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Foreword

Today, the development of knowledge-based diagnostic systems, e.g. in medicine or ser-
vice support, is not a principal problem, but success depends on the costs/benefits relation.
The benefits of interactive diagnostic systems depend on a trade-off between the accuracy
of the inferred diagnoses and therapies and the duration of the dialog for data gather-
ing. It is extremely difficult to assess the details of the best trade-off in advance. This
lack of specification poses serious problems for systematic, document-centered develop-
ment processes. Therefore, early feedback is necessary for tuning knowledge engineering
by avoiding both too detailed and too superficial knowledge modeling. However, rapid
prototyping approaches are not satisfactory neither, because they result in unstructured
knowledge bases being difficult to maintain.
Joachim Baumeister addresses this key problem by transferring and adapting so called ag-
ile process models from software to knowledge engineering. His model emphasizes early
knowledge formalization and thus early feedback, combined with continuous monitoring
of a good structure of the knowledge base. For detected design anomalies he offers a
catalog of restructuring methods to improve the structure in small steps inspired by refac-
toring methods in software engineering. To avoid the introduction of new errors during
restructuring, the quality of the knowledge bases is tightly monitored with constraints and
partial test cases. These steps are integrated with approved more global process models for
developing diagnostic systems: the introduction of knowledge containers for ontological
strategic, structural and support knowledge, and various patterns (templates) for formal-
izing heuristic, case-based and set-covering knowledge sometimes supported by inductive
machine learning methods.
The process model is implemented in the Java-based diagnostic shell d3web and success-
fully applied in an environmental and a medical project. It promises in particular for
projects with a small or medium budget a significantly increased control for building cost-
effective and maintainable diagnostic systems.

Prof. Dr. Frank Puppe
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Abstract

The success of diagnostic knowledge systems has been proved over the last decades.
Nowadays, intelligent systems are embedded in machines within various domains or are
used in interaction with a user for solving problems. However, although such systems have
been applied very successfully the development of a knowledge system is still a critical is-
sue. Similarly to projects dealing with customized software at a highly innovative level a
precise specification often cannot be given in advance. Moreover, necessary requirements
of the knowledge system can be defined not until the project has been started or are chang-
ing during the development phase. Many success factors depend on the feedback given
by users, which can be provided if preliminary demonstrations of the system can be deliv-
ered as soon as possible, e.g., for interactive systems validation the duration of the system
dialog.
This thesis motivates that classical, document-centered approaches cannot be applied in
such a setting. We cope with this problem by introducing an agile process model for
developing diagnostic knowledge systems, mainly inspired by the ideas of the eXtreme
Programming methodology known in software engineering. The main aim of the pre-
sented work is to simplify the engineering process for domain specialists formalizing the
knowledge themselves. The engineering process is supported at a primary level by the in-
troduction of knowledge containers, that define an organized view of knowledge contained
in the system. Consequently, we provide structured procedures as a recommendation for
filling these containers. The actual knowledge is acquired and formalized right from start,
and the integration to runnable knowledge systems is done continuously in order to allow
for an early and concrete feedback. In contrast to related prototyping approaches the valid-
ity and maintainability of the collected knowledge is ensured by appropriate test methods
and restructuring techniques, respectively. Additionally, we propose learning methods to
support the knowledge acquisition process sufficiently.
The practical significance of the process model strongly depends on the available tools
supporting the application of the process model. We present the system family d3web and
especially the system d3web.KnowME as a highly integrated development environment
for diagnostic knowledge systems. The process model and its activities, respectively, are
evaluated in two real life applications: in a medical and in an environmental project the
benefits of the agile development are clearly demonstrated.
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Part I.

The Knowledge Engineering
Bottleneck





1. Introduction

Expert systems are among the most exiting new developments in computer sci-
ence and technology. (...) Prototype systems are now in use around the world
in areas such as medical diagnosis, mineral prospecting, chemical structure
elucidation, and computer-system configuration.

Blurb of Hayes-Roth et al., Building Expert Systems, 1983

1.1. Research Goal and Context

Now, 20 years later, research has progressed and knowledge systems (expert systems) are
all around us. Starting with academic systems, e.g. DENDRAL [25], in the 60’s, intelligent
programs are helping us to diagnose the medical condition of patients, or to detect faults of
cars, copy machines, and large manufacturing plants. In the medical domain, knowledge
systems are routinely used for supporting the physician during specialized examinations,
e.g. the SONOCONSULT system [58], or are embedded in devices for monitoring and con-
trolling the condition of critical patients, e.g., the recent weaning systems of Dräger. Also
in the technical domain, many knowledge systems have been established and are in daily
use, e.g. for diagnosing gas turbines [77].
However, although a lot of research has been done in the last decades, the development
and maintenance of such systems is still a complex, difficult, and error-prone task. Often
promising projects were withdrawn or not continued because of problems and errors during
the development and maintenance phases. For the development of knowledge systems
we distinguish prototypical approaches, e.g., by Budde et al. [26, 27], and document-
centered/structured approaches, e.g., the CommonKADS methodology [119]. Experiences
in several knowledge systems projects in the medical and technical domain have shown
that both extremes are not sufficient for small-sized innovative projects. In such projects
the estimation of the development costs is of major concern and projects with a vague
scope are often canceled due to their unpredictability. Document-centered approaches are
typically heavy-weight and the cost-effectiveness, i.e., the trade-off between the utility of
the deployed system and the development costs, is difficult to judge upon the beginning.
Thus, many documentary and design phases are passed before the implementation of the
system is started. In contrast, prototypical approaches support the estimation process by
initial pilot systems. Fast results and preliminary experiences can be drawn from such
pilots, and a flexible adaptation and extension of these small systems is also simple. In
the past, pilots were rapidly build and extended in an unstructured way. Consequently,
prototyping approaches haven been criticized because of their lack of design and hard
maintainability.



4 Chapter 1: Introduction

The focus of this work is the definition of a process model for the development of diagnos-
tic knowledge systems. In general, the process model should achieve the following design
goals:

• domain specialists should be able to self-acquire formalized knowledge, i.e., the
domain specialist is the developer of the system

• the process should allow for an early and continuous feedback with respect to both
the utility, usually requiring feedback of the end-user, and the costs for developing
the knowledge base, which strongly depends on its granularity (level of detail).

• the process should emphasize the development of trustable systems, i.e., provide
measures for determining the quality of the implemented knowledge

• the maintenance of developed systems should be significantly simplified by provid-
ing appropriate methods

In this thesis we present a process model which follows the just mentioned design goals. In
addition, the presented process model was defined according to the following observations
based on experiences gained in various knowledge system projects:

• the systems are build by small teams consisting of domain specialists, mostly 1-3
people

• the team is motivated, if early and successful results can be drawn; in fact, the
projects are mostly continued because of the (successful) experience made with
rapid pilots

• the scope and requirements of the planned system are often changing during the
development

• the accuracy and also the efficiency of the system is a critical success factor of the
deployed system

In the next section, we briefly introduce the process model, and we motivate how the
design goals and observations from above are fulfilled.

1.2. Approach

We sketch the proposed process model which tries to balance the advantages and draw-
backs of prototyping and document-centered approaches. Such a process model should
be able to produce quick results, but they also should yield a system that is reliable and
simple to maintain. The presented process model was inspired by the agile process model
eXtreme programming(XP). In software engineering research and practice XP [19] has at-
tracted great attention, and showed its significance in numerous projects. An agile process
model has the following properties:

• an early, concrete and continuing feedback
• an incremental planning approach
• a flexible schedule of the development process
• the design process lasts as long as the system lasts

The presented agile process model and XP work on different domains: Whereas XP orga-
nizes the process of coding a software in a general purposeprogramming language(e.g.,
Java or C#), the presented agile process model defines the development of a knowledge
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system by insertion, change, and review of knowledge in adeclarative language. The
process model and the included practices, respectively, are adapted and refined in order
to meet the requirements of knowledge system development. Whereas the general de-
velopment phasessystem metaphor, planning game, implementation, andintegrationare
simply adapted with respect to the characteristics of knowledge systems, the included
practices are thoroughly customized for knowledge engineering. For example, appropriate
test methodsare defined that are suitable for analyzing the design and for validating the
expected behavior of the implemented knowledge. Furthermore, the refactoring methods
known from software engineering are refined with respect to the different types of knowl-
edge; we call these methodsrestructuring methodssince not all methods preserve the
semantics of the knowledge system as it is claimed for refactoring techniques. Moreover,
we extend the process model by the additional practicelearning; by the knowledge of the
author the automated generation of general purpose software was not considered so far,
but such techniques can be very reasonable for the development of knowledge systems.
Other agile practices likepair programming, on-site customer, andcollective ownership
are also discussed in the context of the development of knowledge systems, but they are
not considered to be as relevant as the previously mentioned.
The actual implementation of the knowledge system is simplified by the introduction of
knowledge containers: The used knowledge is organized into four different containers
classified according to their use. For each container appropriate methods for testing, re-
structuring, and learning are given. The concept of knowledge containers is a specialized
design abstraction appropriate for the development of knowledge systems and no coun-
terpart in software engineering can be found so far. In the following, we describe the
particular elements of the approach in more detail.

1.2.1. The Agile Process Model

The agile process model is a light-weight process model and consists of the following
cycle: Analysis of the system metaphor, design of the planning game, implementation
(plan execution: including tests, restructuring and maintenance), and integration. A new
knowledge system project starts with the analysis of the system metaphor, which should
include an overall plan of the knowledge system. Then, the development steps into a cyclic
development phase, which consists of the planning game, the implementation of plans and
the integration of the new implementation. This cycle is executed during the development
phase and lasts as long as the system lasts. Since the process model is thoroughly explained
in Chapter 2, we only briefly discuss the steps in the following:

The System Metaphor The system metaphor describes the basic idea and the desig-
nated goals of the knowledge system to be implemented, and it is used to facilitate a better
communication between the developers (i.e., the domain specialists) and the users of the
system. Thus, the metaphor stands for acommon system of namesand a common system
description. Using a common system metaphor can greatly simplify the development and
the communication between users and developers.
In general, we distinguish between alocal system metaphorand aglobal system metaphor.
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The local system metaphor defines the names and semantics of the basic entities used
during the development of the system, e.g., diagnoses (solutions), questions (input), and
cases (solved problems). The global system metaphor is used to describe the overall idea
of the system to be implemented. Typical pre-defined global system metaphors are the
consultation system(focussing on interactive problem solving), thedocumentation system
(focussing on the standardized and correct acquisition of input data, and theembedded
system(focussing on the inference and the technical integration of the system into an
existing machine).

The Planning Game The planning game is the starting point for the development
phases: During the planning game the developer and the user decide about the scope and
the priority of future development, i.e., extensions or modifications of the current system.
For each extension/modification a plan is defined, which is documented bystory cards.
Besides the desired functionality the costs and priority of each plan are estimated. Based
on the estimated values of these factors the developer and the user define the next release
by selecting story cards. They define the scope of the release by ordering the collected
cards and defining a release deadline according to the risk estimations made before. It
is worth noticing, that these factors provide a benchmark for feedback in order to enable
adaptation of plan estimation in the future. The planning game provides a flexible method
for guiding the development process of knowledge systems. On the one hand, plans are
documented in story cards and deliver a structured sequence of the development process,
in which the user as well as the developer are integrated. On the other hand, during the def-
inition of stories the user and the developer specify the expected behavior of the planned
knowledge extension, and thus prepare useful validation knowledge for the subsequent im-
plementation phase. Furthermore, by providing methods for estimating and documenting
implementation costs (derived from the implementation velocity), an accurate feedback
can be given to assess the whole development process.

The Implementation The implementation phase considers the realization of the story
cards specified in the planning game phase. In the context of the agile process model,
the implementation phase follows a test-first approach: Any implementation of the func-
tionality of a story is preceded by the implementation of appropriate tests. Therefore, we
distinguish between atest-implementation phaseand acode-implementation phase.
In the test-implementation phase the developer defines test knowledge describing the ex-
pected behavior of the new story to be implemented. The kind of test knowledge depends
on the representational language of the code-implementation. It is easy to see that, e.g., the
test knowledge for a rule-based knowledge representation can differ from the test knowl-
edge of a case-based representation. Test knowledge needs to be suitable for automated
tests, i.e., the results of the test can be evaluated automatically by the system. As a main
idea of the process model, the continuous application of the cyclic process yields a suite
of tests, which can be executed as a whole. The code-implementation phase considers the
actual realization of the story, e.g., by acquiring and formulating new knowledge. Alter-
natively, the code-implementation consists of a restructuring task in order to simplify or
adapt the design of the already implemented knowledge.
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The Integration If the newly implemented functionality passes the corresponding tests
and the test suite, respectively, then this knowledge is committed to the knowledge base.
Since the integration is done continuously, we always can access a running system enclos-
ing the currently implemented knowledge. For a reasonable integration additional tests
need to be available, which are too time consuming to be included into the working test
suite, but which are applied during integration to check more aspects of the functional be-
havior of the knowledge system. We call these testsintegration tests. Integration tests often
contain a larger number of previously solved cases, which can be run against the knowl-
edge system. These previously solved cases typically contain a set of question-answer
pairs and a set of expected diagnoses for these pairs, but sometimes also knowledge about
dialog behavior is available. Running thousands of cases can take several minutes or hours.
Therefore it is not practical to include them into the working test suite, since the suite usu-
ally is applied many times during the implementation of a story. Nevertheless, before the
integration of a new version of the knowledge system the integration tests are an essential
indicator for the correct behavior of the knowledge system.

1.2.2. Knowledge Containers as a Design Abstraction

During the application of the agile process model the knowledge system is modified by the
extension and redesign of existing knowledge. The introduction of knowledge containers
simplifies this modifications. Thus, we classify the applied knowledge according to its use
into ontological, structural, strategic, and support knowledge. For all containers and used
knowledge representations, respectively, we present suitable test methods, restructurings,
and learning methods (if possible).
Theontological knowledge container(Chapter 4) collects all basic entities of the knowl-
edge system, i.e., diagnoses and questions. Diagnoses as well as questions are typically
grouped by problem areas and question sets, respectively; the ontological knowledge con-
tainer also contains hierarchical information between these basic entities. Thestructural
knowledge container(Chapter 5) embodies the inferential knowledge used by the diag-
nostic system. In literature, numerous approaches have been proposed to represent struc-
tural knowledge, e.g., production rules, case-based reasoning, Bayesian networks or sev-
eral model-based approaches like set-covering models. Thestrategic knowledge container
(Chapter 6) provides knowledge applied to guide the user dialog of the knowledge system.
To avoid needless data acquisition costs, the user typically is guided through an appro-
priate dialog path. Often, strategic knowledge is implemented by indication rules, which
activate the questionary of specified questions or question sets according to the observa-
tion of findings or inferred diagnosis states. Informalsupport knowledge(Chapter 7) is
used for enriching the ontological knowledge (e.g., diagnoses, questions) with additional
information. For example, informal support knowledge can consist of text book entries or
multimedia content (pictures, movies) used for explanation.
Knowledge containers provide an organized view of the knowledge base, and they can
simplify the maintenance and validation of the knowledge system. The classification of
knowledge with respect to its usage goes back to Clancey [31] who introduced the terms
structural, strategic, and support knowledge.
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In the context of the agile process model we need to consider appropriate validation tech-
niques and restructuring methods for each particular knowledge container. However, es-
pecially the restructuring of ontological objects (e.g., modify the type of a question) can
propagate changes to the remaining knowledge containers (e.g., rules concerning the mod-
ified question).

1.2.3. Explicit versus Unified Languages

When defining knowledge, and especially structural knowledge, we have to decide about
the actual representational language. In the knowledge engineering community two differ-
ent research directions have emerged, which we callunifiedandexplicit languages in this
thesis.
Firstly, the use of a unified language is proposed to be applied for all kinds of knowledge
systems projects. From a historical viewpoint, the application of logical languages (e.g.,
Horn logic) to be used as a unified language has a long tradition in knowledge system
research, and it is still considered to be very successful for building knowledge systems;
e.g., Lucas et al. [69] use Horn formulae representing knowledge for pacemaker repro-
gramming. For the representation of uncertain knowledge Bayesian networks have been
established as state of the art; e.g., the PATHFINDER system [56] for diagnosing lymph-
node diseases, and the HEPAR-II system [86] for diagnosing liver disorders. The advan-
tage of using unified languages is their well-understood semantics and broad scientific
acceptance. Thus, for logical languages and Bayesian networks the complexity of knowl-
edge acquisition and knowledge inference is thoroughly investigated. The main drawback
of unified languages is their level of abstraction: Usually, domain specialists are not famil-
iar with logic or probability theory. For this reason, often a knowledge engineer becomes
necessary for translating the collected expert knowledge into logical terms or Bayesian re-
lations. The disadvantages of using a knowledge engineer have been repeatedly discussed
in the past, e.g., the possibility of errors during knowledge translation, the difficult main-
tenance of knowledge, the possibility of misunderstandings, and the costs/availability of
knowledge engineers.
Secondly, the use of explicit languages appropriate for the actual task are propagated.
Explicit languages are trying to map themental modelsused by the specialists applied
during problem-solving; for each sub-task contained in the knowledge system the appro-
priate language is selected. Examples for explicit languages are scoring rules, case-based
diagnosis, and set-covering models. The use of knowledge representations similar to the
mental models of domain specialists comes with several advantages: Thus, there is no need
for a knowledge engineer in most cases, because the specialists are able to formalize the
knowledge themselves. Furthermore, it is easier to provide specialized process models and
suitable tools for each explicit representation. E.g., the process of building a knowledge
system using rules differs from a knowledge system based on cases, but the acquisition of
the different types of knowledge can be simplified by adequate methods and tools.
In this work, we focus on the use of explicit languages motivated by mental models. Ex-
perience has shown that domain specialists are able to formalize and maintain the required
knowledge, if the applied representation is similar to a familiar mental model. There-
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fore, we discuss the integration of the explicit languages like abstraction rules, categorical
rules, score-based rules, case-based reasoning, and set-covering models into the proposed
agile process model. All presented languages have been applied in real world knowledge
systems.

1.2.4. Highly Integrated Environments

The use of explicit representational languages allow for specialized tools supporting the
application of the agile process model. Visual programming environments can support
even unexperienced users in building a knowledge system, i.e., in formalizing and main-
taining the required knowledge.
The application of the agile process model is supported by the highly integrated knowl-
edge modeling environment d3web.KnowME, which provides appropriate editors for the
definition of the presented knowledge containers. Furthermore, editors for the acquisition
and the use of test knowledge, together with the application of restructuring methods is
provided by the tool.

1.3. Results

The presented work describes the agile development of diagnostic knowledge systems. It
comprises both the initial phases of a project with the definition of the system metaphor
as well as the following development process by the planning game, the implementation,
and the integration; thus, early and continuous feedback concerning the cost-effectiveness
are combined with a structured methodology. The implementation phase is identified as
the most important part of this process, and it is simplified by the introduction of differ-
ent knowledge representations similar to mental models applied by the domain experts.
According to the project requirements the developer can choose a suitable representation.
Furthermore, knowledge is classified into different knowledge containers providing an ab-
stract overview of the different types of knowledge. The agile process model and the use
of knowledge containers were presented in Baumeister et al. [17]. For the used knowledge
representations we provided appropriate knowledge acquisition procedures. For example,
an incremental development process for set-covering models was presented and analyzed
in Baumeister et al. [16, 15]. The developer is supported during the implementation phase
by the agile activitiestesting, restructuring, andlearning. All three activities form a sig-
nificant contribution to the knowledge engineering task, and we discuss their benefits in
the following.
For different knowledge representations we present appropriate automatedtest methods,
that are able to evaluate their test results by themselves. Thus, testing can be applied
continuously during the development process without increasing the workload for the de-
veloper. We distinguish two types of test methods: The first type of methods is used to
monitor the correct behavior of the implemented knowledge, and errors or warnings are
reported in the case of a discovered defect. The second type tries to find deficiencies of the
knowledge design using specialized metrics. An advice is reported in the case of ambigu-
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ous or unstructured knowledge design, which we callbad smellsaccording to analogous
metrics known from software engineering. Often knowledge formalization patterns can
give clues for repairing deficient knowledge design.
The second key activity of the agile process model arerestructuring methods. They pro-
vide algorithmic procedures for typical modifications of the implemented knowledge in
order to increase the simplicity of the knowledge or in general for improving the design.
Furthermore, restructurings are a suitable technique for the stepwise implementation of
knowledge systems; pilot systems are modified by such methods according to changing
project requirements, and larger systems can be refactored if the knowledge design be-
comes messy. For this reason, restructuring methods are a significant contribution for
facilitating the (evolutionary) development of high-quality knowledge systems. The sig-
nificance of test methods and restructurings was explained in Baumeister et al. [18].
Learning methodsare the third key activity of the agile process model. If sample cases
of the domain are available, then they can provide a suitable technique for the automatic
generation of prototypes or they are used for extending an existing knowledge base. In
the agile process model the quality of a learning method is determined not only by the
accuracy but also by the simplicity of the learned patterns. The simplicity is an important
aspect since learned knowledge should be integrated into the manual knowledge develop-
ment process. For several patterns of knowledge we present learning methods focussing on
the accuracy and the simplicity of the learning result. We have presented suitable learning
methods for different types of knowledge in [14, 8, 9, 10].

Our implementationdemonstrates the practical applicability of the presented process
model and their activities, respectively, and we present the implementation of the visual
knowledge modeling environment d3web.KnowME. The tool supports the developer dur-
ing all phases of the project, for example by providing a planning editor, specialized editors
for different types of knowledge, an automated test tool, a restructuring interface, and a
visual debugger.

The process model and their activities, respectively, were (partially) evaluated in tworeal
life projectsand the benefits of the presented research is clearly demonstrated. The project
ECHODOC (formerly QUALI TEE) was described in [68], the evaluation of LIMPACT

project can be found in [79, 83]. A position paper of the ILMAX system, an information
center, was presented in [81].

1.4. Structure of this Work

This work is structured into four parts and two appendices, that we summarize in the
following:

The first part gives an introduction into the basic concepts of the agile development of
diagnostic knowledge systems. It focusses on the social aspects of the implementation of
the process model (e.g., defining a suitable metaphor for the planned system, planning the
most current development steps, monitoring and steering the development process), and
the basic ideas of the phases knowledge implementation and continuous integration. As
the key practices of the agile process model we propose automated testing of knowledge,
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the application of organized restructurings on knowledge, and the use of learning methods.
Thesecond partof this work considers the details of knowledge system development. We
introduce the concept of knowledge containers and extensively discuss the particular con-
tainers including the application of the agile practicestesting, restructuring, andlearning
for each container.
The third part describes the practical aspects of this work: The system family d3web
is introduced, which contains the highly integrated knowledge modeling environment
d3web.KnowME. We motivate, that a tight integration of specialized editors for the ac-
quisition of knowledge and corresponding test knowledge in connection with integrated
restructuring methods can greatly simplify the development of diagnostic knowledge sys-
tems. Furthermore, experiences made with the process model are reported. The process
model was partly applied in a project for building a biological knowledge system, and fully
adopted in another project developing a medical knowledge system.
Theforth part concludes this thesis with a summary of the presented work and an outlook
for promising research directions in the future.

Two appendices to this work summarize two important aspects of agile knowledge en-
gineering: restructuring and testing.Appendix Apresents a compact catalog of selected
restructuring methods. Each restructuring method is coherently explained with respect to
its motivation, the consequences of its application, a detailed description of its mechanics,
an example, and related methods.Appendix Bsummarizes the presented testing methods
in a tabular manner with respect to its corresponding knowledge container, its required test
knowledge, and further characteristics.
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2. An Agile Process Model for
Evolutionary Development of
Knowledge Systems

In this chapter, we will introduce an agile process model for developing diagnostic knowl-
edge systems. This process model enables developers to flexibly build knowledge systems,
since changes during the development phase can be implemented easily. We first motivate
the usage of agile methods. After that, we introduce the agile process model and con-
clude the chapter with a discussion and a comparison with related knowledge engineering
approaches.

2.1. Motivation for an Agile Process Model

The development of knowledge systems is still a complex and costly task. Experiences
with real world applications show that systems...

• are costly to develop, i.e., they need more time and resources as expected and
planned

• show unexpected and/or faulty behavior
• do not fulfil the customer’s requirements
• are hardly maintainable, when delivered into productional use

A lot of research has been done to cope with the problems stated above.
Starting with rapid prototyping approaches (e.g., Budde et al. [26]) some efforts have
been undertaken to define a more structured methodology for the development of knowl-
edge systems. Furthermore, from the repeated programming of custom-tailored systems
for each project, the knowledge engineers switched to reusable shells or components.
Thus, inference engines and knowledge acquisition tools are reused and the domain ex-
pert/knowledge engineer can focus on the problem of knowledge modeling. The most
prominent example for a structured and reusable knowledge modeling approach is KADS
[118], which was followed by CommonKADS [119]. These approaches focussed on a
predetermined method for creating models describing the intended knowledge system. In
this way, these methods are document-centered and design-oriented. However, we have
experienced, that knowledge base development often faces problems, when using such
approaches:

• For a lot of projects thetechnical feasibilityis not known in advance. Then, a quick
prototype needs to be developed in short time, to convince the customer of the feasi-
bility of the focused project. Design-oriented processes do not (sufficiently) support
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the quick creation of a prototype, which then can be integrated into a real, subse-
quent project.

• In many cases afull specificationof the desired system properties cannot be given
in advance. Moreover, the requirements of the system often change during the de-
velopment phase. Requirement changes arise with the growing confidence of the
developers in the applied representation or often come up because of changing de-
mands of the customer. Requirement changes in a design-oriented process model
involve costly changes of documents, design and planning efforts.

These typical problems are not unique for knowledge base development; they also have
received great attention for general software engineering research.
Recently,agile methodshave been presented that allow for an evolutionary design and
development of software and that claim for coping with the problems stated above, e.g.,
Cockburn [32].
The most prominent agile representative is calledeXtreme Programming[19], which has
attracted huge attention in the last years because of several successful projects, e.g., the
DaimlerChryslerpurchase request tracking system(C4) described in [19], and thechrysler
comprehensive compensation(C3) project described in [5].
Extreme Programming (XP) shows interesting characteristics, which can be summarized
by a quote from its founder Kent Beck [19]:

XP is a light-weight methodology for small-to-medium-sized project teams
developing software in the face of vague or rapidly changing requirements.

In this way, it distinguishes from other methodologies by
• early, concrete and continuing feedback. This is realized by short implementation

cycles. The result of each cycle is a deliverable system.
• incremental planning approach: The project starts with a coarse overall plan, which

evolves during the life-time of the project.
• allowing for the flexible schedule of implementation of functionality which responds

to the customer needs.
• producing reliable software. One of the central ideas of XP is the creation of auto-

mated tests written by customers and developers to control the development of the
system and its evolution.

• a fundamentally evolutionary design and development process, which lasts as long
as the system lasts.

In the following sections we introduce a novel agile process model for developing diag-
nostic knowledge systems. We transfer most of the principles and techniques applied for
XP to an approach appropriate for the knowledge engineering task.
Of course, an evolutionary model can not help with ”chaotic” projects for which the fo-
cussed production system changes from time to time. In fact, a proper pre-design of the
system is still one major key to the successful conclusion of a project. However, the pre-
sented process will provide restructuring methods and automated tests for a safe redesign
of existing knowledge systems. Furthermore, we will limit our approach to configurable
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role-limiting methods [91] (CRLM). For short, CRLM are based on role-limiting meth-
ods [71] (RLM), which are implementations of strong problem-solving methods. Since
RLM focus on a selection of problem-solving methods, user-friendly shells with conve-
nient knowledge acquisition tools can be provided, which efficiently support the developer
during implementation. Their main disadvantage is their inflexibility according to the va-
riety of possible requirement within a knowledge system project. CRLM try to reduce this,
by offering a set of problem-solving components, that can be (mostly) freely configured
with respect to the project requirements.

2.2. Steps of an Agile Process Model

The agile process consists of a cycle of steps, which are described in detail. The agile
process model is a light-weight process model and consists of the following steps:

1 Analysis of the system metaphor
2 Design of the planning game
3 Implementation (plan execution)

Including tests, restructuring and maintenance
4 Integration
5 Start a new planning game

A new knowledge system project starts with the analysis of the system metaphor, which
should include an overall plan of the designated knowledge system. Then, the development
steps into a cyclic development phase, which consists of a planning game, the implemen-
tation of plans, and the integration of the new implementation. This process model is
executed during development phase and lasts as long as the system lasts.

System Metaphor

Planning Game

ImplementationIntegration

Figure 2.1: The agile process model for developing knowledge systems.

The agile process model is depicted in Figure 2.1 and we will describe the steps of the
model in more detail in the following.
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2.2.1. System Metaphor

The system metaphor describes the basic idea and designated aims of the knowledge sys-
tem to be implemented.
It is used as a media of communication between the developers and users of the system.
Thus, the system metaphor describes a commonsystem of namesand a common system
description. Using a common system metaphor can greatly simplify the development and
the communication between users and developers.
We can distinguish between a global and a local system metaphor. Theglobal system
metaphordescribes the overall idea of the system, and thelocal system metaphordefines
the set of basic names, which are used to implement the global metaphor.

Local System Metaphor For diagnostic knowledge systems the main part of the local
system metaphor is pre-defined, because a diagnostic knowledge system always performs
a fixed task, i.e., obtaining input data and deriving solutions, which explain the given input.
The local metaphor consists of a set of classes for the basic entities, and we see that there
exist alternative names for them in the literature:

• Diagnosis / solution: Instances of the diagnosis class are inferred as the result of a
diagnostic system run. Often, the alternative namesolutionis used for describing a
composite set of diagnoses.

• Finding (symptom, parameter, observable, observation, data, input, fact):The class
of entities, that are mostly given as input to the diagnostic system and that are used
to infer diagnoses.

• Question set (question container, test):A composite entity class, containing a group
of findings belonging together in a sense. It is often used to structure the set of
available findings into meaningful partitions.

• Problem (problem description): A problem is described by a set of findings, that
appear together in a given situation. This problem is given to a diagnostic knowledge
system in order to infer one or more diagnoses.

• Case: The instance of a case consists of a problem, i.e., set of findings, and a set of
solutions, that explain the given observation. Sometimes cases additionally contain
a set of information (mostly unstructured and informal) describing the solved case
in more detail.

To avoid communication problems it is advisable to commit to an unique naming conven-
tion. Therefore, if not necessary, no alternative names should be used to describe the same
entity class.

Global System Metaphor Beyond the basic entities of a diagnostic knowledge sys-
tem there exists a set of typical application classes that are used to define the global system
metaphor. Each class describes the focus of the designated application, which is planned
for development. In the following, we describe the four most typical application classes:
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Documentation SystemA documentation system is focussed on a high quality data ac-
quisition and usually implements a detailed dialog control. This kind of class is
often implemented, when high quality data entry is the most important feature of the
knowledge system. In this context the termquality is defined by completeness of the
input, the structure of the data set, and the correctness of the input. For documenta-
tion systems a guided dialog control and consistency tests need to be implemented.
Example: In the medical domain, the standardized documentation of examinations
often is associated with legal requirements. Thus, for any medical attendance a
consistent documentation is obligatory. Moreover, the application of documenta-
tion systems can be a starting point for mass-acquisition of sample data, reused for
machine learning or statistical analysis. Example systems that also implement the
documentation system metaphor are SONOCONSULT [142] and ECHODOC [140].

Embedded SystemSometimes the diagnostic knowledge system is embedded in another
system as a component. Then, the system receives its findings from the overlying
application and returns its diagnoses back to the application. Because usually data
is not manually entered, often no dialog control is needed. Embedded systems are
also calledclosed-loop systems.
Example: Diagnostic knowledge systems are often instances of embedded systems.
For example, in technical domains diagnostic knowledge system can be embedded
in printing machines. In this example, the system receives the error codes directly
from the printing machine interface and diagnoses the current status of the machine.
TIGER is another example taken from a technical domain, which diagnoses gas tur-
bines used at oilrigs [77, 78]. In the medical domain there exist also examples of
embedded systems, e.g., in [69] a system is presented as a successful implementa-
tion for reprogramming cardiac pacemakers. Furthermore, there has been a lot of
research on on-board diagnosis of automobile engines [129].

Consultation System Consultation systems are the typical kind of diagnostic knowledge
system: The user is guided through a structured dialog in order to enter findings
for the given problem. Then, the system uses the findings to infer diagnoses, that
are presented for the user. We can see, that a consultation system is a kind of doc-
umentation system, because it often contains a guided data entry. Furthermore, it
also includes a diagnostic component to infer diagnoses.Critiquing systemscan be
seen as an extension of consultation systems, since they also infer suitable solutions.
However, critiquing systems differ from ordinary consultation systems by not pre-
senting the derived solution in any case but only on demand. Additionally, they are
able to criticize the solution manually entered by the user, e.g., if the user’s solution
could not be derived by the system or important system solutions were ignored by
the user. For a detailed discussion of critiquing systems with respect to consultation
systems we refer to Puppe [101].
Example: There have been a lot of examples of diagnostic consultation systems in
the medical domain. Classical systems are MYCIN [24] or PATHFINDER [56]. A re-
cent and successful example is HEPATOCONSULT [28], which was developed with
the shell-kit D3 [104]. In the geo-ecological domain, we have made own experi-
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ences with consultation system LIMPACT [83, 80].

Information center The information center does not focus on well elaborated diagnostic
inference knowledge (e.g., as needed for a consultation system), but mostly consists
of informal knowledge like documents, multimedia content, and structured cases.
Usually, this content is hierarchically structured and methods for intelligent retrieval
and navigation are available. Obviously, this kind of system can be also used for
solving a given problem, i.e., by browsing the content in order to find helpful con-
tents for a given problem. On the one hand, the user is more flexible and independent
when compared to a consultation system, since he has not to traverse a predefined
questionary. On the other hand, the user is more responsible for obtaining a suitable
solution for his problem, since he has to browse through informal content which
needs to be interpreted by himself and adapted to the given problem situation.
We differ information centers from usual information systems by their capabilities
of intelligent navigation: Whereas pure information systems only provide a simple
navigation and search facility to obtain the desired content, an information center at
least should offer intelligent dialogs and questionnaires in order to narrow the cur-
rent problem and offer appropriate content for the problem.
Example: ILMAX [81] is an information center containing various kinds of content
about the regeneration of the river Ilm located in Germany, e.g., PDF documents,
Excel sheets, sample case bases, and formalized knowledge. ILMAX is currently
under development.

The global metaphors described above are not an exclusive list of all possible application
classes. Furthermore, classes may be combined or extended to fulfill the project require-
ments.
An example is the mixture of an embedded system with a consultation system: For instance
in technical domains it is very common to link the diagnostic system with the system to be
diagnosed (e.g., printing machine). Then, the diagnostic system reads all available error
codes and findings from the machine in an embedded way. If necessary, the system pops-
up with a dialog to obtain further, mostly refining questions that can establish or exclude a
suggested diagnosis inferred by the embedded dialog.
As explained above the global system metaphor describes the basic aim of the desig-
nated diagnostic knowledge system. Of course, the chosen metaphor can change during
the development phase. For example, starting with the idea of a consultation system it
comes up, that formalizing explicit knowledge for inferring final diagnoses is too time-
consuming and costly. To reduce knowledge acquisition costs the team decides to for-
malize only coarse diagnoses and attach an information center to the already implemented
dialog knowledge.

2.2.2. Planning Game

In summary the overall aim of the planning game is to maximize the value of the built
system and to minimize development costs.



2.2 Steps of an Agile Process Model 19

The value of the system is mainly defined by the consumer satisfaction derived from the
usability, the functionality and the correctness of the system.

Purpose of the Planning Game The main purpose of the planning game is to decide
about the scope and priority of future development. Furthermore, the costs of the planned
implementation are estimated and the selected plans are scheduled. It is also useful to
provide a benchmark for feedback in order to enable adaptation of plan estimation in the
future.

Figure 2.2: An exemplary story card.

In principle it is not advisable to make long-range plans, because the priorities of des-
ignated functionality can change or customer requirements can (and will) evolve during
the project. Thus, it is reasonable to discuss long-range plans only as coarse artifacts and
concentrate on detailed plans to be realized in the near future.
Plans are documented bystory cards. Story cards are recorded by the developer and the
costumer. They contain information about, e.g., the recording date, the estimated imple-
mentation time, a task description, and additional notes. Story cards are useful to docu-
ment the overall development process of the knowledge system project. In Figure 2.2 an
exemplary story card is shown. It is worth noticing, that plans do not only carry out new
functionality of the knowledge system, but also may consist of extending an already imple-
mented functionality or correcting a broken part of the knowledge system. The planning
game is divided into three phases, calledplanning moves: Exploration, commitment and
steering.
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Exploration In theexploration phasethe costumer and the developer consider the sys-
tem functionality that should be changed or added. For each functionality a story is written
down to a story card describing the task in more detail. Then, the development costs of
each story are estimated and stories are partitioned into smaller grained stories, if neces-
sary.

Commitment In the commitment phasethe costumer and the developer decide about
the realization of the stories recorded in the exploration phase.
The customer can assign a value to each story (i.e., the priority) and the developer sorts
the stories independent of this by their risks. The possible values for the priority and the
risk of a story are given in the following table:

Priority Risk
essential The system will not work

without implementing this
story.

certain The implementation costs of
the story can be estimated
precisely.

significant The story will add a signifi-
cant value (i.e., functionality)
to the system.

good The implementation costs of
the story can be estimated
reasonably well.

nice to have The story will add not a nec-
essary but a useful feature to
the system.

unsafe There is no estimation possi-
ble about the implementation
costs of the story.

Based on the estimations made above the developers and the costumer define the next re-
lease by picking story cards. They define the scope of the release by ordering the collected
cards and defining a release deadline according to the risk estimations made before.

Steering Of course, the implementation of the plans develops not always as expected.
Therefore, thesteering phaseupdates and refines the plan currently under implementation.
The steering phase offers three moves:

Steering moves
Iteration During the implementation of the plan stories are picked iteratively, i.e.,

after successful implementation of a story the most valuable remaining
story is chosen to be implemented next.

Recovery It can happen that the developers overestimate the development speed.
This occurs sometimes at the beginning of a project, when the develop-
ment process has not been well-established. Then, after adaptation of the
plan estimations, the costumer and the developer need to decide about the
most valuable set of stories, that should remain in the current plan and that
can be moved to a later planning game.

Reestimate In general, during the implementation of the plan the developers can rees-
timate the remaining stories, if the plan no longer provides a sufficiently
precise table of the development.

We have seen that the planning game provides a flexible method for guiding the develop-
ment process of knowledge systems. Plans are documented in story cards and deliver a
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structured sequence of the development process, in which the costumer as well as the de-
veloper is integrated. The steering phase enables the process to flexibly adapt the currently
implemented plan by inventing new stories, by reestimating the predicted plan costs or by
reordering the priority of the remaining unimplemented stories.
Furthermore, by providing methods for estimating and documenting implementation costs
(derived from the implementation velocity), an accurate feedback can be given to assess
the whole development process.

Example With the following example we want to illustrate how the planning game
can be applied when developing diagnostic knowledge systems. For a running system
the costumer comes up with the requirement to include a problem area (represented by a
set of diagnoses), which should be detected by the knowledge system. Furthermore, the
costumer wants to have multimedia information (e.g., hyper-linked texts with figures) to
be included for several diagnoses.
The planning game starts with the exploration phase, i.e., the requirements stated above
are collected and written on story cards. It is obvious, that the costumer has to clarify his
requirements in this phase, when writing a story card for the new diagnoses and for the
distinct multimedia extensions.
Having finished the exploration phase, the developer and the costumer estimate the risk
and the value for each story to bring them into a useful order. In this example, the value
of the multimedia extensions of several diagnoses is assumed to be less valuable than the
inferential knowledge of the most new diagnoses.
After the first iteration (e.g., implementation of the most valuable story) the costumer
requests a new, very important diagnosis to be inserted into the system. A new story
is defined for this diagnosis and risk and value are estimated. Because of the specified
time-table, the costumer and the developer decide about removing a low-priority story
from the plan. This procedure ensures that the project keeps in the intended time. With the
completion of the plan the estimations concerning costs can be assessed by the experiences
made during the implementation. The feedback gained from this assessment can help the
developer and the costumer to improve their planning and estimation capabilities.

2.2.3. Implementation

Once the planning game has arrived at a sequence of stories, the implementation phase is
initiated. Then, each story is implemented in the determined order given by the elaborated
plan. Actually, implementation is done during the steering phase, so that new stories can
be invented because of new requirements of the costumer.

Splitting Stories into Tasks For the implementation of a story the developer split the
story into distinct tasks, which are sequentially handled. Ataskis defined as separable part
of a story, which can be easily implemented and tested. If the story has a large number of
tasks, then a planning game concerning the tasks may be reasonable. However, a large list
of tasks can also indicate the necessity of partitioning the story into several (sub-)stories.



22 Chapter 2: An Agile Process Model

Implementation Phases When we talk about implementation of stories we follow
a strict test-firstapproach: Each implementation of a task passes a test-implementation
phase and a code-implementation phase.
In the test-implementation phasethe developer assigns test knowledge to the knowledge
base, which describes the expected behavior of the new task. Test knowledge needs to
be automatically executable in order to instantly validate the knowledge system. In the
code-implementation phasethe developer actually acquires and implements the new func-
tionality described in the task.
Following this test-first approach the implemented tests will accumulate to a suite of tests,
which can be executed as a whole. This suite can be executed anytime to verify the already
implemented functionality of the knowledge system.
After the code-implementation phase has been finished, the knowledge system is validated
using the test suite. If the tests report no errors, then the implementation of the task is
complete and the next task is considered for implementation. If some of the tests fail, then
we have to enter a debugging task. There are many reasons that can cause a test to fail. The
most typical ones are implementation errors in the new implementation and the missing
adaptation of old tests. In the later case, old tests fail because the new implementation has
(possibly accidently) changed an existing functionality. Then, either the new functionality
needs to be adapted or the old tests need to be adapted according to the new functionality.

Significance of Tests At first sight, the construction of tests for each task is an addi-
tional and huge effort during the implementation phase. Nevertheless, implementing tests
besides the actual functionality is good for the following reasons:

• Validation of the code implementation
Tests are primarily defined to validate the subsequent code-implementation. If the
tests pass, then the developer and the customer feel confident, that the newly imple-
mented functionality shows the expected behavior.

• Removing communication errors
Tests are often implemented as examples of typical system runs. Defining such ex-
amples together with the costumer (which has to know the typical system behavior)
will clarify story or task definitions. It is worth noticing, that often ambiguous re-
quirements are timely exposed due to the test-implementation phase.

• Detecting side effects
Since all tests are collected in a common test suite, all available tests will be executed
at least before completing the implementation of a story. In this way, side effects
can easily be discovered, i.e., if a new functionality has accidentally changed the
behavior of a previously implemented and still remaining functionality.

Example We illustrate the considerations made above by a simple example: During
the implementation of a documentation system a new story comes up for introducing a
new question set containing additional questions. The story tells us, that the question
set should be indicated, i.e., asked to the user, after an already implemented question
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set. According to the process model, we start with the test implementation and we define
some typical system dialogs containing the new question set. Then, we start with the code
implementation and insert the question set and the contained questions accordingly. Before
completing the implementation of the story the test suite is executed now additionally
containing our new test. Several old tests fail, since they expect a different sequence of
question sets to be indicated not containing the new question set. In this case, the old tests
need to be adapted according to the new question set, i.e., we modify the old tests so that
they also consider the new question set. After the adaptation the test suite passes and the
implementation of the story can be seen as completed. Another example is the definition
of tests for inferential knowledge. Then, we can build tests that postulate the derivation (or
exclusion) of a given set of diagnoses for a given set of findings. It is obvious, that these
tests can fail, if new inferential knowledge is inserted.

2.2.4. Integration

In the integrationstep the newly implemented functionality is embedded into the produc-
tion version of the knowledge system. Integration is done by putting the current knowledge
system on an integration unit (e.g., a distinct computer or storage device), and by running a
suite of integration tests. The integration is finished when the integration test suite passes.

Continuous Integration Integration is done continuously, which means that every
successfully implemented story is immediately integrated into the production system.
Continuous integration guarantees an always up to date knowledge system containing all
the functionality, which has been implemented to this date. Thus, we receive a fully run-
ning system after each integration at the integration unit.

Integration Testing To guarantee the practicability of the integration builds the test
suit ensures that the system is not broken because of the new functionality. For a reason-
able integration additional tests need to be available, which are applied during integration
to check more aspects of the functional behavior of the knowledge system. We call these
testsintegration tests. Integration tests often contain a larger number of previously solved
cases, that can be run against the knowledge system. These previously solved cases typ-
ically contain a set of findings and a set of expected diagnoses for these findings, but
sometimes also strategic knowledge is available. Running a number of thousands of cases
can take several minutes or even hours. Therefore, it is not practical to include them into
the working test suite, since the suite is applied many times during the implementation of
a story. Nevertheless, before the integration of a new version these integration tests are an
essential indicator for the correct behavior of the knowledge system.

Errors during Integration Of course, it can happen that the integration candidate has
passed the working test suite, but the integration tests fail. In this case, we stop integration
immediately. We invent a new story containing a debugging task in order to find the reason
for the incorrect performance of the system. Once the error has been found, it is advisable
to create tests covering the defective parts and include them in the working test suite.
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2.3. Story Idioms

We have seen, that the definition of stories is essential for the implementation of the agile
process model. For the agile development of diagnostic knowledge systems we can refer
to a set of typical stories (i.e., story idioms), which are briefly described in an abstract
manner in the following.

New Problem Area TheNew Problem Areaidiom considers the introduction of a new
set of diagnoses, which together can be grouped to a problem area. Then, usually the
following tasks have be accomplished: 1) Define appropriate test knowledge. 2) Insert
new diagnoses of the problem area. 3) Extend the finding hierarchy by the required new
findings for the problem area. 4) Insert associated inferential and strategic knowledge. 5)
Update existing tests with respect to the new problem area.

New Question Set The insertion of a new group of questions into the knowledge base
can be described by theNew Question Setidiom. Then, we need to consider the following
tasks: 1) Select the position of the new question set in the question hierarchy. 2) Define the
type and the level of the questions contained in the new question set. 3) Insert the question
set with the associated questions. 4) Possibly adapt inferential and strategic knowledge
with respect to the new question set. 5) Update existing tests.

Increase Clarity of Question The Increase Clarity of Questionidiom should be ap-
plied, if, e.g., a question often is falsely answered or users have problems answering the
question. The clarity of a question can be increased by one of the following tasks: 1) Re-
duce or increase answer range of the question (for choice questions). 2) Attach informal
support knowledge to the question explaining its meaning. 3) Divide the question into
a set of smaller and simpler questions. 4) Change the type of question, e.g., translate a
numerical question to a qualitative one-choice question.

Increase Dialog Velocity If the questionary contains too much questions or the dialog
is too time-consuming for the user, then theIncrease Dialog Velocityidiom should be
considered. The application of at least one of the following tasks can increase the dialog
velocity: 1) Add control question, in order to avoid useless questions (only meaningful,
if control question can reduce useless question significantly). 2) Simplify questions, e.g.,
combine associated yes/no questions to multiple-choice questions or shrink the value range
of questions. 3) Link the dialog with a data base system, which can auto-answer a set of
questions. 4) Coarsen diagnosis detail with corresponding reduction of a set of required
questions. 5) Add free text questions. 6) Use more technical questions in dialog (that were
possibly used as abstracted questions before). 7) Omit questions or answer alternatives
with little diagnostic importance (similar to 5). 8) Consider the complete redesign of the
implemented strategic knowledge.
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Increase Diagnostic Accuracy If the system does not supply a correct diagnosis
for all cases, then theIncrease Diagnostic Accuracyidiom can improve the diagnostic
behavior of the system by at least one of the following tasks: 1) Refine and extend the
diagnostic knowledge. 2) Refine the diagnostic hierarchy by, e.g., adding more detailed
diagnoses with associated knowledge. 3) Refine the question structure to enable the system
for a more detailed acquisition of the problem description and adapt inferential knowledge
with respect to the refinement. 4) Coarsen the diagnostic hierarchy, if the currently desired
accuracy cannot be reached.

Introduction of Plausibility Checks The correctness of the acquired data is neces-
sary for a correct diagnostic behavior and can be improved by plausibility checks. These
checks can be included into an existing system by the following tasks: 1) Introduction
of additional, redundant questions with associated plausibility rules comparing the cor-
responding answers. 2) Define plausibility constraints for corresponding findings (not
necessarily redundant).

2.4. Practices of the Agile Process Model

The basic practices of the agile process model are depicted in Figure 2.3. They summarize
the presented methodology with its main aspects.

System 

Metaphor

Planning

Game

Testing

Restructuring

Integration

Figure 2.3: The practices of the agile process model.

It is worth noticing, that each practice is necessary for a successful implementation of the
agile process model, since there exist strong dependencies (indicated by links in the figure)
between the several practices.

2.4.1. Summary of the Practices

The center of the process model is thesystem metaphor, which contains the basic idea of
the designated system. A system metaphor has to be chosen at the beginning of the project
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and determines the system’s focus and denotation. For developing a diagnostic knowledge
system there exists a predefined set of global and local system metaphors, which should be
extended or changed, if required. During the developmentplanning gamesare executed it-
eratively by writing story cards and determining a schedule for the plan. A planning game
narrows the project course and also contains estimations about the project velocity and an
assessment of previously estimated plans.Testingis a central practice of the agile process
model, since they enable an evolutionary design of the intended knowledge system. Tests
have to be written in advance to refine the implementation specification of a plan. During
the development tests accumulate to a test suite, which covers the intended functionality of
the system and which enable for refactoring and integration. Since the design of the mod-
eled knowledge evolves during the project,restructuringshave to be implemented from
time to time in order to improve the knowledge design and clarity. Restructurings are fea-
sible due to the existence of a test suite. A specific characteristic of the agile process model
is the presence of an always running system. This can be guaranteed by a continuousinte-
gration after the successful implementation of any planning game. Any integration build
corresponds to a part of the system metaphor and is done by running (possibly additional)
test suites.

2.4.2. Comparison with XP

As mentioned in the introduction of this chapter the presented process model is an adap-
tion of XP, a successful software engineering methodology. In contrast of coding general
software by an all-purpose programming language the agile process model considers role-
limiting knowledge as the language to be used for developing the system. Usually, a highly
integrated knowledge system shell is used to acquire, model and maintain the knowledge.
Such a shell is comparable to integrated development environments (IDE) for generic pro-
gramming languages. However, there are further practices known from XP which are not
explicitly discussed by the presented agile process model.

On-Site Customer In an XP project a real customer must accompany the development
team in order to answer upcoming questions or to decide about small-scaled priorities.
For the development of a knowledge system the customer is represented by the domain
expert, which decides about the focus and functionality of the system. Since we propose
the domain expert to model the knowledge by himself – supported by appropriate visual
development tools – we already have the customer always on-site.

Pair Programming One of the most famous practices of XP is pair programming,
which means that all production code is written by two people sitting on the same com-
puter. Experience has shown that pair programming yields better code written in shorter
time. While one pair partner is coding on the keyboard, the other parter can prepare tests,
correct the partner’s oversights, and think strategically about the next iterations. From our
experience knowledge systems are usually not build by pair programming. Often only one
expert is available to provide the knowledge. For projects with more than one experts, it is
often usual that the experts coordinate basic principles and milestones of the knowledge to
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be implemented. Then, the knowledge is implemented by oneself and after that the experts
meet again for a review of the already modeled knowledge. However, a kind of pair pro-
gramming is usually performed at the beginning of a knowledge system project, when the
expert together with a knowledge engineer decide about the basic functionality and design
of the system. The knowledge engineer gives advices on formalizing and structuring the
knowledge to be implemented.

Collective Ownership In XP every programmer takes the responsibility for the whole
code. If somebody changes functionality, adds new one or tries to improve existing code,
then he has to assure, that the complete code has not been broken due to his change (which
is supported by test suites). In knowledge system projects the collective ownership is
a problematic issue. For example, the reputation of medical knowledge systems mainly
corresponds with the reputation of the implementing expert. Thus, collective ownership is
often undesired and therefore mostly not performed.

2.5. Discussion and Comparison

The systematic development of knowledge systems has been investigated for over 20 years.
In the following, we give a short historical overview of knowledge engineering research.
In the late 70s and early 80s the task of building knowledge systems has been understood
as aknowledge transfertask. This task was interpreted as just collecting and implement-
ing knowledge, which was thought to be already available ”in the heads” of the domain
experts:

This transfer and transformation of problem-solving expertise from a knowl-
edge source to a program is the heart of the expert system development pro-
cess.([54], p. 23)

Typically, these systems were implemented using simple production rule formalisms,
which were easy to understand and supported the acquisition process during expert in-
terviews.
Experiences with numerous systems – prototypical but also productional ones – have
shown, that several problems arise when following the knowledge transfer approach: Due
to the uniform use of production rules as knowledge representation structural knowledge
was mixed up with other kinds of knowledge, e.g., strategic knowledge [31]. Besides the
fact, that this representation is not suitable for all kinds of tasks, the maintenance and
acquisition of such systems became very complex and the complexity growed drastically
with the size of the represented knowledge. Because of the experiences and problems with
the knowledge transfer approach, research shifted to aknowledge modelingapproach. Now
developing a knowledge system was seen as the task of building a computer model, which
shows problem-solving capabilities comparable to a human domain expert.
Though it was not intended to develop an exact copy of the expert’s cognitive abilities, the
artifact, i.e., the system, should be able to infer comparable results for a given problem
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within a focussed domain. Thus, the knowledge appeared to be not always accessible and
was acquired, structured and build up within a continuous process. Thismodel construc-
tion processcan be seen a significant progression of the former transfer process.
In the following, we describe a selection of process models for developing knowledge
systems. All these approaches have one significant difference compared to the presented
agile process model: Whereas the agile process model is designed for the usage with
configurable role-limiting methods the most of the following process models are generic
models supporting the implementation of the problem-solving capabilities as well. For
the discussion we will only consider the development of the knowledge base and not the
development of the problem-solving method.
For a detailed survey of knowledge engineering research and knowledge engineering
methodologies, respectively, we refer to [90, 130, 131].

2.5.1. Classical Knowledge Engineering Approaches

Since the beginning of knowledge engineering research the work has been oriented on the
concepts developed by software engineering.
In this way, it is not surprising that early knowledge engineering process models adopted
process models known for developing generic software systems.

Stage-Based Process Model

Thestage-based process model[33] defines a life-cycle for developing a knowledge sys-
tem, which is very similar to the well known waterfall model [124].
The stage-based model is depicted in Figure 2.4.

System Analysis

Knowledge
Engineering

Implementation

Testing

Operation and
Maintenance

Figure 2.4: The phases of the stage-based model.

We briefly discuss the phases of the process model in the following:

System AnalysisThe organizational environment of the intended system is analyzed and
described. Thus, the involved hardware, software, people and additional systems
are determined. Furthermore, the analysis defines the tasks that are affected and
substituted by the system, and which tasks are not influenced by the system.
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Knowledge Engineering In this phase the necessary knowledge is acquired, structured,
represented, and specified.

Implementation According to the specification in the previous phase the knowledge sys-
tem is implemented. The implementation strongly depends on the underlying tools
used for the implementation. In earlier days, often AI languages like LISP [41] or
Prolog [73] were applied. Nowadays, for the implementation often visual develop-
ment environments are used, e.g., HUGIN [4], PROTÉGÉ [84, 50] or D3 [104].

Testing In this phase the implemented system is tested for the presence of errors. It is
well agreed, that the absence of errors cannot be shown. Therefore, only a sufficient
large number of test cases covering the whole functionality of the system can give a
strong confidence into the validity of the system.

Operation and Maintenance After the system has been delivered it goes into operation.
In order to keep the system running, maintenance may be necessary. One can dis-
tinguish between corrective, adaptive and perfective maintenance. Maintenance will
be discussed in more detail in Section 3.2.

The presented stage-based model has the following disadvantages:
• The process model relies on the assumption that sufficient detailed requirement spec-

ification can be prepared in advance. This is often not possible due to the uncertainty
of the costumer regarding the actual requirements of the project, or due to the uncer-
tainty of the available knowledge.

• The customer is not involved during a long period of the project development. Since
he is excluded from the implementation phase no feedback can be given, e.g., cor-
rections of misunderstandings or specification adaptations. However, if specification
errors are recognized late, then correcting the consequences is often very costly.

This criticism has led to a more interactive and evolutionary process model, i.e., the incre-
mental process model.

Incremental Process Model

The incremental process model [33] adopts the characteristics of the rapid prototyping
approach [26], which has been accepted to be a suitable model for software projects with
uncertain requirements specifications. The incremental process model is depicted in Figure
2.5 The main idea of the process model is rapidly building a small but working system,
which covers a limited part of the intended problem domain. This initial system is often
calledpilot or prototype. In the following steps this pilot is incrementally extended by
further parts of the problem domain, which have not been considered so far. During these
iterations a strong interaction between the user, the developer, and the domain expert is
postulated (that can be partly identical).
A prominent system, which has been implemented according to the incremental process
model is MYCIN [24]. In the following we discuss problems arising with the incremental
process model:
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Figure 2.5: The phases of the incremental process model.

• Strong interaction
The involvement of the user and the domain expert is necessary for the whole project.
This may not be possible or feasible for all projects.

• Unstructured procedure
The evolutionary increments will evolve to an unstructured and chaotic system and
knowledge design.

• Hard to estimate
Due to the uncontrolled project flow it becomes difficult for the management level to
prepare cost estimations or to define project milestones. However, for larger projects
the possibility of creating milestones and cost estimations is a necessary project
requirement.

We can see that the incremental process model is similar to the presented agile process
model. Therefore, we now will discuss the problems of the incremental process model
compared to the agile process model:
The strong interactionrequirement also holds for the agile process model, i.e., the cos-
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tumer and the domain expert need to interact during the hole project. However, this re-
quirement may not be a disadvantage but a desirable characteristic, if analysis and speci-
fication of the intended system is not possible in advance. Experience has shown that we
often face this situation during knowledge system projects.
Theunstructured procedureproblem describes a serious issue often recognized for proto-
typical process models. In fact, it has been the reason for the bad reputation of prototypical
approaches. Nevertheless, this situation has been also observed for software engineering
approaches. To cope with this problemrefactoringmethods [87, 42] have been developed
for object-oriented approaches. Refactoring methods describe structured procedures to
change the design of existing software without changing the underlying semantics. In [74]
it was shown that these ideas can easily be adopted for refactoring diagnostic knowledge
and we presented a selection of typical methods. The agile process model defines refactor-
ing as a special kind of the implementation step (i.e., the implementation of a re-design in
contrast to the implementation of new functionality). In this way, the agile process model
tackles this problem by offering structured methods. This issue is described in more detail
in Section 3.2.2 (p. 40) and Appendix A.
The remaining problemhard to estimateis also considered by the agile process model:
During the planning game the costs of each plan are estimated by priority and risk. Since
feedback about the estimation accuracy after each implementation of a plan is demanded
by the process model, the estimation skills are continuously improved during the project.
This will result in more precise cost estimations and a pleased management level.

2.5.2. CommonKADS

The most prominent process model for developing knowledge systems is KADS [118] and
its successor CommonKADS [119].
In Schreiber et al. [117] CommonKADS is defined as a project management approach,
which is more flexible than a stage-based approach and more structural than rapid proto-
typing.
For this, CommonKADS delivers amodel suite, which consists of distinct models each
covering a specific facet of the project. Whereas each model considers a limited aspect of
the project, all models together provide a comprehensive view of the complete project.
The CommonKADS model suite knows the following models:

Organizational model The organizational model deals with the analysis of the partici-
pating organization in order to discuss the applicability of a knowledge system, i.e.,
its kind of application, its feasibility, and its impacts on the organization.

Task model The task model provides a more detailed analysis of the organizational unit,
in which the knowledge system is intended to be applied. The analysis covers input
and output of the focussed knowledge system, possible preconditions and perfor-
mance assumptions. Furthermore, the analysis also covers required resources and
competencies for the development and use of the knowledge system.

Agent model Agents are an abstract definition for something that performs a task. Thus,
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agents can be humans or artifacts like databases or information systems. The agent
model provides an analysis of the agents involved in the project, lists their compe-
tencies, constraints, and possible communications interactions among each other.

Knowledge model The knowledge model contains an implementation-independent de-
scription of the types and structures of the required knowledge. Due to its concep-
tual description the knowledge model is understandable by humans and therefore is
an appropriate communication media between the user, the domain expert, and the
developer.

Communication model The communication model specifies the communicative trans-
actions between the agents in a conceptual and implementation-independent way.
Then, the type of information which is exchanged between the agents is defined.

Design model The design model specifies a detailed design of the intended application,
i.e., the knowledge system. For example, it contains the architecture, platform spec-
ification, and applied software.

We can summarize the purpose of each model with the following: The design model is de-
fined according to the requirements specification resulting from the previous models. The
organizational model, task model, and agent model analyze and specify the organizational
structure in which the knowledge system should be applied. Furthermore, this analysis
is important to determine the feasibility of the system. Based on these models the com-
munication model and knowledge model deliver the problem-solving capabilities with the
corresponding input and output behavior.
In Figure 2.6 the models are depicted with the interactions among each other. It is

Organization
Model

Agent
Model
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Model
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Model

Communication
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Figure 2.6: The model suite of CommonKADS.

worth noticing, that not all models need to be constructed during a knowledge system
project. The detail of implementation of each model strongly depends on the goals of the
project and the degree of experience with earlier projects and the current project. Then,
the construction of the knowledge system is carried out by a stepwise and cyclic construc-
tion of the models. In summary, in addition to the implemented knowledge system the
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CommonKADS process model also delivers documents prepared according to the several
models.
Although CommonKADS has been accepted as the de-facto standard it is not appropriate
for all kinds of knowledge system projects: CommonKADS can deliver a wide range of
documents and often a lot of analysis and specification effort need to be done before the
first implementation starts. This situation often has been experienced as frustrating for
the experts. Especially, when domain experts are not fully working on the project and/or
the project has only a small size (e.g., 2-3 people working on it), then this organizational
overhead is often considered as needless. Consequently, dissatisfied expert can threaten
the success of the whole project. Contrary to this, a rapid implementation of a pilot,
facilitated by the agile process model, will motivate experts to proceed with their work
and extend the knowledge system by further knowledge or functionality. Nevertheless, for
large and costly projects, demanding a highly structured procedure, CommonKADS is the
state-of-art process model for developing knowledge systems.

2.5.3. MIKE

MIKE [6] (Model-based and Incremental Knowledge Engineering) tries to combine pro-
totyping with (semi-)formal specification techniques. It differs from CommonKADS by
providing a framework for incrementally developing knowledge systems in a reversible
process. The MIKE process model is a spiral model consisting of the following steps:

Figure 2.7: The MIKE process model with its phases and corresponding documents.

Elicitation In this phase informal knowledge about the domain is being gathered and the
corresponding problem-solving task is elicited by, e.g., structured interviews. The
elicitation step produces so-calledknowledge protocols.

Interpretation In the interpretation phase the knowledge protocols are structured: Infor-
mal content is transferred into a semi-formalstructure model, which is expressed in
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a restricted language. However, though the coarse structural elements are fixed, the
basic blocks of the language (e.g., describing inference mechanisms) usually contain
free text. Thus, the structure model is an appropriate communication media between
the user, the developer, and the domain expert.

Formalization/Operationalization Based on the interpretation phase a formal model is
generated containing the concepts stated in the structure model. Here the executable
language KARL [40] is applied. The resulting KARL model is comparable to the
knowledge model known from CommonKADS but is directly executable.

Design In addition to the KARL model defined in the Formalization/Operationalization
phase further requirements are acquired in the design phase. These functional re-
quirements can consist of efficiency considerations, remarks on the maintainability
or non-functional software and hardware specifications. The result of this phase is
thedesign modelwhich is formulated in DesignKARL [65], an extension of KARL.
In DesignKARL it is possible to additionally structure the available KARL model
and to specify the used data types and algorithms.

Implementation In the last phase of the cyclic process the design model is implemented
in the postulated hardware and software configuration. The implementation pro-
duces a deliverable knowledge system which needs to be evaluated in the target
environment. In a next pass of the cyclic process the knowledge system may be
corrected, modified or extended according to the results of the preceding evaluation.

In Figure 2.7 the MIKE process model is depicted with its phases and corresponding doc-
uments. Compared with CommonKADS and the presented agile process model the MIKE
process model provides a balance between document-centered and rapid development ap-
proach. Similar to the agile process model a deliverable system is always produced after
each iteration of a spiral development cycle. On the other hand, MIKE emphasizes a more
structured design process than it is required by the agile process model.

2.6. Conclusion

In this chapter, we have introduced an agile process model for developing diagnostic
knowledge systems. We have seen that the presented process model adapts the general
ideas of the eXtreme programming methodology, which has been proven to be a suc-
cessful method for small and mid-size projects in a rapidly changing environment. We
have motivated why the agile process model fits into the problem of developing diagnostic
knowledge systems, and we introduced the methods and tasks for applying the adapted
process model. We concluded the chapter with a comparison of the agile progress model
with related approaches, e.g., prototyping, stage-based or incremental process models.
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3. Agile Development using
Knowledge Containers

3.1. The Architecture of Diagnostic Knowledge
Systems

In general, the architecture of a diagnostic knowledge system is described by the com-
ponentsknowledge, inference, anduser interface. For the development and maintenance
of such a system, i.e., editing the knowledge, the additional componentknowledge mod-
eling environmentis required. In the literature, similar architectures are described, e.g.,
Puppe [99, p. 16], and Stefik [128, p. 296].
Figure 3.1 depicts the proposed architecture. We briefly discuss each component in the
following.

User

Domain Expert

User Interface Inference Knowledge

Knowledge Modeling Environment

Knowledge System

Figure 3.1: The architecture of a diagnostic knowledge system.

The user interfaceprovides a uniform access to the diagnostic knowledge system: The
user can start a new consultation, enter findings, and obtain diagnoses, i.e., a solution
for the stated problem. Furthermore, the user should be able to ask for a justification
explaining the retrieved diagnoses. The user interface delegates newly entered findings
and user requests to the kernel of the knowledge system, i.e., theinferencecomponent.
The inference component processes the findings and requests by using particular domain
knowledge contained in the connected knowledge component. The inference component
should not be envisioned as a monolithic problem-solver (e.g., a single rule interpreter),
but is designed as a mediator of problem-solvers and controllers, which allows for the
processing of various kinds of knowledge and information.
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The knowledgecomponent embodies the knowledge that is used by the knowledge sys-
tem, i.e., the knowledge base. There are miscellaneous facets of knowledge contained
in the component: The knowledge base can define the ontology of the underlying prob-
lem domain (ontological knowledge); it can be used to infer diagnoses for a given set of
findings (structural inference knowledge); it can be responsible for controlling a guided
questionary presented to the user (strategic knowledge); or it might consist of additional
informal content describing findings or diagnoses in more detail.
According to Clancey [31] it is reasonable to classify these different kinds of knowledge
into distinct parts. In our work we call these partsknowledge containers. Clancey intro-
duced the terms structural knowledge, strategy knowledge and support knowledge, which
we analogously apply. In the proposed framework we further separate ontological knowl-
edge from structural knowledge, since ontological knowledge is also applied in the remain-
ing knowledge containers. Furthermore, we do not restrict our framework to a rule-based
representation of knowledge, but we also discuss the usage of case-based, model-based,
and other facets of knowledge.
Besides the general architectural issues of defining a knowledge system the construction
and maintenance of such systems is an important aspect to consider. Therefore, we first
describe maintenance of knowledge systems from a traditional viewpoint and then present
knowledge maintenance as an activity of the agile process model. The Chapters 4-7 de-
scribe the knowledge containers in more detail and introduce possible representations that
are applicable to the particular knowledge containers.

3.2. Maintenance of Diagnostic Knowledge Systems

Maintenance of diagnostic knowledge systems is the process of modifying existing knowl-
edge. After giving an overview of the traditional categorization of maintenance we define
maintenance in the context of the agile process model.

3.2.1. Traditional Definition of Maintenance

Traditional process models for software engineering and knowledge engineering define
maintenance as a task, which is executedafter the project has been finished and the appli-
cation has been already deployed into routine use. The IEEE glossary [59] defines:

Maintenance: The process of modifying a software system or component
after delivery to correct faults, improve performance or other attributes, or
adapt to a changed environment.

Then, the running system is modified in order to correct observed malfunction, to im-
plement additional functionality resulting from changed user requirements, or to adapt
the software to changed environments. Swanson [132] classified the term maintenance
of general software according to the desired aims intocorrective maintenance, perfective
maintenance, andadaptive maintenance.
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Coenen and Bench-Capon [33] adopted this classification for the knowledge engineer-
ing perspective. In the following, we briefly describe the three terms with respect to the
knowledge engineering task according to Coenen and Bench-Capon.

Corrective Maintenance Complex knowledge systems often show faulty behavior in
routine use. The process of eliminating this malfunction is called corrective main-
tenance. According to Sommerville [124, p. 660] errors can occur as coding errors,
design errors or requirement errors. For example, for a correct input, i.e., set of
observations, a false output, i.e., set of diagnoses, is retrieved. In many cases, struc-
tural knowledge needs to be adjusted or additional knowledge needs to be inserted.
However, corrective maintenance can be also considered for other knowledge con-
tainers, e.g., for ontological knowledge (incompletely defined objects) or support
knowledge (objects with false linkage).

Perfective Maintenance It is very common that additional user requirements appear af-
ter the knowledge system has been put into routine use. The experiences made with
the system cause previously recorded requirements to become less important, and
new requirements are demanded, e.g., to improve the usability of the system. Then,
perfective maintenance methods are applied to integrate new user requirements into
the already running system.
Typically, perfective maintenance becomes necessary when a new diagnosis should
be included into the system, e.g., if a knowledge base needs to be refined by sub-
diagnoses. Another example for perfective maintenance is the extension of the sys-
tem by multimedia support knowledge, since experience has shown that additional
help would be useful for the user of the system. Perfective maintenance on strategic
knowledge can be accomplished by reducing the duration of a typical dialog.

Adaptive Maintenance Knowledge about the domain can change during the develop-
ment of the system. If revised knowledge becomes available during the routine use
of the system, then adaptive maintenance should be applied. For example, in a med-
ical application new guidelines for performing investigations or therapy actions may
be established. Then, the knowledge system need to by adjusted with respect to this
change.

For traditional software engineering projects, there exist studies about the frequency of
the applied maintenance activities. For example, Sommerville [124, p. 661] reports the
proportions given in Figure 3.2.

Task Frequency
corrective maintenance 17%
perfective maintenance 65%
adaptive maintenance 18%

Figure 3.2: Proportions of the implementation of maintenance tasks in traditional software
engineering projects according to Sommerville [124].
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Unfortunately, no studies for knowledge system projects can be found in the literature. For
traditional, heavy-weight process models comparable numbers may be obtained. Since the
agile process model introduced in Chapter 2 relies on continuous maintenance during the
development process the numbers will differ significantly. For example, in Figure 3.2 we
can see that corrective maintenance has only a small fraction of the overall maintenance
costs. This results from the fact that only corrections are counted that are implemented
after the system has been delivered. However, for the agile process model corrective main-
tenance is done continuously during the project life-cycle, while corrections during devel-
opment are also counted. Therefore, it is reasonable that corrective maintenance will play
a more important role.
However, we will see that this classical three-fold view of knowledge maintenance is not
appropriate for the presented agile process model. Since maintenance is done continuously
during the knowledge base development, there are further issues to consider. In the next
section, we therefore introduce maintenance as an agile implementation activity.

3.2.2. Maintenance as an Agile Implementation Activity

In the agile process model the term maintenance is subsumed by the implementation step,
when new knowledge is integrated into the knowledge base or when changing existing
knowledge. In the agile implementation step we consider the following maintenance ac-
tivities besides the manual insertion of new knowledge:

• testing knowledge
• restructuring knowledge
• learning knowledge

At first sight, the classical definition of maintenance can be subsumed by the termrestruc-
turing knowledge, but also testing and learning knowledge should be seen as a maintenance
activity. We now discuss the activities in more detail.

Testing Knowledge

In the agile process model, testing plays a central role during knowledge base development.
With testing the knowledge developer can review, if the implemented knowledge yields the
expected behavior. Test knowledge is used as meta-knowledge for testing the knowledge
system. Tests and test knowledge, respectively, can be characterized by the following
items:

• Self-executable: Tests need to be self-executable since they are applied during the
development process very frequently. A test is self-executable, if it contains the
expected result beforehand and an automated interpretation of the generated output
is possible. In general, a self-executable test should report its result either as success,
warning or error. The success message simply reports the proper execution of the
tests without any errors. The warning and error messages are a graded answers of
an error found in the investigated knowledge. We call the process of performing
self-executable testsautomated testing.

• Understandable: Often test knowledge can be used as documentation of the in-
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tended system behavior. Then, the understandability of the test knowledge is impor-
tant. Furthermore, readable test knowledge greatly simplifies the debugging of the
knowledge base, if tests fail during the progressing development.

• Compact: For the efficient acquisition of test knowledge its compactness is an im-
portant issue to consider. Therefore, test knowledge should be represented as com-
pact as possible in order to reduce its acquisition costs. However, the compactness
of test knowledge may be opposing to its understandability.

It is easy to see, that test knowledge heavily depends on the representation of the underly-
ing knowledge.
However, the quality of the knowledge included in one of the knowledge containers can
be classified according to the following four criteria:

• Correctness: A system is called correct, if it shows the expected behavior. Mostly,
correctness is tested for structural knowledge (i.e., correct inference of solutions),
but it can also be considered for strategic knowledge (e.g., correct dialog behavior)
or ontological knowledge (e.g., correct hierarchical relationships).

• Anomalies: An anomaly is a certain part of the knowledge base, which can cause
the system to behave irregularly. Examples for anomalies are redundant, cyclic, or
ambivalent knowledge. Anomalies can be found in all knowledge containers.

• Robustness: The degree of robustness of a knowledge system is defined by its cor-
rect behavior with respect to difficult or noisy environments. Robustness can be
tested by applying noise to the input or the used knowledge. Robustness mainly
affects the structural knowledge container, but also can be considered for strate-
gic knowledge. Robustness of a knowledge system can be increased by a well-
elaborated ontology design, by meaningful support knowledge, and by redundancy
and plausibility checks.

• Understandability: The understandability of the modeled knowledge was only
studied a little in the past. However, for the agile development of knowledge sys-
tems, the understandability of the working knowledge base is very important. Un-
derstandability can be defined for all kinds of knowledge containers.

With the introduction of the particular knowledge containers we also introduce various
approaches formalizing test knowledge according to the given criteria.
In knowledge engineering research, validation techniques have been undergoing fruitful
research for the last decades. Classical work by Coenen and Bench-Capon [33] was con-
tinued, e.g., by Preece [93]. Especially, for the rule-based implementation of knowledge
systems an extensive framework was defined by Knauf [61]. Interestingly, this framework
does not only describe the evaluation of test knowledge (represented as test cases), but
especially its suitable generation.
An interesting issue remaining only partially solved is the maintenance of test knowledge.
This problem was formulated by Menzies as therecursive maintenance problem[72]. In
his article, he argued that test knowledge was introduced to simplify the maintenance of
knowledge, but the maintenance of test knowledge also needs to be considered sufficiently,
possibly by the use of meta-test knowledge. A partial solution for this problem will be
presented by the automated propagation of the restructuring methods also adapting test
cases according to the performed changes. Modifications of the knowledge base and the
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test knowledge with respect to a changing world, i.e., domain expertise, can be resolved
by refinement techniques mentioned in the following section.

Restructuring Knowledge

During knowledge base development existing knowledge needs to be restructured from
time to time, e.g., for facilitating the insertion of new knowledge or for rearranging the
design of the knowledge base. Restructuring methods can be characterized according to
the following issues:

• Targeted knowledge container: Restructuring methods are executed on knowledge
that is part of a specific container. We can distinguish between restructuring meth-
ods for ontological, structural, strategic, and support knowledge. However, due to
dependencies the restructuring of ontological knowledge mostly implies restructur-
ings of the remaining knowledge containers (e.g., if the value range of a question is
modified, then the attached structural knowledge needs to be adapted as well).

• Preserving knowledge semantics: Restructuring methods can be classified accord-
ing to their performed changes on the knowledge base. If the method only changes
the design of the modeled knowledge without affecting the semantics, i.e., the rea-
soning behavior, then we call it arefactoringmethod (analogously to refactoring
methods known from software engineering). Refactoring methods are a special-
ization of restructuring methods, which in general can affect the semantics of the
knowledge base.

• Restructuring complexity: When executing a restructuring method we can dis-
tinguish between different complexities. We call methodsatomic restructurings,
if only one or few knowledge base entities are affected.Composite restructurings
are assembled from atomic methods, in order to accomplish more complex restruc-
turing tasks. For example, an atomic restructuring method is the displacement of
a question from one to another question set in the hierarchy. This atomic method
is iteratively applied in a composite method that moves a complete question set to
another question set.

In general, the need for restructuring arises by the following fives situations:
• World changes: Insert new knowledge into the knowledge base or remove/adjust

existing knowledge in order to cope with the changed environment or domain exper-
tise.

• Increase accuracy: If the diagnostic accuracy is not satisfactory, then the knowl-
edge base needs to be restructured by adjusting falsely modeled knowledge.

• Improve understandability : During the development the size of the knowledge
base can grow significantly and the design becomes complex. Then, the understand-
ability of the knowledge base can be improved by restructuring methods that adjust
knowledge (e.g., shrinking values ranges) or by removing useless knowledge (e.g.,
unused rules or diagnoses).

• Enhance usability: First versions of the knowledge systems often lack in the us-
ability for the end-user. This may be caused by insufficient support knowledge (e.g.,
missing explanation texts for questions) or a not well-elaborated strategic container
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(i.e., the dialog control). In such cases, restructuring methods can be applied that,
e.g., improve the strategic knowledge.

• Achieve reusability: In large knowledge systems the reusability of the contained
knowledge is an important issue. For example, reusability of modeled knowledge
can be obtained by creating finding abstractions, which are used by more than one
diagnosis or by several structural knowledge elements.

The application of restructuring methods often implies the change of the available test
knowledge, since e.g., the tests strongly depend on the structure of ontological or inferen-
tial knowledge. However, the adaptation of test knowledge can be carried out automati-
cally in most cases.
Basically, the execution of a restructuring method passes the following four tasks:

1 Testing the actual state:Before a restructuring method is executed the working test
suite is applied the existing knowledge base. A restructuring should only be consid-
ered, if the knowledge base is in a valid state.

2 Feasibility test: Checks, whether the restructuring causes unresolvable conflicts,
if executed on the existing knowledge base. The feasibility test of the method is
executed for all knowledge containers.

3 Method implementation:For all applied knowledge containers the following sub-
tasks are performed:
3.1 Conflict resolution: If the execution of the method causes conflicts, then it

default values for the conflict resolution are used. For conflicts not resolvable
by defaults the method is executed in interaction with the user. Alternatively,
the method needs to be aborted.

3.2 Method execution:If no conflicts are reported, then the method is executed
according to the restructuring mechanics. See Appendix A for examples.

4 Testing restructuring result:After the restructuring method has been performed, the
knowledge base is again tested using the working test suite. A restructuring method
is only be considered to be successful, if the restructured knowledge base is again in
a valid state.

The introduction of restructuring methods for a step-wise and algorithmic modification
of the knowledge base was inspired by refactoring methods introduced for software engi-
neering [87, 42]. The adaptation of existing test knowledge (e.g., unit tests) is a critical
issue for the application of refactoring methods, and is mostly done manually. In contrast
to software engineering the implementation of restructuring methods for knowledge sys-
tems often can propagate their changes to the attached test knowledge, e.g., by modifying
the corresponding objects in test cases. However, the refinement of the knowledge base
performed by restructuring methods differs from refinement techniques, e.g., described by
Boswell and Craw [22] or Knauf et al. [62]. Thus, restructuring is usually not applied for
improving the accuracy of the system, but for improving the design of the knowledge base.
Especially for this reason a restructuring method is currently applied manually, though
supported by automated adaptations of attached knowledge. In Appendix A a catalog of
selected restructuring methods is presented.
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Learning Knowledge

(Semi-)Automatic learning of knowledge can significantly reduce maintenance costs in
different ways: When applied at the beginning of a knowledge system project it can be
used to produce a rapid prototype, which can be refined in further increments (proto-
type learning). During a project, learning methods can be used to extend the knowledge
model by further structural knowledge (knowledge extension) or to generate an alterna-
tive knowledge model for comparison with the existing manually build model (knowledge
comparison).
For all three applications of learning knowledge a convenient integration into the knowl-
edge modeling environment needs to be available. Then, we have to consider the following
three topics for learning knowledge:

• Conformance: The learned knowledge should be consistent with the desired knowl-
edge representation in order to be directly used within the knowledge implementa-
tion step.

• Understandability: Machine learning methods often focus on the achieved accu-
racy of the learned knowledge. However, when learning methods are used in addi-
tion to manual knowledge acquisition methods, besides the accuracy of the learned
knowledge its understandability is of major importance. Therefore, learned knowl-
edge can be classified according to its compactness (e.g., number of learned rules)
and simplicity (e.g., complexity of learned rules).

• Semi-automatic: In many cases, plain machine learning methods yield moderate
results with respect to the understandability and the accuracy. Semi-automatic or
knowledge intensive learning methods can improve the learned results by incorpo-
rating additional domain knowledge. Thus, semi-automatic methods can improve
the results of learning methods, by applying more background knowledge to the
learning task.

A semi-automatic method for learning understandable scoring rules is proposed in Atz-
mueller et al. [10]. Furthermore, a framework for evaluating the understandability of
learned rules is proposed. In the next chapters we describe learning methods for the par-
ticular knowledge containers in more detail.

3.3. Summary

In this chapter, we presented the key methods for developing diagnostic knowledge sys-
tems using the agile process model: Testing knowledge, restructuring knowledge, and
learning knowledge. All these activities can be subsumed by the termagile mainte-
nance. We introduced the traditional definition of maintenance for software engineering
and knowledge engineering, and then discussed them in the context of the agile process
model. The key concepts for testing, restructuring, and learning knowledge were summa-
rized as well.



4. The Ontological Knowledge
Container

In this chapter, we describe the ontological knowledge container, which is the key knowl-
edge container for all remaining containers. The ontological container needs to be consid-
ered for any kind of intended knowledge system, whereas all other containers are optional.

4.1. Classification of Ontologies

The usage of ontologies for the development of knowledge systems has been an issue of
fruitful research for many years. However, the term ontology is used in many different
meanings. In the following, we try to give a brief overview of the various aspects of
ontologies. The term ontology is commonly explained according to Gruber’s [51] well-
known definition:

An ontology is an explicit specification of a conceptualization.. . . In such
an ontology, definitions associate the names of entities in the universe of
discourse (e.g., classes, relations, functions, or other objects) with human-
readable text describing what the names are meant to denote, and formal ax-
ioms that constrain the interpretation and well-formed use of these terms.

Heijst et al. [133, 134] define ontology more explicitly as a definition of the ”vocabulary
of the domain and constraints on the use of the terms in the vocabulary”. Further, they
classify the various kinds of ontologies with respect to the amount and type of structure of
the conceptualization, and the subject of conceptualization.
For classifying ontologies based on the amount and type of structure of the conceptualiza-
tion they identify three categories:

Terminological ontologies consider the definition of technical terms in order to represent
knowledge in the domain of discourse, e.g., a lexicon.

Information ontologies are comparable to conceptual schemata of databases, i.e., they
specify the record structure of databases (mostly as flat information).

Knowledge modeling ontologiesdescribe the conceptualizations of the structure of the
knowledge. They usually embody a deeper and richer structure than information
ontologies.

If we consider the subject of conceptualization (i.e., the second kind of characterization),
then the following types of ontologies can be identified:
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Branch ontologies are similar to terminological ontologies and define standard lexical
terms for the domain of discourse, e.g., in medicine the ICD-10 standard. They are
designed in order to be reused for neighboring or semantically overlapping applica-
tions.

Domain ontologies define specific conceptualizations for a special application area. In
contrast to domain knowledge, which contains knowledge about particular states in
relation to other states (e.g., increased temperature is a manifestation of inflamma-
tion), the domain ontology defines constraints on the structure of domain knowledge
expressions (e.g., diseases have findings as manifestations).1

Generic ontologies(also core ontologies, meta-ontologies [97]) are comparable to do-
main ontologies but define more universal concepts (to be reused) and are usually
intended to be domain independent. However, sometimes a clear distinction between
domain ontology and generic ontology is not possible.

Representation ontologiesspecify the conceptualization of knowledge representation
formalisms. A representation ontology usually provides a framework of primitives,
which can be used by domain ontologies or generic ontologies.

Application ontologies are focussed on a specific application and contain all definitions
that are necessary to model knowledge for the designated application. Although
more focussed on a specific application, application ontologies are often very similar
to domain ontologies and no clear distinction can be made.

Within the ONIONS methodology [45] additional categorizations of ontologies can be
found:

Intermediate ontologies define the general concepts and relations with respect to a spec-
ified domain. They can be used as an interface between domain ontologies and
generic ontologies.

Top-level ontologiesprovide general notions of generic and intermediate ontological con-
cepts. They are often used on top of a domain ontology. For example, the UMLS
semantic network can be seen as a top-level ontology.

Task ontologies are using the vocabulary of generic, intermediate or domain ontologies
in order to define tasks/activities on the basis of these ontologies, e.g., guidelines
for the treatment of diseases. They are comparable to representation ontologies. A
specialization aredomain task ontologies[97], which are defined to be used within
a specified domain.

In the context of organizational memories and information modeling [2] a categorization
into information ontology, enterprise ontology, and domain ontology can be made:

1Sometimes this term is not accurately interpreted: Then, domain ontology is also seen as the instantiated
knowledge base building on the defined domain ontology.
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Information ontologies contain generic concepts and attributes, that apply to all kinds
of information, e.g., the author or reliability of an information. They also define
concepts and attributes for certain kinds of information sources.

Domain ontologies describe the content within the intended information system.

Enterprise ontologies provide the creation context and intended utilizations context of
the knowledge.

In the previous paragraphs we have presented alternative classifications for ontologies.
Any categorization of ontologies may be reasonable from a given viewpoint, and certainly
there exist more and less known classifications of ontologies. However, in the context of
the development of a diagnostic knowledge system the distinction between an ontology
and a knowledge base is an interesting issue to consider.

Ontologies vs. Knowledge Bases

It is important to notice the difference between an ontology and a knowledge base. For
example, Sowa [125] distinguishes the terms knowledge base and ontology as follows:

Knowledge Base:An informal term for a collection of information that in-
cludes an ontology as one component. Besides an ontology, a knowledge base
may contain information specified in a declarative language such as logic or
expert-system rules, but it may also include unstructured or unformalized in-
formation expressed in natural language or procedural code.
(also available online athttp://users.bestweb.net/ ∼sowa/ontology/gloss.htm )

Goméz-Ṕerez and Benjamins [97] give a similar definition:

An ontology is a hierarchically structured set of terms for describing a domain
that can be used as a skeletal foundation for a knowledge base.

We can summarize the definitions with the conclusion, that a (domain) ontology describes
the conceptualization, which underlies a knowledge base. The concept consists of hierar-
chical relationships between the basic entities of the knowledge base and the semantics of
their usage.
For this reason, a knowledge base can be seen as an instantiation of the declarations defined
by a domain ontology. In the next section, we introduce the domain ontology applied in
the context of this work. Furthermore, if we talk about the knowledge contained in the
ontological container, then we consider instances of the presented domain ontology.

4.2. The Domain Ontology of a Diagnostic
Knowledge System

As described in Section 1.2.3, our process model is limited on explicit representational
languages. Thus, all remaining knowledge containers will build upon a fixed ontology and

http://users.bestweb.net/~sowa/ontology/gloss.htm
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need not to be defined for each knowledge system project. In the following, we present a
fixed ontology for building diagnostic knowledge systems.
The basic ontological classes of a diagnostic knowledge system arediagnoses, questions2,
question setsandcases. These entities directly correspond to the local system metaphor
introduced in Section 2.2.1. Whereas the system metaphor emphasizes the knowledge
engineering aspect, the ontology defined here considers more technical aspects of the en-
tities.
In the past, ontologies has been described using KIF [141] or KL-ONE style languages.
However, due to the popularity of UML [115] researchers started to formalize explicit
knowledge and ontologies in (augmented) UML. For example, Cranefield and Purvis [35]
propose UML in combination with OCL (Object Constraint Language, [113]) as a mod-

eling language for ontologies. The use of UML for the development of ontologies is moti-
vated in Kogut et al. [63]; successful applications of ontologies in UML are also reported.
In their recent textbook Schreiber et al. [117] also use UML as their baseline modeling
notion. Analogously, we describe the applied domain ontology in UML notion. In Fig-
ure 4.1 the domain ontology used for the agile process model is given. Abstract classes are
depicted in italic font and are not used in an instantiation of this ontology.
A central part of the ontology is acase, which contains a (possibly empty) set of diag-
noses and at least one question set.Diagnosesare classified intoproblem areas, which
describe coarse solutions, andfinal diagnosesused to represent the exact solution for a
case. A symbolic state is commonly assigned to a diagnosis depending on the current
case presented to the system. Possible states areunclear, suggested, probableor excluded
(not probable). A problem area itself can contain further problem areas or final diagnoses.
In this way, diagnoses can be grouped hierarchically in order to define a taxonomy. In
most cases this taxonomy describesis-a or is-part-of relations. During instantiation the
exact meaning needs to be attached for each relation. Therapies, i.e., objects ”correct-
ing” a detected diagnosis, are also represented as diagnoses, and are not specially treated
by a separate entity class. Eachquestion setin turn can contain other question sets or
questions, which finally provide the input of the knowledge system.Questionsare cate-
gorized according their expected value types into text, numerical, and choice questions.
For choice questions we can distinguish between multiple-choice, one-choice and yes/no
questions. For multiple-choice questions more than one answer can be given in a case;
one-choice questions only can be assigned to at most one value in a case, and yes/no ques-
tions are a special kind of one-choice questions with only two assignable default values
(i.e., yes/no). Additionally, questions can be classified according to their usage. Questions
with usagequestionedare directly presented in the dialog in order to be answered by the
user (or by a connected machine for embedded systems).Abstractionssyntactically are
questions, which are not visible in the dialog and cannot be answered by the user. Values
for abstractions are derived according to the values of other questions.
The basic functionality of a diagnostic system is depicted in Figure 4.2 as an augmented
use-case diagram. The user starts a new consultation of the diagnostic system by creating

2This object is often named according to its currentrole: For the knowledge acquisition task it is commonly
namedquestion, and during the problem-solving task the namesfinding, symptomor observationare
typical.
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Figure 4.1: UML notion of the domain ontology (basic entities).

a new case. Within this case the diagnostic system is asking questions to be answered by
the user or the user volunteers input. According to the user’s response the system is able to
provide diagnoses, that can explain the entered input. We emphasize that these diagrams
only describe the basic object relations between the ontological entities. For a complete
definition the notations of inferential relationships are still missing. However, since these
inferential relations are part of the remaining knowledge containers we describe them later
in combination with the presented containers.

4.3. Issues for the Instantiation of the Domain
Ontology

When developing a diagnostic knowledge system the domain ontology needs to be instan-
tiated by appropriate terms describing the focussed problem domain. Practical experience
with defining instances of domain ontologies has shown that the following issues need to
be considered: The level of granularity, the standard of knowledge of the designated users,
the reusability, and the standardization. We discuss these issues in the following.
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Figure 4.2: Augmented use-case diagram of a diagnostic system.

Level of granularity The level of granularity is one of the most difficult issues to
consider for knowledge system design. It needs to be considered both for the granularity
of diagnoses and for the granularity of questions. Some examples will clarify the problem
in more detail.
For representing a solution its level of detail may be not clear from the beginning of the
knowledge system project. In a medical system the developer has to decide about the level
of detail for the included diseases, e.g., liver diseases. Modeling alternatives are the instan-
tiation of a single diagnosisliver diseasein contrast to specific diagnoses (e.g., hepatitis
A-B-C, fat liver, cirrhosis of the liver, etc.). It is worth noticing, that the granularity of a
solution often depends on the available therapy options.
For questions we face a similar problem: The developer has to decide how many questions
should be asked to describe a focused finding. E.g., for a medical application a single
question concerning the liver of a patient (with values normal/abnormal) may be appro-
priate. In the context of another medical application it would be necessary to provide a
detailed set of questions asking for various aspects of the patient’s liver. After the devel-
oper has decided about the number of questions the question type still remains open. E.g.,
for a medical application it is not obvious from the beginning how to represent a question
like temperature. When represented as a numerical question the exact numerical value
of the temperature has to be entered for any consultation. Often a more abstract value of
the temperature is sufficient or suggestive. Then, the question may be represented as an
one-choice question, e.g., with possible values{normal, marginal, high, very high}. We
remark that also the value range of choice questions is often an issue of the level of detail.
If the representation of the question is still too detailed, then the question may be instanti-
ated as a text question. Then, the user can freely enter a text describing the answer of the
question. However, the inferential power of text questions is limited when compared to nu-
merical or choice questions. It is worth noticing, that the level of granularity corresponds
to the diagnostic power of developed system (if sufficient knowledge is available).
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User standard of knowledge When developing a knowledge system the standard
knowledge of the designated users is also an important issue to consider. This topic is
strongly related to the level of granularity, since on the one hand for expert users a highly
detailed solution part is more valuable than coarse solutions. On the other hand, expert
users are also able to answer abstract questions summarizing the interpretation of many
concrete questions, that are typically presented to unexperience users. With the integra-
tion of additional explaining questions into the questionary as, e.g., implemented in the
ECHODOC system [140], unexperienced users can be also enabled to enter high value
input.

Reusability For larger knowledge systems, the reusability is an interesting issue to
consider. Ontological objects like questions and diagnoses may be not only designed for
the usage in the current knowledge base, but also for the (re)use in future parts of the
knowledge base. However, the implementation of reusable objects can raise additional
problems. For example, if we consider the design of a reusable choice question, then for
one diagnosis a more detailed value range of the question will be necessary, which will
be useless or bothering in context of another diagnosis. This problem can be addressed
by the introduction of an abstraction that can infer an abstracted value, so that both the
abstraction and the detailed value are available. Thus, an abstract and a detailed value for
a finding are transparently represented.

Standardization An important issue for knowledge systems running in real world en-
vironments is the adaptation of standards. In many domains a terminological standard has
been already established, and for many reasons it is advisable to conform the instantiation
of the ontology to the existing standard. For example, in medical domains the ICD-10
standard is a well-known coding schema for diagnoses. The reuse of ICD-10 codes for the
instantiation of diagnoses will provide a lot of possibilities like generation of standardized
medical protocols or knowledge sharing with other (possibly connected) systems. How-
ever, in many cases the use of standards is opposing to other requirements of the knowledge
system, e.g., the standard may be too specific or too general for the intended application.

We can summarize, that some of the presented issues consider conflicting goals (e.g., stan-
dardization vs. standard of knowledge) and therefore no uniform design guideline can be
given in general. This problem is also represented by theinteraction problem[29], which
states that domain knowledge is always formulated in context to its usage during reason-
ing.
Although the definition of an ontology instance should be done thoroughly, requirements
can arise that call for a change of the implemented ontology. The agile process model
provides restructuring methods for modifying aspects of the ontology during the develop-
ment of the knowledge system. Typical restructuring methods are briefly presented in the
following. Furthermore, an important issue of the agile process model is the testing of the
ontological knowledge container, which we explain in the following section. Before these
two sections we will give a brief approach for acquiring ontological knowledge.
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4.4. Acquisition of Ontological Knowledge

The acquisition of ontological knowledge considers the construction of the hierarchies of
questions and the diagnoses. We describe for both hierarchies the typical development
process.

4.4.1. Building the Question Hierarchy

The coarse structure of the question hierarchy is typically defined by abstract question sets
(top-level groups), that are distinguished by their kind of examination method: Usually
the expert orders the required question by the top-level groups ”initial survey”, ”manual
examination”, and ”specialized tests”. For a medical application, this classification intu-
itively maps to ”history”, ”manual examination”, and ”tests”. An application in a technical
domain may name this top-level groups ”complaints”, ”inspection”, and ”technical tests”.
Within each top-level question set it is reasonable to order questions or question sets, so
that firstly main findings are questioned and refined by follow-up questions. As discussed
in Section 4.3 the developer needs to consider the level of granularity for questions, the
detail of value ranges, and the user standard of knowledge. For example, expert users may
find it annoying to answer additional questions, that are possibly helpful for beginners.
Often a hierarchical structure of questions and question sets may be not sufficient, because
questions or question sets are meaningful at more than one point of the hierarchy. Then,
we allow for grouping the question sets and questions hetarachically. Usually, the structure
of the question hierarchy is changing during knowledge base development. Then, restruc-
turing methods can help to automatically update relations between questions and other
knowledge types. Typical changes consider the change of the question kind, the adapta-
tion of value ranges for choice questions, or deletions of questions. Of course, appropriate
tests methods need to be used to accompany the restructurings.

4.4.2. Building the Diagnosis Hierarchy

The diagnosis hierarchy is constructed by inserting new diagnoses in a structured way.
Then, final solutions are grouped and abstracted by coarse diagnoses, that can be inter-
preted as intermediate solutions, or problem areas giving an abstracted conceptual de-
scription of the underlying diagnoses. As mentioned for the question hierarchy the level of
detail of the diagnosis hierarchy is an important issue to consider, which we also discussed
in Section 4.3. For the definition of a standardized diagnosis hierarchy often terminologi-
cal or branch ontologies are used. We provide appropriate test and restructuring methods,
since during the knowledge system development the structure of the diagnosis hierarchy is
also a subject of change.
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4.5. Testing Ontological Knowledge

We present three methods for testing the ontological knowledge container. In contrast
to other knowledge containers, the test methods for ontological knowledge cannot eval-
uate the behavior of the knowledge system, but can check the implemented ontology for
anomalies, its understandability, and its correctness with respect to standard ontologies.

4.5.1. Static Ontology Testing

Thestatic ontology testingmethod is used for obtaining an overview of the structure of the
implemented knowledge.

Mechanics The method generates a statistics of the implemented ontological entities.
The knowledge base is investigated and the following metrics are reported: For diagnoses
we count the total number and percentage of problem areas and final diagnoses, respec-
tively. For problem areas we additionally compute the minimum and maximum number of
contained diagnoses (with mean values). For final diagnoses the minimum and maximum
depth of the diagnoses with respect to the root diagnosis is computed (with mean values).
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Figure 4.3: The considered metrics of the static ontology testing method.

For question sets we simply depict the total number contained in the knowledge base and
the minimum/maximum values of contained questions and question sets, respectively (with
mean values).
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Besides the total number of questions we additionally report the minimum and maximum
depths of questions with respect to the root question set (with mean values). Further-
more, we count for each question type (one-choice, multiple choice, numeric, text) the
total number and the percentage. For one-choice and multiple-choice questions we addi-
tionally calculate the minimum and maximum number of represented answer alternatives
(with mean values), and the total number of implemented choice values. In Figure 4.3 the
measures calculated by the static ontology testing method are depicted in a diagram. In
order to facilitate an automatic analysis of the generated statistics the method tries to detect
significant peaks, that are displayed as warnings to the user. The following irregularities
are detected:

• Question sets containing more questions than specified by a user defined thresh-
old TmaxQS

• Choice questions with...
– exceptionally large or small value ranges relative to the mean size of imple-

mented value ranges
– a value range less than a user defined thresholdTminVal

– a value range greater than a user defined thresholdsTmaxVal

• Problem areas with...
– exceptionally few diagnoses as sub-concepts relative to the mean value of im-

plemented sub-concepts
– only one diagnosis as sub-concept
– more diagnoses as sub-concepts than defined by a thresholdTmaxDC

• Diagnoses and questions with an exceptional depth with respect to the root of the
hierarchy

Statistical information about the remaining entities of the knowledge base is only displayed
on demand. If no warnings are reproted, then the test method finishes with a success
message.

Usage The method can be applied to investigate theunderstandabilityof the imple-
mented knowledge. Then, detected irregularities can indicate problems regarding the un-
derstandability. According to the definitions known fromrefactoring in software engi-
neering we call these irregularitiesbad smells. For a complete static ontology testing the
following thresholds need to be defined:TmaxQS for the maximum size of a question set,
TminVal andTmaxVal for the minimum and maximum size of a choice value range, respec-
tively, andTmaxDC for the maximum number of sub-concepts for a problem area.

4.5.2. Case-Based Ontology Testing

With case-based ontology testingone can determine the usage of the ontological objects
under real world conditions. Thus, real cases are applied to find objects with very seldom
and very frequent usage.

Mechanics A sufficient large number of real cases is required for this method. It is
important that the applied case base represents a typical collection of cases gathered from
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real life usage. In the best case, all obtainable real cases are utilized.
Then, the real cases are given to the knowledge system and the usage of the ontological
entities, i.e., diagnoses and findings, is counted. All entities that are never used in any case
are indicated as an error. The low usage of entities is defined by a threshold, e.g., 1% of
all cases, and will be reported as a warning. However, sometimes unfrequent diagnoses
are still important in the context of the knowledge system. For a convenient use of the test
method these objects should be marked asimportant, and thereafter the method does not
consider them in the test results.

Usage Case-based ontology testing can detect diagnoses and findings, that were thought
to be useful in the past, but appeared not to be necessary in real life cases. Suchlonely
objects in the ontology constitute redundancy in the knowledge base, which is a kind of
anomaly. It is obvious, that a large number of (real) test cases is needed as test knowledge.
With a given threshold for low usage of objects the test can be automatically executed.

4.5.3. Standardization Testing

With standardization testingan ontology can be checked against a given standard ontology.
For example, the diagnosis hierarchy of a medical application can be checked against the
ICD-10 standard .

Mechanics The method investigates the ontological hierarchy of the implemented on-
tological knowledge and checks the relations against a given ontology. A simple way for
this check is the comparison of textual names specified for the implemented ontological en-
tities and the standard ontology entities, respectively. Then, both ontologies are compared
according to their linkage. An error is reported, if at least one link between implemented
ontological entities is erroneous. Otherwise, the test finishes with a success message.

Usage With standardization testing the developer can detect incorrect ontological hier-
archies. Therefore, this method can be applied for testing thecorrectnessof the ontological
knowledge container. However, the application of this method may be difficult in practice:
For a proper comparison between the implemented ontology and the standard ontology,
both must follow the same naming conventions and often the same granularity. This may
produce conflicts, if the application, e.g., requires a more detailed or coarse definition of
diagnoses.

4.6. Restructuring Ontological Knowledge

Restructuring of already implemented knowledge is one of the key practices of the ag-
ile process model. Since the ontological knowledge container provides the basis for all
remaining knowledge containers, changes of ontological knowledge often imply changes
of other knowledge containers. Thus, if an ontological restructuring method is executed,
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then the corresponding restructuring methods of the other knowledge containers are suc-
cessively triggered in order to propagate the ontological change. In the following, we only
will sketch some useful methods for ontological methods.

4.6.1. Restructurings on Objects

Restructuring methods on objects usually consider the transformation of an ontological
object or the deletion of an existing one.

TRANSFORMMCINTOYN A multiple-choice question may contain answer alternatives
with no semantical relation. Then, the TRANSFORMMCINTOYN method can convert the
multiple-choice question, and its answer alternatives, respectively, into a set of yes/no-
questions corresponding with the answer alternatives of the original multiple-choice ques-
tion. Furthermore, this method facilitates the move of the converted yes/no questions into
different question sets (see MOVEQUESTION method) after execution of the restructur-
ing method. All remaining knowledge containers may be affected by this restructuring
method, and therefore the corresponding methods for these methods are triggered subse-
quently.

TRANSFORMYNINTOMC The conversion of a collection of yes/no questions into a
single multiple-choice question can be also reasonable. For example, a set of related yes/no
questions are converted into one multiple-choice question in order to facilitate a more
efficient user dialog. This is motivated by the fact that users are commonly answering one
multiple-choice question faster than multiple yes/no questions. Analogously to the inverse
method TRANSFORMMCINTOYN all remaining knowledge containers may be affected
by the execution of this method, and hence are triggered consequently.

TRANSFORMNUMINTOOC The TRANSFORMNUM INTOOC method is often applied,
if questions of the domain ontology were initially assumed to be acquired numerically,
but then a qualitative gathering appeared to be more practical. For example, the entry
of a qualitative answer choice is much simpler than providing an exact numerical value
for a question. The remaining knowledge containers may be affected by this ontological
change, and therefore the corresponding methods of the remaining containers are triggered
consequently.

SHRINKVALUE RANGE Often domain experts start implementing the ontological con-
tainer with choice questions providing detailed value ranges. During ongoing development
of, e.g., the structural knowledge container the value range of some questions exposes to
be unnecessary precise. Furthermore, a decreased value range may simplify the dialog for
the end-users. Then, the SHRINKVALUERANGE method can be applied for reducing the
value range of choice questions. A transformation matrix has to be defined by the devel-
oper, which maps the values of the old value range to the values of the reduced values



4.6 Restructuring Ontological Knowledge 57

range. Since, all remaining knowledge containers may be affected by this restructuring,
the corresponding methods of these methods are triggered subsequently.

MOVEQUESTIONVALUE During the agile development of the knowledge system the
intended meaning of a (choice-)question can evolve. It can happen that a value of the ques-
tion is no longer semantically belonging to the question, but is better placed in the value
range of another choice question. This situation is typical, if the gathering of originally
one question is split up into two separate questions. The application of the MOVEQUES-
TIONVALUE method moves the specified answer value of a choice question to the value
range of another choice question, and then propagates this restructuring to the remaining
knowledge containers. However, the method can cause multiple conflicts, e.g., if the origi-
nal and the targeted one-choice questions are contained in a rule condition, both combined
by an AND-connector.

INTRODUCEABSTRACTION The introduction of an abstraction (abstract question) may
be meaningful for many reasons. For example, an abstraction often simplifies the complex-
ity of structural and strategic knowledge (e.g., reducing the number of questions in a rule
condition). Furthermore, an abstraction can increase the understandability for the end-user
when used as an explanation instead of the number of original questions. The execution
of the INTRODUCEABSTRACTION method firstly creates a new abstract question (if not
already existent). In a second step, the developer specifies a condition of a set of findings
(connected byand or or) that define a given value of the abstraction. This condition is
triggered to the remaining knowledge containers.

REMOVEDIAGNOSIS The diagnosis hierarchy may evolve to be too structured and over-
designed during knowledge system development. Then, some diagnoses become redun-
dant or useless. For increasing the understandability of the implemented knowledge, it is
reasonable to delete redundant diagnoses. However, simply deleting a diagnosis can not
only cause conflicts within the ontological knowledge container (e.g., when removing a
problem area with several child diagnoses), but also can be difficult in context of the re-
maining knowledge containers (e.g., if the diagnosis is contained in structural knowledge).
The REMOVEDIAGNOSIS method starts with analysing the implemented knowledge, and
then interactively removes or re-links attached diagnoses or knowledge of the diagnosis to
be removed.

REMOVEQUESTION Analogously to the REMOVEDIAGNOSIS method the REMOVE-
QUESTION restructuring removes not only a question from the ontological knowledge
container, but also considers conflicts that may arise in the remaining knowledge contain-
ers with respect to the deletion.
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4.6.2. Architectural Restructurings

Architectural restructuring methods focus on changing the design of the knowledge base.
Often hierarchical relationships are modified or rearranged.

MOVEQUESTION Usually questions are grouped in question sets, and structured hier-
archically. Due to extensions of the ontology, it may be reasonable to move an existing
question to another (possibly new) question set. Then, the MOVEQUESTION restructur-
ing can be applied, which provides a convenient method for this task. Since hierarchical
changes in the ontology always can affect strategical knowledge the method additionally
triggers the corresponding method of the strategic knowledge container.

MOVEDIAGNOSIS Analogously, there exists a method for moving diagnoses from one
place in the diagnosis hierarchy to another place. The MOVEDIAGNOSIS restructuring,
e.g., is useful, when a diagnosis was initially designed to represent a final solution, and be-
comes a problem area due to extensions and refinements of the knowledge base. Changes
of the diagnosis hierarchy can affect the implemented strategic knowledge, if a diagnosis-
centered indication strategy is used. Then, the available strategic knowledge belonging to
the moved diagnosis needs to be considered manually by the user.

EXTRACTQUESTIONSET During the development of the knowledge system the size of
a question set may has become too large, i.e., too many questions are contained in the
question set. Then, the EXTRACTQUESTIONSET method can be applied, to simply move
a number of questions into a newly created question set. For this method available strategic
knowledge needs to be considered, and therefore the corresponding restructuring method
for strategic knowledge needs to be triggered.

COMPOSEQUESTIONSETS Inversely, two question sets can be combined to one ques-
tion set by the COMPOSEQUESTIONSETS method, if for example both question sets con-
tain only a small number of questions, or many (semantic) relations can be identified be-
tween questions of the two question sets. Subsequently, the corresponding restructuring
method for the strategic knowledge container is triggered.

4.7. Learning Ontological Knowledge

The automatic transfer of ontological knowledge is possible, if a standard ontology for the
present application domain is available. However, often the standard ontology needs to be
adjusted according to the project requirements. For example, the standard ontology may
be too specific or too general for the intended application.
The (semi-)automatic construction of ontological knowledge from scratch is a current issue
of research. We omit a detailed discussion in the context of this work, but refer to Maedche
et al. [70] for learning taxonomic relations and to Staab and Studer [126, Ch.9] for a
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general introduction into semi-automatic learning algorithms considering the construction
of ontologies.

4.8. Formal Definition of Ontological Objects

In the previous sections we introduced a domain ontology for building diagnostic knowl-
edge systems. In the following chapters we will present approaches for implementing
structural, strategic, and support knowledge building on this ontology.
However, these approaches do not require such a detailed distinction between the differ-
ent kinds of an ontological object, e.g., the differentiation between a questioned and an
abstracted question. In fact, the presentation of the methods is simplified by a common
framework of general definitions, that consider a concrete instantiation of the presented
domain ontology. This framework is provided in this section.
Firstly, we want to consider the objects, that are used as an input of a diagnostic knowledge
system.

Definition 4.8.1 (Question and Finding) Let ΩQ be the universe set of all questions
available in the application domain. The type of a questionQ ∈ ΩQ depends on the
value rangedom(Q). The value range can define

• numerical value ranges for real or integer values,
• symbolic value ranges containing choice answers, and
• arbitrary content for text answers.

A valuev ∈ dom(Q) assigned to a questionQ ∈ ΩQ is called afindingand we callΩF
the set of all possible findings in the given problem domain. A findingF ∈ ΩF is denoted
by Q:v for Q ∈ ΩQ andv ∈ dom(Q). Each findingF is defined as a possible input of a
diagnostic knowledge system.

For findings the functionsa : ΩF → ΩQ andval : ΩF → Ωval are defined to obtain the
assigned question and the assigned value of a finding, respectively. Then, for a findingQ:v
we obtaina(Q:v) = Q, andval(Q:v) = v.
Questions can be structured by question sets into meaningful groups, e.g., tests concerning
a specific area of the system are grouped into a common question set.

Definition 4.8.2 (Question Set)Let ΩQ the universe of all questions defined for the
knowledge system. Then, an ordered list of questionsQi ∈ ΩQ

QS = ( Q1, Q2, . . . , Qn )

is called a question set. An abstract question set QS ∗ =
( Q1, Q2, . . . , Qn,QS 1, . . . ,QSm ) additionally can contain other question setsQSi.
We callΩQS the universe of all question sets (including abstract question sets) for a given
universe of questionsΩQ.

With abstract question sets it is possible to group questions and question sets hierarchically.
A diagnostic system usually comes up with a solution for a given problem. These solutions
are defined as diagnoses.
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Definition 4.8.3 (Diagnosis)Let D be adiagnosisrepresenting a possible output, i.e., a
solution, of the diagnostic knowledge system. We defineΩD to be the universe of all pos-
sible diagnoses for a given problem domain. For each diagnosisD ∈ ΩD a symbolic value
val(D) is assigned, which provides the diagnosis state with respect to a given problem.
The value range of a diagnosisD is denoted bydom(D).

For example, a reasonable range of symbolic diagnosis states is

dom(D) = {not probable, unclear , suggested , probable} .

A problem is presented to the knowledge system as a case, which we will define in the
following.

Definition 4.8.4 (Case)A casec is defined as a tuple

c = (Fc,Dc, Ic ) ,

whereFc ⊂ ΩF is a set of findings given as input to the case. OftenFc is also called the set
of observed findingsfor the given case. The setDc ⊆ ΩD contains the diagnoses describing
the solution of the casec, andIc contains additional meta-information describing the case
c in more detail. The set of all possible cases for a given problem domain is denoted by
ΩC .

It is worth noticing, that the definition above represents an already solved problem. Of
course, for a new problem the solution is not known in advance and often the set of ob-
served findings is entered successively into the knowledge system. In the following chap-
ters we will use these definitions for the description of the knowledge containers.

4.9. Summary

In this chapter, we have introduced the ontological knowledge container, which denotes
the basis for building diagnostic knowledge systems. We firstly presented different cate-
gories of ontologies with respect to their subject of utilization. Then, we motivated the
definition of a fixed domain ontology for diagnostic systems and introduced the applied
domain ontology of the agile process model. We discussed problems that developers often
face when building an application ontology for a knowledge system, e.g., level of detail or
standardization. Furthermore, methods for automatically testing and learning the ontologi-
cal knowledge container were presented. We concluded the chapter by providing a general
framework of definitions representing an instantiation of the specified domain ontology.
This framework will be utilized in the subsequent chapters for introducing the remaining
knowledge containers.



5. The Structural Knowledge
Container

In this chapter, we describe the structural knowledge container, which embodies the in-
ferential knowledge used by a diagnostic system. As mentioned in Chapter 1 there exist
various kinds of inferential knowledge representations that fit the mental models of domain
experts and that are appropriate for different types of applications. In particular, we dis-
cuss the usage ofabstraction knowledge, case-based knowledge, categorical knowledge,
score-based knowledge, andcausal set-covering knowledgein more detail.

5.1. Abstraction Knowledge

According to Giunchiglia and Walsh [46] the termabstractioncan be defined as aprocess
of mapping a representation of a problem (ground representation) into a new representa-
tion (abstract representation). Furthermore, typical properties of the abstract representa-
tion are its simple handling compared to the ground representation and its preservation of
certain desirable properties of the ground representation. In the context of the presented
domain ontology we restrict the abstraction task to the mapping of findings to other find-
ings, that are both part of the ontological knowledge container.
Thus, sometimes findings representing raw (input) data are mapped into findings describ-
ing a meaningful abstraction of the input. It is worth noticing, that we cannot clearly
separate between highly abstracted findings and diagnoses, since abstractions can describe
concepts similar to diagnoses. Abstractions can be interpreted as ontological knowledge as
well as structural knowledge: From the viewpoint of stating an abstract concept for other
ontological entities, it can been seen as ontological knowledge. Then, abstractions often
state high-level technical terms of the domain. However, for inferring the actual value
of an abstraction structural knowledge is required. In the context of this work we clas-
sify abstraction knowledge as structural knowledge, since defining the knowledge actually
derivingan abstraction denotes an even more complex task than defining the ontological
concepts of an abstraction.

5.1.1. Representation of Abstraction Knowledge

There exist alternative approaches for implementing abstraction knowledge: Starting with
simple tabular mapping functions and abstraction formulas we can define more complex
abstraction knowledge by plain abstraction rules or by score-based abstraction rules. We
briefly discuss these approaches in the following four paragraphs.
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Mapping Functions

Mapping functions can be applied, if the abstraction knowledge is very simple. A mapping
function is defined for the values of a question, and directly transfers them to the values
of an abstracted question. A suitable knowledge acquisition method for defining map-
ping functions aretables. The following table in Figure 5.1 shows an exemplary mapping
function for the question ”temperature”.

temperature
fever < 35 in [35, 37) in [37, 38) ≥ 38
none � �
increased �
high �

Figure 5.1: Tabular representation for mapping the numerical values of question ”temper-
ature” to a symbolic value of the question ”fever”.

Thus, for a numerical value of finding ”temperature” less than35, and for a value between
35 and37 the abstraction ”fever:none” is derived. For values of the question ”temperature”
between37 and38 the abstraction ”fever:increased” is inferred, and values greater than38
yield the abstraction ”fever:high”.

Formula-Based Abstraction

If one or more numerical questions are the starting point for the derivation of an abstrac-
tion, then the formula-based abstraction can be a useful method.
Then, the developer defines a formula that uses the raw values of the numerical questions
as an input and computes the corresponding value of the abstraction.
In medical applications, a typical example for formula-based abstraction is the derivation
of the ”body mass index” (BMI), which (in the simple case) uses the weight and the height
of a human body as input:

bmi(weight, height) =
weight

height2

The computed value can be further abstracted according to the specifications of the WHO
(using a mapping function):

bmi(weight, height)
weight class < 18.5 [18.5, 25) [25, 30) [30, 40) ≥ 40
underweight �
normal �
overweight �
obesity �
extreme obesity �

Figure 5.2: Mapping function for evaluating the body mass index.
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Thus, for example the abstraction ”weight class:extreme obesity” is derived for patients
with a body mass index greater than or equal to40.

Abstraction Rules

Abstraction rules are a general representation of abstraction knowledge. Thus, a rule con-
dition may contain arbitrary logical combinations of conditions as defined in Figure 5.1,
and the rule action will set the value of an abstracted question.
In a first step we define a general rule. We will revive this definition in the further chapters,
when introducing categorical and score-based knowledge.

Definition 5.1.1 (General Rule) A general ruler is defined as follows:

r = cond(r) → action(r) [except(r), context(r)] ,

wherecond(r) is a rule condition containing disjunctions, conjunctions, and/or negations
of arbitrary findingsF ∈ ΩF ; action(r) is the rule action, that is executed if the rule
condition evaluates true in a given case. In addition to the rule conditioncond(r) other
conditions can be defined, i.e., a rule exceptionexcept(r) and a rule contextcontext(r).
Both conditions are optional and can contain disjunctions/conjunctions of findings and
diagnoses states.

The presented definition of rules containing rule exceptions and rule contexts is moti-
vated by long term experiences with medical knowledge system projects and goes back to
Puppe [99]. The rule exception was introduced with respect to rarely observed findings
that — if observed — detain a rule from firing. Then, even if the rule condition evalu-
ates true, the rule is prevented from firing, if the rule exception evaluated true. If the rule
exception evaluates false or cannot be evaluated at all (e.g., not all necessary findings are
observed), then the rule is not detained from firing. The difference between the separate
concept of a rule exception compared to an extended rule condition can be best explained
by an example: We consider the following two rulesr1, r2:

r1 = C1 → A except C2 ,
r2 = C1 ∧ not(C2) → A ,

whereC1, C2 are conditions andA is an arbitrary rule action.
On the one hand, with the concept of rule exceptions the ruler1 can fire, even if the findings
in C2 are not observed and the condition cannot be evaluated at all. It is obvious that on
the other hand the ruler2 will not fire until all findings inC1 andC2 are observed and
consequently can be evaluated. For a defined rule contextcontext(r) the rule only fires,
if the rule conditioncond(r) evaluates true and the rule contextcontext(r) also evaluates
true.
The concept of rule contexts is often applied if the rule base is structured into several
modules. Then, the same rule context (often evaluating the established state of a special
diagnosis) is attached to a number of rules, which are only allowed to fire if a specified
diagnosis (e.g., a problem area) has been established.
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A rule condition COND is described with respect to the presented domain ontology. In
Table 5.1 the possible configurations of a rule condition are depicted in BNF (Backus Naur
Form). Abstract concepts of conditions are written in capital letters, and concrete instances
of conditions are written in small letters. In summary, conditions can be distinguished into
terminal and non-terminal conditions. Terminal conditions directly apply constraints on
single questions, whereas non-terminal conditions represent a composite grouping a set
of arbitrary conditions. Terminal conditions are defined on all kinds of questions and
diagnosis’ states.

COND = TERMINAL
‖ NON TERMIINAL

NON TERMINAL = and(COND1..n)
‖ or(COND1..n)
‖ not(COND)
‖ minMax(COND1..n, min, max)

TERMINAL = NUM COND
‖ CHOICE COND
‖ DATE COND
‖ TEXT COND
‖ KNOWN COND
‖ DIAGNOSIS COND

NUM COND = numEqual(numQuestion, value)
‖ less(numQuestion, value)
‖ lessEqual(numQuestion, value)
‖ greater(numQuestion, value)
‖ greaterEqual(numQuestion, value)
‖ numIn(numQuestion, valueRange)

CHOICE COND = choiceEqual(choiceQuestion, value)
‖ choiceIn(choiceQuestion, valueList)

DATE COND = dateEqual(dateQuestion, dateValue)
‖ dateLess(dateQuestion, dateValue)
‖ dateLessEqual(dateQuestion, dateValue)
‖ dateGreater(dateQuestion, dateValue)
‖ dateGreaterEqual(dateQuestion, dateValue)
‖ dateIn(dateQuestion, dateValueRange)

TEXT COND = textEqual(textQuestion, textValue)
‖ textContains(textQuestion, textValue)
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KNOWN COND = known(question)
‖ unknown(question)

DIAGNOSIS COND = established(diagnosis)
‖ suggested(diagnosis)
‖ excluded(diagnosis)

Table 5.1: The condition framework of rules in BNF.

Besides the usual non-terminal conditionsand and or the minMax condition repre-
sents a special non-terminal concept. For this condition a set of conditions is de-
fined together with a minimummin and maximummax threshold (withmax less that
or equal to the number of defined conditions). Then, theminMax condition evaluates
true if at leastmin conditions and at mostmax of the contained sub-conditions eval-
uate true. It is easy to see that aminMax condition is a compact representation of
a semantically equivalent condition, containing a disjunction of conjunctions. For ex-
ample, the conditionminMax (c1, c2, c3, 2, 2) is semantically equivalent to the condition
or

(
and(c1, c2), and(c1, c3), and(c2, c3), not(and(c1, c2, c3))

)
and will evaluate false if all

three sub-conditionsc1, c2, andc3 evaluate true.

Definition 5.1.2 (Rule Base)We defineΩR to be the universe of all possible rules for a
given universe of diagnosesΩD and a given universe of questionsΩQ; we callR ⊆ ΩR a
rule base.

With the previous definitions we can represent arbitrary rules. However, the characteristics
of a rule base can be best explained by thecomplexitiesof the included rules.

Definition 5.1.3 (Rule Complexity) Let r ∈ ΩR be a rule with

r = cond(r) → action(r) .

Then, we say thatr is asimplerule, if cond(r) only consists of a terminal condition. Fur-
ther, we say thatr is aone-levelrule, if cond(r) contains only one non-terminal condition,
which itself consists of terminal conditions. A ruler is called amultiple-levelrule if the
conditioncond(r) contains more than one non-terminal condition.

An example clarifies the given definition of rule complexities.

Simple rule
r1 = less(Q1, 10)

One-level rule
r2 = and(less(Q1, 10), less(Q2, 20))

Multiple-level rule
r3 = and(or(less(Q1, 10), less(Q2, 20)), or(less(Q3, 15), less(Q4, 25)))

Specific kinds of rules can be classified according to their specialized rule action. Thus, a
general rule is called an abstraction rule, if its rule action is executing an abstraction task.
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Definition 5.1.4 (Abstraction Rule) A rule

r = cond(r) → Q:v [except(r), context(r)]

is called anabstraction rule. If the abstraction rule fires, then the specified valuev ∈
dom(Q) is assigned to the specified questionQ ∈ ΩQ .

For abstractions deriving a numerical value we additionally allow formulas contained in
the rule action. Thus, the developer can determine the value of a numeric abstraction by
performing (complex) computations. The value of the numeric abstraction may provide
an input for further abstractions. It is worth noticing, that mapping functions can be inter-
preted as abstraction rules. Then, for the mapping function defined in Figure 5.1 we can
define the four semantically equal abstraction rules:

r1 = less(temperature, 35) → fever:none
r2 = numIn(temperature, [35, 37)) → fever:none
r3 = numIn(temperature, [37, 38)) → fever:increased
r4 = greaterEqual(temperature, 38) → fever:high

Formula-based abstraction rules can be generalized to abstraction rules as well (using for-
mulas in the rule action). Then, for each questionQ contained in the abstraction formula
the rule condition of a generalized abstraction rule will be a conjunction of terminal condi-
tionsknown(Q), i.e., the abstraction rule will only evaluate the formula, if the participating
questions are already known.

Score-Based Abstraction

Scores can be applied for defining a more complex kind of abstraction knowledge. Then,
the value of an abstraction is not defined by the evaluation of a single condition, but can
be specified with respect to the evaluation of multiple weighted conditions. In contrast
to abstraction rules the score-based representation does not insist on the precise valuation
of defined conditions, but allows for a more coarse definition of the actual abstraction
condition.
Formally, a score-based abstraction is defined by a score-based abstraction rule:

Definition 5.1.5 (Score-Based Abstraction Rule)A score-based abstraction ruler is
denoted as follows:

r =
[
(cond1, p1), . . . , (condn, pn)

]
→

[
Q : [m1, . . . ,mk]

]
,

where(cond i, pi) is an augmented rule condition that contains a rule conditioncond i at-
tached with pointspi ∈ IN , and[m1, . . . ,mk] with (mi ∈ IN) is a valuation scheme for
the abstracted questionQ ∈ ΩQ. By definition the sizek of the valuation scheme is fixed
to k = |dom(d)| − 1.
The abstraction rules fires, i.e., assigns the valuevi ∈ dom(Q) to the abstractionQ ∈ ΩQ

according to the sum of points of true conditionss =
∑

pi, and a mapping function gen-
erated by the valuation scheme[m1, . . . ,mk]:



5.1 Abstraction Knowledge 67

Q s < m1 s ∈ [m1, m2) . . . s ≥ mk

v1 �
v2 �
... · · ·
vk−1 �

Score-based abstraction rules can be simplified tothreshold-based abstraction rules: Then,
a specified question is assigned to a pre-defined value, if the sum of points in a condition
exceeds a given threshold.

Definition 5.1.6 (Threshold-Based Abstraction Rule)A threshold-based abstraction
rule r is denoted as follows:

r =
[
(cond1, p1), . . . , (condn, pn)

]
→

[
Q:v : m

]
,

where(cond i, pi) is an augmented rule condition containing a rule conditioncond i at-
tached with pointspi ∈ IN ; Q ∈ ΩQ is an abstracted question with specified value
v ∈ dom(Q), andm ∈ IN is a threshold value. The abstraction rule fires, i.e., sets the
specified valuev to the targeted abstractionQ, if the sum of pointspi of true conditions
cond i is greater than or equal to the defined thresholdm.

Score-based abstractions and threshold-based abstraction rules have been successfully ap-
plied in real world knowledge systems, e.g., for a medical knowledge system for neu-
rology. For many years, the system was delivered together with a successful medical
textbook [92]. In Figure 5.3 an example taken from this system is depicted for the abstrac-
tion ”central hemiplegia:left”. The threshold-based abstraction contains13 rule conditions
all attached with the default point1. The minimum threshold is set to6, which means
that at least 6 sub-conditions need to evaluate true, in order to set the abstraction ”central
hemiplegia” to the value ”left”.
Threshold-based abstraction rules are a generalization of abstraction rules, since on the one
hand they offer a richer representation of rule conditions and on the other hand are able
to attach points (i.e., weights) for each rule condition. The activation of a threshold-based
abstraction rule is controlled by the minimum threshold.
Thus, an abstraction ruler = cond(r) → Q:v can be easily generalized to a threshold-
based abstraction ruler′ =

[
(cond(r), 1)

]
→

[
Q:v : 1

]
.

5.1.2. Acquisition of Abstraction Knowledge

In general, for large knowledge systems an abstraction layer is inserted before applying
knowledge for inferring diagnoses. As depicted in Figure 5.4 raw input findings are firstly
used by abstraction knowledge to infer an abstract description of the case. Then, these
abstractions are used to apply diagnostic knowledge for inferring diagnoses. This approach
is described in more detail in Puppe et al. [104, p. 164f].
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Figure 5.3: A score-based abstraction for defining the value ”left-side” of abstraction ”cen-
tral hemiplegia” (in german).

As mentioned in the introduction of this section, abstraction knowledge can be interpreted
partially as ontological and partially as structural knowledge. If we consider the ontolog-
ical aspect of defining abstractions, then we can distinguish between a top-down and a
bottom-up approach.
The top-down approachstarts with investigation of the diagnostic profiles, i.e., the set of
primary findings used for inferring each diagnosis. These findings are reviewed accord-
ing to their understandability and expressiveness for the user and the dialog, respectively.
Primary findings with high level of abstraction are defined as abstractions and additional
questions are inserted describing this abstraction in more detail.
Thebottom-up approachinvestigates the already defined questions. If a group of questions
(often defined in the same question set) is frequently applied in the context of deriving
a solution, then the introduction of an abstraction is considered in order to increase the
reusability and expressiveness of this question group.
Having implemented the ontological aspects of the abstractions, we need to define struc-
tural knowledge deriving values of the abstractions. Then, we select from the previously
introduced representations (e.g., mapping functions, abstraction rules) depending on the
requirements of the abstraction task.

5.1.3. Testing Abstraction Knowledge

In the previous sections we motivated that all representational alternatives can be general-
ized to threshold-based abstraction rules. For abstraction rules we can define appropriate
test methods. However, due to their similarities to categorical rules and score-based rules,
we introduce test methods for rule bases in Section 5.4.4.



5.1 Abstraction Knowledge 69

Raw Input Abstractions Diagnoses

Figure 5.4: Three-layered architecture of a diagnostic knowledge system.

5.1.4. Restructuring Abstraction Knowledge

Abstraction knowledge mainly needs to consider the propagation of ontological restruc-
turings. The ontological restructuring methods sketched in Section 4.6 are also propagated
to the abstraction knowledge.

TRANSFORMMCINTOYN/ TRANSFORMYNINTOMC For the methods TRANSFOR-
MMCINTOYN and TRANSFORMYNI NTOMC the transformed objects are simply updated
in the conditions and actions of the implemented abstraction rules or mapping functions.
In general, no conflict will be produced for these two restructurings.

TRANSFORMNUMINTOOC Mapping functions can be simply updated according to the
method TRANSFORMNUM INTOOC, since mapping functions commonly define a partition
of the abstracted value range. However, if the restructured numerical question is contained
in abstraction rules, then the method TRANSFORMNUM INTOOC is only executable, if the
abstraction rules divide the numerical value range in distinct partitions. Otherwise, no
direct transformation is possible, and the restructuring should be aborted.

TRANSFORMMCINTOOC The TRANSFORMMCINTOOC method similarly can cause
conflicts, if the rule base contains abstraction rules with either multiple values of the spec-
ified multiple-choice question in their rule conditions, or multiple values of the specified
multiple-choice question in their rule action. Then, the restructuring should be aborted and
the conflict needs to be resolved manually.

SHRINKVALUE RANGE The method SHRINKVALUERANGE simply exchanges the
original values with the values of the reduced value range, if contained in a rule condi-
tion or rule action. The method causes a conflict, if syntactically ambivalent abstraction
rules are generated due to the execution of the restructuring method, i.e., the method gen-
erates two rules with equal rule conditions, but different abstraction actions. For example,
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let us consider two rules

r1 = choiceEqual(Q, v1) → Q′:v′ ,

r2 = choiceEqual(Q, v2) → Q′:v′′ .

When shrinking the value range of questionQ with a mappingv1 → vn andv2 → vn, we
obtain the following ambivalent rules

r1 = choiceEqual(Q, vn) → Q′:v′ ,

r2 = choiceEqual(Q, vn) → Q′:v′′ .

Then, the method is aborted and the rule base needs to be manually modified. Mapping
functions are considered analogously.

MOVEQUESTIONVALUE For general rules we have to consider the following: If the
moved value is contained in a rule condition, then the condition is modified, so that the
new targeted question is contained in this condition. However, the restructuring can cause
conflicts, if for example the new targeted question additionally is contained in the rule
condition, and is assigned to a value different to the moved value. For one-choice questions
this condition can never evaluate true, since an one-choice question is never assigned to
two values at the same time. Then, the developer has to decide manually, which partial
condition has to be removed from the condition. For abstraction rules we additionally
have to consider the possibility that the moved value is contained in the abstraction action.
Then, the action has to be modified so that the new targeted question is now assigned to
the moved value.

INTRODUCEABSTRACTION For the method INTRODUCEABSTRACTIONa correspond-
ing abstraction rule needs to be inserted, which can be done automatically because of the
specified abstraction condition. Then, all rules currently contained in the rule base are
checked with respect to the new abstraction: If a rule condition contains the specified
condition, then it is replaced by the newly created abstraction.

5.1.5. Summary

In this section, we introduced representational alternatives for abstraction knowledge and
sketched acquisition approaches. Starting with mapping functions as a simple represen-
tation of abstraction knowledge, we increased the complexity in order to state even more
complex abstraction knowledge, e.g., by score-based abstraction rules.
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5.2. Case-Based Knowledge

The (re)use of previously experienced and solved cases is an appealing approach for de-
veloping diagnosis knowledge systems, since it often complies with the mental model of
expert reasoning. The principle of case-based reasoning is that similar problems have
similar solutions. Aamodt and Plaza [1] described CBR as follows:

CBR is able to utilize the specific knowledge of previously experienced, con-
crete problem solutions (cases). A new problem is solved by finding a similar
past case, and reusing it in the new problem situation.

For example, in the medical domain a physician commonly remembers old and similar
cases, when he is examining a particular patient. If important findings are similar to find-
ings of cases in the past, then often the diagnoses of these past cases are used to decide
about the disease of the current patient.

5.2.1. Applications of Case-Based Knowledge

Cases can be applied for diagnostic reasoning quite simple. However, cases are relevant
for many other aspects of diagnostic knowledge system development:

Use-case analysis:When starting knowledge system development, experts often tend to
describe their problem domain by exemplary cases. These cases are experiences
taken from their practice as well as imaginary cases illustrating particular circum-
stances of the application domain.

Case-based learning:Another important aspect of CBR (and distinction from other diag-
nostic methods) is the ability of continuous adjustment of existing structural knowl-
edge and learning of new structural knowledge, since newly experienced cases are
often integrated into the case base to be reused in future problem situations.

Semi-automatic learning If a sufficiently large number of cases is available, then these
cases can be used to learn explicit structural knowledge. For example, in [14, 9] we
presented semi-automatic methods for learning explicit structural knowledge from
cases, e.g., set-covering models and scoring rules. We call these methods semi-
automatic, since additional background knowledge can be applied to improve the
learning results.

Test knowledge In the context of the agile process model, cases play a central role as test
knowledge. Thus, solved cases can be used to validate the reasoning behavior of
structural knowledge. We will discuss this in Section 5.6.1 in more detail.

However, in the following we will focus on the diagnostic reasoning using cases, i.e.,
case-based diagnosis.



72 Chapter 5: The Structural Knowledge Container

5.2.2. The Case-Based Reasoning Framework

Aamodt and Plaza [1] have defined a common framework for CBR, which consists of
a cyclic process model and a task-method decomposition model. The well-known cyclic
process model is depicted in Figure 5.5, and describes the four basic steps of case-based
reasoning: Retrieve, Reuse, Revise and Retain (also known as the ”4Re”s).

General Knowledge

New Case

New Case

Retrieved Case

Solved Case

Tested/Repaired

Case

Learned Case

Previous Cases

Problem

Reuse

Retrieve

Revise

Retain

Suggested Solution

Confirmed Solution

Figure 5.5: The cyclic CBR process model according to Aamodt & Plaza [1].

The four steps can be explained as follows:Retrieveis the process of finding the most
similar cases for a new case (query) in a case base.Reuseis the process of applying
the solutions of the found cases to the query.Reviseis used to adjust/modify the ap-
plied solutions of the query, since the most similar cases may have led to an incorrect
solution.Retainis the process of integrating the ”lessons learned” into the system. This is
mostly done by simply adding the query and its correct solution into the existing case base.
Sometimes this step is extended by maintenance operators, which additionally modify and
improve the case base. It is worth noticing, that background knowledge can support the
problem-solving process. Background knowledge depends on the specific application and
may contain knowledge about similarities, weights or partitioning information.
In the following sections we will concentrate on a more formal definition of case retrieval.
We refer to [1, 64] for a more detailed and technical description of the case-based reasoning
steps.
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5.2.3. Knowledge Representation

According to Richter [110] the case-based knowledge representation can be divided into
four distinctknowledge containers:

• the vocabulary (terminological ontology), i.e,ΩD andΩF
• the similarity measures
• the case base, i.e.,CB ⊆ ΩC

• the solution transformation
For diagnostic tasks commonly no knowledge about the solution transformation is nec-
essary, since solutions from a retrieved case are often used with no adaptation. However,
e.g., for design and planning tasks the solution transformation represents an important con-
tainer. The similarity measure is mainly defined by a (local) similarity function comparing
two findings, and a weight function stating the importance of single findings. Additionally,
abstraction knowledge can be applied in order to facilitate an improved case comparison
using high-valued findings.

Definition 5.2.1 (Local Similarity Function) A local similarity functionis defined for a
tuple of findingsF1, F2 ∈ ΩF as follows:

sim : ΩF × ΩF → [0, 1] ,

where the boundary value0 means no similarity between the two findings and the value1
indicates two equal findings.

If for two findings F1, F2 ∈ ΩF the similarity function is undefined, then the default
similarity is applied:simdef (F1, F2) = 1, if F1 = F2, andsimdef (F1, F2) = 0, otherwise.
Similarity functions have been thoroughly investigated in the past: For example, Goos [47]
presents a well elaborated description of similarity functions according to the applied do-
main ontology (see Chapter 4). Richter [111] introduced a mathematical framework and
basic concepts for classifying similarity measures. Bergmann and Stahl [21] investigated
similarity measures from an object-oriented view.
In addition to the similarity function the expert can attach information about the impor-
tance of the implemented findings.

Definition 5.2.2 (Weight Functions) Theglobal weight function

wg : ΩQ → IN+

defines the absolute importance of a specified questionQ ∈ ΩQ.
The local weight function

wl : ΩF → IN+

states the importance of a specified questionQ ∈ ΩQ assigned to a specified valuev ∈
dom(Q), i.e., the importance of a findingQ:v ∈ ΩF . Then, higher values specify more
important findings.
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It is easy to see that the local weight function is a generalization of the global weight
function, if for anyQ ∈ ΩQ it holds thatwl(Q:v) = wl(Q:v′) for all v, v′ ∈ dom(Q).
In practical applications often a local weight function is defined using the product of an
already existing global weight functions and an abnormality function. The abnormality
function considers the possible values of each question. Then, the value range of a question
Q is augmented with information about the abnormality state of the particular valuesv ∈
dom(Q).

Definition 5.2.3 (Abnormality Function) Theabnormality functionis defined as follows

abn : Ωval → [0, 1] ,

and returns a real value between0 and1 denoting the abnormality state of the specified
value. The boundary value0 means a normal value of the question, and the boundary value
1 a totally abnormal state of the question.

For example, the question ”temperature” with value rangedom(temperature) =
{normal , increased , high} defines the following abnormalities:abn(normal) = 0,
abn(increased) = 0.7, andabn(high) = 1.
If no weight function is defined by the expert, then thedefault weight functionis applied:
wdef (Q, D) = 1 for all Q ∈ ΩQ andD ∈ ΩD.
In summary, we can see that case-based knowledge is represented by an appropriate case
base with solved cases, and by a defined similarity measure, by a weight function, and by
an optional abnormality function.

5.2.4. Knowledge Inference

For inferring a solution for a given problem, case-based diagnosis essentially follows the
CBR-cycle defined in Section 5.2.2: After a set of sufficiently similar cases for the query
has been retrieved, the cases are commonly reused by simply copying their solutions.
Then, these solutions are presented as possible solutions for the query. The described
inference structure is depicted in Figure 5.6 as a sequence diagram.
In this work, we will concentrate on the retrieve step, since it is the fundamental part of
the case-base diagnosis task.
The retrieve step gathers cases from the case base, which are sufficiently similar to the
query case. The similarity of a new casec with a retrieved casec′ is defined by the (global)
similarity function.

Definition 5.2.4 (Global Similarity Function) The global similarity functionis defined
for a tuple of cases

simg : ΩC × ΩC → [0, 1] .

For two totally similar casesc, c′ ∈ ΩC we obtain the similaritysimg(c, c
′) = 1 and for

two completely dissimilar cases we receive the similaritysimg(c, c
′) = 0. Values between

the boundary values0 and1 state the degree of similarity between the two cases.
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Query Case base Solution

send query

send solution

send solution

reuse cases

retrieve cases

Figure 5.6: Sequence diagram of a case-based inference action.

A commonly used global similarity function is theweighted Hamming distance, which ap-
plies (global) weights and local similarities of findings. The weighted Hamming distance
between a query casesc ∈ ΩC and a retrieved casec′ ∈ CB is defined as follows:

simHam
g (c, c′) =

∑
Q∈ΩQ

wl

(
f(Q,Fc)

)
· sim

(
f(Q,Fc), f(Q,Fc′)

)
wl

(
f(Q,Fc)

) , (5.1)

wheref(Q,F) is a function, which returns the corresponding finding of questionQ in the
specified set of findingsF .
For a more detailed discussion of similarity measures we refer to Richter [111]. In sum-
mary, the retrieve step tries to find a casec′ ∈ CB for a query casec ∈ ΩC , which
maximizes the similaritysimg(c, c

′).
The efficiency of the linear retrieval of a maximum similar case evolves to become worse
with an increasing size of the case base. Thus, we need to considerO(m·n) comparisons
for n cases, each case containingm findings. Therefore, several approaches have been
proposed to cope with this problem: For example, in Goos [47] apre-selection strategyfor
the cases contained in the case base is presented. Pre-selection can significantly reduce the
costs of direct case comparison. Alternatively, an intuitive approach for reducing retrieval
costs is the construction ofcase clusters, containing similar cases. For each cluster, a case
representative is specified, which in a first retrieval is used for case comparison. In further
steps, the most similar (and possibly hierarchically constructed) clusters are considered for
an exhaustive case comparison. Furthermore, Lenz [66] introducedcase retrieval netsas
a specialized memory structure for efficient retrieval for suitable cases. Other approaches
for case retrieval are, e.g., further indexing techniques [13] like k-d trees [135].
For a recent survey and assessment we refer to Richter’s article [112] on case-based rea-
soning focussing the research on similarity measures. The work on similarity measures
is described by introducing four periods: The naive period, sophistic period, systematic
period, and the generalizing period. The resulting view on similarity of each period was
motivated by additional requirements, which were not solved by the preceding period. Fol-
lowing Richter the similarity measure presented in the previous section can be classified
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to the sophistic period, since we do not only consider raw observations for the case com-
parison, but also high-level abstractions that allow for non-linear similarity computations.

5.2.5. Acquisition of Case-Based Knowledge

The use of case-based knowledge is appropriate if there are cases available for the targeted
domain. However, if no or no usable cases are available, then the domain expert needs to
manually generate a sufficient number of cases.
The minimal approach considers the construction of at least onecase representativefor
each diagnosis. A case representative is a synthetical case that contains the typical findings
for the described diagnosis. More than one representative for each diagnosis is required, if
the diagnosis cannot be clearly described by one case, but is defined by a wider spectrum
of symptoms.
Furthermore, a local similarity function (see Definition 5.2.1) needs to be defined since the
default similaritysimdef is mostly not appropriate. Ideally, the local similarity function is
manually defined by the domain expert. The function can be incrementally defined by first
partitioning the value range of questions into normal and abnormal sections. The function
is further refined by adding local weights for question values. Finally, the developer can
explicitly define local similarity measures for question values.
Since an exhaustive definition of the similarity function denotes a complex and costly task,
we alternatively provide methods for automatically learning the similarities and weights.
For more details we refer to Section 5.2.8.
The case base may be enriched by additional cases gained by the usage of the system
in a test or a productional environment: Any new case with a (possibly revised) solution
is inserted into the case base. The acquisition of case-based knowledge is supported by
restructuring methods, that for example propagate ontological restructurings or consider
the structured insertion or deletion of cases. Furthermore, test methods for case-based
knowledge check for anomalies (e.g., ambivalent cases, deficiency) and correctness.

5.2.6. Testing Case-Based Knowledge

Testing the quality of case-based reasoning systems has been undergoing fruitful research.
The case-based approach states that the system continuously learns new knowledge by
simply adding additional, previously solved cases to the case base.
Although these cases are assumed to be correct in general, there are two problems to con-
sider: By inserting new cases also anomalies can be added to the case base. Furthermore,
the cases may not cover the given domain ontology appropriately. In the following, we
present methods for testing case-based knowledge for anomalies and ontology coverage.
It is worth noticing, that for the presented methods we have to distinguish between a case
base of real cases and a case base constructed by exemplary cases. The second approach is
applied, if the structural knowledge is defined from the scratch, usingcase representatives
as described in Section 5.2.5.
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Static Verification of the Case Base

The static verification method tries to detect anomalies in case based knowledge. Cor-
responding to the classification by Preece [93] we can distinguish between the following
sub-categories of anomalies. Originally, Preece considered anomalies of rule-based sys-
tems but they can be easily transferred to the case-based representation.

Redundancy Tests the case base for uniqueness and minimality of the con-
tained cases.

Ambivalence Determines the consistency of the cases contained in the case
base.

Deficiency Investigates, if the knowledge base contains diagnoses and find-
ings that are not used by the cases of the case base.

As mentioned before, we have to consider the kind of included cases: Thus, only the
detection of ambivalent and deficient case are important for all kinds of cases, whereas
redundancy typically occurs in real life case bases. However, for a manually constructed
case base containing case representatives the detection of redundant cases can be very
interesting.
Iglezakis et al. [60, 108] introducedquality measures(case properties) for case-based
maintenance, that can be directly applied to investigate a case base for the anomalies
described above. Originally, the authors introduced these syntactical measures for the
integration into an extended CBR cycle [109, 114].

Mechanics In the following, we show how these measures can be adapted for detecting
redundancy and ambivalence in case-based knowledge. Additionally, we describe defi-
ciencies in case bases.
I Redundancy
Non-Uniqueness warning
The case base violates theuniquenesscriterion: There exist two
casesc, c′ ∈ CB with equal problem descriptions and equal
solutions, i.e.
∃ c, c′ ∈ CB : Fc = Fc′ ∧ Dc = Dc′ .

Subsuming Cases warning
The case base violates theminimalitycriterion: There exist two
cases in the case baseCB with equal solution, and the problem
description of one case is subsumed by the problem description
of the other case, i.e.
∃ c, c′ ∈ CB : Fc ⊂ Fc′ ∧ Dc = Dc′ .

Coherent Cases warning
The case baseCB containscoherentcases, if for a given thresh-
old Tcoh

∃ c, c′ ∈ CB : simg(c, c
′) > Tcoh ∧ Dc = Dc′ .
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I Ambivalence
The case base violates theconsistencycriterion: There exist

two cases in the case baseCB with a subsuming problem de-
scription but different solutions, i.e.,
∃ c, c′ ∈ CB : Fc ⊆ Fc′ ∧ Dc 6= Dc′ or
∃ c, c′ ∈ CB : simg(c, c

′) > Tamb ∧ Dc 6= Dc′ warning

I Deficiency
There exists a deficiency, if the ontological knowledge contains
diagnoses, that do not appear in any case of the case base.

warning

Usage With the presented static verification methodanomaliescan be detected. Then, a
growing case base can be systematically investigated according to its redundancy, ambiva-
lence or deficiency. If the case base consists of real cases, then we only have to consider
the detection of ambivalent and deficient cases since redundant case are often appear in
real-world environments.
Possible actions for redundant or ambivalent cases are the refinement or the deletion of
a corresponding case. If deficiency is detected in the case base, then it is advisable to
consider the insertion of a new and appropriate case.
For the evaluation of the method no additional test knowledge is required, with exception
to the thresholdTcoh for defining coherent cases.

Case Base Structure Testing

With thecase base structure testingmethod an overview of the current case base is given
according to the appearance of diagnoses and questions.

Mechanics The method generates a statistics of the diagnoses and questions contained
in the case base. Thus, the total numbers and percentage with respect to the complete case
base of contained diagnoses and questions is counted.
The statistics reports the following irregularities as a warning:

• Diagnoses with an exceptionally high or low usage (compared to the mean usage) in
the case base.

• Questions with an exceptionally high or low usage (compared to the mean usage) in
the case base.

Additionally, the statistics of the remaining diagnoses and questions is presented as infor-
mation on user request.

Usage For the execution of the method no additional test knowledge is required. Sig-
nificant high or low usage of objects can give hints for adding new cases to the case base
or removing existing cases.
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5.2.7. Restructuring Case-Based Knowledge

In this section, we briefly discuss restructuring methods for the case-based knowledge con-
tainer. Most of the methods are triggered by corresponding methods originally executed
by the ontological knowledge container.
Since cases additionally are often used as test knowledge the presented methods can be
also used for updating test cases according to preceding restructuring methods.

Propagation of Ontological Restructuring Methods

As introduced in the previous chapter ontological restructuring methods propagate them-
selves to the remaining knowledge containers, since ontological changes often have an
effect on other knowledge.
Thus, the following methods are simply propagated by exchanging the transformed object
with the old one, no conflicts are expected to occur during operation: TRANSFORMM-
CINTOYN, TRANSFORMYNI NTOMC, and TRANSFORMNUM INTOOC.
The method TRANSFORMMCINTOOC may cause conflicts, if in a case the transformed
one-choice question is assigned to more than one value. Then, this method should be
aborted and the case need to be manually edited. The method SHRINKVALUERANGE is
executed by simply exchanging the choice answers of the specified question according to
user-defined transformation matrix.
The MOVEQUESTIONVALUE method is applied by removing the old question, if assigned
to the moved value, and by inserting the new targeted question assigned to the moved value
into the case. However, this restructuring can cause conflicts, if the targeted question is
already contained in the case, but assigned to a different value. Then, the developer has to
decide, probably by defaults, which finding is removed from the case.
With the execution of the method REMOVEQUESTION the corresponding finding of the
specified question is removed from all cases in the case base. The following conflicts may
arise: The method may yield an empty observation setFc for a casec, or the method
may produce redundancy or ambivalence contained in the case base. Therefore, static
verification for case-based knowledge (p. 77) needs to be applied after execution of the
restructuring method.
The REMOVEDIAGNOSIS method is executed by removing the specified diagnosis from
all cases and their solution parts, respectively. Analogously to the execution of the RE-
MOVEQUESTION method this can cause either an empty case solution or an ambivalent or
redundant case base. Hence, static verification for case-based knowledge also needs to be
applied after method execution.

Restructuring of the Case Base: I NSERTCASE and R EMOVECASE

For restructuring the case base we can distinguish two basic methods: The INSERTCASE

and the REMOVECASE method.
Both methods simply insert a new case into the case base or remove an existing case
from the case base. Although cases have no dependencies between each other and can be
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considered as isolated knowledge structures, the insertion or deletion of a case can change
the overall properties of a case base.
Especially, the deletion of cases have to be performed carefully, since, e.g.,pivotal cases
can reduce the competence of the case base significantly. According to Smyth and
Keane [123] a pivotal case describes a problem area that is currently only solvable us-
ing this pivotal case. A deletion of the case therefore would yield a decreased competence
of the case base. The absence of a pivotal case can be simply detected by testing the case
base for deficiency.

5.2.8. Learning Case-Based Knowledge

We can consider three parts for learning case-based knowledge: the case base, the similar-
ity measure, and the weight function. In the following, we discuss these in more detail.

The Case Base

In general, we distinguish two typical situations: The case base is either constructed man-
ually by acquiring case representatives, or the real cases are available, e.g., gathered by an
already installed documentation system.
Once the system is in routine use, any query solved by the running knowledge system
is also added to the case base. This growth of the case base can be interpreted as an
”automatic” learning of the system. However, with this naive approach the case base is
continuously growing and becomes very large. For case-based reasoning thisswamping
problemwas reported, e.g., by Francis and Ram [43] .
As mentioned before, a large case base can decrease the velocity of the case retrieval.
Besides techniques for improving the retrieval step as sketched in Section 5.2.4, many
researchers have proposed to apply additional maintenance steps after adding a number of
new, solved cases to the working case base. This is especially useful, if the case base was
constructed manually with case representatives.
For example, Smyth and Keane [123] propose a deletion policy, which removes cases
from the case base while preserving its reasoning competence. The competence of a case
base is based on the key conceptscoverageandreachability: The coverage of a case refers
to the set of cases in the case base that solve this case. The reachability of a case inversely
describes the set of cases, that can be applied as a solution for this case.
Zhu and Yang [139] alternatively presented an approach based on adding existing cases
to an initially empty case base until a given degree of competence is reached by the case
base. In contrast to the deletion policy, a lower bound for the coverage of the case base
can be guaranteed.
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Learning the Similarity Measure

If no similarity function is available, then the default similarity in Equation 5.2 is applied.

simdef (F1, F2) =

{
1 if F1 = F2 ,

0 otherwise,
(5.2)

whereF1, F2 ∈ ΩF . However, this boolean comparison of finding values will not provide
satisfiable results for many applications.
For this reason, the developer usually has to manually define similarity measures for find-
ings. To reduce this complex and costly task, (semi-)automatic methods can be applied,
which try to learn accurate similarities. We therefore introduce an approach initially pre-
sented in Baumeister et al. [14].
Learning a similarity function is often presented by learning a correspondingdistance
function. In contrast to a similarity function a distance function does not describe the
closeness of two findings, but inversely denotes the dissimilarity of the findings. Formally,
a distance function is defined by

dist : ΩF × ΩF → [0,∞) . (5.3)

For practical reasons often the possible range of distances is restricted to the real interval
[0, 1]. Given a distance functiondist the similarity of two findingsF1, F2 ∈ ΩF can be
computed according to Richter [111] as follows

sim(F1, F2) = 1− dist(F1, F2)

1 + dist(F1, F2)
=

1

1 + dist(F1, F2)
. (5.4)

For findings with bounded distance range, i.e.,dist : ΩF × ΩF → [0, K], an alternative
relation can be defined according to [111, 99]:

sim(F1, F2) = 1− dist(F1, F2)

K
, (5.5)

whereK is maximum constant. In the following, we present an approach for learning
distance functions for arbitrary finding types, and then we will refine this approach by
methods that apply additional domain knowledge.

General Approach for Learning Distance Functions When learning distance
functions we have to distinguish between the different question types.
For numerical questions there exist well-known standard distance functions, like theEu-
clidean distance function, theManhattandistance function, or theMinkowskidistance
function. A discussion of various kinds of distance measures can be found, e.g., in [52].
For findings assigned from choice questions we propose the use of theValue Distance
Metric (VDM) introduced by Stanfill and Waltz [127], and improved by Wilson and Mar-
tinez [137]. Given two findingsF1, F2 ∈ ΩF the VDM defines their distance as follows:

vdm(F1, F2) =
1

|ΩD|
·

∑
D∈ΩD

∣∣∣∣N(F1|D)

N(F1)
− N(F2|D)

N(F2)

∣∣∣∣ , (5.6)
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whereN(F ) is the number of casesc ∈ CB , for which the findingF is observed, i.e.,
F ∈ Fc, andN(F |D) is the number of casesc ∈ CB , in whichF is observed andD is in
the solution part ofc, i.e.,F ∈ Fc ∧ D ∈ Dc.
Then, given the value distance metric two findings are considered to be more similar, if
they have more similar correlations with the diagnoses they occur with.
In general, we propose the following distance function for arbitrary finding types. For
simplicity we assume that findingsF1, F2 ∈ ΩF are assigned to the same questionQ ∈ ΩQ,
i.e.,a(F1) = a(F2) = Q.

dist(F1, F2) =

{
vdm(F1, F2) if Q choice question,

vdm
(
discrete(F1), discrete(F2)

)
if Q numerical question.

(5.7)

We propose to (temporarily) discretize numerical findings for obtaining their distance, e.g.,
neighbouring numerical values may have no distance between.
Figure 5.7 summarizes the applied methods for learning similarities for the different kinds
of questions.

Question Method
Choice For a choice questionQ we fill the similarity matrix for the values

dom(Q) of the question by simply computing the distance between all
valuesv, v′ ∈ dom(Q) as defined in Equation 5.7, and then transform
the calculated distance to a similarity as defined in Equations 5.4 and
5.5.

Yes/No As a special case for yes/no questions we simply apply the default simi-
larity simdef as given in Equation 5.2.

Numerical Numerical questions are temporarily discretized for the comparison and
the same method as for choice questions is applied.

Figure 5.7: Summary of learning similarity knowledge for different types of questions.

Improving Learning with Abnormality Information For many application do-
mains it is possible to define abnormality information for finding values of choice ques-
tions. Then, each value of a choice question is attached with a label that explains, if the
value is describing a normal or an abnormal state of the question. The abnormality func-
tion for finding values was introduced in Definition 5.2.3 (p. 74).
For example, consider the choice question ”temperature” with the value range
dom(temperature) ={normal, marginal, high, very high}: The values{normal, marginal}
denote normal values of the question, and the values{high, very high} describe abnormal
states of the question.
Practical applications have shown that in contrast to a real valued categorization as shown
in Definition 5.2.3, a symbolic categorization of abnormal values is simpler to understand
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for users. Thus, we can define the following abnormality function for finding values:

abn : Ωval → ΩAbn , (5.8)

whereΩAbn = {A0, A1, A2, A3, A4, A5} is defined as a set of symbols describing the ab-
normalities in ascending order; withA0 representing the normal state andA5 representing
the most abnormal state.
Using this abnormality information we can divide the value range of a choice question
into two partitions containing normal and abnormal values, respectively. Since it is very
unlikely that normal values are similar to abnormal values, we can define a fixed distance
function between normal and abnormal values. An exemplary distance function is given
in Equation 5.9 for a normal finding valueF = Q:v and an abnormal valueF ′ = Q:v′,
i.e.,abn(v) = A0 andabn(v′) ∈ {A1, . . . , A5}.

distabn(F, F ′) =



0.6 if abn(v′) = A1 ,

0.7 if abn(v′) = A2 ,

0.8 if abn(v′) = A3 ,

0.9 if abn(v′) = A4 ,

1.0 if abn(v′) = A5 .

(5.9)

Using this distance function for comparing an abnormal and a normal finding we
obtain a maximum distance between a normal and a totally abnormal finding, i.e.,
dist(Q:v, Q:v′) = 1, for abn(v) = A0 anddist(v′) = A5.
The remaining similarities, i.e., similarities between normal findings and similarities com-
paring abnormal findings, are computed according to the general method given in Equa-
tion 5.7.

Interpolating Distances with Scalability Information Beyond abnormalities the
expert may mark some of the parameters asscaledto characterize, that values, that are
closer to each other, are more similar.
For example, we consider a question ”temperature” with the value range
dom(temperature) = {normal , increased , high, very high}, which is scaled, whereas
the questioncolor with value rangedom(color) = {green, black , red} is not scaled.
We can utilize this flag by applying the general VDM method given in Equation 5.7 not
for all distinct pairs of values within each partition, but only for adjacent values. We
interpolate the remaining distances by the following equation

dist(Q:vi, Q:vi+k) = dist(Q:vi, Q:vi+k−1) + dist(Q:vi+k−1, Q:vi+k) , (5.10)

wherek ≥ 2 andvj ∈ dom(Q). After interpolating the remaining distances we have
to normalize the whole distance matrix for each scaled questionQ, so that for all values
v, v′ ∈ dom(Q) it holds that0 ≤ dist(Q:v, Q:v′) ≤ 1.
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Learning Weights for Questions

As described in Definition 5.2.2 weights assign positive integers to questions or findings.
For learning weights we only consider the global weight functionwg, which assigns pos-
itive integers to questions. Initially, if no knowledge about weights is available, then the
(global) weight for all questions is equal, e.g.,wg(Q) = 1 for all Q ∈ ΩQ.
We simplify the interpretation of the learned weights by introducing predefined sym-
bols for weights. Thus, we propose a fixed symbol range for weightsΩW =
{G0, G1, G2, G3, G4, G5, G6, G7}, which contains weights in ascending order. A ques-
tion attached with weightG0 has no importance, and a question with weightG7 has the
highest importance. It is easy to see that the symbolic weights can be easily transferred
to positive integers as required by Definition 5.2.2. However, if the learned weights are
presented as symbols, then the (manual) interpretation and adaptation of the results by the
developer is quite simpler than a presentation of integer values. We initially presented the
following approach for learning weights in [14].

General Approach for Learning Global Weights Our approach is inspired by a
procedure mentioned in [136], when using the VDM method (see Equation 5.7) to dis-
criminate the importance of findings. However, our interpretation also tries to integrate
additional background knowledge like abnormalities and structural knowledge.
The general idea of the approach is as follows: A questionQ is defined to be important,
if Q has a highselectivityover the diagnoses contained in the case baseCB , which is
applied for the learning task. The degree of selectivity directly corresponds to the impor-
tance (weight) of the question. Thus, if different values of a questionQ indicate different
diagnoses, then the question is considered to beselectivefor the diagnostic process.
We define thepartial selectivityof a questionQ ∈ ΩQ combined with a diagnosisD ∈ ΩD
by the equation

sel(Q, D) =

∑
v,v′∈dom ′(Q)

∣∣∣∣N(Q:v |D)
N(Q:v)

− N(Q:v′ |D)
N(Q:v′)

∣∣∣∣(|dom ′(Q)|
2

) (5.11)

wherev 6= v′ anddom ′(Q) ⊆ dom(Q) contains only values, that actually occur in cases
c ∈ CB .
To compute the globalselectivityof a questionQ, we average the partial selectivities
sel(Q,D)

sel(Q) =

∑
D∈DQ

rel

sel(Q, D)

|DQ
rel |

, (5.12)

where

DQ
rel =

{
D ∈ ΩD

∣∣ ∃Q ∈ ΩQ, v ∈ dom(Q) :
N(Q:v|D)

|CB |
> Tw

}
.
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We only investigate the selectivities between questions and diagnoses, whose combined
frequency is larger than a given thresholdTw. Sincesel(Q,D) ∈ [0, 1] for all diagnoses
D ∈ DQ

rel and all questionsQ ∈ ΩQ, we see thatsel(Q) ∈ [0, 1] for all questionsQ ∈
ΩQ. The lower bound0 is obtained, if questionQ has no selectivity over the diagnoses
contained inΩD; the upper bound1 is obtained, ifQ has a perfect selectivity over the
diagnoses contained inΩD, i.e., each valuev ∈ dom(Q) occurs either always or never
with the diagnosis.
After determining the selectivity of each question, we use the logarithmic conversion table
depicted in Figure 5.8 to transform the numerical selectivity into a symbolic weight.

sel(Q) wg(Q) sel(Q) wg(Q)

0 → G0 (0.08, 0.16] → G4
(0, 0.02] → G1 (0.16, 0.32] → G5
(0.02, 0.04] → G2 (0.32, 0.64] → G6
(0.04, 0.08] → G3 (0.64, 1.00] → G7

Figure 5.8: Transformation table for converting numerical selectivities into symbolic
weights.

As discussed above we accept the loss of information to facilitate a user-friendly adaptation
of the learned weights by the developer in a subsequent step.

Utilizing Abnormalities for Learning Weights Abnormalities were defined above
for improving the learning method for similarities, and can also be applied for learning
abnormalities.
If there are abnormalities available for a given questionQ, then we will adapt Equa-
tion 5.11 to consider only the selectivity between normal and abnormal question values.

sel(Q,D) =

∑
v∈abnormal(Q)∧ v′∈normal(Q)

∣∣∣∣N(Q:v |D)
N(Q:v)

− N(Q:v′ |D)
N(Q:v′)

∣∣∣∣
| abnormal(Q) | · | normal(Q) |

, (5.13)

whereabnormal(Q) = { v ∈ dom(Q) | abn(v) 6= A0 } is the set of valuesv ∈ dom(Q)
representing an abnormal state, andnormal(Q) = dom(Q) \ abnormal(Q).

Optimizing Parameter Weights by Ontological Knowledge If the knowledge
base is highly structured, i.e., questions are structured by meaningful question sets, then
we can use this knowledge for refining the learned weights. Question sets can contain
anexamination weightto mark their significance in the overall diagnostic process. These
weights help to adjust the weights of the questions contained in the question set. Therefore,
questions contained in dense question sets (i.e., containing many questions) will receive
a decreased weight, whereas questions contained in sparse question sets with fewer ques-
tions will obtain an increased weight.
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For a questionQ contained in question setQS we will obtain an adjusted weightw′
g(Q)

defined by Equation 5.14.

w′
g(Q) =

wg(Q)∑
Q′∈QS

wg(Q′)
· w(QS ) (5.14)

wherew(QS ) is theexamination weightfor question setQS (e.g., defined by a domain ex-
pert). The heuristic given in Equation 5.14 is motivated by the fact that in many (medical)
domains single phenomena are structured in single question sets (examinations). Thus,
if the examination contains many questions describing the phenomenon, then this exam-
ination is likely to contribute more weights than an examination with fewer questions.
Nevertheless, each examination only describes one phenomenon. It is worth noticing, that
this method is not reasonable in general, but can be applied, if a highly structured case
base is available.

The presented methods were evaluated in [14] using a case base gathered from a real
world application. In summary, the evaluation of the methods showed that the usage of the
described background knowledge improves the learning results.

5.2.9. Summary

In the previous section, we have briefly introduced the application of case-based reasoning
for diagnostic tasks. This approach often fits the mental model of the experts and can be
easily applied by initially creating a case base. Often a case base is available and additional
knowledge acquisition can be limited to the definition of appropriate similarity and weight
measures. However, the gathering of meaningful measures can evolve to be a difficult and
complex task, if the domain is large but only partly understood. Therefore, we described
(semi-)automatic learning methods for similarity measures and weights. These methods
apply additional background knowledge for improving the learning results.
Besides learning case-based knowledge we additionally presented testing and restructuring
methods that are appropriate for the case-based knowledge container.
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5.3. Categorical Knowledge

In well-understood domains often certain knowledge for determining a solution can be
stated. Thus, domain experts commonly have experience of findings that, if observed,
categorically point to a particular diagnosis. For this kind of knowledge categorical rules
are the most efficient way to represent structural knowledge.

5.3.1. Categorical Knowledge Representation

The most intuitive way for representing categorical knowledge are categorical rules.

Definition 5.3.1 (Categorical Rule) A categorical ruler is denoted as follows:

r = cond(r) → D [except(r), context(r)] ,

wherecond(r) is a rule condition containing disjunctions and/or conjunctions of arbitrary
findingsF ∈ ΩF andD ∈ ΩD is the targeted diagnosis. Optionally, a categorical rule can
contain a rule exceptionexcept(r) and a rule contextcontext(r).

The semantics of the rule condition, the rule exception, and the rule context were described
earlier in Section 5.1.1 (p. 63).
If the rule fires, then the state of the diagnosis specified in the rule action is set toprobable,
i.e., the diagnosis is established.

5.3.2. Inference of Categorical Knowledge

Knowledge inference of categorical knowledge is very simple: For a new finding observed
in a case, the categorical rule base is evaluated. If the rule condition of a currently inactive
rule evaluates true and the rule exception and context also allows to fire, then the rule
action is activated, i.e., the specified diagnosis is established. An exemplary inference
action of categorical rules is depicted in Figure 5.9.
A new observation can cause a ruler to be drawn back, e.g., if the rule conditioncond(r)
evaluates false, but has evaluated true before. Then, the action ofr has to be drawn back
by de-establishing the specified diagnosis. This in turn can cause other rules to be drawn
back again.

5.3.3. Acquisition of Categorical Knowledge

Categorical knowledge is commonly acquired by diagnostic rules. As their main benefit
categorical rules do not need to be considered in the context of other rules, since they
are self-contained, i.e., each rule itself contains the necessary knowledge for deriving a
specified diagnosis. This characteristics distinguish them from, e.g., scoring rules, that
usually only add a specified certainty to a diagnosis.
For a more structured approach of rule acquisition we propose a specialized rule repre-
sentation, thecategorical decision tables. The benefit of applying a structured approach is
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Case Rule Base Rule Diagnosis

new finding F

activate rule

establish

notify new diagnosis state

check rules

Figure 5.9: Sequence diagram of a categorical rule action.

that specialized editors can be utilized. Furthermore, experience has shown, that structured
approaches significantly increase the clarity and maintainability of the rule base. We will
discuss the approach in the following.

Categorical Decision Table If the confirmation of a diagnosis can be defined by the
observation of a set of findings, then thecategorical decision tablecan be applied, which
describes a logical combination of a set of observed findings. A diagnosis is established,
if a conditioned set of findings is observed; this set is combined by anand or anor top-
condition.

Decision Table r1: DiagnosisD1 r2: DiagnosisD2 r3: DiagnosisD3

Top-Condition: and and or

choiceEqual(Q1, v1) � �

choiceEqual(Q2, v2) �

choiceEqual(Q3, v3) �

choiceEqual(Q4, v4) � �

Figure 5.10: A categorical decision table.

Figure 5.10 depicts an example of a categorical decision table. Given this table, diagnosis
D1 will be established by ruler1, if the findingsQ1:v1 andQ4:v4 are observed. Further-
more, the state of diagnosisD3 will be probable, i.e., established by ruler3, if the finding
Q3:v3 or the findingQ4:v4 is observed (Di ∈ ΩQ, Qi:vi ∈ ΩF ).
The categorical decision table can be extended by categorical rules represented in conjunc-
tive or disjunctive normal form. Figure 5.11 depicts an example of an extended categorical
decision table.
The table depicts the ruler1 in conjunctive normal form and the ruler2 represented in
disjunctive normal form.
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Decision Table r1: DiagnosisD1 r2: DiagnosisD2

Top-Condition: and or or and

choiceEqual(Q1, v1) � �

choiceEqual(Q2, v2) �

choiceEqual(Q3, v3) �

or and

choiceEqual(Q4, v4) �

choiceEqual(Q5, v5) �

choiceEqual(Q6, v6) � �

Figure 5.11: An extended categorical decision table.

Rules using the disjunctive normal form can sometimes be abbreviated by so-called
min/max-conditions. Then, the condition of a ruler

cond(r) = min/max [2,3](c1, c2, c3) (ci are sub-conditions)

states, that either two or three of the specified sub-conditionsci need to be true, i.e.,

cond(r) = or
(
and(c1, c2), and(c1, c3), and(c2, c3)

)
.

Experience has shown that even more complex rule conditions are not suggestive, since
the application of rules with arbitrary complex rule conditions yields unmaintainable and
hardly interpretable knowledge bases.

Decision Trees The categorical decision table can be augmented by strategic knowl-
edge for buildingdecision trees. Then, conditions are represented as inner nodes of the
tree and leafs of the trees are used for establishing diagnoses (with special diagnosis (–)
for ”no solution”). In Figure 5.12 a decision tree is depicted using the same inferential
knowledge presented in Figure 5.10. We can see, that firstly findingQ1:v1 is questioned.
If Q1:v1 is observed, then the findingQ2:v2 is asked. If this finding is also observed, then
the diagnosisD2 is established. For this procedure, the right outer path of the decision tree
is traversed. The other paths are traversed analogously. As mentioned before, decision
trees embody strategic knowledge for controlling the dialog with the user. We will focus
on this type of knowledge in Chapter 6 in more detail.

5.3.4. Testing and Restructuring Categorical Knowledge

For the agile development of knowledge systems using categorical knowledge it is also
important to consider testing and restructuring methods. However, due to their similari-
ties applied to categorical rules and score-based rules we present testing and restructuring
methods together for both representations in Section 5.4.4 (p. 95).
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Q1:v1
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Figure 5.12: A simple example for a categorical decision tree.

5.3.5. Summary

In this section, we introduced a categorical representation for defining simple diagnostic
knowledge. Categorical knowledge is suitable, if diagnoses can be inferred with certain
knowledge.
Usually, categorical knowledge is represented bycategorical rulesinferring diagnoses.
For the structured acquisition of categorical knowledge we presented the approachescate-
gorical decision tablesanddecision trees.
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5.4. Score-Based Knowledge

The preceding section introduced a rule-based formalism to capture categorical knowl-
edge, which is able to solve simple diagnostic problems but fails for uncertain knowledge.
In this section, we present a score-based formalism, which uses a rule-based representation
augmented withconfirmation categoriesto describe a symbolic uncertainty of the stated
implication.
Scores are a well-known concept for diagnostic reasoning in medical decision making.
For each diagnosis an account (score) is used for inferring the state of this diagnosis. In
its simplest form, any observed finding can contribute to the score of a specified diagnosis.
Then, the state of the diagnosis is determined by given threshold values. In its general
form, not only isolated observations of findings can contribute to a diagnosis score, but
also conditioned observations among findings. Rule-based approaches for implementing
structural knowledge with uncertainty were mainly influenced by the work of the MYCIN

project [24], and have been undergoing fruitful research for the last decades. For example,
relations to Bayesian networks [88] were investigated by Heckerman [55].
Score-based approaches using rules go back to the INTERNIST/QMR project [76, 53].
Many researchers have adopted the ideas of the score-based representation and build (par-
tially) successful systems. The LEXMED system [116] is a recent example of a successful
medical application using scores within the PIT system. Other recent medical applications
using scores are described in [39, 85].

5.4.1. Knowledge Representation

Score-based knowledge [99] usually is formulated by scoring rules, which are a special-
ization of general rules.

Definition 5.4.1 (Scoring Rule) A scoring ruler is denoted as follows:

r = cond(r)
s→ D [except(r), context(r)] ,

wherecond(r) is the rule condition of ruler, andD ∈ ΩD is the targeted diagnosis. For
each rule a confirmation categorys ∈ Ωscr is attached with

Ωscr ∈ {N7 ,N6 , . . . ,N1 , 0,P1 ,P2 , . . . ,P7 } .

Optionally, a rule exceptionexcept(r) and a rule contextcontext(r) can be defined for a
scoring ruler.

The semantics of the rule condition, rule exception, and the rule context were described
earlier in Section 5.1.1. The confirmation categories are used to represent a qualitative
degree of uncertainty. In contrast to quantitative approaches, e.g., Bayesian methods,
symbolic categories state the degree of confirmation or disconfirmation for diagnoses. A
categorys expresses the uncertainty for which the observation of the findings incond(r)
will confirm/disconfirm the diagnosisD. Whereass ∈ {P1 , . . . ,P7} stand for confirming
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categories in ascending order, the symbolss ∈ {N1 , . . . ,N7} are ascending categories for
disconfirming a diagnosis. A scoring rule with confirmation category0 has no effect on the
diagnosis’ state, and therefore is usually omitted from the rule base. It is worth noticing,
that the value rangeΩscr of the possible confirmation categories is not fixed. For a more
detailed (or coarse) representation of confirmation the value range may be extended (or
shortened). E.g., the PIT system simply uses integers. However, many projects applying
score-based knowledge have shown the applicability of the presented detail of the value
range, see e.g., [28, 106, 100].
In summary, using a score-based representation the structural knowledge container can be
defined by a rule baseR consisting of scoring rules as introduced above.

5.4.2. Knowledge Inference

Score-based knowledge is applied by evaluating the available rules with respect to the
given observations. Then, if for a casec a new findingF ∈ ΩF is observed or the state of a
diagnosisD ∈ ΩD has changed, then the rule baseR is interpreted by evaluating each rule
r ∈ R with the given observation: If the condition of a ruler ∈ R evaluates true (e.g., the
conditioned findings are assigned to the postulated values), then the rule fires by executing
the rule action: The specified category is attached to the diagnosis score. The final score
of each diagnosis is determined by aggregating the attached categories in a predefined
manner. According to the score and the threshold values the status of the current diagnosis
is determined.

Case Rule Base Rule Diagnosis

new finding F

activate rule

attach score

notify new diagnosis state

check rules

Figure 5.13: Sequence diagram of a score-based inference action.

The described inference structure is depicted in Figure 5.13. A new observation can cause
a ruler to be drawn back, if e.g., the rule conditioncond(r) evaluates false, but has been
evaluated true before. Then, the action ofr has to be drawn back, by withdrawing the rules’
confirmation category from the diagnosis and re-aggregating the diagnosis score. This in
turn can cause other rules to be drawn back again, e.g., if the diagnosis is de-established
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due to the actually missing score threshold.
For the D3 system and its successor d3web the following aggregation procedure and
threshold values have been proven to be suitable.

Aggregation of Scores In general, the score of a diagnosisD ∈ ΩD is calculated
by summing the attached confirmation categories ofD. To simplify the computation, the
categories are translated to integer values by the function defined in Figure 5.14.

Rule Transformation

Category Integer Category Integer
0 0

N1 −2 P1 2
N2 −5 P2 5
N3 −10 P3 10
N4 −20 P4 20
N5 −40 P5 40
N6 −80 P6 80
N7 −INF P7 999

Figure 5.14: A simple transformation table for confirmation categories to integer values.

We can see, that the meaning of the categories is defined in a way, so that the aggregation
of two equal categories result in a category of the next higher level (with exception of the
boundary valuesN7 andP7 ).

Evaluating the Diagnosis Score For the evaluation of the diagnosis score the in-
tegers are summed to a final result, which is then translated to a symbolic category. To
determine the diagnosis state

dom(D) = {not probable, unclear , suggested , probable}

of a diagnosisD the following thresholds given in Figure 5.15 are utilized.

State Threshold

not probable
< N5

unclear in[N5 ,P3 )
suggested in[P3 ,P5 ]
probable > P5

Figure 5.15: Threshold values for the determination of a diagnosis state.

After the case has been finished the final states of the diagnoses can be retrieved. All
diagnosesD ∈ ΩD with stateval(D) = probable are established, and are assumed to be
part of the solution of casec. It is worth mentioning, that the translation of the boundary
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categories given in Figure 5.14 is not proportional to the remaining categories. Thus, the
negative categoryN7 is translated to−INF (commonly in practice realized by using the
most negative value representable by the system). This is motivated by the fact, that often
domain experts want to exclude a diagnosis for a given observation, which by no means
should be become suggestive or probable during the remaining course of the case. The
positive boundary valueP7 has similar motivation: With such a category, experts are able
to establish a diagnosis for a given observation, which hardly can be de-established by
other rules possibly firing during the remaining course of the case (with exclusion of the
categoryN7).
Although rules are an intuitive representation of structural knowledge, it is difficult for
rule-based approaches to discriminate among the established diagnoses: When retriev-
ing more than one established diagnosis, rule-based formalisms do not provide a built-
in method to distinguish between composite versus differential diagnoses. This problem
can be compensated by introducing problem areas (i.e., coarse diagnoses) defining sets
of alternative diagnoses. Then, in a first step problem areas are established, and refined
in a second step to more explicit diagnoses contained in the established problem areas
(establish-refine strategy). Established problem areas state a composite solution for the
given case providing fine-grained diagnoses as alternatives.
As claimed at the beginning of this section, scoring rules are a generalization of (categor-
ical) diagnosis rules. It is easy to see, that for a fixed value range, e.g.,Ωscr = {0, P7},
any scoring rule base simplifies to a categorical rule base.

5.4.3. Acquisition of Score-Based Knowledge

The acquisition of score-based knowledge is done by scoring rules. However, experience
has shown that scoring rules with arbitrary complexity are very difficult to understand and
to maintain. For this reason, we propose the use of simple scoring rules (rule with a simple
rule condition), which is described by the DIAGNOSTIC SCOREpattern.

The D IAGNOSTIC SCORE Pattern

Experiences with developing large (score-based) knowledge systems have motivated the
introduction ofknowledge formalization patterns[102, 106]. Such patterns should not
only support the implementation of score-based systems, but also provide a guideline for
the developers of how to formalize their knowledge. Knowledge formalization patterns
are described by the paragraphsName, Synopsis, Motivation, Applicability, Solution, and
Consequences.
The basic idea of the DIAGNOSTIC SCOREpattern is to rate all possible individual findings
with respect to given diagnoses. Then, for each diagnosis we list all findings confirming
or disconfirming the diagnosis and rate their confirmation strengths using symbolic cate-
gories. Typically, for each finding-diagnosis relation only a small confirmation category is
defined. For using the DIAGNOSTIC SCOREpattern a specialized editor, the DIAGNOSTIC

SCORE table, can be applied. An example is depicted in Figure 5.16.
For each cell in the table a simple scoring rule is generated with the finding specified in the
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DIAGNOSTIC SCORE Table DiagnosisD1 DiagnosisD2 DiagnosisD3

choiceEqual(Q1:v1) P1 P1 P2

choiceEqual(Q2:v2) N2

choiceEqual(Q3:v3) P1 P2

choiceEqual(Q4:v4) P3 P1 N1
...

...
...

...

Figure 5.16: An exemplary diagnostic score table.

table line as rule condition and the diagnosis in the table column as rule action. The confir-
mation category defined in the table cell denotes the confirmation categorys ∈ Ωscr . E.g.,

for the findingQ1:v1 and the diagnosisD1 the scoring ruler = choiceEqual(Q1, v1)
P1→ D1

is generated.
Since DIAGNOSTIC SCORE applies only small confirmation categories, score-based
knowledge using this pattern is usually very robust with respect to noisy or incomplete
data input. However, sometimes simple scoring rules are not sufficient for describing the
structural knowledge. Then, the use of abstractions, rule exceptions, and rule contexts can
help to retain the simplicity of the knowledge representation, while increasing the power of
expression. Abstractions, rule contexts, and rule exceptions were described in Section 5.1.
For example, the LIMPACT [83, 80] system was developed using score-based knowledge.
To reduce the complexity of the rule base, the developer applied the rule contextestab-
lished(”suitable stream”). Thus, structural knowledge determining the pollution level
with respect to stream observations is only evaluated in context of a (previously derived)
diagnosis ”suitable stream”.
Since the acquisition of scoring rules can be complex and costly, especially the estimation
of appropriate confirmation categories, we provide a method for learning simple scoring
rules, that easily can be modified manually, afterwards. See Section 5.4.6 (p. 102) for more
details.

Using Complex Scoring Rules

If the combined observation of findings mean a disproportionate confirmation or dis-
confirmation of a diagnosis when compared to the single observation of the findings, then
the plain application of the DIAGNOSTIC SCORE pattern may be not appropriate. In this
case, the definition of sub-scores or the application of complex rules are suggestive to solve
this conflict. However, the use of complex rules may break up the knowledge formalization
pattern, and therefore the use of complex rules should be limited and well reasoned.

5.4.4. Testing Rule-Based Knowledge

In the following we present methods, which can investigate rule-based knowledge for
anomalies, its robustness, and its understandability.
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Static Verification for Rule Base Integrity

An anomaly describes an integrity violation within the implemented rule base, and can be
the reason for erroneous behavior of the knowledge system.
Anomalies for rule-based knowledge systems have been thoroughly investigated in the
literature, e.g., see [11, 33, 94].
According to Preece [94] rule-based anomalies can be classified into the following sub-
categories:

• Redundancy
The rule base contains redundant knowledge, e.g., unfirable rules, subsumed rules,
unusable rule actions.

• Ambivalence
The rule base contains contradictory rules with respect to the semantics of the rule
actions, or the syntax of the rules.

• Circularity
The rule base includes rules, that generate a circular rule execution.

• Deficiency
The knowledge base contains findings, that are not used by any rule. Furthermore,
deficiency is caused by missing rules, and for a given problem no solution can be
inferred.

Methods for finding the several kinds of anomaly are commonly subsumed by thestatic
verification [93] method. Preece [96] describes methods for finding anomalies in first-
order logic rule bases. In [3] these methods were adapted for the application with the
presented knowledge representation, i.e., the ontology introduced in Chapter 4. In the
following, we concentrate on the application of static verification in context of the agile
process, i.e., in which situations warnings and errors are reported.

Mechanics In the context of the agile development process we investigate the rule base
for the following anomalies, and report errors or warnings as given by the tables.
I Redundancy
Unusable Rule Condition error
A rule cannot fire since its condition can never evaluate true.
Unusable Rule Action error
A rule has no effect to a knowledge system run, since the fired
rule action is not used by any other knowledge (e.g., unused
abstraction).
Subsumed Rule warning
A rules r is subsumed by another ruler′, if the rule condition
cond(r) is more specific than the rule conditioncond(r′), and
both rules have the same rule action.
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I Circularity
A rules base can produce circles by means of conditions and
actions of rules, e.g., a diagnosis is scored by a rule, which
itself only can fire, if the diagnosis is in a given state. Circles
can also appear across multiple rules.

error

I Ambivalence
Syntactic Ambivalence warning
Two rules r, r′ are syntactically ambivalent, ifcond(r) =
cond(r′), and the comparison of the two rule actions shows
syntactical ambivalence as defined as follows: For scoring
rules: Both rules have the same targeted diagnosis in their rule
action, but with different confirmation categories. For abstrac-
tion rules: Both rules infer different values for the same ab-
stracted question.

I Deficiency
Unused Finding warning
An unused finding does not appear in any rule of the rule base
and therefore is unnecessary for inferring diagnoses. However,
often findings are implemented for documentary reasons, and
are important even though they are not used by the structural
knowledge. Therefore, the results of this method are not rea-
sonable in any case, and should be carefully applied.
Unreachable Diagnosis warning
For an unreachable diagnosis there exists no scoring rule with
this diagnosis in its rule action, i.e., the diagnosis cannot be
inferred in any case. Additionally, the test can be refined in
order to find diagnoses that have no appropriate scoring rules
for establishing or suggesting the diagnosis.
Unreachable Abstract Finding warning
An unreachable abstract finding is an abstract finding, for
which no abstraction rule exists with this finding in its rule ac-
tion, i.e., no value for this finding can be inferred in any case.

For a comprehensive description of the algorithmic details explaining the detection of
anomalies we refer to Akin [3].

Usage The static verification method can be applied for finding anomalies. The method
requires no additional test knowledge. Sometimes, anomalies can be intentionally con-
tained in the knowledge base. For example, asubsumed rulecan be implemented on
purpose to intensify the diagnosis score due to a more general rule. Another example is
theunused finding, which may not be required for inferring a diagnosis, but can be mean-
ingful for other reasons, e.g., in a medical application the patient name for documenting
the case.
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Torture Tests for Rule Bases

Torture tests are investigating the robustness of the implemented knowledge, and are in-
troduced in Section 5.6.4 (p. 130) as a black-box testing method. However, they can
be also applied as a white-box test for rule-based knowledge. We distinguish between
the white-box testing methodsreduce-knowledge(decrease quantity of knowledge) and
modify-knowledge(decrease quality of knowledge). Originally, torture tests were de-
scribed by Groot et al. [49] for rule-based knowledge.

Mechanics Since the automated evaluation of the testing methods we need to set ap-
propriate default values, which are usually determined beforehand by a manual inspection
of the degradation studies.
For thereduce-knowledgeapproach we systematically reduce the number of rules con-
tained in the knowledge base and measure the degree of the decreased diagnostic perfor-
mance. Rules are typically removed at random. For an automated evaluation of this test
we need to define the following thresholds:TR, the maximum percentage of removed rules
of the knowledge base, andTF the minimum average of the computed accuracy for the de-
graded test cases. If the computed accuracy falls below the thresholdTF , then an error is
reported.
Themodify-knowledgeapproach systematically modifies the actions of implemented rules.
Thus, the current confirmation strength of a scoring rule is changed; usually the strength is
in-/decreased to an adjacent strength. Alternatively, for an abstraction rule the value of an
abstracted question is modified to an adjacent value. For an automated evaluation of this
method, a threshold for the minimum accuracyTF , and a maximum percentage of modified
rulesTM is required. During the study the rules are randomly modified. If the computed
accuracy falls below the thresholdTF , then an error is reported. The implementation and
evaluation of the test is analogous to the torture test that are presented in Section 5.6.4 (p.
130).

Usage With torture tests the robustness of the implemented structural knowledge can
be tested. The presentedreduce-knowledgeand themodify-knowledgeapproaches allow
for a finer gradation of testing the robustness when compared to the black-box torture is
introduced in Section 5.6.4. The method requires test cases as test knowledge. Reasonable
thresholds for the minimum accuracyTF , the maximum percentage of removed rulesTR

of the knowledge base, and a maximum percentage of modified rulesTM of the knowledge
base are required.

Static Rule Base Testing

Similar to thestatic ontology testingmethod presented in Section 4.5.1 thestatic rule base
testingmethod tries to give an overview of the implemented rule base.

Mechanics The method generates a statistic of the implemented rules and highlights
significant irregularities. Thus, the total numbers and percentages of implemented simple,
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medium and complex rules are displayed. Furthermore, the statistic distinguishes abstrac-
tion rules, categorical rule, and scoring rules. Additionally, the number and percentage
of rules for each diagnosis and for each abstracted finding are calculated. The following
irregularities are presented as warning:

• Diagnoses with an exceptionally large or small percentage of implemented rules,
deriving the diagnosis

• Abstracted questions with an exceptionally large or small percentage of imple-
mented rules, deriving values for the question

The calculated numbers and percentages of the remaining diagnoses and abstracted find-
ings are presented to the user as information on demand.

Usage The static rule base testing method is used to investigate the understandability
of the implemented rule base. For example, diagnoses and abstracted findings with ex-
ceptionally large derivation knowledge can point to parts in the knowledge base, that may
require restructuring in the future. A smaller size of derivation knowledge for single enti-
ties mostly increases the understandability of the rule base.

Dynamic Rule Base Testing

With dynamic rule base testing the developer can determine the parts of the implemented
rule knowledge, which is actually used under real world conditions.

Mechanics The method applies a (sufficiently) large number of test cases and runs
them using the implemented knowledge system. During the test case evaluation the fre-
quency of the used rules is counted. Rules with no or very seldom usage (defined by a
threshold) are reported as a warning.

Usage Experience in various projects has shown, that knowledge bases often contain
rules, which are never or nearly never used, and therefore have no significant impact on
the practicability and accuracy of the rule base. However, large rule bases tend to be
complex and to be hardly maintainable. For this reason, thedynamic rule-base testing
method is very useful to detect so calledlazy rules, that are never or very rarely applied.
Thus, the understandability of the rule base is tested.
The method requires a sufficiently large case base with real cases as test knowledge and a
threshold of minimum usage to detect lazy rules.
It is worth noticing, that the usage of diagnoses and findings for real world cases is already
evaluated by theCase-Based Ontology Testingmethod described in Section 4.5.2 (p. 54).

5.4.5. Restructuring Rule-Based Knowledge

In this section, we briefly consider the propagation of ontological restructuring methods
for rule-based knowledge. Furthermore, we introduce explicit restructurings for the rule-
based representation.
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Propagation of Ontological Restructuring Methods

The ontological restructuring methods sketched in Section 4.6 (p. 55) are also propa-
gated to the rule-based interpretation of the structural knowledge container. For the meth-
ods TRANSFORMMCINTOYN and TRANSFORMYNI NTOMC the transformed objects are
simply updated in the conditions and actions of the implemented rules. In general, no con-
flict will be produced for these two restructurings.

TRANSFORMNUMINTOOC The method TRANSFORMNUM INTOOC is only exe-
cutable, if the rule base only contains rules that partition the numerical value range in
distinct partitions. Otherwise, no direct transformation is possible and the restructuring
should be aborted.

TRANSFORMMCINTOOC The TRANSFORMMCINTOOC method similarly can cause
conflicts, if the rule base contains rules with either multiple values of the specified
multiple-choice question in their rule conditions (any kind of rules), or multiple values
of the specified multiple-choice question in their rule action (abstraction rules). Then, the
restructuring should be aborted, and the conflict needs to be manually resolved.

SHRINKVALUE RANGE The method SHRINKVALUERANGE simply exchanges the
original values with the values of the reduced value range, if contained in a rule condi-
tion or rule action (for abstraction rules). The method causes a conflict, if syntactically
ambivalent rules are generated due to the execution of the restructuring method. Syntactic
ambivalence of two rule is tested by static verification, introduced in Section 5.4.4. Then,
the method is aborted and the rule base needs to be manually modified.

MOVEQUESTIONVALUE If the moved value is contained in a rule condition, then the
condition is modified, so that the new targeted question is contained in the condition. How-
ever, the restructuring can cause conflicts, if e.g., the new targeted question additionally is
contained in the rule condition, and is assigned to a value different to the moved value. For
one-choice questions this condition can never evaluate true, since two values can never be
assigned to an one-choice question at the same time. Then, the developer has to manually
decide, which partial condition has to be removed from the condition. If the moved value
is contained in the action of an abstraction rule, then the action has to be modified, so that
the new targeted question is now assigned to the moved value.

INTRODUCEABSTRACTION For the method INTRODUCEABSTRACTIONa correspond-
ing abstraction rule needs to be inserted, which is often done automatically because of the
specified abstraction condition. Then, all rules currently contained in the rule base are
checked with respect to the new abstraction: If a rule condition contains the specified
condition, then it is replaced by the newly created abstraction.
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REMOVEQUESTION / REMOVEDIAGNOSIS The methods REMOVEQUESTION and
REMOVEDIAGNOSIS can be executed automatically, if no knowledge is attached to the
specified objects. Otherwise, defaults need to be used. For the rule-based representation
we check, if the question or diagnosis is contained in a condition or in an action of an
implemented rule. This simply can be tested by the deficiency tests introduced in Sec-
tion 5.4.4. If rule-based knowledge is available for the specified object, then the rules are
modified according to the given defaults: In general, three defaults are offered: 1) Delete
all rules containing the considered object. 2) Only the corresponding sub-condition is re-
moved, and the rule is only deleted, if the modified rule condition is syntactically deficient,
e.g., the condition is empty. 3) The user is interactively asked, how to proceed with the
modified rules.

Rule-Based Restructurings

Rule-based restructuring methods consider the modification of the existing rule base.
Atomic changes of single rules can be hardly seen as a restructuring method, since only
slight changes of the rule condition or rule action are made. However, due to nature of the
rule-based representation side effects are possible, and therefore changes should be always
validated by appropriate tests methods.
The manual restructuring of theentire rule base is a more interesting topic, which has
not been investigated so far. An entire restructuring can become necessary, if the rule
base has been constructed in a ”chaotic” manner. Missing rule base design often implies
a missing understandability and maintainability of the implemented knowledge. For this
reason, knowledge formalization patterns [102] have been introduced, in order to increase
the understandability of rule bases. In general, they implement structured approaches and
guidelines for representing the implemented rules. In the following, we sketch two re-
structuring methods for introducing the DIAGNOSTIC SCOREpattern and the HEURISTIC

DECISION TABLE pattern, respectively.

INTRODUCEDIAGNOSTICSCORE The DIAGNOSTIC SCORE pattern states that the di-
agnostic knowledge is only defined using simple scoring rules. Any finding contributes
with a negative or positive confirmation category to a given diagnosis. These categories
are aggregated to a final score, which determines the state of the diagnosis. DIAGNOSTIC

SCORE is very easy to implement and robust with respect to noisy input.
Consequently, only simple diagnostic rules are allowed for implementing the pattern.
Therefore INTRODUCEDIAGNOSTICSCORE method firstly investigates the available rule
base according to this characteristic. If only simple diagnostic rules are contained in the
rule base, then the pattern is already implemented, and nothing has to be done. If the rule
base contains one-level and multiple-level rules, then these rules need to be split up into
rules with simple complexity. This task is very difficult, since the semantics of the original
rules are changed in many ways.
We will sketch the transformation of one-level rules in the following. Multiple-level rules
are transformed similarly to the scheme presented for one-level rules. If the terminal con-
ditions of an one-level rule are connected by an AND condition, then for each terminal
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condition a simple scoring rule is generated. The specified diagnosis of the original rule is
adopted for the new rules. The original confirmation category is adjusted (decreased) for
the new rules, so that the aggregation of the new categories will result in the original con-
firmation category. If the terminal conditions of the one-level rule are connected by an OR
condition, then analogously for each terminal condition a simple scoring rule is generated.
The action of new scoring rules contain the equal diagnosis and the confirmation category
as specified in the original scoring rule. However, this may cause irregularities, since with
the simple scoring rules a diagnosis can obtain a higher score than by using the one-level
scoring rules.
For this reason, it is suggestive to perform the restructuring method interactively with the
user for one complex rule per time only.

INTRODUCEHEURISTICDECISIONTABLE Using the HEURISTIC DECISION TABLE

pattern the diagnostic knowledge is mainly implemented by one-level rules. Thus, one-
level scoring rules are formulated that either establish or exclude diagnoses. The pattern
is applied, if combinations of observed findings, when compared to single observations,
have an intensified meaning for diagnoses. As a special characteristic the rules represented
in the HEURISTIC DECISION TABLE are self-contained, i.e., they are evaluated separately
and the specified confirmation categories are not aggregated to a single score. We can
specify scoring rules for either excluding, suggesting or establishing a given diagnosis. If
more than one scoring rule for a given diagnosis evaluates true in a given case, then the
diagnosis’ state is determined according to the following priority schema: The exclusion
of the diagnosis has the highest priority compared to establishing the diagnosis, which is
more important than suggesting the diagnosis.
The INTRODUCEHEURISTICDECISIONTABLE restructuring method consequently modi-
fies the available rule base with the purpose to create only one-level scoring rules, estab-
lishing, suggesting or excluding diagnoses. Then, for each diagnosis all scoring rules are
collected and divided into two partitions: Thepositive partitioncontains all rules with pos-
itive confirmation categories, whereas thenegative partitionconsists of scoring rules with
negative confirmation categories. For the positive partition, all combinations of the origi-
nal rule conditions are joined, so that the aggregation of their corresponding confirmation
category either suggests or establishes the given diagnosis. Excluding rules are generated
using the negative partition. Rules are created analogously to the method sketched for the
positive partition.

5.4.6. Learning Score-Based Knowledge

Although score-based knowledge is a convenient method for acquiring diagnostic knowl-
edge, (semi-)automatic learning methods can help the developer to build knowledge sys-
tems rapidly. This section will present a method for inductively learning scoring rules
according to the DIAGNOSTIC SCORE pattern. The simple scoring rules are generated
with respect to the following criteria: Firstly, the learned rules should achieve a high accu-
racy for inferring the given diagnoses. Secondly, the complexity of the learned knowledge
should be as simple as possible, i.e., the number of learned features and applied scores are
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as low as possible. Initially, this approach was presented by Atzmueller et al. [9], and was
evaluated on a real world application.
For learning scoring rules the algorithm basically applies three steps: Starting with a statis-
tical analysis of the case base the dependency associations between diagnoses and findings
are determined, i.e., so-called frequency profiles are generated. Then, each dependency is
rated with respect to its significance for the diagnostic process. In the third step, a quasi-
probabilistic rating is computed for each significant diagnosis-finding association, and a
scoring rule for each association is generated. The symbolic category of the rule is deter-
mined by a mapping function using the quasi-probabilistic rating. In order to simplify the
computation and the results of the algorithm, only discrete choice questions are considered
for the learning task. However, numerical questions can be handled easily by discretization
in a preprocessing step. In the following ,we present the three basic steps of the algorithm
in more detail:

Step 1: Generating Frequency Profiles

In the first step, the given case baseCB is analyzed according to the frequencies of di-
agnoses and findings, and their associations, respectively. The results of this analysis are
stored in frequency profiles. We define a frequency profile for a diagnosis as follows.

Definition 5.4.2 (Frequency Profile) A frequency profileFPCB(D) for a diagnosisD ∈
ΩD contained in a case baseCB is defined as the set of tuples

FPCB(D) =
{(

F, freqCB(F, D)
) ∣∣ F ∈ ΩF ∧ freqCB(F, D) ∈ [0, 1]

}
,

whereF is a finding andfreqCB(F, D) ∈ [0, 1] represents the frequency the findingF
occurs in conjunction withD in the case baseCB , i.e.,

freqCB(F, D) =

∣∣{ c ∈ CB |F ∈ Fc ∧D ∈ Dc }
∣∣∣∣{ c ∈ CB |D ∈ Dc}

∣∣ .

Thus, a frequency profile of a diagnosis contains all findings with attached frequencies,
that co-occur with the diagnosis in the case base.
It is obvious, that a frequency profile initially can contain many findings, and therefore we
apply statistical pruning in order to reduce the profiles to the most significant findings for
the particular diagnoses.

Step 2: Pruning Frequency Profiles

We prune each frequency profile by creating a four-fold contingency table for each finding
and diagnosis considered by the particular profile. The contingency table describes the
frequencies of the finding-diagnosis association in more detail (for non-boolean findings
contingencies can be defined analogously).
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D ¬D
F a b

¬F c d

Figure 5.17: Four-fold contingency table for diagnosis-finding associations.

The letters in the contingency table describe the following frequencies relative to the con-
sidered case baseCB .

a = N(D ∧ F ) , b = N(¬D ∧ F ),
c = N(D ∧ ¬F ) , d = N(¬D ∧ ¬F ),

whereN(cond) is the number of times the conditioncond is true for casesc ∈ CB , i.e.,
the diagnosis or finding is contained in the case base or not.
With the contingency table we can apply theχ2-test for independence for determining the
dependencies between the finding-diagnosis relations. For binary events the formula of
theχ2-test is defined as follows:

χ2(F, D) =
(a + b + c + d)(ad− bc)2

(a + b)(c + d)(a + c)(b + d)
.

Especially, if the case base only allow for small sample sizes, then we can apply the Yates’
correction for a more reasonable comparison. For all dependent tuples(F, D) we derive
the quality of the dependency using theφ-coefficient

φ(F, D) =
ad− bc√

(a + b)(c + d)(a + c)(b + d)
,

which measures the degree of association between two binary variables. Theφ-coefficient
can be used to detect positive and negative dependencies between the variables, respec-
tively. However, we will only consider dependencies, for which the absolute value of the
φ-coefficient exceeds a given thresholdTφ. Therefore, all dependencies between a diag-
nosis and a finding with an absoluteφ-coefficient less than this threshold will be removed
from the frequency profile. Consequently, thereduced frequency profileis defined as fol-
lows.

Definition 5.4.3 (Reduced Frequency Profile)The reduced frequency profileFP ∗
CB(D)

for a diagnosisD ∈ ΩD contained in a case baseCB is defined as a set of tuples

FP ∗
CB(D) =

{(
F, freqCB(F, D)

) ∣∣ F ∈ ΩF

∧ freqCB(F, D) ∈ [0, 1] ∧ |φ(F, D)| > Tφ

}
,

As a result of this second step we arrive at a set of reduced frequency profiles, containing
only significant dependencies between diagnoses and findings.
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Step 3: Rule Generation

In the last step, each association between a diagnosisD ∈ ΩD and a findingF ∈ ΩF is
used for the generation of a scoring ruleF

s→ D. An association between a diagnosisD
and a findingF is given, ifF is contained in the reduced frequency profileFP ∗

CB(D).
The applied confirmation categorys ∈ Ωscr is calculated by theprecisionand thefalse
alarm rateof the considered scoring rule.
Then, theprecisionof a rule is defined as

precision(r) =
TP

TP + FP
,

and thefalse alarm rate(far) is given by

far(r) =
FP

FP + TN
,

whereTP , TN , FP are the number oftrue positives, true negatives, andfalse positives,
respectively. It is worth noticing, that the specificity is defined byspecificy = 1− far .

These can easily be extracted from the contingency table defined in Figure 5.17. For a
positive dependency (φ(F, D) > 0) between findingF andD, TP = a, TN = d and
FP = b. For a negative dependency (φ(F, D) < 0) we have to predict the absence of the
diagnosis, and therefore we need to defineTP = b, TN = c andFP = a.
We rate the dependency by computing aquasi probabilistic score (qps), which is defined
as follows:

qps(r) = sgn
(
φ(D, F )

)
∗ precision(r)

(
1− far(r)

)
(5.15)

Finally, this quasi-probabilistic score is mapped to a symbolic confirmation category. The
continuous values ofqps(r) are mapped with respect to the function given in Figure 5.18.

qps(r) category(r) qps(r) category(r)
[-1.0, -0.9) → N6 (0.0, 0.5) → P1
[-0.9, -0.5) → N3 [0.5, 0.9) → P3
[-0.5, 0.0) → N1 [0.9, 1.0] → P6

Figure 5.18: Mapping function for quasi-probabilistic scores to symbolic confirmation cat-
egories.

It is easy to see that the mapping function given in Figure 5.18 can be refined in order
to cover a larger or smaller value range of confirmation categories. However, the pre-
sented value range is appropriate for a user-friendly interpretation and understanding of
the learned scoring rules by the user. The understandability of the learned rule base can
be further improved by reducing its size. We achieve this by merging rules for continuous
attributes. Thus, if two rules are conditioning neighboring partitions of the same question,
and have the equal confirmation category, then we combine the two rules to one rule with
an extended condition. This simple method can reduce the number of learned rules without
loosing accuracy or changing the semantics of the learned rule base.
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In [9] the presented algorithm was refined in order to process abnormality and partition
class information, which was shown to further reduce the complexity of the learning re-
sults. Further, the learning algorithm was evaluated with a real life case base.

5.4.7. Summary

In this section, we have introduced score-based knowledge represented by scoring rules.
Scoring rules attach symbolic confirmation categories to diagnoses, which are aggregated
in order to determine the state of the given diagnoses. We have described the knowl-
edge representation and inference in detail, and described the acquisition of score-based
knowledge using the knowledge formalization pattern DIAGNOSTIC SCORE. Finally, we
presented an approach for learning scoring rules, which tries to learn compact and under-
standable rule bases for a given case base.
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5.5. Causal Set-Covering Knowledge

In this section, we introduce causal set-covering models for representing structural knowl-
edge. Set-covering models can be incrementally constructed, first starting with symbolic
confirmation strengths for stating uncertainty and can be later refined by an even more
precise formalism for uncertainty, i.e., quantitative uncertainty. Furthermore, we describe
testing methods, restructuring methods, and a learning approach for set-covering models.

5.5.1. Symbolic Confirmation Strengths

Set-covering models are an intuitive representation for diagnostic reasoning in many do-
mains, e.g., in medicine and biology. In the literature knowledge is often formulated based
on a list of typical effects of a diagnosis. Medical textbooks commonly describe diseases
by their observable findings. Analogously, in biology plants are characterized by their ob-
servable properties. Figure 5.19 depicts the exemplary description of the rheumatic disease
”psoriatic arthritis” taken from a medical textbook [38].

Figure 5.19: Textbook definition [38] of the rheumatic disease ”psoriatic arthritis”.

Set-covering knowledge states causal knowledge between diagnoses and findings. A set-
covering model consists of set-covering relations of the following form:

If a diagnosisD is true, then the questionsQ1, . . . , Qn are observed with cor-
responding valuesv1, . . . , vn.
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A single set-covering relationr is denoted byr = D → Q:v; we say that the findingQ:v
is coveredby the diagnosisD.
For example, Figure 5.20 shows a set-covering modelR with 5 set-covering relations for
two diagnosesD1 andD2. An edge from a diagnosisD to a findingQ:v with the labelr
indicates a set-covering relationr = D → Q:v.

Figure 5.20: Set-covering model for the diagnosesD1 and D2 and the questions
Q1, Q2, Q3 andQ4.

Textbook knowledge as depicted in Figure 5.19 can be easily translated into set-covering
relations. For a more powerful representation a covering strength can be attached to each
set-covering relation, which state a symbolic frequency of the observation of the specified
finding. Definition 5.5.1 gives a formal description of a set-covering relation.

Definition 5.5.1 (Set-Covering Relation, Set-Covering Model)A set-covering relation
r between a diagnosisD ∈ ΩD and a findingF ∈ ΩF is denoted byr = D → F . We say
that “D coversF ”. ΩR denotes the universe of all set-covering relations. Aset-covering
modelis a setR ⊆ ΩR of set-covering relations.
To each set-covering relationr ∈ ΩR a symbolic covering strengthcs(r) can be at-
tached. LetΩCS = {P3, P2, P1, 0, N1, N2, N3} be the universe of all possible covering
strengths, which states the frequencies of observation of specified finding in descending
order, e.g.,P3 means ”very often”,0 means ”unclear”, andN3 means ”very seldom”.

We can see that set-covering models using symbolic categories allow for a simple and
intuitive translation of diagnostic textbook knowledge.

5.5.2. Symbolic Diagnostic Inference

In general, set-covering diagnosis can be described as the task of finding an appropriate
hypothesis that can explain a given observationFO. A hypothesis is defined as a set of
diagnoses that together constitute a covering ofFO.

Definition 5.5.2 (Hypothesis)We call a setH ⊆ ΩD of diagnoses ahypothesis. A hy-
pothesisH = {D1, . . . , Dn } can be interpreted as a conjunctionD1 ∧ · · · ∧Dn of diag-
noses, which tries to explain a given observation.
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Given a setFO ⊂ ΩF of observed findings. The goal is to find a hypothesisH which is
able to explain the observed findingsFO. This is the case ifH covers all observed findings,
where a findingF is coveredbyH, iff F is covered by at least one diagnosisD ∈ H. If
a finding is not covered byH, then it is calledisolatedw.r.t. H; the set of all observed
findings that are not covered by (isolated w.r.t.)H will be denoted byF iso

O .
A set of findingsF is calledfunctional, iff for all questionsQ ∈ ΩQ there exists at most
one findingQ:v ∈ F , i.e., withQ in the first component. In that case we can define the
partial functionvalF : ΩQ → Ωval which returns the valuev assigned to a given question
Q ∈ ΩQ: valF(Q) = v, if Q:v ∈ F , andvalF(Q) = ⊥, otherwise. Furthermore, we
definea(F) = {Q ∈ ΩQ | ∃Q:v ∈ F } to be the set of questions in a setF of findings.

Definition 5.5.3 (Predicted Findings) Given a set-covering modelR, a diagnosisD ∈
ΩD, and a hypothesisH ⊆ ΩD. Then

FD = {F ∈ ΩF |D → F ∈ R}
is the set of all findings that are covered byD. The setFD is commonly called the set of
predicted findingsfor a diagnosisD.

We select a functional setFH ⊆
⋃

D∈HFD of findings that are covered byH, i.e.,FH
should contain only one finding for each questionQ. If two diagnoses inH cover the
same questionQ with different values, then

⋃
D∈HFD is not functional. In this case, we

select one of the conflicting findingsQ:v ∈
⋃

D∈HFD as follows:
1 If one of the conflicting findings is contained inFO, then we select it.
2 If probabilities are defined, then we select the finding with the most probable set-

covering relation inFH.
3 Otherwise, we randomly select one finding.

We remark, that additional knowledge can enhance the conflict resolution strategy. E.g.,
in [14] abnormality information was used to select the most abnormal parameter value. If
abnormality information for parameter values is defined in the model, then we can apply
this easily for conflict resolution.
Given a setFO of observed findings and a setFH of predicted findings. We say that a
questionQ ∈ ΩQ is observed, if there exists a findingQ:v ∈ FO for Q. For a comparison
betweenFH andFO we introduce two subsets ofFH:

1 The setFH,O of parametrically predicted findingsconsists of all predicted findings
Q:v ∈ FH for which the questionQ is observed.

2 The setF+
H,O = FH ∩ FO of positively predicted findingsconsists of all predicted

findings which are observed with the predicted value.
Analogously, we defineF−

H,O = FH,O \ F+
H,O to be the set ofnegatively predicted

findings.

Weighted Questions in Set-Covering Models In many cases not all findings de-
scribe the same importance for the derivation of a solution. For this reason we introduce
weights for findings, which are represented by global weight functions as defined in Defi-
nition 5.2.2 (p. 73). Then, a global weight function

wg : ΩQ → IN+
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defines the absolute importance of each question contained in the domain. For a convenient
usage we also define the global weight functionwg for findings. For a findingF = Q:v
we say that

wg(Q:v) = wg(Q) ,

i.e., the global weight of a finding is equal to the global weight of the embodied question.

Whereas, the evaluation of a given hypothesis is simple, the generation of appropriate
hypotheses is a difficult task. It is easy to see that an exhaustive examination of all pos-
sible hypotheses has exponential complexity. Therefore, reasonable heuristics need to be
applied.

Hypothesis Generation: Full Elimination

In the following, we describe a simple greedy-like algorithm for generating hypotheses
based on a set of observed findings.

Algorithm 1 HYPOTHESISGENERATION: FULL ELIMINATION

1: generateHyp( HypothesisH, Setunexplained )
2: if terminate?then
3: return
4: else
5: F = selectMaxFinding(unexplained )
6: {D1, . . . , Dk} = bestKDiagnosesFor(F )
7: for all Di ∈ {D1, . . . , Dk} do
8: H′ = H ∪ {Di}
9: addToGlobalHypList(H′)

10: generateHyp(H′, unexplained \ pred(Di))
11: end for
12: end if

The recursive algorithm is called with an empty hypothesisH = {}, unexplained = FO,
and terminates (line 3), if at least one of the following conditions is true:

• All diagnoses have been considered for hypothesis generation, i.e.,H = ΩD.
• The setunexplained is empty, i.e., all observations have been explained by at least

one diagnosis contained in the hypothesisH.
• The apriori probability of the current hypothesis falls below a given threshold, i.e.,

the hypothesis must fulfill a specified likelihood.
• The current size of the hypothesisH exceeds a given threshold, i.e., the size of the

hypothesis is restricted beforehand.
• The size of the already generated hypotheses (contained in the globalHypList) ex-

ceeds a given threshold, i.e., the number of hypotheses to be generated can be re-
stricted beforehand.

The methods in lines 5 and 6 are responsible for the control of the greedy algorithm. In
line 5 we select the most appropriate finding from the observation set, which has not been
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considered before. Mostly, the findingF with the largest global weightwg(F ) is selected,
but other strategies are possible, e.g., selecting the finding, which is covered by the most
probable diagnosis. In line 6, we retrieve thek best diagnoses, for the selected finding
F . Typically, we choose the diagnoses covering the findingF , for which the set-covering
relations have the highest covering strength.

Data Structures For an efficient implementation of the algorithm each findingF needs
to embody a list of set-covering relationsr = D → F sorted according to the covering
strength (used by method bestKDiagnosesFor(), line 6). Each diagnosisD needs to store
a list of its covered findings in order to implement an efficient implementation of the
set operation in the recursive call (line 10). Furthermore, the set of observed findings
unexplained needs to be sorted according to the weights of the included findings (a linked
list will speed up the selection in line 5 and the remove operation in line 10). The global
hypothesis list may be implemented as a linked list for an efficient and sorted insertion of
new diagnoses.

Hypothesis Generation: Partial Elimination

The full elimination algorithm may not be appropriate for a feasible evaluation of the
observation set. For this reason, we present a partial elimination algorithm, which takes
into account the covering strength of each applied set-covering relation. Then, findings are
not fully eliminated, but for each finding in the setunexplained an explanation account is
created, which represents a certain degree to which the finding is explained by the currently
considered hypothesis.

Algorithm 2 HYPOTHESISGENERATION: PARTIAL ELIMINATION

1: generateHyp( HypothesisH, Setunexplained )
2: if terminate?then
3: return
4: else
5: F = selectMaxFinding(unexplained )
6: {D1, . . . , Dk} = bestKDiagnosesFor(F )
7: for all Di ∈ {D1, . . . , Dk} do
8: H′ = H ∪ {Di}
9: addToGlobalHypList(H′)

10: update(Di, unexplained )
11: generateHyp(H′, unexplained )
12: end for
13: end if

We can see that the algorithm differs in the previously presented algorithm by one method:
The method update(Di, obs) considers the findings contained inobs and attaches to each
finding F ∈ unexplained the covering strength of the set-covering relationDi → F , if
it is greater than the currently stored covering strength. Initially, all findings are assigned
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to the default covering strength0. Then, each finding that has a greater covering strength
than a given threshold value is removed from the setunexplained . With the threshold
value we can predefine the desired degree of explanation strength. This feature highlights
the main difference to the previously presented algorithm using full elimination, which
virtually assumes a threshold valueε = 0.

Data Structures In addition to the previously discussed data structures, the observa-
tion setunexplained needs to implement a hash set, which stores the current covering
strengths for the contained findings (with finding as the key and the strength as the value).

Alternative Generation Approaches

The presented approaches for generating set-covering hypotheses are quite simple and
obviously can be improved by more sophisticated search methods, e.g., beam search. Fur-
thermore, the consideration of background knowledge, e.g., negative covering strengths,
can further shrink the hypothesis space. Advanced methods for reducing the hypothesis
space were discussed, e.g., by Stefik [128, Ch. 9].

Hypothesis Evaluation

During the hypothesis generation step, new hypotheses are added to a global hypothesis
list. This list is sorted with respect to the explanation quality of the included hypotheses
according to the given observation. The explanationquality of a hypothesisH for a given
observationFO by the following equation:

%(FH,FO) =

∑
F∈F+

H,O

max cs(F,H) · wg(F )∑
F∈FO

wg(F )
, (5.16)

whereFH are the covered findings ofH and

max cs(F,H) = max
(
cs(r)

∣∣ r = D → F with D ∈ H
)

is the maximum covering strength of findingF w.r.t. a diagnosisD ∈ H coveringF .
Besides the quality a hypothesisH can be also measured by its incorrect prediction of
findings. For this reason, we introduce afalse prediction accountfp, which is defined in
the following equation:

fp(FH,FO) =

∑
F∈F−H,O

max cs(F,H) · wg(F )∑
F∈FO

wg(F )
, (5.17)

whereF−
H,O is the set of parametrically observed findings, which are predicted by a diag-

nosisD ∈ H but not observed with the predicted value. It is easy to see that an optimal
hypothesis, i.e., a hypothesis best explaining the observed findings, tries to maximize the
quality% and to minimize the false prediction accountfp.
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Data Structures For an efficient evaluation of the hypothesis, we need to consider
additional data structures. Any hypothesis contains two sets of findings,F+

H,O andF−
H,O

for the following reasons: If a diagnosisD is added to a hypothesisH (line 8), then both
sets are updated. The setF+

H,O contains all findings, for which the predicted value is also
observed. Analogously, the setF−

H,O contains all observed findingsF = Q:v, for which
the questionQ is observed but with a different valuev′ than predicted by a diagnosis
D ∈ H. It is worth noticing, that a finding previously contained in the setF−

H,O can be
moved to setF+

H,O, if a diagnosis is added, which covers the finding with the observed
value. For example, for a given observed findingQ:v2 we define a hypothesisH = {D1},
andD1 covers findingQ:v1. Then, for an evaluation findingQ:v1 is added to the setF−

H,O.
If a new diagnosisD2 covering the findingQ:v2 is added to the hypothesisH, then the
observationQ:v2 is moved to the setF+

H,O.

5.5.3. Quantitative Uncertainty in Set-Covering Relations

As mentioned in the introduction of this section, it is difficult for humans to give precise
estimations of numerical probabilities. Thus, (untrained) experts fail to differ between
small probabilities for an event, e.g.,P (F |D) = 0.1 vs. P (F |D) = 0.01, though they
show significant statistical differences. For this reason qualitative covering strengths were
introduced in the previous section in order to give an intuitive substitute for probabilities.
However, covering strengths are not sufficient for a formal analysis of set-covering models
handling uncertainty. We will therefore introduce an approach, which transforms qualita-
tive covering strengths into numerical probabilities. Then, a given covering strengthcs for
a covering relationD → F is transformed to a conditional covering probabilityP (F |D).
In Figure 5.21 the transformation is depicted graphically.

P3

P2

P1

0

N1

N2

N3
0

0.5

1

Figure 5.21: Transformation of qualitative covering strengths to numerical probabilities.

For an exact transformation function we have to consider the following issues:
• the covering strength0 should be mapped to a default probability, which does not

significantly alter the probability of the diagnosis.
• positive covering strengths should yield probabilities increasing the probability of

the diagnosis.
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• negative covering strength should result in probabilities, decreasing the probability
of the diagnosis.

The following table depicts an ad-hoc conversion function for covering strengths.

Covering Strength P3 P2 P1 0 N1 N2 N3
Probability 0.9 0.75 0.6 0.5 0.25 0.1 0.01

Then, qualitative set-covering models can easily transformed into set-covering models
with quantitative uncertainty, i.e., set-covering relations with probabilities. In the fol-
lowing, we discuss the handling of probabilities in set-covering models.

Probabilities in Set-Covering Models

We explain the handling of probabilistic uncertainty in set-covering relations by introduc-
ing events and causation events, which were inspired by Peng and Reggia [89].

Definition 5.5.4 (Basic Set-Covering Events)For a set-covering model we define the
following basic events:

1 A cause eventD ∈ ΩD is defined as the event that a diagnosisD is present. This
event contains no information about the presence/absence of any other diagnosis
D′ ∈ ΩD \ {D}. We analogously define¬D as the event thatD is absent.

2 An effect eventF ∈ ΩF defines the event that a findingF is present (observed).
The effect eventF contains no information about the presence/absence of any other
findingF ′ ∈ ΩF \{F}. We analogously define¬F as the event thatF is absent (not
observed). In this way, an observation setFO = {F1, . . . , Fn} can be interpreted as
a conjunction of effect eventsF1 ∧ · · · ∧ Fn.

3 A causation event
−−→
DF denotes the event that the findingF ∈ ΩF is actually ob-

served and caused by the diagnosisD ∈ ΩD. For a set-covering relationr = D → F

the causation event
−−→
DF denotes the realization ofr. Analogously we define¬

−−→
DF

as the absence of
−−→
DF .

We remark, that a causation event
−−→
DF may still be false, even if the effect eventF is

true (observed) and the cause eventD is true (hypothesized). In this case,F is caused
by another diagnosisD′ possibly contained in the hypothesis, too. On the other hand,
a true causation event

−−→
DF implies cause eventD and effect eventF to be true. As we

mentioned before, we are able to attach uncertainty to set-covering relations, which are
calledconditional causal probabilities.

Definition 5.5.5 (Conditional Causal Probabilities) The conditional causal probability
P (
−−→
DF |D) is the probability, thatF ∈ ΩF is caused byD ∈ ΩD utilizing the causation

event
−−→
DF . The probability of the absence of a causation event¬

−−→
DF is defined as

P (¬
−−→
DF |D) = 1− P (

−−→
DF |D) .
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When we attach uncertainty to set-covering models, we define conditional causal proba-
bilities to set-covering relations.

Definition 5.5.6 (Contexts of Causation Events)Let
−−→
DF be a causation event forD ∈

ΩD andF ∈ ΩF . Then, we callC a context of
−−→
DF , if C is a conjunction of arbitrary cause

events and causation events other than
−−→
DF and¬

−−→
DF .

Additional Knowledge and Assumptions To facilitate such propositions and their
integration in the computation of covering models we need to make the following assump-
tions.

1 Independence of cause events:For each diagnosisD ∈ ΩD the apriori probability
P (D) ∈ (0; 1] is given and the cause eventD is independent from any other cause
event. As a consequence, the apriori probability for a hypothesisH = {D1, . . . , Dn}
is the product of the single probabilities, i.e.,

P (H) =
∏
D∈H

P (D) ·
∏

D′∈ΩD\H

(
1− P (D′)

)
.

We remark that for a hypothesisH all diagnosesD′ ∈ ΩD \ H are assumed to be
absent.

2 Independence of causation events:For each covering relationr = D → F defined
in the set-covering model the non-zero conditional causal probabilityP (

−−→
DF |D) ∈

(0; 1] is given. If a cause eventD ∈ ΩD happens, then the causation event
−−→
DF

occurs independently of any contextC with P (D ∧ C) > 0, i.e.,

P (
−−→
DF |D ∧ C) = P (

−−→
DF |D).

3 Completeness assumption:For each questionQ ∈ ΩQ there need to exist at least
one set-covering relationr = D → Q:v ∈ R with v ∈ dom(Q).

It is easy to see that a set-covering model applying uncertainty information requires
|ΩD| + |R| probabilities. With the completeness assumption we can guarantee that there
exists a causation event for any observed question. For handling multiple faults (i.e. a set
of diagnoses is explaining an observation set), we have to considercomposite causation
events.

Definition 5.5.7 (Composite Causation Events)Let F ∈ ΩF be an observed finding and
letH ⊆ ΩD be a hypothesis. Then,

−−→
HF is defined as thecomposite causation event. The

event
−−→
HF describes thatF is caused by at least one diagnosisD ∈ H.

When computing the probability of a composite causation event
−−→
HF we have to take the

disjunction of every subset ofH for causingF into account.
For example, for the set-covering model given in Figure 5.20, the hypothesisH =
{D1, D2} and the findingF = Q:v3 we want to compute the conditional probability of
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the composite causation event
−−→
HF . Thus, we have to consider

P (
−−→
HF |H) = P (

−−−−−−→
D1¬D2F |H) + P (

−−−−−−→
¬D1D2F |H) + P (

−−−−→
D1D2F |H) =

= P (
−−→
D1F |H) ·

(
1− P (

−−→
D2F |H)

)
+

+ P (
−−→
D2F |H) ·

(
1− P (

−−→
D1F |H)

)
+

+ P (
−−→
D1F |H) · P (

−−→
D2F |H) .

In general, the probability for a composite causation event is computed as follows:

P (
−−→
HF |H) =

∑
H′⊆H,H′ 6={}

( ∏
D∈H′

P (
−−→
DF |D) ·

∏
D∈H\H′

(
1− P (

−−→
DF |D)

))
(5.18)

Hypothesis Evaluation For the evaluation of a hypothesisH for a given observation
FO we define the quality measure for set-covering models with probabilities.
The quality measure applies not only probabilities to set-covering relations but also ad-
ditional knowledge components like similarities and (global) weights. Each component
supplies an additional support for the calculation of the quality measure, if it is available
in the given model. However, if one component does not appear, it cannot contribute to the
quality of a hypothesis and therefore will not appear in the calculation. For this reason we
will introduce the abbreviating functionswc, sc, andpc. If the corresponding knowledge
is available, then we set

wc(Q) = wg(Q) ,

sc(Q) = sim
(
f(Q,FH), f(Q,FO)

)
,

pc(Q) = P (H) · PH,FO(Q:v) with Q ∈ a(FH ∩ FO) ∧ v = valFO(Q) ,

wheref(Q,F) is a function that returns the findingF ∈ F containing the questionQ, and
functionPH,FO is defined as follows:

PH,FO(F ) =

{
P (
−−→
HF |H) for F ∈ FO ,

1− P (
−−→
HF |H) otherwise.

(5.19)

The (local) similarity functionsim is defined according to Definition 5.2.1.
If the corresponding knowledge is not available, then we setwc(Q) = sc(Q) = pc(Q) =
1, i.e.,1 is the default value.
The quality of a hypothesis is given by the following equation

%(FH,FO) =

∑
Q∈a(FH,O) wc(Q) · pc(Q) · sc(Q)∑

Q∈a(FO) wc(Q)
. (5.20)

For the expert these equations serve as an intuitive understanding of the model. A more ap-
propriate procedure for handling uncertainty would be the introduction of aleak-diagnosis.
A leak-diagnosisDl captures the idea that no model can be a complete view of the domain,
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and that there are always other reasons that can cause a given finding. These “other rea-
sons” are collected in the leak-diagnosis, which is categorically connected to all available
findings. To shrink the emerging number of probabilities, we assume a constant probability
for all set-covering relations between the leak-diagnosis and a finding. If the model con-
tains weights, then it is easy to see that the leak probabilities can be adapted with respect
to the weights. Large weights will decrease the leak probability whereas small weights
increase the probability. As a consequence, for every hypothesis we have to consider the
leak-diagnosis to be included in the hypothesis as well. It is easy to understand that with
the usage of the leak-diagnosis there will be no isolated observed parameters because the
leak-diagnosis holds covering relations to all findings by default. SoF iso

O will be empty for
all H and allFO. In [16] we presented an incremental approach augmenting set-covering
models with additional knowledge components.

5.5.4. A Bayesian Transformation for Set-Covering Models

Set-covering models allow for an intuitive representation of uncertainty for diagnostic rea-
soning. Furthermore, the knowledge acquisition costs can be step-wise increased accord-
ing to the required reasoning accuracy, e.g., by introducing additional knowledge like sim-
ilarities and weights.
Bayesian networks [88] are the state-of-the-art representation of uncertain knowledge in
current artificial intelligence research. The main advantage of Bayesian networks are their
well defined semantics when considering the reasoning capabilities and acquisition meth-
ods. However, if we postulate the self-acquisition of knowledge systems, then the applica-
tion of Bayesian networks is still problematic. Experience has shown, that mathematically
untrained domain specialists find it very difficult to represent their diagnostic knowledge
in the Bayesian formalism. For this reason, we propose to start with a set-covering model
and, if required, switch to a Bayesian network. E.g., a representation change can become
necessary, if the knowledge should be shard with other Bayesian knowledge systems or an
even more exact and powerful specification of uncertain knowledge is required.
Consequently, we sketch an approach for transforming a set-covering model into a
Bayesian network. If we compare the representational approaches of set-covering models
and Bayesian networks, we identify the following similarities:

Graphical representation In both approaches, diagnoses and findings are represented as
nodes in a graph-like structure (mostly, a DAG), and the dependencies between the
nodes are described by arcs. Set-covering models only allow for a boolean represen-
tation of nodes.

Uncertainty In Bayesian networks uncertainty is represented by the exact specification
of conditional probability tables (CPT); the complexity of CPTs can be reduced by
simplifying assumptions using NOISY-functions [37].

Independency In Bayesian networks independence between nodes is determined accord-
ing to the d-separation criterion, e.g., see [88]. For set-covering models we categor-
ically assume that the occurrence of multiple diagnoses not connected by causal arcs
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is independent, as well as the observation of arbitrary findings for different questions
given no diagnosis at all.

The general idea of transforming set-covering models into Bayesian networks is as fol-
lows: Questions contained in the set-covering model are mapped to discrete nodes in the
corresponding Bayesian network, and diagnoses are mapped to boolean nodes included
in the network. Existing set-covering relations are mapped to arcs in the Bayesian net-
work, and the attached uncertainties of the set-covering relations are inserted into the cor-
responding cells of the CPTs. The remaining probabilities are computed according to the
composite causation event for probabilities for combined diagnoses, and by using simi-
larity knowledge for values of the question not specified in a set-covering relation. For
Bayesian networks a probability can be specified for the event that a value for the ques-
tion is observed although no defined diagnoses is occurring. Thisleak-probability is not
explicitly defined in set-covering models, but we apply defined weights and abnormality
knowledge of questions for deriving the leak-probabilities of the corresponding findings.
Then, the leak-probability of a finding is the smaller the higher the weight of the corre-
sponding question is, and the higher the abnormality of the finding value is.
In the best case, either all possible or no set-covering relations between a diagnosis and
a question are defined, i.e., for each value of question there exists a diagnosis–finding
relation. Then, a direct transformation of the probabilities into a CPT is possible. For
incompletely specified set-covering models several approaches were described and evalu-
ated in [23], in which the considerations sketched above are also explained and motivated
in more detail.

5.5.5. Acquisition of Set-Covering Models

The typical procedure for acquiring set-covering knowledge is given as follows: Often it is
useful to firstly define an abstraction layer as described in Section 5.1.2. Abstractions for
set-covering models are often defined by abstraction rules. Then, set-covering knowledge
is stepwise acquired by a diagnosis-centered approach: For each diagnosis corresponding
set-covering relations are defined. For the definition of the set-covering model we propose
an incremental process as introduced in [16]: We start with a simple model describing the
coarse structure between diagnoses and findings. Further, we define relations between the
diagnosis and its typical findings, i.e., the findings that are mostly observed for the given
diagnosis. The set-covering relations for the remaining question values of the specified
findings are interpolated by similarity knowledge between finding values. Of course, the
developer can manually specify these set-covering relations in order to increase the accu-
racy of the model. Subsequently, the simple model can be enhanced by weight knowledge
and confirmation strengths to further increase the accuracy of the model and the resulting
system.
In order to reduce knowledge acquisition costs we provide learning methods for the au-
tomatic generation of set-covering relations, covering strengths, similarity functions, and
weights. For more details we refer to Section 5.5.8.
Since the development of the set-covering model is an evolutionary process, we propose
restructuring methods and test measures. E.g., restructuring methods for the set-covering
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model consider the propagation of ontological restructurings, and the introduction and
deletion of diagnosis layers in the set-covering model (see Section 5.5.7). A model can
be tested for its correctness, for anomalies (redundancy, ambivalence, circularity, defi-
ciency), for its robustness, and for its understandability. For more details we refer to Sec-
tion 5.5.6. Finally, we offer a transformation method for converting a set-covering model
to a Bayesian network. This probabilistic representation rarely fits the mental model of a
domain expert, but provides many advantages: There are various well-investigated learn-
ing methods for Bayesian networks available, which can be applied to improve an existing
model if a sufficient number of cases become available due to a productional use. Fur-
thermore, Bayesian networks have a clearly defined semantics of uncertainty, and efficient
reasoning methods are available.

5.5.6. Testing Set-Covering Knowledge

In this section we discuss methods for testing set-covering knowledge for its understand-
ability, anomalies and its robustness.

Static SC-Model Analysis

With theStatic SC-Model Analysismethod the developer can investigate the understand-
ability of the implemented set-covering model.

Mechanics The method simply counts the number of set-covering relations for each
diagnosis and calculates a mean value with standard deviation. If the standard deviation
exceeds a specified threshold, then diagnoses with border values are reported as a warn-
ing. Furthermore, the method computes for each finding the mean value (with standard
deviation) of diagnoses predicting the finding. If the standard deviation exceeds a given
threshold, then the findings with border values are reported as a warning.

Usage The method is used for testing the balance of the set-covering model. The bal-
ance of a set-covering model can increase the understandability of the implemented knowl-
edge. Thus, diagnoses and findings with significant few or significant many relations are
presented to the user. For this method no additional test knowledge is required, except for
the specification of threshold values for die maximum standard deviation of set-covering
relations and covering diagnoses.

Static SC-Model Verification

The static verification method was presented for rule-based knowledge in Section 5.4.4,
and can be also applied for set-covering models. Analogously to the rule-based method
anomalies in the structural knowledge container are detected. For set-covering models we
can distinguish the following anomalies:
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Redundancy The set-covering model contains redundant knowledge, e.g.,
subsumed set-covering relations, redundant set-covering rela-
tions.

Ambivalence The model contains set-covering relations that are contradic-
tory with respect to constraints contained in the model.

Circularity The set-covering model contains set-covering relations that
produce a circle.

Deficiency The knowledge base contains findings or diagnoses that are not
used by any set-covering relation. Alternatively, a deficiency is
caused by missing similarity or weight knowledge.

Mechanics The following table gives an overview of the anomalies, that can be de-
tected by the static sc-model verification.
I Redundancy
Subsumed Set-Covering Relation warning
A set-covering relationr = D → F is subsumed by another
set-covering relationr′ = D′ → F , if D′ is (transitively) cov-
ered byD.
Redundant Set-Covering Relation (exact) warning
A set-covering relationr = D → F is redundant, if there also
exists another set-covering relationr′ = D → F .
Redundant Set-Covering Relation (fuzzy) warning
A set-covering relationr = D → F is fuzzy-redundant, if there
exists a set-covering relationr′ = D → F ′ with sim(F, F ′) ≥
T , whereT is a given threshold.

I Ambivalence
A set-covering relationr = D → F is ambivalent, if there

exists an exclusion condition with(¬D ∧ F ).
error

I Circularity
There exists a set of set-covering relations, so that for a two
diagnosesD, D′ ∈ ΩD the diagnosisD is (transitively) covered
by D′ and the diagnosisD′ is (transitively) covered byD.

error

I Deficiency
Missing Weight/Similarity warning
There exists a question with no weight knowledge or no sim-
ilarity knowledge, but the question is assigned in at least one
set-covering relation.
Missing Set-Covering Relation warning
There exists a diagnosis or a question, which is not contained
in any set-covering relation of the model.
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Usage With the static verification method anomalies can be detected in set-covering
models. Most of the method are quite simple, but provide a valuable contribution to the
agile development process. For example, it can be difficult to detect incompletely de-
fined objects for a large structural knowledge container. However, incompleteness means
a deficiency of the implemented structural knowledge container. For the static verifica-
tion of set-covering models no additional test knowledge is needed, with exception to
the detection of fuzzy-redundant set-covering relations, which requires a threshold for the
maximum similarity of redundant findings.

Torture Tests for Set-Covering Models

Analogously to the rule-based approach, we can define torture tests for a set-covering
model to determine its robustness. Then, we define thereduce-knowledgeand themodify-
knowledgemethods for set-covering models.

Mechanics Starting with the complete set-covering model thereduce-knowledgeap-
proach systematically removes set-covering relations until a given thresholdTSR, defining
the maximum percentage of (randomly) removed relations, is reached. After each degrada-
tion, the currently modified knowledge base is applied to test cases and the mean accuracy
is calculated to document the diagnostic performance during the degradation. If the mean
value of the calculated accuracy falls below a defined thresholdTF , then an error is re-
ported.
The modify-knowledgeapproach does not reduce the size of the set-covering model, but
modifies single set-covering relations contained in the model. Thus, confirmation strengths
of contained set-covering relations are randomly selected and slightly increased or de-
creased. Then, the diagnostic performance of the modified system is determined by the
accuracy during the degradation. For this approach, a defined thresholdTMR describing
the maximum number of modified set-covering relations, and a defined thresholdTF is
required. If the mean accuracy computed by the degradation study falls below the thresh-
old TF , then an error is reported. The implementation and evaluation of torture tests for
set-covering models is analogous to the torture tests presented in Section 5.6.4.

Usage This methods provides a fine-grained method for testing the robustness of struc-
tural knowledge formalized by set-covering models.
Then, a sufficiently large collection of test cases is required, as well as the thresholds
TF , TSR, andTMR describing the minimum diagnostic accuracy, the maximum number
of removed set-covering relations, and the maximum number of modified set-covering
relations, respectively.

5.5.7. Restructuring of Set-Covering Models

In the following, we sketch the propagation of ontological restructuring methods with
respect to set-covering models. In Section 4.6 we introduced restructuring methods for the
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ontological knowledge container. These methods also trigger corresponding methods for
restructuring the implemented set-covering model.
The method TRANSFORMYNI NTOMC is simply propagated by removing all set-covering
relations to the original yes/no questions and by creating a new set-covering linking the
newly created multiple-choice question. Analogously, the TRANSFORMMCINTOYN is
propagated by removing all set-covering relations to the original multiple-choice question
from the set-covering model, and by inserting new set-covering relations linking the newly
created yes/no questions. Both methods will cause no conflict in general.
Also the SHRINKVALUERANGE method is always applicable: The set-covering relations
with findings of the specified question are modified according to the transformation matrix
defined for the method.
The method TRANSFORMNUM INTOOC can only be executed, if the original numerical
question can be split up into distinct partitions, that are representing the new choice an-
swers. Then, the set-covering relations specified for the original numerical questions are
replaced by set-covering relations linking the newly created one-choice findings. If the
numerical value range cannot be partitioned, then the method needs to be aborted.
The TRANSFORMMCINTOOC method can be executed without conflicts, if no set-
covered finding of the multiple-choice question contains multiple values. Then, the multi-
ple choice question is simply replaced with the newly created one-choice question. Other-
wise, the method needs to be aborted.
The methods REMOVEDIAGNOSIS and REMOVEQUESTION can only be applied, if the
specified diagnosis or question is contained in no set-covering relation of the model. This
is simply detected as deficiency by the static verification of set-covering models introduced
in Section 5.5.6. Otherwise, the conflicting set-covering relations need to be interactively
removed or re-linked in collaboration with the developer.

5.5.8. Learning Set-Covering Models

In the following, we describe an algorithm for learning set-covering models from cases,
which initially was presented by Baumeister et al. in [14], and was evaluated on a real life
case base.
A set-covering model usually contains a set of set-covering relations between diagnoses
and findings, and additional knowledge about finding similarities and weights. Since the
similarity function and weight measure for set-covering models is equivalent to the func-
tions defined for case-based reasoning, we refer to the algorithms given in Section 5.2.8 (p.
81). In this section we focus on learning set-covering relations. In general, the algorithm is
divided into three main steps: Firstly, diagnostic profiles for each diagnosis are generated
according to the case base given as training samples. Diagnostic profiles are augmented
frequency profiles, containing all co-occurring findings for each diagnosis together with
co-occurring diagnoses. Then, the profiles are refined and filtered so that only the most
frequent findings for the particular diagnoses are contained in the profiles. The reduced
profiles are applied to build set-covering relations in the third step. For each finding con-
tained in a diagnostic profile a set-covering relation is generated.
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Building Diagnostic Profiles

A diagnostic profile is an augmented frequency profile, which was defined in Defini-
tion 5.4.2.

Definition 5.5.8 (Diagnostic Profile) A diagnostic profileDPCB(D) for a diagnosisD ∈
ΩD contained in a case baseCB is defined as a tuple

DPCB(D) =
(

FPCB(D),Dcor

)
,

whereFPCB(D) is the frequency profile for diagnosisD, andDcor is a set of tuples con-
taining diagnosesD′,

Dcor =
{(

D′, freqCB(D′, D)
) ∣∣ D′ ∈ ΩD ∧ freqCB(D′, D) ∈ (0, 1]

}
,

that are co-occurring withD, attached with their frequencies.

The set of corresponding diagnoses can help the developer to compare similar set-covering
models for frequently corresponding diagnoses, since coherent diagnoses typically cover
the similar findings.

Refining the Diagnostic Profiles

Initially, the diagnostic profiles containall findings the particular diagnoses co-occur with.
Obviously, it is reasonable to filter out very unfrequent associations between the diagnoses
and the findings.
Before the filter step, we will consider similarities between the findings contained in the
profile. For example, if a profile for diagnosisD includes the findingtemperature:high
(T :h) with frequency0.4 and the findingtemperature:very high (T :vh) with frequency
0.4, then both findings might be too unfrequent to remain in the profile. But since both
findings are very similar to each other, an adapted frequency may be sufficiently frequent
to remain in the profile. Then, ifsim(T :h, T :vh) = 0.8, then an adapted frequency
freq ′CB(D, T :h), concerning similar findings is

freq ′CB(D, T :h) = freqCB(D, T :h) +
(
freqCB(D, T :vh) · sim(T :h, T :vh)

)
= 0.4 + (0.8 · 0.4) = 0.72 .

We adapt this idea when we firstly compute an adapted frequencyfreq ′CB(D, F ) for each
findingF in the profile regarding similarities between finding values of the same question.
After adapting the frequencies we remove all findings from the profile, which are still too
unfrequent with respect to a given thresholdTλ. We remark that a given diagnostic profile
may contain more than one finding for a given question, if their adapted frequencies exceed
the specified threshold. The resultingreduced diagnostic profileis defined as follows:

Definition 5.5.9 (Reduced Diagnostic Profile)A reduced diagnostic profileDP ∗
CB(D)

for a diagnosisD ∈ ΩD contained in a case baseCB is defined as a tuple

DP ∗
CB(D) =

(
FP λ

CB(D),Dcor

)
,
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whereDcor is a set of corresponding diagnoses ofD, andFP λ
CB(D) is the augmented

frequency profile with

FP λ
CB(D) =

{(
F, freq ′CB(D, F )

)
|F ∈ ΩF ∧ freq ′CB(D, F ) > Tλ

}
.

Formally, the adapted frequencyfreq ′CB(D, F ) is computed by

freq ′CB(D, F ) = freqCB(D, F ) +
∑

F ′∈FFPCB (D)

freqCB(D, F ′) · sim(F, F ′) ,

whereFFPCB (D) is the set of all finding contained in the frequency profile of diagnosisD.

If the similarity function is not defined for two findingsF, F ′ ∈ ΩF , then we set the default
similarity sim(F, F ′) = 0.

Generating Set-Covering Relations

Based on the reduced diagnostic profiles computed in the previous step we generate set-
covering relations between diagnoses and findings. For each reduced diagnostic profile we
generate a set-covering relationD → F for each findingF contained in the diagnostic
profile forD. The frequency of the association between the diagnosisD and the findingF
can be attached as numerical covering probability defined in Section 5.5.3, if quantitative
uncertainty should be applied to the set-covering model. To increase the understandability
of the learned results we alternatively can transform the frequency into a symbolic covering
strength as defined in Section 5.5.2. An appropriate mapping function is required, which
e.g., was presented in Figure 5.18 for score-based knowledge.
It is worth mentioning that the frequency thresholdTλ directly corresponds to the number
of generated set-covering relations. For a high threshold we will generate a sparse set-
covering model with only few set-covering relations. A low threshold will result in a dense
set-covering model containing many set-covering relations. Therefore, the developer has
to find a trade-off between too special and too general set-covering models.

5.5.9. Summary

In this section, we have introduced set-covering models for representing diagnostic struc-
tural knowledge. Set-covering models allow for an intuitive mapping of expert’s mental
models into a processable representation. They can handle similarity measures and weights
for findings, and they are able to state uncertainty either symbolically or numerically. As
a special characteristic set-covering models are suitable for handling domains with mul-
tiple faults. We concluded this section by introducing a method for learning set-covering
models from a case base.
Set-covering models can be extended by introducing an additional layer for abstract find-
ings. Thus, not only diagnoses can cover findings, but also abstract findings can cover
more specific findings defining anis-a relationship. Diagnoses may cover only abstract
findings that are observed if at least one of the covered specific findings is observed. Us-
ing such an abstraction layer more general observable concepts can be represented with
set-covering models.
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5.6. Black-Box Testing of Structural Knowledge

The evaluation of structural knowledge is one of the most important tasks during knowl-
edge system development, since it uncovers errors and checks the inferential completeness
of the knowledge system. In the preceding sections we have presented several approaches
for representing structural knowledge. Consequently, we identified and discussed different
testing methods for the particular approaches. However, some testing methods can be gen-
erally applied and do not rely on the underlying knowledge representation. These kinds
of methods are commonly calledblack-boxtesting methods (functional testing), whereas
methods linked with the underlying knowledge representation are calledwhite-boxtesting
methods (structural testing).
In the following, we introduce black-box testing methods, that can be generally applied.
The following black-box testing methods for structural knowledge are discussed: empiri-
cal testing, sequentialized empirical testing, inferential constraints, and torture tests. These
methods do not rely on the underlying knowledge representation of structural knowledge.

5.6.1. Empirical Testing

The most popular kind of black-box testing isempirical testing: In a first step previously
solved test cases are selected. In a second step the implemented knowledge system runs
the test cases and infers a solution for each case. The inferred solution is compared with
the stored solution of the case and differences are presented to the user.

Mechanics The task can be decomposed in three sub-tasks: Test case selection, test
case application, and evaluation of the results. The scheme is depicted in Figure 5.22.
In the first step an appropriate collection of test cases is selected. On the one hand, for

Test Case 
Selection

Test Case 
Application

Result 
Evaluation CorrectError

Figure 5.22: Scheme for the empirical testing task.

the agile development we suggest to include a number of test cases for each diagnoses
included in the system. On the other hand, the size of the resulting case base should
not exceed a given threshold, since running large empirical tests after each change of
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the knowledge base can evolve to be impractical and time consuming. Therefore, it is
suggestive to include a small number of test cases covering all diagnoses into the working
test suite and to add the remaining test cases into the integration test suite, which is only
executed before the integration step.
The test case application task is simple: For each test casec a knowledge system run is
started with a new casec′. The new casec′ receives the problem descriptionFc of the
stored case and infers a solutionDc′ using the implemented inferential knowledge.
After the test case application has been finished, the result is analyzed: For each solved
test casec′ the inferred solutionDc′ is compared with the stored solutionDc. This analysis
reveals the correctness of the knowledge system, and several approaches for interpreting
the results have been proposed.
The measuresprecisionandrecall are well-known approaches for determining the accu-
racy of the system.

Definition 5.6.1 (Precision and Recall)Let c = (Fc,Dc, Ic) be the stored case andc′ =
(Fc′ ,Dc′ , Ic′) the new inferred case, withFc = Fc′. Then, theprecisionis defined by

precision(Dc,Dc′) =


|Dc∩Dc′ |
|Dc′ |

if Dc′ 6= {} ,

1 if Dc′ = {} andDc = {} ,

0 otherwise.

The precision calculates the degree of inferred diagnoses that are actually correct. The
recall is defined by

recall(Dc,Dc′) =

{
|Dc∩Dc′ |
|Dc| if Dc 6= {} ,

1 otherwise.

The recall measures the degree of correct solutions that are actually inferred.

In the medical domain the measuressensitivityandspecificityare commonly used. The
sensitivity ortrue-positive rateis defined as the likelihood that the disease of a patient
is actually derived by the system. The specificity ortrue-negative rateis defined as the
likelihood that for a healthy patient actually no diagnosis is derived. Commonly, these
two measures are defined for single diagnoses, e.g., Shortliffe et al. [121, p.90ff]; in the
following we adapt the measures to the multiple-fault problem in diagnostic knowledge
systems.

Definition 5.6.2 (Sensitivity and Specificity)Let c = (Fc,Dc, Ic) be the stored case and
c′ = (Fc′ ,Dc′ , Ic′) the new inferred case, withFc = Fc′. Then, thesensitivitymeasures
the count of correctly derived diagnoses, and is defined by

sensitivity(Dc,Dc′) =

{
|Dc∩Dc′ |
|Dc| if Dc 6= {} ,

1 otherwise.

The sensitivity is equivalent to the previously defined recall measure. Thespecificitymea-
sures the count of incorrect diagnoses that are also not derived, and is defined by

specificity(Dc,Dc′) =
|ΩD \ Dc|

|ΩD \ Dc|+ |D′
c \ Dc|

.
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Thompson and Mooney [36] propose theintersection accuracyfor the evaluation of cases
with multiple diagnoses in the case.

Definition 5.6.3 (Intersection Accuracy) Let c = (Fc,Dc, Ic) be the stored case and
c′ = (Fc′ ,Dc′ , Ic′) the new inferred case, withFc = Fc′. The intersection accuracy
iacc is defined by

iacc(Dc,Dc′) =
precision(Dc,Dc′) + recall(Dc,Dc′)

2
,

which averages the precision and recall of a retrieved solution.

However, experience has shown that theF-measureknown from the information extraction
theory and data mining, e.g., [138, p. 146], is appropriate for comparing solutions with
multiple faults.

Definition 5.6.4 (F-Measure) Let c = (Fc,Dc, Ic) be the stored case andc′ =
(Fc′ ,Dc′ , Ic′) the new inferred case, withFc = Fc′ and letβ be a constant. TheF-measure
is defined as follows:

f(Dc,Dc′) =
(β2 + 1) · precision(Dc,Dc′) · recall(Dc,Dc′)

β2 · precision(Dc,Dc′) + recall(Dc,Dc′)

The F-measure computes the geometric mean of the precision and the recall of a retrieved
solution. In the context of the F-measure commonlyβ = 1.

The following example will clarify the difference between the presented measures: Let
c = (Fc, {D1, D2, D3}, Ic) be the test case, and letc′ = (Fc′ , {D1, D2}, Ic′) be the
inferred case, i.e., only the two first diagnoses have been inferred by the knowledge
system. Then, for|Dc| = 3, |Dc′| = 2, and β = 1 we obtain the following mea-
sures:precision(Dc,Dc′) = 2/2 = 1, recall(Dc,Dc′) = 2/3 = 0.66, iacc(Dc,Dc′) =
0.5 · (1 + 0.66) = 0.83, andf(Dc,Dc′) = (2 · 1 · 0.66)/(1 · 1 + 0.66) = 0.795.
The example shows that neither the precision nor the recall is an appropriate measure
for the evaluation of case solutions; it is worth noticing, that the recall would yield im-
proper results, if the solutions set had been exchanged against each other. The inter-
section accuracy also is not appropriate, since the arithmetic mean yield no meaningful
measure, e.g., forprecision(Dc,Dc′) = 1 andrecall(Dc,Dc′) = 0 would still yield the
iacc(Dc,Dc′) = 0.5. The F-measure finally denotes an appropriate measure. For this rea-
son, the presented agile process model uses the F-measure for evaluating the results of the
empirical testing.
As depicted in Figure 5.22 the analysis concludes with an error or correctness message. An
error is reported, if one of the test cases yields a F-measure less than1, i.e., if at least one
test case has not been correctly solved. Whereas this behavior can sensible for the working
test suite during the development of the knowledge base, we admit a less strict guideline for
the integration test suite. Since, the integration test suite usually contains real life cases,
it is very common that not all cases can be solved correctly by the knowledge system.
Therefore, we introduce a threshold value for the F-measure. If the F-measure for the test
cases contained in the integration test suite does not fall below the given threshold, then
no error is reported. Otherwise, we present the falsely solved cases in the error message.
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Hierarchical Relations of Diagnosis Set As described earlier in Chapter 4 the on-
tological knowledge container usually contains hierarchical relationships between diag-
noses; mostly these relationships describe parent-child relations with typeis-a. This con-
cept can be used for an extended definition of the presented accuracy measures. Then,
we do not simply compare the occurrences of a diagnosis in the retrieved and the stored
solution set, respectively, but also consider similarities between different diagnoses.
For computing the measures we do not simply interset the solutions sets, but compare
the included diagnoses according to the following similarity function. LetD be the set
of correct diagnoses contained in the stored case, andD′ be the set of derived diagnoses
contained in the current case. We define the similarity-based intersection as follows.

Definition 5.6.5 (Similarity-Based Intersection) Let D,D′ ⊆ ΩD two diagnosis sets;
thesimilarity-based intersectionis defined by

⋂
sim

(D,D′) =

∑
D∈D∪D′

dsim(D,D,D′)

|D ∪ D′|
,

wheredsim : ΩD × ΩD → [0, 1] is function comparing two diagnoses. A possible defini-
tion for dsim is

dsim(D,D,D′) =


1 if D ∈ D ∩ D′ ,

0.5 if D ∈ D′ ∧D ∈ p(D′) ,

0.5 if D ∈ D′ ∧D ∈ c(D′) ,

0 otherwise.

The functionp returns the set of parent diagnoses of the specified diagnosis, and the func-
tion c determines the set of diagnoses representing the children of the specified diagnosis.

The functiondsim may be adjusted with respect to the requirements of the application
domain. If the knowledge system not only derives established diagnoses but also suggested
diagnoses, then these can be compared with the expected solution set in a similar manner.

Usage The empirical testing method is applied for testing the correctness of the diag-
nostic system. Then, malfunction of the system is detected by inferring wrong or less
diagnoses than predicted by the test cases. We can distinguish empirical testing in context
of the working test suite and included in the integration test suite. For the working test
suite we commonly assume to achieve fully correct behavior with a total F-measure equal
to 1. For the integration test we can loosen this assumption by asking for a F-measure less
than1. Obviously, empirical testing requires test cases as test knowledge.

5.6.2. Sequentialized Empirical Testing

Usual empirical testing as introduced above focusses on the accuracy of the solved cases.
The cases are completely processed by the knowledge system, and only the final result of
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the case is compared with the expected solution of the test case.Sequentialized empirical
testing is not only interested in the comparison of the final solution, but also considers
the inspection of intermediate results during case processing. In general, sequentialized
empirical testing is a generalization of the previously presented empirical testing method.

Mechanics Sequentialized empirical testing applies a set of sequentialized cases. A
sequentialized test case itself is an ordered sequence of cases.

Definition 5.6.6 (Sequentialized Case)A sequentialized case is defined as an ordered list
of cases

c∗ = (c1, . . . , cn) ,

whereci ∈ ΩC are (sub-)cases describing the sequence of observations stored in the case
c∗. For each (sub-)caseci ∈ c∗ an intermediate solutionDci

is given, that defines the
temporary solution of the sequentialized case derivable at this point of problem-solving.

With sequentialized cases the developer does not only define an ordinary test case as ap-
plied to normal empirical testing, but splits up the test case into an ordered sequence. For
each sub-case of the sequence an intermediate solution can be defined. The execution of
the test is similar to normal empirical testing: For each sequentialized casec∗ the sub-cases
ci ∈ c∗ are passed in the defined order to the knowledge system. After the entry of each
sub-caseci the (intermediate) solution of the knowledge system is compared with the ex-
pected intermediate solution of the sub-caseDci

. If for any of the sub-casesci the expected
solutionDci

differs from the currently inferred solution of the knowledge system, then an
error is reported for this sequentialized casec∗.

Usage The sequentialized empirical testing method is applied for thoroughly testing the
correctness of the implemented structural knowledge. In contrast to empirical testing, test
cases additionally need to be structured by sequenced sub-cases containing a partial obser-
vation set and an intermediate solution. The construction of sequentialized cases denotes
an increased effort of case acquisition, which need to be done manually. However, the
application of the test method has a significant advantage compared to normal empirical
testing: Thus, the evaluation of a test case is more precise since the method not only re-
ports the fact that a case has been falsely solved, but also will point to the sub-case which
is likely to cause the error.

5.6.3. Inferential Constraints

The empirical testing method presented in the previous section is very simple and can be
easily applied, but has one main drawback: For an effective application of the method the
developer has to define a collection of appropriate test cases for each diagnosis he wants
to be included in the knowledge system. This task is often done manually and denote a
complex and time-consuming task. Inferential constraints simplify the empirical testing
method by the following way: The developer does not define full test cases, but only
collects necessary findings and attaches inferential constraints to this collection. These
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constraints contain a set of diagnoses, that must appear in conjunction with the set of
findings or/and a set of diagnoses, that must not be inferred if the given finding set is
observed. In this way, aunit caseis defined which is usually smaller than a real case and
is evaluated in a slightly different way.

Mechanics For theInferential Constraintsmethod we utilize unit cases which are de-
fined as follows.

Definition 5.6.7 (Unit Case) A unit caseuc is defined as a tuple

uc = (Fc,Dreq,Dexcl) ,

whereFc ⊆ ΩF is a set of observed findings in the case. The setDreq ⊆ ΩD consists of
diagnoses, which are required to be inferred for the given problem descriptionFc, and the
setDexcl ⊆ ΩD denotes a set of diagnoses, which must not inferred for the given problem
descriptionFc.

For each new diagnosisD the developer defines a set of unit cases withD ∈ Dreq and
D ∈ Dexcl. The method is executed by running the unit cases with the knowledge system.
For each unit case it is checked, if one of its inferential constraints has been violated, i.e.,
if a required diagnosis has not been inferred, or if an excluded diagnosis has been derived
by the knowledge system. Any violation of an inferential constraint is reported as an error.

Usage TheInferential Constraintsmethod is applied for testing the correctness of struc-
tural knowledge, since it directly checks the derivation of diagnoses for given observations.
The method requires unit cases as test knowledge.

5.6.4. Torture Tests

Another interesting way to test structural knowledge is implemented bytorture tests. With
this method the input of the knowledge system is gradually decreased or the quality of
the available knowledge is reduced. It is measured how the quality of the knowledge
system output, i.e., the inferred diagnoses, is affected by the decrements. The change of
the knowledge system behavior is formally given by its robustness, which can be defined
according to the IEEE Standard Glossary [59]:

Definition 5.6.8 (Robustness)The degree to which a system or component can function
correctly in presence of invalid inputs or stressful environmental conditions.

The robustness of a knowledge system can be systematically investigated by degradation
studies, which were introduced by Groot et al. [49, 48].
In a degradation study the quality of the knowledge system input is systematically and
gradually decreased, and it is measured how the inferred output of the knowledge system
decreases as a result.
Groot et al. consider three kinds of decrements with respect to the knowledge system
input:



5.6 Black-Box Testing of Structural Knowledge 131

• Decrease input data quality: For each test casec = (Fc,Dc, Ic) the size of observed
findingsFc is decreased, i.e., a number of findings contained in the problem descrip-
tion is modified or removed. With this study the system can be tested with respect
to incomplete input data.

• Decrease completeness of knowledge: The test cases are not modified, but struc-
tural knowledge is systematically removed from the knowledge base. This approach
requires some but little knowledge about the underlying knowledge representation
of the structural knowledge. This study investigates the behavior of the knowledge
system with respect to incomplete knowledge.

• Decrease quality of knowledge: This approach does not remove knowledge from the
structural knowledge container, but systematically modifies existing knowledge. It
is easy to see that this approach requires knowledge about the underlying knowledge
representation and cannot be classified as a black-box test anymore. With this study
the system can be tested with respect to the valuation quality of the developer, e.g.,
the behavior of the knowledge system that was developed by a biased expert.

For each study the accuracy is measured for each decrement of the input quality, the com-
pleteness of the knowledge, or the quality of the knowledge. Within this section we only
discuss the first approach, i.e., decrease input quality, since the remaining approaches rely
on the representation of the structural knowledge container. We discuss these approaches
together with the appropriate knowledge representation.

Mechanics Originally, torture tests are not intended to be used as automated tests but
are manually analyzed using degradation studies that display the mutation of the robust-
ness by precision/recall diagrams. For the agile development process the mechanics of
torture tests can be easily automated by introducing degradation thresholds for each study.
However, in order to find and adjust appropriate thresholds the results of the degradation
studies usually need to be inspected manually before starting the automated torture tests.
For an automated analysis of theDecrease Input Data Qualitystudy we simply need to
define the following thresholds:

TF : The minimum average of the computed F-measure for the de-
graded test cases.

TN : The minimum number of findings contained in a degraded test
case.

As discussed earlier, we use the F-measure in the context of our process model. The
implementation of a degradation study is quite simple: For each study we take the test
cases and incrementally decrease the number of observed findings for each case until the
number of remaining findings is greater than or equal toTN . The removed findings are
randomly selected. Each degraded case is used for a run with the knowledge system, and
we compute the F-measure. The F-measures of all decreased cases are averaged to a total
average F-measure of the processed study. Of course, the study is executed many times in
order to receive a sound result of the study. If the average of the total F-measures is less
thanTF , then an error is reported.
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Usage Torture tests are applied for testing the robustness of the implemented structural
knowledge. Robustness can be classified as a kind of correctness in presence of incomplete
input data or incorrect knowledge. The method requires test cases as test knowledge and
reasonable threshold values for the minimum number of required observations per case
and for the minimum F-measure for a solved case.

5.6.5. Summary

This section introduced various methods for testing structural knowledge. In particular, we
considered black-box testing methods that are independent from the underlying knowledge
representation. In general, black-box testing methods are suitable for simply testing the
correctness and robustness of the implemented knowledge, and require (often costly) test
knowledge, e.g., test cases. Specialized (white-box) tests, introduced in the preceding
chapters, are often used to investigate the understandability of the available knowledge,
and for detecting hidden anomalies. For white-box test often no or cheap test knowledge
is required, i.e., threshold values.
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5.7. Conclusion

In this chapter, we presented different approaches for implementing structural knowledge.
All these approaches were inspired by mental models of domain experts, and have been
proven to be suitable for real world applications in the past. Thus, we introduced abstrac-
tion knowledge, case-based knowledge, rule-based knowledge and set-covering models
for filling the structural knowledge container. For all approaches presented in this chapter
we also explained their implementation in the context of the agile process model; conse-
quently, we introduced appropriate test measures, learning algorithms, and restructuring
methods.
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6. The Strategic Knowledge
Container

The development of real world knowledge systems often embodies the definition of a large
set of diagnoses. For each diagnosis or group of diagnoses a number of tests (questions)
are contained in the knowledge base for establishing or excluding them. It is obvious that
prompting all available tests for all diagnoses denotes a complex and time-consuming task,
which is commonly not accepted by end-users. Furthermore, sometimes tests are risky and
should be only made under specific circumstances, e.g., if the utility of deriving a specific
diagnosis is higher than the involved risks or costs.
Therefore, large systems mostly contain strategic knowledge to guide the questionary, and
to avoid unnecessary questions for the particular cases. Strategic knowledge is used to
focus on relevant questions, and to capture all necessary information in a consultation.

6.1. Knowledge Representation

The knowledge included in the strategic knowledge container determines the dialog be-
havior of the knowledge system. In general, we distinguish between a local and a global
dialog strategy. Whereas theglobal dialog strategymainly guides the dialog by selecting
question sets appropriate for the current case, thelocal dialog strategyrefines the selected
question sets by indicating additional follow-up questions. The indication of questions and
question sets, respectively, is performed by indication rules.

Definition 6.1.1 (Indication Rule) Indication rulesare denoted by

r = cond(r) → indicate(Q1, . . . , Qn) ,

r′ = cond(r′) → ¬indicate(Q1, . . . , Qn) ,

wherecond(r) is the rule condition of ruler as defined in Figure 5.1 (p. 65) and the list
(Q1, . . . , Qn) either denotes an ordered collection of questions (local indication rule) or a
sequence of question sets (global indication rule), i.e.,Qi ∈ ΩQ ∨Qi ∈ ΩQS.
The rule actionindicateadds the specified questions (sets) to a dialog agenda in order to be
asked to the user. If an indication rule is withdrawn, then it is removed from the agenda.
The rule action¬indicate has the contrary meaning: The specified questions (sets) are
indicated not to be asked to the user, i.e., they are blocked at the dialog agenda. Rules with
action¬indicateare also calledcontra-indication rules.

Indication rules can be sub-classified into normal indication rules, clarification rules, and
refinement rules. Whereas normal indication rules activate additional question sets accord-
ing to the observation of specified findings, clarification and refinement rules depend on
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the current state of a diagnosis.Clarification rulesindicate additional tests for a suggested
diagnosis in order to decrease or increase the evidence of the diagnosis. Question sets indi-
cated byrefinement rulesare used to approve the state of an already established diagnosis
and to refine the established diagnoses with respect to underlying sub-diagnoses. There-
fore, the conditions of clarification and refinement rules consists of conditions among the
states of diagnoses.
Furthermore, the dialog interface can be optimized by suppressing answer alternatives of
specified questions, e.g., answers are hidden if they are not reasonable in the context of the
current case. Answer alternatives are hidden using suppress rules.

Definition 6.1.2 (Suppress Rule)A suppress ruleis denoted by

r = cond(r) → suppress(Q, v) ,

wherecond(r) is the rule condition of ruler as defined in Figure 5.1 (p. 65),Q ∈ ΩQ is a
(choice-)question, andv ∈ dom(Q) is a value ofQ. If the suppress rule is activated, then
the dialog is notified not to display the specified question valuev.

Indication rules implement local as well as global strategic knowledge, whereas suppress
rules are used for local strategic knowledge.
If more than one question set is indicated by rules and therefore included in the dialog
agenda, then it is not clear which question set should be primarily presented to the user.
The simple solution would select the question sets ordered by their indication order, i.e.,
the first indicated question set is presented at first. A more sophisticated solution for
competing question sets is the definition of priorities defined by a cost function.

Definition 6.1.3 (Cost Function) Thecost functionfor question sets is defined by

cost : ΩQS → Ωcost ,

whereΩQS is the universe of question sets andΩcost is the universe representing costs.
Using the cost function the risks, the required duration time, and the monetary costs of a
question set can be represented.

For simplicity the universeΩcost can be mapped toR. However, in practical applications
a more abstract universe with symbolic categories is simpler to acquire, e.g.,Ωcost =
{c1, . . . , c10}. In the following section, we present approaches for the local and the global
dialog strategy using indication rules and cost functions.

6.2. Knowledge Acquisition

Commonly, the usage of strategic knowledge follows a simple top-level pattern: When
starting a new dialog an initial questionary (init-question pattern) consisting of one or more
question sets is presented to the user. Based on this initial questionary further question sets
are indicated to be asked in a specified order. For the indication of further questions and
question sets we identify different approaches.
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6.2.1. Local Strategic Knowledge

Local strategic knowledge refines the local behavior of the dialog and is implemented us-
ing local (contra-)indication rules and suppress rules. In this manner, a dialog tree is con-
structed that performs tests appropriate for the current case and allows for an economic ac-
quisition of the case data. Questions that are activated by indication rules are appended to
thelocal indication agenda, and questions are added to thelocal contra-indication agenda,
if they were activated by contra-indication rules. Accordingly, questions are removed from
the agendas if the corresponding rules are drawn back.
In the user dialog questions included in the local indication agenda are immediately pre-
sented, if not also included in the contra-indication agenda. Before the rule is actually
presented to the user suppress rules are checked in order to possibly hide answer alterna-
tives, see suppress rules.

6.2.2. Global Strategic Knowledge

The task of the global strategic knowledge is the guidance of the overall dialog behavior,
i.e., the indication of question sets appropriate for the current case. The implementation
is carried out using global (contra-)indication rules and cost functions. For the acquisition
of global strategic knowledge we classify different approaches. Whereas the standard-
ized indication can be used only using strategic knowledge, the other approaches require
(arbitrary) structural knowledge for deriving diagnoses.

Standardized Indication The standardized indication simply uses indication rules
and contra-indication rules for defining a dialog behavior that is predefined by the de-
veloper. Indication rules are applied implementing a dialog tree covering all aspects of a
possible case in the considered domain. Typically, no cost function for question sets is
used. No additional structural knowledge is used, since question sets are presented due to
indication rules that depend on the currently gathered observations. The inference of the
standardized indication is quite simple: Indicated question sets are appended to a dialog
agenda and are subsequently presented by the dialog. However, already indicated question
sets are not presented if marked by a contra-indication rule.

Establish-Refine Strategy In contrast to the static definition of the dialog behavior
using the standardized indication the establish-refine approach dynamically builds a dialog
with questions sets (tests) appropriate for the current case. The main idea of the approach
is the establishment of coarse diagnoses, i.e., problem areas, using the init question pattern.
Then, further question sets are indicated in order to refine the established problem areas,
i.e., deriving underlying diagnoses with a more detailed meaning. The establish-refine
strategy is implemented with refinement rules. Due to its dynamic indication the order
of indicated question sets is not predictable. The application of a cost function can help
to define a priority of indicated question sets. With a defined cost function the indication
agenda is sorted (stable sort) in ascending order according to the defined costs.
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The establish-refine strategy requires a well-elaborated diagnosis hierarchy and additional
structural knowledge for deriving diagnoses, i.e., problem areas.

Hypothesize-and-Test Strategy The hypothesize-test strategy also uses the init
question pattern, to derive diagnoses that are used to indicate further question sets (tests).
Compared to the establish-refine strategy question sets are not indicated because of es-
tablished problem areas, but question sets are indicated in order to confirm or disconfirm
suggested diagnoses. Consequently, the hypothesize-test strategy is implemented using
clarification rules. For the implementation we can distinguish two approaches: The first
approach selects the most probable diagnosis for which indication rules are available. Only
question sets relevant for this diagnosis are indicated. The second approach selects all sug-
gested diagnoses and their indication rules, respectively. Due to the multiple selection of
different question sets it is reasonable to use a cost function defined for question sets.
With a cost function the indicated question sets are sorted (stable sort) in ascending order
according to their defined costs. In addition to the defined cost function the indication
of question sets can be ordered by their utilities. Then, question sets relevant for more
suggested diagnoses are indicated before question sets only relevant for fewer suggested
diagnoses.
The hypothesize-test strategy requires additional structural knowledge for inferring sug-
gested diagnoses in the current case and a defined cost function.

Utility-Based Strategy The utility-based strategy selects questions and question sets,
respectively, according to their relevance for currently suggested diagnoses. The init ques-
tion pattern is used to prompt an initial set of questions. Based on these questions diag-
noses are becoming suggested or probable. Then, additional questions or question sets
with the highest utility for the suggested diagnoses are selected. The utility of a question
is defined by its usefulness in order to establish or exclude the given diagnosis. The util-
ity of questions or question sets can be derived by background knowledge containing the
sensitivity/specificity for each diagnosis/question pair.
Alternatively, such knowledge can be inferred approximately by structural knowledge. For
example, the KMS.HT [89, 107] system applies the utility-based strategy. The knowledge
system uses set-covering knowledge and presents the question that is predicted most fre-
quently by the suggested diagnosis and that is currently not answered by the user. After
the question has been answered hypotheses are regenerated and the system again selects
the question that is predicted most frequently by the currently suggested diagnosis.
This strategy can be simply implemented and no additional strategic knowledge is re-
quired. However, since the dynamic indication yields an incoherent dialog behavior fre-
quently switching between different questions sets, it is seldom used in large applications.

Case-Based Strategy The case-based strategy requires a case base which consists of
highly structured cases, i.e., solved cases with a stored indication sequence of the pro-
cessed question sets. For any new indication decision the strategy selects a case of the
case base that is most similar to the currently entered case. Then, the order of the indicated
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question sets is determined by the stored indication order of the retrieved case.

Mixing Strategy The strategies discussed above can be mixed, e.g., a standardized in-
dication is extended by a utility-based indication. However, the use of different strategies
can decrease the clarity and structure of the strategic knowledge container. A more struc-
tured approach of a mixed strategy is the heuristic decision tree.
Heuristic Decision TreeUsing a mixed approach strategic knowledge is jointly acquired
together with structural knowledge. We propose the use of (heuristic) decision trees that
are easy to understand and commonly applied in technical domains. This type of strategic
knowledge is only focussed on retrieving a meaningful solution for a problem and does
not consider a standardized documentation. The development of heuristic decision trees
is described by the HEURISTIC DECISION TREE pattern [102]. Heuristic decision trees
weaken the criteria of normal decision trees by handling noisy or missing data, and by
providing not only established diagnoses for a given problem but also suggested solutions.
In summary, the pattern describes the use of an entry investigation (init question pattern)
that is used to determine the focussed problem area. Based on the located problem area
all refining diagnoses contained in the problem area are suggested. Then, question sets
corresponding to specific decision trees are activated in order to exclude or to confirm the
suggested diagnoses. In Figure 6.1 an example of a heuristic decision tree in a technical
domain is depicted. The decision tree determines the exact diagnosis of a bearing block
(”Lager”). Final diagnoses are connected as leafs of the tree (attached with numbers1–3).

Figure 6.1: Example of a heuristic decision tree for diagnosis faults in bearing blocks
(”Lager”).

For a more detailed discussion of the HEURISTIC DECISION TREE pattern together with
the description of variants we refer to Puppe et al. [106, Ch. 2].
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6.3. Testing Strategic Knowledge

Testing strategic knowledge ensures that the knowledge system implements the intended
dialog paths. For a thoroughly testing of strategic knowledge it would be necessary to
define an exhaustive dialog graph containing all reasonable dialog paths. It is obvious that
this task can evolve to be very costly and time consuming, and is therefore only tractable
for small systems.
In the following, we introduce alternative methods that try to minimize the acquisition
costs of test knowledge.

6.3.1. Partial-Ordered Question Sets

ThePartial-Ordered Question Setsmethod evaluates the correctness of the implemented
strategic knowledge: It can be applied statically for standardized knowledge and dynami-
cally with test cases for arbitrary strategic knowledge. As implied by the name, the method
requires a set of partial-ordered question sets as test knowledge. Such sets define typical
dialog sequences of real cases.

Definition 6.3.1 (Partial-Ordered Question Set)Let ΩQS be the universe of all question
sets. Apartial-ordered question setPOQS is a sequence

POQS = ( S1, . . . , Sn ) ,

whereSi ⊆ ΩQS is a set of question sets andn ≥ 1. ThePOQS defines the desired order
of a collection of question sets. In a typical dialog the question sets contained inSi should
be appear before the question sets specified inSi+1. Further, question sets contained within
aSi can appear in the dialog in an arbitrary order.

The following example may clarify the definition: For a medical application thePOQS =(
{entry examination}, {exam1, exam2}, {lab exam}

)
is defined, which states that the

question set ”entry examination” should appear before the question sets ”exam1” and
”exam2” followed by question set ”lab exam”. The order of the sets ”exam1” and ”exam2”
is denoted to be irrelevant.
Using a collection ofPOQS the developer of the knowledge system is able to specify a
set of typical (and intended) dialog paths in a convenient and compact manner.

Mechanics For the static evaluation of the test knowledge contained inPOQS strategic
knowledge needs to be represented by the standardized indication. A transitive indication
graph starting from the initial question sets is build. This is done by recursively tracing the
implemented indication rules contained in questions of the initial question sets. During the
recursive traversal after each new indication of a question set we test, if the order of any of
the definedPOQS has been violated, and we report an error in the case of a violation. A
warning is given for aPOQS , if thePOQS cannot be completely evaluated, i.e., the order
of the first part of thePOQS is correct, but the last question sets of thePOQS cannot be
indicated by any strategic knowledge.
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For an arbitrary representation of strategic knowledge,POQS can be applied for a dy-
namic evaluation: Then, test cases are used to generate knowledge system runs. For each
test case the dialog path is logged by means of an ordered sequence of indicated question
sets. These sets are compared with the implementedPOQS and significant differences are
analogously reported by errors and warnings as described for the static evaluation.

Usage The method evaluates the correctness of the implemented strategic knowledge
using pre-defined typical dialog paths, calledPOQS . If question sets contained in aPOQS
are indicated by the knowledge system in inverse order, then there exists evidence for an
incorrect behavior of the implemented strategic knowledge, and consequently an error is
reported. If the knowledge system indicate the correct order of the questions sets contained
in a POQS but the last question sets are not indicated, then this irregular behavior is
reported as a warning. For the static evaluation only a set ofPOQS is required. The
dynamic evaluation of the method additionally requires a set of test cases.

6.3.2. Diagnosis-Related Question Sets

Typically, the indication of question sets is strongly related with the diagnoses to be de-
rived. Then, specialized tests (question sets) are presented if a given diagnosis is suggested
or established. In such cases, theDiagnosis-Related Question Sets(DRQS) method can
be applied. We can define for each diagnosis a list of necessary question sets (partially
ordered) that have to be indicated and answered by the user if the diagnosis has been
established.

Definition 6.3.2 (Diagnosis-Related Question Set)Let ΩQS be the universe of all ques-
tion sets andΩD is the universe of all diagnoses. Adiagnosis-related question setDRQS
is a set

DRQS (C) =
{

P1 . . . , Pn ; evalFlag
}

,

whereC = (D1 ∧Dn)∧ (D1 ∨Dm) is a condition consisting of diagnoses withDi ∈ ΩD,
andPi ⊆ ΩQS are partial-ordered question sets (POQS ); a DRQS (C) defines a set of
alternativePOQS . The conditionC is true, if the constrained diagnoses are indicated in
a given case. Then, at least onePi contained in{P1, . . . , Pn} need to be fulfilled, i.e.,
the question sets inPi need to be indicated in the defined order. For the evaluation of the
POQS we consider a givenevalFlag ∈ {after , before, free}: For the valuesafter/before
the given question sets need to be indicated after/before the diagnoses inC have been
derived; no order of indication of the question sets and diagnoses need to be considered
for the valuefree.

It is easy to see that theDRQS method is an extension of the POQS method, and now
additionally considers a set of derived diagnoses.

Mechanics For the evaluation of the test method we apply a set of test cases to the
knowledge system. Similarly to the Partial-Ordered Question Set method the dialog path is
logged for each test case. The logged dialog path is represented by a sequence of indicated
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and answered question sets. For each test case the appropriateDRQS is selected, i.e.,
DRQS containing the diagnoses derived by the test case. The indication log is compared
with the correspondingPOQS defined in theDRQS . An error is reported, if the stored
dialog sequence cannot be mapped to at least onePOQS contained inDRQS . For values
of evalFlag other thanfree we additionally check, if the question sets were indicated before
or after the diagnoses has been derived.
With the evaluation ofDRQS the following problem can arise: The indication order of the
specified question sets can be violated, if a subsequent question set is accidently indicated
because of another derived diagnosis. In this case a simple comparison of the indication
log is not sufficient, and we additionally have to parse the activated indication rules of the
presented question sets.

Usage The method is used to test the correctness of the implemented strategic knowl-
edge together with existing structural knowledge. Therefore, this method can only be ap-
plied, if structural knowledge is available for the diagnoses contained in the implemented
DRQS . We additionally expect test cases to be present as test knowledge.

6.3.3. Test Case Duration

TheTest Case Durationmethod evaluates an important aspect, which should be considered
besides the correctness of the strategic knowledge. For documentation and consultation
systems the duration time of a dialog is a very significant measure for the quality and
acceptance of the system. Thus, users of the system are usually short in time and do
not want to enter useless and time-consuming information. For this reason, the practical
success of a knowledge system project also depends on the duration of the implemented
dialog. Benchmarks are generated by preliminary studies that capture the actual state of
the domain before bringing the system into routine usage. Mainly, the benchmarks contain
information about the duration and quality of examinations (e.g., in a medical domain).

Mechanics The typical duration of a dialog can be measured by manually quantifying
the time during a user is running a case. For a sample of cases a statistic can be generated
yielding the mean duration of a case. Obviously, a short duration increases the practica-
bility of the system. The main drawback of this method is its incapability of automation,
which declines it from the continuous application during the development of the knowl-
edge system.
An approximate method for this test isquestion counting: Test cases are applied and passed
to the system. For each finished case the answered questions and indicated question sets
are counted. The mean number of answered questions and indicated question sets for all
test cases can give an approximation of the typical duration time, when assuming an es-
timated and constant duration for each answered question (e.g., 5 seconds). This simple
measure can be improved by an adapted quality function not only counting the number
of questions and question sets, respectively. The proposed measure may include different
duration weights for the different types of questions, e.g., choice question have typically a
lower duration weight than numerical questions. Furthermore, a choice question can obtain
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an adapted weight depending on the number of available answer alternatives (additionally
regarding the length of the presented texts of the question and answers). The hierarchical
structure of the questions and question sets, respectively, also can affect the dialog du-
ration, e.g., follow-up questions not presented to the user until becoming necessary may
reduce the dialog complexity and consequently the duration time.
The test reports an error, if the calculated duration exceeds a value that is greater than
105% of the provided benchmark. If the calculated time is greater than 100% and less
than 105%, then the method reports a warning. Of course, the threshold can be adapted
with respect to the specific requirements of the knowledge system project. Sometimes
an average benchmark for the duration time is not sufficient for a reasonable test of the
dialog efficiency, e.g., the test suite contains very simple but also very complex and time
consuming cases. Then, the method can be improved by providing individual duration
benchmarks for each test case.

Usage The method checks the practicability of the knowledge system by approximating
its efficiency during system usage. The test can be automated and needs a collection of test
cases as test knowledge. Additionally, the test needs a benchmark value, which assumes
the desired duration time of a typical dialog. This benchmark value is often acquired by
preliminary studies preceding the knowledge system development.

6.4. Restructuring Strategic Knowledge

This section briefly discusses the application of restructuring methods to the strategic
knowledge container. Mainly, restructurings of the strategic knowledge container are
methods corresponding with the ontological container. However, we will also present
methods for restructuring elements of the strategic knowledge container.

6.4.1. Propagation of Ontological Restructuring Methods

Changes caused by restructuring methods of the ontological knowledge container also
need to be propagated to the strategic knowledge container. In the following, we summa-
rize the changes of ontological changes on indication rules.

TRANSFORMMCINTOYN If the multiple-choice question is contained in the rule con-
dition of an indication rule, then it is replaced by the yes/no questions corresponding to
the original values of the multiple-choice question. If the multiple-choice question was
originally indicated by the indication rule, i.e., the restructured question is contained in the
rule action, then it is replaced by the generated yes/no questions.

TRANSFORMYNINTOMC If one of the yes/no questions is contained in a rule condi-
tion, then it is replaced by the multiple-choice question with the corresponding value. For
an indication rule with one of the yes/no questions in the rule action, the multiple-choice
question is now indicated instead of the original question.
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TRANSFORMNUMINTOOC The restructuring method is only applicable, if the numer-
ical value range can be discretized into distinct sub-partitions. Then, the condition of an
indication rule containing the original numerical question is modified, so that the one-
choice question with the discretized value is contained. If the numerical question was
indicated by a rule action, then the new one-choice question is indicated, instead.

SHRINKVALUE RANGE If the restructured choice-question is contained in a rule con-
dition, then the conditioned value is modified with respect to the transformation matrix.
No change is required for indication rules containing the restructured question in the rule
action.

INTRODUCEABSTRACTION If the condition of an indication rule contains all abstracted
findings, then replace these findings by the newly created abstraction. The rule action of
indication rules is never affected by this method.

MOVEQUESTIONVALUE For this restructuring we only consider the condition of indi-
cation rules. If the condition of an indication rule contains the moved value assigned to the
original question, then the condition is modified so that the new targeted question is now
assigned to the moved value. However, the method can cause conflicts, e.g., by generating
cyclic indication graphs. In this case, the user has to decide manually, if a rule has to be
removed from the strategic knowledge container.

REMOVEQUESTION If the removed question is contained in a rule condition of an indi-
cation rule, then we have to distinguish two cases:

1 Only the removed question is contained in the condition. Then, we remove the rule
from the strategic knowledge container.

2 The removed question is contained in the rule condition among other questions.
Then, the user has to decide about
2.1 only removing the sub-condition containing the removed question, or
2.2 removing the entire rule.

If default values are specified for case 2, then this restructuring method can be applied
automatically; otherwise an interaction with the user is necessary. For indication rules
containing the removed question in the rule action, we have to similarly decide as described
above: The rule is removed, if only the question is contained in the rule action. For a
rule action containing more than the removed question, we have to consider the decisions
described in case 2.

REMOVEDIAGNOSIS If a diagnosis was removed from the ontological knowledge con-
tainer, then we analogously have to proceed as described for removing a question. How-
ever, we only have to consider the event, that the diagnosis is contained in a rule condition,
since diagnoses cannot be indicated, in general.
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EXTRACTQUESTIONSET If a question set was extracted from another question set,
then we have to consider indication rules containing the original question set in their rule
action. All rules indicating the original question will also indicate the extracted question
set. It is worth noticing, that the ordering of the indicated question sets is determined by
defaults.

COMPOSEQUESTIONSETS Similarly to the EXTRACTQUESTIONSET method, only
the rule actions of indications rules need to be considered, since question sets cannot be
included in rule conditions. Then, all rules containing one of the combined question sets
in their rule action are modified, so that they now indicate the composed question set.

6.4.2. Restructuring Methods of Strategic Knowledge

We briefly introduce restructuring methods that consider the change of implemented strate-
gic knowledge.

COMBINE INDICATION The developer of the knowledge system usually defines a ques-
tion set (test) asking specialized findings, which can refine the state of a given diagnosis.
Sometimes additional tests for specific diagnoses become necessary, and then often a ques-
tion set containing new findings is implemented. The new question set should be indicated,
whenever the old question sets are indicated. The restructuring COMBINEINDICATION

provides a comfortable method for combining indications of several question sets.
The developer specifies a setQ of question sets, for which their indication should be com-
bined. Then, all strategic rules indicating at least one question setQS ∈ Q are modified,
so that they also indicate the remaining question setsQS ′ ∈ Q \ {QS}.

MOVEINDICATION Due to the evolutionary design of the knowledge base a question set
may have become redundant, e.g., all important questions contained in the question set
have been moved by preceding restructuring methods. Then, with the MOVEINDICATION

method all rules that are originally indicating the redundant question set are modified, so
that these rules are now indicating another question set.

Restructuring of Strategies If the implementation of the strategic knowledge con-
tainer does not follow an organized approach, then the restructuring of the entire strategic
knowledge may become necessary. Such a restructuring can imply the definition of cost
knowledge or the introduction of a strategic approach, e.g., a hypothesize-and-test strategy.
Also a mixed approach including the establish-refine and the hypothesize-and-test strategy
can be reasonable. The modification of indication rules is a complex task and it is difficult
to provide automated methods for this. Nevertheless, the developer can be supported by
appropriate tools with specialized editors for indication rules. Furthermore, a sufficient
test suite is also necessary. Although, this type of restructuring was not considered in the
context of this thesis it is a promising direction for future work.
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6.5. Summary

In this chapter, we have introduced the strategic knowledge container. Strategic knowledge
is an essential container for large knowledge systems, when not all available questions are
required for inferring an appropriate solution or acquiring all questions is too complex and
costly for the user. For the indication of questions and question sets, respectively, we dis-
tinguish local and global strategic knowledge, and we have presented different approaches
for their implementation. According to the agile process model we have described testing
methods and restructurings of the strategic knowledge container.



7. The Support Knowledge
Container

Often the development of a diagnostic knowledge system also includes the application of
informal knowledge for specified entities of the knowledge base, i.e., diagnoses or find-
ings. The terminformal support knowledgecomprises unstructured or semi-structured text
and multimedia content like text book entries, images, movies or sounds. It is used to in-
formally describe diagnoses or findings in more detail. Then, the ontological entities are
connected with support knowledge by a collection oflinks. In the following, we describe
situations in which support knowledge can be used, and we present methods for testing
structural knowledge.

7.1. Roles of Support Knowledge

Additional, informal knowledge can support the user of the knowledge system and is ap-
plied for the following reasons:

• support the user during data acquisition
• support the user with the retrieved problem solution

We now will discuss theserolesof support knowledge in more detail.

7.1.1. Support during Data Acquisition

The appearance of support knowledge for data acquisition should be optional and only be
present on demand, since it can increase the dialog size significantly, which is not desirable
with respect to the dialog efficiency. When supporting the user during data acquisition we
distinguish several support tasks.

Support for Performing an Examination In technical and medical domains often
specialized tasks need to be performed, before a finding can be acquired. For example, the
ECHODOC system supports the user during the transesophageal echocardiography (TEE)
examination. Performing this examination is difficult for unexperienced users, especially
the correct adjustment of the examination device, which is required for a qualitative ac-
quisition of findings. Therefore, the system embodies a well-elaborated support container,
which provides multimedia based support of device adjustment for each finding to gather.
Support is given by additional texts describing the correct examination step including a
correct setting of the device. Besides the presented informal content even more structured
knowledge can be offered: The integration ofwizardscan interactively clarify the correct
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execution of an examination. Then, a set of control questions connected with structural
knowledge can determine the correct setting of the device.

Identification of Findings Providing the actual value of a question can be difficult for
the user of the system. E.g., the user may not feel certain about the correct actions about
determining a finding. Support knowledge can help the user by additional information
(e.g., images and movies) depicting exemplary characteristics of the explained finding.
For example, in the ECHODOC system the user is supported by images that are used for a
visual interpretation of findings.

Description of Examinations Besides aiding the executing of an examination, sup-
port knowledge can be also used for describing the purpose and context of the performed
examinations. This kind of support knowledge is mainly represented by texts, and is often
useful when an alternative list of optional examinations are offered, and the user has to
select manually the suitable examination.

7.1.2. Support the Retrieved Solution

When the system has derived a solution for a given problem support knowledge can be
used to help the user with interpreting the derived solution.

Describing an Inferred Solution Support knowledge can be used to describe a rep-
resented diagnosis in more detail. For example, text-book knowledge about the diagnosis
can be offered by hyper-media texts that explain the pathology or therapy possibilities in
more detail. Additionally, the description of the inferred solution can contain an estimation
about the correlated costs and affiliated risks. However, this type of support knowledge can
be extended in order to substitute a (possibly weak) structural container: In some cases a
well-elaborated structural knowledge container is not reasonable or not possible. In these
cases knowledge base design probably will focus on a weak structural content only infer-
ring coarse diagnoses, that are linked with support knowledge. The user of the system is
able to browse through a network of hyper-linked texts including images and movies, in
order to refine the previously inferred coarse diagnosis. On the one hand, such a system
does not require the costly formalization of structural knowledge and thus simplify the
development process. On the other hand, in such a system the user is expected to be suf-
ficiently experienced to find the correct and final solution in a manual way. As mentioned
in Section 4.2 (p. 47) therapies are treated as diagnoses, and therefore support knowledge
describing therapies in more detail is defined analogously.

Support Therapy Execution In contrast to diagnoses, therapies can contain support
knowledge for performing the derived therapy. Then, the support knowledge, e.g., con-
tains advices and guidelines about the dosage and the application duration of the inferred
therapies. This kind of support knowledge can be enhanced by interactivewizards, that,
e.g., compute the correct dosage for the specified patient.
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7.2. Acquisition of Support Knowledge

The acquisition of support knowledge is quite simple: For each diagnosis and question that
should be extended by support knowledge a set of links is specified. Each link represents
a kind of content supporting the corresponding diagnosis or question.
Before using the support knowledge container it is important to decide about the technical
aspects of storing the support knowledge. Additional content like hypertext, images or
movies can be stored in a (structured) file system or a data base. Furthermore, for the
construction of a large support knowledge container it is reasonable to consider the use
of a content management system, which allows for a structured approach of managing
various kinds of support knowledge.

7.3. Testing Support Knowledge

Since the support knowledge container mostly consists of unstructured data testing can
be hardly automated. However, we present methods for testing the links between the
ontological entities and the informal support knowledge.

7.3.1. Plain Link Testing

A very simple but useful test method isPlain Link Testing. For all available links it is
tested, if the linked content is accessible.

Mechanics The method simply checks in a straightforward way, if the specified links
are available, i.e., if the linked content can be retrieved. If not all links lead to content,
then an error is reported. The test is simple but useful, when non-local content is linked
to the system, that is not administered by the developer of the knowledge system. Web-
content like web-pages or data bases available by a web-interface are examples for non-
local support knowledge.

Usage The method checks the correctness of the implemented support knowledge, since
unavailable content yield to an unpredicted behavior of the knowledge system. For this
method no additional test knowledge is required. However, for checking non-local content
an appropriate infrastructure is needed, e.g., an internet connection.

7.3.2. Static Link Testing

TheStatic Link Testingmethod provides an overview of the available links to the particular
support knowledge entries.

Mechanics The method checks for each (final) diagnosis and for each question, if links
to support knowledge are available and counts the number of links for each entity for
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statical use. If for one entity no support knowledge is available, then an error is reported.
A warning is given, if for an entity a disproportionate number of links has been attached,
e.g., significantly more or less than the average.

Usage The method checks for anomalies contained in support knowledge, since miss-
ing links or entities with a disproportionate number of links represent irregularities in the
knowledge base. For the method no additional test knowledge is required.

7.3.3. Ambivalent Link Testing

Often, the same entry of support knowledge (e.g., text book chapter) is linked to more than
one ontological entity. Then, theAmbivalent Link Testingmethod can be applied in order
to test, if the linkage has an ambivalent meaning.

Mechanics For each support knowledge entry linked to more than one entity we check
the semantical relationship between these entities. It is easy to see, that for this task on-
tological knowledge is needed as test knowledge, that enables for a semantical check be-
tween ontological objects. If the support knowledge entry is linked to entities which have
no semantical relationship, then this is reported as a warning.

Usage The method evaluates the knowledge for anomalies, which can be present by
ambivalent links. The test method requires ontological knowledge, which contains seman-
tical relationships between the implemented ontological entities.

7.4. Restructuring Support Knowledge

Due to its informal characteristics restructuring of support knowledge can be hardly sup-
ported by semi-automatic methods. However, for the ontological restructuring methods
REMOVEQUESTION and REMOVEDIAGNOSIS we need to consider the deletion of the
attached support knowledge.

7.5. Summary

In this chapter, we have introduced the support knowledge container, which consists of
(mostly) informal knowledge like texts, images or movies but also can contain structured
knowledge used by interactive wizards. Support knowledge can be added to diagnoses
and findings for aiding the user during data acquisition, and for helping the user with
a retrieved problem solution. Although support knowledge is mostly unstructured and
automated testing is hardly possible, we presented (simple) methods for evaluating the
support knowledge container.
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8. Implementation of the Agile
Process Model with d3web

In this chapter, we present the system d3web– a shell-kit for developing and using diagnos-
tic knowledge systems. We sketch the historical evolution of the D3 system, the predeces-
sor of d3web, and we give an overview of the d3web system and its components. Then, the
components of the d3web system will be introduced in more detail. A brief comparison
of the knowledge acquisition environments of the predecessor D3 and d3web.KnowME
concludes this chapter.

8.1. Overview

The d3web system originates from the D3 system, which has been applied since 1989 in
many medical, biological, and technical domains; e.g., Puppe [100] gives an overview
of applications until 1998. D3 itself was the successor of the systems MED1 [105],
MED2 [98], and CLASSIKA [103], and provides a monolithic program for the acqui-
sition and the use of diagnostic knowledge systems. D3 was initially running on Apple
systemsc©, and later was ported to Microsoft Windowsc© systems. Since 1996 the system
D3 is commercially distributed and maintained by the IISY AG, which so far has estab-
lished many successful systems especially in the technical domain. Actually, the com-
mercial system was renamed to SOLVATIO, including many extensions like multi-user
support and customizable web interfaces. For a detailed historical overview till 1996 we
refer to [104, App. B].
The presented d3web system is a complete Java-based re-implementation of the D3 system
started in 2001. Many colleges and students at the Department of Computer Science VI
at the Ẅurzburg University were involved in this implementation project. The current
distribution of the d3web system can be downloaded from

http://www.d3web.de .

Actually, d3web is a system family consisting of a set of separate components, all based on
the root component d3web.Kernel. Figure 8.1 shows the main components of the d3web
system family.

http://www.d3web.de


154 Chapter 8: Implementation of the Agile Process Model with d3web

Figure 8.1: The main components of the d3web system family, including the kernel, a
knowledge modeling environment, a web-based dialog, and a web-based tu-
toring system.

The component d3web.Kernel provides the basic functionality of a diagnostic knowledge
system, e.g.,

• the representation of knowledge bases and cases,
• the persistence management of knowledge bases and cases,
• a set of problem-solvers handling

– structural knowledge (abstraction, case-based knowledge, categorical knowl-
edge, score-based knowledge, symbolic set-covering knowledge)

– strategic knowledge (standardized indication)
• a multi-user architecture, which facilitates simultaneous problem solving sessions

The component d3web.KnowME represents the knowledge modeling environment for the
development, maintenance, and validation of diagnostic knowledge systems. We describe
the components of this component in the following sections in more detail. The component
d3web.Dialog represents the user interface of an implemented knowledge system, provid-
ing a web-based server for running cases and retrieving problem solutions. The compo-
nent d3web.Train [57] allows for the development and the application of knowledge-based
tutoring systems. This component is not considered in the presented work. As an impor-
tant aspect of this framework, the previous monolith was split up into three independent
applications only based on the same kernel, i.e., each component linked with the kernel
represents a stand-alone program.
In this work, we want to introduce the most important aspects of the application
d3web.Dialog for using the knowledge systems and the knowledge modeling application
d3web.KnowME in more detail.
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8.2. Using Knowledge Systems: d3web.Dialog

The d3web.Dialog is a server application written in Java using the popular servlet container
APACHE TOMCAT [143]. The server application requires a Java JRE1 1.4 or better. We
have deployed the server on Microsoft Windowsc© and Linux systems, but in principle the
server can be installed on any operating system, for which the required JRE is available.
For the user-client a web-browser is required. Currently, the implementation of the client is
mainly optimized for Microsoft Internet Explorer 5.5 or better, but Netscape 7/Mozilla 1.5
or better is also possible.

8.2.1. Running a Case

In Figure 8.2 an instance d3web.Dialog is shown. In general, the dialog is divided into
three main panes: The navigation pane, the acquisition pane, and the result pane.

Figure 8.2: An instance user dialog of d3web.Dialog.

The Navigation Pane The left pane shows the navigation pane, which basically pro-
vides the question set hierarchy and the diagnosis hierarchy, respectively. Indicated ques-
tion sets, i.e., question sets to be asked to the user, are colored in green. The currently

1Java Runtime Environment
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processed question set is colored in yellow and presented in the center pane, i.e., the ac-
quisition pane. Already answered question sets are colored in gray. Typically, the sys-
tem guides the user dialog by indicating question sets according to the specified strategic
knowledge. However, the user is also able to manually indicate question sets, by simply
clicking the particular question set. Then, the selected question set will be presented in the
center pane, immediately.

Figure 8.3: The derivation of a given diagnosis can be explained: For the score-based
knowledge representation, the fired scoring rules are shown in green color.
Rules with a false evaluation of their condition are colored in red.

The Acquisition Pane The acquisition pane is located in the center of the application,
and presents the currently asked questions to be answered by the user. Analogously to the
navigation pane, the already answered questions are colored in gray, the pending questions
are colored in green, and the currently asked question is colored in yellow. Follow-up ques-
tions can be subsequently indicated and are inserted below the primary question, marked
by an arrow→ (e.g., questionStartershown in Figure 8.2). Answered question sets are
completed the continue button. The case is instantly finished without answering pending
questions by the result button.

The Result Pane The result pane at the right shows the currently derived diagnoses
with respect to the collected findings; suggested and already established diagnoses are
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displayed. The probable diagnoses are the diagnoses, for which the score-based or cate-
gorical structural knowledge has derived an established state; the suggested diagnoses are
the diagnoses, for the score-based structural knowledge has derived a suggested state. The
derivation of a single diagnosis can be explained by clicking the correspondingE button.
The derivation of the diagnoses in Figure 8.3 is based on available score-based knowl-
edge. Furthermore, the current case can be evaluated by using a case-based reasoning
plug-in (cases are required), and a set-covering reasoning plug-in (set-covering knowledge
required).
Figure 8.4 shows the derived solutions based on set-covering knowledge (Covering so-
lutions). Then, solutions can be explained in more detail or further diagnoses can be
interactively evaluated using set-covering knowledge.

Figure 8.4: The solutions based on set-covering knowledge can be derived on demand;
additional diagnoses can be evaluated interactively.

Alternatively, the most similar cases for the current case can be retrieved using case-based
structural knowledge (Start case comparison). If cases are available, then the retrieved
cases are listed in a table, and detailed comparisons of the particular cases can be requested
as shown in Figure 8.5.
At the top of the result pane, the user can access a menu for switching from the dialog to
the admin menu. This menu provides menus for starting a new case, saving the current
case, and loading a previously saved case. Additionally, there are menus for uploading a
new knowledge base, switching to another available knowledge base, and for accessing
the advanced settings of the dialog.
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Figure 8.5: For the current case the most similar cases in the available case base can be
retrieved, and a detailed comparison of the cases can be received on demand.
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8.2.2. Concluding a Case

A running case is finished, either if the user manually clicks theResultbutton, or if the
system has presented all indicated questions. Then, in the center pane an overview is given
showing the derived diagnoses and a summary of the collected findings. The case can be

Figure 8.6: The result pane of a finished case: Solutions and answered questions (Obser-
vations) are shown in the center pane; the case can be stored and printed.

stored and annotated with additional information, e.g., the author of the case, a comment
on the case, and comments on the derived diagnoses.
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8.3. Developing Knowledge Systems:
d3web.KnowME

The system d3web.KnowME is a rich client application written in Java. A Java JRE
1.4 or better is expected to be installed on the computer. Alternatively, a distri-
bution of d3web.KnowME containing an appropriate JRE is available for download.
d3web.KnowME is an integrated workbench for the agile development of diagnostic
knowledge systems. It provides editors for the construction, the validation, and the main-
tenance of diagnostic knowledge. Technically, d3web.KnowME is a framework which
initially consists of a small application with the basic editors for the construction of the
question hierarchy and the diagnosis hierarchy. Furthermore, the system is extended by
plug-ins providing additional functionality. For example, editors for the development of
structural and strategic knowledge are embedded as plug-ins as well as editors for the
corresponding test knowledge.
In Figure 8.7, the system d3web.KnowME is shown. In the left pane the question hi-
erarchy and the diagnosis hierarchy can be edited. These fixed editors are extended by
plug-ins, mostly embedded in the right pane of the application. Specialized plug-ins

Figure 8.7: The standard view of d3web.KnowME, showing the question and diagnosis
hierarchy at the left pane and the property editor at the center pane.

are the automated test tool d3web.QuaSiModu and a tool for automated restructurings.
The architecture allows for a flexible extension of the d3web.KnowME framework, and
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has been proven to be suitable during the last years of development. For example, the
d3web.KnowME application also has been configured with specialized plug-ins in order
to facilitate the development of intelligent tutoring systems, i.e., d3web.Train. The im-
plemented knowledge base is stored in a zipped jar file, containing the knowledge of all
defined knowledge containers as well as corresponding test knowledge and additional de-
velopment documentation, e.g., stories collected during the planning game.
In the following sections, we will introduce d3web.KnowME and its editors used for the
agile development of diagnostic knowledge systems in more detail. The functionality of
d3web.KnowME will be explained using an exemplary knowledge base considering the
fault diagnosis of cars. This knowledge base is only used for demonstrating issues, and is
not intended to model real world car diagnosis.

8.3.1. The Planning Game

Thetask editorof d3web.KnowME is a plug-in for defining, steering, and finishing stories,
gathered during the planning game. In Figure 8.8 the task editor is shown. A new story

Figure 8.8: The documentation of stories using the task editor of d3web.KnowME.

is defined by starting a new task. The name of the task, the author of the task, and a
description of the task needs to be specified. The progress of the task can also be stated,
and it ranges between 0 and 100; the value 0 stands for a currently not started task, and
the value 100 represents an already finished task. According to the planning game defined
in Section 2.2.2 (p. 18), a task can be attached with information about the type (new,
extension, correction) of the story and its priority (nice to have, significant, essential). An
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already existing knowledge base object (e.g., diagnosis, question) can be linked with the
task, if available. This feature allows for a convenient integration with the other editors.
All defined tasks are documented in the task editor in order to supply a detailed overview
of the already finished or still pending tasks. For convenience, finished tasks (i.e., with
progress 100) can be hidden in the task view.

8.3.2. Automated Tests with d3web.QuaSiModu

For the agile development the integration of appropriate test tools is a significant re-
quirement. The knowledge modeling environment d3web.KnowME offers the plug-
in d3web.QuaSiModu (Qualit äts-Sicherungs-Modul – quality assurance module) for
testing implemented knowledge. The initial implementation and design goals of
d3web.QuaSiModu are described in [3] in more detail. The plug-in d3web.QuaSiModu
is shown in Figure 8.9.

Figure 8.9: Definition of a
test suite with
d3web.QuaSiModu.

Figure 8.10: The verbose result view of
d3web.QuaSiModu.

For example, d3web.QuaSiModu offers methods for empirical testing, for static and case-
based ontological testing, and for static analysis of structural and strategic knowledge. The
test suite is defined by selecting tests for the current knowledge system project (e.g., see
Figure 8.9).
All tests are processed automatically and a visual feedback is given by a colored status bar,
which turns green, if all tests have been finished successfully. If any of the tests reports
an error, then the color of the status bar changes to red. This metaphor is known from
JUnit [44], a well-known test framework for the programming language Java. In addition
to this boolean visual feedback we added the yellow status bar to d3web.QuaSiModu; the
bar turns yellow, if warnings but no errors are reported. Furthermore, a more detailed
report of each test result is presented (e.g., see Figure 8.10). For a convenient analysis by
the domain experts an export to Microsoft Excelc© is provided , as shown in Figure 8.11
. For the practical application of automatic tests it is necessary to facilitate anignore
feature for detected warnings and errors. Then, the developer of the knowledge system
has been notified about this irregularity, but he cannot or does not want to perform any
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Figure 8.11: Verbose result trace of the static frequency analysis exported to MS-Excelc©.

action to remove this issue. Nevertheless, the warnings and errors on the ignore list need
to be accessible for the developer any time. In the following sections we will explain the
application of single test methods of d3web.QuaSiModu in more detail.

8.3.3. Handling Ontological Knowledge

Defining Ontological Knowledge

The ontological knowledge container is filled by defining the hierarchies of questions and
diagnoses. Questions are grouped by question sets, and diagnoses can be structured by
other diagnoses representing an even more coarse diagnostic concept. In Figure 8.7 (p.
160) the standard view of the d3web.KnowME system is shown. The left pane displays
the hierarchies of questions and diagnoses in tree views. Question sets, questions, and
diagnoses can be easily inserted, modified or deleted by using the context menu of the
corresponding tree pane. The current location of a single question set, question or diag-
nosis can be simply changed by using drag and drop. However, using drag and drop the
modification of the hierarchical relationship is not propagated to possibly attached knowl-
edge (e.g., strategic knowledge) as it is done when using the corresponding restructuring
method. The application of restructuring methods is explained in Section 8.3.9 (p. 177)
in more detail. The property editor shown in the main pane of Figure 8.7 displays and
modifies additional ontological properties of the currently selected knowledge base ob-
ject, i.e., question set, question, and diagnosis. For example, the name of the object, its
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corresponding question text, the value range, and further properties can be viewed and
edited.

Testing Ontological Knowledge

d3web.QuaSiModu offers a specialized test for inspecting ontological knowledge,
i.e., static ontology testing (p. 53). Actually, the corresponding test provided by
d3web.QuaSiModu is namedTest Static Frequency Analysis, since it is also able to in-
spect static properties of structural and strategic knowledge.

Figure 8.12: The results of the ontological tests are shown in a tree view.

In Figure 8.12 the results of the test method are shown. An overview of the static properties
of the knowledge base is given, i.e., the occurrence of the different types of diagnoses and
questions is reported in absolute numbers and percentages. The results can be exported to
an XML file, which commonly is converted via XSL into a TAB-separated text file. Thus,
the data can be analyzed with a spread sheet like Microsoft Excelc© in a convenient way.

8.3.4. The General Rule Editor

The general rule editor, as shown in Figure 8.13, presents the rules related with the knowl-
edge base object currently selected in the question or the diagnosis hierarchy. Thus, strate-
gic knowledge (indication rules), structural abstraction knowledge (abstraction rules), and
structural score-based knowledge (scoring rules) are jointly displayed and edited. At the
top left pane of the rule editor the derivation rules of the selected object are shown, i.e.,
rules deriving a value for the object; in our example the diagnosis ”Clogged air filter”. The
top right pane displays all rules, for which the selected object has a meaning, i.e., all rules
that contain the selected object (”Clogged air filter”) on their condition part. If a rule in
one of the top panes is selected, then the rule is presented in more detail in the center pane.
In this pane, the rule can be modified, deleted or duplicated (cloned). The first tab of the
pane offers the view and modification of the rule condition and the rule action. Due to
their rare usage, the rule exception and the rule context are edited in separate tabs.
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Figure 8.13: The general rule editor; the rules of the selected question or diagnosis are
shown (e.g., diagnosis ”Clogged air filter”).

Rule conditions and rule actions can be visually modified as shown in Figure 8.14. Condi-
tions are simply defined or modified using the context menu. Thus, new conditions can be
created, the existing condition can be extended by a new sub-condition, or parts of the ex-
isting conditions can be changed. Rule actions are defined in the bottom pane. It is worth
noticing, that the type of rule action specifies the kind of applied knowledge container. The
editor provides action types for abstraction knowledge (Set/Add question value), for struc-
tural knowledge (Heuristic score), and for strategic knowledge (Indicate/Contra-indicate
question (set), Clarify/Refine diagnosis).

8.3.5. Handling Structural Knowledge

In the previous section we introduced the general rule editor as an all purpose editor for cre-
ating, modifying, and removing various kinds of rule-based knowledge. Besides strategic
indication rules, rule-based abstraction knowledge, and categorical rules, the rule editor
allows for the modification of score-based rules. However, for a structured acquisition
of many score-based rules even more specialized and convenient editors are offered by
the d3web.KnowME system. Theheuristic tableprovides a specialized editor for simple
scoring rules, and theheuristic detail tableallows for the acquisition of one-level scoring
rules.
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Figure 8.14: Rule conditions can be easily defined and modified by using the context
menu.

Defining Structural Knowledge

In addition to the heuristic table and the heuristic detail table we also introduce the set-
covering table for defining symbolic set-covering knowledge.

The Heuristic Table In Figure 8.15 the heuristic table editor is shown, which is used
for an efficient capture of simple scoring rules. For example, simple scoring rules are
applied in the context of the DIAGNOSTIC SCOREpattern (p. 94).
The confirmation categories of the simple scoring rules are presented in the table cells, for
which the column of a cell specifies the scored diagnosis of the rule, and the corresponding
line specifies the simple condition of the rule. For the definition of a new rule the question
and diagnosis simply need to be dragged from the hierarchies into the table. The rule
is created by choosing an appropriate confirmation category in the corresponding table
cell. For a convenient presentation, lines of selected questions can be hidden on demand.
Additionally, lines containing no confirmation categories can be hidden as well.

Heuristic Detail Table The heuristic detail table editor is used for the definition of one-
level rules, e.g., applied by the HEURISTIC DECISION TABLE pattern [106]. As shown in
Figure 8.16 the heuristic detail table presents all one-level rules for a selected diagnosis,
which needs to be simply dragged from the diagnosis hierarchy into the table.
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Figure 8.15: Simple scoring rules are easily defined and viewed using the editor heuristic
table.

Each rule is represented by a column of the table. In the header of a column the rule identi-
fier, the logical connector of the single conditions, and the specified confirmation category
is displayed. Filled cells in the column indicate, whether the corresponding question/value
pair is contained as a single sub-condition; a+ indicates a positive inclusion of the sub-
condition, and a− indicates a negated inclusion of the sub-condition. For example, the
sixth rule column (id: R47) of the heuristic detail table shown in Figure 8.16 represents
the one-level rule shown in the black box of the figure. New rules are created by simply
filling the last (and empty) column in the table editor. New questions for the rule can be
introduced by dragging the question from the question hierarchy into the table. For a con-
venient handling empty lines can be hidden, i.e., lines in the table that neither contain a+
or a− sign.
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Figure 8.16: The editor heuristic detail table is appropriate for defining and viewing one-
level rules.
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Set-Covering Table The set-covering table is applied for the definition of set-covering
knowledge using symbolic confirmation strengths. In Figure 8.17 the set-covering table is
shown. Then, each cell of the table specifies a set-covering relation with the diagnosis

Figure 8.17: The editor set-covering table is appropriate for defining and viewing set-
covering relations.

in the corresponding cell column as the cause of the set-covering relation, and the ques-
tion/value pair in the corresponding cell line as the effect of the set-covering relation. The
cell itself specifies the symbolic confirmation strength of the set-covering relation. If a cell
is empty, then no set-covering relation is defined for the corresponding diagnosis-finding
relation. Set-covering relations of a new diagnosis are created by dragging the diagnosis
from the diagnosis hierarchy into the table, and filling related cells with symbolic confir-
mation strengths. Additional questions are introduced by dragging the questions from the
question hierarchy into the table editor.
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Case Management Editor The case management editor shown in Figure 8.18 facil-
itates the definition and modification of cases. Although, the editor originally was im-
plemented for the development of case-based tutoring systems (i.e., d3web.Train), it is
also appropriate for cases representing structural knowledge or test knowledge (e.g., for
empirical testing).

Figure 8.18: The case management editor allows for the simple definition of cases, either
used as structural or test knowledge.

In the left pane of Figure 8.18 the available cases are listed. The context menu of the
list offers the creation, deletion, and the import of cases. A double-click on a case opens
the properties editor of the corresponding case in the main pane, shown at the right of
Figure 8.18. For a detailed description of the case, the editor offers theMetadatatab,
that, e.g., contains fields for defining the name, the author, the creation date, and a verbose
comment on the case. TheOverviewtab, shown in the figure, actually enables the user
to define the observed findings and derived solutions of the case. We do not consider
the other tabsIntroductionandEndcomment, since they are only used in the context of
developing tutoring systems. Besides the definition of cases the developer is also able to
define weights, similarities, and abnormality knowledge. This type of knowledge can be
specified for each question in the corresponding ontological property editor, as shown in
the main pane of Figure 8.7.

Testing Structural Knowledge

d3web.QuaSiModu offers various methods for testing structural knowledge (names of the
corresponding d3web.QuaSiModu test methods are given in parentheses):
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• Empirical testing (test case analysis)
• Inferential constraints (test unit)
• Static verification (test integrity)
• Dynamic rule base testing (test dynamic frequency analysis)
• Static rule base testing (test static frequency analysis)

Empirical testing The most prominent testing method for structural knowledge is em-
pirical testing (p. 125). In Figure 8.19 the result of an exemplary test run is shown. The
accuracy of the solved cases is calculated using the F-measure (p. 127). The test method

Figure 8.19: d3web.QuaSiModu executing empirical testing with exemplary test cases.

can be attached with constraints specifying the minimum F-measure. If the computed F-
measure falls below the given minimum measure, then an error is reported. The threshold
for the expected minimum F-measure is appropriate for the application of many real world
cases, which are assumed to be solved not with an 100% accuracy. However, the default
minimum F-measure is set to the threshold value 1.

Inferential constraints Inferential constraints (p. 129) are checked using the unit
cases method. In Figure 8.20 (1) the editor for defining unit cases is shown. Unit cases are
listed in a tabular manner, containing a comment of the case, the assigned questions, and
the set of diagnoses with corresponding states. A case is edited by double-clicking on the
corresponding line in the table. Then, an editor window (2) is opened in order to modify
the comment, the assigned questions, or diagnoses. New questions or diagnoses can be
simply added by dragging them from the hierarchies. Figure 8.20 (3) shows the results of
the test application. In the example, the unit caseBattery testwas not able to derive the
specified diagnosis ”Empty battery”.

Static verification Static verification (p. 96) of rule-based knowledge is applied using
the integrity test method, shown in Figure 8.21. For demonstration issues, a new diag-
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Figure 8.20: Unit cases can be visually defined and used the inferential constraints test
method.

nosis P6=TestDiagnosis has been inserted, which is not inferred by any rule (unreachable
diagnosis). Furthermore, a derivation rule of the diagnosis was created, thus implying an
unreachable rule.

Dynamic rule base testing For dynamic rule base testing (p. 99) the dynamic fre-
quency test is applied. For the convenient analysis of the test results in a spread sheet (e.g.,
Microsoft Excelc©) a conversion into a TAB-separated list is provided.

Static rule base testing Static rule base testing (p. 98) is applied using the static fre-
quency analysis, previously introduced for testing static properties of ontological knowl-
edge. Besides ontological issues, the method also reports the number of rules categorized
into rule kinds (e.g., scoring rules, indication rules) and rule complexities, i.e., simple,
medium, and complex rules.

8.3.6. Handling Strategic Knowledge

Defining Strategic Knowledge

The system d3web.KnowME offers the implementation of the standardized indication us-
ing indication rules (p. 135). For the definition of indication rules the general rule editor is
applied, which provides the construction of the following indication actions:
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Figure 8.21: d3web.QuaSiModu executing the integrity tests (static verification). The un-
reachable diagnosis P6=TestDiagnosis has been detected, which itself implies
an unreachable rule with id R59.

• indicate questions or question sets
• contra-indicate questions or question sets
• clarify a diagnosis
• refine a diagnosis

The specified rule action distinguishes the different types of indication rules, that were
introduced in Section 6.1 (p. 135). In Figure 8.22 an exemplary indication rule is shown.
Questions or question sets are dragged from the question hierarchy into the action pane of

Figure 8.22: A rule editor window with an indication rule defining a follow-up question.

the rule editor in order to define them as the indication target. Indicated questions/question
sets can be also selected by using the corresponding buttons in the rule action pane. The
order of the selected questions/question sets can be manually modified by using the spec-
ified buttons↑ and↓. Furthermore, single questions/question sets can be deleted by using
the context menu or the delete button. Follow-up questions usually are appended below the
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original question, and are frequently applied as strategic knowledge. In order to facilitate
the simple creation of a follow-up indication, the context menu of the question hierarchy
provides a menu entry for dialog rules. As shown in Figure 8.23, follow-up indications of

Figure 8.23: Indication rules for follow-up questions can be easily defined by using the
context menu.

the selected questions can be quickly created or modified.
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Testing Strategic Knowledge

Currently, d3web.QuaSiModu offers the test of partially ordered question sets, POQS, (p.
140). In Figure 8.24 the editor for defining POQS is shown: In (1) the basic editor gives
an overview of all defined POQS, and new POQS can be defined or existing ones can be
edited. The definition of a POQS is shown in (2): Question sets can be dragged from the
question hierarchy into theQuestion setspane. The order can be manually specified by us-
ing theupanddownbuttons. Partial orders can be described by grouping multiple question
sets. Furthermore, each POQS is annotated with a comment, describing the specified dia-
log behavior. The application of the test knowledge is shown in (3): d3web.QuaSiModu

Figure 8.24: The POQS editor for defining strategic test knowledge.

reports no errors, and the satisfiable POQS as info.



176 Chapter 8: Implementation of the Agile Process Model with d3web

8.3.7. Handling Support Knowledge

Currently, the support knowledge editor of d3web.KnowME offers limited capabilities
for the definition of support knowledge. The support knowledge editor is able to define
explanatory texts, links to external resources (e.g., web links, PDF files), and extended
texts for questions, question sets, and diagnoses. In Figure 8.25 the support knowledge

Figure 8.25: The support knowledge editor of d3web.KnowME providing fields for defin-
ing an extended prompt, external links, and explanatory texts.

editor for the selected question ”Exhaust pipe color” is shown. No automated test method
has been implemented for support knowledge.

8.3.8. Debugging Cases with d3web.KnowME

Another useful feature for the development of knowledge systems is the integration of a
visual debugger for (test) cases. Thus, the behavior of the knowledge system can be man-
ually inspected, e.g., in order to identify the reason for a detected error. The debugger can
be invoked either via the empirical testing method of d3web.QuaSiModu (by clicking on
a falsely solved test case), or by using the context menu of the case management editor as
shown in Figure 8.18. Then, the case can be processed step-wise, and breakpoints for di-
agnoses, questions (sets), and knowledge elements can be defined. Currently, the debugger
is able to define breakpoints on the following knowledge elements: Abstraction rules, cat-
egorical rules, score-based rules, and (contra-)indication rules. If an object is used while
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Figure 8.26: The visual debugger of d3web.KnowME. In the top panes, breakpoints for di-
agnoses, questions (sets), and rules can be defined. The bottom pane display
a state trace of a specified object.

running the case, for which a breakpoint is defined, then the breakpoint is activated and the
case is paused. At any time, the case can be introspected, i.e., currently applied knowledge
(e.g., fired rules, values of questions, states of diagnoses) can be viewed for the defined
objects. If the case is paused by an activated breakpoint, then a state trace can be displayed
of any object defined as a breakpoint, i.e., the corresponding derivation rules are displayed
attached with information about their state (e.g., fired). Figure 8.26 shows a screenshot
of a debugging session. For a convenient use, the debugger allows for temporarily dis-
abling breakpoints (i.e., watches on objects), for defining specific breakpoint conditions
(additional conditions, that constrain the activation of breakpoints), and for sorting the
breakpoints with respect to several factors (e.g., last use, name). Furthermore, the running
case can be logged for a detailed analysis afterwards.

8.3.9. Automated Restructuring with d3web.KnowME

At the moment, d3web.KnowME provides support for the automated execution of six
restructuring methods, e.g., for type transformations of questions and for the extrac-
tion/combination of question sets. In the example, shown in Figure 8.27, the multiple
choice question ”Engine noises” with the value range

dom(Engine noises) = {knocking , ringing , no/else}
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Figure 8.27: The user interface of d3web.KnowME for the application of automated re-
structuring methods.

is converted into a set of three yes/no questions ”knocking”, ”ringing”, and ”no/else”. The
yes/no questions are appended to the question set ”Observations”. The implementation
and design goals of the restructuring methods of d3web.KnowME were described in [74]
in more detail.
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8.4. Comparison: D3 and d3web.KnowME

In this section, we briefly compare the knowledge modeling features of the shell-kit D3
with its successor d3web. We describe the features of both systems in a table (date of
comparison was Jan. 2004).

Ontological Knowledge D3 d3web.KnowME
Tree editors for diagnosis and question
hierarchy

+ +

Structural Knowledge D3 d3web.KnowME
Heuristic table + +
Heuristic decision table + +
Set-covering table + +
Case-based knowledge + +
Decision tree + −
Abstraction table + −
Strategic Knowledge D3 d3web.KnowME
Rule editor + +
Indication table + −
Support Knowledge D3 d3web.KnowME
Informal texts + +
Arbitrary links + +
Agile tools D3 d3web.KnowME
Planning game editor − +
Visual debugger limited/manual +
Refactoring support − limited
Test methods D3 d3web.KnowME
Static frequency analysis limited +
Dynamic frequency analysis − +
Test case analysis limited/manual +
Unit cases − +
Partial-Order Question Sets − +

8.5. Summary

In this chapter, we have given a brief overview of the systems D3 and d3web. The shell-kit
D3 is the predecessor of the framework d3web, that both are used for the development and
the application of diagnostic knowledge systems. The system family d3web consists of the
highly integrated knowledge modeling environment d3web.KnowME and the web-based
front-end for diagnostic knowledge systems d3web.Dialog. We have shown that the knowl-
edge modeling environment d3web.KnowME offers editors for the agile development of
diagnostic knowledge systems. The editors are used for the planning game, the construc-
tion of the particular knowledge containers, the definition and application of appropriate
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tests, the automated restructuring of knowledge, and the interactive debugging of knowl-
edge systems. Furthermore, we presented the web-based dialog server d3web.Dialog for
running diagnostic knowledge systems. The developed knowledge systems can be used
over the internet via a web-browser as the user client.



9. Experiences

We describe two projects implemented in the context of this thesis. The LIMPACT project
considers an area of the eco-toxilogical domain, and it was started before the presented
process model has been introduced. However, some aspects of the methodology were
also realized. The ECHODOC project delivers an application in the medical domain, and
adopts many methods and practices presented in the context of the introduced agile process
model.

9.1. The Eco-Toxilogical Knowledge System
L IMPACT

The LIMPACT project (LIMnology and imPACT) was running between 2001 and 2003,
and was joint work with Dr. Neumann at the Institute of Ecology, University of Braun-
schweig, Germany. The knowledge base and the development of the knowledge sys-
tem LIMPACT was presented in [83, 80]. The system can be accessed by the web-site
http://www.limpact.de . Figure 9.1 depicts a screenshot of the web-based user in-
terface of LIMPACT. L IMPACT considers the estimation of pesticide contaminations of
small lowland streams with agricultural catchment areas.
Small streams add up to an enormous length on the landscape level. Therefore, the conser-
vation and protection of their aquatic community should be a major concern. In agricul-
turally used catchment areas these streams are subject to various stressors. For example,
during heavy rainfall, runoff from agricultural fields may introduce soil, nutrients and
pesticides, and increases the discharge [34, 82]. It has been shown that the impact of pes-
ticides is an important parameter of influence for the aquatic fauna [67]. Unfortunately,
no regular monitoring systems are established for these agricultural non-point sources of
pesticides. Because of its short-term character, only rainfall event-controlled sampling
methods can reflect such transient pesticide contamination, which makes its detection via
chemical analysis costly.
For this reason, the use of a biological indicator system can provide a number of bene-
fits. The main advantage is its easy and cost-efficient application. When used to monitor
toxic contamination, it additionally indicates the ecotoxicological effect of the contami-
nant. It allows for a long-term information, whereas information of each chemical mea-
surement applies at only one point in time. However, no biological indicator system has
yet estimated the pesticide contamination of small streams via benthic macroinvertebrate
indicators. See, e.g., [79] for a detailed discussion of related systems. To fill this gap,
a consultation system was developed, that estimates the pesticide contamination of small
streams based on biological indicators.

http://www.limpact.de
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Figure 9.1: Screenshot of the web-based interface of the LIMPACT system.

9.1.1. Development Report

Using the global system metaphor the system was defined to be aconsultation system,
since LIMPACT should be able to determine the pesticide contamination of a small stream
according to benthic macroinvertebrate indicators. The contamination of a stream was
classified into four categories represented by the diagnosesn.d. (not detected),low (low
contamination),mod. (moderate contamination), andhigh (high contamination). The
knowledge base contains 13 questions describing the stream in more detail, e.g., struc-
tural parameters of the stream. Furthermore, the system contains questions representing
the abundance of 39 different taxa. For each taxa the abundance can be recorded at 4 time-
frames (spring, summer, autumn, winter). Besides the initial question set determining the
suitability of the currently investigated stream, no dialog control is supporting the user.
This procedure was motivated by the fact that in a typical case only a small portion of the
represented taxa is actually observable. Therefore, the user has to manually select the taxa,
for which abundance data should be entered.
When starting the LIMPACT project no agile process model has been defined, and there-
fore the development was not explicitly structured by planning games. However, the on-
tological knowledge and the scoring rules were incrementally implemented in the context
of several planning phases, although not supported by appropriate tests and restructuring
methods. In fact, (automated) tests were only performed after completing the rule-based
implementation of the knowledge system. In the context of the agile process model it
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would have been desirable to define particular plans and tests considering the classifica-
tion of the several contamination categories (represented as diagnoses). Besides the origi-
nal rule-based knowledge an equivalent set-covering model was implemented. As reported
in [79] the size and complexity of the implemented knowledge was significantly reduced
using the set-covering representation. The set-covering model was developed according to
the incremental process as described in [16]. Starting with simple set-covering relations,
the model was incrementally refined by weights and exception conditions.
The structural knowledge was validated using unit cases (p. 129) and the empirical testing
method (p. 125). Figure 9.2 depicts d3web.KnowME with the LIMPACT system defining
unit cases. The definition of the unit cases revealed errors in the rule base. After a de-

Figure 9.2: Screenshot of defining unit cases for the LIMPACT system.

bug session three falsely formalized rule conditions were identified containing a wrong
numerical condition, i.e.,lessinstead ofgreater. The case base used for empirical testing
contained 146 test cases, gathered from investigations of 104 real streams during the years
1992 and 2000. Due to the chemical analysis of the streams the cases are attached with
the correct contamination category. Figure 9.3 depicts the percentages of correct classi-
fications for the rule-based and the set-covering approach. The first columns display the
classification accuracy according to the specified contamination category, and the last col-
umn depicts the overall accuracy of both approaches. The number of cases contained in the
case base with the specified contamination class is given in parentheses. We can see that



184 Chapter 9: Experiences

n.d. (52) low (30) mod. (40) high (24) overall (146)
rule-based 90.4% 90.0% 72.5% 87.5% 84.9%
set-covering 96.2% 93.3% 87.5% 79.1% 90.4%

Figure 9.3: Accuracies measured for the rule-based and set-covering implementation of
the LIMPACT system. The numbers in the parentheses are the number of cases
available for each contamination class.

the rule-based version of LIMPACT has no high confidence level regarding streams with
contamination the classmod., whereas LIMPACT utilizing set-covering knowledge has no
high confidence level for the diagnosis of highly contaminated streams. A screenshot

Figure 9.4: Screenshot of the LIMPACT knowledge base in the modeling environment
d3web.KnowME.

of the knowledge modeling environment d3web.KnowME with the LIMPACT knowledge
base is depicted in Figure 9.4.
The rule-based implementation contained 959 diagnostic rules with 450 simple rules, 303
one-level rules, and 206 multiple-level rules. The set-covering approach was implemented
by defining 816 simple set-covering relations. A comparison of the rule-based and the set-
covering knowledge bases shows that the number of set-covering relations is only slightly
smaller than the number of implemented rules in the rule-based system. Nevertheless,
the modeled set-covering knowledge is less complex than the implemented rules by an
order-of-magnitude. When adding rules for taxa to the rule-base, we also have to consider
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the associated confirmation categories. These categories interact with other rules when
aggregating to the same diagnosis score, and therefore have to be obtained by a thorough
analysis. Thus, adding a new rule to the rule base can demand the reconsideration of all
rules (or of the associated scores) deriving the same diagnosis. In contrast to these inter-
woven rules, set-covering relations can be viewed as self-contained knowledge elements
without mutual interdependencies. For a new taxon we only have to define relevant set-
covering relations between the four diagnoses, i.e., contamination classes, and the new
taxon. In general, this means that we have to define the abundance of the new taxon for
each diagnosis, if we expect the taxon to occur with the given diagnosis.

9.1.2. Conclusion

With the LIMPACT project the research on agile process models for developing knowledge
systems was inspired. The agile process model was not fully applied during the develop-
ment; some techniques like the incremental development of set-covering models and the
use of automated tests have been applied during the construction of LIMPACT.
After the project was finished a concluding analysis showed that an adapted scoring ap-
proach would have probably yield a more compact rule base. The LIMPACT system ba-
sically tries to determine the pollution of a small stream, which itself is implemented by
four diagnoses representing symbolic pollution categories in ascending order. For each
diagnosis often very similar scoring rules were implemented simply differing in their con-
firmation category. A more compact approach would have considered the definition of
a common score for all diagnoses, which is used by all scoring rules. The derivation of
the actual diagnosis then depends on the aggregated value of the common score, e.g., low
aggregates infer a low pollution level.
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9.2. Medical TEE-Examinations with E CHODOC

The ECHODOC project (formerly QUALI TEE) was started to support physicians during
transesophageal echocardiography (TEE) examinations [68]. The intraoperative monitor-
ing of critical ill patients is a permanent challenge in modern anaesthesia and the use of
TEE is a well established method in monitoring these patients. But besides the under-
standing of the technical aspects the results of a TEE examination can be improved, if the
examination is done in a standardized and efficient way. Therefore, the major goal of the
project was the implementation of a standardized documentation system. In Figure 9.5 a
sample dialog of the ECHODOC system is depicted.

Figure 9.5: Screenshot of the web-based interface of the ECHODOC system.

The project is a cooperation with the Department of Anaesthesiology of the University of
Würzburg Hospitals. The knowledge base was mainly implemented by the physician Dr.
Lorenz, and reviewed by the recognized expert Prof. Greim.
The development of the system was preceded by a global analysis of the TEE examination
process. Since no global standard for the overall examination has been established the dia-
log was designed according to the local examination process defined by Prof. Greim. This
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examination process is applied by the physicians working at the University of Würzburg
Hospitals, and is regularly taught in specialized TEE courses. In general, the overall ex-
amination is partitioned into an ordered sequence of examination blocks. Each block de-
scribes a special aspect of the examination, i.e., a partial stage. The documentation of
these partial stages is catched up by specified questions grouped by question sets. The
defined order and chosen abstraction level of the stages follow standardized suggestions
given in medical textbooks, e.g., Sidebotham et al. [122]. Given the fully defined exami-
nation process quick sets were specified in a next phase. Quick sets are a subset of the full
examination and consider specialized problems faced during a TEE examination. Differ-
ent quick sets are applied for different medical departments. While the full examination is
appropriate for the physicians with no or low experience, quick sets can be used by more
experienced physicians. However, ECHODOC also offers a completely free documenta-
tion of a TEE examination for expert users.
The ECHODOC project is the first adopter of the presented agile process model. Thus, we
briefly describe the application of the process model in the following.

9.2.1. The Development Cycle

The cyclic development process consists of the definition of the system metaphor, the
planning game, the implementation phase, and the integration phase.

The System Metaphor During the initial requirements analysis, the system metaphor
was identified. According to a white paper the most important aspect of the intended sys-
tem was a standardized documentation of the TEE examination. For this reason, the global
metaphordocumentation systemwas chosen. In the future, an extension to a consultation
system is planned but not yet realized. Since the experts had previous experiences with
D3, they were already familiar with the local system metaphor, i.e., the common naming
conventions.

Planning Game Actually, the planning game was divided into two main phases: In
the first phase the overall examination was implemented according to a structured and
standardized process. Since a full examination according to the standardized process is
very time-consuming, and in most cases not necessary, quicksets for specialized problems
were defined in the second phase.
The first phase was initiated by an informal analysis of the TEE examination. The experts
firstly discussed the several phases of the examination, which were then partitioned into
examination blocks. In Figure 9.6 the original draft of the examination is depicted.
Each block describes an aspect of the examination and was easily transferred to a separate
story. Therefore, the experts used the exam draft as astory boardduring the implementa-
tion, and successfully defined stories for the particular blocks. For each story, i.e., partial
examination, the current (manual) acquisition of the corresponding findings was investi-
gated, e.g., the actual set of gathered findings was defined. Then, acquisition standards
given by medical textbooks were considered, the expected experience of the users for this
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Figure 9.6: The draft of a TEE examination.

examination, as well as the required time needed for a manual acquisition of the examina-
tion. Based on these investigations the story was refined by a precise definition of applied
questions and question sets.
As noted in Section 4.3 (p. 49), an important issue is the level of detail of the gathered
questions. Then, the level of precision and the expected previous knowledge need to be
considered. Users of the ECHODOC system are assumed to be experienced with sonog-
raphy examinations, i.e., to understand and to interpret questioned findings in a technical
terminology (e.g.,kissing papillaries). However, in a later milestone of the project, it is
planned to attach additional support knowledge in order to explain the used terminology.
A user of the system is categorized as abeginner, if not familiar with the exact process of
the standardized TEE examination.
Not all stories could be directly transferred from the story board. Some stories were re-



9.2 Medical TEE-Examinations with ECHODOC 189

moved because they appeared to be useless (e.g., the acquisition of unused exams), and
some stories were included afterwards (e.g., beginner questions). Since the domain expert
is only working part-time on the project, the use of stories in conjunction with the plan-
ning game was very advantageous. Then, the collection of stories attached with progress
information was helpful when continuing the project after development breaks.
Additionally, the integration of the task editor into the modeling workbench
d3web.KnowME was appreciated by the experts. Figure 9.7 depicts the task editor of
the workbench d3web.KnowME. The task editor is used for inserting and editing stories
gathered by the planning game. Before the integration of the task editor, the stories were

Figure 9.7: The task editor of the workbench d3web.KnowME.

separately recorded using a text processing program. This of course yields the undesirable
property of a separate storage of knowledge base and corresponding story documentation.
In the second phase, the planning game mainly considered the improvement of the system
by the introduction of quick sets. Quicksets are defined according to specialized problems
faced during practical TEE examinations. Then, the examination does not cover all but
a set of specialized aspects of the TEE. These quicksets are defined according to local
standards of the particular departments the system is applied, but also considers textbook
knowledge [122, 75].

Implementation Since the project firstly focussed on the development of a documen-
tation system, only the ontological and strategic knowledge containers were considered.
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Based on a sequence of stories the ontological knowledge container was successfully ex-
tended by questions, grouped and structured by question sets describing the particular
examination blocks. For example, at the left of Figure 9.7 a part of the question hierar-
chy is depicted. Strategic knowledge was implemented using indication rules (p. 135). In
context of the ECHODOC project the POQS test method (p. 140) was introduced in order
to provide an appropriate test for documentation systems. Only a small number of POQS
were defined, one POQS for the guided dialog and one for each quick set. The POQS were
subsequently adapted due to the implementation of new stories. Figure 9.8 depicts the
POQS editor of the workbench d3web.KnowME, which facilitates the visual acquisition
of POQS test knowledge.

Figure 9.8: The POQS editor of the workbench d3web.KnowME.

In addition of the automatic test method, the system was undergoing a repeated manual in-
spection by running exemplary examination dialogs. This visual and interactive evaluation
of the implementation was especially important during the reviews of the system together
with the second domain specialist.

Integration In particular, the continuous integration was very convincing for the suc-
cess of the development project, because the developing expert always could provide a
running system for review. Since the reviewers had a view of the current system at any
time, the already implemented functionality could be tested under ”real-life” conditions.
This in turn was very helpful when deciding about further plans.
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9.2.2. Application of Agile Practices

In Chapter 2 we have identifiedtesting, restructuring, andlearningas the key practices of
the agile process model. During the implementation of the ECHODOC project we only
applied testing and restructuring. Learning was not considered since we could not provide
appropriate methods for learning strategic knowledge.

Restructuring

In the finished phases of the project restructuring was mainly applied for ontological
knowledge considering question sets. The automatic restructuring of related strategic
knowledge appeared to be very useful, because it reduced the complexity of the single
operations.
Restructuring during the ECHODOC project was motivated by the introduction of quick
sets, that were defined in a later phase of the project in order to facilitate an efficient
and focussed dialog. Thus, sometimes not all questions contained in a question set were
required to cover the aspect of a defined quickset. Therefore, original question sets were
extracted into a set of question sets in order to facilitate a modular use of the individual
question sets.
In Figure 9.9 the restructuring tool of the workbench d3web.KnowME is depicted, which,
e.g., offers the combination and extraction of question sets.

Figure 9.9: The restructuring tool of the workbench d3web.KnowME.
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Testing

Due to the documentation system metaphor the developer mainly focussed the testing of
strategic knowledge. For testing strategic knowledge we consider the correctness and the
efficiency of the dialog. The correctness of the strategic knowledge is evaluated using
the POQS method. We have already discussed the application of the POQS method on
page 189. Furthermore, we plan to evaluate the efficiency of the dialog using the test
case duration method. A pre-study has been undertaken to define a benchmark value,
i.e., determining the typical dialog duration in the current examination setting (without
ECHODOC).

Application of the test case duration method The acceptance of the system is
mainly defined by the typical duration of an examination. Therefore, a pre-study was per-
formed by the physician Dr. Lorenz in order to determine the usual duration for a manual
examination without the intended system. Thus, at two departments of the medical fac-
ulty the physicians performing TEE examinations answered a questionary for about two
months. During this study 37 examinations were documented, with 8 physicians involved.
Basically, the questionary acquires the experience of the performing physician, the condi-
tions of the examination, the pathological findings, the duration of the examination, and
the time for documenting the examination.
Figure 9.10 depicts the results of this pre-study, presenting the required time in minutes
(with standard deviation) for the examination and the documentation of the examination
separately. The first block of the diagram containing four columns depicts the averaged
duration of the examination and its corresponding documentation before (vEKZ) and after
(nEKZ) the application of the extracorporal circulation. The following three blocks state
these values more precisely with respect to the position of the physician (ASS=resident,
FA=anaesthesia specialist, OA=attending physician). The last three blocks depict the dura-
tion of the examination and documentation with respect to the experience of the physician
(Anf=beginner, Fortg.=advanced, Experte=expert). Separate values for ”Documentation
nEKZ FA/OK/Anf” were not available in the context of this study; they are contained in
the corresponding values ”Examination nEKZ FA/OK/Anf”.
In summary, the average duration in minutes of a TEE examination was37, 57 ± 16, 84
before, and37, 12± 22, 07 after extracorporal circulation. However, the average duration
in minutes of the (manual) documentation is even more interesting in the context of our
pre-study, which was7, 54± 4, 53 before, and2, 00± 1, 20 after extracorporal circulation.
Due to the limited number of samples an even more detailed analysis with respect to the
position and the experience of the physician is not reasonable.
The duration of documentation before extracorporal circulation is used as the benchmark
for the evaluation of test case duration method.
Currently, a real-life evaluation of the ECHODOC system is planned and scheduled at one
medical department of the University of Ẅurzburg Hospitals.
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Figure 9.10: Results of the pre-study for determining the required time in minutes for a
TEE examination.

9.2.3. Conclusion

For the development of the ECHODOC system the agile process model was applied for
the first time. Although currently only ontological and strategic knowledge has been im-
plemented we have made promising experiences with the application of the development
process, i.e., the planning game, the implementation, and the integration. Furthermore,
some agile practices showed to be very useful during implementation, especially the au-
tomated restructuring of question sets, and the application of testing methods, e.g., the
POQS method.

9.3. Summary

In this chapter, we have described two diagnostic knowledge systems, that were developed
in the context of this thesis.
The eco-toxilogical LIMPACT system was build before the presented agile process model
was introduced, but some agile techniques like automated testing and the incremental mod-
eling have been already applied.
The medical documentation system ECHODOC was the second project described in this
chapter, and many agile practices have been used in the context of this project. For ex-
ample, the planning game appeared to be very suitable for small project teams and the
part-time development.
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Part IV.

Conclusion





10. Summary

The development of knowledge systems is still a complex and error-prone task. Although a
lot of research has been done in the last decades, theperfectprocess model for all types of
knowledge system projects has not been found, so far. In this work, we introduced a novel
process model that allows for an agile construction and maintenance of diagnostic knowl-
edge systems. The presented process model narrows on the development of diagnostic sys-
tems in order to provide a suitable environment for the domain specialist self-formalizing
and maintaining the required knowledge. Usually, the process model is suitable for small
teams of about 1-3 people.

10.1. The Agile Process Model

The presented process model was inspired by the popular methodology eXtreme program-
ming known in software engineering research. The development process was structured
by the agile phases: Definition of the system metaphor, the planning game, the implemen-
tation phase, and the integration phase.
The system metaphor defines a common system of names for the knowledge system
project. With the system metaphor, the semantics of, e.g., a diagnosis, a question, a ques-
tion set, and a case are defined. The remaining phases are repeatedly traversed in a cyclic
manner. The planning game typically considers the short-term scope and requirements of
the running project. It is designed to provide an early and concrete feedback, a flexible
schedule of the development process, and it lasts as long as the system lasts. The imple-
mentation phase consists of a test-implementation and a code-implementation: In prin-
ciple, the coding of new knowledge or the restructuring of existing knowledge is always
preceded by the coding of appropriate test knowledge. The integration phase guarantees
an always running system by continuously integrating the new and modified knowledge
into a production version of the knowledge system. The production version of the sys-
tem is always validated using additional integration tests, extensive tests that are usually
time-consuming, and that are covering the expected behavior of the knowledge system as
a whole.

10.2. The Application of Knowledge Containers

The formalization of knowledge is simplified by the definition of knowledge containers,
which are used as a design abstraction. They classify the applied knowledge into ontologi-
cal knowledge, structural knowledge, strategic knowledge, and support knowledge. Onto-
logical knowledge represents the framework of the knowledge system by defining the basic
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objects of the knowledge, i.e., diagnoses and questions together with hierarchical relations
between them. Thus, questions are semantically grouped by question sets, and diagnoses
can describeis-a or is-part-of relationships to other diagnoses. The structural knowledge
container consists of the inferential knowledge, which is applied for deriving diagnoses,
i.e., solutions, for a current case. There are various approaches for formalizing structural
knowledge; we focussed on explicit representations based on mental models: Abstraction
rules, categorical rules, scoring rules, case-based reasoning, and causal set-covering mod-
els. Strategic knowledge is applied for guiding the user dialog of the knowledge system.
Using strategic knowledge the extensive acquisition of data can be reduced, which is pos-
sibly unnecessary for the current case. Ontological knowledge can be augmented with
support knowledge, i.e., additional information given by multimedia content like texts,
images, and movies. Support knowledge is used to help the user during data acquisition or
to explain the derived solution of the knowledge system.
For all presented knowledge containers we also discussed the application of the agile prac-
tices, i.e., we introduced methods for testing, for restructuring, and for learning the partic-
ular knowledge.

10.3. Knowledge System Development in Practice:
d3web

The practical significance of a process model strongly depends on the available tools sup-
porting the application of the process model. This work presented the system family d3web
which contains the knowledge modeling environment d3web.KnowME and the user inter-
face d3web.Dialog for using the implemented knowledge system. The knowledge mod-
eling environment d3web.KnowME is a highly integrated workbench for the agile devel-
opment of diagnostic knowledge systems, including specialized editors for the described
knowledge containers, as well as appropriate tools for testing and restructuring the imple-
mented knowledge. The system d3web.Dialog is a web-based server application running
the implemented knowledge system. With a web-browser serving as a client, the developed
system can be accessed over the internet.

10.4. Experiences with the Process Model

In two projects the presented process model or significant parts of it were used and promis-
ing experiences were made. In the LIMPACT project a knowledge system for estimating the
pesticide contamination of small water streams was developed. Since this project started
before the final definition of the process model, the process was not entirely applied. How-
ever, parts of the presented work, like automated testing and the incremental development
of set-covering knowledge, were used and their significance was shown. The ECHODOC
system was the first adopter of the agile process model. Until now, ontological knowl-
edge, strategic knowledge, and support knowledge are developed using the agile phases
and practices. In a next milestone of ECHODOC the extension by structural knowledge is
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planned. In the context of this project, the implementation of the agile phases (planning
game, implementation, integration) has proven to be advantageous. In particular, the ap-
plication of agile practices, i.e., automated testing and restructuring, were observed to be
very beneficial.
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11. Discussion

A novel approach for developing diagnostic knowledge systems is presented. The intro-
duced process model proposes an integration of key techniques known from knowledge
engineering research. The main contributions to knowledge engineering research are dis-
cussed in the following sections.

11.1. Self-Contained Methodology

The agile process model represents a self-contained methodology for the development
of diagnostic knowledge systems, i.e., all required aspects for developing a diagnostic
knowledge system are considered. Classic development projects consists of the phases
requirements analysis, the design phase, the implementation phase, and the test phase.
These are covered in the given methodology as described below.

Requirements Analysis The coarse analysis of system requirements is performed
during the definition of the system metaphor: Then, the overall scope of the system is spec-
ified by the global system metaphor. The detailed requirements of the currently planned
aspects of the system are determined by the planning game, e.g., describing the diagnoses
to be detected and the possible observations, that could be used as input data for the sys-
tem. It is worth noticing, that in general the requirements analysis is not preceding all
other phases, but is repeatedly performed during the development process. In contrast to
classical approaches there is no description available of the overall project requirements.
Therefore, during an agile development project we never can refer to a comprehensive
document of the planned system. At first sight, the absence of this document seems to be
the major disadvantage of the agile process model. However, the repeated application of
the requirements analysis in the planning game allows for an adaptive schedule of the de-
velopment project, including flexible changes during the project. Moreover, the planning
game facilitates methods for a concrete feedback of the time and cost estimations made in
previous plans. Consequently, an accurate benchmark of the implementation velocity can
be given during the project.

Design With the design of the knowledge system we identify the design of the knowl-
edge included in the system. We do not consider general architectural issues as task method
design and controller design as, e.g., is done with respect to the CommonKADS method-
ology [117, Chap. 11]. In the presented process model the architecture is predefined, since
focussed knowledge systems are restricted to diagnostic tasks and specialized knowledge
roles. The design of the knowledge base is described by the definition of the knowledge
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containers. Especially the ontological knowledge container consisting of the diagnoses
and questions with their hierarchical relationships contain the knowledge design, but also
parts of the remaining knowledge containers. The continuous change of knowledge design
is a critical issue for knowledge base development, since modifications on large knowledge
bases are often very difficult to perform. We partially solved this problem by providing
restructuring methods, that represent typical design modification procedures. Restructur-
ing methods do not only change the specified design spot of the knowledge base, but also
update existing knowledge corresponding with the spot. If the application of the restruc-
turing method causes (syntactical or semantic) conflicts of the existing knowledge, then
the developer is warned and the method is aborted. The problem is only partially solved,
because currently we are only providing restructuring methods for the most typical design
modifications. This library of methods can be extended easily as it is impossible to cover
all potential design modifications in advance.

Implementation and Test In the context of the agile process model the test phase is
included in the implementation phase. The combination of the validation and the imple-
mentation of knowledge emphasises the importance of the validation task: Any code im-
plementation phase should be preceded by a corresponding implementation of test knowl-
edge. To the view of the author, classic knowledge engineering methodologies did not
emphasize this relationship appropriately. For example, the CommonKADS methodol-
ogy [117] focusses on the definition of the particular models, but does not adequately de-
scribe the validation of the resulting system. Similarly, the MIKE methodology [6] mainly
focusses on the construction of the knowledge system. A visual debugger for KARL mod-
els is provided for the validation of the implemented knowledge system. The debugger is
comparable to the debugger presented in Section 8.3.8 (p. 176), and do not allow for an
automated validation of the knowledge base.
As a major contribution of this work, the implementation task and the corresponding test-
ing task are combined in a single phase. Thus, classical approaches for the validation
of knowledge, e.g., Preece et al. [95] and Knauf [61] for rule-based systems, are jointly
discussed with more recent approaches, e.g., testing the robustness of knowledge sys-
tems [48]. Furthermore, novel approaches are presented suitable for the presented knowl-
edge containers, e.g., partial-ordered question sets for validating strategic knowledge. This
work also includes the integration of semi-automatic learning methods for simplifying the
acquisition of (large) knowledge bases. In contrast to classical learning methods, semi-
automatic learning methods do not only focus on the accuracy of the learned patterns,
but also consider the understandability and incrementally of the learned knowledge. For
example, in Section 5.4.6 (p. 102) a method for inductively learning understandable rule
bases is introduced.
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11.2. The Knowledge Modeling Environment
d3web.KnowME

In addition to the theoretical description of the agile process model, the system family
d3web, and especially the system d3web.KnowME, is presented. Most parts of d3web
were implemented in collaboration with colleagues and students. However, the key edi-
tors required for an agile development and their tight integration were inspired and con-
tributed by the author of this work. For example, the research on structured modifications
of knowledge bases using restructuring methods was started in the context of the mas-
ter thesis of Timm Michael [74], and later extended and refined, e.g. with respect to the
automated adaptation of test knowledge. Furthermore, the JUnit [44] metaphor for au-
tomated tests was adapted to the validation of knowledge systems initially by the master
thesis of Klaus Akin [3], and later extended by test methods covering further kinds of
knowledge. The research on semi-automatic learning methods was initiated with the mas-
ter thesis of Martin Atzmueller [7], and later continued with Martin Atzmueller focussing
on semi-automatically learning set-covering models (see Section 5.5.8) and scoring rules
(see Section 5.4.6). Further components for the application of the agile process model,
like various editors for test knowledge, specialized editors for (structural) knowledge, the
visual debugger, and the limited editor for support knowledge were jointly implemented
with students.

11.3. Experiences with Two Real-Life Projects

The presented work has been used in the context of two real world projects, i.e., the
L IMPACT and the ECHODOC project, and early experiences show promising results.
In both projects, the domain specialists easily adopted the concepts of the global and local
system metaphors. It has been shown, that a common system of names greatly simplified
the introduction into the concept of diagnostic knowledge systems, as well as, actually
developing the system. During discussions with the domain specialists the common ter-
minology for the overall system idea and the basic entities was experienced to be very
beneficial. Furthermore, in the ECHODOC project the planning game was appropriate and
helpful for the domain specialist. At the one hand, the planning game was used by the de-
veloper as apersonaloutline of the complete project, but also helped when explaining the
system to other domain specialists. Especially, the continuous integration demonstrated
its practical significance for the ECHODOC project: During the running project the devel-
oper could always present the current system to other domain specialists, that give accurate
feedback for improving the design of the system.
In both projects, the high integration of test methods has proven to be reasonable for the
development of high quality knowledge systems. For example, the implementation of
unit cases in the context of the LIMPACT project revealed falsely implemented scoring
rules, that were not detected by the previously applied empirical testing method. In the
context of the ECHODOC project the application of POQS has been demonstrated its
significance. Due to restructurings of the strategic knowledge the automated testing of the
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several desired dialog paths was very beneficial.



12. Outlook

The agile process model is a novel and fascinating approach for the development of di-
agnostic knowledge systems. However, for nearly all presented topics there is still room
for future work. In the following, we discuss the most promising directions, that we are
planning to consider in the future.

12.1. Knowledge Design Analysis using
Visualization Techniques

Large knowledge bases tend to become very complex, e.g., including extensive ontological
knowledge with a well-elaborated structural knowledge container. Then, the analysis of
the knowledge design is very difficult, because with simple methods likestatic ontology
testing(p. 53) one cannot acquire a sufficient overview of the implemented knowledge.
With knowledge design we consider the structure of the ontological knowledge container
and the interweaving of the ontological entities by the remaining knowledge containers.
Appropriatevisualization techniquesare a promising approach for interactively analyzing
the design. For example, the knowledge base can be visualized as a graph with onto-
logical entities (diagnoses, questions) as nodes, the size of the nodes is proportional to
the number of attached (structural) knowledge; edges between the nodes represent struc-
tural knowledge. This simple visualization enables the developer to analyze the design
of the knowledge base by simply viewing the graph structure. Therefore, large nodes are
emphasized as very frequently applied ontological entities in contrast to small nodes, for
which only sparse knowledge is available. Thus, a sub-graph connected to the remaining
graph structure only by one node is an indicator for vulnerable knowledge design, since a
part of the implemented knowledge depends on a single node. A first step in this direc-
tion was undertaken by specifying and implementing a declarative language for defining
visualizations [120]. Besides this simple example there are even more opportunities for
visualization techniques, e.g., the same graph analysis can be performed on the case based
testing method depicting the use of the ontological entities (p. 54). Card [30] gives a recent
introduction into the techniques of information visualization, for which some can be easily
adapted for knowledge visualization.

12.2. Agile Practices in Legacy Knowledge Systems

The presented work only considers the manual construction of knowledge systems from
scratch. It is easy to see that the application of the agile practices testing, restructuring,
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and learning can be also useful for already existing knowledge systems. We definelegacy
knowledge systemsas fielded systems, that were originally not developed using the agile
process model. If such systems need to be maintained or extensions of the system become
necessary, then automated restructurings with corresponding test suites are a valuable prac-
tice for performing complex modifications. Typical restructurings of legacy systems con-
sider the modification of the ontological hierarchies or the insertion of abstractions. An
even more complex restructuring method not considered in the context of this work would
be the breakdown of a large knowledge base into coherent parts, thus defining smaller but
partly independent knowledge bases. Then, the previously large knowledge system is re-
placed with a collection of smaller knowledge systems (component-based knowledge) with
a semantically equivalent reasoning behavior. Theoretical considerations and appropriate
techniques for knowledge systems with component-based knowledge are an interesting di-
rection for future work. Related work about the representation and reasoning of distributed
knowledge bases can be found in [12, 20].
In the context of splitting large knowledge bases, complex restructurings for integrating
knowledge formalization patterns is an issue to consider. Then, the restructuring methods
INTRODUCEDIAGNOSTICSCORE and INTRODUCEHEURISTICDECISIONTABLE briefly
sketched in Section 5.4.5 (p. 99) need to be further investigated and tool support should be
considered (see also Section 12.3.2).

12.3. Extensions of Restructuring Methods

We presented only a small portion of possible restructuring methods. Future work will
concentrate on even more complex and powerful methods for restructuring knowledge.

12.3.1. Interactive Restructuring Methods

Currently, only automatic restructuring methods are implemented, i.e., methods that are
applicable without possibly causing conflicts. However, often the implemented knowl-
edge will cause conflicts, when a restructuring method is applied. For example, moving
the value of an one-choice question to the value range of another one-choice question
can cause a rule to become syntactically ambivalent. In order to facilitate the application
of restructuring methods possibly causing conflicts, we propose to considerinteractive
approacheswith wizard-like tools. Then, the developer successfully can resolve caused
conflicts supported by the wizards in a user-friendly way.

12.3.2. Big Restructurings on Knowledge Bases

If the application of restructuring methods is considered for large, already-existing knowl-
edge bases, e.g., legacy knowledge systems, then the introducing of big restructuring meth-
ods is a promising direction. Especially, during the implementation of knowledge formal-
ization patterns [102] for already existing knowledge systems the need for big restructur-
ings will arise. Then, interactive and intelligent wizards for conflict resolution during the
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application of the restructuring method can support the developer.

12.4. Transparent Integration of Learning Methods

We also identified semi-automatic learning methods as an agile practice. However, cur-
rently the implemented methods for learning scoring rules and set-covering models are
only available in batch mode. A wizard-like integration of these methods into the exist-
ing knowledge modeling workbench d3web.KnowME is a promising direction for future
work, since this would significantly increase the usability of the presented methods.

AI – The art and science of making computers do interesting things that are
not in their nature.

from the november 2003 issue of theAI Expert Newsletter–
http://www.ainewsletter.com
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A. Restructuring Methods – a
Catalog

Restructuring methods are defined in a template-like from in order to enable for a con-
venient and simple application. Each restructuring method is described by the following
seven elements.

Name A short and meaningful name is applied in order to simplify
the identification of the particular methods. The names are
used to build a vocabulary of restructuring methods.

Summary A description of the method summarizing the functionality
of the restructuring method.

Motivation A collection of situations in which this restructuring should
be applied.

Consequences A report of experienced conflicts and restrictions, when ap-
plying this restructuring method. Additionally, hints and
tips may be available for work-arounds.

Mechanics A description of the actual restructuring method, given in
an algorithmic and step-wise style.

Example A simple example depicting the application of the restruc-
turing method.

Related methods An enumeration of related (e.g., inverse) restructuring
methods.

For the convenient integration of restructuring methods into a knowledge modeling en-
vironment, specialized tools need to be offered to the user. For this reason, the degree of
automatization is an interesting property of restructuring methods. We distinguish between
the three different degrees of automatization:A (auto),D (default), andI (interactive). A
restructuring method is labeled with degreeA, if the method can be applied automatically
without any user interaction, and can be fully executed by a specialized tool. A method is
labeled withD, if default values can be used for an automatic executing of the restructur-
ing method. If defaults are known, then full tool support can be provided. If the method
causes conflicts within the modeled knowledge, that cannot be solved by defaults, then the
method needs to be executed interactively (I ) by the knowledge developer. However, even
for interactive restructuring methods, tools can give helpful support during execution.
It is worth noticing, that the degree of automatization often depends on the currently mod-
eled knowledge, e.g., a restructuring method may cause conflicts for one knowledge base,
but will be fully axiomatizable for another knowledge base. Therefore, the degree of au-
tomatization is attached to the method that can be guaranteed at least.
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We will provide a detailed description of the following restructuring methods; the exam-
ples motivating the methods are taken from an exemplary knowledge base for the diagnosis
of car faults.

Name of method Degree of automation
COMPOSEQUESTIONSETS (p. 223) A
EXTRACTQUESTIONSET (p. 225) A
MOVEQUESTIONVALUE (p. 227) I
REMOVEDIAGNOSIS (p. 230) D
REMOVEQUESTION (p. 232) D
SHRINKVALUERANGE (p. 235) I
TRANSFORMMCINTOYN (p. 239) A
TRANSFORMNUM INTOOC (p. 242) I
TRANSFORMYNI NTOMC (p. 245) I
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COMPOSEQUESTIONSETS A

The question or question sets contained in two question sets are merged in a new question
set.

Motivation

There exist two possibly small question sets that are correlating by indication rules
between the questions of these question sets. An aggregated question set containing
both may simplify the design and structure of the knowledge base.

Consequences

Similarly to the EXTRACTQUESTIONSET method the rule actions of indications
rules need to be considered. Then, all rules containing one of the combined ques-
tion sets in their rule action are modified, so that they now indicate the composed
question set.

Let QS1 = (Q1, . . . , Qn) andQS2 = (Q′
1, . . . , Q

′
m) be abstract question sets con-

taining question and other question sets, respectively. The newly created question
setQS is inserted at the position of the original question setQS1 and is defined as
QS = (Q1, . . . , Qn, Q

′
1, . . . , Q

′
m).

Strategic Knowledge: Indication Rules
All indication rules indicatingQS1 or QS2 are modified so that they are indicating
the new question setQS instead.

Mechanics

The restructuring method is performed by the following procedure:

1 Apply test suite to the knowledge system and abort, if errors are reported. Es-
pecially, consider the strategic test knowledge.

2 Select the question setsQS1 andQS2 that should be combined.
3 Create a new question setQS at the position of the question setQS1 .
4 Move questions and question sets contained inQS1 andQS2 to the new ques-

tion setQS by preserving the original order of the contained questions (sets).
5 Modify indication rules that target the question setsQS1 andQS2 as described

in theConsequencessection.
6 Remove the old question setsQS1 andQS2 .
7 Apply the test suite to the restructured knowledge system and cancel the re-

structuring method, if errors are reported; alternatively start a debug session.
Especially, consider the strategic test knowledge.
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Example

The question sets ”exhaust observations” (EO) with questions ”exhaust fumes” (EF)
and ”exhaust pipe color” (EPC), and the question set ”engine observations” (EG)
with the questions ”engine noise” (EN) and ”engine start” (ES) and should be ag-
gregated into a new question set called ”observations” (O). LetEO = (EF ,EPC )
andEG = (EN ,ES ) , and the following indication rules are given

r1 = cond(r1) → indicate(EO) .
r2 = cond(r2) → indicate(EO ,EG) .

With the transformation the new question setO is generated with
O = (EF ,EPC ,EN ,ES ) and the rules are modified as follows

r′1 = cond(r1) → indicate(O) .
r′2 = cond(r2) → indicate(O) .

Related Methods

EXTRACTQUESTIONSET (inverse).
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EXTRACTQUESTIONSET A

An existing question set is divided into two question sets by extracting a collection of
questions from the original question set into a newly created question set.

Motivation

The number of questions contained in one question set may accumulate during the
continuous development of the ontological knowledge container. In order to facili-
tate a more compact and meaningful representation of the available questions large
question sets can be partitioned into smaller chunks that contain semantically related
questions.

Consequences

The semantics of the implemented strategic knowledge is affected, since extracted
questions are not indicated any more. LetQS = (Q1, . . . , Qn) be the original
question set, andQS ′ = {Qk, . . . , Qm} be the questions extracted fromQS , i.e.,
QS ′ ⊆ QS .

Strategic Knowledge: Indication Rules
During the execution of the restructuring method we need to consider all indication
rules targeting the question setQS . All indication rules indicatingQS are modified
so that they are also indicating the extracted question setQS ′. Here, the order of
indication is an important aspect: If the first question of the extraction set is the first
question of the original question set, i.e.,Qk = Q1, then we indicateQS ′ beforeQS ;
otherwise,QS is indicated beforeQS ′. With this procedure the original indication
sequence can be preserved.
If follow-up questionsQ are extracted without their parent question, then indication
rules targetingQ are modified so that they are indicating the extracted question set
QS ′.

Mechanics

The restructuring method is performed by the following procedure:

1 Apply test suite to the knowledge system and abort, if errors are reported. Es-
pecially, consider the strategic test knowledge.

2 Select the question setQS and the questions{Qk, . . . , Qm} to be extracted.
3 Create new question setQS ′ at the position after the question setQS .
4 Move questions{Qk, . . . , Qm} to the question setQS .
5 Modify indication rules that target the original questionQS and follow-up

questions contained inQS (seeConsequencessection).
6 Apply the test suite to the restructured knowledge system and cancel the re-

structuring method, if errors are reported; alternatively start a debug session.
Especially, consider the strategic test knowledge.
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Example

The question set ”car observations” (CO) with questions ”exhaust fumes” (EF), ”ex-
haust pipe color” (EPC), ”engine noise”, and ”fuel” (F) should be simplified. Let
CO = (EF ,EPC ,F ) , and the questions ”EF” and ”EPC” should be extracted to
a new question set considering the exhaust pipe (”EP”). The following rule is con-
tained in the knowledge base

r1 = cond(r1) → indicate(CO) .
With the transformation the rule is modified as follows

r′1 = cond(r1) → indicate(EP ,CO) .
The generated question set is indicated before the original question set because the
first question of ”CO” is extracted to ”EP”.

Related Methods

COMPOSEQUESTIONSETS (inverse).
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MOVEQUESTIONVALUE I

A value of a choice question is moved to another choice question.

Motivation

During the development of the knowledge system the requirement may arise that the
detail of a choice question need to be increased. Typically, the granularity is en-
hanced by dividing the question into a set of questions covering specialized aspects
of the finding. As a consequence, it may happen that one or mores values of the
original question need to be moved to a newly created choice question.

Consequences

Let Q ∈ ΩQ the original choice question andv ∈ dom(Q) the value to by moved to
the choice questionQ′.

Conflicts can be caused by ambivalent rule conditions, inconsistent cases, and cyclic
indication rules.

Knowledge with Rule Conditions
Ambivalent and condition: If Q andQ′ are used by anandcondition, then it can
happen, that the restructuring causes an ambivalent rule condition, e.g., the condition

and
(
choiceEqual(Q, v), choiceEqual(Q′, v ′)

)
will be modified by the method

and
(
choiceEqual(Q′, v), choiceEqual(Q′, v ′)

)
,

which is an ambivalent rule condition never evaluating to true for an one-choice
questionQ′. Consequently, for a one-choice questionQ′ the method will be aborted.
However, the conflict can be resolved by converting the question into a multiple-
choice question.

Ambivalent min/max condition: As described above for anand condition the
application of the restructuring method can cause an ambivalentmin/maxcondition.
Then, more than one constrained value for the same one-choice question is contained
in the min/max condition, e.g.,

minMax (choiceEqual(Q′, v), choiceEqual(Q′, v′), . . . ,min,max ) .
For an one-choice questionQ′ the first two sub-conditions can never evaluate to true
at the same time. Then, a warning is reported but the condition is not altered by
default.

Structural Knowledge: Abstraction Rules
The application of the method can cause an abstraction rule to become cyclic, e.g.,
the rule

r = condEqual(Q′, v′) → Q:v ,
will be modified to
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r = condEqual(Q′, v′) → Q′:v .
In such a case a warning is reported but the rule is retained by default.

Structural Knowledge: Set-Covering Knowledge
Due to the restructuring the local similarity measure and the abnormality function
defined for the questionsQ andQ′ need to be revisited.

Structural Knowledge: Case-Based Knowledge
Due to the restructuring the local similarity measure and the abnormality function
defined for the questionsQ andQ′ need to be revisited. If the valuev is assigned to
the questionQ in a casec, i.e.,Q:v ∈ Fc, then this finding is removed fromc and a
new findingQ′:v is added toFc. However, if in the case a valuev′ ∈ dom(Q′) has
been already assigned to questionQ′, then we cannot automatically move the value
v to questionQ′. Therefore, we need to decide by an default value, how to proceed
with conflicting cases. We either

1 overwrite the original value of questionQ′ with the valuev, or
2 retain the original value of questionQ′, or
3 remove the conflicting casec from the case baseCB .

Strategic Knowledge: Indication Rules
Cyclic indication paths: Moving a value to another question can create cyclic
indication paths, e.g., the indication rule

r = choiceEqual(Q, v) → indicate(Q′) ,
will become the cyclic rule

r′ = choiceEqual(Q′, v) → indicate(Q′) .
Beside this direct indication cycle, other cyclic dependencies of multiple indication
rules may be generated. Cyclic indication paths are reported as an error and have to
be resolved manually be the developer.

Broken indication paths: The restructuring method may break indication paths,
e.g., described by decision trees, if there exist indication rules constraining the value
v of questionQ in their rule condition. In such a case, a warning should be reported
and the rules should be presented to the user.

Mechanics

The restructuring method is performed by the following procedure:

1 Apply test suite to the knowledge system and abort, if errors are reported.
2 Select the choice questionQ ∈ ΩQ, the valuev ∈ dom(Q), and the choice

questionQ′ ∈ ΩQ.
3 Add valuev to the value rangedom(Q′) and remove the value fromdom(Q).
4 Adapt the available test knowledge, e.g., modify test cases containing findings

Q:v.
5 Modify the knowledge attached with questionQ and valuev During the modi-

fication check for conflicts as described in theConsequencessection.
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6 Apply the test suite to the restructured knowledge system and cancel the re-
structuring method, if errors are reported; alternatively start a debug session.

Example

The value ”knocking engine noise” (ne) of the one-choice question ”general ob-
servations” (GO) should be moved to the multiple-choice question ”engine noises”
(EN). Originally, the following rules exist:

r1 = and
(
choiceEqual(GO , en), choiceEqual(EN , knocking)

)
→ Bad ignition timing

r2 = choiceEqual(GO , en) → indicate(EN)

After the application of the restructuring method we obtain the following rules:

r′
1 = and

(
choiceEqual(EN , en), choiceEqual(EN , knocking)

)
→ Bad ignition timing

r′
2 = choiceEqual(EN , en) → indicate(EN)

Since ”EN” is a multiple-choice question the ruler′1 will not cause an ambivalent
rule condition (as is would be in the case of an one-choice question). Ruler′2 de-
scribes a cyclic indication rule and is presented to the developer to be resolved man-
ually.

Related Methods

n/a
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REMOVEDIAGNOSISD

A diagnosis is removed from the knowledge base.

Motivation
Due to a specialization or generalization of the diagnosis hierarchy a particular di-
agnosis has become redundant. Alternatively, it has turned out that a diagnosis is
never used in real world environment.

Consequences
The deletion of a diagnosis can cause conflicts in the knowledge base that can be
resolved by default values.

Knowledge with Rule Conditions
We have to consider three alternatives when removing a diagnosisD from a rule
condition:

1 Remove any rule that containsD in its rule condition.
2 Only remove that sub-condition of the rule that containsD. If D is contained

in the only sub-condition defined by the rule, then this is equivalent to Alter-
native 1.

3 Interactively browse the rules that contain the diagnosisD and the developer
decides manually, if the entire rule or sub-condition should be removed.

For the discussed alternatives the developer has to define a default value during the
development of the knowledge system.

Structural Knowledge: Categorical/Scoring Rules
All categorical rules and scoring rules deriving a state of diagnosisD are removed
from the knowledge base.

Structural Knowledge: Cases-Based Knowledge
For any casec and case solutionDc, respectively, delete the diagnosisD. If the
solution of c only consists of the diagnosisD, then remove the entire case. The
deletion of a diagnosis can cause deficiencies of the case base, i.e., the deletion of
a diagnosis or case can yield deficiency of the case base, redundant and ambivalent
cases (p. 77).

Structural Knowledge: Set-Covering Knowledge
All set-covering relationsr = D → F with F ∈ ΩF are removed from the set-
covering model.

Support Knowledge: Linked Content
If there exist support knowledge for the diagnosisD, then remove links to the con-
tent.
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Mechanics

The restructuring method is performed by the following procedure:

1 Apply test suite to the knowledge system and abort, if errors are reported.
2 Select the diagnosisD ∈ ΩD to be removed from the knowledge base.
3 Adapt the available test knowledge with respect to the removed diagnosis.
4 Check for conflicts as discussed in theConsequencessection, and abort if con-

flicts are reported.
5 Remove the diagnosisD and adapt corresponding knowledge as described

above.
6 Apply the test suite to the restructured knowledge system and cancel the re-

structuring method, if errors are reported; alternatively start a debug session.

Example

The diagnosis ”exhaust pipe” (EP) should be removed from the knowledge base,
since it appeared to be not necessary. The following rules contain the diagnosisD:

r1 = established(EP) → indicate(Q1, Q2)
r2 = and(established(EP), choiceEqual(Q3, v)) → indicate(Q4, Q5)
r3 = cond(r3) → EP ,

whereQi ∈ ΩQ. The developer sets the default for removing only sub-conditions
that contain the removed diagnosis. After the deletion of the diagnosisEP the rules
r1 andr3 are removed and the ruler2 is modified as follows:

r2 = and(choiceEqual(Q3, v)) → indicate(Q4, Q5)
The rule condition can be further simplified by removing theandcondition.

Related Methods

n/a
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REMOVEQUESTIOND

A question is removed from the knowledge base.

Motivation

A question may have become obsolete due to simplifications of the knowledge base.
Alternatively, a question should be removed because it turned out that is was never
used in the real world application of the knowledge system.

Consequences

Although the deletion of a question appears as an easy task at first sight, this restruc-
turing operation may cause conflicts in the knowledge base.

Knowledge with Rule Conditions
We have to consider three alternatives when removing a questionQ from a rule
condition:

1 Remove any rule that containsQ in its rule condition.
2 Only remove that sub-condition of the rule that containsQ. If Q is contained

in the only sub-condition defined by the rule, then this is equivalent to Alter-
native 1.

3 Interactively browse the rules that containQ and the developer decides manu-
ally, if the entire rule or sub-condition should be removed.

For the discussed alternatives the developer has to define a default value during the
development of the knowledge system.

Structural Knowledge: Abstraction Rules
All abstraction rules that derive a value forQ are removed from the knowledge
base.

Structural Knowledge: Cases-Based Knowledge
If available, then remove the weight function, the abnormality function, and the sim-
ilarity function defined forQ. Consequently, for any casec and problem description
Fc, respectively, delete the findingQ:v. If the problem description ofc only consists
of the findingQ:v, then remove the entire case. However, the deletion of a question
can cause deficiencies of the case base, i.e., the deletion of a finding or a case can
yield redundant and ambivalent cases (p. 77).

Structural Knowledge: Set-Covering Knowledge
If available, then remove the weight function, the abnormality function, and the
similarity function defined forQ. Furthermore, all set-covering relationsr = D →
Q:v with D ∈ ΩD are removed from the set-covering model.
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Strategic Knowledge: Indication Rules
For any indication ruler containingQ in their indication action, i.e.,

r = cond(r) → indicate(Q1, . . . , Qk, Q, Qk + 1, . . . , Qn)
removeQ from the rule action. If the rule action only contains the questionQ, then
remove the entire rule.

Support Knowledge: Linked Content
If there exists support knowledge for questionQ, then remove links to the content.

Mechanics

The restructuring method is performed by the following procedure:

1 Apply test suite to the knowledge system and abort, if errors are reported.
2 Select the questionQ ∈ ΩQ to be removed from the knowledge base.
3 Adapt the available test knowledge with respect to the removed question.
4 Check for conflicts as discussed in theConsequencessection, and abort if con-

flicts are reported.
5 Remove questionQ and adapt linked knowledge as described above.
6 Apply the test suite to the restructured knowledge system and cancel the re-

structuring method, if errors are reported; alternatively start a debug session.

Example

The question ”car color” (CC) should be removed from the knowledge base, since it
appeared to be not necessary. The following rules are using the questionQ:

r1 = cond(r1) → indicate(exhaust pipe,CC )
r2 = cond(r2) → indicate((CC ))
r3 = choiceEqual(Type, boxster) → CC :silver
r4 = or(choiceEqual(CC, silver), choiceEqual(CC, black),

choiceEqual(engine, boxer)) → D ,
whereD ∈ ΩD and ”exhaust pipe”∈ ΩQ. The developer sets the default for remov-
ing only sub-conditions that contain the removed question. After the deletion ofCC
the rules are modified as follows:

r′1 = cond(r1) → indicate(exhaust pipe)
r′4 = or(choiceEqual(engine, boxer)) → D

The indication ruler2 was removed from the knowledge base sinceCC was the
only indicated question. Furthermore, the abstraction ruler3 was removed from the
rule base. The rule condition ofr′4 can be simplified by removing the redundantor
condition.
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Related Methods

n/a
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SHRINKVALUERANGE I

Decrease the value range of a choice question in order to scale down the granularity.

Motivation

Often domain experts start implementing the ontological container with choice ques-
tions providing detailed value ranges. During ongoing development of, e.g., the
structural knowledge container, the value range of some questions exposes to be un-
necessarily precise. Furthermore, a smaller value range may simplify the dialog for
the end-users.

Consequences

Let Q ∈ ΩQ be the selected choice question with value rangedom(Q). For the
execution of the method the developer has to specify a transformation functiont :
dom(Q) → dom ′(Q), which maps the values of the original value range to the
values of the reduced value range.

Conflicts can be caused due to the mapping to a smaller value range. To detect
conflicts, the applied knowledge containers are investigated. For the particular con-
tainers the following conflicts can arise:

Knowledge with Rule Conditions
Creation of identical sub-conditions: Due the restructuring two rules are gener-
ated with equal sub-conditions.

Choice question,or condition :	
For arbitrary choice-questions, the rule condition can contain anor condition
of two equal sub-conditions that were originally referring to different choice
values and have been mapped to the same value. One of the two equal sub-
conditions is deleted automatically in order to resolve this conflict.

MC question,andcondition :	
If the restructured question is a multiple-choice question, then the rule con-
dition can contain anand condition of two equal sub-conditions targeting the
equal transformed choice value. This conflict is automatically resolved by re-
moving one of the equal sub-conditions.

MC question,minMaxcondition :	d

Two equal sub-conditions are generated due to the restructuring. When per-
formed automatically the double-entry remains in the condition. In a later step,
the developer has to decide if one condition should be deleted or adapted with
respect to theminMaxboundaries.
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Structural Knowledge: Abstraction/Categorical/Scoring Rules
Creation of identical conditions: The restructuring method modified two rules so
that their conditions are equal. This can cause ambivalent and redundant rules.

Redundant rules (p. 96) :	
If all rules with identical rule condition contain an equal rule action, then all
except one rule can be deleted automatically.

Ambivalent rules (p. 97) :�
The restructuring method is canceled if ambivalent rules are created, i.e., rules
with equal rule condition but ambivalent rule action.
Abstraction rules A different value of an equal question is derived by two

rules with the same condition.
Categorical rules A diagnosis is established and excluded by two rules with

the same condition.
Scoring rules A diagnosis is attached with a positive and negative confirma-

tion category by two rules with the same condition.

Structural Knowledge: Case-Based Knowledge
Local similarity knowledge and abnormality functions need to be adapted according
to the transformation function. Restructured cases can cause redundant and ambiva-
lent cases.

Case with redundant findings :	
A case contains a multiple-choice question, which is assigned to two equal
values. Then, one value is redundant and can be deleted automatically.

Redundant cases (p. 77) :	d

Two casesc, c′ have a subsuming set of findings and an equal set of diagnoses,
i.e.,Fc ⊆ Fc′ andDc = Dc′. Per default, the cases remain in the case base,
and the developer has to decide manually about the deletion.

Ambivalent cases (p. 78) :	d

Two casesc, c′ have a subsuming set of findings but a different set of diagnoses,
i.e.,Fc ⊆ Fc′ andDc 6= Dc′. Per default, the cases remain in the case base.
However, for specialized case bases, e.g., test cases, ambivalence denotes a
semantic contradiction, and therefore this conflict can cause the method to be
canceled.
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Structural Knowledge: Set-Covering Knowledge
Local similarity knowledge and abnormality functions need to be adapted according
to the transformation function. Restructured set-covering models can yield redun-
dant and ambivalent set-covering relations.

Redundant set-covering relation (p. 120) :	d

A set-covering relationr = D → F was created, that already exists in the
set-covering model.

Subsumed set-covering relation (p. 120) :	d

A set-covering relationr = D → F was created, that subsumes or that is
subsumed by another existing set-covering relation.

Ambivalent set-covering relation (p. 120) :�
A set-covering relationr = D → F was created by the restructuring method,
but there exists an exclusion condition(¬D ∧ F ).

Strategic Knowledge: Indication Rules
For indication rules we have to consider the conflicts discussed in the sectionKnowl-
edge with Rule Conditions.

Support Knowledge: Linked Content
Support knowledge linked by the valuesvi of questionQ is then linked by the values
t(vi).

Mechanics

The restructuring method is performed by the following procedure:

1 Apply test suite to the knowledge system and abort, if errors are reported.
2 Select the choice questionQ ∈ ΩQ for which the value rangedom(Q) should

be reduced, and define a new value rangedom ′(Q) for Q; |dom ′(Q)| <
|dom(Q)|.

3 Define a transformation functiont : dom(Q) → dom ′(Q), which maps the
original valuesv ∈ dom(Q) to the new valuesv′ ∈ dom ′(Q).

4 Adapt the available test knowledge with respect to the new value range
dom ′(Q), e.g., modify test cases containing findingsQ:v.

5 Modify the knowledge attached with questionQ according to the transforma-
tion functiont. During the mapping of the values ofQ check for conflicts as
described in theConsequencessection.

6 Apply the test suite to the restructured knowledge system and cancel the re-
structuring method, if errors are reported; alternatively start a debug session.

Example

The one-choice question ”mileage” (M) with the value rangedom(M) =
{very low , low , normal , high, very high} is too detailed and should be simplified by
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the value rangedom ′(M) = {low , normal , high}. The developer defines a transfor-
mation function given by the following table:

dom ′(M) dom(M)
very low low
low low
normal normal
high high
very high high

Originally, the following rules with questionM are contained in the knowledge base
(with diagnosis ”clogged air filter ” and question setQS ):

r1 = or
(
choiceEqual(M, high), choiceEqual(M, very high)

)
→ clogged air filter

r2 = choiceEqual(M, high) → indicate(QS )
r3 = choiceEqual(M, very high) → indicate(QS )

After the application of the restructuring method we obtain the following rules:

r′
1 = or

(
choiceEqual(M, high), choiceEqual(M, high)

)
→ clogged air filter

r′
2 = choiceEqual(M, high) → indicate(QS )

r′
3 = choiceEqual(M, high) → indicate(QS )

The ruler′1 contains a redundant sub-condition and is further reduced. Since the
rule r′2 andr′3 are equal we also remove ruler′3. We obtain the following final rules:

r′′
1 = choiceEqual(M, high) → clogged air filter

r′′
2 = choiceEqual(M, high) → indicate(QS )

Related Methods

n/a
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TRANSFORMMCINTOYN A

Convert a multiple-choice question into a set of semantically equal yes/no questions by
mapping each value of the multiple-choice question to a yes/no question.

Motivation

The value range of a multiple-choice question contains answers with no semantical
relation. With the TRANSFORMMCINTOYN method such a question can be con-
verted into a set of yes/no questions. Each yes/no question corresponds to a value of
the multiple-choice question. Furthermore, this method facilitates the move of the
converted yes/no questions into different question sets afterwards.

Consequences

In general, the method cannot perform any conflicts, and we describe the particular
modifications for the implemented knowledge. LetQ ∈ ΩQ be a multiple-choice
question withvi ∈ dom(Q), andQvi are generated yes/no questions.

Knowledge with Rule Conditions
Each condition choiceEqual(Q, vi) is replaced by the new condition
choiceEqual(Qvi, yes).

Structural Knowledge: Abstraction Rules
If the valuevi is derived for questionQ by an abstraction rule, i.e.,

r = cond(r) → Q:vi ,
then the rule is replaced by

r′ = cond(r) → Qvi:yes .

Structural Knowledge: Case-Based Knowledge
The global weightwg and abnormality function of the generated yes/no question
Qvi:yes is adapted with respect to the weight ofQ and the abnormality of the value
vi, i.e.,wg(Qvi) = wg(Q) andabn(yes) = abn(vi).
The findings of questionQ in casesc ∈ CB are replaced by the generated findings
Qvi:yes.

Structural Knowledge: Set-Covering Knowledge
Each set-covering relation

r = D → Q:vi

with D ∈ ΩD is replaced by a new set-covering relation
r′ = D → Qvi:yes .

Global weight function is adapted so thatwg(Q) = wg(Qvi).
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Strategic Knowledge: Indication Rules
Each indication rule withQ in its rule action

r = cond(r) → indicate(Q′
1, . . . , Q

′
n, Q, Q′

n+1, . . . , Q
′
m)

is replaced by a new indication rule
r = cond(r) → indicate(Q′

1, . . . , Q
′
k, Qv1, . . . , Qvn, Q′

n+1, . . . , Q
′
m) so that now

the generated yes/no questions are indicated.

Support Knowledge: Linked Content
Support knowledge linked by the questionQ is then linked by the generated yes/no
questionsQv1, . . . , Qvn.

Mechanics

The restructuring method is performed by the following procedure:

1 Apply test suite to the knowledge system and abort, if errors are reported.
2 Select the multiple-choice questionQ with the value rangedom(Q) =
{v1, . . . , vn}.

3 Insertn yes/no questions mit names corresponding to the valuesQv1, . . . , Qvn

at the same position of the original questionQ.
4 Adapt test suite with respect to the new yes/no questions.
5 Select the knowledge that contains the multiple-choice questionQ and re-

placeQ by the new yes/no questionsQv1, . . . , Qvn according to the following
schema: Replace allQ:vi by the new findingQvi:yes.

6 Delete the multiple-choice questionQ.
7 Apply the test suite to the restructured knowledge system and cancel the re-

structuring method, if errors are reported; alternatively start a debug session.

Example

The multiple-choice question ”engine noises” (E) with the value rangedom(E) =
{knocking , ringing , normal} should be converted to the three yes/no questions
”engine noises-knocking” (E knocking), ”engine noises-ringing” (E ringing), and
”engine noises-normal” (E normal ). The following rules are contained in the
knowledge base withD ∈ ΩD:

r1 = cond(r) → indicate(E)
r2 = and

(
choiceEqual(E, ringing),

not
(
choiceEqual(E, normal)

))
→ D

After the transformation the rules are modified as follows:

r′1 = cond(r) → indicate(E knocking ,E ringing ,E normal)
r′2 = and

(
choiceEqual(E ringing , yes),

not
(
choiceEqual(E normal , yes)

))
→ D
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Related Methods

TRANSFORMYNI NTOMC (inverse).
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TRANSFORMNUM INTOOCI

A numerical question is converted into a more abstract choice question.

Motivation

At the beginning of system development the numerical representation of a question
was assumed to be reasonable. Later the numerical question was felt to be too de-
tailed or an exact numerical value could not be gathered. As a consequence, a more
qualitative representation of the findings by an one-choice question is preferred. An-
other motivation for this restructuring may be the requirement to reduce the time the
user spends answering these questions, since qualitative values for a question typi-
cally are easier and faster to acquire.

Consequences

The described method is only applicable to standard questions that are not derived by
abstraction rules. Furthermore, the method can only be applied if the value range of
the numerical question can be divided into disjunctive partitions. For each partition
a new choice value is created. The generation of the partitions is defined as follows:
If the numerical question is constrained to a specified value, e.g., in a rule condition,
then a partition is defined containing exactly this value. If the numerical question
is constrained to an interval, then one or more (smaller) partitions are generated
that cover the constrained interval. The generated partitions are mapped to choice
values, i.e., for a point interval[x; x] we generate the choice valuevx , and for the
interval[x, y] we generate the choice valuev[x ,y]. Consequently, the generated value
range is an ordered sequence. It is worth noticing, that often a post-processing of
the generated partitions is reasonable, e.g., by defining a more coarse value range.
However, the adaptation should be performed after a successful implementation of
the restructuring method.

Knowledge with Rule Conditions
For all rule conditions containing the numerical questionQ we convert the rule con-
dition according to the following schema;Q′ is the new choice question with value
rangedom(Q′) = {v0, . . . , vn}.

numEqual(Q, x) choiceEqual(Q′, vx)
numLess(Q, x) choiceIn(Q′, {vi, vi−1, . . . , v0})

with vi = v(x,y]

numLessEqual(Q, x) choiceIn(Q′, {vi, vi−1, . . . , v0})
with vi = v[x,y]



243

numGreater(Q, x) choiceIn(Q′, {vi, vi+1, . . . , vn})
with vi = v(x,y]

numGreaterEqual(Q, x) choiceIn(Q′, {vi, vi+1, . . . , vn})
with vi = v[x,y]

un/known(Q) un/known(Q′)

Structural Knowledge: Abstraction Rules
If the numerical question is contained in the rule action of an abstraction rule, then
the method is aborted.

Structural Knowledge: Case-Based Knowledge
If the numerical questionQ is contained in the problem description of a casec, then
it is replaced by the choice questionQ′ according to the following schema: For
Q:x ∈ Fc we insertQ′:vx, if there exists a point intervalvx ∈ dom(Q′). Otherwise,
we insertQ′:v[m,n] with the valuev[m,n] ∈ dom(Q′) andx ∈ [m,n].

Structural Knowledge: Set-Covering Knowledge
If the numerical questionQ is contained in a set-covering relation, then it is replaced
according to the schema defined for rule conditions.

Mechanics

The restructuring method is performed by the following procedure:

1 Apply test suite to the knowledge system and abort, if errors are reported.
2 Select a numerical questionQ ∈ ΩQ and generate distinct partitions of the

value range.
3 Abort method, if no distinct partition can be generated.
4 Insert one-choice questionQ′ after the position ofQ.
5 Adapt test suite with respect to the partitioning information.
6 Select the knowledge that contains the selected numerical questionQ and re-

place it withQ′. Adapt knowledge according to the discussion in theConse-
quencessection.

7 Delete the numerical questionQ.
8 Apply the test suite to the restructured knowledge system and cancel the re-

structuring method, if errors are reported; alternatively start a debug session.

Example

The numerical question ”average milage” (NM) should be converted into the
choice question ”average mil.” (CM). The following categorical rules exist with
D, D′, D′′ ∈ ΩD:

r1 = numGreater(NM , 15) → D
r2 = numLessEqual(NM , 5) → D′

r3 = numEqual(NM , 10) → D′′
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The partition{[−∞, 5], (5, 10), [10, 10], (10, 15], (15,∞)} is generated automati-
cally, and consequently the value range

dom(Q′) = {v[−∞,5], v(5,10), v[10,10], v(10,15], v(15,∞)} .
The rules are converted according to the discussion in theConsequencessection:

r′1 = choiceIn(CM , {v(15,∞)}) → D
r′2 = choiceIn(CM , {v(−∞,5]}) → D′

r′3 = choiceEqual(CM , v[10,10]) → D′′

The conditions of ruler′1 andr′2 can be simplified in a post-processing step by ex-
changingchoiceIn by choiceEqual .

Related Methods

n/a
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A sequence of yes/no questions is converted into one semantically equivalent multiple-
choice question. The name of each yes/no question corresponds to a value of the generated
multiple-choice question.

Motivation

The number of yes/no questions can be reduced by aggregating them in a single
multiple-choice question. Such a transformation can yield a more compact repre-
sentation of the ontological knowledge. Furthermore, the dialog efficiency can be
improved since typically answering one multiple-choice question takes less time
than a set of yes/no questions.

Consequences

The method only causes conflicts for strategic knowledge with ambivalent indication
rules. We describe the particular modifications for the implemented knowledge. Let
{Qv1, . . . , Qvn} ⊆ ΩQ be a set of yes/no questions and letQ be the generated
multiple-choice question with corresponding value rangedom(Q) = {v1, . . . , vn}.

Knowledge with Rule Conditions
Each condition choiceEqual(Qvi, yes) is replaced by the new condition
choiceEqual(Q, vi); conditionschoiceEqual(Qvi, no) are replaced by the new con-
dition not

(
choiceEqual(Q, vi)

)
.

Structural Knowledge: Abstraction Rules
The restructuring method is aborted, if there exists an abstraction rule deriving the
no value of a selected yes/no questionQvi. Such an abstraction cannot be converted
to an abstraction rule for a multiple-choice question.

Otherwise, if theyes value is derived for questionQvi by an abstraction rule, i.e.,
r = cond(r) → Qvi:yes , then the rule is replaced by
r′ = cond(r) → Q:vi .

Structural Knowledge: Case-Based Knowledge
If the global weight functionwg is defined for the selected yes/no questions, then we
need to assign an aggregated weight to the generated multiple-choice questionQ,
e.g., the mean value of the aggregated weights.
The findingsQvi:yes in casesc ∈ CB are replaced by a finding of the generated
multiple-choice questionQ:vi. If more than one finding forQ is contained inc, then
these findings are aggregated to a common multiple-choice finding.
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Structural Knowledge: Set-Covering Knowledge
Each set-covering relation

r = D → Qvi:yes / r = D → Qvi:no
with D ∈ ΩD is replaced by a new set-covering relation

r′ = D → Q:vi / r′ = D → not(Q:vi) .
The global weight functionwg for the questionQ is defined by the aggregated global
weights of the converted yes/no questions, e.g., by the mean value.

Strategic Knowledge: Indication Rules
The method replaces the selected yes/no questionsQvi contained in indication rules
by the generated multiple-choice questionQ. The restructuring method is aborted,
if there exist two rules with an equal rule condition andQvk, Qvm are selected
yes/no questions:

r1 = c → indicate(Qvk)
r2 = c → ¬indicate(Qvm)

After the transformation we obtain the following ambivalent indication rules:
r′1 = c → indicate(Q)
r′2 = c → ¬indicate(Q)

Support Knowledge: Linked Content
Support knowledge linked by a yes/no questionQvi is then linked by the generated
multiple-choice questionQ.

Mechanics

The restructuring method is performed by the following procedure:

1 Apply test suite to the knowledge system and abort, if errors are reported.
2 Select the list of yes/no questions(Qv1, . . . , Qvn) to be transformed.
3 A multiple-choice questionQ with value rangedom(Q) = {v1, . . . , vn} is

inserted at the position of the first yes/no questionQv1.
4 Adapt test suite with respect to the new multiple-choice question.
5 Select the knowledge that contains the selected yes/no questionsQvi and re-

place Qvi by the generated yes/no questionQ according to the following
schema: Replace allQvi:yes by Q:vi, andQvi:no by not(Q:vi).

6 Delete the yes/no questionsQv1, . . . , Qvn.
7 Apply the test suite to the restructured knowledge system and cancel the re-

structuring method, if errors are reported; alternatively start a debug session.

Example

The selected yes/no questions ”engine knocking” (E knocking), ”engine ringing”
(E ringing), and ”engine noise normal” (E normal ) should be converted in a single
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multiple-choice question ”engine noise” (E). Consequently, the value range ofE is
given by the yes/no questions, i.e.,

dom(E) = {e knocking , e ringing , e normal}.
The following rules are contained in the knowledge base withD ∈ ΩD:

r1 = cond(r) → indicate(E knocking ,E ringing)
r2 = and

(
choiceEqual(E knocking , yes),

choiceEqual(E normal , no)
)
→ D

After the transformation the rules are modified as follows:

r′1 = cond(r) → indicate(E)
r′2 = and

(
choiceEqual(E , e knocking),

not
(
choiceEqual(E, e normal)

))
→ D

Related Methods

TRANSFORMMCINTOYN (inverse).
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B. Test Methods in a Nutshell

One of the key practices of the agile process model introduced in this work is the applica-
tion of automated test methods. In this appendix we summarize the presented test methods
in a tabular form. For each test method we give the name of the test method and a brief
description of the method’s purpose (Test Name and Description). Furthermore, the tar-
geted knowledge container of the test (Container) and the required test knowledge (Test
Knowledge) is given.
The targeted knowledge containers are abbreviated according to the following notation:

OntK The ontological knowledge container
StrucK The structural knowledge container
StrucK/CBR The structural knowledge container with

case-based knowledge
StrucK/SCM The structural knowledge container with

set-covering knowledge
StrucK/RB The structural knowledge container with

rule-based knowledge
StratK The strategic knowledge container
SuppK The support knowledge container

For a more detailed discussion of the particular methods we refer to the given page num-
bers. The test methods are listed in alphabetical order.
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Test Methods
Test Name and Description Container Test Knowledge
Ambivalent Link Testing: Tests, if the linkage of the
ontological objects has an ambivalent meaning.
(p. 150)

SuppK Ontological knowledge

Case-Based Ontology Testing:Determines the
usage of the ontological objects under real world
conditions. (p. 54)

OntK Cases

Case-Based Structure Testing:Gives an overview
of the current case base w.r.t. appearance of
diagnoses and questions. (p. 78)

StrucK/CBR –

Diagnosis-Related Question Sets:Tests the
correctness of strategic knowledge for given
diagnoses. (p. 141)

StratK DRQS, cases, structural knowl-
edge

Dynamic Rule Base Testing:Determines the usage
of rules w.r.t. to a given case base. (p. 99)

StrucK/RB Cases, threshold values

Empirical Testing: Compares the derived solutions
of solved test cases with the correct solutions of the
given cases. (p. 125)

StrucK Cases, threshold values

Inferential Constraints: Tests the local correctness
of structural knowledge. (p. 129)

StrucK Partial cases

Partial-Ordered Question Sets:Tests the
correctness of strategic knowledge using typical
dialog sequences. (p. 140)

StratK POQS, possibly cases

Plain Link Testing: Tests for all ontological objects,
if the linked content is accessible. (p. 149)

SuppK –

Sequenzialized Empirical Testing:Compares the
derived and the intermediate solutions of test cases
with the correct solutions of the given cases. (p. 128)

StrucK Sequentialized cases, threshold
values

Standardization Testing: Checks the ontology
against a given standard ontology. (p. 55)

OntK Standardized ontology

Static Link Testing: Provides an overview of the
available links defined for the support knowledge
entries. (p. 149)

SuppK –

Static Ontology Testing:Generates a statistics of the
implemented ontological entities. (p. 53)

OntK –

Static Rule Base Testing:Gives an overview of the
implemented rule base. (p. 98)

StrucK/RB –

Static SC-Model Analysis:Gives a statistics of the
implemented set-covering model. (p. 119)

StrucK/SCM Threshold values

Static SC-Model Verification: Tries to detect
anomalies in set-covering knowledge. (p. 119)

StrucK/SCM Possibly threshold value

continued on next page
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Test Name and Description Container Test Knowledge
Static Verification (Case Base):Tries to detect
anomalies in case-based knowledge. (p. 77)

StrucK/CBR Threshold values

Static Verification of Rule Base Integrity:
Investigates the rule base for anomalies. (p. 96)

StrucK/RB Possibly ambivalence con-
straints

Test Case Duration:Determines the averaged dialog
duration of the implemented knowledge system.
(p. 142)

StratK Cases, benchmark value

Torture Tests: Determines the robustness of the
implemented knowledge system w.r.t. the input
quality and the input quantity. (p. 130)

StrucK Cases, threshold values

Torture Tests (Rule Base):Determines the
robustness of the implemented rule base. (p. 98)

StrucK/RB Cases, threshold values

Torture Tests (SCM): Determines the robustness of
the implemented set-covering model. (p. 121)

StrucK/SCM Cases, threshold values
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