodukts, welches sich bei säulenchromatographischer Aufreinigung umlagert.

Allgemeine Arbeitsvorschrift 6 (AAV 6): Bestrahlung des Dibenzobarrelens 3d in Zeolithen

Die nach AAV 2 oder AAV 3 hergestellten Komplexe des Dibenzobarrelens 3d in verschiedenen Zeolithen wurden über die Innenseite eines Quarzgefäßes verteilt, indem diese mit Dichlormethan angefeuchtet wurde. Anschließend wurde 20 min mit Argon von Sauerstoff befreit und das versiegelte Gefäß in einem Rayonet-Photoreaktor bei  $\lambda = 300$  nm bestrahlt. Dann wurde der Komplex entweder in einer Soxhlet-Apparatur oder durch mehrfaches Ausschütteln mit Dichlormethan extrahiert und die Lösung im Vakuum (40 °C, 10 mbar) vom Lösungsmittel befreit. Die Massenbilanz, der Umsatz sowie die Ausbeute des Semibullvalens 4d wurden über GC-Analyse relativ zu dem internen Standard *n*-Dodekan bestimmt und sind in Tabelle 6.4 zusammengefaßt.

|      |                | d                | hu<br>$(\lambda = 300)$<br>Wir<br>Festkö | 0 nm)<br>t,<br>rper | O H<br>4d |                               |
|------|----------------|------------------|------------------------------------------|---------------------|-----------|-------------------------------|
|      | Laborjournal   | Wirt             | t                                        | Mb <sup>a</sup>     | Umsatz    | Anteil <b>4d</b> <sup>a</sup> |
|      | KWA-           |                  | [min]                                    | [%]                 | [%]       | [%]                           |
| V-48 | IV-090,091     | LiY              | 140                                      | 54                  | >95       | >95                           |
| V-49 | IV-075,085,094 | NaY              | 60                                       | 67                  | >95       | >95                           |
| V-50 | IV-089,092     | KY               | 140                                      | 40                  | >95       | >95                           |
| V-51 | V-002          | CBV-720          | 45                                       | 30                  | <5        | <5                            |
| V-52 | V-027          | MCM-41           | 50                                       | 58                  | <5        | <5                            |
| V-53 | V-005          | SiO <sub>2</sub> | 90                                       | 65                  | 65        | 65                            |

 Tabelle 6.4:
 Photoreaktivität des Dibenzobarrelens 3d in verschiedenen Zeolithen

<sup>a</sup> Massenbilanz und Anteil am Semibullvalen **4d**, bestimmt über GC-Analyse, relativ zum internen Standard *n*-Dodekan, experimenteller Fehler  $\pm 2\%$  der angegebenen Werte.

#### 6.1.5.1.2. Bestrahlung in chiralen organisierten Medien

Allgemeine Arbeitsvorschrift 7 (AAV 7): Bestrahlung der Polyaminosäure/ Aminosäurekomplexe Die Kokristalle des Dibenzobarrelens 3d mit polyethylenglykolgebundenem Poly-S-leucin (PAS 1, V-6a), mit auf Silicagel gebundenem Poly-S-leucin (PAS 2, V-6b) oder mit den Aminosäuren S-Prolin bzw. S-Phenylalanin wurden zwischen zwei Quarzplatten zerrieben und unter Argonatmosphäre in PE-Folie eingeschweißt oder in Acetonitril supendiert. Dann wurde entweder mit einer Quecksilberhochdrucklampe (Heraeus TQ 150, 150 W) bei  $\lambda > 280$  nm oder im Rayonet-Photoreaktor bei  $\lambda = 254$  nm bestrahlt. Zur Durchführung der Photoreaktionen bei niedrigen Temperaturen wurden die Proben in einem Ethanolbad mit Hilfe eines Kryostaten auf die gewünschte Temperatur gebracht. Nach der Bestrahlung wurden die Feststoffe in Chloroform suspendiert. Die überstehende Lösung wurde abpipettiert und im Vakuum (40 °C, 10 mbar) vom Lösungsmittel befreit. Der Umsatz und der Anteil an Semibullvalen **4d** wurden über <sup>1</sup>H-NMR-spektroskopische Analyse bestimmt und sind in Tabelle 6.5 zusammengefaßt. Der Enantiomerenüberschuß wurde bei einigen Versuchen nach Überführung der enantiomeren Aldehyde in diastereomere Imine (V-76) über <sup>1</sup>H-NMR-spektroskopische Analyse bestimmt. Dabei wurde das Verhältnis der beiden Diastereomere aus dem Verhältnis der aufgespaltenen Signale des Semibullvalens 4f (Methylgruppe bei  $\delta = 1.51$  und 1.52 und C-H bei  $\delta = 3.36$  und 3.38) bestimmt. In anderen Experimenten wurde der Enantiomerenüberschuß durch UV-spektroskopische Detektion der mittels HPLC an chiraler stationärer Phase getrennten Enantiomere bestimmt (Abbildung 6.3).

### Allgemeine Arbeitsvorschrift 8 (AAV 8): Bestrahlung der Cyclodextrinkomplexe

Die Einschlußverbindung des Dibenzobarrelens **3d** in  $\beta$ -Cyclodextrin (V-7) wurde zwischen zwei Quarzplatten verrieben und unter Argonatmosphäre in PE-Folie eingeschweißt. Dann wurde im Rayonet-Photoreaktor bei  $\lambda = 254$  nm bestrahlt. Anschließend wurde mehrmals mit Dichlormethan extrahiert und die vereinigten Lösungen im Vakuum (40 °C, 10 mbar) vom Lösungsmittel befreit. Der Umsatz und der Anteil an Semibullvalen **4d** wurden über <sup>1</sup>H-NMR-spektroskopische Analyse bestimmt und sind in Tabelle 6.5 zusammengefaßt. Der Enantiomerenüberschuß wurde bei einigen Versuchen nach Überführung der enantiomeren Aldehyde in diastereomere Imine (V-76) über <sup>1</sup>H-NMR-spektroskopische Analyse bestimmt. Dabei wurde das Verhältnis der beiden Diastereomere aus dem Verhältnis der aufgespaltenen Signale des Semibullvalens **4f** (Methylgruppe bei  $\delta = 1.51$  und 1.52 und C-H bei  $\delta = 3.36$  und 3.38) bestimmt. In anderen Experimenten wurde der Enantiomerenüberschuß durch UVspektroskopische Detektion der mittels HPLC an chiraler stationärer Phase getrennten Enantiomere bestimmt (Abbildung 6.3).



Abbildung 6.3: UV- und CD-Spur der über HPLC an chiraler stationärer Phase getrennten enantiomeren Semibullvalene 4d und *ent*-4d

|      | Laborjournal | Medium                                | Т    | λ    | t    | Umsatz <sup>a</sup> | ee              |
|------|--------------|---------------------------------------|------|------|------|---------------------|-----------------|
|      | KWA-         |                                       | [°C] | [nm] | [h]  | [%]                 | [%]             |
| V-54 | MB-03        | Festkörper/                           | 0    | 254  | 16.5 | 10                  | <5 <sup>d</sup> |
|      |              | S-Phenylalanin <sup>b</sup>           |      |      |      |                     |                 |
| V-55 | MB-05        | Festkörper/                           | 0    | 254  | 13.5 | 31                  | $< 5^d$         |
|      |              | S-Prolin <sup>b</sup>                 |      |      |      |                     |                 |
| V-56 | III-032      | CH <sub>3</sub> CN/PAS 1 <sup>c</sup> | 25   | >280 | 3    | >95                 | $< 5^d$         |
| V-57 | III-042,052  | Festkörper/PAS 1 <sup>b</sup>         | 25   | >280 | 10   | >95                 | $< 5^d$         |
| V-58 | III-070      | Festkörper/PAS 1 <sup>b</sup>         | 0    | 254  | 4.5  | 35                  | 22 <sup>e</sup> |
|      |              | Festkörper/PAS 1 <sup>b</sup>         | 0    | 254  | 10.5 | 41                  | <5 <sup>e</sup> |
| V-59 | III-014      | Festkörper/PAS 1 <sup>b</sup>         | -20  | 254  | 9.5  | 60                  | $< 5^d$         |
|      |              |                                       |      |      |      |                     |                 |

 Tabelle 6.5:
 Photoreaktivität des Dibenzobarrelens 3d als Aminosäure/Polyaminosäure-Komplex oder in Cyclodextrinen

| V-60 | III-096 | Festkörper/PAS 2 <sup>b</sup> | -17 | 254 | 13.5 | 38  | <5 <sup>d</sup>   |
|------|---------|-------------------------------|-----|-----|------|-----|-------------------|
| V-61 | IV-010  | Festkörper/β-CD <sup>b</sup>  | 30  | 254 | 9.5  | >95 | <5 <sup>e</sup>   |
| V-62 | V-046   | Festkörper/β-CD <sup>b</sup>  | 25  | 254 | 1.5  | 74  | 80 <sup>e,f</sup> |

<sup>a</sup> Umsatz, ermittelt durch <sup>1</sup>H-NMR-spekroskopische Analyse, experimenteller Fehler  $\pm 5\%$  der angegebenen Werte. <sup>b</sup> Bestrahlung nach **AAV 8**. <sup>c</sup> Bestrahlung nach **AAV 7**. <sup>d</sup> Enantiomerenüberschuß, ermittelt über <sup>1</sup>H-NMR-spektroskopische Analyse der gebildeten Diastereomeren, experimenteller Fehler  $\pm 5\%$  der angegebenen Werte. <sup>e</sup> Enantiomerenüberschuß, ermittelt mittels HPLC-Analyse an chiraler stationärer Phase, experimenteller Fehler  $\pm 5\%$  der angegebenen Werte. <sup>f</sup>Massenbilanz 5%.

Allgemeine Arbeitsvorschrift 9 (AAV 9): Bestrahlung des Dibenzobarrelens 3d in chiralmodifizierten Zeolithen

Die nach AAV 2 oder AAV 3 hergestellten Komplexe des Dibenzobarrelens 3d in verschiedenen chiral-modifizierten Zeolithen wurden über die Innenseite eines Quarzgefäßes verteilt, indem diese mit Dichlormethan angefeuchtet wurde. Anschließend wurde 20 min mit Argon von Sauerstoff befreit. Zur Durchführung der Photoreaktionen bei niedrigen Temperaturen wurden die Proben in einem Ethanolbad mit Hilfe eines Kryostaten auf die gewünschte Temperatur gebracht. Anschließend wurde in einem Rayonet-Photoreaktor bei  $\lambda = 300$  nm bestrahlt. Dann wurde der Komplex entweder in einer Soxhlet-Apparatur oder durch mehrfaches Ausschütteln mit Dichlormethan extrahiert und die Lösung im Vakuum (40 °C, 10 mbar) vom Lösungsmittel befreit. Die Bestimmung des Enantiomeren-überschusses erfolgte durch UV-spektroskopische Detektion der mittels HPLC an chiraler stationärer Phase getrennten Enantiomere. Die Massenbilanz, der Umsatz sowie die Ausbeute des Semibullvalens 4d wurden über GC-Analyse relativ zu dem internen Standard *n*-Dodekan bestimmt und sind in Tabelle 6.6 zusammengefaßt.

|      | Laborjournal | Wirt                 | Т    | t     | Umsatz <sup>a</sup> | $ee^{b}$ |
|------|--------------|----------------------|------|-------|---------------------|----------|
|      | KWA-         |                      | [°C] | [min] | [%]                 | [%]      |
| V-63 | V-010        | NaY/S-Prolin         | 25   | 15    | 5                   | 8        |
| V-64 | V-026        | NaY/S-Prolin         | 25   | 35    | 20                  | 10       |
| V-65 | V-032        | NaY/S-Prolin         | 25   | 55    | 39                  | 8        |
| V-66 | V-016        | LiY/S-Prolin         | 25   | 15    | 5                   | 8        |
| V-67 | V-017        | LiY/S-Prolin         | 25   | 30    | >95                 | <5       |
| V-68 | V-012        | NaY/1-S-Camphansäure | 25   | 15    | 5                   | 30       |
| V-69 | V-009        | NaY/1-S-Camphansäure | 0    | 30    | 9                   | 8        |
| V-70 | V-013        | NaY/S-Mandelsäure    | 25   | 30    | 6                   | <5       |

 Tabelle 6.6:
 Photoreaktionen des Dibenzobarrelens 3d in chiral-modifizierten Zeolithen

| V-71 | V-028 | MCM* | 25 | 65 | 11 | 24 |
|------|-------|------|----|----|----|----|
|      |       |      |    |    |    |    |

<sup>a</sup> Umsatz, bestimmt über GC-Analyse, relativ zum internen Standard *n*-Dodekan, experimenteller Fehler  $\pm 2\%$  der angegebenen Werte. <sup>b</sup> Enantiomerenüberschuß, bestimmt mittels HPLC-Analyse an chiraler stationärer Phase, experimenteller Fehler  $\pm 5\%$  der angegebenen Werte. <sup>c</sup> Errechnet aus dem Verhältnis des eingelagerten Dibenzobarrelens **3d** und dem durchschnittlichen Gewichtsprozentanteil des chiralen Cyclohexadiimins im Zeolithen.

#### 6.1.5.2. Photochemie des Dibenzobarrelens **3e**

# V-72: 8b-Methyl-8b,8d-dihydro-4b*H*-dibenzo[*a*,*f*]cyclopropa[*cd*]pentalen-8ccarbaldehydoxim (4e)

V-KWA-061



In einem 50-ml Rundkolben wurden in 7.5 ml Ethanol 26.0 mg (370 µmol) NH<sub>2</sub>OH•HCl sowie 64.0 mg K<sub>2</sub>CO<sub>3</sub> suspendiert und 15 min bei 20 °C gerührt. Danach wurden 60.0 mg (244 µmol) des Semibullvalens **4d** zugeben und 12 h bei 20 °C gerührt. Anschließend wurde das Lösungsmittel im Vakuum (40 °C, 10 mbar) abdestilliert, und der Rückstand wurde in CH<sub>2</sub>Cl<sub>2</sub> aufgenommen. Dann wurden die unlöslichen Bestandteile abfiltriert, und das Filtrat wurde über MgSO<sub>4</sub> getrocknet. Die Lösung wurde abfiltriert und das Lösungsmittel im Vakuum (40 °C, 10 mbar) abdestilliert. Dabei wurden 61.1 mg (234 µmol, >95%) als Rohprodukt erhalten. Der Rückstand wurde säulenchromatographisch [SiO<sub>2</sub>, Eluent Hexan/EE (9:1)] gereinigt. Die Fraktionen mit einem R<sub>f</sub>-Wert (SiO<sub>2</sub>; CHCl<sub>3</sub>) von 0.5 wurden vereinigt und ergaben 31.2 mg (120 µmol, 49%) **4e** als weißen Feststoff (Pulver), der aus Methanol in Form farbloser Kuben kristallisierte, Schmp. 74-76 °C (MeOH). <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 200 MHz):  $\delta = 1.70$  (s, 3H, CH<sub>3</sub>), 3.17 (s, 1H, CH), 4.75 (s, 1H, CH), 6.84–7.30 (m, 8H, Ar-H), 7.50 (s, CH, HCN). – <sup>13</sup>C-NMR (CDCl<sub>3</sub>, 50 MHz): 16.8 (CH<sub>3</sub>), 49.4 (CH), 54.8 (CH), 121.1, 121.3, 121.3, 123.7, 123.7, 124.8, 124.8, 126.5, 126.5, 126.6, 126.7,

126.9, 126.9. – MS (70 eV, EI); m/z (%): 261 (1) [M<sup>+</sup>], 244 (4) [M<sup>+</sup> – OH], 217 (21) [C<sub>17</sub>H<sub>13</sub><sup>+</sup>], 202 (32) [C<sub>16</sub>H<sub>10</sub><sup>2+</sup>], 103 (100). – HRMS ber. für C<sub>18</sub>H<sub>15</sub>NO (M<sup>+</sup>): 261.1153, gef. 261.1148.

Allgemeine Arbeitsvorschrift 10 (AAV 10): Bestrahlung des Dibenzobarrelens 3e in Lösung

Eine Lösung aus 5.00 mg (14.3 µmol) Dibenzobarrelen **3e** in 5 ml des entsprechenden absolutierten Lösungsmittels wurde 20 min im Argonstrom von Sauerstoff befreit. Die Photoreaktionen wurden in versiegelten Quarzglasgefäßen im Abstand von 10 cm zur Lampe durchgeführt. Bestrahlt wurde bei Raumtemperatur im Rayonet-Photoreaktor bei  $\lambda = 254$  nm. Der Umsatz sowie der Anteil an Semibullvalen **4e** und Dibenzobarrelen **3d** wurden <sup>1</sup>H-NMR-spektroskopisch bestimmt und sind in Tabelle 6.7 zusammengefaßt.

Allgemeine Arbeitsvorschrift 11 (AAV 11): Bestrahlung des Dibenzobarrelens 3e im Festkörper

Kristalle des Dibenzobarrelens **3e** aus Dichlormethan wurden zwischen zwei Quarzplatten verrieben. Diese wurden unter Argonatmosphäre in PE-Folie eingeschweißt und im Abstand von 10 cm vor der Lampe positioniert. Anschließend wurde im Rayonet-Photoreaktor bei  $\lambda = 254$  nm bestrahlt. Der Feststoff wurde nach der Bestrahlung mit Dichlormethan von den Platten gelöst und die vereinigte Lösung im Vakuum (40 °C, 10 mbar) vom Lösungsmittel befreit. Der Umsatz sowie der Anteil an Semibullvalen **4e** und Dibenzobarrelen **3d** wurden <sup>1</sup>H-NMR-spektroskopisch bestimmt und sind in Tabelle 6.7 zusammengefaßt.





#### EXPERIMENTALTEIL

|      | Laborjournal | Medium             | t   | Umsatz <sup>a</sup> | Anteil <sup>b</sup> [%] |    |
|------|--------------|--------------------|-----|---------------------|-------------------------|----|
|      | KWA-         |                    | [h] | [%]                 | <b>4</b> e              | 3d |
| V-73 | IV-003       | MeOH               | 1.5 | >95                 | 90                      | <5 |
| V-74 | IV-006       | CH <sub>3</sub> CN | 1   | >95                 | <5 <sup>c</sup>         | <5 |
| V-75 | IV-002       | Festkörper         | 4   | 10                  | 10                      | 80 |

<sup>a</sup> Umsatz, ermittelt durch <sup>1</sup>H-NMR-spektroskopische Analyse, experimenteller Fehler  $\pm 5\%$  der angegebenen Werte. <sup>b</sup> Anteil an Semibullvalen **4e** und Dibenzobarrelen **3d**, ermittelt durch <sup>1</sup>H-NMR-spektroskopische Analyse, experimenteller Fehler  $\pm 5\%$  der angegebenen Werte. <sup>c</sup> Vielzahl der Nebenprodukte wurden nicht identifiziert.

6.1.5.3. Photochemie des Dibenzobarrelens **3f** 

# V-76: (8b-Methyl-8b,8d-dihydro-4b*H*-dibenzo[*a*,*f*]cyclopropa[*cd*]pentalen-8cylmethylen)-(1-phenyl-ethyl)-imin (4f)

#### V-KWA-062



Eine Lösung von 25.0 mg (102 µmol) des Semibullvalens **4d** in 10 ml Toluol wurde mit 36.6 µl (0.23 mmol) 1-*S*-Phenylethylamin und 30.0 mg K<sub>2</sub>CO<sub>3</sub> versetzt und unter Argonatmosphäre 24 h bei 22 °C gerührt. Anschließend wurde das unlösliche Salz abfiltriert und das Lösungsmittel sowie überschüssiges 1-*S*-Phenylethylamin im Vakuum (40 °C, 10 mbar) abdestilliert. Zurück blieben 34.0 mg (97.4 µmol, >95%) des Imins **4f** als leicht gelbliches Öl. <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 200 MHz):  $\delta = 1.51$  (d, 1.5H, CH<sub>3 Imin</sub>, J = 4 Hz), 1.52 (d, 1.5H, CH<sub>3 Imin</sub>, J = 4 Hz), 1.79 (s, 3H, CH<sub>3</sub>), 3.36 (s, 0.5H, CH), 3.38 (s, 0.5H, CH), 4.36 (q, J = 4 Hz, 1H, CH<sub>Imin</sub>), 5.06 (s, 1H, CH), 6.97–7.16 (m, 5H, Ar-H), 7.17–7.30 (m, 8H, Ar-H), 7.79 (s, 1H, HCN). – <sup>13</sup>C-NMR (CDCl<sub>3</sub>, 50 MHz): 15.6, 26.1, 49.2, 50.2, 53.4, 68.6, 68.9, 120.2, 120.3, 122.5, 123.7, 124.7, 125.8, 125.8 (2), 125.8, 127.3 (2), 127.3, 136.4, 139.0, 144.3, 148.5, 149.6, 158.2, 158.4.– MS (70 eV); *m/z* (%): 349 (9) [M<sup>+</sup>], 244 (75) [M<sup>+</sup> – PhEt], 218 (42) [C<sub>17</sub>H<sub>14</sub><sup>+</sup>], 203 (64) [C<sub>16</sub>H<sub>11</sub><sup>+</sup>], 106 (100) [PhEt<sup>+</sup>]. – HRMS ber. für C<sub>26</sub>H<sub>23</sub>N (M<sup>+</sup>): 349.1829, gef. 349.1824.

Allgemeine Arbeitsvorschrift 12 (AAV 12): Bestrahlung des Dibenzobarrelens 3f in Lösung

Eine Lösung aus 5.00 mg (14.3 µmol) Dibenzobarrelen **3f** in 5 ml des entsprechenden Lösungsmittels wurde 20 min im Argonstrom von Sauerstoff befreit. Die Photoreaktionen wurden in versiegelten Quarzglasgefäßen im Abstand von 10 cm zur Lampe durchgeführt. Bestrahlt wurde mit einer Quecksilberhochdrucklampe (Heraeus TQ 150, 150 W) ohne Kantenfilter ( $\lambda > 185$  nm). Der Umsatz sowie die Anteile an den Semibullvalenen **4d** und **4f** wurden <sup>1</sup>H-NMR-spektroskopisch bestimmt und sind in Tabelle 6.8 zusammengefaßt.

Allgemeine Arbeitsvorschrift 13 (AAV 13): Bestrahlung des Dibenzobarrelens 3f im Festkörper

Der aus Abdampfen einer Lösung des Dibenzobarrelens **3f** in Toluol erhaltene Feststoff wurde zwischen zwei Quarzplatten verrieben. Diese wurden unter Argonatmosphäre in PE-Folie eingeschweißt und im Abstand von 10 cm vor der Lampe positioniert. Anschließend wurde mit einer Quecksilberhochdrucklampe (Heraeus TQ 150, 150 W) ohne Kantenfilter ( $\lambda > 185$  nm) bestrahlt. Der Feststoff wurde nach der Bestrahlung mit Dichlormethan von den Platten gelöst und die vereinigte Lösung im Vakuum (40 °C, 10 mbar) vom Lösungsmittel befreit. Der Umsatz sowie die Anteile an den Semibullvalenen **4d** und **4f** wurden <sup>1</sup>H-NMR-spektroskopisch bestimmt und sind in Tabelle 6.8 zusammengefaßt.





#### EXPERIMENTALTEIL

|      | Laborjournal | Medium                  | t   | Umsatz <sup>a</sup> | Anteil <sup>b</sup> [%] |                 | $de^{c}$ |
|------|--------------|-------------------------|-----|---------------------|-------------------------|-----------------|----------|
|      | KWA-         |                         | [h] | [%]                 | 4d                      | 4f              | [%]      |
| V-77 | III-019      | MeOH <sup>d</sup>       | 2.5 | 5                   | <5                      | >95             | <5       |
| V-78 | III-019      | $CH_2Cl_2^{\ d}$        | 6.5 | 31                  | <5                      | 60 <sup>e</sup> | <5       |
| V-79 | III-037      | Festkörper <sup>f</sup> | 10  | 70                  | >95                     | <5              | <5       |

<sup>a</sup> Umsatz, ermittelt durch <sup>1</sup>H-NMR-spekroskopische Analyse, experimenteller Fehler  $\pm 5\%$  der angegebenen Werte. <sup>b</sup> Anteil des Semibullvalens **4d** und **4f** relativ zur Gesamtausbeute an Produkt, ermittelt durch <sup>1</sup>H-NMR-spekroskopische Analyse, experimenteller Fehler  $\pm 5\%$  der angegebenen Werte. <sup>c</sup> Diastereomerenüberschuß, ermittelt durch <sup>1</sup>H-NMR-spekroskopische Analyse, experimenteller Fehler  $\pm 5\%$  der angegebenen Werte. <sup>d</sup> Bestrahlt nach **AAV 12**. <sup>e</sup> Vielzahl der Nebenprodukte nicht identifiziert. <sup>f</sup> Bestrahlt nach **AAV 13**, Feststoff durch Abdampfen einer Lösung aus Toluol erhalten.

# 6.2. Kronenethersubstituierte Chromophore

#### 6.2.1. Synthese der Edukte

6.2.1.1. Synthese des Dibenzobarrelenderivats **3**c

# V-80: 3,4(9',10'-Dihydro-9',10'-anthraceno)-1,6,9,12,15-pentaoxaheptadec-3-en (3c)

IV-KWA-020, IV-KWA-048, V-KWA-059



Zu einer Lösung von 230 mg (590 μmol) 11,12-Di(brommethyl)-9,10-dihydro-9,10ethanoanthracen (**3j**) in 6 ml Dichlormethan wurden 150 mg (758 μmol) Tetraethylenglykol, 2.3 ml einer 8 M NaOH-Lösung und 2.00 mg Tetrabutylammoniumbromid zugegeben. Das Zweiphasengemisch wurde 48 h bei Raumtemperatur gerührt. Die organische Phase wurde abgetrennt und die wäßrige Phase zweimal mit je 10 ml Dichlormethan extrahiert. Die vereinigten organischen Phasen wurden über Magnesiumsulfat getrocknet, abfiltriert und das Lösungsmittel im Vakuum (40 °C, 10 mbar) entfernt. Es wurden 248 mg eines öligen gelbbraunen Rohprodukts erhalten. Dieses wurde säulenchromatographisch (neutrales Al<sub>2</sub>O<sub>3</sub>, Aktivitätsstufe I, varrierender Gradient Hexan/CHCl<sub>3</sub> von 3:1 bis 0:1) aufgetrennt. Die Fraktionen mit einem Rf-Wert (Al<sub>2</sub>O<sub>3</sub>; CHCl<sub>3</sub>) von 0.37 wurden vereinigt und ergaben 102 mg (242 mmol, 41%) **3c** als ein leicht gelbliches Öl. IR (KBr):  $\tilde{v} = 1110 \text{ cm}^{-1}$  (C-O). – UV (CH<sub>3</sub>CN):  $\lambda_{max}$  (lg  $\epsilon$ ) = 253 nm (3.64), 273 (3.60), 280 (3.62). - <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 200 MHz):  $\delta = 3.30-3.34$  (m, 4H, CH<sub>2</sub>), 3.54–3.58 (m, 12H, CH<sub>2</sub>), 4.39 (s, 4H, CH<sub>2</sub>), 5.17 (s, 2H, CH), 6.92–6.96 (m, 4H, Ar-H), 7.27–7.31 (m, 4H, Ar-H). – <sup>13</sup>C-NMR (CDCl<sub>3</sub>, 50 MHz):  $\delta = 53.1$  (CH), 67.1 (CH<sub>2</sub>), 67.8 (CH<sub>2</sub>), 70.4 (CH<sub>2</sub>), 70.6 (CH<sub>2</sub>), 70.8 (CH<sub>2</sub>), 122.8 (CH<sub>Ar</sub>), 124.5 (CH<sub>Ar</sub>), 145.1 (C<sub>a</sub>), 145.9 (C<sub>a</sub>). – MS (EI, 70 eV) m/z (%): 422 (3) [M<sup>+</sup>], 244 (1)  $[M^+ - C_{14}H_{10}^+]$ , 178 (100)  $[C_{14}H_{10}^+]$ . – HRMS ber. für  $C_{26}H_{30}O_5$  (M<sup>+</sup>): 422.2097, gef. 422.2092.

### 6.2.1.2. Synthese der Acetophenonderivate **1b** und **1c**

Allgemeine Arbeitsvorschrift 14 (AAV 14): Synthese der kronenethersubstituierten Acetophenone 1b und 1c

In einem 250-ml-Kolben wurden 100 ml (148 g, 1.54 mol) Methansulfonsäure vorgelegt und unter starkem Rühren mit 13.4 g (143 mmol) Diphosphorpentoxid versetzt. Es wurde solange gerührt, bis sich der Feststoff vollständig gelöst hatte. Dann wurde der jeweilige Benzokronenether (**11b** oder **11c**) und die Adamantylessigsäure zugegeben und 20 h bei Raumtemperatur gerührt, wobei sich die Lösung dunkelrot verfärbte. Anschließend wurde auf Eis gegossen und ca. 4 h gerührt. Dabei löste sich der ölige Niederschlag auf. Es wurde mit Dichlormethan extrahiert und die wäßrige Phase abgetrennt. Die organische Phase wurde mit wäßriger 0.1 M NaOH-Lösung und Wasser gewaschen und über MgSO<sub>4</sub>

getrocknet. Nach Abfiltration wurde das Filtrat im Vakuum (40 °C, 10 mbar) eingeengt und getrocknet. Das ölige Rohprodukt wurde säulenchromatographisch aufgereinigt.

# V-81: 2-Adamantan-1-yl-1-(6,7,9,10,12,13,15,16,18,19-decahydro-5,8,11,14,17,20hexaoxa-benzocyclooctadecen-2-yl)-ethanon (1b)

II-KWA-074, II-KWA-076, II-KWA-078, II-KWA-096, III-KWA-004, III-KWA-049



Nach AAV 14 wurden 1.00 g (3.20 mmol) Benzo-18-krone-6 (11b) und 1.24 g (6.41 mmol) 1-Adamantylessigsäure in eine Lösung aus 13.4 g Diphosphorpentoxid in 110 ml Methansulfonsäure gegeben und 20 h bei Raumtemperatur gerührt. Extrahiert wurde dreimal mit 80 ml Dichlormethan. Die vereinigten organischen Phasen wurden mit je 100 ml einer 1 M NaOH-Lösung und H<sub>2</sub>O gewaschen. Das gelblichbraune, ölige Rohprodukt wurde in quantitativer Ausbeute erhalten. Die Aufreinigung erfolgte säulenchromatographisch [neutrales Al<sub>2</sub>O<sub>3</sub>, Aktivitätsstufe I, Hexan/CH<sub>2</sub>Cl<sub>2</sub> (1:1)]. Alle Fraktionen mit einem R<sub>f</sub>-Wert von 0.19 (Al<sub>2</sub>O<sub>3</sub>, CHCl<sub>3</sub>) wurden vereinigt und ergaben 1.19 g (2.44 mmol, 76%) des Kronenethers **1b** als ein hellgelbes, zähflüssiges Öl. Durch Kristallisation mit KPF<sub>6</sub> aus Methanol wurden farblose, pulverförmige Kristalle erhalten, Schmp. 200-202 °C (MeOH). Unkomplexierter Kronenether **1b**: UV (CH<sub>3</sub>CN):  $\lambda_{max}$  (lg  $\varepsilon$ ) = 232 nm (4.00), 275 (3.92), 303 (3.76). – <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 200 MHz):  $\delta = 1.63$  (br s, 12H, Ad-CH<sub>2</sub>), 1.94 (br s, 3H, Ad-CH), 2.66 (s, 2H, CH<sub>2</sub>), 3.64–4.29 (m, 20H, CH<sub>2</sub>), 6.89 (d, J = 10 Hz, 1H, Ar-H), 7.51 (d, J = 2 Hz, 1H, Ar-H), 7.57 (dd, J = 10 Hz, J = 2 Hz, 1H, Ar-H),  $-{}^{13}$ C-NMR (CDCl<sub>3</sub>, 50 MHz): 28.7 (4), 34.0, 36.8, 43.1 (4), 50.9 (4), 67.2, 67.5, 68.3, 68.4, 69.9, 69.9, 69.9, 110.3, 110.5, 123.8, 132.7, 147.0, 150.9, 198.6. – MS (70 eV, EI); m/z (%): 488 (42) [M<sup>+</sup>], 400 (5) [M<sup>+</sup> –  $(OCH_2CH_2)_2$ , 339 (10)  $[M^+ - (OCH_2CH_2)_3O]$ , 310 (23)  $[C_{16}H_{22}O_6]$ , 253 (10)  $[C_{18}H_{22}O]$ , 163 (100)  $[C_{17}H_{19}]^+$ . – HRMS ber. für  $C_{28}H_{40}O_7$  (M<sup>+</sup>): 488.2776, gef. 488.2770. – El. Anal. ber. (%) für 2C<sub>28</sub>H<sub>40</sub>O<sub>7</sub>×3KPF<sub>6</sub> (1529.43): C 43.98, H 5.27, gef. C 44.04, H 5.39.

# V-82: 2-Adamantan-1-yl-1-(6,7,9,10,12,13,15,16-octahydro-5,8,11,14,17-pentaoxabenzocyclopentadecen-2-yl)-ethanon (1c)

III-KWA-026, III-KWA-082, IV-KWA-041



Nach AAV 14 wurden 1.29 g (4.81 mmol) Benzo-15-krone-5 (11c) und 1.86 g (9.59 mmol) 1-Adamantylessigsäure in eine Lösung aus 13.4 g Diphosphorpentoxid in 100 ml Methansulfonsäure gegeben und 20 h bei Raumtemperatur gerührt. Extrahiert wurde dreimal mit je 100 ml Dichlormethan. Die vereinigten organischen Phasen wurden mit je 110 ml einer 1 M NaOH-Lösung und H<sub>2</sub>O gewaschen. Das gelblichbraune, ölige Rohprodukt wurde in quantitativer Ausbeute erhalten. Die Aufreinigung erfolgte säulenchromatographisch [neutrales Al<sub>2</sub>O<sub>3</sub>, Aktivitätsstufe I, n-Hexan/CH<sub>2</sub>Cl<sub>2</sub> (1:1)]. Alle Fraktionen mit einem R<sub>f</sub>-Wert von 0.2 (Al<sub>2</sub>O<sub>3</sub>, CHCl<sub>3</sub>) wurden vereinigt und ergaben 1.39 g (3.13 mmol, 65%) des Kronenethers 1c als ein hellgelbes, zähflüssiges Öl. UV (CH<sub>3</sub>CN):  $\lambda_{max}$  (lg  $\epsilon$ ) = 273 nm (4.06), 301 (3.88). – <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 200 MHz):  $\delta = 1.64$  (br s, 12H, Ad-CH<sub>2</sub>), 1.94 (br s, 3H, Ad-CH), 2.65 (s, 2H, CH<sub>2</sub>), 3.70–4.22 (m, 16H, Ethylenglykol), 6.84 (d, J = 9 Hz, 1H, Ar-H), 7.50 (d, J = 2.0 Hz, 1H, Ar-H), 7.55 (dd, J = 9 Hz, J = 2 Hz, 1H, Ar-H).  $-{}^{13}$ C-NMR (CDCl<sub>3</sub>, 50 MHz): 27.7, 27.7, 32.9, 35.7, 36.8, 42.1, 42.1, 49.9, 49.9, 66.0, 67.7, 68.0, 68.0, 68.3, 68.4, 69.3, 69.4, 70.2, 70.2, 110.6, 111.9, 122.7, 131.3, 147.7, 152.2, 197.8. -MS (70 eV, EI); m/z (%): 444 (36) [M<sup>+</sup>], 310 (16) [C<sub>16</sub>H<sub>22</sub>O<sub>6</sub>], 207 (12), 163 (100) [C<sub>17</sub>H<sub>19</sub>]<sup>+</sup>. - HRMS ber. für  $C_{26}H_{36}O_6$  (M<sup>+</sup>): 444.2513, gef. 444.2507. – El. Anal. ber. (%) für  $C_{26}H_{36}O_6$ × NaCl (503.01): C 62.08, H 7.21, gef. C 60.38, H 7.23.

6.2.1.3. Synthese der chiralen Gastmoleküle

#### V-83: Herstellung der chiralen Ammoniumsalze



Durch Zutropfen von konzentrierter Schwefelsäure auf festes Salz NaX (X = Cl, Br) wurde in situ die Säure HX (X = Cl, Br) erzeugt. Diese wurde in eine etherische Lösung des entsprechenden Amins (14: 1-S-Phenylethylamin, 15: S-2-Amino-2-phenylethanol, 16: S-2-Amino-3-phenylpropanol) eingeleitet, wobei das Ammoniumsalz als weißer Feststoff ausfiel. Dieser wurde abfiltriert und mit Diethylether gewaschen.

1-S-Phenylethylammoniumbromid (14): Schmp. 260–261 °C [Lit.:<sup>51</sup> 115–116 °C (MeOH)]. – <sup>1</sup>H-NMR (MeOD, 400 MHz):  $\delta = 1.64$  (d, J = 7 Hz, 3H, CH<sub>3</sub>), 4.47 (q, J = 7 Hz, 1H, CH), 4.84 (br s, 3H, NH<sub>3</sub>), 7.38–7.48 (m, 5H, Ar-H).

2-Hydroxy-1-phenylethylammoniumbromid (**15**): Schmp. 180–182 °C. – <sup>1</sup>H-NMR (MeOD, 400 MHz):  $\delta = 2.15$  (s, 1H, OH), 3.81 (dd, J = 9 Hz, J = 11 Hz, 1H, CH<sub>2</sub>), 3.88 (dd, J = 4 Hz, J = 11 Hz, 1H, CH<sub>2</sub>), 4.36 (dd, J = 4 Hz, J = 9 Hz, 1H, CH), 7.42–7.48 (m, 5H, Ar-H).

1-Hydroxymethyl-2-phenylethylammoniumbromid (16): Schmp. 142–145 °C [Lit.:<sup>52</sup> 148–149 °C (EtOH)]. – <sup>1</sup>H-NMR (MeOD, 400 MHz):  $\delta$  = 2.15 (s, 1H, OH), 2.93 (d, *J* = 7 Hz, 2H, CH<sub>2</sub>Ph), 3.45–3.50 (m, 1H, CH), 3. 53 (dd, *J* = 7 Hz, *J* = 11 Hz, 1H, CH<sub>2</sub>OH) 3.69 (dd, *J* = 4 Hz, *J* = 14 Hz, 1H, CH<sub>2</sub>OH), 7.27–7.36 (m, 5H, Ar-H).

### V-84: Herstellung der chiralen Carboxylate

III-KWA-050 III-KWA-051, III-KWA-057



Bei Zugabe von 1.1 Äquivalenten NaH zu Lösungen der Säuren (17: 1-S-Camphansäure, 18: 1-S-Ketopinsäure) in Diethylether fielen die chiralen Carboxylate 17 und 18 als weiße Feststoffe aus. Diese wurden abfiltriert und mit Diethylether gewaschen. Durch Vereinigung äquimolarer Mengen von Pyridin und S-Mandelsäure in Diethylether wurde das chirale Pyridiniummandelat 19 synthetisiert.

*S*-Natrium-4,7,7-trimethyl-3-oxo-2-oxa-bicyclo[2.2.1]heptan-1-carboxylat (17): Schmp. 147–148 °C. – <sup>1</sup>H-NMR (MeOD, 400 MHz):  $\delta = 0.90$  (s, 3H, CH<sub>3</sub>), 1.03 (s, 3H, CH<sub>3</sub>), 1.11 (s, 3H, CH<sub>3</sub>), 1.52–1.59 (AA'XX', 1H, CH<sub>2</sub>), 1.78–1.85 (AA'XX', 1H, CH<sub>2</sub>), 2.34–2.42 (AA'XX', 1H, CH<sub>2</sub>), 2.76–2.85 (AA'XX', 1H, CH<sub>2</sub>).

*S*-Natrium-7,7-dimethyl-2-oxo-bicyclo[2.2.1]heptan-1-carboxylat (**18**): Schmp. 334–336 °C. – <sup>1</sup>H-NMR (MeOD, 400 MHz):  $\delta = 1.10$  (s, 3H, CH<sub>3</sub>), 1.13 (s, 3H, CH<sub>3</sub>), 1.30–1.36 (m, 1H, CH<sub>2</sub>), 1.57–1.64 (m, 1H, CH), 1.85 (d, J = 18 Hz, 1H, CH<sub>2</sub>), 2.00–2.03 (m, 2H, CH<sub>2</sub>), 2.36–2.49 (m, 2H, CH<sub>2</sub>).

*S*-Hydroxyphenyl-acetatpyridinium (**19**): Schmp. 75–76 °C. – <sup>1</sup>H-NMR (MeOD, 400 MHz):  $\delta = 2.15$  (s, 1H, OH), 5.12 (s, 1H, CH), 7.29–7.33 (m, 3H, Ar-H), 7.34–7.36 (m, 4H, Ar-H), 7.81–7.88 (m, 1H, Ar-H), 8.50–8.52 (m, 1H, Ar-H).

# 6.2.2. Untersuchungen zur Komplexierung verschiedener Kationen durch die Kronenether 1b, 3b und 3c

6.2.2.1. <sup>1</sup>H-NMR-spektroskopische Titrationen

Allgemeine Arbeitsvorschrift 15 (AAV 15):

Zu einer Lösung des Kronenethers **3c** wurden in kleinen Mengen Lösungen der entsprechenden Salze titriert. Um eine konstante Konzentration des Kronenethers **3c** während der Titration zu gewährleisten, hatten die Lösungen der Salze, mit denen titriert wurde, dieselbe Kronenether-Konzentration wie die vorgelegte Kronenether-Lösung. Die Lösungen

wurden nach jedem Titrationsschritt <sup>1</sup>H-NMR-spektroskopisch analysiert (200 MHz-NMR-Spektrometer). Zwischen der Zugabe und der spektroskopischen Untersuchung wurden die Lösungen kräftig durchmischt, um eine Einstellung des Komplexgleichgewichtes zu gewährleisten. Die chemischen Verschiebungen der <sup>1</sup>H-NMR-Signale der allylischen CH<sub>2</sub>-Protonen ( $\Delta\delta$ ) wurden gegen die titrierte Molmenge des Salzes aufgetragen (Abb. 6.4). Die Errechnung der Bindungskonstanten des Kronenethers **3c** mit NaBF<sub>4</sub> und KBF<sub>4</sub> wurden durch nicht-lineare Kurvenanpassung nach der folgenden Formel durchgeführt:

$$\delta_{obs} = \delta_A + \frac{\delta_{AB} - \delta_A}{2c_A^0} \left( c_A^0 + c_B^0 + \frac{1}{K} \pm \sqrt{\left( c_A^0 + c_B^0 + \frac{1}{K} \right)^2 - 4c_A^0 c_B^0} \right)$$

#### V-85: Titration von Kaliumtetrafluoroborat zu Kronenether 3c

V-KWA-050

Entsprechend **AAV 15** wurden jeweils 10.0 mg (23.7  $\mu$ mol) Kronenether **3c** in 700  $\mu$ l CD<sub>3</sub>CN gelöst (c(**3c**) = 33.6 mM). Zu einer Lösung wurden 9.80 mg (77.8  $\mu$ mol) KBF<sub>4</sub> gegeben und im Ultraschallbad gelöst. Anschließend wurde die Lösung mit KBF<sub>4</sub> schrittweise zum Kronenether **3c** titriert und die <sup>1</sup>H-NMR-Verschiebungen gemessen (Tabelle 6.9).

| Messung | c(KBF <sub>4</sub> ) [µM] | Äquivalente | $\Delta \delta^{b}[ppm]$ |
|---------|---------------------------|-------------|--------------------------|
| 1       | 0                         | 0           | 0                        |
| 2       | 4.74                      | 0.2         | 0.002                    |
| 3       | 9.48                      | 0.4         | 0.006                    |
| 4       | 14.2                      | 0.6         | 0.008                    |
| 5       | 19.0                      | 0.8         | 0.010                    |
| 6       | 23.7                      | 1.0         | 0.011                    |
| 7       | 33.2                      | 1.4         | 0.014                    |
| 8       | 42.7                      | 1.8         | 0.015                    |
| 9       | 52.1                      | 2.2         | 0.015                    |
| 10      | 61.6                      | 2.6         | 0.015                    |

**Tabelle 6.9:**Titration von KBF4 zu **3c**<sup>a</sup>

<sup>a</sup> [3c] = 33.6 mM. <sup>b</sup>  $\Delta\delta$  relativ zu  $\delta$  des unkomplexierten Kronenethers 3c.



Abbildung 6.4: Verschiebung der <sup>1</sup>H-NMR-Signale der allylischen CH<sub>2</sub>-Protonen des Kronenethers **3c** bei Zugabe von Natrium- und Kaliumtetrafluoroborat.

Die Bindungskonstante  $K_B$  wurde mit den entsprechenden Daten zu  $K_B [3c(KBF_4)] = 3.0 \times 10^2 \text{ M}^{-1}$  bestimmt. Die Kurvenanpassung ist in Abbildung 6.5 gezeigt.



**Abbildung 6.5:** Kurvenanpassung der Daten der Titration von KBF<sub>4</sub> zu **3c** an die theoretischen Werte für einen 1:1-Komplex

Dabei wurden folgende Fehlerwerte erhalten:  $Chi^2/D_0F = 37.5$ ,  $R^2 = 0.988$ ,  $dA = -7.62 \pm 6.18$ ,  $dAB = 165 \pm 8.38$ ,  $K = 299 \pm 145$ .

### V-86: Titration von Natriumtetrafluoroborat zu Kronenether 3c

#### V-KWA-051

Entsprechend **AAV 15** wurden jeweils 10.0 mg (23.7  $\mu$ mol) Kronenether **3c** in 700  $\mu$ l CD<sub>3</sub>CN gelöst (c(**3c**) = 33.6 mM). Zu einer Lösung wurden 8.54 mg (77.8  $\mu$ mol) NaBF<sub>4</sub> gegeben und im Ultraschallbad gelöst. Anschließend wurde die Lösung mit NaBF<sub>4</sub> schrittweise zum Kronenether **3c** titriert und die <sup>1</sup>H-NMR-Verschiebungen gemessen (Tabelle 6.10).

| Messung | c(NaBF <sub>4</sub> ) [µM]] | Äquivalente | $\Delta \delta^{b}[ppm]$ |
|---------|-----------------------------|-------------|--------------------------|
| 1       | 0                           | 0           | 0                        |
| 2       | 2.37                        | 0.1         | 0.007                    |
| 3       | 4.74                        | 0.2         | 0.015                    |
| 4       | 7.11                        | 0.3         | 0.021                    |
| 5       | 9.48                        | 0.4         | 0.024                    |
| 6       | 11.9                        | 0.5         | 0.027                    |
| 7       | 14.2                        | 0.6         | 0.027                    |
| 8       | 16.6                        | 0.7         | 0.028                    |
| 9       | 19.0                        | 0.8         | 0.029                    |
| 10      | 23.7                        | 1.0         | 0.030                    |
| 11      | 28.4                        | 1.2         | 0.030                    |
| 12      | 33.2                        | 1.4         | 0.029                    |
| 13      | 37.9                        | 1.6         | 0.029                    |
| 14      | 42.7                        | 1.8         | 0.030                    |
| 15      | 52.1                        | 2.2         | 0.031                    |

**Tabelle 6.10:**Titration von NaBF4 zu **3c**<sup>a</sup>

a[3c] = 33.6 mM. <sup>b</sup>  $\Delta\delta$  relativ zu  $\delta$  des unkomplexierten Kronenethers 3c.

Die Analyse der Titrationskurve hat gezeigt, daß der Komplex des Kronenethers **3c** mit NaBF<sub>4</sub> in einem Verhältnis von 2:1 vorliegt. Die Bindungskonstante K<sub>B</sub> wurde mit den entsprechenden Daten zu K<sub>B</sub> [**3c**(NaBF<sub>4</sub>)] =  $1.9 \times 10^3$  M<sup>-1</sup> bestimmt. Die Kurvenanpassung ist in Abbildung 6.6 gezeigt.



**Abbildung 6.6:** Kurvenanpassung der Daten der Titration von NaBF<sub>4</sub> zu **3c** an die theoretischen Werte für einen 2:1-Komplex

Zur Kurvenanpassung für den 2:1-Komplex wurde die Natriummenge verdoppelt. Dabei wurden folgende Fehlerwerte erhalten:  $\text{Chi}^2/\text{D}_0\text{F} = 115$ ,  $\text{R}^2 = 0.979$ ,  $\text{dA} = 38.4 \pm 10.1$ ,  $\text{dAB} = 298 \pm 5.21$ ,  $\text{K} = 1950 \pm 1400$ .

# 6.2.2.2. Spektrophotometrische Titrationen

Allgemeine Arbeitsvorschrift 16 (AAV 16):

Es wurde eine Stammlösung des Kronenethers **3b** mit einer Konzentration von  $1.0 \times 10^{-4}$  mol/l in Acetonitril (Lösung 1) hergestellt. Weiterhin wurde eine Lösung des Kronenethers **3b** in CH<sub>3</sub>CN hergestellt ( $1.0 \times 10^{-4}$  mol/l), die darüber hinaus eine definierte Salzmenge enthielt (Lösung 2). Diese Salzlösung wurde dann in kleinen Schritten zu 2.00 ml Lösung in der UV-Küvette titriert. Nach jedem Titrationsschritt wurde 5 min gewartet, damit sich das Komplexgleichgewicht einstellen konnte. Anschließend wurde die Lösung UV-spektroskopisch untersucht.

# V-87: Titration von Kaliumtetrafluoroborat zu Kronenether 3b (0-2 Äquivalente)

#### **MES-28**

Lösung 1 wurde aus 1.23 mg (2.63  $\mu$ mol) Kronenether **3b** und 26.3 ml Acetonitril hergestellt, Lösung 2 aus 450  $\mu$ g (0.36  $\mu$ mol) Kaliumtetrafluoroborat und 5.96 ml der Lösung 1. Dann wurde weiter nach **AAV 16** verfahren (Titrationsschritte siehe Tabelle 6.11).

| Messung <sup>a</sup> | Zugabe Lösung 2 (µl) | Verhältnis Salz/ <b>3b</b> | Absorption <sup>b</sup> (273 nm) |
|----------------------|----------------------|----------------------------|----------------------------------|
| 1                    | 0                    | 0                          | 0.246                            |
| 2                    | 73                   | 0.21                       | 0.246                            |
| 3                    | 105                  | 0.30                       | 0.246                            |
| 4                    | 400                  | 1.00                       | 0.245                            |
| 5                    | 1000                 | 2.00                       | 0.244                            |

 Tabelle 6.11:
 Spektrophotometrische Titration von KBF<sub>4</sub> zu 3b

<sup>a</sup> Lösung 2:  $c(KBF_4) = 6.0 \times 10^{-4} \text{ mol/l}, c(3b) = 1.0 \times 10^{-4} \text{ mol/l} \text{ in Acetonitril.}$  <sup>b</sup> Absorption am lokalen Maximum bei 273 nm.

#### V-88: Titration von Cäsiumtetrafluoroborat zu Kronenether 3b

#### **MES-30**

Lösung 1 wurde aus 0.85 mg (1.82  $\mu$ mol) Kronenether **3b** und 18.2 ml Acetonitril hergestellt, Lösung 2 aus 0.49 mg (2.23  $\mu$ mol) Cäsiumtetrafluoroborat und 3.72 ml Lösung 1. Dann wurde weiter nach **AAV 16** verfahren (Titrationsschritte siehe Tabelle 6.12).

| Messung <sup>a</sup> | Zugabe Lösung 2 (µl) | Verhältnis Salz/3b | Absorption (273 nm) <sup>b</sup> |
|----------------------|----------------------|--------------------|----------------------------------|
| 1                    | 0                    | 0                  | 0.244                            |
| 2                    | 37                   | 0.11               | 0.224                            |
| 3                    | 51                   | 0.15               | 0.224                            |
| 4                    | 69                   | 0.20               | 0.224                            |

 Tabelle 6.12:
 Spektrophotometrische Titration von CsBF<sub>4</sub> zu 3b

| 5  | 87  | 0.25 | 0.224 |
|----|-----|------|-------|
| 6  | 105 | 0.30 | 0.224 |
| 7  | 143 | 0.40 | 0.224 |
| 8  | 182 | 0.50 | 0.224 |
| 9  | 286 | 0.75 | 0.224 |
| 10 | 400 | 1.00 | 0.222 |
|    |     |      |       |

<sup>a</sup> Lösung 2:  $c(CsBF_4) = 6.0 \times 10^{-4} \text{ mol/l}$ ,  $c(3b) = 1.0 \times 10^{-4} \text{ mol/l}$  in Acetonitril.<sup>b</sup> Absorption am lokalen Maximum bei 273 nm.

### V-89: Titration von Natriumtetrafluoroborat zu Kronenether 3b

#### **MES-57**

Lösung 1 wurde aus 1.15 mg (2.46  $\mu$ mol) Kronenether **3b** und 24.6 ml Acetonitril hergestellt, Lösung 2 aus 0.23 mg (2.09  $\mu$ mol) Natriumtetrafluoroborat und 3.49 ml der Lösung 1. Dann wurde weiter nach **AAV 16** verfahren (Titrationsschritte siehe Tabelle 6.13).

| Messung | Zugabe Lösung 2 <sup>a</sup> (µl) | Verhältnis Salz/ <b>3b</b> | Absorption (273 nm) <sup>b</sup> |
|---------|-----------------------------------|----------------------------|----------------------------------|
| 1       | 0                                 | 0                          | 0.207                            |
| 2       | 17                                | 0.05                       | 0.208                            |
| 3       | 34                                | 0.10                       | 0.208                            |
| 4       | 69                                | 0.20                       | 0.213                            |
| 5       | 105                               | 0.30                       | 0.213                            |
| 6       | 182                               | 0.50                       | 0.213                            |
| 7       | 286                               | 0.75                       | 0.211                            |
| 8       | 400                               | 1.00                       | 0.212                            |
| 9       | 526                               | 1.25                       | 0.212                            |
| 10      | 667                               | 1.50                       | 0.212                            |
| 11      | 1000                              | 2.00                       | 0.211                            |

 Tabelle 6.13:
 Spektrophotometrische Titration von NaBF<sub>4</sub> zu 3b

<sup>a</sup> Lösung 2:  $c(NaBF_4) = 6.0 \times 10^{-4} \text{ mol/l}, c(3b) = 1.0 \times 10^{-4} \text{ mol/l}$  in Acetonitril. <sup>b</sup> Absorption am lokalen Maximum bei 273 nm.

### 6.2.2.3. Spektrofluorimetrische Titrationen

Allgemeine Arbeitsvorschrift 17 (AAV 17):

Es wurde bis auf folgende Änderungen wie in **AAV 16** vorgegangen: Anstelle von UV-Küvetten wurden Fluoreszenzküvetten verwendet. Die Lösungen wurden vor Beginn der Messungen mit Argon von Sauerstoff befreit. Die Lösungen wurden fluoreszenzspektroskopisch untersucht. Meßparameter: Anregungswellenlänge ( $\lambda_{Ex}$ ): 273 nm; Meßbereich: 280-540 nm; Anregungsdurchlaß: 2.5; Emissionsdurchlaß: 10. Die Stern-Volmer-Auftragungen der Integrale (280-530 nm) der Emmisionsspektren befinden sich in Kapitel 4.2.4, Abbildung 4.2.

# V-90: Titration von Kaliumtetrafluoroborat zu Kronenether 3b (0–2 Äquivalente)

MES-56

Lösung 1 wurde aus 1.06 mg (2.27  $\mu$ mol) Kronenether **3b** und 22.7 ml Acetonitril hergestellt, Lösung 2 aus 0.35 mg (2.78  $\mu$ mol) Kaliumtetrafluoroborat und 4.63 ml der Lösung 1. Dann wurde weiter nach **AAV 17** verfahren (Titrationsschritte siehe Tabelle 6.14, Spektren in Abb. 6.7).

| Messung <sup>a</sup> | Zugabe Lösung 2 (µl) <sup>b</sup> | Verhältnis Salz/3b | Integral (280-530nm) |  |
|----------------------|-----------------------------------|--------------------|----------------------|--|
| 1                    | 0                                 | 0.00               | 14930                |  |
| 2                    | 3                                 | 0.01               | 11580                |  |
| 3                    | 7                                 | 0.02               | 11161                |  |
| 4                    | 10                                | 0.03               | 11045                |  |
| 5                    | 17                                | 0.05               | 10983                |  |
| 6                    | 24                                | 0.07               | 10915                |  |
| 7                    | 31                                | 0.09               | 10876                |  |
| 8                    | 41                                | 0.12               | 10919                |  |
| 9                    | 55                                | 0.15               | 10840                |  |
| 10                   | 69                                | 0.20               | 10863                |  |

 Tabelle 6.14:
 Spektrofluorimetrische Titration von KBF<sub>4</sub> zu 3b (0-2 Äquivalente)

| 11 | 87   | 0.25 | 10780 |
|----|------|------|-------|
| 12 | 105  | 0.30 | 10850 |
| 13 | 143  | 0.40 | 10894 |
| 14 | 182  | 0.50 | 10983 |
| 15 | 243  | 0.65 | 10926 |
| 16 | 308  | 0.80 | 10926 |
| 17 | 400  | 1.00 | 10838 |
| 18 | 526  | 1.25 | 10751 |
| 19 | 697  | 1.55 | 10901 |
| 20 | 892  | 1.85 | 11001 |
| 21 | 1000 | 2.00 | 11077 |
|    |      |      |       |

 $a_{\lambda_{Ex}} = 273 \text{ nm}, c(\mathbf{3b}) = 1.0 \times 10^{-4} \text{ mol/l in Acetonitril.}$  b Lösung 2: c(KBF<sub>4</sub>) =  $6.0 \times 10^{-4} \text{ mol/l}, c(\mathbf{3b}) = 1.0 \times 10^{-4} \text{ mol/l in Acetonitril.}$ 



**Abbildung 6.7:** Spektrofluorimetrische Titration von **3b** mit KBF<sub>4</sub>;  $\lambda_{Ex} = 273$  nm, c(**3b**) =  $1.0 \times 10^{-4}$  mol/l, (Titrationsschritte siehe Tab. 6.14, Pfeile zeigen Intensitätsaboder zunahme bei Zugabe von KBF<sub>4</sub> an)

# V-91: Titration von Kaliumtetrafluoroborat zu Kronenether 3b

# (0-0.2 Äquivalente)

**MES-58** 

Gemäß AAV 16 wurden 1.06 mg (2.27  $\mu$ mol) Kronenether 3b in 22.7 ml Acetonitril gelöst. Um die gewünschte Salzkonzentration zu erhalten wurden 1.00 ml KBF<sub>4</sub>-Lösung  $[6.0 \times 10^{-4} \text{ mol } \text{KBF}_4/\text{l}; 1.0 \times 10^{-4} \text{ mol } 3b/\text{l}]$  mit 9.00 ml der Kronenetherlösung  $[1.0 \times 10^{-4} \text{ mol/l}]$  verdünnt. Anschließend wurde weiter nach AAV 17 vorgegangen (Titrationsdaten siehe Tabelle 6.15, Spektren in Abb. 6.8).

| Messung <sup>a</sup> | Zugabe Lösung 2 <sup>b</sup> (µl) | Verhältnis Salz/3b | Integral (280-530nm) |
|----------------------|-----------------------------------|--------------------|----------------------|
| 1                    | 0                                 | 0                  | 13360                |
| 2                    | 7                                 | 0.002              | 11800                |
| 3                    | 14                                | 0.004              | 10586                |
| 4                    | 20                                | 0.006              | 10055                |
| 5                    | 27                                | 0.008              | 9946                 |
| 6                    | 34                                | 0.01               | 9889                 |
| 7                    | 44                                | 0.013              | 9706                 |
| 8                    | 55                                | 0.016              | 9597                 |
| 9                    | 69                                | 0.020              | 9695                 |
| 10                   | 87                                | 0.025              | 9620                 |
| 11                   | 105                               | 0.030              | 9477                 |
| 12                   | 124                               | 0.035              | 9577                 |
| 13                   | 143                               | 0.04               | 9548                 |
| 14                   | 182                               | 0.05               | 9432                 |
| 15                   | 222                               | 0.06               | 9422                 |
| 16                   | 307                               | 0.08               | 9308                 |
| 17                   | 400                               | 0.10               | 9193                 |
| 18                   | 666                               | 0.15               | 8768                 |
| 19                   | 1000                              | 0.20               | 8337                 |

 Tabelle 6.15:
 Spektrofluorimetrische Titration von KBF<sub>4</sub> zu 3b (0-0.2 Äquivalente)

 $^{a}\lambda_{Ex} = 273 \text{ nm}, \text{ c}(\mathbf{3b}) = 1.0 \times 10^{-4} \text{ mol/l in Acetonitril.}$  <sup>b</sup> Lösung 2: c(KBF<sub>4</sub>) =  $0.6 \times 10^{-4} \text{ mol/l}, \text{ c}(\mathbf{3b}) = 1.0 \times 10^{-4} \text{ mol/l in Acetonitril.}$ 



**Abbildung 6.8:** Spektrofluorimetrische Titration von **3b** mit KBF<sub>4</sub>;  $\lambda_{Ex} = 273$  nm, c(**3b**) =  $1.0 \times 10^{-4}$  mol/l (Titrationsschritte siehe Tab. 6.15, Pfeile zeigen Intensitätsaboder zunahme bei Zugabe von KBF<sub>4</sub> an)

# V-92: Titration von Cäsiumtetrafluoroborat zu Kronenether 3b (0-1 Äquivalente)

MES-55

Lösung 1 wurde aus 0.76 mg (1.63  $\mu$ mol) Kronenether **3b** und 16.3 ml Acetonitril hergestellt, Lösung 2 aus 0.67 mg (3.05  $\mu$ mol) Cäsiumtetrafluoroborat und 5.08 ml Lösung 1. Dann wurde weiter nach **AAV 17** verfahren (Titrationsdaten siehe Tabelle 6.16, Spektren in Abb. 6.9). Konzentration der Kronenetherlösung:  $1.0 \times 10^{-4}$  mol/l; Konzentration der CsBF<sub>4</sub>-Lösung:  $6.0 \times 10^{-4}$  mol/l.

| Messung | Zugabe Lösung 2 (µl) | Verhältnis Salz/ <b>3b</b> | Integral (280-530nm) |
|---------|----------------------|----------------------------|----------------------|
| 1       | 0                    | 0                          | 14320                |
| 2       | 3                    | 0.01                       | 11912                |
| 3       | 7                    | 0.02                       | 10583                |
| 4       | 10                   | 0.03                       | 10250                |
| 5       | 17                   | 0.05                       | 10000                |

 Tabelle 6.16:
 Spektrofluorimetrische Titration von CsBF<sub>4</sub> zu 3b

| 6  | 24  | 0.07 | 9918 |
|----|-----|------|------|
| 7  | 31  | 0.09 | 9877 |
| 8  | 41  | 0.12 | 9807 |
| 9  | 55  | 0.16 | 9838 |
| 10 | 69  | 0.20 | 9814 |
| 11 | 87  | 0.25 | 9710 |
| 12 | 105 | 0.30 | 9706 |
| 13 | 143 | 0.40 | 9585 |
| 14 | 182 | 0.50 | 9482 |
| 15 | 243 | 0.65 | 9462 |
| 16 | 308 | 0.80 | 9345 |
| 17 | 400 | 1.0  | 9398 |
|    |     |      |      |

<sup>a</sup>  $\lambda_{\text{Ex}} = 273 \text{ nm}, \text{ c}(\mathbf{3b}) = 1.0 \times 10^{-4} \text{ mol/l}$  in Acetonitril. <sup>b</sup> Lösung 2: c(CsBF<sub>4</sub>) =  $6.0 \times 10^{-4} \text{ mol/l},$  c(**3b**) =  $1.0 \times 10^{-4} \text{ mol/l}$  in Acetonitril.



**Abbildung 6.9:** Spektrofluorimetrische Titration von **3b** mit CsBF<sub>4</sub>;  $\lambda_{Ex} = 273$  nm, c(**3b**) =  $1.0 \times 10^{-4}$  mol/l (Titrationsschritte siehe Tab. 6.16, Pfeile zeigen Intensitätsaboder zunahme bei Zugabe von CsBF<sub>4</sub> an)

#### V-93: Titration von NaBF<sub>4</sub>-Lösung zu Kronenether 3b (0-0.6 Äquivalente)

#### **MES-50**

Lösung 1 wurde aus 0.64 mg (1.37  $\mu$ mol) Kronenether **3b** und 13.7 ml Acetonitril hergestellt, Lösung 2 aus 0.32 mg (2.91  $\mu$ mol) Natriumtetrafluoroborat und 4.86 ml der

Lösung 1. Dann wurde weiter nach **AAV 17** verfahren (Titrationsdaten siehe Tabelle 6.17, Spektren in Abb. 6.10). Konzentration der Kronenetherlösung:  $1.0 \times 10^{-4}$  mol/l; Konzentration der NaBF<sub>4</sub>-Lösung:  $6.0 \times 10^{-4}$  mol/l.

| Messung | Zugabe Lösung 2 (µl) | Verhältnis Salz/ <b>3b</b> | Integral (280-530nm) |
|---------|----------------------|----------------------------|----------------------|
| 1       | 0                    | 0.00                       | 21291                |
| 2       | 3                    | 0.01                       | 18836                |
| 3       | 7                    | 0.02                       | 18175                |
| 4       | 10                   | 0.03                       | 18216                |
| 5       | 17                   | 0.05                       | 18166                |
| 6       | 24                   | 0.07                       | 18081                |
| 7       | 31                   | 0.09                       | 18033                |
| 8       | 41                   | 0.12                       | 18006                |
| 9       | 48                   | 0.14                       | 18011                |
| 10      | 62                   | 0.18                       | 17951                |
| 11      | 87                   | 0.25                       | 18035                |
| 12      | 105                  | 0.30                       | 17965                |
| 13      | 143                  | 0.40                       | 17913                |
| 14      | 222                  | 0.60                       | 17833                |

 Tabelle 6.17:
 Spektrofluorimetrische Titration von NaBF<sub>4</sub> zu 3b

 $\overline{a} \lambda_{Ex} = 273 \text{ nm}, c(\mathbf{3b}) = 1.0 \times 10^{-4} \text{ mol/l in Acetonitril.}$  b Lösung 2:  $c(\text{NaBF}_4) = 6.0 \times 10^{-4} \text{ mol/l}, c(\mathbf{3b}) = 1.0 \times 10^{-4} \text{ mol/l, } c(\mathbf{3b}) = 1.0 \times 10^{-4} \text{ mol/l}$  in Acetonitril.



**Abbildung 6.10:** Spektrofluorimetrische Titration von **3b** mit NaBF<sub>4</sub>;  $\lambda_{Ex} = 273$  nm, c (**3b**) =  $1.0 \times 10^{-4}$  mol/l (Titrationsschritte siehe Tab. 6.17, Pfeile zeigen Intensitätsaboder zunahme bei Zugabe von NaBF<sub>4</sub> an)

# 6.2.3. Komplexierung der Kronenether

### V-94: Kristallisation der Kronenether

Die Kristallisation der unkomplexierten Kronenether **1b**, **1c**, **3b** und **3c** aus verschiedenen Lösungsmitteln (MeOH, EtOH, EE, CH<sub>2</sub>Cl<sub>2</sub>, Hexan, Et<sub>2</sub>O, THF, *i*PrOH, Toluol, Dioxan, H<sub>2</sub>O, DMF sowie Gemische dieser Lösungsmittel) gelang nicht. Erst nach Zugabe von einem Moläquivalent KPF<sub>6</sub> oder KBF<sub>4</sub> bildeten sich Kristalle des Kronenethers **1b** aus Methanol, die frei von Verunreinigungen waren. Die Komplexe des adamantylsubstituierten Kronenethers **1c** sowie der Dibenzobarrelene **3b** und **3c** mit NaPF<sub>6</sub>, KPF<sub>6</sub>, CaCO<sub>3</sub>, ZnBr<sub>2</sub>, Cs<sub>2</sub>CO<sub>3</sub> oder den chiralen Salze **12–17** konnten nicht in kristalliner Form erhalten werden.

# V-95: Komplexierung durch Abdampfen der Lösungen

Nach der Methode von Pederson<sup>29a</sup> wurden die Lösungen von äquimolaren Mengen des Kronenethers und der Salze bei Raumtemperatur und bei Normaldruck langsam abgedampft. Auf diese Weise wurden die Kronenetherkomplexe im lösungsmittelfreien Zustand erhalten.

# 6.2.4. Fällung der Kronenether

### V-96: Fällung der unkomplexierten Kronenether aus Wasser

#### **IV-KWA-012**

Eine Lösung von 1.00 g des Kronenethers (**1b**, **1c**, **3b** und **3c**) in 10 ml Methanol wurden unter starkem Rühren in 400 ml Wasser getropft. Alternativ wurde zu einer Lösung von 1.00 g des Kronenethers (**1b**, **1c**, **3b** und **3c**) in 400 ml Methanol Wasser zugetropft, bis eine Trübung auftrat. Dann wurde ca. 30 min gewartet. Anschließend wurde solange Wasser zugegeben, bis kein Kronenether mehr ausfiel. Mit diesen Methoden wurden die Kronenether als weiße Feststoffe erhalten, die allerdings nach längerer Lagerung wieder zu Ölen wurden.

# V-97: Fällung der komplexierten Kronenether aus Wasser

# IV-KWA-012, IV-KWA-16

Eine Lösung von 1.00 g des Kronenethers (**1b**, **1c**, **3b** und **3c**) in 10 ml Methanol wurde solange mit dem entsprechenden Hexafluorophosphatsalz (NaPF<sub>6</sub> für **3c** und **1c**, KPF<sub>6</sub> für **1b** und **3b**) versetzt, bis von diesem nichts mehr in Lösung ging. Dann wurde unter starkem Rühren die Kronenetherlösung in 400 ml Wasser getropft. Mit dieser Methode wurde ein flockiger Niederschlag erhalten, der abfiltriert wurde. **1b**•KPF<sub>6</sub>: weißer Feststoff, Schmp. 57–58 °C (MeOH/H<sub>2</sub>O); **1c**•NaPF<sub>6</sub>: weißer Feststoff, Schmp. 52–53 °C (MeOH/H<sub>2</sub>O); **3c**•NaPF<sub>6</sub>: weißer Feststoff, Schmp. 87–88 °C (MeOH/H<sub>2</sub>O).

#### 6.2.5. Photochemie

- 6.2.5.1. Photochemie des Dibenzobarrelens **3**c
- V-98: *rac*-18,19,21,22-Dibenzo-3,6,9,12,15-pentaoxabicyclo-[15.5.0.0<sup>1,20</sup>.0<sup>17,23</sup>]tricosan (4c)

V-KWA-043, V-KWA-070


Gemäß AAV 18 wurde eine Lösung von 14.0 mg (33.2 µmol) Dibenzobarrelen 3c in 7 ml Aceton/Acetonitril (1:1) 80 min unter Argonatmosphäre bestrahlt. Das Lösungsmittel wurde im Vakuum (40 °C, 10 mbar) abdestilliert und das erhaltene gelbliche Öl säulenchromatographisch (neutrales Al<sub>2</sub>O<sub>3</sub>, Aktivitätsstufe I, varriierender Gradient *n*-Hexan/CHCl<sub>3</sub> von 1:1 bis 0:1) aufgetrennt. Es wurden 8.30 mg (19.7 µmol, 59%) Dibenzosemibullvalen 4c als leicht gelbliches Öl [R<sub>f</sub>-Wert (Al<sub>2</sub>O<sub>3</sub>; CHCl<sub>3</sub>): 0.47] erhalten. Eine Auftrennung der <sup>1</sup>H-NMR-Signale der Enantiomere wurde durch Zugabe eines dreifachen Überschusses an 1-*S*-Phenylethylammoniumbromid (13) erreicht. <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 200 MHz):  $\delta$  = 3.21 (s, 1H, CH), 3.57–3.78 (m, 16H, Ethylenglykol-CH<sub>2</sub>), 4.05, 4.07 (AB-System, *J* = 11 Hz, 2H, CH<sub>2</sub>), 4.21, 4.23 (AB-System, *J* = 11 Hz, 2H, CH<sub>2</sub>), 4.50 (s, 1H, CH), 6.96–7.32 (m, 8H, Ar-H). – MS (70 eV, EI); *m/z* (%): 422 (1) [M<sup>+</sup>], 230 (18) [M<sup>+</sup> – (OCH<sub>2</sub>CH<sub>2</sub>)<sub>4</sub>OCH<sub>2</sub>], 178 (100) [C<sub>14</sub>H<sub>10</sub>]<sup>+</sup>. – HRMS ber. für C<sub>26</sub>H<sub>30</sub>O<sub>5</sub> (M<sup>+</sup>): 422.2097, gef. 422.2092.

## V-99: 19,20,22,23-Dibenzo-3,6,9,12,15-pentaoxabicyclo[15.3.2]tricosa-17,21-dien (5c)

V-KWA-042, V-KWA-069



Gemäß AAV 18 wurde eine Lösung von 50.0 mg (11.8  $\mu$ mol) Dibenzobarrelen 3c in 50 ml Acetonitril 80 min in einem Quarzgefäß unter Argonatmosphäre bestrahlt. Das Lösungsmittel wurde im Vakuum (40 °C, 10 mbar) abdestilliert und das erhaltene gelbliche Öl säulenchromatographisch (neutrales Al<sub>2</sub>O<sub>3</sub>, Aktivitätsstufe I, variierender Gradient *n*-Hexan/CHCl<sub>3</sub> von 1:1 bis 0:1) aufgetrennt. Es wurden 28.0 mg (6.64  $\mu$ mol, 56%) Cyclooctatetraen 5c als leicht gelbliches Öl (R<sub>f</sub>-Wert (Al<sub>2</sub>O<sub>3</sub>; CHCl<sub>3</sub>): 0.39) erhalten. <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 200 MHz):  $\delta = 3.42-3.72$  (m, 16H, Ethylenglykol-CH<sub>2</sub>), 4.42 (s, 4H, CH<sub>2</sub>), 6.83 (br s, 2H, 2C=CH), 7.05–7.13 (m, 8H, Ar-H). – MS (70 eV); *m/z* (%): 422 (7) [M<sup>+</sup>], 246 (10) [C<sub>18</sub>H<sub>14</sub>O], 228 (70) [C<sub>18</sub>H<sub>12</sub>], 178 (100) [C<sub>14</sub>H<sub>10</sub>]<sup>+</sup>. – HRMS ber. für C<sub>26</sub>H<sub>30</sub>O<sub>5</sub> (M<sup>+</sup>): 422.2095, gef. 422.2089.

Allgemeine Arbeitsvorschrift 18 (AAV 18): Bestrahlung des Dibenzobarrelens 3c in Lösung

Das Dibenzobarrelen **3c** und das entsprechende Salz wurden im entsprechenden Lösungsmittel in einem Quarzgefäß gelöst. Die Lösung wurde 20 min im Argonstrom von Sauerstoff befreit und das versiegelte Gefäß im Abstand von 10 cm vor der Lampe positioniert. Bestrahlt wurde bei Raumtemperatur im Rayonet-Photoreaktor bei  $\lambda = 300$  nm. Der Umsatz und das Verhältnis des gebildeten Semibullvalens **4c** und des Cyclooctatetraens **5c** wurden <sup>1</sup>H-NMR-spektroskopisch über die charakteristischen Signale (Semibullvalen:  $\delta = 3.21$  und  $\delta = 4.50$ ; Cyclooctatetraen:  $\delta = 4.42$  und  $\delta = 6.83$ ) im Vergleich zu den authentischen Proben bestimmt. Der Umsatz und die Produktverteilung von Semibullvalen **4c** und Cyclooctatetraen **5c** sind in Tabelle 6.18 zusammengefaßt.

Allgemeine Arbeitsvorschrift 19 (AAV 19): Bestrahlung des Dibenzobarrelens 3c im Festkörper

Das Dibenzobarrelen **3c** und äquimolare Mengen des entsprechenden Salzes wurden im Lösungsmittel gelöst. Die Lösung wurde bei Raumtemperatur und Normaldruck zur Trockne eingedampft. Der Feststoff wurde zwischen zwei Quarzplatten verrieben. Die Platten wurden in PE-Taschen unter Argonatmosphäre eingeschweißt und im Rayonet-Photoreaktor bei  $\lambda =$ 300 nm bestrahlt. Der Feststoff wurde nach der Bestrahlung in Dichlormethan gelöst und die vereinigte Lösung im Vakuum (40 °C, 10 mbar) vom Lösungsmittel befreit. Der Umsatz und das Verhältnis des gebildeten Semibullvalens **4c** und des Cyclooctatetraens **5c** wurden <sup>1</sup>H-NMR-spektroskopisch über die charakteristischen Signale (Semibullvalen:  $\delta = 3.21$  und  $\delta = 4.50$ ; Cyclooctatetraen:  $\delta = 4.42$  und  $\delta = 6.83$ ) im Vergleich zu den authentischen Proben bestimmt. Der Umsatz und die Produktverteilung von Semibullvalen **4c** und Cyclooctatetraen **5c** sind in Tabelle 6.18 zusammengefaßt.

|       | Labor-  | MX                | Medium                  | t   | Umsatz <sup>a</sup> | Produkt | verteilung <sup>b</sup> |
|-------|---------|-------------------|-------------------------|-----|---------------------|---------|-------------------------|
|       | journal |                   |                         | [h] | [%]                 | [%]     |                         |
|       | KWA-    |                   |                         |     |                     | 4c      | 5c                      |
| V-100 | V-042   | -                 | CH <sub>3</sub> CN      | 1.5 | >95                 | <5      | >95                     |
| V-101 | V-043   | -                 | CH <sub>3</sub> CN/     | 1.5 | >95                 | >95     | <5                      |
|       |         |                   | Aceton                  |     |                     |         |                         |
| V-102 | V-052   | -                 | Festkörper <sup>c</sup> | 16  | 43                  | 25      | 75                      |
| V-103 | V-056   | NaBF <sub>4</sub> | Festkörper <sup>d</sup> | 11  | 31                  | 76      | 24                      |
| V-104 | V-057   | $\mathrm{KBF}_4$  | Festkörper <sup>d</sup> | 11  | 38                  | 95      | 5                       |
| V-105 | V-064   | 1-S-Phenylethyl-  | Festkörper <sup>d</sup> | 23  |                     |         |                         |
|       |         | ammonium-         |                         |     |                     |         |                         |
|       |         | bromid            |                         |     |                     |         |                         |

 Tabelle 6.18:
 Photoreaktivität des Dibenzobarrelenkronenethers 3c

<sup>a</sup> Umsatz, ermittelt durch <sup>1</sup>H-NMR-spektroskopische Analyse, experimenteller Fehler ±5% der angegebenen Werte. <sup>b</sup> Produktverteilung, ermittelt durch <sup>1</sup>H-NMR-spektroskopische Analyse, experimenteller Fehler ±5% der angegebenen Werte. <sup>c</sup> Eingedampft zur Trockne in Diethylether. <sup>d</sup> Eingedampft zur Trockne in Methanol.

#### 6.2.5.2. Photochemie der Acetophenonderivate **1b** und **1c**

Allgemeine Arbeitsvorschrift 20 (AAV 20): Bestrahlung der Kronenether in Lösung

Es wurde eine Lösung des Kronenethers **1b** oder **1c** im entsprechenden Lösungsmittel solange mit dem jeweiligen Salz versetzt, bis von diesem nichts mehr in Lösung ging. Dann wurde 20 min im Argonstrom von Sauerstoff befreit und das versiegelte Quarzgefäß im Abstand von 10 cm vor der Lampe positioniert. Bestrahlt wurde bei Raumtemperatur mit einer Quecksilberhochdrucklampe (Heraeus TQ 150, 150 W) bei  $\lambda = 280$  nm. Nach der Bestrahlung wurde das Lösungsmittel im Vakuum (40 °C, 10 mbar) abdestilliert und der Rückstand in Dichlormethan aufgenommen. Das unlösliche Salz wurde abfiltriert und das Lösungsmittel des Filtrats abdestilliert. Der Umsatz der Reaktion zu **2b** wurde <sup>1</sup>H-NMR-spektroskopisch über die charakteristischen Signale ( $\delta = 2.14$  und  $\delta = 2.20$ ) bestimmt und ist in Tabelle 6.19 aufgeführt.

Allgemeine Arbeitsvorschrift 21 (AAV 21): Bestrahlung der Kronenether 1b oder 1c im Festkörper

Die nach V-94 erhaltenen Kristalle bzw. der nach V-96 bzw. V-97 gefällte Feststoff der Kronenether 1b und 1c wurden zwischen zwei Quarzplatten verrieben. Die Platten wurden in PE-Taschen unter Argonatmosphäre eingeschweißt und im Abstand von 10 cm vor der Lampe positioniert. Bestrahlt wurde bei Raumtemperatur mit einer Quecksilberhochdrucklampe (Heraeus TQ 150, 150 W) bei  $\lambda = 280$  nm. Der Feststoff wurde nach der Bestrahlung in Dichlormethan gelöst und die vereinigte Lösung im Vakuum (40 °C, 10 mbar) vom Lösungsmittel befreit. Der Umsatz der Reaktion zu 2b wurde <sup>1</sup>H-NMRspektroskopisch über die charakteristischen Signale ( $\delta = 2.14$  und  $\delta = 2.20$ ) bestimmt und ist in Tabelle 6.19 aufgeführt.

|       |    | Laborjournal | Medium                    | MX                | t   | Umsatz <sup>a</sup> |
|-------|----|--------------|---------------------------|-------------------|-----|---------------------|
|       |    | KWA-         |                           |                   | [h] | [%]                 |
| V-106 | 1b | III-003      | MeOH <sup>b</sup>         | -                 | 24  | 87                  |
| V-107 |    | III-013,025  | MeOH <sup>b</sup>         | KPF <sub>6</sub>  | 6   | <5                  |
| V-108 |    | III-020,028  | MeOH <sup>b</sup>         | RbBr              | 5   | >95                 |
| V-109 |    | III-084      | MeOH <sup>b</sup>         | KBr               | 9   | >95                 |
| V-110 |    | III-006      | Festkörper <sup>c,d</sup> | $\mathrm{KBF}_4$  | 22  | <5                  |
| V-111 |    | III-007      | Festkörper <sup>c,d</sup> | KPF <sub>6</sub>  | 38  | <5                  |
| V-112 | 1c | III-045      | MeOH <sup>b</sup>         | -                 | 5   | <5                  |
| V-113 |    | III-048,     | MeOH <sup>b</sup>         | NaBr              | 6   | <5                  |
|       |    | V-041,047    |                           |                   |     |                     |
| V-114 |    | IV-015       | Festkörper <sup>c,e</sup> | NaPF <sub>6</sub> | 12  | <5                  |

 Tabelle 6.19:
 Photoreaktivität der Acetophenone 1b und 1c in verschiedenen Medien

<sup>a</sup> Ermittelt durch <sup>1</sup>H-NMR-spektroskopische Analyse, experimenteller Fehler  $\pm 5\%$  der angegebenen Werte. <sup>b</sup> Durchgeführt gemäß **AAV 20**. <sup>c</sup> Durchgeführt gemäß **AAV 21**. <sup>d</sup> Kristallisiert aus Methanol. <sup>e</sup> Festkörper erhalten durch Fällung einer methanolischen Lösung von **1c** mit NaPF<sub>6</sub> aus Wasser.

## V-108: *rac*-5-Tetracyclo[5.3.1.15,9.01,4]dodecan-3-ol-(6,7,9,10,12,13,15,16octahydro-5,8,11,14,17-pentaoxa-benzocyclopentadecen-2-yl) (2b)

III-KWA-020



Gemäß AAV 19 wurde eine Lösung aus 100 mg (205 µmol) des Acetophenons 1b in 100 ml Methanol solange mit Rubidiumbromid versetzt, bis von diesem nichts mehr in Lösung ging (ca. 50 mg, 303 µmol). Dann wurde 20 min im Argonstrom von Sauerstoff befreit und das versiegelte Quarzgefäß im Abstand von 10 cm vor der Lampe positioniert. Bestrahlt wurde bei Raumtemperatur mit einer Quecksilberhochdrucklampe (Heraeus TQ 150, 150 W) bei  $\lambda$  = 280 nm. Nach einer Bestrahlungszeit von 5 h wurde das Lösungsmittel im Vakuum (40 °C, 10 mbar) abdestilliert und das erhaltene Öl säulenchromatographisch aufgereinigt [neutrales Al<sub>2</sub>O<sub>3</sub>, Aktivitätsstufe I, Hexan/CH<sub>2</sub>Cl<sub>2</sub> (1:1)]. Alle Fraktionen mit einem R<sub>f</sub>-Wert von 0.2 (Al<sub>2</sub>O<sub>3</sub>, CHCl<sub>3</sub>) wurden vereinigt und ergaben 49.0 mg (100 µmol, 49%) des Cyclobutanols 2b als ein farbloses, zähflüssiges Öl. Dieses wurde mit RbBr aus Methanol in Form eines weißen Pulvers kristallisiert, Schmp. 119-120 °C (MeOH). Daten des Komplexes von **2b** mit RbBr: *cis*-**2b**: <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 200 MHz):  $\delta = 1.4-2.2$  (m, 15H, Ad-CH<sub>2</sub>, Ad-CH), 2.14 (d, 1H, CH<sub>2</sub>), 2.20 (d, 1H, CH<sub>2</sub>), 2.32 (m, 1H, OH), 2.9 (m, 1H, CH), 3.68–4.27 (m, 20H, Ethylenglykol), 6.76–7.02 (m, 3H, Ar-H). trans-2b: <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 200 MHz): δ = 1.4–2.2 (m, 15H, Ad-CH<sub>2</sub>, Ad-CH), 1.95 (d, 1H, CH<sub>2</sub>), 2.5 (m, 1H, CH), 2.65 (d, 1H, CH<sub>2</sub>), 2.8 (m, 1H, OH), 3.68–4.27 (m, 20H, Ethylenglykol), 6.76–7.02 (m, 3H, Ar-H). – <sup>13</sup>C-NMR (CDCl<sub>3</sub>, 50 MHz): 28.7, 29.9, 31.0, 32.1, 33.9, 37.3, 38.1, 38.4, 39.7, 41.1, 41.3, 42.6, 43.1, 45.5, 48.3, 55.5, 68.7, 70.0, 79.5, 79.6, 79.6, 84.0, 117.4, 122.2, 131.0, 132.6, 142.8, 153.3. – MS (70 eV, EI); m/z (%): 526 (3)  $[M^+ + K^+ - H^+]$ , 488 (6)  $[M^+]$ , 470  $(100) [M^+ - H_2O, C_{28}H_{38}O_6], 426 (5) [C_{26}H_{34}O_5], 382 (12) [C_{24}H_{30}O_4], 338 (7) [C_{22}H_{26}O_3],$ 294 (21)  $[C_{20}H_{22}O_2]$ , 251 (20)  $[C_{18}H_{19}O]$ , 163 (17)  $[C_{12}H_{19}]$ , 135 (28)  $[C_{10}H_{15}]$ . – MS (8.0 kV, FAB); m/z (%): 573 (2) [M<sup>+</sup> + Rb<sup>+</sup>], 527 (8) [M<sup>+</sup> + K<sup>+</sup>], 511 (3) [M<sup>+</sup> + Na<sup>+</sup>], 460 (3), 307 (23), 154 (100), 136 (62). – HRMS ber. für  $C_{28}H_{40}O_7$  (M<sup>+</sup>): 488.2773, gef. 488.2768. – El. Anal. ber. (%) für C<sub>28</sub>H<sub>40</sub>O<sub>7</sub> × RbBr × 3H<sub>2</sub>O (708.04): C 47.50, H 6.55, gef. C 45.32, H 6.26.

# 7. LITERATURVERZEICHNIS

| 1  | A. J. Kirby, Angew. Chem. 1996, 108, 771.                                         |
|----|-----------------------------------------------------------------------------------|
| 2  | a) V. Ramamurthy, Tetrahedron 1986, 42, 5753. b) Photochemistry in                |
|    | Organized and Constrained Media (Hrsg.: V. Ramamurthy), VCH-Publishers,           |
|    | New York, 1991. c) Y. Ito, Synthesis 1998, 1.                                     |
| 3  | a) G. M. J. Schmidt, Pure Appl. Chem. 1971, 27, 647. b) G. M. J. Schmidt in       |
|    | Solid State Photochemistry (Hrsg.: D. Ginsburg), Verlag Chemie, New York,         |
|    | 1976.                                                                             |
| 4  | T. Matsuura, Y. Sata, K. Ogura, Tetrahedron Lett. 1968, 4627.                     |
| 5  | a) J. N. Gamlin, R. Jones, M. Leibovitch, B. Patrick, J. R. Scheffer, J. Trotter, |
|    | Acc. Chem. Res. 1996, 29, 203. b) A. Natarajan, K. Wang, V. Ramamurthy,           |
|    | J. R. Scheffer, B. Patrick, Org. Lett. 2002, 4(9), 1443. c) K. C. W. Chong,       |
|    | J. R. Scheffer, J. Am. Chem. Soc. 2003, 125(14), 4040.                            |
| 6  | V. Prelog, G. Helmchen, Helv. Chim. Acta 1972, 55, 2581.                          |
| 7  | K. Tanaka, F. Toda, Chem. Rev. 2000, 100, 1025.                                   |
| 8  | a) J. H. Fendler, E. J. Fendler in Catalysis in Micellar and Macromolecular       |
|    | Systems, Academic Press, New York, 1975. b) J. K. Thomas in The Chemistry of      |
|    | Excitation at Interfaces, American Chemical Society, Washington, D. C., 1984.     |
|    | c) H. Umeto, K. Abe, C. Kawasaki, T. Igarashi, T. Sakurai, J. Photochem.          |
|    | Photobiol. A: Chem. 2003, 156(1-3), 127. d) K. Emoto, M. Iijima, Y. Nagasaki,     |
|    | K. Kataoka, J. Am. Chem. Soc. 2000, 122(11), 2653.                                |
| 9  | a) R. S. Fargues, M. T. Maurette, E. Oliveros, M. Riviere, A. Lattes,             |
|    | Tetrahedron 1984, 40, 2381. b) I. Rico, M. T. Maurette, E. Oliveros, M. Riviere,  |
|    | A. Lattes, Tetrahedron 1980, 36, 1779. c) J. Yamamoto, H. Tanaka, Nature          |
|    | <b>2001</b> , <i>409</i> (6818), 321.                                             |
| 10 | a) S. Chandrasekhar in Liquid Crystals, Cambridge University Press, London,       |
|    | 1977. b) J. J. Wolken, G. H. Brown in Liquid Crystals and Biological Systems,     |
|    | Academic Press, New York, 1980. c) L. Gehringer, C. Bourgogne, D. Guillon,        |
|    | B. Donnio, J. Am. Chem. Soc. 2004, 126(12), 3856. d) R. A. Kloster, M. D.         |
|    | Carducci, Org. Lett. 2003, 5(20), 3683.                                           |

### LITERATUR

| 11 | a) J. L. Atwood, J. E. D. Davies, D. D. McNicol in Inclusion Compounds, Vol.     |
|----|----------------------------------------------------------------------------------|
|    | 1-3, Academic Press, London, 1984. b) K. Tanaka, T. Fujiwara, Z. Urbanczyk-      |
|    | Lipowska, Org. Lett. 2002, 4(19), 3255.                                          |
| 12 | a) N. Nandi, D. Vollhardt, J. Phys. Chem. B. 2003, 107(8), 1932. b) I. Lee,      |
|    | S. W. Han, C. H. Kim, T. G. Kim, S. W. Joo, DJ. Jang, K. Kim, Langmuir           |
|    | <b>2000</b> , <i>16</i> (26), 9963.                                              |
| 13 | K. K. Unger in Porous Silica, Elsevier Scientific, Amsterdam, 1979.              |
| 14 | J. P. Glusker in Directional Aspects of Intermolecular Interactions, Topics in   |
|    | Current Chemistry, Vol. 198, Springer Verlag, Berlin, Heidelberg, 1998.          |
| 15 | E. A. Meyer, R. K. Castellano, F. Diederich, Angew. Chem. 2003, 115, 1244.       |
| 16 | a) M. D. Cohen, Angew. Chem. 1975, 14, 439. b) M. D. Cohen, Mol. Cryst. Liq.     |
|    | <i>Cryst.</i> <b>1979</b> , <i>50</i> , 1.                                       |
| 17 | J. C. Koziar, D. O. Cowan, Acc. Chem. Res. 1978, 11, 334.                        |
| 18 | a) K. Pitchumani, M. Warrier, J. R. Scheffer, V. Ramamurthy, Chem. Commun.       |
|    | 1998, 1197. b) K. Pitchumani, M. Warrier, L. S. Kaanumalle, V. Ramamurthy,       |
|    | <i>Tetrahedron</i> <b>2003</b> , <i>59</i> , 5763.                               |
| 19 | E. Cheung, M. R. Netherton, J. R. Scheffer, J. Trotter, J. Am. Chem. Soc. 1999,  |
|    | 121, 2919.                                                                       |
| 20 | a) Y. Inoue, Chem. Rev. 1992, 92. 741. b) H. Rau, Chem. Rev. 1983, 83, 535.      |
| 21 | a) M. L. Bender, M. Komiyama in Cyclodextrin Chemistry, Springer, Berlin,        |
|    | 1978. b) M. V. Rekharsky, Y. Inoue, Chem. Rev. 1998, 98, 1875. c) Y. Lui,        |
|    | Y.Chen, L. Li, G. Huang, C. C. You, H. Y. Zhang, T. Wada, Y. Inoue, J. Org.      |
|    | Chem. 2001, 66, 7209. d) C. A. Stanier, S. J. Alderman, T. D. W. Claridge,       |
|    | H. L. Anderson, Angew. Chem. 2002, 41, 1847. e) S. Koodanjeri, A. Joy,           |
|    | V. Ramamurthy, Tetrahedron 2000, 56, 7003.                                       |
| 22 | a) E. G. Derouane in Intercalation Chemistry (Hrsg.: M. S. Wittingham, A. J.     |
|    | Jacobsen), Academic Press, New York, 1982. b) T. Wada, M. Shikimi, Y. Inoue,     |
|    | G. Lem, N. J. Turro, Chem. Commun. 2001, 1864. c) A. Corma, H. García,           |
|    | J. Chem. Soc., Dalton Trans., 2000, 1381. d) A. Joy, S. Uppili, M. R. Netherton, |
|    | J. R. Scheffer, V. Ramamurthy, J. Am. Chem. Soc. 2000, 122, 728. e) S. Uppili,   |
|    | V. Ramamurthy, Org. Lett. 2002, 4(1), 87. f) K. C. W. Chong, J. Sivaguru,        |
|    | T. Shichi, Y. Yoshimi, V. Ramamurthy, J. R. Scheffer, J. Am. Chem. Soc. 2002,    |
|    |                                                                                  |

|    | 124, 2858. g) V. Ramamurthy, J. Photochem. Photobiol. C: Photochem. 2000, 1,     |
|----|----------------------------------------------------------------------------------|
|    | 145. h) K. C. W. Chong, J. Sivaguru, T. Shichi, Y. Yoshimi, V. Ramamurthy,       |
|    | J. R. Scheffer, J. Am. Chem. Soc. 2002, 124(12), 2858. i) A. Natarajan, A. Joy,  |
|    | L. S. Kaanumalle, J. R. Scheffer, V. Ramamurthy, J. Org. Chem. 2002, 67, 8339.   |
|    | j) A. Joy, J. R. Scheffer, V. Ramamurthy, Org. Lett. 2000, 2(2), 119.            |
| 23 | H. García, Universidad Politécnica de Valencia, Spanien, persönliche Mitteilung, |
|    | 2003.                                                                            |
| 24 | S. Banfi, S. Colonna, H. Molinari, S. Juliá, J. Guixer, Tetrahedron 1984, 40,    |
|    | 5207. b) C. Lauret, S. M. Roberts, Aldrichchim. Acta 2002, 35(2), 47.            |
|    | c) A. Berkessel, N. Gasch, K. Glaubitz, C. Koch, Org. Lett. 2001, 3(24), 3839.   |
|    | d) T. Geller, S. M. Roberts, J. Chem. Soc., Perkin Trans. 1 1999, 1397.          |
|    | e) R. W. Flood, T. P. Geller, S. A. Petty, S. M. Roberts, J. Skidmore, M. Volk,  |
|    | <i>Org. Lett.</i> <b>2001</b> , <i>3</i> (5), 683.                               |
| 25 | a) M. García-Garibay, J. R. Scheffer, J. Trotter, F. Wireko, Tetrahedron Lett.   |
|    | 1987, 28, 1741. b) E. Ciganek, J. Am. Chem. Soc. 1966, 88, 2882.                 |
|    | c) H. E. Zimmerman, G. L. Grunewald, J. Am. Chem. Soc. 1966, 88, 183.            |
|    | d) H. E. Zimmerman, H. M. Sulzbach, M. B. Tollefson, J. Am. Chem. Soc. 1993,     |
|    | 115, 6548. e) J. R. Scheffer, Y. Yang in CRC Handbook of Organic                 |
|    | Photochemistry and Photobiology (Hrsg.: W. M. Horspool, PS. Song), CRC           |
|    | Press, Boca Raton, 1995, 204. f) C. O. Bender, S. S. Shugarman, J. Chem. Soc.,   |
|    | Chem. Commun. 1974, 934.                                                         |
| 26 | a) K. M. Janz, J. R. Scheffer, Tetrahedron Lett. 1999, 40, 8725. b) J. Chen,     |
|    | J. R. Scheffer, J. Trotter, Tetrahedron 1992, 48, 3251. c) A. D. Gudmunsdottir,  |
|    | J. R. Scheffer, Photochem. Photobiol. 1991, 54, 535. d) A. D. Gudmundsdottir,    |
|    | J. R. Scheffer, Tetrahedron Lett. 1990, 31, 6807.                                |
| 27 | H. Ihmels, M. Schneider, M. Waidelich, Org. Lett. 2002, 4(19), 3247.             |
| 28 | a) N. C. Yang, D. H. Yang, J. Am. Chem. Soc. 1958, 80, 2913. b) P. Wagner, B     |
|    | S. Park in Organic Photochemistry (Hrsg.: A. Padwa), Marcel Dekker, New          |
|    | York, 1991, Vol. 11, Kapitel 4. c) K. Vishnumurthy, E. Cheung, J. R. Scheffer,   |
|    | C. Scott, Org. Lett. 2002, 4(7), 1071.                                           |
| 29 | a) M. Leibovitch, G. Olovsson, J. R. Scheffer, J. Trotter, J. Am. Chem. Soc.     |
|    | 1998, 120, 12755. b) F. D. Lewis, R. W. Johnson, D. R. Kory, J. Am. Chem. Soc.   |
|    | <b>1974</b> , <i>96</i> , 6100.                                                  |

| 30 | a) C. J. Pederson, H. K. Frensdorff, Angew. Chem. 1972, 84, 16. b) H. Feuer,  |
|----|-------------------------------------------------------------------------------|
|    | J. Hooz in Chemistry of the Ether Linkage, (Hrsg.: S. Patai), Interscience,   |
|    | London, 1967, 445. c) F. De Jong, D. N. Reinhoudt, R. Huis, Tetrahedron Lett. |
|    | <b>1977</b> , <i>45</i> , 3985.                                               |
| 31 | M. Mühlebach, M. Neuenschwander, P. Engel, Helv. Chim. Acta 1993, 76, 2089.   |
| 32 | A. Anantanarayan, H. Hart, J. Org. Chem. 1991, 56, 991.                       |
| 33 | H. G. O. Becker, W. Berger, G. Domschke, E. Fanghänel, J. Faust, M. Fischer,  |
|    | F. Gentz, K. Gewald, R. Gluch, R. Mayer, K. Müller, D. Pavel, H. Schmidt,     |
|    | K. Schollberg, K. Schwetlick, E. Seiler, G. Zeppenfeld in Organikum,          |
|    | 21. Auflage, Wiley-VCH, Weinheim, 2001.                                       |
| 34 | R. J. Graham, L. A. Paquette, J. Org. Chem. 1995, 60, 5770.                   |
| 35 | R. R. Hautala, R. H. Hastings, J. Am. Chem. Soc. 1978, 100, 648.              |
| 36 | P. E. Stott, J. S. Bradshaw, J. Org. Chem. 1980, 45, 4716.                    |
| 37 | a) K. A. Connors in <i>Binding Constants</i> , Wiley & Sons, New York, 1987.  |
|    | b) C. S. Wilcox in Frontiers of Supramolecular Chemistry and Photochemistry   |
|    | (Hrsg.: H. J. Schneider, H. Dürr), VCH, Weinheim, 1991, 123.                  |
| 38 | a) D. A. Evans, A. M. Golob, J. Am. Chem. Soc. 1975, 97, 4765. b) O. Papies,  |
|    | W. Grimme, Tetrahedron Lett. 1980, 21, 2799. c) M. E. Bunnage,                |
|    | K. C. Nicolaou, Chem. Eur. J. 1997, 3(2), 187.                                |
| 39 | C. Walling, B. B. Jacknow, J. Am. Chem. Soc. 1960, 82, 6108.                  |
| 40 | J. M. Coxon, B. Halton in Organic Photochemistry, Cambridge University Press, |
|    | London, <b>1987</b> .                                                         |
| 41 | N. J. Turro in Modern Molecular Photochemistry, University Science Books,     |
|    | Sausalito, 1991.                                                              |
| 42 | C. Reichhardt, Angew. Chemie 1979, 91, 119.                                   |
| 43 | J. Hino, J. C. Craig, J. G. Underwood, F. A. Via, J. Am. Chem. Soc. 1970, 92, |
|    | 5194.                                                                         |
| 44 | W. Horspool, D. Armesto in Organic Photochemistry (Hrsg.: E. Horwood), Elis   |
|    | Horwood PTR Prentice, Chinchester, 1992, Kapitel 5.2.2.2.                     |
| 45 | a) M. Yoshizawa, T. Kusukawa, M. Fujita, K. Yamaguchi, J. Am. Chem. Soc.      |
|    | 2000, 122(26), 6311. b) T. Poon, N. J. Turro, J. Chapman,                     |
|    | P. Lahshminarasimhan, X. Lei, W. Adam, S. G. Bosio, Org. Lett. 2003, 5(12),   |
|    | 2025.                                                                         |

| 46 | P. E. A. Corvillo, Universidad Politécnica de Valencia, Spanien, persönliche |
|----|------------------------------------------------------------------------------|
|    | Mitteilung, 2003.                                                            |
| 47 | Siehe beispielsweise: Z. Tang, F. Jiang, LT. Yu, X. Cui, LZ. Gong, A. Qiao,  |
|    | YZ. Jiang, YD. Wu, J. Am. Chem. Soc. 2003, 125, 5262.                        |
| 48 | F. D. Lewis, R. W. Johnson, D. R. Kory, J. Am. Chem. Soc. 1974, 96, 6100.    |
| 49 | a) B. Valeur in Topics of Fluorescence Spectroscopy (Hrsg.: J. R. Lakowics), |
|    | Plenum Press, New York, 1994, Vol. 4, Kapitel 2. b) G. Barret, D. Corry,     |
|    | B. S. Creaven, B. Johnston, M. A. McKervey, A. Rooney, J. Chem. Soc.,        |
|    | Chem. Commun. 1995, 363.                                                     |
| 50 | J. Leonard, B. Lygo, G. Procter in Praxis der Organischen Chemie (Hrsg.:     |
|    | G. Dyker), VCH, Weinheim, 1996.                                              |
| 51 | A. Merz, M. Eichner, R. Tomahogh, Liebigs Ann. Chem. 1981, 10, 1774.         |
| 52 | A. Gensler, M. Rockett, J. Am. Chem. Soc. 1952, 74, 4451.                    |
|    |                                                                              |

# Kristallographische Daten des Dibenzobarrelens 2c

| $C_{18}H_{16}O_2$                                  |
|----------------------------------------------------|
| 246.29                                             |
| $0.05 \times 0.07 \times 0.4$                      |
| orthorhombisch                                     |
| Cmc2(1)                                            |
| 1376.7(2)                                          |
| 1204.45(18)                                        |
| 785.37(12)                                         |
| 90                                                 |
| 90                                                 |
| 90                                                 |
| 1.3023(3)                                          |
| 4                                                  |
| 1.256                                              |
| 520                                                |
| 0.076                                              |
| 2.96 to 25.08°                                     |
| 1194                                               |
| 1194 [R(int) = $0.0000$ ]                          |
| Vollmatrix (kleinste Quadrate von F <sup>2</sup> ) |
| SHELXS-97 (Sheldrick, 1997)                        |
| 1.242                                              |
| R1 = 0.0546, $wR2 = 0.1158$                        |
| R1 = 0.0564, wR2 = 0.1167                          |
|                                                    |

<sup>a</sup>  $RI = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$ 

<sup>b</sup> 
$$wR2 = \sqrt{\frac{\sum w(F_0^2 - F_c^2)^2}{\sum w(F_0^2)^2}}$$
;  $w = \frac{1}{\sigma^2(F_0^2) + (g_1P)^2 + g_2P}$ ;  $P = \frac{[\max(F_0^2, 0) + 2F_c^2]}{3}$ 

#### DANKSAGUNG

An erster Stelle möchte ich mich bei Prof. Dr. H. Ihmels für die Freiheit bei der Wahl des Themas und der wissenschaftlichen Betreuung während der Arbeit bedanken. Besonders schätze ich die Ermöglichung der Auslandsaufenthalte und Tagungsbesuche und das dabei entgegengebrachte Vertrauen. Auch die zügige und unkomplizierte Korrektur der Manuskripte aus dem "fernen Siegen" war mir eine große Hilfe.

Después, quisiera agradecer Prof. Dr. H. García para darme la oportunidad de trabajar en el Instituto de Tecnología Química en una colaboración interesante y fructifera. Además doy las gracias a todos los que me ayudaron allí, especialmente al grupo de Prof. García.

Für die Bereitstellung des Laborplatzes und der -ausstattung in der Endphase sowie für die nette Aufnahme danke ich Prof. Dr. F. Würthner und seinem Arbeitskreis. Den Mitarbeitern des Arbeitskreises Stalke danke ich für die Einweisung und Unterstützung bei der Durchführung von Röntgenstrukturanalysenmessungen. Prof. Dr. G. Bringmann und insbesondere seinem Mitarbeiter Michael Dreyer danke ich für die Möglichkeit zur Nutzung der HPLC-Anlage.

Den beiden Azubis Nesrin Toptan und André Schuster schulde ich besonderen Dank für ihre motivierte Mitarbeit an meinen Projekten. Ebenso danke ich Matthias Büttner und Michael Schneider für ihren Beitrag zu dieser Arbeit.

Vielen Dank auch an Thomas Stoll, Matthias Hümmer, Stefanie Krauß, Johann Schmidt, Rainer Dobrawa, Michael Waidelich und Daniela Otto für die Unterstützung bei der Verbesserung der Manuskripte. Allen Mitgliedern unseres Arbeitskreises, insbesondere Katja Faulhaber, danke ich für die freundschaftliche Arbeitsatmosphäre und den gemeinsamen Spaß auch außerhalb des Universitätsalltags.

Für die großzügige finanzielle Förderung danke ich dem Fonds der Chemischen Industrie und dem Deutschen Akademischen Austauschdienst.

Schließlich möchte ich Thomas für sein Verständnis und seine tatkräftige und moralische Unterstützung besonders in den letzten Wochen danken.

Ein besonderer Dank gilt auch meinen Eltern, die mich während meines ganzen Studiums nicht nur finanziell unterstützt und gefördert haben. Ohne ihre Hilfe wäre Vieles sicherlich nicht möglich gewesen.

### LEBENSLAUF

### PERSÖNLICHE DATEN

- Name <u>Kathrin</u> Gisela Wissel
- Adresse Freigerichtstraße 11, 63450 Hanau
- Geburtsdatum 12.05.1977
- Geburtsort Alzenau
- Familienstand ledig
- Nationalität deutsch

#### AUSBILDUNG

| • | seit 09/01  | Doktorarbeit am Institut für Organische<br>Chemie, Würzburg, unter Leitung von<br>Prof. Dr. H. Ihmels                                                                                                                                           |
|---|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • | 11/96-08/01 | Studium der Chemie an der Universität<br>Würzburg mit Abschluß Diplom, Diplomarbeit<br>unter Leitung von Prof. Dr. W. Adam, Thema:<br>"Photoinduced 1,3-Aryl Migration of Benzyl-<br>Substituted Ketones in Solution and in the<br>Solid State" |
| • | 09/93-07/96 | Hohe Landesschule Hanau (Gymnasium)                                                                                                                                                                                                             |
| • | 09/89-07/93 | Edith-Stein-Realschule Alzenau                                                                                                                                                                                                                  |
| • | 09/87-07/89 | Teilhauptschule Schimborn                                                                                                                                                                                                                       |
|   | 09/83-07/87 | Grundschule Gunzenbach                                                                                                                                                                                                                          |

#### PRAKTIKA UND AUSLANDSERFAHRUNGEN

| • | 09,10/2003    | Forschungsaufenthalt an der Universidad<br>Politécnica de Valencia (Spanien)                                           |
|---|---------------|------------------------------------------------------------------------------------------------------------------------|
| • | 11/00-07/01   | Durchführung der praktischen Arbeiten zur<br>Diplomarbeit an der University of British<br>Columbia, Vancouver (Kanada) |
| • | 03,07,08/1999 | Praktikum im Bereich F&E, Feinchemikalien,<br>der Degussa-Hüls AG, Hanau-Wolfgang                                      |
| • | 08,09/1997    | Betriebspraktikum in der Analytikabteilung der<br>Heraeus Holding GmbH, Hanau                                          |
| • | 09/1996       | Praktikum in der School of Chemistry,<br>University of Bristol (England)                                               |

### STIPENDIEN UND AUSZEICHNUNGEN

| • 01/02-02/04                 | Doktorandenstipendium des Verbands der<br>Chemischen Industrie (VCI)                               |
|-------------------------------|----------------------------------------------------------------------------------------------------|
| • 09,10/03                    | Stipendium des Deutschen Akademischen<br>Austauschdienstes (DAAD) für den Aufenthalt<br>in Spanien |
| <ul><li>07/02</li></ul>       | Fakultätspreis der Universität Würzburg                                                            |
| <ul><li>11/00-07/01</li></ul> | Stipendium des Fonds Internationale<br>Hochschule für den Aufenthalt in Kanada                     |

# LEHRTÄTIGKEITEN

| • 04/03-06/03                 | Betreuung des Tutoriums zum organisch-<br>chemischen Praktikum I für Studenten des<br>Lehramts an Gymnasien |
|-------------------------------|-------------------------------------------------------------------------------------------------------------|
| <ul><li>02/03-03/03</li></ul> | Betreuung eines Studenten im<br>Fortgeschrittenenpraktikum                                                  |
| <ul><li>11/02-02/03</li></ul> | Betreuung des chemischen Grundpraktikums<br>für Studenten der Medizin                                       |
| • 04/02-07/02                 | Betreuung des Tutoriums zum organisch-<br>chemischen Praktikum I für Studenten der<br>Chemie                |

### ZUSATZQUALIFIKATION

| • seit 11/01 | Durchführung von Röntgenstrukturanalysen- |
|--------------|-------------------------------------------|
|              | messungen                                 |

### PUBLIKATIONSLISTE

#### Beiträge in Fachzeitschriften:

- "Synthesis and Investigation of the DNA-Binding and DNA-Photodamaging Properties of Indolo[2,3-b]quinolizinium Bromide", H. Ihmels, K. Faulhaber, K. Wissel, G. Bringmann, K. Messer, G. Viola, D. Vedaldi, *Eur. J. Org. Chem.* 2001, 1157.
- "The Influence of the Substituition-Pattern of Acridizinium-Salts on the Regioselectivity of the Solid-State Photodimerization", H. Ihmels, S. Bosio, M. Bressanini, A. Schmitt, K. Wissel, D. Leusser, D. Stalke, *Mol. Cryst. Liq. Cryst.* 2003, *390*, 105.
- "6-Aminoacridizinium Bromide: a Fluorescence Probe which lights up in AT-rich Regions of DNA", H. Ihmels, K. Faulhaber, K. Wissel, G. Viola, D. Vedaldi, *Org. Biomol. Chem.* 2003, 2999.

#### **Poster:**

 "Photoinduzierte Decarbonylierung von Triphenylmethyl-substituierten Ketonen", XVII Vortragstagung der Fachgruppe Photochemie der GdCh in Mülheim/Ruhr, Deutschland, 07.-09. April 2003.

#### Vorträge:

 "Medium-Dependent Selectivity in Photoreactions of Dibenzobarrelene Derivatives", XVI<sup>th</sup> International Conference on the Chemistry of the Organic Solid State in Sydney, Australien, 13.-18. Juli 2003.

# STRUKTURTAFEL











