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I. Zusammenfassung 
 

Bislang wurden die kompletten Genomsequenzen von mehr als 100 Bakterien ermittelt. Mehr 

als ein Drittel dieser Organismen wird als pathogen eingestuft. Die Verfügbarkeit dieser 

Sequenzinformation vergrößert unser Wissen über die bakterielle Genomstruktur und –

plastizität sowie über mikrobielle Diversität und Evolution. Diese Daten bilden die Grundlage 

für viele Fortschritte auf dem Gebiet der Biotechnologie, der industriellen-, Umwelt- und 

medizinischen Mikrobiologie: neuartige Typisierung-, Diagnostik- und Therapieansätze sowie 

die Entwicklung neuer Medikamente und Impfstoffe basieren auf und profitieren von der 

ständig zunehmenden Menge an DNA-Sequenzen. Genomanalysen sind zusammen mit 

anderen molekularbiologischen Methoden wie PCR, DNA-Chiptechnologie, subtraktive 

Hybridisierung und Proteomanalysen von zunehmender Bedeutung für die Erforschung von 

Infektionskrankheiten und das öffentliche Gesundheitswesen. 

Ziel dieser Arbeit war die Analyse der Genomstruktur und des Genominhaltes des 

apathogenen Escherichia coli Stammes Nissle 1917 (O6:K5:H1) und der Vergleich mit 

verfügbaren Daten verschiedener pathogener und apathogener E. coli Stämme sowie anderer 

eng-verwandter Spezies. Eine Cosmid-Genbank des Stammes Nissle 1917 wurde nach Klonen 

durchsucht, die für Fitnessfaktoren kodieren, welche zur erfolgreichen Kolonisierung des 

menschlichen Verdauungstraktes und zum probiotischen Charakter dieses Stammes beitragen. 

Vier genomische Inseln (GEI I-IVNissle 1917) wurden nachgewiesen und charakterisiert. Auf 

diesen GEIs befinden sich verschiedene bekannte Fitness-Determinanten (mch/mcm, foc, iuc, 

kps, ybt), bislang nicht charakterisierte ORFs, mobile genetische Elemente und bislang für den 

Stamm Nissle 1917 nicht beschriebene Gene, die möglicherweise zur Fitness und 

Adaptabilität dieses Stammes beitragen. Die GEIs I-IVNissle 1917 sind jeweils mit einem tRNA-

Gen assoziiert und ähneln hinsichtlich ihrer Struktur und chromosomalen Lokalisation 

entsprechenden Inseln im Genom des uropathogenen E. coli Stammes CFT073 

(O6:K2(?):H1). Interessanterweise fehlen auf diesen wichtige Virulenzgene uropathogener E. 

coli (hly, cnf, prf/pap). Eine etwa 30 kb große Region der GEI IINissle 1917, die von IS2 

Elementen flankiert wird, kann spontan deletieren, was zum Verlust verschiedener 

Fitnessdeterminanten (iuc, sat, iha) führt. Darüber hinaus wurde der chromosomale 

Sequenzkontext von tRNA-Genen mittels PCR auf die Integration von „Fremd-DNA“ hin 

untersucht, die durch horizontalen Gentransfer erworben wurde (tRNA Screening), und mit 

denen anderer apathogener und pathogener E. coli Stämme verglichen. Der genomweite 

Anteil an tRNA-Gen-assoziierter, möglicherweise horizontal erworbener DNA, die im 
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apathogenen E. coli K-12 Stamm MG1655 fehlt, unterschied sich dabei nicht bedeutend im 

Stamm Nissle 1917 und den uropathogenen E. coli O6 Stämmen CFT073 und 536. Die 

Verbreitung von DNA-Regionen der GEIs des Stammes Nissle 1917 wurde mittels PCR bei 

apathogenen E. coli-Isolaten sowie bei uropathogenen E. coli O6:K5-Isolaten untersucht. Nur 

zwei UPEC O6:K5-Isolate enthielten alle GEI-Bereiche, die in diese Untersuchung 

einbezogen waren, unterschieden sich jedoch vom Stamm Nissle 1917 durch ihre Phänotypen. 

Die Makrorestriktionsanalyse der Genomstruktur des E. coli Stammes Nissle 1917 zeigte, daß 

letztere der des uropathogenen E. coli Stammes CFT073 sehr ähnelt. 

Um die Ursache für den semi-rauhen Phänotyp des Stammes Nissle 1917 zu untersuchen, 

wurden die wa* und wb* Determinanten dieses Stammes, die für die LPS-Biosynthese 

verantwortlich sind, kloniert und sequenziert. Das bislang unbekannte Serotyp O6-spezifische 

O-Antigenpolymerase-kodierende Gen wzy des Stammes Nissle 1917 wurde charakterisiert 

und mit dem des rauhen O6 Stammes 536 verglichen. Eine Punktmutation, die zu einem 

vorzeitigen Translationsstop der wzy-Transkripte des Stammes Nissle 1917 führt, wurde als 

Ursache für den semi-rauhen Phänotyp und damit auch die Serumsensitivität dieses Stammes 

verantwortlich gemacht. 

Zur Untersuchung der Kolonisierungsfähigkeit des E. coli Stammes Nissle 1917 wurden 

verschiedene Faktoren, die an der Biofilmbildung bzw. am multizellulären Verhalten beteiligt 

sind, sequenziert und näher analysiert. Die Seqenzierung der fim Determinante zeigte, daß das 

fimB Gen, das für die Expression der Typ 1-Fimbrien benötigt wird, durch die Insertion eines 

IS-Elementes inaktiviert wurde. Untersuchungen zum multizellulären Verhalten zeigten, daß 

der Stamm Nissle 1917 den sogenannten „rdar“ Morphotyp, hervorgerufen durch Expression 

von Curli-Fimbrien und Cellulose, bei 30 °C und bei 37 °C exprimiert, nicht jedoch die 

uropathogenen E. coli Stämme 536 und CFT073. Das Cellulosebiosynthese-Operon (bcs) 

sowie das Gen rfaH, das für einen Transkriptionsantiterminator kodiert, wurden im Stamm 

Nissle 1917 inaktiviert, um deren Bedeutung für den „rdar“ Morphotyp zu untersuchen. 

Während Cellulose für die Expression des „rdar“ Morphotyps benötigt wird, hatte die rfaH-

Inaktivierung keinen Einfluß auf dieses mulizelluläre Verhalten des E. coli Stammes Nissle 

1917. 

Die Ergebnisse dieser Arbeit zeigen, daß der apathogene E. coli Stamm Nissle 1917 durch 

eine spezifische Kombination phänotypischen Eigenschaften gekennzeichnet ist, die ihn von 

anderen bislang untersuchten E. coli Stämmen unterscheidet. An der Evolution dieses 

Stammes, möglicherweise aus einem pathogenen „Vorfahren“, waren vielfältige Gentransfer- 

und Deletionsprozesse sowie Punktmutationen beteiligt. 
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I. Summary 
 

In the last years more than one hundred microbial genomes have been sequenced, many of 

them from pathogenic bacteria. The availability of this huge amount of sequence data 

enormously increases our knowledge on the genome structure and plasticity, as well as on the 

microbial diversity and evolution. In parallel, these data are the basis for the scientific 

“revolution” in the field of industrial and environmental biotechnology and medical 

microbiology – diagnostics and therapy, development of new drugs and vaccines against 

infectious agents. Together with the genomic approach, other molecular biological methods 

such as PCR, DNA-chip technology, subtractive hybridization, transcriptomics and 

proteomics are of increasing importance for research on infectious diseases and public health. 

The aim of this work was to characterize the genome structure and -content of the probiotic 

Escherichia coli strain Nissle 1917 (O6:K5:H31) and to compare these data with publicly 

available data on the genomes of different pathogenic and non-pathogenic E. coli strains and 

other closely related species. A cosmid genomic library of strain Nissle 1917 was screened for 

clones containing the genetic determinants contributing to the successful survival in and 

colonization of the human body, as well as to mediate this strain’s probiotic effect as part of 

the intestinal microflora. Four genomic islands (GEI I-IVNissle 1917) were identifed and 

characterized. They contain many known fitness determinants (mch/mcm, foc, iuc, kps, ybt), 

as well as novel genes of unknown function, mobile genetic elements or newly identified 

putative fitness-contributing factors (Sat, Iha, ShiA-homologue, Ag43-homologues). All 

islands were found to be integrated next to tRNA genes (serX, pheV, argW and asnT, 

respectively). Their structure and chromosomal localization closely resembles those of 

analogous islands in the genome of uropathogenic E. coli strain CFT073 (O6:K2(?):H1), but 

they lack important virulence genes of uropathogenic E. coli (hly, cnf, prf/pap). Evidence for 

instability of GEI IINissle 1917 was given, since a deletion event in which IS2 elements play a 

role was detected. This event results in loss of a 30 kb DNA region, containing important 

fitness determinants (iuc, sat, iha), and therefore probably might influence the colonization 

capacity of Nissle 1917 strain. 

In addition, a screening of the sequence context of tRNA-encoding genes in the genome of 

Nissle 1917 was performed to identify genome wide potential integration sites of “foreign” 

DNA. As a result, similar “tRNA screening patterns” have been observed for strain Nissle 

1917 and for the uropathogenic E. coli O6 strains (UPEC) 536 and CFT073.  
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The molecular reason for the semi-rough phenotype and serum sensitivity of strain Nissle 

1917 was analyzed. The O6-antigen polymerase-encoding gene wzy was identified, and it was 

shown that the reason for the semi-rough phenotype is a frame shift mutation in wzy, due to 

the presence of a premature stop codon. It was shown that the restoration of the O side-chain 

LPS polymerization by complementation with a functional wzy gene increased serum-

resistance of strain Nissle 1917. 

The results of this study show that despite the genome similarity of the E. coli strain Nissle 

1917 with the UPEC strain CFT073, the strain Nissle 1917 exhibits a specific set of geno- and 

phenotypic features which contribute to its probiotic action. 

By comparison with the available data on the genomics of different species of 

Enterobacteriaceae, this study contributes to our understanding of the important processes 

such as horizontal gene transfer, deletions and rearrangements which contribute to genome 

diversity and -plasticity, and which are driving forces for the evolution of bacterial variants. 

At last, the fim, bcs and rfaH determinats whose expression contributes to the mutlicellular 

behaviour and biofilm formation of E. coli strain Nissle 1917 have been characterized. 
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II. Introduction 

 
1. Microbial genome research 
 
Since 1995, when the genome of the Haemophilus influenzae was completely 

sequenced (Fleischmann, et al., 1995), hundreds of microbial genomes from 

prokaryotic, as well as eukaryotic microorganisms, have been sequenced. These data 

are of crucial importance for diagnostics and therapy of infectious diseases, for the 

development of vaccines and the identification of novel target genes. Moreover, the 

increasing knowledge on bacterial genome structure and “comparative genomics” 

improves our understanding on the driving forces of microbial evolution like 

horizontal gene transfer, deletion formation, recombination, which result in 

development of new bacterial species or variants. 

In some cases, the genome of several strains of one bacterial species have been 

sequenced. The complete genome sequence of the E. coli K-12 laboratory strain 

MG1655 gives an idea on the genome structure of a non-pathogenic, commensal 

microorganism, which has lost many phenotypic features due to the decades of 

laboratory cultivation. Later on, several genomes of pathogenic E. coli strains have 

been sequenced: two from enterohaemorrhagic E. coli (EHEC) strains (EDL933 and 

“Sakai”; Perna et al., 2001; Hayashi et al., 2001) and one uropathogenic E. coli 

(UPEC) isolate (CFT073; Welch et al., 2002). The comparison of these three genomes 

revealed an unexpectedly extensive mosaic genome structure within the E. coli 

species, where only 39.2 % of the predicted proteins are shared by all of the 

investigated E. coli types (Fig. 1; Welch et al., 2002), which suggests that horizontal 

gene transfer and acquisition of foreign DNA elements played and important role 

during the evolution and adaptation of these variants.  

Similarly, the genomes of two Helicobacter pylori strains from different sources have 

been sequenced, namely of the isolate 26695 (Tomb et al., 1997) from duodenum 

ulcer and of strain J99 (Alm et al., 1999) isolated from a gastritis patient. 

Interestingly, 5.9 % of the identified ORFs in J99 and 7.3 % in 26695 were strain 

specific.  

In addition to the whole-genome sequencing approach, increasing data from the 

sequence analysis of partial genomes from different bacterial species is accumulating. 

The use of e. g. genomic libraries, specific PCR amplification products and of 
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subtractive hybridization techniques made it possible to characterize several 

“pathogenicity islands” of the UPEC strain 536, which contain various virulence-

associated factors and which are located in different positions of this strain’s 

chromosome (Dobrindt et al., 2002). In other studies, the “long-distance” PCR 

approach has been used to characterize extremely divergent gene clusters, encoding 

the enzymes involved in the LPS side-chain biosynthesis, which are always localized 

at a conserved chromosomal region (Paton et al., 1999; Marolda et al., 1998; Wang et 

al., 1998; Wang et al., 1998).  
In order to create an integrated picture of the genome organization, the sequence data 

can be combined with a physical map of the bacterial chromosome, using rare-cutting 

restriction endonucleases and pulsed-field gel electrophoresis, thus avoiding the 

expensive and time consuming whole genome sequencing approach. In such a way 

and with the help of mini transposon insertions, an integrated genomic map of the 

UPEC strain J96 has been created (Lyla et al., 2000). 
 

Fig. 1: Comparison of the number of predicted 
proteins shared by three E. coli strains (MG1655, 
CFT073, EDL933). The number of orthologs in 
each shared category and the numbers of strain-
specific proteins are given. Total number of 
proteins counted: MG1655, 4288; CFT073, 5016; 
EDL933, 5063 (modified from Welch et al., 
2002). These data are based on the complete 
genome sequence of the corresponding E. coli 
strains. 
 

 

 

One result of the availability of genome sequence data, the DNA-chip technology was 

developed, which allows genome comparison of multiple isolates. Thousands of 

specific PCR products or synthetic oligonucleotides are immobilized in an ordered 

manner on special matrices and hybridized with labeled genomic DNA from the 

investigated strains, resulting in a whole genome overview of the presence of genes of 

a particular reference genome. This approach gives the opportunity to study the 

distribution of specific genetic features associated with metabolic functions or 

infectious diseases.  

Furthermore, the DNA array technology enables genome-wide studies on 

transcription (“transcriptomics”). After hybridization with isolated RNA or cDNA, 

the global transcription profile of a distinct strain can be studied, in response to 
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different environmental conditions. The effect of mutations on the “transcriptome” 

can also be investigated (Marshall and Hodgson, 1998; Harrington et al., 2000). In 

this way, the regulation of metabolic pathways, as well as the cellular stress response, 

the adaptation to different environmental niches, or bacteria-host cell interaction can 

be examined on the transcriptional level. A commercially available DNA array 

containing probes specific for all translated ORFs identified in the genome of E. coli 

strain MG1655 was used to examine the differential gene expression of E. coli in 

minimal medium versus LB (Tao et al., 1999). DNA macroarray, containing probes 

specific for most of the genes encoding for virulence factors of different 

extraintestinal and intestinal pathotypes of E. coli and Shigella, enabled large scale 

epidemiological studies, as well as global examination of virulence gene regulation in 

UPEC strain 536 (Dobrindt et al., 2003; Michaelis, K., Dobrindt, U., unpublished 

data). 

On the other hand, the proteome approach enables the investigation of the protein 

modification, as well as and post-transcriptional and post-translation regulation, using 

two-dimensional gel electrophoresis. In this way, proteins whose expression is 

affected or which undergo specific modification under certain circumstances can be 

detected and isolated. Isolated proteins can then be identified by mass spectrometry or 

by N-terminal sequencing (Van Bogelen et al., 1999). 

 

2. Horizontal gene transfer and genome plasticity 
 
Horizontal gene transfer is an important mechanism contributing to the variability of 

bacterial genomes, therefore playing a crucial role for the evolution of 

microorganisms. This process entails the incorporation of genetic information 

transfered from another organism directly into the genome where they may form 

“genomic islands”, e.g., large blocks of DNA with signatures of mobile genetic 

elements (Hacker and Carniel, 2001; Fig. 3). Based on these findings, a new concept 

of “dynamic” bacterial genomes has been developed in the last years. According to 

this view, the bacterial genome consists of two gene pools, the “flexible gene pool” 

which includes the majority of the horizontally transferred DNA, and the conserved 

“core gene pool” which mainly represents the essential genetic information (Fig. 2).  
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Fig. 2: Model of the DNA pools in the genomes of the prokaryotes (modified from Hacker and Carniel, 

2001). 

                                
 

Fig. 3: Genome evolution by means of acquisition and loss of genetic information (modified from 
Dobrindt and Hacker, 2001). 
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bacteria under particular conditions. Therefore the “flexible gene pool” is important 

for adaptation and the survival in a new ecological environment, e. g. for symbiosis, 

host-cell interaction and pathogenicity (Hentschel et al., 2000). The number of 

horizontally acquired genes may vary, from 18 % (E. coli K-12) to <1 % 

(Mycoplasma) of the total genome (Lawrence and Ochman, 1998; Ochman et al., 

2000). Typically, the laterally transfered DNA differs in the overall G+C content and 

the codon usage from that of the core genome. Since the “flexible gene pool” consists 

of DNA fragments of different origin, the G+C content varies dramatically, thus 

representing the “mosaic” structure of the newly acquired DNA elements. For 

example, within the Salmonella Pathogenicity Island 3 (SPI-3) there are a regions of 

very low G+C content, despite the fact that the overall codon usage does not differ 

significantly from those of highly expressed Salmonella genes (Blanc-Potard et al., 

1999). The lac operon in E. coli differs in the codon usage compared to the genes 

from the core genome (Ochmann et al., 1996). This demonstrates that genes, which 

are part of the species-specific “core genome” and which encode certain metabolic 

traits, might also be acquired via horizontal gene transfer. In many cases the foreign 

DNA elements are preferentially integrated at specific positions in the “core 

chromosome” (“hot-spots”). Such integration sites for lysogenic phages and other 

mobile genetic elements include highly conserved tRNA-encoding genes (Hou, 1999; 

Cheetham and Katz, 1995). For example, the high-pathogenicity island (HPI) is 

typically associated with the asnT tRNA-encoding gene in enterobacteria (Carniel et 

al., 1996), but may also insert at other asn tRNA-encoding genes of Yersinia 

pseudotuberculosis. In other cases, one specific tRNA gene represents the 

chromosomal insertion site of different types of PAIs. Thus the selC tRNA gene 

serves as an insertion site for several different pathogenicity islands in different 

enterobacterial pathotypes (Blum et al., 1994; Fleckenstein et al., 1998; Moss et al., 

1999, McDaniel et al., 1995). However, there are also examples for other 

chromosomal insertion sites than tRNA-genes such as galF of E. coli (Tarr et al., 

2000).  

Many important phenotypic characteristics of bacteria, like antibiotic resistance, 

virulence traits and particular metabolic pathways are encoded on genes located on 

horizontally transferable, mobile genetic elements like plasmids, transposons, and 

phages. For example, the tetracycline resistance determinant and its regulatory genes 

are part of the Tn10 transposon, which is able to integrate into the chromosomes of 
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different bacteria (Lawley et al., 2000). The genes encoding the enzymes responsible 

for the lipopolysaccharide (LPS) O-side chain biosynthesis of Shigella sonnei are 

located on a plasmid. This gene cluster is very similar to those of the majority of other 

E. coli O-serotypes, which are located in the “galF island” on the chromosome. The 

LEE pathogenicity island of rabbit-pathogenic enterohaemorrhagic E. coli strains 

(REPEC), is integrated at the pheU tRNA gene. This PAI was shown to be 

spontaneously excised from the chromosome. The REPEC LEE-encoded integrase is 

able to mediate the site-specific integration at the pheU tRNA in the E. coli strain 

DH1 (Tauschek et al., 2002). This demonstrates that the entire LEE island of this 

REPEC isolate represents a distinct mobile genetic element, which can be deleted 

from the chromosome, transfered and integrated into the recipient`s chromosome.. 

Together with the acquisition of foreign DNA, the loss of genetic regions can play a 

significant role for the evolution of bacteria. Big deletions in the chromosome of some 

species, termed “black holes”, are enhancing the virulence of particular strains. The 

loss of a big fragment of the chromosome of Shigella spp. and enteroinvasive E. coli, 

where a gene encoding for lysine decarboxylase (LDC) is located, contributes to their 

pathogenicity. It was shown that cadaverine, a product of the reaction catalyzed by the 

LDC, inhibits the Shigella enterotoxin activity (Maurelli et al., 1998). Since many of 

the studied genomic islands are able to delete from the chromosome with frequency 

which vary dramatically under different environmental conditions (Middendorf, et al., 

2001), it seems to be likely that the loss of DNA fragments represents an important 

adaptive mechanism for multiplying in new ecological niches or host organism. For 

instance it is tempting to speculate that such reduction of the “flexible gene pool” 

contributes to the development of a chronic urinary tract infection (UTI) caused by 

UPEC strains, since such isolates lack many of the virulence factors typical for UPEC 

strains causing acute UTIs (Dobrindt, U., Hacker, J., personal communication). 

 

3. Pathogenicity islands and genomic islands 
 
Specific genes that encode virulence factors are present in the genome of pathogenic 

members of a species but absent in non-pathogenic variants. Initially, virulence 

associated genes were thought to be solely located on horizontally transferable 

extrachromosomal elements. In the 1980s blocks of chromosomal regions were 

identified, which carry virulence genes which are exclusively associated with virulent 

strains of the species. It has been demonstrated that these regions can delete from the 
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chromosome spontaneously, indicating their mobile character and the possibility of 

horizontal gene transfer (Hacker et al., 1983; Low et al., 1984). These chromosomal 

DNA regions have been designated pathogenicity islands (PAIs). The following 

characteristics are typical of the PAIs (Hacker and Kaper, 1999): 

- PAIs carry genes encoding at least one virulence factor, including 

adhesins, invasins, iron-uptake systems, toxins, type III and type IV secretion 

systems, 

- PAIs are present in virulent but absent from non-virulent members of 

the same or closely related species, 

- PAIs often consist of DNA whose G+C content is different from that 

of the core genome, and exhibit a different codon usage relative to the 

chromosomal backbone, 

- PAIs are often flanked by direct repeats (DR), 

- PAIs are commonly associated with tRNA genes, which frequently 

represent chromosomal attachment sites of bacteriophages. PAIs often carry 

bacteriophage integrases-encoding genes, indicating that these tRNA genes 

may serve as target sites for bacteriophage-derived elements located on PAIs, 

- PAIs carry often genes coding for mobility factors like transposases 

and insertion elements, 

- PAIs are frequently unstable genetic regions and deletions may occur 

upon recombination between the DR located on both ends or via site-specific 

recombination. 

Although PAIs share common features as described above, they are considered a 

heterogeneous group of genetic elements, according to their size, structure and 

encoded functions. Often unrelated to pathogenicity genes, cryptic ORFs, 

pseudogenes and “junk DNA” are also present on PAIs. PAIs seem to undergo 

constant evolutionary changes due to acquisition and deletion of DNA regions 

resulting in very complex structure.  

In the last years, the definition of PAIs has been extended to the more general concept 

of “genomic island” (GEI). GEIs increase the bacterial fitness, either directly or 

indirectly. Thus, being positively selected they may be called “fitness islands”. They 

can be divided into several subtypes, according to their encoded traits: “ecological 

islands” in environmental bacteria, and “saprophytic islands”, “symbiosis islands”, or 

PAIs in bacteria that interact with living hosts (Hacker and Carniel, 2001). 
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 In some cases PAIs of different strains are grouped into families according to similar 

gene content and structure. This may result from a similar evolution and transfer of a 

common PAI ancestor, indicative of a similar function in different isolates (Dobrindt 

et al., 2001). Nevertheless, the localization and sequence context of similar virulence 

genes may vary considerably. There are chromosomally localized genetic 

determinants which are clearly acquired through horizontal gene transfer, but share 

only some of the features of PAIs. The O-antigen-encoding gene clusters in E. coli 

and Salmonella have very low G+C content and it is evident that they have originated 

by means of interspecies lateral transfer and by homologous recombination of 

flanking DNA regions, but only few of them are associated with pathogenicity, and 

they are present in all members of these species. 

The exact mechanism of PAI acquisition is still not clear. It is speculated that 

cointegrate structures of bacteriophages and plasmids have been acquired and 

integrated at specific sites into the chromosome through gene transfer and 

recombination. The conserved 3'- ends of tRNA genes are the most common target for 

chromosomal integration (Hou, 1999). Once integrated, those “pre-PAIs” may have 

undergone deletion events and point mutations, in mobility genes, which lead to 

stabilization of the island in the chromosome. Some PAIs are able to delete 

completely from the chromosome, such as the HPI of Yersinia pseudotuberculosis. 

The deletion occurs through homologous recombination between two flanking 17 bp 

DR at both ends of the island. The HPI encodes a homologue of the bacteriophage P4 

integrase-encoding gene int, located in the vicinity of a putative bacteriophage P4 

attachment (attP) site (Buchrieser et al., 1998). The HPI in Y. enterocolitica and E. 

coli is not mobilizable as the 17 bp DR are not present, or as the P4-like integrase 

gene is inactivated by an internal stop codon (Schubert et al., 1999; Bach et al., 1999). 

The HPI is widely distributed in the genomes of Enterobacteriaceae, such as E. coli, 

Klebsiella, Salmonella, Enterobacter and Citrobacter (Schubert et al., 1998) 

including pathogenic as well as in non-pathogenic isolates. The “core” region of this 

island contains genes required for the expression of the yersiniabactin iron uptake 

system, thus contributing to the bacterial fitness during colonization and infection. 

PAIs are also present in genomes of Gram-positive bacteria. In Staphylococcus 

aureus, a 15.2 kb island flanked by two 17 bp DR has been identified and designated 

as Staphylococcus aureus Pathogenicity Island 1 (SaPI1). The gene coding for the 

“toxic shock syndrome”-toxin 1 (tst) as well as a homologue for superantigen-
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encoding determinant are located on this PAI (Lindsay et al., 1998). This island can 

be mobilized and transfered to other genomes by the bacteriophage 80α.  

A 500 kb “symbiosis island” was identified in the genome of Mesorhizobium loti. 

This island is integrated into the phe tRNA gene and carries a P4-like integrase gene, 

IS elements, as well as the genes coding for the nitrogen fixation and tuber 

development during the symbiosis (Sullivan and Ronson, 1998). Thus this genetic 

element is considered as a “symbiosis island”, contributing to the survival of bacteria 

in a new ecological niche. 

PAIs have been initially identified in the genome of UPECs (Blum et al., 1994). In the 

genome of UPEC strain J96, at least two PAIs carrying genes coding for toxins, 

adhesins, and other virulence determinants the have been identified (Swenson et al., 

1996). They are integrated into pheR and pheV tRNA genes, and flanked by imperfect 

DR.  

 

4. Escherichia coli 
 
The Bacterium coli commune was isolated and described by Theodor Escherich from 

the feces of a normal infant in 1885 and later renamed Escherichia coli. This is a 

Gram-negative bacteria species which constitutes about 0.06 % of the normal human 

intestinal flora, as well as distributed among animals. E. coli colonizes the infant 

bowel within the first hours of life and is usually a harmless commensal member of 

the intestinal flora. In addition to non-pathogenic variants, several E. coli pathotypes 

exist which cause intestinal and extraintestinal infections of humans and animals. The 

spectrum of diseases caused by E. coli is also due to the diversity of horizontally 

acquired virulence genes, harbored on plasmids, bacteriophages or PAIs.  

The E. coli strains are serotyped on the basis of their O (somatic), H (flagellar), and K 

(capsular) surface antigen profiles (Kauffmann, 1965), where the specific 

combination of these factors defines the serotype of an isolate. E. coli strains of a 

specific serotype can be associated with certain clinical manifestations. However, the 

surface antigens alone are not considered to confer pathogenicity themselves. Rather 

there are specific clonal lineages which have served as “hosts” for horizontally 

transfered virulence genes resulting in pathogenic clones (Zingler et al., 1992).  
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4.1 Pathogroups 
 
Pathogenic E. coli strains can be subdivided in several pathotypes according to the 

disease they cause. E. coli strains causing intestinal infections (i.e., diarrheagic E. 

coli) can be subdivided in at least six pathogroups: enterohaemorrhagic (EHEC), 

enterotoxigenic (ETEC), enteropathogenic (EPEC), enteroinvasive (EIEC), 

enteroaggregative (EAEC), and diffusely adherent E. coli (DAEC). Other strains are 

responsible for extraintestinal infections: uropathogenic E. coli (UPEC), newborn 

meningitis-causing E. coli (MENEC) and septicemia-causing E. coli (SEPEC). E. coli 

is responsible for one third of all cases of neonatal meningitis with an incidence of 

0.1 per 1000 live births (de Louvois et al., 1994), where the fatality rate varies 

between 25 to 40 %. The virulence properties of MENEC strains are partially 

identical to those of SEPEC, as the development of meningitis requires preliminary 

bacteremia. Important virulence factors are K1 capsular polysaccharide, IbeA, OmpA 

and SfaII fimbriae (Korhonen et al., 1985). 

UPEC strains cause 75-90 % of all community acquired urinary tract infections 

(UTIs) and about 50  % of the nosocomial UTIs (Rubin, 1990; Svanborg and Godaly, 

1997). UTI is the most common bacterial infection in the industrialized world: in the 

USA 7 million patient visits per year are counted with total costs exceeding one 

billion dollars (Bacheller et al., 1997). As many as 50 % of the women report to have 

had at least one UTI in their lifetime (Barnett and Stephens, 1997). UTI affects either 

the bladder (cystitis) or the kidneys and their collecting systems (pyelonephritis), or 

both. The bacterial colonization of the urinary tract may be completely free of clinical 

symptoms (“asymptomatic bacteriuria”, ABU). Moreover, a pyelonephritis can be 

acute or chronic. The last case is a more complex disorder where the bacterial 

infection plays a dominant role. However, other factors like vesicourethral reflux and 

obstruction or immunodeficiency are also critically involved in pathogenesis. UTI is 

normally an ascending infection (in a less common way UTI can be an ascending 

infection through the bloodstream) where the bacteria are derived from the patient’s 

own faecal flora. The initial step of the pathogenesis is colonization of the distal 

urethra and vagina in women by enterobacteria (Sobel, 1997). From the urethra, the 

pathogens may gain entrance into the bladder. Here, when the natural defense 

mechanisms (flushing of urine, IgA, uromucoid) are overwhelmed by the virulent 

bacteria, bacterial adhesion and colonization may occur evolving into UTI. The 
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colonization of the urinary tract provokes cellular responses e. g., activation of the 

epithelial cells, secretion of cytokines and neutrophile migration into the urothelium.  

 

4.2 Virulence and fitness factors of E. coli 
 
Some of the traits of the E. coli isolates contribute to their virulence and others are 

required for their survival within the host. In this chapter, the features of UPECs will 

be mainly discussed. 

-Adhesins 

Adherence factors enable the bacteria to adhere to the epithelial cells and include 

fimbrial (fimbriae, pili) and afimbrial adhesins. The fimbriae of UPEC are thin, rod-

shaped fiber structures, which are heteropolymeric structures. The P- , type 1, S- , and 

F1C fimbriae exhibit a composite structure, consisting of a rod-shaped shaft of 6-7 nm 

in diameter comprising over a thousand major subunits and minor subunits. The 

adhesin is located at the very tip of the fimbriae, often connected with the shaft via the 

so-called adapter pilus. The role of the major subunits is yet unclear, although they 

have been proposed to be important for adherence to mammalian extracellular matrix 

proteins (Korhonen, 2000). The adhesin and some other minor subunits are 

responsible for the specific binding to carbohydrate moieties on the surface of 

eukaryotic cells, therefore contributing to specific adherence. The synthesis, export, 

correct folding and ordered assembly during the fimbrial biogenesis occurs in a co-

ordinated manner (Smyth et al., 1996). In extraintestinal pathogenic E. coli, the 

determinants coding for the P- and S- family adhesins are often located on genomic 

islands. In diarrheagenic E. coli strains, some fimbrial or fimbrial-like gene clusters 

are also located on chromosomal islands or on plasmids, but their role for the 

virulence remains unclear (Kaper and Hacker, 1999). The P-, S- and F1C-fimbriae are 

more exclusively associated with extraintestinal E. coli isolates and the tip of these 

adhesins recognize carbohydrate moieties: Galα(1-4)Gal, α-sialyl-2,3-β-galactose, and 

GalNAcβ(1-4)Galβ, respectively. These fimbriae are factors contributing to the 

virulence potential of such strains, but they are not necessarily sufficient to cause 

disease (Mobley et al., 1994). 

Most of the UPEC strains also express curli fimbriae, which are composed of only 

one polymerized subunit. It is suggested that these fimbriae play a role only in the 

early phase of infection (e.g., adherence to periurethral skin surface), since they are 

frequently expressed only at 30  °C (Olsen et al., 1993). In the last years, isolates have 
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been detected in which co-expression of curli fimbriae and cellulose production 

occurs at 30  °C as well as at 37 °C (rdar morphotype), but the importance of this trait 

for the survival and colonization in the host organism remains unclear (Zogaj et al., 

2001). The genes coding for curli fimbriae and cellulose biosynthesis are located on 

the core chromosome of E. coli (csg and bcs operons, respectively). It was 

demonstrated that curli fimbriae are able to mediate internalization by eukaryotic cells 

(Gophna et al., 2001). 

Although type 1 fimbriae are also expressed by commensal E. coli strains (encoded by 

the fim cluster, located on the core chromosome), it is one of the most important 

adhesins of UPEC. It mediates the adhesion to mannose-containing oligosaccharides 

on bladder epithelial cells and is shown to be involved in bacterial invasion (Martinez 

et al., 2000). Recently, it has been reported that type 1 fimbriae are involved in 

uroepithelial apoptosis, a characteristic phenomenon of UTI (Klumpp et al., 2001).  

Dr family adhesins, including Dr fimbriae and AFA-I and AFA-II afimbrial adhesins 

bind the Dra blood group antigens and may facilitate ascending colonization of the 

urinary tract (Nowicki et al., 1990).  

The enterohaemorrhagic and enteropathogenic (EHEC and EPEC) express the non-

fimbrial adhesion factor intimin, which is necessary for the attaching and effacing 

(A/E) phenotype during the infection. The intimin-encoding gene eae is located on the 

LEE pathogenicity island (McDaniel et al., 1995). Recently, a new adherence-

conferring factor Iha (IrgA Homologue Adhesin) was characterized in EHEC 

O157:H7 strains (Tarr, et al., 2000). The iha gene is also distributed among UPEC 

strains, but it is not always expressed e. g. in E. coli strain CFT073. 

-Toxins and bacteriocins 

Toxins are prominent virulence factors of bacterial pathogens. Three toxins play a 

major role during UTI: the cytotoxic necrotizing factor 1 (CNF1), the cytolethal 

distending toxin (CDT) and α-haemolysin. CNF1 is widely distributed in 

extraintestinal pathogens (Andreu et al., 1997) and belongs to a toxin family which 

modifies Rho, a subfamily of small GTP-binding proteins that are regulators of the 

actin cytoskeleton (Aktories, 1997). The gene for CNF1 is chromosomally located on 

different pathogenicity islands of UPEC (Blum et al., 1995; Toth et al., 2003). 

Eukaryotic cells intoxicated with CNF1 exhibit membrane ruffling, formation of focal 

adhesions and actin stress fibers and DNA replication in absence of cell division. 

CDT is a secreted protein which has the capacity to inhibit cellular proliferation by 
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inducing an irreversible cell cycle block at the G2/M position (Comayras et al., 1997). 

CDT is composed of three polypeptides (CdtA, B and C) which are all required for 

CDT activity (Elwell et al., 2001). The direct role of the toxin in uroinfection, 

however, remains to be proven. The α-haemolysin is a member of the RTX toxin 

family, which is widely disseminated among pathogenic bacteria and widely 

distributed in UPEC as well as in EHEC isolates. The hly gene cluster encoding the 

toxin and the enzymes for its biosynthesis is located on PAIs or on plasmids. The type 

I secretion pathway, a posttranslational maturation and the presence of C-terminal 

calcium binding domain are characteristics of this pore-forming toxin (Wagner et al., 

1983; Holland et al., 1990).  

In addition, the so-called autotransporter proteins are widely distributed in E. coli 

(Henderson et al., 1998). This group includes a number of serine proteases in 

Enterobacteriaceae (SPATE) which are considered to be toxins: the plasmid-encoded 

toxin (Pet) of EAEC, the protease Pic of EAEC and Shigella flexneri, EspC of EPEC, 

EspP of EHEC, Tsh of avian pathogenic E. coli, SepA of Shigella flexneri, and Sat of 

UPEC (Dutta et al., 2002). The Sat (Secreted Autotransporter Toxin) is widely 

distributed in UPEC and was shown to have cytopathic activity (elongation and 

vacuolation of eukaryotic cells). Sat-specific antibodies were found in the serum of E. 

coli-infected mice. Nevertheless the inactivation of the sat gene did not attenuate the 

the E. coli strain CFT073 (Guyer et al., 2000). All SPATEs possess a characteristic 

GDSGS serine protease motif and it is tempting to speculate that their protease 

activity may serve as peptide-providing source for the bacteria.  

The Stx toxin family (Shiga-like Toxins e. g., Stx1 and Stx2), encoded on lambdoid-

like bacteriophages in the chromosome, are the most important virulence factors of 

EHEC (Kaper and Hacker, 1999). 

Other secreted compounds, such as colicins and microcins, are also widespread 

among E. coli strains and are believed to mediate antagonistic relationships, thus 

contributing to competitiveness and the effective colonization the host. Microcins are 

peptides of a relatively small size (1.18 to 9.00 kDa). They are considered as modified 

peptide antibiotics since they are synthesized as peptide precursors which are 

subsequently modified by other proteins. They exhibit wide range of cellular targets: 

colicin B17 has been shown to be an inhibitor of the DNA gyrase (Vizàn et al., 1991), 

colicin C7 inhibits protein synthesis (Guijarro et al., 1995), and colicin V disrupts the 

membrane potential (Yang and Konisky, 1984). Microcin H47, encoded by the 
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chromosomally-located mch gene cluster, was shown to be ribosomally synthesized as 

a peptide precursor (Rodriguez et al., 1999). 

-O-, K-antigens and serum resistance 

Falkenhagen and coworkers reported that the most frequent K antigens determined in 

253 UPEC isolates are K1 and K5 (31 % and 35 % of the cases respectively); 

nevertheless more than 26 different K-antigens were identified. High prevalence of 

these two capsular serogroups is not astonishing, since both capsular oligosaccharides 

mimic human antigens, thus preventing effective immune response against bacteria 

expressing them. The K1 capsule is present in all MENEC isolates and contributes to 

the the ability to cross of the blood-brain barrier (Kim, 2002). The capsule-encoding 

kps gene clusters of E. coli are located on the chromosome as part of different 

genomic islands (Whitfield and Roberts, 1999; Welch et al., 2002). 

Lipopolysaccharide (LPS) is a key component of the outer membrane of Gram-

negative bacteria. It comprises three distinct regions: Lipid A, the oligosaccharide 

core, and commonly a long-chain polysaccharide O antigen that causes a smooth 

phenotype (Fig. 4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lipid A is the most conserved part of LPS. It is connected to the core part, which 

Fig. 4: Schematic representation of LPS structure in Gram-negative bacteria. The O side-chain 
consists of up to 40 polymerized units. 
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links it to the O repeating units (Fig. 4). In Escherichia coli, five different core 

structures (K-12 and R1-R4) have been described (Amor et al., 2000; Holst, 1999; 

Rietschel et al., 1992). The O repeating units are highly polymorphic, and more than 

190 serologically distinguished forms in E. coli are known today (Ørskov et al., 

1992). The genes coding for LPS core synthesis are located at a conserved position on 

the E. coli K-12 chromosomal map (81-82 min) (Berlyn, 1998). The wa* (formerly 

rfa) gene clusters contain the genes which code for the enzymes required for the core 

biosynthesis and assembly and consist of three operons, defined by their first genes 

gmhD, waaQ and waaA. Although the O repeating unit-encoding gene cluster (wb*, 

former rfb) is extremely polymorphic within the species E. coli, it is localized at a 

conserved position on the E. coli K-12 chromosome between the genes galF and gnd 

(45.4 min.) (Berlyn, 1998). These determinants consist of several sugar transferase-, 

epimerase- and isomerase-encoding genes, the O antigen flippase (wzx), the O antigen 

polymerase (wzy, formerly rfc) as well as the genes coding for enzymes involved in 

carbohydrate biosynthesis pathways. Until now, several E. coli O antigen-encoding 

gene clusters have been studied, e. g. those of serotypes O7, O111, O113, and O157 

(Marolda et al., 1999; Paton et al.,1998; Wang et al., 1998; Wang and Reeves, 1998). 

They show no significant nucleotide homology between each other, with the 

exception of some common genes such as manC and manB. However, they contain a 

conserved range of predicted enzyme activities. The O6 antigen is widely distributed 

among pathogenic and non-pathogenic faecal E. coli isolates and is often found in 

uropathogenic E. coli strains. Since LPS is located on the outer surface of bacterial 

cells, its expression is known to be responsible for many features of the cell surface of 

the Gram–negative bacteria, such as resistance to detergents, hydrophobic antibiotics, 

organic acids, serum complement factors, adherence to eukaryotic cells etc. 

(Goldmann, et al., 1984; Grossmann et al., 1991; Lukowski et al., 1996; Svanborg-

Edén et al., 1987; Barua, et al., 2002 ; Jacques, 1996). It has been suggested that some 

of these characteristics, especially resistance to the bactericidal effect of the 

complement system, are dependent on the length of the O side chain (Porat et al., 

1992). LPS is believed to significantly contribute to virulence by protecting bacteria 

from the bactericidal effect of serum complement (Hull et al., 1997; Reeves, 1995; 

Valvano, 1992). Moreover, it has recently been reported that the K5 capsule does not 

contribute as much to serum resistance of E. coli strains as the O antigen (Burns and 

Hull, 1998).  
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-Iron acquisition systems 

The availability of Fe(II) ions, an essential factor for bacterial growth, is limited in 

mammalian hosts. Most of the iron is located intracellularly, primarily bound to 

ferritin and chelated in haeme. Therefore bacteria have developed different 

mechanisms to release iron from host proteins. Low molecular weight chelators 

(siderophores) are secreted from E. coli. These molecules “liberate” Fe3+ ions from 

host carriers and – by recognizing specific receptors located in the bacterial outer 

membrane – transport it into the bacterial cell (Guerinot, 1994). The genes coding for 

the biosynthesis of such iron-uptake systems in E. coli may be located on plasmids or 

on the chromosome. The gene clusters encoding the enzymes for enterobactin (ent) 

and the ferric dicitrate transport system (fec) have a commonly conserved localization 

in the E. coli core genome. However the fec gene cluster has been identified to be 

PAI-encoded in Shigella flexneri (Luck et al., 2001). The iuc operon coding for 

aerobactin is either located on plasmids (pColV) or on different genomic islands, 

whereas the yersiniabactin-encoding HPI (fyu/irp) is widely distributed in 

Enterobacteriaceae and shows a rather conserved chromosomal localization at the 

asnT gene. This genetic element is able to “jump” between the asn tRNA genes in the 

chromosome of Yersinia pseudotuberculosis (Buchrieser et al., 1998). Recently, the 

chu haeme transport locus in the chromosome of EHEC O157:H7 strain has been 

characterized (Torres and Payne, 1997). This system enables the bacteria to utilize 

iron directly from the haeme and is widely distributed among UPEC isolates 

(Wyckoff et al., 1998). The iro gene cluster (coding for the enzymes required for 

salmochelin biosynthesis) first described for Salmonella enterica (Bäumler et al., 

1996) is involved in the uptake of catecholate-type siderophore compounds. The iro 

genes are widely distributed among E. coli isolates and can be chromosomally or 

plasmid-encoded (Dobrindt et al., 2003; Sorsa et al., 2003). The ability for iron 

acquisition of bacteria might be advantageous for their survival in the host organism, 

therefore it can be considered an important fitness factor.  

 

5. The Escherichia coli strain Nissle 1917 
 
The E. coli strain Nissle 1917 has been isolated by Prof. Dr. med. Alfred Nissle (1874 

– 1965), in 1917, from faeces of a non-commissioned pioneer officer, who, unlike his 

comrades had not suffered from any of the intestinal disorders then rampant in the 

region of Dobruja in south-eastern Europe (Nissle, 1918). Investigating the 
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antagonism of various E. coli strains against pathogenic intestinal bacteria, Nissle was 

the first who administered “antagonistically strong E. coli strains” to diarrhea patients. 

The Mutaflor® probiotic preparation consists of the Nissle 1917 strain (also 

designated strain DSM6601) that belongs to this group of E. coli isolates. 

The use of E. coli as a probiotic has the advantage that this microorganism is able to 

colonize successfully the human gut (Malchow et al., 1995). In early studies the 

Mutaflor® preparation exhibited antagonistic characteristics against Salmonella typhi 

(Nissle, 1925). This probiotic agent is widely used for treatment of chronic 

constipation, dyspepsia, colitis, enteritis, gastroenteritis, some cases of stomach and 

duodenum ulcers, as well as for preventing of Candida albicans intestinal infections 

after antibiotic treatment (Kruis et al., 2001; Malchow, 1997; Möllenbrink et al., 

1994; Rembacken et al., 1999; Lodnikova-Zadnikova, and Sonnenborn, 1997) . 

Roerig and Ulrich documented several cases of partially recurring UTIs that were 

treated orally with Mutaflor®. A certain beneficial effect on cancer patients is also 

observed, probably due to the restoration of normal microecological conditions in the 

gut. The E. coli strain Nissle 1917 also exhibits an inhibitory effect on Salmonella 

typhimurium invasion into epithelial cells (Ölschläger, A. T., and Altenhöfer, A., 

unpublished data). Nevertheless, the exact mechanisms of the probiotic activity of this 

strain are still unclear (Fig. 5). E. coli strain Nissle 1917 has been in part pheno- and 

genotypically characterized (Blum, et al., 1995; Tab. 1).  
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Fig. 5: Modes of action of MUTAFLOR®: application in inflammatory and functional bowel disease 
(modified from “Mutaflor®-Brief summary of therapeutic principles”, Ardeypharm GmbH). 
 

This strain does not express any of the so-called mannose-resistant haemagglutinating 

factors (MRHA) like P- or S-fimbriae, but expresses type 1 and F1C-fimbriae, which 

do not agglutinate erythrocytes. It exhibits a semi-rough O6 LPS phenotype, serum 

sensitivity and does not produce any known virulence-associated toxin. In addition, it 

produces microcins, exhibits the rdar morphotype, i. e. strongly co-expression of curli 

fimbriae and cellulose in a temperature-independent manner (30 °C and 37 °C) and 

possesses a surprisingly high number of iron-uptake systems (Tab. 1).  
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Table 1: Properties of different E. coli O6 strains and the E. coli K-12 strain MG1655 (modified from 
Blum et al., 1995; Welch et al., 2002) 

Strains and 

properties 

MG1655 

(non-pathogenic, 

laboratory) 

Nissle 1917 

(non-pathogenic, 

faecal) 

536 

(uropathogenic, 

pyelonephritis) 

CFT073 

(uropathogenic, 

urosepsis) 

Serotype K-12 

rough 

O6:K5:H1 

semi-rough 

O6:K15:H31 

smooth 

O6:K2(?):H1 

smooth 

Serum resistance - - + + 

α-haemolysin 

production 

- - + + 

CNF1 production - - - + 

P-fimbriae 

expression 

- - + + 

S-fimbriae 

expression 

- - + - 

Type1 fimbriae 

expression 

+ + + + 

F1C fimbriae 

expression 

- + - + 

Aerobactin 

expression 

- + - + 

Enterobactin 

expression 

+ + + + 

fec + + - - 

fyu/ irp - + + + 

chu - + + + 

Microcin 

production 

- + - + 

rdar morphotype 

30 °C 

37 °C 

 

- 

- 

 

+ 

+ 

 

+ 

- 

 

+ 

- 

Plasmids - +(2)1 - - 
1Blum-Oehler et al., 2003 

 

Aim of this work 

 

The aim of this work was to characterize the genome structure and genetic 

organization of determinants contributing to fitness of the E. coli strain Nissle 1917, 

and to compare them with those of the two well-studied uropathogenic E. coli O6 

strains 536 and CFTO73.  
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In the first part of the work, the genetic basis for the semi-rough phenotype of strain 

Nissle 1917 was investigated. The importance of the O6 side-chain synthesis for 

serum resistance was studied since serum sensitivity of strain Nissle 1917 is important 

in terms of biological safety and distinguishes this strain from pathogenic isolates. 

In the second part, sequence analysis and a detailed characterization of the fitness 

determinants was performed. In this context the presence of several genomic islands 

was described. Their genetic organization and localization in the chromosome as well 

as expression of the encoded genes of interest was studied and compared with 

available data of pathogenic E. coli O6 strains. These studies resulted in a deeper 

insight into the genetic background and molecular reasons for the probiotic action of 

strain Nissle 1917. 

Furthermore, the multicellular behaviour and the underlying mechanisms as a trait 

possibly associated with the probiotic character of strain Nissle 1917 were 

investigated. 
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III. Materials 

 
1. Bacterial strains 

The E. coli strains used in this work are listed in Tab. 2a and 2b. 
Table 2a: Laboratory E. coli strains used in this study 

E. coli K-12 

strain 

Characteristics Reference 

MG1655 F-, Lam-, fnr-267(del), rph-1 Blattner et al., 1997 

DH5α F-, endA 1, hsdR17(rk
-, mk

-, supE44, thi-1, 

recA1, gyrA96, λ-, ∆(argF-lac)U169 

Φ80dlacZ∆M15 

Bethesda Research 

Laboratories, 1986 

AAEC 189 ∆fim, ∆lac, recA-, endA-, hsdR-, hsdM+ Gally, et al., 1994 

Sm10 λpir Thi1, thr1, leuB6, supE44, tonA21, lacY1, 

recA::RP4-2-Tc::Mu, KmR, λpir 

Miller and Mekalanos, 

1988 

EN99 araD, ∆lac, aroB, rpsL, thi, TcR, pColV-

EN77 but no aerobactin synthesis 

Ott, M., et al., 1991 

XL1-blue SupE44, hsdR17, recA1, endA1, gyrA46, 

thi, relA1, lac-, F-(proAB+, lacIq, lacZ 

∆M15, Tn10 (tetr)) 

Bullock et al., 1987 

 
Table 2b: Laboratory and wild-type E. coli strains used in this study 

E. coli strain Characteristics Reference 

Nissle 1917  

(DSM6601, SK22) 

O6:K5:H1 ent+, iuc+, fec+, chu+, foc+, fim+, 

flagella+, microcin+ 

Nissle, 1918 

Nissle 1917  

(DSM6601, SK22) 

Smr 

O6:K5:H31 ent+, iuc+, fec+, chu+, foc+, fim+, 

flagella+, microcin+, Smr 

This study 
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Table 2b continued 

Nissle 1917 

(DSM6601, SK22) 

CR- 

O6:K5:H31 ent+, iuc+, fec+, chu+, foc+, fim+, 

flagella+, microcin+, congo red binding-

negative spontaneous mutant 

Gabor, N., 

unpublished 

Nissle 1917 

rfaH::cat 

rfaH inactivated by a cat cassette, SmR, CmR This study 

Nissle 

1917λPbla::wzy536 

wzy536 fused with Pbla integrated into the 

bacterial attachment site of the λ 

bacteriophage of Nissle 1917, ApR 

Grozdanov et 

al., 2003 

Nissle 

1917λPwb*Nissle 

1917::wzy536 

wzy536 fused with the upstream region of the 

wb*Nissle 1917 integrated into the attachment site 

of the λ bacteriophage in the chromosome of 

Nissle 1917, ApR 

Grozdanov et 

al., 2003 

Nissle 1917-wzy 536 wzyNissle 1917 replaced by wzy536 in the wb*Nissle 

1917 of the Nissle 1917 chromosome, SmR 

This study 

Nissle 1917∆bcs bcs gene cluster deleted from chromosome of 

Nissle 1917, SmR 

This study 

536 O6:K15:H31 ent+, chu+, fec-, hly+, fim+, 

sfa+, prf+, flagella+, microcin-, SmR 

Berger et al., 

1982 

536rfaH::cat Gene rfaH inactivated by a insertion of cat 

cassette, SmR, CmR 

Nagy et al., 

2000 

536-wzy Nissle 1917 wzy536 replaced by wzyNissle 1917 in wb*536 of 

the 536 chromosome, SmR 

This study 

CFT073 O6:K2(?):H1 ent+, iuc+, fec-, chu+, hly+ , 

foc+, prf/pap+, fim+, flagella+, microcin+, 

SmR 

Mobley et al., 

1990 

RZ439 O6:K5 aer+, hly-, pap/prf+, sfa/foc+, fim+ Zingler et al., 

1993 
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Table 2b continued 

RZ442 O6:K5 aer+, hly-, pap/prf+, sfa/foc+, fim+ Zingler et al., 

1993 

RZ526 O6:K5 aer
+
, hly-, pap/prf+, sfa/foc+, fim+ Zingler et al., 

1993 

RZ533 O6:K5 aer+, hly+, pap/prf+, sfa/foc+, fim+ Zingler et al., 

1993 

RZ446 O6:K53:H1 aer-, hly+, pap/prf+, sfa/foc-, 

fim+ 

Zingler et al., 

1992 

RZ537 O6:K53:H1 aer-, hly+, pap/prf+, sfa/foc-, 

fim+ 

Zingler et al., 

1992 

RZ424 O6:K14:H- aer-, hly+, pap/prf+, sfa/foc-, 

fim+ 

Zingler et al., 

1992 

RZ436 O6:K13:H1 aer-, hly+, pap/prf+, sfa/foc+, 

fim+ 

Zingler et al., 

1992 

RZ447 O6:K13:H1 aer-, hly+, pap/prf+, sfa/foc+, 

fim+ 

Zingler et al., 

1992 

RZ502 O6:K2:H- aer-, hly+, pap/prf-, sfa/foc+, 

fim+ 

Zingler et al., 

1992 

RZ496 O6:K+:H- aer-, hly+, pap/prf+, sfa/foc+, 

fim+ 

Zingler et al., 

1992 

RZ532 O6:K+:H31 aer-, hly+, pap/prf+, sfa/foc+, 

fim+ 

Zingler et al., 

1992 

RZ411 O6:K-:H1 aer-, hly-, pap/prf+, sfa/foc-, fim+ Zingler et al., 

1992 

RZ412 O6:K-:H1 aer+, hly+, pap/prf+, sfa/foc-, 

fim+ 

Zingler et al., 

1992 
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Table 2b continued 

RZ418 O6:K-:H1 aer+, hly+, pap/prf+, sfa/foc+, 

fim+ 

Zingler et al., 

1992 

RZ501 O6:K-:H1 aer+, hly-, pap/prf+, sfa/foc+, 

fim+ 

Zingler et al., 

1992 

 

2. Plasmids 

The plasmids used in this study are listed in Tab. 3. 
Table 3: Plasmids used in this study. 

Designation Description Reference 

pUC19 ApR, orif1, lacZ Yanisch-Perron et 

al., 1998 

SuperCos 1 Cosmid vector, ApR, Stratagene 

pGEM®-T Easy Cloning vector, ApR Promega 

pBluescript-II KS Cloning vector, ApR Stratagene 

pLDR8 int gene expression vector, KmR Diederich et al., 

1992 

pLDR9 Cloning vector for integration of wzy536 

into the λ-attB, KmR 

Diederich et al., 

1992 

 

pLDR11 Cloning vector for integration of wzy536  

into the λ-attB, TcR 

Diederich et al., 

1992 

pCVD442 oriR6K, mobRP4, sacB, ApR Donnenberg and 

Kaper, 1991  

pCos3YC6 Cosmid clone; insert contains the 

fimNissle1917 gene cluster, ApR 

Grozdanov et al., 

2004 

pCos8YA1 Cosmid clone; insert contains the selC 

tRNA-encoding gene and the wa*Nissle1917 

gene cluster, ApR 

Grozdanov et al., 
2004 
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Table 3 continued 
pCos9YB4 Cosmid clone; insert containing the 

iucNissle1917 gene cluster and satNissle1917, ApR

Grozdanov et al., 
2004 

pCos2YE4 Cosmid clone; insert overlaps with insert of 

pCos9YB4 and contains ihaNissle1917, ApR 

Grozdanov et al., 
2004 

pCos2RF2 Cosmid clone; insert overlaps with insert of 

pCos2YE4 and contains the K5-encoding 

kpsNissle1917 gene cluster, ApR 

Grozdanov et al., 
2004 

pCos3YE4 Cosmid clone; insert contains the 

mch/mcmNissle1917, focNissle1917 and 

iroNissle1917 gene clusters, ApR 

Grozdanov et al., 
2004 

pCos2RA4 Cosmid clone; insert overlaps with insert of  

pCos3YE4, ApR 

Grozdanov et al., 
2004 

pCos1YA7 Cosmid clone; insert contains the 

argWNissle1917 gene, ApR 

Grozdanov et al., 
2004 

pCos219 Cosmid clone; insert contains the 

glyUNissle1917 gene, ApR 

This study 

pGBC1917 PCR-amplified bcsNissle1917 gene cluster 

cloned in pGEM T®-Easy, ApR 

This study 

pSMK5 rfaH536 with CmR in pCVD442 Nagy et al., 2000 

pGDC1917 KpnI/MscI deleted bcsNissle1917 (∆ 

bcsNissle1917) gene cluster cloned in pGEM® 

T-Easy, ApR 

This study 

pCDB1917 SacI/SphI digested ∆bcsNissle1917 gene 

cluster subcloned in SacI/SphI digested 

pCVD442, ApR 

This study 

pPSD1917 7 kb-EcoRI/HindIII fragment of pCos9YB4 

containing satNissle1917 subcloned in 

EcoRI/HindIII digested pUC19, ApR 

Grozdanov et al., 

2004 

 
 
 



III. Materials                                                                                                                                                   30 

Table 3 continued 
pGLW536 wzy536 cloned into pGEM®-T Easy, ApR Grozdanov et al., 

2003 
pGLW1917 wzyNissle1917 cloned into pGEM®-T Easy, 

ApR 

Grozdanov et al., 
2003 

pCVW536 wzy536 subcloned from pGLW536 into 

SacI/SphI digested pCVD442, ApR 

This study 

pCVW1917 wzyNissle1917 subcloned from pGLW1917 

into SacI/SphI digested pCVD442, ApR 

This study 

pGWB1917 PCR-amplified wb*Nissle 1917 cloned into 

pGEM®-T Easy, ApR  

Grozdanov et al., 
2003 

pGWB536 PCR-amplified wb*536 cloned into pGEM®-

T Easy, ApR 

Grozdanov et al., 
2003 

pBWB536 wb*536 subcloned from pGWB536 into 

pBluescript-II KS, ApR 

Grozdanov et al., 
2003 

pGLG2504 PCR-amplified 2504 bp of the 5'-proximal 

region of wb*536 (including JUMPstart 

region, wzx536 and the 986 bp-fragment of 

wzy536) cloned into pGEM®-T Easy, ApR 

Grozdanov et al., 
2003 

pBLG2504 2504 bp of the 5'-proximal region of wb*536 

(including JUMPstart region, wzx536 and 

the 986 bp-fragment of wzy536) subcloned 

from pGLG2504 into EcoR-digested 

pBluescript-II KS, ApR 

Grozdanov et al., 
2003 

pGLG2849 PCR-amplified 2849 bp of the 5'-proximal 

region of wb*536 (including JUMPstart 

region, wzx536 and the 1343 bp intact 

wzy536) cloned into pGEM®-T Easy, ApR 

Grozdanov et al., 
2003 
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Table 3 continued 
pBLG2849 2849 bp of the 5'-proximal region of wb*536 

(including JUMPstart region, wzx536 and 

the 1343 bp intact wzy536) subcloned from 

pGLG2849 into EcoRI-digested 

pBluescript-II KS, ApR 

Grozdanov et al., 
2003 

pLBW1 Pbla::wzy536 cloned into EcoRI-digested 

pLDR11, TcR 

Grozdanov et al., 
2003 

pGPW1 PCR-amplified PwbNissle 1917::wzy536 cloned 

into pGEM®-T Easy, ApR 

Grozdanov et al., 
2003 

pLPW1 PwbNissle 1917::wzy536 subcloned from 

pGPW1 cloned into EcoRI-digested 

pLDR9, KmR 

Grozdanov et al., 
2003 

 

3. Oligonucleotides 

 The oligonucleotides (primers) used in this study (Tab. 4) were obtained from 

commercial sources (Sigma-ARK Oligosys or MWG Biotech GmbH). For primers not 

designed in this study, a reference is given. Primers used for amplification of PAI III536-

specific sequences are listed in section VIII, Tab. 1. 
Table 4: Primers used in this work. 
Designation Sequence (5' - 3') Binding site of the primer  (reference) 

argQ1 GCAAGGCGAGTAATCCTCC 5' of argQ (Dobrindt, U., unpublished) 

argQ2 TGCCTGAGCAATACGCCAG in yqaB (Dobrindt, U., unpublished) 

glnX1 TCGCCATGCGTTGCAGTAC in yleB (Dobrindt, U., unpublished) 

glnX2 GTAAGTGCACCCAGTTGGG 5' of glnX (Dobrindt, U., unpublished) 

lysQ1 GGCAGCATAATCCCGCAAG 5' of lysQ (Dobrindt, U., unpublished) 

lysQ2 AAGCGCGCCATTTCCAGAG in nadA (Dobrindt, U., unpublished) 

thrT1 GCCCGAGACGATAAGTTCG 5' glyT (Dobrindt, U., unpublished) 

thrT2 CGGGGTGTCGTATTCAACG in tufB (Dobrindt, U., unpublished) 

glyU1 GCACTTGCTAAGGAGAGCG 5' of glyU (Dobrindt, U., unpublished) 

glyU2 CCCTCAACCAGACAGCATC in b2863 (Dobrindt, U., unpublished) 

serU1 TCCTGGCATCATGGCAACC 5' of serU (Dobrindt, U., unpublished) 

serU2 GAATGATGCCTCGCCGCAA in yodB (Dobrindt, U., unpublished) 

asnT1 TATTCGCCCCGTTCACACG 5' of asnT (Dobrindt, U., unpublished) 

asnT2 GATACCCGCAGTTAAGCGG in b1978 (Dobrindt, U., unpublished) 
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Table 4 continued 
asnW1 ATTGTGGGTGGGCATCGCT 5' of asnW (Dobrindt, U., unpublished) 

asnW2 GCCCTTGAAGATGACGACG in b1983 (Dobrindt, U., unpublished) 

asnU1 

CGCCGTTAAGATGTGCCTC 

5' of asnU/in yeeO (Dobrindt, U., 

unpublished) 

asnU2 TTCCCGTGGTTTCGTTGGC in cbl (Dobrindt, U., unpublished) 

argW1 AGCGGGTATACTCATGCCG 5' of argW (Dobrindt, U., unpublished) 

argW2 CTTCCAGCAGTTGCATCGG in intC (Dobrindt, U., unpublished) 

argU1 CGCGATTACACCGCATTGC 5' of argU (Dobrindt, U., unpublished) 

argU2 ACATGCAGCGACGAGTTGC in intD (Dobrindt, U., unpublished) 

wrbA1 TGGTAGCGAATCGCTACGG 5' of wrbA (Dobrindt, U., unpublished) 

wrbA2 GAGATGCCCATTCACCGAC in yccJ (Dobrindt, U., unpublished) 

ssrA1 GCGGCGCGAATGAACATCT 5' of ssrA (Dobrindt, U., unpublished) 

ssrA2 AGAGTAAGCCCGTCACCGT in intA (Dobrindt, U., unpublished) 

serW1 TATAGTAGCGCCCCGTTGC 5' of serW (Dobrindt, U., unpublished) 

serW2 CTGCTGTTTGGTTCGCTGG in clpA (Dobrindt, U., unpublished) 

serT1 ATAGTGCGCGTCATTCCGG 5' of serT (Dobrindt, U., unpublished) 

serT2 TTACGTCACCCATTCCGGC in yccA (Dobrindt, U., unpublished) 

proL1 ATTAGCAGCCACGAGTCGG 5' of proL (Dobrindt, U., unpublished) 

proL2 GGGTTGACGGATTGTGGAG in yejO (Dobrindt, U., unpublished) 

proK1 TCTGCGCAGTAAGATGCGC 5' of proK (Dobrindt, U., unpublished) 

proK2 CCAAGCTTCAGCATCCCTG in dppA (Dobrindt, U., unpublished) 

pheV1 ACGAGACGAGGCGAATCAG 5' of pheV (Dobrindt, U., unpublished) 

pheV2 CCGTTGAGCGAACGGATTG in yghD (Dobrindt, U., unpublished) 

pheU1 TACGGTTTAATGCGCCCCG 5' of pheU (Dobrindt, U., unpublished) 

pheU2 ACAAGCCATTCGCCAACGC in cadC (Dobrindt, U., unpublished) 

metY1 CGGTACACCAAATCCCAGC 5' of metY (Dobrindt, U., unpublished) 

metY2 AACGGGCGTAGTGTTCAGC in yhbC (Dobrindt, U., unpublished) 

leuU1 GACCAGCGATATCCCGAAC 5' of leuU (Dobrindt, U., unpublished) 

leuU2 ACCATATGCGCTCCGGAAG in yhbX (Dobrindt, U., unpublished) 

asnV1 ATATGCGCCCCGTTCACAC 5' of asnV (Dobrindt, U., unpublished) 

asnV2 ACACTCGGCGCGAATATGC in erfK (Dobrindt, U., unpublished) 

ileY1 CCAAGGTGAATGGGAACGC 5' of ileY (Dobrindt, U., unpublished) 

ileY2 ATGAGCATAGCCACGCTCC in b2651 (Dobrindt, U., unpublished) 

proM1 GTATTTCGGCGAGTAGCGC 5' of prom (Dobrindt, U., unpublished) 

proM2 GCCGTTAGTCTGGAAGCTG in aslB (Dobrindt, U., unpublished) 

metV1 GACGCGGTGACGAATTACG in mltA (Dobrindt, U., unpublished) 

metV2 GCCGTACTAAAGGCACCAG in b2817 (Dobrindt, U., unpublished) 

leuZ1 TTCGTTCAGACGCTCTGCG in yecA (Dobrindt, U., unpublished) 

leuZ2 CAGGCTGAAAGGCCTGAAG 5' cysT, leuZ (Dobrindt, U., unpublished) 

leuV1 CCAGGCGGATAAACTCCAG in fhuF (Dobrindt, U., unpublished) 

leuV2 CGCACCAAACGAGGCGATA 5' leuV (Dobrindt, U., unpublished) 

glyY1 GTGCTGTAAGGCACAGACC 5' glyY (Dobrindt, U., unpublished) 

glyY2 TTGGTCACCTGCGTTGGCT in yjeS (Dobrindt, U., unpublished) 
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Table 4 continued 
valW1 

TTGCCACCTTCCCACTCTG 

5' of valV, yalW (Dobrindt, U., 

unpublished) 

valW2 CTGTCAGGCGAGTTTTGCC in b1667 (Dobrindt, U., unpublished) 

tyrV1 TTCACATAGACCCTGCTTCG in narI (Dobrindt, U., unpublished) 

tyrV2 CCACCATAATTCACCACAGC in tyrT (Dobrindt, U., unpublished) 

lysV1 CACCACTTTCTCGCCAGCT 5'valY (Dobrindt, U., unpublished) 

lysV2 TGATAGCGGACAGCTACGC in xapR (Dobrindt, U., unpublished) 

alaX1 ACGTAAACGCATCGTGGGG 5' of alaX (Dobrindt, U., unpublished) 

alaX2 GAGCATGACCGCAGTCTGT in yfeA (Dobrindt, U., unpublished) 

serX1 CTCTCTTGCGCATTTTGATTG 5' ycdV (Dobrindt, U., unpublished) 

serX2 AGACAGGAACGACAATTTGG 5' serX (Dobrindt, U., unpublished) 

thrW1 AAGGCCATTGACGCATCGC 5' of thrW (Dobrindt, U., unpublished) 

thrW2 CCATTTACCCCACTCAGCG in yafW (Dobrindt, U., unpublished) 

selC1 GCGTGTATTAGGCGGAAAAAAC 5' of selC (Dobrindt, U., unpublished) 

selC2 CCCTGAACTTCCCCACAAC in yicL (Dobrindt, U., unpublished) 

leuX1 GTGGCGTGCGACAGGTATA 5' of leuX (Dobrindt, U., unpublished) 

leuX2 GTTTCTCCGGCCCTAAGAC in yi21_6 (Dobrindt, U., unpublished) 

ileX1 GAACACCGACTACACGCTG 3' of rpoD (Dobrindt, U., unpublished) 

ileX2 CAGATGCAAATCCCTGCCG in yqjH (Dobrindt, U., unpublished) 

yicJ-up ATTGTGCGTCGTGAGTGAGT in yicJ (Blum-Oehler, G., personal 

communication) 

yicJ-down TTGGTTATGGCATGGGAGAC in yicJ, reverse (Blum-Oehler, G., 

personal communication) 

yicK-up AACGGCTACCACTCCATCAA in yicK, (Blum-Oehler, G., personal 

communication) 

yicK-down TAATTCCGTCAACAGAGCCG in yicK, reverse (Blum-Oehler, G., 

personal communication) 

yicL-up GTTCTGATTGCCGCCGTGTT in yicL (Blum-Oehler, G., personal 

communication) 

yicL-down ATCAGCAGCGTTCCCAGCCA in yicL, reverse (Blum-Oehler, G., 

personal communication) 

csrA-1 TTCAGCCTGGATACGCTGG in csrA 

csrA-2 GATCGTGTGAAAGCAGGGG in csrA, reverse 

csrAIPCR-1 CCAGCGTATCCAGGCTGAA in csrA, complementary to csrA-1  

csrAIPCR-2 CCCCTGCTTTCACACGATC in csrA, complementary to csrA-2  

b1976-1 CCTGGCAGGAAGCACTATC in csrA 

b1976-2 AGCGTGATGCAGTCTCTGC in csrA, reverse 

yfdC-1 CATGAGCATATCCGCCAGG in yfdC 

yfdC-2 AGTAGGTAGTGCGAAGGGC in yfdC, reverse 

fimZ-1 TATCGAGCGTTAGCCAGCG in fimZ 

fimZ-2 TTGCCGGAACAGACGGTT in fimZ, reverse 

b2865-1 TTTGGCTTGCTGCCCTGAG in b2865 

b2865-2 CAGGAACGTATTCCGGCTC in b2865, reverse 
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Table 4 continued 
yqgA-1 CTGCTCAGCCAACGCTTAC in yqgA 

yqgA-2 CCAGCAGCAATAAACCGCC in yqgA, reverse 

yejM-1 CATTCTGTCGACCCGTACG in yejM 

yejM-2 CCCAGTAATGACGGCGTTG in yejM, reverse 

yfeC-1 GCTATAGCCGCCAGACCAT in yfeC 

yfeC-2 TAGCCACACCGAGGCATTC in yfeC, reverse 

purU-1 GCGCTGTGCCAGTACTTTG in purU 

purU-2 CTCGATAGCGCATTGCCAG in purU, reverse 

ybgF-1 ACTGGTTGGTATAGCGGCC in ybgF 

ybgF-2 CACCAGCGCAATAGCTGCA in ybgF, reverse 

ybgFIPCR-1 GGCCGCTATACCAACCAGT in ybgF, complementary to ybgF-1  

ybgFIPCR-2 TGCAGCTATTGCGCTGGTG in ybgF, complementary to ybgF-2 

yeeO-1 TCCCATCCAGACACCAACC in yeeO 

yeeO-2 ATCCAGCAGCTGCCATCAC in yeeO, reverse 

yhjW-1 GCGGGATGTGACACCAGTT in yhjW 

yhjW-2 TCGTGAGCAGATTGGTCGG in yhjW, reverse 

ycdW-1 CCACCGACCACGGATTTGT in ycdW 

ycdW-2 GCCAGGTTTGCAGACTCTG in ycdW, reverse 

gltX-1 GACCGTCATAACGCGGCTT in gltX 

gltX-2 AAACTCGCTTCGCGCCAAG in gltX, reverse 

gltXIPCR-1 AAGCCGCGTTATGACGGTC in gltX, complementary to gltX-1  

gltXIPCR-2 CTTGGCGCGAAGCGAGTTT in gltX, complementary to gltX-1  

nac-1 CTGCGCCACATAACGAACG in nac 

nac-2 TATCGCACAACCAGCGCTC in nac, reverse 

proA-1 CCGATGAACTGGAAGCACAAAG in proA  

proA-2 TTTGTGTGCTTACCGCCACTTC in proA, reverse 

proAIPCR-1 CTTTGTGCTTCCAGTTCATCGG in proA, complementary to proA-1 

proAIPCR-2 AAGTGGCGGTAAGCACACAAA in proA, complementary to proA-2 

yjgB-1 ACTTTATCGGCACCCATCG in yjgB  

yjgB-2 GCATGAGGTGATTGGGCG in yjgB, reverse  

yjgBIPCR-1 CGATGGGTGCCGATAAAGT in yjgB, complementary to yjgB-1  

yjgBIPCR-2 CGCCCAATCACCTCATGC in yjgB, complementary to yjgB-2  

argQCFT073 ACACTATCCAGCAGCATACT in c3247 

glyUCFT073 GTCGCTTATCTCATCATCTG in c3442 

metVCFT073 CATTACCGTTTCCGTTTAGC in c3385, reverse 

serUCFT073 CAGAGAGTTCAGGCGTGG in c2416 

asnVCFT073 TTGGTCCTAATGGCTCAATG in c2445 

leuXCFT073 GCTGTTGAAGGCGGGAAG in c5371, reverse 

thrWCFT073 ACCTCAGGATACACACCTAG in c0391, reverse 

selCCFT073 TCTTCCTTTTTTGCCTCCCC in intC, reverse 

alaXCFT073 TCAATCCATAACGCCAACGC in yfeA 

proLCFT073 AAAGCAACAGGTGATTTCA in c2727, reverse 

aspVCFT073a CATTGTGCGTCAGGCAAGTA in dnaQ 
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Table 4 continued 
aspVCFT073b GCACAGCAACCACTATGAGG in c0253, reverse 

upxCFT073-up ATGTGCGTCGGAGTGAGTCAGAAGCC in c0360 

upxCFT073-up1 AAGAAACTCGCCAACAGAAC in c0361, reverse 

upxCFT073-down AACAACAACCTGCCACTAAACATACATTCA in c0364, reverse 

upxCFT073-down1 GGATGGATTTATGGTGGCAGT in c0363 

iha-up ATGCGAATAACCACTCTGGCTTCCG in iha  

iha-down ACTGATAGTTCAGCGACATCCCG in iha, reverse  

K5-1-up AGATGGAAGCGGACCTGCGGAACTTG in kpsE  

K5-1-down GGGGTATTGTCGAAGCCGCTCATGTTT in kpsD, reverse  

kfi-up TTTCAAAATAACATTAGTGATAAAGT in kfiD  

kfi-down TATCTTCTCTCCAGAATTTTTACG in kfiD, reverse  

K5reg3-up CTTATCGTCTGGATGGCAGGT in kpsM  

K5reg3-down CCATTACGACCAATAAAGGCAA in kpsT, reverse  

iuc-up GTATGAGCAGGTTTTCCACGC in iucC  

iuc-down TTTTCCTGCCAGACCTGACTG in iucC, reverse  

manC-up TATCATTATGGCTGGTGGTTCAGGCAGTCGGTTG in manC  

manB-down GTAGCCCTCAATAAACTGCCCTTTTTCGTCAA in manB, reverse  

Z2005-down TGATGGTGGTGGGGGAAGGAT 3' in Z2005  

Z4201-down CAGACAGCATCATAGTGGGTTTC 3' in Z4201  

Z1664-down GACAACAGGCTGACCGACTC 3' in Z1664  

Z0696-down GTAACATCATCAACGATTATCTG 3' in Z0696  

Z3672-down GGATTTAGAAGGGATACATTCAGA 3' in Z3672  

Z4314-down CGAAAGAGAGTTGTAAATCAGGGA 3' in Z4314  

Z0307-down GTATTGAAAAAACAAATCGGTAATCAT 3' in Z0307  

Z5878-down GGGATTGAAGGGGCGGAGTTC 3' in Z5878  

shiA-forw CGCCTGCAGGATGAACGATAGATTATGC shiA (Moss et al., 1999) 

shiA-rev GCGGATCCCTGATACTGGATGCTTGAATG shiA, reverse (Moss et al., 1999) 

chu1 GGTATTTATGGTTCAGTGATG upstream of shuV (Nagy, G. personal 

communication) 

chu4 TTTTCTCACTCAAATTGAACG downstream of shuS, reverse (Nagy, G. 

personal communication) 

bcs-up CTATCTGAAAACTTACCAGTCGGCGTA downstream of yhjL (This study) 

bcs-down AACGGAAAGTCAAAAAGTGAGCAAATTC upstream of yhjR (This study) 

curli 1 TGCCGCCACAATCCAGCGTAA upstream of csgD promoter (Dobrindt, 

U., unpublished) 

curli 2 CGCACCCAGTATTGTTAACATCATAAA downstream of csgD, reverse (Dobrindt, 

U., unpublished) 

curli 3 GCTATCAAAAAGCACCAGACAGTC in csgD (Dobrindt, U., unpublished) 

ygaG-up GGCTTTTTTCAATTAATTGTGAAG in ygaG (Dobrindt, U., personal 

communication) 

ygaG-down CTGGGAAGAAAGAGTTCAGAAAA in ygaG, reverse (Dobrindt, U., personal 

communication) 

ygaGIPCR-1 GCATCAACAGCAACGAAGAACTG in ygaGNissle1917-specific IPCR product  
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Table 4 continued 
ygaGIPCR-2 CTTTGTTCGGCACGCAGAAGC in ygaGNissle1917-specific IPCR product  

ygaGIPCR-uni2 ACGCCACAAGACCCTTGAGCA in ygaGNissle1917-specific IPCR product  

ygaGIPCR-rev2 TGCCTCTTCTTTTGCCTGTTG in ygaGNissle1917-specific IPCR product 

3YE4-1 CAGAGTGATGTTGTTACTTTGTTGCCT right-hand end of pCos3YE4 insert 

3YE4-2 GGACCAACAATCACAAGCAAGCGAGGA right-hand end of pCos3YE4 insert, 

reverse 

cva13 GGCATTGTTACTATGCGGTATGCAT between mcmA and mcmM, reverse 

(Patzer et al., 2003) 

cva15 TGTTCTTTTATATTCCGGTGTCATT in mcmI (Patzer et al., 2003) 

cva21 TATCCCGACGATGATTATCAGTGAC in mchE, reverse (Patzer et al., 2003) 

cva28 CTTGAACCGATAAGAAACACAGTGT between mchC and mchD (Patzer et al., 

2003) 

cva31 CTCATCTGGCAGTATTCTCCGTTTC in mchC, reverse (Patzer et al., 2003) 

cva34 TGTCTTTGTCTGGGTGAGGTCAGGT in mchX (Patzer et al., 2003) 

IS2-1 ACAGAACTTGATGGTATGCCTGCG in left-hand IS2 of GEI IINissle 1917 

ORF-2 CTCAATGCTGTTTCTGCCATCGTC in shiF (GEI IINissle 1917), reverse 

iha-1 CTGTGACTCCGTGGGATAAGGAAT in iha (GEI IINissle 1917)  

IS2-2 CTATTTCTCTGGCGTAAGCAATACC in right-hand IS2 of  GEI IINissle 1917, 

reverse 

mutaistyp-1 TTAGCGTTGGCGTAAGGCGAA in IS-element located in fimNissle 1917 

(fimB)  

mutaistyp-2 TTCCCTTACGAGATAAAAATACCC in fimANissle 1917, reverse  

GEI I-L1 CGCAAAGCCGACGATTTCACC in ORF5 of GEI INissle 1917 

GEI I-L2 TTACTGGCGTATGAAAATGCGGT in ORF5 of GEI INissle 1917, reverse 

GEI I-R1 GGAAACTGGCTACTGGACAATGC in ORF81 of GEI INissle 1917 

GEI I-R2 TCACCTGCTCCTGAATCATTGCC in ORF81 of GEI INissle 1917, reverse 

GEI II-L1 CGACAGGAGAATGACTTTATTGATG in ORF2 of GEI IINissle 1917 

GEI II-L2 CAGATTTCCGCACAGTATTTCTG in ORF2 of GEI IINissle 1917, reverse 

GEI II-R1 ACAAACCATAGCGAGATAATAAACCA in ORF75 of GEI IINissle 1917 

GEI II-R2 CAAGAACTTTTTATTTGTAATGCTGTA in ORF75 of GEI IINissle 1917, reverse 

GEI III-rev GGAAGCGGGCTCTTATATTGCGA in ORF25 of GEI IIINissle 1917, reverse 

asnT1 CACGATTCCTCTGTAGTTCA asnT (Karch et al., 1997) 

int3 TCCTTTTTCGTGTCGTAACCC int, reverse(Karch et al., 1997) 

ybtQup CGGGCGGCCTCTTCTACCT ybtQ (Karch et al., 1997) 

ybtQ1lp GCGATGCGGCGACAAATGC ybtQ, reverse (Karch et al., 1997) 

ybtEup GCAAGATAGACAAAAAAACGCC ybtE (Karch et al., 1997) 

fyuybtE GCTGACAACGGTAGACGAGA fyuA, reverse (Karch et al., 1997) 

50A ATTGATCCACCGTTTTACTC IS100 (Karch et al., 1997)  

50B CGAACGAAAGCATGAAACAA IS100, reverse (Karch et al., 1997) 

int5 ATGGAATCGGGTTTATGGG int (Karch et al., 1997) 

ybtSlp GCTATTGCTGAACTGGAGG ybtS, reverse (Karch et al., 1997) 

ybtQup GCCGCCAGTCTATCCACA ybtQ (Karch et al., 1997) 

ybtA1lp GAATCGGCCACAATAGGA ybtA, reverse (Karch et al., 1997) 
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Table 4 continued 
ybtAup GGTATGGATATTTTGCTCTGG ybtA (Karch et al., 1997) 

irp2 RP TCGTCGGGCAGCGTTTCTTCT irp2, reverse (Karch et al., 1997) 

irp-1up TTCCGGTCCCCTGTCTCA irp1 (Karch et al., 1997) 

ybtTlp ATCCGCCAATGTCTATCA ybtT, reverse (Karch et al., 1997) 

ybtAup GGTATGGATATTTTGCTCTGG ybtA (Karch et al., 1997) 

ybtAlp GGTAATGCTCTCGAATCGG ybtA, reverse (Karch et al., 1997) 

irp1up TGAATCGCGGGTGTCTTATGC irp1 (Karch et al., 1997) 

irp1lp TCCCTCAATAAAGCCCACGCT irp1, reverse (Karch et al., 1997) 

ybtTup TGCAAAAACAGCCCAGTA ybtT (Karch et al., 1997) 

fyuA1lp CATTCCATCCCACATAGG fyuA, reverse (Karch et al., 1997) 

irp2 FP AAGGATTCGCTGTTACCGGAC irp2 (Karch et al., 1997) 

irp2 RP TCGTCGGGCAGCGTTTCTTCT irp2, reverse (Karch et al., 1997) 

irp1-1up TTCCGGTCCCCTGTCTCA in ybtU (Karch et al., 1997) 

ybtTlp ATCCGCCAATGTCTATCA in ybtU, reverse (Karch et al., 1997) 

III.33 CCACAAATCGTCTTCGGCC in iroB (Dobrindt et al., 2001)  

III.34 GGCCGAAGACGATTTGTGG in iroB, reverse (Dobrindt et al., 2001) 

IS2-up CATACATCACTACGCCCACGAAA upstream of the left-hand copy of IS2 in 

GEI IINissle1917  

IS2-down ACAGCACTCTATGAGGACTTAGTA downstream of the right-hand copy of 

IS2 in GEI IINissle1917, reverse  

1A GCCAGCAGCAGGACACGACTT in 30 kb serX – iroC region of E. coli 

CFT073 

1B CCAGTCTGTCGGTGAGACTGAAATCG in 30 kb serX – iroC region of E. coli 

CFT073, reverse 

2A GGCAGAATGGAGAAACAACAGAACCT in 30 kb serX – iroC region of E. coli 

CFT073 

2B CCCGCTTTTCCCCATAATGCCAATCAC in 30 kb serX – iroC region of E. coli 

CFT073, reverse 

3A ATCATCAGGGGCTATTCTACAGCAAAC in 30 kb serX – iroC region of E. coli 

CFT073 

3B TTCGTCACCATAACGGTAAGTCAGTGC in 30 kb serX – iroC region of E. coli 

CFT073, reverse 

4A GCGATTAGCCAGTCGTTTTGGTTATAC in 30 kb serX – iroC region of E. coli 

CFT073 

4B CATCTTCATAGCATTCTTTTCCCTGAAG in 30 kb serX – iroC region of E. coli 

CFT073, reverse 

focG-up GTGAATTAATACTTCCCGCACCAGCAT in focG  

focG-down CTGTTACAGGGAGGGTATTGCCAC in focG, reverse  

pheVshiA-1 ACTATGGCACTGACTGACGCAAAAAT in int gene immediately downstream of 

pheV 

pheVshiA-2 CCAGTATGTTTCATGCCTGCCGCTGA in shiA, reverse 

sat-up CGGAGATAAATTCTCTTTCCATAATC in sat  

sat-down TAAATGTAAATCCCTGACCGTTTATG in sat, reverse  
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Table 4 continued 
MUTA-up TCCTGAAAAACAAT in wzyNissle1917  

MUTA-down TAACATTAAATATTT in wzyNissle1917, reverse  

Muta-1 ATACTACGACGGTAAATGGT in the variable central part of fimANissle1917 

(Blum-Oehler et al., 2003) 

Muta-2 TACATCAGTATCGGTAGCAT in the variable central part of 

fimANissle1917, reverse (Blum-Oehler et al., 

2003) 

Muta-5 AACTGTGAAGCGATGAACCC non-coding region in pMUT1 

(Blum-Oehler et al., 2003) 

Muta-6 GGACTGTTCAGAGAGCTATC non-coding region in 

pMUT1 

(Blum-Oehler et al., 2003) 

Muta-7 GACCAAGCGATAACCGGATG non-coding region in pMUT2 

(Blum-Oehler et al., 2003) 

Muta-8 GTGAGATGATGGCCACGATT non-coding region in pMUT2 

(Blum-Oehler et al., 2003) 

Muta-9 CGGAGGTAACCTCGAACATG mobBD region in pMUT2 

(Blum-Oehler et al., 2003) 

Muta-10 CGCCGTATCGATAATTCACG mobBD region in pMUT2 

(Blum-Oehler et al., 2003) 

R1C3l GGGATGCGAACAGAATTAGT 5' in waO6 (Amor et al.) 

R1K15 TTCCTGGCAAGAGAGATAAG 3' in waO6, reverse (Amor et al.) 

waalücke 1 CGCACTCACTGATGCCCAGCA in waaC, reverse  

waalücke 2 AGTCCAATCCATGCTTTACGCCAT in waaC 

482 CACTGCCATACCGACGCCGATCTGTTGCTTGG 5' in JUMPStart (Coimbra et al.) 

412 ATTGGTAGCTGTAAGCCAAGGGCGGTAGCGT 3' in gnd, reverse (Coimbra et al.) 

M13–uni TGTAAAACGACGGCCAGT Promega, Mannheim (Germany) 

M13-rev CAGGAAACAGCTATGAC Promega, Mannheim (Germany) 

SuperCos-F CGGCCGCAATTAACCCTCAC SuperCos 1 sequence primer 

SuperCos-R GCGGCCGCATAATACGACTCACT SuperCos 1 sequence primer 

LG1 GTTTCTTGTATTCAGTATGCT in wbO6 , reverse  

LG2 TGG GTT TGC TGT GTA TGA GGC in wbO6, reverse  

LG3 TAT GAG CCC TGT TAT AAC TTG GGA in wbO6, reverse  

LG4 CACCTTGCCCTCCTGAACCATTAT in wbO6, reverse  

LG5 GAATAGTTTACCTGAGGATTTTTTATC in wbO6, reverse  

LG6 GTCTTCCTACACCCAGCATCTCCA in wbO6, reverse  

LG7 CCAGCCATAATGATAGGTGTAA in wbO6, reverse  

LG8 AACCTGAAAGAAGGGGCGAAG 5' in galF (position 841–861), 

amplification of wbO6 upstream region 

LG9 GCTCTAGAGCTTAGGTGTAATTATATTATT in wbO6, XbaI restriction site, reverse  
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Table 4 continued 
LG15 CCATCGATGGGTGCCTGACTGCGTTAGCAATTTAA

CTGTGATAAACTACCGCATTAAAGCTTATCGATGA

TAAGAGAGGTTTCTTGTATTCAGTATTGCT 

in wbO6, Pbla fused to primer LG1  

LG16 GCTCTAGAGCGTTTCTTGTATTCAGTATGCT in wbO6, XbaI restriction site fused to 

primer LG1  

 

4. Chemicals and enzymes used in this study 

The chemicals and enzymes used in this work were provided by the following 

companies: 

Amersham Biosciences, Buckinghamshire; Clontech, Heidelberg; Difco, Augsburg; 

Fluka, Deisenhofen; Invitrogen, Karlsruhe; MBI Fermentas, St. Leon-Rot; Merck, 

Darmstadt; Molecular Probes, Poort Gebouw; New England Biolabs, Frankfurt am Main; 

Oxoid, Wesel; Pharmacia Biotech, Promega, Heidelberg; Quiagen, Hilden; Roche 

Diagnostics, Mannheim; Roth, Karlsruhe; Sigma, Deisenhofen; Schleicher & Schuell, 

Dassel; Stratagene, Heidelberg. 

The following kits are used: 

- “ECLTM Direct Nucleic Acid Labeling And detection System”,  Amersham Biosciences, 

Buckinghamshire 

- “PRISMTM BigDyeTerminator-Cycle Sequenzierkit“, PE Applied Biosystems, 

Weiterstadt 

- “Expand Long Template PCR System“, Roche, Mannheim 

- “pGEM® T-Easy Vector System I”, Promega, Heidelberg 

- “QIAquick Gel Extraction Kit”, Qiagen, Hilden 

- “QIAGEN Midi And Maxi Kit“, Qiuagen, Hilden 

- “Gigapack III XL packaging mixture”, Stratagene, Heidelberg 

- “EnzCheck® Protease Assay Kit“, Molecular Probes, Leiden 

 

5. Equipments 
 
- Autoclave     Webeco 

- Camera     Nikon F301 

- Centrifuge     Heraeus Biofuge 13R 
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      Heraeus Megafuge 1.0R 

      Eppendorf 5415 C 

      Beckman J 2-21 

- Cleanbench      Nunc Inter Med 

- Computer program    Microsoft Office 2000 

- Electronic balance    Chyo Balance Corp. 

- Electrophoresis chamber   Bio Rad 

- Electroporator    BioRad, Gene Pulser transfection 

- X-ray films, autoradiography  Hyperfilm, ECL 

- Fluorescence imager    Typhoon 8300 

- Freezer     Revco 

- Gene linker     BioRad, Gel Doc 2000 

- Hot Plate     Eppendorf Thermostat 5320 

- Hybridization oven    HybAid 

- Ice machine     Scotman AF-20 

- Incubator     Mammert Tv40b 

      Heraeus B5050E 

- Magnetic strirrer    GLW 

- Micro pipettes    Gilson, Eppendorf 

- Microwave oven    Moulinex 

- Nylon membrane    Byodine, Nytran 

                                       Optitran BA-S 85 

- PCR-Thermocycler    Biometra, T3 Thermoblock 

- pH-Meter     WTW pH523 

- Photometer     Pharmacia Ultrospec 3000 

- Platform Shaker    Bühler E55 swip 

      Innova TM 4300 

- Power Supply    BioRad 200mA, 500V 

- Printer     Laserjet 2100C 

- Rotation mixer    Eppendorf mixer 5432 

- Scanner     HP ScanJet IIcx 
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- Sequence analyser    ABI Prism 310 Genetic Analyzer 

- Shaker     GLW 

      GFL Wasserbad 

      Innova TM 4300 

- Speedvac-concentrator   UNIVAPO 150H Uniequipe 

- Sterile filter     Schleicher & Schuell 0.22µm 

- Fluorescence imager    Typhoon 8600 

- Vacuum-blotter    Pharmacia 

- Vacuum oven    Heraeus instruments VTR 5036 

- Video printer     Mitsubishi, Cybertech Cb1 

- Vortexer     GLW  

- Water bath     GLW 1083 

 

6. Media and supplements 
 
- Distilled water was used for all media. 

- All media were autoclaved for 20 minutes. 

- For agar plates, 15 g bacteriological agar (Difco Laboratories, Detroit, MI, USA) per 

one liter of medium (15  % (w/v)) was added before autoclaving. 

 

6.1 LB- (Luria-Bertani-) medium (Sambrook et al., 1989)  
 
Tryptone 10 g 

Yeast Extract 5 g 

NaCl 5 g 

dH2O add 1000 ml; pH 7.5 

 

6.2 X-Gal medium 
 
LB-medium supplemented with the following additives: 

IPTG (0.1 M) 0.5 ml/l 

X-Gal (2  %, (w/v) in N,N'-dimethylformamide) 3 ml/l 
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6.3 Yeast-tryptone medium (YT) 
 
Tryptone 16 g 

Yeast extract 10 g 

NaCl 10 g 

dH2O add 1000 ml  

 

6.4 Medium for detection of aerobactin expression (Braun, et al., 1983; Ott, et al., 

1991) 
 
Aerobactin agar plates: 

Nutrient broth 4 g 

NaCl 2.5 g 

Agar 6 g 

Dipyridyl (200 mM) 5 ml 

Titriplex (10 mM) 5 ml 

dH2O add 500 ml 

Soft agar for aerobactin agar plates: 

Nutrient broth 0.8 g 

NaCl 0.5 g 

Agar 0.75 g 

Dipyridyl 200 mM 1 ml 

Titriplex 10 mM 1 ml 

E. coli strain EN99 

overnight culture (YT, 

Tc) 

4 ml 

dH2O add 100 ml 

 

 6.5 M9 medium 
 
The M9 salts, 1M MgCl2, 1M CaCl2 were autoclaved separately and added to the 

autoclaved and pre-cooled (45 °C) dH2O, supplemented with 15  % (w/v) agar. The 
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casamino acids, glucose and thiamine stock solutions were prepared in dH2O, filter 

sterilized (0.22 µm) and added to the autoclaved pre-cooled dH2O supplemented with 15  

% (w/v) agar and M9 salts. 

 

 

5 × M9 salts: 

Na2HPO4 × 2 H2O 

KH2PO4 

NaCl 

NH4Cl 

H2O 

 

60 g 

15 g 

2.3 g 

5 g 

add 1000 ml 

casamino acids (10  %) 30 ml 

1M MgCl2 2 ml 

1M CaCl2 0.1 ml 

Glucose (20  %) 10 ml 

Thiamine (0.2  %) 1 ml 

dH2O add 750 ml 

 

6.6 Congo red medium 
 
The congo red and Coomassie brilliant blue stock solutions were sterilized by filtration 

through a 0.22 µm sterile filter and added to the autoclaved medium. 

Trypton 10 g 

Congo-red (0.4 mg/ml) 1 ml 

Coomassie brilliant blue (0.2 mg/ml) 1 ml 

dH2O add 1000ml 

 

6.7 Antibiotics 
 
Stock solutions of water soluble antibiotics were prepared in distilled H2O and sterilized 

by filtration through a 0.22 µm sterile filter. The ethanol soluble antibiotics were 
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dissolved in 96 % ethanol. All antibiotics were added after cooling the medium to 45 °C 

in ratio of 1:1000 (v/v) from the stock solution. 

 

Antibiotics Stock solution (µg/ml) 

Ampicillin 100 

Chloramphenicol 30 

Kanamycin 50 

Streptomycin 50 

Tetracycline 15 
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IV. Methods 
 
-If not explicitly mentioned, an Eppendorf (Centrifuge 5415 C) table centrifuge has been 

used (13 000 rpm) for centrifugation. 

 

1. Construction of a cosmid genomic library of the E. coli strain Nissle 1917 and 

selection of clones 
 
1.1 Construction of a cosmid genomic library of the E. coli strain Nissle 1917 
 
The cosmid library has been constructed using the Gigapack III XL packaging mixture 

(Stratagene), following the instructions of the manufacturer (Blum-Oehler, G., and 

Waldtschmidt, A., personal communication), using E. coli XL1-blue MR as a host strain. 

 

1.2 Screening of the genomic cosmid library by colony blot hybridisation 
 
The cosmid clones were grown overnight on LB agar plates, supplemented with 

ampicillin. After cooling to 4 °C, the colonies were transfered from the agar plate to 

nylon membrane (Biodyne B, 0.45 µm). The bacterial cells were lysed and the DNA was 

denaturated by laying the membranes (with the colonies on the upper side) for 5 min on 

Whatman filter paper saturated with solution I. After short drying, the membranes were 

laid on Whatman filter paper saturated with neutralization solution 2 for 5 min. The DNA 

was fixed by “baking” for 30 min at 80 °C and afterwards the membranes were incubated 

in solution III for 6-12 h at 37 °C. After removal of  the cell debris for 1 min in 2 × SSC 

the colony blots were ready for hybridization. 

 

 

 

 

 

 

 

Solution I 0.5 N NaOH; 1.5 M NaCl 

Solution II 0.5M Tris-HCl, pH 7.5; 1.5M NaCl 

Solution III 50 mM Tris-HCl, pH 7.5; 50 mM NaCl 

0.1 % SDS; 100 µg/ml proteinase K 
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1.3 Screening the genomic cosmid library by PCR 
 
The cosmid clones from one agar plate were collected after overnight growth and 

suspended in 1 ml sterile dH2O. The suspension was heated for 10 min at 90 °C and 

stored at -20°C. For performing the screening PCR (50 µl reaction volume), 1µl of the 

cell suspension of every plate was used as template. 

 

1.4 Screening the genomic cosmid library by dot blots 
 
Cosmid DNA was isolated as described in IV.2.1.1 and precipitated by addition of 0.7 vol 

isopropanol followed by incubation on ice for 15 min and 15 min centrifugation. The 

DNA pellet was washed once with 70 % ethanol (v/v) and dried at 37° C. After 

dissolving the DNA in 20 µl sterile dH2O, 5 µl were transfered to a nylon membrane 

(Biodyne B, 0.45 µm) by pipetting. The DNA was then denaturated and neutralized as 

described above (see section IV.1.2). The cosmid DNA was fixed to the membrane by 

exposure to UV for 90 sec. After pre-incubation for 5 min in 2 × SSC, the membranes 

were ready for hybridization. 

 

Solution I 50mM Tris-HCl pH 8.0; 10 mM EDTA; 100 µg/ml RNaseA 

Solution II 0.2 N NaOH; 1 % SDS 

Solution III 3 M Na-acetate 

 

2. Isolation of DNA 
 
2.1 Isolation of plasmid (cosmid) DNA 
 
2.1.1 Small-scale preparation of plasmid DNA (Sambrook, et al., 1989) using      

phenol-chloroform extraction and ethanol precipitation 
 
Bacteria were grown overnight in 5 ml of LB medium supplemented with ampicillin. 1.5 

ml of the overnight culture was centrifuged for 2 min. The pellet was resuspended in 100 

µl of ice-cold solution I by vigorous vortexing. 200 µl of freshly prepared solution II 

were added, mixed with the cell suspension by inverting the Eppendorf tube and 
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incubated on ice for 5 min. After addition of 150 µl ice-cold solution III and carefully 

mixing by inverting, the tube was stored for 5 min on ice. Cell debris and chromosomal 

DNA were pelleted by centrifugation (15 min) and the supernatant was transfered to a 

new Eppendorf tube. After transferring the plasmid DNA into a new Eppendorf tube, 1 

vol phenol:chloroform:isoamylalcohol (25:24:1, v/v/v) was added, carefully mixed and 

centrifuged for 5 min. The supernatant was transfered into a new tube and 1 vol 

chloroform:isoamylalcohol (24:1, v/v) was added. After careful mixing by inverting the 

tube and centrifugation for 5 min the supernatant was transfered into a new tube. The 

DNA was precipitated by addition of 2.5 vol 96 % ethanol followed by 15 min incubation 

on ice. The DNA was then pelleted by 15 min centrifugation and washed two times with 

70 % (v/v) ethanol. The pellet was dried at 37 °C, dissolved in 20 µl sterile dH2O. and 

stored at -20 °C. 

 

2.1.2 Large-scale preparation of plasmid (cosmid) DNA (Sambrook et al., 1989, 

modified) 
 
Bacteria were grown overnight in 50 ml LB medium supplemented with appropriate 

antibiotics. The cells were harvested by centrifugation for 15 min at 4 °C and suspended 

in 4 ml solution I (see section IV.1.4) supplemented with 5 mg/ml lysozyme. After 5 min 

incubation at room temperature (RT), 8 ml solution II (see section IV.1.4) was added and 

carefully mixed by inverting. The mixture was incubated for 10 min on ice (or until the 

solution became clear), and then 6 ml solution III (see section IV.1.4) were added. The 

cell debris and the genomic DNA were precipitated by centrifugation for 30 min. at 4°C. 

The supernatant was transfered to a new tube. The plasmid DNA in this solution was 

precipitated by addition of 0.7 vol isopropanol and collected after 30 min incubation at 

RT by centrifugation for 15 min. The pellet was washed with 2 ml 70 % ethanol and 

transfered to new Eppendorf tube. After centrifugation and drying at 37 °C, the pellet was 

dissolved in 0.5 ml sterile dH2O and subsequently 50 µl 3 M Na-acetate were added. The 

solution was subjected to phenol- and phenol/chloroform extractions and ethanol 

precipitation as described above (section IV.2.1.1). Finally, the plasmid (cosmid) DNA 

was dissolved in 100 µl sterile dH2O. 



IV. Methods  48 

2.2 Isolation of genomic DNA (Grimberg, et al., 1989) 
 
Bacteria were cultivated overnight and cells from 1 ml culture were harvested by 

centrifugation for 2 min in an Eppendorf tube. After washing with 1 ml TNE buffer the 

cells were centrifuged for 5 min and then suspended in 270 µl TNEX solution. 30 µl 

lysozyme (5 mg/ml) were  added and the cells were incubated for 30 min at 37 °C. 

Afterwards, 15 µl proteinase K (20 mg/ml) were added and further incubated for 1-2 h at 

65 °C (or until the solution became clear). The genomic DNA was precipitated by 

addition of 0.05 vol 5 M NaCl (15 µl) and 500 µl ice-cold ethanol and then collected by 

centrifugation for 15 min. After washing two times with 1 ml 70 % (v/v) ethanol, the 

DNA pellet was dried on air and dissolved in sterile dH2O. 

 

TNE 10 mM Tris-HCl, pH 8.0; 10 mM NaCl ; EDTA, pH 8.0 

TNEX TNE; 1 % (v/v) Triton X-100 

 

2.3 Isolation of high molecular weight genomic DNA for pulsed-field gel 

electrophoresis (PFGE) 
 
The bacteria were grown overnight in 10 ml LB medium at 37 °C. 4 ml of the culture 

were harvested by centrifugation and the pellet was washed two times with SE buffer. 

After resuspending the cells in 1 ml SE, the OD600 was measured (100 µl cells + 900 µl 

SE buffer). When necessary, the OD600 had to be adjusted in the range between 0.6 and 

0.7. A 2 % LGT agarose solution was prepared and cooled to 45-50 °C. 900 µl of the 

bacterial suspension were mixed with 900 µl agarose and poured into appropriate moulds 

by pipetting. After solidifying at 4 °C, the agarose blocks were cut in pieces with an 

approximately identical size (0.5 × 0.3 × 0.1 cm), and then incubated in 5 ml NDS 

solution (freshly supplemented with 2 mg/ml proteinase K) overnight at 50 °C on a 

shaker. For the complete removal of the proteinase K, the blocks were afterwards washed 

at least four times for 2 h with TE buffer. The blocks were then stored at 4 °C in TE 

buffer for at least one week before they could be used for restriction. 
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SE buffer 75 mM NaCl; 25 mM EDTA, pH 7.5 

TE buffer 10 mM Tris-HCl, pH 7.5; EDTA, pH 7.5 

NDS buffer N-laurylsarkosine; EDTA, pH 9.5; proteinase K (2 mg/ml) 

LGT buffer Tris-HCl, pH 7.5; MgCl2; EDTA, pH 7.5; LGT agarose 2 % 

 

3. DNA 
 
3.1 DNA agarose gel electrophoresis 
 
3.1.1 Horizontal gel electrophoresis 
 
For routine analytical and preparative separation of DNA fragments, horizontal gel 

electrophoresis was performed under non-denaturing conditions. Depending on the size 

of the DNA fragments to be separated, the agarose concentration varied between 0.8-2 % 

(w/v) in running buffer (1 × TAE or 1 × TBE). In order to have a visible running front 

and to prevent diffusion of the DNA, 0.2 vol Stop-Mix was added to the samples before 

loading. The electrophoresis was carried out using a voltage in the range between 16-120 

V. The gels were stained in an ethidium bromide solution (10 mg/ml), then washed with 

water and photographed under a UV-transilluminator.  

 

50 × TAE buffer: 

Tris 

Acetic acid 

0.5 M EDTA, pH 8.0 

dH2O 

 

242 g 

57.1 ml 

100 ml 

add 1000 ml 

10 × TBE buffer: 

Tris 

Boric acid 

0.5 M EDTA, pH 8.8 

dH2O 

 

108 g 

55 g 

40 ml 

add 1000 ml 

10 × Stop-Mix: 

Bromphenol blue 

 

0.25 % 
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Xylene cyanol  

Ficoll type 400 

0.25 % 

25 % 

 

3.1.2 Isolation of DNA fragments from agarose gel (“QIAquick® Gel Extraction 

Kit”) 
 
The agarose pieces containing the DNA fragment of interest were cut out of the gel, and 

subsequently melted for 10 min at 50 °C in QG buffer (supplied by the manifacturer). 

The DNA was separated from the rest of the solution by applying the mixture to 

QIAquick® spin columns followed by centrifugation for 1 min. The columns were then 

washed with 750 µl PE buffer (supplemented with ethanol). Then the PE buffer was 

completely removed by centrifugation (2 × 1 min). Finally, the DNA was by eluted from 

the column with 20-50 µl sterile dH2O. 

 

3.1.3 Determination of the DNA concentration 
 
The DNA concentration was measured at 260 nm in quarz cuvettes with a diameter of 1 

cm. An absorption A260=1 corresponds to 50 µg/ml double-stranded DNA or 33 µg/ml 

single-stranded oligonucleotides. The purity of the DNA was determined by measuring 

the absorption of the sample at 280 nm. DNA is sufficiently pure if the ratio A260/A280 is 

higher than 1.8. 

 

3.1.4 Pulsed field gel electrophoresis (PFGE) 
 
High molecular weight DNA (see section IV.2.3) was separated on an 0.8 % (w/v) 

agarose gel (1 × TBE buffer; see section IV.3.1.1) by horizontal electrophoresis. The gels 

were run for 21-24 h with pulse periods of 0.5-50 s. After staining in an ethidium 

bromide solution (10 mg/ml), the gels were photographed on UV-transilluminator. 

 

 

3.1.5 DNA gel size markers 
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In order to determine the approximate size of the DNA fragments after gel 

electrophoresis, the following commercially available DNA size markers were used: 

 

Mass RullerTM DNA 

Ladder Mix 

(MBI Fermentas) 

Gene RulerTM DNA 

Ladder Mix 

(MBI Fermentas) 

Lambda Ladder 

PFGE Marker 

(New England 

Biolabs) 

Low Range PFGE 

Marker 

(New England 

Biolabs) 

Fragment Size bp Fragment Size bp Fragment Size kb Fragment Size kb 

1 10000 1 10000 1 1018.5 1 194.0 

2 8000 2 8000 2 970.0 2 145.5 

3 6000 3 6000 3 921.5 3 97.0 

4 5000 4 5000 4 873.0 4 48.5 

5 4000 5 4000 5 824.5 5 23.1 

6 3000 6 3500 6 776.0 6 9.42 

7 2500 7 3000 7 727.5 7 6.55 

8 2000 8 2500 8 679.0 8 4.36 

9 1500 9 2000 9 630.5 9 2.32 

10 1031 10 1500 10 582.0 10 2.03 

11 900 11 1200 11 533.5 11 0.56 

12 800 12 1031 12 485.0 12 0.13 

13 700 13 900 13 436.5 13 - 

14 600 14 800 14 388.0 14 - 

15 500 15 700 15 339.5 15 - 

16 400 16 600 16 291.0 16 - 

17 300 17 500 17 242.5 17 - 

18 200 18 400 18 194.0 18 - 

19 100 19 300 19 145.5 19 - 

20 80 20 200 20 97.0 20 - 

- - 21 100 - 48.5 - - 

 

3.2 DNA restriction 
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3.2.1 Restriction of plasmid or genomic DNA with restriction endonucleases 
 
The DNA was dissolved in dH2O and mixed with 0.2 vol 10 × reaction buffer and ca. 5 U 

of restriction enzyme(s), so that the final volume of the sample was 20 µl. The mixture 

was incubated at 37 °C or 30 °C, depending of the specific requirements of the 

enzyme(s). Whereas plasmid and cosmid DNA was digested for one or two hours, 

respectively, digestion of genomic DNA was carried out overnight. The reaction was 

stopped with 0.2 vol Stop-Mix (see section IV.3.1.1). When required, inactivation of the 

restriction enzyme(s) was carried out by heating for 20 min at 65 °C or by phenol-

chloroform extraction. 

 

3.2.2 Restriction of high molecular weight DNA 
 
LGT agarose blocks containing the high molecular weight DNA (see section IV.2.3) were 

transfered into a new Eppendorf tube. The blocks were preincubated 1 h at 50 °C in 1 ml 

1 × restriction buffer subsequently. Restriction was carried out overnight at 37 °C in an 

150 µl overall reaction mixture containing 1 × restriction buffer and 30 U restriction 

enzyme. 

10 × reaction buffer: 

Tris-acetate 

K-acetate 

Mg-acetate 

 

100 mM 

500 mM 

100 mM 

 

3.3 Southern blot analysis 
 
3.3.1 Vacuum southern blotting 
 
A nylon membrane (Biodyne B) of appropriate size was shortly preincubated in dH2O 

and then soaked for 10 min in 20 × SSC. Afterwards, DNA was transfered from an  

agarose gel to the membrane using a vacuum blotter (Amersham-Pharmacia) by applying  

a 50 mbar vacuum. DNA transfer from a pulsed-field gel required UV irradiation (for 

fragmentation of the high molecular weight DNA). The following solutions were applied 

on the surface of the agarose gel during the blotting procedure: 



IV. Methods  53 

 

Depurinization solution 0.25 N HCl 8 min 

Denaturation solution 0.5 N NaOH; 1.5 M NaCl 8 min 

Neutralization solution 0.5 M Tris-HCl, pH 7.5; 1.5M NaCl 8 min 

20 × SSC 0.3 M Na-citrate, pH 7.0; 3 M NaCl 45 min – 1 h 

 

After DNA transfer, the nylon membrane was incubated for 1 min in 0.4 N NaOH and 1 

min in 0.25 M Tris-HCl, pH 7.5 (for neutralization). The membrane was then shortly 

dried and the DNA was fixed on the membrane by exposure to UV light. 

 

3.3.2 DNA labelling (“ECLTM Kit“, Amersham) 
 
For labelling of DNA probes the “ECLTM-Kit” (enhanced chemo luminescence) was 

used. The binding of a DNA probe to the complementary sequence on the nylon 

membrane was detected by chemo luminescence. Positively charged horseradish 

peroxidase molecules were mixed with the negatively charged DNA probe. Addition of 

glutaraldehyd covalently links the horseradish peroxidase molecules with the DNA 

probes. Reduction of H2O2 by the peroxidase requires the oxidation of luminol which 

results in light emission, which can be detected by suitable light-sensitive films, e.g. the 

Hyperfilm ECL. 

For labelling of the probe 0.1 µg DNA resuspended in 10 µl dH2O was denatured for  10 

min at 90 °C and cooled for 5 min on ice. Then 10 µl labelling reagent and 10 µl 

glutaraldehyd were added. The mixture was incubated for 10 min at 37 °C and then added 

to the hybridization reaction. 

 

3.3.3 Hybridization and detection of the membrane 
 
Hybridization of the membrane was carried out overnight at 42 °C in hybridization 

solution (10-15 ml), after the nylon membrane has been preincubated at 42°C in the 

hybridization solution for 1 h. On the next day, the membrane was washed twice for 20 

min at 42 °C with wash solution I and two times for 10 min at RT with wash solution II. 

The membrane was placed on Whatman paper to remove the rest of the wash solution, 
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and then incubated for 1 min in 5-10 ml detection solution I and detection solution II 

provided with the kit and mixed immediately (1:1) before applycation to the membrane. 

The membrane was superficially dried on Whatman paper and packed in saran wrap 

avoiding air bubbles on the top surface of the membrane. Chemoluminescence was 

detected by exposure of the membrane to Hyperfilm ECL. The exposure time depended 

on the signal intensity. 

 

Wash solution 1 0.5 × SSC; 0.4 % (w/v) SDS 

Wash solution 2 2 × SSC 

 

3.4 Polymerase chain reaction (PCR) 
 
3.4.1 Standart PCR  
 
For routine PCR-amplification Taq DNA polymerase kits of different suppliers 

(QIAGEN, Invitrogen) were used. The reaction was performed in a final reaction volume 

of 50 µl. 

 

10 × DNA Taq polymerase buffer 5 µl 

20 mM dNTP mix 1 µl 

0.5 µg/µl primer 1 1 µl 

0.5 µg/µl primer 2 1 µl 

100 ng/µl template DNA or boiled cells 1 µl 

Taq DNA polymerase 0.15 µl 

25 mM MgCl2 2 µl 

dH2O 38.85 µl 

 

The PCR cycles were designed according to the annealing temperature of the individual  

primers and the length of the expected amplification product: 

Initial 

denaturation 

2 min, 95 °C 
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1. Denaturation 30 sec, 95 °C 

2. Annealing  30 sec (42-72 °C) 

3. Elongation 30 sec-5 min, 72 °C 

 

25-30 cycles 

4. Final 

elongation  

2 min, 72 °C  

 

3.4.2 Long distance PCR (Expand Long Template PCR system, Roche) 
 
When DNA fragments longer than 4 kb were amplified, or proof reading was required, 

the Expand Long Template PCR system was used, following the instructions of the 

manifacturer. For fragments longer than 10 kb high molecular weight genomic DNA was 

used as a template. For this purpose, a LGT agarose block prepared for PFGE was melt 

for 10 min at 65 °C in 100 µl dH2O. 10 µl of this mixture was used as a template, and the 

reaction was performed as follows: 

 

Initial 

denaturation 

1 min, 90 °C 

1. Denaturation 10 sec, 90 °C 

2. Annealing  30 sec, 52-68 °C 

3. Elongation 1-15 min, 68 °C  

 

25-30 cycles 

Final elongation  1-15 min, 68 °C  

 

3.4.2. Inverse PCR (IPCR) 
 
In order to amplify unknown DNA with the help of a small region of known DNA 

sequence inverse PCR was carried out. Amplification of unknown DNA flanking regions 

of a particular gene by IPCR requires previous digestion of genomic DNA and 

identification of the corresponding fragment which contains a part of the known sequence 

as well as unknown flanking sequences by Southern hybridization. The size of the 

required fragment should not exceed 1 – 3 kb to facilitate amplification by PCR. 

Genomic DNA was then digested with the chosen restriction enzymes. The sample was 

diluted and the restriction fragments were ligated in order to obtain circular DNA 
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fragments. PCR amplification was performed with primers complementary to the ones 

used for probe, using the circularized genomic DNA fragments as a template. 

 

3.5 Cloning procedures 
 
3.5.1 A/T cloning of PCR products using the pGEM-T® Easy vector system 
 
This kit enables rapid cloning of PCR fragments without digestion by overhanging  

adenine nucleotides at their 3' ends into a linearized vector that contains overhanging 5' 

terminal thymidine residues. pGEM-T® Easy vector allows cloning of DNA fragments in 

a multiple cloning site which is flanked by T7 and SP6 RNA polymerase promoters, 

respectively. This vector expresses the α-peptide of the β-galactosidase, thus enabling  

“blue-white” screening of successful DNA integration. The ligation reaction was 

performed overnight at 4 °C or for 2 h at RT and was prepared as follows: 

 

2 × T4 DNA ligation buffer 10 µl 

pGEM-T® Easy vector 1 µl 

PCR product 1-8 µl 

T4 DNA ligase 1 µl 

dH2O to final volume of 20 µl 

 

3.5.2 Cloning of DNA fragments digested with restriction enzymes 
 
DNA fragments digested with restriction enzymes were cloned in vectors that were cut 

with appropriate enzymes (“sticky ends ligation”). For ligation, digested vector and insert 

were mixed in a ratio of 1:3. The ligation reaction was performed overnight at 4 °C or 16 

°C, or for 2 h at RT and was prepared as follows: 
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Linearized vector 0.5-1 µl 

Restriction enzyme-digested DNA fragment 1-17.5 µl 

5 × T4 ligase buffer  2 µl 

T4 ligase (New England BioLabs), 2 U/ µl 1 µl 

dH2O to final volume of 20 µl 

 

When the vector and the insert were cut with only one restriction enzyme or for blunt end 

ligation, the ends of the linearized vector molecule were dephosphorylated before ligation  

using calf intestinal alkaline phosphatase in order to prevent religation of the vector. 

Removal of the 5'-phosphate residue was carried out by addition of 0.1 vol alkaline 

phosphatase buffer (ZnCl2 10 mM; MgCl2 10 mM; Tris-HCl (pH 8.3), 8 mM; H2Obidest.), 

1U alkaline phosphatase and incubation for 1 h at 37 °C. The reaction was stopped either 

by heating for 10 min at 65 °C or by phenol-chloroform extraction followed by ethanol 

precipitation of the DNA. 

 
3.5.3 Generation of blunt end DNA fragments 
 
For blunt end generation, the following reaction mixture was incubated for 30 min at 25 

°C. The reaction was stopped either by heating for 15 min at 65 °C or by phenol-

chloroform exctraction. 

 

dNTP mixture (0.5 mM of each 

nucleotide, dATP, dCTP, dGTP, dTTP) 

4 µl 

10 × Klenow buffer (Tris-HCl  pH 7.2 

 50 mM; MgSO4, 10 mM; DDT 0.1 mM; 

BSA, 50 mg/ml; dH2O) 

2 µl 

DNA dissolved in dH2O 12 µl 

Klenow DNA polymerase (5 U/ µl) 2 µl 

 

3.6 Transformation and conjugation of bacterial cells 
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3.6.1 Preparation of competent bacterial cells (CaCl2 procedure) and heat-shock 

transformation 
 
The bacteria were grown overnight and 1 ml of this culture were used for inoculation of a 

fresh 50 ml LB culture. The cells were then grown to an OD600 of 0.5 and incubated for 

30 min on ice. The culture was centrifuged for 5 min at 2000 × g at 4 °C and the pellet 

was resuspended in 17.5 ml ice-cold 0.1 M CaCl2 and incubated on ice for 30 min. After 

a second centrifugation, the cells were resuspended in 2.5 ml ice-cold 0.1 M CaCl2 and 

either used immediately for transformation, or prepared for freezing at – 80 °C by 

addition of 50% (v/v) glycerol. 

50 µl of competent cells were thawed on ice and ca. 100 ng of plasmid DNA was added 

for transformation. After incubation on ice for 30 min, the cells were incubated at 42 °C 

for 90 sec and then again placed immediately on ice for 5 min. 1 ml LB was added and 

the cells were incubated at 37 °C for 1 h, allowing the expression of the selection marker 

before the mixture was plated on selective LB agar. 

 

3.6.2 Preparation of electrocompetent cells and electroporation 
 
LB medium was inoculated with 500 µl of an overnight culture of the strain of interest 

and grown OD600 of 0.5. The cells were collected by centrifugation at for 10 min at 2000 

× g at 4 °C. The pellet was left on ice for 30 min and then washed with 50 ml ice-cold 

dH2O. After a second centrifugation step, at the same conditions the pellet was 

resuspended in 25 ml 10 % glycerol, centrifuged again and finally resuspended in 600 µl 

10 % (v/v) glycerol. The cells were stored as 50 µl aliquots at -80 °C. For electroporation,  

one aliquot was thawed on ice and mixed with ca. 0.5 µg DNA. The mixture was applied 

into a “Gene pulser” cuvette with an electrode gap of 0.1 cm and incubated for 10 min on 

ice. The cells were electroporated using a Gene pulser transfection apparatus (BioRad) at  

the following conditions: 2.0 kV, 600 Ω, 25 µF. 1 ml LB medium was added to the 

culture, and the mixture was transfered into a new tube and incubated at 37 °C for 1 h 

before the cells were plated on selective agar plates. 
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3.6.3 Conjugation 
 
For conjugation the E. coli strain Sm10λpir was used as donor strain in order to transfer 

the plasmid of interest to the recipient strain. Overnight cultures of the donor and 

recipient strain were used for inoculation of fresh cultures (1 % v/v), which were grown 

to an OD600=0.7. 100 µl of both cultures were then mixed on LB agar plate and grown 

overnight without selective pressure. Then, the cells were collected, properly diluted in 

sterile 0.9 % NaCl and plated on selective LB agar plates. 

 

3.7 DNA sequence analysis (AmpliTaq® FS-BigDye Terminator, PE Applied 

Biosystems) and annotation 
 
This method allows nucleotide sequence determination by the use of didesoxynucleotides  

(Sanger et al., 1977) which are each labelled with a different fluorescence dye and 

unmodified PCR primers are used. For a final reaction volume of 10 µl 4 µl “Premix” and 

10 pmol primers were used. The concentration of the DNA template varied between 0.1-1 

µg depending on the quality and the source (cosmid, plasmid, or PCR product). The 

sequencing reaction includes the following steps: 

 

Initial 

denaturation 

1 min, 96 °C 

1.Denaturation 30 sec, 96 °C 

2. Annealing  15 sec, 50-60 °C 

3. Elongation 4 min, 60 °C  

 

26-30 cycles 

Final elongation  4 min, 60 °C 

 

90 µl H2Obidest. (Merck), 250 µl 100 % ethanol and 10 µl 3 M Na-acetate (pH 4.6) were 

added after the reaction and the mixture was transfered to a new tube and centrifuged for  

15 min. The DNA pellet was washed with 70 % (v/v) ethanol, dried in a Speedvac 

concentrator, finally dissolved in 30 µl TSR (“Template Suppression” Reagent) and 

denatured for 2 min at 90 °C. 

The large-scale sequence determination of plasmid and cosmid clones was performed at  
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Göttingen Genomics Laboratory, Georg-August-Universität Göttingen. For this purpose, 

small insert libraries (2-2.5 kb) were generated by mechanical shearing of DNA (Oefner 

et al., 1996). After end repair with T4 polymerase, the fragments were ligated into the 

prepared pTZ19R vector. Isolated plasmids were sequenced from both ends using the dye 

terminator chemistry and analyzed on ABI337 sequencers (Applied Biosystems). The 

Phrap software implemented in the Staden software package was used for assembly and 

editing of the sequence data (Staden et al., 2000). 

 

3.8. Annotation of DNA sequences 

 

Homology searches as well as searches for conserved protein domains were performed 

with the BLASTN, BLASTX and PSI- and PHI-BLAST 

(http://www.ncbi.nlm.nih.gov/BLAST/) programs of the National Center for 

Biotechnology Information (NCBI) (Altschul et al., 1997). Putative ORFs were identified 

using Vector NTI® (InforMax) and the NCBI ORF finder 

(http://www.ncbi.nlm.nih.gov/gorf/gorf.html) software. Prediction of membrane-

spanning regions of proteins was carried out with the TMpred software 

(http://www.ch.embnet.org/software/TMPRED_form.html). The sequences were 

submitted to the EMBL nucleotide sequence database. 

 

4. Isolation of lipopolysaccharides (LPS) and proteins 
 
4.1 Isolation of LPS 
 
The cells from 1 ml overnight culture were collected by centrifugation and treated as 

described for the isolation of genomic DNA (see section IV.2.2; Grimberg et al., 1989). 

After incubation with proteinase K, 600 µl phenol were added to the clear solution, 

carefully mixed and centrifuged for 10 min. The supernatant was transfered to a new tube 

and 20-50 µl were used for electrophoresis.  

 

4.2 Preparation of secreted proteins form culture supernatant 
 



IV. Methods  61 

10 ml overnight culture were centrifuged for 5 min at 13000 rpm (Eppendorf C5415 

centrifuge) and the supernatant was transfered to a new 15 ml tube. 1 g trichloroacetic 

acid (TCA) was added and mixed by vortexing until the TCA crystals were completely 

dissolved. After overnight incubation at 4 °C, the precipitated proteins were collected by 

centrifugation and dissolved in 100 µl 0.1 N NaOH. After heating for 10 min at 90 °C in 

loading buffer (see section IV.5.2) the samples could be analysed by PAGE as described 

above (see section IV.5.2). 

 

5. Analysis of LPS and proteins by polyacrilamyde gel electrophoresis 
 
5.1 Polyacrylamid gel electrophoresis (PAGE, Laemmli et al., 1970) 
 
Protein samples or isolated LPS were separated and analysed by polyacrylamide gels. 

The size of the gels was 15 × 17.5 × 0.5 cm, and the electrophoresis was performed at 

RT, overnight at 30 V in electrophoresis buffer. The samples were loaded on the 

concentration gel after heating for 10 min at 90°C in 4 × loading buffer. 

 

Separation gel (13 % (w/v)) 

30 % Acrylamyde, 0.8 % 

Bisacrylamyde 

13 ml 

1.5 M Tris-HCl, pH 8.8 7.3 ml 

dH2O 9 ml 

10 % SDS 300 µl 

APS (100 mg/ml) 150 µl 

TEMED  10 µl 

Collecting gel (5 % (w/v)) 

30 % Acrylamyde, 0.8 % 

Bisacrylamyde 

2.7 ml 

1.5 M Tris-HCl, pH 8.8 4 ml 

dH2O 9 ml 

10 % SDS 160 µl 
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APS (100 mg/ml) 160 µl 

TEMED  8 µl 

10 × Electrophoresis buffer 

Tris 30 g 

Glycin 144.4 g 

10 % SDS 100 ml 

dH2O to a final volume of 1000 ml 

4 × Loading buffer 

0.25 M Tris-HCl, pH 6.4 2.5 ml 

SDS 0.25 g 

EDTA 4 mg 

86 % Glycerin (w/v) 4 ml 

β-Mercaptoethanol 0.5 ml 

Bromphenol blue  0.4 mg 

dH2O to a final volume of 10 ml 

 

5.2 Staining of proteins in polyacrylamide gels with Comassie Brilliant Blue 

(Laemmli et al., 1970) 
 
After electrophoresis the polyacrylamide gels were incubated for 2 h in 1 % (w/v) 

staining solution. Protein bands were visualized by destaining the gel in destaining 

solution for 2-6 h. 

Staining solution 

Coomassie Brilliant 

Blue 

1 g 

Destaining solution 100 ml 

Destaining solution  

Acetic acid 100 ml 

dH2O  500 ml 

Methanol 400 ml 
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5.3 Staining of proteins or LPS in polyacrylamide gels with silver nitrate (Tsai et al., 

1982) 
 
After electrophoresis, the polyacrylamide gels were stained with AgNO3. All used 

devices were carefully washed with 70 % ethanol. The gels were fixed overnight in 100 

ml 1 × fixation solution. The next day, the solution was replaced by 100 ml 1 × periodate 

solution and the gels were incubated for 5 min. After that the gels were washed three 

times for 30 min with dH2O. Then the gels were incubated for 10 min in silver nitrate 

solution and subsequently washed three times for 10 min with dH2O. The gels were 

developed in developing solution preheated to 60 °C, and when the intensity was 

satisfying, the reaction was stopped by washing with 50 mM EDTA solution for 10 min. 

 

2 × fixation solution 

Isopropanol 250 ml 

Acetic Acid 70 ml 

dH2O to final volume of 500 ml 

Periodate solution 

Na m-periodate (NaIO4) 0.87 g 

1 × Fixation solution 100 ml 

Silver nitrate solution 

1 M NaOH 1.4 ml 

NH3 (33 %) 1 ml 

dH2O  70 ml 

20 % AgNO3 1.25 ml 

Developing solution 

2.5 % Na2CO3 100 ml 

40 % Formaldehyde  27 µl 

 

 



IV. Methods  64 

6. Western blot analysis of proteins 
 
For the preparation of crude cell extracts, 1 ml overnight culture was adjusted to an 

OD600=1. The cells were harvested by centrifugation for 5 min at 13000 rpm (Eppendorf 

C5415 centrifuge) and the pellet was resuspended in 100 µl TE buffer and 25 µl 5 × 

Laemmli buffer. After heating the mixture for 10 min at 90 °C the cell debris was 

collected by centrifugation for 5 min. The supernatant was transferred to a new tube and 

used for PAGE. After PAGE, separated proteins were transfered to a nitrocellulose 

membrane (Schleicher & Schuell BA S85 reinforced, 0.45 µm). The transfer of the 

proteins was carried out between two graphite plates in western blotting apparatus, using 

12 Whatman paper slices, soaked with Anode buffer I, II or Cathode buffer. The 

membrane was incubated for 15 min in Anode buffer II. The lower graphite plate (anode) 

was moistened with water and covered with 6 slices of Whatman paper soaked with 

Anode buffer I, followed by 12 slices of Whatman papers soaked with Anode buffer II. 

At the upper side of the whatman papers the nitrocellulose membrane was laid, followed 

by the polyacrylamide gel and 3 slices of  Whatman paper soaked in Cathode buffer. The 

air bubbles were carefully removed before laying the second graphite plate at the top 

(cathode). The transfer was carried out applying an electric current of 0.8 mA/cm2 for 1 h 

at RT. 

 

Anode buffer I 0.3 M Tris, 20 % methanol 

Anode buffer II 25 mM Tris, 20 % methanol 

Cathode buffer 25 mM Tris, 40 mM ε-amino-n-caprone acid, 20 % methanol 

 

7.  Hybridization and detection of proteins by antibody reaction 
 
After the transfer the proteins the membrane was incubated for 1 h at RT in TBST 

solution (0.05 M Tris-HCl, pH 7.5; 0.15 M NaCl; 0.05 % Tween 20) supplemented with 

10 % fat-free dry milk. Then, the blot was incubated with antibody 1 for 1 h at RT. The 

concentration of antibody 1 depended on the titre of the serum which was diluted in 

TBST supplemented with 1 - 3 % dry milk. After washing the membrane with TBST 

three times for 5 min, the solution (diluted 1:100) containing the secondary antibody 
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(peroxidase-conjugated) was added and incubated for 1 h at RT. Finally, the membrane 

was washed three times for 10 min with TBST at RT. Signal detection was performed as 

described above (see section IV.3.3.3). 

 

8. Phenotypic assays 
 
8.1 Detection of microcin expression 
 
M9 medium agar  plates were prepared. 1 ml of an overnight culture of the E. coli strain 

DH5α was mixed with 100 ml M9 soft agar (0.75 %(w/v); see section III.6.5) media, pre-

cooled to 42 °C. A thin layer of (0.5 mm) of the mixture was poured on the surface of the 

M9 agar plates. The bacterial strains to be tested for microcin expression were grown 

overnight on the plates. Microcin production was assessed by the occurrence of clear 

zones of growth inhibition of the indicator strain DH5α around the colonies of the tested 

strains after overnight incubation at 37 °C. 

 

8.2 Detection of aerobactin expression 
 
Aerobactin media plates were prepared. 1 ml of an overnight culture (YT, Tc) of the 

indicator E. coli strain EN99 was mixed with 100 ml aerobactin soft agar (0.75 %(w/v), 

see section III.6.4) medium, pre-cooled to 42 °C. A thin layer (0.5 mm) of the mixture 

was poured on the surface of the aerobactin plates. The bacterial strains to be tested were 

grown overnight in 1 ml LB medium. Sterile susceptibility discs (Oxoid) were soaked 

with cells of the overnight culture and were placed on the aerobactin plates and incubated 

overnight at 37 °C. Aerobactin production was assessed by the presence of growth zones 

of the iron-deficient indicator strain EN99 around the colonies of the tested strains. 

 

8.3 Detection of type 1 fimbrial expression 
 
Overnight cultures of the strains to be tested and of a positive (E. coli strain Nissle 1917) 

and of a negative (E. coli strain AAEC189) control were grown. The mannose-dependent 

yeast agglutination assay was carried out by mixing 10 µl of the different bacterial 

overnight cultures with 10 µl yeast cells-suspension (1 mg/ml Saccharomyces cerevisiae 
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cells diluted in 0.9 % (w/v) NaCl, with or without 2 % (w/v) mannose) on microscope 

slides (75:25:1 mm). The slides were kept on ice until the aggregation of bacterial and 

yeast cells was observed in absence of mannose. 

 

8.4 Detection of F1C fimbrial expression 
 
Overnight cultures of the strains to be tested and of a positive (E. coli strain Nissle 1917) 

and of a negative (E. coli strain AAEC189) control were grown. For the 

immunoagglutination assay a polyclonal α-F1C fimbriae rabbit antibody was used 

(provided by S. Kahn, Wuerzburg), that was diluted 1:1000 in 1 × PBS. The 

immunoagglutination assay was carried out by mixing 10 µl of the bacterial overnight 

culture with 10 µl of the α-F1C fimbriae antibody solution on microscope slides (75:25:1 

mm) and incubation on ice until the aggregation of the bacterial cells was clearly 

observed. 

 

1 × PBS  

NaCl 8g 

KCl 0.2 g 

Na2HPO4 1.4 g 

K2HPO4 0.24 g 

NaOH add to pH 7.4 

dH2O to a final volume of 1000 ml 

 

8.5 Serum resistance assay 
 
Serum resistance of E. coli strains was usually analyzed by incubating the bacteria in 90 

% human serum. An overnight culture of the bacteria was diluted 1:100 in LB and grown 

to 90 Klett units. The bacteria were diluted 1:10 in human serum and incubated at 37 °C. 

After 0 h, 1 h, 3 h, and 24 h, survival of the strains was tested by plating an aliquot on LB 

agar plates containing the appropriate antibiotic (Hughes, et al., 1982). In addition, to 

determine the serum resistance of strain Nissle 1917 after complementation with a single 

chromosomal copy of the wzy536 gene or with a plasmid-encoded entire wb*536 gene 
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cluster, growth of bacterial strains in 50 % human serum was also measured. Reactivity  

of the serum was routinely checked by incubation of the strains in heat-inactivated serum 

(56 °C, 30 min). After heat-inactivation, serum-sensitive strains multiplied in the heat-

inactivated serum but not in untreated serum. 

 

8.6 Detection of protease activity 
 
For the detection of serine-protease activity, the EnzCheck® Protease Assay Kit E-6638 

(Molecular Probes) was used following the instructions of the manifacturer. Briefly, 

casein derivatives, heavily labelled with pH-sensitive green-fluorescent BODI®PY FL 

dye, were used as a substrate. Protease-catalyzed hydrolysis releases highly fluorescent 

BODI®PY FL peptides, and the corresponding fluorescence proportional to the protease 

activity was measured using the fluorescence imager “Typhoon 8600”. 5 ml LB culture 

were inoculated with 50 µl of an overnight culture of the strain to be tested and then 

grown to OD600=0.6, the cells were collected by centrifugation for 5 min and diluted 

1:100 in LB. 95 µl from the diluted cells were used for performing the reaction in a 

microtiter plate. 5 µl of the substrate solution (10 µg/ml BODI®PY FL in the supplied 1 × 

digestion buffer) were added and the mixture was incubated for 1 h at RT protected from 

light. The fluorescence was measured at wavelength of 500 nm. 
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V. Results 
 
1. Analysis of the genome structure of E. coli strain Nissle 1917 
 
1.1 Characterization of the E. coli strain Nissle 1917 genome by PFGE 
 
In order to perform a genome-wide comparison between the three investigated E. coli 

O6 strains, a genomic restriction analysis by PFGE was used. As shown in Fig. 6a the 

E. coli strains Nissle 1917 and CFT073 exhibited similar genomic restriction patterns 

when digested with one of the restriction enzymes NotI, XbaI and SfiI. This indicates 

a common clonal origin of these strains. Nevertheless, some differences in the 

restriction pattern were evident, which is not surprising, since both strains differ in the 

presence of at least one genomic island (pheU-associated GEICFT073) and having in 

mind that also minor genetic events like single nucleotide differences or gene 

rearrangements and deletions may significantly alter the genomic restriction pattern. 

The restriction pattern of strain 536 differed more significantly from that of strain 

Nissle 1917 than the one of strain CFT073.  

In addition, the enzymes CeuI and AvrII were used to compare the genomic restriction 

pattern of the three E. coli O6 isolates. As seen form Fig. 6b the AvrII-specific 

restriction patterns of the investigated strains differed significantly, but no 

considerable differences were observed between the strains when digested CeuI and 

AvrII together or with AvrII alone. The restriction enzyme CeuI cuts the E. coli 

chromosome specifically in the ribosomal RNA operons (7 restriction sites), whereas 

AvrII cuts 16 times in the E. coli strain MG1655 genome and 30 times in the genome 

of E. coli strain CFT073. At least two Nissle 1917-specific aditional AvrII restriction 

sites were identified in the sequence of GEI IINissle 1917 (see section V.2.2).  
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 A.                                                                           B. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Restriction analysis of genomic DNA of different E. coli strains by PFGE. A. lane 1, Low 
Range PFGE Marker; lane 2, Lambda Ladder PFGE Marker; lane 3, NotI-digested DNA of E. coli 
strain MG1655; lane 4, NotI-digested DNA of E. coli strain Nissle 1917; lane 5, NotI-digested DNA of 
E. coli strain CFT073; lane 6, NotI-digested DNA of E. coli strain 536; lane 7, XbaI-digested DNA of 
E. coli strain MG1655; lane 8, XbaI-digested DNA of E. coli strain Nissle 1917; lane 9, XbaI-digested 
DNA of E. coli strain CFT073; lane 10, XbaI-digested DNA of E. coli strain 536; lane 11, SfiI-digested 
DNA of E. coli strain MG1655; lane 12, SfiI-digested DNA of E. coli strain Nissle 1917; lane 13, SfiI-
digested DNA of E. coli strain CFT073; lane 14, SfiI-digested DNA of E. coli strain 536; lane 15, 
Lambda Ladder PFGE Marker. B. lane 1, Lambda Ladder PFGE Marker; lane 2, CeuI-digested DNA 
of E. coli strain MG1655; lane 3, CeuI-digested DNA of E. coli strain Nissle 1917; lane 4, CeuI-
digested DNA of E. coli strain CFT073; lane 5, CeuI-digested DNA of E. coli strain 536; lane 6, 
CeuI/AvrII-digested DNA of E. coli strain MG1655; lane 7, CeuI/AvrII-digested DNA of E. coli strain 
Nissle 1917; lane 8, CeuI/AvrII-digested DNA of E. coli strain CFT073; lane 9, CeuI/AvrII-digested 
DNA of E. coli strain 536; lane 10, AvrII-digested DNA of E. coli strain MG1655; lane 11, AvrII-
digested DNA of E. coli strain Nissle 1917; lane 12, AvrII-digested DNA of E. coli strain CFT073; lane 
13, AvrII-digested DNA of E. coli strain 536; lane 14, Low Range PFGE Marker. 
 

1.2 Genome-wide tRNA screening 

 

Since tRNA genes are common sites for chromosomal integration of foreign DNA 

elements, a PCR-based screening for sequence context alterations of tRNA genes of 

the E. coli strains Nissle 1917 and 536 was carried out, using primers which are 

binding within the ORFs located up- and downstream of tRNA genes in the genome 

of the E. coli MG1655. Usually monocistronic tRNA genes as well as the most 

promoter distal tRNA gene of polycistronic operons have been included into this 

study. tRNA-genes located within tRNA-encoding operons have not been included 

into the tRNA-screening (Dobrindt, U., unpublished). In several cases in which no 

PCR product was obtained with E. coli K-12-specific primers, primer pairs were used 

which allow amplification of the E. coli strain CFT073- or EDL933-specific sequence 

1   2   3   4    5   6   7    8    9  10  11  12  13  14  15 1    2    3   4   5    6   7   8   9   10  11 12 13 14
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context of the specific tRNA gene of interest. For some of the tRNA genes of interest 

the corresponding upstream genes were amplified and used as probes for dot blot 

screening of the genomic cosmid library of strain Nissle 1917. In several cases in 

order to obtain sequence information of unknown DNA regions flanking tRNA gene 

of interest, inverse PCR (IPCR) was carried out. The results from the tRNA screening 

approach are summarized in Tab. 5. Generally, an unexpectedly high degree of 

similarity of the genome organization of E. coli strain Nissle 1917 with that of the 

uropathogenic strain CFT073 and only to a lesser extent to that of the uropathogenic 

strain 536 was observed. 

 
Table 5: Identification of chromosomally inserted putative horizontally acquired DNA 
regions by a PCR-based tRNA screening of the E. coli Nissle 1917 and 536 genome. 
     
Strain 
 
tRNA 
gene 

MG1655 
(K-12 

primers) 

536 
(K-12 

primers) 

Nissle 
1917 
(K-12 

primers) 

Upstream 
located gene 

Downstream 
located gene 
(Nissle 1917) 

Cloning  
strategy 

(Nissle 1917)  

argQ  + - - csrA c3247 IPCR 
glnX + + +    
lysQ + (+) (+) ybgF  IPCR 
thrT + + +    
glyU + - - b2865 c3442 PCR 
serU + - - b1976 c2416 PCR 
asnT + - - b1976 HPI pCos220 
asnW + (+) (+)    
asnU + + +    
argW + - - yfdC c2893 pCos1YA7 
argU + - - fimZ   
wrbA + + +    
ssrA + + +    
serW + (+) +    
serT + + +    
lysV + (+)smaller (+)smaller gltX  IPCR 
proK + (+)smaller (+)smaller    
proL + - - yejM   
pheV + - - yqgA Z4313  PCR 
pheU + + +    
metY + + +    
leuU + + +    
asnV + - - nac c2445  PCR 
ileY + + +    

proM + + +    
metV + - - purU c3385 PCR 
leuZ + + +    
leuV + + +    
glyY + + +    
valW + + +    
tyrV + + +    
serW + (+) (+)    
alaX + + +    
serX + - - ycdW, csg  c1291  PCR 
leuX + - - yjgB c5371 IPCR 
thrW + - - proA c0391 IPCR 
aspV + - + dnaQ c0253 PCR 
selC + - - yicK ∆P4 integrase pCos8YA1 
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Results from the tRNA screening indicate that 15 of 37 studied tRNA genes serve as 

integration sites of foreign DNA in the genome of E. coli strain Nissle 1917.  

Interestingly, the strains Nissle 1917 and 536 exhibited almost an identical “tRNA-

screening pattern”, indicating that the same tRNA genes in both strains are target sites 

for chromosomal insertion of horizontally acquired DNA. However, the genetic 

structure and the size of the integrated fragments differ dramatically, e. g. in the case 

of the selC, leuX, thrW, serX, and pheV tRNA genes (Dobrindt et al., 2002). Most of 

the regions located immediately downstream of the tRNA genes in the genome of 

Nissle 1917 which are not identical to those of strain MG1655 seem to be identical to 

those in the E. coli strain CFT073, which indicates a possibly similar DNA content 

and organization of the horizontally acquired DNA in the latter two strains.  

A 100 kb aspV-associated genomic island, containing a determinant coding for a 

putative member of the RTX toxin family (upxBDA)  is present in the genome of 

CFT073 (Welch et al., 2002). Using primers derived from the E. coli strain CFT073 

sequence, a CFT073-specific aspV PCR product of about 10 kb was detected only in 

the strains CFT073 and Nissle 1917, but not in strain 536, for which an E. coli K-12-

specific PCR product was detected (Tab. 5). In addition, the upxBDA gene cluster was 

successfully amplified (using the primers upx-up, upx-up1, upx-down and upx-

down1) from genomic DNA of the strains CFT073 and Nissle 1917, but not from 

genomic DNA of strain 536. This is an indication that the aspV-associated genomic 

island of E. coli strain CFT073 is at least partially present in the genome of strain 

Nissle 1917, but absent from the genome of strain 536. Interestingly, the strains 

Nissle 1917 and 536 do not posses pheU-associated island (Tab. 5), whereas a pheU-

associated island is present in the genome of strain CFT073 which carries a pap 

fimbrial determinant. No PCR product for the 536-specific argW tRNA-encoding 

gene was obtained when either E. coli K-12- or strain CFT073-specific primers were 

used. 

 

2. Characterization of genomic islands of E. coli strain Nissle 1917 (GEI I – 

IVNissle 1917) 

 

In this work four genomic islands have been detected and characterized in the 

genome of E. coli strain Nissle 1917. These islands are located at tRNA-encoding 
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genes (serX, pheV, argW , asnT; Fig. 7), and contain determinants coding for known 

fitness-conferring factors, as well as putative fitness factors, mobility genes, ORFs of 

unknown or putative functions. In addition several genomic islets, most of which 

localized in the core chromosome, coding for (putative) fitness-conferring factors 

have been partially characterized. 

 
 
Fig. 7: Chromosomal localization and gene content of E. coli Nissle 1917-specific genomic islands and 

islets. 

curli fimbriae 
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2.1 Characterization of the Genomic Island I of E. coli strain Nissle 1917 

 (GEI INissle 1917) 
 
In order to identify a cosmid clone containing the entire microcin-encoding genetic 

determinants of Nissle 1917, the cosmid genomic library was screened by printing the 

clones on microcin detection plates. The microcin expressing cosmid clone 

pCos3YE4 was identified (Fig. 8) and further characterized.  

 

 

 

 

 

 

 

 

 

 

 

Using PCR and Southern hybridization analysis, it was demonstrated that the 

pCos3YE4 cosmid insert contains both mch and mcm microcin-encoding gene 

clusters (Patzer et al., 2003), the foc operon coding for F1C fimbriae synthesis, and 

the iro cluster encoding the salmochelin siderophore system (Hantke et al., 2003). 

The expression of F1C fimbriae by E. coli XL1-blue harbouring pCos3YE4 as well as 

by the fimbriae-negative E. coli strain AAEC189, when transformed with pCos3YE4, 

was demonstrated by immunoagglutination using an α-F1C polyclonal rabbit serum  

(Khan, S., personal communication).  

The structure and DNA content of the pCos3YE4 insert resembled those of PAI III536 

(Dobrindt et al., 2001; Fig. 9; Fig. 10), thus representing a possible genomic island. 

An overlapping clone (pCos2RA4) was identified, using primers specific for the 3'-

end of the pCos3YE4 insert (3YE4-1 and 3YE4-2; Fig. 9; see section VIII, Tab.2). 

Another cosmid overlapping with the 5' end of pCos3YE4 was also identified and 

shown to contain the serX tRNA gene. Since the structure of this genomic island 

Fig. 8: Identification of the microcin-producing cosmid clone pCos3YE4 (indicated by an arrow). 
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(GEI INissle 1917) was very similar to that of the serX-associated island in the genome of 

E. coli strain CFT073 (serX-associated GEICFT073; Welch et al., 2002), overlapping 

PCR reactions based on the E. coli strain CFT073 genome sequence were established, 

and used for amplification of the CFT073- and Nissle 1917-specific DNA regions 

between serX and iroC (ca. 30 kb; primers: 1A + 1B, 2A + 2B, 3A + 3B, 4A + 4B; 

Fig. 9). In the chromosome of E. coli strain CFT073 this region contains mostly 

putative ORFs coding for hypothetical proteins. The PCR products were subsequently 

sequenced and assembled with the available sequence data from the cosmid clones. 

The structure and DNA content of the entire 100 kb region located downstream of the 

serX tRNA-encoding gene is highly similar in both E. coli O6 strains. This genomic 

island contains several determinants which code for fitness-conferring traits  

(microcins, adhesion, iron uptake).
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Fig. 9: Characterization of GEI INissle 1917  A. Sequence analysis and structural organization of the ORFs located in  GEI INissle 1917. B. G+C content of 
the DNA in  GEI INissle 1917. 
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Fig. 10. Sequence alignment of  GEI INissle 1917 and PAI III536. The homologous regions between the two islands are depicted by interrupted lines. 
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The GEI INissle 1917 exhibits typical characteristics of genomic islands. It is associated 

with the serX tRNA gene, carries several mobility-related genetic elements as well as 

ORFs with unknown or putative function. The genetic organization of GEI INissle 1917 is 

partially similar to that of PAI III536, where also microcin-related ORFs (but not the 

entire mch/mcm gene cluster) are located together with the sfaI cluster (required for 

the biosynthesis of S-fimbriae) and the iro genes (Dobrindt et al., 2001; Schubert et 

al., 2003). Since foc and sfa code for members of one and the same fimbrial family 

and the structural similarity of both islands is high, it is tempting to consider them 

members of the “S-fimbrial PAI family ” with possibly similar evolutional origin. 

Nevertheless, there are significant differences in the DNA content of GEI INissle 1917 

and PAI III536  as well as in their chromosomal integration site which are serX and 

thrW, respectively. The tRNA screening approach indicated that thrW is another 

putative integration site for foreign DNA in the genome of Nissle 1917 (see section 

V.1.2). In addition, the PCR-based screening of the 40 kb E. coli strain MG1655-

specific region located downstream of thrW (thrW – yagU) was performed, since it is 

known that this DNA region represents the E. coli K-12 strains-specifc CP4-6 

prophage and is absent in non-K-12 wild type commensal or pathogenic E. coli 

strains (Dobrindt et al., 2001). The results indicated that this region is absent in the 

chromosome of E. coli Nissle 1917 just like in the chromosome of 536. 

 

2.2 Characterization of the Genomic island II of E. coli strain Nissle 1917  

(GEI IINissle 1917)  
 
The aerobactin gene cluster (iuc) is known to be located within different genomic 

islands on the chromosome of E. coli, Salmonella and Shigella strains as well as on 

plasmids (Purdy et al., 2001; McDougall et al., 1984; Moss et al., 1999; Vokes et al., 

1999). In order to characterize the aerobactin-encoding gene cluster of E. coli strain 

Nissle 1917 and its chromosomal context, an aerobactin-expressing cosmid clone 

pCos9YB4 was identified (Fig. 11) by colony blot with a probe generated by PCR  

using primers iuc-up and iuc-down. Two overlapping cosmid clones pCos2YE4 and 

pCos2RF2 were identified by PCR, using the primers iha-up, iha-down, and K5-1-up, 

K5-1-down, respectively. The iuc, sat, iha and kps genes are located in the pheV-

associated genomic island of the chromosome of E. coli strain CFT073. Since the 

genome structure of the E. coli strain Nissle 1917 is similar to that of the strain 

CFT073, the presence of the iuc, iha, sat genes and the genes comprising the three 
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regions of the K5-capsule-encoding kps cluster in the chromosome of the E. coli 

strain Nissle 1917 as well as in the identified cosmid clones was proven by Southern 

hybridization. 

 

 

 

 

 

 

 

 

 

 

 

The three cosmid clones were sequenced and assembled as depicted in Fig. 12a, thus 

representing a genomic island of about 100 kb (designated as Genomic Island II of E. 

coli strain Nissle 1917, GEI IINissle 1917, see section VIII, Tab. 3). This genomic island 

contains the determinants coding for several fitness factors, as well as many putative 

ORFs with so far unknown functions and a considerable number of transposon-related 

features, IS elements and integrases (Fig. 12a). The G+C content varies considerably 

from that of the E. coli core chromosome (Fig. 12b), indicating a possible 

heterogeneous origin of the DNA regions assembled within the island. The 

organization and DNA content of GEI IINissle 1917 resembles those of the pheV-located 

pathogenicity island of E. coli strain CFT073 (pheV-associated GEI CFT073; Fig. 13). 

Moreover, the tRNA screening approach revealed that in strain Nissle 1917 

downstream of pheV the same putative P4 integrase-encoding gene is located (c3556, 

Z4313) as in the E. coli strains CFT073 and EDL933 strains. Since the pheV tRNA-

encoding gene was not located on the identified cosmids, the pheV - shiA region of 

strain Nissle 1917 was amplified by PCR and sequenced using primers derived from 

the E. coli strain CFT073 genome sequence (pheVshiA-1 and pheVshiA-2). 

Interestingly, the ShiA protein encoded by the Shigella flexneri SHI-2 pathogenicity 

island has been shown to attenuate the host inflammatory response (Ingersoll et al., 

XL1 blue 

XL1 blue (pCos9YB4) Nissle 1917 

Fig. 11: Detection of aerobactin -xpression of cosmid clone pCos9YB4. The growth zone around the 
aerobactin-expressing strains is seen as white halos.. 
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2003), but the importance of the E. coli strain Nissle 1917-specific shiA-homologue 

determinant remains so far unknown. 
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Length [bp] 

Fig. 12: Characterization of GEI IINissle 1917. A. Sequence analysis and structural organization of the ORFs located in  GEI IINissle 1917. B. G+C content 
of the DNA in  GEI IINissle 1917. 
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Fig. 13: Sequence alingment of  GEI IINissle 1917 and pheV-associated GEICFT073. The homologous regions between the two islands are depicted by interrupted 
lines with the corresponding colour. 
 

0                    10                    20                     30                    40                   50                  60                  70                 80                  90                  100 [kb] 



V. Results    82

Two autotransporter protein-encoding genes are located on GEI IINissle 1917: sat and 

sap. The sap gene is an agn43 homologue, whose gene product plays a possible role 

for cell aggregation and biofilm formation, whereas the sat gene is coding for a serine 

protease with cytopathic effect. In order to find out whether the Sat protein is secreted 

and active, the E. coli strain Nissle 1917-specific sat gene was cloned and 

overexpressed (Fig. 14) . For this purpose a 7 kb HindIII/EcoRI fragment from 

pCos9YB4 which carries the intact sat gene was cloned into HindIII/EcoRI digested 

pUC19 thus resulting in pPSD1917. The presence of the overexpressed Sat protein in 

the culture supernatant of host cells (Fig. 14a) was demonstrated as well as its 

protease activity (Fig. 14b). Protease activity of the E. coli strains Nissle 1917 and 

CFT073 was not detected probably due to weaker expression of Sat protein compare 

to the strain DH5α (pPSD1917) and low sensitivity of the assay. 

 

A.                                                                                                                   B. 

 

 

 

 

 

 

 

 

 

 

 

 

Two regions with a transposon-like structure were identified in  GEI IINissle 1917 

(Fig. 15). One of them is ca. 30 kb in size, contains the iuc gene cluster as well as sat 

and iha genes, and is flanked by two IS2 elements in opposite orientation. The second 

one (ca. 4 kb) exhibits contains a transposase-encoding gene and remnants of the 

papX gene flanked by IS10 elements.  
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Fig. 14: Analysis of protease activity of the Sat protein encoded on GEI IINissle 1917. A. Detection of Sat 
protease in cluture supernatants. After separation of proteins by PAGE, the polyacrylamid gel was 
stained with Coomassie brilliant blue. Lane 1, DH5α (pPSD1917); lane 2, DH5α (pCos9YB4); lane 3, 
DH5α; lane 4, E. coli Nissle 1917; lane 5, E. coli 536; E. coli CFT073. The 142 kDa Sat proteine band
is indicated by an arrow. B. Detection of protease activity by fluorescence. 
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Fig. 15: Structure of the identified putative mobile genetic elements in GEI IINissle 1917. The primers 
used for detection of deletion events are indicated by arrows and designated with bold letters. A. 30 kb 
iuc, sat, iha region flanked by IS2 elements. B. 4 kb transposon-like element containing remnants of 
the pap determinant.  
 

For the 30 kb DNA region primers were designed which are located up- or 

downstream of the left-hand and right-hand IS2 elements, respectively. This primer 

pair allows the detection of the deletion of the chromosomal region flanked by the IS2 

elements by PCR amplification of a 1.2 kb PCR product (exclusion PCR; Fig. 16). 
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Fig. 16: Detection of the deletion event of 30 kb genetic element within GEI IINissle 1917 by exclusion 
PCR. Lane 1, E. coli straim MG1655; lane 2, E. coli strain 536; lane 3, E.coli strani CFT073; lane 4, 
E. coli strani Nissle 1917; lane 5, 1 kb DNA ladder. 
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The 1.2 kb PCR product could only be amplified from an overnight culture of strain 

Nissle 1917, whereas no PCR product was obtained from the strain CFT073 and 536 

as well as from the negative control strain MG1655. This indicates that this DNA 

region can delete by recombination between the flanking IS2 elements.  

The obtained PCR product was directly sequenced. The sequence analysis revealed 

the presence of two inverted repeats (IRL; Lewis et al., 2001). Interestingly, in the 

pheV-located island of E. coli strain CFT073 only one copy of the IS2 element is 

present, the order of the included genes differs from that of the 30 kb region of GEI 

IINissle 1917, and the entire 4 kb transposon-like structure is absent but replaced by a 30 

kb region containing the functional hly and pap determinants. Only remnants of the 

pap gene cluster are present in GEI IINissle 1917 .  

The loss of the 30 kb genetic element due to deletion event may influence the fitness 

of E. coli strain Nissle 1917, since it results in the simultaneous loss of the aerobactin 

iron-uptake system, the serine protease activity of the Sat protein and the putative 

adhesion/siderophore receptor activity of Iha. 

 

2.3 Analysis of the sequence context of argW tRNA-encoding gene in the genome 

of E. coli strain Nissle 1917 (GEI IIINissle 1917) 
 
One of the tRNA genes which was found to be a putative integration site of foreign 

DNA was argW. A cosmid clone containing the argW tRNA gene was identified by 

dot blot hybridization with a probe representing the yfdC gene located upstream of 

argW . The presence of argW in this cosmid was proven by Southern blot 

hybridization and the cosmid insert was subsequently sequenced (Fig. 17; see section 

VIII, Tab. 4). 

The identified putative ORFs exhibit high overall homology to E. coli CFT073 

sequences, although the order of the ORFs differs in the argW upstream region 

significantly between the two strains. Interestingly, a large ORF (ORF26)  whose 

gene product exhibits similarity on the protein level to the putative autotransporter 

YapH of Y. pestis seemed to be truncated due to the presence of an internal stop 

codon in strain CFT073 but not in strain Nissle 1917. ORF 12 – 17 represent a 

putative fimbriae encoding gene cluster. The argW downstream region represents a 

part of a genomic island ( GEI IIINissle 1917). 
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Fig. 17: Characterization of the argW sequence context in strain Nissle 1917. A. Genetic structure of the argW sequence context. B. G+C content of DNA in the argW 
sequence context in strain Nissle 1917. 
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2.4 Detection and sequence analysis of GEI IVNissle 1917 

 
The presence and genetic organization of the DNA region which encodes the 

siderophore system yersiniabactin (Carniel et al., 1996) was verified in strain Nissle 

1917 by sample sequencing of PCR products obtained with primers described before 

(Buchrieser et al., 1999; Karch et al., 1999). According to the results, we conclude 

that by analogy to the HPI of Y. pseudotuberculosis, the asnT-associated GEI IVNissle 

1917 is about 30.2 kb in size and has a G + C content of 57 %. The left and right 

junction of GEI IVNissle 1917 have already been sequenced and flanking repeat 

structures have not been reported (Schubert et al., 1999). This island is also present in 

the same chromosomal insertion site in uropathogenic E. coli O6 strains CFT073 and 

536 (Dobrindt et al., 2002; Welch et al., 2002) as well as in many non-human 

pathogenic Salmonella enterica subspecies III and VI and in commensal E. coli 

isolates (Dobrindt et al., 2003; Ölschäger et al., 2003). 
 
3. Molecular analysis of genomic islets in E. coli strain Nissle 1917 chromosome 
 
Several genomic islets which possibly contribute to the fitness of E. coli strain Nissle 

1917 have been detected and characterized. These include: wa* gene cluster coding 

for the enzymes required for the R1 type core LPS biosynthesis, wb* gene cluster 

coding for the enzymes required for the O6 side chain LPS; determinants which are 

known to contribute to the rdar morphotype (csg and bcs); type 1-fimbriae-encoding 

gene cluster fim and the chu determinant, which is responsible for the biosynthesis of 

the haeme iron-uptake system. All of them (except chu) are part of the E. coli core 

genome. 

 

3.1 Molecular analysis of the lipopolysaccharide biosynthesis determinants of E. 

coli strain Nissle 1917. 
 
3.1.1 Identification and sequence analysis of the wa* gene cluster of E. coli strain 

Nissle 1917. 
 
In order to identify a cosmid clone containing the wa* gene cluster encoding the 

enzymes for the R1 core of the LPS, the genomic cosmid library was screened by 

PCR using primers R1C3 and R1K15 (Amor et al., 2000). One cosmid was identified 

and the presence of the wa* gene cluster was confirmed by Southern blot 

hybridization and sequence analysis of the ends of the cloned insert using the primers 
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SuperCos-F and SuperCos-R, as well as R1K15 and R1C3. The entire cosmid was 

sequenced and analyzed. The E. coli strain Nissle 1917-specific wa* gene cluster 

exhibited 97 % homology on the DNA level to the already published R1 core type-

encoding wa* gene cluster of E. coli (Heinrichs et al., 1998) and a conserved 

localization on the E. coli chromosomal map upstream of kdtB (at 81 min on the E. 

coli K-12 chromosome; Fig. 18; see section VIII, Tab. 5). Since the 5' end of waaC 

was not included into the cosmid insert a PCR was carried out to amlplify the missing 

part using primers waaClücke-1 and waaClücke-2, that are based on the nucleotide 

sequence of the already published wa* gene cluster. The obtained PCR product was 

subsequently sequenced.  

Interestingly, at the 3' end of the insert a tRNA-encoding gene selC was identified. 

Downstream of the selC gene an ORF with homology to P4-like integrase was 

identified, indicating that a genomic island is located at this position in the 

chromosome of Nissle 1917 (see sections V.1.2 and VIII, Tab. 5). The highest overall 

DNA sequence homology of the cosmid insert is to the genome of the E. coli CFT073 

(98 %). ORF32 - 39 are present in the genome of CFT073 but absent from the E. coli 

MG1655 chromosome.
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Fig. 18: Analysis of the wa* determinant of the E. coli strain Nissle 1917. A. Genetic organization of 
the wa* gene cluster and flanking regions of E. coli strain Nissle 1917. B. G+C content of the DNA in 
the insert. 
 

3.1.2 Identification and sequence analysis of the wbO6 gene cluster of E. coli 

strain Nissle 1917. 
 
Since wb* gene clusters have a conserved localization in the E. coli chromosome 

between galF and gnd genes (45.4 min on the E. coli K-12 chromosome), a PCR 

amplification using proofreading DNA polymerase was carried out in order to identify 

wbO6 gene cluster. Amplification of the entire wbO6 gene cluster of E. coli strains 

Nissle 1917 and 536, using the already published primers 412 and 482 binding in the 

wb* flanking regions (Coimbra et al., 1998; Fig. 19), resulted in both E. coli strains in 

a DNA fragment of ~11 kb (Fig. 19a).  

The PCR products of both strains were cloned into the plasmid pGEM®-T Easy 

resulting in the plasmids pGWB1917 and pGWB536, respectively, which exhibited an 

identical restriction pattern after digestion with EcoRI (Fig. 19b).  
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Fig. 19: A. Amplification of the wbO6 determinant of E. coli strains Nissle 1917 and 536: lane 1, E. coli 
Nissle 1917; lane 2, E. coli 536; M, 1 kb DNA ladder. B. Restriction pattern after EcoRI digestion of 
the cloned wbO6 gene clusters: lane 1, pGWB1917; lane 2, pGWB536; M, 1 kb DNA ladder. 
 

The E. coli strain Nissle 1917-specific DNA fragment was sequenced and the genetic 

structure was analyzed in detail (Fig. 20). The wbO6 gene cluster of strain Nissle 1917 

is 11037 bp in size and exhibits an overall G+C content of 36.4 % suggesting an 

acquisition of the wbO6 determinant by horizontal gene transfer. Nine tightly linked, 

sometimes overlapping putative open reading frames (ORFs) were identified ( Fig. 20 

and Tab. 3). The G+C content did not vary markedly between the different ORFs with 

the exception of the genes manC and manB which exhibited an even higher G+C 

content than the overall E. coli chromosome (50.8 %). The identical genetic 

organization of the wbO6 gene clusters of E. coli O6 strains Nissle 1917 and 536 was 

demonstrated by PCR, using the primers whose position within the wbO6 determinant 

is depicted in Fig. 20 (primers LG1 – LG8). The deduced amino acid sequences of 

these ORFs were analyzed with regard to the presence of conserved domains and 

similarity to other protein sequences. Based on the obtained results, the identified 

putative ORFs of the wbO6 determinant were predicted to encode putative glycosyl- or 

mannosyl transferases (ORFs 3, 4, 5 and 7), a putative O6 antigen flippase Wzx (ORF 

1), a putative O antigen polymerase Wzy (ORF 2), a putative UDP-N-

acetylglucosamine-4-epimerase or UDP-glucose-4-epimerase (ORF 6), a mannose-1-

phosphate guanosyl transferase (ORF 8) and a phosphomannomutase (ORF 9) 

(Tab. 6). The nucleotide sequences of ORFs 1-7 showed no homology on the DNA 

level to available sequences from public databases.  
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Fig. 20: Analysis of the wbO6 determinant of E. coli strain Nissle 1917 and 536. A. Genetic structure of 
the O6 side chain-encoding determinant of E. coli strains Nissle 1917 and 536. The identified ORFs 
and the binding sites of the used primers are marked by arrows. The position of the point mutation in 
E. coli strain Nissle 1917-specific O6 antigen polymerase-encoding gene wzyNissle 1917 is indicated by 
bold letters. B. G + C content of the DNA in E. coli Nissle 1917-specific wbO6 gene cluster.
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Table 6: Characteristics of the ORFs located in the O6-specific wb gene cluster of E. coli strain Nissle 1917 
Putative 
ORF 

Length 
[bp] 

G+C 
content 

[%] 

No. of 
aa of 

encoded 
protein 

Conserved domain (s) of the 
encoded protein 

Similarity to already known proteins  
(accession no.) 

% identity /  
% similarity 
(no. of aa) 

Putative function of 
wbO6-encoded protein 

ORF1 1256 31.3 418 Polysaccharide biosynthesis 
proteins 

Putative O antigen transporter RfbX protein, 
Shigella dysenteriae (S34963) 

O antigen transporter E. coli K-12 (I69652) 

24 / 45 (396) 
 

23 / 44 (415) 

O antigen flippase 
Wzx 

ORF2 986 a) 
1343 b) 

30.5 328 a) 
447 b) 

- Hyp. protein, Streptococcus pneumoniae R6 
(AAL00026) 

beta-1,3-glucan synthase GSC-1, 
Pneumocystis carinii (AAG02216) 

25 / 48 (447) 
 

24 / 40 (1944) 

O antigen polymerase 
Wzy 

ORF3 860 31.2 286 Glycosyl transferase family 2 Glycosyl transferase, Bacillus halodurans 
(BAB07432) 

putative beta 1,3-glucosyl transferase WaaV, 
E. coli F470 (AAC69672) 

38 / 58 (303) 
 

31 / 50 (327) 
 

Glycosyl transferase 

ORF4 1032 33.6 343 Glycosyl transferases group 1 Predicted glycosyl transferases, 
Thermoanaerobacter tengcongensis 

(AAM23571) 
glycosyl transferase, Pyrococcus furiosus 

DSM 3638 (AAL80431) 

28 / 45 (404) 
 

 
27 / 45 (336) 

Glycosyl transferase 

ORF5 1145 28 381 - Glycosyltransferase, Clostridium 
acetobutylicum (AAK80991) 

putative mannosyltransferase, Yersinia pestis 
(CAC92344) 

28 / 43 (393) 
 

25 /39 (380) 

Glycosyl transferase 

ORF6 1007 35.6 335 NAD dependent epimerase/ 
dehydratase family 

UDP-glucose 4-epimerase, GalE, 
Haemophilus influenzae Rd (AAC22012) 
UDP-galactose 4-epimerase, H. influenzae 

(CAA40568) 
UDP-N-acetyl-glucosamine 4-epimerase, E. 

coli O55 (AF461121) 

54 / 71 (338) 
 
 

54 /71 (338) 
 

23 / 39 (331) 

UDP-N-acetyl-
glucosamine 4-
epimerase or  

UDP-glucose 4-
epimerase 
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Table 6 continued 
ORF7 401 30.4 401 Glycosyl transferases group 1 WbaD (Orf7.17) function unknown, 

Salmonella enterica (AAB49389) 
Glycosyltransferase, Clostridium 

acetobutylicum (AAK80997) 

51 / 67 (399) 
 

26 / 47 (420) 

Glycosyl transferase 

ORF8 483 38.1 483 Mannose-6-phosphate isomerase 
family 2 

Mannose-1-phosphate guanyltransferase, E. 
coli O157:H7, (BAB36277) 

mannose-1-phosphate guanyltransferase, E. 
coli K-12 (AAC75110) 

71 / 84 (478) 
 

 
71 /84 (478) 

Mannose 1-P 
guanosyl transferase 

ORF9 456 55.1 456 Phospho-glucomutase / 
phosphomannomutase, alpha/ 

beta/alpha domain I and alpha/beta/ 
alpha domain II 

Phosphomannomutase E. coli O6 
(AAG41759) 

Phosphomannomutase E. coli O41 
(AAG41754) 

99 / 99 (456) 
 

98 / 98 (456) 

Phosphomanno-
mutase 

a) Length of wzy or Wzy in semi-rough E. coli strain Nissle 1917 
b) Length of wzy or Wzy in smooth E. coli 5
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Comparison of of the O6-specific O antigen polymerase-encoding gene wzy of E. 

coli strains Nissle 1917 and 536  

Due to its localization downstream of the putative wzx gene of the wbO6 determinant, 

ORF 2 was predicted to be the putative O6 specific O antigen polymerase-encoding 

gene wzy. This was corroborated by the fact that 12 transmembrane helices were 

predicted from the deduced amino acid sequence of ORF 2 using the TMpred 

software (data not shown). To find out whether the putative wzy genes of the serum-

sensitive strain Nissle 1917 and its serum-resistant counterpart strain 536 differ from 

each other, the corresponding DNA sequences were compared. Interestingly, 

sequence comparison of the putative E. coli Nissle 1917- and 536-specific wzy genes 

demonstrated that in wzyNissle 1917 a point mutation (C to A transition at position +986 

with respect to of the translational start of wzyNissle 1917) resulted in an internal stop 

codon (TCA to TAA) and consequently in truncation of the ORF in comparison to 

wzy536 (Fig. 20). This internal stop codon causes premature translation termination of 

wzyNissle 1917 transcripts, thus leading to a non-functional O6-specific O antigen 

polymerase. Therefore, the point mutation within wzyNissle 1917 is proposed to be the 

reason for the semi-rough phenotype of E. coli strain Nissle 1917. This supports the 

results of the biochemical analysis of this strain’s LPS that consists of only one O 

repeating unit linked to the R1-type core (Grozdanov et al., 2002). 

Determination of O6 side chain length and serum resistance of the wild type 

strain E. coli Nissle 1917 and of different wzy-complemented derivatives 

To verify the proposed function of the putative wzy gene, and to prove that the 

identified point mutation within wzyNissle1917 is the reason for the semi-rough 

phenotype of strain Nissle 1917, complementation experiments were performed. 

Strain Nissle 1917 was transformed with the entire wbO6 gene cluster of E. coli strain 

536 harbored on a plasmid (pBWB536). In addition, two fragments of the E. coli 536-

specific wbO6 gene cluster were subcloned into pBluescript-II KS, using the NotI 

restriction enzyme, and transfered into strain Nissle 1917. One of these plasmids 

contained the O antigen flippase gene (wzx) and a fragment of wzy536 with the size of 

the truncated ORF wzyNissle 1917 (pBLG2504). The other one consisted of the complete 

wzx and wzy genes of E. coli strain 536 (pBLG2849; Fig. 21). 
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To avoid gene dosage effects, E. coli strain Nissle 1917 was also chromosomally 

complemented by integration of a single copy of wzy536 fused with promoters of the β-

lactamase-encoding gene of pBR322 (Pbla::wzy536), or with the upstream region of the 

wbNissle 1917 gene cluster (Pwb*Nissle1917::wzy536) into the chromosomal attachment site 

of the bacteriophage λ. The wbO6-specific upstream region of strain Nissle 1917 is 97 

% identical to the previously studied wbO7 promoter (accession no. U23775). The 

resulting strains, in which a functional wzy536 copy has been stably integrated, were 

designated E. coli Nissle 1917λPbla::wzy536 and E. coli Nissle 1917λPwb*Nissle 

1017::wzy536, respectively (Fig. 22). The promoters P1 and P2 of the β-lactamase-

encoding gene (bla) of pBR322 together with a Shine-Dalgarno sequence were fused 

with the wzy536 gene by PCR using primers LG7 and LG10, cloned into pGEM®-T 

Easy (resulting in pGPW1) and subcloned in plasmid pLDR11. The resulting plasmid 

pLBW1 (Tab. 5; Fig. 22a) was subsequently used for the integration of the Pbla::wzy536 

fusion into the bacteriophage λ attachment site of the E. coli Nissle 1917 

chromosome. Using the primers LG15 and LG16, the upstream region of the wbO6 

gene cluster which is expected to contain the promoter(s) of the wbO6 determinant of 

strain Nissle 1917 was amplified (~450 bp). In parallel, the wzy536 gene was amplified 

Fig. 21: Plasmids used for complementation analysis of the O6 LPS side chain expression in E. coli 
Nissle 1917 (see Fig. 20). The primers used for amplification of the cloned fragments are indicated 
with small arrows. A. pBWB536 B. pBLG2504 C. pBLG2894 

                 
TCA (Ser) 

           
LG3 

          
LG2

ColE1 
origin

Apr 

lacZ

pBluescript II KS 

                   
TCA (Ser) 

           
LG2 

           
482 

ColE1 
origin 

Apr 

lacZ 

pBluescript II KS 

ColE1 
origin 

Apr 

lacZ

pBluescript II KS 

           
412 

           
482 

A. 

B. C. 

                 
TCA (Ser) 



V. Results   

 

95

using primers LG8 and LG10. After digestion with XbaI, the two fragments were 

ligated and a PCR reaction was performed with primers LG15 and LG10 using the 

ligation mixture as a template. The obtained PCR product represents the wzy536 gene 

under transcriptional control of the wbNissle 1917-specific promoter (Fig. 22b). The 

fragment was then cloned into pLDR9 vector, thus resulting in pLPW1 which was 

used for integration of the strain Nissle 1917-specific Pwb*Nissle 1917::wzy536 fusion into 

the bacteriophage λ attachment site of the E. coli Nissle 1917 chromosome (Fig. 22). 

For this purpose, pLPW1 and pLBW1 were digested with NotI restriction 

endonuclease and the fragment of interest was re-ligated, leading to closed circular 

DNA molecules lacking a replication origin and carrying ampicillin resistance, which 

were then integrated into the attP site of the E. coli strain Nissle 1917 (Fig. 23). 

 
Fig. 22: Construction of different promoter::wzy536 fusions used for complementation of E. coli strain 
Nissle 1917. A. Construction of E. coli Nissle 1917λPbla::wzy536 B. Construction of E. coli Nissle 
1917λPwb*Nissle 1917::wzy536 strains. The primers used for amplification (small arrows). NotI digestion 
of pLBW1 and pLPW1, circulization by ligation and transformation in E. coli Nissle 1917 (pLDR8). 
For details see the text. 
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A.                                    B. 

 
                      1            2              3                                         1      2      3       4       5         

Fig. 23: Verification of integration of wzyO6 in the bacteriophage λ attachment site of the E. coli Nissle 
1917 chromosome by Southern blot hybridization of EcoRI-digested genomic DNA. PCR-amplified 
wzyNissle 1917 (primers LG1 and LG3) was used as a probe. A. Lane 1, E. coli Nissle 1917λPbla::wzy536; 
lane 2, E. coli Nissle 1917; lane 3, E. coli 536. B. Lane 1, E. coli MG1655; lane 2, E. coli Nissle 1917; 
lane 3, E. coli 536; lane 4, E. coli Nissle 1917 (pBWB536); lane 5, E. coli Nissle 1917λPwb*Nissle 

1917::wzy536.  
 
As seen from Fig. 23, an additional hybridization signal for the wzyO6 gene was 

detected in E. coli strain Nissle 1917λPbla::wzy536 and E. coli strain Nissle 

1917λPwb*Nissle 1917::wzy536 (1.3 kb and 1.2 kb, respectively) compare to the control 

strains Nissle 1917 and 536. 

Expression of O6 side chains was studied by SDS-polyacrylamide gel electrophoresis. 

With regard to LPS side chain expression, strain Nissle 1917 and its derivatives were 

grouped into three classes: semi-rough, smooth, and smooth with reduced amount of 

O antigen (Fig. 24a).  

Only transformation of E. coli strain Nissle 1917 with a construct containing the 

entire wbO6 determinant (pBWB536) of strain 536 resulted in a smooth phenotype. 

Introduction of the shortened wzy536 fragment (pBLG2504) representing the size of 

the truncated gene wzyNissle 1917, had no complementing effect (Fig. 24a). Derivatives 

of strain Nissle 1917 complementation with plasmid-encoded wzy536 (pBLG2849) 

alone as well as the chromosomally complemented strains E. coli Nissle 

1917λPbla::wzy536 and E. coli Nissle 1917λPwb*Nissle 1917::wzy536 showed a smooth 

phenotype with reduced amounts of O antigen. The level of the O6 LPS side chain 

synthesis in strain Nissle 1917 (pBLG2849) was markedly lower than in the smooth 

strains Nissle 1917(pBWB536) and 536, but higher than that of the chromosomally 

complemented strains (Fig. 24a). Therefore, we conclude that the E. coli strain 536-

specific wzy gene encodes the functional O6 antigen polymerase. 

12 kb . 12 kb 

1.3 kb 
1.8 kb 
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A.                                                                           B. 

      1           2           3          4          5          6          7 

Fig. 24: Influence of O6 LPS side chain expression on serum resistance. A. SDS-PAGE analysis of the 
O6-specific LPS side chain length of E. coli strains Nissle 1917, 536 and derivatives. Lane 1, E. coli 
536; lane 2, E. coli Nissle 1917; lane3 E. coli Nissle 1917 (pBWB536); lane 4, E. coli Nissle 
(pBLG2504); lane 5, E. coli Nissle (pBLG2849); lane 6, E. coli Nissle1917λPwb*Nissle1917::wzy536; lane 
7, E. coli Nissle 1917λPbla::wzy536. B. Serum resistance of E. coli strains Nissle 1917, 536 and 
derivatives. Serum resistance assays were performed in 90 % (indicated by black symbols) and 50 % 
human serum (indicated by white symbols). The percentage of surviving cells were plotted against 
incubation time in human serum. Cell numbers within the different inoculi (t = 0) were set 100 %. 
  

With one representative of these three groups of strains (semi-rough, smooth and 

smooth but reduced amounts of O antigen), serum resistance assays were performed 

to analyze whether the presence and amount of longer LPS side chains may contribute 

to serum resistance in E. coli strain Nissle 1917 (Fig. 24b). The smooth strain E. coli 

Nissle 1917 (pBWB536) showed a markedly increased resistance to 50 % and 90 % 

human serum compared to that of the semi-rough wild type strain E. coli Nissle 1917, 

which was not detectable after 1 hour incubation in 50 % and 90 % human serum. In 

comparison to the wild type strain, the smooth strain with reduced amount of O 

antigen (strain Nissle 1917λPwb*Nissle1917::wzy536) survived better and was still 

detectable after 24 hours of incubation (0.007 ± 0.001 % survival of the inoculum in 

50 % serum) (Fig. 24b). Generally, serum resistance was in accordance with the 

amount of O6 repeating units produced in the different strains, e.g., serum resistance 

was higher in strains with higher amounts of O6-specific repeating units. This 

underlines that wzy536 encodes the O6–specific antigen polymerase and that the C to A 
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transition at position +986 in wzyNissle1917, which results in a non-functional O antigen 

polymerase, is responsible for the semi-rough phenotype of E. coli strain Nissle 1917. 

We therefore identified the O6 antigen polymerase-encoding gene wzy, proved its 

function, and demonstrated that the reason for the semi-rough phenotype of E. coli 

strain Nissle 1917 is a point mutation probably leading to premature translation 

termination of wzy. 

Allelic exchange of wzy in E. coli Nissle 1917 and 536 

Since wzy536 alone was not able to restore the O6 side chain polymerization in strain 

Nissle 1917 to the same level as in the E. coli strain 536, allelic exchange of wzyNissle 

1917 by wzy536 in strain Nissle 1917 and of wzy536 with wzyNissle 1917 in strain 536 was 

carried out. For this purpose wzy536 and wzyNissle 1917 were amplified using primers LG1 

and LG3 and cloned into the suicide vector pCVD442 resulting in the plasmids 

pCVW536 and pCVW1917. These plasmids were used for allelic exchange of wzy in 

E. coli strains Nissle 1917 and 536, respectively (Fig. 25).  
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Fig. 25: Allelic exchange of wzy in E. coli Nissle 1917 and 536. Plasmids pCVW1917 and pCVW536 
were transformed in E. coli Sm10 λpir and used for conjugation E. coli strains 536 and Nissle 1917, 
respectively.  
 
The presence or absence of the wzyNissle 1917-specific point mutation was demonstrated 

by PCR. For this purpose primers which enable detection of the presence of the 

wzyNissle 1917-specific mutation were designed (MUTA-up and MUTA-down (Fig. 

26a)), and furthermore proven by sequence analysis of the wzy gene. The correct 

integration in the wbO6 determinant was demonstrated by PCR (using primers LG8, 

482, LG1, LG2, LG3) and Southern hybridization (Fig. 26b). 

 

 

 

 

 
 
ORF 1 (wzx)   ORF2 (wzy)                                                                                     ORF3     

 

 galF 

Pwb 
JUMP  
Start  

E.coli 536:                              TCA (Ser)
E. coli Nissle 1917                  TAA (Stop)

pCVD442 DNA 

E. coli Nissle 1917               TAA (Stop) 
E.coli 536:                              TCA (Ser) 
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recombination into the wbO6 gene cluster.  

Loss of the plasmid DNA through second 
homologous recombination.  
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   A.                                                                   B. 

 
Fig. 26: Verification of proper allelic exchange of wzy gene by PCR and Southern blot hybridization. 
A. PCR detection of wzyNissle 1917-specific mutation using primers MUTA-up and MUTA-down: lane 1, 
E. coli 536; lane 2 - 4, E. coli 536-wzyNissle 1917; lane 5, E. coli Nissle 1917; lane 6 – 7, E. coli Nissle 
1917-wzy536; lane 8, 1 kb DNA ladder. B. SDS-PAGE analysis of the O6-specific LPS side chain 
length: lane 1, E. coli 536; lane 2, E. coli Nissle 1917-wzy536; lane 3, E. coli 536-wzyNissle 1917. B. Lane 1, 
E. coli MG1655; lane 2, E. coli Nissle 1917; lane 3, E. coli 536; lane 4, E. coli Nissle 1917 
(pBWB536); lane 5, E. coli Nissle 1917-wzy536; lane 6, E. coli 536-wzyNissle 1971. 
 
 
Positive PCR signal was detected only in the strains carrying the E. coli strain Nissle 

1917-specific mutation in the wzyO6 gene. Presence of only one hybridization signal of 

expected size confirmed the proper integration of the wzyO6 gene in wbO6 in the E. coli  

strains Nissle 1917-wzy536 and 536-wzyNissle 1917. The clones were tested for O6 side 

chain polymerization by PAGE (Fig. 27).  

 

              1       2       3 

 

 

 

 

 
 
Fig. 27: Detection of O6 side chain expression by SDS-PAGE: lane 1, E. coli 536; lane 2, E. coli 
Nissle 1917-wzy536; lane 3, E. coli 536-wzyNissle 1917. 

 

The resulting strain E. coli Nissle 1917-wzy536 exhibited smooth phenotype with 

reduced amount of polymerized O antigen, whereas the E. coli 536-wzy Nissle 1917 was 

semi-rough. Since wzy536 alone was not able to restore the O6 side-chain 

polymerization at the same extent as in E. coli 536, it is tempting to speculate that 

some of the enzymes encoded by wb Nissle 1917 is less active than in E. coli 536, 

resulting in weaker O6 side-chain units synthesis. This presumption is in accordance 

   1        2         3        4       5        6       7        M           1      2        3        4        5         6    1        2         3        4       5        6       7        M           1      2        3        4        5         6 
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with the observation that the wb 536 (pBWB536) cluster is able to fully restore the O6 

side-chain polymerization when transformed in Nissle 1917. 

Screening of O6-serotype E. coli isolates for the presence of Nissle 1917-specific 

mutation in the wzy gene 

In order to find out if the mutation in wzyNissle 1917 is present in other O6 isolates, the 

MUTA PCR was performed and the results were verified by sample sequencing of the 

amplified wzy genes. The conditions of the PCR amplification were carefully 

optimized (annealing temperature = 34.9 °C) Sixteen serum-resistant, as well as 

serum-sensitive O6-serotype E. coli strains, expressing different capsule types, were 

screened (Tab. 7). In no any of them the Nissle 1917-specific mutation was identified. 

This result indicates that probably this mutation was a unique event in the evolution of 

Nissle 1917 strain, and is not widely distributed between the O6 strains. The 

established MUTA PCR can be used for further screening of more O6-serotype E. coli 

isolates. 

 
Table 7: Screeening of different E. coli O6 isolates for the presence of the E. coli strain 
Nissle 1917-specific mutation in wzy. 
 

Strain  Serotype Presence of the E. coli 

strain Nissle 1917 - 

specific mutation in 

wzy 

O6 smooth 

phenotype 

Serum resistance 

Nissle 1917 O6:K5:H1 + - - 

536 O6:K15:H31 - + + 

RZ439 O6:K5 - + - 

RZ442 O6:K5 - + + 

RZ526 O6:K5 - - - 

RZ533 O6:K5 - + + 

RZ446 O6:K53:H1 - + + 

RZ537 O6:K53:H1 - + - 

RZ424 O6:K14:H- - + - 

RZ436 O6:K13:H1 - - + 

RZ447 O6:K13:H1 - + - 

RZ502 O6:K2:H- - + + 

RZ496 O6:K+:H- - - - 

RZ532 O6:K+:H31 - + - 

RZ411 O6:K-:H1 - + - 

RZ412 O6:K-:H1 - + + 

RZ418 O6:K-:H1 - + - 

RZ501 O6:K-:H1 - + - 
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3.2 Molecular characterization of determinants of E. coli strain Nissle 1917 

required for biofilm formation 
 
The ability of bacterial cells to bind to abiotic surfaces, the surface of eukaryotic 

cells, as well as to express specific extracellular matrix substances, can result in the 

formation of multicellular bacterial communities (biofilm). This requires expression 

of definite factors – fimbrial and non-fimbrial adhesins, surface proteins, extracellular 

matrix polymers (Stoodley et al., 2002). Biofilm formation of Enterobacteriaceae is 

believed to play a significant role for the colonization and establishment of infections 

on mucosal surfaces and may also enhance microbial survival in the environment  

(Boddicker et al., 2002; Cookson et al., 2002). The expression of type 1- and curli 

fimbriae is known to contribute to the ability of E. coli to form biofilm, as well as the 

cellulose biosynthesis, flagella, colanic acid and agn43 expression (Zogaj et al., 2001; 

Römling et al., 1999; Hanna et al., 2003; Ferrieres et al., 2003; Danese et al., 2000).  

In addition, deletion mutation of the rfaH-encoded transcriptional antiterminator was 

recently found to attenuate virulence of UPEC strain 536 and to enhance its ability to 

form biofilm under continuous culture conditions (Michaelis, K., and Dobrindt, U., 

unpublished data). 

 

3.2.1 Sequence analysis of the fimNissle 1917 –containing pCos3YC6 

 

In order to identify a cosmid clone containing the type 1 fimbriae-encoding gene 

cluster (fim), the genomic library of E. coli strain Nissle 1917 was screened by PCR  

using primers which enable specific amplification of fimANissle 1917 (Blum-Oehler et 

al., 2003). The clone pCos3YC6 was identified and transformed in the fimbriae-

deficient E. coli K-12 strain AAEC189. The expression of type 1 fimbriae was proven 

by mannose-dependent agglutination of yeast cells of strain AAEC189 (pCos3YC6). 

The presence of the fim genes was also demonstrated by Southern hybridization and 

sample sequencing. The entire cosmid insert was subsequently sequenced (Fig. 28; 

see section VIII, Tab. 6). The sequence analysis confirmed that the fimB gene, coding 

for tyrosine recombinase mediating the fimbrial phase switch, was found to be 

truncated by IS element as reported before (Stentebjerg-Olesen, et al., 1999). The 

fimH gene, coding for the FimH adhesin, is known to be highly variable among the E. 

coli strains and is responsible for the quantitative differences in binding to mannan 

and for the variability in binding specifities (Sokurenko et al., 1994). The fimHNissle 
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1917 gene shows 99 % amino acid homology to that of the E. coli K-12 strain MG1655 

and the EHEC strain EDL933 (see section VIII, Tab. 6). The chromosomal DNA 

context and localization of fimNissle 1917 does not differ from that of the already 

sequenced E. coli strains. 
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Fig. 28: Characterization of the fim determinant of the E. coli strain Nissle 1917. Genetic organization of the fim gene cluster and 
flanking regions of E. coli strain Nissle 1917. B. G+C content of the DNA in the cosmid insert. 
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3.2.2 Cloning, sequence-, and mutational analysis of cellulose biosynthesis gene 

cluster (bcs) of the E. coli strain Nissle 1917  

 

The E. coli strain Nissle 1917 expresses at 30 °C and 37 °C the so-called rdar 

morphotype on congo red agar plates (Zogaj et al., 2001) which is characterized by  

intensive red colored colonies with a dry colony surface and strong cell-cell 

interactions. This morphotype is considered to be due to co-expression of curli 

fimbriae and cellulose. In comparison, the uropathogenic E. coli strain 536 expresses 

the rdar morphotype only at 30 °C and strain CFT073 does not express rdar 

morphotype neither at 30 °C or 37 °C.  

The cellulose biosynthesis is known to play a significant role for the biofilm 

formation, but does not contribute to the virulence of Salmonella enteritidis (Solano 

et al., 2002). In order to find out if strain Nissle 1917 expresses cellulose, the entire 

bcsNissle 1917 gene cluster was amplified (using primers bcs-up and bcs-down), 

subsequently sequenced (Fig. 29; see section VIII, Tab. 7), cloned into pGEM-T 

Easy® thus resulting in pGBC1917. The strain DH5α (pGBC1917) exhibited red-

pink-colored colonies when grown on congo red agar plates, thus proving that the 

bcsNissle 1917 gene cluster alone is able to mediate cellulose biosynthesis at 30 °C and 

37 °C (called pdar morphotype: pink dry and rough; Zogaj et al., 2003). In addition, a 

bcsNissle 1917 deletion mutant (strain Nissle 1917∆bcs) was created, as depicted in 

Fig. 29. Deletion of all coding ORFs in the cloned bcsNissle 1917 (pGBC1917) operon 

was created using the enzymes KpnI and McsI. Consequently, blunt ends were 

generated and the linearized plasmid was religated resulting in pGDB1917. The 

insert was cloned into pCVD442 using SphI and SacI  thus resulting in pCDB1917. 

After allelic exchange of the bcsNissle 1917 in the chromosome of the E. coli strain 

Nissle 1917 using pCDB1917, clones carrying deletion in bcsNissle 1917 were identified 

(Fig. 29). Chromosomal deletion of bcsNissle 1917 was confirmed by PCR, Southern 

hybridization and phenotypically by growth on congo red agar plates. 
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Fig. 29: Construction of E. coli strain Nissle 1917∆bcs strain.  

 

The E. coli strain Nissle 1917∆bcs lost the ability to express rdar morphotype and 

exhibited brown-colored colonies due to the expression of curli fimbriae alone, when 

grown on congo red plates at 30 °C and 37 °C, and thus expressed the bdar 

morphotype (brown dry and rough; Fig. 30).  

McsI 

pGBC1917
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bcsC          bcsZ      bcsB            bcsA  yhjQ   yhjR  
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∆bcsC ∆yhjR 

~800 bp ~500 bp 

pCBC1917
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A.       B. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2.3 Sequence determination of csgD and the promoter region of csg 

gene cluster of E. coli strains Nissle 1917 and 536 

 

The csgD gene encodes transcriptional regulator protein CsgD which has been shown 

to positively control the expression of curli fimbriae and cellulose biosynthesis (rdar 

morphotype; Römling et al., 1998). Mutations in its promoter region may influence 

the mutlicellular behaviour of Salmonella typhimurium. Therefore, using primers curli 

1 and curli 2, this region was amplified from chromosomes of E. coli strains 536, 

Nissle 1917 and Nissle 1917 CR- (congo red-negative spontaneous mutant strain) and 

PCR products were subsequently sequenced (see section VIII.1). Any sequence 

differences have been detected between the wild type E. coli strain Nissle 1917 and 

the congo red binding-negative mutant strain Nissle 1917 CR-. In addition, no 

sequence differences in genes which are known to play a role in regulation of the rdar 

morphotype have been observed between the two strains (crl, ompR, mlrA; data not 

shown). According to these results it is tempting to speculate that there are other 

factors contributing to the rdar morphotype of strain Nissle 1917.  

 

 

 

 

Fig. 30: Manifestation of the rdar morphotype in E. coli strains – congo red binding assay. 
Investigated E. coli strains are designated for every colony; E. coli Nissle 1917 congo red-negative 
spontaneous mutant strain is designated as Nissle 1917 CR-. A. 30°C incubation temperature. B. 37°C 
incubation temperature. 
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1                            2         

Fig. 31: Western hybridization of whole-cell 
protein extract. The RfaH-specific band is 
showed with arrow. lane 1, E. coli Nissle 
1917rfaH-; lane 2, E. coli Nissle 1917. 

3.3 Amplification of the chu determinant 

 

In order to prove the presence of the haeme iron uptake system in the chromosome of 

strain Nissle 1917, the entire chu gene cluster was amplified (data not shown) using 

primers chu1 and chu4. The resulting DNA fragment was of expected size (11 kb) and 

sample sequencing of the PCR product confirmed the presence of the chu determinant 

in the genome of E. coli strain Nissle 1917. 

 
3.4 Characterization of the role of rfaH for gene expression in E.coli 
strain Nissle 1917 
 

In order to construct a rfaH mutant of 

strain Nissle 1917, the pCVD442-based 

plasmid pMSK5 was used ( Kupfer, M., 

2000; Nagy, G., 2000). This plasmid 

contains the rfaH gene inactivated by 

insertion of the cat casette. The plasmid 

was conjugated into the E. coli strain 

Nissle 1917, and allelic exchange was 

carried out as described above.  

Candidate rfaH mutants were screened  

for proper integration of the cat gene into the chromosome by PCR and Southern 

hybridization, using cat- and rfaH-specific probes (data not shown). Finally, the lack 

of RfaH in the E. coli strain Nissle 1917rfaH- was proven by Western blot 

hybridization, by using an anti-RfaH rabbit monoclonal antibody (Dobrindt, U., 

personal communication; Fig. 31).  

No effect of the rfaH inactivation on the microcin and aerobactin expression of Nissle 

1917 was observed when phenotypic tests were performed, as well as no clear 

influence on the rdar morphotype at 30 °C or 37 °C (data not shown).  
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4. Screening of commensal and uropathogenic E. coli strains for the presence of 

E. coli Nissle 1917-specific sequences and analysis of the genome content of 

strain Nissle 1917 by DNA-DNA hybridization using DNA arrays 

 

4.1 Screening of commensal and uropathogenic E. coli strains for the presence of 

E. coli Nissle 1917-specific sequences by PCR  

 

 In order to detect E. coli Nissle 1917–specific sequences in the genome of different 

E. coli strains, PCR reactions were designed for the amplification of DNA regions 

containing genes encoding for (putative) fitness-factors, E. coli Nissle 1917-specific 

insertion sequences, or the regions located at the borders of GEI INissle 1917 and GEI 

IINissle 1917 (see section VIII, Tab. 8). 68 uropathogenic E. coli isolates of serotype 

O6:K5 were investigated (Zingler er al., 1992; Zingler et al., 1993), as well as 40 non-

pathogenic faecal isolates (Boyd et al., 1997; Mühldhofer et al., 1996) were screened 

for the presence of the above mentioned DNA regions. Generally, the results show a 

wide distribution of the E. coli Nissle 1917-specific sequences among the O6:K5 

isolates, but also the presence of these DNA regions in non-pathogenic faecal isolates 

which are phylogenetically unrelated to E. coli strain Nissle 1917 (Tab. 8; see section 

VIII, Tab. 8).  
Table 8: Percentage distribution of the investigated E. coli Nissle 1917-specific sequences between 
uropathogenic and commensal E. coli strains. 

 

Interestingly, two of the investigated O6:K5 isolates (RZ442 and RZ525) were 

positive for all of the E. coli Nissle 1917 PCR reactions, suggesting a common clonal 

origin of these strains and strain Nissle 1917. Both strains contain one (pMUT1) of 

the two plasmids present in strain Nissle 1917, as indicated by a pMUT1-specific 

PCR reaction (primers Muta5 and Muta6; Blum-Oehler et al., 2003). They were 

negative for pMUT2 when tested with pMUT2-specific primers (primers MUTA7 and 

Muta8; Muta9 and Muta10). Despite the high similarity on the genomic level between 

the E. coli strains RZ442, RZ525 and E. coli Nissle 1917, they do not express the rdar 

morphotype, neither on 30 °C or 37 °C. These findings support the view that the E. 
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GEI I 
left 
(Z4866) 

GEI I 
right 
(c1274) 

GEI II 
left 
(shiA) 
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coli strain Nissle 1917 exhibits a specific pattern of fitness factors which might 

contribute to its colonization efficiency and survival in the host body, but lacks 

prominent virulence factors. 
 

 

4.2 Analysis of the genome content of strain Nissle 1917 by DNA-DNA 

hybridization using DNA arrays 

 

In data provided from U. Dobrindt the overall genome content was analyzed by 

DNA-DNA hybridization experiments with E. coli K-12-specific arrays and the “E. 

coli Pathoarray” (Dobrindt et al., 2003). The results of the DNA-DNA hybridization 

of genomic DNA isolated from strain Nissle 1917 with E. coli K-12 gene arrays 

demonstrated that 90.7 % of all translatable ORFs of E. coli K-12 strain MG1655 

were detectable in strain Nissle 1917. The majority of these missing ORFs can be 

functionally grouped as coding for hypothetical, not experimentally classified or 

unknown gene products. A great diversity of ORFs which represent mobile genetic 

elements or which code for structural components of the cell in the K12 genome were 

not detectable in strain Nissle 1917 as well. Ten prophages described in E. coli strain 

MG1655 were not detected in strain Nissle 1917 (data not shown). Several variable 

chromosomal regions among the studied isolates contain ORFs with homology to 

ORFs of other accessory genetic elements, e.g. IS elements. The chromosomal 

context of several tRNA-encoding genes (e. g., serX, argW, ileY, pheV, leuX) was 

also found to contain alterations in strain Nissle 1917 in comparison to the 

corresponding sequences in E. coli MG1655 implying the presence of horizontally 

acquired genetic information downstream of these tRNA loci. 

The genome of strain Nissle 1917 was also screened for the presence of DNA 

sequences which belong to the flexible gene pool of UPEC strain 536, as well as for 

typical virulence- and fitness-associated genes of extraintestinal pathogenic E. coli 

(ExPEC) and intestinal pathogenic E. coli (IPEC) including Shigella using the 

previously described "E. coli Pathoarray" (Dobrindt et al., 2003). 55 % of the probes 

specific for PAI I-V536-ORFs and 37 % of the probes specific for other ExPEC 

virulence-associated genes spottet on the Pathoarray have been detected in the 

genome of strain Nissle 1917. Generally, the hybridization signals confirmed the 

results obtained from the characterization of GEIs of strain Nissle 1917. About 18 % 

of the probes specific for virulence-associated genes of intestinal pathogenic E. coli 
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showed a clear hybridization signal. Most of these probes are complementary to 

fimbrial determinants of enterotoxigenic E. coli (indicating possible cross-reaction of 

probes designed for the detetction of ExPEC fimbriae-encoding determinants) with or 

to putative ORFs present on PAIs of the enterohemorrhagic E. coli O157:H7 strain 

EDL933 (Perna et al., 2001). Importantly, known protein toxin-encoding determinants 

of pathogenic E. coli have not been detected by this approach in strain Nissle 1917. 
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VI. Discussion 
 

1. Genome plasticity and evolution of E. coli species 
 
The species Escherichia coli comprises a variety of commensal, as well as of 

pathogenic isolates with striking differences regarding the diseases they cause, i. e., 

sepsis, local infections of the intestine, kidney, bladder and brain in different hosts 

(humans, monkeys, horses, birds). The broad spectrum of pathogenic features and 

different clinical symptoms cause by E. coli pathotypes mirrors the presence of 

different subsets of virulence-associated genes in certain pathotypes which are absent 

in commensal isolates (Dobrindt et al., 2003). The genomes of different E. coli strains 

exhibit remarkable size variations (4 – 5.5 Mb; Bergthorsson and Ochman, 1998). 

This indicates the high variability in the gene content among different E. coli strains, 

that is mainly due to the acquisition of foreign DNA elements and the deletion of 

genetic information. Thus, horizontal gene transfer and genome reduction contribute 

to the evolution of prokaryotes, leading to the appearance of new species, subspecies 

and pathotypes. The acquisition of plasmids, phages and large DNA regions termed 

“genomic islands” is important for the adaptation and microbial fitness in a specific 

environment or host. The deletion of certain DNA regions or inactivation of specific 

genes can also contribute to a definite way of successful survival or disease 

development for some strains (Jin et al., 2002).  

Since E. coli is part of the normal intestinal microflora of humans (commensal strains) 

it is of great importance to investigate the genetic mechanisms by which pathogenic 

variants evolve. It is well known that the normal intestinal flora is the main source of 

E. coli strains causing UTI, new-born meningitis, and sepsis. Therefore, the microbial 

composition of the intestine plays crucial role for the development of these 

extraintestinal diseases, as well as for diarrheagenic disorders. It was shown that 

commensal E. coli isolates share some common genetic features with ExPEC 

(extraintestinal pathogenic E. coli) and IPEC (intestinal pathogenic E.coli strains) 

(Dobrindt et al., 2003). Most of these features can be considered fitness-contributing 

factors (e.g., iron-uptake systems, bacteriocins, fimbriae and other adhesins, some 

specific O- and K-serotypes). Nevertheless, they are commonly associated with 

pathogenic isolates. Thus, the question whether certain E. coli strains will develop 

into pathogenic or successful commensal variants can be considered as the 
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evolutionary balance between the acquisition of sufficient foreign genetic information 

increasing bacterial fitness to ensure the successful multiplication and colonization of 

the host on one hand, and the parallel process of acquisition of genetic determinants 

contributing to pathogenesis on the other. To make this speculative picture more clear, 

one should also have in mind the accompanying processes of gene silencing and 

inactivation, deletions and genome reduction.  

 

2. E. coli strain Nissle 1917 and UPEC O6 strains: common phenotypic features 

and differences 
 
The E. coli strain Nissle 1917 is a non-pathogenic, faecal isolate which has been used 

for decades as a probiotic in medicine (Mutaflor®), e. g. for the treatment of wide 

range of intestinal disorders and reconstruction of the intestinal flora of immuno-

supressed individuals. It has been shown that strain Nissle 1917 is serum-sensitive, 

and non-invasive. This strain does not exhibit a uropathogenic virulence potential and 

does not provoke intestinal disorders. At the same time the strain is able to multiply 

successfully in the human intestine, which indicates that it possesses sufficient fitness-

conferring determinants ensuring its survival and colonization capacity. These include 

fimbrial adhesins, whose expression is important for the adhesion to the epithelial 

cells: the type 1, F1C and curli fimbriae. The type 1 fmbriae (encoded by the fim gene 

cluster) and the curli adhesin (encoded by the csg gene cluster) are widely distributed 

among pathogenic and non–pathogenic isolates exhibit a conserved chromosomal 

localization. The F1C fimbriae are mostly associated with uropathogenic strains and 

do not belong to the E. coli core genome. Thus, their genes are believed to be 

acquired by horizontal gene transfer. They are a member of the S family of fimbrial 

adhesins (Dobrindt et al., 2001) and the corresponding determinant is located on 

genomic islands. E. coli strain Nissle 1917 is also known to express microcins, which 

probably contribute to its fitness as a result of the antagonistic competition with other 

inhabitants of the intestine. 

This strain also possesses a striking number of iron uptake systems, which facilitate 

its survival in the human body. The presence of the entire chu determinant required 

for haemine uptake in the genome of Nissle 1917 was demonstrated in this study by 

long-distance PCR. Some of the iron acquisition systems are frequently detected in 

pathogenic strains (salmochelin, iro; aerobactin, iuc; haemine-uptake, chu). Others are 

also widely distributed among non-pathogenic isolates (enterobactin, ent; 
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yersiniabactin, ybt; ferric dicitrate uptake system, fec). The majority of them have a 

conserved chromosomal localization (ent, chu, ybt). Nevertheless the ybt gene cluster 

represents the “high-pathogenicity island” (Schubert et al., 1999) which is known to 

be horizontally-transfered mobile genetic element. Although the fec genes are present 

in the core genome of E. coli K-12, they might also be part of a pathogenicity island 

(Luck et al., 2001). The aerobactin-encoding iuc gene cluster is either present on 

plasmid (Braun et al., 1983) or on chromosomal island (Purdy et al., 2001; Vokes et 

al., 1999).  

The E. coli strain Nissle 1917 expresses a K5 capsule, which is widely distributed 

among UPEC strains and presumably the K5-specific kps gene cluster is also part of a 

genomic island. The K5 capsule expression is important for adhesion and 

colonization, but does not contribute to serum resistance (Herias et al., 1997; Burns et 

al., 1998). The K5 capsule belongs to the Group 2 capsules, which are encoded by a 

gene cluster which is organized in three regions (regions 1, 2 and 3). Region 1 and 3 

are conserved among all group 2 capsule-encoding operons and code for eight Kps 

proteins responsible for the transport of the capsule polysaccharides. Region 2 is 

serotype-specific and encodes enzymes for the polymerization of the polysaccharide 

molecule and, if necessary, for the biosynthesis of specific monosaccharide 

components (Whitfield and Roberts, 1999). 

UPEC strains express a number of fitness factors, as well as different toxins. The P-

related, F1C-, and S-fimbriae (encoded by the pap/prf, foc, sfa gene clusters) are 

widely distributed among UPEC and are usually localized on genomic islands. They 

play role for cell adhesion, but their inactivation in UPEC strain CFT073 did not alter 

the virulence of this strain (Mobley et al., 1994; Smyth et al., 1996). Thus, these 

fimbriae are factors contributing to the infectious potential, but they are not 

necessarily sufficient by themselves to cause infection and disease.  

Toxins expressed by the majority of the UPEC isolates, like α-haemolysin (hly), the 

cytotoxic-necrotizing factor 1 (CNF-1), cytolethal distending (CDT) or some 

autotransporter toxins (sat) are considered prominent virulence factors. Nevertheless, 

it has been shown that although the secreted autotransporter toxin Sat of the UPEC E. 

coli strain CFT073 exhibits a vacuolating cytotoxic effect on bladder and kidney 

epithelial cells, its inactivation did not impair the virulence potential of strain CFT073 

(Guyer et al., 2002). Thus, this serine protease might be considered more as a fitness 

factor providing peptides for the bacterium. It is noteworthy to emphasize that the E. 
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coli strain Nissle 1917 does not express any of these toxins connected with virulence 

of UPEC isolates. 

In this study, the genome structure and genetic organization of several fitness- and 

virulence factor-encoding determinants has been compared between the well studied 

UPEC strains 536, CFT073 and the non-pathogenic strain Nissle 1917. All three 

strains exhibit an O6-serotype, but differ in the capsule type they express (K15, K2 

(?), and K5, respectively). Although all strains express S-fimbrial adhesins, strain 

Nissle 1917 does not express P-related fimbriae. Whereas both UPEC strains are 

serum-resistant, smooth, and express α-haemolysin, strain Nissle 1917 is serum-

sensitive, semi-rough and does not express α-haemolysin. The sequence analysis of 

the genes coding for fitness-contributing factors of E. coli strain Nissle 1917 revealed 

a surprisingly higher structural similarity with the pathogenic isolate CFT073 than 

with strain 536. The chromosomal localization of “black holes” in the genome of 

strain Nissle 1917 were identified, where virulence determinants which are present in 

the genome of the UPEC strains are deleted or replaced by a transposon-like element 

in GEI IINissle 1917, e. g. the pap-operon which is partially deleted in GEI IINissle1917. 

Typical virulence determinants have so far not been detected in the genome of E. coli 

strain Nissle 1917.  

In spite of the similarity of the genome organization of strain Nissle 1917 and the 

UPEC strains 536 and CFT073, this non-pathogenic strain exhibits some intriguing 

phenotypic features which are not typical for the UPEC isolates, like presence of two 

plasmids (Blum et al., 2003) and the so-called rdar morphotype (Römling et al., 

1998). The latter is due to the strong, temperature-independent curli fimbriae and 

cellulose expression and is not characteristic for UPEC strains including CFT073 and 

536 (Dobrindt et al., personal communication).  

 

3. The lipopolysaccharide of E. coli Nissle 1917 
 
Together with E. coli O1, O4 and O18 strains, those expressing the O6 antigen belong 

to the most frequent extraintestinal pathogenic E. coli isolates (Ørskov et al., 1977). 

However, E. coli strains of serotype O6 are also commonly detected among intestinal 

isolates (Bettelheim et al., 1997; Hartley et al., 1979; Lidin-Janson et al., 1978; 

Sonnenborn and Greinwald, 1991). In the case of uropathogenic O6 strains, the gut 

may thus serve as a reservoir of infectious microorganisms for recurrent urinary tract 

infections (Appelmelk et al., 1994). The R1-type core is the most frequently occurring 
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core type in clinical E. coli isolates (Amor et al., 2000). 

The entire wa* and wb* gene clusters of E. coli strain Nissle 1917, which are required 

for biosynthesis of the E. coli LPS R1 core type and of the O6 antigen, respectively, 

have been cloned, sequenced, and analyzed. The nucleotide sequence of the waO6 

determinant is 97 % identical to already known sequences of other R1 core type-

specific wa* gene clusters (e.g. E. coli strain F470; Heinrichs et al., 1998). The wbO6 

gene cluster had not been sequenced so far. In E. coli strain Nissle 1917, this 

determinant is chromosomally located between the genes galF and gnd as reported for 

other wb* clusters (Coimbra et al., 1998). As also described for other O antigen-

encoding gene clusters, all putative ORFs of this strain‘s wb* gene cluster, with the 

exception of manC and manB, have a relatively low G+C content suggesting that 

these genes may have been acquired by horizontal transfer from other species. 

According to the corresponding deduced amino acid sequences, five putative ORFs 

specific for the O6 LPS serotype have been identified: one putative ORF coding for 

the O6 antigen flippase wzx, the O6 antigen polymerase-encoding gene wzy, four 

putative glycosyl transferase-encoding genes and a putative epimerase-encoding gene 

(Fig. 20, Tab. 6). Although ORF 2 shows no marked similarity to other wzy genes, it 

was considered the putative O antigen polymerase-encoding gene as this ORF is 

located downstream of the putative wzx gene. In addition, 12 transmembrane helices 

have been predicted from the deduced amino acid sequence. This is also the case for 

the putative Wzy proteins of an E. coli O113 and O8:K40 strain (AF172324 and 

AF013583), respectively. Generally, the number of transmembrane helices of Wzy 

proteins of other E. coli serogroups is variable ranging from 8 (E. coli O157:H7 

strains EDL933, Sakai and an E. coli O7 strain (AAG57099, BAB36267, AF125322), 

to 10 in isolates of serogroup O55, O104 and O111 (AAL67557, AAK64372, 

AAD46730) or 11 in serogroup O4 (U39042) and in K-12 (AAB88404). The function 

of ORF6 could not clearly be defined according to sequence similarity. As N-acetyl-

galactosamine was identified to be present in the O6 O-repeating unit structure, an 

UDP-N-acetylglucosamine-4-epimerase should be encoded within the wbO6 gene 

cluster. However, the deduced amino acid sequence of ORF6 shows a higher 

similarity to UDP-glucose-4- and UDP-galactose-4-epimerases than to the UDP-N-

acetylglucosamine-4-epimerase of E. coli O55 (AF461121) (Wang et al., 2002) (see 

section V.3.1.2, Tab. 6). 

To correlate the genetic and structural analyses (Grozdanov et al., 2003; Fig. 32), the 
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cloned O6 antigen gene cluster of the smooth E. coli strain 536 was compared with 

that of the semi-rough strain Nissle 1917. It was shown that the entire wbO6 gene 

cluster of strain 536 was able to restore full-length O6 side chain synthesis and to 

complement the semi-rough phenotype of E. coli strain Nissle 1917. Therefore, it was 

concluded that the predicted mutation is located in this strain‘s O6 antigen gene 

cluster. Following sequence annotation, a C to A transition within wzyNissle 1917 was 

identified which results in a premature stop codon (TAA). Since the rest of the 

nucleotide sequence of wzy in the E. coli strains Nissle 1917 and 536 was identical, 

the strain Nissle 1917 was complemented with the entire wzy536 as well as with the 

shorter form representing the size of the strain Nissle 1917-specific wzy gene and it 

was proven that only the intact wzy536 is functional and able to restore the O6 side 

chain synthesis in E. coli Nissle 1917.  

 

 
 
Fig. 32: Structure of the complete semi-rough LPS from E. coli Nissle 1917 containing O-antigen-core 
oligosaccharide and lipid A. Incomplete substitution with Etn-P is shown by dashed lines. 
 

Although chromosomally complemented derivatives of strain Nissle 1917 which carry 

one copy of wzy536 in the chromosomal attachment site of the bacteriophage λ, 

expressed less LPS side chains than strain 536, the results demonstrated that 

expression of a functional O6-specific wzy gene results in polymerization of multiple 
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repeating units within the O6 side chains of strain Nissle 1917. The different 

promoter::wzy536 fusions may not be in accordance with the "optimal arrangement" of 

genes and the optimal distance between promoter and wzy translational start as it is in 

the wb* operon. In order to clarify if wzy536 alone is able to restore fully the O6-

antigen polymerization when introduced in wbNissle 1917, allelic exchange was 

performed. The results (Fig. 27) indicated that the entire wb*536 cluster is necessary to 

restore the O6 side chain polymerization in the same degree as in the E. coli strain 

536 and CFT073, whereas the wzyNissle 1917 gene is sufficient to cause a semi-rough 

phenotype when introduced into wb*536. Weaker expression of repeating units in all 

Nissle 1917 strains complemented with wzy536 alone, compared to strains 

complemented with the plasmid-encoded wb* determinant of strain 536, may be 

indicative of other factors which impair proper wb* expression in strain Nissle 1917. 

Since the O6 serotype is widely distributed among wild type (pathogenic and non-

pathogenic) E. coli strains, we studied the importance of full length O6 LPS side 

chains for serum resistance of different derivatives of E. coli strain Nissle 1917 (Fig. 

24b) as this trait represents an important biological feature of this therapeutically used 

E. coli strain with respect to its biosafety. The results showed that the O6 antigen 

expression contributes to serum resistance of these strains. Serum resistance of E. coli 

Nissle 1917 was quantitatively related to the amounts of O6 antigen. This example 

underlines the impact of point mutations for evolution of Enterobacteriaceae in 

addition to DNA rearrangements as well as to acquisition and deletion of large genetic 

determinants. Recent studies showed that the O antigen chain length is critical for the 

virulence properties of Salmonella (Murray et al., 2002), thus supporting the 

presumed contribution of the Nissle 1971 semi-rough phenotype to the biological 

safety and non-pathogenicity of this strain. The O antigen synthesis and chain-length 

regulation is also known to be important for the Shigella flexneri invasion and 

virulence (Hong and Payne, 1997). 

 

4. Structural analysis and sequence comparison of GEI INissle 1917 

 
The GEI INissle 1917 was identified by screening for a cosmid clone coding for 

microcins. The same clone encoded F1C fimbriae, and it was concluded that since 

two fitness factors which are not part of the E. coli K-12 core genome are clustered 

together, this cosmid contains genetic information which might represent a part of a 

genomic island. This island was subsequently sequenced and exhibits genetic 
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organization which is very similar to that of the serX-associated island of UPEC strain 

CFT073. The PAI III536 contains the S-fimbriae-encoding determinant, as well as the 

entire iro gene cluster and some microcin-related sequences. Thus, GEI INissle 1917 and 

PAI III536 exhibit some common structural features and represent examples of one and 

the same “S-fimbrial” island family (Dobrindt et al., 2002; Fig. 10). Nevertheless, 

they differ significantly in their composition and in the fitness factors that are encoded 

(e.g., microcin). In addition, PAI III536 is integrated into the thrW tRNA gene, whereas 

the Nissle 1917-specific thrW gene is probably an integration site for another genomic 

island, since the tRNA screening revealed the same gene located downstream of thrW 

as in the E. coli strain CFT073 genome (c0391).  

 GEI INissle 1917 represents a fitness island, since adhesion- , microcin- , and iron 

uptake-conferring determinants are present, but not any toxin-encoding genes. The 

microcin expression is probably involved in the antagonistic action of E. coli strain 

Nissle 1917, contributing to the successful competition with other bacteria present in 

the intestine during colonization and is therefore believed to be important for its 

probiotic effect. 

 

5. Structural analysis and sequence comparison of GEI IINissle 1917 

 
The identification of an aerobactin-encoding cosmid clone led to the discovery and 

characterization of GEI IINissle 1917. This island comprises a DNA region of about 

100  kb and is integrated into the pheV tRNA gene, that is immediately followed by a 

P4-like integrase-encoding gene. GEI IINissle 1917 contains the determinants coding for 

aerobactin (iuc), a serine protease (sat), an Ag43-homologue (sap), an adhesin (iha), 

and the K5 capsule (kps), thus representing an island responsible for the expression of 

several important fitness traits. Many putative ORFs coding for hypothetical proteins 

with unknown functions are also located on GEI IINissle 1917, together with a 

surprisingly high number (21) of mobility-associated DNA elements, such as 

transposases and IS elements. This suggests that GEI IINissle 1917 has been acquired 

lately during the evolution of E. coli strain Nissle 1917 and is probably unstable, due 

to possible deletion events and rearrangements.  

The expression of the aerobactin iron uptake system is important for the fitness of 

strain Nissle 1917 in the light of the limited availability of iron in the human body. 

Thus, together with the expression of other iron uptake systems (encoded by ent, fec, 

ybt, chu) it contributes to the successful survival and colonization. The aerobactin 
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gene cluster is widely distributed among pathogenic and non-pathogenic Escherichia 

coli and Shigella spp., and is located on plasmids or on genomic islands of different 

structure, composition, and chromosomal localization (Braun et al., 1983; Purdy et al., 

2001; McDougall et al., 1984; Vokes et al., 1999; Welch et al., 2002) . The iha gene 

codes for Iha, a putative non-fimbrial adherence-conferring molecule, which has 

initially been identified as putative siderophore receptor molecule present in the 

genomes of EHEC strains as well as in the genome of UPEC strain CFT073 (Tarr et 

al., 2000; Schmidt et al., 2001). It has been demonstrated that Iha is a non-functional 

adhesin in strain CFT073, but functional in the investigated EHEC strains.  

The serine protease-encoding gene sat is located between the iuc gene cluster and iha 

in GEI IINissle 1917. The secretion of the Sat autotransporter protein and its protease 

activity were demonstrated. Interestingly, although this protein exhibits a cytopathic 

effect, it has been shown that its inactivation did not attenuate virulence of E. coli 

strain CFT073 (Guyer et al., 2002). That is why it cannot be considered a true 

virulence- , but a fitness factor. Another putative autotransporter gene (sap), is also 

located on GEI IINissle 1917 which codes for antigen 43-homologue. It is well known that 

Ag43 expression is important for biofilm formation of E. coli (Danese et al., 2000; 

Kjaergaard et al., 2000; Michaelis, K., and U. Dobrindt, personal communication). 

Therefore, Sap expression may contribute to cell-cell interactions and aggregation of 

E. coli strain Nissle 1917. The K5 capsule-encoding kps gene cluster is also located 

on GEI IINissle 1917 (Fig. 12) and consequently three putative adhesion factors are 

encoded on GEI IINissle 1917 (iha, sap, kps).  

The pheV-associated GEI IINissle 1917 is very similar in its structure and DNA content to 

the pheV-associated island of E. coli strain CFT073, but also exhibits some important 

differences with respect to the genetic determinants located there, gene order, stability 

and presence of mobile genetic elements (Fig. 12). Whereas the K5-specific gene 

cluster is present in GEI IINissle 1917, the K2(?)-specific gene cluster is part of the pheV 

island of CFT073 (pheV-associated GEI CFT073). Although the genes kpsF, E, D, U 

(region 1) and kpsM, T (region 3) are highly homologous and identically organized in 

GEI IINissle 1917 and pheV-associated GEI CFT073, the two kps clusters differ in region 2 

(kfi genes) exhibit no sequence homology. The localization of both kps gene clusters 

with respect to the DNA context in the “CFT073 backbone“ is identical in both 

strains.  

Another striking difference between the two islands is the organization and DNA 
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content of the iuc/sat/iha-region. The genomic islands are often able to delete entirely 

or partially from the chromosome, due to homologous recombination or with the 

participation of different mobile genetic elements (Turner et al., 2001). In GEI IINissle 

1917 these three determinants are located within a possibly deletable DNA region that 

is flanked by two IS2 elements with opposite orientation and that also contains three 

IS/transposase-related ORFs and two putative ORFs of unknown function (IS2-iuc-

sat-ORFs-iha-IS2; Fig. 15a; see section VIII, Tab. 3). The spontaneous deletion of 

this DNA region was shown by exclusion PCR and sequence analysis of the resulting 

PCR product (Fig. 16). Such a deletion event presumably results in 

aerobactin/Sat/Iha-negative Nissle 1917 derivative, whose fitness and colonization 

capacity is likely to be reduced. On other hand, the deletion of sat would abolish the 

cytotoxic activity of the Sat protease. In comparison, in pheV-associated GEI CFT073 

only one copy of the IS2 elements is present and the gene order is different (iha-IS2-

sat-iuc; Fig. 13). The sat and iuc genes have a reversed orientation compared to GEI 

IINissle 1917 and the five ORFs located downstream of iuc are not present in pheV-

associated GEI CFT073.  In this way, the iuc/sat/iha genes are stable, since they are not 

flanked by IS2. One can speculate that the immobilization of iuc and sat in pheV-

associated GEI CFT073 might have played a role for the evolution of E. coli strain 

CFT073, increasing its pathogenic potential.  

In the DNA region between pheV and iha in pheV-associated GEI CFT073, the α-

haemolysin-encoding hly gene cluster and the P-fimbriae-encoding pap operon are 

located, together with other ORFs coding for proteins of unknown or putative 

function. The hly and pap determinants comprise a 30 kb region, which presumably is 

of crucial importance for the virulence properties of E. coli strain CFT073 (Hull et al., 

1994; Johanson et al., 1992; Brauner et al., 1995; Hacker et al., 1986; Linggood and 

Ingram, 1982). Interestingly, only remnants of the pap operon are present in the same 

DNA context in GEI IINissle 1917. Instead of the 30 kb hly/pap region only a fragment of 

papA (papA') and the intact papI gene are present. Immediately upstream of papA' a 

transposon-like element is present. This Tn10-like structure (Fig. 15b; see section 

VIII. Tab. 3) consists of two IS10 elements in opposite orientation, flanking a 

transposase-encoding gene (yedA transposase of Tn10). The transposase gene is 

adjacent to remnant DNA sequences of the papX gene. It is tempting to speculate that 

the intact pap gene cluster had initially been located on GEI IINissle 1917. Later in the 

evolution of strain Nissle 1917 it has been disrupted due to insertion of IS10/Tn10. 
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Having the similar organization and DNA content of GEI IINissle 1917 and pheV-

associated GEI CFT073 in mind, one cannot exclude the possibility that the hly gene 

cluster has also been deleted from GEI IINissle 1917 due to the insertion of the Tn10-like 

element. Since this insertion is responsible for the inactivation of the P-fimbrial and 

probably of the α-haemolysin expression, it represents an important evolutionary 

event, dramatically reducing the virulence capacity of the ancestral proto-Nissle 1917 

strain. The 4 kb Tn10-like structure is putative mobile genetic element which may 

still contribute to the dynamic of genome plasticity of strain Nissle 1917. 

Interestingly, the pheV-associated island PAI V536 of UPEC strain 536 contains the 

kps gene cluster, coding for the K15 capsule expression (Schneider, G., unpublished 

data). Immediately downstream of pheV identical P4 integrase-encoding gene (c3556) 

as in GEI IINissle 1917 and pheV-associated GEI CFT073 is located. Nevertheless, GEI 

IINissle 1917 and PAI V536 exhibit no sequence similarity with exception of the conserved 

kps region 1 and region 2 genes. Thus, although GEI IINissle 1917 and PAI V536 might be 

considered members of one and the same family of pheV-associated capsule-encoding 

islands of E. coli spp. (including pheV-associated GEI CFT073), they seem to be 

evolutionary more distant from each other, than GEI IINissle 1917 and pheV-associated 

GEI CFT073. It is noteworthy that a putative pap-like fimbrial gene cluster (pix) is 

present on PAI V536, although it exhibits homology to pap only on protein, but not on 

DNA level, and most likely it is not functional (Lugering et al.,, 2003; Schneider, G., 

unpublished data). 

 

6. Initial characterization of determinants involved in biofilm formation of E. 

coli strain Nissle 1917 

 

The biofilm formation of E. coli is due to the expression of specific genetic 

determinants which contribute to adhesion to inert surfaces and multicellular 

behaviour of bacteria. The exact mechanism contributing to and importance of 

biofilm formation for colonization of the host or survival in the environment need to 

be further investigated. It is well known that type 1 and curli fimbrial adhesion 

expression is important for the adherence to abiotic surfaces (Cookson et al., 2002). 

Therefore we revealed the complete sequence of the type 1 fimbrial determinant of 

strain Nissle 1917. It is already known that strain Nissle 1917 exhibits an altered type 

1 fimbriation due to a truncation of the fimB recombinase gene due to an insertion 



VI. Discussion                                                                                                                                       123 

element. This fimB inactivation results in an abolished expression of type 1 fimbriae 

under shaking growth conditions in batch cultures, but does not influence the 

expression under static conditions growth (Stentebjerg-Olesen et al., 1999). Five 

different copies of fimBE-like genes have been identified in the genome of E. coli 

strain CFT073, suggesting that phase variation by inversion of a DNA region may 

occur at other regions than the type 1 fimbrial determinant in strain Nissle 1917. The 

manner of the type 1 fimbrial expression in E. coli Nissle 1917 is probably of 

significance for the biofilm formation on abiotic surfaces and especially on 

eukaryotic cell surfaces. It is also known that variations in the FimH adhesin amino 

acid sequence influence this process (Boddicker et al., 2002).  

Expression of curli fimbriae and cellulose is of crucial importance for biofilm 

formation and multicellular behavior of E. coli spp. (Römling et al., 1998; Solano et 

al., 2002). The E. coli strain Nissle 1917 expresses the so-called rdar morphotype 

forming typical tight, dry–looking colonies on agar plates since it co-expresses curli 

fimbriae and cellulose in a temperature-independent manner,. The rdar colonies are 

able to absorb the dye congo red,, adhere better to plastic surfaces and glass, and form 

a pellicle with a tight bacterial network at the air-liquid surface when grown as a 

static culture in rich medium at room temperature. It is not known if this phenotype 

contributes to the successful colonization of the host, but it probably plays a role for 

the survival of E. coli outside the host and may be associated with the probiotic 

character of strain Nissle 1917. Inactivation of the cellulose biosynthesis-encoding 

bcsNissle 1917 gene cluster abolished the rdar morphotype, confirming the critical role of 

the cellulose biosynthesis for biofilm/rdar morphotype formation. Interestingly, the 

rdar morphotype is only rarely distributed among pathogenic and non-pathogenic E. 

coli isolates. The UPEC strain 536 expresses curli fimbriae and cellulose only at 30°C 

(bdar morphotype), whereas strain CFT073 does not express curli fimbriae even at 

30°C (saw morphotype: smooth and white). Thus, it is tempting to speculate that 

strain Nissle 1917 is more adapted for survival outside the host than  pathogenic 

isolates. The fact that the bcs and csg operons are widely distributed among non-

pathogenic and pathogenic E. coli strains, that they are part of the core genome but 

their expression differs dramatically, mirrors (together with the identified frame-shift 

mutation in the wzy gene) a process of accumulation of vertically acquired DNA 

regions and sequence alterations, which contribute to the evolution of the non-

pathogenic, successful colonizing E. coli strain Nissle 1917.  
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Interestingly, a spontaneous loss of the rdar morphotype of Nissle 1917, when 

cultivated on congo red agar plates has been observed (Nagy, G., Grozdanov, L., 

Dobrindt, U., unpublished observation; Fig. 30).  

In addition, the expression of several other determinants located on the chromosome 

may contribute to biofilm formation, e. g. that of Ag43 homologues (e.g., sap, located 

on GEI IINissle 1917)(Kjaergaard et al., 2000). Since the expression of the Ag43-like 

homologues is upregulated upon inactivation of the transcriptional antiterminator 

RfaH protein, a mutant strain Nissle 1917rfaH- was created. Increased cell-to-cell 

interaction, as well as cell-surface aggregation was observed in the strain 536rfaH- 

and Nissle 1917rfaH- during cultivation in microfermentors (Dobrindt et al., 

unpublished data).  

 

7. The genome of the E. coli strain Nissle 1917 
 
In this study, the organization of the fitness determinants of the E. coli strain Nissle 

1917 was revealed. These data were combined with two whole-genome approaches: 

PFGE and PCR-based tRNA screening. Thus, an integrated picture of the E. coli 

strain Nissle 1917 genome was created, allowing to speculate on the evolution of this 

strain (Fig. 33).  

All together, more than 350 kb of the E. coli strain Nissle 1917 genome were 

sequenced (Tab. 9), including the known fitness determinants. Three tRNA genes-

associated genomic islands were identified and completely characterized, on which 

most of the fitness determinants are clustered together. Several new putative fitness 

determinants were identified within these islands (sat, iha, shiA, iro) as well as many 

putative ORFs coding for hypothetical proteins of unknown functions (Tab. 10). 
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Table 9: Compilation of the fitness determinants of strain Nissle 1917 analyzed in this 
study. 
Features, traits encoded Construct Determinants Size [kb] 

Type 1 fimbriae pCos3YC6 fim 36.4 

R1 core LPS  pCos8YA1 wa*, selC, int 47.5 

 GEI IIINissle1917: 

autotransporters 

pCos1YA7 argW 37.9 

pCos9YB4 shiA, iuc, sat 41.4 

pCos2YE4 sat, iha 44.1 

 GEI IINissle1917: aerobactin,  

serine protease,  

put. adhesin, K5 capsule pCos2RF2 kps, sap 39 

pCos3YE4 foc, mcm/mch, iro 48.2  GEI INissle1917:  

F1C fimbriae, microcin pCos2RA4 put. ORFs 38.9 

O6 side-chain LPS pGBW1917 wbO6 11.8 

Cellulose biosynthesis pGBC1917 bcs 10.9 

 

 

 

 

 

 

 

 

 

 



VI. Discussion                            126
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Fig. 33: Integrated map of the E. coli strain Nissle 1917chromosome. The position of the putative insertion sites and DNA content of the investigated genomic islands 
(GEIs Nissle 1917) and islets is depicted . The localization of the tRNA genes screened for the presence of non-K-12 DNA sequences as well as the positions of the CeuI 
restriction sites are shown . The presence of putative aspV-associated genomic island is indicated with interrupted lines. 
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Table 10: Number and characteristics of the ORFs identified in the E. coli strain Nissle 1917-specific DNA sequences characterized in this study.  

 
 
 
 
 
 
 

 
cosmid/ 
plasmid/ 
island 

 
ORFs/deleted 
known genes or 
pseudogenes 

 
tRNA 
genes 

 
autotransporters 

 
cell 
structure-
related 

 
hypothetical 
protein; 
unknown 

 
regulation 

 
Tn/IS 

 
fimbriae/ 
adhesion 

nucleotide 
metabolism; 
DNA/RNA 
restr., 
modification; 
methylases 

 
iron 
uptake 

 
microcin-
related 

 
enzymes; 
methabolism 

 
transport 

 
LPS/capsule 
synthesis 

pCos8YA1 43/2 1 - - 7 3 1 - 11 - - 5 3 12 

pBWB1917 9/1 - - - - - - - - - - - - 9 

pCos1YA7 33 1 1 1 13 1 - 5 1 - - 6 4 - 

 GEI INissle 

1917 

68/1 - - - 20 - 6 11 1 5 10 14 1 - 

 GEI IINissle 

1917 

82/3 - 2 2 26 2 21 5 - 5 - 4 1 14 

pCos3YC6 31 - - - 5 3 4 8 2 - - 6 3 - 

pGBC1917 6 - - - - - - - - - - 6 - - 

all 

together: 

272/6 2 3 3 71 9 32 29 15 10 10 41 12 35 
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Fig. 34: Comparative genomic maps of the non-pathogenic and pathogenic E. coli O6 strains Nissle 1917, CFT073 and 536. The chromosomal localization of the major genomic 
islands and islets is depicted. The interrupted lines indicate the presence of islands whose DNA content is still not known. 
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The genomic organization of E. coli Nissle 1917 has been compared with that of the very 

well studied uropathogenic strains 536 (Dobrindt et al., 2002) and the completely 

sequenced strain CFT073 (Welch et al., 2002; Fig. 34). The strain 536 was isolated from 

a patient with pyelonephritis (Blum et al., 1994) and the strain CFT073 was isolated from 

the blood of a patient with acute pyelonephritis (Mobley et al., 1990), whereas the strain 

Nissle 1917 is a faecal isolate. Interestingly, the strain Nissle 1917 shares striking 

similarities concerning the chromosomal structure and organization of the fitness 

determinants (Fig. 34) with the strain CFT073. Having the PFGE data in mind, it is 

tempting to speculate that these two strains have a common clonal origin. Although the 

genetic structure of the investigated genomic islands on which the important fitness-

conferring factors are encoded is very similar, the DNA content differs: no α-haemolysin 

and P-related fimbriae are encoded on the chromosome of strain Nissle 1917. On the 

contrary, the hly and pap gene clusters are located on the pheV-associated GEI CFT073 and 

an additional pap-encoding island is integrated next to the pheU tRNA gene in the 

genome of strain CFT073. The hly and pap genes seem to be replaced by a transposon-

like genetic structure in GEI IINissle 1917, whereas the entire pheU-associated GEICFT073 

island seems to be absent from the genomes of the strains Nissle 1917 and 536. The 

GEI INissle 1917 is almost completely identical to serX-associated GEICFT073 island, and 

probably considerably contributes to the fitness of both strains during colonization. From 

the results of the PCR-based tRNA screening it is evident that most of the tRNA-

associated foreign DNA elements present in the genome of strain CFT073 are also 

present in the genome of strain Nissle 1917. Despite of the similarity in the localization 

and structure of the horizontally acquired foreign DNA between the E. coli strains Nissle 

1917 and CFT073 revealed by the tRNA-screening and the sequence analysis, one should 

have in mind that the DNA content of the genomic islands is not the same. For instance, 

highly homologous P4-like prophage integrases are present downstream of selC tRNA-

encoding gene in the genomes of E. coli strains EDL933, CFT073 and 536, but the selC-

assotiated islands in those strains differ completely. The same is true for the pheV-

associated islands of those strains. 
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The second biggest genomic island of strain CFT073 located at aspV is at least partially 

present in strain Nissle 1917 (since the gene located immediately downstream of aspV is 

identical in both strains), but absent in strain 536. In spite of these similarities between 

the two strains, some differences were identified by screening the sequence context of 

tRNA genes, such as the absence of the pheU-associated island in the genome of strain 

Nissle 1917.  

It is remarkable that the organization and structure of the pathogenicity-related 

determinants of UPEC strains CFT073 and 536 differ considerably with regard to their 

localization and DNA content. The analogous “island pairs” pheV-associated GEI CFT073 - 

PAI V536 and serX-associated GEICFT073 - PAI III536 have different chromosomal 

integration sites and also differ with respect to the presence of some additional fitness  

determinants in the strain CFT073 (iuc, mch/mcm, sat, iha; Fig. 34) which are absent in 

E. coli strain 536. The functional integrity of the virulence factors expressed from both 

UPEC strains, which are absent in the non-pathogenic Nissle 1917, is evident: α-

haemolysin (encoded on PAI I536, PAI II536, and pheV-associated GEI CFT073), P-related 

fimbriae (encoded on PAI II536, pheV-associated GEI CFT073, and pheU-associated 

GEICFT073), and serum resistance-conferring full-length O6 LPS side-chain expression 

(galF-island). Analogous islands coding for adhesins of the S-fimbrial family are present 

in all three strains (serX-located islands of strains CFT073, Nissle 1917 and PAI III536 of 

strain 536). Since there is no clear evidence that S- or F1C-fimbrial expression alone is 

contributing to virulence, one could consider these adhesins fitness factors playing a role 

for colonization. One should also not exclude the possibility that some of the putative 

ORFs are coding for hypothetical proteins which are also important for fitness or 

virulence properties of the investigated strains.  

It is notworthy that the non-pathogenic E. coli strain Nissle 1917 strain possesses a 

surprisingly large set of iron uptake systems (iuc, ybt, fec, ent, chu, iro) compared to the 

UPEC strains, which might significantly contribute to its fitness.  

To further substantiate the analysis of the genome structure of strain Nissle 1917, the 

overall genome content was analyzed by DNA-DNA hybridization experiments with E. 

coli K-12-specific arrays, as well as with the “E. coli Pathoarray”, thus enabling detection 

of virulence- and fitness-associated genes of pathogenic E. coli from different 
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pathogroups (Dobrindt, U., and Plaschke, B., personal communication). The results 

demonstrate again that e.g., adhesins, iron uptake systems and proteases do not 

necessarily have to be considered as virulence-associated factors but can also contribute 

to the fitness and adaptability of bacteria. Although many DNA regions which belong to 

the flexible gene pool of pathogenic E. coli or at least homologoues thereof can be 

detected in the genome of non-pathogenic strain Nissle 1917, those coding for important 

virulence factors of uropathogenic E. coli are absent (protein toxin- or P fimbriae-

encoding genes). 

Having in mind the data on the genomic organization of the E. coli strains Nissle 1917, 

CFT073 and 536 it is tempting to speculate on the evolution of uropathogenicity and 

“non-pathogenicity” of these E. coli strains (Fig. 35). It seems that strain Nissle 1917 

acquired a set of important fitness determinants during evolution, which guarantees 

successful survival and colonization of the human body and most likely represents the 

genetic background for the probiotic action of this E. coli strain. At the same time no 

important virulence factors were identified, suggesting that either “by good fortune” such 

genetic factors were not horizontally transfered to the strain Nissle 1917, or they were 

present but subsequently deleted from the chromosome during adaptation as a non-

virulent successful colonizer of the human intestine. Additionally, the strain Nissle 1917 

exhibits some phenotypic features which are not typical for the UPEC isolates 536 and 

CFT073: the temperature-independent rdar morphotype, a non-FimB dependent type 1 

fimbrial switch, the presence of two plasmids, a semi-rough LPS resulting in serum 

sensitivity. These features might mirror the process of evolutionary withdrawing from 

the pathogenic lineages, probably due to adaptation to the non-pathogenic lifestyle or 

survival in the environment outside the human body. The striking similarities of the 

genome structure between the strain Nissle 1917 and the virulent UPEC strain CFT073 

suggest that these strains have a common evolutionary origin from an ancestral strain, 

but at some time point have been separated and adapted to different lifestyles (Fig. 35).  
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Fig. 35: Schematic representation of the presumed evolutionary relationships between the investigated E. 
coli O6 strains. The interrupted arrows represent possible ways for evolution of the non-pathogenic strain 
Nissle 1917. The interrupted circle indicates the putative presence of an environmentally-adapted proto-
Nissle 1917 variant. 
 
The E. coli strains 536 and CFT073 differ significantly in their structural organization of 

their virulence determinants, but at the end of their, probably independent and separate, 

evolution is a similar virulence capacity and a type of disease they cause.  

Taken all together, the results of this study show that the E. coli strain Nissle 1917 

exhibits a specific combination of phenotypic features due to acquisition of foreign DNA 

elements, loss of genetic information and minor genetic events (e. g., point mutations), 

which contribute to its probiotic nature and distinguish this strain from UPEC O6 strains 

as well as from other non-pathogenic E. coli isolates studied so far. 
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Table 1: Primers for amplification of PAI III536-specific sequences (Dobrindt et al., 2001). 
 

PCR number Position Gene name Primer Sequence (5‘ > 3‘) PCR product 
(bp) 

1  thrW thrW CCACCGTGATTCACGTTCG  
 1404-1422 SfX integrase III.1 AGGCACTATCACGCAGTGG 1455 
2 1404-1422 SfX integrase III.2 CCACTGCGTGATAGTGCCT  
 3583-3601 IS100 integrase III.3 AGCCCATCGCTATTGCCAG 2198 
3 3583-3601 IS100 integrase III.4 TCTGGCAATAGCGATGGGC  
 5606-5624 pifA III.5 CCACACGCAGACAACCTTC 2042 
4 5606-5624 pifA III.6 GAAGGTTGTCTGCGTGTGG  
 7700-7018 DAHP-Synthetase III.7 GGCGAGCATATCGTATCCC 2112 
5 7700-7018 DAHP-Synthetase III.8 GGGATACGATATGCTCGCC  
 9875-9893 LEE, IS tnpA III.9 TGCTGACGAAATGCCGGAG 2193 
6 9875-9893 LEE, IS tnpA III.10 ACTCCGGCATTTCGTCAGC  
 11908-11926 ColV III.11 TCATTCCCGTCACCTCCAG 2052 
7 11908-11926 ColV III.12 TCTGGAGGTGACGGGAATG  
 14064-14082 unknown/int  

Shigella 

III.13 CTGCTGAACAAAACGCCGG 2174 

8 14064-14082 unknown/int  

Shigella 

III.14 GCGCGCTTTACTGTGTCTG  

 15701-15719 sfaC III.15 GGTATGGTTCAGCGCTCTC 1760 
9 15701-15719 sfaC III.16 GAGAGCGCTGAACCATACC  
 17301-17319 sfaA III.17 CTTTAAAGGTGGCGTCGGC 2571 
10 17301-17319 sfaA III.18 GCCGACGCCACCTTTAAAG  
 19423-19441 sfaF III.19 ACCACGGGCCTGATTACTC 1965 
11 19423-19441 sfaF III.20 TGAGTAATCAGGCCCGTGG  
 21597-21615 sfaG III.21 ACTGCCGCAGGAGGTTAAC 2401 
12 21597-21615 sfaG III.22 GTTAACCTCCTGCGGCAGT  
 23526-23544 sfaH III.23 TCACTGACTGGACAGCACC 1739 
13 23526-23544 sfaH III.24 GGTGCTGTCCAGTCAGTGA  
 25825-25843 iroN III.25 GTGCAAGAGTGAGCCTCTG 1674 
14 25825-25843 iroN III.26 CAGAGGCTCACTCTTGCAC  
 27959-27977 iroE III.27 TAGCGCCTGAAGCGGTTTG 2194 
15 27959-27977 iroE III.28 ATGCCGGAGTTACCGCATC  
 30188-30206 iroD III.29 GCGAAGCTGAGTCGCTGAA 2249 
16 30188-30206 iroD III.30 TTCAGCGACTCAGCTTCGC  
 32242-32260 iroC III.31 CCAGCGACACAAGACGATG 2072 
17 32242-32260 iroC III.32 CATCGTCTTGTGTCGCTGG  
 34415-34433 iroB III.33 CCACAAATCGTCTTCGGCC 2192 
18 34415-34433 iroB III.34 GGCCGAAGACGATTTGTGG  
 36505-36523 IS 4 III.35 GATGCAACTGAGCAGGCTG 2108 
19 40206-40224 HmuR HmuR.1 AGGCAGCGACCAGTCATTC  
 42067-420085 HmuR.2 AGTTCTGCCTGAAAGCGGC 1880 
20 42166-

42184 
NMA1686 NMA1686.1 TTGTCTGACAGCATCGGGG  

 42900-
42919 

 NMA1686.2 TCGGGAGAAGCTTAAGGTTG 752 

21 43217-
43235 

Protein  

B. halodurans 

Bachalo.1 ATGGTTTCCTTGGCGCAGG  
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Table 1 continued 
 44323-

44341 
 Bachalo.2 CACCTGATTGCCACCAGAC 1130 

22 37574-
37592 

IS-ORFs 9-11 III-22.1 TACGCTGCTTGCCAGCTTG  

 39412-
39430 

 III-22.2 TCTGTCCTGATGTACGCCC 1866 

23 44212-
44230 

IS100-Tnp III-23.1 ATGGGGCGGTTTGGAGACA  

 46321-
46339 

 III-23.2 TTGCACGCAGTTATGCCGG 2127 

24 46321-
46339 

IS fragments 17-19 III-24.1 CCGGCATAACTGCGTGCAA  

 48430-
48448 

 III-24.2 TGCAAGCACTCAGCAGTGC 2127 

25 48430-
48448 

iciA III-25.1 GCACTGCTGAGTGCTTGCA  

 49203-
49221 

 III-25.2 GTTTTACAGAGCGGCCCGA 791 

26 49415-
49442 

lysU-like III-26.1 ATTCCCAGACCTGCAGTCG  

 50759-
50777 

 III-26.2 TAAGACAACTTCGCGCCCG 1353 

27 50759-
50777 

ORF22 III-27.1 CGGGCGCGAAGTTGTCTTA  

 52075-
52093 

 III-27.2 GGTCTGTATCGAAAGGCGG 1334 

28 52075-
52093 

cadA III-28.1 CCGCCTTTCGATACAGACC  

 54063-
54081 

 III-28.2 GCACTGAACTGGCTGGTTG 2006 

29 54063-
54081 

cadB III-29.1 CAACCAGCCAGTTCAGTGC  

 55409-
55427 

 III-29.2 TCTTCCTGCAAGTCTGGCG 1364 

30 59322-
59340 

sap III-30.1 TCTGGATGTGCTGAGCGGA  

 61211-
61229 

 III-30.2 ATGTTACTGCCGGCTGCGG 1907 

31 65528-
65547 

unknown/int Shigella III-31.1 TATTGAACAGGCCAGGGAAG  

 67207-
67225 

 III-31.2 GCATCTGGTGGCTATGGAAT 1698 

32 70163-
70182 

Haemoglobin protease III-32.1 ACGGTATCCGACTTCTGCAC  

 71943-
71962 

 III-32.2 TTGGTTATGGACGGCTCAGC 1801 

33 73105-
73124 

Haemoglobin protease/ISO-IS1 III-33.1 AAGAGGGCAGGATGCTATGA 

 74985-
75005 

 III-33.2 ATTTTGCCGGTCAGGTATTTC 1900 
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Table 2: Characteristics of the ORFs located the  GEI INissle1917. 
 

Putative 
ORF 

nt positions 
[bp] 

Accession no. DNA 
homology to 

Similar of the encoded protein Identity of the aa 
sequence (%)  
 

Function  

ORF1 776-1264 AE016758 
 

partial c1176 
 

Hypothetical protein  
 

163/163 (100%) 
NP_753101  

unknown 

ORF2 2275-2775 AE016758 c1179 
(Escherichia 
coli K-12 
B3128 
pseudogene) 
 

D-galactarate dehydratase  
 

145/165 (87%) 
NP_755750  

putative enzyme 

ORF3 2857-3318 AE016758 partial c1180  D-galactarate dehydratase  77/95 (81%) 
NP_755750 

putative enyzme 

ORF4 3278-3782 AE016758 c1183 
 

D-galactarate dehydratase  
 
 

123/174 (70%) 
NP_755750 

unknown 

ORF5 4556-5785 AE016758 c1186 
 

Putative beta-ketoacyl-ACP synthase 
 

409/409 (100%) 
NP_753105 
 

putative enzyme; Fatty acid biosynthesis: 
Fatty acid and phosphatidic acid 
biosynthesis 

ORF6 5782-6513 AE016758 c1187 3-oxoacyl-[acyl-carrier protein] reductase 
 

229/243 (94%) 
NP_753106 
 

enzyme; Fatty acid and phosphatidic acid 
biosynthesis 
 

ORF7 6513-6977 AE016758 c1188 Conserved hypothetical protein 
 

145/154 (94%) 
NP_753107 

unknown 

ORF8 6974-8152 AE016758 c1189 Putative 3-oxoacyl-[ACP] synthase 
 

362/392 (92%) 
NP_753108 

putative enzyme; Fatty acid biosynthesis: 
Fatty acid and phosphatidic acid 
biosynthesis 

ORF9 8145-8729 AE016758 c1190 Conserved hypothetical protein 
 

184/194 (94%) 
NP_753109 

unknown 

ORF10 8736-11044 AE016758 c1191 Conserved hypothetical protein 
 

 687/769 (89%) 
NP_753110 

unknown 
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Table 2 continued 
ORF11 11013-11618 AE016758 c1192 Conserved hypothetical protein 

 
191/201 (95%) 
NP_753111 

unknown 

ORF12 11615-12037 AE016758 c1193 Hypothetical protein 
 

139/140 (99%), 
NP_753112 

unknown 

ORF13 12041-13717 AE016758 c1194 Putative enzyme 
 

540/540 (100%) 
NP_753113 

putative enzyme  

ORF14 14048-15406 AE016758 c1197 Putative enzyme 452/452 (100%),  
NP_753116 

putative enzyme; Fatty acid biosynthesis: 
Fatty acid and phosphatidic acid 
biosynthesis 
 

ORF15 15403-15984 AE016758 c1198 Conserved hypothetical protein  
 

142/193 (73%) 
NP_753117 

unknown 

ORF16 15989-16240 AE016758 c1199 Putative acyl carrier protein 
 

83/83 (100%) 
NP_753118 

putative carrier; Fatty acid biosynthesis: 
Fatty acid and phosphatidic acid 
biosynthesis 

ORF17 16252-16509 AE016758 c1200 Putative acyl carrier protein 
 

85/85 (100%) 
NP_753119 

putative carrier; Fatty acid biosynthesis: 
Fatty acid and phosphatidic acid 
biosynthesis 

ORF18 16484-17323 AE016758 c1201 Putative phospholipid biosynthesis 
acyltransferase 

224/279 (80%) 
NP_753120 

putative enzyme  

ORF19 17302-18024 AE016758 c1202 Conserved hypothetical protein 
 

240/240 (100%) 
NP_753121 

unknown 

ORF20 18065-19123 AE016758 c1203 Putative O-methyltransferase 
 

352/352 (100%) 
NP_753122 

putative enzyme 

ORF21 19188-19577 AE016758 c1204 Conserved hypothetical protein 
 

129/129 (100%) 
NP_753123 

unknown 

ORF22 20468-22869 AE016758 partial c1205 Hypothetical protein  
 

786/799 (98%) 
NP_753124 

unknown 

ORF23 22828-25632 AE016758 c1206 
c1207 

Putative member of ShlA/HecA/FhaA exoprotein 
family  

788/930 (84%) 
NP_752286  

putative enzyme 

ORF24 25469-26077 AE016758 partial to c1207 Hypothetical protein 53/53 (100%) 
NP_752286 

unknown 
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ORF25 26153-26530 AE016758 c1208 Hypothetical protein 

 
75/104 (72%) 
NP_753127 

unknown 

ORF26 27395-27814 AE016758 partial c1209 
c1210 
c1211 

Hypothetical protein  
 

135/139 (97%) 
NP_755482 

unknown 

ORF27 27909-28481 AE016758 partial c1211 
c1212 

Hypothetical protein  
 

154/201 (76%) 
NP_755482  

unknown 

ORF28 29010-29213 AE016758 partial c1213 Hypothetical protein 67/67 (100%) 
NP_753130 

unknown 

ORF29 29374-29664 AE016758 partial c1214 Cea protein 
 

35/52 (67%) 
NP_753131 

putative 

ORF30 30287-30496 AE016758 c1215 Entry exclusion protein 2  
 

69/69 (100%) 
NP_753132 

putative 

ORF31 30656-30856  partial c1216 
c1217 

Hypothetical protein 
 

38/39 (97%) 
NP_753133; 
19/19 (100%) 
NP_753134 

unknown 

ORF32 31185-31688 AE016758 c1218 Hypothetical protein 167/167 (100%) 
NP_753135 

unknown 

ORF33 31660-32061 AE016758 partial c1219 Putative Transposase 
 

133/133 (100%) 
NP_753135 

putative transposase  

ORF34 31968-32204 AE016758 partial c1219 Putative Transposase 78/78 (100%) 
NP_753135 

putative transposase  

ORF35 32605-32793 AF302690 
 

ORF6 PAI 
III536 

Hypothetical protein  62/62 (100%) 
CAD66177  

unknown 

ORF36 33354-34388 AF302690 ORF7 PAI 
III536 

Hypothetical protein  330/344 (95%) 
CAC43413  

unknown 

ORF37 32265-36206 AE016758 c1223 
c1224 

Transposase of insertion element IS3  
 

281/284 (98%) 
CAC43414  

IS, phage, Tn; Transposon-related 
functions 

ORF38  37234-37353 AJ009631 mchX Protein (MchX) 
 

18/39 (46%) 
O86199  
 

required for microcin H47 production. 
possibly involved in a regulatory loop 
modulating its own expression and that of 
mchB and mchB. 
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ORF39  37422-37631 AJ009631  

 
mchI Microcin H47 immunity protein (MchI) 

 
 51/69 (73%) 
CAA66217  

protects microcin H47 producing cell 
against microcin H47 

ORF40  37648-37875 AJ009631  
 

mchB (MchB) protein 
 

AAN79685  
 

putative, microcin production 

ORF41  38147-39697 AE016758 mchC (MchC) protein 
 

516/516 (100%) 
NP_753143  

putative, microcin production 

ORF42  39723-40175 AE016758  
 

mchD (MchD) protein  
 

150/150 (100%) 
NP_753144 

putative, microcin production 

ORF43  40361-41599 AE016758 mchE Microcin H47 secretion protein (MchE) 
 

394/413 (95%) 
NP_753145 

putative, microcin secretion 

ORF44  41595-43691 AE016758 mchF Probable microcin H47 secretion ATP-binding 
protein (MchF) 

671/698 (96%) 
NP_753146 

putative, microcin production 

ORF45  43727-43948 AF302690 ORF11 PAI 
III536 

Hypothetical protein 58/73 (79%) 
CAC43416  

putative, microcin production 

ORF46  43945-44223 AF302690  
 

ORF12 PAI 
III536 

microcin V bacteriocin  
 

29/70 (41%) 
AAC16357 

putative, microcin production 

ORF47  44398-45084 AF302690 partial ORF13 
PAI III536 

Hypothetical protein 221/228 (96%) 
CAC43418  

putative, microcin production 

ORF48 45184-45654 AF302690 ORF14 PAI 
III536 

Hypothetical protein 152/156 (97%) 
CAC43419 

unknown 

ORF49 47698-47919 AF302690 sfaC 
 

regulatory protein (SfaC) 73/73 (100%) 
CAC16949  

involved in regulation of Shigella fimbriae 
expression; putative F1C and S fimbrial 
switch regulatory protein 
 

ORF50 48338-48446 AE016758 sfaB (SfaB) protein  
 

36/36 (100%) 
CAC43422 

involved in regulation of Shigella fimbriae 
expression; putative F1C and S fimbrial 
switch regulatory protein 

ORF51 49039-49581 AE016758 focA 
 

F1C major fimbrial subunit precursor (FocA) 
 

180/180 (100%) 
NP_753153  

structural component; surface structures 
 

ORF52 49667-50191 AE016758 sfaD Putative minor subunit precursor (SfaD) 173/173 (100%) 
NP_753154 

structural component; surface structures 
 

ORF53 50232-50927 AE016758 focC F1C periplasmic chaperone (FocC) 
 

231/231 (100%) 
NP_753155  

structural component; surface structures 
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ORF54 50997-53627 AE016758 focD F1C fimbrial usher (FocD) 876/876 (100%) 

NP_753156 
membrane; outer membrane constituents 
 

ORF55 53640-54167 AE016758 focF F1C minor fimbrial subunit F precursor 
(FocF) 

175/175 (100%) 
NP_753157 

structural component; surface structures 
 

ORF56 54189-54692 AE016758 focG F1C minor fimbrial subunit protein G precursor 
(FocG) 

167/167 (100%) 
NP_753158 

structural component; surface structures 

ORF57 54754-55653 AE016758 focH F1C Putative fimbrial adhesin precursor 
(FocH) 

299/299 (100%) 
NP_753159 

structural component; surface structure 

ORF58 55957-56697 AE016758 c1246 
 

Hypothetical protein 246/246 (100%) 
NP_753160 

unknown 

ORF59 56895-57396 AE016758 focX Putative Regulatory protein (FocX) 
 

166/166 (100%) 
NP_753161 

putative regulator 

ORF60 57721-58758 AE016758 c1248 Hypothetical protein  
 

345/345 (100%) 
NP_753162 

putative transposase related 

ORF61 58988-61165 AE016758 iroN Siderophore receptor (IroN) 
 

711/725 (98%) 
NP_753164 

membrane; transport of small molecules 
 

ORF62 61210-62166 AE016758 iroE IroE protein 
 

302/318 (94%) 
NP_753165 

putative exported protein 
 

ORF63 62251-63480 AE016758 iroD IroD protein, ferric enterochelin esterase 
 

398/409 (97%) 
NP_753166 

putative esterase 

ORF64 63584-67369 AE016759 iroC ATP binding cassette (ABC) transporter 
homolog (IroC) 

1150/1245 (92%), 
NP_753167 

putative transport 

ORF65 67383-68498 AE016759 iroB Putative glucosyltransferase (IroB) 
 

359/371 (96%) 
NP_753168 

putative sugar transferase 

ORF66 69513-69796 AE016759 partial to c1256 Hypothetical protein 
 

94/94 (100%) 
AAN78568  

putative transposase related 

ORF67 70063-70310 AE016759 partial to 
c1256, c1257 

Hypothetical protein 75/78 (96%) 
CAD66180 

putative IS, Tn related 
 

ORF68 70098-70460 AE016759 partial to  
c1257 

Hypothetical conserved protein 75/78 (96%) 
CAD66180 

putative IS, Tn related 
 

ORF69 71335-71769 AE016759 c1259 Hypothetical protein 100/118 (84%) 
NP_753173 

unknown 
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tRNA 71977-72053 AE016759 c5534 tRNA arg - tRNA 
ORF 70 72332-72790 AE016759 c1260 Putative Transposase 151/152 (99%) 

NP_753174 
 

putative enzyme; transposases insertion 
sequence associated 

ORF 71 72802-73695 AE016759 ORF35 (PAI 
III536) 

Hypothetical protein (PAI III) 265/297 (89%) 
CAD66183 

unknown 

ORF 72 74041-76011 AE016759 c1265 Outer membrane heme/hemoglobin receptor, 
membrane; Transport of small molecules:Cations 

645/656 (98%) 
NP_753179 
 

putative membrane-related; transport of 
small molecules:cations 

ORF 73 76030-76821 AE016759 c1266 Hypothetical protein  263/263 (100%) 
NP_753180  
 

unknown 

ORF 74 77085-78284 AE016759 partial to c1267 Hypothetical protein 386/399 (96%) 
NP_753181 
 

unknown 

ORF 75 79235-80371 AE016759 c1269 Hypothetical protein 354/378 (93%) 
NP_753183 
 

unknown 

ORF 76 80407-80494 AE016759 c1270 Hypothetical protein 180/180 (100%) 
NP_753184 

unknown 

ORF 77 81888-82247 AE016759 - Hypothetical protein 30/118 (25%) 
P02985 
 

unknown 

ORF 78 82456-82785 AE016759 - Hypothetical protein 33/87 (37%) 
NP_294168 
 

unknown 

ORF 79 82799-83104 AE016759 - Hypothetical protein - unknown 
ORF 80 83880-84791 AE016759 c1272 Hypothetical protein (YeeP) 290/290 (100%) 

NP_753186 
 

putative structure 

ORF 81 84966-88241 AE016759 c1273 Antigen 43 precursor 1064/1091 (97%) 
NP_753187 
 

membrane; outer membrane constituents 
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Table 2 continued 
ORF 82 88356-90878 AE016759 c1274 Hypothetical protein (YeeR) 749/829 (90%) 

NP_753188 
unknown 

ORF 83 90954-91409 AE016759 c1275 Hypothetical protein 151/151 (100%) 
NP_753189 

unknown 

ORF 84 91820-92641 AE016759 c1278 Hypothetical protein (yafZ) 271/271 (100%) 
NP_753193 
 

unknown 

ORF 85 92898-93857 AE016759 c1281 Hypothetical protein 319/319 (100%) 
NP_753195 

unknown 

ORF 86 94172-94816 AE016759 c1285 Hypothetical protein  214/214 (100%) 
NP_753198  
 

unknown 

ORF 87 94758-95240 AE016759 partial to 
c1285, c1286, 
c1287 (entire),  

Hypothetical protein 151/160 (94%) 
AAL67343 
 

unknown 

ORF 88 95185-95667 AE016759 partial to 
c1287, entire 
c1288 

Hypothetical protein (YeeV) 126/126 (100%) 
NP_753201  
 

unknown 

ORF 89 95664-96152 AE016759 c1289 Unknown protein encoded within prophage 149/162 (91%) 
NP_753202 

phage or prophage related 

ORF 90 95935-96369 AE016759 partial to 1289, 
c1290 

Hypothetical protein  77/94 (81%) 
AAD32187 

unknown 

tRNA 97477-97534 AE016759 c5535 tRNA serX - tRNA 
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Table 3: Characteristics of the ORFs located the  GEI IINisle 1917. 
 

Putative 
ORF 

nt positions 
[bp] 

Accession no. DNA 
homology to 

Similar of the 
encoded protein 

Identity of the aa sequence (%)  
 

Function  Putative ORF 

tRNA 1-76 AE016766 tRNA pheV - - - tRNA 
ORF1 274-1539 AE016766 c3556 

 
1263/1263 (100%) Prophage P4 integrase 

 
421/421 (100%) 
NP_755431  

IS, phage, Tn; Phage-related 
functions and prophages 

ORF2 1765-2838 AE016766 c3557 1069/1074 (99%)  
 

ShiA homolog 
 

344/347 (99%) 
NP_755432 

unknown 

ORF3 2891-3211 AE016766 c3558 222/231 (96%) 
 

Hypothetical protein 
 

75/76 (98%) 
NP_756355  

unknown 

ORF4 3368-3643 J01729 M25736 insA 276/276 (100%) 
 

Hypothetical protein (InsA) 91/91 (100%) 
CAA11401  

putative IS10-related 

ORF5 3562-4065 J01729 M25736 insB 501/504 (99%) 
 

Hypothetical protein (InsB) 166/167 (99%) 
AAK97138  

putative IS10-related 

ORF6 4531-4947 AE016766  
 

∆papX (last 
135 nt lacking) 

398/417 (95%) 
 

PapX protein 131/138 (94%) 
NP_755457  

not functional; surface 
structures, Pap-fimbriae 
synthesis 

ORF7 5088-6296 AP000342  
 

yedA 1206/1209 (99%)  
 

Transposase of Tn10 402/402 (100%) 
AAB28848  

putative transposon-related 

8 6312-6528 AE016766 ∆papX (first 
335 nt lacking) 

208/217 (95%) 
 

PapX protein 64/72 (88%) 
NP_755457 

not functional; surface 
structures, pap-fimbriae 
synthesis 

ORF9 6800-7303 J01729 M25736 insB 501/504 (99%) 
 

Hypothetical protein (InsB) 166/167 (99%) 
AAK97138  

putative IS10-related 

ORF10 7222-7497 J01729 M25736 insA 276/276 (100%) 
 

Hypothetical protein (InsA) 91/91 (100%) 
CAA11401 

putative IS10-related 

11 7967-8127 AE016766 
 

∆papA lacking 
149 nt from the 
beginning  

151/161 (93%) 
 

PapA fimbrial protein precursor 
 

47/53 (88%) 
NP_755467 
 

not functional; surface 
structures, pap-fimbriae 
synthesis 

ORF12 9020-9253 AJ494981 
 

papI (prfI) 230/234 (98%) 
 

Transcription regulator (PapI)  
 

74/77 (96%) 
RGECPI  

transcription regulation 
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Table 3 continued 
ORF13 9904-10515 AE016766 c3594 

c3595 
1292/1310 (98%) 
350/358 (97%) 

Putative transposase IS629 
 

284/296 (95%) 
NP_757061 

putative enzyme; 
Transposases 

ORF14 10704-
11030 

AE016766 c3596 323/327 (98%) 
 

Hypothetical protein in IS 
 

81/108 (75%) 
CAC37925  

Insertion Sequence 
Associated 

ORF15 11770-
12516 

AE016766 c3597 735/747 (98%) 
 

Putative Transposase 
 

224/248 (90%) 
AAF60967 

Insertion Sequence 
Associated 

ORF16 12575-
13071 

AE016766 partial c3598 314/315 (99%) 
 

Hypothetical protein 90/104 (86%) 
AAC61723  

unknown 

ORF17 13068-
13328 

AE016766 c3599 257/257 (100%) 
 

Hypothetical protein 86/86 (100%) 
NP_755474 

unknown 

ORF18 13370-
13930 

AE016766 c3600 559/561 (99%)  
 

Hypothetical protein 184/186 (98%) 
NP_755475 

unknown 

ORF19 13940-
14398 

AE016766 c3601 457/459 (99%) 
 

Hypothetical protein 150/152 (98%) 
NP_755476 

unknown 

ORF20 15679-
16335 

AE016766 partial c3602 646/657 (98%) 
 

IS2-related hypothetical protein 
(transposase) 

215/218 (98%) 
NP_755486  

putative IS2-related 

21 15016-
16346 

AB079602  
 

IS2 1294/1331 (97%) 
 

IS2-repeat region; Insertion element 
IS2A hypothetical 48.2 kDa protein; 
belongs to transposase family 8. 

283/304 (93%) 
P51026  

Transposable element 
 

ORF22 16448-
17641 

AE016766 shiF 1189/1194 (99%)  
 

ShiF protein 
 

370/397 (93%) 
NP_709453  

putative membrane protein 

ORF23 17720-
19501 

AE016766 iucA 1772/1782 (99%)  
 

IucA protein 583/593 (98%) 
AAD44746  

putative aerobactin 
siderophore synthetase 

ORF24 19502-
20449 

AE016766 iucB 941/948 (99%) 
 

IucB protein 313/315 (99%) 
NP_755501  

putative siderophore 
biosynthesis  

ORF25 20449-
22191 

AE016766 iucC 1707/1740 (98%)  
 

IucC protein 576/580 (99%) 
NP_755500  

putative siderophore 
biosynthesis 

ORF26 22188-
23465 

ECU90207  
 

iucD 1268/1268 (100%)  L-lysine 6-monooxigenase (lysine N6-
hydroxylase) (IucD) 

425/425 (100%) 
P11295 

putative siderophore 
biosynthesis 

ORF27 23547-
25748 

ECDF13RE 
 

iutA 2188/2202 (99%) 
 

Ferric aerobactin receptor precursor 
(IutA)  

701/733 (95%) 
P14542 

putative siderophore 
biosynthesis 
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Tabke 3 continued    
ORF28 26692-

30579 
AE016766 sat 3854/3888 (99%) 

 
Secreted autotransporter toxin (Sat)  1258/1295 (97%) 

NP_755494  
serine protease 

ORF29 31176-
32276 

AJ278144  
 

ORF13 1096/1098 (99%)  Hypothetical protein IS30-related (InsI); 
putative transposase 

350/366 (95%) 
P37246  

IS, phage, transposon-
related  

ORF30 33665-
34483 

AE016766 c3575 818/819 (99%) 
 

Transposase insF for insertion sequence 
IS3A/B/C/D/E/Fa 

251/272 (92%), 
NP_755450 

IS, phage, transposon-
related  

ORF31 35250-
35933 

AF336309 
 

77-626 nt 
homologous to 
588-1137 nt of 
pYVe8081 
 

441/550 (80%)  
 

Hypothetical protein 71/191 (37%) 
NP_052891 
 

unknown; possible 
transposase 

ORF32 36476-
36898 

AF386526  
 

CP0118 
 

406/418 (97%)  
 

IS1353 putative transposase-like protein 135/139 (97%) 
AAL72503  

IS, phage, transposon-
related  

ORF33 38092-
38364 

AF081285  
 

r8 272/273 (99%) neurotensin receptor R8 
 

89/90 (98%) 
AAC61726  

putative 

ORF34 38873-
39121 

AF081285 r7 248/249 (99%) 
 

maltopentaose forming amylase R7 59/82 (71%) 
AAC61727  

enzyme, sugar methabolism 

ORF35 40343-
42433 

AE016766 iha 2085/2091 (99%) 
 

Putative receptor/adhesin (Iha) 
 

667/696 (95%) 
NP_309387 
 

putative membrane; ell 
envelope: Outer membrane 
constituents 

ORF36 42933-
43589 

AE016766 partial c3612 646/657 (98%) 
 

IS2-related hypothetical protein 
(transposase) 

215/218 (98%) 
NP_755486  

putative IS2-related 

37 42922-
44252 

AB079602  
 

IS2 1294/1331 (97%) 
 

IS2-repeat region; Insertion element IS2 
hypothetical 48.2 kDa protein; belongs 
to transposase family 8. 

283/304 (93%) 
P51026  

Transposable element 
 

ORF38 44313-
45302 

AE016766 c3630 
 

989/989 (100%) 
 

Hypothetical protein YjhS precursor  329/329 (100%) 
NP_755505  

unknown 

ORF39 45392-
45760 

AE016766 partial c3631 319/343 (93%) 
 

Hypothetical transcriptional regulator 
(YhcK)  

70/114 (61%) 
NP_755846 

putative regulator 

ORF40 46169-
47104 

AE016766 partial c3632 913/939 (97%) 
 

Hypothetical protein  
 

268/318 (84%) 
NP_755508 

unknown 

ORF41 47154-
48263 

AE016766 c3634 1076/1110 (96%) 
 

Hypothetical protein YjhT precursor  368/369 (99%) 
NP_755509 

unknown 
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Table 3 continued 
ORF42 48276-

48986 
AE016766 c3635 

 
446/453 (98%) 
 

Hypothetical protein YjhA precursor 226/236 (95%) 
NP_755510 

unknown 

ORF43 49032-
49862 

AE016766 c3636 815/831 (98%) 
 

Hypothetical protein 
 

268/269 (99%) 
NP_755511 

unknown 

ORF44 49866-
51338 

AE016766 c3637 1473/1473 (100%) Putative sialic acid transporter  474/490 (96%) 
NP_755512 

transport; murein sacculus, 
peptidoglycan 

ORF45 51387-
52262 

AE016766 c3638 876/876 (100%) 
 

Hypothetical protein (YhcI) 
 

279/291 (95%) 
NP_755513 

putative regulator 
 

ORF46 52296-
53213 

AE016766 c3639 889/897 (99%) N-acetylneuraminate lyase subunit 305/305 (100%) 
NP_755514 

enzyme; surface 
polysaccharides  

ORF47 54296-
54646 

AE016766 partial c3641 351/351 (100%) 
 

Unknown in ISEc8 
 

116/116 (100%) 
NP_755516 

Insertion sequence 
associated 

ORF48 54677-
55777 

AE016766 c3643 
 

1092/1101 (99%)  
 

Unknown in ISEc8 325/366 (88%) 
NP_755518 

Insertion sequence 
associated 

ORF49 55774-
57312 

AE016766 partial c3645 1539/1539 (100%) Unknown protein encoded by ISEc8 
within prophage 

512/512 (100%) 
NP_755520 

Insertion sequence 
associated 

ORF50 60185-
60481 

AE016766 partial c3650 282/293 (96%) 
 

Hypothetical protein no significant match unknown 

ORF51 60770-
61342 

AE016766 partial c3651 573/573 (100%) 
 

Hypothetical protein 177/190 (93%) 
NP_755526 

unknown 

ORF52 61463-
62953 

AE016766 partial c3652 1472/1491 (98%) 
 

Hypothetical protein (YfjI) 
 

461/496 (92%) 
NP_755527 

unknown 

ORF53 64285-
65157 

AE016766 c3654 873/873 (100%) 
 

Hypothetical protein (YeeP) 
 

290/290 (100%) 
NP_755529 

putative structure 
 

ORF54 65485-
68613 

AE016766 c3655 (sap) 3024/3129 (96%) 
 

Antigen 43 precursor (Sap) 
 

960/1042 (92%) 
NP_755530 

membrane; outer membrane 
constituents 

ORF55 68744-
69835 

AE016766 partial c3664 1088/1092 (99%) 
 

Hypothetical protein (YeeR) 
 

320/352 (90%) 
NP_753188 

unknown 

ORF56 69911-
70366 

AE016766 c3665 
 

456/456 (100%) 
 

Hypothetical protein 151/151 (100%) 
NP_755540 

unknown 

ORF57 70779-
71597 

AE016766 c3668 
 

818/819 (99%)  
 

Hypothetical protein (YafZ) 
 

257/272 (94%) 
NP_755543 

unknown 
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Table 3 continued 
ORF58 71652-

72137 
AE016766 c3669 485/486 (99%) 

 
Hypothetical protein (YfjX) 
 

148/161 (91%) 
NP_755544 

unknown 

ORF59 71706-
72617 

AE016766 c3670 909/912 (99%) 
 

Hypothetical protein 300/303 (99%) 
 NP_755545 

unknown 

ORF60 72626-
73354 

AE016766 c3672 677/683 (99%) 
 

Hypothetical protein 228/242 (94%) 
NP_755547 

unknown 

ORF61 72932-
73576 

AE016766 c3674 629/645 (97%)  
 

Hypothetical protein 
 

209/214 (97%) 
NP_755549 

unknown 

ORF62 73518-
73994 

AF453442  
 

RorfE 
 

452/477 (94%) 
 

Hypothetical protein 145/158 (91%) 
AAL57576  

unknown 

ORF63 74457-
74945 

AE016766 c3678 486/489 (99%) 
 

Conserved hypothetical protein 
 

150/162 (92%) 
NP_755553 

unknown 

ORF64 74728-
75159 

AE016766 partial c3678, 
c3679 

428/432 (99%) 
 

Hypothetical protein 80/110 (72%) 
AAD32187  

unknown 

ORF65 75241-
76089 

AJ488511 z1226 259/278 (93%) 
 

Hypothetical protein 259/278 (93%) 
CAD33792 

unknown 

ORF66 76158-
76553 

AE016766 c3681 
 

395/396 (99%) 
 

Hypothetical protein 130/131 (99%) 
NP_755556 

unknown 

ORF67 76546-
77286 

AE016766 partial c3682 741/742 (99%) 
 

Hypothetical protein 243/243 (100%) 
NP_755557 

unknown 

ORF68 78877-
79860 

X95264  
 

kpsF 984/984 (100%) 
 

KpsF protein 327/327 (100%) 
CAA64561  

K5 capsule biosynthesis 

ORF69 79932-
81080 

X74567  
 

kpsE 1149/1149 (100%) Capsule polysaccharide export inner-
membrane protein (KpsE) 

351/382 (91%) 
P42214  

K5 capsule membrane 
export 

ORF70 81104-
82780 

X74567 kpsD 1674/1677 (99%) 
 

KpsD protein 557/558 (99%) 
NP_755563 

K5 capsule biosynthesis 

ORF71 82790-
83530 

S76943 
 

kpsU 741/741 (100%)  
 

3-deoxy-manno-octulosonate 
cytidylyltransferase (CMP-KDO 
synthetase) (CMP-2-keto-3-
deoxyoctulosonic acid synthetase) 
(CKS) (KpsU) 

246/246 (100%) 
P42216  
 

K5 capsule biosynthesis 

ORF72 83527-
85554 

X74567  
 

kpsC 2007/2028 (98%) Capsule polysaccharide export protein 
(KpsC) 

612/675 (90%) 
P42217 

K5 capsule export 
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Table 3 continued 
ORF73 85589-

86758 
X74567 kpsS 1169/1170 (99%) 

 
Capsule polysaccharide export protein 
(KpsS) 

388/389 (99%) 
P42218  

K5 capsule export 

ORF74 87097-
88275 

X77617  
 

kfiD 1171/1179 (99%)  
 

UDP-glucose 6-dehydrogenase 
(UDPGDH) (KfiD) 

378/392 (96%) 
Q47329  

K5 capsule biosynthesis 

ORF75 88317-
89879 

X77617 kfiC 1539/1563 (98%) 
 

putative glycosyltransferase (KfiC) 
 

519/520 (99%) 
S70198 

K5 capsule biosynthesis 

ORF76 90212-
90484 

X77617 ORF (kfi-
region) 

273/273 (100%) 
 

hypothetical protein kfi-region  
 

72/90 (80%) 
S70194 

unknown 

ORF77 90575-
90877 

X77617 ORF (kfi-
region) 

303/303 (100%) 
 

hypothetical 11.5 KDa  protein  100/100 (100%) 
S70191  

unknown 

ORF78 91171-
92862 

X77617 kfiB 1659/1692 (98%) 
 

KfiB protein 518/563 (92%) 
S70196 

K5 capsule biosynthesis 

ORF79 93294-
94010 

X77617 kfiA 696/717 (97%)  
 

KfiA protein 238/238 (100%) 
S70195  

K5 capsule biosynthesis 

ORF80 94995-
95669 

X53819  
 

kpsT 673/675 (99%) 
 

polysialic acid transport ATP-binding 
protein (KpsT) 

211/224 (94%) 
P24586 

K5 capsule biosynthesis 

ORF81 95666-
96442 

X53819  
 

kpsM 777/777 (100%)  
 

polysialic acid transport protein (KpsM) 246/258 (95%) 
P24584  

K5 capsule biosynthesis 
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Table 4: Characteristics of the ORFs located in the sequence context of argW in strain Nissle 1917. 
 

Putative 
ORF 

nt positions 
[bp] 

Accession no. DNA 
homology to 

Similar protein  Identity of the aa 
sequence (%) 
accession no. 

Function  

ORF1 700-1575 AE016766  
 

c3638 Hypothetical protein (YhcI) 278/291 (95%) 
NP_755513 

putative regulator 
 

ORF2 1624-3096 AE016766 c3637 Putative sialic acid transporter 
 

473/490 (96%) 
NP_755512 

transport; murein sacculus, peptidoglycan 
 

ORF3 3100-3930 AE016766 c3636 Hypothetical protein 
 

268/269 (99%) 
NP_755511 

unknown 

ORF4 3976-4686 AE016766 1-113 and 259-
711 nt 
homologous to 
c3635  

Hypothetical protein (YjhA) precursor  
 

225/236 (95%) 
NP_755510 
 

unknown 

ORF5 4688-5808 AE016766 c3634 Hypothetical protein (YjhT) precursor  368/369 (99%) 
NP_755509 

unknown 

ORF6 5858-6793 AE016766 c3633 Hypothetical protein  
 

267/318 (83%) 
NP_755508 

unknown 

ORF7 6829-7563 AE016766 1-666 nt 
homologous to 
c3632 and 
c3631 

putative GntR-family transcriptional regulator 
[Salmonella enterica subsp. enterica serovar 
Typhi] 
 

120/227 (52%) 
NP_462250 
 
 

putative regulator 

ORF8 7202-7570 AE016766 1-343 nt 
homologous to 
c3631 and 
c3630 

Hypothetical protein; Hypothetical protein 
(YjhS) precursor 
 

69/110 (62%)  
NP_462250 
 

unknown 

ORF9 7660-8160 AE016764 
 

203-501 nt 
homologous to 
c2876 

Hypothetical adenine-specific methylase (YfcB) 
 

84/128 (65%) 
AAN82078  
 

putative methylase 

ORF10 8275-8826 AE016764 c2877 Hypothetical protein (YfcN) 
 

167/167 (100%) 
P77458  

unknown 

ORF11 9146-10003 AE016764 c2878 Hypothetical protein (YfcO) precursor  
 

274/285 (96%) 
AAN81328 

unknown 
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Table 4 continued 
ORF12 10005-10532 AE016764 c2879 Hypothetical fimbrial-like protein (YfcP) 

precursor  
167/175 (95%) 
NP_754761 

putative structure 
 

ORF13 10529-11008 AE016764 c2880 Hypothetical fimbrial-like protein (YfcQ) 
precursor 

159/159 (100%) 
NP_754762 

putative structure 
 

ORF14 11005-11550 AE016764 c2881 Hypothetical protein (YfcR) fimbrial precursor  167/167 (100%) 
NP_754763 

putative structure 
 

ORF15 11525-11277 AE016764 c2882 Hypothetical fimbrial chaperone (YfcS) 
precursor 

228/250 (91%) 
NP_754764 

putative factor 
 

ORF16 12297-14951 AE016764 c2883 Putative outer membrane protein (YfcU) 
 

830/884 (93%) 
NP_754765 

putative membrane 
 

ORF17 150026-15592 AE016764 c2884 Hypothetical fimbrial-like protein (YfcV) 
precursor 

136/156 (87%) 
NP_754766 

putative structure 

ORF18 16159-16644 AE016764 c2785 Phosphohistidine phosphatase (SixA) 
 

161/161 (100%) 
NP_754767 

enzyme; methabolism 

ORF19 16847-18991 AE016764 c2886 Putative fatty oxidation complex alpha subunit; 
Enoyl-CoA hydratase; 3-hydroxyacyl-CoA 
dehydrogenase; 3-hydroxybutyryl-CoA 
epimerase 

675/714 (94%) 
NP_754768 

putative enzyme 

ORF20 18991-20301 AE016764 c2887 Probable 3-ketoacyl-CoA thiolase 
 

425/436 (97%) 
NP_754769 

putative enzyme 

ORF21 21131-22477 AE016764 c2889 Long-chain fatty acid transport protein precursor 
 

448/448 (100%) 
NP_754771 

enzyme; Transport of small molecules: 
Carbohydrates, organic acids, alcohols 

ORF22 22539-23294 AE016764 c2890 Lipoprotein precursor (VacJ) 
 

251/251 (100%) 
NP_754772 

membrane; Macromolecule synthesis, 
modification: Lipoprotein 

ORF23 23588-24520 AE016764 c2892 Hypothetical protein (YfdC) 
 

283/310 (91%) 
NP_754773 

putative transport 
 

tRNA 24596-24670 AE016764 argW - - tRNA-Arg 
ORF24 25108-25638 AE016764 c2893 Hypothetical protein 

 
164/176 (93%) 
NP_754775 

unknown 

ORF25 25686-31691 AE016764 1-1024 and 
1085-5940 nt 
homologous to 
c2894, c2895 

putative autotransporter protein [Yersinia pestis 
CO92] (YapH) 
 
 

624/2029 (30%) 
CAC89847 
 

unknown 
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Table 4 continued 
ORF26 31616-32254 AE016760 

 
7-639 nt 
homologous to 
c1857 

Hypothetical protein (YdcO)  
 

183/199 (91%) 
NP_753758  
 

putative transport 

ORF27 32253-32789 AE016760 c1858 Hypothetical protein (YdcN) 
 

178/178 (100%) 
NP_753759 

unknown 

ORF28 33162-34823 AE016760 c1859 Putative protease (YdcP) precursor 
 

553/553 (100%),  
NP_753760 

putative enzyme 

ORF29 34915-35145 AE016760 c1860 Hypothetical protein (YncJ) precursor 
 

76/76 (100%) 
NP_753761 

putative 

ORF30 35639-36604 AE016760 
(c1863) 
AE000500 
(yhjF) 
 

1-682 nt 
homologous to 
c1863; 679-966 
nt homologous 
to yjhF  

Hypothetical protein (YdcR) 
 

229/237 (96%) 
NP_753764  
 

unknown 

ORF31 36284-37006 AE000500  
 

34-723 nt 
homologous to 
yjhF 

Putative transport system permease 
 

168/208(80%) 
AAC77252  
 

putative transport 
 

ORF32 36744-37217 AE000500 yjhF Hypothetical protein 3-197 aa 37/65 (56%) 
AAC77252;  
382-474 aa 31/31 
(100%) P39358  

unknown 
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Table 5: Characteristics of the wa* gene cluster and flanking regions. 
 

Putative 
ORF 

nt positions 
[bp] 

Accession no. DNA homology 
to 

Similar of the encoded protein Identity of the aa 
sequence (%)  
 

Function  

ORF1 24-662 AE016768 waaC 
 

lipopolysaccharide heptosyltransferase-1 (WaaC) 
 

213/213 (100%),  
 

enzyme; macromolecule metabolism: 
lipopolysaccharide 
 

ORF2 735-1988 AE016768 waaL lipid A-core, surface polymer ligase (WaaL) 
 

388/417 (93%) 
 

enzyme, R1 core LPS synthesis 

ORF3 2034-3017 AE016768 waaV putative beta1,3-glucosyltransferase (WaaV) 
 

327/327 (100%) 
 

enzyme; macromolecule metabolism:  
lipopolysaccharide 
 

ORF4 3099-4127 AE016769 waaW 
 

UDP-galactose:(galactosyl) LPS alpha1,2-
galactosyltransferase (WaaW) 
 

342/342 (100%) 
 

enzyme; macromolecule metabolism:  
lipopolysaccharide 
 

ORF5 4153-4845 AE016769 waaY lipopolysaccharide core biosynthesis protein 
(WaaY) 
 

217/217 (100%) 
 

enzyme; macromolecule metabolism:  
lipopolysaccharide 
 

ORF6 4855-5850 AE016769 waaT lipopolysaccharide 1,2-glucosyltransferase 
(WaaT) 
 

331/331 (100%) 
 

enzyme; surface polysaccharides  
and antigens 
 

ORF7 5867-6883 AE016769 waaO lipopolysaccharide 1,3-galactosyltransferase 
(WaaO) 
 

327/327 (100%) 
 

enzyme; surface polysaccharides  
and antigens 
 

ORF8 6899-7696 AE016769 waaP lipopolysaccharide core biosynthesis protein 
(WaaP) 
 

251/265 (94%) 
 

enzyme; macromolecule metabolism:  
lipopolysaccharide 
 

ORF9 7689-8813 AE016769 waaG glucosyltransferase I (WaaG) 
 

374/374 (100%) 
 

enzyme; macromolecule metabolism:  
lipopolysaccharide 
 

ORF10 8810-9832 AE016769 waaQ lipopolysaccharide core biosynthesis glycosyl 
transferase (WaaQ) 
 

316/316 (100%) 
 

enzyme; macromolecule metabolism:  
lipopolysaccharide 
 

 



VIII. Supplements         
  

165

Table 5 continued 
ORF11 10281-11558 AE016769 kdtA 3-deoxy-D-manno-octulosonic-acid transferase 

(KdtA) 
 

367/387 (94%) 
 

enzyme; surface polysaccharides  
and antigens 
 

ORF12 11398-12045 AE016769 kdtB putative phosphopantetheine adenylyltransferase 
(KdtB)  
 

159/159 (100%), 
 

enzyme; macromolecule metabolism:  
lipopolysaccharide 

ORF13 12084-12893 AE016769 mutM formamidopyrimidine-DNA glycosylase (MutM) 
 

256/269 (95%) 
 

enzyme; DNA - replication, repair,  
restriction/modification 
 

ORF14 13632-14276 AE016769 radC DNA repair protein (RadC) 
 

214/214 (100%) 
 

enzyme; DNA - replication, repair,  
restriction/modification 
 

ORF15  AE016769 dfp DNA/pantothenate metabolism flavoprotein 
(Dfp) 
 

378/430 (87%) 
 

phenotype; DNA - replication, repair, 
restriction/modification 
 

ORF16 15673-16125 AE016769 dut deoxyuridine 5'-triphosphate nucleotidohydrolase 
Dut 
 

151/151 (100%) 
 

enzyme; 2'-deoxyribonucleotide 
metabolism 
 

ORF17 16193-16828 AE016769 ttk Ttk protein 
 

201/212 (94%) 
 

putative regulator 
 

ORF18 16871-17509 AE016769 pyrE orotate phosphoribosyltransferase (PyrE) 
 

213/213 (100%) 
 

enzyme; pyrimidine ribonucleotide  
biosynthesis 
 

ORF19 17607-18291 AE016769 rph ribonuclease PH 
 

207/228 (90%) 
 

enzyme; degradation of RNA 
 

ORF20 18418-19297 AE016769 yicC protein (yicC) 
 

153/169 (90%) 
 

unknown 
 

ORF21 19492-20325 AE016769 dinD DNA-damage-inducible protein D (Din D) 278/278 (100%) 
 

phenotype; DNA - replication, repair, 
restriction/modification 

ORF22 20566-21234 AE016769 yicG hypothetical protein (yicG) 
 

163/223 (73%) 
 

unknown 

ORF23 21237-22922 AE016769 yicF hypothetical DNA ligase-like protein (yicF) 
 

561/562 (99%) 
 

putative 
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Table 5 continued 
ORF24 23174-23794 AE016769 gmk guanylate kinase (Gmk) 

 
75/91 (82%) 
 

enzyme; purine ribonucleotide  
biosynthesis 
 

ORF25 23852-24127 AE016769 rpoZ DNA-directed RNA polymerase omega chain 
 

688/702 (98%) 
 

enzyme; RNA synthesis, modification,  
DNA transcription 
 

ORF26 24146-26251 AE016769 spoT guanosine-3',5'-bis(diphosphate) 3'-
pyrophosphohydrolase (spoT) 
 

688/702 (98%) 
 

enzyme; global regulatory functions 
 

ORF27 26261-26947 AE016769 spoU tRNA (guanosine-2'-O-)-methyltransferase 229/229 (100%) 
 

putative methyltransferase-related 
 

ORF28 26956-29037 AE016769 recG ATP-dependent DNA helicase (RecG) 
 

638/693 (92%) 
 

enzyme; DNA - replication, repair,  
restriction/modification 
 

ORF29 29047-30276 AE016769 gltS sodium/glutamate symport carrier protein (Get S) 
 

338/401 (84%) 
 

transport; transport of small molecules: 
amino acids, amines 
 

ORF30 30556-31944 AE016769 yicE putative purine permease (YicE) 
 

449/463 (96%) 
 

putative transport of purine 
 

ORF31 32068-33774 AE016769 yicH hypothetical protein (YicH) 
 

546/546 (100%) 
 

unknown 

ORF32 33821-34501 AE016769 c4481 conserved hypothetical protein 226/226 (100%) 
 

unknown 
 

ORF33 34482-35414 AE016769 c4482 hypothetical protein (YajF) 
 

274/310 (88%) 
 

putative regulator 
 

ORF34 34462-36322 AE016769 c4483 putative aldolase 
 

286/286 (100%) 
 

putative enzyme 
  

ORF35 36403-37257 AE016769 c4484 putative aldolase 
 

275/283 (97%) 
 

putative enzyme 

ORF36 37266-38357 AE016769 c4485 Putative phosphotransferase system (PTS) 
enzyme-ii fructose 

350/363 (96%) putative enzyme; ; degradation of small 
molecules: carbon compounds 

ORF37 38382-38696 AE016769 c4486 PTS system, fructose-like-2 IIB component 1 
 

104/104 (100%) 
 

putative enzyme; degradation of small 
molecules: carbon compounds 
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Table 5 continued 
ORF38 38714-39184 AE016769 c4487 putative phosphotransferase system (PTS) 156/156 (100%) 

 
putative; enzyme; degradation of small 
molecules: carbon compounds 

ORF39 39211-40764 AE016769 c4488 putative transcriptional Antiterminator 
 

509/517 (98%) 
 

putative regulation 

ORF40 41050-43365 AE016769 yicI putative family 31 glucosidase (YicI) 
 

746/772 (96%) 
 

putative enzyme; sugar methabolism 

ORF41 43378-44808 AE016769 yicJ hypothetical symporter (YicJ) 
 

462/477 (96%) 
 

putative transport 

 45050-45144 AE016769 selC - 
 

- tRNA 

ORF42 45445-46653 AE016769 intC, 8-251 and 
269-1059 88 % 
homologous to 
intC from E. 
coli CFT073 

putative prophage integrase (Int C) 
 

375/390 (96%) 
 

IS, phage, Tn 
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Table 6: Characteristics of fimNissle 1917 gene cluster and flanking sequences. 
 

Putative 
ORF 

nt positions 
[bp] 

Accession no. DNA 
homology to 

Similar of the encoded protein Identity of the aa 
sequence (%)  
 

Function  

ORF1  473-1303 AE000500  
 

yjhH (partial) 
 

putative lyase/synthase (YjhH9 263/277 (94%) 
NP_418718 

putative enzyme; not classified 

ORF2 1257-2042 AE000500 yjhI putative regulator (YjhI) 
 

261/262 (99%) 
NP_418719 

putative regulator; not classified 
 

ORF3 2348-3127 AE000500 sgcR putative DeoR-type transcriptional regulator 
(SgcR) 

259/260 (99%) 
NP_418720 

putative regulator; not classified 

ORF4 3147-3776 AE000500 sgcE putative epimerase (SgcE) 197/210 (93%) 
NP_418721 

putative enzyme; not classified 

ORF5 3788-4219 AE000500 sgcA putative PTS system enzyme II A component 
(SgcA) 

141/143 (98%) 
NP_418722 

putative transport; not classified 

ORF6 4353-5156 AE000501 sgcQ 
 

putative nucleoside triphosphatase (SgcQ) 
 

268/268 (100%) 
NP_418723 

putative enzyme; not classified 
 

ORF7 5172-6482 AE000501 sgcC putative PTS system enzyme IIC component 
(SgcC) 

418/437 (95%) 
NP_418724 

putative transport; not classified 
 

ORF8 6772-7920 AE000501 sgcX putative lyase/synthase (SgcX) 
 

368/383 (96%) 
NP_418725 

putative enzyme; not classified 
 

ORF9 8680-9423 AE000501 yjhP putative methyltransferase (YjhP) 
 

238/248 (95%) 
NP_418726 

putative enzyme; not classified 
 

ORF10 9479-10026 AE000501 yjhQ orf, hypothetical protein (YjhQ) 
 

163/172 (94%) 
NP_418727 

orf; unknown 
 

∆ORF11 10839-
11635 

AE000498 5-797 nt 
homologous to 
b4285 

putative transposase 
 

253/254 (99%) 
CAD48134  

IS, phage, Tn; not classified 
 

ORF12 12169-
13185 

AE000501 yjhR putative frameshift suppressor (YjhR) 
 

332/338 (98%) 
NP_418728 

phenotype; not classified 
 

ORF13 13771-
14748 

AE000501 yjhS orf, hypothetical protein (YjhS) 
 

315/326 (96%) 
NP_418729 

orf; unknown 
 

ORF14 14813-
16026 

AE000501 yjhT orf, hypothetical protein (YjhT) 398/404 (98%) 
NP_418730 

orf; unknown 
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Table 6 continued 
ORF15 15941-

16663 
AE000501 yjhA orf, hypothetical protein (YjhA) 240/241 (99%) 

NP_418731 
orf; unknown 

16 18298-
20211 

AF188737 
 

put. IS Unknown 406/406 (100%) 
AAF60967; 
89/166 (53%) 
NP_754342 

insertion element  
 

ORF17 18342-
19559 

AF188737 put. 
transposase 

transposase 406/406 (100%) 
AAF60967  

IS element-related 

ORF18 19581-
20096 

AF188737 put. 
transposase 

unknown 172/172 (100%) 
AAF60966  

IS element-related 

ORF19 21126-
21674 

AE000502 fimE recombinase involved in phase variation; 
regulator for fimA (FimE) 

183/183 (100%) 
NP_418733 

regulator; surface structures 
 

ORF20 22156-
22703 

D13186  
 

fimA major subunit of type 1 fimbriae (FimA) 
 

154/182 (84%) 
AAG35675  

structural component; surface structures 
 

ORF21 22661-
23305 

AP002569 
 

fimI fimbrial protein (FimI) 
 

213/215 (99%) 
NP_418735 

structural component; surface structures 

ORF22 23344-
24067 

AE000502 fimC periplasmic chaperone, required for type 1 
fimbriae (FimC) 

238/241 (98%) 
BAB38698 

structural component; surface structures 

ORF23 24137-
26770 

AE000502 fimD outer membrane protein; export and assembly of 
type 1 fimbriae (FimD) 

842/878 (95%) 
BAB38699  

membrane; outer membrane constituents 

ORF24 26783-
27310 

AE000502 fimF fimbrial morphology (FimF) 
 

172/176 (97%) 
BAB38700  

structural component; surface structures 
 

ORF25 27326-
27826 

AP002569 
 

fimG fimbrial morphology (FimG) 151/167 (90%) 
NP_757247  

structural component; surface structures 
 

ORF26 27885-
28748 

AP002569 fimH minor fimbrial subunit, D-mannose specific 
adhesin (FimH) 

286/288 (99%) 
NP_418740  

structural component; surface structures 

ORF27 28928-
30268 

AE000503 gntP gluconate transport system permease 3 
(GntP) 

413/447 (92%) 
NP_313307  

transport; transport of small molecules: 
carbohydrates, organic acids, alcohols 

ORF28 30608-
31789 

AE000502 
 

uxuA mannonate hydrolase (UxuA) 
 

394/394 (100%) 
NP_757250  

enzyme; degradation of small molecules: 
carbon compounds 

ORF29 31873-
33330 

AE000503 
 

uxuB D-mannonate oxidoreductase (UxuB) 
 

486/486 (100%) 
NP_290939  

enzyme; degradation of small molecules: 
carbon compounds 
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Table 6 continued 
ORF30 33548-

34318 
AE000503 uxuR regulator for uxu operon (UxuR) 

 
257/257 (100%) 
NP_313310  

regulator; degradation of small molecules: 
carbon compounds 

ORF31 34462-
35248 

AE000503 yjiC orf, hypothetical protein (YjiC) 
 

208/229 (90%) 
NP_313311  

orf; unknown 
 

 
 
 
 
 
 
Table 7: Characteristics of the ORFs located in the bcsNissle 1917 gene cluster. 
 

Putative 
ORF 

nt 
positions 
[bp] 

Accession no. DNA 
homology to 

Similarity of the encoded protein Identity of the aa 
sequence (%) 
accession no. 

Function  

ORF1 237-3710 AE016768 bcsC/yhjL Cellulose synthase operon protein C (YhjL) 1122/1157(96%) 
NP_756204 

Putative cellulose biosynthesis-related 

ORF2 3692-
4798 

AE016768 bcsZ/yhjM Putative cellulose biosynthesis-related (YjhM) 367/368 (99%) 
NP_756205 

Putative cellulose biosynthesis-related 

ORF3 4805-
7144 

AE016768 bcsB/yhjN Cellulose synthase regulatory subunit (YjhN) 
 

735/779 (94%) 
NP_756206 

Cyclic di-GMP binding protein precursor 

ORF4 7155-
9773 

AE016768 bcsA/yhjO Cellulose synthase catalytic subunit [UDP-forming] 
(YjhO) 

860/872 (98%) 
NP_756207 

Putative cellulose biosynthesis-related 

ORF5 9770-
10522 

AE016768 yhjQ Hypothetical protein (YhjQ) 
 

227/227 (100%) 
NP_756208 

Putative cellulose biosynthesis-related 

ORF6 10534-
10722 

AE016768 yhjR Hypothetical protein (YhjR) 
 

62/62 (100%) 
NP_756209  

Putative regulator of cellulose 
biosynthesis-related; putative cellulose 
synthase 
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Table 8: Detection of  the presence of E. coli Nissle 1917-specifc DNA regions in the genomes of 
different E. coli strains by PCR. For positive control  reaction E. coli Nissle 1917 genomic DNA  was 
used as a template; for negative control reaction E. coli MG1655 genomic DNA was used as a 
template. 
” –“ – negative PCR reaction; “+”- positive PCR reaction; “(+)” – presence of PCR product of correct 
size, but weaker compare to the positive control.  

 
Strain/PCR  mcmD focG iroB iuc 

(iucB 
– 
iucC) 

sat iha GEI III 
(ORF23-
ORF24) 

HPI 
3 R 
(irp1 
– 
ybtT) 
 

HPI 4 
L 
(irp2) 

GEI I 
left 
(Z4866) 

GEI I 
right 
(c1274) 

GEI 
II left 
(shiA) 

GEI 
II 
right 
(kfiC) 

IS2-
left 
(IS2–
iuc 
shiF) 

IS2-
right 
(IS2–
iha) 

ECOR7 
(A) 

- - - - - - - - - - - - - - - 

ECOR1 
(A) 

- - - - - - - - - - - - - - - 

ECOR23 
(A) 

- - - - - - - - - - - - - - - 

ECOR25 
(A) 

- - - - - - - - - - - - - - - 

ECOR28 
(B1) 

- - - - - - - - - - + + - - - 

ECOR32 
(B1) 

+ - - - - - - - - + - + - - - 

ECOR42 
(E) 

- - - - - - - - - + + - - - - 

ECOR59 
(B2) 

- - - + - - - + + - - + - - - 

F18 - - + + - - - + + - - + - - - 
M1/5 - - - + + + - + + - - + + + + 
M1/6 - - - - - - - - - - - - - - - 
M1/32 - - - - - - - - - - + - - - - 
M1/49 - - - - - - - - - - - - - - - 
M2/24 - - + - - - - - - - - - - - - 
M2/39 - - + + - - - - - - - - - - - 
M2/40 - - - - - + - - - - - - - - - 
M2/43 - - - + - + - - - - - + - - - 
M3/6 - - - - - - - - - - - - - - - 
M3/15 - - - - - + - - - - + + - - - 
M3/26 - + - + + + - + + + + + - - + 
M1/13 - - - - - - - - - - - + - - - 
M1/43 - - - - - - - - - - - - - - - 
M1/14 - - - - - - - - - - + - - - - 
M1/15 - - - - - + - - - + + - - - - 
M1/30 - - + + + - - + + - + + - - - 
M1/37 - - + + - - - - - + - + - - - 
M2/16 - - + + - + - + + - - + - - - 
M2/37 + - + + - - - - - + (+) + - - - 
M2/46 - - - - - - - - - - - - - - - 
M3/27 - - - + + + - + + + + + - - + 
M3/29 - + + + + + - - - + + + - - - 
M3/22 - - + + - + - - - + + + - - - 
M3/36 - - + + + - - - - + + + - - - 
M2/17 - - + + - - - - - - + + - - - 
M1/18 + + + + + + - - - + +  + + - 
M2/31 - - + - - - - - - + + + - - - 
M1/36 - - - - - - - - - - + - - - - 
M2/1 - - - + + + - - - + + + - - + 
M2/47 + - - + - + - - - - + - - - - 
M3/3 + - + + - + - - - + + +  - - 
Nissle 1917 + + + + + + + + + + + + + + + 
MG1655 - - - - - - - - - - - - - - - 
RZ411 - - + + + + + + + + + + - - - 
RZ412 - - + + + + + + + - - + - - - 
RZ418 + + + + - + - + + + + + - - - 
RZ422 - - + + - - - + + + + + - - - 
RZ423 - - + - - - - + + + + + - - - 
RZ424 + + + + - + - + + + + + + - - 
RZ430 + + + - - - - + + + + + - - - 
RZ436 + - + - - - - + + - + + - - - 
RZ446 + - + - - - - + + + + + - - - 
RZ447 + - + - - - - + + + + + - - - 
RZ448 + - + - - - - + + + + + - - - 
RZ449 + + + + + + - + + + + + + - + 
RZ451 - - + + - - - + + - + + - - - 
RZ454 - - + - - - - + + + + + - - - 
RZ458 + + + + + + + + + - + + - - - 
RZ460 - - + - - - - + + + + + - - - 
RZ461 + - + - - - - - + + + + - - - 
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Table 8 continued 
RZ462 - - + - - - - + + + + + - - - 
RZ463 - - + - - - - - + + + + - - - 
RZ467 + + + + + + - + + + + + - - - 
RZ470 - - - + - + - + + - + + - - - 
RZ479 - - - - - - - + + + - + - - - 
RZ484 - - + - - - - + + + + + - - - 
RZ485 - - + - - - - + + + + + - - - 
RZ486 - + - + + + - + + + - + - - - 
RZ496 - - + - - - - + + + + + - - - 
RZ501 + + + + + + - + + + + + + - + 
RZ502 - - + - - - - + + + + + - - - 
RZ504 - - + - - - - + + + + + - - - 
RZ505 + + + - - - + + + + + + - - - 
RZ507 + + + + - + - + + + + + - - - 
RZ532 + - + - - - - + + + + + - - - 
RZ536 + - + - - - - + + + + + - - - 
RZ536/1 + - + - - - - + + + + + -   
RZ537 + + + + + + - + + + + + - - - 
RZ439 + + + + + + - + + + + + + - + 
RZ442 + + + + + + + + + + + + + + + 
RZ471 + + + + + + - + + + + + + + + 
RZ525 + + + + + + + + + + + + + + + 
RZ498 - - + + + + - + + + + + + + + 
RZ495 + + + + + + - + + + + + + + - 
RZ440 + + + + + + - + + + + + + - + 
RZ441 + + + + + + - + + + + + + - + 
RZ468 + + + + + + - + + + + + + - + 
RZ475 + + + + + + + + + + + + + - + 
RZ526 + + + + + + + + + + + + + - + 
RZ450 + + + - + + + + + + + + + - - 
RZ414 + + + + + + + + + + + + + - + 
RZ419 + + + + + + + + + + + + + - + 
RZ420 + + + + + + + + + + + + + - + 
RZ521 + + + + + + + + + + + + + - + 
RZ522 + + + + + + + + + + + + + - - 
RZ500 + + + + + + + + + + + + + - - 
RZ466 + + + + + + + + + + + + + - + 
RZ452 + + + + + + + + + + + + + - + 
RZ453 + + + + + + + + + + + + + - - 
RZ465 + + + + + + + + + + + + + - - 
RZ443 + + + + + + + + + + + + + - + 
RZ512 + + + + + + + + + + + + + - - 
RZ513 + + + + + + + + + + + + + - - 
RZ533 + + + + + + - + + + + + + - - 
RZ421 + + + + + + + + + + + + + - + 
RZ429 + + + + + + + + + + + + + + + 
RZ477 + - + + + + + + + + + + + - + 
RZ519 + + + + + + + + + + + + + - + 
RZ523 + + + + - + + + + + + + + - - 
RZ499 + + + + + + + + + + + + + - - 
RZ524 + + + + + + + + + + + + + + + 

 

1. Sequence determination of csg promoter – csgD region of E. coli strains Nissle 

1917, Nissle 1917 CR- and 536 

E. coli Nissle 1917: 
     1 attctgccgc cacaatccag cgtaaataac gtttcatggc tttatcgcct 
gaggttatcg tttgcccagg aaaccgcttg 80     
    81 tgtccggttt tttacggcta tcttcttgaa aagattataa agatgcgttt 
taaccgtatt ttcgctgatg aacaacgaac 160    
   161 gagcgatctc gttattagac gcgccgatac gcagcttatt caggatctct 
ttttcccgat gagtaaggag ggctgattcc 240    
   241 gtgctgttat aacgatagtt acctgaatgc gtaatcaggt aactggcaag 
cttttgcgta aagtagcatt cgccgcgcag 320    
   321 gacgccttgc aacccattga caacacgttc ttgatcctcc atggcataaa 
aaacgccgtt gatatgaggc cagttttcaa 400    
   401 tgtcgcggta cgggtaatct tcaggcgtat ttagcaacaa tattttgata 
ttgttgtttt tcctgctcaa agtatcctgc 480    
   481 caataatgga taagcttttt atccgcttcc atcatatcca gaagaataat 
agagcctgaa gatatatcgt ccagagaacg 560    
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   561 ttgaatatta tgtaattttc ctgtaattgc cagcgattgt ttaaggtgct 
gcaagagagc tgtcgcctgc aaagaaggtt 640    
   641 tagtgatcaa caataatgta tgaccatgaa tactatggac ttcattaaac 
atgatgaaac cccgcttttt ttattgatcg 720    
   721 cacacctgac agctgcctct aaaatagaag caccagaagt actgacagat 
gttgcactgc tgtgtgtagt aataaatcag 800    
   801 ccctaaatgg gtaaaatata aaactaatgg attacatctg atttcaatct 
agccattaca aatcttaaat caagtgttaa 880    
   881 acatgtaact aaatgtaact cgttatatta aaatgttaac cttaaggttt 
tattaagttt ataaatgata gaaaagttgt 960    
   961 acatttggtt tttattgcac aattttaaaa aatcatacaa atggtgctaa 
cttactaata atgcatataa aaaatatttc 1040   
  1041 gctgtagtcc tttcgtcatg aaaaacgttc ttgttttttc tccataccac 
cgtggacaat tttttactgc aaaaagacga 1120   
  1121 ggtttgtcac ggcttgtgcg caagacatat cgcagcaatc agcgacgggc 
aagaagaatg actgtctggt gatttttgat 1200   
  1201 agcggaaaac ggagatttaa aagaaaacaa aatatttttt tgcgtagata 
acagcgtatt tacgtgggtt ttaatacttt 1280   
  1281 ggtatgaaca aaaaaagaaa aatacaacgt gcgggtgagt tattaaaaat 
atttccgcag acatactttc catcgtaacg 1360   
  1361 cagcgttaac aaaatacagg ttgcgttaac aaccaagttg aaatgattta 
atttcttaaa tgtacgacca ggtccagggt 1440   
  1441 gacaacatga aaaacaaatt gttatttatg atgttaacaa tactgggtgc 
g                                1491   
 

E. coli Nissle 1917 CR-: 
 
     1 attctgccgc cacaatccag cgtaaataac gtttcatggc tttatcgcct 
gaggttatcg tttgcccagg aaaccgcttg 80     
    81 tgtccggttt tttacggcta tcttcttgaa aagattataa agatgcgttt 
taaccgtatt ttcgctgatg aacaacgaac 160    
   161 gagcgatctc gttattagac gcgccgatac gcagcttatt caggatctct 
ttttcccgat gagtaaggag ggctgattcc 240    
   241 gtgctgttat aacgatagtt acctgaatgc gtaatcaggt aactggcaag 
cttttgcgta aagtagcatt cgccgcgcag 320    
   321 gacgccttgc aacccattga caacacgttc ttgatcctcc atggcataaa 
aaacgccgtt gatatgaggc cagttttcaa 400    
   401 tgtcgcggta cgggtaatct tcaggcgtat ttagcaacaa tattttgata 
ttgttgtttt tcctgctcaa agtatcctgc 480    
   481 caataatgga taagcttttt atccgcttcc atcatatcca gaagaataat 
agagcctgaa gatatatcgt ccagagaacg 560    
   561 ttgaatatta tgtaattttc ctgtaattgc cagcgattgt ttaaggtgct 
gcaagagagc tgtcgcctgc aaagaaggtt 640    
   641 tagtgatcaa caataatgta tgaccatgaa tactatggac ttcattaaac 
atgatgaaac cccgcttttt ttattgatcg 720    
   721 cacacctgac agctgcctct aaaatagaag caccagaagt actgacagat 
gttgcactgc tgtgtgtagt aataaatcag 800    
   801 ccctaaatgg gtaaaatata aaactaatgg attacatctg atttcaatct 
agccattaca aatcttaaat caagtgttaa 880    
   881 acatgtaact aaatgtaact cgttatatta aaatgttaac cttaaggttt 
tattaagttt ataaatgata gaaaagttgt 960    
   961 acatttggtt tttattgcac aattttaaaa aatcatacaa atggtgctaa 
cttactaata atgcatataa aaaatatttc 1040   
  1041 gctgtagtcc tttcgtcatg aaaaacgttc ttgttttttc tccataccac 
cgtggacaat tttttactgc aaaaagacga 1120   
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  1121 ggtttgtcac ggcttgtgcg caagacatat cgcagcaatc agcgacgggc 
aagaagaatg actgtctggt gatttttgat 1200   
  1201 agcggaaaac ggagatttaa aagaaaacaa aatatttttt tgcgtagata 
acagcgtatt tacgtgggtt ttaatacttt 1280   
  1281 ggtatgaaca aaaaaagaaa aatacaacgt gcgggtgagt tattaaaaat 
atttccgcag acatactttc catcgtaacg 1360   
  1361 cagcgttaac aaaatacagg ttgcgttaac aaccaagttg aaatgattta 
atttcttaaa tgtacgacca ggtccagggt 1440   
  1441 gacaacatga aaaacaaatt gttatttatg atgttaacaa tactgggtgc 
g                                1491   
 
E. coli 536: 
 
     1 attctgccgc cacaatccag cgtaaataac gtttcatggc tttatcgcct 
gaggttatcg tttgcccagg aaaccgcttg 80     
    81 tgtccggttt tttacggcta tcttcttgaa aagattataa agatgcgttt 
taaccgtatt ttcgctgatg aacaacgaac 160    
   161 gagcgatctc gttattagac gcgccgatac gcagcttatt caggatctct 
ttttcccgat gagtaaggag ggctgattcc 240    
   241 gtgctgttat aacgatagtt acctgaatgc gtaatcaggt agctggcaag 
cttttgcgta aagtagcatt cgccgcgcag 320    
   321 gacgccttgc aacccattga caacacgttc ttgatcctcc atggcataaa 
aaacgccgtt gatatgaggc cagttttcaa 400    
   401 tgtcgcggta cgggtaatct tcaggcgtat ttagcaacaa tattttgata 
ttgttgtttt tcctgctcaa agtatcctgc 480    
   481 caataatgga taagcttttt atccgcttcc atcatatcca gaagaataat 
agagcctgaa gatatatcgt ccagagaacg 560    
   561 ttgaatatta tgtaattttc ctgtaattgc cagcgattgt ttaaggtgct 
gcaagagagc tgtcgcctgc aaagaaggtt 640    
   641 tagtgatcaa caataatgta tgaccatgaa tactatggac ttcattaaac 
atgatgaaac cccgcttttt ttattgatcg 720    
   721 cacacctgac agctgcctct aaaatagaag caccagaagt actgacagat 
gttgcactgc tgtgtgtagt aataaatcag 800    
   801 ccctaaatgg gtaaaatata aaactaatgg attatatctg atttcaatct 
agccattaca aatcttaaat caagtgttaa 880    
   881 acatgtaact aaatgtaact cgttatatta aaatgttaat ctcaaggttt 
tattaagttt ataaatgata gaaaagttgt 960    
   961 acatttggtt tttattgcac aattttaaaa aatcatacaa atagtgctaa 
cttactaata atgcatataa aaaatatttc 1040   
  1041 gctgtagtcc tttcgtcatg aaaaacgttc ttgttttttc tccataccac 
cgtggacaat tttttactgc aaaaagacga 1120   
  1121 ggtttgtcac ggcttgtgcg caagacatat cgcagcaatc agcgacgggc 
aagaagaatg actgtctggt gatttttgat 1200   
  1201 agcggaaaac ggagatttaa aagaaaacaa aatatttttt tgcgtagata 
acagcgtatt tacgtgggtt ttaatacttt 1280   
  1281 ggtatgaaca aaaaaagaaa aatacaacgc gcgggtgagt tattaaaaat 
atttccgcag acatactttc catcgtaacg 1360   
  1361 cagcgttaac aaaatacagg ttgcgttaac aaccaagttg aaatgattta 
atttcttaaa tgtacgacca ggtccagggt 1440   
  1441 gacaacatga aaaacaaatt gttatttatg atgttaacaa tactgggtgc 
g                                1491   
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2. Acronyms and abbreviations  

 

A   amper 

aa   amino acid 

Ap/ApR
  ampicillin/ampicillin resistence 

APS   NH4-persulfate 

bp   base pair 

°C   grad celsius 

cat   chloramphenicol-acetyl-transferase 

Da   dalton 

dATP   desoxyadenosin-5'-triphosphate 

dCTP   desoxycytosin-5'-triphosphate 

dGTP   desoxyguanosin-5'-triphosphate 

dH2O   distilled water 

DNA   desoxyribonucleic acid 

dNTP   desoxynucleotide 

dTTP   desoxythymidin-5'-triphosphate 

E.   Escherichia 

EDTA   ethylene-diamin-tetraacetate 

et al.   et alili (and others) 

EtBr   ethidium bromide 

EtOH   ethanol 

Fig.   figure 

g   gram 

GEI   genomic island 

h   hour 

IPTG   isopropyl-β-D-thiogalactopyranosid 

kb   kilobase (pairs) 

Km/KmR  kanamycin/kanamycin resistence 

l   liter 

LB   Luria Bertani broth 

LPS    lipopolysaccharide 

m   meter; milli (1 × 10-3) 

M   molar, mega (1 × 106) 
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mg   milligram 

min   minute 

ml   milliliter 

OD   optical density 

ON   overnight 

ORF   open reading frame 

ori   origin of replication 

PAA   polyacrylamid 

PAI   pathogenicity island 

PBS   phosphate buffered saline 

PCR   polymerase chain reaction 

RNA   ribonucleic acid 

RNase   ribonuclease 

RT   room temperature 

SDS   sodium-dodecyl-sulfate 

sec   second 

Sm/SmR  streptomycin/streptomycin resistence 

SSC   standart saline citrate 

t   time 

Tab.   table 

TAE   Tris-acetate-EDTA 

TBE   Tris-borate-EDTA 

TCA   trichloroacetic acid 

TE   Tris-EDTA 

TEMED  N,N,N`,N`-tetramethyldiamin 

Tris   Tris-(hydroxymethyl)-aminomethan 

U   enzyme unit (1 U=1 µmol substrate × min-1) 

UV   ultraviolet irradiation 

V   volt 

v/v   volume/volume 

W   watt 

w/v   weight/volume 

WT   wild type 

X-gal   5-bromo-4-chloro-3-indolyl-β-glucoside 
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YT   yeast triptone 

µ   micro (1 × 10-6) 

µg   microgram 

µl   microliter 
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Publications and poster presentations at international meetings: 

 

Publications: 
 

1. Grozdanov, L., Zähringer, U., Blum-Oehler, G., Brade, L., Henne, A., Knirel, 

Y. A., Schombel, U., Schulze, J., Sonnenborn, U., Gottschalk, G., Hacker, J., 

Rietschel, E. T., and U. Dobrindt. 2003. A single nucleotide exchange in the wzy 

gene is responsible for the semirough O6 lipopolysaccharide phenotype and serum 

sensitivity of the Escherichia coli strain Nissle 1917. J. Bacteriol. 184:5912-5925. 

2. Grozdanov, L., Raasch, C., Schulze, J., Sonnenborn, U., Gottschalk, G., 

Hacker, J., and U. Dobrindt. 2003. Analysis of the genome structure of probiotic 

Escherichia coli strain Nissle 1917. Manuscript submitted. 

 

Poster presentations at international meetings: 
 

1. A genomic analysis of the probiotic E. coli strain DSM6601. Grozdanov, 

L., Blum-Oehler, G., Dobrindt , U., and Hacker, J. Meeting of the European 

Graduate College “Gene regulation in and by microbial pathogens”, 16–20 

October 2000, Schloß Zeilitzheim, Germany.  

 

2. Comparative genomic analysis of the probiotic E. coli strain DSM6601. 

Grozdanov, L., Blum-Oehler, G., Dobrindt, U., Gottschalk, G., and Hacker, J. 

International Workshop “Microbial-Host Interactions; Approaches and 

Molecular Tools”, June 10-16, 2001, Umeå, Sweden. 

 

3. Molecular characterization of the O6 lipopolysaccharide-encoding genetic 

determinant of the E. coli strain DSM6601. Grozdanov, L., Dobrindt, U., 

Blum-Oehler, G., Henne, A., Gottschalk, G., Schulze, J., Sonnenborn, U., and 

Hacker, J. H-48. ASM general Meeting, 2002, Salt Lake City, USA. 
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Curriculum Vitae 

 

Name:   Lubomir Assenov Grozdanov 

Date of birth:  18. October 1975 

Place of birth: Sofia, Bulgaria 

 

Education 

1993  Graduated from Highschool ”Prof. Dr. Assen Zlatarov“, Sofia, 

Bulgaria 
 

1993 – 1998 Graduation from Sofia University „St. Kliment Ohridski“ as 

Master of Science, major subjects: Molecular Biology and 

Microbiology 

 

1998  Master Thesis (“Molecular taxonomy analysis of Bacillus 

sphaericus strains of different environmental origin”) at the 

Department of Genetics, Institute of Microbiology, Bulgarian 

Academy of Science and successfully passed Master Thesis 

defence 

 

1998 –  

September 1999 Participation in the European TEMPUS Project “Second 

Master Degree in Environmental Biotechnology“ 

 

1999  Second Master Thesis at the Institute for Microbiology and 

Genetics, Georg–August Universität, Göttingen, Germany 

(“Physiological role of the 2-phosphoglycolate phosphatase for 

the autotrophic growth of Ralstonia eutropha”) and 

successfully passed Master Thesis defence 

 

since  

September 1999   Ph.D. thesis at the Institute for Molecular Biology of Infectious 

Diseases, University of Würzburg, Germany. Title of the Ph.D. 

project: “Comparative genomic analysis of the the probiotic 

Escherichia coli strain Nissle 1917 (O6:K5:H1)”. Scientific 



VIII. Supplements    180

supervisors: Prof. Dr. Dr. h. c. Jörg Hacker 

 

2000 – 2003  Associated member of the European Graduate College “Gene 

regulation in and by microbial pathogens” of the Universities of 

Würzburg and Umeå (Sweden) 

2000 – 2004 Ph.D. scholarship of the Bavarian Research Foundation 

(Bayerische Forschungsstiftung) 
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Lebenslauf 

 

Name: Lubomir Assenov Grozdanov 

Geburtsdatum: 18.10.1975 

Geburtsort: Sofia, Bulgarien 

 
Ausbildung 
 
 
1993  Erlangung der Hochschulreife am ”Prof. Dr. Assen Zlatarov“ - 

Gymnasium, Sofia, Bulgarien 
 

1993 – 1998 Erlangung des Magistergrades der Biologischen Fakultät an der 

“St. Kliment Ochridski“ Universität, Sofia (Bulgarien) 

 

1998  Diplomarbeit (“Molekular- und Taxomanalyse des Stammes 

Bacillus sphaericus”), Institut für Mikrobiologie, Bulgarische 

Akademie der Wissenschaften, Sofia (Bulgarien) 

 

1998 –  

September 1999 Teilnahme am Magisterprogramm im Rahmen des TEMPUS 

Projektes “Second Master Degree in Environmental 

Biotechnology“ (Nr. 11454/96) der Europäischen Union  

 

1999  Diplomarbeit am Institut für Mikrobiologie und Genetik, 

Georg–August Universität, Göttingen (“2-Phosphoglykolat-

phosphatase: Physiologische Rolle für das autotrophe 

Wachstum von Ralstonia eutropha”); Magistergrad in 

Umweltbiotechnik 

 

seit  

September 1999 Dissertation am Institut für Molekulare Infektionsbiologie der 

Julius-Maximilians-Universität zu Würzburg unter Anleitung 

von Prof. Dr. Dr. h. c. J. Hacker (“Untersuchungen zur 

Genomorganisation und zur Fitness des apathogener 

Escherichia coli Stammes Nissle 1917 (O6:K5:H1)“) 
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2000 – 2003  Mitglied des Europäischen Graduiertenkollegs “Gene 

regulation in and by microbial pathogens”, Universität 

Würzburg und Universität Umeå (Schweden) 

 

2000 – 2004 Promotionsstipendiat der  Bayerischen Forschungsstiftung 

 
 

 
 


