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– Preface –

Wer kann was Dummes, wer was Kluges denken,
das nicht die Vorwelt schon gedacht?

(J.W. v. Goethe: Faust II)

The point of departure for the present work has been the following free boundary value
problem for analytic functions f which are defined on a domain G ⊂ C and map into the
unit disk D = {z ∈ C : |z| < 1}.
Problem 1
Let z1, . . . , zn be finitely many points in a bounded simply connected domain G ⊂ C.
Show that there exists a holomorphic function f : G −→ D with critical points zj (counted
with multiplicities) and no others such that

lim
z−→ξ

|f ′(z)|
1− |f(z)|2 = 1

for all ξ ∈ ∂G.

If G = D, Problem 1 was solved by Kühnau [32] in case of one critical point, which
is sufficiently close to the origin, and for more than one critical point by Fournier and
Ruscheweyh [17]. The method employed by Kühnau, Fournier and Ruscheweyh easily
extends to more general domains G, say bounded by a Dini–smooth Jordan curve, but
does not work for arbitrary bounded simply connected domains.

In this paper we present a completely new approach to Problem 1, which shows that this
boundary value problem is not an isolated question in complex analysis, but is intimately
connected to a number of basic open problems in conformal geometry and non–linear
PDE. One of our results is a solution to Problem 1 for arbitrary simply connected domains.
However, we shall see that our approach has also some other ramifications, for instance
to a well–known problem due to Rellich and Wittich in PDE.

Roughly speaking, this paper is broken down into two parts. In a first step we construct
a conformal metric in a bounded regular domain G ⊂ C with prescribed non–positive
Gaussian curvature κ(z) and prescribed singularities by solving the first boundary value
problem for the Gaussian curvature equation ∆u = −κ(z)e2u in G with prescribed singu-
larities and continuous boundary data. This is related to the Berger–Nirenberg problem in
Riemannian geometry, that is, the question which functions on a surface R can arise as the
Gaussian curvature of a Riemannian metric on R. The special case, where κ(z) ≡ −4 and
the domain G is bounded by finitely many analytic Jordan curves was treated by Heins
[22]. In a second step we show every conformal pseudo–metric on a simply connected
domain G ⊆ C with constant negative Gaussian curvature and isolated zeros of integer
order is the pullback of the hyperbolic metric on D under an analytic map f : G −→ D.
This extends a theorem of Liouville which deals with the case that the pseudo–metric has
no zeros at all. These two steps together allow in particular a quick and complete solution
of Problem 1.



Contents

Chapter I contains the statement of the main results and connects them with some old
and new problems in complex analysis, conformal geometry and PDE: the Uniformization
Theorem for Riemann surfaces, the problem of Schwarz–Picard, the Berger–Nirenberg
problem, Wittich’s problem, etc.. Chapter II and Chapter III have preparatory character.
In Chapter II we recall some basic results about ordinary differential equations in the
complex plane. In our presentation we largely follow Laine [33], but we have completely
reorganized the material and present a self–contained account of the basic features of
Riccati, Schwarzian and second order differential equations. In Chapter III we discuss
the first boundary value problem for the Poisson equation. We shall need to consider
this problem in the most general situation, which does not seem to be covered in a
satisfactory way in the existing literature, see [10, 11]. To this end it is unavoidable
to prove some rather technical and painstaking potential theoretic lemmas. In Chapter
IV we turn to a discussion of conformal pseudo–metrics in planar domains. We focus
on conformal metrics with prescribed singularities and prescribed non–positive Gaussian
curvature. In particular, we shall establish the existence of such metrics, that is, we solve
the corresponding Gaussian curvature equation by making heavy use of the results of
Chapter III. In Chapter V we show that every constantly curved pseudo–metric can be
represented as the pullback of either the hyperbolic, the euclidean or the spherical metric
under an analytic map. This is proved by using the results of Chapter II about complex
differential equations. After these lengthy preparations the proofs for the applications in
Chapter VI become comfortably short.
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– Chapter I –

Introduction and Main Results

I.1 Representation of constant curvature metrics

By the Uniformization Theorem every simply connected Riemann surface is conformally
equivalent to either the unit disk D = {z ∈ C : |z| < 1}, the finite complex plane C or
the Riemann sphere P = C ∪ {∞}. Each of these canonical Riemann surfaces X = D, C
or P carries a canonical conformal metric

λX(w) =





1

1− |w|2 X = D,

1 if X = C,
1

1 + |w|2 X = P,

of constant Gaussian curvature

κ =





−4 X = D,

0 if X = C,

+4 X = P,

(I.1)

which induces hyperbolic geometry on D, euclidean geometry on C, and spherical ge-
ometry on P.

Now, let G be a domain in C and let f : G −→ X be an analytic map, where X = D, C or
P. Then the canonical geometry on X can be pulled back from X to G via f by defining
the pseudo–metric

λ(z) := λX(f(z)) |f ′(z)|
on G, which has constant curvature κ ∈ {−4, 0,+4} in G\{z ∈ G : f ′(z) = 0}. Note,
the zeros of the pseudo–metric λ(z) are exactly the critical points of the analytic map f .
More precisely, λ has a zero of order α at a point ξ ∈ G, i.e. the limit

lim
z−→ξ

λ(z)

|z − ξ|α

exists and 6= 0, if and only if f ′ has a zero of order α at the point ξ.

In order to represent a pseudo–metric λ on G as the pullback λX(f(z)) |f ′(z)| of the
canonical metric λX under an analytic map f : G −→ X it is therefore necessary that λ
has constant curvature κ ∈ {−4, 0,+4} and that the zeros of λ are discrete in G and of
integer order. If the domain G is simply connected, then these two conditions are also
sufficient for λ to be the pullback of the canonical metric under an analytic map. This is
the content of the following result, which we are going to prove in Chapter V.
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Theorem I.1
Let E = {z1, z2, . . .} be a discrete set in a simply connected domain G ⊆ C, let α1, α2, . . .
be positive integers, and let λ : G −→ [0,∞) be a pseudo–metric of constant curvature
κ ∈ {−4, 0,+4} in G\E with zeros of orders αj at zj and no others, that is, the limits

lim
z−→zj

λ(z)

|z − zj|αj
exist and 6= 0 .

(a) If κ = −4, then λ is the pullback of the hyperbolic metric under a holomorphic
function f : G −→ D, i.e.

λ(z) =
|f ′(z)|

1− |f(z)|2 , z ∈ G .

If g : G −→ D is another holomorphic function such that

λ(z) =
|g′(z)|

1− |g(z)|2 , z ∈ G ,

then g = T ◦ f , where T is a conformal automorphism of the unit disk D.

(b) If κ = 0, then λ is the pullback of the euclidean metric under a holomorphic function
f : G −→ C, i.e.

λ(z) = |f ′(z)| , z ∈ G .

If g : G −→ C is another holomorphic function such that

λ(z) = |g′(z)| , z ∈ G ,

then g = T ◦ f , where T is an euclidean motion of the complex plane C, that is
T (z) = az + b for some constants a, b ∈ C with |a| = 1.

(c) If κ = +4, then λ is the pullback of the spherical metric under a holomorphic
function f : G −→ P1, i.e.

λ(z) =
|f ′(z)|

1 + |f(z)|2 , z ∈ G .

If g : G −→ P is another holomorphic function such that

λ(z) =
|g′(z)|

1 + |g(z)|2 , z ∈ G ,

then g = T ◦ f , where T is a rotation of the Riemann sphere P.

Thus every pseudo–metric of constant Gaussian curvature κ on a simply connected domain
G with at most a discrete set of zeros, each of integer order, is the pullback of the canonical
metric λX under an analytic map f : G −→ X, where X = D if κ = −4, X = C if κ = 0,
and X = P if κ = 4.

1By a holomorphic function f : G −→ P we mean a meromorphic function defined on G.
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Remarks I.2
(a) The condition in Theorem I.1 thatG is simply connected cannot be dropped. Indeed,

the function

λ(z) :=
1

2
√
|z| (1− |z|)

is a conformal metric of constant curvature −4 on the punctured unit disk G =
D\{0}, but certainly not the pullback of λD under a holomorphic function f : G −→
D.

(b) Part (b) of Theorem I.1 is simply the well–known fact that every harmonic function
u in a simply connected domain G can be written as the real part of a holomorphic
function H : G −→ C. In fact, λ(z) is a conformal metric on G of constant Gaussian
curvature 4k with no zeros, if and only if

u(z) := log λ(z)

is a solution of the partial differential equation

∆u = −4k e2u

in G. In particular, u is harmonic in G if and only if k = 0. By Theorem I.1 (b),
u(z) = log |f ′(z)| for some locally univalent function f : G −→ C, so u(z) = ReH(z)
for H(z) = log f ′(z).

We point out two special cases of Theorem I.1. If the conformal pseudo–metric λ is strictly
positive on G, i.e. λ(z) is a conformal metric, then Theorem I.1 is Liouville’s theorem [34].

Corollary I.3 (Liouville 1853)
Let λ be a strictly positive conformal pseudo–metric on a simply connected domain G ⊆ C
with constant Gaussian curvature κ ∈ {−4, 0,+4} in G. Then there exists a locally
univalent analytic map f : G −→ X with X = D if κ = −4, X = C if κ = 0, and X = P if
κ = +4, such that λ(z) = λX(f(z)) |f ′(z)|.
If the pseudo–metric λ(z) in Theorem I.1 is the maximal conformal pseudo–metric of
constant curvature −4 with prescribed zeros in the unit disk, then we obtain a theorem
of Heins.

Corollary I.4 (Heins 1962)
Let E = {z1, z2, . . .} be a discrete set in D and α1, α2, . . . be positive integers. If λ is
the maximal conformal pseudo–metric in D of constant Gaussian curvature −4 in D\E
with zeros of orders αj at zj, then λ(z) = λD(f(z)) |f ′(z)| for some holomorphic function
f : D −→ D.

Some remarks are in order.

Remark I.5
A slightly different version of Corollary I.3 can be found in Nitsche [39]. Corollary I.3
was also proved by Warnecke [53] apparently unaware of Liouville’s result. Still another
proof was furnished by Bieberbach [6] also without reference to Liouville. Bieberbach’s
motivation for Corollary I.3 was to give a proof of the Uniformization Theorem for certain
algebraic Riemann surfaces. His arguments follow a way proposed by Schwarz [48] and
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Poincaré [44]. One can show that Bieberbach’s main idea which leads to Corollary I.3
can be used to prove the Uniformization Theorem for every hyperbolic compact Riemann
surface, see Section I.2 below. A further, more geometric proof of Corollary I.3 was
offered by Minda [36]. All of these proofs cannot directly be modified to establish the
more general Theorem I.1. Here is a short description why.

If f : G −→ X is an analytic function such that λ(z) = λX(f(z)) |f ′(z)|, then it is easy to
see that its Schwarzian derivative

Sf(z) =

(
f ′′(z)

f ′(z)

)′
− 1

2

(
f ′′(z)

f ′(z)

)2

is given by
1

2
Sf(z) =

(
∂2

∂z2
log λ

)
(z)−

[(
∂

∂z
log λ

)
(z)

]2

. (I.2)

Conversely, in order to find for a given pseudo–metric λ of constant curvature a function
f : G −→ X such that

λ(z) = λX(f(z)) |f ′(z)|,
one needs to solve the Schwarzian differential equation (I.2). The condition that λ has
constant curvature in G\E, E defined as in Theorem I.1, is equivalent to the fact that
the right hand side of (I.2) is a holomorphic function in G\E.

In particular, in the situation of Liouville’s theorem, where λ has no zeros at all, the
right hand side of (I.2) is a holomorphic function in G and it is a classical and elementary
fact that every solution to (I.2) is a locally univalent meromorphic function. One needs
then to find among all solutions to (I.2) a function f : G −→ X which satisfies λ(z) =
λX(f(z)) |f ′(z)|. This can be done either by looking at a second order linear differential
equation associated to (I.2) (Bieberbach’s approach) or by using the local univalence of
the solutions of (I.2) to reduce the assertion to the case of vanishing Schwarzian (Minda’s
proof).

If, however, the metric λ has zeros in G, then the right hand side of (I.2) has second order
poles at these zeros and from the general theory of Schwarzian differential equations it
is not clear at all that all solutions to (I.2) are meromorphic functions in G. In order to
guarantee that also in this case all solutions of the Schwarzian differential equation are
meromorphic in G we will take a closer look at (I.2) and an associated Riccati differential
equation. After that we proceed along the lines of Bieberbach’s proof of Corollary I.3 to
conclude the proof of Theorem I.1, see Chapter V for details.

Remark I.6
Heins’s proof [22] of Corollary I.4 gives an ad hoc argument for the existence of the
function f using Blaschke products. In particular, the function f is not constructed from
the metric λ. As indicated above our way of proving Theorem I.1 and its Corollary I.4
is constructive. We obtain the function f as a solution of the Schwarzian differential
equation (I.2).

Remark I.7
Theorem I.1 can also be extracted from the work of Nitsche [39] and Warnecke2 [53]
who provided a classification of the possible isolated singularities of the real valued twice

2Warnecke in imitation of Nitsche
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continuously differentiable solutions u of the PDE ∆u = 4e2u. We wish to point out
that Corollary I.3 is indispensable to their characterization of the singularities. It is used
in connection with a general fundamental system of a second order differential equation,
where the function of the right hand side of (I.2) comes into consideration. This function
is holomorphic except for the singularities of the function u.

Extensive use of Corollary I.3 was also made by Chou and Wan [8, 9] to find a representa-
tion formula for real valued twice continuously differentiable solutions u of ∆u = −4ke2u

in D\{0} for k ∈ {−1, 0,+1}, which also allows a description of the possible singularities.
In brief, they showed that each such function u has the form

u(z) = log
|f ′(z)|

1 + k|f(z)|2 for z ∈ D\{0} ,

where f is some multi–valued locally univalent function in D\{0}. Their key to deduce
the above expression for u is the universal covering surface D of D\{0} combined with
Liouville’s theorem (Corollary I.3). At first sight it seems that Chou and Wan’s and
Nitsche’s and Warnecke’s proof don’t have much in common, but a closer look reveals
some similar ideas. They all use Liouville’s theorem to obtain a local representation of u
in terms of a locally univalent function f . Then they study the behaviour of the analytic
continuation of f along a path which surrounds the singularity.

Our starting point for Theorem I.1 differs markedly from the purpose Nitsche, Warnecke,
Chou and Wan pursued in their papers. We assume a solution of the PDE ∆u = −4ke2u

with prescribed singularities and prescribed behaviour in a neighborhood of these singu-
larities whereas the other authors classify the possible types of singularities. Therefore
we examine the problem from a different perspective. The proof of Theorem I.1 we give
below is completely different than [39, 53, 9] and shows a strong connection between
pseudo–metrics of constant curvature and the Schwarzian derivative of not necessarily
locally univalent holomorphic functions. This aspect might be new in this context. We
want to emphasize that we don’t need Corollary I.3 for our proof. In fact, our method
shows that Liouville’s theorem is contained in Theorem I.1 as a special case.

Theorem I.1 provides a representation formula for conformal metrics of constant curvature
with isolated zeros. The following equivalent statement deals with the case of conformal
metrics with variable curvature of a special type.

Theorem I.8
Let G ⊆ C be a simply connected domain, h : G −→ C a holomorphic function 6≡ 0, and
λ : G −→ (0,∞) a conformal metric in G with curvature 4k|h(z)|2, k ∈ {−1, 0,+1}. Then
there exists a holomorphic function f : G −→ X such that

λ(z) =
1

|h(z)|
|f ′(z)|

1 + k|f(z)|2 , z ∈ G,

where X = D if k = −1, X = C if k = 0, and X = P if k = +1.
If g : G −→ X is another holomorphic function satisfying

λ(z) =
1

|h(z)|
|g′(z)|

1 + k|g(z)|2 , z ∈ G,

then g = T ◦ f , where T is a rigid motion of X, i.e. T is a unit disk automorphism if
X = D, a euclidean motion of the complex plane if X = C, and a rotation of the sphere
if X = P.
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Theorem I.8 can be used to prove a slight extension of a theorem of Wittich [55], see
§I.3.2 below.

I.2 Existence and uniqueness of pseudo–metrics of

constant curvature

The construction of harmonic functions with prescribed singularities, i.e. the integration
of the Laplace equation

∆u = 0 (I.3)

with prescribed singularities for the function u plays an important role in complex func-
tion theory. It leads, for instance, to the Poisson–Jensen formula for meromorphic func-
tions and hence to Nevanlinna’s first fundamental theorem. In the language of conformal
metrics the problem consists in finding conformal pseudo–metrics of constant Gaussian
curvature 0 with prescribed zeros.

From the viewpoint of complex analysis the construction of conformal metrics of constant
negative Gaussian curvature with prescribed zeros is even more important. We may
assume Gaussian curvature −4 by renormalization, so the problem is equivalent to find
solutions of the non–linear PDE

∆u = 4e2u (I.4)

with prescribed singularities. The integration of this PDE leads for example to a proof
of the Uniformization Theorem for Riemann surfaces and also to Nevanlinna’s second
fundamental theorem.

The partial differential equation (I.4) occurs in the year 1890 in a problem (”Preisauf-
gabe”) of the ”Königliche Gesellschaft der Wissenschaften zu Göttingen” posed by Schwarz
[48] in connection with the uniformization problem for Riemann surfaces. Note, if there
exists a solution u of the PDE (I.4) on a compact Riemann surface R, then λ(z) := eu(z)

defines a conformal metric of constant Gaussian curvature −4 without zeros on R, so
by Liouville’s Theorem λ(z) = λD(f(z)) |f ′(z)| for some analytic map f : U −→ D on a
simply connected subset U of R. The map f is locally univalent and it is not difficult to
show that every branch of its inverse map can be continued analytically along any path
in D. In this way a locally univalent map π : D −→ R is obtained, which turns out to be
the universal covering map of the Riemann surface R. Thus, solving the PDE (I.4) on R
provides a method to uniformize the Riemann surface R. We remark that for algebraic
Riemann surfaces the singularities of the metric λ correspond to the branch points of the
surface.

The problem of Schwarz was extensively studied by Picard [41, 42, 43], Poincaré [44] and
Bieberbach [5, 6]. It was completely solved for compact Riemann surfaces by Heins in [22]
(see [35] for an independent proof). Heins obtained a necessary and sufficient condition
for the existence of a conformal metric on a compact Riemann surface with constant
Gaussian curvature −4 and prescribed singularities. He studied the equation (I.4) using
the method of subsolutions and developed a theory in analogy to the classical theory of
subharmonic functions, i.e. the subsolutions of the Laplace equation (I.3). The problem
of Schwarz in an extended form is to prescribe the Gaussian curvature of a metric on
a Riemann surface. This is sometimes called the Berger–Nirenberg problem. It is well
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understood in the compact case (see [29, 50]), but still unsolved in the general case (cf. [26]
for partial results).

Here, we focus on the easier problem of studying the partial differential equation (I.4)
on plane domains with prescribed singularities and boundary values. More precisely, we
consider the following problem. In the sequel we denote by C(Ω) the set of real valued
continuous functions and by C2(Ω) the set of real valued twice continuously differentiable
functions on Ω ⊆ C.

Problem I.9 (The planar Schwarz–Picard Problem)
Let G ⊂ C be a bounded domain, let E = {z1, . . . , zn} be a finite subset of G and let
α1, . . . , αn be positive real numbers. Further, let Φ : ∂G −→ R be a continuous function.
Find a function u ∈ C(G\E) ∩ C2(G\E) such that

∆u = 4e2u in G\E,
u = Φ on ∂G,

(I.5)

and lim
z−→zj

(u(z)− αj log |z − zj|) exists finitely for every j = 1, . . . , n.

For bounded domains G ⊂ C=̇R2 with sufficiently smooth boundary standard methods
in the theory of non–linear partial differential equations can be used to solve Problem I.9,
see for instance [19, Chapter 11]. Heins considers the case E = ∅ in [22, pp. 26–28] and
shows that (I.5) has a solution for every continuous boundary function Φ : ∂G −→ R if
the domain G is bounded by finitely many mutually disjoint Jordan curves.

We handle the general case in the following result.

Theorem I.10
Let G ⊂ C be a bounded and regular3 domain, let E = {z1, . . . , zn} be a finite subset of
G and let α1, . . . , αn be positive real numbers. Further, let Φ : ∂G −→ R be a continuous
function. Then there exists a unique solution u ∈ C(G\E) ∩ C2(G\E) of the boundary
value problem (I.5) such that lim

z−→zj
(u(z)− αj log |z − zj|) exists for every j = 1, . . . , n.

To prove Theorem I.10 we study in detail the Dirichlet problem for the Poisson equation
in a bounded and regular domain G ⊂ C, i.e. we are looking for a real valued function
u ∈ C(G) ∩ C2(G) satisfying

∆u = f in G,

u = Φ on ∂G,
(I.6)

where f : G −→ R is locally Hölder continuous and Φ : ∂G −→ R is continuous on the
boundary of G. We follow largely [10, 11] and [19, Chapter 4]. The treatment of (I.6)
”only” requires a good deal of classical potential theory, but nevertheless we have gone to
some trouble to present a clear and complete proof for the existence of a solution to the
boundary value problem (I.6). In [19, Chapter 4 and Chapter 6] the Dirichlet problem
(I.6) is discussed for bounded domains G ⊂ Rn, n ∈ N, n ≥ 2. It turns out that for this
more general situation the existence of a solution of (I.6) can be ensured only if either
the boundary function Φ obliges some ”smoothness” condition or the boundary of G is
sufficiently nice, e.g. G satisfies an exterior sphere condition.

3See Chapter III for the definition.
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The knowledge of the Dirichlet problem (I.6) can’t be applied directly to prove Theorem
I.10, since the right hand side of (I.5) depends on the solution u itself. In order to conclude
the existence of a solution of problem (I.5) from the existence of a solution of problem
(I.6) we fall back on a fixed point argument and apply Schauder’s fixed point theorem.

The point here is that we don’t use Schauder’s fixed point theorem in a Banach space
setting. This is in contrast to the standard approach in PDE (see [19, Chapter 11]),
which only works when the boundary of the domain has additional smoothness properties.
Replacing the Banach space by a suitable Fréchet space allows to drop these smoothness
conditions and to obtain the quite general Theorem I.10.

In fact, we shall prove the following more general result in Chapter IV.

Theorem I.11
Let G ⊂ C be a bounded and regular domain, let z1, z2, . . . , zn ∈ G be finitely many
distinct points and let α1, . . . , αn ∈ (0,∞). Let Φ : ∂G −→ R be a continuous function
and let κ : G −→ [0,∞) be a bounded and locally Hölder continuous function with
exponent α, 0 < α ≤ 1. Then there exists a unique solution u ∈ C(G\{z1, . . . , zn}) ∩
C2(G\{z1, . . . , zn}) of the boundary value problem

∆u = κ(z)e2u in G\{z1, . . . , zn},
u = Φ on ∂G,

(I.7)

such that lim
z−→zj

(u(z)− αj log |z − zj|) exists for every j = 1, . . . , n.

If we set λ(z) = eu(z), where u is the solution of the boundary value problem (I.7) in
Theorem I.11, we obtain (see Section IV.1.2):

Theorem I.12
Let G ⊂ C be a bounded and regular domain, let z1, z2, . . . , zn ∈ G be finitely many
distinct points and let α1, . . . , αn ∈ (0,∞). Let φ : ∂G −→ (0,∞) be a continuous function
and κ : G −→ [0,∞) a bounded and locally Hölder continuous function with exponent α,
0 < α ≤ 1. Then there exists a unique pseudo–metric λ : G −→ [0,∞) of curvature −κ(z)
in G\{z1, z2, . . . , zn} with zeros of orders αj at zj such that λ is continuous on G with
λ(z) = φ(z) for z ∈ ∂G.

The situation for pseudo–metrics of positive curvature is much more involved and as a
consequence also the situation of pseudo–metrics of variable curvature with alternating
sign. In fact, neither the existence nor the uniqueness of a pseudo–metric λ : G −→ [0,∞)
with constant positive curvature can be guaranteed. In general, existence can be ensured
only if the domain G is sufficiently small and nice, see [56, Chapter 7]. Further, in case
there exists such a pseudo–metric, then it is far from being the only one.

Let us illustrate this by a simple example. The notation Kr(z) will stand for the open
disk in C with radius r and center z.

Example I.13 ([45])
Let Kr(0) be the open disk with radius r about 0.
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(a) If r > 1/2 then there exists no metric of constant curvature +4 in Kr(0)with bound-
ary values

lim
|z|−→r

λ(z) = 1 .

For a proof see [45].

(b) Let r ≤ 1/2 and define c1 = (1 +
√

1− 4r2)/(2r2) and c2 = (1 −
√

1− 4r2)/(2r2).
Then the metrics

λ1(z) =
c1

1 + c2
1 |z|2

and λ2(z) =
c2

1 + c2
2 |z|2

defined for z ∈ Kr(0) are obviously different. However, both have constant curvature
+4 and the same boundary values, that is lim

|z|−→r
λ1/2(z) = 1.

Recently, a number of papers appeared dealing with metrics of non–negative curvature.
For example, existence and uniqueness of metrics with singularities and constant positive
curvature on the Riemann sphere are discussed in [15, 52], to mention only one problem.
However we won’t go into these questions any further.

I.3 Applications

I.3.1 On a free boundary value problem for analytic functions

The following conjecture goes back to Ruscheweyh and has its origin in a multiplier
conjecture for univalent functions related to the Bieberbach conjecture [16].

Conjecture I.14
Let F be an analytic function in the closed unit disk D such that

F (0) = 0 and |F ′(z)| = 1− |F (z)|2 for z ∈ ∂D. (I.8)

Does this imply F (z) = czN for some constants c ∈ C and N ∈ N ?

This conjecture is indeed true under some additional conditions on F (see [1]), but fails
to hold in general. The first who established the existence of a function F (z) satisfying
(I.8) which is not of the form czN was Kühnau [32]. Kühnau’s method is constructive
and shows that to a given point z0 ∈ D\{0} sufficiently close to the origin there exists a
function F analytic in D such that F (0) = 0 and F ′(z0) = 0. Later Kühnau’s idea was
used by Fournier and Ruscheweyh [17] to prove the following more general result.

Theorem I.15
To every finite Blaschke product B(z) there exists a uniquely determined function F
analytic in the closed unit disk with F (0) = 0 and |F ′| = 1− |F |2 on the unit circle such
that F ′ = B h, where h is an analytic non–vanishing function in the closed unit disk with
h(0) > 0.

In order to prove Theorem I.15 Fournier and Ruscheweyh had to replace the constructive
step in Kühnau’s method by a non–constructive fixed point argument. Note, Theorem
I.15 gives an affirmative answer to the following problem.
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Problem I.16
Let z1, . . . , zn be finitely many distinct points in D and α1, . . . , αn positive integers. Does
there exist a function F analytic in the closed unit disk with critical points of orders αj
at zj and no others such that |F ′| = 1− |F |2 on ∂D ?

In Chapter VI we give a proof of Theorem I.15 (i.e. another solution to Problem I.16)
based on Theorem I.10 and Theorem I.1. Actually we derive the following more general
result:

Theorem I.17
Let G ⊂ C be a bounded simply connected domain, z1, . . . , zn finitely many distinct
points in G and α1, . . . , αn positive integers. Also, let φ : ∂G −→ R be a continuous
positive function. Then there exists a holomorphic function f : G −→ D with critical
points of orders αj at zj and no others such that

lim
z−→ξ

|f ′(z)|
1− |f(z)|2 = φ(ξ), ξ ∈ ∂G. (I.9)

If g : G −→ D is another holomorphic function with these properties, then g = T ◦ f for
some conformal disk automorphism T : D −→ D.

Some remarks are in order.

Remarks I.18
(a) If G is a uniform domain, then the functions f in Theorem I.17 extend continuously

to ∂G and |f | < 1 on G, see [45, Lemma 3.2]. This implies f ′ can have only finitely
many zeros in G if the domain G is not ”pathological” and the boundary function
φ : ∂G −→ R is positive everywhere.

(b) If ∂G is an analytic Jordan curve and φ = |h| for some function h holomorphic in
a neighborhood of ∂G, then the functions f in Theorem I.17 can be continued ana-
lytically across ∂G. This is a consequence of the extended Schwarz–Carathéodory
reflection principle, see [18, 45]. Thus Theorem I.15 is simply a consequence of the
special case G = D and φ ≡ 1 of Theorem I.17.

(c) We note Theorem I.17 can also be deduced from the result of Kühnau and Fournier
& Ruscheweyh by conformal mapping provided that the boundary of the domain G
is sufficiently smooth (for instance if ∂G is Dini–smooth). This method, however,
does not work for general bounded simply connected domains, and Kühnau asked
in [32] if Theorem I.15 can be generalized to such domains. Theorem I.17 gives an
affirmative answer to this question – even in an extended form.

(d) In general, if G is not simply connected, Theorem I.17 does not hold. For example,
let G be the annulus {z ∈ C : 1/4 < |z| < 1/2} and let φ : ∂G −→ R be the
continuous function

φ(ξ) =





4

3√
2

if
|ξ| = 1

4
,

|ξ| = 1

2
.

Now, assume there exists a locally univalent holomorphic function f : G −→ D such
that

lim
z−→ξ

|f ′(z)|
1− |f(z)|2 = φ(ξ) for ξ ∈ ∂G.
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Note,

λ̃(z) =
1

2
√
|z| (1− |z|)

is a conformal metric of constant curvature −4 in G and λ̃(ξ) = φ(ξ) for ξ ∈ ∂G.
Hence, by the uniqueness statement of Theorem I.10, we see

λ̃(z) =
|f ′(z)|

1− |f(z)|2 , z ∈ G.

On the other hand, in the simply connected domain D = G\(−1/4,−1/2), we have

λ̃(z) =
|g′(z)|

1− |g(z)|2

for the holomorphic function g : D −→ D, g(z) =
√
z. Applying Theorem I.1, we

deduce g = T ◦ f in D for some automorphism T of D. Thus g has an analytic
extension to G given by T ◦ f which is absurd.

If we relax the boundary condition (I.9) to non–tangential limits, we can allow infinitely
many critical points for f . This is the content of the next theorem, which we are going
to prove in Chapter VI.

Theorem I.19
Let (zj) be a sequence of points in D satisfying the Blaschke condition

∞∑

j=1

(1− |zj|) <∞,

and let φ : ∂D −→ [0,∞) be a function such that logφ ∈ L∞(∂D). Then there exists a
holomorphic function f : D −→ D with critical points zj (counted with multiplicities) such
that

sup
z∈D

|f ′(z)|
1− |f(z)|2 <∞,

and

n.t. lim
z−→ξ

|f ′(z)|
1− |f(z)|2 = φ(ξ) for a.e. ξ ∈ ∂D.

If g : D −→ D is another holomorphic function with these properties, then g = T ◦ f for
some conformal disk automorphism T : D −→ D.

A partial converse to Theorem I.19 is our next

Proposition I.20
Let f : D −→ D be a non–constant holomorphic function such that

sup
z∈D

|f ′(z)|
1− |f(z)|2 <∞.

Then the non–tangential limit

n.t. lim
z−→ξ

|f ′(z)|
1− |f(z)|2 =: φ(ξ)
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exists for a.e. ξ ∈ ∂D and logφ ∈ L1(∂D). Moreover, if (zj) is the sequence of critical
points of f (counted with multiplicities), then

∞∑

j=1

(1− |zj|) <∞.

I.3.2 On a theorem of Wittich

A quite different aspect of Theorem I.1 than the solution of the non–linear boundary value
Problem I.16 is its connection to the following theorem of Wittich [55].

Theorem I.21 (Wittich)
There exists no C2–function w : C −→ R which is a solution of the PDE

∆w = ew

in all of C.

Wittich’s theorem gives rise to the following

Problem I.22
For which (smooth) functions k : C −→ R does exist a C2–solution of the PDE

∆w = k(z)ew (I.10)

in all of C ?

Note that Problem I.22 is equivalent to the question which (smooth) functions k : C −→ R
can arise as Gaussian curvature of a conformal metric on C. Problem I.22 has been at-
tacked by a number of people. For instance, Sattinger [47] (see also Oleinik [40]) used
Wittich’s method to prove the following generalization of Wittich’s Theorem I.21.

Theorem I.23 (Sattinger & Oleinik)
Let k : C −→ R be a non–negative smooth function such that

k(z) ≥ c

|z|2 for |z| ≥ R ,

where R is sufficiently large and c is some positive constant. Then there exists no C2–
solution of (I.10) in all of C.

A converse of Theorem I.23 was obtained by Ni [38], who proved

Theorem I.24 (Ni)
Let k : C −→ R be a non–negative Hölder continuous function and let

k(z) ≤ c

|z|l for |z| ≥ R ,

where R is sufficiently large, and l > 2 and c > 0 are constants. Then there exist infinitely
many C2–solutions of (I.10) in C.
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Theorem I.23 and Theorem I.24 do not give a complete solution to Problem I.22. In the
following extension of Wittich’s theorem we deal with a situation which is not covered by
Theorem I.23.

Theorem I.25
Let h : C −→ C be an entire function, h 6≡ 0. Then there exists no C2–function w : C −→ R
which is a solution of the PDE

∆w = |h(z)|2ew

in all of C.

Remark I.26
(a) Theorem I.25 shows that the condition on k(z) to be positive for large |z| in Theorem

I.23 is not necessary to ensure the non–existence of solutions of (I.10). If we set
k(z) = |h(z)|2 for some appropriate entire function h then k can very well have
zeros in a neighborhood of ∞.

(b) If k(z) = |h(z)|2 for some entire function h(z), then the condition k(z) ≤ c/|z|l of
Theorem I.24 implies h ≡ 0 and the statement of Theorem I.24 reduces to the fact
that there exist infinitely many harmonic functions in C.

(c) As observed by Nitsche [39] and Warnecke [54], Liouville’s theorem (Corollary I.3)
combined with another well–known result of Liouville that a bounded entire function
is constant gives immediately the statement of Wittich’s Theorem I.21. The same
argument, but replacing Liouville’s theorem by the more general Theorem I.8, leads
to a quick proof of Theorem I.25.





– Chapter II –

Ordinary Differential Equations in the
Complex Plane

This chapter is dedicated to a discussion of the following special types of ordinary differ-
ential equations in the complex plane:

• second order homogeneous linear differential equations of the form

ψ′′ + A(z)ψ = 0 ,

• the associated Schwarzian differential equations

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

= 2A(z) ,

• and the corresponding Riccati differential equations

w′ = A(z) + w2 .

We will have a look at each of these differential equations separately, but we will put our
emphasis on the various connections between them. Before we bring up the details, we
give – in Section II.1 – a short summary of some basic results about general ordinary
differential equations in the complex plane: the existence and uniqueness theorem and
the permanence principle. In Section II.2 we then turn to second order linear differential
equations and Schwarzian differential equations. After that we move on to Riccati differ-
ential equations in Section II.3. Finally, we close this chapter with a survey on some of
the relations between the above mentioned differential equations in Section II.4.

For further details on ordinary differential equations in the complex plane see, for instance,
[4, 7, 20, 24, 25, 27, 28, 31, 33].

II.1 The existence and uniqueness theorem and the

permanence principle

The theorems of this section shall provide a basis for the considerations in Section II.2
and Section II.3. As most of the statements are well–known we omit all the proofs. Let’s
begin with the existence and uniqueness theorem for a single complex ordinary differential
equation.
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Theorem II.1 (cf. [24])
Let G ⊆ C2 be a domain and let Ω := {(z, w) ∈ G : |z − z0| ≤ a, |w − w0| ≤ b} ⊆ G.
Further, let f : G −→ C be a holomorphic function and M := max(z,w)∈Ω |f(z, w)|. Then
there exists a unique holomorphic solution of the initial value problem

w′ = f(z, w) , w(z0) = w0 , (II.1)

in the disk Kα(z0) = {z ∈ C : |z − z0| < α}, where α = min{a, b/M}.
Note, Theorem II.1 ensures only the local existence of a solution to the initial value
problem (II.1). On the other hand, the following permanence principle guarantees that
the analytic continuation of a solution of the initial value problem (II.1) remains a solution
of this initial value problem.

Theorem II.2 (cf. [24])
Let G and Gj, j = 1, . . . , m, be domains in C, let z0 be a point in G such that the disk
K(z0) := {z ∈ C : |z − z0| < r0} belongs to G, and let F : G × G1 × · · · × Gm −→ C
and fj : K(z0) −→ Gj, j = 1, . . . , m, be holomorphic functions. Finally, let γ be a
path in G with initial point z0 which is covered by finitely many disks K(zν) ⊆ G,
ν = 0, 1, . . . , k, such that each function fj has a holomorphic continuation fj(z, zν) to
K(zν) with fj(K(zν), zν) ⊆ Gj.
If

F (z, f1(z), . . . , fm(z)) ≡ 0 for z ∈ K(z0) ,

then
F (z, f1(z, zν), f2(z, zν), . . . , fm(z, zν)) ≡ 0 for z ∈ K(zν),

for every ν = 0, . . . , k.

As we will also need a version of the existence and uniqueness Theorem II.1 for first–order
linear systems and linear differential equations of order n in our later work, we state the
corresponding generalizations of Theorem II.1 next.

Theorem II.3 (cf. [24])
Let the functions A(z) ∈ Cn×n and a(z) ∈ Cn be holomorphic in a disk Kr(z0) ⊂ C.
Then for every w0 ∈ Cn the initial value problem

w′ = A(z)w + a(z) , w(z0) = w0, (II.2)

has exactly one holomorphic solution in Kr(z0).

For the general solution set of a homogeneous system, we have

Theorem II.4 (cf. [24])
Let the function A(z) ∈ Cn×n be holomorphic in the disk K ⊂ C. Then the solutions of
the differential equation

w′ = A(z)w (II.3)

are holomorphic in K and form an n–dimensional complex vector space.

An important consequence of the permanence principle is the fact that the analytic con-
tinuations of k linearly independent solutions of a system of first order differential equa-
tions are again linearly independent solutions of this system of differential equations. An
immediate application of this and Theorem II.3 is the following
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Theorem II.5 (cf. [24])
Let G ⊆ C be a domain and let the functions A(z) ∈ Cn×n and a(z) ∈ Cn be holomorphic
in G. Then every local solution1 of the differential equation

w′ = A(z)w + a(z) (II.4)

has an analytic continuation along any path in G and the function obtained by this
analytic continuation is a solution of the differential equation (II.4). In particular, if G
is a simply connected domain, then every local solution of the differential equation (II.4)
can be extended to a holomorphic solution of (II.4) in G.

II.2 Linear ordinary differential equation and the

Schwarzian differential equation

After these preparations we are now going to discuss in some depth the various connections
between the linear homogeneous differential equation

ψ′′ + A(z)ψ = 0

and the associated Schwarzian differential equation

Sf =

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

= 2A(z) .

The following classical result deals with the case that A(z) is a holomorphic function.

Theorem II.6
If A(z) is a holomorphic function in a simply connected domain G ⊆ C, then the quotient
f = g1/g2 of any two linearly independent holomorphic solutions g1, g2 of the differential
equation

ψ′′ + A(z)ψ = 0 (II.5)

in G is a locally injective meromorphic function and satisfies the Schwarzian differential
equation

Sf (z) :=

(
f ′′(z)

f ′(z)

)′
− 1

2

(
f ′′(z)

f ′(z)

)2

= 2A(z) (II.6)

in G. Conversely, if f is a locally injective meromorphic function in a simply connected
domain G ⊆ C and A(z) is defined by (II.6), then A(z) is holomorphic in G and the
differential equation (II.5) has two linearly independent holomorphic solutions g1 and g2

in G, such that f = g1/g2.

One of the main tools in the proof of Theorem I.1 in Chapter V is a generalized version of
Theorem II.6, where A(z) is a meromorphic function. Under certain additional conditions
on the poles of A(z) it can be shown that Theorem II.6 is still valid in the case of a
meromorphic function A(z). In passing from the holomorphic to the meromorphic case,
we have to encounter some questions, which arise quite naturally. For instance, what
do the solutions of the linear equation (II.5) look like, if A is meromorphic? Do they
have poles or other singularities? Under which hypotheses do there exist meromorphic
solutions of the corresponding Schwarzian differential equation (II.6)?

Before turning to these questions, we give – for completeness – a proof of Theorem II.6.

1i.e. every holomorphic solution in a disk K ⊆ G
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Proof.
(a) We first suppose A(z) is a holomorphic function in the simply connected domain G.
Let g1, g2 be two linearly independent holomorphic solutions of ψ′′+A(z)ψ = 0 in G and
let f = g1/g2. We will show f solves Sf (z) = 2A(z), that is equation (II.6).

For this purpose we differentiate f and obtain

f ′ =
g′1g2 − g′2g1

g2
2

= −W (g1, g2)

g2
2

,

where
W (g1, g2) := g1g

′
2 − g′1g2

is the Wronski determinant of the fundamental system {g1, g2} of the linear equation
(II.5). Since g1 and g2 are solutions of ψ′′ + A(z)ψ = 0 we get

d

dz
W (g1, g2) = g1g

′′
2 − g′′1 g2 = 0 .

Hence W (g1, g2) is a constant function and f ′ reduces to

f ′ = − c

g2
2

for some c ∈ C\{0} .

This leads for the Pre–Schwarzian f ′′/f ′ of f to

f ′′

f ′
= −2

g′2
g2
.

Taking the derivative of the last expression yields
(
f ′′

f ′

)′
= −2

g′′2
g2

+ 2

(
g′2
g2

)2

= 2A(z) +
1

2

(
f ′′

f ′

)2

,

and this is equivalent to Sf(z) = 2A(z).

Our next goal is to check that f is a locally injective function in G.

Let z0 ∈ G be an arbitrary point in G. If f is holomorphic at z0, then f ′ has at z0 the
Taylor series expansion

f ′(z) = k(z − z0)α + · · · , k 6= 0, α ≥ 0 .

Otherwise, f has a pole at z0 and a Laurent series expansion of the form

f(z) = k(z − z0)−α + · · · , k 6= 0, α ≥ 1 .

Inserting these expansions into Sf gives

Sf (z) =− α

(z − z0)2
− 1

2

α2

(z − z0)2
+ · · ·

in the holomorphic situation, and

Sf (z) =
α + 1

(z − z0)2
− 1

2

(α + 1)2

(z − z0)2
+ · · · ,

when f has a pole at z0.

Since Sf (z) = 2A(z) is holomorphic, we deduce the following condition for α:
In the first case
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2α+ α2 = 0, which is equivalent to either α = −2 or α = 0,

and in the second case

2(α+ 1) = (α+ 1)2, which is equivalent to either α = 1 or α = −1.

Our assumptions on α imply α = 0 and α = 1, respectively, and this means f is locally
injective in z0 in both cases. Since z0 was an arbitrary point in G, we conclude f is a
locally injective function in all of G.

(b) Now we turn to the converse statement. Let f be a locally injective meromorphic
function in G and A(z) be defined by (II.6). We first prove A(z) is a holomorphic function
in G.

Pick an arbitrary point z0 ∈ G. If f is holomorphic in a neighborhood of z0 ∈ G, then
A(z) is holomorphic in z0 because f ′(z0) 6= 0. If f has a simple pole at z0, then f can be
written as f(z) = k(z− z0)−1 + φ(z), k 6= 0, where φ(z) is holomorphic in z0. This shows

f ′′(z)

f ′(z)
=
−2

z − z0

+ c1(z − z0) +O(|z − z0|2)

for the Pre–Schwarzian and yields

Sf(z) = 3c1 +O(|z − z0|)

for the Schwarzian derivative. So in any case, A(z) is holomorphic in z0 and consequently
in all of G.

Next, we have to find two linearly independent solutions g1 and g2 of the linear ODE
(II.5) such that f = g1/g2.

Choose a point z0 ∈ G with f ′(z0) 6= ∞. As f ′ has no zeros, there exists a holomorphic
square root ϕ of 1/f ′ in a neighborhood U of z0. We will show that ϕ is in U a solution
of the differential equation ψ′′ + A(z)ψ = 0.

From the representation

ϕ2 =
1

f ′
in U (II.7)

we deduce the following equations:

2ϕϕ′ = − f ′′

(f ′)2
and

ϕ′

ϕ
= − f ′′

2f ′
as well as

ϕ′′

ϕ
= −ϕ

′

ϕ

f ′′

2f ′
− f ′′′

2f ′
+

(f ′′)2

2(f ′)2
.

Replacing ϕ′/ϕ by −f ′′/(2f ′) in the last identity yields

ϕ′′

ϕ
= − f

′′′

2f ′
+

3

4

(f ′′)2

(f ′)2
= −A(z) .

Thus ϕ is a solution to ψ′′ + A(z)ψ = 0 in U .

Since G is a simply connected domain, every solution of the differential equation (II.5)
has a holomorphic extension to G due to Theorems II.4 and II.5. Consequently, ϕ has a
holomorphic continuation to G, which we call g2.
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Now, we define the function g1 by g1 := f g2 and compute

g′′1 = f ′′g2 + 2f ′g′2 + f g′′2 = f ′′g2 − f ′′g2 + f g′′2 = −A(z)g2f = −A(z)g1 ,

where we used the identity 2g′2/g2 = −f ′′/f ′. Hence g1 solves the differential equation
ψ′′ + A(z)ψ = 0. Finally, we note that the functions g1 and g2 are linearly independent,
since f is locally injective. �

Let {g1, g2} be a fundamental system of the linear differential equation (II.5). Then
the quotient of any two linearly independent solutions of ψ ′′ + A(z)ψ = 0 has the form
f = (α1g1 + α2g2)/(β1g1 + β2g2), where α1, α2, β1, β2 ∈ C and α1β2− α2β1 6= 0. Owing to
Theorem II.6 every such f satisfies the Schwarzian differential equation (II.6). The next
remark is an immediate consequence of this observation.

Remark II.7
Let f and h be two locally injective meromorphic functions in a simply connected domain
G ⊆ C. Then Sf = Sh if and only if f = σ ◦ h, where σ is a Möbius transformation.

Proof.
First we suppose

Sf = Sh =: 2A(z) .

Then by Theorem II.6 each of the functions f and h is the quotient of a pair, say g1, g2 and
v1, v2, respectively, of linearly independent holomorphic solutions of the linear differential
equation ψ′′ + A(z)ψ = 0 in G, i.e.

f(z) =
g1(z)

g2(z)
and h(z) =

v1(z)

v2(z)
.

Furthermore, we can find constants α1, α2, β1, β2 such that

f(z) =
g1(z)

g2(z)
=
α1v1(z) + α2v2(z)

β1v1(z) + β2v2(z)
=
α1h(z) + α2

β1h(z) + β2

= σ ◦ h(z) ,

where σ is the Möbius transformation σ(ξ) = (α1ξ+α2)/(β1ξ+β2). Note, α1β2−β1α2 6= 0
as g1 and g2 are linearly independent.

Conversely, assume f = σ ◦ h for some Möbius transformation σ. Then the following
computation shows Sσ◦h = Sh:
Taking the first and second derivative of the function

f(z) :=
α1h(z) + α2

β1h(z) + β2

, where α1β2 − β1α2 6= 0 ,

yields

f ′(z) =
(α1β2 − α2β1)h′(z)

(β1h(z) + β2)2

and

f ′′(z) =
(α1β2 − α2β1)h′′(z)

(β1h(z) + β2)2
− 2β1(α1β2 − α2β1)h′(z)2

(β1h(z) + β2)3
.
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Thus the Pre–Schwarzian of f takes the form

f ′′(z)

f ′(z)
=
h′′(z)

h′(z)
− 2

β1h
′(z)

β1h(z) + β2
,

and it follows that

Sf =

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

=

(
h′′

h′

)′
− 1

2

(
h′′

h′

)2

= Sh .

�

In our next theorem we focus on the solutions of the differential equation ψ ′′+A(z)ψ = 0,
when A(z) is a meromorphic function. This gives rise to the following

Definition II.8
Let A(z) be a meromorphic function in a domain G ⊆ C. We call a meromorphic function
g in G a meromorphic solution of ψ′′ +A(z)ψ = 0, if g′′(z) +A(z)g(z) = 0 for z ∈ G. By
a local solution of ψ′′ + A(z)ψ = 0 we mean a meromorphic solution of this differential
equation in a subdomain G′ ⊆ G.

Theorem II.9
Let h be a holomorphic function in the disk KR(z0) = {z ∈ C : |z− z0| < R} and denote
by ρ1 and ρ2 the roots of the characteristic equation

ρ(ρ− 1) + h(z0) = 0 . (II.8)

Then the differential equation

ψ′′ +
h(z)

(z − z0)2
ψ = 0 (II.9)

admits in the slit disk Dr(z0) := {z ∈ C : |z − z0| < r}\{z0 + t : 0 ≤ t < r} for some
r ∈ (0, R] a fundamental system g1, g2 of the following form:

(1) If ρ1 − ρ2 6∈ Z, then

g1(z) = (z − z0)ρ1

∞∑

k=0

ak(z − z0)k, a0 6= 0,

g2(z) = (z − z0)ρ2

∞∑

k=0

bk(z − z0)k, b0 6= 0.

(II.10)

(2) If ρ1 − ρ2 ∈ Z and ρ1 − ρ2 ≥ 0, then

g1(z) = (z − z0)ρ1

∞∑

k=0

ak(z − z0)k, a0 6= 0,

g2(z) = χg1(z) log (z − z0) + (z − z0)ρ2

∞∑

k=0

bk(z − z0)k, b0 6= 0 ,

(II.11)

where χ = 0 or χ = 1. If ρ1 = ρ2, then χ = 1.
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Proof.
(a) First we will establish that functions of the type

g(z) = (z − z0)ρ
∞∑

k=0

ck (z − z0)k, c0 6= 0 , (II.12)

where ρ is suitably chosen, are formal solutions of the differential equation (II.9). As the
function h(z) is holomorphic in the disk KR(z0), it can be expanded in a power series
about z0:

h(z) =

∞∑

k=0

βk(z − z0)k . (II.13)

We next plug the formulas (II.12) for g and (II.13) for h in the equation

g′′(z)(z − z0)2 + h(z)g(z) = 0

and compare equal powers of (z − z0). This yields

(ρ+ n)(ρ+ n− 1)cn +
n∑

k=0

βkcn−k = 0 for n = 0, 1, . . . . (II.14)

By using the definitions

ϕ0(ρ) := ρ(ρ− 1) + β0

ϕk(ρ) := βk for k ∈ N ,
(II.15)

we can rewrite the equations (II.14) in the following system of equations:

c0ϕ0(ρ) = 0

c1ϕ0(ρ+ 1) + c0ϕ1(ρ) = 0

c2ϕ0(ρ+ 2) + c1ϕ1(ρ + 1) + c0ϕ2(ρ) = 0

...

cnϕ0(ρ + n) + cn−1ϕ1(ρ+ n− 1) +· · ·+ c1ϕn−1(ρ + 1) + c0ϕn(ρ) = 0

...

(II.16)

Because of the assumption c0 6= 0, the number ρ must satisfy the condition

ϕ0(ρ) = ρ(ρ− 1) + β0 = 0 .

This, however, is exactly the characteristic equation (II.8) and their roots are ρ = ρ1 and
ρ = ρ2.

In particular, if ρ1 − ρ2 6∈ Z, then ϕ0(ρ + n) 6= 0 for both ρ = ρ1 and ρ = ρ2, and every
n ∈ N. Hence we can find to ρ = ρ1 and to ρ = ρ2 — after an arbitrary choice of c0 6= 0 —
the coefficients ck, k ∈ N, for a formal solution to (II.9) of the form (II.12) by solving the
equations (II.16) recursively. Thus, we get to ρ = ρ1 as well as to ρ = ρ2 a formal solution
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g1(z) and g2(z) of (II.9), respectively. In case we can guarantee the convergence of these
power series, the functions g1 and g2 will be linearly independent.

In contrast, if ρ1 = ρ2 we obtain, for each choice of c0 6= 0, only one formal solution g1 of
(II.9) of the form (II.12) by solving the equations of (II.16) successively.

Finally, if ρ1−ρ2 ∈ Z\{0}, then we may assume κ := ρ1−ρ2 ≥ 1 without loss of generality.
Since ϕ0(ρ1 +n) 6= 0 for every n ∈ N we can determine to ρ = ρ1 the numbers ck, k ∈ N as
above, provided c0 6= 0. This gives one formal power series and consequently one formal
solution of type (II.12) to (II.9). In general we cannot find to the equation ρ = ρ2 another
formal solution of the form (II.12) to (II.9) since ϕ0(ρ2 + κ) = ϕ0(ρ1) = 0.

So, if there exists a second formal solution, the coefficients, c0 6= 0, c1, c2, . . ., cκ−1, we
already computed from (II.16), must fulfill the equation

cκ−1ϕ1(ρ2 + κ− 1) + · · ·+ c1ϕκ−1(ρ2 + 1) + c0ϕκ(ρ2) = 0 , (II.17)

see (II.16). If they do so, we choose cκ arbitrarily and continue to solve the equations of
(II.16) for n = κ+1, κ+2, . . .. Thus, we obtain the rest of the ck

′s, i.e. cκ+1, cκ+2, . . . and
therefore a second formal solution g2 of (II.9) with a representation of the form (II.12).
Note, in this situation we must have χ = 0 in (II.11). Further, g1 and g2 are obviously
linearly independent, if we can prove the convergence of the constructed power series. So
we can find, depending on the validity of equation (II.17), one or two formal power series
of type (II.12), which are formal solutions of (II.9).

(b) Now we will focus our attention on proving the convergence of the formal power series
we constructed in part (a) – at least in a neighborhood of z0. As we have seen above the
formal solutions are of type (II.12), i.e.

g(z) = (z − z0)ρ
∞∑

k=0

ck(z − z0)k .

If we can find a number r ∈ (0, R) and a constant M > 0, such that

|ck|rk ≤M (II.18)

for every k = 0, 1, 2, . . ., then

lim sup
k−→∞

|ck|
1
k ≤ 1

r

and hence the ”power series” in (II.12) converges in Kr(z0).

We are now going to prove an estimate of the form (II.18). Since ρ solves the equation
(II.8), there exists an integer p ≥ 0 with the property that ϕ0(ρ+p) = 0 and ϕ0(ρ+n) 6= 0
for every n > p. Then, because of ϕ0(ρ) = 0, we get

ϕ0(ρ+ n) = ϕ0(ρ+ n)− ϕ0(ρ) = (ρ+ n)(ρ + n− 1) + β0 − ρ(ρ− 1)− β0

= n2 + n(2ρ− 1) = n2

(
1 +

2ρ− 1

n

)

for every n > p. This, however, means that there is some constant c > 0 such that

|ϕ0(ρ + n)| ≥ cn2 (II.19)
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for every n > p. As the function

h(z) =
∞∑

k=0

βk(z − z0)k

is holomorphic in a neighborhood of z0, the sum

∞∑

k=1

|βk|(z − z0)k

is a continuous function in this neighborhood and vanishes at z = z0. Thus there exists
an r ∈ (0, R) such that

∞∑

k=1

|βk|rk ≤ c(p+ 1)2 .

Now we define
M := max{|c0|, |c1|r, . . . , |cp|rp} > 0

and assume equation (II.18) holds for k = 0, 1, . . . , n− 1, where n > p.

Then the equations (II.15) and (II.16) lead to

|ϕ0(ρ+ n)||cn| ≤
n∑

k=1

|cn−k||ϕk(ρ+ n− k)| =
n∑

k=1

|cn−k||βk| ,

and thus to

|ϕ0(ρ + n)||cn|rn ≤
n∑

k=1

|cn−k|rn−k |βk|rk ≤ M
n∑

k=1

|βk|rk ≤Mc(p+ 1)2 .

This yields, in view of (II.19),

|cn|rn ≤
Mc(p+ 1)2

cn2
≤M .

Therefore the power series part of each formal solution (II.12) is indeed a holomorphic
function in the disk Kr(z0). In summary, we proved case (1) of the theorem, i.e. if
ρ1− ρ2 6∈ Z, and part (2) for ρ1− ρ2 ∈ Z\{0}, if equation (II.17) is fulfilled, where in this
situation χ = 0 has to be chosen in equation (II.11).

It remains to consider the case κ ≥ 0, if (II.17) is not valid. As we already observed there
is only one formal solution g1(z) of type (II.12) in this situation. We write g1 as

g1(z) = (z − z0)ρ1φ(z) ,

where φ(z) is a holomorphic function in Kr(z0) and φ(z0) 6= 0. Thus

g−2
1 (z) = (z − z0)−2ρ1ψ(z) ,

where ψ(z) = φ(z)−2 is a holomorphic function in z = z0. Note,

−2ρ1 = ρ2 − 1− ρ1 = −κ− 1 ,
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since ρ1 + ρ2 = 1. This implies for g−2
1 a Laurent series expansion of the form

g−2
1 (z) = (z − z0)−κ−1

∞∑

k=0

γk(z − z0)k =
γ0

(z − z0)κ+1
+ · · ·+ γκ

z − z0

+H(z)

with a function H(z) holomorphic in a neighborhood of z0. Obviously, g−2
1 has a mero-

morphic anti–derivative, say G1, in a slit disk D about z0. Without loss of generality we
may assume D = Dr(z0) = Kr(z0)\{z0 + t : 0 ≤ t < r}. The function G1 can then be
expressed as

G1(z) = (z − z0)−κF (z) + γκ log (z − z0)

with a holomorphic function F in Kr(z0). As we want to find a fundamental system of
(II.9) we define g2 by

g2(z) := g1(z)G1(z) .

To check that g2 solves (II.9) in Dr(z0) we compute

g′2(z) = g′1(z)G1(z) +
1

g1(z)
and g′′2(z) = g′′1(z)G1(z) .

Hence, we have
g′′2(z)

g2(z)
=
g′′1(z)

g1(z)
= − h(z)

(z − z0)2
.

This shows g2 is really a solution of (II.9) in the slit disk Dr(z0). We remark γκ 6= 0 since
otherwise g2 would be a solution whose coefficients satisfy equation (II.17). Now we may
assume γκ = 1 by choosing cg1 instead of g1 with a suitable constant c, and g2 takes the
form

g2(z) = χg1(z) log (z − z0) + (z − z0)ρ1−κG2(z) = χg1(z) log (z − z0) + (z − z0)ρ2G2(z)

with χ = 1, where G2 is holomorphic in Kr(z0) such that G2(z0) 6= 0.

Lastly, because of the ”log–term”, the two functions g1 and g2 are obviously linearly
independent. This concludes the proof of Theorem II.9. �

Remark II.10
The power series which occur in the fundamental systems (II.10) or (II.11) are easily seen
to converge in the whole disk KR(z0).

Theorem II.9 reveals that in contrast to Theorem II.6 the quotient of two linearly indepen-
dent solutions of the differential equation ψ′′+A(z)ψ = 0 is not necessarily meromorphic
if A(z) is a meromorphic function. Since we wish to generalize Theorem II.6 to a mero-
morphic A we are interested in a characterization of equations of the type

ψ′′ + A(z)ψ = 0

for which the quotient of any two linearly independent local solutions has a meromorphic
extension. Such a characterization is provided by the following theorem.
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Theorem II.11
Let G ⊆ C be a simply connected domain and let A(z) be a meromorphic function in
G. Then the quotient f of any two linearly independent local solutions g1, g2 of the
differential equation ψ′′ +A(z)ψ = 0 has a meromorphic extension to G, if and only if at
every pole z0 ∈ G of A the following two conditions are satisfied:

(1) A has at z0 a Laurent series expansion of the form

A(z) =
1− n2

4(z − z0)2
+ · · · , n ∈ Z , |n| ≥ 2 .

(2) Let Kr(z0)(z0) = {z ∈ C : |z − z0| < r(z0)} ⊆ G be a disk such that A(z) is
holomorphic in Kr(z0)(z0)\{z0} and consider the differential equation ψ′′+A(z)ψ = 0
in Kr(z0)(z0). Then χ = 0 in the local solution base given in the slit disk Dr(z0)(z0) =
Kr(z0)(z0)\{z0 + t : 0 ≤ t < r(z0)}, see Theorem II.9, equation (II.11) and Remark
II.10.

Before turning to the proof we like to illustrate Theorem II.11 with the following two
examples.

Example II.12
(a) Consider in C the differential equation

ψ′′ +
1

4z2
ψ = 0 . (II.20)

Then the functions

g1(z) = z1/2

g2(z) = z1/2(log z + 1)

defined for C\[0,∞) form a fundamental system of (II.20).
The quotient

f(z) =
ag1(z) + bg2(z)

cg1(z) + dg2(z)
, where a, b, c, d ∈ C and ad− bc 6= 0 ,

of any two linearly independent solutions of (II.20) is a meromorphic function in
C\[0,∞) but f has no meromorphic extension to C. Further, every such f solves
the Schwarzian differential equation

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

=
1

2z2

in C\[0,∞). Thus not every solution of the Schwarzian differential equation is
meromorphic in C.

(b) Now we have a look at the differential equation

ψ′′ − 3

4z2
ψ = 0 (II.21)
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in C. A corresponding solution base is given in C\[0,∞) by

g1(z) = z3/2

g2(z) = z−1/2 .

The quotient of any two linearly independent solutions of (II.21)

f(z) =
ag1(z) + bg2(z)

cg1(z) + dg2(z)
, where a, b, c, d ∈ C and ad− bc 6= 0 ,

has a meromorphic extension to C and any such f solves the Schwarzian differential
equation Sf = −3/(2z2) in C.

Thus, if A(z) is a meromorphic function in a simply connected domain G, there can exist
meromorphic functions f in a subdomain G′ of G which have no meromorphic extension to
G but are solutions to Sf (z) = 2A(z) in G′. It is therefore necessary to distinguish between
local meromorphic solutions and solutions meromorphic in all of G of Sf (z) = 2A(z).

Definition II.13
Let A(z) be a meromorphic function in a domain G ⊆ C. A meromorphic function f is
called a solution of Sf = 2A(z) in G, if

Sf (z) =

(
f ′′(z)

f ′(z)

)′
− 1

2

(
f ′′(z)

f ′(z)

)2

= 2A(z)

holds for every z ∈ G. By a local solution of Sf = 2A(z) we mean a meromorphic solution
of this differential equation in a subdomain G′ ⊆ G

The next lemma is the first step of the proof of Theorem II.11.

Lemma II.14
Let G ⊆ C be a simply connected domain and let A(z) be a meromorphic function in G.
If the quotient f of two linearly independent local solutions of

ψ′′ + A(z)ψ = 0

has a meromorphic extension to G, then this extension solves the Schwarzian differential
equation

Sf(z) =

(
f ′′(z)

f ′(z)

)′
− 1

2

(
f ′′(z)

f ′(z)

)2

= 2A(z)

in G.

Proof.
Choose a disk K ⊆ G, where A(z) is holomorphic, and let g1, g2 be two linearly indepen-
dent solutions of ψ′′+A(z)ψ = 0 in K. Then by assumption, the function f := g1/g2 has
a meromorphic extension to G. According to Theorem II.6, f solves Sf = 2A(z) first in
K and then also in G because of the identity principle. �

We are now prepared to prove Theorem II.11.
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Proof of Theorem II.11.
(a) We start proving the only if part. By Theorem II.6 the quotient (or the meromorphic
extension) f of any two linearly independent solutions of the equation (II.5) cannot be
locally injective at a pole z0 ∈ G of A(z). Therefore f(z) is of the form

f(z) = c0 +
∞∑

k=n
k 6=0

ck(z − z0)k ,

where n ∈ Z, n 6= 0,±1, and cn 6= 0. Due to Lemma II.14 we have 2A(z) = Sf (z).
Inserting the Laurent series of f about z0 into this equation yields

A(z) =
1− n2

4(z − z0)2
+

1

z − z0
φ(z) ,

where φ is a holomorphic function in a neighborhood of z0. This shows (1).

To establish (2), we choose a disk Kr(z0)(z0) ⊆ G such that z0 is the only pole of A in
this disk. Since A(z) = (1 − n2)/(4(z − z0)2) + · · · , n ∈ Z, |n| ≥ 2, the roots of the
characteristic equation of the differential equation ψ ′′ + A(z)ψ = 0 are (1 + n)/2 and
(1 − n)/2, see equation (II.8). Without loss of generality we may assume n ≥ 2, so
ρ1 = (1 + n)/2 and ρ2 = (1 − n)/2 . A local solution base in the slit disk Dr(z0)(z0) =
Kr(z0)(z0)\{z0 + t : 0 ≤ t < r(z0)} is then given by

g1(z) = (z − z0)ρ1φ1(z)

g2(z) = χg1(z) log (z − z0) + (z − z0)ρ2φ2(z),

where φ1, φ2 are holomorphic functions in Kr(z0)(z0) with φ1(z0) 6= 0 as well as φ2(z0) 6= 0,
and either χ = 0 or χ = 1. Since g2/g1 has by hypothesis a meromorphic extension to all
of G we can exclude χ = 1. This gives condition (2).

(b) Now we move on to the if part. Let f be the quotient of two linearly independent
local solutions of ψ′′+A(z)ψ = 0 at an arbitrary point ζ ∈ G, where A(z) is holomorphic
in the disk Kr(ζ)(ζ) ⊆ G, say f = g̃1/g̃2. By the local existence Theorem II.3 the solutions
g̃1 and g̃2 of ψ′′+A(z)ψ = 0 are holomorphic functions in Kr(ζ)(ζ) and their continuations
along any path in G\{z0 : z0 is a pole ofA} are holomorphic, compare Theorem II.5. Thus
f has a meromorphic continuation along any path in G\{z0 : z0 is a pole ofA}. We aim
at showing f is meromorphic in G.

To this end let z0 be an arbitrary pole of A(z) and Kr(z0)(z0) ⊆ G, r(z0) > 0, be a disk
such that A(z) is holomorphic in Kr(z0)(z0) save z0. Because of condition (1) and (2)
there exists a local solution base {g1, g2} of ψ′′+A(z)ψ = 0 in the slit disk Dr(z0)(z0) with
χ = 0 and ρ1 = (1 + n)/2, ρ2 = (1− n)/2. This however implies g1/g2 is meromorphic in
Kr(z0)(z0).

������������
������

����
K

ζ z0
r(z0)

Now let K be a disk in Dr(z0)(z0). We choose a non–
selfintersecting path γ in G, connecting ζ with an arbitrary
point in K and avoiding all the poles of A(z). Further, we may
assume f has a meromorphic extension to a domain Ω ⊃ K
along γ. In K however, f is a locally injective meromor-
phic function, since f satisfies there the differential equation



II.2 Linear ordinary differential equation and the Schwarzian derivative 29

Sf = 2A(z) with a holomorphic A. Thus, by Theorem II.6 there exist two linearly inde-
pendent holomorphic solutions v1, v2 of ψ′′ +A(z)ψ = 0 in K such that f = v1/v2 in the
disk K. But v1 = α1g1(z) + α2g2(z) and v2(z) = β1g1(z) + β2g2(z) in K for some α1, α2,
β1, β2 ∈ C with α1β2 − α2β1 6= 0. Therefore we can write f in K as

f(z) =
α1g1(z) + α2g2(z)

β1g1(z) + β2g2(z)
.

Since g1/g2 is meromorphic in Kr(z0)(z0), we deduce that f has a meromorphic extension
to Kr(z0)(z0). In view of the fact that this process is valid for every pole z0 of A(z) we
finally conclude f has a meromorphic extension to G by the Monodromy theorem. �

In [33, Theorem 6.7 and Corollary 6.8] an explicit algebraic characterization of A such
that Sf = 2A(z) has at least one meromorphic solution is given. This algebraic formula
follows readily from equations (II.16) and (II.17). However, it seems difficult to exploit
this algebraic condition. Therefore, we prefer the formally different equivalent formulation
of this condition in the next theorem.

Theorem II.15
Let G ⊆ C be a simply connected domain and let A(z) be a meromorphic function in G.
Then the function 2A(z) is the Schwarzian derivative of a meromorphic function f in G if
and only if at every pole z0 of A the conditions (1) and (2) of Theorem II.11 are satisfied.

Proof.
(a) Suppose first Sf = 2A(z), where f is a meromorphic function in G. As in the proof
to Theorem II.11 it follows that A(z) has a Laurent series expansion at z0 of the desired
form, i.e.

A(z) =
1− n2

4(z − z0)2
+ · · · , n ∈ Z, |n| ≥ 2 .

For the second condition let K ⊆ G be a disk, where A(z) is holomorphic. By Theorem
II.6 and Remark II.7 there exists a local solution base {v1, v2} of ψ′′ + A(z)ψ = 0 in K
such that Sf = Sv1/v2

in K. Therefore v1/v2 = σ ◦f in K for some Möbius transformation
σ. Since σ ◦f is meromorphic in G the quotient v1/v2 has a meromorphic extension to G,
which we will also call v1/v2, and it follows from the identity principle that Sv1/v2

= 2A(z)
in G. Now let z0 ∈ G be an arbitrary pole of A(z) and denote by Kr(z0)(z0) ⊆ G a disk,
where A(z) is holomorphic in Kr(z0)(z0) except for z0. Note, the roots of the characteristic
equation of the differential equation ψ′′ + A(z)ψ = 0 are ρ1 = (1 + n)/2, ρ2 = (1− n)/2,
where we assume n ≥ 2 w.l.o.g.. Thus a local solution base in the slit disk Dr(z0)(z0) is
given by

g1(z) = (z − z0)ρ1φ1(z)

g2(z) = χg1(z) log (z − z0) + (z − z0)ρ2φ2(z),
(II.22)

where φ1, φ2 are holomorphic in a neighborhood of z0 with φ1(z0) 6= 0, φ2(z0) 6= 0, and
χ = 0 or χ = 1. So we obtain

v1(z)

v2(z)
=
ag1(z) + bg2(z)

cg1(z) + dg2(z)
for z ∈ Dr(z0)(z0) ,
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where a, b, c, d ∈ C and ad− bc 6= 0. This yields

v1(z)

v2(z)
=
a + bg2(z)/g1(z)

c+ dg2(z)/g1(z)
in Dr(z0)(z0) .

The function σ(z) = (a + bz)/(c + dz) is a Möbius transformation and has consequently
an inverse. Thus we get g2/g1 = σ−1 ◦ (v2/v1) in Dr(z0)(z0). Since v2/v1 is meromorphic
in G, g2/g1 has a meromorphic extension to Kr(z0)(z0) and this means χ = 0 in (II.22).
This shows condition (2) of Theorem II.11 is fulfilled.

(b) We now turn to the if part. If the condition (1) and (2) are satisfied at each pole of
A(z), then by Theorem II.11 the quotient f of any two linearly independent solutions of
the linear equation ψ′′ + A(z)ψ = 0 has a meromorphic extension to G and by Lemma
II.14 each of these functions solves Sf = 2A(z). �

An obvious generalization of Remark II.7 is

Remark II.16
Let A(z) be a meromorphic function in a simply connected domain G ⊆ C, and let f and
g be meromorphic functions in G. Then Sf = Sg = 2A(z) if and only if f = σ ◦ g, where
σ is a Möbius transformation.

Proof.

If f = σ ◦ g then Sf = Sg follows as in the proof to Remark II.7.

Conversely, let Sf = Sg = 2A(z). Then choose a disk K ⊆ G, where A(z) is holomorphic.
This implies f = σ ◦ g in K by Remark II.7 and hence we see f = σ ◦ g in G by the
identity principle. �

The last observation leads to

Remark II.17
Let A(z) be a meromorphic function in a simply connected domain G ⊆ C and let f be
a meromorphic solution of the differential equation Sf = 2A(z) in G. Then every local
solution of Sf = 2A(z) has a meromorphic extension to G and any two of them, say f
and g, are related by f = σ ◦ g, where σ is a Möbius transformation.

Now, if we combine Theorem II.11, Theorem II.15 and Lemma II.14, we arrive at the
generalization of Theorem II.6 we have sought.

Theorem II.18
Let G ⊆ C be a simply connected domain and let A(z) be a meromorphic function in G,
which satisfies condition (1) and (2) of Theorem II.11 at every pole z0 of A. Then the
quotient f = g1/g2 of any two linearly independent local solutions g1, g2 of ψ′′+A(z)ψ = 0
has a meromorphic extension to G and is a solution of Sf = 2A(z). Conversely, if f is
a (meromorphic) solution of Sf = 2A(z) in G, then there exist two linearly independent
local solutions g1, g2 of ψ′′ +A(z)ψ = 0, such that g1/g2 has a meromorphic extension to
G and f = g1/g2 in G.



II.3 Riccati differential equations 31

Proof.
The first part follows directly from Theorem II.11 and Lemma II.14. By Theorem II.15
and Remark II.17 all solutions of Sf = 2A(z) are meromorphic in G. To prove the
representation claim, choose a disk K ⊆ G, where A(z) is holomorphic. Then, by Theorem
II.6, there exist two linearly independent holomorphic solutions g1, g2 in K, such that
f = g1/g2 in K. By Theorem II.11 the quotient g1/g2 has a meromorphic extension to G
and thus the assertion, f = g1/g2 in G, follows from the identity principle. �

Theorem II.6 and Theorem II.18 show a strong connection between the linear differential
equation ψ′′ + A(z)ψ = 0 and the Schwarzian differential equation Sf = 2A(z). Both
types of differential equations are also closely related to the Riccati differential equation
w′ = A(z) +w2. Therefore Riccati differential equations are the topic of our next section.

II.3 Riccati differential equations

The object which attracts now our interest is the normalized Riccati differential equation

w′ = A(z) + w2 .

In particular we focus on the interconnection of the Riccati differential equation w ′ =
A(z) + w2 with the second order differential equation ψ′′ + A(z)ψ = 0. Further, we will
study the different types of solutions of w′ = A(z)+w2, when A is a holomorphic function
or a meromorphic function. However, before having a look at this in greater detail we like
to begin with the following definition which fits into the content of Definition II.8 and
II.13.

Definition II.19
Let A(z) be a meromorphic function in a domain G ⊆ C. We call a meromorphic function
w(z) in G a meromorphic solution of w′ = A(z) + w2 in G, if w(z) satisfies w′(z) =
A(z) + w(z)2 in G. By a local solution of w′ = A(z) + w2 we mean a meromorphic
solution of this differential equation in a subdomain G′ ⊆ G.

We now relate the Riccati equation w′ = A(z) + w2 to the linear differential equation
ψ′′ + A(z)ψ = 0 and the Schwarzian differential equation Sf = 2A(z).

Remark II.20
Let A(z) be a meromorphic function in a simply connected domain G ⊆ C.

(a) Let g be a local solution of ψ′′ + A(z)ψ = 0 and assume −g′/g has a meromorphic
extension to a domain G′ ⊆ G. Then the function w := −g′/g is a meromorphic
solution of w′ = A(z) + w2 in G′.

(b) Let f be a local solution of Sf = 2A(z) and assume f ′′/f ′ has a meromorphic
extension to a domain G′ ⊆ G. Then the function w := f ′′/(2f ′) is a meromorphic
solution of w′ = A(z) + w2 in G′.

In view of Remark II.20 (a) and Theorem II.5 we may suspect that the Riccati differ-
ential equation w′ = A(z) + w2, where A(z) is holomorphic, does not need to have only
holomorphic solutions. The following simple example illustrates this phenomenon.
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Example II.21
Consider the initial value problem

w′ = w2

w(0) = c, c ∈ C ,

in C. Then the solutions are the meromorphic functions

w(z) = − 1

z − 1
c

if c ∈ C\{0} ,

and the entire function
w ≡ 0 if c = 0 .

In Example II.21 every local solution of w′ = A(z) + w2 has a meromorphic extension to
any simply connected domain, where A is holomorphic. This is true in general and is the
content of the next theorem.

Theorem II.22
Let A(z) be a holomorphic function in a simply connected domain G ⊆ C. Then every
local solution w of the differential equation w′ = A(z) +w2 can be continued analytically
to a meromorphic solution in G.

Proof.
Let w be a local solution of w′ = A(z) + w2 and assume w is meromorphic in the disk
K ⊆ G. In K we choose a point z0 such that w is finite, i.e. w(z0) = w0 with w0 ∈ C.
Further, let c1, c2, c3 be three distinct complex numbers with cj 6= w0 for j = 1, 2, 3.

Next, we have a look at the system of linear differential equations

P ′ = A(z)Q

Q′ = −P.
(II.23)

By Theorem II.3 and Theorem II.5 we can find three pairs, say (P1, Q1), (P2, Q2) and
(P3, Q3), of holomorphic solutions of (II.23) in G which have the ”initial values”

Pk(z0) = ck and Qk(z0) = 1 for k = 1, 2, 3 .

The functions

wk(z) :=
Pk(z)

Qk(z)
, k = 1, 2, 3,

are meromorphic in G and solutions of w′ = A(z) + w2 in G. This follows from

w′k =

(
Pk
Qk

)′
=
P ′kQk −Q′kPk

Q2
k

=
(A(z)Qk)Qk + P 2

k

Q2
k

= A(z) + w2
k .

Because of our choice of the ”initial values”, the functions wk are clearly distinct and
consequently the cross ratio

F (z) =
w1(z)− w3(z)

w1(z)− w(z)
:
w2(z)− w3(z)

w2(z)− w(z)
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is a well defined meromorphic function in K. Since w1, w2, w3 and w are solutions of
w′ = A(z) + w2 in K we replace in the formula for F ′ the expressions (w′j − w′k) and
(w′j−w′) by (wj−wk)(wj +wk) and (wj−w)(wj +w), respectively, and obtain F ′ ≡ 0 in
K. Thus F is a constant function in K, say F ≡ c, where c ∈ C\{0}, since F (z0) 6= 0,∞.
This leads to

w =
(w1 − w3)w2 − cw1(w2 − w3)

(w1 − w3)− c(w2 − w3)
in K,

where the right side of this equation is a meromorphic function in G. Therefore the
function w has a meromorphic extension to G. Lastly, w solves the Riccati differential
equation in G by the identity principle, since w′(z)−w(z)2 = A(z) in K. This completes
the proof. �

An immediate consequence of Theorem II.22 is

Corollary II.23
Let G ⊆ C be a domain, let A(z) be a meromorphic function in G and let γ be a path
in G which avoids every pole of A. Then every local solution of w′ = A(z) + w2 has a
meromorphic continuation along γ and is a solution of the differential equation there.

Now we turn to the more general case, when A(z) is a meromorphic function in the Riccati
differential equation w′ = A(z) + w2. The next two examples follow Example II.12 and
reveal that a Riccati differential equation can have meromorphic and non–meromorphic
solutions at the same time, and that also only meromorphic solutions can occur.

Example II.24
(a) We put A(z) = 1/(4z2) for z ∈ C and consider the differential equation

w′ =
1

4z2
+ w2 . (II.24)

Then the meromorphic function

w1(z) = − 1

2z

is a solution of (II.24) in C.

On the other hand the function

w2(z) = (log z + 3)/(−2z − 2z log z)

is meromorphic in C\[0,∞) without a meromorphic extension to C, but it solves
(II.24) in C\[0,∞).

(b) Now let A(z) = −3/(4z2) in C. Then the solutions of the Riccati differential equa-
tion

w′ = − 3

4z2
+ w2

are given by the one–parameter family of meromorphic functions in C:

w1(z) = − 3

2z
∪ ωc(z) = − 3

2z
+

2

2cz3 + z
, c ∈ C .
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Remark II.20 (a) and Example II.24 give rise to assume that under some conditions the
Riccati differential equation w′ = A(z) + w2 has only meromorphic solutions.

The next lemma provides us in some sense with such a criterion.

Lemma II.25
Let A(z) be a meromorphic function in a simply connected domain G ⊆ C, and let w1, w2

be two distinct meromorphic solutions of w′ = A(z) + w2 in G. If every pole of w1 is
simple and the corresponding residue of 2w1 is an integer, then the Riccati differential
equation has a one–parameter–family w1 ∪ (ωc)c∈C of meromorphic solutions in G such
that to every (local) solution ω 6= w1 there exists a c ∈ C with ω = ωc. In particular,
every solution of w′ = A(z) + w2 is meromorphic in G.

Proof.
Let’s define the function v0 in G by

v0(z) =
1

w1(z)− w2(z)
.

Then v0 is a meromorphic solution of the linear differential equation

v′ + 2w1(z)v = 1 (II.25)

in G, since

v′0 + 2w1(z) v0 = − w′1(z)− w′2(z)

(w1(z)− w2(z))2
+

2w1(z)

w1(z)− w2(z)

= −w1(z) + w2(z)

w1(z)− w2(z)
+

2w1(z)

w1(z)− w2(z)
≡ 1 .

In the last but one step we used the fact that both w1 and w2 are solutions of w′ =
A(z) + w2 and hence the identity w′1(z) − w′2(z) = w1(z)2 − w2(z)2 is valid. Now recall
that in a simply connected domain a meromorphic function which has only simple poles
and integers as residues can be represented by the formal logarithmic derivative of another
meromorphic function2. Therefore the function 2w1 assumes the form

2w1 =
y′

y

in G, where y is a meromorphic function in G. Thus equation (II.25) reduces to

v′ +
y′

y
v = 1 . (II.26)

The functions
vc(z) := v0(z) +

c

y(z)
, c ∈ C,

form a family of meromorphic solutions of (II.26) as v0 is a particular solution of (II.26)
and the functions c y−1, c ∈ C, are solutions to the homogeneous differential equation

v′ +
y′

y
v ≡ 0 .

2see for instance [49], p. 193



II.3 Riccati differential equations 35

Now we are going back to the Riccati differential equation.
The meromorphic functions

ωc(z) = w1(z)− 1

v0(z) + c
y(z)

, c ∈ C ,

form a one–parameter–family in G. As a matter of course the functions ωc, c ∈ C, are
distinct, since the functions vc are pairwise distinct. Further, ωc, c ∈ C, satisfies the
Riccati differential equation w′ = A(z) + w2:

ω′c = w′1 −
−1

(v0 + c
y
)2

(
v′0 −

cy′

y2

)

= A(z) + w2
1 +

1

(v0 + c
y
)2

(
1− y′

y

(
v0 +

c

y

))

= A(z) + w2
1 +

1

(v0 + c
y
)2

(
1− 2w1

(
v0 +

c

y

))

= A(z) +

(
w1 −

1

v0 + c
y

)2

.

Hence we found a one–parameter–family (w1) ∪ (ωc)c∈C of meromorphic functions in G,
which solve the equation w′ = A(z) + w2.

For the second assertion, let ω 6= w1 be a (local) solution of w′ = A(z) + w2. Then the
function v(z) = (w1(z)− ω(z))−1 is a (local) solution of (II.25) for some c ∈ C. Thus we
can conclude

1

w1(z)− ω(z)
= v0(z) +

c

y(z)

for some c ∈ C. Now it is obvious that ω is meromorphic in G and

ω(z) = w1(z)− 1

v0(z) + c
y(z)

= ωc(z) .

�

We have as an immediate consequence of Theorem II.22 and Lemma II.25 the following

Proposition II.26
Let F ⊆ G ⊆ C be simply connected domains and let A be a meromorphic function in
G such that the Riccati differential equation w′ = A(z) + w2 admits a one–parameter–
family of meromorphic solutions in G, say G := (w1) ∪ (ωc)c∈C. Then G|F is a family
of meromorphic solutions of w′ = A(z) + w2 in F and every meromorphic solution of
w′ = A(z) + w2 in F belongs to G|F .

Theorem II.9, in particular equations (II.10), (II.11) and (II.8), combined with Remark
II.20 (a) gives a necessary condition for a meromorphic A such that all solutions of the
differential equation w′ = A(z) + w2 are meromorphic, namely condition (a) of Theorem
II.11 must be fulfilled at every pole z0 of A. On the other hand, this condition is not
sufficient. The proof of our next theorem clarifies this a bit further.
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Theorem II.27
Let A(z) be holomorphic in a simply connected domain G ⊆ C save a double pole at
z0 ∈ G and suppose A(z) has at z = z0 the Laurent series expansion

A(z) =
1− n2

4(z − z0)2
+ · · · , n ∈ N, n ≥ 2 .

Then the Riccati differential equation w′ = A(z) + w2 admits either exactly one mero-
morphic solution in G or a one–parameter–family of meromorphic solutions w1 ∪ (ωc)c∈C
such that to every (local) solution ω 6= w1 there exists a number c ∈ C with ω = ωc.

Proof.
Let’s look at the corresponding linear differential equation ψ ′′ + A(z)ψ = 0 of w′ =
A(z) + w2. We write this differential equation in the form

ψ′′ +
h(z)

(z − z0)2
ψ = 0 , (II.27)

where h(z) is holomorphic in G and h(z0) = (1− n2)/4, n ∈ N, n ≥ 2.

Going back to Theorem II.9 we compute for the roots of the characteristic equation

ρ = ρ1/2 =
1± n

2
.

Accordingly, there exists a solution base {g1, g2} of the form

g1(z) = (z − z0)
1+n

2 φ1(z),

g2(z) = χg1(z) log(z − z0) + (z − z0)
1−n

2 φ2(z),
(II.28)

in a slit disk Dr(z0) ⊂ G for some r > 0, where φ1 and φ2 are holomorphic functions in
Kr(z0) with φ1(z0) 6= 0 and φ2(z0) 6= 0. Further, χ = 0 or χ = 1.

Now we will show that there is in any case at least one meromorphic solution of the
Riccati equation w′ = A(z) + w2. This meromorphic solution comes from the solution

g1(z) = (z − z0)
1+n

2 φ1(z) of the linear equation ψ′′ + A(z)ψ = 0. We see the quotient
−g′1/g1 is defined in the slit disk Dr(z0), but has a meromorphic extension to the whole
disk Kr(z0), since the right side of

−g
′
1

g1
= − 1 + n

2(z − z0)
− φ′1
φ1

is meromorphic in this disk. Note, the meromorphic function

w1 = − 1 + n

2(z − z0)
− φ′1
φ1

is a solution of w′ = A(z)+w2 in Kr(z0). By Corollary II.23 and the Monodromy Theorem
w1 can be extended to a meromorphic solution of w′ = A(z) + w2 in all of G.
If there is more than one meromorphic solution depends whether χ = 0 or χ = 1.

If χ = 0 in (II.28) then −g′2/g2 leads similarly as above to a second meromorphic solution
of w′ = A(z) + w2. Since w1 has only simple poles and the residues of 2w1 are integers



II.3 Riccati differential equations 37

at these poles (this follows from a straightforward pole consideration, see also Remark
II.29) the hypotheses of Lemma II.25 are fulfilled, so there exists a one–parameter–family
of meromorphic solutions with the desired properties.

If χ = 1 in (II.28), then −g′2/g2 has at z0 a logarithmic singularity. Therefore, −g′2/g2 is
a meromorphic solution in the slit disk Dr(z0) of w′ = A(z) + w2, which however cannot
be extended to a meromorphic function in the whole disk Kr(z0). Again by Lemma II.25
and the properties of w1 we conclude that the Riccati differential equation admits exactly
one meromorphic solution in this case. �

From Theorem II.27 and Corollary II.23 we derive

Corollary II.28
Let A(z) be a meromorphic function in a simply connected domain G ⊆ C and suppose
for every pole z0 of A there exists a disk Kr(z0)(z0) ⊆ G such that w′ = A(z) + w2 has
only meromorphic solutions in Kr(z0)(z0). Then every local solution of w′ = A(z) + w2

has a meromorphic extension to G, in other words every solution of w′ = A(z) + w2 is
meromorphic in G.

The last remark of this section describes the possible poles and the corresponding residues
of meromorphic solutions w of w′ = A(z) + w2.

Remark II.29
Let A(z) be a meromorphic function in a simply connected domain G ⊆ C, and let w be
a (local) solution of w′ = A(z) + w2 in a neighborhood U of z0 ∈ G.

(1) If A(z) is holomorphic in z0 ∈ G, then either w is holomorphic in z0 or w has a
simple pole at z0 with residue −1.

(2) If A(z) has a pole of order 2 at z0 such that

A(z) =
1− n2

4(z − z0)2
+ · · · , n ∈ N, n ≥ 2 ,

then

(a) w has in z0 a simple pole with residue −(1 + n)/2, if there exists only one
meromorphic solution w of w′ = A(z) + w2 in U .

(b) every solution w of the Riccati equation has in z0 a simple pole, if every solution
of w′ = A(z) + w2 is meromorphic. In this case, only one solution has residue
−(n + 1)/2 and all others have residue (n− 1)/2 at z0.
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II.4 Survey

We have seen in the last two sections that linear differential equations of second order,
Schwarzian differential equations and Riccati differential equations are closely related to
each other. Therefore it is sometimes an advantage to consider a corresponding differential
equation rather than the original equation to get information about the solutions. This
is the reason, why we like to give a short survey.

Let A(z) be a meromorphic function in a simply connected domain G ⊆ C and let A(z)
satisfy condition (1) and (2) of Theorem II.11 at every pole z0 of A. Then we have
the following diagram, where g, g1, g2 denote solutions of ψ′′ + A(z)ψ = 0, f stands
for a meromorphic solution of Sf = 2A(z) in G and w for a meromorphic solution of
w′ = A(z) + w2 in G:

ψ′′ + A(z)ψ = 0
ck

f=
g1
g2 Theorem II.6 and Theorem II.18

#+NNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNN

w:=− g′g

��

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

= 2A(z)

w= 1
2
f ′′
f ′

s{ ppppppppppppppppppppppp

ppppppppppppppppppppppp

w′ = A(z) + w2

KS

3;
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Some Results from Potential Theory

III.1 Introduction

The purpose of this chapter is to discuss some results from potential theory, which will
provide a basis for solving Schwarz–Picard’s Problem I.9 for plane domains, i.e. for proving
the existence of pseudo–metrics of constant curvature−4 with prescribed zeros, see Section
IV.2, in particular Theorem IV.18.

Here, we focus on

Problem III.1 (The Dirichlet problem for the Poisson equation)
Let G ⊂ C be a bounded regular domain, i.e. a bounded domain with Green’s function
g(z, ξ), let q : G −→ R be a bounded and locally Hölder continuous function, and let
Φ : ∂G −→ R be a continuous function. Then the Dirichlet problem for the Poisson
equation ∆v = q consists in finding a function v ∈ C(G) ∩ C2(G) such that

∆v = q in G

v = Φ on ∂G .
(III.1)

In view of the maximum principle for harmonic functions it is clear that a solution to
Problem III.1, if there exists one, is uniquely determined. The proof for the existence of a
solution to Problem III.1 is more involved and will occupy almost the rest of this chapter.

Suppose for a moment there exists a solution v ∈ C(G) ∩ C2(G) of Problem III.1. Then
we can find an explicit formula for v in the following way.

Let h be the solution of the classical Dirichlet boundary value problem for the Laplace
equation, i.e. h : G −→ R belongs to C(G) ∩ C2(G) and is a solution to

∆h = 0 in G

h = Φ on ∂G .

Then the function $ = v−h is well–defined and a solution of the boundary value problem

∆$ = q in G

$ = 0 on ∂G .

If we additionally assume $ ∈ C1(G) ∩ C2(G), then Green’s second formula1 gives for $
the representation formula

$(z) = − 1

2π

∫∫

G

g(z, ξ)q(ξ)dσξ , (III.2)

1

∫∫

G

(u∆ω − ω∆u)dσ =

∫

∂G

(
u
∂ω

∂n
− ω∂u

∂n

)
|dξ| for u, ω ∈ C1(G) ∩ C2(G).
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where g(z, ξ) is Green’s function for the domain G ⊂ C and dσξ denotes euclidean area
element with respect to ξ. For a quick proof of this fact, see for instance [23, p.35/36].
Therefore our solution v to Problem III.1 is given by

v(z) = h(z)− 1

2π

∫∫

G

g(z, ξ)q(ξ)dσξ . (III.3)

As might be expected, this reasoning can be reversed, and the function v defined by
formula (III.3) is indeed a solution to Problem III.1.

Theorem III.2
Let G ⊂ C a bounded and regular domain, let q : G −→ R be a bounded and locally
Hölder continuous function with exponent α, 0 < α ≤ 1, and let Φ : ∂G −→ R be a
continuous function. If g(z, ξ) denotes Green’s function for G and h the solution of the
classical Dirichlet problem for G with boundary function Φ, i.e. ∆h = 0 in G and h = Φ
on ∂G, then the function

v(z) := h(z)− 1

2π

∫∫

G

g(z, ξ)q(ξ)dσξ (III.4)

belongs to C(G) ∩ C2(G) and is a solution of the boundary value problem

∆v = q in G

v = Φ on ∂G .

Remark III.3
We like to point out the function v in (III.4) is well–defined. This follows from the facts
that for a bounded regular domain G on the one hand the integral

1

2π

∫∫

G

g(z, ξ)q(ξ)dσξ

exists for every z ∈ G if q : G −→ R is a bounded and integrable function, and on the
other hand the Dirichlet problem for the Laplace equation is solvable for every continuous
boundary function.

Before we start with the proof of Theorem III.2 in Section III.3, we compile in Section
III.2 some notation, definitions and basic facts, which will be helpful throughout this
chapter. In Section III.4 we discuss two further rather technical results from potential
theory, which will come into play in the next chapter.

III.2 Preliminaries

One may wonder, why we suppose the function q to be locally Hölder continuous in
Theorem III.2, since the integral in (III.4) is already well–defined, if q is only assumed to
be bounded and integrable on G, see Remark III.3. The main point here is that v should
become a C2–function, which, as we shall see, can be guaranteed only if q is locally Hölder
continuous in G.

We now begin by recalling the definition of Hölder continuous functions.
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Definition III.4
Let G ⊆ C be a domain in the complex plane. A function q : G −→ R is called locally
Hölder continuous in G with exponent α, 0 < α ≤ 1, if

[q]α;Ω = sup
z,ξ∈Ω

z 6=ξ

|q(z)− q(ξ)|
|z − ξ|α

is finite for every compact subset Ω ⊂ G.

Example III.5
Let G ⊆ C be a domain, z0 ∈ G, and α ∈ (0, 1]. Then the function

f(z) = |z − z0|α

is locally Hölder continuous in G with exponent α.

A simple, but important observation is

Remark III.6
Let G ⊆ C be a domain and let f : G −→ R, g : G −→ R be locally Hölder continuous
functions with exponent α, 0 < α ≤ 1 and β, 0 < β ≤ 1, respectively. Then the product
f · g is a locally Hölder continuous function in G with exponent γ = min{α, β}.
We next turn to a discussion of Green’s function.

Definition III.7
Let G ⊆ C be a domain. Then we call a function g : G×G −→ [−∞,∞] Green’s function
of G, if it has the following properties:

(1) For every z ∈ G the function ξ 7→ g(z, ξ) + log |z − ξ| is harmonic in G.

(2) For every z ∈ G the function ξ 7→ g(z, ξ) is harmonic in G\{z}.

(3) For every z ∈ G and for every τ ∈ ∂G the limit relation lim
ξ−→τ

g(z, ξ) = 0 holds.

Remark III.8
(a) For a domain G ⊆ C, there doesn’t need to exist a Green’s function. But if there

exists one at all, then it is uniquely determined.

(b) If G ( C is a simply connected domain, then Green’s function exists and is given
by the formula

g(z, ξ) = − log

∣∣∣∣∣
f(z)− f(ξ)

1− f(ξ)f(z)

∣∣∣∣∣ ,

where f : G −→ D is a conformal map onto D.

For the following let g(z, ξ) be Green’s function for a domain G ⊆ C. Then

(c) g is non–negative, i.e. g(z, ξ) ≥ 0 for all z, ξ ∈ G.

(d) g is symmetric, i.e. g(z, ξ) = g(ξ, z) for all z, ξ ∈ G.
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(e) g has the representation g(z, ξ) = − log |z − ξ| + γ(z, ξ), where z 7→ γ(z, ξ) is a
harmonic function in G for each fixed ξ ∈ G and ξ 7→ γ(z, ξ) is a harmonic function
in G for each fixed z ∈ G.

Since we only consider bounded domains G ⊂ C, the following definition is appropriate.

Definition III.9
The diameter of a bounded set G ⊂ C is defined by

dG := sup
x,y∈G

|x− y| .

At the end of this section we like to mention the following elementary inequalities which
will be indispensable to the proof of Theorem III.2:

∣∣ log |x|
∣∣ ≤ | log a|+ | log b| if 0 < a ≤ |x| ≤ b , (III.5)

∣∣ log |x|
∣∣ ≤ | log a| if 0 <

1

a
≤ |x| ≤ a , (III.6)

log |x| ≤ |x| − 1 if 1 ≤ |x| , (III.7)

log |x| ≥ 1− 1

|x| if 0 < |x| ≤ 1 . (III.8)

Now we are prepared to set about proving Theorem III.2.

III.3 The solution of the Poisson equation – Proof of

Theorem III.2

In view of later applications, we shall prove the following slight extension of Theorem
III.2.

Theorem III.10
Let G ⊂ C be a bounded regular domain, let q : G −→ R be a bounded and integrable
function, and let Φ : ∂G −→ R be a continuous function. Further, let h be the solution
of the classical Dirichlet problem for G with boundary function Φ and denote by g(z, ξ)
Green’s function for G. Then the function

v(z) := h(z)− 1

2π

∫∫

G

g(z, ξ)q(ξ)dσξ

belongs to C(G) ∩ C1(G) and v|∂G ≡ Φ. If, in addition, q is locally Hölder continuous
with exponent α ∈ (0, 1] in some subdomain O ⊆ G, then v ∈ C2(O) and ∆v = q in O.

The proof of Theorem III.10 will be broken down into several steps.

As h is harmonic in G and continuous on G we only need to focus on the function

$(z) = − 1

2π

∫∫

G

g(z, ξ)q(ξ)dσξ,
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and have to prove

$ ∈ C1(G) and $ ∈ C2(O) with ∆$ = q in O, (III.9)

and
lim
z−→τ

$(z) = 0 for every τ ∈ ∂G. (III.10)

Since g(z, ξ) = − log |z − ξ|+ γ(z, ξ), we have

$(z) =
1

2π

∫∫

G

log |z − ξ|q(ξ)dσξ −
1

2π

∫∫

G

γ(z, ξ)q(ξ)dσξ ,

and (III.9) follows from the following two results.

Theorem III.11
Let G ⊂ C be a bounded regular domain and let q : G −→ R be a bounded and integrable
function. Then the Newton potential

w(z) :=
1

2π

∫∫

G

log |z − ξ| q(ξ) dσξ (III.11)

of q belongs to C1(G). If, in addition, q is locally Hölder continuous with exponent α,
0 < α ≤ 1, in a subdomain O ⊆ G, then w ∈ C2(O) and ∆w = q in O.

Theorem III.12
Let G ⊂ C be a bounded regular domain with Green’s function g(z, ξ) = − log |z − ξ| +
γ(z, ξ) and let q : G −→ R be a bounded and integrable function. Then the function

H(z) :=
1

2π

∫∫

G

γ(z, ξ)q(ξ)dσξ (III.12)

belongs to C2(G) and ∆H = 0 in G.

Finally, (III.10) is established in

Theorem III.13
Let G ⊂ C be a bounded regular domain, let g(z, ξ) be Green’s function of G, and let
q : G −→ R be a bounded and integrable function. Then

lim
z−→τ

∫∫

G

g(z, ξ) q(ξ) dσξ = 0

for every point τ ∈ ∂G.

Thus, Theorem III.10 follows from Theorem III.11, Theorem III.12 and Theorem III.13.

For the proof of Theorem III.11 we need the following technical lemma, which we shall
not prove here. Notice that the partial derivatives of a function of the two real variables
x1 and x2 will be denoted by

Dj =
∂

∂xj
for j = 1, 2 and Dlj =

∂

∂xl

(
∂

∂xj

)
for l, j = 1, 2 .
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Lemma III.14
Let z = x1 + ix2 and ξ = ζ1 + iζ2. Then the first and second derivatives with respect to
x1, x2 of the function z −→ log |z − ξ| are given by

Dj log |z − ξ| = xj − ζj
|z − ξ|2 for j ∈ {1, 2} ,

and

Dlj log |z − ξ| = −2(x1 − ζ1)(x2 − ζ2)

|z − ξ|4 for l, j ∈ {1, 2} , if l 6= j ,

as well as

Dll log |z − ξ| = (−1)l
(x1 − ζ1)2 − (x2 − ζ2)2

|z − ξ|4 for l ∈ {1, 2} . (III.13)

Moreover, we have

|Dj log |z − ξ|| ≤ 1

|z − ξ| for j ∈ {1, 2} , (III.14)

and

|Dlj log |z − ξ|| ≤ 2

|z − ξ|2 for l, j ∈ {1, 2} , (III.15)

respectively.

Proof of Theorem III.11. (cf. [19])
First of all we note the function w is even well–defined on G. Since q is bounded on G,
we have M := sup

ξ∈G
|q(ξ)| <∞.

In a first step we like to show w ∈ C1(G), if q is bounded and integrable on G. This will be
achieved by approximating w with C1(G)–functions in the Banach space (C1(G), || · ||C1).
The functions which will do the job are given by

wε(z) =
1

2π

∫∫

G

log |z − ξ| η
( |z − ξ|

ε

)
q(ξ) dσξ, ε > 0,

where η : R −→ [0, 1] is a continuously differentiable function, such that

η(t) =





0 if t ≤ 1,

1 if t ≥ 2,
and 0 ≤ η′(t) ≤ 2, t ∈ R .

Clearly, every wε, ε > 0, is a well–defined function on G. Moreover,

• z 7→ log |z − ξ| η
( |z − ξ|

ε

)
q(ξ) ∈ C1(G) for every ξ ∈ G,

• ξ 7→ log |z − ξ| η
( |z − ξ|

ε

)
q(ξ) is integrable over G for every z ∈ G,
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• the estimates
∣∣∣∣log |z − ξ| η

( |z − ξ|
ε

)
q(ξ)

∣∣∣∣ ≤M (| log ε|+ | log dG|)

and
∣∣∣∣Dj

(
log |z − ξ| η

( |z − ξ|
ε

))
q(ξ)

∣∣∣∣ ≤M

(
1

ε
+

2

ε

(
| log ε|+ | log dG|

))
, j = 1, 2 ,

are valid for z, ξ ∈ G.

Consequently, wε ∈ C1(G) for every ε > 0, see, for instance, [14].

To prove w ∈ C(G) it suffices to show wε −→ w uniformly in G as ε tends to 0. This, in
turn, is a consequence of the following estimate for z ∈ G:

|wε(z)− w(z)| ≤ 1

2π

∫∫

G∩K2ε(z)

∣∣ log |z − ξ|
∣∣ |q(ξ)| dσξ ≤ M

1

2π

∫∫

K2ε(z)

∣∣ log |z − ξ|
∣∣ dσξ

≤ M
1

2π

2π∫

0

2ε∫

0

|log ρ| ρ dρ dϕ ≤Mε2 (1 + 2 |log(2ε)|) .

Similarly, we can deduce w ∈ C1(G) as soon as we know

Djwε(z) =
1

2π

∫∫

G

Dj

(
log |z − ξ|η

( |z − ξ|
ε

))
q(ξ) dσξ

converges uniformly in G to

vj(z) =
1

2π

∫∫

G

Dj (log |z − ξ|) q(ξ) dσξ2 ,

for j ∈ {1, 2} as ε goes to 0. This also implies Djw(z) = vj(z) for z ∈ G and j ∈ {1, 2}.
To check the above convergence claim we just observe for z ∈ G

|vj(z)−Djwε(z)| ≤
1

2π

∫∫

K2ε(z)

∣∣∣∣Dj

{
log |z − ξ|

(
1− η

( |z − ξ|
ε

))}
q(ξ)

∣∣∣∣ dσξ

≤ M · 1

2π

∫∫

K2ε(z)

(∣∣∣∣(Dj log |z − ξ|)
(

1− η
( |z − ξ|

ε

))∣∣∣∣+

∣∣∣∣log |z − ξ| ·Djη

( |z − ξ|
ε

)∣∣∣∣
)
dσξ

≤ M · 1

2π

∫∫

K2ε(z)

(
1

|z − ξ| + |log |z − ξ|| · 2

ε

)
dσξ = M

2ε∫

0

(
1

ρ
+

2

ε
|log ρ|

)
ρ dρ

≤ M · 4ε (1 + |log(2ε)|) .
2Note, vj is a well–defined function on G because of estimate (III.14).
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In our next step we will draw our attention to the proof of w ∈ C2(O) and ∆w = q in O,
if we now suppose q is locally Hölder continuous with exponent α ∈ (0, 1] in O. The path
we will follow is similar to the preceding one, i.e. we will find functions vjε which converge
uniformly to Djw = vj in G and whose derivatives converge locally uniformly in O.

Since we have to apply the divergence theorem, we choose a disk K so large that K ⊇ G
and dist(∂G, ∂K) > 1 holds. Further, we extend q to K by setting q(ξ) = 0 for ξ ∈ K\G.

Now we define functions

vjε(z) =
1

2π

∫∫

G

(Dj log |z − ξ|) η
( |z − ξ|

ε

)
q(ξ) dσξ , ε > 0 ,

where η is as above. Taking into account the easily verified facts that

• z 7→ (Dj log |z − ξ|) η
( |z − ξ|

ε

)
q(ξ) ∈ C1(G) for every ξ ∈ G,

• ξ 7→ (Dj log |z − ξ|) η
( |z − ξ|

ε

)
q(ξ) is integrable for every z ∈ G, and

• the estimates
∣∣∣∣(Dj log |z − ξ|) η

( |z − ξ|
ε

)
q(ξ)

∣∣∣∣ ≤ M · 1

ε
,

∣∣∣∣Dl

{
(Dj log |z − ξ|) η

( |z − ξ|
ε

)}
q(ξ)

∣∣∣∣ ≤ M · 4

ε2

are valid for every z, ξ in G and l, j ∈ {1, 2},

we conclude vjε ∈ C1(G).
In view of the estimate

|vj(z)− vjε(z)| ≤
1

2π

∫∫

K2ε(z)

∣∣∣∣(Dj log |z − ξ|)
(

1− η
( |z − ξ|

ε

))
q(ξ)

∣∣∣∣ dσξ

≤ M ·
2ε∫

0

1

ρ
ρ dρ = M · 2ε

the functions vjε converge uniformly to vj = Djw in G as ε approaches 0 for j ∈ {1, 2}.
We will move on by showing that the derivatives of vjε, namely Dlvjε(z), l, j ∈ {1, 2},
converge locally uniformly in O to the functions

υlj(z) =
1

2π

∫∫

K

(Dlj log |z − ξ|) (q(ξ)− q(z)) dσξ −
1

2π
q(z)

∫

∂K

(Dj log |z − ξ|) · nl(ξ) |dξ| ,

where (n1(ξ), n2(ξ))
T is the unit outward normal at the point ξ ∈ ∂K.
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Note, υlj, l, j ∈ {1, 2}, are well–defined functions on O by estimate (III.15) and the local
Hölder continuity of q in O. Now we compute the first derivatives of vjε, i.e. Dlvjε for
l = 1, 2:

Dlvjε(z) =
1

2π

∫∫

G

Dl

{
(Dj log |z − ξ|) η

( |z − ξ|
ε

)}
q(ξ) dσξ

=
1

2π

∫∫

K

Dl

{
(Dj log |z − ξ|) η

( |z − ξ|
ε

)}
(q(ξ)− q(z)) dσξ

+
1

2π
q(z)

∫∫

K

Dl

{
(Dj log |z − ξ|) η

( |z − ξ|
ε

)}
dσξ

=
1

2π

∫∫

K

Dl

{
(Dj log |z − ξ|) η

( |z − ξ|
ε

)}
(q(ξ)− q(z)) dσξ

− 1

2π
q(z)

∫

∂K

(Dj log |z − ξ|) η
( |z − ξ|

ε

)
· nl(ξ) |dξ|.

In the last step we applied the divergence theorem. Thus, if 2ε < 1 < dist(∂G, ∂K), we
get

Dlvjε(z) =
1

2π

∫∫

K

Dl

{
(Dj log |z − ξ|) η

( |z − ξ|
ε

)}
(q(ξ)− q(z)) dσξ

−q(z)
2π

∫

∂K

(Dj log |z − ξ|) · nl(ξ) |dξ| .

From the following estimate we can infer that the functions Dlvjε converge locally uni-
formly in O to υlj as ε goes to 0. This implies w ∈ C2(O) and Dljw = υlj for z ∈ O and
l, j ∈ {1, 2} since Djw = vj holds.

Let Ω ⊂ O be a compact subset. Choose

0 < δ <
dist(Ω, ∂G)

4

and define the set Ω̃ := Ω ∪ {ξ ∈ C : dist(ξ, ∂Ω) ≤ 2δ}. Then Ω̃ is compactly contained
in O. By the local Hölder continuity of q in O the quantity

[q]α,Ω̃ = sup
z, ξ∈Ω̃

|q(z)− q(ξ)|
|z − ξ|α

is finite.
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This leads for z ∈ Ω and ε < min{δ, 1/2} to

|υlj(z)−Dlvjε(z)|

=
1

2π

∣∣∣∣∣∣∣

∫∫

K2ε(z)

Dl

{
(Dj log |z − ξ|)

(
1− η

( |z − ξ|
ε

))}
(q(ξ)− q(z)) dσξ

∣∣∣∣∣∣∣

≤ [q]α,Ω̃ ·
1

2π

∫∫

K2ε(z)

(∣∣Dlj log |z − ξ|
∣∣+
∣∣Dj log |z − ξ|

∣∣2
ε

)
|z − ξ|α dσξ

≤ [q]α,Ω̃ ·
1

2π

∫∫

K2ε(z)

(
2

|z − ξ|2 +
2

ε|z − ξ|

)
|z − ξ|α dσξ

= [q]α,Ω̃ · 2 ·
{

(2ε)α

α
+ 2

(2ε)α

α + 1

}
≤ [q]α,Ω̃ ·

6

α
· (2ε)α ,

which proves w ∈ C2(O) and Dlvj = Dljw.

Finally, we derive ∆w = q in O. First, we note

∆w(z) = D11w(z) +D22w(z)

= −q(z) · 1

2π

∫

∂K

(
(D1 log |z − ξ|)n1(ξ) + (D2 log |z − ξ|)n2(ξ)

)
|dξ|,

for z ∈ O. Here we have used Djjw(z) = υjj(z) for z ∈ O and j ∈ {1, 2}, and also
(III.13). Hence we are left to check that

1

2π

∫

∂K

(
(D1 log |z − ξ|)n1(ξ) + (D2 log |z − ξ|)n2(ξ)

)
|dξ| = −1.

But this is a simple consequence of the argument principle for the disk K = KR(z0):

1

2π

∫

∂K

((D1 log |z − ξ|)n1(ξ) + (D2 log |z − ξ|)n2(ξ)) |dξ| =

1

2π

∫

∂K

Re

(
n1(ξ) + in2(ξ)

z − ξ

)
|dξ| = 1

2π
Re

2π∫

0

Reiϕ

z − (z0 +Reiϕ)
dϕ =

1

2π
Re


−i

∫

∂K

dξ

z − ξ


 = −n(z, ∂K) = −1,

where n(z, ∂K) denotes the winding number of ∂K with respect to z ∈ G. Thus the proof
of Theorem III.11 is complete. �
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Proof of Theorem III.12.

First we see the function H : G −→ R is well–defined. This follows from the fact that
ξ 7→ γ(z, ξ)q(ξ) is measurable on G for every fixed z ∈ G and the estimate

|γ(z, ξ)q(ξ)| ≤ M max
ξ∈∂G
|log |z − ξ||

holds for all z, ξ ∈ G. Thus ξ 7→ γ(z, ξ)q(ξ) is an integrable function over G for every
z ∈ G.

Our goal is to prove H ∈ C2(G) and ∆H ≡ 0 in G. This is a rather delicate matter, as
the derivatives of γ are not bounded in G and there don’t even exist globally integrable
majorants for these derivatives. In a first step we will find suitable locally integrable
majorants for these functions, which are then used in the second step to conclude H ∈
C2(G) and ∆H ≡ 0 in G.

Now let z0 ∈ G be arbitrary, but fixed, and denote δ := dist(z0, ∂G). Then the functions

ξ 7→ γ(z0, ξ)

ξ 7→ Djγ(z0, ξ) , j = 1, 2

ξ 7→ Dljγ(z0, ξ) , l, j = 1, 2

are harmonic in G. As z0 + h ∈ G and z0 + ih ∈ G for 0 ≤ h < δ we can define for
0 < h < δ and ξ ∈ G the functions

Qx1(h, ξ) =
γ(z0 + h, ξ)− γ(z0, ξ)

h

Qx2(h, ξ) =
γ(z0 + ih, ξ)− γ(z0, ξ)

h
.

Note, the functions ξ 7→ Qx1(h, ξ) and ξ 7→ Qx2(h, ξ) are harmonic in G and continuous
on G for every 0 < h < δ. Their boundary values are

Qx1(h, τ) =
log |(z0 + h)− τ | − log |z0 − τ |

h
and

Qx2(h, τ) =
log |(z0 + ih)− τ | − log |z0 − τ |

h
,

respectively, where τ ∈ ∂G.

We shall now see that the functions Qx1(h, τ) and Qx2(h, τ) converge uniformly for τ ∈ ∂G
to Re(1/(z0− τ)) and −Im(1/(z0− τ)), respectively, as h tends to 0. For that we keep in
mind the estimate

∣∣∣∣
1

w
(log |1 + w| − Rew)

∣∣∣∣ ≤
∣∣∣∣

1

w
(log(1 + w)− w)

∣∣∣∣ ≤
1

2

|w|
1− |w|
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which is valid for every w ∈ D. For a given ε > 0 we choose |h| < 2εδ2/(1 + 2εδ), where
δ = dist(z0, ∂G) as above. This leads for every τ ∈ ∂G to

∣∣∣∣
1

h
log

∣∣∣∣1 +
h

z0 − τ

∣∣∣∣− Re

(
1

z0 − τ

)∣∣∣∣

=

∣∣∣∣
1

z0 − τ

∣∣∣∣
∣∣∣∣
(
z0 − τ
h

)(
log

∣∣∣∣1 +
h

z0 − τ

∣∣∣∣− Re

(
h

z0 − τ

))∣∣∣∣

≤ 1

2

1

|z0 − τ |
|h|

|z0 − τ | − |h|
≤ 1

2

1

δ

|h|
δ − |h| ≤ ε ,

and means

lim
h−→0

Qx1(h, τ) = Re

(
1

z0 − τ

)

uniformly for τ ∈ ∂G. In a similar way we get

lim
h−→0

Qx2(h, τ) = −Im

(
1

z0 − τ

)

uniformly for τ ∈ ∂G.

From the maximum and minimum principle for harmonic functions and limh−→0 Qxj(h, ξ) =
Djγ(z0, ξ) for ξ ∈ G and j = 1, 2, we therefore deduce

min
τ∈∂G

Re

(
1

z0 − τ

)
≤D1γ(z0, ξ) ≤ max

τ∈∂G
Re

(
1

z0 − τ

)

and

min
τ∈∂G

Im

(
− 1

z0 − τ

)
≤D2γ(z0, ξ) ≤ max

τ∈∂G
Im

(
− 1

z0 − τ

)

for all ξ ∈ G. As z0 is an arbitrary point in G this leads in view of −|z| ≤ Re(z) ≤ |z|
and −|z| ≤ Im(z) ≤ |z| to

|Djγ(z, ξ)| ≤ max
τ∈∂G

1

|z − τ | (III.16)

for all z, ξ ∈ G and j ∈ {1, 2}.
In the following we will play the same game for the second derivatives Dljγ. Therefore,
let z0 ∈ G be arbitrary, but fixed, and denote δ := dist(z0, ∂G). We define

Q̃x1,xj(h, ξ) =
γxj(z0 + h, ξ)− γxj(z0, ξ)

h

and

Q̃x2,xj(h, ξ) =
γxj(z0 + ih, ξ)− γxj(z0, ξ)

h
,

where γxj = Djγ and j ∈ {1, 2}.
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The function ξ 7→ Q̃x1,x1(h, ξ) is harmonic in G and continuous in G for each 0 < h < δ.
Its boundary values are

Q̃x1,x1(h, τ) =
1

h

(
Re

(
1

z0 + h− τ

)
− Re

(
1

z0 − τ

))
, τ ∈ ∂G .

Now

lim
h−→0

Q̃x1,x1(h, τ) = −Re

(
1

(z0 − τ)2

)

uniformly for τ ∈ ∂G. This is a direct consequence of the estimate

∣∣∣∣
1

h

(
Re

(
1

z0 + h− τ

)
− Re

(
1

z0 − τ

))
+ Re

(
1

(z0 − τ)2

)∣∣∣∣ =

∣∣∣∣Re

(( −1

z0 + h− τ +
1

z0 − τ

)
1

z0 − τ

)∣∣∣∣ ≤
1

δ

|h|
δ(δ − |h|) .

In a similar vein we obtain

lim
h−→0

Q̃xl,xj(h, τ) = Re

(
1

(z0 − τ)2

)
, if l = j = 2 ,

and

lim
h−→0

Q̃xl,xj(h, τ) = Im

(
1

(z0 − τ)2

)
, if l = 1, j = 2 and l = 2, j = 1 .

Analogously as in the case of the first derivatives we thus find for j, l ∈ {1, 2} and all
z, ξ ∈ G

|Dljγ(z, ξ)| ≤ max
τ∈∂G

1

|z − τ |2 . (III.17)

We now use the estimates (III.16) and (III.17) to show H ∈ C2(G) and ∆H = 0 in G.

Again, we fix z0 ∈ G and define δ := dist(z0, ∂G) as well as M := sup
ξ∈G
|q(ξ)|.

The function H(z) is continuous in Kδ/4(z0) by [14, Kap. IV, Satz 5.6] because

• z 7→ γ(z, ξ)q(ξ) is continuous in G for every fixed ξ ∈ G, and

• for every z ∈ K δ
4
(z0) ⊂ G and ξ ∈ G the estimate

|γ(z, ξ)q(ξ)| ≤M ·max
ξ∈∂G
| log |z − ξ||

≤M ·max
ξ∈∂G

{
2 + |z − ξ|+ 1

|z − ξ|

}

≤M ·
{

2 + dG +
1

dist(z, ∂G)

}
≤M ·

{
2 + dG +

4

3δ

}

holds.

	�

�	
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Now we continue to show H ∈ C1(Kδ/4(z0)). Note,

• Djγ(z, ξ)q(ξ) exists for every z, ξ ∈ G and j ∈ {1, 2}, z 7→ Djγ(z, ξ)q(ξ) is continu-
ous in G for every ξ ∈ G, and

• for every z ∈ K δ
4
(z0) ⊂ G and every ξ ∈ G the estimate

|Djγ(z, ξ)q(ξ)| ≤M ·max
ξ∈∂G

1

|z − ξ| ≤
4

3

M

δ

is valid for j ∈ {1, 2}. Here we have used (III.16).

Thus H is continuously differentiable in Kδ/4(z0), see again [14, Kap. IV, Satz 5.6/5.7].

Now similar arguments as above let us conclude H ∈ C2(Kδ/4(z0)). We observe,

• Dljγ(z, ξ)q(ξ) exists for every z, ξ ∈ G and l, j ∈ {1, 2}, z 7→ Dljγ(z, ξ)q(ξ) is
continuous in G for every ξ ∈ G and

• for every z ∈ K δ
4
(z0) ⊂ G and ξ ∈ G, the estimate

|Dljγ(z, ξ)q(ξ)| ≤ M ·
(

4

3δ

)2

is valid for l, j ∈ {1, 2} because of (III.17).

So we get that the function H is twice continuously differentiable in Kδ/4(z0) and therefore
in all of G.

Finally,

∆H(z) = ∆


 1

2π

∫∫

G

γ(z, ξ)q(ξ)dσξ


 =

1

2π

∫∫

G

(∆γ(z, ξ)) q(ξ)dσξ = 0

in G as z 7→ γ(z, ξ) is harmonic in G for every ξ ∈ G. This brings us to the end of the
proof of Theorem III.12. �

Before we continue to prove Theorem III.13, i.e. $ ∈ C(G) and $|∂G ≡ 0, we point out
that the integral over Green’s function gets small, if we integrate over small sets. This is
the gist of the next

Lemma III.15
Let G ⊂ C be a bounded domain, where Green’s function g(z, ξ) exists and let B ⊆ G a
subset. Then ∫∫

B

g(z, ξ)dσξ < 24π · dG · dB (III.18)

for every z ∈ G.

Proof.
We define R := 4dG and note G is a subset of KR(z̃) = {ζ ∈ C : |ζ − z̃| < R} for every
z̃ ∈ G. Choose an arbitrary point z ∈ G. Then the Riemann map f from KR(z) onto D
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with f(z) = 0 is given by f(ξ) = (ξ − z)/R. Hence Green’s
function for the disk KR(z) with singularity in z takes the form

k(z, ξ) = − log

∣∣∣∣∣
f(ξ)− f(z)

1− f(z)f(ξ)

∣∣∣∣∣ = − log

∣∣∣∣
ξ − z
R

∣∣∣∣ .

Furthermore, the function

ξ 7→ g(z, ξ)− k(z, ξ) ,

has a harmonic extension to G and because of

lim
ξ−→∂G

g(z, ξ) = 0 ,

we deduce from the Carleman–principle for harmonic functions

0 ≤ g(z, ξ) ≤ k(z, ξ) for ξ ∈ G .
Finally we can find to the set B ⊆ G a disk Kr(z0) with radius r ≤ dB and center
z0 ∈ C such that B ⊆ Kr(z0). The main point here is that Kr(z0) ⊆ KR(z). This is a
consequence of the following few lines. First we see z0 ∈ KR(z) since for ζ ∈ B

|z0 − z| ≤ |z0 − ζ|+ |ζ − z| ≤ r + dG ≤ dB + dG ≤ 2dG < R

holds. Therefore we get for all ξ ∈ Kr(z0)

|ξ − z| ≤ |ξ − z0|+ |z0 − z| ≤ r + 2dG ≤ 3dG < R .

The observation B ⊆ Kr(z0) ⊆ KR(z) leads now to the estimate
∫∫

B

g(z, ξ)dσξ ≤
∫∫

B

k(z, ξ)dσξ ≤
∫∫

Kr(z0)

k(z, ξ)dσξ .

As a matter of course we will find an upper bound for the last integral. This works best,
if we distinguish the following two cases:

(1) If |z − z0| ≤ 2r then Kr(z0) ⊂ K3r(z) ⊂ KR(z), which allows the estimate
∫∫

Kr(z0)

k(z, ξ)dσξ ≤
∫∫

K3r(z)

− log

∣∣∣∣
z − ξ
R

∣∣∣∣ dσξ ≤

≤
∫∫

K3r(z)

R

|z − ξ|dσξ =

∫ 2π

0

∫ 3r

0

R

ρ
ρdρdϕ = 6π ·R · r .

(2) On the other hand, if |z−z0| > 2r, then R > |z−ξ| > r is valid for every ξ ∈ Kr(z0),
so ∫∫

Kr(z0)

k(z, ξ)dσξ =

∫∫

Kr(z0)

− log

∣∣∣∣
z − ξ
R

∣∣∣∣ dσξ ≤
∫∫

Kr(z0)

R

|z − ξ|dσξ ≤

≤ R

∫∫

Kr(z0)

1

|z − z0| − |z0 − ξ|
dσξ ≤ R

∫∫

Kr(z0)

1

2r − |z0 − ξ|
dσξ =

= 2πR

∫ r

0

ρ

2r − ρ dρ ≤ 2π log 2 ·R · r .
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As a result of (1) and (2) we have

∫∫

Kr(z0)

k(z, ξ)dσξ ≤ 6π ·R · r

for our chosen point z ∈ G. But this inequality is independent of the point z. All in all
we obtain the desired upper bound

∫∫

B

g(z, ξ)dσξ ≤ 6π ·R · r ≤ 24π · dG · dB . �

Remark III.16
Note, estimate (III.18) does only depend on the diameter of the subset B ⊆ G, but not
on B itself.

Proof of Theorem III.13.
Let τ ∈ ∂G be an arbitrary boundary point of G and let (zn)n∈N be a sequence of points
in G such that lim

n−→∞ zn = τ . Our intention is to prove

lim
n−→∞

∫∫

G

g(zn, ξ) q(ξ)dσξ = 0.

As the sequence of functions ξ 7→ g(zn, ξ) does not converge uniformly in G to 0 and also
has no integrable majorant in all of G, we cannot make direct profit out of the property
that g(τ, ξ) vanishes for τ ∈ ∂G. For this reason we divide G into two parts G′ and B,
where τ ∈ B, and show ∫∫

B

g(zn, ξ) q(ξ)dσξ

can be made arbitrarily small, uniformly with respect to n, by choosing B sufficiently
small, and ∫∫

G′

g(zn, ξ) q(ξ)dσξ

approaches 0 as n tends to ∞ for every choice of B.

���

�
� �
�

More precisely, we define the above mentioned sets by B =
G ∩ Kr(τ), B′ = G ∩ Kr/2(τ), where r > 0, and G′ = G\B.
Now let M := sup

ξ∈G
|q(ξ)| and note

∣∣∣∣∣∣

∫∫

G

g(z, ξ) q(ξ) dσξ

∣∣∣∣∣∣
≤M





∫∫

G′

g(z, ξ) dσξ +

∫∫

B

g(z, ξ) dσξ



 .

Since the integral over G′ needs a bit more attention we like to begin with the integral
over B, which can be handled very quickly. Without loss of generality we may assume
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zn ∈ B′ ⊆ B for every n ∈ N. Due to the fact that B is a subset of G with diameter
dB ≤ 2r, we conclude, based on Lemma III.15,

∫∫

B

g(zn, ξ) dσξ ≤ C · 2r

for every n ∈ N, where C is some positive constant.

For the integral over G′ choose z0 ∈ C and R > 0 such that G ⊆ KR(z0). By Carleman’s
principle we have

g(z, ξ) ≤ k(z, ξ), (z, ξ) ∈ G×G ,
where k(z, ξ) denotes Green’s function for KR(z0).

We find for z ∈ B′ and ξ ∈ G′ the estimate

R · r
2
≤ |R(z − ξ)| ≤

∣∣R2 − (ξ − z0)(z − z0)
∣∣ ≤ 2R2 . (III.19)

Since k is given by the formula

k(z, ξ) = − log

∣∣∣∣
R(z − ξ)

R2 − (ξ − z0)(z − z0)

∣∣∣∣ ,

we obtain for z ∈ B′ and ξ ∈ G′ because of (III.19)

|k(z, ξ)| ≤
∣∣∣ log |R(z − ξ)|

∣∣∣ +
∣∣∣ log

∣∣R2 − (ξ − z0)(z − z0)
∣∣
∣∣∣ ≤ 2

∣∣∣logR
r

2

∣∣∣ + 2
∣∣log 2R2

∣∣ .

This yields for every ξ ∈ G′ and for every n ∈ N

|g(zn, ξ)| ≤ 2
(∣∣∣logR

r

2

∣∣∣ +
∣∣log 2R2

∣∣
)
.

Thus by virtue of g(zn, ξ) −→ 0 for every ξ ∈ G′ and Lebesgue’s dominated convergence
theorem we get

lim
n−→∞

∫∫

G′

g(zn, ξ) dσξ =

∫∫

G′

lim
n−→∞ g(zn, ξ) dσξ = 0.

As B can be chosen arbitrarily small, we conclude

lim
z−→τ

∫∫

G

g(z, ξ) q(ξ) dσξ = 0 for τ ∈ ∂G . �

III.4 Further results

Real analyticity of solutions of real analytic elliptic PDEs

The next theorem will be one of the keys to Theorem I.1.
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Theorem III.17
Let G ⊆ C be a domain, let f : G×R −→ R be a continuous function, and let u : G −→ R
be a C2–solution of the partial differential equation

∆u = f(z, u)

in G. If (x, y, u) 7→ f(x+ iy, u) is a real analytic function in a neighborhood of the point
(x0, y0, u(x0 + iy0)) ∈ R3, x0 + iy0 ∈ G, then (x, y) 7→ u(x + iy) is real analytic in a
neighborhood of (x0, y0).

In [11] the authors give a proof for this statement using hyperbolic partial differential
equation techniques, which is beyond the scope of this work.

Equicontinuity of Green’s function

The last result for this chapter will turn out to be a very important tool to prove the
existence of pseudo–metrics of non–positive Gaussian curvature with prescribed zeros, see
Theorem IV.14.

Recall

F (z) =

∫∫

G

g(z, ξ)dσξ

belongs to C(G) ∩ C1(G). So F is locally uniformly continuous in G, i.e.

∫∫

G

(g(z1, ξ)− g(z2, ξ)) dσξ −→ 0

as |z1 − z2| tends to 0 locally uniformly for z1, z2 ∈ G. We shall need, however, the
following stronger statement.

Theorem III.18
Let G ⊂ C be a regular and bounded domain and let g(z, ξ) be Green’s function for G.
Then the integral ∫∫

G

|g(z1, ξ)− g(z2, ξ)|dσξ

tends to 0 as |z1 − z2| approaches 0 locally uniformly for z1, z2 ∈ G. More precisely, for
every compact set Ω ⊂ G let r := dist(Ω, ∂G)/2 and let 0 < δ < r/2. Then

∫∫

G

|g(z1, ξ)− g(z2, ξ)|dσξ ≤
(

9

2r
area (G) + 4πr

)
δ (III.20)

for all z1, z2 ∈ Ω with |z1 − z2| < δ.

Proof.
Let Ω ⊂ G be a compact subset and define r̃ := dist(Ω, ∂G) as well as r := r̃/2. Then
for every z0 ∈ Ω the disk Kr(z0) = {z ∈ C : |z − z0| < r} is a proper subset of G. Now
choose 0 < δ < r/2 and z1, z2 ∈ Ω, such that |z1 − z2| < δ.
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First, we direct our attention to the function

A(ξ) := g(z1, ξ)− g(z2, ξ) + log |z1 − ξ| − log |z2 − ξ| .

As the function A(ξ) has a harmonic extension to G, which is even continuous on G, we
infer from the maximum and minimum principle for harmonic functions

|A(ξ)| ≤ max
ξ∈∂G

∣∣∣∣log

∣∣∣∣
z1 − ξ
z2 − ξ

∣∣∣∣
∣∣∣∣ =: Â(z1, z2) .

This gives the estimate

|g(z1, ξ)− g(z2, ξ)| ≤ Â(z1, z2) +

∣∣∣∣log

∣∣∣∣
z1 − ξ
z2 − ξ

∣∣∣∣
∣∣∣∣ .

In view of (III.20) we will find in a first step an upper bound for Â(z1, z2), which only
depends on δ and r̃, and in a second step we will have a look at

∫∫

G

∣∣∣∣log

∣∣∣∣
z1 − ξ
z2 − ξ

∣∣∣∣
∣∣∣∣ dσξ .

Since |z1 − z2| < δ we set z1 = z2 + ρeiϕ, where 0 ≤ ρ < δ and 0 ≤ ϕ < 2π, and observe

1

1 + δ
r̃

≤
∣∣∣∣
z1 − ξ
z2 − ξ

∣∣∣∣ ≤ 1 +
ρ

|z2 − ξ|
≤ 1 +

δ

r̃
.

for ξ ∈ ∂G. These inequalities imply

Â(z1, z2) ≤ log

(
1 +

δ

r̃

)
≤ δ

r̃
,

which leads to ∫∫

G

Â(z1, z2)dσξ ≤ δ · 1

r̃
· area(G) . (III.21)

Now we will take care about the integral

I :=

∫∫

G

∣∣∣∣log

∣∣∣∣
z1 − ξ
z2 − ξ

∣∣∣∣
∣∣∣∣ dσξ .

For the purpose of simplification, we split the integral into the following two parts:

I1 =

∫∫

G\K r
2

(M)

∣∣∣∣log

∣∣∣∣
z1 − ξ
z2 − ξ

∣∣∣∣
∣∣∣∣ dσξ and I2 =

∫∫

K r
2

(M)

∣∣∣∣log

∣∣∣∣
z1 − ξ
z2 − ξ

∣∣∣∣
∣∣∣∣ dσξ ,

where M = (z1 + z2)/2 is the midpoint of z1 and z2 and K r
2
(M) is the disk about M with

radius r/2.
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We first have a look at I1. Since ξ ∈ G\K r
2
(M) there is the estimate

1

1 + δ
r
4

≤
∣∣∣∣
z1 − ξ
z2 − ξ

∣∣∣∣ ≤ 1 +
|z1 − z2|
|z2 − ξ|

≤ 1 +
δ

|z2 − ξ|
≤ 1 +

δ
r
4

.

Hence we obtain
∣∣∣∣log

∣∣∣∣
z1 − ξ
z2 − ξ

∣∣∣∣
∣∣∣∣ ≤ log

(
1 +

δ
r
4

)
for ξ ∈ G\K r

2
(M) ,

that is

I1 =

∫∫

G\K r
2

(M)

∣∣∣∣log

∣∣∣∣
z1 − ξ
z2 − ξ

∣∣∣∣
∣∣∣∣ dσξ ≤ log

(
1 +

δ
r
4

)
· area(G) ≤ 4δ

r
· area(G) . (III.22)

Finally, we move on to I2. In this case we have for ξ ∈ K r
2
(M) the estimate

1

1 + δ
|z1−ξ|

≤
∣∣∣∣
z1 − ξ
z2 − ξ

∣∣∣∣ ≤ 1 +
δ

|z2 − ξ|
and hence ∣∣∣∣log

∣∣∣∣
z1 − ξ
z2 − ξ

∣∣∣∣
∣∣∣∣ ≤ log

(
1 +

δ

|z2 − ξ|

)
+ log

(
1 +

δ

|z1 − ξ|

)
. (III.23)

From the observation that the disk K r
2
(M) is a subset of both Kr(z1) and Kr(z2) we infer

I2 =

∫∫

K r
2

(M)

∣∣∣∣log

∣∣∣∣
z1 − ξ
z2 − ξ

∣∣∣∣
∣∣∣∣ dσξ ≤

∫∫

Kr(z2)

log

(
1 +

δ

|z2 − ξ|

)
dσξ +

∫∫

Kr(z1)

log

(
1 +

δ

|z1 − ξ|

)
dσξ =

= 2

∫ 2π

0

∫ r

0

log

(
1 +

δ

ρ

)
ρdρdϕ ≤ 4πδ · r . (III.24)

We conclude from (III.21), (III.22) and (III.24)

∫∫

G

|g(z1, ξ)− g(z2, ξ)| dσξ ≤
(

9

2r
area (G) + 4πr

)
δ

for all z1, z2 ∈ Ω with |z1 − z2| < δ provided δ < r/2 = dist(Ω, ∂G)/4. �
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Conformal Pseudo–metrics

This chapter aims to present, in a relatively self–contained manner, some aspects of the
theory of conformal pseudo–metrics for plane domains. We have already discussed the
relevance of this theory in complex analysis in our introduction.

We begin by recalling some basic definitions, and introduce the Gaussian curvature of
a conformal pseudo–metric. In particular, we discuss how every pseudo–metric is linked
with its curvature by a non–linear elliptic PDE, the Gaussian curvature equation. The
most important metrics from the viewpoint of function theory are metrics of constant
negative Gaussian curvature with isolated singularities. Therefore we will briefly go into
a classification of the different types of singularities of such metrics due to Nitsche [39],
Heins [22] and Warnecke [53].

We proceed by illustrating the connection between pseudo–metrics with vanishing cur-
vature and harmonic functions. Afterwards we move on to a proof of the existence of
conformal metrics with non–positive Hölder continuous curvature in bounded and regular
domains by using the Gaussian curvature equation. Then we are well–prepared to turn
to the general case of conformal pseudo–metrics and to prove Theorem I.12 and Theorem
I.10 which show that the planar Schwarz–Picard Problem I.9 has an affirmative answer
for every bounded and regular domain.

IV.1 Basic concepts

IV.1.1 Pseudo–metrics and their curvature

Let us begin with a quick outline of the theory of conformal pseudo–metrics. For more
details see [30].

Definition IV.1
Let G ⊆ C be a domain. A twice continuously differentiable function λ : G −→ (0,∞) is
called a metric on G. A continuous function λ : G −→ [0,∞) which is twice continuously
differentiable in G\Gλ, where Gλ = {z ∈ G : λ(z) = 0}, is called pseudo–metric on G.
We say a pseudo–metric λ : G −→ [0,∞) has a zero of order α0 ∈ (0,∞) at a point z0 ∈ G,
if the limit

lim
z−→z0

λ(z)

|z − z0|α0

exists and is not equal to 0.

Typical examples for conformal metrics are the following canonical metrics.
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Examples IV.2
(a) Let C be the complex plane. Then

λC(z) = 1

is the euclidean metric on C.

(b) On the unit disk D the so called hyperbolic metric or Poincaré metric is given by

λD(z) =
1

1− |z|2 .

(c) Let P be the Riemann sphere and let

λP(z) =
1

1 + |z|2 .

Then λP is the spherical metric on P (given in local coordinates).

Further examples of pseudo–metrics can be easily constructed in the following way.

Let λ be a pseudo–metric on a domain G ⊆ C and let f : D −→ G be a holomorphic
function from a domain D ⊆ C into G, then

f ∗λ(z) = λ(f(z)) |f ′(z)|
is a pseudo–metric on D. f ∗λ is called the pullback of λ under the map f . Note, if λ is a
metric on G, then the zeros of the pullback f ∗λ of λ are precisely the zeros of f ′, i.e. the
critical points of the map f .

An important quantity associated with a metric is its curvature.

Definition IV.3
Let λ be a pseudo–metric on G. Then the number

κλ(z) = −∆ log λ(z)

λ(z)2

is defined for every z ∈ G\Gλ and is called the Gaussian curvature of λ at the point z.

We will write κ instead of κλ, if it is clear which pseudo–metric is meant. A straightforward
computation shows κ(z) = 0 for the euclidean metric λC, κ(z) = −4 for the hyperbolic
metric λD, and κ(z) = +4 for the spherical metric λP.

One pleasant aspect of the Gaussian curvature is its absolute conformal invariance. This
observation goes back to Gauss and is the content of the following result.

Theorem IV.4
Let λ be a pseudo–metric on a domain G and let f : D −→ G be a holomorphic function.
Then

κf∗λ(z) = κλ(f(z))

for every point z ∈ G for which f ′(z) 6= 0 and λ(f(z)) 6= 0.

We will focus in this work on pseudo–metrics which are strictly positive except for isolated
zeros. Since the curvature of a pseudo–metric λ : G −→ [0,∞) is only defined at points
where λ doesn’t vanish, we say λ is a pseudo–metric on G with curvature κ(z) in G\E if
λ ∈ C2(G\E), λ > 0 in G\E and λ(z) = 0 if and only if z ∈ E.
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IV.1.2 Conformal pseudo–metrics and their PDEs

In this section we relate pseudo–metrics to solutions of a corresponding partial differential
equation, the so–called Gaussian curvature equation. In particular, we shall show that
Theorem I.12 is equivalent to Theorem I.11, and we explain how to reduce Theorem I.11
to a more or less standard boundary value problem for a nonlinear partial differential
equation. Let us begin with the easier case of conformal metrics.

Let G ⊆ C be a domain and λ a conformal metric on G with curvature −κ(z)1. Then, by
definition,

∆ log λ(z)

λ(z)2
= κ(z) for z ∈ G . (IV.1)

Since λ is strictly positive on G the function u(z) = log λ(z) is well–defined, belongs to
C2(G) and is a solution of the PDE

∆u = κ(z)e2u (IV.2)

in G. We call (IV.2) the Gaussian curvature equation.

Conversely, if u is a C2–solution of (IV.2) in G, where κ is a continuous function in G,
then λ(z) := eu(z) defines a conformal metric with curvature −κ(z) in G. In particular,
in order to show the existence of a conformal metric with prescribed curvature −κ(z) one
has to find a C2–solution of the PDE (IV.2).

The situation for conformal pseudo–metrics (with finitely many zeros) is only slightly
more complicated. Let G ⊆ C be a domain and let z1, . . . , zn be finitely many points in
G. Denote by κ a real valued continuous function on G, and let λ be a pseudo–metric in G
with curvature −κ(z) in G\{z1, . . . , zn} and zeros of orders αj at zj. Then the curvature
condition consists in

∆ logλ(z)

λ(z)2
= κ(z) for z ∈ G\{z1, . . . , zn} .

The function u(z) := log λ(z) is well–defined and C2 in G\{z1, . . . , zn}, and a solution of
the Gaussian curvature equation

∆u = κ(z)e2u (IV.3)

in G\{z1, . . . , zn}. Further, u has the property that limz−→zj(u(z)− αj log |z − zj|) exists
for every j ∈ {1, . . . , n}.
Conversely, let u be a real valued C2–function in G\{z1, . . . , zn} which is a solution to

∆u = κ(z)e2u

in G\{z1, . . . , zn}, where κ : G −→ R is a continuous function. Furthermore, assume
limz−→zj (u(z)−αj log |z − zj|) exists finitely for some αj ∈ (0,∞) for every j ∈ {1, . . . , n}.
Then λ(z) := eu(z) is clearly a pseudo–metric in G with curvature −κ(z) in G\{z1, . . . , zn}
and zeros of orders αj at zj.

This shows that in order to find a conformal pseudo–metric in a domain G with prescribed
curvature −κ : G −→ R and prescribed zeros z1, . . . , zn ∈ G of orders α1, . . . , αn ∈ (0,∞),

1Note, κ is continuous on G.
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it is necessary and sufficient to find a solution u ∈ C2(G\{z1, . . . , zn}) of the curva-
ture equation ∆u = κ(z)e2u in G\{z1, . . . , zn} with singularities z1, . . . , zn such that
limz−→zj (u(z) − αj log |z − zj|) exists for every j ∈ {1, . . . , n}. In particular, Theorem
I.12 is equivalent to Theorem I.11.

Now our idea to find a singular solution u of ∆u = κ(z)e2u is to pass to an associated
curvature equation with regular solutions. To this end, let u be a function as described
above, that is u ∈ C2(G\{z1, . . . , zn}) with ∆u = κ(z)e2u in G\{z1, . . . , zn} for a con-
tinuous function κ : G −→ R and limz−→zj(u(z) − αj log |z − zj|) exists finitely for some
αj ∈ (0,∞) for every j ∈ {1, . . . , n} . We set B(z) =

∏n
j=1(z − zj)

αj and consider the

function v(z) = u(z)− log |B(z)|. Then v is continuous in G, C2 in G\{z1, . . . , zn} and a
solution of the PDE

∆v = κ(z)|B(z)|2e2v (IV.4)

in G\{z1, . . . , zn}. Actually, under some mild additional assumption on κ, the function v
will even belong to C2(G):

Theorem IV.5
Let G ⊆ C be a domain with Kr(z0) ⊂ G, let κ : G −→ R be a continuous function
which is locally Hölder continuous in Kr(z0) with exponent α, 0 < α ≤ 1, and let
v ∈ C(G) ∩ C2(G\{z0}) be a solution of the PDE

∆v = κ(z)e2v in G\{z0} .

Then v ∈ C2(G).

Thus in order to find a pseudo–metric in a domain G with prescribed Hölder continuous
curvature −κ : G −→ R and prescribed zeros z1, . . . , zn ∈ G it suffices to find a regular
solution v ∈ C2(G) of the curvature equation (IV.4). Indeed, if v ∈ C2(G) solves (IV.4) in
G, then λ(z) := |B(z)|ev(z) is a pseudo–metric in G with curvature−κ(z) in G\{z1, . . . , zn}
and zeros of orders αj at zj. As a matter of fact, we also need the Hölder continuity of
κ(z) to solve the PDE (IV.4) in Section IV.3 below.

Proof of Theorem IV.5.
We define a function v1 : Kr(z0) −→ R by

v1(z) = h(z)− 1

2π

∫∫

Kr(z0)

g(z, ξ)κ(ξ)e2v(ξ)dσξ , (IV.5)

where the continuous function h : Kr(z0) −→ R is harmonic in Kr(z0) with boundary
values v, and g denotes Green’s function for the disk Kr(z0). Theorem III.10 tells us that
v1 ∈ C(Kr(z0)) ∩ C1(Kr(z0)) ∩ C2(Kr(z0)\{z0}) and

∆v1 = κ(z)e2v in Kr(z0)\{z0} .

In view of the fact that v is a solution of ∆v = κ(z)e2v in Kr(z0)\{z0} it’s natural to
consider the function v − v1. We note v − v1 is continuous in the closure of Kr(z0) and
∆(v−v1) ≡ 0 in Kr(z0)\{z0}. Consequently, v−v1 has a harmonic extension to Kr(z0) and
since (v − v1)|∂Kr(z0) ≡ 0 we conclude v ≡ v1 in Kr(z0). This shows v is a C1–function in
Kr(z0) and therefore ξ 7→ κ(ξ)e2v(ξ) is locally Hölder continuous in Kr(z0) with exponent
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α. Now, due to Theorem III.10 the function v1 belongs to C2(Kr(z0)) and, since v1 ≡ v
in Kr(z0), we see v ∈ C2(G). �

Theorem IV.5 shows the solution v = log λ − log |B| of the PDE (IV.4) is C2–smooth,
if the curvature of the pseudo–metric λ is Hölder continuous. So the differentiability
properties of a pseudo–metric depend on the regularity properties of its curvature. The
next result, which will be indispensable to the proof of Theorem I.1, is of similar flavor.

Theorem IV.6
Let G ⊆ C be a domain, let z1, . . . , zn be finitely many distinct points in G, and let
κ : G −→ R be a bounded and real analytic function. Further, let λ be a pseudo–metric in
G with curvature −κ(z) in G\{z1, . . . , zn} and zeros of orders αj at zj, where αj ∈ (0,∞).
Then λ has the form

λ(z) =

∣∣∣∣
n∏

j=1

(z − zj)αj
∣∣∣∣ev(z)

with a real analytic function v : G\{z1, . . . , zn} −→ R. If αj is an integer, then v is even
real analytic at the point zj. In particular, if αj ∈ N for every j = 1, . . . , n, then v and
also λ are real analytic in G.

Proof.
In view of Theorem IV.5 the function v(z) = log λ(z) − log |B(z)|, z ∈ G, with B(z) =∏n

j=1(z − zj)αj , is a C2–solution of the PDE

∆v = κ(z)|B(z)|2e2v (IV.6)

in G. Since z 7→ κ(z)|B(z)|2 is real analytic in G\{z1, z2, . . . , zn} the solution v of (IV.6)
is real analytic in G\{z1, z2, . . . , zn} by Theorem III.17. If αj ∈ N for some j ∈ {1, . . . , n},
then z 7→ κ(z)|B(z)|2 is even real analytic in a neighborhood of the point zj. Applying
again Theorem III.17, we conclude v is real analytic at the point zj. �

IV.1.3 Isolated singularities of constantly curved metrics

We can view conformal pseudo–metrics with a discrete set of zeros as conformal metrics
with isolated singularities of a special kind. Here we want to deal with more general
isolated singularities of conformal metrics, but restrict ourselves to the case of metrics
with constant curvature −4, 0 and +4. Let’s begin with a complete description of the
different isolated singularities of metrics of constant curvature −4.

Theorem IV.7
Denote by Kr(0) the disk with radius 0 < r < 1 and center z = 0 and let λ be a metric
with constant curvature −4 in Kr(0)\{0} . Then either λ has a C2–extension to Kr(0)
with λ(0) > 0 or

lim
z−→0

λ(z)

|z|α exists and 6= 0 for some α ∈ (−1,∞)\{0} ,
or

lim
z−→0

(
λ(z)|z| log

1

|z|

)
exists and 6= 0.
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Taking into account the observations we made in Section IV.1.2, Theorem IV.7 is an im-
mediate consequence of the following classification of the possible singularities of solutions
to the Gaussian curvature equation ∆u = 4e2u:

Theorem IV.8
Let Kr(0) be the disk with radius 0 < r < 1 and center z = 0. Further, let u :
Kr(0)\{0} −→ R be a C2–solution of the PDE

∆u = 4e2u in Kr(0)\{0} . (IV.7)

Then the function u has either a C2–extension to Kr(0) or one of the following singular-
ities:

u(z) = α log |z|+ ν(z) , α ∈ (−1,∞)\{0} ,

u(z) = − log |z| − log log
1

|z| + ν̃(z)

where ν, ν̃ are continuous function a neighborhood in Kr(0). Moreover, ν and ν̃ are real
analytic in Kr(0)\{0}. If α ∈ N then ν is even real analytic in Kr(0).

Theorem IV.8 was obtained by Nitsche [39], Warnecke [53], and also by Heins [22] who
didn’t establish the statement about the real analyticity. Heins used techniques involv-
ing differential inequalities, whereas Nitsche and Warnecke deduced Theorem IV.8 from
Liouville’s Theorem, see Corollary I.3. We also want to remark that Theorem IV.8 gives
Theorem IV.6 in the case, where κ(z) = +4.

The next examples shall show that there exist metrics of constant curvature −4 with all
possible types of isolated singularities described by Theorem IV.7.

Examples IV.9
(a) For α ∈ (−1,∞)\{0}

λ(z) =
(α+ 1)|z|α
1− |z|2α+2

defines a metric of constant curvature −4 in D\{0} with a zero of order α at z = 0,
if α > 0 and a ”pole” of order |α| at z = 0, if α ∈ (−1, 0).

(b) An example for a metric with curvature −4 in D\{0} and a ”log”–singularity is

λ(z) =

(
2|z| log

(
1

|z|

))−1

.

We now have a look at isolated singularities of metrics with constant curvature 0 and +4.

In these cases we can easily find examples of metrics with prescribed zero or ”pole” of
almost arbitrary order. Roughly speaking such metrics arise for example as the pullback
of the euclidean or spherical metric under the function f(z) = zα+1, (α + 1) ∈ R\{0}.
Examples IV.10

(a) In D\{0}
µ(z) = |z|α

defines a metric of constant curvature 0 with a zero of order α at z = 0 if α ∈ (0,∞),
and a ”pole” of order |α| at z = 0 if α ∈ (−∞, 0).
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(b) In D\{0}
σ(z) =

(α + 1)|z|α
1 + |z|2α+2

defines a metric of constant curvature +4 with a zero of order α at z = 0 if α ∈
(0,∞), and a ”pole” of order |α| at z = 0 if α ∈ (−∞, 0)\{−1}.

Contrary to metrics of constant curvature −4 metrics of constant curvature 0 and +4
cannot have ”log”–singularities. This will be shown in Chapter V.3.

The last thing, we wish to point out is that the limit points for metrics of constant curva-
ture −4 coincide if we approach a singularity. This is not the case for metrics of constant
curvature 0 or +4 as the next examples show. The reason for the difference is that we can
define metrics of constant curvature 0 or +4 as the pullback of the euclidean or spherical
metric under a holomorphic function with an essential singularity. The classification of
the possible singularities of metrics with constant curvature 0 and +4 is therefore more
involved than for metrics of constant curvature −4. See also [8].

Examples IV.11
(a) The function

µ(z) = exp

(
exp

( Re z

|z|2
)
· cos

( Im z

|z|2
))

is a conformal metric with constant curvature 0 in D\{0} and

lim
n−→∞µ

(
− 1

n2
+ i

1

n4

)
= 1 6= e = lim

n−→∞µ
(

i

2πn

)
.

(b) The function

σ(z) =

(
|z|2 ·

(
exp

(
z + z

2zz

)
+ exp

(
−z + z

2zz

)))−1

is a conformal metric with constant curvature +4 in D\{0} and

lim
n−→∞σ

(
1

n
+ i

1

n

)
= 0 6=∞ = lim

n−→∞µ
(
i

n

)
.

IV.2 Pseudo–metrics with vanishing Gaussian curva-

ture

In this section we will restrict the discussion to pseudo–metrics with vanishing Gaussian
curvature. As we have observed these pseudo–metrics are closely related to harmonic
functions2. This immediately allows to deduce a number of properties of pseudo–metrics
with vanishing Gaussian curvature from results about harmonic functions. For instance,
every pseudo–metric λ(z) of vanishing Gaussian curvature is real analytic in G\Gλ, since
every harmonic function is real analytic, see also Theorem IV.6.

2If λ is a pseudo–metric on a domain G, then u(z) := logλ(z) is a harmonic function in G\Gλ.
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Further, every regular domain G, i.e. every domain, which possesses a Green’s function
g(z, ξ), carries a metric of curvature 0. Indeed, the function z 7→ g(z, ξ) + log |z − ξ| is
harmonic in G for every fixed ξ ∈ G, so |z − ξ|eg(z,ξ) is a metric of vanishing curvature in
G.

It is also possible to prescribe the zeros (including their orders) and the boundary values
of zero curvature metrics in bounded regular domains. Equivalently, it is possible to
prescribe the singularities and the boundary values of harmonic functions in a bounded
regular domain. This is an important and well–known fact in complex analysis:

Theorem IV.12
Let G ⊂ C be a bounded and regular domain, let z1, . . . , zn be finitely many distinct
points in G and let α1, . . . , αn be positive real numbers. Further, let φ : ∂G −→ (0,∞)
be a continuous function. Then there exists a unique pseudo–metric λ : G −→ [0,∞)
of constant Gaussian curvature 0 in G\{z1, . . . , zn} with zeros of orders αj at zj for
j = 1, . . . , n, such that λ is continuous on G with λ(z) = φ(z) for z ∈ ∂G.

Proof.

Let B(z) =
∏n

j=1(z − zj)
αj . Then there exists a unique harmonic function v : G −→ R

with boundary values ϕ(z) = log φ(z) − log |B(z)|. Then u(z) = v(z) + log |B(z)| is a
harmonic function in G\{z1, . . . , zn}, so λ(z) = eu(z) = |B(z)|ev(z) is a pseudo–metric in
G of constant Gaussian curvature 0 in G\{z1, . . . , zn} with zeros of orders αj at zj for
j = 1, . . . , n, and λ(z) = φ(z) for z ∈ ∂G. If λ1(z) and λ2(z) are two such metrics,
then u1(z) = log λ1(z) − log |B(z)| and u2(z) = logλ2(z) − log |B(z)| are two harmonic
functions in G\{z1, . . . , zn}, which are bounded there, so they have harmonic extensions
to G. But on the boundary these two harmonic functions agree. Thus λ1(z) = λ2(z). �

We finally note the following strong maximum principle for conformal metrics of constant
Gaussian curvature 0.

Theorem IV.13
Let G ⊂ C be a bounded domain and let z1, . . . , zn be finitely many points in G. Let λ1

and λ2 be two pseudo–metrics in G with curvature 0 in G\{z1, . . . , zn}. Assume that λ2

has zeros of orders αj ∈ (0,∞) at zj for j ∈ {1, . . . , n} and λ1 has a zero of order at least
αj at zj for every j ∈ {1, . . . , n}. If

lim sup
z−→ξ

λ1(z)

λ2(z)
≤ 1, ξ ∈ ∂G,

then either λ1(z) < λ2(z) in G\{z1, . . . , zn} or λ1(z) = λ2(z) in G.

Proof.

We set u1(z) = logλ1(z) and u2(z) = log λ2(z). Then u1 − u2 is a harmonic function
in G\{z1, z2, . . . , zn} and lim supz−→ξ(u1(z) − u2(z)) ≤ 0 for ξ ∈ ∂G ∪ {z1, . . . , zn}. It
follows u1 < u2 in G\{z1, . . . , zn} or u1 = u2 in G\{z1, . . . , zn}. This implies λ1 < λ2 in
G\{z1, . . . , zn} or λ1 ≡ λ2 in G. �
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We now prove Theorem I.12:

Theorem IV.14
Let G ⊂ C be a bounded and regular domain, let z1, z2, . . . , zn ∈ G be finitely many
distinct points and let α1, . . . , αn ∈ (0,∞). Let φ : ∂G −→ (0,∞) be a continuous
function and κ : G −→ [0,∞) a bounded and locally Hölder continuous function with
exponent α, 0 < α ≤ 1. Then there exists a unique pseudo–metric λ : G −→ [0,∞) of
curvature −κ(z) in G\{z1, z2, . . . , zn} with zeros of orders αj at zj and boundary values
φ, i.e. λ is continuous on G and λ|∂G ≡ φ.

The proof will be split into several parts. Let’s start with the following more general
result about the uniqueness of pseudo–metrics with non–positive curvature.

IV.3.1 Uniqueness

Theorem IV.15
Let G ⊂ C be a bounded domain, E = {z1, z2, . . .} a discrete set of G, and κ : G −→ [0,∞)
a continuous function. Further, denote by λ and µ two pseudo–metrics in G with the
following properties:

(i) λ and µ are continuous on G and λ ≡ µ > 0 on ∂G.

(ii) λ and µ have zeros of the same orders at zj and no others.

(iii) λ and µ have curvature −κ(z) in G\E.

Then λ and µ coincide in G, i.e. λ ≡ µ in G.

Proof.
First we note the quotient of the pseudo–metrics λ and µ, λ/µ has a continuous non–
vanishing extension to G. Therefore the function

h :=

(
log

λ

µ

)+

=





log
λ

µ
if

λ

µ
≥ 1,

0 if
λ

µ
< 1

is well–defined on G. We will show h is a subharmonic function in G. For that it suffices
to prove h is subharmonic in G\E, see for instance [12, p. 228/229]. To this end let
z0 ∈ G\E be an arbitrary point. If λ(z0) > µ(z0), then λ > µ in a neighborhood of z0

and we compute

∆h(z0) = ∆

(
log

λ

µ

)+

(z0) = ∆

(
log

λ

µ

)
(z0) = ∆ logλ(z0)−∆ logµ(z0) =

= κ(z0)(λ(z0)2 − µ(z0)2) ≥ 0.

On the other hand, if λ(z0) < µ(z0), then λ < µ in some neighborhood of z0 and we obtain
∆h(z0) = 0. Lastly, if λ(z0) = µ(z0), then h(z) ≥ h(z0) holds in some neighborhood of z0.
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Thus, we conclude h is a subharmonic function in G\E and consequently in G. The
maximum principle for subharmonic functions now implies h(z) = 0 in G, because h ≡ 0
on ∂G by hypothesis. Therefore we have λ(z) ≤ µ(z) on G and by symmetry λ ≡ µ. �

IV.3.2 Existence

First we are going to prove the existence part of Theorem IV.14 for the special case, when
λ is a conformal metric, i.e λ has no zeros at all. In view of Section IV.1.2 we need to
check:

Theorem IV.16
Let G ⊂ C be a bounded and regular domain. Further, let Φ : ∂G −→ R be a continuous
function and κ : G −→ [0,∞) a bounded and locally Hölder continuous function with
exponent α, 0 < α ≤ 1. Then there exists a unique function v ∈ C(G)∩C2(G) such that

∆v = κ(z)e2v in G,

v = Φ on ∂G.
(IV.8)

Proof.
Let’s have a quick look at the uniqueness assertion. Assume v and w are two solutions of
the boundary value problem (IV.8). Then λ = ev and µ = ew are two conformal metrics
in G which fulfill the hypotheses of Theorem IV.15. Thus λ ≡ µ in G and consequently
v ≡ w in G.

The existence part is much harder. Suppose for a moment v ∈ C(G)∩C2(G) is a solution
to (IV.8). Since v is uniquely determined, Theorem III.2 indicates that

v(z) = h(z)− 1

2π

∫∫

G

g(z, ξ)κ(ξ)e2v(ξ) dσξ,

where h(z) is continuous on G, harmonic in G and coincides with Φ on ∂G.

This suggests to introduce the operator

T [v](z) := h(z)− 1

2π

∫∫

G

g(z, ξ)κ(ξ)e2v(ξ) dσξ,

and to apply Schauder’s fixed point theorem.

To set the stage for Schauder’s theorem, let X be the Fréchet space of real valued con-
tinuous functions in G equipped with the (metriziable) compact–open topology, and let
M := {v ∈ X : m ≤ v(z) ≤ h(z) for all z ∈ G}, where

m := inf
z∈G

T [h](z).

Note that m > −∞. In order to be able to apply Schauder’s fixed point theorem we need
to verify the following properties of the operator T .

Lemma IV.17
The set M is closed and convex (in X). The operator T : M −→ X is continuous, maps
M into M , and T (M) is precompact.
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Proof.
M is clearly closed and convex. Next, we will prove T [M ] is precompact, by showing
T [M ] is a locally equicontinuous family and T [M ] is bounded. Let Ω be a compact subset
of G, let 2r := dist(Ω, ∂G) > 0, and let ε > 0 be fixed. It is convenient to set

C :=
1

2π
sup
ξ∈G

(
κ(ξ)e2h(ξ)

)
,

and we may assume C > 0.
Since h is continuous in G there exists a constant δ′ > 0 such that |h(z1)− h(z2)| < ε/2
for all z1, z2 ∈ G with |z1 − z2| < δ′. Further, we define

δ := min

{
δ′,

ε

2C
(

9
2r

area(G) + 4πr
) , r

2

}
,

a quantity, which depends only on h, κ, G and Ω. Then we have the following estimate
for all z1, z2 ∈ Ω with |z1 − z2| < δ and any v ∈M :

|T [v](z2)− T [v](z1)| ≤ |h(z2)− h(z1)|+ 1

2π

∫∫

G

|g(z2, ξ)− g(z1, ξ)|κ(ξ)e2v(ξ) dσξ

≤ |h(z2)− h(z1)|+ C ·
∫∫

G

|g(z2, ξ)− g(z1, ξ)| dσξ

≤ ε

2
+ C ·

(
9

2r
area(G) + 4πr

)
· δ ≤ ε.

For the last but one step see (III.20) in Theorem III.18. Thus T [M ] is a locally equicon-
tinuous set of functions on G. Moreover, for all v ∈M and all z ∈ G

T [h](z) ≤ T [v](z) ≤ h(z) , (IV.9)

which implies

min
ζ∈G

T [h](ζ) ≤ T [v](z) ≤ max
ζ∈G
|h(ζ)| for every v ∈ M and for all z ∈ G .

This shows T [M ] is bounded, so T [M ] is a precompact subset of X. Note, estimate (IV.9)
also gives T [M ] ⊆M .

It remains to prove T : M −→M is continuous. Let (vk)k be a sequence of functions in M
which converges locally uniformly in G to v ∈M . We have to show the sequence (T [vk])k
converges locally uniformly in G to T [v].

Let Ω be a compact subset ofG and fix ε > 0. We shall deduce that |T [vk](z)−T [v](z)| < ε
for all z ∈ Ω and all k ≥ k̃ for some k̃ independent of z.

For the purpose of simplification, let us define

C1 =
1

π
sup
ξ∈G

κ(ξ) ·max
ξ∈G

e2h(ξ),

C2 = 2 max
ξ∈G
|h(ξ)|,

C3 = 24πdG
2.
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Now we choose a compact set K with Ω ⊆ K ⊆ G such that

dist(∂Ω, ∂K) > r

and
C1 · C2 · (| log r|+ | log dG|+ | log 2dG|) · area(G\K) <

ε

2
.

Then there exists an index k̃ ∈ N such that

max
z∈K
|vk(z)− v(z)| < ε

2C1C3

, k ≥ k̃. (IV.10)

Consequently, we get for z ∈ Ω

|T [vk](z)− T [v](z)| =

∣∣∣∣∣∣
1

2π

∫∫

G

g(z, ξ)κ(ξ)(e2vk(ξ) − e2v(ξ))dσξ

∣∣∣∣∣∣

≤ 1

2π
· sup
ξ∈G

κ(ξ) · 2 ·max
ξ∈G

e2h(ξ) ·
∫∫

G

g(z, ξ) |v(ξ)− vk(ξ)| dσξ

≤ C1 ·
∫∫

G

g(z, ξ) |v(ξ)− vk(ξ)| dσξ .

In order to find an upper bound for the last integral we split it into the following two
parts:

∫∫

G\K

g(z, ξ) |v(ξ)− vk(ξ)| dσξ , (IV.11)

∫∫

K

g(z, ξ) |v(ξ)− vk(ξ)| dσξ. (IV.12)

The integral over K yields for k ≥ k̃
∫∫

K

g(z, ξ) |v(ξ)− vk(ξ)| dσξ ≤ max
ξ∈K
|v(ξ)− vk(ξ)|

∫∫

K

g(ξ, z) dσξ

(IV.10)

≤ ε

2C1C3

∫∫

G

g(z, ξ) dσξ ≤
ε

2C1

,

see Lemma III.15. For an estimate of the integral (IV.11) it suffices to consider
∫∫

G\K

g(z, ξ) dσξ ,

since ∫∫

G\K

g(z, ξ) |v(ξ)− vk(ξ)| dσξ ≤
(

sup
ξ∈G
|v(ξ)|+ sup

ξ∈G
|vk(ξ)|

)∫∫

G\K

g(z, ξ) dσξ

≤ C2

∫∫

G\K

g(z, ξ) dσξ .
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For that reason define R := 2dG such that G ⊆ KR(z) for every z ∈ G and choose an
arbitrary point z ∈ G. Then Green’s function k(z, ξ) for KR(z) with singularity at z is
given by

k(z, ξ) = − log
|z − ξ|
R

and the maximum principle for harmonic functions implies g(z, ξ) ≤ k(z, ξ) for all ξ ∈ G.
This leads to

∫∫

G\K

g(z, ξ) dσξ ≤
∫∫

G\K

k(z, ξ) dσξ =

∫∫

G\K

− log
|z − ξ|
R

dσξ

≤ (| log r|+ | log dG|+ | log 2dG|) · area(G\K)

since r < |ξ − z| < dG holds for all ξ ∈ G\K and all z ∈ Ω. Taking into account that the
last estimate is valid for every z ∈ Ω, we obtain

∫∫

G\K

g(z, ξ) dσξ ≤
ε

2C1C2
for z ∈ G .

So we have |T [vk](z)− T [v](z)| < ε for all k ≥ k̃ and all z ∈ Ω and conclude T : M −→M
is continuous. �

We are now in a position to continue the actual proof of Theorem IV.16.

Since the hypotheses of Schauder’s fixed point theorem3 are fulfilled, an application to
the operator T : M −→M gives a fixed point ṽ ∈M of T , that is,

ṽ(z) = T [ṽ](z) = h(z)− 1

2π

∫∫

G

g(z, ξ) κ(ξ)e2ṽ(ξ) dσξ. (IV.13)

We claim ṽ belongs to C(G) ∩ C2(G) and is a solution of (IV.8).

Indeed, since ξ 7→ κ(ξ)e2ṽ(ξ) is bounded and continuous in G, the function ṽ belongs to
C(G)∩C1(G) by Theorem III.10. This implies that the function ξ 7→ κ(ξ)e2ṽ(ξ) is actually
locally Hölder continuous with exponent α as ṽ is a C1–function. Applying Theorem III.10
once more proves ṽ ∈ C(G) ∩ C2(G) and

∆ṽ = κ(ξ)e2ṽ in G,

ṽ = Φ on ∂G.

�

Now we are going to prove Theorem IV.14

3compare [13, p. 90] and [51]
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Proof of Theorem IV.14.
We define B(z) =

∏n
j=1(z − zj)αj and set Φ(z) = log φ(z) − log |B(z)|. The problem of

finding a pseudo–metric with the desired properties consists in solving the boundary value
problem

∆u = κ(z)|B(z)|2e2v in G,

u = Φ on ∂G,
(IV.14)

cf. Section IV.1.2. The function z 7→ κ(z)|B(z)|2 is bounded and locally Hölder continuous
with exponent β = min{α, 2α1, . . . , 2αn, 1} on G, see Remark III.6, and meets therefore
the conditions of Theorem IV.16. So we get a unique solution u ∈ C(G) ∩ C2(G) of
(IV.14) in G. Thus, λ(z) = |B(z)|eu(z) is a pseudo–metric in G with curvature −κ(z) in
G\{z1, . . . , zn}, zeros of orders αj at zj and λ = φ on ∂G. �

An immediate consequence of Theorem IV.14 is the next theorem, which is equivalent to
Theorem I.10.

Theorem IV.18
Let G ⊂ C be a bounded and regular domain, let z1, . . . , zn be finitely many distinct
points in G and let α1, . . . , αn be positive real numbers. Further, let φ : ∂G −→ (0,∞)
be a continuous function. Then there exists a unique pseudo–metric λ : G −→ [0,∞)
of constant Gaussian curvature −4 in G\{z1, . . . , zn} with zeros of orders αj at zj for
j = 1, . . . , n, such that λ is continuous on G and λ(z) = φ(z) for z ∈ ∂G.

Note, Theorem IV.18 is the precise analog to Theorem IV.12 for metrics with constant
curvature −4.

In the next two corollaries Theorem IV.16 is considered from a different point of view.
The first one shows that under some additional assumptions zeros are possible for the
boundary functions of pseudo–metrics and the second one deals with non–continuous
boundary functions.

Corollary IV.19
Let G ⊂ C be a bounded and regular domain. Further, let h : G −→ C be a holomorphic

function such that |h| : G −→ [0,∞) is continuous, and let κ : G −→ [0,∞) be a bounded
and locally Hölder continuous function with exponent α, 0 < α ≤ 1. Then there exists
a unique pseudo–metric λ of Gaussian curvature −κ(z) in G\{z ∈ G : h(z) = 0}, such
that

lim
z−→ξ

λ(z) = |h(ξ)| , ξ ∈ ∂G.

Proof.
We consider the boundary value problem

∆v = κ(z)|h(z)|2e2v in G

v = 0 on ∂G .
(IV.15)

By Theorem IV.16 there exists a unique solution v ∈ C(G) ∩ C2(G) of (IV.15) since
z 7→ κ(z)|h(z)|2 is bounded and locally Hölder continuous with exponent α on G. The
function λ(z) := |h(z)|ev(z) is then the desired metric. �
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Corollary IV.20
Let b : D −→ C be a bounded holomorphic function and denote by ϕ : ∂D −→ C its bound-
ary function. Further, let κ : D −→ [0,∞) be a bounded and locally Hölder continuous
function with exponent α, 0 < α ≤ 1. Then there exists a unique pseudo–metric λ of
Gaussian curvature −κ(z) in D\{z ∈ D : b(z) = 0} such that the non–tangential limits
for λ exist almost everywhere and coincide with |ϕ(ξ)|, that is

n.t. lim
z−→ξ

λ(z) = |ϕ(ξ)|

for almost every ξ ∈ ∂D.

Proof.
In this case we make use of the following boundary value problem

∆ω = κ(z)|b(z)|2e2ω in D ,

ω = 0 on ∂D .
(IV.16)

Again, by Theorem IV.16, there exists a unique solution ω ∈ C(D) ∩ C2(D) of (IV.16),
because of the fact that z 7→ κ(z)|b(z)|2 is bounded and locally Hölder continuous with
exponent α in D. The metric λ(z) := |b(z)|eω(z) does the job. �

IV.3.3 Maximal conformal pseudo–metrics

In view of the preceding considerations and the great significance of maximal conformal
metrics of constant curvature −4 in complex analysis, it is of interest for which domains
G ⊆ C one can find maximal pseudo–metrics of constant curvature −4 with prescribed
zeros. Indeed, one can prove the existence of such pseudo–metrics for every bounded and
regular domain G, but it turns out that this is a rather delicate matter. Nevertheless,
we wish to explain the basic ideas how to construct maximal pseudo–metrics of constant
curvature −4 in the next theorem. We need to consider pseudo–metrics which are only
supposed to be upper semicontinuous and for which the curvature is defined by replacing
the Laplacian with the generalized lower Laplacian.

Theorem IV.21
Let G ⊂ C be a regular and bounded domain, let z1, z2, . . . , zn ∈ G be finitely many
distinct points and let α1, . . . , αn be positive numbers. Further, let

F =
{
λ|λ is an upper semicontinuous pseudo–metric inGwith curvature ≤ −4 in

G\{z1, z2, . . . , zn} and zeros of orders αj at zj for j = 1, . . . , n
}

Then

λ̃(z) := sup
λ∈F

λ(z)

is the maximal pseudo–metric in G, which belongs to C2(G\{z1, . . . , zn}), has constant
curvature −4 in G\{z1, . . . , zn} and zeros of orders αj at zj for j ∈ {1, . . . , n}.
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The statement of Theorem IV.21 is to be reminiscent of Perron’s method for the Dirichlet
problem for harmonic functions, and in fact the proof given below is patterned after
Perron’s approach. We will only give a rough sketch of the necessary arguments. The
gaps can be filled with little change of Heins’s ideas and proofs to this topic, see [22].

It is instructive to keep in mind the following dictionary:

harmonic functions =̇ conformal pseudo–metrics with curvature −4

subharmonic functions =̇ conformal pseudo–metrics with curvature less than −4

Proof.
(0) For α > 1 the pseudo–metric

α|z|α−1

1− |z|2α
is the maximal pseudo-metric in D with curvature −4 in D\{0} and a zero of order
α− 1 at z = 0.

(1) F 6= ∅ by Theorem IV.18.

(2) If λ1, λ2 ∈ F , then max{λ1, λ2} ∈ F .

(3) With the help of Theorem IV.14 we can modify a pseudo–metric λ ∈ F in every disk
K which is compactly contained in G such that the new function (i) is upper semi-
continuous in G, (ii) has the desired zeros, (iii) is twice continuously differentiable
in K except for the zeros, (iv) has constant curvature −4 in K save the zeros in K.
Further, this new pseudo–metric is unique, and we call it the modification of λ with
respect to the disk K.

The next two points are general statements about pseudo–metrics.

(4) Let (λk)k be a sequence of C2 pseudo–metrics in G with Gaussian curvature −4 in
G\{z1, . . . , zn} and every λk has a zero of order αj at zj for each j = 1, . . . , n. If∞ >
λL(z) = limk−→∞ λk(z) > 0 in G\{z1, z2, . . . , zn}, then λL ∈ C2(G\{z1, . . . , zn}) and
has constant curvature −4 in G\{z1, . . . , zn}.

(5) Let λ, µ be two C2 pseudo–metrics inG with constant curvature−4 inG\{z1, . . . , zn}
and the same zeros (with the same order). Further, let λ ≥ µ in G and λ(a) = µ(a)
for a point a ∈ G\{z1, . . . , zn}. Then λ ≡ µ in G.

Now we return to the family F .

(6) Choose a point a ∈ G\{z1, . . . , zn}, a disk Ka about a which is compactly contained
in G, and a sequence (λk)k ⊆ F with the following properties: (i) λk+1 ≥ λk, (ii)
every λk is its own modification w.r.t. Ka, and (iii) λL(a) = limk−→∞ λk(a) = λ̃(a).

Next, choose a point b ∈ Ka\{a, z1, . . . , zn} and a sequence (µk)k ⊆ F such that (i)
µk+1 ≥ µk and µk ≥ λk, (ii) every µk is its own modification w.r.t. Ka, and (iii)
µL(b) = limk−→∞ µk(b) = λ̃(b).
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This gives us µL(z) ≥ λL(z) in Ka and µL(a) = λL(a). Thus we can conclude from
(4) and (5) that λL = µL in Ka. In particular, λ̃(b) = µL(b) = λL(b). Since b was
an arbitrary point in Ka\{a}, we have λ̃ = λL in Ka\{a}. As λ̃(a) = λL(a), we
therefore get λ̃ ≡ λL in all of Ka. Because Ka was an arbitrary disk compactly
contained in G, we conclude λ̃ ∈ C2(G\{z1, . . . , zn}) and λ̃ has constant curvature
−4 in G\{z1, . . . , zn}.

(7) The last thing to check is that λ̃ has the correct zeros. Since λ ≤ λ̃ for every λ ∈ F
the order βj of the zero zj of λ̃ is ≤ αj. We need to show that βj < αj is impossible.
Choose a disk K ⊆ G with center zj and radius r, which contains none of the other
zeros of λ̃. Then define the functions f(z) = (z − zj)/r and g(z) = zαj+1. The
pseudo-metric

σ(z) :=
|(g ◦ f)′(z)|

1− |g ◦ f(z)|2
is well-defined in K and the maximal pseudo-metric in K with curvature −4 in
K\{zj} and a zero of order αj in zj. Therefore λ(z) ≤ σ(z) for z ∈ K and any
λ ∈ F , and this implies λ̃(z) ≤ σ(z) for z ∈ K. Consequently, λ̃ has a zero of order
αj at zj for any j ∈ {1, . . . , n}. �





– Chapter V –

Representation of Conformal
Pseudo–metrics

V.1 Pseudo–metrics with zeros of integer order

We are now going to prove Theorem I.1 and first note that we can state Theorem I.1 as
follows.

Theorem V.1
Let E = {z1, z2, . . .} be a discrete subset of a simply connected domain G ⊆ C and let
α1, α2, . . . be positive integers. Further, let λ : G −→ [0,∞) be a conformal pseudo–metric
of constant Gaussian curvature κ = 4k ∈ {−4, 0,+4} in G\E with zeros of orders αj at
zj. Then there exists an analytic function f : G −→ X such that

λ(z) =
|f ′(z)|

1 + k |f(z)|2 for z ∈ G ,

where

X =





D if k = −1 or κ = −4, respectively,

C if k = 0 or κ = 0, respectively,

P if k = +1 or κ = +4, respectively .

(V.1)

If g : G −→ X is another analytic map satisfying

λ(z) =
|g′(z)|

1 + k |g(z)|2 for z ∈ G ,

then g = T ◦ f , where T is a rigid motion of X, i.e. T is a unit disk automorphism if
X = D, a euclidean motion of the complex plane if X = C, and a rotation of the sphere
if X = P.

We first observe Theorem V.1 follows quite easily from the following local version of
Theorem V.1 which allows at most one zero of the pseudo–metric λ(z).

Lemma V.2
Let Kr(z0) denote the disk of radius r > 0 about z0 ∈ C. Further, let λ be a conformal
pseudo–metric in Kr(z0) such that either λ is a conformal metric of constant curvature
4k ∈ {−4, 0,+4} in Kr(z0), or λ has constant curvature 4k ∈ {−4, 0,+4} in Kr(z0)\{z0}
and a zero of order α ∈ N at z = z0. Then there exists a holomorphic function f :
Kr(z0) −→ X such that

λ(z) =
|f ′(z)|

1 + k|f(z)|2 for z ∈ Kr(z0) ,
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where X = D, C or P if k = −1, 0 or +1, respectively. If g : Kr(z0) −→ X is another
holomorphic function with the same properties, i.e.

λ(z) =
|g′(z)|

1 + k|g(z)|2 for z ∈ Kr(z0) ,

then g = T ◦ f , where T is a rigid motion of X.

Before turning to the proof of Lemma V.2, let us explain why Theorem V.1 can be deduced
from its local version, Lemma V.2, using the well–known ”Kreiskettenverfahren”.

Let λ : G −→ [0,∞) be the pseudo–metric of Theorem V.1. Then we can find to every
point ξ ∈ G a disk Kr(ξ)(ξ) ⊆ G about ξ with radius r(ξ) > 0 such that the restriction
of λ to Kr(ξ)(ξ) is a conformal pseudo–metric with constant curvature 4k in Kr(ξ)(ξ)\{ξ},
i.e. λ has no zeros in Kr(ξ)(ξ)\{ξ}. Now, pick a base point, say ξ0 ∈ G, and apply Lemma
V.2 to the corresponding disk Kr(ξ0)(ξ0). This yields

λ(z) =
|f ′0(z)|

1 + k|f0(z)|2 for z ∈ Kr(ξ0)(ξ0) ,

where f0 : Kr(ξ0)(ξ0) −→ X is some holomorphic function. We have the intention to show
that f0 has a holomorphic extension to G. For that purpose we claim f0 can be continued
analytically along every path γ in G starting at the base point ξ0. In order to prove this
assertion, let γ : [0, 1] −→ G be an arbitrary path with initial point γ(0) = ξ0 and endpoint
γ(1) = ξe ∈ G. Then we can cover γ by finitely many of the disks Kr(ξ)(ξ), say Kr(ξj)(ξj),
j = 1, . . . , N , such that ξ0 ∈ Kr(ξ1)(ξ1), ξe ∈ Kr(ξN )(ξN) and Kr(ξj)(ξj)∩Kr(ξj+1)(ξj+1) 6= ∅
for j = 1, . . . , N − 1. On each of these balls Kr(ξj)(ξj) we have

λ(z) =
|f ′j(z)|

1 + k|fj(z)|2
in Kr(ξj)(ξj) ,

for some holomorphic function fj : Kr(ξj)(ξj) −→ X by Lemma V.2.

Since Kr(ξj)(ξj)∩Kr(ξj+1)(ξj+1) 6= ∅ there exists a disk Krj (zj) with center zj ∈ G and ra-
dius rj > 0 such that Krj (zj) ⊆

(
Kr(ξj)(ξj) ∩Kr(ξj+1)(ξj+1)

)
\{ξj, ξj+1}. Applying Lemma

V.2 to the disk Krj(zj) gives

fj(z) = T (fj+1(z)) for z ∈ Krj (zj),

where T : X −→ X is some rigid motion of X. Thus T ◦ fj+1 is the direct analytic
continuation of fj : Kr(ξj)(ξj) −→ X to the disk Kr(ξj+1)(ξj+1).

This process gives an analytic continuation of f0 along γ to a holomorphic function

f :
N⋃

j=1

Kr(ξj)(ξj) −→ X

satisfying

λ(z) =
|f ′(z)|

1 + k|f(z)|2 in

N⋃

j=1

Kr(ξj)(ξj).
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Consequently, f0 admits unrestricted analytic continuation in the simply connected do-
main G and therefore there exists a holomorphic function f : G −→ X such that λ(z) is
the pullback of the metric λX under f .

Now let g : G −→ X be another holomorphic function which represents λ, that is

|f ′(z)|
1 + k|f(z)|2 =

|g′(z)|
1 + k|g(z)|2 for z ∈ G . (V.2)

In particular, equation (V.2) holds for some disk K ⊂ G. Thus Lemma V.2 implies
g = T ◦ f in K for some rigid motion T : X −→ X and this leads to g = T ◦ f in all of G.
Consequently, Theorem V.1 is reduced to Lemma V.2.

Now we are buckling down to the

Proof of Lemma V.2.
Since it obviously suffices to consider the special case Kr(z0) = D and z0 = 0, we restrict
ourselves to this situation. To get an idea of the proof, we first like to give a rough sketch
of the argument.

By hypothesis, λ is a pseudo–metric in D and

lim
z−→0

λ(z)

|z|α

exists and 6= 0 for some α ∈ N0 = N ∪ {0}. The case α = 0 corresponds to the situation
where λ is a conformal metric on D.

Since λ has constant curvature κ ∈ {−4, 0,+4} in D or D\{0}, respectively, the function

u(z) := log λ(z)

is a solution of the semi–linear elliptic PDE

∆u = −4ke2u ⇐⇒ uzz̄ = −ke2u (V.3)

in D or D\{0}, respectively, where k ∈ {−1, 0,+1}.
Now we are going to work out the following three steps.

Step 1:
We define for z ∈ D the function

A(z) := uzz(z)− uz(z)2 . (V.4)

It will turn out that A is holomorphic in D if α = 0. If α ≥ 1, then the function A is
holomorphic in D expect for a double pole at z = 0, where it has a Laurent expansion of
the form

A(z) =
1− (α + 1)2

4z2
+ · · · .

Step 2:
In this step we will consider the Schwarzian differential equation

Sf =

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

= 2A(z) (V.5)
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in D, where A is the function defined in (V.4). We shall show every solution of the
Schwarzian differential equation (V.5) is a meromorphic function in all of D. Note, this
step is trivial in the special case α = 0, see Theorem II.6 and Remark II.7.

Step 3:
Finally, we will find a holomorphic (for the hyperbolic and euclidean case) and a mero-
morphic (for the spherical case) solution f of (V.5) such that

λ(z) =
|f ′(z)|

1 + k |f(z)|2 for z ∈ D .

Let’s fill in the details of Step 1 to Step 3, and let n = α + 1 for expository reasons, so
n ∈ N. Note, in view of Theorem IV.6, the function u(z) = logλ(z) has the representation

u(z) =
n− 1

2
log |z|2 + ν(z, z̄) , (V.6)

where ν(z, z̄) is a real analytic function in D. If n = 1, then u itself is real analytic in D.

Proof of Step 1:
First let n ≥ 2. As u(z) = log λ(z) is real analytic in D\{0} the function A(z) in (V.4) is
well–defined and real analytic in D\{0}.
Differentiation of A with respect to z̄ in D\{0} yields

Az̄ = uzzz̄ − 2uzuzz̄
(V.3)
= uzz̄z + 2kuze

2u =
(
−ke2u

)
z

+ 2kuze
2u = 0.

Hence A(z) is a holomorphic function in D\{0}. To check the double pole statement we
replace in (V.4) the function u by its representation (V.6). Then A(z) takes in D\{0} the
form

A(z) =
1− n2

4z2
+ νzz −

n− 1

z
νz − νz2 . (V.7)

Since νz, νz
2 and νzz are real analytic in D, the function

z 7→
(
A(z)− 1− n2

4z2

)
z2

is bounded in some neighborhood of z = 0. Thus A(z) has a double pole at z = 0 and
the asserted Laurent expansion.
If n = 1, then A is well–defined and holomorphic D. This completes the proof of Step 1.

Proof of Step 2:
The issue here is to show that every solution of the Schwarzian differential equation

Sf =

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

= 2A(z)

is a meromorphic function in D. If n = 1 there is nothing to do, since in this case A is
holomorphic in D and Theorem II.6 combined with Remark II.7 gives the desired result.
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Therefore we assume n ≥ 2 from now on. Owing to Theorem II.15 and Remark II.17 as
well as in view of Step 1 we only need to establish that χ = 0 in the local solution base

g1(z) = zρ1h1(z),

g2(z) = χg1(z) log z + zρ2h2(z),
(V.8)

of the differential equation ψ′′ +A(z)ψ = 0. Here ρ1 = (1 + n)/2, ρ2 = (1− n)/2 and h1,
h2 are holomorphic functions in D with h1(0) 6= 0 and h2(0) 6= 0.

To justify χ = 0 we consider the corresponding Riccati differential equation

w′ = A(z) + w2 (V.9)

in D. Assume for a moment we knew that this Riccati equation admits a one parameter
family of meromorphic functions (wc)c∈P in D. Then χ = 0 in (V.8) follows for the
following reason. Suppose to the contrary χ = 1 in (V.8). Then the function

w := −g
′
2

g2

is well–defined and meromorphic in D\[0, 1), but has no meromorphic extension to D.
On the other hand, w is a meromorphic solution of w′ = A(z) + w2 in D\[0, 1), so
w = wc|D\[0,1) for some parameter c ∈ P according to Proposition II.26, which means w
has a meromorphic extension to D. This contradiction shows χ = 0 in (V.8).

In order to complete the proof of Step 2 it remains to establish that every solution of the
Riccati differential equation (V.9) is a meromorphic function in D.

Since A(z) is holomorphic in D\{0} and its Laurent expansion at z = 0 has the form

A(z) =
1− n2

4z2
+ · · · , n ∈ N, n ≥ 2,

Theorem II.27 guarantees at least one meromorphic solution of the Riccati differential
equation (V.9) in D. By Remark II.29 this solution is of the form

w1(z) = −1 + n

2z
+ γ1(z),

where γ1(z) is a meromorphic function in D, which is holomorphic in a neighborhood of
z = 0.

Now our strategy is to find a second meromorphic solution of the Riccati equation w ′ =
A(z)+w2, because then every solution is meromorphic in D, since w1 fulfills the hypotheses
of Lemma II.25, cf. Remark II.29. For that purpose we study the structure of the function
A(z). Recall,

A(z) =
1− n2

4z2
+ νzz −

n− 1

z
νz − νz2,

where ν is a real analytic function in D. We now will make essential use of the fact that
ν is real analytic in D. This allows to expand ν in a power series in a neighborhood U of
z = 0. Thus we obtain for z, z̄ ∈ U

ν(z, z̄) =

∞∑

k=0

( ∞∑

j=0

ajkz
j

)
z̄k =

∞∑

j=0

aj0z
j +

∞∑

k=1

( ∞∑

j=0

ajkz
j

)
z̄k ,
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that is
ν(z, z) = h(z) + Λ(z, z̄) ,

if we set

h(z) =
∞∑

j=0

aj0z
j and Λ(z, z̄) =

∞∑

k=1

( ∞∑

j=0

ajkz
j

)
z̄k.

Clearly, h(z) is holomorphic and Λ(z, z̄) is real analytic in U .

Replacing ν by h+ Λ in (V.7) yields

A(z) =
1− n2

4z2
−
(
n− 1

z

)
h′(z)− h′(z)2 + h′′(z) +H(z, z̄)

with

H(z, z̄) = Λzz(z, z̄)− n− 1

z
Λz(z, z̄)− 2h′(z)Λz(z, z̄)− (Λz(z, z̄))2 .

Since zH(z, z̄) is real analytic in U , H(z, z̄) can be written as

H(z, z̄) =
1

z
·
( ∞∑

k=1

( ∞∑

j=0

bjkz
j

)
z̄k

)
.

In view of the holomorphy of A(z) in D\{0} one might suspect H ≡ 0. Indeed, as the
function z2A(z) is holomorphic in U ⊆ D, we have

0 =
(
z2H(z, z̄)

)
z̄

=

∞∑

k=1

( ∞∑

j=0

bjkz
j+1

)
kz̄k−1 ,

which clearly implies bjk = 0 for all j ∈ N0 and k ∈ N, and consequently H(z, z̄) ≡ 0.

Hence the function A(z) is given by

A(z) =
1− n2

4z2
−
(
n− 1

z

)
h′(z)− h′(z)2 + h′′(z) for z ∈ U.

A glance at the right hand side of this equation shows

A(z) =

(
n− 1

2z
+ h′(z)

)′
−
(
n− 1

2z
+ h′(z)

)2

.

Therefore the function

w2(z) =
n− 1

2z
+ h′(z)

is a meromorphic solution of the Riccati differential equation w′ = A(z) +w2 in U , which
can be extended to a meromorphic solution of (V.9) in the unit disk D, see Corollary
II.23. In other words, we have found a second meromorphic solution w2 of (V.9) in D,
which obviously differs from the meromorphic solution w1. Finally, as we have explained
above, every solution of the Riccati equation (V.9) is meromorphic in D and therefore
every solution of the Schwarzian differential equation (V.5) is a meromorphic function in
D. This concludes the proof of Step 2.
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Proof of Step 3:
In this final step, we will find under all meromorphic solutions of Sf = 2A(z) one holo-
morphic function f : D −→ X such that

λ(z) =
|f ′(z)|

1 + k|f(z)|2 for z ∈ D .

Since the function A(z) meets the requirements of Theorem II.6 and Theorem II.18,
respectively, there exists to every meromorphic solution of Sf = 2A(z) a pair g1, g2

of linearly independent local solutions of the corresponding differential equation ψ ′′ +
A(z)ψ = 0 such that g2/g1 is meromorphic in D and represents f there, i.e. f = g2/g1 in
D. Conversely, the quotient f = g2/g1 of any two linearly independent local solution g1,
g2 of ψ′′ + A(z)ψ = 0 extends to a meromorphic function in D, which fulfills Sf = 2A(z)
in D.

Consequently, all we have to do is to find two linearly independent (local) solutions g∗1,
g∗2 of ψ′′ + A(z)ψ = 0 such that f := g∗2/g

∗
1 satisfies

λ(z) =
|f ′(z)|

1 + k|f(z)|2 for z ∈ D .

We now follow largely Bieberbach [5, 6]1 and restrict ourselves to the case that A(z) has
a double pole at z = 0, since the case where A is holomorphic in z = 0 can be handled in
a similar way.

Let g1, g2 be two linearly independent holomorphic solutions of the differential equation
ψ′′ + A(z)ψ = 0 in D\[0, 1). Further, the function e−u, where u = logλ, is a formal
solution of ψ′′ + A(z)ψ = 0 in D\[0, 1). This follows from the computation

(e−u)zz = (u2
z − uzz)e−u for z ∈ D\[0, 1) .

Thus we expect
e−u = τ(z)g1 + σ(z)g2 in D\[0, 1)

for some functions σ and τ holomorphic in D\[0, 1).
To verify such a representation for e−u, we define the functions Υl : D\[0, 1) −→ C for
l ∈ {1, 2} by

Υl(z) =
(−1)l

c

[
g′l(z)e

−u(z) − (e−u(z))z gl(z)
]
,

where c := det
( g1 g2

g′1 g
′
2

)
∈ C\{0} is the Wronskian of g1 and g2.

Taking the derivative of Υ1, Υ2 with respect to z gives that both Υ1 and Υ2 are holo-
morphic in D\[0, 1). Now we claim

σ(z) :=
−1

c

[
g′1(z)e−u(z) − (e−u(z))z g1(z)

]

and

τ(z) :=
1

c

[
g′2(z)e−u(z) − (e−u(z))z g2(z)

]

1Bieberbach considered only the hyperbolic case k = −1.
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are the functions we are looking for. To this end we write this system of equations in
matrix form, i.e.

(
τ

σ

)
=

1

c

(
g′2 −g2

−g′1 g1

) (
e−u

−uze−u

)
.

Solving for (e−u,−uze−u)T yields

(
e−u

−uze−u

)
=

(
g1 g2

g′1 g
′
2

)(
τ

σ

)
,

which shows
e−u = τ(z)g1 + σ(z)g2 for z ∈ D\[0, 1) .

In view of this equation it seems to be advisable to take a closer look at the functions τ
and σ.

As the function e−u is real valued in D\[0, 1) we deduce from

(e−u)zz = −A(z) · e−u

the equation

τ ′′(z)g1 + σ′′(z)g2 = −A(z) (τ(z)g1 + σ(z)g2) in D\[0, 1) .

Since g1 and g2 are linearly independent, the functions τ and σ are solutions of

ψ′′ + A(z)ψ = 0

in D\[0, 1) and for that reason they are a linear combination of g1 and g2, that is

τ(z) = ag1(z) + bg2(z) and σ(z) = cg1(z) + dg2(z) for z ∈ D\[0, 1) ,

where a, b, c, d ∈ C are appropriate constants.

Therefore e−u takes the form

e−u = ag1g1 + bg2g1 + cg1g2 + dg2g2 for z ∈ D\[0, 1) .

The fact that e−u is real valued in D\[0, 1) leads to

a, d ∈ R and c = b.

Combining this information gives

e−u = (g1, g2)

(
a b

b d

)(
g1

g2

)
for z ∈ D\[0, 1) .

Since the matrix
(
a b
b d

)
is hermitean there exists a matrix, call it S, with the following

two properties:

S
−T
MS−1 =

(
a b

b d

)
,
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where M is one of the following five matrices

M1 =

(
1 0
0 1

)
, M2 =

(
1 0
0 −1

)
, M3 =

(
−1 0

0 −1

)
, M4 =

(
1 0
0 0

)
, M5 =

(
−1 0

0 0

)

and
g∗1g

∗
2
′ − g∗1 ′g∗2 = 1 ,

if we define (
g∗1
g∗2

)
= S−1

(
g1

g2

)
.

Accordingly, e−u can be represented in the form

e−u =
(
g∗1, g

∗
2

)
M

(
g∗1
g∗2

)
in D\[0, 1) .

As the function e−u is positive in D\[0, 1), we can exclude the possibilities M3 and M5

for M . To find the correct matrix M for the hyperbolic, euclidean and spherical case, we
write u as

u = − log
(
g∗1g

∗
1 + δg∗2g

∗
2

)
for z ∈ D\[0, 1) ,

where δ ∈ {−1, 0,+1} and plug this formula for u in the equation ∆u = −4ke2u. This
shows, M2 is the correct choice for the hyperbolic case, M4 for the euclidean case and M1

for the spherical case.

In summary

e−u = g∗1g
∗
1 + kg∗2g

∗
2 = g∗1g

∗
1

(
1 + k

g∗2
g∗1

g∗2
g∗1

)
in D\[0, 1) ,

where k = −1, 0 and +1 corresponds to the hyperbolic, euclidean and spherical case,
respectively. As mentioned earlier the function g∗2/g

∗
1 extends to a meromorphic function

in D, which we will call f . We like to emphasize that

f ′ =
g∗2
′g∗1 − g∗1 ′g∗2
g∗1

2 =
1

g∗1
2

holds for z ∈ D\[0, 1). Now we treat the hyperbolic, euclidean and spherical situation
separately.

• hyperbolic case
Since f = g∗2/g

∗
1 we obtain

e−u =
1

g∗1g
∗
1

(
1− |f |2

)
in D\[0, 1) .

The fact that e−u is positive in D\[0, 1) implies that the meromorphic function f is
holomorphic in D and |f | < 1 in D\[0, 1). As a result of the maximum principle we
see |f | < 1 in D. Thus we have

e−2u =
1

f ′f ′

(
1− |f |2

)2
in D\[0, 1)
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and by continuity we conclude

λ(z) =
|f ′(z)|

1− |f(z)|2 for z ∈ D ,

where f : D −→ D is holomorphic.

• euclidean case
Here our starting point is

e2u = f ′f ′ in D\[0, 1) .

According to the fact that e2u is finite on D the function f is holomorphic in D. So
we get

λ(z) = |f ′(z)| for z ∈ D ,
where f : D −→ C is holomorphic.

• spherical case
In this case we have

e−2u =
1

f ′f ′

(
1 + |f |2

)2
in D\[0, 1) .

By continuity it turns out that

λ(z) =
|f ′(z)|

1 + |f(z)|2

holds for z ∈ D, where f is a meromorphic function in D.
Note, f ′ has at z = 0 a zero of order α or a pole of order α + 2.

So far we proved for a pseudo–metric λ in D with curvature κ = 4k ∈ {−4, 0,+4} in
D\{0} the representation formula

λ(z) =
|f ′(z)|

1 + k|f(z)|2 , z ∈ D ,

for some holomorphic function f : D −→ X, where X = D, C and P belongs to k = −1, 0
and +1, respectively.

For the second assertion, let g : D −→ X be another holomorphic function, such that

λ(z) =
|g′(z)|

1 + k|g(z)|2 , z ∈ D ,

where k ∈ {−1, 0, 1} corresponds to X = D, C and P, respectively.
As λ is represented by f and g, i.e.

|f ′(z)|
1 + k|f(z)|2 =

|g′(z)|
1 + k|g(z)|2 , z ∈ D , (V.10)
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the Schwarzian derivatives of f and g coincide in D, i.e. Sf = Sg in D. Thus, by Remark
II.16, g = T ◦ f with a Möbius transformation T . Therefore we write equation (V.10) in
the form

|f ′(z)|
1 + k|f(z)|2 =

|(T ◦ f)′(z)|
1 + k|(T ◦ f)(z)|2 , z ∈ D ,

and replace f(z) by ξ, which then leads to

1

1 + k|ξ|2 =
|T ′(ξ)|

1 + k|T (ξ)|2 , ξ ∈ f(D) . (V.11)

Now we will distinguish between the hyperbolic, euclidean and spherical situation.

• hyperbolic case
First we note the functions ξ 7→ 1/(1− |ξ|2) and ξ 7→ |T ′(ξ)|/(1− |T (ξ)|2) are real
analytic in D and f(D) ⊆ D, respectively. Since they agree on the non empty open
set f(D) ⊆ D, they coincide on D and (V.11) holds for every ξ ∈ D. Thus T (D) ⊆ D
and the Lemma of Schwarz–Pick implies that T is a unit disk automorphism.

• euclidean case
In this situation (V.11) reduces to

|T ′(ξ)| = 1

for ξ ∈ f(D) ⊆ C. Due to the maximum and minimum principle and the identity
principle T assumes the form T (z) = az + b, where |a| = 1, i.e. T is a euclidean
motion of the complex plane.

• spherical case
The equation

1

1 + |ξ|2 =
|T ′(ξ)|

1 + |T (ξ)|2 , ξ ∈ f(D) ⊆ P ,

immediately shows T is a rotation of the sphere P. Consequently T is of the form

T (z) = θ
z − z0

1 + z0z
or T (z) =

θ

z
,

where θ ∈ ∂D and z0 ∈ C.

The proof of Lemma V.2 is thereby complete. �

Remark V.3
To prove Lemma V.2 we took the way which is in a sense naturally suggested by the
observation that in the formula

λ(z) =
|f ′(z)|

1 + k|f(z)|2

the metric λ and the analytic map f are related via

(logλ)zz − ((log λ)z)
2 =

1

2
Sf .

The consideration of ψ′′+A(z)ψ = 0 instead of Sf would have led to the result a bit more
directly.
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Theorem V.1 deals with the representation of constantly curved pseudo–metrics in terms
of analytic functions. It can easily be generalized to conformal pseudo–metrics whose
curvature is the square of the modulus of a holomorphic function.

Corollary V.4
Let G ⊆ C be a simply connected domain, h : G −→ C a holomorphic function 6≡ 0,
E = {z1, z2, . . .} a discrete set in G and α1, α2, . . . positive integers. Further, let λ : G −→
[0,∞) be a pseudo–metric of curvature 4k|h(z)|2 in G\E, k ∈ {−1, 0,+1}, with zeros of
orders αj at zj. Then there exists a holomorphic function f : G −→ X such that

λ(z) =
1

|h(z)| ·
|f ′(z)|

1 + k |f(z)|2 , z ∈ G ,

where X = D, C or P if k = −1, 0 or +1, respectively. If g : G −→ X is another analytic
map satisfying

λ(z) =
1

|h(z)|
|g′(z)|

1 + k |g(z)|2 , z ∈ G ,

then g = T ◦ f with a rigid motion T of X.

Proof.
If we denote u := log λ, then u solves by hypothesis

∆u = −4k|h(z)|2e2u in G\E .

Let’s consider the pseudo–metric λ̃(z) = |h(z)|λ(z) on G. We compute

∆ũ = ∆u = −4k|h(z)|2e2u = −4ke2ũ in G\(E ∪G∗) ,

where ũ = log λ̃ and G∗ = {z ∈ G : h(z) = 0}. Thus λ̃ has constant curvature 4k in
G\(E∪G∗) and zeros of integer order exactly at the points of E ∪G∗. Applying Theorem
V.1 to the pseudo–metric λ̃ : G −→ [0,∞) yields

λ̃(z) =
|f ′(z)|

1 + k|f(z)|2 for z ∈ G ,

where f : G −→ X is some holomorphic function. Hence we deduce

λ(z) =
1

|h(z)|
|f ′(z)|

1 + k|f(z)|2 for z ∈ G.

�

Remark V.5
In fact, Corollary V.4 is equivalent to Theorem V.1 and also to Theorem I.8. Coroll-
ary V.4 clearly implies Theorem I.8. To deduce Theorem V.1 from Theorem I.8 take
a non–constant holomorphic function h : G −→ C with zeros of orders αj at zj and no
others. Then λ(z)/|h(z)| is a conformal metric of curvature 4k|h(z)|2 and an application
of Theorem I.8 yields the assertion of Theorem V.1.
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V.2 Pseudo–metrics with zeros of non–integer order

We now turn to a representation formula for conformal pseudo–metrics with zeros of non–
integer order. Such conformal metrics with constant negative curvature play an important
role in the following well–known generalization of Schwarz’s Lemma due to Nehari [37].

Theorem V.6 (Nehari)
Let w = f(z) be a non–uniform function, regular for |z| < 1 apart from a finite number
of algebraic branch points and let f ′(z) be finite everywhere in |z| < 1; let further, for all
determinants of f(z), |f(z)| ≤ 1 for |z| < 1. Then we have

|f ′(0)| ≤ 1

for all the different values f ′(0) may assume. The case |f ′(0)| = 1 can only happen for
f(z) ≡ Kz, |K| = 1.

In brief we can describe Nehari’s proof as follows:

In a first step Nehari studies

λ(z) =
|f ′(z)|

1− |f(z)|2
on a Riemann surface R associated with f and proves λ represents a pseudo–metric on
R which has constant curvature −4 except for the points, where f ′(z) = 0. In a second
step he applies Ahlfors’s Lemma to the metric λ in order to obtain his result.

Note, if f is as in Nehari’s theorem, then the metric λ(z) has (in local coordinates) a zero
of order α ∈ (0,∞) at the branch points of f . The following result shows that conversely
every constantly curved conformal pseudo–metric with isolated zeros of positive order in
a not necessarily simply connected domain G can be represented as the pullback of one of
the canonical metrics λX under a multi–valued analytic function f : G −→ X. For G = D
and E = {0} this result was also obtained by Chou and Wan [8, 9], whose proof is based
on Liouville’s theorem, our Corollary I.3, applied to the pullback of the metric λ on the
universal covering surface of G\E = D\{0}. The proof given below is more direct and
avoids the use of the universal covering. Instead, it is based on some simple facts from
the theory of complex differential equations.

Theorem V.7
Let E = {z1, z2, . . .} be a discrete set in a domain G ⊆ C and let α1, α2, . . . ∈ (0,∞).
Further, let λ : G −→ [0,∞) be a conformal pseudo–metric of constant curvature κ =
4k ∈ {−4, 0,+4} in G\E with zeros of orders αj at zj. Then there exists a possibly
multi–valued analytic function f from G into X such that

λ(z) =
|f ′(z)|

1 + k|f(z)|2 for z ∈ G,

with X = D, C or P according to k = −1, 0 or +1. The functions |f | : G −→ [0,∞] and
|f ′| : G −→ [0,∞]2 are continuous. If g is another multi–valued analytic function from G
into X satisfying

λ(z) =
|g′(z)|

1 + k|g(z)|2 for z ∈ G,

then g = T ◦ f , where T is some rigid motion of X.

2In the spherical case ”∞” may be attained.
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Proof.
We may restrict ourselves to the case where λ is a conformal pseudo–metric in D which
has curvature 4k in D\{0} and a zero of order α 6∈ N at z = 0. Then Theorem V.7 follows
from the same arguments we used to derive Theorem V.1 from Lemma V.2.

Let’s assume λ is such a metric. If we apply Theorem V.1 to the metric λ on the simply
connected domain D\[0, 1) we obtain

λ(z) =
|f ′(z)|

1 + k|f(z)|2 in D\[0, 1) ,

for some holomorphic function f : D\[0, 1) −→ X. Now we define u(z) := log λ(z) and
observe u has in D\{0} the representation

u(z) = α log |z| + ν(z) ,

where ν ∈ C2(D) and ν is real analytic in D\{0}, see Theorem IV.5 and Theorem IV.6.
Thus the function

A(z) = uzz(z)− uz(z)2

is well–defined and holomorphic in D\{0}. At z = 0 the function A(z) has the Laurent
expansion

A(z) =
1− η2

4z2
+ · · ·

with η = α+1. Further, the function f is a solution of the Schwarzian differential equation

Sf = 2A(z)

in D\[0, 1). Consequently, by Theorem II.6 and Theorem II.9, the function f has the form

f(z) =
a zρ1 h1(z) + b zρ2 h2(z)

c zρ1 h1(z) + c zρ2 h2(z)
=
a zη h1(z) + b h2(z)

c zη h1(z) + d h2(z)
, (V.12)

where ρ1 = (1+η)/2, ρ2 = (1−η)/2, h1, h2 are holomorphic functions in D with h1(0) 6= 0,
h2(0) 6= 0 and a, b, c, d ∈ C are appropriate constants with ad− bc 6= 0.

Since η 6∈ N the function f has no meromorphic extension to D, but it can be continued
analytically along any path in D\{0}. Therefore we conclude with the help of Lemma V.2

λ(z) =
|f ′(z)|

1 + k|f(z)|2 for z ∈ D\{0} , (V.13)

where

f : D\{0}
multi
−−−−→
valued





D if k = −1

C if k = 0

P if k = +1 .

Our next aim is to show

λ(z) =
|f ′(z)|

1 + k|f(z)|2 for z ∈ D .
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This follows from the fact that |f | and |f ′| are continuous functions in D. This latter
assertion, in turn, is clear from (V.12) and the explicit formula for f ′, that is

f ′(z) = zη−1 · (ad− bc) · (η h1(z) h2(z) + z · (h′1(z) h2(z)− h1(z) h′2(z)))

(c zη h1(z) + d h2(z))2 . (V.14)

Also, we can infer from (V.14) and (V.13) that f ′ has at z = 0 a zero of order η − 1 = α
if k = −1 or k = 0, or a zero of order η − 1 = α or a ”pole” of order η + 1 = α + 2 if
k = +1. �

Remark V.8
If we consider in Theorem V.7 the case G = D and k = −1, then we can conclude from
Ahlfors’s Lemma |f ′(0)| ≤ 1 for all different values |f ′(0)| may assume.

V.3 Pseudo–metrics with isolated singularities

For the sake of completeness we discuss the following two representation lemmas for
constantly curved conformal metrics with isolated singularities.

Lemma V.9
Let λ be a conformal metric on D\{0} of constant curvature 4k ∈ {−4, 0,+4} in D\{0},
such that

lim
z−→0

λ(z)

|z|α exists and 6= 0

for some α ∈ (−1, 0) and log λ has a representation of the form

log λ(z) = α log |z|+ ν(z) for z ∈ D\{0}

with some function ν ∈ C2(D). Then there exists a multi–valued analytic function f from
D into X, such that

λ(z) =
|f ′(z)|

1 + k|f(z)|2 for z ∈ D\{0} ,

where X = D, C or P if k = −1, 0 or +1, respectively. The functions |f | : D −→ [0,∞]
and |f ′| : D −→ [0,∞] are continuous and |f ′| has in the hyperbolic and euclidean case at
z = 0 the same singularity as λ, that is the function

log |f ′(z)| − α log |z|

has a C2–extension to D. If g is another multi-valued analytic function from D into X
satisfying

λ(z) =
|g′(z)|

1 + k|g(z)|2 for z ∈ D\{0} ,

then g = T ◦ f , where T is some rigid motion of X.
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Proof.
The proof runs in principle parallel to the proof of Theorem V.7. We only remark that
f ′ has at z = 0 a ”pole” of order

{
|α| if k = −1 or k = 0,

|α| or 2− |α| if k = +1.

�

The next lemma is only valid for conformal metrics of constant curvature −4, see Remark
V.11 below.

Lemma V.10
Let λ be a conformal metric on D\{0} which has constant curvature −4 there. Further
suppose

lim
z−→0

λ(z) ·
(
|z| log

1

|z|

)
exists and 6= 0

and logλ has a representation of the form

log λ(z) = − log |z| − log log
1

|z| + ν(z) for z ∈ D\{0}

with some function ν ∈ C2(D). Then there exists a multi-valued analytic function f in D
such that

λ(z) =
|f ′(z)|

1− |f(z)|2 for z ∈ D\{0}

and |f | < 1 in D\{0}. The singularity of |f ′| does not correspond to the singularity of λ
in this situation. If g is another multi-valued analytic function from D into D satisfying

λ(z) =
|g′(z)|

1− |g(z)|2 for z ∈ D\{0} ,

then g = T ◦ f , where T is an automorphism of D.

Proof.
We are going to follow the same lines as in the proof of Theorem V.7.

We consider λ in D\(−1, 0] and obtain by Theorem V.1

λ(z) =
|f ′(z)|

1− |f(z)|2 in D\(−1, 0]

for some holomorphic function f : D\(−1, 0] −→ D. The function

A(z) = uzz(z)− uz(z)2,

where u := log λ, is well–defined and holomorphic in D\{0}, and has at z = 0 a Laurent
expansion of the form

A(z) =
1

4z2
+ · · · .
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The function f is then a solution of the Schwarzian differential equation

Sf = 2A(z)

in D\(−1, 0]. Thus by Theorem II.6 and Theorem II.9 it has the form

f(z) =
a z1/2 h1(z) + b z1/2 h2(z) + b z1/2 h1(z) log z

c z1/2 h1(z) + d z1/2 h2(z) + d z1/2 h1(z) log z
, (V.15)

where h1, h2 are holomorphic functions in D with h1(0) 6= 0, h2(0) 6= 0 and a, b, c, d ∈ C
are appropriate constants with ad− bc 6= 0.

We see the function f has no holomorphic extension to D, but f can be continued ana-
lytically along any path in D\{0}. Therefore we have by Lemma V.2

λ(z) =
|f ′(z)|

1− |f(z)|2 for z ∈ D\{0} ,

and |f | < 1 in D\{0}.
Now we move on to the singularity statement:
Taking the derivative of f yields

f ′(z) =
(bc− ad)(h1(z)2 − z (h2(z) h′1(z)− h1(z) h′2(z)))

z · (c h1(z) + d h2(z) + d h1(z) log z)2
. (V.16)

This shows

lim
z−→0

|f ′(z)||z| log
1

|z| = 0 if d 6= 0

and

lim
z−→0

|f ′(z)||z| log
1

|z| =∞ if d = 0 ,

which means |f ′| cannot have the same singularity at z = 0 as λ. Thus limz−→0 |f(z)| = 1
must hold. �

Remark V.11
We observe there does not exist a conformal metric in D\{0} of constant curvature 4k ∈
{0,+4} with the properties of Lemma V.10.

In fact, if there exists such a metric, then we follow the same lines as in the proof of
Lemma V.10 and find a holomorphic function f : D\(−1, 0] −→ X such that

λ(z) =
|f ′(z)|

1 + k|f(z)|2 for z ∈ D\(−1, 0] ,

where X = C or X = P corresponds to k = 0 or k = +1.

The function f has the same form as in (V.15) and therefore f ′ is given by formula (V.16).
Now take a sequence (zn) ⊆ (0, 1) such that limn−→∞ zn = 0. By hypothesis

lim
z−→0

λ(z)|z| log
1

|z| = L ,
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where L ∈ (0,∞). But

lim
n−→∞ |f

′(zn)||zn| log
1

|zn|
=

{
∞ if d = 0

0 if d 6= 0

and

lim
n−→∞

|f ′(zn)|
1 + |f(zn)|2 · |zn| log

1

|zn|
= 0 ,

which in both cases leads to a contradiction.

We finish up this section with an example which shows that there exists indeed a metric
which fulfills the hypotheses of LemmaV.10.

Example V.12
In Example IV.9 (b) we saw that

λ(z) =
1

2|z| log
(

1
|z|

)

is a conformal metric with curvature −4 on D\{0}. The multi–valued function which
represents λ is

f(z) =
1
2

+ log z

−1
2

+ log z
,

i.e.

λ(z) =
|f ′(z)|

1− |f(z)|2 in D\{0} .



– Chapter VI –

Applications

VI.1 Proofs of Theorem I.17, Theorem I.19 and

Proposition I.20

After the preparations in Chapter IV and Chapter V we are now in a position to provide
rapid proofs of Theorem I.17, Theorem I.19 and Proposition I.20. For the convenience of
the reader we recall the statements of these results and begin with Theorem I.17.

Theorem VI.1
Let G ⊂ C be a bounded simply connected domain, z1, . . . , zn finitely many distinct
points in G and α1, . . . , αn positive integers. Also, let φ : ∂G −→ R be a continuous
positive function. Then there exists a holomorphic function f : G −→ D with critical
points of orders αj at zj and no others such that

lim
z−→ξ

|f ′(z)|
1− |f(z)|2 = φ(ξ), ξ ∈ ∂G. (VI.1)

If g : G −→ D is another holomorphic function with these properties, then g = T ◦ f for
some conformal disk automorphism T : D −→ D.

Proof.
This is an immediate consequence of Theorem IV.18 and Theorem V.1. In fact, in view
of Theorem IV.18 there exists a uniquely determined pseudo–metric λ in G of curvature
−4 in G\{z1, . . . , zn} with zeros of orders αj at zj and boundary values φ. By Theorem
V.1

λ(z) =
|f ′(z)|

1− |f(z)|2 , z ∈ G,

for some holomorphic function f : G −→ D. Thus f has critical points of orders αj at zj
and no others, and the boundary condition (VI.1) is fulfilled. If g is another holomorphic
function g : G −→ D with the properties stated in Theorem VI.1, then

λ̃(z) :=
|g′(z)|

1− |g(z)|2

is a conformal pseudo–metric in G of curvature −4 in G\{z1, . . . , zn} with zeros of orders
αj at zj and boundary values φ. From the uniqueness statement of Theorem IV.18 we
infer λ̃ = λ in G, that is

|g′(z)|
1− |g(z)|2 =

|f ′(z)|
1− |f(z)|2 for z ∈ G.
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Hence, applying Theorem V.1, we see that g = T ◦ f for some conformal automorphism
T of D. �

If we use Theorem IV.16 instead of Theorem IV.18 in the above proof, we obtain Theorem
I.19:

Theorem VI.2
Let (zj) be a sequence of points in D satisfying the Blaschke condition

∞∑

j=1

(1− |zj|) <∞,

and let φ : ∂D −→ [0,∞) be a function such that logφ ∈ L∞(∂D). Then there exists a
holomorphic function f : D −→ D with critical points zj (counted with multiplicities) such
that

sup
z∈D

|f ′(z)|
1− |f(z)|2 <∞,

and

n.t. lim
z−→ξ

|f ′(z)|
1− |f(z)|2 = φ(ξ) for a.e. ξ ∈ ∂D.

If g : D −→ D is another holomorphic function with these properties, then g = T ◦ f for
some conformal disk automorphism T : D −→ D.

Proof.
We only prove the existence part. Let B be a Blaschke product with zeros zj (counted
with multiplicities). Note, limr−→1− |B(rξ)| = 1 for a.e. ξ ∈ ∂D. Next, let h be the
harmonic function in D with boundary values logφ, so |h(z)| ≤ M in D for some M > 0
and

n.t. lim
z−→ξ

h(z) = log φ(ξ) for a.e. ξ ∈ ∂D.

By Theorem IV.16 there exists a unique conformal metric µ with curvature −4|B(z)|2e2h(z)

in D and µ(ξ) = 1 for ξ ∈ ∂D. Then λ(z) = eh(z)|B(z)|µ(z) is a (bounded) conformal
pseudo–metric in D with curvature −4 in D\{zj : j ∈ N} and non–tangential boundary
values φ(ξ) for a.e. ξ ∈ ∂D. Thus we can apply Theorem V.1 and see there is a holomorphic
function f : D −→ D with critical points zj (counted with multiplicities) and

λ(z) =
|f ′(z)|

1− |f(z)|2 for z ∈ D.

By construction,

n.t. lim
z−→ξ

|f ′(z)|
1− |f(z)|2 = φ(ξ) for a.e. ξ ∈ ∂D.

�

Lastly, we turn to Proposition I.20.
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Proposition VI.3
Let f : D −→ D be a non–constant holomorphic function such that

sup
z∈D

|f ′(z)|
1− |f(z)|2 <∞.

Then the non–tangential limit

n.t. lim
z−→ξ

|f ′(z)|
1− |f(z)|2 =: φ(ξ)

exists for a.e. ξ ∈ ∂D and logφ ∈ L1(∂D). Moreover, if (zj) is the sequence of critical
points of f (counted with multiplicity), then

∞∑

j=1

(1− |zj|) <∞.

Proof.

As we already noted, see Remark I.18 (a), f extends to a continuous function on D with
f(D) ⊆ D. Hence f ′ is a bounded analytic function in D. Therefore the zeros zj of f ′

satisfy the Blaschke condition, f ′ has non–tangential limits a.e. on ∂D and the boundary
function log |f ′| belongs to L1(∂D), see [46]. �

VI.2 Proofs of generalizations of Wittich’s theorem

We are now going to prove Theorem I.25 and first note the following result which is also
a generalization of Wittich’s Theorem I.21.

Theorem VI.4
Let E = {z1, z2, . . .} ⊆ C be a discrete set. Then there exists no solution w of the PDE

∆w = ew in C\E

with the following properties:

(a) w : C −→ R ∪ {−∞} is C2 in C\E.

(b) For every zj ∈ E there is a non–negative integer αj such that

lim
z−→zj

(w(z)− 2αj log |z − zj|)

exists finitely.
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Proof.
Assume there is such a solution, say w̃. Then u = (w̃ − log 8)/2 is a C2–solution of
∆u = 4e2u in C\E, so λ = eu is a conformal pseudo–metric in C with curvature −4 in
C\E and zeros of orders αj at zj. From Theorem V.1 we see that the function w̃ has the
representation

w̃(z) = 2 log

( |f ′(z)|
1− |f(z)|2

)
+ log 8 for z ∈ C,

where f : C −→ D is a holomorphic function. This implies f is constant and the contra-
diction is apparent. �

Theorem I.25 is now a simple corollary of Theorem VI.4.

Proof of Theorem I.25.
Let h : C −→ C be an entire function not identically zero. We prove Theorem I.25 by
contradiction, and assume therefore there does exist a C2–function w : C −→ R such that
∆w = |h(z)|2ew in C. Then the function w̃ = w + 2 log |h| has the following properties:

(a) w̃ : C −→ R ∪ {−∞} is C2 with ∆w̃ = ew̃ in C\{z ∈ C : h(z) = 0}.

(b) If z0 ∈ C is a zero of h(z) of order α, then the limit

lim
z−→z0

(w̃(z)− 2α log |z − z0|)

exists finitely.

However, since E := {z ∈ C : h(z) = 0} is a discrete subset of C this contradicts Theorem
VI.4. �
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tion principle and spaces of pseudo–metrics, Math. Proc. Camb. Phil. Soc. (2001),
130, 353–364.

[19] Gilbarg, D., Trudinger, N., Elliptic Partial Differential Equations of Second Order,
Springer-Verlag, Berlin – Heidelberg – New York, 1977.

[20] Golubew, W. W., Vorlesungen über Differentialgleichungen im Komplexen, VEB
Deutscher Verlag der Wissenschaften, Berlin, 1958.

[21] Heins, M., A class of conformal metrics, Bull. Amer. Math. Soc. (1961), 67, 475–478.

[22] Heins, M., On a class of conformal metrics, Nagoya Math. J. (1962), 21, 1–60.

[23] Hellwig, G., Partielle Differentialgleichungen, Teubner-Verlag, Stuttgart, 1960.

[24] Herold, H., Differentialgleichungen im Komplexen, Vandenhoeck & Ruprecht, Göt-
tingen, 1975.

[25] Hille, E., Ordinary Complex Differential Equations in the Complex Plane, John Wiley
& Sons, New York – London – Sydney – Toronto, 1976.

[26] Hulin, D., Troyanov, M., Prescribing curvature on open surfaces, Math. Ann. (1992),
293, 277–315.

[27] Ince, E. L., Ordinary Differential Equations, Dover Publications, New York, 1956.

[28] Jank, G., Volkman, L., Meromorphe Funktionen und Differentialgleichungen, Birk-
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[44] Poincaré, H., Les fonctions fuchsiennes et l’équation ∆u = eu, J. de Math. (1898), 4
no. 5, 137–230.

[45] Roth, O., An extension of the Schwarz–Carathéodory reflection principle, Habilita-
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